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MepiAnbn

H oUykpouon petafl mAolwy eival adlapdlofritnta éva amo ta BaAdoola atu Lot e TIG
TILO ONMOVTIKEG EMUMTWOELG. H €pguva yla TV avamtuén pebodwv mpoAnng cuykpoUoewv
Aoutov eival eMLTAKTLKA yLa TNV acdaAela Too tou Baldoaotou meplPaAloviog 660 Kol TwV
VOUTLKWVY KOL TWV EMLBOTWY TIOU EUTAEKOVTOL OTLE BAAAOGCLEG PETAKLVAOELS. OL EPEUVNTEG
£xouv avamntuéel peBodoug mpoAnYng Twv CUYKPOUCEWV MOV Urmopouv va taélvoundolv og
VEVIKEG YPOAUUEG OTNV avixveuon Tou KwvdUvou tng oclykpouong (collision risk detection) kat
otnv anoduyn tng ocuykpouaong (collision avoidance). H avixveuon tou kKwvdUvou Tng
oUykpouong anookomnel otnv MPOPAsPn ULlag eMKEipeVNC ocUyKpouang SivovTtag To EVauoua
yla TNV anoduyn tng cUyKpouaong n omola meplAapBavel Tov KaBopLopo Twv anapaitntwyv
EVEPYELWV VLA TNV Artoduyr TOU aviXVEUREVOU KIvEUVOU. ITnv tapolod SUTAWUATLKH
£pYaoia EMKEVTPWONKALE OTNV avATTUEN LLog véag pebddou aviyveuong Tou KvSUVouU NG
ouykpouong. H péBodoc pag eivat évag ahyoplbuoc machine learning kot o cuyKeKpLUEVA
£vag alyoplBpog apvntikng emthoyng (negative selection algorithm).

MPOKELUEVOU VOl ETUTUXOULE TOV 0TOXO TNG avamntuéng autol tou aAyopibuou,
0€LOTIOLOOLE YVWOELG TOCO Ao TNV EPEUVaA TNG avixveuong Kivduvou cUyKpouang MAoLwV
000 Kal amno tov topéa twv Artificial Immune Systems, ta omola mepAapBavouv Kal to
Negative Selection Algorithm. Ta apxwd otadla TG epyaciag Lag EMKEVIpWONKAY TNV
QVaLOKOTNGN KaL T oUVBECN TNG UTTIAPXOUCAG EPEUVAC O AUTOUG TOUG TOUELC, evtomilovtag
BAOLKEG YVWOELG TIOU EVEMIVEUGQV TNV TIPOCEYYLON HOC. XTN CUVEXELA, avamtuéape Evay
Seutepelovta aAyOpLOUO UE OKOTIO VO KATOLOKEUAOOU LLE Ta SE60UEVA TIOU AIALTOUVTAL yLa
v eknaideuon kot Tnv afloAoynon tou aAyopiBuou apvntikng emloyng. Epocov
efaodadioape Ta anapaitnta Se5oUEva, IPOXWPNCOUE 0T CUVEXELX OTNV EKTTALSELON TWV
QVIXVEUTWV HAG KoL 0TNV QVATTUEN TNG LeBOSoU Ttou Xpnotpomolel o aAyoplOpog yia tov
EVTOTILOUO TUOAVWV ATIENWV.

Mo va a€LOAOYI|COUE TOV TIPOTELVOUEVO AAYOPLOUO apvNnTLKAG ETUAOYNG YL TNV avixveuon
KlvéUvou clyKpouang, TpayHOTOToLoape Uia evbelexn avaiuon sualodnoiog twv
Baokwv MapapETpwy Tou. H avaAluon autr e§UTNPETOUCE SUTAG OKOTIO: TIPWTOV, LG
enétpee va Katavonooupe Babutepa Tov TPOTO LE TOV OToio oL eV AOyw TTAPAETPOL
ennpedlouv 1600 TNV aKpiPela 600 Kal Tov XpOvo eKTEAeanC Tou aAyopiBuou. Asltepov,
MEOW AUTAC TNG AVAAUONG UTOPECAE VO BEATLOTOTIOCOUE QUTES TLG TIOPOETPOUG,
ETULTPETOVTAG PG TEALKA VO ETUAEEOULE TIC PEATLOTEC TLUEC YLa KAOE TTOPAUETPO KAl VOl
BeAtlwooupe Tn cuvoAikn anddoaon tou aiyopibuou.

AdoU ohokAnpwaoape tnv avantuén tou aAyopibuou pog, afloloynooape Ty anddocn Tou
000V adopd TNV aKkpiBELO KOL TOV XpOVO EKTEAECNG LECW HLOC OELPAC TTELPAUATWV.
EruumAéov, pehetnoape tnv mbavr mpaktiky epappoyr Tou adyopibpou HEow TNG HEAETNG
Kamolwwv mBavwy cevaplwv (case studies).

O mpotelvopevog alyoplOpog paivetal va mapouoldalel eAmibodopa amoteAéoparta. O
XOUNAOC XPOVOG EKTEAEONG, AKOLN KAL E TIEPLOPLOUEVOUG UTIOAOYLOTIKOUG TIOPOUG, KAl N
vPnAn akpiBeld Tou KOTASELKVUOUV TIC SUVATOTNTES TWV AAYoplOUWY apvNnTIKAC ETUAOYNG
OTNV OVTLUETWITLON TOU TIPoBANHATOC eVvTOTopoU KvdUvou clUykpouaong. AdltapdioBitnta
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UTIApYoULV MeplBwpla BEATIOTOMOLNGCNG KAL TIEPALTEPW TTPOOSOU, TMLOTEVOUE WOTOCO OTL O
OAYOPLOUOC pag propel va xpnolpueloel we Baon yla LEANOVTIKEG LEAETEG OE AUTOV TOV
avVaSUOEVO TOMEQ.



Abstract

Maritime transportation safety is threatened by the occurrence of ship collisions which may
result in catastrophic consequences. Researchers have developed collision prevention
methods that can be broadly classified into collision risk detection and collision avoidance.
Collision risk detection aims to identify potential collisions prior to their occurrence, whereas
collision avoidance aims to determine evasive actions after a potential collision has been
detected. This thesis focuses on the development of a novel collision risk detection method
utilizing a negative selection algorithm.

In order to achieve our goal of developing a novel collision risk detection method, we drew
upon knowledge from both the ship collision risk detection and artificial immune system
sectors. The initial stages of our thesis focused on reviewing and synthesizing existing research
in these fields, identifying key insights that inspired our approach. From there, we developed
a secondary algorithm to construct the dataset needed for training and evaluating the
negative selection algorithm. This simulation algorithm incorporated an expert-based method
of ship domain as a collision criterion. With the dataset in place, we then proceeded to train
our detectors and develop the method used by the algorithm to identify potential threats
once a detector set has been acquired.

To evaluate the proposed negative selection algorithm for collision risk detection, we
conducted a thorough sensitivity analysis of its key parameters. This analysis served a dual
purpose: firstly, it allowed us to gain a deeper understanding of how these parameters affect
both the accuracy and the execution time of the algorithm. Secondly, through this analysis we
were able to optimize these parameters, ultimately enabling us to select the optimal values
for each parameter and improve the overall performance of the algorithm.

After finalizing the development of our algorithm, we evaluated its performance in terms of
accuracy and execution time through a series of experiments. Additionally, we conducted
several case studies to demonstrate the practical application of our algorithm.

The outcomes of our proposed algorithm exhibit promising results. The low execution time,
even with limited computational resources and its high accuracy demonstrate the potential
of negative selection algorithms in addressing the collision risk detection problem. Although
there is room for optimization and further advancement, we believe that our algorithm can
serve as a foundation for future studies in this emerging field.
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Introduction

Maritime transportation is a crucial component of global trade and commerce, responsible
for transporting the vast majority of international cargo. However, it also poses a significant
risk to the environment and human life, particularly in the case of ship collisions. Collisions
between vessels can cause severe environmental damage, as well as injuries and loss of life
for crew members and passengers. Additionally, collisions can result in significant economic
losses due to the damage to the vessels involved, as well as the potential for cargo loss or
delay. Developing effective and reliable methods for detecting ship collisions is therefore
essential for ensuring the safety and sustainability of maritime operations.

In 1972, the International Maritime Organization (IMO) made its initial efforts to develop a
single set of international rules and practices aimed at preventing ship collisions. This led to
the adoption of the International Regulations for Preventing Collisions at Sea (COLREGS),
which were implemented on 15 July 1977 [1]. Prior to their adoption, individual countries had
their own distinct sets of regulations. Currently, 155 states have adopted the COLREGs,
accounting for 98.7% of the world's merchant fleet, as of 2013 [2]. The COLREGs are comprised
of 41 rules divided into six sections: Part A - General; Part B - Steering and Sailing; Part C -
Lights and Shapes; Part D - Sound and Light signals; Part E - Exemptions; and Part F -
Verification of compliance with the provisions of the Convention. The COLREGs serve as a vital
guide for the safe navigation of vessels, in conjunction with the implementation of the
Automatic Identification System (AlS) and the establishment of traffic separation schemes in
narrow waterways. These measures have led to a significant reduction in the frequency of
ship collisions. However, it is important to note that the application of the COLREGs is
ultimately carried out by seafarers, and the risk of collisions remains, as the human factor
plays a critical role in ensuring safe navigation at sea.

In a recent survey by Allianz Group [3], it is stated that between 75% and 96% of ship accidents
can involve human error. In another Allianz report [4] after the analysis of 15000 liability
insurance claims, it was calculated that in 75% of those claims human error was the primary
factor. That is equivalent to 1.6 billion dollars in losses. Seamen involved in collisions have
stated that the main cause of human error is fatigue and stress. It is a fact that after the
economic crisis of 2008 there is a trend of reducing the number of crew members which leads
to extended fatigue and stress [7]. The need for a system that can assist the crew members in
collision avoidance is unquestionable and marine researchers are working toward this
direction.

Researchers initially focused on creating navigational assistance systems to improve the
situational awareness of human operators in order to avoid collisions. Recently, there has
been a significant increase in interest in autonomous vehicles, which use machine learning
algorithms in order to avoid collisions. Therefore, two main approaches for avoiding collisions
appear in research: conflict detection and conflict resolution [5]. Conflict detection involves
identifying potential collisions before they happen, while conflict resolution involves finding a
way to avoid or mitigate a collision once it has been detected. Both approaches aim to prevent
collisions, but they focus on different aspects of the problem. According to Huang et al [5] the
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research in the last years focuses on two perspectives, assisting human on board and
eliminating human factors. Enhancing the situation awareness of Officers on Watch (OOW) on
board has been researched continuously since the 1950s [8], some of the techniques
produced from this effort were the ship domain and automatic radar plotting aid. On the other
hand, the development of autonomous systems that can automatically find collision-free
solutions promises to replace the human factor and consequently eliminate human error.
Although the focuses of these two kinds of studies may differ, most scientists believe that the
research for the development of unmanned vehicles can benefit the studies of manned ships
and vice versa [9].

The approach used in this thesis belongs to the research field of Artificial Immune Systems.
Artificial immune systems (AIS) are computational models inspired by the natural immune
system. These systems have been developed in the past few decades as a response to the
need for novel and effective techniques for solving complex problems. The natural immune
system is a complex biological system that can recognize and eliminate invading pathogens.
The artificial immune system attempts to emulate the natural immune system by using a set
of algorithms that simulate the immune response.

One important branch of AlS research is the negative selection algorithm (NSA). NSA is a type
of anomaly detection algorithm that uses the concept of self and non-self to identify
anomalous patterns in data. In NSA, the set of self-patterns is represented by a set of
randomly generated detectors, while the set of non-self patterns is represented by the data
that needs to be analyzed. The NSA algorithm compares the data with the set of detectors
and flags any patterns that do not match the self-patterns as anomalous.

The development of NSA has been a subject of active research in recent years. Many variants
of the original NSA algorithm have been proposed, each with its own strengths and
weaknesses. For example, some researchers have proposed using hybrid approaches that
combine NSA with other machine learning algorithms to improve performance. Others have
focused on improving the efficiency and scalability of NSA to enable its application to larger
and more complex datasets.

In summary, the development of artificial immune systems, and in particular the negative
selection algorithm, has been a subject of active research in recent years. These algorithms
have the potential to solve complex problems in a variety of domains, including maritime
transportation. The use of NSA for ship collision risk detection is a promising area of research
that could significantly improve the safety of maritime transportation.

The primary objective of this thesis is to devise an algorithm that can accurately assess the
occurrence of a collision between two ships based on their respective positions, velocities,
and headings. The proposed algorithm is categorized under research on collision risk detection
and will ultimately output a conclusion regarding the existence of a potential collision risk.

In this endeavor, we aimed to integrate knowledge from both the domains of Artificial
Immune Systems (AlS) and collision risk detection to develop our algorithm. Subsequently, we
formulated a secondary simulation algorithm to generate the dataset essential for training
the detectors and evaluating the algorithm. Furthermore, we conducted a sensitivity analysis
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to examine the primary parameters of the system, which facilitated an understanding of the
algorithm's operation and provided optimal values for these parameters. Following the
development of the algorithm, we evaluated its accuracy and execution time. Finally, we
presented case studies to provide a comprehensive understanding of the algorithm's
functioning. The contents of the present thesis can be summarized as follows.

Chapter 1 introduces the problem of ship collision risk detection and outlines the motivation
and objectives of the thesis. The chapter provides an overview of the previous work done in
this field and identifies the gaps in the existing literature that the thesis aims to address.

Chapter 2 presents the theoretical background and related concepts required to understand
the methodology used in this thesis. The chapter covers the principles of artificial immune
systems (AlS), specifically focusing on the negative selection algorithm. The algorithm
developed in this study is a negative selection algorithm, making it a part of the broader
framework of AlS.

Chapter 3 describes the methodology used to develop the collision risk detection algorithm.
The chapter explains how the dataset used for training and evaluation was generated through
a secondary simulation algorithm and provides a detailed description of the main algorithm's
design and implementation.

Chapter 4 presents the results of the sensitivity analysis conducted on the main parameters
of the algorithm. The chapter discusses the impact of different values for these parameters
on the performance of the algorithm and provides recommendations for the optimal values
to be used.

Chapter 5 assesses the accuracy and execution time of the collision risk detection algorithm
and provides a concise analysis of the findings.

Chapter 6 presents some case studies that showcase the practicality and the accuracy of the
proposed algorithm in real-life-like scenarios.

Chapter 7 concludes the thesis by summarizing the main contributions of the research,
discussing the limitations of the study, and suggesting directions for future research in the
field of ship collision risk detection.
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Collision avoidance for ships

1.1) Collision avoidance

The increase of shipborne commercial trading and the advancement of radar after World War
2 brought the development of qualitative studies on marine collision maneuvers [8]. These
early studies primarily focused on interpreting collision regulations and discussing their
effectiveness and limitations, particularly in close range encounters. The main areas of focus
for these studies were the behavior of marine traffic as a whole and the development of
optimal strategies for evasive maneuvers in close range encounters. In the 1960s, voyage
planning and the use of shore-based navigation advising systems for weather information
became more widespread. During this time, collision avoidance maneuvers were typically
based on radar data and the officer on watch (OOW) would make decisions on how to respond
based on their interpretation of the situation. However, this approach could be unpredictable,
particularly in situations involving multiple ships. During this time, it was not possible to rely
on instrument-based collision avoidance maneuvers because sophisticated radar systems
were not readily available. Nevertheless the ever growing shipborne trade and the lack of
more sophisticated rules lead to a significant rise of ship collisions. A 1963 report from the
Liverpool Underwriters Association [2] found that 21 collisions had resulted in total ship loss,
a sharp increase from a five-year average of 13.8. The primary cause of these accidents was
deemed to be human error when the ships were operating at high speed in congested waters.

To address these challenges, the Institutes of Navigation in West Germany, France, and the
United Kingdom proposed several ideas [2] to improve safety in congested areas, including
the implementation of one-way traffic schemes similar to those used on land. These ideas
were well received by the International Maritime Organization (IMO) and as a result, a traffic
separation scheme was implemented in the Dover Strait in June 1967 [2]. This resulted in a
significant reduction in the number of collisions between ships on opposing headings. Similar
schemes were later implemented by other governments around the world, particularly in
areas with heavy traffic, such as the Malacca Strait.

While traffic management schemes were effective in reducing the number of collisions, they
only partially solved the problem as crossing traffic still posed a threat to the regulated traffic
flow. In 1975, Philips [10] proposed a conceptual marine traffic system based on land traffic
regulations, but this idea was not practical because it is not feasible to install traffic lights at
sea.

Subsequent research on collision avoidance focused on the development of models that
integrated expert knowledge with motion prediction methods for ships. These models aimed
to improve the accuracy of collision avoidance predictions as well as trying to minimize the
individual human factor in decision making. Below, we will discuss some of the primary
trajectory and motion prediction models that have been developed for collision avoidance.
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1.1.2) Motion prediction in collision avoidance

The process of collision avoidance starts from the observation of the Target Ships (TSs) in
relevance to Own Ship (0S). In the context of collision avoidance methods, the terms "target
ships" and "own ships" are often used to describe the relative positions and movements of
the ships involved. These terms are used from the perspective of the ship in question. For
example, if Ship A is trying to avoid a collision with Ship B, Ship A is the "own ship" and Ship B
is the "target ship". The majority of researchers and modern bridge systems, such as
Integrated Navigation Systems (INS), agree that the second step in collision avoidance is the
estimation of the motion of the ships involved in order to determine if there is a risk of conflict.
This involves predicting the future positions and movements of the ships in order to assess
whether a collision is likely to occur. The flow diagram of the basic steps of collision avoidance
for most researchers can be seen in Fig.1, which shows the information flow of Huang’s
research [5] on collision avoidance.
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Figure 1: The information flow of collision prevention on board ships, [5]

According to Huang, “motion models are categorized as holonomic models (constraints on
configurations only) and non-holonomic models”. In a large number of studies such as Li and
Jilkov [11], Benjamin et al. [12], Degre and Lefevre [13], estimating the ships’ motion is based
on the assumption that the ship is a holonomic vehicle that moves freely in a horizontal plane.
This is the simplest way of predicting motion and it involves a constant velocity that in
combination with the ship’s heading produces the future positions of the ship. Nevertheless,
the holonomic model does not take into account constraints on tangent C-space?, such as the
acceleration of linear and angular speed.

1 Tangent C-space: In motion planning and collision detection, the tangent C-space is a configuration
space that encompasses the position and orientation of an object. It combines translational and
rotational degrees of freedom. [14]
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To address this issue, some studies have proposed the use of kinematic motion models. These
models consider the constraints on the movement of a system and can provide more accurate
predictions of its future motion. Such studies are those of Hvamb [15] and Fossen [16].
Although kinematic models produce more precise predictions, they do not consider the mass
of a ship, which can significantly impact its motion. These models also do not accurately
account for the complex mechanisms that influence acceleration in different directions.

To improve the accuracy of prediction, researchers have introduced kinetics relations into
kinematic models to take these factors into account. These models are characterized by Huang
as dynamic models. Fossen in his work [17] produced a kinetic relation that contains the mass
of the ship as well as the Coriolis effect and damping matrices.

Another group of dynamic models for predicting motion are Mathematical Model Groups
(MMG). The MMG model is a dynamic model that is used to predict ship maneuverability.
Instead of using forces as inputs, the MMG model uses rudder angle and propeller revolutions
as inputs and uses empirical formulas to model the responses of hydrodynamic forces to these
inputs. This approach allows for the consideration of more detailed information about the
rudders and propellers, such as their specifications. As a result, the MMG model is often used
in the theoretical analysis of ship maneuverability. Yasukawa and Yoshimura [18] in their
research show some details of MMG. He et al [19], Li et al [20] and Xue et al [21] have applied
MMG in their collision prevention techniques. While the MMG model can produce relatively
accurate predictions of ship trajectory, it has a high computational cost and requires a detailed
understanding of the ship's hull, rudder, and propeller. Additionally, the relationships
between control inputs and forces are nonlinear and complex, which makes the MMG model
less popular for the design of ship controllers and observers. As a result, researchers often
prefer to use simplified models based on the MMG model to predict ship trajectory.

It is usual for researchers to avoid using overcomplicated dynamic methods in their work.
Instead they prefer to simplify the aforementioned methods in terms of the dynamic response
of the ship and other factors.

The motion prediction method serves as the foundation for predicting the trajectory of both
the own ship and the target ship. Below we will present some of the trajectory prediction
methods that have been used.

When dealing with predicting the trajectory of a vessel in a typical collision avoidance method,
it is safe to say that dealing with the OS and the TS can be very different, since the amount of
information you get from each vessel varies greatly. Regarding OS’s trajectory prediction it
comes down to the researcher to decide which motion prediction method they will use
depending on the accuracy they want to achieve. TS’s trajectory is more challenging, since a
lot of the parameters that are used in the motion prediction model must be considered
unknown. The most basic method for predicting the trajectory of the target ship is to assume
that it will maintain its current velocity and not be affected by external factors. While this
method is simple, it is not very accurate for collision avoidance purposes. A more realistic
approach is to consider the uncertainties in the models, inputs, and external disturbances that
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can affect the motion of the target ship. This can help to improve the accuracy of the trajectory
prediction. Nonetheless the predicted trajectory has a significant probability to be very
different than the real. According to the knowledge of the TS, the trajectory prediction
methods are categorized into three groups.

The first group is the physics-based methods. Physics-based methods for predicting the
motion of a ship rely solely on the laws of physics, and do not consider the effects of control
inputs or maneuvers. Some studies have ignored these factors entirely, while others have
treated them as white noise. Huang [5] considers Kalman Filter as a preferred physics-based
technique. Candeloro [22] in his research used KF along with holonomic models. Shah and his
colleagues [23] used Kalman Filter with kinematic models (“simple car” model). While physics-
based methods can accurately predict the short-term trajectory of a ship, they are not able to
predict changes in trajectory that may result from changes in maneuvers [24]. This can limit
their effectiveness in collision avoidance situations where the ships may be making sudden
changes in course or speed.

Another group of trajectory prediction methods is maneuver-based methods. Maneuver-
based methods consider the intended maneuvers of a ship, such as changes in course or
speed, when predicting its trajectory. These intentions can be learned or estimated from
historical traffic data or by following protocols for ship encounter situations, such as the
COLREGs. Scheepens et al [25] produced an algorithm that learns the behavioral patterns of
ships for a certain area through massive traffic data and then uses these patterns to support
the prediction. Other researchers have produced models by integrating different methods for
processing such data. Simsir et al [26] developed a model using neural network, Rong [27]
used Gaussian process and Peel and Good used Hidden Markov Model [28].

Interaction-aware methods take into account the interactions between ships when predicting
their trajectories. These methods may include communications between ships, such as the
exchange of maneuver intentions or trajectory information [28, 29]. By allowing the ships to
exchange their planned trajectories, these methods can provide more accurate predictions
because the ships have a better understanding of their own dynamics and intentions. As a
result, interaction-aware methods may be more accurate than other methods for predicting
ship trajectories. In Fig. 2 we can see an illustration of the different prediction methods we
mentioned [5].

After a method for predicting the trajectory of a ship has been chosen, it is necessary to
determine whether the navigational state of the ship poses a risk of collision. If a collision risk
is identified, an evasive action may be necessary. This action can be taken by the officer on
watch (OOW) or by an autonomous system on board the ship that is responsible for collision
avoidance. The identification of potential collisions is the scope of conflict detection. As the
current thesis aims to develop a method for detecting conflicts, the next chapter will discuss
the research that has been done in this field.
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1.2) Conflict/Collision Risk Detection

As already mentioned conflict detection is an integral part of all collision avoidance methods.
In research we find some variations in the definition of conflict detection. Goerhand [30] and
Kao [31] define conflict detection as the process of identifying potential collisions and alerting
the officers on board the ships and the operators in Vessel Traffic Service (VTS) of the risk.
Kuwata [32] suggests that the role of conflict detection is to trigger the autonomous system
on board to find evasive actions. Johansen [33] notes that conflict detection has the additional
role of evaluating the risk of alternative paths or evasive actions. In his work Huang [5]
categorizes the collision risk detection methods in two groups, the “expert-based methods”
and the “model-based methods”.

Expert-based methods rely on the direct use of expert knowledge to assess the risk of collision.
These methods produce a risk measure that reflects the beliefs of the experts about the
likelihood of a collision occurring. On the other hand, model-based methods use a simplified
model to describe the physical processes of collision and estimate the probability of a collision
event occurring. The risk measure produced by these methods is a conditional probability of
collision. Within each of these two categories, there are several different ways to represent
the collision risk. Some researchers prefer to present the risk as a numerical value, while
others use graphical representations such as rings of warning or action lines on a two-
dimensional map. These different representations can help to communicate the risk of
collision to the OOWs and VTS operators in a way that is easy to understand and respond to.
Below we will present and discuss some of the expert-based methods.

One common approach to conflict detection involves the use of a numerical value called the
collision risk index (CRI). Methods in this category trigger a collision alarm when the CRI
exceeds a predetermined threshold. The way in which the CRI is calculated, and the value of
the threshold are often based on the expertise and experiences of captains, pilots, and other
maritime professionals. As a result, these methods are typically considered to be expert-based
methods, as they rely on the beliefs and judgement of experts to assess the risk of collision.
This method usually utilizes some indices to measure the risk. These are the closest point of
approach (CPA) which refers to the shortest instantaneous distance between the ships
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involved [8], the time to the closest point of approach (TCPA) and the distance to the closest
point of approach (DCPA). As Tam [8] states the initial concepts for assessing collision risk
were based on those indices. Usually, researchers use a polynomial equation that combines
DCPA and TCPA to calculate a single value, that of the CRI. A generalized form of CRI
measurement is shown as follow:

CRI, = w, f(DCPA) + w, f(TCPA)

Where w; and w, are weights determined by utilizing the experts’ knowledge. The
integration of this knowledge can be achieved through various techniques. Lee and Rhee have
used fuzzy theory [34]. Fuzzy theory can be seen as a great tool in these methods, since the
experts’ knowledge can be characterized as imprecise for mathematical standards. On the
other hand, Chin and Debnath have used Probit Regression [35] in order to achieve a proper
interrelation between the weights and the experts’ beliefs.

In order to improve the accuracy of CRI researchers try to introduce new risk indicators that
provide more detailed information about the encounter between ships. Li and Pang
introduced relative distance in their calculation [36], while Zhao et al. used relative bearing
[37] and Gang et al used ratio of speeds [38].

In his work Lisowski [39] introduced a non-linear equation in order to calculate CRI. This
method uses a Euclidean norm that contains DCPA, TCPA and relative distance. Instead of
using formulations, Ozoga and Montewka designed a pre-set matrix table in order to
determine the CRI value [40]. Other researchers in their measurements abandon completely
the use of T/DCPA. In their work Perera and Soares used some easily obtained variables for
their risk assessment. More precisely they constructed mathematical relationships around
relative positions and relative speeds. They found that these measurements show the
tendency of relative movement [41]. In Fig.3, we find a graphical representation of the factors
used in this method [41].

Figure 3, Perera and Soares calculation method, [41]
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In their research W. Zhang and his colleagues [42] used relative distance and speed along with
the encounter angle in order to calculate the CRI. In this case some encounter scenarios are
used to determine the parameters of the equation.

The concept of a ship safety domain is based on the idea that the safe distance between two
ships may vary depending on the direction in which they are approaching each other [17]. This
is due to factors such as the relative sizes and speeds of the ships, the characteristics of the
surrounding environment, and the available maneuvering space. There are numerous papers
on ship domains, in their work Szlapczynski and Szclapczynska [43] tried to sum up all the
different developments in this field.

Ship safety domains can be broadly classified into three categories: those developed through
theoretical analysis, those based on the expertise of maritime professionals, and those
determined empirically through the analysis of data. It is common for these categories to
overlap, with some models combining elements of different approaches. Empirically
determined domain models are often simpler, as they are based on observed data rather than
theoretical analysis. However, their potential applications may be limited to situations where
the general shape and size of the domain are sufficient for statistical analysis, and more
precise dimensions are not as important. Knowledge-based and analysis-based models of ship
safety domains have a wider range of applications, including collision avoidance, near miss
detection, and waterway risk analysis. These purposes require more detailed and complex
models, which often have many parameters that take into account multiple factors that
contribute to collision risk. These models are generally more flexible and can be used in a
wider range of situations, but may be more complex and require more specialized expertise
to develop and interpret.

All models of ship safety domains are influenced by the characteristics of the waterway in
which they are applied, although the extent of this influence may vary. For example, when
evaluating the capacity of a waterway or assessing the overall risk of a particular region, the
shape, traffic density, and patterns of vessel traffic may be key factors. In the context of
collision avoidance, the type of water way (such as narrow waterways, restricted but wider
waters, or open waters) may be more important in determining the appropriate safety
margins and maneuvers. In any case, the waterway plays a role in shaping the characteristics
of the ship safety domain and the associated risks and challenges.

Ship domain was first introduced by Fuji and Tanaka in 1971 [44] when they studied the
maritime traffic in Japanese channels. The ship domain they produced was of an ellipsoidal
shape with OS at the center. Their research along with the works of Coldwell [45] and Goodwin
[46] were based on statistically processed radar data. The radius of the domain according to
Goodwin should also take into account many independent variables as the type of area, traffic
density, ship length and maximum speed.

The definitions of ship domain given by these three authors are very similar, yet they have
been interpreted in multiple ways by various authors. Fuji defined ship domain as follows “a
two-dimensional area surrounding a ship which other ships must avoid — it may be considered
as the area of evasion”. Goodwin defined it as “the effective area around a ship which a
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navigator would like to keep free with respect to other ships and stationary obstacles”. In
Coldwell’s work we can find ship domain as “the effective area around a ship which a typical
navigator actually keeps free with respect to other ships”. The different interpretation of these
definitions has led to different safety criteria applied in the research of ship domain. In their
work Szlapczynski and Szclapczynska [43] show the four safety criteria used in research as
follows:

a) Own ship’s (OS) domain should not be violated by a target ship (TS)

b) A target ship’s (TS) domain should not be violated by the own ship (OS)

c) Neither of the ship domains should be violated (a conjunction of the first two
conditions)

d) Ship domains should not overlap — their areas should remain mutually exclusive (the
effective spacing will be a sum of spacing resulting from each domain)

The different safety criteria can be seen in Fig.4 [43].

a) o?) ¢) d)

The first two criteria give different estimations of safety even if the same domain is used since
they are dependent on which ship does the assessment. For the other two if the same domain
is applied, the assessment would be the same regardless of the point of view. For this reason
the latter two safety criteria can be considered as symmetrical. It should be pointed out that
the last criterion has been used in the late research by Rawson et al. [47] and Wang and Chin
[48] and it is by far the strongest in terms of safety.

It becomes obvious that the criterion that will be chosen gives a very different minimum
spacing that should be kept, even if the domain dimensions remain the same. Regarding the
domain dimensions, the first papers on the subject calculated them mostly in accordance with
the ships’ length. One such example is that of Coldwell’s ship domain. In later research we find
different expressions about domain’s size. In their work Wang and Chin [48] assume that the
size of the domain is a linear function of ship’s length and a quadratic function of its speed.
The shape of the domain in this work varies since the safe distance depends on the polar angle
measured clockwise from the ship heading.
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In ship collision risk detection, ship domain is usually used to visualize the collision risk by a
set of warning rings surrounding the OS. When a target ship enters or will enter this region, a
collision alarm is used.

Binary collision criteria are used to provide a deterministic assessment of whether a collision
will occur or not based on a given scenario. One common criterion is the DCPA along with the
assumptions that the target ship maintains a constant velocity and that both ships are
represented as circles. This criterion offers a simple and straightforward way to evaluate the
likelihood of a collision, but may not accurately reflect the complexity and variability of real-
world maritime situations. Nevertheless, this method is widely used for manned and
unmanned vessels [49].

The occurrence of collisions in a marine system can be characterized as a stochastic process.
The probability of collision can be used to quantitatively assess the risk of dangerous
encounters. However, the outcome of such encounters may be influenced by various sources
of uncertainty, including errors in sensor readings, the effects of environmental factors, the
response of the targeted system, and inaccuracies in predictions [50]. Given the complexity of
these factors, it may be infeasible to account for all sources of uncertainty, particularly when
certain uncertainties are difficult to measure. An alternative approach to handling the
complexity of uncertainties is to assume that certain aspects of the system are known, and
only certain sources of uncertainty are taken into account. Additionally, it is commonly
assumed that the probability distributions for these uncertainties are already known. With
these assumptions, the probability of collision can be calculated based on the specified
uncertainties.

Shah et al. [49] used Monte Carlo simulation in order to calculate the probability. Monte Carlo
simulation is a method for using random sampling to perform numerical simulations and
estimate a range of possible outcomes for a given system or model. It is considered
particularly useful when the underlying model is complex or difficult to solve analytically. Park
and Kim [51] in their research utilized a concept of probability flow for the calculation. In
probability theory and stochastic analysis, the concept of a probability flow refers to a
mathematical object that describes how probability evolves over time in a given system. A
probability flow is often represented mathematically as a family of probability measures on a
state space, where each measure represents the probability of different outcomes at a specific
point in time. The probability flow is useful to model uncertain situations where the outcome
or state of the system at some point in time depends on the outcome or state at some
previous time.

Although researchers have found some methods of calculating the probability of a collision,
they have not found a way to set a threshold for which the collision alarm would be launched.
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One approach to collision detection involves compiling a set of speed or course values for the
own ship (OS) that are known to lead to collisions with the target ship (TS) and displaying this
set of values to the officer on watch (OOW). A collision warning is activated when the current
velocity of the OS falls within this set. This set can be found in research with many different
names such as Collision Threat Parameter Area (CTPA) in Lenart’s research [52] and Velocity
Obstacle in Huang et al research [53]. Initially, to establish the set of conditions for collision
threat assessment/collision detection system (CTPA/CDS), certain simplifying assumptions
were made by researchers, such as the target ship (TS) maintaining a constant velocity and
heading, and the assumption that both the TS and the other ship (OS) are circular in shape
[52]. In more recent research, scientists have adopted different practices and concepts in
order to make their models more realistic. For instance, Szlapczynski and Szlapczynska utilized
ship domain [54] and Huang [53] considered changes in TS speed and course. As the set of
velocities of the other ship (Velocity Obstacle) that are considered dangerous is determined
within the solution space, some researchers have proposed using the proportion of safe
solutions as a metric. Another approach is to directly display a region of the waterway where
a collision with the target ship (TS) is likely to occur, which is typically positioned at the closest
point of approach (CPA). A collision warning is issued when the current velocity of the other
ship (0OS) indicates that it may enter this dangerous area. One well-known method in this
category is the Predicted Area of Dangers (PAD) proposed by Zhao-lin in 1988 [55], or the
Projected Obstacle Area (POA) proposed by Gerhart et al. in 2006 [56]. Other methods that
have been proposed include the Obstacle Zone by Target (OZT), whose size and position are
determined using a joint probability, as proposed by Fukuto and Imazu in 2013 [57], and
Kayano and Kumagai in 2017 [58]. Another example is the Fuzzy Collision Danger Domain
(FCDD) which takes into account multiple factors to determine its size, as proposed by Su et
al.in 2012 [59].

This group of studies try to construct an action line that surrounds the OS in its geographical
space. This line is used to show the last chance the OS has to evade a collision via a specific
evasive action. The concept is very similar to, and it is a form of a ship domain. In contrast to
the ship domain, the determination of the action is based on simulation and not on the
experts’ beliefs. The main assumptions that the researchers take in order to produce the
action line are the following. First, the TS keeps its initial speed and heading. Second, the OS
takes a specific evasive action, e.g., a hard-port turn. Through multiple simulations, a set of
initial positions of the TS that the OS can avoid collision with via the fixed action is found.
Sczlapczynski et al depicts these positions as an action line [60]. Krata and Montewka through
these simulations construct the concept of critical distance which is very similar to the action
line [61]. Baldauf et al. [62] presented a similar concept, with the line named as the last line
of defense. By performing simulations for different fixed evasive actions, different action lines
are produced, that can be used as collision alarms.

It is certain that obtaining an accurate collision risk at each time step is extremely difficult if
not impossible. This comes down to the great number of uncertainties that relate to a ship
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encounter, from the weather conditions to the intentions of the OOWSs in the TS.
Nevertheless, neither man nor machines can achieve collision prevention without collision risk
detection. As we show above researchers have developed methods that try to provide reliable
solutions to the risk detection problem. One group is trying to integrate the knowledge of the
experts in methods that can assist the OWWs and VTS operators by improving their situational
awareness. Although these methods can be of great help as a risk- informed tool, they can be
biased and disregard the physical process of the collision. The other group of methods tries to
employ technical knowledge regarding the ship movement and the physics of a collision in
order to define the probability of a collision. In order to perform such calculations, the
researchers need to minimize the related uncertainties. To achieve that they study ideal cases.
The ideal case can be the worst case, normal case, or the most possible case. This type of
method can provide the users with feedback that is easy to use, a prime example is that of
DCPA. On the other hand, it becomes obvious that an ideal simplified scenario cannot cover
the complete environment that the OS faces.

Another diversification of the existing methods for collision risk detection is the
representation of the collision risk. One way is to use a numerical value to represent the risk.
Another way is to graphically depict the risk, which is the approach followed by Szlapczynski
and Szlapczynska [43]. Another way is to present the risk as acceptable or unacceptable in a
binary way.

In their work, Huang et al. [5] conclude that expert-based methods are more capable of
meeting different users’ perception of risk in a given scenario. Therefore, these methods are
more widely used in studies for supporting manned ships. The main drawback about these
methods according to the authors is that they cannot give an explicit judgment to users about
whether the collision will occur. For this reason, the model-based method find use these
methods may lack the preciseness of expert-based methods, but they can provide a relative
objective answer, based on which the boundaries of safety and danger are made clear.
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Artificial Immune Systems

2.1) Introduction

The term “Artificial Immune Systems” (AIS) is used to describe a class of computationally
intelligent, rule-based machine learning systems inspired by the principles and processes of
the vertebrate immune system [63]. All the different AIS techniques that have been developed
try to use and mimic different mechanisms of the natural immune system in order to solve
real world science and engineering problems such as machine learning, pattern recognition,
data mining, intrusion detection and engineering system optimization etc [63]. The concept
of AIS was introduced in the mid-1980s with the work of Farmer, Packard and Perelson [72].
Main examples of AlS techniques are the Artificial Inmune Networks, the Clonal Selection
Algorithm, and the Negative Selection Algorithm.

Artificial Immune Networks are inspired by the idiotypic network theory proposed by Jerne
[65] that describes the regulation of the immune system by an idiotypic network of
interconnected B-cells. This type of algorithm is used in clustering, data visualization and
analysis [64].

Clonal Selection Algorithms were introduced by De Castro and Von Zuben [73] for learning
and optimization. These algorithms focus on the Darwinian inspired theory by Burnet of clonal
selection of acquired immunity, which state that only the immune cells that recognize the
antigens can proliferate and produce clones subject to mutation.

Negative Selection Algorithms were proposed for the first time by Forrest et al [76] to detect
data manipulation caused by a virus in a computer system, and more generally for anomaly
detection. They are inspired by the mechanism of the immune system that involves training
T-Cells to recognize antigens and to prevent them from recognizing the body’s own cells.
Negative selection refer to the destruction of the self-reacting cells.

2.2) Immune System-Basic Components
Immunology is an extended topic of the field of medicine. Therefore, some basic features that
are deemed relevant to the concept of this thesis will be promptly presented below.

The immune system is a highly intricate network comprising of organs, cells, and molecules
that work in tandem to combat invading pathogens. The cellular components of the immune
system originate in the bone marrow and migrate to peripheral tissues, circulating in the blood
and lymphatic system. The primary function of these cells is to discern between self and non-
self cells, with the latter requiring further identification to determine the appropriate defense
mechanism. A remarkable aspect of the immune system is its ability to evolve and
differentiate between foreign antigens and host cells, and its multilayered structure that
forms an intricate defense mechanism against infection. Various layers of the immune system
provide a range of barriers against infection, as illustrated in Figure 5 [63].
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Figure 5: Multiple layers of immune system, [63]

Following penetration through the initial physical and biochemical barriers, including the skin,
saliva, tears, mucous secretions, and pH concentration, antigens are encountered by the
innate and adaptive immune system to prevent contamination of the organism. The innate
system, comprised of a diverse array of leukocytes and macrophages, serves as the first line
of defense to counteract a portion of the invading antigens. In contrast, the adaptive system
is the most sophisticated defense mechanism of the organism, developing over time to
recognize and eliminate diverse antigens through specialized white blood cells called
lymphocytes. Two primary types of lymphocytes, B- and T-cells, are generated in the bone
marrow, with T-cells undergoing further maturation in the thymus. Prior to maturation, both
cell types undergo exposure to self-proteins. Upon binding to self-proteins, the cells are
eliminated, while the generation of specific antigen receptors on their surface occurs if no
such binding occurs. B- and T-cells are then circulated throughout the body via the blood
stream and the lymphatic system to recognize and eliminate antigens. These cells differ in
their modes of operation, with B-cells responsible for the production of antibodies, which
recognize a single type of antigen. The attachment of a B-cell to an antigen triggers the
immune response, either by the B-cell itself or in combination with a T-cell. Additionally, the
attachment of a B-cell to an antigen triggers the production of memory cells, which offer
future protection in case of re-exposure to the same antigen [66].

2.3) Main Immunological Principles in Artificial Immune Systems

In this section, we will outline the immunological principles that serve as the foundation of
artificial immune systems (AIS). The three primary principles that have inspired various AlS
methods include the clonal selection principle, immune network theory, and negative
selection mechanism. The development of AlS techniques has been heavily influenced by
these principles. This thesis focuses on a method based on the negative selection principle.
However, researchers are working to incorporate multiple principles into their algorithms. In
the following paragraphs, we will discuss the fundamental concepts underlying these
principles.
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The concept of "self" and "non-self" is highly significant in the field of immunology, and it is
equally essential in the context of Artificial Immune Systems. A succinct definition of these
terms can be provided as follows: "Self" pertains to the cells, molecules, or components
inherent to an organism that are duly recognized as belonging to the individual. On the other
hand, "non-self" refers to external substances, cells, or molecules that are perceived as
potentially detrimental or originating from outside the organism. The immune system is
responsible for discerning between self and non-self entities, enabling appropriate responses
such as self-tolerance and immune reactions against non-self agents. This discrimination
mechanism is vital for maintaining the overall integrity and proper functioning of the
organism.

2.3.1) Clonal selection principle

As previously mentioned, antibodies are capable of recognizing specific types of antigens. The
clonal selection principle is a process in the immune system that involves the creation of
antibody clones capable of defending the organism against the specific antigen at hand. When
a foreign organism invades the host, it often multiplies and damages the host's cells. To
combat this, the immune system replicates the cells that are successful in recognizing and
fighting the invading antigen. During this cloning process, the immune cells undergo mutation
that enables them to better target and eliminate the antigen. In Fig.6 we can see the basic
steps of clonal selection [63].
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Figure 6: The clonal selection, [63]
2.3.2) Immune Network Theory

Jerne was the first to introduce immune networks as a means of explaining how the immune
system maintains memory of an antigen. He suggested that B-cells form a network through
which the immune system's memory is passed down [65]. Each antibody contains an
"idiotope" or a "key" which endows the antibody with two capabilities. Firstly, it allows the
antibody to recognize a specific antigen. Secondly, it enables the antibody to stimulate
another antibody. This means that an antibody can act as an antigen to another antibody,
thereby stimulating the creation of antibodies of the same type. Through the interaction of a
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large number of antibodies, the immune system self-regulates and self-organizes its cells by
retaining and multiplying useful antibodies while eliminating useless ones. A depiction of the
main components of immune network theory is given in Fig. 7 [63].
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Figure 7: Immune network interactions, [63]

2.3.3) Negative Selection Mechanism

Negative selection is a crucial process for maintaining immune tolerance to self-antigens. It
involves the selection and removal of immature lymphocytes that react with self cells, thereby
preventing self-reactive immune responses. This process occurs through the interaction of
lymphocytes with self-antigens, which triggers cell death of self-reactive lymphocytes. The
goal of negative selection is to enable the immune system to recognize and respond to foreign
antigens while avoiding harmful responses against self. In Fig. 8 we find a depiction of negative
selection [63].
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2.4) Artificial Immune Algorithms
Each of these main immunological principles are the inspiration behind the main types of
artificial immune algorithms. In this section we will show some basic characteristics of the
clonal selection algorithm, the immune network algorithm, and describe the negative
selection algorithm more thoroughly.

The Clonal selection algorithm (CSA) was first proposed by de Castro and Von Zuben in 1999
[73]. Following the clonal selection principle of the biological immune system, CSA aims to
develop solutions that are of close affinity to specific “antigens”. De Castro and Von Zuben
showed that CSA has a great potential of solving machine-learning tasks, such as pattern
recognition and optimization. In 2002, de Castro [74] produced CLONALG which is considered
by many the most characteristic clonal selection algorithm. CLONALG is considered optimal
for pattern recognition although it has the potential negative aspect that when a candidate
memory cell is selected, the remaining mutated clones are discarded, thus there is a possibility
of discarding some qualified candidates. Since it was proposed, CLONALG has been used in
many different applications ranging from voltage stability evaluation [70] to medical research
on people with Parkinson’s disease [71].

The Immune Network Algorithm (INA) was originally proposed by Farmer et al. [72] in 1986
and is based on Jerne's network theory. The principle underlying this algorithm is as follows:
"stimulation" refers to the recognition of an antigen or another cell by the immune cell, while
"suppression" refers to the recognition of the immune cell by another cell. The sum of the
stimulation (Nst) and suppression (-Nsup) received by the network cells, plus the stimulation
of antigen recognition (As), corresponds to the stimulation level S, which defines the
reproduction and generic variation of an immune cell.
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One notable application of the immune network for data analysis was proposed by de Castro
and von Zuben [73], who introduced aiNET. The first adaptation of aiNET was carried out by
de Castro and Timmis [74], who developed opt-aiNET (the optimization version), designed to
solve multimodal function optimization problems. This evolutionary-like algorithm has several
interesting features. Campelo et al. [75] later modified opt-aiNET for use in electromagnetic
design optimization, creating the new version m-aiNET. The objective of m-aiNET is to
optimize the computational effort required for a single run of the algorithm. By utilizing some
constraint-handling techniques, the algorithm is more suitable for constrained problems.
Overall, algorithms based on INA have been developed to address several complex
optimization problems.

2.5) Negative Selection Algorithm
The negative selection algorithm (NSA), initially proposed by Forrest et al. in 1994 [76], is
based on the mechanism of the immune system that trains T-cells to recognize only non-self
antigens and not self-cells. Therefore, the main application of NS algorithms has been focused
on anomaly and fault detection [81]. The NSA can be summarized as follows according to Y.M
Chen and M.L. Lee [77]:

e Define self as a collection S of elements in a feature space U, a collection that needs
to be monitored. In most cases U corresponds to the space of states of a system
represented by a list of features, S can represent the subset of states that are
considered as normal for the system.

e Generate a set F of detectors, each of which fails to match any string in S. An approach
that mimics the immune system generates random detectors and discards those that
match any element in the self set. However, further developments have been made
in order to minimize the number of generated detectors while maximizing the
coverage of the nonself space.

e Monitor S for changes by continually matching the detectors in F against S. If any
detector matches, then a change is known to have occurred, as the detectors are
designed not to match any representative samples of S.

In Figure 9 we can find a depiction of the feature space and how the self and non-self states
exist in it [78].

The above description provides a broad overview of negative selection algorithm (NSA), but it
does not provide any details about the representation of the problem space and the type of
matching rule used. As per Dasgupta et al [78], creating effective detectors can be a complex
process that depends on various factors, such as the type of problem space (continuous,
discrete, mixed, etc.), the representation of the detectors, and the matching rule used to
determine if a detector matches an element or not. It is important to consider these factors
in order to design a robust and effective NSA algorithm for anomaly detection or fault
detection applications.
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Figure 9: The concept of self and nonself in a feature space. Here F1, F2, etc. indicate
different fault conditions detected by detectors, [78]

Different variations of NSA have been developed through the years in order to better address
different problems. In his work Gonzalez [66] has studied the main variations of negative
selection algorithms. Their main attributes are presented below.

o Negative selection with detector rules (NSDR)

This algorithm uses a genetic algorithm to evolve detectors with a hyper-rectangular shape in
order to cover the non-self space. These detectors can be interpreted as If-Then rules, which
try to precisely characterize the self/non-self space.

e Negative selection with fuzzy detector rules (NFSDR)

This algorithm is an extension of the NSDR algorithm in order to facilitate fuzzy rules. Fuzzy
logic refers to cases where the truth of an expression is not binary (True-False). According to
Gonzalez, “this produces a measure of deviation from the normal that does not need a
discrete division of the non-self space.”.

e Real-valued negative selection (RNS)

This algorithm starts with a set of hyper-spherical detectors which are randomly distributed
in the feature space. The algorithm changes the position of the detectors based on two main
goals. The first is the maximum coverage of the non-self subspace. The second is to minimize
the coverage of the self samples.

e Randomized Real-valued negative selection (RRNS)

This type is a variation of RNS algorithms. Based on a type of randomized algorithms called
Monte Carlo methods, this method solves some of the drawbacks of a typical RNS algorithm.
Specifically, it can produce a good estimate of the optimal number of the hyper-spherical
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detectors needed to cover the non-self space, and the maximization of the non-self coverage
is done through an optimization algorithm with proved convergence properties.

The algorithm developed in the current thesis is mainly based on the techniques used in the
real-valued negative selection algorithms and it is focused on the general concept of anomaly
detection. In the next paragraph we will try to define the problem of anomaly detection.

2.6) Anomaly detection problem definition
Anomaly detection is the process which aims to distinguish normal states of a system from
anomalous ones. To achieve this, it is crucial to identify the variables that accurately represent
the various states of the system. Based on this principle, the following definitions can be
established.

Definition 1: System state space

A state of the system is represented by a vector of n features, x* = (xi, x5, ..., x})e [0,1]™.
Each state is represented by a set U € [0,1]™. It includes the feature vectors corresponding to
all possible states of the system.

These features can represent current and past values of system variables. The actual values
of the variables could be scaled-normalized to fit the range [0,1].

Definition 2: Normal subspace (crisp characterization)

A set of feature vectors, Self € U, represents the normal states of the system. Its complement
is called Non-Self and is defined as Non-Self = U — Self. In some cases, we will define the Self
(or Non-Self) set using its characteristic function: Xserr :[0,1]" - {0,1}

3 1if x € Self
Xserp (%) = {0 if x € Non_Self

The terms self and non-self are motivated by the natural immune system. In most cases
though there is no sharp distinction between normal and abnormal states; instead, there is a
degree of normalcy (or conversely, abnormality). The following definition reflects these fuzzy
cases.

Definition 3: Normal subspace (non-crisp characterization)

The characteristic function of the normal (or abnormal) subspace is extended to take any value
within the interval [0,1]. The value 1 represents completely normal state and value 0
completely abnormal. Thus, any value in the interval represents a state with some degree of
abnormality.

This non-crisp characterization allows a more flexible distinction between normalcy and
abnormality. However, in a real system it may be necessary to decide when to raise an alarm
or not. In this case, the problem becomes again a binary decision problem. By establishing a
threshold value, the transition back to the crisp characterization is easy.
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2.7) Anomaly detection using Negative Selection Algorithms
Negative Selection Algorithms (NSAs) have been primarily designed for tackling anomaly
detection problems, which involve monitoring the state of a system. The objective is to
identify abnormal states by obtaining a set of normal samples and training a sufficient number
of "antibodies" or detectors to cover the abnormal states of the system. In this chapter, we
will delve into the approaches used by NS algorithm developers to generate effective
detectors.

The initial studies on NS employed binary matching rules to create antibodies-detectors that
match the antigens. The r-continuous matching method, which was the first NS algorithm,
used binary matching rules, as did r-chunk matching, which was proposed by Bathrop et al.
[77], and Hamming distance matching rules, proposed by Farmer et al. [72]. However, despite
setting the foundation for the development of NS, binary matching rules were deemed
unsuitable for capturing the structure of even basic problem spaces by researchers [68], as
they have a low-level representation.

To effectively apply NS algorithms for knowledge extraction, a higher level of representation
for the detectors is crucial. In 2002, Dasgupta and Gonzalez [80] proposed a novel approach
that incorporated a more sophisticated detector generation algorithm and different matching
rules, which facilitated the use of hyper-rectangles as detectors. These hyper-rectangles were
contained within the subset of R™, the unitary hypercube [0,1]", and could be interpreted as
anomaly detection rules. This added structure to the detectors and enabled the extraction of
high-level knowledge in the form of If-Then rules through the use of an evolutionary NS
algorithm. In contrast to the early binary matching rules, which were limited by their low-level
representation, this new approach allowed for a more nuanced understanding of complex
problem spaces.

In 2002, Gonzalez proposed a hybrid approach [81] for anomaly detection using a real-valued
negative selection algorithm (RNS). This approach operates in a self/non-self space that is
represented as a subset of R™. A detector is defined by an n-dimensional vector that
corresponds to the center and a real value that represents its radius. Therefore, a detector
can be seen as a hypersphere in R™. The detector matching rule is expressed by a function of
the Euclidean distance between the detector and antigen, as well as the radius of the detector.

The RNS algorithm begins with a set of self samples represented by n-dimensional vectors,
which is used to evolve another set of points (detectors) that cover the non-self space.
According to Dasgupta [78], the RNS detector generation starts with a population of candidate
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detectors that are then matured through an iterative process. The center of a detector is
chosen randomly, and the radius is a variable parameter that determines the size of the
detector. During the training of the detector set, the position of the detectors is updated at
each iteration based on two factors: moving the candidate detector away from self points and
keeping the detectors separated to maximize the covering of the non-self space.

In Figures 10 and 11 we can see schematic representations (flow diagrams) for Dasgupta’s and
Gonzalez's algorithms respectively [78, 81].
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Figure 10: Flow diagram for Dasgupta’s real-valued negative selection algorithm, [78]
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Figure 11: An iteration of Gonzalez’s real-valued negative selection algorithm, [81]

The parameter r specifies the radius of each detector. For an antigen to be detected by a
detector, the distance between them must be at most r. Since a detector should not match a
self point, the shortest allowable distance for a detector d to the self-set is r. In Gonzalez's
first development of an RNS algorithm, the candidate detectors were chosen to have a fixed
radius. In this case, the radius also specifies the allowed variability in the self space. In
Dasgupta's model, the radius of each detector is different and can be calculated. The radius
of each detector is calculated as the Minkowski distance of the centers of the detector and its
closest self point, minus the threshold value 75 . 75 specifies the allowable variation of a self
point; a point at a distance greater than or equal to 75 from a self sample is considered to be
abnormal. In this model, the radius is considered as a measure of the quality of the detector.
Therefore, an effective detector must have an adequate radius, not cover self space, and not
overlap with other detectors.
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Negative Selection Algorithm for ship collision risk detection

3.1) Introduction

As we have discussed above, the importance of a collision risk detection method is immense
for both the advance of manned and unmanned vessels. Marine researchers try to produce
new reliable methods by utilizing the knowledge and the experience of seafarers and by
developing new computational systems that can simulate the marine environment and the
physics of a collision incident.

On an entirely different sector software engineers find ways to achieve goals by developing
algorithms that imitate the human immune system. As shown, the application and the
structure of these algorithms vary widely. For the purpose of this thesis, we focused on the
negative selection algorithms and their applications on detecting anomalies within a system.

The idea behind this thesis was to combine the knowledge from two seemingly completely
different sectors to produce a tool-method that can assist seafarers and marine researcher on
detecting possible collisions. On the basis that the navigation of a ship is a process
characterized by a number of factors-variables, we developed a negative selection algorithm
that can detect anomalies in this process To be more precise, for our algorithm the safe
navigation of own ship (OS) in relevance with a target ship (TS) is the “self space” of our
feature space. The “non-self space” is the occurrences where the own ship (OS) finds itself in
collision or a near collision course with the target ship (TS).

After defining the feature space, a negative selection algorithm was constructed based on the
principles that were proposed by the researchers of Artificial Immune System. The main pillars
of our work are the papers produced by Gonzalez [81] and Dasgupta [78], which contain
fundamental steps of constructing a negative selection algorithm.

Next we used the work of collision risk detection researchers in order to define the variables
that can adequately show the health state of the system. In this sector, the work of Perera
and Soares [41] proved very valuable since they produced significant results by using easily
obtainable factors from the own ship and the target ship.

The development of a negative selection algorithm for ship collision risk detection
necessitates access to data comprising cases that culminate in collision as well as non-collision
instances. However, acquiring such data is often challenging due to the infrequency and
potential hazards associated with real-world collisions. Consequently, to surmount this
limitation, a secondary simulation algorithm was devised. This auxiliary algorithm enables the
generation of synthetic collision and non-collision scenarios, thereby providing a sufficient
dataset for training and evaluating the negative selection algorithm.The subsequent phase of
our work involved the development of a detector training method for our algorithm. This
entailed designing a methodology for the algorithm to generate detectors that would be
utilized for anomaly detection. Once a set of detectors was generated, we proceeded to
develop a systematic approach for the algorithm to employ them towards accomplishing its
objective. In addition, we conducted a sensitivity analysis to determine the optimal values for
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the primary parameters of the algorithm, which also provided valuable insights into the
algorithm’s behavior. Subsequently, we evaluated the accuracy and efficiency of our
algorithm through testing and also conducted several case studies to demonstrate its practical
applicability. The main steps of the process can be shown in the flowchart of Fig.12.

Generation of self and non self
cases through a secondary
simulation algorithm using ship
domain criterion

Utilization of self states for
detector training

Sensitivity analysis in order
to choose the optimal
values of our parameters

¥

Test of the algorithm using
the non-self set we have
produced

Case studies showcasing
the practical application of
the algorithm

Figure 12: Main steps of the methodology that was applied
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Figure 13: Flow chart of secondary algorithm

In order to produce the synthetic data we required for our algorithm we facilitated some of
the techniques and methods that have already been used in collision avoidance studies. We
developed an algorithm that simulates the movement of two ships (Own Ship and Target Ship)
in a marine environment. As a next step we utilized an expert’s based criterion, namely ship
domain, in order to determine if a collision or a near-collision incident occurs for the vessels’
simulated courses. Hence, the output of this algorithm are incidents where the two ships are
in peril (non-self cases) and incidents where the two ships cross the marine area without
causing harm to each other (self cases). As we mentioned in previous chapters, collision
detection methods require the adoption of assumptions in order for the simulation of a
marine environment to be possible. Below we will discuss the assumptions we made for the
development of this algorithm. In Fig.13 we find a flowchart of the secondary algorithm.

3.2.1) Assumptions

3.2.1.1) Sea area
The marine space we chose has the following characteristics:
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e It is two-dimensional. Therefore, the map is a layer based on Cartesian coordinates.
We adopted this assumption since the physics of the collision are not affected by the
z-axis morph of the vessel. This assumption is common in all the relevant research.

e There are no draft restrictions in the map. Therefore, the ships are free to navigate
anywhere on the map without running aground.

e There are no physical objects in the subject area. This and the previous characteristic
can define the subject sea area as an open deep sea.

e The marine space is a 4 km? area. More specifically we have designed a Cartesian
coordinate system with X and Y axis, with 0 < x,y < 4000 (m)

The secondary algorithm generates scenarios for ship collision risk detection, where each
scenario consists of two ships: an "own ship" and a "target ship." The ship types for both
vessels are randomly selected from predefined ranges of ship types, and the characteristics of
each ship, such as length (L) and velocity (V) are also randomly determined based on its
respective type. This randomization process ensures diverse and realistic scenarios,
encompassing various ship types and their associated characteristics for comprehensive
analysis and evaluation.. The types and their respective ranges are the following:

e Bulk carrier. The length of a bulk carrier is drawn from the range [100m, 270m]. Its
velocity is drawn from the range [10 knots, 18 knots].

e Qil tanker. The length of a tanker is drawn from the range [200m, 340m]. Its velocity
is drawn from the range [8 knots, 16 knots].

e Containership. The length of a containership is drawn from the range [250m, 450m].
Its velocity is drawn from the range [15 knots, 27 knots].

e Fishing vessel. The length of a shipping vessel is drawn from the range [30m, 100m].
Its velocity is drawn from the range [5 knots, 17 knots].

All the values for the above ranges are based on internet data and on Papanikolaou [83].

Furthermore, it should be mentioned that the algorithm picks randomly the type of a ship and
its velocity and length by assuming that the values in these ranges follow a uniform
distribution. The utilization of a uniform distribution is motivated by its unbiased and fair
nature, ensuring that each value within the range has an equal probability of being selected.
This approach guarantees fairness in the random selection process and maintains integrity in
generating diverse ship characteristics for the scenarios.

The algorithm simulates the trajectories of the OS and the TS by assuming the following:

e The courses of the ships involved in the scenarios are linear, reflecting a simplifying
assumption where the paths of the ships are considered to be straight lines.
e The ships do not alter their velocity or course while in the area of research.
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Weather conditions and visibility are not taken into account and therefore they don’t count
as a parameter for the simulation.

The ships can be depicted as points on the map. This assumption can be taken since the safety
criterion we chose, and which will be explained later develops a “safe area” for the ship which
is much larger than the ship’s area.

As we mentioned above the secondary algorithm’s first step is to generate a set of two vessels
(OS and TS). We chose to study cases involving two vessels as most collision risk detection
methods do. The study of more than two vessels moving through the map is only meaningful
in cases where we study collision avoidance techniques. Since the purpose of this thesis is to
produce a collision risk detection method, there is no reason for adding more than two ships.

The roles of OS and TS are assigned randomly to the two vessels generated. Each of the
generated vessels has the following characteristics:

e Length. As we mentioned before each vessel is assigned to a ship category, which in
turn provides the algorithm with the vessel’s length. The length is utilized in the
collision risk detection criterion used in the secondary algorithm. This criterion will be
analyzedin 3.2.2.3

e Velocity. In the same way a certain velocity is assigned to each vessel. As we
mentioned this velocity is indicative of the vessel’s type and does not change while
the vessel moves through the map.

e Course. The generated vessel gets an initial course angle that indicates its direction.

¢ Initial position in X axis (latitude) Xo(;=¢y and initial position in Y axis (longitude)

YO(t:O) .

The algorithm incorporates the random selection of initial positions and course angles for the
ships, further enhancing the variability and authenticity of the generated scenarios. The values
for these are chosen from predefined ranges. For latitude (Xo) and longitude (Yo) we assume
that the range is [0,4000m] because of the size of the map we study. For the angle we assume
that the range is [-1,1t]. The random process follows the uniform distribution. The utilization
of a uniform distribution is motivated by its unbiased and fair nature, ensuring that each value
within the range has an equal probability of being selected. This ensures that a great variety
of scenarios is generated.

To sum up after the case generation each vessel can be identified by the following matrices:
Own Ship = [Xo(t=¢)[m],Y0t=0)[m], Vo[kn], p,[rad], Lo[m]]
Target Ship = [Xa(=o)[m], Ya=o)[m], Valkn], ¢, [rad], La[m]]

The result is the initial positions as well as the speed and direction for two vessels. Below we
will examine how the trajectory of the ships and the safety criterion are calculated.
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Since the main assumption of this algorithm is that the course and the velocity of the ships
will remain unaltered while they move in the map, the algorithm can find the positions of the
ships at any given time. As a first step, the velocity along with the course angle produce the
axial velocities for each of the vessel as shown in the following equations.

Vox = Vo[kn]  0.5144 * cos(@,) [™/s]

Voy = Volkn] * 0.5144 = sin(¢,) ["/s]

Vax = Va[kn] * 0.5144 * cos(p,) [™/s]

Vay = Valkn] * 0.5144 = sin(g,) [™/s]

As its next step the algorithm projects the future positions of the ships at regular time intervals
(dt). The time interval in our simulation is dt=0.1s.

Xogy = Xo(—q) + Vo x dt
Yo =Yoq_q1) +Vpy xdt
Xagy = Xa(_q1) + Vo x dt
Yag =Yaqg_q1) + Vyy xdt

The simulations are executed until either the collision criterion is met or one of the ships
navigates outside the spatial boundaries of the map being analyzed. Depending on which exit
condition is triggered first, the initial scenario is classified into one of two groups, namely self-
sample or non-self-sample. A scenario is considered to be in the self-sample if both ships
successfully navigate the map without encountering any imminent collision threat.
Conversely, if the collision criterion is satisfied at any point during the simulation, the scenario
is classified to be in the non-self-sample. In the following section, we will elaborate on the
specific collision criterion that we have selected for our algorithm.

In on our study, we chose to integrate a commonly used expert-based method in order to
build the dataset for our main algorithm. This method is the ship domain method and more
specifically the version proposed by Coldwell [45], where the ship’s domain is represented by
an elliptical region. The center of the ellipse is at the center of the ship, with a semi-major axis
of 6 times the length of the ship (L) and a semi-minor axis of 1.75 times L (Fig.14) . The violation
of the own ship's (OS) domain by the target ship (TS) is regarded as the collision criterion for
the algorithm. During the phase of case generation for the secondary algorithm, all the
essential values for generating the ship domain were produced. To determine whether a
collision risk is present, the algorithm checks in each time interval whether the target ship falls
within the own ship's domain.
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b=1.751

Figure 14: Coldwell’s ship domain, [45]

3.2.3) End of the secondary algorithm

The algorithm operates in a loop continuously as described until a predefined exit condition
is reached. In this case, since the purpose of the algorithm is to build a database that will be
utilized in the primary algorithm, the exit condition is based on the number of self and non-
self samples required. The self samples are used during the detector training phase, which will
be discussed in later sections, while the non-self samples are utilized to evaluate the efficacy
of the mature detectors produced.
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3.3) Negative selection algorithm
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Figure 15: Detector training phase flow chart

3.3.1) Definition of the main parameters

The number of health-indicating parameters is a critical factor in the development of an
effective negative selection algorithm. If the number of parameters is too small, the resulting
model may not provide a complete understanding of the system being studied. Conversely, if
the number of parameters is too large, the detector training phase can become overly
complex. Additionally, since each parameter is considered an equal contributor to the overall
health of the system, the inclusion of a large number of irrelevant factors can diminish the
significance of the main factors.
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In our cases after taking the former into consideration, we chose to incorporate the
knowledge of other researchers into our method. In 2015, Lokukaluge Perera and Guedes
Soares produced a study called “Collision risk detection and quantification in ship navigation
with integrated bridge systems” [40]. The aim of that study was to develop a collision
detection methodology that takes into account uncertainties in vessel state during complex
maneuvers, as part of an integrated bridge system. The paper discusses various modern
technologies that can be implemented in integrated bridge systems to enhance navigation
safety during close encounters between vessels. Furthermore, ship navigation tools that can
identify potential collision situations in advance are introduced. Their methods are evaluated
under a two vessel encounter in a collision or near-collision situation. The primary benefit of
this method is its ability to generate valuable and informative results using basic and readily
available information from the involved ships. The primary parameters used were the relative
axial distances and velocities between the ships.

The notion that a risk detection method can be produced by easily obtainable factors thus
eliminating uncertainties regarding the target ship’s movement, drove us to try and produce
our method by utilizing the same parameters as Perera and Soares. A health indicating vector
has the following structure:

[X04, Y04, VX04, VY04l

Xoa=X4 — Xo with X, , Xp the positions of the target and own ships’ centers in the x-axis
respectively

Yoa=Y4 — Yy with Y, , Y, the positions of the target and own ships’ centers in the y-axis
respectively

Vxoa=Vx4 — Vxo with Vx, , Vx, the axial speed of the target and own ships in the x-axis
respectively

Vyoa=Vys — Vyo with Vy, , Vy, the axial speed of the target and own ships in the y-axis
respectively

In the following chapter we will discuss how we preprocessed our dataset as the first step of
our algorithm.

As previously described, the dataset utilized in this algorithm comprises synthetic data
generated using a secondary algorithm (Described in Chapter 3.2). The dataset used in this
study contains positional data for two ships, along with their respective velocities and courses
at a specific time. The dataset is divided into two sets: cases involving a collision risk and cases
that conclude with the safe passage of the ships. This data will be processed to generate
health-indicating vectors for the system under study. Each case produces a vector that can be
classified to be either in the self sample or in the non-self sample and it takes the format of
the vector we mentioned in the previous chapter.

In order to prepare the data for analysis, it is important to normalize the health indicating
parameters using a process commonly used in negative selection algorithm research.
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Normalization ensures that each parameter falls within the interval [0,1], creating a set of data
points within [0,1]", where N is the number of parameters in the system. This allows each
parameter to contribute equally to the analysis, regardless of differences in value range.

The concept of normalization is often used in machine learning and data analysis to scale and
transform data to a common range, which can help to prevent certain features from having
undue influence on the results of the analysis. In the context of negative selection algorithms,
normalization can be particularly important as it ensures that all parameters used to describe
the system have an equal opportunity to contribute to the health indicator vector.
Additionally, normalization can help to improve the performance of the algorithm by reducing
the impact of outliers or data that may be disproportionately large or small.

For the normalization of our data, we must first identify the range of each parameter, i.e. the
minimum and maximum values. Then we subtract the minimum value from each parameter
value to shift the range so that it starts at zero. As a final step we divide each parameter value
by the range (i.e., the difference between the maximum and minimum values) to scale it to
the range [0,1].
Xnorm = L

Xmax — Xmin

By normalizing the health indicating parameters of the system to the interval [0,1], negative
selection algorithms have the ability to translate complex ship collision risk detection
problems into the study of a multi-dimensional unit cube, [0,1]V, where each dimension
represents a different health indicating parameter. This transformation simplifies the problem
and allows for easy comparison and classification of data.

After the end of the preprocessing our new dataset is separated into the self set and the non-
self set. Each element of these sets is an array with the following form, and it can be visualized
as a point in a four dimensional cube.

[norm_Xg,, norm_Yy,, norm_Vxg,,norm_Vyy,] €[0,1]*

The detector training phase involves the generation of a set of detectors that are designed to
respond to non-self (anomalous) patterns in the system under study. In our case that
translates to detectors that can find through simple information when two ships head towards
a collision or a near collision event. We based our detector training method on the approach
of Dasgupta and Gonzalez [78, 81]but with some deviations from their method.

The aforementioned approach suggests that each self point defines a self-hypersphere, which
is aregion that has the self point as its center and a radius that defines its size called self radius
(rs). Each point that is found within the hypersphere can also be defined as a self point. The
mathematical definition of the set of points in the self hypersphere is shown in the following
equation.

45



Y10 —s)? <75

The square above is the Euclidean distance between a point X within the hypersphere and the
self point S at its center.

In the development of our negative selection algorithm, we chose a fixed value to represent
the self radius. The self radius is a crucial parameter in the algorithm and its value significantly
affects the performance of the algorithm. A small self radius may result in reduced sensitivity
to the detection of other self points, thereby increasing the likelihood of false positives,
whereas a large self radius may lead to false negatives, i.e., anomalies being incorrectly
classified as normal data points, and hence, lower the accuracy of the algorithm. To determine
the optimal self radius value for our algorithm, we conducted a sensitivity analysis on the main
parameters and selected the value that yielded the best performance results.

Since a set of self points has been produced thanks to the secondary algorithm, their
respective self hyperspheres can also be defined in the [0, 1]*. Any point that is not covered
by the self-hyperspheres is considered a potential non-self point. In order to cover these
areas, new hyperspheres are generated to serve as detectors for the system. These detectors
can be expressed as follows:

D; = [d;1,diz, di3, dig, Tail

Each detector has as its center a point of [0, 1]* hypercube and is linked with a value r4; which
is called detector radius and is the radius of the hypersphere created by each detector. These
hyperspheres define the capability of detectors to identify non self points. The mathematical
expression of the set of points detected by a detector is shown in the following equation.

\/Zj::i(xj —d;j)* <1y

In the algorithm that we have developed, each detector has a distinct radius. As the primary
function of the detector is to detect non-self instances, it is imperative that the hyperspheres
of the detectors do not intersect with the hyperspheres of the self-instances. Thus, a
precondition for determining the radius of each detector is established, whereby the distance
between the center of the detector and its closest self-point must be equivalent to the sum
of the radii of the detector and the self-point. As the detector radius is variable in our case,
we have employed this precondition to calculate the radius of each detector as shown in the
following equation.

rqy = Dis(D,S) — 1, =

With S being the self point closest to the detector we study.
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During the detector training phase, candidate detectors are randomly generated. The radius
of each candidate detector is calculated by calculating its distance from all self points using
the Euclidean distance metric. If any of these distances is smaller than the self radius 7, the
candidate detector is deemed unsuitable and a new detector is generated. Conversely, if all
calculated distances are greater than the self radius, we proceed to compute the candidate
detector's radius. This radius is determined by subtracting the self radius from the smallest
calculated distance, which represents the distance between the candidate detector and its
closest self point.

After the candidate detector’s radius has been calculated, the first suitability criterion-filter is
applied. According to that, the detector must be of an adequate size in order to belong to the
set of mature detectors. This means that the calculated radius must be greater than a
threshold value we choose. If the detector radius is smaller than the threshold value, the
candidate detector gets rejected and we proceed with the next generated detector.

The detector radius is a critical parameter in the negative selection algorithm, as it determines
the region around each detector that is deemed acceptable for anomaly detection. A detector
with a small radius may result in a high false negative rate, as anomalies that fall outside the
radius may go undetected. Conversely, a detector with a large radius may lead to a high false
positive rate, as normal data points that fall within the radius may be falsely classified as
anomalies. Therefore, it is crucial to set the detector radius appropriately to ensure the
optimal balance between detection sensitivity and specificity. To achieve that we performed
a sensitivity analysis to determine the optimal threshold value.

After passing the initial filter, a candidate detector is obtained, which encompasses a non-self
hypersphere with a detector radius greater than the threshold value. The subsequent filter
examines the overlap between the candidate detector and the existing mature detectors.

Avoiding a big overlap between detectors is crucial in the negative selection algorithm, as it
helps to prevent redundancy and improve detection accuracy. When detectors have a large
overlap, they may redundantly cover the same region of the data space, leading to increased
computational cost and decreased detection performance. Furthermore, a key objective of a
successful negative selection algorithm is to ensure that a non-self data point is detected by
only one detector. This exclusivity allows for the subsequent characterization of a detector
based on the non-self cases it accurately identifies. Therefore, it is important to carefully
design the overlap constraint in the negative selection algorithm to ensure that the detectors
are sufficiently distributed and cover the data space effectively, while avoiding excessive
overlap that could compromise the algorithm's performance. In Fig.16 we can find a depiction
of what overlap means [82].

To achieve a small overlap for our detectors, we adopted the overlapping criterion developed
by Dasgupta et al in their research around negative selection algorithms in aircraft fault
detection [78]. According to this criterion, an overlapping measure W for a detector is
calculated as follows:
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W(d) = Z w(d,d")

d=d’

Where w(d, d") isthe measured overlap between two detectors d=[ ¢, rz] and d’ = [c’,74,]
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w(d, d") is measured asw(d, d") = (exp(6) — 1)™, where m is the dimension of the feature
space (in our case m=4) and § is calculated according to the following equation.
5= (rd +7ry —D
214

The value of 6 is bound between 0 and 1 and D is the distance between the centers of the
detectors. According to the criterion, W (d) must not exceed a threshold value €. The measure
of overlap appears to give an advantage to detectors with larger radii, that is, detectors that
cover a larger portion of the non-self space with minimal overlap between them. As a result,
the closer the centers of two detectors, the greater the value of the overlap
measure w(d, d"). The threshold value was obtained through trials. In Fig.17 we can see a
depiction of the main parameters of Dasgupta’s method.

During the initial iterations of the algorithm, the criterion is not applicable, as it lacks meaning
in the absence of mature detectors. After we have obtained four mature detectors , the filter
is implemented, and if a candidate detector passes the overlap test, it is considered a mature
detector and added to the corresponding set. Otherwise, the detector is rejected, and the
next candidate is evaluated.
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The detector training process is iterative and finishes when a predefined number of mature
detectors is obtained.

The total number of mature detectors in a negative selection algorithm is an important
parameter that can have a significant impact on the algorithm's performance. The purpose of
negative selection algorithms is to detect anomalous patterns in data, and the number of
detectors determines the level of sensitivity and specificity of the algorithm. Having too few
detectors may result in high false positive rates, while having too many detectors may result
in a high false negative rate [82]. Therefore, selecting an appropriate number of detectors is
crucial to ensure that the algorithm is both effective in detecting anomalies and efficient in
processing large amounts of data. A well-tuned number of detectors can enhance the
algorithm's ability to distinguish between normal and abnormal patterns, thereby improving
its accuracy and reliability in various applications such as intrusion detection, anomaly
detection, and fault diagnosis.

In addition to the impact on performance, it is also important to note that a large number of
detectors can increase the time required to train the detector in a negative selection
algorithm. The process of training detectors involves generating a large number of random
patterns and computing their distances from the set of self-patterns, which can be
computationally intensive. As the number of detectors increases, so does the number of
random patterns and the computational complexity of the training process. Therefore, it is
important to balance the number of detectors with the available computational resources to
ensure that the training process is efficient and does not become a bottleneck in the overall
algorithm performance.

We conducted a sensitivity analysis to determine the optimal number of detectors, along with
other detector training parameters. The details of the sensitivity analysis will be presented in
a subsequent section.
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Figure 18: Negative Selection Algorithm’s flow chart

The next step after producing a set of mature detectors is to evaluate their quality. Before
doing so, we will outline the key features of our detection algorithm and describe its
functionality. In figure 18 a flow chart of the algorithm in its present version is presented.

As previously discussed, a negative selection algorithm is designed to identify anomalies
within a system. In our case, the system under consideration is the navigation of two ships in
open sea. A safe and healthy state of the system occurs when both ships navigate through the
area of interest without any collision risk, which can be defined as a "self" state. Conversely,
any situation that poses a risk of collision between the two ships is considered a "non-self"
state of the system. By utilizing a negative selection algorithm, we can detect any potential
collision risks, thereby helping to ensure the safe passage of both vessels.

As previously discussed, we have determined that the inputs required to study the system are
easily obtainable and consist of the following: the location of the own and target ships in a
two-dimensional system, their respective velocities, and their course angles. These
parameters are processed in order to produce the health indicators of the negative selection
algorithm. These indicators are the relative axial distances and velocities for the vessels. As
we mentioned though the inputs of the algorithm must be normalized.
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It becomes obvious that every case that might occur in the map we study can be transformed
to an input vector of the following form.

[norm_Xg 4, norm_Yy 4, norm_Vxg, norm_Vyg,] €[0,1]*

Once this form is obtained, the algorithm comes in place in order to detect if the case contains
a collision risk. The particulars of each step of the algorithm will be discussed below.

As previously mentioned, the negative selection algorithm operates in a four-dimensional
hypercube defined by the range [0,1]. Within this hypercube, the self states that have already
been defined generate self-hyperspheres - specific areas within the hypercube consisting of
points that can be defined as self-states.

It becomes obvious that in the same way a detector can locate non-self points (cases), the
identified self cases of the system can locate other self samples. Initially, the algorithm checks
the case in question against our self dataset. The Euclidean distances between the case-point
in question and the self samples are measured. Each calculated distance is then compared to
the self radius 15 (radius of the self hypersphere). If the distance is smaller or equal to the self
radius, the case-point in question is characterized as a self case. If it is bigger it can’t be
detected by this self point and the next distance is calculated.

Once it is ensured that no self point can detect the case in question, the algorithm proceeds
with the utilization of the mature detectors dataset.

To determine whether the case under study is a non-self state, the algorithm assesses
whether the case vector is located within a detector's hypersphere. To achieve this, the
algorithm calculates the Euclidean distance between the point in question and the center of
a given detector. It then compares this distance to the detector's radius (ry;). If the distance
is equal to or less than the radius, the algorithm identifies a potential collision risk. The
detector responsible for detecting this risk then characterizes the type of collision risk
involved. If the distance exceeds the radius, the algorithm proceeds to the next detector.

If the case vector is not identified by any detector, it is characterized as an unknown state.
Although addressing unknown states in the algorithm is out of the scope of this thesis,
potential ways of enhancing the adaptability of the model will be discussed in a subsequent
chapter.
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Sensitivity Analysis — Efficiency of the algorithm

The choice of parameters in negative selection algorithms (NSAs) has been a subject of
discussion and debate in the research community [82]. The self radius, detector radius, and
number of detectors are important parameters in NSAs that significantly affect the algorithm's
performance. The self radius establishes the size of the self space, which is the region
surrounding each self that is excluded from the detector space. The detector radius
determines the range of detectors capable of detecting a given antigen. The number of
detectors is a key determinant of the diversity of the generated detector population. Yet the
method of choosing these factors is in most cases not explicitly described.

Chen Wen and Li Tao [82] conducted a parameter analysis of NSAs to investigate the impact
of different parameter values on the algorithm's performance. They utilized a benchmark
dataset to evaluate the performance of the algorithm under different parameter settings.
Their analysis provides valuable insights into the optimal parameter settings for NSAs. Their
research highlights the significance of meticulously selecting parameters in NSAs and provides
guidance on how to achieve this effectively. By comprehending the consequences of different
parameter settings, researchers can develop more effective and efficient NSAs that are better
suited for their specific application domain.

Moreover, the metrics used to evaluate the effectiveness of negative selection algorithms
(NSAs) can differ considerably. Typically, studies employ the accuracy percentage, which
represents the proportion of identified cases from the input dataset that are correctly
classified by the algorithm. This method was also used in this thesis.

In our approach, we conducted a series of trials to determine the optimal parameter values
that produced the best results. The effectiveness of the algorithm was measured by two
metrics: the accuracy percentage and the total time required for the algorithm to complete
both the detector training and the identification of cases within the input dataset.

The parameter selection process involved the following steps. Initially, we performed a
number of trial runs to establish a base combination of the main parameters, including the
self radius, the minimum detector radius, and the number of detectors generated. This base
combination was used as a starting point for subsequent trials, in which we systematically
varied one parameter at a time while keeping the other parameters constant.

This method enables a systematic approach towards optimizing the algorithm's performance,
by striking a balance between accuracy and practical constraints such as computational
resources and time. Additionally, this method provides valuable insights into the influence of
each parameter on the algorithm's outcome, thereby facilitating a sensitivity analysis.
Therefore, this method is an effective way to improve the performance of the algorithm while
simultaneously gaining a better understanding of its behavior.

The iteration method is executed in the following manner: one parameter is selected for
analysis, while all other parameters remain constant at their base values. The selected
parameter's value is systematically adjusted in incremental steps by a constant factor. Since
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the detector generation process incorporates randomness, the algorithm is executed ten
times for each value of the selected parameter. For each iteration, the accuracy percentage
and the total time required for detector training and case evaluation are measured. The
accuracy percentage and total time values are computed as the median of the ten iterations
for each parameter value.

To calculate the accuracy percentage, 30 non-self cases generated by the secondary algorithm
are provided as input to the algorithm for each iteration. Since each iteration involves a
distinct set of mature detectors, the algorithm's performance is evaluated using the number
of non-self cases detected correctly relative to the total number of inputs, according to the
following equation.

detected cases

accuracy = —
input cases

The total time required for each iteration is determined by a module within the program's

language environment. This time is comprised of two components: the duration of the

detector training process, and the time taken by the algorithm to evaluate the input cases.

In the following chapters we will present and discuss the results of the sensitivity analysis.

As we mentioned the self radius is a vital parameter in the algorithm, and its value has a
substantial impact on the algorithm's performance. A small self radius can reduce the
sensitivity of the algorithm towards detecting other self points, leading to an increased rate
of false positives. Conversely, a large self radius can result in false negatives, i.e., anomalies
being misclassified as normal data points, thereby decreasing the accuracy of the algorithm.
Moreover, the self radius parameter plays a critical role in determining the size of the self-
hyperspheres and, consequently, has a direct influence on the algorithm's ability to generate
mature detectors. This effect is observed in cases where the detector radius is either a fixed
value or a minimum threshold, as in the current study.

In Fig.19 we can see a diagram depicting the relationship of accuracy percentage and self
radius in our algorithm. In Fig.20 we can see the relationship between self radius and total
execution time of the algorithm.
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Figure 20: Total execution time of the algorithm over different values of self radius

The sensitivity analysis provides empirical evidence for the theoretical deductions made
above. It shows that a smaller self radius results in more efficient and faster detector training.
Increasing the self radius leads to a steady decrease in accuracy and a significant increase in
the total execution time. Based on these results, we conclude that a self radius of 0.01, the

base value used in this study, is appropriate for the algorithm.

4.2) Minimum detector radius

As we mentioned in the detector training, minimum detector radius is used as a criterion in
the development of mature detectors. If the generated detector has a detector radius smaller
than the threshold radius it is discarded. This criterion was included in our algorithm due to
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Dasgupta’s [78] notion that detectors with a bigger radius should be favored in the mature
detector dataset. However, it is important to note that an excessively large detector radius
can lead to false positive results and increase the complexity of the training procedure. This is
due to the fact that our algorithm has a predefined number of mature detectors along with
an overlap criterion. Therefore, setting an appropriate detector radius is crucial for balancing
the trade-off between sensitivity and specificity in anomaly detection.

In Fig.21 we can see a diagram depicting the relationship of accuracy percentage and
minimum detector radius in our algorithm. In Fig.22 we can see the relationship between
minimum detector radius and total execution time of the algorithm.
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The sensitivity analysis results confirm the theoretical deductions from our work and
Dasgupta's research. Initially, increasing the threshold value improves detector accuracy with
negligible impact on total execution time. However, after a certain point, further increases
decrease algorithm accuracy and significantly increase execution time. This is because it
becomes increasingly challenging to cover non-self areas with excessively large detectors, and
generating mature detectors that do not overlap with existing ones becomes more difficult.

Based on the sensitivity analysis, we have determined that a benchmark value of 0.3 produces
fair results in terms of accuracy and execution time. However, we also suggest that the
benchmark value could potentially be moved towards 0.25 for even better performance.
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Figure 22: Total execution time of the algorithm over different values of threshold
detector radius

4.3) Number of detectors

The number of detectors is a crucial factor in the performance of the algorithm as it directly
affects the algorithm's detection sensitivity and specificity. A higher number of detectors can
lead to better coverage of the search space, increasing the sensitivity of the algorithm to
detect anomalies. However, a larger number of detectors may also result in more false
positives, lowering the specificity of the algorithm. Furthermore, a large number can greatly
increase the execution time.

In Fig.23 we can see a diagram depicting the relationship of accuracy percentage and the size
of the mature detector dataset. In Fig.24 we can see the relationship between the size of the
mature detector dataset and total execution time of the algorithm.

The impact of the number of detectors on the negative selection algorithm's performance is
evident in the results, as an increase in the number of detectors leads to an increase in
accuracy. However, it should be noted that the rate of accuracy improvement decreases as
the number of detectors increases, and the execution time significantly increases with larger
datasets. Therefore, selecting the optimal number of detectors requires considering the
computational capabilities of the system running the algorithm.

For our specific implementation, we initially chose a base value of eighty detectors, but based
on the results of our sensitivity analysis, we concluded that increasing the number of detectors
to ninety would result in a more accurate algorithm without significantly increasing the total
execution time.
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Results

The sensitivity analysis served a dual purpose in our research. Firstly, it provided valuable
insights into the effects of changes in the main parameters on the efficiency and accuracy of
the algorithm. Secondly, it enabled us to identify the optimal values for these parameters and
define our algorithm accordingly.

The values that we chose are the following. The self radius was picked as 0.01. The detector
radius threshold value 0.25 with ninety (90) mature detectors. Table 1 shows the results of
ten iterations of the algorithm. In each iteration ninety detectors are trained using 60 self
samples and are used to detect a set of 30 non-self cases.

The average accuracy of the algorithm is 65,81% and the whole process lasts on average
3.4267 seconds. The non-self cases not detected by the algorithm are defined as unknown
cases.

rs=0.01,rdmin=0.25,nd=90
a/a t/n(accuracy time training(s) time algorithm (s) total time (s)
1 0.709677419 2.402990103 0.874857903 3.277848005
2 0.64516129 2.516611814 0.865339518 3.381951332
3 0.612903226 2.327028751 0.845599413 3.172628164
4 0.677419355 2.613990307 0.812807083 3.42679739
5 0.741935484 2.280589342 0.847968817 3.128558159
6 0.612903226 2.489983559 0.987318993 3.477302551
7 0.64516129 2.813468218 1.043375015 3.856843233
8 0.64516129 2.39804554 0.952609062 3.350654602
9 0.612903226 2.579602003 0.928194761 3.507796764
10 0.677419355 2.791289806 0.895800591 3.687090397
average 0.658064516 2.521359944 0.905387115 3.42674706

An essential feature of the developed algorithm is its remarkable accuracy in detecting
potential collision situations without falsely characterizing non-self samples as self. This
outcome is particularly crucial in scenarios where the algorithm is in use on board a ship. In
these cases, any mischaracterization of a collision situation as safe could lead to catastrophic
consequences. The results of our study demonstrate that the developed algorithm can
prevent such errors from occurring, thereby enhancing the overall safety of maritime
operations.

A second important comment about the results is that the algorithm achieves a very
remarkable accuracy with limited computational resources. As a point of reference, Wen and
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Tao [82] had computational capacity to produce numbers of detectors in the area of 10**when
our computational capacity can produce detectors in the area of 102. That tends to show great
potential for the algorithm as a tool in collision risk detection.

Another noteworthy aspect of our algorithm is its efficient execution time. In roughly 3.5
seconds, the algorithm can train a number of detectors and identify a set of 30 individual
cases. In a potential real-world application, the detector set would be trained only once, which
means that the identification of an individual case would take only a fraction of a second, even
with limited computational resources. This highlights one of the main advantages of our
method, its speed, which could be a critical factor in real-world collision risk detection
scenarios where swift action is required to prevent accidents.

In summary, our algorithm demonstrates a noteworthy level of accuracy and efficiency, with
no instances of false identification of non-self cases. These findings suggest that our algorithm
holds promise as a reliable method for detecting collision risks in ship navigation.

Moving forward, our conclusion chapter will provide a detailed analysis of the results,
exploring their implications and addressing potential limitations. Additionally, we will consider
opportunities for further development and enhancement of our algorithm.

In subsequent chapters, we will showcase several case studies to provide a more practical
illustration of how our algorithm would operate in real-world scenarios. By doing so, we aim
to demonstrate the potential value of our approach to improve maritime safety.

Overall, our study provides evidence that our algorithm offers a valuable contribution to the
field of collision risk detection in ship navigation. By presenting a comprehensive analysis of
our results and exploring opportunities for future research, we hope to contribute to ongoing
efforts to enhance safety in maritime transportation.
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Case Studies

In this chapter, we will explore several case studies to demonstrate the effectiveness of our
negative selection algorithm in collision risk detection. As discussed earlier, the algorithm uses
a self/non-self recognition mechanism to identify anomalous behavior that may lead to
collisions. In the following sections, we will present two case studies that resulted in collisions
and two that did not, where the algorithm's predictions were accurate. By analyzing these
cases, we aim to provide a better understanding of the algorithm's capabilities and its
potential for real-world applications.

The case studies were conducted using a customized script that emulated the behavior of our
secondary algorithm. Specifically, the script generated pairs of ships, consisting of an own ship
and a target ship, and placed them in the relevant map with their respective initial positions,
velocities, and headings. Our algorithm was then applied to the data of each ship, which were
processed using a detector or a self-hypersphere. Once the algorithm determined the state of
each case, the simulated routes of the ships were generated by assuming that they would
maintain their current velocity and heading. Subsequently, the simulation output was used to
identify the closest point of approach between the two ships and determine if a collision was
imminent or not.

In this case two containerships with the following characteristics were generated by the script.

Type Length Initial X Initial Y Velocity Heading
(m) pos pos (Knots) (rads)
Own Ship Container 310 2805 2400 15 -0.79
Target Container 290 1847 1035 18 0.04
Ship

In this case study, two container ships were modeled moving eastward on a given map. The
algorithm was applied to detect potential collisions, and in their initial positions, our algorithm
identified a collision risk through detector 41, as shown in Fig. 25. The respective ship routes
were simulated, and the outcome revealed that while the own ship exited the studied map,
the target ship closed in for a collision from the starboard side, as shown in Fig.26. The
algorithm's prediction was therefore confirmed as accurate. Notably, our algorithm was able
to predict the collision risk within approximately 0.3 seconds, demonstrating its rapid
detection capabilities. The quick detection time of our algorithm would be a crucial help for
officers on board to take evasive actions, highlighting its potential practical benefits in collision
risk detection scenarios.
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Figure 25: Case 1: Initial positions of the containerships

Longitude

Figure 26: Case 1: Point of collision between the containerships

6.2) Case 2 — Collision

In this case a containership and a tanker with the following characteristics were generated by

the script.
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Type Length Initial X Initial Y Velocity Heading
(m) pos pos (Knots) (rads)
Own Ship Container 350 2543 2340 14 -1.90
Target Tanker 260 3333 2007 18 0.04
Ship

3500

s00

In this case study, we examine the scenario where the own ship is travelling southbound while
the target ship travels eastward, as illustrated in Fig. 27. Our negative selection algorithm was
employed to detect the collision risk using the initial positions, velocities and headings of the
vessels as input. As expected, the algorithm identified that the system was operating in a non-
self state, with Detector 8 covering these non-self data. The simulation results revealed a near
collision incident at the point where the routes of the two ships intersect, which is
demonstrated in Figure 28. This case study exemplifies the potential of our algorithm in
quickly detecting a potential collision. The execution time for the algorithm was 0.15 seconds.
Such swift detection time would prove to be crucial in aiding the officers on board in taking
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Figure 28: Case 2: Closest point of approach for the two vessels

6.3) Case 3 — Safe Navigation
In this case a containership and a fishing vessel with the following characteristics were
generated by the script.

Table 4, Case 3: Data of the pair of ships in the initial state

Type Length Initial X Initial Y Velocity Heading
(m) pos pos (Knots) (rads)
Own Ship Container 300 426 1433 17 -1.90
Target Tanker 85 2891 959 5 -0.67
Ship
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Figure 29: Case 3: Initial positions of the third pair
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In this particular case study, it is evident that the initial data of the two ships do not pose any
risk of collision. As demonstrated in Figure 29, both vessels are heading southbound and east,
with almost parallel routes, but with the shipping vessel travelling at a much slower speed.
The negative selection algorithm developed for ship collision risk detection confirms this
observation, as the initial data are detected by the self hypersphere of the 13th self-sample,
indicating that the data belong to the self-set. Figure 30 shows the ships when the own ship
exits the map, thus further supporting the algorithm's prediction. The execution time for the
algorithm to classify the initial data as self-data was approximately 0.1 seconds. The results
demonstrate that the algorithm can serve as a rapid layer of safety for the officers on watch.
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In this scenario a tanker and bulk carrier with the following characteristics are generated.

Type Length Initial X Initial Y Velocity Heading
(m) pos pos (Knots) (rads)
Own Ship Tanker 290 2215 2416 15 -2.90
Target Bulk 200 3330 438 16 1.6
Ship carrier

In this case study, we analyze a scenario where the own ship is traveling westward while the
target ship is moving northward, as depicted in Fig. 31. It is evident that there is no potential
for collision between the two vessels, and our negative selection algorithm promptly confirms
this observation using the initial data as input. The hypersphere generated by the 6th self
sample successfully detects the initial data, characterizing it as a self state. The algorithm takes
approximately 0.1 seconds to classify the data, and as illustrated in Fig. 32, the own vessel
safely exits the map. This case study demonstrates the efficiency and reliability of our
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algorithm in providing quick and accurate safety assessments for officers on watch.
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In conclusion, the presented case studies demonstrate the potential of the negative selection
algorithm in ship collision risk detection. The algorithm was applied to four different scenarios,
two of which resulted in a near collision, while the other two were confirmed as collision-free.
The algorithm was able to detect the non-self states quickly, providing a layer of safety for the
officers on watch. The execution times of the algorithm were found to be relatively short,
ranging from 0.1 to 0.3 seconds, which further highlights its potential for real-time
applications. Overall, these case studies illustrate the effectiveness of the negative selection
algorithm in ship collision risk detection and its potential as a reliable tool for improving
maritime safety.
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Conclusion

Ship collision risk detection is a critical problem that has significant implications for the safety
of maritime transportation. Collisions between ships can result in catastrophic consequences,
including loss of life, environmental damage, and economic losses. In recent years, there has
been an increase in the number of ships operating in busy waterways, leading to a higher risk
of collisions. Moreover, factors such as adverse weather conditions, equipment malfunctions,
and human error can further exacerbate the risk of collisions.

Given the potential consequences of ship collisions, it is essential to develop effective
methods for detecting and preventing such incidents. Various methods have been proposed
in the literature to address this issue, with two main categories of methods: expert-based and
model-based.

On one hand expert based methods rely on human expertise and domain knowledge to
identify potential collision risks. These methods often involve visual observation and analysis
of radar or AlS data, and may also consider factors such as weather, vessel characteristics, and
navigational rules. While expert-based methods can be effective, they are often subjective
and can be prone to errors due to human factors.

In contrast, some researchers recognized the need for objective methods that would
mathematically model the physics of a collision. These model-based methods can offer widely
accepted solutions to the collision risk detection problem. However, a significant drawback is
that in order to quantify a complex process, simplifications must be adopted to obtain a
computable solution. These simplifications make the methods suitable only for restricted
applications. Therefore, while model-based methods were developed to minimize human
subjectivity, they are limited to cases that align with their adapted assumptions.

The method developed in this paper resides between expert-based and model-based
methods, as it belongs to the field of artificial intelligence. The method considers the physics
of a collision to determine which parameters could best indicate it. Once the main parameters
are determined, the method uses data to detect collision or near-collision incidents. Expert
knowledge can be utilized in this process, and in this thesis, such expertise was used to acquire
the dataset for the algorithm's development.

The proposed algorithm is inspired by the human immune system and falls under the category
of Artificial Immune Systems (AIS). Researchers in AIS have recognized the immune system as
a toolbox of techniques that can be utilized to solve various complex problems. Our algorithm
draws inspiration from Negative Selection Algorithms (NSAs), a subcategory of AIS. NSAs are
developed based on how T-cells in the human immune system detect possibly damaging
antigens while avoiding the cells of the host organism.

Similarly, NSAs are used to detect anomalies in a system by simplifying the study of a complex
system to the study of a hypercube produced by its main parameters. This approach enables
the algorithm to detect anomalies with greater ease, speed, and without any restrictions
compared to mathematical models developed for the same purpose.
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In our study, we aimed to evaluate the ability of a Negative Selection Algorithm (NSA) to
detect anomalies in a system involving two ships navigating through a waterway. The system
was categorized into two conditions, normal-healthy and abnormal-unhealthy, where the
former indicates the safe navigation of the two ships, and the latter indicates a collision
incident between them. To select the main parameters that indicate the system's health, we
utilized the knowledge provided by a model-based risk detection method, aiming to combine
the techniques of NSAs with marine researchers' expertise.

To train the detectors, which play the role of antibodies detecting the harmful antigens
(collision incidents), our method requires data. To produce these data, we developed a
secondary algorithm based on the concept of ship domain, which can be considered an expert-
based method of collision risk detection. We chose this criterion due to its
straightforwardness and the desire to integrate expert and model-based methods.

It is worth noting that the proposed algorithm is flexible and adaptable and therefore works
effectively with various types of datasets generated by other methods, given that the
identified health indicating parameters accurately capture the essential characteristics of the
system under study. This capability not only broadens the applicability of the algorithm but
also underscores the potential of combining expert and model-based methods to achieve a
more comprehensive and robust solution to the problem of collision risk detection in ship
navigation.

As with any algorithm, the performance of the Negative Selection Algorithm (NSA) in collision
risk detection is heavily dependent on its main parameters. In order to evaluate the sensitivity
of our algorithm to changes in these parameters, we conducted a sensitivity analysis. The
analysis focused on three key parameters: the self radius, detector radius threshold, and
number of detectors. Through this analysis we were also able to define which values we
should adopt for our application of the algorithm. The results of this analysis are presented
and discussed below.

Self radius is a crucial parameter in Negative Selection Algorithms (NSAs), as it defines the size
and boundaries of the self hyperspheres, which enclose the self-samples and represent the
regions where every point is also a self-sample. The self radius needs to be carefully chosen
to ensure that it is large enough to capture all self-samples but small enough to avoid false
positives from non-self samples. Additionally, the self hyperspheres determine the space that
the mature detectors should cover as they are the first input of the algorithm. However, in
scenarios where the detectors have a minimum detector radius, a large self radius can prolong
the training process and lead to an inaccurate mature detector set. Through sensitivity
analysis, we discovered that increasing the self radius led to a decline in the algorithm's
accuracy while increasing the execution time. Thus, we chose the value of our self radius to
ensure our goals of accuracy and quickness.

In our algorithm, the use of larger detectors is preferred, and therefore we have implemented
a minimum detector radius as a threshold value. The detector radius is a critical parameter in
our algorithm, as it determines the ability of the detectors to identify non-self cases. However,
a very large detector radius can lead to decreased effectiveness in detecting non-self cases
due to reduced agility in covering all areas. This was demonstrated in our sensitivity analysis,
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where we found that increasing the minimum detector radius initially increased the accuracy
of the algorithm, but beyond a certain point, the accuracy sharply decreased and the
execution time sharply increased.

The last parameter that was studied in our analysis was the number of detectors. Intuitively
we can understand that if the self radius and the detector radius are determined
appropriately, a larger number of detectors can better cover the non-self radius and thus
achieve a higher accuracy. Nevertheless, having more detectors can greatly increase the
execution time of the detector training process. As shown through our sensitivity analysis, a
larger number of detectors leads to better accuracy but after a point the increase rate of the
execution outperforms the increase rate in the accuracy.

The number of detectors is a critical parameter in the Negative Selection Algorithm, as it
determines the coverage of the non-self space and consequently affects the accuracy of the
algorithm. However, increasing the number of detectors can also lead to longer execution
times during detector training, which is an important consideration in practical applications.
Our sensitivity analysis revealed that increasing the number of detectors does indeed improve
the accuracy of the algorithm up to a certain point, after which the marginal increase in
accuracy diminishes and is outweighed by the increase in execution time. Therefore, choosing
the optimal number of detectors requires a trade-off between accuracy and execution time,
depending on the specific needs of the application.

Following our sensitivity analysis, we determined specific parameter values for the minimum
detector radius, self radius, and number of detectors in our algorithm. To evaluate the
algorithm's performance, we conducted tests on a set of non-self cases, and measured
accuracy and time efficiency in a similar manner to our sensitivity analysis

In each iteration of our algorithm, we observed that non-self cases were never classified as
self cases. This result holds high significance, as it implies that in a potential real-life
application, the misclassification of non-self cases as self would lead to the erroneous
classification of a critical situation, such as an imminent collision, as a state of safe navigation
between the two ships. Thus, our algorithm's ability to accurately distinguish between self
and non-self cases is a crucial aspect of collision risk detection, making it a valuable tool for
enhancing maritime safety.

Another primary advantage of our algorithm is its small execution time. Despite our limited
computational capacity, our algorithm can train a set of 80 mature detectors and identify a
set of 30 cases within a matter of seconds. Furthermore, when provided with a ready detector
set, the algorithm can identify an individual case in fractions of a second. This feature is
particularly significant in a potential real-life application, as it enhances the algorithm's
usability and makes it an efficient tool for real-time collision risk detection.

The algorithm's accuracy was also noteworthy, with an average accuracy of approximately
65%, and in some iterations, accuracy levels exceeding 70%. This performance demonstrates
the algorithm's potential for effectively detecting collision risks between ships. With further
refinement and optimization, it is plausible that the algorithm can achieve even higher levels
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of accuracy. The findings presented in this thesis lay the foundation for future work and
underscore the importance of continued research in this area.

The algorithm's effectiveness was further demonstrated through some indicative case studies.
These studies revealed the algorithm's capability to predict the outcome of a situation based
solely on the information available at a specific time, without the need for simulations or
advanced calculations at each time step. This result highlights the algorithm's efficacy and
practicality, making it a valuable tool for real-time collision risk detection.

At this point we should mention that although our algorithm demonstrated promising results
in collision risk detection, we could not compare its performance against other existing
methods due to the lack of access to such algorithms. However, we acknowledge the
importance of benchmarking our algorithm against other methods in the future. Such
comparisons would enable a comprehensive evaluation of our algorithm's performance and
its potential to enhance maritime safety.

An additional potential limitation of the algorithm is its inability to adapt to novel information.
To address this issue, future iterations of the algorithm could incorporate a user feedback
mechanism, which would enable the algorithm to learn from cases it fails to identify.
Additionally, a feature could be implemented that enables detectors to store information
regarding the specific situations they identify. These advancements would facilitate dynamic
optimization of the algorithm through real-time integration of practical knowledge.

While the results of this study demonstrate the potential effectiveness of the algorithm, it is
important to further evaluate its performance using real-life data. Such an evaluation would
provide a more comprehensive understanding of the algorithm's potential effectiveness and
limitations in real-world situations. Therefore, future work should aim to test the algorithm's
performance using real-life data such as AIS Data or data taken from another validated
simulation tool. Such studies would enable a more thorough evaluation of the algorithm's
effectiveness and provide valuable insights for further improvements and refinement.
Furthermore, these studies could provide a basis for integrating the algorithm into practical
collision risk detection systems.

It is important to note that collision risk detection methods, such as the one presented in this
study, can be applied to navigational situations involving more than two ships. In such cases,
the algorithm can work independently with each pair of ships. This is a significant advantage
of collision risk detection methods, as their primary objective is not to provide an avoidance
solution, but rather to identify and assess collision risks. However, it is important to investigate
whether the algorithm can maintain accuracy in multi-vessel scenarios. Therefore, potential
future research would include evaluating the algorithm's effectiveness and limitations in such
situations. Such studies would provide valuable insights for further improvements and
practical implementation of the algorithm in real-world scenarios involving multiple vessels.

Overall, the algorithm presented in this thesis shows great potential as a collision risk
detection method for maritime transportation. The sensitivity analysis and the results
obtained from the case studies have demonstrated the accuracy, time effectiveness, and
practicality of the algorithm. However, as with any new approach, there are still areas for
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improvement. The algorithm could benefit from further optimization, especially in terms of
adaptability to new data and the dynamic adjustment of detectors and self points.
Furthermore, the algorithm needs to be tested with real-life data to confirm its effectiveness
and accuracy in actual maritime transportation scenarios. In conclusion, the results presented
in this thesis provide a strong foundation for future research and development in the area of
collision risk detection methods for maritime transportation.
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