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Abstract

This diploma thesis proposes a novel and proven correct reactive method for planning
three-dimensional optimal motion in complex environments. By combining fluid flow
equations, optimal control theory, and deep reinforcement learning techniques, this
study offers an interdisciplinary and unique approach, effectively merging positive
attributes from different scientific fields. The method models the 3D motion plan-
ning problem by solving streamlines of the potential fluid flow, enabling the proper
handling of various terrain types. This is achieved through the discretization of
the geometry into surface panels, while the safety criteria are ensured via a set of
von-Neumann boundary conditions. The proposed fluid-based planner guarantees a
continuous-time, natural-looking, stable and safe solution for the motion planning
problem with Artificial Harmonic Potential Fields (AHPFs). Furthermore, this the-
sis presents a model-based reinforcement learning algorithm for learning the optimal
non-linear control in continuous time and action space with respect to an infinite
horizon cost function. The algorithm utilizes an actor-critic scheme based on policy
iteration, to successively approximate the optimal solution of the Hamilton-Jacobi-
Bellman equation. This way, the optimal robot motion is obtained by iteratively
updating the fluid flow parameters (i.e., the controller parameters) in a determinis-
tic manner. The proposed method demonstrates fast convergence and outperforms
widely used methods such as the RRT∗, highlighting its contribution to the field of
3D optimal motion planning.
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Περίληψη

Η παρούσα διπλωματική εργασία προτείνει μια νέα και αποδεδειγμένα ορθή μέθοδο

για τον σχεδιασμό της τρισδιάστατης βέλτιστης κίνησης ενός ρομπότ. Η μέθοδος προ-

σφέρει μια διεπιστημονική και καινοτόμα προσέγγιση, συνδυάζοντας τις εξισώσεις ροής

των ρευστών, την θεωρία βέλτιστου ελέγχου και τεχνικές βαθιάς ενισχυτικής μάθησης.

Το πρόβλημα της βέλτιστης πλοήγησης μοντελοποιείται μέσω της επίλυσης της ροής

ασυμπίεστου, μη-συνεκτικού και αστρόβιλου ρευστού. Αυτό επιτυγχάνεται διακριτο-

ποιώντας την γεωμετρία του χώρου σε επιφανειακά πάνελς και ικανοποιώντας στην

συνέχεια τα κριτήρια ασφάλειας μέσω ενός σύνολο οριακών συνθηκών von-Neumann.
Η προτεινόμενη μέθοδος ανήκει στην κατηγορία των Τεχνικών Αρμονικών Δυναμικών

Πεδίων για τον σχεδιασμό πορείας και εγγυάται την γένεση συνεχούς-χρόνου και ο-

μαλών τροχιών, ενώ παράλληλα σταθεροποιεί το σύστημα με ασφάλεια στον τελικό

στόχο. Επιπρόσθετα, η παρούσα εργασία παρουσιάζει έναν αλγόριθμο ενισχυτικής

μάθησης, βασισμένο σε μοντέλο του περιβάλλοντος, για την εκμάθηση του βέλτιστου

μη-γραμμικού ελέγχου σε συνεχή χρόνο. Οι παράμετροι της ροής του ρευστού ανανε-

ώνονται επαναληπτικά μέχρι να συγκλίνουν στην βέλτιστη λύση, η οποία δίνεται από

την εξίσωση Hamilton-Jacobi-Bellman (HJB). Η προτεινόμενη μέθοδος επιδεικνύει
ταχεία σύγκλιση και υπερτερεί έναντι ευρέως δημοφιλών μεθόδων όπως είναι η RRT*,
αναδεικνύοντας με τον τρόπο αυτό την συνεισφορά της στον κλάδο του σχεδιασμού

κίνησης των ρομπότ σε τρισδιάστατους χώρους.
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Chapter 1

Introduction

1.1 The Motion Planning Problem

Motion planning has garnered significant attention from researchers throughout the
years and is pivotal for the future of robotics [1]. Motion planners are involved
in a wide range of applications, spanning from computer-aided design to robotic
surgeries and the coordination of autonomous vehicles in disaster scenarios. The
primary objective of motion planning is to find a control sequence that generates
feasible trajectories, enabling the system to navigate towards a desired position.
Addressing the motion planning problem entails challenges related to ensuring a
collision-free navigation, implementing computationally efficient algorithms in real
time, and providing optimal control policies. While solutions on the motion planning
problem have long been established, pursuing optimality remains more challenging.
So far, the optimal motion planning problem has been mainly treated with open-loop
sampling-based methods. However, in complex and high-dimensional environments
it becomes evident that naive discretization of the robot’s state and action space
can lead to high computational times, discretization errors and sub-optimal results
[2]. Hence, addressing optimality in motion planning necessitates continuous-time
solutions that can effectively tackle the infinite-horizon optimal control problem.
Continuous-time reactive approaches not only mitigate the limitations of discrete-
time methods but also allow to study the problem with higher fidelity. This includes
generating smooth trajectories that result in a natural movement of the system,
providing proven safety by incorporating the constraints within the system dynamics
and overall delivering robust solutions.
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1.2 Related Work

The motion planning problem has been heavily studied in the two dimensions. How-
ever, extending motion planning to three-dimensional environments introduces new
challenges. One approach is to decouple planar maneuvers and altitude changes [3],
while other researchers focus on directly expanding traditional methods in higher-
dimensional spaces. The latter requires careful treatment and entails challenges
related to establishing the existence of a solution, meeting the safety requirements
and compensating for computational feasibility. In the literature, motion planning
algorithms are mainly divided into two categories: discrete methods and reactive
methods.

Path planning in discrete environments is generally classified into graph-based meth-
ods (GBMs) and sampling-based methods (SBMs). The former includes many pop-
ular algorithms, e.g. A∗ [4] and Dijkstra’s algorithm [5], that construct a graph rep-
resentation of the discretized space and then search for a feasible path. SBMs utilize
an additional obstacle detection module to explore the environment by generating
and connecting nodes in a tree-like structure. The most popular sampling-based
approaches are Probabilistic Roadmaps [6] and Rapidly Exploring Random Trees
(RRT) [7]. While these methods are proven probabilistic complete, they lack proven
optimality. Another drawback of discrete-time methods is the significant increase
in time complexity as the discretization resolution, the map complexity and the
space dimensions grow. A noteworthy contribution towards achieving optimality in
sampling-based methods is the introduction of RRT* by Karaman and Frazzoli [8].
This algorithm offers asymptotic optimality guarantees by dynamically updating
the tree connections through a rewiring technique. Numerous extensions of RRT∗

have been developed over the years and mainly focus on generating smoother tra-
jectories [9], addressing kino-dynamic constraints [10] and dealing with the slow
convergence and the high memory consumption [11,12].

On the other hand, Artificial Potential Fields (APFs) employ continuous potential
functions over the entire workspace, enabling the robot to navigate through closed-
loop velocity commands that are derived by the gradient of the potential field.
The main limitation of APFs is the presence of local minima inside the workspace,
which can lead to non-convergent paths. To address this issue in two-dimensional
spaces Rimon and Koditschek introduced Navigation Functions (NF) [13], using
a family of APFs that is applied in a spherical transformation of the workspace.
However, the transformation of the workspace into a spherical world relies on com-
plex numbers and is therefore very difficult to be extended to 3D space. In more
recent works, researchers have explored the use of Artifical Harmonic Potential
Fields (AHPFs) [14–18] in two dimensions, as they are, by construction, free of
local minima. Optimal path planning solutions for AHPFs have shown promis-
ing results in two-dimensional workspaces by using integral reinforcement learn-
ing [19–21]. The non-optimal motion planning problem has also been addressed in
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3D environments [22, 23]. Yet, optimal motion planning methods using APFs in
three dimensions remains an unexplored area.

1.3 Thesis Contribution

In this thesis, a novel approach for the optimal motion planning problem in con-
tinuous three-dimensional and constrained spaces is presented. More specifically,
the differential equations of fluid flow are utilized to construct the AHPF motion
planner. The motivation here stems from identifying the robot as being similar to a
fluid particle, which obeys the fundamental laws of mass and momentum conserva-
tion in fluid mechanics. By adopting the assumptions of potential flow theory that
render the flow incompressible, inviscid and irrotational, it is ensured that all fluid
particles will move towards a sink element. Consequently, the robot, guided by the
natural-looking trajectories of the fluid flow motion, is proven to eventually converge
to the desired goal position. To ensure that the controller can be implemented in
real time, the boundary of the workspace is discretized into surface panels and a
solution for the potential flow equations is derived analytically. Moreover, in order
to meet the safety criteria of the motion planning problem, a set of von-Neumann
boundary conditions on the discretized geometry is employed.

In contrast to most existing optimization algorithms in motion planning, which are
either stochastic in nature or heavily influenced by sampling techniques (e.g., evo-
lutionary algorithms and model-free reinforcement learning approaches), this work
introduces a robust deterministic optimal solution. The proposed optimal path
planning algorithm merges rigid principles of optimal control theory with a model-
based deep reinforcement learning approach. In particular, based on the successive
approximation theory [24,25] and dynamic programming [26,27], an actor-critic re-
inforcement learning architecture is employed. Since a model of the environment
can be derived using the proposed AHPF motion planner, the critic neural network
leverages on-trajectory sampling data to approximate the Hamilton-Jacobi-Bellman
equation. Subsequently, the actor scheme is responsible for improving the control
parameters while preserving the harmonic properties and safety guarantees of the
motion planner.

The contribution of this work lies not only on the provable safe and convergent
nature of the motion planner, but also on its ability to provide deterministic optimal
solutions. The main innovative aspects of this research are summarized as follows:

• A proved stable and safe control policy for the motion planning problem in
obstacle-cluttered and constrained 3D workspaces is established.

• In contrast to discrete open-loop methods, the proposed reactive controller
generates closed-loop, continuous and smooth velocity commands, which can
be seamlessly integrated in most control systems.

3



• A deterministic optimization procedure is accomplished. Moreover, incorpo-
rating traditional optimal control principles into the reinforcement learning
framework, guarantees the convergence and robustness of the proposed opti-
mization algorithm.

• The proposed approach is shown to outperform state-of-the-art optimal path
planning algorithms such as the RRT∗.

4



1.4 Thesis Outline

In Chapter 2 the optimal motion planning problem is formulated along with pre-
liminary control theory and fluid mechanics tools. Next, in Chapter 3 the control
policy for a safe and stable 3D motion planner is proposed. Chapter 4 presents
the optimal solution for the motion planning problem by introducing a continuous
model-based reinforcement learning algorithm. The effectiveness of the proposed
methodology is demonstrated in Chapter 5 through extensive simulations. This
thesis is concluded in Chapter 6 along with its limitations and the proposed future
directions.
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Chapter 2

The Optimal Motion Planning

Problem

2.1 Problem Formulation

Consider a point robot operating within a three-dimensional bounded and connected
workspace H ⊂ R3 with inner distinct obstacles Oi, i = 1, . . . ,M , along with a
desired goal position pd ∈ W−∂W . Also, assume that the robot has fully knowledge
of the workspace and is subjected to single integrator dynamics:

ṗ(t) = u(t), p(0) = p0 (2.1)

where p =
[
x y z

]⊤ ∈ W ≜ H−
⋃M

i=1Oi is the fully observed state of the robot,
p0 is the initial position and u(t) is the control policy, i.e., a velocity command.
Next, the infinite horizon cost function is defined, consisting of a state-related term
Q and an input-related term R:

V (p0;pd) =

ˆ ∞

0

Q (p(τ);pd) +R (u(τ)) dτ. (2.2)

The goal of this thesis is to derive the optimal control policy u(t) for the dynamics
of equation (2.1) that safely drives the robot to the desired position pd while at the
same minimizes the cost function (2.2).

6



2.2 Preliminaries

2.2.1 Optimal Nonlinear Control

Optimal control plays a fundamental role in the field of control systems. Of particu-
lar interest is the Hamilton-Jacobi-Bellman (HJB) equation, which serves as a means
to ensure optimality across various applications. In this section, the derivation of
the HJB equation is studied, establishing the theoretical foundations necessary to
minimize the cost function of a continuous-time non-linear system. Consider the
dynamics of the non-linear system:

ẋ = f(x(t);u(t), t), (2.3)

with state x(t) ∈ Rn and control input u(t) ∈ Rm, subject to the usual assumptions
to stabilize the system in its equilibrium point. Also, the value function of the
optimal problem is defined in a generic form as follows:

V (x(t)) =

ˆ ∞

0

L(x(τ);u(τ)) dτ. (2.4)

The objective here is to find a continuous optimal control u∗(t) that drives the system
from an initial state x(t0) to a final state x(tf ) with a minimum cost V ∗(x(t0), x(tf )).
Note that once the optimal policy u∗(t) and consequently the system dynamics are
specified, the value function depends only on the initial and final state of the system.
According to Bellman’s principle of optimality the optimal control problem over the
total time interval [t0, tf ] can be decomposed in determining the optimal cost-to-go
in smaller consecutive time steps t + ∆t. By deriving the total time derivative of
the value function:

d

dt
V (x(t)) =

∂V

∂t
+

(
∂V

∂x

)⊤
dx

dt
,

Bellman’s optimality condition for continuous-time systems results in a partial dif-
ferential equation for the optimal cost:

−∂V ∗

∂t
= argmin

u(t)

((
∂V ∗

∂x

)⊤

f(x(t);u(t)) + L(x(t);u(t))

)
. (2.5)

This expression is known as the Hamilton Jacobi Bellman (HJB) equation with the
corresponding Hamiltonian function:

H(x(t);u(t);∇V ) = L(x(t);u(t)) +∇V ⊤f(x(t);u(t)). (2.6)

7



The two-point boundary value problem of the HJB equation provides an optimal so-
lution for general non-linear control systems. However, solving the HJB analytically
proves to be challenging in most cases. As a result, this thesis aims to integrate
suitable machine learning techniques with the principles of classical control theory
in order to approximate the optimal solution for the 3D motion planning problem.

2.2.2 Harmonic Artificial Potential Fields

Artificial Potential Fields (APFs) have been widely used in path planning appli-
cations. APFs provide a suitable navigation policy by modeling the robot’s envi-
ronment through a potential field, which exhibits high values in proximity to the
obstacles and a single local minimum in the goal position. To achieve this, a repul-
sive term responsible for preventing robot collisions, along with an attractive term
that ensures convergence to the desired position, should be properly designed. The
general formulation of the potential field, given the boundary geometry s and the
desired goal position pd can be expressed as follows:

Φ(p; s) = ΦRepulsive(p; s) + ΦAttractive(p;pd). (2.7)

By following velocity commands of the negated gradient of the potential field u =
−∇Φ(p; s), the robot can navigate safely towards the target position.

The main limitation of APFs is the presence of local minima inside the workspace.
As the complexity of the environment rises it is highly likely that the repulsive forces
from the boundary will counterbalance the attractive term, causing the robot to get
stuck in a local minimum. To overcome this drawback, a set of harmonic functions
is introduced in this work, which owing to the Maximum Principle cannot attain a
maximum at any interior point of the domain [28]. Thus, the harmonic potential
field eliminates the robot’s risk of becoming trapped anywhere else besides in the
goal position.

In the following section the analytical solution of a harmonic potential field that
relies solely on boundary information will be presented.

2.2.3 General Solution of the Laplace Equation

The objective of the present section is to introduce the theoretical framework of
the fundamental solutions method for solving the Laplace equation. This approach
has a significant contribution in Fluid Mechanic applications [29–32], where it has
been utilized to numerically solve the incompressible potential flow both around
and inside bodies of complex geometry. The main advantage is, that solving a
fluid dynamic problem in an entire workspace, reduces to defining the appropriate

8



conditions only on the boundary, which also eliminates the necessity of constructing
a grid in the entire space.

Consider a simply connected workspace W with volume V enclosed by the outer
boundary S as shown in Figure 2.1. Note that the normal vector to the boundary
n is defined such that it always points outwards. The desired potential field Φ is
obtained by solving the Laplace equation

∇2Φ = 0, (2.8)

using the Fundamental Solutions Method.

V

S

nΦ−

nΦ+

Sϵ

x1

x2

x3

p

s

r

Figure 2.1: The thee-dimensional workspace illustrating the enclosed volume to sat-
isfy the Laplace equation.

In this context, Gauss’s theorem is used to relate the divergence of a vector field
F inside the volume with the flux through the corresponding closed surface, thus
setting the first step in the development of a boundary element method:

˚
V

(∇ · F) dV =

‹
S

(F · n) dS. (2.9)

By selecting F = Φ1∇Φ2 −Φ2∇Φ1, one can derive Green’s second identity, which is
expressed as follows:

˚
V

(
Φ1∇2Φ2 − Φ2∇2Φ1

)
dV =

‹
S

(Φ1∇Φ2 − Φ2∇Φ1·)n dS. (2.10)
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Green’s second identity is a powerful tool for transforming the partial differential
form of the Laplace equation to an integral equation. The next step is to select two
scalar functions of position:

Φ1 =
1

r
Φ2 = Φ,

where Φ is the desired potential field of (2.8) and r = ∥p− s∥ is the distance of the
position p from the boundary surface, as shown in Figure 2.1.

Since the goal is to determine a harmonic potential field, satisfying ∇2Φ = 0, the
first term of the volume integral is eliminated. However, as point p gets closer to
the surface, a singularity is observed owing to limr→0

1
r
= ∞, thus ∇2Φ1 = 0, ∀r ∈

R \ {0}. To completely eliminate the volume integral, a small area ϵ around the
point p is excluded from the integration and (2.10) takes the form:

0 =

‹
S

(Φ1∇Φ2 · n− Φ2∇Φ1 · n) dS −
‹

Sϵ

(Φ1∇Φ2 · nϵ − Φ2∇Φ1 · nϵ) dS. (2.11)

By integrating over the surface of the sphere, (2.11) reduces to:

0 =

‹
S

(
1

r
∇ϕ · n− Φ∇1

r
· n
)

dS − 4πΦ ⇒

Φ =
1

4π

‹
S

(
1

r
∇ϕ · n− Φ∇1

r
· n
)

dS. (2.12)

Next, the expression of the partial derivatives with respect to the surface is obtained
as:

∇S

(
1

r

)
· n = ∇S

(
1

|p− s|

)
· n =

r · n
r3

(2.13)

∇SΦ · n =
∂Φ

∂n
, (2.14)

which results in the final expression of the potential field Φ inside the volume V :

Φ(p) =
1

4π

‹
S

(
∂Φ

∂n
(s)

1

|p− s|
− Φ(s)

(p− s) · n(s)
|p− s|3

)
dS(s). (2.15)

A closer look in equation (2.15) reveals that the potential field inside the volume V
relies solely on information on the boundary. Therefore, the solution of the Laplace

10



equation (2.8) is not unique and based on the selection of the boundary conditions
∂Φ
∂n

and Φ(s) the resulting potential field will be represented by the composition of
different fundamental solutions.

So far, only the inner potential field enclosed by the boundary surface S has been
considered. However, based on the convention that the normal vector on the bound-
ary is pointing away from the volume being considered, the boundary S separates
the problem into an inner and an outer potential field.

Φ+(p) =
1

4π

‹
S

(
∂Φ

∂n
(s)

1

|p− s|
− Φ(s)

(p− s) · n(s)
|p− s|3

)
dS(s) (2.16)

Φ−(p) = − 1

4π

‹
S

(
∂Φ

∂n
(s)

1

|p− s|
− Φ(s)

(p− s) · n(s)
|p− s|3

)
dS(s). (2.17)

This theory can be extended to a workspace that contains any arbitrary number of
non-intersecting sub-spaces. To do this, the direction of the normal vectors should be
adjusted based on the volume of interest. Then, owing to the principle of superposi-
tion, the resulting potential field is obtained by adding the respective contributions
from the boundary surfaces. In the context of robot navigation, inner obstacles of
the environment can be modeled as different sub-spaces, effectively addressing the
challenges posed by multi-connected workspaces.
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Chapter 3

Control Design Methodology

The primary focus of this chapter is to present a parameterized control policy for
the motion planning problem in three-dimensional workspaces. The controller gen-
erates continuous-time trajectories that aim to ensure convergence towards the goal
position while satisfying all safety criteria. Additionally, the proposed methodology
provides a robust navigation solution for any initial position inside the workspace,
guaranteeing both reactivity and smoothness.

3.1 Proposed Control Policy

In the context of AHPF theory, the goal is to find a free of local minima control
policy that attracts the robot towards the desired position and repulses it away from
obstacles. The proposed controller utilizes the properties of the solution of a Laplace
problem to construct such a vector field that provides safe and stable navigation.

In this work a distribution of singularity elements on the boundary of the workspace
is employed, which as presented in section 2.2.3 results in a potential field that
satisfies the Laplace equation. By following the negated gradient of the potential,
the proposed parameterized controller is formulated as:

u(p) = −∇Φ(p; s) = −w(s)v(p; s), (3.1)

where v(p; s) denotes the basis function of the velocity in position p ∈ R3 that
is induced by the distribution of the singularity elements on the boundary S, and
w(s) are the respective weights, in this case also the tuning parameters of the control
policy.

12



3.2 Proposed Fluid Flow Model

3.2.1 Type of Singularity Elements

Having presented the fundamental theory of the boundary element method, the
purpose of this section is to discuss the choice of an appropriate basis function,
capable of providing a vector field for the navigation of the robot that meets all the
control requirements.

The potential field that was derived using Green’s second identity does not pose
a unique representation. Based on the chosen boundary conditions one can derive
many combinations of singularity elements to best fit the nature of the problem. By
taking a closer look in (2.15), it can be noticed that the first term corresponds to
a distribution of point sources-sinks and the second term to a distribution of point
doublets with weights σ = ∂Φ

∂n
and µ = Φ(s) respectively:

ΦRepulsive(p; s) =
1

4π

‹
S

(
σ(s)

1

|p− s|
− µ(s)

(p− s) · n(s)
|p− s|3

)
dS. (3.2)

The vector fields of the singularity elements, illustrated in Figure 3.1 and in Figure
3.2, are capable of modeling various potential flow problems. In the case of motion
planning the interest is to construct a repulsive from the boundary potential field,
thus we set µ(s) = 0 to obtain a representation of sources distribution on the
boundary of the workspace. Moreover, to ensure the convergence of the control
policy to the desired position, an additional attractive term in the goal position is
employed. The final potential field Φ(p; s) = ΦRepulsive(p; s) + ΦAttractive(pd) inside
the workspace is given as:

Φ(p;pd; s) =
1

4π

(‹
S

(
σ(s)

1

|p− s|

)
dS − σd

1

|p− pd|

)
. (3.3)

Here the integral is calculated over the boundary surface S(s) ≜ ∂W , pd ∈ W−∂W
is the goal position and σ(s), σd denote the weights of the source elements on the
boundary and in the goal position respectively.

It should be noticed that the attractive term of the potential field exhibits a singular-
ity in the goal position which does not have a physical meaning. For that reason, the
position of the point source is excluded from the workspace and the corresponding
flux can be calculated by integration of a spherical surface around pd as follows:

‹
G

(
−σd∇p

(
1

|p− pd|

)
· nG

)
= w0. (3.4)
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Figure 3.1: Vector field induced by a source singular point.

Figure 3.2: Vector field induced by a doublet singular point.
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3.2.2 The Panel Method

At this point, a selection of the type of boundary conditions has been made, which
specifies the type of singularity elements that will be placed on the boundaries. To
further simplify the formulation of the potential field, the boundary geometry is
discretized into flat two-dimensional panels, reducing this way the complexity of the
surface integral.

Regarding the weights distribution of the source terms, we choose that the weights
(i.e, control parameters) within each panel are constant. By discretizing the surface
in K panels, the potential field (3.3) is now formulated as:

Φ(p;pd; s) =
K∑
i=1

(
1

4π

˛
∆Si

σi
1

|p− s|
dS

)
− σd

1

4π|p− pd|
. (3.5)

The corresponding velocity induced by the boundary elements in the three-dimensional
space is given by:

∇pΦ(p;pd; s) =
K∑
i=1

(
1

4π
σi

˛
∆Si

p− s

|p− s|3
dS

)
− σd

p− pd

4π|p− pd|3

=
K∑
i=1

(σivi(p; s))− σd
p− pd

4π|p− pd|3
. (3.6)

After the geometry discretization and the selection of the weight’s distribution order
in each panel are defined, the total velocity in position p ∈ R3 induced by the
repulsive potential field is limited to finding the induced velocity by each single panel
and specifying its respective weight. The total vector field is essentially decomposed
into the basis function v(p; s), where each term corresponds to the influence of a
single panel on position p. Defining each panel i = 1, . . . , K by the three vertices

pei,j =
[
xj, yj, zj

]⊤ ∈ R3, j = 1, . . . , 3, the computation of each basis function term
is represented schematically as follows:

x, y, z
x1, y1, z1
x2, y2, z2
x3, y3, z3

σ


i

0Ti⇒


ξ, η, ζ

ξ1, η1, ζ1
ξ2, η2, ζ2
ξ3, η3, ζ3


i

⇒

Velocity influence coefficient of panel i
in the local coordinate system:

v′
i


0T⊤

i⇒

Velocity influence coefficient of panel i
in the global coordinate system:

vi
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It is important to observe that each coefficient depends only on the panel’s geo-
metric characteristics and can be calculated analytically. More precisely, in order
to calculate the velocity coefficient vi in position p ∈ R3, the local coordinates of
each panel are being used as shown in Figure 3.3. This way, the computation of
each term is simplified since the integral runs over the two-dimensional surface of
the panel and the resulting velocity is then transformed to the global 3D coordinate
system.

Figure 3.3: Local coordinate system of triangular panels.

3.3 Control Policy Structure

Having presented the formulation of the Fundamental Solutions Method (FSM)
to obtain a solution of the Laplace problem, it will be used in the context of path
planning as the basis of the Artificial Harmonic Potential Field (AHP). Additionally,
in order to analytically calculate the velocity potential within the workspace W
that is induced by a sources distribution on the boundary ∂W , the panel method is
employed. The control policy is defined by the following structure:

u(p) = −∇Φ(p;pd;w;M) = −w⊤v(p;pd;M), (3.7)

whereM ≜
[
M1, . . . ,MK

]
∈ R3K×3 is a combined matrix of the connectivity list and

the triangular mesh vertices, while p, pd ∈ R3 denote the current and the goal posi-
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tion of the robot respectively. Each surface panel element Mi =
[
pei,1 ,pei,2 ,pei,3

]⊤
,

i = 1, . . . , K is represented by the position of the corresponding edge points pei,j ∈
R3, j = 1, 2, 3. Also, w =

[
w0, w1, . . . wK

]⊤ ∈ RK+1 are the tunable parameters
of the control policy, properly adjusting the potential field that is formed by the
function basis:

v(p;pd;M) ≜
[
v0(p;pd),v1(p;M), . . . ,vK(p;M)

]⊤
: R3 → RK+1. (3.8)

The sink v0(p;pd) creates an attractive towards the goal position vector field:

v0(p;pd)
⊤ =

1

4π

p− pd

|p− pd|3
, (3.9)

while the rest of the basis constitutes a repulsive potential field from the boundary
as follows:

vi(p;Mi) =
[
vix(p;Mi), viy(p;Mi), viz(p;Mi)

]
= MiT0 ·

[
viξ(p

′;M′
i), viη(p

′;M′
i), viζ(p

′;M′
i)
]⊤

, (3.10)

where MiT0 is the transformation matrix from the local coordinate system of the
panel OMi

(ξ, η, ζ) to the global coordinate system O0(x, y, z) with p′ =
[
p, 1
]
· 0TMi

,
M′

i =
[
Mi,13×1

]
· 0TMi

expressing the position of the robot and the position of the
panel vertices w.r.t. the panel’s local coordinate system respectively. The velocity
in position p′ =

[
ξ, η, ζ

]
∈ W , induced by the ith panel, is calculated in the local

coordinate system of the panel as follows:

viξ =
1

4π

(
S
(i)
12Q

(i)
12 + S

(i)
23Q

(i)
23 + S

(i)
31Q

(i)
31

)
(3.11)

viη =
1

4π

(
−C

(i)
12Q

(i)
12 − C

(i)
23Q

(i)
23 − C

(i)
31Q

(i)
31

)
(3.12)

viζ =
1

4π

(
J
(i)
12 + J

(i)
23 + J

(i)
31

)
(3.13)
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where:

M′
i =

[
p′
ei,1

,p′
ei,2

,p′
ei,3

]⊤
p′
ei,j

=
[
ξi,j, ηi,j, ζ i,j

]
S
(i)
ab =

ηi,b − ηi,a

d
(i)
ab

C
(i)
ab =

ξi,b − ξi,a

d
(i)
ab

Q
(i)
ab = ln

r
(i)
a + r

(i)
b − d

(i)
ab

r
(i)
a + r

(i)
b + d

(i)
ab

J
(i)
ab = tan−1

(
mabe

(i)
a − h

(i)
a

zr
(i)
a

)
− tan−1

(
mabe

(i)
b − h

(i)
b

zr
(i)
b

)
d
(i)
ab =

√
(ξi,b − ξi,a)2 + (ηi,b − ηi,a)2

m
(i)
ab =

ηi,b − ηi,a
ξi,b − ξi,a

r(i)a =
√

(ξ − ξi,a)2 + ζ2

e(i)a = (ξ − ξi,a)
2 + ζ2

h(i)
a = (ξ − ξi,a)(η − ηi,a)

In this AHPF-structure the harmonic panels are placed outside of the boundary to
avoid any singularities in the vertices. Additionally, convergence towards the goal
position is ensured by the formulation of the control policy since the source term
v0(p;pd) renders the vector field attractive. Owing to the minimum-maximum
principle of harmonic functions, the resulting potential field will exhibit a single
minimum point in the robot’s goal position.

3.4 Safety Conditions

To guarantee collision avoidance in the proposed navigation policy, this section intro-
duces a set of safety criteria. Safety is ensured by imposing the following conditions
as hard constraints in the motion planning problem:

n(p)⊤u(p) ≥ 0,∀p ∈ ∂W , (3.14)

where n(p) is the normal vector on a boundary point and u(p) is the control input,
dictating a velocity command at the boundary that always points inwards. As has
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been proved in Lemma 1, this property can be relaxed if the safety condition holds
for a finite set of boundary points.

Lemma 1 (Boundary Safety [20]). Consider the boundary ∂W of the workspace as

well as a finite number of uniformly distributed points pj ∈ ∂W , j = 1, . . . , N along

with their respective normal vectors v = v(pj), j = 1, . . . , N pointing inwards the

workspace. There exists a number N0 ∈ N such that

v⊤v > 0, ∀j = 1, . . . , N with N > N0, (3.15)

guarantees safety over the whole boundary ∂W as described by 3.14.

Proof. The proof is extensively presented in [20].

Hence, the safety condition (3.14) can be expressed as a set of N linear inequalities
with respect to the weights of the basis function:

A ·w ≤ 0N×1 ⇒A
1
1 . . . AK+1

1
...

. . .
...

A1
N · · · AK+1

N

 ·

 w0
...

wK+1

 ≤ 0N×1, (3.16)

where Ai
b = n⊤(pb)vi(pb;Mi), i = 1, . . . , K +1 corresponds to ith panel term of the

induced normal velocity on the boundary point pb ∈ ∂W , b = 1, . . . , N .

Finally, matrix A is augmented by an additional condition As =
[
1, 0, . . . , 0)

]
∈

R1×(K+1) in order to address the convergence of the robot towards the goal position
by guaranteeing a positive weight for the point source term.

Consequently, the control policy that satisfies both the safety and the convergence
requirements of the motion planning problem is formulated as follows:

u(p) = −∇Φ(p;pd;M) = −w⊤v(p;pd;M)

s.t Aw ≤ −ϵI(N+1)×1 (3.17)

To acquire an initial policy that satisfies the harmonic properties and the safety
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constraints, the following dummy quadratic optimization problem can be solved:

w0 = argmin
w

{w⊤w}

s.t Aw ≤ −ϵI(N+1)×1, (3.18)

where ϵ is a small positive number to set a lower limit for the magnitude of the
attractive potential field. Additionally, as ϵ approaches zero, the velocity field be-
comes tangent to the boundary surface. In that manner, ϵ can also compensate for
a safe distance threshold from the boundary. Important to note is that when the
number of control parameters is equal to the number of points at which the safety
condition is satisfied, the problem simplifies into a linear set of equations.

Besides delivering a robust and stable robot navigation solution, the control param-
eters w0 also serve the purpose of initializing the optimization algorithm, as will be
discussed in Chapter 4.

3.5 Stability Analysis

In this section the proofs of safety and convergence for the proposed structure are
presented. First, the existence of a solution for the control system (3.7) is estab-
lished. Subsequently, a stability analysis is carried out to validate that the non-linear
controller stabilizes the system at the goal position.

Lemma 2 (Existence of Solution). There exists a set of control parameters w for

the proposed control policy u = −∇Φ (3.7), such that: 1) the potential field satisfies

the Laplace equation ∇2Φ = 0 and 2) the problem constraints (3.18) are satisfied.

Proof. In order to establish the existence of a solution for the formulation of the

motion planning problem, we begin from a set of parameters w that provide a

Laplacian potential field Φ. Then it will be demonstrated that this set also satisfies

the constraints Aw ≤ −ϵI(N+1)×1. As presented in section 2.2.3, the controller is

parameterized by a basis of harmonic functions, which guarantees that both the

curl and divergence of the vector field are zero, satisfying by definition the Laplace

equation. Owing to Gauss’s theorem the velocity field inside the workspace is related
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to the safety conditions on the boundary as follows:

‹
∂W

(u · n) d(∂W) =

˚
W
(∇ · u) dW , (3.19)

and substituting the control policy (3.7) in (3.19) results in:

‹
∂W

(−∇Φ · n) d(∂W) =

˚
W
−∇2Φ dW ⇒

‹
∂W

(−∇Φ · n) d(∂W) = 0. (3.20)

Equation (3.20) represents the compatibility principle and indicates that the flux of

the vector field that traverses a loop enclosed by the workspace boundary is zero.

This implies that if the vector field, due to the safety constraints, points inwards

toward the workspace, a sink term within the workspace is essential to compensate

for the fulfillment of (3.20). As presented in section 3.1, a closed contour around the

singularity of the goal position is excluded from the workspace, thus (3.20) becomes:

‹
∂W ′

(−∇Φ · n) d(∂W ′)−
‹

G
(−∇(Φ · n) dG = 0 ⇒

‹
∂W ′

(−∇Φ · n) d(∂W ′)−
‹

G
(−∇(ΦRepulsive · n) dG − w0 = 0 (3.21)

Additionally, based on the safety conditions (3.18) the following inequalities must

be satisfied:

‹
∂W ′

(−∇Φ · n) d(∂W ′) > 0 (3.22)

w0 > 0 (3.23)

By substituting the compatibility condition (3.21) in inequalities (3.22), (3.23) we

conclude that a solution for the path planning problem exists if:

w0 >

‹
G
(uRepulsive · n) dG (3.24)
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This completes the proof and indicates that a solution exists when the attractive

term generates a greater inward flux at the goal position than the flux induced by

the repulsive term.

Lemma 3 (Stability Analysis). The controller u(p) (3.7) stabilizes the system (2.1)

in the desired position pd.

Proof. Consider the exponential transformation exp(·) : R → R+ of the potential

field as a Lyapunov candidate L(p) = exp(Φ(p)) to prove the stability of the system.

It is evident that L(p) > 0 ∀p ∈ W \ {pd}. As the goal position pd is approached,

the potential field becomes:

lim
p→pd

Φ(p) = lim
p→pd

(
−w0

4π

1

∥p− pd∥

)
= −∞, (3.25)

which results in:

lim
p→pd

exp(Φ(p)) = lim
Φ→−∞

exp(Φ) = 0. (3.26)

Thus, the Lyapunov function exhibits a global minimum in the goal position and is

positive everywhere else within the workspace. To prove stability through Lyapunov

arguments, the time derivative has to be negative ∀p ∈ W \ {pd}:

dL

dt
=

dL

dΦ

dΦ

dp

dp

dt
= exp(Φ(p))∇Φ⊤u(p)

(3.7)
=

− exp(Φ(p))∇Φ⊤∇Φ (3.27)

This proves that L̇ < 0 ∀p ∈ W \ {pd} and concludes the proof.
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3.6 Proposed Motion Planning Algorithm

Having proposed a control architecture for the motion planning problem that prov-
ably avoids obstacle and boundary collisions and is guaranteed to converge to the
goal position, the corresponding algorithm is summarized as follows:

Algorithm 1 Motion Planning Algorithm

1: Given a Workspace W .
2: Discretize the boundary geometry ∂W into K triangular panels.
3: Select N control points pb ∈ ∂W , b = 1, . . . , N on the boundary surface.
4: Construct the safety set of linear inequalities:

A =

A
1
1 . . . AK+1

1
...

. . .
...

A1
N · · · AK+1

N

 ,

where Ai
b = n⊤(pb)vi(pb;Mi), i = 1, . . . , K + 1.

5: Find the policy parameters by solving the constrained quadratic problem:

w = argmin
w

{w⊤w}

s.t Aw ≤ −ϵI(N+1)×1,

where ϵ is a small positive constant.
6: The navigation policy that stabilizes the system in the goal position pd ∈ W is

established by following the negated gradient of the harmonic potential field:

u(p) = −w⊤v(p;pd;M).
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Chapter 4

Optimal Motion Planning Solution

In this chapter an optimal robot navigation scheme for three-dimensional workspaces
is presented. The proposed method is based on an off-policy continuous model-
based deep reinforcement learning algorithm originated from the policy iteration
approach. The algorithm is structured in an actor-critic fashion and the robot
learns the optimal control parameters by successively approximating the solution of
the HJB equation, effectively merging the advantages of optimal control theory and
machine learning techniques.

4.1 Optimal Control Policy

To tackle the optimal motion planning problem in continuous time and action space,
the infinite horizon integral cost is defined as follows:

V (p0;pd) =

ˆ ∞

0

r (p(τ);u(τ);pd) dτ, (4.1)

where r (p;u;pd) = Q(p;pd) + R(u) consists of a state-related term Q(p;pd) =
α∥p−pd∥2 and an input-related term R(u) = β∥u∥2 with ∥·∥ denoting the Euclidean
2-norm. Here, notice that R represents the energy of the system, while Q, analogous
to ”Rise Time”, penalizes the robot for deviating from the target position. Next,
define the Hamiltonian of the optimal non-linear control problem:

H(p,u,∇pV ) = ∇pV
⊤u+Q(p;pd) +R(u), (4.2)
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which, as discussed in Chapter 2, constructs the Hamilton-Jacobi-Bellman (HJB)
equation for the optimal value function V ∗:

H(p,u∗,∇pV
∗) = 0. (4.3)

Finally, the optimal path planning policy is given by the stationary condition,
∂H(p,u,∇pV ∗)

∂u
|u=u∗ = 0, as follows:

u∗ = − 1

2β
∇pV

∗. (4.4)

In order to obtain the optimal control policy u∗ it is clear that an analytical ex-
pression for the value function V ∗ is essential. By substituting the optimal policy
(4.4) in the HJB optimality condition (4.3) one can find such an expression for the
value function. However, this procedure entails challenges associated with solving a
hard non-linear partial differential equation, including high computation times and
numerical instabilities, further complicated by the difficulties of incorporating the
safety constraints of the control problem.

4.2 Model-Based Reinforcement Learning

4.2.1 Reinforcement Learning Framework

To address these challenges, a reinforcement learning approach is employed. This
procedure involves approximating the value function with a Deep Neural Network
(DNN) and iteratively updating the control policy along with the corresponding
value function. By leveraging various machine learning techniques, this method aims
to derive an optimal path planning policy through successive approximations [24],
mitigating the challenges of solving the HJB directly.

The structure of the proposed optimal motion planning method is illustrated in
Figure 4.1. In particular, the learning algorithm is initialized with an admissible
control possible that can be derived as presented in Chapter 3 and establishes the
model-based nature of this approach. Since the system (2.1) is fully observed and the
robot is capable to sense the surrounding environment in each state, on-trajectory
samples of the value function (4.1) under the control policy (3.7) are collected and
stored in a memory buffer. Subsequently a Deep Neural Network is employed to
approximate the value function and derive the optimal policy (4.4) for the current
iteration step. Finally, the control parameters are updated through a quadratic
optimization problem that minimizes the value function, subject to the navigation
constraints.
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Figure 4.1: Proposed optimal motion planning framework using an actor-critic re-
inforcement learning architecture.

In the upcoming sections, the essential components that constitute the reinforcement
learning algorithm will be presented, namely the value function approximation step
(critic optimizer) and the policy weight update step (actor optimizer).

4.2.2 Value Function Approximation

As stated in section 4.1 an analytical expression for the value function is essential to
derive the optimal path planning policy. To this end, a multi-layer fully connected
Deep Neural Network (DNN) is utilized as a universal approximator of the value
function:

V̂ = h(L) = W(L)h(L−1) + b(L), (4.5)

where the DNN is represented by the following structure:

• h(r) = f (r)
(
W(r)h(r−1) + b(r)

)
∈ Rnr×1 denotes the output vector at each layer

r = 1, . . . , L, which consists of nr neurons.

• f (r) is the activation function in each layer.

• W(r) =

W
1
1 . . . W

nr−1

1
...

. . .
...

W 1
nr

· · · W nr−1
nr

 ∈ Rnr×nr−1 represents the connections W k
m, of the
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neurons m = 1, . . . , nr and k = 1, . . . , nr−1 among two consecutive layers.

The proposed reinforcement learning algorithm is classified as model-based since an
initial admissible policy for the motion planning problem can be obtained according
to Algorithm 2. By conducting multiple simulations, the value function associated
with an initial safe and stable control policy can be evaluated within the workspace
W , thereby constructing the training dataset of the network. More precisely, an
uniform distribution of initial points ph ∈ W , h = 1, . . . , H inside the workspace
is chosen and the accumulated cost V (p;pd) from an initial position ph to a posi-
tion p along the robot’s trajectory is computed by solving the following system of
differential equations:

dp(t)

dt
= u(p(t)), p(0) = ph

dV (p;pd)

dt
= r(p(t);u(t);pd), V (ph;pd) = 0 (4.6)

According to Bellman’s principle of optimality the cost-to-go for any on-trajectory
point p can be calculated as follows:

V (p;pd) = V (pd;pd)− V (p;pd), (4.7)

which constructs the training dataset of the critic DNN.

In order to get an expression for the optimal solution (4.4) of the HJB equation,
the grad of the value function with respect to the robot’s position is calculated

analytically in a back-propagating fashion. If the partial derivative ∂V̂
∂h(r) of the

value function in layer r is known, then the partial derivative ∂V̂
∂h(r−1) of the value

function w.r.t. the preceding layer is expressed as:

∂V̂

∂h(r−1)
=

∂V̂

∂h(r)
· ∂h(r)

∂h(r−1)
=

= W⊤(r) ·

(
∂V̂

∂h(r)
⊙ f

′(r)
(
W(r)h(r−1) + b(r)

))
. (4.8)

4.2.3 Policy Improvement

At this point, a closed-form expression for the optimal vector field (4.4) w.r.t. the
cost function (4.1) has been obtained. However, directly following the optimal policy
of the HJB equation would result in a navigation policy that violates both the
harmonic properties and the safety constraints. To this end, an improved policy is
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derived by minimizing the following expression:

w(i+1) = argmin
w

{1
2
∥u(i) − u∗(i)∥2}

s.t Aw ≤ −ϵI(N+1)×1, (4.9)

Note that by solving this optimization problem the improved policy strives to reach
as close to the optimal policy as possible while at the same time maintaining the
harmonic basis function of the motion planning policy. A free of local minima vector
field is therefore guaranteed, while incorporating the safety conditions ensures that
the improved policy continues to provide collision-free and convergent paths towards
the target position. The objective function of (4.9) can be expanded to a quadratic
form as follows:

1

2
∥u(i) − u∗(i)∥2 = 1

2
w⊤(−v(p))(−v(p)⊤)w −

(
1

2β
∇pV̂ (p)(i)

)⊤

v(p)w

+

(
− 1

2β
∇pV̂ (p)(i)

)⊤(
− 1

2β
∇pV̂ (p)(i)

)
, (4.10)

In this expression v(p) ∈ RK+1 is the basis function for the robot’s velocity command
in position p ∈ R3, w ∈ RK+1 are the control parameters of the AHPF formulation
(3.7), and V̂ (p)(i) is the DNN approximation of the value function under the control
policy u(i). The policy in each iteration of the reinforcing learning algorithm is
updated by solving the following constrained quadratic minimization problem over
a number of sample pm ∈ R3,m = 1, . . . , L within the workspace:

w(i+1) = argmin
w

{1
2
w⊤H(p)w +B(p)(i)w}

s.t Aw ≤ −ϵI(N+1)×1, (4.11)

where:

H(p) =
L∑

m=1

(
H(pm)⊤H(pm)

)
∈ R(K+1)×(K+1)

B(p)(i) =
L∑

m=1

(
−H(pm)⊤B(pm)(i)

)⊤ ∈ R1×(K+1)

H(p) = −v(p)

B(p)(i) = − 1

2β
∇pV̂ (p)(i)
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4.3 Proposed Optimal Motion Planning Algorithm

Having thoroughly examined each individual component of the reinforcement learn-
ing framework, the optimal motion planning algorithm for 3D workspaces is sum-
marized in this section.

Algorithm 2 Optimal Motion Planning Algorithm

1: Given a Workspace W.
2: Discretize the boundary geometry ∂W into K triangular panels.
3: Select N control points pb ∈ ∂W, b = 1, . . . , N on the boundary surface.

4: Construct the safety set of linear inequalities: A =


A1

1 . . . AK+1
1

...
. . .

...

A1
N · · · AK+1

N

, where Ai
b = n⊤(pb)vi(pb;Mi),

i = 1, . . . ,K + 1.
5: Find an initial admissible policy u(i)(p) = −w(i)⊤v(p;pd;M) by solving the following quadratic problem:

w(i) = argmin
w

{w⊤w}

s.t Aw ≤ −ϵI(N+1)×1,

where ϵ is a small positive constant.
6: while the control parameters w have not converged do

• Model-based sampling: Sample a set of initial points ph ∈ W, h = 1, . . . , H and compute simulations
to collect H′ on-trajectory samples of the cost function (4.1) by solving the system of ODEs (4.6).

• Critic Approximation: Approximate the critic network (4.5) by obtaining the DNN parameters ϕ
that minimize the loss function:

ϕ = argmin
ϕ

1

H′

H′∑
h=1

(
V (ph)− V̂ (ph;ϕ)

)2
(4.12)

• Actor optimizer: Update the control policy parameters by solving the following constrained quadratic
optimization problem over a sample of L points within the workspace:

w(i+1) = argmin
w

{
1

2
w⊤H(p)w +B(p)(i)w}

s.t Aw ≤ −ϵI(N+1)×1, (4.13)

,
where:

H(p) =

L∑
m=1

(
H(pm)⊤H(pm)

)
∈ R(K+1)×(K+1)

B(p)(i) =
L∑

m=1

(
−H(pm)⊤B(pm)(i)

)⊤
∈ R1×(K+1)

H(p) = −v(p)

B(p)(i) = −
1

2β
∇pV̂ (p)(i)

7: end while
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4.4 Proofs of Optimality

This section presents the essential technical validation of the optimal control method-
ology. The main goal is to prove that by starting from an initial admissible policy,
every subsequent control policy derived by the proposed reinforcement learning algo-
rithm will be admissible and converge to the optimal solution of the HJB equation.

Definition 1 (Admissible Policy). A control policy u(p) is defined as admissible

with respect to the cost function (4.1) on W if u(p) is continuous on W, u(pd) = 0,

u(p) stabilizes (2.1) on W, V (p) is finite ∀p ∈ W and the trajectories under the

control u(p) are safe.

Lemma 4 (Policy Update Admissibility). Consider the admissible control policy

u(i) (3.7) at the i-th iteration step along with the corresponding value function V (i)

(4.1). The improved policy u(i+1) that is obtained following the proposed methodology

will be admissible.

Proof. The updated policy u(i+1) is proven to be admissible on W by satisfying the

criteria of Definition 1 as follows:

• Since the path planning policy strictly preserves a set of harmonic basis func-

tions in every iteration step, u(i+1) is continuous.

• The requirement u(i+1)(pd) = 0 is trivial, since the robot finishes the naviga-

tion task upon reaching the goal position pd.

• To prove that u(i+1) stabilizes (2.1) on the goal position pd we rely on Lemma

3, which provides a comprehensive stability analysis for the proposed control

policy structure (3.7). It is important to note that in each step of the rein-

forcement learning process only the controller parameters are updated, while

the harmonic basis function remains intact. This ensures the fulfilment of the

stability requirements for every policy throughout the optimization process.
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• The value function, which is approximated through a critic fully connected

Deep Neural Network, is finite over the entire workspace.

• It is evident that both in every policy improvement step (4.11) and in the

derivation of the initial policy (3.18) the set of linear inequalities Aw ≤

−ϵI(N+1)×1 is integrated as hard constraints in the problem, thus rendering

the navigation safe with respect to boundary collisions.
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Chapter 5

Simulation Results

In this chapter the simulation results of the proposed optimal motion planning al-
gorithm are presented in two different environments. To showcase the advancement
of the proposed algorithm, a comparative study is conducted with RRT∗, one of the
most widely used algorithms in the field of optimal motion planning. Additional
results regarding the critic network approximation and the convergence of the rein-
forcement learning algorithm are provided to bolster the effectiveness and validity
of the proposed methodology. All simulations were implemented in MATLAB, sup-
plemented with C++ Mex files to solve the fluid flow equations, on a Windows 10
PC with an eight-core Ryzen 7 CPU and 32GB of RAM.

5.1 Urban Environment

The robot navigation in an urban environment is examined, inspired by the appli-
cation of delivery drones in densely populated areas, where minimizing both the
delivery distance and the control effort (i.e., battery consumption) is essential. In
Figure 5.1 and Figure 5.2 the reference map of a city district is depicted along with
the corresponding simulation environment. In this application the drone covers an
area of 400 · 106m3, which is bounded in all directions. In particular, the lower
boundary along the z-axis prevents collisions with the ground and preserves a safe
distance from pedestrians. The remaining axis are bounded to maintain the drone’s
connectivity. Regarding the parameters of the proposed motion planning algorithm,
the workspace is discretized into 5,000 triangular panels, while the safety constraints
(3.14) are satisfied in 10,000 boundary points.
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Figure 5.1: The reference map of the urban environment.

Figure 5.2: The discretized simulation environment.
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5.1.1 Optimal Trajectories - Comparison with RRT*

The algorithm presented in this thesis is compared to RRT*, a widely used path plan-
ning algorithm, proven to converge to the optimal solution. Given that the vanilla
RRT* algorithm produces minimum trajectory lengths, two different implementa-
tions for the velocity term of the quadratic cost function (4.1) are explored. The
baseline RRT* approach [33] samples both the position and control space, making
it closely related to the method used in this thesis and allowing a direct compari-
son between the two approaches. Additionally, an enhanced implementation of the
RRT* method is considered, where the optimal distance is obtained through the
traditional RRT* algorithm [8] and is afterwards combined with the closed-form
solution of the optimal on-trajectory velocity u∗ = α

β
∥p−pd∥. This approach should

place our method at a disadvantage, as the cost is minimized on the resulting tra-
jectories of the RRT* using the provably optimal velocity norm. In total, the RRT*
method was executed 25 times for each initial position, as its probabilistic nature
requires a statistical sample.

Start Position

Cost
Proposed Method

Cost RRT*

Initial Optimal
Mean Median Min Max

Enhanced Baseline Enhanced Baseline Enhanced Baseline Enhanced Baseline
[0.5;3.9;1.0] 137 72 86 164 86 150 69 119 108 292
[1.4;7.5;0.8] 138 90 120 275 124 178 91 150 141 650

Table 5.1: Cost comparison among the proposed method, the baseline RRT* method
[33] and the enhanced RRT* method with respect to the quadratic function (4.1) in the
urban environment.

Start Position

Length
Proposed Method

Length RRT*

Initial Optimal
Mean Median Min Max

Enhanced Baseline Enhanced Baseline Enhanced Baseline Enhanced Baseline
[0.5;3.9;1.0] 10.2 5.6 8.7 9 8.7 8.9 7.3 7 10.5 11.2
[1.4;7.5;0.8] 8.5 4.9 10.3 10.4 10.5 9.3 7.6 7.6 12.4 15.7

Table 5.2: Trajectory lengths comparison (in [m×100]) among the proposed method,
the baseline RRT* method [33] and the enhanced RRT* method in the urban environ-
ment.

The drone trajectories from two initial positions p01 = [0.5, 3.9, 1]⊤, p02 = [1.4, 7.5, 0.8]⊤

towards the delivery destination pd = [5.6, 3.4, 2]⊤ are illustrated in Figure 5.3, Fig-
ure 5.4, Figure 5.5, and Figure 5.6 from various viewpoints. The paths of the initial
and the optimal policies are represented by solid blue and red lines respectively,
while the optimal path derived by the RRT* method is depicted with a solid yellow
line. The corresponding cost and path length of each trajectory are summarized in
Table 5.1 and Table 5.2.

It is evident that the proposed motion planning algorithm outperforms the RRT*
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method both in terms of trajectory lengths and in terms of cost with respect to a
quadratic form infinite horizon value function. The optimal policy of the proposed
algorithm manages to consistently achieve lower travel distances, while only 1 out of
50 trajectories, that RRT* generates, reaches the goal position with a lower cost. Ad-
ditionally, the method presented in this thesis generates smooth and natural-looking
trajectories, compared to RRT*. Another advantage of the proposed algorithm is
the fact that it converges to the optimal solution in a deterministic manner, enhanc-
ing the robustness of the navigation problem. Regarding the computational time, a
direct comparison is not possible since the presented potential field approach gener-
ates an optimal path from every initial point within the workspace. In contrast, each
run of the RRT* method depends on a specific initial position, further compounded
by the need for multiple simulations due to its stochastic nature.

35



Figure 5.3: Comparative simulation results of the urban environment from the start-
ing position p0 = [0.5, 3.9, 9.1]⊤ in isometric view. The figure depicts the initial tra-
jectory (blue line), the optimal trajectory of the proposed method (red line) and the
optimal trajectory of the RRT* method (yellow line).
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Figure 5.4: Comparative simulation results of the urban environment from the start-
ing position p0 = [1.4, 7.5, 0.8]⊤ in isometric view. The figure depicts the initial tra-
jectory (blue line), the optimal trajectory of the proposed method (red line) and the
optimal trajectory of the RRT* method (yellow line).
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Figure 5.5: Comparative simulation results of the urban environment from the start-
ing position p0 = [0.5, 3.9, 9.1]⊤ in front and top views. The figure depicts the initial
trajectory (blue line), the optimal trajectory of the proposed method (red line) and the
optimal trajectory of the RRT* method (yellow line).
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Figure 5.6: Comparative simulation results of the urban environment from the start-
ing position p0 = [1.4, 7.5, 0.8]⊤ in front and top views. The figure depicts the initial
trajectory (blue line), the optimal trajectory of the proposed method (red line) and the
optimal trajectory of the RRT* method (yellow line).
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5.1.2 Critic Network

At this point, the approximation capability of the critic Deep Neural Network is
showcased. By looking at Figure 5.7, where the regression of the DNN is demon-
strated, it becomes clear that the critic network is highly capable to provide an
accurate approximation of the cost function. More specifically, the trained critic
network at the final iteration of the reinforcement learning algorithm has an ab-
solute mean squared error mse = 0.1 over the entire data set of 20,000 trajectory
points.
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Figure 5.7: Regression plots of the final critic Deep Neural Network (DNN) on the
training and testing data sets in the urban environment.

The value function approximation in two different height coordinates along with the
corresponding normalized vector fields are visualized in Figure 5.8. Clearly the value
function is continuous over the entire workspace as discussed in Lemma 4 and has
the desired form with a global minimum in the goal position. However, a closer look
at the grad of the cost function reveals that the both the safety criteria and the
absence of local minima are not guaranteed. This justifies the fact that the policy
update step in each iteration of the reinforcement learning algorithm is driven by a
constrained quadratic optimization problem (4.11) instead of directly following the
HJB optimal policy (4.4).
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(a)

(b)

Figure 5.8: The final cost function approximation in the urban environment and
the corresponding optimal vector field at two different heights (a) z = 100[m] and (b)
z = 400[m].
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5.1.3 Actor: AHPF Policy and Convergence Criteria

In order to validate the performance and convergence of the proposed reinforce-
ment learning algorithm consider the following metrics at each consecutive iterations
(i), (i+ 1):

MAEweights =
K∑
k=1

1

K
|w(i)

k − w
(i+1)
k |

MAEcost =
L∑
l=1

1

L
V (pl)

(i) − V (pl)
(i+1),

where w(i) ∈ RK+1 denotes the control parameters of the motion planning policy
(i.e., panel weights) and V (pl) denotes the value function (4.1) evaluated over sev-
eral initial position samples within the workspace pl ∈ R3. The evolution of the
weights mean difference and the cost function mean difference at each iteration step
is illustrated in Figure 5.9. It is evident that the reinforcement learning algorithm
smoothly converges to a final set of control parameters. At the same time the algo-
rithm minimizes the value function across various initial positions, highlighting the
advantageous properties of global optimality in the proposed optimization approach.

Next, the initial and the optimal normalized vector fields are illustrated in Figure
5.10, with a color-map representing the z-coordinate of each vector’s endpoint. Once
again the improvement of the initial policy is clear, as after the convergence of
the proposed algorithm all velocity vectors point towards the minimum-distance
path. Also notice that compared to the policy, derived using the HJB optimality
condition, the proposed method provides collision-free trajectories and preserves
the absence of local minima inside the workspace. Finally, Figure 5.11 represents
the normalized vectors fields in the entire three-dimensional workspace with each
color-map denoting the magnitude of the velocity commands.
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Figure 5.9: Mean absolute difference of the control parameters and mean difference
of the cost function at each iterations step of the proposed reinforcement learning
algorithm.
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(a)

(b)

Figure 5.10: The normalized vector fields illustrating the initial and the optimal
control policy of the urban environment at two different heights (a) z = 100[m] and
(b) z = 400[m]. The color-map represents the height of each vector’s endpoint.
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Figure 5.11: The vector fields illustrating the initial and the optimal control policy
in isometric view of the urban environment. The color-map depicts the magnitude of
the vector field.
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5.2 Forest Environment

Figure 5.12: The reference map of the forest environment.

Figure 5.13: The corresponding discretized simulation environment.
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The proposed optimal motion planning framework is applied in a forest workspace,
which is characterized by a plethora of obstacles and very narrow passages. The
reference map of a forest environment along with the corresponding simplified sim-
ulation environment are depicted in Figure 5.12 and Figure 5.13 respectively. It
is important to note that the entire workspace is bounded. More specifically at
the lower end of the z-axis the boundary prevents collisions with the ground while
in the rest of the axis limits the boundary is utilized to ensure connectivity main-
tenance. Furthermore the source terms of the control policy are distributed into
5,000 triangular panels, while a point source indicating the goal position is placed in
pd = [9.1, 1.4, 0.2]⊤. In order to ensure the avoidance of collision with the boundary,
the safety condition (3.14) is met in 10,000 sampling points on the boundary.

The trajectories from the starting position p0 = [4.1, 6.8, 0.5]⊤ towards the goal
position pd = [9.1, 1.4, 0.2]⊤ are illustrated in Figure 5.13 and Figure 5.14. Table
5.3 and Table 5.4 summarize the cost and path length compared to RRT∗. The
results demonstrate a superior performance of the proposed algorithm compared
to two different implementations of RRT∗ in an obstacle-cluttered environment.
Additionally, Figure 5.16 showcases the approximation of the critic network, while
in Figure 5.17 and Figure 5.18 the initial control policy is compared with the optimal
solution in order to illustrate the superiority of the latter.

47



Figure 5.14: Comparative simulation results of the forest environment from the
starting position p0 = [4.1, 6.8, 0.5]⊤ in isometric view. The figure depicts the initial
trajectory (blue line), the optimal trajectory of the proposed method (red line) and the
optimal trajectory of the RRT* method (yellow line).

Start Position

Cost

Proposed Method
Cost RRT*

Initial Optimal
Mean Median Min Max

Enhanced Baseline Enhanced Baseline Enhanced Baseline Enhanced Baseline

[4.1;6.8;0.5] 375 193 219 860 216 875 193 505 262 1320

Table 5.3: Cost comparison among the proposed method, the baseline RRT* method
[33] and the enhanced RRT* method with respect to the quadratic function (4.1) in the
forest environment.

Start Position

Length

Proposed Method
Length RRT*

Initial Optimal
Mean Median Min Max

Enhanced Baseline Enhanced Baseline Enhanced Baseline Enhanced Baseline

[4.1;6.8;0.5] 9.1 7.74 9.9 10.2 9.8 10.3 9 8.9 11.3 12.1

Table 5.4: Trajectory lengths comparison (in [m×100]) among the proposed method,
the baseline RRT* method [33] and the enhanced RRT* method in the forest environ-
ment.
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Figure 5.15: Comparative simulation results of the forest environment from the
starting position p0 = [4.1, 6.8, 0.5]⊤ in front and top views. The figure depicts the
initial trajectory (blue line), the optimal trajectory of the proposed method (red line)
and the optimal trajectory of the RRT* method (yellow line).
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(a)

(b)

Figure 5.16: The final cost function approximation in the forest environment and
the corresponding optimal vector field at two different heights (a) z = 50[m] and (b)
z = 120[m].
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Figure 5.17: The cost function associated with the initial and the optimal control
policy in isometric view of the forest environment.
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Figure 5.18: The vector fields illustrating the initial and the optimal control policy
in isometric view of the forest environment.
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Chapter 6

Conclusions

6.1 Overview

The approach proposed in this thesis has shown significant advantages over existing
methodologies, marking a notable stride towards the future directions of optimal
path planning in continuous three-dimensional spaces. The control planning policy
is structured in a parameterized form of a potential fluid flow model, which consists
of a distribution of repelling sources on the boundary and an attractive sink at the
goal position. Notably, this work presents a compelling proof of the existence of a
stable solution to the motion planning problem in bounded and obstacle-cluttered
3D workspaces. Safety is also ensured by determining the weight factors of the po-
tential flow components based on a set of linear von-Neumann boundary constraints.
To address optimality, the control parameters are updated without affecting the har-
monic properties of the potential flow, such as incompressibility, and based on the
principles of dynamic programming successively converge towards the optimal solu-
tion of the Hamilton-Jacobi-Bellman equation. This is implemented by the proposed
model-based actor-critic reinforcement learning scheme, which determines the ap-
propriate strength of the source/sink elements on the boundary to optimally drive
the entire flow towards the desired target.

6.2 Conclusions

The results of this study lead to the following conclusions:

• The motion planning policy is proved to produce smooth continuous trajec-
tories that stabilize the system on the target position while at the same time
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avoiding collisions. This reactive solution clearly outperforms sampling-based
methods, which rely on spatial discretization and in complex environments
either do not provide smooth enough trajectories for autonomous vehicles or
may fail to find a solution [34].

• The proposed approach generates a feasible path for every initial position
within the workspace, unlike sampling-based methods that depend on the
starting position. This could also be utilized for the coordination of multiple
robotic vehicles, since a single expression for the path planning of every agent
in the environment is a priori known.

• This motion planning method can be applied to complex boundary and ob-
stacle geometries directly, eliminating the need for a map transformation,
which was a significant limitation of extending previous approaches to three-
dimensional spaces. This is further supported by applications in Fluid Me-
chanics, where the potential flow equations have been well-established for sim-
ulating challenging environments (e.g., the flow around helicopter rotors [35]).

• A deterministic optimal solution for the motion planning problem is achieved
by leveraging the compelling theory of non-linear optimal control. The pro-
posed deep reinforcement learning successfully overcomes the challenge of solv-
ing the difficult non-linear differential equations involved in the Hamilton-
Jacobi-Bellman (HJB) optimality condition.

• The model-based nature of the proposed reinforcement learning algorithm con-
fronts the challenges faced by model-free approaches, such as high sample
complexity of the action and state space, the need for memory buffer storage
techniques, and the exploration-exploitation trade off. The results demon-
strate that the proposed algorithm converges within a few iterations.

6.3 Limitations and Future work

The motion planning approach of this thesis entails some limitations. Firstly, com-
pensating for dynamic environments and noisy systems can be challenging, requiring
the use of an additional low-level planner. In this work, the control policy’s harmonic
fluid-based basis function is strictly maintained throughout the entire optimization
process. As a result, the improvement of the policy is limited by the optimal per-
formance that can be achieved through this specific parameterized potential flow
formulation. Additionally, the necessity to solve a hard constrained optimization
problem during the training process presents a challenge in terms of computational
complexity. In other words, the primary focus of this study lies on prioritizing the
proven stability and safety of the control policy, which results in some limitations
for attaining globally optimal solutions.
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The future proposals to address the aforementioned challenges are summarized as
follows:

Improved motion planning policy:

• Implementing a more complex formulation of the harmonic potential field
should be examined. This involves incorporating either a higher order of
weights distribution in each panel element or introducing additional terms
to achieve a more sophisticated representation of the fluid flow. During this
thesis, the investigation of including doublet and vortex elements in the po-
tential field formulation has exhibited improved trajectory shapes, particularly
in highly constrained non-convex workspaces. This enhancement is justified
by the fact that vortex panels can provide improved control of the tangential
velocity component, as depicted in Figure 6.1.

• The exploration of parameterizing the control weights with Radial Basis Func-
tions (RBFs) has also yielded promising results during this research. Specif-
ically, the weights of the harmonic policy can be parameterized through the
following policy structure:

u(p) = ∇Φ(p) ·w(p) = ∇Φ(p) ·M(p) ·w, (6.1)

where:

– M(p) =


1 0 . . . 0
0 z . . . 0
...

...
. . .

...
0 0 . . . z

 ∈ RK×(KL)+1

– z(p) = [e−c∥p−p1∥, e−c∥p−p2∥, . . . , e−c∥p−pL∥], denotes the vector of RBFs with
pi ∈ R3, i = 1, 3, . . . L the corresponding center of each term.

–
[
w0, w1, . . . wK

]⊤ ∈ RK+1 are the tunable parameters of the control policy.
It is of high importance to note that this approach allows the control
parameters to be influenced by the robot’s position within the workspace,
thus enhancing optimality through a comprehensive representation of the
potential field. However, a vital trade-off should be considered, as this
approach compromises the harmonic properties of the potential field and
consequently the stability of the control policy, while also significantly
increases the computational time.

Indicative results of the proposed extensions are showcased in Figure 6.2
to demonstrate the benefits of exploring these alternative approaches.
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Improved reinforcement learning approaches:

– The investigation of alternative approaches for the policy improvement
step is also recommended. Valid proposals include employing a gradient
decent method or integrating the safety constraints into the cost function
in order relax the quadratic optimization problem.

– Model-free reinforcement learning techniques offer promising future prospects.
This provides parameter-free solutions to the motion planning problem,
with the potential to enhance global optimality. By utilizing an initial
admissible policy, obtained through the AHPF solution for the motion
planning problem, improved convergence and accuracy of model-free ap-
proaches can be achieved. For instance, incorporating the Deep Deter-
ministic Policy Gradient (DDPG) algorithm in the proposed reinforce-
ment learning framework has shown some benefits throughout this study.
In particular, this approach eliminates the need for a hard constrained op-
timization problem since the safety criteria are included in the critic net-
work formulation. Furthermore, limitations of the DDPG algorithm [2]
such as slow convergence and insufficient exploration are improved by
initializing the critic network with on-trajectory samples, as presented in
Chapter 4.
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Figure 6.1: The vector field of a source panel (left) and the vector field of vortex
panel (right). From: [29].

Figure 6.2: Comparative trajectories of alternative proposed control policies.
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Appendix A

Software Structure
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Environment sensing:
Input 3D Occupancy map or .STL file

Create triangular surface
mesh:

Call createSurfaceMesh.m

Sample boundary, optimization
and simulation points:

Call workspaceSampling.m

Construct safety constraints set:
Call getConstraints.m

Find an initial admissible policy:
Call getInitialPolicy.m

Start

Motion Planning Algorithm
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Run multiple simulations:
Call systemKin.m

Post process simulation data:
Call collectTrajPoints.m

Store on-
trajectory

data

Value function approximation:
Call trainCritic.m

Policy improvement step:
Call trainActor.m

Policy parameters
have converged?NO

End

YES

Reinforcement Learning Algorithm

Figure 3: Software structure of the optimal motion planning algorithm.
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Enviroment sensing:
Input position & surface mesh

Collision detection module:
Call inTriangulation.m

Robot collision?
Transformation to panel

coordinate system:
globalToPanelTransMatrix.m

Calculate single panel induced
velocity:

Call panelvel3D_triang_mex

Transformation to
globalcoordinate system:

PanelToGlobalTransMatrix.m

Compute total basis function of
the AHPF:

Call panelveltot3D_triang.m

Get robot's velocity command:
Call system_kin_panel3D.m

Solve system of ODEs to get
next position:
Call ode15s.m

Has reached
 the target?

Policy control parameters:
Input weights of the panel

 terms

END

Robot navigation with AHPF policy

YES

YES

NO

NO

Figure 4: Structure of the robot navigation algorithm.
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Input:

3D occupancy map or .STL file
Mesh resolution (optional)

Callbacks:

createSurfaceMesh.m

Output:

(Kx3) array of the triangulation connectivity list
(Qx3) array of the triangulation points
(Kx1) cell of (3x3) arrays containing the vertices coordinates of each panel

createSurfaceMesh.m

Figure 5: Structure of the surface mesh algorithm.
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Input:

(Kx1) cell of panel coordinates
Sampling resolution
Boundary distance threshold
Sample boundary points (optional)

Callbacks:

inTriangulation.m
workspaceSampling.m

Output:

(Nx3) array of the samping points
(Nx3) array of the boundary normal vectors (optional)

workspaceSampling.m

Figure 6: Structure of the 3D sampling algorithm.
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Input:

(Hx3) array of on-trajectory position coordinates
(Hx1) array of cost function values
Train criteria

Output:

Trained Neural Network of the cost function approximation

trainCritic.m

Devide to test, train and
validation datasets

Preprocess datasets

Initialize weight and bias values

Train Deep Neural Network

Evaluate performance

Train criteria
satisfied?

YES

NO

Figure 7: Structure of the critic training algorithm.
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Input:

(Kx1) cell of panel coordinates
(Kx1) vector of policy parameters
Critic Neural Network
Optimization points resolution

Output:

(Kx1) vector of updated policy parameters

trainActor.m

Callbacks:

workspaceSampling.m
initializeActorTrain.m
trainActor.m

Figure 8: Structure of the policy improvement training algorithm.
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