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Abstract

Nowadays, Cloud computing is becoming one of the most attractive solutions for applica-
tion execution, due to the enhanced flexibility and efficiency it offers. Cloud computing
refers to the on-demand provision of system resources, especially computing power and
storage. These resources typically exist on individual servers found in datacenter environ-
ments and/or server farms around the world. Proper and efficient management of those
resources becomes crucial, both from the providers’ as well as end-users’ point of view,
since it can dramatically improve performance and reduce cost expenses for all the par-
ties involved. However, orchestrating cloud computing resources is not a straightforward
matter, due to i) the huge amount of available optimization knobs, ii) the different levels
that these optimizations can be applied (server- to cluster- to application-level) and iii)
the interrelationship between software and hardware optimizations combined with the
extreme hardware heterogeneity found in today’s data-centers environments. On top of
that novel computing paradigms are emerging (e.g., hardware disaggregation), which un-
veil extra optimization knobs on the foreground, thus, further complicating the problem
of efficient resource orchestration.

In this dissertation, we examine the applicability of deep learning techniques for system
optimization in Cloud architectures. Given the huge amount and the multi-level nature
of the available optimization knobs, which tend to be unmanageable using conventional,
human-driven orchestration mechanisms, deep learning approaches appear to be unavoid-
able in order to exploit and leverage the full potential of modern Cloud systems. First,
we investigate the employment of state-of-the-art neural networks in the field of system
monitoring, which forms an integral part of modern Cloud infrastructures. Then, we
examine the application of ML-driven orchestration on different levels of the hierarchy,
i.e., application-driven automatic optimizations, cluster-level application deployment and
orchestration and system-level control of running applications. To achieve the above, we
propose three frameworks, i.e., Rusty, Adrias and Sparkle, which employ deep learning
driven optimizations on different levels of the hierarchy.

Keywords: Cloud Computing, Deep Learning, Machine Learning, Resource Manage-
ment, Cloud Monitoring

vii



viii



MNepiAndn

Y nuépec Yo, N EXTEAEST) EQUPUOY®Y UEcw Ypnong Tou “TroloyioTixol Négoug™ anote-
Ael plo amd Tic o eAxvoTnég xan eVPEWS LETOVUEVES AUOELS, AOYW TNE UeYdhne evehiElag
X0l ATMOTEAECUATIXOTNTOC TTou Tpoopépet. To “Yrohoylotind Négog™ ovoiaotixnd e€unnpetel
otV %ot anofTNoT TUEOY T UTOAOYIC TIXWY TOpwY G TEAX0UE YPNOTEC Xl TIC MEPLOCOTE-
PEC POPEC aVAPERETAL OE UTOAOYLOTXY Loy ) xou Ywpeo amodixeuvong dedopévmy. Autol ol
Topol cLVHDWS Elval XOUUATL XATOLWY UEUOVWUEVKY OLUXOULOT®Y, oL omolol BeloxovTo o
TepBdhhovTa x€vtpwy dedopévwy f/xo oe Pdpues SloxouloTdv avd tov xéopo. H owoth
xalL amodoTixY| dlayelplon auTOY Twv Topwy Yivetal xplowr, 1600 amd TNV TAEUEd TWV Ta-
POY WY 600 XA TWV TEAMXDV YENOTWY, Xxodd¢ Umopel Vo BEATIOOEL Spao Tixd TNy anddooT xal
VoL JELWOoEL ToL €£000 XOOTOUE TOCO YLoL TOUG TEAXOUE YPNOTEC OGO %O YLo TOUS ToPOYOUC
UTOAOYLOTIXOY UTNEECLWY. 20TO60, 1) EVORYHO TEWOT TV ToprY UToAoYiopoL oto Négog
dev eivan amhfy unddeon, Aoyw 1) tne tepdoTiac T0ooTNTUC SLdECUMY TUPOUETPWY TROG
Behtotomonom, 2) twv JPopeTIXMY EUTEdWY 0Ta 0Tolo UTOPOUY VoL EQAUPUOCTOVY QUTES
ol Behtiotonofioelc (eninedo dioxoutoty - eninedo cuotddoc - eminedo epapuoyhc) xou L)
e woyverc olnhenidpoaone petad Aoyiowxol xou UAxXo) oe GUVBLOCUS UE TNV €VTovn
avoUoloYEvela Tou UAxoU mou Beloxeton otar alyypova TepBIAAovTa XEVTPwY BESOUEVWY.
Emmiéov, véa unoAoyio Tind TedTUTTOL ovaBUOVTAL, TAl OOl PEEVOUV GTO TEOGKNVIO ETLTAEOV
onueta BehtioTonolinong, ENOPEVLS, TEQITAEXOUY TEQAUTERE TO TEOBANUL TNG ATOTEAECUATI-
AC 0PYAVWONE TWY TOPWYV.

Ye authyv T dlateBy), e€etdlouye TNV eqoppoyn Tex VXY Padidc wdinong yio T BeAtio To-
nolnomn cuotudtwy oe apyttextovixés Y mohoyio ol Négouc™. Aaufdvovtog unddn tov
HEYAAO aprdud xou To TOAVETUNESO YapaxThed Twv dladéoiuwy onuelny Behtiotonoinong, Ta
omola tefvouv va elvon dhoxola duayetplowa ue cupPBatixoig, avipnmiva xadodnyoduevoug
unyaviogolsg opydvewong, ol npoceyyioee Bathd pdinong galveton var EVOL AVUTOPEUXTES
yioe TNV a€lomoinom Xl EXYETAAAELGT) TOU TAREOUS SUVOLXOD TWV GUYYPOVKY CUC TNUATLY
Négouc. Ilpog authiv TNV xatedduvor, ooy TEOTO avTIXEUEVO NG BLaTEBiC, EPELVOUNE TN
XENON VEUROVIXWY BIXTUGY OTOV TOPEN TWV GUC TNUATWY Tapaxorovinong oto TrohoyloTi-
%6 Négog, 1 onolo amoTtehel ONUAVTIX CUVICTOCN TV OUYYROVWY UTodounY T TohoyloTixo)
Négoug. Xtn ouvéyela, e€eTdloVUE TNY ATOTEAEOUATIXOTNTA TNG TEXVNTAS VONUOGUYNS YLot
BeltioTonoinon diayeiplong mépwy ot BlapopeTnd eTimeda TN Lepapylag, dNAadY| auTOUATES
BehtioTonoioelg o eninedo eQUpUOYNS, XIS xon TNV avanTUEn XaL 0pYdvwor o enine-
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00 cuctddag unohoyloty. Ta va emteuydoly To mopandve, Tpotelvouue Tela epyahela,
to Rusty, to Adrias xou to Sparkle, xadéva and ta omola yenowonoiel Beltiotonoioelg
xadodnyolueveg and Podid veELpwVIXA BIXTUN Xol GTOYEVOUV OE OLUPOPETIXA ETUTEDA TNG
epapylac.

A€Zeic KAewdid: Troloyiotnd Négog, Bahd Mdidnorn, Mnyoavixr Mddnorn, Opydvewon
Trohoywotxwv lépwv, Yoo tnua Hapaxorotdnone Trokoyiotixod Négoug
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Chapter 1.
Introduction

Today, we are going through the "Digital Era" or "Digital Revolution", where, the pace at
which technology is evolving is ever increasing across the globe. This digital tsunami is
driven by a culmination of technologies and socioeconomic factors and trends, including,
but not limited to, the rapid advancements in the field of networking and connectivity [9],
the explosion in the number of connected devices on the internet [10], the huge amount
of data generated by these devices and the valuable insights that one can derive from
them [11] as well as the need for rapid and agile reactions in case of natural or man-made
disasters or crisis situations [12].

Businesses and organizations from all sectors are embracing this digital transformation in
nearly every aspect of business, transforming old processes and methods of human inter-
action and creating new innovations within the digital business culture!. On top of that,
social phenomena such as the COVID-19 pandemic only expedite this transition, forcing
businesses of all kinds to employ innovative digital solutions to survive?3. In fact, accord-
ing to a recent report, by the end of 2019, 70% of businesses had realized a digital transfor-
mation plan?, encompassing 40% of technology expenditures.

Cloud computing has been, and still is, a key enabler towards sustaining this ever-
increasing demand for computing resources [13,14]. With Cloud computing, companies
can make profit from cost-effective, scalable solutions to the various needs of their in-
formation technology (IT) part, thus, boosting their overall business. Moreover, it has
shown to be a vital part for other new technologies such as artificial intelligence [15, 16]
and the internet of things [17, 18], which are projected to be critical in the future of
innovation during the 21st-century.

"How Cloud Migration & Digital Transformation Are Driving the Digital Revolution

2The Rise of the Hybrid Workplace

3How The Pandemic Has Accelerated Cloud Adoption

4Digital transformation research report 2018: Strategy, returns on investment, and challenges
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1.1. The role of Cloud computing in the Digital Era

Cloud computing refers to the on-demand delivery of computing services including com-
puting power (servers), storage capacity, databases, networking, analytics, and many
others [19] over the Internet ("Cloud") offering faster innovation, flexible and agile re-
sources, thus, realizing economies of scale [20]. The rationale behind its inception is
simple: Information and communication technology (ICT) providers with available but
unused compute and storage capacity provide them to IT consumers, who need computing
resources but do not acquire them.

While it may seem that the Cloud computing paradigm has been developed during the
last decade, the origin of ideas related to it can actually be traced back to around the
1960s, just when also the Digital Era began. Figure 1.1 shows significant events dur-
ing these years that contributed to the formation of Cloud computing as we know it
today®.
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Figure 1.1.. History of Cloud computing®

In fact, one of the core ideas of Cloud computing (i.e., multi-tenancy) can be directly
mapped to the idea of time-sharing proposed in the early 1960’s, in which a computing
resource can be shared among many users at the same time. With time-sharing acting as
the foundation of Cloud computing, a chain of events (such as the invention of Internet
and World Wide Web) led to first generation Cloud in around 2005, where centralised
infrastructures in datacentres are utilized to host a lot of compute and storage resources.
In this period of time, Amazon was the first one launching its first public cloud services®.
After that, we observe a cataclysm of events taking place, leading to the second (2012-
2017) and next (2017-today) generation of Cloud, where Clouds are becoming extremely
heterogeneous (introduction of GPU/FPGA/TPU accelerators as services in the Cloud),
applications are shifting from traditional monoliths to microservices or standalone func-
tions, the paradigm of the loT-to-edge-to-Cloud computing continuum is introduced and
many others.

SHistory of the cloud
5 Amazon Web Services Launches
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Size of Cloud computing worldwide (2010-2020)
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Figure 1.2.. Worldwide market size of Cloud computing

As expected, Cloud computing has formed and still does a vital pillar in the context
of digital transformation, as it allowed stakeholders to quickly digitize their business,
without the need to make large upfront investments in hardware and to spend a large
amount of time managing this hardware. The rapid adoption of this new paradigm is
evident and highlighted by recent market reports. In fact, as shown in Figure 1.2a,
over the last 10 years, the size of the cloud computing market has increased more than
600%" and was valued at USD 368.97 billion in 2021, while, as shown in Figure 1.2b, is
anticipated to expand at a compound annual growth rate (CAGR) of 15.7% from 2022 to
2030%. On top of that, this development is fueled by the equivalent explosive growth of
kin fields, such as the Internet of Things (approximately 80 billion connected devices by
2025%) and Machine Learning (expected to grow from USD 21.17 billion in 2022 to USD
209.91 billion by 2029, at a CAGR. of 38.8%!?), which rely on Cloud backend for data
offloading, processing and analysis [21-23], thus further increasing the density of demand
for Cloud services.

"Size of the cloud computing and hosting market market worldwide from 2010 to 2020
8Cloud Computing Market Size, Share & Trends Analysis Report

9ToT platforms: enabling the Internet of Things

10\Machine Learning (ML) Market Size, Share & COVID-19 Impact Analysis
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1.2. Improving capacity of Cloud infrastructures

Hyperscale datacenters, with their huge processing and storage capacity, form today’s
de-facto processing backbone engine in the cloud, that transforms the ever increasing
diversity and amount of data into value for numerous applications. Despite their domi-
nance, datacenter infrastructures pose a plethora of open issues. Capacity and Scalability
form two of the most challenging problems within datacenter facilities. Capacity refers
to the total amount of applications that can be hosted by a single server (or DC in
general), whereas scalability refers to the ability of a datacenter to increase or decrease
resources as needed to meet changing request. For example, nowadays, it is common
for specific applications, such as search engines and social networks, to serve millions of
people!!"12. To enable this explosive growth, providers have to expand and scale their
compute capacity accordingly. Increasing the scale of datacenter can be realized in two
ways: i) by reducing the cost expenses of commodity hardware and, thus, being able to
host more machines with the same operational expenses (OPEX) or ) by increasing its
resource efficiency and, thus, being able to host more application on the same number of
machines.

Cost efficiency has been traditionally achieved by the replacement of specialized machines
with cheap, commodity hardware, which can be easily replaced, replicated and scaled ac-
cording to the operator’s needs 3. A governing principle of commodity computing is
that it is preferable to have more low-performance, low-cost hardware working in parallel
(scalar computing) than to have fewer high-performance, high-cost hardware items, thus
increasing the overall performance per dollar of the underlying infrastructure'®. However,
as the majority of datacenters have already transitioned to the replacement of specialized
with commodity servers, this workaround is reaching an expiration point, thus ending
up to be incapable of providing further advantages. Consequently, to maintain scala-
bility, operators have either to build more datacenters, or depend on microprocessors
manufacturers to deliver chips with higher performance. However, even such solutions
are not viable, with the former requiring huge capital expenditures (CAPEX), long pro-
duction periods [24,25] and are soon to be restricted by environmental laws'® and the
latter being confined by the design limitations of modern integrated circuits, such as
the end of Dennard scaling [26] and the projected expiration of Moore’s Law [27] by
2025'°.

" Google - Statistics & Facts

'2Number of monthly active Facebook users worldwide as of 1st quarter 2022
3How to understand the rise of commodity servers in the Cloud

1 Google data centers

'5Reading the runes: EU data center regulations are coming sooner than you think
16 After Moore’s Law
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On the other hand, resource efficiency can be achieved by making better use of the
resources inside the datacenter’s facilities. Since datacenter infrastructures are very ex-
pensive to build and operate, providers have a strong incentive to optimize their use [28].
Moreover, improving the resource efficiency of a datacenter also helps in reducing the
power usage effectiveness (PUE), which forms a top priority of modern cloud opera-
tors!”. Nevertheless, with the tremendous complexity introduced in modern datacenters,
operating such infrastructures in an efficient manner is extremely challenging. This com-
plexity originates from various elements that operators have to deal with, both from a
HW/SW as well as supply/demand standpoint. A typical example is the conflicting re-
quirements between operators and end-users, where the latter demand their workloads
to be given enough resources to achieve high Quality-of-Service (QoS), such as low la-
tency and high throughput for user-facing services or quick analytics execution times
and the former anticipate high resource use in order to accommodate as many tasks as
feasible with a certain set of resources. While better resource efficiency can be achieved
by applying optimizations on many levels of the stack (from system to cluster to applica-
tion level), state-of-the-art resource management frameworks are not able to handle the
complexity of modern Cloud infrastructures. As a consequence, datacenters operate at
high underutilization levels as operators tend to sacrifice computational power for better
performance [29, 30].

To overcome the issue of underutilization, several workarounds have been proposed in the
past, such as consumption-based pricing [31,32] targeting over-provisioning issues, server-
less architectures [33,34] targeting the issue of idle reserved resources, and others. Besides
that, the multi-tenant architecture (also known as multi-tenancy) has been a core idea
to enhance resource efficiency. In a multi-tenant environment, different users are sharing
the same computing resources, thus, increasing the overall utilization of the underlying
infrastructure. Each tenant’s data and workloads remain isolated (mainly through virtu-
alization mechanisms [35,36]), even if they happen to run on the same physical machine
or group of machines. While multi-tenancy offers reduced costs for operators, greater
flexibility and increased efficiency, it also introduces performance loss due to interference
in shared resources of the system. Interference can exist in multiple levels of the under-
lying hardware, including CPU, caches, memory bus, storage and network [37—40]. In
fact, prior work has shown that interference-unaware schedulers can introduce up to two
times less performance for certain workloads [41].

Going one step further, a proposed prominent solution, that has appeared lately in the
foreground, for mitigating interference and enabling more fine-grained organization of re-
sources within datacenters is completely reconsidering the design of datacenters and shift-
ing towards a novel computing paradigm, known as hardware disaggregation [1,42—44]. In

"Google Datacenters - Efficiency
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a disaggregated data center, CPU, memory, and storage are independent resource blades
that are joined by a network fabric, as opposed to the monolithic server method that
datacenters are currently using. As a result, datacenters of the future aim to have more
flexibility and gains in terms of utilization efficiency and energy consumption. However,
despite its clear benefits, the evolution of the underlying physical hardware introduces sev-
eral new challenges, e.g., accesses through fabric can result in higher memory latency [1],
identifying the right type of resource to allocate and others.

From the above, it is evident that even though many solutions have been proposed for im-
proving scalability and resource efficiency within datacenter infrastructures, there is still
a lot of space for improvement. Satisfying the contradicting requirements of operators
and end-users, as well as determining the level (or levels) at which an optimization should
be applied, forms a many-objective optimization problem, which is extremely difficult to
solve. If we also consider the introduction of novel architectures (w.r.t. both hardware
and software) the complexity explodes. Modern resource management frameworks of top
cloud providers and datacenter owners (e.g., Google, Facebook, Azure) used to, or even
still, rely on naive scheduling policies and/or static policies to increase the resource effi-
ciency of their infrastructures [45-53], which, however have several shortcomings. First,
they’re fine-tuned offline using a small number of benchmark workloads as representatives.
Threshold-based policies, for example, often involve hand-tuned thresholds that must be
applied for a wide range of workloads [54]. Second, static policies often necessitate reactive
responses, which can result in unnecessary costs and customer harm. Consider a com-
monly used policy for scheduling containers into servers, such as best fit'®. It’s possible
that some co-located containers will interfere with each other’s use of resources (for ex-
ample, shared cache space), requiring (reactive) re-allocation of resources or even live mi-
grations, which is costly and can result in service downtime.

Concluding, even though accurate and fast performance estimation is a necessity for
Cloud system optimization, conventional heuristic-based designs can not guarantee scal-
ability and optimality, especially in the case of the increasingly complicated datacenter
infrastructures. As such, it seems natural to move towards more automated and powerful
methodologies for computer architecture and system design.

18 A Brief Analysis on the Implementation of the Kubernetes Scheduler
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1.3. Towards ML-driven Cloud resource management

1.3. Towards ML-driven Cloud resource management

Today, Machine Learning (ML) and Artificial Intelligence (AI) have an impact on almost
every element of the globe. ML is being adopted by businesses, small and large on a mas-
sive scale and is a huge enabler for analyzing and leveraging insights from huge amounts
of data!®. In this direction, lately we notice signs of the application of ML to computer
architecture and systems, which encompasses two meanings: i) the reduction of burdens
on human experts designing systems manually to improve designers’ productivity, and i)
the closing of the positive feedback loop, i.e., architecture/systems for ML and simultane-
ously ML for architecture/systems, forming a virtuous cycle to encourage improvements
on both sides [55].

In the context of Cloud computing, automated ML-driven systems are paving the way
for more efficient datacenters. With the adoption of ML techniques, operators are able
to process, analyze, gain insights and identify correlations within a huge pool of gathered
monitored data, which would be impossible solely through human reasoning. In fact,
for public cloud providers Al and ML are already part of their datacenter deployment
and operations. For example, Google previously explained how it employs DeepMind Al
for cooling and how it was able to reduce Power Usage Effectiveness (PUE) by 15% by
automating the management of variables such as fans, cooling systems, and windows?".
Deepmind was also employed by the corporation to predict wind turbine output up to 36
hours ahead of time, which it used to forecast electricity needs for its facilities connected to
wind farms?'. Moreover, latest efforts regarding efficient resource allocation within data-
centers are shifting towards the adoption of ML techniques either as prediction tools or as
integrated components for resource management [28,56-59]

While ML/AI is a prominent solution for delivering more efficient datacenters, it is cur-
rently unclear what is the best way to integrate ML into cloud resource management.
Prior techniques, in fact, vary in a number of ways. For example, as mentioned before,
in some circumstances, ML is highly connected with the resource management in certain
circumstances, but it is completely distinct in others [28]. Towards this direction, more
research is required in order to understand how, where and when to employ ML techniques
for improving resource efficiency in Cloud systems.

1951 Machine Learning Statistics to Get You Thinking
20Google uses DeepMind Al to cut data center PUE by 15%
21Google’s DeepMind uses Al to predict wind farm output
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1.4. Ph.D. Thesis Scope & Contributions

The scope of this thesis is to examine the applicability of deep learning techniques for
improving resource efficiency in Cloud infrastructures. While resource efficiency of dat-
acenters can be improved through several components of the underlying hardware and
software infrastructure, in this dissertation we give special focus on optimizing the re-
source allocation and application scheduling in Cloud systems. Given the strong perfor-
mance relationship between hardware and software, we base our deep learning models on
hardware oriented performance counters, thus aiming to project low-level events to higher
level metrics of interest. Specifically, the principles that guided our research activities are
the following:

1. Given the close relationship between hardware and software, modern Cloud sys-
tems should make orchestration decisions taking into consideration the dynamics
of both the application and the underlying system. In this direction, we believe
that low-level performance events can provide extremely useful insights regarding
performance bottlenecks of Cloud systems.

2. We argue that the complexity of modern Cloud systems is enormous, thus, forming
naive scheduling/monitoring solutions incapable of handling efficiently this deluge
of available data and optimization knobs. In this direction, we examine the efficacy
of machine learning and artificial intelligence in several aspects and optimization
layers of the cloud domain.

We examine both these principles on different problems in the field of cloud computing,
ranging from application-specific up to system-level optimizations. Figure 1.3 presents,
in an abstract manner, a high-level overview of the positioning of the contributions of this
thesis with respect to the different optimization layers described in Section 2.1.4.

Overall, the major contributions of this thesis are threefold:

¢ Rusty: A novel sophisticated monitoring solution for cloud infrastructures. Rusty
leverages Long Short-Term Memory (LSTM) networks to enable fast and accu-
rate resource and energy consumption predictions of systems under interference.
Through Rusty, our ambition is to establish predictive monitoring as the de-facto
solution for cloud monitoring, aiming to adopt it for guiding proactive resource
allocation mechanisms.

e Adrias: A monitoring and orchestration framework for memory disaggregated sys-
tems. Adrias continuously monitors the underlying system and gathers application-
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Figure 1.3.. Schematic overview of the contributions of this thesis.

and system- wide performance events. By leveraging deep learning approaches,
Adrias utilizes the monitoring information to dynamically place incoming applica-
tions on memory disaggregated cloud systems.

e Sparkle: A deep learning driven parameter autotuning framework for Spark appli-
cations. Sparkle leverages a modular DNN architecture along with low-level perfor-
mance monitoring events and expands to the entire Spark parameter configuration
space, thus, completeley eliminating the need for human and/or statistical reason-
ing in the loop. By employing a genetic optimization approach, Sparkle quickly
traverses the parameter design space and identifies optimized Spark configurations.

Besides its major contributions, this thesis also examines four additional problems, i.e., i)
application placement on heterogeneous Cloud systems, with focus given on cost-efficient
deployments on clusters consisting of CPU, FPGA and GPU devices, i) resource-aware
workload deployment on Kubernetes clusters equipped with GPU accelerators, i) em-
ployment of Natural Language Processing (NLP) techniques for modeling performance of
GPU accelerated applications and iv) DNN partitioning and offloading in heterogeneous
edge computing environments.

In the following subsections, we highlight the major contributions of this thesis and
explain how these contributions extend prior state-of-the-art approaches and limitations,
as described later in Section 3.
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1.4.1. Rusty (Chapter 4)

Addressed problem: Lack of interference-aware and predictive performance monitoring
frameworks to drive proactive scheduling decisions.

Multi-tenancy forms the de-facto deployment model of modern Cloud systems. Despite
its benefits, multi-tenancy leads to interference in shared resources of a system, thus
damaging performance of applications. As a result, modern schedulers should be able
to dynamically predict per application needs, to perform optimized online resource al-
location decisions. While prior research have proposed several monitoring solutions for
identifying interference effects that lead to performance degradation, they do so either
by i) analyzing high-level metrics of interest, e.g. applications’ CPU/Memory utilization
and logs [60,61], i) investigating each shared resource seperately in a random-like man-
ner [40], or i) by pausing the execution of running applications and injecting synthetic
microbenchmarks for root cause analysis [38,62]. In order to tackle these inefficiencies,
we propose Rusty.

Rusty extends prior by:

¢ Designing a non-intermittent monitoring solution for Cloud server systems;

e Delivering an extensive, interference-aware analysis, showing the variation of per-
formance events under different interference effects;

e Presenting an in-depth insights regarding the parameters that affect the accuracy
and complexity of the its predictive model.

e Providing extremely accurate predictions of hardware performance metrics under
interference;

e Imposing minimal performance overhead over running applications on the system.

1.4.2. Adrias (Chapter 5)

Addressed problem: Absence of resource management frameworks for memory disag-
gregated Cloud systems.

Hardware disaggregation is the next big step for efficient and fine-grained management
of Cloud infrastructures. While the problem of resource orchestration and application
scheduling has been extensively examined in the context of traditional Cloud infrastruc-
tures [41,63,64], to the best of our knowledge, no prior work has examined its aspect
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on disaggregated infrastructures. In such composable infrastructures, resource allocation
frameworks should be able to take cognitive decisions regarding the the type and topology
of resources to be used.

In order to tackle these aspects, we propose Adrias.
Adrias extends prior art by:

¢ Performing an extensive analysis on the impact of memory disaggregation on state-
of-the-art in-memory applications;

e Delivering a set of deep-learning based performance models for applications de-
ployed on top of memory disaggregated Cloud systems;

¢ Developing a resource orchestration framework responsible for placing applications
on memory disaggregated systems with minimal performance overhead.

1.4.3. Sparkle (Chapter 6)

Addressed problem: Inadequate approaches for performance prediction of Spark appli-
cations, which rely on human-in-the-loop or statistical approaches to identify importance
of Spark parameters and follow application-specific performance modeling.

With businesses generating big-data at a rapid pace, analyzing the data to leverage mean-
ingful insights is essential. Apache Spark forms the de-facto big-data analytics framework,
as its in-memory processing architecture provides enhanced performance improvements
compared to its predecessor Hadoop. Spark provides over 150 parameters that can be con-
figured to alter several aspects of the runtime engine, for further increasing performance.
However, manually tuning these parameters is extremely challenging and requires deep
knowledge and understanding of the Spark engine. While previous research works have
proposed automated frameworks to model performance of Spark applications w.r.t. differ-
ent configurations, they typically consider only a subset of Spark parameter space [4,6,7]
and also rely on application-specific modeling [4, 6], thus, requiring extensive profiling
for each new application deployed on the cluster. To overcome these inefficiencies, we
propose Sparkle.

Sparkle extends prior art by:

e Providing an in-depth analysis on the impact of all performance-related, tunable
Spark parameters found under Spark v3 on different applications and dataset sizes;

11
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o Considering the entire Spark configuration space for modeling performance, hence,

not relying to statistical or human reasoning for identifying the importance Spark
parameters;

e Delivering a hybrid DNN architecture to exploit both application- and configuration

parameter-related characteristics, thus, being able to provide accurate performance
predictions of Spark deployments using a single, universal model.

1.5. Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 provides a brief background on Cloud computing, reviews the related
state-of-the-art research works and pinpoints their limitations. It also presents the
positioning of this thesis in the context of Cloud computing and summarizes its
major contributions.

Chapter 4 presents Rusty, a predictive and interference-aware monitoring framework
for Cloud systems that leverages Long Short-Term Memory networks for forecasting
system events in multi-tenant systems.

Chapter 5 presents Adrias, a monitoring and orchestration framework that leverages
deep learning techniques for placing applications in memory-disaggregated Cloud

Systems.

Chapter 6 presents Sparkle, an end-to-end, deep-learning driven, parameter auto-
tuning framework for high-dimensional Spark in-memory analytics

Chapter 7 concludes this thesis by summarizing the presented results and discusses
the future extensions of this work.

Appendix A provides an analysis for cost-effective acceleration for Cloud healthcare
analytics, based on the work done in the EU H2020 project AEGLE.

Appendix B examines the problem of resource-aware scheduling of machine learning
inference engines on GPU-enabled Kubernetes infrastructures.

Appendix C explores the application of natural language processing (NLP) tech-
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niques for automatic frature extraction and performance prediction of CUDA-
accelerated GPU kernels.

e Appendix D presents a partitioning and offloading framework for DNN inference at
the edge/cloud computing continuum.
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Chapter 2.
Background on Cloud Computing

In this chapter, we give a brief background on Cloud computing, as well as pinpoint
the major challenges that arise inside data-center environments regarding the efficient
management of computing resources.

2.1. Background on Cloud computing

Over the last years, the number and size of Cloud infrastructures have experienced a rapid
increment [24]. This expansion originates from the fact that more and more stakeholders
from different and diverse domains, including but not limited to, healthcare [65], auto-
motive [66] and agriculture [67], are embracing Cloud computing as their de-facto model
for application execution. Overall, Cloud computing offers many benefits to adopters,
with the most important being:

o Resource flexibility: Users can upscale or downscale the capacity of their computing
resources on demand, to fit their need, support growth and handle busy periods.

o Efficiency and Performance: Users can get applications to market quickly, without
worrying about underlying infrastructure management and maintenance, while also
taking advantage of high performance, constantly upgraded computing resources,
as well as guaranteed service uptimes, through Service-Level-Agreements (SLAs)
provided by cloud operators.

e (Cost Reduction: Users can reduce the total expenses of their company by leveraging
pay-as-you-go schemes, while also eliminate upfront costs for hardware and software
purchases (CAPEX) and operational costs in terms of energy consumption, cooling
and server maintenance (OPEX).
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Figure 2.1.. Abstract overview of a conventional datacenter HW/SW infrastructure
architecture

Typically, public Cloud services are hosted inside datacenter (DC) infrastructures, which,
in turn, house all the required hardware resources to run these services. At its simplest, a
datacenter is a physical structure that cloud providers utilize to host their services, deploy
end-users’ applications and store data. The design of a datacenter is built on a network of
computer and storage resources that allow the delivery of shared applications and data.
Routers, switches, firewalls, storage systems, servers, and application-delivery controllers
are all important components of the design of a datacenter. Figure 2.1 shows a high-
level overview of a conventional datacenter’s architecture, also depicting in an abstract
manner the interrelationship between users’ requests, cluster’s management components
and hardware infrastructure.

16



2.1. Background on Cloud computing

2.1.1. Inside a datacenter’s hardware architecture

From a hardware perspective, data-centers typically consist of thousands of server racks,
each of which hosts a number of physical servers. As shown in Fig. 2.1, servers and racks
are usually inter-connected using multi-level routers and network switches [68]. Lately,
we observe a dramatic change in the composition of cloud servers inside datacenters!.
Traditionally homogeneous cloud systems are gradually changing to heterogeneous de-
signs, either through special purpose chips, such as Google’s TPUs?, or reconfigurable
fabrics, such as Microsoft’s Catapult [69] and Brainwave initiatives [70]. This leads to
physical servers presenting extreme heterogeneity in terms of their computing resources,
e.g., storage, memory type, equipped accelerators, CPU and others [41,71]. This hard-
ware diversity is also evident by taking a closer look to the solutions offered by public
cloud providers, such as Amazon Web Services (AWS), Google Cloud Platform (GCP),
IBM Cloud, Microsoft Azure and others. For example, AWS [72] offers more than 50
different virtualized and/or baremetal instance types, where each instance type includes
one or more instance sizes, allowing you to scale your resources to the requirements of
your target workload 3.

This heterogeneity is a result of several reasons, some of which being;:

1. The relationship between applications (SW) and server’s configuration (HW): Prior
research works have shown that different applications might perform more efficiently
on specific CPU architectures and/or different server’s composition [41, 62, 73-76].
This is also evident by introspecting AWS’s instance types, which are optimized to
fit different use cases (e.g., compute/memory/storage optimized).

2. Hardware-specific requirements of applications: Modern applications present dif-
ferent demands regarding specialized hardware . For example the rise of the ML
and Al domains has pushed DC operators to populate their facilities with hetero-
geneous GPU accelerators [23,77,78]. Another example is modern database ap-
plications, which are shifting towards the use of persistent memory solutions (e.g.,
Intel® OptaneTM), which store data in system’s memory, plugging directly into the
high-speed, low-latency memory bus [79-81].

3. Constant upgrades of DC’s infrastructure: As a result of the previous points, dat-
acenter providers are gradually replacing the hardware resources of their infras-
tructure, in order to keep up with the latest advancements in hardware technol-

!The Increasing Heterogeneity of Cloud Hardware and What It Means for Systems
2Google Cloud Platform - Cloud Tensor Processing Units (TPUs)
3https://aws.amazon.com/ec2/instance-types/
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ogy innovation and keep up with the demanding requirements of modern applica-
tions [24,73,82]. Therefore, a DC can accommodate several different generations of
servers, accelerators, memory technologies and others [41].

2.1.2. Hosted applications

Today’s cloud providers are called to handle and execute a diverse set of applications, such
as data analytics, web streaming, web searching, scientific simulations and others [83-87],
while also accounting for delivering performance- and cost-efficient solutions. Typically,
these applications are divided in two main categories [41,88-91]:

o Best-effort (BE) applications: These are basically batch workloads [2,92, 93]
that are not accompanied by strict performance requirements and aim to maxi-
mize their computational throughput. Typical examples are stock analytics that
are executed once at the end of each day [94], scientific workloads such as genomics
sequence analytics [95-97], training of machine learning and deep learning work-
loads [98,99], video analytics [100,101] and others.

o Latency-critical (LC) applications: These are user-interactive services, with
some examples being web search applications [102], mailing services [103], interac-
tive key-value stores [104] and memory object caching systems [105]. These online
services most of the times are coupled with strict latency/response time Quality-of-
Service (QoS) constraints expressed in the form of tail latency [106,107], or specific
Service-Level-Agreements (SLAs) for ensuring uptime of the deployed services 4.

2.1.3. Datacenter monitoring

Datacenter Monitoring forms a top priority feature of modern cloud services and in-
frastructures, as it allows to evaluate the status and performance of the underlying in-
frastructure and applications on a modular level [108,109]. Proper monitoring of the
whole hierarchy, from application up to system level, is essential to provide insights re-
garding both the performance of running applications and the load that the cluster’s
nodes experience, as well as identify possible bottlenecks or failed knobs [61,110]. Dat-
acenter monitoring can be implemented at various levels, with the most common ones
being:

4 Amazon Compute Service Level Agreement
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¢ Internal Environment Monitoring: The datacenter should include enough sen-
sors to detect room temperature, humidity, and other environmental factors, which
heavily affect the performance of the underlying hardware infrastructure [111-113].

¢ Hardware Monitoring: Monitoring data regarding energy usage, network band-
width and speed, storage hardware performance, backup and disaster recovery hard-
ware maintenance, and so on must be collected on a regular basis. These aspects
must never be overlooked and must be checked on periodically to ensure a proper
functionality.

¢ Application Monitoring: Application monitoring is the practice of analyzing an
application’s performance, availability, and user experience in order to detect and
remedy problems before they affect end-users. Because of the dynamic nature of
today’s hybrid cloud and cloud native settings, application monitoring is tough.
To provide total visibility into application performance, the most effective modern
systems combine whole stack monitoring from the front-end, user experience, to the
back-end infrastructure [61,109,110,114,115].

2.1.4. Datacenter’s mechanisms for resource orchestration

Datacenters host several software components, responsible for performing various activi-
ties regarding the management and operation of the underlying infrastructure and appli-
cations, including but not limited to orchestration of computing resources [51,116-119],
fault tolerance [120-122], security [123-125] and reliability [68,126]. In this thesis, we
focus on the topic of efficient orchestration with respect to computing resources. Within
cloud clusters, resource orchestration is performed in a multi-level manner, i.e., by apply-
ing application-level, cluster-level and system-level optimizations [51]. Figure 2.2 shows
a simplified, abstract overview of the orchestration procedure, which consists of three
separate components,briefly explained below:

= The Application Optimizer (@): The purpose of this component is to optimize the
deployed application itself in order to be executed more efficiently on the underlying in-
frastructure. Commonly applications deployed on a Cloud infrastructure are unknown to
providers, since end-users can arbitrarily deploy anything to the cluster. However, the lat-
est shift towards the Everything-as-a-Service (XaaS) paradigm (e.g., MLaaS® and FaaS®),
allow Cloud operators to have more fine-grained perception over the workloads running
on their infrastructure, which, in turn, allows them to perform specific application-driven

5 Amazon Comprehend, Amazon Translate, Google Dialogflow
5 AWS Lambda, Azure Functions, GCP Serverless
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Figure 2.2.. Resource orchestration and optimization flow within a Cloud cluster.

optimizations.

Optimization and fine-tuning (also referred to as autotuning) of deployed applications
can be applied on multiple layers, i.e., i) code-explicit, e.g., parallelization, loop or-
ganization, memory structures and allocation policies, approximation techniques etc.
[127-132], ii) code-implicit, i.e. compiler-level tuning, application’s hyperparameter
tuning [6,7,133,134], iii) heterogeneous code mappings, e.g. CPU vs. GPU vs. FP-
GAs [8,135] and others. Source-code level optimization can be achieved by combining
information regarding the execution characteristics of the application itself (e.g., memory
access pattern) and the underlying hardware (e.g., cache size). This merge of informa-
tion allows providers to co-design applications with respect to both HW and SW, thus,
delivering solutions tailored to the specifications of the underlying system [8,127-129].
Moreover, the intrinsic properties (e.g., error resiliency) combined with the predefined key
performance indicators (e.g., accuracy percentage of an ML model) of deployed applica-
tions may allow for further optimizations, such as employment of approximate computing
techniques [130, 136-138], or even enable user-agnostic deployments [139,140]. Last, a
great amount of modern Cloud applications are built over open-source frameworks, which
expose a plethora of tuning parameters. Spark [93], Hadoop [141], Pytorch [142] and Ten-
sorflow [143] form representative examples of such frameworks, on top of which end-users
develop and deploy big data analytics and machine learning applications. These frame-
works offer numerous and complex parameters that control the configuration of the their
backend and which can be tuned to enhance performance of applications deployed over
them [6,144-149].

= The Cluster Manager (@): The main goal of the cluster manager is to allocate re-
sources and schedule incoming applications on the underlying shared infrastructure. Clus-
ter managers may also be responsible for other operations, e.g., performing virtual ma-
chine/application migration [150, 151], scaling applications horizontally [152, 153] and
others, which, however, are out of the scope of this thesis. The resource allocation pro-
cess consists of two steps: i) discover the resource requirements of the deployed application
and i) determine the most appropriate set of resources to allocate, so that the resource
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requirements of the application are satisfied and the resource efficiency of the cluster is
maximized. Appreciating the resource requirements of an application can be either done
by the end-users [29, 154, 155], i.e., application developers measure, specify and reserve
exclusively the necessary resources for their application to run properly on specific hard-
ware, or by the cloud operators, i.e., the cluster manager should estimate the required
resources of potentially unknown applications deployed on the cluster [41,116,156].

In this level, the optimization process can be twofold. First, accurate estimation of
the required resources of an application (resource sizing) is critical, otherwise over- and
under-provisioning issues may arise, which, in turn, affect the resource efficiency of the
datacenter [29,30] and the performance of applications [157, 158] respectively. Second,
the cluster manager should be able to also determine the most appropriate node (resource
type) to deploy the application among the various, heterogeneous servers hosted on the
datacenter, while also eliminating the interference effects between applications due to
multi-tenant colocation [38,41,64,73,159,160].

= The Resource Tuner (@): Finally, the purpose of the resource tuner is to regulate the
allocated resources of applications and/or alternate the server’s configuration at runtime,
in order to face performance issues due to the unpredictable and dynamic behavior of
modern applications. This unpredictability and variability in the performance of appli-
cations is a result of multiple factors, including but not limited to ¢) the different phases
that applications experience throughout their lifetime [161,162,162-164], #) the varying
load of interactive web services during the day [30,40,41,88,165] and ii) interference due
to sharing of resources: Applications deployed on a DC continuously contend for shared
resources both in the local host (e.g., CPU cores, processor caches, memory bandwidth,
and network bandwidth), as well as for global resources (e.g., network switches and shared
file systems) which can lead to severe performance degradation [38,41,106,166]. Thus, the
resource tuner should be able to determine such irregular patterns and regulate allocated
resources accordingly. Usually, as shown in Fig. 2.2 the resource tuner is implemented
as a closed loop system with the application and server monitoring components, where
the resource re-allocation is performed in a feedback-based manner, with respect to the
historical monitoring data gathered.

2.1.5. Realizing datacenters of the future

As mentioned in Section 2.1.1, traditional datacenters have a relatively static computing
architecture, consisting of a number of servers, each with a fixed number of CPUs and
RAM and with potentially different types of hardware accelerators. Datacenter operators
have used this monolithic server model for years, however, as the variety of hosted applica-
tions, the hardware heterogeneity and the adoption of cloud computing increase, so does
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Figure 2.3.. Overview of a Disaggregated and Hyper-disaggregated datacenter’s
architecture

the complexity of operating efficiently such an infrastructure 7. Typical reasons, among
others, are the limited resource utilization of modern infrastructures, the difficulty of in-
tegrating new HW devices and the handling of HW failures.

Towards realizing infrastructures of scale, datacenter operators are moving towards a
new computing paradigm, referenced in the literature as hardware resource disaggrega-
tion [42,44] or composable hardware infrastructures [167,168]. Figure 2.3 shows a sim-
plified overview of the hardware disaggregation concept. As shown in Fig. 2.3a, in a
hardware disaggregated system, there is a transformation of general-purpose monolithic
servers into network-attached resource pools that may be constructed, managed, and
scaled separately. Similar to conventional datacenters (Fig. 2.1), servers are organized
inside racks, which, however, are resource-specific (e.g., storage, memory, etc.). Each
server on the rack combines a pile of a particular set of resources with CPUs to manage
them and Network Interface Cards (NICs) to communicate with other resources on the
cluster. Still, the existence of CPUs and NICs in the critical path of the computation
and communication weakens the performance and cost efficiency of the resources laying
behind them. The ultimate goal for datacenter operators is the development of Fungi-
ble Datacenters®, as shown in Fig. 2.3b. Fungible DCs aim to completely eliminate the
presence of CPUs and NICs in the loop, by introducing a novel class of microprocessors
called Data Processing Units (DPUs) [169]. This architecture employs a tightly inte-

"Datacenter Resource Disaggregation
8Scale-Out Data Centers: The Best is Yet to Come
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grated SW and HW co-optimization and envisions to confront the limitations of typical
disaggregated systems.
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Chapter 3.

Review of State-of-the-Art Challenges and
Limitations

Despite its overwhelmingly positive impact, the rise of cloud computing has undoubtedly
created many new challenges for the development and operations of applications. Mod-
ern datacenter infrastructure providers face a plethora of challenges, both regarding their
operation per se, e.g., infrastructure cooling [170], network interconnection and manage-
ment [171], power management [172], resource utilization optimization [29,30], as well as
more general ones, e.g., global environmental concerns and sustainability issues®, supply
chain disruptions?, just to name a few. While all of these challenges are of utmost im-
portance for the efficient management of datacenter infrastructures, in this thesis we give
special focus on the topic of resource orchestration, i.e., we examine methods to optimize
the resource efficiency of such systems.

3.1. Efficient and fine-grained monitoring

As mentioned in Section 2.1.3, datacenters introduce several monitoring layers, both re-
garding the infrastructure itself (e.g., temperature monitoring) as well as the performance
of the cluster and of the running applications. We give special focus on the latter part,
with special emphasis given on system monitoring.

Cloud monitoring is critical for both providers and consumers [109]. On the one hand, it
is an important tool for controlling and managing hardware and software infrastructures;
on the other hand, it provides data and Key Performance Indicators (KPIs) for both
platforms and applications. The continuous monitoring of the deployed applications

!Data Center Operators Vie for Leverage as Europe Eyes Efficiency Rules
2The End Of The Semiconductor Supply Chain In The Auto Sector As We Know It
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and the underlying hardware infrastructure provides information to both providers and
consumers about the workload generated by the latter and the performance and QoS
provided by the former, as well as guides resource and other management activities within
the datacenter. Resource management activities typically imply two fundamental steps:
i) monitoring, that keeps track of hardware and software performance metrics; and i)
data analysis, that processes such metrics to infer system or application states for resource
provisioning and many other activities [173]. While prior scientific research has pinpointed
the fact that fine-grained monitoring can provide useful knowledge regarding the behavior
of running applications [174] and, thus, guide more efficiently scheduling decisions, state-
of-the-art orchestration frameworks, such as Kubernetes [175] and Mesos [119], still rely
on naive metrics to place applications on the pool of available resources. To tackle
these challenges, a wide range of solutions have been proposed both from academia and
industry.

From an industrial point of view, we observe that top cloud providers provide their own
solutions regarding monitoring of both the underlying infrastructure and the applications
deployed on the cloud premises. For example, Amazon Web Services [72] provides Ama-
zon CloudWatch and Amazon CodeGuru [176], which are specialized solutions that apply
machine learning models to identify anomalous application behavior and proactively sur-
face critical issues before they cause outages or service disruptions. Moreover, AWS
X-Ray performs distributed tracing across multiple applications and systems to identify
n identify and troubleshoot the root-causes of performance issues and errors. Similar to
the above, Azure Cloud [177], Google Cloud Platform (GCP) [178] and IBM Cloud [179]
also offer their own monitoring solutions [180-182], with the intention of providing to
end-users finer observability and visibility into the performance, availability, and health
of your applications and infrastructure. Except for specific cloud vendors solutions, ser-
vices like Prometheus [183] allow for custom monitoring of running workloads, forming
a promising area for fine-grained monitoring. In addition, several innovative monitoring
solutions have raised funding in cloud industry to address the aforementioned require-
ments, focusing mainly on fast event logging at scale while also offering machine-learning
powered analytic capabilities [184-187].

From an academic perspective, several frameworks have been developed to enable logging
and fusion of micro-architectural events [188,189] and significant research has been un-
dertaken about monitoring approaches [190]. Diagnosing performance anomalies through
monitoring data is not a new topic of interest. The proposed approaches are either reac-
tive, meaning that they detect performance anomalies after they occur, for example by
analyzing logs and runtime metrics [114,191-200] or proactive, meaning that they predict
anomalies before they take place [201-205]. Furthermore, Seer and Cloudseer [60, 206]
are academically presented advanced monitoring methods. Seer is an online cloud per-
formance debugging solution that uses deep learning techniques to discover spatial and
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temporal patterns that translate to QoS violations from huge amounts of cloud system
trace data. Cloudseer, on the other hand, uses interleaved logs to enable effective pro-
cess monitoring and identify divergences during execution. While the majority of the
aforementioned tools are able to provide valuable insights regarding the performance
of applications and the underlying hardware, they pose specific limitations. First, the
majority of prior art and monitor high-level metrics of interest (e.g., CPU/memory uti-
lization, use of applications’ logs, etc.), thus being unable to determine the impact of
each specific resource on the performance degradation of applications. While prior works
have shown that exploiting performance characteristics of a system through hardware
performance counters has been identified as a prominent step for improving the efficiency
of data centers [74,207], there has been minimal work on how to "make profit" out of
them. Second, the majority of prior efforts either do not consider interference effect or
their supported predictive analytic capabilities are quite coarse, imposing a "intercept-
measure-and-predict" scheme to infer performance analysis logging, failing to support
continuous fine-grained monitoring, which is ideally required in modern resource alloca-
tion schemes [40,208,209].

Limitations of SotA monitoring frameworks

In short, the limitations of prior works regarding Cloud monitoring can be summa-
rized as follows:

o Inefficiency to identify root causes of performance degradation, by monitoring
mostly high-level metrics of interest.

o Intermittent techniques to identify resource interference or complete ignorance
of its impact, that forms one of the major drawbackes of modern Cloud systems.

o Delivery of historical monitors, thus, not being able to drive proactive scheduling
decisions.

3.2. Resource orchestration and efficiency

Efficient management of Cloud computing resources has been in the center of attention
of many research and industrial groups. The spectrum of prior work covers a wide range
of optimization mechanisms applied at different layers of the orchestration hierarchy, as
described in Section 2.1.4. Moreover, much research has been conducted regarding the effi-
ciency of the disaggregated computing paradigm, described in Section 2.1.5. In the rest of
this section, we group and analyze prior art with respect to:
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¢ Cloud resource orchestration: We present a plethora of prior research that focus
on improving resource efficiency inside Cloud infrastructures either by optimizing
the placement of applications within the datacenter or by sizing allocated resources
according to runtime applications’ needs. We also highlight recent attempts that
tackle the problem of resource allocation in disaggregated infrastructures.

e Application-level optimizations: Special focus is given on works that optimize ap-
plications running on top of Apache Spark [93], an analytics engine for large-scale
data processing.

3.2.1. Cloud resource orchestration

Efficient management of Cloud resources forms a really challenging problem, typically
due to the multiple conflicting objectives that have to be satisfied simultaneously. In this
direction, a plethora of works have tackled the problem of VM placement and/or mi-
gration inside Cloud infrastructures [210-216], which however is out of the scope of this
thesis. Regarding resource efficiency of multi-tenant infrastructures, much research has
been conducted in the past. Predicting and controlling performance degradation of work-
loads executing under interference has been in the center of attention of many research
groups, either by scheduling workloads arriving on a cluster [38,41,51,62,64, 73,88, 160,
166,209, 217-221], or by regulating resource occupation by workloads throughout their
execution lifetime [38,40,62,63,63,159,165,208,209,222-227] to improve per-application
performance. A significant portion of these approaches require a priori knowledge of
the target applications running on the cluster [217,222,224, 228, 229] or are application-
specific [64, 146], thus making them unsuitable for cases of public clouds, where un-
characterized applications might arrive. Other scientific approaches have built benchmark
warehouses that can be used to build performance models of applications [230]. However,
such static approaches do not consider the dynamic system fluctuations and thus cannot
be used for continuous resource tuning. Another considerable part detects interference
and performance degradation of applications by gradually pausing collocated workloads
in a coarse- [38,40,62,231] or fine- [208] grained manner, followed by either injecting
synthetic microbenchmarks to identify resource contention or by evaluating the perfor-
mance degradation compared to the isolated execution. Those approaches effectively
predict resource interference, nevertheless, pausing of applications can lead to relentless
efficiency decline, considering that modern servers feature up to 100 cores and, thus, can
host numerous workloads simultaneously. Some recent research works focus on control-
ling and tuning workloads in a feedback-like manner, where applications are gradually
provided resources until no QoS violations are witnessed [209, 215]. Last, production
ready resource orchestrators have also been presented in the past [51,52,117,221,232],
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showcasing the need for efficient supervision of resources due to interference in shared
resources.

Lately, management of disaggregated, heterogeneous resources inside data-center facilities
is attracting more attention [233-235]. Recent research efforts focus on mechanisms that
provide dynamic disaggregated memory allocations for VMs [236-238], efficient prefetch-
ers and replacement policies [239,240] and cost/performance tradeoffs between heteroge-
neous memory pools [241]. Other scientific approaches examine the problems of applica-
tion orchestration on disaggregated memory systems [242,243] and performance modeling
[244], however they either rely on emulated prototypes [244] or totally neglect the implica-
tions of resource interference in shared resources [242,243].

Limitations of SotA Cloud resource orchestration works

In short, the limitations of prior works regarding resource orchestration of Cloud
infrastructures can be summarized as follows:

o Employment of synthetic microbenchmarks to identify sources of interference,
leading to performance degradation of running applications.

o Application of dynamic resource allocation decisions in a feedback-based manner,
thus, not being able to proactively provide for potential performance degradation
of running applications.

o Leveraging per-application performance modeling, which is a time-consuming
task and ignores the deployment of unseen applications.

o Neglect the presence of novel computing paradigms (e.g., hardware disaggrega-
tion).

3.2.2. Parameter auto-tuning for Spark in-memory analytics

As mentioned in Section 2.1.4, resource efficiency through application-specific optimiza-
tions can be achieved with various techniques. In the context of this thesis, we focus on
parameter autotuning for Spark applications.

Optimization and parameter autotuning of distributed frameworks (e.g., Hadoop [141],
Spark [245], Storm [246]) has gained a lot of attention lately, due to the huge performance
gains they can offer, when configured properly. Indeed, Spark’s official documentation
provides guidelines for tuning Spark applications [247], highlighting the importance of
proper hyperparameter configuration. While such guidelines provide detailed insights
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regarding Spark parameter tuning, they mostly rely on network and memory related
parameters, thus, neglecting the impact of the rest of the configuration space on per-
formance. Moreover, they do not provide an automated fine-tuning procedure, hence,
requiring from developers to comprehend Spark’s mechanisms in-depth, to effectively
tune their applications.

Exploiting the lack of robust tuning guidelines, many research groups have proposed
automated frameworks and/or methodologies that enable efficient deployment of big-
data analytics frameworks [248]. These approaches can be separated into three categories,
i.e., i) rule-based, i) experiment-driven and i) model-based tuning. Rule-based tuning
relies on experts’ knowledge to manually tune Spark parameters [249-254]. However,
experts typically consider only a few parameters, while the tuning process follows a
“trial and error" approach tailored to the investigated Spark application, thus rendering
this approach unable to scale on large configuration spaces and diverse workloads. The
second method, search-based tuning, relies on repeated executions of Spark applications
with different configuration parameters [255-260] and employs optimization algorithms to
traverse through the design space. Again, this approach is bounded by the time required
to explore the parameter configuration space, which increases exponentially with the
number of Spark parameters considered, the application’s dataset sizes examined, as well
as the configuration of the optimization algorithm itself (e.g., population size and number
of generations in a genetic algorithm [261]).

Last, model-based tuning methodologies detour the native execution of Spark applica-
tions, by replacing the actual execution with performance models in the loop, which
predict the latency of a deployed application for a given parameter configuration. A
vast amount of prior research falls into the latter category, that focus on proper param-
eter configuration of Spark deployments to maximize their performance. These works
adopt different performance modeling techniques, namely, linear prediction models [146],
simple machine learning approaches, e.g., Random Forest [147,262,263], Support Vec-
tor Machines [5] and Hierarchical Modeling [6] techniques, or even more sophisticated
concepts, such as ensemble learning methodologies [264], application of machine learning
algorithms for cluster-wise performance modeling [7] and optimization using deep neural
network architectures [148]. While the aforementioned works deliver accurate perfor-
mance modeling per se, they are bounded by certain design characteristics, that restrain
their prevalence in more general configuration settings.

Such design characteristics include:
e Number of Spark parameters considered: The majority of prior scientific works

consider and tune only a subset of Spark parameters, chosen either empirically
[5,6,149,265] or via statistical approaches [7,266]. Furthermore, others focus only
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Table 3.1.: Comparison between previous Spark auto-tuning approaches and Sparkle in
terms of 7) number of parameters examined i) modeling approach followed
i11) cluster size and iv) dataset size range considered

Ref. Codename Model Used ‘ #Params Perf. Model Cluster Size | Dataset Size
[265] ‘Wang et. al Decision Trees, SVM, Neural Network, Logistic Regr. ‘ 13 Per-application 3 nodes Variable
[146] Ernest Non-Negative Least Squares 1 Per-application 20 nodes Static
[5] Luo et. al Support Vector Machine ‘ 28 Per-application 4 nodes Static
[147] ACS Random Forest 29 Per-app & dataset 4 nodes Variable
[6] DAC Hierarchical Decision Trees ‘ 41 Per application 5 nodes Variable
[149] ATCS Generative Adversarial Nets 20 Per-application 2 nodes Variable
[148] ReLocag Graph Convolutional Networks ‘ 1 Cross-application 24 nodes Variable
[7] | Nikitopoulou et. al Random Forest 23 Cluster-wise 1 node Variable
[4] Phronesis Random Splines, Neural Network, Random Forest ‘ 28 Per-application 4 nodes Static
- Sparkle Hybrid CNN+LSTM+FC 101 Universal 10 nodes Variable

on the optimization of the number of Spark executor instances [146, 148], com-
pletely ignoring the impact of the rest of the configuration space. However, as
discussed earlier and also shown in Chapter 6 of this thesis, such approaches are
not enduring, due to the continuous upgrade of the Spark engine itself (more pa-
rameters continuously added), the high correlation between each parameter and
the deployed application, as well as the uncertainty regarding the interrelationship
between different parameters [267].

o Application-specific performance modeling: Most proposed solutions rely on an
application-specific performance modeling approach [5, 6,146,149, 265], while lat-
est efforts also examine cluster-wise or cross-application techniques [7,148]. Even
though such approaches provide accurate performance predictions, they require to
repeat the entire modeling procedure for every unobserved application or family of
applications. In most cases, this forms a very time-consuming task, since it requires
profiling of new applications for a variety of different configurations.

o Coarse-grained data size variety: Dataset scaling can significantly affect the com-
pute and I/O intensity of Spark applications [268,269] and, consequently, their
performance. Nevertheless, a large amount of prior auto-tuning frameworks either
model performance of Spark applications for a given dataset size [4,5], or dataset
sizes in the same order of magnitude [5,6,148,265]. Yet, it is common for Spark
applications to run repeatedly in the cluster for different datasets both from a quali-
tative as well as a quantitative point of view [270,271]. Thus, properly encoding this
information in the modeling approach is crucial for maximizing prediction accuracy.

Table 3.1 summarizes the above discussion, offering an abstract qualitative comparison re-
garding the aforementioned state-of-art in Spark parameter auto-tuning.
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Chapter 4.

Deep-Learning Driven, Interference-Aware
Predictive Monitoring for Modern
Multi-Tenant Systems

Modern Cloud providers are leveraging multi-tenancy as a first class system design con-
cern. The increasing number of co-located workloads into server facilities stresses resource
availability in an unpredictable manner. To efficiently manage resources in such dynamic
environments, run-time observability and forecasting are required to capture workload sen-
sitivities under differing interference effects.

In this chapter, we present Rusty, a predictive monitoring system that leverages the power
of Long Short-Term Memory networks to enable fast and accurate runtime forecasting of
key performance metrics of cloud-native applications under interference. We evaluate
Rusty under a diverse set of interference scenarios for a plethora of representative cloud
workloads, showing that Rusty i) achieves extremely high prediction accuracy, average R?
value of 0.98, ii) enables very deep prediction horizons retaining high accuracy, e.g. R* of
around 0.99 for a horizon of 1 sec ahead and around 0.94 for an horizon of 5 sec ahead,
while i) satisfying, at the same time, the strict latency constraints required to make Rusty
practical for continuous predictive monitoring at runtime.
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4.1. Introduction

Over the last few years, the number of workloads executed on the Cloud has increased
rapidly and is expected to grow more in the future [272]. The rise of “cloud-native”
platforms, such as Kubernetes [175], that facilitate the deployment of applications on
lightweight containers and expand their capacity to dynamically scale resources, further
raises the density of modern cloud systems. Moreover, current Cloud solutions, such as
Amazon AWS [72], Google Cloud [178], Microsoft Azure [177] and others, provide users
with elasticity and resizability of their computing capacity, leading to a dynamic provi-
sioning of resources. This increment in the density and dynamicity of cloud workloads
implies that DC operators should perform advanced resource allocation techniques, to
provide both better quality-of-service (QoS) to their users, as well as maximize their
profit. However, this two-factor optimization goal is rather challenging, since maximizing
performance requires applications to be executed in isolation, whereas profit increment
is achieved through multi-tenant job scheduling.

Recent scientific works have proposed schedulers and resource allocation techniques able
to efficiently place workloads into physical/virtual servers as well as minimize their slow-
down caused by multi-tenant job scheduling [38,41,63,229]. Even though such approaches
improve the overall performance of co-located workloads, they usually operate at a quite
coarse-grained level, i.e., either requiring prior knowledge through offline characteriza-
tion of isolated executions [38,41] or in the best case gathering and aggregating runtime
performance metrics through periods of enforced execution stalling/pausing to estimate
interference effects [40, 231]. In addition, they fail to measure, model or exploit the
dynamic impact of each specific resource on the performance degradation caused by in-
terference, thus imposing either low accuracy estimations and/or significant performance
overheads [64,273].

To have a better understanding of the real bottlenecks of the system and specify the root
cause of performance degradation, one should take a closer look at lower level architectural
events and at system-level characterization to get insights regarding the state of the
system [274]. Towards achieving the above goals, monitoring and analysis of system
signals from within the data-center has been proven to be really beneficial and insightful.
For example, Alibaba and Google provides real open-source traces [29] from their cluster
systems and encourage researchers and practitioners to analyze them. In addition, Google
has identified that monitoring low-level performance counters can drive better scheduling
resource management and scheduling decisions [74]. In addition, the highly dynamic
characteristics of cloud applications require very small monitoring and reaction times,
e.g. with 1 second data sampling granularity becoming the new gold standard in cloud
deployments [185].
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Some hardware-enabled approaches [275-277] enabling continuous and fine-grained inter-
ference effects estimation have been proposed in the past, however their implementation
requires specialization of processor’s hardware, limiting their applicability in current and
near future servers. Interestingly, this shift towards time granularity shrinking, is also
reflected in recent micro-architectural and system hardware advancements that allow fine-
grained resource tuning. For example, Intel®’s Cache Allocation Technology in the latest
Xeon® processors provides software-programmable control over the amount of cache space
that can be consumed by a given thread, or container [278]. Moreover, containers provide
control over the exact amount of CPU and RAM resources committed to applications,
while power capping frameworks [279] enable direct and fine-grained power allocation
policies to be applied.

To take advantage of these low-level features, runtime monitoring that feeds and guides
the scheduling algorithms should be able to dynamically predict per application resource
needs in order to enforce optimised online decisions. Prior work has shown that applica-
tions experience different phases throughout their lifetime [161,162,208], which lead to
erratic behaviors regarding memory access patterns and CPU utilization. Such behaviors
become even more inconsistent when considering the interference caused by co-located
applications. Therefore, fine-grained run-time predictability is crucial to elevate online
resource management decisions.

From the above discussion, it is evident that new sophisticated monitoring solutions are
needed to efficiently handle the emerging field of cloud-native applications. Exploiting the
underlying hardware infrastructure capabilities, application and infrastructure monitor-
ing should shift towards providing i) faster observability, to perceive the extreme diversity
and dynamism in the variable workloads, and ii) continuous runtime and interference-
aware predictability, i.e. to drive resource allocation decisions in a more educated manner.
During the last years, several innovative monitoring solutions have raised funding in cloud
industry to address the aforementioned requirements, focusing mainly on fast event log-
ging at scale while also offering machine-learning powered analytic capabilities [184-187].
Seer and Cloudseer [60,206] form similar advanced monitoring solutions proposed from
academia. However, the supported predictive analytic capabilities of those frameworks
are quite coarse, imposing an “intercept-measure-and-predict" scheme to infer interfer-
ence effects, thus failing to efficiently support continuous fine-grained monitoring, ideally
required in modern resource allocation schemes [40,208,209]. Even though extended re-
search has focused on run-time system predictability, those approaches mostly rely on the
application of relatively simple empirical or regression models [280-282], being usually
reactive in action, not capturing interference and neglecting the long-term dependencies
and recurrence found in system level monitoring signals, thus reducing their predictive
capabilities.
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In this chapter, we present Rusty, a monitoring framework that leverages Long Short-
Term Memory (LSTM) networks to enable fast and accurate resource and energy con-
sumption predictions of a system under interference. Specifically, in this work:

¢ We provide the first non-intermittent predictive monitoring system that is able to
forecast low-level performance counters of a system under interference. Specifi-
cally, through Rusty, we are able to predict the IPC and Last-Level Cache (LLC)
misses of applications running concurrently in a multi-core and, also, the energy
consumption of it. Opposed to prior-art approaches that are based on short online
micro-benchmarking to model interference [41,62,208], Rusty utilizes LSTM pre-
dictive capability to enable continuous on-the-fly predictions of interference-aware
performance metrics.

¢ We deliver an interference-aware analysis on the low-level metrics distributions from
a large pool of diverse cloud workloads, i.e. the scikit-learn [283], the Cloudsuite [83]
and the SPEC2006 [284] benchmark suites. The aforementioned analysis decom-
poses interference effects in a per-resource manner offering an in-depth view on the
sensitivity of system metrics to different stressing scenarios.

o In contrast to existing approaches, e.g. [184,185,206], that focus on a straightfor-
ward appliance of regression models, in this work, we provide in-depth analysis
and specific insights on LSTM parameters that affect the accuracy and complex-
ity of the model. Through systematic exploration, analysis and fine-tuning of the
LSTM’s architecture and hyper-parameters, Rusty enables extremely lightweight
predictive models to be deployed and operate online for continuous monitoring and
adaptation.

e« We evaluate Rusty in terms of its prediction precision and also demonstrate the
superiority of Rusty’s LSTM network over simpler machine learning approaches.
Our experimental results show that Rusty exhibits very high prediction accuracy,
i.e. average R? value of 0.98 and enables very deep prediction horizons retaining high
precision, e.g. R? of 0.99 for a horizon of 1 sec ahead and around 0.94 for an horizon
of 5 sec ahead. Finally, we show that Rusty is both i) really lightweight, introducing
minimal time overheads and providing predictions in terms of milliseconds ii) and
also, that it can be seamlessly transferred between systems of diverse specifications,
with a slight decline in accuracy, thus forming a promising solution for runtime
predictive resource allocation.

The rest of this chapter is organized as follows: Section 4.2 describes our experimental
setup and also demonstrates the aforementioned per-resource interference analysis. Sec-
tion 4.3 presents our proposed predictive monitoring framework. Finally, sections 4.4 and
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Table 4.1.: Target System specifications

Processor Model Intel® Xeon® E5-2658A v3
Cores per socket 12 (24 logical) @2.20GHz

Sockets 2

L1 Cache 32KB instr. & 32KB data
L2 Cache 256KB

L3 Cache 30MB, 20-way set-associative
Memory 256GB @2133MHz

Operating System Ubuntu 16.04, kernel v4.4

4.5 show our results and conclude the chapter, respectively.

4.2. Experimental Setup & Specifications

4.2.1. Target system characterization

Rusty targets multi-core server systems usually found in DC environments, which are
able to provide information regarding performance metrics of the system. All of our
experiments have been performed on a high-end server, outlined in Table 4.1. In order to
monitor low-level performance counters, we utilize the Performance Counter Monitoring
(PCM) API [189], a tool initially developed by Intel® and currently maintained in a
separate github repository [285], which provides a plethora of hardware performance
counters for each logical core, each socket, as well as the whole server system. We focus
on specific performance counters, which we discuss in detail in section 4.2.2. To simulate
a cloud environment, all the referenced benchmarks running in the system have been
containerized, utilizing the Docker platform [286]. Moreover, to be able to extract per-
workload metrics, all the applications are assigned on a randomly selected core of the
system, using the affinity rules of the docker engine.
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4.2.2. Target metrics characterization

Emphasis is given to low-level system metrics, provided directly from the PCM tool [285].
For the rest of this chapter, we focus on the following three performance counters, however
our framework can be utilized for any metric provided by the PCM tool:

o Instructions Per Cycle (IPC): IPC gives insight information of the performance

of the executed workload and its predictability can assist to dynamically boost /relax
resources to meet certain constraints. In prior works, IPC has been used as a metric
of interest to depict performance related behaviors in data center environments
[208,231,273,287]. For example, in [208], IPC is used to determine phase changes of
applications executed under interference, whereas in [273] it used as a performance
indicator of co-located workloads.

Last-Level Cache misses (L3M): Memory access is considered a major bot-
tleneck in performance. Even in modern NUMA architectures inefficient memory
contention management can lead to a severe performance degradation [207]. Espe-
cially in data-center environments, it has been shown that the huge instruction sets
of cloud workloads are between one and two orders of magnitude larger than the
L1 instruction cache can store, and can lead to repeating instruction cache misses,
which damage performance [288,289], whereas latest reports from large-scale clouds
show that memory is becoming the new bottleneck, destroying performance of appli-
cations [29]. The Last-Level Cache is basically the "bridge" between cores requesting
data and memory storing them. Last-Level Cache misses provide first-level details
regarding the interference, since higher values in LLC misses can depict the ten-
dency of multiple applications running on the system competing for access on the
main memory [290].

Socket’s energy consumption (NRG): Energy consumption is considered as
a first class constraint in modern data-center deployments [291,292]. Accurate
energy predictions at runtime significantly impact energy proportionality of the
DC’s nodes [293], as well as allow for the deployment of more sophisticated power
capping strategies [294,295]. In the same direction, controlling the energy and
temperature levels of a system improves resiliency and components lifetimes, as
well as it also reduces the cost required for cooling, which is often amounted to 50%
of a DC’s overall costs.
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4.2.3. Workload characterization

Modern data-center server machines accommodate a large and wide range of workloads,
which are basically either batch/best-effort (BE) applications, or user-interactive/latency-
critical (LC) applications. The former type of workloads require the highest possible
throughput, whereas the latter demand to meet their QoS constraints. In order to cover
both BE and LC workloads, we consider workloads from three popular scientific bench-
marking libraries, i.e. sci-kit learn [283] and SPEC2006 [284] (as BE) and cloudsuite [83]
(as LC) suites. The complete list of examined applications along with a brief description
is shown below:

1. AdaBoost Classifier [283]: This is a meta-estimator that fits a classifier on a
dataset. Then, it fits additional classifiers on the same dataset but the weights of
incorrectly classified instances are adjusted, to deal with more difficult cases.

2. Lasso Regressor [283]: Lasso is a linear model that estimates sparse coefficients.
It is vital in the field of compressed sensing, since it prefers less non-zero coeflicients,
reducing the features that the solution is dependent to.

3. Linear Discriminant Analysis [283]: LDA can be used to perform supervised di-
mensionality reduction, by projecting the input data to a linear subspace consisting
of the directions which maximize the separation between classes.

4. Linear Regressor [283]: It fits a linear model with coefficients to minimize the
residual sum of squares between the observed and prediction targets in a dataset.

5. Random Forest Classifier [283]: This is a meta-estimator that fits a number of
decision tree classifiers on sub-samples of a dataset and uses averaging to improve
the accuracy.

6. Random Forest Regressor [283]: This is the same as 5, but performs regression
instead of classification.

7. Stochastic Gradient Descent Classifier [283]: SGD is a very efficient approach
of discriminative learning of linear classifiers under convex loss functions and has
received recently a lot of attention in the field of deep learning.

8. Stochastic Gradient Descent Regressor [283]: This is the same as 7, but
performs regression instead of classification.
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9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20

. astar [284]: A* is a popular 2D path-finding algorithm used by the artificial intel-
ligence engines of online games.

bzip2 [284]: This benchmark performs compression and decompression of data
entirely in memory.

cactusADM [284]: It solves the Einstein evolution equations,a set of ten nonlinear
partial differential equations.

h264ref [284]: Implementation of H.264/AVC, the latest compression standard,
used for video broadcasting.

leslie3D [284]:LESlie3d is the primary solver used to investigate a wide array of
turbulence phenomena such as mixing, combustion, acoustics and general fluid me-
chanics.

sphinx3 [284]: This is a speech recognition toolkit with various tools used to
build speech applications. It contains a number of packages for different tasks and
applications.

In-Memory analytics [83]: This workload uses Apache Spark [93] and performs
a collaborative filtering algorithm, in order to provide to users recommendations
for movies.

Data Caching [83]: This workload uses the Memcached caching system and simu-
lates the behavior of a Twitter caching server using a dataset available from Twitter.

Data Serving [83]: This benchmark uses an Apache Cassandra server and is based
on the Yahoo! Cloud Serving Benchmark (YCSB), which is a framework used to
benchmark data store systems.

Media Streaming [83]: This benchmark comprises of two seperate containers,
a server and a client. The server container utilizes an Nginx web server in order
to stream hosted videos of various lengths and qualities to the clients. The client
generates a mix of requests for different videos, using httperf’s wsesslog session
generator,in order to stress the server.

Web Search [83]: This benchmark is based on the Apache Solr search engine
framework.

. Web Serving [83]: This benchmark is based on the Apache Solr search engine
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framework.

Through scikit-learn we examine workload skeletons that are representative of modern
machine learning applications. Each instance performs the training phase of the specific
workload, with datasets comprised of 40.000 instances with 784 features per instance.
The spec2006 benchmarks represent computational heavy workloads as well as every-day
operations performed in the cloud. We use the default configurations and datasets pro-
vided by the spec2006 suite. Finally, the cloudsuite benchmarks represent services hosted
in modern data-center cloud environments. The Data Serving relies on the Yahoo! Cloud
Serving Benchmark [296] and the Cassandra data store [297]. In-Memory Analytics uti-
lize Apache Spark [93] and runs a collaborative filtering algorithm on a dataset of movie
ratings. Media Streaming utilizes NGINX [298] as a server for streaming videos of var-
ious lengths and qualities. Moreover, Web-Search depends on Apache Solr [299] search
platform and simulates real-world clients that send requests to index nodes. Finally, Web-
Serving utilizes three servers, an NGINX [298] web server, a Memcached [105] caching
server and a MySQL [300] database server, simulating modern services hosted on the
cloud. For the cloudsuite benchmarks, we use the default configurations and datasets
as provided by the respective github repository [301] and for client-server benchmarks,
we focus and monitor the server-side workload. Table 4.3 summarizes the benchmarks
used throughout the chapter. For each of the examimed applications, Table 4.3 reports
the mean value of 6 system wide low-level metrics, i.e. characterizing the IPC, on-chip
cache memory behavior (L2 cache Misses and L3 cache Misses), energy consumption
(NRG) and memory I/O bytes ReaD from and bytes WRitten to memory), when ex-
ecuted in isolation, sampled every 100 milliseconds. For the rest of this chapter, each
workload will be identified by its ID (e.g. SK1 for AdaBoost Classifier) for simplic-

ity.

Impact of interference on low-level metrics: To showcase the sensitivity of the
considered workloads w.r.t. differing resource interference, we utilize the iBench suite [3],
which provides contentious micro-benchmarks, each of which stresses a different shared
resource in a multi-core chip (processing cores, cache capacity and memory capacity
and bandwidth). Specifically, to demonstrate the impact of per-resource inteference on
the low-level system metrics, we generate and deploy different system-wide interference
scenarios, by spawning random jobs from the iBench suite (up to the number of available
threads) with various intensity levels, each one assigned on a randomly selected core of
the system. We have extended the original iBench to accommodate extra levels of user
tunable intensity to cover larger a wider range of interference scenarios. We note that
single resource interference is considered only in this section, while the rest of the chapter
considers multi-resource interference either through iBench, or through real workload
collocations. The hardware counters collected, provide information regarding the state of
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Table 4.3.: Benchmarks used as representative cloud applications. Scikit-learn and spec2006 workloads can be con-
sidered as Best-Effort (BE) applications, whereas cloudsuite workloads as Latency-Critical (LC) ones.
Columns 4-9 report the average Instructions Per Cycle (IPC), L2 cache misses (L2M), L3 cache misses
(L3M), energy consumption (NRG) and bytes read from (RD) and written to (WR) memory when exe-
cuted in isolation.

ID Benchmark IPC L2M(M) L3M(M) NRG(J) RD(GB) WR(GB)
SK1 AdaBoost Classifier 1.10 2.42 1.21 4.21 0.10 0.01
2 SK2 Lasso 1.77 0.88 0.35 4.34 0.17 0.01
L SK3 Linear Discriminant Analysis 1.94 1.17 0.18 4.28 0.05 0.03
m SK4 Linear Regression 1.83 0.91 0.16 4.23 0.04 0.02
M._b SK5 Random Forest Classifier 1.78 0.64 0.16 4.39 0.03 0.01
M SK6 Random Forest Regressor 1.29 2.69 0.22 4.29 0.02 0.01
% SK7 Stochastic Gradient Descent Classifier  1.85 0.46 0.21 4.32 0.06 0.01
SK8 Stochastic Gradient Descent Regressor  1.86 0.39 0.13 4.19 0.03 0.01
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the underlying system at a per-resource manner, thus allowing us to detect true causes
of interference and bottlenecks, i.e. which resource is responsible for the performance
degradation our system (and consequently our workloads) is experiencing. Even though
individual performance metrics can, in some cases, depict the resource of interference,
this is not always the ground-truth. For example, a high number of LLC misses could
imply interference in the cache, however, the same could apply for a case of low LLC
misses, as we discuss below.

Figure 4.1 illustrates the tendency of IPC and LLC misses with differing resource stress
interference, showing the high diversity in terms of IPC and L3 cache misses between
our target workloads. This analysis reveals three major upshots. Firstly, all examined
workloads are insensitive to interference at the level of L2 cache, since the distributions
of both IPC and LLC are slightly shifted in all cases. Secondly, interference at the LLC
of the system induces the highest performance degradation, realizing LL.C as one of the
major bottlenecks in modern server systems. This is even more obvious for the cloudsuite
benchmarks, where, there is a clear spread and shift of the IPC distributions towards
0, even though similar services have been revealed as memory bandwidth sensitive in
prior works [40]. Finally, what is of great interest in the case of L3 stress scenario, is
that, in spec2006 benchmarks the LLC misses increase, whereas in scikit-learn the misses
decrease. This irregularity appears due to the combination of two factors; the performance
degradation that the workloads experience due to interference and the sampling rate of the
PCM tool. Performance degradation causes the signal traces to stretch, thus spreading
the LLC misses in time. This reveals the importance of predictive monitoring in fine-
grained timescales versus typical reactive performance monitors, since in cases of high
application slowdown, even though the total number of LLC misses increase, a lower
sampling rate would report lower LLC misses values, since the misses would be spread
more widely in time.

4.2.4. Motivational observations: Why predictive monitoring?

Rusty sets the framework for extending current state-of-the-art systems, by promising
extremely accurate runtime predictive monitoring of "low-level" system metrics for deep
horizons. The term predictive monitoring may raise several questions, like, is predictive
monitoring important for improving resource efficiency and performance in data-center
environments? or are low level metrics offering true/important system insights? etc.
In this section, we offer a small debate addressing fundamental issues and motivational
observations behind Rusty.

We showcase the importance of predictive monitoring with a typical example obtained
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Figure 4.1.. Absolute values of IPC and L3M distribution for different resource stressing
scenarios. In all figures, x-axes and y-axes denote pairs of Last-Level Cache misses
(L3M) and IPC as sampled from the PCM tool respectively, whereas the line charts

show the relocation of the distributions of L3M and IPC.

44



4.2. Experimental Setup & Specifications

proactive approach | misolated L3M
% Interferenced L3M
reduce cache ways History window

oo cache ways Prediction window
Y L J

reactive approach
predict and increase

LLC misses
o R, N W D

0 100 200 300 400
Timestep (100msec)

Figure 4.2.. Real trace of Random Forest Regressor benchmark showcasing the
advantage of proactive predictive approaches compared to current state-of-the-art
reactive approaches.

throughout our experiments. Fig. 4.2 shows part of a real trace of LLC misses from
the Random Forest Regressor benchmark. In this example, we assume that a runtime
controller would take resource management decisions every 200msec (denoted as blue
dotted lines). In addition, we suppose that the resource of interest is the number of
cache ways given to the core executing the application. We give emphasis on the point
highlighted with the black bullet. As we mentioned before, current state-of-the-art ap-
proaches [40,209, 215] rely on reactive decision making approaches where resources are
shared based on the 'history" state of the system (red window in the figure). Since
the LLC misses in this phase of the application fluctuate at low values, a reactive ap-
proach would result in lowering the cache-ways given to the application. However, we
observe that in the upcoming window (green highlighted), the LLC misses of the ap-
plication increase and, therefore, the number of cache-ways should be incremented as
well. A proactive, predictive approach could determine this behavior before it even
occurs, thus prohibiting of such inefficient configurations. Interestingly, we may also
notice that the same “behavior' appears repeatedly throughout the lifetime of the ap-
plication, showing that pure reactive approaches would make the same mistake again
and again, probably leading to a catastrophic, for the application, management of re-
sources.

A deeper look at Fig. 4.2 reveals the importance of the other major aspect of Rusty,
i.e. the interference awareness in predictive monitoring. As depicted, we have super-
imposed in Fig. 4.2 the signal of LLC misses when executing the Random Forest Regressor
benchmark under interference (the yellow signal). As shown, interference effects heavily
modify the signal structure/characteristics of the original isolated LLC misses signal. In
this case, as shown, the magnitude of the LLC misses peaks have become smaller, but
their duration have been increased. Focusing in the second black dot, around t=400, we
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may notice that while the reactive cache ways controller will fail for the same reasons
as before, the same stands also for the case of the predictive controller that operates
in an interference unaware manner, i.e. guided by a predictor trained only on isolated
execution traces. More in detail, in this case, the interference unaware predictor will mis-
predict resource demands, considering a steeper increase in L3 misses according to its
isolated training set. However, as shown, the true L3 misses under interference presents
a stable slope for the next period, thus imposing cache ways over-provisioning leading
to either QoS degradation of co-running applications or in the worst case in resource
starvation.

4.3. Rusty: Predictive Runtime Monitoring

Rusty relies on Long Short Term Memory networks [302], a special kind of Recurrent
Neural Networks, that are able to make predictions based on long-term sequential depen-
dencies. The employment of LSTM networks was inspired by recent research activities,
where researchers are beginning to explore the employment of LSTM networks for dif-
ferent micro-architectural tasks. In [303], authors propose a dynamic voltage frequency
scaling algorithm which uses LSTM networks to predict the workload of cores in an up-
coming time period, based on performance counters collected during the previous one.
Neither interference not recurrence have been taken into account and also the evaluation
is based on simulated workloads and not on real system settings. In [304], the authors
utilize LSTM networks in order to build efficient memory pre-fetchers and show that the
employment of LSTMs for this task outperforms the state-of-the-art of traditional hard-
ware prefetchers. Finally, in [206], the authors use a heavy-weighted LSTM and CNN
network to detect QoS violations of microservices running in the cloud. Even though
Seer also utilizes LSTMs, the authors apply them for debugging purposes of cloud work-
loads, mainly dealing with a classification problem for identifying QoS violations, thus
not exploring LSTM’s runtime forecasting capabilities, which are useful for predictive
resource allocation. In this chapter, we propose and explore the efficacy and robustness
of LSTMs for fine-grained system-level predictability under resource interference, clearly
extending [303] and being orthogonal to [304] and [206].

In short, an LSTM cell, instead of a single neural network layer, contains four layers, three
sigmoids (o) and one hyperbolic tangent (tanh) layer. In brief, the first layer, also called
"forget gate layer", applies a sigmoid function to the inputs and decides what information
the network will throw away from the cell state. The second sigmoid layer is called the
"input gate layer" and decides, along with the tanh layer what new information is going to
be stored and updated inside the cell. Finally, the last sigmoid layer acts as a refinement
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filter that decides which values are going to leave the cell.

4.3.1. Training Rusty

Rusty is dynamic, in terms that it requires no a priori knowledge of workloads running
in the cluster. The only thing that Rusty requires offline is a configuration file specifying
the target metrics to be predicted and two variables, the history and the horizon, which
we explain below.

Fig. 4.3 shows an overview of the general procedure followed by Rusty to train the LSTM
model. As shown, Rusty initially receives four inputs: i) the workload we would like to
predict low-level metrics for (sec. 4.2.3), ii) the performance metric to be predicted, which
can be any metric from the PCM tool (for the current work we focus on IPC, L3M and
NRG - sec. 4.2.2), iii) a variable called history and iv) a variable called horizon. History
refers to the number of samples derived from the PCM tool and used as input sequence to
the LSTM model, whereas horizon refers refers to the number of output features/future
values that the LSTM model will predict. It should be noted here that, both history
and horizon are relative to the sampling rate of PCM, i.e., for a sampling rate of 1
second, a history/horizon value of 15 would imply samples corresponding to 15 seconds
of information, whereas for a sampling rate of 0.1 seconds, the same value would imply
samples corresponding to 1.5 seconds. For the rest of this chapter, we set the monitoring
interval of PCM equal to 100msec. As shown in prior work [206], the monitoring interval
can significantly affect the effectiveness of the model, with intervals greater than 100msec
having negative impact on the accuracy.

Interference- Aware Trace Collection: The first phase of Rusty is responsible for
collecting applications traces of our target workload under interference. To achieve this,
the target application is executed on the system 100 times, each time with differing
interference load, which can be either real or synthetic (see sec. 4.3.3). For the rest
of this analysis section, we imitate interference by utilizing the iBench suite [3], which
provides contentious micro-benchmarks, where each one targets a different shared resource
in a multi-core chip (processing cores, cache capacity, main memory bandwidth) and has
tunable intensity. Specifically, we spawn random jobs from the iBench suite (up to the
number of available threads) with various intensity levels, where each one is assigned on
a randomly selected core of the system. During the execution, the framework collects
and stores all information regarding performance metrics of the system, through the
PCM tool. Following the above procedure, iBench produces static interference for the
whole duration of the workload’s lifetime. However, by considering multiple iBench co-
execution scenarios per application, we note that the interference effects per scenario
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Figure 4.4.. Impact of interference on the performance of target workloads. Each
doughnut chart corresponds to a specific application (left-handside legend),
experiencing differing per resource interference stress(right-hand side legend).
Highlighted dougnuts shows the potential of slowdown variability, i.e. how the same
application is affected from different mixture of interfered workloads.

can change dramatically, thus producing disparate impact on the performance of the
examined workload.

Figure 4.4 provides key insights of the impact of co-located jobs on the performance of
our target workloads. The x-axis depicts the number of spawned interference processes
from the iBench suite, whereas the y-axis shows the slowdown our target application
experiences due to interference. We measure slowdown as the ratio of the execution time
of the application running under interference to the execution time when executed in a
completely isolated environment. Each point in the graph, depicts a different benchmark
(left legend), whereas the surrounding doughnut chart indicates the distribution of the
spawned interference jobs (right legend), for the specific experiment. As shown in the
highlighted rings, scaling the number of applications does not inherently imply that the
application experiences increased slowdown. The level at which the interference is ap-
plied highly affects the performance of the executed workload. For example, regarding
the AdaBoost classifier (left highlighted rings) it is evident that interference on the L3
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cache provokes higher performance degradation than interference on the bandwidth of
the memory.

Data pre-process and dataset generation: The outcome of phase 1 is 100 low-
level metric traces, which correspond to the different execution scenarios under varying
interference. Phase 2 forms a pre-process phase, where the raw data of Phase 1 are
prepared and processed in order to create the final dataset for our LSTM model. First,
due to the different scales on the assembled data, we perform a min-max normalization,
in order to bring the data values between the range [0, 1]. The min-max normalization
is defined as follows:

B
e — (4.1)
new o .
Tmax — xmin

where z# is the unnormalized value of a point of the metric p and Z42, Tmin are the max
and min values from the respective set.

Then, we calculate some metrics of interest (pearson and cross correlation), which are
used to minimize the amount of data fed to our model. We discuss this process in detail,
in sec. 4.3.2. The last step of Phase 2, is the dataset generation. Figure 4.5 depicts the
procedure followed to create our training and test datasets.

As mentioned earlier, through the execution of random interference-aware scenarios, we
collect 100 pairs of signals, each of which corresponds to a scenario with different inter-
ference.

Starting with the signals of the first scenario (j = 0), we create a sliding window W,
where |[W| is equal to the history plus the horizon length, where "history" refers to the
number of past samples used as input to the model and "horizon" refers to the number
of future samples that the model predicts. This window is used to divide the desired
metric’s signal, as well as its correlated signal (e.g. L2M and L3M) to instances of the
same length. These parts correspond to different execution phases of the application,
which, at inference time, will match to the respective runtime system metrics collected
by Rusty. The sliding value of the window corresponds to the decision making interval
of a runtime resource manager. Without loss of generality, we suppose that a runtime
manager would take resource management decisions every 2sec (this is a configurable
value). Therefore, every time we slide the window 20 points to the right (since we set the
PCM sampling rate equal to 0.1sec). Hence, each signal is divided into k parts, where
f ~ lofal_signal length = pypally all these windows form our final dataset, which is then

sliding__interval
split into training and test set accordingly.

LSTM D.S.E. and training: After the data have been pre-processed, and the re-
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Figure 4.6.. Correlation exploration for design space pruning.

spective dataset has been created, Phase 3 performs a Design Space Exploration (DSE)
over the configurable parameters of the LSTM model, which we describe in detail, in
section 4.3.2. Once the overall best parameters are defined, the final LSTM model is
trained and the learnable parameters (i.e. weights and biases) are saved to a pickled
object file.

4.3.2. LSTM architecture and hyper-parameter tuning

The real-time requirements of runtime monitoring demands that the LSTM model should
be as compact as possible, i.e. use as little features as possible and also, carry as
little information as possible from the PCM tool for faster processing. In this sec-
tion, we explore parameters that affect the accuracy and the depth of our model. Our
goal is to provide an architecture that can achieve high accuracy, w.r.t. real-time con-
straints.

Which metrics to choose as input features? For each one of the 100 executions
performed in the offline part, certain metrics regarding the cores, sockets and the whole
system are obtained. Then, Rusty designates the metrics to train the LSTM model with.
To do so, it evaluates the correlation of the target prediction variable with the other per-
formance metrics using the Pearson correlation coefficient.
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Figure 4.6a shows the correlation of IPC, L3M and NRG with the rest PCM’s performance
counters for the Linear Regression workload. The correlation pattern of the LR workload
presents great similarities with the patterns exhibited among the others workloads, which
are not presented due to space limitations. As shown, there is a high diversity between
the correlations of the prediction variables (self-correlation equals to 1). NRG shows high
correlation values with all the metrics related to the socket and the whole system, whereas
it demonstrates lower correlation values with the core’s metrics. As expected, L3 misses
are highly correlated with L2 misses, as well as read (RD) and write (WR) operations
from/to the memory. The correlation between L2 and L3 misses does not negate the
fact that stressing the L2 cache does not impose degradation on the performance of
workloads. We expect L2 and L3 misses to follow a highly correlated pattern, since
L2 misses consequently lead to higher traffic towards L3. In cases of interference, L2
misses are more likely going to lead to L3 misses, since more workloads contest for last
level cache occupancy and, therefore, they continuously erase the contents of the cache.
On the other hand, stressing the L2 cache does not inherently implies a large drop in
performance, since we still have the chance to find our data in the LLC, thus, remaining
on-chip.

How far back to seek for valuable information? LSTMs capture dependencies on
sequential data. Thus, an important design decision is determining the length of the
sequence provided to our model (History value), i.e., how far back to search for valuable
information. To extract this information, Rusty calculates the cross-correlation between
the metrics provided as input features to the model. Fig. 4.6b shows the auto-recurrence
degree found the L3 and L2 misses time series, under interference, for the Linear Regres-
sion benchmark. As shown, there is a reducing (as expected) effect, quite high though up
to the first 100 points. In all benchmarks, we observed a reducing/decaying effect, quite
high though, up to the first 50-70 points for small benchmarks and up to 200 points for
larger benchmarks. In order to ensure effective auto-correlation information, Rusty fo-
cuses on sequence lengths between 50-70 points, covering the region exhibiting the highest
recurrence dependencies. However, we note that Rusty supports configurable "history"
windows, easily adapted to differing "history" sizes.

Fig. 4.7 provides insights regarding the R? achieved for different History-Horizon com-
binations. Specifically, each cell of the heatmap illustrates the geometrical mean of R?
scores for the respective, metric, history and horizon, over all our target workloads. As
shown, the LSTM network can effectively predict L3M and IPC for a horizon of 25— 35
points, given as input history sequences of 12 samples or more. Regarding the socket’s
energy consumption, we observe that our model can predict equivalent horizon windows,
even with a single history value, showing the extensive expressiveness of LSTMs on low
rank fluctuating signals. In the examined case of forecasting during the execution of a
specific mixture of co-running workloads, energy signals can be safely consider to expose
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accuracy of the model.

low rank fluctuations, since the major power consumption coefficients are more due to
the activation of specific cores, cache memories etc and less due to IPC and L3 misses
runtime variances.

How complex should the LSTM architecture be? Since Rusty’s design should be as
lightweight as possible, we explore and evaluate three different parameters that affect the
complexity and precision of the LSTM model, particularly, the numbers of stacked LSTM
layers, the number of features per layer and the number of epochs used during training.
We use the benchmarks from the scikit suite for this exploration.

Fig. 4.8 illustrates three boxplot diagrams, showing the effect and the corresponding ro-
bustness of each examined parameter, w.r.t. the accuracy of the model, assessed through
the coefficient of determination - R? score. As shown, even though the number of epochs
does not affect the complexity of the model, it plays a crucial role in its accuracy, since
higher number of epochs increase the precision of the model dramatically, regardless the
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Figure 4.9.. Geometric mean of L3M, IPC and NRG R? scores

other design characteristics. In addition, increasing the number of features positively
affects the accuracy up to a plateau, after which a significant degradation is observed.
The same is true for the number of stacked LSTM layers. Stacking LSTM hidden layers
makes the model deeper, thus making the network more eager to recognize certain aspects
of input data. Since LSTMs operate on sequencial data, the addition of layers allows the
hidden state at each level to operate at different timescale [305]. However, adding fran-
tically more layers can degrade performance of the network. Once the network starts
converging, adding more layers can cause its accuracy to get saturated and then degrade
rapidly [306].

After filtering out the inefficient configurations, e.g. LSTM layers > 4, we further attempt
to determine a single "golden" LSTM architecture, (i.e. the number of layers and features,
not the coefficient values of a trained model) that delivers optimized prediction capabili-
ties across the majority of the target workloads. In order to capture the central tendency,
we computed the geometric mean of R? scores over the various application-specific trained
LSTMs configurations of the scikit workloads. As shown in Fig. 4.9, despite the fact that
all examined LSTM architectures deliver high geomean R? accuracies, i.e. over 0.96, the
stacked LSTM network with 4 layers and 128 features per layer outperforms all the other
configurations for all the addressed performance metrics.

4.3.3. How to deploy Rusty

Rusty is as an intra-node monitoring system, that predicts future low-level system metrics
and, thus, can be replicated across multiple nodes of a cluster to form a realistic solution in
a scale-out cluster configuration. Rusty has been integrated with the PCM tool, through
Python and C++ embedding, in order to provide runtime predictions, without the need
of intermediate logs and files. In addition, all the measured and predicted metrics, from
PCM and Rusty respectively, are stored in a MySQL [300] database, thus, allowing the
integration of our framework with advanced visualization and workload management
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tools, such as Prometheus [183] or Grafana [307].

Rusty can be utilized under several deployment scenarios, either cloud-native or VM-
based from both a cloud-user or cloud-provider perspective. Its only restriction is that
of requiring access to model-specific registers (MSR) to monitor low-level system met-
rics. While historically VMs didn’t allow information on low performance counters to
be available, recent advances like VMware’s virtualized Model-Specific Registers (MSRs)
in vSphere technology establish such observability. However, recently VMs are not the
only option available for Infrastructure-as-a-Service purchase. Cloud providers made
possible to rent bare-metal, physical machines, such as the m5.metal instances on AWS,
which were also used later in our evaluation section 4.4.3. In such cases, Rusty can
be deployed without any further requirements to provide run-time predictive monitor-
ing on workloads running on the system. From a cloud-provider perspective, Rusty can
form a advance solution to provide predictive monitoring of the performance of VMs
and aid the infrastructure devops so that to enable better Quality of Service to their
customers.

Cluster deployment: Figure 4.10 shows how Rusty can be utilized on a cluster of mul-
tiple nodes, where the cluster is managed by a master orchestrator (such as Kubernetes)
and there is an additional controller on each node of the cluster, which manages resources
inside the system according to system state predictions accepted through Rusty. In such
a setup, there is a Rusty instance running at each node, responsible for monitoring and
making future predictions regarding the specific system’s metrics. Specifically, Rusty
continuously collects PCM metrics every 100msec and makes future predictions at each
decision making interval (as described in section 4.3.1). These metrics are used by both
the master/inter-node controller as well as the intra-node controller for decision making
regarding management of resources. The inter-node controller leverages such information
for more efficient initial placement of newly arriving workloads on the cluster, whereas,
the intra-node controller takes advantage of the predictions, to proactively manage re-
sources on the system (e.g. perform dynamic power capping or alter the cache allocation
scheme).

Rusty’s training modes: Typically, Rusty requires no a priori knowledge of the work-
loads running on the system. Rusty can be deployed in two ways, either with pre-
trained models (pickled object files), which have been trained offline, or in a stripped-
manner, where the models are trained online, dynamically. This first way covers oc-
casions where custom, personalized models, are necessary, offering higher accuracy for
deeper horizons. However, this comes with the drawback of not perceiving the real in-
terference the target system might experience. In such situations, interference can be
emulated by utilizing synthetic micro-benchmarks for imitating interference, like iBench
[3].
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Figure 4.10.. Example of Rusty’s integration on a cluster of multiple nodes. Rusty can
be integrated with both a potential intra-node controller, to provide per node resource
management decisions, as well as an inter-node for better cluster orchestration.

The second way covers occasions, where the LSTM models are trained with real, interference-
aware traces, derived directly from the system that Rusty has been deployed to. DC op-
erators have a more holistic view of the underlying infrastructure and workloads running
in the cluster and, thus, can build models based on realistic interference effects. In such
circumstances, Rusty firstly experiences a grace period, during which it collects low-level
performance counters from the workloads executing on the system. In a scale-out cluster,
where multiple machines execute the same workloads under diverse interference scenarios,
the grace period can be completed in orders of hours. After the metrics have been col-
lected, Rusty can train either workload-specific models, responsible for more fine-grained
predictions, possibly targeting LC workloads, or general, coarse-grained ones, covering a
wider range of applications (we show how Rusty extrapolates to new workloads in sec.
4.4.2).

Adapting to abnormalities: Rusty continuously monitors and evaluates the predicted
metrics by comparing them with the actual ones. If new workloads arrive on the system,
they may expose undiscovered interference effects that have not been revealed during
the Rusty’s training phase. If a deviation in the prediction efficiency is discovered, then
Rusty retrains the model in order to adapt and update the weights and the biases of the
model accordingly.
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Figure 4.11.. L3M, IPC and NRG R? score per benchmark for the overall best
configuration (4 stacked LSTM layers and 128 features/layer), history=50 and
horizon=1.

4.4. Evaluation

In this section, we explore Rusty’s efficiency utilizing well- established techniques from
the machine learning and data engineering domains to validate its efficiency and to enable
comparative and reproducible studies w.r.t other SoA solutions. Specifically, we generated
several interference scenarios, where each scenario is constituted by a different random
number of spawned workloads at random times. We note that the following experimental
results are based on workload co-locations as derived from mixing applications found in

[83,283,284]. We evaluate Rusty on real continuous predictive monitoring deployments,
i.e. considering very fine grained time-resolutions in comparison with other LSTM-based
based approaches, e.g. Seer [206]. This way we are showing the robustness of Rusty
concepts on realistic/pragmatic interference scenarios, in comparison with sections 4.2.3
and 4.3, where we considered synthetic micro-benchmarks from the iBench suite for our
analysis.

We partition the datasets produced during execution in two subsets of 90% (training set)
and 10% (test set) of the samples respectively. The LSTM models were trained using the
PyTorch [142] library. The batch size of our dataset was set equal to 64, the learning
rate equal to 0.001 and we utilized ADAM as our optimizer. Furthermore, all the models
were trained using the architecture obtained from section 4.3.2 (4 stacked LSTM layers
and 128 features per layer).

58



4.4. Evaluation

1.00 1.00
o 0.98 o 0.75
o bt
O o
9 0.96 9 0.50 —NET
o~ (g}
x 0.94 [ 50-50HEE 80-20 x (.25 B IPC
== 60-40HEE 90-10
Em 70-30 H N\NRG
0.92 - 0.00 *©
L3M IPC NRG 1 2 3 4 5
metric scenario
(a) Rusty’s accuracy for different train-test (b) Rusty’s ability to extrapolate to new
dataset splits. workloads

Figure 4.12.. Rusty’s flexibility on training datasets and workloads.

4.4.1. Rusty’s Accuracy

Fig. 4.11 shows the accuracy of Rusty for predicting L3M, IPC and NRG per workload,
for a history value equal to 50 and horizon equal to 1. As we see, Rusty achieves pretty
high accuracies from 0.92 up to 0.99 R? scores for all the three target prediction variables,
with 0.991, 0.988 and 0.994 R? score on average for L3M, IPC and NRG, respectively. In
addition, it is notable that the considered LSTM architecture, although extracted over
the scikit suite, also fits and exposes high predictability on the cloudsuite and spec2006
workloads.

To further validate the robustness of Rusty, we also examine the accuracy for different
splits of training and test sets. Fig. 4.12a depicts the average accuracy among all tar-
get workloads for training-test split percentages equal to 50-50, 60-40, 70-30, 80-20 and
90-10 of the whole dataset. As shown, Rusty consistently exhibits high accuracies for
all our metrics of interest, over different training-test splits, ranging from 0.98 up to
0.998. This forms a very important and promising outcome, showing that Rusty can
deliver very high prediction capabilities without resorting to extremely time consum-
ing traversals on the overall LSTM design space each time a new workload is given as
input.

4.4.2. Rusty’s accuracy on unseen workloads

In order to investigate the ability of Rusty to extrapolate to new workloads, we generated
and evaluated 5 different scenarios, regarding the workloads used during training and
inference, which are described in Table 4.5. Specifically, for the first 3 scenarios, all but
one suites are used as training sets and the remaining one as testing. Since each bench-
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Table 4.5.: Different training/inference scenarios

# Training Test

1 SK[1-8], SP[1-6] CS[1-7]

2 SP[1-6], CS[1-7] SK[1-8]

3 CS[1-7], SK[1-8] SP[1-6]

4 SK[1-4], SP[1-3], CS[1-3 SK[5-8], SP[4-6], CS[4-7]
5 SK[5-8], SP[4-6], CS[4-7] SK|[1-4], SP[1-3], CS[1-3]
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mark suite captures specific system utilization patterns, we note that the aforementioned
scenarios define a set of extremely stressed prediction cases, where the extracted model
is called to make inference on unseen patterns, i.e. patterns not trained on. Respectively,
in scenarios 4 and 5, the first half of the workloads from each suite are used as training
set and the second half as inference, and vice-versa.

Fig. 4.12b depicts the R? achieved for all the target prediction variables and for each
one of the aforementioned scenarios. This figure also reveals the capability of Rusty to
achieve high prediction efficiency as far as the IPC and the L3M metrics are concerned,
with an average of 0.965 and 0.988 R? scores respectively, among all scenarios. Regarding
the NRG metric, we can see that Rusty exhibits high accuracies for scenarios 2-5, but
experiences a huge drop on scenario 1. This inaccuracy can be interpreted if we take
a close look at Table 4.3. In scenario 1, we used workloads from the scikit-learn and
the spec2006 suites as our training dataset and cloudsuite as our test one. Regarding the
former workloads (train set) we can observe that the ratio of NRG to IPC is approximately
in the range (2,3), whereas for the latter ones (test set) the ratio increases to (5,6).
Therefore, in scenario 1, we are enforcing the LSTM network to make predictions on
patterns either under- or non-represented in our training data, i.e. reassembling an
inefficient /problematic data engineering strategy where careless selection of training set
fail to paint the whole picture.

4.4.3. Rusty’s accuracy on unseen machine

We further investigate whether Rusty can be directly transferred, i.e. without re-training,
among machines with different specifications and micro-architectures. This forms also an
extreme stressed evaluation scenario for Rusty, to evaluate its generalization capabili-
ties without adapting the typical full-retraining approach used in other predictive model
solutions [206].

We deploy Rusty on a baremetal, m5.metal, machine (to allow access to MSR registers)
from Amazon EC2 [72] (Table 4.7). We execute 100 different scenarios, where, at each
scenario, a random number of workloads are spawned from the pool of spec2006 and
scikit-learn suites.We utilized the Rusty model trained with traces derived from our initial
server system (Table 4.1) and evaluate the accuracy of this model on traces from the EC2
instance.

Figure 4.13 shows the R? achieved per workload for all the three target metrics, for a
history value of 50 and a horizon of 20. As shown, Rusty experiences a slightly lower, but
still high, accuracy, with R? scores ranging from 0.76 up to 0.99, experiencing an average
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Table 4.7.: AWS EC2 mb.metal specifications

Processor Model  Intel® Xeon® Platinum 8175M
Cores per socket 24 (48 logical) @2.50GHz

Sockets 2

L1 Cache 32KB instr. & 32KB data
L2 Cache 1024K

L3 Cache 33MB, 11-way set-associative
Memory 396GB @2666 MT/s

Operating System Ubuntu 18.04, kernel v4.15

R? score

[ L3MEEE IPCHEE NRG
[T T T

Figure 4.13.. Rusty’s ability to extrapolate to new machines.

reduction of 0.01, 0.10 and 0.12 for L3M, IPC and NRG respectively. This experiment
reveals that, even though the underlying architecture has changed, there are repeated
patterns in the signal traces of the workloads, which Rusty is able to capture, due to the
normalization performed during the data pre-process phase.

However, to be able to determine the real values of the metrics, we should maintain the
max value of each metric used during normalization. Moreover, the accuracy of the model
can be further improved by either retraining the network or by applying transfer learning
techniques [308]. Nevertheless, this figure reveals the ability of Rusty to extrapolate to
new machines, thus forming an ideal monitoring solution for modern data-centers that
feature server nodes with differing micro-architecture.

We note that the aforementioned experimental study examined a limited of differing ar-
chitectures, showcasing as a proof-of-concept Rusty’s generalization capabilities. This
does not mean that Rusty is transferable retaining its high efficiency among all differ-
ent architectures available on a data-center without any modifications and/or retrain-
ing.

61



Rusty

1.0 1.0 1.0

g

80.8* 0.8

wn

“ 0.6 0.6
T T T T | | | | 0.9 ! ! 1

8 SR SR re o8

F & & L ¥ KL S KL
&Y N &Y 4 &Y Vg
(a) IPC (b) L3M (c) NRG

Figure 4.14.. R? score distribution of ARIMA, Linear Regression, Multi-Layer
Perceptron ARIMA and LSTM over all workloads for history-horizon pairs ranging in
[4,50].

4.4.4. Comparative analysis

To ascertain the superiority of LSTMs over simpler ML models and time-series analy-
sis techniques, we further perform a comparative analysis between the accuracy of our
adopted LSTM versus i) an Autoregressive Integrated Moving Average (ARIMA) model,
ii) a Linear Regression (LR) model and iii) a Multi-Layer Perceptron Regressor (MLP).
LR has been used in prior works for predicting system and higher-level metrics [217,309],
whereas MLP was chosen due to its ability to capture non-linear dependencies. For the
ARIMA technique we utilized the auto_arima function from python’s pyramid.arima
sub-module, where as the LR and MLP models were trained with the scikit-learn [283]
library. We examine the accuracy of the aforementioned models, trained for differing his-
tory window sizes as well as prediction horizons, both ranging between [4, 50], under
various random interference scenarios, i.e. considering randomly co-located workloads
from scikit, cloudsuite and spec2006 suites.

Fig. 4.14 shows a violin-plot diagram comparing the four examined models, over all our
target workloads and metrics, by considering the distribution of R? scores achieved. As
shown, LSTM outperforms the other three approaches, providing more robust and accu-
rate predictions, since for all the three examined metrics depicted both the median as
well as the 25th and 75th percentiles values of the respective distributions are greater.
Moreover, the converged violin shape of the LSTM closer to R? scores equal to 1 re-
veals that even though LR and MLP also provide quite accurate predictions, LSTM
tends to behave better providing consistently better forecasting of future metrics. Fi-
nally, throughout our experiments we observed that, for deeper horizon values (> 6), the
score gap between LR and LSTM rises constantly, showing the deficiency of the linear
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Table 4.9.: Rusty’s accuracy for additional PCM metrics

L30CC CO-state READ WRITE QPI
0.988 0.984 0.999 0.998 0.999

model to capture non-linearities in the time-series signal, whereas MLP and LSTM be-
have almost the same, with LSTM being slightly more accurate in the majority of the
cases.

4.4.5. Evaluating Rusty for further PCM metrics

As mentioned in section 4.3.1, Rusty receives as input the low-level metric to be predicted.
In this experiment, we evaluate Rusty for additional low-level performance counters pro-
vided by the PCM tool. Specifically, we assess the efficiency of Rusty for predicting the
LLC occupancy (L30OCC) and the CO-state (CO) of the core executing our target work-
load, the reads(RD)/writes(WR) of the sockets of the system from/to the memory and
also the total Quick Path Interconnect (QPI) traffic of the system for a history of 50 and
an horizon of 20 samples, using the overall best architecture obtained from section 4.3.2
and a train-test split of 70%-30% respectively.

Table 4.9 shows the accuracy in terms of R? score achieved by Rusty for the aforemen-
tioned additional low-level metrics. From this table it is evident that Rusty’s method-
ology is not bound to the explicit low-level performance counters considered throughout
the chapter, but can be applied to any metric found in the system. Especially for metrics
higher in the system hierarchy (e.g. socket or system metrics) Rusty can provide ex-
tremely accurate results, as shown both by the previous evaluation of the socket’s energy
consumption and also from the accuracy achieved for READs, WRITEs and the QPT traf-
fic. The above analysis shows that Rusty forms an effective universal predictive framework
for low-level system metrics, capturing interference from either aggregated traces, e.g. en-
ergy, reads or writes etc., found higher in the system hierarchy, up to more primitive ones,
closer to the core level, e.g. per-core IPC, L3-occupancy etc.

4.4.6. Rusty’s Overhead

Rusty’s high frequency monitoring and inference engine inevitably affects the perfor-
mance of the underlying system. Figure 4.15 provides two heatmaps, showing the av-
erage CPU utilization as derived from Unix’s top command, as well as the average in-
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ference time required for Rusty to predict the IPC for different number of OpenMP
threads given for inference and cores for which Rusty predicts low-level metrics for.
We should note here, that, by default, top displays CPU% as a percentage of a sin-
gle CPU, of the system, thus, on multi-core we can have percentages that are greater
than 100%.

These figures reveal that scaling the number of OpenMP threads does not reduce the
inference time needed to predict future metrics, while at the same time inficts huge uti-
lization overhead on our system. This is due to the fact that the overhead of dispatching
the computation to multiple threads is not counterbalanced by the overall effort required
to make the predictions for a single-vector inference batch. In addition, we also see
that the inference time needed to make more than 4 predictions on the system cannot
follow the high frequency monitoring interval of 100msec. In fact, Rusty requires al-
most 1 second to predict the IPC for all the 48 available cores on the system. From
the above analysis, it is shown that a reasonable strategy regarding Rusty’s placement
would be to allocate a Rusty monitor in 1 core dedicating around 60% of its resources
to predict metrics from 4 other cores of the system. We note that this level resource
consumption is not expected to incur any starvation issues in real environments, since
recent reports show that the average resource utilization inside data-centers is around
50%-60% [29].

To further evaluate the overhead by Rusty, we also provide the performance degradation
imposed to our examined workloads when co-located on the same physical core with
PCM-only and Rusty compared to a totally isolated execution. Figure 4.16 shows the
per-application slowdown (%). As we see most of the cloudsuite workloads are immune to
interference effects imposed by the monitoring tools. The highest slowdown is experienced
by application CS2, which uses Apache Spark to run a collaborative filtering algorithm.
For all the other cases , we observe a similar pattern on the performance overhead of both
PCM and Rusty, with the former imposing an average of 4% and the latter an average of
13% performance overhead respectively.

Finally, for completeness, we also provide the time for changing the cache allocation knob,
i.e. CAT policy, and the power capping, using RAPL, of the targeted Intel Xeon server,
which is 0.018s and 0.012s on average respectively. Based on the above, we can conclude
that the imposed overhead of the proposed methodology is suitable for supporting online
decision making and resource allocation.
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Figure 4.15.. Rusty’s CPU utilization overhead and inference time for different number
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Figure 4.16.. PCM and Rusty performance overhead imposed per examined workload
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4.4.7. Correlating lower- with higher-level performance metrics

Predictive monitoring on performance counters provide low level information regarding
the state of the underlying system at a per-resource manner, thus allowing us to detect
true causes of interference and bottlenecks, i.e. which resource is responsible for the
performance degradation our system (and consequently our workloads) is experiencing.
However, it is also considered of great importance, these low level insights to be projected
to higher-level metrics of interest, such as the slowdown applications experience, upcom-
ing QoS violations etc. In [206], the authors showed that predictive classification of QoS
violations is possible by exploiting the raw low-level performance counters. However,
gaining more insight, e.g. accurately predicting the actual slowdown of a workload is a
much more difficult regression problem, which requires additional models to be applied
on top of them.

We showcase the importance but also the applicability of exploiting this low level monitor-
ing information for slowdown predictability, through a rather simple exemplary scenario
of training a Multi-Linear Perceptron (MLP) regressor that receives low-level metrics of
the workload executed under interference as input features and predicts the respective
slowdown experienced. To determine the primary inputs of our model, we evaluated
the correlation between application slowdown, defined in this case as %, and
various performance monitoring distribution statistics, and utilize the most highly cor-
related features, namely the degradation of the mean and median IPC, L3M and LLC
occupancy compared to the isolated execution. Our model consists of 6 layers and 64
features per layer. Moreover, our dataset consists of 100 instances per suite’s work-
load, each instance corresponding to execution with diverse interference, where 90% of
the dataset is used as training and 10% as test set respectively. We also performed a
6-fold cross-validation to examine the robustness of the model. Figure 4.17 illustrates
the residuals of the regression for the scikit-learn and cloudsuite benchmarks, where the
z and y axes, show the real and predictive slowdown the application experienced. As
demonstrated, the MLP predictor can quite effectively forecast the slowdown the work-
loads experienced, with a Mean Squared Error (MSE) of 0.003 for the scikit-learn and
0.03 for the spec2006 suite!. Although rather simple in implementation complexity, this
exemplary case shows the potential of exposing low-level performance counters to higher-
level metrics of interest, forming a promising solution for runtime control using low-level
metrics.

'For Cloudsuite, the MLP regressor did not provide the similar accuracy results, thus, more descriptive
and deep networks might be required, which, however, are out of the scope of this work.
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Figure 4.17.. Slowdown prediction residuals.

4.4.8. Advantage of predictive monitoring for QoS guarantees

We evaluate the efficacy of predictive monitoring through a simple, but characteristic
example. Specifically, we evaluate the ability of a proactive vs. a reactive controller for
managing a Service-Level-Agreenment /Quality-of-Service (SLA/QoS) of an application
running on the system. For this particular example we examine CS2 as our target appli-
cation, which uses Apache Spark and runs a collaborative filtering algorithm in-memory
on a dataset of user-movie ratings. In addition, as SLA we consider the Instructions-
Per-Cycle achieved by the application, which can be considered as a proxy for the actual
performance of the application. We set a lower and upper IPC threshold equal to 1.2
and 1.4 respectively. For the reactive controller, we calculate the average IPC over the
last 2 seconds and once the former threshold is violated we increase the number of cores
given on the application to the next available value in the set [1,2,4], while if the lat-
ter threshold is surpassed we decrease the cores respectively. On the other hand, for
the predictive controller, we predict and calculate the average IPC of the next 2 sec-
onds (horizon value equal to 20) and perform the same actions as above based on the
result. Finally, both controllers have a decision making interval equal to 10 samples,
i.e. the decision for boosting/relaxing the application is repeatedly taken every 1 sec-
ond.

To imitate interference through the experiment, we utilize iBench, by spawning 42 random
workloads from the pool of the available ones. The arrival and completion time of each
iBench workload is determined by a Poisson distribution with lambda value equal to 2,
in order to emulate periods of disparate interference. Figure 4.18a depicts the arrival
and completion distributions used in this experiment. As we can see the system first
experiences a period of low-interference, followed by a period of rapid stress, which then
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Figure 4.18.. Reactive vs. Proactive SLA-driven control of Spark workload.

gradually declines.

Figure 4.18b shows the respective traces for the complete execution of the spark work-
load, tuned by the reactive and proactive controllers. The red dotted lines show the
IPC thresholds, whereas the scatter plot on top shows the number of cores given to the
Spark workload at each point in time (lower is 1, medium 2 and higher 4). This figure
reveals the advantage of the proactive approach to avoid IPC violations when feasible.
Specifically, we can observe two clear points in the graph, where the proactive approach
achieves to sustain the SLA agreement opposed to the reactive one, i.e. point ~ 23 and
point ~ 32 in time. In these two points, the "intelligence" of the proactive controller
becomes apparent, by keeping steady/scaling down the number of cores given to the
Spark workload, in order to avoid violating the lower and upper threshold respectively.
In addition, through this figure we also see that there are certain violations which are
inevitable, as for example the one happened in point ~ 48 in time. However, even in such
cases, we can see the attempt of the proactive controller to pre-increase the number of the
cores given to the examined application. As expected, the overall execution time in the
proactively regulated case is larger, since we apply the SLA also to the upper achievable
IPC.

4.5. Conclusion

Run-time predictability of systems under interference is essential for better manage-
ment of resources in modern large-scale cloud data centers. We proposed Rusty, a
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lightweight LSTM-based predictive monitoring framework able to provide fast, accu-
rate, non-intermittent and interference-aware predictions of low-level system metrics in
multi-tenant systems. We analyzed and explored several schemes of LSTMs conclud-
ing to a generic efficient LSTM architecture in terms of accuracy, responsiveness to
run-time constraints and computational cost. We showed that Rusty forms a realistic
solution achieving extremely high prediction accuracy R? of 0.98 on average under prag-
matic workload consolidation scenarios driving modern cloud platforms and also that
it satisfies the strict latency constraints imposed by low-level system knob activation.
We foresee Rusty to be integrated in existing orchestration frameworks, capturing com-
plex system dynamics and assisting towards more elaborated resource allocation deci-
sions.
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Chapter 5.

Deep-Learning Driven, Interference-Aware
Memory Orchestration for Disaggregated
Cloud Infrastructures

Efficient utilization of resources forms a top priority for data-center providers, as it pro-
vides both for better performance delivered to end-users and enhanced cost-efficiency. To
tackle the problem of resource under-utilization, workload co-location has become the de-
facto approach for hosting applications in such environments. On top of that, hardware
disaggregation is introduced as a novel paradigm, which allows fine-grained and dynamic
tailoring of cloud resources to the characteristics of the deployed workloads. Towards
the realization of hardware disaggregated clouds, novel orchestration frameworks must
provide additional knobs to manage the increased scheduling complexity. In this chap-
ter, we present Adrias, an orchestration framework leveraging predictive monitoring for
memory disaggregated cloud systems. Adrias leverages low-level performance events and
applies deep learning techniques to effectively predict the system status and performance
of arriving workloads on memory disaggregated systems, thus, driving cognitive scheduling
between local and remote memory allocation modes. We evaluate Adrias on a state-of-art
disaggregated testbed and show that it achieves approzimately 0.99 and 0.942 R? accuracy
for system state and application’s performance prediction respectively. Moreover, Adrias
manages to effectively utilize disaggregated memory, by offloading almost 1/3 of deployed
applications with less than 15% performance overhead compared to a conventional local
memory scheduling, while clearly outperforms naive scheduling approaches (random and
round-robin), by providing up to x2 better performance.
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5.1. Introduction

Over the last years, cloud computing has been established as the new standard for
application deployment, and is expected to grow even more in the near future, due
to the flexibility and cost effectiveness it offers [310]. From the providers’ point of
view, maximizing performance delivered to customers while minimizing the total cost
of ownership (TCO) is a first-class system design concern. However, such conflict-
ing requirements are difficult to achieve, since maximizing performance requires iso-
lated execution of workloads, which, however, leads to high resource under-utilization
[29,30,311].

To tackle this problem, cloud providers have adopted workload co-location and multi-
tenancy [40,312] as their de-facto deployment model. While this approach improves the
overall resource utilization of cloud datacenters, it also leads to interference in shared
resources, which in turn induces variability and degradation in applications’ perfor-
mance [41,88,116,313]. As a result, intelligent orchestration and allocation of computing
resources have been developed both from academia [41,63,64] and industry [117], where
complex cluster-wide software mechanisms control how hardware resources are assigned
to applications.

Cloud systems typically involve two layers of resource management which are orthogonal
to each other and can be applied independently, i.e., L1) The initial static allocation
of resources and placement of incoming applications (so called resource orchestration)
and L2) the dynamic adjustment of allocated resources to meet requirements of applica-
tions (so called runtime management). Mechanisms in the first category should be able
to identify the resource requirements of incoming (possibly unknown) applications, and
avoid placements that lead to resource interference, while also considering the underlying
HW heterogeneity [28,41,73,88,314]. The second layer includes runtime mechanisms
that dynamically optimize the performance of running applications, such as SW con-
trollers [40, 315] and/or OS-integrated extensions [241,316] that regulate resources of
deployed applications.

Despite their sophistication, software only mechanisms have proven incapable of fully
resolving the resources under-utilization problem, that is mostly a bi-product of the
diverse computational requirements of cloud workloads combined with the fixed resource
proportionality of cloud-server systems. As a consequence, it is common in modern data-
centers to observe a fragmentation of resources that are available yet not consumable by
any workload [317,318].

To overcome this resource wall challenge, hardware disaggregation has been proposed as
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a new design paradigm [44,319-321]. In a disaggregated cloud, the underlying hardware
infrastructure is organized as a pool of heterogeneous resources that can be composed on-
demand into compute units tailored on workload-specific requirements. Recent scientific
research has examined the applicability of the disaggregated concept on several compo-
nents of modern Cloud and HPC infrastructures, including processing units [168,322-324],
memory [1,43,325,326] and storage [324,327-329]. In addition, rack-scale operating sys-
tems [330] and runtimes [331] have been proposed for managing disaggregated resources.
Typically, disaggregated systems either package hardware resources in one big "case"
and connect them with buses like PCle [168, 332], or rely on high-bandwidth, physi-
cal network interconnections [1, 244,324, 330], optical switches [333,334] coupled with
software APIs [330, 335, 336] used to expose and interact with the available cluster re-
sources.

As a result, even though hardware disaggregation offers more fine-grained organization
of computing resources, leading to improved resource utilization, elasticity, heterogeneity
and failure isolation, it also introduces new optimization knobs (e.g., selection between
local vs remote memory allocation), which have to be properly managed to provide in-
creased resource efficiency. Especially for memory disaggregated cloud systems, orches-
trated access to memory resources is required given that applications performance can
be severely impacted due to the increased latency in accessing remote memory [337],
while memory access patterns often reveal unpredictable fluctuations throughout execu-
tion [162,208]. Moreover, recent research has revealed that the binary code footprint
of cloud workloads is one to two orders of magnitude larger than the L1 instruction
cache and can lead to repeating instruction cache misses, hurting performance [288,289],
whereas latest reports from large-scale clouds show that memory is becoming the new
performance bottleneck [29].

Need for memory orchestration: This work focuses on memory-disaggregated infras-
tructures addressing the newly induced problem of interference-aware memory orchestra-
tion. In a memory disaggregated system, orchestrated placement to memory resources is
required to minimize the impact on applications performance due to the increased latency
in accessing remote memory [337]. While prior research efforts have thoroughly exam-
ined dynamic runtime mechanisms (L2 — e.g., page migration/prefetching) for memory-
disaggregated and multi-tiered memory systems [239, 316, 338], limited work has been
conducted with respect to the problem of interference-aware memory placement in dis-
aggregated clouds (L1), since existing scheduling approaches [41,88,339] neither target
memory orchestration nor been have extensively examined for such composable systems.
However, orchestration of memory resources in disaggregated environments is critical for
two main reasons: ¢) In presence of interference, determining an efficient memory map-
ping can significantly improve the overall performance of the application and ) Optimal
initial allocation of memory can minimize the amount of data travelling back and forth
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through the network, e.g., in applications that present a low ratio of hot versus cold
pages

Adrias Contributions: In this chapter we introduce Adrias', an interference-aware
memory orchestration framework that enables effective/optimized data placement deci-
sions on memory-disaggregated cloud infrastructures. The key features of Adrias could
be summarized through: 7) its ability to forecast the tendency of system-wide metrics in
the future, thus driving proactive memory orchestration decisions; i) its accurate per-
formance predictions for deployed applications w.r.t. memory heterogeneity (local/fast
vs. remote/slow DRAM) and interference and i) its power to leverage disaggregated
memory with minimal impact on the performance of deployed applications without the
employment of dynamic memory management mechanisms. Adrias exploits system-level
performance monitoring information and leverages deep learning approaches to place
incoming applications on the pool of available memory resources. To the best of our
knowledge, this is the first work tackling the problem of interference-aware memory or-
chestration, i.e. applications’ data placement on memory-disaggregated cloud systems.
Our main contributions are:

e We perform an in-depth exploration and provide new insights on the performance
sensitivities and capabilities of the state-of-art ThymesisFlow disaggrageted mem-
ory testbed [1]. We characterize ThymesisFlow testbed under various interference
scenarios for a set of in-memory cloud workloads, namely Redis object storage,
Memcached key-value store and several Spark analytics and analyze the impact of
memory disaggregation w.r.t. their performance.

e We propose two deep learning models tailored to disaggregated memory systems;
i) a system state prediction model that forecasts the tendency of monitored perfor-
mance events in the future and 4i) a performance prediction model that estimates
the performance of applications, when deployed on memory disaggregated systems.
Using these models, we are able to accurately predict the tendency of system met-
rics and performance of incoming applications, achieving up to 0.999 and 0.942 R?
scores respectively.

e We present Adrias, an orchestration framework for memory disaggregated systems.
By leveraging the developed prediction models and a naive, yet effective, scheduling
logic, Adrias employs remote memory efficiently, by offloading up to 35% of best-
effort applications with less than 15% performance degradation compared to a local
DRAM memory allocation approach and also provide comparable QoS guarantees

! Adrias was a WWII battleship that hit an underwater mine and was split in half. In spite of the
damage suffered, Adrias managed to survive.
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5.2. Disaggregated Memory Testbed

for latency-critical ones.

The rest of this chapter is organized as follows. Section 5.2 gives a brief overview of the
memory-disaggregated testbed used to design and evaluate Adrias. Section 5.3 describes
the experimental setup of this work and also presents an extensive characterization of a
real memory disaggregated testbed along with a set of realistic in-memory applications.
Section 5.4 presents Adrias, our proposed orchestration framework for memory disaggre-
gated systems and finally, sections 5.5 and 5.7 show our experimental results and conclude
the chapter respectively.

5.2. Disaggregated Memory Testbed

Memory disaggregation is not a new subject of study, with several approaches appearing
over the years. There are fully software-based approaches that expose remote memory as
Linux swap devices or rely on RDMA transfers to be explicitly programmed for moving
memory blocks to from/remote memory [326,330,336,340-343]. Efficient use of RDMAs
often involves having to reserve and pin chunks of memory beforehand that leads to
inefficient utilization of memory resources. A number of full hardware solutions have
also been proposed [1, 331, 344] that although different, they are all mostly based on
intercepting low level CPU memory operations to process and forward them towards
remote systems. In this work we focus on the ThymesisFlow open source hardware [1]
that incurs minimal software overheads, and it is easy to integrate with applications and
operating systems.

Prototype Setup: We replicate the disaggregated system described in [1]. Specifically,
all of our experiments have been performed on the ThymesisFlow [345] open-source real
memory-disaggregated testbed prototype consisting of two POWERY servers, the spec-
ifications of which are shown in Table 5.1. Both servers run RedHat Enterprise Linux
(Kernel v5.8.0) and are equipped with an Alpha Data 9V3 card, that features a Xilinx
Ultrascale FPGA. The FPGAs are connected back-to-back using a single copper cable
that models a 100Mbps point-to-point connection in a circuit switched disaggregation
network fabric.

Hardware Architecture: Figure 5.1 depicts the hardware infrastructure of the Thymes-
isFlow prototype. On both servers the FPGAs are interfaced to the CPU bus using
the OpenCAPI [346] prototcol, that enables among other things coherent access to the
CPU memory from an accelerator. The interface between CPU and FPGA is based on
8x25Gbps serial links for a total of 200Gbps. On the borrowing side, the OpenCAPI
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Figure 5.1.. ThymesisFlow [1] architecture overview

accelerator is mapped at a specific physical location in the CPU bus that can be then
hot-plugged as regular memory. On the lender side the OpenCAPI accelerator accesses
the memory on behalf of the borrower by totally bypassing the lender CPU, thus avoiding
any unnecessary overhead. ThymesisFlow enables byte-addressable disaggregated mem-
ory that does not require any software support such as in the case of solutions based on
RDMA [239,326] and those enabling disaggregated memory by means of a Linux swap
device [340,342]. Every time a memory access performed at the borrower side causes a
last level cache miss or flush, the cache line is refilled/flushed via remote memory. An
OpenCAPI transaction (read or write) is generated by the borrowing CPU and received
by the FPGA. Here the transaction address is modified to a valid one at the lender side
and the operation traverses the circuit network (100Gbps) towards the FPGA at the re-
mote node, where the OpenCAPI transaction is re-issued on the bus towards the memory.
Responses in case of a read follow the reverse path.

Software Architecture: From the software standpoint, the two servers in the prototype
are not symmetric. ThymesisFlow enables the borrower-lender model, where the lender

Table 5.1.: Target System specifications

Processor Model IBM POWER9
Cores per socket 16 (64 logical) @3.7GHz

Sockets 2

L1 Cache 32KB instr. & 32KB data
L2 Cache 512KB

L3 Cache 10MB 20-way set associative
Memory 1.2TB @2666MHz

Operating System RHEL Linux v8.2
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Figure 5.2.. Capacity of our memory disaggregated testbed for different stressing
scenarios. Different color shades denote different number of memory bandwidth
stressing microbenchmarks [2] deployed on remote memory mode.

gives away part of its local memory for access from a remote borrower. ThymesisFlow
provides 1libthymesisflow for managing the attachment and detachment of disaggre-
gated memory. libthymesisflow is based on a user-space daemon running on each node
and a cli tool used for requesting attachment/detachment of memory. On the borrower
server, ThymesisFlow exposes disaggregated memory as a CPU-less NUMA node. This
allows users to avail of all Linux default NUMA-aware functionalities and tools. Users can
alternatively decide to either hotplug the disaggregated memory to the running Linux sys-
tem in the borrower server, or to keep it out from the Linux kernel memory management
system for using custom (user-provided) memory allocators. In this work we hotplug
the disaggregated memory and we control how applications access it by means of special
Linux crgoups.

Disaggregation Modes: In this work, we examine only two out of the four available
allocation mechanisms of ThymesisFlow, i.e., local: all memory requests are served locally
and disaggregated: all memory needs of the application are satisfied by memory borrowed
from a neighbor node.

5.3. Analysing memory disaggregation under interference

In this section, we perform an interference-aware analysis of the ThymesisFlow memory
disaggregation testbed. We unveil important insights concerning both potential hardware
limits of memory disaggregated systems, as well as resource contention impact on the per-
formance of applications leveraging disaggregated memory allocations.
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5.3.1. Examined Workloads

Cloud infrastructures typically host two types of workloads, best-effort (BE) and latency-
critical (LC) ones. The former require the highest possible throughput while the latter
have strict QoS guarantees. To cover both types of applications, we examine the following
open-source, in-memory applications:

o Redis (LC): Redis [104] is a NoSQL key /value store that keeps data in memory and
is used primarily as an application cache or quick-response database. We examine
the impact of local and remote memory allocation modes on Redis server instances,
serving user requests. We generate requests using the memtier_benchmark [347], a
tool for load generation and bechmarking of NoSQL key-value databases. For the
majority of our experiments (except section 5.3.3) we consider a constant load of
200 clients with 10000 requests per client and a SET:GET ratio of 1:10.

e« Memcached (LC): Memcached [105] is a distributed memory object caching sys-
tem, used to cache data and objects in the main memory. Similar to the Redis case,
we examine the impact of disaggregated memory on Memcached server instances
and we generate requests using the memtier_benchmark tool [347]. We consider
200 clients, 40000 requests per client and a SET:GET ratio of 1:10.

e Spark in-memory analytics (BE): Apache Spark [245] is an open-source unified
analytics engine for large-scale data processing. We examine 17 different spark
applications derived from the HiBench benchmark suite [2], namely als, bayes,
gbt, gmm, kmeans, 1lda, 1r, nweight, pagerank, pca, repartition, rf, sort, svd,
svm, terasort and wordcount. These applications are long-running, best-effort
(BE) ones and cover representative workloads from different domains, i.e., graph
processing, machine learning and web searching. We run every application using the
default Spark parameter configuration and the small dataset as described in [2]. We
study the impact of disaggregated memory only on the executor processes, which
perform all the task computations.

In order to emulate real-life Cloud deployments, all the referenced benchmarks running on
the system have been containerized using the Docker engine [286].

Load generation: We use asymmetric load generation on the underlying system, by
co-locating LC, BE and iBench [3] interference microbenchmarks, as described in Sec-
tion5.4.2. For LC workloads, we utilize the memtier_benchmark [347], i.e. the official
Redis Labs’ utility for load generation of NoSQL key-value databases. Tail latency is
measured using a set of closed-loop memtier clients [348] over asymmetric co-located
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workloads. More in detail, our setup spawns 4 threads, where each thread spawns 200
clients, i.e. eliminating client-bias [349,350]. We use a SET:GET ratio of 1:10 and gen-
erate a constant load of 10000 and 40000 requests per client. This configuration leads to
a total of approximately 30.000 and 100.000 operations served per second for Redis and
Memcached respectively, which closely relate to realistic loads found in production, e.g.,
Facebook services [351,352].

5.3.2. Limits of HW memory disaggregation on ThymesisFlow

We first assess the capacity of our prototype while performing memory operations. The
goal of this characterization is identifying system and cpu metrics related to memory
accesses that impact the performance of applications. For this purpose, we utilize the
iBench benchmarking suite [3], that provides a set of interference micro-benchmarks,
each of which stresses a different resource on a multi-core server. For this analysis, we
examine the effect of repeated data movement between the local and remote system:;
in more detail, we spawn the memBW micro-benchmark that is designed for testing the
memory bandwidth of a system. We run an increasing number of memBW instances (1 to
32) to test different memory bandwidth requirements, and forcing it in using memory
borrowed from the remote system, thus generating memory traffic on the communication
between the FPGA devices in the ThymesisFlow prototype. In addition to the traffic
between the FPGAs, we also track utilization of resources in the local node memory
system. Specifically, we measure the number of flits (32B) received (rx) and transmitted
(tx), and the average latency on the ThymesisFlow communication channel. Whereas,
for the local system we gather the Last Level Cache (LLC) loads and misses, and the
memory loads and stores. Figure 5.2 shows the results and also reveals three important
remarks (R1-R3).

R1) Bounded throughput: The throughput (in terms of flits/sec) of the disaggregated
memory reveals an upper bound in the amount of both transmitted and received data,
with a cap of approximately 320MBps?. This value reveals that remote memory has
approximately a three orders of magnitude lower bandwidth threshold compared to con-
ventional DDR4 memory systems, which can support a theoretical of 120 GBps sustained
memory bandwidth [353].

R2) Communication latency: As shown, low to medium amounts of generated traffic
(1 up to 4 memory bandwidth microbenchmarks) the average latency on the communi-
cation channel follows a steady state of approximately 350 cycles/sec. However, in cases

2Given that each flit is 32B, we compute rx and tx bandwidth in B/s by multiplying with 32 [1].
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Figure 5.3.. Spark performance characterization (total execution time) when executed
in isolation on local and remote memory.

of increased traffic (8 up to 32 micro-benchmarks) this latency is almost tripled, reaching
a yield plateau of 900 cycles/sec. Until the 4 micro-benchmarks mark, the Thymes-
isFlow prototype is capable of handling the memory requests received and the latency
remains constant across all executions, while bandwidth increases steadily. From 8 micro-
benchmarks onwards, the ThymesisFlow channel is saturated ( bandwidth plateau) and
the back-pressure mechanism implemented in the FPGAs starts delaying memory trans-
actions, hence the step in latency.

R3) Local system interference: Asshown, application deployment on remote memory
also induces interference on the memory hierarchy of the local system. This is expected
for chip-level metrics (e.g., LLC Loads and Misses), as the cache memory hierarchy lies
beneath the abstraction layer of local /remote memory accesses. Regarding memory loads
and stores, remote pages are memory-mapped and handled through an enhanced numactl
memory controller and, thus, all remote traffic is handled on-chip by memory controllers
of the local node.

5.3.3. Workload characterization

We further quantify the impact of local and remote allocations on the performance

of our applications when executed in isolation and under different interference scenar-
ios.

Execution in isolation: For LC applications (Redis, Memcached), we examine the 99th
and 99.9th response percentiles (tail latency) under different loads by scaling the number
of clients requesting Set and Get operations. For BE (Spark) ones, we examine the execu-
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Figure 5.4.. Tail latency of LC applications with increasing requests per second when
executed in isolation on local and remote memory.

tion time of applications for the two memory allocation modes. Figure 5.4 and Figure 5.3
show the results for LC and BE applications respectively.

R4) Non-uniform performance variation: For Redis and Memcached applications
we confirm the results reported in prior work [1] that local and remote memory allocation
modes provide almost identical curves in terms of tail latency, for all the configurations ex-
amined. This similarity in performance was also expected due to the fact that in-memory
caches typically perform many small read and write memory accesses with minimal band-
width pressure requirements, which can be easily attained based on the specifications of
our disaggregated system, as shown in Section 5.3.2. On the other hand, for Spark ap-
plications we notice a different performance pattern. Specifically, we observe an average
degradation of 20% over all our examined benchmarks. However, the performance gap
measured is not constant across all the Spark applications tested, showing that remote
memory is suitable for some applications while it is not the best options for others. For
example in Figure 5.3, we observe that nweight and lr suffer almost a x2 slowdown
when ran on remote memory, whereas others, such as gmm and pca experience less than
10% performance degradation.

Execution under interference: Last, we examine the sensitivity of our considered
workloads with respect to different interference effects. Specifically, we investigate the
relative impact of resource contention on different levels of the system hierarchy, between
local and remote memory allocation modes. Similar to Section 5.3.2, we make use of the
iBench [3] suite. First, we deploy our target application and measure its performance on
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local and remote memory under the four interference scenarios namely: cpu, 12, 13 and
memBw. For both modes (local and remote), we spawn a different number (1 up to 16) of
resource trashing micro-benchmarks, targeting different resources on the system (CPU,
L2-cache, Last-Level-Cache and Memory Bandwidth), i.e., if the application is deployed
on local memory, so are the ibench microbenchmarks and vice-versa. Figure 5.5 shows
the respective results, where the density of each cell depicts the performance slowdown
of the respective scenario between local and remote memory, with darker colors denoting
a greater gap. This figure reveals three major insights:

R5) Performance chasm under contention: We observe that after a certain thresh-
old (typically 16 for L3 and > 8 for memBw micro-benchmarks), the same amount of inter-
ference results in much higher performance degradation on the remote memory, reaching
up to x4 additional slowdown in certain cases. Combined with the results presented
in Figureb.2, we observe that this threshold corresponds to the saturation point in the
communication channel of the FPGAs. This is true both for BE and LC applications,
with the latter appearing to be more resistant on interference effects. This shows that
remote memory gets saturated much more easily than local DRAM, which also confirms
our observation regarding the limitation of remote memory bandwidth made in Section
5.3.2.
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R6) LLC vitality: We see that contention on the LLC has the greatest negative im-
pact for the majority of the BE applications. Typically, interference on the LLC leads
to consecutive misses, which in turn are translated to increased memory bandwidth due
to read/write accesses from/to the main memory. However, while both LLC and mem-
ory bandwidth end up in generating traffic on the channel, we see that data locality
and caching is of paramount importance, as intense LLC contention (16 spawned mi-
crobenchmarks) leads to the worst possible performance degradation for the majority of
the Spark applications. Moreover, a sustained and increased interference effect on the
memory network bus, leads to gradual performance degradation, relative to the extent
of the underlying interference. Last, since in-memory databases rely heavily on pointer
chasing operations, which introduce poor on-chip spatial locality [354,355], they appear
to be less cache sensitive, revealing higher response times only on memory bandwidth
interference scenarios.

R7) Stacking interference effects: For certain benchmarks (e.g., nweight, sort,
kmeans), we also notice a performance gap between local and remote memory also when
imposing interference on lower levels of the system hierarchy (i.e., CPU and L2 cache).
We call this a stacking interference effect. For such applications, we expect the remote
memory allocation mode to be a prohibitive option under realistic scenarios, where dif-
ferent resources are congested simultaneously.

5.3.4. Affinity of system & workload metrics

As shown in Section 5.3.2, low-level system metrics can provide insightful information
regarding the state of the underlying disaggregated system. Taking also into account the
high performance variability shown in Figure 5.5, it is evident that being able to project
low-level performance events to higher-level metrics of interest, such as applications slow-
down or increased transactions latency, would allow us to estimate application perfor-
mance solely through the assessment of lower-level metrics. To investigate whether such
a relationship exists, we examine the correlation between low-level system and high-level
application metrics prior and during execution when deployed using the remote memory
allocation mode. Specifically, we generate several deployment scenarios (similar to the
ones described in Section 5.4.2) by randomly co-locating different ibench workloads with
the examined benchmarks, and we keep track of the underlying system metrics during
execution.

We evaluate the linear correlation between the average system performance metrics 120
seconds prior to application scheduling (z), as well as during execution (&), with the ap-
plication performance, using the Pearson’s correlation coefficient. For Spark applications
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Figure 5.6.. Correlation between historical () and runtime (Z) system performance
events and performance of deployed applications on remote memory.

we consider as performance the total execution time, whereas for Redis and Memcached
we study the end-to-end latency, the 99" and the 99.9" percentiles. Figure 5.6 shows
the respective results and clearly reveals the existence of a correlation between certain
metrics and the performance of applications. What is of great interest is that runtime
metrics reveal a much higher correlation compared to the historical ones, forming our
concluding remark:

R8) Predictive monitoring capability: Proactive runtime assessment of the state of
the underlying system is feasible and provides useful insights both regarding the system
itself, as well as the performance of deployed applications.

5.4. Adrias Design

The main goal of Adrias is to efficiently orchestrate applications arriving in a disaggre-
gated system, by deciding between local and remote memory allocation modes. The
idea behind Adrias’ architecture is driven by the remarks made during the character-
ization process (R1-R8), and have a one-to-one relationship with the framework’s in-
strumentation mechanisms. In short, a Watcher component continuously monitors and
gathers performance events of the underlying system. The Predictor exploits Long Short-
Term Memory (LSTM) models for forecasting the future state of the system and perfor-
mance of deployed applications. Finally, the Orchestrator utilizes the predictions to
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Figure 5.7.. Overview of Adrias architecture

decide the memory allocation policies accordingly. Figure 5.7 shows an overview of
Adrias’ architecture. We note that even though Adrias uses the ThymesisFlow proto-
type, its design is not bound with specific memory-coherence protocols (e.g., OpenCAPI).

5.4.1. Watcher

The Watcher component is responsible for gathering performance events from the under-
lying hardware infrastructure, as well as the deployed containers on the system (@). It
monitors low-level performance events, providing insights on the data flowing through the
memory hierarchy of the system. Focus is given on cache- and memory-related perfor-
mance counters, as well as metrics that depict the status of the communication channel
between the local and the remote memory sub-system.
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Driven by our analysis in Section 5.3.2, the Watcher component continuously monitors
the following metrics: Last-level cache misses (LLC)y,;s), Last-level cache loads (LLCyy),
Local DRAM memory loads (M EM;;), Local DRAM memory stores (M EMs), FPGAs
communication’s channel average latency (RMTj,) and FPGAs receive (RMT,,) and
transmit (RMTy;) throughtput. For the CPU performance events of the local system,
we utilize Linux’s perf tool, while the events related to the FPGA channel are directly
provided by the ThymesisFlow framework [1]. We should note that the list of monitored
events can be seamlessly extended to support more metrics. Finally, we set the monitoring
interval of the the Watcher equal to 1 sec, which, as shown in [61], is a "sweet spot"
between inference overhead and QoS violations increment.

5.4.2. Stacked-LSTM Predictor

The purpose of the Predictor (Figure 5.7) is to forecast the future state of the underlying
system, as well as predicting the performance of incoming applications depending on the
memory allocation mode (local vs remote). The prediction process consists of two phases,
offline and online. The offline phase (design-time) involves three main activities: i)
collection of representative system metrics’ traces that correspond to "realistic" execution
scenarios (@), i) generation of the dataset used for training and testing (@) and iii)
design, train and validation of the prediction models (@). In the online phase (run-time),
the Predictor utilizes the trained models to predict the aforementioned prediction metrics
of interest. The next three subsections provide details on the two prediction phases as
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well as the deep learning models used.

Offline phase: Interference-Aware trace collection

The first step of the offline phase concerns the collection of interference-aware traces of
low-level system metrics (by utilizing the Watcher component of Section 5.4.1). The
data collected is used as input dataset for training our deep learning models that will be
described later in this section. This step is vital for the overall functionality of Adrias,
since gathering representative data is essential to increase accuracy of any DNN model.
Adrias simulates different execution scenarios that imitate different realistic deployment
schemes on local and remote memory allocation modes. Figure 5.9 shows the flowchart
for generating each simulation scenario.

bench = alloc_mode =
rand(BE,LC,ibench) rand(local,remote)

Y

Simulation
Duration
Spawn
Interval

{t1.t2}

sleep rand(tq,tp)

4€q Deploy container
seconds

Figure 5.9.. Flowchart of interference-aware trace collection

Scenario generation: We simulate different execution scenarios by employing a random
scenario generation approach. Each scenario is characterized by a spawn interval {t1,ts},
which denotes the arrival time range of consecutive application deployments on the sys-
tem. For instance, a spawn interval of {5,40} means that each new application arrives
after a random interval between 5 and 40 seconds. Within each interval we pick a ran-
dom benchmark either from the examined applications, or from the iBench pool and we
deploy it randomly on local or remote memory. Through iBench micro-benchmarks, we
aim to replicate supplementary interference scenarios that cannot be directly generated
by our examined LC and BE workloads. To capture the high dynamicity found in Cloud
environments [30], we examine different arrival rates, with sets ranging from {5,20} up to
{5,60}, where the former imitate more congested scenarios and the latter indicate a more
relaxed application arrival pattern. Figure 5.10 depicts three exemplary but representa-
tive scenarios, assuming heavy ({5,20}), moderate ({5,40}) and less ({5,60}) congested
application deployment distributions®. As shown, the specific setup exposes a wide vari-

3Through the random scenario generation, the maximum number of applications running simultane-
ously on the disaggregated testbed is 35, with Spark applications spawning 2 worker instances with 4
threads each.
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Figure 5.10.. Number of concurrent applications (top) and performance metrics over
time for three representative scenarios. Adrias’ data acquisition scheme captures
different congestion phases, both within the same and among different scenarios.

ety of phases, both regarding the number of concurrent applications and the spectrum of
the monitored metrics.

Insights from scenario execution: Overall, we have simulated 72 diverse 1-hour sce-
narios with different arrival rates. Figure 5.11 and Figure 5.12 show the performance
distribution of our examined benchmarks over all the 72 execution scenarios. Regarding
Spark benchmarks (Figure 5.11) we observe that, as expected, the use of remote mem-
ory has a substantial performance impact compared to only using local DRAM. As a
result the performance distributions for the scenarios using remote memory exposes a
tendency towards higher values. However, what is of great interest is that certain bench-
marks (e.g., gmm) present overlapping performance distributions. This denotes that for
certain benchmarks there might be cases where remote memory is actually better than
local, or that it results in a similar application performance. Considering best-effort
applications, that typically do not have strict performance requirements, we would be
able to sacrifice performance to take advantage of the disaggregated memory. On the
other hand, there are also benchmarks (e.g., nweight), which, as previously described
in 5.3.3, do not take advantage of remote memory at all, due to stacking interference

effects.

Regarding Redis and Memcached, we focus on the 99" and 99.9'" percentiles, since
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Figure 5.11.. Spark performance distribution over different execution scenarios.

typically LC applications are accompanied by similar QoS requirements. We observe
that remote memory provides higher response times, however we also notice again an
overlap between the two distributions. Overall, we expect disaggregated memory to be
prohibitive for stricter QoS constraints, especially in the Redis case. However, when more
relaxed QoS requirements are set, remote memory could be leveraged without violating
any constraints.

Offline phase: Prediction models training

Adrias utilizes a stacked-model architecture by combining two prediction models one
after another: a system state prediction model, that forecasts the future values of low-
level system metrics, and a performance prediction model, that receives this prediction
(among others) and infers the performance of an application if deployed on local or remote
memory. Figure 5.13a and Figure 5.13b show an abstract view of the architecture of each
model.

System State Model: The rationale behind this model originates from our observations
made in Section 5.3.4 that run-time system metrics are more closely correlated to applica-
tions’ performance. The model receives as input a feature vector S =< (f1)_,., (fo)i,, ..., (f1)i, >,
where (f;)!_,,i € {LLCpis, LLCjq, ...} is a sequence containing the values of metric i over
a history window of length r ranging from a past timestamp ¢t —r up to current time t.
As output, the model provides a vector that corresponds to the predicted mean value of
system performance events, i.e. events related to hardware performance counters, over a
horizon window z, i.e., 5 =< u((f1)%), u((f2)1*#), ..., u((f7)1+*) >. Since, we focus on dis-
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Figure 5.12.. Distribution of total execution time to serve 10.000 requests (left) and of
99th and 99.9th percentile of response time per request (right) for Redis and
Memcached over difference execution scenarios.

aggregated memory allocation orchestration decisions, we define system state considering
the system metrics monitored by the Watcher component (5.4.1). After evaluating differ-
ent values for r and z , we have determined that a value of 120 seconds provides useful in-
sights both regarding the history and the horizon windows.

Due to the sequential nature of the input feature vector, we utilize Long Short-Term
Memory (LSTM) [302] layers as the backbone of the model, which has been proven to be
extremely accurate in forecasting system level hardware events in both under interference
and for deep horizons [61,313]. Specifically, the input feature vector is first processed by
2 LSTM layers that identify dependencies between the time-series data and the results
are passed to a triplet of non-linear blocks, that combine fully-connected layers with Rec-
tified Linear Unit (ReLU) activation functions, batch normalization and dropout layers
to expose non-linearity and avoid overfit.

Performance Prediction Model: This model is responsible for forecasting the per-
formance of incoming applications, if deployed on local and remote memory allocation
modes. Within Adrias, we adopt a universal modeling approach, i.e., we build a unique
model for all the BE and one for all the LC applications, where the former predicts
the expected execution time and the latter the 99*" response time percentile respec-
tively. Although prior research works typically follow a per-application modeling ap-
proach [6,41,164], we argue that this is not efficient (yet could be more accurate), since
building a performance model per application is too time-consuming and requires simu-
lating scenarios for each new application and maintaining a single model per workload
imposes serious scalability issues.
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Figure 5.13.. DNN architecture of (a) system’s state and (b) application’s performance
prediction models. Parentheses shows the #features and size of each layer.

Modeling and predicting the performance of applications is a non-trivial task and requires
awareness regarding: i) the dynamics and sources of interference on the underlying system
and i) the inherent characteristics of the application itself and how these characteristics
get affected from the current and future status of the system. To uncover this information,
the performance models receive as inputs four parameters: The past and predicted system
state feature vectors S and S, the deployment mode (local/remote) and a feature vector
Ag =< (f)i=e, (f2)iee, ooy (fr)iee >. We call this vector the application’s signature and
it is a unique identifier per application, that contains the sequences of monitored metrics
during application’s execution in isolation.

The time-series inputs, i.e., system state history and application’s signature, are indi-
vidually processed by two LSTM layers that identify important features in the sequen-
tial data. The output results are then concatenated with the deployment mode and
the future system state vector S to form the hidden representation, which is then pro-
cessed again by a triplet of non-linear blocks to provide the final performance predic-
tion.
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Online phase: Deployment

During deployment, the Predictor exposes a server network interface, that continuously
listens for incoming prediction requests from the Orchestrator. In case of such a request, it
forecasts the performance of the desired application and replies with the predicted perfor-
mance for both local and remote memory allocation modes.

5.4.3. Orchestrator

The orchestrator component leverages the predicted metrics generated by the predictor
to proactively assess the overall state of the system and choose the disaggregated memory
policy for deployed applications accordingly. The design of the scheduling logic of the
Orchestrator component is driven by two fundamentals: ¢) Typical cloud systems policies
demand for QoS guarantees for latency critical workloads and best-effort execution for
batch applications [41,63] and i) Disaggregated memory systems hide dangerous pitfalls
(characterization process of Section 5.3), i.e., disaggregated memory imposes significant
performance overhead if utilized recklessly, especially when multiple applications compete
over the available resources and, thus, should be leveraged wisely, targeting applications
that benefit the most out of it. We tackle the first aspect directly, by introducing a
straightforward, yet effective, scheduling logic for BE and LC applications, while the
second one is addressed indirectly, through the automatic feature extraction by the Adrias
prediction models.

When a new workload is deployed on the disaggregated system, the orchestrator first ex-
amines whether it owns any prior information regarding its application signature. If not,
it schedules the application on the remote memory allocation mode, captures and stores
its signature to be used at a later stage. Otherwise, the Orchestrator communicates with
the Predictor and receives the estimated execution time (for BE) or 99" percentile (for
LC) for local and remote memory modes. In the case of BE applications, we utilize the fol-
lowing discrete function to decide between the two modes:

ZOC(LZ, if tlocal < B * tremote-

modepg ={ (5.1)

remote, otherwise.

where £ is the predicted execution time retrieved from the Predictor and 3 is a slack
parameter that depicts the maximum performance loss margin that we are willing to
sacrifice in order to make use of the remote memory. The choice of 5 depends on
two factors, closely related to Section 5.3.3. First, the application itself (as described
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later in Sec. 5.5.2), since different applications present dissimilar performance char-
acteristics when deployed on remote memory and, second, the underlying interference,
since overwhelming the remote memory requires greater performance degradation toler-
ance.

For LC workloads, the employed logic aims to utilize remote memory whenever and as
much as possible, without violating the QoS constraints. Specifically, the memory mode
is chosen based on the following statement:

modep ¢ = remote, if ﬁ?gfﬁote < QoS. 52)
local, otherwise.

where p?*" is the predicted 99" response time percentile retrieved from the Predictor.
Particularly for LC applications, achieving QoS requirements solely through performance
assessment during deployment can turn out to be infeasible, due to the unpredictabil-
ity of the system’s future load. In such cases, Adrias can be utilized complementary
with other runtime control frameworks, e.g., [40,165], to dynamically adjust the resource
requirements at runtime.

5.4.4. Implementation

We have implemented Adrias using the Python (v3.7.0) programming language. Each
component is implemented as a separate class and is instantiated during the initialization
of the framework as a daemon thread running in the background. The communication
between the orchestrator and the predictor components is done using the ZeroM(Q mes-
saging library [356]. Moreover, all the models have been developed on top of the PyTorch
library [142]. The source-code as well as all model’s configuration parameters are publicly

available under an open-source license 4.

Deployment: Adrias design allows two deployment modes, integrated and segregated.
In the former, all the components of Adrias (Watcher, Predictor and Orchestrator) are
deployed as a single entity on the same physical server. In this mode, the role of the
orchestrator is to decide between allocating memory from the local DRAM or from a
remote donor node. In the latter, a Watcher and a Predictor agent is deployed on each
borrower node of the cluster, while the Orchestrator is deployed on "master" node re-
ceiving deployment requests. Whenever a new application is deployed on the cluster, the
Orchestrator communicates with the Predictor agent per node and receives the predicted
performance for the respective application. Based on the aggregated information from all

4Adrias Github Repository
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the nodes, it decides i) to which node should the application be deployed and i) whether
it should be deployed on local or remote memory. For the purposes of this study and
due to the limited hardware infrastructure available, we have used the integrated Adrias
deployment mode.

5.5. Evaluation

We evaluate Adrias’ effectiveness in terms of ) prediction accuracy w.r.t future system
state and applications’ performance, i) utilization efficiency of the disaggregated memory
and 77i) resources overhead.

5.5.1. Accuracy Evaluation
System state prediction model

We partition the datasets produced during simulation (Section 5.4.2) in two subsets of
60% (training set) and 40% (test set) of the samples respectively and we examine the
ability of the system state prediction model to accurately predict the mean value of
monitored metrics over the horizon window. Table 8.4.1 shows the respective results
per monitored metric, by evaluating the coefficient of determination - R? for a horizon
window equal to 120 seconds. Adrias achieves pretty high accuracy, ranging from 0.964
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Figure 5.15.. Evaluation of performance prediction model (execution latency) for
Best-Effort (BE) applications

up to 0.999 R? score for all the examined metrics and with an average of 0.993 R? overall,
illustrating the ability of Adrias to proactively assess the tendency of the metrics of the
system in the future. To further assess the robustness of our model, we also present
a residual analysis of the predictions, as there exist cases where a high R? score could
be counter-intuitive [357]. Figure 5.14 presents the results, where the = axis shows the
actual values of the metrics and the y axis the predicted ones. This plot verifies the strong
prediction capabilities regarding the system’s state, since the majority of the points lie
on the 45° residual line.

Application performance prediction models

Similar to Section 5.5.1, we partition the dataset in two subsets of 60% (training set)
and 40% (test set). As a first step, we train and test the performance models for BE
applications, using as the future system state (S' ) the actual monitored metrics, gathered
during the trace collection process. Figure 5.15a depicts the respective results, showing
that Adrias is able achieve a 0.942R? score on average, with a slightly higher accuracy
for predicting the execution time on local mode (R? = 0.945) compared to the remote

(R%=0.939).

Impact of stacked models to overall accuracy: An issue with the proposed stacked
predictor approach is that the actual monitored metrics will not be available during a
realistic inference step. Thus, an open question that rises is the following: Should we
train the performance models using as "future system state" the actual system metrics,
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Figure 5.16.. Evaluation of prediction model (99*" percentile) for LC apps

or train using propagated predictions from the system state model? To answer this ques-
tion, we examine the prediction accuracy for different input vectors (S’ ) during training
and testing. Figure 5.15b shows the results, where the pair [21,22] maps to (train,test)
and denotes the type of vector S used in each phase. Specifically, None implies that S
was not fed to the model, while 120, 120 and exec indicate that S is calculated from
the actual metrics or propagated from the system state model for a window of 120 sec-
onds or for the full duration of the application respectively. The pairs (120,120) and
(exec,exec) give the theoretical maximum accuracy of the model, which, however, is not
achievable in practice, since we cannot know a priori the exact values of the monitored
metrics in the future. The plot reveals that overall best approach is to feed to the per-
formance model the predicted vector S also in the training phase ([120,120]). As we see,
even though the system state model provided extremely accurate predictions ( 0.99R?),
we still experience an accuracy drop of approximately 3% compared to the theoretical
maximum presented above ([exec, exec]). Moreover, we also observe that leveraging the
predicted future system yields a 2% better accuracy compared to only considering histor-
ical data ([None, None]), thus, verifying the advantage of predictive over conventional
monitoring.

Runtime accuracy: Last, by employing the [120, 1?0] approach, we also show the Mean
Absolute Error for BE (Fig. 5.15¢) and LC (Fig. 5.16a) applications, as well as the respec-
tive regression residuals (Figures 5.15d and 5.16b), scaled to [0,1] using min-max nor-
malization. Comparing the mean absolute error with the median performance presented
in Fig. 5.11, the employed DNN models are able to provide accurate performance predic-
tions for both BE and LC applications. Even in cases where we observe high MAEs (e.g.,
gmm,1da), we see that these errors correspond to approximately 10% variation compared
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Figure 5.17.. Performance prediction accuracy for unseen applications (a) and different
model retraining approaches (b).

to the median values of their performance distribution. Overall, we are able to achieve an
R? score equal to 0.905 for BE and 0.874 for LC respectively.

Generalization on unseen applications: Last, we test Adrias’ universal modeling ap-
proach ability, by evaluating accuracy using an application-granular leave-one-out vali-
dation. Figure5.17a shows the R? score per benchmark, when excluded during training
phase. The model is able to generalize adequately for certain benchmarks (e.g., gbt)
whereas it fails for others (e.g., 1da) yielding 0.72 and 0.30 R? scores respectively. This
suggests that a continuous collection of representative application signatures and retrain-
ing is crucial for unknown applications. We explore the effectiveness of three retraining
approaches to improve the accuracy on newly collected data of unseen applications, i.e.,
i) from-scratch: train the whole model from the beginning, ii) whole-retrain: retrain all
the layers of the model using data from the unseen application and i) partial-retrain:
update only the weights of the model that correspond to the application’s signature. To
avoid bias on the new data during retraining, we set a one-order of magnitude lower
learning rate and we feed batches of mixed samples from seen and unseen applications.
Figure5.17b shows the accuracy achieved and time needed ( 0.8sec per epoch on a V100
GPU) for different number of training samples for gbt application. For lower number of
available samples (16-64), whole-retrain results to better accuracy compared to a ground-
up training, whereas for higher ones (128-512) it achieves comparable results with less
time (epochs) needed. Partial retraining does not improve accuracy over the unseen
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application, showing the close interrelationship between the application’s characteristics
(signature) with the dynamics of the system (system state).

5.5.2. Orchestration Evaluation

In this section, we examine the efficiency of Adrias’ orchestration mechanism described in
Section 5.4.3. To schedule applications, Adrias utilizes the pretrained predictive models
presented and evaluated in the previous section. In order to orthogonalize training and
evaluation process, we avoid duplication between the traces collected and used to train
our models and the ones occurring during evaluation, thus we generate a set of additional
execution scenarios (as described in Section 5.4.2) with arrival rates ranging from {5,20}
up to {5,60}, which are utilized to evaluate the orchestration logic. For BE applications,
we evaluate the ability of Adrias to utilize the remote memory as much as possible, without
violating the performance threshold introduced through the slack parameter 3. For LC
applications, we explore Adrias’ capability to successfully predict and schedule Redis and
Memcached on the remote memory (when possible), without violating a pre-established
Quality-of-Service (QoS) constraint. We compare Adrias with three other scheduling
schemes, i.e., Random and Round-Robin, where the memory allocation mode is chosen
randomly and in turn between local and remote respectively and All-Local, where all
applications are allocating memory from the local DRAM.

Best-Effort applications

Figure5.18 (top) shows the execution time distribution of all the examined BE bench-
marks and Figure5.18 (bottom) the number of times each application got scheduled on the
local and remote memory when using the Random, Round-Robin and All-Local schedulers,
as well as Adrias under different 3 slack parameter values.
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deployed on local and remote memory (bottom) for different scheduling logics.
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For the majority of the workloads, the Random and Round-Robin schedulers provide
the worst performance distributions, confirming the need for intelligent orchestration
mechanisms. For higher slack parameter values (8 = 1 and § = 0.9), Adrias provides
identical scheduling decisions with the All-Local scheduling logic, due to the explicit
performance deterioration of the remote memory combined with the implicit accuracy
errors of the prediction models, which render the orchestrator incapable of utilizing the
remote memory. For g values equal to 0.8 and 0.7 Adrias achieves to effectively utilize the
remote memory, managing to offload approximately 10% and 35% of deployed applications
with an average drop of 0.5% and 15% in the median performance over all apliccations
respectively.

While the values 0.8 and 0.7 for 8 would imply an equivalent degradation on the per-
formance of applications, we observe that this is not the case, which is attributed to the
accuracy error of the performance prediction model.

Moreover, Adrias’ scheduler favors offloading certain applications to the remote memory
(e.g., gmm, 1da), which as was shown in Sec. 5.4.2 present overlapping performance
distributions between local and remote modes, whereas it avoids offloading the ones
presenting "non-overlapping" distributions (e.g., nweight). This observation verifies that
Adrias is able to properly model and expose the inherent characteristics of the examined
applications. Finally, for lower slack values (i.e., 3=0.6) Adrias offloads the majority of
deployed applications to remote memory, which, however, induces significant performance
degradation.

Latency-Critical applications

We evaluate the ability of Adrias to efficiently allocate LC applications on the remote
memory without violating QoS constraints. We identify and examine QoS constraints
of various strictness. Based on Figure5.12, we define five different QoS (tail latency)
levels, i.e. 0 up to 4 per LC application, that correspond to the 87.5t", 75t 50th, 25",
12.5"" distribution percentiles, where Level 0 denotes the most relaxed and Level 4 the
strictest QoS constraints respectively. Figure5.19 depicts total number of violations (left)
and offloads (right) for Redis (a) and Memcached (b) applications for the respective QoS
levels and all examined schedulers. Similar to the case of BE applications, we observe
that Random and Round-Robin schedulers provide the worst possible results, since they
introduce the highest numbers of QoS violations both for Redis and Memcached, whereas
All-Local outperforms the others by introducing almost no violations for looser QoS con-
straints and minimum number for stricter ones. Regarding lower QoS levels (0-2), Adrias
achieves almost identical results to the All-Local approach, by almost eliminating the
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majority of QoS violations, while offloading almost 1/3 of the LC applications to the
remote memory. For stricter QoS requirements, Adrias provides comparable results to
the All-Local scheduler by introducing an average of 5% and 20% more QoS violations
for Redis and Memcached respectively.

Adrias’ impact on data traffic: Last, we quantify the amount of transmitted data
over the FPGAs’ network interconnection. Among all the examined scenarios, Adrias re-
duces the amount of transmitted data by 45% (5 = 0.8) and 23% (5 = 0.7) on average com-
pared to Random and Round-Robin schedulers respectively. We note that in cases where
Adrias offloads similar number of applications with the other schedulers, it generates up
to 55% less traffic on the channel, revealing its tendency to favor less memory-intensive
applications to be allocated on the disaggregated memory.

5.5.3. Overhead Analysis

Finally, we evaluate Adrias in terms of its computational requirements and imposed
overhead when deployed on a borrower node. Specifically, we measure the CPU and RAM
utilization for the Watcher and the Predictor components using Linux’s top command
for a generated mixed-workload scenario with duration equal to 300 seconds. In addition,
based on prior research [313] we set the number of PyTorch’s OpenMP threads equal to
1. Figure 5.20 shows the respective overheads, where the Initialization phase refers to
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the grace period of 120 seconds, required to gather the history window used as input to
the predictions models; the Orchestration phase refers to the real execution part, where
Adrias utilizes the Predictor’s inference engine to evaluate the performance of incoming
applications on the system; and the Termination phase refers to the waiting period until
all benchmarks have finished their execution. During initialization, we notice a spike
both in CPU and memory due to the instantiation of Adrias’ components (as described in
Section 5.4.4). In terms of memory, Adrias imposes minimal overhead on the system, with
an average of 3MB RAM utilization. Moreover, this overhead is accumulated during the
orchestration phase, due to the fact that Adrias monitors and stores information regarding
all the running containers on the system. Last, we observe that Adrias has almost no
impact in terms of CPU utilization, with occasional CPU usage spikes of approximately
15% . For the shake of completeness, we also report the average inference time of the
Predictor, which requires 0.63 seconds on average, for the system state and performance
predictions.

5.6. Further Discussion Points

Why Deep Learning? Modern cloud data centers suffer from extensive and non-
deterministic performance variability due to interference, workload diversity and HW
heterogeneity [30], thus mechanistic or model predictive control approaches form highly
expensive solutions due to the extensive simulations required to capture all the possible
deployment scenarios [358]. To this end, ML-centric cloud platforms are attracting a lot

5't:op expresses CPU utilization as a percentage of total CPU time (12800% in our system)
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of attention [28,55,359]. The rationale behind the employment of DL techniques is the
automatic pattern discovery of neural networks; notably such patterns, able to discrim-
inate performance indicators, could not be effectively set by typical human modeling or
would require extensive scenario analysis. In particular, LSTMs have been proven to be
extremely efficient on interpreting temporal patterns, i.e., interpreting system monitor
time-series to actual performance metrics [61,313].

Ability of Adrias to unveil human-driven remarks. During evaluation (Figure5.18)
we noticed that Adrias favors offloading certain applications to the remote memory (e.g.,
gmm, 1da). While these applications present overlapping performance distributions be-
tween local and remote modes (Sec. 5.4.2), Adrias avoids offloading "non-overlapping"
ones (e.g., nweight), which also suffer from stacked interference effects (R7). This ver-
ifies that Adrias properly models the inherent characteristics of the examined applica-
tions.

Adrias & HW heterogeneity. Adrias assumes no prior knowledge on the HW in-
frastructure, as any performance variability due to heterogeneity will directly affect the
monitored metrics. For example, in case a system avails of both remote DRAM and
NVDMe, these would be considered by Adrias as two different memory tiers, with different
latency characteristics. There is no requirement for Adrias to be aware of the actual
medium backing each tier.

Adrias scalability. Due to the inherent HW limitations of the ThymesisFlow proto-
type, Adrias was evaluated on a single-node cluster. However, by design, Adrias is able
to scale on multiple nodes, where the monitoring (Watcher) and performance prediction
(Predictor) components are distributed across the nodes of the cluster. The orches-
tration logic could be centralized (e.g., be integrated directly in the control plane of
Kubernetes [118]), however, it should be adjusted in a straightforward manner to ac-
count for cluster-level efficiency in case of iso-QoS predictions between different nodes.

5.7. Conclusion

Hardware disaggregation is the next big step for efficient and fine-grained management
of cloud infrastructures. We presented Adrias, a monitoring and orchestration framework
for memory disaggregated cloud systems. We performed an extensive, interference-aware
characterization process for a set of well-known cloud applications and highlighted the
hidden pitfalls on a real memory disaggregated testbed. Driven by this analysis, we
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designed Adrias, a framework leveraging deep learning techniques to decide the memory
mode of deployed applications and showed that it can efficiently utilize remote memory
with minimal performance overheads.
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Chapter 6.

Deep-Learning Driven Autotuning for
Taming High-Dimensionality of Spark
Deployments

The unprecedented amount of data uploaded and manipulated in the Cloud has pinpointed
the need for more efficient data processing. In-Memory Computing (IMC) frameworks
(e.g., Spark) offer enhanced efficiency for large-scale data analytics, however, they also
provide a plethora of configuration parameters that affect the resource consumption and
performance of applications deployed on top of them. Manually configuring all these pa-
rameters can be very time-consuming, due to i) the high-dimensional configuration space,
i1) the complex inter-relationship between different parameters, iii) the diverse nature of
workloads and iv) the inherent data heterogeneity.

In this chapter, we present Sparkle, an end-to-end framework for performance modeling
and autotuning of Spark applications based on deep learning techniques. Sparkle leverages
a modular DNN architecture that expands to the entire Spark parameter configuration
space, while also provides a universal performance modeling approach, thus, completely
eliminating the need for human or statistical reasoning in the loop. By employing a ge-
netic optimization process, Sparkle quickly traverses the design space and identifies highly
optimized Spark configurations. Through an extensive experimentation campaign on the
HiBench benchmark suite, we show that Sparkle’s DNN delivers an average prediction ac-
curacy of 93%, with very high generalization capabilities, i.e., ~ 80% accuracy for unseen
workloads, dataset sizes and configurations, clearly outperforming state-of-art. Regard-
ing the end-to-end optimization, we show that Sparkle is able to explore very efficiently
Spark’s high-dimensional parameter space, delivering new dominant Spark configurations,
which correspond to 65% Pareto coverage w.r.t its Spark native optimization counter-
part.
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6.1. Introduction

Nowadays, the unprecedented amount of data produced every day is truly overwhelm-
ing. In fact, according to a recent research [360], over than 2.5 quintillion bytes of
data are produced every day. To process and make value out of this information, novel
frameworks [92, 141, 245] have emerged that enable the parallel processing of huge data
volumes in a distributed manner. Spark [245] is today the de-facto processing engine
for large scale data analytics. Spark proposed a novel distributed model, called resilient
distributed dataset (RDD), that is stored in memory while being computed upon, thus
eliminating expensive intermediate disk writes, as in other data analytics frameworks,
e.g., Hadoop [141]. Although initially offered as a cluster-based solution, nowadays
Spark has been extended to support modern cloud- and /or cloud-native deployment mod-
els [361].

Even though Spark’s architecture provides inherent performance efficiency, it also offers
a wide variety of configuration parameters which can be tuned to alter several aspects of
its runtime engine, for further increasing performance. In fact, the latest Spark releases
expose more than 150 configuration parameters [362]. Although most of them are well
documented, official Spark performance tuning guidelines refer only to a very primitive
subset of Spark parameters [247], thus leaving the burden of analyzing their impact and
tuning the final deployment, solely on the developer. Analyzing and exploring the impact
of various configurations on the performance of Spark applications and also examining
the inter-correlation between different parameters is a painful procedure for developers,
due to i) the high-dimensional configuration space, i) the huge, cumulative, running
time required and i) the time required to comprehend in depth the purpose of each
parameter. On top of that, the inter-relationship between different parameters further
introduces an extra level of complexity. As a typical example, while the amount of
memory per executor usually improves performance, it also leads to increased garbage
collection times [363]. Consequently, application developers tend to tune empirically
only the most obvious performance-related parameters, such as the number of executors
or the RAM per executor, while, also, neglecting the performance variability for different
dataset sizes. Nevertheless, such an approach not only does not provide optimal results,
but also augments the cost dramatically, due to the unnecessary usage of memory and
CPU resources and long duration of working processes.

However, Spark applications can be bottle-necked by any resource in the cluster with
CPU, memory and network bandwidth being the most common congestion points [249].
As shown later in the manuscript (sec. 6.3.1), proper tuning of Spark configuration can
provide tremendous performance gains reaching up to x7 faster execution for typical
in-memory applications. While Spark itself offers a tuning guideline [247], it mainly fo-
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cuses on data serialization and memory tuning and, most importantly, it mostly relies
on an application- and datasize-specific trial and error approach, thus being far away
from delivering optimal configuration results. Moreover, the high-dimensional nature
of the parameter space exposed from Spark engine challenges both the modelling and
optimization strategies. As mentioned in [364], in high dimensional spaces, i.e. #pa-
rameters > 100, even scalable search strategies break down, requiring usually to either
adopt local optimization strategies [364] or retain aggressive parameter pruning during
modelling [6, 7,365]. From the above discussion, it is evident that there is a need of
automated tuning frameworks, to ease the exploration of this high-dimensional search
space.

As recently discussed in [269], major principles such as versioning adaptivity, data re-
siliency, workload heterogeneity and fast convergence should be considered as first class
design concerns for Spark auto-tuning. These standards tackle the provision of accurate
performance predictions for different workloads and volume sizes as well as enable near-
optimal configuration in an instant manner, to amortize optimization costs through the
resulting savings. Even though prior research has proposed tuning frameworks [4,6,7,365],
which automatically configure Spark parameters to optimize execution time, they typi-
cally neglect one or more of the aforementioned principles, by building workload-aware,
dataset-driven or even version-specific performance models.

To address the aforementioned challenges, we propose Sparkle, an end-to-end auto-tuning
framework for high-dimensional Spark in-memory analytics. Sparkle relies on deep learn-
ing techniques and low-level performance monitoring time-series to model performance
of Spark deployments in an application agnostic manner. By employing genetic opti-
mization, the framework efficiently traverses the search space online and recommends
optimized deployment configurations. Sparkle advances over state-of-the-art approaches
by providing a universal performance modeling approach, rather than application- and/or
dataset-specific ones, whereas it also extends over the complete configuration space, thus,
completely eliminating the need for human-in-the-loop or statistical approaches to identify
the importance per parameter. The contributions of this work are:

e We provide an in-depth analysis on the impact of parameter tuning on the perfor-
mance of Spark applications. We showcase how the importance of each parameter
is affected w.r.t. i) the deployed application and ) its input dataset size.

e We propose a hybrid DNN architecture that leverages convolution, Long Short-
Term Memory (LSTM) and non-linear blocks to exploit both application- and con-
figuration parameter-related characteristics, thus, being able to provide accurate
performance predictions of Spark deployments using a single, universal model.
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¢ Based on the above, we design Sparkle, an online autotuning framework for Spark
analytics. Sparkle seamlessly adapts to changes in the Spark engine, by considering
the entire Spark configuration space, hence, not relying to statistical or human
reasoning for identifying the importance of possible new parameters introduced
in the loop. Moreover, through its universal modeling approach, it manages to
extrapolate to unseen workloads and dataset sizes, tackling the inherent workload
heterogeneity found in modern deployments.

We evaluate Sparkle against a set of 13 in-memory applications from the HiBench [2]
suite. Experimental results show that Sparkle provides an average accuracy of 93% for
determining whether a SPARK configuration will provide speedup compared to default
execution or not, and an average MAPE of 7% for estimating the actual value of the
speedup. Moreover, through its universal modeling approach, Sparkle is able to provide
accurate predictions for unseen applications, dataset sizes and configurations, with an
average of ~ 80% classification accuracy and ~ 10% prediction error. Overall, Sparkle
improves the performance and costs expenses of the examined applications by up to a
factor of x6.8 and by up to 54% respectively, compared to the naive, default execu-
tion.

6.2. Examined Testbed & Spark Background

6.2.1. Experimental Methodology

This section describes our experimental infrastructure and the benchmarks used to eval-
uate Sparkle. Figure 6.1 shows an overview of our hardware and software technology
stack.
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Hardware cluster: All of our experiments have been conducted on a 13-node homo-
geneous cluster of high end machines. Table 4.1 shows the respective HW specification,
where 10 servers are exclusively reserved for deploying Spark executors (worker nodes)
and the rest are used for hosting necessary software stack components. The servers are
interconnected over a 1 Gbit/s ethernet communication channel. In addition, our cluster
has access to a DataDirect Network’s (DDN) Infinite Memory Engine (IME) [366] storage
system, that enables fast buffering of large data chunks.

Software layer: We consider Spark deployments managed by a Kubernetes [175] re-
source manager, where the executors are dynamically deployed as Docker containers [286]
on top of the worker nodes. All of our nodes have Docker (v19.03.2) installed and are
registered in a Kubernetes (v1.19.7) cluster, where, one node acts as the master of our
Kubernetes cluster. The Spark driver is deployed as an isolated container in one of the
nodes of the cluster (Driver Node). Finally, we employ Hadoop HDF'S [141] (v2.7) as our
distributed file system with 1 namenode and 1 datanode, also deployed as containers on
an isolated node (Storage Node). The remaining 10 HW nodes are exclusively reserved
for deploying Spark executors (worker nodes).

Examined SPARK applications: We study 13 SPARK applications derived from the
HiBench benchmark suite [2], which is widely used to evaluate Spark, listed in Table 4.3.
These applications form representative examples out of four different workload categories,
i.e., graph analytics, micro-operations, machine learning and web searching. Moreover, we
examine a diverse set of input dataset sizes per application.

6.2.2. Importance of Spark parameters

Next, we provide an overview of Spark [245], showing Spark works with a Kubernetes
resource manager and providing some further insights on the significance of Spark pa-
rameters over diverse workloads and different dataset sizes.

Spark over Kubernetes Architecture:

Figure 6.2 shows an overview of Spark’s over Kubernetes architecture. Spark applica-
tions are deployed directly over Kubernetes by specifying the respective API endpoint
using the -master parameter. Thus, when users submit a Spark application (1), they
communicate directly with Kubernetes, through the API server. Once the API server
receives the request to deploy a new Spark application, it automatically deploys a Spark
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spark-submit \

--master k8s://https://<kubernetes.api>:<k8s.port>
--conf spark.kubernetes.container. image=<image>
--properties-file=<path/to/configuration/file>
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Figure 6.2.. Spark over Kubernetes deployment flow

Driver container on the cluster (2), that is responsible for requesting Spark executors
from the API server (3). After the Driver’s request for new executors, Kubernetes’
API server automatically deploys the respective number of executor containers on the
cluster (4), which can communicate directly with the Spark Driver, and notifies back
once the executors are up and running (5). Finally, the Driver deployment assigns tasks
on the executor containers and performs Directed Acyclic Graph (DAG) scheduling on
them.

Tuning over the entire parameter space

Spark v3 provides over 150 parameters that control both performance and management
related (e.g., spark.app.name) settings and can be configured separately per applica-
tion. This process guarantees that the engine has a flawless performance and also pre-
vents bottle-necking of resources within Spark. As expected, not all parameters have
the same impact on performance, however, determining the most important ones is not
a trivial task. While previous approaches either choose important parameters empiri-
cally [6,149] or through statistical reasoning techniques [7], we argue that such approaches
are not efficient and one has to consider all the parameters to achieve an optimal per-
formance. To showcase our statement, we assess the importance of Spark parameters
through a univariate statistical test, namely the ANOVA F-Test [367]. Specifically, we
execute our examined applications for different input configurations and different dataset
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sizes and evaluate the importance per Spark parameter over all the executed scenar-
ios.

The boxplot of Fig. 6.3 shows the respective results, where the y-axis shows the score
of the respective parameter derived from the F-test and x-axis shows all our examined
Spark parameters sorted in a descending order based on the median value of the score.
As expected, it is shown that executor-instances forms the most important feature by
far, which is also the reason that previous efforts [146,148] focus exclusively on optimizing
this parameter. Another interesting fact is that scheduler.minRegisteredResourcesRatio
forms the third most important parameters in our Kubernetes-based cluster, however,
prior scientific efforts have not considered these parameters in their examined ones. Over-
all, we observe a varying behavior regarding the significance of the first 33 parameters,
while for the rest the impact appears to be lower.

Significance over applications: We broaden our analysis by exploring the performance
impact of each parameter in a per-application manner. The question posed is the fol-
lowing: Are various applications affected differently from the same parameters?. The top
heatmap of Fig. 6.3 shows the F-test score per application, where brighter cells depict
a higher yielded score. As observed, certain parameters (e.g., executor.instances) are
equally important across all benchmarks. However, there are also cases where perfor-
mance sensitivity is not alike among all workloads (e.g., executor.cores). This is typical
even for parameters that appear as less significant overall, such as default.parallelism
and executor.pymemory, which affect only a specific subset of the examined applications
(MC4, ML2, PR and NW, ML3, ML4, ML5 respectively).

Significance over dataset size: Last, we perform the same analysis in a per-datasize
manner, where the respective results are shown in the bottom heatmap of Fig. 6.3. As
before, we notice analogous motifs regarding performance sensitivity. In addition, we
observe that less important parameters have very limited impact when examining dif-
ferent sizes, although they do have impact in different applications, as shown in the
top heatmap. The first 23 most significant parameters however seem to impact in
non trivial patterns applications performance under scaled datasets sizes, which also
positively cross-validates the analysis performed in prior dataset-aware research works
6,7].
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Remarks From the above discussion, we conclude that “cherry picking" Spark parameters
should not be the de-facto approach and there is no “golden rule" to determine the ideal
configuration, since this process depends, among others, on the nature of the deployed
application and its input dataset. To further strengthen our statement, we examine the
set of parameters considered in prior Spark autotuners, chosen either empirically [4,6] or
through statistical reasoning [7]. The bottom of Fig. 6.3 presents the respective parameter
sets, through different decorations inside the boxplots. We see that the parameters chosen
by each approach differ considerably from each other. What is of great interest is that
only 13 out of our 30 most important parameters are considered in at least one prior
work, with the the most important one (i.e., executor.instances) it neglected in [6].
Moreover, there are four distinct parameters which are considered solely in [6], [7] and [4]
respectively, while, overall, there are only 7 common ones between all the three tuning
frameworks. We conclude that empirical selection of parameters can be almost entirely
subjective, while also, statistical approaches lead to completely different assumptions
depending on the circumstances.

Employing universal modeling

Spark is a general-purpose data analytics framework that en-
ables the development and deployment of new (potentially un-
seen) applications on different clusters. Previous state-of-the-
art Spark autotuners employ performance modeling techniques
at the application [6, 146, 148] or cluster [7] level. While these
techniques have shown to improve the performance of individ-
ual applications, they are inadequate for generalization to new -
applications. Thus, conventional autotuning frameworks, when — gcompensat':;
optimizing for a new application, require the entire tuning life- #Unseen applications
cycle'to be repeated, which igcludes c.ol.lecting perform:fmce data Figure 6.4.. Cost
.for different Spark conﬁguratlons,. tral.nlng a new machine lear'n— trend for universal
ing rno.del from ss:ratch, and tunmg its h}{perpar‘ameters toin- 4 per-application
crease 1ts. pI"(.BdICtIOD accuracy. With an. 1ncrea§1ng npmber of modeling approaches
new applications to tune, the costs associated with this process

become prohibitively high due to new data collection, partic-

ularly for applications with large input datasets, which can take several days to exe-
cute [368].
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To address this challenge, we adopt a universal modeling approach that mitigates the
overall costs of tuning new applications by distributing the fixed and nonelastic expenses
of data collection and training across different, previously unseen applications. Indeed, an
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organization may deploy a variety of Spark applications each with unique configurations
and datasets. Figure 6.4 illustrates this concept, presenting the cost of collecting data
and training an ML model for a universal autotuner (without loss of generality, we con-
sider training with 20 different application/dataset pairs) versus a ground-up ML model.
Considering AWS’s billing model, the y-axis represents the cost of deploying a 10-node
cluster of c4.8xlarge EC2 instances, while the x-axis depicts the cost changes as more
new applications are added. In the ground-up approach, users must pay for each new un-
seen application, resulting in an ever-increasing cost proportional to the number of unseen
applications. On the other hand, a universal autotuner incurs an initial cost (cost of in-
vestment) for gathering the initial training dataset and building the ML model. As more
unseen applications are deployed, this cost is amortized, leading to a compensation point
where the initial cost of investment is reimbursed by the savings due to the universal auto-
tuner’s ability to optimize previously unseen applications.

6.3. Sparkle: End-to-end autotuning framework for
high-dimensional Spark configurations

Sparkle is an end-to-end framework that automatically tunes the configuration parame-
ters of Spark deployments to optimize their performance and operational cost. Compared
to previous approaches that consider application-level [6,146,148] or cluster-level [7] per-
formance modeling techniques, Sparkle provides a more generic approach, providing a
universal deep learning architecture that is able to find near-optimal configurations for
diverse sets of Spark applications and dataset sizes, using a single trained model. Figure
6.5 shows an overview of the proposed framework. Sparkle consists of an offline and an
online phase, which we discuss in the following sections.

6.3.1. Offline Phase: Data Colleciton & Performance Modeling

The offline phase concerns the collection of data used to train Sparkle’s DNN performance
models.

Preliminary parameter pruning: As already mentioned, Spark offers more than 150
configuration parameters [362]. However, a large portion of these parameters refer to
Spark configurations not relative to performance, e.g., the name of the spark application
(spark.app.name). Thus, as a preliminary step, these parameters have been identified and
removed from the rest of the exploration process. This procedure resulted in 101 parame-
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Figure 6.5.. Sparkle’s Architecture Overview

ters, which concern a wide range of configurations that can be applied on the spark system.
These 101 parameters are either numeric configurations (e.g. spark.executor.memory etc.)
or boolean variables (e.g. spark.shuffle.compress). Similar to previous works [4,6, 7],
we employ a partial factorial design of experiments for each parameter, by sampling from
three up to six representative values, ranging from the lowest up to the highest acceptable
ones, where the minimum and maximum values have been determined according to [362]!.
We note that for spark.executor.instances, we consider values ranging from 1 up to 20,
which depict under-subscription, fully-subscription and over-subscription of our 10-node
cluster.

!The detailed configuration space can be found in Appendix 6.A, Table 6.A.1.
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Application Characterization Data Acquisition

As a first step, Sparkle collects data related to application-specific characteristics. The
rationale of this step is twofold. First, it provides a performance baseline to be used as a
ground-truth for assessing the efficiency of different examined configurations, during Steps
2 and 3 of the offline phase. Second, it aims to provide a "unique identifier" per applica-
tion, which represents the dynamics of the application during execution. Prior scientific
works have demonstrated that low-level system metrics can provide deep application-
specific insights and be used to characterize running workloads on a system [313, 369].
Motivated by this observation, Sparkle creates this unique identifier by exploiting low-
level performance counters during application’s execution. Specifically, for each Spark
application and each examined dataset size the framework deploys the respective com-
bination on the cluster using the default Spark configuration. During execution, Sparkle
continuously monitors system-wide low-level performance counter events over the allo-
cated worker nodes. In particular, we collect information for 35 different performance
events, concerning the performance (e.g., IPC, LLC misses, Memory reads and writes),
the state (e.g., Core/Package C-States) and the power consumption (e.g., Processors and
DRAM energy consumption) of the system, with a monitoring interval of 1 second. The
result is 35 different signal traces per application with a length equal to the total execution
latency for the default configuration.

Parameter Characterization Data Acquisition

In this step, Sparkle collects data related to the characterization of Spark parameters.
The inherent purpose is to identify the execution behav-
ior of Spark applications for different input configurations.
To do so, our framework generates various Spark configu-
rations and assess their impact on performance of applica-
tions. Each configuration is produced through a generator
that randomly picks a value for each parameter (for all the
101 examined parameters) from its respective representative
value space. Next, each Spark application is deployed and
executed for all the different, generated configurations and
for all the different input dataset sizes over the Kubernetes pigure 6.6.. Speedup over
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To minimize profiling time, Sparkle forcefully terminates deployments which exceed the
execution time of the default configuration, acquired during Step 1, and labels them
as “overtimed”. This design decision, even if insignificant in theory, becomes extremely
efficient in practice, offering huge savings with regards to the time required to execute all
the generated configurations.

In fact, Fig. 6.6 presents the profiling speedup gains over a naive profiling approach for 300
configuration deployments for all the examined benchmarks and dataset sizes. We see that
depending on the dataset size and the scalability potentials of each benchmark, we can ob-
tain almost up to two times lower profiling time in certain cases.

Profiling Insights: For the purposes of this work, we have generated and evaluated
1500 different configurations per application, through an experimental campaign of ~ 90
days. Figure 6.7 shows the execution time distribution of all the different configura-
tions per benchmark and dataset size (scattered dots), the execution time of the default
configuration (bars) and the number of successful and overtimed configurations (table).
It reveals two important insights: (i) First, parameter tuning does not have the same
effect among different applications. Indeed, we observe that certain applications (e.g.,
nweight, lda, pagerank) are significantly affected from the tuning process, providing up
to five times reduced execution latency compared to the default configuration, whereas
there are also cases where parameter tuning provide slight performance gains (e.g., sort,
wordcount). (ii) Second, parameter tuning impact on performance is directly affected by
the input dataset size. This observation is expected, as Spark is intended for big data
applications and, therefore, we anticipate to have greater performance gains for larger
datasets. However, there are certain cases where parameter regulation has impact on
particular dataset sizes, e.g., in the case of kmeans, tuning yields extremely more efficient
results for large dataset sizes compared to tiny and small ones. These observations further
suggest that an efficient tuning framework should be able to exploit the inter-relationship
between application specific features and the input dataset.

Dataset Composition & Pre-processing

The collected execution profiles and performance classes per benchmark/dataset/configu-
ration triplet form the final dataset used for training and testing of Sparkle’s performance
model. Due to the different scales on the assembled data, we perform a min-max normal-
ization, in order to bring the data values between the range [0, 1]. Specifically, regarding
the applications’ signatures, we normalize each performance event separately, with the
minimum and maximum values derived over all the examined benchmarks, rather than in
a per-benchmark manner. This allows to have a relative interpretation of system dynam-
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ics between different applications. For configuration parameters, first, we convert and
map any boolean or string parameters to an identical integer representation. A typical
example is spark.serializer which is converted from <JavaSerializer,KryoSerializer>
to <0, 1> respectively. After the conversion, we normalize each parameter separately, us-
ing as minimum and maximum the respective values from the parameter’s representative
values.

Performance modeling

Sparkle follows a dual performance modeling approach. Given an application’s signa-
ture and a Spark configuration, it predicts if a speedup is expected in a yes/no man-
ner (classification), aiming to discard overtimed predictions, and estimates the extend
of the speedup (regression), if exists. Sparkle tackles simultaneously both the clas-
sification and regression tasks through an efficient deep temporal architecture, as fol-
lows:

Anatomy of DNN architecture: Figure 6.8 depicts the proposed DNN architecture
and its components for Sparkle’s performance model. In more details:

e Signature Temporal Encoder: This component aims to encode applications’ signatures
of uneven length into fixed-sized feature vectors using a hybrid CNN-LSTM architecture.
First, we apply a 1D CNN backbone of three consecutive 1D convolutional layers, ac-
companied by ReLU activations, Bath-Normalization [370], which assists convergence,
and Max-Pooling operations. The 1D CNN backbone provides a coarse “organization”
of the temporal information into deep features, while considerably reduces the length
of the sequence with the max-pooling operations (by a factor of 27, overall). On top
of the CNN backbone, we apply an one-directional LSTM network of two layers in or-
der to effectively encode the reduced sequence of deep features into a fixed-sized vec-
tor.

e Configuration Encoder: The spark configuration is encoded through a feed-forward net-
work consisted of four linear layers. Between consecutive linear layers, we add ReLU and
Dropout layers [371]. The latter are used to prevent overfitting.

o Information Merging: The two extracted encodings are merged via a concatenation
function.

e Classification & Regressions Heads: Both components have the same architectural struc-
ture, consisted of three fully connected linear layers, intervened by ReLU and Dropout
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Figure 6.8.. DNN architecture for performance modeling

layers. The output is a single value. For the classification head, the output is followed by a
sigmoid activation and Binary Cross Entropy (BCE) loss is used for training, while for its
regression counterpart, Mean Squared Error (MSE) loss is adopted.

Datasize Awareness: We note that information about the dataset size is not explicitly
used as input to Sparkle’s model. Dataset-size can not be faithfully encoded into a single
value, since “tiny” size, for example, may have very different characteristics for different
applications (see Table 4.3). Information about dataset-size is implicitly contained in the
application’s identifier, thus the temporal encoder of the DNN extracts the relevant and
useful features from application’s signature.

Training Details: Training is performed using the Adam optimizer [372] and a cosine
annealing scheduling tactic with warm restarts, used to assist convergence to better per-
forming optima [373]. We train our system with a multitask loss by adding the individual
losses of classification (BCE) and regression (MSE). Such joint training of a shared back-
bone for both tasks not only requires reduced computational resources, but also slightly
outperformed an initial two-stage approach of two independent networks, one for classifi-
cation and one for regression, with prediction errors being reduced around 0.3% for both
tasks.
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Figure 6.9.. Speedup gains and cost expenditure of 300 different configuration for gmm
application.

6.3.2. Online Phase

In the online phase, Sparkle aims to identify optimized configurations for applications
deployed on the cluster. In case of uncharacterized applications deployed, Sparkle exe-
cutes them using the default configuration and captures and stores the respective PCM
metrics used as their "unique identifier". Then, the framework iteratively queries the
performance models (of Step 4) for different parameter values to determine an optimized
configuration.

The case of iso-performance configurations: It is possible that different configura-
tions lead to similar performance gains over default execution, due to the strong con-
juction between the various Spark parameters. For example, certain applications may
benefit equally from horizontal (increasing executor instances) and vertical (increasing
cores/memory per executor) scaling. As a representative example, Fig. 6.9 shows the
speedup provided by 300 different configurations for the gmm application. Each line rep-
resents a different configuration and the intersections with the vertical axes depict the
value of the respective parameter. We see that different sized deployments provide iden-
tical speedup over default configuration. However, this is not the case in terms of op-
erational cost, as more “fat" deployments typically lead to more expensive deployment
expenses.

Optimization approach: Sparkle adopts meta-heuristic optimization, to efficiently ex-
plore the underlying search space and ensure convergence towards optimal solutions.
Based on the iso-performance observations, we differentiate with prior-art that focus
solely on performance efficiency [6, 7], targeting to a dual-objective optimization prob-
lem, i.e., minimize the deployment cost while maximizing the performance of the applied

123



Sparkle

1-
©
@ 5 0.15 L 0.02 -0.02 @
n 10 :r;
c
20 L £
2 0.10 L 0.01] 0.01 5
& 50 g
F
100 L
Ezoo 009 00 o g
I
500 - 0.0
- 0.00 T T T T T T ’
- 1N O ©O O O O O — N N O o O
= ~Nwng oo S S o S S o
Generations Mutation  Crossover

Figure 6.10.. Impact of NSGA-II’s parameters on the final Pareto

configuration. Specifically, Sparkle follows an open-loop optimization approach, where
the optimization process is applied on top of the trained DNN model to evaluate the
dynamics of the solution space. This approach leads to a set of Pareto optimal solu-
tions [374], which trade-off performance for cost efficiency and vice-versa. Sparkle em-
ploys the Non-dominated Sorting Genetic Algorithm (NSGA-II) to traverse the solution
space, due to its ability to escape local optima and provide fast convergence to efficient
solutions [6,261,375]. NSGA-II is an evolutionary algorithm and operates for a number
of generations, where at each generation the elites of a population are given the oppor-
tunity to be carried on to the next one. Based on the mutation and crossover operators,
it creates new offspring populations to be examined in subsequent generations. In order
to determine an optimal set of values regarding NSGA-II's hyperparameters (popula-
tion size, generations, mutation probability and crossover rate), we explore the impact of
each NSGA-II hyperparameter in the final pareto front. We examine the effect of each
hyper-parameter by evaluating the area of the hypervolume [376] which is dominated
by the provided set of solutions with respect to a reference point (default execution) for
all benchmark/dataset pairs. Figure 6.10 shows how area is affected for different val-
ues of the examined parameters [377]. We observe that, as the number of generations
and population size increases, so does the distance of the Pareto front from the default
point. However, this also leads to increased exploration time budgets, as these parame-
ters greatly impact the search space of the algorithm. Moreover, we notice that mutation
and crossover parameters insignificantly affect the quality of the solutions. Based on the
above, we select a population size equal to 10, which provides a good trade-off between
the exploration time required and the quality of the final Pareto front. Regarding the
mutation probability and the crossover operator, we choose the values of 0.5 and 0.8
respectively.
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6.3.3. Sparkle’s Implementation

We implement Sparkle on top of Spark (v3.0.1) using Python (v3.8.5). For the gen-
eration of random Spark configurations, we utilize the Opentuner framework [378], that
provides an automated way of defining variable search spaces, by specifying parame-
ters that should be tuned. Moreover, in order to monitor low-level performance coun-
ters, we utilize the Performance Counter Monitoring (PCM) API [189], which provides
a plethora of hardware performance counters for each logical core, each socket, as well
as the whole server system. Our proposed DNN model has been implemented using the
PyTorch framework [142] and scikit-learn libraries [283]. Finally, regarding the imple-
mentation of our optimizer, we have utilized pymoo [379], a multi-objective optimization
framework in Python. The source-code of Sparkle is available under an open-source li-

cense2 .

6.4. Evaluation

We implement Sparkle on top of Spark (v3.0.1). For the random sampling Spark configu-
rations, we utilize the Opentuner framework [378]. The Performance Counter Monitoring
(PCM) API [189] used for low-level performance counters monitoring, whereas our pro-
posed DNN model has been implemented using the PyTorch framework [142]. Finally,
regarding the NSGA-IT implementation, we have utilized the multi-objective optimization
framework pymoo [379]. The source-code of Sparkle is publicly available?.

We evaluate Sparkle across four dimensions: i) by its ability to accurately model and
assess the performance of our examined applications, i) by its prediction accuracy com-
pared to other ML solutions proposed in prior art, i) by its ability to extrapolate to
unseen deployments and iv) by the quality of the Pareto solutions derived through the
optimization phase.

6.4.1. Accuracy evaluation

First, we evaluate the ability of Sparkle to model the performance of our examined bench-
marks w.r.t. different Spark configurations. Specifically, we measure the accuracy of our

20mitted for blind review
30mitted for blind review
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Figure 6.11.. Left: Classification accuracy for unseen Spark configurations per
benchmark and dataset. Right: Confusion Matrix.

DNN models for predicting ¢) the performance class (speedup/slowdown) and i) the ac-
tual speedup provided by configurations that belong in the former class. We partition
the dataset produced through the data collection phase (Sec. 6.3.1) in two subsets of
90% (training set) and 10% (test set) of the samples, where the test dataset consists of
benchmark-dataset-configuration triplets not used during training. To measure accuracy,
we follow a 10-fold cross-validation procedure.

Classification Accuracy: Figure 6.11 shows the accuracy results of our model for each
examined benchmark and dataset size. For the majority of the benchmarks Sparkle
provides extremely high accuracy of more than 90% regardless of the examined dataset
size, showing its ability to correctly predict whether a given configuration if more efficient
compared to default execution. We also plot the confusion matrix, which depicts the
percentage of true/false positive /negative predictions made by the model, where 0 denotes
the slowdown and 1 the speedup class. We see that, overall, Sparkle achieves an average
accuracy of » 93%. Moreover, the model also reveals high precision, sensitivity and
specificity accuracy of 93.35%, 92.62% and 93.43% respectively*. Last, the percentage
of false negative predictions, i.e., mistaken prediction that a configuration will provide
speedup, is kept at low levels, with approximately 2.7% of the total instances belonging
to this case, showing that Sparkle is not susceptible to mistaken predictions that will lead
to slow-downed executions.

Regression Accuracy: Next, we evaluate the accuracy of Sparkle’s speedup prediction
model by measuring the Mean Absolute Percentage Error (MAPE). Figure 6.12 shows
the respective results, showing that Sparkle provides robust predictions regardless of the
benchmark and dataset size, with an average of 7.2% MAPE overall. Also, by examining
the actual and predicted speedup values, we observe that this error is distributed evenly

“Precision is the ratio (correct/all) instances labeled as speedup. Sensitivity is the ratio of (correc-
t/real) instances labeled as speedup. Specificity is the ratio of (correct/real) labeled as slowdown.
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Figure 6.12.. Left: Regression accuracy (MAPE) for unseen Spark configurations per
benchmark and dataset. Right: Predicted vs real speedup over all benchmarks and
datasets.

across all applications and datasets, as most of the points reside close to the 45° regression
line. Note that for large speedup values (> 5.0), we observe that our system underesti-
mates the actual speedup. Such behavior is to be expected since 77% of the speedup
values are under 2.0, while almost 84% are under 2.5.

Impact of amount of training data on accuracy: Last, we examine how predictions
are affected by the number of instances used to train our models, by measuring the accu-
racy achieved for different portions of the training set. Figure 6.13 shows the respective
results, both for classification and regression models. We observe that the overall accu-
racy of both models steadily increase with the number of training instances used, up to
a certain plateau of roughly 50% of the dataset, after which no or minimal improvement
is noticed. This percentage corresponds to approximately 650 different configurations
examined for each benchmark/dataset pair, which is comparable or even less compared
to the number of training configurations required by prior art [4,6] that follow a per-
benchmark modeling approach. This is due to the fact that Sparkle’s universal model
allows the encoded information to be shared between different benchmarks, thus, requir-
ing less configurations to be examined per application.

6.4.2. Comparative Analysis

We further compare Sparkle’s regression model against five different ML approaches for
modeling performance of SPARK applications, proposed in prior research. Specifically,
we implement from scratch the following models: i) Random Forest (RF) [4,7,147], ii)
Multi-Layer Perceptron (MLP) [4], ¢ii) Support Vector Machine (SVM) [5,265] and v) hi-
erarchical modeling (xgboost) [6]. For RF, MLP and SVM, we build a performance model
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Figure 6.13.. Models’ accuracy for different portions of the dataset used during training.
Left: Classification. Right: Regression.

per benchmark and dataset size, which is the methodology followed in prior art [4,5]. In
the case of RF, we also examine a cluster-wise performance modeling approach, where the
assignment of applications into clusters is derived from [7]. Last, for hierarchical model-
ing, the developed model is benchmark-specific and dataset-aware, as described in [6]. We
should note that each modeling approach differs, both qualitatively and quantitatively, in
the number of Spark parameters used as inputs to the model, which we choose based on
the tables found in the respective papers. Last, we fine-tune the hyper-parameters of the
ML models to increase the prediction accuracy. Again, we use a 10-fold cross-validation
to measure the accuracy per approach.

Regression Accuracy: Figure 6.14 presents the MAPE of each modeling approach per
benchmark and dataset size examined. We observe that even though Sparkle adopts a
universal performance modeling process, it manages to achieve comparable and sometimes
even better prediction accuracy compared to the application- and dataset-specific estima-
tors. On average, Sparkle delivers a MAPE increment of 1.3% compared to the RF case,
whereas it outperforms MLP and SVM approaches by providing 1.1% and 2.3% lower
MAPE respectively. Moreover, Sparkle also prevails over datasize-aware and cluster-wise
approaches, by providing 4.7% and 17.5% lower MAPE respectively. What is of great
interest is that Sparkle tends to provide better predictions on applications that present
more spread performance distributions. This is more evident in the case of large dataset
sizes, where applications reveal higher performance variability (as shown in Fig. 6.7) and
where Sparkle clearly outperforms the other approaches for the majority of the cases, by
providing 1.5% up to 6.3% lower MAPE compared to application and dataset specific
performance modeling.
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Figure 6.14.. Comparison of Sparkle’s regression model accuracy with application- and
dataset-specific [4, 5], dataset-aware [6] and cluster-wise [7] performance modeling
techniques used in prior art.

6.4.3. Generalization study

Sparkle’s universal DNN architecture allows it to be leveraged in a seamless manner to ex-
trapolate to scenarios not encountered during the training data acquisition phase. Thus,
next we investigate Sparkle’s generalization capabilities, i.e., "how efficient can we model
performance of unknown applications, dataset sizes and configurations?”. Figure 6.15
shows the respective results per case.

Unseen applications: We evaluate the accuracy for unseen applications using an application-
granular leave-one-out validation. Figure 6.15a shows the accuracy and MAPE for pre-
dicting the performance class and speedup respectively. We see that Sparkle provides
high classification accuracy, ranging from 70% up to 90%, which reveals the framework’s
capability to quickly and efficiently identify profiles that will lead to faster execution
compared to the default configuration. Regarding the estimations of the actual speedup,
Sparkle’s predictions are not so robust, with the MAPE ranging from 4% up to 31% and

an average value of 19%.

Unseen dataset sizes: We further explore how Sparkle behaves in cases of unseen
dataset sizes. This time we perform an application/dataset combination leave-one-out
validation, i.e., we train the model with all available data except a specific applica-
tion/dataset set, which forms the “unseen" case. Figure 6.15b shows the distribution of
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Figure 6.15.. Sparkle’s extrapolation ability to a) unseen applications b) unseen dataset
sizes and c¢) unseen configs.

accuracy and MAPE per dataset size over all the examined applications. We see that
for both tasks, Sparkle is able to efficiently generalize from larger to smaller datasets,
whereas it struggles to achieve the opposite. This is expected, since, as discussed in
Sec. 6.3.1, the degree of speedup achieved through parameter tuning increases with the
size of the input data. This matter is less evident for classification, where even for large
unseen datasets, the median accuracy is kept at high levels (» 85%), yet the lower whisker
resides between 10% and 70%, showing increased variability for certain cases. For regres-
sion, generalizing to larger datasets becomes prohibitive, with the median MAPE of the
“large" case reaching ~ 25%. Even when extrapolating to intermediate dataset sizes (i.e.,
from “tiny" and “large" to “small"), we experience a non-robust behavior, with a low
median MAPE of » 4%, but a dispersed overall distribution approaching ~ 50% error for
specific instances.

Unseen configurations: Last, we evaluate Sparkle’s performance on completely unseen
configurations, i.e., we use as our test set Spark configurations that have not been en-
countered during training by any application/dataset pair. Figure 6.15¢ presents the
results, where the x-axis shows the percentage of the 1500 configurations considered as
unseen during training. In this case, Sparkle achieves more robust predictions, with the
accuracy and MAPE showing a small deviation up to the 50% coverage, after which a
decline of » 5% is observed for both cases. Nevertheless, we see that even for low unseen
percentage values, we experience » 10% and ~ 2% performance loss for accuracy and
MAPE respectively compared to our initial trained model, which highlights the need for
information sharing across different applications.

Model retraining: The aforementioned generalization results show a level of robust-
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ness to unseen data, but, as expected, performance is non-trivially decreased. To address
this issue, a retraining scheme is considered, where the initial data are trained along-
side a number of instances from the unseen applications in a fine-tuning rationale; the
DNN is initialized as a pre-trained model to the already seen data and then trained
with a reduced learning rate using the Adam optimizer, trying to find a neighboring
optima where the unseen data is also effectively modeled. Adam optimizer adapts well
to sparse information, lending from the AdaGrad optimizer [380] that simulates larger
learning rate for infrequent parameters, thus being effective even for a few number of new
instances.

We explore the effectiveness of three retraining approaches to improve the accuracy on
newly collected data of unseen applications, i.e., i) whole-retrain: update all the weights
of the model i) STE+CRH: update only the weight of the signature temporal encoder
(STE) and the classification and regression heads (CRH) and freeze the ones of the config-
uration encoder and ##i) CRH: update only the weights of the classification and regression
heads. We perform our evaluation on the gbt (ML2) benchmark, which experienced the
highest accuracy prediction error in the previous experiments. Figure 6.16a shows the
MAPE (top) and classification accuracy (bottom) of the three retraining approaches.
We see that retraining the STE along with the CRH provides analogous results with
retraining all the weights of the model, which shows that Sparkle’s configuration en-
coder can effectively identify important configuration features for unseen applications.
Moreover, training only the CRH of the network does not provide any accuracy in-
crement, revealing the importance of encoding application-related information to the
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model.

To pinpoint the significance of Sparkle’s universal modeling approach compared to appli-
cation specific ones followed in prior works, we further examine the MAPE achieved by
retraining the STE4+CRH of Sparkle and by an application and dataset specific ground-
up training of an ML model, for different number of training instances available. We
select Random Forest as the adversary model, since Sec. 6.4.2 showed that it is the most
accurate estimator among the ones examined. Figure 6.16b shows the MAPE achieved
by the two approaches for different number of training instances. Sparkle steadily pro-
vides more accurate predictions compared to the application-tailored RF model up to the
point of 200 instances, where the two models yield similar prediction scores. Moreover,
as the number of instances increases above 500, Sparkle achieves to widen the accuracy
gap again by providing 2% less MAPE.

o Generalization Discussion: Generalization to unseen settings forms a challenging task,
especially when there is no guarantee that the new “category" of data shares similar
structure with the existing ones. Initial experimentation suggests no indication of over-
fitting behavior, which leads to the assumption that there are “missing parts" for unseen
settings that cannot be extrapolated from existing information. Possible causes are com-
pletely new patterns for specific applications or a domain shift gap, connected to the
domain adaptation problem [381]. Nevertheless, we see that the universal viewpoint of
Sparkle assists on bringing the trained DNN model close enough to an optimum that can
extrapolate behavioral patterns of new applications even from sparse information. Fu-
ture directions could include self-supervised ideas such as contrastive learning, along with
appropriate data augmentation, in order to extract deep features with increased general-
ization abilities. Moreover, a more in-depth analysis on the re-training concept could be
beneficial for handling a large volume of new unseen applications, datasets and configu-
rations. Specifically, online training schemes and domain adaptation techniques could be
leveraged, to quickly adapt to new unseen apps/datasets without sacrificing the existing
performance (i.e., avoiding catastrophic forgetting).

6.4.4. Genetic Optimization

Last, we examine Sparkle’s genetic optimization step, in terms of its ability to deliver
performance- and cost-efficient deployments. To calculate cost, we consider the pricing
of 15 different AWS instances, with diverse characteristics in terms of virtual cores and
memory capacity offered. Specifically, we calculate the cost of each deployment by iden-
tifying the least-expensive, “right-sized" instance w.r.t. the value of executor.cores and
executor .memory parameters and multiplying its price with the number of executor.instances
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and the total execution time of the respective configuration.

Sparkle vs. default execution: Fist, we evaluate the speedup and cost gains offered
by Sparkle compared to the naive default execution. Owverall, Sparkle offers solutions
that maintain deployment expenses between 0.5% higher (by sacrificing cost for per-
formance) up to 54% lower, with an average of 13% cost gains, compared to default
execution.

Regarding speedup gains, Sparkle achieves to provide speedups ranging from x1.05, in
case of application/dataset pairs that are inherently not affected by parameter tuning (as
shown in Sec. 6.3.1), up to x6.8, with an average of x1.72 speedup over all the examined
cases.

Sparkle vs. model-less optimization: Last, we compare the set of Pareto solutions
provided by our framework with a model-less optimization approach, where each individ-
ual (Spark configuration) from the population is natively executed on the cluster. We set
the termination criterion of the optimization algorithm to 1 hour, allowing the model-less
approach to evaluate an adequate number of Spark configurations. Figure 6.17 presents
the results per benchmark, where blue-colored points reveal the Pareto solutions proposed
by the model-less optimizer and pink-colored the ones proposed by Sparkle. For Sparkle,
we natively execute the final Pareto front proposed, to obtain the real performance per
configuration, rather than the model’s estimation. With opaque colorings, we indicate
the final Pareto fronts per dataset size, which include non-dominant solutions provided
by either optimization approach. Sparkle prevails over the model-less optimization ap-
proach, as the majority of the points relying in the final Pareto front belong to its own set
of proposed solutions. Specifically, Sparkle covers approximately 65% of the final Pareto
front, while the rest 35% belongs to the native approach. Moreover, it expands the hy-
pervolume area formed w.r.t. the point of default execution, by offering 9.55% increased
area compared to model-less optimization.
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Figure 6.17.. Pareto solutions proposed by ) a model-less NSGA-II optimization approach and i) Sparkle. Opaque
coloring shows the final Pareto that includes non-dominated points among both approaches. Green points depict
default execution.
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6.5. Conclusion

This chapter presents Sparkle, a deep-learning driven autotuning framework for high-
dimensional Spark analytics. Sparkle advances over state-of-the-art approaches by provid-
ing a universal performance modeling approach, rather than application- and/or dataset-
specific ones considered in prior art. Moreover, Sparkle expands over the entire configu-
ration space, thus, completely eliminating the need for human-in-the-loop or statistical
approaches to identify the importance of each parameter.
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Chapter’s Appendix

6.A. Spark parameters considered

Table 6.A.1.: Spark parameters considered within Sparkle along with their default value
and the examined value range investigated in this work.

# Parameter Name Description Default Examined Val-
Value | ues

1 shuffle.file.buffer Size of the in-memory buffer for 32k 8k, 32k, 128k
each shuffle file output stream, in
KiB unless otherwise specified.

2 shuffle.sort.bypassMergeThreshold| In the sort-based shuffle manager, 200 50, 200, 800
avoid merge-sorting data if there is
no map-side aggregation and there
are at most this many reduce par-
titions.

3 speculation.interval How often Spark will check to | 100ms | 10ms, 100ms,
speculate tasks. 500ms

4 speculation.multiplier How many times slower a task is 1.5 1.1,1.5,5
than the median to be considered
for speculation.

5 speculation.quantile Fraction of tasks which must be 0.75 0.5, 0.75, 0.85
complete before speculation is en-
abled for a particular stage.

6 broadcast.blockSize Block size for 4m 1m, 4m, 16m
TorrentBroadcastFactory

7 io.compression.codec The codec used to compress inter- 1z4 snappy, lzf, 1z4
nal data such as RDD partitions,
event log, broadcast variables and
shuffle outputs.

8 io.compression.lz4.blockSize Block size used in LZ4 compres- 32k 16k, 32k, 64k
sion.

9 io.compression.snappy.blockSize Block size used in Snappy com- 32k 16k, 32k, 64k
pression.

10 kryoserializer.buffer.max Maximum allowable size of Kryo 64m 32m, 64m, 128m
serialization buffer.

11 kryoserializer.buffer Initial size of Kryo’s serialization 64k 32k, 64k, 128k
buffer
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12 executor.cores The number of cores to use on each 6 1,4, 8, 16, 24, 48
executor.

13 driver.memory Amount of memory to use for the 1g 500m,1g,8¢g
driver process.

14 storage .memoryMapThreshold Size of a block above which Spark 2m 1m, 2m, 4m
memory maps when reading a
block from disk

15 network.timeout Default timeout for all network in- 120s 60s, 120s, 240s
teractions.

16 locality.wait How long to wait to launch a data- 3s 1s, 3s, 10s
local task before giving up and
launching it on a less-local node.

17 scheduler.revive.interval The interval length for the sched- 1s 1s, 3s
uler to revive the worker resource
offers to run tasks.

18 shuffle.compress Whether to compress map output true true, false
files.

19 memory.fraction Fraction of (heap space - 300MB) 0.6 0.4, 0.6, 0.7
used for execution and storage.

20 shuffle.spill.compress Whether to compress data spilled true true, false
during shuffles.

21 speculation If set to "true", performs specula- false true, false
tive execution of tasks.

22 broadcast.compress Whether to compress broadcast true true, false
variables before sending them.

23 rdd.compress Whether to compress serialized false true, false
RDD partitions.

24 memory .storageFraction Amount of storage memory im- 0.2, 0.2, 0.5, 0.8
mune to eviction, expressed as a 0.5,
fraction of the size of the region set 0.8
aside by spark.memory.fraction.

25 memory .offHeap.enabled If true, Spark will attempt to use false true, false
off-heap memory for certain oper-
ations.

26 memory.offHeap.size The absolute amount of memory 0 25m, 50m
which can be used for off-heap al-
location, in bytes.

27 driver.maxResultSize Limit of total size of serialized 1g 500m,1g,4g
results of all partitions for each
Spark action in bytes.

28 reducer .maxReqsInFlight Limits the number of remote re- Int. 2147483647,
quests to fetch blocks at any given | Max- | 200000000
point. Value

29 reducer .maxBlocksInFlight Limits the number of remote Int. 2147483647,

PerAddress blocks being fetched per reduce | Max- | 200000000
task from a given host port. Value
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30 maxRemoteBlockSizeFetchToMem Remote block will be fetched to | 200m | 20m, 1g
disk when size of the block is above
this threshold in bytes.

31 shuffle.io.maxRetries Number of retries for fetches that 3 2,3,6
fail due to IO-related exceptions.

32 shuffle.io.numConnectionsPerPeer | Connections between hosts are 1 1,3
reused in order to reduce connec-
tion buildup for large clusters.

33 shuffle.io.preferDirectBufs Off-heap buffers are used to reduce true true,false
garbage collection during shuffle
and cache block transfer.

34 shuffle.io.retryWait How long to wait between retries 5s 3s, bs, 8s
of fetches.

35 kryo.unsafe Whether to use unsafe based Kryo false true, false
serializer.

36 serializer.objectStreamReset When serializing using 100 -1, 50, 100, 200
JavaSerializer, the serial-
izer caches objects to prevent
writing redundant data.

37 storage.replication.proactive Enables proactive block replica- false true, false
tion for RDD blocks.

38 cleaner.periodicGC.interval Controls how often to trigger a | 30min | 15min, 30min,
garbage collection. 60min

39 cleaner.referenceTracking Whether to track references to the true true, false
same object when serializing data
with Kryo.

40 cleaner.referenceTracking.blocking Controls whether the cleaning true true, false
thread should block on cleanup
tasks

41 cleaner.referenceTracking.blocking Controls whether the cleaning false true, false

.shuffle thread should block on shuffle

cleanup tasks.

42 cleaner.referenceTracking Controls whether to clean check- false true, false

.cleanCheckpoints point files if the reference is out of

scope.

43 executor.heartbeatInterval Interval between each executor’s 10s 5s, 10s, 20s
heartbeats to the driver.

44 files.fetchTimeout Communication timeout to use 60s 30s, 60s, 120s
when fetching files added through
SparkContext.addFile()

45 files.maxPartitionBytes The maximum number of bytes to | 128MB| 70000000’,
pack into a single partition when 134217728,
reading files. 190000000

46 files.openCostInBytes The estimated cost to open a file, | 4MiB | 2000000,
measured by the number of bytes 4194304,
could be scanned at the same time. 9000000
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47 rpc.message.maxSize Maximum message size (in MiB) 128 16, 128, 512
to allow in "control plane" commu-
nication.
48 port.maxRetries Maximum number of retries when 16 8, 16, 32
binding to a port before giving up.
49 rpc.numRetries Number of times to retry before an 3 2,3,6
RPC task gives up.
50 rpc.retry.wait Duration for an RPC ask opera- 3s 2s, 3s, 6s
tion to wait before retrying.
51 rpc.askTimeout Duration for an RPC ask opera- 120s 60s, 120s, 240s
tion to wait before timing out.
52 rpc.lookupTimeout Duration for an RPC remote end- 120s 60s, 120s, 240s
point lookup operation to wait be-
fore timing out.
53 core.connection.ack.wait.timeout | How long for the connection to 120s 60s, 120s, 240s
wait for ack to occur before tim-
ing out and giving up.
54 locality.wait.node Customize the locality wait for 3s 1s, 3s, 10s
node locality.
55 locality.wait.process Customize the locality wait for 3s 2s, 3s, 6s
process locality.
56 locality.wait.rack Customize the locality wait for 3s 2s, 3s, 6s
rack locality.
57 scheduler .maxRegisteredResources | Maximum amount of time to wait 30s 15s, 30s, 60s
WaitingTime for resources to register before
scheduling begins.
58 scheduler.mode The scheduling mode between jobs | FIFO | FIFO, FAIR
submitted to the same SparkCon-
text.
59 scheduler.listenerbus.eventqueue | Capacity for event queue in Spark | 10000 | 1000, 10000,
.capacity listener bus. 50000
60 scheduler.blacklist The timeout in seconds to wait 120s 60s, 120s, 240s
.unschedulableTaskSetTimeout to acquire a new executor and
schedule a task before aborting a
TaskSet which is unschedulable.
61 blacklist.timeout How long a node or executor is | 60min | 30min, 60min,
blacklisted for the entire applica- 120min
tion.
62 blacklist.task How many times it can be retried 1 1,3
.maxTaskAttemptsPerExecutor on one executor before the execu-
tor is blacklisted for a given task.
63 blacklist.task How many times it can be retried 2 2,4
.maxTaskAttemptsPerNode on one node, before the entire node
is blacklisted for a given task.
64 blacklist.stage How many different tasks must fail 2 2,4

.maxFailedTasksPerExecutor

on one executor, within one stage,
before the executor is blacklisted
for that stage.

140




6.A. Spark parameters considered

65

blacklist.stage
.maxFailedExecutorsPerNode

How many different executors are
marked as blacklisted for a given
stage, before the entire node is
marked as failed for the stage.

66

blacklist.application
.maxFailedTasksPerExecutor

How many different tasks must fail
on one executor, in successful task
sets, before the executor is black-
listed for the entire application.

67

blacklist.application
.maxFailedExecutorsPerNode

How many different executors
must be blacklisted for the en-
tire application, before the node is
blacklisted for the entire applica-
tion.

2,4

68

blacklist.killBlacklistedExecutor

If "true", allows Spark to auto-
matically kill, and attempt to re-
create, blacklisted executors.

true, false

69

task.cpus

Number of cores to allocate for
each task.

1,3

70

task.reaper.enabled

Enables monitoring of killed / in-
terrupted tasks.

true, false

71

task.reaper.pollingInterval

Controls the frequency at which
executors will poll the status of
killed tasks.

5s, 10s, 20s

72

task.reaper.threadDump

Controls whether task thread
dumps are logged during periodic
polling of killed tasks.

true, false

73

stage.maxConsecutiveAttempts

Number of consecutive stage at-
tempts allowed before a stage is
aborted.

2,4,8

74

spark.speculation

If set to "true", performs specula-
tive execution of tasks.

true, false

75

reducer.maxSizeInFlight

Maximum size of map outputs to
fetch simultaneously from each re-
duce task.

12m, 48m, 100m

76

shuffle.service.index.cache.size

Cache entries limited to the speci-
fied memory footprint.

10m, 100m,
500m

77

checkpoint.compress

‘Whether to compress RDD check-
points.

true, false

78

io.compression.zstd.level

Compression level for Zstd com-
pression codec.

0,1, 4

79

io.compression.zstd.buffersize

Buffer size in bytes used in Zstd
compression, in the case when
Zstd compression codec is used.

8k, 32k, 128k

80

kryo.referenceTracking

Whether to track references to the
same object when serializing data
with Kryo.

true, false

81

kryo.registrationrequired

Whether to require registration
with Kryo.

true, false
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82 serializer Class to use for serializing objects Java JavaSerializer,
that will be sent over the network Seri- KryoSerializer
or need to be cached in serialized | alizer
form.
83 broadcast.checksum Whether to enable checksum for true true, false
broadcast.
84 default.parallelism Default number of partitions in 8 1, 8,24
RDDs returned by transforma-
tions like join, reduceByKey, and
parallelize when not set by user.
85 files.useFetchCache If set to true, file fetching will use a true true, false
local cache that is shared by execu-
tors that belong to the same appli-
cation
86 executor.metrics.pollingInterval | How often to collect executor met- 0 0, 2s, 5s
rics.
87 python.worker.memory Amount of memory to use per | 512m | 64m, 512m, 4g
python worker process during ag-
gregation.
88 python.worker.reuse Reuse Python worker or not. true, | true, false
false
89 scheduler The minimum ratio of regis- 0.8 0.1, 0.4, 0.8
.minRegisteredResourcesRatio tered resources to wait for before
scheduling begins.
90 scheduler.listenerbus.eventqueue.| Capacity for shared event queue in | 10000 | 1000, 10000,
shared.capacity Spark listener bus. 50000
91 scheduler.listenerbus.eventqueue.| Capacity for appStatus event | 10000 | 1000, 10000,
appStatus.capacity queue. 50000
92 scheduler.listenerbus.eventqueue.| Capacity for executorManagement | 10000 | 1000, 10000,
executorManagement.capacity event queue. 50000
93 scheduler.listenerbus.eventqueue.| Capacity for streams queue in | 10000 | 1000, 10000,
streams.capacity Spark listener bus. 50000
94 scheduler.listenerbus.eventqueue.| Capacity for eventLog queue in | 10000 | 1000, 10000,
eventLog.capacity Spark listener bus. 50000
95 executor.instances Number of executor instances to 2 1,4,10,20
request from resource manager.
96 dynamicAllocation. If dynamic allocation is enabled 10s, 60s, 240s
executorIdleTimeout and an executor has been idle for
more than this duration, the ex-
ecutor will be removed.
97 dynamicAllocation.initialExecutors Initial number of executors to run 0 0,1,4
if dynamic allocation is enabled.
98 dynamicAllocation.minExecutors Lower bound for the number of ex- 0 0, 4, 10
ecutors if dynamic allocation is en-
abled.
99 dynamicAllocation. Allows to set a ratio that will be 1 0.1,0.5, 1
executorAllocationRatio used to reduce the number of ex-
ecutors w.r.t. full parallelism.
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100 dynamicAllocation.shuffleTracking| Enables shuffle file tracking for ex- false true, false
enabled ecutors, which allows dynamic al-
location without the need for an
external shuffle service.
101 executor.memory Amount of memory to use per ex- 1g 10g, 50g, 80g

ecutor process
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Chapter 7.
Conclusions

In this chapter, we present the conclusions of this Ph.D. thesis. We summarize how
the frameworks presented in this thesis advance beyond the state-of-the-art and we also
discuss future extensions of the dissertation.

7.1. Thesis’ Summary

Today, we stand at a pivotal moment in the creation and transformation of a digital world.
Cloud computing is a vital pillar towards this transformation as it forms the de-facto exe-
cution model of modern applications, due to the efficiency, elasticity and cost-effectiveness
it offers. From the cloud providers’ point of view, minimizing the total cost of ownership
(TCO) of cloud infrastructures without sacrificing the quality of services offered to clients
is a top priority. At the same time, from the end-users’ point of view the ultimate goal
is to maximize performance of applications while reducing the operational pricing costs.
Towards making out the most for both worlds, efficient management of Cloud resources
is essential, in order to derive the possible maximum out of the available computational
units. Resource efficiency can be achieved in many ways, i.e., by applying optimization
from application-, to cluster-, to system-level. However, given the complexity as well
as the huge number of available optimization knobs of modern Cloud datacenters, naive
resource management policies are not able to provide optimal resource orchestration deci-
sions. Towards building more efficient Cloud platforms, ML-driven resource management
appears as a prominent solution, able to handle and manage the huge complexity of such
systems. However, questions like "how", "when" and "where" it is better to integrate ML
into cloud resource management are still vague.

In this thesis, we examined the application of deep-learning techniques for optimizing
performance and resource efficiency of Cloud systems. We investigated the employment of
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deep neural networks on different optimization layers, ranging from monitoring, to system,
to cluster and up to application level. Specifically, our work can be summarized as follows:
¢ Regarding monitoring of Cloud systems, we developed Rusty, an interference-aware
predictive monitoring framework for multi-tenant Cloud systems; ¢ Regarding cluster-
level management, we introduced Adrias a resource orchestration framework for memory-
disaggregated Cloud systems. ¢ Regarding application-level optimazation, we introduced
Sparkle, an end-to-end, deep-learning driven parameter auto-tuning framework for Spark
in-memory analytics.

Henceforth, we present a brief summary of our work and how the proposed frameworks
tackle open-problems in the field.

Rusty constitutes a predictive monitoring framework for multi-tenant servers systems.
Given the high unpredictability and dynamicity of modern Cloud infrastructures and
applications, resource orchestrators and workload schedulers should be able to predict
at runtime fluctuations regarding resource requirements of applications. Rusty forms a
step towards this direction by providing a predictive monitoring framework for Cloud
systems, able to dynamically forecast per-application performance characteristics under
interference. Rusty employs Long Short-Term Memory networks (LSTM) networks, and
leverages low-level system events to provide future predictions of per-application perfor-
mance metrics. Our experimental evaluation has shown that Rusty can obtain extremely
accurate predictions regarding performance (IPC and LLC misses) as well as energy
consumption, thus, forming a really promising solution towards proactive resource allo-
cators.

Adrias forms a resource orchestration framework for memory-disaggregated Cloud sys-
tems. With composable infrastructures forming the next big step regarding the design
architecture of modern datacenters, novel orchestration frameworks are required able to
optimally allocate disaggregated resources over the deployed applications. To the best of
our knowledge, Adrias forms the first framework for interfence-aware application place-
ment on memory disaggregated Cloud systems. Adrias leverages monitoring information
from the underlying server and network interconnection, and employs deep-learning tech-
niques to model performance of applications deployed on such infrastructures. Based on
these predictions, it applies a naive scheduling logic in order to optimally place appli-
cations either on local or disaggregated memory, without sacrificing their performance.
The experimental results show that Adrias is able to utilize remote memory efficiently,
by identifying and placing the appropriate type of applications that are affected the least
from disaggregated memory allocations.

Sparkle forms an end-to-end, deep-learning driven parameter auto-tuning framework for
Spark in-memory analytics. The Spark in-memory analytics framework is gaining a lot
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of attention lately due to its enhanced performance compared to the traditional Hadoop.
Spark offers more than 100 tunable parameters, which can be configured to change the
behavior of the Spark engine, thus directly affecting the performance of deployed appli-
cations. Sparkle relies on deep learning techniques and low-level performance monitoring
time-series to model performance of Spark deployments in an application agnostic man-
ner. By employing genetic optimization, the framework efficiently traverses the search
space online and recommends optimized deployment configurations. Experimental results
show that Sparkle provides high accuracies for predicting the performance of SPARK ap-
plications, while it also offers high speedups compared to the default Spark configuration
execution.

7.2. Future Extensions

The presented research work has showed that machine learning forms a very promising
tool for optimizing resource efficiency inside datacenter infrastructures. However, given
the rapid growth and expansion of next generation Clouds and the new requirements,
both from a technical as well as a societal perspective, that constantly appear over the
years, there are still open and novel issues to be addressed in future efforts. All the major
Cloud providers, European networks of researchers (e.g., HIPEAC), as well as Europe
itself, have already forged the path for the design of future computing systems. This
path builds upon four major pillars, discussed below.

7.2.1. Sustainable and Green computing

Energy efficiency, climate neutrality and sustainability currently form top priorities for the
entire globe. To meet these criteria, governments, businesses, and organizations are taking
significant steps to comply with the societal requirements and environmental laws set by
Europe and others. As we are heading towards digital societies, the total ICT contribution
on the pollution and carbon emissions also increases®, as the need for cloud and data
processing infrastructures has multiplied with the advent of technologies like 5G, IoT,
smart sensors, big data analysis, satellites, Al, deep learning, media and video streaming,
and so on. In fact, from a European perspective, in 2018 the energy consumption of DCs
was 76.8 TWh and is expected to rise by 30% in 2030.

As a result, energy-efficient Cloud computing is becoming a high priority both for EU and

!The Cloud Is Material: On the Environmental Impacts of Computation and Data Storage
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US2. DCs have to become more energy efficient, reuse waste energy (e.g., heat), and use
more renewable energy sources, with a view to becoming carbon-neutral in the near future.
In this direction, proper management of computing resources inside the DC will become
even more important to design more energy-proportional computing systems. In such
systems, the single objective optimization commonly followed by modern Cloud systems
(i.e., maximize performance of running applications) is transformed to a two (or multiple)
objectives which have to be satisfied simultaneously (e.g., minimize power consumption
while satisfying some minimum performance requirements). This optimization problem
becomes even more difficult, if we consider that energy billing is gradually changing into
a dynamic priced asset. Nevertheless, over the past few years, performance has largely
driven research and development in large-scale Cloud systems, whereas increases in energy
consumption have often been disregarded. Consequently, the design and development of
novel, sophisticated Cloud orchestrators is required, able to optimize such conflicting
requirements efficiently.

The frameworks proposed in this thesis can be extended accordingly to account for more
sustainable and green computing. Specifically, Rusty framework already provides accu-
rate predictions related to the energy consumed by servers under interference. These
predictions can be leveraged by runtime controllers to drive pro-active, energy-efficient
(rather than performance-driven) scheduling policies. For example, latest Intel processors
allow for per-core DVFS, a technology that can be used along with Rusty’s predictions
to increase the energy proportionality of the server. Moreover, the monitoring mecha-
nism and the scheduling logic of Adrias could be straightforwardly extended to support
energy-aware application scheduling. By feeding additional, energy-related monitoring
metrics to our DNN models, we could retrieve similar predictions, which can be included
to the scheduling logic, to decide between the most energy-efficient memory mode. Last,
Sparkle’s optimization approach can also be extended accordingly, by developing models
for predicting the energy consumption of a Spark deployment for a given configuration
and encapsulating the energy consumption parameter into the optimization goals of the
genetic algorithm. Additional scheduling algorithms could be incorporated to all the
frameworks, to also extend towards considering renewable energy sources and dynamic
energy billing, e.g., perform time-shifted and geolocation-aware application deployment,
where non-time-critical and geolocation-indifferent deployments will be postponed and/or
executed in different locations to take advantage of green energy sources, reduced billing
costs and others.

2Green cloud and green data centres
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7.2.2. Hyperscale computing across the edge/cloud continuum

The huge amount of data generated by today’s applications, has led to the inception of
edge computing [10]. At its core, edge computing aims to bring computation closer to
where data are generated, thus, reducing latency and bandwidth issues caused by moving
all the data to the Cloud. Over the last years, the edge computing market has increased
rapidly and was valued at USD 7.43 billion in 2021, while, it is expected to expand at a
compound annual growth rate (CAGR) of 38.9% up until 20303. While edge computing
systems offer lower communication latency, their limited computing capability has led to
the synergy of edge and Cloud, realizing the edge-cloud computing continuum. Going one
step further, hyperscale edge computing systems are starting to appear on the foreground,
where computation is distributed across the entire continuum and where computational
resources can seamlessly scale up/down to accomodate fluctuating demand. On top of
that, we observe an increasing adoption of multi-cloud and hybrid cloud strategies [382].
These strategies involve using a combination of different cloud providers and on-premises
systems to create a more flexible and resilient IT infrastructure. This approach allows
organizations to take advantage of the best features and services offered by different cloud
providers while also maintaining control over their own data and applications. As a result,
it is expected that multi-cloud and hybrid cloud solutions will become the norm in the
future.

Despite its rapid growth and the tremendous advantages they offer, this combination of
hyperscale, edge and multi-cloud computing systems pose a plethora of new challenges
with respect to efficient orchestration of computing resources. One of the most important
challenges is the extreme device heterogeneity introduced in such environments, where
the available scheduling units (i.e., devices across the continuum) have diversified compu-
tational /memory power, runtime environments, network interfaces and others. Moreover,
in hybrid cloud environments, scrutinizing all the available deployment options, both from
performance- as well as cost-efficiency perspective adds an extra level of complication. In
such environments the problem of resource orchestration becomes extremely challenging.
Efficient scheduling schemes should take into account the different dynamics of the avail-
able computing resources, the relationship between where computation takes place and
where data are stored (to minimize data movement overheads), while also application-
level optimizations become even more important, to fully exploit the available computing
power of low-end embedded devices.

Future extensions of our proposed frameworks to adapt to this new paradigm could be
the following. Regarding Rusty, the core idea of predictive monitoring could be applied
as is. Although, the monitored metrics considered by Rusty should be extended to also

3Edge Computing Market Size, Share & Trends Analysis Report
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consider network traffic related events, whereas, for the training of the models we could
also explore federated learning approaches across the continuum. For low-end devices, the
overhead introduced by Rusty’s LSTM model could be prohibitive. In such cases, Rusty
can be extended to support remote API calls that communicate the monitored data, thus,
offering the ability to offload the forecasting process to more powerful devices. Adrias’
design already accounts for resource heterogeneity, since, local and remote memory can
be considered as two heterogeneous resources with diverse computing capabilities. Thus,
the problem of deploying applications in distributed computing resources can be directly
mapped to the one examined in Chapter 5. Of course, Adrias’ orchestration logic can be
modified accordingly to also consider trade-offs between performance/cost between differ-
ent Cloud offerings. With respect to scalability, Adrias is able to scale on multiple nodes
by design, where the monitoring (and possibly prediction components) are distributed
across the nodes of the cluster, whereas the orchestration logic could be easily centralized
(e.g., integrated as a custom scheduler with Kubernetes). Last, Sparkle’s models should
be adapted accordingly to account for heterogeneous computing nodes, as well as the
presence of interference on the performance of applications.

7.2.3. More complex Al, use of specialized architectures and tighter
HW&SW co-design

From a broader perspective, given the roadmaps described above, we foresee that the use
of Al for resource management in the cloud is expected to become even more important
in the future [383]. Regarding sustainable computing, Al-based resource management
systems can play a key role by optimizing the use of resources to reduce energy consump-
tion and carbon emissions, by analyzing patterns of usage and automatically adjust the
power consumption of cloud resources based on demand. This can lead to significant
reductions in energy consumption and costs, as well as a reduction in the environmen-
tal impact of cloud systems. Moreover, in the context of hyperscale edge computing,
Al-based resource management systems can analyze patterns of usage and automatically
allocate resources to meet the specific needs of edge devices and users, which can im-
prove performance and reduce latency and cost savings through reduced resource waste.
On top of the above, the potential end of Moore’s law will pave the way for the use of
more specialized architectures in the computing continuum [384]. Examples of this trend
include field-programmable gate arrays (FPGAs), e.g., Microsoft Cloud uses FPGAs to
accelerate Bing searches and other applications?, smartphone technologies with dozens of
specialized accelerators co-located on the same chip, hardware used in large data centers,
such as Google’s Tensor Processing Unit (TPU), and a vast array of other deep learning

4Microsoft’s Bing search engine uses FPGA chips to provide more intelligent answers
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7.2. Future Extensions

accelerators both in the edge and the Cloud.

Taking these into account, we expect future Cloud resource orchestrators to rely on
tighter software and hardware co-design for improving their performance and efficiency.
By designing the software and hardware components together, it will be possible to opti-
mize the overall system for specific use cases and to improve the performance of specific
tasks, by analyzing usage time-series patterns and adjusting the configuration of both
the HW (e.g., DVFS, CAT) and SW (e.g., SW thread scaling, sampling frequency) to
meet the specific needs per application. However, there exist many challenges to real-
ize the above. From a software standpoint, more expressive application descriptors and
monitoring solutions must be developed (e.g., open standards for application monitoring
and logging), which can be leveraged in a systematic way from Al-driven approaches.
From a hardware point of view, we expect server systems and specialized accelerators
to provide more detailed monitoring information, that can be leveraged by ML models
to accomplish resource-management related tasks. Moreover, the rise of serverless ar-
chitectures [33] and latest advancements towards microsecond scale application schedul-
ing [385] demands for more granular monitoring hardware that can keep up with such
requirements.

Overall, the frameworks proposed in this thesis, can be directly extended to analyze more
expressive HW and SW monitoring events. First, the proposed deep learning models can
become deeper, to be able to analyze more complex patterns within the provided input
features. Moreover, ensembling techniques [386] and/or multi-branch DNN architectures
can be considered that combine system-wise related monitoring information along with
applications’ runtime information (e.g., logging and application’s metadata) and source
code characteristics (e.g., using NLP techniques [387]).
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Appendix A.

Co-design Implications of Cost-effective
On-demand Acceleration for Cloud
Healthcare Analytics: The AEGLE Approach

Nowadays, big data and machine learning are transforming the way we realize and man-
age our data. FEven though the healthcare domain has recognized big data analytics as
a prominent candidate, it has not yet fully grasped their promising benefits that allow
medical information to be converted to useful knowledge. In this chapter, we introduce
AEGLE’s H2020 EU project’s big data infrastructure provided as a Platform as a Ser-
vice. Utilizing the suite of genomic analytics from the Chronic Lymphocytic Leukaemia
(CLL) use case, we show that on-demand acceleration is profitable w.r.t a pure software
cloud-based solution. However, we further show that on-demand acceleration is not of-
fered as a "free-lunch" and we provide an in-depth analysis and lessons learnt on the
co-design implications to be carefully considered for enabling cost-effective acceleration at
the cloud-level.

155



Cost-effective On-demand Acceleration of Cloud Analytics

A.1l. Introduction

At the centre of health debates there are open questions on how to manipulate, share
and produce value out of data [388]. Even though the term Big-Data has become
a buzzword in the field of information technology, its applicability on biological data
is still limited. Modeling biological phenomena is typically very complex and has al-
ways been understood to be a computationally intensive process. Thus, In order to
draw meaning from the exponentially increasing quantity of healthcare data, technolo-
gies capable of processing massive amounts of data efficiently and securely have to be
adopted.

Collecting and aggregating anonymous data from geographically dispersed locations makes
it possible to construct statistically meaningful databases, based on which, macroscopic
reasoning can be made, rather than solely focusing on the individual and associated
pathology. Answers to these questions will create opportunities to predict long-term
health conditions and identify non-traditional intervention points, as well as to design
better diagnostics tools, prevent diseases, increase access to and reduce the costs of
healthcare [389]. As discussed in [390], effective use of data in the US health sector
could generate USD 300 billion in value per year. The implementation of big data ana-
lytics in the healthcare sector has the potential to boost the integration of user-generated
data with official medical data, leading to healthcare that is more integrated and per-
sonalised [391]. Several European initiatives ! have already pinpointed the importance
and usefulness of health-care big data, e.g. to predict the outbreak of an epidemic. To
that end, business interest is growing, like in the case of Open Data initiative, where big
data health providers, research institutes and industry aim to develop a vendor-neutral
Big-Data platform 2.

The use of available medical data can allow clinicians to simulate potential outcomes
and thus prevent patients from undergoing ineffective treatments or provide better treat-
ment plans. In other words, accumulating data to develop a greater understanding of
pathophysiological processes will result in significant healthcare improvements. How-
ever, the strategic advantage brought by Big-Data in healthcare still materializes at slow
paces, as only some large-scale organizations have established few pilot or proof-of-concept
projects.

Data-driven services are still needed to cater for the data versatility, volume, velocity and
veracity within the whole data value chain of healthcare analytics. Currently, none of the

!Big Data Analytics: What it is and why it matters
2Top Healthcare Data Startups
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A.2. The AEGLE cloud infrastructure

existing Big-Data EU projects are completely dedicated to healthcare and the provision
of corresponding services, or the management of diseases. The AEGLE project aspired
to bridge this gap, by implementing a full data value chain to create new value out of
rich, multi-diverse health data with the goal to revolutionize integrated and personalized
healthcare services.

The project builds upon the synergy of cloud technologies together with heterogeneous
high performance reconfigurable acceleration for delivering optimized analytic services
on Big-Bio Data applications. At local level, the data are anonymized and uploaded
to the cloud. At cloud level, the framework consists of the frontend and the backend
part. On the frontend, an advanced visualization service and a friendly user interface
simplify the data visualization and the execution of complex analytics workflows. On
the other hand, the cloud-backend is the core of AEGLE’s big data framework, as it
is responsible for data storage and efficient execution of conventional and accelerated
workflows. AEGLE’s modular deployment envisions to support and enable a healthcare
oriented analytic design framework whose functionalities and services are not provided
solely by a unique user interface. Users of the framework can develop their own user
interfaces at the local level and interconnect them with the services and tools provided
at the Cloud level.

The rest of the chapter is organized as follows. In section A.2, we present in brief AE-
GLE’s targeted use-cases and we give detailed information regarding the overall archi-
tecture of AEGLE framework and its innovative on-demand acceleration mechanism. In
section A.3 we analyze the essential costs for the operation of the platform. Finally, sec-
tion A.4 explores the acceleration capabilities of CLL workloads as well as the co-design
implications for cost-effective acceleration at the cloud, while section A.5 concludes the
chapter.

A.2. The AEGLE cloud infrastructure

AEGLE cloud infrastructure hosts data and analytic tools from three distinct use cases, )
Chronic Lymphocytic Leukemia (CLL), i7) Type II diabetes (T2D) and ii) Intensive Care
Unit (ICU). We utilize CLL as our driver case to highlight the technical contribution, due
to the high workload divergence of CLL workflows, i.e. large scale descriptive statistics,
machine learning and genomic pipelines, that make a strong claim on the utilization of
the on-demand acceleration features.

Fig. A.2.1 depicts an overview of the architecture of the AEGLE platform. On the bottom

157



Cost-effective On-demand Acceleration of Cloud Analytics

22
[0 Keycloak Authentication Q]
—————————————————————— <9 USER INTERFACE ©

v

A
FedEHR [° Apache Knox RBAC °] le Apache Knox °] ‘e RBAC e’
AP| [ )

Ku be AP Kube API
Kerberos

Accelerated External Tools

LIVY
E
- Zeppelln ~ —
SPARK | Tools
@ kubernetes

kubernetes : :
DR .EEE

Cloud Cluster Acceleration Cluster

FedEHR

mySQL
ClearDB

S4AH9M

Figure A.2.1.. AEGLE’s Big Data Framework hierarchy.

of the pyramid, lies the hardware stack. The hierarchical design of AEGLE allows the
accommodation of any type of devices, i.e., bare-metal servers, virtual machines and
accelerator devices. In addition, it allows the extension of its hardware stack, enabling
new accelerators and/or entire acceleration clusters to be transparently federated in the
existing infrastructure. Currently, AEGLE’s hardware stack consists of two clusters, a
conventional cluster comprised of ordinary virtual machines and an accelerated cluster
that pairs virtual machines with Maxeler MPC-X servers providing dataflow acceleration
of specific applications.

AEGLE platform exposes two kinds of services, static and dynamic ones. Static services
are always up and running and constitute the backbone of the framework, as they are
responsible for authentication of users, persistent storage of data, and mainly for the
interaction of users with the framework through the user interface. On the other hand,
dynamic services are operations that the users of AEGLE perform on the platform, such
as workflows execution or dataset visualization.

Resource management: To efficiently manage the deployment of applications on this
large and heterogeneous pool of hardware resources, Kubernetes [175] is adopted as the
core resource manager, providing automated deployment of containerized applications.
Kubernetes is responsible for scheduling workloads on the appropriate cluster (conven-
tional or accelerated), as well as managing resources among VMs. The accelerated cluster
supports multiple MPC-X nodes, which implicates a large pool of resources that could
potentially be accessed by multiple independent applications at the same time. This re-
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quires some form of cluster level resource management for the acceleration engines, i.e.
FPGAs, which is provided by the Maxeler Orchestrator that maintains the availability
status of each FPGA. Applications are able to request Data Flow Engine (DFE) resources
from a centralized management facility (i.e. the orchestrator) that can allocate, schedule
and manage resources in the system.

Security: At the core of the identity management solution lies Keycloak [392]. Keycloak
is utilized for modelling the overall security information structure including user roles,
allowed actions and group memberships. Due to the heterogeneous security requirements
of the different high level components and technologies adopted by the AEGLE platform,
Keycloak is framed with Apache Knox [393], which serves as an authorization gateway to
the Hadoop services ecosystem. Knox is used as a single point of access for the Hadoop ser-
vices and also acts as a secondary permissions layer, thus, extending the reach of Apache
Hadoop services to users outside of a Hadoop cluster without compromising Hadoop’s
secure mode. Moreover, Kerberos lies security wise in between the Hadoop cluster and
the Knox gateway. When a user needs to perform an action with a Hadoop service, Knox
receives an access token from the incoming requests, validates their authenticity and then
authenticates itself to Hadoop via Kerberos. Finally, execution of the external tools and
visualizations are managed by Kubernetes itself. Role based Access Control mechanism
(RBAC) is configured and activated on Kubernetes, so that assignment of user roles and
check for permissions can be performed; users can deploy their own external tool pods
based on their Keycloak tokens, as RBAC is integrated with Keycloak using an OpenlD
Connect (OIDC) client.

Workloads: AEGLE provides a plethora of tools for analyzing and examining health-
care data. Within AEGLE, more than 100 analytics have been developed, including
analytics for healthcare data and predictive models [394]. The de-novo analytics are
developed over state-of-the-art Big Data platforms, e.g. Hadoop [141], Spark [93], al-
lowing fast and general-purpose computations, interactive queries and stream processing.
Additionally, AEGLE supports a variety of existing analytics, tools, and execution en-
gines, that are widely used in the bio-medical research domain, e.g. SeqMule [395],
TopHat [396], which provide genomics analyses, such as DNA or RNA sequencing. These
tools are deployed and managed as containerized applications by Kubernetes. Last, to
simplify the data representation produced by the execution of complex workflows, the
platform provides advanced visualization techniques by utilizing the Apache Zeppelin
framework [397].
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A.3. Cost model of AEGLE Cloud Infrastructure

AEGLE deployment is amenable to the complex cloud cost models. In order to efficiently
exploit the advanced on-demand acceleration features of AEGLE platform, a detailed and
realistic assessment of cost w.r.t to performance is needed.

A.3.1. Cost model of AEGLE’s PaaS

AEGLE’s software components are based on open source solutions. Apache licensing
2.0 conditions enable the free commercial use of this open source software without fur-
ther costs. AEGLE software platform is only amenable to licensing conditions for the
GNUBILA’s FedEHR Capsule software that provides data anonymization, upload and
repository services

The big data platform of AEGLE, has been deployed on Microsoft’s Azure Cloud platform
[177], utilizing the Azure Kubernetes Service (AKS). The total platform cost (T'C') per
month can be calculated as follows:

TC=Cy+Cgss+Cs+Cric+Cps+Cyw +Crw (A.l)

where C'y; is the cost for the Virtual Machines used for the deployment of the master
nodes of Kubernetes cluster, Cgg is the cost for the Virtual Machines hosting the required
static services, Cpg is the cost for the Virtual Machines hosting dynamic services, Cg is
the cost for storage purposes, Cpw is the cost for bandwidth transfer inside and outside
the cloud cluster, C'yyy is the cost for hardware accelerators and Cp j¢ is the cost for the
software licenses (FedEHR capsule).

Kubernetes master nodes: The master nodes of the cluster should operate indefinitely
(24/7), as they are the backbone of Kubernetes ensuring the fluid operation of the cluster.
For reliability and fault tolerance reasons, 3 Master nodes were deployed, however the
number of master nodes may vary. As a managed Kubernetes service, AKS is free, so the
master nodes of the cluster are free of charge (Cys =0).

Static services: The static services of AEGLE comprise of the user interface, the se-
curity services, the FedEHR anonymizer and the HDFS cluster, which should be al-
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Figure A.3.1.. Execution time and total cost for different number of threads and input
datasets for the SeqMule workload.

ways up and running. In order to provide a high availability and fault tolerant clus-
ter, Kubernetes is configured to schedule HDFS nodes to different VMs. Under nor-
mal traffic conditions on the platform, 3 datanodes and 1 namenode are utilized. For
the static services, we have chosen the L4 machines with a cost of $0.372/hour (Csg =
$1071.36/month).

Storage and Traffic: Storage costs depend on the amount of data hosted on the platform.
Azure charges $60 per 1TB of File Disk per month. Within AEGLE we host approxi-
mately 1TB of anonymized medical data and provide a replication factor of 3 on the HDF'S
side. Therefore, we utilize 1TB of persistent disk for each HDFS node (C's = $240/month).
Moreover, the outbound traffic is charged for $0.07 per GB.

In total, the expenses for the basic operation of the platform are estimated to TC =

$2900.34. This cost might seem high at a first glance, but the platform can provide ser-
vices to tens of patients, lowering the individual costs to lower levels.

A.3.2. Cost-aware acceleration services

Although acceleration services are available on demand, they should be used cautiously.
The tradeoff between speedup gains and cost increment should always be taken into
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account, even when deciding whether to scale on pure software (i.e., number of threads)
or not. For example, Fig. A.3.1 shows the scaling of cost and execution time, w.r.t.
the number of threads and input dataset size for the SeqMule pipeline implementing full
exome sequencing. As depicted, cost growth escalates quickly compared to savings in
execution time. Even for the largest dataset sizes, where we observe better scaling in
terms of threads (x2.18 for 32 threads), the increase in cost is greater than time gains by
a factor of three (x7.1). This shows that utilizing resources recklessly should be avoided,
especially when aiming to keep costs at low levels.

The aforementioned scenario is becoming even more complex, when making use of the ac-
celeration cluster. Acceleration value depends on whether the gained speed-up makes up
for traffic charges and the increased cost of occupying an acceleration machine rather than
a conventional one. Equation A.2 provides a lower bound on the acceleration speedup,z,
required in order to have cost-effective acceleration services:

tcpu

+* Cgw + Cpw <topy * Cvim (A.2)

where tcpy is the execution time (hours) of a workload on a conventional VM, i.e. VM
without having access to acceleration cluster, and Cy py is the cost of the VM. The above
equation implies a fundamental principle for cost effective on-demand acceleration, i.e.
the gained acceleration speedup should encompass the increased costs of dedicated HW
resources, e.g. FPGAs, as well as the data transfer costs from/to the cloud storage. As
shown in the next section, this fundamental principle directly questions the currently
dominating model of kernel-specific cloud acceleration libraries/stores and suggests for
more holistic HW/SW co-designed solutions.

A.4. Cost-effective acceleration of AEGLE’s CLL Use Case

Predictive and descriptive CLL analytics are exhibiting low execution runtimes, violat-
ing Eq. A.2 bounds, e.g. transferring the input data to the accelerated cluster would
take up as much time as pure software execution. On the contrary, SeqMule forms a
good candidate for acceleration due to its intense time requirements (8-12 hours for re-
alistic inputs). SeqMule performs automated human exome/genome variants detection,
where short fragments of DNA reads are first aligned to a genome reference and then
used for variant calling. AEGLE includes two major types of genome analysis in its
workflows. The first one includes a single aligner (BWAMEM /Bowtie2) operating on
one input dataset, followed by multiple variant callers (GATKLite, SamTools, Freebayes,
Varscan). The second type performs alignment on two input datasets (e.g pre- and after-
treatment read sequences) and a single variant caller (Varscan) is utilized. Fig. A.4.2
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Figure A.4.1.. Total cost and time for software execution of Seqmule pipelines for
different input datasets and number of threads.

illustrates the distribution of time per stage for each of the examined Seqmule analyses.
Aligners and variant callers take up most of the computation time and thus are usu-
ally the target for acceleration. Still, the overall time of minor stages is not negligible
either.

A.4.1. Co-design implications of genomic workflows acceleration

Careful consideration is required to decide if it is cost-efficient for users to execute a
SeqMule pipeline on the accelerated cluster. For that purpose, a small exploration of
the available options is presented. Each pipeline is executed for different input sizes
and different number of threads (1-2-4-8-16-32) and the resulting set of configurations is
depicted in Fig. A.4.1. As illustrated with dotted lines, configurations of the same pipeline
and input size lie on the same frontier, where lower execution times correspond to higher
number of threads. Executing the specific configuration on the accelerated cluster should
be more efficient than the point of the frontier with the best trade-off between cost and
latency (highlighted points).

After identifying the best cost-latency trade-off points, we apply Eq.A.2 to acquire the
lower acceleration factor x for each pipeline. Given this value and the profiling results
of Fig. A.4.2, we investigate how this speedup can be actually acquired. We form our
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Figure A.4.3.. Total cost and time for software execution of Seqmule pipelines for
different input datasets and number of threads.

acceleration library adopting state-of-the-art hardware accelerators for SeqMule aligners
and variant callers utilized in these pipelines. To broaden the analysis, we considered
accelerators targetting both GPUs and Xilinx FPGAs, as well as Maxeler DFEs [398-401].
For each pipeline, we consider all combinations of hardware accelerators from our library
and measure the resulting speedup and cost.

Figure A.4.3 presents the results for all pipelines for a single dataset input size (8.2GB).
Each bar stands for a threshold speedup, from which value and onwards hardware accel-
eration is more cost efficient. Figure A.4.3 shows that the need for an holistic co-design
solution is evident in the case of cloud level acceleration, since none of the examined ac-
celerated pipelines achieves the cost-effectiveness threshold. Configurations for pipelines
1,2,3,6,7 partly achieve the target speedup value by relying on FPGAs, GPUs or both.
The remaining speedup can be acquired by allocating more software resources in or-
der to boost the performance of the pipeline stages that are still executed on software.
That is not the case for pipelines 4 to 5, whose hardware-acquired speedup is far below
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the threshold, making it potentially hard for software resources to compensate for the
difference.

The difficulty to acquire the target speedup can be attributed to the fact that the
accelerated solutions are applied only to some stages of the pipeline, directly origi-
nated from the current cloud model of kernel-specific acceleration libraries. To add to
that, although there are many hardware accelerators for the bottlenecks of these tools,
there are only a few integrated co-designed implementations that manage to deliver
a maximum of only x2 speedup, i.e. below the cost-effectiveness acceleration thresh-
old.

A.5. Conclusion

The scope of this work is to present H2020 AEGLE’s Platform as a Service, highlighting
the on-demand acceleration services that are offered through a framework that seamlessly
combines cloud and big data technologies. A detailed description of the cost model of
AEGLE platform is provided, along with an exploration that aims to export preliminary
guidelines for enabling cost-effective acceleration on demand. Utilizing CLL use case as
a driver application on this exploration, we present the challenges of effective co-design
and highlight the importance of providing an elegant and effective solution for Big Data
Health analytics.
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Appendix B.

Resource Aware GPU Scheduling in
Kubernetes Infrastructure

Nowadays, there is an ever-increasing number of artificial intelligence inference workloads
pushed and executed on the cloud. To effectively serve and manage the computational
demands, data center operators have provisioned their infrastructures with accelerators.
Specifically for GPUs, support for efficient management lacks, as state-of-the-art sched-
ulers and orchestrators, threat GPUs only as typical compute resources ignoring their
unique characteristics and application properties. This phenomenon combined with the
GPU over-provisioning problem leads to severe resource under-utilization. FEven though
prior work has addressed this problem by colocating applications into a single accelerator
device, its resource agnostic nature does not manage to face the resource under-utilization
and quality of service violations especially for latency critical applications. In this chapter,
we design a resource aware GPU scheduling framework, able to efficiently colocate appli-
cations on the same GPU accelerator card. We integrate our solution with Kubernetes,
one of the most widely used cloud orchestration frameworks. We show that our scheduler
can achieve 58.8% lower end-to-end job execution time 99%-ile, while delivering 52.5%
higher GPU memory usage, 105.9% higher GPU utilization percentage on average and
44-4% lower energy consumption on average, compared to the state-of-the-art schedulers,
for a variety of ML representative workloads.
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B.1. Introduction

In recent years, the adoption of artificial intelligence (AI) and machine learning (ML)
applications is increasing rapidly. Several major Internet service companies including
Google, Microsoft, Apple and Baidu have observed this trend and released their own intel-
ligent personal assistant (IPA) services, e.g. Siri, Cortana etc., providing a wide range of
features. Compared to traditional cloud applications such as web-search, IPA applications
are significantly more computationally demanding [402]. Accelerators, such as GPUs,
FPGAs, TPUs and ASICs, have been shown to be particularly suitable for these applica-
tions from both performance and total cost of ownership (TCO) perspectives [402]. With
the increase in ML training and inference workloads [64,402], cloud providers begin to
leverage accelerators in their infrastructures, to catch up with the workload performance
demands. This trend is also evident as Amazon AWS and Microsoft Azure have started
offering GPU and FPGA based infrastructure solutions.

In particular, for the case of ML inference oriented tasks, public clouds have provisioned
GPU resources at the scale of thousands of nodes in data-centers [403]. Since GPUs
are relatively new to the cloud stack, support for efficient management lacks. State-
of-the-art cluster resource orchestrators, like Kubernetes [404], treat GPUs only as a
typical compute resource, thus ignoring their unique characteristics and application prop-
erties. In addition, it is observed that users tend to request more GPU resources than
needed [405]. This tendency is also evident in state-of-the-art frameworks like Tensorflow
which by default binds the whole card memory to an application. This problem, also
known as over-provisioning, combined with the resource agnostic scheduling frameworks
lead to under-utilization of the GPU-acceleration infrastructure and, thus, quality of ser-
vice (QoS) violations for latency critical applications such as ML inference engines. To
overcome the aforementioned issues, real-time monitoring, dynamic resource provision-
ing and prediction of the future status of the system is required, to enable the efficient
utilization of the underlying hardware infrastructure by guiding the GPU scheduling
mechanisms.

In this chapter, we propose a novel GPU resource orchestration framework that uti-
lizes real-time GPU metrics monitoring to assess the real GPU resource needs of appli-
cations at runtime and based on the current state of a specified card decide whether
two or more application can be colocated. We analyze the inherent inefficiencies of
state-of-the-art Kubernetes GPU schedulers concerning the QoS and resource utiliza-
tion. The proposed framework estimates the real memory usage of a specified card and
predicts the future memory usage, enabling better inference engine colocation decisions.
We show that our scheduler can achieve 58.8% lower end-to-end job execution time
99%-ile for the majority of used inference engine workloads, while also providing 52.5%
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higher GPU memory usage, 105.9% GPU utilization percentage average and 44.4%
lower energy consumption compared with the Alibaba GPU sharing scheduler exten-
sion.

B.2. Related Work

The continuous increment in the amount of containerized workloads uploaded and exe-
cuted on the cloud, has revealed challenges concerning the container orchestration. Work-
load co-location and multi-tenancy exposed the interference agnostic nature of the state-
of-the-art schedulers [166] while the integration of accelerator resources for ML applica-
tions revealed their resource unawareness [403]. To enable better scheduling decisions,
real-time [114] or even predictive [313] monitoring is required to drive the orchestration
mechanisms. Extending to the case of GPU accelerators, real-time GPU monitoring can
allow the colocation of containers on the accelerator in a conservative manner to avoid
out-of-memory issues [403].

Container orchestration on GPU resources has been in the center of attention of both
academia and industry. Throughout the years, various GPU scheduling approaches have
been proposed. Ukidave et al. [406] and Chen et al. [407] have proposed GPU runtime
mechanisms to enable better scheduling of GPU tasks either by predicting task behavior
or reordering queued tasks. More recent works [408,409] have introduced docker-level
container sharing solutions by allowing multiple containers to fit in the same GPU, as
long as the active working set size of all the containers is within the GPU physical
memory capacity. As distributed deep neural network (DNN) training based applications
have started taking advantage of multiple GPUs in a cluster, the research community
proposed application specific schedulers [410] that focus on prioritizing the GPU tasks
that are critical for the DNN model accuracy. Hardware support for GPU virtualization
and preemption were also introduced. Gupta et al. [411] implemented a task queue in
the hypervisor to allow virtualization and preemption of GPU tasks while Tanasic et
al. [412] proposed a technique that improves the performance of high priority processes
by enabling GPU preemptive scheduling. The integration of GPU sharing schemes on
GPU provisioned cloud infrastructures managed by Kubernetes is a trend that is also
observed. Yeh et al. proposed KubeShare [413], a framework that extends Kubernetes
to enable GPU sharing with fine-grained allocation, while Wang et al. [414] introduced
a scheduling scheme that leverages training job progress information to determine the
most efficient allocation and reallocation of GPUs for incoming and running jobs at any
time.
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Regarding container orchestration within GPU environments, Kubernetes itself includes
experimental support for managing AMD and Nvidia GPUs across several nodes. Kuber-
netes GPU scheduler extension [415] exposes a card as a whole meaning that a container
can request one or more GPUs. Even though this implementation does not provide frac-
tional GPU usage, it allows better isolation and ensures that applications using a GPU
are not affected by others. To overcome this problem, the authors in [416] proposed
a GPU sharing scheduling solution which relies on the existing working mechanism of
Kubernetes. Alibaba GPU sharing extension aims to improve the utilization of GPU
resources by exposing the memory of a card as a custom Kubernetes resource, thus, al-
lowing containers to specify their required amount of memory. Even though this approach
allows the concurrent execution of multiple containers, its resource agnostic nature makes
it dependable on the credibility of the memory requests. Kube-Knots [403] overcomes
this limitation by providing a GPU-aware resource orchestration layer that addresses the
GPU orchestration problem. Kube-Knots dynamically harvests spare compute cycles
by enabling the co-location of latency-critical and batch workloads, thus, improving the
overall resource utilization. This way, it manages to reduce QoS violations of latency crit-
ical workloads, while also improving the energy consumption of the cluster. However, its
predictive nature fails to face the problem of container failures due to incorrect memory
usage predictions and thus GPU memory starvation.

B.3. Experimental Setup & Specifications

We target high-end server systems equipped with GPU acceleration capabilities found
under today’s data-center environments. Specifically, our work targets an ML-inference
cluster, where a GPU-equipped node is responsible for serving the computational demands
of inference queries effectively. In the proposed framework, whenever an inference engine
arrives on the cluster, the Kubernetes master redirects it to our custom resource aware
GPU scheduler. By leveraging real-time GPU monitoring and prediction, our scheduler
decides whether to schedule it on the GPU, or enqueue the task on a priority queue and
delay the execution until there are enough GPU resources available. Figure B.3.1 shows
an overview of our experimental setup.

Hardware Infrastructure Characterization: All of our experiments have been per-
formed on a dual-socketed Intel® Xeon® Gold 6138 server equipped with an NVIDIA
V100 GPU accelerator card, the specifications of which are shown in Table B.3.1. On
top of the physical machine we have deployed three virtual machines, which serve as the
nodes of our cluster, using KVM as our hypervisor. The V100 accelerator is exposed
on the inference-server VM (24 vCPUs, 32GB RAM) using the IOMMU kernel config-
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Figure B.3.1.. Proposed scheduling framework and MLPerf inference engine architecture

uration, while the rest of the VMs (8 vCPUs, 8GB RAM each) are utilized to deploy
critical components of our system, such as the master of our Kubernetes cluster and our
monitoring infrastructure.

Software & Monitoring Infrastructure Characterization: On top of the VMs, we
deploy Kubernetes container orchestrator (v1.18) combined with Docker (v19.03) which
is nowadays the most common way of deploying cloud clusters at scale [417]. Our moni-
toring system consists of two major components, NVIDIA’s Data-Center GPU Manager
exporter (DCGM) [418] along with Prometheus [183] monitoring toolkit. DCGM exports
GPU metrics related to the frame buffer (FB) memory usage (in MiB), the GPU uti-
lization (%) and the power draw (in Watts). In particular, a DCGM exporter container
is deployed on top of each node of the cluster through Kubernetes. This container is
responsible for capturing and storing the aforementioned metrics into our Prometheus
time-series database every specified interval. We set the monitoring interval equal to 1
second to be able to capture the state of our underlying system at run-time. Finally,
metrics stored in the Prometheus time-series are accessed from our custom Kubernetes

Table B.3.1.: CPU & GPU Specifications

® ®
. Inte;‘h Xec(i)n (;(?/1;106138 NVIDIA V100
ores/Threads Architecture Volta
Sockets 2
B o 50 CH Comp. Cap. 7.0
ase Frequency . 7
CUDA Cores 5120
Memory (MHz) | 132 GB (2666) Memory Size | 32 GB HBM2
Hard Drive 1 TB SSD
Interface PClIe 3.0 x16
OS (kernel) Ubuntu 18 : :
(4.15) Sched. Policy | Preemptive
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scheduler by performing Prometheus-specific PromQL queries, as described in section
B.5.

Inference Engine Workloads: For the rest of the chapter, we utilize MLPerf Infer-
ence [419] benchmark suite for all of our experiments, which is a set of deep learning
workloads performing object detection and image classification tasks. As shown in Fig-
ure B.3.1b, each MLPerf Inference container instance consists of two main components,
i) the Inference Engine and i) the Load Generator. The Inference Engine component is
responsible for performing the detection and classification tasks. It receives as input the
pre-trained DNN model used during inference (e.g. ResNet, Mobilenet etc.) as well as
the corresponding backend framework (e.g. PyTorch, Tensorflow etc.). The Load Gen-
erator module is responsible for producing traffic on the Inference Engine and measure
its performance. It receives as input the validation dataset (e.g. Imagenet, Coco) as
well as the examined scenario and the number of inference queries to be performed. The
scenario can be either Single stream (Load Generator sends the next query as soon as
the previous is completed), Multiple stream (Load Generator sends a new query after a
specified amount of time if the prior query has been completed, otherwise the new query
is dropped and is counted as an overtime query), Server (Load Generator sends new
queries according to a Poisson distribution) and Offline (Load Generator sends all the
queries at start). Considering the above inputs, the Load Generator performs streaming
queries to the Inference Engine and waits for the results. For the rest of this work, we
utilize the Single Stream scenario and evaluate our inference engine through the 99%-ile
of the measured latency.

B.4. Motivational Observations and Analysis

Latest advancements in the micro-architecture of NVIDIA’s GPUs allow the transpar-
ent, cooperative execution of CUDA applications on the underlying accelerator, either
through CUDA’s streams [420] or through CUDA’s Multi-Process Service (MPS) [421]
capabilities. These functionalities increase the utilization of GPU accelerators, thus, of-
fering increased computing capacity, yet, state-of-the-art frameworks, such as Kubernetes
do not provide mechanisms that expose them to end-users. In fact, Kubernetes default
GPU scheduler [415] mechanism provides exclusive access to applications requesting GPU
accelerators. Even though, this approach allows isolation and ensures that applications
using a GPU do not interfere with each other, it can cause high resource under-utilization
or QoS violations, especially in deep-learning inference scenarios on high-end GPUs, which
have low requirements in terms of CUDA cores and memory. In order to allow more pre-
diction services to share the same GPU and, thus, improve their QoS and the utilization
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Figure B.4.1.. GPU memory usage, utilization percentage and power usage signals for
Kubernetes GPU scheduler extension and Alibaba GPU sharing extension.

of the card, partitioning of the GPU memory resource is required. Towards this direction,
Alibaba offers a GPU sharing extension [416], which allows the partitioning of the GPU
memory. This scheduler allows end-users to define the requirements of their workloads
in terms of GPU memory and combines this information with the total available mem-
ory of the GPU to decide whether two or more inference engines can be colocated or
not.

To demonstrate the inefficiency of the Kubernetes GPU scheduler extension compared
with Alibaba GPU sharing extension, we perform a straight comparison between them
for the scheduling of a workload that consists of 6 inference engines from the MLPerf
suite.

Figure B.4.1 shows the GPU memory utilization (MB), the CUDA cores utilization (%)
and the power usage signals of the inference engine workload for the above-mentioned
schedulers. As shown, the Kubernetes GPU scheduler extension has an average mem-
ory utilization of 5GB, which can be considered relatively low compared to the available
32GB memory of the underlying GPU card. The same observation can be made for the
GPU utilization signal (7.22% on average) and the power consumption (41.5 Watts on
average), as the GPU binding per inference engine leads to resource under-utilization.
On the other hand, the average GPU memory usage for the Alibaba GPU sharing ex-
tension is 16GB, which is x3.24 higher. Similarly, we see an average of 49% utilization
improvement (x6.8 increment) and an average of 52.9 Watts higher power consumption
(x1.28 increase). It also leads to a 52.8% decrease of the average energy consumption as
Kubernetes GPU scheduler extension consumption is 66.4 kJ and Alibaba GPU sharing
extension consumption is 31.3 kJ. Finally, we observe that the overall inference engine
workload duration using the Alibaba GPU sharing extension is x2.67 faster than the Ku-
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Figure B.4.2.. Memory usage, GPU utilization and power consumption averages vs
over-provisioning percentage for Alibaba GPU sharing scheduler extension.

bernetes GPU scheduler extension, meaning that the card sharing improves the overall
workload duration.

Even though Alibaba’s scheduler outperforms the default one, it highly depends on the
provisioning degree of the inference engine memory request. For example, if an inference
engine requests more memory than it actually needs, this may affect future GPU requests
of other inference engines, which will not be colocated, even though their memory request
can be satisfied. To better understand the impact of the resource over-provisioning prob-
lem within Alibaba’s scheduler, we perform 6 different experiments, where we schedule
the same inference-engine task, each time with a different memory over-provisioning per-
centage, ranging from 0% to 250%. Figure B.4.2 depicts the memory usage, the utilization
percentage and the power usage averages. For low over-provisioning percentages, Alibaba
GPU sharing extension leads to high resource utilization due to the inference engine colo-
cation. However, as shown, it is not able to efficiently sense and handle user-guided
over-provisioning scenarios.

B.5. Resource-aware GPU Sharing Kubernetes scheduler

Figure B.5.1 shows an overview of our proposed resource-aware GPU-sharing scheduler.
Whenever an inference engine is scheduled from the custom scheduler, the corresponding
workload enters a priority queue which defines their scheduling order. The inference
engine assigned priority is proportional to the corresponding GPU memory request. As
a result the scheduler always tries to schedule the inference engines with the bigger
memory requests. If a workload is chosen to be scheduled, the following three co-location
mechanisms are successively executed:
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Resource Agnostic GPU Sharing: Our custom scheduler holds a variable that is
used as an indicator of the available GPU memory. This variable is initialized to the
maximum available memory of the used card in the GPU node. If the inference engine
memory request is smaller than the value of this variable, the request can be satisfied
and the workload can be scheduled. Whenever an inference engine is scheduled, the value
of the indicator variable is decreased by the amount of the memory request. Resource
agnostic GPU sharing does not face the memory over-provisioning problem as it is not
possible to know a priory that the amount of requested memory is actually the amount
that the workload needs to run properly. In our proposed scheduler, we overcome this
problem by using real-time memory usage data by our GPU monitoring sub-system. The
monitoring system data are collected by performing range queries to Prometheus time
series database.

Correlation Based Prediction: Correlation Based Prediction (CBP) [403] provides an
estimation for the real memory consumption on a GPU node. The estimation is defined
from the 80%-ile of the GPU memory usage rather than the maximum usage. The basic
idea of this algorithm is that GPU applications, on an average, have stable resource usage
for most of their execution, except for the times when the resource demand surges. In
addition, the whole allocated capacity is used for a small portion of the execution time
while the applications are provisioned for the peak utilization. CBP scheduler virtually
resizes the running workloads for a common case, letting more pending inference engines
to be colocated.

In order to have an accurate estimation, low signal variability is required. The signal
variability is calculated using the coefficient of variation (CV) metric [422]. If CV is
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lower than a defined threshold, the memory usage is defined by calculating the 80%-ile of
the signal. The free GPU memory estimation is equal to the difference of the maximum
available GPU memory and the memory usage estimation. Finally, if the memory request
can be satisfied the workload is scheduled. Otherwise the Peak Prediction algorithm is
used.

Peak Prediction: Peak Prediction (PP) [403] relies on the temporal nature of peak
resource consumption within an application. For example, a workload that requires GPU
resources will not allocate all the memory it needs at once. So, although the GPU memory
request cannot be satisfied at the scheduling time, it may be satisfied in the near future.
The memory usage prediction is based on an auto regressive model (AR) [423]. For
an accurate prediction the auto correlation value of order k is calculated. If the auto
correlation [424] value is larger than a defined threshold, auto regression of order 1 is
performed using linear regression (LR) [425]. If the predicted GPU memory request can
be satisfied from PP, then the workload is scheduled. Otherwise, the workload is put into
the priority queue and our algorithm attempts to schedule the next available workload
from the queue. As we see, PP scheduling decisions depend on the accuracy of the
used auto-regressive model and thus linear regression. Even though linear regression is a
simplistic approach for predicting the unoccupied memory of the GPU, it can accurately
follow the memory utilization pattern (as we further analyze in section B.6). In addition,
its low computing and memory requirements, allows the PP mechanism to provide fast
predictions at runtime with minimal resource interference.

B.6. Experimental Evaluation

We evaluate our custom scheduler through a rich set of various comparative experiments.
We consider inference engine workloads for differing intervals between consecutive infer-
ence engine arrivals. In each comparative analysis the exact same workload is fed to
the Kubernetes GPU scheduler extension [415], the Alibaba GPU sharing extension [416]
and the custom scheduler multiple times. Each time a different memory over-provisioning
percentage is used.

We provide analysis for homogeneous, i.e., scaling out a single inference service, and
heterogeneous workload scenarios. Each workload creates a different inference engine by
using the MLPerf inference container we described in section B.3. An inference engine
is fully defined from the used backend (e.g. Tensorflow, PyTorch etc.), the pre-trained
model, the dataset, the scenario, the GPU memory request and the number of inference
queries that are going to be executed. The interval between two consecutive inference
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Figure B.6.1.. End-to-end job execution 99%-ile and pending time average vs
over-provisioning percentage homogeneous workload with MIN=5 and MAX=10

engine arrivals is defined by the values MIN and MAX (random number in [MIN, MAX]
interval in seconds).

B.6.1. Homogeneous Workload Evaluation

For homogeneous workload, we consider the Tensorflow ssd-mobilenet engine which uses
the Coco (resized 300x300) dataset while each inferences engine executes 1024 queries.
Each inference engine requires approximately 7 GB of GPU memory meaning that in a
card with 32 GB memory, only 4 can be safely colocated.

Figure B.6.1 shows the end-to-end 99%-ile and the pending time average for all the
available schedulers, for different over-provisioning percentages. Custom scheduler offers
x6.6 (on average) lower pending time average and x3.6 (on average) lower end-to-end
99%-ile from Kubernetes default GPU scheduler extension. It also offers x5.2 (on av-
erage) lower pending time average and x2.8 (on average) lower end-to-end 99%-ile from
Alibaba GPU sharing scheduler extension. However, due to the colocation of multiple
inference engines, custom scheduler’s decisions lead to higher inference engine 99%-ile
average.

To understand the above mentioned results, the way each mechanism schedules workloads
to the GPU should be analyzed. Kubernetes default GPU scheduler extension allocates
the whole GPU resource for each inference engine, leading to severe increase of the pend-
ing time average (the average time an inference engine waits in the priority queue). The
Alibaba GPU sharing scheduler extension uses a resource agnostic colocation mechanism
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Figure B.6.2.. Memory usage average, GPU utilization average and power consumption
averages vs over-provisioning percentage for homogeneous workload with MIN=5 and
MAX=10

to schedule workloads in the same card. In particular, for over-provisioning percentage
equal to 0 % (7 GB memory request) 4 inference engines can be collocated, for 50 % (10
GB memory request) 3 inference engines can be colocated, for 100 % (14 GB memory
request) 2 inference engines can be colocated and for 150 %, 200 % and 250 % each infer-
ence engine allocates the whole GPU resource. As a result, Alibaba GPU share scheduler
extension has similar results with our custom scheduler for over-provisioning percentages
equal to 0 % and 50 %. Custom scheduler handles the memory over-provisioning prob-
lem in a better way because of its resource aware nature. Figure B.6.1 shows that the
proposed scheduler has similar behavior concerning the quality of service metrics for all
the different over-provisioning percentages.

Figure B.6.2 shows the memory usage, the utilization percentage and the power consump-
tion averages for all the available schedulers for different over-provisioning percentages.
Custom scheduler leads to x3.7 higher memory usage, x16 higher GPU utilization and x1.3
higher power consumption from Kubernetes default GPU extension. It also leads to x2.2
higher memory usage, x2.9 higher GPU utilization and x1.2 higher power consumption
from Alibaba GPU sharing scheduler extension. Although we observe an increase in the
power usage average, it should be clear that due to the lower overall workload duration the
average energy consumption is x2.6 lower from the Kubernetes GPU scheduler extension
and x2.2 lower from the Alibaba GPU sharing extension.

In particular, Kubernetes default GPU extension has the lower resource utilization be-
cause each inference engine allocates the whole GPU resource. Alibaba GPU share sched-
uler extension has similar results with our custom scheduler only for 0 % and 50 % over-
provisioning percentages. This is expected, since for these over-provisioning percentages
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Figure B.6.3.. End-to-end job execution 99%-ile and pending time average vs
over-provisioning percentage heterogeneous workload with MIN=5 and MAX=10

Model Dataset Queries/Engine (#Engines)
mobilenet Imagenet 1024 (2), 2048 (2)
mobilenet quantized Imagenet 256 (2), 512 (2)
resnet50 Imagenet 4096 (2), 8192 (2)
sd-mobilenet Coco (resized | 128 (3), 1024 (2)
300x300)
ssd-mobilenet quantized finetuned Coco (resized | 64 (2), 1024 (2)
300x300)
ssd-mobilenet symmetrically quantized fine- | Coco (resized | 512 (2), 4096 (2)
tuned 300x300)

Table B.6.1.: Inference engines used for heterogeneous workload evaluation

the scheduler can effectively colocate workloads. The higher the over-provisioning per-
centage is, the closer the resource utilization is to Kubernetes default GPU extension.
Finally, we observe that our custom scheduler has similar behavior concerning the resource
utilization for all the different over-provisioning percentages.

B.6.2. Heterogeneous Workload Evaluation

For heterogeneous workload, we consider different inference engines, where each one of
them performs a different number of inference queries, as shown in Table B.6.1. Figure
B.6.3 shows the quality of service metrics for the heterogeneous inference engine workload.
Our proposed scheduler offers x11 lower pending time average and x3.2 lower end-to-
end 99%-ile and x8.6 lower pending time average and x2.4 lower end-to-end 99%-ile on
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Figure B.6.4.. Memory usage average, GPU utilization average and power consumption
averages vs over-provisioning percentage for heterogeneous workload with MIN=5 and
MAX=10

average compared to the Kubernetes default and Alibaba’s GPU schedulers respectively.
Moreover, Figure B.6.4 shows the respective GPU metrics. We see that, our scheduler
leads to x2.5 higher memory usage, x6.1 higher GPU utilization and x1.2 higher power
consumption compared to Kubernetes default GPU extension and x1.5 higher memory
usage, x2.1 higher GPU utilization and x1.1 higher power consumption compared to
Alibaba’s GPU sharing scheduler extension.

Container Restarts Analysis: As it was mentioned in section B.5, CBP involves the
risk of incorrect scheduling decisions and thus inference engine failures. CBP’s prediction
accuracy depends on how representative is the free memory signal it receives as input.
Since accelerated applications do not always request GPU resources at the beginning of
their execution, it is possible that the used signal does not depict the real load of the
node. Although several container restarts occured in the previous experiment, we observe
that our proposed scheduler still offers better QoS and GPU resource utilization from the
baseline state-of-the-art GPU schedulers.

B.7. Conclusion

In this chapter, we presented a resource aware GPU colocation framework for Kuber-
netes inference clusters. We evaluate the colocation algorithm using workloads that
consist of inference engines using different scenarios. We identify and explain the dis-
advantages of the correlation based prediction (CBP) and peak prediction (PP) schedul-
ing schemes. Finally, we show that our custom scheduling framework improves the
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defined quality of service metrics while also increases the GPU resource utilization.
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Appendix C.

Towards making the most of NLP-based
device mapping optimization for OpenCL
kernels

Nowadays, we are living in an era of extreme device heterogeneity. Despite the high va-
riety of conventional CPU architectures, accelerator devices, such as GPUs and FPGAs,
also appear in the foreground exploding the pool of available solutions to execute appli-
cations. However, choosing the appropriate device per application needs is an extremely
challenging task due to the abstract relationship between hardware and software. Auto-
matic optimization algorithms that are accurate are required to cope with the complexity
and variety of current hardware and software. Optimal execution has always relied on
time-consuming trial and error approaches. Machine learning (ML) and Natural Lan-
guage Processing (NLP) has flourished over the last decade with research focusing on
deep architectures. In this context, the use of natural language processing techniques to
source code in order to conduct autotuning tasks is an emerging field of study.

In this chapter, we extend the work of Cummins et al., namely Deeptune, that tackles the
problem of optimal device selection (CPU or GPU) for accelerated OpenCL kernels. We
identify three major limitations of Deeptune and, based on these, we propose four different
DNN models that provide enhanced contextual information of source codes. Ezxperimen-
tal results show that our proposed methodology surpasses that of Cummins et al. work,
providing up to 4% improvement in prediction accuracy.
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C.1. Introduction

The ever-increasing amount of data generated and shared by enterprises, industrial and
non-profit sectors, and scientific research has resulted in an unprecedented increase in the
size and volume of data-intensive jobs [426]. In order to meet the new computational de-
mands of the big data, both hardware and software undergo major changes. Additionally,
new latency and power constraints require approaches to solve number of different appli-
cation and compiler optimization problems. However, their large design decision space to
explore, makes tuning applications an even more difficult and time consuming procedure,
making the development of tuning heuristics more urgent than ever. Furthermore, con-
temporary compilers and runtime environments, featuring already hand-coded heuristics,
performing this decision making, make their program’s performances contingent upon
their quality.

Therefore, in order to make heuristic construction more efficient and inexpensive, au-
tomation tools have to be imported in this procedure. In this regard, machine learning
techniques have been deployed in order to automate the process of selecting the best opti-
mizations [427]. Prediction models using different classes of machine learning are trained
through applications’ representative features in order to correlate them with their op-
timal versions. Features can be any important quantifiable properties of applications,
static or dynamic, and the choice of the most appropriate features constitutes an extra
optimization problem for the designers as well.

Even though machine learning has a proven contribution in automated tuning heuris-
tics [428,429], its success is contingent on the quality of the extracted features, which is
frequently achieved through a combination of domain expertise and trial and error. In
order to avoid the extraction of non appropriate features and finally inefficient tuning
models, humans are needed to be removed from the loop. Latest publications [8,430] fo-
cus their work on characterizing and tuning applications without using any code feature.
Natural Language Processing (NLP) methods are deployed to extract automatically and
internally code’s text features and feed them to the predictive model. Therefore, NLP
models are now able to extract feature representations from source codes automatically
and afterwards, other learning systems could employ these learnt feature representations
as inputs to predict various down stream tasks.

Among the dozens of optimizations, lately, most of them are focused on the accelerators
devices (such as GPUs and FPGAs) deployed to satisfy the even more demanding perfor-
mance and power constraints from the edge to cloud continuum. One of the most effective
and popular one, concerns the optimal heterogeneous device mapping optimization for
OpenCL written applications. More specifically, this optimizations refers to the selection
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of either CPU or GPU device for the most efficient execution of OpenCL kernels in terms
of performance.

In this work, we extend DeepTune [8], one of the most influential works on machine-
learning based auto-tuning methodologies without any hand engineered feature extrac-
tors, attempting to solve the heterogeneous device mapping optimization. We achieve to
further improve its effectiveness and finally provide more efficient auto-tuning methods
without any need for feature engineering. Our proposed work outperforms DeepTune by
providing up to 4.12%, with average 2.65% higher prediction accuracy for the optimal
device mapping selection. The rest of this chapter is structured as follows: Section C.2
introduces the related work already published concerning the automation of applications
tuning methods. Section C.3 describes the overview of DeepTune’s baseline implementa-
tion while in Section C.4 we present our proposed improved methodology. The experi-
ments and the findings are described in Section C.5 and finally, in Section C.6 we draw
our conclusions.

C.2. Related Work

There have been numerous works conducting with the goal of optimizing source code
using machine learning models in order to automate tuning procedure [431]. Back in
the early 2008, Agakov et al. [432] were the first to use a machine learning based pre-
dictive model to speed up iterative optimization while, in the same year, Cavazos et
al. [433] applied logistic regression models to automatically select the best optimization
for user’s applications. Later, Liu et al. [434] turning to accelerators, used regression
trees to optimize CUDA kernels, while Cummins et al. [435] applied classifiers to se-
lect the optimal workgroup size of OpenCL compute kernels. Finally, Magni et al. [429]
were the first to address the coarsening optimizations through Neural Networks cascade
models.

Even though the above works managed to provide sufficient results based on hand crafted
program features by developers, heuristics needed to take humans out of the loop. Build-
ing auto-tuning models without feature engineering can provide faster, cheaper and more
independent heuristics achieving to discover more optimal tuning solutions without any
human guidance. Cummins et al. [8] where the first to introduce their work in that di-
rection, with deep neural networks to replace any hand-picked or even compiler IR based
automatically extracted features. Surprisingly, their approach matched or surpassed the
predictive models using hand-crafted features, proving that deep learning can select more
representative and sufficient features than even experts engineers. In the same direction,
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Ben-Nun et al. [430] managed to apply NLP techniques on the Intermediate Representa-
tions (IR) of applications in order to take the feature extraction out of the loop to support
a wider range of programming languages. Their experimental results were encouraging,
disclosing that the hand-coded features, are not, but an obstacle in the building of the
auto-tuning heuristics.

C.3. Deeptune Overview

In this work, we base our research in the work of [8]. Cummins et. al present an end to
end architecture that accepts OpenCL kernels as input and decides on the optimal device
that those kernels should execute, CPU or GPU. Their proposed methodology consists
of two phases: i) a kernel pre-processing stage, that transforms the OpenCL kernels
to a machine-learning friendly interprentetation and i) a DNN-based feature extraction
phase, that receives the transformed code and based on its features identifies the more
performance efficient device mapping for the respective kernel. Figure C.3.1 shows an
overview of the kernel transformation flow, as well as the basic layers, used as building
blocks for feature extraction used in [8]. Next, we briefly describe the basic steps of the
work of Cummins et. al, henceforth referred to as Deeptune.

C.3.1. Source Rewriter

The first stage of Deeptune consists of a source rewriter @. Its purpose is to recon-
struct a given OpenCL kernel to a refined version that eliminates semantically irrelevant
information. This refined version can then be more easily processed in an automated
manner. Specifically, this component accepts hand written code and it performs the
following three actions i) removes comments and erase unnecessary spacing i) rewrites
function names using an increasing alphabetical order of capital letters [A-Z] and 4ii)
rewrites the codes variable using an increasing alphabetical order of lowercase letters
[a-z].
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C.3.2. Vocabulary Compoaosition

The second step of Deeptune’s methodology is the vocabulary composition @. This
step concerns the construction of a vocabulary that maps code related definitions (e.g.,
__kernel, int) and punctuation marks (e.g., parentheses, semicolons) to a set of integer
representations.

This vocabulary is mandatory, since machine-learning models receive as input numeric
values and are not able to process source code directly. To build the corpus vocabulary,
this step considers all the possible words and symbols appeared over all the examined
OpenCL kernels and performs word level tokenization, which maps each token to a unique
integer identifier, called token id.

C.3.3. Sequence Encoder

The last step of the pre-processing phase is the sequence encoder @. This component
combines the processed OpenCL kernel (output of step @) with the corpus vocabulary
(output of step @) and provides an integer sequence that corresponds to the respective
input code.

C.3.4. DNN-based feature extraction

As mentioned before, Deeptune utilizes a DNN-based approach to automate the process
of feature extraction, thus eliminating completely the need for hand-crafted solutions.
The proposed DNN architecture consists of three major layers, that form the building
blocks of their model (@-top). First, an Embedding layer acts as a language model that
receives as input the tokenized source code sequence and converts them to embedding
vectors of dimension D = 64. Next, the embedded vector is passed to a block of two Long
Short-Term Memory [302] layers, that is responsible for exposing one-way sequential
information on the input vector. Last, DeepTune’s model final component is a non-linear
block, that is responsible for exposing non-linearities in the data. It consists of two
fully connected artificial neural network layers, where the initial layer is composed of 32
neurons. Each possible heuristic decision is represented by a single neuron in the second
layer. The model’s confidence that the associated choice is right is represented by the
activation of each neuron in the output layer. Taking the output layer’s argmax yields
the decision with the highest activation.
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C.3.5. Deeptune’s Limitations & Motivation

While the work of [8] is revolutionary in automating the feature extraction process of
GPU code, we argue that it neglects important aspects and inherent characteristics of the
structure and nature of modern programming languages, which, if approached properly,
could provide useful insights. Moreover, novel advancements in the domain of machine
learning and NLP [430,436,437], can provide more representative and/or diverse features,
unveiling additional hidden patterns in the underlying data. Specifically, we pinpoint
three important remarks that Deeptune disregards and which also form the motivation
of our work:

R1) Relation between adjacent tokens: The structure of a programming language
is very well defined, with syntactical rules. The syntax of a programming language is
a collection of rules defining the combinations of symbols that constitute appropriately
organized statements or expressions in that language. Deeptune neglects that structure,
by treating tokens sequentially, thus it makes no consideration for the premise that ad-
jacent tokens provide additional context for code comprehension. In the example below,
the model will assign a high probability to the right token, which is int, based on the
structure of the variable’s a declaration.
int main(){

int a = 10;
b =a+ 1;

Listing C.1: Example code that highlights the dependence of adjacent tokens

R2) Preserve past and future information: While Deeptune examines hidden re-
lationships in the sequential data through the LSTM layers, it only acquires knowl-
edge exclusively from the input’s subsequent pass, since unidirectional LSTMs only pre-
serve inputs that has already passed through it using the hidden state. However, the
typical flow of imperative programming reveals bidirectional inter-dependencies, from
the beginning of the code to its end and vice-versa. A typical example is the follow-
ing:
float sqrt(int a);
int main(){

int x = sqrt(2);

// several lines of code

}
float sqrt(int a){
// implementation

}
Listing C.2: Example code that depicts future dependencies
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where the call of a function is several lines afterwards than it’s implementation.

R3) Significance-aware feature processing: Last, Deeptune treats all the input
features equally, even if part of it is less significant. However, it is apparent that not
all source code semantics provide proportionate contextual information. For example, a
variable declaration (e.g., int) is not as critical as the definition of a loop (e.g., for).
Therefore, it is of great importance to be able to distinguish more valuable features from
the less significant ones.

C.4. Proposed Methodology

This section describes the core concepts of our methodology for optimal device mapping
of OpenCL kernels between CPU and GPU devices based on NLP techniques. The
rationale behind the proposed processing flow is driven by the remarks (R1-R3) drawn
in Section C.3.5. Specifically, similar to [8], our methodology consists of two phases,
the kernel pre-processing and the feature extraction, as depicted in Fig. C.3.1. However,
it extends the latter to account for additional contextual information on the examined
kernels.

C.4.1. Kernel pre-processing

The kernel pre-processing phase of our methodology is identical to the one proposed
in Deeptune. We replicate the pre-processing components described in Sections C.3.1
to C.3.3, which correspond to steps @-@ of Fig. C.3.1.

C.4.2. Building blocks for feature extraction

We give special emphasis on the building blocks used to design the DNN model that
performs the device mapping classification task (@). Compared to Deeptune, we in-
corporate three additional processing layers, that aim to tackle Deeptune’s limitations
presented above.

First, we extend DeepTune by adding a CNN layer, that receives as input the output
of the embedding layer. This method takes advantage of the inherent structure of a
textual label by identifying common attributes shared by multiple words and dividing
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them into three equal parts called trigrams [438]. Trigrams, we believe, are an effective
representation of programming syntax structure and helps mitigating the gap of remark
(R1). It is composed of 2 layers: one 1-d convolutional layer, with 64 filters, kernel
size of 3 and striding step 1, and one max pooling layer of size 4. The embedding layer
transmits the words to the convolutional layers in the form of sentences (in our case code
instructions). Convolution layer convolve the input using pooling layers; pooling layers
aid in reducing the representation of input phrases, input parameters, computation, and
overfitting in the network.

For preserving both past and future information on the input data (remark R2), we
employ bidirectional LSTM layers. Specifically, Bi-LSTMs are able to obtain knowledge
about the sequence in both directions, backwards (future to past) and forwards (past to
future) and recognize long-term dependencies [439]. The core idea, is to split the state
neurons of a regular LSTM in a part that is responsible for the positive time direction
(forward states) and a part for the negative time direction (backward states). Outputs
from forward states are not connected to inputs of backward states, and vice versa. Then
the hidden states of the two LSTMs are combined to find the hidden state for each time
point. It is proven to be more accurate than the traditional LSTM networks [440], but in
trade off significant training time. In our case, bidirectional keeps information from both
directions, making it easier for the network to understand long-term code dependencies,
such as function declarations.

Last, we tackle the problem of significance-aware feature processing (remark R3) by
exploiting a novel solution in the field of NLP. namely Attention layers [436]. The at-
tention block highlights the importance of different features that are highly correlated
with classification, by assigning weights to features, extracting the contextual informa-
tion. Attention can be proven to be useful in the case of programming code modeling,
emphasizing more critical points, such as branches, loops etc., against less important,
such as variable declarations, increments etc.

C.4.3. Examined DNN architectures

To understand the impact of each additional layer on the overall accuracy of the device
mapping problem, we design different DNN architectures with diverse combinations of the
aforementioned building blocks, as shown in Fig. C.4.1. These architectures extend the
baseline model of Deeptune (Fig. C.4.1a) in the following directions:

¢« Deeptune-CNN: Includes a CNN layer right after the Embedding, thus, intro-
ducing the aspect of trigrams (Fig. C.4.1b). This model examines the impact of
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Figure C.4.1.. Examined DNN architectures

feature extraction from adjacent tokens in the source code (R1).

¢ Deeptune-BiLSTM: We replace the two unidirectional LSTM layers of Deeptune,
with a bidirectional one (Fig. C.4.1c). Through this model, we explore the effect of

preserving past and future information in the code (R2).

¢ Deeptune-Attention: This architecture introduces an Attention layer right after
the LSTM, which identifies important features in the input. With this model,
we explore whether a significance analysis on the features of the input affect the

efficiency of the prediction (R3).

¢ Hybrid Architecture: Final, the hybrid architecture combines all the aforemen-
tioned techniques and examines their aggregated impact on the overall accuracy of

the model.

C.5. Evaluation

We evaluate our proposed methodology and compare it directly with Deeptune by examin-
ing the accuracy of each one of the DNN architectures presented in Section C.4.3.
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Table C.5.1.: Technical characteristics of heterogeneous Edge nodes and Cloud Server

Platform Frequency Memory Driver
Intel Core i7-3820 3.6 GHz 8 GB AMD 1526.3
AMD Tahiti 7970 1000 MHz 3 GB AMD 1526.3
NVIDIA GTX 970 1050 MHz 4 GB NVIDIA 361.42

C.5.1. Examined Dataset

We base our evaluation on the dataset of [8] in order to have accurate comparison be-
tween the different model architectures. The dataset contains preprocessed and tokenized
OpenCL kernels, from 7 different benchmark suites. Additionally, it contains the execu-
tion times for each kernel on two GPU devices, the AMD Tahiti 7970 and the NVIDIA
GTX 970, as well as on an Intel Core i7-3820 CPU. Table C.5.1 contains details about
the CPU-GPU platforms.

The prediction target is the platform in which the execution time is lower. More precisely,
when we examine the AMD GPU and Intel CPU cases, the target is [1,0] if the kernel
runs faster on the GPU and [0, 1] if the kernel runs faster on the CPU. This is also
referred to as one-hot encoding. Likewise, for the NVIDIA GPU and the Intel CPU
case.

C.5.2. Experimental Setup

We use stratified 10-fold cross-validation to evaluate the predictive quality of each model.
Each program is randomly assigned to one of ten equal-sized sets; the sets are balanced
to ensure a consistent proportion of samples from each class across the whole set. A
model is trained on all but one of the sets’ programs and then tested on the programs
from the unseen set. This procedure is done for each of the ten sets in order to provide
a comprehensive prediction for the entire dataset.

All models were implemented in Python using Tensorflow! and Keras? backends. To
ensure the most accurate comparison, we seed our layers with the same number, in order
to be initialized with the same weights. The maximum sequence length was set to 1024
and the learning rate at 1072, We used categorical cross entropy as loss function, a batch
size of 64 and trained for 50 epochs. As optimizer, we used the adaptive learning rate

!Tensorflow: https://www.tensorflow.org/
?Keras: https://keras.io/
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Table C.5.2.: Technical characteristics of heterogeneous Edge nodes and Cloud Server

AMD Tahiti 7970 NVIDIA GTX 970 Average

DeepTune [8] 83.23% 80.29% 81.76%
DeepTune-CNN 85.88% 80.01% 82.94%
DeepTune-bilstm 84.85% 80.88% 82.87%

DeepTune-Attention 83.91% 81.03% 82.50%
CNN-BiLSTM-Attention 87.35% 81.47% 84.41%

optimization algorithm, Adam. The experiments were carried out on an NVIDIA Tesla
V100 GPU. Finally, we used TensorBoard® to measure and visualize parameters like loss
and accuracy.

C.5.3. Experimental Results

The average accuracy of each model, as measured in a 10-fold test set, is shown in Table
C.5.2, where the best results are printed in bold font.

Baseline architecture: The baseline architecture is Deeptune, the model suggested
in [8]. For the shake of fair comparison, we have retrained the model using the steps of
Sec. C.5.2, rather than hard copying the results from [8]. We observe that Deeptune
achieves an average accuracy of 81.76%, with better results on the AMD platform with
83.23%, while in the NVIDIA device it scored 80.29%.

Impact of Trigrams (R1): We observe that the notion of trigrams helps the model’s
code comprehension capabilities. Specifically, the Deeptune-CNN model already out-
performs the baseline by 2.65% on AMD platform and 1.18% on average, but performs
slightly worse on the NVIDIA platform (0.28% accuracy drop), which, however, is sta-
tistically insignificant. We also observe that the introduction of the CNN layer provides
the greatest accuracy increment in the case of AMD GPU compared to that of Bi-LSTM
and Attention.

Impact of preserving past and future information (R2): The Deeptune-BiLSTM
model, performs better in both devices compared to Deeptune. More specifically the
model scored 84.85% on the AMD device and 80.88% on the NVIDIA, resulting to an
average precision of 82.87%, that is 1.11% improvement than the baseline. Moreover,

3TensorBoard: https://www.tensorflow.org/tensorboard/

194



C.5. Evaluation

0.9 14~ T r=-{— train_loss 0.9 i =T N
§ 0.8 TN 1| T val_loss i i
- ! > 0.8 1 | t
> 0.7 T+ H H H
% i = H H H
£ 0677 3 0.7 1S4+ S I
.E v | H H
S o5+ < | | :
"] H H H

1 0.6 T4f----—----

3 0.4 - train_accuracy
S
O 037 05 - val_accuracy

0.2 41 '

0 10 20 30 40 50
Epochs
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Figure C.5.1.. Train and validation loss of
the Hybrid Architecture model.

we notice that similar to the case of trigrams, the accuracy increment is lower for the
NVIDIA case.

Impact of feature significance (R3): The addition of an attention layer in Deeptune,
also outperforms the baseline in both devices, scoring 83.91% on the AMD platform and
81.03% on the NVIDIA, leading to 82.50% on average. It appears to give the best results,
on the NVIDIA platform, i.e., 0.73% higher than the baseline.

Hybrid Architecture: Last, our proposed hybrid model, CNN-BiLSTM-Attention, out-
performs the baseline model and all other models. This reveals that by combining all of
our proposed feature processing steps, we can obtain much greater contextual information
from the processed kernel and, thus, maximize the accuracy of our model. Specifically,
the hybrid architecture scored 87.35% on the AMD platform and 81.47% on the NVIDIA
device, that is 4.12% and 1.18% higher than the baseline, respectively, resulting in an
average accuracy increase of 2.65%, that is 84.41%.

For the shake of completeness, we also report the loss and accuracy curves over the
training phase, for the Hybrid Architecture. Figures C.5.1 and C.5.2 show the respective
results, where each curve corresponds to the average loss and accuracy over the 10-fold
cross train and validation sets. As can be seen, the validation loss decreases until epoch 40,
at which point it remains pretty constant. Because the training loss continues to decrease,
we stop training until epoch 50 to avoid overfitting [441].
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C.6. Conclusion

In the era of extreme device heterogeneity, choosing the most appropriate device for ap-
plication execution forms a really challenging problem. In this chapter, we build upon the
work of Cummins et al. [8], and pinpoint some of its limitations. Then, we examine the
impact of additional feature extraction approaches for improving the accuracy of optimal
device mapping prediction for OpenCL kernels. On average, our suggested model, namely
CNN-BiLSTM-Attention, outperforms the baseline model, surpassing it on both predic-
tion challenges. We achieve 4.12% higher prediction accuracy than the baseline on the
AMD platform and 1.18% higher on the NVIDIA platform.

In future work, we will expand our method to source code modeling by using transform-
ers to do unsupervised training on unlabeled C code in order to enhance programming
language understanding [437]; continue our investigation into the optimization of CUDA
kernels; and train models to aid in the development of energy-efficient embedded de-
vices.
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Appendix D.

RoaD-RuNNer: Collaborative DNN
partitioning and offloading on
heterogeneous edge systems

Deep Neural Networks (DNNs) are becoming extremely popular for many modern appli-
cations deployed at the edge of the computing continuum. Despite their effectiveness,
DNNs are typically resource intensive, making it prohibitive to be deployed on resource-
and/or energy-constrained devices found in such environments. To overcome this limi-
tation, partitioning and offloading part of the DNN execution from edge devices to more
powerful servers has been introduced as a prominent solution. While previous works have
proposed resource management schemes to tackle this problem, they usually neglect the
high dynamicity found in such environments, both regarding the diversity of the deployed
DNN models, as well as the heterogeneity of the underlying hardware infrastructure.

In this chapter, we present RoaD-RuNNer, a framework for DNN partitioning and offload-
ing for edge computing systems. RoaD-RuNNer relies on its prior knowledge and leverages
collaborative filtering techniques to quickly estimate performance and energy requirements
of individual layers over heterogeneous devices. By aggregating this information, it speci-
fies a set of Pareto optimal DNN partitioning schemes that trade-off between performance
and energy consumption. We evaluate our approach using a set of well-known DNN archi-
tectures and show that our framework i) outperforms existing state-of-the-art approaches
by achieving 9.58x speedup on average and up to 88.73% less energy consumption, ii)
achieves high prediction accuracy by limiting the prediction error down to 3.19% and
0.18% for latency and energy, respectively and iii) provides lightweight and dynamic per-
formance characteristics.
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D.1. Introduction

Over the last years, the growth of applications that utilize sophisticated Machine Learn-
ing (ML) techniques to make value out of complex data is rapidly increasing and is
expected to grow further in the future. In this direction, Deep Neural Networks (DNNs)
are being widely adopted by many application domains, including, but not limited to,
autonomous driving [442], biomedical and healthcare applications [443] and Intelligent
Personal Assistants (IPAs) [444], mainly due to their capability in offering high predic-
tion accuracy.

Such types of applications are typically deployed at the edge of the computing contin-
uum, closer to where data are generated, in order to enhance security and minimizing
the data transfer latency to the cloud [445]. Even though DNNs provide extremely
accurate results, their computational and memory requirements can skyrocket, thus in-
troducing several barriers on how to be efficiently deployed on resource-contrained edge
computing devices [446]. Considering also that DNNs are gradually becoming deeper
to support more discriminative results and more levels of hierarchy are integrated in
the learned representation [447], the aforementioned problem becomes even more in-
tense.

Traditionally, to overcome this limitation, the DNN inference of edge devices was offloaded
to high-end servers hosted on cloud premises (e.g., Amazon Elastic Inference, Azure Ma-
chine Learning). However, this approach leads to huge amount of data travelling back
and forth in the continuum resulting in high latency and energy consumption. Moreover,

198



D.1. Introduction

all the computational effort is being concentrated in the cloud, rendering it incapable to
cope with the ever-increasing demand for resources [448]. Aiming to deliver more effi-
cient and energy proportional computing systems, hardware vendors (e.g., Nvidia, Xilinx)
are introducing more powerful edge devices, which often integrate conventional CPUs,
hardware accelerators and specialized units for DNN computations (e.g., Nvidia’s Tensor
cores) as a system-on-chip (SoC). While such hardware devices deliver increased compute
density, they are also extremely power hungry, thus, becoming restrictive for applications
that operate under certain energy or battery constraints.

Aiming to identify the "golden ratio" between performance and energy efficiency for edge
computing devices, while also limiting the network latency bottleneck, DNN partitioning
and offloading has been identified as a promising solution [449,450]. The aim of DNN
partitioning is to provide a fine-grained layer-level split of the DNN, where a portion
of the computation is performed locally on the edge device and the rest on the cloud.
Still, identifying an optimal partitioning scheme is not trivial and depends on a triptych
of user-defined requirements and hardware-oriented criteria, i.e., ¢) the architecture of
the deployed DNN model (e.g., computational/energy requirements and data offloading
overhead per layer), 7i) the inherent nature of the application itself (e.g., latency critical
applications would sacrifice energy for performance) and i) the underlying hardware
characteristics. As a motivational example, Fig. D.1.1a shows the performance and en-
ergy of all the possible partitioning schemes for a ResNet101 architecture. We see that
model partitioning can provide significantly faster execution and less energy consumption
compared to on-board and offloaded execution, while also each optimization objective is
attained through different partitioning schemes. Moreover, Fig. D.1.1b further reveals,
that the optimal partitioning scheme also relies on the underlying hardware, with different
edge devices providing different splits.

To tackle these challenges, several prior research approaches have examined the problem of
DNN partitioning and offloading [449-451]. These solutions assume that the architecture
of the deployed model, as well as the underlying hardware are known a priori and apply
the offloading scheme based on extensive profiling of the DNN. However, edge computing
environments are extremely dynamic, both with respect to the devices arriving in the
network and the alternative applications deployed. Moreover, novel DNN architectures
are emerging [445], leading to more and more complex techniques, such as skip-layer
connections, early exits and others.

In order to adapt to the challenges that new DNN architectures impose and to the dy-
namic nature of recent edge computing systems, we design an efficient resource manage-
ment framework to dynamically allocate, partition and offload DNN layers among edge
and cloud resources, aiming to provide performance and/or energy consumption optimiza-
tions and trade-offs. The novel contributions of this work are:
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e« We present RoaD-RuNNer, a novel resource management framework consisting of
a set of Offline and Online Decision Making Mechanisms.

¢ We implement a collaborative filtering based prediction mechanism in
order to provide per layer predictions regarding execution time and energy con-
sumption.

¢ We design and integrate a dynamic partition mechanism, for efficiently
splitting and offloading DNN layers.

¢ We conduct an extensive experimental evaluation of our proposed frame-
work. We compare our framework with a set of baseline algorithms and state-of-
the-art DNN offloading approaches over real hardware and networking, showing
that it outperforms existing state-of-the-art approaches by achieving 9.58x speedup
on average and up to 88.73% less energy consumption average.

The remainder of this chapter is organized as follows: Section D.2 presents related work.
In Section D.3 we analyze our proposed prediction and offloading mechanism. Section D.4
provides our experimental and comparative evaluation of the proposed resource manage-
ment scheme, while Section D.5 concludes this work.

D.2. Related Work

Several works have been conducted in order to address the resource management chal-
lenges of DNNs deployed on edge computing systems. Deep learning model partitioning
and offloading is becoming a rising trend in recent edge computing systems. Research
conducted by [452] considers various present and future challenges for efficiently deploying
deep learning models on the edge. In a similar perspective, authors of [453] provide an
overview of the overarching architectures, frameworks, and emerging key technologies to-
wards training/inference for deep learning models at the network edge.

Aiming to provide DNN resource management schemes, authors of [451] propose a partitioning-
based DNN offloading technique for edge computing, by dividing the DNN model into
partitions and uploading them to the edge server. In a similar perspective, authors
of [454] present a distributed progressive inference engine that addresses the challenge of
partitioning CNN inference across device-server setups. In [455] a framework that dy-
namically partitions a DNN model that adapts to the changes of computational resources
and network condition is proposed. Authors of [449] design a workload partitioning al-
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gorithm to decide efficient DNN partitioning policy in real-time, while in [456] authors
utilize several IoT devices by creating a local collaborative network for a subset of deep
learning models, mainly focusing on the impact of convolutional layers. Last but not
least, authors of [450] present the efficiency of DNN processing on the cloud based on
pre-loaded layers.

Although research has illuminated the resource management and offloading of neural
network based applications on edge computing systems, no study to date, according to
our knowledge, has incorporated collaborative filtering in order to produce an efficient,
decentralized resource management solution for Neural Network offloading at single layer
granularity, while targeting heterogeneous CPU/GPU architectures. Neurosurgeon [450],
is the most similar approach to ours, however there exist several fundamental differences.
We target a fully dynamic DNN offloading framework, in contrast to Neurosurgeon, where
DNN weights are loaded a priori to the cloud server. Moreover, Neurosurgeon is limited
to operate over models without skip-layer connections, in contrast to RoaD-RulNNer, which
is designed to operate over all types of DNN/CNN.

D.3. RoaD-RuNNer: A collaborative DNN partitioning &
offloading framework

RoaD-RuNNer tackles the problem of DNN partitioning and offloading over heterogeneous
CPU/GPU edge computing systems, where a portion of the computational burden can
be offloaded from the edge to the cloud for remote execution. Each individual edge node
accommodates a set of DNN inference tasks which need to be executed. RoaD-RulNer’s
goal is to identify optimal DNN splittings, down to the granularity of a single layer
and offload computationally heavy slices, aiming to optimize the total inference exe-
cution latency and/or the energy consumption. Figure D.3.1 depicts an overview of
RoaD-RulNNer. The major components of our proposed framework are split in two major
phases: (i) Offline Phase and (ii) Online Phase. The former is composed of DNN-
Profiler and Network Profiler, while the latter consists of the Predictor and Offioader
mechanisms. The core functionality of these components is described in the rest of this
section.
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Figure D.3.1.. Overview of Online and Offline RoaD RuNNer Architecture.

D.3.1. Offline Phase

Offtine Phase consists of two distinct components: (i) DNN Profiler (@) and (ii) Network
Profiler (@), which are responsible for generating the required data and knowledge to
be fed as input to the run-time mechanisms later. As input to the framework, we pro-
vide alternative neural network configurations to each single node of the composed edge
computing network.

DNN Profiler: Aiming to take advantage of the inherent distributed nature of the edge
computing paradigm and the heterogeneity in terms of edge devices and deep learning
models, we implement a collaborative filtering mechanism [41,457], in order to train our
system to efficiently predict per layer execution time and energy consumption for each
device, respectively. As a first step of the offline decision making, we integrate a Layer
Filtering and Sampling (@) component, aiming to filter and sample the layers of the
alternative neural networks that are fed as input to our framework. More specifically, a
small percentage p of the input layers in each DNN is randomly selected to be accurately
profiled on the edge device itself. This ensures that profiling time does not skyrocket when
the total number of layers in the DNN increases. The percentage p is defined through
experimentation.
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Next, the layers that have been selected through the filtering and sampling process are
propagated as input to the Layer Ezxecution & Profiling (@) step. Each of the sampled
layers is executed locally on each node, respectively. The execution is profiled, aiming to
gather data regarding the execution latency and the energy consumption per layer. Thus,
for every single node k, we extract the Node’s Latency Matrix (LMj) and Node’s Energy
Matrix (EMjy), respectively. The LM and EMj are propagated as input for further
processing to the Predictor mechanism, as described in Section D.3.2. This process is
triggered once for each node.

Network Profiler: The efficiency of an edge computing system is directly related to its
ability to effectively operate over the existing network infrastructure. Moreover, offloading
decision making mechanisms should consider the overhead imposed by the underlying
network. Thus, for each individual node k we integrate an extended Network Profiling
mechanism (@) As input we provide a set of alternative workloads to be sent/received
from each edge device to the cloud server. We profile the transmission latency and power
of data sent and received from and to the edge device. The profiled messages range from
KB to GB orders of magnitude.

After the profiling is finalized, each node k is characterized by two vectors: (i) The Net-
work Latency Vector (NLV}) and the Network Energy Vector (N EV}), which represent
the latency and energy requirements for alternative message sizes, respectively. The pro-
duced vectors are utilized as dataset to produce polymonial trendlines, in order to predict
the latency and energy requirements of a given input message size. Thus, for each in-
dividual device, fourth-order polynomial curves are generated in order to be utilized for
run-time prediction during the Online Phase.

D.3.2. Online Phase

An efficient dynamic resource management scheme should be able to make decisions
in a run-time manner. Thus, we integrate into our framework two key components:
(i) Predictor (@) and (ii) Offloader (@). The former is responsible for dynamically
predicting latency and energy per layer, while the latter is responsible for network
and collaborative filtering data aggregation, dynamic DNN partitioning andRoa offload-
ing.

Predictor: The output matrices produced by the DNN Profiler (@) of each single node
k during the offline phase are accumulated to the cloud server (@) Two new sparse
matrices are produced, i.e. Sparse Latency Matriz and Sparse Energy Matrix, respec-
tively. Each row of the matrix represents an edge node, while each column denotes a
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Algorithm 1: DNN Partitioning Algorithm

1 Partition(network):

2 for layer in (0,...,N-1) do

3 /* predict local for layers 0 to layer */

4 11=predictLocal(0, layer)

5 for j in (layer+1,...,N-1) do

6 /¥ predict network,cloud for layers i +1 to j */

7 n=predictNetwork(layer+1, j)

8 c=predictCloud(layer+1, j)

9 /¥ predict network,cloud for layers j+1 to N -1 */
10 12=predictLocal(j+1, N-1)

11 totalPredictions=accumulatePredictions(11,n,c,12)

12 /* find Pareto Optimal */
13 paretoPoints = DesignSpaceExploration(totalPredictions)
14 return paretoPoints

single layer type. The Collaborative Filtering mechanism (@) is triggered, based on
matrix decomposition, i.e. based on the factorization of each matrix into a product of
matrices. The unknown values are filled, and the Final Latency Matriz(LM) and the
Final Energy Matriz(EM) are produced. After the predictions are finalized, each device
retrieves its corresponding results from the cloud server, which are utilized for the final
Latency/Energy Prediction (@) Opposed to prior works, which mostly rely on extended
profiling for each new deep learning model [451,454], our framework is adaptable to dy-
namic scenarios. New nodes that dynamically join the network are integrated in the
existing latency and energy matrices and the collaborative filtering matrices are updated.
New incoming DNNs can benefit from the existing layers in the collaborative filtering
matrices.

Offloader: The last component of the Online Phase is responsible for the aggregation
of network and collaborative filtering data and the dynamic DNN partitioning and of-
floading. For each single node k, the network profiling vectors (N LVy, NEV}), and the
collaborative filtering matrices (LM, EM) for latency and energy are aggregated (@),
in order to provide the final prediction per layer, including computation and transmis-
sion overhead. Next, we proceed to the DNN Partitioning Exploration (@), in order to
provide a set of Pareto optimal solutions, aiming to optimize performance and/or energy
consumption. The DNN partitioning exploration algorithm is illustrated in Algorithm 1.
A set of Pareto optimal solutions in generated. Each Pareto point corresponds to an al-
ternative partition, on which a subset of DNN layers is executed locally (@) and the rest
are offloaded for remote execution on the cloud server (@) Each partition is identified
by two indexes ¢, 7 where layers 0 to ¢ are executed locally, layers ¢+ 1 to j are executed on
the cloud and the layers from j + 1 and up to the end of the network are executed locally.
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Table D.4.1.: Technical characteristics of heterogeneous Edge nodes and Cloud Server

Device CPU L2 L3 DRAM GPU (cores)
Nano 4xCortex-A57@1.4GHz 2MB - 4GB 128@0.9GHz
X1 4xCortex-A57Q1.4GHz 2.5MB - 4GB 256@1.0GHz
NX 6xCarmel@1.4GHz 6MB  4MB 8GB 384@1.1GHz
AGX 8xCarmel@2.2GHz 8MB 4MB 32GB 512@1.4GHz

Server 2x20 Intel Xeon 5218R@2.1GHz 1MB 28MB 128GB 5120@1.2GHz

Fully local and fully remote executions remain valid alternatives, in case they belong
to the Pareto optimal solutions. Moreover, in contrast to existing approaches [450] our
framework is designed to handle shortcut dependencies, i.e. skip-layer connections. Such
kind of dependencies are resolved by encapsulating the layers that create the dependency
in an larger atomic block that has a single input and output and are offloaded as an
individual component.

D.4. Experimental Evaluation

D.4.1. Experimental Setup

Hardware Infrastructure: We deploy an in-house system setup consisting of hetero-
geneous CPU/GPU devices, the specifications of which are shown in Table D.4.1. As
edge devices, we utilize a set of NVIDIA GPU-SoCs, to exploit power/performance
trade-offs. As offloading machine, we employ a powerfull x86 server equipped with an
NVIDIA V100 GPU, which forms a typical setup both in edge and cloud premises [458].

Technical Implementation: RoaD-RulNNer is implemented in Python programming
language. All devices are interconnected through 80MB/s wireless network. We utilize
the ZeroMQ messaging protocol for control and the FTP protocol for transmission of the
actual data and layers. In order to overcome the architectural differences of heterogeneous
CPUs all applications are integrated inside docker containers, while the corresponding
GPU implementations are developed in CUDA. The collaborative filtering component
used for estimating the performance and energy impact of different layers is accelerated
through the use of C++ for increased performance.

Examined DNN models: We examine famous DNN architectures and known vari-
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ations, i.e. AlexNet (alex), MobileNetV2 (mv2), Resnetl8 (resl18), Resnet34 (res34),
Resnet50 (res50), Resnet101 (res101), Resnet152 (res152), VGG11, VGG13 and VGG16,
which are widely used for performing object detection and image classification tasks
at the edge [459,460], over alternative input image sizes (224 x 224, 512 x 512 and
768 x 768). The input models are derived from PyTorch [142] and are integrated to
RoaD-RuNNer.

Reference Baselines: We evaluate the impact of our approach based on three key
metrics: (i) performance (ii) energy consumption and (iii) prediction accuracy of our
collaborative filtering approach. We compare against various partition and offloading
mechanisms. First, as a baseline we utilize two naive approaches: (i) Offload None,
which executes all tasks locally, without offloading anything on the cloud and (ii) Of-
fload All, in which all tasks are offloaded to the cloud for remote execution. Moreover,
we implement from scratch and compare against a state-of-the-art resource management
algorithm for DNN offloading, namely Neurosurgeon(NS) [450]. Since Neurosurgeon is
designed with the assumption to operate with a priori offloaded layers on the cloud in-
frastructure, we also implement a version of Neurosurgeon with online layer offloading,
namely NS-nonOfflioaded and a version of RoaD-RuNNer-preOffioaded, where the layers
are offloaded a priori to the cloud.

D.4.2. Evaluation

Performance and Energy Evaluation: In the first comparative experiment, we evalu-
ate RoaD-RullNer in terms of performance and energy consumption against the approaches
presented in Section D.4.1, as illustrated in Fig. D.4.1. Given the fact that Neurosurgeon
is designed to operate only over non-Residual Neural Networks, we utilize as bench-
marks the VGG11,13,16 and AlexNet models. X axis indicates the corresponding energy
gain, while Y axis denotes the relative speedup of our framework compared to other
approaches for CPU (Fig.D.4.1a) and GPU (Fig.D.4.1b) execution, respectively. The
output is divided in four distinct quadrants, on which RoaD-RuNNer does not achieve any
speedup or energy gain (red), achieves either speedup only or energy gain only (orange)
and achieves both speedup and energy optimization (green). We observe that Road-
RuNNer clearly outperforms the Offload All and Offioad None approaches, by leading
up to 45.41x speedup, 95.84% energy reduction compared to the former and up to 6.61x
performance optimization and 95.87% energy reduction compared to the latter, for CPU
execution. Similar observations are derived for GPU execution. The initial version of
Neurosurgeon, on which all layer weights are offloaded a priori, performs better in terms
of performance and energy consumption, as the network overhead is a dominant factor.
However, compared to the NS-nonOffloaded, where layer weights are offloaded dynam-
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Figure D.4.1.. Performance and Energy Comparison of RoaD-RulNNer framework
against other approaches for CPU and GPU nodes for alternative DNN workloads.

ically, we observe that RoaD-RuNNer provides on average 4.97x optimized performance
and 81.85% less energy consumption for CPU, and up to 35.74x optimized performance
and 88.73% less energy consumption for GPU, respectively. RoaD-RuNNer is designed to
provide up to two partition points, in contrast to Neurosurgeon, on which there exists
only a single breakpoint. Therefore, the latter pays the penalty of either executing lo-
cally all the resource intensive layers or offloading their weights, thus paying the network
penalty. Similarly, RoaD-RulNer-preoffloaded, where all model layers are offloaded offline,
our approach outperforms Neurosurgeon by up to 54.09x in terms of performance and up
to 58.06x in terms of energy consumption.

In contrast to Neurosurgeon, RoaD-RuNNer is designed to operate efficiently over work-
loads consisting of DNNs with skip layer connections. Thus, we add to the existing bench-

207



Road-Runner

[~— RoaD-RuNNer —— Neurosurgeon| [—=— RoaD-RuNNer — —e— Neurosurgeon|
900 2.4
0 - 321
O %g e
I w 161
R R w 147
o 2 10
300 mmmmmmmmmmmmmm e 0.8
DO 82 I
100 o ------m ST 031
0 T T T T T 00 T T T T T
0.1 03 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Training set % Training set %
(a) Execution Time RMSE (b) Energy Consumption RMSE

Figure D.4.2.. Root Mean Square Error(RMSE) of execution time and energy
consumption over alternative Collaborative Filtering fill percentages.

marks the Resnet18, Resnet34, Resnet50, Resnet101, Resnet152 and MobileNet V2 models
and evaluate our approach. The evaluation is depicted in Fig. D.4.1c and Fig. D.4.1d
for CPU and GPU executions, respectively. For CPU execution, our framework out-
performs Offload None, by achieving up to 13.92x optimized performance and 46.07x
less energy consumption and Offload All by achieving up to 45.41x optimized perfor-
mance and 24.05x less energy consumption, respectively. Similarly, for GPU executions,
RoaD-RuNNer achieves up to 1.85x speedup and up to 1.34x less energy consumption
compared to Offload None and 112.98x speedup and 16.59x less energy consumption on
average compared to Offioad All.

Prediction Accuracy: The efficacy of our framework is directly related to the accuracy
of the collaborative filtering mechanism. First, we evaluate the learning phase of the
prediction mechanism in terms of Root Mean Square Error (RMSE) related to the size
(percentage) of training set and compare with the Neurosurgeon’s prediction approach.
We observe that providing the 30% of our training set, the execution time and energy
RMSE has converged. Thus, we set our training set size to 0.3. Compared to Neurosur-
geon, our proposed mechanism achieves up to 6.45x and 8.48x less RMSE, for execution
time and energy, respectively. Neurosurgeon displays linear behavior, as it utilizes 100%
of the dataset during the training phase.

Next, as illustrated in Fig. D.4.3, we compare the execution time accuracy and energy
prediction accuracy of RoaD-RuNNer (Fig. D.4.3a, D.4.3b) and Neurosurgeon per deep
learning model and Edge node (Fig. D.4.3¢c, D.4.3d), respectively. Our framework achieves
68.01% less execution time prediction error and 63.8% less energy prediction error per
DNN on average, while we achieve up to 69.6% less execution time prediction error and
up to 34.9% less energy prediction error per edge device. In contrast to our prediction
mechanism, Neurosurgeon is based on linear and logarithmic regression, making it im-
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Figure D.4.3.. Execution Latency and Energy Consumption Prediction Accuracy for
alternative DNN workloads and Edge nodes.

possible to provide high accuracy (or low error) and capture non-linear behaviors in the
system, thus leading to high RMSE.

DNN Offload Analysis: Further discussion can be conducted on the decision making
of RoaD-RuNNer, in order to achieve latency and energy optimization objectives. Thus, in
Fig. D.4.4 the layer offloading percentage in terms of the number of layers offloaded for
each model and edge node is depicted, in order to achieve each optimization objective,
respectively. First, as depicted in Fig. D.4.4a, we see that the more powerful devices
(AGX, NX) offload less computation for remote execution, compared to less powerful
devices (Nano, TX1). More specifically, for AGX and NX the 58.7% of the target DNN
is offloaded on average, opposed to Nano and TX1, where the 87.1% is offloaded. Similar
observations are extracted for the energy optimization objective, as shown in Fig. D.4.4b.
Furthermore, having execution latency as the optimization objective, the 74.45% of layers
is offloaded on average, while for the energy optimization objective the corresponding
percentage rises to 90.1%. This is due to the fact that the network imposes high latency
overhead, thus making the data and layer transmission prohibitive in order to meet
latency optimization objectives.

D.5. Conclusion

This work presents RoaD-RuNNer, a novel resource management framework for DNN par-
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Figure D.4.4.. DNN percentage offloading over heterogeneous Edge nodes for latency

titioning and offloading over heterogeneous CPU/GPU edge computing systems. Our
framework strongly leverages collaborative filtering techniques to estimate performance
and energy requirements of individual DNN layers over heterogeneous devices. By aggre-
gating this information, it specifies a set of Pareto optimal DNN partitioning schemes that
trade-off between performance and energy consumption. Our approach outperforms exist-
ing state-of-the-art approaches by achieving 9.58x speedup on average and up to 88.73%
less energy consumption and high prediction accuracy by limiting the prediction error
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and energy optimization objectives.

down to 3.19% and 0.18% for latency and energy, respectively.
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Chapter 8.

2 vvoTtttikn leprypopn Twv
[Mpotewdpevwv MebodoloyLov
ota EAAMVIk&

8.1. Ewcaywrn

Yig nuépeg pog, Budvouue Ty “Wngio) Enoyn” ¥ “Wnguaxr Enavdotoon”, onou o pududg
ue tov omolo 1 teyvoloyio e€ellooetan, auEdveton dlapxws oe 6Ao Tov x60upo. Autd 10
dnpraxd “toouvdut” elvar amdppola EVOC GUVBLACUOD TEYVOAOYIXWY avATTUEEWY ARG o
XOWVWVIXOOLXOVOULIXMY TORUYOVIWY Xl TICEWY, GUUTERLAUBAVOUEVKDY HETAEY GAAWY TNG
Toyelog Tpo6doL oToV Topéa TWY dXTUMONS xou cuvdestudTnTas (9], Tne paydolac avEnong
0L opLlUo) CUVBEBEUEVKY cuaxeLwy ato dadixtuo [10], tov TtepdoTio byxo dedouévwy
TOU ONULOLEYOLY AUTEC Ol CUCKEUES X0l TIC YVWOEL TOU UTOPOVUE VO OTOXOUICOUUE Ono
outd [11], xodde xow TNV ovdyxn Yol YPHYORES ot EVEMXTES AVTIOPAOELS OE QUOWES N
avdpwnoyevelc xataotpogéc Y xotactdoels xplong [12].

H yprion tou “Yroloyiotixol Négoug™ amotehel €vay onuavTixd TUAGOVE 6TO TAXICLO au-
TS NG Yneronaric evahhayng, xaddg emTEéNel GTOUC EVOLAPEPOUEVOUS Vo n@pLoToLticouy
Yeryopa T Sudpopeg unneeoieg g emyelpnonc Toug, yweic va yeewdletan va dadécouy
LVPNAG apyxd xe@dhono Yo ETEVOUOT OE LAXO o xou Yedvo Yo Tn Oloyelplor) Tou.
Mdhota, 1 toyelo LYETNoTN aUTOY TOU VEOU TEOTUTOL YIVETAL OXOUA TO EUPAVAG €4V
XOLTEEOUUE BLdpopec TPOOYUTES oyOpaoTXES avopopéc (LyhAua 8.1.1), émou golveton mwe
ta tehevutaio 10 ypdvia 1o péyedog tng ayopds umneeouwy “Yroloyiotixol Négoug™ au-
Eninxe mdve amd 6 @opéc, eved mpoPrémeton vor augndel xou mepoutépwy Yoo OTOL EMOUEVA
yoovial.

!Size of the cloud computing and hosting market market worldwide from 2010 to 2020
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Brief Description of the Proposed Frameworks in Greek

Size of Cloud computing worldwide (2010-2020) Projected market size of Cloud computing
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Yyfua 8.1.1.. Méyedoc tng ayopds tou Troloyiotixol Négoug nayxoouiong

To YTrepxhpoxovueva Kévtpa Aedouévov (YKA/KA) npoopépouv dAn v amopaitnn
urohoyo T d0vaun (m.y., dloxouc yio anodrixeuor dedopévmv, ythddes SlaxowoTéS Yia
EXTENEDT] EQUPUOYADY, X.0L.) YLOL TNV EXTEAEST) TV BLEPopwV LTNEESLHY TOL T TONOYIO TIXOV
Négouc™. Ilopd tnv tepdotiar diardeotudtnTo UTOAOYICTIXWY TopwY, To. KA nopouaidlouy
UEAETEC TPOXAAOELS, HUPIWS OVIPOEXE UE TNV ATOTEAEOUATIXY Oloyelpton TwV Slodéaiuwy
TOPWY, TEOXEWEVOL aUTOl Vo Umopoly Vo eEUTNEETOVY TOV TEPAOTIO dpllud TEAATOY, 0G0
mo anodotixd yiveton. Mio and Tic xupldtepeg TpoxAfoeic mou eupavilovtoan ota KA eivon
N amodoTixy| dayelplon Twv SLd€aiuwy LTOAOYLO TIXWY ToPWV. Aedouévou OTL 1) ayopd Xl
ouvtrienon tou efomhiopol twv KA elvon plo apxetd mohuddmoavn Sabixacio, ol mdpoyot
umneeot®v TroloyioTixol NEQoug 6ToyeloLY GUVEY(OS GTO Vo BEATIC TOTOLACOUY TNV YeT-
owonoinon Twv SLdEoLuwy UTOAOYIOTIXWDY TOPWY, TEOXEWEVOU VO UEYLOTOTOLACOLY TNV
ATOBOTIXOTNTA TOUG XA, CUVETKC, VoL HEWWOOLY T €€oda avaBdduong e€omhiouod xou vo
UEYLOTOTOLACOUY TO %€pBOC TOUG.

Eved n xahbtepn anodotixdtnta 1wy ndpwyv Unopel va emteuydel ye tnv e@apuoyy| fehtioto-
ToLoewV o€ BLdpopa enineda (and Tov Slaxoplo Th auTéV XxadduTdy, oTo eninedo cuotouyiog
SLOXOULO TV %o 0T0 ETUNEDO TNS EQUPUOYNC), Tar oUYYpova TAaiota Stayeipione ndpwv dev e-
tvou og Véom va Loy elelo ToUY TNV TOAUTAOXOTNTA TWV GUYYPOVWY LTOB0UMY TTOAOYIGTIX0U
Négouc. Autd €yel wg OLUVETELX Ta XEVTEO DEDOUEVKY VAL UTOAELTOURYOLY, Xad(S OL TdpOoy oL
urneeouwy YrohoyloTixol Négoug telvouy va uctdlouv Ty UTOAOYLo TiXT Loy ) TEOXEWWEVOL
vo TETOY 0LV xahTeEpES eTBOOELS Yia Toug TeEMxolC yperotee [29,30]. Evac tpdroc pe tov
omolo ol dpoyol unneectdy Trohoyio ol Négoug mpoomadoly Vo UEWOGOUY TNV UTOAEL-
ToupYeia TV Sloxoo Ty evtoc Twv TKA elvar yéow tne ouvtonodétnong epapuoydv oe
%0voU¢ SLOXOULOTEG. 1€ AUTO TO UOVTENO, EQUOUOYES b BlapopeTixols YeNoTeg Tomole-
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8.1

TOUVTAL GE X0WOUC BLAXOWO TES, ETUTUYYAVOVTHG €T0L TNV adENon Tou TOGOGTOU YENOLOo-
TolNoNE TWV TOPWY TV UNYAVNUATLY. 20TO00, TaUTOYEOoV Ue TNV avENoY TOU TOGOGTOY
XENOWOTONCNS TWV TORWY, 1 CUVTOTOVETNOT EQPUPUOYWY OE X000 BLaXOUO TEC 0dNYEl
TOUTOYPOVA Xall OE TUREUBOAEC OTOUC XOLVOUE TOEOUE TWV CUCTNUATWY, TO OTolo UE TN OElpd
Tou odnYel 0T UElwoT TNE AMOBOOTE TWV EQPUPUOYWY. XTNV TEUYHATIXOTNTY, TopeUSoréc
unopolY va LTdEEoUY G TOAAG SLoPOEETIXd ENiNEdA TOU CUC TAHUATOS, antd To eninedo TOL €-
TegepYao TN, OTIC XPUPES UVAUES xS Xal GTOUC BLatdAOUC ETUXOVGWVING UE TNV xVpLol WVHUT.
Eniong, ye otoy0o v avIWPETOTION TOU TROBAAUATOS TNG UTOYENOWOTOMONS TV TOpwY
(xaddS %o TOL XUTAXEPUATIOROY AUTMYV) oL T8Oy oL UTNEeotdY T rokoyioTixol Négpoug Te-
fvouv mpog TNV LVETNOT XOUVOTOUWY UTOANOYICTIXWY UOVTEAWY, OIS YLOL TOQADELY A TO
Topddetypa g “Anocivieong Troloyiotixwy IIdpwv”. Ye autd to yovtého, ol topoL evog
KA opyavdvovtar oe Sloaxoplotég ol onolol TepthaBavouy oy ouyxexpluévou TOnou
T6poUG (T.). DUXOULO TES OMOXAELG TIXG XOU YOVO UE UVAUT).

‘Onwg elvon Eexdiapo and ta napandve, 1 BeAtioTononon g ¥enoononohc Twy Topwy
uéoa oe éva KA anotelel éva mohd dUoxoho xou mohbmhoxo mpoBinua. Ilog'dho mou ol
Tdpoy ol unneeoly Trohoyotixod Négoug, dladétouy unyaviogols ylo TNV TonoVETnoT e-
PoppoYOY 6TouS dlardéoipuous utohoyloTixolg Tdpous, ol unyoviopol avtol Bacilovton xotd
x0pto AoYyo og amhoixolg alyoplluous opydvwong xodde xal Unyoviogols dpotoldYNoNg
TWV EQUPUOY®Y, oL omolol dev xodloTavTon Xovol Vo AVTWETOTICOLY TNV 0pYAVWaN TwV
TopwYV Pe anodotixd Teomo. Ilpoxeévou va vhomoindolv mo “éEunvol” umyoviouol Bia-
Xelplone mopwy, teheutaia ToEaTNEOVUE Vor UEAETATOL eXTEVOCS 1 uovétnor tng Teyvntrig
NonuooVvne (TN) xan g Mnyovixic Mddnone (MM) otov topéa tou YTrohoyiotixol
Négouc. Xuyxexpwéva, pe v eoapuoyy texvixddy MM, ou ndpoyotr unneeoiwy Yoho-
yiouxol Négoug elvon o Héon va enelepyactoly, va avahlOOUY XaL VoL ovory vweicouy
ovoyetioelg HeETAE) TEPAOTIWY OYXWY OEBOUEVLY, TEdyUa Tou Yo HToy adlvaTo UE YeHoT
TOV TOAMOTEQWY UNYOVICUOY DLy Elplone TwV LTOAOYLOTIXWY Topwy. Ilpdyuatt, yio Toug
Tapbdyous dnubotou végoug, 1 texvnth vonuooivny (Al) xaw n MA anoteholv 1o pépoc tng
UTIOBOPAC X0l TV AELTOURYLOV TV XEVTRwY dedouévev Touc?.

Av xou n TN xow n MM oamoteholv xuplapyec Moeig yio mo anodotixd KA, elvon axdua
acapéc ToLog Elvol 0 XUAVTEROS TPOTIOG VAL EVOWUATWI00Y GE unyaviouols Yo Tn dlayeipl-
o1 népwv oto Tnohoylotixd Négog. Ltnyv mpayUotixotnta, OLAPORES TEOTYOUUEVES TPO-
ondUElES EVOWUATWONS TOXIANOLY XaTd TOAD GTOV TEOTO TEOGEYYLONG TOU TEOPBARUATOC.
[N mapdiderypa, 6mee avapéelnxe TEoTYOUUEVWS, O OpLoHEVES TeplnTwoele, 1 MM cuvdée-
Tou 6TEVE PE T Drayelplon Tev ndpwv, ahhd elvan evTENDS Slaxplth ot dAkec TtepinToELS [28].
ITpog authy TV xatedYuvor, anatelton TECUUTERPE EPELVAL YLOL VAL XATAVOICOUUE TS, TOV XAl
ToTE Vo yenotwonoijoouue tTexVixéc MA v T Bedtinon Tng amodoTixoTNToC TV TORWY
OTOL CUCTARATA VEPOUG.

2Google uses DeepMind Al to cut data center PUE by 15%
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8.2. Xtdéxoc Aidaktopikic Aratpng & T uvelopopéc aLvuTig

Evey 1 anodotidtnta Twv tépnv TV XxEVTpwy dedouévwy unopel va Behtiwidel yéow dua-
POpwYV oTOLYEIWY NG LUToBOURS LUAOD o Aoylouixol, otnyv mapoloo dlotelfn Sivouue -
oaitepn Eupaon ot Bertiotonoinon tng dlayelplong TOPMY Xol TOU YPOVOTEOYRUUUATICUOY
EQUPUOYWY o€ U TAUTA “Aoud. Aedouévne Tne Loyvenc oyéong emdOcEwY UETAEL UALXOY
xau Aoylouxou, Bactlovue to povtéda Badhdc pdinone oe YetenTtés EMBOCENMY TEOGUVITO-
ANouévoug 6To LAXO, oToYeDOVTIC €TOL OTN TEOBOAT] YEYOVOTWY YaUNhol emmédou O Ue-
TeNoElC LPNAOTEROU ETUTEDOUL TOL UAS EVOLAPEPOLY. JUYXEXPULEVA, Ol BacixEC apyEC OV Xa-
Yo0H Yooy TIC EPEVVNTIXES LIS DPAUO TNELOTNTES Efvar oL axdloudec:

1. Aedouévne tng otevic oyéong Uetald LALXOU xou AoyYLowxol, Ta oy Ypova GUGC THUd-
ta Trnoloyiotixol Négoug Yo mpémel Vo Talpvouy ano@dcelc evopy o TEwanG TOpWY
AoBdvovtag LToOPn TN BUVOLIXT] TOGO TWV EQUPUOYMY OUTOV XUAUTOY 6GO XaL TOU
unoxetyevou cuothuatoc. Ilpog auth v xatedduvor, moTtebouue OTL oL PHETENTEC
eMBOCEWY Younhol emnédou Unopoly va Tapéyouy eEUPETXE YENOWES TANROPOpleg
oyeUxd pe ta onuela oupdenonc/YopiBou twv custudtwy Yroloyiotixod Négoue.

2. Trnoompllouvpe 6TL 1 TOALTAOXOTNTA TV GUYYEOVKY CUCTNUATWY Y ToloYIo TX0)
Négoug elvon tepdoTial, SloopPOdVOVTaG ETOL aPELE(C AUCELS YPOVOTROYEAUUUATIONO-
0/ TopaxohoUNONG AVIXAVES VoL YEIPLGTOUY AMOTEAEGUATIXG OUTGV TOV XATOXAUOUS
olardéotumy 6edoPEvev xou xoupmiey Bedtiotonoinong. Ilpog avth v xatevduvon,
e€eTdlOUPE TNV ATOTEAECUOTIXOTNTA TNG UMY OVIXS Mddnong xou Tng TEXVNTASC VONUO-
oUVNG o€ BLAPOPES TTTUYES Xou EMNEDN BEATICTOTOMONE TOU TOPEN TOU VEQOUC.

E€etdlouye xau Tig 800 autég apyéc ot dldpopa TEOBARUATH GTOV TOUEN TOU UTOAOYLO TIXOU
VEQoug, Tou xupaivovton and BeATIOTOTOMACELS CUYXEXQUEVODY EQUOUOYROY En¢ BeATIOTO-
nowoelg ot eninedo cuothuatos. To Yyrua 8.2.1 napoucidlel, ye agpnenuévo tedmo, Lo
vPNAol emnédou ETEXOTNOT TNG TOTOVETNANG TWV CUVELGPORGOY TNg tapoloag dlatelfric oe
oyéon ue T Sdpopa enineda BehtioTonolnong.

YUVOTTIXG, OL XVPLEC CLVELCPORES TNG Tapoloug BlateBrg elvan Teew:

e Rusty: M véo e€ehiyuévn Aoom mopoxohotidnong yio unodopés Y mohoyio ol
Négouc. To Rusty ofiomotel ta Sixtua poxpds Beayvrneddeoune uvhune (LSTM) yuo
vo emtpédel Yeryopes xou axplBelc TpoBAEelc XATAVIAWONE TOPWY XL EVEQYELIS TWV
CUCTNUATWY UTO TNV Topousio TapedBohey Aoy e Yopifou uetall egapuoyny. Méow
Tou Rusty, n @uiodolla pog eivon vo xanhepdooupe TNV TEoY VRO TIXY Tapaxololinon
¢ TNV HEAOVTIXT Ao Yial TNV TopaxohoUNGCT) TOU VEQOUCS, UE GTOYO TNV LOVETNOMN
™NC Yot TNV XdodHYNOY TROORUTIXWDY UNYAVIOUMY XATAVIAWONEC TOPMWY.
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8.2. Ytoyoc Awbaxtopixiic Awxtpifric & Xuveiopopés autic

p =L i Application-driven i Application-specific ! :
Approximate o0 parameter o8 optimization : 1 Application related
Computing Lo auto-tuning Lo techniques 5 monitoring i

Application-specific
1 optimizations and

Lautotwning A A Sl R N e S ,
Orchestration Layer : B . ) : :
3 Conventional 9 Disaggregated 3 Cluster-Level
Workload placement Clouds CImED EInED H Monitorin,
P : u (Appendices 3 and 4) (Chapter 4) ' toring

on a pool of resources

| Control Layer_

System-Level
i ] resource
Dynamic Runtime : adaption
: Resource Adaption {(CPU throttling, DVFS

Application specific : Cluster-Level
control ] Control

(Thread Scaling, ...) i i (Horizontal Scaling,
(Appendix 1) : Migration, ...)

System-Level
Monitoring
(Chapter 3)

Monitoring Layer_

Application, Cluster & System
! level monitoring 1

Yyfua 8.2.1.. Lynuotixr] avamopdoTaoy) TwWV CUVELCPORWY TNG TUEONCUS BOAXTORIXHC
olateBre

e Adrias: 'Eva mlalolo mapoaxoroddnong xou eVopyfoTewons yid CUCTARATA UE OLo-
yoewouévn uviun. To Adrias mapaxohoudel cuveyne to unoxeiyevo cloTNU X
oLUYXEVTPOVEL uufdvta amodoong ot eninedo egapuoync xou cuaTiuatog. Alomol-
ovtog npooeyyioeg Podide unyovixrc uddnone, to Adrias yenowonotel tic TAneo-
(popleg mapaxohoLUNONE YLol TN BUVAUXT TOTOVETNON VEWY EQURUOYWY O GUGC TAUITA
Trohoylotixol Négoug ue anoouvtedeluévn uvhiun.

o Sparkle: 'Eva mhaicio autopoatne pduone napapéteny e Bdon tn fadhd udinomn yia
epappoyég Spark. To Sparkle aglomolel pior UBELBIXY apytteXTOVIXY Bortiod VEUuRKVIXOY
Oetoou pall ye yeyovota TapoxoAovincng EmBOCEWY YUUNAo) ETITEBOU XL ENEXTE-
fvetan o 0AOXANREO TO YWEO BlodEPwang TopauéTewy Tou Spark, ealelpovtag €tol
TAApeS TNV avdryxn yior avlpdmvn Sloyelplon 1/xo 6ToTo XY AVEAUGT, TPOXEWWEVOL
va tpocdlopicoupe Ti¢ BENTIOTEC TapauéTEouE Yia epapuoyés Spark. Xenowonouwdvtog
wo Teooéyylon yeveTixic PelTiotonoinong, To Lmopxhe BLATEEYEL YR YOP TO YOO
oyedlaouol Topauétewy xou evtonilel BektioTonomnuéves dlapoppaoel Spark.
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8.3. MAaiolo Rusty

8.3.1. Ewloaywy1

Ta tehevutaio ypovia, o aplduog TV EQapUOY®Y Tou extelolvtal ato TroloyioTixd Négog
awéRinxe porydolar xan avapéveton vor avindel neplocdtepo oto uélhov [272]. H dvodog
TWY TAATQOPUAOY Yior ExTéreon egappoydy oto Négog (m.y., Kubernetes [175]) mou dieu-
XOAOVOUV TNV EXTEAEDT) EQURUOYWY OE BT XOU ETEXTEVOUV TNV LXAVOTNTE TOUC VoL XAL-
HAXEVOLY BUVOUIXE TOUC TOPOUS, AUEAVEL TEQULTERE TNV TUXVOTNTO TWV CUYYPOVWY CUC TN
udtwv vépoug. Emmiéov, ol tpéyouces Aoec Troloyiotixol Négoue, 6nwe 1o Amazon
AWS [72], 1o Google Cloud [178], to Microsoft Azure [177] xou dhha, Tapéyouv oTOUC
xeNoTec ehacTixdTNTA o duvatdtnTa ohhay g PeYEDdoug NG UTOAOYLOTIXAC TOUG YWeTNTi-
%OTNTAC, OBNYHOVTAC O BUVOLXT ToROoY | TopwY. AuTh 1 aENom NG TUXVOTNTAS Xl TNG
BUVOIXNG TWV POPTWY ERYACING 0TO VEPOG GUVETAYETAL OTL OL TdEOY oL LTNEECLOY T TOAOYI-
otxol Négoug Yo mpénel vo eopuolouy TEONYUEVES TEXVIXES XATOVOUNG TOPWY, MOTE Vi
TaEEYOUV XAUADTERY TOLOTNT UTNEECLOY OTOUG YPNOTES TOUS, XSG XoL VO UEYLO TOTOL00Y
70 %€pdo¢ Toug. {16T600, aUTOHS 0 6TOY 0 BehtioTomoinong 600 TupAYOVTWY Elvon €V YEVEL
dLoxoha emTEVEWOG, BEGOUEVOL OTL 1) UEYICTOTOMOY TNE AmOd00NE Amoutel TNV eXTEAEOT
TWV EQPUPUOYRY OF OmOUOVWUEVA Tep3dAAOVTA, eV 1 adENoT Tou x€EBOUC EMITUY YEVETAL
HECW TNG OLUVTOTOVETNONG EQPUPUOYWY OE X0WOUS UTOAOYIOTIXOUEC TOPOUS, 1) OTold OUWS
odnyel oc cuupdenomn xo Y6puBo 0TOUC BLUOLEACUEVOUS UTOAOYLO TIX0UE THPOUS EVOS GU-
O TAUOTOG.

Mo voo umopé€ooupe Vo xaTaVOiCOUUE XOADTERX TO TROYHATIXG OTUEld oUUPOENONG EVOS
OUCTAUATOS ot Vo Tpoadloploouue T Baowx avtioe TN umoPdiuong Twv emddcewy, Yo
TEETEL VO EEETACOUYE TUO TEOGEXTIXG ORYLTEXTOVIXE YEYOVOTO YOUNAOTEQOU ETUTESOU XAl VoL
umopolue va avahboouue ocuuPdvia ot eninedo ocvothuatog [274]. To v eniteuin twy
TUEATAVEL OTOY WY, 1) TOEUXOAOVINCT Xl 1) AVIALCT) TV CNUATWY TOU GUCTAULATOS AT6 TO
ECWTEPXO TOU XEVTEOU DEBOUEVWY €yl amodely Vel OTL elvon Tpory HaTXd ETKPERTS Ko dlopa-
). Do mopdderypa, n Alibaba xou 1 Google mapéyouv mporypatind byvn and apyttextovixd
yeyovota younhot eminédou [29] and tor cuoTAUATA GUOTABWY TOUE Xat EVOapEUVOLY TOUG
EPELYNTEC XOU TOUG EMAYYEAUATIEC Var Tar eneepyacTody xou Vo Tar avokboouy. Emmiéov,
n Google €yl evtonioel 6Tl 1 TopaxoAodINoN TWV PETENTOV ETMBOCEWY YoUNAoU eTTESOU
unopel var 0dnYNoEL 6 XAANVTERES ATOPAOELS SLUYEIPLONE TOPWY XAl YPOVOTROYQOUUITIOUO-
O [74].

ITpoxeévou vo a€LoToCOUIE AUTE ToL Y AUEAXTNELC TIXE Y AUNAOL EMITEDOV, OMALTELTOL 1) TOEAL-
x0A00INoN EQUPUOYOY xaTd TNV Bldpxela exTEAeTT|C Toug. 'Etot, 1 mhnpogoplo auth unopet
va yenoyronomdel mpoxewwévou va tpogodotel xou xadodnyel ahyopituoug Sayelpiong Topwy
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8.3. Rusty

1)/ %o YPOVOTEOYPAUUATIONOV, oL 0To{oL TpéTEL Va elvan ot €om var TpofBAEnouy duvoixd Tig
avayxeC OE TOPOUSG AVd EQUPUOYT, WOTE Vol EMBAAAOLY BEATIOTOTONUEVES ATOPIOCELS OF OE
TpaypaTiXo ypovo. Ilahadtepes epeuvnuinég dpacTnEIOTNTES €YOUV LTOBEEEL OTL OL EoE-
HOYES BLdVOUV BLUPORETIXES QPACELC XAUTA TN OLAPXEL TNG EXTEAECHC TOUC [161, 162, 208],
oL omoleg 00NYoLV Ot “Urn XAVOVIXES™ CUUTERLPOREC OCOV APOEE ToL TEOTUTA TEOCPBACTS
otn wvhun xou ) xenorn g CPU. Ou cuunepipopéc autée yivovtar axoun mo ToAUTAOXES
av MdPBoupe LToYn Tic TopePPoréc Tou TEoxahovVTUL AdYW GUVTOTOVETNONG EPUPUOYLY OF
%x0tvol¢ Sloaxoplo tég. 0 ex ToUTOU, N AeTTOPERTC o axEB3|C TeoBAeluoOTN T XoUTd TN BLde-
xelo EXTEAEONC TWV EQapUOY OV elvan LwTixhc onuasiag Yo TNy AN amo@doewy doyelplong
TOPWY OF TEUYUATIXO YPOVO.

Ao 1o nopoandve, eivar Teo@avés Twe amoutodvton VEe e€ehyuéveg ADoelg Tapaxolovinong
Yo TOV OMOTEAECUATIXG YELRLOUO TOU OVOBUOUEVOU TEDIOU TWV EQPUQUOYOY GE CUC THUATA
Trohoyiotixol Négoug. AZomoldvTag T SUVATOTNTES TN UTOBOUNG UALXOU, 1) TapaXo-
AoUONoT EQoEUOYMOY xou UTOBOUDY Vol TEETEL Vo OTEAYEL TPOS TNV Tapoy T L) ToyUTEENGS
TAEATNENOWOTNTAC, OOTE Vo YiveTon avTANmTy 1 axpola Tohopopgior XoL 0 SUVUULICUOS
ota YetaBAntd @optia epyaoioc, xou i) cuveyols yeévou extéleons xou TEOBAegudTNTOG
ue enlyvmon Twv TUREUBOANDY, TEOXEWEVOU VoL AAUBAvVOVTaL ATOQACELS XATAVOUNE TOPWY UE
TUO TEXUNELWUEVO TEOTO.

Ytoyebovtoag 6To VoL AOGOUUE Tol TOROTEVe TEOBAAUNTA, GE AUTO TO XEPIANLO, TAUPOLUGLALoU-
ue to Rusty, éva mialolo mopoxorolinong mou allomolel tor dixtuo poxpds Peoyumpedde-
ounc wvhune (LSTM), emtpénovtag étol ypryopes xou axplBelc mpoPAédels xatavdhnmong
TOPWY X EVERYELNS EVOG CUCTAUNTOC UG TNy enfipela mapepBorny. To Rusty amotehel
TO TEWOTO VO TNUO U BlIAKOTTOUEYNS TPOYYWOTIKNS TapakoAovinong nou elvar oe Yo va
TEOBAETEL UETENTES ETUOOCEWY YUUNAOU ETUTEDOL EVOG CUC THUATOS UTO ToReUSOAT. Luyxe-
xpwéva, uéow tou Rusty, elyocte o Héomn va npoPAédoupe Tic extehobueves eviohéc avd
x0xho (IPC) xaddde xou tic aotoyiec oe dedopéva oty Keupr) Mvrun Tehevtoiou Emnédou
(Last-Level Cache misses) ToVv eQopuoy®V ToU EXTEAOUVTIL TAUTOY POV OE €Val TOAUTOENVO
cUOTNUA XL, ETIONG, TNV XATAVIAWOT EVERYELXS aUTOL. Xe avtideorn Pe T TeoNYoUUEVES
npooeyyioeg nou Pacilovion oe cuaTnuaTXr] 0&lOAOYNOT TOU CUC THUATOS VY TOXTE YpO-
vixd Stao ThgaTa o TpoyuaTixd Yedvo Yo T poviehomolnon mopepBordv [41,62,208], to
Rusty yenowonotel tnv ixavétnta npoBiedne twv LSTM xou emitpénel cuveyeic npofBiédelc
TWY UETEXOV andBOOTNG UE ETYVWOT| TNG TUPEUBOAAC.

8.3.2. Xnpavrkétnta MNpoyvwoTtikig MapokodovOnong

‘Onwg avagépaue Tponyouuévne, To thaloo Rusty anotedel éva cbotnua mpoyvwotiknig na-
pakoAoinong, SnAadY| YENOULOTOLEITOL TROXEWWEVOU VoL UTOPOVUE VO TEOBAETOUUE UETELXES
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: proactive approach m |solated L3M
reactive approach i Interferenced L3M

reduce cache ways predict and increase History window

. cache ways Prediction window
ry L 2

LLC misses
S = N WD

100 200 300 400
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o

Yyfua 8.3.1.. Tlporypoatind anoTONOUN TV ACTOYLOV Yid TEOCBAoY G DEBOUEVA TNG
XELPAC UVAUNG Yot Wla EQapUOYY| TEYVNTASC VOMUOCUVTG.

anodooNE ToU GUCTAUATOS, UTG TNy Tapousia Yoplfou, ot mpaypatxd yedvo. Tatl duwg
elvon onpavtey ula Tétola Aettovpyla yio €vay evopynoTewTh Tépwy ot cucThata Y mo-
hoyiotixol Négoug; Tlpoxewévou va anavtiooupe oe auTthv TNV EpMOTNOT), EXTEAECAUUE ia
TUTLXY EQAPUOYT| TEXVNTAS YONUOCUYNG XAl XATA TN OLIEXELL EXTENECT|C TNG Tapaxohovdoa-
HE o CUANEEOUE TIC UETPXES AMOBOOTC TOU CUC TAUATOS LOC.

Y10 YUyfua 8.3.1 umopolue var SoUUE TO AMOTUTWHUA TNG EQAPUOYNS OCOV aPORd T UG TO-
xiec v mpdoPacn oe Sedopéva oTNV xELPT UVARY Tou cuoTHUaTog. ‘Onwe galfvetan xou
amd To OYNUAL, N EQPUEUOYT| TEQVIEL O OLUPOPETIXES QPACELS XATd T1) OLdpxeld eEXTEAETNC
NG, LUYXEXPWEVA, TOEATNEOVUE PACELS TIG EQPUPUOYES OTIOU OL Ao ToYleC TN EQUPUOYHS
xwvolvtan o€ ToA) LYmAd enineda (“xopuEEc”) xou dAAec 6TOU O apLIUOC Ao TOYLOY Elvol
oxed6v undevixdc (“xokddec”). Evoc evopymotpwtic népwv Yo npénel va eivon oe Yéon
vo umopet vor TpoPAédel autég Tig evolhayég UeTagD “xopuPmY” xot “HONIBWY” X VoL TpO-
TIOTIOLEL / XUTAVEUEL TOUC TIOPOUS TOL CUG TAUATOS avohGYWS. Ac Tdpoupe w¢ mapddetyua to
onueio NG EXTENEOTNC OV €YOVUE ETUCTUAVEL UE TNV Yotdpn xouxx(do xat E0Tw Twg YEAOUUE
va pudplooupe To ué€yedog TG xELPNC UVAUNG TO OTolo BLUETOVUE YLoL TNV CUYXEXQUIEVT
epapuoyy. 'Evog evopynotpwtic mépwv o omolog dev Aeitovpyel pe mpoBrhentind TedTO
(avtdpactinde) Va didBale Tic yeTpéc cuoThatog apdTou elye eméhdel 1 “xopuPR” TwV
aoToytdy xou étol Yo adave (Aavdoaouéva) to péyedog tne xpuphc uvhune mou Yo diédete
Yoo TNV e@apuoYn, eved auth Yo elye unel oe pdon ue yoauniéc actoyiec. Avtidétwg, évag
EVOPYNOTEWTHS 0 omoiog Aeltoupyel Ye TEOPBAENTIXG TOTO, Vo UTOPOVCE VoL EXTIUYOEL TNV
aO&Non TWV Ao TOYLOY TE aUTEC TEoxL(ouY xaL €Tol va auEHoEL TEOANTTIXG To Uéyedog
%xpuPNE uviung mou Yo dlodéoel oty eQappoyT, Tavotota aLERVOVTIS £TOL TNV GUVONXT
anédooY| TNg.
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Yyfuo 8.3.2.. Emoxdmnon Apyitextovixrc tou mhaclou Rusty

8.3.3. leprypapn Apxittektovikng tov Rusty

H oyediaon tng apyttextovixic tou evyPuotd amotekeiton and 80o gdoeic, v @don cuk-
AOYT|C BEBOUEVOY VLol TNV EXTIUOEUCT] TWV VEURWVIXGY OIXTOWY xo(S XaL TNV eXTOEVOT)
AUTOV, XL TN QACT OTOU TA BIXTUN AUTA YENOWOTOLOVVTOL XUTA TNV EXTEAECT) TWV EQUQ-
HOYOV TPOXEWEVOL VO TROYUXTOTOCOUY TEOPBAEPEIC TWV UETEIXMY TOU GUCTAUANTOS OE
Tpayotixd yeovo. Iapoxdte avahbouye ev cuvtoula TIC €pYacieg TOU TEYHUATOTOLOVVTOL
oe xdde o amd auTéS TIC QPACELS.

bdaon Xvaloric Acdopévav kot Exkmaidevong Movtédwv

Y10 Eyfua 8.3.2 gaiveton 1 apyttextovixy| tou mhatctou Rusty. ‘Omwe gaiveton xou and to
oyhua, To Thaiolo AaPdver w¢ elcodo Téooepic TopaUéTeous: 1) TNV eQopuoYn YL TV omola
Véhoupe va mpoPAédoupe etpxée anddoone younhol eminédou, ii) v yetpw| anddoong
v onolor Y€houpe va mpofrédouye, n onola pnopel vo elvon onoladrinote yetpixt| and to
gpyoreio PCM [285] (v tnv tpéyovoa epyaocio eotidloupe ot IPC, L3M xou NRG),
iii) plo yetofAnt v onola xaholue “History™ xau iv) plo petoBAntsh Ty onolo xoholue
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“Horizon”. H yetoAntr History ovogpépetonl otov apidud TeVv SElYUdT®Y TOU TEOEpy OVl
am6 to gpyarelo PCM xau ypnowonowivtal w¢ axorouvdio eio6oou 6o yoviého LSTM, eve
N UeToBANTH horizon avagépetar oTov optdud TV YoEUXTNEOTIXOY EE6B0U/UEANOVTIXGDY
TV mou Yo tpofrédel to povtého LSTM.

3UANOYY BEBOUEVWY LTO TNV enipeila TaeeUBOA®Y: Tav TpdhTo Brua, To Rusty
CUAAEYEL SEBOUEVA antd TIC EQupUOYES UTO TNV UTopén YoplfBou xou topeuBohedy 6To UG TN
wo. T var emteuydel awtd, extehobue Ty egopuoyr oto cbotnud wog 100 gopés, xdde
popd ue OlapopeTxd @optio TapeuBoAfc, To omolo umopel va elvon elte mparyyotixd eite
ouvletixd (m.y. eappoyéc oL omolec tpoxaholy VopuBo oto clotnua poc). Xta Thadota
aTAC TNE epyaotiag, mpoxarolue TapeUBoréc 0To CUCTNUA HAC YPNOWOTOLOVTIS T1) GoulTa
iBench [3], n omnolo napéyel didpopec epopuoyés, 6mou 1 xdde pla xadéva otoyedel oto
var mpoxahel B6pufo oe Blagopetixoic ndpoug o molumlenvo cuothuata (t.y. CPU, xpu-
) xon xOpLoL UVAUN X.4.). LUYXEXEWEVD, ONXWYOUUE 010 ol TS pog Tuyaio aprdud and
oepyaoieg and tn couvlta iBench, émou 1 xdie dicpyaocia avatideton oe Evav tuyala emhey-
uévo mupriva Tou cucThuatoc. Koatd tn didpxeia tne extéheong, to mhaiolo Rusty cuiiéyel
xan anodnxedel OAeC T TANEOPOPIEC GYETIXG UE TG HETELXES AMOBOONE TOLU GUGC THUATOC,
wéow tou epyareiov PCM. Axolouddvtoc tnv moapamdve Sadixacia, to iBench moapdyet
ototixég mapeuforéc v OAn TN diudpxelo Lwng Tou gdpTou epyaciog. Qotdco, e€etdlo-
VTAG TOMATAG GEVAPLA GLUV-EXTEAEDTC TV EQapuoY®Y iBench ye tnv egoppoyr tnv omola
e€eTdlouYE, TUPATNEOVUE OTL TA ATNOTEAECUATA TWV TUPEUBOADY oV CEVAQLO UTopoVY Vol
OANGEOUY BRoPATIXG, TORAYOVTOS £TOL AVOUOLES ETUTTWOEL GTNY AmOdOCT TNG EQPUPUOYTNS
nou e€etdloupe.

ITpoenegepyacio xal dnuioveyiat cUVOAOUL BedoUEvwY Yia exTaideuom
TwV woviehwv: To anotéheopa tne pdong 1 elvon éva 6OvVoho amd YpOVOCELRES TWV Ue-
TEXWY TOL cLoTARATOS Yia Tor 100 BlapopeTnd oevdpla EXTEAECTC UTO BLapORETIXG ETiMEDN
napepforwy. Ltny deltepn @don, to Rusty mpoypatonoiel pla npoenelepyasio twv dedo-
HEVWY AUTWY TROXEWEVOL UTH VoL TAL PEQOVUE OE LORPPT| TOU Vo UTtopoly va 50900V w¢ £lc0d0
Y0 VoL EXTOLOEVUCOUPE TO VEUPWVIXO WOC BIXTUO. LUYXEXQWEVA, TEWTOV, XUVOVLXOTOLOUUE
TG TWES TWV UETEIXWY TIC OTOIEC GUAREYOUUE TROXEWEVOU AUTES VoL xUPalvovToL 0T0 £0pOg
[0,1]. Auth n ddixaoio eivan amapoitnTn, xadde oL Tiwée peTadd SLUPOPETINMDY UETEIXMV
unopel va €youv dlapopeTixt| xhipaxa peyédoug xou Bondd otny yeténelto eXToUOEUCT) TWV
VELPWVIXOY OXTUWY. Emlong, mpoxeiévou va eENoyIO TOTOCOVUE TIC HETELXEC IOV Bivou-
Ue o< €loodo oto Yovtého (xau €tol Ty mohumhoxdtntd tou), uroroyilouvpe dUo emmAéov
HETEWES, ouyxexpluéva TNy “ouoyétion xatd Pearson™ xodoe xou v “Awcuoyétion”. H
“ouoyétion xatd Pearson” pog delyvel xotd méco 1 uetpwr) tnv onolo Yélouue va mpo-
BréYouye oyetileton ue dheg Tic UTOROLTES UETEWXES TIC OToleg GUAAEYOLUE amd To GOGTNUY
wog, eved 1 “Awcuoyétion” petald 2 yetexdv Yog delyvel xotd 1o oL YEOVOGELRES TV
BLUPOPETIXY UETEXDY oyeTilovTtal xatd TNV Tdpodo tou ypovou. Télog, mpoxewwévou va
ONULOVEYHOOUUE TO GUVORO OEBOUEVWV YLoL TNV EXTALOEUCT] TWV UOVTEAWY U0G, OTOUE TIC
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Eyua 8.3.3.. Awepebvnon ywpeou napauéTewy Twv dixtiwy LSTM

YEOVOOELRES TWV UETPIXDY CUCTAUATOS TS OTOIEC GUAAEEOUE TRONYOUUEVWS OE UIXPOTEQR
xopudtior ue ™ ypriomn evog cupduevou nopadipou. To mapddupo autd Eyel uixoc ico ye to
dipolopo Twv TV TV yetointdy “History™ xow “Horizon™ nou avagépaue mopomdve xau
oVCLICTIXG avTioTolyel oty meplodo ue v onola Yo mpayuotonolovoaue Teofréel ato
CUCTNUS HAC OE EVA GEVAPLO TEAYUATIXOU YEOVOU.

Aigpebvnon yweouv nopopétpwy LSTM xo exnaidsuon Twv poviEA®YV
(¢ tehevtalo Brua, to mhalow Rusty mpaypatonoiel pio diepedvnon oe dlapopeTinés mopo-
uétpoug 1 onoleg enneedlovy TNy anddoon Twv Loviérwy LSTM. Autd to otddio €xelc o
OTOYO VO UEWWCOUPE OGO TO BUVATOV TEPLOCOTERO TNV TOAUTAOXOTNTA TOU UOVTIENOU UOG,
TEOXEWEVOL aUTO Vo efvan el xou €Tol var uropel va tparyotomolel tpofrédels yeryopa
OE TEAYUATIXG YEOVO oS xou Vo unv emBopdvel To CUCTNUN HAC UE TEPAULTERL ToPEUBO0-
Nec. Tuyxexpiuéva, eZetdlouye Tpelc dlapopeTinéc Topapétpous, 1) Tov aprdud twy enoydy
Yo T omofeg exmoudeouye To BixTL6 pag, ii) Tov apriud twv emnédwy Tou dixtiou pog
xou iii) Tov oprdud TV yapaxTnElo Tixey tapauéteny ot xdle eninedo. Xto LyAua 8.3.3
BAémoupe v enldpacn mou €xel 1 oAhayn xde plog amd TIC TOEUTAVE TUPUUETEOUS OTNY
anédoom tou poviéhou pag. ‘Omwe gaiveton xou amd to oYU, 600 ALEEVOLUE ToV apLiUd
TV EMTEDdWY XS xou TIC TapaéTeoug avd eninedo, téco avidvetal xal 1 anddoon tou
HOVTENOUL poic, UEYPL EVal ouYXeEXPLéVO TAaTo (4 eninedo xou 128 napduetpol avd eninedo).
Enione, nopotneolue mweg auidvoviag TiC Enoyés yia TIC omoleg exmatdedouue To poviého
pac, odnyoluaoTte o xoA0TEPES TWES amodoorg, He T 150 emoyéc va mapdyouv Tol o
uPMAd eninedo axplBelog.
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Intra-Node Resource Management

Yyfua 8.3.4.. Ioapdderypo avdntuéne xou Aettovpylac Tou mhawciov Rusty oe éva obotnua
AMOTEAOUUEVO OO CUGTADES OLOUXOUITTOV.

déon Aercovpyiog kou MpoPAédewv oe Mpaypotiké Xpdvo

Yto Lyfua 8.3.4 gaiveton mwe to mhalolo Rusty unogel va yenowwonoiniel o éva cbotnua
TIOU AMOTEAEITOL 0O CUC TABES BLUXOULO TWY, OOV TO GUC TN AUTO BeloxeTal UTO TNV OlayE-
{plom evoc xevtpixol evopynotewth tépwv (.., Kubernetes). e plo tétola eyxotdotoon,
Yo umipye éva oTiypotuno tou Rusty oe xdde évay amd toug Slaxoplotéc Tng cuo TddaC,
70 onolo Vo Tay unedYuvo va topoxorovdel xadng xal vo TpoBAENEL TIC HETEIXES AmbdooMC
xouniol emmédou tou cuoThuatog. Autég ol uetpés Yo umopoloay va yenoiporomdoly
1600 and ®ATOLOV EVORYNO TEWTH TOPWY EVTOE TOU (BLOU BLUXOULO TH, TEOXEWEVOU VO UTORE(
vor pLOWIZeL xan Vo xaTovéuEL Toug Blard€oLoug UTOROYIG TIX0UE TOPOUS UETAED TWV EPalp-
woy®v Baciouyévoe otic mpofBAiédeic tou Rusty, elte and xdmoiov xevipxd diayelploTy|, o
omolog €YEL WG OXOTO VoL TEAYUATOTOLACEL TNV oEYIXT) TOTOVETNOT Xl VO OPOUONOYHCEL TIG
EQUPUOYES GTOUC DLUPOPETIXNO0VG BLUXOULO TEG TNG CUC TABOG.

8.3.4. Mepapatikn AELoAdynon

e qUTAV TNV EVOTNTA OElYVOUUE XATOLA EVOELXTIXA ATOTEAEOUOTA OYETIXE UE TNV ATOBOTL-
©xOTNTOL XU amoteERecpATIXOTTA Tou Thawctiou Rusty. Tuyxexpuéva autd mou e€etdlouue
elvon To xotd téco pnopel to mhaioto Rusty va mporypatonowoet axpiBelc npoBAédec oyeti-
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R? score

Syfua 8.3.5.. R? oxop mou métuye To mhaiolo Rusty yia tpdBhedm twv petpindy L3M
YETOHLOTOLOVTAS apyLTeEXTOVIXY HE 4 eminedo xou 128 mopouétpoug avd eninedo, yo
ToEduETEO history=50 xou horizon=1.

X4 UE TIC 3 OLUPOPETIXEC UETEIXEC LU THUOTOC Tou EETALOVUE, TOGO YL YVWO TEC OGO Xal
Yot QYVWOTEG EQPUPUOYES ARG XL YL dYVewoToug TOToug dlaxouotav. Ilpoxewévou va
o€LOAOYHOOUUE TO TEOTEWVOUEVO TAALCLO, YENOULOTOCUUE EPUOUOYES OO TEELS DLAPOPETL-
xéc ooultec [83,283,284], v ta mewpdpatd poc SielfydInoay o éva 1oyvuped dlaxoulo T
TOU cUVAVTAUE oLy Vd ot mepBdilovia Trohoyiotxol Négoue (IntelOXeon©E5-2658A
v3).

Axpieia tpoPAéPewv 1 YvwoTéc epoppoTéc

Apyxd, a&lohoyolue Ty axplBelo Tou TEoTEWVOUEVOL TANGIOU GGOV aopd TNy TEOBAedN pe-
TELXWY ATODOOTE YIA YVOO TEC EPUPUOYES, ONANDT| EPUPUOYES TIC OTOIES TIC YENOLLOTONCUUE
xal Xt TN AT CUAAOYTG BEBOUEVWY Ko EXTIAUBEVOTE TwV HOoVTEAWY pag. To Xyrua 8.3.5
oelyvel To anoteréopata Tou TETUYAUE Yio xdde eapuoyr xan xdde plo amd TIC 3 UETELXES
an6300me, OO WC UETEOo GElOAGYNONS Yenoiwonomoaue To oxop R2. Mopatnpolye Twe To
mhaioto Rusty emtuyydver mohd udmiée twée R?, oL omolec xupaivovta amd 0.92 énc 0.99
oxop, ue xatd péao dpo 0.991 0.988 xou 0.994 oxop Yl medBredn twv peteixwy L3M, IPC
xou NRG avtictouya.

Axpifeia tpoPAéPe@v Tl AYVROOTEG EPOPROTEG

Y1n ouvéyela, aflohoyolye TNy axpifeio TV TEoBAETTIXGY wovtéhwy Tou Rusty 6cov agpopd
dyvwoteg egapuoyég. o To oxond autd, YeNnoLoTol0UE SLUPORETIXES EQUPUOYES TIPOXEL-
HEVOU v eEXTIUBEVCOLUE Tol LOVTENA TEOBAEPNG TWV UETEIXWDY OmOB00NE Kol BLaPOpETIXES
EQUPUOYES TROXEWEVOL vV 0LOAOYHOOUUE TNV ETBOGY TOUC.
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Y10 Eyfua 8.3.6 TapatnpoluE ol OYETIXG AMOTENECUO- 1.00

To, OTOU O GEOVOG Y OVOPERETAL XU TOAL OTNY UETEL- v 0.75

wh anédoone R? evé o dZovac x debyver 4 dlupopeTind S 0.50

oEVAQLAL, ToL OTIO(o AVTIGTOLYOUY GE BLAPORETIXOVUS GUV- &

OLACHUOUS EQPUPUOYWY TIC OTOIES YENOWLOTOLOVUE Xt © 0.25

TN OLdpxELdl EXTAUBEVONE TV VELPOVIXWDY OXTOWY HAC 0.00

xo xotd T Sudpxelo aflohdynonc toug. ‘Onwe galveton 1 2 3 4 5
XaL omo TO OYNud, OTNY TASOPNPla TV TEPLTTOOENY scenario

To mAaiolo Rusty emituyydvel mohlb uPmhd oxop, e Tic Syhuo 8.3.6.. Anddoor
Téc vou xupobvovtan uetodd 0.965 xon 0.988 R%. ‘Ocov TpoBAédEwY Yol dyvmoTec
apopd TN wetpuxr xatavdiwong evépyelas (NRG) mopa- epapuoYée

TNEOVUE TS EVE Yol ToL OEVERLAL 2-5, Tot axop TEdBAedNg

elvon opxetd UPNAL, 6TO oEVdpELo 1 xupaiveTon o€ YounAég

Tég. Autd oupPaivel BLOTL oL BAXUPAVOELS xS Kol To TEOTUTIOL XATAVIAWOTG EVEQYELAS
TWY EQAPUOYWY Ol OTOlES YENOWOTOLAUNXAY YLl TNV EXTAUOEVOT TWV UOVTEAWY Oev elvan
OVTITPOCOTEVTIXY TV EPUPUOYMV Ol OTO(ES YPNOLLOTOL00VTAL YL TNV AELOAOYNOT| TOUS XA,
Gpa, Tor LovTéla Bev elvan oe H€om va TeofAEPouy ETTUYMOC TEOTUTA XATAVIAWOTE TV G
omola dev €youv eXTUOEUTEL.

Axpifera tpoBAéPemv Tl AYVOOTOVG SLOLKORLOTEG

Télog, ota mhalowa aglohdynong, eCétacoaue TNV cuunepipopd Tou Rusty o6tav autd Aet-
Toupyel oe xdmowov dyvwoTo dlxopo . ['a 10 oxomd autd vourdooue Evay BLaxoulc T
amo Evay TEUYUATIXO Tdpoyo untneecldy Y ohoyloTixol Négoug xan cuyxexpluéva and TN
Amazon AWS (m5.metal server), ndvw otov onolo tpéZoue 100 drapopeTtind oevdpla cu-
VIOTOVETNONG EPOUQUOYODY. DTN CUVEYELN, EXTOUOEVOUUE TO LOVTEAN UAS YENOULOTOWVTAS
HeTpéc anddoong and to apyxd poc (Tomxd) oo TNua xou To AELOAOYAOUUE Y PNOLLOTOL-
AOVTOC YETEIXEC am6doang and To cUo TN TNg Amazon.

R? score

[ L3MEEE IPCHEE NRG

Yyfuo 8.3.7.. Anodoon npofrédewy Yo dyvwoToUS SLoXOUcTES
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Y10 Eyfua 8.3.7 Brémouye ta avtioTorya anotedéopata. ‘Onwe galveton xaL and To oYU,
t0 mAaiolo Rusty xaw mdh metuyobver apxetd udmAd oxop (av xou xdmwe younidtepa and
TEOTYOUREVLS), Ue TIC THée Tou R? va xupaivovton uetadt 0.76 we 0.99. Yuyxpitixd ue Tic
avtioTtolyeg TWES Yid YVWOTOUC BlaxoWoTéS, Topatneolue wlo yelworn e tééne tou 0.01,
0.10 xon 0.12 yio tic yetpwée L3M, IPC ow NRG avtiotowya. Autd to nelpopo amoxohidntel
OTL, TUEONO TOL 1) UTOXE(UEVY apytTeEXTOVIXT UTtopel vor oAhALeL, UTdpy oLV emavalouBavoueva
©ot{Bo 0T TEATUTAL YPOVOTELPMY TWV EQPAPUOY WY, To ool To Thaioto Rusty etvon oe Héom va
HOVTEAOTIOAOEL, AOY® TNS XAVOVLXOTOINONG Tou exTeAeltal XaTtd TN @don npoeneepyosiag
OEBOUEVWY.

8.3.5. Emiloyoc

H npoPhediudtnTol UTOAOYLO XY GUGTNUATWY OE TEAYUATIXG YEOVO LTS TNV Lo Topeyu-
Bohav elvan amopabtnTn yior TNV xoklteen Sloyelplon Twv mépwy ot olyyeova KA ueyding
o, Ye autd to xepdioo mpoteivaue to Rusty, éva ehagpeld mhaioto tpoyvwoTixhg na-
poxxohovinong mou Basileton oe dixtua LSTM, uxavé vo mapéyel yYeryopes, axplfeic, un dia-
xomToUeveS TROPAEYEC UETEPHOEWY UG TAUATOS Yaunhol emnédou und Ty Lrtoén YopdBou
xan mopeuBoAdy 6to clotnua. Avohldooue ol BlEpEUVACUUE TOANE BLUPOPETIXG Ty AT
apyttextovixéc tou duxtiou LSTM xou xatohiZape o€ (Lol YEVIXY AmOBOTIXY] OpYLITEXTOVIXN
600V apopd TNV axpeifeia, TNV AmdXELOY GTOUG TEQLOPLOUOUS YPOVOU EXTEAECTC oL TO UTO-
Aoyiotnd x6otog. Acilope 6T To Rusty dnuovpyel wa peadic i Aoon emtuyydvovtag
eZonpeTixd LMY oxpifela medBhedne R? 0,98 xatd péco 6po xdtw amd peahoTid cevdpla
CUVTOTOVETNONS EPUOUOYWY OE XOWVOUC DLUXOULO TES.
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8.4. MA\oiicwo Adrias

8.4.1. Ewlocaywt1

To teheutala ypovia, o urtoloyiouds oto TrmohoyioTind Négog Eyel xahepwldel we to véo
TEOTUTIO YL TNV AVATTUET] EQUQUOY WY Kol OVOUEVETAL VoL AV TUYVEL axou” TEPLOGOTERO GTO
eYYUC UENNOV, AOYw NS eVeALElAC XL TNS OLXOVOULXNC AOBOTIXOTNTAS TTOL TEOCPEREL [310].
And Ty ox0Td TV TP WY, 1 HEYLO TOTOINON TNE AmGB00NE TOU THPEYETAUL OTOUC TENATES
UE ToESAANAT EAOLYLO TOTOINOT] TOU GUVOALXOU XOGTOUG LOLOXTNOLAC ATOTEAEL TOV TLO ONUAVTL-
%6 OTOYO XATA TOV OYEDLAOUO TV LTOBOUMY Toug. 20T600, AUTEC OL BUO AVTIXPOUOUEVES
amouthoelg elvon BUox0Ao va emiteLyYoLy, xadde 1 ueYLIoTOoToiNoN NG anddoong analTel Ue-
HOVOUEVT] EXTENETT) TV EQURUOYOY, 1| oTold, woTOC0, 0dNYEel o LPNAY Loy ENoLoTOoNoY
TWV VTOAOYLOTIXWY TOpwv ota KA [29,30,311].

ITpoxewévou va avtipeTwnicouy autd to TEOBANUA, oL Tdpoyol LUTNEESLOY Y TohoYloTIX0)
Négoug €youv uodethoel oTEATNYXES TOMATATC HioVwoNG TV BLIXOUo TRV Toug Ot dla-
popeTixolg yenhoteg. Evd auth n mpocéyyion BeATiddvel T cuvohixy yerion népwy twv KA,
odnyel enione oe mapeyPoréc xan VopuBo GTOUE KOWVOYENC TOUS LUTOAOYLO TIX0UE TOPOUS, OL
omolol Ye TN O€lpd ToUg TEOXAAOUY UETABANTOTNTA xou LUTOPBAYULOY GTNY AnOdOCT TWY €-
pappoyoy [41,88,116,313]. Ta va neplopiotel To Topomdve tpdBAnua, to teheutaio ypodvia
€youv avantuydel apxetd mhalow o onola aToyEdOLY GTNV EEUTYY EVORYHO TEWST XoU OLo-
YELPLOT UTOAOYLOTIXDY TOpWY TOG0 antd Tov oxadnudixd yweo [41,63,64] 600 xou and
Brounyavio [117], 6mou cvvietor unyaviopol Aoylouixol EAEYYOUV TOV TEOTO UE TOV OTO-
{oL oL Stéouuol LTOAOYLOTIXOl TOPOL XATAVEUOVTOL OTIC EQPUPUOYES TOU EXTEAOVUVTOL GTO
cUCTNUAL.

IMogd v mohumhoxdtnTd Toug, oL unyaviouol ol onofol otnpllovton xadupd oc LAomol-
foeic oe eninedo Aoylouxo) amodeixviovTo un txavol va emhdoouy TAfews To TEOBANU
uToyenoylonoinong mopwy oc cuoThuata Népoug, 1 onola OLCLACTIXA TEOXVTTEL (S Kot
TEANEN TOU GUVBLACUOD BVO BLUPOPETIXMV TOEAYOVIWY 1) TWV SLUPOPETIXMY UTONOYIO TL-
XV OmUTACEWY UETOED BLUPORETIXMY EQapUOYMY Xau ii) TN oTadephc YwENTIXOTNTIC TWY
oUYYPOVWY BLIXOUIC TV avapopxd Pe Toug Slodéoluous umtoloyioTixols mopous. Koatd
ouvénela, elvon oOvnieg ota olyypova XEVTpa BEBOUEVWY Vo TapaTneeital €vag xoTaxep-
Hatlopos mopwy mou elvar Slodéoidol ahhd Sev pmopolv va yenowonoindoly and xoulo
eqopuoyn [317,318].

ITpoxeyévou Vo avTETOTIO TEL TO TEOBANUL TOU XATUXEQUATICUOU TMV UTOAOYLO TIXWY TOPWY,
tehevutaio €yel mpotadel €va vEo mpoTUTO oyEdiaong cuoTudTwy TroloyioTixol Négoug,
YVOOoT6 xou ¢ “Anocivieon Troloyiotixwy IIopwv”. Xto npdtuno autd, ol Sidéaipol
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UTIONOYLO TIXOL TIOPOL 0PYOVOVOVTAL GE OUOYEVEIC ouddec (T.y., SloxouloTéc povo ue xdpla
UVAUT), BLOXOWO TEC HOVO UE ETITOYLVTES, XTA.), OL OToloL Umopovy Vo cLUVTEVOUY BuvouXd,
AVEAOY QL UE TIC UTOANOYIO TIXEC AMAULTHOELS TV EPUPUOYWY OL OTOIEC TEEYOUV OTIC UTOOOUES
tou Négoug. (g anotéleoya, nopdro mou 1 “Anocivieon YTroloyiotxdyv Ilépwv” npo-
OPEQEL O AETTOUERT] 0PYAVKOT| TWV UTOAOYLOTIXWY TORWY, EICAYEL ETiONG Xan VEA onuela
o omola yprlouv Bedtiotomoinong (.. emhoyy| UeTAE) TOTUXAC XoL UTOUAXPUOUEVNG Kot
Tovouic UVAUNG), ta omola TEémel var avTETOTI{oVToL 0woTd Yo Vo Tapéyouv ouEnuévn
ATOBOTIXOTNTA TWV UTOAOYICTIXGV Topwy. Edwd oc cuctAuata végoug ye Anocivieon
Mvrung, amouteitan evopynotenmuévn nedcfaon otoug tépoug UvAuNg, dedouévou OTL 1) a-
TOB00T TWV EQPUPUOY®Y Unopel va ennpeactel gofopd Aoyw tng auinuévne xoductéenone
oty Tp6oPooy oV anopoxpUoUévy uvhun [337], evd ta potifo mpdoBacne ot wviun
oLYVE omOXANOTTOUY amEOPBAETTES SlaxLPEVOELS xatd T Bidpxela Tne extéleonc [162,208].
Emniéov, npdogateg €peuveg €youv Bellel TS To amoTOTMUI SUABX0) XWX TWV EPp-
poy®wyv mou extedolvton oto Négog elvan pio €wg 800 TdEelc yeyédoug ueyolltepo amd
%xpLQY) uvrun evtoAody L1 xou unopel va odnyfoel oe emavohaufavoueves actoyleg xatd tnv
npbofaon oe dedouéva, PAGTTOVTOC TNV andB00N TV EXTEAOUUEVKY EQapuoY®Y [288,289],
eved Teleutaleg avapopés and KA peyding xhlgoxag delyvouy 6Tt 1 uviur anotehel to Ue-
yahOtepo onueio cuppdenone [29].

Y10 xe@dharo autd, mapovaidlouvpe To mAaiolo Adrias, évoy BEOPONOYNTY EQULUOYMY Yid
CUCTAUATO HE ATOCUVTEVEUEVOUC UTOAOYIOTIXOUC TOPOUC UVAUNG, TO OTOl AELTOURYOUY
xdtw and v mogousia Yoplfou Adyw cuviomodétnong epapuoy®y. Ta Baocud yopaxtn-
ploTxd tou mhouotov Adrias xoddg Xl Ol GUVELGPORES TOU UTOEOUYV Vo LVOYLETOUY GTaL
nopoxdtey onueto: i) Ty ixavédTntd Tou va npaypatonoiel TeoBAEYelc oYETIX Ye UETPIXES
anédooNg YAUNAOU EMTEDOV, OBNYWOVTNG €T0L MEOOPATIXES ETUAOYES AVAUPOPIXE UE EVOE-
YAO TPWOTN TOPWY O CUG TAUATA ATOCLVTEVEEVNG UVAUNG, i) TNV tavéTnTd Tou va urnopel
vo TeofAédel TNV anddooT eQapUoY®Y, TewTol exclvec exteheaToly, elte 0TV TOTUXY| €-
{te oTNY amopoxpUOUEVT UVAEN xou LTd TNV enfpeta YoplBou xou iii) TRV xavdTnTd Tou va
Xenotponotel Ty anopoxpuouévn amocuvtedelévn uviun pe ehdytotn (1 xou xadolou) emp-
eoY| oTNY anmdBOCT) TWV EQPAPUOYWY OL OTOlEG EXTEAOUVTL EMAVL 0To cVoTtnua. To mhaiclo
Adrias ypnowomnotel yetpixéc anddoone younhol emmnédou Tic omoleg Tpogodotel o évav
EVOPY MO TeWwTH TopwV 0 onolog Paciletoun ot Padid vevpwvixd dixTua TETLYAVOVTIC €TOL Vol
OPOUOAOYEL EQPUPUOYES OF CUC TAUATA ATOCUVTEVEWWEVNG UVAUNG UE ENSylo T eninTtwon oTtny
andd00Y| TOUC.

Y guowvtikéTnta TAouociov Adrias

‘Oneg avapépope XL TEONYOUREVKS, To GUC TAULNTA ATOCUVTEVEEVGDY TOPWY YIVOVTAL ONO-
€val xou o dNpo@hy) ot unodouéc Trohoyio ol Négoug [233-235]. TIépav twv dhhwy,
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Yyfua 8.4.1.. Tyvn oxetixd ye v yenowonoinon tng CPU xou tng pviung otic unodouég
onpogiholg mapdywyv YTrneeouwy Négoug

awtd cuuPaivel AOY® TOU XATUXEQUATIONOU TWV TOPWY, YEYOVOS To omolo elvon cuvEmELd
T600 TWV eEUPETING DLUPOPETIXWY ATAUTACEWY TWYV BLUPOPETIXDY EPUPUOYWY OG0 Xl TNG
un Bértiotng Tomo¥ETnong TV EPUPUOYNY 6TOUS dlardéotuoug UTOAOYIG TIXOUE TOpoLS. §2¢
XUEUXTNELO TG Tapddelypa, oto Lyhua 8.4.1 BAénovue 1N yenowwonoinon tne CPU xadng
X0l TNG UWVHUNG EVIOE TWV LTOBOUMY BV0 YVWO TV Tapdywv Y rnpeoiiy Népoug, ovouao tixd,
e Alibaba [29] oto apotepd o tne Azure [235] ota dedid. Av xortd&oupe Ty nepinTwon
e Alibaba, napatnpolue twe eved N yenotpwonoinor te CPU xupoivetan og yaunhd eninedo
ot dudpxela tne Nuépoc (petadd 20%-60%) 1 yenowwonoinot Tne UvAUNG xuUaiveton o€ TOAD
udmid eninedo (dve tou 80%). Auth 1 TepinTwon pog odNYEL GE XUTAXEPUATIOUS TWY TOPWY
¢ CPU, ot omolol Beloxovton exel, ahAd dev unopodv va yenouronomdoldy and xouio eqop-
wov”. Avtdétwg, otny nepintwon tng Azure, napatneolue to axpBng avtideto potiBo.
Yuyxexpéva, BAETOVUE WG 660 ALEAVETAL O OELIUOC TWV TURHVKY OL OToloL BECUELOVTOL
oMo EMOVIXEC UNYAVES, TOCO auEAveTol Xou To PEYED0C TNG XATACTUTOANUEYNS UVAUNG, N
omofo puropel va @tdoel xou o€ enineda e 8&ne tov 10%. Autd odnyel oe xataxeppotiond
e dladéotung wvAung, n onola Beloxeton exel, ahhd xon TdAL dev umopel var yenotdorowmdel
amo xaulol EQAPUOYY.

And to mapandve, @oalvetan Eexdiopa TS O XATUXEPUATIONOC TOPKY AmOTEAE! ONUAVTIXG
TEOBANUa oTa cUYYpOVA cLC THUATA LTodouwyY TroloyioTixol Négoug. I To Aéyo autd,
N "Anocivieorn Trohoyiotixdy Ilépwv™ anotehel To emduevo Briua oe tétoleg UTOBOUEC,
TEOXEWEVOL Vo UTopécouy ol tdpoyol Trnpeoidv Troloyiotixod Népoug va umopolv va
xdvouv xaAUTeRT dlaryelplon Tou dladéaipou VAo, ‘Onwg elvon Aoyixd, oe tétolo cuC THUA-
Ta, UTHEYEL 1) oVAYXT] Yiot UAOTIOINGT] %Ol AVATTUEY], XAUVOTOUMY EVORY N TEWTMY, Ol OTolot
AoBdvouy LTOYTN TIC LOLUTEROTNTAS XKoL T YOUEAXTNELO TIXA AUTWOY TV VEWY CUCTNUATWY,
EXOVTOC WG OTOYO TNV XOADTERY] YENOWOTOINON TV BIECUWY UTOAOYIC TIXWY TOPWY Y-
plc va yetdvetan 1 amddooY TWV EQUPUOYWY TouU exTEAOUVTHL ot autd. Ilpog authAv TNV
xateduvor), to mhalolo Adrias anoteAel Tov TEMTN BEOUONOYNTY EQURUOYOY YL GUGC THUA-
Ta AmocLVTEVEEVNE UVAUNG, TO OTolo €YEL WS OTOYO Vo amopacilel oy XATOoLdL EQUPUOYN

228



8.4. Adrias

2. Predictor
Offline Phase Online Phase
2b. Gather application Yes New
signature App?

Trained
models

L 4

¢ @ P S 2d. Predict application's
> performance

A A

3 bredicted ;
i Performance

{ Performance !
i..(remote) !

system metrics

2a. Simulation of realistic
execution scenarios

2c. Forecast future |

1. Watcher 3. Orchestrator

E [ Metrics Aggregator ] . Orchestration Logic ] H
Dt A - el
H ! oca emote |

FPGA G FPGA

Local Remote

Yyhua 8.4.2.. Emoxénnon Apyitextovixrc tou mhawciou Adrias

Yo Seopevoel uviun elte “napadootoxd”, eviog Tou BLIXOULO T oTov onolo exteAe(tol, elte
‘aroouvtedeluéva”, and XATOLOV ATOUAXPUOHUEVO BLUXOULO TY.

8.4.2. leprypapn Apxttektovikng tov Adrias

Y10 Eynua 8.4.2 BAénovpe wla oy NUaTiXy) avamopdo TOoT TNS OPYITEXTOVIXTG TOU TANUGIOU
Adrias. To mhaiolo anoteheitan omd TeELC XVPLEC CUVLO TMOES, OVOUUoTIXY, 1) Tov “Watcher”,
0TO)0¢ ToL omoiou efvan Vo Tapoxolovdel xan Vo CUAAEYEL TIC UETEIXES AmOBOOTS YAUNAOL
emnédou Tou cuoThUatog, i) tov “Predictor”, otéyoc tou onolou eivon va mparypatomoLel
TpoPréelc 1660 660 aPopd To K Var XUUUVIOUY OL THIES TWV UETEIXMY ambd00NG GTO Y-
AoV, 6G0 o AVAPOEIXS UE TNV ATOBOCT] TWY EQUPUOYMYV OL OTIOEC TPOXELTUL VO EXTEAECTOLY
070 cUCTNUA, OE TEPITTMOT TOU dEOUENCOUY VAU Elte ToTUX ElTe amopaxpuopéva, Xt iii)
tov “Orchestrator, 6téyoc tou onolou elvar v anogacilel and molo xoupdtt Yo deouelooUY
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wvrun ot epapuoyés, hauBdvovtag urogn tig tpofrédelg Tic onoleg mpaypatonolnoe o Pre-
dictor. Xtn cuvéyeia, avahloOLUE TO AETTOUEPOS XAV €va amd auTd To Yépn Tou mAauciou
o,

Watcher

‘Onwg avapépoue xo TEoNYOLUEVWS oToyog Tou Watcher etvon va tapaxorouvdel to chotnua
xal Vo GUAAEYEL HETPES amodoome Yaunhol emmédou. Muyxexpiéva, o Watcher culiéyel
ueTpéc oL onoleg oyetilovtan Ue TN YeNOoLLoToiNon xS Xl UE TI TROCBACELS OTNY UVAUT,
OTWE YO TUEAOELY A TOV aptiUd TV ACTOYLOV Yid TEOOPBACEL O DEBOUEVT] OTIC XPUPES
UVAMES, TOV aptlud TwV TEooPdoewy TNy Tomxy) x0pLo WVAUN xodde xoL TNV xouoTéenom
oANG xou To pUOUS amoGTOAS xou AN BEBOUEVKY TTEOC Xou ATt TNV ATOUAXEUOUEVT) WVHUT.
Méow aut®dV TV UETEIXWOY, UTOPOVUE VO EYOUHE Wil YEVIXT EXOVAL YLol TO BLAPORETIXG
eninedo Lynuay, xodde xa yio T po1| 0eB0UEVKV PHETAE) TWV BLUPOPETIXDY ETUTESWY UVAUNG
oTNV TEEOGO TOU YEOVOU.

Predictor

Yxondg tou Predictor elvon var umopel vor mpoBAEnEL TNV XATAGTOOT, TOU CUCTARATOS GTO
wélhov (mpofBiémovtac Tic petpixés anddoong younhol emmédou), xodde xaL Vo utopel va
TeoAEdeL TNV anddOCT TWV EPUPUOYHV Ol OTOIES TEOXELTAL VO EXTEAEGTOLY GTO GUCTNUA
Hag, avehoyo Ue To €QV aUTEG Vol SEGUEVGOLY TN UVAUY TOUS omtd TO TOTUXO 1| A6 XATOLOV
anopaxpuouévo dloxopo . Ilpoxewévou va metdyel ta mapamdvew, o Predictor yenowo-
notel pla apyttextoviny) Bothdv vevpwvixdy dixtiwy, 1 omolo anoteleiton and dvo enineda
TeoPBhedmne émou ol meofrédeic Tou TE®TOU TEoYodoTolvTUL 6To delTepo Xt BacileTal oTa
dixtua LSTM. ¥t0o Eyrua 8.4.3 BAénouvye pio oynmuotiny avamapdo TaoT TNS AeyLTEXTOVIXNG
TOV AUTOV OXTOWV.

Yuyxexpwéva, yio To 8xtuo TEdBAePNE TNG XATAC TAONE TOL UG THUATOS, AUTO AdUPBdvel wg
elcodo TNV TEéYOoUCU XATAGTACT), 1] OTOLOL OVUTUPLO TATOL UETW EVOC GUVOROU BLAVUOUSTLY
XPOVOOELRWY, OTou xdie Bidvuouo avTioTolyel o plor BlapopETXY) HETEWXY amédooN aAnd
autég mou mopoaxohoudel o Watcher. To péyedog tne ypovooelpds elvon TopaueTeoTOoL-
wo xou e€optdton amd to moHGN MapeAYovTiXY TANpogopia YEAOLUE VO TPOPOBOTHCOVUE GTO
oLoTNUA pog. ¢ €€0do, To BixTuO TEOPRAETEL TNV PEANOLCH XATACTAOT, TOU GUC THUATOC,
v omola avamoplo ToUe PECw EVOE Blaviopatog, Omou xdde Twr Tou avTioTolyel oTov
H€oo bpo NG TWAC TWV UETEXADY anddoone 6To YéNhov. Avtiotowya, to péyedoc tou mo-
potbpou 6To omolo avTioTolyel auTH N uéorn TN elvar enione TapaueTponO oo Xou eEap-
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System State System State App's signature
Time-series of system Time-series of system Time-series of system
events over the history events over the history | |events during isolated
window (1507 window  (1507)| |aPp execution (¢ 7

T

Non-Linear

Non-Linear (4,4 re--loool (328)

-Li 1 State 1 on-Linear Deployment
Non-Linear (64) ' Average ! (164) Mode

1 1
. value of system,; i Local or
Norl'L'near(32) ! eventsin the ! Non Lmear(64) Remote
1 future O
(7) !

! Predicted System State Predicted Performance
' Average value of system 1 BE apps: Execution Time
tevents on horizon window, LC apps: 99" percentile
(o) Apyrtextovixd (B") Apyrtextovixd povtélou yia mpdBredn tne
povtélou yia TpoBAedn tne andBooNe TV EQPUPUOY OV

XOUTACTAONE TOU GUCTAUATOS

Yyua 8.4.3.. Apyrtextovinr) Awtiwy IpbBredne (o) tne xatdotaons Tou GUOTAUATOS
xau () tne amddoone twv egappoyey. Ot napeviécels UTOBEXYOOUY ToV opPIIUd TwV
EMUTESWY XAl TWV TOUPAUUETEWY avd eninedo.

TdTow amd TO Yl TOG0 Yoxpld oto péAlov JéAouue vo xdvouue TpofBAédelc Yo To cloTNUd
Hog.

Avagopixd pe to dixtuo TedPBAedng Tng anddooNE TV EPUPUOYDY, auTd hauBdvel we elcodo
téooeplc mopopéteous. ‘Opola ue to TponyoLuevo dixtuo, dEyeton we elcodo tny Teéyouca
XOTAC TUCT) TOU UTOXEUEVOL GUO THUATOC, X xou TNV WEAAOVCA XAUTAC TACT), 1) OTtolol Ou-
oo Td elvon n TEoBAedn Tou mpaypatomoinoe To dixTuo TEOBAedNg TNg xuTdoTACNE TOU
UG TAUATOS Xou TEoYodoTElToL ameulelog and autd. Emmiéov, to dixtuo Aopfdverl w¢ eloo-
00 pio BuodIXT TUEGUETEO, 1 OTIOloL UTOBNAWVEL Ylal TOlO TEOTO BEoUEUCTS UViUNG HéAouue
vo tparypatonotoouue TNy TedfBiedn, 6mou to 0 avtioTolyel oe Béoueuon UVAUNG and Tov
TOTUXO OloaxoUlo T xou To 1 oe déoueuon uvAung and tov anopaxpucuévo. Télog, To dixtuo
enfong AopPdver wg eloodo v “YTroypapr tng epapuoync”. Ouctactixd, auth 7 elcodog
TPOXELTOL YLOl €VOL GUVORO OLAVUOUATWY YPOVOGCELR(Y, Ol OTOIEC AVTIOTOLYOUV OF UETELXEC
anéd0oNE YoUNAOU ETUTEOOL TNE EQPAPUOYNG OTAV AUTY EXTEAE(TOL XATATOXAELO TIXOTNTA GTO
cUCTNUA, OECUEVOVTUS UVAUN AT TOV AmouoxpUoévo dlaxouoth. Ev yével, 1o clvolo
AUTO TWV OLVUOUATWY TEQLYRAPEL TNV CUUTEPLPORE EXTEAECTS TNG EQPAUPUOYNS Kol TEPLAO-
Béver TAnpoopia OYETIXA UE TOL YORUXTNELO TIXE TNG EQPUPUOYNE 000V apopd TS TPOCBAcELS
TNC OTN WVAWY, TI¢ aoToyleg Tng oe mpdoPact oe dedouéva, xth. Méow tng mopandve po-
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Simulation
Duration
Spawn
Interval

{t1.t2}

bench = alloc_mode =
rand(BE,LC,ibench) rand(local,remote)

Y

sleep rand(tq,tp)
seconds

Duration -« Deploy container

Eyfuo 8.4.4.. Aidrypapuo poAS Yot TNV TORUY WY XA EXTENETT) DLUPORETIXODY CEVARILY,
Yiot T GUAROYY| BEBOUEVWV.

vIEAOTO(NONE XAl TNG TEOPODBHTNONE OTO BIXTUO TNG XATACTACNS TOU CUCTAUATOS XoKS
XL TN “UmoYpaphc” TG EXACTOTE £QUPUOYHS, TO HOVTELO TEdPBhedng anddoone elvon oe
¥éom va cuoyeTioel YapaxTNEIG TG TOU UTOXE(UEVOU GUCTAUTOS UE YORUXTNELO TIXE TWV
EQUPUOYWY OV TREOXELTOL VO EXTEAECTOLY GTO GUC TN

JuAhoyr, Acdopévey xan Exnaidesuon Moviéhwv: Ta vo exmtoudedooupe ta
TUEOTAVE UOVTEAD, ATOUTELTOL 1) CUAAOYY TwV amopaitntwy dedouévwy tor omolo var elvon
AVTITPOOWTEVTIXA oevaplwy exTéAeone Tou mpaypatixod xoécuou. Ilpoxewwévou va to me-
TUYOUUE aUTO, TOEAYOUUE o EXTENOVUUE TOMAATAS BLOPOPETIXA CEVAQLAL XATA To OTolo Ot
EQPAUPUOYEC ELCEPYOVTAL OTO CUOTNHUA Uog UE TuYolo Teomo. Xto Myfua 8.4.4 qaivetan oyr-
Mot 1) dtaduxacior UE TNV OTolal TOEAYOUUE QUTA TO OEVAQLAL  MUYXEXQWEVY, Yiol Xxdde
oevdplo exTeAOVUE Uiar Tuyaia EPoproYY| 0To oo TNUd Yag, 1) omolo deouedel Tuyaia WVAUN
elte and 10 TOTXO ElTE AMO TO AMOUAXEUOUEVO BLOXOULOTY|. LTY) CUVEYELX, TEPUUEVOUUE YLol
XATOLO TUY LD YEOVIXO BLACTNUA, TEOTOV EXTEAEGOUUE TNV EMOUEVT] EPUPUOYT) 0TO UG TNUA
wog, N onola xadopiletar oxpiBme Ye tov (Blo Tpomo ue mponyouuévws. H Sabixacio auty
enavaAopBAveTal €wg 6Tou LUTEPBOVUE TO GUVORLIXS YEOVO BLAEXELNG TOU EXACTOTE GEVAPLO
(o omolog éyel opioTel xatd TV apyLxonoinoy Tou cevopiou).

AvdAvor extéleonc oevoplwy: JUVOAXA, TPOXEWEVOU VO GUANEEOUUE TOL OO0~
{tnTa Bedouéval Yior TNV EXTABEVOT TWV LOVTEAWY pag, TapiyInouy xou exteAéoTnxay 72
OlapopeTInd oevdpLa dldpxetag 1 wpag to xoéva. Xto Nyfua 8.4.5 BAénoupe TNy xatovour
TWY YPOVOY EXTEAECTC EVOC UTOGUVOAOU TWV EPUOUOYHY IOV YENOULOTO|CAUUE XOTd T1) Blat-
duxacio cUANOY TG Bedopévwy, amd Gha Tar 72 cevdpla extéheonc. Ievixd, napatnpolue mwg
1 EXTEAECT) TWV EPUPUOYHY DECUEVOVTAUC UVAUY AT TOV ATOUAXPUOUEVO BLOXOULO TY| 00NYEl
oe aoUNTY pelworn tNg anddooTc Toug, XS Ol XATAVOUES TWY YPOVWY EXTENECTNC Yol TNV
OTOUOXEUOUEVY UVAUY Blaxupaivovton oe LPNAoTeEpeS TIWES o OAeg TG EQapUoYes. Autd
1oL TaEOLGLALEL WBLTERO EVOLPEPOY, Elvar 1) CUCYETION UETAED TWYV XUTAVOUWY GTOV TOTUXO
X0l CTOV ATOUUXQUOHUEVO BLOIXOULOTH, OCOV APOEd UEUOVOUEVES EQURUOYES. JUYUEXQUIEVA,
TOPAUTNEOVUE TS OF XEmOLES EQoppoYEéS (.., gmm), ot BU0 XUTUVOUES ETUXUADTTOVTOL (UE-
€l Toug. T'at qUTEG TIC EQPUPUOYES VOUEVOUUE 1) XENOT TNG OTMOUOXPUOUEVNC UVAUNG VoL
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Yyfua 8.4.5.. Katavour| Tou ypdvou exTéAECTC Yial €VoL UTOGUVOAO EQUQUOYEY Yol OAAL Tl
OEVAPLL EXTENEOTC

umopel vo odnyfoer oe xohltepn (1 mapdpoln) anddoon Ue TNV TomXY, OE CEVApPLA OTOL
T0 obotnud pag Beloxeton Ld TNV enfpela cuyxexplévou YoplBou. Avtétwg, oc dA-
Aec eqoppoyeéc (m.y., nweight), ou 800 xotavouéc napouctdlouv éva EAdLoTO UTOGUVORO
Tounc UETHED TV TV Toug. o autée Tic eupuoyég avauévouue 1 Yprion Tng omo-
HAXEUOPEVNC UVAUNG Vo glvol amaryopeuTixy, xodg Yo 0dnyHoel o TepdoTial UElwan NS
anddoone.

Orchestrator

Télog, oxonde tou Orchestrator eivan va anogocilet €dv pla eopuoyy Tou ELoEPYETAL GTO
oL TNUG pag Yo deouedoEl UVAUN Ao TOV TOTUXO 1) and TOV UTOUUXPUOUEVO xOUfo. Xu-
YHEXQUEVAL, OTOY Wlal EQOPUOYT TROXELTAL VoL EXTEAESTEL 6T0 cUoTnua, o Orchestrator op-
xxd e€etdlel edv Swordétel xdmola TEoYEVESTERT TANPOYOpia oyeTXd Ye TNV “UnoypapR”
e, Edv oy, 16t 1 eoppoyn extelelton AnOUOVWUEVA, TEOXEWEVOL VO GUAAEEOLUE TIC
anapaltnTES PETEXES EXTENEONS, Tou Vo yopaxtneillouv tnv eqopuoyn. e avtidetn me-
elntwor, o Orchestrator emxowwvel ye tov Predictor mpoxewévou va Adfel tnv mpoBiedn
TWV EXTWWOUEVWY YEOVWY EXTEAEONE TNG CLUYXEXPWEVNS EQUOUOYNS, EQV QUTY EXTEAECTE-
{ deopelovtag uviun and Tov Tomxd 1N and xdmolov amouoxpuouévo xoufo. Me [(don
autég T mpofBAédelg, o Orchestrator e@apudler plor amir Aoywr yior vo amogacioel Tov
TEMXO TEOTO eXTEAEOTC, 1) omola Blapoponolelton avdhoya e TN @OOT TNG EXACTOTE EPIE-
noyne, otoyeboviag o xdle mepintwon otny ehayiotonoinoy e uelwong tng amdédoong
TWV EQUPUOYWY, YPTNOWOTOLOVTG TURIAANAAL OGO TEQIGOOTERO YIVETAL TNV ATOUUXPUOUEVT)
AU
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o LLCpiso MEMpmiso RMTyy
o LLCig © RMT,x o RMTst

L0 o mEM,

Event R? 0.8 - R

LLC,s  0.9969 Doed - I | -

LLCiq  0.9995 g

MEM;; 0.9641 g 0.4 4+------ -;,— —————— -? ———————
MEDM,, 0.9983 ; i

RMTy, 0.9977 02 1 gl
RMT,, 0.9871 0.0 . . .

RMT,, 0.9876 0,00 025 050 0.75 1.00

Real
Avg. 0.9932
Yyfhuo 8.4.6.. TIpoPrédeic Tipdy évavtt
Mivoxac 8.4.1.. Yxop R? avd TEAYUOTIXWY OYETIXA UE HETEIXES AMODOCTC TOU

UETEIXT| AmodOoNg CUCTAUATOC GTO UEANOV

8.4.3. Mepapatikn AELoAdynon

Ye authv TV evoTnTa OelyVOouuE XAmoLo EVOEIXTIXA ATMOTEAEOUATO OYETX UE TNV Amo-
BOTIXOTNTA O AMOTEAECUATIXOTN T Tou Thanctou Adrias.  Xuyxexpwéva ol dloveg mou
egetdloupe elvon 10 xutd mboo unopel to mhaiolo Adrias vo i) mpaypatomowioel axpelfe-
{c mpoPAédElc OYETUE UE TOV EXTWOUEVO YEOVO EXTEAEOTG YL YVWOTEC EQPUOUOYES ol
ii) yenowwonomoel v amopaxpuopévn uviun amodotixd, ywelc vo enneedlel TNy anédo-
oM TWV EQUPUOYWY TOL eXTEAOUVTUL 6T0 cloTNud pag. ITpoxewévou va a€loloyricouye To
TPOTEWVOUEVO TAAOLO, YENOWOTOLAOUUE EQUOUOYES antd TRELS DlapopeTxéc couitee [2,104,
105], eved T mewpdpotd poc Sielfydnoay o éva mpaypatixd cUOTNU ATOCUVTEVEEVNS
uviunc [1].

Axpiperoe tpoPAéPe@v TIL TVOOTEG EQAPROTES

Aixtuo neoBAedng TNg XATAC TACNG TOL CLOTARATOG: Apyxd, e€etdlovue TO
XATE TOGO TO BIXTUO TNE XATAC TAONE TOU CUCTHUATOS Tapdryel axplBelc meofBrédeic oyetind
UE TIC LEAAOVTIXEC TUIES TWV PETELXWY amodoone younhol emnédou. Ilpoxewwévou va aglolo-
YHOOULUE TO LOVTENOD pag, ywellovye T0 cUVOLO Bedouévmy pag o dUo LTocvoha, 6TOU TO
TpdTo and autd (60% ToL CUVONXOV) YENOULOTOLEITOL TTPOXELIEVOU VoL EXTIUOEVOUKE TO [O-
vtého xou to deltepo (40%) mpoxelévou va petpricoupe v oxpifeld tou. To Uyhuo 8.4.6
oelyvel To avtioTolyo anotehéoyata, 6TOU GTOV Tivoxa (olvovial oL uécol 6pol axpifeiag
(xenowonolbdvTac we uetpixh anddoone o oxop R?), evé) 670 aviicTtolyo dudypapua ot
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[ECocal  EEmRemote] [[o Local o Remote]
b als 1.0 v
A R2.,=0.918
km%rgr?; 0.8 A R/?emore = 0'896 9
Idla ° 9 N
r ¢
Q nweight % 0.6 -]
(o) pagerank 2
Q ca °
‘E‘h repartitFi)on g 0.4 4+ - o-8--]
sort s
x svd 0.2 + S -
svm J
terasort
wordcount 0.0
0 20 0.0 0.5 1.0
MAE (seconds) Real
(o) Tuvolunr (B") MAE avé epapuoy (v") IpoPréderc Ty
axplBeta EVOVTL TIRAYUOLTIXY

Yyfua 8.4.7.. AZohdynon tou Yovtélou TpolAedng anddoong EQapUOY LY
TROYUOTiXES TWES évavTt Twv tpoflAemouevov. Hapatneolue mwe to dixtuo TeoBiedne g
XATEGTOONC TOU GUG TAUATOC Tapdyet ToAD oxpiPelc TpoBAélbelc, e To oxop R? va xupaiveton
petagd 0.964 xou 0.993 cuvohixd, xou 0.99 xatd yéco 6po.

AixTuo TEOLBAEdNE TNE ATOB0ONG TWV EPALOYWV: 1TN CLVEYEL afloAOYOVUE
™V anodotxdTNnTa Tou Bixtlou TEOBAedNC Tng anddoone Twv epapuoy®y. ‘Ouowr pe to
TponyoLuevo Telpaya, Ywelloupe To apyixd pac olvolo dedopévmy oe B0 utocivola (60%
xon 40%), yenowomoldhvtog o xdde LTOCUVORO Yl TNV exTaldeLoT) xou olOAGYNOY TOU
povtélou. Xto Lynua 8.4.7 BAénoupe ta avtiotouya anoteréopota. Iapatnpolue mog
70 Sixtuo TEOBAEPNC TNC ATMOBOONC TWV EPUPUOYWY TAEOUGLALEL dpxeTd LPNAY axp(Bela
(Syhpa 8.4.7¢), teTuyaivovTag xotd péco 6po oxop 0.942 R% ue Myo unhdteprn anédoon
avapopxd pe Tic TpoBhédelc yio T Tomxh uviun (R? = 0.945) évavtl Tne amopaxpuouévne
(R? = 0.939). Emione, oto Yyhua 8.4.73 mopadétouye xon v oxpifela Twv mpoBrédedy
pog Yo xdide e@apuoyn EEXmELOTA, YENOWOTOWOVTAS KOS UETEIXT ATOB00NE TO UEGO ATONUTO
o@dhua (MAE), evdd oto Eyfjua 8.4.7y" PAémoupe xou Tic avtioTolyes TPOBAETOUEVES TUES
EvavTL ToV TeoyloTix@yv. IHapatneolue mwe ol N anédoon v TeoBiédewny Tou HovTENOL Hag
dlapopoToleltan avdhoyo Ue TNV EQapRoYn Yo Ty omola npaypatornolel g mpofBiédeis. o
TEABELY oL, BAETOVUE TG OE TEPLTTWOELS OTWE T.Y. QUTHY NG e@apuoyic If To opdiua Tou
HOVTENOU Yag XUUOIVETOL OE YoUNAS eTineda, eve) o€ GAReS (TT.)., gmm) To opIAUe aEdveTo
auontd. Hop'dhat auTd, oxduo xan o€ AUTES TIC TEQLTTWOELS, TO CUVOAXO GPAAUA avTIoTOLYEL
uévo oe éva 10% tou péoou ypdvou extéheons, amodevOOVTAS TNV OTOTEAECUATIXOTTA TOU
mhawctou pag va mparypatonolel axplfeic mpoBAédeic.
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Scheduler
|3 Random [ Round-Robin @ All-Local I Adrias M Adrias,f=0.9 I Adrias,f=0.8 EEE Adrias,=0.7 Em Adrias,f=0.6

log10(Execution Time) (sec)

:
PZZ2 Remote |

Amount

L
©

bayes
kmeans
nweight
pagerank
pca
repartition
sort

svd

svm
terasort
wordcount

Yyfiuo 8.4.8.. Katavour twv ypdvwy extéreons tomv Qoployody (emdvem) xol oUVoAxos aptduds OTou 1) EQapUoYT
OEOUEVOE UVAUN ATt TO TOTUXO X0 TO ATOUAXEUOUEVO BLoXOULOTH (X4Tw) Yiot SLUPOPETIXES AOYIXES EVOPYROTEWONG TWY
EQPOQUOY WV
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8.4. Adrias

AZwoNOYMOoN TOL EVORYMNOTEWTNH EPAPUOYWV: XTO EMAVL UEPOS TOU LyhHuo-
To¢ 8.4.8 mapouctdletar 1 xoTovoUY) TOU YEOVOU EXTEAECTC YLoL €VOL UTOGUVOAO TV UTO
£ZETAOT EQUPUOYWY EVE OTO XATW, O APLIUOS TWV POopKY Tou xdVe eQapUoYY SECUEVTE
UVHUN TOTUXE X0 ATOUOXQUOHEVO UVHUT OTAY YEMOLLOTOLOUVTAL BLUPORETIXES AOYIXES DpO-
HONOYNONG TV EQOPUOYOY. Luyxexpéva, 1 Aoyuxr All-Local deopelel yio OAec TiC epap-
HOYEC pvrun amd Tov Tomxo Sloxoplo T, n Aoy} Random Seoyelel uviun tuyaio petald
TOU TOTUXOU X0l TOU amopaxpuouévou xou 1 hoywr) Round-Robin Seouelder uvAiun evodidg
petagd tov 80o. To anoteléopato AmOXAAVTTOUY TIWE VLo TNV TAELOVOTNTA TWYV EQUPUOYGY,
ol hoywxéc Random xouw Round-Robin nogéyouv tig yelpdtepeg xatavopés emdoécewy, eme-
Bawdvovtag TNy avdyxr yio EEUTveg Aoyixég evopy o Tewong tTne uvAunc. Hapatnpolue mog
Y1 peyahltepee Tyée e mopapétpou B3 o evopynotewthc Tou mhatciou Adrias mopéyel
TAVOUOLOTUTES amo@doelg Ye TN Aoyixy) All-Local ognedulivy, Aoyw tng ev YEéVel YelpdTe-
eNg EMBOONG TNG ATOUAXPUOUEVNG UVAUNG CUYXELTIXG UE TNV TOTUXY OE CUVOUNOUO UE TO
opdlpa TV TEoBAEYEwyY Tou mpoxUnTel and to povtéha pog. Do twég B loeg pe 0.8 xou
0.7 o mhalolo Adrias xatopépvel vor aloTOCEL ATOTEAECUOTIXG TNV ATOPAXPUCHUEVY) UVAUT),
dpouoroydvtag mepinou o 10% xar 10 35% TwV EQUPUOYMY UE (o TTOON TS TEENS TOL
0.5% xar 15% otn péomn anddoom yio dhec Tic egappoyéc aviiotoya. Evd ou twéc § = 0.8
xan B = 0.7 Yo unodRhwvay 1odivaur LTOBAYWoT TNE AMOBOCNS TWV EQUQUOY WY, TOQITY-
polue 6TL auTo dev cupPaivel, Yeyovdg mou anodidetan 6To opdiua axpifeilag Tou povtéhou
TpoPBhedne g anddoone. Emmiéov, n hoyun Spouordynong tou mhauciou Adrias euvoel tnv
EXPOPTWO] OPLOPEVKY EQUPUOYDY GTNV ATOUOXEUOUEVT uvAun (.. gmm, 1da), ot omoiec,
omwg anodelydnxe otny evotnta 8.4.2 napouctdlouy EMXAAUTTOUEVES” XATOVOUES AnOBOCTG
HETAED TOTUXWY XU ATOUUXPUOUEVWY TEOTWY AELToupYIdg, EVM ATOPEVYEL TNV EXPORTWOT)
QUTEOY 1oL TaEOoVGtALouy TN ETXOAUTTOUEVES” xatavoués (m.y. textttnweight). H mopa-
thenon autyh enokndedel 6Tt to Adrias elvon og V€om Vo LOVTENOTIONCEL XU VO EPUNVEVCEL
OWOTA To EYYEVN YapaxTNEoTixd Twv e€etalouevwy egopuoymy. Télog, yia yoauniote-
pec wéc ohacx (m.y. B = 0.6) to Adrias UETAUPOPTOVEL TNV TAELOVOTNTA TWV EQUPUOYDV
OTNV ATOUOXEUCHEVY] UVAUT, YEYOVOC TOU, WG TOGO, Teoxokel onuavTixy uroBdduon Twy
ETLOOCEWV.

8.4.4. Emiloyog

H "Anocivieon Trohoyiotxodv Ilopwv” anotehel to enduevo yeydho Priua yia Ty omo-
TeheopaTixy xan Aemtouepn Sloyelplon twv utodouwy TrohoyioTixold Négoug. Xe autd to
xepdhono mopovaldoope to Adrias, éva mhalolo moapaxorodinong xou evopyHoTemoNng Yo
CUC TAUATA VEQPOUC UE AMOCLVTEVEWEVY UViun. Me yvouova plo extevi| avdluoT apxet®y -
popuoY®Y, oyedidooue To Adrias, éva mAalolo mou adlomotlel teyvixég Bodhidg pdinong yio va

3H nopdpetpoc B umodnhdver éva dvew dplo Yiol To PéYIoTo 10600 T6 anddoone tou dexduaote vo Juat-
doouUE TPOXEWEVOU VAL YENOULOTIOMGOUUE TNV UTOUAXQUCUEVY) UVAUY.
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anogacilel Tov TeOTO AelToLEY o TN UVAUNG TWV EQUPUOYOY UTO EXTEAECT] Xou OE(EaUE OTL
umopel vo aloTOLNOEL AMOTEAECUATIXG TNV ATOUAXQUOUEVT UVAUN UE eNdytoTn emPBoapivon
TNV Andd00T) TOUC.
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8.5. Sparkle

8.5. MAaiolwo Sparkle

8.5.1. Ewloaywy1

Yfuepa, 0 6YxoC BedoUEVwY TOU ToEdYETOL XAONUEPVE EVOL TEAYUATIXG CUVTELTTIXOC,
ME VL amd mAvew amd 2,5 meviooexatoupdplor bytes dedouévwy vo moapdyovton xde
uépa [360]. Tt tnv eneepyaoia xat TNV alloToNon QUTOY TWY SESOUEVWY EYOUY EUPAVIO TE]
xouvolpto Thadota [92,141,245], ta onola emitpénouy Ty TopdAAnAT enelepyaocio TepdoTiwy
OYnov dedouévmy pe xataveunuévo tpoéro. To thaioio Apache Spark [245] anotelel éva pia
and TIE O YVWO TEG TAATPORUES enedepyaciag SEBOUEVOV UEYHAOU GYXOU X0t TAEOV UTOG TN
piletan we unnpesia oe olyypoves unodouéc Trohoyiotxol Négoue [361].

ITapbho mou 1 apyitextovixt Tou Thaualou Spark mopéyel ToAD uPnAég embBooEL;, TEOGPEREL
eniong pLo ueYdhn mowthia TapauéTewy, oL oToleg UTtopolV va puIULO TOUV HOTE VoL AAAAEOUY
BLdpopeg TTUYEC TNE eowTepnhC Blapliulorc Tou, Tpocpépovtag €Tol Tepantépw adENoT NG
anddoone. o cuyxexpéva, ol tekeutales exdooelc Tou Spark diadétouy TeploooTERES
and 150 mopapétpous dapbppwone [362]. Tupd TN CUPAVTIXGTNTO AUTMV TWV TUPOUETEWY,
ol enionueg odnyleg pbdwong tne anddoong tou Spark meplypd@ouv pévo €va TOAD Te-
PLOPIOUEVO UTOGUYONO TapopéTewY Tou [247], aghvoviac €tol To Bdpoc Tne avdhuone Twy
ETUTTOOEMY OAOV TOV UTOROITWY ATOXAELOTIXE OTOUS TEMXOUC YPHOTES/ TPOYPOUUATIO TES.
‘Opwg, 1 avdhuon xou dlepebvnom tng enidpaong TwV SLapopwY TAPUUETEWY OTNV anddoo
TWV EQPAPUOYAY, XIS xou 1 e€€Taon NG CUCYETIONG METOEY TWV BlaPOpwY TUPUUETEWY
elvan puot enimovn Suadxaoio, Aoy Tou 1) TOANUBIAGTUTOU YOEOL SLIECUULMY TUPOUETEWY Kol
TV avd TOEGUETEO, 11) TOU TEREOTIOU, OMOUTOUUEVOU YEOVOU EXTEAEONG TROXEWEVOU VoL
diepeuvniody o TopTEVE, XM xou 111) TOU YEGVOU TOL OTOLTELTAL YLol TNV XoTovdNoM
oe Bddoc Tou oxomol ng xdde mapauéteou. Emmhéov, n alknhocucyétion UeTAE) TGV
OLaPOPLY TUPAUETEWY Elodyel €va emmAéoy eminedo moAumhoxotnroc. Katd ocuvémeia, ot
TEOY POUUITIO TEC EQUPUOYWY TEVOUY Vo pLIWILOLY EUTELPLXA UOVO TIC O TEOPAVELS Tapa-
pétpoug mou oyetilovion e TNV anddoon), Omwe o aptduds twv executors B 1 uvAun PAM
avd executor.

Av xou 7o (810 to Spark mpoo@épel éva eyyelpidlo Yo TN pUdULoN TwV TapauéTeny Tou [247],
ETUXEVTPWVETAU xRl 0TN OELploToNoT BEBOUEVKY XAl TOV GUVTOVIOUO TNg Uviung. Erlong,
1 0 TEOTOC e Tov omolo mpotelivetal va yiveTton 1) pUdwon Ty Tapauéteny Paciletal ot pia
“trial and error” hoyuwr, 1 onola mpémel vo enavaopBaveTon Yior xdde SLaPORETIXY| EQUOUOYT
xalL OLPOPETIXG YEYEDOC DEDOUEVWY, UE AMOTEAEOUN VAL ATEYEL TOAD amd TNV Topoyhy BEATL-
otwyv anotereopdtny. Télog, n uPnirg ddotaong QOoTN Tou YWEOL TaEUUETEMY ToL exTile-
Tou and TN pnyavh Spark anotedel mpdANoN TOCO YA TIC OTEATNYIXES HOVTIEAOTOINONG XoL
Behtiotonomone. And tnv nopomdve culRTnom, elvon TEOPAVES OTL UTERYEL otvaryxn Yl ou-
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TOUATOTIONUEV TAXLGLO. GUVTOVIOUOU, ToL OTOlOL VoL UTOEOVY AUTOUATOTOMUEVA VoL puIilouy
Ohec TIC dapopeTixé mapapéteous Tou Spark, €tol wote vo Sieuxollveton 1 e€gpedvnon
awToV TOU YEOL avalHTNONS HEYEAWY dLUC TACEWY.

ot TNy avTWETOTON TWV TEOAVAPERQVEVTWY TEOXAACEWY, OE QUTO TO XEPAAAO TEOTEVOU-
ue to Sparkle, éva mhalolo autdpatng eviuong twv nopouétewy tou mhawstov Spark. To
Sparkle Bootleton oe teyvixée Padde udinone xou oe PETEXES ETUDOCEWY YOUNAOU ETi-
TEBOL YloL TN HOVTEAOTOINOY TN AMOBOCTG TOCO YVWOTWY, OGO XL Y VWO WYV, EQPASUOY OV
Spark. Xpnotwomowdvtog akyoplduoug yevetixig Bedtiotonoinong, to mhalolo Swoy(let o-
TOTEAEGUATIXG TOV YOO avalHTNONG OE TEAYUATIXO YeOVo xou BeitioTonolel TNV Ty Twv
TapauéTeny Tou Thaictou Spark. To Sparkle emextelvel To undEyovTa TAXGLO AUTOUATNG
eLdwong mapauéteny Spark, mapéyovtog wa xadohixr Ao Yo povtelonoinon tng anddo-
oNG TV EPUPUOYOY, ot avtideon ue Aoelc ol onoleg e€etdlouv xdde eapuoyy (1/xou
oOVORO BEBOUEVKV) YWEIGTE, EVE TapdhAnia puOIel xou ONEC TIC TUPAUUETEOUS OV To-
e€xel To mhaiowo Spark, e€ohelipovtag €tol TAYPwWS TNV avdyXn Yol TOV TEOGOIOPIOUS TWY
TLO OMUOVTIXOV TORUUETEWY UE EUTELRIXO TEOTO ANd XATOWOV EWXO”, 1) UECW CTATIOTIXDV
avohUoEWY.

8.5.2. XnpavtikétnTta TtAaoiov Sparkle

Ev yével, n npooextint) xou owo T pUUUOYN TWV ToEo-

wétpwyv tou Spark umopel vo mpoopépel TeERdoTION XEp-

dn 6oov aopd TNy anddoon TwV EQUPUOYOY 0L OTolES gmm (ML3)
exteElolVTOL P€ow auTol. Evdeixtixd, oto Lyrua 8.5.1
BAémoupe T0 €UPOC ETMTAYLVONG TOU UTOPOVUE VO ETL-
tOyovpe puduilovtoc xdnoleg and TIC TOPUUETEOUS TOU
Tpoo@épel To Thaioto Spark yio ula evoe TN EQopUoYT),
OTOV 0 GEOVOC T UTOBNAWVEL DLPORETIXG UEYEDT GUVOAOU
0edouévny elcodou. Tlapatnpolye mwe yio yeydho odvola 0 ¥y bmalllarge
0EBOUEVLY, UTOPOVUE VO TETOYOVUE EMC XU X7 EMLTAYLY-
o1}, eV BAETOVYE ETUOMG TS XL 1) ETUTAYLVOT) UeTOBAA-
Aetan avdhoya pe To pé€yedoc Tou GUVOAOU DEBOUEVLV EL-
cooou. Ilopd tar TepdoTIoL XEEDN TOU UTOREL VoL ATOPEQEL
N eLduon Ty Tapauétewy Tou Spark, onwe avopépaue
XL OTO ELCUYWYIXO XEPIAOLO, TEOXELTOL Yidl ol ET{TOvY
dladacior 1y omola yeeldleton UEYAAY eUTELRlOl OYETIXG UE TNV ARYLTEXTOVIXT X0 XAl TOV
TEOTO YE ToV OTolo AetToupYEl 1 UMy vy Tou Spark ecwtepixd, 6Twe enlong n BeAticTonoln-
o1 efvon xan GUVEETNOY TN EPUPUOY N AVTAS XAVAUTHS, UE DLUPORETIXES EQUPUOYES VoL £YOUV
OLAPOPETIXT) CLUUTIEELPOEA VLot (Blal PUOULOT TWV TOUEUUETEWY.

Time (sec)

Yyfua 8.5.1.. Emtevydeioa
ETUTAYUVOT] YLl OLUPOPETLIXES
puduioeic TapopéTEmY
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Parameters considered by DAC [6]
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Brief Description of the Proposed Frameworks in Greek

INo tov Aoyo autd, oto moapedddy €youv mpotadel xou epeuvniel apxetd mAalolo ToL OTO-
{a tpoomadolv va Behtictomoijoouy TNy pUYULOT TWV TaHEAUETEKY Tou TAwclou Spark ue
autopotonomuévo teoémo. Iloap'dha autd, o mpotewvoueva auTd Thaiolo LoTEPOUY GE BUO
Baowd onpeta. Ilpdtov, dhec ol mpotewvdueveg Aoelc tpoonadoly va puduicouy €va uno-
oLVOAO amd TG SLIETIUES TOPUUETEOUS TTIOU TPOCHEREL 1) TAXTPOpua Tou Spark, Tig omoleg
emAEYOUV €(TE UE EUTELPIXS TEPOTO ()., Ol EPELYNTES TOL TRAYUUTOTOMGAY TNV oVETTUEY
Tou exdotote Thauciou Vedpnoav 10 onuavtixés Topauéteous AoYw TEdTAENS YVOOTNG) €-
{te péow oTATIETIXDY PEAETMV ()., UtohoyilovTag T onuovTixdTnTa TNe Xdie TapauéTeou
600V apopd TNV ETBPACN TNE 6NV ATEBOCT TKV EGASUOY V).

Fati opwe sivon anapaitnto va pudnicovpe xat vo BEATICTOTOLRCOULE
OAEC TIC SLAVUECILUES TURAULETPOVG KO OYL EVAL UTOGVVOAO VT V;

ITpoxeévou vor amavTACOUUE GE QUTHY TNV EEWOTNOT), AELOAOYCOUE T1) CNUAVTIXOTNTA OAKS
TV TopopéTewy Spark uéow evéc otatioTinod eAEY Yo, xou ouyxexpyéva tou ANOVA F-
Test [367]. Xuyxexpyéva, extehéooue dlopopeTixéc epappoyéc Spark yio Slpope TnéC TUéS
TOEOUETRPWY ELGOBOL ol BLapopeTIXd HEYEDT GUVOLOL BEBOUEVLY LGB0V ot AELOAOYOUUE
TN ONUAVTIXOTNTOL 0veL ToRAUETEO Spark ot Oha o EXTEAOVUE VA GEVAPLAL.

To boxplot (xdtw pépog) touv Lyruatog 8.5.2 delyvel to avtioTouyo amoteléopota, GTOL
0 G€ovog Yy UTOBNADVEL TN CNUAVTIXOTNTA TNG AvTloTOLY NG ToeopéTeou oL Teoéxue and
T0 Te0T xou 0 dEovag x Oelyvel Oheg Tic e€eTaldpeveg nopauétpous Spark tadivounuéveg oe
pdivouoa oelpd ue Bdomn ™ onuavTixétnTa Toug. Onwe avouevotay, golveton 6TL 0 aprdudg
Twv executors (executor-instances) omoTEAE! UE SLoPopd TN ONUAVTIXOTERY) TAUPSUETEO, YE-
Yovic Tou amotelel xou Tov AGYo Tou ol tporyolueves Tpoondletes [146,148] emxevtpdivo-
viol amoxAeloTixd oty Behtiotonoinon authc tng mapauéteou. Emiong, BAémoupe mwg 1
TUPGUETEOG scheduler . minRegisteredResourcesRatio anotehel Tny Tpltn mO oNuavTXy| To-
PAUETEO OTNV TERIMTWOT| YOG, WO TOCO, TEONYOUUEVES ETULO TNUOVIXES TPOoTdIELES BEV €YOUV
AaBe xordohou Lo TouC AVTHY TNV TaEdUeTEo. TEéNOg, OYETIXd UE TNV ONUAVTIXOTNTA Yo
OLUPOPETINES EPAUPUOYES XOU DLAPORETING GUVORA DEBOUEVKY ELGOD0OU, BAETOVUE TS 1) O
VTIXOTNTO TWV TOROUETEWY UETUBIAAETAL XATE TERITTWOT), UE XATOLES TOUROUETEOUG VoL TTOROU-
oldlouv peyahitepn evaonola o€ GUYXEXEIUEVAL OEVAPLO X GAAEG OE dAAAL. 2UVORIX, To-
EUTNEOVUE Lol DLLPOPETIXT| CUUTIERLPORE OGOV APORA. T1 ONUAGIA TWV TEM TV 33 TUPUUETEWY,
EVQ YLA TS UTONOLTES 1) entidpaoT) palveTon vor elvon uixpdtepen.

Ané v napandve culhTnom, elvol EPQAVES TS 0 TPOTOC UE Tov omola Yo mpémel va yivetan
N EMAOYY TWV CNUAVTIXOTEPWY TUPAUETE®Y Tou mhouciou Spark Oev elvon mpogavic xau
dev LTdEYEL “YEVOOC XAVOVAST VLol TOV TROGOLOPIoUO NS Wavixr Bladppwons, xadds 1
Sladacior auty) e€aptdTon, PETHED GAAWY, and TN UGN TN EPUPUOYHC TOU TREOXETAL Vi
exteleaTel xoddS X TOU GUVOAOL BEBOUEVWYV ELGOBOU TG,
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8.5. Sparkle

Eniong, yioti n xadoAix? povieAonoinon sivo onuravTixn;

To Spark eivan éva mAalolo avdALGTC SEBOUEVLY YEVIXOU GXOTOU TOU ETUTEETEL TNV OVATTUET,
VEWY (EVOEYOUEVHC AY VOO TWY) epapuoy®y. Ta mhalolo to omolo éyouv npotadel oo Topeh-
Y6V mpoxewévou va puiuilouy autdpata Tic TapaUéTEouS Tou Thatctov Spark yenoiworololy
TEYVIXEC PovTEloToinone emdboewy ot eninedo egapuoyic (6,146, 148] ¥ cuotédac eqop-
poydv [7]). Evd autéc o texvinéc €éyouv deilel 6Tl BeEATLOVOUY TNV anddooT| LEROVOUEVELV
EQUPULOYOY, elvol avemopxelc Yl Yevixeuor ot véeg/dyvmotec epopuoyéc. ‘Etot, ta oupfo-
Txd mhadotar autopatng eduiong, otay BeEATIOTOTO0V Yol Uio VEX EQUEUOYT, Amoutoly TNV
enavaAndn ohdxhneou tou xOxAou Lwnig Tne evduong, o omolog mepthauBdvel T cLALOYT
OEBOUEVWY ATOBOOTE Yio DLUPORETIXES DLaop(@oel Tou Spark, tnv exnaldeuvor evog véou
povtéhou unyovixnc pddnong and to undév xou T pOiulon TV UTEETUEOUETEWY TOU Yo
v avgnon tne axpifelac medPiedrc Tou. Me évav aulavouevo apiiud VEWY EQUpUOYOY, TO
%x6070¢ Mou oyetiletan Ye auTy T dradixacio YiveTton amayopeuTixd LPNAG AOYW TNG GUANO-
YNG VEWV BEBOUEVLY, WBIWE Yia EQUPUOYES UE UEYSAA OUVOAX BEBOUEVLY ELGOBOU, 1) EXTEAEDT)
TV onolwy unopel vo dlpxéoel apxetéc nuépec [368].

ot Ty avTieTdToN aUTAC TS TEOXANCTNE, OTNY TEOCEYYLIOT UAC
uéow tou Sparkle viodetolye éva xadohixd TpéTO Hoviehomolnong
TOL UETELALEL TO GUVOALXO XOGTOS TOU GUVTOVIOHOU AYVOOTWY €-
(POPUOY Y XUTAVEUOVTOS Tol €000 TNG CUANOY TG BEBOUEVLY %o TNG
exToBEVONE TOU HOVTENOL UETAED BLUPOPETIXY EQPUPUOYWY. TO
Yyfua 8.5.3 nopouoidletan T0 X60T0G GUANOY TG BEDOUEVHY oL EX-
mafdevong evog poviehou MM yio évay xadohind Tpdmo povieio- cost ——
noinone (ywelc andieta yevixdtntac, Yewpolue exnaidevon pe 20 e
dapopeTind Lebyn eQoppoyhv/cuvolwy Sedouévemy) évavtt evig #Unseen applications
povtéhou MM and v apyn yia xdie véa egapuoyr. AouBdvovtog
umogn to povtéro yeéwong e AWS, o dovag y avTinpoowrelel
TO %607T0¢ NG avdnTLENG wog cuoTtddac 10 x6uBwy c4.8xlarge,
eved o d&ovoc x amewxovilel TN PETABOAY Tou xOGTOUSC XAVWOS TEO-
oTevTol TEPLOCOTERES Y VWO TEC EPUPUOYES. DTNV TROCEYYLOT) €-
vo¢ wovtehou MM avd e@opuoy|, oL YenoTeg TEETEL VAL TANPWOYVOUY
yioo xdde VEo eQopUoYY), UE AMOTEAECUN TO XOOTOG Vo ALEAvVETOL
CLVEYMC AVAROYO UE TOV pllUd TOV EQUPUOYOY TOU EXTEAOVUVTOL
oto cUotnua. Avtidétng, otov xotolxd TpoTo HovIEAOTOINONE TNE AOBOOTE TWY EPIPUO-
YOV, EYOUUE EVa 0pY 6 XOOTOG ETEVOUOTC, TO OTolo YEeldleTon Yia T GUAROYT Tou apEyixol
GUVOAOU BEdOUEVWY exTtaldeuong xan Tn Onulovpyia Tou xoohixol yovtéhou MM. Ko
OUWS EXTENOVYTOL ONO %O TEPLOGOTEPES QY VWO TEG EQPUPUOYES, TO XOGTOC AUTO AMOCHBEVETAL,
odNywvTag og éva onuelo avTlo TdIUoNg OToL TO dpPY O XOCTOC EMEVOUOTC ETULO TREPETAL O-
16 TNV €€0IXOVOUNCT| TOU OQEAETOL GTNY IXAVOTNTA TOLU XJOAXO0) AUTOUATOU GUVTOVIGUOU
va BeltioTonolel TEoNYOLUEVKS aIEATES EQUPUOYES.

Cost of investment

= Universal
= Ground Up (tiny)
= Ground Up (large)
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Eyfua 8.5.3.. Kootog
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novtéhou medBiedng
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Brief Description of the Proposed Frameworks in Greek

[ Offline Phase |

1. Application Characterization Data Acquisition 3. Dataset Composition

|| Spark
application

Default
configuration

IPC

bl

g Training Dataset |

Application's Spark
Signature configuration

Exec.2 | | executorinstances 4
executor.cores 8

n executor.memory 2
v

0 Kubernetes

2. Parameter Characterization Data Acquisition

Random Spark Input
configuration application Dataset

[ Min-max feature scaling |

4. Performance modeling

Kubernetes

h .
. .
. .
, .
: .
. .
. H
. 1
. i
' | | '
. .
, .
: .
H
[l soark Spark I SOark :
: Executor Executor Executor :
l ' 1
. .
. H
. 1
.

.

,

:

| 2> DNNModel |

Trained model

I.l_l Performance Class & Execution Time for deployed configuration

Spark
application
Input
Dataset

Yyfua 8.5.4.. Emoxénnon Apyitextovinric Tou mhawctouv Sparkle

Genetic
algorithm | -

enerated|
config

i &

8.5.3. Mepiypaypn Apyxitektovikig Ttov Sparkle

To Sparkle anotelel €va ohoxhnpwuévo mhaiclo mou puWIlel aUTOPATA TIC TUPUUETEOUS
dlaoppwone tou Spark, mpoxewévou va Behtiotomoinoel TNV anddoon X To XO0TOG TWV
EQUPUOYWY TEOG EXTEREDT. LT0 LyNuo 8.5.4 BAEmouYe pio EMOXOTNOT TNG AEYLTEXTOVIXNG
tou mhauctou evyXnapkie. To Sparkle anotekeiton 6o pdoelc ula xatd TNy omola GUAAEYO-
vt Ta amopodtnTor dedouéva xou exnandevetan To xadoAxd wovtého MM xou yio xotd tny
omola to Thalolo puiullet xou anogacilel autdpata Tic BEATIOTEC TUPUUETEOUS YIoL EPUQUOYES
oL omoleg elvon Tpog extéreoT).

déon ovAloriic Sedopévav kou ekTaibevong povtélov

‘Onwg avapépaue xou TEoNYoLUEVWLS, To Thaiolo Spark mpoopépet mopoamdve and 150 diago-
peTég mapapéteouc. (¢ mpdTo Brua TNg Qdong cUAROYNC SEBOUEVLV, ETLAEYOUUE HOVO TO
UTOGUVONO TWV TAPAUUETEWY OL OTIO(EG APOPOVY Xl ENNEEGLOUV TNV ATOBOCT) TWV EPUPUOYWV.
INo mapdderypa ) TopdueTeog spark. app . name 1) ool pUYUIleL TO dvopa NG EQPUPUOYAS TTa-
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8.5. Sparkle

pokeinetan. Autod pog odnyel oe €va utocivoho Tou opyLxol, To onolo anoteleiton and 101
mopopéteoug. o autég Tic mapopéteoug e€etdloupe €va SLoxpltd GUVOAO TV, UE TEELS
TIWES AVA TORGUETEO, Ol OTIOLES AVTIG TOLY 0LV OE YUUNAES, uecale xou VYNAES TiwéS pliuong
e avtioTouyng TopauéTEOou.

JUANOYY SESOUEVMV YL YALAKTNELOUO TV EQAPOY®V: (1¢ TpdTo Briua, To
Sparkle cuNAEYEL BEBOPEVA TEOXEWEVOL VAL YA TNEICEL TIC EPUPUOYES OL OTOLEC AMOTEAOVY
70 oUvolo exmaideucTc Yo To wovtédo pag. Ilpoxewévou va to methyel autd, extelel xdde
EQAPUOYY| YPNOLLOTOLWVTAC TIC Tpoxaloplouéveg TopopuéTeoug Tou Spark xan xatd Tn didp-
XEla EXTENEONC CUAREYEL amd TO GG TNUA HETEWXES amodoong youniol emnédou. O petpixée
aUTEG amédooTg AElToupYOoLY w¢ i “Doypapr” avd eopuoyr xar delyvouv Twe xdie epop-
MOYY| CUUTEQLPEPETAL XOUTA TNV EXTEAEDY| TNE OTNV Tdpodo Tou ypeovou. Ilo cuyxexpuyéva,
1 "Umoypapn” ot anoteielton and 35 SlapopeTid orUaTa ToL OTOlo AVTIOTOLY0UV OE BLapo-
PETXES YOUNAOU ETUTEDOL, OTWE VLA TURABELYUA EVIOAESG avdl x0UxAO pohoyloL, actoyleg o
TeooBdcE TNV XELUPT| UVHUN X.4.

JUANOYY] BESOUEVLYV YLIA YALAXTNEIOUO TWV TAPAUETEPWY ToL Spark: ()¢ de-
Otepo Brua, to Sparkle cUAAEYEL BEBOUEVA TPOXELWEVOU VO TPOGOLOPIGEL XL VOL YOEUXTNRIOEL
TN CUUTEELPORE TwV eEeTAlOUEVRY EQURUOYOV Lol DLUPORETIXEC PLIUICELS TWV TUPAUETEWY
tou Spark. T to oxond autd, to TAaicLd pac Tapdyel TLYaioUS CUVBLACUOVC TUEOUETEWY,
v 6Aeg Tic 101 BLopopeTiXéc TOEOUETEOUC. LUYHEXQUIEVA, Yid XQUE TUPGUETEO ETLAEYETOL
tuyada plor Ty and To avtiotolyo dlaxpeitd medio oplouol tng. Emneita, xdde egopuoyt| and
T eetalbueves extelelton 6To GOGTNUA Yiot OAAL TOL BLUPORETIXE GUVOAIL TIOROUETEELV XA YLOL
ONoL ToL BLaPORETING PEYEDT) GUVOROUL BeBoUEVLY €l06d0ou. To Brua autd €xel we anotéAeoua
€vol GUVOAO THIOY amodoong avd eQapuoyy), 6Tou xdde T Tou GUVOAOU avTloToly el oE
olapopeTnég puiuioelc Twv TapauéTeny Tou Spark.

AvaTntuin kou ekmoidevon povtéAwv Babidg pidnong v TtpéPAedn TN
OLTLO600MNG TWV EPUPROY ROV

To mhalowo Sparkle axohoudel wiar BITAY TEOGEYYION Yio HOVIEAOTOINGT TNE ATMOBOCNE TWV
e@apuoy®y. Me dedouévn tny “ unoypapr)” pog epapuoyhc xadde xau uia dedouévn it
o1 TV TapaUETEnY Tou Spark, TpoBAénel av avauéveTton ETLTAYLVOT YEe Wia duadxr Aoyixt
Tagvounone (var/oyt), oL o€ TEPITTWOT TOL AVUUEVETAL ETLTAYUVOT), EXTIS TNV EXTUOT| TNG
(roahwvdpounon). To Sparkle moapéyet évo poviého Bohde udidnone, to onolo eivon oe Yéon
va govtehonotel xou ta 800 moapoamdve tpoBAfuata (Talvéunon xat ToAvdpdunom), 1 apyLTe-
xTOVLXY| TOL oTolou Qaivetar 6To My 8.5.5. Nuyxexpuuévor:

e Signature Temporal Encoder: Autd to xoppdtt avallel Ty “Onoypaph” TwV EQUQUOYOV
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Brief Description of the Proposed Frameworks in Greek

Application's identifier Spark configuration
Executor 1 Executor 2 Ziiziigiiiﬁzgy ;52
executor.instances .25
serializer 0
f': convid |
:

1

1

1

Signature Temporal Encoder
Configuration encoder

1 H

1

! T & LSTM nanlinasrhlA-L

; nonLinear block nonLinear block
e .

1

performance class i B speedup

Yyfua 8.5.5.. ApyttexTovIXT] TOU VELPWVIXOL BXTLOL Yiot XordohixY) povtehonolnon e
amOd00NE TWV EQUPUOYWY Spark

xan TNy Yetooynuatilel ot éva Bidvuoua GUYXEXPEVOL Xal o Tadepol Unfxoug.

o Configuration Encoder: Autd to xoppdtt tou dxtiou €YEL GXOTO VO AVAAUEL TIC TTOQO-
wétpoug tou mhauclou Spark xou vo Teocblopllel Toleg TUPAUETEOL ElVOL TLO ONUOVTIXES ol
enmNEedloLY TNV AMOBOCT TWYV EPIOUOYOV.

o Classification € Regressions Heads: Télog, to 00 autd xoupdtia €youv tny (Biar doun
%o €Y0UV 6XOTH VoL TEUYUATOTOGOLY TNV TEAXT TEdBAedN oyetixd ye Ty Tavounomn xou
TaAWVOROUN o avTioToLy A,

Fevixd, n npotadeion apyttextoviny exnoudeveton cuVBUELovTog TANEOPOElo CYETIXG TOCO UE
TN CUUTERLPOPA EXTEAECTC TWV EQURUOYWY OGO ol Ue T pLYULON TwV TapauéTewy. Eriong,
xopaxtnellovtag xdie eqoapuoyy) ue Bdon Tic yeteixéc yaunhol emmédou, elpaote ot Yéon va
UTOEOVUE BUYNTIXA VOL LOVTEAOTIOLOUUE X0l &Y VWOTES EQUPUOYES, XIS TOMAES amd auTég Vot
TapoLGLAloLY TOEOUOLY CUUTERLPOEE. UE TIS EQPUPUOYES TOU YENOLLoTOoaUe o1 dladixacio
e exnaldevone. Eniong, evdd to pyéyedog tou cuvolou dedouévwy elcddou de divetar pNnTd
w¢ €lood0¢ 610 povtého, autd unopel vo e€ay el péow Tng UTOYEAPNS TNS EPUPUOYNS, Aol
Y. UEYUADTEPA GUVOAX DEGOUEVLY EIGOO0U 001 YOLY oE UEYUAUTERO PEYEDOC ONUATWY TwV
UETEIXWY amOd0oTNG YounAol emmédou avtloTolya.
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8.5. Sparkle

déon aUTORATOTOLNLEVNG PUORLONG TEOLPOLILETPWDV KO EKTENEDT EPOLPROTDV

X1n @domn auth, To Sparkle otoyelel oTo va feATio ToNOOEL TIG TopoRETEOUE Tou Spark yia
EQPAUPUOYEC TIOU TPOXELTOL VO EXTEAECTOUV GTNV UTAEYOUCH UTOOOUY|. 2€ Tep(mTwor &y ve-
OTWV EQUPUOYWY, To Sparkle Tic extelel yenowwomolwvTaS TI¢ Tpoxadoplouéves puiuioelg
TPUUETEMV X0 XOTAYRAPEL ot AmOUNXEVEL TIC AVTIOTOLYES UETEIXES OmOBOoNE YouN oD ETIL-
TEBOU OV YENOWOTOWUVTAL WG UToYeupr)” Toug. XTr CUVEYELW, TO TAUCLO PWTA ETAUVOAT-
TTXd ot govTéha TEOBAEdYNS TNG amOdOoNG VLol BLUPORETIXES TUIES TOPOHUETEWY, TROXEWEVOU
Vo Tpocdloploet gL BEATIO TN BLaopQWoT).

To Sparkle évov yeto-eupeTind TEOTOC VLot BEATIOTOTOINGCT), TEOXEWEVOU Vo EEEPEUVTOEL O
TOTEAECUATIXA TOV UTOXEIUEVO YWDEO TOpopETEWY Xl Vo e€aa@ahioel T oUYXAoN Teog TIC
Béhtioteg Aooeig. Luyxexpwéva, to Sparkle oxoloudel pio Tpocéyyion avowxtol Bedyou,
omou 7 duadxactio Behtiotonoinong epapudleton mvew oto exntoudevpévo yoviého ANN yio
NV a€loAdYNON TNE BUVOLIXTC TOU Y EoL AUcewy. Auth 1 Tpocéyyion odnyel oe éva alvo-
Ao Béhtotwv MNoewy xatd Pareto [374], ou onoleg napoucidlouv pla avtio tpdpwe avdhoyn
oyéomn petol e anddoong (Yedvo EXTENEONC) oL TOU CLUVOMXOU XEOTOUC TOU amanTelTol
Yoo Ty extéleon (oe yphuota). Lyeuxd pe tov ahydprduo Behtotonoinong, to Sparkle
xenowomolel tov ahyoprduo NSGA-II yia va Swooyloel to yweo Aoewv, Aoyw TN ixavoTn-
TaC Tou va EePeyEL amd TOTXd BEATIOTA xou VoL ToREYEL YR YoRT) O0YXAICT) OE Amod0TIXES
Nooelc [6,261,375]. O NSGA-II eivou évoc e€elixtinde ohyoprdupoc xar Aettoupyel yia évoy
apriud yevewy, 6mou o xdie yewid dlveton 1 euxanplor oTig EALT evog mAnduouod va yeta-
pepdoly otny enduevn. Me Bdon toug tedeatéq petdAhodng xan Siao Todpwong, dnuovpyel
véoug mhnduouolc anoydévey mou Yo eetacToly oTig endueves Yeviée. Ilpoxewévou va
TpocdloptoTel €val BEATIOTO GUVORO TV 600V agopd Tig utepnapouéteous tne NSGA-II
(uéyedog mhnbuouoy, yeviée, miovdtnta petdhhaing xou puiuos Do TUVEWONC), SlEPEU-
volue TNy enldpaon xde unepnopopéteou Tou alyopiduou NSGA-II cto tehixd pétwno
Pareto.

8.5.4. Mepapoartikny AgLoAdéynon

Ye authv TNV evoTnTaL delyvouue xdmola EVOEXTIXG AMOTEAEOUATA GYETIXG UE TNV ATODO-
TIXOTNTA O AMOTEAEOUATIXOTNTA Tou Thanctouv Sparkle. Xuyxexpwéva ol dfoveg mou ee-
tdlouye elvor T0 xatd néoo unopel to mhaloto Sparkle va i) mporypotonowioet oxpBelc Tpo-
Bréel oYeTIXd UE TOV EXTIUWOUEVT XAGOT XoME XL TO YEOVO EXTEAEONS TWYV EPUOUOY WV
yio SrapopeTinée puduioelc Twv tapauétewy Tou Spark xou ii) vo xatadiEel oe mo omodo-
Txéc Moeg (tdéoo and drodn ypdvou extéleons oo xan and dnodn x66TOUS) CUYXELTIXG
ue v mpoxadopliouévn pLdwon topopétewy tou Spark. Ilpoxewévou vo alloloyroouue
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Yyfua 8.5.6.. Apotepd: AxplBelor povtélou avapopixd pe to TEdBAnU TG Tovounong.
Aeid: Tivoxag X0yyvong.

T0 TPOTEWOPEVO TAA{o10, Yenoulotojooue epapuoyéc and tn covita HiBench [2], evd ta
TElpduaTd pog Sielrydnoay oe éva mpaypatixd o TNUA cLoTAdag, anoteloduevo and 10
dlaxoplo téc IntelOXeon©ESH-2690 v3.

Axpifera tpoPAéPpewv povtélov

Apywd, a&iohoyolue v avotnta tou Sparkle va povielonolel Ty anddoon Twv eQopUo-
YOV Yo SlopopeTiée puiuioelc TV TOPOUETEWY TOU LToEX. DUYXEXQPUEVY, UETEAUE TNV
oxpifelor Tou povtéhou pag Y Ty meoPBAedn e 1) xotnyoplag anddoone (taléunon)
XL TNG 11) TEAYUATIXAC ETUTEYUVONG TOU TOPEYETOL OF TMEPLNTWOELS OTIC Omoleg 1 pLUWoN
TopoéTewy odnyel oe emtdyuvon (tohwvdpounon). Ipoxewévou vo exnadeloOLUE xou Vol
o&lohoYNiooLpE TO HOVTERO pag, ywellovue T0 cUVOAO Bedouévev pog oe 800 UTOGUVOAQ,
foa ye 90% (o0volo exnaidevonc) xou 10% (cUvoho Soxunic) twv detyudtony, 6mou to clvo-
Ao BeBoUEVWY BoXUNG ATOTEAEITOL AT TEITAETES EQUPUOYWV-GUVOAOL BEBOUEVLV-pUYULONGC
TUPEAUUETEMY IOV BEV Yenotdonodnxoy xatd Ty exnoldeuot).

AxpifBeia tagivounong: X1o Yyfua 8.5.6 BAETOUYUE Ta ATOTEAEGUATO AVAUPOEIXE. UE TO
10606 1H axp(Belag Tou wovtélou Yag oTo va TeoPBAENEL TNV xhdom (emitdyuvor/emBpdduy-
omn) oTNV onola AVAXEL EVIC CUYXEXPUEVOS CLUVBUUOUOS EPUPUOYTHC-OUVONOU BEBOUEVLV-
eLiwong mapauéteny. Tapatneolue TKS Yo TNV TAELOVOTNTA TWV TEPLTTOOEWY, To Sparkle
Topéyel eZoupeTind Ldmhéc axpifetec dvew tou 90% aveldptnto and to péyedog Tou eleta-
Copevou GuVOLOL BEBOUEVLY, BElYVOVTUC TNV XAVOTNTA TOU Vo TEOPBAENEL COOTA oV Ldl
0edouEVT PUIULIOT TV THPUUETEWY EVOL TILO ATOBOTLXY| 1} O)L OE CUYXQELON UE TNV TPOETLAEY-
wévn. IHapouoidlovue enione tov mivoxa cbdyyuong, o onolog anexovilel T0 TOGOGTO TWV
owo TV /Adoug VeTixdv/apvnTixdy tpoBAédewy mou éxave To oviého, 6mou to 0 dnAdvel
v xatnyopia emPBedduvone xou to 1 Ty xatnyoplo emtdyvvong. BAénoupe 6T, cuvold,
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Yyhua 8.5.7.. Apiotepd: Axpifeia povtéhou avapopxd Ye To TEOBANUa TG TaAVdeOUNoNg
(MAPE) Ac&id: TIpoBhendpeves THuéc EVaVTL ROy UaTIXOV.

to Sparkle emituyydver péon axpifeia ~ 93%. Téhog, T0 000G TH TWV PELBHOS UPVNTIXEDY
TpofAédewv, dnhady) Tng Aavioaouévne teoBAedng 6t o pliuior topouéTewy Yo TapéyEL e-
TTdyLVOT), dlatneeital oe YaunAd enineda, pe nepinov 2.7% Twv TEPITTHOEWY Vo avAX0oUV OE
aUTH TNV TEP(TTWON, YEYOVOC Tou delyvel 6Tl To Sparkle dev elvou emppenéc oe Aavdaouéveg
Tpofiéeig mou Yo 0dnyrioouy oe exteréaelc ue emBpdduvon.

AxpiBeia malivdpounong: Xtn cuvéyewa, afloloyolue TtV oxplBeld Tou povtélou
meoAedne g emtdyuvong tou Sparkle, aohoywviac to Méco Amndiuto Ilocootiaio
Ypdiuo (MAPE). To Eyfua 8.5.7 nopovoidler to avtiotouyo anotehéopata, delyvovtog
6TL T0 Unopxhe TopEYEL Loy ueEs TpolAédelg aveldpTnTa and TNV e@apuoyY xou to péyedog
TOLU GLVONOL BEBOUEVLV TNE, YE WEco 6po 7.2% MAPE cuvohxd. Enione, egetdloviac tic
TEAYHATIXES XU TEOPBAETOUEVES TWES ETUTAYLVONG, TURATNEOVUE OTL TO CPIAUA AUTO XUTA-
VEUETAL OUOLOUORYO GE OREC TIG EQUPUOYES oL ToL GUVOAA BESOUEVWY, Xad®¢ To TEPIGCHTERA
onueta Beloxovton xovtd oty yeouuh Ttakvdpounone 45°. Télog, mapatneodue OTL Yo Ue-
yéhee tpée emtdyuvone (> 5.0), To cUOTNUE HOC UTOEXTIUS TNV TEAYHOTIXH ETLTAYLVOT.
M tétola ouuneptpopd elvon avapevouevr, dedopévou 6Tl to T7% TwV TWOVY ETLTAYLVOTG
elvon xdtw and 2.0, evdd oyeddv 84% eivon xdtw and 2.5 xou dpo T0 HOVTENO Uac dev €xEL
AVUAUGCEL OPXETES DEDOUEVA XOVTE OE QUTEC TIC ETUTOYUVOELG XATd TN BLodixaoior TN EXToUdeL-
omNe, EMOUEVKC Bev elvan og VEOT Vo TEAYUATOTONOEL IXavoTouNTiXEC TEOPBAEPELS Yior aUTEG
TIC MEPLTTWOELS.

leveTiki PelktioTtomoinon

Télog, e€etdloupe to Briua yevetinic Behtiotonolnone tou Sparkle, a&lohOYWVTAC TNV LXa-
VOTNTA TOU Vo TOREYEL amodoTixéC puiuicels TaPAUETEWY GCOV aopd TNV anddocT XoL TO
x6070¢ avantuéne. I'a tov utohoyloud Tou x6aToULE, haPBdvouue LTOYT TNV
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Brief Description of the Proposed Frameworks in Greek
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Yyfua 8.5.8.. Avoeig Pareto ou omolec mpotddnxay and i) yeveuxd akydprduo NSGA-II ywplc v Unapn poviélou
TpdPBAedne xou i) Sparkle. To onpeio pe eppovy ypwuotioud detyvouv Ty el xounOAn Pareto 1 onola

nepthaPBdver To un xuptapyolueva onueia Twv 8Vo poceyyicewy. Ta npdowva onueio Selyvouy TIC EXTEAECELS YE TNV
TEOETUAEYUEVY) PUVULOT TV TopaUéTewy Tou Spark.
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8.5. Sparkle

TWOAGYNOT 15 BLapope TV TUTWY BLOXOULO TWY amd TNy TAatpopua Y Toroyio 1ol Négoug
AWS, ue SopopeTind YopoxTnelo Tixd 0G0V apopd TOUG EXOVIX0UE TURYVES XAl TNV TROCpE-
POUEVY YWENTXOTNTA UVAUNG. LUYXEXPWWEVA, uTohoY(Couue To x60TOC Xde avanTuing e-
vrornilovtag T AMydTepo danavnen teplntwaon 1 omolo va xavorolel Tov aptdud Twy TUE VLY
Tou xdde executor xou TC AMUTACELS TOU € UVAUT. TN CLUVEYEL, TOAATAACIALOUUE aL-
THY TNV T UE TO GUVORXO apllud TeV executors XaL TOV GUVOAMXO YEOVO EXTENEONC NG

avtioTolyng eqapuoYng.

Sparkle évavti npoemideyuévng pLIUIoNG Tapapétepwyv: Ilodhtov, afloloyolue
TNV EMTAYLVOT XU TN PElWOT TOu X60TOUS oL TPocpépel To Sparkle oe cUyYXELON PE TNV
npoemAeypévn pduion nopouétewy Tou Spark. Xuvohixd, To Sparkle tpocpépel ANoelC TOL
dratnpoly Tor é€0da extéleone TwV eQopuoY®y petadld 0.5% unhétepa (Yuoidlovtac to
x60T0¢ Yl emTdyuvon) éwe xan 54% younhdtepa, ye péoo bpo xépdoug xdotoug 13%, oe
CUYXELOT| UE TNV TEOETUAEYUEVY) EXTEAEDT).

‘Ocov agopd tnv abénomn tne taydTnTac, To Sparkle emtuyydvel EMTdyUVOT TOL XUUVETIL
and x1.05, oty nepintwon Levydy eQopuoydv/cuvirny dedouévmy ov dev ennpedlovol
EYYEVME OO TOV GUVTOVIOUS TopopéTeny, €ng X6.8, ue uéoo 6po adénong tayvtntoc x1.72
og Ohec Tic e€eTalOUEVES TIEQLTTWOELC.

Sparkle évavTi yevetuxnc PeATicTonoinong ywels woviého mpoBiedng:
Télog, ouyxpivouye T0 cbOvoho twv Aboewv Pareto mou mapéyel to mAalold pag pe pia
TREOGEYYLON YEVETIXAC BeATioToNomoNg Ywelc wovtélo, 6mou xdie mpotevouevn ADoT avd
yYewd (Srapopetiny| piduion oe mapopétpoug Tou Spark) extekeiton oto clo TN UG TASAG
xa AoBAvOVToL Ol TEAYUOTIXES TUES YEOVOU EXTEAECTS XAl XOOTOUG. OETOUUE TO XELTHPLO
tepuatiopold tou alyoplduou BedticTonoinong otnyv 1 dpa, emTEENOVINC OTNY TEOGEYYLOT
X wplc HovTéRo va a€loAoYHOEL Evary EToEXY| LU BLaPoRETIXDY pUIUICEWY TV TOEUUETEWY
Tou Spark.

Y10 Eyfua 8.5.8 moapoucidlovtal tor anoteAéouaTa avd onueio avapopds, 6mou To onuela
HE UTAE Ypwua amoxahinTouy Ti¢ Aloelg Pareto mou mpotelvovtan and tov Bedtiotonomt
xwelc povtého xou ye pol ypwuo autég mou mpoteivovton and to Sparkle. Xtnv mepintwon
Tou YmapkAe, extehoVue 6T0 GOCTNUA pag To TEAXO clvoho Aboewv Pareto mou mpoteive-
T, Ylo VoL AGBOUUE TNV TRy UoTiXT] amddoon ovd SLapopeTixy) pLUUULOT TWV TUPUUETEMWY XAl
Oyt Ty extiunomn tou poviéhou. Me epgavy YpwUATIoNO, UTOBEXVIOUUE Tal TEAXA UETWT
Pareto, ta onola mepthauBdvouy Tic un xuplapyec ADoelg Tou Toapéyovial and xdde Tpocey-
yion Behnotonoinong. Ilapatnpolue mwe to Sparkle umeploylel Evavtl TG TEOCEYYLONGC
BehtioTononong ywels wovtélo, xadae 1 TAEloVOTNTA TV onuciwy tou Boacilovton oTo Te-
A6 yétwno Pareto avrixel 0to 8ixd g 0UVOAO TEOTEWVOUEVKDY AICEWY. LUYXEXQIUEVA, TO
mhadoo Sparkle xahbnter nepinou to 65% tou tehxol petdnou Pareto, evedd to undhoino
35% oavixer otV eYYEVH TROCEYYLON.
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8.5.5. Emiloyoc

Y10 xepdhono autd Topouctdoaue To Sparkle, éva autopatonomuévo mAdiolo elYULONG TWV
napapétpny tou Spark, to onolo Bacileton oe poviéha Padide unyovixhc wdinong yio
novtehomoinon xow TEOBAEPT TOU YEOVOU EXTENEONS TWV EQUPUOYWY. MUYXELTIXA UE TEOT-
yolueveg mpoomdeleg HOVTIEAOTIOMONG TNE ANOB0CNE TV EQPUpUoY®OY Spark, to Sparkle
TapEYEL plot XaDOAXT| TROCEYYLOT| HOVTEAOTIOIMONE TN anddoong xado xaL EMEXTEVETOL OF
ONOXANEO TO Y OEO ToEUUETEMY, eEalelpovTag €ToL TAHEWS TNV ovayXT Yio avIpOTIVES 1) G To-
TIo TXEC TPOOEYYIOELC VLol TOV TpoadLoploud Tng onuactiog xdie Tapauéteou.
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8.6. Adrias

8.6. Emiloyocg kol LeANOVTLKEG ETLEKTALOELG

Yuepa, Beloxduacte ot wa xoulix o TLYUn Yiol T SNUoUEY i X0l TOV UETACYNUATIONS EVOS
ool x6oUoL, Ye TO UTOROYIGTXG VEQPOS Vo amoTehel LoTXd TUAGVO TEOE AUTAY TNV
xateLYLVOT. AT TN OXOTUA TWV TUEOY WY UTNEECLOY UTOAOYIC TIXOU VEQOUS, 1) EAAYLOTOTO-
{non Tou cLVOALXOU xHGTOUC WBLOXTNGLUC TWV LTOBOUDY Toug Ywelc var YuctdleTtal 1 TOLOTNTA
TWV UTNEECLOY TIOU TPOGPEROVTAL 6TOUE TEAdTES anotelel OioTn npotepandtnTa. Tawtdypo-
Vo, and TNV TAEURA TV TEAXOV YENOTWY, 0 ATOTEROS 0TOY0¢ elval 1) UeyloTonolnomn g
AnOBOONG TWV EQPUPUOYWY UE TAVTOYEOVT UEIWOT TOU AELTOURYIXO) XOGTOUS TUHOAOYNOTC.
ITpoxewévou va ixavoromdoly xan oL Vo xécuoL, 1) anoTeAeouaTIXY| dloyelplon TwV TopwY
TOu VEQOUC elvol amopadTNTY), €T0L WOTE VO UTOPOVUE VoL YENOWOTOOUUE OTO EMUXPO TOUC
dlardéotwoug unohoyiotxols népous. Ilpog tnv xatedduvon tne dnuiovpylac Mo anodoti-
%0V Thatpopunv Trohoyiotxol Négoug, 1 dayeipion mépwy Ye Bdon TeyVixég unyavixic
uddnone epgavileton we wia e€€youoa Ao, XOVTH VoL YELRLOTEL xou Vo Bloyelplo Tel TNy Te-
PAC Tl TOAUTTAOXOTNTA TETOLWY CUCTNUATWY. (26TOC0, EpwTAUATA OTWS THS, "TOTE” X
"oV’ elvon xahOTEpo Vo evonpatwdel 1 MA ot Swayelpion mépwy tou vépoug elvon axdun

CTeleTUN

Yy nopoloo diatelfn, eetdoope TNV e@apuoyn texvixey Podidg pdidnone i T BeAti-
otonolnon Tng anddooNg ot TNG AMOBOTIXOTNTAS TV TOPWY G CUCTAUATA T TOAOYIC TLXOV
Négoug. Aigpeuvioaue Ty anodoTixotnTa Bordidy VEUROVIXDOY SIXTUMY Gt BLapOpETIXd. €-
nineda BeATIOTOTOMONG, MO CUYXEXPWEVA GTOV TOUEA TN TEOPBAENTIXC Tapaxolovinong,
xadwg xan ot Pertiotonoinon oe eninedo cucTAUATOE, cLoTAOAC xadwS XAl oTo eninedo
NG EQUPUOYAC. LUYXEXPWEVA, 1) epyacio pog uropel vo cuvodiotel wg e€hig: o ‘Ooov agopd
NV nopaxorolinon twv cuotnudtwy Trokoyiotxod Négoug, avantilauue 1o Rusty, éva
TAGL0 TEOBAETTIXTE TOEaXOAOLUNONG UE ETLY VWOT) TWY TAUREUBOAGY Yiot cuo Tt Y Tolo-
yioTxol Négoug moAamAody wodwtwy, ¢ ‘Ocov agopd Tt diayceliplon oe eninedo cuoTtddac,
napovcldoaue o Adrias, éva Thalolo eVopYNoTEWONS TOPWY Yl GUC THUATO ATOCUVTEVEL-
uévne uviune. © ‘Ocov agopd tn BeltioTonolnon oe eMNEdO EPUPUOYTS, TUPOUCLICOUE TO
Sparkle, éva mhaiolo autépatng pUUUoNG TV TapauéTewy Tou Thaciou Spark to onolo Ba-
olleton ot Pordid VEupwVIXE BIXTLO TROXEWEVOL VoL LOVTEAOTIOLEL TNV ATOB0CT Xl TO XOOTOG
TWV UTO EXTEAEDT) EQURUOYWV.

Q¢ peMovtnég enextdoeic g nopodoug dlteBrc, Ta Tpotewvoueva TAalol Yo uropoloay
va enextadoly mpog Teelg Bacixolg d&oveg. Ilpdtov, oto xopudtt tne “Ilpdowne ITanpo-
popuxhic xan Evepyelonrc Biwowodtntog”, oha ta mhalolo umopody va emextodoly €10l (ot
vou hoBdvouy emimhéov UTOPN TNV xUTAVEAWOY EVEPYELIC, RO Amd TNV AmOB00Y TWV €-
poppoy®yv. Aegltepov, ta npoTevoueva TAalolo Yo utopoloay var ETeEXTadolV TEOXEWEVOL
VO UTopoVY v €QoprocToly Yo Vo BeEATIoTomolo0Y TN Sayelplor Topwy ot mepBdihovTa
Edge-Cloud ta onola glvon To anoxevtpwuévo xat opouctdlouy ueyohldTepn ToAUTAOXOTN-
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Brief Description of the Proposed Frameworks in Greek

T OGOV APOEE TO XOPUATL TNG DPOUOAOYNONG TV EQUPUOYWY, XM, EXTOC TWV GAAWY,
Tapovaldlovton TepanTépw TEOBAUATY, OTKS T.Y. TApeUPoréC 0TO BiXTUO, ATOUAXEUOUEVT,
anoUrxevon dedouévwy, x.d. Téhog, and tn oxomd tne Teynvntic Nonuoobvne xan tng
Mnyavixic Mdinone, unopolue vo eEeTAGOUUE EVOANIXTIXES ORYLTEXTOVIXEG TROXELUEVOU
VO LOVTEAOTIOLOVUE Tat SLopopeTixd meofAruata. Idaitepo evilapépov napouaidlouy ot apyl-
TEXTOVIXEC LOVTEAWY oL Bacilovton TNy avdhuon QUOIXAC YADCOUS, OTWS Yia TUEAOELYOL
0 povtého GPT [387]. Me yvdpova tétoleg apyttextovixéc Yo UTOpOUCUUE VOl XUTOUOXEV-
dlouye povtéha to omola va elvon o€ Y€om var LOVTEAOTIOLOUY TNV anOBOGCT) TWV EQUQUOY WV
xatevdeiov péoa and tov mnyalo xWoxd Toug, Ywels va yeedletar 1 ToAuddmavy Sodixacto
NG CUANOYYIC DEDOUEVMV XAl YURAXTNELOUOD TV EQAUSUOY V.
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Abbreviations & Acronyms

Al Artificial Intelligence

AWS Amazon Web Services

BE Best Effort

CNN Convolutional Neural Networks
CPU Central Processing Unit

DC Data Center

DCM DC Monitoring

DLR Deep Reinforcement Learning
DNN Deep Neural Network

DPU Data Processing Unit

DRAM Dynamic Random-Access Memory
FaaS Function-as-a-Service

FC Fully-connected

FPGA  Field Programmable Gate Array
GCP Google Cloud Platform

GPU Graphics Processing Unit
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Abbreviations & Acronyms

HwW Hardware

ICT Information and Communication Technology
ML Machine Learning

MLaaS ML-as-a-Service

KPI Key Performance Indicator

LC Latency Critical

LLC Last-Level Cache

LSTM  Long Short-Term Memory

PCM Performance Counter Monitoring

PMU Performance Monitoring Units

PUE Power Usage Effectiveness

QoS Quality of Service
SLA Service Level Agreements
SW Software

TCO Total Cost of Ownership
TPU Tensor Processing Unit
VM Virtual Machine

Xaa$S Everything-as-a-Service
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Mwoodptl

Artifical Intelligence

Cloud Computing
Cloud Provider
Datacenter

Design Space
Exploration (DSE)

Green Computing

Hyperscale Datacenter

Long short-term
Memory Networks

Machine Learning

Teyvnty Nonuoolvr. Ixoavotnto plog unyovig vor ovomapdyet
T YVOOTIXES AELTOoVRYIES EVOC avipiTou.

Trohoyiotxd Négog. XUvolo amd LTOAOYLETIXOUE TOEOUC
OlaxoUlo TV mou  Buatilevtan  xotdmaltnon oe  tehixolg

XPHOTES.

[Idpoyoc Trneeouwdsrv Yroloyiotixob Négoug. Etoupelor mou
npoo@épel unneeoieg plodwong mépwv oto TroloyioTind
Négoc.

Kévtpo Aedopévmv. Kripo 1) ywpoc péoa oe éva xtiplo oo
onolo PLho&evolvTon BLOXOUOTES, AANS Xl TNAETULXOVOVIOXES
20Ul AMOUNUEVTIXES UTTOOOUES.

E&epeivnon tou ywpou oyedlaone.

ITedown IThnpogopur. Epyohela, unnpeoteg xan teyvoloyleg
NG TANEOYOELXNG XL TWV ETUXOWOVLOY TOU CUVELGPEPOLY
OTNY TEOCTAGIA XU TNV ATOXATIC TACT, TOU QPUOLXOU TERLBAA-
AovToc.

Trepxhpoxoipevo Kévipo Aedouévwv
Alxtua poxpds Beayunpddeoune pviunc. Mopgy) teyvntodyv
AVATEOPODOTOVUEVV VEURWVIXWDY BIXTUMY TOU YETOLLOTOL0-

Ovtan otov Topéa g Bodeldc pdinong.

Mnyavixry Mddnon. Médodog avdiuong dedouévwy Tou auto-
HOTOTOLEL TNV OVETTUEY OVOAUTIXY LOVTEAWY.
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Greek Glossary

Multi-tenancy

Pareto front

Resource
Disaggregation

Server

[ToAhami ploYworn. H cuvtonodétnon epoappoydy amd duupo-
P0G YPNOTES OE XOWOoUS Blaxoulo Tég o nepi3dAlovta Y-
mohoyio ol Négoug, mpoxeévou va emtevydel adEnomn tng
YENOWOTONONE TV TOPWY TOU XEVTEOUL BEDOUEVLV Xal UElwaN
Tou *60TOUC AetToupYiaC.

Métwno Pareto. e npoBAfuata fertiotonoinong ue moAamid
xplthpla, ol Pareto Béltioteg Aoeic elvan awtég Yo Tig Omoleg
7 Behtiotonoinon tou evég xpitnplou unopel va emiteuydel povo
oV YELROTEPEVOEL TOUASYLOTOV €val GAAO XpELTY|PLO.

ArnociOvieon Trohoyiotnodv Hopwv. Ye clyypova cucthua-
Ta UTOAOYLOTXOU VEQOUC, ol dlardéatuol UTohOYLoTIXO! TOEOL
OPYUVWVOVTOL OE OUOYEVELS OUdDES, oL oTolol UTopolV Vo Gu-
vTEH0UV BUVOLXE XU VL YETOLLOTIOLOVVTAL HECEK TEMTOXOAGY
O TLOL.

Awxopiotic. TAxd f/xan hoylopind Tou Tapéyel UTOAOYLO Ti-
%00¢ TOPOUS o avVahUPBAVEL TNV ToEOY T BLAPOPWY UTNEECLAY,
eEUTNEETWVTAC UTHOELS IAAWY TROYEOUUATWY.
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