
National Technical University of Athens
School of Electrical and Computer Engineering
Division of Signals, Control and Robotics
Speech and Language Processing Group

Towards Neural Models with System 2 - Type

Capabilities

Diploma Thesis
of

PANAGIOTIS KOLIOS

Supervisor: Alexandros Potamianos
Associate Professor, NTUA

Athens, - 2023

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Signals, Control and Robotics
Speech and Language Processing Group

Towards Neural Models with System 2 - Type
Capabilities

Diploma Thesis
of

PANAGIOTIS KOLIOS

Supervisor: Alexandros Potamianos
Associate Professor, NTUA

Approved by the examination committee on - - 2023.

(Signature) (Signature) (Signature)

. .
Alexandros Potamianos - -

Associate Professor, NTUA -, NTUA -, RC Athena

Athens, - 2023

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Signals, Control and Robotics
Speech and Language Processing Group

(Signature)

. .
Panagiotis Kolios

Electrical & Computer
Engineer

Copyright ©Panagiotis Kolios, 2023.
All rights reserved.
This work is copyright and may not be reproduced, stored nor distributed in whole or in part for
commercial purposes. Permission is hereby granted to reproduce, store and distribute this work
for non-profit, educational and research purposes, provided that this work and its corresponding
publications are acknowledged. Enquiries regarding use for profit should be directed to the author.

The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of the National
Technical University of Athens.

Περίληψη

Το θέμα αυτής της διπλωματικής εργασίας είναι η μελέτη και η ανάπτυξη ιδιοτήτων και χαρακτη-

ριστικών των νευρωνικών δικτύων, οι οποίες προσδοκάται να τους επιτρέψουν να αποθηκεύουν και

να διαχειρίζονται πληροφορία με τρόπο κοντινότερο σε αυτόν με τον οποίο το πράττει ο ανθρώπινος

εγκέφαλος. Εστιάζουμε κυρίως στο γνωστό νευρωνικό μοντέλο transformer και σε παραλλαγές του,
που έχουν χρησιμοποιηθεί κυρίως για την επίλυση προβλημάτων φυσικής γλώσσας (natural language).

Παρουσιάζουμε θέματα τα οποία άπτονται των περιοχών της γνωσιακής επιστήμης, της νευ-
ροεπιστήμης και της μελέτης της αιτότητας και σχετίζονται με τον τρόπο με τον οποίο σκέφτεται

και λειτουργεί το ανθρώπινο μυαλό. Εξετάζουμε τον διαχωρισμό της ανθρώπινης νόησης σε Sys-
tem 1 και System 2, τον οποίο αναλύει ο Kahneman στο βιβλίο του Thinking Fast And Slow.
Ακολούθως περιγράφουμε επιλεγμένα τμήματα του ανθρώπινου εγκεφάλου, καταδεικνύοντας την, υπ-
αρκτή σε αυτόν, τάση εξειδίκευσης και καταμερισμού των εργασίων επεξεργασίας της πληροφορίας,
και παραθέτουμε τα βασικά χαρακτηριστικά ενός θεωρητικού μοντέλου για τον τρόπο επικοινωνίας

μεταξύ των διάφορων τμημάτων του, το οποίο ονομάζεται Global Workspace Theory. Επίσης, εξη-
γούμε πως συμπεράσματα από μελέτες στο πεδίο της αιτιότητας (causality) αιτιολογούν την οργάνωση
της πληροφορίας σε ανεξάρτητους μηχανισμούς (independent mechanisms).

Στη συνέχεια μελετάμε προσπάθειες ενσωμάτωσης των παραπάνω ιδεών στα σύγχρονα νευρωνικά

δίκτυα. Βασιζόμαστε στην δουλειά των Goyal και Bengio πάνω στις επαγωγικές προτιμήσεις (induc-
tive biases), σκοπός των οποίων είναι ο καθορισμός των υποθέσεων που γίνονται κατά την διάρκεια
της εκπαίδευσης ενός μοντέλου, καθώς και αυτών που κάνουν τα νευρωνικά δίκτυα όσον αφορά
στην στατιστική και αιτιακή κατανομή των δεδομένων. Παρουσίαζουμε προσπάθειες ενσωμάτωσης
διαφόρων τύπων επαγωγικών προτιμήσεων, είτε στην εκπαιδευτική διαδικασία είτε σε γνωστές αρ-
χιτεκτονικές μοντέλων νευρωνικών δικτύων. Εστιάζουμε σε προσπάθειες που επιδιώκουν την εξ-
ειδίκευση τμημάτων των παραπάνω μοντέλων, κυρίως μέσω διαδικασιών ανταγωνισμού μεταξύ των
τμημάτων αυτών.

Προτείνουμε δύο μετατροπές σε νευρωνικά δίκτυα που βασίζονται στο μοντέλο transformer. Αρ-
χικά προτείνουμε την αντικατάσταση των δικτύων εμπρόσθιας τροφοδότητσης που βρίσκονται στα

στρώματα του transformer από ένα σύνολο παράλληλων αντίστοιχων δικτύων, τα οποία θα εκπαιδεύον-
ται μέσω ανταγωνιστικών διαδικασιών, οι νικητές των οποίων θα αποκτούν τις άδειες επεξεργασίας
των αντίστοιχων στοιχείων του διανύσματος εισόδου. Ακόμα προτείνουμε την εφαρμογή ενός αντίσ-
τοιχου συστήματος για την εκπαίδευση των κεφαλών προσοχής των ίδιων μοντέλων.

Εφαρμόζουμε την δεύτερη μέθοδο, που αφορά στις κεφαλές προσοχής, στο μοντέλο transformer
και το εκπαιδεύουμε πάνω σε πρόβλαματα μηχανικής μετάφρασης (neural machine translation), κα-
θώς και στο μοντέλο BERT, το οποίο εκπαιδεύουμε στο πρόβλημα μοντελοποίησης της φυσικής
γλώσσας (language modeling). Τα δύο μοντέλα δεν επιδεικνύουν σαφείς τάσεις βελτίωσης στα προβ-
λήματα αυτά σε σχέση με τα μοντέλα βάσης (baseline models). Εξετάζουμε τα πιθανά αίτια αυτής της
συμπεριφοράς και προτείνουμε πιθανές μεθόδους επίλυσης των προβλημάτων καθώς και κατευθύνσεις

για μελλοντική έρευνα.

Λέξεις Κλειδιά

Βαθιά Μάθηση, Επεξεργασία Φυσικής Γλώσσας, Νευρωνικά Δίκτυα, Meta-Learning, Transform-

1

Περίληψη

ers, BERT, Causality, Independent Mechanisms, Specialization, Modularity, Μετεκπαίδευση (Fine-
Tuning)

2

Abstract

The subject of this thesis is the study and development of properties and characteristics of
neural nets, that aim at allowing these models to store and manage information in a manner that
resembles the way the human brain does so. Our study revolves around the well-known transformer
model and its variants, which have mainly been applied to natural language problems.

We present topics coming from the areas of cognitive science, neuroscience and the study of
causality and are related to the way the human mind thinks and works. We examine the division
of the human mind into System 1 and System 2, which Kahneman analyzes in his book, Thinking
Fast And Slow. We then describe selected parts of the human brain, demonstrating an existent
tendency in it, towards specialization and division of information processing tasks, and list the
main features of a theoretical model, whose goal is to describe the way the various brain parts
communicate with each other, called Global Workspace Theory. We also explain how conclusions
derived from studies in the field of causality justify the organization of information processing
modules into independent mechanisms.

We subsequently examine the possibility of integrating the aforementioned ideas into modern
neural networks. We build on the work of Goyal and Bengio on inductive biases, which aim to
determine the assumptions made by the training algorithms regarding the training conditions, as
well as the hypotheses made by the neural models regarding the (causal) model that has generated
the data set. We present a set of attempts to incorporate various types of inductive preferences,
either in the training process or in famous neural network model architectures. We focus on efforts
that seek to promote the specialization of the various model areas, mainly through competitive
processes between those areas, leading to a modular architectures.

We propose two modifications in the architectures of neural models that are based on the
transformer model. We first propose the replacement of the feed-forward networks located in
the transformer layers by a set of parallel networks of the same kind, which are trained through
competitive processes, the winners of whose acquire the rights to process the respective elements
of the input vector. We also propose the application of a similar system for the training of the
attention heads of the same model, also based on a competition procedure among the heads of
each layer.

We apply the second method, whose goal is to train specialized attention heads, to the trans-
former model and then train it on neural machine translation problems, as well as to the BERT
model, which we train on a natural language modeling problem. The two models show no clear
signs of improvement in these problems compared to the baseline models. We examine the possi-
ble causes of this behavior and suggest a variety of possible solutions to these problems as well as
directions for future research.

Keywords

Deep Learning, Natural Language Processing, Neural Networks, Meta-Learning, Transformers,
BERT, Causality, Independent Mechanisms, Specialization, Modularity, Fine-Tuning

3

To My Father,
Κonstantinos

Ευχαριστίες

΄Ενα σύντομο σημείωμα για να εκφράσω τις ευχαριστίες μου στους ανθρώπους που με βοήθησαν

για να ολοκληρώσω αυτήν την εργασία.

Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή Αλέξανδρο Ποταμιάνο, ο οποίος με

καθοδήγησε καθόλη την διάρκεια εκπόνησης της διπλωματικής μου εργασίας, δίνοντας μου παράλληλα

την ευκαιρία ερευνήσω ένα μεγάλο φάσμα θεμάτων πριν εστιάσω στα θέματα τα οποία κέντρισαν τελικά

την προσοχή μου.

Ακόμα θα ήθελα να ευχαριστήσω τους διδακτρικούς ερευνητές Γιώργο Παρασκευόπουλο και Ευ-

θύμη Γεωργίου, οι οποίοι πρόθυμα συζητούσαν τις λεπτομέρειες της υλοποίησης της πρότασής μου,

βοηθώντας με να διασφαλίσω την ορθότητά της.

Τέλος, οφείλω ένα μεγάλο ευχαριστώ στην μητέρα μου, Κατερίνα, και την αδελφή μου, ΄Ηβη, οι

οποίες μου στάθηκαν καθόλη την διάρκεια εκπόνησης της διπλωματικής μου και με παρότρυναν να

συνεχίσω ανεξαρτήτως των όποιων δυσκολιών μπορεί να συναντούσα.

Παναγιώτης Κολιός

Αθήνα, Απρίλιος 2023

7

Περιεχόμενα

Περίληψη 1

Abstract 3

Ευχαριστίες 7

Κατάλογος Σχημάτων 13

Κατάλογος Πινάκων 21

0 Εκτεταμένη Ελληνική Περίληψη 25

0.1 Εισαγωγή . 25

0.1.1 Κίνητρα . 25

0.1.2 Συνεισφορές . 25
0.2 Το Μοντέλο Transformer . 26

0.2.1 Το Μοντέλο BERT . 27
0.3 Σχετική Βιβλιογραφία . 28

0.4 Προτεινόμενες Μετατροπές . 29
0.4.1 Ανταγωνιζόμενα Δίκτυα Πρόσθιας Τροφοδότησης 29
0.4.2 Ανταγωνιζόμενες Κεφαλές Προσοχής . 30

0.5 Πειράματα . 31
0.5.1 Εφαρμογή στον Transformer . 31
0.5.2 Εφαρμογή στο RoBERTa . 33

0.6 Συζήτηση και Πιθανές Λύσεις . 34

1 Introduction 35
1.1 The Problem of Creating Truly Intelligent Agents With Machine Learning 35
1.2 Research Contributions . 36
1.3 Thesis Outline . 36

2 Machine Learning and Neural Networks 39
2.1 Introduction . 39
2.2 Machine Learning Types . 41
2.3 Machine Learning Concepts and Models . 43

2.3.1 Bayesian Decision Theory . 43
2.3.2 Discriminant Functions . 44
2.3.3 Maximum Likelihood Estimation . 45
2.3.4 Maximum a Posteriori Estimation . 46
2.3.5 Linear Regression . 46
2.3.6 Logistic Regression . 50
2.3.7 Other Ways of Performing Optimization . 53

9

ΠΕΡΙΕΧΟΜΕΝΑ

2.3.8 Curse of Dimensionality . 54
2.4 Neural Networks . 55

2.4.1 Artificial Neurons . 56
2.4.2 Feed-Forward Neural Networks . 57
2.4.3 Backpropagation Algorithm . 59
2.4.4 Notes on Training Neural Networks . 61
2.4.5 Generalization . 68
2.4.6 Model Selection . 73

2.5 Convolutional Neural Networks . 74
2.5.1 Invariances . 74
2.5.2 Priors in Convolutional Neural Networks . 75
2.5.3 The Model . 77
2.5.4 Inspiration From Biology . 78

2.6 Recurrent Neural Networks . 78
2.6.1 The Model . 78
2.6.2 Teacher Forcing . 80
2.6.3 Deep RNNs . 80
2.6.4 Bidirectional RNNs . 81
2.6.5 Encoder-Decoder Architectures . 81
2.6.6 The Problem of Long-Term Dependencies 82

3 Natural Language Processing 85
3.1 Introduction . 85
3.2 Text Normalization . 85

3.2.1 Word Tokenization . 86
3.2.2 Byte-Pair Encoding . 86
3.2.3 Word Normalization . 87
3.2.4 Sentence Segmentation . 87

3.3 Language Models . 87
3.3.1 n-grams . 87
3.3.2 Evaluating Language Models . 88

3.4 Representing Words in NLP . 89
3.4.1 Sparse Embeddings . 89
3.4.2 Dense Embeddings . 90
3.4.3 Embedding Similarity . 91
3.4.4 Evaluating Vector Models . 91

3.5 Neural Language Models . 92
3.5.1 A Feed-Forward Neural Network As A Language Model 92
3.5.2 Recurrent Neural Network As A Language Model 93
3.5.3 Recurrent Neural Networks For Other NLP Tasks 93

3.6 Neural Machine Translation with RNNs . 94
3.7 Attention . 95

3.7.1 Encoder-Decoder With Attention . 95
3.7.2 Decoding Using Beam-Search . 96

3.8 Transformer . 97
3.8.1 Attention in the Transformer Model . 97
3.8.2 The Model . 99
3.8.3 Results . 100

3.9 Neural Model Pre-training . 101

10

ΠΕΡΙΕΧΟΜΕΝΑ

3.9.1 Contextual Embeddings . 101
3.9.2 Pre-training and Fine-Tuning Neural Models 101
3.9.3 Pre-Trained Deep Bidirectional Transformers 103

3.10 Overparameterization of the Heads of Transformer-based Models 107
3.11 Scheduled DropHead . 107

3.11.1 DropHead . 107
3.11.2 Scheduler . 108
3.11.3 Experiments . 108

4 Modeling System 2 with Neural Networks 111
4.1 Introduction . 111
4.2 Thinking In Different Speeds: System 1 And System 2 111
4.3 Modularity In The Human Brain . 112

4.3.1 Introduction . 112
4.3.2 Forebrain . 113
4.3.3 Hindbrain . 115
4.3.4 Consciousness . 115
4.3.5 Attention . 116

4.4 Modularity In Neural Networks . 116
4.4.1 Modularity In CNNs Trained On Scene Classification 116
4.4.2 Modularity In Transformers Trained On NMT 117
4.4.3 Modularity In BERT Trained on NLM . 118

4.5 Global Workspace Theory . 121
4.6 Causality . 121

4.6.1 Structural Causal Models . 121
4.6.2 Statistical vs Causal Learning . 122
4.6.3 Interventions . 122
4.6.4 An Example of A Causal Model . 124
4.6.5 The Principle of Independent Mechanisms 124
4.6.6 Covariate Shift . 125
4.6.7 Learning Independent Causal Mechanisms 125

4.7 Conditional Computation . 129
4.7.1 Multi-task Learning . 130
4.7.2 Transfer Learning . 130
4.7.3 Freezing Layers . 131
4.7.4 Gating . 131
4.7.5 Conditional Computation . 132

4.8 Meta-Learning . 132
4.8.1 Motivating Meta-Learning . 132
4.8.2 Probabilistic View . 133
4.8.3 Meta-Learning Process Overview . 133
4.8.4 Few-Shot Learning . 134
4.8.5 Black-Box Adaptation . 135
4.8.6 Optimization-Based Approach . 136
4.8.7 Non-Parametric Methods . 137
4.8.8 Few-Shot Learning NLP Tasks . 137
4.8.9 Continual Learning . 139
4.8.10 Continual Learning Approaches . 140
4.8.11 Learning to Continually Learn . 141

11

ΠΕΡΙΕΧΟΜΕΝΑ

4.9 Inductive Biases for Deep Learning of Higher-Level Cognition 145
4.9.1 Inspirations From Cognitive Science . 145
4.9.2 Current Use of Inductive Biases . 146
4.9.3 Requirement for New Training Settings . 147
4.9.4 Creating A Framework to Study System 2 147
4.9.5 Proposing Biases . 148

4.10 A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms 149
4.10.1 Correct Causal Models are Faster to Adapt 149
4.10.2 Using Adaptation Speed as a Meta-Learning Objective 150
4.10.3 Disentangling Causal Variables . 151

4.11 Recurrent Independent Mechanisms . 152
4.11.1 The Model . 153
4.11.2 Experiments . 154

4.12 Neural Interpreters . 157
4.12.1 The Model . 157
4.12.2 Module Collapse . 160
4.12.3 Experiments . 160

4.13 Transformers with Competitive Ensembles of Independent Mechanisms 163
4.13.1 The Model . 164
4.13.2 Experiments . 165

5 Transformers with Competitive Attention Heads and FFNNs 169
5.1 An Alternative Idea on the Dimensionality of Representations 169

5.1.1 Advantages of High-Dimensional Representations 169
5.1.2 A 10000-Dimensional Example . 170
5.1.3 Computing with High-dimensional Vectors 170

5.2 Modeling High-Level Variables with Standard Neural Networks 170
5.3 Proposed Methods . 171

5.3.1 Competitive FFNNs . 171
5.3.2 Competitive Attention Heads . 172

5.4 Experiments . 172
5.4.1 FAIRSEQ . 173
5.4.2 Application to the Transformer Model . 173
5.4.3 Application to A BERT-Based Model . 182

5.5 Discussion . 184

6 Conclusions 187
6.1 Discussion . 187
6.2 Future Work . 187

Bibliography 189

Bibliography 201

List of Abbreviations 203

12

Κατάλογος Σχημάτων

1 Δομή του μοντέλου Transformer [1]. 26
2 Δομή ενός μοντέλου RIMs με 4 μηχανισμούς. Οι μηχανισμοί οι οποίοι προσέχουν

περισσότερο τα δεδομένα ενεργοποιούνται (δεξιά).Οι ενεργοί μηχανισμοί, που απεικονί-
ζονται με μπλε, εκτελούν ένα βήμα βάσει του εσωτερικού τους μοντέλου και αλλη-
λεπιδρούν με τους υπόλοιπους (αριστερά). Οι ανενεργοί μηχανισμοί, που αππεικονί-
ζονται με λευκό, δεν ενημερώνουν την εσωτερική τους κατάσταση [2]. 29

3 Οι δύο προτεινόμενες μετατροπές . 31

2.1 The expected error is reduced when the chosen point is the one that minimizes the
sum of the two areas under the curves. This point is the one chosen by the Bayesian
classification rule, xB , while choosing any other point x∗ yields additional error [3]. 44

2.2 Polynomial models of various orders M (red) modeling fitting data created by
sin(2π) (green) with the addition of Gaussian random noise [4] 49

2.3 Sigmoid function for 1-dimensional input and for two values of θ, θ=5 (red) and
θ=10 (blue). Image from https://commons.wikimedia.org/wiki/File:Sigmoid-
function.svg . 50

2.4 A. Classes that are linearly separable B. Classes that aren’t. Figure from https://
www.tarekatwan.com/index.php/2017/12/methods-for-testing-linear-separability-
in-python/##fn-102-2. 52

2.5 Difference between using gradient descent (left) and Newton’s method (right) for
minimizing a function. Figure from https://www.cs.cornell.edu/courses/cs4780/
2018fa/lectures/lecturenote07.html . 54

2.6 A linear increase in the dimensionality of the input leads to an exponential growth
of modeling parameters. Figure from https://www.i2tutorials.com/what-do-
you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-
with-it/ . 55

2.7 Important parts of a neuron. Figure from https://today.ucsd.edu/story/why_
are_neuron_axons_long_and_spindly . 55

2.8 Artificial Neuron. Figure from https://www.researchgate.net/publication/
328733599_Impact_of_Artificial_Neural_Networks_Training_Algorithms_on_
Accurate_Prediction_of_Property_Values . 56

2.9 A 4-layer Feed-Forward Neural Network, with 4 neurons in each of the hidden layers
and 2 neurons in the output layer. Figure from https://deepai.org/machine-
learning-glossary-and-terms/hidden-layer-machine-learning 58

2.10 Learning curves for a 4-layer ffnn. The normalized error is used, J/N = 1/N
∑N

k=1 Jk

[3]. 61
2.11 Error Surface of a model with 1 parameter whose value spans on the horizontal axis.

Figure from https://inverseai.com/blog/gradient-descent-in-machine-learning 62
2.12 3-layer ffnn with one neuron per layer. Figure from https://towardsdatascience.

com/vanishing-gradient-in-deep-neural-network-83953217c59f 64

13

https://commons.wikimedia.org/wiki/File:Sigmoid-function.svg
https://commons.wikimedia.org/wiki/File:Sigmoid-function.svg
https://www.tarekatwan.com/index.php/2017/12/methods-for-testing-linear-separability-in-python/####fn-102-2
https://www.tarekatwan.com/index.php/2017/12/methods-for-testing-linear-separability-in-python/####fn-102-2
https://www.tarekatwan.com/index.php/2017/12/methods-for-testing-linear-separability-in-python/####fn-102-2
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote07.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote07.html
https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/
https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/
https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/
https://today.ucsd.edu/story/why_are_neuron_axons_long_and_spindly
https://today.ucsd.edu/story/why_are_neuron_axons_long_and_spindly
https://www.researchgate.net/publication/328733599_Impact_of_Artificial_Neural_Networks_Training_Algorithms_on_Accurate_Prediction_of_Property_Values
https://www.researchgate.net/publication/328733599_Impact_of_Artificial_Neural_Networks_Training_Algorithms_on_Accurate_Prediction_of_Property_Values
https://www.researchgate.net/publication/328733599_Impact_of_Artificial_Neural_Networks_Training_Algorithms_on_Accurate_Prediction_of_Property_Values
https://deepai.org/machine-learning-glossary-and-terms/hidden-layer-machine-learning
https://deepai.org/machine-learning-glossary-and-terms/hidden-layer-machine-learning
https://inverseai.com/blog/gradient-descent-in-machine-learning
https://towardsdatascience.com/vanishing-gradient-in-deep-neural-network-83953217c59f
https://towardsdatascience.com/vanishing-gradient-in-deep-neural-network-83953217c59f

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

2.13 Showing a) the sigmoid (blue) and the ReLU (orange) functions and b) their
derivatives [5] . 65

2.14 Residual connections [6] . 65

2.15 The training and test error on a classification problem with two classes w.r.t. the
number of hidden units of a 2-D1-1 NN [3] . 69

2.16 4-fold cross-validation process [4] . 74

2.17 Images of the same place taken at different hours of the day. Figure from http:
//hdr-photographer.com/2014/10/different-times-of-day/ 75

2.18 Example of a convolution in two dimensions without kernel flipping. Outputs for
the calculations of which only a part of the kernel would be used are not shown [7] 77

2.19 Example of a convolutional neural network [8] . 78

2.20 Example of a recurrent neural network presented with the method of graph unfold-
ing. The arrows represent the flow of information at a random step t [7] 79

2.21 Example of a bidirectional RNN presented with the method of graph unfolding [7] 81

2.22 Architecture of the LSTM model [7] . 83

3.1 Example of a recurrent neural network being used for language modeling. At each
step it receives as input the correct previous token and the hidden state created dur-
ing the previous step and generates a probability distribution over the vocabulary
tokens using a softmax layer [9] . 93

3.2 Example of beam search for k=2. In the beginning the most probable starting
words are chosen from a single distribution. At each next step 2 new distributions
are computed, 1 for every active path. Then the best 2 paths are then chosen.
Notice that in t2 it is the case that both paths result from the same leaf, while in
t3 each leaf is extended once [9] . 97

3.3 Example of attention weights. The horizontal axis corresponds to the source sen-
tence (English) and the vertical axis to the generated translation (French). Every
pixel shows an alignment weight mij , where

∑14
j=1 mij = 1 [10] 98

3.4 Example of an application of a triangular mask in the decoder self-attention. The
scores are masked before a softmax layer is applied to transform them into weights.
Notice how the first token is only allowed to attend to itself. Figure from https:
//jalammar.github.io/illustrated-gpt2 . 100

3.5 Transformer model outline [1] . 100

3.6 BERT setups for the pre-training and fine-tuning procedures. As far as pre-training
is concerned the use of the output of the [CLS] vector for the NSP task and of
token vectors for the MLM task are depicted. The use of token outputs for QA
downstream tasks is also shown [11] . 104

3.7 [11] . 106

3.8 The matrices are taken from a pre-trained BERT model with H = 12 and Dkey =

64. PCA [12] is performed the cumulative variance w.r.t. the number of dimensions
used is shown in the graphs. The left graph presents this metric separately for each
head and the right one presents it for the matrices produced by the concatenation
of the respective head-specific matrices [13] . 107

3.9 Examples of (a) the application of a standard dropout technique that randomly
drops a set of neurons and (b) the DropHead method that randomly drops entire
heads [14] . 108

14

http://hdr-photographer.com/2014/10/different-times-of-day/
http://hdr-photographer.com/2014/10/different-times-of-day/
https://jalammar.github.io/illustrated-gpt2
https://jalammar.github.io/illustrated-gpt2

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

3.10 Several dropout schedulers. The curriculum scheduler (red) linearly increases dropout
probability as training proceeds while the anti-curriculum scheduler (blue) does the
opposite. The proposed scheduler (green) linearly decreases the dropout probability
and then linearly increases it [14] . 108

4.1 A figure indicating the 4 lobes of the forebrain. Figure from https://www.nbia.
ca/brain-structure-function/ . 113

4.2 A figure indicating the areas of the brain connected to language understanding, pro-
cessing and generation. Figure from https://www.youtube.com/watch?v=zj0yud4wv74114

4.3 A figure indicating several important areas of the brain. Figure from https://
www.youtube.com/watch?v=zj0yud4wv74 . 115

4.4 The receptive fields of 3 units of the layers pool1, pool2, conv4 and pool5 along
with the images areas inside the receptive fields that activate these units the most
[15] . 117

4.5 The head relevance of the self-attention heads of the encoders of two models across
all 6 layers and their corresponding specializations [16] 118

4.6 The head relevance of the self-attention heads of the encoders of two models across
all 6 layers and their corresponding specializations [16] 118

4.7 The head relevance of the self-attention heads of the encoders of two models across
all 6 layers and their corresponding specializations [16] 119

4.8 Each points represents the average attention an attention head of the respective
layer pays to (a) the corresponding token marked with red for the [CLS] token, blue
for the [SEP] token, purple for commas and periods (b) the [SEP] token marked
with green if the head is found under a [SEP] token and with blue otherwise [17] 119

4.9 Gradient-based estimation of feature importance for attention heads focusing on
the [SEP] token, periods or commas and other tokens [17]. 120

4.10 Each point represents an attention head. The distance between each pair of atten-
tion heads is computed with the Jensen-Shannon Divergence between their atten-
tion distributions and multi-dimensional scaling [18] is used to embed them to a
two-dimensional space. In (a) the heads are coloured based on their functionality
and in (b) based on the layer in which they are found [17]. 120

4.11 Relations between the four processes and the resulting outputs [19] 123

4.12 The causal graphs of the two causal models in the case of a sample with a label
equal to 2. In model (i) the function f symbolizes the process of seeing the label
Y and creating the corresponding image X. In model (ii) the random variable
Z symbolizes the intention of the human to write down a number which then
translates into a label through the function h and into a image of digit through the
function g [19]. 124

4.13 The training process of the winning expert and the discriminator. The discrimi-
nator is trained using both the suggestions of the experts and the original MNIST
digits. The winning expert is trained to improve his suggestions. The parameters
of the experts that have lost are not updated [20]. 127

4.14 The evolution of the scores assign by the discriminator to each expert during a
successful run [20]. 128

4.15 The evolution of the MNIST classifier’s accuracy on the images transformed by a
mechanism and then inversely transformed by an expert during the experts’ training
[20]. 128

15

https://www.nbia.ca/brain-structure-function/
https://www.nbia.ca/brain-structure-function/
https://www.youtube.com/watch?v=zj0yud4wv74
https://www.youtube.com/watch?v=zj0yud4wv74
https://www.youtube.com/watch?v=zj0yud4wv74

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

4.16 (a) The 10 experts applied to 10 Omniglot characters transformed in all possible
ways. The propositions for the original images lie across the diagonal (b) Serial
use of different experts on a set of characters [20] 129

4.17 Example of hard parameter sharing in a neural model that is trained on three tasks
simultaneously. Figure from https://avivnavon.github.io/blog/parameter-
sharing-in-deep-learning/. 130

4.18 (a) Meta-learning training process. First estimate θi, given Di,tr and φ. Then,
the model, parameterized by θi, makes predictions for the task’s test set Di,ts.
The respective gradients are used to update φ. (b) Meta-learning testing process.
First estimate θ, given Dtr and φ. Then, the model, parameterized by θ, makes
predictions for the task’s test set Dts [21]. 134

4.19 Performance on a simple task requiring the model to remove random symbols from
a word, both with and without a natural language task description. The steeper the
curve the better a model becomes as the number of in-context examples increases.
Larger models thus make better use of examples than smaller models. They report
seeing this behaviours in a variety of tasks [22]. 135

4.20 During the meta-learning process the model’s initialization which coincides with the
meta-parameters is trained. The goal is for the corresponding parameter vector, φ,
to reach a point in the parameter space that, when used as an initialization, enables
the model to quickly learn parameter values that ensure good generalization [23]. 136

4.21 The prediction network is shown in red and the neuromodulatory (NM) net in
blue. Both use the image as an input. The final layer of the NM net has the
same dimensionality with the fully-connected net of the prediction network, and
each of its neurons uses a sigmoid activation function responsible for gating the
corresponding unit of the fully-connected layer of the prediction net [24]. 142

4.22 (a) Accuracy in the task of classification of the meta-testing training images, on
which the models have already been trained, for a various number of classes (b)
Accuracy in the task of classification of the meta-testing testing images, on which
the models have not been trained, for a various number of classes [24]. 144

4.23 Activations of the final layer of the prediction net shown for three random images
of the meta-testing test set before (upper row) and after (bottom row) neuromod-
ulation is applied. The gating signal that is applied in each case is shown in the
middle row [24]. 145

4.24 Accuracy on the meta-testing test set for a variety of different versions of the ANML
and OML models. Unlimited means that the entire net is trained during meta-
testing training. ANML-FT:PLN is the result of training the prediction network,
while keeping the parameters of the NM net frozen. ANML-FT:PLN+NM_out
additional trains the final layer of the NM net. OML-FT:PLN+RLN_final trains
the 2 fully connects layers of the OML model and the first convolutional one [24]. 146

4.25 Log-likelihood of the transfer data computing using the causal A→ B and the anti-
causal B → A models w.r.t. the number of examples from the transfer distribution
shown to them. The causal models is shown to adapt much faster than the anti-
causal one [25]. 150

4.26 The evolution of σ(γ) during meta-learning, where A → B is the correct causal
model [25]. 151

4.27 Both the blue and the orange line indicate valid solutions. After a short period of
adaptation the first solution is found [25]. 152

16

https://avivnavon.github.io/blog/parameter-sharing-in-deep-learning/
https://avivnavon.github.io/blog/parameter-sharing-in-deep-learning/

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

4.28 Overview of a model with 4 RIMs. The mechanisms attend to the input elements
and the ones that pay most attention to them are activated (right). The active
mechanisms (with blue) follow their default dynamics and sparsely (continuous vs
dashed lines) interact with the other ones (left) [2]. 154

4.29 Predictions for two different trajectories (up and down) of three balls in an environ-
ment where a curtain is applied. On the left the side of the figure the predictions
of the model when the true frames are used as input are shown. On the right side
(rollout) the model uses its previous output as input [2]. 156

4.30 The first 15 frames of the actual ball movements are used as input to the models.
Then the models enter an auto-regressive mode, using their past outputs as inputs
(rollout). The RIMs model’s cross entropy error on the balls’ positions is much
lower than the LSTMs’ one, indicating the model’s ability to generalize both under
in-distribution and OOD settings [2]. 156

4.31 OOD generalization capability as indicated by the F1 score, compared to LSTM
and RMC [26] on another partial observation video prediction task. All models were
trained on a three-ball setting. TTO is the time travelling oracle that has access to
the real dynamics and does not simulate them like the other models (upper bound)
[2]. 156

4.32 Relative score improvement over an LSTM based model across all Atari games
averaged over 3 trials per game [2]. 157

4.33 The overview of the a neural interpreter along with its inputs and outputs are
shown in the leftmost figure. The CLS tokens are indicated in blue and a linear
classification head is attached on top of the output corresponding to each one. In
the center left the constituting scripts are shown. Each one of the three scripts uses
a separate set of parameters. In the center-right the inner workings of a script are
shown. It entails two function iterations and three functions. All parameters are
shared between function iterations, but rerouting is performed before each one. In
the the rightmost figure the consisting LOCs are shown, conditioned on the third
function’s code vector (pink). The two other computational streams, for the green
and blow function, run in parallel with the first one and are shown on the back. The
routing of the input elements is common for all LOCs of the same function iteration
that are conditioned on the same vector. The three rightmost input elements are
the only ones that are allowed access to the pink function as shown in the figure.
Residual connections do exists but are not shown [27]. 158

4.34 Figure (a) records the adaptation speed of a neural interpreter (orange) and a vision
transformer (blue). Figure (b) presents the adaptation performance of the model
for various numbers of re-initialized functions in the case where the pre-trained
function vectors are used (brown) and in the case where they re-initialized (blue)
[27]. 162

4.35 Validation performance of NI models pre-trained with five functions and fine-tuned
after the installation of additional ones, randomly initialized [27]. 162

4.36 A sample of the PGMs task. On top the 8 context panels are shown and below
them are the 8 candidates [27]. 163

17

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

4.37 Overview of a TIM model with three mechanisms and a two element input. Each
mechanism maintains its own representation of each input element. First each
mechanism performs self-attention using its representations of the input. Then, the
mechanisms attend to each other’s representations for each input element separately
in order to exchange information. Finally a FFN layer is applied position-wise by
each mechanism separately. Layer normalization and residual connections are also
applied position-wise and mechanism-wise [28]. 165

4.38 A TIM model with 2 mechanisms is trained on CIFAR-10 images (upper left).
One mechanism specializes in the foreground (shown here in bottom left) and the
other in the background. Another TIM model with two mechanisms is trained on
pairs of (MNIST and CIFAR) images (top right). The attention paid by the first
mechanism to MNIST images is shown in the bottom right corner. This mechanism
obviously specializes in MNIST digits [28]. 166

4.39 A speech signal is shown on top of the left figure. The competition pattern is then
shown for five successive TIM layers. The signal becomes clearer as one moves to
from the input to the output layer. This increasing certainty about the competition
winner is verified by the correlation matrix of competition over layers shown in the
middle figure and by the progression of the competition’s entropy from lower to
higher, layers depicted in the right figure [28]. 166

5.1 Overview of the proposed methods . 173

5.2 Learning curves for the three modes of training. The loss is computed on the
dataset used in the last epoch. This is the reason for the scissor-like effect observed
in (b) and the sudden increase observed at epoch 15 in (c) [5]. 176

5.3 Evolution of perplexity on the training and validation sets and of the BLEU metric
on the validation set for the three modes of training. They are computed on the
dataset used in the last epoch. This is the reason for the scissor-like effect observed
in figure (b) and the sudden increase observed at epoch 15 in figure (c) [5]. . . . 177

5.4 Evolution of gradient norm (red) and the learning rate (blue) during training for
the three training modes. The gradient norm decreases in epochs where the small
subset of the dataset is used because of the smaller number of parameters that are
trained in these epochs. This is the reason for the scissor-like effect observed in
figure (b) and the sudden fall observed after the fifteenth epoch in figure (c). The
linear increase in the learning rate in the beginning is due to a warm-up period
that is usually employed to stabilize training [5, 29]. 177

5.5 Evolution of the norms of the head signatures for all heads of the model, presented
separately for each layer, for the cases where all model components are trained
jointly (a) and in an iterative manner (b) [5]. 178

5.6 Evolution of the norms of the head signatures for all heads of the model, presented
separately for each layer, for the cases where all model components are trained in
a sequential manner [5]. 178

5.7 Evolution of the mean compatibility values assigned to each head across a batch
of samples for each of the first five positions of the input sentence during training.
The values for the heads of the third (a) and the fourth (b) layer are shown [5]. . 179

5.8 Evolution of the mean compatibility values assigned to each head across a batch
of samples for each of the first five positions of the input sentence during training.
The values for the heads of the fifth layer are shown [5]. 179

18

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

5.9 Evolution of the mean norms of the heads’ outputs before and after they are mul-
tiplied with the corresponding compatibility values across a batch of samples for
each of the first five positions of the input sentence during training. The norms for
the heads of the third layer are shown [5]. 180

5.10 Evolution of the mean norms of the heads’ outputs before and after they are mul-
tiplied with the corresponding compatibility values across a batch of samples for
each of the first five positions of the input sentence during training. The norms for
the heads of the fourth layer are shown [5]. 180

5.11 Evolution of the mean norms of the heads’ outputs before and after they are mul-
tiplied with the corresponding compatibility values across a batch of samples for
each of the first five positions of the input sentence during training. The norms for
the heads of the fifth layer are shown [5]. 181

5.12 Evolution of the mean norm values of the heads’ outputs of the encoder’s self-
attention mechanism for a vanilla transformer model during its training. The values
for the heads of the third and fourth layer of the model are shown [5]. 181

5.13 Evolution of the mean norm values of the heads’ outputs of the encoder’s self-
attention mechanism for a vanilla transformer model during its training. The values
for the heads of the sixth layer of the model are shown [5]. 182

5.14 Evolution of the mean compatibility values assigned to each head across all positions
where the corresponding word is used as input during training. The values for the
heads of the first and the fourth layers are shown [5]. 183

5.15 Evolution of the mean norm values of the heads’ outputs across all positions where
the corresponding word is used as input during training before multiplication with
the compatibility values is applied. The values for the heads of the first and fourth
layer of the model are shown [5]. 183

5.16 Evolution of the mean norm values of the heads’ outputs across all positions where
the corresponding word is used as input during training after multiplication with
the compatibility values is applied. The values for the heads of the first and fourth
layer of the model are shown [5]. 184

5.17 Evolution of the mean norms of the heads’ outputs before and after they are mul-
tiplied with the corresponding compatibility values across a batch of samples for
each of the first five positions of the input sentence during training. The norms for
the heads of the first layer are shown [5]. 184

5.18 Evolution of the mean compatibility values assigned to each head across a batch
of samples for each of the first five positions of the input sentence during training.
The values for the heads of the first (a) and the fourth (b) layer are shown [5]. . 185

5.19 Evolution of the mean norms of the heads’ outputs before and after they are mul-
tiplied with the corresponding compatibility values across a batch of samples for
each of the first five positions of the input sentence during training. The norms for
the heads of the fourth layer are shown [5]. 185

5.20 Evolution of the mean norms of the heads’ outputs before and after they are mul-
tiplied with the corresponding compatibility values across a batch of samples for
each of the first five positions of the input sentence during training. The norms for
the heads of the eighth layer are shown [5]. 186

5.21 Evolution of the mean compatibility values assigned to each head across a batch
of samples for each of the first five positions of the input sentence during training.
The values for the heads of the eighth layer are shown [5]. 186

19

Κατάλογος Πινάκων

1 Εφαρμογή της μεθόδου CAH στους τρεις μηχανισμούς προσοχής ενός μοντέλου
transformer με N = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128.
Enc. SA. σημαίνει μηχανισμός αυτο-προσοχής κωδικοποιητή, Dec. SA. μηχανισμός
αυτο-προσοχής του αποκωδικοποιητή και Enc.-Dec. είναι ο μηχανισμούς προσοχής
κωδικοποιητή-αποκωδικοποιητή. ΄Ενας σταυρός + χρησιμοποιείται για να υποδηλώ-
σει τη χρήση της μεθόδου CAH στον αντίστοιχο μηχανισμό και ένα κενό για να υπ-
οδηλώσει την απουσία της. Αναφέρεται η μετρική perplexity στο σύνολο δεδομένων
εκπαίδευσης (PPL Training) και στο σύνολο δεδομένων ελέγχου (PPL Test) και η
μέτρηση BLEU στο σύνολο δεδομένων ελέγχου. Το μοντέλο εκπαιδεύτηκε για 15
εποχές. 32

2 Εφαρμογή της μεθόδου CAH στους τρεις μηχανισμούς προσοχής ενός μοντέλου
transformer με N = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128,
H = 4. Αφού το εσωτερικό γινόμενο μέσα στο softmax στην εξίσωση 5.3 υπ-
ολογιστεί για τα χαρακτηριστικά διανύσματα όλων των κεφαλών προσοχής και του

κλειδιού που αντιπροσωπεύει ένα στοιχείο μιας συγκεκριμένης θέσης i, η κεφαλή στην
οποία αντιστοιχεί το μικρότερο αντίστοιχο εσωτερικό γινόμενο απενεργοποιείται για

τη θέση i και τα εσωτερικά γινόμενα για τις υπόλοιπες κεφαλές χρησιμοποιούνται για

τον υπολογισμό τιμών συμβατότητας για αυτές. Αναφέρεται η μετρική perplexity στο
σύνολο δεδομένων εκπαίδευσης (PPL Training) και στο σύνολο δεδομένων ελέγχου
(PPL Test) και η μέτρηση BLEU στο σύνολο δεδομένων ελέγχου. Το μοντέλο
εκπαιδεύτηκε για 15 εποχές. 32

3 Το μοντέλο transformer εκπαιδεύεται με τρεις διακριτούς τρόπους: όλο μαζί (Jointly),
με επαναληπτική εκπαίδευση και με σειριακή εκπαίδευση. Η μέθοδος CAH εφαρμόζε-
ται είτε σε έναν από τους μηχανισμούς αυτο-προσοχής είτε και στους δύο ταυτόχρονα.
Αναφέρεται η μετρική perplexity στο σύνολο δεδομένων εκπαίδευσης (PPL Training)
και στο σύνολο δεδομένων ελέγχου (PPL Test) και η μέτρηση BLEU στο σύνολο
δεδομένων ελέγχου. Το μοντέλο εκπαιδεύτηκε για 15 εποχές. 33

3.1 Table comparing several layer types w.r.t. three different attributes. n is the length
of the input sequence, d is the dimension of the vectors representing each sequence’s
element, k is the size of the kernels of a convolutional layer and r is the number of
elements that a self-attention operation is allowed to pay attention to 101

3.2 Ablation study performed to BERTBASE. The study shines light on the importance
of the NSP task and of bidirectionality. 106

3.3 Performance of various models on the NMT task WMT14 (en-de) [30]. They repro-
duce the original Transformer model and report results for it too. They compare
to the results of the weighted transformer [31], the tied transformer [32] and the
layer-wise coordination method [33] applied to the transformer model. 109

3.3 Average drop of the BLEU score after the most important head of a layer has been
removed across layers. 109

21

ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

4.1 Cross-entropy loss of various versions of the RIMs model on training and test sets
of the copying task. The performance of two LSTMs, a neural Turing machine [34],
a relational memory core [26] and a transformer model are also recorded. 155

4.1 Cross-entropy loss of various versions of the RIMs model on training and test sets
of the sequential MNIST task. The performance of two LSTMs, a recurrent entity
network [35], a relational memory core [26], a NN with a dynamic external memory
[36] and a transformer model are also recorded. 155

4.2 Mean Coefficient of Determination (R2) and StdDev over 10 tasks after training
various sets of parameters. 161

4.2 Accuracy of predictions of various models on several generalization tasks. The neu-
ral interpreter is compared to the wild relation network (WReN) [37], the variational
autoencoder-WReN (VAE-WReN) [38], the multi-layer multiplex graph neural net
(MXGNet) [39] and the vision transformer (ViT) [40]. The models are evaluated
both on in-generalization performance (val.) and OOD generalization (test). . . . 163

4.3 Models trained and evaluated on the DNS dataset. PoCoNet-SSL was trained on
additional data. The TIM model is trained for Ns = 2 and Ns = 4. It is also trained
without the use of the competition module for Ns = 2. It is compared to the orig-
inal signal (Noisy - no reverb), the U-Net with a MultiScale+ cosine loss function
(U-Net-MultiScale+) [41], the fully convolutional version of the time-domain au-
dio separation network (Conv-TasNet) [42], the convolutional neural network with
frequency-positional embeddings (PoCoNet) [43] and a transformer baseline. The
TIM and the transformer models are also tested on OOD generalization to the
VoiceBank test set. 167

4.4 Compare the perplexity on the validation set (Valid-NLL) and the performance
one various GLUE tasks of two BERT models with different sizes, and three TIM
models of various configurations. 167

4.5 Comparison on CATER Object Tracking of the Top-1 and Top-5 accuracy of Trans-
formers with TIM. 168

5.1 Application of the CAH method to the three attention mechanisms of a transformer
model with L = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128. Enc.
SA stands for the encoder self-attention mechanisms, Dec. SA for the decoder
self-attention mechanisms and Enc.-Dec. Attn for the encoder-decoder attention
mechanisms. A cross (+) is used to symbolize the use of the CAH method at the
respective mechanism and a blank to symbolize its absence. The perplexity on the
training set (PPL Training) and the test set (PPL Test) and the BLEU metric on
the test set are reported. The model was trained for 15 epochs. 174

5.2 Ablation study on the dimension of the signature vectors of the attention heads,
Da, and the dimension of the hidden layer of the inference FFNN, DInfA. The
model is a transformer with L = 6, Dmodel = 512, Dffnn = 1024, H = 4 and the
CAH method is only applied to the encoder’s self-attention mechanism. 175

22

ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

5.3 Application of the CAH method to the three attention mechanisms of a transformer
model with L = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128, H = 4.
After the inner product inside the softmax of the equation 5.3 is computed for the
signature functions of all attention heads and the key corresponding to an element
located in a certain position i, the head with the smaller respective product is
deactivated for the position i and the rest of the inner products are used to compute
compatibility values for the remaining heads. The perplexity on the training set
(PPL Training) and the test set (PPL Test) and the BLEU metric on the test set
are reported. The model was trained for 15 epochs. 175

5.4 The transformer model is trained in three distinct manners: jointly, sequential and
iterative. The CAH method is applied each one of the self-attention mechanisms
separately and on both of them at the same time. The perplexity on the entire
training set (all 160.2 thousand examples) (PPL Training) and the test set (PPL
Test) and the BLEU metric on the test set are reported. The model was trained
for 15 epochs. 176

23

Κεφάλαιο 0

Εκτεταμένη Ελληνική Περίληψη

0.1 Εισαγωγή

0.1.1 Κίνητρα

Μελέτες στον τομέα της σύγχρονης νευροεπιστήμης έχουν δείξει πως η αποθήκευση των μεμονω-

μένων πληροφοριών δεν πραγματοποιείται από νευρώνες ομοιόμορφα κατανεμημένους στον ανθρώπινο

εγκέφαλο, αλλά πως οι διάφορες περιοχές του εγκεφάλου παρουσιάζουν τάσεις εξειδίκευσης. Κάποια

τμήματα του εγκεφάλου έχουν βρεθεί να συνδέονται εντονότερα με την διαχείριση πληροφορίας που

σχετίζεται με συγκεκριμένες αισθήσεις, π.χ. ακοή ή αφή, και με την διαφοροποίηση να συνεχίζεται

στον τρόπο διαχείρισης, π.χ. αποθήκευση ή επεξεργασία, καθώς και στον τύπο της πληροφορίας,

π.χ. αντίδραση σε εξωτερικό ερέθισμα ή μετατροπή θέλησης σε πράξη. Επίσης, κατά την Global
Workspace Theory [44, 45, 46, 47, 48], υπάρχουν ειδικευμένες ομάδες νευρώνων στον ανθρώπινο
εγκέφαλο που δρουν σχετικά ανεξάρτητα η μία από την άλλη, και επικοινωνούν σποραδικά μέσω ενός
ενιαίου καναλιού, στο οποίο εμπλέκεται και η συνείδηση.
Παρόλα αυτά, στα σημερινά νευρωνικά δίκτυα δεν υπάρχει μία μέθοδος η οποία να καθορίζει

τον τόπο και τρόπο αποθήκευσης της πληροφορίας που αποκτάται κατά την εκπαίδευση, καθώς και
την διαδικασία επιλογής των γνώσεων, οι οποίες κρίνεται ότι είναι οι πιο χρήσιμες την εκάστοτε
χρονική στιγμή. Αντίθετα, οι παραπάνω λειτουργίες αναπτύσσονται αυτόματα κατά την διάρκεια
της εκπαίδευσης με τρόπο που δεν είναι ελέγξιμος από τον άνθρωπο. Εκτός από το πρόβλημα της
κακής χρήσης των διαθέσιμων πόρων, η συγκεκριμένη παράλειψη είναι πολύ πιθανό σχετίζεται με
την πτώση της απόδοσης των νευρωνικών δικτύων όταν αυτά καλούνται να βγάλουν συμπεράσματα

για δείγματα που ανήκουν στην κατανομή των παραδειγμάτων εκπαίδευσης αλλά όχι σε αυτά (in-
distribution generalization), και με την αδυναμία τους να γενικεύσουν σε δείγματα άλλων κατανομών,
οι οποίες έχουν κάποια σχέση με την πρώτη (out-of-distribution generalization).
Σημερινές θεωρίες που προέρχονται από τον τομέα της γνωσιακής επιστήμης (cognitive science),

οι άνθρωποι γενικεύουν ανακτώντας κομμάτια γνώσης από τη μνήμη τους, τα οποία σχετίζονται με
το παρόν πρόβλημα, και συνδυάζοντάς τα με καινούριους τρόπους. Είναι πολύ δύσκολο να φανταστεί
κάποιος πως τα νευρωνικά δίκτυα θα μπορούσαν να αποκτήσουν τέτοια ευελιξία στην διαχείριση των

μεμονωμένων τμημάτων πληροφορίας χωρίς να οργανωθούν κατάλληλα οι τρόποι αποθήκευσης, ανάκ-
τησης και επεξεργασίας τους από μέρους των μοντέλων αυτών. Είναι λοιπόν λογικό να εξερευνήσει
κάποιος μεθόδους που θα ωθούν τα νευρωνικά δίκτυα να διαχερίζονται τη γνώση κατά τρόπο παρόμοιο

με αυτόν του ανθρωπίνου εγκεφάλου.

0.1.2 Συνεισφορές

Πραγματοποιούμε μία βιβλιογραφική ανασκόπηση της έρευνας που έχει πραγματοποιηθεί στην

παραπάνω κατεύθυνση, επικεντρώνοντας την προσοχή μας κυρίως στην ομάδα του ερευνητή Yoshua
Bengio, από το πανεπιστήμιο του Μόντρεαλ. Επίσης, γίνεται ανάλυση των πηγών έμπνευσής τους,

25

Κεφάλαιο 0. Εκτεταμένη Ελληνική Περίληψη

οι οποίες προέρχονται από τους κλάδους του συμπεριφορισμού, της γνωσιακής επιστήμης (cognitive
science), της νευροεπιστήμης και της μελέτης αιτιακών μεταβλητών και μηχανισμών (causal variables
and mechanisms).
Με βάση τα παραπάνω προτείνουμε δύο αρχιτεκτονικές μετατροπές σε νευρωνικά δίκτυα που βασί-

ζονται στο μοντέλο μηχανικής μάθησης transformer [1] και εφαρμόζουμε την μία από τις δύο. Συγ-
κεκριμένα, εγκαθιστούμε ένα σύστημα επιλογής στις κεφαλές (attention heads) των μηχανισμών
προσοχής τους (attention mechanisms), το οποίο στοχεύει στην εξειδίκευσή τους μέσω ανταγωνισ-
τικών διαδικασιών. Παράλληλα, προτείνουμε την εγκατάσταση ενός παρόμοιου συστήματος στα δίκτυα
πρόσθιας τροφοδότησης (feed-forward neural networks) των μοντέλων αυτών, τα οποία συνήθως είναι
εγκατεστημένα μετά τους μηχανισμούς προσοχής.

0.2 Το Μοντέλο Transformer

Κεντρικό σε αυτή την εργασία είναι το μοντέλο transformer (Vaswani et al. (2017) [1]), το οποίο
χρησιμοποιήθηκε αρχικά για το πρόβλημα της μετάφρασης φυσικής γλώσσας, και έχει αποτελέσει τη
βάση για τα σημερινά κορυφαία (state-of-the-art) μοντέλα που χρησιμοποιούνται για την επίλυση
μίας μεγάλης γκάμας προβλημάτων φυσικής γλώσσας (natural language). Ο transformer είναι ένα
νευρωνικό δίκτυο το οποίο διαχειρίζεται ακολουθίες στοιχείων τα οποία μπορεί να συνδέονται σημα-

σιολογικά μεταξύ τους, όπως οι λέξεις σε ένα κείμενο. Το σύνολο όλων των πιθανών στοιχείων
ονομάζεται λεξιλόγιο (dictionary) του προβλήματος και κάθε στοιχείο αναπαρίσταται από ένα διάνυσμα
πραγματικών αριθμών (embedding).
Το μοντέλο, το οποίο φαίνεται στην εικόνα 1, αποτελείται από 2 τμήματα, έναν κωδικοποιητή

(encoder) και έναν αποκωδικοποιητή (decoder). Ο κωδικοποιητής διαβάζει μία ακολουθία στοιχείων
και δημιουργεί αναπαραστάσεις για αυτά με βάση τα συμφραζόμενα (contextual representations).
Ο αποκωδικοποιητής διαβάζει αυτές τις αναπαραστάσεις και παράγει μία ακολουθία εξόδου. Για
παράδειγμα, ένα ζεύγος ακολουθίας εισόδου-εξόδου μπορεί να είναι μία πρόταση και η μετάφρασή της
σε μία άλλη γλωσσα.

Figure 1. Δομή του μοντέλου Transformer [1].

Ο κωδικοποιητής αποτελείται από N επίπεδα

με κοινή δομή, αποτελούμενα, το καθένα, από
έναν μηχανισμό προσοχής (Bahdanau et al.
(2014) [10]) ακολουθούμενο από ένα δίκτυο
πρόσθιας τροφοδότησης. Η επεξεργασία κάθε
στοιχείου πραγματοποιείται παράλληλα με αυτή

των υπολοίπων. Επίσης η επεξεργασία όλων

των στοιχείων από ένα επίπεδο πραγματοποιεί-

ται από νευρωνικές δομές με κοινές παραμέτρους,
ανεξάρτητες της θέσεως του στοιχείου. ΄Αρα ο
μηχανισμός προσοχής ενός επιπέδου είναι κοινός

για όλες τις θέσεις, όπως και το δίκτυο πρόσθιας
τροφοδότησης, αλλά δύο μηχανισμοί που χρησι-
μοποιούνται σε διαφορετικά επίπεδα έχουν δι-

αφορετικές παραμέτρους.
Οι μηχανισμοί προσοχής είναι υπεύθυνοι

για την ανταλλαγή πληροφοριών μεταξύ των

στοιχείων. Δέχονται ως εισόδους τις ανα-

παραστάσεις των στοιχείων hi, i ∈ {1, · · · , T},
όπως αυτές προκύπτουν από το προηγούμενο

επίπεδο l − 1, και πολλαπλασιάζοντας τες με πί-

26

0.2.1 Το Μοντέλο BERT

νακες WQ
l , WK

l , WV
l δημιουργούν διανύσματα qi, ki, vi αντίστοιχα. Μετά υπολογίζουν τις τιμές

συμβατότητας cij μεταξύ του στοιχείου iκαι κάθε στοιχείου j, συμπεριλαμβανομένου του i, για
κάθε πιθανό i, περνώντας τα εσωτερικά γινόμενα qi · kj , για κάθε j, από μία συνάρτηση softmax,
softmax(xi) = exi∑

j exj . Για την δημιουργία της τελικής αναπαράστασης για το i υπολογίζεται το

σταθμισμένο άθροισμα (weighted sum) των τιμών των στοιχείων vj με τις αντίστοιχες τιμές συμ-

βατότητας cij : h̃i =
∑

j cijvj . Στην πραγματικότητα ο παραπάνω μηχανισμός είναι μία έκδοση του
μηχανισμού προσοχής, στην οποία η ακολουθία από την οποία προέρχονται τα διανύσματα q είναι ίδια
με αυτήν από την οποία προέρχονται τα k και v. Αυτού του τύπου ο μηχανισμός προσοχής ονομάζεται
αυτο-προσοχή (self-attention).

Οι Vaswani et al. (2017) [1], για να επιτρέψουν σε μία λέξη μεγαλύτερη ευελιξία στην απόδοση
τιμών συμβατότητας, πραγματοποιούν την παραπάνω διαδικασία πολλαπλές φορές χρησιμοποιώντας
διαφορετικές παραμέτρους κάθε φορά: WQ,h

l , WK,h
l , WV,h

l , h ∈ {1, · · · , H}. Οι αντίστοιχες έξοδοι
h̃
h

i συνενώνονται για κάθε στοιχείο i, h̃i = [h̃
1

i , h̃
2

i , · · · , h̃
H

i], και πολλαπλασιάζονται με ένα νέο
πίνακα WO

l για την δημιουργία της εξόδου του μηχανισμού προσοχής h̃
O

i = WO
l h̃i. Τα επί μέρους

τμήματα αυτού του μηχανισμού ονομάζονται κεφαλές (heads). Η αναπαράσταση κάθε στοιχείου, όπως
προκύπτει από τον μηχανισμού προσοχής, περνάει μέσα από ένα δίκτυο πρόσθιας τροφοδότησης με
ένα κρυφό επίπεδο: ĥi = W2

l f(W
1
l h̃

O

i), όπου f μία συνάρτηση ενεργοποίησης (activation function).

Το μοντέλο επίσης χρησιμοποιεί μία τεχνική κανονικοποίησης (layer normalization [49]) των
εσωτερικών αναπαραστάσεων που διατηρεί, καθώς και συνδέσεις παράκαμψης των νευρωνικών του
δομών (residual connections [6]). Οι παραπάνω μέθοδοι συμβάλλουν στην καλύτερη εκπαίδευση
του δικτύου, επιτρέποντας στον ερευνητή να στιβάξει περισσότερα νευρωνικά επίπεδα δημιουργώντας
βαθιά νευρωνικά δίκτυα (deep networks).

Στα διανύσματα αναπαράστασης των λέξεων προστίθενται διανύσματα θέσης που κωδικοποιούν

την θέση της κάθε λέξης μέσα στην πρόταση.

Ο αποκωδικοποιητής έχει ίδιο αριθμό επιπέδων και παρόμοια δομή με τον κωδικοποιητή με την

διαφορά ότι ανάμεσα στους δύο προαναφερθέντες μηχανισμούς κάθε επιπέδου υπάρχει ένας ακόμα

μηχανισμός προσοχής, στον οποίο τα διανύσματα q προέρχονται από τις εξόδους του προηγούμε-
νου μηχανισμού αυτό-προσοχής του αποκωδικοποιητή και τα k και v προέρχονται από τις εξόδους
του κωδικοποιητή. ΄Ενα χαρακτηριστικό του αποκωδικοποιητή είναι ότι για η παραγωγή ακολου-
θιών πραγματοποιείται σειριακά, στοιχείο ανά στοιχείο. Για την παραγωγή κάθε νέου στοιχείου ο
αποκωδικοποιητής συμβουλεύεται τα προηγούμενα στοιχεία που έχει παράξει, χρησιμοποιώντας τα ως
εισόδους. ΄Αρα ο παραπάνω μηχανισμός συνδέει τα στοιχεία που έχουν παραχθεί μέχρι μία στιγμή από
τον αποκωδικοποιητή με τις αναπαραστάσεις των στοιχείων της ακολουθίας εισόδου. Ο μηχανισμός
προσοχής αυτός ονομάζεται μηχανισμός προσοχής κωδικοποιητή-αποκωδικοποιητή.

Κατά τα άλλα ο κωδικοποιητής και ο αποκωδικοποιητής είναι παρόμοιοι ως προς τα χαρακτηριστικά

των αρχιτεκτονικών τους.

0.2.1 Το Μοντέλο BERT

Οι Devlin et al. (2018) [11] εκπαιδεύουν έναν κωδικοποιητή, παρόμοιο με αυτόν στον trans-
former, στα προβλήματα της μοντελοποίησης γλώσσας (language modeling), δηλαδή στην πρόβλεψη
κάποιων κρυμμένων λέξεων, και πρόβλεψης της επόμενης πρότασης (next sentence prediction). Ο
εκπαιδευμένος κωδικοποιητής δημιουργεί αυτό που ονομάστηκε bidirectional encoder representations
from transformers (BERT). Η ιδέα είναι ότι μέσω της διαδικασίας εκπαίδευσης έχει αποκτήσει γνώση
της φυσικής γλώσσας και μπορεί να εκπαιδευτεί περαιτέρω και γρήγορα σε δεδομένα άλλων προβλη-

μάτων φυσικής γλώσσας, π.χ. αναγνώριση συναισθήματος, ερωτο-απαντήσεις και περίληψη, τα οποία
μπορεί να μην είναι αρκετά σε πλήθος για να εκπαιδεύσουν ένα μοντέλο εκ του μηδενός.

27

Κεφάλαιο 0. Εκτεταμένη Ελληνική Περίληψη

0.3 Σχετική Βιβλιογραφία

Ο Kahneman στο βιβλίο του Thinking Fast And Slow [50] διαχωρίζει νοητικά την διαδικασία της
ανθρώπινης σκέψης σε δύο υποσυστήματα με σκοπό να εξηγήσει συγκεκριμένες ανθρώπινες συμπερι-

φορές. Το πρώτο υποσύστημα το ονομάζει Σύστημα 1 (System 1) και περιγράφει την λειτουργία του
ως αυτόματη, γρήγορη και υποσυνείδητη. Το δεύτερο το ονομάζει Σύστημα 2 (System 2) και του
αναθέτει λειτουργικότητες που πραγματοποιούνται συνειδητά και απαιτούν προσοχή και προσπάθεια.

Ο Bengio και η ομάδα του θεωρούν ότι τα σημερινά νευρωνικά δίκτυα εκπαιδεύονται πετυχημένα
στις λειτουργικότητες του Συστήματος 1 αλλά όχι του Συστήματος 2, τις οποίες συσχετίζουν με την
προαναφερθείσα ανθρώπινη ικανότητα γενίκευσης. Προτείνουν λοιπόν μία λίστα επιλογών, τις οποίες
ονομάζουν επαγωγικές προτιμήσεις (inductive biases [51]) και των οποίων η πετυχημένη υλοποίηση
και ενσωμάτωση στα υπάρχοντα νευρωνικά δίκτυα θεωρούν ότι θα ξεκλειδώσει τις ικανότητες που

επιτυγχάνονται με τη χρήση του Συστήματος 2.

Η λίστα αυτή υιοθετεί αρκετές ιδέες από την επιστήμη της αιτιότητας (causality), που μελετά
τις σχέσεις μεταξύ αιτιακών μεταβλητών, οι οποίες παίζουν τους ρόλους αιτιών και αποτελεσμάτων.
Κατά τους Peters et al. (2018) [19], οι αιτιακές μεταβλητές συνδέονται με αιτιακούς μηχανισμούς, οι
οποίοι περιγράφουν υποσυστήματα του πραγματικού κόσμου και τους αποδίδουν το ιδιαίτερο χαρακ-

τηριστικό της ανεξαρτησίας μεταξύ τους. Το τελευταίο σημαίνει ότι γνώση για έναν είναι άχρηστη
για την περιγραφή οποιουδήποτε άλλου και η αλλαγή ενός δεν σχετίζεται με οποιαδήποτε αλλαγή

πραγματοποιείται σε κάποιον άλλο.

Οι Bengio και Goyal (2022) [51] θεωρούν ότι το ανθρώπινο μυαλό εκμεταλλεύεται την ύπαρξη
αυτών των μηχανισμών στον πραγματικό κόσμο και τους αποθηκεύει στην μνήμη ως μοντέλα του

κόσμου με τρόπο τέτοιον, που να του επιτρέπει να τους ανακαλεί όποτε χρειάζεται και να τους
συνδυάζει για την επίλυση νέων προβλημάτων. Οι Bengio et al. (2020) [25] υποθέτουν ότι κάθε
αλλαγή στο περιβάλλον, η οποία φέρνει τους ανθρώπους αντιμέτωπους με ένα νέο πρόβλημα, προκύπτει
από την αλλαγή ενός πολύ μικρού τμήματος των υποκείμενων μηχανισμών που διέπουν την λειτουργία

του. Αυτό οφείλεται εν μέρει στην προαναφερθείσα υπόθεση ανεξαρτησίας τους. ΄Ετσι, οι άνθρωποι
χρειάζεται να αλλάξουν μόνο ένα μικρό τμήμα του μοντέλου του κόσμου το οποίο διατηρούν στο μυαλό

τους για να προσαρμοστούν στην αλλαγή. Με αυτόν τον τρόπο μπορούν να γενικεύουν γρήγορα και να
ανταπεξέρχονται αποτελεσματικά στις νέες συνθήκες. Οι Bengio et al. (2020) [25] εκμεταλλεύονται
το γεγονός της γρήγορης εκπαίδευσης ενός μοντέλου, το οποίο περιγράφει ένα σύστημα του οποίου
λίγες συνιστώσες έχουν αλλάξει, για να μάθουν την ορθή δομή του συστμήματος αυτού, δηλαδή
τα αληθινά αίτια κάθε αιτιακής μεταβλητής. Για να το κάνουν αυτό χρησιμοποιούν την ταχύτητα
προσαρμογής του μοντέλου στην αλλαγή του συστήματος ως σήμα εκπαίδευσης σε έναν αλγόριθμο

μετα-μάθησης (meta-learning).

Η μετα-μάθηση είναι μία μέθοδος εκπαίδευσης κατά την οποία στο μοντέλο παρουσιάζονται πολλά
διαφορετικά προβλήματα, το ένα μετά το άλλο. Καλούμενο να τα επιλύσει με αποδοτικό τρόπο το
μοντέλο μαθαίνει έναν γενικό τρόπο διαχείρισης τέτοιου είδους προβλημάτων [21]. Οι Bengio και
Goyal (2022) [51] προτείνουν την μετα-μάθηση ως ένα πιθανό πλαίσιο μάθησης για νευρωνικά δίκτυα
που εκπαιδεύονται με σκοπό την απόκτηση λειτουργικοτήτων του Συστήματος 2. ΄Ετσι κάνουμε μία
συνοπτική παρουσίαση των μεθόδων μετα-μάθησης και δίνουμε παραδείγματα γνωστών εφαρμογών.

Οι Parascandolo et al. (2017) [20] χρησιμοποιούν ανταγωνισμό για να ανακαλύψουν τους υποκεί-
μενους αιτιακούς μηχανισμούς. Η λογική πίσω από την χρήση ανταγωνισμού βασίζεται είναι ότι ο
νικητής του διαγωνισμού, ο οποίος διαγωνισμός αφορά την άδεια για την διαχείριση ενός δείγματος,
βελτιώνεται στο πρόβλημα διαχείρισης δειγμάτων του ίδιου τύπου και αποκτά προβάδισμα σε σχέση

με τους ανταγωνιστές του. ΄Ετσι, έχει περισσότερες πιθανότητες να κάνει την καλύτερη πρόταση για
δείγματα της ίδιας κατηγορίας στο μέλλον και άρα να ξαναχρησιμοποιηθεί για αυτά. Οι Goyal et al.
(2019) [2], εμπνεόμενοι από την παραπάνω δουλειά, χρησιμοποιούν ανταγωνισμό για να εκπαιδεύσουν

28

0.4 Προτεινόμενες Μετατροπές

αναδρομικά δίκτυα, καθένα από τα οποία επιδιώκεται να μοντελοποιήσει μία διαδικασία. Για το λόγο
αυτό τα ονομάζουν ανεξάρτητους αναδρομικούς μηχανισμούς (recurrent independent mechanisms)
(εικόνα 2). ΄Ενας μηχανισμός προσοχής χρησιμοποιείται στην είσοδο για να βρεθούν τα πιο σχετικά
με αυτήν δίκτυα, τα οποία και τελικά είναι τα μόνα που εκπαιδεύονται, μαθαίνοντας να διαχειρίζονται
καλύτερα εισόδους του αντίστοιχου είδους.

Figure 2. Δομή ενός μοντέλου RIMs με 4 μηχανισμούς. Οι μηχανισμοί οι οποίοι προσέχουν
περισσότερο τα δεδομένα ενεργοποιούνται (δεξιά). Οι ενεργοί μηχανισμοί, που απεικονίζονται με
μπλε, εκτελούν ένα βήμα βάσει του εσωτερικού τους μοντέλου και αλληλεπιδρούν με τους υπ-
όλοιπους (αριστερά). Οι ανενεργοί μηχανισμοί, που αππεικονίζονται με λευκό, δεν ενημερώνουν
την εσωτερική τους κατάσταση [2].

Οι Rahaman et al. (2021) [27], βασιζόμενοι στο μοντέλο του transformer [1], προτείνουν τους
neural interpreters, οι οποίοι εκπαιδεύουν δομικά στοιχεία, τα οποία ονομάζουν συναρτήσεις (func-
tions). Οι συναρτήσεις κωδικοποιούν ξεχωριστές λειτουργικότητες. Μάλιστα, ορίζονται με τέτοιο
τρόπο που επιτρέπει την προσθήκη καινούριων όποτε υπάρχει ανάγκη, καθώς και την αλλαγή του
τρόπου που συνδυαστικά επεξεργάζονται τα στοιχεία της εισόδου με σκοπό την επίλυση καινούριων

προβλημάτων.
Τέλος, οι Lamb et al. (2021) [28] εφαρμόζουν μία αρχιτεκτονική μετατροπή στο BERT (Devlin et

al. (2018) [11]) για να δημιουργήσουν ανεξάρτητους μηχανισμούς που ανταγωνίζονται ο ένας τον άλλο
για την δυνατότητα επεξεργασίας κάθε στοιχείου του διανύσματος εισόδου ξεχωριστά. Τα πειράματα
που πραγματοποιούν δείχνουν βελτιώσεις τόσο στην ικανότητα των μοντέλων να γενικεύουν σε in-
distribution όσο και σε out-of-distribution συνθήκες.

0.4 Προτεινόμενες Μετατροπές

Προτείνουμε δύο μετατροπές με σκοπό την βελτίωση της απόδοσης των νευρωνικών μοντέλων που

βασίζονται στους transformers. Οι μετατροπές αυτές είναι στο πνεύμα των παραπάνω ερευνητικών
προσπαθειών, αλλά αποτελούν μικρότερου μεγέθους αλλαγές στις δομές των μοντέλων συγκριτικά
με τις προαναφερθείσες προσπάθειες.

0.4.1 Ανταγωνιζόμενα Δίκτυα Πρόσθιας Τροφοδότησης

Αρχικά, προτείνουμε την αντικατάσταση των δικτύων πρόσθιας τροφοδότησης στις αρχιτεκτονικές
βασισμένες στο μοντέλο transformer από μία σειρά Nf παράλληλων τέτοιων δικτύων (εικόνα 3a). Για

29

Κεφάλαιο 0. Εκτεταμένη Ελληνική Περίληψη

να ωθήσουμε κάθε ένα από αυτά στην εξειδίκευση προτείνουμε την κατανομή της επεξεργασίας των

στοιχείων εισόδου μεταξύ των παραπάνω δικτύων μέσω ενός μηχανισμού προσοχής. Ουσιαστικά ο
μηχανισμός προσοχής υλοποιεί μία μορφή ανταγωνισμού (Parascandolo et al. (2017) [20]) μεταξύ των
δικτύων πρόσθιας τροφοδότησης, με κάποια στοιχεία ομοιότητας με αυτήν των Lamb et al. (2021)
[28].
Συγκεκριμένα, υιοθετώντας τις ονομασίες που χρησιμοποιήθηκαν από τους Rahaman et al. (2021)

[27], σε κάθε δίκτυο πρόσθιας τροφοδότησης ενός επιπέδου l, Fli, i ∈ {1, · · · , Nf}, ανατίθεται ένα
διάνυσμα fli ∈ RDf , το οποίο ονομάζουμε συνάρτηση. ΄Ενα νέο δίκτυο πρόσθιας τροφοδότησης,
InfFl, χρησιμοποιεί την έξοδο του μηχανισμού προσοχής του ίδιου επιπέδου l σε κάθε θέση j για

να παράξει ένα διάνυσμα klj = InfFl(hlj) ∈ RDf . Τα διανύσματα {klj}Tj=1 και τα χαρακτηριστικά

διανύσματα ανήκουν στον ίδιο διανυσματικό χώρο S. Υπολογίζονται τιμές συμβατότητας μεταξύ
κάθε στοιχείου εισόδου hlj , που εκπροσωπείται από το klj , και των δικτύων πρόσθιας τροφοδότησης
που εκπροσωπούνται από τα χαρακτηριστικά διανύσματα {fli}Ti=1:

Cflij = softmaxi(
fliklj√
Df

) (1)

όπου η softmax υπολογίζεται κατά μήκος του άξονα i που καταμετρά τα δίκτυα πρόσθιας τρο-

φοδότησης.
Μετά την εφαρμογή των δικτύων αυτών στις αναπαραστάσεις της εισόδου hlj , η τελική έξοδος

της δομής υπολογίζεται ως το βεβαρυμμένο άθροισμα των εξόδων τους:

olj =

Nf∑
i=1

Cflij · Fli(hlj) (2)

0.4.2 Ανταγωνιζόμενες Κεφαλές Προσοχής

΄Οπως και στην περίπτωση των ανταγωνιζόμενων δικτύων πρόσθιας τροφοδότησης, είναι λογικό
να προσπαθήσουμε να εγκαθιδρύσουμε μία μορφή ανταγωνισμού μεταξύ των κεφαλών προσοχής των

μοντέλων που βρίσκονται στην αρχιτεκτονική του transformer (εικόνα 3b). Ερευνητικές προσπάθειες
έχουν δείξει ότι οι κεφαλές υπο-χρησιμοποιούνται και πολλές κωδικοποιούν παρόμοια χαρακτηριστικά
της φυσικής γλώσσας (Cordonnier et al. (2021) [13]) οδηγώντας σε πλεονασμό. Υποθέτουμε ότι
δημιουργώντας ένα σύστημα αναγωνισμού μεταξύ των κεφαλών, όσον αφορά στο δικαίωμα επεξερ-
γασίας της κάθε θέσης εισόδου, θα τις ωθήσουμε να εξειδικευτούν σε διαφορετικά χαρακτηριστικά
της φυσικής γλώσσας.
Πάλι, κάποιος μπορεί να χρησιμοποιήσει έναν μηχανισμό προσοχής για να εφαρμόσει τον προαναφερ-

θέντα ανταγωνισμό. Για κάθε κεφαλή Hli, i ∈ {1, · · · , H}, ένα χαρακτηριστικό διάνυσμα ali ∈ RDa

αρχικοποιείται όπως και στην προηγούμενη εφαρμογή. Για την αναπαράσταση κάθε στοιχείου εισόδου
hlj χρησιμοποιείται ένα νέο δίκτυο πρόσθιας τροφοδότησης, InfAl, το οποίο παράγει ένα διάνυσμα
klj = InfAl(hlj) ∈ RDa . Τα διανύσματα {klj}Tj=1 και τα χαρακτηριστικά διανύσματα ανήκουν στον

ίδιο διανυσματικό χώρο A. Υπολογίζονται τιμές συμβατότητας μεταξύ κάθε στοιχείου εισόδου hlj ,
που εκπροσωπείται από το klj και των κεφαλών προσοχής Hli, i ∈ {1, · · · , H}, που εκπροσωπούνται
από τα χαρακτηριστικά διανύσματα {ali}Ti=1:

Chlij = softmaxi(
aliklj√
Da

) (3)

όπου η softmax υπολογίζεται κατά μήκος του άξονα i που καταμετρά τις κεφαλές προσοχής.
Η έξοδος μία κεφαλής Hli για την θέση j δίνεται από το olij = Chlij · h̃lj , το οποίο είναι

ουσιαστικά πολλαπλασιασμός αριθμού-διανύσματος και όπου h̃lj θα ήταν η έξοδος της κεφαλής αν

30

0.5 Πειράματα

δεν χρησιμοποιούνταν ο μηχανισμός ανταγωνιζόμενων κεφαλών προσοχής. Ονομάζουμε τις κεφαλές
αυτές ανταγωνιζόμενες κεφαλές προσοχής (ΑΚΠ).

(a) Ανταγωνιζόμενα Δίκτυα Πρόσθιας Τροφοδότησης (b) Ανταγωνιζόμενες Κεφαλές Προσοχής

Figure 3. Οι δύο προτεινόμενες μετατροπές

0.5 Πειράματα

Εφαρμόζουμε την δεύτερη πρόταση σε δύο μοντέλα, τον transformer και το RoBERTa [52], ένα
μοντέλο βασισμένο στο BERT με βελτιστοποιημένες υπερ-παραμέτρους και διαδικασία εκπαίδευσης.
Σε αυτή την εργασία εξετάζουμε την απόδοση των μοντέλων στην γενίκευση σε παραδείγματα που

προέρχονται από την ίδια κατανομή με αυτά που χρησιμοποιούνται για την εκπαίδευση των μοντέλων.
Οι μέθοδοι υλοποιούνται και ενσωματώνονται στα μοντέλα με την βιβλιοθήκη FAIRSEQ [53].

0.5.1 Εφαρμογή στον Transformer

Εφαρμόζουμε την μέθοδο ΑΚΠ στις κεφαλές αυτό-προσοχής του κωδικοποιητή, του αποκωδικοποι-
ητή και στις κεφαλές του μηχανισμού προσοχής κωδικοποιητή-αποκωδικοποιητή ενός μοντέλου trans-
former 6 επιπέδων, με διάσταση εσωτερικών σημάτων ίση με Dmodel = 512. Το μοντέλο εκπαιδεύεται
στο πρόβλημα της μετάφρασης φυσικής γλώσσας και συγκεκριμένα στα δεδομένα του συνόλου εκ-

παίδευσης WSLT_14 από αγγλικά σε γερμανικά (en-de).
Μελετάμε την επίδραση του μηχανισμού στην απόδοση του μοντέλου για κάθε δυνατό συνδυασμό

χρήσης ή όχι χρήσης του στους τρεις μηχανισμούς προσοχής. Επίσης, εξετάζουμε και τις επιδόσεις
ενός μοντέλου με 8, αντί για 4 κεφαλές, θεωρώντας ότι, αν επιτυγχάνεται η εξειδίκευσή τους, τότε
η αύξηση του αριθμού τους μπορεί να αποδειχθεί επωφελής. Τα αποτελέσματα παρατίθενται στον
πίνακα 1.
Εκτός από μία μικρή βελτίωση των αποτελεσμάτων στις περιπτώσεις εφαρμογής της μεθόδου μόνο

στις κεφαλές αυτό-προσοχής του κωδικοποιητή (33.61) και σε αυτές κωδικοποιητή και του αποκ-
ωδικοποιητή ταυτόχρονα (33.54), για ένα μοντέλο με 4 κεφαλές, δεν παρατηρείται δεν παρατηρείται
άλλη σημαντική αύξηση της μετρικής BLEU στις υπόλοιπες περιπτώσεις.

31

Κεφάλαιο 0. Εκτεταμένη Ελληνική Περίληψη

Enc. SA Dec. SA Enc.-Dec. Attn # of Heads PPL Training PPL Test BLEU Test
4 5.22 5.45 33.25

+ 4 4.82 5.41 33.61
+ 4 5.14 5.46 33.28

+ + 4 4.66 5.42 33.54
+ 4 5.30 5.52 33.32

+ + 4 4.95 5.46 33.20
+ + 4 5.13 5.44 33.46

+ + + 4 4.82 5.43 33.47
8 5.24 5.48 33.16

+ 8 4.78 5.53 32.83
+ 8 5.49 5.63 32.41

+ + 8 4.64 5.55 32.89
+ 8 5.33 5.59 33.19

+ + 8 5.15 5.69 32.68
+ + 8 5.14 5.52 33.18

+ + + 8 4.48 5.51 33.28

Table 1. Εφαρμογή της μεθόδου CAH στους τρεις μηχανισμούς προσοχής ενός μοντέλου trans-
former με N = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128. Enc. SA. σημαίνει
μηχανισμός αυτο-προσοχής κωδικοποιητή, Dec. SA. μηχανισμός αυτο-προσοχής του αποκωδικοποι-
ητή και Enc.-Dec. είναι ο μηχανισμούς προσοχής κωδικοποιητή-αποκωδικοποιητή. ΄Ενας σταυρός +
χρησιμοποιείται για να υποδηλώσει τη χρήση της μεθόδου CAH στον αντίστοιχο μηχανισμό και ένα
κενό για να υποδηλώσει την απουσία της. Αναφέρεται η μετρική perplexity στο σύνολο δεδομένων
εκπαίδευσης (PPL Training) και στο σύνολο δεδομένων ελέγχου (PPL Test) και η μέτρηση BLEU
στο σύνολο δεδομένων ελέγχου. Το μοντέλο εκπαιδεύτηκε για 15 εποχές.

Απενεργοποίηση Της Λιγότερο Σχετικής Κεφαλής

Εξετάζουμε ακόμα την περίπτωση ολικής απενεργοποίησης (εφαρμογή μηδενικού συντελεστή) της
λιγότερο χρήσιμης κεφαλής και την εφαρμογή της συνάρτησης softmax στις υπόλοιπες. Πάλι δεν
υπάρχουν ξεκάθαρα σημάδια βελτίωσης, όπως φαίνεται στον πίνακα 2.

Enc. SA Dec. SA Enc.-Dec. Attn PPL Training PPL Test BLEU Test
5.22 5.43 33.25

+ 4.85 5.45 33.51
+ 5.16 5.45 33.41

+ + 4.73 5.49 33.23
+ 5.33 5.54 33.19

+ + 5.02 5.52 33.25
+ + 5.19 5.51 33.33

+ + + 4.83 5.45 33.42

Table 2. Εφαρμογή της μεθόδου CAH στους τρεις μηχανισμούς προσοχής ενός μοντέλου trans-
former με N = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128, H = 4. Αφού
το εσωτερικό γινόμενο μέσα στο softmax στην εξίσωση 5.3 υπολογιστεί για τα χαρακτηριστικά
διανύσματα όλων των κεφαλών προσοχής και του κλειδιού που αντιπροσωπεύει ένα στοιχείο μιας

συγκεκριμένης θέσης i, η κεφαλή στην οποία αντιστοιχεί το μικρότερο αντίστοιχο εσωτερικό γινό-
μενο απενεργοποιείται για τη θέση i και τα εσωτερικά γινόμενα για τις υπόλοιπες κεφαλές χρησι-
μοποιούνται για τον υπολογισμό τιμών συμβατότητας για αυτές. Αναφέρεται η μετρική perplexity
στο σύνολο δεδομένων εκπαίδευσης (PPL Training) και στο σύνολο δεδομένων ελέγχου (PPL Test)
και η μέτρηση BLEU στο σύνολο δεδομένων ελέγχου. Το μοντέλο εκπαιδεύτηκε για 15 εποχές.

32

0.5.2 Εφαρμογή στο RoBERTa

Εκπαίδευση ΑΚΠ Και Υπόλοιπου Μοντέλου Ξεχωριστά

Δοκιμάζουμε ακόμα να εκπαιδεύσουμε το μοντέλο και τον μηχανισμό υπολογισμού των τιμών

συμβατότητας σε ξεχωριστά δεδομένα ώστε να προσπαθήσουμε να αποφύγουμε την προσαρμογή του

μηχανισμού ΑΚΠ στις κεφαλές του μηχανισμού προσοχής του μοντέλου (overfitting). Διαχωρίζουμε
το σύνολο δεδομένων σε ένα μεγάλο και ένα μικρό τμήμα (μία τάξη μεγέθους μικρότερο). Χρησι-
μοποιούμε δύο μεθόδους:

• Επαναληπτική εκπαίδευση (Iterative Training): Εκπαιδεύουμε για μία εποχή το μοντέλο χωρίς
να αλλάζουμε τον μηχανισμό ΑΚΠ. Στην επόμενη εποχή εκπαιδεύουμε τον μηχανισμό ΑΚΠ
μόνο και σε διαφορετικό υποσύνολο δεδομένων εκπαίδευσης κρατώντας τα βάρη του υπόλοιπου

μοντέλου σταθερά. Επαναλαμβάνουμε τις δύο εποχές εκπαίδευσης χρησιμοποιώντας τα ίδια δύο
υποσύνολα δεδομένων κάθε φορά πραγματοποιώντας 15 τέτοιες επαναλήψεις συνολικά.

• Σειριακή Εκπαίδευση (Sequential Training): Εκπαιδεύουμε για 15 εποχές το μοντέλο χωρίς να
αλλάζουμε τον μηχανισμό ΑΚΠ, δηλαδή διατηρώντας τα βάρη του όπως στην αρχικοποίησή τους.
Ακολούθως εκπαιδεύουμε τον μηχανισμό μόνο για 5 εποχές στο μικρό υποσύνολο δεδομένων
εκπαίδευσης.

Εφαρμόζουμε τις μεθόδους εκπαίδευσης στις κεφαλές των δύο μηχανισμών αυτό-προσοχής του μον-
τέλου. Τα αποτελέσματα φαίνονται στον πίνακα 3. Τα αποτελέσματα είναι ελαφρώς χειρότερα από
αυτά του μοντέλου, το οποίο εκπαιδεύεται ταυτόχρονα με τον μηχανισμό ΑΚΠ.

Enc. SA Dec. SA Training Mode PPL Training PPL Test BLEU Test
+ Jointly 4.82 5.41 33.61

+ Jointly 5.14 5.46 33.28
+ + Jointly 4.66 5.42 33.54
+ Sequential 5.35 5.77 32.10

+ Sequential 5.39 5.71 32.41
+ + Sequential 5.33 5.81 32.52
+ Iterative 5.29 5.76 32.24

+ Iterative 5.53 5.76 32.27
+ + Iterative 5.27 5.79 32.22

Table 3. Το μοντέλο transformer εκπαιδεύεται με τρεις διακριτούς τρόπους: όλο μαζί (Jointly),
με επαναληπτική εκπαίδευση και με σειριακή εκπαίδευση. Η μέθοδος CAH εφαρμόζεται είτε σε
έναν από τους μηχανισμούς αυτο-προσοχής είτε και στους δύο ταυτόχρονα. Αναφέρεται η μετρική
perplexity στο σύνολο δεδομένων εκπαίδευσης (PPL Training) και στο σύνολο δεδομένων ελέγχου
(PPL Test) και η μέτρηση BLEU στο σύνολο δεδομένων ελέγχου. Το μοντέλο εκπαιδεύτηκε για
15 εποχές.

0.5.2 Εφαρμογή στο RoBERTa

Εκπαιδεύουμε το μοντέλο RoBERTa στο πρόβλημα της μοντελοποίησης γλώσσας πάνω σε κεί-
μενο από την αγγλική έκδοση της Wikipedia. Εφαρμόζουμε την μέθοδο ΑΚΠ στους μηχανισμούς
αυτό-προσοχής όλων των επιπέδων του μοντέλου. Αναφέρουμε μετά την έβδομη εποχή εκπαίδευσης
τιμή της μετρικής perplexity στα δεδομένα εκπαίδευσης ίση με 12.55 για το μοντέλο RoBERTa και
12.76 για την έκδοση με χρήση της μεθόδου ΑΚΠ. Οι αντίστοιχες μετρικές για τα δεδομένα επαλή-
θευσης (validation set) είναι 10.04 και 10.15 αντίστοιχα. Συνεπώς ούτε η εφαρμογή της μεθόδου στο
RoBERTa φαίνεται να βελτιώνει τις αποδόσεις του μοντέλου.

33

Κεφάλαιο 0. Εκτεταμένη Ελληνική Περίληψη

0.6 Συζήτηση και Πιθανές Λύσεις

Μετά από περαιτέρω έρευνα στο μοντέλο transformer ανακαλύψαμε ότι οι νόρμες των σημάτων
ακυρώνουν σε ένα βαθμό τις τιμές συμβατότητας που ανατίθενται από τον μηχανισμό ΑΚΠ. Αυτό
σημαίνει ότι το μοντέλο προσαρμόζεται στην μετατροπή που πραγματοποιούμε. Μία πιθανή λύση
στο πρόβλημα είναι η αντικατάσταση του μηχανισμού από έναν που θα ενεργοποιεί τις πιο σχετικές

κεφαλές και θα απενεργοποιεί τις λιγότερο σχετικές, στην λογική του μοντέλου των Goyal et al.
(2019) [2]. Ωστόσο προκαταρκτικά πειράματα σε αυτή την κατεύθυνση έδειξαν πτώση της απόδοσης.
΄Οπως ισχύει συνήθως με τις επαγωγικές προτιμήσεις, η υλοποίηση και ενσωμάτωσή τους στα μοντέλα
είναι αρκετά δύσκολο να επιτευχθεί. Παρόλα αυτά, θεωρούμε ότι ένας μηχανισμός που θα οδηγεί στην
εξειδίκευση των κεφαλών προσοχής θα μπορούσε να φανεί επωφελής και η λύση ίσως να βρίσκεται

στην επιλεκτική ενεργοποίηση υποσυνόλου των κεφαλών.
Κάποιος θα μπορούσε να χρησιμοποιήσει άλλη μετρική εκτίμησης της σχετικότητας της κεφαλής

στη θέση του εσωτερικού γινομένου με τα διανύσματα συνάρτησης, όπως την κατανομή των τιμών
προσοχής (attention maps). Ακόμα κάποιος θα μπορούσε να δοκιμάσει να αντικαταστάσει τη ανταγ-
ωνιστική διαδικασία με μία μέθοδο κανονικοποίησης (regularization) που θα ωθεί τις κεφαλές στην
εξειδίκευση.

34

Chapter 1

Introduction

1.1 The Problem of Creating Truly Intelligent Agents With
Machine Learning

The term Artificial Intelligence (AI) is a very broad one. As will be noted in chapter 2
there are various approaches to defining it. Generally speaking, the goal of AI is to build agents
that are able to solve a wide variety of real-world problems for humans which currently demand
the active involvement of one or more people in order to be solved.

Machine Learning (ML) is considered to be a sub-field of AI, preoccupied with designing
agents that are able to apply knowledge learned from prior experience to solve problems that are
presented to them. Modern state-of-the-art (sota) machine learning methods employ forms of
pattern matching, i.e. they detect patterns and draw conclusions about them using a set of
data, called training data, which plays the role of prior experience; when presented with new
samples they attempt to infer which of the learned patterns are present in these samples in order
to apply their conclusions to them.

An example that is commonly employed to describe how ML algorithms function is house
pricing. The price of a house depends on a number of factors, called features, including the area
where the house is located, its square footage, the number of bedrooms, the year of construction,
etc. ML models are given a training set of pairs of such house features along with the corresponding
prices and are called to learn a mapping from the first ones to the latter. The desired outcome
of this process is a model that is able to predict prices of houses it has never seen before. This
is done through an interpolation process. Essentially, the model employs already seen house-price
mappings to deduce reasonable prices for combinations of feature values it hasn’t encountered
before.

Obviously it is impossible to obtain a dataset covering every possible combination of feature
values, thus the need for interpolation. If a new house presented to the model is similar to other
houses, that the model has seen during training, the model will likely base its predictions on the
these houses’ prices, and will pay less attention to houses of the training set whose features differ a
lot from the new one’s. But, one could potentially want to use the model for predicting the prices
of houses with feature values that are uncommon or even have never appeared before, like in the
case of a house that is located at an area in which no houses of the training set were found. A
human agent who is relatively familiar with this area, but not with prices of houses located at it,
could do this easily, whereas modern ML algorithms would require the gathering of a new set of
data about house prices in this new area and the re-training of the model using this data set. The
gathering of a new set of samples is known to be tiresome and expensive because machine learning
models generally need a lot of data for their training.

A truly intelligent model would be able to reason about the effect of locations on house prices

35

Chapter 1. Introduction

as well as how this is related to knowledge about the new location that may be readily available.
Ideally, the model should connect the available pieces of information to infer a reasonable price
or decide which of them are missing and either generate a prediction while also issuing a related
warning regarding its low confidence or actively seek to fill in its knowledge gaps.

Modern ML models are unable to perform such reasoning processes that require a form of
systematic thinking. As a result, where humans only need a handful of data to solve complicated
problems, ML models require data sets of millions of samples. Solving this problem would bring
the research community a step closer to what is known as artificial general intelligence (AGI),
a property possessed by thinking agents that are able to perform comparably to a human being in
any possible task.

Solving this problem demands modifications in the way ML models store, process and combine
pieces of knowledge as well as in their training processes. As Goyal and Bengio (2020) [51] note,
models must be able to store knowledge in a way that allows them to decide on the fly which pieces
of knowledge are relevant in a given situation and how these must be recomposed to enable the
model to deal with the problem at hand. In addition to that, during training models must confront
problems whose solution requires the development of the above skills on the part of the models.

1.2 Research Contributions

The goal of this thesis is twofold: to thoroughly present the work of a group of researchers
lead by Yoshua Bengio, which aims to address the aforementioned problems, and to attempt to
contribute to solving the problem of organized knowledge storage in the weights of a family of
models that are based on the famous machine learning model called the transformer [1].

In more detail, we review parts of the work of Bengio and his research team in the direction of
building models that are capable of performing the higher cognitive functions humans do. Their
research comprises of a set of suggested modifications in neural architectures and training methods
which are based on assumptions or else preferences, which they name inductive biases.

We also take a closer look at the sources of inspiration of these research efforts, which include
notions from cognitive science, neuroscience and the study of causality.

Goyal and Bengio (2020) [51] contend that intervening in the way knowledge is organized inside
a model can lead to more efficient models with improved generalization abilities. We thus propose
two modifications to the well-known Transformer architecture, seeking to control the knowledge
storing process in a way that results in the segmentation of the models into specialized modules.
Specifically, we propose a) the replacement of the FFNN of each Transformer layer with a set of
parallel FFNNs that are trained selectively based on a competition process and b) employing a
similar competitive training framework to train the attention heads of the model. We implement
the second idea using a softmax layer to promote competition among the attention heads. We
analyze the results and discuss possible directions of future work.

1.3 Thesis Outline

In chapter 2, Machine Learning and Neural Networks, we attempt to define artificial intelligence
(AI) and we also discuss related research areas in more detail. We also introduce fundamental
machine learning (ML) concepts and algorithms. We further delve into the matter of neural
networks (NNs) examining some core concepts and most basic neural network architectures.

In chapter 3, Natural Language Processing, we briefly present key aspects of the field of natural
language processing (NLP), discussing some of its signature problems and focusing on the matter
of language modeling (LM). We explain how modern neural networks are currently used to solve

36

1.3 Thesis Outline

NLP problems and examine two of the most widely used neural models in the field right now, the
transformer and BERT.

In chapter 4, Modeling System 2 with Neural Networks, we start with a discussion about the
sources of inspiration of the research efforts we present later in the chapter. We give the definitions
of System 1 and System 2, as presented by Daniel Kahneman, we analyze the Global Workspace
Theory introduced by Baart, provide examples as to how the notion of module specialization
applies to the human brain and explain how the field of causality introduces the assumption of
independent mechanisms. Following that, the approach of meta-learning is discussed. We then
present the inductive biases suggested by Goyal and Bengio (2020) [51] and continue with their
efforts to incorporate them to the methods used to train neural networks as well as to neural
models’ architectures.

In chapter 5, Transformers with Competitive Attention Heads and FFNNs, we point out prob-
lems that result from the choice to segment neural architectures in an effort to implement the
notion of modularity. Consequently, we propose two modifications to transformer-based architec-
tures: competitive FFNNs and competitive attention heads (CAHs). We implement the latter and
analyze the results.

In chapter 6, Conclusions, we present our conclusions and suggest possible directions for future
work.

37

Chapter 2

Machine Learning and Neural Networks

2.1 Introduction

Understanding human intelligence has always been one of mankind’s biggest pursuits. From
the time of Plato and the differentiation between discursive reason and intuitive reason [54] to the
work of modern neuroscientists who, with the use of tools such as functional magnetic resonance
imaging (fMRI) [55], study how the actual neurons of human brain work and cooperate to produce
a thought or react to a certain stimuli. Yet, it is only 79 years ago, in 1943, that McCulloch and
Pitts proposed the first model of an artificial neuron [56] and only 72 years ago, in 1950, that
Alan Turing spoke of “thinking machines” [57], setting the foundations of Artificial Intelligence
(AI). Despite the shortness of this period humanity has produced chat-bots that are today used
in costumer service, banking and even healthcare; it has created models that perform comparably
to humans in certain image classification tasks [58] and has trained agents that can beat human
experts at complex games such as Go [59] and Stratego [60]. Therefore, the public’s excitement
about Artificial Intelligence and Machine Learning (ML) is understood, but before one delves into
the exciting world of Artificial Intelligence, an acquaintance with some basic terms is necessary.

Defining Artificial Intelligence is not that easy. As noted by two AI pioneers, Artificial
Intelligence research comes in a variety of forms, depending on the degree rationality that the
agent is expected to exhibit and the mechanism that produces the desirable intelligent behavior
[61]. Next the 4 combinations that result from these two dimensions will be discussed, and during
this discussion definitions of additional useful terms will be given, in a way that the importance of
the corresponding areas of research to the umbrella field of Artificial Intelligence is best understood.

• Acting Humanly: In his 1950 article [57], Alan Turing proposed the Turing test as a
method to answer to the question of whether a certain “machine can think”. A computer is
asked written questions by a human interrogator, and passes the test if, upon providing the
human with answers, the human interrogator can’t tell if these were given by another human
or a computer. In this version of Artificial Intelligence, the machine’s answers should not
be mathematically perfect, but simply logical in the same way a human’s answers would be
expected to be. Moreover, in this version of Artificial Intelligence, what is tested is not the
internal process that the machine performs but rather its behavior.

Russel and Norvig note that the machine would need the following capabilities to pass the
test:

– Natural Language Processing: a field of Artificial Intelligence that is concerned with
enabling computers to analyze and understand written and spoken human language,
and also to respond using written and spoken human language [62]. Natural Language
Processing (NLP) will be further discussed in chapter 3.

39

Chapter 2. Machine Learning and Neural Networks

– Knowledge Representation: a field of Artificial Intelligence that is concerned with
studying ways to represent information about the real world in a form that enables
computers to reason with [62].

– Automated Reasoning: a field of Artificial Intelligence that is concerned with en-
abling computers to manipulate knowledge by making logical inferences towards a cer-
tain goal that can be either provided by the user or decided by the computer itself
[62].

– Machine Learning: a field of Artificial Intelligence that is concerned with enabling
computers to learn from experience. Learning from observations means that the system
should possess the skills to find patterns in the data, assess their significance and inte-
grate the newly gained knowledge successfully [62, 63]. Machine Learning subject areas
include computer science, mathematics, statistics, Data Mining, Deep Learning, data
science and NLP [64]. Machine Learning and Deep Learning will be further discussed
in the following chapters.

A total Turing test would require a physical entity, a robot, that can interact with real world
objects and people. In that case the following would also be required:

– Computer Vision: a field of Artificial Intelligence that deals with how computers can
derive useful high-level information from visual inputs such as images and videos [65].

– Robotics: an interdisciplinary branch of computer science and engineering with a goal
of creating machines, called robots, that can be programmed as to carry out a large set
of orders. It is important to note that if the machine can only deal with a narrow order
category then it is probably not a robot [66].

Yet most researchers believe that studying the fundamentals of intelligence, and not passing
the Turing test, is the way to AI. Therefore they shift from trying to achieve intelligent
behavior to attempting to program the internal processes of thinking.

• Thinking Humanly: Researchers pursuing this goal strive to first comprehend the way
that humans think. Russel and Norvig provide three tools that researchers use to achieve
this goal: introspection, psychological experiments and brain imaging. Using these
tools researchers can develop theories about the inner working of the human mind and then
test them by analyzing the behavior of computer programs that implement them.

– Cognitive Science: the study of the mind processes. It is directly connected to the
fields of neuroscience, psychology, computer science and others. This term will be
further developed in the following chapters as ideas emanating from cognitive science
have found and continue to find applications to AI models.

But trying to imitate the human way of thinking is not the only way to create intelligence.
Humans rarely do mathematical calculations before making a decision, but no one would call
a machine dumb for doing so.

• Thinking Rationally: Logical rules are a part of the field called Logic and were first
introduced by the ancient Greek philosopher Aristotle. The rules, given correct inputs - in
the sense of true in the real world - in the form of logical sentences are bound to yield correct
outputs or conclusions. Researchers of this area, called Logicists, try to use Logic to create
Artificial Intelligence. But, as it is impossible to be certain of the set of rules that govern a
system and the validity of the input, the theory of probability is often used to deal with
this uncertainty.

40

2.2 Machine Learning Types

The last version of Artificial Intelligence is concerned with enabling the machine to act
rationally, aside from thinking rationally.

• Acting Rationally: A machine acting rationally is called a rational agent and it is expected
to pursue through its actions the best possible outcome. This version is the one that has
been pursued most by AI researchers in the field’s history because of its advantages over the
other versions:

– Generality: It is more general than the “rules of thought” approach as correct inference
is just one of the capabilities a rational agent should possess. It also uses all the sub-
fields used by the first approach as it is expected to find solutions to real world problems,
implement them and communicate with other agents and humans.

– Mathematical soundness: It is mathematically well defined and that assists the
design of machines that provably achieve it. Th same is not true with the first two
versions that deal with the human mind and behavior.

2.2 Machine Learning Types

As the main goal of Machine Learning is to learn from experience it is evident that any Machine
Learning process is based on real world observations. These observations can be images, videos,
written or spoken language, numbers etc. Machine Learning researchers have concluded that many
Machine Learning algorithms work best when the raw real world observations are first processed in
a way that makes it easier for the algorithms to find patterns in the data. This procedure is called
preprocessing and it can vary from being as simple as removing punctuation from raw text to
being very complicated such as isolating different objects from one another in an image. Another
optional step that may come next is using the preprocessed data to extract useful features, such
as the number of appearances of a word in a text or the length of an object in a picture. This step
is called feature extraction. The resulting informative units are called feature vectors [3].

Machine Learning categories differ from each in the type of information that accompanies these
data points.

• Supervised Learning: In a Supervised Learning setting the Machine Learning model is
provided with a label for each feature vector. The goal of supervised Machine Learning
algorithms is to exploit the information provided by the given vector – label pairs, called
samples, in order to be able to correctly predict the labels of unseen feature vectors. This
ability is called Generalization. In that sense what is learned is a function that maps
feature vectors to labels. These pairs constitute the training set of the problem. In order
to evaluate the model a number of feature vectors, for which the correct labels are know a
priori, are given as inputs to the model and its possibly wrong outputs are compared to the
correct labels. This set of pairs is called the test set of the problem.

– Labels can be categorical, like the topic of a text or an object shown in a picture. In this
case the set of possible labels is a finite one and the problem is called a classification
problem [4].

– Labels can also be sets of one or more continuous variables, like the price of a house or
of a certain stock in the stock market. In that case the problem is called a regression
problem [4].

• Unsupervised Learning: In an Unsupervised Learning setting the Machine Learning model
is only provided with the feature vectors and not the corresponding labels. The goal in

41

Chapter 2. Machine Learning and Neural Networks

this setting is to group these feature vectors by some measure of similarity that is defined
explicitly or implicitly in the chosen model itself. The formed groups are called clusters and
the corresponding process is also called clustering. While all feature vectors that belong
in the same cluster must share some similarities, different algorithms may yield different
clusters for the same set of feature vectors. In a hard clustering process a feature vectors
may belong to only one cluster while in a soft clustering one many clusters may share a
feature vector.

A clustering algorithm may be used for example by a marketing team to discover the potential
client subgroups, examine their traits and design their products and marketing campaigns
accordingly. Another possible use of a clustering algorithm is to improve the understanding
of the structure of a certain dataset and then use this knowledge build a supervised learning
model that is better suited to it [67].

• Semi-supervised Learning: Labeling samples is usually performed manually and can be
very costly to do so. Therefore some datasets only have a, usually small [68], portion of their
samples labeled, while this kind of information does not exist for the rest of the points and
they are consequently called unlabeled. The goal in such a setting can be similar to the
supervised setting’s one. In that case the unlabeled samples provide information about the
nature of the data, that might not be recoverable from the labeled points. This knowledge
can then be used in the design of the supervised learning model.

It is also possible to use this kind of information to perform clustering. For example, in
the case of categorical labels, the user can impose a constraint on the clustering algorithm,
that labeled samples of the same category must belong to the same cluster while samples of
different categories should belong to different clusters [67].

• Reinforcement Learning: In some real world scenarios the possible there may innumerable
different positions an agent may find itself into. These problems are impossible to solve using
supervised learning, that uses labeled samples to extrapolate to generalize to unseen cases.
Even in the case of a simple chess match there are about 1040 possible chess positions,
rendering supervised learning inconvenient due to the huge size of necessary position – move
example pairs, provided by a chess-master for example. If a machine finds itself in a similar
scenario it cannot afford to passively wait for the needed information like in the supervised
learning setting, but it should actively explore the search space to obtain effective tactics
of achieving its goal. Instead of expensive labels the computer needs only to be given a
response to its actions, informing it whether it has achieved its goal or not, which can be
easily programmed because goals are usually well defined. The positions that computer
may find themselves in are called states, a move they may choose to perform is called an
action, the sets of state – action pairs that computers choose from are called policies and
the system’s responses to machines’ actions are called rewards. The computer’s target is to
find a policy that maximizes the expected sum of rewards, starting from a given initial state.
If the computer is only rewarded for achieving its goal, like in chess, then the rewarding
system is called sparse. However the are games like tennis in which rewards may be given
even before the goal is achieved, like when a points or a set is won. What is very interesting
is that a computer may occasionally choose to temporarily receive a smaller reward in order
to explore state – action combinations that may yield larger rewards in the future [61, 69].

42

2.3 Machine Learning Concepts and Models

2.3 Machine Learning Concepts and Models

At the foundations of Machine Learning lie certain concepts that provide the mathematical
justification of Machine Learning algorithms. In this chapter, basic Machine Learning concepts
will be discussed as well as algorithms that directly result from them.

2.3.1 Bayesian Decision Theory

The training set of a classification problem is composed of N samples, comprised of feature
vectors along with the respective labels. The feature vector of the i-th sample is represented by
x(i) = [x

(i)
1 , x

(i)
2 , · · · , x(i)

D]T and belongs to a class ω(i). The set of all feature vectors of the dataset is
represented by the notation {x}N1 and the finite set of possible classes is represented by Ω = {ω}M1 .
The following statistical quantities are of interest:

• The probability of appearance of a class i is equal to P(ωi) and is called a priori probability.
A priori probabilities are usually estimated using the rate of appearance of each class in the
dataset. For example P (ωi) ≈ Ni/N , where Ni is the number of samples that belong to the
i-th class. Assuming that N is much larger than the number of classes this estimation is
quite accurate.

• The conditional probability density function of a feature vector x belonging to the i-th class,
p(x|ωi), is called class-conditional probability density function.

• The conditional probability density function of a feature vector x belonging to a class ωi,
p(ωi|x), is called a posteriori probability.

• It is generally assumed that all feature vectors are drawn from a pdf p: x(i) ∼ p, i ∈ {1, ..., N},
which is called evidence probability.

Bayes rule connects the above quantities with the equation:

p(ωi|x) =
p(x|ωi)P (ωi)

p(x)
, where (2.1)

p(x) =
M∑
i=1

p(x|ωi)P (ωi) (2.2)

In the case of a set of two possible classes, ω1 and ω2, the Bayesian classification rule
indicates that:

• if p(ω1|x) > p(ω2|x), then x is classified as belonging to the first class, ω1

• if p(ω1|x) < p(ω2|x), then x is classified as belonging to the second class, ω2

In the case of equality the sample can be assigned to either of the two classes. Using equation 2.1,
the inequalities can be written as

p(x|ω1)P (ω1)

p(x)
≶

p(x|ω2)P (ω2)

p(x)

and by cancelling out p(x), which does not depend on the class identity, one can decide about the
value of the label of x without computing the evidence probability:

p(x|ω1)P (ω1) ≶ p(x|ω2)P (ω2) (2.3)

43

Chapter 2. Machine Learning and Neural Networks

By writing down the total classification error and computing the areas under the curve it is
proven that the total classification error is indeed minimized at the point suggested by equation
2.3.

Pe = P (x ∈ R2, ω1) + P (x ∈ R1, ω2)⇒

Pe = P (x ∈ R2|ω1)P (ω1) + P (x ∈ R1|ω2)P (ω2)⇒

Pe =

∫
R2

p(x|ω1)P (ω1) dx+

∫
R1

p(x|ω2)P (ω2) dx (2.4)

This is explained graphically in figure 2.1, where it is shown that following the Bayesian clas-
sification rule yields the minimum possible expected classification error [3].

Figure 2.1. The expected error is reduced when the chosen point is the one that minimizes the
sum of the two areas under the curves. This point is the one chosen by the Bayesian classification
rule, xB, while choosing any other point x∗ yields additional error [3].

It can also be shown, by maximizing the probability of being correct, that in the case of M
classes assigning x to ωi if p(x|ωi)P (ωi) > p(x|ωj)P (ωj),∀j ̸= i, also minimizes the classification
error probability.

Viewing the matter from a different angle it is evident that, if the class-conditional and the a
priori probabilities are known, then the Bayesian classification error is the minimum possible error
that can be achieved and it is achieved using the Bayesian classification rule [67].

2.3.2 Discriminant Functions

If the feature vector x is viewed as a continuous function then the feature space can be parti-
tioned into M regions, where M is the number of possible classes. Between two contiguous regions,
Ri and Rj , there lies a surface that is defined by the equation p(x|ωi)P (ωi) = p(x|ωj)P (ωj). This
surface is called a decision surface. So far only probabilistic interpretations of the decision process
have been used. Yet one can also use any monotonically increasing function f to create functions
of the form gi(x) = f(p(ωi|x)). Functions of the form of gi are called discriminant functions
and they can be used to assign a feature vector x to a class i if it is true that gi(x) > gj(x) for
every other class j [67].

The probabilistic approach described in 2.3.1 is well suited to problems in which modeling class-
conditional probability density functions is possible. Models that result from the computation of
p(x|ωi) are called generative models as it is possible to use the class-conditional probability
to generate instances of the class ωi. Nevertheless, if the class-conditional probability density

44

2.3.3 Maximum Likelihood Estimation

functions are too complicated to estimate explicitly, one might choose instead to model discriminant
functions, creating models that are known as discriminative models.

2.3.3 Maximum Likelihood Estimation

Usually, the class-conditional probability is unknown and it must be modelled before proceed-
ing to the computation the two sides of the aforementioned inequalities. One can approach this
modeling problem in various ways. One way that will be discussed in this chapter, is called Maxi-
mum Likelihood Estimation (MLE) . In the general case of an M -class classification problem
with likelihood functions p(x|ωi), i ∈ 1, · · · ,M the following assumptions are made:

i) Parametric form: The likelihood functions are assumed to be of a parametric form with
the parameter vectors θi, i ∈ 1, · · · ,M , being unknown

ii) Functional independence: The estimation of a parameter vector θi of a certain likelihood
function p(x|ωi) is independent from the estimation of every other parameter vector θj , j ̸= i

iii) i.i.d. feature vectors: Different feature vectors are statistically independent and identically
distributed

Due to the first assumption the likelihood of a certain class can written as p(x|ωi;θi). This
assumption essentially means that a likelihood function is considered to belong to a distribution
family and is made specific with the determination of the parameter vector. Owing to the second
assumption the parameters of each class can be computed independently from the parameters of
the other classes. Then one can focus on random samples x(1),x(2), · · · ,x(Ni) of the same class
i that are drawn from p(x|ωi;θi) and their joint pdf p(Xi|ωi;θi), which will be represented by
p(x|θi) and p(Xi|θi) respectively from now on. Because of the third assumption it is true that

p(Xi|θi) = p(x(1),x(2), · · · ,x(Ni)|θi) =

Ni∏
k=1

p(x(k)|θi) (2.5)

Solving the problem, in general, means estimating θi. Using Bayes theorem:

θ̂i = argmax
θi

p(θi|Xi) = argmax
θi

p(Xi|θi)p(θi)

p(Xi)
= argmax

θi

p(X|θi)p(θi) (2.6)

In Maximum Likelihood Estimation the parameter vectors are computed as to maximize p(Xi|θi).
This is equivalent to choosing, out of all the members of the family of probability distributions that
the likelihood function belongs to, the one that better explains that data at hand. Then, dropping
the class-specific notation, it is true that:

θ̂MLE = argmax
θ

N∏
k=1

p(x(k)|θ) (2.7)

By applying the logarithm function to the product in equation 2.7 the log-likelihood is defined:

L(θ) = ln
N∏

k=1

p(x(k)|θ) (2.8)

At θ̂MLE , the likelihood function’s gradient w.r.t. θ must then be equal to zero. Since the
logarithm is a monotonic function, the equality of the derivative to zero is also applied to equation

45

Chapter 2. Machine Learning and Neural Networks

2.8. Then, using the logarithm’s properties results to:

∂L(θ)

∂θ
=

N∑
k=1

∂ln(p(x(k)|θ)
∂θ

=

N∑
k=1

1

p(x(k)|θ)
∂p(x(k)|θ)

∂θ
= 0 (2.9)

It can be shown that, under some conditions that are true under most circumstances, the esti-
mate converges in the mean to the true value of θ, meaning that it is asymptotically unbiased.
Note that the parameters must be computed for every class separately [67].

As was previously stated, the Bayesian classification error is the minimum possible error that
can be achieved by a classifier. But the total classification error is almost always larger than that.
Failing to include a true likelihood function in the family of distributions expressed by the assumed
model inevitably leads to a modeling error. Moreover, even if the true likelihood function is indeed
included in the family of distributions assumed, one has to account for possible estimation errors
that usually occur because of the limited number of available examples.

2.3.4 Maximum a Posteriori Estimation

The difference between MLE and maximum a posteriori estimation (MAP) is that, while
in the first case θ is considered to be an unknown parameter, in the latter case it is considered to
be a random vector. Then, equation 2.7 becomes:

θ̂MAP = argmax
θ

N∏
k=1

p(x(k)|θ)p(θ) (2.10)

with the only difference to equation 2.8 being the existence of p(θ) in the relationship. This is
equivalent to adding bias to the estimation of θ. If knowledge about θ exists then with MAP it
can be integrated to the computations. Additionally, if θ is assumed to be a uniform distribution,
in which case all values are equally probable, this method becomes equivalent to the MLE [67].

2.3.5 Linear Regression

Regression problems are a category of supervised learning problems. The output in this case
is a continuous variable and the problem is to find the relation between the input variables, which
constitute the feature vector, and the output variable. The simplest form of a regression model is
the discriminative model in which the output variable is the sum of a linear combination of the
input variables plus a constant. This is called linear regression (LR) and, by introducing an
intercept term, it can be written as:

y(x,θ) = θ0 + θ1x1 + · · ·+ θDxD =

D∑
d=0

θdxd = θTx, where x0 = 1 (2.11)

The parameters θ0 and θ1, θ2, · · · , θD are also called bias and weights respectively. The
training set of a regression problem is comprised of pairs {x(i), y(i)}N1 , where x(i) is the feature
vector of the i-th sample and y(i) is the corresponding label. To perform the task of fitting the
model y(x,θ) to the data {x(i), y(i)}N1 , a cost function, also called a loss function, is defined:

J(θ) =
1

2

N∑
k=1

(y(x(k),θ)− y(k))2 (2.12)

The cost function measures "how good" y(x,θ) models the training set. Obviously, the smaller
the cost function is, the better y(x,θ) is at modeling the training set. It is then a natural next

46

2.3.5 Linear Regression

step to try estimating θ by minimizing the cost function. This introduces an important topic,
which is the optimization of a cost function, and in this particular case the minimization of the
mean square error (MSE). Even though equating the derivative of the cost function to zero
and solving the resulting system of equations can be done in this case, as the the system is linear
w.r.t. the unknown parameters, doing so is not always possible because of the complexity of most
cost functions. One can alternatively begin by guessing an initial value for θ and then start taking
small steps towards the direction that minimizes the cost function. In the case that the direction of
these steps is determined by the derivative of the cost function with respect to θ the optimization
algorithm is called gradient descent (GD):

Algorithm 2.1: Gradient Descent

initialize θ with θ0

i← 0
while algorithm has not converged do
θi+1 = θi − a∇J(θi)
i← i+ 1

end while

The minus sign in the update rule indicates
that a step is taken as to minimize J(θi). The
scalar value a is called learning rate and it
determines the size of the step taken. Conver-
gence rules are decided depending on the prob-
lem. Possible convergence conditions could be
the reduction of the value of the cost function
or of the rate of change of the parameter value
below a threshold.

In the case of linear regression the gradient descent update rule is:

θi+1 = θi − a

N∑
k=1

(θT
i x(k) − y(k))x(k) (2.13)

Intuitively, what happens is that the error for each sample is computed and then multiplied by
the corresponding feature vector. If the error is negative then the parameter vector is moved closer
to the feature vector, so that their inner product yields a larger output. If the error is positive
then the opposite happens [4].

Linear Regression and Maximum Likelihood

Linear regression and maximum likelihood are connected in a very interesting way. Assume
that:

i) The training samples are statistically independent and identically distributed (iid)

ii) The labels are the response of a stationary system to the input variables, which are the
feature vectors

iii) The uncertainty over the value of a label t is expressed using a probability distribution.
Uncertainties may arise from an inability to consider all factors that affect the output variable,
that is from missing some of the inputs, or from the addition of random noise. Given x, t is
assumed to follow a Gaussian distribution with a mean value of y(x,θ). This is otherwise
stated as

p(t|x;θ, β) = N (t|y(x,θ), β−1) (2.14)

or
t = y(x,θ) + ε, where p(ε) = N (ε|0, β−1) (2.15)

The goal is again estimating the unknown parameters θ. Using the first assumption and

47

Chapter 2. Machine Learning and Neural Networks

equation 2.14:

p(Y |x;θ, β) =
N∏

k=1

N (y(k)|y(x(k),θ), β−1), where Y = {y(k)}N1 (2.16)

Then, after applying the logarithm and substituting for the form of the Gaussian distribution:

L(θ) = ln p(Y |x;θ, β) = −β

2

N∑
k=1

(y(x(k),θ)− y(k))2 +
N

2
lnβ − N

2
ln(2π) (2.17)

Since the first term is the only one that is dependent on θ, applying MLE and maximizing L(θ)

means minimizing the first term which has the same roots with the cost function J(θ) of 2.12.
Therefore MLE and MSE minimization yield the same result under the assumptions presented
above [4].

Generalized Linear Regression

If the system generating the samples is indeed linear w.r.t. to x then using the method presented
above one can sufficiently fit the data at hand. Yet, usually, this is not the case, but the output
may instead be dependent on the input in a nonlinear manner. Fortunately, taking the derivative of
y(x,θ) w.r.t. x is nowhere needed in the calculations and only its derivative w.r.t. θ is taken in the
optimization process. Therefore, one needs not be restricted to a linear dependence on the input,
but can create nonlinear functions of it and then use a linear combination of them to model highly
nonlinear systems. Such functions are called basis functions and they can be used as a part of a
feature extraction process that was briefly mentioned in chapter 2.2. An example of this, in the case
of a 3-dimensional input x, is the feature vector φ(x) = [1, x1, x2, x3, x1x2, x1x3, x

2
1, x

3
3]

T . Note
that the dimension of the feature vector φ(x) can be smaller or even bigger than the dimension of
the input. With the use of non-linear feature vector equations 2.12 and 2.13 become:

J(θ) =
1

2

N∑
k=1

(y(φ(x(k)),θ)− y(k))2 (2.18)

θi+1 = θi − a

N∑
k=1

(θT
i φ(x

(k))− y(k))φ(x(k)) (2.19)

Overfitting and Regularization

Manufacturing feature vectors enables the modeling of highly complex functions, but it also
creates a new problem. What happens when the data present in the training set can be modeled
by a number of complicated functions of the input, but the actual system responsible for producing
the dataset is much simpler? Even worse, there are cases in which random noise may affect the
values of the labels and drive the optimization algorithm into computing parameters that model
this influence. An example of this is shown in figure 2.2.

Polynomials with M = 0 (e.g. y = θ0) or M = 1 (e.g. y = θ1x+θ0) are too simple to model the
sine function. On the contrary, a polynomial with M = 9 can fit the data perfectly, but again fails
to capture the underline structure. Therefore providing a model with high degrees of freedom may
lead to over-complicated assumptions, rendering it incapable of generalizing to unseen instances.
This problem is known as overfitting. A better model would be a polynomial with M = 3 as
shown in the figure. But this model, in contrast to the one with M = 9, does not yield zero error.

This examples shows that minimizing the error may itself not be enough to create a model

48

2.3.5 Linear Regression

Figure 2.2. Polynomial models of various orders M (red) modeling fitting data created by sin(2π)
(green) with the addition of Gaussian random noise [4]

with generalizing capabilities. This is why another term, called regularizer, is usually added
to the cost function, which helps to mitigate the aforementioned problem. This process is called
regularization.

Coming back to the example, one might not know the ideal value for M beforehand and may use
a larger value initially. A regularizer must then eliminate higher order coefficients while allowing
the rest to model the unknown function. After the addition of a possible regularizer, the new cost
function can be written as:

J(θ) = Jerror(θ) +
λ

2

D∑
k=1

θ2k (2.20)

where D is the polynomial’s order and the coefficient λ determines the relative importance of the
regularization term with the error one. Minimizing this cost function will push both the error
and the coefficients towards zero and, if λ is chosen correctly, only unnecessary coefficients will be
eliminated, while the rest will be computed as to minimize the error term. Because this regularizer
drives weights to zero it is known as weight decay. The parameter λ, as well as the order of
the polynomial, M , and many others are known as hyper-parameters. They are chosen before
the trainable model parameters are adjusted through a training process. As in the case of λ,
where a delicate balance is required between error minimization and regularization, the values of
hyper-parameters must be chosen carefully so that the resulting model architecture be ideal for
the problem at hand. A method that is usually used to discover ideal values for hyper-parameters
will be discussed in chapter 2.4.6.

Similarly, with the use of a regularizer, the cost function in equation 2.18 becomes:

J(θ) =
1

2

N∑
k=1

(y(φ(x(k)),θ)− y(k))2 +
λ

2

D∑
k=1

θ2k (2.21)

This method is called Regularized Least Squares [4].

49

Chapter 2. Machine Learning and Neural Networks

2.3.6 Logistic Regression

The concepts that were discussed in chapter 2.3.5 are also relevant to the classification problem.
First consider a classification problem of two classes, ω1 and ω2, with a training set of N samples
{x(i), ω(i)}Ni=1, where x(i)’s are vectors. Since there are two classes it seems natural to use a model
that will assign a value of 0 to examples it believes to belong to the first class and a value of 1
to examples which it believes to belong to the second one. Without loss of generality, for this
problem, 0 will correspond to ω1 and 1 to ω2. If the model is not sure about its decision then it
could assign a value belonging in the interval (0, 1), which can be closer to 0 if it believes that the
sample most likely belongs to class ω1 and closer to 1 to signal the opposite.

Unfortunately this model cannot be the linear function used in chapter 2.3.5 as the linear
function may assign any value to an input and is not limited to [0, 1]. For this reason the sigmoid
function is used:

σθ(x) =
1

1 + e−θ
Tx

(2.22)

As can be seen in figure 2.3, the sigmoid function’s values are limited to the interval (0, 1) and
swiftly change from lower to higher values when a threshold, that is determined by the zeroth order
coefficient of θ, is exceeded. This is a desired property for input values lying close to the decision
surface, discussed in chapter 2.3.2. The rate of change is also determined by θ as one can see in
the figure below.

Figure 2.3. Sigmoid function for 1-dimensional input and for two values of θ, θ=5 (red) and θ=10
(blue). Image from https: // commons. wikimedia. org/ wiki/ File: Sigmoid-function. svg

The sigmoid also has the very useful property, that its derivative can be expressed in terms of
the sigmoid itself:

σ′(x) = σ(x)(1− σ(x)) (2.23)

In order to compute the parameters of the linear regression model the mean squared error
was used as a cost function. But the quadratic loss is symmetric w.r.t. the label value, which is
intuitively wrong in the case of classification. Take for example the assignment to a sample, that
belongs in the second class, of a value that is bigger than 1 by a positive scalar e and the assignment
to the same sample of a value that is smaller than 1 by the same scalar value. They both would
create the same error signal, even though the model would have made a better prediction in the
first case.

In the previous chapter it was shown that, under three assumptions, applying the MLE to a
linear regression model reveals the intuitively correct loss function. As will be shown below, this is
also true for a logistic regression model, when a more suitable third assumption is used [4]. This

50

https://commons.wikimedia.org/wiki/File:Sigmoid-function.svg

2.3.6 Logistic Regression

assumption lies in changing equation 2.14 to:

p(y = ω1|x;θ) = 1− σ(x,θ)

p(y = ω2|x;θ) = σ(x,θ)

or in a more compact form:

p(y|x;θ) = σy
θ
(x)(1− σθ(x))(1−y) (2.24)

Next, the negative of the log-likelihood is computed:

L(θ) = −ln
N∏

k=1

p(y(k)|x(k);θ)

= −ln
N∏

k=1

(σθ(x(k)))y
(k)

(1− σθ(x(k))(1−y(k))

= −
N∑

k=1

(y(k)ln σθ(x(k)) + (1− y(k))ln(1− σθ(x(k))))

(2.25)

Quantity 2.25 is called the cross-entropy error function (CE). This is because it resembles
the definition for entropy, with the difference of the logarithms’ multipliers being integers summing
to one and not probabilities. Note that the smallest possible value the quantity inside the summa-
tion can take, for a sample, is 0, and it is achieved when the model assigns a probability value of 1
to the correct label. But there is no upper bound; the bigger the failure of a model the larger the
corresponding term becomes. So, intuitively at least, the cross-entropy error function seems like a
good choice for a cost function.

In addition to that, using the very useful property of the derivative of the sigmoid function
shown in equation 2.23, one can easily compute its gradient and may be surprised to witness a
familiar form:

∇L(θ) =
N∑

k=1

(σθ(x(k))− y(k))x(k) (2.26)

This form resembles the one of the derivative of the equation 2.19, yet it is not the same as
σ(x(k),θ) is not a linear function of the parameters. This is not a coincidence; both these models
belong to a broader family of models called Generalized Linear Models. This topic will not be
covered in the present thesis but the reader is urged to look it up on his/her own [4, 70]. Despite
their similarity, the aforementioned difference between the two methods renders ∇L(θ) = 0 a
nonlinear system of equations in the case of logistic regression. This is where gradient descent
shows its usefulness as it can gradually reduce the error and discover a solution for the parameter
vector. The update rule for the GD algorithm is:

θi+1 = θi − a

N∑
k=1

(σθi(x
(k))− y(k))x(k) (2.27)

Linear regression models work well when the output is linearly dependent on the input, but
a generalized linear regression model may be needed in the presence of nonlinearities. In the
same way, and highlighting a certain duality between linear and logistic regression again, logistic
regression, the way it was defined above, is good at separating classes that are linearly separable.
That is, when there is a hyperplane that separates all points of the two classes, with samples of
one class belonging to one side of the plane and samples of the other class belonging to the other

51

Chapter 2. Machine Learning and Neural Networks

side. In the case of a 1-dimensional input this hyperplane is reduced to a point and in the case of
a 2-dimensional input to a line as shown on the left side of figure 2.4.

Figure 2.4. A. Classes that are linearly separable B. Classes that aren’t. Figure from
https: // www. tarekatwan. com/ index. php/ 2017/ 12/ methods-for-testing-linear-
separability-in-python/ #fn-102-2 .

But, in cases like the one shown on the right side, one has to deploy the same trick of using
hand-made basis functions. Then, the update rule becomes:

θi+1 = θi − a

N∑
k=1

(σθi
(φ(x(k)))− y(k))φ(x(k)) (2.28)

Multiclass Logistic Regression

Sigmoid seems like a good choice for the 2-class classification problem. But what if there are
M,M > 2, classes that must be separated? For this problem, the softmax function is employed.
For a class l, l ∈ 1, 2, · · · ,M , the softmax score of an input vector x is defined as:

softmaxθ,l(x) = sθ,l(x) =
exp(θT

l x)∑M
j=1 exp(θ

T
j x)

(2.29)

Obviously, the softmax scores for all classes add up to 1, which is intuitively correct. For the deter-
mination of the cost function MLE will again be used. But, instead of a Bernoulli, a multinomial
distribution is now considered:

p(y = ωl|x;θ) = softmaxθ,l(x),∀l ∈ 1, 2, · · · ,M

Then, the negative log-likelihood is computed as:

L(θ) = −ln
N∏

k=1

M∏
j=1

p(y(k) = ωj |x(k);θ)1{y
(k)=ωj}

= −
N∑

k=1

M∑
j=1

1{y(k) = ωj}ln sθ,j(x(k))

(2.30)

The derivative of the softmax, that computes the softmax score for a class ωl w.r.t. to the

52

https://www.tarekatwan.com/index.php/2017/12/methods-for-testing-linear-separability-in-python/##fn-102-2
https://www.tarekatwan.com/index.php/2017/12/methods-for-testing-linear-separability-in-python/##fn-102-2

2.3.7 Other Ways of Performing Optimization

parameters that correspond to the class ωp, conveniently is:

∂sθ,l(x)
∂θp

= sθ,l(x)(Ilp − sθ,p(x))xT

where Ilp are the elements of the identity matrix
(2.31)

Equation 2.30 is the cross-entropy error function for the multiclass classification problem.
Again, one notices that the error term is minimized to 0 for a sample to which the model as-
signs a probability of 1 as to belong to the correct class. Using equation 2.31 one can compute the
derivative of the cost function w.r.t. one of the parameter vectors θl:

∇θl
L(θ) =

N∑
k=1

(sθ,l(x(k))− 1{y(k) = ωl})x(k) (2.32)

The same form is revealed hinting the relationship to the Generalized Linear Models family.
Again one can choose a more complicated function of the inputs as the feature vector, φ(x), in

which case equation 2.32 becomes:

∇θl
L(θ) =

N∑
k=1

(sθ,l(φ(x(k)))− 1{y(k) = ωl})φ(x(k)) (2.33)

2.3.7 Other Ways of Performing Optimization

Gradient descent is a one of the simplest optimization algorithms, but advancing with knowledge
only of the first-order derivatives can be very slow in some cases. This is why, many times, second-
order derivatives are computed and used to speed up the process. The knowledge of both the slope
and the curvature of the function can be used to determine not only the direction but also the size
of the step that will be taken.

An example of an algorithm that uses second-order derivatives is Newton’s method. What
Newton’s method actually does at each step is minimizing the quadratic approximation of a twice-
differentiable function f around a central point xi and then using the point at which the approx-
imation takes its minimum value, xi+1, as the new starting point for the next step [8]. First, the
second-order Taylor expansion of f is computed:

f(xi + e) ≈ f(xi) +∇T f(xi)e +
1

2
eTHe, where H is the Hessian of f at xi (2.34)

Differentiating the right part of equation 2.34 w.r.t. e and finding the minimum:

e = −H−1∇f(xi) (2.35)

Then xi + e is chosen as the next starting point. Note that using a learning rate is unnecessary
since all aspects of the new point are defined by e. The resulting algorithm for cost function
optimization is algorithm 2.1, where H−1 is the inverse matrix of the Hessian of J(θ) at θi.

The difference between gradient descent and New-
ton’s method is shown in figure 2.5. Manually
setting the step size, as in gradient descent, may
cause delays because of the learning rate being
set too small, or may lead to not finding a mini-
mum at all and overshoot in the case of too large

Algorithm 2.1: Newton’s Method

initialize θ with θ0

i← 0
while algorithm has not converged do
θi+1 = θi −H−1∇J(θi)
i← i+ 1

end while

53

Chapter 2. Machine Learning and Neural Networks

learning rates.

Figure 2.5. Difference between using gradient descent (left) and Newton’s method (right) for min-
imizing a function. Figure from https: // www. cs. cornell. edu/ courses/ cs4780/ 2018fa/
lectures/ lecturenote07. html

But the smaller number of steps taken may not compensate for the larger computational burden
of computing the Hessian at each step. One must then weigh the two options and, depending on
the number of parameters of the model and the nature of the problem, decide which one to use [70].
Generally, second-order methods are preferred for smaller models, like GLR ones, and first-order
methods for large ones, like neural networks.

2.3.8 Curse of Dimensionality

What every algorithm presented above essentially does is function approximation using data
samples. For generalization purposes it is assumed that, when trying to determine the value of
a newly seen sample, the values of training samples that are closer to it are more relevant than
the values of training samples that lie further away, i.e. the underlying function is assumed to be
smooth. Therefore, it would seem reasonable to try splitting the space into cell-shaped regions and
use, for determining the value of a new sample, only data samples that exist in the same region.
The problem with this approach is that the number of cells would grow exponentially with the
dimensionality of feature vectors as shown in figure 2.6 or, stated in a different way, the complexity
of a function grows exponentially with the input dimensionality. This fact is also referred to as
the curse of dimensionality, a term that was introduced by Richard Bellman (1961), who was
studying adaptive control at the time.

If one was to use a set of basis functions, as in the case of generalized linear regression, then,
every newly added variable, that would result from an increase in the input dimensionality, would
have to be combined with the existing ones in a way determined by the basis functions’ definition.
This aspect of the curse of dimensionality would lead to an exponential increase in the number
of model parameters. Consequently, such models are impractical in the cases of high-dimensional
spaces.

The good news is that real-world datasets tend to have their samples gathered near nonlinear
manifolds of dimensionality much smaller than the input one. What is therefore missing, is the
freedom that will allow a model to concentrate on these sub-regions instead of wasting resources
paying attention to uninformative parameter combinations. The models that will be presented in
chapter 2.4 are, by construction, allowed to do this and achieve linear parameter increase with
respect to the input dimension [4, 8].

54

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote07.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote07.html

2.4 Neural Networks

Figure 2.6. A linear increase in the dimensionality of the input leads to an exponential growth
of modeling parameters. Figure from https: // www. i2tutorials. com/ what-do-you-mean-by-
curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/

2.4 Neural Networks

It is a very interesting fact that neural networks (NNs), the basis of the most successful and
influential machine learning models up to date, was an idea inspired by the human brain. The hu-
man brain is a highly complex nonlinear system, in which cells called neurons form clusters called
nuclei, which then work in parallel on processing various stimuli. Neurons are local processing
units, that are about six orders of magnitude slower than modern logic gates. Yet, the human brain
is able to perform complex information processing tasks, such as perceptual recognition tasks, in a
matter of a few hundred milliseconds with a high degree of fault tolerance. This is partly due to the
parallelization of processing and the efficient way in which neurons and neural clusters are intercon-
nected.

Figure 2.7. Important parts of a neuron. Fig-
ure from https: // today. ucsd. edu/ story/ why_ are_
neuron_ axons_ long_ and_ spindly

It is also because of the existence of
an enormous number of neurons and
of interconnections between them,
also known as synapses, in the hu-
man cortex, which are thought to be
near 10 billion and 60 trillion respec-
tively. Synapses are used to transfer
information between neurons. Infor-
mation is received by the dendrites of
neurons, processed by the cell’s body,
also called soma, and then transmit-
ted by the axons to other neurons.
Every neuron cell may communicate
with thousands of others, receiving and transmitting information. A sketch of a neuron is shown
in figure 2.7.

The most important characteristic of the human brain is that it does not remain unchanged
after the person’s birth but it continues to evolve throughout the person’s lifetime. It adapts to
changes in a person’s environment, creates specialized structures according to current needs and
can even be trained at will when the owner wishes to acquire a new skill. This brain’s ability is
called plasticity and it has inspired the creation of a family of models called neural networks
[8].

When a person learns something new, such as a new piece of information or a new skill, this
knowledge is literally imprinted on the way neurons are connected in the brain. The simultaneous
activation of a group of neurons causes their connections to strengthen and the transmission speed

55

https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/
https://www.i2tutorials.com/what-do-you-mean-by-curse-of-dimensionality-what-are-the-different-ways-to-deal-with-it/
https://today.ucsd.edu/story/why_are_neuron_axons_long_and_spindly
https://today.ucsd.edu/story/why_are_neuron_axons_long_and_spindly

Chapter 2. Machine Learning and Neural Networks

to increase. This is either done by the strengthening the corresponding synapses or even by creating
new dendrites. This process of forming long-term memories is called long-term potentiation [71].

2.4.1 Artificial Neurons

Artificial neurons are the basis of most modern neural networks. It is beneficial to consider
artificial neurons as being an upgraded version of basis functions used by Generalized Linear Re-
gression models, which were discussed in chapter 2.3.5. What is different is that these functions are
now susceptible to change via a list of parameters, whose values adapt during a training procedure
much like the gradient descent algorithm (algorithm 2.1) that was used to update the parameters
of the linear and logistic regression models covered in chapters 2.3.5 and 2.3.6 respectively [4].

The main components of an artificial neuron are shown in figure 2.8. The input to an ar-
tificial neuron is a vector x = [x1, x2, · · · , xD]. The input is weighted by a weight vector w =

[w1, w2, · · · , wD] and a number called bias and denoted by b, is then added to the linear com-
bination. In analogy to the human brain, a weight represents the strength of a synapse. But,
unlike real synapses that can only suppress or amplify neural signals, the value of a weight of an
artificial neuron can also be a negative number. The bias increases or decreases the input of the
next module which is called an activation function, f . Activation functions are always non-linear
and play a very important role in modern neural networks that will soon become apparent. The
equations that describe an artificial neuron consequently are:

ul =

D∑
j=1

wjxj (2.36)

a = f(ul + b) (2.37)

, where the intermediate result is also called a linear combiner. Equivalently one may write:

uf =

D∑
j=0

wjxj , a = f(uf), where x0 = +1 and w0 = b (2.38)

Figure 2.8. Artificial Neuron. Figure from https: // www. researchgate. net/ publication/
328733599_ Impact_ of_ Artificial_ Neural_ Networks_ Training_ Algorithms_ on_
Accurate_ Prediction_ of_ Property_ Values

56

https://www.researchgate.net/publication/328733599_Impact_of_Artificial_Neural_Networks_Training_Algorithms_on_Accurate_Prediction_of_Property_Values
https://www.researchgate.net/publication/328733599_Impact_of_Artificial_Neural_Networks_Training_Algorithms_on_Accurate_Prediction_of_Property_Values
https://www.researchgate.net/publication/328733599_Impact_of_Artificial_Neural_Networks_Training_Algorithms_on_Accurate_Prediction_of_Property_Values

2.4.2 Feed-Forward Neural Networks

The aforementioned variables are the ones that offer the possibility of plasticity, as it is in them
that information learned from the training process is stored [8].

Perceptron

Before moving on to more convoluted concepts, like the Multi-Layer Perceptron, it is instructive
to have a look at the training procedure of the first model that could actually be trained under a
supervised learning setting, which is called Perceptron. The Perceptron model was created by
Rosenblatt in 1958 [72]. Perceptron was based on the first artificial neuron, that was proposed
by McCulloch and Pitts in 1943 [9] and its main characteristic is that its activation function is a
signum function. It is used for classification tasks, assigning examples that yield positive uf values
to one class and examples that yield negative uf values to the other class:

if wTx > 0⇒ assign x to ℓ1

if wTx ≤ 0⇒ assign x to ℓ2
(2.39)

The model is trained in an iterative process, in which the error computed on a single example is
used at every iteration. This is contradictory to what was shown in the cases of linear and logistic
regression that use all available training examples at each iteration to train the respective models.
Let xi denote the example used at the i-th iteration and wi denote the version of the weight vector
before the i-th update. Then the model’s parameters are updated as is shown below:

Algorithm 2.2: Perceptron’s Training Algorithm

initialize w with w1

i← 1
while ∃ example not correctly classified do

if wT
i x ≤ 0 and x ∈ ℓ1 then

wi+1 = wi + ηixi

else if wT
i x > 0 and x ∈ ℓ2 then

wi+1 = wi − ηixi

else wi+1 = wi ▷ If xi is correctly
classified do not change w

end if
i← i+ 1

end while

Rosenblatt also proved what is known as
the Perceptron Convergence Theo-
rem.

Θεώρημα 2.1. If the two classes are
linearly separable, then algorithm 2.3 will
converge to a correct solution within a fi-
nite number of steps.

In essence, the algorithm shifts the sep-
arating hyperplane towards the direction
needed to classify correctly the wrongly
classified example. Nevertheless, it is pos-
sible for the model to continue failing

at the classification of the example even after the shift, if the learning rate of the iteration η,
which is defined by the user, is not big enough. But, by repeating the said process it is supported
by the theorem 2.1 that the hyperplane will eventually shift to a correct position [9].

2.4.2 Feed-Forward Neural Networks

As stated in chapter 2.3.8, models like linear and logistic regression lack the flexibility needed
to model functions that become highly complex only inside small sub-regions of the input space
but remain relatively simple outside of them. Artificial neurons’ parameters, like the Perceptron’s
ones, can change through training processes, but artificial neurons can only model very simple
functions. It then comes natural to try using artificial neurons as building blocks of models that
will hopefully provide the desired flexibility. These models are called neural networks.

The simplest architecture one can build by combining multiple artificial neurons is a single-layer
neural network, in which the inputs are fed to artificial neurons. Their outputs are then linearly
combined, much like in Generalized Linear Regression models. The term single-layer refers to the

57

Chapter 2. Machine Learning and Neural Networks

output layer of computational nodes as the input or source nodes do not perform any computation.

By stacking a number of such layers one on top of the other and using the outputs of one as
inputs to the next a multi-layer neural network is created. The layers between the source and
the output node are called hidden layers, as they are neither seen by the input nor by the output.
This architecture enables the extraction of higher-order statistics of the input, as the existence of
more than one layers of processed information allows the net to acquire a global perspective, despite
its units being locally connected [73].

A 4-layer neural network is shown in figure 2.9. This type of neural network is also called a
feed-forward neural network (FFNN), as the computational flow does never create a circle or,
in other words, there are no recursions.

Figure 2.9. A 4-layer Feed-Forward Neural Network, with 4 neu-
rons in each of the hidden layers and 2 neurons in the output layer.
Figure from https: // deepai. org/ machine-learning-glossary-
and-terms/ hidden-layer-machine-learning

The equations of a
multi-layer feed-forward net-
work result naturally from
the equations of the artifi-
cial neuron, 2.38, and the
rule that the inputs to a
layer are the outputs of the
previous layer. A ffnn of L
layers has L−1 hidden lay-
ers which are followed by
an output layer and the l-
th layer consists of Dl neu-
rons. Moreover, the weight
that multiplies the output
of the i-th neuron of the l-
th layer, a(l)i , which is then
used as input to the j-th neuron of the (l + 1)-th layer is denoted by w

(l+1)
ij . Finally an input of

dimension Din and an output of dimension Dout are assumed. Then the output of the i-th neuron
of the first hidden layer is equal to:

a
(1)
i = h(

Din∑
d=0

w
(1)
id xd) (2.40)

where x = [x1, x2, · · · , xDin]
T is the input to the ffnn, x0 = +1, w

(1)
i0 = b

(1)
i is the bias added to

the weighted sum of the respective neuron and h is the activation function applied. In the same
spirit, the output of the j-th neuron of the l-th layer is equal to:

a
(l)
j = h(

Dl∑
d=0

w
(l)
jd a

(l−1)) (2.41)

The number of hidden layers, of neurons at each layer and the type of activation functions are
hyper-parameters whose values are usually chosen after an extensive search that will be discussed
later in this chapter. What is implicitly assumed in the above equation is that the activation
function is the same for all neurons of the network. Yet, sometimes the neurons of the output layer
use a different activation function that depends on the type of the label. Usually no activation
function is used in regression problems, a sigmoid function is used for binary classification problems
and a softmax function is used in the case of K-class classification problem [4].

58

https://deepai.org/machine-learning-glossary-and-terms/hidden-layer-machine-learning
https://deepai.org/machine-learning-glossary-and-terms/hidden-layer-machine-learning

2.4.3 Backpropagation Algorithm

Global Approximation Theorem

To comprehend the expressive strength of ffnns it suffices to take a look at the theorem known
as Global Approximation Theorem [74, 75].

Θεώρημα 2.1. A two-layer feed-forward neural network with linear outputs can uniformly ap-
proximate any continuous function on a compact input domain to arbitrary accuracy provided that
the net has a sufficiently large number of hidden units.

This theorem holds for a variety of activation function types. Nonetheless the theorem does
not explain how to find the optimal model hyper-parameter and parameter values for a certain
task and dataset. It is only indicative of the potential power of ffnns. In the following chapter, the
second problem will be discussed, in the context of ffnns.

2.4.3 Backpropagation Algorithm

In chapters 2.3.5 and 2.3.6 it was shown how the problem of training a linear and a logistic
regression model can be approached from a probabilistic perspective. This was done by assuming
that labels follow certain probability distributions and then using MLE to find the cost function
which can by minimized by using an optimization algorithm like GD. This was easily extended to
the case of models that use unalterable nonlinear basis functions, equations 2.19 and 2.28.

The goal is to further extend this method to the case of basis functions with trainable param-
eters. Training a neural network means training the weights of all artificial neurons it is made of
so that a cost function J(w) is minimized. The problem is that, while the contribution of each
trainable parameter of a GLR model is independent of the contribution of the others, the same
is not true in a ffnn. In a ffnn the value of a parameter, which shapes a neural output, is then
propagated through the rest of the net and therefore interacts with parameters of other neurons.
This poses a problem to the calculation of the gradient values for these parameters. An algorithm
that tackles this problem and is currently used as part of the training process of most modern
neural networks is the Backpropagation algorithm. The gradients it computes can be used for
example in the well known gradient descent updates, in which the weight vector w is corrected by
∆w, where ∆w is computed as to point to the direction of the greatest rate of decrease of J(w),
−∇wJ(w).

Starting with the gradients w.r.t. weights that belong to output neurons, computing them is
quite straight-forward. One has to simply observe that equations 2.19, 2.28 and 2.33 also apply
here since the rest of the net plays the role of the basis functions. But to compute gradients w.r.t.
the rest of the weights, the equations of a ffnn, 2.40 and 2.41, and the chain rule of differentiation
have to be deployed. Because J(w) =

∑N
k=1 Jk(w), where N is the number of training samples,

Jk(w) will be used from now on to simplify the notations. Using this simplification, the equations
used for an output weight w

(L)
ji can be expressed as:

∂Jk

∂w
(L)
ji

=
∂Jk

∂u
(L)
j

∂u
(L)
j

∂w
(L)
ji

, where u
(L)
j is summed input to the j-th neuron of the final layer (2.42)

Then, the notation

δ
(L)
j =

∂Jk

∂u
(L)
j

(2.43)

is introduced. It is also true that

a
(L−1)
i =

∂u
(L)
j

∂w
(L)
ji

(2.44)

59

Chapter 2. Machine Learning and Neural Networks

where a
(L−1)
i is the output of the i-th neuron of the (L− 1)-th layer. By applying equations 2.43

and 2.44 to equation 2.42 the latter is written as:

∂Jk

∂w
(L)
ji

= a
(L−1)
i δ

(L)
j (2.45)

But, when considering the derivative w.r.t. a weight of a random neuron n
(l)
i , that is the i-th

neuron of the l-th hidden layer, with output a
(l)
i , one has to observe a dependence that will be

now discussed to be able to perform the computations efficiently. Using the chain rule one arrives
to the conclusion that:

δ
(l)
i =

∂Jk

∂u
(l)
i

=

Dl+1∑
d=1

∂Jk

∂u
(l+1)
d

∂u
(l+1)
d

∂u
(l)
i

(2.46)

Essentially, the effect of a change at u
(l)
i can be summed by considering the effect of each neuron

that comes directly after n(l)
i in the computational path multiplied by their local interaction. Note

that if some neuron n
(l+1)
j is not connected to n

(l)
i then the corresponding local interaction is equal

to zero and this path is not added to the sum. Using the following definition for δ:

δ
(l)
i =

∂Jk

∂u
(l)
i

(2.47)

and considering that:

∂u
(l+1)
j

∂u
(l)
i

= w
(l+1)
ji h′(u

(l)
i), where h is the activation function (2.48)

one can write the equation 2.46 as:

δ
(l)
i = h′(u

(l)
i)

Dl+1∑
d=1

δ
(l+1)
d w

(l+1)
dl (2.49)

Equation 2.49 shines light on a dependence between values of δ of neurons of consecutive layers
and means that once these values are computed for a certain layer l + 1, then they can also be
computed for the previous layer in time linear to the number of weights of the latter layer.

Moreover, similarly to equations 2.43 and 2.44, it can be written about the corresponding
quantities regarding previous layers that:

∂u
(l)
j

∂w
(l)
ji

= a
(l−1)
i (2.50)

∂Jk

∂w
(l)
ji

= a
(l−1)
i δ

(l)
j (2.51)

Using equations 2.49, 2.50 and 2.51 the problem of efficiently computing the gradients of a ffnn
is finally solved and what is left is placing all the pieces together. The Backpropagation algorithm
consists of two main phases. The first one is the computation of the activation functions of all of
its neurons. For ffnns, this means starting from the input and iteratively computing the output of
every layer that follows until the final layer using the ffnns’ equations, 2.40 and 2.41.This step is
referred to as forward propagation. The second step is the computation of the δ’s starting from
the output units using 2.43, 2.44 and 2.45 and continuing backwards using equations 2.49, 2.50 and
2.51. This recursive process is referred to as backward propagation. This can be formulated in

60

2.4.4 Notes on Training Neural Networks

the algorithm shown following algorithm.

Algorithm 2.3: The Backpropagation Algorithm

Apply an input and forward propagate through the neural network
Using the label of the input compute the error
Compute δ

(L)
j

Backpropagate the δ’s
Use the δ’s and the activation values to compute the gradients

Since both the forward and the backward propagation cost O(dim(w)) the overall cost is equal
to O(dim(w)), which is linear w.r.t. to the number of weight of the network. It is also important
to note that the backpropagation algorithm can be used in many kinds of neural networks and not
just ffnn and with many types of error functions.

2.4.4 Notes on Training Neural Networks

As was noted in the previous chapter, the Backpropagation algorithm is used to compute the
gradients of the error w.r.t. the weights of a neural network. This can be a part of a gradient
descent process. There are a few matters that ought to be discussed before concluding the matter
of training neural networks.

Learning Curves

When training a machine learning model with an iterative process it is useful to be able to know
if and how fast the model is getting better through this process. This can be seen by observing the
evolution of the error computed on the training set while the training process proceeds. Because
the weights are usually randomly initialized, the error on the training set is initially large and
gradually becomes smaller as the model is trained. After some training iterations, the error reaches
an asymptotic value that depends on the Bayes error, the quality and quantity of the data and
the expressive capabilities of the model, as was discussed in chapters 2.3.1 and 2.3.3. So far only
the case of using, for each training step, the gradients computed using the entire training set has
been discussed. But, as will be explained shortly, sometimes only a part of the training set may
be used for each update. In these cases, the training set is split into B non-overlapping subsets of
samples, called batches, and for each weight update the gradients computed using the error on
samples of a single subset are used. After the algorithm has performed B updates using a different
batch each time, it splits the training set again and repeats the same process. Each of these cycles
consisting of B updates is called an epoch. Obviously, when the entire training set is used for an
update it is true that B = 1 and the epoch only consists of one update.

Figure 2.10. Learning curves for a 4-layer ffnn. The normal-
ized error is used, J/N = 1/N

∑N
k=1 Jk [3].

Apart from the error on the
training set it is useful to con-
tinuously monitor the perfor-
mance of the model, that is be-
ing trained, on samples that it
hasn’t been trained on, or as re-
searchers usually say, on sam-
ples that it has never seen. This
is a good test, as to whether the
model is acquiring generalizing
capabilities or is simply remem-
bering the input - output map-

61

Chapter 2. Machine Learning and Neural Networks

pings of the training examples. The set of the samples that are used for this purpose is called a
validation set. As shown in figure 2.10 and can be easily understood, the errors on the validation
and the test set are usually higher than the one on the training set [3].

Error Surfaces

Since training is actually an optimization process it is sometimes useful when designing a
training algorithm to view it from the perspective of a descent of the error surface. Specifically,
each step taken in the direction of δw changes J by by δJ ≃ δwT∇J(w). As noted in the previous
chapter δw is usually chosen to point to the direction of the maximum rate of decrease of J . In
contrast to the Perceptron, modern neural networks generally use differentiable activation functions
that render J a smooth continuous function of w. Therefore, at the global minimum of J it is true
that ∇J = 0.

There are multiple problems one might encounter during the training process that are related
to the error surface of the problem. Most of them are caused by the complexity of the neural
models, the outputs of which result from highly nonlinear combinations of their parameters. One
of the most commonly observed ones is related to the existence of search sub-spaces in which the
error surface is relatively flat, leading the resulting gradients inside these sub-spaces to be small.
This results to slow rates of convergence that can be discovered by the researcher thanks to a
stagnancy of the learning curves. The opposite form of difficulty results from overly steep error
surfaces that lead that lead to big gradient values which may cause the algorithm to completely
miss the minimum by jumping over it. This problem is known as overshooting.

Figure 2.11. Error Surface of a model with 1 parame-
ter whose value spans on the horizontal axis. Figure from
https: // inverseai. com/ blog/ gradient-descent-in-
machine-learning

The exploration of the global
minimum is also hindered by
the existence of multiple lo-
cal minima. A training algo-
rithm may become stuck in a
local minimum w∗ since reach-
ing the global minimum from w∗

may require the descending al-
gorithm to explore, for a few it-
erations, regions with larger er-
rors than the one corresponding
to the local minimum. Inter-
estingly though, it has been ob-
served that local minima many
times yield errors that are close
to global ones, and consequently
constitute valid solutions to the
training problem[insert research
paper] [3, 4, 8].

A lot of research effort has been devoted to discovering training methods that tackle the prob-
lems presented above, especially the last one. Some of them will be discussed later in this chapter.

Training Protocols

The GD algorithm, as was described in chapter 2.3.5, computes the error on the entirety of the
training set, proceeds with calculating the gradients for each training instance and then combines
them to perform the update. This method provides an accurate estimation of the updating vector,

62

https://inverseai.com/blog/gradient-descent-in-machine-learning
https://inverseai.com/blog/gradient-descent-in-machine-learning

2.4.4 Notes on Training Neural Networks

δw, and, for reasonable learning rate values, guarantees the convergence of the training process
to a local minimum. Moreover, since the computations performed for each training example are
independent of one another, the parallelization of this procedure is possible and accommodated by
modern hardware accelerators.

Nevertheless, it is sometimes preferable not to use the full training set when performing an
update, but only a part of it. One can even use the error computed on a single training example
to update the parameters of the model. In this case the algorithm randomly chooses and uses one
sample at every iteration until all training samples have been used, at which point it is said that
an epoch has been completed. This process is named stochastic training due to the inherent
randomness in it. One of the biggest advantages of this method is its minimal storage requirements
in contrast to first one, for which the activation signals and gradients for all examples have to
be stored during the parallelization process. In addition to that, stochastic training is good at
dealing with redundancies as it avoids repeating unnecessary computations in a single update.
Finally, observe that the algorithm descends a different error surface at each update because of
the uniqueness of the error function. Therefore, since it is highly unlikely that a local minimum
will coexist in many error surfaces, the algorithm will be able to escape many local minima using
updates, the error surfaces of which, will not have local minima in the same spots.

Unfortunately, stochastic training is an easily parallelizable process and it also tends to produce
noisy learning curves because descending the error surface of a training sample does not ensure
the descent of the error surface corresponding to the total error. In order to tackle these problems,
researchers usually compute the error on a number B, 1 < B < N , of training samples simultane-
ously. B is referred to as batch size. This method seeks and achieves the best of both worlds and
today is utilized by most ML training algorithms [3, 4, 8].

Stopping Criteria

The issue of the choice of the stopping point of the training process has not been addressed
yet. Multiple stopping criteria have been proposed in the literature, as to when to stop training
the model weights.

A simple criterion results from observing that the algorithm must stop nearby a global or a local
maximum. Since the error surface is smooth, this means that gradient magnitudes will be relatively
small close to these points. A reasonable criterion would thus be to consider the algorithm to have
converged when the Euclidean norm of the gradient vector has reached a user-defined relatively
small threshold. The problem with this approach is that, in the case of stochastic training, it may
take long for the algorithm to reach such a spot.

Similarly, one can use the change of the cost function’s magnitude as a metric for convergence.
Specifically, assume convergence when the absolute rate of change in the average error per epoch is
small enough. A possible disadvantage is the existence of the possibility of premature termination
since the value of the threshold is almost never known beforehand.

A theoretically supported approach is the use of the error on a set of samples that the model
has never seen as a convergence indicator. This set can be the validation one. Information of this
curve is indicative of the model’s generalizing capabilities and therefore a valid stopping criterion
[3, 8].

Vanishing Gradient, Activation Functions and Residual Connections

Before discussing the issue of choosing an activation function for the hidden layers, it is necessary
to have a look at one of the most well-known difficulties when it comes to neural network training.
As suggested by the Global Approximation Theorem, 2.1, a two-layer ffnn can approximate any

63

Chapter 2. Machine Learning and Neural Networks

continuous function, given a sufficient number of hidden units. Yet, the recent success of ML has
been heavily supported by the use of neural networks with multiple layers, otherwise known as
deep nets. The reasons as to why this happened will be discussed later in this chapter. For now,
the main focus will be on the difficulties of training such nets, and also on the way that a certain
type of activation functions and a structural trick allowed researchers to overcome them.

In order for a parameter to be trained, the gradient of the error w.r.t. to this parameter
must first be computed. This is then used to shift the parameter towards the direction of the
greatest decrease in the error function. The problem with standard deep neural networks is that
the gradients w.r.t. parameters that belong to neurons of early layers tend to become increasingly
small as the net becomes deeper. As a result, the training speed of these parameters is considerably
slower than the one of parameters of neurons that are closer to the output of the network. This
problem is referred to as the vanishing gradients problem and it was first introduced in the
context of recurrent neural networks (RNNs) [76], that will be introduced in chapter 2.6. To
understand why this is the case, it is appropriate to view the following example of a 3-layer neural
network with one neuron per layer [77] shown in figure 2.14.
The update rule for the first weight of this network is the following: w(1)

i+1 = w(1)
i − η∇wJ .

Figure 2.12. 3-layer ffnn with one neuron per layer. Figure from https: //
towardsdatascience. com/ vanishing-gradient-in-deep-neural-network-83953217c59f

In the case of a 1-dimensional weight, and assuming all biases to be equal to zero, it follows that:

∂J

∂w(1)
=

∂J

∂a(3)
∂a(3)

∂u(3)

∂u(3)

∂a(2)
∂a(2)

∂u(2)

∂u(2)

∂a(1)
∂a(1)

∂u(1)

∂u(1)

∂w(1)

=
∂J

∂a(3)
∂u(3)

∂a(2)
∂u(2)

∂a(1)
∂u(1)

∂w(1)

3∏
l=1

∂a(l)

∂u(l)

(2.52)

The vanishing gradient problem may appear in two main cases:

• if at least one of the derivatives related to the activation function, ∂a(l)

∂u(l) , l ∈ {1, 2, 3} is zero
then ∂J

∂w(1) = 0

• if ∂a(l)

∂u(l) ≃ 0, for most of the layers l ∈ {1, 2, 3} then ∂J
∂w(1) ≃ 0

A widely used activation function that creates the vanishing gradients problem is the sigmoid
function, 2.22. The sigmoid function has several desired properties. It is continuous and smooth,
meaning that its derivative exists, and even better, it can be easily computed using the equation
σ′(x) = σ(x)(1 − σ(x)). It is also a monotonic function, which prevents the introduction of
additional local extrema. Moreover, it has a limited output range, i.e. it saturates. This helps in
keeping the weights and the activation function outputs bounding, ensuring the training time to be
limited. Unfortunately, this also affects the quality of training. To see why, observe the derivative
of the function painted in blue in figure 2.13b [3, 4, 8].

The derivative of the sigmoid only takes relatively large values for inputs belonging to a narrow
interval centered at 0, also known as the significance region. For inputs outside this interval
the magnitude of the derivative takes much smaller values, that when are multiplied together as

64

https://towardsdatascience.com/vanishing-gradient-in-deep-neural-network-83953217c59f
https://towardsdatascience.com/vanishing-gradient-in-deep-neural-network-83953217c59f

2.4.4 Notes on Training Neural Networks

(a) Functions (b) Derivatives

Figure 2.13. Showing a) the sigmoid (blue) and the ReLU (orange) functions and b) their
derivatives [5]

a part of a gradient computation process, like the one described by the equation 2.52, lead to the
vanishing gradient problem.

An alternative to the sigmoid function that has been proposed in the literature is the rectified
linear unit (ReLU) [78], which is defined as follows:

ReLU(x) =

x, if x > 0

0, otherwise
(2.53)

A graphical representation of this function is shown in figure 2.13a and its derivative is shown in
figure 2.13b. The fact that its derivative for all positive values is constant and equal to 1 solves the
vanishing gradient problem for these values by allowing the gradients’ passage to previous layers.
Of course, as a result of this, this function does not saturate and in the case of negative inputs
the gradient becomes equal to zero, which means that the problem still persists in these cases.
Multiple modifications to the ReLU function have been suggested to alleviate the last weakness,
like the leaky ReLU [79]. This problem is also closely connected to the weight initialization one.
If the network’s weights are initialized in a way that gradients are close to become or are zero for
multiple layers then the training of the network turns out to be extremely slow. Details about
weight initialization will follow shortly.

Figure 2.14. Residual connections [6]

For brevity reasons the rest of this note will
simply focus on another important trick that
was proposed in 2015 [6] and firstly applied
to convolutional networks (CNNs) that will be
presented in chapter 2.5. The trick was the ad-
dition of residual connections, as shown in
figure, that bypass neural layers. These lines
directly connect the input to the output by
adding the first one to the output of the neural
layer. This method allows the gradients to flow
uninterruptedly and was a substantial break-
through that contributed to the birth of very
deep neural nets [4].

65

Chapter 2. Machine Learning and Neural Networks

Input Scaling

Clearly, NN training is extremely sensitive to the value intervals of the signals involved in the
process, starting from the input ones. If, for example, the values of two signals differ by orders
of magnitude, the bigger one affects the total error much more than the other. This causes the
training process to focus mainly on updating its corresponding weights and, as a result, the new
will pay much more attention to the respective feature than the other, even though the latter might
be of equal significance when it comes to the prediction task [3].

In another example, all features take only positive values. This means that, during h=the
updates, weights can only increase together or decrease together. So, in order for the weight vector
to reach a specific point, it has to zig-zag through the search space slowing the training process
down [8].

These problem have lead to the adoption of various data preprocessing techniques by the
researchers. A widely used one is feature normalization. It entails shifting the features of all
samples so that they have a zero mean and scaling them until they share the same variance, which
is usually equal to 1. One may also choose a min-max approach that scales the features of the
dataset so that the two extreme values that each feature takes become equal to a predetermined
min and max value respectively. As a part of the data preprocessing procedure, and in order
speed up learning, researchers also use to create uncorrelated input variables using a numerical
transformation technique like PCA [8, 80].

Note that data preprocessing happens only once before the training begins, so it is an overhead
that is paid only once.

Target Values

When it comes to target values it is required that they must be set within the range of the
output activation function h. In fact, they are often offset by ϵ away from the endpoints of the
value domain (−a, a) of h: a− ϵ) and −a+ ϵ. Otherwise, the weights are driven to infinity by the
training process and it is in turn slowed down [8].

Weight Initialization

Weights must be initialized carefully because failing to assign proper initial values to them any
render a neural network, that would otherwise be suitable for the problem at hand, untrainable.
If weight values are too large, neurons will be driven into saturation and local gradients will be
small. If, on the other hand, they are initialized with very small values training will occur, in the
case of sigmoid activation functions, on a flat area around the origin of the error surface. Thus, in
both cases learning will be slow or may not even happen. As a result, the weights should be set
so that the standard deviation (std) of the induced local field of the neurons lie in the transition
are between the linear and the saturated intervals of its activation function. Moreover, since the
input will already be normalized and there will be an approximately equal number of positive and
negative values, the same must happen to the weights [3, 8].

A common way to initialize the weights is by sampling them from a uniform distribution
U[−1/

√
d],1/

√
d], where d is the number of input to the respective neuron. Of course, many initial-

ization techniques have been proposed and the it continues to be considered an open problem. The
interested reader may find additional information in [58] and [81].

Learning Rate

Learning rate is one of the most important hyper-parameters when it comes to NN training.
At first glance, a reasonable approach would be setting it to a relatively small value guaranteeing

66

2.4.4 Notes on Training Neural Networks

model convergence to a local minimum. However, apart from the obvious disadvantage of delaying
training, this approach would also also cause another problem. Ideally, all neurons of a NN should
learn at the same speed as models that have some of their parameters trained far quicker than
others are known to perform better for subsets of the training data and very bad for the rest. This
is a serious problem, especially since neurons of the final layers are usually trained much faster
than neurons that are closer to the input. The same has been observed to occur happen in the case
of neurons with many inputs, whose parameters converge before the parameters of neurons with
small input dimension. The existence of different training speeds in standard neural networks along
with the need of simultaneous training of all parameters render the use of different learning rates
for different neurons necessary. Even worse, as the training process evolves the form of the error
surface may change and the learning rates will also have to adapt to the new training conditions
[3, 8].

Note that in chapter 2.3.7 the learning rate was determined with the help of the second-
order derivatives, but that is not possible in the case of NNs with several million parameters.
Nevertheless, after decades of experimentation researchers have concluded to some reasonable
values for learning rates, that depend on the type and the size of the model, as long as methods of
changing the learning rate depending on the phase of the training process. Information regarding
this issue will be provided in the next paragraph.

Momentum

Modern neural networks almost never use the gradient value of the point under examination
alone when performing an update. Error surfaces sometimes contain sub-spaces where the slope is
minimal, i.e. gradient’s magnitude is small, called plateaus. This leads to heavy training delays.
In other cases a model may find itself stuck prematurely to a local minimum delaying the training
process. To alleviate these problems a modification to the standard update rule is usually applied,
which is called momentum. In physics, momentum is a property of moving objects that tend
to keep their kinetic state unless acted upon by outside forces. In the context of GD, momentum
means that that the previously computed gradients will also be taken into consideration, along
with the current one, when updating the parameter vector. Let wi be a weight of a neuron in the
(i− 1)-th update. Then δwi that is added to update the weight is defined as:

∆wi = a · ∂J
∂wi

+m ·∆wi−1, where m is the momentum factor (2.54)

Note that, through ∆wi−1, all previous updates are taken into consideration. The updating
vector of an update that took place k steps before the current one is multiplied with ak. There-
fore, the hyper-parameter m is usually chosen to belong to (0, 1) for stability reasons, and the
contribution of each vector decreases exponentially as i increases.

With the use of momentum, a parameter vector that has "gained speed" through several updates
that have caused its continuous displacement cam easily quickly a plateau even if it causes gradient
values to be relatively small. In the same manner the parameter vector may overcome a shallow
local minimum even if the gradient orders it differently. There is an additional advantage to using
momentum. Momentum tends to average out conflicting updates assisting in creating a smoother
learning trajectory in error surfaces that would otherwise cause the gradient to continuously change
its direction. This is also helpful in the case of stochastic learning where consecutive updates use
different samples and the resulting gradients may point to entirely different directions.

Most modern optimizers use some form of momentum. For more information one the matter
one can read the following papers [82, 83].

67

Chapter 2. Machine Learning and Neural Networks

2.4.5 Generalization

It is important to remember that the main goal of the training of a neural model is not to
fit the training set but to render the model capable of generalizing to examples that it has not
previously seen. From a mathematical perspective, training a model is a curve-fitting problem,
where the training data are the samples of the function being approximated and the network is
the nonlinear input-output mapping. In that sense, generalization means that the model performs
a successful nonlinear interpolation of the training samples.

A weakness that NNs are known to suffer from is overfitting, which was discussed in chapter
2.3.5. In essence what happens is that the net begins memorizing the training data and fails at
fitting the underlying function the same way it described in the respective chapter. A question that
has been left unanswered concerns the desired properties of the curved that is being implemented
by the NN. In other words, what makes a successful interpolation? An assumption that is usually
made is that the function that will be chosen must be the simplest one that fully explains the data
at hand. Criteria that are imposed to ensure the model satisfies this assumption are known as
Occam’s Razor [84]. Regularization, as was described, does exactly that, eliminating unecessary
parameters and thus decreasing the model’s complexity. This is visually translated as an increased
function’s smoothness, figure 2.2.

The next question that needs answering is finding the factors that determine the generalizing
abilities of the model. It is known that generalization is determined by:

• the size of the training sample

• the neural model that has been chosen

• the complexity of the underlying function that must be modeled

Starting from the last factor it is obvious that the more complex a function is the harder it will be
for the NN to interpolate successfully between the training samples. This is an inherent property of
the problem and, in contrast to the first two factors, can’t be influenced by the researcher. Moving
on to the training size, the more samples one possesses the less freedom is provided to the model
to assume values for intermediate points. An empirical rule for choosing the training size is based
on the Widrow’s rule of thumb for the LMS algorithm [85] is the following:

N = O(
W

ϵ
) (2.55)

where N is the size of the training set, W is the number of trainable parameters of the model and
ϵ is the maximum classification error allowed in the test set. For example, for an error of up to
five percent, this rule determines that the number of training examples must be twenty times the
number of trainable parameters of the net. Note that the number of training examples needed is
directly proportionate to the number of trainable parameters, which is indicative of the expressive
power of the net. This means a powerful model is more prone to overfitting than a less powerful
one.

The matter of choosing and training a NN that generalizes well will be addressed next.

Bias-Variance Trade-off

In 1992, Barron [86] proved a bound to the average error on the test set of a ffnn with a hidden
layer of D1 neurons:

Eav(N) = O(
C2

f

D1
) +O(

DinD1

N
logN) (2.56)

where Cf is the first absolute moment of the Fourier magnitude distribution of the function f .

68

2.4.5 Generalization

Figure 2.15. The training and test error on a classification problem
with two classes w.r.t. the number of hidden units of a 2-D1-1 NN
[3]

Observe that Din appears
in both terms. The first re-
quirement is known as Ac-
curacy of Best Approxima-
tion and becomes smaller
as D1 increases, which is
also suggested by the Uni-
versal Approximation The-
orem (UAT), (2.1). As D1

gets bigger the net’s ex-
pressive power is also in-
creased. The second one is
called Accuracy of Empir-
ical Fit to the Approxima-
tion and in order for it to
be small, D1/N must also
be small. This is directly connected to the problem of overfitting addressed in chapter 2.3.5. The
combination of these terms reveals a trade-off between the expressive power of the net and its ten-
dency to overfit. This tendency is also documented as the bias-variance trade-off, a designation
that indicates the need of finding a balance between these two. This is pictured in the figure 2.15.

For small numbers of neurons in the hidden layer the network lacks the expressive power needed
to perform the task. For bigger values it can fit the training set but overfits on the test set.

What is also interesting to observe in equation 2.56 is that, in the case of NNs, an exponentially
large sample size w.r.t. the input dimension Din is not required to decrease the average error. The
same is not true however for other types of smooth functions like polynomials and trigonometric
functions. If s is the number of continuous derivatives of a function of interest, and thus a measure
of the function’s smoothness, then for these types of functions the minimax rate of convergence of
the total risk Eav(N) is of order (1/N)2s/(2s+Din). This is a mathematical way to express the well
known curse of dimensionality. The enormous advantage of NNs now becomes apparent.

Returning to the UAT, this theorem is also indicative of the expressive power of NNs with
just one hidden layer. Yet, it does not state that single-layer networks are optimum in every case
nor does it suggest a way to determine the optimum number of layers for a neural net. In fact,
state-of-the-art NNs have multiple layers which are trained with the help of tricks analyzed in the
previous chapter and a few more, like dropout and batch normalization that will be discussed in
chapter 2.4.5. It is generally believed that the weakness of single-layer NNs stems from the global
interaction of neurons in single-layer networks. Because of this it is difficult to improve the error
that corresponds to a set of examples without increasing it for another one.

Funahashi (1989) [87] and Chester (1990) [88] consider the layers as feature extractors.
They assign to the neurons of the first layer of a ffnn with two hidden ones the role of local feature
extractors, with some of them being responsible for segmenting regions of the input space and
others for identifying the characteristics of these regions. To the neurons of the second layer they
assign the role of global feature extractors, believing that they use the local features identified by
the neurons of the first layer for each region to create global features characterizing it. Like this,
each region is represented by a combination of a few neurons and an update to the approximation
concerning one region does not affect the neurons related to the rest of the input space. This is a
theme that is central to this thesis.

The number of layers and the number of neurons at each one are thus important hyper-
parameters that significantly affect the ability of the net to generalize. They can be tuned before

69

Chapter 2. Machine Learning and Neural Networks

the training process begins with a method that will be described in chapter 2.4.6. Optimizing
the number of neurons of every layer is an indirect way of choosing the number of parameters of
the NN. But, optimizing at the weight-level is also possible. One can initially choose a relatively
large number of neurons and then directly eliminate the unecessary parameters during the training
process to avoid overfitting.

Regularization in Neural Nets

Regularization is the most common way of handling the the bias-variance trade-off. This is
usually done with the addition of an extra term to the cost function:

J(w) = Jav(w) + λJc(w) (2.57)

The first term is the familiar performance metric that measures how well the model fits the training
data. The second term is the complexity penalty and is only dependant on the model’s parameters.
When:

• λ = 0: No regularization is applied and training proceeds as has been described

• λ→∞: The training samples are considered unreliable and the parameters are determined
by the constraint alone

Usually an intermediate value is used that is responsible for controlling the bias-variance trade-off.
The most widely known regularizer is weight decay. In the case of weight decay equation

2.57 becomes:
J(w) = Jav(w) + λwwT = Jav(w) + λ

∑
i,j,n

(w
(n)
ji)2 (2.58)

Complexity in that sense is measured by the weight values, i.e. the larger their magnitude the
more complex the model. This type of penalty can be used in cases of models that are considered
to be initialized with more weights than are necessary to approximate the underlying function.
During training two types of weights are distinguished:

• weights that contribute to the modeling of the underlying function and thus take nonzero
values

• weights that are unecessary and if left unattended would take arbitrary values leading to
the problem of overfitting while only slightly reducing the training error. These weights are
called excess weights and are eliminated by the regularizer

Weight decay can be interpreted as the negative logarithm of a zero-mean Gaussian prior
distribution over the parameter vector. This can be viewed in the frame of MAP presented in
chapter 2.3.4. Alternatively, weight decay can be viewed as a gradual weight decay of all weights
during training according to:

wnew = wold(1− ϵ), 0 < ϵ < 1 (2.59)

that permits only important weights to retain nonzero values due to their significant influence on
the accuracy of the model. The parameter ϵ is connected to the error function in the following
way:

J(w) = Jav(w) + λ
2ϵ

a
wwT (2.60)

where a is the learning rate.

70

2.4.5 Generalization

Weight decay is also named L2-regularization. Another closely related form of regularization
is the L1-regularization defined as:

JL1
(w) =

∑
i,j,n

|w(n)
ji)| (2.61)

L2-regularization is known to shrink weights to low values but not exactly zero. L1-regularization
on the other hand does exactly that, creating sparse parameter vectors on the process, i.e. param-
eter vectors that have a relatively small number of nonzero elements w.r.t. their dimension. This
is desired when there are good reasons to believe that the underlying function can be modeled with
only a few parameters.

Research has also been perform on exploiting second-order derivatives of the error surface to
solve the bias-variance dilemma. For more information one can read the following on the method
called Optical Brain Surgeon (OBS) introduced by Hassibi and Stork in 1993 [89].

Early Stopping

Setting the random noise apart, the training error generally decreases monotonically during
the training of a neural model. The same is not true with the error on the validation set that has
been seen to steadily decrease before beginning to increase again due to overfitting (figure 2.10).
This happens because the net begins learning the noise contained in the training data instead of
modeling the underlying distribution.

Early stopping is an alternative method to regularization exploits this fact by periodically
measuring the error on the validation set and stopping the training process when this metric starts
to increase, indicating that the model’s generalizing abilities are at that point optimized.

Dropout

Weight initialization and the distribution of training samples in batches play an important
role in the training of NNs but are probabilistic in nature. Therefore it is usual for engineers and
researchers to employ ensembles of NNs that are trained independently to eliminate the uncertainty
caused by the above factors. They then can use their mean output value for regression problems
or the label chosen by the majority of NNs for classification problems. The disadvantages of this
approach are the computational overhead and the increase of memory requirements.

Dropout was introduced by Srivastava et al. (2014) [90] as a cheap approximation to the
ensemble approach and is essentially a regularization method. What it does is training the ensemble
of all sub-networks that result from deactivating non-output neurons of a NN. It does that by
randomly sampling binary masks for all these units of the network every time a new sample is
used as input and information is forward propagated through the network. For each unit a new
hyper-parameter, pdropout, is defined that determines the probability of multiplying its output by
zero during a random forward propagation procedure. If that happens then the respective neuron
does not produces an output and is thus not trained for the corresponding sample. Since pdropout

is chosen so that all neurons are left out at some point during training, the model is supposed to
learn not to rely on a sub-network but is forced to have all of its possible sub-networks trained to
cope with the potential shortage of trained paths. In contrast to standard ensemble methods, in
dropout, all models share parameters with each other and most models are not trained at all since
it is infeasible to use all possible sub-network combinations.

During inference, the ensemble is approximated by keeping all units active while multiplying
each weight by the probability of not dropping its respective unit [91].

The method’s overhead is negligible O(total number of neurons) and it is known to generally

71

Chapter 2. Machine Learning and Neural Networks

perform well. Nonetheless it tends to increase the size of the model and the total training time
like most regularization methods [7].

Batch Normalization

In section 2.4.4 the need for scaling the inputs of NNs was addressed. The same circumstances
that lead to the need for input scaling may also appear between consecutive layers of a deep neural
network (DNN). It is possible, for some random initialization of the weights of a layer, for the
inputs of the activation functions of the layer to take large values causing the training process to
become unstable. Moreover, the backpropagation algorithm, chapter 2.4.3, upgrades each layer’s
weights using the assumption that the statistics of the layer’s inputs remain constant. Nonetheless,
input statistics have been observed to vary between different batches of samples. Ioffe and Szegedy
(2015) [92] named this phenomenon internal covariance shift. Internal covariance shift forces
neural layers to continuously adapt to new input statistics and causes gradients to become unstable
and training to slow down.

That is why they proposed batch normalization, a regularization method for solving this
problem by normalizing the pre-activations of every neuron of a layer across the samples of a
batch. The pre-activations of the neuron for all samples of a batch are placed in a set, have the
mean value of set subtracted from them and results are divided by the standard deviation of the
set. Yet, since information that may be useful is lost this way, two parameters, a scaling factor,
gamma γ, and an offset factor, beta β, are introduced. The network learns optimal values for γ

and β for each batch so that the normalization process becomes reversible. The steps for a neuron,
with pre-activation u(i) for the i-th example of a batch of B examples, are given by the equations
that follow:

µb =
1

B

B∑
i=1

u(i) (2.62a)

σ2
b =

1

B

B∑
i=1

(u(i) − µb)
2 (2.62b)

û(i) =
u(i) − µb√

σ2
b

or û(i) =
u(i) − µb√

σ2
b + ϵ

for stability reasons when σ2
b is very small (2.62c)

ŷ(i) = BN(u(i)) = γu(i) + β (2.62d)

Batch normalization thus renders the model less sensitive to weight initialization and hyper-
parameter tuning. Yet, if B is small the sampled mean and std are not representative of the actual
distributions. For example, sequence models, like RNNs discussed in chapter 2.6, handle input
sequences of variable lengths causing the batch size to decrease for long input sequences. Batch
normalization might prove to be problematic for such cases, but it still remains a good solution
for CNNs, chapter 2.5 [92, 93].

Layer Normalization

Ba et al. (2016) [49] proposed layer normalization as an alternative to batch normalization.
Instead of normalizing the pre-activations of neurons across the examples of a batch, layer normal-
ization normalizes the pre-activations for each sample across the neurons of a layer. If D is the

72

2.4.6 Model Selection

number of neurons of a hidden layer:

µl =
1

D

D∑
d=1

ud (2.63a)

σ2
l =

1

D

D∑
d=1

(ud − µl)
2 (2.63b)

ûd =
ud − µl√

σ2
l

or ûd =
ud − µl√
σ2
l + ϵ

for stability reasons when σ2
l is very small (2.63c)

ŷd = BN(ud) = γud + β (2.63d)

Note that γ and β parameters in the case of layer normalization are the same for all neurons of
the same layer but different for summed inputs corresponding to different examples. The opoosite
is true for batch normalization.

Batch normalization requires different processing during training and different during inference
due to the change in batch sizes. The same is not true in the case of layer normalization as the
model architecture never changes.

2.4.6 Model Selection

In chapter 2.4.3 a process of deciding the parameter values via a training algorithm was dis-
cussed. The success of a model is known to depend not only on the parameter values but also
on the hyper-parameter ones. Such parameters are the tuning parameter λ of a regularizer, the
number of layers of a NN, the initial value for the learning rate, the type of activation function
used by the network’s neurons, the type of regularization applied, etc. The values for these pa-
rameters must be decided before training initiates, but they must be chosen wisely because using
a large learning rate or low-order polynomial w.r.t. the rest of the hyper-parameters’ values and
the problem at hand may render a model completely incapable of learning. The two main issues
that must be dealt with is finding the way the search, or else hyper-parameter exploration,
will be conducted and the data that it will use.

As far as hyper-parameter exploration is concerned, given that each hyper-parameter may
take a set of values, a full search over the hyper-parameter search-space means considering every
combination of the Cartesian product of these value sets. The computational cost of this method
is usually massive due to the large number of hyper-parameters and of their respective possible
values. Using prior information for the choice of the value sets and perform different searching
rounds iteratively choosing every time the most promising value subsets based on the results of
the previous round generally speed up the process but not drastically. On the other hand, pruning
runs that don’t seem promising and choosing the next combinations of values to be tested based
on experience and prior knowledge are some tricks that are used by modern optimizers such as
Ray [94] and Optuna [95] and usually improve the tuning time considerably.

The problem of choosing the dataset that will be used for hyper-parameter tuning is also tricky.
Using the training set to derive value for the hyper-parameters is problematic, as these hyper-
parameters may be optimum for it but this choice does not guarantee that the model will be good
at generalizing to instances that have not been used in its training. In other words, this may cause
the model to overfit the training data due to the design choices. A more reliable method would
be to use different datasets for choosing the hyper-parameters and the parameters respectively.
Therefore, using the validation instead of the training set to tune the hyper-parameters seems like
a reasonable choice. Then the model is trained on the training set and, to test if the model has
overfitted either of these too, a test set can be used to test if it can generalize. Usually, out of all

73

Chapter 2. Machine Learning and Neural Networks

the samples that are not part of the test set, 20% is used as part of the validation set and the rest
as part of the training set. This method is referred to as the holdout method, and is generally
preferred in cases of big data sets and large models.

If training data is limited then one cannot afford using a significant part of it for tuning hyper-
parameters. But, using a small validation set may result to inaccurate and noisy estimations.
Instead, a method called cross-validation is used. The K-fold cross-validation method consists
splitting the training set into K, equally sized, sample sets and performing K parameter exploration
procedures, using every time K−1 sets for training and the held-out set for measuring the model’s
performance. This process is pictured in figure 2.16.

Figure 2.16. 4-fold cross-validation
process [4]

After all sets have used as held-outs for the test of a
certain hyper-parameter value combination the average
error over all K runs is calculated. A combination of
hyper-parameter values is deemed than better than an-
other if the corresponding average is error is lower. In
the end, the best combination is used to initialize the
model, hence the title model selection, and the train-
ing proceeds. Obviously the larger the value of K, the
more precise the results and, in cases of data scarcity,
the performance may be measured using only a single
example every time. This variant is known as the leave-
one-out method. Unfortunately cross-validation’s com-
plexity grows as K increases and applying it is usually feasible only for relatively small datasets
and models.

After decades of research there have been found combinations of values for sets of hyper-
parameters that generally work for most of the well-known problems. Nonetheless, this does not
mean that they are optimum in every case and that cross-validation is outdated. As research keeps
focusing on new model types and unexplored problems keep on coming of cross-validation and its
variants will always remain contemporary.

2.5 Convolutional Neural Networks

2.5.1 Invariances

In many applications it is required that inputs that differ with each other only due to the
application of one or more transformations to one of them should yield the same output. For
example this occurs in the field of image recognition, where an object in an image should be
classified correctly irrespective of the angle, the distance and the lighting in which the picture was
taken, like in figure 2.17. The same is true in the case of speech recognition where a certain word
should be recognized as being the same no matter the person that spoke it or the background noise.
Some applications thus require predictions to be invariant under one or more transformations of
the input.

A way this difficulty might be handled is with the use of an abundance of data that contain
examples of the results of the application of the various possible transformation. An example of
this is a dataset that includes pictures of the same object taken at several different hours of a day.
A model can use these examples to learn the invariance to natural lighting.

However obtaining such a number of examples is not always possible and alternatives are thus
needed. These alternatives are classified as follows [4]:

• Augmenting the dataset with manually transformed samples in order to create the conditions

74

2.5.2 Priors in Convolutional Neural Networks

Figure 2.17. Images of the same place taken at different hours of the day. Figure from http:
// hdr-photographer. com/ 2014/ 10/ different-times-of-day/

described above. This method is known to effectively improve generalization but can lead to
considerable computational burden

• Using a regularizer that penalizes changes to the output when predicting the label of an
input that has only been transformed. This approach and the ways of applying it are closely
connected to the first alternative

• Extracting the invariant features as part of the preprocessing process and using them as input
during training. The model may then be able to generalize even to cases not seen during
training. Yet, some useful features might be left out during the extraction process

• Incorporating these invariances into the model’s structure. This alternative will be the main
focus of this chapter as it is closely connected to the central theme of utilizing prior knowledge
to adapt the model’s architecture

2.5.2 Priors in Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [96, 97] are one of the most successful cases of
incorporation of prior knowledge into a model’s structure. Even though CNNs have been used in
a variety of fields it is instructive to first consider them under the umbrella of computer vision as
they were initially conceived as image processing models. An image is usually represented as a
grid of numbers of dimension D×D, which record pixel intensities. In the case of coloured images
the grid of numbers becomes a grid of vectors containing values for the three colour channels, red,
green and blue corresponding to each pixel.

The matter of invariances in image datasets was addressed previously. When such constraints
are known beforehand it is usually beneficial to incorporate these prior beliefs into the model’s
structure. This takes the form of a probability distribution over the parameters of the model
encoding the beliefs about about what models would be reasonable before looking at the dataset.
In the case of CNNs, these priors result from the properties of visual data and from invariances
that are known to be found in them. Moreover, priors may be considered as being weak or
strong depending on the degree of concentration of the probability density function in the prior.

75

http://hdr-photographer.com/2014/10/different-times-of-day/
http://hdr-photographer.com/2014/10/different-times-of-day/

Chapter 2. Machine Learning and Neural Networks

Weak priors are characterized by low levels of concentration in their density functions and allow
parameters to relatively unconstrained. Strong priors, on the other hand, play a bigger role to
parameter value formation.

Sparse Connectivity

A well known property of images is the existence of a strong correlation between nearby pixels,
since they usually belong to the same object. Yet, each neuron of a FFNN would unnecessarily
receive the entire image as input and would then have to learn to focus on individual input sub-
spaces. This prior can be incorporated by forcing neurons to focus on areas much smaller than
the entire input and thus naturally extract local features. This property is referred to as sparse
connectivity.

In multi-layer architectures these features can be combined in later layers to create higher-
order features and result in yielding global information about the picture as a whole. For example,
when processing an image with thousands of pixels, one can use a square-shaped receptive fields
containing only tens or hundreds of parameters. These are called kernels. The use of kernels
reduces the memory requirements of the model and the computational burden, i.e. in the case of
Din inputs and Dout outputs and a kernel of k parameters, runtime is reduced from O(Din×Dout)

to O(k ×Dout). This type of prior is considered to be an infinitely strong prior since the rest of
the parameters are essentially forced become zero.

Weight Sharing

An invariance that must be addressed is translation invariance. A feature may be found in any
part of the image and, consequently, the kernel responsible for extracting it should scan the entire
image searching for this feature. The implementation of this prior is done by imposing weight
sharing among kernels whose combine receptive fields covers the entire image. Weight sharing
forces them to detect the same feature across the picture.

Because of the weight sharing the combined computations performed by these kernels are
equivalent to a convolution operation applied to the image by the shared kernel. Therefore, instead
of using multiple identical kernels, one can use a single one that is shifted as is ordered by the
convolution. A toy example is shown in figure 2.18. Note that this is the result of an input-kernel
convolution, before an activation function is applied to it. Weight sharing does not change the
runtime since the computations are either way performed in parallel. Yet, it further reduces the
storage requirements to k parameters with k usually being much smaller than Din. Because of the
constraint applied on the parameters, weight sharing is considered another infinitely strong prior.

Sub-sampling

The operation that usually follows feature extraction is sub-sampling performed in the form of
pooling. During pooling, a group of outputs of the feature extraction process that have resulted
from applying the kernel to adjacent image areas is sub-sampled with the application of a pooling
function. The most well-known pooling function is the max function that chooses the input with the
largest value. Another one is the averaging function that outputs the average of its inputs. Pooling
makes the representation approximately invariant to small translations of the input, applying the
prior belief that one is not interested at the exact spot where a feature is found but is more
concerned about whether it exists or not. This is also an infinitely strong prior.

The realization of these priors thus can substantially reduce computational and storage re-
quirements. But it is also possible that the assumptions made might be inaccurate, like in the case

76

2.5.3 The Model

Figure 2.18. Example of a convolution in two dimensions without kernel flipping. Outputs for
the calculations of which only a part of the kernel would be used are not shown [7]

where information about the specific locations of objects is needed. In that case, using pooling
would increase the training error. In other words, these priors, like many others, are known to
cause underfitting [4, 7].

2.5.3 The Model

As noted by Goodfellow et al. (2015) [7], convolutional neural networks are neural networks that
use convolution instead of general matrix multiplication in at least one of their layers. To better
understand how the modules of a CNN are combined the example presented in figure 2.19 will be
followed. A CNN module is a convolutional layer followed by a pooling one. The convolutional
layer is composed of a set of kernels each of which is responsible for detecting a feature. Each
kernel is comprised of a set of weights, the number of which equals the size of the kernel’s receptive
field plus one added to account for the bias parameter, followed by an activation function. In the
example shown in the figure, the first convolutional layer consists of k = 4 kernels with a receptive
field of 5×5 each. Notice that the dimension of each feature map smaller than the input’s the same
way it is in 2.18. After the activation function is applied a sub-sampling layer follows. The neurons
of the first sub-sampling layer of the example has receptive fields of 2× 2, hence the dimension of
the corresponding feature map. The outputs are multiplied by trainable coefficients, increased or
decreased by the addition of a trainable bias and transformed by an activation function.

The second convolutional layer uses 12 kernels with 3-dimensional receptive fields of 4× 5× 5

that span across the 4 feature maps of its input. The second sub-sampling layer is similar to the

77

Chapter 2. Machine Learning and Neural Networks

Figure 2.19. Example of a convolutional neural network [8]

first but with 12 feature maps instead of 4. The output layer is a convolutional one with 26 kernels
receptive fields of 26× 4× 4. This essentially is a feed-forward layer.

The model has approximately 100000 connections but only 2600 trainable parameters. This
shines light on the importance of utilizing priors when designing a neural architecture. The model
is trained with backpropagation that deals with weight sharing by using, for the update of a certain
variable, data from all computations that were performed with its participation.

2.5.4 Inspiration From Biology

CNNs were one of the first deep learning models that were trained successfully with backpropa-
gation. It is thus a great surprise that the creation of this model was inspired by scientific research
about the biology of the human visual system. V1, an area of the brain known to be part of this
system has be found to be arranged in a 2-dimensional grid of neurons that process regions of
the visual input which spatially correspond to their position in the grid. Some of them are called
simple cells and perform feature detection with the use of linear functions. Other are called
complex cells since, apart from that, are invariant to small shifts in features’ positions and to
changes of the lighting.

Using the way human brain works to discover biases and methods of implementing them is a
central point of this these.

2.6 Recurrent Neural Networks

Data in some machine learning problems comes in the form of a sequence of vectors {xi}τi=1.
For example this is the way the words of a text or the prices of a certain stock during a spe-
cific time interval are represented. The length of these sequences may vary from sample to sample.
Feed-forward and convolutional neural networks require the maximum sequence length to be prede-
termined and cannot extrapolate to bigger sequences. For this reason recurrent neural networks
(RNNs) [98] were introduced. RNNs were made possible because of exploiting the weight sharing
prior that enables them to generalize to sequence lengths that were not observed during training
by using the same set of weights for every vector of the sequence.

2.6.1 The Model

In order to process an vector of the input sequence, information from the vectors that precede it
is usually necessary. RNNs ensure the existence of such information by maintaining a state vector
that is updated regularly. Specifically, at a random step t, an RNN takes two inputs, the next
vector in the sequence xt and the state vector computed in the previous step, ht−1. The letter

78

2.6.1 The Model

h is used to indicative of the fact that this vector results from hidden units of the network. The
equation for the state vector is the following:

ht = f(ht−1,xt;θ) (2.64)

where θ is the parameter vector and f is a nonlinear function called a transition function.
Notice that the parameter vector does not depend on the step parameter due to the weight sharing
technique applied. Therefore, both xt and ht dimensions’ are constant and independent of t.

The most famous RNN version is the one presented in figure 2.20 with the method of graph
unfolding. It is described by the following equations:

Figure 2.20. Example of a recurrent neural network presented with the method of graph unfolding.
The arrows represent the flow of information at a random step t [7]

ut = Wht−1 + Uxt + b (2.65a)

ht = g(ut), where g is a nonlinear function (2.65b)

ot = Vht + c (2.65c)

ŷt = s(ot) (2.65d)

Equations 2.65a and 2.65b together make equation 2.64. This RNN computes an output at every
time step with the use of 2.65c and 2.65d. A usual choice for an output activation function
is the softmax (equation 2.29) since this RNN type is usually used to pick an element from a
predetermined set at each step. In language modeling the set is the vocabulary and the elements
are words. Notice again that the weights do not depend on the step parameter and that, before
forward propagation initiates, the starting state h0 first has to be specified.

The RNN presented in figure 2.20 maps an input sequence to an output sequence of the same
length. Each input sequence {xt}τt=1 comes paired with a set of correct predictions {yt}τt=1, while
the model’s erroneous predictions are denoted by {ŷt}τt=1. At each step the negative log-likelihood

79

Chapter 2. Machine Learning and Neural Networks

is computed and the total loss equals the sum of these individual losses:

L = −
τ∑

t=1

logPmodel(yt|x1, · · · ,xt) (2.66)

In order to compute the gradient w.r.t. a parameter of a RNN one, like in the case of CNNs,
has to account for all computations in which it took part. Since each parameter participated in one
computation at each step, τ computations have to be considered and the contribution of each one
to the gradient is computed following a direction opposite to the one indicated by the horizontal
arrows in figure 2.20, i.e. from right to left. Due to the sequential nature of the interaction between
the RNN and the input nor forward neither backward propagation can be parallelized.

2.6.2 Teacher Forcing

Another well-known RNN type uses as input the output that it generated in the previous step.
This is for example the case with language generation models that feed the previously generated
word as input for the next step so that the model can use it to choose the next word.

Such models can be trained in two ways. First, one can feed the model with the actual outputs
of the previous step to approximate the inference process as closely as possible. Another way is to
provide the model with the ground-truth inputs irrespective of the model’s generated outputs. One
benefit of this method is its mathematical soundness, since it implements the following maximum
likelihood equation:

log p(y1,y2|x1,x2) = log p(y1|x1,x2) + log p(y2|x1,x2,y1) (2.67)

In addition to that it allows the parallelization of the training of architectures that don’t use the
previous hidden states, h’s, as inputs, i.e. models for which the matrix W equation in 2.65a is a
null matrix.

In order for the model to get used to being used in a closed-loop mode, Bengio et al. (2015)
[99] proposed mixing the two training methods using each one for a part of the total updates [7].

2.6.3 Deep RNNs

Thanks to the parameter sharing technique, the total number of trainable parameters of a RNN
is O(1) w.r.t. the input length. This allows the use of deeper RNN architectures than the one
presented previously. Essentially, an RNN implements two functions:

• the one that uses the current input and the previous hidden state to compute the new one,
equations 2.65a and 2.65b

• the one that uses the current hidden state, and in some case the current input, to compute
an output, equations 2.65c and 2.65d

These were previously implemented with a single neural layer each. Yet, like in the case of ffnns
and CNNs, it is also possible to use more than one layers in order to benefit from the ability to
create and use features of multiple orders.

Of course deep architectures tend to make training harder due to the vanishing gradient prob-
lem, chapter 2.4.4. Nonetheless one can use methods like ReLU and skip connections to improve
training speed and quality.

80

2.6.4 Bidirectional RNNs

2.6.4 Bidirectional RNNs

In figure 2.20 all horizontal arrows point from left to right, indicating that, for the computation
of the output at a random step, information only from previous inputs and the current one might be
used. But, in some problems information about the entire input sequence is needed. For example,
in part-of-speech tagging a word may function as an adjective or a noun depending on whether
the following word is a noun or not. The word "homeless" is considered an adjective in the phrase
"providing houses for the homeless" and a noun in the phrase "providing houses for the homeless
people".

Figure 2.21. Example of a bidirectional RNN presented with the method of graph unfolding [7]

Bidirectional RNNs (BiRNNs) [100] were created to provide a solution to this problem. In
essence, they are made of two RNNs that process the input sequence following opposite directions,
one from left to right and the other from right to left. The respective state vectors

−→
h t and

←−
h t

provide the necessary information for the computation of the output.

2.6.5 Encoder-Decoder Architectures

The RNN type presented thus far maps input sequences to output sequence of the same length.
It is also possible to omit the intermediate outputs and map an input sequence to a single output
vector that can be created after processing the last element of the input. Yet it is impossible for
it to map an input sequence to an output sequence of variable length, which is is required in fields
like machine translation, speech recognition and question-answering. In order to satisfy this need,
the encoder-decoder or sequence-to-sequence model was proposed by Cho et al. (2014) [101]

81

Chapter 2. Machine Learning and Neural Networks

and Sutskever et al. (2014) [102]. The model employs two RNNs, one is called an encoder and the
other a decoder.

The encoder is responsible for transforming the input sequence into a context vector c that
properly summarizes the first. The dimension of c is constant and independent of the length
of the input sequence. The elements of the input sequence x = (x1,x2, · · · ,xτin) are usually
represented by vectors of numbers that belong to dictionaries that may contain vectors for hundreds
of thousands of elements. Even though these vectors are made to characterize their respective
elements, they are only fully defined by taking into consideration their use in the input sequence.
For example, the meaning of some words depends on the context in which they are found. The
word "cold" has two different meaning in the sentences "He went out without a jacket, so he caught
a cold" and "Its cold in here, turn on the heat". Consequently„ when performing tasks such as
neural machine translation (NMT), it is necessary to create representations of the input sequence
that take the context into consideration. The role of the encoder is thus to produce contextual
representations of the input sentence [9].

The decoder is in charge of generating the output sequence y = (y1, y2, · · · , yτout), while being
conditioned on c. Notice that it τout is not necessarily equal to τin. Conditioning can be performed
by simply adding another to term in equation 2.65a. At each step the output of the previous step
is fed to the decoder as input. This property renders the model auto-regressive. Other than
c there is no other constraint that the vector dimensions used by one RNN impose to the vector
dimensions used by the other.

The system is trained to minimize the negative log likelihood:

L(θ) = −
N∑
i=1

logPθ(y
(i)
1 , y

(i)
2 , · · · , y(i)τout

|x(i)
1 ,x(i)

2 , · · · ,x(i)
τin) (2.68)

where N is the total number of training samples.
A serious disadvantage of this architecture is that c, which is of constant dimension, must

summarize a sequence of variable length. As input length increases this model’s performance is
known to drop. This problem will be addressed with the help of the attention mechanism discussed
in chapter 3.7.

2.6.6 The Problem of Long-Term Dependencies

The problem of vanishing gradients is known to arise when training deep neural network archi-
tectures. A similar effect is caused in RNNs due to the big length of some input sequences. This
causes gradients to vanish slowing training down or increase uncontrollably rendering training
impossible. To see why this is true, consider the case of an RNN without an activation func-
tion defined in equation 2.65b. The input is also omitted for simplicity. Then it is true that
ht = Wht−1. Unrolling this inductive relation to the first step results to ht = Wth0. If W can
be decomposed to W = QΛQT , where Q is orthogonal, then ht = QΛQTh0. Raising Λ to the
power of t causes eigenvalues smaller than one to decay to zero and eigenvalues bigger than one to
increase exponentially.

Unfortunately staying in the region of parameter values that guarantees that gradients will
neither vanish nor explode is impossible. Bengio et al. (1993) [103] and Bengio et al. (1994) [104]
proved that gradients corresponding to long-term relationships will inevitably by exponentially
smaller than the gradients of short-term relationships.

However various techniques for assuaging this problem have been proposed. Some of them are:

• Using skip-connections through time that allow signals to bypass d time steps in order to
capture longer dependencies. This method does not solve the vanishing or exploding gradients

82

2.6.6 The Problem of Long-Term Dependencies

problems; it simply delays them.

• Use leaky units; units with linear self-connections and weights near one that allow safe passage
of gradients.

• Long short-term memory (LSTM) model, Hochreiter and Schmidhuber (1997) [105]: using
the idea of linear connectivity to allow gradients to pass and of gating implemented by
neurons with sigmoidal activation functions to allow the model to decide automatically which
pieces of information will be granted passage to the next computational stage. Some pieces of
information are useful for some units and in some steps while other pieces might be irrelevant.
Gating implements the prior that it is beneficial for the model to be able to focus only on
what is known to be useful and not on information that might be unnecessary or simple noise.
Input gating improves the generalizing abilities of the model as it is able to ignore signals
it has never seen before which are likely to be irrelevant. These signals would introduce
noise interfering with the computations performed by the model. Moreover, the forget gate
erases a part of the state vector increasing the available space for storing useful data for a
potentially large number of steps.

Figure 2.22. Architecture of the LSTM model [7]

• Gradient Clipping [76]: a common form of gradient clipping consists of simply clipping ∇wL

before the update:

if ∇wL > u⇒ ∇wL← u∇wL

||∇wL||

This leaves the gradients’ direction unchanged and sets its magnitude to a user-defined value.
Gradient clipping mitigates the exploding gradients problem and helps in cases of error
surfaces with irregular and steep slopes.

83

Chapter 3

Natural Language Processing

3.1 Introduction

Much of the information that is used by humans is stored in the form of text. People con-
tinuously use written language in their daily lives, whether that is for communicating via emails,
deciding which movie to watch with the help of relevant critics or for ordering products online using
chat-bots. The research community has been studying for decades methods that allow computers
to facilitate these interactions between humans and natural language. Like this, the research field
of natural language processing (NLP), the understanding, analysis and use of human language by
computers, was born. In contrast to programming languages that have their symbols and words
precisely defined, natural language tends to be vague and ambiguous and as such it demands a
different approach, that will be the main focus of this chapter [7, 106].

Generally, a NLP system is a pipeline of modules that transform, provide structure to, extract
information from and may even generate text. Methods that dominated the NLP pipelines during
the 20-th century were rule-based, i.e. text was processed with the use of predetermined rules that
were implemented by efficient algorithms like finite state automata [107]. Modern NLP has mostly
replaced them with statistical and machine learning methods that require minimum human labor
and benefit from the massive, in comparison to the past, available computational power and storage
spaces. The use of such methods has been possible only thanks to the size of textual corpora,
vast amounts of textual data that are available online, like the Wikipedia corpus [106].

3.2 Text Normalization

Early on in the pipeline, text is formatted in a way that allows the following subsystems to
concentrate only on extracting meaning from it. Text normalization is a collection of transfor-
mations applied on textual data to convert it into such a standard form. There are three main
sub-tasks that make up text normalization:

• word tokenization: the task of separating words from running text

• normalizing word formats: the task of placing words in a predetermined format

• sentence segmentation: the task of splitting up sentences

A NLP system maintains a list of words for which it stores, and sometimes updates, relevant
information. This list is called the vocabulary of the system. Training sets are usually made of
running text comprised of words, which are named tokens. A vocabulary can be predetermined
and set before the parsing of the training set is performed. Alternatively, one can parse the training
set and, after a preprocessing step, use the set of words that occur more frequently than τ times,
where τ is a user-defined threshold, as a vocabulary. Once a vocabulary is set, there is a possibility

85

Chapter 3. Natural Language Processing

of encountering words that do not belong in it. Such words are known as out-of-vocabulary
(OOV) words and are usually represented by the model by a special token, <unk> [9].

3.2.1 Word Tokenization

A white space-based separation is usually problematic. Phrases like "United Arab Emirates"
should count as single entries and not be divided into separate words. Another problem is the
handling of punctuation that may occur inside words, like in the cases of "w.r.t." and "cap’n",
in number expressions, e.g. 5.000,62. These issues highlight the need for deploying trustworthy
Named Entity Recognition (NER) systems, that dig out words or phrases that correspond to
real-world entities, dates, names etc. These are very useful, for example, in biomedical applications,
where entities such as chemical names, genes and cells are usually described. There are also
character-level tokenizers that separate words into their constituting letters.

Choosing a word-based optimizer can lead to big vocabulary sizes, while increasing the threshold
τ in order to decrease its size leads to large numbers of OOV words. On the other hand, character-
based tokenizers, even though they reduce the number of OOV words, are known to create long
sequences and less meaningful individual tokens. A third category of tokenizers that seeks to
balance the first two approaches are sub-word-based tokenizers. Sub-word-based tokenizers split
words into their constituting parts. The word "playing", for example, might be formed by two
vocabulary tokens, "play" and "-ing". The suffix token has a meaning of its own that slightly
alters the meaning of the root word. This effectively decreases the number of OOV words, since a
rare word will be split into frequently occurring morphemes or other sub-words, like "-er". Usually,
the resulting sub-words are the biggest ones possible, which means that a word will undergo the
minimum number of splits possible contributing to the decrease of the sequence length. The use of
sub-word tokenizers also reduces the vocabulary size since storing every word of the text is avoided
[9].

3.2.2 Byte-Pair Encoding

A famous greedy sub-word-based tokenization algorithm is Byte-Pair Encoding (BPE).
BPE creates the vocabulary using the training set. It first adds a special symbol </w> at the
end of each word. The token learner starts by splitting up words into their letters and considers
each letter to be a byte. It then counts the frequency of adjacent byte pairs and merges the most
frequent one into a new byte. This process is repeated until an iteration limit or a token limit is
achieved. Take for example a dictionary of a toy text that stores the number of appearances of each
word: d={"old</w>": 7, "older</w>": 3, "finest</w>": 9, "lowest</w>":4}. The algorithm
splits the words into letters and counts the number of each pair’s occurrences:

• It. 1: "e" + "s" → ("es": 13)

• It. 2: ("es": 13) + "t" → ("est": 13), ("es": 0)

Notice that the count corresponding to the byte "es" is reduced to 0, since all of its appear-
ances are now included in the bigger byte "est".

• It. 3: ("est": 13) + "</w>" → ("est</w>": 13), ("est": 0)

• It. 4: "o" + "l" → ("ol": 10)

• It. 5: ("ol": 10) + "d" → ("old": 10), ("ol": 0)

• It. 6: "fin" is found 9 times in the text but only as part of the same word; so the merging
process stop here.

86

3.2.3 Word Normalization

At the end of the iterations the word "older</w>" for example is represented by less tokens (4)
than at the beginning (6).

Note that with the addition of the symbol "</w>" the byte "est</w>" in "lowest</w>"
is separated from "est" in "estimate", which is the desired behaviour since their meanings are
distinct. But most importantly, "</w>" enables the decoding of the token sequence as it indicates
the ending of each word.

When a tokenizer is trained on a training set it can be used to tokenize texts it has never seen
before. To do that, a token parser first searches for each word in the vocabulary. If it is in it then
no further action is needed. If it is not, it segments it in a way that uses the minimum number of
vocabulary tokens ensuring that all sub-words will be meaningful [108].

3.2.3 Word Normalization

Word Normalization is the task of placing tokens in a standard form and of choosing a single
form for words with the same meaning, like "gettin’" and "getting". Word normalization includes
methods such as lemmatization and stemming [9].

Lemmatization is the process of locating words that are in different forms but have a common
root and of removing sub-word parts that differentiate them, e.g. "playing" and "plays". This
process is closely related to the part-of-speech (pos) tagging task, i.e. the task of determining the
part of speech on which each word belongs. As a task, it is part of the field of Syntactic and
Morphological Analysis.

Lemmatization may require the transformation of a word. Stemming is a much simpler and
more naive approach that usually entails cutting off word suffixes. A famous algorithm that
implements stemming is the Porter Stemmer [109].

3.2.4 Sentence Segmentation

Sentence are relatively small independent text fragments and thus many models process text
sentence by sentence. This renders the task of sentence segmentation necessary in most NLP
systems. Sentence segmentation is based on the following punctuation: periods, question marks
and exclamation points. A problem with periods is that they are ambiguous, e.g. the period in
the word "Mr." does not indicate the ending of a sentence. This is why sentence segmentation and
word tokenization are sometimes performed jointly. A rule-based or a neural model determines
whether a period is used to end a sentence or as a part of a word and then the two tasks proceed
unhindered [9].

3.3 Language Models

A variety of NLP applications as well as the training of most neural models for NLP are based
on the task of language modelling (LM), i.e. the task of defining probability distributions over
sequences of words, characters or bytes in natural language. These probabilities can be used for
example to decipher the most probable next word in a noisy speech signal, to determine the way
a wrongly spelled word will be replaced, to choose the most probable translation of a sentence or
even to generate new text.

3.3.1 n-grams

Language models (LMs) are in charge of assigning these probabilities based on prior experience,
that is, based on their training on a corpus consisting of a collection of documents. A language

87

Chapter 3. Natural Language Processing

modelling task is the task of estimating the probability of a sequence of words w1 · · ·wn = w1:n.
Suppose that the probability of a word following exactly after a phrase, symbolized as h and
denoted as p(w|h), e.g. p(cars | I prefer bicycles over). The computation of this quantity comes
down to computing the following conditionals

p(w1:n) =

n∏
k=1

p(wk|w1:k−1) (3.1)

A language model could estimate the conditionals by counting the occurrences of w1:k in the corpus,
C(w1:k), and divide them by the occurrences of the context, w1:k−1, C(w1:k−1), k ∈ {1, · · · , n}:

p(wk|w1:k−1) =
C(w1:k)

C(w1:k−1)
(3.2)

The problem is that there are so many possible word combinations that even the largest corpora
main not contain occurrences of certain long word sequences. The simplest possible LM, the n-
gram, solves this issue by using the Markov Assumption, i.e. that the outcome of a random
experiment depends only on the outcomes of a constant number, N , of immediate past experiments:

p(wn|w1:n−1) ≈ p(wn|wn−N+1:n−1), ∀n ∈ N (3.3)

Equation 3.3 is the equation of the N -gram language model. For example, for a 2-gram (bigram)
LM equation 3.1 becomes:

p(w1:n) =

n∏
k=1

p(wk|wk−1) (3.4)

Given that data is abundant, the bigger the value of n the more accurate the approximation in
equation 3.3 at the cost of increased computational complexity.

A few notes on language modelling: In LM, sentences are usually augmented with special
beginning, "<s>", and ending, "</s>", tokens, e.g. "<s>Hello there! How are you?</s>".
Moreover, the probabilities are computed in log format as to avoid possible numerical overflow due
to the extremely small probability values involved in the computations. Finally LMs handle OOV
words by replacing them with "<unk>" tokens and estimating probability distributions for them
[9].

3.3.2 Evaluating Language Models

Language model evaluation methods are categorized into extrinsic evaluation methods and
intrinsic evaluation methods.

In extrinsic evaluation the LM is incorporated in an application and the performance of the
overall system is measured. The best LM is considered to be the one that improves the performance
of the application the most.

Using the LM in an application is usually a computationally inefficient way of evaluating it.
That is why many times intrinsic evaluation methods are used, that measure the model’s perfor-
mance based on its own outputs. The respective metrics can be easily obtained but a model that
does well by some metric does not necessarily perform well when incorporated in an application.
An easy way to evaluate a LM is by computing the probability it assigns to a test set that it has
never seen before. A LM that assigns a high probability to a test set is consider to have better
knowledge of the language than one that assigns a lower probability to it.

88

3.4 Representing Words in NLP

Perplexity

A common practice is to avoid using probability values, but instead use a metric called per-
plexity (PPL). Perplexity is the normalized inverse probability of a test set:

ppl(W) = p(w1w2 · · ·wL)
−1/L = L

√
1

p(w1w2 · · ·wL)

chain
=

rule

L

√
1∏L

i=1 p(wi|w1 · · ·wi−1)
(3.5)

For a bigram model then it is true that:

ppl(W) = L

√
1∏L

i=1 p(wi|wi−1)
(3.6)

A model that assigns a text a high probability will lead to a low perplexity value on the same
text. Perplexity can also be viewed as the weighted average branching factor of a language and is
directly linked to the notion of entropy. For more information on the matter see [9].

3.4 Representing Words in NLP

A problem that has not been addressed yet is defining a way in which words will be represented
so that they can be processed by NLP models. One could possibly use one-hot vectors to
represent words, i.e. vectors of dimension equal to the size of the vocabulary, |V |, that represent
a word by containing an ace in the corresponding position while setting the rest of the |V | − 1

positions to zero. A disadvantage of this approach is that these vectors fail to provide information
about the meaning of the word, but simply inform the model of its existence. Yet, due to the
ambiguity of natural language, it is not clear what constitutes a word’s meaning, let alone how
that could be distilled into a numerical vector.

Two words are considered to by similar of they are usually found in similar contexts and have
similar meanings. But that is not the only way in which words might be connected to each other.
For example, the words "road" and "car" are clearly related but not deemed similar. It was Joos
(1950) [110], Harris (1954) [111] and Firth (1957) [112] who first used the contexts in which words
are found to describe their meaning. The intuition was that words that tend to occur in the similar
environments have similar meaning, also known as the Distributional Hypothesis. Thus, the
idea of representing a word using vectors that are produced by taking advantage of the distribution
of its neighbouring words was created. These vectors are called embeddings, because the meaning
of the word is embedded into a vector space.

3.4.1 Sparse Embeddings

Long, sparse embeddings are created mainly by counting the number of times words appear
in every possible context. They are usually stored in co-occurrence matrices. The simplest
approach is to consider words that are found in the same documents to be semantically related. One
can create a term-document matrix TD [113] with each position TDij storing the number of
times the corresponding word wi is found in the respective document dj . These vectors {TDij}|D|

j=1,
i ∈ {1, · · · , |V |} can then be used to represent words.

Alternatively, one can use a term-term matrix TT of dimensions |V | × |V |. A window of c
words is determined and the number of times each word wj is found in the context {−c, · · · , c} of
the target word wi is measured and stored in TTij . Usually, context values range from 2 to 5, with
smaller values known to attribute more importance to the syntactic role of the words and larger
values to their semantic roles.

89

Chapter 3. Natural Language Processing

A problem with using simply using counts to represent words is that the importance attributed
to words like "the" or "and" that are found in all contexts and documents is disproportionate to
their actual semantic gravity. Therefore the term frequency–inverse document frequency
(tf-idf) measure is employed. The tf-idf measure is the product of two terms:

• term-frequency (Luhn, 1957) [114]:

tft,d = log10(count(t, d) + 1) (3.7)

where the logarithm is additionally employed to avoid a situation where a word that is found
a 100 times more frequently than another one is deemed a 100 times more relevant

• inverse document frequency (Sparck Jones, 1972) [115]:

idft = log10
|D|
dft

(3.8)

where dft is the number of documents that contain the term t

To fill in each position of the respective matrix the two terms are multiplied together:

tf − idft,d = tft,d × idft (3.9)

3.4.2 Dense Embeddings

Short, dense embeddings, usually of dimension in the range between 50 and 1000, have been
found to outperform long, sparse embeddings in nearly every NLP task. Possibly this is because the
smaller number of parameters reduces the model’s variance, thus improving its ability to generalize.
This section will focus on skip-gram with negative sampling (SGNS), a simple, yet effective
method, of creating dense word embeddings proposed by Mikolov et al. (2013) [116]. Their intuition
was to train a neural classifier on the binary classification task of predicting whether a word is
found in the context of the current word or not and then use the trained weights as embeddings
for the two words. A technique that they employed and played a crucial role in increasing the
efficiency of their model was the use of running text to create the supervised learning task. The
classifier parses running text, selects a window of words, uses the word in its center as input and its
context words as golden answers to the binary classification problem. This variant of supervised
learning is called self-supervision and it essentially saves the researcher the trouble of manually
labelling the supervised data. Bengio et al. (2003) [117] and Collobert et al. (2011) [118] were the
first to use self-supervision to perform the task of neural language modelling, where the next word
of a running text is used as a supervision signal.

Word prediction is usually performed by applying the softmax operation on the outputs of
the neural network and computing probabilities of each word in the vocabulary being the golden
answer. An obvious problem with the softmax operation is that it is computationally expensive (of
O(|V |) complexity). Mikolov et al. (2013) [116] solved this problem by replacing word prediction
with binary classification. SGNS uses negative samples, i.e. for each and every word found in the
context of the current word they sample k randomly chosen words that are not found in its context
and perform k + 1 binary classification tasks asking the model whether each of the k + 1 words is
found in the current word’s context or not. For example, in the case of the phrase "· · · was looking
at [the cloudy sky I noticed] two · · ·" the current word is "sky" and the the four context words
in this 5-word window are "the", "cloudy", "I" and "noticed". For each of the context words k

random words not found in the context are sampled. The negative samples are sampled according

90

3.4.3 Embedding Similarity

to the weighted unigram frequency:

pa(w) =
count(w)a∑
w′ count(w′)a

(3.10)

where a was chosen to be equal to 0.75 in the paper.
Their model is very simple. The probability of a word c being in the context of the current

word w is modelled as:
p(+|w, c) = σ(cwT) =

1

1 + exp(−cwT)
(3.11)

It follows that:
p(−|w, c) = 1− p(+|w, c) = σ(−cwT) =

1

1 + exp(cwT)
(3.12)

The goal is to maximize the probability of each positive sample being in the current word’s
context while minimizing the same probabilities for its k negative samples:

LCE = − log[p(+|w, cpos)
k∏

i=1

p(−|w, cneg,i)]

= −[log σ(cposwT) +

k∑
i=1

log σ(−cneg,iwT)]

(3.13)

The weights are trained with gradient descent and for each word two vectors are trained, a target
embedding, w, and a context embedding, c. It is both possible to use their sum or discard c and
just use w as the final embedding.

Many other methods to create dense embeddings have since been suggested. fasttext was
proposed by Bojanowski et al. (2017) [119] and deals with the problem of unknown words present
in SGNS. GloVe (Pennington et al. (2014) [120]) is based on capturing corpus global statistics by
computing ratios of probabilities from a word-word co-occurrence matrix [9].

3.4.3 Embedding Similarity

To measure word similarity with the use of word embeddings the cosine similarity is usually
employed. Cosine similarity measures the cosine of the angle between two words’ embeddings:

sim(wi, wj) =
wiwj

||wi||||wj ||
, where wi, wj are the two embeddings (3.14)

The bigger the metric the more similar the two words are considered to be [9].

3.4.4 Evaluating Vector Models

Like language models, vector models can also be evaluated extrinsically or intrinsically. The
two most common tasks used for intrinsically evaluating vector model are the similarity task and
the analogy task. Datasets of similarity tasks are created by having humans assign similarity
scores to pairs of words with (SCWS, Huang et al. (2012) [121] and WiC, Pilehvar and Camacho-
Collados (2019) [122]) or without (WordSim-353, Finkelstein et al. (2002) [123] and SimLex-999,
Hill et al. (2015) [124]) the use of context.

An analogy is of the form a is to b what c is to d and is symbolized as a : b :: c : d. The task is
to find d, given a, b and c (Turney and Littman (2005) [125]). Analogy datasets contain sets of four
words that satisfy an analogy relationship (Mikolov et al. (2013a) [116], Mikolov et al. (2013b)
[126], Gladkova et al. (2016) [127]). Examples may use different word morphology, e.g. give :

giving :: take : taking, lexicographic relations, e.g. wheel : car :: trunk : tree, or encyclopedic

91

Chapter 3. Natural Language Processing

knowledge, e.g. Alps : Europe :: Himalayas : Asia. Mikolov et al. (2013a) [116] used simple
vector addition and subtraction to perform the analogy task, e.g. Paris−France+Italy = Rome

and reported good results.

3.5 Neural Language Models

n-gram language models have two major weaknesses. First, they are unable to generalize when
presented with words that are different from the ones they have seen during training, even though
they may be related to each other. Take for example, the training set sentence "I love the blue
colour of the sea" and a possible test sentence "I Love the blue colour of the ocean". A n-gram
model that has never seen the second sentence in the training set will assign a zero probability to
the word "ocean" following the phrase "I love the blue colour of the". But a neural model that is
trained in the same training set knows that the words "sea" and "ocean" have similar meanings
and will assign a nonzero probability value to the second phrase.

Second. n-gram models use limited context, which means that if information that can be used
to accurately predict a certain word appears in the text more than n tokens before this word the
n-gram model will miss it. This is the case for example in sentence "I want to go surfing. Could
you Jerry ask Jim and Jenny if they would like to come with us when we go to the sea?". A 5-gram
model will not use the word "surfing" and thus won’t score the word "sea" as high as it should.

3.5.1 A Feed-Forward Neural Network As A Language Model

Neural networks are usually employed to solve these problems. A LM could be implemented
by a FFNN that will take as input at time t the embeddings of C words (wt−C , · · · , wt−1) and use
the softmax operation to output a probability distribution over the set of possible next words. A
simple FFNN architecture performing this task for C = 3 could be:

e = [Ext−3;Ext−2;Ext−1] (3.15a)

h = σ(We + b) (3.15b)

z = Uh (3.15c)

ŷ = softmax(z) (3.15d)

where E is the embedding matrix of dimensions d× |V | and xi is a one-hot vector with an ace in
the position that corresponds to the respective token. y is the true label given in a one-hot vector
form with |V | elements. For a single example the loss function can be written as:

LCE(ŷ,y) = −
|V |∑
n=1

yn log ŷn = −
|V |∑
n=1

1{yn = 1} log ŷn = − log ŷw (3.16)

where w is the golden token and 1{yn = 1} is only equal to 1 when n = w.
Note that the embeddings need not be learned simultaneously with the rest of the model’s

parameters. Instead they can be learned before the model is trained with the use of methods
similar to the ones described in 3.4.2. This matter will be extensively discussed in 3.9.2. Moreover,
sometimes the embedding layer may be further trained along with the rest of the model parameters
or may be frozen to prevent the initial embeddings from losing valuable information.

This model presented here is able to generalize to related words and contexts but does not solve
the limited context problem, since it can only see C steps in the past. Also it makes it difficult
to learn patterns that are independent of the position in the sequence. The phrase "but not"

92

3.5.2 Recurrent Neural Network As A Language Model

for example needs not be processed differently when it is found in the 2nd and 3rd positions and
differently when it is found in the 1st and 2nd positions one step later.

3.5.2 Recurrent Neural Network As A Language Model

RNNs solve the limited context problem since relevant information is stored in the context
vector. Thanks to the weight sharing prior across different positions RNNs also solve the second
problem. A RNN based on the model presented in chapter 2.6.1 can be described by the following
equations:

et = Ext (3.17a)

ht = g(Uht−1 + Wet) (3.17b)

ŷt = softmax(Vht) (3.17c)

They can be trained with self-supervision described in 3.4.2, i.e. by using a corpus of text and
forcing the model to predict the next token while moving the context window one position to the
right at each step. The model is trained to minimize equation 3.16 at each step and a teacher
forcing training technique is followed (chapter 2.6.2), i.e. the input to the model is the golden
token sequence irrespective of its previous predictions. This processed is shown in figure 3.1. The
goal is to minimize the average loss and GD can be used [9].

Figure 3.1. Example of a recurrent neural network being used for language modeling. At each
step it receives as input the correct previous token and the hidden state created during the previous
step and generates a probability distribution over the vocabulary tokens using a softmax layer [9]

3.5.3 Recurrent Neural Networks For Other NLP Tasks

RNNs are thus a natural model selection for NLP tasks. With minor modifications they can
used in a wide range of such tasks:

• sequence labelling: e.g. pos tagging and NER, where a probability distribution over tags is
generated at each step using a softmax layer

• sequence classification: e.g. spam detection and sentiment classification, where a summary
of the input sequence is created by a RNN and used by a FFNN followed by a softmax layer
that outputs a distribution over the possible class labels

93

Chapter 3. Natural Language Processing

• generation: e.g. question-answering (QA), summarization and dialogue. LM implemented
by RNNs can be used as auto-regressive models as noted in chapter 2.6.5.

The methods and models that will be discussed in the following sections were first tested on
neural machine translation problems. That is why it is beneficial to carefully examine this problem.

3.6 Neural Machine Translation with RNNs

Neural machine translation models are trained on parallel corpora, i.e. documents that are
translated in two or more languages. Neural machine translation (NMT) can be probabilisti-
cally interpreted as trying to maximize the conditional probability of the output sentence y given
a source sentence x: argmaxyp(y|x). The theoretical training goal thus is to maximize the con-
ditional probability of each of the sentence pairs that make up the training corpus. Once this
is achieved the model can hopefully generate the most probable translation for any given source
sequence.

A sentence is thus represented as a sequence of vectors, where each vector is the embedding of
the word in the corresponding sentence position. In NMT, the neural models receive sequences of
word embeddings corresponding to sentences that are written in a source language as input and
are expected to output their translation in the target language.

Since the two sentences might have different lengths a RNN encoder-decoder model is used.
The encoder RNN processes the input sentence and creates a context vector that summarizes
it. The decoder RNN produces a translation in a sequential fashion by receiving at every step
the embedding of the previous word it generated, while also being constantly conditioned on the
context vector produced by the encoder.

From a probabilistic perspective a decoder decomposes the joint probability into conditional
probabilities as follows:

p(y) =

Tout∏
t=1

p(yt|{y1, · · · , yt−1}, c)

where c is the context vector. An RNN decoder, that only uses the previously generated word as
input, models each conditional probability as:

pseqtoseq(yt|{y1, · · · , yt−1}, c) = g(yt−1,hd,t, c)

where g is a nonlinear function and hd,t is the decoder’s hidden state at the t-th step.
The embedding space of the output vocabulary is a different one. This means that it is possible

for two words that belong in two different vocabularies to have the same embedding. But, it
also means that it is not even necessary for the respective embedding spaces to be of the same
dimension.

Evaluating Machine Translation Systems

Evaluating machine translation systems is not as easy as evaluating models that solve pos
tagging, that can be viewed as a multi-class classification problem. A produced translation may
use different words from the reference one but still be a valid translation of the source sentence.

Therefore it is usual to have humans evaluate model-produced translations. Bilingual raters
can read both the source sentence and the generated translation and then evaluate the latter.
If bilingual raters are not available, monolingual raters can alternatively be given good human
translations of the source sentences, which they will then compare to the generated ones.

94

3.7 Attention

Having humans rate translations is slow and inefficient. That is why automatic evaluation
methods are often employed. A family of automatic evaluation methods uses the character overlap
between the human translation and the output of the model. As first observed by Miller and
Beebe-Center (1956) [128], machine translations of high quality tend to use the same words and
characters that exist in the reference translation. A well known technique that belongs in this
family of methods is chr F (Popovic (2015) [129]), which uses the n-gram overlap of the generated
translation with the reference translation to rank the first one. After the specification of the hyper-
parameter n, chrF calculates the percentage of unigrams, bigrams, · · · and n-grams in the reference
translation that also exist in the generated translation as well as the opposite. The first ones are
the precisions, symbolized as chrP, and the second ones the recalls, symbolized as chrR. chrF is
then computed as:

chrFβ = (1 + β2)
chrP · chrR

β2chrP + chrR
(3.18)

An alternative overlap metric is BLEU (BiLingual Evaluation Understudy, Papineni et al.
(2002)), which only uses precision-based quantities. Specifically, it combines n-gram word precision
with a brevity penalty.

A problem with methods based on character overlaps is that they penalize small variations
from the reference translation and the use of different words which, however, may not significantly
alter the generated sentence’s meaning. Evaluation methods that use embeddings on the other
hand are able to overlook these minor differences. It is usual for such models to match contextual
embeddings generated by BERT-like models, chapter 3.9, for the reference translation and the
model output, and then use the matching degree as an evaluation metric. An example is the
BERTSCORE algorithm (Zhang et al. (2020)) [130]. This is based on the intuition that embeddings
of phrases with similar meanings will be close in the vector space. On the other hand, suppose
that a dataset that consists of reference and machine-generated translations of the same source
sentences, but also contains the respective human ratings for the generated translations, is available.
Then it is possible to build neural models that, given the two sentences, can predict a rating for a
generated translation. Such models can then be used to automatically rank a generated translation
(COMET, Rei et al. (2020) [131], BLEURT, Sellam et al. (2020) [132]).

3.7 Attention

The performance of vanilla RNN models - the simplest possible version of model is called a
vanilla version - is known to degrade when the length of the input sequences is increased due to
the vanishing gradients problem. This is also the case with RNN type encoder-decoder models
that were discussed in chapter 2.6.5. Even worse, in the encoder-decoder case information about
the entire input sequence has to be encoded in a fixed-size context vector, a problem known as
information cramming.

3.7.1 Encoder-Decoder With Attention

Bahdanau et al. (2014) [10] proposed the attention mechanism in an effort to solve the
aforementioned problem and tested their model on NMT tasks. The attention mechanism provides
the decoder with information of all hidden states created by the encoder while it was processing the
input. It weighs the hidden states based on their relevance in every decoding step and computes
their weighted sum. The decoder’s processes are then conditioned on this vector to produce the next
word. Since all hidden states are simultaneously available to the attention mechanism, attending
to distant words now becomes possible and as easy as attending to nearby ones.

95

Chapter 3. Natural Language Processing

Model

Instead of g(yt−1,hd,t, c), g(yt−1,hd,t, ci) is defined to be the new function implemented by
the decoder. The vector ci is different for each output word, indicating that it is computed to
specifically assist the decoder in choosing the next word. The context vector ci is defined as
follows:

ci =
T∑

j=1

mijhe,j , where mij =
exp(eij)∑Tin

k=1 exp(eik)
(3.19)

where eij = a(hd,i−1, he,j) is an alignment model that is implemented by a ffnn and is trained
jointly with the rest of the model. It is responsible for scoring the relevance of each hidden state of
the encoder to the current hidden state of the decoder. When the decoder attempts to predict the
i-th output word, it is only reasonable for the alignment model to pay more attention to hidden
states of the encoder that correspond to the parts of the input sequence that are most useful for
predicting yi. Their respective scores, eij , will thus be larger reflecting their relevance. Since all of
the encoder’s hidden states are available to the decoder, the encoder does not need to summarize
the entire input sentence into a single vector; it only has to produce informative hidden states for
every part of the input.

For the encoder model, Bahdanau et al. (2014) [10] used a BiRNN to obtain information from
both previous and following words.

3.7.2 Decoding Using Beam-Search

During training the model tries to maximize the probability of choosing the correct words.
Thus, during inference, a possible decoding strategy would be to choose at every step the token
that is deemed by the model to be the most probable one of being next. The problem with this
greedy decoding method is that choosing the token to which the model the larger probability
value is not always the best choice, and might even turn out to negatively affect the translation
quality later. Ideally, one would use tree search, extending the leaves at every decoding step and
re-computing the probability of each path as such: ppath := ppath × ptoken. When the decoder has
generated a end_of_seq token for each path or when the maximum tree height has been achieved
the decoding stops. The chosen sequence is the one with the highest cumulative probability.

Tree search would indeed find the most fitting token sequence, but its complexity is exponential
w.r.t. the length of the output sequence since each leaf is extended using the entire vocabulary.
Instead, a computationally cheap alternative is usually employed, called beam-search. Beam-
search retains k possible token sequences at each time step. Using each one of them as input it
computes k distinct probability distributions over the vocabulary tokens using the softmax layer.
This leads to k × |V | hypotheses. It then chooses the k top ranking ones and moves on to the
next step. The sequence with the largest cumulative probability is finally chosen. An example is
presented in figure 3.2 [9].

Results

Bahdanau et al. (2014) [10] used beam-search decoding. Their model outperformed vanilla
RNN encoder-decoder models, especially in the translation of long sentences. Figure 3.3 shows
how the model attends to the input sequence to produce a translation. Hidden states of RNNs are
known to be most strongly related to inputs that have been most recently processed by the model,
i.e. he,j will most likely focus on xj and the inputs near it. This is evidently shown in the way
the weights for the encoder’s hidden states are chosen.

The attention mechanism introduced there inspired the Transformer model that is the basis

96

3.8 Transformer

Figure 3.2. Example of beam search for k=2. In the beginning the most probable starting words
are chosen from a single distribution. At each next step 2 new distributions are computed, 1 for
every active path. Then the best 2 paths are then chosen. Notice that in t2 it is the case that both
paths result from the same leaf, while in t3 each leaf is extended once [9]

of most modern state-of-the-art NLP models. What is more is that the attention mechanism
is another example of a successful incorporation of prior knowledge into a model’s architecture
(chapter 2.5.2). This matter will be further analyzed in chapter 4.

3.8 Transformer

The attention mechanism mitigated the vanishing gradients problem but, due to the sequential
nature of recurrent neural models, the computations cannot be parallelized. Parallelization is
incredibly important for speeding up training, and thus allowing the researcher to benefit from
data abundance and create bigger models with increased expressive power.

Vaswani et al. (2017) [1] created the Transformer, an encoder-decoder neural model that
employs the attention mechanism and the weight sharing prior to allow for sufficient parallelization
of the computations.

3.8.1 Attention in the Transformer Model

Similarly to Bahdanau et al. (2014) [10] they tested their model on the task of NMT. They
view attention as performing a mapping, whose result depends on the compatibility of a query
vector with several key vectors, each one corresponding to a value vector. More specifically, the
level of compatibility of each key vector with the query vector determines the contribution of the
respective value vector to the mapping. In the case of an RNN-type encoder-decoder model with

97

Chapter 3. Natural Language Processing

Figure 3.3. Example of attention weights. The horizontal axis corresponds to the source sentence
(English) and the vertical axis to the generated translation (French). Every pixel shows an align-
ment weight mij, where

∑14
j=1 mij = 1 [10]

attention, as described by equation 3.19, the query is the decoder’s hidden state and both the key
and value vectors are the hidden states of the encoder. Vaswani et al. (2017) [1] perform multiple
attention operations in parallel for a variety of query vectors. They store queries, keys and val-
ues in the matrices Qmax_seq_len×Dkey

, Kmax_seq_len×Dkey
and Vmax_seq_len×Dval

respectively.
Moreover Bahdanau et al. (2014) use a separate ffnn to compute attention weights. In contrast to
that, Vaswani et al. (2017) [1] use Scaled Dot-Product Attention which computes the query-
key compatibility values by computing their dot product, hence the use of vectors of the same
dimension. Scaled Dot-Product Attention is performed as follows:

Atten(Q,K,V) = softmax(
QKT√
Dkey

)V (3.20)

They divide the dot products by the dimension’s root in order to decrease the input values to
the softmax, which tend to grow large as vector dimensions increase and enter regions where the
softmax’s gradients become extremely small.

They extensively use a variant attention called self-attention that relates positions of the same
sequence in order to produce contextualized representations, i.e. the three matrices come from the
same sequence. In the case of written language, self-attention updates the words’ embeddings by
injecting information coming from their context. These embeddings are often called contextual
embeddings.

They also use the encoder-decoder attention variant described previously with the exception,
of course, of using dot products instead of an alignment model. Moreover, they employ multi-

98

3.8.2 The Model

head attention to increase the flexibility of the attention mechanism. Instead of using the element
representations themselves, they linearly project them to vector spaces of dimension h times smaller
than the initial ones, where h is the total number of heads. They then perform h different attention
operations in parallel, each one with a distinct triplet of q, k, v vectors. This allows every head
to pay attention to a different set of features of the input, promoting its specialization. The h

outputs are then concatenated and again projected.

MultiHead(Q,K,V) = Concat(head1, · · · , headn)WO,

where headi = Attn(QWQ
i ,KWK

i ,VWV
i),

WQ
i ∈ RDmodel×Dkey ,WK

i ∈ RDmodel×Dkey ,WV
i ∈ RDmodel×Dval ,WO ∈ RhDval×Dmodel

(3.21)

3.8.2 The Model

Encoder

The transformer model consists of an encoder and an encoder and a decoder. The encoder is
a stack of L = 6 layers, each of which is made of the same sub-layer types. The first sub-layer of
every layer is a multi-head self-attention mechanism. Each position attends to the outputs of all
positions of the previous layer. The second sub-layer is a fully connected ffnn that implements a
ReLU function:

ffnn(x) = max(0,xW1 + b1)W2 + b2, W1 ∈ RDmodel×Dffnn , W2 ∈ RDffnn×Dmodel (3.22)

and is applied separately to each and every position. The parameters of the two sub-layers of the
same type that belong to different layers are distinct. But weight sharing is employed for neural
modules operating on different positions of the same layer, in the same spirit that deep RNNs
use different weights across neural layers but the same weights to process each sequence element.
Around each sub-layer a residual connection is applied to allow free flow of gradients and the sum
is normalized by the layer normalization technique, chapter 2.4.5.

Decoder

The decoder is similar to the encoder but with two important differences. First, a third sub-layer
is placed in between the other two in each layer. This sub-layer implements an encoder-decoder
multi-head attention mechanism, extracting, for each position, queries from the previous sub-layer
and key and values from the positions of the encoder’s final output. Its role is similar to the role of
the attention mechanism studied in the previous chapter, 3.7.1, that enables the decoder to attend
all positions of the input after they are processed by the encoder.

Second, a constraint is imposed to allow the decoder’s training to be parallelized. In order
for that to happen, the entire target sentence must be provided to the decoder and used in a
teacher forcing manner, where the decoder simultaneously attempts to predict all target words,
while being allowed to use for the generation of each word only words that precede it in the target
sequence. A problem is thus created, since all positions of the decoder are simultaneously active
trying to predict the next words they have access, through the self-attention mechanism, to the
next word that they are trying to predict. Vaswani et al. (2017) [1] solve this problem by applying
a triangular mask over self-attention weights, forcing each individual self-attention mechanism to
pay attention only to outputs corresponding to previous positions and to the output of its own
position. An example of the application of the triangular mask is shown in figure 3.4.

On top of each separate decoder’s position a learned linear transformation and a softmax layer
are applied in order to compute probabilities for the possible next words.

99

Chapter 3. Natural Language Processing

Figure 3.4. Example of an application of a triangular mask in the decoder self-attention. The
scores are masked before a softmax layer is applied to transform them into weights. Notice how
the first token is only allowed to attend to itself. Figure from https: // jalammar. github. io/
illustrated-gpt2

Figure 3.5. Transformer model outline [1]

The model’s outline is shown in figure 3.5.

Embeddings and Dropout

They use learned embeddings of dimension
Dmodel for both languages. But, in contrast
to RNN models, and since weights are shared
across positions, there is no information to in-
dicate the positions of the words in the input
sequences of each model. Therefore, they gen-
erate positional embeddings according to
sinusoids whose frequencies depend in a pre-
dictable manner on the position of the embed-
ding in the input sequence. These are added to
the word embeddings to inject position-related
information.

Finally they apply dropout to the outputs
of the sub-layers and to the sum of word and
positional embeddings.

3.8.3 Results

Transformer outperformed sota models of
its time on a variety of machine translation
datasets, while requiring less training time.
Vaswani et al. (2017) [1] included the table 3.1 shown below regarding the benefits of using
self-attention instead of recurrence or convolution to create contextual embeddings.

The methods are compared w.r.t.:

• the total computational complexity per layer, showing that self-attention’s complexity is lin-
ear w.r.t. the representation dimension in contrast to the cases of recurrence and convolution.
This allows the use of bigger embeddings increasing their expressive power. Notice that self-
attention is quadratic w.r.t. the sequence length due to the matrix multiplications, but h is
usually chosen to be smaller that d.

100

https://jalammar.github.io/illustrated-gpt2
https://jalammar.github.io/illustrated-gpt2

3.9 Neural Model Pre-training

Layer Type Complexity per Layer Sequential Operations Maximum Length Path

Self-Attention O(n2 · d) O(1) O(1)
Recurrent O(n · d2) O(n) O(n)

Convolutional O(k · n · d) O(1) O(logk n)
Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

Table 3.1. Table comparing several layer types w.r.t. three different attributes. n is the length of
the input sequence, d is the dimension of the vectors representing each sequence’s element, k is the
size of the kernels of a convolutional layer and r is the number of elements that a self-attention
operation is allowed to pay attention to

• the number of sequential operations indicating a great disadvantage of RNNs that hinders
parallelization.

• the maximum path length between sequence elements that determines the difficulty of learn-
ing long-range relationships. Self-attention is again the winner since a query-key compatibil-
ity check is performed for all available keys.

3.9 Neural Model Pre-training

3.9.1 Contextual Embeddings

The encoders presented in the previous chapters were responsible for creating representations
of the input on which decoding was then conditioned. It is natural for someone to wonder what
if, instead of performing attention on an encoder’s outputs, the initial input sequence embeddings
were used without passing through a neural module. Even though that is entirely possible, it has
been known to yield inferior results compared to the use of an encoder-decoder neural model. As
was noted in chapter 3.4, words derive their meanings from the contexts in which they are found.
But, even though a word can be polysemous, e.g. have multiple meanings, that are expressed
in different contexts, it must be represented by a single embedding. Even though an instance of
the word "mouse" can be used to describe an animal, while another one to refer to a part of a
computer, an embedding creating algorithm like the one described in the section 3.4.2 will not
process the two instances separately. The same thing is true for words whose meanings change
only slightly in different contexts, like the word "glass" in the phrases "window glass" and "a glass
of water". Their embeddings will necessary result from a combination of all these meanings in one,
Arora et al. (2016) [133]. It would thus be very possible for a decoder that would use the word
embeddings without any pre-processing to become confused as to how some input words are used.

Encoders create what is known as contextual embeddings, i.e. embeddings that capture the
way words are used in the contexts in which they are found. An encoder is in charge of deciding in
which way the word "mouse" is used in a particular phrase and provide the decoder with a fitting
embedding so that it can then focus exclusively on the task of word generation. In other words,
the encoder deals with the ambiguity of language making the life of the decoder easier.

3.9.2 Pre-training and Fine-Tuning Neural Models

Learning representations for a natural language’s words and phrases in way that allows its
understanding, interpretation and generation is an extremely data-intensive task. The available
data for some tasks, such as biomedical ones, does not suffice for the model to effectively learn
these representations. It has been found that, instead of learning word embeddings from scratch,
it is usually beneficial to initialize the word embeddings of a model with learned ones, trained

101

Chapter 3. Natural Language Processing

via language modelling tasks on independent very large corpora. The same is known to be true
with neural encoders, that are in charge of creating contextualized embeddings. After parameter
initialization, these models can be trained on large unlabeled, and thus relatively cheap to acquire,
corpora. This training stage is called pre-training.

One can then use these trained models to perform a downstream task. This is done by adding
on top of them small, randomly initialized neural modules that are trained jointly with the pre-
trained model on the new task’s training data. The pre-training stage is usually performed using
self-supervision, while this phase usually makes use of manually labeled samples. But, because
the model is already familiar with natural language it only needs to learn task-specific knowledge,
which dramatically reduces the number of samples that are needed for this to happen. This process
is known as fine-tuning. Pre-training and then fine-tuning is a paradigm of what is known as
transfer learning, i.e. the process of employing the knowledge of dealing with a task in order to
handle a new task.

The structure of the model depends on the type of downstream tasks it is destined to undertake.
In the case of a Transformer-like encoder the following modifications are possible:

• for sequence classification tasks like emotion detection, an additional vector [CLS] can be
added to the input sequence and then processed by the encoder just like the rest. The corre-
sponding output is trained during both pre-training and fine-tuning to contain information
about the entire input sequence in a way that assists the classification task. A structure as
simple as a single-layer FFNN with a softmax layer on top can be used to process the output
vector and perform the classification. The task-specific structure can be trained along with
the rest of the model during fine-tuning.

• for pair-wise sequence classification tasks like natural language inference (NLI), the same
vector [CLS] can be used. The pair of sentences is separated by a [SEP] token and the
output of the [CLS] token is used as a summary of the task-relevant information that will
assist the classification.

• for sequence labelling tasks like pos tagging, the contextual embeddings are taken into con-
sideration. The task-specific structure is again a classifier implemented by a FFNN followed
by a softmax layer that uses each of the aforementioned vectors as input to label the cor-
responding token. Signals from all the classifications are propagated backwards during the
fine-tuning of the model.

• for span-based applications like NER and QA, the problem can be formulated as trying to
maximize p(a|q, p), where q = q1 · · · qLq

is the question, p = p1 · · · pLp
is the passage and a is

the possible answer spans. This probability can be simplified to

p(a|q, p) = pstart(as|q, p)pend(ae|q, p) (3.23)

which translates into finding the token that is most likely to be the starting point of the
answer as well as the token that is most likely to last one of the span, under the constraint
that s ≤ e.

Each contextual embedding is used as input to two FFNNs, one that computes pstart(as|q, p)
and another one that computes pend(ae|q, p). The training loss is equal to:

L = − log pstart(ai|q, p)− log pend(aj |q, p) (3.24)

where i and j are the correct starting and end points of the span respectively. Moreover
the output corresponding to a [CLS] can also be used as input to another estimator that

102

3.9.3 Pre-Trained Deep Bidirectional Transformers

estimates the probability that a passage that satisfies the requirements does not exist in the
input sequence [9].

3.9.3 Pre-Trained Deep Bidirectional Transformers

Prior Work

The appearance of models create contextualized embeddings only increased with publication
of the Transformer paper. Radford et al. (2018) [134] proposed GPT (Generative Pre-Training),
a Transformer decoder pre-trained on LM tasks. Since the model is unidirectional, information is
propagated from left to the right. Part of the information that is present in the input sequence is
thus not available to the model when it computes the contextualized representations, which limits
the capabilities of the model.

Peters et al. (2018) [135] proposed ELMo (Embeddings from Language Models) representa-
tions. ELMo result from the concatenation of the representations generated by two unidirectional
LSTMs that traverse the input sequence heading towards opposite directions, one from right to left
and the other from left to right. Devlin et al. (2018) [11] refer to ELMo as a shallow bidirectional
model and contend that its potential is limited because of the naive way in which the bidirectional
information is processed.

Pre-Training Tasks

They propose the use of BERT (Bidirectional Encoder Representations from Transformers)
that are acquired by allowing self-attention layers to use information from both sides of the se-
quence, like the self-attention layers used by the encoder of the Transformer layer. The most
significant innovation proposed by Devlin et al. (2018) [11] is the use of masked language mod-
eling (MLM) technique inspired by the Cloze Task (Taylor, 1957) [136]. The problem with using
a Transformer encoder to perform language modelling is that the model is given the target word
as input rendering the task trivial. In order to avoid this, Devlin et al. (2018) [11] mask the input
token of the target word and then use the generated output of the respective position to predict
it. The encoder has to infer the target word from its context.

In fact, the algorithm randomly chooses 15% of the input tokens to be masked and then
predicted, while allowing the use of the rest as context. Moreover, to avoid a mismatch between
training and inference conditions due to the use of masks during training but not during inference,
they randomly choose to leave the original token unmasked in 10% of the target words and choose
to replace it with another randomly selected token in another 10% of the cases. Since BERT does
not known which are the target words it is forced to maintain information about all input tokens.

In order for the model to be taught how to handle sentence pairs they also deploy a next
sentence prediction (NSP) task. They sample pairs of sentences from the training corpus out
of which 50% are consecutive sentences ad 50% are not. They then ask the model to predict
whether the second sentence is the one that follows the first one in the corpus or not. The two
sentences are separated by a [SEP] token and two learned sentence embeddings, A and B are
added to every word of each sentence respectively. Since the two sentences are concatenated, one
self-attention mechanism performs in essence bidirectional cross-attention between them.

They also use pre-trained word embeddings and add positional embeddings apart from the
sentence ones. In the case of a single sentence they only add sentence A embeddings.

The pre-training setup is shown in figure 3.6.

103

Chapter 3. Natural Language Processing

Figure 3.6. BERT setups for the pre-training and fine-tuning procedures. As far as pre-training
is concerned the use of the output of the [CLS] vector for the NSP task and of token vectors for
the MLM task are depicted. The use of token outputs for QA downstream tasks is also shown [11]

Pre-Training Corpora And Models

BERT is pre-trained on a BookCorpus [137], a 800 million word corpus of book texts that is
currently not available for reasons of intellectual property. It is also trained on a 2.5 billion word
corpus form the English Wikipedia. It must be noted that newer models are usually pre-trained
on much larger corpora.

Devlin et al. (2018) [11] pre-trained a base model with 110 million parameters and large one
with 340 million parameters.

Fine-Tuning Tasks And Models

During fine-tuning all model parameters are fine-tuned and task-specific neural modules are
added on top to perform the downstream tasks. The model is fine-tuned to GLUE benchmark
tasks. The General Language Understanding Evaluation (GLUE) benchmark is a set of
tools created by Wang et al. (2018) [138] in order to provide a holistic approach to NLP model
evaluation. The authors of the paper gathered a variety of NLP tasks and performed certain
modification wherever they deemed was necessary to facilitate the training and evaluation of neural
models at each one of them. Due to the data scarcity in some of the tasks, training a model at
each one of them separately without pre-training it first does not yield competitive results. Models
must therefore already possess knowledge of the English language before they specialize in each of
the benchmark’s tasks. The benchmark consists of the following single-sentence tasks:

• CoLA (Corpus of Linguistic Acceptability, Warstadt et al. (2018) [139]): its corpus contains
word sequences drawn from books and articles on linguistic theory, that are annotated with
whether they are grammatically correct or not

• SST-2 (Stanford Sentiment Treebank, Socher et al. (2013) [140]): its corpus is made of movie
reviews annotated based on their sentiment

As shown in figure 3.7(b) and explained in chapter 3.9.2 the output of the [CLS] token can be
used as input to a FFNN that performs the classification. As depicted in figure 3.7(a) the output
of the [CLS] token is also used in the following similarity and paraphrase tasks:

104

3.9.3 Pre-Trained Deep Bidirectional Transformers

• MRPC (Microsoft Research Paraphrase Corpus, Dolan and Brockett (2005) [141]): its corpus
consists of sentence pairs from news websites with annotations regarding their semantic
equivalency

• QQP (Quora Question Pairs, Chen et al. (2018) [142]): its corpus is a set of question pairs
from the Quora QA community with annotations regarding their semantic equivalency

• STS-B (Semantic Textual Similarity Benchmark, Cer et al. (2017) [143]): its corpus is a
collection of sentence pairs from news headlines, video and image captions and NLI data
annotated with similarity scores ranging from 1 to 5

The same setup is used by the following inference tasks:

• MNLI (Multi-Genre Natural Language Inference, Williams et al. (2018) [144]): its corpus
contains a set of sentence pairs collected with crowd-sourcing and followed by textual en-
tailment annotations, i.e. given a premise sentence and a hypothesis, the task is to predict
whether the premise entails the hypothesis, contradicts it or neither

• QNLI (Question Natural Language Inference, a version of the Stanford QA Dataset, Ra-
jpurkar et al. (2016) [145]): a QA dataset that is modified into QA sentence pairs annotated
with whether the second sentence is the answer to the question or not

• RTE (Recognizing Textual Entailment, (Bentivogli et al. (2009) [146]): its corpus comes
from annual textual entailment challenges. The task is similar to MNLI but with much less
data

• WNLI (Winograd NLI Schema Challenge, Levesque et al. (2011) [147]): a entailment task
with a corpus made of annotated sentence pairs. It is not used by Devlin et al. (2018) [11]

Devlin et al. (2018) [11] also used fine-tuned their models on the SQuAD v1.1 and v2.0 tasks,
and on the SWAG dataset. SQuAD v1.1 (Stanford Question Answering Dataset, Rajpurkar et al.
(2016) [145]) is a set of 100k crows-sourced sentence-paragraph pairs. The sentence is a question,
that is answered by a span of words of the paragraph. The goal is to find the correct span in
the paragraph. The method is presented in chapter 3.9.2 and shown in figures 3.6 and 3.7 is
used. Instead of two FFNNs, a start vector S and an end vector E are learned and their dot
product with the encoder outputs corresponding to the positions of the tokens of the paragraph
oi, ∀i ∈ {1, · · · , Lpar}, is computed. Softmax layers assign two probability values to each token
computing the probability of each one being the first token pstart,i =

exp(S·oi)∑Lpar
j=1 S·oj

, ∀i ∈ {1, · · · , Lpar},

and the final token pfinal,i =
exp(E·oi)∑Lpar
j=1 E·oj

, ∀i ∈ {1, · · · , Lpar} of the span respectively. The highest

scoring pair of tokens, S · os + E · oe, s ≤ e, is chosen.
SQuAD v2.0 also contains sentence-paragraph pairs, where the paragraph does not contain the

answer to the question asked. The [CLS] token acts as an indicator as to whether the paragraph
contains the answer.

SWAG (Situations With Adversarial Generations, Zellers et al. (2018) [148]) dataset is a
collection of 113k sentence-pair completion examples. The task is to choose the most probable
continuation for a sentence among four options. For each example they create four model inputs,
each one consisting of the sentence and a probable next phrase. They introduce a task-specific
vector C that is multiplied with each of the four resulting [CLS] vectors. This leads to four
numbers that are given as inputs to a softmax layer that performs the classification.

105

Chapter 3. Natural Language Processing

Figure 3.7. [11]

Results

Both the base and the large model outperformed the next best model in the GLUE benchmark
by 4.5% and 7.0% respectively. Their large model also outperformed all other models in the SQuAD
tasks by a clear margin and outperformed GPT in SWAG by 8.3%.

In their ablation study (table 3.2) they prove the importance of NSP for handling tasks with
two input sentences as well as the importance of using a deep bidirectional net for creating con-
textualized representations.

Tasks MNLI-m (Acc) QNLI (Acc) MRPC (Acc) SST-2 (Acc) SQuAD (Acc)

BERTBASE 84.4 88.4 86.7 92.7 88.5
No NSP 83.9 84.9 86.5 92.6 87.9

LTR & No NSP 82.1 84.3 77.5 92.1 77.8
+ BiLSTM 82.1 84.1 75.7 91.6 84.9

Table 3.2. Ablation study performed to BERTBASE. The study shines light on the importance of
the NSP task and of bidirectionality.

106

3.10 Overparameterization of the Heads of Transformer-based Models

3.10 Overparameterization of the Heads of Transformer-based
Models

Cordonnier et al. (2021) [13] find indications of overparameterization in the heads of the
Transformer architecture. They suggest that examining the rank of the multiplications of key and
query matrices of each head separately, WQ

i (W
K
i)T ∈ RDh×Dh , i ∈ {1, · · · , H}, does not suffice

to reveal the issue, which lies in the commonalities among the sub-spaces attended by every head.
The is evident in the left side graph of the figure 3.8, where the red line ascends smoothly as the
number of considered dimensions increases, indicating that the multiplication of the associated
matrices is not low-rank in general.

Figure 3.8. The matrices are taken from a pre-trained BERT model with H = 12 and Dkey = 64.
PCA [12] is performed the cumulative variance w.r.t. the number of dimensions used is shown in
the graphs. The left graph presents this metric separately for each head and the right one presents
it for the matrices produced by the concatenation of the respective head-specific matrices [13]

They thus concatenate head-specific matrices into two new ones, WQ and WK , and perform
PCA to WQ(WK)T ∈ RDin×Din , (Din = Dh · H). This matrix is evidently low-ranked, which
means that the flexibility provided with the separation of the attention process into heads is
underutilized.

3.11 Scheduled DropHead

Zhou et al. (2020) [14] seek to mitigate the problem of attention head under-utilization. Based
on the work of Voita et al. (2019) [16] (chapter 4.4.2) and Clark et al. (2019) [17] (chapter
4.4.3), they contend that the issue arises for two reasons; First some attention heads tend to be
used much more than others, i.e. become dominant, a matter related to the problem of module
collapse discussed in chapter 4.12.2. Second, attention heads co-adapt, i.e. avoid learning what
other heads already know.

3.11.1 DropHead

In order to solve this problem they introduce an attention head regularization technique, called
drophead. Drophead is based on the idea of the dropout regularization technique addressed
in chapter 2.4.5, that involves randomly masking neural units during the training of the NN to
prevent co-adaptation between neurons and promote the creation of multiple well-trained neu-
ral paths. Zhou et al. (2020) [14], instead of dropping neurons, drop entire attention heads.
Specifically, they sample a random mask vector ξl ∈ {0, 1}H and apply it to the outputs of
the attention heads of the l-th layer, l ∈ {1, · · · , L}, every time a new input sequence is used:

107

Chapter 3. Natural Language Processing

Figure 3.9. Examples of (a) the application of a
standard dropout technique that randomly drops a
set of neurons and (b) the DropHead method that
randomly drops entire heads [14]

ξl = {ξli}
H
i=1, {ξli} ∈ RDval (3.25)

Each mask is applied to the corresponding
head’s output via element-wise multiplication.
Similarly to the dropout method, they normal-
ize the output of the attention heads by divid-
ing the result with γ = sum(ξi)/H in order to
ensure the matching of scales between training
and inference times. This mechanism is shown
in figure 3.9.

Since dominant heads are unavoidably
masked for a large set of training samples, the
rest of the heads are forced to learn how to
make up for this fact. The same is true when
it comes to the co-adaptation problem, as not
head can rely on features learned by another
one. This effectively reduces overfitting and boosts generalization performance.

3.11.2 Scheduler

Is is common to use a dropout scheduler that linearly increases the dropout probability as
training proceeds (curriculum schedule). Doing so effectively prevents co-adaptation, that has been
found to become worse at the end of training, while ensuring that neural structures are sufficiently
trained.

Figure 3.10. Several dropout schedulers.
The curriculum scheduler (red) linearly increases
dropout probability as training proceeds while the
anti-curriculum scheduler (blue) does the oppo-
site. The proposed scheduler (green) linearly de-
creases the dropout probability and then linearly
increases it [14]

Zhou et al. (2020) [14] propose a V-shaped
scheduler, which starts head dropping with a
relatively high probability pstart, that linearly
drops to 0 and then linearly increases up to
pend, as shown in figure 3.10. Specifically they
use pstart = pend = 0.2. They contend that
starting of with a high drophead probability
reduces the risk of few heads dominating the
multi-head attention mechanism, which hap-
pens right from the begging of the training pro-
cess as observed by Michel et al. (2019) [149].

3.11.3 Experiments

They apply their method to the transformer
model, which they train on a NMT task, and
to BERT, which is trained on text classification
tasks.

NMT with Transformer

They train several variants of the big transformer model, each one with a different dropout-
based technique:

108

3.11.3 Experiments

• the standard dropout method applied to
the neurons of the attention heads

• the drophead method w/o the use of a
scheduler

• the scheduled drophead method

They attribute the obvious improvement in per-
formance, presented in table 3.3, to a success
of their method in preventing the overfitting of
the model’s attention heads. They thus try in-
creasing the number of attention heads, from 16
per layer to 32 per layer, while simultaneously
decreasing the number of neurons per head to
maintain a constant model size. This further
boosts the results of their model , but not of
the standard transformer implementation, prov-
ing their point.

Models BLEU PPL
Weighted Transformer 28.9 -

Tied Transformer 29.0 -
Layer-wise Coordination 29.1 -

Transformer-big 28.4 -
ours (reproduced) 28.7 4.32

+ Attention Dropout 28.7 4.29
+ DropHead 29.2 4.15

+ Scheduled Drophead 29.4 4.08
Transformer-big (more heads) 28.4 4.39

+ Attention Dropout 28.5 4.38
+ DropHead 29.3 4.12

+ Scheduled Drophead 29.6 4.02

Table 3.3. Performance of various models on
the NMT task WMT14 (en-de) [30]. They re-
produce the original Transformer model and re-
port results for it too. They compare to the re-
sults of the weighted transformer [31], the tied
transformer [32] and the layer-wise coordination
method [33] applied to the transformer model.

Text Classification

They apply their method during the fine-tuning of the BERT model in several text classification
tasks and evaluate its performance. Improvements are observed but are not significant. Since
BERT is already pre-trained before drophead is applied, they contend that the attention heads
have already been formed and thus the room for improvement is limited.

They therefore initialize new transformer-based models and train them on the text classification
tasks, without LM-based pre-training, while applying their methods, in order to evaluate their
contribution to the the performance of a model that is trained from scratch. They indeed report
substantial improvements over the transformer-based baseline.

Effects of DropHead

To test whether scheduled drophead truly minimizes the dependence of the transformer model
on dominant heads they try deactivating the head of each layer that leads to the maximum drop
in performance, one head at a time, and then report the average performance over its layers. They
observe that the effect of masking the dominant heads of a model trained with scheduled drophead
is limited compared to one of the vanilla transformer model (table 3.3). This means that scheduled
drophead effectively limits the dependence on individual heads and forces more heads to contribute
to the output.

Models Enc-End Enc-Dec Dec-Dec
Transformer -0.47 -1.05 -0.32
+ DropHead -0.31 -0.79 -0.27

+ Scheduled DropHead -0.28 -0.70 -0.25
Transformer (more heads) -0.41 -0.92 -0.29

+ DropHead -0.25 -0.61 -0.24
+ Scheduled Drophead -0.21 -0.54 -0.20

Table 3.3. Average drop of the BLEU score after the most important head of a layer has been
removed across layers.

109

Chapter 4

Modeling System 2 with Neural Networks

4.1 Introduction

Modern neural networks are able to learn complicated patterns in a matter of days. They
can chat like humans [150], perform certain image recognition tasks better than humans [65], and
have started helping scientists in solving problems that have remained open for decades [151].
Nevertheless, they are not yet capable of performing tasks that the human brain excels at, like
systematically generalizing, i.e. combining pieces of already acquired knowledge to solve tasks they
have never seen before.

Part of the research effort on neural networks now focuses on enabling them to acquire such
capabilities that only the human brain is known to possess. In chapter 2.4 the contribution of
neuroscientific findings in the creation of NNs was highlighted. The study of synapses, neural
activation and of plasticity were crucial in providing insight for the development of the notions of
neural weights, activation functions and learning processes for NNs.

Another re-occurring theme in this thesis is the successful transformation of prior beliefs about
the world into model architectures (chapter 2.5.2. The resulting techniques offer significant com-
putational and expressive advantages over standard NN architectures. Such are the methods of
weight sharing and sub-sampling and the mechanisms of convolution and attention that are used by
modern NNs and were inspired by prior beliefs such as equivariance over space and permutations.

A research team, lead by the computer scientist Yoshua Bengio, is trying to use intuitions from
neuroscience as prior beliefs to create a generation of neural networks that will better mimic the
way the human brain works and will exhibit characteristics that modern NNs don’t, like being able
to systematically generalize.

Their research is heavily influenced by the works of:

• Daniel Kahneman & Amos Tversky: psychologists that studied cognitive biases and decision
making

• Bernard Baars: neuroscientist, mostly known for the Global Workspace Theory regarding
the way cognitive abilities and consciousness function

• Bernhard Schölkopf: computer scientist known for his work on causality and kernel methods

In order to present the vision of Yoshua Bengio and his team, relevant aspects of the works of
the above researchers as well as closely related research areas will first be discussed.

4.2 Thinking In Different Speeds: System 1 And System 2

In his book, Thinking, Fast and Slow [50], Daniel Kahneman adopts a terminology first proposed
by the psychologists Keith Stanovich and Richard West. He uses the terms System 1 and System

111

Chapter 4. Modeling System 2 with Neural Networks

2 as simplifications to talk about the two functioning modes of the human brain.
System 1, he contends, operates involuntarily, quickly and without the human’s control. This is

the system that performs trivial arithmetic operations like 2×2, recognizes the emotions of people
by a simple look at their faces and creates an internal image of a spoken object. It is therefore
responsible for creating impressions, and in fact, for maintaining a model of the world as it is
viewed by the brain’s owner. This model entails people, objects, ideas and relations between them
that the person views as normal and usual and thus there is no need for mental effort in order to
represent them.

Impressions system 1 generates may be the result of what Kahneman refers to as heuristics.
For example, humans estimate the probability of an event by relying on the ease with which
relevant events come to mind, e.g. knowing many divorced couples may lead to overestimating the
probability of a marriage leading to divorce. Kahneman, among many psychologists, believes that
the use of heuristics is a reason for predictable biases, i.e. systematic errors that are made by
humans.

Not all impressions generated by System 1 result from intuitive heuristics. Expertise accom-
plished by repetitive practice is distilled as a System 1’s response to a familiar situation. This is
how a basketball player instantaneously reacts to a shot attempted by an opponent or a Scrabble
master in a newly formed word.

Nevertheless all impressions created by System 1 initiate from the recognition of a situation
that is somehow familiar. System 1 also detects situations that are novel to the human and are
not explicitly represented in memory. Such are the cases of nontrivial arithmetic operations, like
57 × 36, the task of playing a new game or the task of writing a thesis. These cases violate the
model maintained by System 1, and demand the human to willingly place effort to handle them.
Such tasks activate System 2, which is much slower than System 1 but, in contrast to it, can devise
and implement a plan consisting of a series of distinct steps.

System 2 is what humans identify themselves with, an existence conscious of itself, with its own
feelings, beliefs and ideas that can manipulate thoughts to reason about problems and situations.
System 2 requires conscious attention and effort to function, the degree of which depends on the
difficulty of the task at hand. This is why it is usually in a low-effort mode and not full on. System
1 continuously provides System 2 with impressions that it ordinarily accepts, turning them into
beliefs. But, when faced with a new situation, System 2 is called to carefully examine System 1’s
impressions and suggestions, decide what is valid and relevant and then synthesize a response to
the novel conditions. In contrast to System 1, System 2 is capable of statistical thinking and is
therefore frequently called upon to reconsider some of System 1’s biased judgements.

System 2 can also guide System 1 into behaving in different ways than it normally does. It can
program its attention to focus on recognizing new sets of patterns, like a specific word in a test,
and the associative memory to retrieve data that are related to a specific theme, like landlocked
countries. Moreover, re-occurring tasks that initially call for System 2’s attention gradually become
easier and require less attention and effort as a significant portion of steps begin being handled
automatically by System 1.

4.3 Modularity In The Human Brain

4.3.1 Introduction

The neurons of the human brain have been found to compose what is known as small-world
networks. The vertices of a small-world network are not all connected to one another, but the
length of the shortest path between the neurons is relatively small (L ∼ logN , N the number of

112

4.3.2 Forebrain

vertices in the graph) [71]. The boundaries between different areas of the human brain are mostly
not well defined and cognitive functions cannot be localized to specific brain areas. Yet, research
indicated that parts of the brain, called brain nuclei, do exhibit signs of specialization in terms
of their functionality. This specialization of brain nuclei, as clusters of neurons with distinct sets
of functions are called, is a possibly important source of inspiration for the creation of the next
generation of neural networks. It is thus useful to become familiar with the basic areas of the
human brain and with the way they are segmented based each one’s different functionality. During
this discussion the most intriguing brain nuclei, such as the basal ganglia, will also be examined
and key aspects of of the matters of consciousness and attention will be highlighted.

The neurons of each brain area have been found to work together to perform the necessary
functions. Neuroscientists have been able to link each area to a specific set of functions by using
three methods, i.e. by associating damages in a brain area with the impaired function, by following
the neural paths, and by observing brain activity with brain scanning techniques. They have thus
split the brain into three main areas, the forebrain, the midbrain and the hindbrain. Each one is
further divided into specialized nuclei. The midbrain is a relatively small brain area involved in
the sleep-wake cycle, thermoregulation and visual reflexes [71].

4.3.2 Forebrain

The forebrain accounts for 90% of the brain’s mass and is involved in higher cognitive func-
tions and the perception of sensory inputs. It includes the cerebrum, which in turn contains
the cerebral cortex that is related to functions such as consciousness, language and mem-
ory. The cerebral cortex is the layer that surrounds the brain. The segmentation does not
end here since the cerebral cortex consists of 4 lobes, each one with its own specialization:

Figure 4.1. A figure indicating the 4 lobes of
the forebrain. Figure from https: // www. nbia.
ca/ brain-structure-function/

• temporal lobe, specialized in language
and emotion

• occipital lobe, involved in vision

• parietal lobe, responsible for processing
sensory signals related to touch and for
body posture awareness

• frontal lobe, associated to short-term
memory

Each of the lobes contains several areas with
different functionalities. The inferior temporal
gyrus, for example, which is part of the tempo-
ral lobe, is associated to face face recognition, and the orbitofrontal cortex, that belongs to the
frontal lobe, is involved in emotion representation and reward generation in decision making [71]

Language

One can also spot a set of areas that play important roles in language processing, understanding
and generation:

• Auditory cortex: part of the temporal lobe located at the side of the brain that processes
auditory information

113

https://www.nbia.ca/brain-structure-function/
https://www.nbia.ca/brain-structure-function/

Chapter 4. Modeling System 2 with Neural Networks

• Angular gyrus: part of the inferior parietal lobe that is responsible for linking words to
images, thoughts and feelings. It is thus an area where information from multiple senses is
gathered and processed jointly to create a thorough representation of even complex notions
and concepts

• Wernicke’s area: part of the temporal lobe that assists the comprehension of language and
the process of choosing words when speaking

• Broca’s area: part of the frontal lobe that has been found to be active when learning a
new language and is also involved in speech generation. In fact, different parts of it are used
when the person speaks different languages

These areas are shown in figure 4.2.

Figure 4.2. A figure indicating the areas of the brain connected to language understanding,
processing and generation. Figure from https: // www. youtube. com/ watch? v= zj0yud4wv74

Limbic System

At the forebrain’s base, located between the cerebral cortex and the midbrain, is the thalamus.
The thalamus, along with the structures that surround it, assists the transmission of signals between
the forebrain and the brainstem, while also providing a connection to the rest of the body. Such
are signals from every sensory system, except smell. It is also involved in sleep, alertness and
consciousness.

The hypothalamus is located below the thalamus and connects the brain to the endocrine
system. It does that by synthesizing and releasing neurohormones. It controls aspects of growth
and homeostasis and plays key roles in actions such as drinking and eating.

The pituitary gland weights only 0.5 g and is found beneath the hypothalamus. Under the
latter’s control, the pituitary gland produces hormones related to growth, urination, reproduction
etc [71]

These areas are shown in figure 4.3.

Basal Ganglia

The basal ganglia is a set of nuclei located in the cerebrum that have a very interesting role.
Due to the brain’s complexity it is very usual that different areas issue commands that come in
direct conflict with each other. The role of the basal ganglia is to receive the respective signals

114

https://www.youtube.com/watch?v=zj0yud4wv74

4.3.3 Hindbrain

and decide which commands will be followed. In order to achieve this goal they use multiple paths
with feedback loops that allow some signals to pass while inhibiting others. Three basic paths can
be distinguished whose routes depend on the origins of signals each one is meant to meant to block
or allow passage to. For example, the motor loop is responsible for selecting muscle actions and
is thus connected to the centers controlling movement. The other two are the prefrontal loop and
the limbic loop [71]. A few notable components of the basal ganglia are:

• the caudate nucleus that is involved in motor processes, procedular learning, associative
learning and conscious inhibition of actions

• the putamen that is involved in complicated motor behaviours, motor planning, learning
and execution

• the substantia ganglia associated with eye movement, motor planning and reward seeking

4.3.3 Hindbrain

The hindbrain is the oldest part of the brain as its genes were formed around 560 million
years ago. It consists of the cerebellum and the brainstem [71].

Cerebellum

The cerebellum drives signals carry commands related to any type of body movement through
its multilayered neural paths. The role of these paths is to translate high-level commands into
delicate sequences of muscle contractions. The pattern of contractions for each movement is stored
in the way these neural paths are formed. This multilayered setup played a significant role in
inspiring artificial multilayered neural networks.

Figure 4.3. A figure indicating several impor-
tant areas of the brain. Figure from https:
// www. youtube. com/ watch? v= zj0yud4wv74

The cerebellum is indicated in figure 4.3.

Brainstem

The brainstem, shown in figure 4.3, is di-
rectly connected to the spinal cord. It thus
serves as a hallway for neural signals. It is also
home to various nuclei, such as the reticular for-
mation associated to alertness and conscious-
ness and the medula that is in charge a variety
of autonomous body functions like modulating
blood pressure.

4.3.4 Consciousness

Consciousness is the awareness of the external world’s aspects that can sensed through the
sensory organs and the internal world’s happenings like thought and emotions. Modern neuro-
science is able to track brain processes that are known to be related to consciousness and some of
them occur in the aforementioned brain areas. But, the source of this phenomenon has not yet
been determined. That is, researchers don’t know if consciousness comes as a result of this activity
or the two are simple connected somehow [71].

115

https://www.youtube.com/watch?v=zj0yud4wv74
https://www.youtube.com/watch?v=zj0yud4wv74

Chapter 4. Modeling System 2 with Neural Networks

4.3.5 Attention

Attention is the conscious decision to focus on a particular stimuli or internal event. Deciding
to pay attention to a stimuli activates the brain regions that are associated to the related sense.
For example, the parietal lobe that handles spatial data may activate to guide the frontal lobe into
instructing the eyes to look at a particular spot of interest. It is important that each person has a
limited "attention budget" and the brain cannot be ordered to pay attention to more than a few
things simultaneously [71].

This type of system configuration that is involves the specialization of different subsystems in
distinct sets of functions is not only not only found in the human brain, but throughout nature.
This property is so common that it has a name, i.e. modularity, while systems that exhibit this
type of behaviour are called modular and the specialized subsystems are called modules.

4.4 Modularity In Neural Networks

Even though a mechanism that explicitly promotes modularity in NNs has not yet been in-
troduced in this thesis, some of the models that have been presented have been found to acquire
modular properties solely via the training process. The most prominent cases are the ones of CNNs
and of Transformers.

4.4.1 Modularity In CNNs Trained On Scene Classification

Zhou et al. (2015) [14] found that the kernels of a CNN, that is trained on a scene classifica-
tion problem, become specialized in detecting objects that are related to the scene categories the
model has witnessed. For example this occurs in the case of a bedroom scene that leads to the
specialization of some kernels at detecting bedroom-related objects like beds and lamps.

Zhou et al. (2015) [14] used a CNN trained from scratch on 2.4 million images from 205 scene
categories. They then selected images that induced the biggest activations for each several units
across the layers of the CNN. For each image they generate 5000 versions, they obscure in each one
a random part of the image and then record the change in the induced activation of the respective
neural unit. This is done in order to locate the object in the image that is most strongly connected
to the activation of the unit. The resulting objects were shown to human annotators who were
asked to categorize each unit based on the objects that were found to activate it the most. The
units were also categorized based on the semantic level of the concept that activates them, ranging
from low-level concepts such as simple elements and colors to high-level concepts like objects and
scenes. The annotators also were told to record for each unit the number of images that contain
concepts that seem to activate it but deviate from the unit’s concept category. The percent of
images for each unit that contain objects that do belong to the unit’s semantic label and indeed
activate it is named as the unit’s accuracy.

Around 60% of the units at each layer has over 75% accuracy, based on the above metric,
suggesting that kernels are indeed specialized in identifying specific concepts. In addition to that,
units at early layers were found to focus on low-level concepts while units at later layers identify
high-level concepts, as shown in figure 4.4. This is in accordance with Funahashi (1989) [87] and
Chester (1990) [88] 2.4.5) that found that neurons of the first layer of a 2-layer NN extract local
features while the neurons of the second layer use the local features to extract global ones.

Moreover, certain re-occurring objects were found to activate more than one unit. In fact, there
are cases where units are further specialized in the various forms different of a specific object, e.g.
6 units were found to detect lamps and each unit to be responsible for detecting a different lamp

116

4.4.2 Modularity In Transformers Trained On NMT

Figure 4.4. The receptive fields of 3 units of the layers pool1, pool2, conv4 and pool5 along with
the images areas inside the receptive fields that activate these units the most [15]

type.

4.4.2 Modularity In Transformers Trained On NMT

Voita et al. (2019) [16] studied the specialization of the attention heads in a Transformer model
train on NMT data. They chose English as the source language which helped them to analyze the
behavior of the encoder’s self-attention heads. They chose Russian, German and French as target
languages.

They first used layer-wise relevance propagation (LRP) to locate the most important
heads. LRP estimates the importance of each unit starting from the output units and propa-
gating backwards. It uses the weight ratio between units of consecutive layers as an importance
propagator, while considering the total relevance to be constant across layers.

Voita et al. (2019) [16] attempted locating the most important heads by averaging the impor-
tance of their constituting neurons. They then manually tried to find where the most important
heads pay attention to. To do that they observed where the maximum attention weight of each
head is usually assigned to.

They found some heads that, at 90% of the time pay most attention to their nearby positions
and especially to tokens right before and right after their respective position. These heads were
named positional heads and were ranked as the most important ones by the LRP metric.

Other heads were found to focus on specific syntactic relations. More specifically, Voita et al.
(2019) [16] looked for the following relations: nominal subject, adjectival modifier, direct object and
adverbial modifier. They use the CoreNLP model (Manning et al. (2014) [152]) for syntactically
parsing a set of sentence pairs that the Transformer model had not previously seen. Then, they
calculated the frequency with which each head assigns its maximum attention following one of
the aforementioned dependencies in either direction. If they found that the assignments of a head
consistently follow one of these relations then the considered to be a syntactic one. Indeed, some
of them were able to accurately predict syntactic relations with high accuracy indicating that they
has acquired a specialized syntactic role.

Finally, a head in the first layer of all models was found to pay attention to the rarest token
in 66% of the sentences and to one of the two rarest in 83% of the sentences indicating another
specialization.

By using a loss that balanced attention head pruning and model performance they observed
that heads with specialized roles were the last ones to be pruned. In fact, while decreasing the
number of active heads they discovered that the roles of the specialized heads that were pruned
migrated ones that were still active (figure 4.6). This verifies the importance of specialized heads,
as losing them leads to severe degradation of the model’s accuracy (figure 4.7). Finally, the fact
that the model initially retains its good performance despite the loss of many heads indicates that
the rest of the heads that did not specialize were not as important as the specialized ones.

117

Chapter 4. Modeling System 2 with Neural Networks

Figure 4.5. The head relevance of the self-attention heads of the encoders of two models across
all 6 layers and their corresponding specializations [16]

Figure 4.6. The head relevance of the self-attention heads of the encoders of two models across
all 6 layers and their corresponding specializations [16]

4.4.3 Modularity In BERT Trained on NLM

Clark et al. (2019) [17] investigate the 144 attention heads maps of the BERTBASE model
to discover patterns of positional or syntactic context. Recall that multi-sentence inputs to the

118

4.4.3 Modularity In BERT Trained on NLM

Figure 4.7. The head relevance of the self-attention heads of the encoders of two models across
all 6 layers and their corresponding specializations [16]

BERT model are of the form: [CLS] < paragraph 1 > [SEP] < paragraph 2 > [SEP]. Clark et
al. (2019) [17] extract attention maps over 1000 random segments from the 12 heads of each of
the 12 BERT layers and then use them as data for their experiments. They refer to a specific head
using the notation < layer >< head_number >.

They find that most heads don’t pay much attention to the current token, but specialize in the
previous or the next token, a behaviour also observed by Voita et al. (2019) (chapter 4.4.2). who
refer to these heads as positional. In fact, they discover 4 attention heads in layers 2, 4, 7 and 8
respectively that on average place over 50% of their attention weight on the previous token and 5
attention heads in layers 1, 2, 2, 3 and 6 respectively that do so on the following token.

They also find that many heads, including more than half of the heads in layers 6-10, pay
attention mostly to the [SEP] tokens (figure 4.8), i.e. devote over 90% of their attention weight
to themselves and the [SEP] token. They hypothesize that heads with specific functions pay
attention to [SEP] in cases where their function is not applicable, e.g. a head that, under a direct
object, pays attention to its verb, points to the [SEP] token when it is found under a non-noun
token.

(a) (b)

Figure 4.8. Each points represents the average attention an attention head of the respective layer
pays to (a) the corresponding token marked with red for the [CLS] token, blue for the [SEP] token,
purple for commas and periods (b) the [SEP] token marked with green if the head is found under
a [SEP] token and with blue otherwise [17]

They use gradient-based measures of feature importance [153] to confirm this hypothesis. In-
deed, starting from the fifth layer, they observe that, as the attention paid to [SEP] increases,

119

Chapter 4. Modeling System 2 with Neural Networks

the absolute value of the gradients that originate from it decreases, as shown in figure 4.9. This
means that changing the outputs of the corresponding heads has small effects on the network’s
output, indicating that their minimal importance to the rest of the net when they are used that
way. Importantly, it is also evident that when such a head is not applicable its parameters do not
change much as a result of training.

Figure 4.9. Gradient-based estimation of fea-
ture importance for attention heads focusing on
the [SEP] token, periods or commas and other
tokens [17].

In addition to that, they measure the en-
tropy of head’s attention distribution and show
that attention heads in lower layers tend to si-
multaneously pay attention to a relatively large
set of positions, i.e. devote at most 10 % of
their attention mass to any single word. They
therefore seem to gather information from mul-
tiple sources to create contextual representa-
tions, whereas heads in higher layers focus on
few words each.

Moreover they study attention heads that
are not deemed positional as to whether they
perform syntactic roles. They discover that
some attention heads do predict with consid-
erably high accuracy scores specific syntactic
relations while others do not systematically do
so.

Finally, they compute the Jensen-Shannon Divergence between attention distributions of each
pair of heads to test whether one can group attention heads in terms of their functionality. They
apply multi-dimensional scaling [18] to embed the heads in two dimensions based on their computed
distances and present the results in figure 4.10.

(a) (b)

Figure 4.10. Each point represents an attention head. The distance between each pair of attention
heads is computed with the Jensen-Shannon Divergence between their attention distributions and
multi-dimensional scaling [18] is used to embed them to a two-dimensional space. In (a) the heads
are coloured based on their functionality and in (b) based on the layer in which they are found [17].

120

4.5 Global Workspace Theory

Surprisingly, heads of the same layer seem to perform similar functions as captured by their
attention distributions.

4.5 Global Workspace Theory

Bernard Baars proposed the Global Workspace Theory (GWT) [44, 45] in an attempt
to explain how the distributed specialized brain nuclei synchronize and cooperate to support the
brain’s cognitive functions. He contends that there must exist a memory channel that can be
accessed by all specialized processors or agents, as he calls the brain’s distinct neural areas, to
exchange information with each other and update on the current status. GWT suggests that
it is consciousness that broadcasts data known by a single specialized agent to the rest of the
brain areas. According to GWT, only conscious perception has access to the working memory and
unconscious processes are confined near the respective specialized processors.

Baars [46] explained that, even though multiple events may cause an agent to send information
to the channel, it is a selective attention system that decides whether to draw conscious attention
to data reaching the channel or ignore them. This system, he states, is controlled by the frontal
executive cortex and by areas that can automatically interrupt conscious processes, like pain and
emotional centers. It acts as a bottleneck enabling only some important data to be broadcasted.
Moreover, he highlighted that, after consciousness is informed of an event, it is conscious feedback
that is necessary to control motor functions and some neural areas. Finally, he described the
existence of self-executive interpreters, located in the frontal cortex and accessed by consciousness,
that maintain high-level world information generating a feeling of consistency even when external
situations change.

Baars et al. (2013) [47] and Baars and Geld (2019) [48] updated GWT to account for recent
neuroscientific findings to create Global Workspace Dynamics (GWD). GWD takes into con-
sideration theories that view consciousness as the result of cortico-thalamic (C-T) activity. Baars
et al. (2021) [154] defend the theory by explaining that GWT justifies this activity, that is believed
to correspond to conscious experience.

4.6 Causality

The field of causality is a source of inspiration of the type of neural networks that will be
discussed in this thesis. Before presenting the intuition from causality that is most relevant here,
a few notes on causal models and interventions must first be provided.

4.6.1 Structural Causal Models

First the definition of the structural causal model with two variables will be given as it is
sufficient for the following discussion.

Ορισμός 4.1. A structural causal model (SCM) C with two variables C and E and a graph
with a edge emanating from C and ending in E, symbolized as C → E, is given by the two assign-
ments:

C := NC (4.1a)

E := fE(C,NE) (4.1b)

where the random noise terms NC and NE are independent of each other. C is called a cause and
E is called an effect. The graph C → E is called a causal graph and C entails a joint distribution

121

Chapter 4. Modeling System 2 with Neural Networks

pC,E over C and E.

Ορισμός 4.2. A structural causal model (SCM) C with an arbitrary number of variables D

is defined by a set of D structural assignments:

Xi := fi(PAi, Ni), i = 1, · · · , D (4.2)

where Ni is a random noise variable that is independent of all other noise variables Nj, j ∈
{1, · · · , D}\i and PAi ⊆ {X1, · · · , XD}\{Xi} are the parents of Xi [19].

4.6.2 Statistical vs Causal Learning

The goals of the models that were presented in chapters 2 and 3 are statistical learning goals, i.e.
given observational data the models are trained to discover statistical quantities of the underlying
mathematical model that generated the data. This problem is ill-posed Vapnik (1998) [155] because
of the lack of information regarding the points (x, y) not contained in the dataset. This is why the
Occam’s Razor assumption (chapter 2.4.5) was introduced and as a result techniques that control
the bias-variance trade-off, e.g. regularization, etc. A statistical model, as shown in chapter 4.6.1, is
included in a causal model. Causal learning thus inherits the ill-posidness of statistical learning,
but even complete knowledge of the underlying statistical model does not uniquely determine a
SCM. It has been proven that observational data are insufficient to determine the causal graph as
is proven by theorem 4.2.

Θεώρημα 4.2. Every joint distribution pX,Y , where X and Y are real-valued random variables
admits SCMs in both directions.

Proof. It always admits the SCM defined by the graph X → Y and the assignment

Y = fY (X,NY), where X is independent of NY (4.3)

where fY is a measurable function (Peters (2012) [156]). Define the conditional cumulative distri-
bution function:

FY |x(y) := P (Y ≤ y|X = x) (4.4)

Then define fY (x, nY) := F−1
Y |x(nY), where F−1

Y |x(nY) := inf{x ∈ R : FY |x ≥ nY }. Then let NY

be uniformly distributed on [0, 1] and independent of X. Since this is true independently of the
structure of the model, the proposition has been proven.

In order to learn a causal model someone must provide observation data generated by the model
before and after a set of known changes in its structure. This matter will not further discussed
here, but the interested reader is referred to Elements of Causal Inference, Peters et al. (2018)
[19].

The power of causal reasoning makes up for the difficulty of causal learning, as the first one
enables the analysis of the effect of interventions that will be discussed in chapter 4.6.3. As
statistical learning is included is included in causal learning so is probabilistic reasoning in causal
reasoning. This is elegantly shown in figure 4.11.

4.6.3 Interventions

An intervention to a variable means changing the corresponding assignment. For example,
an intervention on variable E in equation 4.11 could be to set E to a constant value. This is
symbolized as do(E := e), where e ∈ R is that value. This also causes the entailed distribution

122

4.6.3 Interventions

Figure 4.11. Relations between the four processes and the resulting outputs [19]

to change to p
do(E:=c)
C . This type of intervention is called a hard intervention. An intervention

of the type do(E := gE(C) + ÑE , where gE is a real-valued function and ÑE is a random noise
variable, is called a soft intervention.

An example of a SCM is given by the following assignments:

C := NC , NC ∼ N (0, 1) (4.5a)

E := 3C +NE , NE ∼ N (0, 1) (4.5b)

that corresponds to the causal graph C → E. Then pCE = N (0, 10). If a hard intervention is
perform on C making equal to 2 (do(C := 2)), then p

C;do(C:=2)
E = N (6, 1), which is also equal to

pCE|C=2.

The important thing regarding interventions on causal models is that an intervention on the
effect E does not change the distribution of the cause C. For example, pC;do(E:=0)

C = N (0, 1) =

p
C;do(E:=10)
C . But this is not equal to pCC|E=2, because in this case no one has intervened on E and

therefore the original causal model is used. In C, knowledge about the possible values of the effect,
E, indeed provides information about the value of its cause, C. An intervention can thus break
causal relationships and it can also create new ones.

Interventions are similarly defined in the case of an SCM with multiple variables. Consider the
case of a SCM C = (S, PN), where S is the set of assignments and PN is the joint distribution of
the noise variables. An intervention on C is a change to one or more of the structural assignments.
Intervening on a variable Xk can be done by using:

Xk := f̃(P̃Ak, Ñk) (4.6)

where one or more parameters have been changed. The new distribution is the symbolized as:

pC̃X = p
C;do(Xk:=f̃(P̃Ak,Ñk))
X (4.7)

123

Chapter 4. Modeling System 2 with Neural Networks

4.6.4 An Example of A Causal Model

The following is an example given by Peters et al. (2018) [19]. Consider model (i) that generates
pairs of images of digits with their corresponding labels as such: a human is given the number Y

and is asked to write it down, creating X. If an intervention is performed on Y the corresponding
label changes as the human sees a different number.

Now consider model (ii) in which the human is asked to think of a number and write it down.
Now intervening on Y does not affect the drawing X.

Notice that the observational distributions are the same for both models. Yet, as it was shown,
the same is not true about their intervention distributions. This was the point of chapter 4.6.2.
This difference is depicted with the corresponding causal graphs in figures 4.12a and 4.12b [19].

(a) Causal graph of model (i) (b) Causal graph of model (ii)

Figure 4.12. The causal graphs of the two causal models in the case of a sample with a label
equal to 2. In model (i) the function f symbolizes the process of seeing the label Y and creating
the corresponding image X. In model (ii) the random variable Z symbolizes the intention of the
human to write down a number which then translates into a label through the function h and into
a image of digit through the function g [19].

4.6.5 The Principle of Independent Mechanisms

Consider now the case of the joint distribution function p(l, t) of the latitude L and the cor-
responding temperature T , that has been calculated using samples from different latitudes taken
across a constant longitude. There are two possible factorizations:

p(l, t) = p(l|t) · p(t) (4.8a)

= p(t|l) · p(l) (4.8b)

The first equation corresponds to the causal graph T → L and the second to L → T . To decide
which is the correct causal model, based on the above, one could intervene on a variable and check
if that leads to a change in the distribution of the other. Obviously, changing the distribution of
the latitude variable leads to a change in the distribution of the temperature one. However the
opposite is not true; manually changing the temperature of a place does not change its geographic
location.

Carefully examining the ability to locally intervene on causal model’s variables without inducing
a changing in the distributions of the other variables introduces another aspect of causal models.
The mechanism that produces the distribution of latitudes p(l) is independent of the mechanism
that conditions on latitude values to produce temperature distributions p(t|l) and thus intervening

124

4.6.6 Covariate Shift

on one does not affect the other. The individual mechanisms of a causal model are therefore
autonomous, modular, or invariant. Daniušis et al. (2010) [157] refer to this principle, in the case
of causal systems with two variables, as an independence of cause and mechanism (ICM).
Note that this principle does not apply to the mechanisms arising from the anti-causal factorization,
p(l|t) · p(t).

At an information-theoretic level, the above can be translated into an independence of the
information contained in the module that samples the cause variable from the information that
characterizes the mechanism that uses it the cause to produce the effect variable. Knowledge about
one of these modules cannot be used to infer knowledge about the other. Even though this is not
a probabilistic argument, under certain assumptions it can also be assumed that the conditional
densities that generate different causal variables are independent of each other.

Note that locally intervening on a mechanism p(x) may affect the output distribution of the
mechanism p(y|x), where X and Y are causal variables connected via the causal graph X → Y .
But the mechanism p(y|x) itself will not change.

4.6.6 Covariate Shift

New tasks that humans may be faced with are almost never entirely new to them. Instead,
they are able to use previously acquired knowledge that they understand is still relevant in the
new task. Only a small part of the knowledge required to perform the new tasks is usually learned
especially for their needs. This radically increases the efficiency both in terms of required time and
memory.

The principle of independence of cause and mechanism (ICM) could thus form the theoretical
foundation for techniques that would allow neural models to acquire similar capabilities. One can
assume that, during the formation of a new task from old ones, only few of the mechanisms that
make up the underlying system are affected, while the rest remain unchanged. In the example of
a causal system with two variables, if pcause changes to p′cause this does not means that peffect|cause

is also different. Yet, even if it is, information about the way in which pcause has changed is not
relevant to the case of peffect|cause. Therefore, using peffect|cause as an initialization for p′effect|cause

is the best choice. Adapting the new pcause while maintaining the same peffect|cause is known as
covariance shift.

Note that this assumes that the causal graph has been correctly created during the learning
phase of the initial tasks. Otherwise, this is not a safe assumption (Schölkopf et al. (2012) [158]).

In the case of a causal system with many variables the above means that modules that don’t
change when distribution changes don’t have to be learned again. The model can use them as
prior knowledge while learning the modules with new distributions.

4.6.7 Learning Independent Causal Mechanisms

Using relevant, modular and reusable mechanisms saves training time and minimizes the quan-
tity of needed data for learning the changed modules. Modern neural networks are good at learning
patterns from large independent and identically distributed (i.i.d) datasets, but are currently unable
to effectively factorize their knowledge into reusable independent modules. A question naturally
arises: how can one learn a causal model when no changes in the structure of the underlying model
have occurred. Peters et al. (2018) [19] present an argument analogous to the Occam’s Razor
assumption (chapter 2.4.5) in the case of statistical learning. They suggest that if relatively simple
mechanisms that explain the data at hand are found, then one be relatively certain of having dis-
covered the correct causal model, or at least, a big part of it. They argue that the mechanisms that

125

Chapter 4. Modeling System 2 with Neural Networks

result from the anti-causal factorization are usually much more complex than the true independent
modular ones.

The next questions that needs to be addressed is how to learn these mechanisms using NNs,
which have the advantage over other techniques of being able to generalize to unseen instances
generated by the same distributions on which they were trained. Parascandolo et al. (2017) [20]
presented a model consisting of competing agents that manage to learn independent causal
mechanisms from purely observational data. During training, a sample may be generated from any
of the independent mechanisms. The experts compete for the sample and only the winner is trained
on inverting the transformation applied to the sample by the mechanism. The intuition behind
employing competition is that the winning expert becomes further specialized in the corresponding
mechanism. Moreover, since the mechanisms are independent, this generally does not improve the
expert’s performance on inverting the transformation generated by any other mechanism.

This is an unsupervised learning task on two levels. First, the original sample, before it is
transformed by the mechanism, is not provided to the experts. Second and most important, the
experts don’t know which mechanism transformed the sample, which is what one would also expect
when trying to train a model to solve a real-life task. The specialized expert is called to learn and
recognize the patterns in the outputs of the associated mechanism.

Data

The training data consists of transformed and original MNIST digits [159]. The MNIST dataset
is a well known computer vision classification dataset with images of hand-written digits along
with the corresponding labels. Parascandolo et al. (2018) [20] apply 10 transformation to the digit
images; 8 translations towards 8 different directions, contrast inversion and noise addition. These
transformations represent 10 independent causal mechanisms. An original (canonical) image digit
as well as transformed example are shown in figure 4.13.

The MNIST dataet is split in half. The transformations are randomly applied to one half. This
ensures that the original and the transformed image will not be available simultaneously.

Models and Training

10 expert CNNs are called to learn the inverse functions of these transformations, each one
with its own parameters, θi .

During training, a transform image xtr is fed to all 10 experts. Each expert i, i ∈ {1, · · · , 10}
produces its own proposition for the what the original image, Ei(xtr), could look like. The goal
of the expert is to maximize an objective function c : RDin → R that receives high values in the
space of images from the original dataset.

The function c is implemented using another CNN with its own parameters, θD. This CNN D

is called a discriminator and the experts are called generators. Each one of the experts feeds
the discriminator with its own suggestion and the latter decides which one made the most realistic
proposal based on its own corresponding output values.

Only the parameters of the winning expert j are updated to maximize Ej(xtr), while the
parameters of the other experts are left unaffected. The discriminator is updated to discern between
the propositions of the winning experts and the original images. Therefore it is trained in identifying
the original MNIST images of the second half of the dataset as such. This process is depicted in
figure 4.13. Thus, by training the specialized experts to become even better at what they do the
researchers attempt to fool the discriminator into thinking that their output images come from the
original MNIST dataset. This type of model configuration, in the case of single generator, is called a
generative adversarial network (GAN) and was introduced by Goodfellow et al. (2014) [160].

126

4.6.7 Learning Independent Causal Mechanisms

Figure 4.13. The training process of the winning
expert and the discriminator. The discriminator
is trained using both the suggestions of the experts
and the original MNIST digits. The winning ex-
pert is trained to improve his suggestions. The
parameters of the experts that have lost are not
updated [20].

However, to avoid favouring the other experts,
Parascandolo et al. (2018) [20] train their dis-
criminator network, not only against the win-
ning expert’s output for a certain transformed
image, but also against the propositions of the
rest of the experts for the same image. The
CE loss function of the discriminator therefore
is equal to:

max
θD

(Ex∼P log(DθD (x))

+
1

10

10∑
i=1

Extr∼Q(log(1−DθD (Ei(xtr)))))

(4.9)

where P is the distribution of the original im-
ages and Q of the transformed images.

Parascandolo et al. (2018) explain that ran-
domly initializing all experts before training
does not work. The expert with the best initial-
ization ends up winning all of the mechanisms.
Therefore, after the random initialization step,
all experts are pre-trained on identical input-
output pairs randomly selected from the trans-
formed part of the dataset. This renders them
approximately equally capable when the main
training stage begins.

Results

The experiment was ran 10 times and the
experts successfully specialized in 7 of them, with each expert learning a unique inverse trans-
formation. The results of the rest 3 experiments were good but not perfect, as an expert might
specialize in 2 distinct mechanisms while another one might not learn anything at all. The evo-
lution of scores assigned to the experts by the discriminator during the training process in one of
the seven successful runs are shown in figure 4.15. After a period of adjustment, the experts seem
to successfully specialize in a distinct transformation each.

To test the quality of the inverse transformations implemented by the experts their results were
fed to a pre-trained MNIST classifier as inputs. This classifier achieves 99% accuracy on the original
dataset. It is shown in figure 4.15 that the experts’ outputs are correctly classified once they are
fully trained. On the other hand, when the transformed images are fed to the classifier, without
having first applied the inverse transformations, it only achieves a 40% accuracy, as indicated by
the starting point of the figure 4.15.

They also tried training a single big model to learn all the transformations. This model has
over twice the combined number of parameters of all the experts but still failed to learn the
transformations. This is an excellent example of how the incorporation of prior knowledge in a
model’s architecture (chapter 2.5.2) can play a crucial role in its success.

Because of the small size and thus the simplicity of these experts, they learn invariant features
related to the corresponding transformations. They are thus able to generalize to a different dataset
of images of written characters from 50 different alphabets, called Omniglot [161] Furthermore,

127

Chapter 4. Modeling System 2 with Neural Networks

Figure 4.14. The evolution of the scores assign by the discriminator to each expert during a
successful run [20].

Figure 4.15. The evolution of the MNIST classifier’s accuracy on the images transformed by a
mechanism and then inversely transformed by an expert during the experts’ training [20].

two or more experts can be serially combined to implement a complex transformation as shown in
figure 4.16b.

Number of Mechanisms

An underlying assumption adopted so far is that the number of mechanisms is known. Yet, it
is generally not known a priori. Parascandolo et al. (2018) tested what happens in the case where
the mechanisms are assumed to be more than they truly are. They found that, in that case, some

128

4.7 Conditional Computation

(a) (b)

Figure 4.16. (a) The 10 experts applied to 10 Omniglot characters transformed in all possible
ways. The propositions for the original images lie across the diagonal (b) Serial use of different
experts on a set of characters [20]

experts do not specialize at all and some inverse transformations are divided between two experts,
with each one focusing on a distinct part of the transformed dataset. The solution they propose
is pruning the ones that are not used and merging the ones that learn to perform versions of the
same transformation.

If, on the other hand, fewer mechanisms are assumed to make up the underlying model than
they truly do, some experts learn more than one inverse transformation and some others are not
learned by any expert.

4.7 Conditional Computation

Before delving into the matter of conditional computation, it is useful to clarify some common
misconceptions regarding the difference between two learning approaches that involve the learning
of more than one tasks, multi-task learning and transfer learning. Transfer learning was also
discussed in chapter 3.9.2, but a more thorough analysis of the matter is needed.

When there more than one tasks that must be dealt with, t1, · · · , tT , one may choose a single-
task learning approach, i.e. to learn each task independently by training T separate models. But
in doing this, one fails to take advantage of the similarities between these tasks and learn features
that could be used by multiple tasks. This is especially useful in cases where there is a shortage
of data related to one or more tasks, and tasks exhibit structural similarities between each other.
Moreover, single-tasks learning leads to a rapid increase in the number of parameters w.r.t. the
number of tasks and training from scratch is usually much more time consuming than using already
learned features.

Multi-task and transfer learning approaches both attempt to benefit from the commonalities
between the various tasks that are learned by the models.

129

Chapter 4. Modeling System 2 with Neural Networks

4.7.1 Multi-task Learning

Multi-task learning is an approach that aims to learn a set of tasks t1, · · · , tT simultaneously.
This happens by imposing constraints on the relation of parameters that store knowledge related
to different tasks. These constraints remain active throughout the joint optimization of the loss
functions of the T tasks and thus affect the evolution of the parameter values.

Figure 4.17. Example of hard parameter
sharing in a neural model that is trained on
three tasks simultaneously. Figure from https:
// avivnavon. github. io/ blog/ parameter-
sharing-in-deep-learning/ .

The most common type of constraint is
called hard parameter sharing [162]. Pa-
rameter sharing has already been introduced
as a mechanism that implements a belief that
some variables should be processed in similar
ways (chapter 2.5.2). By applying it to solve
multiple tasks, one imposes the constraint that
parts of the models that are used to solve dif-
ferent tasks will be unified into a single neural
structure. For example, one may choose to use
the same first layers for all tasks, which will
act as feature extractors, and then use task-
specific neural modules on top of them. This is
depicted in figure 4.17.

Similarly, one can use a soft parameter
sharing mechanism that controls how much
the parameters that are used to handle different
tasks are allowed to differ. This option allows
for more flexible models but leads to the increase of the number of parameters and demands that
the rule controlling the way the parameters are linked is properly tuned. One could, for example,
use the euclidean distance as a metric for estimating parameter distance.

Researchers view multi-task learning as a form of inductive bias, guiding the model into se-
lecting some hypotheses and ignoring others. The aforementioned mechanisms reduce the degrees
of freedom of the model and, like the weight sharing prior, effectively mitigate the problem of
overfitting. The features that are learned by the shared parameters are bound to be more general
than they would otherwise be, as they must meet the needs of many tasks. Overfitting is also
related to the noise in the training data, as the model ends up learning the noise and not the
underlying mathematical structure. But datasets belonging to different tasks usually contain in-
dependent noise which means that the shared parameters are likely to average these task-specific
noise components out.

4.7.2 Transfer Learning

Transfer learning (Pratt et al. (1991) pratt1991direct, Pratt (1993) [163]) aims at employing
knowledge acquired from the training a set of tasks t1, · · · , tT−1, called source tasks to effectively
learn a new task tT , called a target task. Like in the case of multi-task learning a prerequisite for
successful transfer learning is the existence of similarities between the source and the target tasks
that leads to the learning of features that can be used by all of them. In most transfer learning
applications it is true that T = 2 and one seeks to take advantage of the data abundance of the
source tasks(s) to be able to quickly improve at the target task that is usually accompanied by a
much smaller dataset.

The main difference between multi-task and transfer learning is that, while multi-task learning
seeks to improve the model’s capabilities at performing all T tasks, transfer learning’s only goal

130

https://avivnavon.github.io/blog/parameter-sharing-in-deep-learning/
https://avivnavon.github.io/blog/parameter-sharing-in-deep-learning/
https://avivnavon.github.io/blog/parameter-sharing-in-deep-learning/

4.7.3 Freezing Layers

is to use knowledge gathered from the source tasks to enable the model to improve at the target
task, without necessarily caring if the model’s performance on the source tasks deteriorates as a
result.

In a transfer learning setting, one usually employs a model trained on the source tasks to also
learn how to perform the target task. One may choose to train a new model from scratch on the
source tasks or use an already pre-trained model (chapter 3.9). Then it is possible to further tune
the entire or part of the model to the target task (chapter 3.9.2), or use it as it is to perform the
task. Since it is possible for the source and target tasks to use a different set of labels for their
examples, randomly initialized task-specific neural structures are usually installed on top of the
pre-trained model and trained on the target task.

An example of use of the transfer learning methodology is the pre-training of Transformer-
based language models, followed by their fine-tuning on the downstream tasks, like in the case of
the BERT model, discussed in chapter 3.9.3. The use of embeddings (chapter 3.4), sparse and
pre-trained dense ones, in new tasks is another example. Furthermore, pre-trained CNN features
on large computer-vision datasets are known to be very effective at improving model performance
when data is scarce [164].

An interesting line of research involves a set of methods that selectively train parts of a neural
network faster than others. Significantly, despite their many commonalities, not all of them were
designed to serve the same purpose.

4.7.3 Freezing Layers

Layer freezing is a common approach used in transfer learning (chapter 4.7.2). Fine-tuning a
pre-trained model on a task with a big dataset usually ensures that it improves at it and performs
well on its test set. Yet, a large pre-trained model is fine-tuned on a downstream task with low
data availability, according to chapter 2.4.5, is known to overfit. Then, valuable knowledge store
in its parameters during pre-training might be lost and it the model may not be able to generalize
to the downstream task’s test set.

A method that is usually employed to prevent this is freezing the lower layers of the pre-
trained model while fine-tuning the rest. This means that gradients are not computed for the
frozen parameters, which are then not updated at all during fine-tuning but retain the values the
acquired during pre-training. The parameters of the upper layers are trained according to standard
procedure. The reason of freezing the lower layers only is because these layers are known to learn
basic features which are usually useful during for both the pre-training and the downstream tasks,
and should thus not be altered. Upper layers are known to learn task-specific features and must
therefore be retrained.

Typically, as the number of available training samples for the downstream task increases, one
is able to unfreeze more layers starting from the one closest to the output and continuing by
sequentially unfreezing layers towards the input one. The more layers are trained usually the
better the model performs on the downstream task’s training set. On the other hand, keeping
more layers frozen reduces data requirements and training time, since fewer computations need to
be performed.

4.7.4 Gating

The matter of gating was briefly discussed in chapter 2.6.6, as gates are used by LSTMs to
choose which pieces of knowledge will be granted passage to the next computational stage and

131

Chapter 4. Modeling System 2 with Neural Networks

which will not. Gates in LSTMs are single-layer NNs with sigmoid functions attached to their
outputs that perform the aforementioned decision for every dimension of a vector signal.

Srivastava et al. (2015) [165] for example, also implement gates to balance the use of residual
connections with the signals coming from the intermediate layer. Essentially, layers can be viewed
as a king of memory that is accessed whenever allowed by the corresponding gates.

4.7.5 Conditional Computation

Bengio (2013) [166] proposes conditional computation as a means to meet the computational
requirement of building extremely big models. He identifies the linear scaling of the computations
performed by a NN during inference w.r.t. the number of its parameters as one of the main
problems. By applying computation the NN learns to employ only part of its units when it
propagates forward and deactivates the rest, whose outputs are deemed to be irrelevant. A variant
of condition is employed by a famous machine learning model, decision trees [167], that perform
sequential decisions, depending on the input, concerning the subgroups in which it belongs.

Bengio (2013) [166] proposes combining sparse activations and multiplicative connections to
implement conditional computation. The sparse activation method enables only few units to
activate while the rest are deactivated, and thus are neither considered during computations (for-
ward propagation) nor are they updated (backpropagation) while they remain that way. This can
be implemented, for example, by including a L1 regularization term on the number of active units
in the loss function. Multiplicative connections act as gates; some units gate other units. If
the first set of units is sparsely activated then, through the multiplicative connections, it forces the
same pattern on the second set of units, deactivating all but a few of them.

Decision trees differ in that the choice of following a path automatically excludes the choice
of following other paths starting from the same node as well as their children. On the other
hand, activating a NN unit should not, according to Bengio (2013) [166], exclude any other from
activating too. This preserves the advantage of distributed representations held by NNs, while also
reducing the computational burden.

A problem that similar methods face is that some gating units tend to remain deactivated
during the entire training process, and thus the related resources are never utilized. In order to
produce training signals for the gating units, Bengio (2013) [166] proposes the introduction of
randomness in the activation of gates, as he believes it will force some gates that would otherwise
not be trained to have their parameters updated.

4.8 Meta-Learning

4.8.1 Motivating Meta-Learning

As Vinyals et al. (2016) [168] explains, in a machine learning problem train and test conditions
must match. It is known that the real reason of training a model is not so that it performs well
on the training set, but in order to improve its generalizing skills on the test set. Training data is
only one of the tools required to achieve this.

Therefore, instead of training models on source tasks, hoping that pre-trained models will serve
as good initialization points when one transitions to a target task, one could explicitly train the
models on the source tasks to optimize their ability to generalize to test data. Unavoidably, the
assumption that source and target tasks are sampled from a common task distribution T has to
be made. But, if that is the case, then it is very reasonable to expect that the models will able to
generalize to the test data of the target tasks after they are trained to do so to the test data of the
source tasks.

132

4.8.2 Probabilistic View

This intuition is implemented by a learning framework called meta-learning, which essentially
means learning how to learn (Schmidhuber (1987) [169], Bengio et al. (1990) [170]). Meta-learning
methods are usually employed in low-data regimes, and the goal is to create a model that is able
to generalizing to test data even when it is given few training instances. In contrast to transfer
learning, meta-learning assumes the existence of many source tasks, each one with its own dataset
Dm = {(x(1)

m , y
(1)
m), · · · , (x(Tm)

m , y
(Tm)
m)},m ∈ {1, · · · ,M}. Dm is split into a training set, Dm,tr =

{(x(1)
m,tr, y

(1)
m,tr), · · · , (x

(Tm,tr)
m,tr , y

(Tm,tr)
m,tr), and a test set, Dm,ts = {(x(1)

m,ts, y
(1)
m,ts), · · · , (x

(Tm,ts)
m,ts , y

(Tm,ts)
m,ts).

Each task is seen as a training sample, and, since train and test conditions must match, each source
task usually comes with a training set of size approximately equal to size of the training set of the
target task(s) [21].

4.8.2 Probabilistic View

The goal of the standard supervised learning approach that has been discussed thus far is to
estimate the optimal model parameters:

θ̂ = argmax
θ

log p(θ|D) = argmax
θ

log p(D|θ) + log p(θ) (4.10)

which essentially is equation 2.6.
In meta-learning, one seeks to employ additional tasks with datasets Dmt = {D1, · · · , DM} to

learn the model’s parameters:

θ̂ = argmax
θ

log p(θ|D,Dmt) (4.11)

What usually happens is that knowledge from Dmt is incorporated into meta-parameters φ:

log p(θ|D,Dmt) = log

∫
φ

p(θ|D,φ)p(φ|Dmt)dφ

≈ log p(θ|D, φ̂) + log p(φ̂|Dmt)

(4.12)

In the first equality it is assumed that θ is independent of Dmt given φ, which is a natural
conclusion since all knowledge from Dmt is transferred to φ. The second approximate equality
is a common assumption made in similar situations, where it is assumed that the mass of the
probability distribution is gathered around the optimal value, and therefore replacing with this
value results in a good approximation.

Equation 4.12 splits the problem into a meta-learning problem:

φ̂ = argmax
φ

log p(φ|Dmt) (4.13)

and an adaptation problem:

θ̂ = argmax
θ

log p(θ|D, φ̂) = fφ̂(D) (4.14)

4.8.3 Meta-Learning Process Overview

When trying to design a meta-learning algorithm, one first has to specify the form of fφ̂. Then
one chooses how to find φ̂ by transferring knowledge from Dmt. The phase of estimating φ̂ is
called the meta-training phase. Every time a new task Ti is presented, fφ̂, along with Di,tr, are
used to generate θi = fφ̂(Di,tr). The model parameterized by θi then produces predictions for
the features of the respective test set’s samples Di,ts. The loss computed on the test set of Ti is

133

Chapter 4. Modeling System 2 with Neural Networks

used to train φ through its contribution to the choice of θi. This process is shown in figure 4.18a.
After φ̂ is estimated, the model is shown the training data of the target task, Dtr, and outputs:

(a) (b)

Figure 4.18. (a) Meta-learning training process. First estimate θi, given Di,tr and φ. Then, the
model, parameterized by θi, makes predictions for the task’s test set Di,ts. The respective gradients
are used to update φ. (b) Meta-learning testing process. First estimate θ, given Dtr and φ. Then,
the model, parameterized by θ, makes predictions for the task’s test set Dts [21].

θ̂ = argmax
θ

log p(θ|Dtr, φ̂) = fφ̂i
(Dtr) (4.15)

Then it is shown Dts and uses θ̂ to make its predictions. This phase is called the meta-testing
phase and is shown in figure 4.18b.

The problems of hyper-parameter optimization and architecture search are actually examples
of meta-learning problems. The hyper-parameters or the architecture play the role of the meta-
parameters, φ, and the network weights the role of the adaptation parameters, θ. Another problem
that is considered by many to be a meta-learning problem is few-shot learning, that will be
discussed in chapter 4.8.4.

4.8.4 Few-Shot Learning

If a child is shown a grown up elephant and a baby elephant, then after seeing another animal,
like a giraffe, it is quick to recognize its babies even if it has never seen a baby giraffe before. Humans
are able to perform valid generalizations while utilizing very few examples. Neural network training
unfortunately, and especially deep learning, demands large and expensive datasets.

Few-shot learning is a learning framework that attempts to enable the training of neural
networks with very few examples. The datasets of classification problems of such nature that are
categorized as being N -way k-shot learning problems contain examples from N different classes,
and k examples are available for each class. The special case of 0-shot learning problems consists
of tasks in which the classifier is only provided with a high-level description of each class, without
being shown any training samples.

Many researchers classify few-shot learning as a meta-learning problem. Many of the recently
proposed approaches to few-shot learning make use of a variety of training tasks, handling each
task as a separate sample in the same sense tasks are used by meta-learning algorithms. In that
sense, to ensure uniform train and test conditions, the training datasets of meta-training tasks
must contain a number of examples that is comparable to the one found in the training set of the
meta-testing tasks [171].

134

4.8.5 Black-Box Adaptation

But, even though few-shot learning has been described as a meta-learning problem, that does
necessarily mean that one is obliged to follow the meta-learning framework when trying to few-shot
learning. Brown et al. (2020) [22] train that a massive 175 billion parameter Transformer-based
model on a huge language modelling dataset based on [134], named GPT-3. They prove that
it can perform few-shot, one-shot and zero-shot learning without ever being fine-tuned on the
downstream tasks. Training samples are instead placed in the context window of the decoder-like
model and serve as indicators of the tasks that needs to be performed in one-shot and few-shot
problems. Typically 10-100 input/output example pairs fit inside this window. A high-level task
description is used as context in zero-shot problems.

They prove that few-shot performance improves with model size (figure 4.19). In fact, GPT-3
competes with and even outperforms many pre-trained and fine-tuned sota models and strong
baselines in several NLP problems, like QA, common-sense reasoning, reading comprehension and
on the SuperGLUE [172] dataset in the context of zero, one and few-shot learning.

Figure 4.19. Performance on a simple task requiring the model to remove random symbols from
a word, both with and without a natural language task description. The steeper the curve the better
a model becomes as the number of in-context examples increases. Larger models thus make better
use of examples than smaller models. They report seeing this behaviours in a variety of tasks [22].

4.8.5 Black-Box Adaptation

There are several approaches to meta-learning. Black-box adaptation approaches use neural
networks to produce a deterministic estimate of the task-specific parameters θi for a task Ti,
φ = fφ(Di,tr). The used NNs must be able to handle a set of feature-label pairs as input, which
belong to Di,tr. Architectures like RNNs, 1-dimensional CNNs, or self-attention networks may
thus be used. These models are parameterized by ϕ, which is then updated using the error signals
produced by the predictions of a neural model gθi

for the test sample of task Ti, Di,ts:

max
φ

∑
Ti

∑
(x,y)∼Di,ts

log gθi(y|x) = max
φ

∑
Ti

L(fφ(Di,tr), Di,ts) (4.16)

The way different tasks are actually treated as samples by meta-learning algorithms now becomes
obvious. The black-box adaptation algorithm is thus the following:

135

Chapter 4. Modeling System 2 with Neural Networks

Algorithm 4.1: Black-Box Adaptation

initialize θ and φ
repeat

Sample Ti ∼ T
Sample disjoint sets Di,tr, Di,ts ∼ Di

θi = fφ(Di,tr)
φ := φ− a∇φL(θi, Di,ts)

until convergence

Unfortunately, this method, as is described,
does not scale well with increasing dimensions
of θ, i.e. for big models. Instead of comput-
ing θ, one can alternatively choose to have f

outputting a low dimensional vector h, that in-
corporates the statistical information present in
Di,tr. Then, θ is created by a model parameter-
ized by the meta-learned parameters φg, which
uses h as input.

4.8.6 Optimization-Based Approach

Another possible approach is to employ an optimization-based procedure for producing
the adaptation parameters θi. The meta-learning parameters can play the role of priors in this
process. One of the most successful ways of incorporating priors in deep learning is through the
initialization process. This is the case with pre-training and fine-tuning, for example, where prior
knowledge about natural language is distilled into the pre-trained model’s parameters that serve
as an initialization point for the fine-tuning process.

Figure 4.20. During the meta-learning process
the model’s initialization which coincides with the
meta-parameters is trained. The goal is for the
corresponding parameter vector, φ, to reach a
point in the parameter space that, when used as an
initialization, enables the model to quickly learn
parameter values that ensure good generalization
[23].

The idea of Finn et al. (2017) [23] was to to
use the meta-parameters φ as an initialization
to a model that is trained on the train sets of
the various tasks with a standard GD process
through which θ is computed. They aim at
meta-learning initializations that enable mod-
els to generalize well even in a few-shot learn-
ing scenario. They explain that the discovered
initializations increase the model’s sensitivity
to training so that training, even with the use
of few training samples provided by any task
Ti ∼ T , leads to an area of the parameter space
that corresponds to low generalization error for
that particular task. This is elegantly shown in
the figure 4.20 provided by Finn et al. (2017)
[23].

Mathematically, the training the adapta-
tion parameters is denoted as:

θi ← φ− a∇φL(φ, Di,tr) (4.17)

Then the meta-learning problem is formulated as:

min
φ

∑
Ti

L(φ− a∇φL(φ, Di,tr), Di,ts) (4.18)

since the error signals on the test set are used to produce gradients for the training of the meta-
parameters φ. The respective algorithm, 4.2, is the same as alg. 4.1 after changing the fifth line.
This technique is called model-agnostic meta-learning (MAML) since, because of the use of
GD, it is agnostic to the specific model architecture and thus can utilize any model that can be
trained with GD.

136

4.8.7 Non-Parametric Methods

Algorithm 4.2: Optimization-Based Ap-
proach

initialize θ and φ
repeat

Sample Ti ∼ T
Sample disjoint sets Di,tr, Di,ts ∼ Di

θi = φ− ain∇φL(φ, Di,tr)
φ := φ− aout∇φL(θi, Di,ts)

until convergence

It also has the useful inductive bias of computing
model parameters using the well tested process
of GD. Finn and Levine (2018) [21] found that
for sufficiently deep networks, MAML can ap-
proximate any function of Di,tr, xts and is there-
fore it is equally powerful to black-box adapta-
tion methods.

4.8.7 Non-Parametric Methods

All models presented in chapters 2 and 3 are parametric, meaning they have a set of parameters
that are updated during training to fit a training set. Non-parametric methods on the other
hand don’t use parameters to perform inference but rely on the actual samples of the training set.

Non-parametric methods are known to perform well in few-shot learning settings. But, in the
case of meta-learning, it is assumed that a large number of tasks is usually available, even though
the data related to each one of them might be scarce. What is needed is an approach that benefits
from the effectiveness of non-parametric methods in few-shot learning problems while also putting
the abundance of different tasks to good use.

A commonly used method is to employ parametric networks to learn during meta-training an
embedding space, in which non-parametric approaches can be applied. Vinyals et al. (2016) [168],
for example, train a NN, parameterized by θ, to create embeddings of the training data of each
task and, along with the help of an attention mechanism applied on them, use these embeddings
to classify test samples.

Snell et al. (2017) [171] compute the mean of the embeddings of all training samples, Sk,
belonging to the same class k, and use the resulting embedding as the class prototype, Ck =
1

|Sk|
∑

(x(i),y(i))∈Sk
fθ(x

(i)). To classify a new point they find the class prototype that is closer to
the point’s embedding, as measured by a euclidean distance metric. For 0-shot problems they
embed the high-level description of the class itself instead of samples.

4.8.8 Few-Shot Learning NLP Tasks

Bansal et al. (2020) [173] mix some of the aforementioned notions in an effort to train a model
to few-shot learn NLP tasks. LEOPARD (learning to generate softmax parameters for diverse
classification), the method they develop, is an optimization-based meta-learning approach that
attempts to solve the problem of disjoint sets of disjoint sets of labels among different tasks faced
by MAML, while retaining the ability to benefit from larger training sets.

In the core of the model is the 12-layer BERT model (chapter 3.9.3), parameterized by θ =

{θ1, · · · ,θ12}. It accepts input sentences as its input and produces Dmodel-dim contextual em-
beddings, x̃ = fθ(x). To enable the model to handle tasks with different numbers of classes
they use the contextual embeddings to create task-dependent weight and bias parameters for a
softmax layer. Similarly to Snell et al. (2017) [171], for a task Ti, they generate distinct task-
specific parameters for each class based on the sets of available training samples that belong to it,
Cn

i = {xj |yj = n}, n ∈ [Ni]. For the n-th class among |Ci| classes, wn
i and bni are generated by:

wn
i , b

n
i =

1

|Cn
i |

∑
xj∈Cn

i

gψ(fθ(xj)) (4.19)

137

Chapter 4. Modeling System 2 with Neural Networks

where gψ is a FFNN, parameterized by ψ, wn
i ∈ RDsoft and bni ∈ R. The concatenation of all

task-specific parameters together is symbolized as Wi = [w1
i ; · · · ;w

Ni
i] and bi = [b1i ; · · · ; b

Ni
i].

Then, for a new sample x, it is true that:

p(y|x) = softmax(Wihφ(fθ(x)) + bi) (4.20)

where hφ is another FFNN parameterized by φ. The softmax produces an output over the Ni

classes of the task.
Since applying MAML to all 110m. BERT parameters may not be possible, they separate

the parameters into task-specific and task-agnostic. Task-agnostic parameters include the
parameters found at the u-th BERT layer and below it, denoted by θ≤u, as well as ψ. They are
symbolized as Ψ = θ≤u ∪ {ψ}, where u is a hyper-parameter. These parameters are trained in a
MAML-based optimization process as they must provide a good initialization points for learning
other tasks. Task-specific parameters Θi = θ>u ∪ {φ,Wi,bi}. Task-specific parameters are
adapted separately for each task.

To benefit from bigger training sets, they sample G > 1 disjoint training subsets for each task.
The first one is used to create Wi and bi. The rest are used to update the task specific parameters:

Θ
(j+1)
i =Θ

(j)
i − ajEDi,tr∼Ti

[∇Θi
Li({Ψ,Θi}, Di,tr)] (4.21)

in the inner loop. Task-agnostic parameters are updated in the outer loop. The algorithm is the
following:

Algorithm 4.3: LEOPARD

Input: set of M training tasks and losses (T1, L1), ..., (TM , LM), model parameters Ψ = θ, ψ, α,
hyper-parameters u, G, β ▷ Meta-Learn a different learning rate for each layer
Initialize θ with pre-trained BERTbase
repeat

Sample batch of tasks
for all Ti ∈ T : do

Sample Di,tr ∼ Ti

Cn
i = {xj |yj = n}

wn
i , b

n
i = 1

|Cn
i |

∑
xj∈Cn

i
gψ(fθ(xj))

Wi = [w1
i ; · · · ;w

Ni
i], bi = [b1i ; · · · ; b

Ni
i]

Θ
(0)
i = θ>u ∪ {φ,Wi,bi}

for j ∈ {0, · · · , G− 1} do
Sample Di,tr ∼ Ti

Θ
(j+1)
i =Θ

(j)
i − ajEDi,tr∼Ti

[∇Θi
Li({Ψ,Θi}, Di,tr)]

end for
Sample Di,val ∼ Ti

gi ← ∇ΨLi({Ψ,Θi}, Di,val)
end for
Ψ :=Ψ− β

∑
i gi

until convergence

In order to stabilize training, they initialize LEOPARD from the pre-trained BERT.

Results

They evaluate on several NLP tasks, including some from the GLUE dataset. The model’s
parameters are trained on a set of training tasks and fine-tuned with k training examples per label
for a target task, which are not seen during training.

The model generally performed better than a fine-tuned BERT and a BERT trained on various

138

4.8.9 Continual Learning

multi-task learning tasks. It is also good at few-shot domain adaptation problems performing
better than strong baselines.

The results indicate LEOPARD’s ability to few-shot learn how to perform tasks with varying
numbers of classes. It learns better parameter initializations for few-shot learning than a version
of BERT that uses self-supervised pre-training and another one that employs pre-training followed
by multi-task learning.

4.8.9 Continual Learning

Throughout their lives, humans learn to perform a variety of tasks. These tasks are not all
presented to them simultaneously, like they are in the multi-task setting, but sequentially. To
solve a new task, they apply knowledge acquired from solving previous tasks as has already been
discussed. Yet, this does not lead to them forgetting how to perform familiar tasks. Experiments
on mice have shown that the transformation of the neural areas associated with a learned task
continue even after the learning period is ended, with the number of neurons being connected to
the task decreasing as time goes by. The storage and energy requirements needed to memorize how
to perform the task decrease as a result, but the skill itself is not forgotten. A type of task-related
synaptic consolidation occurs and certain synapses are rendered much less plastic than others,
leading to long-term knowledge storage.

It is thus reasonable to expect from an AI system that attempts to mimic or even to surpass
human-level intelligence not only to reuse old pieces of knowledge to solve new problems, but to do
so without forgetting how to solve past ones. The area of machine learning that deals with these
model attributes is called continual or life-long learning (CL) (Ring (1998) [174]. Continual
learning differs from transfer learning in three main ways. One is the number of tasks and of the
data per task that are usually available. In the case of CL models deal with many more tasks with
a much smaller number of samples per task than in transfer learning. Second, the goal of transfer
learning is to improve the performance of the model on the predetermined set of target tasks. On
the other hand, continual learning’s main goal is to structure knowledge acquired from previous
tasks in a way that it can easily used by any future task regardless of its characteristics. Finally,
in transfer learning settings, the performance of the model on source tasks is not a primary goal
of the process, and one may even not be concerned about it at all. However, when performing CL
one wants to improve at the downstream tasks but also retain good performance on previously
learned tasks.

Unfortunately, NNs’ performance on previously learned tasks is known to degrade when they
are trained on new tasks, as knowledge about previous tasks that is stored in their weights is
corrupted by the new training process. This phenomenon is known as catastrophic forgetting
(CF) (McCloskey and Cohen (1989) [175], Ratcliff (1990) [176]). To make matters even worse, is
is believed that there is a point in the sequential training of NNs on multiple different tasks after
which no more knowledge can be stored in their weights (Aljundi et al. (2019) [177]). One must
then choose between increasing the model’s size to increase its representational capacity or
accept a decline in the model’s performance on either already learned tasks or on new tasks. The
later is connected to a famous matter in the field of continual learning, the stability-plasticity
dilemma, where one has to choose between consolidating previously acquired knowledge and thus
minimizing the capacity to acquire new, or providing the model’s weights with the freedom to learn
new knowledge while accepting the risk of it forgetting what it already knows.

The desired properties of a CL model, as given by Biesialska et al. (2020) [178] are:

• knowledge retention: catastrophic forgetting does not occur when learning a new task

• forward transfer: the model effectively uses previously acquired knowledge to efficiently

139

Chapter 4. Modeling System 2 with Neural Networks

learn a new task

• backward transfer: knowledge acquired by a model when learning a new task is effectively
used to improve its performance on tasks it has already been trained on

• on-line learning: like it happens in real life, data samples should be provided one sample
at a time

• no task boundaries: humans learn how to perform tasks even when no clear definitions of
the tasks have been provided and use a variety of data sources and types to do so; so should
the models

• fixed model capacity: the storage requirements should remain constant regardless of the
number and the difficulty of tasks the model is faced with

Currently, no approach meets all of the aforementioned requirements. Most CL systems focus
on achieving knowledge retention, forward transfer and, usually, fixed model capacity. They usually
use a set of i.i.d. samples for training whose format is predetermined and doesn’t change during
the learning process.

4.8.10 Continual Learning Approaches

Rehearsal Methods

Rehearsal methods store the entire or part of the dataset of each previously seen task and
periodically retrain the model on them. Memory consolidation in the human brain is known to
employ rehearsal methods to stabilize memory acquisition (McClelland et al. (1995) [179]). Yet,
this unfortunately increases memory requirements with the number of tasks.

Pseudo-rehearsal methods don’t use actual training samples of previous tasks, but store
information related to the distribution of past tasks, which are then used to generate new samples.

An slightly different and interesting approach is proposed by Li and Hoiem (2017) [180] that
split their model parameters into parameters that are shared by all tasks, φ, and task-specific
ones, θj , that sit on top of the first. Every time the model is trained on a downstream task Ti,
apart from the task-specific parameters that are related to it, θi, the target tasks’ samples are
also used to train the task-specific neural structures related to past tasks, θj , j = {1, · · · , i− 1}.
While θi are trained to improve performance on Ti, the other task-specific structures are trained
so that they produce the same outputs to the target task’s samples before and after the model is
trained on Ti, even though the shared parameters φ have changed in between. The intuition is
that, if their training is successful, then the function that each task-specific structure models does
not change much, and CF has thus not occurred.

Regularization Methods

Regularization methods introduce regularization terms that affect the plasticity of the
model’s parameters helping to prevent CF. Kirkpatrick et al. (2017) [181], for example, attempt
to benefit from the overparameterization of NNs which means that there are several sets of
model weights that lead to a good performance to a target task B. Among them, they assume,
there exists at least one θB , that also ensures good model performance on a source task A. They
develop elastic weight consolidation (EWC), that determines the flexibility allowed to each
parameter during training by estimating how important this parameter is for previous tasks by
using the Fisher information matrix. If a parameter is very important then it is not allowed to

140

4.8.11 Learning to Continually Learn

diverge far from its initial position. If it is not, then it is allowed to be freely trained as to assist
fitting the dataset of task B.

Such methods implement a notion known as selective plasticity. An extreme version of this
notion is keeping all previously learned weights frozen to avoid CF.

Instead of using a regularizer one can alternatively adjust the learning rates of parameters to
control how fast each parameter is allowed to change.

Knowledge Distillation Methods

Knowledge-distillation methods [182] attempt to reduce memory requirements by trans-
ferring the skills of a large model (teacher) to a smaller one (student).

Architectural Methods

Architectural methods are a family of techniques that attempt to prevent CF and achieve
forward transfer by employing architectural changes to the models. A common approach is trying
to explicitly or implicitly split the model into modular structures, that specialize in a subset of
tasks and are not affected when irrelevant tasks are learned. This approach will be discussed in
more detail later.

Other works, motivated by the representational capacity argument and the fact that neural
structures in the human brain are also explicitly formed to store new knowledge, attempt to
dynamically introduce new neural structures to models that have already been trained in order to
increase their capacity. Rusu et al. (2016) [183], for example, instantiate a new neural structure,
which they refer to as column, whenever a new task is presented, and freeze all previously learned
columns to avoid CF. Forward transfer is achieved by the use of lateral connections from the layers
of the frozen columns to the layers of the new one. These connections are trained along with the
new column. Even though the number of parameters increases quadratically with the number of
tasks, they show that the features that new columns learn become increasingly unimportant for
the next tasks, as the most relevant features have already been learned by the first columns. Later
works attempt to fix this problem and expand the model to new domains [184, 185].

4.8.11 Learning to Continually Learn

Beaulieu et al. (2020) [24] chose a meta-learning approach to tackle the issue of few-shot
continual learning. They note that methods that simply rely on heuristics which are hoped to
eliminate CF such as, layer and module freezing [183], optimizing Fisher criteria approximations
[181], or promoting sparse representations are inconsistent with a fundamental principle of ML, i.e.
that one should optimize for what must be achieved, and not trying to accomplish it as a byproduct
of another method. Importantly, this is an intuition that significantly contributed to the birth of
meta-learning. The objective of their meta-learning algorithm is thus to simultaneously learn new
tasks and remember previously seen ones.

Beaulieu et al. (2020) [24] are also inspired by findings of neuroscience that some neural signals
play the role of neuromodulators, enabling or disabling synaptic plasticity. This mechanism is
important for storing long-term knowledge. They hope that the use of of such a mechanism
will prevent CF in a network used to make predictions. This essentially is an application of the
conditional computation method (chapter 4.7.5) in transfer settings.

They build on another approach that employs meta-learning to avoid CF, Online Aware
Meta-Learning (OML) [186]. OML trains a CNN with a MAML-based algorithm and then
applies it to sequentially learn different classes of objects, while keeping the convolutional layers
frozen to avoid CF. Beaulieu et al. (2020) [24] propose A Neuromodulated Meta-Learning

141

Chapter 4. Modeling System 2 with Neural Networks

algorithm (ANML) that trains two models, the prediction network, parameterized by θP ,
responsible for making predictions, and a neuromodulatory (NM) NN, parameterized by θNM ,
that gates the first.

They use the same input for both networks. Each one is a CNN with 3 convolutional layers,
followed by a fully-connected one. The final layer of the NM net is of the same size as the fully-
connected layer of the prediction net and gates it via element-wise multiplication. This form of
gating similar to the way sigmoid functions are used to selectively inhibit signals, chapter 2.6.6.
The model is shown in figure 4.21.

Figure 4.21. The prediction network is shown in red and the
neuromodulatory (NM) net in blue. Both use the image as an
input. The final layer of the NM net has the same dimensionality
with the fully-connected net of the prediction network, and each
of its neurons uses a sigmoid activation function responsible for
gating the corresponding unit of the fully-connected layer of the
prediction net [24].

They note that their method
achieves two things simultane-
ously, one during backpropaga-
tion and another during the for-
ward propagation. First, by in-
hibiting irrelevant signals they
avoid computing gradients for
the respective neurons, and thus
the respective parameters don’t
change. This effectively imple-
ments a notion called selective
plasticity and mitigates CF.
Moreover, in a CL setting, dif-
ferent parts of the model special-
ize in different tasks, which may
be completely different, such as
the tasks of classifying flower
specimens vs classifying human
sentiment. Having areas with different functionalities activate simultaneously leads to signal in-
terference, leading to drop in model performance on the the new task. By inhibiting signals from
irrelevant areas this is avoided. But, if some neural areas trained on past tasks are relevant their
signals may be allowed passage enabling forward transfer.

Algorithm

The tasks that are learned are character classes coming from the Omniglot dataset [161], each
with its own unique training and test set. One task is equivalent to learning one character class.

To facilitate the following discussion the inner-loop of the meta-training process, during which
the model parameters θ are trained on a single task’s samples, will be referred to as meta-training
training. The outer loop, during which the meta-parameters φ are trained will be referred to as
meta-training testing. Similarly meta-testing will be divided into meta-testing training and
meta-testing-testing, during which no updates are performed.

A meta-learning algorithm that is designed to train a model in CL should, in principle, se-
quentially present to the model in every iteration training data from different tasks and perform
meta-training training. After T tasks are shown it should use test samples drawn from these tasks
to perform meta-training testing, propagating the gradients back through all of the inner loops.
Since this is computationally and storage-wise challenging Javed and White (2019) [186] proposed
an alternative which is adopted by Beaulieu et al. (2020) [24]. After the model is trained on
the training data of any character class, Ti, adapting its parameters θ, it is shown samples from
the same class Ti along with test samples from classes Tj , which it has already been trained on
j ∈ {1, · · · , i − 1}. These are used to update its meta-parameters φ on remembering them. The

142

4.8.11 Learning to Continually Learn

set of samples from past tasks is called a remember set and it used only for these purpose. The
resulting meta-loss is an approximation of the true one.

Beaulieu et al. (2020) [24] trains the model on 20 training examples of each classes during
meta-training training performing 20 SGD updates respectively, (chapter 2.4.4), to allow for online
learning. During meta-training testing they train the meta-parameters with the same 20 samples
of the class that was just learned along with 64 character instances randomly sampled from the
remember set.

In the inner loop, the weights pf the prediction network are adjusted to fit the most recent
class. The NM net is not trained during meta-training training, but continues to modulate the
activations of the neurons of the fully-connected layer while this is trained. On the contrary, all
weights are meta-learned during during meta-training testing in a MAML-style (chapter 4.8.6)
training process. These weights are used to initialize the model in the next loop. In total, 20,000
outer loops were used to train the model. The process is shown in algorithm 4.4.

Algorithm 4.4: A Neuromodulated Meta-Learning algorithm (ANML)

Input: T ← trajectory of T sequential meta-training tasks
Input: θNM ← weights of the NM network
Input: θP ← weights of the prediction network
Input: α, β ← learning-rate hyper-parameters

Initialize θNM ,θP

for i = {1, 2, · · · } do ▷ meta-learning outer-loop
Straj = Ti ▷ trajectory for inner-loop training
Srem ∼ T ▷ create remember set
for j = {1, 2, · · · , k} do ▷ meta-learning inner-loop
θ

(j)
P = θ

(j−1)
P − β∇

θ
(j−1)
P

L(θNM ,θ
(j−1)
P , Straj) ▷ SGD on θP

end for
θP,NM = θP,NM − α∇θP,NM

L(θNM ,θ
(k)
P , Straj , Srem) ▷ meta-update on θP,NM w.r.t.

final inner-loop model weights θ(k)
P

end for

Algorithm 4.5: Meta-Testing Process

Input: T ← trajectory of T sequential meta-testing tasks
Input: θNM ← meta-learned weights of the NM net
Input: θP ← meta-learned weights of the prediction net
Input: β ← learning-rate hyper-parameter
Strain = []
for i = {1, 2, · · · } do ▷ meta-learning outer-loop

Straj ∼ Ti ▷ next meta-testing task
Strain = Strain + Straj ▷ add to meta-testing task set
for j = {1, 2, · · · , k} do ▷ meta-learning inner-loop
θP = θP − β∇θP

L(θNM ,θP , Straj) ▷ SGD on θP

end for
end for
record L(θNM ,θP , Straj) ▷ evaluate final θP on meta-test train set
Stest ∼ T − Strain ▷ get meta-testing test set
record L(θNM ,θP , Stest) ▷ evaluate final θP on meta-test test set

During meta-testing, the model’s convolutional layer and the NM network are kept frozen. The
parameters in the final of the prediction model that correspond to the meta-testing classes which
are randomly initialized. The model is sequentially trained on Omniglot character classes, i.e. the

143

Chapter 4. Modeling System 2 with Neural Networks

model is trained on 15 training samples of a class it is immediately trained on 15 examples of the
new class without re-initializing the recently trained weights. Beaulieu et al. (2020) meta-test
the model on up to 600 classes in the aforementioned manner. Therefore, after 15 × 600 = 9000

gradient updates the net’s weights are θNM and θP,9000.
The model is evaluated on two-tasks, i.e. on whether it remembers the meta-testing training

set of 9000 samples, and on whether it can generalize to an unobserved test set consisting of 5
new examples examples for each of the meta-testing classes. The meta-testing process is shown in
algorithm 4.5.

Results

The model’s performance is shown in the figure 4.22. The comparing baselines are:

• a randomly initialized net that is then trained on the meta-testing training set data alone,
which are presented in an i.i.d. fashion

• a NN pre-trained on the meta-training dataset (includes both meta-training training and
meta-training testing image sets shown in an i.i.d. fashion) and then fine-tuned on the
meta-testing training set (i.i.d. training)

• OML, that has two fully-connected layers on top, which are fine-tuned during meta-testing
while its convolutional layers are kept frozen

• OML-OLFT where only the last of the fully-connected layers is trained during meta-testing

• an interleaved training technique that meta-trains the model the same way as ANML is meta-
trained but provides the meta-testing data in a i.i.d. manner, sampling from all meta-testing
classes simultaneously. Therefore CF is avoided and the corresponding model is considered
to be an upper bound for the ANML method

(a) Meta-Training (b) Meta-Testing

Figure 4.22. (a) Accuracy in the task of classification of the meta-testing training images, on
which the models have already been trained, for a various number of classes (b) Accuracy in the
task of classification of the meta-testing testing images, on which the models have not been trained,
for a various number of classes [24].

ANML clearly outperforms all other techniques both in terms of remembering the training
set and in terms of generalizing to unseen instances of its classes. Specifically it only performs
10% worse than the interleaved training technique (not shown in the figures). This difference

144

4.9 Inductive Biases for Deep Learning of Higher-Level Cognition

is attributed to effect of CF alone and thus the model seems to successfully deal with this issue.
Interestingly, the curves corresponding to the ANML and OML-OLFT models have the same slopes
along the x-axis, indicating that weight-freezing is significantly contributing in avoiding CF.

ANML and the baselines are only trained once on every sample to preserve the online character
of the task. By increasing the number of times the model is trained on every meta-testing training
sample and using i.i.d. data for meta-testing training the ANML technique reaches an accuracy
level of 75.37%, higher than all other models. Moreover, even though 53% of the neurons of the
final layer of the prediction model are on average active before neuromodulation is applied, only
5.9% remain active after the multiplication is performed, as shown in figure 4.23. They contend
that this means that sparseness naturally arises without explicitly optimizing for it. Nevertheless,
all neurons are used at least once during meta-test training indicating that the available resources
are put to good use.

Figure 4.23. Activations of the final layer of the prediction net shown for three random images
of the meta-testing test set before (upper row) and after (bottom row) neuromodulation is applied.
The gating signal that is applied in each case is shown in the middle row [24].

Using the NM net’s activations Beaulieu et al. (2020) trained a classifier that scored an accuracy
score of 70.9% on the meta-testing test set.

Importantly, as shown in figure 4.24, performance drops as parts of the net that were frozen are
trained during meta-test training. Similarly OML-OLFT performs better than OML in the case
of many meta-testing classes (figure 4.22). These results are crucial because, if the model is called
to learned transfer distributions that are much different from the ones it was trained on, some of
the learned features will unavoidably become useless. A larger part of the network will then have
to be fine-tuned.

4.9 Inductive Biases for Deep Learning of Higher-Level Cog-
nition

4.9.1 Inspirations From Cognitive Science

Goyal and Bengio (2020) [51] seek to bridge gap between the capabilities of modern neural
networks and human intelligence. Their proposals are based on findings of cognitive neuroscience,
and especially on research performed on the ability of humans to use, mostly verbalizable, high-level
variables and to generalize in few-shot, out-of-distribution settings by combining existing pieces of
knowledge.

145

Chapter 4. Modeling System 2 with Neural Networks

Figure 4.24. Accuracy on the meta-testing test set
for a variety of different versions of the ANML and
OML models. Unlimited means that the entire net is
trained during meta-testing training. ANML-FT:PLN
is the result of training the prediction network, while
keeping the parameters of the NM net frozen. ANML-
FT:PLN+NM_out additional trains the final layer of
the NM net. OML-FT:PLN+RLN_final trains the 2
fully connects layers of the OML model and the first
convolutional one [24].

A source of inspiration is the mental
separation of cognitive processes into Sys-
tem 1 and System 2, which is employed
by Kahneman in Thinking Fast and Slow
[50], as was discussed in chapter 4.2. They
associate System 2 with the conscious ma-
nipulation of high-level concepts and Sys-
tem 1 with automatic handling of low-level
sensory input. The slow and deliberate
functioning of System 2 is believed to be in
charge of handling problem distributions
that a human might have never observed
before, i.e. out-of-distribution (OOD)
generalization. Pieces of knowledge that
are deemed to be relevant to a certain sit-
uation are brought to memory as a result
of System 1 processes and System 2 is re-
sponsible for combining them, possibly in
novel ways, while quickly learning pieces
of knowledge that are missing.

In addition to that, according to the
Global Workspace Theory (GWT [44, 45], chapter 4.5), the brain consists of specialized agents that
communicate through a single channel. Each agent can access the channel to transmit information
signals to the rest but, only if a criterion judging the information’s relevance and importance is
met, does the channel broadcast the signals. Baars (1993) [44] supports the idea that after the
channel’s decision to broadcast the signal humans become conscious of this piece of information
and System’s 2 processes are applicable. The channel thus plays the role of a bottleneck, i.e. only
allows a few agents to simultaneously broadcast signals through the channel. Goyal and Bengio
(2020) [51] note that there is a connection between this property of the GWT model and the
threshold in the number of concepts a human is able to simultaneously manipulate. This shows
the importance of the human ability to create and manipulate high-level concepts to the OOD
generalization process, as it enables humans to compress big pieces of information into abstract
notions that are represented by only a few variables.

Goyal and Bengio (2020) [51] connect the ability of modern neural nets to automatically (in-
stinctively) recognize and come into conclusions about familiar patterns to the automatic way in
which System 1 functions. Therefore, they suggest that machine learning models must improve in
performing System’s 2 functions in order to achieve human-level intelligence. More specifically, a
fundamental capability that neural methods do not yet possess, they note, is the ability to gener-
alize in OOD settings, in cases where no strong supervision is provided, i.e. few samples are given
and not all of them may be labeled. They are also unable to create hierarchies of representations,
with abstract high-level features, usually related to language, sitting on top.

4.9.2 Current Use of Inductive Biases

Goyal and Bengio (2022) [51] suggest that deep learning has succeeded in part thanks to a set
of preferences or priors, which they call inductive biases, and have been incorporated into the
training processes and the architecture of NNs. This is directly connected to the recurring matter
of priors in this thesis (chapter 2.5.2). Convolutional networks have been suggested to implement
the prior belief of group equivariance, mainly over space (chapter 2.5.2). The soft-attention mech-

146

4.9.3 Requirement for New Training Settings

anism has also been explained to implement the notion of equivariance over permutations (chapter
3.7). Finally, weight sharing in RNNs, stems from the assumption of equivariance over time (chap-
ter 2.6). Goyal and Bengio (2020) consider the even more fundamental subjects of distributed
representations and deep architectures to implement the beliefs that inputs should be mapped to
patterns of features and that complicated functions should result from a composition of simpler
ones respectively. All of the above are example of translating preferences into neural architectures.

One can also think of inductive biases as implicit data injections, since they guide the model
into preferring some hypotheses over others, essentially playing the role of additional data. This
is proven by the fact that biases play an increasingly significant role in scarce data regimes, and
become less important when data is abundant. MAP, presented in chapter 2.3.4, is such an
example, where the importance of the prior belief over parameters, p(θ), decreases as the number
of available examples, N , becomes larger. In fact, not all biases are equivalently strong, and some
even correspond to exponentially bigger amounts of data injections than others.

Goyal and Bengio (2020) [51] suggest that more biases must be incorporated into deep learning
techniques for them to reach human-level intelligence, and that simply increasing model sizes and
the quantity of the training data will not suffice.

4.9.3 Requirement for New Training Settings

A way to introduce inductive biases is through the training process. Goyal and Bengio (2022)
[51] contend that modern training methods only promote in-distribution generalization, i.e.
generalization to unseen samples coming from the same distribution with the ones used for training,
and that presenting samples in an i.i.d. fashion is not representative of real-world scenarios, where
there might exist temporal dependencies between the different training samples.

They thus propose the use of new training and testing settings, where distributions will be non-
stationary and statistical dependencies between training data will exist. Under such conditions one
is forced to find the relation relation between distributions of tasks used to train the model and
also of tasks the model might encounter later in its lifetime, i.e. separate the stationary properties
of the training environment that don’t vary as new tasks are introduced from the non-stationary
ones that do change.

In fact, in order to achieve the above, they promote the use of transfer learning (chapter 4.7.2),
meta-learning (chapter 4.8) and continual learning (chapter 4.8.9) settings that study sequential
training on more than one different tasks under different scenarios.

4.9.4 Creating A Framework to Study System 2

Goyal and Bengio (2022) [51] adopt ideas from studies on compositionality in order to address
the problem of explaining how humans combine reusable pieces of knowledge. Compositionality
is a notion well known in the field of linguistics (Lake and Baroni (2017) [187], Bahdanau et
al. (2018) [188]) as it is an inherent characteristic of language, i.e. the meaning of a new term
can be derived from a composition of the meaning of the its comprising terms. Taken to the
field of cognitive science, it is related to the process of mentally combining knowledge pieces to
address a new task. This process is also called systematic generalization, and is enables humans
to successfully conduct inference in tasks that could never have come up during training, such as
feeling empathetic towards a protagonist of a science-fiction novel the reader has never read before.

In their effort to come up with a mathematical framework that can be used to study the distinct
pieces of knowledge individually as well as the various ways in which they can be combined by
the human mind to handle novel conditions, Goyal and Bengio (2022) [51] turn to the field of
causality (chapter 4.6). They contend that humans maintain a causal model of the world in their

147

Chapter 4. Modeling System 2 with Neural Networks

heads. In causal terminology, this assumption means that the pieces of knowledge stored in the
human brain can be represented by mechanisms, and the high-level concepts by causal variables.
Non-stationarity caused by the appearance of new tasks are modelled by interventions. Note that
this is different from the argument that real-world mechanisms can be modeled by SCMs, discussed
in chapter 4.6.1. The assumption presented here is that humans model the world using a causal
framework in order to successfully perform the various tasks they have to.

4.9.5 Proposing Biases

Taking into consideration the thoughts presented above, e.g. the two thinking modes, GWT,
systematic generalization through compositionality and causality etc, Goyal and Bengio (2022) [51]
propose a set of inductive biases, some of which are listed below.

High-Level Variables are Verbalizable and can be Linked to Low-Level Ones

The high-level variables that are used in conscious processing are largely verbalizable, or, to be
more precise, there is a lossy summary map from these variables to natural language expressions.
This assumption effectively constrains the search space for these high-level variables. Variables
found lower in the hierarchy as well as the respective neural structures can be represented by
modern deep learning models that successfully perform functions similar to System 1’s, as discussed
in chapter 4.9.1.

To link different levels of the hierarchy, Goyal and Bengio (2022) [51] propose an encoder-
decoder-type system (chapter 2.6.5), that may for example read low-level input instances and out
higher-level ones. Data for the training of such a system can be obtained by recording the relation
between low and high-level variables, as well as its evolution as time progresses.

High-Level Variables are Causal

High-level variables and the relations between them can admit causal factorization, i.e. the
variables and the mechanisms connecting them are causal, and changes in these relations are
results of interventions.

Based on the work of Daniušis et al. (2010) [157], Peters et al. (2018) [19], these mechanisms
are independent and knowledge about them is modular. This means that knowledge about one of
them is not informative about any other.

Changes in Distributions are Sparse

Changes in the distribution that result from interventions can be described with a few words.
The above, along with the argument that high-level variables are verbalizable, mean that only a few
mechanisms need to adapt to account for a change. The parameters of the rest of the mechanisms
can be initialized with their old values, as discussed in chapter 4.6.6.

Learning Fast and Slow

Since some properties of the distributions of the various tasks are stationary while others may
vary from task to task, the mental system people use to model the world must exhibit similar
characteristics. It is true that, as one practices a skill, it progressively migrates from System 2 to
System 1, where it consolidates and gains permanent traits.

When trying to build an agent, one should then aspire to have parameters adapting with various
learning speeds to the perceived changes. Goyal and Bengio (2022) [51] contend that most weights
must be slow to change, enabling the fewer fast weights to be trained fast and efficiently. In

148

4.10 A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

fact, they suggest that models describing relationships between low and high-level variables should
change as little as possible, because they mostly correspond to to concepts that do not consist
of familiar simpler ones. Humans are known to take longer to learn such concepts. Mechanisms
linking high-level causal variables, on the other hand, should be faster to train, since they represent
non-stationary attributes of the world that are handled by humans by systematically composing
reusable pieces of knowledge.

Representing High-Level Relationships With A Sparse Factor Graph

One then needs an architecture consisting of components that can be easily manipulated and
compositionally arranged. Goyal and Bengio (2022) [51] take into consideration the limited capa-
bility of the consciousness to broadcast signals simultaneously, according to GWT. They therefore
propose to represent the joint distribution of high-level concepts by a sparse factor graph. The
causal concepts are represented by nodes, and the mechanisms describing the relationships be-
tween them are represented by directed edges, emanating from the nodes representing causes.
But, importantly, each the causes used as inputs to a mechanism should not be many.

Use of Generic Rules as Mechanisms

They also propose the use of "generic factors" or "schemas", that interact with causal variables
in a way similar to the relation between logic rules and quantifiers, e.g. X may represent a
human being and can be bound to a human name such as "Nick". Providing the model with
such flexibility allows the organization of knowledge in a way that enables each mechanism to be
completely independent of the others, with its own set of parameters. Every time a mechanism is
instantiated, the properties of the objects that can be used as its inputs and outputs are defined,
and every time it is used, the values of these abstract variables are specified according to the
demands of the task at hand.

4.10 A Meta-Transfer Objective for Learning to Disentangle
Causal Mechanisms

Bengio et al. (2020) [25] focus on the problem of learning causal models from unknown inter-
ventions.

4.10.1 Correct Causal Models are Faster to Adapt

They use the key assumption that changes in distributions are sparse, i.e. interventions resulting
to changes in distributions only affect a few of the underlying mechanisms (chapter 4.9.5). They
then contend that a correctly trained causal model is faster to adapt to the changes because fewer
mechanisms will have to be retrained. In fact, they prove that expected gradient over the transfer
distribution of the related log-likelihood w.r.t. to the parameters of the mechanisms/modules that
have not changed because of interventions and have been correctly learned during training is zero.
Therefore, only the parameters of the modules modelling changed mechanisms will have to be
adapted to the transfer distribution, leading to a faster adaptation for the correct causal model.

They show this experimentally by assuming a simple model of two causal variables A and B,
whose distributions and relation are unknown. A and B are only known to receive K discrete

149

Chapter 4. Modeling System 2 with Neural Networks

values each. The possible factorizations are:

PA→B(A,B) = PA→B(A)PA→B(B|A) (4.22a)

PB→A(A,B) = PB→A(B)PB→A(A|B) (4.22b)

each one corresponding to a different causal model (chapter 4.6.5). They set the correct causal
model to be A→ B.

They use four FFNNs to model the four distributions, with parameters θA|B ,θA,θB|A,θB ,
where θA|B and θB|A model the K2 possible value combinations of A and B. As suggested by
chapter 4.6.2, there models are indistinguishable when only observational data are available.

After learning the four modules they change the distribution of P (A), keeping P (B|A) fixed.
This induces a change in both PB→A(B) and in PB→A(A|B), but not in PA→B(B|A). According
to the aforementioned proposition, when the correct causal model A → B is used, only O(K)

parameters of the FFNN modeling PA→B(A) have to be relearned, whereas, when the anti-causal
model B → A is used the computational complexity of the training is increased to O(K2), which
essentially corresponds to the entire model being retrained. This is shown in figure 4.25, where the
causal model requires much fewer samples to adapt to the change.

Figure 4.25. Log-likelihood of the transfer data computing using the causal A→ B and the anti-
causal B → A models w.r.t. the number of examples from the transfer distribution shown to them.
The causal models is shown to adapt much faster than the anti-causal one [25].

4.10.2 Using Adaptation Speed as a Meta-Learning Objective

They then attempt to use this difference in adaptation speeds to learn the causal graph from
interventional data. More specifically, they propose using adaptation speed as a meta-learning
signal to train meta-parameters, with each meta-parameter corresponding to an edge between two
causal variables. Each meta-parameter expressed the belief about the direction of the respective
edge, i.e. indicating which variable is a cause and which is the effect.

They experiment with the two variable case, they define a structural meta-parameter γ and set
P (A→ B) = σ(γ). Therefore P (B → A) = 1− σ(γ). They then define the meta-loss (regret) as:

R = − log(σ(γ)LA→B + (1− σ(γ))LB→A) (4.23)

150

4.10.3 Disentangling Causal Variables

where LA→B , LB→A the online likelihoods of both models respectively on the transfer data D2:

LA→B =

ND2∏
t=1

PA→B(at, bt; θt) (4.24a)

LB→A =

ND2∏
t=1

PB→A(at, bt; θt) (4.24b)

and {(at, bt)}ND2
the set of transfer examples for a given training episode. θt represents the model’s

parameters at t and Pmodel(a, b; θ) is the likelihood of the sample (a, b) under the respective model.
The meta-training signal is ∂R \ ∂γ and it is used to update γ with an SGD update every time

an episode (inner-loop) of ND2 transfer examples is completed. The intuition is that during the
inner loop the correct model will have adapted to the transfer data better than the incorrect one.
As a result the corresponding loss function Lmodel will be larger and γ will take a step towards
the respective direction during the outer loop. They prove that SGD indeed converges to the true
causal model, i.e. σ(γ) = 1 if ED2

[logA→B] > ED2
[logB→A] and σ(γ) = 0 otherwise. They also

prove it experimentally as shown in figure 4.26. The same is shown for continuous multi-modal
variables.

Figure 4.26. The evolution of σ(γ) during meta-learning, where A → B is the correct causal
model [25].

Interestingly, the smaller the adaptation task in terms of training data, the stronger meta-
learning signal since, given enough data, both models converge to an acceptable solution, and
thus distinguishing them becomes difficult. This advocates the use of meta-learning as a training
framework to discover causal structures.

4.10.3 Disentangling Causal Variables

Bengio et al. (2020) [25] then turn to the important problem of discovering causal variables
from sensory input. Their assumption regarding a sparseness of interventions is only applicable in
causal structures but, usually, data is provided in the form of low-level sensory input. The problem
of discovering causal variables is closely connected to the one of disentangling factors of variation
(Bengio et al. (2012) [189], Mathieu et al. (2016) [190]).

They consider the simple case of an input consisting of two variables, X and Y , which are
related to two causal variables A and B via a decoder. The decoder is known to implement a

151

Chapter 4. Modeling System 2 with Neural Networks

rotation with parameter\angle of rotation θD, whose value is unknown:[
X

Y

]
= R(θD)

[
A

B

]
(4.25)

They use an encoder to translate from the input space of "low-level variables" to the space of
"higher-level" ones: [

U

V

]
= R(θD)

[
X

Y

]
(4.26)

They treat θE as an additional meta-parameter and meta-learn it alongside γ, i.e. during the
outer-loop both γ and θE are updates with SGD. They verify experimentally that the correct
causal variables and structure are learned (figure 4.27).

The intuition here is that the correct causal model ensures the fastest adaptation. Thus, by
optimizing for adaptation speed the causal model naturally comes up.

Figure 4.27. Both the blue and the orange line indicate valid solutions. After a short period of
adaptation the first solution is found [25].

4.11 Recurrent Independent Mechanisms

Goyal et al. (2019) [2], inspired by the notion of independent causal mechanisms describing
relations between real-world causal variables, extend the independence assumption to dynamic
systems, which they believe to consist from simpler and independent dynamic processes. Even
though they are independent, these processes are assumed to sparsely interact with each other.
Goyal et al. (2019) [2] view these interactions as the source of the complexity of dynamic systems.

Humans are only able to focus on a limited number of tasks simultaneously. Goyal et al. (2019)
[2] therefore make the additional assumption that, at a given moment, humans monitor a subset
of the ongoing dynamic processes, which seem to be most interesting at that particular moment.
Therefore, an agent trying to mimic a human must exhibit similar behaviour. They contend
that implementing this bias will result to faster adaptation to non-stationarities, as only actively
observed processes will have their parameters updated. This is similar to the argument presented in
Bengio et al. (2020) [25] (chapter 4.10.1). They also suggest that it will reduce interference among
processes during forward propagation, as only active and thus informative processes will be able

152

4.11.1 The Model

to communicate their pieces of knowledge along the "bottleneck". A similar idea was presented by
Beaulieu et al. (2020) [24] (chapter 4.8.11). They test their model in OOD generalization using
various tasks to prove the validity of their assumptions and the effectiveness of their model.

4.11.1 The Model

Goyal et al. (2019) [2] propose Recurrent Independent Mechanisms (RIMs), a recurrent
model that implements the inductive biases of independent processes, sparse activations and sparse
interactions in an attempt to discover these processes during training and achieve faster and better
adaptation in OOD settings. A RIMs model consist of K recurrent modules, each one with its own
parameters to allow for module independence (figure 4.28).

Selective Activation with Competition

In order to implement the inductive bias of sparse activations, they try to establish a form of
competition among the RIMs, similarly to the work of Parascandolo et al. (2017) [20] (chapter
4.6.7). According to the Biased Competition Theory (Desimone and Duncan (1995) [191]),
brain systems related to vision compete for brain resources. Basal ganglia (chapter 4.3.2) have
been also found to be responsible for choosing which neural signals to inhibit and which to grant
access to the next computational stage. Parascandolo et al. (2017) [20] notes that competition
leads to specialization of the competing modules, which is in accordance with the effort of Goyal
et al. (2019) [2] to discover individual dynamic processes through a competition process.

Nevertheless, in contrast to Parascandolo et al. (2017) [20], Goyal et al. (2019) [2] use attention
mechanisms to create competition among the RIMs. The input at time step t, It, is considered
to be a matrix consisting of row vectors representing a set of objects. A row vector of zeros
is concatenated to the matrix creating Xt = ∅ ⊕ It. For each one of the objects a key vector,
K = XWe, encoding it properties, and a value vector, V = XWv, encoding the contained
information, are computed. For each RIM k, a query vector (or many, in the case of multi-head
attention), Qk = ht,kW

q
k, is generated, where ht,k is its hidden state at time t. Soft-attention is

used to compute the input for each RIM:

Ain,k = softmax(
ht,kW

q
k(XWe)t√
Dkey

)XWv, k ∈ {1, · · · , kT } (4.27)

Each RIM k is thus given the freedom to select its own input, depending on its interests at the
time, as these are defined by ht,k and Wq

k. Competition is then established by deciding to activate
only kA of the kT available RIMs, based on the attention weight each one’s input mechanism
has assigned to the zero vector, ∅. The intuition behind this metric is that RIMs that are most
interested to the input are hypothesized to assign a larger attention weight to its elements and
thus a smaller one on ∅, and these RIMs are the ones one must activate. In the case of multi-head
attention, the average of the attention weights assigned to ∅ by each attention head of the input
mechanism of a certain RIM is used to rank the corresponding RIM. The set of active RIMs is
denoted as St.

Goyal et al. (2019) [2] also employ competition among the RIMs when the various spatial
positions of a spatially structured input. Again, ks out of kT RIMs are activated for each spatial
position depending on the attention each RIM has paid to it.

The hidden states of the inactive RIMs are not updated:

ht+1,k = ht,k, ∀k /∈ St (4.28)

153

Chapter 4. Modeling System 2 with Neural Networks

Yet gradients do flow through them. The hidden states of the active RIMs are updated according
to the equations of the respective recurrent model:

h̃t,k = Dk(ht,k, Ain,k;θk), ∀k ∈ St (4.29)

Sparse Interactions

The active RIMs are also able to interact with other RIMs, by reading information from their
hidden states. This inductive bias is implemented by another attention mechanism:

ht+1,k = softmax(
Qt,kK

T
t,:√

Dkey

)Vt,: + h̃t,k, ∀k ∈ St (4.30)

where a residual connection is used to assuage the vanishing gradients problem. The queries, keys
and values for each RIM are computed using its hidden state along with weight matrices defined
for this purpose:

Qt,k = W̃
q

kh̃t,k, ∀k ∈ St (4.31a)

Kt,k = W̃
e

kh̃t,k, ∀k (4.31b)

Vt,k = W̃
v

kh̃t,k, ∀k (4.31c)

Sparsity of interactions is imposed by allowing each RIM k, k ∈ St, to consider information coming
from a subset of RIMs to which most attention has been paid by k.

Figure 4.28. Overview of a model with 4 RIMs. The mechanisms attend to the input elements
and the ones that pay most attention to them are activated (right). The active mechanisms (with
blue) follow their default dynamics and sparsely (continuous vs dashed lines) interact with the other
ones (left) [2].

4.11.2 Experiments

Goyal et al. (2019) conduct several experiments to test whether RIMs are able to generalize
successfully under OOD conditions.

154

4.11.2 Experiments

Temporal Patterns

They first test their ability to gen-
eralize over varying temporal patterns.
They employ a copying task that in-
volves showing the model a short se-
quence of characters, followed by a 50
consecutive blank inputs. The model
is then asked to output the sequence it
read in the beginning. A RIMs model
with 6 RIMs and 100 neural units per
RIM is compared to an LSTM model
with 600 units. The results are sum-
marized in table 4.1. While all mod-
els succeed in in-distribution general-
ization, only RIMs are able to general-
ize to the case in which the number of
blank inputs is increased to 200 time
steps.

Copying Train(50) Test(200)
kT kA hsize CE CE
6 4 600 0.00 0.00

RIMs 6 3 600 0.00 0.00
6 2 600 0.00 0.00
5 2 500 0.00 0.00

LSTMs - - 300 0.00 4.32
- - 600 0.00 3.56

NTM - - - 0.00 2.54
RMC - - - 0.00 0.13

Transformers - - - 0.00 0.54

Table 4.1. Cross-entropy loss of various versions of the
RIMs model on training and test sets of the copying task.
The performance of two LSTMs, a neural Turing machine
[34], a relational memory core [26] and a transformer
model are also recorded.

They also train the same models on a sequential MNIST resolution task, where the goal
is to classify MNIST digits that are provided as sequences of pixels to the model. The models are
then asked to generalize to images of different resolutions (16 × 16, 19 × 19, 24 × 24) than those
observed during training (14× 14). It is expected from the RIMs model to have a subset of RIMs
specializing in pixels that are not part of the digit and a different subset specializing in pixels that
are part of them. RIMs are shown in generalize better to images of higher resolutions (table 4.1)
as they keep RIMs that store pixel-related information inactive while pixels that not contain digits
are being processed.

Sequential MNIST 16 × 16 19 × 19 24 × 24
kT kA hsize Accuracy Accuracy Accuracy
6 6 600 85.5 56.2 30.9

RIMs 6 5 600 88.3 43.1 22.1
6 4 600 90.0 73.4 38.1

LSTMs - - 300 86.8 42.3 25.2
- - 600 84.5 52.2 21.9

EntNet - - - 89.2 52.4 23.5
RMC - - - 89.58 54.23 27.75
DNC - - - 87.2 44.1 19.8

Transformers - - - 91.2 51.6 22.9

Table 4.1. Cross-entropy loss of various versions of the RIMs model on training and test sets of
the sequential MNIST task. The performance of two LSTMs, a recurrent entity network [35], a
relational memory core [26], a NN with a dynamic external memory [36] and a transformer model
are also recorded.

The ablation studies reveal the important contribution of the selective activation and sparse
interaction biases to the OOD generalization abilities of RIMs.

Bouncing Balls

The model is also tested OOD generalization in the object detection task called Bouncing
Balls Experiment (BBE). BBE simulates the movement and interaction of balls of various sizes

155

Chapter 4. Modeling System 2 with Neural Networks

and weights that follow Newtonian physics.

Figure 4.29. Predictions for two different trajectories (up and down) of three balls in an envi-
ronment where a curtain is applied. On the left the side of the figure the predictions of the model
when the true frames are used as input are shown. On the right side (rollout) the model uses its
previous output as input [2].

Figure 4.30. The first 15 frames of the actual ball movements are used as input to the models.
Then the models enter an auto-regressive mode, using their past outputs as inputs (rollout). The
RIMs model’s cross entropy error on the balls’ positions is much lower than the LSTMs’ one,
indicating the model’s ability to generalize both under in-distribution and OOD settings [2].

Figure 4.31. OOD generalization capability as indi-
cated by the F1 score, compared to LSTM and RMC
[26] on another partial observation video prediction
task. All models were trained on a three-ball setting.
TTO is the time travelling oracle that has access to
the real dynamics and does not simulate them like the
other models (upper bound) [2].

The models are trained in a teacher-
forcing manner (chapter 2.6.2) to predict
the next ball position for each ball, and
are then tested on OOD generalization on
ball environments with different numbers
of interacting balls than those that were
used during training (6-8 vs 4, 4 vs 6-8)
and on predicting the movement of balls
in cases where part of the input image is
not available to the model (curtain), e.g.
the model may not be visible for a while
and appear again after a number of steps,
as depicted in figure 4.29. As shown in
figures 4.30 and 4.31 the model general-
izes much better than the other baselines
under such circumstances.

156

4.12 Neural Interpreters

Reinforcement Learning Problems: Atari

Goyal et al. (2019) [2] test RIMs on RL problems, which they consider a natural fit to RIMs,
since, as the agent learns it naturally finds itself in states it has never seen before. They train an
RL agent implemented by a model consisting of 6 RIMs (kA = 4 − 5) on Atari games and record
its scores. They report improved results over an LSTM baseline (figure 4.32). They also attempt
to pre-train their model on 3 source tasks and transfer learn the knowledge to 12 random tasks,
hitting a record of 9/12 positive transfer examples using RIMs. The use of LSTMs on the other
hand only leads to positive transfer in 3 out of the 12 games.

Figure 4.32. Relative score improvement over an LSTM based model across all Atari games
averaged over 3 trials per game [2].

4.12 Neural Interpreters

Rahaman et al. (2021) [27] focus on the problem of enabling NNs to reuse modules wherever
and whenever they deem necessary. They note that modern NNs lack flexibility when it comes to
reusing knowledge in different computational stages. For example, convolutional kernels in CNNs
and weights of RNNs are only reused laterally and vertically respectively. They thus propose
a new architecture, Neural Interpreters (NIs), which, they contend, can flexibly reuse and
combine individual pieces of knowledge. Both the computational units and the neural structures
responsible for routing information through the computational units are learned from standard
supervised learning.

4.12.1 The Model

Neural Interpreters accept as inputs sets of vectors {xi}i, xi ∈ RDin , and output sets of vectors
{yi}i, yi ∈ RDout of the same cardinality, just like BERT (chapter 3.9.3). Their composing layers
are called scripts (figure 4.33):

{yj}j = NI({xi}i) = [ScriptLs
◦ · · · ◦ (Ls times) ◦ · · · ◦ Script1]({xi}i) (4.32)

The parameters of two different scripts are distinct. Next, the composing parts of each script
will be discussed:

157

Chapter 4. Modeling System 2 with Neural Networks

Figure 4.33. The overview of the a neural interpreter along with its inputs and outputs are
shown in the leftmost figure. The CLS tokens are indicated in blue and a linear classification head
is attached on top of the output corresponding to each one. In the center left the constituting scripts
are shown. Each one of the three scripts uses a separate set of parameters. In the center-right the
inner workings of a script are shown. It entails two function iterations and three functions. All
parameters are shared between function iterations, but rerouting is performed before each one. In
the the rightmost figure the consisting LOCs are shown, conditioned on the third function’s code
vector (pink). The two other computational streams, for the green and blow function, run in parallel
with the first one and are shown on the back. The routing of the input elements is common for all
LOCs of the same function iteration that are conditioned on the same vector. The three rightmost
input elements are the only ones that are allowed access to the pink function as shown in the figure.
Residual connections do exists but are not shown [27].

Functions

Functions are the computational units of each script, consisting of two vectors, su and cu, i.e.
fu = (su, cu), u ∈ {1, · · · , Nf}. su is the signature of the function, meaning that it encodes its
properties and acts as an interface. cu is the code vector, it encodes its instructions regarding
the computations that it performs.

Type Matching and Inference

The type matching mechanism controls the routing of each input vector through the functions
of the corresponding script. It first uses an FFNN to map an input vector xi to another vector ti,
ti = TypeMatching(xi), which encodes its properties \ type. Using the cosine similarity between ti
and each of the functions’ signatures su, u ∈ {1, · · · , Nf}, it determines the compatibility between
xi and each one of the functions:

dT (su, ti) = 1− suti, su, ti ∈ T (4.33)

A hyper-parameter τ , which is called a truncation parameter, is compared to dT and allows
access to fu only to elements for which dT (su, ti) < τ . A compatibility matrix is computed for the
ones that are granted access to fu as follows:

Cui =
C̃ui

ϵ+
∑

u C̃ui

, C̃ui = exp[−dT (su, ti)
σ

], if dT (su, ti), else 0 (4.34)

where ϵ is a small positive number that is added for numerical stability purposes, and σ is a learnable
parameter. Cui is used in the routing process performed by the soft-attention mechanism that will
be discussed later.

158

4.12.1 The Model

ModLin and ModMLP

Rahaman et al. (2021) [27] refer to the modulated linear layers (ModLin) as programmable
neural modules. Essentially the consist of 3 learnable weight matrices: W ∈ RDout×Din , b ∈ RDout

and Wc ∈ RDin×Dcond that are shared among functions of the same layer. Each function fu can
program a ModLin via its code vector:

yui = ModLin(xi, cu) = W(xi ⊗ LayerNorm(Wccu)) + b (4.35)

where ⊗ symbolizes the element-wise product.

Modulated MLPs (ModMLPs) are then defined as:

yui = ModMLP(xi, cu) = [ModLinLM
(·, cu) ◦Activation ◦ · · · ◦Activation ◦ModLin1(·, cu)](xi)

(4.36)
where LM ModLin layers that use the same code vectors are stacked one on top of the other with
activation functions between them.

ModAttn

Modulated attention (ModAttn) layers perform self-attention on the each elements of each
function separately. The code vector of the corresponding function, along with ModLin layers that
are different for every head, are used to compute query, key and value vectors:

quhi = ModLinh
query(xi, cu) (4.37a)

kuhi = ModLinh
key(xi, cu) (4.37b)

vuhi = ModLinh
value(xi, cu) (4.37c)

Self-attention weights for each pair of elements xi,xj that have been accepted by a function fu

are then computed at head h:

Wuhij =
W̃uhij

ϵ+ W̃uhij

, W̃uhij = CuiCujsoftmaxj(
quhikuhj√

Dkey

) (4.38)

where softmaxj normalizes across j. Notice that weights are also multiplied by the compatibility
values between the elements under consideration and the corresponding function.

The computation of the attention values then proceeds as usual with the computation of the
appropriate outputs:

ỹuhi =
∑
j

Wuhijvuhj (4.39)

and ends with a linear projection to the concatenated outputs of the various heads per function
and per element:

yui = ModLin(ỹu,1:H ; cu), where H the total number of heads (4.40)

Lines of Code

A Line of code (LOC) consists of a ModAttn layer followed by a ModMLP layer, both
conditioned on the same code vector and with residual layers around each one, similarly to the

159

Chapter 4. Modeling System 2 with Neural Networks

transformer architecture:

ãui = ModAttn({LayerNorm(xuj)}j ; cu, {Cuj}j) (4.41a)

aui = xui + Cuiãui (4.41b)

b̃ui = ModMLP(LayerNorm(aui; cu) (4.41c)

yui = aui + Cuib̃ui (4.41d)

which means that yui = xui if Cui = 0, so an input vector is not affected by a function it has
not been granted access to. Each LOC corresponds to a separate transformer-like computational
stream, modulated by a specific function code.

Interpreter

An interpreter layer is a stack of LL LOCs, which share the same functions and compatibility
matrices. The output of the final LOC consists of Nf copies of each input element, each one
processed by one of the Nf functions. The final representation of each input vector is the weighted
sum of these processed copies, using the corresponding compatibility values as weights:

yi = xi +
∑
u

Cui(LOCLL
◦ · · · ◦ (LL times) ◦ · · · ◦ LOC1)({xj}j ; cu, {Cuj}j) (4.42)

The use of the same computational module, i.e. code vectors, by multiple LOCs implements
the notion of knowledge reuse addressed in the introduction.

Function Iteration

To allow for a reuse of the computational modules one can stack copies of an interpreter and
the type matching mechanism on top of one another. A function iteration is defined as follows:

{yi}i = FnIter(xj}j) = Interpreter(xj}j ; cu, {Cuj}u,j), Cui = TypeMatching(su,xi) (4.43)

Multiple function iterations constitute a script, which is, as stated in the beginning, the building
block of the NI model:

{yi}i = (FnIter ◦ · · · ◦ (LI times) ◦ · · · ◦ FnIter)({xj}j) (4.44)

4.12.2 Module Collapse

A common problem that deep learning algorithms trying to organize neural architectures into
modular structures is module collapse. Module collapse may occur when the model ends some
using only a few of the existing modules and thus fails to benefit from the available expressive
power (Kirsch et al. (2018) [192]). Similarly, Parascandolo et al. (2017) [20] noticed that during
some runs, a subset of the mechanisms did not specialize to any transformation and remained idle.

Another type of module collapse involves multiple modules converging to a single prototype,
and essentially start functioning in the same manner. Rahaman et al. (2021) [27] seek to prevent
this form of module collapse from occurring by freezing the function signatures at initialization
to keep them separate. They believe that this may force distinct modules into learning different
input types and thus developing different specializations.

4.12.3 Experiments

They train their model in three different tasks, chosen to evaluate various model aspects.

160

4.12.3 Experiments

A Regression Task with Known Primitives

In order to test whether the learned functions are reusable they train a NI model on a task whose
data are by definition created from compositions of known primitives. The task is the regression
problem of learning Fuzzy Boolean Expressions. They use 5 variables and 3 primitives whose
definitions follow:

and(xi, xj) = xixj (4.45a)

not(xi) = xi = −xi (4.45b)

or(xi, xj) = xixj (4.45c)

and consider 30 random Boolean functions {fi}30i=1, fi : [0, 1]5 → [0, 1]. 20 of them are learned
during a pre-training phase and 10 during an adaptation phase.

During pre-training, they use input sets of 25 vectors, 5 for the 5 variables and 20 learnable
CLS vectors, each one corresponding to a training function. A sample consists of a combination
of values for the 5 variables and of the 20 outputs of the training functions when these values are
used as inputs. A regression head that is shared among functions uses as input the output of the
NI corresponding to each of the CLS tokens and outputs a prediction.

To test the learning of reusable modules, they fine-tune 3 versions of the model:

i) freezing all weights and only fine-tune the 10 CLS tokens corresponding to 10 new functions

ii) freezing all weights except the 10 CLS tokens and the parameters of the type matching
mechanism (function signatures and them parameters of the type inference mechanism)

iii) fine-tuning the entire model

The idea is that if the function codes
have encoded useful and recomposable
primitives during the pre-training phase
then a simple rewiring during fine-tuning,
that is performed in the second case
(ii), will suffice to learn the new func-
tions. This exactly is shown in ta-
ble 4.5, where the second model scores
much higher than the first one and only
slightly worse than the third one.

Parameter Set R2

All Parameters (Pre-training) 0.9983 ± 0.0005
Fine-tuning CLS Tokens 0.9202 ± 0.0198
+ Inference parameters 0.9857 ± 0.0034

+ Remaining parameters 0.9953 ± 0.0013

Table 4.2. Mean Coefficient of Determination (R2) and
StdDev over 10 tasks after training various sets of param-
eters.

Multi-Task Image Classification

They then consider four image datasets with the same sets of labels: SVHN [193], MNISTM
[194], MNIST [159] and KMNIST [195]. They pre-train a NI model on the first three. They
use as input 64 embedding vectors of image patches and 3 CLS vectors, each one representing a
dataset. A classification head is attached to the output corresponding to each CLS vector and is
used to predict the class of input image, when that image comes from the respective dataset.

After pre-training, they fine-tune on unaugmented KMNIST samples and compare the model’s
performance to the Vision Transformer’s [40], which is a transformer model trained on image
data. They first test whether the inductive biases implemented in NIs indeed offer an advantage
when it comes to OOD generalization. As shown in figure 4.34a, the two models achieve the
same performance on KNIST, given enough data, but NIs are faster to improve, suggesting that
knowledge is stored in a way that decreases the number of updates that are needed to train the

161

Chapter 4. Modeling System 2 with Neural Networks

model on a new distribution. They are also interested in the way knowledge is stored in the
model, i.e. if invariant features are indeed stored in the functions’ parameters. They therefore
try re-initializing the parameters of the functions (signatures and codes) after pre-training and
fine-tuning the resulting model. They observe that the model’s performance when the pre-trained
functions are used is much better revealing the importance of the information stored in them (figure
4.34b).

(a) Fast Adaptation (b) Function Re-initialization

Figure 4.34. Figure (a) records the adaptation speed of a neural interpreter (orange) and a
vision transformer (blue). Figure (b) presents the adaptation performance of the model for various
numbers of re-initialized functions in the case where the pre-trained function vectors are used
(brown) and in the case where they re-initialized (blue) [27].

Figure 4.35. Validation performance of NI mod-
els pre-trained with five functions and fine-tuned
after the installation of additional ones, randomly
initialized [27].

Moreover they are concerned with the ques-
tion of whether new functions can be addi-
tionally installed and fine-tuned along with the
pre-trained model. Results show that adding
new functions does improve the model’s per-
formance, which means that the model has not
overfitted to the existing functions.

OOD Generalization with Progressively
Generated Matrices

Progressively generated matrices
(PGMs) is a task that aims to test whether
a model can generalize to OOD settings. A
sample consists of 8 context and panels and 8
candidate answers as shown in figure 4.36. The
model has to discover the pattern in the 8 given panels and choose among the 8 candidates for the
9-th piece.

Patterns involve logical relations and other linked to image attributes, e.g. shape, size, color,
etc. 7 of the 8 datasets test the model’s ability to systematically generalize, e.g. to relations not
encountered during training. Rahaman et al. (2021) [27] hypothesize that the modular storage
of knowledge will enable NIs to generalize better than models using a more rigid structure, like
Vision Transformers [40].

They use a shallow CNN to create embeddings for each panel and use as input for the model
sets of 10 vectors, 8 for the context panels, 1 for a candidate panel and 1 for a CLS token. The
output corresponding to this token is used to produce a score for the respective candidate. The

162

4.13 Transformers with Competitive Ensembles of Independent Mechanisms

scores for all candidates pass through a softmax layer and the model is optimized for the correct
answers.

Figure 4.36. A sample of
the PGMs task. On top the 8
context panels are shown and
below them are the 8 candi-
dates [27].

As indicated in table 4.2, NIs perform better than four out of six
models in OOD generalization (test set) and are very competitive
in in-distribution generalization (validation set).

4.13 Transformers with Competitive En-
sembles of Independent Mechanisms

Similarly to Rahaman et al. (2021) [27], Lamb et al. (2021) [28]
support the idea that modern NN architectures should be granted
the freedom to decide how various subsets of their parameters are
used. They contend that only parameter subsets that are deemed
by the model to be relevant in a certain situation should be used,
and others are considered irrelevant should not interfere and thus
avoid being updated.

Specifically, they focus on the transformer model. Transformer
models essentially apply the entirety of their parameter set to ev-
ery position. According to Lamb et al. (2021) [28], providing the
transformer architecture with the flexibility to decide when to use
and when not to use the available neural modules would offer signif-
icant computational benefits and improve the ability of the model
to generalize in OOD settings.

Regime Neutral Interpolation Attribute P. Triple P. Triples Extra.
Model Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test
WReN 63.0 62.6 79.0 64.4 46.7 27.2 63.9 41.9 63.4 19.0 69.3 17.2

VAE-WReN 64.8 64.2 - - 70.1 36.8 64.6 43.6 59.5 24.6 - -
MXGNet 67.1 66.7 74.2 65.4 68.3 33.6 67.1 43.3 63.7 19.9 69.1 18.9

ViT 73.3 72.7 89.9 67.7 69.4 34.1 67.6 44.1 73.8 15.9 92.2 16.4
NI 77.3 77.0 87.9 70.5 69.5 36.6 68.6 45.2 79.9 20.0 91.8 19.4

Table 4.2. Accuracy of predictions of various models on several generalization tasks. The neural
interpreter is compared to the wild relation network (WReN) [37], the variational autoencoder-
WReN (VAE-WReN) [38], the multi-layer multiplex graph neural net (MXGNet) [39] and the
vision transformer (ViT) [40]. The models are evaluated both on in-generalization performance
(val.) and OOD generalization (test).

They note that such structures cannot emerge through a standard training process alone, since
fitting the training set usually does not require that this happens. Beaulieu et al. (2020) [24]
(chapter 4.8.11) employ meta-learning to train their model. This results in their model learning to
sparsely activate different parameter subsets depending on the input image, while avoiding having
dead neurons. Training settings are indeed a way to introduce inductive biases (chapter 4.9.3).
Another way is to implement an inductive bias by incorporating it into the model’s architecture.

A common way of creating specialized modules in neural architectures is by establishing some
form of competition between them (Parascandolo et al. (2017) [20], chapter 4.6.7; Goyal et al.
(2019) [2], chapter 4.11). Lamb et al. (2021) [28] thus propose transformers with competitive
ensembles of independent mechanisms (TIMs), a transformer-based architecture that main-
tains distinct, parallel streams of computation that sparsely interact with each other, similarly to
the RIMs model (chapter 4.11).

163

Chapter 4. Modeling System 2 with Neural Networks

4.13.1 The Model

Group Linear Layers

In order to isolate the modules from each other they use group linear layers (GLLs). GLLs
use three-dimensional weight matrices W ∈ RNs×Din×Dout , which can be viewed as Ns different
two-dimensional weight matrices Wj , j ∈ {1, · · · , Ns}, that implement Ns linear layers. Each
linear layer accepts as input a vector of dimension Din and outputs a vector of dimension Dout.

GroupLinear(h,W, Ns) = [hjWj]
Ns
j=1, h ∈ RNs×Din (4.46)

Independent Mechanisms

Each mechanism uses the same weight sharing technique across positions used in the vanilla
transformer architecture but no two mechanisms share weights with each other. Therefore, mech-
anisms can be viewed as parallel computational streams, each one implementing a smaller Trans-
former on its own. This means that, at every computational stage, there are Ns distinct rep-
resentations for each element of the input sequence, each one belonging to a mechanism. Each
mechanism performs its own self-attention over its representations and applies position-wise layer
normalization, linear projections and FFN layers.

Competition for the Input

Each mechanism gm, m = {1, · · · , Ns}, uses a linear layer to compute a scalar for each input
position xi, i ∈ {1, · · · , T}. The scalars Cmi computed by each mechanism gm, for each position xi,
are used as inputs to a softmax layer that distributes xi among the Ns mechanisms. The intuition
and the method here resemble the distribution of inputs among functions in Neural Interpreters
discussed in chapter 4.12. The scalars apart from routing the input vectors through the mechanisms
also control how much each one will be updated as a result of its final contribution. This is a soft
analogue of the competition method employed in RIMs (chapter 4.11), that completely deactivate
irrelevant mechanisms.

Sparse Interactions

Lamb et al. (2021) [28] note that mechanisms in the real world may not be entirely independent
and therefore, the neural structures modelling them should be allowed to sparsely exchange high-
level information. They utilize an attention mechanism to allow for position-wise interaction
between mechanisms. The attention module consists of 2 heads, each one with 32 units in order
to constrain the flow of information and retain the independent character of the mechanisms.

An overview of the model is shown in figure 4.37.

Use of a TIM layer

A TIM layer can function as a drop-in replacement for a standard Transformer layer. Lamb
et al. (2021) [28] state that they observed that keeping the first two and the last Transformer
layers and replacing the intermediate ones with TIM layers lead to maximum improvements in
performance for some tasks.

164

4.13.1 The Model

Figure 4.37. Overview of a TIM model with three
mechanisms and a two element input. Each mecha-
nism maintains its own representation of each input
element. First each mechanism performs self-attention
using its representations of the input. Then, the mech-
anisms attend to each other’s representations for each
input element separately in order to exchange informa-
tion. Finally a FFN layer is applied position-wise by
each mechanism separately. Layer normalization and
residual connections are also applied position-wise and
mechanism-wise [28].

The use of GLLs instead of linear ones reduces
the number of parameters, but TIMs also introduce
new ones. The replacement of a Transformer layer
with a TIM layer typically reduces the total number
of parameters by 30 to 40%.

4.13.2 Experiments

Image Generation

Lamb et al. (2021) [28] first test whether mech-
anisms specialize in a meaningful manner. They
therefore replace layers of the image transformer
[196] with TIM ones. The image transformer [196] is
an image generating model based on the GPT-2 ar-
chitecture. The training data Lamb et al. (2021)
[28] synthesize consist of two images per sample,
one coming from the MNIST [159] number dataset
and the other from the CIFAR image dataset [197],
whose samples vary from animals to vehicles. Since
the two images, which are randomly sampled from
the respective datasets, are clearly independent one
expects, in the case of a TIM layers with 2 mecha-
nisms (Ns = 2), to observe one mechanism focusing
on image coming from one datasets and the other
focusing on images coming from the other dataset.

Algorithm 4.6: Equations of a Single TIM En-
coder Layer

Hyper-parameters: Number of mechanisms
Ns, dimensionality of the keys, Dk, and val-
ues, Dv, number of heads for self-attention H,
number of heads for inter-mechanism attention
Hc.
Dmech ← Dmodel/Ns

DFFN,m ← DFFNN/Ns

Input: A vector xi corresponding to the i-th
input position

Perform Competition for Position i
Wc ∈ RDmech×Ns×1

C·;i = softmax(GroupLinear(xi,Wc, Ns)

Mechanism-wise and Position-wise Self-
Attention
WQ

S ,W
K ∈ RNs×Dmech×HDk

WV
S ∈ RNs×Dmech×HDv

WO
S ∈ RNs×HDv×Dmech

Compute query, key, and value for each mech-
anism and position
Qs,i = GroupLinear(xi,W

Q
S , Ns)

Ks,i = GroupLinear(xi,WK
S , Ns)

Vs,i = GroupLinear(xi,WV
S , Ns)

Perform Mechanism-wise Self-Attention
h̃i := PositionAttention(Qs,·,Ks,·, Vs,·, NsH)[i]
▷ result is shown for element in position i
ĥi := GroupLinear(h̃i,WO

S , Ns) ▷ Apply
linear layer to each attention output separately
hi := norm(xi + C·;i

⊙
ĥi, Ns)

Information Exchange Between Mecha-
nisms
WQ

E ,W
K
E ∈ RNs×Dmech×HcDk

WV
E ∈ RNs×Dmech×HcDv

WO
E ∈ RNs×HcDv×Dmech

Compute query, key, and value for each mech-
anism and position
Qe,i = GroupLinear(xi,W

Q
E , Ns)

Ke,i = GroupLinear(xi,WK
E , Ns)

Ve,i = GroupLinear(xi,WV
E , Ns)

Perform Mechanism-wise Self-Attention
h̃i := MechanismAttention(Qe,i,Ke,i, Ve,i, NsHc)

ĥi := GroupLinear(h̃i,WO
E , Ns) ▷ Apply

linear layer to each attention output separately
hi := norm(hi + ĥi, Ns)

Mechanism-wise, Position-Wise FFN
Layer Application
WFFN,1 ∈ RNs×Dmech×DFFN,m

WFFN,2 ∈ RNs×DFFN,m×Dmech

h̃i = GroupLinear(σ(GroupLinear(hi,WFFN,1)),WFFN,2)

hi := norm(hi + h̃i, Ns)
165

Chapter 4. Modeling System 2 with Neural Networks

This is indeed depicted in figure 4.38 (right).
Moreover, the same model is given CIFAR-10 images, i.e. 32×32 coloured images in 10 classes,

with 6000 images per class. One mechanism is found to specialize in the foreground and the other
in the background of the image as shown in the left side of figure 4.38

Figure 4.38. A TIM model with 2 mechanisms is trained on CIFAR-10 images (upper left).
One mechanism specializes in the foreground (shown here in bottom left) and the other in the
background. Another TIM model with two mechanisms is trained on pairs of (MNIST and CIFAR)
images (top right). The attention paid by the first mechanism to MNIST images is shown in the
bottom right corner. This mechanism obviously specializes in MNIST digits [28].

Speech Enhancement

Real-world speech signal are often accompanied by noise that is generated in the background.
Traditional speech enhancement methods seek to improve the signal’s quality by estimating the
noisy part of it and then subtracting it from the signal.

Because of that, Lamb et al. (2021) [28] consider this task to be a good fit for TIMs, as a
2-mechanism TIMs model can naturally separate the two uncorrelated signals from each other.
They train a Transformer with all of its layers, except the first two ones and the last one, replaced
by TIM layers on the deep noise suppression (DNS) dataset. DNS is a corpus of 44 hours of
clean and noisy speech signals, that are created by artificially injecting noise into clean ones.

They use the Perceptual Evaluation of Speech Quality (PESQ) score [197] for evaluating the
quality of the output signal. They also test the model’s ability to generalize to different noise
distributions by evaluating it on the Voicebank test set [198].

As shown in table 4.3, TIM achieves state-of-the-art performance on the DNS dataset. It is
shown by Lamb et al. (2020) that the signal is indeed separated on its speech and noise components.
Moreover, TIM performs better than the transformer in OOD generalization, verifying their main
hypothesis.

Figure 4.39. A speech signal is shown on top of the left figure. The competition pattern is
then shown for five successive TIM layers. The signal becomes clearer as one moves to from the
input to the output layer. This increasing certainty about the competition winner is verified by the
correlation matrix of competition over layers shown in the middle figure and by the progression of
the competition’s entropy from lower to higher, layers depicted in the right figure [28].

166

4.13.1 The Model

Models Params DNS VoiceBank
Trained on DNS (M) (PESQ) (PESQ)

Noisy - no reverb n/a 1.582 1.970
U-Net-MultiScale+ 3.5 2.710 -

Conv-TasNet 5.1 2.730 -
PoCoNet 50.0 2.722 -

PoCoNet-SSL* 50.0 2.748 -
Transformer Baseline 6.1 2.727 2.517
TIM-NoComp (Ns = 2) 6.0 2.754 2.503
TIM-Comp (Ns = 2) 6.0 2.742 2.575
TIM-Comp (Ns = 4) 6.0 2.730 2.540

Table 4.3. Models trained and evaluated on the DNS dataset. PoCoNet-SSL was trained on
additional data. The TIM model is trained for Ns = 2 and Ns = 4. It is also trained without the
use of the competition module for Ns = 2. It is compared to the original signal (Noisy - no reverb),
the U-Net with a MultiScale+ cosine loss function (U-Net-MultiScale+) [41], the fully convolutional
version of the time-domain audio separation network (Conv-TasNet) [42], the convolutional neural
network with frequency-positional embeddings (PoCoNet) [43] and a transformer baseline. The
TIM and the transformer models are also tested on OOD generalization to the VoiceBank test set.

Language Modeling and GLUE Benchmark

TIMs are also tested on NLP tasks. Lamb et al. (2021) [28] replace all layers of a BERT
model except the first two and the last one with TIM layers with two mechanisms. The model is
pre-trained with a LM task on BookCorpus [137] and the Wikipedia corpus as is BERT. It is then
fine-tuned on the GLUE dataset.

TIM is found to perform better than BERT, both in terms of performance (table) and in
terms of stability of training, as they report observing the variability of the scores for different
initializations of the model, i.e. different seeds, to be smaller than BERT’s.

Result BERT BERT-130M TIM-All-Layers TIM-NoComp TIM-Comp
TIM Layers 0/12 0/12 12/12 9/12 9/12
Parameters 110M 130M 110M 130M 130M
Competition No No No No Yes
Valid-NLL 2.096 2.040 2.112 2.033 2.027
MNLI-M 84.93 ± 0.15 85.37 ± 0.29 84.19 ± 0.34 85.89 ± 0.17 85.28 ± 0.22

MNLI-MM 84.91 ± 0.18 85.28 ± 0.27 84.55 ± 0.15 85.80 ± 0.07 85.17 ± 0.18
QNLI 91.34 ± 0.21 91.84 ± 0.32 91.37 ± 0.59 91.78 ± 0.14 91.97 ± 0.20
SST-2 92.88 ± 0.33 92.75 ± 0.26 92.52 ± 0.56 92.75 ± 0.13 92.97 ± 0.25
STS-B 89.43 ± 0.25 89.34 ± 0.15 88.20 ± 0.32 88.52 ± 0.28 89.63 ± 0.05

Table 4.4. Compare the perplexity on the validation set (Valid-NLL) and the performance one
various GLUE tasks of two BERT models with different sizes, and three TIM models of various
configurations.

CATER Occluded Object Tracking

The diagnostic dataset for compositional actions and temporal reasoning (CATER)
[199] is a spatio-temporal reasoning video task that involves using the frames of a video as input
to predict an object’s final location in the scene. The object might be occluded during part of the
video, so the model must take into consideration the interactions between objects in the scene, i.e.
a ball might be places under a cup and then the cup might be moved.

167

Chapter 4. Modeling System 2 with Neural Networks

The task is turned into a classifica-
tion task, as the image areas are sep-
arated by 6 × 6 grid, and the model
is asked to choose the rectangle where
it believes the object is found. The
features used by the neural models are
created after using the frames as in-
put to a ResNet block. TIMs perform
between than transformer model and
their performance improves as the num-
ber of mechanism increases.

Model Top 1 % Top 5 %
LSTM 67.4 85.8

Transformer 68.7 81.7
TIM-COMP Ns = 2 68.4 85.7
TIM-COMP Ns = 4 71.0 87.3
TIM-COMP Ns = 8 71.1 87.2

Table 4.5. Comparison on CATER Object Tracking of
the Top-1 and Top-5 accuracy of Transformers with TIM.

168

Chapter 5

Transformers with Competitive Attention Heads and

FFNNs

5.1 An Alternative Idea on the Dimensionality of Represen-
tations

5.1.1 Advantages of High-Dimensional Representations

Most of the works that were presented in chapter 4 seek to implement the inductive biases of
modularity and independent mechanisms, and high-level variables (chapters 4.3, 4.6.5 and 4.9.5)
by structurally segmenting the network into individual neural modules and reducing the dimen-
sionality of the respective representations (chapters 4.6.7, 4.11, 4.12 and 4.13). In fact, Goyal et al.
(2019) [2] and Rahaman et al. (2021) [27] explicitly refer to the process of dimensionality reduction
as a means to promote the use of high-level variables by their models.

Nevertheless, there is neuroscientific evidence suggesting that the neural representations of
visual objects are stored in high-dimensional distributed forms across various regions within the
human brain [200], and that the connections between neural areas resemble small-world type
graphs, which makes the boundaries between them rather indistinguishable [71]. Karneva (2009)
[201] contends that the enormous quantity of neurons and synapses in the human brain suggests
that employing high-dimensional representations for information storage and processing might
be necessary in order to perform brain-like functions. He believes that the incredible robustness of
neural representations to various transformations and noise additions stems from redundancies
in the way knowledge is stored in the human brain, just like the way redundancy is employed to
ensure the integrity of transmissions in telecommunications. He notes that the proportion of errors
that is acceptable, in the sense that it allows the signal to be successfully retrieved afterwards,
increases with the dimensionality of the signal, further strengthening the argument in favour of
high-dimensional representations.

Karneva (2009) [201] also discusses the matter of how information may be distributed in each
of these high dimensional representations to ensure such robustness. As mental happenings cause
various neural areas to simultaneously activate, Karneva (2009) [201] suggests that information
must be distributed evenly among each vector’s positions. In a setup like the one described
above, the representations become robust to events of localized destruction of information.

Finally he considers the use of randomness by the human brain to be necessary, when con-
structing a new object, and is, as he claims, imposed by the unique initialization of every human
brain. He therefore notes that compatibility between human heads is not found in the repre-
sentations themselves, which may differ from brain to brain, but in the relationships between
representations used by each single brain and in the way these are manipulated, consciously or un-

169

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

consciously. He calls these protocols a cognitive code, and thinks that a significant step towards
human-like intelligence would be the discovery of the rules that make up this code.

5.1.2 A 10000-Dimensional Example

He then provides a concrete example of his argument, by discussing the properties of a 10,000-
dimensional binary vector. The choice of a binary vector is made to simplify the argument and
to show that the advantages of using high-dimensional representations originate exclusively from
their dimensionality.

In a 10,000-bit vector space, two points, A and B, are deemed similar if their Hamming
distance, i.e. the number of digits of A one must flip to obtain B, is somewhat closer than 5,000
bits, which is the mean distance between two random vectors of the vector space. Two vectors
that have an approximate distance of 5,000 are considered to be unrelated. More specifically,
only a millionth of the space is closer than 0.476, i.e. 4,760 bits, and only a thousand millionth
closer than 0.47. Similarly for two vectors being further than 0.524 and 0.53 from one another
accordingly. Therefore it is practically impossible for two vectors that are randomly instantiated to
represent two distinct entities to end up being similar. This is indicative of the high robustness of
the retrieval system to random noise, i.e. when provided with a noisy version of a vector it is very
likely that the system will be able to retrieve the original vector, as it will most likely be the closest
instantiated vector to the given sample. In fact, each vector has a large "private" neighborhood
as the portion of vectors that are found at a distance smaller than 0.33 from it is minuscule when
compared to the entire vector space. This neighborhood can be used to instantiate vectors that
are similar to one or more representations. These representations, on the other hand, don’t have
to be similar to each other, e.g. the distance between two vectors, A and C, that are similar to a
vector B, that is 2,500 bits away from each one of them can very well be 5,000 bits.

5.1.3 Computing with High-dimensional Vectors

He further discusses the matters of hyper-dimensional memory and arithmetic. He proposes the
use of an auto-associative memory, i.e. one that stores each item in a position whose address
is equal to the value of this item. One can then retrieve an item X even when probing the address
with a noisy version of X, X’.

Hyper-dimensional arithmetic uses the same set of basic operations used in standard vector
arithmetic. But Karneva (2009) [201], also introduces a few modifications, e.g. the representation
of sets of vectors by their sums, of pairs of vectors by vector multiplications, of sequences by
permuting sums, etc.

5.2 Modeling High-Level Variables with Standard Neural Net-
works

The idea of independent mechanisms is indeed promising, but the research community still
struggles to successfully implement the related notions and integrate them into neural models.
There are various questions that remain unanswered. The most important one is the issue of dis-
covering the underlying causal variables from raw, low-level data. Bengio et al. (2020) [25] (chapter
4.10), discover the two causal variables that have been transformed by a rotation matrix, using a
meta-learning objective that is based on the high adaptation speed of valid causal models. But
it is yet unclear how to solve this problem in real-world settings, where the number of underlying
variables and the complexity of each one are unknown.

170

5.3 Proposed Methods

As noted in chapter 4.9, Goyal and Bengio (2022) [51] contend that NNs excel at performing
System 1 - type tasks, and they seek to model System 2 - type functions by introducing a set of
inductive biases. They propose several architectures (chapters 4.11, 4.12, 4.13) as well as training
processes (chapter 4.10) in an effort to implement the notions of independent causal mechanisms,
modularity, high-level variables and specialization. Yet, it is currently uncertain whether systems
modeling high-level variables and interactions between them, as those that occur during conscious
processing, can be implemented using the same architectures and training protocols as the ones
used for processing low-level variables. Entirely new architectures with the ability to manipulate
object-level variables may have to be engineered, as well as interfaces between them and the neural
software dedicated to the modeling of low-level variables and processes.

It must be noted that the use of the ideas of independent causal mechanisms and modularity
as starting points in the process of designing systems that are able to perform System 2 - type
functions is certainly considered promising and worthy of further investigation. What is questioned
is whether one can rely solely on the standard neural network framework to play the role of
the building block for these kinds of systems. As discussed in chapter 5.1, implementing these
ideas with neural network architectures often results in the reduction of the dimensionality of the
internal representations which contradicts the intuition related to high-dimensional representations
suggested by Karneva (2009) [201]. Moreover, findings that brain neurons are organized in small-
world networks indicate that neural modules are interconnected in complex ways and therefore
modeling them by structurally segmenting the network might not be ideal.

5.3 Proposed Methods

We thus take a step back and stick to the inter-connectivity allowed by standard transformer-
based architectures while, at the same time, providing the model with the flexibility to update sets
of parameters that perform different functions independently from one another.

5.3.1 Competitive FFNNs

First, we propose the replacement of the FFNNs that follow the attention mechanisms in
transformer-based architectures with series of Nf parallel FFNNs. In order to promote the spe-
cialization of each FFNN of each model layer we propose to distribute the input elements among
the FFNNs via an attention mechanism. Attention essentially implements a form of competition
among the FFNNs, is inspired by Parascandolo et al. (2017) [20] (chapter 4.6.7) and applied in a
fashion similar to Lamb et al. (2021) [28] (chapter 4.13).

Specifically, adopting the terms used by Rahaman et al. (2021) [27] (chapter 4.12), each FFNN
of a layer l, l ∈ {1, · · · , L}, Fli, i ∈ {1, · · · , Nf}, is assigned a signature vector fli ∈ RDf . A new
FFNN, called inference FFNN, InfFl, uses the output of the attention mechanism of the same layer
l at each position j, hlj to produce a corresponding key vector: klj = InfFl(hlj) ∈ RDf . The key
and the signature vectors belong to the same semantic space S. Compatibility values between each
element hlj , that has already been processed by the previous attention layer, and the FFNNs of
the corresponding layer l, {Fli}

Nf

i=1, are computed as follows:

Cflij = softmaxi(
fliklj√
Df

) (5.1)

where the softmax is computed along the axis symbolized with i, which corresponds to the FFNNs
of the l-th layer.

After the FFNNs of the l-th layer have been applied to hlj , the weighted sum of their outputs

171

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

is computed to create the module’s final output:

olj =

Nf∑
i=1

CflijFli(hlj) (5.2)

5.3.2 Competitive Attention Heads

Similarly to the case of competitive FFNNs, it is also reasonable to seek to establish some
form of competition between the attention heads of each model’s layer. As shown by Voita et al.
(2019) [16] (chapter 4.4.2) and Clark et al. (2019) [17] (chapter 4.4.3), different attention heads
tend to specialize in different positional, semantic or syntactic relations. Nevertheless, as proved
by Cordonnier et al. (2021) [13] (chapter 3.10), attention heads are severely underutilized. We
hypothesize that, by forcing them to compete for the input sequence’s positions, they will begin
capturing sufficiently distinct aspects of natural language, leading to improvements in both in-
distribution and OOD generalization abilities of the model, as shown by Lamb et al. (2021) [28]
in the case of BERT.

Again, one can employ an attention-based mechanism to implement the aforementioned com-
petition. For each head Hli, l ∈ {1, · · · , L}, i ∈ {1, · · · , H}, a signature vector ali ∈ RDa is
instantiated to play the role of the query vector. For the representation of each output of the pre-
vious module, which is also the input to the current attention layer, and is found in the j-th position
of the input sequence, hlj , a key is computed by a separate FFNN, InfAl: klj = InfAl(hlj) ∈ RDa .
The key and the signature vectors belong to the same semantic space A. Compatibility values
between each input element hlj , and each attention head Hli, {Hli}Hi=1, are computed as follows:

Chlij = softmaxi(
aliklj√
Da

) (5.3)

where the softmax is taken along the axis symbolized with i, that corresponds to the heads of the
attention mechanism of the l-th layer.

The output of a head Hli for the j-th position is given by olij = Chlijh̃lj , which essentially is
a scalar-vector multiplication, and where h̃lj would be the output of the attention head had there
not the competitive attention heads mechanism been used.

Similarity to the DropHead Algorithm

The competitive attention heads method resembles drophead proposed by Zhou et al. (2020)
[14] and discussed in chapter 3.11 in that a scalar is used to modulate the outputs of entire attention
heads, but differs in two ways. First, the scalars in the case of the drophead method are binary,
and thus only activate or deactivate heads whereas, in the case of the competitive heads algorithm,
the scalars are real numbers that receive their values anywhere inside the interval (0, 1). One
could thus say that the latter is a soft analogue of the first. Second, and most important, the
drophead method randomly drops heads, while the competitive attention heads method does so in
a deterministic manner, based on the input of the corresponding attention mechanism.

5.4 Experiments

We apply the competitive attention heads technique (CAH), discussed in chapter 5.3.2, to
the Transformer model and to a BERT-based model. In this thesis we only experiment with in-
distribution generalization, i.e. the samples of the test set and the ones of the training set originate
from the same distribution, leaving OOD generalization for future work. Lamb et al. (2021) [28]

172

5.4.1 FAIRSEQ

(a) Overview of the competitive FFNNs method
(b) Overview of the competitive attention heads
method

Figure 5.1. Overview of the proposed methods

showed that the implementation of the associated inductive biases leads to improvements in both
the in-distribution and OOD generalization capabilities of the model.

5.4.1 FAIRSEQ

The methods are written with pytorch [202] and are integrated into existing model implemen-
tations available in the FAIRSEQ library [53]. FAIRSEQ is a library that maintains code for a
variety of models that perform text generation in the contexts of NMT, summarization, NLM, etc.
Each neural structure in the hierarchical pipeline, e.g. the attention mechanism, has its source
code placed in a separate file and interacts with the structures that are lower in the hierarchy by
considering them as black boxes. This enables us to modify an architectural component without
affecting the rest of the neural structures.

5.4.2 Application to the Transformer Model

We first apply the CAH method to the attention mechanisms of the transformer architecture
[1], i.e. the encoder self-attention, the decoder self-attention and the encoder-decoder attention.
The model has L = 6 layers, the dimension of its internal representations is equal to Dmodel = 512,
the dimension of the hidden layers of the FFNNs is Dffnn = 1024 and InfAl, l ∈ {1, · · · , L}, are
FFNNs, each with one hidden layer of dimension DInfA.

The transformer is trained on a NMT task, and specifically on WSLT_14 [30], which is a
collection of datasets that was used in tasks of the Ninth Workshop on Statistical ML. It involves
four tasks: a news translation task, a quality estimation task, a metrics task and a medical text
translation task. The variant used here is the English to German one (en-de).

We train a model for every possible combination of use (marked with cross) or no use (blank)
of the method in each of the three types of attention of a transformer model. Though the number
of parameters varies between models because of the number of attention types the CAH method

173

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

is applied to, CAH only introduces a few new parameters and all models have roughly 41 million
parameters. Zhou et al. (2020) [14] contend that drophead enabled them to increase the number
of heads leading to improved results. We thus report results for both a 4-headed and an 8-headed
model, which are presented in table 5.1. We report the perplexity metric (PPL) (chapter 3.3.2)
for the training and test set and the BLEU metric [203] (chapter 3.6) for the test set.

Enc. SA Dec. SA Enc.-Dec. Attn # of Heads PPL Training PPL Test BLEU Test
4 5.22 5.45 33.25

+ 4 4.82 5.41 33.61
+ 4 5.14 5.46 33.28

+ + 4 4.66 5.42 33.54
+ 4 5.30 5.52 33.32

+ + 4 4.95 5.46 33.20
+ + 4 5.13 5.44 33.46

+ + + 4 4.82 5.43 33.47
8 5.24 5.48 33.16

+ 8 4.78 5.53 32.83
+ 8 5.49 5.63 32.41

+ + 8 4.64 5.55 32.89
+ 8 5.33 5.59 33.19

+ + 8 5.15 5.69 32.68
+ + 8 5.14 5.52 33.18

+ + + 8 4.48 5.51 33.28

Table 5.1. Application of the CAH method to the three attention mechanisms of a transformer
model with L = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128. Enc. SA stands for
the encoder self-attention mechanisms, Dec. SA for the decoder self-attention mechanisms and
Enc.-Dec. Attn for the encoder-decoder attention mechanisms. A cross (+) is used to symbolize
the use of the CAH method at the respective mechanism and a blank to symbolize its absence. The
perplexity on the training set (PPL Training) and the test set (PPL Test) and the BLEU metric
on the test set are reported. The model was trained for 15 epochs.

Apart from a slight increase in the BLEU metric in the cases of application of the method to
the encoder self-attention alone and to the self-attention mechanisms of both the encoder and the
decoder for a 4-headed model, no other significant improvement is evident.

Ablation Study On The Dimensionality

An ablation study is performed on the effects of the signature vector dimension, Da, and the
hidden dimension of the inference FFNN, DInfA, on the model’s performance. No clear correlation
between the quantitative results and the dimensionality of the matching and inference system seems
to exist (table 5.2).

Deactivating The Least Compatible Head

We then attempt fully deactivating the head that receives less attention at each position, i.e.
the inner product of its signature vector with the corresponding element of the input sequence is
the smallest among heads of the same layer, and apply softmax to calculate compatibility values
for the rest. This is a combination of ideas from Goyal et al. (2019) [2] and Rahaman et al.
(2021) [27]. The experiment is performed on a 4-headed transformer model. Again no clear signs
of improvement are shown (table 5.3).

174

5.4.2 Application to the Transformer Model

Da DInfA PPL Training PPL Test BLEU Test
12 64 4.83 5.46 33.27
12 128 4.81 5.44 33.38
12 256 4.75 5.37 33.71
24 64 4.76 5.37 33.46
24 128 4.82 5.43 33.61
24 256 4.78 5.43 33.55
48 64 4.85 5.44 33.46
48 128 4.84 5.45 33.38
48 256 4.76 5.41 33.53

Table 5.2. Ablation study on the dimension of the signature vectors of the attention heads, Da,
and the dimension of the hidden layer of the inference FFNN, DInfA. The model is a transformer
with L = 6, Dmodel = 512, Dffnn = 1024, H = 4 and the CAH method is only applied to the
encoder’s self-attention mechanism.

Enc. SA Dec. SA Enc.-Dec. Attn PPL Training PPL Test BLEU Test
5.22 5.43 33.25

+ 4.85 5.45 33.51
+ 5.16 5.45 33.41

+ + 4.73 5.49 33.23
+ 5.33 5.54 33.19

+ + 5.02 5.52 33.25
+ + 5.19 5.51 33.33

+ + + 4.83 5.45 33.42

Table 5.3. Application of the CAH method to the three attention mechanisms of a transformer
model with L = 6, Dmodel = 512, Dffnn = 1024, Da = 24, DInfA = 128, H = 4. After the
inner product inside the softmax of the equation 5.3 is computed for the signature functions of all
attention heads and the key corresponding to an element located in a certain position i, the head
with the smaller respective product is deactivated for the position i and the rest of the inner products
are used to compute compatibility values for the remaining heads. The perplexity on the training
set (PPL Training) and the test set (PPL Test) and the BLEU metric on the test set are reported.
The model was trained for 15 epochs.

Training Inference Modules and Rest of The Model Separately

It is possible that training the matching and inference modules and the rest of the model
parameters simultaneously leads to the model overfitting the modules. We therefore try training
the modules, that are made of the inference FFNNs and the head signatures, separately from
the rest of the model. For this purpose we split the training dataset into two parts, a large one
consisting of 149 thousand examples and a smaller one with 11.2 thousand examples. In order to
choose the sizes of the two datasets we initially split the dataset following equation 2.55 (ratio of
parameter numbers is approximately 1:40) and then started gradually increasing the number of
examples contained in the smaller part until performance on the validation set began to drop. We
employ two modes of training:

• Sequential training: we keep the inference modules’ parameters frozen in the first 15 epochs
of training and train the rest of the model using the big part of the dataset. Then we train
only them on the small part dataset for 5 more epochs, while freezing the rest of the net.

• Iterative training: we keep the parameters of the inference modules frozen for one epoch
while training the rest of the network on the big part of the dataset. In the next epoch we
train them only on the small part. We repeat this process performing 30 training epochs in
total.

175

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

Notice that when a model is trained in an iterative fashion, it is a trained on each single
sample 15 times in total, which is equal to the number of epochs that was used in the previous
experiments. The reason why we don’t show results for 15+15 epochs of sequential training, but
only for 15+5, is because we noticed that using 30 epochs in total did not lead to considerable
performance improvements.

We tried applying the method to each one of the self-attention mechanisms separately and on
both of them at the same time. The results are reported in table 5.4. The experiments showed
no sign of improvement. On the contrary, a slight drop in performance is observed in most of the
cases.

Enc. SA Dec. SA Training Mode PPL Training PPL Test BLEU Test
+ Jointly 4.82 5.41 33.61

+ Jointly 5.14 5.46 33.28
+ + Jointly 4.66 5.42 33.54
+ Sequential 5.35 5.77 32.10

+ Sequential 5.39 5.71 32.41
+ + Sequential 5.33 5.81 32.52
+ Iterative 5.29 5.76 32.24

+ Iterative 5.53 5.76 32.27
+ + Iterative 5.27 5.79 32.22

Table 5.4. The transformer model is trained in three distinct manners: jointly, sequential and
iterative. The CAH method is applied each one of the self-attention mechanisms separately and
on both of them at the same time. The perplexity on the entire training set (all 160.2 thousand
examples) (PPL Training) and the test set (PPL Test) and the BLEU metric on the test set are
reported. The model was trained for 15 epochs.

We also include a few plots which offer valuable insights into the training process of the Trans-
former model that has the CAH method applied to its encoder’s self attention mechanism. We
plot the respective learning curves in figure 5.2, as well as the evolution of the BLEU metric on
the validation set as training proceeds in figure 5.3.

(a) Trained Jointly (b) Iterative Training (c) Sequential Training

Figure 5.2. Learning curves for the three modes of training. The loss is computed on the dataset
used in the last epoch. This is the reason for the scissor-like effect observed in (b) and the sudden
increase observed at epoch 15 in (c) [5].

During iterative training, epochs that are used to train the matching modules don’t seem to
contribute much to the increase in the BLEU metric as the corresponding curves are near to being
horizontal. This of course might seem reasonable, given that only a small subset of the data is
used in those epochs. The BLEU metric observed during the sequential training process also seems
stagnant after the fifteenth epoch, when the inference modules alone are trained.

The learning rates and the gradient norms are also plotted in figure 5.4. Moreover, in order to
gain a better understanding of how our modification affects the internal workings of the model, we

176

5.4.2 Application to the Transformer Model

(a) Trained Jointly (b) Iterative Training (c) Sequential Training

Figure 5.3. Evolution of perplexity on the training and validation sets and of the BLEU metric
on the validation set for the three modes of training. They are computed on the dataset used in
the last epoch. This is the reason for the scissor-like effect observed in figure (b) and the sudden
increase observed at epoch 15 in figure (c) [5].

also plot the evolution of the norms of the attention heads’ signatures during training.

(a) Trained Jointly (b) Iterative Training (c) Sequential Training

Figure 5.4. Evolution of gradient norm (red) and the learning rate (blue) during training for
the three training modes. The gradient norm decreases in epochs where the small subset of the
dataset is used because of the smaller number of parameters that are trained in these epochs. This
is the reason for the scissor-like effect observed in figure (b) and the sudden fall observed after the
fifteenth epoch in figure (c). The linear increase in the learning rate in the beginning is due to a
warm-up period that is usually employed to stabilize training [5, 29].

To obtain a clearer image of the dynamics within the model we train it for 100 epochs, at which
point all model variations have started to overfit, and then plot the norms of the heads’ signatures
for all heads of the model. When all the model’s components are trained jointly, the norms of the
signatures slowly decrease in the first two to three epochs of training, a behaviour that is followed
by a sharp fall and then a return to a smaller rate of decrease (figure 5.5a). A slower decrease of
the norms of the signatures occurs when the model is trained in an iterative manner (figure 5.5b),
which is expected given the use of a smaller dataset for this purpose. A slightly sharper fall is
observed during the second part of the sequential training process (figure 5.6). Therefore, in all
cases the inference modules are indeed trained and continue changing after the respective models
have begun to overfit.

Testing For Head Specialization

If the heads do indeed specialize, then it is reasonable to expect from different heads to focus
on different word categories. For example, a head could focus on words that belong to a particular
part of speech. It is also possible for a head to specialize in words that are semantically connected,
e.g. small real-world objects constitute, for example, a semantic category.

177

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

(a) Trained Jointly (b) Iterative Training

Figure 5.5. Evolution of the norms of the head signatures for all heads of the model, presented
separately for each layer, for the cases where all model components are trained jointly (a) and in
an iterative manner (b) [5].

Figure 5.6. Evolution of the norms of the head
signatures for all heads of the model, presented
separately for each layer, for the cases where
all model components are trained in a sequential
manner [5].

An easy way to test whether heads do in-
deed specialize is to plot the mean of each one’s
compatibility values for each position of the in-
put sentence separately. The distribution of
word appearance differs from sentence position
to sentence position. For example, pronouns
and prepositions are known to be found in the
first position of a sentence more often than in
the second one. We thus plot the evolution of
the average compatibility value over the exam-
ples of each training batch (batch_size=128)
throughout the training process for each one of
the first five sentence positions separately, ex-
cluding the < start > token.

For the first mode of training, where the
entire model is trained in every epoch, we plot
the average compatibility values for the third,
the fourth ad the fifth layer of the encoder,
which we consider to be representative (figures
5.7 and 5.8). We observe that the distributions
of the compatibility values do not change much
from position to position, regardless of the head being considered. Obviously, the heads do not
specialize as they are expected to. In fact, a single head is shown to dominate all positions in the
third layer.

A possible explanation for this observation is that the norms of the signals exiting the attention
mechanism may cancel out the differences between the contribution values assigned to the heads.
We thus plot the evolution of their norms alongside the resulting norms after the signals have been

178

5.4.2 Application to the Transformer Model

(a) Third Layer (b) Fourth Layer

Figure 5.7. Evolution of the mean compatibility values assigned to each head across a batch of
samples for each of the first five positions of the input sentence during training. The values for the
heads of the third (a) and the fourth (b) layer are shown [5].

multiplied with the respective scalar contributions. We observe that this is indeed the case for the
third (figure 5.9) and the fifth layer (figure 5.11).

Figure 5.8. Evolution of the mean compatibil-
ity values assigned to each head across a batch of
samples for each of the first five positions of the
input sentence during training. The values for the
heads of the fifth layer are shown [5].

What is very interesting in the case of the
third layer, for example, is that the norm of the
input signal to the head that corresponds to the
yellow colour is much smaller than the norms
of the others but, when the signal is multiplied
with the respective scalar contribution, it ends
up having a norm comparable to the rest of
the outputs. The transformer mechanism thus
seems to partly cancel the competitive heads
modification.

In order to discover the actual impact of
our method to the model we plot the norms
of the outputs of the attention heads of the
vanilla transformer architecture. The plots for
its third, fourth and sixth layers are shown in
figures 5.12 and 5.13. The norms differ from
each other as do the norms of the weights of
the projection layers that process each of these
outputs.

Using Attention to Promote Competi-
tion

Evidently, not all signals inside the Transformer model have norms close to each other. But,
as they are modulated through their interaction with successive transformer layers, operations
between them become feasible.

179

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

(a) Before Multiplication - Third Layer (b) After Multiplication - Third Layer

Figure 5.9. Evolution of the mean norms of the heads’ outputs before and after they are multiplied
with the corresponding compatibility values across a batch of samples for each of the first five
positions of the input sentence during training. The norms for the heads of the third layer are
shown [5].

(a) Before Multiplication - Fourth Layer (b) After Multiplication - Fourth Layer

Figure 5.10. Evolution of the mean norms of the heads’ outputs before and after they are multiplied
with the corresponding compatibility values across a batch of samples for each of the first five
positions of the input sentence during training. The norms for the heads of the fourth layer are
shown [5].

This internal mechanism may provide the signals with a way to bypass the modulation applied
by the attention mechanism implementing the notion of competition. If this is indeed the case, the
model is able to adjust the norms of its signals according to the respective softmax scores, essentially
cancelling our modification. A solution to this problem could be setting an attention threshold
that would determine whether a head should be active or not, allowing only active attention heads
to propagate their processing signals forward. This resembles the method employed by Goyal et al.

180

5.4.2 Application to the Transformer Model

(a) Before Multiplication - Fifth Layer (b) After Multiplication - Fifth Layer

Figure 5.11. Evolution of the mean norms of the heads’ outputs before and after they are multiplied
with the corresponding compatibility values across a batch of samples for each of the first five
positions of the input sentence during training. The norms for the heads of the fifth layer are
shown [5].

(a) Third Layer (b) Fourth Layer

Figure 5.12. Evolution of the mean norm values of the heads’ outputs of the encoder’s self-
attention mechanism for a vanilla transformer model during its training. The values for the heads
of the third and fourth layer of the model are shown [5].

(2019) [2] to choose which RIMs should be active at each step. We could then choose to either set
the output of the inactive attention heads to be the null vector, denoting lack of information, or
the value vector of the corresponding input element, which is closer to the choice made by Goyal
et al. (2019) for the inactive RIMs.

It must be noted that we implemented the method described above, setting the output of
the inactive heads to be the null vector, but it actually lead to a deterioration of the model’s

181

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

performance (table 5.3).
In any case, we claim that competition can prove to be a useful inductive bias but, as is true with

many other inductive biases presented in this thesis, successfully implementing it is challenging and
might require a less obvious modification than simply modulating the activation of neural experts.

But if we can get that. . .

We also plot the contribution metrics for the cases of six handpicked words, i.e. “but”, “if”,
"we", “can”, “get” and “that” for the first and fourth layer (figures 5.14, 5.15, 5.16).

Figure 5.13. Evolution of the mean norm val-
ues of the heads’ outputs of the encoder’s self-
attention mechanism for a vanilla transformer
model during its training. The values for the
heads of the sixth layer of the model are shown
[5].

Again, the contribution of each head, as com-
puted by the matching mechanism, appears to
be in general independent of the actual word
being considered.

5.4.3 Application to A BERT-
Based Model

A Robustly Optimized BERT Approach

Liu et al. (2019) [52] perform modifications
to the BERT’s hyper-parameters and training
process. They prove that a carefully tuned and
trained BERT performs better than most of the
BERT-based models that were publish in be-
tween. Specifically, they train the model for
a longer period of time, with bigger batches,
and using a bigger dataset, which they gath-
ered, and on longer sentences. They also avoid
using the next sentence prediction (NSP) ob-
jective and perform dynamic, instead of static,
masking during training. After integrating all
changes to the model and the training method,
they train RoBERTa, a robustly optimized
BERT approach. Their model outperforms sota models that were published in the meantime,
after the publication of the BERT model and before theirs, on the GLUE dataset.

CAH in RoBERTa

They implement their model with FAIRSEQ, and we thus apply our method to it. We train
the model on a masked language modeling (MLM) task using the English Wikipedia corpus. Due
to time constraints we train the vanilla RoBERTa model for seven epochs and the RoBERTa with
the CAH method applied to all of its attention mechanisms for eight epochs. After the seventh
epoch of training for both models we report the PPL metric on the training set, which is equal to
12.55 for the vanilla model and 12.76 for the CAH version. We also report PPL on the validation
set after the seventh epoch of training of the two models, which is equal to 10.04 for the standard
RoBERTa model and 10.15 for the CAH version.

Training it in an iterative manner, the same way we did for the transformer model, also resulted
in inferior performance compared to the vanilla model.

Like we did in the case of the transformer model, we include figures showing the evolution of the
norms of the heads’ outputs before and after the scalar-vector multiplication with the contribution

182

5.4.3 Application to A BERT-Based Model

(a) First Layer (b) Fourth Layer

Figure 5.14. Evolution of the mean compatibility values assigned to each head across all positions
where the corresponding word is used as input during training. The values for the heads of the first
and the fourth layers are shown [5].

(a) First Layer (b) Fourth Layer

Figure 5.15. Evolution of the mean norm values of the heads’ outputs across all positions where
the corresponding word is used as input during training before multiplication with the compatibility
values is applied. The values for the heads of the first and fourth layer of the model are shown [5].

values, as well as the contribution values themselves during training per position for the first five
positions (figures 5.17, 5.18, 5.19, 5.20, 5.21). Again, no big differences between positions are
evident. Moreover, we observe the same cancelling effect between the norms of the outputs and
the respective compatibility values.

183

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

(a) First Layer (b) Fourth Layer

Figure 5.16. Evolution of the mean norm values of the heads’ outputs across all positions where
the corresponding word is used as input during training after multiplication with the compatibility
values is applied. The values for the heads of the first and fourth layer of the model are shown [5].

(a) Before Multiplication - First Layer (b) After Multiplication - First Layer

Figure 5.17. Evolution of the mean norms of the heads’ outputs before and after they are multiplied
with the corresponding compatibility values across a batch of samples for each of the first five
positions of the input sentence during training. The norms for the heads of the first layer are
shown [5].

5.5 Discussion

The CAH mechanism did not overall improve the performance of the models it was applied
to. We suspect that the model overfitted the mechanism. Out effort to train the mechanism and
the model separately actually lead to a slight degradation in performance. We discussed how the
solution may be found in a RIM-like activation of the relevant modules and a complete deactivation

184

5.5 Discussion

(a) First Layer (b) Fourth Layer

Figure 5.18. Evolution of the mean compatibility values assigned to each head across a batch of
samples for each of the first five positions of the input sentence during training. The values for the
heads of the first (a) and the fourth (b) layer are shown [5].

(a) Before Multiplication - Fourth Layer (b) After Multiplication - Fourth Layer

Figure 5.19. Evolution of the mean norms of the heads’ outputs before and after they are multiplied
with the corresponding compatibility values across a batch of samples for each of the first five
positions of the input sentence during training. The norms for the heads of the fourth layer are
shown [5].

of the irrelevant ones. Nevertheless, our preliminary experiments in that direction resulted in a
drop in performance.

We still think that the use of a module that treats attention heads as mechanisms and promotes
their specialization can improve the capabilities of attention-based models, and claim that even
small changes in the way this module is implemented could unlock its potential. One could, for
example, experiment with a variety of different decision metrics based on which head selection is
performed, instead of using the signature vector approach. One could also opt for a more drastic

185

Chapter 5. Transformers with Competitive Attention Heads and FFNNs

(a) Before Multiplication - Eighth Layer (b) After Multiplication - Eighth Layer

Figure 5.20. Evolution of the mean norms of the heads’ outputs before and after they are multiplied
with the corresponding compatibility values across a batch of samples for each of the first five
positions of the input sentence during training. The norms for the heads of the eighth layer are
shown [5].

Figure 5.21. Evolution of the mean compatibility values assigned to each head across a batch of
samples for each of the first five positions of the input sentence during training. The values for the
heads of the eighth layer are shown [5].

modification to the module and even forgo the competitive character of the process altogether and
employ a different method of promoting the specialization of heads, like an appropriate regularizer.

186

Chapter 6

Conclusions

6.1 Discussion

Concluding this thesis we believe that we have conducted a thorough review of the recent
advances in efforts that aim to develop a generation of neural networks capable of performing
higher cognitive functions. We explained how studies in the fields of cognitive science, neuroscience
and causality support the intuition of designing neural architectures and training algorithms based
on the set of inductive biases presented by Goyal and Bengio (2022) [51] (chapter 4.9). Given the
important contribution of inductive biases that have already been implemented to the recent success
of ML models we think that this is a direction which is certainly worthy of further investigation.

The models presented in the last sections of chapter 4 (4.10, 4.11, 4.12, 4.13) are inspired by
the biases of independent mechanisms (chapter 4.6.5), specialization (chapter 4.3) and competition
(chapter 4.6.7). Even though the reported results do not greatly surpass those of currently used
methods and models, they pave the way for alternative implementations which may succeed in
achieving the generalization abilities promised.

The CAH modification we proposed and applied to the transformer and BERT architectures
did not improve their performance in general. Successfully implementing inductive biases has been
proven to be a very hard task, as the research efforts we presented show. Yet, we certainly think
that the notions of specialization and independent mechanisms will play important roles in the
creation of the next generation of machine learning methods and models.

6.2 Future Work

There are many possible next steps one can take from here. An indicative list of such steps is
provided below:

• OOD-generalization: As the biggest goal of the presented research efforts is to achieve good
OOD generalization performance we consider testing our model under such conditions a
natural next step.

• Meta-Learning: We tried training the inference mechanisms separately from the rest of the
model, but our results were not satisfactory. Separating the model’s parameters and training
them in a meta-learning fashion (chapter 4.8) could prove to be useful.

• In the same spirit we consider notions that modify the training process, such as curriculum
learning, a promising way to train our module.

• As we reported, we tried fully activating attention heads that are considered to be relevant
in a given situation and fully deactivating irrelevant ones, but preliminary tests showed no

187

Chapter 6. Conclusions

improvement. Nonetheless, we think that a more careful tuning of the hyper-parameters,
such as the number of active heads could perhaps unlock the potential of the CAH method.

• Testing different metrics of relatedness, apart from the key - signature vector inner product,
such as the attention weight statistics, is another promising direction.

188

Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser και Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[2] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua
Bengio και Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint
arXiv:1909.10893, 2019.

[3] Richard O Duda, Peter E Hart και David G Stork. Pattern classification and scene analysis
2nd ed. ed: Wiley Interscience, 13:14, 1995.

[4] Christopher M Bishop και Nasser M Nasrabadi. Pattern recognition and machine learning,
τόμος 4. Springer, 2006.

[5] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren και Jian Sun. Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
σελίδες 770–778, 2016.

[7] Ian Goodfellow, Yoshua Bengio και Aaron Courville. Deep learning. MIT press, 2016.

[8] Simon Haykin. Neural networks and learning machines, 3/E. Pearson Education India, 2009.

[9] Daniel Jurafsky και James H Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.

[10] Dzmitry Bahdanau, Kyunghyun Cho και Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[11] Jacob Devlin, Ming Wei Chang, Kenton Lee και Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[12] Harold Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933.

[13] Jean Baptiste Cordonnier, Andreas Loukas και Martin Jaggi. Multi-head attention: Collab-
orate instead of concatenate. arXiv preprint arXiv:2006.16362, 2020.

[14] Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei και Ming Zhou. Scheduled drophead: A
regularization method for transformer models. arXiv preprint arXiv:2004.13342, 2020.

[15] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva και Antonio Torralba. Object
detectors emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

189

BIBLIOGRAPHY

[16] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich και Ivan Titov. Analyzing multi-
head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv
preprint arXiv:1905.09418, 2019.

[17] Kevin Clark, Urvashi Khandelwal, Omer Levy και Christopher D Manning. What does bert
look at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

[18] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29(1):1–27, 1964.

[19] Jonas Peters, Dominik Janzing και Bernhard Schölkopf. Elements of causal inference: foun-
dations and learning algorithms. The MIT Press, 2017.

[20] Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla και Bernhard Schölkopf.
Learning independent causal mechanisms. International Conference on Machine Learning,
σελίδες 4036–4044. PMLR, 2018.

[21] Chelsea Finn και Sergey Levine. Learning to learn: An Introduction to Meta Learning, 2020.

[22] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell και others. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[23] Chelsea Finn, Pieter Abbeel και Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. International conference on machine learning, σελίδες 1126–1135.
PMLR, 2017.

[24] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff Clune
και Nick Cheney. Learning to continually learn. arXiv preprint arXiv:2002.09571, 2020.

[25] Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa
Bilaniuk, Anirudh Goyal και Christopher Pal. A meta-transfer objective for learning to
disentangle causal mechanisms. arXiv preprint arXiv:1901.10912, 2019.

[26] Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Theophane
Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu και Timothy Lillicrap. Relational
recurrent neural networks. Advances in neural information processing systems, 31, 2018.

[27] Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Gehler, Yoshua Bengio,
Francesco Locatello και Bernhard Schölkopf. Dynamic inference with neural interpreters.
Advances in Neural Information Processing Systems, 34:10985–10998, 2021.

[28] Alex Lamb, Di He, Anirudh Goyal, Guolin Ke, Chien Feng Liao, Mirco Ravanelli και Yoshua
Bengio. Transformers with competitive ensembles of independent mechanisms. arXiv preprint
arXiv:2103.00336, 2021.

[29] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong και Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

[30] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Jo-
hannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand και others.
Findings of the 2014 workshop on statistical machine translation. Proceedings of the ninth
workshop on statistical machine translation, σελίδες 12–58, 2014.

190

BIBLIOGRAPHY

[31] Karim Ahmed, Nitish Shirish Keskar και Richard Socher. Weighted transformer network for
machine translation. arXiv preprint arXiv:1711.02132, 2017.

[32] Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He και Tao Qin. Tied transformers: Neural
machine translation with shared encoder and decoder. Proceedings of the AAAI conference
on artificial intelligence, τόμος 33, σελίδες 5466–5473, 2019.

[33] Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen και Tie Yan Liu. Layer-wise
coordination between encoder and decoder for neural machine translation. Advances in Neural
Information Processing Systems, 31, 2018.

[34] Alex Graves, Greg Wayne και Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[35] Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes και Yann LeCun. Tracking the
world state with recurrent entity networks. arXiv preprint arXiv:1612.03969, 2016.

[36] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John
Agapiou και others. Hybrid computing using a neural network with dynamic external mem-
ory. Nature, 538(7626):471–476, 2016.

[37] David Barrett, Felix Hill, Adam Santoro, Ari Morcos και Timothy Lillicrap. Measuring
abstract reasoning in neural networks. International conference on machine learning, σελίδες
511–520. PMLR, 2018.

[38] Xander Steenbrugge, Sam Leroux, Tim Verbelen και Bart Dhoedt. Improving generaliza-
tion for abstract reasoning tasks using disentangled feature representations. arXiv preprint
arXiv:1811.04784, 2018.

[39] Duo Wang, Mateja Jamnik και Pietro Lio. Abstract diagrammatic reasoning with multiplex
graph networks. arXiv preprint arXiv:2006.11197, 2020.

[40] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly
και others. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

[41] Hyeong Seok Choi, Hoon Heo, Jie Hwan Lee και Kyogu Lee. Phase-aware single-stage speech
denoising and dereverberation with U-net. arXiv preprint arXiv:2006.00687, 2020.

[42] Yuichiro Koyama, Tyler Vuong, Stefan Uhlich και Bhiksha Raj. Exploring the best loss func-
tion for DNN-based low-latency speech enhancement with temporal convolutional networks.
arXiv preprint arXiv:2005.11611, 2020.

[43] Umut Isik, Ritwik Giri, Neerad Phansalkar, Jean Marc Valin, Karim Helwani και Arvindh
Krishnaswamy. Poconet: Better speech enhancement with frequency-positional embeddings,
semi-supervised conversational data, and biased loss. arXiv preprint arXiv:2008.04470, 2020.

[44] Bernard J Baars. A cognitive theory of consciousness. Cambridge University Press, 1993.

[45] Bernard J Baars. In the theatre of consciousness. Global workspace theory, a rigorous scien-
tific theory of consciousness. Journal of consciousness Studies, 4(4):292–309, 1997.

[46] Bernard J Baars. The global brainweb: An update on global workspace theory. Science and
Consciousness Review, 2, 2003.

191

BIBLIOGRAPHY

[47] Bernard J Baars, Stan Franklin και Thomas Zoega Ramsoy. Global workspace dynamics:
cortical “binding and propagation” enables conscious contents. Frontiers in psychology, 4:200,
2013.

[48] BJ Baars και N Geld. On Consciousness: Science & Subjectivity-Updated Works on Global
Workspace Theory, 2019.

[49] Jimmy Lei Ba, Jamie Ryan Kiros και Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[50] Kahneman Daniel. Thinking, fast and slow. 2017.

[51] Anirudh Goyal και Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 478(2266):20210068, 2022.

[52] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer και Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[53] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grang-
ier και Michael Auli. fairseq: A Fast, Extensible Toolkit for Sequence Modeling. Proceedings
of NAACL-HLT 2019: Demonstrations, 2019.

[54] Nicolas Palanca-Castan, Beatriz Sánchez Tajadura και Rodrigo Cofré. Towards an interdis-
ciplinary framework about intelligence. Heliyon, 7(2):e06268, 2021.

[55] Levi Gadye. The Tools That Let Neuroscientists Study (and Even Repair) Brain Circuits,
2018.

[56] Warren S McCulloch και Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5:115–133, 1943.

[57] Alan M Turing. Computing machinery and intelligence. Springer, 2009.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren και Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. Proceedings of the IEEE inter-
national conference on computer vision, σελίδες 1026–1034, 2015.

[59] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot και others. Mastering the game of Go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[60] Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincentde
Boer, Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony και others. Mastering the
game of Stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–
996, 2022.

[61] Russell Stuart J και Peter Norvig. Artificial Intelligence: A Modern Approach, 4th US ed.
Retrieved October, 29, 2021.

[62] Jake Frankenfield. Natural Language Processing (NLP), 2021.

[63] Beverly Park Woolf. Building intelligent interactive tutors: Student-centered strategies for
revolutionizing e-learning. Morgan Kaufmann, 2010.

192

BIBLIOGRAPHY

[64] Abdulhamit Subasi. Practical machine learning for data analysis using python. Academic
Press, 2020.

[65] Hossein Ashtari. What Is Computer Vision? Meaning, Examples, and Applications in 2022,
2021.

[66] John J. Craig. Introduction to Robotics: Mechanics and Control (3rd Edition). Pearson,
2004.

[67] Sergios Theodoridis και Konstantinos Koutroumbas. Pattern recognition. Elsevier, 2006.

[68] Yassine Ouali, Céline Hudelot και Myriam Tami. An overview of deep semi-supervised learn-
ing. arXiv preprint arXiv:2006.05278, 2020.

[69] Richard S Sutton και Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[70] Andrew Ng. CS229 Lecture notes. CS229 Lecture notes, 1(1):1–3, 2000.

[71] How the Brain Works. DK, 2020.

[72] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

[73] Patricia Smith Churchland και Terrence Joseph Sejnowski. The computational brain. MIT
press, 1992.

[74] Kurt Hornik, Maxwell Stinchcombe και Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[75] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[76] Razvan Pascanu, Tomas Mikolov και Yoshua Bengio. On the difficulty of training recurrent
neural networks. International conference on machine learning, σελίδες 1310–1318. Pmlr,
2013.

[77] Giuseppe Pio Cannata. Vanishing gradient in Deep Neural Networks, 2021.

[78] Vinod Nair και Geoffrey E Hinton. Rectified linear units improve restricted boltzmann ma-
chines. Proceedings of the 27th international conference on machine learning (ICML-10),
σελίδες 807–814, 2010.

[79] Andrew L Maas, Awni Y Hannun, Andrew Y Ng και others. Rectifier nonlinearities improve
neural network acoustic models. Proc. icml, τόμος 30, σελίδα 3. Atlanta, Georgia, USA, 2013.

[80] Yann LeCun, Larry Jackel, Leon Bottou, A Brunot, Corinna Cortes, John Denker, Harris
Drucker, Isabelle Guyon, UA Muller, Eduard Sackinger και others. Comparison of learning
algorithms for handwritten digit recognition. International conference on artificial neural
networks, τόμος 60, σελίδες 53–60. Perth, Australia, 1995.

[81] Siddharth Krishna Kumar. On weight initialization in deep neural networks. arXiv preprint
arXiv:1704.08863, 2017.

[82] John Duchi, Elad Hazan και Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

193

BIBLIOGRAPHY

[83] Diederik P Kingma και Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[84] Tomaso Poggio και Federico Girosi. Networks for approximation and learning. Proceedings
of the IEEE, 78(9):1481–1497, 1990.

[85] Bernard Widrow και Eugene Walach. Adaptive signal processing for adaptive control. IFAC
Proceedings Volumes, 16(9):7–12, 1983.

[86] Andrew R Barron. Neural net approximation. Proc. 7th Yale workshop on adaptive and
learning systems, τόμος 1, σελίδες 69–72, 1992.

[87] Ken Ichi Funahashi. On the approximate realization of continuous mappings by neural net-
works. Neural networks, 2(3):183–192, 1989.

[88] Daniel L Chester. Why two hidden layers are better than one. Proc. IJCNN, Washington,
DC, τόμος 1, σελίδες 265–268, 1990.

[89] Babak Hassibi και David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

[90] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever και Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[91] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever και Ruslan R Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[92] Priya C Bala. Build Better Deep Learning Models with Batch and Layer Normalization, 2021.

[93] Suarav Singla. Why is Batch Normalization useful in Deep Neural Networks?, 2020.

[94] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez και Ion
Stoica. Tune: A Research Platform for Distributed Model Selection and Training. arXiv
preprint arXiv:1807.05118, 2018.

[95] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta καιMasanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, σελίδες 2623–2631,
2019.

[96] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard και Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[97] Yann LeCun, Léon Bottou, Yoshua Bengio και Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[98] David E Rumelhart, Geoffrey E Hinton και Ronald J Williams. Learning internal representa-
tions by error propagation. Τεχνική Αναφορά με αριθμό, California Univ San Diego La Jolla
Inst for Cognitive Science, 1985.

[99] Samy Bengio, Oriol Vinyals, Navdeep Jaitly και Noam Shazeer. Scheduled sampling for se-
quence prediction with recurrent neural networks. Advances in neural information processing
systems, 28, 2015.

194

BIBLIOGRAPHY

[100] Mike Schuster και Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE trans-
actions on Signal Processing, 45(11):2673–2681, 1997.

[101] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk και Yoshua Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[102] Ilya Sutskever, Oriol Vinyals και Quoc V Le. Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27, 2014.

[103] Yoshua Bengio, Paolo Frasconi και Patrice Simard. The problem of learning long-term de-
pendencies in recurrent networks. IEEE international conference on neural networks, σελίδες
1183–1188. IEEE, 1993.

[104] Yoshua Bengio, Patrice Simard και Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[105] Sepp Hochreiter και Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[106] Karin Verspoor και Kevin Cohen. Natural Language Processing, σελίδες 1495–1498. 2013.

[107] John E Hopcroft, Rajeev Motwani και Jeffrey D Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60–65, 2001.

[108] Chetna Khanna. Byte-Pair Encoding: Subword-based tokenization algorithm, 2021.

[109] Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[110] Martin Joos. Description of language design. The Journal of the Acoustical Society of
America, 22(6):701–707, 1950.

[111] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[112] John Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, σελίδες
10–32, 1957.

[113] Gerard Salton. The SMART retrieval system—experiments in automatic document process-
ing. Prentice-Hall, Inc., 1971.

[114] Hans Peter Luhn. A statistical approach to mechanized encoding and searching of literary
information. IBM Journal of research and development, 1(4):309–317, 1957.

[115] Karen Sparck Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation, 28(1):11–21, 1972.

[116] Tomas Mikolov, Kai Chen, Greg Corrado και Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[117] Yoshua Bengio, Réjean Ducharme και Pascal Vincent. A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.

[118] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu και Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of machine learning
research, 12(ARTICLE):2493–2537, 2011.

195

BIBLIOGRAPHY

[119] Piotr Bojanowski, Edouard Grave, Armand Joulin και Tomas Mikolov. Enriching word vec-
tors with subword information. Transactions of the association for computational linguistics,
5:135–146, 2017.

[120] Jeffrey Pennington, Richard Socher και Christopher D Manning. Glove: Global vectors for
word representation. Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), σελίδες 1532–1543, 2014.

[121] Eric H Huang, Richard Socher, Christopher D Manning και Andrew Y Ng. Improving word
representations via global context and multiple word prototypes. Proceedings of the 50th annual
meeting of the association for computational linguistics (Volume 1: Long papers), σελίδες
873–882, 2012.

[122] Mohammad Taher Pilehvar και Jose Camacho-Collados. WiC: the word-in-context dataset
for evaluating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121,
2018.

[123] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman
και Eytan Ruppin. Placing search in context: The concept revisited. Proceedings of the 10th
international conference on World Wide Web, σελίδες 406–414, 2001.

[124] Felix Hill, Roi Reichart και Anna Korhonen. Simlex-999: Evaluating semantic models with
(genuine) similarity estimation. Computational Linguistics, 41(4):665–695, 2015.

[125] Peter D Turney και Michael L Littman. Corpus-based learning of analogies and semantic
relations. Machine Learning, 60:251–278, 2005.

[126] Tomáš Mikolov, Wen tau Yih και Geoffrey Zweig. Linguistic regularities in continuous space
word representations. Proceedings of the 2013 conference of the north american chapter of
the association for computational linguistics: Human language technologies, σελίδες 746–751,
2013.

[127] Anna Gladkova, Aleksandr Drozd και Satoshi Matsuoka. Analogy-based detection of morpho-
logical and semantic relations with word embeddings: what works and what doesn’t. Proceed-
ings of the NAACL Student Research Workshop, σελίδες 8–15, 2016.

[128] George A Miller και JG Beebe-Center. Some psychological methods for evaluating the quality
of translations. Τεχνική Αναφορά με αριθμό, HARVARD UNIV CAMBRIDGE MA PSYCHO-
ACOUSTIC LAB, 1956.

[129] Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. Proceedings of
the tenth workshop on statistical machine translation, σελίδες 392–395, 2015.

[130] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger και Yoav Artzi. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

[131] Ricardo Rei, Craig Stewart, Ana C Farinha και Alon Lavie. COMET: A neural framework
for MT evaluation. arXiv preprint arXiv:2009.09025, 2020.

[132] Thibault Sellam, Dipanjan Das και Ankur P Parikh. BLEURT: Learning robust metrics for
text generation. arXiv preprint arXiv:2004.04696, 2020.

[133] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma και Andrej Risteski. Linear algebraic
structure of word senses, with applications to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018.

196

BIBLIOGRAPHY

[134] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever και others. Improving
language understanding by generative pre-training. 2018.

[135] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee και Luke Zettlemoyer. Deep contextualized word representations, 2018.

[136] Wilson L Taylor. “Cloze procedure”: A new tool for measuring readability. Journalism
quarterly, 30(4):415–433, 1953.

[137] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba και Sanja Fidler. Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. Proceedings of the IEEE international conference on
computer vision, σελίδες 19–27, 2015.

[138] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy και Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

[139] Alex Warstadt, Amanpreet Singh και Samuel R Bowman. Neural network acceptability judg-
ments. Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

[140] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew
Y Ng και Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. Proceedings of the 2013 conference on empirical methods in natural
language processing, σελίδες 1631–1642, 2013.

[141] Bill Dolan και Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
Third International Workshop on Paraphrasing (IWP2005), 2005.

[142] Zihan Chen, Hongbo Zhang, Xiaoji Zhang και Leqi Zhao. Quora question pairs, 2018.

[143] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio και Lucia Specia. Semeval-2017
task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

[144] Adina Williams, Nikita Nangia και Samuel R Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

[145] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev και Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[146] Luisa Bentivogli, Peter Clark, Ido Dagan και Danilo Giampiccolo. The Fifth PASCAL Rec-
ognizing Textual Entailment Challenge. TAC. Citeseer, 2009.

[147] Hector Levesque, Ernest Davis και Leora Morgenstern. The winograd schema challenge. Thir-
teenth international conference on the principles of knowledge representation and reasoning,
2012.

[148] Rowan Zellers, Yonatan Bisk, Roy Schwartz και Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

[149] Paul Michel, Omer Levy και Graham Neubig. Are sixteen heads really better than one?
Advances in neural information processing systems, 32, 2019.

[150] OpenAI: Introducing ChatGPT, 2022.

197

BIBLIOGRAPHY

[151] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko και oth-
ers. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583–589,
2021.

[152] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard και
David McClosky. The Stanford CoreNLP natural language processing toolkit. Proceedings of
52nd annual meeting of the association for computational linguistics: system demonstrations,
σελίδες 55–60, 2014.

[153] Mukund Sundararajan, Ankur Taly και Qiqi Yan. Axiomatic attribution for deep networks.
International conference on machine learning, σελίδες 3319–3328. PMLR, 2017.

[154] Bernard J Baars, Natalie Geld και Robert Kozma. Global workspace theory (GWT) and
prefrontal cortex: Recent developments. Frontiers in psychology, σελίδα 5163, 2021.

[155] Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural
networks, 10(5):988–999, 1999.

[156] Jonas Martin Peters. Restricted structural equation models for causal inference. Διδακτορική
Διατριβή, ETH Zurich, 2012.

[157] Povilas Daniusis, Dominik Janzing, Joris Mooij, Jakob Zscheischler, Bastian Steudel, Kun
Zhang και Bernhard Schölkopf. Inferring deterministic causal relations. arXiv preprint
arXiv:1203.3475, 2012.

[158] Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang και Joris
Mooij. On causal and anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

[159] Yann LeCun, Corinna Cortes, Chris Burges και others. MNIST handwritten digit database,
2010.

[160] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville και Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[161] Brenden Lake, Ruslan Salakhutdinov, Jason Gross και Joshua Tenenbaum. One shot learning
of simple visual concepts. Proceedings of the annual meeting of the cognitive science society,
τόμος 33, 2011.

[162] Rich Caruna. Multitask learning: A knowledge-based source of inductive bias. Machine
learning: Proceedings of the tenth international conference, σελίδες 41–48, 1993.

[163] Lorien Y Pratt. Discriminability-based transfer between neural networks. Advances in neural
information processing systems, 5, 1992.

[164] Sebastian Ruder. Transfer Learning - Machine Learning’s Next Frontier, 2017.

[165] Rupesh Kumar Srivastava, Klaus Greff και Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

[166] Yoshua Bengio. Deep learning of representations: Looking forward. Statistical Language
and Speech Processing: First International Conference, SLSP 2013, Tarragona, Spain, July
29-31, 2013. Proceedings 1, σελίδες 1–37. Springer, 2013.

[167] Vihar Kurama. An Introduction to Decision Trees, 2020.

198

BIBLIOGRAPHY

[168] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra και others. Matching
networks for one shot learning. Advances in neural information processing systems, 29, 2016.

[169] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how
to learn: the meta-meta-... hook. Διδακτορική Διατριβή, Technische Universität München,
1987.

[170] Yoshua Bengio, Samy Bengio και Jocelyn Cloutier. Learning a synaptic learning rule. Cite-
seer, 1990.

[171] Jake Snell, Kevin Swersky και Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017.

[172] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy και Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32,
2019.

[173] Trapit Bansal, Rishikesh Jha και Andrew McCallum. Learning to few-shot learn across
diverse natural language classification tasks. arXiv preprint arXiv:1911.03863, 2019.

[174] Mark B Ring. CHILD: A first step towards continual learning. Machine Learning, 28(1):77–
104, 1997.

[175] Michael McCloskey και Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. Psychology of learning and motivation, τόμος 24, σελίδες
109–165. Elsevier, 1989.

[176] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning
and forgetting functions. Psychological review, 97(2):285, 1990.

[177] Rahaf Aljundi, Marcus Rohrbach και Tinne Tuytelaars. Selfless sequential learning. arXiv
preprint arXiv:1806.05421, 2018.

[178] Magdalena Biesialska, Katarzyna Biesialska και Marta R Costa-Jussa. Continual lifelong
learning in natural language processing: A survey. arXiv preprint arXiv:2012.09823, 2020.

[179] James L McClelland, Bruce L McNaughton και Randall C O’Reilly. Why there are comple-
mentary learning systems in the hippocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory. Psychological review, 102(3):419,
1995.

[180] Zhizhong Li και Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[181] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska
και others. Overcoming catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

[182] Geoffrey Hinton, Oriol Vinyals και Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[183] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu και Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

199

BIBLIOGRAPHY

[184] Jaehong Yoon, Eunho Yang, Jeongtae Lee και Sung Ju Hwang. Lifelong learning with dy-
namically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[185] Ju Xu και Zhanxing Zhu. Reinforced continual learning. Advances in Neural Information
Processing Systems, 31, 2018.

[186] Khurram Javed και Martha White. Meta-learning representations for continual learning.
Advances in neural information processing systems, 32, 2019.

[187] Brenden Lake και Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. International conference on machine learn-
ing, σελίδες 2873–2882. PMLR, 2018.

[188] Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harmde Vries
και Aaron Courville. Systematic generalization: What is required and can it be learned? arXiv
preprint arXiv:1811.12889, 2018.

[189] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin και Salah Rifai. Better mixing via deep
representations. International conference on machine learning, σελίδες 552–560. PMLR,
2013.

[190] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann και
Yann LeCun. Disentangling factors of variation in deep representation using adversarial
training. Advances in neural information processing systems, 29, 2016.

[191] Robert Desimone και John Duncan. Neural mechanisms of selective visual attention. Annual
review of neuroscience, 18(1):193–222, 1995.

[192] Louis Kirsch, Julius Kunze και David Barber. Modular networks: Learning to decompose
neural computation. Advances in neural information processing systems, 31, 2018.

[193] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu και Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[194] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand και Victor Lempitsky. Domain-adversarial training
of neural networks. The journal of machine learning research, 17(1):2096–2030, 2016.

[195] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto και
David Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718,
2018.

[196] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku
και Dustin Tran. Image transformer. International conference on machine learning, σελίδες
4055–4064. PMLR, 2018.

[197] Antony W Rix, John G Beerends, Michael P Hollier και Andries P Hekstra. Perceptual
evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone
networks and codecs. 2001 IEEE international conference on acoustics, speech, and signal
processing. Proceedings (Cat. No. 01CH37221), τόμος 2, σελίδες 749–752. IEEE, 2001.

[198] Joachim Thiemann, Nobutaka Ito και Emmanuel Vincent. The diverse environments multi-
channel acoustic noise database (demand): A database of multichannel environmental noise
recordings. Proceedings of Meetings on Acoustics ICA2013, τόμος 19, σελίδα 035081. Acous-
tical Society of America, 2013.

200

BIBLIOGRAPHY

[199] Rohit Girdhar και Deva Ramanan. CATER: A diagnostic dataset for Compositional Actions
and TEmporal Reasoning. arXiv preprint arXiv:1910.04744, 2019.

[200] HW Krohne, Neil J Smelser και PB Baltes. International encyclopedia of the social & behav-
ioral sciences, 2001.

[201] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive computation, 1:139–159,
2009.

[202] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai και Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. Advances in Neural Information Processing Sys-
tems 32, σελίδες 8024–8035. Curran Associates, Inc., 2019.

[203] Kishore Papineni, Salim Roukos, Todd Ward καιWei Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, σελίδες 311–318, 2002.

201

List of Abbreviations

AI Artificial Intelligence
ANML A Neuromodulated Meta-Learning algorithm
BERT Bidirectional Encoder Representations from Transformers
BLEU BiLingual Evaluation Understudy
BPE Byte-Pair Encoding
CAH Competitive Attention Heads
CATER Compositional Actions and TEmporal Reasoning
CF Catastrophic Forgetting
CE Cross-Entropy error function
CIFAR Canadian Institute For Advanced Research
CL Continual Learning
CNN Convolutional Neural Network
CoLA Corpus of Linguistic Acceptability
DL Deep Learning
DNS Deep Noise Suppression
ELMo Embeddings from Language Models
FFNN Feed-Forward Neural Network
GAN Generative Adversarial Network
GD Gradient Descent
GLLs Group Linear Layers
GLUE General Language Understanding Evaluation
GPT Generative Pre-Training
GWT Global Workspace Theory
GWD Global Workspace Dynamics
ICM Independence of Cause and Mechanism
iid independent and identically distributed
KMNIST Kuzushiji-MNIST
LM Language Modeling
LEOPARD (LEarning to generate sOftmax PARameters for Diverse classification
LOC Line Of Code
LR Linear Regression
LSA Latent Semantic Analysis
LSTM Long short-term memory
LRP Layer-wise Relevance Propagation
MAML Model-Agnostic Meta-Learning
MAP Maximum A Posteriori estimation
ML Machine Learning
MLE Maximum Likelihood Estimation
MLM Masked Language Modeling
MLP Multilayer Perceptron

203

List of Abbreviations

MNIST Modified National Institute of Standards and Technology
MNLI The Multi-Genre Natural Language Inference
ModAttn Modulated Attention
ModLin Modulated Linear Layer
MRPC The Microsoft Research Paraphrase Corpus
MSE Mean Square Error
NER Named Entity Recognition
NIs Neural Interpreters
NLI Natural Language Inference
NLG Natural Language Generation
NLP Natural Language Processing
NLU Natural Language Understanding
NLM Neural Language Modeling
NMT Neural Machine Translation
NN Neural Network
NNLM Neural Network Language Model
NSP Next Sentence Prediction
OML Online Aware Meta-Learning
OOD Out-Of-Distribution
PGMs Progressively Generated Matrices
PPL PerPLexity
QA Question Answering
QNLI Question-answering Natural Language Inference
QQP Quora Question Pairs
ReLU Rectified Linear Unit
RIMs Recurrent Independent Mechanisms
RNN Recurrent Neural Network
RoBERTa Robustly optimized BERT approach
RTE Recognizing Textual Entailment
SCM Structural Causal Model
SST-2 The Stanford Sentiment Treebank
STS-B Semantic Textual Similarity Benchmark
SQuAD Stanford Question Answering Dataset
SVHN Street View House Numbers Dataset
TIMs Transformers with competitive ensembles of Independent Mechanisms
WNLI Winograd Natural Language Inference

204

	Περίληψη
	Abstract
	Ευχαριστίες
	Κατάλογος Σχημάτων
	Κατάλογος Πινάκων
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Κίνητρα
	Συνεισφορές

	Το Μοντέλο englishenglishTransformer
	Το Μοντέλο englishenglishBERT

	Σχετική Βιβλιογραφία
	Προτεινόμενες Μετατροπές
	Ανταγωνιζόμενα Δίκτυα Πρόσθιας Τροφοδότησης
	Ανταγωνιζόμενες Κεφαλές Προσοχής

	Πειράματα
	Εφαρμογή στον Transformer
	Εφαρμογή στο englishenglishRoBERTa

	Συζήτηση και Πιθανές Λύσεις

	Introduction
	The Problem of Creating Truly Intelligent Agents With Machine Learning
	Research Contributions
	Thesis Outline

	Machine Learning and Neural Networks
	Introduction
	Machine Learning Types
	Machine Learning Concepts and Models
	Bayesian Decision Theory
	Discriminant Functions
	Maximum Likelihood Estimation
	Maximum a Posteriori Estimation
	Linear Regression
	Logistic Regression
	Other Ways of Performing Optimization
	Curse of Dimensionality

	Neural Networks
	Artificial Neurons
	Feed-Forward Neural Networks
	Backpropagation Algorithm
	Notes on Training Neural Networks
	Generalization
	Model Selection

	Convolutional Neural Networks
	Invariances
	Priors in Convolutional Neural Networks
	The Model
	Inspiration From Biology

	Recurrent Neural Networks
	The Model
	Teacher Forcing
	Deep RNNs
	Bidirectional RNNs
	Encoder-Decoder Architectures
	The Problem of Long-Term Dependencies

	Natural Language Processing
	Introduction
	Text Normalization
	Word Tokenization
	Byte-Pair Encoding
	Word Normalization
	Sentence Segmentation

	Language Models
	n-grams
	Evaluating Language Models

	Representing Words in NLP
	Sparse Embeddings
	Dense Embeddings
	Embedding Similarity
	Evaluating Vector Models

	Neural Language Models
	A Feed-Forward Neural Network As A Language Model
	Recurrent Neural Network As A Language Model
	Recurrent Neural Networks For Other NLP Tasks

	Neural Machine Translation with RNNs
	Attention
	Encoder-Decoder With Attention
	Decoding Using Beam-Search

	Transformer
	Attention in the Transformer Model
	The Model
	Results

	Neural Model Pre-training
	Contextual Embeddings
	Pre-training and Fine-Tuning Neural Models
	Pre-Trained Deep Bidirectional Transformers

	Overparameterization of the Heads of Transformer-based Models
	Scheduled DropHead
	DropHead
	Scheduler
	Experiments

	Modeling System 2 with Neural Networks
	Introduction
	Thinking In Different Speeds: System 1 And System 2
	Modularity In The Human Brain
	Introduction
	Forebrain
	Hindbrain
	Consciousness
	Attention

	Modularity In Neural Networks
	Modularity In CNNs Trained On Scene Classification
	Modularity In Transformers Trained On NMT
	Modularity In BERT Trained on NLM

	Global Workspace Theory
	Causality
	Structural Causal Models
	Statistical vs Causal Learning
	Interventions
	An Example of A Causal Model
	The Principle of Independent Mechanisms
	Covariate Shift
	Learning Independent Causal Mechanisms

	Conditional Computation
	Multi-task Learning
	Transfer Learning
	Freezing Layers
	Gating
	Conditional Computation

	Meta-Learning
	Motivating Meta-Learning
	Probabilistic View
	Meta-Learning Process Overview
	Few-Shot Learning
	Black-Box Adaptation
	Optimization-Based Approach
	Non-Parametric Methods
	Few-Shot Learning NLP Tasks
	Continual Learning
	Continual Learning Approaches
	Learning to Continually Learn

	Inductive Biases for Deep Learning of Higher-Level Cognition
	Inspirations From Cognitive Science
	Current Use of Inductive Biases
	Requirement for New Training Settings
	Creating A Framework to Study System 2
	Proposing Biases

	A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
	Correct Causal Models are Faster to Adapt
	Using Adaptation Speed as a Meta-Learning Objective
	Disentangling Causal Variables

	Recurrent Independent Mechanisms
	The Model
	Experiments

	Neural Interpreters
	The Model
	Module Collapse
	Experiments

	Transformers with Competitive Ensembles of Independent Mechanisms
	The Model
	Experiments

	Transformers with Competitive Attention Heads and FFNNs
	An Alternative Idea on the Dimensionality of Representations
	Advantages of High-Dimensional Representations
	A 10000-Dimensional Example
	Computing with High-dimensional Vectors

	Modeling High-Level Variables with Standard Neural Networks
	Proposed Methods
	Competitive FFNNs
	Competitive Attention Heads

	Experiments
	FAIRSEQ
	Application to the Transformer Model
	Application to A BERT-Based Model

	Discussion

	Conclusions
	Discussion
	Future Work

	Bibliography
	Bibliography
	List of Abbreviations

