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Abstract

General Relativity has proven to be an exceptionally successful theory in describing the dynamics
of Gravity, with verifiable predictions in both short and long-distance experiments. However, it still
remains an incomplete theory, since it is unable to model a variety of behaviors both in the early and
late stages of the Universe’s life. We are thus naturally led to investigate ways of complementing or
modifying General Relativity in order to resolve this kind of tensions against observations, while at
the same time we have a limit to which a modified theory of gravity must reduce to.

Among the variety of possible ways to modify it, perhaps the simplest is that of including a
scalar field in the action that describes the gravitational dynamics. The dynamics of this field can,
then, enrich the corresponding phenomenology and possibly offer ways to resolve the tensions of
General Relativity with observations. Including a scalar field has to be done in such a manner that
Ostrogradsky’s theorem is respected, or theories with instabilities will be produced. The most general
non-degenerate Lagrangian that respected this was found by Horndeski in 1974 and brought to a
more modern form in the context of Galileon theory. This theory provides a suitable framework to
modify General Relativity both at short and long distances, in early and late stages of the Universe’s
life. Within this context, a prominent position is held by the Scalar-Tensor theories that produce
primordial inflation, which plays a crucial role in the Universe’s evolution. Thus, we are motivated
to look further into specific Galileon terms and their effects.

The extensive study of this kind of theories has unveiled that the inclusion of what is referred
to as non-minimal derivative coupling (NMDC) has shown a promising change in dynamics, since,
among other effects, it offers a lengthening in the inflationary era through the gravitational friction
effect. In this way, the scalar field remains in slow roll for a very long period of time ensuring that
a large number of e-folds is achieved, without having to resort to large initial field values. NMDC
brings forward the fact that a deviation from the speed of gravitational waves is to be expected in
such theories. The recent observation of gravitational waves, however, has strictly constrained their
speed, rendering late time deviations from a speed cqw = 1 invalid.

Hence, for what is presented in Chapter 1 of this thesis, we are motivated to maintain the
positive effects of NMDC, while trying to ameliorate or possibly completely heal its shortcomings.
Specifically, in the first chapter of this thesis, we will focus on studying the G5 term of the Galileon
Lagrangian, which corresponds to the class of derivative coupling theories. We focus on modifying
G5 to include a dependence on ¢, so that a richer phenomenology is obtained. Thus, a possible
solution to the late-time deviation from General Relativity will be presented, which at the same time
addresses one of the main shortcomings of derivative coupling theories: late-time instabilities due
to scalar perturbations’ oscillations. We construct specific models that yield predictions successfully
tested against observations. Finally, we highlight another aspect of a richer G5 term: the fact that
for a suitable choice, it is capable of producing Primordial Black Holes, in a different manner than
the usual inflection point potentials.

Moving on to Chapter 2, we explore the idea of combining two different Galileon terms, specif-
ically G4 and G5. We show that the combination of these two terms may have a healing effect on
both of the standalone cases’ problems, while being able to maintain their corresponding advantages.
The inclusion of the G4 term can immediately solve late-time instability problems, and at the same
time produce cosmologically viable observables without having to resort to particularly large field
values, due to the gravitational friction effect of the G5 term.

In Chapter 3 we focus on late-time Cosmology, specifically looking into a scenario of a Universe
that contains extra dimensions, within the framework of Kaluza-Klein compactifications. Specif-
ically, we aim to study whether the observed transition from an era of decelerating to an era of
accelerating expansion could be the result of the dynamics of an ”internal” space. We produce the
general solution of the setup chosen, which we prove that is unavoidably attracted to one of three
specific, Kasner-type, solutions. By making sure that the internal space is stabilized so as not to
fail observational tests of fundamental coupling constants, we show that all such possible scenarios
are realized for exotic types of matter.

iii



YOvtopn Ilepiindn

H Tevixry Eyetxotnra €xet anoderydel e€onpetind emtuynuévn Yewpla, doov apopd otny meplypop)
e Suvopnaic ™ Bapitntag, pe enadniedoiec npofAédelc o melpapoTa TOCO GE HxpES, 660 xou oe
ueydhec amootdoeic. Ilapdha autd, napapéver wa aterfic Yewpla, xadog dev elvou ueavi) va neptypdiel
wot TANYOEa CUUTERLPORADY TOCO OTO TPGHILO, 650 X0 670 KoTEPo Liunav. Eropévec, odnyolpacte
07O Vo EEEPEUVHOOUNE TEOTOUE eNMéXTAONC 1} TpoTonoinanig g, wote va Audoly autod tou eldouc ta
TEOBAAUTA, EVE TUPGAANAL £YOUUE EVOL YELPOTACTO GEVAQLO, UE TO OTO(O UTOPOVUE VO CLUYXE(VOUUE
TLC OPLOXEC CUUTIEPLPORES LG TEOTIOTONUEVTC Yewplag.

Avdpeoa oe Torolg TpdTOUS Vo TpoToTOMGEL Xavels T Yewpla e Bapitntag, iowe o mo anhde
elvon to var cupmepAdPBeL éva Baﬂpoﬂo nedlo, Tou omolou ot cx)\)\n)\en@potcstg pe 1 Bapbnta ewc)\ouu—
Couv TN SuVOXH TOU GUOTAUITOS TWVY s{towoewv Xou TNV avTio TOLY T (QoUVOUEVOAOYLY, TPOCPEROVTAC
evdeypeva Biedooouc ota tpolifuata e Fevueic Myetxdtnroc. ‘Ouwe, 1 ouunepiingn evoc fatuc-
100 mediov mpémel vau yivel e tétolo Teomo mou oéfeton to Yewpnua Ostrogradsky, ariide 1 Yewplia
Yo ebvon aotodric. H mo yevin, un expuiiouévr, Aoyxpavliovy nou oéBeton oautd to Jemenua etvar 1)
AayxpavQiavi Horndeski, anéd to 1974, mou oe olyypovn popq}ﬁ ovoudZeton Yewpio Galileon. H dewpia
oty Tpoopépel Eva xatdiinho mhaiclo Yl tpomonoinoy tng Yewplag tng Bapdtntog, tdéoo oe HxpES
600 1oL OE PEYHAEC AMOCTACELS, OE OAoL ToL OTADLYL 'mgyléomg Tou BoumavToC. Avoqisooc o€ AUTEC TG
TEOTIOTOLOELS, XUPLaEY oLV oL Jewplec Baduwtol-Tavuotr nou mpoxaholy npwtapyixd tAndweioud, o
omnolog elvon xplowog yio va meptypder Ty e€EMEN Tou LUUTAVTOC.

H extetopévn yerétn tétolou tomou Yewplddv, €xel deiel oti n ouvunepihndn wag evéng tou xiv-
nuxol bpou Tou medlou ye T Bapltnta, odnyel oe wia evdlagépouca Tponomoinoy tng Suvoulxic Tou
oLGTAULATOG, XM AVIUECO GE GAAAL OTOTEAEGUOTA, TPOXUAEL Yat EUXOAY EMEXTACT] TNS SLIPXELIS TOU
mAndwelopol péoa and to govéuevo e Baputinhc TewBrc. Me autd tov TpdTo, To MEdio mopauével
otnv neptoyy) slow roll yia apxetd yeydho ypovixd didotnua wote vo emteuydel Evac onuavtxds op-
wWuode e-folds, ywelc va yeewalovton unepBolund peydheg Tiwée yio Tig apyxég ouvinxec. IlopdAinia,
pe auth ) Lelir), TEETEL Vol OVUUEVETOL Plal AmOXALOT) TNG ToY OTNTAG TWV POpUTIXGDY XUUETWY omd auTH
e Ty UTNTIC TOU PWTOC, XATL oL duws e Bdon Tic npdogatee napatnerioelc 0 umopel vo loylet,
TOUAGLOTOV Yiot VOTERES TEPLOBOUE TNE LWNE TOU LOUTAVTOC.

Me Bdor ta nopandve, oto xe@dhoo 1 authc tng dlatePric, yiveton wia tpoondiela va diatnenioly
o YeTind amoteléoparta Tng mapamdve LeVEng, eved mapdhinha yiveton Ui mpooddeta vor lardody oL mo-
Yoyéveldg e, Luyxexpéva, EMXEVTPWVOUAOTE o1 UEAETN Tou 6pou G tng Aayxpavliavic Galileon,
ToU avTIo ToLYel ot aUTY) TNV oudda VewpLdy. Emxevipwvouacte ot woppéc Tou G5 mou nepthau3dvouy
@-e€dptnom, wote va dlvel wa Thouototepn porvopevoroyio. Méow autou, Yo napouciactel wa Ao yio
TOUg UGTEPOUE YPOVOUC OE OYECT) TNV AMOXAICT] TV ANOTEAEOUdTWY and TN Ievixr Nyetndtnta, mou
avTieTelel éva and to x0plol TEOBAAUATA AUTOY TwV VEWELDY, TIC Ao TAVELES AOY® TWV 0OVNTIXOV
TWAY 0TO TETEEYWVO NS TorydTNnTog petddoong twv Boduntdv Swtapaydy. Kataoxeudlouye cuy-
XEXPWEVA LOVTERA oL TTpoBAETOLY Topatnenola HeYEDN oe Toh) XA CUUPKVIN UE TIC TUPATNPNOELS.
Télog, aoyohobpaoTe HE por GAAY TAELEd Tou 6pou Gis: auth TNng mopaywyNe Hpwtapyixwdy Mehavdy
Onddyv pe evav evahhaxtixd 1pdémo, oe oyéon ue T cuvidn otn Bioypapio emhoyn evoc xatdAAnhou
BuVIULXOD.

Yuveyllovtag, 610 xepdhono 2, e€epeuvolue TNy WEa Tou cuVBLUCUOD B0O0 BLOPORETIXDY GP®V
Galileon, cuyxexpyéva tou dpou G4 xal Tou dpou Gs. Aciyvouue 6Tl 0 cUVBUACUOE TwV 800 UTopEL
VoL €L Uit EVEPYETIXT] eiBpaon oTic aduvoples TV Yewpldy OTou o xdde 6poc Bpa UEHOVWUEVA, EVE
dlatnpovvton Ta emépoug mheovexthuata. H ouunepiindn tou épouv G4 Movel apeone to npofhuata
pe tic aotddeleg oto Téhog Tou TANYweLoUol, TapdyovTag TapdiAnia, TogatneYiol YeyEédn tou elvon
o€ XM ouugLvia P Tic TapaTneRoels, yoplc va xpeldCovton UGNAES TIWES YL TiC apyixéc ouVDTixec
e Yewplag, o anogedyoviag €10l evdeydueva TpoAfata ue ™y xBEvieon .

Tehog, 010 xegdloto 3 emxevipwvopaote otny Uotepn Koouoroyla, ouyxexpiéva oe éva oevdplo
Tov TEPLEYEL EMTAEOY Blao Tdoelg, ota tAalolo Tne Vewploag Kaluza-Klein. Yxondg pog elvon vor yeheth-
COUUE TO XUTE TOCO 1 TopATNENUEVN UeTdBoor and Wwa enoyr emBeoduvouevne SLUCTOAC O [La
EMOYY) EMTAYUVOUEVNC OLoG TOANG, Yo unopoloe va elvol To amoTENEOUA TNG SUVOULXAC TV ETLTAEOY
dlactdoewy. Iapdyoupe 0 yevixh Abon tne Jewplog, Yo TV onolo amodexvVOOUUE OTL XUTAAYEL OE
pot Abor edxvoty), tornou Kasner. Ioapdhhnia Selyvoupe 6Tt yior var Stapuloydoly ol napatnenotoxég
npoPhédeic mpénel ol emmhéov BlaoTdoEels Vo elvan otadepontoinuéves, x4t tou Ynopel vor cuUPBoivel povo
yia e€wTixole TOToug VANG.

iv



Extetapévn Ilepiindn

Eiwcaywy®

H Tevinf Oewplo e Lyetxdmroe (GR), édeoe to depéhia yio to obyypovo tpémo perétne e
Bapbtntag xou tou yweoypoévou. Evtoc oklywvy yedvev and tn diatdnwoy| g, Beédnxay, oto mAalolo
Tov autH éVeoe, oevdpla (AoELS) Tou Teptypdpouy évo olunay To onolo eite doo TéAAeTAL E{TE CUOTEN-
Aetan xou mpdrypott, amd T mapatnerioelc tou Hubble, anodeiydnxe 611 1o oumav Beloxetan o pia
dlao TEANGUEVT] Qdom g eEEMENE Tou.

Yta péoa tou 200V cuwdva, 1 HEAETN TS vouxieooUvieong and tov Gamow €dele 6Tl To Liunay
npénel vo €yel mpoéhel amd pio mpwTapy ] UTEpUEpUn xou UTEPTUXVY oYX XatdoTaon. Autd ue
T oepd tou unovoel Ty rapdn woc Tapopévoucas Koopkrs Mikpoxuvuatikrys AxtivoBodiag Y-
opddpov (CMBR) mou Yo amotehel emdva Tou npwtapyxod Sounavtoc. pdypatt, auth n axtivoBolia
aviyvebinxe xou ol emituylec autéc odrynoav ot Oewpla e Meydine Exenéne, ue Bdon v omnolo
1o Xounay éyel yevvniel xou e€elydel Eextvadrvtag amd yiot tohd muxvn xou Yepun opyixr xotdo oo

IMopdheg autée g emtuyleg, €youv Sotumwiel evadlaxtixég, e Devinre Lyetuxodtnroc, Yew-
plec mou €youv mpooTaIoEL Vol YEVIXEVGOUV oxOUa TEPICOOTERA Tol AMOTEAECUATE TNS, EVOEYOUEVWG
EVOOUATWVOVTAS TNV OF Uil TLO TAATIE, EVOTONUEVT Yewpla, Tou (0w mepthaufdvel xou Ti¢ UTOAOLTES
Yepehddelg odAniemdpdoelc e Plong, eved mopdhhnha emAleL xou xdmola omd o TEoBAAUAT TOoU
TapouctdlovTo.

Em napadeiypott, o Brans xou o Dicke avéntuéav tic mpidteg dewplec o0leung evoe Bodumton
nedlou pe tov tavuoth Ricci, yvwotée we Ocwples Baluwtov-Tavvotr). Ye tétolou tdnov dewpleg,
ouunepthauBdveton éva Padunto nedio xou ot alniemdpdoelc tou e ) Bapbtnta. And téte, autég
oL Yewpleg €youv yehetniel evdekeyde oe didgopa mhailolo. H mo cuotnuoatixd uekétn €yive and tov
Horndeski to 1974, mou anédeile dti av xaveic ouunepihdfel povo éva Poduwtd nedio otn Levén ye
Bapvnta, Yo va mapdyovton Yewples ywpelc nadoyevelc aotddees, mpénet n Aayxpovliovh vo unopet
vou €piel pe XaTdAANAO peTacynuationo otn woper tng Aoyxpavliavic Horndeski.

H ﬁswpioc Horndeski éyel and téte peretndel xou xoctéxa pta teptontn Oéom avdpeoa otic mdavég
Tpononojoels e I'evieic Lyetxdmrag, »¢ 1 mo YeVIXT), in eEXQUALGUEVT Yewpla Bou‘)pco'cou Tavuot.
H olyypovn wopph Tne, 10o00VoUn UE XUATAAANAO UETACYNUATIOUO UE TNV THEATAVW, elvol ouTH Tou
Tevixeupévou nedlouv Galileon:

'C :G2(¢7 X) - G3(¢7 )D¢ + G4(¢7 X)R + G4X [(Dd))z - ¢MU¢/M/]

G5(¢7 X)G#V(b;u/ - GLX [(D¢) - 3D¢¢Hy¢uu + 2¢uu¢y>\¢u]

omou oL cuvapthoelc G; elvan audaipetee, ev Yével, cuvapThoels Tou tediou ¢ xaw touv X = —VY ¢V, ¢/2.

Befodwe undpyouv xau mpoceyyioec tponomoinone e Ievixic Lyetixdtnroag mou Eexvoldv and
tehelwe Swopopetint] agetnpla. Enl nopadelypatt, o Sakharov nopotripnoe 6t n dpdor Einstein-Hilbert
and v onola tpoxViTouy ot duvouxée edlonoels e Fevixdc Lyeuxdtnrac, evdeyouévee anotehel
AmMAGG ULl TEAOTN TEOCEYYLOY), Uiag mo mepimAoxng 0pdong mou cuumeplhopfBdvel opouc LPMAdTERNG
t¢éne oto Baduwtoé Ricei. To mo yvemotd xou emtuynuévo mapddetypo auThAc TNE xotnyopiog Vemptdy
elvan 1 Yewpla Starobinsky.

IMopdho awtd, petd and mopandve and Evay awwva, 1 levinr) yetixdtnta nopopével (Bla, dvtog n mio
emiTuY MUV Yewpla wC TPOg TNV Teplypa@n e duvauixic tne Boplhtntag oe peydhec xAgoxes, napoTl
1 TEOXVUTTOLCA AN ALTNY, TcspLYpot(pT'] ™me EZE’)\LET]Q Tou Lopmavtog, mapauével avemopxic. Me Bdon
¢ mopatnenoelc yvwellovpe 6Tl Eva peydho uépog tou nsptsxops’vou Tou XUpnavTog efvon Ekorewﬁg
QPUO'T]S‘ Ipdypatt, peretodvTog T0 Euwccxv ue Bdomn ta Tcpowmx e Devuere Exenxomraq, av 0 uovog
TOTOC UANG oL AAANAETUORS Boputnd elvan 1 0paty, o€ eudc, Bapuovint UM, TéTE Oe Yo €npene va
napatneolue Tic Meydhne Khigaxoe Aopée, 6nme o yahadiec. Enopévece, elvar ebhoyo va vrodéoet
xavelg ot elte 1 Pevue Lyetndtnra dev elvon mhfieng, elte undpyel xdmoto eldog UANG, Tou GAANAETLOEE
HOVOo BopuTind xan YU AUTO TUPAUUEVEL AOEUTT OE EUEE, 0dNYWVTAS 0TN dnpLovpyio auTOY TeV douwy. Ou
mdavol UTOPRPLOL YLl AUTO TO Y VWOTO TEPLEYOUEVO TOU Xlunavtog ovoudlovion GUANOYIXE YkoTevn
TAn.

%mnkéov, oTo TEAT TOU TEONYOUUEVOL aumdvaL, Topatneinxe 4Ti 1 SloaoToh Tou Loumavtog elvon
emtayuvopevn. H mopathienon aut, €0eile 6t to Xiunav difhde ond pla emPBpaduvouevn ot Lo
EMTAUYUVOPEVT SlUcTOAY TtpLy amd 6 e 7 Sioexatoupdpta xpovia. Autd anotelel éva a€enépaoTo eUno6L0
v ™ Fevinry Eyetndtnra xon ouvideg anodldetar wg npéBinua tne Ykotewns Evépyeias.

ITépa amd Tat Sy VWG TA TERLEY OUEVO TOU LUUTAVTOC, TOpoUGtalovTon Xt AR ONUoYTLXE TpoBAruaTa
OYETIXA UE T TpwTopyxd otddia Tng Lone tou. H dewplo tne Meydineg Expenéng oev eényel wa oeipd



And TAAUTNPACELS, GTWS VLol ToREBELY L 1 0ELOOTUEL TN OUOYEVEL XAl Lo TPOTA TOU TapaTrpEl Tl 0TO
CMBR, 1) 1 napatrpnon 6t to Lounay axohoudel ue mohd peydhn oxpifelo T yewuetpla evo eninedou
xweoyedvou (Minkowski) oe peydhes shipaxec.

INo va emAvdoly autd to tpoPfAfuata, teotdinxe 1 dewpla Tov TMAndwpiouod and tov Guth. Me
Bdomn auth, ota tpwta otddle Tne Koouuic e€éhiéng, éhafe ywpa uia exdeting adénon tou peyédoug
Tou LOUNavVTog, Tou anéUTAeEe uTlond, OMUeld TOU YwpoYXpOVOU ToU UEYEL TOTE HTAY OUTIUXE CUVD-
edepéva.  Buvndiletar owtd vor omodiBeton GTNV TEOTOTOMNGN TNE BUVUULXTE TOU TEOXUTTEL And T
ouunepthndn tv alnhemBpdoewy evog Poduwtol medlou otn pyerétn tne Bopbdtntac. Av mpdypott
oty elvon 1 awtior Tou TANYweLoRoD, ToTE Propel xavelg vo epyaotel ota TAalola Tng Yewplag Horndeski.

I'iveton howmév capée, 6TL umopel va datunwiel wa thindopa dewpldv mou tponomololy ) Ievixy
LYETHOTNTA XA 1) TEAYUATOTOINOT) TELQOUATWY XAl TURUTNENOEWY TOL BLAXEIVOLY TN Lo TEOTOTOLNUEVT)
Vewpla amd v GAAN, anotehel xevTpixic onuaciog topdyovta ot dltinwon t¢ 6wothic Bewplac tne
Baplbtnrac. Le auth) my xatediuvon Bom‘)ouv oL axp\Pelc nopatneroelc g Koo Axuvoﬁohocq
Trofdpou ohhd xou 1 TEGoPATN TURATHENOT BUPUTIXDY XVUATEY, IOV ATOTEAECE GAAT L0l TOVIYURLXT)
emPePoiwon e oyboc e levieic Yyetxdtnroc.

Boowde oxonde cxumg e dlatpePrc etvon va paksmoat Oswplec Batuwtov-Tavuoty, ota nhalowo
e Yewploc Horndeski, dote va eZetactolv tpononomoelc mou epmhoutilouy xou evieyouévwe dlop-
VOVOUV AMOTEAEGUATO TIOU EUTERLEYOVTOL OTO QACU TNG (QOUVOUEVOAOYIOG TOU TEOXUTTEL amd €va
TANOWELCTIXG POVTENO XAl ETULYELPEL VAL ATAVTACEL O EPWTHUOTA OTWE AUTE TOU TEVNXAY TLO TAVe.
Emniéov, pehetdron yio nspimmon Tpomonolnong e Lotepng e&éléne Tou Xlumavioc mou thdeton
avTETOTY PE TIC Topaterioels Tou oyetiCovau ue to Jkotewd Ilepexduerd tou.

Ye auth T xateuduvon Yetoupe mpwta To obvndes Thaiolo perétne oty Koopohoyia xau xatomy,
nopouctdloupe TN Yewplio Tou medlouv Galileon xou tig und e€étaom, oe auth TN OlatelPr], TEOTOTOL -
oelg g, uall ye Ta amotehéopota mou mpoxUTTouy. Ilapdyovton tol cUYXELITIXE TAEOVEXTHUOTA Xou
HELOVEXTAUATOL TOUG, EVE Tapdhhnha Topdyetan TAndmeo ntpoBAiédeny mou uropel vo tedel avtyétwnn
e g nopotneroeic. Téhog, e€etdletan wa epapuoyn ota thaiota tne Yewplag Kaluza-Klein oty Koo-
poroyla. Ilapdyovton ol eldixég xou 1 yevixry Aoon xon anodeuxvietal 0Tl oL eldixég AGELS AELTOVEYOUV
ooy EMMUOTES TNG YEVIXAC AUoTG, 4Tl mou anoTtekel éval TOAD ypeYolo e@6dlo oTr HEAETH avTioTolywY
HOVTEAWY.

I vo xataoxeudoet xovelc €vo X0oLoROYIXO LOVTENOD, TEETEL VoL TEPLYPAPEL TEMTO TOV UTO PEAETY
YweoYEOoVO, ue TN Yeron xatdhining petewhc. H ouvAdng petewr| Friedmann-Lemaitre-Robertson-
Walker elvan 7:

dr?

d52 = g,“,dm“dx” = —dtQ + a2(t) m +

r2(df? + sin*0d¢?)

X0 TEQLYRAPEL EVOLY YPOYPOVO UE PEYLOTO CUUUETEIXS Y (PO TOU aVTLOTOLYEl GE €val GUUTOY OUOYEVES
xou Lootpono. ‘Ohec ol mapatnerioels, Tpog OAeC TLe xaTeLYVVOELS TOL oupavol delyvouy dTL To Loumay
TpdypoTt elvon opoYEVES Xal LGOTEOTO OE AnOCToELS NG TAENe twv 100 Mpe xou méve. Ae gaiveton
houmov va utdpyouv cofopég evdelielg, Tapatnenotaxéc N Vewpntixéc, Tou Vo 081 YolY GTO GUUTERACUA
6Tl To Xounay dev axohlouldel oe peydhec xhipaxeg v Koopodoyikny Apxr), dnhadn tnv unodeon ot
0ev UNdpy(EL XAMOLO TROTWTNTED GNUElo PECHL OE AUTO.

H petofint] ¢ ouuPoiiler Tov xoouwxd ypbvo xou n ouvdptnom a(t) elvor o xoouxde Tcocpdtyowocg
xhiponcac, eved 1) mapduetpog K Selyvel tnv ecwtepr yewpetpla Tou yopou. Amb Tic mapaTnproeL,
aUTYH 1) YEOUETEla elvan eTtinedn ue mohd ueydhn axpeifeta, xou enopévmg emhéyouvye K = 0.

To uéyedog a(t) nepiypdpet Ty eZéhén Tou Lounavtoc. Emmiéov, opiloupe v napduetpo Hubble:

H(t) = 28

¢ onolag To mpdoNuo delyvel To av To Xoumay Sluctérheton 1§ cuoTélheTton. H emtdyuvon 1 emBed-
duvor e dmolag e€EMENGE, dlvetan amd TO TEAONUO TNE TUPAUETEOL ¢:
a(t)a(t)

a*(t)

H onuepvy) T tne napauétpou Hubble yetpdton and mohhd und e€éMEn neipduata. Eni noapadeiyuort,
n wétenon tou Planck 2018 Arav:

Hy=67,7km-s ' Mpc?
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Tow tn Buvan| uekétn, Eexwvdpe and tn Spdor Einstein-Hilbert, and énou npoxintouy ol e€lomoeig
nedlou e Baplnrag:

1
§guvR = 87TGT;W - Ag;w

Gu =Ry —
6ToU TW elvar o -cocvuc-mg EVEPYELO(C oppfc, TOU YLoL VoL LOVIEAOTIOLACEL VAl OMOYEVEC Xl LOOTPOTO
PEVOTO TRETEL VoL EXEL T1) HopQN:

T, = diag(—p,p,p,p)

OTIOU P 1) EVERYELAXT) TUXVOTNTA TOU pELCTOL ot p 1 nieon] Tou. H napduetpoc A elvon 1 xooporoyixy
otadepd xauw G: 1 otadepd tou Neltwva. O aveZdptntee ello®oelc v To at) mou TEOoXVUTTOLY,
ovopdlovtan e€lotoele Friedmann xou elvor ou:

oK )
L+ -5 32 = —4nGlo+3p) +A

H? =
3M2, 3 a?’

H nopandve meprypapy| aduvatel vor BOOEL TELGTIXT ANdVTNOT| OF ULt OELR OI6 TUPATNENOELS, TOAAEG
EX TWV OTOlWY aPopolV ot TpWTAEYXd oTddla Tne Lwhc Tou Xiunoavtoc. Avdueod Toug, xuplapyn
Véom éyouv To TPdPAnua tng emmeddtnras (flatness problem), to mpdBAnua Tov opilovta (horizon
problem) xou T al/emt%,um:a frapayél/m/ta crwyatz’ﬁza (unwanted relics).

To npéto and autd agopd oTny tapathenoy 6Tt 1o Louray elvou pe To) ueydhn axpifew eninedo.
‘Ouwg ay autd woybe yia ot otiypr) e Comfic Tou Louravtog, Yo mpemel va toybe yia 6An tou tn (ot
uéypl tote. Auto odnyel oTo cuumEpaoUo OTL 1) ONUEELYY) EVERYELOXY) TUXVATNTA TOU LOUTOVTOC, TOU
ExeL T TOAD xovtd oo 1, meémetl va €xel mpoéhel and ol T eEpeTiXd xovtd oto 1, e andxhion
10 ToAD Trc T8Enc Tou 10754, T var éxer oupPel aUTd 0 ETITEENGUEVOS (QPUOIXAC YOPOC TV dPYIXOY
SLUVINXUAOY TV TOEUUETERY elval TOAD Wxede xaL YU'autd To aviiotolyo cevdplo dewpeiton amldavo vo
ExeL MaPet yweo.

Avtiotouyo unopel xaveic va AUTLOAOYNOEL TN BLATITWGT TOU TROPANUATOS TOU opLCovm To Xounay
elvan ue {oINY) xcx)\n axplBela to6TpoTO, ocxopot X0l o€ N awtioxd oy eTWOPEVES TEploYEC Tou. AuTh ) oci—
LOOTUELTY OUOLOTNTAL DIAPORETIXGDY TEPLOY MY TOU 0UPOVOY elvor adUVaTo var autiohoyndel yia TeployEc
Tou 0ev aAANAETEDpUCAY TTOTE.

Téhog, axorouvdwvtog To Kabdiepwuévo Ipdtuno tne Puoinrc, av xavelc Yewproel 6Tl OTIC opyIxEg
erpég Tou ZL’)pme‘cog ot 4 ﬂeps)\td)Ban a)\)\n)\EmBQdOELg ﬁrocv EVOTIOINUEVEC, TOTE UETH ToL BladoyLnd
onacipara ouppetplac Tov Ehafav yopa, Yo Enpene vo €xovue odnynlel oe o U( ) Vewpla mov
TepLhUBAVEL pay VITixd: LovoToAd, Tor omolar Slwg UgyplL oTLypc Bev €y ouv aviyveulel, 6nec entone xau
G owyatidl Tou TeoxHTToLY and dhkes Vepehioels Yewples.

INo va Avdody tar tapamdve tpoBAfuata tpotdinxe nug UTHREE, TEWTUPYIXE, Ui eEAEETIXE YO YOoEN
e€éNEN Tou Xiunovtog, Tou €Ryole and TNy axtiva aTlaxhc CUCYETIONS, TEPLOYES TIOU UEYPL TOTE o
ouTtoxd. ouoxauopévsg X0l ETOUEVKC, UTOPEL Vo BIXalohoYHGEL TNV OUOLOTNTA TOUG 0AAS Xou Vot npooq)épst
Mol TELOTLN] AREVTNGT) OTO TROBANUL TOU opllovta xat Tewv avemtounTey oouaTdioy. Avt n enoxn
ovoudotnxe TAILELoPGS xau Evac and Touc miavole Tpomous Tou propet var Ehafe xhpa, GuVICTOTOL
oty aAnkenidpaot evég Podunmtol nediov pe tn Bapdtnto.

H mo a1 neplntworn cupneplindmne tétolov 6pov oty Yewpla, neptotpégetal Yhpw and T dpdon:

M2
§— / e [ZHR _ %awam ~V(9)

ToU TEPLYPdPeL Lol TeTeluuévn (ebén tou Baduwtod e ™ BapOtnto. Ewotponotwvwg auty) T Spdom
TEOXUTTOUY TOOO 0L avVT{OTOLYES egtomomq Friedmann 6c0o xa 7 s&omong xivone tou Laduetol.
Kodcde peretdue auty| tn dewplo o€ x0op0h0YIX6 TAXOLO UTORPOVUE VAL XAVOUUE Y01 TNG OUOLOYEVELAS
X LoOTEOTaS TOu LUUTAVTOG, T0 onolo 0dnyel oto oupnépoaoya, HeTald dhhwy, 6Tl To Bodunwté tedlo
éyer e€dptnon uévo amé o ypodvo.

Do v mdipovpe o Yewpla tou epmepiéyer eva TAndwplotid Sidotnua o€ auté o Thalolo, TEpLop-
Wopaote oty mepinTwon 6mou N Suvaux evépyela Tou Borduwtol unepTepel xortd TOA) TS XWVNTXAC
Tou eVépyEwg, Tou elvon YVwoTh w¢ Slow Roll. Ye auth v neplntwon @gtdvouue oTic aniononuéveg
cllonoelc:

3H+ V' ~0

vii



1
H?>~_—V
317,

H perétn autic e neplddou dieuxohbvetat opllovtag mapapétpous Tou Ty tocotixonoloty (Slow Roll
parameters):

M2 V! 2 v
€y = 721:)1 (V) < 1, nv = MI%ZV < 1

AUTEC 01 oyEoELS PETAPEAlOVTOL OE CUYXEXPUIEVES OMAUTAGELS YOt TNV XAOT XOU TNV XUUTUAOTNTOL TOU
duvopxol péoa oto onolo xiveiton to Potuwto nedlo, eved Yl va Audolv Tal TPOPBANUATA TTOU AVaPEPUUE
yeetaleton o TAndwptopde va éyel undpgel Yo apxetéd ypdvo. I'V autd, oplloupe to péyedoc:

aend

N =lIn

ToL expdlel To OG0 TEOXELTOL VoL AANEEEL O TopdyovTag XAl wEyet To Téhog Tou Tc)\mf)mptopo()
Tou npo@)\émro& and TNy eExdoToTE ﬂswpicx (e-folds). Tt vor Audolv Tor tpolhiuata autd, TPETEL 1) GLV-
xwvoluevn oxtiva Hubble (Snhady| 1 ooctivar twv awtiond oyetillouevey TcspLoX(ov) VoL €xEL UHEUVEL Xt
T Bidpxeta Tou TANIWELOHOU TOUAUYLIGTOV TOGO 600 £YEl UEYOADOEL UETE To TéhoC Tou. Troloy(letan
671 T0 Topnoy Teénel va éyel TPOoAIPEL VoL ueYohOoEL 670 BidoThua Tou TAndwplopol, xatd €50 popéc.
Avtée elvan xou €vag and toug otdyoug pog TAndupioTinic Yewplac.

O mindwploudc npoc@épet, eminhéoy, To €00POG YL TH UEAETY TWV AVOUOLOYEVELLDY TOU THPATNEOVUE
uéypl xdmolo xhipaxo, ol omoleg malpvouv TN Hop®Y TV SOUWY TOU Bkénoupa ofpepa. Adyw e
ehxtidic poone g BapltnTac, OMOWBATOTE OVOUOLOYEVELD TAPATNEOUUE GTUERd, Voo TRETEL VoL Exel
Teo€ADEL amd Lol TOAD ptxpotapn AVOUOLOYEVELDL OTO Tcocps)\ﬁov Ewxévo autdv tev avopotoyavstwv elvon
10 CMBR, 7o gdoua tou onolou v avalntolye otouyeia Yo T Yewplo tou 08fynoe T yévynot Touc.
MduoTa, apol oL aVOUOLOYEVELES EEXLVOUY WS LUXPOOKOTUXES BIAXUUEVOELS, UTOPOUUE VO UEAETAGOUUE
mv aie)\tin TOUC WG YROPULXES DLATOQOYEC TRV DUVIUXODY TOCOTHTwY. Ot dlaxupdvoel autég Yewpeltan
oTL £Y0uV XPavTin) TEoEheuoT), xou Ye TNy e€ENEY Tou Lounavtog, yetatpdnnxay ot PBaputind actadeic
onbpoug (Jeans instabilities) TOU XATEPEEVGAY Xal ONWOLEYNoY TiC peydhes Sopés. Ta pdoporta tewv
OLarTapay (Vv TEPLEY 0LV TANPEOPORLEC TOU UTopoLY va yenowworomdoly i va Eexwpicoupe ol Yewpla
Baplbrac elvan 1) owot.

Mo Sratogory?) Tou Porduwtol mediou, Tpoxahel Slotapoy | Xol TN LETEIXNC Xl ETOUEVKC BlaTopory Y
e xomuromtog R. To uixog xOuatog autdy tev dlatapoy ey augdvel exdeTtind xou e&épyeton omo TV
axtivo Hubble étav ta 800 autd yeyédn yivouv cuyxplowa. Metd tny é€0bo and tnv axtiva Hubble ol
SlaTopory€g aUTES TAYWVOLY ol UTopoly Vo peAeTioly xhaoowxd. Metd to téhog tou mANdwelopoy,
auTéc ol Blatapayés enavépyovtal evtog Tou opllovta xan apyilouvy Vo UEYAADGVOUY oL VO UETATEETOV-
Ton o€ avtloTolyeg dlotapayéc UAnG xou Yepuoxpaciog mou odnyoldv otn dnuovpyior UeYSAWY BOUWMY.
Enopévwe, n UEAETN TV TEOTORYLXWY BLATopay WV anoxTd xevipixd pdho oto va Bonifoel otn datdn-
wor e owo g Yewplag Tne Bapltntoac. Xtnv napoloo SlateiBr), Tng onolag HEYAAO HEPOG APLERWVETAL
ot yerétn Yewpiwv (evéne Baduwtol-tavuoty, Yo xwvdoldue evioc tou mhaciou Tou BLUopPOVOLY
ol Yewpleg Galileon. O Vewplec autéc elvan 1oodbvopes pe Tic Vewplec Horndeski xou mpoxdntouv
and TV o yevxn, un expuliopévn, Aoyxpovlioavr mou nepthaudvel uévo éva Potuwté medio xon T
BapUtnta. H emhoyh awth yiveton yioti ot Yewpleg mou mpoxintouy and auth ) Aoyxpavliovy céBov-
WLETO Yewpnua Ostrogradsky xou Sev nopouscidlouy actdieieg mou oyetiloval pe mopayeyous VPNAHC
Taéne.

TI]-I oUyypovn woppt tne Yewplog Horndeski, etvan autr tne Yewpliog tou nediov Galileon. ‘Otav éva
Baduwtd nedlo elvon CUPUETEIXO XATE ONO TO PETACY NUATIOUS:

o= d+bat+c
optleton we medlo Galileon. I'ar var amo@iyouue T oyeTinés Ye TNV TAEN TwY BlaQopY eELCDOCEWY

actddeiee, neploplopacte oe Hewpleg mou youv uéypet deltepnc tdine napay®yous. Xe éva unoBodpo
omou umdpyet Bapltnta, n Aayxpavliovh Tou cuvahhoiwtou Galileon ypdepetou:

£=G5(9, X) = Gs(6, X)06 + Ga(6, X)R + Guax [(06)° — ¢y
Cs
Gs(6, X)GH ¢y — =2 [(O0)° = B066"" by + 20004
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6mou ol cuvapthoelc G; elvon avdaipetes cuvapThoels Twv ¢ xou X, xou ot Belxteg ¢ xou X ouyBoiilouyv
TOPAYWYLOT S TTPOS To avtioTolyo péyedoc. Eméyovtag xatdhinia tic ouvaptioelc G; unopel xavelc
vo tapdryet piot tAndwpeo Tponomoinpévey Oewpeiddv Baplbtntog, dnwe ent topadelyuatt Tn Un TeTpiuévn
Celén e yopehic f(@)R, pe tnv emhoyh G4 = f(¢).

ot va fpodpe Tic oyéoelc mou divouv ta napatneroa peyedn wag dewplac Galileon, axohoudoiye
TIY TOXTC TS OmOGUVIEGNS TLV BLPGELY GpWY TNE UETPXTC, OF peYedn Tou uetaoynuatiCovion we
Borduwd, BlovhopoTaL 1 TAVUOTES, eV TapGAAnAL Yot Swatnericouye Ty Topadoyh Ot ¢ = o(t). H mo
XUTAAANAT] Yooupt| yior quTY T1) Sladixaotor etvon 1 ADM petpuny:

ds® = —N2dt? + ~;;(da" + N'dt)(dx? + N7dt)

Elodyovtog auth| tn yetpu| otny nopandve Aoyxpovliovt) €youpe:
S = /dtde’C(Nv N7 a, aa 57 ¢7 Q.Sv (b)

v onolol Ay OTAGWOTOACOVUE WC TPOS Tic TocdTNTeC IV, a xat ¢ malpvoupe Tig duvopxéc e€lodoelg
e Yewplac. Méow e mAfpous amocUvieone tng uetpixrc oe peyedn mou petacynuatilovion pe
ouyxexpiévo teomo (SVT decomposition) xatooxevdlouye mocdtntee mou elvon avorholwtes amd
BorBuido oe Pordulda, xon emhéyoupe po Barduido mou Go Sieuxohdvel oty TapaywYY TV LTS eEETaoT)
nocotitowv. Awhéyoupe ) Boduida, 6mov 1 datapuy touv Baduwtol nediou elvar d¢ = 0 (unitary
gauge). Mnopolye t61e vor ypdoupe

N=1+4+6N, N;=0; andy; = a2€2R(€h)ij

émou (eM)ij = 0i; + hij + O(h?), xou UE AVTIXATEOTAON 0TV TORATEVG DEAOT XU XEATOVTAS GPOUS
uéxpl DelTEPNC TAENS OTIC OLUTAPAYES EYOUNE:

2)
5(2) Ss(calar + Stenaor
To Borduwtd xou 1o TaVUCTIXG PEEOC NS BpdoNg €ouy, avtioTolyd T1 Lop@Y:

0% 0% 0’R

5@ = / dtdza® [;T(an)? — 3GrR? + B6N? — 200N~ + 2QTR— +605NR — QQT(FN—

scalar

nol

Fr

1 .
515621’)1301‘ = g/dtd-rSaB |:gTh22] (8krh’bj) :|

6mou ot toodtee Gp, Fr, O, ¥ eivar ouvoptioeig tou eloptdvton and T nocdtntee G; mou av-
ToTololv oty exdotote Yewpla. Ou axpiBeic woppéc toug mapatidevian oto Hapdptnua B. Xtaot-
pomolvTaC we meog NN xau i 1 Spdor unopel va €pvel 0T pop@n:

S = / dtd’za® {957'22 - J:j(an)?]

67ov o péyedoc R ovopdletar diatapaxri kaprnuddtntag (curvature perturbation) xou enttAéov €youpe
oploel g Ponintixéc nocdTNTES:

b 1d
Gs = 505 +30r,  Fs= dt( gT)

Tt Soopéveg ouvaptioels G; 1 ToyOTNTA BLdBooNE TwY BodumTOV %o TAVUGTIXWY SLoTapay @V efvor:

3

c2 Fs c2
s T .

gs gr

Avutéc ol tocdTNTES TIEENEL VoL TAPAUEVOUY VETIXES, OANLOE 0B YOUUUGTE GE BLATAPUYES TTOU UEYUADVOUY
exVetnd, ondTe xou ToUEL VoL €xEL LoD 0 oLuYXEXELEVOS TEdToC uerétne. ‘Eva dAlo eldoc aotadeidv
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7oL TEETEL VoL amogelyeTon oyetiletar Ye Tou xivnTixolc dpoue (ghost instabilities), ol omolol npénel
vau elvon Yetixol:

gs>07 gT>07

Yoveyilovtog, yior va yeheticoupe Ty eEEMEN TV dapdpwy xupatoptdudy peyeddvy (perturbation
modes) YENoHLOTOLOUUE TOUS UETACY NUATIOLOUS:

dy = c—sdt, wi=2R, z:=V2a/FsGg
a

xoi v TXorhoTdvTag oTY dpdor), T gépvouue ot wop@h Mukhanov-Sasaki:
1 2"
=3 /dyd3x {(u’)2 — (Ou)* + ?UQ

OToL 0 tovog AVAPERETAL OE TAPAYWYLOT O OyEoN WE TNV xawvolpyia petoBAnth y. Méow e éx-
(PPAOTS EVIOS TNS AYXUANG, UTOPOUUE UEAETAOOUUE TNV eZ€NEN Tov (péopatoc TV datapaydv. Opw,
av 1 eEENEN UE TO YPOVO TWV BLAPORKY TOCOTATWY EIVOL JPXETA dpYY), UTOPOUUE Vo TPOCEY YioouUE Ta
PACHATA WC:

G/ H? 8G,/* H?
R = ) T = 5379 19
2_7:2/2 472 ]:;/2 472

unoloytopévwy 6tay to avtioTtoryo mode e&épyeton and Ttov opillovia. O Adyog avtdv twv 800
nocothtwy elvan éva napatneowo uéyedog xan oplleton we:

_Pr
" Pr’

Av avtideta undpyetl Ypriyopn e€€AEN Ye Ty Tdpodo Tou Ypodvou, teEnel 1 avtiotoly e&lowor va hudel
yia To xde mode Eexwpww

‘Eva dAho napatnelowo uéyedog mou e€dyetan and v Koouxy AxtvoBolrior TrofBddpou elvon o
Boduwtde delxtne gpdopatog n, (scalar spectral index), mou exgpdler v akhoryf Tou hoyopiduou to
pdopatog o oyEan Ye To hoydplduo tou xupotaplduod wag Swtapay e, k

dInPgr

1l—ng=-—
s dlnk ‘k:aH’

Me avtiotouyo tpémo optlouye xou Tov TavuoTid delxTr Qdopatoc:

dInPr
dlnk lk=am

ng = —

Mrnopolpe thpa var cuoyetioovpe ta peyédn r xaw ng Ye Wwio cuviixy, Touv oY o anhy Yewpla evidg
Barduwtol mediov malpvel T popyh T &~ —8n;. Xuvodilovtag, ta mopotnefiopa ueyEDy wac Yewplag
evoc Baduwtod tou mpoxalel Tov TAndweloud, sivon ta r, ng xou Pr.

LCevixevpévn pn Tetpippévn ZevEin Kiwvntixo ‘'Opou: E@appoyr otov IIAndweiowd
xou otn Anutoveyia IHpowtapyixdy MeAavoyv Onody

H npoomndieid pac edw, Yo neplotpagpel Yipw and Ty miavy 1pomonoinon Tewy Yewmplthv Tou TpoxinTouy
amo UN TETEWMUEVN Ceuin Tou xvnTixod Gpou Tou Tediov Ye Tov Tavuoty Einstein, otn dpdon (Non-
Minimal Derivative Coupling-NMDC). Autéc ol Yewpieg TOEAYOLY Wiat TOAD mholoL (pouvouevoloyia,
1600 OE WXPEC 600 XU OF UEYAAES XAlpoxeg. XTny mep(ntworn Tou TANYweIoRos, To To EAXUCTIXG
yopaxTnelo Tixd Toug elvat 6Tt Tapouatdlouv To YaVOPEVO TNg Baputikig TPIBS, dnhadY| Tne enBedduv-
onc e xivnong tou PBaduwtod nediou uéoa 6To BUVOILXG TOV, AOYW TNS AAANAETBEAGTC TOU XIVNTLXOU
opou pe ) Baplra. Emnttpénouv étol oe mndcdpa duvaixay va mopdyouy mAndwpelopd. Avduecd
Toug PBeloxeton To SUVOULXG oL aVTIOoTOLYEl 6TO povadxd PBotuwté medlo mou Eyel aviyveuvdel uéypl



e, outd Tou owpatdiov Higgs. Mdhiota, otic Yewplec NMDC tpononoleitan apxetd xou 1 (ouv-
opevohoyia tne Teplddou tne avatépuavong tou axoloudel Tov tAndweiopéd (reheating). Xuyxexpyéva,
otnv o anhn egopuoyr Tou NMDC, 1o Baduwté nedlo todavtodveton Tohd eviova xa Ywelg andcfean,
otnv meplodo e avadépuavone, UE omoTENESHA Vo ETNeedleTal TO XOUPATL TNS Qouvopevoloyiog Tou 1
Kohepouévn Koouohoyio egnyel ixavonomtind, 6mng n napayoyT Bapéwy cwuatdiny.

Emuniéov, autéc ol TahavT®oelS HETopedlovTol Xal »¢ TUAAVTOOELS Tne ToydTnTag diddoons twv
BlaTapay OV UETOEY UTEQPWTWY Yo EVITIXDY TGV, ToU 0dNYel 6TO GUUTEPAOHA OTL TO CVUGTNHU
yiveton aotadée, axvpdvovtog oty medln T dtatopaxtixy) tpocéyylon. Ilapdha autd uropolue va
TEOTIOTOLCOUPE XATIAAN L T Yewplot xou vor BLTNECOVIE TO TAEOVEXTAUOTA TNS, XATUPERVOVTOC
TUEAGAANACL VoL UELWCOVUE 1) o Vo e€aparvicouue Ta petovexthpatd tne. H dewplo NMDC npoépyetan
amd To Yevotepo 6po G tng Aoyxpavliovic Galileon:

Ls = Gs5(¢p, X)G"0,40,¢

av emhéloupe Gs(d, X) = oraf. Av emhéouye o mo yevodh popyt Gs(¢, X) = f(¢) £(X), 7
cpcxwopevo)\owoc apnkouulewt 1600 oty meplodo tou mAnYweLoUod, 000 o PETA amd ouTr. Oa
avagpepduaoTe o autol Tou TiTou Tic Yewpieg we Ievixeupévn un Tetpypévn Zedén tov Kivntnol
‘Opov pe tov tavuot Einstein (GNMDC).

Av emé€ouue f(¢) x ¢ o 6poc GNMDC Yo ofifioel YETY0opa X0VId GTOV TATO TOU BUVOLXOD
Tou xau Yo undpcel uetdfaon oty xhacoud) Yewpla Einstein, eve xou ov avtictoyec Tahavidoes da
tponoromodyv. Mia GNMDC Jewplo authc e popgric unaxolel oty mapathpnon 6Tt to Baputixd
wOpara omb votepa oTddla e eZEMENS Tou BhunavTog €xouv ToyhTNTA Bl e AUTH TOU YKTOS, XAt
mou dev Loy Vel oty anAt Yewplo NMDC.

"Evog 1€T010¢ 6p0¢ Tpononotel xou To @dopo Twy dwtopaytv, Pr(k), oe 6hec tic xhipoxes, dpa xou
O€ QUTEC IO EIVAL UXPOTEPES A6 QUTEC TOU TaPATNEOVVTHL UEcw TG axtvooiiog unofdipou, xadag
enneedlel TNV ToryOTNTO TOL TESOL XATE TOV TANUWELOUS XA, ETOUEVKC, TO TAATOS TWY dlaTapoywy. Av
o GNMDC 6pog elvar tétolog wote ot xdnoto onueio g e€éhéng 1 toydTnTa Tou TEdlou Vo lixpUVeL
andtopa, Tote Yo Eextvioer xou mopaywyy Mpwtapywdy Mehavav Ondv (PBH), npoogépovtac évay
XOUVOURYLO UNYAVIOUS TPy WYNG TOUS, DLUQOPETIXG ONO TOUS UNYOVIOUOUE TOAAATAGY TEdlwY aAAd
O TWY PINYoVIoUOY Tou tepthauBdvouy onueio alhoryric xhione (inflection point) oto duvouixd.

Trovétouye Aoindv otu:

[/5 = G5(¢7 X) leau(éau¢ = f(¢) f(X) leau¢5u¢ s

OToL YLt UEYEAO pepog g mapolcug epyaciog unof}eroupe ™ woppy| f(¢) = a(bo‘ g < Mot
mou vt o = 0 avoxtd ™ GR xou Yoo = 1 to NMDC, ev& v o > 1, Tpononom T omo-cs)\ecpcxw
OTLE CUVOTTLXA TERLYEAPTXE Topamdvey. H dpdom elvon )\omov NG HopPhg:

/ d'zv/=g { Mirg - L ("~ F(6)G*) 0,00,0 — V(0)

and 6nou mapdyovtan ol duvauixés eflodoels. o eminedn FLRW yewpetpla xou xoouohoyxd nedio ¢,
auTéc elvoun:

BMBH? =V (9) + 58 + 5 f(0) B,

g (11430 = T S o[ (G 302) & 10| + o

2 4 2 4
%ol
6 (143 (@)H?) + 3HO (143 /(6 H* +2 f(6) ) + 5 £/(0) 6°H? + G =0
Ko €86 elvon mold yprowpo vo opicouyue napapétpous Slow Roll:
i _ 3P H@OFH - 1) (HF 4 2H90) - fOHS
CTm T z T
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ondte vy € < 1 xou § < 1 odnyoduaote oTic To AmAéc duvoXéS EELOOOELS:

3M1?’1H2 ~ V((b) )

3H¢<1+3f@»H2+§f%@11{) T~
Emmiéov, éyouue ot
¢ 2f2(L+wﬁfw)—fwwﬂ¢)zeGR+eD+eB.
omou €youpe oploet Tig PondnTnéc napauéteoug:
ccr = 30%/(200), 5= A&;G'(@Hé , €= 2%2;2

Mrogolyue Théov va Solue o Eexddupa To anotéheopa evée bpou GNMDC yiortl 1 toy Tt ¢ peidve-
Ton xotd 3H? f(¢) popée, petddvovtac mopddhnia Ty Ty tou €. Ipdypor:

1+3H2f(¢)—f/(¢)H¢ Eevi
(14321 (0) + 1(9) HO/2) (A+B/2)

6Tou:

2 I\ 2 .
GVA42P1<“//1) ) A51+3H2f(¢)v BEf/(gﬁ)H(,b

; , ; _ , o 2 V"
AV‘ELG‘EOL)’(O( opLCe-c?u %o 1) TOUPOUETEOS 1) = m{/A,, omov ny = Mg,
H oyéon nouv diver ta e-folds, npoxdntel dti elvon:

tend ® B/2
N = Hdt — / A+B2
¢end MP] ¢end \/T

To emduevo pog Briuo elvan var TaipdyOUUE Tal A TNEToWo UEYEDT Tou TpoBAémovton and wa Yewpla
GNMDC. H Swtapoxtind yehétn yiveton mo ebxola ot Pordulda 6mou:

5p=0

e’ 66ov 0 6poc GNMDC éyel ¢-e&dptnon, yioti ov avtiotolyol Satapoxtixol dpol Va e€apovioTony.
Ta Bondnuxd yeyédn nou Yo ypelaotobye elvon Ta:

Q.= P a)(f(o)?), F='"D Q+wﬁwl+@),

1 —ED/3

To tetpdywvo e ToyHINTC dEBOoNC TwY dlatapoy®y, 2, dlveton amd:

= (1-2) ' e {(1 +ep) +3H2F(0) [(1 +ep)+ 9‘;@] 6 7(6) (1- ?)] .

onov av f(¢) — 0, emotpépoupe otn GR. To @dopo twv Baduwtdv diatapay v diveton and tov tino:
H? B?
= B+ O .
Pr 8m2 Mg, ey <A+ i (-A)>
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eved o delxtne xhiong Twv Badpwtdy dwtopayay (tilt) elvou:

_ dlnPgr (o) 2
1—ns = —m f— T _86—2’17+6MP1

f@) Vev

omou o tedeutalog Gpog elvan autdc mov Eeywellel v mepintwon auth and to NMDC (f/(¢) = 0).
Téhoc, 610 bplo 61ou o GNMDC xuptapyel évavtt tne GR (High Friction limit) éyoupe:

3%
=16 —— .
"T P ATE

Ané avth ™ oyéon Brénoupe 6t otic GNMDC dewpieg 0 Aoyoc 1 ehattdveton o€ oyéon pe Tic Vewpleg
NMDC aira xaw o oyéon pe ) GR.

INo va ebvan évar T€Tolo povtého cuvenée mapdyovtag TANtwpond Ywele aotddelee xar dAlo TeoB3-
Muota pénet Qs > 0 xau 2 > 0. 'Opoc, xatd T Sidpxelo TV TUNVTOOEWY Tou axohoLdoldy Tov

Tandwplopd, 1 nrocdtta H unopel va ahhdlel cuveyde tpdonuo:

H=—cH? :7p+,0 ,
2M3,
omovu p:
po= {26 —vio)h— s {[(i+ 3n2) i om] - pom}

Koddg hotmdy 1 Tyuh TS TopauéTeou € TONVTOVETOL CUUTRACUREL TY T Tou c2. o vor avTigeTe-
nioel xavelg To mEdBANa autd mou napouctalotay otic NMDC dewpleg, evdeydueva apxel vo emhéel
wa ouvdptnon f(¢) tétol dote:

0f(9) <

TTopodelypata TéTolwyY cUVIPTHCE®Y Elval OL:

gt 1
f(¢) _ % ’ or f(¢) _ WGT(W]WPI .

Mrnopolpe va de{oupe ta anotehéopata autic Tne Tponomoinong ue ancudelog oldyxplon Twv Gpwy
mou avtioTolyoly otn Levir) yeuxdmnta xou oto GNMDC. Mnogel xaveic va mapatneriosl and v
Ewéva 1.1 (oeh. 9), 6Tt 6t0 téhoc tou tAndwpetopol, o 6poc e GR, yetd and pepéc TahavTIOoELS
xuplapyel évavtt Tou 6pou GNMDC, xdtt tou 6e cuvéBaive otnyv nepintworn tou NMDC. Avtictoiya,
oty Ewéva 1.2 (oeh. 10), gaiveton 1 Sapopd tne e&éhine tne mepintwone NMDC (a = 1) pe
avtiototyec mepintmoeic GNMDC, 6mou oL ambTopes TOAAVIGOELS Tou ¢2 oBAVOLY YE TO YPoVO.

Y10 bpto 6mov A > 1 xou B ~ f'(¢)/ A < A n éxgppoon v To @dopa Pr eivow:

H? N V2(¢)

A M >~ A~ ——
Pr(® A 0 M)l 82 Mg, ev 24m2 Mg, ev (9)

f(¢7a>M)

H nopatnpolpevn tiuh tou gdopatoc elvar Pr ~ 2.2 - 1072, Me v mopandve éxgeact pnopolue
VoL BpoUUE Uiol xatd Tpooéyyior ouviixn mou meénel va toy el uetoll twv f(¢), M oe oyéon pe v
TUPAUETEO TOU BuVXOD, dTaY @ = dcmB, ONAADY 6Tav 1 Blatapoy’| e xupatoptdud kemp = 0.05
Mpc™t, Byfixe ané tov opilovia, xadopiloviac tov emduuntd aprdpd e-folds. T Tov delxtn xhiong
0V BodunTdV Slatapay Vv €YOUUE:

My 1)
° V(QZ)?)‘P)JC((ZS’O‘;M) f(¢)

Me yprion autddv Twv 8V0 cuVINXADY, UTOPOUUE VA XATUOXEVACOUUE UOVTEAN TOU LXAVOTOLOUV TiG
TAPATNENCLUXES GUVINXES O ETLTAEOV €Y 0LV XAUADTEQO YUPUXTNEIO TUXA, UETA TO TéAo¢ Tou TANJwpLo-
pov, amd ta povtéha NMDC. Xuyxexpiuéva, epeuvolye TNy Teplntwor] 6Tou To duvoxs elvol Lop®rg
HOVWVOUOU:

¢o¢—1

V(@) = Ap o, f(9) = Ay fatT

1—

(86\/ — 2ny + Mpy 2€V(¢, /\p)>
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Mrnopolue twpa v Yedpouye Tic Bidpopeg TocdTNTEG GUVOETHOEL TNE Xhipoxag Tou 6pov GNMDC,
M, tne mopopéTeou ar xou TN ToEoETEOL Ay, ‘Eyouue:

A 1
N ~ P ( pta+l p+a+1) )
= S rarD Mg\ Pend
xon emouévee ol apdueteot Slow Roll cuvagtrioet Twv e-folds nalpvouv tn popem:

p 1 2p —2
e~ ———————— — | =
2p+a+1) N K P

€.

Avtiotowya, vy o > 1 éyoupe:

-1 2 11 8 1
1—ns§86—277+2ea = prot —, rzip—,
p p+a+1 N p+a+1N

Eivou o€ioonueinTo ot 0obte 0 deixtng r, 00Te 0 deixtng ng, eLoPTMVTAUL oAb TNV TUPHUETEO A TOU
duvoeo xat TNV xhlpoxa M tou GNMDC, e€aptodvton 6ume and Ty Ty tou a. ‘Oco augdvel To o, o
delnng ns auidveTon eved o deixtne r pewdveta. Enopéveg, yio N S 37 ol napatnenotaxol nepioplopol
ané to Planck 2018, r < 0.064 xou ns = 0.965, xavomotolvtar ylor duvouLxd deVTéPOU XU TETAETOU
Barduol av emAeyel xatdhiniog 6poc GNMDC.

"Evol 8e80opévo duvoxo, yia Tapddelyo autéd mou avtioTolyel oto urnolovio Higgs, unopel va yevvi-
oel TAndwpetopé oe uio GNMDC dewplo, ye xatdhinieg emhoyéc M xou o, Tou Ynopolv var xodopla Tolv
and TIC MAUPATNENOELS.

Avtéc o ouumepupopéc anewxovilovtar oto doypdupata twv Ewdvewv 1.3 (oeh. 12) xou 1.4 (oeh.
13), 6mov gaivovtar ou ypupixéc napaotdoels ng(N) xaw r(N) yia Suvopuxd Seutépou xou TETdpTOU
Boadpol. Avtiotolya, otic exdvec 1.6 (oeh. 18) xou 1.8 (oek. 20), anewovilovye oxp3 anoteréopata
povtéAwy, mou mpoéxuday amd apduntixy avéiuon v o = 1,3,5,7 6tav emhéyovton xoTdAANAEG
TapdueTeol Yo vo mapdyovton 40, 50 1 60 e-folds o duvopxd deutépou Baduold aAid xan SuvouLxd
Higgs.

ITépav tng cuumepLPoEAS TwY ToEUTHENOWKY UEYEDNDY, TapaTneel XavelC TO TAEOVEXTNUA IOV TPOOC-
pépel evac 6poc GNMDC oe oyéon pye 1o NMDC and ta Saypdupote 1.7 (oeh. 19) xou 1.8 (oeh. 20).
T (BLeg Tipée TV utdhowy Topopétewy, Tépay Tou a, To Slow Roll emituyydvetar ToAd mo ebxola
and 6t oty mepintwon tou NMDC. Téhog, oty emdva 1.1 (oeh. 9), cuyxplvouue tov xavovixd
xvnTxd 6po pe tov 6po tou GNMDC xovtd oto téhog tou mAndwplopol. O bpoc e GR Eexwd
var xuplopyel, emotpépovtag otn duvopxr e Kadepouévne Koouoloylag, xdt mou 8e ocupPaivel
oto NMDC. Avtiotoya anoteléopata toybouv xou yio exdetinsd 6po GNMDC oe exdetind duvouixd
(Ewxéva 1.5, 15).

Avalnrolue thpa avtiotoyia pe povtéda oto mhaioto e GR, yio Ty onola Yo deilouye dti dev
elvon TARpNg, xou emopéveg umopel va undpéel dlapoponolnoy UEco amd TG TUPATNENOELS. Lo APy
otddio Tou Slow Roll, ot Suvapixéc eiodoeic tne Yewplac authc tpocopotdlouy apxetd autés e GR,
XATL IOV UTOBEWVVEL OTL UTopel VoL UTGpYEL UETACYNUATIONOC Tou @épvel Tig BVo Yewpleg otny (Bl
pop@Y. pdypatt, ye To petaoynuaTioud:

e=90), Vamlp)=Vlg (o),
€youpe OTL: .
3H¢ = —V'(9)/lg'(¢))”
6mou 1 ouvdptnot ¢'(¢) ecwxdelel T oyéomn petadd TOU dPYIXOY XL TOU UETACYNUATIOUEVOL TEdiou:
9'(¢) = dp/d¢

T A > B oybe 6t g'(¢) = (ev /€)V/? = A enopévec:

o= [(2)" a0 = s [V@) 70172 0.

€

Anodellope dnhadr, 6T oc mpwtn 14EN ot mapapéteoug Slow Roll, 1 duvauixr tou nedlov ¢ ot
duvapnd V() wac Yewploc GNMDC xatd to Slow Roll, eivar toodhvoun pe auth evoc xavovinol
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nediou ¢, o duvopnd Vi, (¢), oo mhaioto e GR. Iapaxdte Seiyvouue cuyxexpyévo tnyv avtiototyio
petadld tev Yo Yewpldy, 6tav to GNMDC eivar e popyhc f(¢) = a%.

Tnv neplntwon Twv HovOVULOY Suvapixdy e popphc: V(@) = A, ¢P e f(¢) = a% , EXOUPE
o= [(ev/e)/2dp. To nedio p, diveton amd Ty éxppaon:

s0:2,\1/2( a )1/2 ottt 1
P ]\4‘1"'1 (Oé+p+1)/2Mp1 ’

X0 ouuTepLpépeTon cav va Exel tetpldpévn Levén ue ) Bapbdtnto. To avtiotoiyo duvouixd elvou:

Vm((p) = /\P

2p
a+p+1Mp [MeFIN\VE ]
g

2
dpa umdpyel N avtiotolylon: V ox ¢ — V), QTFaTT

Enopévae duvapid, V (@), ue exdétn p > 1 o epgaviovtan va €youv duvauuxd| pe ndtepn xhion,
an6 v ontxr) e GR. Avtictoiya anotehéopato npoxdntouy Yo exdetxd duvaxd pe exdetind
GNMDC. Expetorlevdpacte auth tny avtiotoiyion ueto€d GR xow GNMDC oote va avamopdyouue
Ti¢ TeoPAEdelc auTo) TOU LOVTEAOU, YENOUIOTOWWVTAS OYEEL; Tou TpoxUTTouy and tn GR.

Metd to téhog Tou TAndwetopol 1o Paduwtd Tedlo TaAavTOVETIL YUPw 0m6 TOV TETO TOU SUVOULXOU
(neplodog e avodépuavone-reheating), LeTateénovtag TNV EVATOUEVOUTH EVEPYELX GE GAROUS Bordiuoic
eheudepioc. Xta povavopa Suvouxd V(g) o ¢P, 1 xatactatin e€iowon evic Paduwtod ot undBadpo
GR elvau:

(p) p—2

wzw_p—FQ'

Kotd to reheating to xoouixd peuotd Yeppomnoteiton, xon otn cuvéyeta Eexvd 1 xuplopyia TG axTL-
voPBoiiag. H Yepuoxpacio authc tng neptddou dlvetan and Tt oyéon:

Tren ~ (F¢MP1)1/2
onou I'y 0 pududg didonaong tou nediou inflaton. Anodeixvieton dtu:

Vi 1—-3w -
Pend 4

1
~576+4lne*+zln th s

onou 1 toco6TNTa Ny, oupnepthouBaver ta e-folds mou Aapfdvouv ywea xotd to reheating. Emouévoc,
Tot ouvohxd e-folds e€optdvton xou and autr v teplodo.

Ta poviéha GR+GNMDC o éyouv dlaxpité reheating, ye 80o mdavéc exdvoelc, avdioya e
T0 motoc bpoc xuptapyel. Av xuptapyel To GNMDC, undpyet onuovTix) TpoTomoincy TNV Topmdve

xataotatxny| e€lowon, e Slaxpttée Tée yiot Tov 6po (1 — 3w)Nwm/4. Emmy avtidetn nepintwon, 1
oyéon auth) Loy Vel oxplBKg.

‘Eva dhho n)\sovsxmpa TV ﬂscopwov GNMDC etvor 6TL npoc@épouy o €8apog Yl TN Snwoupyta
T ToEY XY pelavdy ok (PBH), ywplc tn yehon Buvapmou ue yewﬁkmn xhiom. Auté Vo tpocégepe,
peTa€l ahhwy, wo oy e€fynom xa Yl ) Exotewvy “TAn xan YU autd 1) UEAETT TOUG TaPOLGLALEL
Wiadtepo sv&cxcpépov. 1N perétn toug, Bvo etvor Ta Baoixd onuelo: to uéyedog TS Aoy TG THNG
ToU Qacuatog Twv Baduwtdy Swtapaydy, mou xadopllel v agdovia Toug, xa To 6TEdL oTO onolo
oLVERT auTh 1 adhory Y, mou xadopilet T pdla Toug.

M PBH pdloag M, éyer midoavotnto va dnuiovpyniel 6toy xatoppeboel iol latopayr) TuxvoTnTag
TOU XOOUIXOU PEUGTOU, oV ELVOL AEXETA UEYAAT OOTE VoL XUPLIEY ioEL EVavTL TNE Tleong NS axtivoBoAlag,
otay emavelcépyetar otov opilovta. O Aoyog tng agdoviag twv PBH pe udla M, oe oyéon pe
ocuvohur) agdovia tng Mxotewvic Thng, elvou

feea(M) = Qpeu(M)/Qpm

Yxomde pog elvan va unoloyioovye tny mdavotnto oynpatiowol woag PBH xou vo cuvdéoouye Tic
avtiotolyes mapopéTeous Ue Tig THéS ou oyetilovton Ue To PaduwTo Pacud TwY SlaTapay . XE O,TL
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axoloudel Xenouonoteital 0 YopUIMGOUOS Press-Schechter. Eupﬁo)\LCoups pe B o pudud onpovpylag
twv PBH, eve 7 nuxvomw xoctwcp)\tou Onutovpyiag pog omqg ouuPohileton pe 0. Av yio Tuyoia
&otrotpot)m €yel TuXVOTNTAL § > J¢, TOTE M Baplhra xuplopyel o 1 owtapay ) xotoppéel oe PBH. 0)
pudude onuovpyias e€optdton xou and Ty Topduetpo o(k), Tou TocoTixonolEl T Slpoponoinoy Twy
Olotapory v o ayéon pe Tov xupatapldud toug k. Anodewcvieton 6Tt to uéyedog tou napdyovra F(M)
Blveton and ) oyéon:

1 VPR _52/2pr
V2 5 '

Yy nepintwon, howmdy, tou GNMDC, to gdopa twy diatapaydvy €xel ¢ e&dptnon:

BM) ~

D Vv
" 96m2Mb ey /A
xou GTay 1) MapGUETEOG € uetdveTan, 0 pudude B(M) avidveton. Av xavelc Oéher O Lxotewvh "Tn
v amoteheiton ané PBH, téte: fppn ~ 1, xou to @dopo mpénel va ndpet v Tl PREE ~ 1072 yia
dc ~ 0.5. Enopévuc:
e(¢ppu) = V(pppr) (967> Mpy) ' PR°)

X0l 1) TUPAUETEOC €pBH TRETEL VoL E(VAL UXEOTERT ATO LA T Emax, TOU Untopel va Bpedel ue avtixatdo-
TAOT) TWV TAPATNPOVUEVRY TGV TOU PR Xl TOU Tmax =~ 0.64. TI'ivetan té7E:

—11

-9
€PBH S W ~ 1077.

M andtoun peivon oto € ouvendyetar addnon ota § xo 1, ondte 1 mpocEyyion Slow Roll tadel va
oy eL xou TpEnet va Audel avohutxd 1 e€lowon Mukhanov-Sasaki.

Do tn) pélo poc PBH, éote pior Slomapory ) whlpoca k1, mou e€épyeton tou opilovia Ny, e-folds
Tpwv to TEhoc Tou TAndwplopol. Kdavovtoac tnyv anhonoinon Heng =~ Hy, mou amodewxvieton apxetd
axpBrc yio xAipaxeg mou Byatvouv and tov optllovta, yetd v Ultra Slow Roll @domn, ¢tdvoupe ot

GXEGT]Z
Ny = In (k;“> .

Emmiéov, opiloupe v nocétnta Ny = In(a(t)/aend), m0u avtinpocwnete 1o e-folds tou pecohafoiv
peTa) Tou TEAOUS TOU TAUEELOUOY Xou TNE ETAVELGGBOL {ag dlartopay e xAlpoxog k=1 otov opilovta.
‘Orav n xotaotomx TopdUeTpos Talpver Tes w > —1/3 éyoupe 61 Ny = 2 Nk/(l + 3w). Emoyévoc,
oy BEY € 0UE xUpLapyial TNG oxtivofohiog (w =1/3), 167 1o e-folds mou amouévouv HEYPL TO TENOC TOU
TAndwelouold 6tay yio Slatapayt) ENaveloEpyeTal oTov opllovta, Fu e&uptdvTar and T Yeppoxpacio

xotd v avadéppavon. Avtidétoc, dtav w = 1/3, # dtav AapPdvouy yopo oL Tohavihoele Tonou ¢,
Yo oy ler ) oxéon:

M\ Y, g —1/12
k(M) = 1.8 x 10" Mpe ™' 4Y/2 [ —— * .
(M) % R T (106.75)

Oa pag anacyolioouy €3 dvo mduvéc xhipoxec PBH. O PBH pe péla Mpph ~ 102 g, av éyouv
XATEANAY aplovia, pumopel Vo aVTITEOoWTEVOLY AXOUO X0 OAOXATIEY) TNV TUXVOTNHTA TOL AVTLOTOLYE
ot Zxorewv'] "Thn, xou Yo wopot’)cav vor oVl veudoly xat PEAETHOUV PE UEANOVTIXNOUS OVLYVEUTEG
Boap. xuponow H Settepn xomwopw( TTOU oS sv&occpspm elvon oo PBH pe pélo Mppy ~ 1035 g, o
uTopodY VoL TpOXAAEGOLY YEYOVETA oV VEUOHIOL amd Toug 1O Udpyovie aviyveutée. Trohoyiloupe
AoLTOV, OTL oy 1) ETAVELGODOS TLVY AVTIOTOLY WV XAEX©Y 6TOV 0pllovTa cuVERT OTay w = 1/3 (nuprapyla
s ocxrwoﬁo)\mg) T61TE:

k(10%' g) = 10" kensv'/%. k(107 g) = 1.1 x 107 komp 7'/

6mou kcump 1o pivot scale kovp = 0.05 Mpe ™!, evd gy ~ O(100).
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Ipéne vo unohoyiooupe ta e-folds NpBH; TpLY T0 TEAOC TOU n%nﬁwpmpou otav Snptoupynf)nxe n
XOPUPY| OTO PACHO TWY DTNV X0t aUTd ToL Ehafay ydpa uetd To téhoc tou (Nomi). Ioyler bt

(e, Vi /pena)* = £0(1)dpaNenp < 58
Troloyilouue Aotndv nwe:

Hend
Hcwms

kena = komp eNeMB

X0l ETOUEVKC Yot TANdwploud oto mAaiola evog Suvauixol Higgs Beloxouue
Npgu(Mppr = 10%! g) ~ 27, and  Nppu(Mppu = 10°g) ~ 45,

odnywviag poc otn oyéon: fppu(Mppn = 102t g) ~ 1 v B(M) ~ 1073 and fppu(Mppn =
10%g) ~ 0.1, 6tav B(M) ~ 1077. H mdavétnro oynuatiopol B(M) urmopel vo unoloylotel yo
CUYXEXPWEVES TUES TOU EPBH-

Oa xataoxeudoovye PBH oe duvauixd Higgs, oto mhaioto puag Yewpioc GNMDC, ye ) yerion
opgric Tou oe CUYXEXPWEVO onuelo e eCEMINS TOU ouoTAuaToS, odnyel ot andToun adinom Tou
(PACUATOSC TWYV BLATURUY WY, EVE TOREAANA Yol BLATNEHCOUUE Xl ATOBEXTES Amd TIC TOPAUTNENOELS, TYLES
TOV TORATNEACUIWY PEYEDEDY.

Tt vo qwéndel ) T Tou gdopatog ot éva povieho GNMDC, apxel va pewwdel to péyedog ey /A,
ywplc mapdhinia va Swotapdocovtol ot tpoPAédelc Yo Ta nopatnerowo peyédn. Emiéyouue {ebén tng
popene:

(@) = fi(¢) (1 + f11(9)) -

O 6bpoc fr(¢) éxer woyd oty apyh Tou TAndweiopol, eve o époc f1(P)frr(d) evepyonoelton oe
xatdhhnho onuelo, Hote va éyovue Ty napaywyr PBH nou emdupotue. H ouvdpton frr(4) emdéye-
oL OOTE VoL EYEL x0pUYY ot onuelo @ = @y, OVToC OUWC aueANnTéd aAAOD, OTWE Yo TUEABELYHAL 1)
ocuvdptnon:

J11(9) =

6mou ol TapdueTeoL d, s xou g Yo yenotwomoindolv yio va xadoploouvpe Ty aglovia xar TN pdlo Twyv
PBH
I vau tic urohoyloouye, €youye:

Al@) 3H?f1(¢) fr1(9)

PR X ’
v &v ¢=¢pPBH

; (1)

o6mou ¢ = ¢ppH 1 TWN OTOL TO Qdopa YiveTon YEYLoTO, TNV omolo UTopoVUE Vo TEOCEYYICOUUE WG
¢o0 = ¢ppu. Emmiéov, (nrdue xopupy| oo gdoua Nppn e-folds mpiv teheidoel o mindwploudc. Katd
) @don 11, hauBdvouv ywea = Ny e-folds xou 1 Tiwn tou ¢ uewdvetan dpayotixd. Emniéov, npénel
Nir < Npga. O axpBrc apududc Nir, unopel var xadoptotel omd mopatnenotoxés anaiTioElS oYETIXE
ue tnv apdovia twv PBH. Av howtév frr(¢) > 1 woydet 61 Adrr =~ 2¢(Ind)'/? onére:

do+Adrr H 1 do+Adrr A+ B/2
Ny =/ —d¢ ~ Vo / A+ B/
o—Adrr ¢ Pl Jgo—A¢rr V2ey

H @don 1T Swipxel and ¢o + Adrr we ¢o — Aérr, fri(d).
Ytpeqoyaote topa otny enthuon e e&lowone MS:

ZI/
up + <c§k2 - > ug = 0,

d¢

z
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yia évo perturbation mode uy, 6mou o tévoc cuPBOALEL TapaY DY WS TEOS TO GUUUORYO YpOVO, 1.
Trohoyilouye v Twn evoc mode agod Exel e€ébel Tou opllovta xou €xel " nayhoeL” xou YEow auToU
Beloxouye Ty oxp3n T TOU QACUATOC:

k‘3 |Uk|2
Pr=193 2

k<<aH

T va G€oouye apyinéc cuvinixeg oe auth Ty eiowa, yenotwonolodye to xevo Bunch-Davies. ‘Otayv
éva mode Pploxeton oaxdua evioc tou opllovta toybel 6t k > aH, xa o 6poc 2" /z elvon apeintéoc.
Ye auth v neplntwon:

ufl + Ak*up =0

divovtac T apyixh cuvdixn: ug = e*7 /\/2k xou xot’ eméxtoon:

omou a(t;) N Ty Tou Topdyovta xAipoxas 6tay To mode Peloxetar péoo otov opilovia, dpa a(t;) H (t;) <

Re [ug] =

‘Otav ot napdpetpor Slow Roll yetaBdilovton andtoya, propodue va Eavoaypddouue tnyv e&lowon
0¢:
L+ (24 e2)aHR), + EE*Ry = 0.

6mov €3 = €/(He), expetodheuduevol o yeyovoc 6Tt ¢;Qs =~ € (apol ep < 1 xou ¢ ~ 1). Yo bplo
TWV UYLV XAUdXwY, 0 TeheuTaiog 6pog elvor apehnTéog xau yia (24 €2) > 0 Bploxoupe eva otadepd
anoofBevviyevo mode tne Sotapaync. To avtideto cuyPalvel dtav o dpoc evidc ng napévieone elvon
apynuxde, ondte to aviiotoryo mode avidvetan. Lny nepintwon tou GNMDC hoindv, 6mou to €
eCoptdton ond 1o f(@), av autd oAhdEel andTopa, TOTE 1) datapoy” R auldveton avtioTtouya Yeryopa
xon Umopel var odnyfoel otn dnwovpyio wag PBH.

Yuyxexpiéva, Yo dolue to anoteAéopata Tou TpoxiTouy ot éva duvouxd Higgs ota mhaiowa tou
GNMDC rnou nopoucidotnxe vopitepa. Emiéyouue howndy:

V() = (\4)o*, yiu A~ 0.1 xou f1(¢) = ag™ ' /M

evdd 1 ouvdptnon frr eivar 6mwe Topandve. Emniéov opilovue eppr = ey (¢o)/A(¢o), mou oyetileton
ME TNV TEOTOTOINOT TOU (PACHUATOS TWV JLUTOPUY DY, OTOU ONUEOVOLUE 6Tt €(Pg) ~ eppu. Lo va
unoloyloouue TNV TOEAUETEO d €YOUYE:

M2, ev 8 MAMe+ 1

- V(¢o)fr(¢o) eppr X o515 eppu

Téhog, yio dedopévn Twn e-folds xatd to otddio II tou mAndwplouol, unopel va xodoptotel, ToloTxd,
N TR XU TNG TUPOUETEOU S, EVE 1) oxEBNE TWY TV TORUUETEWY aUT®Y BploxeTol H6vo agol hudel 1
eélowon MS.

Do e PBH péloc Mppa ~ 102! g, and to nopandve Peloxoupe 6Tt 1 xopugh oto pdoua Teénel
va dnuioupyniel tepinou Nppu ~ 27 e-folds mpwv To tého¢ tou mAndwetouol. Lo va elvar 1 napduetpog
B(M), spxetd peydhn mpénel B(M) ~ 1073 yio auth tn pédle. Bploxouvue t61e 11 PR ~ 1072,
Yo mhedota evée mAndwpelopol Higgs mpofhéneton 6L n whipoa kenvp = 0.05 Mpe™! Byoivel ané tov
opiCovta 58 e-folds mpiv To téhog ToL.

‘Otav xvptapyel  ouvdptnon fr hopPdvouy yopo S N e-folds, eved btav Eexvroel vo uneplay Vet
n frr ovpPalvouv Nyp e-folds. Metd tnv ndpodo tng woyboc tne yivovtan ta undlowna and ta Ny
e-folds, xaddc 1 fr Eavaxvplapyel. I'a va xadoptotel 1 tiuh twv Ny e-folds npénel va AdBoupe unodn
TV T TOU ToRdYoVTa XAIONG Mg, GAAG XOL TNV XAVOVIXOTOMNOY) UECO amd TNV TOQUTNEOVUEVY] T
tou pdopotoc tou CMB étov k= 0.05Mpc.

Yoav egappoyn, Aodnxe apuduntxd 1 e&iowon MS, érou unohoylotnxe n e€éhén 500 modes, Ry,
%o Ta avtioTtolya anoteéopota gaivovion otny Ewdva 1.10 (oek. 29). Ilpdypott mopdyeton @doua
e apxetd LPNAT xopuey dote 1 agdovia Twv PBH va eivar peydin. O mapdpetpor mou emhéydnxay
elvou:

d

a=3 M=71x10"Mp;, d=55x10% s=21x10"1
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nou yewvoly 50 e-folds petald ¢omp = 0.0264  Mp) xou pena = 0.0197Mp). O bpoc f1(d) fr1(9)
wuptapyel vy ¢ = 0.02  Mpi. Me autée Tic mopapétpous: Pr(kpeak) ~ 2 X 1072 (Ewdvec 1.9 xou
1.10, ceh. 27, 29).

‘Orav 7 enidpaon tou dpou fr tekedoet, To nedlo ocuvey(lel Tpog Tov ndTo Tou duvaixol Yo Leptxd.
e-folds axopa. O nopduetpol autée, €xouv eMTAEOV TO YopPAXTNELOTIXG OTL BIVOUY OTOOEXTES TWES YLa
Ta napotnehowe weyédn. Téhog, n apdovia toug unohoyiletan ot elvan, (emhéyovtag §. ~ 0.4) {om e
fPBH ~ 0.1, (ELX(’)VO( 1.10).

Ynpewdvouue 6L oe outh TNy Ewdva nopatneelton peydin andxiiorn petolld g meoceYYLoTXAC
ol TNS aEtUNTXNAC TWHSC TOU PACUOTOC, OXOUO Xl OF TMEQLOYES OTOL 1) TUPAUETEOC € DEV EYEL axOUA
OAAGEEL ONUOVTIXG. BTNV TROYUATIXOTNTA OUWS, 1) T TOU € TUAAVTOVETOL HE TOAD Uxpd TAATOS Xl
TOAD UPNAT cuyvétnTa. Emmhéoy, e < —2, mpLv tn dpoortiny pelwon e e tov €. ‘Etot, to @doua
apyiCeL vor qugaveTon and o UXPES TYIES Tou k.

Msxpt oTYUAS AoLmdy, €YOUUE BEL TS TO Gouvopevo Tne Buputxnc TEBNC, ToL HTay YVeoTto bl
UTAPYEL OTLC f)so)pLeg un Tstptppsvnq Ceuinq Tou xwntxol 6pou (NMDC), umopet va enextodel xou vo
eumroutiotel, wg 6poc GNMDC. Autée o dpoc mpoxadel exoha o enoyr) Slow Roll xau emnmiéov,
yior XatdAAnAn emhoyy) tou dpou GNMDC, n avticTtouyn Suvouxr] artoculebyeton Ywelc xdnolov ent-
TAEOV UNYOVIoUS, 0TO TEAOC TOU nknﬂwptopo(), emo TeEPovVTAS oTNY e€EMEN ou TpoxUntel and T GR.
Enopévwe, delyvel va Slopdwvel tnv avtiotolyn cuuneplpopd Twv Yewpetyv NMDC mou otny enoy¥| tng
avatéppavone yapaxtneilovtay and actddeles.

ILio ouyxexpwéva, Berxaue T oxéoelc mou divouv Ta mapatneroa peyédn tou CMB, onwg o
Sebxne whione v faduwtody domapay oy ns, 1 o Méyoc 7. Emmicov, oto mhaiowo tou NMDC,
TO TETPAYOVO TNE T HTNTOS BIEBOONS TLV BLoTapaLY (Y nopouciale ocuiotvopsveg TAAAVTOTELS ps-cotiu
VETXOV X0l APVNTIXOV TGOV, TOU Tpoxaho0oE exVETING ECEMTOOUEVES BLUTORUYES X ETOUEVC A0 Th-
Yeiec. Avtideta, otov mAindwploud mou mopdyetan péow xotdhhning emhoyhc tou GNMDC autéd to
TEOBANUA cpodvstou VoL amoevYEToL, XS ol avtioTolyeg TaAavToel; elvon anooBevviuevee, ywpelc va
yévovtar Ta undroina Theovexthuata Tou NMDC.

E&etdoope aprduntind, yetoll dhhwy, Tov tAindwpeiopsd mou npoxintel and duvouixd Higgs, nou elvon
T0 H6vo Paduwtd cwuatidio mou éyet Boedel. H gouvouevoroyio mou mapdyeton elvon oe xahy) cuupwvio
pe tig mapatnenoelc tou Planck 2018, Avtiotouya, yehetidnxe xou exdetind duvouxd pe exdetind
6po GNMDC, rou pdhota Topouctdlel To TAEOVEXTNUA TOU PUOLXOU TEMOUS TOU TANDLELONOY, bTo
T0 ouompa BYO(LVEL and v neplodo Slow Roll, evdd Berproape xou wia cxpson ocvuowotxton ue povrs)\cx
mou mpoxunTouy and ) GR, Sutnpovrag duws tedno va eywplooupe, amd topatnerfoels, o etvan 1
nporyportix] ewplor Bapumwg Tou €YEL 00N YHOEL OE AUTE ToL UEYE

Télog, otpaprxaue otn perétn twv PBH oe wia dewpla GNMDC, 6mou unopoly Vo Tapaytoly
ywelc ™ ouvurneplAndr duvopxol petointrc xhione. ¢ mopddelyua epyacthxaue o duvauxd Higgs,
OToV PeRNoue XATIAANAES TWES VIO TIC TUPUUETPOUEC WOTE Vo umopoly va dnutovpyndolv Omée di-
apopwy Lalov, xdnoleg and Tig onoleg mapouatdlouv Wiluitepo evdlagépov. H mo evdlagpépovoa elvon
N nepintwon M~ 10%tg, xaddde av 7 agiovia v ouyxexpévey PBH eiva opxetd peydhn, Do
uropoloe va eCnyfioel Thipwe ™ Yxotewh Thn. Emmiéov, eréyloye to oevdplo dnovpyiag mini
PBH, mou Yo unopotoay va eivar aviy vedouues péypt oruepa.

Enop&vwg, paksmoape n)\nﬁwptouxa povtéha pe opoue GNMDC mou napayouv Ve, BloxpLTd
anoTeEAEoUATA EVE) TAUTOYPOVA DETOUY Evar o agiéToT0 Thalolo PEAETNC OE OYEOT UIE TIC TUPOUOLES
Yewplec NMDC, agol anogedyouy actdideiee xou emoteépouy tny e€éAln otn GR petd to népag tou
TANUwELoPoU. Aeiiocps 6Tl o€ auT6 To MAdioLo UmopoLy va TapayYolv xou PBH ue evolagpépouceg eqop-
povég oe oudpopa medio g Koouohoyiag, netuyalvovtag napdAinio to nopotnerioo Yeyedn va eivon
OAAL OE CUUPOVLOL PE TIC TUPATNENOELS, EVE €Y0UV TaEayVEl amd To VewENTIXd SLXAOAOYNUEVO BUVOULXO
Higgs.

Enwtuyre IIAndweiopndéc Higgs, and cuvduvacud My Tetpippuévoy Zebsny

Oa enextelvouye TN PEAETN TETOLOL TUTOU VEWPLMY, XpaTOVTUC Xou dhhov 6po otn Aayxpavliovh xou
HEAETOVTOG TA anoTeEAéopata oy dlvel 1 Yewpla mou Toug cuvdudlel. e 6,TL axoloudel, ueletdue
10 ouvduooub evog Gpou wn Tetpppévne Leving (NMC) pe ™ un tetpipévn xivntxd| (ebin mou
eldope uéypl Topa. ATodeVUETOL OTL AUTOE O GUVBLUCUOE EYEl VEQUTEVTIXES WOLOTNTEC OE OYEa UE Ta
anoTeAECPATA XL TwV 800 bpwy, 6Tav 0 xadévae dpo LOVOS Tou.

H Yewplo NMC mpoxintel we unoxatnyoplo twv Galileons nou mapovoidoaue vopitepa, otny onola
umdpyet wor omhy Levén tou Baduwtod medlov pe to Baduwto Riccl. Auth n tponomoinon Aroav and
e npd)‘cag oL EYLvoY o oyéor e TNV amhy) Yewpla Tou n)\nﬂwptopof) xoL €V YEVEL Bs)mo’ovat my
nopaybuevn gavouevoroyio. Me emhroyr NMC ¢ Hop@ric £¢?%, av 1 otadepd & elvon apXETS UeY AN,
TOTE 0 TOPAYOUEVOS TANTwELoUOS elvon apxeTd exTeviAg xou Topdyel TOAD younhéc TES Yo To AdYo
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r. ‘Opng, v va emiteuydel autd, oty anhf tepintwon tou NMC, npénel va ypnoionowndel mohd
HEYSEAN T vt To €. Autd to YeYovog unopel va tpoxahéoel mpéBinua 6tov xavelc tpoonadfoel vo
rPBavtoaoer ) Yewplo auty (unitarity problem).

Ané v dAAn mievpd 1 Yewplo GNMDC dev napouoidlet avtiotolyo mpoBAinua, EVE Xou auTH
napdyel TAoVGL XAl EVTOC TWY TUPATNENCLIXWY 0plwy @ouvoudevoloyia, eved BEATIGVEL, ok Be ADveL
TAAPWS TO TEOBANUO TWY TOAAVTWOEWY PETE TO TEAOS Tou TANYwpLlopol, tou oyetilovta ye aotdieieg
xan exdetinn] e€EMEN TwV ueyedmy Tou.

Oo ueletricouue Aotmdv xdtw and noleg cLVIXES EVag CUVBUACHOS TETOLWY GpwY Unopel VoL AUoEL Tal
npoPhiuarta g xdde wiog and Tic Eeywpitotéc Vewpleg, evdd mapdhhnha diatneel ta Jetind tng oTolyel.

o TOEOVCLIoOLPE T Ta To Baoixd anoteréopata Tou NMC xou 0T cuvEyela Yo TopOUCLICOVYE To
amOTEAEGUATO TOU GUVBUAGHOU TwV 800 GpwV xodde Xal GLUYXEXELWEVA apldunTiXd amoteléopata, 6Tou
Yo pavoly o xotopd GAA To TAEOVEXTAULATA TNS CLVOLACTIXAS Vewplog.

‘Otav ot dpdon nepthopBdveton woévo n GR xaw to NMC é€youue:

5= [atev=g {f(qﬁ)R RLARTE

To mo evdeheyde uehetnuévo oevdplo elvon autd oto onoto: f(¢) = £¢?, To onolo oe povérvuypo (Higgs)
duvaULXO, Topdyel éva alloonueinTa Younho r. Emimiéov, dev mopoucidlel actdieieg mou oyetilovtan
We To 2 mou oty mepinTroN Tou elvan TawToTXd (oo pe 1, aveldptnTa and ) popeh tou NMC. ‘Ouoc,
Yo var emitOyel évay 0flohoyo TAndeploud meénel o ouvduaopdc G2 vo Tépel Tiéc PeYOhDTEPES amd
™ wéla Planck, Mp;, xdti mou elvon mpofinuatixd and xBoviounyavixic drodme.

Mo ouvrjing npocéyyion ot yehétn tou NMC elvon 1 mparypatonoinoy evoc oluuoppou Uetaoy -
potiopod mou mnyodver oto clotnuo Einstein (Einstein frame). Emléyovtag §u, = Q% (2)gu ue

O?(z) = jfl;,: (¢) xou opilovtag évar xouvolpylo Poduwté nedio ¢ oe duvound U, €youye:

M2, f(6) +3f72(¢) _ -4
\/ Pl 2f2 ) ) U((p) = V(gb) )

ondte 1 dpdon elvo ot Hopyy:

— M2, . 0,p0"
S:/d4ﬂf /_g|: 2PlR_ i w—U((p) ,

2
Ye npdn ¢, Ta napatnehotua ueyEdn eivou:
1—n, =6ey — 20y , r = 16ey

OTOV €YOUNE 0plOEL TIC TUPAUUETEOVG:

_Ml%l z ) ZUN
v\ )" v=MpT

To Suvouxd U éyel mohd wixph xhlon yio peydhec tée tou épou NMC (€62 > Mp;), onbte ol
TOEGUETEOL €7 Xat Opy elvon TOAD pixpés, divovtag éva avtiotoiya wixpd r. e mAndwpeioud Higgs ye
LevEn tne popphc f(9) = £¢? to yaunhé r xau o avoromTtindc cprduéde e-folds emtuyydvovton pdvo
av £p? > Mpy, odnydvrog oe TeoAiuoto.

O TPOXWENOOLYE TWE TNV XATACXEUT] TOU GUVOLAOUEVOU HoVTENOU. BOewpolue TN dpdon:

S = /d4:c\/fg [Lar+ Ly + Lnme + Lanmpe],
ue
M? 1
£GR = %R s £¢ = —§g“l’au¢3u¢ - V((b) 5

Lnyve =Ef(P)R Lenmpe = G(9)GH'0,¢0,¢ .
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O e€iotoeic Friedmann xou Klein-Gordon autod tou povtéhou, Yewpodvtoc eninedn FLRW petouxy
%O XOOHOAOYIXO Tedlo, elva:

12 . .
po = SMHH? = &+ V(0) +9G(6) H*6? — € [f(8) H* + ['(6)5H]

—py = M2, (3H2 + ZH) —V(g) - %2 +G(9) (3H2q'>2 2R + 4H¢3<}S) +2G (¢)HP
=2 [3(O)H? + 2/ (D) + 2H [ () + 0 ["(9) +1'(6)],
you
¢ (1+6G(¢)H?) + 3HO(1 + 6G(¢)H? + 4AG(¢)H) + 3H?G' () $* — 6£f'(¢)(H + 2H?) + V'($) = 0
Tepuéver xavele 6Tt Dot UThEYOUY 3 BLPOpETINéS TEPLOYES EVBIPEEOVTOS, AVENOY UE T OYETuH LoD

TV 600 bpwv. Ipv culntiooupe xdde yio amd autég Tic Teployég, Yo avagepdolue oto TAalolo Tng
npocéyylone Slow Roll yio awt) m Yewplo.

Y auth T pooéyyion, H < H?, ¢ < H xou ¢ < 3H, onbre xpatdue pdvo toug xuplopyous
6poug tou NMC xou tou GNMDC avtiotouya:

BMpH? = 9G(9)H*$? — 66 (9)H? +V(9) ,
o
3H¢ (14 6G(¢)H?) — 12H*¢f'(¢) + V'(¢) =0 .
And g mirpeig e€lowoelg BploxoUUE TN LOp@PT TN TORUUETEOU € = —%:
€ =€GRt€G1+ €G22+ €G3+ €Ga T N1+ EN2 T €EN3 T €Ng,

omou €youye elodyel BoninTtinég TUPUUETEOUS IOV AVTIGTOLYO0VY ot xdle dpo tng Vewploug pag. T Tov
;2

6p0 e GR éyouvye egr = Méﬁ, eved v to GNMDC xou to NMC:
L _39°Gle) __ PHG() _ 200G(e) _ G(9)°
Gl — M12;>l ) G2 — M%)ZHQ ) G3 — MIQDIH ) G4 — M}QDIH )
2 f(¢)H _ (99 S () UL

EN2 N3 EN4 = .
2 2 2 ’ 2 2 2 2
M2, H M H M2, H M3, H

O topdpetpol €g; oyetilovtan pe to GNMDC xo o en; e To NMC (o deixtne 7 xwvelton omd 1
wc 4). Ané 1o bdoa €youv avagepdel uéypt thpa, otny Tpocéyyion Slow Roll, xatolofoivoupe 6tL ot
xuplapyes mapduetpol Yo elvon oL €qr, €n1 XU EN2.

Mrnopolue topa va Beolye tic tocdtntes Gr, Fr, X, ©, G5 xou Fg, CUVHPTACEL QUTOY TV TOUROUETEWY.
'Etol, anoxTolye TNV TopoxdTte Loe@T| Yo TO TETEAYWVOU TNS ToyUTNTIC BIABOOTS TV DLty (V:

ci = {e [6G1(126N2 —egr+3)+3 (6%1 +ear + 36?\/2)] —3en1(eq1 + 6@3)}71 [e(eg1 — 3) + 3€N1]71

{62 {62G1 [Ten1 + 17en2 + ens —3 (egs — €ga — €na) — 4] + 3eq [Blena — 2)ena — 2eca(en2 — 1)

—10en1 + 2 (g3 — €n3 + ena)] + dedy + 9 (€gs + 2€caena + €Ga + 3en1 —3€xs + €na + €n3
+€N4)} + €ent {EG1 [6 (6N3 — €G3 — €G4 — €N4) +15en1 + 3061\/2} + 46%;1 -9 [26@3 + 3ent
+2eqa(ena + 1) +2(en2 + ens + €na) — 36?\/2]} + 3 (eq1 — 3)%(eqr — 1) + 9€3, (ea3 + €ga

+ €en1 +Ene +€n3 + €N4)}
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Me oz)wsﬁpmn enc€epyooio tng TOPATIEVE OYEONS UTOPOUPE, X0l YENOWLOTOVTAS TN LOpYH TOU €
cLVAPTACEL TV BoninTnmy TaEaUéTEeY, UTOPOUUE Vo YEQOUUE AUTH TN OYECT) OTN Uop@T

A1 O(eci)
s fe(eniear) + Oleqi)’

670V f plat cLVEETNOT oL deV EEoPTATOL AT TIC TPUPETPOUS €¢, EVE 610 O(€g;) TeplEyovTaL bpot Tou
elvor ToUAGyLoTOVY TEOTNS TEENE 0T €. O TapovopaoTAC elval UeYaAUTEENC TAENG amd Tov apLdunTy
6tav n meplodog Slow Roll €yer telewdoer xar o 6poc tou NMC xuplopyel , apxel va €yel emheyet
GNMDC mou ofrjvel xadode mhnoldloupe tov mdto tou duvopxod. Auto odrnyel 6To cuunépaoud 6Tl
c2 =1, mov elvon xou éva omé o xOpla amoteéopata authc e dovhelds: H oupnepiindn tou NMC xon
evoe ¢-eCaptdpevou GNMDC nou ehattdhvel onpcxvuxdc Vv toyb Tou TPog To TEhOC Tou TANYwWELoUoD,
aveldptnTa omd TNV axplBh Toug popcpn, Yo €yel oav anotéheopo TNV TATen {aon g Yewplog and
actadeleg mou OXETLCOV‘tocL ue o ¢2 (Etxovcx 2.2, ceh. 46).
Avtiotowya, oto dplo dmou undpyel uévVo To GNMDC €y OuuE:

2)

6Tou To xhdoyua elvar TEoPavd: dldgopo tou 0, ev yével, emPBeBaidvovtac 6Tt To GNMDC 8¢ yiotpelel
TAAewe TN Yewplo and Tig oyeTixéc aotdietes.

Emotpégpovtag topa ot uekétn twv 3 mdavodv meployov toyboc, xatahaBaivouue edxoha 4TL 1
neptoy”) 6mou NMC <« GNMDC otepeiton evilagpépovtog. Xty neployn 6mou 1o GNMDC xupiapyet
xotd to Slow Roll, péow twv duvouixdv e€lomoeny uropolue vo e&dyoupe 2 mdavols decpols mou
TOCOTIXOTIOLOVY QUTH TNV xuptapy Lo

G((b)Hgﬁ %ol §<<%.2

f(@) f(¢)

6mou o deltepog elval Loyupdtepog and tov mpwto. ‘Ouwg, petd ™ @dorn Slow Roll, Sev pnopolyue
vor Yewpfiooupe aueAntéove Toug 6pouc mou ogethovtar oto NMC, axpBoe yiotl eneepyaldpacte
GNMDC nou offvouy, xadoe to nedio taAnotdlel to 0. Enopévwe, auth n neploy)| npénel va e€etaotel
pe peyailtepn Aemtopépeia. ‘Ouwe, tnv (Bla andvinor punopolue vo avalntNooupe HEGL NG HEAETNG
NC ENOUEVNC TEPLOY NG, BNAADY aUTrE OTOU oL BUO GUVELGHEROVTES GPOL EIVAL TAPOUOLIS LY VOG.

I va Beloxdpoocte oty neploy) NMC ~ GNMDC, Swoahéyoupe tov mo addvauo and toug d0o
deopole, mou elvon apxeTdC Yio v deléel Ta amotehéopota Tne Yewplog. Oewpolue hotndy nwe Loy vet:

<

Ef(0) ~ G(o)HS , E£f(8) > G(d)d”

EVQ Yol TOUC 6pouc AoYw GR dewpolyue mwe elvon aueintéol xatd to Slow Roll. Téte, o e€iomoeig
Klein-Gordon xou Friedmann eivon avtiotouya:

18G(¢)H*¢ + V'(¢) = 12H?¢['(¢) , 3MpH +66f(9)H? =V (9) .

Avagépape %M 6Tt xatd to Slow Roll xuplapyodv ol €1, en1 xan en2. Kpoatodvtoc toug dpoug
TEOTNG TEENG OE AUTES TLS TOROUETEOUC, EYOUNE:

~ 2
fg = gs =~ MPle(;l .

, 2 , , , , , , , ,
ETT]V TCEPLTCTQ)OY] TOL Cy B)\ETEOUP.E OTL XPO(T(DVTO(C p.OVO AVTOVLC TOLC OPOUC EXOUP.E TO O(VO({JEVOHEVO

anotéheopa ¢ = 1. T 10 pdopa TV Boaduntdv dlatapay v xouue

H2

Pr~ —s——
8M32,m%ect

Mdéhota, elvon aloonueiwto to yeyovog ot oe mpwtn TéEN, oo NMC dpot dev €youyv enidpacn otny
Ty TOU QAoUATOC.
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IMeoywedvtag, Yot To AOYO TWV BLATARUY DY, T, EYOUUE:

166@1
r~ 16egy + ———€n1 -
€G1 + €en2

Katd ) Sudexeior tou Slow Roll éyoupe en1 < 0, ondte o dpoc NMC yewdver 1o anotéhecpa r =
16ec1. Emopévac, éyouue Siépdnmaon tou r oe uxpdtepes Tiée, mou elvon oe xahiTepn cuupLvia Ye Tie
napatnenoelc. Téhog, o deixtng xhiong ng, nalpvel Ty mo ntohdTAoxy popen:
—3(eas + €ga) + 2ec1(ec1 + en1 + enz)

€ci(€c1 +en1 +enz — 1)

ng ~1+

OTIOU OTUELOVOUPE OTL BE wtopo()v v ayvonolv ol dpol €G3, €ga, xaddC ol undloimol bpol elvan
de0TEpNC T4ENS OTLC TOPAETEOUC €.

Euvoq)LCovwg, OTaY EVOC P-eE0PTOUEVOS opog GNMDC elvar cuyxpiowng Loxuog pe évav 6po
NMC, to mapayduevo Tc)\nf)wptcnxo povtéro elvon duvatéd vo tadel mANpwe and T aotddelec mou
OXETLCOVTOLL pe v T tou ¢2. O Aéyoc r &opﬂwveroa oE axoUa xoO\U‘cspag 'chsg EVTOC TV opleyy
tou Planck 2018, »ou pdhota )0 xau TEPLOGOTERO, 6G0 TO oNUAvTIXOC elvar o dpog NMC. Télog, o
oEVAPLO OUTO Xapn)\d)vst TS TWES TWY opy ey cuVINXGY xou Twv otadepidv (eding, anogedyovtas To
npoPAnua tou cuvndoug NMC oe oyéon pe vy autocuvénela tng Yewploc. ‘Olo autd Tar amoteAéopaTa
woybouy, apxel i cuvdptnon G(¢) va yivetan apeintéa mTAnodlovtag Tov ndto Tou duvoauxol. Me Bdon
OhoL UTA, xorTahaBaivoupe OTL TO GUVBUAGPEVO GEVAPLO Elvol xahTeEpO o€ ayéom ue TNy xdie pla Yewplio
EeywploTd.

Oa ToEOVCIAGOLYE THOPE Pia optIUNTIXY avdALGT cLUYXEXEWEVKLY Tapadetypdtwy. Ia tov NMC deo
emAéyoupe TN ouvdptnon f(@) = P2, mou éyel pehetnel extevire ot BifAoypagla, eV Yl Tov dpo
a—1
GNMDC emhéyoupe ndAL T uopqm G(p) = 2A¢j[a+1 Téhog, emAéyoupe va gpyooTolUE 010 TAXOLO

evoe Suvapixol Higgs V(¢) = %.

Ye 0,1 axoloulel Eyouue emBAAEL TOV TORATNENCLOXO TEPLOPIOUS GE GYEGN PE TNV TLY TOL QAo-
patog Twv Boduwtodv dlatapaydy Yo k = 0.05Mpc™t: Pr = 2.2-1077, evh ot apyée cuvirxeg
emhéyovtar oTe va mopaydoly povtéha pe 40, 50 xou 60 e-folds.

Yto dudypoppo 2.1, oeh. 45 gaiveton 1 €€€MEN Tou Poduwtod mediou oe BLAPOPES MEPLTTWOELS.
Evo oty nepintwon GR+GNMDC ot tahavidoelg elvan ToA évtoveg, otn cuvbuaouévn nepintwon 1
nepiodoe toug avgdvetar. Auth 1 adénon elvar évog xplowog tapdyovtog 6To Vo tddouy vo uTdpyouy
ot oyeTWlOPEVES UE TO 2, aoTtdelec.

Trohoyioope emmhéov ta mopatneNowa YeYEDN, YENOWOTOWOVTOC T OYE0ElC Tou Tmopatidevto
oto Hoapdptnua B. Xto ndve Sidypouua tne Ewdvoe 2.2 oel.46, nopoatidevion to anotehéoyota Twy
Eeywptotwy Yewplodv xadde xar e cuvduaopévng Vewplag, oe oyéon pe ta Befadtnrac lo xaw 20
dedoyéva, mou mpoxuntouv and to Planck 2018. Tlapatnpolue twe xou 1 cuvbuacuévr VYewplo Tapdyel
ATODEXTES TUWES YL TO T

Y10 %o didypopuo tne Ewdvac 2.2 goiveton 1 eZéMEN Tou ¢ v dldgopec Tepntoec. Eve
ot GNMDC dewplo yperdleton peydhoc aprdpde tohavidoewy péypt vo otadeponomdel to 2, dtav
undpyer xoau NMC ouvelsgopd, €xouye pua oc&ocnpeiwcn HELWON TV TAAXVTWOEWY, TOU UTOEOLY Vo
TEPLOPLOTOUY %ol 6VO OE VETIHES TWIES, YiaTpevovTag TAfpws T Yewpla and 1o avtioTor o mpdAnua.
O Xoyog Yl auto @aiveton péow e Ewdvae 2.3 oel. 47, édmov napoucidlovue OUVELGPOPU Xae
EeywploTol bpou oTig Suvauixéc eélomoelc. Katd Btap%stu tou Slow Roll, ot cuvelogopéc twv NMC
xat GNMDC eivon mopdpoteg, ahhd dtav Eextvolv ot tahaviwoelg, 1o NMC xuptocp)(ei. H dewpla NMC
odnyet oto anotéheopa 2 = 1, XO(L emopévwe auTh 1 xuplapyla e oo Téhog €xeL Euapysnxﬁ eni-
dpaom oTic actdieleg )\oyco Tou 2. AvtioTotya amoteléopata TpoXOTTOLY XU av emhéEel xavelc éva
nohuwvuuo Tou ¢ we GNMDC (Emovcx 2.4 oeh. 49). Tuvodilovtog, XATUCKEVACUUE ot GLUVIUUOUEVT
Yewpio NMC xow GNMDC, xou anodei&ope 6Tt dtav oL 800 dpot elvar cuyxplodol xatd T Sdexela Tou
Slow Roll, auty] Swatneel o emuépoug TAEOVEXTAUATA, YIATEEVOVTAUS TORGAANAL Tol ETUUEPOUS TEOPBAY-
pota. 3Tn cuvbuacuévn Yewpla, pla apxetd peydhn nepiodog mhndnplopol propel vo emiteuydel ebxoha,
HE oYETE PxpEg TWéS Tou Tedlou xan tne LevEng Tou, x4t Tou amoTeAoloE TEOBATUN GTNY TERINTWOT
Tou Eeywpeiotob NMC, xodag ol avaryxaleg tipég Eenepvoloay ) udlo Planck. Yto téhog 6e awtig tng
mandwelo g @dong, o dpoc NMC mapopével xuplapyog emotpepovtac T Yewpla ota anoteréoyata
e DevinAc LyeTxdTnTog %ot dnopoxpivovIoS 1o TEdBANUe TV o TH)EL)dY AOYw TUNAVIWMOEWY TOU ¢
nou ogelietan oto GNMDC, evdy o napatneroo PeyEdr) Blatneody TWES EVTOC TV TURATNEHOEWY.

Avtd ta amotehéopota Loy VoLV TOGO Yol LOVKVLIO 660 Xat Yia tohumvupo GNMDC, eve emyelpnuo-
TohoyHooue xou Yl To Yot autd Tor amoteréopata Yo lvon (Bla yio omotadninote poppy) GNMDC éyel
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10 yopaxtnEloTxd va eEagpavileton oto Téhog Tou TANYwetopol (ty exdetindé GNMDC). Suunepaivel
Aoty xavelc Twe TéTolou TUTOL CeVdpLa Elvol AmOBOTXE WS TEOE TN (PorvouEVoloYio Toug xan efvan
xeriowo vo pehetniolv mepontépn, o GAAES EXPAVOELS TOU TANGWEIOUOY, OTWS Yo TUPEBELYUA GTNV
mdoavotnta dnwovpyiac PBH.

Avanapaywy? tne Koopoloyixng EEEAENG Me Ilapouvoia EmnAéov Alactdoewy

To teleutalo Yépog Tne mapovoug SlateBrc aoyoheiton Pe Wal GAAT Tpomonolnoy Tou TeoTelveTol, aUTY
e oLUTERIANPNG EMTAEOV YWEIXMY BLUC TACEWY 6T METELXT TTOL TiEpLYpdpEL To Ywpdypeovo. H mpdodoc
nou €yel onuewwdel oe Yewplec mou mpoonadolv va evorolficouy bhec Tic ahhnhemidpdoec (6w 7
Yewpla yopddv) €youv @épel 6To MpooxHVIO auTH TNV WEa Tépay e Koopoloylag, xaw oto eninedo
e oLUATBLXNAC PUOXAS. AV XOVEIC XOTAGHEVACEL €Val LOVTENO UE TOPATAVe SO TAOELS, TEETEL VoL
Guwtspt)\d@a éva pnxowtoué ue tov omofo umopel vo owot%-cv’]oa oV X00U0, OTKC ToV avTihouBdveTon
évag 4-8L180TUTOC TUPUTNENTAHS (pnxavtopog Bl tatihc pelwong - dimensional reduction).

Ou pe)\smooupe AoLov TNV mptmwon TV Aeyopevwy Meydhwv Emniéov Awotdoewyv (UED),
ue Bdon to omolo, autég ol dotdoelg elvon mpooPaociuec oe 6ha Ta cwpatidor Tou Kathepwuévou
Movtélou. 'Etot, pa Swotatind peiwon odnyel oe évav nopyo and copatidio (KK tower), nou and
4-8udototng dnodng, Va yivovtow avtiinmtd we cwpatida e wdla, arid Ttopdpoles WdTNTES.

Tn6 auth T oxomd mapouctdleton Wialtepo evilapépoy ot auth tn Yewpla xadoe tpoopepet Evay
pnxavtopo Tou szexopavwg nepwpoccpa ™ Exo-rswn “TAn. Av éva otadepd KK owpoc'ci&o undcpxa
uéxpr onuepa xou Bev €yel goptlo xou Papuovieh guom, Ya €xel Ghec T avayxalec WIOTNTEC EVOC
owpotdiou Tov alnAemdpd ubvo pe Tt Bapltnta (weakly interacting massive particle- WIMP).

Yy evepyd 3+1-0dotatn emdva Tou cevopiov autol, ol Yepehiddelg otadepéc (eding éyouv
e€dptnomn and 1o Yedévo, Aoyw tne e€EMEne Tou emmAéov yweou. Autéd E€yel cav anoTtéAecud, OTO
oevdplo Twv UED mou peletdue €80, 0 €0WTEQXOC AUTOC YWEOC VoL TEEMEL Vol EfVAL GUUTOYOTOLY-
wévoc (compactified) xou otadeponompévoc (stabilized), npiv axduo Eexwviioer 1 Nouxheoohvideon,.
Anodevieton 6Tt autd ebvor duvartd vor cuufBel xatd Ty xuptapyio g oxTvoBohiog, oYt OUWS oL XATE
v xuptapyia e UANng, av de ocuunepthngiel xdmolog emnAéoy unyoviopos. Ewbwodtepa, mpoxdntel
HLOL CUGYETION TWV XATAC TATIXWY EELCOCEWY TWV PEVGTWY 1oL LouV GToV GUVHIN XaL GTOV E6LTEPUS
Yo, Tou ev Yével elvon aoVuPatoc ye To stabilization mou npoxdntel ansudeioc amd Tic BuvaIXES
eELloWOELC.

H otadeponoinon téte unopel vo emitevydel eite and v Oopln dhhwy tedivy (background fields),
elte TEPLYPAPOVTAC T XOOUIXE PEVCTY, HECEL lag EEWTIXNG XaTaoTaTX S EEl0WONG OV TEOXVTTEL (G
anotéheopa o YeueMwdndy Yewptddv (entl mapadelypott yopdiv Tou elval TUAYUEVES XOL GUUTOY OO
péveg poli pe tn didotaon otny onola {ouv, UE OmOTENEGUA TNV EUPAVIOT opYNTIXAC Teong, 1 omolo
odnyel ot Em@pdﬁuvon e eEEMENS TOU YOEOU).

IopoucidCouye To mhaiolo g Yewplag xou 0N CUVEYEL TOEAYOLUE EWBXES GAAG XaL TN YEVIXY
avoluTix Abon tng Yewplog, 1 onola Belyvouue 6Tl topouctdlel eEAXLOTY. LN GUVEYELX ToEOVCLALOUUE
TOUG TEPLOPLOUONE TOL TRETEL VoL axoloudndoly and wa tétola Yewpla xou tEhog xotaoxeudlovye éval
aptduntnd mopddelyuo mou urnopel vo wunvel ta anoteréopato tou ACDM.

Trodétoupe éva clumay EEYWELOTE OUOYEVES GTO GUVAYT XL OTOV EGWTERIXS YWeo, Ue (3+1+n)-
dlaotdoelc. H yetpin) mou emhéyouye, da €xel duo Eeywplotolc mopdyovteg xAlgonag:

ds? = —dt? + a®(t)yijda’dz? + b2 (t)pedyP dy?
Ou UeTpixée, vij o Ypg €EVOL UEYLOTO CUUUETEIXEC OTIC 3 oL OTIC N Sloo Tdoelg avtiotolya. Xenot-
ponolovpe avtioTolya 600 TaPUUETEOUC xoumUAGTNTC, kg = —1,0,1 xou ky = —1,0,1. O toavuotrg

evépyelag opunc etvou:

-» 0 0
TAB - 0 ,ysza B 0 ; M€ Pa = Wqap, Py = Wypp
0 0 A
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%o 00N YoLHAoTE OTIC duVoLXES EELOGOTELS

D) . [ ,.\ 2 T
a kq ab n(n-1) b ky | o
3() L R S <b> A
. L2 . . - o\ 2 .
o (0" Ko b, ab n(n—1) (DY R,
a a a2 "' "ab 2 b pz| T e
i N2k ; b (n—1)( m: N ]
a a a a n— n— b 2
hd = e —1)- S P S /A A I 2| ==
3a+3<a> +3a2+(n )b+3(n )ab—i- 5 <b> P2 K wpp

Abyw Blathenone TS eVERYELIC, OV Ol XATACTATIXES TORAUETEOL DEV €YOUY YPOVOEEAPTNOT|, PTAVOUUE

ot oyéon:
a —3(14wq) b —n(14+wp)
e(n) )

6mou o0 BelxTng ¢ avagpépeTon OTIC dpYWES TWES, eved o delxtne 0 ot onuepivéc. Eiwodyovtac Tig
napopétpoug Hubble unopolye toobivaua va ypddoupe:

(n—1)

ko k
BH + 35 +3nH.Hy + i > b

2 2
{H b+ bZ} =Kp.
7 onolo elvan 1 e€iowon Friedmann yio évo Xounay pe evepyelan| tuxvétnta p oe (3+1+n) Swotdoel,

eved Yo uToVEcoupE OTL 1) XUUTLAGTNTO Xou Yiot Toug BVo ydpoug éyel 1yl 0. Anahelpovtag Ta d, b,
UTOPOUUE VO THPOUPE TO LEOBUVOHO GUCTNUY EELOMOOEWY:

3[(71 — Dw, —nwy —n — 1] [(n —1)(Bw, — 1) — 3nwb]

. n
i H? H.,H
a 24+n o 2+mn w
n(n —1) [1 + (n— 1w, — nwb} 2
H 4
N o) 2 (4a)
. 2wy, — 1 —2 2
i - 3 (2wp — 3w, +1) H2_3(3nwa s + )HaHb
2+n 2+n
_ 43— w2 - D] (4b)
2(2+n)

Autéd 10 clotnua e€aptdtar UOVO amd TIC XATACTATIXEC TOQUUETEOUS W, Xt wp. EmPdihovtog
10 deoud Hp(t) = ¢;Hy(t) madpvouye pia opdda edixddv Mocewv, ol omolec Yo Solue 4TL amoteholv
mdovolg eAxuoTég Yo T yevixr Abon tou cuothpatog. Ilpdyuatt, éyovue 3 Tiwéc ¢; otav n > 2:

o — 6 o — 6 o= 1 — 3w, + 2wy
YT 83— /B2 +n) T 3n+\Bn2+n) ST 14 (n - Dw, —nwy
K1 K2 K3
evo v n = 1:
-1+ 3w, — 2wy
cp=-—1 3= ———"——
—_——— —1+ wy
K1
K3
I n > 2 undpyouv 2 AMoelc tomou Kasner ot K1 xou K2:
o) - Ha(0)(n — 1)
¢ n—1+[/3n(2+n) - 3]H,(0)t -
6H,(0
Hy(t) = ©

30+ /3n(2+ n) + [3n+ 3/3n(2 + n)]| Ha (0)¢
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Ha(0)(n —1)

n—1—1[y/3n(2+n)+ 3]H,

6H,(0)

=3n++/3n(2+n)+[-3n+3/3n(2+n)|H

eved vyl n = 1 undpyel uévo uia U tetpidpévn Aborn Kasner:

Ha(t) =

K2

Hy(t) =

_ H,(0)
Ha(t) = 1+ 2H,(0)t K1 1
(1) = —— el T
T T 2H, (o)

‘Otav oL topduetpor w eivan otadepée, undpyet xou o Teltn e Aon (K3):

2[1 + (n — 1wg — nwp) Hy(0)
2+2(n — Dw, — 2nwp + [3 — 3w2 4+ n(1 + 3w?2 — 6waw, + 2wi )| H,(0)t
2(1 — 3wg + 2wy)H,(0)
2+2(n — Dw, — 2nwp + [3 — 3w2 4+ n(1 + 3w?2 — 6waw, + 2wi )| H, (0)t

Ha(t) =

K3
Hy(t) =

Avtideta ye tic K1 xou K2, n Moo K3 dev €yel otodepy| Tiun yioL TNV napduetpo ¢, 1 omolol €86
eZoptdron amd to w. T o Yetnd tph H,y (0) m Aoon K1 napoucidler tov aneptopd e yio t < 0
eved 1 K2 vyt > 0. Avtdétog, o ancipiopog e K3 e€aptdron and Tic nopauétpoug w. Emlong, v
ne K1, K2 av o ecutepdc yopog cuotéheta, (Hp < 0§ 0 ouvidne ydpoc dactéhetan (H, > 0),
xat 1o avtiotpoo. Aev woylel anapoitnTa xdTt avtioTolyo yio Ty K3.

Anoheipovtoc To ypedvo and Tic e€lowoelc Twv napauetewy Hubble, nalpvouue wa pévo dlapopixy
eglowon, mou elvar mdvto emAdon av oL TopdueTeol w elvar otadepéc:

\/m[3(wa—1)2+n(1—3w3+6wawb—2wb(1+wb))]
const. =| Hp ’ .

H, part
H, n 3n+vV3nv2+n \/m(3+n—3w(l—nwb)+\/%(2+n)(uhz—wb).
H, 6

K1 part
E N 3n — \/%\/m‘\/24-7(3-&-71—31%—nwb)—\/37l(2+n)(wa,—wb)-
H, 6

K2 part
(n — Dw, — nwy, + 1 —vZFn (3- 8w +n (14302 —6wewy+2u}))

3w, — 2wy — 1 H,
K3 part

Koatd v nopoywyn autig e yevinic Adorng, ol eldixég Aboelg K1, K2, xaw K3 otn poppi:
Hb - CiHa =0

eupaviovtal o€ TUpOVOUAo TEC Xol ETOUEVLE antd auTd TpoxTTouY avtioTolyol teptoplopol. Luvenaxdrouvda,
OTO YWEO TWV Qdcewv H, Hb(Ha), oL ocvricrmxsq xaunUiee Yo eppaviCovton W 7olvopd” og
OTOLOONTOTE XUTUANG avTloToL el TN Yevxn ADom. O xouriAes mou aviiotolyody ouc K1, K2
dev siocp'co)vrou am6 ToL w xou dpa elvan (BLeg Yiar GAES TS MEpINTOOELS, avtileta pe v K3, yio tnv omola
Yo del€ovpe 6Tl anotelel puﬁptom me stmnq Aong oTig xocpo)\oymot AELONOYES TEPLTTAOOELS.

Ms)\s'cocpe Aol cxcsuwc'co)'mcx ™ YeVLX kucm Yy npwm nepintwon: Hy, |Hp| — oco. Av
Hy > 0 téte aviotolyel otny mepintoon evoe GOUTAVTOS XOVTd oty aveuahio Tou. Avtilotouya, 7
nepintwon Hy, [Hp| — 0 Teptypdpet TV aoLUTTWTIXH CUUTERLPOPd EVOC GUUTAVTOC TOL OBEVEL TIPOS Lol
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(pdom "iooppomiac”, xou udhoTa auth elvan N L6VH TERITTLON TOL WO (EELELETAL VoL TUEIGEOUUE [IE TNy
xohepwpévn xoopohoyut e&éMEn. Tepintdoeic onwe n H, /Hy, # ¢ dev elvan duvartée. Do mapdderyua,
av H, > Hyp, Hy/Hy # ¢, xatodiyoupe otn popen const. =|Hyp|" |Hb| , ondte |Hp|HY = const..
Me avuxotdotacy oTic duvaixés e€loMOELS TUPATNEOVUE OTL ol Un TeTpWpévn Abon oe autyh Ty
nepintwon elvon adlvoto vo umdpyel. Enopévwe, oe xdle mepintwon, xdmota and g Aboeig K1, K2
xon K3 G élxouv 1 Qaoxr) xoundAn xdde dhhng hoong.

O napdryovtag mou xoopilel TO WS Ol TUPATAVE) ACUUTTWTIXES CUUTERLPORES ETLTUYYEVOVTOL, EXEL
BePolwe vo xdvel pe to mpdomnuo Twv extetdy Twv K1, K2, K3 ot yevuxn Aon xadog xon T déong
TRV apYxwyY cuvinxwy ot oyéon ue Tic K1, K2, K3. Me Bdorn autd, To EEOYOQ (Hq, Hp) notolfyet
oe xdmolo and 1o e€fic oevdpla (0,0), (oo, +o0) (xou (0,+00) av n = 1).

Q¢ mopddetypa, Yo epyactolue otny nepintwon n = 1, 6mou 1 K2 xatalfyel 0Ty TETEWUEVT

L=
’2\[(3wa—wb—2) wp—1) ‘\/5(473w“7wb)+3\/§(w“7wb)

const. :‘ ‘ Hb

H, part
K1 part
) H, ‘\/3(4—3wa,—wb)—3\/§(wa—wb) ‘ 1—wp H, —V3(4—6wawp+2w7)
Hb Swa - wa —1 Hb
~—~
K2 part K3 part

O meployéc 6mou ol exttéteg €youv ouyxexpléva tpdonua patvovton oto didypaupa e Ewdvag 3.1,
oeh.58, wc ouvdptnon Twv w. H neployy ue onuooia yioa v Koopohoyla etvor 1 neployn 2, nou cuunep-
opPBdvel To deoud 1 — 3w, + 2wy, = 0, mou elvan AmOEOLTNTOC YLOL VoL AVAXTACOUUE TA ATOTEAEGUATA
e Kadiepwpévne Koopohoylac. Ac doulédoupe yia mopddetypo ye v nepintwon H,/Hy — const,
pwe Hy, Hy — 0. Emdéyovtag w otny mepoyn 2 e Ewdvac 3.1, to Hy uépoc tne yevixnie Adong
yiao n = 1 telvel oto 0, yatl vpodveton oe dJetixd exdétn. Enouévie, touhdylotov évog and toug
UTOAOLTIOUC 6POUC TEETEL VoL TElVEL GTO AMELRO, (OTE TO YWVOUEVO TNS YEVIXNAC AUoTE va Byalvel (oo pe
ot otordepd.

Troderovrog 6T emAéyouue xoc'to’cMnksq apyinEc ouvixec, (avdpeoa ouc K1 xa K3 £30)), awtod
uropel va ouufel aovunTeTxd P6vo oTNV TepinTwon Ha/Hb — 1/c3. Xe auth v nepintwon 1 fdor)
Tou 6pou K3 teivel oto 0, xau elvon vpwpévn oe ocpvn'uxo exilé, ondte anoxAiver 0To dmelpo. Arné
™V GAAT Theved, av H, /Hb — const pe Ho, Hy — 00, 0 udvoc 1pomoc vo elval ouvennic 1) yevixh Ao
ue w otny nsptoxn 2, elvan av 0 K1 pépog telvel oto 0 vt Hy/Hy, — 1/c1), e€oudetepdivoviog 1o
Hy, pépocg mou twpeo omoxhiver 60 dmelpo.

Apa yior 6hat tor Lebym apyndv cuvinudy avdpeoa otic K1 xon K3, xou TéS Twv w oTny TEpLoyT
2 1 Aoon Yo xoatohfyel aouPTTOTXG aTov eEAxuoTh K3, xadog Hy, Hy — 0. Av n avtictoiyn hbom
K3 éyel ouyxexpéves WLOTNTES, TIC (Bleg Vol EYEL, €V XaLpd, XoUu 1) OTOLAONTOTE YeVIXY Abo.

M enidelgn autob tou yeyovotog yivetan oty Ewdva 3.2, oeh. 59, omou éyouue emhélel w
ME T MapAmdve otolyela xatd vou. ‘Eyouue xataoxeudoel Tic @aoéc xaumOReS yio 4 SlopopeTinég
TEPLTTWOELS 0PYIXWOY CUVINXWY, X0 Ti GUYXEIVOUUE UE Tig eWixég Aooelg. ‘OAeg, cuyxAivouv tpog Ty
avtiotoyn K 3.

Oa pehetriooupe Toug Becpolc ToU TEEMEL Vo Loy Oouv Yo va pmopel vo dlatumwdel éva xoo-
pohoy6 poviého mou ebvar Bidoluo, xodog TEEmeL var BlapUAGCCOVTAL TOAAGL Omd TO AMOTEAECUATO
¢ Kadiepouévne Koopohoylag mou elvon cuveny| ue tig mopatneroeig, é6nwe 1 Nouxieochvieon xau
T YN TpOTAENON ETUTAEOY YWEXGY Blotdoewy.  Odnyodyaote Aownéy o€ 500 WibTNHTES TOU TPETEL
VoL €YOUUE XATd YOU: [Id TpWTORY T ouixpuVoN TeV ETULTAEOY B0 THoEWY (h éva PO TRy WS Cedi-
ThoUa TV ouvidey Sluotdoenmy) €tol MoTE 0 EOMTEPXOC YOROS VaL Efval 17 TORATNETOHLOS, X (it
enax6hovin otadeponoinon e eZEMENC TWV ECWTEPADY BLUC TAGEWY (Hb ~ 0), and TouldyloTOV TNV
enoy) e Nouxdeoohvieong, xadde ol Yepehiddelg otadepéc Lebéng elval avTio TROQWS AVAAOYESC TOU
b(t). Xe avtiletn meplntwon n odhayh) oty Twh toug, Vo fray aviyvebowun oe avtixeipevo udpmifc
epuipopetatdmong xou netpduata. Mo oyéon nou odrnyel oe pla axplf3n o toadeponolnom Tou 6w TEELXOU
YWEoL, TEoXVTTEL amd TG duvauxés eEloMTELE, OTou Yo var Unv mapovatdlel eZéhin 1 e&lowan tou
Hy, npémer vor Loy Vet

1 —3w, + 2w, =0 .

Mrnopolue Befolwe v emtpédoupe xon wior e€otpetind apyy eZEMEN Tou eowtepxol Ywpou. Av
OL TOPGUETEOL Wy, Wp EVOL TETOLEG WOTE VAL TOEAYETOL [iot avTiotolyn AUon K3 ye mohd pixpd Aéyo
Hy/H,, 161t 1 Suoupoponoinon otic otadepée Lebing Yo unopoloe va elvan un aviyvebdour. Ou neplop-
wopol mou mpoxdnTouy otr BBAoYpapla Xou emiTEénouy i TOAD apYY eE€EMEN TOL ECWTERPXOD YWEOU
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TOCOTLXOTOLUVTAUL WS eENG:

©_ 1 o |bBBN — broday| _
1| < - H - 1% .

Emniéov, 9éhouvpe 1 e&éMén tne napapétpou Hubble H, va cupgovel ye ti¢ napatnperiosic.

H 8pdion tne AMong K3 wg eAxuoTy| Yo OAEG TIC UTOAOLTES, oG BLEUXOAUVEL TOAD OTNY XATACHELY]
TETOWWY HOVTEAWY, ev( dev avtetonilovue tpoBiAuata fine-tuning. G€houpe va €youue €vay TOAD
wxp6 Aoyo Hy/H, mou cuoyetilel xou Ty eZEMEN TwV TopauéTeny w:

H
apparent Stabilization = (—b>
H,

H,

(K3) N (Hb)(K3) N (Hb)(K3)
H,

D. Energy era Mat. Dom. Rad. Dom.
Enopévwe, xotohaPBaiver xavelg, 6ti yio vo otodepornoiniel o ecwtepixde yOpoc and Ty EToyT Xupl-
apylac e UANC xan éneito, TEETEL N TUPAUETEPOC Wy Vo Tafpvel TeEwTinéS” Tég, UE apvnTixy mieom,
omote xavele Ya ypetootel vo xotapiyer ot avtictoiya oevipia (phantom energy) ¥ mo Yepehddels
Yewplec (string theory) mou eumepiéyouv tétoleg nepintdoeic.

Télog, onperdvoupe 6Tt agod ol K1, K2 xou K3 Aettoupyoly wg eAxUoTES, TEETEL Vo ehe TG00y o
OLATOPOXTIXG, (OOTE VAl vap(éooups To av eivon otadepéc. o v K3, mou pag evdlagpépel teploc6Tepo,
€Y OLE:

K3 K3
Ho(t) = Hy(8) + HZ(8),  Hy(t) = Hy°(t) + Hy™ (1)

Ol TTPOXVTTEL
—4+43wg +wy,

HPr HPT oc 2 wem e
a

ondTe OAES oL xoopohoyd alloonueinTes TEpITTOOELS elvar otadepéc, YTl otny teployy| 2, o exdétng
Tou t elvon apvnTindg. Avtiotoiya yio tig K1 xon K2:

HPe" HP®" o ¢

Iot var xotaoxevdooude éva Wovtého mou meplypdgel OAN Ty e€éMEn tou Yiunavtog, do yenot-
HOTOLACOUNE UETAUBACELS AVAUESH OTLC BIAPORES THES TWV W, OE XAVE ETOYT], TTOU CEBOVTAL TLS TOPOTAVG
anauthoelc. o Ta Topatnenoloxd 8edopéva Tou VEAOUPE VoL IXOVOTIOLACOLUE VYol XENOULOTIOLICOVUE TIG
TPOCEYYIOTIXES TUIEC:

eved Vo SlapuidEoupe v e€EMEN Tou TapdyovTa xAipoxag Tov cuVToUS XOEOL Yia TNV Xuptapyio TNS
axtvoPohiog xon g Vg (12 xan #2/3 avtiotoiya). ‘Opwe, oL Tapatnefioelc, TEénel Vo ToLptdEouy e
TIC EVEPYES TWES, amd 4-BLldoTATNG OXOTAS, XU OYL UE TIC TWEC TOU EYOUUE TUPOUCLACEL THPATAVE.
Xeewalopaote hotndy, T EVERYES TWES, TOL TEOXVUTTOUY UETA T1) SlaoTatixy| uelwor tng dedong.

"Evoc cuvidng tpdémog va yivel auté elvan va éplel 1 dpdion oe XatdAANAY LopPY| UECHL EVOC HETATY T
patiopol Weyl. Xe auth) tny neplntwon o nopdyovtoc xAlyoxag yivetow avtAnmtog and 4-Sidotatng
oxomide, oov éva Bodunté medlo oe duvauixd. O petaoynuoatiopoés Weyl odddlel to ypdvo xou Tov
nopdyovia a(t). ‘Evoc tetpadidotatog napatnenthc Yo avtihauBavdtoy Aotndv:

tess = /b"/Q(t)dt +const = g(t) = t =g (teyy)

acrp(ters) =" (g ters))alg™tess))

Tapatnpeel xavele 6t auvtéc ol droplnoels elvon oNuavTiXég, UOVO av 0 ECWTEPIXOS Y WeoC dev elvou
otadepomolnuévoc, xdtl mou de Yac anaoyolel 8.

Koraoxeudlovrog tehixd 1o povtého pog, Yo emBahovye, Aoimdy, Toug SEGUOUS TOU AVOPEROUE, OTT
Moon K3. T mapdderyya, and tnv Ewdva 3.3, oek. 61, Beloxoupe tny nepioyn omd tny onola uropodyue
vor ETMAEEOVUE Tal W PE BAOT) TOUS TUPOTEvVE JDEGUOUS (XOXXVT TELYWVIXT TEPLOYT) EV avTIDETEL UE TO
deoud yio axpBr| otadepomoinon (Saxexoupévn yeouur). Emniéov, mapousidloupe 3 meployéc twv
TUPUUETEWY W IOV AVTIGTOLYOVY OE 3 BLUPORETINES TWES TNE TUPUUETEOU ¢x3. O GUVBUICUOE TOUS UaS
avoryxdlel vo emhéEOUPE Omo CUYXEXPWEVY Teploy Y, ool emtuyolue otadepomnoinoy Tou ecwTEELXOU
ywpou xou onuepvy) T g =~ —0.6. Téhog, €youue EVOOUATMOOEL Yol UETAPACT OTIC TWES TV W
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Tou povtelonolel To tépaoud and EMBRUBUVOUEVT OE EMLTOYUVOUEVY) BLAGTOAY TOU XL0UNAvTog, 6Tay 1)
epudpopetatonion Hrav z = 1 — 2, eved 1 eZEMEN Tou b(t), eivan apxetd apyn Mote va elvon oUW
HE TOUC Topamdvey dEaUolg.

Yty Ewéva 3.4, ceh. 64, anewovileton n e&ENEn e napapétpou H, autod tou poviéhou, oe
oyéon pe outh mou mpofiénetan and to ACDM, xadde xou 1 e€EMEN Tou mapdyovTa xhdoxog o
OYEOT) UE TNV AVAUEVOUEVT) eZéMER Tou, oe enoy xupwcpx(ocg e UAnc. Av o Tcocpdwov-cocg X Aoag
b(t) dev Hrav otadeponoNuEVoS, M sie)\tin auth) 6e Yo Nrav (Bua, aveddptnTo and TNy emroyh e
ToEAETEOL we = 0 yiot TNV enoyr auts. To B0 oy el xou yio Ty enoyr xuplapyiag Mg axtvofoiiog
oA xou yior TV emoy Y| Tng Lxotewvic Evépyelag.

Yty Ewéva 3.5, 64, BAémouye Ty eZEMEN Twv TopayOvTwy xAlpoxag ue Bdor to povtéro, ot onolot
elvan xavovixomomnuévol wote a(0) = b(0) = 1. Télog, oty Exdva 3.6, och. 64, anewovilovta 1
TUPAUETEOC EMPBEABUVOTNC TOU HOVTEROL, AAAG xon Wil amevdeiag oOYxpLom UE TIC TAUPATNENOELS, HEoW
e xaundine m(z) — M oe oyéon ye 580 supernova tomou SNla.

Téhog, Yo avopepdolpe o PLo eVBLUPEPOUTA IO TNTA CYETIXA UE TOUS TopdyovTes xhpoxac a(t), b(t).
Ot Moeic K1, K2 dev ixavomololv xapia cuviixn otodeponoinong, adid de cuufaivel To (Blo xou Ue T
Moon K3, énwe yia topddelyua delyvouue €60, otny neplntwon émouv n = 2. Ot mapdyovtes xhlpoxag
Talpvouy TN wopt:

242wq —4wy,

alt) =& ’ (14 wa — 2wy) + (5 + 3w? — 12w,wy, + 4wy ) H, (0)¢| 5+3wZ —12wqwp+4wy

___2-Gwatdwy, K3
b(t) = & |2(1 + wq — 2wp) + (54 3w2 — 12wawy, + 4wy ) Ho (0)t] >+3wa - 12wawy vy
HMopatneel, petod dAAwv, xavele, 6t av we = —1 xat wp = —2, 0L TUPOVOUAGTES Xt TV dVO eXVETHY,

oMAG %ot o aprduntic Tou Tapdyova b(t) undeviCovton. Emimhéov, o exdétne tou a(t) eivon Yetxde otic
neployés 2 xau 3 g Ewdvag 3.1, eved o extdéne tou b(t) elvon Yetindc wbvo ato xopudtt e neployfc
2 mou Bploxeton aploTtepd amd Tr) SloaxexoUEVn Yoauur. Enouévewe, avdhoya ue Tov TpbTO TROGEYYIONG
TWV TWOV Topamdve, eivar Suvorth wa ToAd et T Touv exdétn tou a(t) xou piot TOAD cpvnTIXY
Th vt Tov extdétn tou b(t). ‘Ouwce, and tov 1péno Tpoctyylone eapTdton xou 1 oTodepOTNTAL TNG
Noong oe datopayés. Mia uixer| Sotapoy ) Twv w, Unopel Vo ahAEEEL SpaCTIXG T CUUTERLPORE TGV
TOEAYOVTOV XALLOXAC.

Yty Ewdva 3.7, oeh. 66, Qaiveton 1) CUUTEQLPORE TWV PUOLXWY XOUTUANDY Yiol DLdpopee THIES
oTic meployéc 1 xou 2 tou daypapuatoc 3.1, yio wa mepintwon pe n = 1. And exel unopel xaveig
VoL TOpTNENOEL T1) CUUTERLPOEE WA Tuylag YEVIXNE AUONG, TOLOTIXA XAl TEAYUATL QPALVETOL 1) UEYSAT
dlapopd oTic mdaveg e€eMEELS, avdhoya PE TNV am)\ow’] TOV 0EYLXMV GUVINXGY cxvdcpsocx OTIC ELOWEC
Moeic K1, K2 xou K3. Ilowotixd, 1 oupneplpopd auth eivor (Bla yid omolabnmoTe Tiuh Tou n.

Zuvoq)LCovrocg, npooTalfioae o€ aUTH TRV EVOTATA TS BLITEIBNC VAL TAPOUCLACOVUE TO WS 1)
oupmpt)\nc]m OOYEVAY €£Tp0 DO TEGEWY, Vo UTOPOUGOY VoL ETNEEGCOUY TNV XOGUOAOYIXT] EZENEN.

ELEO(p.E ot elvon duvatd va mapoy el pia ewxdva nocpopotot pe avth tou ACDM, oe autéd 1o mhaloto,
uévo av ol emnAéov dlaotdoelg elvon otadeponomuévee and mohd vwplc oty eishin Tou. Emn)\aov
oe Votepa oTddla authc Tne e€EMEng elvan anopoitnto va Yewphoet xavelc 6Tl To XOoUX6 PEVGTS TWY
emTAEOY DIUOTACEWY, EYEL TNV EEWTLXN WOLOTNTA TNS UEVNTIXAS TIEONS, TOU EVOEYOPEVKS TEOXOTTEL amd
pot o YepeAiwdr dewpla, énwe 1 Oewpio Xopdhv.

Kartaoxevdoaye évo T€1010 HoVTENO, EVTOC TOV TORATNENOLOXMY 0plwy, Blatne®dvTog Wwia ToAD oYY,
un nopatnenoyn eEEAEY yio TOV TapdyovTa XA TV EnAéov dlaotdoewy. Eyovtoac xatopdwoet
Vo Beolue TIC EW0IXé xan TN YEVXT A0GT TOU CUCTHUNTOS GE OVOAUTIXY LOR@PY|, xoTopBdooue Vo YTi-
GOUUE AUTO TO UOoVTEAD, OELOTIOLWVTAS TO YEYOVOC OTL, 6mwe amodelydnxe, 1 Abon K3, Aettoupyel wg
EAXUOTAC Yiot OAES TIC XOOHONOYIXA adloonuelwTes tepintwoelc. Enopéves, avayxdlovtag tn hoon K3
VOL GUUTERLPEPETOL UE CUXYXEPLUEVO TEOTO, eE0varyxELOUUE Wial TEpdo Tl TToLxAlaL amd apyixéc cUVIXES
Vo XoTahAEOLUY VoL GUUTERLPEPOVTOL YE TOV (BLo, amodexTd, Tpdmo.

Téhog, eetdooue TS CUUTERLPEPOVTOL OL TaEAYOVTES XAlpaxoc 6Tav gt AUoT auTtol ToU GUGTH-
patog Peloxeton XOVT8 GTNY AVWUOALY TNS, GO CUVEETNOT TWV TApUUETewy w. Ymdpyouv cuvduacuol
TV XOTUO TATIXOV TUPUUETEWY TIOL Toedyouv pla Tohd Yeryoper dlac tohr] Tou cuvroug yweou xo uia
avTioTo ol YPTYOPT) GUGTOAT] TOU ECKTEQIXOY YWEOU, AV X AUTES OL ETLAOYES efval xou TéAL ewtinhc
puone. Emmiéov, autéc o tiée Boloxovia oo chvopo iac teployric Tou xwpou Ty w exatépwiey
Tou onolou oL Toaryoueves eCeMEeL elvan oM BlopopeTixes. Ernouévac, o tuxpr durtapay oty T
v w Yo unopoloe Vo TUpodOTHoEL Pla TO00 BlapopeTixy eEEMEN Yt To cLUVHUN xaL TOV ECWTERIXS

XOPO.
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Chapter 0

Introduction

0.1 A brief History of General Relativity and Cosmology

Einstein’s General Theory of Relativity (GR), set the foundation for the study of Gravity and
spacetime as we understand it today. According to GR, there exist solutions of the field equations
of gravity that describe a universe that expands or contracts. These solutions were first found by
Friedmann in 1922, and a few years later, Hubble was the first to prove that the Universe was indeed
expanding.

Moreover, nucleosynthesis, studied by Gamow in 1946, demands that the Universe must have
started from a very hot and dense initial state, in order to explain current abundances of the various
particles and elements. This, in turn, implies that a background microwave radiation would remain
as a thermal relic of this initial state. In fact, two decades later, Cosmic Microwave Background
Radiation (CMBR) was detected by Penzias and Wilson. These successes, lead to what is nowadays
called The Big Bang Theory (BB), according to which the Universe started from a very hot and
dense initial state.

Despite these accomplishments, alternatives have been proposed since the early days of GR,
trying to generalize and incorporate it in a broader unified theory. Some notable examples are
Weyl’s scale independent theory and Kaluza and Klein’s theory that included a larger number of
dimensions. Another particularly important example of an effort to generalize GR was that of
Dirac, who noted that the magnitude of Newton’s constant and the ratio of the mass and scale of
the Universe are related. This, in turn, sparked the thought that Newton’s constant might actually
be time-dependent.

Building upon this idea, Brans and Dicke developed, during the 1960s, the first of the theories
that are now known as scalar tensor theories, i.e. theories that include a scalar field, and its
interactions, in the study of the dynamics of the Universe. Theories including a scalar field coupled
to gravity were, since then, thoroughly investigated in various frameworks. A systematic approach
to them was performed by Horndeski in 1974, who was able to produce the most general, non-
degenerate, Lagrangian, describing the dynamics of a scalar field coupled with gravity, that leads
to non-problematic dynamical equations. The Horndeski theory has since then been built upon and
stands to be among the most prominent modifications to Standard GR.

There have also been completely different approaches to modifying GR. Sakharov pointed out
that the Einstein-Hilbert action is actually only a first approximation to a more elaborate action, that
includes higher order terms that can be important in various epochs or aspects of the Universe’s
life. A prime example among them is Starobinsky’s R? theory with significant consequences in
Cosmology.

However, after more than one century, GR remains completely unchanged and is still our best
description of how Gravity works on large scales, even though the model of the Universe’s evolution
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resulting directly from GR is inadequate in quite a few ways. Observations show that a huge part
of the Universe’s contents is of dark nature. According to GR, if the only type of gravitationally
interacting content of the Universe is the visible baryonic matter, then Large Scale Structures (LSS),
including galaxies, clusters etc, would not exist as we know them. Hence, these formations are
thought to consist not only of visible, but also of Dark Matter (DM). This type of matter is thought
to interact only gravitationally and thus creates the LSS without being directly observable.

An arguably even more peculiar observation, is that of the accelerated expansion of the Universe.
Near the end of the 20th century, observations of high redshift objects have shown that the Universe
has transitioned from a period of decelerating expansion to a period of accelerating expansion, a
fact that goes far beyond the predictions of GR. This is commonly attributed to yet another exotic
content of the Universe that is still of unknown nature and referred to as Dark Energy (DE).

Besides these unknown contents of the Universe, there also exist significant problems regarding
the birthing states of its life. Indeed, BB theory suffers from a series of problems which require a
modification of the dynamics of the very early Universe. These consist of the problem of the horizon,
the flatness problem and the problem of the unwanted relics. Hence, the BB theory needs, at the
very least, to be accompanied by a theory that solves these issues.

To solve them, it was proposed by Guth in 1981 that there took place an era during which the
Universe underwent a dramatic expansion of its size. This scenario is dubbed inflation, and it is
usually considered that it was realized due to the dynamics of a scalar particle called inflaton. The
dynamics of such a modification can, then, be studied within the framework of Horndeski theory,
yielding a very rich phenomenology, that can be put to test against observations.

In light of the above, it is understandable that there is a huge variety of theories modifying GR.
Hence, testing gravity, in order to distinguish between the various possible modifications has become
a centerpiece in modern and future cosmological experiments. This effort is aided by the advances
in what is called precision Cosmology experiments. A prime example among them is the Planck
collaboration, and perhaps more importantly the recent discovery of Gravitational Waves (GWs) [1].
The prominence of such an observation was shown immediately, since the observation of GW2017
was enough to put a severe constraint on the speed of GWs and thus discard a large number of
theories that modified GR [2].

0.2 The Standard Cosmological Model

As a theory of gravity, General Relativity is capable of producing a self-sufficient cosmological scheme
within which, one, can further elaborate and test various modifications to it. In this part of the
present thesis we present the basic concepts of Cosmology as obtained by unmodified GR.

0.2.1 The Cosmological Principle

In order to build a cosmological model, one has to first describe the geometry of the spacetime under
study. While there is no definitive observational or theoretical proof, it is generally accepted that
in large enough distances®, the Universe is homogeneous and isotropic. This assumption, referred
to as the Cosmological Principle, is backed by a large number of observational results. Arguably,
the most prominent observation among them, is the CMBR’s temperature, that is nearly the same
regardless of the direction observed.

This apparent homogeneity in the CMBR’s temperature is of course consistent with a homoge-
neous and isotropic Universe. The inhomogeneities observed in smaller scales are not in contrast
with that, and in fact are expected to exist, emerging when one performs a perturbative study. If

1 As ”large enough distances” in this context, it is usually accepted, and backed by observations, that it is enough
to look beyond the radius of average superclusters. This translates to distances of around 100 Mpc.
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one, then, wants to study the evolution of a 4-D spacetime of a homogenous and isotropic Universe,
a metric that describes a 4-D space-time with a maximally symmetric 3-D subspace is needed.
The homogeneous and isotropic metric? can be deduced, then, to be:

dr?

d52 = guydl’”d‘ru = 7dt2 + az(t) m

+72(d6? + sin*0dg?) (1)
where ¢ is the cosmic time and a(t) is the scale factor, while K defines the intrinsic curvature of the
space under study. This is measured to be significantly close to 0, posing one of the first questions
that need to be answered by a theory that modifies Cosmology obtained through GR. Eq. (1) is
generally known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.

0.2.2 Cosmological Redshift and Hubble parameter

A measure of whether the Universe expands, contracts or remains unchanged is the scale factor a(t).
However, the FLRW metric itself is not enough to indicate which one of these cases is true, and
observations need to be carried out. To quantify the evolution of the Universe we define the Hubble
parameter:

H(t) = att) (2)

The sign of the Hubble parameter dictates whether the Universe expands or contracts. We further
define a parameter to quantify whether the evolution is accelerating or decelerating. This parameter
is, for historic reasons, defined to be negative when the Universe is accelerating, and is given by:

QZ—T@) (3)

By calculating the frequency shift in light rays coming to terrestrial and space laboratories we
can deduce the behavior of the Universe’s evolution. To be able to calculate whether the Universe
is expanding or contracting, we need to define a comoving coordinate system. A point is said to
belong to this comoving system, when it is moving along with the expansion or contraction of the
Universe.

If we suppose that we are at the origin of the said coordinate system in a spacetime described
by the FLRW metric, we can carry out the said calculation as follows: A light ray moves on a null
geodesic, dr2 = 0, so by use of eq. (1) we obtain

dr
V1— Kr?
Supposing that a light ray is coming towards us, then r should be a decreasing function of cosmic

time, ¢, hence we have to choose the minus sign. If the light starts its journey at the coordinate
value r,, at time t,, then it will arrive to us (r = 0) at a later time, t5®. We have then:

dt = +a(t) (4)

/ % N /o % (5)

For two consecutive light signals that leave the source with a time difference dts and reach the origin
with a time difference dty, we then reason as follows to define what is called the red shift parameter,
z: coordinate r is time independent, and a(t)’s change between the two consecutive light signals

2The sign convention used throughout is (-,4+,+,4).
3The usual convention for the subscripts in Cosmology is to denote present time with 0.
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is very small. Hence, if we use eq. (5) one time for each light signal and then subtract the two
relations, we obtain:

dto 0t

Rlte) ~ R(ts) (6)

Supposing that the two light signals are actually two subsequent wave crests, then the corresponding
frequencies are fs = 1/0ts and fo = 1/dtg, leading to:

fs  alto)
2 = 7
fo a(ts)
We define this fraction as the redshift parameter, which for conventional reasons is expressed as:
a(to)
1 = 8
2= (8)

If a(t) increases then the light signal is redshifted, whereas the opposite happens if it decreases.
Hence, if we know the distance between the origin and the light source, we can thus determine
whether the proper distance between them increases or decreases with time and, thus, deduce if the
Universe is expanding or contracting.

Through the Hubble parameter (2), we can also define a number of other useful quantities. We
define the Hubble time to be H~' and the Hubble radius to be cH !, where ¢ is the speed of light.
The Hubble radius is the radius of a sphere beyond which objects recede with superluminal speed.
We also define the particle horizon which is the maximum distance that light emitted by a particle
can have traveled during the age of the Universe.

The current value of the Hubble parameter was calculated by the Planck 2018 [3] collaboration
to be: 67,7 km - s~ - Mpc—!. However, there do exist tensions regarding the current value of the
Hubble parameter. For example Riess et al. [4] have calculated that Hy ~ 73.0 km - s~! - Mpc™1.

0.2.3 Cosmology in a FLRW background

Having defined the metric (1), that describes the geometry of the Universe at large scales, we can
now proceed to study its dynamical evolution. To do that, we use the Einstein field equations

1
Guv = Ry = 505 R = 87GTy, — Mg 9)

T, is the energy momentum tensor. Since we model an isotropic and homogeneous Universe, the
energy momentum tensor that would correspond to such an ideal fluid, would be of the form

Ty = diag(—p,p,p,p)

where p is the energy density and p is the pressure of the fluid. A is a cosmological constant, G is
Newton’s constant and R, is the Ricci tensor, while R is the Ricci scalar. The continuity equation
reads

vV, T" =0

which in our case leads to
p=~3H(p+p) (10)

Standard cosmological evolution, then, revolves around the nature of the contents of the Universe
which are quantified through p and p. If radiation is the dominant component of the Universe’s
contents, then p = p/3. Plugging this in equation (10) we get p, ~ a~%. If however, usual matter is

the dominant component, then p = 0, leading to p,,, ~ a~>.
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To obtain, then, the evolution of the scale factor a(t), we have to solve the dynamical equations
resulting from (9). Since the fluid under study is isotropic we only need the 0-0 and 1-1 components.
These are usually called the Friedmann equations and read, respectively:

p A K

H? = + = (11)
3M3,

3 a2
and
3% = —47G(p+3p) + A (12)

As we have already mentioned, according to the observations the Universe has a flat geometry,
which means that the K parameter can be set to 0. In this case, in a Universe where there is no
cosmological constant and radiation dominates, solving the above equations yields a(t) ~ t1/2. If on
the other hand, matter dominates, the scale factor is proportional to a(t) ~ /3.

Moreover, equation (11) implies that for any given moment in cosmic time, there exists a critical
value of the energy density that satisfies: A, K = 0. In that case:

pe = 3MpH (13)
It is useful to define a density parameter:
p
Q=— 14)
Pe (

By this definition, then, we can express all the components’ contributions to the energy density of
the Universe. Then, we can, for example, obtain the cosmological constant’s density parameter, as

Q) = 3]\/[‘2/\7}12 We can now write down the first Friedmann equation as:
Pl
K

0.2.4 Shortcomings of Standard Cosmology

As we have already mentioned, despite its great successes, Standard Cosmology, resulting from a
completely unmodified version of GR, suffers a few shortcomings. We briefly mention them here,
before presenting some of the modifications that are followed to ameliorate these problems.

1. Flatness Problem: Equation (15) implies that if the Universe is flat, then Q;,; = 1, where Q401
includes all the possible contributions in it’s density. However, we can deduce that if this is
true for one moment during its lifetime, then the Universe will be flat at any given moment
after that. If this were not the case, then eq. (15), implies that it evolves with time.

This can be easily seen since the scale factor is a time-dependent function. The exact form
of its time evolution depends on the Universe’s contents, but for any plausible case, it can be
shown that it is an increasing function of cosmic time. However, the combination aH that
appears in eq. (15), is a decreasing function of time.

According to all observations, today’s value of 4., is exceptionally close to unity. This in turn
means that during the birthing stages of the Universe, this value should be extremely close to
unity. In fact, it is calculated that close to the Big Bang should hold that:

Qo — 1 < 10764

It is clear that such a fine tuning of the initial conditions of the Universe is extremely unlikely,
posing a question that Standard Cosmology can not adequately answer.
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2. Horizon Problem: CMBR observations reveal that the Universe seems to be highly isotropic.
This implies that regions that are not causally connected look extremely similar, leading to
the so called Horizon problem. To show this, we consider the distance a photon, that started
its journey at a given time t;, can travel in a given time interval:

dutt) =att) [ 255 (16)

So far, we have seen that both in the radiation and the matter domination era, the scale factor
follows a power law, a(t) o t?, where p < 1. We obtain, then:

tP — ;P

dy(t) = a(t) 1=y

(17)

leading to

p -1

d(t) = 721 (18)
when ¢t; = 0. Thus we have shown that the particle horizon has a finite size, which is of the
order of magnitude of the Hubble radius H~!. At the same time, the comoving Hubble radius,
a(t)H~!, which represents the fraction of comoving space in causal contact, grows with time.
So Standard Cosmology predicts that the fraction of the Universe in causal contact actually
increases with time. But according to the CMBR observations, the Universe was of significant
homogeneity at the time of the last scattering, on scales that were causally independent at the
time. Thus we are not able to justify, within the Standard Cosmology framework, why regions
that are not causally connected look so similar.

3. Unwanted Relics: So far the Standard Model of Physics arguably points to the fact that in
very high energies the four fundamental interactions of nature are unified. This is the so called
Grand Unified Theory (GUT) according to which, its symmetries eventually break one by one,
leading to a U(1) theory that includes magnetic monopoles, which have not been detected
so far. Different approaches, for example through string theories include similarly undetected
spin 0 particles, called moduli. The fact that these particles are not detected poses another
problem for the Hot Big Bang scenario resulting from unmodified GR.

4. Dark Matter: The formation of galaxies and LSS in general, is of gravitational nature. GR,
being the most successful gravitational theory, should be able to model the formation of such
structures. However, if one takes into account only the baryonic matter that is visible to us,
it is not enough to hold together those structures gravitationally. According to GR, then, LSS
should not exist at all, if all the matter of the Universe is of baryonic nature.

Modern cosmological models include, thus, non-baryonic electromagnetically neutral matter,
referred to as Cold Dark Matter (CDM). Using ACDM’s cosmological parameters as a bench-
mark, DM accounts for roughly 27% of the critical density in the Universe and 84 % of the
total matter density. The makeup of DM is, as of yet, still largely of unknown nature, since it
has to be interacting only gravitationally and have a negligible pressure, in order to solve the
problem of the existence of LSS without affecting the rest of the predictions of cosmological
models. Its nature has been speculated to be of spectacularly different origins. It ranges from
the possible existence of whole galaxies consisting solely of CDM, Primordially created Black
Holes (PBHs), that may survive until today, existent or exotic particles that only interact
gravitationally, or even modifications of GR that come into play at distances that are larger
than solar, but still not universal, as that would affect the overall evolution of the Universe.
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5. Dark Energy: Cosmological models that were constructed in the early days of GR, included
a cosmological constant, that offered repulsive gravitational energy, that combined with the
attracting nature of usual gravity, offered static solutions. However, the development of dy-
namic cosmological models and the discovery of cosmic expansion, made this cosmological term
appear unnecessary, and for the most part of the 20th century, an expanding, homogeneous
and isotropic, spatially flat, matter-dominated Universe was adopted as a default, until obser-
vations dictated otherwise. Near the end of the 20th century, supernovae surveys produced
evidence for accelerating cosmic expansion [5,6].

Moreover, CMB evidence leading to the conclusion that the Universe is spatially flat [7,8] set
the case for an accelerating expanse of the Universe on an even firmer base. The scale factor
a(t) of a homogeneous and isotropic Universe as dictated by GR, grows at an accelerating rate
only if the pressure p < —% p, which is an effect not possessed by any type of usual matter.

If one includes a cosmological constant, its energy density is pp = const and its pressure
pa = —pa. The cosmological constant, then, will drive acceleration if it dominates the total
energy density.

There also exist alternatives to what could drive an accelerating expansion, however, like a
modification of GR that comes into play in cosmological scales and is thus undetectable in
solar scale. The different scenarios that are related to the accelerated late time expansion of
the Universe are collectively called Dark Energy (DE) scenarios, regardless of their nature.

As presented so far, Cosmology resulting directly from GR, can not account for a number of
observations both in the very early, and in the late stages of the Universe’s life. However, a huge
number of modifications can be made to improve or replace some aspects of GR Cosmology.

Among the modifications that hold a prominent position in solving all of the early Universe’s
problems, is inflation. Its main idea is to decouple the causal size from the Hubble radius, so that
the size of the horizon in the radiation era obtained from standard Cosmology, is larger than the
Hubble radius. Any period in the Universe’s evolution where the comoving Hubble radius decreases,
is a phase of accelerating expansion, and the corresponding condition is @ > 0.

As mentioned previously paragraph, the current stage of the Universe’s life is also that of an
accelerating expansion. However, inflation refers to the primordial exponential expansion of the
Universe. Equation (12), when A = 0, implies that & > 0 which dictates that p < —%p, a feature
not possible for regular matter. On the other hand, a large enough cosmological constant can yield
p = —p. However, that would lead to a permanent exponential inflation which is entirely not
consistent with the observations for later stages of the Universe’s life.

The previous reasoning has led to a large number of different approaches regarding the driving
force of an initial inflationary era that can solve the horizon, flatness and unwanted relics problems,
without creating other inconsistencies. Perhaps the most well-studied among them, is the inclusion
of a scalar field, whose dynamics offer a simple modification to standard Cosmology with a rich
phenomenology. The broad spectrum of theories resulting from this, are collectively called Scalar-
Tensor theories.

0.3 Inflationary Cosmology with a single minimally coupled
scalar field

The first model of inflation is attributed to Alan Guth [9], who proposed a model based on a first
order transition from a false vacuum, with non-zero energy density, to a true vacuum with zero
energy density. This is usually referred to as old inflation. For this model to produce enough e-folds,
the nucleation rate has to be particularly small. However, the true vacuum phase, which appears
in the shape of bubbles due to quantum tunneling presents an impassable obstacle for this model.
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The space that undergoes inflation and separates them, expands too fast, so they never coalesce. A
second type of inflationary models, dubbed new inflation, was proposed in the works of [10], [11].

The first effort of including a scalar field’s dynamics in order to induce an inflationary phase,
came about in the form of a field that is minimally coupled to gravity:

5= [dtav=g [M;Z’IR 50000 V(¢>] (19)

By varying with respect to the metric, we obtain the contribution of the scalar field to the energy-
momentum tensor as follows:

1

pr = au¢au¢ — Guv (23p¢6p¢ + V((b)) (20)

The energy density and pressure, then, are:

dar? . 12
p=-1 =T vie), =% v (21)
The Klein-Gordon equation of this field is
av

w _ 2 22
VIVub = (22)

However, since we study the dynamics of this field in a cosmological context, the homogeneity
and isotropy imply that a cosmological scalar field is only time dependent, hence the above equation
reduces to

¢+3Hp+V' =0 (23)

while the Friedmann equation is

w2 (2 v (24
S O3ME N\ 2

The two dynamical equations (23), (24) generate an accelerated expansion in the so-called slow roll
regime. For that to take place, the potential energy of the field has to dominate over its kinetic
energy.

This is easily shown within the framework of the slow-roll approximation, where the kinetic terms
(432 and ¢) are omitted, since they are negligible with respect to the rest of the terms. We have
then:

3Ho+ V' ~0 (25)
H? ~ LV (26)
312,
Hence, the velocity is:
; Vv
~ 27
b5 (27)
But since the slow roll regime demands that (;'52 /2 < V', we obtain that it can be quantified by:
M2, (V'
=—| = 1 2
€y 9 V < ( 8)
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On the same footing, one can obtain another slow roll parameter. Since slow roll also implies ¢ < V7,
using the derivative of eq. (25), and eq. (26) we obtain:

"

v
ny = Mz%zv <1 (29)

We understand then, that the slow roll approximation is valid when these two quantities are signif-
icantly smaller than unity. This translates to certain conditions for the slope and curvature for the
potential V.

However, one can use alternative parameters, referred to as the Hubble slow-roll parameters,
defined as follows:

H €n

CTTHY YT ey
n

n>1 (30)
To quantify the duration of inflation, it is customary to use the e-folds before the end of inflation,
defined as

Gend
N =In— 31
nle (31)

where ae,q is the scale factor’s value at the end of inflation. If inflation is to solve the problems of
the BB as presented earlier, it is roughly estimated that about 60 e-folds are needed.

To show this, let us focus on the scenario that only a single transition in the evolutionary phases
of the Universe took place (i.e. from inflation to radiation era). Let us consider a given cosmological
scale, characterized by its wavenumber k = 27/X. We will suppose that this given scale crossed the
Hubble radius at a given instant ¢.(k), which is characteristic of this scale. Then, at that moment
we have:

k= a(t.)H(t,) (32)

Solving BB’s problems, requires that the comoving Hubble radius must have decreased during in-
flation at least the same amount as it increases after it. But during the radiation phase it increases
proportionally to a, while during inflation it roughly behaves as a™~!.

The temperature of the Universe is, however, inversely proportionate to the scale factor. Then,

the minimum amount of inflation is given by the number of e-folds between inflation and today, i.e.

In(ag/aend) = In(Tena/To) (33)

Simple models of inflation usually suggest that radiation era started at around T' ~ 10'6GeV.
Plugging this in the above equation, yields roughly 60 e-folds.

0.4 Perturbations and Inflationary Phenomenology

We have so far shown the steps of a direct analysis of single field inflationary models in terms of a
direct dynamical approach in a homogeneous and isotropic background. The early universe was very
nearly uniform due to this primordial inflationary era. However, the attractive nature of gravity
intuitively implies that if an inhomogeneity is born, then it will grow. Considering it reversely
in time, it means that any inhomogeneity appearing today would have to be much smaller in the
past. A picture of these inhomogeneities is the CMB radiation through which we can probe their
properties. Then, since inhomogeneities started as microscopic fluctuations, it is safe to assume that
for a large part of their evolution, one can study them as linear perturbations of the dynamical
quantities.
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Current consensus suggests that exactly these primordial fluctuations are the original seeds of
structure in the Universe, which over time grew to become all of the structure we observe. When
the universe became matter dominated these seeds started growing due to gravitational instabilities
(Jeans instabilities) thus forming increasingly larger structures. As already mentioned, the pres-
ence of primordial inflation-born seeds is observed and confirmed by detailed measurements of the
CMBR’s anisotropies; temperature anisotropies at angular scales larger than 1° are caused by in-
flationary inhomogeneities, since causality prevents microphysical processes to produce anisotropies
on angular scales larger than 1°, which corresponds to the angular size of the horizon at the era of
last-scattering.

These perturbations are generally thought to be of quantum fluctuations’ origin. It is remarkable,
that although inflation was originally introduced as a possible solution to some of the cosmological
problems presented earlier, it possesses another particularly useful property: that it generates spectra
of both density perturbations and gravitational waves.

These perturbations can extend from particularly short scales to cosmological scales, due to the
stretching of space during inflation. When inflation ends, the Hubble radius increases faster than the
scale factor, so the perturbations will eventually reenter the Hubble radius. Perturbations that exit
the horizon around 60 e-folds before reheating, reenter it with wavelengths in the range accessible to
cosmological observations. The spectra of cosmological perturbations possess distinctive properties,
related to the theory of Gravity that is actually at play, and thus should provide a signature for
inflation. Cosmological perturbations are measured in a variety of different ways, the most prominent
of which, so far is the analysis of CMBR’s anisotropies.

Fluctuations of the inflaton field are related to fluctuations of the metric, giving rise to pertur-
bations of the curvature R. The wavelengths of these perturbations grow exponentially and exit
the Hubble radius when their wavelength becomes comparable to its size. Upon exiting, curvature
perturbations are frozen and can be studied as classical. When inflation ends and the wavelength
of these perturbations reenters the horizon, the curvature perturbations give rise to matter and
temperature perturbations, which start to grow, and in turn give rise to the structures we observe
today.

Therefore, a large part of inflationary phenomenology revolves around the studying of the per-
turbations of the inflaton field and take up a crucial role in the construction of such models. A
detailed presentation on how perturbations are extracted is included in Appendix A. Moreover,
their application to single field inflation, is presented in Appendix B, since perturbations in Modi-
fied Gravity theories can be utilized to separate various theories from each other, by means of their
observables’ predictions, hence their study is a basic prerequisite in what is presented in this thesis.
We will now present only a brief summary of what is included in Galileon theory, i.e. the most
general non-degenerate theory of a single scalar field that does not suffer from the Ostrogradsky
instability.

0.5 Galileon Theory - Modifying Gravity with a non-minimally
coupled scalar field

During the 19th century, it was shown by M. Ostrogradsky [12] that there is a linear instability
in the Hamiltonians that are associated with Lagrangians depending on more than one high time
derivatives that can not be integrated away. Ostrogradsky’s theorem, when applied to physical
phenomena, naturally brought forward the need to work within frameworks that guarantee that no
instabilities are produced.

In 1974, ref. [13] showed that the most general non-degenerate Lagrangian of a single scalar field
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coupled to gravity, that suffers from no instabilities, has to be of the form (34).
4
L= 830 [V Vad Ry, = Sk x VI Va0V V30V V6 + kg VooV 6Ry, 7
—4/@3,XVQ¢V“¢V”V5¢V”V7¢} + 5/‘1‘5 [(F+ 2I/V)RoéﬁW —4F x VIV V"V 3¢

25V 0 VH OV V58] — 3[2(F + 2W) 4 + Xris] V. V" + kg (34)

This theory depends on four functions of ¢ and X = —V”¢V,¢/2, k; and function F = F(¢, X),
with the constraint:
F’X =K1, — K3 — 2XH3’X
This is known as the Horndeski Lagrangian and since then, it has been connected to the Galileon
theory [14,15], which we now present.
When a scalar field is symmetric under the transformation

o= p+bat+c

it is defined as a Galileon. To avoid ghost instabilities, we demand that ¢’s equation of motion is of
second order. Restricting ourselves to a Minkowski four dimensional framework, the most general
Lagrangian having these properties is given by [16]:

L=c1¢+ X —c3 X0+ %4 {X (89¢)* - 20,0,00"0" ¢] + 00" 0" $9,0,¢ — 9, X" X }
+ % {—2X [(T¢)® — 30¢0,,0,¢0" 0" ¢ + 20,0,¢0" 0*p0\" | } (35)
which can be rewritten in the form
L=c1¢+ c2X — c3X0¢ + s X [(O¢)* — 0,,0,00" 0" ¢]
— C—;X [(0¢)*30¢0,.0,¢0"0" ¢ + 20,0, $0" 0* 00" ¢] (36)

The equivalent form of this Lagrangian when gravity is present, is obtained by adding appropriate
curvature dependent terms. If this were not the case, the equations of motion would be of higher
order and thus lead to instabilities. We have then

L=c1p+ X — cXOp+ S X2R+ s X [(06) = "6

s X2GM p,,, — %5)( [(0¢)* = 306" By + 26, 6"* P4 (37)

In the above Lagrangian, R is the Ricci scalar, G, is the Einstein tensor and we define ¢, := V¢,
(b;u/ = vuvu¢-

Eq. (37) describes what is called the covariant Galileon, since it breaks the shift symmetry
introduced in (35) but maintains the property that the EOMs are of second order. This can be
further modified to obtain what is called the Generalized Galileon, whose Lagrangian is:

L :G2(¢7 X) - G3(¢7 X)D(ﬁ + G4(¢7 X)R + G4X [(DQS)Q - ¢Mu¢uv]
GSX

Gs(9, X)G" by = == [(O9)" = 3066 b, + 26,684 (38)

where G; are arbitrary functions of ¢ and X, while a subscript ¢ or X denotes a differentiation with
respect to them. Eq. (38) can be shown to be completely equivalent to the Horndeski theory in 4
dimensions.

Functions G; can be selected accordingly in order to yield a great variety of theories of Modified
Gravity. For example, the standard non-minimal coupling f(¢)R can be obtained if one chooses
G4 = f(¢). Moreover, whole classes of theories like the f(R) gravity can be expressed in an
equivalent way as second order scalar tensor theories [17,18], while models with extra dimensions
can also be connected to the Galileon theory [19-24].
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0.6 Motivation and contents of this thesis

Despite its successful predictions in short and long-distance experiments, scrutinizing every possible
aspect of it, GR still remains an incomplete theory, since it is unable to model a variety of behaviors
of the Universe, like the already discussed accelerating expansion phase that it is undergoing.

One of the first approaches to solving this particular problem, was the introduction of an ad hoc
cosmological constant, offering a new energy density contribution that accounts for this observation.
This, of course immediately poses a new question, regarding the origin of this cosmological constant.
Furthermore, the necessary energy density to ”solve” the accelerating expansion’s problem, severely
contradicts the value that would arise from microscopic physics constraints. It can be calculated
that the necessary value for the cosmological constant’s energy density is approximately py ~ 6.7 -
10~24g/m?, while the corresponding vacuum energy density is approximately pp; &~ 5 - 109 g/m?3.
This enormous difference of 123 orders of magnitude poses a significant obstacle for GR. This,
naturally, leads us to look for theories that modify GR, in order to solve this kind of tensions. At
the same time, we possess a robust limit to which a modified gravity theory must reduce to, when
looking into phenomena that have already been successfully described by GR.

Among all possible modifications to GR, arguably the simplest one is the inclusion of a scalar
field in the action, that describes the gravitational dynamics. We have already presented how the
Galileon theory gives rise to the most general, non-degenerate, second order equations for a scalar
field that is coupled to gravity (see eq. (38)). This theory provides the framework for both small and
large distance modifications to GR. Among them, a prominent position is held by the Scalar-Tensor
theories that produce inflation, since as already presented, it plays a crucial role in the very early
phases of the Universe’s evolution. Motivated by that, we are interested in looking further into the
specifics of particular Galileon terms and the effect they produce in cosmological evolution.

There has been an extensive effort in understanding the consequences of the inclusion of what is
referred to as non-minimal derivative coupling (NMDC) [25-27]. This effort has shown a promising
change in dynamics, since it effortlessly offers a lengthening in the inflationary era through the
gravitational friction effect, i.e. the phenomenon according to which the intertwined dynamics of
the scalar field that rolls in its potential and the background dynamics affect each other in such a
way that the field remains in slow roll for a very long period of time. This ensures that inflation
is achieved, without having to resort to large initial field values, as in the case of a minimal and
also a non-minimal, but not derivative, coupling. It also seems that NMDC brings forward the fact
that a deviation from the speed of GWs is to be expected in derivative coupling theories. However,
the recent observation of GWs has strictly constrained their speed rendering late time deviations
from a speed cgw = 1 invalid. Moreover, when perturbatively studying such models, it has been
shown that the squared sound-speed of the perturbations may oscillate violently between positive
and negative values, a fact that is closely related to the appearance of instabilities.

Hence, our basic motivation in setting the framework of the first two chapters of this thesis, is the
effort to maintain the positive effects of NMDC, while trying to ameliorate or possibly completely
solve its problems. Specifically, in Chapter 1 of this thesis, we will focus our study on the G5 term
of eq. (38) which corresponds to this class of theories (i.e. derivative couplings). When G is chosen
to be simply proportional to the scalar field

G50((b

the class of NMDC theories is obtained, as mentioned above. Our focus then revolves around
modifying G5 to include a different dependence on ¢, so that a richer phenomenology is obtained.
The motivation for this, is as follows: in the simple NMDC case, the coupling of the derivative of the
scalar field with gravity is the dynamical reason for the wild oscillations of the squared sound-speed
of the perturbations. The fact that the NMDC does not include a mechanism of ”graceful exit” to
GR dynamics after the end of slow roll is the birthing reason of these instabilities (in fact as we show
in an explicit comparison example, the oscillations will enhance as the system evolves). However, if
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the G5 term is richer in its ¢-dependence this phenomenon can be suppressed. We explicitly show
this by producing the expression of every cosmological observable and the squared sound-speed,
by the standard inflationary perturbation approach, which is extensively presented in Appendices
B. We subsequently move on to construct specific models that yield predictions successfully tested
against the observational constraints, while at the same time significantly ameliorating the squared
sound-speed shortcoming of the NMDC. Finally, we also highlight another aspect of a richer Gj
term: that of the production of Primordial Black Holes (PBHs), without the inclusion of a potential
that has an inflection point which produces a super slow roll, as per usual. Instead, a suitable Gj
term will be used that brings forward such a result.

Moving on to Chapter 2, our intention is to explore the idea of combining two different Galileon
terms, specifically G4 and G5. While G5 produces the gravitational friction effect, G4 is the term
that in its simplest form, G4 x ¢? gives rise to models of non-minimal coupling (NMC) inflation.
These models are known to produce particularly good observationally tested quantities, but are also
known to suffer from unitarity issues, in their generic form, since they employ super Planckian field
values to achieve them. However, as we show, the combination of these two terms has, for a not
necessarily finely tuned scenario, a healing effect on both of the standalone cases’ problems, while
maintaining their corresponding advantages. In particular, we produce explicit formulas that yield
the observables as well as the squared sound-speed of the scenario. There, we show that the inclusion
of the NMC term can immediately solve the corresponding problem, and at the same time produce
cosmologically viable observables without having to resort to particularly large field values, due to
the gravitational friction effect owed to the G5 term. This work might hint at the possibility that
the inclusion of more Galileon terms can solve the individual theories’ problem while it does not
necessarily imply that a new fine-tuning problem, between these terms, emerges.

Finally in Chapter 3 we turn our attention to late time cosmology, specifically looking into
a scenario of a Universe that contains extra dimensions, within the framework of Kaluza-Klein
compactifications 4. The aim is to explore the idea that the observed transition from an era of
decelerating to an era of accelerating expansion could be the result of the dynamics of an ”internal”
space. Our course of action revolves around producing the special and the general analytic solutions
for the system of equations that emerges, in the space of the Hubble parameters H,, Hp of each
space. We show the interesting fact that the special solutions of these differential equations act as
attractor solutions to any other possible solution of the Hubble parameters. One of these special
solutions depends on the equations of state of the fluid that ”lives” in each one of the spaces. Hence,
if this special solution is obtained for specific equation of state parameters, then one immediately can
infer the phase space of initial conditions that would eventually lead to a Universe that expands at an
accelerating manner. Special care is taken so that the internal space remains stabilized, i.e. evolves
particularly slowly with respect to the 4-d spacetime. If this were not the case in K-K theories,
experiments measuring the Newton constant from various epochs of the Universe’s life would show
a discrepancy between the measured values. We also test such scenarios versus Supernovae type
Ta observations, and see that it does indeed produce a viable evolution. Interestingly, such an
acceleration does not take place unless an exotic type of matter with a negative pressure exists,
which would be the case in A-CDM type scenarios too. However, there do exist models that include
strings wound around compactified dimensions that produce an effect of negative pressure, hence

41t is an interesting fact that Kaluza-Klein compactification theories do indeed have a connection with the Galileon
theory. Higher dimensional theories can, in general, be described by Lagrangians that emerge through a process called
dimensional reduction. It can be shown then, that usually the effect of the extra dimensional sector would appear to a
4-D observer as extra particles, like Kaluza-Klein towers, or as a scalar field. It is shown in [23,24], that a Kaluza-Klein
compactification of a Lovelock theory with higher dimensions can be reduced into a Horndeski action. Within [23],
it is shown that the equations resulting after the compactification are at most of second order, both in terms of the
scalar field and also in terms of the metric. It is subsequently shown that some of the classes produced, are equivalent
to Galileon theories, showcasing the fact that the dimensional reduction of a Lovelock theory can connect the Lovelock
invariants to the Galileons. In [24], a Gauss-Bonnet theory is considered and shown that after a dimensional reduction
it uniquely produces an effective 4-D Galileon theory.
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such a behavior could be justified, within extra-dimensional theories more easily.
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Chapter 1

Generalized Non-Minimal
Derivative Coupling: Application
to Inflation and Primordial Black
Hole Production

1.1 Introduction

We have already seen that if one is to try to model the current observational status of Cosmology,
the scenario of a Hot Big Bang offers the context for the most successful theory. However, such
a description of the early Universe, dictates that a solution to its problems must be found. These
problems, essentially boil down to the fact that the Universe would not be of a proper age to justify
our observations. Hence, the description of the early universe revolves around finding a compelling
explanation for the initial conditions of the hot big bang, within the context of inflation.

In this scenario, an immense accelerating evolution of the Universe takes place. This evolution has
to be studied through the gravitational effects that the dynamics of whatever gives rise to inflation,
cause. A usual approach, is the inclusion of a scalar field’s dynamics. That field is known as the
inflaton. With current precise cosmological tests, that recently entail, among others, gravitational
waves, can test the inflationary paradigm and also the laws of gravity that hold at very high-density
environments.

There is a variety of ways to modify standard GR. One of them is by including extra, higher-
order terms that depend on the Ricci scalar. The most prominent among these theories is the one
proposed by Starobinsky [28]. Such kind of corrections to the usual action of GR, arise naturally in
the gravitational effective action of String Theory [29].

On the other hand, a particularly fruitful modification comes by the inclusion of scalar fields,
that are coupled to gravity. This results in what is generally known as scalar-tensor theory [30].
Arguably the best studied context of Scalar-Tensor theories is the one produced by the Horndeski
Lagrangian [13], whose modern version is that of the Galileon theory, which was constructed in such
a way that these theories are free of ghost instabilities [12]. Furthermore, a variety of scalar-tensor
theories possess a classical Galilean symmetry [31-36].

Within the context of Horndeski theory lie all possible, non-degenerate, scalar tensor theories
that are free of instabilities. Among other terms, Horndeski incudes what is referred to as the
non-minimal derivative coupling of a scalar field to the Einstein tensor (NMDC). This coupling
produces a rich phenomenology both on short and long distances [37], which correspond to black



hole physics [38—41] and inflation [42] respectively.

When inflation is the context of interest, the attractive feature of NMDC is that it acts as a
friction mechanism. It thus allows steep potentials to implement a slow-roll era [42,43], offering
the grounds for potentials such as Standard Model Higgs, to be realized [25], whereas that is not
the case in standard GR. Moreover, there is a theoretical justification to this kind of theories, since
inflationary potentials in the NMDC framework can be described in supergravity [44,45] via what
is known as the gauge kinematic function [46]. Thus, NMDC makes a plethora of inflationary
predictions investigated in [27] where the dynamics of both the slow-roll phase, and the subsequent
reheating phase, were considered.

In fact, NMDC heavily modifies the standard picture of the reheating phase of inflation. Because
of it, the inflaton field oscillates rapidly without any significant damping [47-52], thus affecting heavy
particle production [53].

However, such oscillations that happen because the NMDC dominates over the canonical kinetic
term, are problematic for the post-inflationary system. They lead to oscillations of the squared
sound-speed of the scalar perturbations between superluminal and negative values [51,54]. This
leads to scalar perturbations that are exponentially enhanced. The gravity-inflaton system becomes
non-linear, and its dynamics are difficult to study analytically, while at the same time invalidating
the inflationary predictions of the perturbative approach.

To avoid this instability, the non-minimal kinetic term must become negligible, when compared
to the canonical one, during the post inflationary oscillations. But to satisfy such a constraint,
means to effectively reduce the model to just a canonical scalar field with Einstein gravity during
the inflationary period, losing the gravitational friction effect’s advantages. Hence, the use of the
simple NMDC version for inflationary model building must be abandoned.

We can, however, continue on the same footing, since the NMDC studied so far is merely a
special case of the Galileon term [34, 35]

Ls = G5(¢, X)G" 0,00, ¢ (1.1)

where X = —V,0V*#¢/2. Choosing G5(¢, X) to be a constant leads to NMDC. If, instead, one
chooses a more general function G5(¢, X) = f(¢) £(X), the phenomenology can potentially become
richer, both during inflation and reheating stages. We will refer to this type of scenarios with the
term Generalized Non-Minimal Derivative Coupling (GNMDC).

Specifically, for f(¢) o« ¢ the GNMDC term will quickly vanish when the inflaton field reaches
the bottom of the potential and, as we shall demonstrate, the system, will transit to the dynamics
of a canonical coupling Einstein gravity. Thanks to such a GNMDC, the resulting models turn to
being stable in post-inflationary eras, dominated by GR dynamics during the reheating stage. We
will examine the phenomenology resulting from such a case, focusing on the Higgs potential, which
is known to exist in nature [55] but also on other potentials, possibly motivated by physics beyond
the Standard Model.

It is also notable that a GNMDC type of modification also passes the recent tight bounds on
the speed of gravitational waves [1,56], which is not the case for NMDC. If a NMDC term plays the
role of dark energy, it has been proven [25,57] that the speed of the tensor perturbations is different
from the speed of light. In fact, this measurement constrains deviations up to order of 10~° from
the speed of light. Thus, dark energy models that produce cg4y # ¢ at late times, put very strong
bounds on the parameters of NMDC theories [2, 58].

But a ¢-dependent form of the GNMDC, as considered here, decouples at the end of inflation
and so issues related to the speed of GWs should not pose a significant problem?.

Also, besides the phenomenology strictly related to the expansion of the Universe, a GNMDC
term is expected to generate interesting features on the power spectrum of primordial curvature

LOther viable subclasses of Horndeski theory have a conformal action, i.e. a function f(¢4) coupled to curvature
[59,60].



perturbations, Pr(k), at scales that are smaller than the observed CMB scales. The GNMDC’s
gravitational friction effect, modifies the velocity of the inflaton, influencing the amplitude of the
curvature perturbations. It is known, that if the amplification is strong enough, large density
perturbations can be generated, which can in turn trigger the production of primordial black holes
(PBH). This feature can be particularly attractive, since it does neither resort to multi-field inflation
[61], nor to an inflection point in the inflationary potential, that is usually employed [62].

Therefore, we can utilize specific GNMDC forms to construct single field inflationary models that
are also able to generate PBHs (for similar works see [63—65]). We will examine explicit GNMDC
functions, that dramatically decelerate the inflaton at specific spots of the inflationary trajectory,
thus amplifying Pr(k). One can then estimate suitable values for the various parameters so that
a significant abundance of PBHs is produced at potentially interesting PBH mass windows. The
GNMDC dominates during the entire stage of inflation and becomes negligible only at the stage of
oscillations.

This chapter of the thesis is organized as follows. In Section 1.2 we present the general context
of our theory and derive the field equations. In Section 1.3 the basic observables are calculated,
namely the power spectrum, the spectral index and the tensor-to-scalar ratio. In Section 1.4 we
study viable inflationary models in the framework of GNMDC, emphasizing on the Standard Model
Higgs inflation as well as inflation with exponential potentials. In Section 1.5 we aim to determine
the observational signatures of the GNMDC with respect to plain GR models. Then, in Sections
1.6, 1.7 we briefly present the basics of PBH cosmology and construct GNMDC models that produce
PBHs within Higgs inflation. Finally, in Section 1.8 we summarize our results.

1.2 The Setup - Derivation of the field equations

It has already been discussed that the general term G5(¢, X), appearing in the Galileon Lagrangian,
(1.1), is well motivated. More specifically, we will assume that it is of the form:

Ls = G5(0, X) G*0,00,0 = [f(¢)§(X)G*0,¢0,9, (1.2)

where we have taken {(X) = 1. This term will introduce a field dependent derivative coupling to
the Einstein tensor. A well-motivated choice for f(¢) is a¢® 1GH* < ML since it is a natural
generalization of the NMDC: if one chooses o = 0 the Einstein gravity is retrieved, while for a =1
the simple NMDC is recovered.

If we choose a > 1, then we modify the phenomenology of the NMDC. This choice is well
motivated for two reasons. Firstly, the gravitational friction effect is retained for ad® 'GH* >
Mo+1 but of course the specific inflationary predictions are expected to change. Secondly, after the
end of Slow Roll, GR is expected to take over. ¢ — 0 leads to ap® 1G* <« M1 at the bottom
of the potential, switching off the GNMDC term. This is in fact what is most desirable, so that
the non-minimal kinetic term ceases to source late time instabilities/non-linearities. We will in fact
show that (1.2) can produce a reheating period that is essentially described by GR.

1.2.1 The field equations

We now proceed to derive the equations that describe the dynamics of the theory presented here.
The action at hand is:

M3 1
5= [atov=s | MBR- (0 - 106" 0,006 - V()] (1)
By varying with respect to g, , the field equations are obtained:
1 1
G = 3 [T~ 1O ~ 3@ 72| | (1.4



where a prime denotes differentiation with respect to ¢ and G, is the Einstein tensor. The T,Sll,),

T,E,Z,) terms correspond to:

1
T =V,6V,6 = g [QWW + V(¢>] : (1.5)
T = = G VAV g + 4RV, )6Vr¢ — V8V, 0R + 2V OV G Rynn + VYV GV, Vi
— V., Vu0V20] + g [V2OV20 — V. VAdV VG — 2R\ V6V )] | (1.6)
T2 =g, (VAOV V) — V5V GV, Vo) + 2V 0V (,0V,) Vad — VASV OV, V.6
— VoV, 0V . (1.7)

Parentheses enclosing indices denote a symmetrization on them. Note, that o = 1 switches off the

term involving T;S,Q,) and one retrieves NMDC field equations.

1.2.2 Friedmann Equations and the Klein-Gordon equation for a flat
FLRW Universe

To proceed, we will assume the observationally justified flat FLRW geometry. For a cosmological
scalar field ¢ = ¢(t) we obtain the 0-0 and 1-1 components of the field equations, (1.4):

BSMBH? =V (9) + 58 + 5 f(0) *H? (19)

. .2 . . P .
M, (H + §H2) = YO 2 pe) [GH + jH?) P+ H¢¢] Lo F@HE,  (19)

An overdot denotes differentiation with respect to cosmic time, and we define the Hubble parameter:
H{(t) = a(t)/a(t)

These equations are of course a modified version of the Einstein equations that one obtains for a
minimally coupled field. We can bring them to the familiar form p = 3H2M?, p+3p = —6M32,(H>+
H) respectively, by defining the energy density and pressure of the scalar field:

po= 5#HV(0) + S F@)FH (1.10)
b= 58 Vo) - 10| (f+ 517) 2 2m165] - p(opé. (111)
Moreover, the Klein-Gordon equation derived is:
[(9ug =10 0,6m) 0,6 + (o = F(0)5™ )0,0,0 = 5(9) " 0,00,0 ~ 2| V=5
- % [gw - f((;S)G“”}c'?yqu)ug ~0. (1.12)
which, for a cosmological field ¢ = ¢(t), in a flat FLRW geometry, becomes:
6 (143 (@)H?) + 300 (143 /0) H + 2 f(@) FT) + 3 F(0)P*H + G- =0 (113)



1.2.3 Slow Roll Parameters

We define the first Hubble-flow function (or first slow roll parameter) as:

= H _3ptp (1.14)

HZ 2 »p
5 6%+ 3£(0)0°H? — (9) (H* +2H6 ) - f'(6)HS
= o . (1.15)
We additionally define other slow-roll parameters, for instance §:
5= fib . (1.16)

These parameters facilitate the implementation of Slow Roll. Specifically, slow-roll inflation is
realized if € < 1 and § < 1. This of course leads to

H<H?  $<3H¢

We can now approximate the Friedmann and Klein-Gordon equations as:

M H? ~ V(9) , (1.17)
3H¢ <1+3f(¢)H2+;f’(¢)Hq5) +% ~0. (1.18)
Accordingly, we obtain:
12
€~ gﬂ (1 +3H2f(¢) — f’(¢)Hq's) =car+ep+es . (1.19)
Py

where we have defined eqr = 3¢?/(2pg). It is evident that it corresponds to the GR. equivalent of
the first slow-roll parameter. We also define eg, which is a term proportional to f/(¢), and:

_ 3/(9)¢"
T2 Mg

(1.20)

GNMDC'’s effect is now more evident: the velocity d) decreases 3H2f(¢) times, resulting to a
significant decrease in e. Indeed, for slow-roll, eq. (1.19) becomes:

1+ 3H?f(¢) — f'($)H _ A-B

€~ Ay (1.21)
(1+3H21(0) + 1(0) H/2) A+5/2)
with:
M2 \v& 2

and also:
A=1+3H?*f(9), (1.23)
B=f(¢)H¢ . (1.24)
To recover NMDC, we have f’'(¢) = 0 and thus € reads € = ey /A, hence the known result [26] is

v

recovered. Similarly, the second slow roll parameter 7 is defined as n = 1y /A, where ny = M3,



1.2.4 The number of e-folds

A particularly important aspect of inflation is of course its duration. It is generally accepted that if
inflation is to solve the problems presented earlier, its duration has to be roughly equal to 60 e-folds.
The number of e-folds that take place from initial moment ¢ until the end of inflation ¢.,q are:

tend [ )
N= Hdt = / A+B2, (1.25)
d)end MP] ¢end 26V

where we considered the slow-roll approximation, eq. (1.18):

V'(9)

3H(A+B/2)" (1.26)

b=—

1.3 Power Spectrum, Spectral Index and the Tensor to Scalar
Ratio

A perturbative approach of inflationary models yields a spectrum of both scalar and tensor pertur-
bations. These offer the grounds of testing a given inflationary model against observations. In our
case, the GNMDC term’s dynamics are expected to affect the evolution of the universe for as long
as the inflaton dominates its energy density. An introduction to the perturbative theory of inflation
can be found in Appendices A and B. The easiest way to study the perturbations, is to choose the
gauge where they are equal to 0:

5p=0

Since the GNMDC is ¢-dependent, any contributions to the perturbations due to the particular form
of f(¢) G*0,¢0,¢ are thus equal to zero.

The quadratic action for the curvature perturbation R in the comoving gauge takes the form
[26,51]:

SE) = MPI / dz*a® { Zg(aﬂz)ﬂ , (1.27)
where Qs = F2G/(f(¢)H?) with
_1—€D/3 __ €D 2 1+e€p

The squared sound-speed of the scalar perturbations, ¢2, is given by the expression:

3 3G 9F

= (1- LD)” D [( +ep) + 3H2f(9) [<1+6D> Tt 3

ep] L 6H () (1 - ED)] . (1.29)

We note that f(¢) — 0, restores the canonical case, since:
Qs = ¢*/(2H?M3,)), thus 2 — 1 (1.30)

We have already mentioned that in the NMDC case, ¢2 wildly oscillates between positive and negative
values. We will show that a GNMDC term significantly ameliorates this problem.
The formula giving the power spectrum of the scalar perturbations, in the slow roll case is:

H2

Pr = FRCToNER

(1.31)



During the early stages of the evolution, when we are still in the high friction (HF) limit, it holds
that ep < 1. We thus obtain:

Qs ~eA/(A—B),andcs ~ 1 (1.32)
so the power spectrum’s expression becomes:

H? B?

We moreover define the scalar spectral index (tilt), as the change of the logarithm of the scalar
power spectrum per logarithmic interval k:

dInPr B\ V', d B2
It is safe to assume that B < A so in the HF limit of the slow-roll period we have:
dlnPr 1 V' 5 f(9)
—_— = -2 — M, . 1.
dink = A {SGV MR ) (1.35)
(1.36)
Now we can write the spectral index as:
dInPr (o) |2
1—ng=— ~ 8 —2 M, —. 1.
& Ak liman =567 20+ eMpm ey (1.37)

The last term can turn the spectral index from red to blue. This can be taken advantage of, if one
wishes to produce PBHs in the context of GNMDC. If f'(¢) = 0, we once again obtain the usual
expression 1 —ng = 8¢ — 2.

Regarding the tensor perturbation part, we can decompose it into two independent polarization

modes: )
P =3 / data®Q, [hg - Zg(ahp)ﬂ 7 (1.38)
P
with
Q¢ = M3 (1 —ep/3)/4 and ¢ ~ 1+ 2¢p/3 (1.39)
The power spectrum of the tensor perturbations is given by the expression:

H2

Pr =g =

TPR . (140)

In the HF limit, we can thus obtain the expression for the tensor-to-scalar ratio as:

€y
=16 —— . 1.41
" 6A+B ( )

We see then that r is decreased as compared to the simple NMDC and also the GR case.



1.4 Towards viable inflation with GNMDC

Using eq. (1.8) we can rewrite the 0-0 component of the field equations as:
3HAMB = (V + ¢%/2)(1 —ep) ™!

Thus, for a positive definite potential, we have that ep < 1 and functions F' and G are also positive.
As we have already mentioned, we wish of course to avoid the appearance of instabilities and scalar
ghosts. Thus, it is required that Qs > 0 and ¢? > 0. During the oscillatory stage, H may turn from
negative to positive:

_pbtp

H=—€eH?= L2, (1.42)
where p is (see eq. (1.10)):
vo= {30 -vo} - sro{|(+3m)oremi] - romirh .

where one sees that the first term in the brackets is due to GR dynamics, while the second one is
due to GNMDC'’s contribution.

Parameter e changes sign during oscillations, which is the reason of the problematic behavior of
NMDC models. A possible solution to this problem, then, would be realized if the GNMDC term is
smaller than the GR term ng(gf)) < ¢2. Such a constraint is satisfied if f(@) ~ 0 whenever & takes
the maximum value, which would happen at the bottom of the potential, when ¢ ~ 0. Thus, we can
choose a coupling, f(¢), that vanishes at the bottom of the potential. Such examples would be:

a—1
F@) =500 o f(6) = pere (1.44)

If o« =0 (or M — o0) the GNMDC term is turned off, retrieving GR, while for o« = 1 (or
equivalently 7 = 0 for the exponential case) the NMDC case is restored?.

To conclude whether GNMDC completely heals gradient and phantom instabilities, one has to
perform a full perturbative analysis. However, we present a simpler examination with a direct
comparison between the GR and GNMDC terms, that is suggestive of what is obtained through
GNMDOC. In Fig. 1.1 we compare the canonical and non-canonical kinetic terms, in order to demon-
strate the restoration of GR, while in Fig. 1.2 we show the evolution of the squared sound-speed for
a variety of choices for the GNMDC parameter «, as compared with the NMDC case (o = 1).

1.4.1 Inflationary observables

The main grounds for testing an inflationary scenario come through observable quantities that are
extracted via the perturbative approach (see Appendix B). As we have noted before, the main ones
are the scalar power spectrum, Pr(demb ), the scalar spectral index ng, and the tensor-to-scalar ratio
of perturbations, r.

It is useful to look at the various observables during the early slow roll era, i.e. in the HF limit.
It holds that A > 1, which implies B ~ f'(¢)/A < A. Thus, the scalar power spectrum can be
approximated by:

H? N V2(9)

A M >~ A~ ——
P’R,((b) p?aa )|¢:¢cmb 8772 Ml;2>1 €y 2471_2 Mlgl €V(¢)

flp,a, M) =22x107°.  (1.45)

2The NMDC is studied in a variety of works (for example [26,27]), which may prove problematic during the
reheating stage . However, there have been reports that are free from such instabilities [54].
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Figure 1.1: We present the decay of the GNMDC term and the domination of the GR term after the
end of inflation. We choose to showcase a Higgs potential with a GNMDC term, with « = 5 (upper
panel) and a quadratic potential with a GNMDC' term with « = 3 (lower panel). In both cases,
one sees that GR takes over GNMDC after a few oscillations, which in general depends on the value
of a. This is not the case for « =1 (NMDC), where GR is subleading for a vastly longer period,
potentially leading to instabilities. The vertical axis has 1/M?%, units.
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Figure 1.2: A comparison of the c2 for various values of GNMDC’s parameter «, in the context
of a Higgs potential. All examples are normalized to yield 60 e-folds, and also Pr ~ 2.2 -107°.
One observes that for « =1 (NMDC) the oscillations increase, potentially causing post-inflationary
instabilities. This is because NMDC remains dominant with respect to GR after inflation. But for
a > 1, and as « increases, GNMDC' decays significantly faster. This leads to ¢ = 1 after a few
oscillations. The fact that GR takes over, ameliorates the problem of post-inflationary instabilities
that were present in NMDC models.

The observed value for Pg is:

Pr~2.2-1077
Expression (1.45) produces an approximate constraint for the parameters of the theory, namely the
function f(¢), M etc, relatively to the potential parameter at ¢ = ¢pcmp. Parameter ¢onmp denotes
the field value at the moment that the perturbation of scale ke = 0.05 Mpc™!, exited the Hubble
horizon. To determine its value, one uses the desired number of e-folds:

1 ? ey V
N~ / Y7 dp. (1.46)
ME Jgena
Moving on, the scalar spectral index (1.37) can be brought to the form:
- Mg, f'(9)
V(6 Ap) f (¢, 0, M) f(9)

We can use what was extracted here to constrain the parameters of a given model. In what
follows, we study the dynamics of particular GNMDC terms and inflationary potentials in order to
showcase the phenomenology of the GNMDC term by analyzing specific results.

1 —ng <86V —2ny + Mp, 2ey (¢, )\p)> . (1.47)
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Inflation with monomial potentials and a GNMDC term

We will now attempt to demonstrate the effects of a GNMDC term 3. We will consider a general
class of monomial potentials and a derivative coupling of a similar form:

a—1
VO =M, F(0) = atry (1.45)

Parameter A,’s dimensionality is mass to the power 4 — p. Among the monomial potentials, there
is one that holds a particular position since it is known to be realized in nature, namely the Higgs
potential. We will later focus on its results within the GNMDC context.

We proceed to examine the parameter space of this GNMDC term. One can obtain a dynamic
equation solely for the ¢ field, by eliminating the Hubble parameter. This equation is:

2\/§a¢a¢'>V<¢M e )  van] (42 +2v(9))
OM2 MO+ g — age? 2M2 Mo+ ) — 3ago g
o (8 +2v(9)) ((a - 1)¢* +209)
a6d? — 2MZ Mot g2—o
\/§a¢>%§3\/ jx;(fﬁgﬁfi N 3a (¢2 + 2V(¢>)) ((a — 1) + 2¢¢5)
2M2 Mo+l — ageg? 6app? — AMB Mo+1g2—a

o+ V'(9)+

+

. (1.49)

Thus, to avoid poles and by constraining that the rooted quantities are positive, one obtains a
specific part of the phase space of {¢, (b}, as well as specific constraints between parameters M and
« of the GNMDC.
In the limit A > B we obtain that:
2 2
~ Mpy p” 177 . (1.50)
292 A(¢) 2

Thus, we can infer from eq. (1.46) that the number of e-folds can be found by:

€(¢)

N() ~ aXp 1

~ pratl _ ”*O‘“) . 1.51
p(+a+1) Mb Mo+ (¢ Pend (1.51)

To roughly determine the end of the inflationary period, we need to solve equation € = 1, i.e.:
ey (A— B)/(%H—B/2)2 =1

yielding

pz . . 1/(a+p+1)
ond = | —— Mp Mt
Gend (20“\p Pl )

For ¢Ptotl > ¢PHat! we get:

p+a+1l)

(o2 p «
pPFOTHN) ~ ( — Ma MOt N (1.52)
g

We can thus rewrite the slow-roll parameters in terms of the number of the e-folds:

P 1 2p — 2
e~y —————— — =
2p+at+t )N "7 Ty

€. (1.53)

3For a similar work in the context of PBH production see [66].
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On the same footing, we obtain the scalar spectral index, for a > 1:

p2p+atl) MpMt  22p+a+l)

-, RO DMBMED 2ot , (1.54)
so in terms of the e-folds we get for @ > 1:
a—1 2p+a+11 8p 1
1—ns ~ 8 —2n+ 2 = —, T —— 1.55
g »  ptatl N PtatlN (1.55)

It is notable that neither the spectral index, nor the tensor to scalar ratio depend on the monomial
potential’s parameter, or the scale of the GNMDC. On the other hand, parameter « affects their
behavior. As a grows ng increases and r decreases. This behavior is depicted in Figs. 1.3, 1.4 as
well as an equivalent behavior for the exponential case in Fig. 1.5. The observational constraint
that » < 0.064 and the spectral index value is approximately ng = 0.965 can be satisfied for N < 37.
Thus the quartic or quadratic power-law inflation models can be compatible with the Planck 2018
constraints [67], for a proper GNMDC.

To summarize, when a monomial potential with an exponent p, is considered, the spectral index’s
observed value constrains N and «, as seen by eq. (1.55). Moreover, we can read the value of the ¢
field that corresponds to the CMB pivot scale, ¢cmp, by eq. (1.52). By this value and constraint
(1.45), we can determine the scale M of the theory as well as parameter «, by assuming a particular
value of N.

We have shown then that a given potential, e.g. the one corresponding to the Higgs boson, can
yield viable inflation in the context of the GNMDC case, for appropriate values of M and «, that
can be specified by observational constraints. Higgs inflation with a GNMDC is also possible to be
weakly coupled on the same footing with the results of [68].

2
V(@)xp? V(@)=
j ' - 1 T T T
| 0.500\-\,
(GR]
0.1001
_ 0.050F
0.010F o
0.005}
60 20 30 40 50 60

Figure 1.3:  The plots of ns(N) (left panel) and r(N) (right panel), for a quadratic potential
V(¢) = Ma¢? with GR and with a GNMDC term f(¢) = ¢*~1/M>*T1. Colored lines depict models
with a = 1, 5,20, 30, 50, 100, while GR is depicted by the thick black line. The spectral index increases
as o increases, for a given number of e-folds. The green band within the dashed lines shows the Planck
2018 value for the spectral index at 68% CL. On the contrary, the tensor-to-scalar ratio decreases as
« increases. The dashed line depicts the upper limit of r, set by Planck 2018.

We thus illustrate these results in Figs. 1.3 and 1.4. Therein, the ns(NN) and r(NN) graphs are
plotted, for a variety of values of parameter « for a quadratic and a quartic potential. One can see
the comparison of these models versus GR and NMDC («a = 1). Moreover, in Figs. 1.6-1.8 we depict
exact results as examples of GNMDC dynamics.
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Figure 1.4: As in Fig. 1.3 the plots of ngs(N) (left panel) and r(N) (right panel), for a quartic
potential, V(¢) = M\¢*. We again observe that an increasing o increases the spectral index’s value
for a given number of produced e-folds, while it decreases the tensor to scalar ratio. The depicted
models are for o = 1,5,20,30,50,100 (colored lines) and GR (thick black line).

To be more precise, we have performed a full numerical analysis for a variety of cases (a =
1,3,5,7) when 40, 50 or 60 e-folds are achieved, in a quadratic and a Higgs potential. The exact
results of the observables r and ng are then depicted in Fig. 1.6, where we also plot the Planck 2018
68% and 95% C.L. regions [67].

For two of these models we also include the evolution of the ¢ field, see Figs. 1.7 and 1.8. The
corresponding parameters are included within each one of the graphs. We also include, for reference,
the equivalent NMDC (« = 1) evolution, for the same parameters, other than «, in order to highlight
that GNMDC models achieve a slow-roll stage easier than the simple NMDC case.

Lastly, it is particularly important to examine the post-inflationary evolution of GNMDC models.
It has been shown [27,51,54] that post-inflation NMDC dynamics are problematic (see also [68]),
since the inflaton field oscillates wildly. This in turn leads to instabilities, since the NMDC term does
not become subleading, but instead dominates. However, the corresponding behavior of GNMDC
theories is more desirable. To show that, we compare the canonical kinetic term versus the GNMDC
term at the end, and also after inflation has ended.

Indeed, as one sees in Fig. 1.1, the GNMDC contribution becomes subleading when inflation
ends, and GR dynamics take over after a few oscillations (depending on the value of «). This
behavior averts the model from having possible instabilities, correcting the corresponding effect in
the NMDC case.

Inflation with exponential potentials and GNMDC

Another interesting case to study in the context of GNMDC is that of inflation with exponential
potentials. These potentials are interesting for physics beyond the Standard Model due to their
connection with the superstring dilaton. A similar study within the NMDC context was performed
in [69)].

The form of the potential and the GNMDC function, f(¢) considered here is:

2)\4)/M €2T¢/J\/Ip1
V(g) = Voe oy flg) = iz (1.56)
We thus write the slow-roll parameters as:
ey = 2)\2, and ny = 2ey
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In the limit A > B we get € ~ ey /A and thus:

= Zn(¢). (L57)

This is satisfied when
M < 3H2f(4) ~ A

The value of A is related with the scalar power spectrum’s value (1.45). It holds that A = 16ey /r.
Hence, for 7 < A/r we have A > B. Unlike the GR case, the slow-roll parameters here depend on
the field value, implying that exponential models are not eternal in the GNMDC case.

We proceed as usual by calculating the observables. For the scalar spectral index (1.37), we have:

N o) [2 2r T
s 2 8e = 2+ e Mo gf4€+67f2e(2+x) . (1.58)
while for the e-folds:
AW P A 1
N (¢, fpena) =~ DO, T e (1.59)

To obtain this equation, we again use that A(¢) > A(¢enq) = 2A? and also suppose that N (¢, penq) =~
N(¢). The end of inflation happens when:
Mp) A2 M2MZ,
n .
A+T) Vo

Pend = 3 (1.60)
We are now able to write the spectral index and the tensor to scalar ratio in terms of the potential’s
parameters and the e-folds:

22+71 1 8A 1

l—ng>~ ———, ~— —
" A+7T N " A+7T N

(1.61)
An increase of parameter 7 makes 1 — ng converge to 1/N. At the same time r decreases. For a
spectral index value ng = 0.965 [67], A and 7 are both positive, so the GNMDC decreases towards
the end of inflation, for 28 < N < 57. Furthermore, constraining r so that r» < 0.064, produces a
constraint in terms of parameters A, 7:

A7 < (125/N —1)

In summary, both spectral index and tensor-to scalar ratio constraints, are satisfied when N < 47,
thus specific values for A\, 7 and M can be obtained from the CMB normalization, the value of the
spectral index and the number of e-folds. It is indeed interesting that an exponential potential in
the context of GNMDC can satisfy the Planck 2018 data. All of the above are demonstrated in Fig.
1.5.

1.5 The observational signatures of the GNMDC

Equations (1.55) and (1.61) entail the predictions of GNMDC models in inflation. We now aim to
study whether and how these predictions are different or equivalent with predictions of other types
of models. We will, in fact show, that in the SR period, the results are similar to models within the
context of GR where the potentials are of the fractional monomial power law form. We will take
advantage of this fact, to study in further detail the predictions of the GNMDC scenario. We note
that this correspondence is not exact and that it generally breaks down when one wishes to study
both inflationary and post inflationary results at the same time.
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Figure 1.5: The behavior of ns(N) and r(N) for an exponential potential V(¢) = Voe? ¢/Mrt qnd
a GNMDC function of the form f(¢) = M~2e27¢/Mri. We have throughout chosen A = 100 and
7 =0,10,20,30,50,200. The spectral index (left panel) increases as T increases, for a given produced
number of e-folds. while the opposite is true for the tensor to scalar ratio (right panel). We also
note that the curves do not depend on . These results can be compared with the Planck 2018 68%
CL (light green band enclosed by the dashed lines) and GR (thick black line). On the contrary, the
tensor-to-scalar ratio, v, decreases as T increases for a given number of e-folds. Again, we compare
the GNMDC results with GR (thick black line) and the upper limit of tensor perturbations by Planck
2018’s observations.

1.5.1 Correspondence between GNMDC and GR models

In the early stages of inflation with GNMDC, we can find a correspondence between GNMDC and
GR dynamics. During this period, the approximate Friedmann and Klein-Gordon equations are of
the form:

V(e) 3H ~ —V'(¢), (1.62)

H? ~ ,
3M1% €y

Equation (1.21) gives us the ratio ey /e.

Equations (1.62) are similar to those for the conventional slow roll, which suggests that there
possibly exists a redefinition of the field that realizes a transformation between (1.62) and its GR
equivalent?. For the GNMDC case we see that there is a transformation of the form:

e=9(8), Vale)=Vig ()], (1.63)

that recasts egs. (1.62) in the form:

Vin ()
3M2

H? ~ 3Hp ~ V! (), (1.64)

We use ¢ to symbolize the new scalar field that is now minimally coupled to gravity, and V;,,(¢) is
its potential. Then, (1.64) is written with respect to the ¢ field as

3H¢ =~ —V'(0)/lg ()]

and ¢'(¢) encompasses the relation between the two fields:

9'(¢) = dp/d¢

4A similar treatise has been performed for the simple NMDC case [27,69].

15



We can obtain, now, the exact form of the system (1.62), for A > B. It holds that ¢'(¢) =
(ev/€)'/? =~ A. Therefore, the relation between the two fields is:

o= [(2)" a0 = s [V@) 1017 0. (1.65)

€

We have thus far shown that the dynamics of a field ¢ in a potential V(¢) and a GNMDC during
Slow Roll, can be equivalently described to first order in the SR parameters, by a canonical field ¢,
in a potential V,,(p), given by eq. (1.63) within GR gravity. We will now proceed to analyze more
extensively potentials that were already discussed in the previous sections, when GNMDC takes the
forms:

¢a—1 eQTd)/Mpl
f@) =ayrm o or f(9) =a—Fm—. (1.66)

These GNMDC forms are useful for analytical purposes as well, since the product V(¢)- f(¢) appears
in equation (1.65).

Correspondence for monomial and exponential potentials

Here we shall consider the class of monomial potentials, with a GNMDC of a similar form, namely:

a—1
V)= M, 1(6) = atr (1.67)

We mention again that \,’s dimensionality is [mass]*~?. According to (1.65), we have:

w=/®d¢”w

where

v (3H2 a¢a_1) ~ ( oV ¢~ > > 1, (1.68)

Field ¢, is given by the expression:

(1.69)

a( @ N2 getl g
o =20/ ( ) (

]\4'0‘Jrl a+p+1)/2Mp1 ’

and it acts as being minimally coupled to gravity, thus in the slow roll regime evolving by equations
(1.64).
The corresponding potential can be found, by use of g~ !(p) = ¢ in Eq. (1.67), to be:

Vin(®) = Ap (1.70)

2
a+p+1 Mp (Ma+1>1/2 r*p“
¢ :
[0

2 )\11)/ 2

There exists, then, a correspondence between V' (¢) of the non-minimally coupled field ¢ and V,,,(p)
of the minimally coupled:

V¢ +— V,x <pp+2§+1 . (1.71)

Any value of o, with a > 1 yields a corresponding potential V,,, that is less steep than a power of
two.

We conclude then that monomial potentials, V(¢), with a power p > 1 will effectively appear as
potentials with a mild slope that can give viable inflation, from a canonical point of view. Fields ¢
and ¢ will produce an equal amount of e-folds, as shown by (1.81).
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We will now delve into some specific monomial examples in more detail.

Linear potential. We begin with a linear potential. Its correspondence is:

2
a+2 Mpy  ati\t? o
NG py 2 ) Ptz | (1.72)

Similar potentials can be found in stringy and supergravity contexts [70], [71].

V(@) =mé o Vilp)=m? (

Quadratic potential. For a GNMDC model with a potential of the form V = m?2¢?/2 one finds
the correspondence:

a+1 a+3 4
V)= im? @ o Vin(e) = VIo(9)] = sm? (“+3Mm 2M*> o= (L73)

2 2 2m «

Thus, the simple case of the quadratic potential corresponds in the equivalent canonical picture to
the monomial potential with power %/ (a+3),

Quartic potential. We now look into the more interesting quartic (Higgs-like) potential. We have
that:

8
a+5 Z‘[Pl z‘[a+1 a+5 s
2 N2 o o (1.74)

so the quartic potential in the GNMDC picture, is equivalent to a canonical potential of the form
8/(a+5)
® .

V@) =A6" o Vilg) = A (

On the same footing, we shall now consider exponential potentials V(¢), along with an exponen-
tial GNMDC function f(¢):
279/ Mp)
V(g) = Ve /M - f(g) = Tz (1.75)

As long as A > B, it holds that A > Ar. Then, the canonical field ¢ is expressed in terms of ¢ as:

M
(T+/\)V01/24 . (1.76)

The corresponding effective potential in GR has a notably simple form, namely:
2
(T + )\) A 2)

~————~ Mp; AT . (177)
V01/2 ]

Vinl(p) = Vig(p)] = Vo

We also note that if A> > 1/2, inflation is terminated naturally when GNMDC becomes ineffective,
in complete contrast with the GR case, where inflation with an invariant exponential potential is
eternal [72,73]. The termination of inlfation comes about due to the fact that A — 1 when Hubble
scale H and ¢ decrease. After the end of exponential inflation, a (quasi) kination stage takes place.

To summarize, including an exponential potential in an exponential GNMDC scenario gives
rise to similar inflationary observables with equivalent GR monomial potentials ¢™ with n < 2, in
agreement with Planck 2018 observational results. Namely:

V(p) = VoeP/Me 4 Y (p) 30% . (1.78)
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For 7 > 1 exponential potentials are indeed quite viable models to investigate in the context of
GNMDC. In this sense GNMDC revives exponential potentials in inflation, and additionally features
a graceful exit.

A final comment is made on the phenomenology resulting from an exponential potential when
coupled to a monomial GNMDC:

V(@) = Voe /M, f(6) = agt ! /M

In this case, the correspondence between the two fields is:

1/2 Lo
Voll? [ Mp \ 7 p[lta 220
Mp, 2AM 2 7 Mp|’

p=-275"\a (1.79)
thus written in terms of the incomplete Gamma function. We note that for ¢ > 0 odd values for «
are necessary. An analytic expression for the effective potential, V,, (), is possible to find only if
a =1, reading V;,,(¢) = (A\M )2 2. For @ > 1 we can only approximate the equivalent expressions,
of which the only viable ones are for odd values of GNMDC’s parameter «.

V(g)=ho*/4 V(p)=mp?/2

Figure 1.6: The r(ns) plots for a Higgs potential (left panel) and also a quadratic potential (right
panel). We show the contours for a =1 (red), a = 3 (orange), « =5 (green), a = 7 (purple). One
can compare these results against the 68% and 95% CL regions of Planck 2018 [67]. Growing bullet
points correspond, as shown in the legend, to 40, 50 or 60 e-folds obtained by numerical methods.
All models are normalized so that P, = 2.2 -107°.

1.5.2 The expansion history after inflation with GNMDC

We have so far shown that there exists a correspondence between the phenomenologies obtained via
GNMDC and GR. For monomial potentials (1.71):

2p
— —
GNMDC pta+ligr

p q. (1.80)

We now take advantage of this, to reproduce basic inflationary predictions using well established
GR relations like:
1 —ns >~ (29 +4)/(4N + ¢)andr ~ 16¢/(4N + q).

that in the context of GNMDC are derived solely due to its own dynamics, by egs. (1.55) and (1.61).
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Figure 1.7: Here we depict the exact and also the SRA evolution of the scalar field ¢(t), for a = 3,
when a quadratic potential is chosen. The slow-roll approximation is exceptionally accurate in the
early stages. This model’s parameters have been chosen so that it yields 60 e-folds and is normalized
to Pr = 2.2-1079. At the same time it produces observables in good agreement with Planck 2018,
specifically ng = 0.978, r = 0.022. For simple reference, we also show the evolution of an NMDC
model (o = 1), with the same initial conditions and scale M, to emphasize that GNMDC models
produce Slow Roll much easier.

We assume that the number of e-folds in GNMDC and the corresponding GR model are the
same. This is justified because in the HF limit, the number of e-folds is:

1 ¢ Vv 1 ¢V
N [ 0OP e =g [ e (181)
MI%I Gend Vv’ Mlgl Pend V/n

where we use ¢'(¢) = dy/d¢ and (dV/d)(do/dyp) = dVy,/de.

Having a sufficient amount of e-folds is crucial in inflation or the observables would not match the
observed values, see eqs. (1.55) and (1.61). The exact number of e-folds depends on post inflationary
evolution for which there are, as of now, not enough cosmic observables. Nevertheless, most models
can have a specific range of N-values.

Subsequently, when the end of the acceleration phase happens, the inflaton field is generically
expected to oscillate around the bottom of its potential, transforming its leftover energy to other
degrees of freedom. Considering specifically power-law potentials, V(¢) o ¢P, the averaged effective
equation of state of an oscillating field with GR dynamics is given by [74,75]:

@';)i = i%. (1.82)

w

This period is generally referred to as the reheating period and leads to the thermalization of the
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Figure 1.8: The equivalent to Fig. 1.7 for a Higgs potential. Its parameters again have been chosen
so0 that it yields 60 e-folds and is normalized to Pr = 2.2 -107%. It yields n, = 0.977, r = 0.026.
We also show the evolution of NMDC (o = 1), with the same initial conditions and scale M.

universe and the beginning of radiation domination era, where the temperature is given by:
Tren ~ (F¢]\4131)1/2
where I'y denotes the inflaton decay rate. The e-folds of observable inflation can be calculated by:

1 1. V. 1-3w-
No~57.64 = Ine, + -1 - Nun, 1.
576+4ne+4npend i " (1.83)

where quantity Ny, entails the e-folds that take place during the reheating era. Thus, N also depends
on the reheating stage’s dynamics, through Ny, and the EoS parameter w.

Models that result from GNMDC theories possess a distinct reheating stage, for which there exist
two basic cases: i) GNMDC dominates over GR during reheating and, ii) GR takes over GNMDC
after the end of inflation. In the first case, GNMDC heavily modifies relation (1.82) [27] that predicts
distinct values for the term (1 — 3w)N,;/4. On the other hand, when GNMDC becomes ineffective
during reheating, eq. (1.82) applies. There is a clear distinction here when comparing to GR models.
While the EoS during reheating is determined by the potential V' (¢), the inflationary dynamics are
affected both by the potential V(¢) and the GNMDC coupling function f(¢). We now move on to
summarize some reheating predictions in the case of a Higgs and an exponential potential in the
context of GNMDC, that were presented before .

e We first suppose inflation with a Higgs potential, V(¢) = \¢*/4, and a GNMDC function of
the form: f(¢) oc 1. This predicts ns and r values that are given by eq. (1.55), for p = 4.
For demonstrative purposes, we will assume here a benchmark value, « = 11. According to

5An analysis of inflationary and reheating dynamics with NMDC were performed in [27]
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Planck 2018, the values of the scalar spectral index and tensor-to-scalar ratio are approximately
ns = 0.965 and r = 0.054 for N = 36. A number of 36 e-folds implies that there has to have
taken place an extended non-thermal phase before BBN, whose duration can be specified. As
we have shown, after a few oscillations GR takes over and the post inflationary EoS parameter
takes the radiational value w = 1/3, regardless of the exact reheating temperature, as eq.
(1.82) dictates.

On the other hand, the equivalent GR model predicting these ngs and r values for the same
e-folds, corresponds to the effective potential V() o< ¢'/2. Hence, eq. (1.82) yields a different
EoS after inflation, thus distinguishing the two models. Similar results hold for all monomial
potentials with GNMDC.

e Let us now look into the case of inflation with an exponential potential, V(¢) = > ¢/Me1,

and a GNMDC of the form f(¢) o e27%/MP1. As a demonstration we shall choose the values
A = 100, 7 = 320, for which relations (1.61) hold since A > B. One then finds that when
40 e-folds are achieved, the observables take the values ny = 0.969 and r = 0.048. Again, the
number of e-folds implies a non-thermal post-inflationary era, in addition to the kination era
that generically follows exponential inflation. The equivalent GR model predicting the same
n, and 7, for the same amount of e-folds, corresponds to a potential of the form V (g) oc p10/21,
Hence, eq. (1.82) hints at a different post-inflationary evolution, again making the two models
distinguishable from each other.

1.6 PBH production from the GNMDC

1.6.1 Preliminaries on PBHs

We will now study a different aspect of early Universe cosmology, namely the possible creation of
Primordial Black Holes (PBHs). A review and similar works can be found in references [76-79]
while attempts in a f(R) context or trapped inflation context, have also been made ( [80] and [81]
respectively).

In the formation of PBHs, there are two main points to be studied. First, the magnitude of the
scalar power spectrum’s change, which essentially decides the abundance of PBHs, and then, the
stage during which the PBHs were formed, which is related to the mass of the formed PBHs.

The amplitude of the power spectrum peak

A PBH with mass M may form due to a density perturbation that collapses. If the density pertur-
bation is large enough for its gravitational dynamics to dominate over the radiation pressure, it will
collapse after the horizon reentry. Then, the mass of the formed PBH will now be equal to

VMhor

where My, denotes the horizon mass and -~y is a numerical factor related to the particular details of
the collapse of the perturbation.

The ratio of the abundance of PBHs with mass M with respect to the total dark matter (DM)
abundance,

feea(M) = Qpeu(M)/Qpm

can be expressed as:

femn(M) = (7.3B><(A140)15> (Qg%h?)‘l (012)% (1%E)’.T7)5>_i (15\2{@)_1/2 ’ (1.84)

where we approximate that the effective degrees of freedom are equal: g, =~ g;.
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We follow here the Press-Schechter formalism [82] though one could choose a different approach
[83]. Firstly, we will assume that curvature perturbations follow canonical (Gaussian) statistics. Our
aim is to estimate the probability of formation of a PBH, and subsequently connect the collapse
threshold to values of the scalar power spectrum. We will assume that in a spherically symmetric
region, PBHs will form with a specific rate, denoted j:

1 21 Se 1 o(M) %
M) = dd—————¢ 27 ~ —erf ~ 202(M) 1.85
M) /5 «/27r02(M)6 2erc<\/§a(M)> Vor 6. © (1.85)

We quantify the threshold density of the perturbation as d.. Function erfc(x) is the complementary
error function. Then, if a given density perturbation has § > §., gravity dominates against internal
radiational pressure and the perturbation collapses.

The formation rate of PBHs depends on the variance of the density perturbations. We denote this
as o(k), which is smoothed on a scale k for radiation domination and is given by the expression [84]:

2
)= (3) [ L) Palo). (1.86)

where Pgr(q) denotes the power spectrum of the curvature perturbations. We use the term W (z)
to represent the Fourier transformed Gaussian: W(z) = e /2,

magnitude of 3(M) by use of Pr(k) ~ (9/4)%0?(k):

1 VPr _s
B(M) ~ Tﬂié.R e 0:/2Pr

Let us now turn our focus to the power spectrum resulting from a GNMDC modification of
gravity. It appears to be ¢-sensitive, since eq. (1.33) is:

N V
T 96m2Mbey /A

We can now approximate the

(1.87)

Pr (1.88)

When the slow roll parameter e decreases, then S(M) increases. If we want fppy ~ 1, then the

power spectrum has to be:
PEBH L1072, for 4.~ 0.5.

Now eq. (1.88) yields:
e(¢pBH) = V(d)PBH)(967T2M§1)71’P71;BH)*1

It holds that V(éppn) < Vinax = 372 AsTmax Mp;/2. Then, parameter eppy has to be less than a
specific value, e€max, which is obtained when we substitute the observables’ values Ag ~ 2.18 x 1079
and 7yax =~ 0.64, from Planck 2018 data. Thus, it reads:

e ~ 1077, (1.89)
Hence, a significant decrease of the € parameter, implies the increase of § and 7 so the SRA does not
hold any more. In that case, one has to explicitly solve the Mukhanov-Sasaki equation discussed

later.

The PBH mass

Moving on, we shall now consider a perturbation that has a scale k~!, which we suppose exits the
Hubble horizon after a number of e-folds before the end of inflation, denoted N, which is given by:

kend liend
= — . 1.
N, =1In ( . ) In ( . ) (1.90)
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We now approximate He,q =~ Hjp. This proves to be a particularly good approximation for per-
turbation scales k~! that exit the Hubble horizon during, or after, the ultra slow-roll phase of
inflation [85,86]. Thus, we can simplify eq. (1.90) by dropping the second term

When the inflationary evolution of the Universe ends, the Hubble horizon, quantified by H ™1,
grows faster than the expansion of space and thus the various perturbation scales, that exited due
to inflation, gradually reenter it. We then will need to define quantity:

N, = In(a(t)/acna)

which quantifies the e-folds taking place between the end of inflation and the reentry of a given scale
6

When the EoS parameter takes values w > —1/3 we have that:
Ni = 2N /(1 + 3w)

Then, unless w = 1/3, the e-folds at which a specific perturbation scale reenters the horizon depends
on the temperature during reheating. On the other hand, if a perturbation of scale k~!, reenters
during an era of radiation domination, that is w = 1/3, or during ¢* oscillating stage, the relation
between it and the horizon mass M /7y is:

M\, g ~1/12
k(M) = 1.8 x 10 Mpc ™t ~4Y2 [ —— * . 1.91
(M) x Pe T \ 1ot g (106.75) (1.91)

Moving on, we shall focus on a few mass scales for the PBHs that are particularly interesting.
The first one is a mass Mppn ~ 10%! g. It has been argued that a substantial amount of PBHs with
such an approximate mass can actually perform the role of all of the Dark Matter of the Universe.
Moreover, this kind of PBHs would be possible to be probed with GW detectors, such as [87-90],
as well as other direct observational tests.

Another interesting case comes about if the PBH mass is: Mppg ~ 10%° g. PBHs in this
approximate range can explain BH events observed by LIGO [1]. This mass range is not able to
constitute all the DM as the previous case, however it can comprise a significant part of it [91]. We
will now proceed to calculate the quantities that are essential in the study of PBHs.

We start with the case of PBHs with mass Mppy = 102! g. We suppose that such a PBH reenters
the horizon during the radiation domination era, hence, w = 1/3. Then, it is

k(10 g) = 5.7 x 10'2 Mpc 142 = 10M kens /2.
On the other hand, for a PBH with mass Mppn = 10%° g, we get:
k(10 g) = 5.7 x 10° Mpe~'41/2 = 1.1 x 107 kenp /2

In the above, we denote kcvp the CMB pivot scale koyp = 0.05 Mpc™', and use g, ~ O(100).
Our next step will be to calculate the e-folds Ny, = Npgg that remain until the end of inflation,
when the peak in the power spectrum takes place. We also need Ncyp, namely the postinflationary
e-folds that take place, which is related to cosmic expansion rate through equation (1.83). Here, it
holds that:
In(e,Vy/pena)/* = £0(1)

constraining Noymp S 58 e-folds when the EoS parameter is w < 1/3. Then, from equation (1.90),
we can calculate kqpg:

Hend
Hewp

Ncwms

kena = kcup e (1.92)

We use a tilde to signify that these are post-inflationary, so that no confusion arises.
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In the context of Higgs inflation, it is Nomp ~ 58 (unless an early non-thermal stage takes place).
For our model, then:

HCMB/Hend >~ (9(2.6),thus kend ~ 4 x 1025 kCMB

So, from relation:
Npgu =~ In (kenda/kpBH)

we can find the amount of e-folds before the end of inflation when the peak must have taken place.
For PBHs with masses in close range of those presented earlier, we get, respectively:

Nppu(Mppy = 10%1 g) ~ 27, and Nppu(Mppy = 10*° g) ~ 45, (1.93)

Now using eq. 1.84 we obtain fppg(Mppy = 10%' g) ~ 1 for B(M) ~ 10713 and fppu(Mppu =
10% g) ~ 0.1 for B(M) ~ 10~7. We can get an estimate of the formation probability, 3(M), for a
given value eppy.

Having presented the above, it becomes evident that in the context of GNMDC we can produce
PBHs, due to its gravitational friction effect. We will now attempt, in the context of a Higgs
potential, to construct such a term that abruptly increases at specific scales, much smaller than
the CMB scale, thus generating PBHs. Of course, in doing so, we must also preserve the CMB
observables.

1.6.2 Power spectrum amplification in the GNMDC theories

We can augment the value of the power spectrum in a GNMDC model by decreasing the value of
ev /A, eq. (1.33). That, in turn, will bring about large density perturbations that have a probability
of collapsing into PBHs. However, we have noted that such a phenomenon must also preserve the
CMB observational constraints [92]. To do that in a GNMDC model, we will enforce that f(¢) gets
enhanced in the region of a specific field value. It will be easier to do this by splitting the GNMDC
coupling function in two terms:

f(@) = f1(6) A+ f11(9)) - (1.94)

We denote fr(¢) as the GNMDC function acting in the beginning of inflation while f;(¢)frr(¢)
is activated in the middle or towards the end of it. Function f;;(¢) is a function that peaks at a
specific field value ¢ = ¢g, while being negligible when the field values is not close to ¢g. Thus,
inflation is split in two stages. Stage I, where f;;(¢) < 1 and an amount of N; e-folds take place,
followed by stage IT where fr7(¢) > 1 and Ny; e-folds take place. There is of course a freedom in
choosing the fr7(¢) function, but we must note that not all function types produce stable models.
Among the ones that are stable [66] is:

fri(¢) = T (1.95)

which we will focus on, from now on. Constants d, s and ¢ are used to parameterize the requirement
that the produced PBHs, have a significant abundance.

Specifically, we will estimate these parameters as a function of the power spectrum’s amplitude
and the e-folds Npgy. It is:

A(o) ~ 3H?f1(9)f11(9)

v v ‘¢¢PBH

where we denote ¢ = ¢ppp as the value of ¢ at which Pr maximizes, i.e. where f1(¢)fr1(¢) > f1(9).
We can safely approximate ¢g = ¢ppy. We ask for a peak in the power spectrum Nppy e-folds
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before the end of inflation. During stage II, where f;;(¢) > 1, = Ny e-folds take place and é
decreases significantly. Of course it must hold that Ny; < Nppg. The exact amount of e-folds Ny,
can be specified by the observational constraints on the PBH abundance. When fr;(¢) > 1 it holds
A¢rr =~ 2c¢(Ind)/? and thus:

Po+Adrr H 1 do+Adrr B/2
Ni; :/ —dep ~ —/ A+ B2 de (1.97)
do—Adrr @ Mp, $o—Adrr 2ey

We have supposed that stage II begins at ¢g+A¢;; and ends when ¢g—Ag¢;, in order to approximate

a sharp fr7(¢).
However, as we mentioned before, when e abruptly decreases, the SR approximation breaks down

and (1.31) is no more valid [93]. Hence, in our case we have to solve the Mukhanov-Sasaki (MS)
equation.

1.6.3 The Mukhanov-Sasaki equation

To derive the MS equation, we start by the quadratic action for the curvature perturbation R in
the comoving gauge, namely:

M2 i . C2
2 s
S’EQ) = 72131 /dx4a‘3Qs |:R2 - 0/2(617?,)2:| 5 (198)
Quantity c2, (1.29), is the squared sound-speed of the scalar perturbations and @y is defined by
(1.27). We can introduce a new coordinate [94]:
dy = (cs/a)dt = csdn (1.99)

and redefine:

w=zR, with z=+2a(c;Qs)"?=aVv2e (1.100)

to obtain the transformed action from which the MS equation is obtained”.
We have then, for a Fourier mode, uy:

" 21.2 2" _
up + | csk® — ) u = 0, (1.101)

where a prime denotes a derivative with respect to the conformal time, 7. To obtain the exact
power spectrum’s values, we have to solve the MS equation. We compute a mode’s, ug, value at
super-Hubble scales, well after it has exited the horizon and froze out:

_ R
o2 22

Pr (1.102)

k<aH

To set initial conditions for the modes uy, we use the Bunch-Davies vacuum. When a mode is well
within the horizon, k > aH, and the evolution of term z”/z is negligible, since c¢2k? > 2" /z. In
this case, all modes have time independent frequencies the MS equation is:

ufl + 2k*up =0

giving the initial condition us = e~**7/v/2k for the MS equation. We solve separately for the real
and imaginary parts of each uj mode. The Bunch-Davies initial conditions for (1.101) are:

1 B dug] duy] vk
Re [ug] = T Im[ui] =0, Re {dt] =0, Im [ o ] T (1.103)

7One can also obtain the MS equation, written in terms of the slow roll parameters [95].
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where a(t;) is the value of the scale factor when the mode is well inside the horizon, that is, when
it holds:
a(ti)H(ti) < k

We use these initial conditions to find the evolution of each uj; mode, several e-folds after it exits
the horizon and freezes out, where the quantity |ux/z| converges to a constant value.

In a typical inflationary scenario, we can omit one of the two solutions of the MS equations to
estimate the power spectrum. But this is not the case for GNMDC, where the SR parameters change
abruptly by a lot. We can see this by writing the MS equation in the form:

P+ (24 €)aHR), + 2k*Ry = 0. (1.104)
where €5 denotes the second Hubble-flow parameter:
ea = ¢/(He)

We rewrite (1.101) into (1.104) after observing that csQs ~ €. This is obvious if ep < 1, and ¢, ~ 1.
It is also true when the velocity of the inflaton decreases significantly.

When looking into the large scale limit, the last term is negligible and for (2 4+ e2) > 0 we find
a constant and decaying mode of the curvature perturbation. This is not the case if the term inside
the bracket is negative. Then, the second solution corresponds to a growing mode and the omitted
solution contributes significantly to the power spectrum. Since in a GNMDC scenario, € depends
on f(¢), if f(¢) changes abruptly, then the curvature perturbation R can be significantly enhanced,
possibly bringing about the creation of PBHs.

1.7 PBH production from Higgs inflation with GNMDC

We will now be more specific and study inflation with a Higgs potential, that is:
V() = (\/4)p*, for A ~0.1.

We will remain within the framework of GNMDC presented earlier, by choosing the f; part of the
GNMDC to be of the form (1.67):

fI(¢) —_ a¢a—1/Ma+l

For later ease, we denote eppy = ey (¢o)/A(¢g), which is the minimum value of the ratio ey /A.
This quantity is what can modify the power spectrum’s amplitude. We also note that e(¢g) ~ eppn.
Then, for the fr; function, we use (1.95). Parameter d, which decides the GNMDC’s effectiveness,
can be found by:

M3, €y 8 Mp Mot 1

~ V(o) fi(¢o) epB  aX ¢35 eppu

(1.105)

We finally once again note, that the number of e-folds Ny, i.e. the e-folds that take place during
stage IT (when f(¢) ~ f1(¢)fr1(¢)), must be Ny; < Nppy. Given a value of Ny, parameter s of
(1.95) can also be specified. However, finding exact values of these parameters can only be done after
solving the MS equation, while the above approach is mostly of qualitative use. We now proceed to
present an explicit example.
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Figure 1.9: Left panel: The evolution of the auziliary function A = 1+ 3H?f(¢) (thick blue
line) with a GNMDC that generates a peak high enough to trigger PBH production with mass about
102! g, while at the same time preserving inflationary observables, in the context of a Higgs potential.
For simple reference we include the evolution of the same function (thin, red line), where GNMDC
includes only the fr part of GNMDC. Right panel: The evolution of the field itself (thick blue line),
with a GNMDC' that creates the aforementioned peak. The plateau in its evolution happens due to
the enhanced friction effect that the frr(¢) factor of the GNMDC brings about. Again for simple
reference, we include the evolution of the field with the same parameters but only fr being present in
GNMDC dynamics. This decrease of the velocity of the field is what enhances the power spectrum
at scales around k ~ 102 Mpc=!.

10%! grams PBHs as dark matter

For a PBH with an approximate mass Mpgy ~ 10%! g to be generated, eq. (1.93) shows that the
amplitude of the scalar perturbations has to be enhanced at about Npgy ~ 27 e-folds before the end
of inflation. This is only an approximation, since this number may be modified by various factors,
for example the reheating temperature [92,96]. We work within Higgs inflation, so the background
evolution rate should be that of a radiation dominated universe with a large reheating temperature.

We are moreover interested to find the value of 3(M), i.e. the mass fraction of the universe that
has to collapse into PBHs, for them to be cosmologically significant. For this to be the case, 8(M)
must be of order 1073, when Mppy ~ 10%! g. We then can approximate the required amplitude
by eq. (1.87), to be Pr ~ 10~2. Finally, eq. (1.45) gives us an approximate value of ey /A ~ eppg.
Higgs inflation, followed by a thermal era after reheating, predicts that the pivot scale kcyp = 0.05
Mpc! exits the horizon about 58 e-folds before the end of inflation. We have already noted that in
a scenario, such as the one studied here, the e-folds are split between two inflationary stages with
Ny and Njpj e-folds respectively.

When f; function of the GNMDC is at play, a number of < Ny e-folds. But then f;; is chosen
so that the GNMDC'’s friction effect increases abruptly. This slows the inflaton field immensely, and
while this is the case, Nj; e-folds take place. Finally, the effect of f;; passes and f; takes over again
for the remaining of the Ny e-folds. The scalar spectral index’s value is what ultimately determines
the value that N; has to have to be observationally consistent. This value can actually be decreased
when the running of the running is taken into account [67]. Moreover, the scale M of the GNMDC
can be fixed, for a given number of N; by the CMB normalization.

We shall illustrate this GNMDC’s dynamics by an explicit example, solving the MS equation
numerically. It was solved for approximately 500 modes, Ry, and the results that correspond to the
amplitudes are denoted by a red dot in Fig. 1.10. Indeed, we produce a power spectrum with a
high enough peak, to generate a significant abundance of PBHs. The GNMDC parameters chosen
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for this particular example are
a=3 M=71x10"Mp;, d=55x10% s=21x10"1

which yield 50 e-folds between the field values ¢cvp = 0.0264 Mp) and ¢enq = 0.0197Mp. It is
specified that the fr(¢)fr1(¢) term dominates, at ¢ = 0.02 Mp;. As discussed, and expected, the
inflaton’s velocity decreases abruptly. This of course coincides with an equally abrupt decrease of
the € parameter. That, in turn, is what creates a sharp peak in the power spectrum, which in our
case reaches the value Pg(kpeak) ~ 2 x 1072 (Figs. 1.9 and 1.10).

Gradually the f;; term vanishes and the inflaton rolls for a few more e-folds to the bottom
of the potential. Choosing parameters that produce viable spectral index values also can produce
PBHs with a mass of roughly 102! grams. Moreover, their total fractional abundance is found® to
be fpau ~ 0.1, (Fig. 1.10).

It is evident by Fig. 1.10 that the numerical solutions of the MS equation are quite different
from the approximate analytic curve of the power spectrum. In fact it is so from a much earlier
stage than one might naively expect, since the deviation is evident not only close to the peak, but
much earlier, at small wavenumbers k. Indeed, there, parameter ¢ does not change significantly,
as demonstrated by Fig. 1.10. But there is a feature of € that is not evident from this graph. €’s
numerical value in fact oscillates with a tiny amplitude and a very large frequency. The second
Hubble-flow parameter is negative, e < —2, before the dramatic decrease of €. Hence the power
spectrum will in fact increase from small wavenumbers. Moreover, we note that solving numerically
the MS equation in such a context is a quite tedious task with many numerical stability subtleties,
nevertheless, this example offers a proof of concept that very large values of the power spectrum
Pr(k) are achievable. However, the creation of PBHs is not our only concern, since we wish to fit a
given model to the CMB observables.

In principle we can repeat the same procedure for PBHs with mass Mpgy ~ 10%° g. Then,
according to eq. (1.93), such a mass can be generated if the amplitude gets enhanced at about
Nppy ~ 45 e-folds before the end of inflation. For their abundance to be significant, a mass fraction
B(M) ~ 1077 has to collapse into such PBHs. Then, eq. (1.87) is used to find that the required
amplitude is Pr ~ 1.1x 1072 and finally we can calculate €y /A from eq. (1.45). We can use the CMB
observables to determine all parameters’ values here too. The parameter space that corresponds to
such a large mass of PBHs, however, does not coincide with that of CMB observables. Nevertheless,
the concept still stands, and a different fr; function could exist that yields good observables and
PBHs of such a mass.

A general note to be made, is that it is, in principle, easier to construct a viable PBH creation
model, if the peak takes place at the very end of inflation. This is true because a power spectrum
with a peak in smaller scales, is, in general, less constrained by data like microlensing, Hawking
radiation and CMB observables.

We have already mentioned that PBHs could be a viable DM candidate [98]. That can be the
case if the amplitude of the power spectrum has a peak at the smallest scales or if it becomes blue
near the ending stages of inflation. If this is the case, the PBHs will be very light, and should
evaporate quickly without having an impact on BBN or CMB observables.

However, when the PBHs evaporate, they don’t necessarily leave nothing behind. In fact it is
argued that they leave behind a stable mass state, called the PBH remnant, with a mass My, =
kMp) [99,100], where k is a factor parameterizing the physics at Planck scales. In this scenario,
the spectral index can be inside the 68% CL of Planck 2018. It has been shown [101] that if
Pr ~ 1073 — 1072 , then a substantial population of PBH remnants can exist, enough to explain
the entirety of DM density in the universe for a wide range of values of the x parameter. For a
general background expansion rate, the fractional abundance of the PBH remnants can be found.

8We use the Press-Schechter formalism described earlier (section 1.6.1) with a choice for the threshold parameter
dc ~ 0.4, similar to the one suggested by [97].
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Figure 1.10: The amplitude of the curvature perturbation Pr(k). The parameters used are men-
tioned in the text. The bullet points correspond to numerical results of the Mukhanov-Sasaki equation,
while the continuous line corresponds to the approximate results of equation (1.31). It is evident that
there is a big deviation between the approzimate results and the numerics, a posteriori justifying the
use of numerics rather than the approximate analytic approach. For reference we have added grid-
lines, to highlight the comparison between the observed value of Pr at the pivot scale k = 0.05Mpc—!,
and the orders of magnitude that each approach’s peak corresponds to (107> and 1072).

For example, in the case that the remnants are produced during radiation domination, it holds:

N B YR M\
Jrem (M) ~ “(1012> (072) <1O5g) : (1.106)

where M is the original mass of the PBH. Interestingly enough, for large field models, it turns out
that small PBHs (M ~ 10 g), that correspond to small 3 values, (107'8) are enough to yield a
significant PBH population.

Another way to create mini PBHs is if the power spectrum turns from red to blue, which in our
case can be realized simply with a GNMDC term that increases steadily with time, which however
poses a problem for reheating, as we discuss below. As an example, we can turn again to the
exponential GNMDC considered before, namely,

f(@) =M 7?7

which for specific 7 values, could trigger such a generation of PBHs.

Returning to the increasing GNMDC case, we have already discussed that it might be problematic
during the reheating stage, (see Section 1.4), where we circumvent the problem by a naturally
vanishing f(¢). But there are other approaches to dealing with reheating instabilities. For example,
we can introduce an extra dimension in the field space, so that the system will not end up oscillating
around the ¢ direction. This is called hybrid inflation [102], and can be visualized as:

2

Vigb (¢, X) = Vo(1 = X*/1?)* + V(9) + %X2¢2 : (1.107)
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This type of models, can be considered as single field models for the field ¢. Within this context,
inflation can end either due to the end of the slow-roll era, or by the waterfall transition of the field
X at a given value ¢ = ¢.. These can be realized respectively in the following ways:

V(g) 2 Vo and V(¢) < Vo (1.108)

After the end of inflation, the field that oscillates is x, which is minimally coupled, and not ¢
which gets stabilized at the value ¢ = 0. In our case, for an increasing GNMDC, as ¢ — ¢, the
inflaton decelerates and the power spectrum gets enhanced, with the peak existing at ¢. where the
minimum velocity in the ¢ direction is achieved. When ¢ surpasses value ¢., a (waterfall) transition
happens for the system which transits in the y direction and x is the field that oscillates after
inflation.

Another implication that is worth noting is that, the inflationary potential has to be such that
the spectral index is in agreement with data, as described before (see Section 1.4). But the PBH
remnant scenario can allow potentials without a minimum to be phenomenologically acceptable,
since the reheating of the universe can happen due to the evaporation of the PBHs [101].

1.8 Conclusions

Inflation poses as a widely accepted paradigm within which a viable phenomenology can be produced,
in light of recent observations. In its context, the initial conditions of a hot BB are provided, and
equally importantly, the primordial perturbations described.

Inflation can happen either when a scalar field rolls down a non-steep potential, or alternatively
when non canonical kinetic terms are included. Indeed we have concentrated in the study of the
L5 Galileon term, i.e. the term that introduces a non-minimal derivative coupling (NMDC) of the
scalar field to gravity, through the Einstein tensor. The simple, field-independent case of L5 has
been studied extensively in many works. It is known to bring about a friction effect, that decelerates
the inflaton and thus realizes a slow roll with steeper potentials than what unmodified GR would
allow.

Here, we have chosen to study the field dependent case of L5, that we dubbed GNMDC. This
dependence on the field produces a similar in quality, but all around richer, inflationary phenomenol-
ogy. Interestingly enough, GNMDC inflation can be free from gradient instabilities during the post
inflationary oscillations phase, by a suitable choice of the coupling.

Specifically, we derived relations for the CMB observables like the spectral index and the tensor-
to-scalar ratio. Moreover, in the context of NMDC, it is known that the squared sound-speed of the
scalar perturbations oscillates between positive and negative values. This would create exponentially
evolving modes and void the usual analytical results. But within GNMDC inflation this can be
alleviated, by suitable forms of the coupling. We have shown that this problem can be significantly
ameliorated (Fig. 1.2) or completely avoided during the reheating stage (eq. (1.107)) while at the
same time describing inflation with simple, physically motivated potentials.

Indeed, we examined Higgs inflation [25], since the Higgs field is the only scalar discovered in
nature [55] so far, as well as an exponential potential, that can successfully drive inflation when
GNMDC operates, producing a phenomenology in agreement with the Planck 2018 data [67]. In
fact, inflation with an exponential potential and an exponential GNMDC ends naturally, due to the
decay of the GNMDC and a kination regime that may follow.

Moreover, we have presented a correspondence between GNMDC and canonical GR inflationary
dynamics. It provides a useful, easier, alternative to making predictions of a given GNMDC model,
by finding its corresponding canonical model, but also makes model selection and identification
through CMB observables possible.

Since GNMDC is affected by the field value, the friction effect can be modified during the course
of inflation. An increase of the friction effect, would slow down the inflaton field, at the same
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time amplifying the amplitude of the curvature perturbations. But, if the amplitude is sufficiently
increased, then the perturbations can collapse producing PBHs. This effect would typically take
place due to an inflection point in the potential. However, there can exist specific forms of GNMDC
that have this particular effect while the inflaton rolls down a simple potential.

As a demonstration, we carried out PBH production using the Higgs potential. We estimated
the abundance of PBHs produced for a couple of benchmark cases, focusing on the interesting case
of mass M ~ 10%'g. A substantial abundance in that mass range can account for all of the DM in
the Universe and in order to be more precise, we also presented numerical results.

Another scenario discussed, is that in which the GNMDC demonstrates a steady increase towards
the end of inflation. That would trigger the production of mini PBHs and corresponding remnants
may be detectable. We aim for suggestive results in order to highlight the richness of phenomenology
offered to GNMDC, without going into more complex details (for example non-Gaussian effects).

To summarize, we have studied inflation models with GNMDC, that yield new, distinguishable
predictions for inflation, while at the same time posing a more reliable framework than previous
similar attempts (NMDC), that also recover GR since the GNMDC vanishes fast after inflation.
We elaborated on the implications of an inflaton-affected GNMDC and constructed specific models.
Among them, we have shown that there can be cases where the amplitude of the power spectrum of
primordial perturbations can be enhanced. If that is the case, at small scales, then the production
of PBHs can be triggered. A final attractive feature that we have achieved throughout, is that these
models can all happen within the framework of Higgs inflation, and still be completely compatible
with current observational results.
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Chapter 2

Successful Higgs inflation from
combined nonminimal and
derivative couplings

2.1 Introduction

A scenario according to which an early exponential expansion of the Universe takes place, offers a
particularly good explanation for the initial conditions of a hot Big Bang [103-105]. This description
of the very early phases of the Universe (that is generally known as inflation) can be studied as
the effect of the dynamics of a scalar field that is usually referred to as the inflaton. At the same
time, observations that are collected through the study of the CMBR offer constraints that become
increasingly more accurate, via which we can test the inflationary paradigm, as well as the theory
of gravity that operates at such high densities. In the context offered by the inflationary scenario,
there has also been a significant effort regarding primordially formed black holes, during a super
slow-roll phase, which could be a viable Dark Matter candidate [62-66,77,83,92,93,106-109]. Thus,
physics surrounding inflation is of great significance to various aspects of our understanding of the
birth and formation of the Universe. As such, early-Universe cosmology provides the grounds to
test and choose between a rather large number of inflationary models. To identify a viable model,
one has to study the dynamics of the full system of the inflaton field and gravity, and compare the
results with observations.

To describe the early cosmological evolution according to recent observations, there have been
proposed gravity theories that are based on modifications of Einstein’s Gravity. A few of the most
common ways to modify the General Theory of Relativity, revolve around introducing higher order
curvature terms, and/or including scalar fields that are non-minimally coupled to gravity. In fact,
higher-order corrections to the Einstein-Hilbert action arise naturally in the gravitational effective
action of String Theory [29], that is one of the candidates to become a unifying theory. On the other
hand, introducing extra scalar fields, which are, in general, non-minimally coupled to gravity, is a
particularly well-studied way to modify GR and results to what is known as scalar-tensor theory [30].
A thoroughly studied scalar-tensor theory is the one obtained via the Horndeski Lagrangian [13].
Theories resulting from this Lagrangian, yield field equations of second order and hence do not
produce ghost instabilities [12]. Furthermore, many scalar-tensor theories share a classical Galilean
symmetry [31-36,110].

A simple subclass of Horndeski theories can be obtained with the coupling of a scalar field to
the Ricci scalar, which is generally known as Non-Minimal Coupling (NMC). This construction goes
beyond the simple case of GR plus a scalar field and can improve the inflationary phenomenology.
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In detail, by taking a NMC of the form £¢2, for a large enough scale £, the resulting inflationary
phase is long enough to satisfy observations [111-115]. In fact, it has been shown that a well-
behaved phenomenology is obtained. The tensor to scalar ratio is particularly low, and easily inside
the Planck 2018 observational limits. There have also been other works that utilize a different
NMC [116]. However, NMC models with large coupling values, albeit very efficient in producing
improved inflationary phenomenology, lead to problems related to the unitarity of this theory, exactly
due to the large values of their coupling, thus rendering themselves undesirable from a quantum
mechanical perspective [117-134], if one considers a single field model. A different picture can be
obtained when multi-field theories are taken into account, and it is argued [135,136] that in such
theories these problems do not exist. Moreover, other attempts without unitarity related problems,
have been made in a similar context, utilizing a Palatini formulation of gravity [137-139], or by also
considering additional interactions [140,141].

Horndeski theory is, on the other hand, one of the most well-studied frameworks of scalar-
tensor theories. A particularly interesting case is the one involving a term corresponding to the
non-minimal derivative coupling (NMDC) of the scalar field to the Einstein tensor. This term
has notable implications on small scales for black hole physics [38—41,142-147], as well as dark
energy [148,149] and inflation [37,42,150] respectively. Within the inflationary context, the main
advantage of NMDC is being free from unitarity problems, leading to the established model of new
Higgs inflation [54,151].

It has been shown, that the NMDC acts as a friction mechanism, therefore allowing for the
implementation of a slow-roll phase [42,43], as well as for inflation with monomial potentials (such
as the Standard-Model Higgs) to be realized [25]. In light of the above, it becomes an attractive term
within the framework of Horndeski theory. Furthermore, this kind of models can be consistently
described within supergravity [44,45] via the gauge kinematic function [46]. A thorough study
of the NMDC predictions was performed in [27], where the dynamics of the inflationary slow-roll
phase and the reheating phase were considered. In particular, NMDC oscillations of the inflaton
are extremely rapid and remain undamped for a very lengthy period [47-52,152-154], thus affecting
heavy particle production [53]. However, such oscillations, where the NMDC term remains dominant
over the GR term, are problematic in terms of the stability of the post-inflationary system, since they
lead to oscillations of the squared sound-speed of the perturbations between positive and negative
values [51], implying that scalar perturbations are exponentially enhanced.

To avoid this kind of instability, the non-minimal kinetic term has to cease to be dominant or co-
leading, when compared to the canonical kinetic term. However, meeting this condition, effectively
reduces the model to that of a canonical scalar field in GR, even during the slow-roll period, and the
advantages of the NMDC are lost. One can then, generalize the NMDC term in a straightforward
manner, since it is a specific case of the Horndeski Lagrangian density, and consider Lagrangians of
the form [34,35,110]

£5 = G5(¢7 X)Guyauauqb 9 (2]‘)

where X = —0,¢0"¢/2. By choosing G5(¢, X) = —¢/(2M?), one obtains the simplest NMDC
possible, since after integration by parts the derivative coupling term becomes constant, which
as already mentioned, leads to problematic post-inflationary evolution. Instead, in [155] it was
shown that by choosing a more general function G5(¢, X) = G(¢) £(X), the phenomenology of the
corresponding terms becomes richer, both during inflation and reheating stages.

If G(¢) x ¢ then the Generalized NMDC term (GNMDC) quickly vanishes when the inflaton
approaches the minimum of the potential. The system, after a few oscillations, transitions to the
dynamics of a canonical kinetic term in GR, leading to a more desirable behavior, dominated by
GR dynamics during the reheating stage. It has been shown that with this kind of term, the
phenomenology generated in a Higgs potential is in good agreement with observations. Furthermore,
tight bounds on the speed of GWs extracted by recent observations [1,56,59] and from solar system
constraints [156], were dismissive of the NMDC [2,58]. A NMDC term playing the role of dark
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energy can produce superluminal tensor perturbations [25,57] in FLRW cosmological backgrounds
but a GNMDC of the form G(¢) o ¢ can heal this problem, since after the end of Slow Roll inflation
it decouples from the dynamics of the system. It was also shown that the squared sound-speed was
not completely healed of the oscillations between positive and negative values, albeit significantly
improved in comparison to NMDC results. One then, is led to seek for further modifications that are
able to entirely heal the non-canonical kinetic term theories of this form, from sound-speed related
instabilities, and possibly further improve the observable predictions.

The motivation of this work is based on the remarks above, according to which neither NMC
nor NMDC scenarios are completely free of disadvantages if a desirable phenomenology is to be
achieved. We are, thus, interested in investigating a simple combination of the NMC and GNMDC
terms, that could alleviate the problems of both of these standalone modifications. In particular, the
GNMDC'’s gravitational friction effect will be shown to allow for the £ and ¢, to be low enough to
not violate unitarity, while the NMC term’s domination at late times ensures that no sound-speed
related instabilities will occur. Moreover, a lowering of the tensor-to-scalar ratio of this theory is
obtained when comparing to the GNMDC case.

This work is organized as follows: In Section 2.2 we analyze basic results of each of the NMC and
GNMDC terms as standalone modifications of GR. In Section 2.3, we build the combined scenario
of inflation in the presence of both the NMC and GNMDC terms. In Section 2.4 we proceed to a
detailed numerical investigation of an inflaton in a Higgs potential, for a variety of interesting cases,
through which the advantages of the combined scenario summarized in Section 2.5, become clear.

2.2 Non-minimal coupling and generalized non-minimal deriva-
tive coupling as standalone modifications

We now present a synopsis of inflationary models that result from the General Theory of Relativity
plus a non-minimal coupling term (GR+NMC), and from general relativity plus a generalized non
minimal derivative coupling term (GR+GNMDC).

To successfully build inflationary models it is of great importance to perturbatively study their
effects, since each model provides a rich phenomenology related to scalar and tensor perturbations.
In order to test their viability, one compares the predictions of a variety of quantities with the
corresponding observed values, obtained through CMBR. Observable quantities, include the power
spectrum of the scalar perturbations, Pr, the scalar spectral index, or scalar tilt, ng, and the tensor-
to-scalar perturbations ratio r, while a specific amount of e-folds is also required in order for the
horizon and flatness problems to be solved. In Appendix B one can find a review of the usual steps
taken in this direction. Full single-field perturbations’ analysis has been performed in a number of
works, e.g. in [26,51,94].

2.2.1 Inflation with nonminimal coupling

GR+NMC'’s action can be written in the form

“w

5= [dev=g|for- LG v, (22
The most studied coupling of this form in the literature is f(¢) = £¢?. NMC as a standalone
modification to GR, when taking the form f(¢) = £¢? in a monomial (Higgs) potential, has been
shown to produce remarkably low r ratio values. It is also notable that it has no post-inflationary
instability issues, since ¢? is identically equal to 1, regardless of the form of the NMC. However,
as already mentioned, it does not preserve unitarity and thus is problematic from a quantum-
mechanical point of view, since the term £¢? takes values larger than Mp; in order to yield a long
enough inflation [117-133].
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The metric to be considered here is that of a homogeneous and isotropic flat FRW geometry:
ds* = —dt* + a*(t)d;jdx"'dx’ (2.3)

where a(t) is the scale factor. The resulting Friedmann equations are:

2 .
SMBH? = V(o) + & - 66 [f(0)H? + £(0)oH] (2.4)
. . . . . .2
MR(2F + 3H?) = V(9) — & [2671"(0) + 4HOF (6) + 26 (9) +4 (@) +6HF(6)] ~ 2.
(2.5)
and the Klein-Gordon equation reads as:
b+ 3H$ — 6Ef (¢) (H + 2H2) FV($)=0. (2.6)

In order to calculate the inflationary observables, a usual approach is to perform a conformal trans-
formation, thus passing to the Einstein frame. We choose: §,,, = Q2()g,,,, with:

16m
02 (z) = — £()

and define a new scalar field ¢ and potential U such that:

¢ Mot 2}‘” ;W . Ulp) =07V (e),

bringing the action to the Einstein-frame equivalent form:

M2, - i
S = /d‘{m/—@[ LR - 8‘”"2‘9 2 _Uly)| , (2.7)

The quantities in the Einstein frame are denoted with a hat.
To first order, it has been shown that the spectral index and tensor-to-scalar ratio can be ex-
pressed as [105]:

1-— Nng = 66U - 25U s r= 16€U y (28)

where we define the slow-roll parameters:

M2 U/ U//

It can also be shown that for an arbitrary coupling f(¢) the ¢ of this scenario is identically equal
to 1, by simple replacement of the above equations into (B.15).

We note that in the Einstein frame, the potential U is essentially flat for large values of the NMC
term (42 > Mp;), hence the field rolls slowly and parameters e;; and §y; are very small, yielding a
correspondingly small r.

This conclusion encompasses one of the basic results of single field, NMC, Higgs inflation with
the coupling form f(¢) = ¢?. However, as mentioned above, these attractive features of a very low r
and a long inflation, come at the cost of £¢? > Mp;, leading to non-unitarity. To solve this problem,
one should consider other forms of couplings of the scalar field to gravity, like the one described in
the next section.
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2.2.2 Inflation with non minimal derivative coupling

The scenario according to which the generalized non minimal derivative coupling is a stand-alone
modification to GR is presented here. As discussed, within the framework of Horndeski theories non
minimal derivative coupling (NMDC) holds a particular position, due to the “gravitational friction”,
i.e. the phenomenon according to which the inflaton field, when rolling down a potential, stays in
slow roll for a significantly lengthier period as compared to GR, resulting in a rich phenomenology,
studied extensively in the literature [25,47-52,154,157].

However, it has also been argued that a standalone NMDC modification to GR creates post-
inflationary instabilities, because the NMDC term remains dominant after the slow-roll period lead-
ing to ¢2 < 0. Then, a further intuitive modification, dubbed generalized non minimal derivative
coupling (GNMDC) was proposed in [110, 155]. When the derivative coupling with the Einstein
tensor is of the form G(¢)0,¢0,¢G"¥, then this is significantly ameliorated.

Specifically, the corresponding action can be written in the form:

S = / d*z\/—g {A?R + Gs(6, X)G"™0,0,6 — V(9)| (2.10)

where G*¥ is the Einstein tensor. By considering only a ¢-dependence of the G5 function, the
Friedmann equations of this scenario take up the form [110,155]:

3M2,H? = 9H?G($)§? + %af +V(9), (2.11)
M3, (2H + 3H?) = V(¢) — ; +2HFC (6) + G0) (20 + 3P +4HGS) . (212)
while the Klein-Gordon equation reads:
b+ V'(¢) + 3Ho + 3H2P*G' (¢) + G(¢) (12HH’qB +6H2$ + 18H3¢) =0. (2.13)
We note that the function G(¢) results from G5, by integrating by parts, namely G(¢) = —G5(¢).
The gravitational friction effect offers the ground for very efficient inflationary predictions, be-

cause the slow-roll conditions can be easily satisfied. To investigate inflation in the slow-roll approx-
imation we define the standard slow-roll parameters:

H ¢

__ - 2.14
€= T2 Ho' (2.14)
as well as the slow roll parameters expressed with respect to the potential:
M2, (V'\? M2, V"
= — | — = _— . 2.15
€y 9 Vv ) nv 2 Vv ( )

Slow-roll approximation holds when € < 1 and § < 1, thus H < H? and ng < 3H gb In this case
the Friedmann equations (2.11), (2.13) are simplified to:

3M3,H?* =~ V(¢) , (2.16)

BHG [1+6G(6)H* + G'(6)HO| + V'(6) ~ 0. (2.17)
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Under the slow-roll approximation, the first slow-roll parameter, €, can thus be written in the form:

ER EGR T €D T+ €5, (218)
where - .
3G(¢)¢ ¢ / |
= —F = H 2.1
MIQDI ’ B M]%leG ((b) ¢ s ( 9)

These correspond to eg1 and ey of equation (2.44) that we use later. Furthermore:
12

= —— 2.20
YENER (2.20)

€GR
where quantity egr corresponds to the GR case, while €p is the leading term during slow-roll.

The GNMDC term decreases the € parameter and hence increases the slow-roll era. In fact, in
the slow-roll approximation, equation (2.18) is brought to the form:

A—28
GV(

ATER (2.21)

with A =1+ 6H2G(¢) and B = G'(¢)Ho.

Regarding the squared sound-speed of scalar perturbations, one can express it in the form [155]:

+12HG(9) (1 - %D) } (2.22)

We can also approximate the number of e-folds as [155]:

1 (¢ A+B
N ~ do . 2.23
MPl /¢end v 26‘/ ¢ ( )

One sees that for G(¢) — 0 all above expressions restore the canonical case. Concerning the
inflationary observables, the power spectrum of scalar perturbations is of the form [155]:

H? B2
Pr=-——5—|A+B+0(— , 2.24
n= g 20 (%) 220
while the scalar spectral index becomes:
G'(¢) |2
1—n,~ 8 —2 M — 2.25
ng & 3€ — 21 + € PlG(gb) . (2.25)
where n = 777‘/. The tensor-to-scalar ratio can be written as:
r=16-Y_ (2.26)
- A+B '
Considering a specific model of GNMDC, we focus on the case:
a¢a—1
G(9) = Sypar (2.27)
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recovering the simple NMDC for a = 1. In the context of this particular term, when « becomes
larger, the post-inflationary instabilities related to ¢? < 0 become remarkably shorter as compared
to the (o = 1) case, resulting from the fact that near the bottom of the potential the GNMDC term
decouples and GR takes over as the dominant term. This in turn results from the fact that the more
the o parameter grows, the more dominant is the gravitational friction effect, allowing the scale of
the theory ﬁ to decrease significantly.

It is also shown that, for a given value of the scalar power spectrum Pr, while a growing «
parameter ameliorates the c2-instability problem, it also affects the values of the spectral index n
and tensor-to-scalar ratio. While r» becomes smaller, n, increases and tends to the outside of the
Planck 2018 likelihood contours, if one seeks to build a 60 e-fold model [155], though, going beyond
tree level calculations, can affect the predictions of a given model [158].

2.3 Non minimal coupling and generalized non minimal deriva-
tive coupling combined

We previously presented the realization of each of the standalone modifications to GR, namely
NMC and GNMDC. NMC leads to observables in good agreement with observations, however it
suffers from unitarity problems, while @« = 1 GNMDC solves the unitarity violation but leads to
c2-instabilities. Changing the a parameter, o > 1 GNMDC solves the unitarity, but only ameliorates
the 2 issues while making observable predictions less attractive, regarding the spectral index.

Keeping the above in mind, we now construct the combination of the scenarios of NMC and
GNMDC, intending to maintain their separate advantages while removing the corresponding disad-
vantages.

2.3.1 The model

We consider the combined action:

S = /d4x\/—g [Lor+ Ly + Lnme + Lonvmpol, (2.28)
with
M? 1
Lo = %R o Lo =—50"0,00,6 - V(9)
Lymc =Ef(PR , Lanmpe = G(9)G 0,60, - (2.29)
Varying with respect to the metric, gives rise to the field equations as:
G = gz [T+ ETMO 26T —G@THMPD] L (2.30)
Pl

while varying with respect to the scalar field leads to:
O¢ — G 2G(9) VIV + G' () V'OV ¢ + {f (9)R -V (¢) =0 , (2.31)

where:

1
T;Sf) = vu¢vv¢ - gg,uuvMﬁv/\Qb - guuv(¢) s (2.32)

TN = =2/(¢) [RW - ;gWR] = 2(®) 9w 06 = V,u V0] = 2"(0) [0, VA6V 6 = V.6V, 0]
(2.33)
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TMPED =AR V)¢V ¢ — G VadV ¢ + 2[VIV R uer + V.V OV, Vad — V, V.0V 6]
+ 9w [V2oV20 — V. VAoV VG — 2RA\V* OV @] — V.6V, 0R | (2.34)

TP = g, (VAOVA GV — VEOV GV .V 0) + 2V 6V (,6V,) Vad — VAoV GV, V 10
— V.oV, V36, (2.35)
The indices in parentheses denote symmetrization. For G(¢) — 0 we recover the GR+NMC case,

while f(¢) — 0 recovers the GR+GNMDC case.
For a FLRW metric (2.3) we extract the two Friedmann equations:

.2 . .
po = SMBH? = 0 4 V(0) +9G(6) 20 — 6€ [f(@)H” + f(0)oH] . (236)

and:

12
—py = M2, (3H2 + 2H) = V(9) - 5 +G(9) (3H2q'52 2+ 4H¢Ba}) + 26" (¢)H®

—2€ [3f()H? + 2f(9)H + 21 (6) + $*F"(9) +1(9)d] . (2.37)

where for convenience the effective energy density (py) and pressure (pg) of the scalar field are
introduced. Klein-Gordon equation (2.31) becomes:

¢ (1+6G(¢)H?) + 3HP(1 + 6G(¢)H? + AG(¢)H) + 3H?G' () $* — 6£f'(¢)(H + 2H?) + V'(¢) = 0
(2.38)

By combining the above equations, one sees that in order for the scalar field to obtain real values,
quantity

Q = 662421 (6) +€ (2£(6)0* + 4£(6)V (6)) + G(9) (3" — 66V (9)) + Mp6? +2MEV(9) |
(2.39)

must be positive.

2.3.2 Slow Roll Inflation and the three regimes

From a theoretical point of view, when one investigates a theory combining two different terms, one
expects that there will be three different regimes to study, depending on the relative magnitude:
one where GNMDC is dominating, one where NMC dominates, and finally a regime where the two
terms are approximately of the same order. Before we discuss each one individually, and to facilitate
the following discussion, we first provide the slow-roll framework of this theory.

In the slow-roll approach, that is, when H < H?2, d) < H, and d) < 3H q'b, keeping the leading
terms of GNMDC and NMC, the first Friedmann equation (2.36) can be written as:

M H? = 9G(¢)H?¢* — 66 f(¢)H? + V() (2.40)
while the scalar field’s equation, (2.38), is simplified, taking the form:
3H¢ (1+6G(p)H?) — 12H?Ef'(¢) +V'(¢) =0 . (2.41)

Hence for (2.41) we have disregarded the terms coupled to qg? the GNMDC term coupled to q52 and
the terms that add H to H?, since e < 1. Likewise, for (2.40) we have disregarded the ¢?/2 term as
compared to the GNMDC term coupled to ¢2, as well as the term f’(¢)¢pH as compared to f(¢)H?.
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The argument for the latter approximation is as follows: In a SR scenario typically the scale
factor changes exponentially while the scalar field rolls very slowly down the potential well. Hence,
it is safe to suppose that ¢ < H. Regarding f’(¢) and f(¢), since the focus here is in monomial
forms of f(¢), which yield f'(¢) > f(¢) in the small field scenarios (¢ < Mp;), one can see that the
difference is less important than the one between gb and H due to the slow-roll. Hence we only keep
the f(¢)H? term. The numerical analysis that follows will support the above argument, see Fig.
2.3.

Through equations (2.36) and (2.37) one obtains the exact form of the parameter e = —% as:

€=€Grt+€G1 T €G22+ €G3+ €cat+ent +En2+Ens +Ena (2.42)
where a number of auxiliary slow roll parameters are introduced. For the GR sector we have:
12
€GR = W )
For the GNMDC sector we define:

PG __PHG)

ST T TR
_ 200G(9) _ G(9)¢
€G3 = MIQDZH 5 €Ga = M}QDIH 5 (243)
while for the NMC sector we have:
o 2601 _ ()9
MIQDZH2 ) N2 MI%IH )
_ $%1(9) _&f(9)9
EN3 = W ) EN4 = Ml%lHQ . (2.44)

The above parameters will be used to quantify which term of the theory dominates. In particular
the eg; are related to GNMDC and ey, are related to the NMC (index ¢ runs from 1 to 4). egr is the
usual slow-roll parameter of the minimally coupled, single-field scenario of inflation. The previous
discussion has shown that in the slow-roll era the only important terms should be €g1, ex1 and €.

Having defined the above, we now move on to calculate the perturbative functions, as functions
of the auxiliary parameters. By use of the definitions in Appendix B we find:

gr=mp (1- L) Fromp (1452 -0 (2.45)
3 € 3 €
S = M%,H? (m +6er + bena + 3% - 3) . O=MEH(1—cc —ena — %) . (2.46)
MI%Z -2
Gs = — 9 len1 + €(eq1 +enva — 1)] 7 [e(egr — 3) + 3en1] {—3eni(ec1 + ear)
+e [3egy + 3ear + e + €61(3 — ecr + 126n2)] } (2.47)
M3,

Fe=— {62 {6%:1 [Ten1+ 17eno +ens — 4 —3(egs + eqa + €na) — 4]

9e(ec1 +ene — 1) + en]?
+ 46“2’;1 + 3ec1 [2ea3 — 2€ca(ena — 1) — 10en1 —2en3 + Sena(ene — 2) + 2en4] + 9 (2egaens
teas + €ga + 3en1 — Behg + ena + ens + ena) } teent [ea1(—6eas — 6ega + 15en1 + 302

+6€en3 — 661\/4) -9 (26@3 + 2eg4(€N2 + 1) + 3en1 +2(€N2 + €ens + €N4) — 36?\/2) + 46%;1]

+(ec1 — 3)%(eq1 — 1) + e, (€ — egr — €1 — €G2)}. (2.48)
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As we argued before, one of the most important quantities to be studied in order to check
the viability of a cosmological model, is the squared sound-speed of the perturbations. We insert
the above equations into the defining equation of the sound-speed, (B.15), and obtain the exact
expression in terms of the epsilon parameters:

ci = {e [€G1(126N2 —egr+3)+3 (eél +eqr + 36?\,2)] —3ent(eq1 + eGR)}_l [e(eg1 — 3) + 36N1]_1
{62 {€&1 [Ten1 + 1Tens + ens —3 (eas — €ca — ena) — 4] + 3eq1 [Bena — 2)ena — 2eqa(ens — 1)
—10en1 + 2 (g3 — ens + ena)] + 4ety + 9 (€3 + 2egaena + €ga + 3en1 —3€hs + ena + €na

+ena)} +eent {ec1 [6 (ens — €as — €ga — ena) +15en1 + 30ena] + 4z — 9 [2ea3 + 3ent

+2eca(ena + 1) + 2(ena + €ns + ena) — 3ean] } + € (€a1 — 3)*(eg1 — 1) + 9exy (eas + €cu
+ent +ena +ens + 6N4)} (2.49)

It is interesting to check its various limits. We begin with the GR limit, where eg;, €n; — 0,
and see that ¢ becomes identically equal to 1 as expected. The same result is obtained in the NMC
limit, where eg; — 0, again as we expected. Lastly, in the GNMDC limit, where ex; — 0, we get:

2 _ 1

(ec1 — 3)(3egi(eg1 + 1) — (g1 — 3)egr)
. {6(6@1 — 1)(66‘1 — 3)2 + 9(€G3 + €G4) + eg1 [6@1(466;1 — 3€ea3 — 3€qs — 4) + 6(6@3 + eg4)]},
(2.50)

which by use of the definitions (2.44) gives expression (2.22).

In general, we want to extract more information about the behavior of the full equation (2.49).
By a tedious manipulation of this equation there is a clear note that one can make. Using equation
(2.42), to substitute € with the auxiliary e functions, one ends up with the following expression:

21~ O(eci)
° fe(eni, ear) + O(eqi)’

(2.51)

where f, is a function that does not depend on the eg; parameters, while O(eg;) is a function at
least of first order in €g;. Hence, the denominator of the fraction is of greater order when compared
to the numerator, when Slow Roll has ended and the NMC terms take over, as long as the derivative
coupling chosen, vanishes towards the bottom of the potential. This leads to ¢ = 1, which is one
of the main results of this work: Including NMC and a vanishing ¢-dependent GNMDC, regardless
of its exact form, can have the effect of completely healing the c2 instabilities of derivative coupling
(see Fig. 2.2 for the corresponding numerical results). This is to be expected since the NMC term
has a sound speed equal to 1 and it remains dominant after the end of the slow roll, unlike GNMDC.

On the same footing, using the same reasoning with equation (2.50), one can show that in the
GNMDC limit one acquires:

(2.52)

In this case, the fraction, is clearly non-zero in general, and can actually be both larger or smaller
than 1. This reconfirms the results of [155], regarding the squared sound-speed oscillations between
negative and superluminal values.

Regime 1: NMC > GNMDC

We now turn to a detailed study of the three regimes. We start with the case where the GNMDC
term is negligible compared to the NMC term during the slow-roll era. Observing equations (2.40),
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(2.41), we deduce two requirements that should be satisfied, namely:

G(9) .
£> f,(¢)H¢, (2.53)
and
G(9) >
£> f(¢)¢ ; (2.54)

Based on our previous discussion, the former is actually stronger than the latter. Nevertheless, the
GNMDC form (2.27) on which we focus in this work, decouples at the end of inflation. Hence,
enforcing the above constraints, makes the GNMDC unimportant throughout the field’s evolution,
bearing no particular effect in both the early and late stages of the Universe’s evolution. This renders
it irrelevant in terms of phenomenology and we do not study it further.

Regime 2: GNMDC > NMC

To bring about this regime of GNMDC domination, using equations (2.40) and (2.41), we can extract
relations:

G(&) .,
£ f,((ﬁ)Hdn (2.55)
and
G(9) ;o

where the latter is stronger than the former, if NMC dynamics are to be negligible in the slow-roll
era. But unlike the case where GNMDC <« NMC, the post-slow-roll dynamics cannot be studied
without terms owed to the NMC. This is owed to the fact that a ¢-dependent GNMDC term, quickly
becomes subdominant near the bottom of the potential, in the post-slow-roll phase. Thus, this case
ought to be studied in greater detail, specifically in order to examine the sound-speed, due to the
corresponding GNMDC instabilities.

As discussed and shown with eq. (2.51), our aim is to investigate whether the inclusion of the
NMC term corrects the ¢2 values towards 1, compared to the standalone GNMDC modification.
An indication towards this direction comes from the fact that the NMC sound speed is identically
equal to 1. Since the NMC takes over (or is at least comparable) with GNMDC in the post-slow-roll
period, one expects that the sound speed will be corrected. Instead, of providing explicit results here,
we do it in the analysis of the next regime, namely where NMC ~ GNMDC, which also showcases
what we have discussed here.

Regime 3: NMC ~ GNMDC

We shall start with the slow-roll equations presented before. To enforce the regime NMC ~ GNMDC,
we choose between the two requirements presented earlier, one of which is stronger. It is easier to
choose the weaker constraint which nevertheless is enough to showcase the results of our model. In
particular, we will enforce:

£f'(9) ~ G(9)H (2.57)

while still

£(0) > G(¢)d” (2.58)
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and additionally suppose that the GR terms are negligible when compared to the GNMDC and
NMC ones during slow-roll. Then, equation (2.41) becomes:

18G(0)H ¢+ V'(9) = 12H°¢f'(9) , (2.59)
while equation (2.40) is particularly simplified:
M2, H? + 66 £ (6)H? = V(9) . (2.60)

By the discussion following equations (2.40) and (2.41) one understands that the dominant
parameters during the slow-roll period are €g1, €1 and €. Hence, if one is interested in the early
phases’ predictions, we can keep only the first-order contributions with regards to these € parameters.
We get then:

Fo=Gs~ Mpec - (2.61)

From (B.15) we now obtain ¢? = 1 during the slow-roll period (equivalently maintaining only pa-
rameters g1, ex1 and exg in expression (2.49) gives ¢? = 1).
Using expression (B.19), for the scalar power spectrum at first order we obtain:

H2

Pr~ —o——
8M3E,m2ec1

(2.62)

coinciding with (2.24), if we only keep the first order contribution. It is notable that up to first order,
the NMC term does not have an effect on the power spectrum’s value, since the only € parameter
that appears is eg1.

For the tensor-to-scalar ratio r, using (B.19), (B.20) we get:

16€ec1

r = 16eg1 + o1 T ena ENT - (263)
Unlike the power spectrum, this result emphatically shows the effect of the combined theory. In
particular, during slow-roll we have ey; < 0, implying that the NMC term lowers the standard result
7 = 16eg1. Thus, it corrects the tensor-to-scalar ratio to better agreement with the observations.
The low tensor-to-scalar ratio, which is a characteristic result of the standalone NMC term, is
maintained in the combined theory.

Turning to the scalar spectral index, ng, using (B.19), (B.21) we obtain:

—3(eq3 +€ca) + 2ec1(ec1 + en1 + €n2)

ng ~ 1+
? eqi(ec1 +env1 +ena — 1)

(2.64)

Note that terms eg3, €g4 can not be ignored here, because the rest of the terms are of second order
in € parameters. As expected, when NMC parameters go to zero we recover (2.25).

To summarize, when a ¢-dependent GNMDC and the NMC terms are of comparable magnitude,
the inflationary model can be completely healed from the ¢? < 0 unstable region. Moreover, the
tensor-to-scalar ratio remains inside the Planck 2018’s contour plots, increasingly improving as
the NMC term becomes more significant. Finally, the scenario can be healed from the unitarity
problem, because if GNMDC becomes more significant during the slow-roll period, the magnitude
of £¢2 decreases drastically. All of the above results hold as long as function G(¢) is ¢-dependent,
and at the bottom of the potential becomes negligible. These features make the combined scenario
better than its individual counterparts.
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2.4 Numerical investigation

In this Section we will perform a numerical study to demonstrate the general results of our theory
by use of specific examples. The main results of the previous section are equations (2.51) and (2.63).
In order to satisfy the necessary ansatz for these results to hold, namely that GNMDC becomes
negligible at the end of inflation, we will choose a monomial/polynomial form for G(¢)?.

We consider, then, specific forms for the NMC and GNMDC. For the coupling function f(¢)
we choose the well-documented case of the standalone NMC, namely f(¢) = £¢?. For the latter,
we consider monomial form (2.27), namely G(¢) = % . We will also discuss an example with

a;—1
VA
to compare with the literature, we shall consider the inflaton to be the Higgs boson, making the
corresponding choice in terms of the potential [25,151]:

_ A
-

a polynomial form G(¢) = Furthermore, to increase our theoretical justification, and

V(9) (2.65)

Finally, in what follows, we impose a normalization constraint obtained through observations,
that the scalar power spectrum value at k = 0.05Mpc~" is Pg = 2.2- 1072 [67]. Initial conditions
are chosen in order for the produced models to yield 40, 50 and 60 e-folds.

For the monomial GNMDC case, in Fig. 2.1 we show the evolution of the scalar field for various
cases. The main observation to be made from this graph is that even though in the standalone
GNMDC case the oscillations of ¢ and ¢ are wild, in the scenario at hand, the period of the field
oscillations increases. This plays a crucial role in the analysis that follows, since it is the healing
factor for the c2-instabilities.

We move on to calculate the inflationary observables. In particular we focus on the scalar spectral
index and tensor to scalar ratio, using expressions of Appendix B. In the upper panel of Fig. 2.2,
one can see the obtained results for the single scenarios of NMC and GNMDC, as well as for the
combined theory at hand. In the same figure we provide the 1o and 20 contours of the Planck 2018
data [67]. It can be seen that NMC yields very satisfactory predictions, however due to unitarity
violation this model has to be modified or abandoned. Single GNMDC scenario solves the unitarity
issue, but leads to quite large 7 values and instabilities related to ¢2. We can see that, in the
combined NMC+GNMDC scenario we ameliorate the unitarity issue, and at the same time improve
the obtained r values, in agreement with Planck 2018 contours. An increasing « improves the results
further. In more detail, one observes that for the same value of « (dashed lines for o = 3, dotted
lines for o« = 5), as parameter £ grows, r lowers. For the same value of £ (blue lines for & = 1500,
red lines for £ = 2000), increasing « lowers r. This result was expected as it is known to be one of
the main results of single GNMDC [155].

In summary, monomial GNMDC models with larger o are more desirable in the context of the
combined theory proposed in this work, due to the enhancement of the gravitational friction effect
that o quantifies. But a polynomial GNMDC can bring about the same effect, since inflation can
be carried by two or more “frictious” terms present in it. We will demonstrate such a model later.

We shall now examine the evolution of ¢2 in order to demonstrate that the combined scenario
heals the c2-instabilities of the standalone GNMDC. In the lower panel of Fig. 2.2 the evolution of
2 is depicted, for a variety of cases. While in the standalone GNMDC (i.e. for £ = 0) the squared
sound-speed wildly oscillates between positive and negative values, when the NMC is switched on,
we obtain a remarkable decrease of the oscillatory behavior and a stabilization to positive values.
We note that in the combined scenario, near the end of inflation, the GNMDC contribution smooths
out, while the NMC term remains co-leading alongside standard GR terms (i.e. of the minimally
coupled scalar field). Since the standalone NMC as well as the GR terms have no instability issues,
the ¢2 < 0 related instabilities are healed.

LOther similar forms still produce viable results.
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Figure 2.1: The evolution of the inflaton in three different scenarios: GNMDC with o = 5, NMC
with & = 8000 and combined NMC+GNMDC with o = 5 and £ = 2000, respectively. All models
produce 60 e-folds and Pr = 2.2 -107°. The period of oscillations increases. Also the initial value
of the field, in the case where NMC becomes more important (equivalently as & grows). Note that
when the two theories are combined, £¢2 remains less than Mpy.

To clarify the picture painted with the above discussion, the relative effect of the GNMDC and
the NMC contributions can be seen in Fig. 2.3, where we present the contribution of each term
in the dynamic equations. It becomes clear that even though during slow-roll, the contributions
from NMC and GNMDC are comparable, when the oscillations start, the NMC sector dominates
completely. Since NMC alone leads to ¢? = 1, its dominance in the combined model is adequate to
bring ¢2 away from the unstable region of the standalone GNMDC. Thus, the GNMDC contribution
to the ¢? near the end of inflation is dominated by the NMC and the wild oscillations of the sound
speed are damped much earlier. This damping of oscillations is more efficient for larger o values.
This also leads to better r values, thus, larger a values would be more desirable.

One then may wonder whether this is a realistic scenario, since quantum corrections should bring
about terms that might be of lower order, thus one should check the resulting phenomenology. In
fact, if one chooses a polynomial form for function G(¢), a very similar phenomenology is produced.
This happens because, unless the various terms of the polynomial are extremely finely tuned, there
will still be one monomial term that drives the slow roll and thus produce essentially the same
results.

But even in the case that two, or more, terms of the polynomial are actually of the same order
of magnitude, the resulting phenomenology is still the same, since the results of Section 2.3 are
independent of the exact form of the GNMDC chosen. They hold as long as the GNMDC is such
that becomes negligible at the end of inflation. Nevertheless, we will provide a numerical example
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Figure 2.2: Upper panel: Comparison of the predictions of the scenarios at hand versus the Io
(purple) and 20 (light purple) contours for Planck 2018 results (Planck +TT + lowP) [67]. NMC
corresponds to the dot-dashed line. GNMDC (purple lines) has been shown here for two cases, one
with « = 3 (dashed line) and one with o = 5 (dotted line). We use the same convention for the
combined NMC+GNMDC scenario in terms of a. We use the colour code of blue lines for & = 1500
and red lines for & = 2000. It is clear that NMC lowers the r value as it becomes more significant,
when compared to the standalone GNMDC. Low r-values are a signature feature of NMC of the form
¢?. Furthermore, one can see that for the same value of &, as a increases, v is also lowered [155].
Growing dots represent 40, 50 and 60 e-folds respectively. Lower panel: The ¢ evolution for the
scenario at hand, for a = 5, with & = 0,1500 and 2000. As the NMC' contribution becomes more
significant (€ increases), oscillations in its value are damped and the squared sound-speed is corrected
towards 1.
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Figure 2.3: Upper panel: Contributions of GNMDC' related terms (continuous lines) and NMC
related terms (dashed lines) in the Klein-Gordon equation (2.38), for a« = 5 and £ = 2000. We
observe that when the oscillations start, NMC' terms dominate and hence the GNMDC' effects are
negligible, while during the slow-roll era they are comparable. Standard GR terms are intentionally
omitted to simplify the graph. Lower panel: Contributions of GNMDC related term (continuous line)
and NMC terms (dashed lines) in the 0-0 field equation (2.38), for o =T and & = 2000. We observe
that during slow roll, the NMC is dominant in the field equation. A similar picture as in the upper

panel is also obtained: when oscillations start, NMC' is the largest contributing term.
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of such a scenario as a further demonstration.

To summarize our results so far, we see that in the combined scenario studied here, when inflation
starts, the gravitational friction effect due to the GNMDC term is what causes the model to produce
enough e-folds without resorting to £¢2 > Mp; values as in the standalone NMC case, alleviating
the unitarity issue. The NMC term causes, at the same time, the tensor to scalar ratio of the model
to be low, and in good agreement with observations, especially when compared to the standalone
GNMDC case. When inflation ends and the oscillations start, NMC terms remain more significant
than GNMDC terms, leading to a fast damping of the oscillations in the ¢2 value, saving the theory
of instabilities. These advantages of the combined scenario are the main results of the present work.

A final note is to be made, regarding the role of the GNMDC parameter o on the results. In
the combined scenario even « values still lead to viable models. This is not the case when GNMDC
is considered alone because of the constraint (2.39), which disqualifies the area of the phase space
corresponding to desirable values for the inflationary observables. The fact that in the combined
theory all a values can be used, is another advance in the richness of the resulting models.

This obviously holds for a polynomial GNMDC form too. If an even-valued « term is dominant,
the polynomial GNMDC numerics become unstable due to (2.39). This is healed, when polynomial
GNMDC is combined with NMC.

A further demonstration of the effects of the theory proposed here, will be performed by including
numerical results of a polynomial GNMDC term. Specifically, we will suppose that:

Ao —1

i
where 4 defines which and how many corresponding polynomial terms are taken into consideration.
Here, we will pick:

ag! (o —1)¢~"

2.
2M1°‘“+ oMg (2.66)

with o = 4, while the scale of the NMC is £ ~ 2000. The values of the coupling coefficients should
be such that these two monomials are of comparable magnitude. If that is not the case, then one
of them would dominate during the slow roll period, reducing the model to the monomial GNMDC
case already studied. But such a scenario (« = 4) is not viable in the sole GNMDC case.

We note that a polynomial GNMDC form clearly falls within the ansatz needed for the results
presented in Section 2.3 to hold, namely that the GNMDC decouples near the end of inflation. The
results produced therein, still hold. A polynomial GNMDC only affects the exact form of the eg,
parameters but not their overall behavior.

Constructing the phase space from which we obtain initial conditions and scales for the com-
bined theory, with a polynomial GNMDC, is a tedious task when compared to the monomial case.
However, if one imposes the ansatz discussed earlier, regarding the magnitude of the monomials of
the GNMDC, one can straightforwardly obtain results well within observational bounds. The overall
outcome is similar to the monomial GNMDC case, as one observes in Fig. 2.4. This was, of course,
expected since the eg, show similar behavior between the two cases.

2.5 Conclusions

It is a widely accepted fact, that if modern Cosmology is to explain the hot big bang and the resulting
primordial perturbations observed through the CMBR it has to be modified, by including an initial
inflationary period. Among the variety of ways to achieve that, arguably the most well-studied is
the inclusion of a scalar field. Its dynamics affect the evolution of the early Universe’s expansion,
perhaps leading to a solution of the corresponding problems. However, the only scalar field observed
so far is the Higgs field, hence it would be the best candidate for such a scenario.
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Figure 2.4:  Planck 2018 1o (purple) and 20 (light purple) contours (Planck +TT + lowP) [67],
on the r — ng space. The predictions of the polynomial GNMDC+NMC' scenario are also presented.
The resulting phenomenology is very similar to the monomial case of Fig. 2.2. We present two
cases, quantified by the scale of each term, M;, one with My = My (red dashed line) and one with
My = 10My (purple continuous line). Growing dots represent 40, 50 and 60 e-folds as before. When
NMC is not included, polynomial GNMDC' are not as stable due to constraint (2.39).

Theories in which the Higgs field is only minimally coupled to gravity have been excluded from
Planck observations [67]. The next step is to allow the field to couple non minimally with the
gravitational sector (NMC). Indeed, Higgs inflation, with a quadratic NMC coupling (f(¢) = ¢?),
has been shown to yield particularly good results, in terms of the comparison with the observations,
namely a low tensor-to-scalar ratio, while it is free of instabilities related to the sound-speed of
perturbations. However, it is also known to lead to unitarity violation - a rather significant problem
if one wishes to quantize the theory.

Considering non minimal derivative couplings of the scalar field to gravity has been shown to
avoid the unitarity issue, while still leading to satisfactory observables for inflation, due to the
“gravitational friction” phenomenon, that lowers the initial values producing a long enough slow-
roll period. Thus, a significant amount of e-folds can be obtained. On the other hand, these models
are plagued by perturbative instabilities, in particular when ¢? < 0. One can construct generalized
versions of non-minimal derivative couplings (GNMDC) that improve but don’t completely solve the
instability issue, considering for instance a coupling function of the form: % But the potential
problematic behavior is still existent.

Here we constructed a scenario that combines NMC and GNMDC, maintaining the advantages
of the individual models, and removing their individual disadvantages. In the combined theory
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considered, a long inflationary phase is easily achieved, while the initial value of the scalar field and
the scale of the NMC term are sub-Planckian. This feature is not possible in the single field NMC
scenario, because they are achieved due to the GNMDC term, bringing about the gravitational
friction effect. That is what extends the slow-roll phase, allowing for lower initial values of ¢,
alleviating the problem. Additionally, at the end of inflation, when the field reaches the bottom
of the potential, a suitable GNMDC term can be decoupled leaving the NMC term to dominate
completely.

To show this behavior, we chose to include two examples, one with a monomial GNMDC form
and one with a polynomial form, both satisfying the above ansatz (other GNMDC forms should also
be viable, if they become negligible at the end of inflation). In both cases we can see that a desirable
phenomenology is produced. Due to this setup, when inflation ends, canonical gravity is restored,
and therefore, the theory does not suffer from c2-instabilities due to wild oscillations, neither from
superluminal scalar perturbations that are related to the a = 1 NMDC case. Finally, the present
construction passes the recent LIGO-VIRGO contstraints on the gravitational wave speed [159,160],
since the non-minimal derivative coupling terms are among the ones leading to a gravitational wave
speed different than one.

In conclusion, the combined theory proposed here, leads to inflationary observables in agreement
with observations, and is free from c2-instabilities. At the same time, it alleviates the unitarity issue,
because it does not require as high values for the scales and initial conditions of the theory, as NMC.
We therefore understand that it maintains the advantages of the individual scenarios while healing
their disadvantages.

We thus conclude that inflationary scenarios with combined non minimal and derivative couplings
to gravity, may provide successful grounds for the description of inflationary dynamics, as well as
other mechanisms related to inflation, like the formation of Primordial Black Holes, and deserve
further investigation.
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Chapter 3

Reconstruction of cosmological
evolution in the presence of extra
dimensions

3.1 Introduction

Advances in string theory have brought forward the idea that unifying all physical interactions might
require the study of models with more than three spatial dimensions. When building a model with
extra dimensions, a mechanism has to exist, to recover the four-dimensional spacetime. This is
generally known as a dimensional reduction mechanism. One way to perform such an act, comes
about by the use of the Kaluza-Klein (KK) dimensional reduction formalism [161,162]. One usual
way of working in this direction, is by building models in the so-called brane-world scenario [163],
according to which the Standard Model of Physics, with its matter and gauge interactions, is localized
on a three-dimensional hypersurface, the brane, that is itself embedded in a higher-dimensional
spacetime. Gravity propagates in all spacetime, which is referred to as bulk, and thus connects the
Standard Model sector with the space dynamics [164].

Cosmology resulting from theories with branes embedded in extra spatial dimensions has been
extensively studied. A particularly detailed analysis has been done for brane-world models in five-
dimensional (441) spacetime. The dynamics of the extra dimension have an effect both at early and
late times during the Universe’s evolution, depending on the model. The dynamics of this and similar
models with one, transverse to the brane, extra dimension (codimension-1 brane models) is in fact
well understood. The cosmological generalization of the early-time (high energy limit) evolution [163]
is modified by the squared value of the matter density living on the brane. The bulk’s imprint on the
brane, is realized through the dark radiation term. It leads to the presence of a bulk cosmological
constant, thus recreating conventional late time cosmology (low energy limit) [165].

A different approach has been proposed [166], based on the existence of large extra dimensions,
with a size of a few TeV, leading to new mechanisms for supersymmetry breaking as one of its
primary results. One particular case within this context, is the case referred to as Universal Fxtra
Dimensions [167]. According to this scenario, the extra dimensions are accessible to all Standard
Model particles. Then, a dimensional reduction of the full Lagrangian of any Standard Model
particle will lead to a tower of Kaluza Klein states that will be perceived, from a 4-D perspective,
as massive particles (see [168], [169]).

Hence, this setup is particularly interesting in a cosmological context, because it incorporates
naturally possible candidates for dark matter, which is one of the main shortcomings of the cosmo-
logical Standard Model. A stable KK Particle (LKP) could still exist today as a thermal relic and
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if not charged and of baryonic nature, it possesses all essential properties of what is referred to as a
weakly interacting massive particle (WIMP) [170], [171].

In the effective 3+1-dimensional picture of the UED scenario, the fundamental coupling constants
can be shown to vary with the volume of the internal space, due to the dimensional reduction.
However, strong cosmological constraints are imposed on the allowed variation of these constants.
These require the extra space to not only be compactified, but also stabilized (i.e. neither increasing
nor decreasing in volume), before Big Bang Nucleosynthesis (BBN) takes place. Therefore, one has
to find a compelling explanation for the stabilization of the extra dimension(s), in order to produce
a viable cosmological model in the context of UED.

It has been shown [172] that this is possible to achieve during the radiation domination era with
no explicit mechanism, but this is not the case for matter domination [173,174]. Using the typical
definition of momentum flux for both the usual and extra spatial sectors, it was shown that if dark
matter consists of a significant amount of KK particles, a constraint regarding the equations of
state of the usual and extra spatial fluids is obtained. This constraint is in general incompatible
with the stabilization constraint, coming directly from the field equations. Thus a mechanism that
circumvents this problem has to be proposed, for example stabilizing the extra dimensions by use of
background fields [175].

We will now reproduce a cosmological evolution similar to that predicted by the ACDM, without
imposing any constraint regarding KK dark matter. To be consistent, then, we have to either
suppose that KK modes are not a substantial fraction of the dark matter, or abolish the typical
connection between momentum flux and pressure for the extra spatial fluid, instead assuming that
matter is described by a more fundamental theory in the microscopic level.

Examples include [176,177], where a case with strings wound around the compactified extra
dimensions was proposed, and explored. Such a setup would result in a negative pressure effect,
holding the compactified dimensions in place. Note that this is unlike the usual picture of non-
compactified dimensions where negative pressure drives their accelerated expansion ( [178], but
also [179]). Regardless, our effort will revolve around recovering a picture equivalent to that of the
ACDM, in the context of UED, while imposing stabilization constraints that are solely quantified
by related phenomenology/observations.

In Section 3.2 we present the setup of this scenario, generally following the setup of [172]. In
Section 3.3 the solutions of this setup are presented, showing the existence of an attractor solution.
This solutions attracts a huge variety of initial conditions. In Sections 3.4 and 3.5 the constraints
that have to be followed are discussed, and thus we construct such a model with the sole purpose
of recovering late time results of the ACDM. In Section 3.6 an interesting case of the equations of
state is presented, before we conclude in Section 3.7.

3.2 A Homogeneous Universe in (3 + 1 + n)-dimensions

A first assumption made is that the Universe is homogeneous in (3 + 1 + n)-dimensions, but also
we assume that it is not isotropic as a whole, but is instead isotropic in the usual 3 dimensions and
extra n dimensions separately. To describe then this Universe, we allow for different scale factors in
3-D and n dimensions of the FRW metric:

ds® = —dt* + a*(t)yi;dz'dz? + b (t)FpedyP dy? (3.1)

Naturally, 7;; and 7,, are maximally symmetric metrics in three and n dimensions, respectively
according to what we specified above. Thus, to parametrize spatial curvature in the usual way, we
will use two separate parameters, k, = —1,0,1 in ordinary space, and k;, = —1,0,1 in the extra
dimensions.
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Choosing this metric, the energy-momentum tensor takes the form:

- 0 0
T% = 0 . 0 |, (3.2)
0 0 ¥*pe
describing a homogeneous fluid that is, in general, anisotropic, in its rest frame. The pressure and

energy density in the ordinary and in the extra space are related by the respective equations of state:

Pa = Wap, Db = Wpp (3.3)

We can now recover the nonzero components of the field equations, by use of the background
metric (3.1), which read as:

N . ; [N\ 2 T
a ko ab nn-1 b kp
.. N2 - . F 2 .
294, g +@+n§+2nﬂé+w é +@ ffﬁzw
a a a? b ab 2 b 2| af>
) ] (3.4b)
. 9 . . M.\ 2 7
a a ko b ab n—1)(n—2 b ky
3a+3<a> +3¥+(n—1)5+3(n—1)56+()2# <b> +b—2 = — K2wpp, (3.4c)

An overdot is used to denote differentiation with respect to cosmic time, ¢. Because of the conser-
vation of energy:

T%.4 =0 (3.5)

we obtain relation: )
p a b
=31 =~ —n(1 -
P = 314wy - n(1 )

If the equations of state are non-dynamical, this can be integrated to give

—3(14w,) —n(1+wp)
a b
(X v _ 3.7
p p(@) (b> (3.7)

Note that a subscript ¢ indicates arbitrary initial values, and subscript 0 indicates today’s values
throughout this chapter.
We can rewrite eq. (3.4a) in a more familiar form, by introducing the Hubble parameters H, = £

(3.6)

and Hy, = % for the ordinary and the extra space respectively:

(n—1)

ka k
BH + 35 +3nH,Hy + i > b

{Hf + bZ} =rK%p. (3.8)
Equation (3.8), then, is the Friedmann equation of a homogeneous Universe with energy density
p in (3 4+ 1+ n)-dimensions. A further assumption that we make henceforth is that the curvature
of the three-dimensional space and that of the extra dimensional-space are zero. Then, the above
relation yields a simple algebraic connection of the Hubble parameters H, and H} through p, while
equations (3.4b) and (3.4c), yield the codependent accelerations of the two scale factors, a(t) and
b(t). These equations result in a constraint between the equations of state if one aims to achieve
exact stabilization of the internal space.
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3.3 Evolution of the Hubble parameters

We now study how a (3 + 1+ n)-dimensional cosmological model could evolve to an effective (3+1)-
dimensional one. The extra n-dimensions have to eventually follow a compactification and stabi-
lization mechanism. We will show that a natural way of stabilization for the extra dimensions can
be achieved for certain values of the parameters of the equations of state, w,, wy. Moreover, the
field equations have Kasner-type solutions [180] which are known to act as compactifying mecha-
nisms [181].
As already mentioned, we will use k, = 0, which is the accepted value according to observations.
Regarding the extra dimensions, we will only consider toroidal compactifications, hence also k;, = 0'.
Using: .
a . 5 b
a Ho+Ha, b

and eliminating p by use of (3.8), we get an equivalent system of differential equations:

— i+ HE, (3.9)

3[(n — 1wy — nwy, —n — 1] nf(n—1)(3w, — 1) — 3nw,]

H, = H? H,H,
24n at 24 n b
n(n—1)[1+ (n—Dw, —nwy| _,
H, 1
* 2(2 + n) b (3.10a)
o - 3 (2wp — 3wg + 1)H3 3 (3nw, — 2nwy + 2)HaHb
24+n 24+n
n[5+n+3(n—Dw, —2(n— Dwy] _,
— Hi . 3.10b
2(2 +n) b ( )

This system depends only on the Equation of State (EoS) parameters w, and w;,. In order to
look for particular solutions, that play a very important role, as we will later see, we impose the
ansatz Hy(t) = ¢;H,(t). Substituting this in (3.10) we get two equations for H,. Demanding that
these equations provide the same solution, gives 3 values for ¢; when n > 2. They read:

o — 6 o — 6 o — 1 — 3w, + 2wy (3.11)
YT g 3n(2+n) ? =3n++/3n(2+n) s 1+ (n— 1w, — nwy '
K1 K2 K3
while for n =1 1+3 5
- Wq — 2Wp
=-1 = 3.12
C;,_/ ¢ —1 + wy ( )
K1
K3
For n > 2 there are two Kasner-type solutions, K1 and K?2:
o) Hq(0)(n ~ 1)
‘ n—1+[/3n2+n) - 3]H,(0)t . (3.13)
H (t) _ GHG(O) .
’ 3n++/3n(2+n)+ [3n+34/3n(2 +n)]H,(0)¢
‘ n—1—[/3n(2+n) + 3] H,(0)t - (310
6H,(0 '
Hy (1) (0)

T 30+ /B2 +n) + |30+ 3./3n(2 + )| Ha (0}t

1One can see from the equivalent of equation (3.10b), that for k;, # 0, a stabilized extra space is only compatible
with H, = const., which through equation (3.8) implies p = const.. That is particularly hard to match with Standard
Cosmology.
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while for n = 1 there is only one Kasner-type solution, since one of them reduces to H, = 0:

H,(0)
H,(t) = —2—~
Lt 2?(((())))15 Kl forn =1 (3.15)
() = =37 2H,(0)t

It might seem peculiar that (3.10), with an explicit dependence on the EoS parameters, has any
solution that does not depend on them. We note that, originally, Kasner solutions were vacuum
solutions of the Einstein equations [180]. Returning to the system (3.4), from which (3.10) is
produced through algebraic manipulation, and using p = 0, one can see that all w-dependences are
switched off. Moreover, Kasner solutions can be generalized in the presence of matter [181].

When the EoS parameters are constant, eq. (3.10) has another Kasner-type solution (hinted at
in [182]), that we refer to as K3 solution:

2[1+ (n — wg — nwp) He(0)

H,(t) =
(t) 2+ 2(n — Dw, — 2nwp, + [3 — 3w? 4+ n(1 + 3w? — 6waw, + 2w} )| H,(0)t K3
Hy(t) = 2(1 — 3w, + 2wy) Hy (0)
b 2+ 2(n — w, — 20wy + [3 — 3w? + n(1 + 3w2 — 6wawy + 2w2) H, (0)t
(3.16)

All these particular solutions have a constant Hy/H, ratio, throughout their evolution. Their
role is central in studying the behavior of the general solution of this problem, which will be shown
to be a product of these, when written in the phase space H,, Hy(H,). Their form (1/t), implies
that these solutions have a singularity and some more interesting properties. Kasner solutions (K1,
K2) have a constant deceleration parameter throughout. Specifically, for n = 1 we have g1 =1
while for n > 2:

Ha 24+n—4/3n(2+n) S0V n

N Vor > 2 (K1)
HZ 2*”%3:(2“’)<0vn22 (K2)

However, in the case of K3, the sign of q depends also on the values of the w parameters:

1+ n+(2-2n)w, — 6nw,wy + 2nw, + (3n — 3)w? + 2nw?
= 24 2(n — 1w, — 2nwy

Moreover, for a positive value of H, for ¢ = 0, K1 solution has its singularity for ¢ < 0 and K2 for
t > 0, while K3’s singularity again depends on the w parameters. Finally, it is notable that for the
K1, K2 solutions a contraction of the extra space (Hp < 0) guarantees the growing (H, > 0) of the
3-d space and vice versa, while that is not necessarily true for K3 because of the w parameters.

We proceed to obtain the general solution, (i.e. without imposing any ansatzes between H,, Hy).
Eliminating time in (3.10), we get a single differential equation. This is always integrable when the
EoS parameters, w, are constant.

dH, 6(1 +we +n(l —we + wb))Hf +2n(—1+n+ 3w, — 3nw, + 3nwy)H, Hy
dH, ~ 6(3w, — 2wy — 1)H2 + 6(2 + n(3w, — 2wy)) HoHy + 1(5 + 1+ (n — 1)(3wq — 2uy)) HZ
—n(n—1)(1+ (n — Dw, — nwy) HZ
T S (Buwn — 2wy — H2 + 6(2 + n(3wa — 2u0)) Hally + (5 + 1+ (n — 1) (3ua — 2up)) 2
(3.17)
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Integrating this, we get a solution that, after some algebraic manipulation, is written as a product
of the above particular solutions:

VTR [3(wa —1)? 4+ (1-8w2 +6wqwp — 2w (1+w)) |
const. =| Hy ’ .

Hy part
& N 3n+ \/3?\/2—’—771‘\/m(3+7l—3'wa_nwb)"l‘\/%(Q‘i‘n)(wa_wb).
Hy 6

K1 part
Hy | 3= y/3ny/Z | VERRSn=3un o) —Van(zn) )
H, 6

K2 part
(n—Nwe —nwpy+1  H, —vZFn (3- 8w +n (14302 ~6wewy+2u})) (3.18)

3w, — 2wy — 1 H, '
K3 part

The general solution’s taking of this form, as a product of special solutions of the system, ought
to be expected. This is due to the similarity of the resulting differential equation, with the Darboux
equation (see [183], §2.21). We also note that during the derivation of the general solution, K1, K2,
and K3 in the form:

Hy,—c¢H, =0

become forbidden constraints, due to their appearance in denominators of partial fractions.

Hence, the curves that correspond to them in the phase space of H,, Hy(H,), will appear as
limiting curves of every other possible solution curve in the phase space. We of course limit our
study only to solutions that are cosmologically viable (so for example we exclude solutions with
contracting 3-space: H, < 0). However, a more general picture is presented at the end of Section
3.6, in the form of flow diagrams. Finally, we note that the Kasner-type curves are straight lines
in this space, which in the case of K1 and K2 depend only on n (see eq. (3.11)), and thus are the
same regardless of the w parameters chosen. For the K3 case the ratio Hy/H, depends also on the
w parameters.

We can now use (3.18) to study the solution asymptotically, distinguishing two main cases. The
first case would be H,, |Hp| — oo uniformly. The case H, > 0 would, then, correspond to the
behavior of a universe close to a singularity. The case H,, |Hp| — 0 would equivalently describe the
asymptotic behavior of a universe heading towards an “equilibrium” state and is, in fact, the only
case needed to match this setup with standard cosmological evolution?.

The exact form of the exponents to which K1, K2, K3 solutions are raised, in (3.18), are the
deciding factors of how the above asymptotic behaviors can be reached. The dependence on the
powers’ signs and the position of the initial values (H,(0), Hy(0)) with respect to the K1, K2, K3
curves in the phase space is what determines towards which of the (H,, Hy) pairs: (0,0), (£o0, +00)
(and (0, +00) if n = 1) the solution goes asymptotically?.

To illustrate the above, we will work, without any loss of generality, with the solution for n = 1.
We can incidentally see that the K2 part reduces to the trivial solution H, = 0, mentioned before:

2We can directly see from (3.18) that asymptotic cases like H,/H}p / ¢ are not actually possible. As an example,
consider a case where asymptotically H, > Hyp, Hq/Hp # c. Ignoring the non-important constants, we end up with
an equation of the form const. =|Hp| | g—‘; -+, yielding |Hp|HZ? = const.. By substitution of this constraint in (3.10),
we can see that a non-trivial solution of this type is impossible. Thus, one sees that asymptotically it is possible only
for one of the K1, K2, K3 solutions to end up attracting the phase curve of any other solution.

3This is only incidentally true in the cases that are of cosmological interest. The deciding factors for the attractors
are the combination of the signs of the factors of eq. (3.10), along with the position of the initial conditions in the
phase space compared to the K1, K2, K3 curves.
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2v/3(3we —wp —2) (wp—1 Ha \/5(4_3wa_wb)+3\/§(wa_wb)
const.:‘ H, ’ V3( b=2) (s ).‘7_,_1’ .
~— Hy
H, part SN——
K1 part
H, |V3(4—3ws—wy)=3v3(wa—ws) 1—w H, |—V3(4—6wawy+2wp)
[ | lom 19
Hb 3wa - wa —1 Hb
~—~
K2 part K3 part

The regions where the exponents of (3.19) have specific signs, are shown in Figure 3.1, as functions
of the w parameters. We note that the region relevant to cosmologically viable models is region 2.
This area includes the constraint 1 — 3w, + 2w, = 0, which as shown in Section 3.4, is necessary to
recover many results of Standard Cosmology.

Let us work, as an example, in the case H,/H, — const, with H,, H, — 0. We see that choosing
EoS parameters in region 2 of Fig. 3.1, the H;, part of (3.19) will go to 0, because it is raised to a
positive exponent. We have seen that (3.19) is a product of various factors, so at least one of them
needs to go to infinity, in order to nullify the Hp part going to 0, and thus be consistent with the
constant value of (3.19) on the l.h.s.

Assuming one chooses appropriate initial values?, this can only be achieved asymptotically in
the case H,/H, — 1/c5. This makes the K3 part’s base go to zero raised to a negative exponent,
so in total it diverges to infinity. On the other hand, if H,/H, — const with H,, H, — oo, the only
way to be consistent in (3.19) with EoS parameters in region 2, is if the K1 part goes to 0 (because
H,/Hy — 1/c1), to nullify the Hy, part that now diverges to infinity.

We can make use of this mathematical result to construct cosmological models with desirable
properties, since region 2 of Figure 3.1 contains, all the cosmologically relevant values that we will
need in terms of the EoS parameters. For any initial values that are contained between the K1
and K3 curves, and EoS parameters in region 2, we know exactly the asymptotic behavior of the
corresponding solution: it will converge on the K3 special solution as H,, H, — 0. Making the
K3 solution have specific properties by means of fixing the w parameters (for example ¢ < 0 and
|Hy| < H,), we force the general solution (3.18) to eventually behave like that.

We illustrate this in Fig. 3.2, where we have chosen a specific pair of w parameters, with the
above in mind. We numerically construct the phase curves for 4 different choices of initial conditions,
to show the behaviors of their phase curves as compared to the curves of the Kasner-type solutions.

Before concluding this section, it is quite interesting to note that the asymptotically attracting
behavior of the Kasner-type solutions implies the existence of an attractor for the energy density,
p, through eq. (3.8) (for k, = ky = 0). The energy density of these scenarios will ultimately be
attracted to either empty universe scenarios (p = 0) through K1 and K2 solutions, or to the value
predicted by the K3 solution:

2 2(2 4 n)[-3(w, — 1)* 4+ n(3w2 — 6wawy + 2wy (1 4 wy) — 1)] Hy(0)? (3.20)
p = — . .
[2 4 2(n — Dw, — 20wy + £(3 — 3w2 + n(1 4 3w2 — 6wawy, + 2w?)) Hy(0)]

4Meaning initial values that correspond to a phase curve limited by the K1 and K3 curves in this example.
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Figure 3.1: For n = 1, the term containing only Hy in (3.19) is raised to an exponent that is
everywhere positive, except for region 3. K3’s exponent is negative in regions 2 and 3. K1 is raised
to a positive exponent everywhere, while K2 part is positive only in regions 1 and 2. As an example,
in the case g—‘; — const with H,, Hy, — 0 the general solution is consistent in region 2 where the Hy
part converges to 0, but is canceled out by the K3 part that diverges to infinity. On the other hand,
when H,, Hy, — oo, the roles are reversed. The K1 part is canceling out the Hy part in region 2.
Similar results are obtained for any n, although the various regions are different in size and shape.

3.4 Constraints to obtain a Cosmologically Viable Model

We proceed to discuss the constraints to be imposed on the parameters in order to produce a viable
cosmological model. First and foremost, many results of Standard Cosmology that are consistent
with observations need to be safeguarded, like the Big Bang Nucleosynthesis (BBN), and of course
the non-detection of any extra dimensions so far. This leads us to two main properties to keep in
mind, when it comes to the extra dimensions’ evolution: a primordial super-contraction® of their size,
rendering the extra space unobservable, followed by an (apparent) stabilization of their evolution
(Hp = 0), from at least as early as BBN. Stabilizing the extra space is extremely important in this
setup, since the fundamental coupling constants like Newton’s G, are inversely proportionate to

50r according to [176], an initial decompactification and super-expansion of the usual dimensions.
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n=1, w,=-0.7, wp=-1.48
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Figure 3.2: The phase curves for 4 different choices of current values of H,, Hy, are presented.
Curves 1 — 3, are produced with current H values increasingly further from the K3 solution. Thus,
the general solution is dominated by K3 for a smaller region (that in general would also imply
a smaller time period). Curve #4 corresponds to a current ratio between the Hubble parameters,
Hy/H,, that is bigger than that of the K3 solution. Thus it corresponds to a different family than
the first 3 curves. Going backwards in time one observes that the K1 solution dominates for curves
1 — 3, while K2 dominates for the fourth curve, which for n = 1 degenerates to the curve H, = 0.

the extra dimensions’ scale factor, b(t):
GN ocb™ ™

If that were not the case, then we would be able to measure a change in G by observations of high
redshift objects, which so far is not the case.

The first of these properties is somewhat vague, since the minimum detection energy of the extra
dimensions obviously depends on the compactification radius of a given theory. However, the second
is very specific. Experiments and observations have been carried out, studying the values of the
fundamental constants of all theories [184]. There exists no evidence that fundamental constants
are not, indeed, constant throughout the evolution. As already mentioned, this would not be the
case if extra dimensions, in the context of UED, evolved quickly, though a very slow evolution is not
excluded.

Furthermore, we can follow a straightforward process to obtain a constraint for an exact sta-
bilization, with regards to the EoS parameters [172]. By simple inspection of the equation of Hp,
(3.10b), if we switch off all terms containing it, leaves as the only non-trivial solution the equation®:

1— 3w, +2w, =0 . (3.21)

6The combination of the w parameters is affected only by the dimensionality of the usual space, not that of the
extra space. For example, if a(t) corresponded to m instead of 3 dimensions, the corresponding constraint would be
l—mwg+(m—1)wy

1 — mwq + (m — 1)w, = 0. The ¢; factors would be different too. For example c3 = T (n=-1)wa —nwp
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However, we do not impose this particular constraint. We will instead allow for a slow evolution
of the extra dimensions, which, obviously, leads to a looser version of (3.21). It is easy to see that:
by observing (3.21), we see that it is actually a special case of the K3 solution - the one in which we
demand that c3 = 0. In the phase space of the Hubble parameters, this corresponds to the H, = 0
axis. So enforcing a looser version of (3.21) simply demands that w,, wy are such as to produce a
K3 curve with a very small ratio Hy/H,.

Moving on, in order to build a viable model, there are two specific constraints to be used to
quantify an apparent stabilization to an effective 3-dimensional observer, namely:

1

7O < L g 3.22
‘ b | < lon a ) ( )
and ) )
| BBN; today‘ ~ 1% ) (323)
The first one is derived in [185] by a comparison of the experimental/observational results for
Gn

rere with the currently accepted value of the Hubble parameter, Hy, and utilizing the fact that in
the UED scenario, it holds that G o b~™. On the other hand, constraint (3.23) is inferred by a
variety of works that take into account a plethora of tests, like element abundancies to check the
electroweak coupling for various redshifts [184].

We could of course apply stricter constraints and still obtain solutions. But a much stricter con-
straint would effectively lead to an exact stabilization of the extra dimensions, which we already saw
that is merely a special case of the K3 solution. Moreover, we will fit H, results with observations,
and also other observationally studied parameters, like the deceleration parameter, g:

H
a2’
These will lead to a picture that is similar to that of the ACDM.

Combining specific observational results with stabilization constraints would, in general, be a
tedious task. However, the K3 solution acts as an attractor for all possible pairs of initial conditions
with a positive H, that are between the K1 and K3 solution 7. So, by making K3 consistent with
these constraints, we create a significant in size class of phase curves, that correspond to a model
compatible with imposed constraints. This completely removes any possible fine-tuning problems in
terms of the initial values of H,, H;. Essentially, the study of any cosmologically viable solution for
a given pair of wg, w; of the system, reduces to the study of its corresponding K3 solution.

We want to create a model that is stabilized from an early epoch. The K3 solutions for the
various w parameters in its evolution (i.e. w?P =1/3, wMP = 0 and their w;, counterparts) will be
required to have a very small H,/H, ratio. This implies a closely correlated evolution of the EoS
parameters themselves:

g=-1-

H
apparent Stabilization = (—b>

(K3) Hyy\ (K3) Hy\ (K3)
8 ~ () ~ (i)

D. Energy era Ha Mat. Dom. Ha Rad. Dom.

We note that this comes at the cost of having to motivate a mechanism leading to w parameters
evolving in the manner outlined above. This incidentally implies that w; behaves in an exotic
manner, if the stabilization holds from matter domination and on (for example through phantom
energy scenarios [187], [188], or through string theory [176]).

Since, K-type solutions attract all other phase curves, it is important to know whether their
perturbations decay with time. For solution K3, setting:

Ha(t) = Hff’(t) _i_ngr(t), Hb(t) — Hzf(s(t) + H{:er(t)

"That is also true between K2 and K3. However , they are less desirable since they correspond to an expanding
extra space
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in equations (3.10), if we disregard all the non-linear perturbative terms, we obtain:

21" [(3(w?2 = 1) + n(wy, — 3w? + 3wawy, — 1)) HE" + nwy(we — nwg + nwy, — 1) HY"|
24 2(n — Dw, — 2nwy, + (3 —3w2 + n(1l + 3w2 — bwawy, + 2w§))tH(§0)

Hper —
(3.24a)
2H") [3w, (3w, — 2wy — 1) HP + (3(w, — 1) + n(3wawy — 2wf — 1)) HF']

P = © (3.24b)
24 2(n — 1w, — 2nwy, + (3 — 3w2 + n(1 + 3w? — 6wawy + 2w?))tHa

which is integrable for any value of n and constant w parameters. We now present the behavior of
the perturbations as a function of t for n = 1, which for both Hubble parameters is:

—4+43wg twy
er — 2
ng’r, Hg’ o t2 3wawb+wb

For all interesting values of the w parameters (and in particular for those that guarantee a stabilized
extra space), the perturbations are decaying with time. This is because the exponent of t is negative
in regions 2 and 3 of Fig. 3.1, so one obtains the convergence on K3 of all cosmologically relevant,
in terms of the w parameters, solutions, that are close to it.

If the same procedure is followed for K1 and K2 solutions, for n = 1 (meaning solution (3.15)
and H, = 0), it can be shown that the perturbations’ evolution is:

HPe™ HPT oc ¢

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1.0

-2.0

Figure 3.3: The red triangular area includes the values of the w parameters making K3 solution
satisfy the stabilization constraint for today. The blue, yellow and green areas of the graph, represent
values for these parameters that produce an increasing (as we go towards (1,1)) value for q. The
dashed line represents the exact stabilization constraint. We observe that as the values of the w
parameters become more exotic, the constraint becomes less stringent.
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3.5 A reconstruction from today until the era of Radiation
Domination

In order to model the behavior for the EoS parameters as outlined above, we will use transitions
between values of w, that are consistent with the Standard Model of Cosmology and the observations.
The same will be done for wp, while demanding that the stabilization constraints are satisfied.
As long as the reasoning presented earlier is satisfied, any transition between these values, like a
generalized Chaplygin gas [186], should be a viable option.

To build our model then, we will make appropriate choices to satisfy observational results for
the current values of some cosmological parameters:

km/s
Mpc

Hy~ 70 7qo%—0.6,
while at the same time preserving the theoretical results of Standard Cosmology, with regards to the
evolution of the scale factor during radiation and matter domination (¢t'/2 and ¢2/ respectively).

We will utilize our earlier result, that any solution will converge on a K3 solution, that satisfies
any constraint that we want to impose. Since we analytically know the behavior of all K3-type
solutions, it will be straightforward to quantify the various constraints. For example, in Fig. 3.3
one reads the region from which the EoS parameters can take values that satisfy constraint (3.22)
(red triangular area), by using (3.16), in comparison with the constraint for an exact stabilization,
(3.21) (dashed line). We also show 3 regions of the w parameters that correspond to 3 different
current values of gx3. Combining these compels us to choose from a specific region if we desire an
apparent stabilization and ¢ &= —0.6 that corresponds to the observations. Finally, the transitions
of the w parameters, will be such to also take into account the generally accepted transition from
a decelerating to an accelerating expansion of the Universe at a redshift z ~ 1 — 2, as well as a
particularly slow total evolution of b(t), quantified by constraint (3.23).

Before presenting, the results of the above process, we make a final note: the observational results
have to be matched with the effective values of the dimensionally reduced action, that typically
corresponds to a Gravity plus Radion-field action, and not directly to those of the full 3 +n + 1
action. Starting from the action of the full theory:

S o / A" e/ =g(R = Lonatter) (3.25)

and using the metric:
gapdztda® = g,(ﬁ,)dx“dac” + b? (t)’yl(,z)dxpdxq

it is straightforward to go to the Gravity + Radion action [175]:
- 1
Soc/d4x\/—g(R— 3 00" )+ Verp (o)) (3.26)
This is done by first integrating out the extra dimensional terms, followed by a Weyl transformation:

Guw =" ()5 (3.27)

This leads to the extra dimensions’ scale factor, b(¢) being realized, from a 4-D point of view, as a
scalar field in a potential:

(b o< Inb ‘/;ff(qs) = f(ﬁmattery Qb)

The Weyl transformation changes the time and the 3-D scale factor that an effective 4-D observer
would perceive in the following manner:

fpf = /b”/Q(t)dt+const = g(t) = t= gD (tes;) (3.28)
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acrp(ters) =" (g ters))alg™ ters)) (3.29)
This leads to:
dg=D(teysy)

e n _ _
H D = be(g( Dters)) + Ha(g' U@eff))} Ty (3.30)
dH(eff)/dte
Gefs(tess) =—1— aH(e—ff)gff (3.31)
a

But one sees from (3.28)-(3.31) that these corrections, with the exception of a scaling by = const,
are only important if the extra space is not stabilized. Hence it is necessary to take them into
account only in primordial times, which are not studied here.

In Fig. 3.4 we show the evolution of H, as predicted by this model, in comparison with the
evolution predicted by the ACDM. The evolution of the 3-D scale factor compared with the expected
evolution for a matter dominated universe is also presented. If scale factor b(t) were not stabilized,
the evolution of the scale factor would not be the same, regardless of the choice w, = 0 for matter
domination. This is because of (3.29). The same is true for the radiation domination and Dark
Energy era.

In Fig. 3.5 we see the evolution of the scale factors whose today values are normalized as
a(0) = b(0) = 1. Finally, in Fig. 3.6 we present the deceleration parameter of the model, as well as a
direct comparison of the m(z) — M curve that it predicts, with 580 SNIa observational points [189].

3.6 K - type scale factors and their effective picture

We now demonstrate the evolution of the scale factors of the K-type solutions and also that of
their effective counterparts acss(tesr), which proves to be quite different from a(t) when the extra
space is not stabilized. It is evident that the two Kasner solutions, K1 and K2, do not satisfy any
stabilization condition®, hence we expect a discrepancy between their evolution.

For demonstrative purposes, we will work in a scenario with n = 2. Integrating (3.13) and (3.14)
we obtain the scale factors that read:

a(t) = é1|—V/3 + 3(V3 — 2V2) H, (0)t| 57"

, K1 (3.32)
b(t) = & |2v2 +2V3 + (6v2 + 2V3)H, (0)t| 272v%

a(t) = é|—v3 + 3(V3 + 2V2) H, (0)t| -2V
b(t) = é|-2v2 +2V3 + (2v3 - 6\/§)Ha(o)t‘—ﬁ

where ¢1, é are constants of integration. According to (3.28) and (3.29) we could, in principle, get
the time coordinate as a function of the effective time: t = ¢(t.s;) and thus acsy = aesr(tess). But
that is a tedious task, even though we have the explicit forms of the scale factors, so instead we
continue qualitatively.

From (3.32) we can see for the K1 solution, that if t > tsg, then b(t) o« t R, Thus, from

=6 710 1/3
eq. (3.28), one can deduce that t tesy Aty . Then, eq. (3.29) leads to t >> tsing, Gefy X s

K2 (3.33)

as opposed to a o t1/2.

When however, one contains one’s study to the primordial stages, immediately after the singu-
larity, the dimensionally reduced metric would not necessarily be the physical one. Nevertheless,
if one naively looked for an “inflationary”-like evolution of solution K1, one would conclude that
neither a(t), nor the effective scale factor, a.s¢, have a satisfactory evolution. We can follow the

81f, however, an infinite dimensionality n is considered, it can be shown that vacuum solutions can be stabilized
[190].
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Figure 3.4: The comparison of the evolution of H, and a(t) for a universe with stabilized extra space
and their Standard Cosmology counterparts.
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exact same reasoning for the K2 solution. However, we also note that this solution has a singularity
in the future and not in the past.

The situation, however, is not the same for K3. To demonstrate this, we choose an example for
n = 2. The corresponding scale factors are:

242wq —4wy
a(t) = é1|2(1 + wq — 2wp) + (5 + 3w? — 12wawy + 4w£)Ha(0)t| 5+3wf —12wqwp 4w}

2—6wg 4wy
54+3w2 — 12wamb+4w§

K3 (3.34)
b(t) = & |2(1 + wq — 2wp) + (54 3w2 — 12wawy, + 4wy ) Ha (0)t

It is easy to observe that there of course exist suitable values for the w parameters, namely w, = —1,
wp = —2, that make the denominators of both the exponents, as well as the numerator of scale factor
b(t), equal to zero. Scale factor’s a(t) exponent is positive in regions 2 and 3 of Fig. 3.1, while the
exponent of b(t), is positive only in the area of region 2 appearing to the left of the dashed line (which
represents the exact stabilization condition 1 — 3w, + 2w, = 0). Thus, if one properly approaches
the above values of the EoS parameters, then one can achieve a significant positive value for a(t)’s
exponent, while at the same time a small negative value for b(t)’s exponent.

We note, however, that both the stability of the solution and the value of the exponent of b(t)
depend on the approaching of the aforementioned values. The necessary values lie on the boundary of
regions 1 and 2 of Fig. 3.1 (a result that holds for every n), so a fluctuation of the EoS parameters,
drastically changes the behavior of the solution. In the two panels of Fig. 3.7, the behaviors of
the phase curves for values in regions 1 and 2 of Figure 3.1 respectively, for n = 1, can be seen.
These examples are chosen to illustrate the behavior of the general solution qualitatively, without
necessarily trying to match them with realistic cosmological results. In section 3.3, we mentioned
that the evolution of a system of this type depends on the values of the EoS parameters and the initial
values of the Hubble parameters, H,gi), Hlsi). Depending on their relative position to the curves of
the Kasner type solutions K1, K2, K3 in the phase space, the evolutions are quite different. But K1
and K2 (which for n = 1 reduces to the axis H, = 0) have constant ratios of the Hubble parameters.
Then, the deciding factor of where the phase curve is with regard to the K1, K2 curves and how it
evolves, is the value of the K3 solution’s ratio, which of course depends on the EoS values. That,
in turn, in combination with the initial values of the Hubble parameters, and the signs of the r.h.s
factors of (3.10), decides which one of the special K-type solutions will be the attractor-curve in
each case. We note that the dimensionality of the extra space bears no significance in the behaviors
of the phase curves, which are qualitatively the same for any n.
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Figure 3.7: Two examples for w parameters that correspond to values in Regions 1 and 2 of Fig. 3.1
respectively. Qualitatively the behaviors of the curves are independent of the exact value of n.

3.7 Conclusions

To conclude this section, we reiterate that we have tried to present a concise view of how flat,
homogeneous Universal Extra Dimensions would affect standard cosmological evolution. We have
shown how one can recreate a picture similar to that of the ACDM. We have argued, that in the
framework of UED, this can only be achieved if the extra dimensions are stabilized (i.e. evolve very
slowly, or not at all) from a very early epoch. If that were not the case, then we would be able to
measure a significant fluctuation in the values of fundamental coupling constants, as well as observe
a variety of different phenomena. For example, one would expect a significant deviation from models
of very high redshift events, like BBN, which of course is one of the best described eras within the
Standard Cosmological Model. Thus, one understands that the stabilization of the extra dimensions
must be settled, if such models are to be built, and produce viable phenomenology.

Taking that into account, we have managed to build such a model within the given observational
limits. We do so for non-exactly static, but very slowly evolving extra dimensions. To do that,
we use a special case solution for constant EoS parameters that acts as an attractor solution for a
large variety of possible cosmologically relevant initial conditions of the Hubble parameters H,, H,
(i.e. yielding an expanding 3-D space and a contracting extra space). This special case Kasner-type
solution, is an exact solution of the Friedmann equations. Since it is analytically known we can
manipulate it to yield the desired cosmological evolution, that is compatible with phenomenology,
through its dependence on the EoS parameters. A large variety of initial conditions, that would
otherwise correspond to a random general solution, will converge rapidly on this phenomenologically
correct attractor-solution. However, we note that to achieve the stabilization of the extra dimensions
without the use of any explicit mechanism, a larger, more exotic range of values has to be allowed
for the EoS parameters, for both the usual and the extra spatial fluid. One could, possibly, expect
this range of EoS parameters to arise from string theory, since it is, for example, known that strings,
when wound around compactified dimensions, give similar effects.
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Finally, we have studied, in terms of the EoS parameters, how the scale factors corresponding to
this special Kasner-type solution would behave, close to its singularity. There exists a pair of the
EoS parameters that can, produce a very fast expansion of the usual space’s scale factor. At the
same time, it yields a very slow, contracting, extra spatial scale factor. This, again, is achieved for
exotic values of the EoS parameters, that one would have to justify via more fundamental theories.
Moreover, these EoS parameters lay on the border of two regions that in general produce very
different evolution patterns. Thus, a small fluctuation in the w’s values could trigger a significant
change in the evolution of the usual and extra space. One would have to perform a perturbative
study not only for the scale factors but also for the w parameters’ evolution themselves, in order to
completely investigate this case.
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Appendix A

Cosmological Perturbations

A.1 Introduction

We now present the framework of studying primordial perturbations, mainly following [191-193].
As mentioned throughout the text, we are interested in studying the evolution of perturbations in
cosmological fields, since they are thought to be the seeds of structure in the Universe. For an
arbitrary cosmological field F, we may write:

F(z%) = F(n) + 6F(z) (A1)
where 7: the conformal time and 6F: the perturbation from the background value of the field, F.
The fact that the field is cosmological means that the background value is only a function of time,
due to isotropy and homogeneity, hence F = F(n).
By definition, the spatial average of the perturbation of a field is 0:

J6FdV
— =0 A2
4 (4.2)
implying that the spatial average of a perturbed field is, thus, equal to its background value:
FdV -
/ v F (A.3)

To produce the basic formulas needed in perturbation theory we will utilize three gauges, the
background gauge and two perturbed gauges denoted with a caret 7 and a tilde 7 respectively.
When referring to a specific physical point in spacetime, P, to transform from one gauge to another
we have:

ina|P :wa‘P"'“a‘P

3 p =2, + 2%, (A-4)
leading to the transformation between the two perturbed gauges:
ia|P: Aa|P+€a|P (A.5)

where: £% = \* — k® is the transformation vector. We note that a specific physical point P,
corresponds to 3 different sets of coordinates in the three gauges. On the contrary, a specific set of
coordinate values corresponds, in general, in the three different gauges, to 3 different physical points
in spacetime, that is:

(A.6)



Thus, we can rewrite eq. (A.1) in the perturbed gauges in terms of the background coordinates,
rather than the perturbed ones:

(n) + 6F (z*) (A7)

A.2 Transformations at a specific point

We have already mentioned that when referring to a specific physical point, in general, it holds that
x®(P) # 1*(P) # £*(P). Regarding the fields that we will use, we know, however, that scalar fields
do not change their value in different gauges, when referring to the same point. On the other hand,
the same set of coordinate values will yield different values for all fields, even scalars, in different
gauges. Hence, for a scalar field f:

f|P:f’P:~ﬂP (A.8)
This is not the case for vector and tensor fields. For a vector field f* we have:
fa|p:X§|pfﬁ|p (A.9)
where we have defined the transformation matrix
L 0x”
a
X 5= 58 (A.10)

However, to first order we can approximate that, at a specific point, when a derivative acts on a
quantity that is to be perturbed, it holds that:
0 0 0

9z~ fze ~ fan (A.11)

since to first order, we have:

0 028 0 0 0 0
= = L (P k) = (P 4K = ~ A2
P~ 900027~ B & ) gam = B+ ra) 555 ~ 5 (A.12)
Returning to (A.10), we get:
o 0T 02 +EY) e A12)
XB - 8@3 _W_dﬂ +§”@ ~ 55 +£76 (AlS)

We can now obtain a relation for the transformation of a vector in terms of the transformation
vector &, at a specific point from one gauge to another:

For= (g +ep) P =foves (PP 4af) ~ o+ e (A.14)
but since f = f(n) we get!:
Folp =1 p + €3]0 (A.15)

In a similar manner we may obtain the transformation relations at one point P for tensor quan-
tities, at first order. For a 2-0, 1-1 and 0-2 tensor we have then, respectively:

fﬂﬁ‘P:faﬂ|P+£3‘L|Pfuﬁyp+fg|13fm|zv (A.16)
fg|P:fg|P+§mPfg‘P_§g‘PfﬂP (A.17)
f@5|P:faﬁ|p7£f;|pf5u|p7§E|Pfau|P (A18)

N background vector is of the form Fe(m) = (f°(n), f1(n)). But due to isotropy the spatial average of fi(n,z?) is
0, hence [ fi(n,z7) = fi(n) = 0.
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A.3 Gauge transformation of a perturbation

We are now interested in producing the gauge transformation of the perturbation of a field, that is,
the transformation of the perturbation between gauges at a specific point. To proceed, we need two
more approximations regarding the transformation vector and the perturbation of a field in different
gauges. Regarding the transformation vector, it can be proven that to first order it is the same for
two neighboring points:

Clpmlp~p (A.19)

To prove this we work as follows:
o o g~
ep=¢1p <5xﬁ>P(xB|P$ﬂ|P)
(A.6) 4 o0& .

o %3
=&p <M>P“B’p
%€a|P (A.20)

)

where the second term is dropped since it is of higher order. We thus see that the transformation
vector £% can, and will unless otherwise noted, be associated with the background point P when
working in first order approximation. In a similar manner, we can prove that the perturbation of an
arbitrary field is the same for two neighboring physical points, that is:

5f{l5z5.7:|15%5f|13 (A.21)

Moving on, we are interested in knowing the change between the values of an arbitrary field F
in a single gauge, for two points that correspond to the same set of coordinate values in different
gauges, i.e.: ‘7:’1“3 — ]:’15. We have then:

OF |5

Flo=Flp+—oz5 @5 —3°|p)
(A11) . 6]-A'|A . B
~ P Txgp (&7 — 27 5)
(A7) OF| 8<5]:|P) (=€) )
N p 0xP Oxh &lp
(A.20) - oOF
~ Flpt 8m|ﬁp (_gﬁ‘P) (A.22)
so finally
. . oF
Flp=Fp- et (a2)

We are now ready to find the transformation rules for perturbations between the two gauges
when referring to the same physical point.
A.3.1 Gauge Transformation of Scalar Perturbations

Let us now consider the perturbation of a scalar field f. When eq. (A.23) refers to a scalar field we
get:

f|p:f’p—f/(77)fo‘p (A.24)
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where a prime denotes differentiation with respect to conformal time, 1. But eqs. (A.6) and (A.7)
lead to:

Flp=Fm)+06F|, (A.25)
hence, when referring to a scalar:
f|p:f(’7)+5f|p
flp=fn) +6flp (A.26)
Substituting in (A.24) we then obtain:
5f =of — f&° (A.27)

where we have stopped denoting the point to which we refer, since all the above quantities are
expressed with respect to the coordinates of this particular point, in the background gauge.

A.3.2 Gauge Transformation of Vector Perturbations

Moving on, we now consider the perturbation of a vector field. Equation (A.23) reads, in the case
of vectors:

]Za|p:fa‘p—fla(77)fo (A.28)
But for a vector we have proven (A.15):
Flp=Folp+ s
Thus, we get
Folp=1lp + 67 m) = F ()€ (A.29)

and along with (A.25) in the case of a vector, we can obtain the following equation, where we again
have dropped P since all quantities refer to the same point:

SF =0f* + €5 f° — fog° (A.30)

A.3.3 Gauge Transformation of Tensor Perturbations

Along the same lines, we can obtain the transformation of tensor perturbations between gauges.
Once again, we start from (A.23) which for a 1-1 tensor is of the form:

f8ls = 15lp = FE )€ (A.31)
But using eq. (A.17) we obtain:
185 = 1816 + €505 5 = €510 15 = FE()E° (A.32)
Once again, using eq. (A.25), we get, for a tensor quantity:
T§lp = F5(n) + 015
f8lp =T + 518, (A.33)

Thus, we finally obtain the relation for the gauge transformation of a 1-1 tensor perturbation, at a
specific physical point:

5fg =0fg + &5 fh — &4 fs — f5ed (A.34)
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A.4 Decomposition of Perturbations

A.4.1 Fourier Decomposition of a Scalar Perturbation

As already mentioned, only Scalar Perturbations are responsible for the structure formation of the
Universe. Scalar fields can however be extracted also from vectors and tensors. Hence, it is easier
to study the scalar perturbations by first linearly decomposing all perturbation modes.

We start by the Fourier decomposition of a scalar perturbation, namely:

5f(n. &)= 6f(me™T (A.35)
k

Then, each mode & f,;(n)e“;‘“? is a wave that corresponds to the comoving wave vector k

A.4.2 Fourier Decomposition of a Vector Perturbation

However, we can extract other scalar modes from vector and tensor perturbations as well, through
Helmholtz decomposition. In the case of vector perturbations, we obtain a longitudinal part (which
is called the scalar potential) and a transverse part which is a pure vector.

We can always decompose a vector field into a curl free and a divergence free component. Hence,
for a vector perturbation we can write:

sf=8+V, VxS8=0, V-V=0 (A.36)
But the curl of a divergence is equal to 0, so we can express S as the divergence of a scalar S:
§=-vs (A.37)
Rewriting the above in index notation we have:

6fi = Sz + V;y Sl = —Si and (Sij‘/iyj = Vviﬂ‘ =0 (A38)

)

It is interesting to see that S and V are decoupled, because in the Fourier space, §E is parallel

to k while ‘7]; is orthogonal to k. Decomposing S and S in the Fourier space, we get:
g(m“) = Z §E(7))ei @
E
=Y Qrlme*™ (A.39)
k
Using (A.37) we then obtain that

Sz(n) = —ikQz(n) (A.40)

and hence we have proven that 5’}; is parallel to k. As a convention, we define from now on that

Sp = kQg, where k = |E| So finally, we can write:

= = bz = k
S(x*) = Z SEelk'z, where S = —i%SE (A.41)
k
Dropping the k index we can relate the modes, in index notation, as:
k;
S; = —Z?S (A.42)
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Regarding the transverse part, we rotate the coordinate system in such a way that the z- axis is
parallel to k : k — k2. Since V;; = 0, we obtain k;V; = 0, since

V= Z Vg(n)e“;'f (A.43)
k
and
V-V = Ve Vet = 3 iV (ke =0 (A44)
E E
so, it follows that: Lo
k-Ve=0

But since the axes are rotated as mentioned above, we obtain k3V3 = 0, therefore it follows that
V3 =0.

Moreover, from (A.42) and the fact that k = kZ, we obtain that S, = —iS, while S, = S, = 0.
Thus, we can write that

6f =5 +V = (W, Va,—iS) (A.45)

A.4.3 SVT Decomposition of Tensor Perturbations

Our next step is to decompose a tensor perturbation. As a working example we will work with a
(0,2) tensor, which we will suppose to be symmetric (4 f;0 = 6 fo;):

stote) = (Gete) ofte) = (5 &) (A.10

Scalar A and vector B; can be decomposed as before. However, matrix Cj; is a 3 x 3 matrix
that can be decomposed into scalar, vector and tensor quantities. This is referred to as the SVT
decomposition.

For a random tensor C;; we can use the trace C,, to write it as:

1 1
Cij = Cy — §6ijcaa + §5z‘jCaa, Coa = C11 + Ca2 4+ C33 (A.47)

and by defining D = %C’aa, E;; = Cij — ;5D we obtain:

o\ A Bi
8 fap(z) = (Bi 6ijD+E¢j> (A.48)

E;; is traceless (E; = 0) and symmetric. It splits into three parts, that correspond to a scalar, a
vector and a tensor quantity?. We show that as follows:

Eij = Sij + Vij +7ij (A.49)

Each one of S;;, V;; and 7;; is symmetric and traceless and are decoupled from each other in linear
perturbation theory.

First, we want to construct a symmetric and traceless S;; matrix. Thus, we define a new scalar
potential, S, and write S;; as:

1 1 1

2The names ”scalar, vector” and ”tensor” are used to refer to their transformation properties under rotations in
the background gauge. This can be easily seen since, for example, scalar perturbations are not gauge invariant.
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It is easy to confirm that the above construction is both symmetric and traceless.
Next, we can extract a tensor that encompasses the vector part of § fo3. We define V;; as:

1
Vij = 5 Vij + Vi) (A.51)

which is symmetric by construction. We have also defined the above decomposition in such a way
that V; is a pure vector, thus divergence free. This translates to:

V-V=0"V;=V,,=0 (A.52)

which also makes V;; a traceless matrix, since Vj; = %(2‘/“) =0
The tensor component, then, must also be symmetric and traceless, since it can be expressed as

Thus
Tip =T, 09T =7 =0 (A.54)

A.4.4 Fourier Decompositions of SVT quantities

For the 00 scalar of d f,3 we have in the Fourier space that

Aa®) =Y Ape™® (A.55)
P

The vector part, B;, can be decomposed in a similar manner as before, and be written as:

B; =B +b; (A.56)
where b; is such that b; = —VB, and B is written in the Fourier space as:
Bz o
B(z*) = Z 7’“,577) e/ (A.57)
E
while f; is:
Bi(x®) =Y Bip()e™™ (A.58)
E

Moving on to the 3 x 3 part of d fog, Cij = 6;;D + E;;, scalar D in the Fourier space, is expressed
as:

D(*) =" Dy(n)e™ (A.59)

We now turn to the Ej;; part that we further decompose into three parts. Scalar S is decomposed
as:

5= Qpme™ (A.60)
E

(0]



In order for S;; and S to have the same dimensions we get according to (A.50):
Lo oo
Sij,;t = —kik’j + géijk QE

kik: 1
= (— k2] + 3(51‘]‘) k‘2QE

kik; 1
= (— kZJ + 351’]’) k2SE (A.61)

where we have defined Q;; = S, leading to the more convenient definition for S:

S(z%) = Zk gike (A.62)

On the same footing, in the case of the vector part, we have

1
Vij = 3 (Vi,j + V‘,i) (A.63)
Decomposing 1_/', we have that
V) =Y Gpe™ (A.64)
E
so, in the Fourier space:
i
Vij = 5 (kiQj + k;Q0) (A.65)
and
§9k;Q; =0 (A.66)

To obtain coeflicients with the same dimensionality, we rewrite as:
i i
Vij = % (kikQ; + kjkQ;) = % (k:Vj + k;Vi) (A.67)
where we have defined V; = kQ; and it follows that:
§9k;V; =0 (A.68)

Therefore, it is more useful to define the components of vector V as:

Vi(z®) = Z Vir () ¢ihZ (A.69)

Finally, we decompose the tensor part in Fourier modes:
(@) = 7 (e (A.70)
i

We will now focus on showing the independence of the various sectors of the SVT decomposed
components. We rotate the z-axis in such a way that it is parallel to k. We begin with B;, which as
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before, will be shown to be decomposed as a divergence-free plus a curl free component. The curl
free component is defined as b; and the divergence free component is defined as 3;. We have:

Bl' = bl —+ 61'; where bz = 7871' and ﬂiyi =0 (A?l)
It is straightforward to prove that in the Fourier space we have
B; = (517527_7;8) (A72)

We express b and B in the Fourier space as
EZ Z Qgeigi, B = Z @Eeilzf (A.73)
E k

But b = —VB so we obtain @E = 72‘12@,;. We see then that b is the longitudinal part, parallel to k
in the Fourier space, hence

b=(0,0,—iB) (A.74)
Moreover:
B=Y" B (A.75)
E
representing the curl free part. Hence,
V=Y ik G =0 (A.76)
E

leading to k- EE =0. But k = (0,0, k), thus 3. = 0. So in total:

B; = (B1, B2, —iB) (A.77)

We now turn to the 3 x 3 part. As already mentioned, it can be split into 3 different matrices,
each containing a pure scalar, vector or tensor part. We begin by the scalar part S;;, which we
already have written as:

1 o
Sij = (0:0; — g(SijVQ)S, with S = Z QEe’kw (A.78)
E

Decomposing S;; in the Fourier space, we have Si; = Sij,;e”gf. We thus obtain:

1 kik; 1
Sij = <kikj + 351']']{12) Q; = ( k;2j + 351-]-) k2QE (A.79)
so it is helpful to define:
Sp =kQr (A.80)
Hence,
kik; 1
Sij = (‘ 2T 35ij) 5 (A.81)
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All non diagonal terms are equal to 0, since k= (0,0, k) while for the diagonal terms it holds that:

1 1 2
Sy1= =8 Sag = =8 Sa3 = —=8 A.82
11 3 ) 22 3 ) 33 3 ( )
thus
s 0 0
Siy=10 3s 0 (A.83)
0 0 -—2s

We continue by proving that in the Fourier space the pure vector part is of the form:

(0 00
V=50 0 v (A.84)
Vi V2 0

Vij is defined as V;; = % (Vi,; +V;:). In the Fourier space we have:

Vij = Z Vij,;ei’zf, Vi= Z Qi,;ei]zf (A.85)
K E
But
Vij = ZikaigeiEf (A.86)
E
so then
1, .
Vis = 5 (ik; Qi + ikiQj; ) (A.87)
so to obtain the same dimensionality between V;; and V, we define V;. = %, and thus:
Vi = - (kjVi + kiVj) (A.88)

2k

Moreover, by construction, vy = 0, and since k= (0,0, k), it follows that V5 = 0. Thus, equation
(A.84) is obtained.

Our next step is to show that 7;;; = 7;;; = 0. We introduce an auxiliary quantity, L; as
L; = 7;;;. Tensor 7;; is symmetric and traceless, and in the Fourier space can be written as:

Tij = ZTijgeiEf (A89)
E

thus

Lj = ZikiTij-eiEf (A90)

So by the standard expansion in the Fourier space of L;, we obtain the Fourier modes:
Lj}; = Zkﬂ'”z = ikgT{ij (Agl)

We now define L;; = L; j = ) ¢ ikzil',jge“g”B , from which we obtain that the Fourier modes of quantity
Lij will be

Lij_ = ikiLjE = ikSLjE = —]{?27'3j (A92)



Thus

T11 T12 0 0 0 T13
Tije =72 72 O]+ 0 0 7
0 0 0 T3 T23 733
11 Ti2 O ; 0 0 I
= T12 T22 0 — E 0 0 L2
0 0 0 Ly Ly Lg
T11 T12 0 1 0 0 L13
= T12 T22 0 — ? 0 0 L23
0 0 0 Lis Loz L33
1
= aij = 35 Lij
1
= aij — 13 Lj (A.93)

But we know that 7;; must be a pure tensor, thus L;; = 0, since it corresponds to a ”vector” part.
ThUS Ll = O = Tij,j-
From this last equation we can also deduce:

Tij,j = k,jT,;j = O, thus T3j = Tjg = 0 (A94>
Moreover, since T is traceless it follows that

711 Ti2 O

Tij= |72 —T11 0 (A.95)
0 0 0
Thus, we finally obtain:
D+ 38+ 13 T12 %Vl
Cij = Ti2 D+is—mi 3V (A.96)
%Vl %VQ D — %S

We are now ready to expand the SVT 3 x 3 matrices to 4 x 4 versions by including all scalar,
vector and tensor sectors in different 4 x 4 matrices. A tensor perturbation Jf,s can be written
then, as:

6fap = Sap + Vap + Tap (A.97)

where
A -B; 0 Bi 0 0
Sap = ' , Vg = , wB = A.98
’ (B,i di; D +311j> ’ (51 s (Vi + Vm)> Tl (0 Tij) (A.95)
A.4.5 Gauge transformations of Linear Decompositions
We have already shown that a tensor’s f,s perturbation transforms as:
0fap = 0fap — E4fup — Eafar — Fipt° (A.99)

We shall now see in more detail what this transformation implies for each type of component. We
start with the 0 — 0 component, §foo, which in our case corresponds to field A of equation (A.98).
Then, from eq (A.99) we obtain:

6 foo = 0 foo — QE?Ofoo — fo0&° (A.100)
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thus:
A=A- 2f,oofoo - féofo (A.lOl)

which in Fourier space remains the same. This brings to our attention a very important fact. Even
though A represents a ”scalar” perturbation, it does not transform as a scalar, as equation (A.27)
would suggest, but according to eq. (A.101). So for example a density perturbation, which is a
component of the energy-momentum tensor should be transformed according to (A.100) and not
(A.27).

We now move on to the 0 — ¢ component. Due to homogeneity and isotropy one can infer that
foi =0and fi1 = faz = f33 =  fur. Then, eq. (A.99), yields:

8 foi = 6 foi — %fi,ofkk — &% f00 (A.102)
In our case,
B; = B; — %fi,ofkk - f?ifoo
=B; — %S@oﬂk — ki€ foo  (in Fourier space) (A.103)

This relation can be further analyzed, if we Helmholtz decompose B; and &; into their pure ”scalar”
and ”vector” parts. Using:

B;=-B;+ 05 and § = —2; +x; (A.104)

By substituting (A.104) in (A.103) we obtain:

L 1 _ _
=B+ pBi=-Bi+Bi — g(—Ei +%3) 0 ek — €5 oo (A.105)

This equation can be decomposed even more, since it contains a longitudinal and a transverse part
that are independent:

. 1 - B
—B,=-B;+ gi,i,ofkk — &5 foo (A.106)

B=pi— %Xi,ofkk (A.107)

The equality of the gradient of perturbations implies the equality of the perturbations themselves,
and because the background field is only a function of 7, we obtain:

N 1_ - _

B=B- gz,ofkk + &% foo (A.108)
which in Fourier space leads to:

B=B- 570% + k€% foo (A.109)

We finally turn to the ij component of a tensor perturbation. It holds that:
8fij = 6fi — Eifus — €5 fin — Fi€°
1 - 1. 4
=0fij — g(ﬁj,i +&ij)fu — gdijflllfo (A.110)
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which in our case translates to:
- - 1 - 1. -
0i; D+ E;j = 6;D + B — g(@‘,j + &) fu — g%fz’lfo (A.111)

We are now in a position to split the trace and traceless parts and then perform an SVT decom-
position. We begin with & ; + ;i

1 1
&ijt&i= g%‘(fk,k +&k) + &+ & — g(sij(fk,k + &k k)

2 2
= 3068k + &ij + & — 50080 (A.112)
and returning to (A.111) we get:
S 2 - 1. 5 o ik 2
03D + Eij = 043D — 503i€1fin = 50i fin€” + Bij — 57 (&g + &i = 30i5610) (A.113)
The trace and traceless parts can now be equated. We will use the fact that §; = —Z; + x;, where
x; is divergence free. We have then, that:
. 2 _ 1_
D=D+ §fkk:,ll - gf//ckﬁo (A.114)
- fi 2
Eij = El'j + % (2Eyji - Xi’j — Xj,i — 3(51']'5’”) (A115)
Part E;; can be SVT decomposed. We get:
5 oA frk (o= 2
Sig + Vij + Tig = Sig + Vij + 735 + 757 | 2550 — 00E0 — Xij — %) (A.116)

It is noteworthy that the parentheses enclose a tensor quantity that can be further decomposed.
The first two terms within it form the ”scalar” part while the other two comprise the divergence-free
“vector” part. Equating then the S, V and T components we finally obtain, for the scalar part:

~ 2. (_ 1.
Sij = Sij + gfkk <-:,ij - 3(5”\:’”) (A.117)
and for the vector and tensor parts:

Vig = Vij = (xji +%i5)  Tij =7y (A.118)
We can see from the last relation that the pure tensor part of perturbation 4 f, s is gauge invariant.
Recalling that V;; = %(Vi,j +V;i), we can also rewrite the vector part as:

i}i,j + ]}j,i =Vi; + Vjﬂ; — 2(Xj,i + Xi,j) (A].].g)
Regarding the scalar part, we can write S;; = (9;0; — 36;;V?)8, so (A.117) becomes:
1. ps oo 2. (1. _
((918J - géijv )S = (82@ - §6ijv )S + gfkk Sig T 56“:*” (A.lQO)
leading to:
1 ~ 2 -
(2:0; = 3055 V*)(8 =8 = S fE) = 0 (A.121)

This relation holds for all 7, j, hence also for i # j. Since the equality of the gradient of perturbations
implies the equality of the perturbations themselves, we get then:

- 2 _
S=S+ gfkkE (A.122)

which remains the same when written in the Fourier space.
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A.5 Gauge Freedom and Gauge independent Scalar Poten-
tials

So far it has been shown that all scalar perturbations’ transformations depend on two variables: =
and £° (see eqs. (A.101), (A.109), (A.114) and (A.122)). We can choose these two quantities in such
a way that two of these four quantities are equal to 0, hence only 2 ”scalar” components are real,
while the others are gauge induced.

In the case of the vector parts, 5; and V;, out of the 6 possible components, only 4 are non-zero,
since they are divergenceless (5;; = V;; = 0). Moreover, their gauge transformations depend on the
three components of x; (see eqs. (A.107) and (A.119)), for which it also holds that x; ; = 0. Thus,
the actual degrees of freedom in this case are reduced to 2, while the others are gauge-induced.

Finally, the pure tensor perturbation, 7;;, has 9 components but it is symmetric, reducing the
free components to 6. Moreover, it is a ”pure” tensor, meaning 7;; = 0, and finally 7;;; = 0. This
last relation holds for each value of j separately, thus it takes away 3 more degrees of freedom. Lastly,
T;; is gauge invariant so there are no components of a transformation vector to deduct, hence 7;;
has, in fact, 2 components, none of which are gauge induced.

In total, we deduce that fixing a gauge yields:

25 d.o.f. + 2V d.o.f. + 2T d.o.f.

We will use the above to define gauge independent scalar potentials. Solving (A.122) with respect
to = and differentiating with respect to conformal time 7, we get:

_, 3<s> (s) - , 38
E=-ll=—) - (= =M -M, withM=_—-— A.123
2|\ frk frk 2 frk ( )
Substituting this in (A.109) we get:
_ L _ ,
o_ L [5’+fk’“<s> L B+f"”“(s) =p-p (A.124)
Joo 2\ ek Jfoo 2\ frk
= !/
where we have defined P = fo% [BJr fka (ﬁ%) ] Using (A.5) in eqgs. (A.101) and (A.114) we can

obtain two gauge independent quantities. The first one leads to:
A+ 2P foo + fooP = A+ 2P foo + foo P (A.125)
so the first scalar gauge invariant quantity is defined as:
X = A+2P foo + fooP (A.126)
The second one yields:

N _ -1, - 2 1
D — = fix VM + 5f,ng =D— §fka2M + gf,ng (A.127)

Nl V)

so the second scalar gauge invariant quantity is:

2 - 1
Y=D- §fkkv2M + gf,;kP (A.128)
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A.6 Perturbing the metric tensor - Bardeen Potentials

Finally, we are ready to apply what was presented so far to the metric tensor. The background
metric tensor of an expanding universe that is homogeneous and isotropic is symbolized as g, and
is of the form:

_ -1 0
gﬂ’/ = a,2 ( 0 J,Ié) = a277HV (A129)
in conformal time®, and 7, is the Minkowski metric. When the Minkowski metric is perturbed, the
expanding universe’s metric can be written in the form:
guV = ’rlul/ + h;u/ (A130)

so in fact the perturbation of the metric is dg,,, = a*h,,. We will apply what was presented so far
to hyy. In matrix form we have that:

By = (-21;3 ff) ., Bi=-B,+B, hy=—2D8,+2E, (A.131)
E;; is the traceless part of h;;, which we will proceed to SVT decompose. We write E;; = Eff )+

EZ(JV) + Ei(f), where:

1
EY) = (aiaj - 35ijv2> S=38, (A.132)
1
v

Ei(j = S Wig + Vi), Vi (A.133)
EZ(JT) = Tija Tij,i = Tij,j = 0 (A134)
Thus, we can separate the scalar part and have: h;; = S;; + Vi; 4+ 275, with S;; = —2Dd;; +

2 (3163 - %5UV2) and Vi; = Vi ; + V;;. The full perturbation matrix will finally be of the form:

_ o 24 B+ B

590[5 - (B,i + Bi *25UD + 25@‘ + Vl',j + Vﬁi + 27ij (A'135)

of which only 6 components are physical.
Since we are mainly interested in scalar perturbations in Cosmology, we will need their gauge
transformations. Combining egs. (A.101), (A.109), (A.114), (A.122), which refer to a perturbation:

A B
0fas = (Bi 5i;D + EJ>

and the scalar part of the perturbed metric:

2 7214 BJ
09ap = a ( B, —26,D+25, (A.136)

we obtain:

- , - 1 - -
A=A —HEO, D:D+§kE+’H£°, B=B+Z +k& S=S+kE (A.137)

3Conformal time 7 is defined through dn = % Through that, we also define the conformal Hubble parameter

!
H = ‘:1((2])) , where a prime denotes differentiation with respect to 7.
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Finally, with these correspondences in mind, we are led to define the equivalent to egs. (A.126) and
(A.128):

P=A+(B-8)+HB-S) (A.138)
U =D+ %VQS —~H(B-S") (A.139)

These two quantities are known as the Bardeen potentials.
We can proceed to find the connection coefficients that correspond to the background and the

full metric, since through them we calculate most GR related quantities. For simple reference we
include the corresponding values here. The affine connection is given by:

« 1 «
By — 59 “(9upry + Gy, — 9B (A.140)
leading to:

Iy =H+A, T0=HB,+A,,

Loy =HBi+ B+ A, T =Hoi; —¢'éi; + E,

D9 =H[(1— 24— 2)0;; + 2E ;5] — 69" + E'y,

Tl = Eijr — HojBi + 6t — 0500k — 6105 (A.141)

A.7 Threading-Slicing and Worldlines

It is known from GR that the time measured along a trajectory is called the proper time, and is
given by:
ds®
dr =+ —ds? = — = -1
dr?

and since ds® = g,,, dz*dz”, we have:

dzt dx”
y—— =1 A.142
I dr dr ( )

The 3-velocity and 4-velocity of a fluid are given, respectively, by:

da 0 ui) = dat
dr

(A.143)

We are interested to study whether the perturbation in the metric carries over to the 4-velocity
of a given fluid. In order to do that we need the relation between u* and v*:

ut = uv’ (A.144)

Hence, for the background -homogeneous and isotropic- universe, we have @' = (0,0, 0), leading to

7 = (0,0,0). We can then deduce that
1
0
m

a
by using the above relations. So in total, @* = a(—1,0,0,0)
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We are now ready to proceed to a perturbed universe. We write down the perturbations as:

1
u’ = a° + ou’ = - + 6u® (A.145)
ut = a' 4 ou’ = du’ (A.146)
vl =o' 4 v’ = v’ (A.147)
and from (A.144), we get to first order that du’ = 1év’. Using relation (A.142) and working to 1st
order in the perturbations, we are led to du’ = f%, so that:
1 ,
ut = —(1-A,v") (A.148)
a

and since u, = g, u” we also obtain:
Uy, =Ty, +ou, =a(—1—A,v;, — B;) (A.149)

We can show now that a perturbation in the metric carries over to the worldline of an observer.
Let us suppose that we have a timelike curve with:

z' = constant, dz'=0, and dz" = (dn,0,0,0) (A.150)

This type of curve is called a thread, and a fluid’s 3-velocity along a thread is 0: ‘il”f; = 0. On the
same footing, a spacelike curve with:

n = constant, dn=0, dz* = (0,dz") (A.151)

is called a slice. It can be immediately seen, that to Oth order in perturbations, a thread, dz*, and
a slice, dy,,, are orthogonal. However, to first order:

dat'dy,, = gudatdy" = goidz’dy’ = —a®B;dndy’ (A.152)

so a perturbation makes slices and threads non-orthogonal. To first order, the worldline that is
orthogonal to slices is da* = dx°(1, X;), with X; = B, since:

gudatdy” = gidetdy’ = a’da’dy’ (- B; + X; + 2(Dd;; + Ei;) X;)

So the 3-velocity of a thread is 0 but it is shifted to B;, for a worldline of the above type, hence B;
is known as the shift vector.
Along the same lines, quantity A is the lapse function, which relates the proper time with the
actual time via:
dr = a(l+ A)dn = (1+ A)dt

hence if there is no perturbation (no lapse), it holds that dr = dt.

A.8 Conformal-Newtonian Gauge

We can utilize gauge freedom to reduce the free quantities that appear during the perturbative
analysis. A commonly used gauge is the Conformal Newtonian gauge, where we set:

(1]

= -F
@ =-B+F (A.153)
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We see then that in this gauge:
AN =9
DN =N =¥ (A.154)

so that the Bardeen potentials are now equal to the only nonzero metric perturbations. The metric
is now reduced to:

ds* = a®(n) [-(1+2®@)dn* + (1 — 2U)d;;da’da’ | (A.155)

A.9 Perturbations of R,, and T},

By use of (A.155), and working to Oth and 1st order in perturbations, we obtain the following values
for the Christoffel symbols:

Loy =H, TQ,=Th =T}, =0, Ty ==Hdsy; T =m0 (A.156)
and

6F80 = (bl7 6F8k = q),ka 6F60 = q)ﬂ',, 61—‘63 = *\Il/(s;
0T, = = [2H(® + W) + W] 655, T4 = — (W10}, + VU 107) + ¥ 30k (A.157)

The Ricci tensor can now be obtained, since:

Ry =T%, 0 —T8,, + T8I0, —To,T5, (A.158)

v, Qv
yielding:
Roo = —3H' + 39" + V2 + 3H(D' + T)
Ro; = 2(\11 + ,Hq)))z
Rij = (M +2H?)6;; + [V2U — 0" — H(®' + 5V') — (2H +4H?)(® + V)] ;5 + (¥ — @) 45
(A.159)

Then, we can raise the index with the full metric and obtain the Ricci scalar by contracting the
indices:

1
R=— [6(H + H?) +2V> (20 — @) — 60" — 6H(®' + 30') — 12(H' + H*)®] (A.160)

We now proceed to study the perturbation in the energy-momentum tensor. The energy-
momentum tensor can be SVT decomposed like the metric tensor, and also has 10 degrees of
freedom, of which only 6 are physical, while 4 are gauge related. Moreover, we can decompose
the perturbation of T# into perfect+imperfect fluid, having 10 dofs, 5 of which are related to the
perfect fluid and the rest to the imperfect fluid. Taking into account the perfect fluid degrees of
freedom, the energy-momentum tensor can be written in the perfect fluid form, i.e.:

T = (p+ p)uru, + pok (A.161)

The perturbations of the quantities appearing are:

p=p+dp, p=p+dp, u“zl(l—A,vi), uy =a(—1—-A,v; — B;) (A.162)
a
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and inserting them in (A.161), we can write T}

TH =T+ §TH
-p 0 —op  (p+p) (v +Bi>>
= _ + _ i A.163
< 0 P%‘) (—(P+P)vi opd; ( )
Moving on, there are 5 degrees of freedom that remain in the (5T; part, which correspond to
perturbations that deviate from the perfect fluid form. This anisotropic pressure can be sourced
by various phenomena, for example the neutrino background and the CMBR during and after
decoupling. We can, then, write the space part as:

, , 5
0T = opdt + X5 = p (; + Hij) (A.164)

where X;; and II;; are symmetric and traceless. So the trace and the traceless part of 5Tj are unique:

Sp = §T2?57 Yij =0T — 55;517 (A.165)
Quantity II;; is the dimensionless version of X;;, which encompasses the anisotropic pressure of a
fluid.
It is straightforward to decompose 67}, as in the case of the metric tensor. We extract a scalar
perturbation from v; and a scalar and a vector perturbation from IL;;. It holds that:

vi=vy +v), withovl =—v; and V-9 =0 (A.166)
I;; = I1; + 10 + 11 (A.167)
where
1 1 A
Hfj = (813] — gdijvz)ﬂ, HX = *i(ni,j -+ Hj,i) and (WkHZ;JC =0 (A168)

Following the corresponding steps as in the case of the metric tensor, we have that for the
perturbations of the energy density, pressure, 3-velocity and anisotropic stress it holds:

6p=20p—p'&° (A.169)
op=op—pe° (A.170)
b = v; + & (A.171)
I,;; = 11, (A.172)

For the scalar perturbations, we have that
v; =—v,; and¢& =-¢;

o) 5
v=v+¢&, =1

So in the conformal Newtonian Gauge, where ¢ = —B + E’, ¢ = —E, B = 0 and considering only

scalar perturbations (that v; = —v,; and B; = B;) we finally obtain the form of the perturbations

of the energy momentum tensor:
—op" —(p+p)vy )
oTH =1 ,_ "° i - 1 A.173
v ((P + p)’ufly §pN5j + p(Hﬂ'j — %51]V2H) ( )

The natural next step is to express the field equations that the perturbations follow.
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A.10 Field Equations of Scalar Perturbations
The perturbed version of the field equations, for scalar perturbations in the Newtonian gauge is:
0GY = 8rGTH (A.174)

and using the equations of the previous section, we can obtain, by separating (5G;'- into its trace and
traceless parts, that:

4rGa?5pN = V23U — 2H (V' + HD) (A.175a)
ArGa*(p+ p)vly = (V' + D) ; (A.175b)
1
4w Ga?opN = U 4 H(D +20) + (2H + HHD + §V2(<I> — ) (A.175¢)
1 1.
87Ga’p(0;0; — ga;v%n = (0;0; — gé;VQ)(\If —®) (A.175d)

The off-diagonal constraint from the last equation of (A.175):
(U — @) ,;; =87Ga’pIl;; so that ¥ — & = 87Ga’pll (A.176)
Similarly, from the second equation of (A.175) we get:
U+ HO = 4nGa®(p + p)v™ (A.177)
so inserting this in the first equation we get:
)
V20 = 47rGa2ﬁ(§p + 3H(1 4+ w)v?) (A.178)
Finally, by using the background relation:
4rGa’p = g’Hz

we get a concise form of the field equations of the perturbations ¥ and ®:

ViU = 27—[2 ‘Z’N + 3H(1 4+ w)v? (A.179)
U — & = 312wl (A.180)
U+ HD = g%z(l + w) (A.181)
U+ H(D +20) + (2H + H?)D + %W(@ —0) = g#(%”)N (A.182)
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Appendix B

Perturbative Analysis of Single
Field Inflation

Having presented the general framework of cosmological perturbations, we now turn to applying it
to the case of single field inflation. We will first obtain the field equations starting from an ADM
decomposition, and then proceed on the same footing to analyze perturbatively the single field
inflation scenario.

B.1 Background Field Equations

A usual approach to expressing the metric in order to obtain the field equations, is by writing it
down in the ADM form [194]:

ds® = —N2dt? + ~;;(da’ + N'dt)(dx? + N7dt) (B.1)
We will further suppose that the field is cosmological, (or equivalently that there is a gauge where
¢ = ¢(t)).
Then, plugging metric (B.1) in equation (38):
L :G2(¢7 X) - G3(¢7 X)D(b =+ G4(¢a X)R + Gux [(D¢)2 - ¢HU¢}LV]

Cox [(O¢)* — 300" + 20,0 B4 ] (B.2)

Gs(¢, X)G" b — o

we obtain, for a universe that is only filled with a scalar field ¢(t), that the action is of the form:
S = /dtdeL(N,N,a,a,g,qs,(z}, b) (B.3)

Varying this action with respect to quantities N and a, yields the field equations, while varying with
respect to ¢ yields the Klein-Gordon equation [35].

B.2 Perturbations in Single Field Inflation

It has already been presented how linear perturbations around a FLRW background are SVT de-
composed, and that it is possible to use a gauge transformation to remove some of the perturbation
modes. For example, a time transformation of the form

t—t—T(t7)
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will transform the field’s perturbation as:
8¢ — 8¢ + ¢T

and by a suitable choice of T', we can switch off the field’s perturbation: §¢ = 0. This is referred to
as the unitary gauge. The perturbations in this gauge are all within the metric tensor, so we can
write them in the form [26,35,51, 94]:

N =1+6N, N;=0 andn~,; =ada’e*"(e"); (B.4)

where (e");; = 6;; + hij + O(h?). Then,by substituting metric (B.1) in (B.3) and keeping up to
second order perturbations, we have:

§® = SZiae + Stensor (B.5)

scalar

These two parts can concisely be written by use of auxiliary quantities. In particular:

. 2 . 2 . 2
52 = / dtd*za® []:QT(aR)Q —3GrR* + L6N? — 2@6N6—2 + 2gTR6—2 +605NR — ngazva—QR
a a a a
(B.6)
where we have defined:
Gr=2 [G4 —2XGux — X (HcéGsX - G5¢)} . Fr=2 [G4 ~X (éG;,X + G5¢)} . (B.T)

O =— ¢XGsx +2H (G4 — 4XGax — 4X?Gaxx) + ¢ (Gap + 2X Gagx)
— H?$ (5XGsx +2X%Gsxx) +2HX (3Gs4 +2XGspx) (B.8)

and
Y =X (Gox +2XGaxx) + 6HOX (2Gsx + XGaxx) — 2X (Gsp + XG34x) — 6H?Gy
+6[H? (TXGux +16X?Gaxx +4X3Guxxx) —Ho (Gag +5XGupx + 2X2G4¢XX)]

+ H?)X (30G5x + 26X Gsxx +4X*Gsxxx)— 6H2X (6Gsp + 9XGspx +2X2Gspxx) -
(B.9)

where all auxiliary quantities depend on the Galileon functions and the field derivatives. Similarly,
the tensor part is of the form:

1 :
52 = g/dtdx3a3 {gTh?j - %(akhij)2 (B.10)

Varying with respect to N and 1 yields:

0? . 0’R
O:ZéN—G)—Qw—&-S@R—QT—Q (B.11)
a a
0=©0N - GrR (B.12)
and using these equations we can obtain a simpler form for the 2nd order action:
. F.
S& = / dtd*za® {gsw - ?23(8R)2 (B.13)
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where R is referred to as the curvature perturbation and we further have defined the auxiliary
quantities:
Y o 1d /a
=—G2+3 Fs=-2 (503) - Fr. B.14
Gs @2gT+ gr, S= o @gT T ( )
One can specify the Galileon functions that lead to a given theory, and then calculate the squared
sound-speed of scalar and tensor perturbations by use of:

by
3

2 2
Cs Cr

- e B.1
Gs ’ Gr (B.15)

If these quantities turn negative, the theory has gradient instabilities', like the exponential growth

of perturbation modes. Moreover, one has to ensure that the kinetic terms are positive, to avoid
ghost instabilities. Thus it should also hold that:

Gs>0, Gr>0, (B.16)

B.3 Mukhanov-Sasaki Equation and the Observable Quanti-
ties

Within this framework we can study the evolution of the perturbations. It is very convenient to use
the transformation of the time coordinate:

dy = St
a

and redefine the R variable as:
wi=2R, z:=+2aV/FsGs (B.17)

in equation (B.13), leading to the Mukhanov-Sasaki form:

"

57(22) = %/dyd3x {(u’)2 — (Ou)* + %uQ (B.18)

where a prime denotes differentiation with respect to the new time coordinate y. We can now find
the spectrum of the scalar and tensor perturbations. In the case that the time dependent terms
have a very slow evolution with respect to time, the power spectrums are evaluated by [191]:

1/2 2 1/2 172
H 8 H
PR = gSS/Q 4771_2 ) PT = g§2 ﬁ 9 (Blg)
2F Fr
at the horizon crossing. The quotient of these two is the tensor-to-scalar ratio r:
Pr
= —. B.20

However, in the case of not slowly varying quantities, one has to explicitly solve the full Mukhanov-
Sasaki differential equation corresponding to each perturbative mode, to predict its evolution. This
is the case in models where there is a significant shift in the evolution pattern of the inflaton field,
like the one introduced in Section 2.

1For example, in the NMC scenario, briefly presented in Section 2, we can prove through equations (2.4),(2.5) and
(2.6), that ¢2 = 1, hence there are no corresponding instabilities.
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Another observable that we can obtain through CMBR is the scalar spectral index, ng, that
expresses the change of the logarithm of the power spectrum of the scalar perturbations, per loga-
rithmic interval k:

dInPg
l—n,=— ’ , B.21
" dlnk lk=aH ( )
Similarly, we define the tensor spectral index:
dl
ny = —4mPr (B.22)

dink lk—an

Parameters r and n; are related by what is referred to as the consistency condition. In standard
single-field inflation it is of the form
r R —8ny

However, in modified theories of inflation, its form is generally non-standard. So in summary, the
observables of a single field inflationary model are r,ngs and Pg.
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