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Hepiingm

Kadoe o Hopoywywd Avuinedxd Alxtua (ITAA) éyouv anoderyVel avd va mapdyouv Selypoto
vdPnAfc TotdTnToC, xaTdpepay Vo TeoBHEOLY UEYEAN TEOCOYT and TNV EVpEi EMLOTNUOVLXT xovdTnTa To!
tehevtalor 10 ypdvia. ‘Oung tedo@ota, ERQAVIcTNHOY aXOUT TUO LOYUEE XL IXAUVA TRy YN LOVTEN,
omwe to povtéha dudyvone (MA), mou anoteloly amelhy yioo v xuptapyla tov IIAA oty Topayw-
v cuvdeTixdy dedouévwy. To MA Beloxouv yeryopa yerion oe eQopuoYés Tng Gpdong UTOAOYLE TGOV
onwe: anodopuPonoinom exdvac, UTER-AVAAUGT] EIXOVAC, CNUACLOAOYLXT] TUNUATOTOMOY), ONUACIONOYIXT
oLVieon exovag xoddg Xal UETAPEAOT) ELXOVOG-CE-EXOVAL.

Ye auth ) dwtpBr) ecTidloure ENTd 0T UETAPEACT] ELXOVOG-OE-EXOVA XOL TO GUYXEXPLUEVA OTN|
YELROYWYTNON EXPEACEWY TOU TPOCMTOL (YVOOTA xoil ¢ avamapdo taon tpocmrov). H gutopealotxy
oVATOPdo TAOY TPOCKOTOL Untoeel, petagd dAAwY, va yenowworomdel yia Puyaywyols oxonols, ahhn-
hedpdoelc ovlp®nou-UToAoYLoTH Xt xvolueva oyédlo tpookhtou. Autdc o Touéag €yel npoceAxdael
ONUAVTIXY TTEOCOoY ) TOGO Amd TIC AXUONUAIXES 600 XalL Amd TIC PBLOUNYAVIXEC-EPEUVITIXES XOWOTNTESC Kol
el TopdEel EXTANXTIXG amoTehéouaTo Tou BlELElVOUY To EVPOS TNG EQeVpETXhG enelepyaociog edvag
xou TN Onutovpyloc mepieyopévou. Emmiéov, eufadivoupe ot olvieon oplholvVIwy TEooOR®Y, UL
TPOGQUTO AVABUOUEYY EQappoYh Twv MA mou amolopfBdvel eniong €éva eupd QAoUN UETAYEVECTERLV
XENoEWY, OTKC TG TNAESLHOHEPELS, HETAYADTTION TavIaY xat eixovixolg Bondolc. Il cuyxexpipéva:

o Ilpaypatonoiooue TELOGUATA OYETIXE UE TNV AVATOEIO TUOY) TEOCMTOL YE BAon Tic TAHEWE ove-
Eéheyutec ouvixee g Bdone dedouévwy AffectNet. Ileipdparta yio ) cbvdeor opthodvtog tpo-
OMTOU TpYHATOTOUNXAY OE T EAEYYOUEVES/EpyaoTNplaxés Tpodlarypapéc, ue Pdon 1o olvolo
dedopévwy MEAD, xau AauBdvovtag unddn wévo Tig axoroudies Bivieo nou anedvilay petomxés
6elc Tpoodnou.

e Ané boo yvwpeiloupe, 1 epyaocia pac oty AffectNet anotekel to mpwto oloxhnpwuévo cbvoro
nelpopdTwy ou diehydn oto mpoavapepdéy cUVORO Bedouévy GTO TAUCLO TNG AVATAUEAGTACNS
npoownou Bdoet MA.

o AZionooope mpoexmadeupéva povtéha CLIP ye otdyo v xoklteprn xadodrynon twv uroxeiye-
VOV SLABLXAOLOY CUVOLCUNUATIXAC YELRAYWYNONG, EUTVEOUEVOL Al Yol ETEXTEVOVTOC TO HOVTENO
DiffusionCLIP.

o Yuyxpivope ) uédodd pog pe Ty teheutaio AéEN tne teyvohoyiag 6cov agopd ITAA, Eenepviivtag
TO TEAELTAOL (C TEOC TNV TOLOTNTA EXOVAC ol TN BlaTAENON TNG TOWTOTNTAC TWV UTOXEUEVLVY
eOVILOUEVWY TIPOCMTWY, EMTUYYAVOVTOSC TUPGAANAAL AVTUYWOVIOTIXA UTOTEAEGUOTO OGOV aPOpd.
v axpifelo UETAPEAOTE TWY CUVALGUNUETWY.

o An6 600 yvwpllouye, mpotelvoupe TNV TedTy £yxuen pedodoloyio npocapuoyrc mou Poaocileton
OTNY AVAYVWoT TwV XELM®Y, oTo Thaiolo tne obvieone opholvioc npocwnou ye Movtéha Aov-
Bdvovoag Aidyvorng.

Aggeig KAewdid - avanopdotacy teocohnou, oOviesn olAolvVToS TpocHNou, WOVTEAA Bidyuong, Ppw-
TOPEAALOUOC, YELRAYOYNOT cuvanoUnudtey, xadodrynorn CLIP, avdyvwor yeuoy
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Abstract

As generative adversarial networks (GANs) have proven capable of generating high-quality samples,
they managed to draw a lot of attention in the last 10 years. But recently, even more potent generative
methods, like diffusion models (DMs) have emerged, posing a threat to the dominance of GANs in the
production of synthetic data. DMs are quickly finding use in both low-level and high-level vision tasks
because of their incredible generative capabilities, including but not limited to image denoising, image
super-resolution, semantic segmentation, semantic image synthesis and image-to-image translation.

In this thesis we explicitly focus on image-to-image translation and more specifically on facial
expression manipulation (also known as face reenactment) on the basis of “in-the-wild” images. Photo-
realistic face reenactment can be used for entertainment purposes, human-computer interactions, and
facial animations, among other things. This area has been attracting considerable attention both from
academic and industrial research communities and has produced stunning outcomes that broaden the
scope of inventive image editing, and content creation. Moreover we delve into talking face synthesis,
a newly emerging application of DMs that also enjoys a wide range of downstream uses, such as
teleconferencing, movie dubbing and virtual assistants. More specifically we:

e Conduct experiments relative to face reenactment on the basis of the fully uncontrolled, “in-the-
wild” settings of the AffectNet database. Experiments for talking face synthesis were performed
on more controlled/lab settings, on the basis of the MEAD dataset, and only considering video
sequences that depicted frontal face views.

e To the best of our knowledge, our work on AffectNet is the first fully-fledged set of experiments
conducted on the aforementioned dataset in the context of diffusion-based facial reenactment.

e We leveraged CLIP pre-trained models with the aim of better guiding the underlying emotional
manipulation processes. We drew inspiration from and extended the DiffusionCLIP framework.

e We compared our method with SOTA GAN-based models, surpassing the latter in terms of
image quality and subject identity preservation, while achieving competitive results regarding
emotion translation accuracy.

e To the best of our knowledge, we propose the first proper lip reading-based finetuning method-
ology, in the context of talking-face synthesis with Latent Diffusion Models.

Keywords - face reenactment, talking face synthesis, diffusion models, photorealism, emotion ma-
nipulation, CLIP guidance, lip reading
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Notation

N The set of natural numbers

R The set of real numbers

{0,1,..., K} The set of all integers between 0 and K

(K] Equivalent to {0,1,..., K — 1} or {1,..., K}, depending on the context
II1I1 Absolute-value (£1) norm

II]2 Euclidean (¢3) norm. Equivalent to |||

Il Lipschitz constant

| Floor function

m A scalar (real or integer)

m A row vector

m' Transpose of row vector m

m A multidimensional tensor. Equivalent to M

Mo, ....an The element at position (ay,...,a,) of a n-dimensional tensor M
M1s-an Equivalent to M, .. q,

M’ Transpose of 2D matrix M

diag(M) A square, diagonal matrix with diagonal entries given by M
det(M) The determinant of matrix M

tr(M) The trace of matrix M

Df The Jacobian of f

1 Identity matrix with dimensionality implied by context

I, An n x n identity matrix

\Y% Gradient vector

©) Element-wise (Hadamard) product

log x Natural logarithm of x. Equivalent to Inx

a(:) Element-wise sigmoid operator

softmax(-)  Row-wise softmax operator

[]F Equivalent to max(0, -)

Dxi(p|lq) Kullback—Leibler divergence of p from ¢

cos<x, y> Equivalent to HxxHTﬁ

f:A—DB A function f with domain A and range B

x~D Random variable z has distribution D

N (z;p,0%)  Gaussian distribution over z with mean p and variance o2
p(x) Probability distribution over x

E(x) Expected value of random variable z

xi



(Glossary—Acronyms

MA
ITAA
ATIMA
AEMA
MAA
IIKMC
AAO
DM
DDPM
DDIM
LDM
NCSN
VAE
HVAE
GAN
EBM
MCMC
ELBO
FID
KID
LPIPS
PSNR
SSIM
ODE
SDE
VE

VP
CLIP
ASR
CGF
MLP
CNN
evidence
face reenactment

talking face/head

viseme

Movtého/o Adyuone

Moporywynd (&) Avtimohxd(d) Aixtuo(o)
ArnodopuBonootpevo(a) Mibavotind (&) Movtého(a) Adyuone
ArnodopuBonolotpevo(a) Eupeoo(a) Movtého(a) Adyvone
Movtého(a) Aavddvoucos Atdyuone

IMpocapuoyh Kadodnyoduevn and Movtéia CLIP
Avtépartn Avayvopeion Owhiog

Diffusion Model

Denoising Diffusion Probabilistic Model(s)

Denoising Diffusion Implicit Model(s)

Latent Diffusion Model(s)

Noise Conditional Score Network

Variational Autoencoder

Hierarchical Variational Autoencoder

Generative Adversarial Network

Energy-Based Model

Markov Chain Monte Carlo

Evidence Lower Bound

Fréchet inception distance

Kernel Inception Distance

Learned Perceptual Image Patch Similarity

Peak Signal-to-Noise Ratio

Structural Similarity Measure Index

Ordinary Differential Equation

Stochastic Differential Equation

Variance Exploding

Variance Preserving

Contrastive Language-Image Pre-training

Automatic Speech Recognition

CLIP-guided Finetuning

Multi-layer Perceptron

Convolutional Neural Network

The log-likelihood of the observed data

To transfer a target expression and pose to a source face,
while preserving the identity /appearance of the latter

A person, shown only from the shoulders up, who speaks without
the use of any illustrative material

A viseme represents the position of the face and mouth when saying a word;
it is the visual equivalent of a phoneme

xii



Extetopevn Ilepiindn ota
EANN VX

A  Ewaywyn

Ta Borhd maparywyind povtéla anoteroly éva and To To EVOLUPEROVTO UTOAOYLO TIXA EpYaAElal OYjue-
pa, divovtag Inom axdun o oty avdponivy egevpeTixotnta.  Kadde to Hoaporywyd Avtimohixd
Abxtva (TTAA) éyouv anoderydel eavd va Topdyouy delypota UPNAAC TOLOTNTOC, XATAPEPOY VO TEO-
Bri€ouv peydhn mpocoyy| ta teheutala 10 ypdvia. ‘Ouwg mpdogarta, eupavicTnxay axdun mo LoyUeEs
napaywyée pédodol udinone, Onwe To HOVTENN BLdYUOTG AMOTEADVTAG ATELAT] Ylot TNV Xuplapyia Twv
ITAA oty mapaywyr cuvIeTiXwY SeBOUEVLY.

Adyw g mo cuvenolg xon e0xohng exmaldeuotic Toug cuyxpttixd pe to ITAA xou twv uPnioteene
TOLOTNTOG SELYUATWY TOL TapdyovTon, Ta LOVTERX Sldyuong avépyovial Yeryopa o dnuotixétnTa. Autd
o povtéha ebvar oe Véom va Eenepdoouy oplopéves Yvwo téc elheldelc twv ITAA, onwe 1 katdppevon Aer-
TOUPYIaG, TO XOOTN TNE AVTAYWVIO TIXAS Hddnomne xou 1 amotuyia oUyxhong. Xe avtideon pe ta IIAA, ta
omola pordalvouv var ovaxtoly Ta apytxd dedouéva and ta YopuPBdr), pohdvovtag To dedouéva exnaideu-
ong pe VépuPo Gauss, To LOVTEA BLEYLONE XENOLOTOLOVY ULol BLaPopeeTXY) TEOTEYYLOY OGOV aPopd TNV
exnaideuor. Autd to wovtéha Beédnxe eniong dtL elvon xatdAAnAa and Ty dnodn TG ENEXTACUOTNTAS
X0l TOU TOPUAANMOMOU, YEYOVOS ToU aLEAVEL TNV EAXUC TXOTNTA Toug. Emmiéov, eneidy] to Yeyéo e
exmoudeuTixg Toug dadixactog etvan 1 SLoplwon Tuyaiwy TUEATOCEWY TOL EYVaY GTAL 0Py XS BeBoUE VA,
pordaivouy yia xortavour| Tne omolog Tor delyparto otdlouy ToAD UE Ta TPy UOTIX, ETOUEVKS Tol delypaTol
7oL dNLoupYoUVTOL UTtopel va elvan, eV TEREL, APXETA PEOMOTIXA. AdYW AUTOV TWV YOEAXTNELO TIXGDY, T
povTéla dudyvong elyay onpovtind avtixtumo xan amoteholv TN teheutala AEEN TN teyvohoylag oTny
TAUPAYWYY| EXOVWY, XATUPERVOVTAS EXTANXTING AmOTENECUATAL.

To povtéha dudyvone Peloxouy yeryopa yeHor o€ TOMIATAES EQUPUOYES AOYW TV ATICTEVTWY ON-

HOLEYIXMVY Toug BuvatoThtwy, 6mwe evdetind 1 anodopuBonoinon ewdvag [65, |, n Cwypapind
[11], n vrep-avdhuon edvag [I1, 100],  onuactoloyixh tunuatonoinon 9, 56, 175], n onpacioloyi
olvdeon exdvae [120] xou 1 petdppact ewmdvac-oe-exdvo [19, 70, , 181]. Aev anotehel éxnhnin,
6Tt UTeEe Wt CLVEY S AVENOT GTOV PG TWV EPELVNTIXWY SNUOCIEUCERY TOL YiVOVToL GE AUTOV TOV
Topéa LETE TNV oMoy Tnt| avokdALN Twv TdavoTindy Lovtédemy Sidyuone [05] évavtt Tne apyxhc WBéac
e povelomoinone didyuone [110], e anotéheopa véa cuvapnaoTxd povtéha avadvovtar xdie pépa.
ISwitepo pe oo GLIDE [110], DALL-E 2 [122], Imagen [131] xou Stable [125] xou to povtéha tou enétpe-

Qoav TN Snuoupyio xeyévou-oe-etdva LPNAAC ToLdTNTAC, 1) wovielonolnon e Bdon T BidyuoT YvopeLoe
onpoavTixd evidouoilooud ota Péoa xovomvixig dixtiwong. Ot teyvixég dnulovpyloc xelwévou-oe-Bivieo
xou xeévou-oe-3A, énwe to Imagen Video [07], Make-A-Video [115], xou DreamFusion [ 18] ot onto-
lec mopdyouy Bivieo xou 3A avamapac TAoELS ToL Qalvovtol anic TELTH PEAALC TIXES, OMOTENOVY TEOGYUTO
onuelo oulmong Yopw and ta wovtéha ddyvone. To Xy. A.1 eneényel empeinuéva napadelypota Tou
avTiotolyolv ot oploéveg and Tic mpoavapepeioes dicpyaoiec xou povtéha.

H tpéyouvoa Slotpi) meploTeEPeTal YORW OmO TN YERAYWYNOTN TNG EXPEAUCNC TOU TPOCKOTOU OF Ei-
x6veg xau Bivteo. I o oxond autd, Yo tpoonadicovye va aElOTOGOVUE TNV EXPEAC TIXT BOVUUY TLV
HOVTEAWY BLdyuong, ta omola €youv HON eMBEEEL CUVIPTUCTIXY TOLOTNHTA TN cUVUETH Yoviehonolnon
EXOVWY, ARG e€axoAou o0V Vol TUpAUUEVOUY €va XAmwe VEo xan avelepedvnto wépog tng Slodéotuncg Pi-
Bhoypaploc. XTIC EMEPYOUEVES TAUPAYEAPOUE aUTOU TOU ELAY®YXOL xegalalov, Yo culnThooupe ev
ouvtoyia Tic yedodoloyieg yewpoydYNone tpoodhtov, arld Yo efetdoovye enione tic teyvohoyiec deep-
fake yia TV evodlay?| Tpoodmou, xadde xon oV oPERT ot ATELAES TTOU TEOXVUTTOLY K¢ ETaxdiouta
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Image synthesis Image synthesis Text-to-Video
DDPM (2020, June) ADM (2021, May)

Make-a-Video Imagen video
(2022, Sept) (2022, Oct)

e

Text-to-Image Text-to-Image
Imagen (2021, Oct) DALL-E 2 (2022, Apr)

dno v oyut 3urinod 23fJoD

A dog wearing a superhero cape flving through the sky

-
A blue jay standing  Teddy bears swimming A shiba inu wearing a A corgi’s head depicted
on alarge basket of  at the Olympics 400m beret and black as an explosion of a
rainbow macarons Butterfly event turtleneck nebula Video frames Video frames

Exhuno A.l: Empelnuéva napadelypata and cdvieon exxdvag, xelpevo-oe-eixdva xan xelpevo-oe-Bivieo Baciouéva oe
[33, 65, 67, 122, 145]). TInyh: [164].

NS EQAPUOYTE QUTAHS NG Te)Voloyiag.

A.1 Deepfakes

To Deepfakes anoteholv uneppeahiotind Bivieo mou éxouv tpomonoimndel Pmeland yio vor avomopiotoly
droua ToU AEVE Xou XEVOUV TRdyUaTo ToL SeV €xouv cuuBEl ToTé oty TeaypaTXdTNTA. XeNnolponololy
teyvixéc Badde pddnone ue otoyo v mopaywyh «pedtixwvy (fake) eédvov. Iho ouyxexpuéva, ol
uédodot deepfake yenoionololy veupwvixd dixtua yior vor UGouV VoL avamapdyouy TIS EXPEAOCELS TOU
TPOCWTOV, TIC LOLUTEROTNTES, TOV TEOTO OWALNG Xa BlaXLUAVOELS AUTE avahDOVTOC TERAOTIEG TOCHTNTES
Beryudtwy dedouévwy. Ilpoxewévou va exmondeutel éva obotnua Bodide udinong yio evarloy ) TeocOTwY
(face swapping), n dwdixaocia nepthaufBdvel T yprion vhxol Bivieo and dbo dtopo. Me dhha Aéyia,
ta Deepfakes, ypnowwonolodv teyvohoyio yapTtoypdgnong TEocMTOL xal TEYVNTH VONUOCUVY Yio Vo
AVTLXATAGTHOOLY TO TPOOWTO £VOS ATOUOL GE €va BiVieo Ye To TpdoWNo eVoe dAlou atouou. Mol to
2017, 6tav évag yerotng tou Reddit dnpoocievoe nyoypaproec Sldonuemy avipdrwy e un XOMIXEUTIXG
oeovohixd mepiBdhhovta, o deepfakes dpytooy va xepdilouv Ty Tpocoyn Tou xowou.

Ye yvevixéc ypouuée, ta deepfakes otoyelouv 1otdTONOUE XOWWVIXTE BixTOWONS, dTou oL Yewplec
CUVLUOGLAS, Ol PAUES Yol 1) TEATANEOPOENOY UopolV va e€amhwitoly yeryopa, eneldn ol ypHoteq Te-
tvouv vo axoloudoly to «xomddly. Ev e petald, n tpéyovoa «mhnpogoptaxt| amoxdiudmny evioppivel
Toug avipdroug Vo eumiotebovTal Hévo TAneogopie mou emBeoutivouy Tig Tpolndpyouvoeg nenordfoels
TOUGC X0l TPOEPYOVTOL AMO TOL XOWWWIXE TOUg BlxTua, OTWS 1 owoYével, ol oTevol glhol ¥ oL cuyye-
velg. @Unvd Pedtixa 1 Bivieo youninig moloTNTOC Ye EAEYIOTA TPOTOTONUEVO TEAYHATIXG TEQLEYOUEVO,
elvon 101 Bidyuta AoYw TpocBaciudtnTag o UV TeXvoroyind eEomAloUs, 6TKS wovades enelepyaoiog
yoapixav (GPUs). Tndpyet évag auavouevos aprduds hoylopxol avorytol xddxo tou datideton yia
T dnulovpyia peaioTixol, uPnire mowdtntog deepfake LUAxoU, pe anotéheopa tnv cuveyh) adEnon tne
napanAnpopdenong Yéow authg e texvoroylog. To Xy. A.2 napovoidlel éva ypdgnuo eumotooivng
TANPoYopLLY oYeTd ue To deepfakes.

Egpopuoyég

O xwvnuatoypedpog, T eEXTAdEUTIXG UEC, oL Pn@loxéc eTxovwyvieg, Ta Prvteo-mouy vidia, 1 Puyarywyia,
o PEoa XOWKVIXAG BIXTOWOoTNE, N Lyetovouixy) Teplloddn, 1 EMOTAUN TV LALXGY XaL Tohhol oixovouuxol
Topelc, 6Tmwe To NAEXTEOVIXG eundplo xon 1) uoda, elvar pévo uepinéc and Tic Blounyaviee mouv duvnuxd
enw@erolvTaL and TNy teyvoloyia deepfake.

ITpctov, 1 teyvohoyia deepfake €yel moANE TheovexThuaTa Yot TV xwvnuoatoypapuer Blounyovio. T
Topdderyua, umopel va yenowornondel yio TNV evnuépwon 1) TEOTOTOMOT 0pLOHEVWY XURE EVOC QUAY,
TEAYUO TTOU EAXYLIC TOTIOLEL TNV 0VAYXY) EMOVOANTITIXWY YUPLOUATWY OE OXNVES WO ETERYOUEVNS TOUVIOG.
Evolhoxtind, umopel vo yenowwomoindel yior T dnutoupyior TEXVATWOV QWVOY YLol XAAMTEYVEC TOU UTopE(

Xiv



A. EIXATQIH

Deepfake Information Trust Chart

I. Hoax Il. Propaganda

Misdirection
Generated discourse to amplify
events / facts, ...

Political Warfare:

Tone change of articles, content
loosely based on facts, conspiracy...
Corruption:

Increased xenophobia, ...

Tampering of Evidence:
Medical, forensic, court, ...

Trickery via spoofing, falsifying audit
records, generating artwork, ...

Harming Credibility:
Revenge porn, political sabotage via
generated videos or articles, ...

I1l. Entertainment V. Trusted

Authentic Content:
Credible Multimedia / Data

1
1
1
1
i
Scams & Fraud: d
1
1
1
1
1
1
1
1
1

Altering Published Movies:
Comedy, satire, ...

Intention to mislead

Generating actors in movies, ...

Art & Demonstration:
Animating dead characters, generated
portraits, technology demos, ...

Editing & Special Effects: E

Truth

ExAuo A.2: 'Eva ypdgnua euniotocidvng tAnpogoptdv oxetixd pe to deepfakes. IIny#A: [105].

VoL €yaoay TIC Bnég Toug AdYw xdmotag actévelng. Ou xivnuotoypapiotéc Yo unopoly var avamapdyouy
euPAnpaTInég oTYHES TOUVLMY, Vo avamTOoo0UY VEES TG UE EpUNVEUTES IOV €youv TeVdveL, Vo epap-
uolouv eldixd epé xan mpwrtomoplaxy enelepyooia Tpocwnou 6to post-production xou vo yetatpénouv
gpaotTeEXVIXG UAxG ot xopdd épya. Auth 1 teyvoloyio emitpénel enlong v autdpotn xou pEaMOTIXT
HETOYADTTION QWA Yo Towvieg o omoladhmote YAwooo, BeATidvovTag Tny eumeipla TpoBoAfc yio ia-
(POPETIXG AXEOUTAPLAL TOUVLAY %otk EXTUBELTXWY Uéowy. To yAwooixd eundda Eenepdotnpoy and Lo
nayxoopla exotpatein evaodnronomong v ™y ehovoaior to 2019 pe tov David Beckham, yden oe
ot Sdatinr) daprilon mou yenowonowoloe Teyvohoyio ahhayhc Pevic/oTTiXAc Yl VoL TOV XEVEL Vo
gatvetar dlyAwoocog. Auto unogel va napopolactel pe to mwg N teyvohoyia deepfake unopel vor Bekti-
Goel Ty ontiny) emopr] xou vor xortopplel Tot YAwoouxd eunddia xatd tn didpxetla wiog TNAEddoxedNg,
uetoppedlovtog AEels eved TauTOYEova OANALEL TIC XIVACELS TWV YELAMY Ol TOL TROGKTOL.

H teyvohoyia deepfake emtpénel ¢megroxoic owaoleg, é€unvoug Bondole e peallotind fyo, eupdvion
xon auENpévn TnAenapousia oe BladeTuaxd Touy vidio xon TepBdihovTa etxovixnc cuvouthiag. Autod €xel
WS AMOTEAEOUA XoA0TEPT ETLXOWVWVIA GTO BladixTuOo xan dlampocwmixés ariniemdpdoec. H teyvoloyio
umopel eniong va elvon enweeknc oTov xowmvixd xou tateixd touéa. To deepfakes pnopel vo Bondrcouv
éva ayannuévo mpdowno mou meviel va anoyoupetioel Evay anodovovta Glho «pépvovtdc Tov Eavd ot
Loy pe dmeroxd teémo. Autd uropel va Bondnoel Toug avipednous vo avTiueTwricouvy Tov Yévato evog
AYATNUEVOU TOUG TROCMTOU anoTeEAEcpaTIXOTER. EminAéov, n teyvoloyia unopel vo yenoiponomdel yia
™Y PNnelo oavaxoTaorEUT] TOU GXpOoU EVOS aXpOTNEIACHEVOL aTOUoU 1 yiot var fondfoet To Slep@uiixd
dTopa Vo ToUTIETOUY XAhOTEEA PE TO PUAO TOU TEOTLOUY. Axdun xou oL eVAAIXEC TOU TdoY oLV ond
Altoyduep punopolv vo enw@eAndolyv and Ny auThy TN TEXVohoYlor IAMNAeTUdpdVTOC Ue éva VEOTERO
npbowTo mou unopel va Yugolvton xahitepo. Ilpoxewwévou va emtoyuviel 1 avdmntun véwy uAxOY
o LTEDY VEPATELDY, Ol EPELVNTES €xouy entione diepeuviioet T ypfon twv ITAA v v aviyveuon
AVLMAALLY OTIC axtiveg X.

Emniéov, ol etoupeieg Siovopunic teyvoloylag evdlapépovtar Yo T SuvatdTnta eapuoyic Twv deep-
fake yio TV emwvuplo, enedn €xel T SUVOTOTNTO Vo AANGEEL GNUAVTIXG TO NAEXTEOVIXG EUTOPLO XL TN
dtapiuior. Ta deepfakes emitpénouy enlong ) dnuiovpyla UTEPTEPOCWTLXOY TEPLEYOUEVOL O Urtopel Vo
HETATEETEL TOUC Yenotec ot povtéha. [ mopddelypa, 1 teyvohoyia emitpénel Tic eovixéc eapThoELlS,
GOTE 0L YpHOTES VoL UTopolY Vo douv Twe Yo Toug gaiveton piar o ToA/polyo T XEvouy yio oryopd xou
VoL UToEo0V VoL Topdy oUY TeoCapUooUéves dlagnuioelg wodag ye Bdon tov Yeaty|, TNy dpo TS NUéEac xa
oV xoupd.
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Xg and/or Xy  Detect & Crop Intermediate Representation Generation Blending

’c?";\
\&s/ | P

Landmarks/ Boundaries/ 3DMM

// il \ key points Skeleton ~ Parameters
UV Map Depth Map
Driver and/or 3 . '
Identify [Eprocessing Postprocessing

ExAune A.3: Evoc tumixde aywyoc enelepyacioc avanapdotacne evéc cucsthpatoc deepfake, 6mouv cuvhdng exteheiton
wévo éva uTochVoro TV Brudtny Tou arewxoviCovtor. TInyA: [105].

ITvOavéc Anelhécg

Ta deepfakes amoteholyv cofopt| ancthf yior TV xowwvia, T0 TOATIXG cUCTHHUA oL TNV OLXOVOUld
enedr| o) aoxoly Tieon 6TOUC INUOCLOYPAPOUC TOL TPOSTUOUY Va Bloxpivouy PETAZ) TEAYHATIXMY X0l
Pevtixwv eldfoeny, B) Yétouv oe xivduvo v edvixt| aopdhiela ddidovtos mpomorydvda xa ovaxate-
0OVTOG T EXAOYES, Y) UTOVOPEDOLY TNV EUTIGTOOUVY TOL X0oWoU ot xUBepVNTIXéS TANpopopiec xou J)
eyelpouv avnouylec 1600 o dToua 600 XaL GE EMLYELPNOELS Yol TNV EVPVTEET) ACPIAELN GTOV XUPBEEVOYDEO.

Apyixd, etvan ToAD Tdavd 0 Topéag TWV UECKY EVIUERKGTE VoL AVTLIETWOTICEL £Val GNUOVTIXG TEOBATU
o€ oyéon Ye TNV epmotoalvn Ty nedativ/yenotoy. Ta deepfakes elvon mo emxivbuvo amd tar ouuPo-
wxd fake news xodo¢ elvon mo SGoxolo va evtomioToly, Ue anoTéAeoua 1 SLEIBOCT| ToRATANEOPOETONS.
T mapdideryya, 1 teyvoroyio auth emtpénet t dnuiovpyia Bivieo-ewdroewy Tou gatvovton aindvd aAAd
oTnV mpayaTieotnTo Bev elva, Vétovtog oe x(ivouvo Ty aflomio Tio TV SNUOCLOYEEPWY Xal TWV UECELY
evnuépwong yevixdtepa. Enlong, 1 andxtnon npdofoone ot Bivieo mou tpufriytnxe and «autdnTny udp-
TUPA EVOC TIEPLO TATLXOU UTOPEL Vo BOOEL GE EVOLY ELBNOEOYRUPIXO ORYOUVIOUO OVTOY WVLO TIXG TASOVEXTNUAL,
ahhd o uivBuvoc avédveTon edv 1) TPOCPEPOUEVY) Touvia exEL OVTLE Taparondet.

H xowdtnta twv puotixdv unneeouodv avnouyet yio to deepfakes mou duvnuxd yenoulonololvton yio
VO UTOVOUEUCOUY TROEXAOYIXES EXCTPATELEC xou Var Yécouy ot xivduvo v edvixr acpdheta dadidovTag
nohtt| mpomarydvda. Ot unneeaieg TAnpogopidy twv HITA éyouv cuyvd exdooel tpoeldonoioelg oye-
wxd ye tov xivduvo Eévwv mapeufdoewy oty Apepixavixy oAty Wiaitepa evodel exhoydy. XTtoug
ONUEELVOUE TOAEUOUS TORATANEOPOENONG, 1) EloaYwYT| Aé&ewy ot éva dnuogiiéc Bivieo unopel va amo-
teléoel éva loyupd OTho, emeldr] umopel ebxola Vo emnpedoel T YVoOUN Twv Pneo@dpwy. Evo dedtixo
Bivteo evig mohitixol mou yenotponolel patolo Tixés cuxoavties 1 dwpodoxia, évay mpoedeind urodyipLo
mou oohoyel éva EyxAnuo, ewdomotel éva dAho €9vog yio emxeluevo TdAepo, Evay xuPBepvNTnd o€LeUo-
ToUyo mou gaivetar va BploxeTon o emo@aiy 9€om, va oporoyel oyEdlo cuveUosiag, 1 CTEATUWTES TOU
Boho@ovoLY opdyoug oto e€wTepnd, Yo unopodoay va mapoy Yoy and wa exdeiny| utnpeecio TAnpogo-
ptwv. Eved tétoleg «@tiaytégy Touvieg midavdtata Yo TupodoTolcay avaTopoyEC xou dloxoTég Tiavidv
exhoy®yv, Eéva €0vn unopel va xatadhEouv va exteholy eEwtepn) Toltixy| Baciopévn oe pudonhaoies,
OBNYWVTOG OXOUY X0 OTO EECTIOGUO TOMEUOU.

‘Evoc dAhog xivduvog mou mpoxaheiton and tnv teyvoloyia deepfake eivon {ntrpata mou oyetilovron
HE TNV ao@dieia otov xuPepvoypo. O eTtoupixds xOopog Exel NdN EXPEACEL EVOLUPEPOY VO UTEQUOTIL-
otel Tov eauTd Tou and Loyevelc andteg, eneldy| to deepfakes Yo umopoloav vo yenowonoindoly yia T
YELROYWYNOT TOU YENUOTIoTNEIOL X0 TNG oyOpdS YEVIXG, Yo Topdderyua, extdétovtag évay dieuvdivovta
GUUPBOUNO YENOWOTIOLWVTIS PUAETIXES 1) EUPUAEC CUXOPAVTIES, AVOXOVWVOVTAC Wit PelTiNn cuYYOVEVDT,
BLOYHOVOVTOS OOVOIXES AmWAELES, XNpuln TTWyeVoNE 1) odoloyia evoc évoyou eyxifuatog. «Deep-
faked» oavoxowwoelc VEmV TpoldvTwy 1) Topvoyeapixd LAXS Gua urnopoloay eniong va yenoidonoindody
yio vor BAdhouy T prun wog etonpeiag, vo ametAoouy R axduo xou vor exBldcouy tny exdotote dolxno.
Emmkéov, n ev Aoyw teyvoroyio xoahotd duvatr Ty TAACTOTEOCKTIA EVOC GTEAEYOUC OE TEAYHATIXG
XEOVO PECL PNPLaXOY PECWY, OTWE {NTWVTIG and €vay epYalOUEVO VO TORAOYEL EMELYOVIWS YEYUAUTO
N vo anoxahOer evaiodntec mhnpogopiec. Téhog, Shvaton vo dnpoveyndel wio Pedtien TavtdTnTL XN
oe nyoypoprioes Lwvtavic pofc (live-stream), var ahhoytel To Tpdowmno evic evihixa o€ TEGoKWTO £VHS
veopol Toudlol, yeyovde mou eyelpel avnouyies yio to o Yo pnopovoay ol touddpihol/tandepactés va
YENOWOTOLACOUY TNV eV AéYw TeYVOhoYia.
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A.2 Avarapdotaor Ilpoownou

‘Evog tOnog deepfake mou umopel v evioy0oeL GNUAvVTIXd TOV avTiXTUTO QUTHS TN Te)YVohoyiag xou
VoL SLleuxohdveL TNV evonudtwoy| tne ot Brounyoavie VEX elvor 1 Suvatdtnta andxtnong onuactoloyxol
ehéyyov oto cuvaroUpate Tou expedlovial U€ow TWV eExPEdoeny Tou tpocknou. H onuacta autold
Tou eldoug YELRPAYOYNONG ATOBEXVOETOL IBLUTERMC YENOULY XOTA TN DLIEXELN TWV YUPLOUETWY TOUVLDY,
%S, TOPd TNV TEOYPAUUUTIOUEVY QUCT] TWV TROPORIXMY AEEEWY, 1) ATOXTNOT] TOU OTOUTOVUEVOU GUVAL-
oufpatog Tou ndomolol anoutel ouyvd Toriég npoonddeiec. H adhayn tne anddoong Tou npocinou Yo
UTopOVGE VoL YIVEL EUXONOL GE UETATOROY WYLXO GTADLO, TEOCPEPOVTAS Hla Loy Le Abom oty enedepyoaoio
ouvaoUNUETLY.

H ovomapdotaoy meoo®nou YETATEENEL TO UTOXEIUEVO TEOCWTO CE UUPLOVETO, TUPEYOVTAUS GTOUG
emtdéuevoug tov yeyalitepo Badud ehevdeplag date €xouv tov avtixtumo mou Yéhouv. Ilpénel va emi-
oNudvouUe GTL 1) AVATOPJO TUOY) TPOGWTOL UTHEYE TteLy Yivouv xotvd to deepfakes. To 2003, ol epeuvntég
HETUUOPPOCUY LOVTENA TRIODLACTUTWY GUpWHEVKDY XeQohodv [L1]. To 2005, anodelydnxe twe autd eivou
epxtd yoplc éva tplodidotato povtého [20], uéow mupotdpewons HE avtioToyes apdpoles LYés [H3].
Apyobtepa, anodelydnxe mwe unopoly va yenowonondolv Tplodldo TaTo TUPUUETELXS LOVTEAD YioL TNV
enitevdn LPNAAC TOLOTNTAUC UMOTEAEGUATWY XA OE TEAYHATIXG Ypovo We aviyveuon Badoug xau cuufBa-
Tixée dpepee [157, , . Aveldptnta and autd, otg pépec pae, ol tpooeyyloec mov Bacilovion
ot Bohd udinom ebvan yvwotéc we o xuplapyoc tponoc dnutovpyiac akndogpavoic nepieyouévou. ‘Evag
TUTUXOG X0 YEVIXOC oy wy g eneepyaoiog avanapdoTaone Teoohrou (afvetal oto Xy. A.3.

IMo toug oxomole aUTAS TN ELCAYWYIXAC EMOXOTNONG, 1) TEWTN evotTnTa Vo emixevtpwiel oTig o
yvwotée pedodouc: Face2Face [157] xou NeuralTextures [158], ta onola avtixorhotodv tny éxgpact) Tou
TPOOMTOU EVOC ATOPOU OE Eva BIVIED UE TNV EXPEACT] TOU TPOoMTOU EVOS dhhou atduou (emiong oe éva
Bivteo). Apyixd, n e vind Ypapmy utoloyio T Yoot we Face2Face Swrtnpoloe v tawtdtnta tou
ATOUOV-OTOY OV, EVE UETEPERE TO cuvaloUnua and éva Bivieo mnyrg ot éva Bivteo-otoyo. H emhoyt| Tou
Booixol xapé avapopds ywdtav yeipoxivita. o tnv mapoxorodinon tou cuvaichiuatog oo utdhoLta
x0pé, yenotdomominxay ta TpTa xopé Tou exdo tote Blvteo yio T dnuloupyio plog Tpocwevic THTHTN-
T Tpootnov (3A povtého). Téhog, dnuoveydnxay dedtxa Bivieo e v egappoyy 76 cuVTEAESTOY
avdpeEne oyfuotoc (blendshape) mou anotehoboay Tic TapouéTpous Exppaons TNYNHc xdde xapé oTo
Bivteo-otoy0. Apyotepa, eworydn uio véa otpatnynh) exudinone Baciopévn oto NeuralTextures xou
ot Bdon dedouévwyv FaceForensics++-. H npoavagepielon teyvin yadaivel o veupwvixy| avomapdo to-
o™ VPNC TOU ATOPOV-GTOY 0V, GUUTEPLAUBAVOUEVOL EVOC SIXTUOL amdBOCTG, XENOULOTOLWVTAS To dEYIXG.
dedoyéva Bivteo.

Cevixd, 1 avdntuén twv ITAA [55] éyet dieyelpel éva Sievpuvbpevo odua €peuvag xal UEAETNG GTOV
TOUER TNG YElpayWyNnong ewdvwy. Otav 1 cbvieon pag exodvog amoutelton vo npaypartonowmdel Bdoet
XATOLC GANTG ELXOVAS, OTY GUVTELTTIXT TAELOVOTNTA TWV EpYWY, YENOWOTOLETOL XATOLS Lop®NC DECUEL-
pévn yewftewa [71]. Méow tng évvolag tne xuxhiic ouvénetog [187], xadiototon duvath 1 uetdgpoon
EXOVOV UETOEY DLUPOPETINWY TOPEWY BLATNEMVTOG TOPIAANAAL TO TERIEYOUEVO TNG EXAC TOTE UPYIXAC El-
x6vac. H eqopuoyy| tétolwy uetddny ot EiOVEC TEOCHTKY XATEGTNOE duVATH TNV AAAXYY| OploPEVWY
YUEAXTNELO TIXWY TOU TEOGWTOU, OTWE T0 YUAO Xl TO Yp®ua Twv Yooy, H iavdtnto adloyhic twv
CLVAUCUNUETWY TOU TEOCKOTOV GE EOVES UeTapEdlovTac Ta GOUPWYA UE [Lo DEBOUEVY ONUACIONOYIXT
etxéta (my. yopd, Yupde, ONPn, x.An.) vhonofdnxe emtuyde oo TAoiol Tou poviélou StarGAN
[25]. Emnhéov, TOAAES YVOOTES TEYVIXES YEIPIOUOU Exppoone Bdoel euxdvag xou pe apyttextovix ITAA,
elvon otz StarGAN v2 [26], GANimation [120], GANmut [30], ExprGAN [31], FACEGAN [162] %o
ICface [163]. Mepixéc and autéc eZétacay EVUANIXTIXES XPUPES OVATUPAUC TACELS Yol T1 HOVIEAOTOLN-
o1 tou avidpmnvou cuvaioUnuotixol gdopatoc. o napdderyua, to ExprGAN yenowomnotel etxéteg
GUVEY WY CUVALCUNUATOV TOU TERLYRAPOUY TNV €VTaon TwV ANEXOVILOUEVKY EXPRACEWY TOU TEOCMTOU,
evdd oo [94], yenowwonodnxe o 2A ydpoc oVdévouc-diéyepone (valence-arousal) [103]. TTo npboparta,
10 GANmut npdteive évay Tp6TO amOXTNONE EVOS SLOOLAC TUTOU SEGUEVUEVOU EQUNVEDCLIOU GUG THUATOS
ETUXETOV axdun xau 6ty yenolponoieiton éva ghvolo dedouévwy mou yopoxtnelleTton Ue amoXAEls TIXd
XATNYOPWES ETIXETES Booin®dY cUVALCUNUATOV.

B Movtéla Aldyvong

Y10 mapdv tuiua tne nepidndne Yo npoomadnooupe vo Yécouue Tic Yewpnuixéc Bdoelc oyeTind Ye
o Movtéha Audyuone (MA) oto nhaiolo tne napayoynhc HovieAoToinone, €Tl MoTe vo teplypddoupe

xvii



EKTETAMENH IIEPIAHVH Y¥TA EAAHNIKA

pe oxplfela TIC apYITEXTOVIXEC Tou Yo AMOTEAEGOUV OTY CLVEYELL TOoug Bopxols Adouc Twv By
MG UTOAOYIOTIXWY poVTEAWY. To povtéla didyuong avixouv otn xAdon tov Badldy TapaymYIXoy
HOVTENY ToU Ttopdryouy delypata avTioTpépovag pio Swadixaoia dagpdopdc/YopuBonoinone. To eninedo
YoplPou Tumixd uTOdNAWVETOL UE Eva Yeovixd Belxtn ¢, émou t = 0 avtiotouyel oe xodopég xon t = 1
oe mApwe VYopuBwodelg eixdveg. H Saduxacio Sidyuong unopel va ebvon Soxpith 1 ouveyhc. Ot BVo
yevixée xatnyopiec povtéhwy didyvong ebvon to Score-Based 119, , 153] %o ot Anodopufonototpeva
IIavotind Movtéha Audyuone (AIIMA) [65, 146]. Eto mhaioto authc e Yerétne, Ya emixevipwdolye
xuplwe ot teleutalo.

B.1 AroYopufonotobpeva ITtdavotind Moviéla Awdyvong

To AIIMA prnopoldv va Yewpndoly we nopaihayé evoe MapxoBiavol Iepapyixod Autoxwdixornomnty
Tapohhoryic ToL GUUHOEPHVOVTAL UE TOUS oxdAovdoug TEELC TEpLoploolq:

o H dudotatindtnTa TN Aavddvoucas avamapdoTaonS TUELEeL UE aUTY TV DEBOUEVLV.

o H xotavour; Tou havidvovtog xwdixomointy etvar mpoxodoplopévn we éva yeauuxoé wovtého Gauss
nou eqopudletan ent g €€660U TOU TEONYOUUEVOU YEOVIXOU BUoToq.

o Ot mopdueTtpol Twv AaviavovTwy XOOLXOTOMNTOV ToAAOLY UE TNV T8EoBO TOU YEdVOU UE TETOLO
TEOTO (OOTE 1 xatavour] Tng Aavidvouoag avanapdotaong oto TeAxd yeovixd BAuc T va elvon
TUTILXY XOVOVIXT).

To mparypotind deiypoto dedopévwy xadde xou o Aavidvouses/YopuBddelc exdoyée Touc unopolv va
avamopac Tetoly and xowol YeNnooTowvTas Tov ouuBoloud X, ue to t = 0 vo avuotolyel o a-
Mdwd o pe to t € [1,T] vo avtiotoyel oe havddvovta, pe v tepoapyio haviovéviwy derypdtwy vo
UTOdNAGOVETOL We Tov Ypovixd delxtn t. H MopxofBiov widtnta avdyeca oe dladoyixés havddvouoeg
petofdoeic uTodNAWYVEL OTL 1} epunpocia Saduxacio YopufBonoinong unopel va ypoptel wg e&nc:

T
g(x1rlx0) = [T alxeelxi—1) (1)

oTou oL UETHPBAoELC Tou xwdLXoToNnTY elvol TNE Lop@ng:

q(xe[xt—1) = N (%45 arxi—1, (1 — ar)T) (2)

OO TO TMEOYpEAUUe TNS XAl YoplBou a; unopel va elvon elte mpoxadoplouévo elte exmoudetolo. H
Magpxofiovh] diotnta cuvendyeton 0Tt ¢(Xe[Xe—1,X0) = q(X¢|xe—1) = N (%45 /arxe—1, (1 — az)I). A&io-
TOLWVTAS TO AEYOUEVO XOATIO TN EMAVOUETEOTOMONS Xal TApATNEMVTAS dTL To dlpolopa avedptniwy
TUYAWY XoVOVIXOY UETUBANTOV axoloutel xavovixt| xatavour ue péor Tiun lon ue to ddpolopa Twv emL-
u€poug HECWY xa Ue Bloduavor (o Ue To ddpolopa TwV ETUEPOUC BLOXUUAVOERY, TROXUTTEL 1) axOAouT

xoudr| oyéon:

T
[[ost
t=1

Kot’ enéxtaon, allonoudvtag tov vopo tou Bayes, punopolue vo deifouue 6Tt Xp—1 ~ q(Xi—1|X¢, X0),
_ Varxi(1—a¢—1)++/a@_1x0(1—ay) o

1—ay

T
1- Hatfo = Varxo + V1 — ase0 ~ N (x;Varxo, (1 — ar)I) (3)
t=1

6TOU Xy_1 Elvon xavoVIXd xaTaveunuéUes Ue HEOT TR Lg(Xy,Xo)

[ = (-an-aiy)
- (1—ay)
noinone pe(xi—1|x¢) mpénel va axoroudel 660 o ToTd yiveton To mparypatixd Bruc arodopufBonoinone

q(x¢—1]%x¢, X0), mpdypo mou cuvodiletar oty ehaytoTonoinom tou axdhovdou bpou taipidouatos arodo-
puPonoinong:

Stancpavon By (t) = o2 (t) I. Kotd autd o tpémo, to exnadeuduevo Briua anodopufo-

1 a—1 ag -
g (7250 - 72 Yoatut) -l @

6mou &g (xy,t) avuotolyel oty extiunon evéc vevpwvxol dtlou v Tpog TNy dpyix lcodo X¢ xou
xatd to emmédo Yoplfou t. H EE. (3) unopel vo Eavarypaptel otnv axdroudn popph:

Xt — \/1 76_1,2560

N ()

Xg =
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XENoWonoldvToe TNy Topandve eglowor xal emxaioluevol Eavd To xOATO TNG EMAVOUETEOTOMONC,
UTOPOUPE VO AVTIXATUOTHCOVYE TO VELpwVIXG dixtuo tne E&. (4) ue éva veupwvixd dixtuo €g(xy,t)
Tou podolver evahhoxtixd vo tpoBhénel Tov tnyaio 96pufo €o ~ N(0,I) (modulo xdnow otadepd otov
avtioToyo 6po opdhpatos). Enouévee, n exuddnon evoc ATIIMA pecw tne mpdPredne tne apyuxhic
€l06d0L X( Looduvauel pe TNV exudinon péow npofBiedng touv YoplBou. Eurepwd, wotéco, xel Bpedel
6T m mpoPAedm tou YopvfBou odnyel ouyvd oe xakitepn anddoon (05, T9].

B.2 AroYopuBornowiueva ‘Eppeca Moviéha Awdyvong

To AnodopuBonootueva Bupeca Moviéha Adyuone (AEMA) anotehody pio xotnyopio napoyeyt-
AV HOVTEAWY TOU EXTUSEVOVTOL PE OTOYOUS auToXwIXoToloVUEVNS amotopufBonoinone/score matching
xon yapaxtneilovron amd wa un Mopxofiovi eprnpdodior Stadixacio Yopufonoione. Xt AEMA, to Sely-
HOLTOL HTTOPOVY VO TTROGBLORPLG TOLY HovVadLxd omd Tig Aavidvouceg YeTaBANTES, EMOPEVKC Xot TToEOUGIALouY
napopoleg WoTNTeS pe ta [IAA. Ta AEMA Bosilovtar otnv axdroudn olxoyEvelo xoTavouoy Tov Y-
poxtnpilovton amd éva mparypotnd didvuopa o € RE :

T

Go (x1:7/%0) 1= o (xr[%0) [ ] 4o (x¢-11%¢, %0) (6)
t=2

OToU g (x7|%0) = N (X1, \/arXo, (1 — ar)I) xou yio xéde t > 1 woyleu:

Xt — /X
QU(Xt—1|Xt7XO) :N<MXQ+ ( 1—0,t_1 —Utz)tl\/zo,(f?:[> (7)
—ay
O I'xaovotavéde péooc e EE. (7) emdéyeton e této0 1péno wote va daogahiletar 6T gq (Xx¢|x0) =
N (x¢,1/arxo, (1—a;)I). Anodewevieton 6t 1) Sadixaoio derypotohndiog oto AEMA pnopel vo teprypopel
and TNy axéhoudr oyéon:

— 1 —a;é t
Xi—1 = at_1(xt \/;itee(xt’ )) + (\/1 —at—1 — 0't2>€0(Xt,t) + o€ (8)
t

6mov € ~ N(0,I) xou ag := 1. Avopopetinéc emAOYES WS TEOSC TO BLAVUCUR O aVTLoTOLY 00V OE dLo-
(POPETIXES TOPAYWYIXES DLUBLXAGIES, YPMOLOTOUMVTAS OUMC EVa XOWG VELpwVIXS dixTuo €g(xy,t) TO
ornolo, 6mwe xou ot AIIMA, exnoudeteton €tol ote va npofAénet tov mnyaio YépuPo. Otav o; =
VI —a;-1) /(1 = a)y/1 — ar/ar—1 v xdde t, tH1€ 1) epmpdoho dadixaoio YopuBonolnone xodic ot
Mopxoftove, xou 1 ontioVia maporywyixy| Swodixasio tautileton pe avtr evog AIIMA. ‘Otay e€etdloupe e-
TtayLVOUEYY oUvideon pe To T va etvon o abEovoa uroaxohouvdia oto didotnua [1, . .., T, n vnepnapdye-
TPOC TNG TUTIXHC amdxhong LYV TapopeTporotElton we o, (1) = ny/ (1 — ar,_, ) /(1 — ar,)\/1 —ar, /ar,_,.
Emnéov, étav oy = 0, n EE. (8) 10od0vopet pe wa pédodo Euler npoc enthuon uoc EAE, eved téoo 1
eunpdotha draduxacta YopuBonoinone 660 xou 1 Swodixactio delypatodndlac xadloTavtal VIETEQUIVIO TIXES.

B.3 Kadod7¥ynon

‘Ohn n oulitnom uéypt autd to onuelo éxel apiepwiel oty exudidnon tne xatavourc p(x) evée de-
douévou cuvdlou dedouévwy. §2oT600, elvon enlong yerowo v urnopolue va potofvouue decueuuéveg
xatavopés dedouévwy, dnhady| p(x|y) émou to y urodnidvel omolodhnote eldog emnpboVeTng TANEOYO-
plag, T.Y., eTxéteg ¥hdoewv. Xoupuva e tn oyetxr| BiBAoypapio, utdpyouv dUo xbpleg uédodol yio vo
emteuy Vel autd, cuyxexpyéva 1 kabdodrjynon pe ta&wounti [33] xou v kabodriynon xwpis ta&wountn
[66]-

Kadodrynon ue Tagwounty

'Eotw pe(y|x:) évag tadivountic mou atoyedel oty ta&ivounomn Yopufnddy emxdvwy X, ot Sudgpopa
enineda Yoplfou t. 'Eotw xou mdhl éva veupwmvixd dixtuo €9 mou exnandedeton €Tl HGOTE Vo TEOBAETEL
Tov mnyaio eloayduevo VopuBo. Tote, yia Ty avtiotoyrn Swdixacio derypotolndlag und xododrynon ue
todvounth, otny neplntwon tov AIIMA, wybel xi—1 ~ N (xi—1; o + X9V, log pe(y|x:), Xg), 6m0uL
e, Xg clvon 0 péoog xou 1 daxyoven e exnawdevouevne Gaussian xotavourc mou yapaxtneilel Tic
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uetofdoelc xotd v oniotho MopxoPiov ahuoida. Kot’ enéxtaon, ota AEMA unogel va ypnotgonoindel
7 {Blar Sradixacion Serypoatoindiog mou teplypdpnxe otny evétnta B.2, aviixathiotdvtog to undeyov dixtuo

TpdPredne YoplBou ég(x;) and o €g(x¢|y) = €g(x:) — /1 — a1V, log pe(y|x:).

Kadodhynon ywelc Tagwvountn

‘Onwe unodnhdvel to bvopa, 1 kabodiiynon xwpis ta&wvountd (k.x.t.) [00], we yedodohoyia, dev
anoutel TV exmaldevon xdmolou Eeywplotold tadvounth. Avtidétwe, xdnolog exnoudelel évo deoueuuévo
povtého ddyvone p(x|y) pe mdavétnta andppidne e und cuvdixn TANPOPOEINS Puncond, ONAADY| o€
TuyolEC TEPITTMOELS, 1) emimpdodetn TAnpogopia ¥ agoupeitan (Tdavétntes andppudne e tééne tou 10-
20% tetvouv vo Aettoupyoly xahd) xou aviixaototon pe pio etixéto & (null). Avth n euxéta anoteel
€W TWT €L06D0L OV AVTITPOCWTEVEL TNV amoucior puoTinGy TAnpogopldy. To Tpomomoinuévo
povTélo Tou TpoxiTTeL givor TAéov ot Véom va Aettoupyel xo und cuvixn p(x|y) xat we povtého dveu
bpwv p(x), avdhoya Pe To oV TapéYEToL To ofjpa pUlUoNG. 21N cuvéyela Tpaypatoroeiton detypatorndi
YENOWOTOLOVTAS TOV axO oV (0 YeouUXd GUVBLACUS TwY UTG GpouC Xal AVEL GpwY EXTUCEWY FYoplBou:

€0(x¢|y) = (1 — 7)ea(x¢|D) + vea(xty) 9)

T v = 0, avaxtodue T0 amhd, dveu Gpwv povtélo xai yio v = 1 malpvouye to TUTIXG BeCoUELUEVO
povtéro. oy > 1, 1 xotavour| and tnv onolo derypatornmrodue xodiotatar «Unep-pudLoUEVNY.

B.4 Movtéha Aavidvouoag Aldyvong

To Movtéha Aavddvouoag Awgyvone (MAA) [125] elofiydnooy ot o tpoomddeto v pewwdoldy ot u-
TONOYIO TIXEC ATOUTHOELS Yo THY EXTAUBELGT) HOVTEAWY Bidyuomg Yot ahvieon exdvwy LPnirg avdhuong.
H mpotewvéyevr tpocéyyior mpotelvel vy oNnTto dloywpelold TNne Qdong cuUTieons and T QacT) Tapaye-
YXNAG PAINONG, YENOLLOTOLOVTIS EVAY QUTOXMBLXOTOWNTY oL pardalvel Evay YMpo Tou elvol avTIANTTIXS
l0OBUVOUOC UE TOV YOPO TWV ELXOVWY, AN TEOCPEREL OTUAVTIXG UELWUEVT] UTOAOYLO TLXT) TOAUTAOXOTN T
1600 01N Sdixacia exnaldevong 660 xou ot dadacio derypatorndlog.

Acebdopévne uog RGB ewdvag eisddov x € RHAXWX3 ¢yoc xwdwonotg € xwdlxonolel T0 X o€
e hevddvouoa avamapdotaon z = E(x) € RMXWXC evd évac anoxwdionotntic D anoxwdxorotel
™ Aavddvouco avamapdoTacT) KoL TNV ETAUVAUPEREL GTOV 0PYIXO YDEO TWV EXOVWY, TUEAYOVTIS TNV
avaxataoxeuf] X = D(z) = D(E(x)). O xwdixonomthc unoderypatolnmtel Ty exévo elobdou xatd éva
ouvvieheot| f = H/h = W/w. Eyovtoac exnoudedoet ta povtéha avthnuuixic cUUTiEons, o Yoauniovy
dlaotdoenv havidvey ydpog utopel théov va aflomondel, otov omolo uPning cuyvotnTag avenaioVnteg
AETMTOUEQRELES APOLEOVVTOL. € GUYXELOT) HE TOV UPNANC BlaoTATXOTNTAS Yo Twv pixel, o Aavidvwy
YE0¢ elvor xaTaAANAGTEPOC Yot TopoywYXd TdavoTixd povTéla, xadie pnopodv va emixevipmlolv
oToL ONUACLONOYXS onpavTixd «bit» dedouévev, eacahilovtog mopdAANAo UTONOYLIOTIXG AmOdOTIXY
exmaldevon.

Exyetahieudyevol 1 Blodldotatn Soun Twv TopoyOUEV®Y AovIavoUsHY oVITApIo TACEWY, 1) PoyO-
xoxoMd evog MAA Bacileton otnv opyttextovinry U-Net, mou amotelelton xuplwe and 2A cuvelxtixd
otpwpata. ‘Onwg oulntiinxe oty evétnta B.1, n exnaldevon twv AIIMA Bacileton oe wa enavos tod-
plopévn mopoAloyr) Tou UETABANTOU X8t Pedyuatog otov hoyderduo tng mdoavogdvelag tne oahndivig
xatavouric dedopévov logp(x). Ta MAA yrmopolv vo epunvevdolv we eZicou oTadUoUEVT axOROU-
Yo autoxwdioromtdy anodopuBornoinone €g(z;,t) oL onoiot eivar exmoudeupévol BoTe Vo TPOPAETOUY
wo anoBopuBoromnuévn exdoyr| TN eloédou zZ:, 6oL Z; elvor ot YopuPBdng €xdoon tng haviddvouoag
ewoédou z. O avtiotolyog otdyoc amoBopuforoinong yivetou:

Laian = Eex),ean01) 01,1 |l€ — €0(z¢, )3 (10)

To MAA eivou enione ixavd vo poviehonotolv deopeuuéves xotavopés e wopphc p(zly), 6mou 1o y u-
nodnAovel xdde eldoug tpdodetn TAnpoopio 6w eTETEC XAACEWY, XELUEVO, ONUACLONOYIXOVC YEPTES
.\ Ipog e€umnpétnon autol Tou oxomol, 1 poyoxoxxaiid U-Net enavédveton Ye €vory unyoviopsd dla-
otawpoluevnc Tpocoyfc [168], anotekeopatind otny exudidnor woviéhwy Tou Basiloviou oty tpocoyt
TOAUTLOTUXWV ELGOBWY.
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I' Ilewpopotind AmoteAécpota

1 Xdvieon Ewodvag & Avarnapdotacn Ilpocwnou
YOvolo Acdopévwy xouw Metpixég AZLoAéYNong

Exnoudetooye o povtéla pog otn Bdon dedopévmv AffectNet [107] n onola nepiéyel mepinou 1 exar.
exoveg Tou avaxTRdnxay and to dadixTuo. Buyxexpwéva, 440 k. and autég TG EXOVES OYONACTY-
xav yelpoxivnta and 12 eldixolc pe Baowd dioxpitd cuvouoOiuato (xatnyopd Hovtéro), Ty éviaom
Tou o¥évoug xou e déyepone (Swotatind/cuveyée povtéro). H Bdon dedopévmv AffectNet eivon po-
%P4V 1 UEYUAUTERT] BAOT) BEBOUEVLV EXPRACEWY TEOCWTOU, UE ETUOTUEWOOELS 0YEVOUC XaL SLEYERPONC O
un ereyyoueveg pLUIoELS, EMTEENOVTOC TNV €QEUVAL YLOL TNV QUTOUATOTONUEVT] AVAY VOPLOT| EXPEACEWY
TPOCHOTOU GlUPWVY UE 800 BlapopeTnd cuvoncUnuatxd wovtéha. And tg 440 yih. exdveg e pn ow-
tépato oyohaopo, 291,651 edvec pépouv etxéta Ye 8 Baolxd dlaxpitd cuvanoUfuato: oudEtepo, yopa,
Aoy, ExmAngy, @ofoc, anmdla, Yupde xan meplppovnor. And auvtée, 287,651 eixdvec avixouv oto oet
exnaidevone xou 4,000 ewxdvee (500 yio xdde etixéta cuvaoYAUNTOC) avixouy 010 SUVOAO ETXVPWOTG.

‘Ocov agopd v oloAGYNOT TV UOVTEAWY OGS, YENOWOTOLOVUE SLPORETIXES UETELXES YLoL VOL O
Elohoyfooupe TNV IXxavoTnToL GOVIECTS ELXOVOY XoUL BLPORETIXES Yot TNV A€LOAOYNOT) TNS TOLOTNTAG XOlL
OMOTEAEGUATIXNG PETAUPOEES CUVOLGUNUETOY XATE TNV avamapdotacT teocwrov. H a&lohdynon we npog
v wavotnta ovieong emdvemy yiveton e Bdon tnv Fréchet Inception Distance (FID) [64], tn Kernel
Inception Distance (KID) [13] xadde xou to Improved Precision € Pecall [38]. Katd tov yepioud
EXOVWY YLOL AVATOPAO TUOY] TEOCMTOU, 1) TOLOTNTA TV exovev allohoyelton ye Bdon to Peak-Signal-
to-Noise ratio (PSNR), to Structural Similarity Index Measure (SSIM) [173] xou Learned Perceptual
Image Patch Similarity (LPIPS) [151]. T v o€lohéynom e ieavoTnTog UETOpopds cuvoloVAUaToq
o€loTolo0PE éva TPOEXTIAUBEVUEVO LOVTELD avayvipione cuvaioYfpatoc HSEmotion [135-137] xou we
HeTEWT Yenotwomololue Ty axpifeia Tagvéunong.

Ilpoeneiepyacia Acsdopévemyv

Ou dnuovpyol Tou cuvohou dedopévwy AffectNet mopéyouv mpobnoloyiouéva miaiota oplodétnone
TEOCHOTOL XAMOE KO TIC CUVTETAYUEVES 0POCNUWY ONUEIWY TPOCOTOL avd exéva. 20T6C0, TEOTIUHCO-
ue va evtonicoupe e€opyfc t6o0 o oproetnuéva mhalowa boo xar Ta opdonua oNUEid TOU TEOGMTOU,
xenowonowdvtog o FAN [18]. TIpotol tpogodotrhicouue T apyixés exdves oto FAN, adhdloupe mpdta
g Slaotdoelg Toug oe 256 X 256 yio v anogUyoupe tpoPifuata e€dvtinone uviune GPU. To FAN
evionilel Tic 2A ouvtetaypéveg yia 68 opbdonua onuela tou Tpookhtov. Me Bdon autd ta opdonua, To
oplodetnuéva xouTid peyédoug 224 X 224 mepedTTOVTOL XEVTELXA Xat, OTN cLvéyela, evduypopuilovton
ME EXTIUNOY TOU UETACYNUATIONOU OUOLOTNTAC Tou amanTeltan yiol var mapaoppedel To olvoho Twvy ovi-
YVEVOUEVLY 0pOCTUWY CNUEIWY TEOCHTOU GTIC XAVOVLXESC Toug ouvTteTayuéves. Tuydv xevéc meployég
EXOVIC OV TEOXVTTOUY AN TNV MERLOTEOPY TNG OEYIXAC OVTUETWTICOVTAL AVTAVOAMYTOG TNV ELXOVAL
XOVTA OTIC SXPEC.

AvTtianrTixy Yvpnicorn Ewovog

To mpdhto otddlo omoloudrnote MAA oanoteheitor and €vay TEOEXTOUBEVUEVO AUTOXWOLXOTIONTY| TTOV
HETOPEREL OTIOLODNTOTE BEBOUEVY] ElCOBO UMb TO YWEO TWY EXOVKLY OE VAV CUUTIECUEVO, Aovidvovta
yweo. T 1o oxond autd, exnoudevoupe éva VQGAN [15] otn Bdor dedopévewv AffectNet.

To VQGAN uodetel v apyitextovixry U-Net [126] mou amotelelton and pior oElpd UTOAELTOUEVWLY
(residual) ymhox [62] vroderypatohndiog xou unepderypotolndiog. O aprdudc TV UTOAEITOUEVWY UThOX
avd eninedo ywpwnc avdivone oplotnxe (ooc pe dVo. O aprdude Twv Paoindy xavoloy oplotnxe
loog pe 128. To péyedog twv emdvwy ecddou oplotnue oe avdhuor 128 x 128. 'Etot, ye dedouévec
ebVeEC elobdou x € RIZEXIZEX3 16 yBixonomthc oupmiélel Tic Teheutalec xatd évay napdyovta f = 4,
Tapdyovtag Aavidvouoee avamapaotdoels 2z € R32X32X3 . Kde havddvouoa avarapdotaoy uplototo
xBavtonolnon ototyelo-npoc-crouyelo, pe amotéheoua o GUAAOYT amd 322 xatoyWPHOELS XWXV Zij €
R3i,5 € [32]. O minddprdpoc tou Bihiou xwdixdv opiletor {coc pe |Z] = 16384. Emniéov, ol
TOAMATAACLAOTES XAVUALDY Yo TIG 2 eVOLdETES Ywpxés avalloels opllovtal (oot pe 2 xou 4 avtiotolya.
To tehevutaio eninedo ywewic avdhuone tepthopBdver enione éva TuhRpa ywewrc tpocoyfc. To VQGAN
exmoudel e Yio 6 emoyéc ue Tov Bedtiotonomth Adam [50], pe apyxd pudud expddnone 3.6 x 107° xau
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uéyedoc batch (oo ye 8. H dour) tou anoxwdixonomty elvon axpiBde 1 (Bl ye auth Tou xwdixomownTy,
OANG UE TN OELEd TWV UTAOX VoL AVTIGTEEPETAL.

3ovodeor Ewovag

'Eyovtog exnoudeUUEVES LOVADEC XWOLXOTOLNTY XAl ATOXWOXOTONTH, TIC YPTOULOTOLOVUE WS TO TEWTO
otédo evée MAA. Yougpova ye 10 VQGAN mou culntridnxe nponyouuévng, Teoywediue Teplypdpovtag
TNV EMAEYUEVT BlodpPwoT oTNy Tep(ntwor tou MAA.

H opyrtextovixiy U-Net nou yenowornolel 1o MAA Siardéter 800 unokeindpeva punhox avd eninedo
YOEWNAC AVAAUCTG, UE ToV apldud Tev Baoixdy xavaiioy va eivar (oog ye 160. Ou Aaviddvouoeg avamapa-
otdoelC eloddou cupmECovtal tepantépw xatd éva cuvteieo T f = 4. Ta ymhox tpocoyric tonovetodvton
oe xde eninedo ywewnc avdivong, dnhadh 322,162, 8% %ot 0L TOAATAAGLIG TEC XOVAALADY opilovtau {ool
pe 1, 2 xou 4 avtiotoya. O xwdxonontic eUxeT®dY ¥Adone vAoTole(ton w¢ éval evialo eninedo evow-
pétwone (embedding layer) 512 Swotdoewy, aviiotoryllovtac v exdotote eTéta cuvaroYnuaTixic
x\dome y we To(y) € RIX51Z,

Iot vae eAéyEouue xoADTERA TNV EVTOOY TWV AMEXOVILOUEVWY CUVALGUNUETWY AT TN QACT YELRO-
yoOYNoNg, opelhaye va exnawdedoovue 1o MAA yenowwonowwvtag kadodrjynon xwpis ta&vountn. Katd
T Bidpxeta e exmaldeuone xon pe TIAVOTNTA Puncond = 0.2, oL eTXETEC TWV XNACEWY ElOAYWYNC
anoppimtovton xou avtixadiotavton pe pa etéto null, avgdvoviac ouctaoTixd Tov cUVOAXS aptdud
TWY ETUXETOV ouvatoUnuatnic xAdong oe evvéa (8 Boxpitd ouvaiotiuata cuv v etxéta null). To
MAA exnadedtnxe vy nepimou 30 enoyée pe tov Pedtiotonomts) AdamW [98], apyixd pudud exuddn-
onc 2.4 x 1075 xou péyedoc batch (oo pe 24. Xpnowwonoifoaye yoopuxéd tedyeouus Yopifou xo
Tamvia = 1000 Briparto Sidyvong.

INo va a€rohoyricoude TNV UTd cuVIAXTN XAVOTNTA GUVIECTC EXOVGY TOU UOVTEAOU HOG OXOAOU-
Ofoope dVo pedodohoyiec. Apywd, derypatohnmniAocope 5 yuh. Selypota avd cUVOLCUNUOTIX ETIXETO
xenowonowdvtoe AEMA pe Tagpma = 500 Brporo xou yweic dveuv bpwv xadodhiynon (v = 1,0). T
x&de uTocUVOAO Belypdtwy, unohoyioaue T peTEXES afloAdYNoNe mou culnTRdnxay oty dpyh TNe
evotnrag I'.1 yenowonowdvtoc ohdxAneo to chvoho dedouévwy exmaldeuone mov aviiotolyel 6To Oe-
dopévo cuvaloUnuo. XTn cuvéyela, derypatornniiooue tuyadio 3.75 yih. exdveg omd xdde xotnyoplo
CUVUCUNUATWY XAl TIC CUYXEIVOUUE UE To TpoavagepVéy ohdxAneo olvoho 40 yih. Berypdtwv. 3Tov
IIiv. T'.1, napovotdlovta ot petprioelc we mpoc tig petpwxée FID, KID, precision xou recall! »ou yior o
6V0 mpoavapeplEvTa oeVdpLo aELOAOYNOTG.

YuvaioUnua Btéyoc  FID|  KID (x107%) ] Precisiont Recallf

Oubétepo 6.64 2.1 0.57 0.67
Xapd 6.90 2.7 0.55 0.66
Almn 7.73 2.1 0.58 0.66

‘Exminén 8.54 2.6 0.55 0.70
DbPBoc 10.93 24 0.56 0.71
Andia 11.72 2.3 0.56 0.73
Ouude 8.03 2.7 0.57 0.66

Iepuppdvnon 10.16 2.9 0.58 0.71
Mécoc ‘Opoc? 8.83 2.48 0.57 0.69
Yuvohxrd® 4.3 2.1 0.56 0.69

ITivaxoag T'.1: Tlocotxd anoteléopata ¢ Tpoc TV uno cuvihxn clvieon exdvwv otn Bdomn dedopévev AffectNet
xenowonowdvtac Tapma = 500 BAuota, n = 1.0 xou xAlpoxa k.x.T. v = 1.0.

'Onee oy avagevopevo, 1 xohiTepn anddoor TopaTnEe(Tol Ylol TO 0LBETEPO GUVALCUNULL XL VLol TO
ouvaloUnuo e Yapdcs, xodog eivon autd Ue To neplocdTEpa BelyoTo EXTABELGTE 6TO GUVOLO BEBOUEVLV.
Ou udmrdtepee Twée FID mapatnpodvrar yia to cuvanotigota tou @oBou xar tne andioc. And dmodm
ouvaroUnudtwy, o eéfog oyetileton otevd pe TNV ExTANEY, Vo N andla cuvdEeTal GTEVE Pe Tov Yuud,

1O petpixéc FID, KID, precision and recall vrmohoylotnxav ue Bdon to dnuboia dadéowo moxéto Aoyiouwxol
torch-fidelity.

2 AuTh 1 Yeauun Tou mivaxa avtio touel oTov apduntixd uéco e xdde petewic we TEoc Tic 8 SlapopeTéc GuVILTON-
UoTiXéC XAGoELC.

3 Auth n aElohbynon mpayuatonohdnxe cuyxeivovtag 40 yuh. delypata (8 xth. avéd cuverodnuatixd xhdomn) ue 30 xuA.
Tparypotixée edves (3.75 yih. avd cuvauotnuatied xhdon).
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onwe unopel va pavel oe yio 2A avomapdotacn odévouc-diéyepone. H nepippdvnon elvar enlong ouyvd
onTxd dhoxolo va Blaxprdel and TNy eutuylia.

YuvatcOnpatixy Xepayonynorn Euxxovev & Avanapdotacn IIpocwnou

Boowuxry Medodoloyio H Baocuxn yedodohoyio yia m yelpaydynon exodvey pe MAA, axoloudel to
nopdderypo tou LDEdit [19], npocappoopévo eidixd yior 1o TeoBANUa TN YEROYDdYNoNGS CUVALOUNUATOV.
O Televtaiog yeNoWonolodoe VIETEPUIVIO TiXY) EUnpocdia Bidyuon ot évay AavidvovTa Yweo youniote-
eNe dLdo taong, mou e€aptdtan omd TNV €000 EVOG UETAGY NUATIO TH tokenizer mou oy Tpoexnadeupévog
o€ évo 60voho Leuydv xewévou-exdvae (t.y. LAION-400M [139]), emtuyydvovtag yelporydynor xado-
dnyolpevn and xelpevo oe dyvwotee xatnyopiec pe undevin vnoothplrn dedopévemy (zero-shot). Etny
TEPITTOON YaS, 0 HETACYNUATIO TS avTxoio Toton Ue €Val OTEMUA EVOWUATKoNS Tou avtiotouy (el xa-
Oeplo and tic 8 (ouv v etixéta null) mdavéc eTinétes cuvaoUNUdTEY ot éva exTadevdUEVo Sldvuoua
To(y) € R1¥12,

H poayoxoxahid tng ev Adyw TRocEYYIoNg EYXEITOL TNV OYEBOV xUXAXY) GUVETELX TIOU eEacparileTon
HEOW TWV VIETEQUIOTIXGY dladxactwy AEMA, téco tne eumpdoitiac didyvong 6co xar tne onlothog
dladuactac anodopuBomoinone. Autéd anodeucvietan Tepautépw and TNy axdroudn avéiuor. H dwdixaocio
deryporodndiac AEMA nou mepiypdgeton otny evétnra B.2, unogel vo Eovaypagptel pe v axdroudn

Hopgth:

Zi1 = AL + /1 —a-1€g(z,t,70(y)) (11)

YR, (/ B

Oétovtac yy := /1/az xou py :=+/1/a; — 1,  E&. (12) pmopel vo ypaptel ¢ e&nic:

Vi1 —¥Yi = (Pi—1 — pi)€o(ze,t, To(y)) = dy: = €o(zi,t, To(y))dpe (13)

( meg(zt,t -re(y))>

H televtaio eglowon meprypdepet yio SAE 1 onola xwveltan niow 610 ypdvo w¢ mpog Tov ypovixd deixtn
Budyuong ¢ xau meptypdpel TNV vieteppvio Tt Sadixacia anodopufonoinone AEMA. Avtiotpopn g
Blag e&lowong odnyel oe avtictoyn XAE nou mepiypdget tny eunpdctic AEMA Swduocio YopuPomo-
inone. ©étoviac fg(z,t, To(y)) = (2o — V1 — Greg(ze, T, T0(Y)))/Var, hPdvovue tic eunpdotes xou
onioViec diepyaoiec AEMA vy yelpiopd emdvwy Bdoet MAA ¢ mpog 800 eTxétes cUVAOOINUATWY Ysre
(apyd) xou Yirg (0T0Y0C):

Zi41 = @t+1f9(Zt, t; Te(ysrc)) + V 1-— @t+1€0(zta t7 Te(ysrc>) (14)
Zi—1 = ar—1Te(2s,t, To(Yrg)) + /1 — Gr—1€0(Z4, t, To(Ytrg)) (15)

Kotd tn Sidpxetor twv dadixaoldv cuvaucUnuotixol yelplopol, ta Bden tou MAA 6 nopopévouy
otadepd olupwva Ye T0 xaAUTEPO CwoUEvo anueio eréyyou and Ty opy @don exnaideuong. Me
OEDOUEVT] Lol ELXOVA ELOODOU Xgre, O XWOXOTONTAS TEOTOLU GTaAdloV TN UETATEENEL 0TV avTioTolyn Aav-
Yédvouoa avamopdoTtact zg. 31N cuvéyel, 1 vieteppvio i (n = 0) tpoc o epmpde didyuor exteheiton
uéyel o xpovd Bua to < Tamma = 1000, pe Bdon tny etixéta nnyaiov cUVLCVRUATOS Ysre, TOU CUY-
Bohileton we z¢,. H avtiotpopn Swdixacio mou e€optdton amd v eTxéta cUVACHRUATOS GTOYOL Yrg
Eexwvd amd tov (Blo YopuPdn Aavidvovto xOINA Zy, UE GTOXO TNV AVAXATOOXEVT TOU Zg. llepvdvtag
Tov Aaviddvovta xOOXA Zg UECE TOU ATOXMOXOTOMNTY) TEOXVTTEL 1 AVOXATACHEVACUEVY) EUOVA Xgen-
e autd 1o onuelo Yo mpénel va avagpépoupe 6Tl 1) Bladxacta AEMA unopel va enitoyuvdel onuavtixd
Yenowonoudvtac Atydtepa Briuata &omprrorcomong {7, Tamma opotopopcpcx emheypéva oo ebpoc [1,to]
€T0L WOTE T = 1 XU T7,pyua = to. Ilpogovde, 600 uixpdtepog etvar o aprduds Twv eVOLIUESHY BrudTwy
TarMA, T000 yewdTepn elvor 1) ToldTNTa Avoxataoxeuhic g dladixaciac AEMA. Qotéco, 1 yelwon tou
oprduol TV Brudtey dSeryyatodndiog elvon anopaitntn 660V aQopd TNV EMTAYUVCT] TWV TELPOHUATLWY XL
éyel eunetpixd mpoxldel 6Tt Tagma > 20 TopEyeL IXAVOTIONTIXG AMOTEAEGUATO HGOV APOPE. EQUPUOYES
HETAPEOOTC EXOVOC-CE-EUOVAL.

To ¥y. I'.1 anewxoviler empeAnuéva Topadelypato YElpoyOYNonNe cuvaoUNUETwY Ot EXOVES amd
70 oUvoho emlpwone e Bdone dedouévwy AffectNet, ypnowwonowdviag Tapma = 20, v = 3.0 xo
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Disgusted Angry

Original Happy Sad Surprised Scared

4 (S i. ]

ﬁk“ EL‘\‘ EL‘\‘ IS S S 8

ExAuoe I''1: Eneypéva nopadelyporta havidvoucos xewpaydynone cuvaicOiuatoc 6to civoro emxbpwone AffectNet,
xenouwronowdvtae Tapma = 40 BAuata, n = 0, dOvaun enelepyaciac to = 500 xou xhipoxa k.x.T. v = 3.0.

to = 500. H mo opiotepn exdva oe xdde othin elvon éva apyind delypo mou mpogpyeTal and 0 olVo-
o dedopévwy, eved ol umdloinee €& oThRAeg mepthopfdvouy To amoteAécHoTa YELPLopoD Yior xadeuio
amd g 6 Pooxés exgppdoelc Twv axdroudny cuvaoOnudtey: eutuyla, OXidn, éxminin, ¢éBog, ondio
xou Yuude. Mnopolue auéows Vo TUEUTNEHCOUUE OTL T UMOTEAECUATA OTIC OTAAEC TOU VTG TOLYO-
OV ota ouvoLeVAUATH TNG YaEd, AUTNG xat YuUoU elvon EV YEVEL IXUVOTIONTIXG, EVE Ta cuvolcORuaTa
e éxminéng, @oBou xou ondiog elvar mo BUoxoAo va petadodolyv. Autd umopel va duconohoyniel ev
pépel amd To YEYOVOS OTL Tl TREoavaPeERIEVTO CUVACTAUOTA UTOEXTIEOCKWTOVUVTAL GTO OET EXTALBEVOTC
e Bdone dedouévev AffectNet. Emmiéov, to Ly. I'.3 anewxovilel to anotéheoyo tne uetofornc e
Gveu bpwv xhipaxas xadodiynone v € {1.0,2.0,3.0,4.0,5.0} oty nepintwon o twv €L SPOopETIXDY
oLVUTUNUATWY-0TOY WY, eved Tt tg = 500 o Tapma mapopévouy otodepd. Eivan mpogavée étu ot ou-
yxexpwevn plimon twv tg = 500, oL YaunAdTEpES TWES TWYV 7y £Y0UV eNdyIo TN €n¢ xoddhou enidpaom
oty olhayh Tou cuvaioYfpatoc. Mropodv va emteuydolv xahdtepa anoteréopata pe v € {4.0,5.0}
HE EAGYLOTY TORAUUORPMOT) TWY TEPLPERELUXWY YURUXTNPLO TIXWY TOU TEOCKOTOU XAl TNG TAUTOHTNTIC TOU
exovilopevou mpoonnou. Télog, 1o XNy, 1.2 anewxovilel to anotéleoya e petaBoric e toybog
eneepyaoiog to € {400,500,600} oty mepintwon xon Twv €EL SLoPOPETIXMY GUVULTYNUETOV-CTOY WY,

XXiv



I'. ITIEIPAMATIKA AIIOTEAEXMATA

Happy Sad Surprised Scared Disgusted Angry

ExAwa I'.2: Emndeypéva mopadelyporta xelpaydynone cuvaoinudtony Bdoer MAA oto cdvoho emxldpwone tne Bdone
dedopévmv AffectNet, yenoworowwvtac Tapma = 40 BAuata, n = 0, xhipoxa k.x.T. v = 3.0 xou petoBAnty oyd
enegepyaocioc to € {400,500, 600}.

eved o ¥ xou Tapma mopopévouy otadepd. Mrogel xavel ebxoha va mapatnerioet 6Tl 1o ¢y = 400 dev
emapxel Yol TNV Tapay WYY cLVULCONUATIXG DUXELTHOVY ATOTEAECUETWY. ATo TNV GANN TAEVEd, Wiot T
to = 600 €yl wg amotéheoyo xAANVTERA ATOTEAECUITA YELQUYWYNONG, UAAS YE XOCTOS TMUPAUUOPPWONG
NS TOUTOTNTOC TOU Apyixd EOVILOPEVOL TEOCMTOL.

ITpoocapupoy?r Kadodnyoduevr ané Moviéla CLIP T tnyv anoteleopatixn e€aywyr| yvooe-
wv and ta wovtédo CLIP, éyouv mpotadel 800 SlopopeTinéc CUVAPTACELS CQPIAUNTOC: ULl YEVIXE EQUQUO-
Couevn [L15] xou piot tomuxn ouvdptnon cgdhupatos xatebiduvone [52]. Ko ot 8o npoavagpepdéviec tonot
OQAAIATOG TEOTAUMMOY Py d Yl dueon BedtioTonoinoy eviiduecwy Aaviavousty avarapoc THoEWY
otov W+ ydpo tou StyleGAN [75]. O mpdtog timog o@dluatog tpoonadel vo ehayiotonoioet v
An6CTACY) GUVNULTOVOU EVTOC EVOS TEOEXTIUOELUEVOL haviddvovtog yweou CLIP petall tng moparyoue-
VNG EXOVAG Xl EVOC BESOUEVOU XEWEVOU OTdYoU. AT6 TNV GAAY TAELEd, TOTXY GUVEETNOT CQPAIALUTOC
xatebduvong emPdiel Ty eutuypduuion Tne xatedYLYoNC, o eNINEDO EVOIAUECHY AVATUPAUC TAOEWY, UE-
g0 TWV 0EYIXMDY XL TWYV TORAYOUEVWY EXOVWV, PE TNV XATELYUVET HETAED TWV OVITIEAC TAGEWY EVOS
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SxAuna I'.3: Emdeypéva mopadelyporta xelpaydynone cuvaioinudtony Bdoer MAA oto cdvoho emnldpwone tne Bdone
dedouévmv AffectNet, yenowonowdvtac Tapma = 40 BAuata, n = 0, ddvaun enelepyaciac tog = 500 xou uetofSANTA
xMpoxa k.x.T. v € {1.0,2.0,3.0,4.0,5.0}.

XXVi



I'. ITIEIPAMATIKA AIIOTEAEXMATA

Cebyoug xeWévey avopopds xal atdyou evide tou ywpeou CLIP o e&hc:
Ldir(xgen> ytrg7xsrcv ysrc) =1- COS<CLIPimg (xgen) - CLIPimg (xsrc)7 CLIPtext(ytrg) - CLIPtext (ysrc)> (16)

H evowpdtwon twv CLIP povtéhwv oto mhaicio yerone MA, ewofydn pall ye to povtého Dif-
fusionCLIP [70] to omolo npocdppoce v xateuduvuxy andiete CLIP oto mhaicio twv ATIMA xo
TETUYE UETAPEACT] EXOVGY Oy VG TWY XOTNYORLUSY UE PNdevixY| unoo thplEr dedopévwy. Katd tov yelpl-
oud emdvwy mou anewdvilay avlpdmiva TpdonTa, Ntay amapaftnTn 1 XeHon enredcVeTey CUVUPTHOEWY
OQAAIATOG BATAENONG TAUTOTATAG 00 Xol Lo GLVEETNOT amwAeWY TOTou £1. Ilpw amd v epappo-
v1 e xadodnynone CLIP, anoitelton exnaldevorn evog MA €g. Xtn cuvéyela, omoladnrote deSouévn
ELXOVOL ELOODOU Xgre YETOTEETETOL OE Wal YopuPwdrn Aavidvouoa avamapdotao (k). XN ouvéyela,
xadodnyolpevo and v xateuduvtxd andiela CLIP, to MA, oty oniot dwdixacio, puduileto étot
Gote va dnuovpyel delyporta axoAoudhvTag T0 EXACTOTE XELUEVO-OTOYO Yirg. 2TN) DXL PO TERITTOON, 1)
CLVAETNCT] CPIAPATOS BLUTHENONE TAUTOHTNTUC VAOTIOLEITOL WS 1) ATOCTACT] GUVNUTOVOU GTOV AovidvovTol
xtpo evéc ArcFace [32] mpoexnoudeupévou dixthou avayvoplore tpochrou IR-SE50%.

To npdto Pripa mpog T Aentouepn npocapuoy) evoc MAA, nepthapBdvel tov ntpotinohoyioud Yopu-
BwdGV AovIovoucHV avamogao TAGEWY Yia EVoy TEoxooploUévo dpldud Setypdtony exnaldeuong xodoe
%ol Yot ohOXANEo T0 clvolo emxdpwaong. IlpolUnoloylooue YopuBndelc Aavidvouces avanapas tdoelc
xenoworoldvtog vieteppuviotixd epnpdéotho AEMA (n = 0) ye Tapma = 40 Pruata xou tg = 500
dUvopn eneepyooiog, v 4,000 delypoto exnoideuone (500 avd cuvonsdnuoatixd etixéta). Xtn cuvéyeLa,
derypatodnmtoope tuyoda 1,000 Aavddvouoes avamopacTdoell and To Tpoavapepdéy GUVOAO GE Lol
npoondiela va avtiotaduicovue Ty anddoon yelpaydYNoNne UE TOV PEIWPEVO Ypdvo exnaideuons. Auth
7 Soduxacion emovakfipdnxe yio dhec T xhpaxes dveu dpwv xododrynone v € {1.0,2.0,3.0,4.0,5.0}.
Exnowdetoope yio 20 emoyée pe pudpd expdinone 2 x 1075, péyedoc batch {co pe 4, ypnowonoidvrac
tov Behtiotonomt AdamW [95]. Kdde batch havdavousdv urofddieton oe derypotorndioc AEMA yua
Tiune = 6 Brwota xou tg = 500. Hpogpavog autde o younidg aprdude Brudtwy otn Swdixactio Seryyoto-
Mndioc AEMA mopéyel atels| avoxataoxeut|, ahhd mpoteiveton epnelpd [70] we anodextds ouuPiBaopde
peta€d e moldTnTag Tou delypatog xat Tev arouthoeny yio wviun GPU. T anhotnta, xotd ) didpxeto
oMWV TWV TEWAUATOY oplooue Aig = g, = 1 xau dlapoponoifoaue HOVo TO Agir, OTOL Aiq amoterel To
OUVTEAES TN GQAALOTOC BATAPNONG TAVTOTNTAG, Ag, ATMOTEAEL TO GUVTEAEGTY G@EAUaTOC TUTOL fo Xou
Adir omotelel To ouvteheo ) xateutuvTixol opdipatog CLIP.

To ypapnuota I'.4 xou I'.5 napovsidlouy mocotixés cuyxploelq LeTAED Bactnddy Xl TEOCUPUOCUEVELY
HOVTEA®Y, ot 6,TL agopd Tic ueTpés ollohdynone mowdtntag exdévoe (LPIPS/SSIM/PSNR) xou tnv
axp{Belor TaEvounomng cuVAGTAUATOS BACEL TWV YELRAYWYNUEVWY BELYUAT®Y 6TO GUVOAD EMXOEWONE TNG
Bdone dedopévwv AffectNet. Ilo cuyxexpiéva, oto Xy. I'.4 ta npocappocuéva goviéha napouotdlouvy
vdnidtepee Poduoroyies axplBelag Tavounone v Tic Bleg Tiwée e xhldoxos k.x.T. 7y, ue eaipeon
10 ouvaloUnua e ondiog. H Behtiwon oty axplBeia ta€véunong épyeton und 10 x60TOG WLoC UXEHS
pelwone oty moldTNTAL TS EXGVOE OE OAEC TIC UETPIXEC, OANG OTwe B amodetydel apydtepa, to Tehind
anotéheoyo mopouével ontixd aandogoavéc. Emmiéov, oto Xy. I'.5, unopolue vo dolue &TL oxdur xon
ywelc dvev dpwv xododrynon (v = 1), wa pdduion otny onola 10 anotélecya Yelpopol e Pooixhc
pedddou elvol oLy VL anopaTAENTO 0To avipdTVo WaTL, N eloaywYY TNg xatevduvTinic anwicloc CLIP
emAVeL €V Yépel omoladrinote cuvorcUnuaTIX aodgeia oe ueydho Badud, ue eEalpeon to cuvaloUnuo g
andlac, to onolo elvon omtixd mavoyoldtuno e to cuvaioUnuo tou Yuuol. Ilio cuyxexpléva, oe o
2A avanapdotoaor o¥évouc-diéyepong, xou o 0o cuvarotuorta AauBEvouy TaEOUOLES dPVITIXES TUES
olévoug, pe tov Yuud vo XaTéyel EAGYLOTO UEYUAUTERT) TIY| BIEYEQOTC.

SOyxpion we ITAA  Kaddg ) otiyuh mouv ypd@oupe Ty ev Aoyw epyooia Bev umdpyel xavéva
ouyxplowo MA pe dnudoia dlodéoiun Bdon xwdxa mou umopel vo yenotwomnoiniel yio avanopdoToo
TPOGMTOU X0 CUVAGUNUATIXY YELRAYWYTON EXOVWV, OTEEQPOLUE TNV TEOCOY Y| LIS O XA YeUeAwUEVES
vhonojoelc mou Booilovtan o ITAA, pe tic onoleg Yo cuyxpivoupe Ta EVPAUATE PG, TOCO 6E TOGOTIXG
660 xou o€ nototixd eninedo. To povtéha avtd eivar o axdhovdo: GANimation [120], StarGAN v2 [20]
xou GANmut [30] (ypopuixnd xouw Gaussian, mou suyBoiilovton g GANmut xoo GGANmut, avtiotorya).

Yrov Iiv. I'.2 napéyouye pio Tocotn; cUYXELoN UETHE) TV TELWOY TROavaPepIEVTLY LAOTOCEWY
nou Pootlovtar oe ITAA o autdv mou Booilovtor oe didyuor, pe xou ywelc Bektiotonoinon xadodn-
yovuevn ané CLIP, 6cov agopd tnv axplBeia tadvéunone twy cuvaoUnudtoy (enouotoldvias éva

4 Auth 1 apyitextovixh anotehel cuvduaoud evéc ResNet [62] we 50 evBidueoa otpduata xou SENet [68] umloxc.
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ExAune I'.4: Ilocotinh clyxpon peTadd BACIXOV LOVIEAWY XOl TPOCUAPUOCUEVWY LOVTEAWY LTd xadodrynorn CLIP,
6o0v apopd TN péom axpifeia Talvéunone (oto edpog [0-1]), xou tic petpiée LPIPS, SSIM xou PSNR w¢ mpog to olvoho
TWV YERAYWYNUEVLVY detyudtny, xenotworotdvtae TaApma = 40 BAuata, woxd enelepyaoiac tog = 500, Agir = 2.0, A\jg =
Ae, = 1.0, o€ Shec Tic hipoxes k.x.T. v € {1.0,2.0,3.0,4.0,5.0}.

Aair € {0.0,1.0,2.0,3.0}
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ExApe I'.5: Iocotxh oOyxpion petald Bacixdy woviéhnv (Agiy = 0) xou TeocupUooHEVWY HoVTEA®Y LTS xadodhynon
CLIP, 4c0v agopd tn wéon axp{Bea Ta&wvdunone (otnv reptoxh [0-1]), xou tic petpixéc LPIPS, SSIM xou PSNR w¢ npog
70 oUVONO TWV YeElpaywYNUEVeLY delyudTwy, xenowonotdviac Tarma = 40, woxb enelepyoacioc to = 500, v = 1.0, A\jq =
Ae, = 1.0, oe pyetoPintéc twéc Aqir € {0.0,1.0,2.0,3.0}.

npoexnaudevuévo HSEmotion [135-137] we ta&wvounth), PSNR, SSIM, LPIPS xaddc xou tnv opoldtn-
o GUYNULTOVOL oTov Aavddvovta ywpo evoe povtélou CosFace [L71], npoexnoudeuvyévou oto clvoro
dedopévev Glint360K [2] (CSIM). H olyxpton petald 6Anv tov poviéhwy dev elvou oe xopio tepinto-
or anhf) xou mEEnel vor AdPBouye urodn TV umoxeluevn avtiotdduior petadd e axpifetac Tavdunone
cLVACUNUATWY Xal TNS BlaThAENoNE TNE TOWOTNTUC OE Oyéon UE TIC TnYaleg ewdveg. Xe Oha ToL GUVOL-
oOfuara, ol ulomnowoeg mou Bacilovtar o MAA Eemepvolv dheg Tic avtiotoiyec mou Basilovton oe
ITAA 6c0v agopd TNV TOLOTATA TWV TUPAYOUEVRLY ExOVwy. Emmiéov, ot ulonoioelg ITAA emtuy-
Yavouv yevixd udmidtepn oxpifeio Ta&véunone cuvarsInudTey, pe Tic uhnidtepes péoeg PBaduoroyieg
vo onpetdvovton omd 1o GGANmut. Autéd pnopel va e€nyndel ev pépet and 1o yeyovic 6Tl to teheutaio
touptdlet mtolomhée Gaussian xXoTavoUés He OTOYO TNV AmOXTNOTN ULoG o oxplBoUe xou TAOVGLOG VO
PACTAGNC TOL UTO GPOUC GLYVALGUNUUTIXOD AavDAVOVTOS YWEOU, GE GUYXELON HE TG DlaxpLTég eTiXéTeq
ocuvatoUnudtwy. Oa prnopoloope THAVOE Vo AVTIETOTICOUPE aUTO TO ENRELUUO TELRUOTI{OUEVOL UE
dlapopeTinéc midavdtnTee andpplng Twv LUTO GUVITXY CUVALCUNUIUTIXGY ETIXETHOY Yl TN K.X.T. XAUTAE TN
Bidpxeta Tng exmoddeuong xan vPnAdTEPES dveu dpwv xAhipaxes xadodhynone (v > 5.0). Emniéov, unopel
vor axohouindel W To UTOXEWEVIXY) TROGEY YL Yot TNV oELOAGYNGT TOU HOVTEAOU, T.Y. HE TN Uop@n
EPWTNUATONOY (WY, xdTL Tou cuvNVileTan oTNY TERINTWOT TWY TEIPUPATWY UETAPEUOTE EOVAC-CE-ELXOVAL.
Avto Yo oulnundel tepatépw OTIC ENMOUEVES TOPOLYPAPOUG.

Ipaypatonowooye enione 300 HEAETEC YENOTHOV YL Vo AELONOYHOOUUE TOV PEALOUO XU TNG CUVOL-
oOnuatixfc axplBelag e mpocéyylonc wog évavtt twv mpoavagepdéviwy Poaoiouévwy ot ITAA, 6rnwg
a€lohoyRinxe omd avipwnivoug YeroTes, ta anoteAéouoTa Twv onolwy Beloxovton otov Iliv. I'.3. Xty
TEWTYN HEAETY, ouppetelyay 24 ouypetéyovieg, oToug omoloug mapouctdotnxay 28 Lebdyn cuyxplocwy
petald SV TV Pedodwy (cuUTEPAUBAUVOUEVWY TWY opYIXOY EMOVWY) xou XxAidnxay vo emAéEouv
v o peoMoTxr. ‘Onwe amodeixvieTton and To AMOTEAEGUATA, OL YELRUYWYNUEVES EX TNE Yeodou Yag
EXOVES EYVOY OVTIANTTES ¢ oTatlotind onuartikd (p < 0,01 pe diwvopxy Soxiuy) mo peahloTiéc
oe olyxplon Ue Tic dhheg yedodoug. Qotdoo, OTwe avauevoTay, Bev Aoy TOC0 PEOAOTIXEC OGO Ol
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Suvadotnuo Xapd O)ihn ‘Exminin
Médodog AxplfeaT  PSNRT SSIMT LPIPS] CSIMT | AxpiBewaf PSNRT SSIMT LPIPS| CSIMT [ Axpifeaf PSNRT SSIMT LPIPS| CSIMT
Groundtruth [107] 0.758 - - - B 0.638 - - B - 0.606 - - - -
GANimation [120] 0.645 24.07 0816 0.099 0.547 0.212 24.52  0.830 0.097 0.582 0.360 23.82 0817  0.101 0.559
StarGAN v2 [20] 0.958 1746 0.659 0.165 0.441 0.569 18.30  0.712 0.149 0.593 0.761 17.99  0.678 0.160 0.503
GANmut [30] 0.879 21.42 0.809 0.106 0.663 0.888 23.85 0.857  0.094 0.755 0.829 22.43 0.810 0.112 0.675
GGANmut [30] 0.934 21.91 0.819 0.103 0.717 0.986 22.13 0.802 0.115 0.653 0.970 22.37 0.777 0.121 0.610
Auwxd pog 0.872 25.80 0.841 0.090 0.743 0.774 25.71  0.837 0.095 0.778 0.658 25.54 0.838 0.094 0.716
Awd pag pe TKMC® 0.883 24.30 0.813 0.098 0.744 0.875 24.72 0.822 0.093 0.794 0.752 23.42 0.797 0.113 0.721
Pbfog Andla Oupdg
Groundtruth [107] 0.666 - - - - 0.646 - - - - 0.514 - - - -
GANimation [120] 0.314 23.68 0.814 0.105 0.556 0.271 24.13 0.819 0.103 0.549 0.287 24.80 0.833 0.096 0.580
StarGAN v2 [20] 0.860 17.76 0.676 0.162 0.507 0.879 18.10 0.691 0.154 0.528 0.666 18.14 0.689 0.154 0.509
GANmut [30] 0.932 23.39  0.841 0.102 0.721 0.877 22.64 0.815 0.113 0.663 0.856 21.57 0.813 0.106 0.678
GGANmut [30] 0.967 20.13 0.763 0.135 0.556 0.987 21.68 0.772 0.128 0.562 0.969 21.77 0.767 0.133 0.590
Auwd pog 0.764 24.89 0.824 0.103 0.770 0.676 25.50 0.835 0.100 0.707 0.710 25.66 0.840 0.094 0.714
Awd pog pe TKMC® 0.764 24.83 0.826 0.096 0.764 0.450 24.87 0.822 0.089 0.714 0.886 24.18 0.796 0.106 0.735

Ilivaxog I'.2: Tlocotxh oOyxpion petald tou MAA pog xou twv vhoroioewy nou Bacilovtor oe ITAA yio cuvoucdn-
potixd Xelploud exdvwy oto chvolo emtxdpwone Tne Bdone dedouévwv AffectNet.

Peahiopoc

Awé pog vs. | GANimation ‘ GANmut ‘ StarGAN v2 ‘ Groundtruth

0.69 031 | 0.68 0.32]0.61 0.39 | 0.28 0.72
Avoryvipion Xuvouofuatog

0.57 ‘ 0.38 ‘ 0.73 ‘ 0.57 ‘ 0.59

Iivaxoag I'.3: Troxewevixh HEAETN XeNOTOV OXETXE YE ToV peahiopd (v Wwod) xou Ty axpifeia petdppoaons twv
cuvatcInudtey (xdtw wod).

TEAYUOTIXES ELXOVECS.

Y1 Seltepn pehétn, oe 27 cupgpetéyovieg mopouctdotnxay 30 ewdvee and xdde pédodo xan Toug
Inidnxe va tpoodloploouy o eugaviléuevo cuvalotnua aviyeoo and yio Alota €L mdoavedv cuvaiodn-
pdtwv. To xdtw wod tou Iliv. I'.3 napoucidlel ta avtiotoyo anotehéopota axpifelog, to omofa eivon
o TEVE ELVVYPAUUULOUEVA UE TO TTEONYOUHMEVI AVTIXEWWEVIXE TocoTXd anoteréopata Tou Iliv. I'.2. H mpo-
CEYYION HOC EMITUYYAVEL omdBooT 1oodivaun pe to StarGAN v2 xou Eemepvd to GANimation, av xou
10 GANmut emtuyydver ty vdnioteen axpifeio. XLuyxexpyéva, n axplBela otic apyixés emdvee Tng
AffectNet elvon nopdpota ye autr) tou StarGAN v2 xan e pedodou yoc. Autr 1 napatrenoy Unopel ev-
deyouévne va anododel oto 6Tt to GANmut Snuiovpyel mo «unepBolxdy cuvarothiuota Tou aroxAilvouv
ané v xatavop cuvaonudtwy tne AffectNet, Yuodlovtog tov pealiopd xatd ) nopela.

2 XdOvdeorn Optholvrog Ilpoownou

Tt Ty oOvdeoT) ouholvTog TEocHToL xatapelyoupe 6T Bdon dedopéveoy MEAD [172]. H Baocwd
pevdodohoyia yia abvieor opthobVTOC TPOGHTOL EYXELTAL GE €Va GUVBLAOUS TNG YVWOTAS ¢ aUTH TO
onuelo opyttextovixric MAA, und v xododrynon plag oelpds and pnyaviopois cuvinxononong:

YuvOnxonoinon ‘Hyouv H cuvinxonoinon Yyou anotehel tov mpotopynd xivnthplo napdyovia
XOL TOV XOWO TUPOVOUICTH OAWY TWV ETLUECOUS DLOHOPPUCEWY TOU povrékou obvieong outholvtog
npoocdmov. Ilepapotilépacte ye ™mv egayoyn BUO eV chpocxmptouxwv fyou. Xe wa mepintwon
YENOWOTOWUUE TNy XpugT avanpdotaon a € RT X708 4ruc npoxintel and 1o teheutoio transformer
umhox tou wav2vec 2.0 [0]. Xtn deltepn epinTeon, Aertoupyole o povieho oe hettoupyla AAO
wou e€dyoupe un xavovxoromuéva logits b € RT'*2 oy avtiotowolv oe etxétec 29 yopaxthipwv’.
Ye xdle neplntwon, o xwdixonomtng wav2vec 2.0 apyuxonoleiton ue o tpoexmoudevpéva Bdpn. Aedo-
pévou 6Tl T Sedouéva Bivieo xataypdpovial Ue cLYVOTNTA fr, TOU Elvol BlapopETIXY and TN CUYVOTNTA
Aettovpylog Tou xw&xonomw’] fa (fo =49 Hz yo 1o wav2vec 2.0 eved f,,, = 30 fps yio MEAD) mpo-
oVETOUUE €Vol EVOLIUETO OTRPOU YeopUxC TUpeUBOANC TOU €XEL WC ATOTEAEOUA TO EMBLUNTO Urxog
cZ6dou T = kT’ = [ 12 |T".

Juvinxonoinon LuvalcOuatog

Q¢ ouvidwe, yenowonotolue éva wévo eninedo evowpdtwone e duvatdtnra expdidnone To(y) €
RI%256 16y avtiotoly (et xadéva and Tic 8 mbavéc enxéteg cuVCUNUAT®WY ToU GUVOAOU BEBOUEVWY

STIKMC: Mpooapuoyh Kadodnyoluevn and Movtéra CLIP
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MEAD (oudétepo, yopd, Nomn, éxmhnin, edBoc, ondia, Yupdc xou neptppdvnon).

Yuvinxonoinon Opdonuwy Ilpoownouv Xenowonotolue wovo 48 Lebyn omd o GUVOALXS Bia-
Yéowa 68, eCopoupévmv Twv 20 (euydv cuvietayuévwy opdonuwy mou eviomilovion yUpw oand tnv
TEQPLOYY) TOU OTOUOTOC, ETOL WOTE Vo YNV UTdpyel dlappotr] Thnpogoptwy. Tao 48 {ebyn cuvietayuévmy
oynuotilouy éva ddvuopa 1 € R xou apydtepa xwdxomolotvTal YenoLontotdvTac Vo EXTUdEVOLLO
onyxd MLP ue evepyornowioeic ReLU 74(1) € R1*128,

Juvinxonoinon Tavtétntag Extéc and tov Yopufndn xupé-otéyo, 1o U-Net anotopuforno-
inone mapéyetar pe éva Tuyaio emAEYUEVO %apé-TouTOTNTA e onpeio avagpopds. Autde o unyaviopog
ouvinxonoinong avopévetan vo fonUfceEL oTN AVTLYEUQT] YAPUXTNEIo TIXWY ToL oyeTilovtan ue TNV me-
PLPEPELAXT| EUPAVIOT, TOU eXAOTOTE €xOVILOUEVOL TPooWnov. Aedouévou 6Tl 1) eXAOTOTE TEOYHATIXT
EMOVO-GTOYOC EVOEYETOL VoL EXEL Lot EVIEAMS BLopopetixnt) otdorn/néla o010 YWpo ot oyéon Ue 1o Ppeiy
TAUTOTNTAS, TO YOVTENO XOAE(TAL VO UETAPEPEL TN OTACT TOU Xopé€ TAUTOTNTAS OTO XUPE-OTOYO Ywelc
xolar AN eviidueon mAnpogopia. Autod anotehel €va xoxme oplouévo TedBANUa ywelic pLovadixy Ao,
T vo petplaotel autd, anoutodvton emnAéov Thnpogopice cuvinxomnoinong.

Juvinxonoinon Emxaluntopevou Stoyov To xupé enixoAUTTOUEVOU GTOYOU TUPEYETAUL WG
wor emmhéov ouvinxn avagopds wg xadodhynon exudinone g meoyUoTixi OTAONE TOU EXAOTOTE
{nrobuevou xapé. H meployn tou otéUotoc XahOTTETOL EVIEADS YId VO SLUCPAUAGTEL OTL Ol TEAYUATIXES
WACELS TV YELAWY Bev elvor opatéc oTo dixtuo anoBopuPonoinorng.

Exupddnorn O ddgpopeg tAnpogopieg cuvinxomonong mou neplypdpovTon Tapomdve, UTopoly Vo Y-
ploTolv ot 300 dloxpitéc xatnyopiec: o) Autéc Tou tpogodotolvton oTo dixtuo anodopuforoinone péow
Tou pnyaviopol ToAamAfc ntpocoyic MAA, mou SNAGVETH WS Cattn. B) AUTd TOU TPOPOBOTOVTUL GTO
dixTtuo anovopufonolnong CUVEVOVOVTOSC Ta WS TEOE T SO TAOY Xavahlol Ue Tov BopuBwdrn otdyo,
70U GUUPONLETOL WS Coney. 1€ Xd¥e emavdAndm, derypatolnnrodye tuyaio éva Bivieo X = {x1,..., X, }
amd To OeT exmoddEUoNG XL, OTH CUVEYEL, Eva Tuyalo xapé Xi and to X, 6Tou N €lvor 0 GUVOAMXOS
opriude xapé Tou Pivieo Tou delypatog. Me elcodo €va ypovixd Briua t xou Tov aviictolyo YopuBnon
0TOY0, DELYUATOANTTOUUE Eval Xop€ TAVTOTNTASC Xid. AVEAoyo ue Tn dloapdppwor, mepthopfdveton pLo
EMXAAUTITOUEVT] €XDOCT) TOU XUPE-GTOY OV, TOU SNAMVETIL OC Xmask. O Ta Tpoavapepdévta xapé odn-
yoUvToL TEMTA HEGE EVOS TPOEXTIULBEVUEVOU AUTOXWIIXOTOLATY], TUEAYOVTOG CUUTIECUEVES AovidvousES
OVOTOPUC TACELS Zf, Zid O Zmask, AVTIOTOlYWS. e xdlde emovdAndr, to tuyaio delypo Aovddvovtog
otdyou vglotaton Sidyvon teog ta eunpds Yot ~ U(L, Tamma) yeovixd Bruata, tou odnyel atov Yo-
euUBOBN Aaviddvovta otoyo z:. O otdyoc g amhic anodopuPonoinone MAA yenowonotelton ylor vo
xadodrnyroel tn Sadixacio exnaidevong:

Lyvaa = Bz coner caremert [”6 — €9(Zt, Cattns Cencts 1) Hg} (17)

oTou €9 UTOONAWYVEL To exntandedoo U-Net anotopufonoinong.

Avtonalwdpowix LOvOeorn Bdoel e oyetnic Bihoypagpiog [110, ], n oVvdeon ouiho-
0VTOC TPOCKOTOL Ue YPNOoM UOVTEAWY BLdyuone yivetow avtomohvdpouxd. o cuyxexpyéva, xotd T
ocUviean TOU TEMTOU XopPE TOL exdoTOTE BIVIED, WS Xopé TAVTOTNTUC YENOLLOTOLEITOL QUTOUGLO TOU
napé-otdyoc. XN ouvéyela, xdde véo xapé mou cuvtileton ypnowonolelton K¢ xupé TAUTOTNTAG OTN
oUvdeon tou endpevou Briwatos. Ipogavoe, oe xdite Briuo tapéyeTol TO Xopé EMXANVTTOUEVOL GTHY OV,
1 ouvinxonoinom Hyou xoidg xou onoladToTE GANY pop@n Teolnoloyiouévng cuvinxonolnong tou eivon
anapaltnTn Yior TNV xadodynomn tne avtomahivdpouxnc Stadixaciog clvieonc.

MeAétn Extopwyv Baocwxod Moviéhou Xpenoilomoidvtog to mpoavapepdéy Bacixd poviélo
oUV¥eoNC OUIAOUYTOC TEOGKTOU EXTENOVUE UL OELRY TERUUATWY EXTOUNG YLOL VOL DLATLO TWCOVUE T O
x6hovdo: o) Ty enidpoon tou exdotote unyaviopol cuvinxonoinone, B) v enidpoaon tou peyédouc
nynuxol mapadidpou. O mpoavagepieioes embpdoeic aflohoyolvial 1660 ©C TEOS TNV TOLOTNT TWV
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I'. ITIEIPAMATIKA AIIOTEAEXMATA

Moveého Yuvinxornoinon Tlowbtnta Ewdvog Avéyvoon Xeloy
YuvaloOnua  Emxoduntéuyevoc Xtdyoc Opdonue | PSNRT  SSIMtT LPIPS| | WER| CER| WERV] CERV]

Groundtruth N/A N/A N/A N/A N/A N/A 65.5 41.3 65.1 35.6
v X X 20.61 0.582 0.114 191.8 137.8 187.7 130.8
Baseline v v X 26.59 0.856 0.046 112.9 85.2 109.7 81.1
(Transformer) v v v 26.68 0.865 0.043 110.1 85.1 108.4 79.7
X v X 26.69 0.857 0.047 102.2 82.1 99.3 77.3
B(Zszlgl)e X v x 2.66 0857 0045 |101.3 835  99.1 782

Ilivaxoag I'.4: Melétn extouhc 600V agopd Toug BLdpopous PN aviools cLYINXOTOINGNE TOL XENCULOTOLOVVTAL ontd TO
vroxelpevo MAA. Xenowonowobue pixog nyntixod napaddpov w = 4 ce dheg TG enthépous efetalOUeEVES DAHOPPOTELS.

Movtého Mévyedoc Hynuixol Tlowotnra Ewévag Avéyvwon Xetdy
TTapardtpouv w PSNRt SSIMtT LPIPS| | WER] CER] WERV] CERV]
Groundtruth N/A N/A N/A N/A 65.5 41.3 65.1 35.6
1 26.29 0.851 0.048 121.2 90.5 119.6 88.2
Baseline 2 26.53  0.855 0.047 116.3  87.1 1114 834
(Transformer) 4 26.59  0.856 0.046 112.9 85.2 109.7 81.1
8 26.43 0.854 0.046 108.2 82.3 105.1 7T.7T
16 25.74 0.841 0.049 116.2 87.5 111.9 83.1
Baseline . .

(AAO) 8 26.41 0.859 0.046 | 107.1 83.3 105.3 7T.7T

Ilivaxog I'.5: Xuyxpruxh nocotixf yuerétn dcov agopd to ddpopa Uhxn nynTtxol Tapadlpou Tou XENoLLoToLVVTL
and v unoxelpevn povdda xwdxononong Yxov. H cuvinxonolnon fyov xou cuveucdnudtwy xenoidonoteiton oe dheg Tic
empEPOUS eEETAlOUEVES DLULOPPOELS.

ouvtedéviwy emdvov (uetpwéc PSNR, SSIM, LPIPS) 660 xou ¢ mpog TOV OTTIX0-0X0UGTIXG GUYYPO-
VIOWO6 YELNLGY PeTofl) cuvTedéviwy xon mpaypatxdy xopé (uetpixéc WER, CER, WERV, CERV7). Tu
avtioTolya anotehéoparta nopovatdlovton otoug ITv. 1.4 xou I'.5.

"Aueoeg Topatnenoelc Tou TNydlouy eX TKV TUpUTEvVe Tvdxwy elvor o axdhouvdes: o) O xadopiotinde
TUEAYOVTAS VIO TNV TOWOTNTA TWV GUVTEVEVTWY X0eE elvol 1) cLVINXOTOINGCT) ETUXAAUTITOUEVOU GTOYOU.
B) To Béruoto péyedoc nymtnol napaddpou gaiveton vo xupaiveton ot w = 8 xapé exatépwiey Tou
exdoTote xopé otoéyov. v) H enlBoon tev HoVIEAWY WS TEOS TOV OTTIXO-AXOVGTIXG CUYYPOVIGHS YELALDY
elvon xooeh, e t0c0otd Addouc Aé&ne mou xupaivetor dve tou 100%, medyua Tou umodexviel 6Tl To
napayoueva Bivteo ebvan oe «fast-forward». I'a awtd To Adyo, xaholuacte va Behtudoouue Ty enidoon
70U Boaoixol HOVTEAOU EQapUoloVTAS XATOI0 GRAAUO AVEYVWONS YELADY.

BeAtiotonoinon Kadodnyoduevn Bdoer Avdyvwong Xethiodv T vo expetalheutodye
EVOL TPOEXTALOEVUEVO HOVTEND AVAYVWONG YEWADY XoTd TN Oidpxela Tng exmaidevong, TEENEL oL mpo-
BréPeic Tou amoVopuBoromth va yivovton oe eninedo ewdvag xou oyl YoptBou. T o oxomd auto,
TEMTA XOOLXOTOLOVUE GTOYAo TE Tic Aavidvouoes avamapaotdoelc elo6dou yenowonolwviac AIIMA
vt~ UL, Tanma) xpovixd PAUoto. 3Tn CUVEYEL, TPOXEWEVOU Vo TOPUXSUPOUPE TOUC EYYEVE(S
neploplopols evde mpoexnawdeupévou U-Net mou mopéyet npoPiédelc oe entnedo Yoplfou, epapudlovue
dapopomotfioio avtiotpopo AEMA otic YopuPddeic havidvouoes avanapdotacels Yo Tiune <K TAmvMAa
Brinota (8 oty mepintwon gog). Lty npdén duee, oL AVoXUTUOXEVACUEDUEVES MoV DEVOUGES avormopo-
otdoelg elvon opxetd Aentouepelc, OOTE PETE TNV amoxmdixononoy| Toug, Vo unopolv vo Tpopodotnioly
0TO HOVTENO avdyvwaong yethov. Tlpw and autd, ol npofiendueves emdveg 6TOYOL LEloTAVTAL TERLXO-
T YOpe amd TV TEPLo)T Tou oToUaToS (UE BT To 0POONUN TOU TPOCHTOU TOL TEOBAETOVTOL UE TO
povtédo FAN [18]), petatpon| o xhigoxa tou yxpL xou ooyt peyédoue oe 88 x 88 ewovoototyeio.
Trohoyilouue tor avtioTolya droaviopaTta YopaxTNEWo Ty fir(Xo) xou fir(Xo), Aol vrohoyicouye o
BLOLVOOLATOL Y OROXTNELT TIXY, ENOYIC TOTIOLOVUE TNV AVTIANTTXY ATWAEL avayvwong and To yelhn uetad
TV TEOYUATIXGV X0 TV TpoPhemduevwy xopé. H omdhea oplletan wg Ly = & Zf;l d( fir(x0), fir(Xo)
6mov d(-, -) elvon N andotaon cuvnuitévou, B elvan to péyedog batch xou fi.(-) unodnhdvel tov eEoywyéa
YOEAXTNELO TIXWY avayvwone xethiodv. O cuvolixde otdyog npocapuoync elvar o axdroudoq:

Lonetune = Bxo. [d(fir(X0), fir (%)) + Alzo = 20|, 20 = AEMA(2,) (18)

TWERV: word error rate ot eninedo visemes. IIpoxhntel UETATEEROVTOC TIC TEOBAETOUEVES X TEAYUAUTIXES UETAYEOPES
o€ visemes ypNOoULOTOLOVTIG TN XopToYedpnon puvinatoc-ce-viseme Amazon Polly. Avtictoiya yia to CERV, ot eninedo
XAEAXTAEWV.
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Moviého SV roRolnen SuvesIiusto Méyedoc Hymntxol TTowtnra Ewxdvag Avéyvwon Xedv
‘ Tpeorotnon axzoe ToeadOpou w PSNRT SSIMT LPIPS] | WER] CER} WERV] CERV]
Groundtruth N/A N/A N/A N/A N/A 65.5 41.3 65.1 35.6
Baseline X 4 26.69 0.857 0.047 102.2 82.1 99.3 77.3
v 8 26.43 0.854 0.046 108.2 82.3 105.1 7.7
v 4 25.97 0.858 0.058 97.3 80.1 96.9 75.0
Finetuned v 8 25.75 0.848 0.054 95.2 79.2 94.0 75.1
X 4 25.42 0.845 0.058 91.1 79.1 88.2 74.1
X 8 25.87 0.857 0.055 89.8 77.3 83.9 73.2

Ilivaxog I'.6: Ilocotind oOyxpion petald twv poviélwy olvieong optholvtog Tpooohrou, pe Bdon to chvolo dedouévwy
MEAD. ‘O)ec ol Sloop@doels Xpnottorotoly nyntxd xapaxtnplotxd mov éxouv egaydel and to teheutalo transformer
unhox xwdixoronth Tov wav2vec 2.0.

omou 1 YopuBndng Aavidvouco avomopdotact z; AUBAVETOL YENOILOTOWWVTOG TNV xavovixt| dtaduacio
YopuBornolnone AIIMA.

O ITiv. I'.6 nopovuctdlet plo tocotiny| cUYxelon UeTadl Twv Baoix®y xou BEATIO TOTONUEVELY LOVTEAGDY
MO, HE BLopopeTINd wipen MynTixey mapadlpwy xou diapoppnotlc cuvinxonoinong. H xahbtepn enldoorn
VALY VWONE YELALOY EMITUYYAVETUL VO TERA AMd EQPOOUOYT TOU TEOTEWVOUEVOLU ahyopituou BeiTiotonoln-
ong, Ue prxog Nyntixol topadlpou w = 8 xat uévo cuvinxonoinom fyov. Av xou oL HETEIXES AELOAGYNONG
VAT VOO YEWNODY TOEoUGLELouY OTUOVTIXES BEATIOOES UETE TNV BEATIOTOTOINGY), TOEATNEOUYE Ula €~
haped unoBdtulon 600V aPoEd TNV TOLOTHTA TWY CUVTEVEUEVWY EXOVWY. AuTd dxonohoyeiton amd to
yeyovog ot egopudloupe anadopufornoinon AEMA oe YopuBndelc Aavidvouces avomopao Tdoel; Tou
éyouv vnootel YopuPomnoinom pe YetaBAnTé aptdud Brudtony ¢ avd emavdindn extaidevong, evé yenotpo-
nololpe eniong évay e€oupeTind younho aptdud Brudtwy AEMA Tiyne = 8. I'o va Aettovpyfioel cwotd n
amoYopuPonoinon AEMA, Jo meénel va eiyaue egapudoet évav atadepd aprdud Brudteny YopuBomroinong
t = Tamvma avd emavéndn. Qotéc0 oty npdln, o tétolo Tpocéyylon odnyel o LTEETEOCUPUOYTN
tou mpoexnatdeuuévou MAA xou mo cofupy) utoBdduion 1600 oty TodTNTA TNE EXOVAS 6C0 XU OE
EMBOOELS OYETIXA PE AVAY VWO YELMMY.
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Chapter 1

Introduction

1.1 Motivation

Deep generative modeling is one of the most intriguing computational technologies today, even
pushing human ingenuity. As Generative Adversarial Networks (GANs) [55] have proven capable of
generating high-quality samples, they managed to draw a lot of attention in the last 10 years. But
recently, even more potent generative methods, like Diffusion Models |65, | have emerged, posing
a threat to the dominance of GANs in the production of synthetic data.

Due to more consistent training compared to GANs and higher-quality generated samples, dif-
fusion models are quickly rising in popularity. These models are able to overcome some well-known
GAN shortcomings, such as mode collapse, adversarial learning costs, and convergence failure. In
contrast to GANs, which learn to retrieve the original data from the noisy ones by contaminating
them with Gaussian noise, diffusion models employ a very different approach to training. These mod-
els are also found to be appropriate from the perspective of scalability and parallelizability, which
increases their appeal. Additionally, because the foundation of their training process is the correction
of modest adjustments made to the original data, they develop a data distribution whose samples
closely resemble the latter, hence the created samples can be very realistic. Due to these character-
istics, diffusion models have had a significant impact on the state-of-the-art in picture production,
resulting in astounding outcomes [33, , 125].

Diffusion models are quickly finding use in both low-level and high-level vision tasks because of
their incredible generative capabilities, including but not limited to image denoising [65, ], in-
painting [11], image super-resolution [91, |, semantic segmentation [9, 50, ], semantic image
synthesis [125] and image-to-image translation [19, 76, , ]. Unsurprisingly, there has been a
constant rise in the number of research publications coming in this area since the key breakthrough
of diffusion probabilistic models [(675] over the original idea of diffusion modeling [14(], and new fasci-
nating models are emerging every day. Particularly with the GLIDE [110], DALL-E 2 [122], Imagen
[131], and Stable [125] models that allowed for high quality text-to-image generation, diffusion mod-
eling has experienced significant social media excitement. The text-to-video or text-to-3D creation
techniques, like Imagen Video [67], Make-a-Video [115] and DreamFusion |1 18], which produce videos
that look incredibly realistic, have recently added to the overall buzz surrounding diffusion models.
Fig. 1.1 illustrates curated examples corresponding to some of the aforementioned tasks and models.

The current thesis revolves around facial expression manipulation of images and talking face
videos. To this end, we will try to leverage the expressive power of diffusion models, which have
already shown compelling quality in complex image modeling, but still remain a somewhat new and
unexplored part of the available literature. In the next upcoming paragraphs of this introductory
chapter, we will briefly discuss about facial manipulation methodologies in general but we will also
drill down on deepfake technologies for face swapping, as well as discuss potential benefits and threats
relative to the latter.
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Image synthesis Image synthesis Text-to-Video
DDPM (2020, June) ADM (2021, May)

Make-a-Video Imagen video
(2022, Sept) (2022, Oct)

Text-to-Image Text-to-Image
Imagen (2021, Oct) DALL-E 2 (2022, Apr)

dno v oyut 3urinod 23fJoD

A dog wearing a superhero cape flving through the sky

-
A blue jay standing  Teddy bears swimming A shiba inu wearing a A corgi’s head depicted
on alarge basket of  at the Olympics 400m beret and black as an explosion of a
rainbow macarons Butterfly event turtleneck nebula Video frames Video frames

Figure 1.1: Curated examples from image synthesis, text-to-image and text-to-video tasks using [33, 65, 67, , ]-
Source: [164].

1.2 Deepfakes

Deepfakes are hyper-realistic videos that have been digitally altered to represent individuals saying
and doing things that have never actually occurred. They employ “deep” learning with the aim of
producing “fake” imagery. More specifically, deepfake methods use neural networks that learn to
replicate a person’s facial expressions, mannerisms, speech, and inflections by analyzing enormous
quantities of data samples. In order to train a deep learning system to swap faces, two people’s video
footage is fed into the process. Deepfakes, in other words, utilize facial mapping technology and Al
to replace a person’s face in a video with the face of another person. It was not until 2017, when a
Reddit user posted recordings of famous people in unflattering sexual settings that deepfakes started
to gain wide public attention.

In general, deepfakes prey on social media sites, where conspiracy theories, rumors, and dis-
information can spread quickly, because users tend to follow the “herd”. Meanwhile, an ongoing
“infopocalypse” encourages people to only trust information that confirms their preexisting beliefs
and originates from their social networks, such as family, close friends, or relatives. In fact, even if
they think it might be false, many people are open to anything that supports their preexisting beliefs.
Inexpensive fakes, or low-quality videos with minimally altered real content, are already pervasive due
to the accessibility of inexpensive hardware, such as effective graphics processing units. There is an
increasing amount of open source software available for creating realistic, high-quality deepfakes, thus
the current increase in misinformation through deepfake technology. Fig. 1.2 presents an information
trust chart for deepfakes.

1.2.1 Benefits

Movies, instructional media, digital communications, games, entertainment, social media, health-
care, material science, and numerous economic sectors including e-commerce and fashion are just a
few of the industries that benefit from deepfake technology.

Firstly, deepfake technology has many advantages for the movie industry. For instance, it can be
used to update film footage rather than reshoot them or to create artificial voices for performers who
lost theirs due to illness. Moviemakers will be able to reproduce iconic movie moments, develop new
films with performers who have passed away, apply special effects and cutting-edge face editing in post-
production, and turn amateur footage into polished pieces of work. Deepfake technology also enables
automatic and lifelike voice dubbing for films in any language, enhancing the viewing experience for
different audiences of movies and instructional media. Language barriers were overcome by a 2019
worldwide malaria awareness campaign featuring David Beckham thanks to an instructive commercial
that used voice/visual-altering technology to make him appear bilingual. Similar to how deepfake
technology can improve eye contact and break down language barriers during video conference calls
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Deepfake Information Trust Chart
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Misdirection
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portraits, technology demos, ... :
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Figure 1.2: A deepfake information trust chart. Source: [105].

by translating words while simultaneously changing lip and facial motions.

Deepfake technology enables digital doubles of humans, realistic-sounding and smart-looking as-
sistants, and increased telepresence in online games and virtual chat environments. Better internet
communication and personal interactions can result from this. The technology can also be beneficial
in the social and medical sectors. Deepfakes may be able to assist a mourning loved one in saying
goodbye to a deceased friend by “bringing them back to life”, digitally. This may help people cope with
the death of a loved one. Moreover, technology can be used to digitally reconstruct an amputee’s limb
or help transgender people better identify with their preferred gender. Even adults with Alzheimer’s
can benefit from deepfake technology by interacting with a younger face they may remember. In
order to accelerate the development of new materials and medical treatments, researchers have also
investigated the use of GANs to detect anomalies in X-rays.

In addition tech companies are intrigued by the possibility of brand-applicable deepfake technology
because it has the potential to significantly alter e-commerce and advertising. Deepfakes also permit
the creation of hyperpersonal content that transforms users into models. For example, the technology
permits virtual fittings so that users can see how an outfit will look on them before making a purchase
and can produce customized fashion ads based on the viewer, the time of day, and the weather.

1.2.2 Possible Threats

Deepfakes pose a serious threat to our society, political system, and economy because they i)
put pressure on journalists trying to distinguish between real and fake news, ii) jeopardize national
security by spreading propaganda and meddling in elections, iii) undermine public confidence in
government information, and iv) raise cybersecurity concerns for individuals and businesses.

Due to deepfakes, it is very likely that the media sector will have to deal with a significant problem
relative to customer confidence. Deepfakes are more dangerous than “conventional” fake news since
they are more difficult to detect and cause the spread of misinformation. For instance, technology
enables the creation of news videos that appear to be real but actually aren’t, endangering the
credibility of journalists and the media in general. Also, gaining access to video footage taken by a
witness of an incident might give a news organization a competitive advantage, but the risk increases
if the offered film is actually manipulated.

The intelligence community is concerned about deepfakes being potentially used to undermine
election campaigns and endanger national security by spreading political propaganda. U.S. intelli-
gence agencies have frequently issued alerts regarding the danger of foreign interference in American
politics, particularly in the run-up to elections. In today’s disinformation wars, inserting words into
a popular video can be a potent weapon because it can readily sway voter opinion. A deepfaked
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Figure 1.3: Real and fake samples for each one of the four types of facial manipulations, i.e. entire face synthesis,
attribute manipulation, identity swap and expression swap. Source: [161].

video of a politician using racial slurs or accepting a bribe, a presidential candidate confessing to a
crime, alerting another nation to impending war, a government official appearing to be in a precarious
position, confessing to a plot to carry out a conspiracy, or soldiers killing civilians abroad, could be
produced by a foreign intelligence agency. While such fabricated movies would probably spark riots,
turmoil, and disruptions of potential elections, foreign nations might end up executing foreign policies
based on fiction, even leading to the outbreak of war.

While fake recordings of government officials saying things that never happened cause people
to question authorities, deepfakes are likely to hinder digital literacy and individuals’ trust toward
information provided by authorities. In fact, Al-generated spam as well as false news that is built
on discriminatory text, phony videos, and a slew of conspiracy theories can rapidly spread through
society nowadays. The “information” apocalypse or “reality apathy” phenomenon is a result of people
feeling that the majority of information, including videos, simply cannot be trusted. This is why
the most harmful aspect of deepfakes may not be disinformation per se. Furthermore, due of their
ingrained belief that everything they do not want to accept must be fake, people may even reject
authentic footage as being fraudulent. In other words, rather than people being tricked, the biggest
concern is about people starting to see everything as deception.

Another risk induced by deepfake technology are cybersecurity-related issues. The corporate world
has already expressed interest in defending themselves against viral frauds because deepfakes could be
used to manipulate the stock and market in general by, for instance, exposing a chief executive using
racial or gendered slurs, announcing a fake merger, inflating financial losses, declaring bankruptcy,
or appearing to be guilty of a crime. Deeply fabricated announcements of new products or porn
could also be used to damage a company’s reputation, threaten management, or blackmail them.
Moreover, deepfake technology makes it possible to impersonate an executive in real-time via digital
means, such as by asking a worker to provide urgent money or divulge sensitive information. Last
but not least, deepfake technology may also establish a false identity and, in live-stream recordings,
change an adult’s face into a child’s or younger person’s face, which raises concerns about how child
predators could utilize this technology.
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1.3 Facial Manipulations

In the following paragraphs, we will try to briefly describe the main categories relative to fa-
cial manipulations, according to [161]. These categories include, entire face synthesis, face swap,
attribute manipulation and expression swap. As we will later discuss, deepfakes constitute a face
swapping methodology. Fig. 1.3 provides an overview of all four of the aforementioned types of facial
manipulations.

In entire face synthesis, powerful GAN models are employed with the aim of generating full im-
ages of faces that do not exist. These methods produce stunning results, producing realistic facial
representations of the highest caliber. The video game and 3D modeling businesses stand to gain
from this manipulation, but it might also be used for undesirable purposes like the construction of
incredibly convincing phony profiles in social networks to spread false information. The primary pub-
licly accessible databases for research on the identification of image manipulation methods reliant on
entire face synthesis include 100K-Generated-Images [75], 100K-Faces', DFFD [31]| and iFakeFaceDB
[108]. We ought to mention that all four aforementioned databases only contain fake images gener-
ated using the ProGAN [71] and StyleGAN [75] architectures. In order to conduct fake detection
experiments, researchers draw real face images from other public databases like FFHQ [75], CelebA
[97] and CASTA-Webface [1785].

During face swapping, the editing involves substituting one person’s face with another. Typically,
two distinct strategies are often taken into account: FaceSwap? which is a traditional computer
graphics-based technology and Deepfakes®. Numerous videos of this kind of manipulation that are
incredibly realistic can be easily found on YouTube. The film industry, in particular, might profit
from this kind of manipulation. The manufacture of celebrity pornographic videos, hoaxes, and
financial fraud, among many other negative uses, are possible on the other side. Public databases
that are commonly used for this type of facial manipulations can be grouped under two separate

generations. The first generation includes: i) UADFV [92], comprised of 49 real YouTube videos
and 49 fake videos which had been face swapped with Nicholas Cage’s face, ii) Deepfake TIMIT [30],
comprised of 620 artificially generated fake videos from 32 participants, iii) FaceForensics++ [127],

comprised of 1,000 real YouTube videos and 1,000 fake counterparts, generated with both computer
graphics and Deepfake approaches. Second generation datasets, which differ from the latter due to
their higher realism include: i) DeepFakeDetection*, comprised of 363 real videos and 3068 fake ones,
generated through the DeepFake FaceSwap GitHub implementation, ii) Celeb-DF [93], comprised of
890 real YouTube videos and 5,639 fake ones, generated through a refined version of a public DeepFake
generation algorithm, iii) DFDC Preview [37], comprised of 1,131 real videos from 66 paid actors as
well as 4,119 fake ones, generated using two different unknown approaches.

Attribute manipulation, often referred to as face editing or face retouching, entails changing the
skin or hair color, the age, the gender, the presence or absence of glasses, and other features of the face.
Typically, a GAN is used for this manipulation process. The well-known FaceApp® smartphone app
is one instance of this kind of manipulation. With the use of this technology, customers may virtually
try on a wide variety of things, including eyeglasses, cosmetics, and hairstyles. Few databases are
publicly available for research in this area, with the most well known one being DFFD [31]. Notable
attribute manipulation techniques include IcGAN [110], Fader Networks [29], StarGAN [25], STGAN
[06] and AttGAN [63].

Lastly, expression swapping is a form of manipulation, often referred to as face reenactment, that
entails changing the subject’s expression on their face. The most well-known manipulation techniques
suggested in the literature again involve some kind of GAN architecture. Face reenactment poses more
challenges compared to static face generation. For example, when the identities of source and driving
faces are different, the quality of generated faces can be affected. Texture distortion, identity loss,
and shape bias are some additional common problems. Current research aims at enhancing models
either with additional forms of input (e.g., AUs [13]) or with better architectures (additional blocks,
attention modules, etc.). Expression swapping will constitute the main focus of the current thesis.

lhttps://generated.photos/

2https://github.com/MarekKowalski/FaceSwap
Shttps://github.com/deepfakes/faceswap
4nttps://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
Shttps://www.faceapp.com
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Figure 1.4: A typical reenactment processing pipeline of a deepfake system, where usually only a subset of the
depicted steps is executed. Source: [105].

1.4 Expression Swapping (Face Reenactment)

Excluding expression swapping, all of the aforementioned techniques provide stunning results, but
they can only be used to change well-defined facial characteristics, like hair color, or to duplicate and
composite other people’s facial expressions onto their own. An other type of deepfake that might
significantly boost the impact of this technology and make it easier for it to be included into the
VFX industry is the ability to obtain semantic control over the emotions that are expressed through
facial expressions. The significance of this kind of manipulation is amply demonstrated during filming
since, despite the planned nature of the spoken words, obtaining the required actor’s feeling frequently
necessitates numerous attempts. The altering of facial performance would be conveniently done in the
post-production stage of a strong emotion editing solution. In static photographs, facial expression
manipulation has previously created visually appealing outcomes.

Expression reenactment transforms a person’s identity into a puppet, providing assailants the
greatest degree of freedom to have the impact they want. We should point out that expression
reenactment existed before deepfakes became common. In 2003, researchers morphed models of 3D
scanned heads [14]. In 2005, it was shown how this can be done without a 3D model [20], and through
warping with matching similar textures [53]. Later, it was demonstrated how 3D parametric models
can be used to achieve high-quality and real-time results with depth sensing and ordinary cameras
[157, , |. Regardless, nowadays, deep learning-based approaches are known as the predominant
way of generating truthful content. A typical and generic face reenactment processing pipeline can
be seen in Fig. 1.4.

1.4.1 Existing Methods

For the purposes of this introductory overview, the first section will concentrate on the most
well-known methods; Face2Face [157] and NeuralTextures [155], which swap out one person’s facial
expression in a video with another person’s facial expression (also in a video). FaceForensics++
[127], an expansion of FaceForensics [128], is a well-known database accessible for study in this field.
At first, the Face2Face method constituted the primary focus of the FaceForensics database. This
computer graphics technique preserved the target person’s identity while transferring the emotion
from a source video to a target video. Keyframe selection was done manually. To monitor the
emotion over the remaining frames of each video, the first frames of each video were used to create
a temporary facial identity (3D model). Finally, fake videos were created by applying 76 blendshape
coeflicients that made up each frame’s source expression parameters to the target video. Later, a novel
learning strategy was introduced based on NeuralTextures in FaceForensics++. The aforementioned
rendering technique learns a neural texture of the target individual, including a rendering network,
using the original video data. In particular, a patch-based GAN-loss similar to that seen in Pix2Pix
[71] was taken into account. Only the mouth-to-face expression correspondence was changed.

Apart from the latter, several other notable methodologies are worth mentioning, that consider
solving the problem at both static (images) and dynamic setting (videos). One such popular approach
introduced in [5], automatically animated a still portrait using a driving video depicting a different
subject and managed to transfer the expressiveness of the driving video to its source counterpart.
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In contrast to Face2Face and NeuralTextures methods, which required videos of both the input and
target faces, the latter only required a single image of the target. To that end, [180] provided very
good results in both one-shot and few-shot learning.

In general, the development of GANs [55] has stimulated an expanding body of study in the area
of image manipulation. In that the synthesized image is dependent on another image, a conditional
generator [71] is used in the vast majority of works. Through the concept of cycle consistency [157],
this makes it possible to translate images between different domains (i.e., image-to-image translation)
while maintaining the source image’s content. The application of such methods to face images has
made it possible to change certain facial characteristics, such as gender and hair color.

Furthermore, several well-known image-based expression manipulation techniques that are based
on GAN architectures include but are not limited to: StarGAN v2 [20], GANimation [120], GANmut
[30], ExprGAN [31], FACEGAN [162] and ICface [163]. Some of those have considered alternative
latent representations for modeling the human emotional spectrum. For instance, ExprGAN makes
use of continuous emotion labels that describe the intensity of the depicted facial expressions, while
in [91], the 2D Valence-Arousal space was utilized. More recently, GANmut proposed a way of
obtaining a 2D interpretable conditional label system even when using a dataset annotated with
solely categorical labels of basic emotions.

Even though geometry-based emotion manipulation techniques exceed the scope of the current
thesis, we ought to acknowledge their impact in the context of face reenactment, as well their contri-
bution to previously described approaches. In certain works, the target actor is controlled through
image-warping [5] or neural rendering [180] using 2D face landmarks to capture the actor’s expres-
sions. As they provide a decoupled representation of expressions from identity, 3D morphable models
[15] (3DMMs) are a very popular option. Traditional [157, 159] methods render the target subject
beneath the source expressions on top of the original target footage while reconstructing the target
subject’s face in three dimensions on the reference video. Conditional GANs are used by learning-
based techniques such as DVP [77] and Head2Head++ [39] to display the target subject while meeting
the specified requirements (expressions, stance, and eye-gaze).

1.5 Models of Human Affect

In-depth research and study have been conducted on the interpretation, perception, and recog-
nition of human emotion in a number of scientific fields, including biology, psychology, sociology,
neurology, and last but not least, computer science. The fields of computer vision and machine learn-
ing aim to automate recognition by developing new techniques and algorithms that are capable of
producing efficient and reliable encodings of such information, whereas the aforementioned cognitive
sciences concentrate on the extraction of the available affective information. Since it is widely used
in situations involving human-robot cooperation, social robotics, medical treatment, mental patient
surveillance, driver tiredness surveillance, and many other human-computer interaction scenarios,
automatic affect recognition is of utmost practical significance.

We first ought to define the theoretical underpinnings on which emotional states are patterned
in order to better grasp the ideas of emotion perception, interpretation, and recognition. For a
very long time, there has been discussion over the optimal approach to modeling impact, and many
different viewpoints have been put up. Three major categories—categorical, dimensional, and com-
ponential—can be used to group together the most pertinent models for affective computing. We will
attempt to outline the key characteristics, benefits, and drawbacks of each paradigm in respect to
affective computing in the paragraphs that follow.

1.5.1 Categorical Models

Emotions are categorized using categorical models into distinct groups that are simple to identify
and articulate in everyday language. The seminal work of Ekman and Friesen |11, 12] and its underly-
ing presumptions regarding the universality of a set of six basic emotions, namely happiness, sadness,
fear, anger, disgust, and surprise, are credited for the significant growth in categorical emotion mod-
els. A depiction of the aforementioned emotions is illustrated in Fig. 1.5. The universal emotions
hypothesis has unquestionably been the main instrument in research related to emotional computing
because of the simplicity of the categorical models of emotion and the associated universality claim.
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Figure 1.5: The categorical way of describing affect on the basis of the universal set of six emotions, i.e. happiness,
sadness, fear, anger, surprise and disgust. Source: [111].
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space. Source: [7].

The categorical models’ simplicity, on the other hand, prevents them from accurately capturing and
describing more nuanced emotional experiences. In the context of the current thesis, the categorical
model will be mostly considered, including minor additions of neutral and contemptuous emotions.
Regardless of that, we will briefly mention dimensional /continuous and componential models, for the
sake of completeness.

1.5.2 Dimensional Models

Dimensional models [103, | are the second most well-known and often employed approach for
explaining emotions, just after categorical models. An affective state is portrayed as a point on a
continuum spanned by a number of independent dimensions. Over time, psychological study has led
to the emergence of a number of different dimensional models. Yet, the Pleasure-Arousal-Dominance
(PAD) paradigm is the one that affective computing uses the most frequently.

Many investigations and experiments have shown that the Pleasure-Arousal-Dominance compo-
nents are independent of one another since any value along one dimension can occur simultaneously
with any value along either of the other two. In addition, bipolarity is defined for the three dimen-
sions. Pleasure (or valence) describes the good or negative aspects of an experience, ranging from
intense suffering or unhappiness to extreme joy or ecstasy. Arousal is a phrase used to describe the
degree of activation, mental attentiveness, and physical activity that can range from sleep to extremes
of frenetic enthusiasm. Lastly, dominance represents the amount of control over others and the sur-
rounding environment, ranging from total lack of control and a sense of vulnerability on one end to
the opposite extreme of feeling influential and in control. An illustration of the 3D VAD space is
shown in Fig. 1.6.
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Figure 1.7: The componential way of describing affect on the basis Plutchik’s wheel of emotions. Source: [117].

1.5.3 Componential Models

In terms of descriptive capacity, complementary models fall in between categorical and dimensional
models. Componential models organize emotions in a hierarchical way, so that emotions belonging
to higher or superior layers can be broken into a collection of more primitive and basic emotions
belonging to the exact previous layers. The componential emotion model first proposed by Plutchik
[117] constitutes the most notable instance of the latter. In addition, he conceptualized primary
emotions (anger, fear, sadness, disgust, surprise, anticipation, trust, and joy) in a fashion analogous
to a color wheel, placing similar emotions close together and opposites at 180 degrees apart, like
complementary colors. Following this pattern of color theory, we can describe emotions which result
from the combination of pairs of fundamental emotions, called dyads, in the same way that red
and blue make purple. Furthermore, Plutchik extended the initial circumplex model into a third
dimension representing the intensity of emotions, resulting in a structured model that was shaped like
a cone. The vertical dimension of the cone represents intensity while the horizontal plane represented
degrees of similarity among the emotions. An illustration of Plutchik’s expanded circumplex model
is illustrated in Fig. 1.7.

In contrast to the aforementioned categories and dimensional models, these sorts of models are
rarely used in the context of affective computing and automatic emotion detection-related research.
Yet, they should be taken into account as a successful compromise between readability and expres-
siveness.

1.6 Talking Face Generation

The goal of talking face video generation, also known as lip motion sequence generation, is to
create lip motion sequences that are consistent with the driving source (a passage of text or speech).
Based on synthesizing the lip motion, the talking head’s face characteristics, such as facial expressions
and head movements, must also be taken into account in the process. Talking face generation can be
considered as the dual problem of visual speech recognition, as shown in Fig. 1.8.

To achieve the dynamic mapping of driving sources to lip motion data in the early talking face
video generating approaches, researchers primarily used cross-modal retrieval [17] or HMM-based
algorithms [51, ]. More recently, talking face video generation has benefited from the quick
development of deep learning technology, which has sped up the development of techniques based
on convolutional, recurrent, transformer as well as NeRF [101] architectures. We will divide all of
the upcoming techniques into four categories, namely coefficient-based, landmark-based, vertex-based
and end-to-end. To this end, we consult [141].

Coefficient-based Methods One of the most used face coefficient models, the Active Appearance
Model (AAM), represents variations in shape and texture as well as their association. In order to cre-
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Figure 1.8: The two primal-dual fundamental problems of visual speech analysis; visual speech recognition and talking
face generation. Source: [111].

ate a photo-realistic talking head, in [17] a two-layer BILSTM network was used to estimate AAM co-
efficients of the mouth area based on an overlapping triphone input. Apart from 2D coefficient-based,
3DMMs [77, 78] have also been utilized as a 3D face-parametric representation, for video-oriented
face2face translation. The 3SDMM coeflicients contain the rigid head pose parameters, facial identity
coeflicients, expression coefficients, gaze direction parameters for both eyes and spherical harmonic
illumination coefficients. Such frameworks usually include the following steps: i) Train a network to
map the driving source to the facial expression coefficients since facial expression coefficients contain
implicit visual speech information. ii) To obtain the 3DMM coefficients of the reference identity
image, use a deep face reconstruction model that has been previously trained. iii) To create hybrid
3DMM coefficients, combine the 3DMM coefficients from the reference identity image and the pro-
jected face expression coefficients. iv) Create talking videos by using a generation network or GPU
rendering.

Landmark-based Methods The rigid and non-rigid facial deformations brought on by head mo-
tions and facial expressions are captured by facial landmark points around facial components. “Syn-
thesizing Obama” [155] constitutes one of the most pioneering pieces of related literature where
the proposed model outputted the synthesized talking face video of former US President Barack
Obama, following the pipeline of facial texture synthesis, video re-timing, and target video com-
positing. Common landmark-based backbones include: LSTM+U-Net [37], LSTM+C-GAN [72] and
LSTM+ Convolutional-RNN [21]. All the above works, utilize 2D landmarks. Besides 2D landmark
based approaches, mapping driving source to 3D landmarks is also widely explored [99, ]

Vertex-based Methods 3D facial vertices are another popularly used 3D face model in talking
face generation. Initial approaches were subject-specific [73] and were later generalized to multiple
subjects as well, with the well-known VOCA model [29]. The latter combined DeepSpeech [(()] features
and speaker-specific features with the aim of producing a 3D mesh of 5023 vertex displacements. More
recently, the FaceFormer [18] model autoregressively encoded the long-term audio context information
and predicted a sequence of 3D face vertices.

End-to-End Methods End-to-end pipelines are designed to synthesize talking face sequences di-
rectly from the driving source using an end-to-end learning approach without the use of any inter-
mediary facial parameters. One of the first end-to-end frameworks was Speech2Vid [27] where an
image decoder sought to produce synthesized images based on fused speech and identity features,
with the latter being extracted from the reference image using an identity encoder, while the former
features are extracted from the driving audio using a respective audio encoder. Several GAN-based
approaches were proposed in an attempt to overcome the limitations of the aforementioned model.
Omne such approach is DAVS [185] which placed more emphasis on the extraction of disentangled
speech and identification features through supervised adversarial training. Apart from GANs, neural
radiance fields have also found success in this field. For example, AD-NeRF [59] utilized DeepSpeech
audio features as a conditional input so as to learn an implicit neural scene representation function
that maps audio features to dynamic neural radiance fields for talking face rendering.

10



1.7. THESIS OUTLINE

1.7 Thesis Outline

In this final section of the introductory chapter, we briefly describe the structure as well as the
topics which will be discussed throughout the remaining chapters of the current thesis.

Chapter 2 lays the theoretical foundations regarding generative modeling, as a whole. More specif-
ically, we present the structure and features of all major, practical and modern generative frameworks,
including GANSs, Variational Autoencoders (VAEs), Energy-based models (EBMs), Autoregressive as
well as Flow-based models. Furthermore, the necessary mathematical background is going to be es-
tablished with the aim of obtaining a clearer insight of the functionalities of all the aforementioned
modules.

Chapter 3 dives deeper into diffusion models, exploring all of their variants in both continuous and
discrete time formulations, with emphasis laid on the latter. There we will also touch upon vector
quantization and perceptual image compression, subjects which will prove useful in the context of
building lightweight and resource-efficient diffusion models.

Moving on, Chapter 4 constitutes our main case study where we explicitly tackle the problem of
image-based face reenactment, on the basis of the largest available, most challenging and emotionally
annotated face dataset. We operate diffusion models in a deterministic manner, achieving near cycle
consistency between source and target images. Moreover, we adapt a language-image pre-trained
model with the sole purpose of directly finetuning diffusion models in latent space. We conduct
extensive experiments so that our proposed methodologies are evaluated in terms of both objective
metrics as well as subjective studies.

Chapter 5 aims at extending diffusion-based generative techniques in dynamic video settings. More
specifically, we tackle the task of talking face synthesis. We conduct extensive ablation studies on
the basis of the MEAD dataset. To the best of our knowledge, we propose the first proper finetuning
methodology for better lip-synching based on guidance from a lip reading expert network.

Finally, Chapter 6 completes our thesis with the inclusion of conclusive remarks and potential
directions for future work.
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Chapter 2

An Overview of Generative Models

Given observations of samples x, the goal of a generative model is to learn to approximate the
true data distribution pgata (), so as to be able to generate new, “synthetic” samples & ~ pg(&) at
will. There are several well-established directions in current literature, such as Generative Adver-
sarial Networks, Variational Autoencoders, Energy-Based, Autoregressive models and Normalizing
Flows. We proceed with a brief and high-level introduction of the core concepts behind each of the
aforementioned families of generative models. For guidance throughout this process, we also consult
[16, 82, |. For simplicity, we assume vectorized input and latent representations, unless specified
otherwise.

2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [55] consist of two networks, a discriminator D : R™ —
[0,1] which estimates the probability that a sample comes from the data distribution @ ~ pgata (),
and a generator G : R™ — R"™ which given a latent variable z ~ p.(z) captures pgata by tricking the
discriminator into thinking its samples are real. This is achieved through adversarial training of the
networks: D is trained to correctly label training samples as real and samples from G as fake, while
G is trained to minimise the probability that D classifies its samples as fake. This can be formulated
as a two-player mini-max game between D and G, optimizing the value function V (G, D):

m(%n max V(G,D) = Egrpypa(alog D(x)] + E.ep (2 [log(1 — D(G(2)))] (2.1)

For a fixed G, the objective for D can be reformulated as follows:
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We recognize in the previous expression the Jensen—Shannon divergence between the model’s distri-
bution and the data generating process. Since the JS-divergence between two distributions is always
non-negative and zero only when they are equal, we have shown that V* = —log4 is the global mini-
mum of V(G) and that the only solution is py = pdata, 1-€., the generative model perfectly replicating
the data generating process.

GAN training is known to be notoriously hard, with vanishing gradients and mode collapse con-
stituting the most common problems. Since the cause of these issues can be linked with the use
of JS-divergence, other loss functions have been proposed, with the most notable being WGAN [4],
LSGAN [102], EBGAN [183] and InfoGAN [23].
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2.1. GENERATIVE ADVERSARIAL NETWORKS

2.1.1 Wasserstein GAN

Wasserstein GAN (WGAN) training is guided through the minimization of a reasonable and effi-
cient approximation of the Earth-Mover (EM) or Wasserstein-1 distance. The EM distance between
the real data distribution pgata and that of generated data p, is defined as follows:

W(paata, pg) = inf Byl —yll (2:3)

v€EIl(pdaata,pg)

where II(pqata, pg) denotes the set of all joint distributions y(x,y) whose marginals are pgata and py,
respectively. Intuitively, EM distance indicates how much “mass” must be moved to transform one
distribution into another. It is intractable to exhaust all the possible joint distributions in II(pqata, Pg)
while calculating the infimum in Eq. (2.3), thus a smart transformation of the objective was proposed,

based on the Kantorovich-Rubinstein duality theorem [169]:
min. max Bop,. (@) [fu(@)] — Eznpiz) [fw(ge(2))] (2.4)
I fuwllL <K

where { fu }wew is a family of parameterized K-Lipschitz functions corresponding to the discrimina-
tor, while gg denotes the generator who aims at minimizing the value function w.r.t. its parameters
6. Numerous approaches have been proposed with the aim of enforcing K-Lipschitz continuity to the
discriminator function fo,, with the simplest one being gradient clipping. Most notably, WGAN-GP
[58] enforced 1-Lipschitz continuity by penalizing the model if the gradient norm of f,, deviated from
its target value of 1.

Optimizing the Wasserstein distance offers linear gradients, thus eliminating the vanishing gradient
problem. Moreover, it is equivalent to minimizing reverse KL-divergence, providing improved stability
while training.

2.1.2 Least Squares GAN

Regular GANs adopt the sigmoid cross entropy loss function for the discriminator. This loss
function is susceptible to the problem of vanishing gradients when updating the generator using the
fake samples that are on the correct side of the decision boundary, but are still far from the real data.
Least Squares Generative Adversarial Networks (LSGANSs) provide remedy for the aforementioned
problem. Let a,b be continuous coded labels for fake data and real data, respectively. The LSGAN
objective functions are defined as follows:

. 1 o, 1 2

len VLSGAN (D) = iEwdiata(w) [(D(a}) - b) ] + i]Eszz(z)[D(G(z)) - a’) } ( )
2.5
) 1

min Visean(G) = iEZNPz(Z) [D(G(2)) — ¢)?]
where ¢ denotes the value that the generator wants the discriminator to believe for fake data. Unlike
regular GANs, which cause almost no loss for samples that lie a long way in the correct side of
the decision boundary, LSGANs will penalize those samples even though they are correctly classified,
which in turn results in more gradients being generated, alleviating the problem the vanishing gradient
problem.

2.1.3 Energy-Based GAN

Instead of designing a discriminator similar to a classifier, in the context of Energy-Based GANs
(EBGAN), the discriminator uses an autoencoder which extracts latent features of the input image
using an encoder and reconstructs it again through a decoder. This discriminator D outputs the
reconstruction error (MSE) between the input image x and its reconstruction &. The autoencoder is
trained using real images and as a result, for a poorly generated image, the reconstruction error is
expected to be high. The EBGAN loss functions are the following;:

Lp(x,z) = D(x) + [m — D(G(2))]"

Le(z) = D(G(a)) (26)
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Therefore, the discriminator is trained with two goals in mind; having low reconstruction error D(x)
for real images and the reconstruction error for generated images to be higher than a predefined
threshold m. The generator is simply trained with the aim of lowering the reconstruction error for
generated images.

2.1.4 Information Maximizing GAN

The Information Mazimizing GAN (InfoGAN) is a type of generative adversarial network that
modifies the GAN objective to encourage it to learn interpretable and meaningful representations in
a completely unsupervised manner. This is done by maximizing the mutual information between a
fixed small subset of the GAN’s noise variables and the observations.

Formally, InfoGAN is defined as a minimax game with a variational regularization of mutual
information and the hyperparameter \:

ICI,‘HCEI mgx ‘/InfoGAN (Dv Ga Q) = V(D7 G) - )‘CI(Gv Q) (27)

where V(D, G) is the standard GAN objective, L1 denotes the variational lower bound of the mutual
information between the latent code ¢ and generator distribution G(z,¢), while @ is an auxiliary
distribution that approximates the posterior p(c|x).

2.2 Energy-Based Models

Energy-Based Models (EBMs) are based on the observation that any probability density function
p(x) for & € R™ can be expressed in terms of an energy function Fg(x) : R™ — R which associates
realistic points with low values and unrealistic points with high values. It is relatively straightforward
to extend the models and estimation procedures to the case with multiple dependent variables, or
with conditioning variables. The density given by an EBM is:

_exp(—Fol@) _ exp(—Eo(x))
Pol®) = T = Top (Bola)) da

(2.8)

where Fg(x) is a nonlinear regression function with parameters 6. Since the denominator in Eq.
(2.8) is a function of O, evaluation and differentiation of logpe(x) w.r.t. its parameters is in-
tractable. Let pgata(x) be the underlying data distribution of a given dataset. Then, pg(x) can
be fitted to pgata(x) by maximizing the expected log-likelihood function over the data distribution,
ie. Epepyun(@ llogpe(z)]. The likelihood of an EBM cannot be directly computed due to the in-
tractable normalizing constant Zg. However, the gradient of the log-likelihood can be estimated
utilizing MCMC approaches and allowing for log-likelihood maximization with gradient ascent. The
gradient of the log-probability of an EBM decomposes as a sum of two terms:

Vg logpg(a:) = 7V9E9 - Vg log Zg (29)

The challenge in Eq. (2.9) is to approximate the second gradient term. This gradient term can be
rewritten as the following expectation:

Velog Zg = Vg log/exp (—Eg(x)) dx = fj?:;;?_(;f&(;)giw

= [P v, By@) e = [ o(a)(-VoFo(a)) do

= Egpo(a) [~ Vo Lo(x)]

Therefore, a one-sample unbiased estimate of the log-likelihood gradient can be obtained using
Veolog Zg = —VgEg(), where & ~ pg(x), provided that it is possible to draw random samples
from the EBM. A method for efficient MCMC sampling from EBMs known as Langevin MCMC [57,

|, makes use of the fact that the gradient of the log-probability w.r.t. x, i.e. the score, is equal to
the negative gradient of the energy:

(2.10)

Vezlogpe(x) = —VeEg — VglogZg = -V Eg (2.11)
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2.2. ENERGY-BASED MODELS

When using Langevin MCMC to sample from pg, an initial sample x is first drawn from a simple
prior distribution, and then a Langevin diffusion process for K steps with step size ¢ > 0 is simulated
as follows:

2
D) (R 4 % Valogpe(x™) +ez® 2 < N(0,1), ke K] (2.12)
—_————

—VazFEe

When € — 0 and K — oo, %) is guaranteed to distribute as pg under some regularity conditions.

2.2.1 Diffusion Models as Energy Based Models

As we will later discuss in Chapter 3, the sampling procedure of Denoising Diffusion models [65,

|, is functionally similar to that of EBMs. At a timestep ¢, in diffusion models, images are updated
using a learned denoising network eg(x¢,t), while in EBMs, images are updated using the gradient
of the energy function VxFEg(xt) x Vx logpe(x:), as indicated by Eq. (2.12). The denoising network
€o(x¢,t) is trained to predict the underlying score of the data distribution when the number of
diffusion steps increases to infinity [153]. Similarly, an EBM is trained so that VxFEg(x;:) corresponds
to the score of the data distribution as well. In this sense, €g(x;,t) and VxFg(x;) are functionally
the same and a trained diffusion model can be regarded as an implicitly parameterized EBM.

2.2.2 Score Matching

Although Langevin MCMC has allowed EBMs to scale to high dimensional data, training times are
still slow due to the need to sample from the model distribution. If two continuously differentiable real-
valued functions f(x) and g(x) have equal first derivatives everywhere, then f(x) = g(x) + constant.
When f(x) and g(x) are log-probability density functions (PDFs), then the normalization requirement
implies that [exp(f(x))de = [exp(g(x))de =1, hence f(x) = g(x). As a result, one can learn an
EBM by matching the first derivatives of its log-PDF (score) to the first derivatives of the log-PDF of
the data distribution. For training EBMs, it is easy to transform the equivalence of distributions to the
equivalence of scores, because the score of an EBM can be easily obtained by V logpg(x) = —VEg
(Eq. (2.11)).

Assuming pgata () is the underlying data distribution from which we have a finite number of i.i.d.
samples. The score matching objective involves minimizing the Fischer divergence:

1
Dp(paata(®) || po(x)) = Ep,.,..(2) §I|Vm 10g Pdata(T) — Vz log pe(x)|3 (2.13)

The expectation w.r.t. pqata(x) admits a trivial unbiased Monte Carlo estimator using the empirical
mean of samples & ~ pyata(x). However, the data score function is usually not available and various
methods exist to bypass it. Using integration by parts [70], the intractable term Vg log pgata(x) can
be replaced with the second derivatives of Fg(x) at the price of increased computational complexity,
as the computation of second derivatives is quadratic w.r.t. to the dimensionality of the input.

2.2.3 Denoising Score Matching

The SM objective described in Eq. (2.13) requires that Vg 1og paata(x) is continuously differen-
tiable and finite everywhere, which is not the case in practice. Denoising Score Matching (DSM)
[170] aims at alleviating this difficulty by approximating the score using corrupted data samples
& = x + €. As long as the noise distribution p(e) is smooth, the resulting noisy data distribution
q(Z) = [ q(&|x)paata(x) de is also smooth, and thus Dp(q(Z) || pe(€)) constitutes a proper objective.
It holds that:

Dr(a(@) | 70(&) = Eyo) |3V 108 4(2) - T log (@[]

, (2.14)
= Eq(|x) {QHVQJ log q(Z|x) — Vg 10gpg(i)|§:| + constant
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CHAPTER 2. AN OVERVIEW OF GENERATIVE MODELS

When ¢(Z|z) = N(Z; z,0%I) and o ~ 0, the DSM objective becomes:
- - 12 2
Dr(a(@) || Po(@)) = Epyrs(Bxzon | 5]|= + Valogpa(@ +02) |

. i 2 (2.15)
2N =1

(4) : ,
4 V. logpe(x®) + 02®)
o

2
where {x(}N R Pdata(x) and {zO}N BN N(0,I). The major drawback of adding noise to
data arises when pgata () is already a well-behaved distribution that satisfies the required regularity
conditions. In this case, DSM is not a consistent objective because the optimal EBM matches the
noisy distribution ¢(&) and not pgasa(x).

2.2.4 Sliced Score Matching

By adding noise to data, DSM avoids the expensive computation of second-order deriva- tives.
However, DSM does not give a consistent estimator of the data distribution, i.e., one cannot directly
obtain an EBM that exactly matches the data distribution even with unlimited data. Sliced Score
Matching (SSM) [151] is an alternative to DSM that is both consistent and computationally efficient.
Instead of minimizing the Fisher divergence between two vector-valued scores, SSM randomly samples
a projection vector v, takes the inner product between v and the two scores, and then compare the
resulting two scalars. More specifically, SSM minimizes the following divergence called the sliced
Fisher divergence:

1 2
Dsr(paata(®) || po(x)) = Epy,pa () Ep(o) §(UTV:L- 10g Paata() — v Vz logpa(z)) (2.16)

where p(v) denotes a projection distribution such that E,,)[vv '] is positive definite.

2.3 Variational Autoencoders

One of the key problems associated with EBMs is that sampling is far from straightforward and
can require a significant amount of time. To circumvent this issue, it would be beneficial to explicitly
sample from the data distribution with a single network pass.

2.3.1 Evidence Lower Bound

In the Variational Autoencoder (VAE) setting, we think of the observed data x as represented
or generated by an associated unseen latent variable z. The latent variables and the observed data
are modeled by a joint distribution p(x, z). As discussed earlier, likelihood-based approaches aim at
maximizing the likelihood p(x) of all observed x. In this case, this either involves integrating out all
latent variables z:

p(x) = /p(sc,z)dz (2.17)

p(x) = (2.18)

The above requirements make direct computation and maximization of the likelihood p(x) inherently
difficult. However, using Eq. (2.17) and (2.18), a term called the Evidence Lower Bound (ELBO)
can be derived, which as its name suggests, is a lower bound of the evidence (log-likelihood of the
observed data). Given a flexible approximate variational distribution gg(z|x) with parameters ¢
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which we seek to optimize, the ELBO can be derived as follows:

logp(a) = logp(z) [ ao(=}o) = ([aotzmiaz=1) @9

— [togp@)aa(zlo) az (2.20)
= Ey,(z2)[log p(x)] (Def. of expectation) (2.21)
= By (zfa) og i(élj))} (Eq. (2.18)) (2.22)
= Eutrn |8 i o2
e ] 3
= Eq,(z]2) :log qp:ivz,;)) + Dx1.(ge(z]z) || p(2|2)) (Def. of KL divergence) (2.25)
> By, (2|a) :log 5;22;)) (KL divergence > 0) (2.26)

Maximizing the ELBO becomes a proxy objective with which to optimize a latent variable model;
in the best case, when the ELBO is powerfully parameterized and perfectly optimized, it becomes
exactly equivalent to the evidence. In the default formulation of the VAE [¢1], the ELBO is directly
maximized. This approach is variational, because we optimize for the best g4(2|x) amongst a family
of potential posterior distributions parameterized by ¢. The ELBO term can be further dissected:

p(z.2)] _ polel(z)
q¢<z|w>] = Fag(elo) [1 B golale) ]
= By, (z|x)[log pe(x|2)] — DxL(qg(z|x) || p(2)) = Lo,¢(x)

E lo

where gg(z|x) can be thought as an encoder function and pg(x|z) is a deterministic decoder function
that converts a given latent vector z into an observation @. The encoder of the VAE is commonly
chosen to model an isotropic multivariate Gaussian and the prior is often selected to be a standard
multivariate Gaussian:

q¢(zlw) = N'(z; pg (), o31), p(z) = N(z;0,1) (2.28)
Given a dataset D with i.i.d. data, the ELBO objective is the sum (or average) of individual-datapoint
ELBOs:
Loy(D)= > Log(x) (2.29)
xcD

Unbiased gradients of the ELBO w.r.t. the generative model parameters 8 are simple to obtain:

VoLo,p(T) = VoEy, (zx)[logpe(x, 2) — log qe(z|x)]
= Eq,(zlx)[Ve(logpe(z, z) —log g (2[z))]
~ Vo(logpe(x, Z) — log gy (2|x))
= Vo log pe(x, 2)

(2.30)

where 2 ~ ¢4(2z|x). Unbiased gradients w.r.t. the variational parameters ¢ are more difficult to
obtain, since the ELBO’s expectation is taken w.r.t. the distribution g4 (z|x), which is a function of
@. In the case of continuous latent variables, a reparameterization trick can be used for computing
unbiased estimates of Vg ¢Lg,5().

2.3.2 Reparameterization trick

The reparameterization trick rewrites a random variable as a deterministic function of a noise
variable. This allows for the optimization of the non-stochastic terms through gradient descent. The

17



CHAPTER 2. AN OVERVIEW OF GENERATIVE MODELS

random variable Z ~ g4 (2|x) can be written as:

2= g(e, d,2) (2.31)
where the distribution p(€) of random variable is independent of = or ¢, e.g., N(0,I). The ELBO
can be rewritten as:

Lo.¢(x) = Eq,(2]2) [l0g po (e, 2) — log g¢(2|x)]

(2.32)
= Ep(e) [logpg(;c,z) —logq¢(z|m)], z :g(€7¢7w)

As a result we can form a simple Monte Carlo estimator Lg 4(z) of the individual-datapoint ELBO
where we use a single noise sample from p(e):

€~ p(e)
z=g(e ¢, x) (2.33)
Lo p(x) = logpe(x, z) — log 44 (2| )

In addition, the gradient Vg,¢£~9,¢(m; €) is an unbiased estimator of the exact single-datapoint ELBO
gradient when averaged over noise € ~ p(€):

Epe)[Vo.pLo.o(@;€)] = Epye)[Vo.g(logpe(x, 2) — log g¢(2|T))]
= V97¢Ep(€) [logpg (:I), Z) — log q¢(z|w)] (2.34)
= Ve,¢Lo,6()

2.3.3 Hierarchical VAE

A Hierarchical Variational Autoencoder (HVAE) [117] is a generalization of a VAE that extends to
multiple hierarchies over latent variables. In the general HVAE formulation, each latent can condition
on all latents from previous hierarchical levels. In the context of this study, all latent transitions down
the hierarchy will be Markovian, i.e., decoding each latent z; only conditions on previous latent z;1.
The joint distribution and posterior of an Markovian HVAE, with T hierarchical levels, are:

T
p(x, z1.7) = p(zr)pe(x|21) ]‘[pe<zt_1|zt)
T

49 (z1rl) = 4o (21|2) [ | 0 (2il2e-1)

(2.35)

In this case, ELBO derivation becomes:

logp(z) = 10g/p($7Z1:T)dz1:T

:log/p(ﬂf,zlzT)%(Zl:T@) d
qp(z1.7|T)

1.T

M] (2.36)

q¢(z1;T|:c)
p(ﬂ% Z1:T) ]
9o (z1.7|2)

=10gEqy(21.72) [

2 Egy(z1.rl2) [log (Jensen’s inequality)

2.4 Autoregressive Generative Models

In the setting of autoregressive generative models [1 1], we again assume that we are given access
to a dataset with n-dimensional datapoints @ that can be decomposed in terms of their components
as & = xy1,Ta,...,Ty,. For simplicity, we assume the datapoints are binary, i.e. € {0,1}". By the
chain rule of probability, we can factorize the joint distribution over the n dimensions as follows:

n n

p(x) = p(ay,za,...,x,) = 1_[]9(901-|9017 Xoy.ooy Timg) = Hp(xi|w<i) (2.37)
i=1 i=1
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Unlike GANs and EBMs, it is possible to directly maximize the likelihood of the data by training a
recurrent neural network to model p(x;|x<;) and by minimizing the negative log-likelihood:

—logp(x) = *Zlogp(xikﬂl,@w~~a$i—1) (2.38)
i=1

The chain rule factorization can be expressed graphically as a Bayesian network. Such a Bayesian
network that makes no conditional independence assumptions is said to obey the autoregressive prop-
erty. The term autoregressive originates from the literature on time-series models where observations
from the previous time-steps are used to predict the value at the current time step. If we allow for ev-
ery conditional p(z;|x<;) to be specified in a tabular form, then such a representation is fully general
and can represent any possible distribution over n random variables. However, the space complexity
for such a representation grows exponentially with n. This is because in order to fully specify this
conditional, we need to specify a probability for 27! configurations of the variables x1, o, ..., Tn_1.
Since the probabilities should sum to 1, the total number of parameters for specifying this conditional
is given by 2"~! — 1. Hence, a tabular representation for the conditionals is impractical for learning
the joint distribution factorized via chain rule.

In an autoregressive generative model, the conditionals are specified as parameterized functions
with a fixed number of parameters. That is, we assume the conditional distributions p(z;|z<;) to
correspond to a Bernoulli random variable and learn a function that maps the preceding random
variables x1,x2,...,2;_1 to the mean of this distribution. In the simplest case, we can specify the
function as a linear combination of the input elements followed by a sigmoid non-linearity (to restrict
the output to lie between 0 and 1). This gives us the formulation of a fully-visible sigmoid belief
network (FVSBN) [50]:

pla; = lxe;) = U(a(()i) + agi)xl +-F agi_)lxi,l) (2.39)

where {al(;)};::lo denote the parameters of the mean function. One approach to build more expressive
autoregressive models is to mask the weights of simple multilayer perceptron (MLP) autoencoders so
as to satisfy the autoregressive property. The neural autoregressive density estimator (NADE) [90]
which can be viewed as a mean-field approximation of a restricted Boltzmann machine, achieves this
for binary data by placing time-dependent masks on an MLP with one hidden layer. Specifically, at
time step 4, weights are masked so that the entire hidden state h; and output p(z;|x<;) are dependent
only on x;; formally this can be defined as follows:

hi=0c(W.cizei+c), pla;=1w)=0c(W, hi+b) (2.40)
where W. ; € R**(=1) denotes the first i — 1 columns of the shared weight matrix W, ¢ € R?,
bc R"and h; € R?, 1 <i <n. RNADE [167] generalises NADE to real valued data by instead
modeling p(x;|x ;) with mixture distributions parameterised by the network. An alternative masking
procedure known as MADE [54] allows for parallel density estimation by placing a mask fixed over
time on an MLP so that no connections exist between p(z;|x<;) and x>;.

Apart from RNNs and their variants such as LSTMs and GRUs which constitute a natural archi-
tecture for implementing autoregressive models, CNNs also provide an alternative approach in the
form of causal convolutions. PixelCNN [166], PixelCNN++ [134] and PixelSNAIL [24] are notable
realizations of convolutional generative autoregressive models.

While autoregressive models are extremely powerful density estimators, sampling is inherently a
sequential process and can be exceedingly slow on high dimensional data. Additionally, data must be
decomposed into a fixed ordering; while the choice of ordering can be clear for some modalities (e.g.
text and audio), it is not obvious for others such as images and can affect performance depending on
the network architecture used.

2.5 Normalizing Flows

While training autoregressive models through maximum likelihood offers plenty of benefits in-
cluding stable training, density estimation, and a useful validation metric, they still suffer from slow
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sampling speed and poor scaling properties. Normalizing Flows [35, | are a technique that also
allows exact likelihood calculation while being efficiently parallelizable as well as offering a useful
latent space for downstream tasks.

Let z € RP be a random variable with a known and tractable probability density function p,(z).
Let g be an invertible function and @ = g(z). Then using the change of variables formula, the
probability density function of the random variable & can be computed:

Pa(®) = p.(f(2))|det(DE ()|

) (2.41)
= p:(f(=))|det(Dg(f(x)))]

where f is the inverse of g, Df (x) = % denotes the Jacobian of f, while Dg(z) = g—;’ is the Jacobian
of g. The new density function p,(x) is called a pushforward of the density p, by the function g and
denoted by g,p.. In order to generate a data point @, one can sample z from the base distribution
and then apply the generator * = g(z). The inverse function f moves in the so called normalizing
direction, transforming a complicated and irregular data distribution into a simpler, more regular
form, denoted by p,. In practice, p, is chosen as a standard normal distribution.

Intuitively, if the transformation g can be arbitrarily complex, one can generate any distribution
p, from any base distribution p, under reasonable assumptions on the two distributions. Construct-
ing arbitrarily complicated non-linear invertible functions (bijections) can be difficult. By the term
Normalizing Flows people mean bijections which are convenient to compute, invert, and calculate
the determinant of their Jacobian. One approach to this is to note that the composition of invertible
functions is itself invertible and the determinant of its Jacobian has a specific form. Let, g1,g2,...,gn
be a set of N bijective function and define g = gnyogn_10---0g; to be the composition of those func-
tions. It can be shown that g is bijective with the corresponding inverse being f = fo---ofy_10fn.
The determinant of the Jacobian of f becomes:

N N
det(Df) = det ( II Dfi> = [ [ det(Df;) (2.42)

Thus, a set of nonlinear bijective functions can be composed to construct successively more compli-
cated functions.

2.5.1 Density Estimation and Sampling

The natural and most obvious use of normalizing flows is to perform density estimation. Without
loss of generality, let gg be a single flow parameterized by 6, while the base density p, is parameterized
by ¢. Given a set of data observed from a data distribution D = {;}},, then maximum likelihood
estimation of the parameters (8, ¢) can be performed:

M
IQ%X; log p- (f(i; 0); ¢) + log|det(DF) (x;; 0)| (2.43)

where the first term is the log-likelihood of the samples under the base density and the second term,
sometimes called the log-determinant or volume correction, accounts for the change of volume induced
by the transformation of the normalizing flows. Evaluating the likelihood of a distribution modelled
by a normalizing flow requires computing f and its log-determinant. Therefore, the efficiency of these
operations is particularly important during training.

Sampling from the data distribution, requires sampling from the base density p, and then evalu-
ating the inverse g, i.e., the generative direction. In that way, sampling performance is determined by
the cost of the generative direction. Even though a flow must be theoretically invertible, computation
of the inverse may be difficult in practice.

2.5.2 Normalizing Flow Layers

Normalizing Flows should satisfy several conditions in order to be practical: (i) They should be
invertible; g is needed for sampling, while f is needed for density estimation. (ii) They need to be
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sufficiently expressive to model the distribution of interest. (iii) Lastly, they need to be computation-
ally efficient, both in terms of computing f and g but also in terms of the calculation of the Jacobian.
In the remainder of current section, we will briefly present different types of flows and comment on
their properties.

Planar Flows

Planar flows [124] expand and contract the distribution along certain specific directions and take
the form:

g9(z) = z+uh(w'z +b) (2.44)

where u,w € R” and b € R, while h : R — R is a smooth non-linearity. The determinant of the
Jacobian for this transformation is:

det (gi) =det(Ip +ul/(w'z+bw') =1+k(w'z+bu'w (2.45)

which can be computed in O(D). There is no closed form for the inverse of this flow, which may not
even exist for certain choices of h(-) and parameter settings. Planar flows can be interpreted as a
multilayer perceptron with a bottleneck hidden layer with a single unit. Higher expressivity can be
achieved by stacking multiple planar flow layers. Sylvester flows remove the well-known single-unit
bottleneck from planar flows, making the latter much more flexible. They are defined as follows:

g(z) =2+ Uh(W'z +b) (2.46)

where U, W € RP*M b ¢ RM and h : RM — RM | with M < D. In this case, the determinant of
the Jacobian becomes:

det<ag> = det(ID + Udiag(h(WTZ + b))WT)

0z (2.47)

= det (I + diag(h(W 'z + b))W ' U)

where the last equality is due to Sylvester’s determinant identity, hence the name.

Coupling Flows
Let (za,zp) € RY x RP~4 be a dijoint partition of the input z € RP and h(-,0) : R — R? be a

bijection parameterized by 8. Then one can define a function g : R” x R by the formula:

A =h(z4;0(2p))
rp = ZB

(2.48)

where the parameters @ are defined by any arbitrary function ©(xp) which only uses xp as input.
This function is called a conditioner. The bijection h is called a coupling function and the resulting
function g is called a coupling flow. A coupling flow is invertible if and only if h is invertible and has
inverse:

za=h""(x;0(zp))

ZBp = IR

(2.49)

The Jacobian of g is a block triangular matrix where the diagonal blocks are Dh and the identity
matrix, respectively. Hence the determinant of the Jacobian of the coupling flow is simply the
determinant of Dh. The power of a coupling flow resides in the ability of a conditioner ©(xg) to be
arbitrarily complex. The initial partition can be done by splitting the dimensions in half, potentially
after a random permutation [35]. More sophisticated methods have also been used, such as “masked”
flows [30] and 1 x 1 convolutions [33].
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Autoregressive Flows Autoregressive models can also be used as a form of normalizing flow. Let
h(-,0) : R — R be a bijection parameterized by 0. Then an autoregressive model is a function
g : RP — RP which outputs each entry of & = g(z) conditioned on the previous entries of the input:

zy = h(2t; O1(21:4-1)) (2.50)

The Jacobian matrix of the autoregressive transformation g is triangular. Each output z; only de-
pends on 2y, and so the determinant is just a product of its diagonal entries, i.e., det(Dg) =

tD=1 %Z' Given the inverse of h, the inverse of g can be found with recursion as z; = h ™1 (x4; O4(21.4_1)).
Contrary to the above formulation, Inverse Autoregressive Flow (IAF) [31] outputs each entry of x

conditioned on its own previous entries:
Ty — h,(Zt, @t(mlzt_l)) (251)

One can see that the functional form of the IAF is the same as the form of the inverse of the regular
autoregressive flow. Therefore, computation of the IAF is sequential and expensive, but the inverse
of TAF can be computed relatively efficiently.

Residual Flows

Residual networks [(2] are compositions of the form:
g(z) =z+ h(z) (2.52)
where the residual block h(-) can be any feed-forward neural network. According to [10], the residual

connection described in Eq. (2.52) is invertible if ||h|; < 1. There is no analytically closed form for
the inverse, but it can be found numerically using fixed-point iterations. The specific architecture
proposed in [10], called iResNet, models the residual block as a CNN and constrains the spectral
radius of each convolutional layer to be less than one. Given that ||h||; < 1, the following hold:

Dg =1+ Dh, |det(I + Dh)| = det(I + Dh) (2.53)

Using the identity log det(A) = tr(log A), we get:

= t Dh
log det(Dg) = log det(I + Dh) = tr(log(I+ Dh)) = Y (~1)**! fr(Dh)* (2.54)
k=1

To efficiently compute each member of the truncated series, the Hutchinson trace estimator [(9] was
used. Instead of the latter, in [22], in a model called Residual Flow, the authors used the Russian
roulette estimator.

2.6 Unified View

Putting aside EBMs and autoregressive generative models, the four main contenders in the field
of generative modeling are: GANs, VAEs, normalizing flows and the most recent one, Denoising
Diffusion models. In general, GANs are known to generate high-quality samples rapidly, but they
have poor mode coverage. On the contrary, VAEs and normalizing flows cover data modes faithfully,
but they often suffer from low sample quality. Recently, diffusion models have emerged as powerful
generative models. They demonstrate surprisingly good results in sample quality, beating GANs [33]
in image generation. They also obtain good mode coverage, indicated by high likelihood [79, |
but sampling from them often requires thousands of network evaluations, making their application
expensive in practice. The latter will constitute the main subject of the current thesis. Fig. 2.1
illustrates the trilemma discussed above. Moreover, Fig. 2.2 provides an illustrative overview of
GANs, VAEs, normalizing flows, as well as diffusion models, which will be covered in more detail in
the upcoming chapter.
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2.6. UNIFIED VIEW
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Figure 2.1: Generative learning trilemma. Source: [176]
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Figure 2.2: Overview of GANs, VAEs, Flow-based and diffusion-based models. Source: https://lilianweng.github.
io/posts/2021-07-11-diffusion-models/
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Chapter 3

Diffusion Models

In the current chapter we will try to establish the theoretical foundations regarding Diffusion Mod-
els (DMs) in the context of generative modeling, as well as accurately describe the basic architectures
which will later constitute the building blocks of our own computational models. Diffusion models
are generative models that produce samples by inverting a corruption process. The corruption level
is typically indexed by a time ¢, with ¢ = 0 corresponding to clean and ¢ = 1 to fully corrupted images
(continuous case). The diffusion process can be discrete or continuous. The two general classes of
diffusion models are Score-Based Models [119, ; | and Denoising Diffusion Probabilistic Mod-
els (DDPM) [65, ]. In context of this study, we will mostly focus on the latter. For guidance
throughout this process, we also consult [28, |

3.1 Denoising Diffusion Probabilistic Models

DDPM can be thought as variants of a Markovian HVAE that abide by the following three
restrictions:

e The dimensionality of the latents matches that of the data.

e The distribution of the latent encoder is predefined as a linear Gaussian model centered around
the output of the previous timestep.

e The parameters of the latent encoders vary over time in such a way that the distribution of the
latent at the final timestep T is a standard Gaussian.

True data samples and latents can be jointly represented using the x; notation, where ¢ = 0 cor-
responds to true data samples and ¢ € [1,T] corresponds to latents with hierarchy indexed by t.
The Markov property between subsequent latent transitions implies that the DDPM posterior (for-
ward/noising process) can be written as follows:

T
g(x1rixo) = [ [ alxelxi 1) (3.1)
t=1
Encoder transitions are of the form:
q(xt|xt—1) = N(x¢; Varxi—1, (1 — a)I) (3.2)
The noise schedule a; is either fixed [05] or learnable [109] and evolves over time so that the distribution

of the final latent is standard normal, i.e., x7 ~ N(0,I). The joint distribution pg(xo.7) is called the
reverse process and is defined as a Markov chain with learnable mean and variance parameters:

T

po(xo:r) = po(xr) [ [ Po(xe-1lx),  po(xe-1lxt) = N(xt—1; pro (1, 1), B(xs, 1)) (3.3)

As the linear Gaussian models in the forward process are fixed, the conditionals pg(x;—1|x:) constitute
the sole learnable parameters in the DDPM setting.
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3.1. DENOISING DIFFUSION PROBABILISTIC MODELS

Encoder transitions can be rewritten as q(x¢|x:—1) = q(X¢|x¢—1,X0), where the extra conditioning
term x( is rendered redundant due to the Markov property. Using the Bayes rule, each transition
can also be rewritten as follows:

q(x¢—1]x¢, X0)q(x¢|X0)
q(x¢—1]%0)

q(x¢[x¢—1,%0) = (3.4)

Similarly to what we’ve discussed in section 2.3, DDPM can be optimized by maximizing the following
ELBO:

log p(x) = log / p(x0:7) dx1.7 (3.5)
:log/p(XO:T)Q(Xl:T|XO) dxpp (3.6)
Q(Xl:T|X0)
p(XO:T) ]
=logE, ix:ix) | ———— 3.7
S Eq(x1.r| 0)|:Q(X1:TXO) (3.7)
[ p(XO:T) :|
> Ey ey | Tog —2X0T) 3.8
2 Eq(xy.11x0) (X1 [%0) (3.8)
T
p(xr) [T, Po(xt—1]x¢)
= Eq(iurleo) | l0g =gttt (3.9)
thl Q(Xt‘xtfl)
p(xr)pe(xolx1) [T;_s Po(x¢—1]x:)
:EQ(XI:TIXO) T =2 (310)
q(x1|x0) [T;—q a(xe[xt-1)
p(XT)pe(X0|X1) HT: pe(Xt—l\Xt)
:EQ(X1;T|XU) T =2 (3.11)
Q(X1|X0)HtZQQ(Xt\Xt—hXO)
T
p(x7)pe(Xo|x1) po(Xi—1/X:) ]
— By | Jog PXTPOXOIXY) o T PoG1Xe) 3.12
Rl e RN PR R § PTEA e (312
_ T
B p(x7)pe(Xo|x1) Po(Xt—1X¢)
= Eate i | log == T3 +log | [ e msetote (3.13)
t=2 q(x¢—1]x0)
T
p(XT)Pe(X0|X1) Q(X1|X0) pG(Xt—1|Xt) }
— By i | log PETPOXOXL) 0 LXLIX0) ), TT LOAXE1IXE) 3.14
aterlxo) | 108 =0 Ty aCerleo) B L G0 o) 319
- T
= Ey(x1,r/x0) 10gp—(XT)p0(XOIX1) Poli-alxe) ] (3.15)
q(x7[%0) —2 q(x¢—1[x¢, Xo)
p(x7)
= EQ(xﬂxo)[logPG(XOIXl)] + IEq(xq"lxo) |:10g Q(XT|XO):| (3.16)
- po(x:_1[xt)
ES B [10 m}
; a(oxe—1,%¢x0) gﬂ](xt—l\xt,xo)
= Eq(x,|x0)[10g Po(x0|x1)] — Dxr(q(x7[%0) || p(x7)) (3.17)
T
= Eqiser o) [Pxu(a(xe—1 %1, %0) || po(xi-11%1))]
t=2

This formulation also has an elegant interpretation, which is revealed when inspecting each individual
term:

o Eq(x,|x0)[10g Po(X0[x1)] can be interpreted as a reconstruction loss that can be approximated
and optimized using a Monte Carlo sampling.

o Dki(q(xr|x0) || p(x7)) measures the distance between the final noisy version of the initial input
and the standard normal prior. It has no trainable parameters and is ideally equal to zero.
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CHAPTER 3. DIFFUSION MODELS

o Egixrixo) [PrL(q(X¢—1[X¢,X0) || po(x¢—1|x¢))] can be interpreted as a denoising matching term
as it measures the distance between the learnable denoising transition step pg(x;—1|x) and the
ground-truth denoising transition step q(x;—1|x¢,Xo). The term q(x;_1|x¢,X0) acts as a ground-
truth signal, since it defines how to denoise a noisy image x;, given its initial, noise free version
XQ-

By making further use of the Bayes rule, we get:

q(Xt\Xt—h XO)Q(Xt—1|XO)
q(x¢[x0)

q(x¢—1|x¢,%x0) = (3.18)

The Markov property implies that q(x¢|x;—1,%0) = q(x¢|x¢—1) = N(x¢; Jarx¢—1, (1 — az)I). Next, we
need to derive a formula for calculating the ¢(x;—1|x0), ¢(x¢|x0) terms, based on the fact that DDPM
transitions are linear Gaussian models. Using the reparameterization trick described in section 2.3.2,
samples x; ~ q(x¢|x;—1) can be rewritten as:

Xt = Varxi—1 + V1 — ase, e ~N(0,1I) (3.19)

We repeatedly apply the reparameterization trick for all transitions g(x¢—1|x¢—2), ..., q(x1|x0), given

. . iid. . . .
access to noise variables {e;, €; }7_, "~ N(0,I), and derive the following recursive formula:

Xt = Vaxi—1 + V1 — aref (3.20)
= \/a(w/at_lxt_g + /1= at_let_l) +4+1— ate: (321)
= Vara_1xi—2 + Var (1 —ar—1)€er—1 + V1 — ar€f (3.22)

2 2 4
= \/atQt_1Xt—2 + \/(\/ at(l — at,l)) + (\/ 1-— Cbt) 6t72 (323)
= Jaa—1X4—o + /1 — arai_1€;_, (3.24)
= Jarar—1(\/0—2Xi—3 + /1 — ar_2€1_2) + /1 — ara,_1€;_, (3.25)
= \/ara;_104_9X¢—3 + \/atat—l(]- — at72)€t72 + +/ 1-— atat,16;k72 (326)
2 2
= /ara;_104_9X¢—3 + \/(\/atat—1<]- — at_Q)) + (\/ 1-— atat—l) € 3 (327)
= \/0t01—101—2%X¢—3 + /1 — arar_10:_2€;_3 (3.28)
=... (3.29)

= Vaxo + V1 — arel ~ N (x¢; Varxo, (1 — a;)1) (3.31)

Egs. (3.23) and (3.27) are derived based in the fact that the sum of independent normal variables is
normally distributed with a mean equal to the sum of their means and variance equal to the sum of
their variances.

Having specified all the distributions in the right hand side of Eq. (3.18), we can now proceed
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3.1. DENOISING DIFFUSION PROBABILISTIC MODELS

with calculating the form of g(x¢—1|x¢,X0):

Q(Xt|xt—17 XO)Q(Xt—1 |X0)

_ = 3.32
i xo) D (332
_ N (x5 /arxi—1, V1 — aD)N (x¢—1; v/@r—1%0, /1 — az_11) (3.33)

N (x4 /%0, /1 — @) '
el 2 s 2 e )2
xexp{ — L[ VA" | K1 = VEBiX0) (X = VarXo) (3.34)
2_ 1—CLt 1—&,5,1 l—at
1[(—2/arx;_1x; + a x> x2_, — 2\/a_1X0X¢—
- exp{ - 5 ( \/7 t]_ 1— ;t = 1) + ( = 1-— dttfl] = 1) + C(Xt7XO):| } (335)
17 2 - 2 2 2\/@ 1 XX
sexp| — L] L 2VOD ey X 2V XeXim (3.36)
2_ 1—at 1—at 1—at,1 1—at,1
1] at 1 2 Varxy  \/Gi_1Xo
= - = -2 _ 3.37
eXP{ 2_<1at+1at—1>Xt1 (1at+1dt—1 Xt (3:37)
1T 1—a, 5 Varxy | \/ai_1Xo
= — = -2 _ 3.38
eXp{ 2 T —a)d —arq) ! <1at T1oa ) (3.38)
1 1—ay 5 5 (@: + 1?1,5;_::10)(1 —ag)(1—az1) 530
P T\ Uma(—a) ) T 1-a X1l 0 (3:39)

.- \/@xt(l—&t_l)—k\/fﬂxo(l—at) (1—6@)(1—@15,1)
o(/\/( .y e = 1) (3.41)

— exp{ _ 1<1> |i%i1 _ 2@Xt(l - at—l) + \% C_Lt_1X0(1 B at)Xt_1] } (340)

The term C(x¢,%o) depends only on x;,x¢ and therefore is considered to be constant. At each

timestep, x;_1 is normally distributed with mean p,(x¢,%0) = ﬁxt(l*at’ll)jgt Goix0l=a0) and vari-

ance 3, (t) = o2 (t)I = %I. Therefore, in order to match the ground-truth transition step

q(x¢—1]|x¢,%0), po(x¢—1|x¢) should also be modeled as a Gaussian. In general, the KL divergence
between two Normal distributions My, V] in d dimensions is as follows:
1 det(El)

Dy (N || N1) = 2 log det(Xg)

+ (571 0) + (1 — o) " B7 (1 — pao) — d (3.42)

Let pg and g be the learnable mean and variance of pg(x;—1|x;) respectively. We can directly set
g (t) = 3,(¢t) for all . Maximizing the ELBO requires minimizing the denoising matching term in
Eq. (3.17):

argmin Dicr.(q(xe—1 ¢, %0) || po (x1—1 1)) (3.43)
= arginin Dy, (N (xt-1; 1, By) | N (115 1o, Za)) (3.44)
:argglin [tr(I) — d + (po — uq)TEgl(ug — 1g)] (3.45)
. -1

= arg;nln [tr(I) — d + (po — Hq)T(O'sI) (Bo — 1q)] (3.46)
o1

= argmin 5 [[lie — p1q 3] (3.47)

q

Eq. (3.47) implies that pe must exactly match the ground-truth mean, as expected. As pg only
conditions on x;, it can closely match p, by being set equal to:

Var (1 = ai—1)x¢ + ar—1(1 — a)&e (x4, 1)

1—a

Mo (x¢,t) = (3.48)
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Use variational lower bound
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Figure 3.1: The DDPM Markov chain of forward (reverse) noising process of generating a sample by slowly adding
(removing) noise. Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/. Inspired by [65].

where &g (x¢,t) denotes a neural network’s prediction of x¢ at noise level t. By substituting Eq. (3.48)
and p, into Eq. (3.47), the latter simplifies to:

1 dt_l(l — at)2

) a1 (1 —a) ) o 2
argmin —203 1 —a)? [l (xt,t) — xol[3] (3.49)
—argmin = ( — %=1 % Y [l1ge(xs, ) — x02]
2] 2 ]. — at,1 ]. - dt ’

By solving Eq. (3.31) w.r.t. the ground-truth xg, we get the following expression:

xg = 2T VL e (3.50)

Var
Plugging Eq. (3.50) into the ground-truth mean p,, we get an equivalent parameterization of the
objective (3.47) where a neural network ég(x:,t) learns to predict the source noise €y ~ N(0,I).
Hence, learning a DDPM by predicting the original input x( is equivalent to learning to predict the
noise; empirically, however, it has been found that predicting the noise results in better performance

[65, 79]. Fig. 3.1 illustrates the noising and denoising Markov chains within the DDPM mechanism.
Lastly, we mention a third equivalent interpretation of the DDPM training objective, based on
the score function Vy, log p(x;) and Tweedie’s Formula [10]. The latter states that the true mean of

an exponential family distribution, given samples drawn from it, can be estimated by the maximum
likelihood estimate of the samples, plus some correction term involving the score of the estimate.
In the case of just one observed sample, the empirical mean is just the sample itself. So, given a
Gaussian random variable z ~ N (u,, 3,) the following holds true:

Elp,|z] =z + £,V ,log p(z) (3.51)
Using Eq. (3.31), the true posterior mean of x; given its samples can be approximated as follows:
E[px, |x:] = x¢ + (1 — @)V, log p(x:) (3.52)
Substituting the true mean px, = \/a:xo back into Eq. (3.52), we get:

Vaixo = x¢ + (1 — ay) Vi, log p(x;)
x: + (1 — @t)Vx, log p(x¢) (3.53)
Va
Plugging Eq. (3.53) into the ground-truth mean p,, we get an equivalent parameterization of the
objective (3.47) where a neural network 8¢(x¢,t) learns to predict the score function Vi, logp(x:).
Combining Egs. (3.50) and (3.53), it can be shown that the source noise €y and the score function
Vx, logp(x¢) off by a constant factor that scales with time:
x; + (1 — @)V, log p(x¢) _ Xt~ V1 —ae

Vi-a

= Xg =

= Vy, logp(xt) = — €
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3.2. DENOISING DIFFUSION IMPLICIT MODELS

3.2 Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) [115] constitute a class of generative models trained
with denoising auto-encoding/score-matching objectives and are characterized by a non-Markovian
forward process. In the DDIM setting, samples can be uniquely determined from the latent variables,
hence DDIM have certain properties that resemble GANs. In the upcoming analysis, in order to be
consistent with the derivation in [143], we use the notation a; to represent the variable a@;. This is
equivalent with choosing a decreasing sequence aj.1 € (0, 1] with the following latent transition step:

q(X¢|xs-1) = N(Xt§ 1/ iXt—h (1 - )I) (3.55)
ar—1 at—1

DDIM are based on the following family of inference distributions indexed by a real vector o € Rgoz

T
Go (X1:7/%0) = o (xr|x0) | ] g (%¢-1 1%, %0) (3.56)
t=2

where ¢ (x7|%0) = N (X1, \/arX0, (1 — ar)I) and for all ¢ > 1:

Xt — /arX
Qo (Xt—1]%¢,X0) = N(vat—ﬂ(o =+ ( 1—a1 — U?) tlczoﬂt21> (3.57)
- Ut

The Gaussian mean function in Eq. (3.57) is chosen in such way so as to ensure that ¢, (Xt|xo) =
N (x¢, /azxg, (1 — a;)I), leading to a joint inference distribution that matches the desired marginals.
The corresponding forward process can be derived from Bayes’ rule:

o (Xt —1|Xt, X0) G0 (X¢[X0)
QO'(Xt—l |X0)

Qo (Xt|X¢—1,%0) = (3.58)

The aforementioned forward process, although it is Gaussian, it is no longer Markovian because each
x; depends on both x;_1 and x¢. The magnitude of o controls how stochastic the forward process is.

The trainable generative process is modeled so that given a noisy observation x;, a prediction
fo(x¢,t) corresponding to xg is made, which is then used to obtain a sample x;_; through the ground-
truth conditional distribution g, (x¢—1|X¢,X0). The model ég(x¢,t) attempts to predict the noise from
x; without knowledge of xo. Based on Eq. (3.50), the prediction of the denoised observation is defined

as follows:
— VT = ajéo(xe,t
fo(xt,t) := Xt a:éo(xi,t) (3.59)

Jar

The generative process is defined with a fixed prior pg(x7) = N (x7;0,I) and transition steps:

N(xo; fo(x1,1)),0%T) ift=1

3.60
Qo (Xt—1|x¢, fo(x¢,t))) otherwise (3.60)

pG(Xt71|Xt) = {

Combining Egs. (3.60) and (3.57), the DDIM sampling process becomes:

Xi_1 = \/ﬁ(xt - %é"(x“ﬂ) n (W) Eo(x¢, 1) + o€ (3.61)

where € ~ N(0,I) and ag := 1. Different choices for o result in different generative processes,
all while using the same model é(x;,t). When oy = /(1 —a;—1)/(1 — a)\/1 — az/a;—1 for all ¢,
then the forward process becomes Markovian, and the generative process becomes a DDPM, i.e., the
mean and variance in Eq. (3.57) become equal to the pq(x;,%0) and o2 (), respectively. Moreover,
when o, = 0 for all ¢, both the forward and reverse processes become deterministic. The resulting
model becomes an implicit probabilistic model [106]. When considering accelerated generation with 7
being an increasing subsequence of {1,...,T}, the variance hyperparameter is often parameterized as
or,(n) =ny/A—ar,_,)/(1 —ar,)\/1—ar,/ar_,. The latter notation will prove useful in simplifying
comparisons during experimentation with different variance hyperparameters o.
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When oy = 0, Eq. (3.61) can be considered as an Euler method to solve ODEs:

Xt—At Xt 1—ai—nt l—ag .
- — = — 4/ €o(xy,t 3.62
Vat—At /Ot ( at—At at ) (xe.t) ( )
To derive the corresponding ODE, we can re-parameterize w := v/1 — a/+/a and X := x/y/a. In the

continuous case, w and x are functions of ¢, where w : R>¢9 — R>( is continuous, increasing with
w(0) = 0. Then, Eq. (3.62) can be treated as a Euler method over the following ODE:

A% (t) = 2 (\/% t) duw(t) (3.63)

This suggests that with enough discretization steps, the above generation process can be reversed
(going from t = 0 to T), which encodes x¢ to x7.

3.3 Guidance

All discussion up to this point has been dedicated to learning the distribution p(x) of a given
dataset. However, it also useful to be able to learn conditional data distributions p(x|y) where y
denotes any kind of conditioning information, e.g., class labels. According to related literature, there
are two main methods for achieving this, namely Classifier Guidance [33] and Classifier-Free Guidance

[06]-

3.3.1 Classifier Guidance

Let py(y|x:) be a classifier that aims at classifying noisy images x¢, at various noise levels t.
According to [33], the corresponding conditional denoising process becomes:

P9,¢(Xt—1|xt7 Y) o po(X¢—1 |Xt)P¢(y\Xt—1) (3.64)

From the previous section, we know that pg(x;_1|x;) is normally distributed with mean pg(x;,t) and
covariance matrix 3g(x;,t). Assuming that log pe(y|x:—1) has low curvature compared to 3g(x¢,t)
(which is reasonable in the limit 7" — o0), the latter can be approximated using a Taylor expansion
around X;_1 = pg(x¢,t) (we drop dependence on x; and ¢ for simplicity):

log pg (y|xt—1) ~ logpg (ylxe—1)|,, ,_ .. + (Xe-1 — pe) T Viog pe(ylxi—1)|

122 Xt—1=Ho (365)

= (x4-1 — ug)Tg + constant

where g =V logp¢(y|xt,1)|xt71:“9. Substituting back into Eq. (3.64), gives:

1 _
10gp9,¢(xt—1|xt,y) o8 _§(Xt71 - lJ:e)ngl(th - Ne) + (Xt71 - He)Tg
1 _ 1
x _§(Xt—1 — po — Bog) Tyt (xi—1 — o — Tog) + §gT29g

o log p(z), z ~N(po + Xog, Xo)

(3.66)

Therefore, the conditional transition operator can be approximated by a Gaussian similar to the
unconditional transition operator, but with its mean shifted by Xgg. A gradient scaling factor ~y
can also be incorporated, i.e., 7V logp(y|x) o< Vlog p(y|x)?. As a result, the conditioning process
is still theoretically grounded in a classifier distribution proportional to p(y|x)?. When v > 1, the
latter becomes sharper than p(y|x), since larger values are amplified by the exponent. Consequently,
using larger gradient scale focuses more on the modes of the classifier, producing higher fidelity, but
potentially, less diverse samples.

Classifier guidance can also be applied in the DDIM setting. To this end, Eq. (3.54) will be put
in use, establishing the necessary connection between the conditional score function Vi, logp(x:|y)
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and the corresponding network’s noise predictions ég(x:|y) (we drop the time index ¢ for simplicity).
Using Bayes’ rule, we first notice that:

log p(x:|y) = log ‘IW = log p(y|x¢) + log p(x¢) — log p(y) (3.67)

= Vi, log p(x[y) = Vi, log p(ylx:) + Vx, log p(x¢)
Applying Eq. (3.54) in this case, results in the following formula for €g(x:|y):

1 1
B — B — Vg, 1
1 s Eg(Xt|y) mee(xt) + t ng¢(y|xt) (368)

= é(9(Xt|y) = ée(xt) — V1 —a;Vy, logpd,(y\xt)

We can then use the exact same sampling procedure as used in regular DDIM, but with the modified
noise predictions €g(x:|y) instead of ég(x¢).

3.3.2 Classifier-Free Guidance

As the name implies, Classifier-Free Guidance [060] does not require training a separate classifier.
Instead, one trains a conditional diffusion model p(x|y) with conditioning dropout probability puncond;
some percentage of the time, the conditioning information y is removed (10-20% tends to work well)
and is replaced with a @ (null) label. In practice, it is often replaced with a special input value
representing the absence of conditioning information. The resulting model is now able to function
both as a conditional model p(x|y), and as an unconditional model p(x), depending on whether the
conditioning signal is provided.

As discussed in the previous section, classifier guidance results in sampling from a distribution
Py (x¢|y) o p(x¢)p(y|x¢)?, where v € [0,400) plays the role of an inverse temperature parameter.
This time, we apply Bayes’ rule in a different direction relative to Eq. (3.67) in order to eliminate
terms containing the classifier p(y|x;):

Vi, logpy (x¢|y) = Vi, log p(x¢) + 7V, log p(y|x:)
= Vy, log p(x¢) +7(Vx, log p(x¢|y) — Vi, log p(x)) (3.69)
= (1 —)Vy, log p(x;) + 7V, log p(x¢|y)

Then sampling is performed using the following linear combination of the conditional and uncondi-
tional score estimates:

€o0(x¢|y) = (1 —v)ea(x4|D) + veo(x:t]y) (3.70)

This is a barycentric combination of the conditional and the unconditional score function. For v = 0,
we recover the unconditional model, and for v = 1 we get the standard conditional model. For v > 1
the resulting distribution becomes “super-conditioned”.

3.4 Latent Diffusion Models

Latent Diffusion Models (LDM) [125] were introduced in an attempt to lower the computational
demands of training diffusion models towards high-resolution image synthesis. The proposed approach
suggests an explicit separation of the compressive from the generative learning phase, utilizing an
autoencoding model which learns a space that is perceptually equivalent to the image space, but
offers significantly reduced computational complexity in both training and sampling procedures.

3.4.1 Perceptual Image Compression

The image compression models used in [125] consisted of an autoencoder trained with a combi-
nation of a perceptual loss and patch-based adversarial objective. The usage of a GAN-based loss
enforces local realism upon the reconstructed images, avoiding bluriness introduced by relying solely
on pixel-space losses such as ¢; or {5 objectives.
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Given an RGB input image x € RT*W>3 "an encoder £ encodes x into a latent representation
z = £(x) € R"w*¢ while a decoder D decodes the latent and restores it back in the original image
space, producing the reconstruction X = D(z) = D(€(x)). The encoder downsamples the input image
by a factor f = H/h = W/w. In [125], the authors investigated downsampling factors of the form
f=2"meN.

Furthermore, the first stage compression models undergo different regularization schemes with
the aim of avoiding learned latent spaces of arbitrarily high variance. The first of the two proposed
autoencoder variants, namely KL-reg, features a slight KL-penalty towards a standard normal on
the learned latent, similar to a regular VAE. The second variant, namely V@-reg is built upon the
VQGAN [45] architecture and uses a vector quantization layer in order to learn codebook consisting
of discrete latent representations.

Learning Discrete Latent Spaces

In general, a big portion of the data encountered in real-world, everyday scenarios, often favor
discrete representations over continuous ones. For example, language is inherently discrete, similarly
speech is typically represented as a sequence of symbols. Images can often be described concisely
by language. Furthermore, discrete representations are a natural fit for complex reasoning, planning
and predictive learning (e.g., if it rains, I will use an umbrella). A new family of generative models
[15, , , 179] has recently emerged by successfully combining the VAE framework with discrete
latent representations based on Vector Quantisation (VQ).

The first notable realization of a VAE that made effective use of discrete latents came in the
form of the VQ-VAE [167]. The latter is a type of variational autoencoder that uses VQ to obtain
discrete latent representations. It differs from VAEs in two key ways: the encoder network outputs
discrete, rather than continuous codes; and the prior is learned rather than being static. In order
to learn a discrete latent representation, ideas from VQ are incorporated, as the latter allows the
model to circumvent issues of posterior collapse - where the latents are ignored when they are paired
with a powerful autoregressive decoder - typically observed in the VAE framework. Pairing these
representations with an autoregressive prior, the model can generate high quality images, videos, and
speech as well as doing high quality speaker conversion and unsupervised learning of phonemes.

More specifically, let {e;}X, C R? be a latent embedding space where K is the size of the discrete
latent space and d is the dimensionality of each latent embedding vector e; € R%,i € [K]. The model
takes an input x, that is passed through an encoder producing output z.(x). Subsequently, the
discrete latent variables z are calculated by a nearest neighbour look-up using the shared embedding
space. The posterior categorical distribution ¢(z|x) probabilities are defined as one-hot as follows:

L for k = argmin,||z.(x) — e;l2 (3.71)
0 otherwise '

q(z = k[x) = {
The representation z.(x) is passed through the discretization bottleneck followed by a mapping onto
the nearest embedding element:

zq(x) = ey, where k = argmin||z.(x) — e;||2 (3.72)
J

No real gradient can be defined for Eq. (3.72), however it can be approximated similarly to the
Straight- Through Estimator (STE) [12] and just copy gradients from decoder input z,(x) to encoder
output z.(x). VQ-VAE training is guided through the minimization of the following loss function:

Lyvq = log(p(x|24(x))) + [Isg[ze(x)] — el|3 + Bllze(x) — sgle]||3 (3.73)

where £ is a scaling factor and sg[-] stands for the stopgradient operator which is defined as identity at
forward computation time and has zero partial derivatives, thus effectively constraining its operand
to be a non-updated constant. The first term constitutes the reconstruction loss which optimizes
the decoder and the encoder through the STE. Furthermore, the embedding space is learned using
the simplest dictionary learning algorithm, that is, VQ. The VQ objective uses an {5 error to guide
the embedding vectors towards the encoder outputs, as indicated by the second term of Eq. (3.73).
Lastly, since the volume of the embedding space is dimensionless, it can grow arbitrarily in case the
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Figure 3.2: Approach for using a convolutional VQGAN to learn a codebook of context-rich visual parts, whose
composition is subsequently modeled with an autoregressive transformer architecture. Source: [15].

embeddings do not train as fast as the encoder parameters. Therefore, a commitment loss is added in
the form of the third term in Eq. (3.73), so as to ensure that the encoder commits to an embedding
and its output does not grow.

The prior distribution over the discrete latents p(z) is a categorical distribution, and can be made
autoregressive by depending on other z in the feature map. Whilst training the VQ-VAE, the prior
is kept constant and uniform. After training, an autoregressive distribution is fitted over z, p(z),

so that x can be generated via ancestral sampling. The authors in [167] used a PixelCNN over the
discrete latents for images.
As opposed to vanilla VQ-VAE, the authors in [123], inspired by the ideas of coarse-to-fine gen-

eration, proposed a hierarchy of vector quantized codes to tackle large scale, high-fidelity image
generation. The corresponding model, i.e., VQ-VAE-2, has an architecture that resembles a 3-level
U-Net [126] with concatenating skip connections, except that each feature map undergoes quantiza-
tion before being passed to the decoder. In order to sample from the model, a separate autoregressive
prior (PixelCNN) is learned over the sequences of latent codes at each resolution level. The authors
use self-attention layers in the top level prior since it has lower resolution, and large conditional stacks
coming from the top prior to the bottom prior with higher resolution due to memory constraints.
Each prior is trained separately. Sampling from the model requires passing a class label to the trained
top level PixelCNN to obtain the top level codes, then passing the class label along with the generated
codes to the bottom level to generate the higher resolution code, and then use the decoder to generate
an image from the top and bottom level codes.

VQGAN [15] differs from the aforementioned implementations in the following two ways: (i)
The reconstruction loss in the original VQ-VAE objective function is replaced with a perceptual
loss, while an adversarial training procedure with a patch-based discriminator, is also introduced.
(ii) Image generation is formulated as autoregressive next-index prediction using a transformer that
operates on sequences of quantized tokens, drawn from a learned discrete codebook, and learns to
predict the distribution for next possible tokens given a sequence of previous tokens.

Any RGB image x € R¥*W X3 can be represented by a spatial collection of codebook entries
Z, € RPXwXnz wwhere n, denotes the dimensionality of codes. An equivalent representation is a
sequence of h - w indices which specify the respective entries in the learned codebook. The discrete
spatial codebook Z = {zk}szl C R™ is learned using a CNN-based encoder-decoder architecture.
Encodings z = £(x) € RP*X®X"= undergo element-wise quantization q(-) on each one of their spatial
codes 2;; € R™= s0 as to get mapped to their closest codebook entries:

z, = q(2) := argmin||2;; — z| € R"*wxn= (3.74)
z

z, €

The reconstruction X generated by the decoder G is given by:

X =G(zq) = G(a(€(x))) (3.75)
Apart from the vector quantization objective of Eq. (3.73), where the reconstruction loss is replaced
with the Learned Perceptual Image Patch Similarity (LPIPS) [181] metric, an adversarial loss term

is added with a patch-based discriminator D aiming to differentiate between real and reconstructed
images:
Lean = log D(x) +log (1 — D(%)) (3.76)

33



CHAPTER 3. DIFFUSION MODELS

Latent Space ondltlonln
@— E -I— Diffusion Process ‘)I Eemanuq
— Denoising U-Net €g 27 Text
x(T 1) ——— Repres
— | m¥) < entations
Q Q el e @
@*D“I”I' KtV KV | Ky Ky
1 - 7
Pixel Space t [
To
Pd K

ncat ~ -~/

denoising step crossattention  switch  skip connection

8

Figure 3.3: Overview of the LDM framework. Source: [125].

The complete objective for finding the optimal compression model becomes:

agggnin mSXEpr(x) [Lvq(€,G, 2Z) + Aean({€,G, 2}, D)] (3.77)
G.Z

where A is an adaptive weight parameter. With £ and G available, images can be represented as
sequences of codebook-indices s € [|Z[]"*% where:

= k such that (zq)i; = 2 (3.78)

Thus, after choosing some ordering of the indices in s, image-generation is formulated as autoregressive
next-index prediction: Given indices s.;, a transformer learns to predict the distribution of possible
next indices, i.e., p(s;|s<;). The transformer is trained by maximizing the log-likelihood of the data
representations:

Ltransformer = Exrvp(x) l - Hp(5i|s<i)] (379)

A high level view of the VQGAN coupled with a transformer-based autoregressive prior can be seen
in Fig. 3.2.

In [179], the aforementioned approach is taken one step further by replacing both the CNN encoder
and decoder with a ViT [35]. With the proposed ViT-VQGAN, images are encoded into discrete to-
kens represented by integers, each of which encompasses an 8 x 8 patch of the input image. Using these
tokens, a decoder-only transformer is trained to predict a sequence of image tokens autoregressively.

3.4.2 Generative Modeling of Latent Representations

Having trained perceptual compression models consisting of an encoder £ and a decoder D, an
efficient, learned, low-dimensional latent space can now be used, in which high-frequency, impercep-
tible details are abstracted away. Compared to the high-dimensional pixel space, the latent space is
more suitable for likelihood-based generative models, as they can focus on the semantically important
bits of data as well as train in a lower dimensional, computationally efficient space.

Taking advantage of the 2D structure of the produced latents, the backbone of the diffusion
model is built upon the U-Net architecture, primarily consisting of 2D convolutional layers. As
discussed in section 3.1, DDPM training relies on a reweighted variant of the variational lower bound
on the evidence of the true data distribution logp(x), which resembles denoising score matching
over multiple noise scales indexed by t. LDMs can be interpreted as a equally weighted sequence
of denoising autoencoders €g(z;,t) which are trained to predict a denoised variant of their input z;,
where z; is a noisy version of the input latent z. The corresponding denoising objective becomes:

Liom = Eex)eanon),ou1,m) |€ — €0(z¢, )13 (3.80)

The neural backbone €g(+,t) of the LDM is realized as a time-conditional U-Net.
LDMs are also be capable of modeling conditional distributions of the form p(z|y), where y denotes
any kind of additional information such as class labels, text, semantic maps, etc. To that end, the
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U-Net backbone is augmented with a cross-attention [168] mechanism which is effective for learning
attention-based models of various input modalities. In order to preprocess y, a domain specific
encoder Ty is introduced that projects the latter to an intermediate representation 7g(y) € RM>dr,
which is then mapped to the intermediate layers of the U-Net via a cross-attention layer:

Attention(Q, V, K) = softmax [ 2 | v (3.81)

ention(Q, V, = softmax .
Nz

Q=¢i(z)W,), K=7@p)Wy, V=r(y)W (3.82)

where i is the attention head index, ¢;(z;) € R xd: denotes a flattened intermediate representation
of the U-Net implementing €g, while Wg) € RdZXd,W%’) € ]Rd’Xd,WE}) € R4 >4 are learnable
projection matrices. Then, the conditional LDM denoising objective becomes:

Luont = Beo,eno1 4011 |l — €o(z1,t, 7o(y) 3] (3:83)

An overview of the LDM framework is illustrated in Fig. 3.3.

3.5 Score-Based Diffusion Models

Score-based DMs were initially proposed as a means of generative modeling through estimating
the gradients of data distributions. More formally, let {x; € RP}¥ | be a dataset of i.i.d. samples
from an unknown data distribution pgat.(x). The score network sg : RP — RP is a neural network
parameterized by 0, which is trained to approximate the score of paata(X), i-€., Vi 10g pgata(x). The
two main ingredients of score-based DMs are score matching and Langevin dynamics, as discussed in
section 2.2.

Although the aforementioned approach can be used for data generation, several issues were empha-
sized in [119] regarding the application of this method on real data. Most of the problems are linked
with the manifold hypothesis. For example, the score estimation sg is inconsistent when the data
resides on a low-dimensional manifold and, among other implications, this could cause the Langevin
dynamics to never converge to the high-density regions. In the same work the authors further demon-
strated that these problems can be addressed by perturbing the data with Gaussian noise at different
scales.

3.5.1 Noise Conditional Score Networks

The proposed method learns score estimations for the resulting noisy distributions via a single
Noise Conditioned Score Network (NCSN) [119]. Given a sequence of Gaussian noise scales o1 <
o9 < -+ < op such that p,, (x) = p(xo) and p,,.(x) = N(x;0,I), an NCSN sg(x,0¢) can be trained
with denoising score matching so that sg(x,0:) ~ Vxlogp,, (x),Vt € [T]. Given that p,,(x:|x) =
N (x¢;x,021), the score of the perturbation kernel is:

Xy — X

Vi, 10g po, (x¢]x) = — (3.84)

Ot

where x; is a noised version of x. Generalizing Eqs. (2.13) and (2.14) for all noise scales {o;}7_;, the
NCSN objective becomes:

2
Xy — X

] (3.85)

se(x¢,0¢) +

Ot

T
1
Lpsm = T Z A1) Epyia (0 Epo, () [

t=1

where A(0;) is a weighting function. After training, the neural network sg(x;, o) returns estimates
of the scores of p,, (x¢|x), having as input noisy images x; and corresponding time step ¢. Sampling
during inference is performed using annealed Langevin dynamics.

In their subsequent work [150], the authors proposed a set of techniques to scale score-based
generative models to high resolution images. Based on the analysis of a simplified mixture model,
they provided a method to analytically compute an effective set of Gaussian noise scales from training
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Figure 3.4: Overview of score-based generative modeling through SDEs. Source: [153].

data. In addition, they reparameterized the original NCSN so as to efficiently handle a large (possibly
infinite) number of noise scales and further optimized the underlying Langevin dynamics sampling
procedure w.r.t. the noise scales. Lastly, they enhanced stability by maintaining an exponential
moving average (EMA) of model weights. With all these improvements, score-based generative models
were successfully scaled to various image datasets, with diverse resolutions ranging from 64 x 64 to
256 x 256.

3.6 Connection to SDEs

The diffusions of both score-based models and DDPM can be expressed as solutions of Stochastic
Differential Equations (SDEs). That was the observation made in [153], where the authors generalized
the aforementioned two methodologies to continuous time and an infinite number of noise scales. A
high-level view of this framework is illustrated in Fig. 3.4.

The goal is to construct a diffusion process {x(¢)}~_, indexed by a continuous variable ¢ € [0, 7],
s.t. x(0) ~ po for which a dataset of i.i.d. samples is available and x(T') ~ pr, for which there is a
tractable form to generate samples efficiently. This diffusion process can be modeled as the solution
to an Itd6 SDE:

dx = f(x,t)dt + g(t)dw (3.86)

where w is the standard Wiener process, f(-,t) : RP? — R? is a vector-valued function called the drift
coefficient of x(t) and g(-) : R — R is a scalar function known as the diffusion coefficient of x(t).

By starting from samples of x(T) ~ pr and reversing the process, samples x(0) ~ py can be
obtained. The reverse of the diffusion process in Eq. (3.86) is also a diffusion process, running
backwards in time and given by the reverse-time SDE:

dx = [f(x,t) — ¢g°(t)Vyx log ps(x)]dt + g(t)dw (3.87)

where W is a standard Wiener process when time flows backwards from 7" to 0, and d¢ is an infinites-
imal negative timestep. Once the score Vylogp:(x) is known for all t, we can derive the reverse
diffusion process and simulate it to sample from py. The score of a distribution can be estimated
by training a score-based model on samples with score matching. A time conditional score network
sg(x(t),t) by optimizing a continuous variant of Eq. (3.85):

LHsm :]EtNZA(O,T){A(t)Epo(x(O))]Epm(x(t)x(O))|:HSH(X(t)7t) V() log pos(x 0))| ” (3.88)

where A(t) is a weighting function. Moreover, when f is affine, po:(x(t)|x(0)) is a Gaussian distribu-
tion. When f does not conform to this property, denoising score matching cannot be applied, but
sliced score matching can be used instead. In the following sections, we show how both DDPM and
NCSN can be formulated as special cases of the general It6 SDE.

3.6.1 VE SDE

In the NCSN setting, when using a total of 7" noise scales, each perturbation kernel p,, (x:|x0)
can be derived from the following Markov chain:

X; = X;—1 + \/0'752 - U?flzi_l, 1€ [N] (389)
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where z;_1 ~ N(0,1), Xg ~ pdata(x) and o9 = 0. In the limit of N — oo the Markov chain {x;};
becomes a continuous stochastic process {x(t)}}_,, {0}, becomes a function o(t) and z; becomes
z(t), where a continuous time variable ¢ € [0, 1] is used instead of discrete timesteps i € [N]. By
letting x(ﬁ) = x;, a(%) = 0; and z(ﬁ) = z;, Eq. (3.89) can be rewritten as follows:

d[o2(t
x(t + At) = x(t) + /o2 (t + At) — 02(t)z(t) ~ x(t) + z(t) [Jdt( ) At (3.90)
where At = %, while the approximate equality holds when At < 1. In the limit of At — 0, this
converges to:
2
dx = d[“dt(mdw (3.91)

which is the so called Variance Ezploding (VE) SDE, as it always gives a process with exploding
variance when ¢ — oco.

3.6.2 VP SDE

In the DDPM setting, the corresponding discrete Markov chain relative to the perturbation kernels
{qa, (x¢|x0) }I¥, of section 3.1, is:

x; =1 - Bixi—1 +/Bizi—1, i€ [N] (3.92)

where a; =1 — 8; and z;_1 ~ N(0,I). To obtain the limit of this Markov chain when N — oo, an
auxiliary set of noise scales {8; = NS;}¥, is defined. In the limit of N — oo, {3}, becomes a
function B(t) indexed by ¢ € [0,1]. Similarly to the case of the VE SDE, the Markov chain of Eq.
(3.92) can be rewritten as:

x(t + At) = x(t)v/T— Bt + ADAL +a(t) /B + AAL (3.93)
~x(t) — %ﬁ(t + At)Atx(t) + z(t)/ B(t + At)At (3.94)
~ x(t) - %ﬁ(t)Atx(t) + () BOAL (3.95)

where At = %7 while the approximate equality holds when At < 1. In the limit of At — 0, this

converges to:
dx = —%B(t)xdt + VB dw (3.96)

which is the so called Variance Preserving (VP) SDE, as it yields a process with a fixed variance of
one when the initial distribution has unit variance.
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Chapter 4

Experiments—Face Reenactment

The current chapter is dedicated to presenting our experimental results regarding emotion-conditional
and image-based emotional manipulation using diffusion models. The first step of this process includes
the establishment of all the relevant metrics used for model evaluation during the aforementioned
tasks.

4.1 Evaluation Metrics

Below, we present and establish a list of metrics used to evaluate our diffusion models in image
generation, but more importantly, in emotional image manipulation.

4.1.1 Image Generation
Fréchet Inception Distance

The Fréchet Inception Distance (FID) [64] is a metric that was initially proposed as a means of
evaluating the quality of synthetic images and by extension the performance of GANs. The score was
proposed as an improvement over the existing Inception Score (IS) [133] which estimates the quality
of a collection of synthetic images based on how well the top-performing image classification model
Inception-v3 [150] classifies them as one of the 1,000 object classes supported by the ILSVRC2012
dataset. IS combines both the confidence of the conditional class predictions for each synthetic image
(quality) and the integral of the marginal probability of the predicted classes (diversity).

Like in the case of IS, FID utilizes a pre-trained Inception-v3 model. Specifically, the coding layer
of the model (the last pooling layer prior to the output classification of images) is used to capture
2048-dim, computer-vision-specific features of an input image. These activations are calculated for a
collection of real and generated images. The activations are summarized as a multivariate Gaussian
by calculating the mean and covariance of the images. These statistics are then calculated for the
activations across the collection of real and generated images. The distance between these two distri-
butions is then calculated using the Fréchet distance [19], also called the Wasserstein-2 [17/] distance.
Let N (pr, X;) and N (pg, ) be the fitted multidimensional Gaussian distributions for the real and
generated images, respectively. Then, FID is calculated as follows:

dl%“ID (N(Ura 27“)»/\/(“97 29)) = HNT - l‘g”% + tr<2r + z]g - 2(27“29)%) (4'1)

A lower FID indicates better-quality images; conversely, a higher score indicates a lower-quality image
and the relationship may be linear.

Kernel Inception Distance

The Kernel Inception Distance (KID) [13] aims to improve on FID by relaxing the Gaussian
assumption. KID measures the squared Mazimum Mean Discrepancy (MMD) between the Inception
representations of the real and generated samples using a polynomial kernel k(x,y) = (%XTy + 1),
where d is the representation dimension. This is a non-parametric test so it does not have the strict
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Gaussian assumption, only assuming that the kernel is a good similarity measure. It also requires
fewer samples as fitting the quadratic covariance matrix is not required.

Improved Precision and Recall

In [132], precision and recall for distributions (PRD) was explicitly introduced to the study of
generative models and was formulated through the relative probability densities of two distributions.
It was motivated by the observation that FID and related density metrics cannot be used for making
conclusions about precision and recall, i.e., a low FID may indicate high precision (realistic images),
high recall (large amount of variation), or anything in between. According to the classic viewpoint,
precision denotes the fraction of generated images that are realistic, and recall measures the fraction
of the training data manifold covered by the generator.

An improved precision and recall metric was introduced in [38] based on k-nearest neighbors.
Real and generated samples are drawn from x, ~ p, and x4 ~ pg, respectively, and embedded into
a high-dimensional feature space using a pre-trained classifier network. Feature vectors for real and
generated images are denoted as ¢, and ¢4, with the corresponding sets being ®,. and ®,. For each
set of feature vectors ® € {®,, ®,}, the corresponding manifold in the feature space is estimated by
calculating pairwise Euclidean distances between all feature vectors in the set and, for each feature
vector, forming a hypersphere with radius equal to the distance to its kth nearest neighbor. The
following binary membership function f(¢, ®) determines whether a sample ¢ is located within the
volume induced by ®:

1, if||¢p— @2 < ||¢' — NNg(¢p', ®)|2 for at least one ¢’ € ®

. (4.2)
0, otherwise

f(o,®) = {
where NNy (¢', ®) denotes the kth nearest feature vector of ¢’ from set ®. Precision and recall
metrics are defined as follows:

precision(®,, ®y) = = f(¢g, ®,),  recall(®,, ®,) =

1 1
@9l 5,

@ |

> f(n )  (43)

Pre®,

According to Eq. (4.3), precision is quantified by querying for each generated image whether the
image is within the estimated manifold of real images. Symmetrically, recall is calculated by querying
for each real image whether the image is within the estimated manifold of generated images.

4.1.2 Image Manipulation
Peak-Signal-to-Noise Ratio

Any processing applied to an image may cause an important loss of information or quality. The
most famous and widely used image quality metric is the Peak-Signal-to-Noise ratio (PSNR). The
simplest definition of this starts out from the mean-squared-error (MSE). Let there be two images:
I;,I, € RTXWXC with corresponding spatial dimension indices i, j and channel index ¢. The MSE
between the two images is defined as:

1 1jc 15C\2
MSE = —- Z(If — 179 (4.4)

2,7,¢

Then the PSNR is expressed as:

MSE (4.5)

2
PSNR = 101log;, <MAX1 )
where MAX; denotes the maximum valid image value, i.e. 255 for uint8 RGB images. When two
images are the same, the MSE will give zero, resulting in an invalid division by zero operation in Eq.
(4.5). In this case the PSNR is undefined and this case needs to be handled separately. The transition
to a logarithmic scale is made because the pixel values have a very wide dynamic range. Higher PSNR
indicates higher image quality. This similarity check is easy and fast to calculate, however in practice it
may turn out somewhat inconsistent with human eye perception. The Structural Similarity algorithm

aims to correct this.
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Structural Similarity

The Structural Similarity Index Measure (SSIM) [173] extracts three key features from an image:
luminance, contrast and structure. Let’s assume x and y are two spatially aligned, non-negative
image signals. First, the luminance of each signal is compared. Assuming discrete signals, this is
estimated as the mean intensity:

1 N
He = 5 le (4.6)

Moreover, the standard deviation of intensity is used as an estimate of the signal contrast. An
unbiased estimate in discrete form is given by:

N

o= (g Lo M)é (47)

i=1

Third, each signal is normalized by its own standard deviation, so that the two signals being compared
have unit standard deviation. The cosine angle between the normalized image vectors corresponds
to the correlation coefficient:

N

Ouy = = > (@i = 1) (Ui — 1) (4.8)
N-1
1=1

The luminance, contrast and structure comparison functions are defined as follows:

gty + Ch
,U% + M% +C4 ’

20,0y + Co
o2 +02+0Cy’

Ozy + Cs
0.0y + Cs

C(Xv y) = S(Xv }’) = (49)

Z(X7 y) =

where the constants C7,C5y,C5 are included to avoid instability when the respective denominators
are very close to zero. Finally, by combining the above expressions, the SSIM index is calculated as
follows:

SSIM(x,y) = [1(x,¥)]*[e(x, )]’ [s(x,y)]" (4.10)

where a, 5,7 > 0 are parameters used to adjust the relative importance of the three components.
In order to evaluate image quality, this formula is usually applied only on luma, although it may
also be applied on color (e.g., RGB) values or chromatic (e.g. YCbCr) values. The resultant SSIM
is a decimal value between —1 and 1, where 1 indicates perfect similarity, O indicates no similarity,
and —1 indicates perfect anti-correlation. In the original paper, the authors set « = 8 = =1 and

Cs = Ca/2.

Learned Perceptual Image Patch Similarity

The Learned Perceptual Image Patch Similarity (LPIPS) [181] is used to judge the perceptual
similarity between two images. It is argued that widely used image quality metrics like SSIM and
PSNR are simple and shallow functions that may fail to account for many nuances of human per-
ception. The original paper introduces a new dataset of human perceptual similarity judgments
to systematically evaluate deep features across different architectures and tasks and compare them
with classic metrics. LPIPS essentially computes the similarity between the activations of two image
patches x,xq for some predefined network F. Feature stacks are extracted from L layers and are
unit-normalized in the channel dimension, denoted as ¥;,9,0 € R¥XWixCt | The activations are
scaled channel-wise by a vector w; € R and then their /5 distance is computed. The exact distance
formula is the following:

1 ij g
dx0) = 3 g Sl o ('~ i) a1)
1 i

This measure has been shown to match human perception well. A low LPIPS score means that image
patches are perceptually similar.
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4.2 Dataset

We trained our models and baselines from scratch on AffectNet [107]. It contains approximately
1M images retrieved from the Internet. Queries were performed on major search engines (Google,
Bing, Yahoo), using 1,250 emotion-related keywords in six different languages. Notably, 440K of these
images were annotated manually by 12 experts with basic discrete emotions (categorical model) and
the intensity of valence and arousal (dimensional model). AffectNet is by far the largest database of
facial expressions, valence, and arousal in the wild enabling research in automated facial expression
recognition in two different emotion models. Out of the 440K manually annotated images, 291,651
images are labeled with 8 basic discrete emotions, i.e. neutral, happy, sad, surprised, scared, disgusted,
angry and contemptuous. Out of those, 287,651 images belong to the training set and 4K images
(500 for emotion label) belong to the validation set.

4.3 Emotion-Conditional Image Generation

Before moving onto the main subject of the current thesis, that is image manipulation, we are
first required to actually train a diffusion model so as to learn the actual underlying distribution of
the given dataset. Due to both time and resource constraints, we immediately shifted our attention
towards LDMs due to the fact that the latter operate in latent, compressed space rather than the
original high-dimensional image space. In this way, GPU memory requirements become tractable but
at the cost of computational overhead for latent encoding/decoding.

4.3.1 Landmark Detection, Cropping & Face Alignment

The creators of the AffectNet dataset have provided precomputed face bounding boxes as well
as facial landmark keypoint coordinates per image. However, we rather opted for manually locating
both the bounding boxes as well as the facial landmarks from scratch, using FAN [18]. Before feeding
the original images to FAN, we first resize them to 256 x 256 pixels in order to avoid running out of
GPU memory. FAN locates the 2D coordinates for 68 facial landmarks. Based on those landmarks,
bounding boxes of size 224 x 224 are center-cropped and then aligned by estimating the affine transform
required to warp the set of detected facial keypoints to their canonical coordinates. Any empty image
regions resulting from rotating the original image are dealt with by reflecting the image near the
edges.

4.3.2 Image Compression

The first stage of any LDM consists of a pre-trained autoencoder that transfers any given input
from image space to a compressed, latent space. To this end, we train a VQGAN on AffectNet.
Following the notation that was introduced in section 3.4.1, we proceed by describing the chosen
configuration.

The VQGAN follows the U-Net architecture consisting of a series of downsampling and upsampling
residual blocks. The number of residual blocks per spatial resolution level was set equal to two. The
number of basic channels was set equal to 128. The given input images were first resized to a resolution
of 128 x 128 pixels. Thus, given input images x € R!28%128x3 'the encoder compresses the latter by
a factor f = 4, resulting in latents z € R32%32%3, Each latent undergoes element-wise quantization
resulting in a collection of 322 codebook entries z;; € R34, € [32]. The cardinality of the entire
codebook is set equal to | Z| = 16384. Moreover, the channel multipliers for the 2 intermediate spatial
resolutions is set equal to 2 and 4 respectively. The last spatial resolution level also includes a spatial
attention block. The VQGAN was trained for 6 epochs with the Adam [30] optimizer, an initial
learning rate of 3.6 x 10~° and a batch size of 8, reaching a reconstruction loss equal to 0.138 (sum
of ¢; and LPIPS distance) on the AffectNet validation set. The decoder’s structure is exactly the
same as the encoder’s, but with the order of the blocks being reversed, resulting in approximately
61M trainable parameters.
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4.3.3 Image Generation

Having trained encoder and decoder modules, we utilize them as the first stage of an LDM. In
accordance with the previously discussed VQGAN, we proceed by describing the chosen configuration
in the case of the LDM.

The underlying U-Net architecture features two residual blocks per spatial resolution level, with
the number of basic channels being equal to 160. Input latents are further downsampled by a factor
of f = 4. Attention blocks are placed at every spatial resolution level, i.e. 322,162,82 and the
channel multipliers are set equal to 1, 2 and 4 respectively. Each attention block is implemented
according to the cross-attention mechanism described in section 3.4.2. The class label encoder is
implemented as a single learnable embedding layer with a dimensionality of 512, mapping class labels
y to Te(y) € R*512_ All the above led to a total number of 156M trainable parameters.

In order to better control the intensity of the depicted emotions during the manipulation phase, we
were obliged to train the LDM using classifier-free guidance. During training and with a probability
Puncond = 0.2, the input class labels are randomly dropped and replaced with a null label, effectively
raising the total number of class labels to nine. The LDM was trained for around 30 epochs with the
AdamW [)5] optimizer, an initial learning rate of 2.4 x 10~ and a batch size of 24. We used a linear
noise schedule and Tpppy = 1,000 diffusion steps.

Now is the time to actually evaluate the class conditional generative capabilities of the model.
We came up with two evaluation settings. We first generated 5K samples per emotion class using
DDIM sampling with Tppmy = 500 steps and no unconditional guidance (v = 1.0). For each set of
generated samples, we calculated the evaluation metrics discussed in section 4.1.1 using the entire
training dataset corresponding to the given emotion. Then, we randomly sampled 3.75K images from
each emotion class and compared it to the previously mentioned combined set of 40K samples. In Tab.
4.1, we report FID, KID, precision and recall® metrics for the aforementioned evaluation scenarios.

Target Emotion FID| KID (x1072) ] Precisionf Recallf

Neutral 6.64 2.1 0.57 0.67
Happy 6.90 2.7 0.55 0.66
Sad 7.73 2.1 0.58 0.66
Surprise 8.54 2.6 0.55 0.70
Fear 10.93 24 0.56 0.71
Disgust 11.72 2.3 0.56 0.73
Anger 8.03 2.7 0.57 0.66
Contempt 10.16 2.9 0.58 0.71
Mean” 8.83 2.48 0.57 0.69
Overall® 4.3 2.1 0.56 0.69

Table 4.1: Quantitative results for emotion conditional image generation on AffectNet using Tpprv = 500 DDIM
steps, n = 1.0 and c.f.g. scale v = 1.0.

As expected, the best generation performance is observed for ‘Neutral’ and ‘Happy’ emotions,
as they are the ones with the most training samples in the dataset. The highest FID values are
observed for ‘Fear’ and ‘Disgust’. Emotion-wise, fear is closely related to surprise while disgust is
closely related to anger, as it can be seen in a 2D valence-arousal representation. Contempt is also
often visually difficult to distinguish from happiness. Fig. 4.1 presents 1K uncurated samples, with
100 generated images per emotion class.

4.3.4 Nearest Neighbor Search

Next, before moving onto the emotion manipulation part, we took some time to further study
the generation capabilities of our trained model. One important aspect of generative models is their
ability to learn the underlying data distribution without actually memorizing individual training
samples. Therefore, we randomly selected generated samples and found their 10 closest neighbors in

SFID, KID, precision and recall are calculated using the publicly available torch-fidelity package.

7This table row corresponds to the mean evaluation metrics across the 8 emotion classes.

8This evaluation was performed by comparing 40K samples (8K per emotion label) with 30K real samples (3.75K
per emotion label).
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Figure 4.1: Uncurated samples drawn with emotional conditional sampling using Tppim
= 1.0, from an LDM trained on AffectNet.
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Figure 4.2: Nearest neighbors of our best AffectNet model, computed in Euclidean space in terms of pixel-wise squared
error. The leftmost sample is from our model. The remaining samples in each row are its 10 nearest neighbors from
the training set.

terms of pixel-wise squared error. The corresponding qualitative results are illustrated in Fig. 4.2.
The leftmost column corresponds to the generated samples from our model, while the rest of the
columns corresponds to their closest neighbors from the training set. In [125], they considered finding
the nearest neighbors in VGG [111] feature space rather than pixel space.

4.3.5 Latent Interpolation

We can interpolate source images x1,X2 in latent space using the trained LDM. First we have
to produce the corresponding two latent codes using the pre-trained encoder, resulting in zi,zo,
respectively. Then we can use deterministic DDIM noising process (n = 0) on the input latents
for Tppiv steps, up to tg < Tpppwm, leading to z(to) (2t°). Then we can apply spherical linear
interpolation (Slerp) between the two noisy latent codes as follows:

Sin(l - /\)Qz(to) 4 SIAS Sin A2 (to)

sin€) ! sin{) ’
By applying either deterministic or stochastic ( # 0) reverse DDIM process on the interpolated noisy
latent and decoding it with the first stage LDM decoder, we can visualize the intermediate results.
Figs. 4.3 and 4.4 illustrate interpolation examples using n € {0, 1} in reverse DDIM process, having
fixed Tppiv = 20 and tg = 500. In both cases we used 10 uniform intepolation steps for each pair of
original images. In the case of n = 0 we achieve nearly perfect reconstructions of the original images
(A € {0,1}), as expected, while the intermediate results are more consistent in between consecutive
steps. Obviously, this is not the case when n = 1 were the intermediate results are more diverse but
of equally high quality.

Slerp(2\", z{) \) = cosQ = z{) . z{0)0 (4.12)

4.4 Image-Based Emotional Manipulation

4.4.1 Baseline Method

The baseline methodology towards image-based emotion manipulation follows the paradigm of
LDEdit [19], adapted specifically for the task of emotion translation. The latter employed determin-

9The above formulation assumes unit-length elements of any arbitrary-dimensional inner product space, i.e. a vector
space that also has an inner product).
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Figure 4.3: Curated examples of latent-space spherical linear interpolation on AffectNet, using Tppiv = 20 steps,
n =0 and top = 500.
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Figure 4.4: Curated examples of latent-space spherical linear interpolation on AffectNet, using Tppim = 20 steps,
n =1 and top = 500.

istic forward diffusion in a lower dimensional latent space, conditioned on the output of a transformer
tokenizer that was pre-trained on a large-scale text-image dataset (e.g. LAION-400M [139]), achieving
zero-shot text-guided manipulation. In our case, the transformer is replaced with a class-embedder
that maps each of the 8 possible emotion labels to a learnable embedding vector Tg(y) € R1*?12,

The backbone of this approach resides in the near cycle-consistency induced by the deterministic
forward and backward DDIM diffusion processes. This is further demonstrated by the following
analysis. The DDIM sampling process described in section 3.2, can be rewritten in the following
form:

y \/_( Iz atee(m,t re(y))> /T = 1eo(z,t, 70(y)) (4.13)

1/ zt 1 — 4/ = <1I —1—“%—1)69(@,1&,1’9(3/)) (4.14)
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Figure 4.5: Curated examples of latent emotion manipulation on the AffectNet validation set, using Tppiv = 40
DDIM steps, n = 0, editing strength tg = 500 and c.f.g scale v = 3.0.

If we set y; := \/1/asz; and p; := y/1/a; — 1, Eq. (4.14) can be written as:
Yi-1 =Yt = (pr—1 — pt)eo(ze, t, To(y)) = dy: = eo(2t,t, To(y))dp: (4.15)

The last equation describes an ODE that moves backward in terms of the diffusion time index t.
Reversal of this ODE leads to the forward DDIM process:

Vir1 — Ve = (Pe+1 — pe)eoa(ze. t, To(y)) (4.16)

By setting the following:

fo (2,1, 7o (y)) = Y1 af/e;;t(zt’t’m(y)) (4.17)

we get the forward/backward DDIM processes for LDM-based manipulation w.r.t. emotion labels
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Happy Sad Surprised Scared Disgusted Angry

Figure 4.6: Curated examples of LDM-based emotion manipulation on the AffectNet validation set, using Tppiv = 40
steps, n =0, c.f.g scale v = 3.0 and variable editing strength ¢o € {400, 500, 600}.

Ysre and Ytrg:

Ziy1 = at+1f9 (Zt7 t; Te(ysrc)) + 1- dt+1€9 (Zt7 t7 To (ysrc)) (418>
21 = ar—1fo(2¢,t, To(Yug)) + /1 — Gr—1€0(2t,t, To (Yirg)) (4.19)

During the manipulation processes, the LDM weights 6 remain frozen in accordance with our best
model checkpoint from the initial training phase. Thus, the baseline method does not introduce any
new trainable parameters. Given an input image Xg., the first stage encoder transforms it into its
corresponding latent representation zg. Then deterministic ( = 0) forward diffusion is performed up
to timestep ¢ty < Tpppm = 1000, conditioned on the source emotion label ys., denoted as z,,. The
reverse process conditioned on the target emotion label ¥, initiates from the same noised latent code
z;, with the aim of reconstructing zo. Passing the manipulated latent code zo through the decoder
results in the reconstructed target image Xgen. At this point we ought to mention that the DDIM
process can be significantly sped up by using fewer discretization steps {TS}STE’IM evenly selected in
the range [1, o] such that 74 = 1 and 71y, = to. Obviously, the lower the number of intermediate
steps Tppim, the worse the reconstruction quality of the DDIM process. However, lowering the
number of sampling steps is essential in terms of speeding up experiments and it has been found that
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Figure 4.7: Curated examples of LDM-based emotion manipulation on the AffectNet validation set, using Tppv = 40
steps, n = 0, editing strength ¢o = 500 and variable c.f.g. scale v € {1.0,2.0,3.0,4.0,5.0}.
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Topmv > 20 provides satisfactory results in terms of image-to-image translation.

Important hyperparameters of the aforementioned manipulation process are the stochasticity pa-
rameter 7, the editing strength ¢y, the number of steps Tppm and the unconditional guidance scale
~v. We begin with by setting n = 0 for all of the upcoming experiments. In general, values n > 0
can produce diverse outputs, reducing the consistency with the original image. In the context of
facial expression manipulation, identity and facial attribute preservation of the depicted subjects is
of primary importance and as the current baseline methodology does not include any other form of
supervision upon the latter, we find ourselves constrained to use n = 0. Moreover, we chose to name
to as the editing strength hyperparameter due to the observation that the higher its value, the more
prominent the manipulation effect becomes, compared to the original image. Lastly, as we chose
to train the LDM using classifier-free guidance, we have one extra degree of freedom regarding the
intensity of the produced manipulation in the form of the unconditional guidance scale ~.

Fig. 4.5 illustrates curated examples of emotion manipulation on images from the AffectNet
validation set, using Tppiy = 20, v = 3.0 and tg = 500. The leftmost image in each column is an
original sample drawn from the dataset, while the rest six columns include the manipulation results
for each one of the 6 basic expressions of happiness, sadness, surprise, fear, disqust and anger. We can
immediately notice that the results in the ‘happy’, ‘sad” and ‘angry’ columns are overall satisfactory,
the emotions of surprise, fear and disgust are more difficult to convey. This can be partly justified
by the fact that the aforementioned emotions are underrepresented in the AffectNet training set.
Furthermore, Fig. 4.6 illustrates the effect of varying the editing strength to € {400,500, 600} in the
case of all six different target emotions, while v and Tppv are fixed. One can easily notice that
to = 400 is not sufficient for producing emotionally distinguishable results. On the other end, a value
of ty = 600 results in better manipulation results but at the cost of subject identity distortion. Lastly,
Fig. 4.7 illustrates the effect of varying the unconditional guidance scale v € {1.0, 2.0, 3.0,4.0,5.0} in
the case of all six different target emotions, while {5 = 500 and Tpppy are fixed. It is evident that
in the specific setting of tg = 500, lower values of v have little to no effect in changing the emotion
of a given subject. Better results can be obtained with v € {4.0,5.0} with minimal distortion of
peripheral facial features and subject identity.

Detailed quantitative results are presented in Tab. 4.2 and 4.3. The quality of the produced
images and consistency with the original ones is measured in terms of PSNR, SSIM and LPIPS!'". We
also employ HSEmotion!! [135-137], a state-of-the-art lightweight emotion recognition framework for
evaluating the emotion transfer capabilities of our baseline methodology. In Tab. 4.2, we notice that
the most difficult expressions, as far as emotion transfer is concerned, are (according to HSEmotion)
surprise and disgust, while the easiest one is happiness. More specifically, a maximum emotion
accuracy of 0.961 is achieved in terms of happiness, while 0.731 and 0.734 for surprise and disgust,
respectively. As expected, the highest recognition accuracy for all six emotions is achieved using
v = 5.0 and ty = 600. This setting also results in the lowest image quality, that regardless of the
target emotion, revolves around 22.00 dB PSNR, 0.730 SSIM and 0.150 LPIPS. Tab. 4.3, quantifies
the effect of varying the number of steps Tppry in terms of the three aforementioned image quality
metrics and recognition accuracy. For t; = 400 and regardless of the target emotion, increasing
Topim leads to either no change or a small drop in recognition performance. This is not the case for
higher to € {500,600}. PSNR always increases in accordance with the increase in sampling steps.
SSIM behaves differently, as it increases along with Tpprv when to € {400,500} and decreases when
to = 600. A similar counter-intuitive behavior is noticed in the case of LPIPS which gradually
increases, as the number of DDIM steps increases, when tq € {500,600}.

Why does this work? An intuitive explanation of why this works is the following: DMs are
trained by asking them to denoise corrupted images by predicting the added noise, along with the
corresponding noisy pixel locations, across all image channels. In that way, DMs end up learning to
synthesize images out of pure noise. Therefore, the actual learnt embedding space of a DM lies within
the noise itself. Moreover, given that the forward DDIM noising process is deterministic, there is a 1-1
correspondence between each (image, ysc) pair and its noisy latent representation, at some arbitrary
noise level ¢y, given a fixed pre-trained denoising network €g. The deterministic forward process is also

LOPSNR, SSIM and LPIPS are calculated using the publicly available piq package.
HRanked #1 in 8-emotion classification accuracy on AffectNet, according to https://paperswithcode.com/sota/
facial-expression-recognition-on-affectnet
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Image Quality Emotion Recognition Accuracy w/ HSEmotion [13°—

Yrarget e.f.g- Seale (3) | Str. (to) PSNRT SSIM? LPIPS| | Neutral Happy Sad  Surprised Disgusted Disgusted ]Angry
1.0 35.25 0.966 0.013 0.24 0.076 0.146 0.093 0.075 0.122
2.0 33.15 0.95 0.021 0.254 0.047 0.154 0.058 0.052 0.092
3.0 400 3L.71 0.937 0.029 0.244 0.028 0.148 0.035 0.032 0.066
4.0 30.59 0.924 0.037 0.216 0.018 0.138 0.023 0.021 0.047
5.0 29.66 0.911 0.045 0.179 0.01 0.121 0.016 0.018 0.031
1.0 32.09 0.939 0.03 0.223 0.057 0.138 0.068 0.06 0.09
2.0 29.53 0.908 0.049 0.191 0.02 0.115 0.025 0.025 0.043

Happiness 3.0 500 27.92 0.883 0.065 0.13 0.01 0.082 0.012 0.018 0.019
4.0 26.75 0.861 0.078 0.084 0.006 0.066 0.007 0.009 0.01
5.0 25.80 0.841 0.090 0.056 0.003 0.05 0.004 0.007 0.007
1.0 28.39 0.889 0.062 0.163 0.035 0.103 0.036 0.044 0.052
2.0 25.68 0.839 0.093 0.079 0.007 0.052 0.011 0.018 0.012
3.0 600 24.13 0.803 0.113 0.038 0.003 0.027 0.004 0.008 0.004
4.0 23.00 0.773 0.129 0.022 0.002 0.02 0.002 0.005 0.003
5.0 22.04 0.747 0.143 0.014 0.002 0.015 0.002 0.003 0.003
1.0 35.39 0.967 0.012 0.202 0.144 0.107 0.13 0.099 0.146
2.0 33.24 0.952 0.020 0.188 0.092 0.079 0.144 0.094 0.135
3.0 400 31.68 0.937 0.029 0.159 0.052 0.052 0.138 0.083 0.123
4.0 30.41 0.921 0.039 0.129 0.03 0.036 0.13 0.064 0.104
5.0 29.33 0.906 0.049 0.098 0.014 0.022 0.121 0.05 0.086
1.0 32.72 0.946 0.025 0.212 0.104 0.091 0.131 0.092 0.14
2.0 30.08 0.917 0.044 0.179 0.038 0.048 0.126 0.077 0.124

Sadness 3.0 500 28.28 0.890 0.061 0.128 0.014 0.027 0.106 0.052 0.1
4.0 26.89 0.864 0.078 0.084 0.009 0.014 0.086 0.034 0.077
5.0 25.71 0.837 0.095 0.06 0.006 0.008 0.067 0.025 0.06
1.0 29.85 0.913 0.047 0.213 0.064 0.075 0.126 0.082 0.144
2.0 26.95 0.867 0.078 0.142 0.014 0.032 0.099 0.055 0.109
3.0 600 25.06 0.827 0.103 0.09 0.008 0.017 0.069 0.029 0.076
4.0 23.59 0.789 0.126 0.052 0.005 0.008 0.051 0.02 0.058
5.0 22.35 0.752 0.146 0.036 0.005 0.005 0.04 0.016 0.049
1.0 35.45 0.967 0.012 0.205 0.183  0.089 0.126 0.079 0.134
2.0 33.38 0.953 0.020 0.204 0.19 0.063 0.126 0.053 0.112
3.0 400 31.87 0.940 0.028 0.191 0.18 0.048 0.11 0.04 0.094
4.0 30.64 0.927 0.037 0.168 0.173  0.035 0.105 0.028 0.074
5.0 29.58 0.913 0.046 0.135 0.167  0.027 0.106 0.024 0.059
1.0 32.58 0.945 0.026 0.209 0.165  0.072 0.137 0.063 0.112
2.0 29.90 0.916 0.045 0.174 0.148  0.044 0.12 0.034 0.082
Surprise 3.0 500 28.10 0.889 0.063 0.127 0.136  0.027 0.115 0.024 0.048
4.0 26.70 0.863 0.079 0.091 0.125  0.017 0.12 0.014 0.03
5.0 25.54 0.838 0.094 0.066 0.114  0.014 0.12 0.008 0.022
1.0 29.43 0.907 0.051 0.191 0.131  0.064 0.143 0.049 0.088
2.0 26.44 0.856 0.084 0.191 0.131  0.064 0.143 0.049 0.088
3.0 600 24.45 0.813 0.110 0.078 0.085  0.016 0.133 0.008 0.018
4.0 22.96 0.774 0.133 0.048 0.092  0.008 0.122 0.006 0.012
5.0 21.73 0.738 0.152 0.036 0.1 0.006 0.115 0.004 0.009
1.0 35.33 0.967 0.012 0.164 0.15 0.122 0.148 0.093 0.148
2.0 33.12 0.952 0.020 0.124 0.108 0.13 0.149 0.088 0.13
3.0 400 31.47 0.937 0.030 0.087 0.071  0.124 0.14 0.081 0.109
4.0 30.11 0.921 0.040 0.053 0.048  0.115 0.13 0.066 0.09
5.0 28.94 0.904 0.051 0.033 0.032  0.098 0.113 0.057 0.068
1.0 32.57 0.946 0.025 0.151 0.113  0.118 0.166 0.093 0.136
2.0 29.75 0.915 0.045 0.085 0.058  0.117 0.17 0.066 0.109

Fear 3.0 500 27.75 0.884 0.065 0.043 0.033  0.092 0.148 0.05 0.072
4.0 26.19 0.854 0.084 0.02 0.022  0.072 0.112 0.035
5.0 24.89 0.824 0.103 0.012 0.017  0.054 0.093 0.028
1.0 29.54 0.910 0.049 0.133 0.073  0.114 0.195 0.073
2.0 26.26 0.855 0.085 0.052 0.024  0.089 0.18 0.044
3.0 600 24.12 0.806 0.115 0.016 0.016  0.062 0.136 0.023
4.0 22.49 0.760 0.141 0.009 0.014  0.045 0.096 0.017
5.0 21.16 0.717 0.164 0.008 0.012  0.038 0.081 0.013
1.0 35.38 0.967 0.012 0.177 0.151  0.111 0.122 0.122
2.0 33.18 0.952 0.020 0.149 0.106  0.108 0.1 0.116
3.0 400 31.55 0.937 0.030 0.115 0.073  0.098 0.074 0.111
4.0 30.21 0.921 0.040 0.094 0.05 0.082 0.056 0.094
5.0 29.07 0.904 0.051 0.065 0.032  0.076 0.041 0.08
1.0 32.76 0.947 0.024 0.17 0.122  0.112 0.104 0.11
2.0 30.10 0.919 0.043 0.119 0.064  0.088 0.069 0.099

Disgust 3.0 500 28.21 0.891 0.062 0.073 0.04 0.072 0.04 0.073
4.0 26.75 0.863 0.081 0.044 0.029  0.057 0.027 0.055
5.0 25.50 0.835 0.100 0.029 0.025  0.042 0.017 0.043
1.0 29.91 0.915 0.047 0.15 0.095  0.097 0.083 0.099
2.0 26.95 0.869 0.078 0.082 0.042  0.069 0.043 0.069
3.0 600 24.98 0.826 0.106 0.038 0.033  0.047 0.02 0.052
4.0 23.49 0.787 0.131 0.021 0.034  0.036 0.012 0.039
5.0 22.24 0.750 0.154 0.015 0.036  0.028 0.009 0.031
1.0 35.57 0.968 0.011 0.203 0.146  0.102 0.119 0.115 0.105
2.0 33.48 0.954 0.019 0.188 0.102  0.091 0.104 0.1 0.124
3.0 400 31.94 0.940 0.027 0.168 0.071  0.085 0.084 0.088 0.132
4.0 30.70 0.926 0.036 0.146 0.044  0.076 0.072 0.073 0.141
5.0 29.63 0.912 0.045 0.127 0.03 0.068 0.057 0.064 0.142
1.0 32.76 0.946 0.025 0.201 0.102  0.098 0.104 0.101 0.125
2.0 30.12 0.918 0.043 0.168 0.041  0.077 0.076 0.071 0.13

Anger 3.0 500 28.30 0.891 0.061 0.127 0.021  0.063 0.05 0.054 0.128
4.0 26.86 0.865 0.077 0.091 0.012  0.048 0.04 0.042 0.117
5.0 25.66 0.840 0.094 0.072 0.008  0.039 0.025 0.037 0.108
1.0 29.63 0.910 0.049 0.191 0.058  0.088 0.085 0.084 0.129
2.0 26.60 0.861 0.083 0.123 0.01 0.059 0.042 0.052 0.119
3.0 600 24.67 0.819 0.109 0.078 0.006  0.043 0.025 0.032 0.097
4.0 23.17 0.781 0.132 0.046 0.007  0.028 0.017 0.023 0.086
5.0 21.88 0.744 0.155 0.033 0.008  0.019 0.013 0.017 0.072

Table 4.2: LDM-based emotion manipulation on the AffectNet validation set, using forward /backward DDIM processes
with Tpprv = 40 steps, variable c.f.g. scale v € {1.0,2.0,3.0,4.0,5.0} and editing strength ¢o € {400,500, 600}.
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o o Image Quality Emotion Recognition Accuracy w/ HSEmotion
Ytarget DDIM Steps (Topra) | Str. (to) PSNRT SSIM{ LPIPS] | Neutral Happy Sad  Surprised Scared Dibg[ustcd l\ngry
20 31.25 0.934 0.031 0.238 0.028 0.15 0.035 0.033 0.065
40 400 31.71 0.937 0.029 0.244 0.028 0.148 0.035 0.032 0.066
80 32.04 0.938 0.029 0.245 0.03 0.15 0.034 0.031 0.065
20 27.67  0.883 0.064 0.133 0.011 0.094 0.013 0.015 0.022
Happiness 40 500 27.92 0.883 0.065 0.13 0.01 0.082 0.012 0.018 0.019
80 28.18  0.883 0.065 0.127 0.011 0.081 0.012 0.016 0.019
20 24.11 0.811 0.107 0.045 0.002 0.031 0.004 0.007 0.005
40 600 2413 0.803 0.113 0.038 0.003 0.027 0.004 0.008 0.004
80 24.28  0.800 0.115 0.037 0.003 0.026 0.004 0.007 0.005
20 31.18 0.933 0.031 0.157 0.052 0.051 0.141 0.081 0.119
40 400 31.68  0.937 0.029 0.159 0.052 0.052 0.138 0.083 0.123
80 32.02 0.938 0.028 0.159 0.054 0.053 0.139 0.08 0.122
20 27.97  0.889 0.061 0.122 0.016 0.029 0.111 0.055 0.104
Sadness 40 500 28.28 0.890 0.061 0.128 0.014 0.027 0.106 0.052 0.1
80 28.56  0.891 0.061 0.128 0.015 0.027 0.105 0.052 0.102
20 25.00  0.833 0.097 0.089 0.006 0.015 0.082 0.032 0.082
40 600 25.06  0.827 0.103 0.09 0.008 0.017 0.069 0.029 0.076
80 25.23  0.824 0.106 0.089 0.008 0.016 0.066 0.029 0.076
20 31.37 0.937 0.030 0.186 0.18 0.046 0.112 0.042 0.096
40 400 31.87  0.940 0.028 0.191 0.18  0.048 0.11 0.04 0.094
80 32.22 0.942 0.027 0.188 0.182  0.048 0.11 0.041 0.092
20 27.82  0.888 0.062 0.129 0.137  0.029 0.117 0.021 0.054
Surprise 40 500 28.10 0.889 0.063 0.127 0.136  0.027 0.115 0.024 0.048
80 28.36  0.890 0.063 0.127 0.138  0.026 0.114 0.021 0.048
20 2447  0.821 0.104 0.078 0.086  0.017 0.128 0.01 0.021
40 600 2445 0813 0.110 0.078 0.085  0.016 0.133 0.008 0.018
80 24.60  0.810 0.113 0.075 0.083  0.014 0.131 0.008 0.018
20 30.99 0.933 0.031 0.084 0.068  0.126 0.144 0.08 0.108
40 400 3147 0.937 0.030 0.087 0.071  0.124 0.14 0.081 0.109
80 31.82 0.938 0.029 0.087 0.072  0.121 0.142 0.08 0.11
20 27.46  0.883 0.065 0.043 0.034  0.098 0.14 0.053 0.072
Fear 40 500 27.75 0.884 0.065 0.043 0.033  0.092 0.148 0.05 0.072
80 28.03  0.885 0.065 0.042 0.032  0.094 0.146 0.05 0.072
20 24.09  0.813 0.109 0.018 0.016  0.068 0.133 0.027 0.041
40 600 2412 0.806 0.115 0.016 0.016  0.062 0.136 0.023 0.039
80 24.29  0.804 0.117 0.016 0.016  0.061 0.134 0.021 0.038
20 31.09 0.934 0.031 0.116 0.072  0.099 0.074 0.11 0.214
40 400 31.55  0.937 0.030 0.115 0.073  0.098 0.074 0.111 0.212
80 31.88 0.938 0.029 0.115 0.073  0.097 0.077 0.108 0.213
20 27.92  0.890 0.061 0.079 0.041  0.071 0.04 0.079 0.224
Disgust 40 500 28.21 0.891 0.062 0.073 0.04  0.072 0.04 0.073 0.224
80 28.48  0.891 0.062 0.074 0.041  0.072 0.04 0.072 0.219
20 24.94  0.833 0.100 0.041 0.032  0.05 0.025 0.051 0.222
40 600 24.98  0.826 0.106 0.038 0.033  0.047 0.02 0.052 0.216
80 25.15  0.824 0.108 0.038 0.036  0.05 0.019 0.048 0.212
20 31.42 0.937 0.029 0.169 0.069  0.083 0.082 0.088 0.131
40 400 31.94  0.940 0.027 0.168 0.071  0.085 0.084 0.088 0.132
80 32.30 0.942 0.026 0.17 0.07 0.083 0.083 0.088 0.133
20 27.98  0.890 0.060 0.125 0.02  0.064 0.053 0.055 0.128
Anger 40 500 28.30 0.891 0.061 0.127 0.021  0.063 0.05 0.054 0.128
80 28.59  0.892 0.061 0.13 0.02  0.061 0.051 0.052 0.125
20 24.60  0.825 0.103 0.078 0.006  0.043 0.026 0.033 0.105
40 600 24.67  0.819 0.109 0.078 0.006  0.043 0.025 0.032 0.097
80 24.83  0.817 0.112 0.075 0.005  0.041 0.024 0.029 0.1

Table 4.3: LDM-based emotion manipulation on the AffectNet validation set, using forward /backward DDIM processes
with c.f.g. scale v = 3.0, variable number of steps Tppiv € {20, 40,80} and editing strength ¢y € {400, 500, 600}.

responsible for encoding general identity specific characteristics of each depicted subject that ought
to be kept intact throughout the manipulation process. Deterministic decoding conditioned on yi,g is
expected to maintain all peripheral /appearance-related features and only manipulate facial expression
characteristics so as to match the target conditioning. In this case, learnt emotion embeddings encode
all the necessary semantic information relative to each emotion, within the deterministic DDIM setting
(similar t0 Zsem of the DIffAE framework [119]).

4.5 CLIP-Guided Finetuning
4.5.1 CLIP

Contrastive Language-Image Pre-training (CLIP) [121], constitutes an efficient method of image
representation learning with natural language supervision and can be considered as a simplified version
of the ConVIRT [152] model, trained from scratch. CLIP jointly trains an image encoder and a text
encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the
learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions
of the target dataset’s classes.

For pre-training, given a batch of N (image, text) pairs, CLIP is trained to predict which of
the N x N possible (image, text) pairings across a batch actually occurred. CLIP learns a multi-
modal embedding space by jointly training an image encoder and text encoder to maximize the cosine
similarity of the image and text embeddings of the N real pairs in the batch while minimizing the
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Figure 4.8: Overview of the CLIP model. Source: [121]

cosine similarity of the embeddings of the N? — N incorrect pairings. A symmetric cross entropy loss
is optimized over these similarity scores. An high-level view of the CLIP framework is illustrated in
Fig. 4.8.

4.5.2 CLIP Guidance for Emotional Manipulation

To effectively extract knowledge from CLIP, two different losses have been proposed: a global
target loss [115], and local directional loss [52]. Both of the aforementioned loss types were initially
proposed for direct optimization of intermediate latent representations in StyleGAN’s [75] W+ space.
The global CLIP loss tries to minimize the cosine distance in the CLIP space between the generated
image and a given target text as follows:

Eglobal (Xgena ytrg) =1- COS<CLIPimg (Xgen)a CLIP ext (ytrg)> (42())

where ., is a text description of a target and Xge,, denotes the generated image. On the other hand,
the local directional loss is designed to alleviate the issues of global CLIP loss such as low diversity and
susceptibility to adversarial attacks. The local directional CLIP loss induces the direction between
the embeddings of the reference and generated images to be aligned with the direction between the
embeddings of a pair of reference and target texts in the CLIP space as follows:

['dir (Xgelh ytrg7 Xsres ysrc) =1- COS<CLIPimg(Xgen) - CLIPimg (Xsrc)7 CLIPtext (ytrg) - CLIPtext(ysrc)> (421)

The manipulated images guided by the directional CLIP loss are known robust to mode-collapse issues
because by aligning the direction between the image representations with the direction between the
reference text and the target text, distinct images should be generated.

DiffusionCLIP [76] adapted the directional CLIP loss to the DDPM framework and achieved zero-
shot image translation between unseen domains as well as image editing. Aside from the directional
CLIP loss, when operating on human face images, they additionally employed both an identity-
preserving and ¢; loss. Before the application of CLIP guidance, training of a DM e€g is required.
Then, any given input image X, was converted to a noisy latent xéf‘c’). Subsequently, guided by the
CLIP loss, the DM, at the reverse path, was finetuned to generate samples driven by the target text
Yerg- The deterministic forward and reverse processes (1 = 0) were based on DDIM.

The identity preservation loss is implemented as the cosine distance in the embedding space of a
pre-trained face recognition network. More specifically, an IR-SE50'? model coupled with ArcFace

[32] is employed. The authors of [76] used a ¢; loss term but we opted for using its £» counterpart,
similar to the original implementations [52, |. The final combined loss objective takes the following
form:

»C(Xgena ytrgv Xsrc) ysrc) = )\dirC:{jr (Xgenv ytrg7 Xsrc ysrc) + )\id»cid (Xgern Xsrc) + )\42 ngen - Xsrc”g (422)

12This model is basically a combination of a 50-layer ResNet [62] with SENet [(5] blocks.
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where:

2 L
LY, = —log (;m) € [0, 4+00) (4.23)

The main two differentiating factors between the original DiffusionCLIP and our adaptation are
the following: i) The original one used a DDPM as its backbone while we use a LDM. ii) The original
one did not take advantage of source class-label information when applying the directional CLIP loss,
as the majority of experiments were performed in unconditional settings. It is worth mentioning that
in the original paper, a requirement of 24 GB GPU memory is reported for the full optimization
configuration of DiffusionCLIP. This could be reduced to 12 GB when using a memory-efficient im-
plementation of the main optimization loop. On the other hand, due to hardware constraints, we
were obliged to adapt this framework in the LDM setting. Doing so, we managed to perform the full
optimization routine on a single GPU and 11 GB of available memory. Moreover, the text editing di-
rection in the original implementation was static, i.e. it was the same for all input images, regardless of
their context. This meant that all pairs of generated-original images was forced to be aligned with the
same direction in the CLIP embedding space, resulting in lack of diversity in the manipulated images.
Taking advantage of the class of each source image, we allowed images to be manipulated in effectively
36 different directions, that is ‘neutral’ — {‘happy’, ‘sad’, ‘surprised’, ‘scared’, ‘disgusted’, ‘angry’}
and Ysrc — Yirg, With yee € {‘happy’, ‘sad’, ‘surprised’, ‘scared’, ‘disgusted’, ‘angry’} and Ysrc 7 Yirg
(contempt was mapped to neutral). Lastly, as our LDM was trained using c.f.g., we are able to couple
CLIP guidance with different values of unconditional guidance scale ~.

The first step in finetuning an LDM, involves the precomputation of noisy latents for a predefined
number of training instances and the entirety of the testing instances. We precomputed noisy latents
using deterministic forward DDIM (n = 0) with Thprv = 40 steps and ¢y = 500 editing strength for
4,000 training instances (500 per emotion class). Subsequently, we randomly sampled 1,000 latents
from the latter pool in an attempt to trade off model performance against reduced tuning time. This
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Figure 4.9: Quantitative comparison between baseline and CLIP-guided finetuned (CGF) models, in terms of mean
classification accuracy (in the range [0-1]), LPIPS, SSIM and PSNR of manipulated samples, using Tpprv = 40 steps,
editing strength tg = 500, Agir = 2.0, Aig = Mg, = 1.0, across all c.f.g. scales v € {1.0,2.0,3.0,4.0,5.0}.
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Figure 4.10: Quantitative comparison between baseline (Agiy = 0) and CLIP-guided finetuned (CGF) models (Agi, >
0), in terms of mean classification accuracy (in the range [0-1]), LPIPS, SSIM and PSNR of manipulated samples,
using Tppim = 40 steps, editing strength tg = 500, v = 1.0, A\jq = Ap, = 1.0, across different values of Aqi; €
{0.0,1.0,2.0,3.0}.
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procedure was replicated for all guidance scales v € {1.0,2.0,3.0,4.0,5.0}. We ran finetuning for 20
epochs with a learning rate of 2 x 1075, batch size of 4, using the AdamW [05] optimizer. Each batch
of latents undergoes DDIM sampling for Tiyne = 6 steps and ty = 500. Obviously this low number
of steps in the DDIM sampling process gives imperfect reconstruction but is empirically chosen [70]
as an acceptable compromise between sample quality and GPU memory requirements. The tuning
procedure is repeated for each one of the six target emotions, leading to six different models per
value of v and combination of (Agir, Aig, Ae,) coefficients. For simplicity, during all experiments we
set A\ia = Ag, = 1 and only varied Agj,.

Figs. 4.9 and 4.10 present quantitative comparisons between baseline and finetuned models, in
terms of image quality metrics (LPIPS/SSIM/PSNR) and classification accuracy measured on top
of the manipulated samples from the AffectNet validation set. More specifically, in Fig. 4.9 the
finetuned models demonstrate higher classification accuracy scores for the same values of c.f.g scale
v, with the exception of the emotion of ‘disgust’. Images that undergo CLIP guidance with the

(a) Baseline (b) Finetuned

Figure 4.11: Emotion manipulation comparison between baseline and finetuned models on curated examples from
the AffectNet validation set, using Tppiv = 40 steps, n = 0, editing strength tg = 500, variable c.f.g. scale v €
{1.0,2.0,3.0,4.0,5.0}, Agir = 2.0, \ig = A, = 1.0.

i)

-

g
2

Figure 4.12: Qualitative comparison between baseline and finetuned models on curated examples from the AffectNet
validation set, using Tppim = 40 steps, n = 0, editing strength to = 500, v = 1 Ajg = Mg, = 1.0 and variable
Aair € {1.0,2.0,3.0}.

54



4.5. CLIP-GUIDED FINETUNING

1

Baseline

Finetuned

’Mi ’Piv ‘Ivlv h\ﬂ;ﬁd

gleiee
wm

Baseline Finetuned Baseline Finetuned Baseline

Finetuned

Finetuned

Figure 4.13: Qualitative comparison between baseline and finetuned models on curated examples from the AffectNet
validation set, using Tppim = 40 steps, n = 0, editing strength to = 500, c.f.g scale v = 3.0, Agir = 2.0, A\jq = Mg, = 1.0.

latter being the target emotion, end up looking very similar to their ‘angry’ counterparts, hence the
drop in accuracy. The boost in classification accuracy comes at the cost of a slight dicrease in image
quality across all quality metrics, but as it will be demonstrated later, the end result remains visually
compelling. Furthermore, in Fig. 4.10, we can see that even with no unconditional guidance (y = 1),
a setting in which the manipulation effect of the baseline method is often unnoticeable to the human
eye, the introduction of directional CLIP loss resolves emotional ambiguity to a large extend, with
the exception of ‘disgust’, as discussed above.

A qualitative comparison between the baseline and tuned models is presented in Figs. 4.11, 4.12
and 4.13, where the values of c.f.g scale v and weight \g;, are varied, respectively. Increasing - in the
finetuned models, does not particularly affect the cases of happiness and disgust while a slight shift
in colors can be noticed in some cases. This could either be a result of the small number of sampling
steps used during the tuning process (Ttune = 6) higher required coefficients for Ay,.
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4.6 Comparison with GAN-based Approaches

There is a scarcity in both diffusion-based and GAN-based implementations for image-based emo-
tion manipulation that are publicly available. We search the recent related literature with the aim of
finding methodologies that fall under either of the two aforementioned classes of networks. As at the
time of writing, no applicable diffusion-based model with a publicly available codebase exists, we shift
our attention towards well-grounded GAN-based implementations, with which we will compare our
findings, in both a quantitative and qualitative level. These models are: GANimation [120], StarGAN
v2 [20] and GANmut [30]. The following paragraphs present the core concepts behind each of the
three aforementioned implementations, before moving onto the extensive quantitative and qualitative
comparisons that we have conducted relative to our own implementations.

4.6.1 GANmut

GANmut [30] is a framework that utilizes the categorical labels of basic emotions to jointly learn
the underlying emotion-conditional space as well as the ability to emotionally manipulate images.
Motivated by the fact that basic emotion labels cannot faithfully cover the full gamut of human emo-
tions (e.g., a happily surprised face might be only labelled as happy) GANmut introduces the problem
of making the GAN conditional space learnable in an attempt to refine the inherent imperfections of
emotion labeling.

To this end, two different parameterizations of the emotion-conditional space are proposed. The
first approach, denotes as Linear, parameterizes a 2D conditional space Z with polar coordinates (6, p).
The conditional latent code is interpreted as a random variable z = (6, p), with its coordinates coming
from a uniform distribution: 6 ~ U(0,27),p ~ U(0,1). Thus, each basic emotion ¢ € {1,...,C}
(C =7 in AffectNet, excluding the emotion of contempt) is parameterized with z. = (0., -), where 6,
is the learned direction for emotion c.

The second approach, denoted as Gaussian, aims to describe facial expressions using a label
distribution rather than a single categorical emotion. In this case, the conditional latent code is
a 2D random variable that is uniformly distributed, i.e., z ~ U(Z),Z = [-1,1]>. Then, a basic
emotion ¢ € {1,...,C} is represented by a mode (u., X.). This is characterized by a mean p, =
tanh(w,),w. € R?, with w, being learnable parameters. Moreover, the corresponding covariance
matrix 3. € R**? is parameterized by its eigenvalues 07 ., 03 . and eigenvector orientation 6., which
define the alignment and the length of the covariance ellipses axes, respectively.

For testing the aforementioned implementation against our own, we used the official codebase!?
along with publicly available models that have been pre-trained on AffectNet. We evaluated both
linear and Gaussian models, denoted as GANmut and GGANmut, respectively. In the case of the
linear model, we manipulated images using maximum intensity (p = 1). In order to achieve that, we
use the learned unit vectors v, = (., y.) corresponding to each emotion ¢ € {1,...,C}, and calculate
the principal direction 6, = arctan2(y., x.).

4.6.2 GANimation

GANimation [120] is a conditional GAN framework that conditions the generation process on
normalized AU intensities rather than discrete emotion labels. In that way, it is able to animate
a continuous manifold of anatomical facial movements without being constrained by the limited
expressiveness of discrete basic emotions.

Let G be a generator block. Given an RGB image I, € captured under an arbitrary
facial expression and the N-dimensional vector y; encoding the desired expression (N = 17), the
input of G is formulated as a concatenation (I,,,ys) € RY *Wx(N+3) where each entry in yy has
been replicated across the other two spatial dimensions. One key ingredient of the current system
is to make G focus only on those regions of the image that are responsible of synthesizing the novel
expression and keep the surrounding context untouched. To that end, instead of regressing a full
image, the generator outputs two masks, a color mask C and attention mask A. The final image is
obtained as:

RHXWX?)

I, =(1-A)-C+A I, (4.24)

I3https://github.com/stefanodapolito/GANmut
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where A = G4(Iy,|ys) € {0,1}*W and C = Ge(1,, |yr) € R¥*W>X3. The mask A indicates to
which extent each pixel of C contributes to the output image I,,. The generator is applied twice,

first to map the input image I,,, — I, and then to reconstruct it I, — iyo. Moreover, a conditional
patch-based discriminator D is used to evaluate the generated images in terms of their photo-realism
and desired expression fulfillment. Conditioning is evaluated using an auxiliary regression head that
estimates the AU activations § = (91,...,9n)' of the generated image. The full model is trained
using a weighted sum of adversarial, attention, conditional expression and identity losses. Training is
performed in an unsupervised manner, using triplets of the form {I, ,y,,ys}, where the target AU
vector yy is randomly picked for every generated triplet.

For the application of GANimation in the emotion manipulation scenario with discrete emotions,
we used the following scheme: we randomly sampled 500 images corresponding to each emotion label
from the training set and computed the required target AU vectors for each one of them, using the
publicly available OpenFace!? [] toolkit. Each vector contains intensities in the range [0, 5] for each
on of 17 detected AUs which are later normalized to [0,1]. As GAN training is notoriously unstable,
we opted for using a publicly available model checkpoint'®, pre-trained on more than 400K images
with annotated AUs belonging to the EmotionNet database [10].

4.6.3 StarGAN v2

StarGAN v2 [20] differentiated itself among existing (at that time) implementations by ensuring
both diverse image generation as well as scalability across multiple domains. Assuming X and )
denote a set of images and their respective domains, a single generator G is trained so that it can
generate diverse images from each domain y € ).

To begin with, a generator G translates an input image x into an output image G(x, s) reflecting a
domain-specific style code s, which is provided either by a mapping network F' or by a style encoder
E. The mapping network F' generates style codes s = Fy(z) € R?% where z € R% is a latent
code (z ~ N(0,I) in practice). F consists of an MLP with multiple output branches to provide
appropriate style codes for all available domains. Moreover, the style encoder receives an image
x and its corresponding domain y as inputs and extracts its corresponding style code s = E,(x).
Similarly to F', the style encoder has the same number of output branches as the number of available
domains. A multitask discriminator D is also employed, consisting of multiple output branches where
each branch D, solves the binary classification problem of whether x is a real image that belongs to
domain y or a fake one produced by G.

The aforementioned framework is trained using a composition of various loss objectives. Apart
from the regular adversarial objective, the generator is trained using a style reconstruction loss. More
specifically, given a target style code s corresponding to target domain g, the generator is forced to
utilize the latter when generating the image G(x, §) through the following loss term:

Lty = Ex.2[118 — E5(G(x, 8))[1] (4.25)

so that the learned encoder E allows G to transform an input image, reflecting the style of a ref-
erence image. Additionally, the generator is encouraged to generate diverse images through a style
diversification loss:

Laiv = 7EX7Q721722 H|G(X7 '§1) - G(X7 52)”1} (426)

where the target style codes S, 8o are produced through F' conditioned on two random latent codes
z1, Z2, respectively. Lastly, a cycle consistency loss is employed to ensure that the generated image
G(x, 8) preserves any domain-invariant characteristics:

Leye = Bx,yg.2[lx — G(G(x, 8), 3)|1] (4.27)

where § = F, (x) is the estimated style code of the input image x and y its respective original domain.
All above training objectives (plus the adversarial objective) are combined through weight coefficients
)\stya /\diva )‘cycv )\adV7 respectively.

We trained a StarGAN v2 model, using the publicly available official codebase!'®, on AffectNet
for 100K iterations using a batch size of 8. The learning rate for D, F and G is set equal to 1074,

Mhttps://github.com/TadasBaltrusaitis/OpenFace
Bhttps://github.com/donydchen/ganimation_replicate
https://github.com/clovaai/stargan-v2

57


https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/donydchen/ganimation_replicate
https://github.com/clovaai/stargan-v2

CHAPTER 4. EXPERIMENTS-FACE REENACTMENT

Ytarget Happy Sad Surprised

Method Accuracy? PSNRT SSIMT LPIPS| CSIMf | Accuracyt PSNRT SSIMt LPIPS| CSIM? | Accuracy? PSNRT SSIMT LPIPS| CSIM?t

Groundtruth [107] 0.758 - - - - 0.638 - - - - 0.606 - - - -
GANimation [120] 0.645 24.07 0.816 0.099 0.547 0.212 24.52 0.830 0.097 0.582 0.360 23.82 0.817 0.101 0.559
StarGAN v2 [20] 0.958 17.46 0.659 0.165 0.441 0.569 18.30 0.712 0.149 0.593 0.761 17.99 0.678 0.160 0.503
GANmut [30] 0.879 21.42 0.809 0.106 0.663 0.888 2385  0.857  0.094 0.755 0.829 22.43 0.810 0.112 0.675
GGANmut [30] 0.934 21.91 0.819 0.103 0.717 0.986 22.13 0.802 0.115 0.653 0.970 22.37 0.777 0.121 0.610
Ours 0.872 25.80 0.841 0.090 0.743 0.774 25.71 0.837 0.095 0.778 0.658 25.54 0.838 0.094 0.716
Ours w/ CGF 0.883 24.30 0.813 0.098 0.744 0.875 24.72 0.822  0.093  0.794 0.752 23.42 0.797 0.113 0.721

Scared Disgusted Angry

Groundtruth [107] 0.666 - - - - 0.646 - - - - 0.514 - - - -
GANimation [120] 0.314 23.68 0.814 0.105 0.556 0.271 24.13 0.819 0.103 0.549 0.287 24.80 0.833 0.096 0.580
StarGAN v2 [20] 0.860 17.76 0.676 0.162 0.507 0.879 18.10 0.691 0.154 0.528 0.666 18.14 0.689 0.154 0.509
GANmut [30] 0.932 2339  0.841 0.102 0.721 0.877 22.64 0.815 0.113 0.663 0.856 21.57 0.813 0.106 0.678
GGANmut [30] 0.967 20.13 0.763 0.135 0.556 0.987 21.68 0.772 0.128 0.562 0.969 21.77 0.767 0.133 0.590
Ours 0.764 24.89 0.824 0.103 0.770 0.676 25.50 0.835 0.100 0.707 0.710 25.66  0.840 0.094 0.714
Ours w/ CGF 0.764 24.83 0.826  0.096 0.764 0.450 24.87 0.822  0.089 0.714 0.886 24.18 0.796 0.106 0.735

Table 4.4: Quantitative comparison among our LDM-based model and GAN-based implementations for image-based
emotional manipulation on the AffectNet validation set.

Method Mean

Accuracy! PSNRF SSIMT LPIPS] CSIM{

Groundtruth [107] 0.638 - - - -
GANimation [120] 0.348 24.17 0.822 0.100 0.562
StarGAN v2 [20] 0.782 17.95 0.684 0.157 0.514
GANmut [30] 0.877 22.55 0.824 0.106 0.693
GGANmut [30] 0.969 21.67 0.783 0.123 0.614
Ours!” 0.742 25.51 0.836 0.096 0.738
Ours w/ CGF'® 0.768 24.38 0.813 0.099 0.745

Table 4.5: Quantitative comparison among our LDM-based model and GAN-based implementations for image-based
emotional manipulation on the AffectNet validation set, using mean aggregated metrics across all six target emotions.

while for F is set equal to 107, using the Adam optimizer. The loss weighting coefficients were set
equal to Asty = Adiv = Acye = Aadv = 1, for simplicity. Input image size is 1282 pixels, with Y| =38
domains (in accordance with the basic 7 emotions of the AffectNet dataset, plus neutral). We used
latent code dimension d, = 16, style code dimension ds = 64 and 512 units for the hidden layers
of the mapping network. For image-manipulation, we used latent-based translation, generating 10K
latent codes per image, per target emotion. Subsequently, these latent codes were mapped to their
corresponding style codes using the trained mapping network, while the generator was fed with the
average of the computed style codes, along with the images to be translated.

Fig. 4.14 provides a qualitative comparison among the three aforementioned implementations,
considering both linear and Gaussian variants of GANmut, on curated examples from the AffectNet
validation set. We immediately notice that samples manipulated with GANmut, feature accurate
depictions of the target emotions but often suffer from noise and subject identity deformation. More-
over, as it was expected, it is far more difficult to capture the desired emotions with GANimation
and randomly selected driving AUs, rather that curated ones, but such a comparison would have
been unfair with regard to other implementations. On the other hand, StarGAN v2 seems to strike a
better balance between image quality and emotion transfer, but mostly fails to preserve the subjects’
identity, skin tone and illumination. Our diffusion model successfully compromises between style
preservation and emotion transfer, while also maintaining high image quality.

In Tab. 4.4 we provide a quantitative comparison among the three aforementioned GAN-based
implementations and our diffusion-based ones, with and without CLIP-guided finetuning, in terms of
emotion classification accuracy (using a pre-trained HSEmotion [135-137] as the classifier), PSNR,
SSIM, LPIPS as well as feature cosine similarity in the embedding space of a CosFace [171] model, pre-
trained on the Glint360K [2] dataset (CSIM). Boldface indicates the best score relative to each table
column. The comparison all models is far from straightforward and we need to take into consideration
the underlying trade-off between emotion classification accuracy and quality preservation with regard
to source images. Across all emotions, our LDM-based implementations surpass all GAN-based
counterparts in terms of image quality, something which was expected given the previous qualitative
comparison on curated examples. Furthermore, GAN-based manipulators achieve generally higher
emotion classification accuracies, with the highest mean scores being noted by GGANmut. This
can be partly explained by the fact the the latter fits multiple Gaussians with the aim of acquiring

17¢.f.g scale v = 5.0, editing strength to = 500 and Tpprm = 40 steps.
18¢.f.g scale v = 5.0, editing strength to = 500 and Tppiv = 40 steps, Agir = 2.0, A\ig = A, =1.0
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Figure 4.14: Qualitative comparison among our LDM-based model and GAN-based implementations for image-based
emotional manipulation on curated examples from the AffectNet validation set.
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a more accurate and rich representation of the conditional emotional latent space, compared to
discrete emotion labels. We could probably counter this deficit by experimenting with different
dropout probabilities for c.f.g during training and higher unconditional guidance scales (y > 5.0).
Moreover, a more subjective approach towards model evaluation can be followed, e.g., in the form of
questionnaires, which is common is the case of image-to-image translation experiments. This will be
further discussed in the upcoming paragraphs. Tab. 4.5 presents mean aggregated statistics across
all six target emotions in terms of all five evaluation metrics.

We also conducted two user studies to evaluate the realism and emotion accuracy of our approach,
as assessed by human users, the results of which can be found in Tab. 4.6. In the first study, we
involved 24 participants, who were presented with 28 pairwise comparisons between all methods
(including original images) and were asked to choose the most realistic one. As demonstrated by the
results, our method’s manipulated images were perceived significantly (p < 0.01 with binomial test)
more realistic compared to the other methods. However, as anticipated, they were not as realistic as

59



CHAPTER 4. EXPERIMENTS-FACE REENACTMENT

Realism

Ours vs. | GANimation | GANmut StarGAN v2 | Groundtruth

0.69 031 | 0.68 0.32]|0.61 0.39 | 028 0.72
Emotion Recognition

0.57 | 0.38 | 073 ] 057 ] 0.59

Table 4.6: Head-to-head subjective study regarding realism (top half) and emotion translation accuracy (bottom
half).

the actual images.

In the second study, 27 participants were shown 30 images from each method and asked to iden-
tify the displayed emotion from a list of six emotions. The bottom half of Tab. 4.6 presents the
corresponding accuracy results, which are closely aligned with the previous objective results. Our
approach achieves performance on-par with StarGAN v2 and surpasses GANimation, although GAN-
mut achieves the highest accuracy. Notably, the accuracy in the original images of AffectNet is similar
to that of StarGAN v2 and our method. This observation can potentially be attributed to GANmut
generating more "exaggerated" emotions that deviate from the emotion distribution in AffectNet,
sacrificing realism in the process. This is further strengthened through the initial qualitative compar-
ison of Fig. 4.14, where the superiority of our models in terms of image quality and realism becomes
more evident.
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Chapter 5

Experiments—Talking Face (Generation

The current short chapter is dedicated to presenting our experimental results regarding diffusion-
based talking face generation. The basis of the presented models has already been established in the
previous chapters and is centered around LDMs. The methodologies presented are heavily influenced
from [154] and [110]. At the time of writing, no publicly available and relative code implementation
exists, so part of the current experimentation is the actual reproduction of the models themselves.
The first of the upcoming paragraphs focuses on introducing all necessary computational components
of the talking face model, starting from the audio encoder.

5.1 Dataset and Preprocessing

Dataset Experiments are based on the Multi-view Emotional Audio-visual Dataset (MEAD) [172],
a talking-face video corpus featuring 60 actors and actresses. The data acquisition process for MEAD
focuses on two aspects. Firstly, capturing natural and stable emotions during speech, and secondly,
ensuring distinguishable intensities of emotions. A guidance team, led by a professional actor, su-
pervised the process. Fluent English speakers aged 20 to 35 with acting experience were recruited,
and their skills were evaluated through imitation tasks based on video samples performed by the
professional actor.

The MEAD dataset offers several distinctive features compared to other audio-visual datasets. It
provides a more fine-grained manipulation of emotions and intensity levels by including neutral and
7 basic emotions with 3 intensity levels each. This richness in emotion information sets it apart from
recent datasets that typically offer fewer intensity levels. MEAD also stands out for its multi-view
data, with recordings captured from 7 cameras at different viewpoints, making it the dataset with
the largest number of viewpoints among recent audio-visual datasets. Other datasets like Ouluvs2 [3]
and TCD-TIMIT [G1] offer a limited number of viewpoints or focus primarily on front and side views.
MEAD videos have a resolution of 1920 x 1080, allowing for high-fidelity portrait video generation.
The audio sample rate is 48 kHz, and the video frame rate is 30 fps, which is widely used and sufficient
for various video tasks such as emotion recognition and portrait video generation.

No predefined training/test splits are provided by the distributors of the MEAD dataset. We create
custom splits that do not share any common human subject. The training set ends up containing
21,739 videos while the test set contains 3,692 videos. The subjects contained in the test set are:
MO003, M023, M033, M040, W009, W021 and W040.

Preprocessing Input frames are first resized to 216 x 384. Next, they undergo facial landmark
detection using FAN [18]. Using the pixel coordinates of the detected facial landmarks, we extract
frame-level center crops, after further adding a 10 pixel margin along all directions (up, down, left,
right). In order to avoid inter-frame inconsistencies in terms of the scale and size of the extracted face
crops, we fix the expanded facial bounding box based on the detected facial landmark coordinates
of the first frame of each video sequence. Our choice is partly justified by the fact that MEAD was
assembled under heavily controlled lab settings, that is the possibility of a subject’s head to fall
outside of the initially detected bounding box is relatively low. The extracted bounding boxes are
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later resized to 128 x 128. Based of the latter, we also recalculate and save facial landmark coordinates
for each frame.

5.2 Baseline Model

The backbone of the upcoming models is again based on LDMs. What is worth mentioning is
the additional feature extractor that produces the necessary audio conditioning that is eventually fed
into the LDM cross-attention mechanism.

5.2.1 Audio Feature Extractor

Our design follows the SOTA self-supervised pre-trained speech model, wav2vec 2.0 [(], which can
be seen in Fig. 5.1. The latter builds upon its predecessor, i.e. wav2vec [138], and introduces several
key improvements and differentiating factors.

Contrastive Predictive Coding It employs a contrastive self-supervised learning objective called
Contrastive Predictive Coding (CPC) [112] in its initial training stage. This allows the model to learn
useful representations from large amounts of unlabeled speech data. By predicting masked portions
of the audio, the model captures contextual information and learns to understand the relationships
between different parts of the audio.

Transformer Architecture Its first stage encoder consists of several temporal convolutions layers
(TCN) and transforms the raw waveform input into feature vectors. The outputs of the temporal
convolutions are discretized to a finite set of speech units via a quantization module. While wav2vec
used a CNN as its primary architecture, wav2vec 2.0 further incorporates a transformer encoder [168]
composed of a stack of multi-head self-attention and feed-forward layers, converting the audio feature
vectors into contextualized speech representations. Transformers have shown remarkable success in
various natural language processing tasks, and their utilization enables the model to capture long-
range dependencies in the audio data, leading to improved performance.

Large-Scale Training It benefits from being trained on massive amounts of unlabeled data. By
leveraging large-scale training, the model can learn robust representations that generalize well to
different downstream tasks. This allows the model to perform effectively even when finetuned on
relatively smaller labeled datasets.

Supervised Finetuning It utilizes a supervised finetuning stage, where it is trained with labeled
speech data using a connectionist temporal classification (CTC) loss. This finetuning process aligns
the learned representations with the actual speech labels, further improving the model’s accuracy in
recognizing spoken words and other speech-related tasks.

Contrastive loss

L
Context_ C = ﬁ ( (] (3
representations T I T T I

Transformer

Masked
Quantized é (& @{
representations Q @

Latent speech Z
representations

CNN

Figure 5.1: Illustration of the wav2vec 2.0 framework. Source: [0].
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5.2.2 Methodology Overview

Due to the 2D inherent nature of diffusion models, we are constrained to frame-level generation
during both training and inference. The rest of the current section describes the different conditioning
mechanisms used for driving the talking face synthesis process. A high level overview of the approach
is illustrated in Fig. 5.2.

Audio Conditioning Audio conditioning constitutes the primary driving factor and common de-
nominator of all talking face synthesis configurations which we will consider. We experiment with
extracting two kinds of audio features. In one case we use the hidden state a € RT'*768 45 obtained
from the last transformer encoder block of wav2vec 2.0. In the second case, we operate the model in
ASR mode and extract unnormalized logits b € RT'*29 for 29 character labels'®. We initialize our
encoder with the pre-trained wav2vec 2.0 weights. Since the facial motion data might be captured
with a frequency f,, that is different to the operating frequency of the feature extractor f, (f, =49
Hz for wav2vec 2.0 while f,,, = 30 fps for MEAD) we add a linear interpolation layer which results
in the output length T' = kT" = LJ}—’”JT’ . In this way, we achieve temporal alignment of the visual
and audio input modalities. In order to add expressive power to the cross-attention mechanism, we
add learnable audio meta-encoders Tg(a) € R'*7%® (ConvlD temporal attention) and T (b) € R?*64
(Conv1D temporal attention paired with a feature expander).

Emotion Conditioning As usual, we use a single learnable embedding layer 75(y) € R!*256
that maps each one of the 8 possible emotion labels of the MEAD dataset, i.e. neutral, happy, sad,
surprised, scared, disgusted, angry and contempt. The emotion conditioning is not necessarily applied
in all configuration but is essential in case of emotion conditional talking face synthesis.

Landmark Conditioning Landmark conditioning is directly adapted from [140] and evaluated as
an additional conditioning mechanism. More specifically, we use a per-frame masked version of the
landmarks detected using FAN [18] during the preprocessing stage. We use only 48 pairs out of the
total 68 keypoints, excluding 20 pairs of pixel coordinates relative to the mouth area, so as to avoid
shortcuts. The 48 coordinate pairs are flattened, forming a vector 1 € R% and are later encoded
using a learnable shallow MLP with ReLU activations 1g(1) € R*!28. This auxiliary facial landmark
condition is also included for better control of the face outline.

Identity Frame Apart from the noisy target, the denoising U-Net is provided with a randomly
chosen identity frame as reference. This conditioning mechanism is expected to help the denoising

195 5 sy R o TAD ) ONT? T OCETY QY R O T OTTY ONAY VWY (Y R (Y YNV P RO\ Y 1N ey oo
20, R, T, A, O, N, D, PHY, S, R, D, UL, U, MY, W, C R, UG Y, P, B, VY, KD, , X0,
7Q77z7
)
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component in transferring peripheral-appearance related features to the target synthesized image
without information leakage relative to the mouth region. Since the ground-truth/target face image
has a completely different pose from model is expected to transfer the pose of the identity frame to
the target face without any prior information. This constitutes an ill-posed problem with no unique
solution. In order to alleviate this issue, extra conditioning information is needed.

Masked Target The masked ground-truth image is provided as another reference condition for
target head pose guidance. The mouth region of is completely masked to ensure that the ground
truth lip movements are not visible to the network.

5.2.3 Training

The various conditioning information described above, can be separated into two distinct cate-
gories: 1) Those that are fed to the denoising network through the LDM cross-attention mechanism,
denoted as cCattn. 1i) Those that are fed to the denoising network by concatenating them channel-
wise with the noisy target, denoted as Ccpet. We train the LDM to learn the distribution of frames
extracted from videos. At each iteration, we randomly sample a video X = {x1,...,x,} from the
training set, and then a frame x;, from X, where n is the total number of frames of the sampled video.
In addition to the standard diffusion model’s inputs, i.e. a time step ¢ and the noisy target, we also
sample an identity frame x;4. To prevent training shortcuts, the selection of x;q is limited to 60 frames
beyond the target image. Depending on the configuration, a masked version of the target frame is
included, denoted as Xmask. All of the aforementioned frames are first passed through a pre-trained
perceptual encoder, leading to compressed latent representations zy, ziq and Zpyask, respectively. At
each iteration, the randomly sampled target latent undergoes forward diffusion for ¢t ~ U(1, Tpppm)
timesteps, leading to the noisy target latent z;.

In terms of conditioning, ccnet is formed through channel-wise concatenation of z; with ziq
and Zpask, whenever applicable. That is Cenet = 2t Pe Zid Pe Zmask- Similarly, caten is formed
through vector concatenation of the respective audio, emotion or landmark embeddings. That is
Cattn = |To, (2);Te,(y) ...], where Tg,,Tg,,... are the respective audio, emotion or landmarks learn-
able encoders. The simple denoising LDM objective is used to guide the training process:

Lsimp]e = Ez,ccnct,catm,e,t ||€ — €9 (Zty Cattn; Cencty t)”; (51)

where €g denotes the learnable denoising U-Net.

5.2.4 Autoregressive Synthesis

Following the same practices as [140, |, we apply an autoregressive sampling scheme for talking
face synthesis. In [154], the authors proposed the use of motion frames with the aim of producing
smooth videos. During every sampling step, the current motion frame is replaced with the latest
synthesized frame. During the early stages of development, we neglected this type of approach due
to the fact that the latter methodology was based on pixel-space DDPM rather than LDM. This
led to the problem of gradual error accumulation, especially in the case of longer videos. One extra
error source in the case of LDMs is the inherent quantization/reconstruction error during latent

encoding/decoding (decoding is necessary as the authors of [154] suggest motion frames to be in
grayscale).
So we ended up using the proposed methodology of [140]. When rendering a talking video, for

the first frame, the first identity frame matches the groundtruth target frame. Subsequently, every
newly synthesized frame is utilized as the identity frame during the next generation step.

5.2.5 Ablation Study
Evaluation Metrics

We evaluate all configurations coupled with quantitative indicators. PSNR, SSIM and LPIPS are
the three selected metrics for assessing image quality. As far as lip reading metrics are concerned, a
straightforward way would to evaluate the compared methods by applying a pre-trained lipreading
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Model Conditioning Image Quality Lip Reading
Emotion Masked Target Landmarks | PSNRT SSIMt LPIPS| | WER| CER] WERV] CERV]

Groundtruth | N/A N/A N/A N/A N/A  N/A | 655 413 651 35.6
v X X 20.61 0.582 0.114 191.8 137.8 187.7 130.8
Baseline v v X 26.59 0.856 0.046 112.9 85.2 109.7 81.1
(Transformer) v v v 26.68 0.865 0.043 110.1 85.1 108.4 79.7
X v X 26.69 0.857 0.047 102.2 82.1 99.3 77.3
B(aAsglgie X v x 26.66  0.857 0045 | 101.3 835  99.1 78.2

Table 5.1: Ablation study in terms of various conditioning mechanisms used in the underlying LDM backbone, on
the basis of the MEAD dataset. Audio window length w = 4 in all configurations.

Model Audio Window Image Quality Lip Reading
Length w PSNRt SSIMt LPIPS| | WER{ CER] WERV] CERV]
Groundtruth N/A N/A N/A N/A 65.5 41.3 65.1 35.6
1 26.29 0.851 0.048 121.2 90.5 119.6 88.2
Baseline 2 26.53 0.855 0.047 116.3 87.1 111.4 83.4
(Transformer) 4 26.59 0.856 0.046 112.9 85.2 109.7 81.1
8 26.43 0.854 0.046 108.2 82.3 105.1 7.7
16 25.74 0.841 0.049 116.2 87.5 111.9 83.1
Baseline

(ASR) 8 26.41 0.859 0.046 107.1 83.3 105.3 T

Table 5.2: Quantitative comparative study in terms of various audio window lengths used by the underlying audio
encoding module, on the basis of the MEAD dataset. Audio and emotion conditioning used in all configurations.

network on the output rendered images. We choose AV-HuBERT [142, | as the evaluation model.
The following lipreading metrics are considered: Character Error Rate (CER), and Word Error Rate
(WER) as well as their viseme variants (obtained by converting the predicted and ground truth
transcriptions to visemes using the Amazon Polly phoneme-to-viseme mapping). CER calculation is
based on the concept of Levenshtein distance, where we count the minimum number of character-
level operations required to transform the groundtruth text into the OCR output. On the other hand,
the formula for WER is the same as that of CER, but WER operates at the word level instead. It
represents the number of word substitutions, deletions, or insertions needed to transform one sentence
into another. The formulas for both error rates are the following:
S+D+1 Sw + Dy + Iy

WER=--—_"- CER=
’ N

= (5.2)

where S denotes the number of character substitutions, D denotes the number of character deletions,
I denotes the number of character insertion, N denotes the number of characters in the reference text
while subscript w indicates their word-level counterparts.

Conditioning First we investigate the effect of the various conditioning mechanisms in both image
quality and lip synching of the generated talking face sequences. Audio conditioning and identity
frames are supplied as base conditioning in all cases. In terms of audio, we consider using either
intermediate features from the last transformer block of wav2vec 2.0 or the unnormalized logits for
29 character labels. Evaluation metrics are calculated on the basis of 150 videos for a random subset
of the MEAD test set. We ought to note that generation of 150 talking face sequences on an NVIDIA
RTX 3090 GPU took approximately 24 hours. Due to both resource and time constraints, the number
of generated sequences per compared model configuration was kept to a bare minimum.

Results are presented in Tab. 5.1. Providing only an identity frame and audio as conditioning
results in the worst performance in terms of both image quality and lip reading. This is expected
as the corresponding sequence generation task constitutes an ill-posed problem and calls for further
guidance. Word/character error rates are above 100%, i.e. the generated sequences include more
words/characters than the reference transcript. As we will later demonstrate, this happens because
the generated sequences suffer from severe temporal inconsistencies. Moreover, we notice that the
addition of landmark conditioning does not add anything to the lip reading metrics as landmark
coordinates of the 20 mouth-related keypoints is excluded from the conditioning mechanism so as to
avoid shortcuts. However, landmark conditioning provides a slight boost in image quality as they
essentially help in capturing a more accurate outline of inter-frame facial deformations. Concatenating
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Figure 5.3: Qualitative comparison in terms of LDM conditioning mechanisms on uncurated talking face frame

sequences of the MEAD dataset.

This is partly

emotion with audio conditioning results in a slight degradation in lip reading metrics.
justified by the fact the resulting concatenated embedding is of a mush higher dimensionality (1024-

dim in our case), making it more difficult for the underlying cross-attention mechanism to properly

66



5.3. LIP READING-BASED FINETUNING

distinguish the effect of each of aforementioned conditionings.

Fig. 5.3 illustrates uncurated sample sequences, as obtained through progressive inference on
our MEAD test set, under different conditioning configurations. A’ stands for audio, 'I’ stands for
identity, "M’ denotes the masked target, 'L’ denotes the landmark, while 'E’ denotes the emotion con-
ditioning. We immediately notice that the identity conditioning does not suffice for capturing identity
specific facial details and textures. Emotion conditioning does not seem to help in lip synching, a
conclusion which is also reinforced by the quantitative results of Tab. 4.2. Masked target conditioning
definitely plays an important role in grounding a rather ill-posed problem, providing strong guidance
in terms of both head pose and subject identity preservation.

Audio Window Length Apart from the identity and masked target frames, another way to
smoothen inter-frame transitions is by basing the audio conditioning on a series of adjacent frames
rather than a single one. This means that when model tries to infer frame ¢, the audio encoder module
is fed with wav2vec 2.0 features from [t — w,...,t,...,t + w], where w denotes the audio window
length. For example, all results presented in Tab. 5.1 correspond to an audio window length w = 4.
The corresponding ablation study is presented in Tab. 5.2, where we have used audio, coupled with
masked target and emotion conditionings. In both ASR and transformer modes, the windowed audio
features are weighted using a temporal attention module consisting of 5 Conv1D layers, followed by
a linear and softmax layer. Small window lengths (w = 1,2) are not sufficient for achieving smooth
inter-frame transitions. Best lip reading performance is achieved for w = 8. On the other hand, using
a big audio window of length w = 16 results in excessive smoothing and consequently, degradation in
terms of lip reading metrics.

5.3 Lip Reading-Based Finetuning

A big portion of existing talking face synthesis methodologies incorporate some kind of lip reading
expert that explicitly guides the model for better audio-lip synchronization. To the best of our
knowledge, in the diffusion-based setting, no such approach has ever been applied. In [151], the
authors proposed the use of a local denoising loss term on the basis of noisy and groundtruth mouth
crops. However, this approach is not applicable in the LDM setting, due to the fact that training is
performed in latent space rather that in pixel-space, which is the case for regular DDPM.

5.3.1 Caveats

Another fundamental blocker regarding the addition of a lip synching loss term in the LDM
training objective is the fact that (in order to be able to sample using DDIM) LDMs are constrained
to the so called epsilon-prediction mode, i.e. they learn to predict the added noise rather than the
target image. The latter implies that a target image prediction needs to be obtained through the
following transformation:

z; — /1 —aieq (Zt7 Cattn, Cenct ) t)
\/ETt 9
where D denotes the perceptual decoder that maps latents to their respective pixel-space counterparts.
Getting back from predicted noise to Xg, which is required to apply any type of lip reading loss, is
not accurate enough in a single step, and computationally inefficient in more steps. In order to
demonstrate the inaccuracies introduced using this approach, we gathered (xg, %) pairs using a pre-
trained LDM. Results are illustrated in Fig. 5.4. The first couple of rows correspond to cases of
relatively accurate prediction w.r.t. the target image, while the second couple of rows corresponds
to cases of imperfect reconstruction. Considering the fact that the provided samples are obtained
using the best available model checkpoint, it becomes evident that during earlier training epochs,
artifacts in predicted targets Xy will definitely be even more pronounced, rendering the addition of
the lip-synching term pointless and subsequently, the training process unstable.
Therefore, we propose a lip reading finetuning training stage, guided with the help of a lip reading
expert. For this purpose we use a network that has been trained on LRS3 [!]. The lipreading
network receives sequences of grayscale images cropped around the mouth as input and outputs the

%o = D) (5.3)

Zo =
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Figure 5.4: Groundtruth versus predicted targets using the e-predicting network as a proxy.

predicted character sequence. The network has been trained with a combination of Connectionist
Temporal Classification (CTC) loss with attention. The model architecture consists of a Conv3D
kernel, followed by a ResNet-18, a 12-layer conformer, and finally a transformer decoder layer which
outputs the predicted sequence.

5.3.2 Proposed Method

In order to take advantage of the lip reading expert during training, we need to get access to
predicted target images. To this end, we first stochastically encode input latents using regular
DDPM for t ~ U(1,Tpppm) timesteps. Next, in order to circumvent the inherent limitations of
the epsilon-predicting pre-trained U-Net, we apply differentiable reverse DDIM on the noisy latents
for Tiune < ThppM steps (8 in our case). Obviously, the variable number of noising steps as well as the
extremely low number of denoising steps will yield imperfect reconstructions. In practice though, the
reconstructed latents detailed enough so that after decoding them, they can be fed to the lip reading
expert. Before that, the predicted target images undergo cropping around the mouth region (based
on facial landmarks predicted with FAN [15]), conversion to grayscale and resizing to 88 x 88 pixels.
The batch dimension is collapsed in place of the sequence dimension. We calculate the corresponding
feature vectors fi,-(xg) and fi,(Xo). After calculating the feature vectors, we minimize the perceptual
lip reading loss between the groundtruth mouth crops and the output rendered crops. The loss is
defined as £y = & Zil d(fir(x0), fir(X0)) where d(-,-) is the cosine distance, B is the batch size
and fj,-(-) denotes the lip reading feature extractor.

However, the lip reading loss by itself proved capable of disrupting the pre-trained backbone,
leading inferred frames to saturation just after few epochs of finetuning, as illustrated in Fig. 5.5. In
order to alleviate this issue, we propose adding an ¢s-based consistency term so as to ensure accurate
denoising of input latents. The overall finetuning objective is as follows:

Eﬁnetunc - Exo,t [d(flr(XO)a flT(XO)) + AHZ() - 20”% ) 20 = DDIM(Zt) (54)

where z; is obtained using the regular DDPM noising process. For simplicity, we set A = 1 across all
of our finetuning experiments.

Tab. 5.3 presents a quantitative comparison between baseline and finetuned models, across differ-
ent audio window length and conditioning configurations. Best lip reading performance is achieved
after applying finetuning on pre-trained LDM with w = 8 audio window length and only audio con-
ditioning. Although lip reading metrics showcase significant improvements after the application of
our proposed finetuning scheme, we notice a slight degradation in terms of image quality. This is
justified by the fact that we apply DDIM denoising on noisy latents which have been corrupted with
a variable number of noising steps ¢ per instance, while also using an extremely low number of DDIM
steps Tiune = 8. In order for DDIM denoising to function properly, we should have applied a con-
stant number of noising steps t = Tpppm per iteration. However, we found in practice that such an
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Figure 5.5: Denoising rows across different finetuning epochs, with columns corresponding to intermediate denoising
steps, guided solely by a lip reading loss. Saturation occurs within the four first finetuning epochs.

. e Audio Window Image Quality Lip Reading
Model Emotion Conditioning Length w PSNRT SSIMT LPIPS] | WER] CER] WERV] CERV]

Groundtruth N/A N/A N/A N/A N/A 65.5 41.3 65.1 35.6
Bascline X 4 26.69 0857 0047 | 1022 821 99.3 773
v 3 2643 0854 0.046 | 1082 823  105.1 777

v 1 2597 0.858 0058 | 97.3  80.1 96.9 75.0

Finetuned v 8 25.75  0.848 0054 | 952  79.2 94.0 75.1
X 4 2542 0.845 0058 | 911  79.1 88.2 74.1

X 8 2587  0.857  0.055 | 89.8 77.3  83.9 73.2

Table 5.3: Quantitative comparison between our baseline and finetuned talking face generation models, on the basis
of the MEAD dataset. All configurations utilize audio features as extracted from the last layer of the wav2vec 2.0
transformer encoder block.

approach leads to overfitting and a more severe degradation in both image quality and lip reading
performance. Furthermore, Fig. 5.6 provides a qualitative comparison on the basis of uncurated
talking face sequences, among groundtruth, baseline and finetuned models. Supplementary red boxes
are used in order to highlight frames where considerable differences in terms of lip synching can be
noticed. For example in the first row triplet, in the second frame, the finetuned model correctly
follows the groundtruth with a slightly opened mouth, while the baseline model fails, showcasing a
closed mouth. Also, in the second to last frame, the groundtruth and finetuned model frames almost
exactly match while the baseline frame showcases a widely open mouth. In the second row triplet, in
the last four frames, the finetuned model better follows the groundtruth, where the baseline falsely
maintains an open mouth that likely corresponds to a vowel, while the groundtruth visually suits
a fricative consonant sound. In the last row triplet, in the last five frames, the finetuned model
follows the groundtruth mouth opening, while the baseline model showcases a mostly closed mouth
sub-sequence that goes visually near an open vowel sound in the last two frames.
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Figure 5.6: Qualitative comparison between groundtruth talking face sequences, and synthesized sequences with our
baseline and finetuned models, on the basis of the MEAD dataset.

5.3.3 Future Directions

We decide to keep the current chapter short but at the same time concise enough to raise the
main pain-points regarding talking face synthesis with diffusion models. One possible future research
direction involves facilitating the need for masked target conditioning through an alternative, such
as motion frames/latents. Provided that the upper half of the target image is not provided as
conditioning, then emotional talking face manipulation will come into play. At the moment, the
latter is not possible due to the fact that only the bottom half of the synthesized image is inferred,
and subsequently can be manipulated using techniques similar to those described in Chapter 4.
Additionally, more effective audio conditioning mechanisms need to be proposed with the aim of
improving lip reading performance of the end-model. Lip reading performance at the moment is
rather poor. Lastly, progressive inference is a rather slow process, raising questions as to whether
other samplers apart from DDIM need to be considered.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we addressed the problems of both facial reenactment and talking face generation
with the use of diffusion models. Experiments for the former were conducted in the fully uncontrolled,
“in-the-wild” settings of the AffectNet database. Experiments for the latter were performed on more
controlled-lab settings on the basis of the MEAD dataset, and only considering video sequences that
depicted frontal face views.

To the best of our knowledge, our work on AffectNet is the first fully-fledged set of experi-
ments conducted on the aforementioned dataset in the context of diffusion-based facial reenactment.
Our framework enables emotion conditioning based on multiple degrees of freedom, namely editing
strength ¢, classifier-free guidance scale -y, allowing for both emotion intensity and variety control on
top of the manipulated images. Our baseline method is based on deterministic (n = 0) DDIM noising
paired with deterministic DDIM sampling, conditioned on pairs of source and target emotion labels.

Furthermore, we leveraged CLIP pre-trained models with the aim of better guiding the under-
lying emotional manipulation processes. We drew inspiration from and extended the DiffusionCLIP
framework. The following are the two primary distinctions between the original DiffusionCLIP and
our adaptation: i) The original one’s backbone was a DDPM, whereas ours is a LDM. ii) Because
the majority of the original evaluations were conducted in unconditional settings, the former did
not utilize source class-label information when applying the directional CLIP loss. Through our
adaptation, we managed to run the full optimization routine of DiffusionCLIP using half of the
GPU resource specifications of the latter. Moreover, we allowed for greater variety in the end re-
sult, as depicted in manipulated images, by taking advantage of the emotional source labels. More
specifically, images could be finetuned in 36 different directions, that is ‘neutral’ — {‘happy’, ‘sad’,
‘surprised’, ‘scared’, ‘disgusted’, ‘angry’} and Ysre — Yirg, With yue € {‘happy’, ‘sad’, ‘surprised’, ‘scared’, ‘disgusted’,
and Ysre # Yerg (contempt was mapped to neutral). Lastly, we coupled CLIP guidance loss coefficients
with different values of unconditional guidance scale 7y, enabling more fine-grained control over the
emotional intensity of the depicted end result.

We compared our method with SOTA GAN-based models. To that end, we conducted both ex-
tensive quantitative and qualitative experiments. Qualitative experiments revolved around user-case
studies in terms of both realism and emotion translation. Both objective and subjective evaluations
indicated that our method is superior in terms of image quality and subject identity preservation,
while achieving competitive results regarding emotion translation accuracy against both conventional
and dedicated GAN-based methodologies.

Subsequently, we shifted our attention towards talking face generation with diffusion models. We
conducted extensive ablation studies, mainly regarding conditioning mechanisms, with emphasis laid
on audio. Results obtained with our baseline model indicated poor lip synching performance. This
pushed us into finding a way to use a lip reading expert as additional source of guidance during
training. After failing to integrate a lip reading loss directly in the main LDM training loop, we
proposed a LDM finetuning stage. To the best of our knowledge, our proposed finetuning stage
constitutes the first proper lip reading-based algorithm for finetuning an LDM with the help of a lip
reading expert. Post-tuning evaluations indicate that finetuned models perform significantly better
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in terms of lip reading metrics, at the cost of a slight degradation in image quality.

6.2 Future Work

Many different adaptations, tests, and experiments have been left for the future due to lack of
time (i.e. the experiments with real data are usually very time consuming, requiring even days to
finish a single run). Future work concerns deeper analysis of particular mechanisms, new proposals
to try different methods, or simply curiosity.

Improvements upon our facial reenactment pipeline include:

e Condition the LDM backbone on 3DMM [15] coefficients, allowing for head pose conditioning
as well as fine-grained control over the depicted facial expressions.

e Substitute the discrete emotion labels with a more sophisticated and robust parameterization
of the emotion-conditional space, such as the one proposed by GANmut [30].

e Integrate AU-based conditioning as a substitute for discrete emotion labels, similar to GANi-
mation [120] or ICface [163].

As far as talking face generation is concerned, future research directions might revolve around the
following key-points:

e Facilitating the need for masked target conditioning through alternative conditioning mecha-
nisms, potentially involving motion frames/latents.

e Emotional talking face manipulation, provided that the upper half of the target image is not
offered as conditioning. The latter is currently not feasible because only the bottom half of the
synthesized image is inferred.

e More effective audio conditioning mechanisms, as current lip reading performance is rather poor.

e Progressive inference speed-up and potential replacement of the DDIM sampler (e.g. PLMS

[95])-

Lastly, code for the reproduction of all experiments is made publicly available in the form of the
following GitHub repository: https://github.com/GiannisPikoulis/dsml-thesis
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