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Abstract

In this thesis we theoretically study questions in the area of Reliable Machine
Learning in order to design algorithms that are robust to bias and noise (Robust
Machine Learning) and satisfy societal desiderata such as privacy and reproducibil-
ity (Responsible Machine Learning).

In the area of Robust Machine Learning, we design computationally efficient
algorithms for problems in the fields of Truncated Statistics, Censored Statistics
and Robust Statistics. In particular, we provide the first efficient methods for
truncated distribution learning in discrete settings and perfect data sampling from
truncated data. Next, we study the fundamental problem of learning from par-
tial/coarse labels. Our main algorithmic result is that essentially any problem
learnable from fine grained labels can also be learned efficiently when the coarse
data are sufficiently informative. We obtain our result through a generic reduction
for answering Statistical Queries (SQ) over fine grained labels given only coarse
labels. We also study the central problem in Censored Statistics of Gaussian mean
estimation from coarse data. Finally, we consider the problem of learning linear
sorting functions in the presence of bounded noise, a problem that generalizes the
problem of learning halfspaces with Massart noise.

In the area of Responsible Machine Learning, we study the notion of replica-
bility as an algorithmic property and introduce the notion of replicable policies
in the context of stochastic bandits, one of the canonical problems in interactive
learning. We show that not only do replicable policies exist, but also they achieve
almost the same optimal (non-replicable) regret bounds in terms of the time hori-
zon. Lastly, we establish information-theoretic equivalences between notions of
algorithmic stability such as replicability and approximate differential privacy. We
do so by focusing on the following question: When two different parties use the
same learning rule on their own data, how can we test whether the distributions
of the two outcomes are similar? We study the similarity of outcomes of learning
rules through the lens of the Total Variation (TV) distance of distributions. We say
that a learning rule is TV indistinguishable if the expected TV distance between
the posterior distributions of its outputs, executed on two training data sets drawn
independently from the same distribution, is small. We first investigate the learn-
ability of hypothesis classes using TV indistinguishable learners. Our main results
are information-theoretic equivalences between TV indistinguishability and exist-
ing algorithmic stability notions such as replicability and approximate differential
privacy.
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Chapter 1

Introduction

Machine Learning constitutes a fundamental building block of modern life with
numerous applications. Its impact is far-reaching and often seen in areas such as
healthcare, transportation, finance, and education. For instance, Machine Learn-
ing can be used to improve healthcare through better diagnoses and personalized
treatment and to reduce traffic congestion using predictive analytics. While such
applications of Computer and Data Science can lead to a safer, more efficient, and
more equitable society, there exist various perils hidden behind such technology.
Various sources of bias or malicious attacks can influence the quality, performance,
fairness and privacy of Machine Learning systems. Hence it is of primal importance
to provide Reliable Machine Learning models assuring the well-behavior of the de-
ployed systems with provable guarantees in terms of robustness and performance.

This thesis focuses on designing and obtaining formal theoretical guarantees
about such reliable systems that ensure (i) robustness to bias, (ii) differential pri-
vacy and (iii) reproducibility.

Robust Machine Learning. Many commonly used statistical methods rely
on a crucial assumption: that data points are independently and identically dis-
tributed (i.i.d.). According to this assumption, each sample is drawn under con-
sistent conditions and does not impact the rest of the samples. However, this
assumption fails to account for various challenges in the data collection process,
leading to biased datasets. The presence of such bias can yield misleading or unfair
statistical conclusions. Consequently, it becomes essential to identify the sources
of bias and, more importantly, devise strategies for conducting statistical analy-
ses in the presence of bias. This issue is a fundamental problem with widespread
applications in diverse scientific fields, including Medical Science and Economics.
The area of Robust Machine Learning aims to deal with such biased datasets and
design algorithms that provably tackle such phenomena.

In the first part of this thesis, we provide theoretical understanding when the
data are biased due the following significant and emerging challenges: (1) trunca-
tion, (2) coarsening and (3) corruptions with semi-random noise.
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Responsible Machine Learning. As Machine Learning increasingly becomes
part of real-life applications, data scientists aim at developing and deploying Ma-
chine Learning models and algorithms in a manner that aligns with ethical princi-
ples and values and in a way that the provided results are reliable and valid.

The issue of privacy during data analysis has a rich historical background that
encompasses various fields of study. With advancing technology enabling increas-
ingly potent collection and organization of user data, there is a growing demand for
a rigorous and well-defined concept of privacy. The notion of differential privacy
emerges as a fundamental solution in industries, providing a way to protect data
privacy even when collecting data from a large group of individuals. It ensures that
individuals cannot be identified through their data, while simultaneously providing
valuable insights that can enhance services.

Reproducibility is important because it allows others to verify and validate the
findings of any research or experiment. Without reproducibility, research findings
cannot be trusted and scientific progress is stifled. In particular, in order for scien-
tific findings to be valid and reliable, the experimental process must be repeatable,
and must provide coherent results and conclusions across these repetitions. In
short, reproducibility can reduce bias and increase transparency in research, which
can help to ensure that results are fair and accurate. In fact, lack of reproducibil-
ity has been a major issue in many scientific areas, commonly referred to as the
“reproducibility crisis”; a 2016 survey that appeared in Nature (Bak16b) revealed
that more than 70% of researchers failed in their attempt to reproduce another
researcher’s experiments.

In the second part of this thesis, we make several contributions in the area
of Responible Machine Learning: we establish rigorous connections between the
aforementioned notions of (1) differential privacy and (2)reproducibility, and, de-
sign algorithms that solve important statistical problems under reproducibility con-
straints.

1.1 Challenges in Robust Machine Learning
In the first part of the thesis, we opt to design computationally efficient al-

gorithms that are robust to realistic noise models and, in particular, truncation,
coarsening and semi-random corruptions.

Truncated Data. Inference from truncated or censored samples is a classical
challenge in Statistics. Truncation occurs when samples falling outside of some
subset 𝑆 of the support of the distribution are not observed, and their count in
proportion to the observed samples is also not observed. Censoring is similar but
simpler; the fraction of samples falling outside of 𝑆 is given to the data analyst.
Truncation and censoring of samples have unlimited manifestations in economics,
engineering, quality control, medical and biological sciences, social sciences, and
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all areas of the physical sciences. See (DGTZ18; DGTZ19a) for various historical
references and Gil Kalai’s blog for an interesting anecdote on truncated statistics
and Henri Poincaré.

Let us provide an intuitive example. Consider the statistical task where Alice
wants to estimate the mean height of a group of people. Assume that the data are
collected by Bob, a malicious adversary who wants to cause trouble to Alice; Bob
erases any measurement that is smaller than 190cm and provides the “corrupted”
dataset to Alice. Hence, Alice observes a truncated version of the true dataset
and, under the natural assumption that the heights of the group are normally
distributed with mean at 180cm, a naive empirical estimate will be completely
far from the true mean. Alice can understand that the dataset is biased since
she is not observing the expected “bell curve” and so she is suspicious that Bob
has performed a malicious action. Can Alice use only this truncated dataset to
obtain the correct estimation, i.e., output a good approximation of the true mean?
The area of truncated statistics aims to answer exactly that kind of questions. In
short, the answer is “yes”. Intuitively, Alice can “reconstruct” the Gaussian curve
by simply observing only a part (say the tail) of the distribution’s support. Is this
possible to be done efficiently in high-dimensions? This question falls in the realm
of computationally efficient inference from truncated samples and has been raised
and studied in various works (DGTZ18; KTZ19; DGTZ19a; NP19).

Challenge 1. Design computationally efficient algorithms that are robust in the
presence of truncated data in high dimensions.

Coarsened Data. Another classical challenge in Statistics is the problem of
estimation from coarsened data (Tsi06). Recall the game between Alice and Bob.
Now Bob instead of hiding samples below 190cm performs the following strategy:
He observes each drawn sample 𝑥 and replaces it with the closest to 𝑥 multiple
of 50. Hence, the sample 𝑥 = 151cm becomes 150cm and the sample 𝑥 = 176cm
becomes 200cm. The terminology for Bob’s rounding strategy in statistics comes
by the name of coarsening. Alice observes only the coarsened datapoints. Bob’s
strategy is perhaps the most elementary way to coarsen data; he simply rounds
each point to a desired accuracy. We remark that there is an equivalently con-
ceptual way to think of coarsening. Alice does not observe the actual points 𝑥
but sets 𝑆 (in this case intervals) that contain the true observation, e.g., Alice’s
observation 200cm is the interval [175, 225)cm, which contains the actual obser-
vation 176cm. Can Alice retrieve the correct mean? Once again, is this possi-
ble to be done in a computationally efficient way in high-dimensions? Designing
algorithms from coarsened data constitute a classical challenge in Computer Sci-
ence (GLB+18; CDCM18; TSD+20; QCJ+20; LGW17; JLYW19) and Statistics
(CST11a; CSGGSR14; FLH+20; CRB20; LXF+20; WCH+21).

Challenge 2. Design computationally efficient algorithms that are robust in the
presence of coarsened data in high-dimensions.
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Corrupted Data. The field of Robust Statistics focuses on addressing the
general challenge of developing estimators that maintain good performance even
when the data significantly deviates from idealized modeling assumptions (DK19).

The study of robust statistical procedures can be traced back to the semi-
nal works of (Tuk60) and (Hub64). Classical statistical theory has provided in-
sights into the information-theoretic limits of robust estimation for many common
problems. However, the computational aspects of this field remained poorly un-
derstood until relatively recently. In particular, the first computational results in
robust statistics appeared in (DKK+19b) and (LRV16a). After these breakthrough
results, numerous computationally efficient robust estimators for high-dimensional
learning tasks have been designed. It is worth noting that there exists a wide range
of models available that capture various forms of data corruptions, contributing to
the versatility of robust statistical techniques. In this thesis, we will focus on
the semi-random model that interpolates between the fully-random model and the
fully-adversarial model (see e.g., (MN06) for details). The main motivation behind
semi-random noise models is that they are expressive enough to capture various
real-world scenarios (compared to the fully-random models; see e.g., (DGT19a))
and potentially allow for computationally efficient algorithms (compared to the
fully-adversarial models; see e.g., (FGRW12)).

Challenge 3. Design computationally efficient algorithms that are robust in the
presence of (semi-randomly) corrupted data in high-dimensions.

The above challenge has motivated an extensive line of work (MN06; Vap06;
Slo88; Slo92; RS94; Slo96; DGT19b; CKMY20; DKT21; ABHU15; ABHZ16; YZ17;
ZLC17; BZ17; MV19; DKTZ20; ZSA20; ZL21).

1.2 Challenges in Responsible Machine Learn-
ing

This second part of the thesis lies in the fundamental research direction of
Responsible Machine Learning. In this thesis, we will focus on two notions of
emerging importance in Data Science: (1) replicability and (2) differential privacy.

Lack of replicability in experiments has been a major issue, usually referred to
as the reproducibility crisis, in many scientific areas such as biology and chemistry.
As we have already mentioned, the results of a survey that appeared in Nature
(Bak16a) are very worrisome: more than 70% of the researchers that participated
in it could not replicate other researchers’ experimental findings while over half of
them were not able to even replicate their own conclusions. In the past few years
the number of scientific publications in the Machine Learning (ML) community has
increased exponentially. Significant concerns and questions regarding replicability
have also recently been raised in the area of ML. This can be witnessed by the
establishment of various reproducibility challenges in major ML conferences such
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as the ICLR 2019 Reproducibility Challenge (PSF+19) and the NeurIPS 2019
Reproducibility Program (PVLS+21).

Motivated by this crucial problem, the theoretical Machine Learning commu-
nity initiated the study of reproducibility/replicability as a property of learning
algorithms. Inspired by the notion of pseudo-deterministi algorithms in complex-
ity theory (ILPS22) proposed the following definition: a randomized algorithm will
be replicable if two distinct runs of the algorithm on two sets of samples drawn
from the same distribution, with internal randomness fixed between both runs,
produces the same output with high probability. A formal definition appears in
the upcoming section (see Definition 1.4.7).

The main question arising is whether we can existing Machine Learning algo-
rithms are replicable and, if no, is it possible to design such algorithms? This task is
a classical question in Science (Bak16a) but is fairly unexplored in the Theoretical
Computer Science community (ILPS22).

Challenge 4. What is the cost of replicability in the design of ML algorithms?

We mention that the notion of cost could correspond to e.g., the sample and
computational overhead of designing replicable algorithms for statistical tasks or
the regret incurred by replicable online learners compared to their non-replicable
counterparts.

The second notion that we will be interested in is the fundamental notion of
differential privacy (for a formal definition, see Definition 1.4.8). As mentioned in
(DR14), differential privacy addresses the paradox of learning nothing about an
individual while learning useful information about a population. In this thesis,
we will formally study the interrelations between replicability, differentialy privacy
and other forms of stability. This challenge has been previously raised in (ILPS22;
GKM21; CLN+16).

Challenge 5. Are there formal connections between replicability, differential pri-
vacy and other notions of algorithmic stability?

We view both replicability and differential privacy as two fundamental blocks
in the area of Responsible Machine Learning. Hence, we believe that establishing
formal connections between a priori not clearly related notions of “reliability” is
a way to increase our understanding towards the design of responsible Machine
Learning systems.

1.3 Summary of Contribution
In this section we summarize the results of this thesis and we present an

overview of the structure of the thesis. We start with shortly explaining the content
of each one of the chapters. The first half of the thesis deals with Robust Machine
Learning, while the second one handles problems related to Responsible Machine
Learning.
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Robust Machine Learning

In the first part of the thesis (Chapter 2-4), we will deal with questions regarding
Robust Machine Learning. In particular, the first three chapters are organized as
follows.

Chapter 2 - Truncated Data. We first study the problem of estimating
the parameters of a Boolean product distribution in 𝑑 dimensions, when the sam-
ples are truncated by a set 𝑆 ⊆ {0, 1}𝑑 accessible through a membership oracle
(Challenge 1). We introduce a natural notion of fatness of the truncation set 𝑆,
under which truncated samples reveal enough information about the true distribu-
tion. We show that if the truncation set is sufficiently fat, samples from the true
distribution can be generated from truncated samples. A stunning consequence
is that virtually any statistical task that can be performed efficiently for Boolean
product distributions, can also be performed from truncated samples, with a small
increase in sample complexity. Exploring the limits of learning discrete models from
truncated samples, we identify natural conditions that are necessary for efficient
identifiability. By carefully adapting the Stochastic Gradient Descent approach of
(DGTZ18), we show that these conditions are also sufficient for efficient learning
of truncated Boolean product distributions.

Chapter 3 - Coarsened Data. In this chapter, we formally define and and
study the problem of learning from coarse/partial data (Challenge 2). Instead of
observing the actual labels from a set 𝒵, we observe coarse labels corresponding
to a partition of 𝒵 (or a mixture of partitions). Our main algorithmic result is
that essentially any problem learnable from fine grained labels can also be learned
efficiently when the coarse data are sufficiently informative. We obtain our result
through a generic reduction for answering Statistical Queries (SQ) over fine grained
labels given only coarse labels. The number of coarse labels required depends poly-
nomially on the information distortion due to coarsening and the number of fine
labels |𝒵|. We also adopt an unsupervised perspective to the problem of learn-
ing from coarsened data. We investigate a central problem in censored statistics:
Gaussian mean estimation from coarsened data. We provide an efficient algorithm
when the sets in the partition are convex and establish that the problem is NP-hard
even for very simple non-convex sets. On a technical side, our algorithmic result
relies on the elegant Brascamp–Lieb inequality and our hardness result is based
on (perhaps surprising) connections between coarsened Gaussian distributions and
the fundamental problem of finding the maximum cut in a graph, which is known
to be NP-hard even to approximate.

Chapter 4 - Corrupted Data. Label Ranking (LR) is the supervised task of
learning a sorting function that maps feature vectors 𝑥 ∈ R𝑑 to rankings 𝜎(𝑥) ∈ S𝑘
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over a finite set of 𝑘 labels. We focus on the fundamental case of learning lin-
ear sorting functions (LSFs) under Gaussian marginals: 𝑥 is sampled from the
𝑑-dimensional standard normal and the ground truth ranking 𝜎⋆(𝑥) is the order-
ing induced by sorting the coordinates of the vector 𝑊 ⋆𝑥, where 𝑊 ⋆ ∈ R𝑘×𝑑

is unknown. We consider learning LSFs in the presence of bounded noise (Chal-
lenge 3): assuming that a noiseless example is of the form (𝑥, 𝜎⋆(𝑥)), we observe
(𝑥, 𝜋), where for any pair of elements 𝑖 ̸= 𝑗, the probability that the order of 𝑖, 𝑗
is different in 𝜋 than in 𝜎⋆(𝑥) is at most 𝜂 < 1/2. We design efficient non-proper
and proper learning algorithms that learn hypotheses within normalized Kendall’s
Tau distance 𝜖 from the ground truth with 𝑁 = ̃︀𝑂(𝑑 log(𝑘)/𝜖) labeled examples
and runtime poly(𝑁, 𝑘). For the more challenging top-𝑟 disagreement loss, we give
an efficient proper learning algorithm that achieves 𝜖 top-𝑟 disagreement with the
ground truth with 𝑁 = ̃︀𝑂(𝑑𝑘𝑟/𝜖) samples and poly(𝑁) runtime.

Responsible Machine Learning

In the second part of the thesis (Chapter 5-6), we study problems concerning
Responsible Machine Learning. The chapters are organized as follows.

Chapter 5 - Replicable Bandit Algorithm Design. We introduce the
notion of replicable policies in the context of stochastic bandits, one of the canonical
problems in interactive learning. A policy in the bandit environment is called
replicable if it pulls, with high probability, the exact same sequence of arms in two
different and independent executions (i.e., under independent reward realizations).
We show that not only do replicable policies exist, but also they achieve almost the
same optimal (non-replicable) regret bounds in terms of the time horizon. More
specifically, in the stochastic multi-armed bandits setting, we develop a policy with
an optimal problem-dependent regret bound whose dependence on the replicability
parameter is also optimal. Similarly, for stochastic linear bandits (with finitely
and infinitely many arms) we develop replicable policies that achieve the best-
known problem-independent regret bounds with an optimal dependency on the
replicability parameter. Our results show that even though randomization is crucial
for the exploration-exploitation trade-off, an optimal balance can still be achieved
while pulling the exact same arms in two different rounds of executions.

Chapter 6 - Statistical Indistinguishability, Privacy and Replica-
bility. When two different parties use the same learning rule on their own data,
how can we test whether the distributions of the two outcomes are similar? In
this chapter, we study the similarity of outcomes of learning rules through the
lens of the Total Variation (TV) distance of distributions. We say that a learning
rule is TV indistinguishable if the expected TV distance between the posterior
distributions of its outputs, executed on two training data sets drawn indepen-
dently from the same distribution, is small. We first investigate the learnability

18



of hypothesis classes using TV indistinguishable learners. Our main results are
information-theoretic equivalences between TV indistinguishability and existing
algorithmic stability notions such as replicability and approximate differential pri-
vacy. Then, we provide statistical amplification and boosting algorithms for TV
indistinguishable learners.

1.4 Technical Overview of the Thesis
In this section we delve into a more technical level in the context of this thesis

and we provide a summary of the results of each chapter. In each upcoming section,
we motivate the problem discussed, provide some preliminary definitions whenever
needed and informally state the results of this thesis.

1.4.1 Learning from Truncated Samples - Chapter 2
Parameter estimation and learning from truncated samples is an important

and challenging problem in Statistics. The goal is to estimate the parameters of
the true distribution based only on samples that fall within a (possibly small)
subset 𝑆 of the distribution’s support. Sample truncation occurs naturally in a
variety of settings in science, engineering, economics, business and social sciences.
Typical examples include selection bias in epidemiology and medical studies, and
anecdotal “paradoxes” in damage and injury analysis explained by survivor bias.
Statistical estimation from truncated samples goes back to at least (Gal97), who
analyzed truncated samples corresponding to speeds of American trotting horses,
and includes classical results on the use of the moments method (PL08; Lee14)
and the maximum likelihood method (Fis31) for estimating a univariate Gaussian
distribution from truncated samples (see also (DGTZ18) for a detailed discussion on
the history and the significance of statistical estimation from truncated samples).

In the last few years, there has been an increasing interest in computationally
and statistically efficient algorithms for learning multivariate Gaussian distribu-
tions from truncated samples (when the truncation set is known (DGTZ18) or
unknown (KTZ19)) and for training linear regression on models based on trun-
cated (or censored) data (DGTZ19a). In addition to the elegant and powerful
application of Stochastic Gradient Descent to optimizing a seemingly unknown
maximum likelihood function from truncated samples, a significant contribution of
(DGTZ18; KTZ19; DGTZ19a) concerns necessary conditions for efficient statistical
estimation of multivariate Gaussian or regression models from truncated samples.
Moreover, (NP19) showed how to use Expectation-Maximization for learning mix-
tures of two Gaussian distributions from truncated samples.

Despite the strong results above on efficient learning from truncated samples
for continuous settings, we are not aware of any previous work on learning discrete
models from truncated samples. We note that certain elements of the prior ap-
proaches in inference from truncated data are inherently continuous and it is not
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clear to which extent (and under which conditions) can be adapted to a discrete set-
ting. E.g., statistical estimation from truncated samples in a discrete setting should
deal with a situation where the truncation removes virtually all randomness from
certain directions, something that cannot be the result of nontrivial truncations in
a continuous setting.

Our Contribution on Challenge 1. Motivated by this gap in relevant lit-
erature, we investigate efficient parameter estimation of discrete models from trun-
cated samples. We start with the fundamental setting of a Boolean product distri-
bution 𝒟 on the 𝑑-dimensional hypercube truncated by a set 𝑆, which is accessible
through membership queries. The marginal of 𝒟 in each direction 𝑖 is an inde-
pendent Bernoulli distribution with parameter 𝑝𝑖 ∈ (0, 1). Our goal is to compute
an estimation ̂︀𝑝 of the parameter vector 𝑝 of 𝒟 such that ‖𝑝 − ̂︀𝑝‖2 ≤ 𝜖, with
probability of at least 1− 𝛿, with time and sample complexity polynomial in 𝑑, 1/𝜖
and log(1/𝛿). We note that such an estimation ̂︀𝑝 (or an estimation ̂︀𝑧 of the logit
parameters 𝑧 = (log 𝑝1

1−𝑝1
, . . . , log 𝑝𝑑

1−𝑝𝑑
) of similar accuracy) implies an estimation

of the true distribution within total variation distance 𝜖.
Significantly departing from the maximum likelihood estimation approach of

(DGTZ18; KTZ19; DGTZ19a), we introduce a natural notion of fatness of the
truncation set 𝑆, under which samples from the truncated distribution 𝒟𝑆 reveal
enough information about the true distribution 𝒟. Roughly speaking, a truncated
Boolean product distribution 𝒟𝑆 is 𝛼-fat in some direction 𝑖 of the Boolean hy-
percube, if for an 𝛼 probability mass of the truncated samples, the neighboring
sample with its 𝑖-th coordinate flipped is also in 𝑆. Therefore, with probability
𝛼, conditional on the remaining coordinates, the 𝑖-th coordinate of a sample is
distributed as the marginal of the true distribution 𝒟 in direction 𝑖. So, if the
truncated distribution 𝒟𝑆 is 𝛼-fat in all directions (e.g., the halfspace of all vectors
with 𝐿1 norm at most 𝑘 is a fat subset of the Boolean hypercube), a sample from
𝒟𝑆 is quite likely to reveal significant information about the true distribution 𝒟.
Building on this intuition, we show how samples from the true distribution 𝒟 can
be generated from few truncated samples (see also Algorithm 1):

Informal Theorem. With an expected number of 𝑂(log(𝑑)/𝛼) samples from
the 𝛼-fat truncation of a Boolean product distribution 𝒟, we can generate a
sample 𝑥 ∈ {0, 1}𝑑 distributed as in 𝒟.

We show (Lemma 2.2.2) that fatness is also a necessary condition for the above
result. A stunning consequence of our procedure is that virtually any statistical task
(e.g., learning in total variation distance, parameter estimation, sparse recovery,
uniformity or identity testing) that can be performed efficiently for a Boolean
product distribution 𝒟, can also be performed using truncated samples from 𝒟,
at the expense of a factor 𝑂(log(𝑑)/𝛼) increase in time and sample complexity. In
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Section 2.2, we obtain, as simple corollaries, that the statistical tasks described in
(ADK15; DKS17a; CDKS17; CKM+19) for Boolean product distributions can be
performed using only truncated samples!

To further demonstrate the power and the wide applicability of our approach,
we extend the notion of fatness to the richer and more complex setting of ranking
distributions on 𝑑 alternatives. In Section 2.2.5, we show how to implement efficient
statistical inference of Mallows models using samples from a fat truncated Mallows
distribution (see Theorem 2.2.10).

Natural and powerful though, fatness is far from being necessary for efficient
parameter estimation from truncated samples. Seeking a deeper understanding
of the challenges of learning discrete models from truncated samples, we identify,
in Section 2.3, three natural conditions that we show to be necessary for efficient
parameter estimation in our setting:

Assumption 1: The support of the distribution 𝒟 on 𝑆 should be rich enough, in
the sense that its truncation𝒟𝑆 should assign positive probability to a 𝑥⋆ ∈ 𝑆
and 𝑑 other vectors that remain linearly independent after we subtract 𝑥⋆

from them.

Assumption 2: 𝑆 is accessible through a membership oracle that reveals whether
𝑥 ∈ 𝑆, for any 𝑥 in the 𝑑-dimensional hypercube.

Assumption 3: The truncation of 𝒟 by 𝑆 leaves enough randomness in all di-
rections. More precisely, we require that in any direction 𝑤 ∈ R𝑑, any two
samples from the truncated distribution 𝒟𝑆 have sufficiently different pro-
jections on 𝑤, with non-negligible probability.

Assumption 2 ensures that the learning algorithm has enough information
about 𝑆 and is also required in the continuous setting. Without oracle access to 𝑆,
for any Boolean product distribution 𝒟, we can construct a (possibly exponentially
large) truncation set 𝑆 such that sampling from the truncated distribution 𝒟𝑆 ap-
pears identical to sampling from the uniform distribution, until the first duplicate
sample appears (our construction is similar to (DGTZ18, Lemma 12)).

Similarly to (DGTZ18), Assumption 2 is complemented by the additional natu-
ral requirement that the true distribution 𝒟 should assign non-negligible probabil-
ity mass to the truncation set 𝑆 (Assumption 4). The reason is that the parameter
estimation algorithm evaluates the quality of its current estimation by generating
samples in 𝑆 and comparing them with samples from 𝒟𝑆 . Assumptions 2 and 4
ensure that this can be performed efficiently.

Assumptions 1 and 3 are specific to the discrete setting of the Boolean hyper-
cube. Assumption 1 requires that we should be able to normalize the truncation
set 𝑆, by subtracting a vector 𝑥⋆, so that its dimension remains 𝑑. If this is true,
we can recover the parameters of a Boolean product distribution 𝒟 from trun-
cated samples by solving a linear system with 𝑑 equations and 𝑑 unknowns, which
we obtain after normalization. We prove, in Lemma 2.3.1, that Assumption 1 is
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both sufficient and necessary for parameter recovery from truncated samples in our
setting.

Assumption 3 is a stronger version of Assumption 1 and is necessary for effi-
cient parameter estimation from truncated samples in the Boolean hypercube. It
essentially requires that with sufficiently high probability, any set 𝑋 of polynomi-
ally many samples from 𝒟𝑆 can be normalized, subtracting a vector 𝑥⋆, so that 𝑋
includes a well-conditioned 𝑑× 𝑑 matrix, after normalization.

Beyond showing that these assumptions are necessary for efficient identifiabil-
ity, we show that they are also sufficient and provide a computationally efficient
algorithm for learning Boolean product distributions. Our algorithm is based on
a careful adaptation of the approach of (DGTZ18) which uses Stochastic Gra-
dient Descent on the negative log-likelihood. While the analysis consists of the
same conceptual steps as that of (DGTZ18), it requires dealing with a number
of technical details that arise due to discreteness. One technical contribution of
our work is using the necessary assumptions for identifiability to establish strong-
convexity of the negative log-likelihood in a small ball around the true parameters
(see Lemma 2.5.12 and Lemma 2.5.9). Our main result is that:

Informal Theorem. Under Assumptions (1) - (4), Algorithm 4 computes an
estimation ̂︀𝑧 of the logit vector 𝑧 of the true distribution 𝒟 such that ‖𝑧−̂︀𝑧‖2 ≤
𝜖 with probability at least 1 − 𝛿, and achieves time and sample complexity
polynomial in 𝑑, 1/𝜖 and log(1/𝛿).

1.4.2 Learning from Coarse Labels - Chapter 3
The most classical problem in Machine Learning and Statistics is that of clas-

sification: given labeled examples, the goal is to train some model to achieve low
classification error on new potentially unseen examples. In most modern applica-
tions, where we train complicated models such as neural nets, large amounts of
labeled examples are required. Large datasets such as Imagenet, (RDS+15), often
contain thousands of different categories such as animals, vehicles, etc., each one of
those containing many fine grained subcategories: animals may contain dogs and
cats and dogs may be further split into different breeds et cetera.

In the last few years, there have been many works that focus on fine grained
recognition, (GLB+18; CDCM18; TSD+20; QCJ+20; LGW17; JLYW19; JLL+20;
BSS+20; TKD+19). Collecting a sufficient amount of accurately labeled training
examples is a hard and expensive task that often requires hiring experts to annotate
the examples. This has motivated the problem of learning from coarsely labeled
datasets, where a dataset is not fully annotated with fine grained labels but a
combination of fine, e.g., cat, and coarse labels, e.g., animal, is given, (DKFF13;
RGGV15).
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Even though the problem of learning from coarsely labeled data has attracted
significant attention from the applied community, from a theoretical perspective
little is known.

Our Contribution on Challenge 2. We model coarse labels as subsets of
the domain of all possible fine labels. For example, assume that we hire an expert
on dog breeds and an expert on cat breeds to annotate a dataset containing images
of dogs and cats. With probability 1/2, we get samples labeled by the dog expert,
i.e., labeled according to the partition

{cat = {persian cat, bengal cat, . . .}, {maltese dog}, {husky dog}, . . . } .

On the other hand, the cat expert will provide a fine grained partition over cat
breeds and will group together all dog breeds. Our coarse data model captures
exactly this mixture of different label partitions.

Definition 1.4.1 (Generative Process of Coarse Data with Context). Let 𝒳 be an
arbitrary domain, and let 𝒵 = {1, . . . , 𝑘} be the discrete domain of all possible fine
labels.

We generate coarsely labeled examples as follows:

1. Draw a finely labeled example (𝑥, 𝑧) from a distribution 𝒟 on 𝒳 × 𝒵.

2. Draw a coarsening partition 𝒮 (of 𝒵) from a distribution 𝜋.

3. Find the unique set 𝑆 ∈ 𝒮 that contains the fine label 𝑧.

4. Observe the coarsely labeled example (𝑥, 𝑆).

We denote 𝒟𝜋 the distribution of the coarsely labeled example (𝑥, 𝑆).

Our objective motivated by real-world applications can be summarized as fol-
lows.

Question 1. Can we train a model, using coarsely labeled examples (𝑥, 𝑆) ∼ 𝒟𝜋,
that classifies finely labeled examples (𝑥, 𝑧) ∼ 𝒟 with accuracy comparable to that
of a classifier that was trained on examples with fine grained labels?

Definition 1.4.1 does not impose any restrictions on the distribution over parti-
tions 𝜋. It is clear that if partitions are very rough, e.g., we split 𝒵 into two large
disjoint subsets, we lose information about the fine labels and we cannot hope to
train a classifier that performs well over finely labeled examples.

In order for Question 1 to be information theoretically possible, we need to
assume that the partition distribution 𝜋 preserves fine-label information. The
following definition quantifies this by stating that reasonable partition distributions
𝜋 are those that preserve the total variation distance between different distributions
supported on the domain of the fine labels 𝒵. Let us introduce the notion of
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information preserving distributions: For some 𝛼 ∈ (0, 1], we will say that the
distribution 𝜋 is an 𝛼-information preserving partition distribution if for
every two distributions 𝒟1,𝒟2 over the domain 𝒵, it holds that 𝑑TV(𝒟1

𝜋,𝒟2
𝜋) ≥

𝛼 · 𝑑TV(𝒟1,𝒟2), where 𝑑TV(𝒟1,𝒟2) is the total variation distance of 𝒟1 and 𝒟2.
Intuitively, this definition captures the distortion that the coarsening provokes to
any pair of probability measures.

For example, the partition distribution defined in the dog/cat dataset scenario,
discussed before Definition 1.4.1, is 1/2-information preserving, since we observe
fine labels with probability 1/2. In this case, it is easy, at the expense of losing the
statistical power of the coarse labels, to combine the finely labeled examples from
both experts in order to obtain a dataset consisting only of fine labels. However,
our model allows the partitions to have arbitrarily complex combinatorial structure
that makes the process of “inverting" the partition transformation computationally
challenging. For example, specific fine labels may be complicated functions of
coarse labels: “medium sized" and “pointy ears" and “blue eyes" may be mapped
to the “husky dog" fine label.

Our first result is a positive answer to Question 1 in essentially full generality:
We show that concept classes that are efficiently learnable in the Statistical Query
(SQ) model of (Kea98), are also learnable from coarsely labeled examples. Our
result is similar in spirit with the result of (Kea98), where it is proved that SQ
learnability implies learnability under random classification noise. Hence, we pro-
vide a generic reduction and so that we can efficiently compute statistical queries
over fine labels provided sample access to coarsely labeled examples.

Informal Theorem (SQ Learnability implies Learnability from Coarse Ex-
amples). Any concept class 𝒞 ⊆ [𝑘]𝒳 that is efficiently learnable with 𝑀 statis-
tical queries from finely labeled examples (𝑥, 𝑧) ∼ 𝒟, can be efficiently learned
from 𝑂(poly(𝑘/𝛼)) ·𝑀 coarsely labeled examples (𝑥, 𝑆) ∼ 𝒟𝜋 under any 𝛼-
information preserving partition distribution 𝜋.

Statistical Queries are queries of the form E(𝑥,𝑧)∼𝒟[𝑞(𝑥, 𝑧)] for some query
function 𝑞(𝑥, 𝑧). It is known that almost all known machine learning algorithms
(AD98; BFKV98; BDMN05; DV08; BF15; FGR+17) can be implemented in the SQ
model. In particular, in (FGV17), it is shown that (Stochastic) Gradient Descent
can be simulated by statistical queries. This implies that our result can be applied,
even in cases where it is not possible to obtain formal optimality guarantees, e.g.,
training deep neural nets. We can train such models using coarsely labeled data
and guarantee the same performance as if we had direct access to fine labels (see
also Section 3.1.3). 1 As another application, we consider the problem of multi-
class logistic regression with coarse labels. It is known, see e.g., (FHT01), that

1Given any objective of the form 𝐿(𝑣) = E(𝑥,𝑦)∼𝒟[ℓ(𝑣;𝑥, 𝑦)], its gradients correspond
to ∇𝑣𝐿(𝑣) = E(𝑥,𝑦)∼𝒟[∇𝑣ℓ(𝑣;𝑥, 𝑦)]. Having Statistical Query access to the distribution
of (𝑥, 𝑦), we can directly obtain estimates of the above gradients using the query func-
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given finely labeled examples (𝑥, 𝑧) ∼ 𝒟, the likelihood objective for multiclass
logistic regression is concave with respect to the weight matrix. Even though the
likelihood objective is no-longer concave when we consider coarsely labeled exam-
ples (𝑥, 𝑆) ∼ 𝒟𝜋, our theorem bypasses this difficulty and allows us to efficiently
perform multiclass logistic regression with coarse labels.

Inference from coarse data naturally arises also in unsupervised, i.e., distribu-
tion learning settings: instead of directly observing samples from the target distri-
bution, we observe “representative" points that correspond to larger sets of samples.
For example, instead of observing samples from a real valued random variable, we
round them to the closest integer. An important unsupervised problem that fits
in the coarse data framework is censored statistics, (Coh16; Wol79; Bre96; Sch86).
Interval censoring, that arises in insurance adjustment applications, corresponds to
observing points in some interval and point masses at the endpoints of the interval
instead of observing fine grained data from the whole real line. Moreover, the prob-
lem of learning the distribution of the output of neural networks with non-smooth
activations (e.g., ReLU networks, (WDS19)) also fits in our model of distribution
learning with coarse data, see Figure 1.1(c).

We make progress towards the direction of learning parametric distributions
from coarse samples. In many important applications, instead of a discrete dis-
tribution over fine labels, a continuous parametric model is used. A popular ex-
ample is when the domain 𝒵 of Definition 1.4.1 is the entire Euclidean space R𝑑,
and the distribution of finely labeled examples is a Gaussian distribution whose
parameters possibly depend on the context 𝑥. Such censored regression settings
are known as Tobit models (Tob58; Mad86; Gou00). Lately, significant progress
has been made from a computational point of view in such censored/truncated
settings in the distribution specific setting, e.g., when the underlying distribu-
tion is Gaussian (DGTZ18; KTZ19), mixtures of Gaussians (NP19), linear regres-
sion (DGTZ19b; IZD20; DRZ20). In this distribution specific setting, we consider
the most fundamental problem of learning the mean of a Gaussian distribution
given coarse data.

Definition 1.4.2 (Coarse Gaussian Data). Consider the Gaussian distribution
𝒩 (𝜇⋆), with mean 𝜇⋆ ∈ R𝑑 and identity covariance matrix. We generate a sample
as follows:

1. Draw 𝑧 from 𝒩 (𝜇⋆).

2. Draw a partition 𝒮 (of R𝑑) from 𝜋.

3. Observe the set 𝑆 ∈ 𝒮 that contains 𝑧.

We denote the distribution of 𝑆 as 𝒩𝜋(𝜇
⋆).

tions 𝑞𝑖(𝑥, 𝑦) = (∇𝑣ℓ(𝑣;𝑥, 𝑦))𝑖. In (FGV17), the precise accuracy required for specific
SQ implementations of first order methods depends on the complexity of the underlying
distribution and the particular objective function ℓ(·).
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We first study the above problem, from a computational viewpoint. For the cor-
responding problems in censored and truncated statistics no geometric assumptions
are required for the sets: In (DGTZ18), it was shown that an efficient algorithm ex-
ists for arbitrarily complex truncation sets. In contrast in our more general model
of coarse data we show that having sets with geometric structure is necessary. In
particular we require that every set of the partition is convex, see Figure 1.1(b,c).
We show that when the convexity assumption is dropped, learning from coarse
data is a computationally hard problem even under a mixture of very simple sets.

(a) Non-Identifiable (b) Convex Partition (c) ReLU Case

Figure 1.1: (a) is a very rough partition, that makes learning the mean
impossible: Gaussians 𝒩 ((0, 𝑧)) centered along the same vertical line (0, 𝑧)
assign exactly the same probability to all cells of the partitions and there-
fore, 𝑑TV(𝒩𝜋((0, 𝑧1)),𝒩𝜋((0, 𝑧2))) = 0: it is impossible to learn the second
coordinate of the mean. (b) is a convex partition of R2, that makes recover-
ing the Gaussian possible. (c) is the convex partition corresponding to the
output distribution of one layer ReLU networks. When both coordinates
are positive, we observe a fine sample (black points correspond to singleton
sets). When exactly one coordinate (say 𝑥1) is positive, we observe the line
𝐿𝑧 = {𝑥 : 𝑥2 < 0,𝑥1 = 𝑧 > 0} that corresponds to the ReLU output (𝑥1, 0).
If both coordinates are negative, we observe the set {𝑥 : 𝑥1 < 0,𝑥2 < 0},
that corresponds to the point (0, 0).

Informal Theorem. Let 𝜋 be a general partition distribution. Unless RP =
NP, no algorithm with sample access to 𝒩𝜋(𝜇

⋆), can compute, in poly(𝑑) time,
a ̃︀𝜇 ∈ R𝑑 such that 𝑑TV(𝒩𝜋(̃︀𝜇),𝒩𝜋(𝜇

⋆)) < 1/𝑑𝑐 for some absolute constant
𝑐 > 1.

We prove our hardness result using a reduction from the well known Max-Cut
problem, which is known to be NP-hard, even to approximate (Hås01). In our
reduction, we use partitions that consist of simple sets: fat hyperplanes, ellipsoids
and their complements: the computational hardness of this problem is rather in-
herent and not due to overly complicated sets.
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On the positive side, we identify a geometric property that enables us to design
a computationally efficient algorithm for this problem: Namely we require all the
sets of the partitions to be convex, e.g., Figure 1.1(b,c). We remark that having
finite or countable subsets, is not a requirement of our model. For example, we can
handle convex partitions of the form (c) that correspond to the output distribution
of a ReLU neural network, see (WDS19). We continue with our theorem for learning
Gaussians from coarse data.

Informal Theorem. Let 𝜖 ∈ (0, 1). Consider the generative process of coarse
𝑑-dimensional Gaussian data 𝒩𝜋(𝜇

⋆). Assume that the partition distribution 𝜋
is 𝛼-information preserving and is supported on convex partitions of R𝑑. There
exists an algorithm that draws 𝑁 = ̃︀𝑂(𝑑/(𝜖2𝛼2)) samples from 𝒩𝜋(𝜇

⋆) and
computes an estimate ̃︀𝜇 that satisfies 𝑑TV(𝒩 (̃︀𝜇),𝒩 (𝜇⋆)) ≤ 𝜖 , with probability
at least 99%.

In the above, the definition of information preservation is very similar with the
one given in Definition 3.1.2. We postpone the details for the associated chapter.
Our algorithm for mean estimation of a Gaussian distribution relies on the log-
likelihood being concave when the partitions are convex. We remark that, similar
to our approach, one can use the concavity of likelihood to get efficient algorithms
for regression settings, e.g., Tobit models, where the mean of the Gaussian is given
by a linear function of the context 𝐴𝑥 for some unknown matrix 𝐴.

1.4.3 Learning with Bounded Noise - Chapter 4
Label Ranking (LR) is the problem of learning a hypothesis that maps fea-

tures to rankings over a finite set of labels. Given a feature vector 𝑥 ∈ R𝑑, a
sorting function 𝜎(·) maps it to a ranking of 𝑘 alternatives, i.e., 𝜎(𝑥) is an ele-
ment of the symmetric group with 𝑘 elements, S𝑘. Assuming access to a training
dataset of features labeled with their corresponding rankings, i.e., pairs of the form
(𝑥, 𝜋) ∈ R𝑑 × S𝑘, the goal of the learner is to find a sorting function ℎ(𝑥) that
generalizes well over a fresh sample. LR has received significant attention over
the years (DSM03; SS07; HFCB08; CH08; FHMB08) due to the large number of
applications. For example, ad targeting (DGR+14) is an LR instance where for
each user we want to use their feature vector to predict a ranking over ad cat-
egories and present them with the most relevant. The practical significance of
LR has lead to the development of many techniques based on probabilistic models
and instance-based methods (CH08; CDH10), (GDV12; ZLGQ14), decision trees
(CHH09), entropy-based ranking trees (RdSRSK15), bagging (AGM17), and ran-
dom forests (dSSKC17; ZQ18). However, almost all of these works come without
provable guarantees and/or fail to learn in the presence of noise in the observed
rankings.
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Linear Sorting Functions (LSFs). We focus on the fundamental concept
class of Linear Sorting functions (HPRZ03). A linear sorting function parameter-
ized by a matrix 𝑊 ∈ R𝑘×𝑑 with 𝑘 rows 𝑊1, . . . ,𝑊𝑘 takes a feature 𝑥 ∈ R𝑑, maps
it to 𝑊𝑥 = (𝑊1 · 𝑥, . . . ,𝑊𝑘 · 𝑥) ∈ R𝑘 and then outputs an ordering (𝑖1, . . . , 𝑖𝑘)
of the 𝑘 alternatives such that 𝑊𝑖1 · 𝑥 ≥ 𝑊𝑖2 · 𝑥 ≥ . . . ≥ 𝑊𝑖𝑘 · 𝑥. In other
words, a linear sorting function ranks the 𝑘 alternatives (corresponding to rows of
𝑊 ) with respect to how well they correlate with the feature 𝑥. We denote a lin-
ear sorting function with parameter 𝑊 ∈ R𝑘×𝑑 by 𝜎𝑊 (𝑥) , argsort(𝑊𝑥) where
argsort : R𝑘 → S𝑘 takes as input a vector (𝑣1, . . . , 𝑣𝑘) ∈ R𝑘, sorts it in decreasing
order to obtain 𝑣𝑖1 ≥ 𝑣𝑖2 ≥ . . . ≥ 𝑣𝑖𝑘 and returns the ordering (𝑖1, . . . , 𝑖𝑘).

Noisy Ranking Distributions. Learning LSFs in the noiseless setting can be
done efficiently by using linear programming. However, the common assumption
both in theoretical and in applied works is that the observed rankings are noisy
in the sense that they do not always correspond to the ground-truth ranking. We
assume that the probability that the order of two elements 𝑖, 𝑗 in the observed
ranking 𝜋 is different than their order in the ground-truth ranking 𝜎⋆ is at most
𝜂 < 1/2.

Definition 1.4.3 (Noisy Ranking Distribution). Fix 𝜂 ∈ [0, 1/2). An 𝜂-noisy
ranking distribution ℳ(𝜎⋆) with ground-truth ranking 𝜎⋆ ∈ S𝑘 is a probability
measure over S𝑘 that, for any 𝑖, 𝑗 ∈ [𝑘], with 𝑖 ̸= 𝑗, satisfies Pr𝜋∼ℳ(𝜎⋆)[𝑖 ≺𝜋 𝑗 |
𝑖 ≻𝜎⋆ 𝑗] ≤ 𝜂. 2

Note that, when 𝜂 = 0, we always observe the ground-truth permutation and,
in the case of 𝜂 = 1/2, we may observe a uniformly random permutation. We
remark that most natural ranking distributions satisfy this bounded noise prop-
erty, e.g., (i) the Mallows model, which is probably the most fundamental ranking
distribution (see, e.g., (BM09; LB11; CPS13; ABSV14; BFFSZ19; FKS21; DOS18;
LM18; MW20; LM21) for a small sample of this line of research) and (ii) the
Bradley-Terry-Mallows model (Mal57), which corresponds to the ranking distribu-
tion analogue of the Bradley-Terry-Luce model (BT52b; Luc12) (the most studied
pairwise comparisons model; see, e.g., (Hun04; NOS17; APA18) and the references
therein). For more details, see Appendix 4.10.

We consider the fundamental setting where the feature vector 𝑥 ∈ R𝑑 is gener-
ated by a standard normal distribution and the ground-truth ranking for each sam-
ple 𝑥 is given by the LSF 𝜎𝑊 ⋆(𝑥) for some unknown parameter matrix 𝑊 ⋆ ∈ R𝑘×𝑑.
For a fixed 𝑥, the ranking that we observe comes from an 𝜂-noisy ranking distri-
bution with ground-truth ranking 𝜎𝑊 ⋆(𝑥).

Definition 1.4.4 (Noisy Linear Label Ranking Distribution). Fix 𝜂 ∈ [0, 1/2) and
some ground-truth parameter matrix 𝑊 ⋆ ∈ R𝑘×𝑑. We assume that the 𝜂-noisy
linear label ranking distribution 𝒟 over R𝑑 × S𝑘 satisfies the following:

2We use 𝑖 ≻𝜋 𝑗 (resp. 𝑖 ≺𝜋 𝑗) to denote that the element 𝑖 is ranked higher (resp.
lower) than 𝑗 according to the ranking 𝜋.

28



1. The 𝑥-marginal of 𝒟 is the 𝑑-dimensional standard normal distribution.

2. For any (𝑥, 𝜋) ∼ 𝒟, the distribution of 𝜋 conditional on 𝑥 is an 𝜂-noisy
ranking distribution with ground-truth ranking 𝜎𝑊 ⋆(𝑥).

At first sight, the assumption that the underlying 𝑥-marginal is the standard
normal may look too strong. However, for 𝑘 = 2, Definition 4.1.1 captures the
problem of learning linear threshold functions with Massart noise. Without as-
sumptions for the 𝑥-marginal, it is known (DGT19b; CKMY20; DK20; NT22)
that optimal learning of halfspaces under Massart noise requires super-polynomial
time (in the Statistical Query model of (Kea98)). On the other hand, a lot of recent
works (BZ17; MV19; DKTZ20; ZSA20; ZL21) have obtained efficient algorithms
for learning Massart halfspaces under Gaussian marginals. The goal of this work is
to provide efficient algorithms for the more general problem of learning LSFs with
bounded noise under Gaussian marginals.

Our Contribution on Challenge 3. The main contributions of this chapter
are the first efficient algorithms for learning LSFs with bounded noise with respect
to Kendall’s Tau distance and top-𝑟 disagreement loss.

Learning in Kendall’s Tau Distance

The most standard metric in rankings (SSBD14) is Kendall’s Tau (KT) distance
which, for two rankings 𝜋, 𝜏 ∈ S𝑘, measures the fraction of pairs (𝑖, 𝑗) on which
they disagree. That is, ΔKT(𝜋, 𝜏) =

∑︀
𝑖≺𝜋𝑗

1{𝑖 ≻𝜏 𝑗}/
(︀
𝑘
2

)︀
. Our first result is an

efficient learning algorithm that, given samples from an 𝜂-noisy linear label ranking
distribution 𝒟, computes a parameter matrix 𝑊 that ranks the alternatives almost
optimally with respect to the KT distance from the ground-truth ranking 𝜎𝑊 ⋆(·).

Informal Theorem. Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy
linear label ranking distribution satisfying the assumptions of Definition 4.1.1
with ground-truth LSF 𝜎𝑊 ⋆(·). There exists an algorithm that draws 𝑁 =̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6
log(𝑘/𝛿)

)︁
samples from 𝒟, runs in sample-polynomial time, and

computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿,

E
𝑥∼𝒩𝑑

[ΔKT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

This result gives the first efficient algorithm with provable guarantees for the
supervised problem of learning noisy linear rankings. We remark that the sample
complexity of our learning algorithm is qualitatively optimal (up to logarithmic
factors) since, for 𝑘 = 2, our problem subsumes learning a linear classifier with
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Massart noise 3 for which Ω(𝑑/𝜖) are known to be information theoretically nec-
essary (MN06). Moreover, our learning algorithm is proper in the sense that it
computes a linear sorting function 𝜎𝑊 (·). As opposed to improper learners (see
also ??), a proper learning algorithm gives us a compact representation (storing 𝑊
requires 𝑂(𝑘𝑑) memory) of the sorting function that allows us to efficiently com-
pute (with runtime 𝑂(𝑘𝑑+𝑘 log 𝑘)) the ranking corresponding to a fresh datapoint
𝑥 ∈ R𝑑.

Learning in top-𝑟 Disagreement

We next present our learning algorithm for the top-𝑟 metric formally defined as
Δtop−𝑟(𝜋, 𝜏) = 1{𝜋1..𝑟 ̸= 𝜏1..𝑟}, where by 𝜋1..𝑟 we denote the ordering on the first
𝑟 elements of the permutation 𝜋. The top-𝑟 metric is a disagreement metric in the
sense that it takes binary values and for 𝑟 = 1 captures the standard (multiclass)
top-1 classification loss. We remark that, in contrast with the top-𝑟 classification
loss, which only requires the predicted label to be in the top-𝑟 predictions of the
model, the top-𝑟 ranking metric that we consider here requires that the model puts
the same elements in the same order as the ground truth in the top-𝑟 positions.
The top-𝑟 ranking is well-motivated as, for example, in ad targeting (discussed in
??) we want to be accurate on the top-𝑟 ad categories for a user so that we can
diversify the content that they receive.

Informal Theorem. Fix 𝜂 ∈ [0, 1/2), 𝑟 ∈ [𝑘] and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an
𝜂-noisy linear label ranking distribution satisfying the assumptions of Defini-
tion 4.1.1 with ground-truth LSF 𝜎𝑊 ⋆(·). There exists an algorithm that draws
𝑁 = ̃︀𝑂 (︁ 𝑑𝑟𝑘

𝜖(1−2𝜂)6
log(1/𝛿)

)︁
samples from 𝒟, runs in sample-polynomial time

and computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿,

E
𝑥∼𝒩𝑑

[Δtop−𝑟(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

As a direct corollary of our result, we obtain a proper algorithm for learning
the top-1 element with respect to the standard 0-1 loss that uses ̃︀𝑂(𝑘𝑑) samples. In
fact, for small values of 𝑟, i.e., 𝑟 = 𝑂(1), our sample complexity is essentially tight.
It is known that Θ(𝑘𝑑) samples are information theoretically necessary (Nat89) for
top-1 classification. 4 For the case 𝑟 = 𝑘, i.e., when we want to learn the whole
ranking with respect to the 0-1 loss, our sample complexity is 𝑂(𝑘2𝑑). However,
using arguments similar to (DSBDSS11), one can show that in fact 𝑂(𝑑𝑘) ranking

3Notice that in this case Kendall’s Tau distance is simply the standard 0-1 binary loss.
4Strictly speaking, those lower bounds do not directly apply in our setting because our

labels are whole rankings instead of just the top classes but, in the Appendix 4.9, we show
that we can adapt the lower bound technique of (DSBDSS11) to obtain the same sample
complexity lower bound for our ranking setting.
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samples are sufficient in order to learn the whole ranking with respect to the 0-1
loss. In this case, it is unclear whether a better sample complexity can be achieved
with an efficient algorithm and we leave this as an interesting open question for
future work.

1.4.4 Replicable Bandit Algorithms - Chapter 5
The notion of a replicable algorithm in the context of (offline) learning was

proposed by (ILPS22), where it is shown how any statistical query algorithm can
be made replicable with a moderate increase in its sample complexity. Using this
result, they provide replicable algorithms for finding approximate heavy-hitters,
medians, and the learning of half-spaces. Reproducibility has been also considered
in the context of optimization by (AJJ+22). We mention that in (AJJ+22) the
notion of a replicable algorithm is different from our work and that of (ILPS22),
in the sense that the outputs of two different executions of the algorithm do not
need to be exactly the same. From a more application-oriented perspective, (SL22)
study irreproducibility in recommendation systems and propose the use of smooth
activations (instead of ReLUs) to improve recommendation reproducibility. In
general, the reproducibility crisis is reported in various scientific disciplines (Ioa05;
McN14; Bak16b; GFI16; LKM+18; HIB+18). For more details we refer to the
report of the NeurIPS 2019 Reproducibility Program (PVLS+21) and the ICLR
2019 Reproducibility Challenge (PSF+19).

We initiate the study of replicability in the bandit setting. A multi-armed
bandit (MAB) is a one-player game that is played over 𝑇 rounds where there is
a set of different arms/actions 𝒜 of size |𝒜| = 𝐾 (in the more general case of
linear bandits, we can consider even an infinite number of arms). In each round
𝑡 = 1, 2, . . . , 𝑇 , the player pulls an arm 𝑎𝑡 ∈ 𝒜 and receives a corresponding
reward 𝑟𝑡. In the stochastic setting, the rewards of each arm are sampled in each
round independently, from some fixed but unknown, distribution supported on
[0, 1]. Crucially, each arm has a potentially different reward distribution, but the
distribution of each arm is fixed over time. A bandit algorithm A at every round
𝑡 takes as input the sequence of arm-reward pairs that it has seen so far, i.e.,
(𝑎1, 𝑟1), . . . , (𝑎𝑡−1, 𝑟𝑡−1), then uses (potentially) some internal randomness 𝜉 to pull
an arm 𝑎𝑡 ∈ 𝒜 and, finally, observes the associated reward 𝑟𝑡 ∼ 𝒟𝑎𝑡 .

Our Contribution on Challenge 4. We propose the following natural no-
tion of a replicable bandit algorithm, which is inspired by the definition of (ILPS22)5.
Intuitively, a bandit algorithm is replicable if two distinct executions of the algo-
rithm, with internal randomness fixed between both runs, but with independent
reward realizations, give the exact same sequence of played arms, with high prob-
ability. More formally, we have the following definition.

5Initially, this property was called “reproducibility”, but it was later pointed that the
correct term is “replicability”.
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Definition 1.4.5 (Replicable Bandit Algorithm). Let 𝜌 ∈ [0, 1]. We call a bandit
algorithm A 𝜌-replicable in the stochastic setting if for any distribution 𝒟𝑎𝑗 over
[0, 1] of the rewards of the 𝑗-th arm 𝑎𝑗 ∈ 𝒜, and for any two executions of A, where
the internal randomness 𝜉 is shared across the executions, it holds that

Pr
𝜉,𝑟(1),𝑟(2)

[︁(︁
𝑎
(1)
1 , . . . , 𝑎

(1)
𝑇

)︁
=
(︁
𝑎
(2)
1 , . . . , 𝑎

(2)
𝑇

)︁]︁
≥ 1− 𝜌 .

Here, 𝑎(𝑖)𝑡 = A(𝑎(𝑖)1 , 𝑟
(𝑖)
1 , ..., 𝑎

(𝑖)
𝑡−1, 𝑟

(𝑖)
𝑡−1; 𝜉) is the 𝑡-th action taken by the algorithm A

in execution 𝑖 ∈ {1, 2}.

We remark that replicable algorithms are predictable, a property which is very
desirable when it comes to deploying them in practical applications. In theoretical
computer science it is very convenient for algorithm designers to use randomness.
However, policy makers are hesitant to use decision-making algorithms whose be-
havior is brittle and depends heavily on the stochasticity of the environment and
its own randomness. The reason why we allow for some fixed internal random-
ness is that the algorithm designer has control over it, e.g., they can use the same
seed for their (pseudo-)random generator between two executions. Clearly, naively
designing a replicable bandit algorithm is not quite challenging. For instance, an
algorithm that always pulls the same arm or an algorithm that plays the arms in
a particular random sequence determined by the shared random seed 𝜉 are both
replicable. The caveat is that the performance of these algorithms in terms of ex-
pected regret will be quite poor. We aim to design bandit algorithms which are
replicable and enjoy small expected regret. In the stochastic setting, the (expected)
regret after 𝑇 rounds is defined as

E[𝑅𝑇 ] = 𝑇 max
𝑎∈𝒜

𝜇𝑎 − E

[︃
𝑇∑︁
𝑡=1

𝜇𝑎𝑡

]︃
,

where 𝜇𝑎 = E𝑟∼𝒟𝑎 [𝑟] is the mean reward for arm 𝑎 ∈ 𝒜. In a similar manner, we
can define the regret in the more general setting of linear bandits (see, Section 5.4).
Hence, the overarching question in this chapter is the following:

Is it possible to design replicable bandit algorithms with small expected regret?

At a first glance, one might think that this is not possible, since it looks like
replicability contradicts the exploratory behavior that a bandit algorithm should
possess. However, our main results answer this question in the affirmative.

In particular, we show the existence of the following bandit algorithms which are
provably replicable and enjoy small expected regret for the settings of (i) stochastic
multi-armed bandits with 𝐾 arms, (ii) stochastic linear bandits with 𝐾 arms and
ambient dimension 𝑑, and, (iii) stochastic linear bandits with infinitely many arms
and ambient dimension 𝑑.
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Informal Theorem. Let 𝜌 ∈ (0, 1), 𝑇 ∈ N and 𝐻Δ =
∑︀

𝑗:Δ𝑗>0 1/Δ𝑗, where
Δ𝑗 is the difference between the mean of action 𝑗 and the optimal action.

1. There exists a 𝜌-replicable algorithm for the stochastic MAB setting with
𝐾 arms with expected regret

̃︀𝑂(𝐾2 log(𝑇 )𝐻Δ/𝜌
2) .

2. There exists a 𝜌-replicable algorithm for the stochastic 𝑑-dimensional
linear bandit setting with 𝐾 arms with expected regret

̃︀𝑂(𝐾2
√
𝑑𝑇/𝜌2) .

3. There exists a 𝜌-replicable algorithm for the stochastic 𝑑-dimensional
linear bandit setting with infinite action space with expected regret

̃︀𝑂(poly(𝑑)
√
𝑇/𝜌2) .

1.4.5 Statistically Indistinguishable Learning Algorithms
- Chapter 6

Reproducibility of outcomes in scientific research is a necessary condition to
ensure that the conclusions of the studies reflect inherent properties of the under-
lying population and are not an artifact of the methods that scientists used or the
random sample of the population that the study was conducted on. In its simplest
form, it requires that if two different groups of researchers carry out an experiment
using the same methodologies but different samples of the same population, it
better be the case that the two outcomes of their studies are statistically indistin-
guishable. We investigate this notion in the context of ML (cf. Definition 1.4.6),
and characterize for which learning problems statistically indistinguishable learn-
ing algorithms exist. Furthermore, we show how statistical indistinguishability, as
a property of learning algorithms, is naturally related to various notions of algo-
rithmic stability such as replicability of experiments, and differential privacy.

While we mainly focus on the fundamental ML task of binary classification
to make the presentation easier to follow, many of our results extend to other
statistical tasks (cf. Section 6.7.2). More formally, the objects of interest are
randomized learning rules 𝐴 : (𝒳 × {0, 1})𝑛 → {0, 1}𝒳 . These learning rules
take as input a sequence 𝑆 of 𝑛 pairs from 𝒳 × {0, 1}, i.e., points from a domain
𝒳 along with their labels, and map them to a binary classifier in a randomized
manner. We assume that this sequence 𝑆 is generated i.i.d. from a distribution 𝒟
on 𝒳 ×{0, 1}. We denote by {0, 1}𝒳 the space of binary classifiers and by 𝐴(𝑆) the
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random variable that corresponds to the output of 𝐴 on input 𝑆6. We also adopt
a more algorithmic viewpoint for 𝐴 where we denote it as a deterministic mapping
(𝒳 ×{0, 1})𝑛×ℛ → {0, 1}𝒳 , which takes as input a training set 𝑆 of size 𝑛 made of
instance-label pairs and a random string 𝑟 ∼ ℛ (we use ℛ for both the probability
space and the distribution) corresponding to the algorithm’s internal randomness,
and outputs a hypothesis 𝐴(𝑆, 𝑟) ∈ {0, 1}𝒳 . Thus, 𝐴(𝑆) corresponds to a random
variable while 𝐴(𝑆, 𝑟) is a deterministic object. To make the distinction clear, we
refer to 𝐴(𝑆) as (the image of) a learning rule and to 𝐴(𝑆, 𝑟) as (the image of) a
learning algorithm.

Statistical Indistinguishability

We measure how much two distributions over hypotheses differ using some notion
of statistical dissimilarity 𝑑, which can belong to a quite general class; we could
let it be either an Integral Probability Metric (IPM) (e.g., TV or Wasserstein
distance, see Definition 6.7.2) or an 𝑓 -divergence (e.g., KL or Rényi divergence).
For further details, see (SFG+09). We are now ready to introduce the following
general definition of indistinguishability of learning rules.

Definition 1.4.6 (Indistinguishability). Let 𝑑 be a statistical dissimilarity mea-
sure. A learning rule 𝐴 is 𝑛-sample 𝜌-indistinguishable with respect to 𝑑 if for any
distribution 𝒟 over inputs and two independent sets 𝑆, 𝑆′ ∼ 𝒟𝑛 it holds that

E
𝑆,𝑆′∼𝒟𝑛

[︀
𝑑
(︀
𝐴(𝑆), 𝐴(𝑆′)

)︀]︀
≤ 𝜌 .

In words, Definition 1.4.6 states that the expected dissimilarity of the outputs
of the learning rule when executed on two training sets that are drawn indepen-
dently from 𝒟 is small. We view Definition 1.4.6 as a general information-theoretic
way to study indistinguishability as a property of learning rules. In particular, it
captures the property that the distribution of outcomes of a learning rule being
indistinguishable under the resampling of its inputs. Definition 1.4.6 provides the
flexibility to define the dissimilarity measure according to the needs of the applica-
tion domain. For instance, it captures as a special case the global stability property
(BLM20) (see Section 6.7.2).

Replicability

Since the issue of replicability is omnipresent in scientific disciplines it is important
to design a formal framework through which we can argue about the replicability
of experiments. Recently, various works proposed algorithmic definitions of repli-
cability in the context of learning from samples (ILPS22; BGH+23), optimization
(AJJ+22), bandits (EKK+22) and clustering (EKM+23), and designed algorithms

6We identify with 𝐴(𝑆) the posterior distribution of 𝐴 on input 𝑆 when there is no
confusion.
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that are provably replicable under these definitions. A notion that is closely related
to Definition 1.4.6 was introduced by (ILPS22): reproducibility or replicability7 of
learning algorithms is defined as follows:

Definition 1.4.7 (Replicability (ILPS22)). Let ℛ be a distribution over random
strings. A learning algorithm 𝐴 is 𝑛-sample 𝜌-replicable if for any distribution 𝒟
over inputs and two independent sets 𝑆, 𝑆′ ∼ 𝒟𝑛 it holds that

Pr
𝑆,𝑆′∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) ̸= 𝐴(𝑆′, 𝑟)] ≤ 𝜌 .

The existence of a shared random seed 𝑟 in the definition of replicability is one
of the main distinctions between Definition 1.4.6 and 1.4.7. This shared random
string can be seen as a way to achieve a coupling (see Definition 6.7.1) between
two executions of the algorithm 𝐴. An interesting aspect of this definition is that
replicability is verifiable; replicability under Definition 1.4.7 can be tested using
polynomially many samples, random seeds 𝑟 and queries to 𝐴. We remark that the
work of (GKM21) introduced the closely related notion of pseudo-global stability
(see Definition 6.3.2); the definitions of replicability and pseudo-global stability are
equivalent up to polynomial factors in the parameters.

Differential Privacy

The notions of algorithmic indistinguishability and replicability that we have dis-
cussed so far have close connections with the classical definition of approximate
differential privacy (DR14). For 𝑎, 𝑏, 𝜖, 𝛿 ∈ [0, 1], let 𝑎 ≈𝜖,𝛿 𝑏 denote the statement
𝑎 ≤ 𝑒𝜖𝑏 + 𝛿 and 𝑏 ≤ 𝑒𝜖𝑎 + 𝛿. We say that two probability distributions 𝑃,𝑄 are
(𝜖, 𝛿)-indistinguishable if 𝑃 (𝐸) ≈𝜖,𝛿 𝑄(𝐸) for any measurable event 𝐸.

Definition 1.4.8 (Approximate Differential Privacy (DKM+06)). A learning rule
𝐴 is an 𝑛-sample (𝜖, 𝛿)-differentially private if for any pair of samples 𝑆, 𝑆′ ∈
(𝒳 ×{0, 1})𝑛 that disagree on a single example, the induced posterior distributions
𝐴(𝑆) and 𝐴(𝑆′) are (𝜖, 𝛿)-indistinguishable.

We remind the reader that, in the context of PAC learning, any hypothesis
class ℋ can be PAC-learned by an approximate differentially-private algorithm if
and only if it has a finite Littlestone dimension Ldim(ℋ) (see Definition 6.7.3),
i.e., there is a qualitative equivalence between online learnability and private PAC
learnability (ALMM19; BLM20; GGKM21; ABL+22).

Having defined the standard stability notions required for this chapter, we
are now ready to introduce Total Variation Indistinguishability, which is a special
instantiation of statistical indistinguishability.

7This property was originally defined as “reproducibility” in (ILPS22), but later it was
pointed out that the correct term for this definition is “replicability” (see also (BGH+23)).
We use the term replicability throughout our work.
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TV Indistinguishable Learning Rules

As we discussed, our Definition 1.4.6 captures the property of a learning rule
having indistinguishable outcomes under the resampling of its inputs from the
same distribution. In what follows, we instantiate Definition 1.4.6 with 𝑑 being the
total variation (TV) distance, probably the most well-studied notion of statistical
distance in theoretical computer science. Total variation distance between two
distributions 𝑃 and 𝑄 over the probability space (Ω,ΣΩ) can be expressed as

𝑑TV(𝑃,𝑄) = sup
𝐴∈ΣΩ

𝑃 (𝐴)−𝑄(𝐴)

= inf
(𝑋,𝑌 )∼Π(𝑃,𝑄)

Pr[𝑋 ̸= 𝑌 ] ,
(1.1)

where the infimum is over all couplings between 𝑃 and 𝑄 so that the associated
marginals are 𝑃 and 𝑄 respectively. A coupling between the distributions 𝑃 and
𝑄 is a set of variables (𝑋,𝑌 ) on some common probability space with the given
marginals, i.e., 𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑄. We think of a coupling as a construction of
random variables 𝑋,𝑌 with prescribed laws.

Setting 𝑑 = 𝑑TV in Definition 1.4.6, we get the following natural definition. For
simplicity, we use the term TV indistinguishability to capture indistinguishability
with respect to the TV distance.

Definition 1.4.9 (Total Variation Indistinguishability). A learning rule 𝐴 is 𝑛-
sample 𝜌-TV indistinguishable if for any distribution over inputs 𝒟 and two inde-
pendent sets 𝑆, 𝑆′ ∼ 𝒟𝑛 it holds that

E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆), 𝐴(𝑆′))] ≤ 𝜌 .

For some equivalent definitions, we refer to Section 6.7.3. Moreover, for some
extensive discussion about the motivation of this definition, see Section 6.7.5. We
emphasize that the notion of TV distance has very strong connections with statis-
tical indistinguishability of distributions. If two distributions 𝑃 and 𝑄 are close
in TV distance, then, intuitively, no statistical test can distinguish whether an
observation was drawn from 𝑃 or 𝑄. In particular, if 𝑑TV(𝑃,𝑄) = 𝜌, then 𝜌/2 is
the maximum advantage an analyst can achieve in determining whether a random
sample 𝑋 came from 𝑃 or from 𝑄 (where 𝑃 or 𝑄 is used with probability 1/2 each).
In what follows, we focus on this particular notion of statistical dissimilarity.

Our Contribution on Challenge 5. In this chapter, we investigate the
connections between TV indistinguishability, replicability and differential privacy.

TV Indistinguishability ⇐⇒ Replicability. We show that TV indistin-
guishability and replicability are equivalent. This equivalence holds for countable
domains8 and extends to general statistical tasks (cf. Section 6.9.2).

8We remark that the direction replicability implies TV indistinguishability holds for
general domains.
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Informal Theorem. The following hold true.

• If a learning rule 𝐴 is 𝑛-sample 𝜌-replicable, then it is also 𝑛-sample
𝜌-TV indistinguishable.

• Let 𝒳 be a countable domain and let 𝐴 be a learning rule that is 𝑛-sample
𝜌-TV indistinguishable. Then, there exists an equivalent learning rule 𝐴′

that is 𝑛-sample 2𝜌
1+𝜌 -replicable.

We remark that our transformations between replicable and TV indistinguish-
able learners do not change the (possibly randomized) input→ output map which is
induced by the learner; i.e., given a TV indistinguhishable learner 𝒜, we transform
it to a replicable learner 𝒜′ such that 𝒜(𝑆) and 𝒜′(𝑆) are the same distributions
over output hypotheses for every input sample 𝑆.

At this point we would like to highlight a subtle difference between replicability
and other well studied notions of stability that arise in learning theory such as
differential privacy, TV indistinguishability, one-way perfect generalization, and
others. The latter notions of stability depend only on the input → output map
which is induced by the learner. In contrast, the definition of replicability has to
do with the way the algorithm is implemented (in particular the way randomness
is used). In other words, the definition of replicability enables having two learning
rules 𝒜′,𝒜′′ that compute exactly the same input→ output map, but such that 𝒜′

is replicable and 𝒜′′ is not. Thus, our equivalence suggests an interpretation of TV
indistinguishability as an abstraction/extension of replicability that only depends
on the input-output mechanism.

TV Indistinguishability ⇐⇒ Approximate DP. We show that TV in-
distinguishability and (𝜖, 𝛿)-DP are statistically equivalent. This equivalence holds
for countable9 domains in the context of PAC learning. As an intermediate re-
sult, we also show that replicability and (𝜖, 𝛿)-DP are statistically equivalent in the
context of PAC learning, and this holds for general domains.

Informal Theorem. The following hold true.

• Let 𝛾 ∈ (0, 1/2), 𝛼, 𝛽, 𝜌 ∈ (0, 1)3. Assume that ℋ is learnable by an
𝑛-sample (1/2 − 𝛾, 1/2 − 𝛾)-accurate (0.1, 1/(𝑛2 log(𝑛)))-differentially
private learner. Then, it is also learnable by an (𝛼, 𝛽)-accurate 𝜌-TV
indistinguishable learning rule.

9We remark that the direction (𝜖, 𝛿)-DP implies TV indistinguishability holds for gen-
eral domains.
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• Let 𝒳 be a countable domain. Assume that ℋ ⊆ {0, 1}𝒳 is learnable
by an (𝛼, 𝛽)-accurate 𝜌-TV indistinguishable learner 𝐴, for some 𝜌 ∈
(0, 1), 𝛼 ∈ (0, 1/2), 𝛽 ∈

(︁
0, 1−𝜌

1+𝜌

)︁
. Then, for any (𝛼′, 𝛽′, 𝜀, 𝛿) ∈ (0, 1)4,

it is also learnable by an (𝛼+ 𝛼′, 𝛽′)-accurate (𝜀, 𝛿)-differentially private
learner 𝐴′.

We shortly mention that the indepent work of (BGH+23) gives an alternative
proof of the equivalence between TV indistinguishability, replicability, and differ-
ential privacy. In contrast with our equivalence, the transformations by (BGH+23)
are restricted to finite classes. On the other hand, (BGH+23) give a constructive
proof whereas our proof is purely information-theoretic. For further discussion, we
refer to Chapter 6.

Boosting and Amplification. Finally, we provide statistical amplification
and boosting algorithms for TV indistinguishable learners for countable domains.

Informal Theorem. Let 𝛼, 𝛽, 𝜌 ∈ (0, 1)2 denote the accuracy, confidence and
TV indistinguishability parameters respectively. For every countable domain
𝒳 , any concept class ℋ ⊆ {0, 1}𝒳 , any non-trivial TV indistinguishable learner
for ℋ can be boosted so that 𝛼, 𝛽, 𝜌→ 0.

En route, we improve the sample complexity of some routines provided in (ILPS22).
These results can be found in Chapter 6.

1.5 Bibliographic Information
The results described in this thesis have already appeared in existing publica-

tions, which we briefly mention below.
Chapter 2 is based on (FKT20) that appeared in COLT 2020. Chapter 3

is based on (FKKT21) that appeared in COLT 2021. Chapter 4 is based on
(FKKT22) that appeared in NeurIPS 2022 as an Oral. Chapter 5 is based on
(EKM+23) that appeared in ICLR 2023. Chapter 6 is based on (KKMV23) that
appeared in ICML 2023.

Other papers by the author over the course of his PhD that are not included
in this thesis are (FKS21; FKP21; KSZ22; MKFI22; FKT22; KVK22).
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Chapter 2

Learning from Truncated Samples

In this chapter, we are going to investigate efficient parameter estimation of
discrete models from truncated samples. We consider the fundamental setting of
a Boolean product distribution 𝒟 on the 𝑑-dimensional hypercube truncated by a
set 𝑆, which is accessible through membership queries. The marginal of 𝒟 in each
direction 𝑖 is an independent Bernoulli distribution with parameter 𝑝𝑖 ∈ (0, 1).
Our goal is to compute an estimation ̂︀𝑝 of the parameter vector 𝑝 of 𝒟 such that
‖𝑝− ̂︀𝑝‖2 ≤ 𝜖, with probability of at least 1− 𝛿, with time and sample complexity
polynomial in 𝑑, 1/𝜖 and log(1/𝛿). We note that such an estimation ̂︀𝑝 (or an esti-
mation ̂︀𝑧 of the logit parameters 𝑧 = (log 𝑝1

1−𝑝1
, . . . , log 𝑝𝑑

1−𝑝𝑑
) of similar accuracy)

implies an estimation of the true distribution within total variation distance 𝜖.
We develop novel techniques for truncated statistics for discrete distributions.

As aforementioned, there has been a large number of recent works dealing inference
with truncated data from a Gaussian distribution (DGTZ18; KTZ19; DGTZ19a)
or mixtures of Gaussians (NP19) but to the best of our knowledge there is no work
dealing with discrete distributions. An additional feature of our work compared
to those results is that our methods are not limited to parameter estimation but
enable any statistical task to be performed on truncated datasets by providing a
sampler to the true underlying distribution. While this requires a mildly stronger
than necessary but natural assumption on the truncation set, we show that the
more complex SGD based methods developed in prior work can also be applied in
the discrete settings we consider.

The field of robust statistics is also very related to our work as it also deals
with biased data-sets and aims to identify the distribution that generated the
data. Truncation can be seen as an adversary erasing samples outside a certain
set. Recently, there has been a lot of theoretical work for computationally-efficient
robust estimation of high-dimensional distributions in the presence of arbitrary
corruptions to a small 𝜀 fraction of the samples, allowing for both deletions of
samples and additions of samples (DKK+16; CSV17; LRV16b; DKK+17; DKK+18;
HL19). In particular, the work of (DKK+16) deals with the problem of learning
binary-product distributions.
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Another line of related work concerns learning from positive examples. The
work of (DDS14) considers a setting where samples are obtained from the uniform
distribution over the hypercube truncated on a set 𝑆. However, their goal is some-
what orthogonal to ours. It aims to accurately learn the set 𝑆 while the distribution
is already known. In contrast, in our setting the truncation set is known and the
goal is to learn the distribution. More recently, (CDS20) extend these results to
learning the truncation set with truncated samples from continuous distributions.

Another related literature within learning theory aims to learn discrete distri-
butions through conditional samples. In the conditional sampling model that was
recently introduced concurrently by (CFGM13) and (CRS14; CRS15), the goal is
again to learn an underlying discrete distribution through conditional/truncated
samples but the learner can change the truncation set on demand. This is known
to be a more powerful model for distribution learning and testing than standard
sampling (Can15; FJO+15; ACK15b; BC18; ACK15a; GTZ17; KT19; CCK+19).

2.1 Preliminaries
We use lowercase bold letters 𝑥 to denote 𝑑-dimensional vectors. We let ‖𝑥‖𝑝 =

(
∑︀𝑑

𝑖=1 |𝑥𝑖|𝑝)1/𝑝 denote the 𝐿𝑝 norm and ‖𝑥‖∞ = max𝑖∈[𝑑]{|𝑥𝑖|} denote the 𝐿∞

norm of a vector 𝑥. We let [𝑑]
def
= {1, . . . , 𝑑} and Π𝑑 = {0, 1}𝑑 denotes the 𝑑-

dimensional Boolean hypercube.
For any vector 𝑥, 𝑥−𝑖 is the vector obtained from 𝑥 by removing the 𝑖-th coor-

dinate and (𝑥−𝑖, 𝑦) is the vector obtained from 𝑥 by replacing 𝑥𝑖 by 𝑦. Similarly,
given a set 𝑆 ⊆ Π𝑑, we let 𝑆−𝑖 = {𝑥−𝑖 : (𝑥−𝑖, 0) ∈ 𝑆 ∨ (𝑥−𝑖, 1) ∈ 𝑆} be the
projection of 𝑆 to Π[𝑑]∖{𝑖}. For any 𝑥 ∈ Π𝑑 and any coordinate 𝑖 ∈ [𝑑], we let
flip(𝑥, 𝑖) = (𝑥−𝑖, 1− 𝑥𝑖) denote 𝑥 with its 𝑖-th coordinated flipped.

Bernoulli Distribution. For any 𝑝 ∈ [0, 1], we let ℬ𝑒(𝑝) denote the Bernoulli
distribution with parameter 𝑝. For any 𝑥 ∈ {0, 1}, ℬ𝑒(𝑝;𝑥) = 𝑝𝑥(1− 𝑝)1−𝑥 denotes
the probability of value 𝑥 under ℬ𝑒(𝑝). The Bernoulli distribution is an exponential
family1, where the natural parameter, denoted 𝑧, is the logit 𝑧 = log 𝑝

1−𝑝 of the
parameter 𝑝 2. The inverse parameter mapping is 𝑝 = 1

1+exp(−𝑧) . Also, the base
measure is ℎ(𝑥) = 1, the sufficient statistic is the identity mapping 𝑇 (𝑥) = 𝑥 and
the log-partition function with respect to 𝑝 is 𝛼(𝑝) = − log(1− 𝑝).

Boolean Product Distribution. We mostly focus on the fundamental family
of Boolean product distributions on the 𝑑-dimensional hypercube Π𝑑. A Boolean

1The exponential family ℰ(𝑇 , ℎ) with sufficient statistics 𝑇 , carrier measure ℎ and
natural parameters 𝜂 is the family of distributions ℰ(𝑇 , ℎ) = {𝒫𝜂 : 𝜂 ∈ ℋ𝑇 ,ℎ}, where the
probability distribution 𝒫𝜂 has density 𝑝𝜂(𝑥) = ℎ(𝑥) exp(𝜂𝑇𝑇 (𝑥)− 𝛼(𝜂)), where 𝛼 is the
log-partition function.

2The base of the logarithm function log used throughout the paper is insignificant.

40



product distribution with parameter vector 𝑝 = (𝑝1, . . . , 𝑝𝑑), usually denoted by
𝒟(𝑝), is the product of 𝑑 independent Bernoulli distributions, i.e., 𝒟(𝑝) = ℬ𝑒(𝑝1)⊗
· · ·⊗ℬ𝑒(𝑝𝑑). The Boolean product distribution can be expressed in the form of an
exponential family as follows:

𝒟(𝑧;𝑥) = exp(𝑥𝑇𝑧)∏︀
𝑖∈[𝑑](1 + exp(𝑧𝑖))

, (2.1)

where 𝑧 = (𝑧1, . . . , 𝑧𝑑) is the natural parameter vector with 𝑧𝑖 = log 𝑝𝑖
1−𝑝𝑖

for each
𝑖 ∈ [𝑑].

In the following, we always let 𝒟 (or 𝒟(𝑝) or 𝒟(𝑧), when we want to emphasize
the parameter vector 𝑝 or the natural parameter vector 𝑧) denote a Boolean prod-
uct distribution. We denote 𝑧(𝑝) (or simply 𝑧, when 𝑝 is clear from the context)
the vector of natural parameters of 𝒟. We let 𝒟(𝑝;𝑥) and 𝒟(𝑧;𝑥) (or simply
𝒟(𝑥), when 𝑝 or 𝑧 are clear from the context) denote the probability of 𝑥 ∈ Π𝑑

under 𝒟. Given a subset 𝑆 ⊆ Π𝑑 of the Boolean hypercube, the probability mass
assigned to 𝑆 by a distribution 𝒟(𝑝), usually denoted 𝒟(𝑝;𝑆) (or simply 𝒟(𝑆),
when 𝑝 is clear from the context), 𝒟(𝑝;𝑆) =

∑︀
𝑥∈𝑆 𝒟(𝑝;𝑥).

Truncated Boolean Product Distribution. Given a Boolean product dis-
tribution 𝒟, we define the truncated Boolean product distribution 𝒟𝑆 , for any fixed
𝑆 ⊆ Π𝑑. 𝒟𝑆 has 𝒟𝑆(𝑥) = 𝒟(𝑥)/𝒟(𝑆), for all 𝑥 ∈ 𝑆, and 𝒟𝑆(𝑥) = 0, otherwise.
We often refer to 𝒟𝑆 as the truncation of 𝒟 (by 𝑆) and to 𝑆 as the truncation set.

It is sometimes convenient (especially when we discuss assumptions 1 and 3, in
Section 2.3), to refer to some fixed element of 𝑆. We observe that by swapping 1
with 0 (and 𝑝𝑖 with 1− 𝑝𝑖) in certain directions, we can normalize 𝑆 so that 0 ∈ 𝑆
and 𝒟𝑆(0) > 0. In the following, we always assume, without loss of generality,
that 𝑆 is normalized so that 0 ∈ 𝑆 and 𝒟𝑆(0) > 0.

Notions of Distance between Distributions. Let P,𝒬 be two probability
measures in the discrete probability space (Ω,ℱ). The total variation distance
between P and 𝒬, denoted 𝑑TV(P,𝒬), is defined as 𝑑TV(P,𝒬) = 1

2

∑︀
𝑥∈Ω |P(𝑥)−

𝒬(𝑥)| = max𝐴∈ℱ |P(𝐴) −𝒬(𝐴)|. The Kullback–Leibler divergence (or simply, KL
divergence), denoted 𝐷𝐾𝐿(P ‖ 𝒬), is defined as 𝐷𝐾𝐿(P ‖ 𝒬) = E𝑥∼P

[︁
log P(𝑥)

𝒬(𝑥)

]︁
=∑︀

𝑥∈Ω P(𝑥) log P(𝑥)
𝒬(𝑥) . We first recall that the KL divergence is additive for product

distributions.

Proposition 2.1.1. Let 𝒫(𝑝) and 𝒬(𝑞) be two Boolean product distributions.
Then,

𝐷𝐾𝐿(𝒫 ‖ 𝒬) =
𝑑∑︁

𝑖=1

(︂
𝑝𝑖 log

𝑝𝑖
𝑞𝑖

+ (1− 𝑝𝑖) log
1− 𝑝𝑖
1− 𝑞𝑖

)︂
. (2.2)

Next, we observe that for two Bernoulli distributions, with parameters 𝑝 and 𝑞,
the KL divergence can be upper bounded by the squared distance of their natural
parameters. We provide the proof of Proposition 2.1.2 in the Section 2.6.

41



Proposition 2.1.2. For all 𝑝, 𝑞 ∈ (0, 1), the following holds:

𝐷𝐾𝐿

(︀
ℬ𝑒(𝑝) ‖ ℬ𝑒(𝑞)

)︀
= 𝑝 log

𝑝

𝑞
+ (1− 𝑝) log

1− 𝑝

1− 𝑞
≤
(︂
log

𝑝

1− 𝑝
− log

𝑞

1− 𝑞

)︂2

.

The following summarizes some standard upper bounds on the total variation
distance and the KL divergence of two Boolean product distributions.

Proposition 2.1.3. Let 𝒫(𝑝) and 𝒬(𝑞) be two Boolean product distributions with
𝑝, 𝑞 ∈ (0, 1)𝑑, and let 𝑧(𝑝) and 𝑧(𝑞) be the vectors of their natural parameters.
Then, the following hold:

(𝑖) 𝐷𝐾𝐿(𝒫 ‖ 𝒬) ≤ ‖𝑧(𝑝)− 𝑧(𝑞)‖22 .

(𝑖𝑖) 𝑑TV(𝒫,𝒬) ≤
√
2
2 ‖𝑧(𝑝)− 𝑧(𝑞)‖2 .

(𝑖𝑖𝑖) 𝑑TV(𝒫,𝒬) ≤
√︁
2 ·
∑︀𝑑

𝑖=1
(𝑝𝑖−𝑞𝑖)2

(𝑝𝑖+𝑞𝑖)(2−𝑝𝑖−𝑞𝑖)
.

Now Proposition 2.1.3 is an immediate consequence of Proposition 2.1.1, Propo-
sition 2.1.2 and Pinsker’s inequality (for (i) and (ii)), and (DKK+16, Lemma 2.17)
(for (iii)).

Identifiability and Learnability. A Boolean product distribution 𝒟(𝑝) is
identifiable from its truncation 𝒟𝑆(𝑝), if given 𝒟𝑆(𝑝;𝑥), for all 𝑥 ∈ 𝑆, we can
recover the parameter vector 𝑝.

A Boolean product distribution 𝒟(𝑝) is efficiently learnable from its truncation
𝒟𝑆(𝑝), if for any 𝜖, 𝛿 > 0, we can compute an estimation ̂︀𝑝 of the parameter vector
𝑝 (or an estimation ̂︀𝑧 of the natural parameter vector 𝑧) of 𝒟 such that ‖𝑝−̂︀𝑝‖2 ≤ 𝜖
(or ‖𝑧− ̂︀𝑧‖2 ≤ 𝜖), with probability at least 1− 𝛿, with time and sample complexity
polynomial in 𝑑, 1/𝜖 and log(1/𝛿) using truncated samples from 𝒟𝑆(𝑝). By Propo-
sition 2.1.3, an upper bound on the 𝐿2 distance between ̂︀𝑧 and 𝑧 (or between ̂︀𝑝
and 𝑝) translates into an upper bound on the total variation distance between the
true distribution and 𝒟(̂︀𝑧) (or 𝒟(̂︀𝑝)). In this chapter, we identify sufficient and
necessary conditions for efficient learnability of Boolean product distributions from
truncated samples.

2.2 Boolean Product Distributions Truncated
by Fat Sets

In this section, we discuss fatness of the truncation set, a strong sufficient (and
in a certain sense, necessary) condition, under which we can generate samples from
a Boolean product distribution 𝒟 using samples from its truncation 𝒟𝑆 (and access
to 𝑆 through a membership oracle).
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Definition 2.2.1. A truncated Boolean product distribution 𝒟𝑆 is 𝛼-fat in coordi-
nate 𝑖 ∈ [𝑑], for some 𝛼 > 0, if Pr𝑥∼𝒟𝑆

[flip(𝑥, 𝑖) ∈ 𝑆] ≥ 𝛼. A truncated Boolean
product distribution 𝒟𝑆 is 𝛼-fat, for some 𝛼 > 0, if 𝒟𝑆 is 𝛼-fat in every coordinate
𝑖 ∈ [𝑑].

If 𝒟𝑆 is fat, it happens often that a sample 𝑥 ∼ 𝒟𝑆 has both (𝑥−𝑖, 0), (𝑥−𝑖, 1) ∈
𝑆. Then, conditional on the remaining coordinates 𝑥−𝑖, the 𝑖-th coordinate 𝑥𝑖 of 𝑥
is distributed as ℬ𝑒(𝑝𝑖). We next focus on truncated Boolean product distributions
𝒟𝑆 that are 𝛼-fat.

There are several natural classes of truncation subsets that give rise to fat
truncated product distributions. E.g., for each 𝑘 ∈ [𝑑], the halfspace 𝑆≤𝑘 = {𝑥 ∈
Π𝑑 : 𝑥1+ . . .+𝑥𝑑 ≤ 𝑘} results in an 𝛼-fat truncated distribution, if Pr𝑥∼𝒟𝑆≤𝑘

[𝑥𝑖 =

1] ≥ 𝛼, for all 𝑖 ∈ [𝑑]. The same holds if 𝑆 is any downward closed3 subset of Π𝑑

and Pr𝑥∼𝒟𝑆
[𝑥𝑖 = 1] ≥ 𝛼, for all 𝑖 ∈ [𝑑].

Fatness in coordinate 𝑖 ∈ [𝑑] is necessary, if we want to distinguish between
two truncated Boolean distributions based on their 𝑖-th parameter only, if the
remaining coordinates are correlated. Specifically, we can show that if 𝒟𝑆 is 0-fat
in some coordinate 𝑖, there exists a Boolean distribution with 𝑞𝑖 ̸= 𝑝𝑖 (and |𝑞𝑖− 𝑝𝑖|
large enough) whose truncation by 𝑆 appears identical to 𝒟𝑆 . Therefore, if the
other coordinates are arbitrarily correlated, it is impossible to distinguish between
the two distributions based on their 𝑖-th parameter alone. However, as we discuss
in Section 2.3, if 𝑆 is rich enough, but not necessarily fat, we can recover the entire
parameter vector4 of 𝒟.

Lemma 2.2.2. Let 𝑖 ∈ [𝑑], let 𝑆 be any subset of Π𝑑 with flip(𝑥, 𝑖) ̸∈ 𝑆, for all
𝑥 ∈ 𝑆, and consider any 0 < 𝑝 < 𝑞 < 1. Then, for any Boolean distribution 𝒟−𝑖

with 𝒟−𝑖(𝑆−𝑖) ∈ (0, 1), there exists a distribution 𝒟′
−𝑖 such that (ℬ𝑒(𝑝)⊗𝒟−𝑖)𝑆 ≡

(ℬ𝑒(𝑞)⊗𝒟′
−𝑖)𝑆 .

Proof. We recall that 𝑆−𝑖 = {𝑥−𝑖 : (𝑥−𝑖, 0) ∈ 𝑆 ∨ (𝑥−𝑖, 1) ∈ 𝑆} denotes the
projection of 𝑆 on Π[𝑑]∖{𝑖}. By hypothesis, |𝑆| = |𝑆−𝑖| and for each 𝑥−𝑖 ∈ 𝑆−𝑖,
either (𝑥−𝑖, 0) ∈ 𝑆 or (𝑥−𝑖, 1) ∈ 𝑆, but never both. For each 𝑥−𝑖 ∈ 𝑆−𝑖, we let:

𝒟′
−𝑖(𝑥−𝑖) =

{︃
𝒟−𝑖(𝑥−𝑖)

𝑝
𝑞 if (𝑥−𝑖, 1) ∈ 𝑆 ,

𝒟−𝑖(𝑥−𝑖)
1−𝑝
1−𝑞 if (𝑥−𝑖, 0) ∈ 𝑆 .

3A set 𝑆 ⊆ Π𝑑 is downward closed if for any 𝑥 ∈ 𝑆 and any 𝑦 with 𝑦𝑖 ≤ 𝑥𝑖, in all
directions 𝑖 ∈ [𝑑], 𝑦 ∈ 𝑆.

4For a concrete example, where we can recover the entire parameter vector of a trun-
cated Boolean product distribution 𝒟𝑆 , we consider 𝑆 = {000, 110, 011, 101} ⊆ Π3, which
is not fat in any coordinate, and let 𝑝𝑥 = 𝒟𝑆(𝑥), for each 𝑥 ∈ 𝑆. Then, setting
𝑧𝑖 = log 𝑝𝑖

1−𝑝𝑖
, for each 𝑖, we can recover (𝑝1, 𝑝2, 𝑝3), by solving the following linear system:

𝑧1 + 𝑧2 = log 𝑝110

𝑝000
, 𝑧2 + 𝑧3 = log 𝑝011

𝑝000
, 𝑧1 + 𝑧3 = log 𝑝101

𝑝000
. This is a special case of the more

general identifiability condition discussed in Lemma 2.3.1.
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For each 𝑦 ∈ Π𝑑−1 ∖ 𝑆−𝑖, we let 𝒟′
−𝑖(𝑦) ∝ 𝒟−𝑖(𝑦), so that 𝒟′

−𝑖 is a probability
distribution on Π𝑑−1 . E.g., if for all 𝑥−𝑖 ∈ 𝑆−𝑖, (𝑥−𝑖, 1) ∈ 𝑆, we let

𝒟′
−𝑖(𝑦) = 𝒟−𝑖(𝑦)

1−𝒟−𝑖(𝑆−𝑖)
𝑝
𝑞

1−𝒟−𝑖(𝑆−𝑖)
.

By definition, ℬ𝑒(𝑞) ⊗ 𝒟′
−𝑖 is a probability distribution on Π𝑑. Moreover, for all

𝑥 ∈ 𝑆, (ℬ𝑒(𝑝)⊗𝒟−𝑖)(𝑥) = (ℬ𝑒(𝑞)⊗𝒟′
−𝑖)(𝑥), which implies the lemma.

2.2.1 Sampling from a Boolean Product Distribution
using Samples from its Fat Truncation

An interesting consequence of fatness is that we can efficiently generate samples
from a Boolean product distribution 𝒟 using samples from any 𝛼-fat truncation of
𝒟. The idea is described in Algorithm 1. Theorem 2.2.3 shows that for any sample
𝑥 drawn from 𝒟𝑆 and any 𝑖 ∈ [𝑑] such that flip(𝑥, 𝑖) ∈ 𝑆, conditional on 𝑥−𝑖, 𝑥𝑖
is distributed as ℬ𝑒(𝑝𝑖). So, we can generate a random sample 𝑦 ∼ 𝒟 by putting
together 𝑑 such values. 𝛼-fatness of the truncated distribution 𝒟𝑆 implies that the
expected number of samples 𝑥 ∼ 𝒟𝑆 required to generate a 𝑦 ∼ 𝒟 is 𝑂(log(𝑑)/𝛼).

Algorithm 1 Sampling from 𝒟 using samples from 𝒟𝑆

1: procedure Sampler(𝒟𝑆) ◁ 𝒟𝑆 is 𝛼-fat.
2: 𝑦 ← (−1, . . .− 1)
3: while ∃𝑦𝑖 = −1 do
4: Draw sample 𝑥 ∼ 𝒟𝑆

5: for 𝑖← 1, . . . , 𝑑 do
6: if flip(𝑥, 𝑖) ∈ 𝑆 then ◁ We assume oracle access to 𝑆.
7: 𝑦𝑖 ← 𝑥𝑖

8: return 𝑦

Theorem 2.2.3. Let 𝒟 be a Boolean product distribution over Π𝑑 and let 𝒟𝑆 be
any 𝛼-fat truncation of 𝒟. Then, (i) the distribution of the samples generated by
Algorithm 1 is identical to 𝒟; and (ii) the expected number of samples from 𝒟𝑆

before a sample is returned by Algorithm 1 is 𝑂(log(𝑑)/𝛼).

Proof. Let ̃︀𝒟 be the distribution of the samples generated by Algorithm 1. To
prove that 𝒟 and ̃︀𝒟 are identical, we show that ̃︀𝐷 is a product distribution and
that each 𝑦𝑖 ∼ ℬ𝑒(𝑝𝑖), where 𝑝𝑖 is the parameter of 𝒟 in direction 𝑖 ∈ [𝑑].

We fix a direction 𝑖 ∈ [𝑑]. Let 𝒟−𝑖 denote the projection of 𝒟 on Π[𝑑]∖{𝑖}. In
Algorithm 1, 𝑦𝑖 takes the value of the 𝑖-coordinate of a sample 𝑥 ∼ 𝒟𝑆 such that
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both (𝑥−𝑖, 0), (𝑥−𝑖, 1) ∈ 𝑆. For each such sample 𝑥, we have that:

𝒟𝑆((𝑥−𝑖, 1)) =
𝒟−𝑖(𝑥−𝑖) 𝑝𝑖
𝒟(𝑆)

and 𝒟𝑆(𝑥−𝑖, 0) =
𝒟−𝑖(𝑥−𝑖) (1− 𝑝𝑖)

𝒟(𝑆)
. (2.1)

Therefore, 𝒟𝑆((𝑥−𝑖,1))
𝒟𝑆((𝑥−𝑖,0))

= 𝑝𝑖
1−𝑝𝑖

, which implies that 𝒟𝑆((𝑥−𝑖, 1)) = 𝑝𝑖. Since this
holds for all 𝑥−𝑖 such that both (𝑥−𝑖, 0), (𝑥−𝑖, 1) ∈ 𝑆, 𝑦𝑖 is independent of the
remaining coordinates 𝑦−𝑖 and is distributed as ℬ𝑒(𝑝𝑖). This concludes the proof
of (i).

As for the sample complexity of Algorithm 1, we observe that since 𝒟𝑆 is 𝛼-fat
in each coordinate 𝑖, each new sample 𝑥 covers any fixed coordinate 𝑦𝑖 (i.e., 𝑥
causes 𝑦𝑖 to become 𝑥𝑖) of 𝑦 with probability at least 𝛼. Therefore, the probability
that any fixed coordinate 𝑦𝑖 remains −1 after Algorithm 1 draws 𝑘 samples from 𝒟𝑆

is at most (1−𝛼)𝑘 ≤ 𝑒−𝛼𝑘. Setting 𝑘 = 2 log(𝑑)/𝛼 and applying the union bound,
we get that the probability that there is a coordinate of 𝑦 with value −1 after
2 log(𝑑)/𝛼 samples from 𝒟𝑆 is at most 𝑑𝑒−𝛼𝑘 = 𝑑𝑒−2 log(𝑑) = 1/𝑑. Therefore, the
expected number of samples from 𝒟𝑆 before a random sample 𝑦 ∼ 𝒟 is returned
by Algorithm 1 is at most

2 log(𝑑)

𝛼
+

∞∑︁
ℓ=0

𝑒−ℓ𝛼

𝑑
≤ 2 log(𝑑)

𝛼
+

2

𝑑𝛼
= 𝑂

(︂
2 log(𝑑)

𝛼

)︂
,

where the inequality follows from 1/(1− 𝑒−𝛼) ≤ 2/𝛼 for 𝛼 ∈ (0, 1).

2.2.2 Parameter Estimation and Learning in Total Vari-
ation Distance

Based on Algorithm 1, we can recover the parameters of any Boolean product
distribution 𝒟 using samples from any fat truncation of 𝒟.

Theorem 2.2.4. Let 𝒟(𝑝) be a Boolean product distribution and let 𝒟𝑆(𝑝) be a
truncation of 𝒟. If 𝒟𝑆 is 𝛼-fat in any fixed coordinate 𝑖, then, for any 𝜖, 𝛿 > 0, we
can compute an estimation ̂︀𝑝𝑖 of the parameter 𝑝𝑖 of 𝒟 such that |𝑝𝑖− ̂︀𝑝𝑖| ≤ 𝜖, with
probability at least 1 − 𝛿, using an expected number of 𝑂(log(1/𝛿)/(𝜖2𝛼)) samples
from 𝒟𝑆.

Proof. We modify Algorithm 1 to Algorithm 2, so that it generates random samples
𝑦 ∈ {0, 1} in coordinate 𝑖 only. As in Theorem 2.2.3.(i), each 𝑦 of Algorithm 2
is an independent sample from ℬ𝑒(𝑝𝑖). Since the truncated distribution 𝒟𝑆 is 𝛼-
fat, the expected number of samples from 𝒟𝑆 , before 𝑦 is generated, is 1/𝛼. We
estimate 𝑝𝑖 from 𝑛 samples 𝑦(1), . . . , 𝑦(𝑛) of Algorithm 2 using the empirical mean̂︀𝑝𝑖 = ∑︀𝑛

ℓ=1 𝑦
(ℓ)/𝑛. A standard application of the Hoeffding bound5 shows that if

5We use the following Hoeffding bound: Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent Bernoulli
random variables, let 𝑋 = 1

𝑛 (
∑︀𝑛

𝑖=1 𝑋𝑖) and E[𝑋] = 1
𝑛 (
∑︀𝑛

𝑖=1 E[𝑋𝑖]). Then, for any 𝑡 ≥ 0,
Pr[|𝑋 − E[𝑋]| ≥ 𝑡] ≤ 2𝑒−2𝑛𝑡2 .
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Algorithm 2 Sampling coordinate 𝑖 ∈ [𝑑] from 𝒟 using samples from 𝒟𝑆

1: procedure Sampler(𝒟𝑆, 𝑖) ◁ 𝒟𝑆 is fat in coordinate 𝑖.
2: 𝑦 ← −1
3: while 𝑦 = −1 do
4: Draw sample 𝑥 ∼ 𝒟𝑆

5: if flip(𝑥, 𝑖) ∈ 𝑆 then ◁ We have oracle access to 𝑆.
6: 𝑦 ← 𝑥𝑖

7: return 𝑦

𝑛 = log(2/𝛿)/𝜖2, then |𝑝𝑖−̂︀𝑝𝑖| ≤ 𝜖, with probability at least 1−𝛿. Hence, estimating
𝑝𝑖 with accuracy 𝜖 requires an expected number of 𝑂(log(1/𝛿)/(𝜖2𝛼)) samples from
𝒟𝑆 .

Using 𝑛 = log(2𝑑/𝛿)/𝜖2 samples 𝑦(1), . . . ,𝑦(𝑛) generated by Algorithm 1, we
can estimate all the parameters 𝑝 of 𝒟, by taking ̂︀𝑝𝑖 =∑︀𝑛

ℓ=1 𝑦
(ℓ)
𝑖 /𝑛, for each 𝑖 ∈ [𝑑].

The following is an immediate consequence of Theorems 2.2.3 and 2.2.4.

Corollary 2.2.5. Let 𝒟(𝑝) be a Boolean product distribution and 𝒟𝑆(𝑝) be any
𝛼-fat truncation of 𝒟. Then, for any 𝜖, 𝛿 > 0, we can compute an estimation ̂︀𝑝
such that ‖𝑝 − ̂︀𝑝‖∞ ≤ 𝜖, with probability at least 1 − 𝛿, using an expected number
of 𝑂(log(𝑑) log(𝑑/𝛿)/(𝜖2𝛼)) samples from 𝒟𝑆.

2.2.3 Identity and Closeness Testing with Access to Trun-
cated Samples

Theorem 2.2.3 implies that if we have sample access to an 𝛼-fat truncation 𝒟𝑆

of a Boolean product distribution 𝒟, we can pretend that we have sample access to
the original distribution 𝒟, at the expense of an increase in the sample complexity
(from 𝒟𝑆) by a factor of 𝑂(log(𝑑)/𝛼). Therefore, we can extend virtually all known
hypothesis testing and learning algorithms for Boolean product distributions to fat
truncated Boolean product distributions.

For identity testing of Boolean product distributions, based on samples from fat
truncated ones, we combine Algorithm 1 with the algorithm of (CDKS17, Sec. 4.1).
Combining Theorem 2.2.3 with (CDKS17, Theorem 6), we obtain the following:

Corollary 2.2.6 (Identity Testing). Let 𝒬(𝑞) be a Boolean product distribution
described by its parameters 𝑞, and let 𝒟 be a Boolean product distribution for which
we have sample access to its 𝛼-fat truncation 𝒟𝑆. For any 𝜖 > 0, we can distinguish
between 𝑑TV(𝒬,𝒟) = 0 and 𝑑TV(𝒬,𝒟) > 𝜖, with probability 2/3, using an expected
number of 𝑂(log(𝑑)

√
𝑑/(𝛼𝜖2)) samples from 𝒟𝑆.
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We can extend Corollary 2.2.6 to closeness testing of two Boolean product
distributions, for which we only have sample access to their fat truncations. We
combine Algorithm 1 with the algorithm of (CDKS17, Sec. 5.1). The following is
an immediate consequence of Theorem 2.2.3 and (CDKS17, Theorem 9).

Corollary 2.2.7 (Closeness Testing). Let 𝒬, 𝒟 be two Boolean product distri-
butions for which we have sample access to their 𝛼1-fat truncation 𝒬𝑆1 and 𝛼2-
fat truncation 𝒟𝑆2. For any 𝜖 > 0, we can distinguish between 𝑑TV(𝒬,𝒟) = 0
and 𝑑TV(𝒬,𝒟) > 𝜖, with probability at least 2/3, using an expected number of
𝑂
(︁
( log(𝑑)𝛼1

+ log(𝑑)
𝛼2

)max{
√
𝑑/𝜖2, 𝑑3/4/𝜖}

)︁
samples from 𝒬𝑆1 and 𝒟𝑆2 .

2.2.4 Learning in Total Variation Distance
Using Algorithm 1, we can learn a Boolean product distribution 𝒟(𝑝), within

𝜖 in total variation distance, using samples from its fat truncation. The following
uses a standard analysis of the sample complexity of learning a Boolean product
distribution (see e.g., (KLSU18)).

Corollary 2.2.8. Let 𝒟(𝑝) be a Boolean product distribution and let 𝒟𝑆 be any
𝛼-fat truncation of 𝒟. Then, for any 𝜖, 𝛿 > 0, we can compute a Boolean product
distribution ̂︀𝒟(̂︀𝑝) such that 𝑑TV(𝒟, ̂︀𝒟) ≤ 𝜖, with probability at least 1 − 𝛿, using
𝑂(𝑑 log(𝑑) log(𝑑/𝛿)/(𝜖2𝛼)) samples from 𝒟𝑆.

Proof. We assume that 𝑝𝑖 ≤ 1/2 and that for all 𝑖 ∈ [𝑑], 𝑝𝑖 ≥ 𝜖/(8𝑑). Both are
without loss of generality. The former can be enforced by flipping 0 and 1. For the
latter, we observe that there exists a distribution 𝒟′ with 𝑑TV(𝒟,𝒟′) ≤ 𝜖/2 that
satisfies the assumption (𝒟′ can be obtained from 𝒟 by adding uniform noise in
each coordinate with probability 1− 𝜖

4𝑑 , see also (CDKS17, Sec. 4.1)).
By Proposition 2.1.3, for any two Boolean product distributions 𝒟(𝑝) and ̂︀𝒟(̂︀𝑝)

with parameter vectors 𝑝, ̂︀𝑝 ∈ (0, 1)𝑑, it holds that

𝑑TV(𝒟, ̂︀𝒟) ≤
⎯⎸⎸⎷2 ·

𝑑∑︁
𝑖=1

(𝑝𝑖 − ̂︀𝑝𝑖)2
(𝑝𝑖 + ̂︀𝑝𝑖)(2− 𝑝𝑖 − ̂︀𝑝𝑖) . (2.2)

Similarly to the proof of Corollary 2.2.5, we take 𝑛 samples 𝑦(1), . . . ,𝑦(𝑛) from
Algorithm 1 and estimate each parameter 𝑝𝑖 of 𝒟 as ̂︀𝑝𝑖 =

∑︀𝑛
ℓ=1 𝑦

(ℓ)
𝑖 /𝑛. Using

the Chernoff bound in (KLSU18, Claim 5.16), we show that for all directions
𝑖 ∈ [𝑑], (𝑝𝑖−̂︀𝑝𝑖)2

(𝑝𝑖+̂︀𝑝𝑖)(2−𝑝𝑖−̂︀𝑝𝑖) ≤ 𝑂(log(𝑑/𝛿)/𝑛). Drawing 𝑛 = 𝑂(𝑑 log(𝑑/𝛿)/𝜖2) samples

from Algorithm 1 and using Equation (2.2), we get that 𝑑TV(𝒟, ̂︀𝒟) ≤ 𝑂(𝜖). The
sample complexity follows from the fact that each sample of Algorithm 1 requires
an expected number of 𝑂(log(𝑑)/𝛼) samples from the 𝛼-fat truncation 𝒟𝑆 of 𝒟.
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We can improve the sample complexity in Corollary 2.2.8, if the original dis-
tribution 𝒟 is sparse. We say that a Boolean product distribution 𝒟(𝑝) is (𝑘, 𝑐)-
sparse, for some 𝑘 ∈ [𝑑] and 𝑐 ∈ [0, 1], if there is an index set 𝐼 ⊆ [𝑑], with
|𝐼| = 𝑑 − 𝑘, such that for all 𝑖 ∈ 𝐼, 𝑝𝑖 = 𝑐. Namely, we know that 𝑑 − 𝑘 of 𝒟’s
parameters are equal to 𝑐 (but we do not know which of them). Then, we first
apply Corollary 2.2.5 and estimate all parameters of 𝒟 within distance 𝜖/

√
𝑘. We

set each 𝑝𝑖 with |𝑝𝑖 − 𝑐| ≤ 𝜖/
√
𝑘 to 𝑝𝑖 = 𝑐. Thus, we recover the index set 𝐼. For

the remaining 𝑘 parameters, we apply Corollary 2.2.8. The result is summarized
by the following:

Corollary 2.2.9. Let 𝒟(𝑝) be a (𝑘, 𝑐)-sparse Boolean product distribution and let
𝒟𝑆 be any 𝛼-fat truncation of 𝒟. Then, for any 𝜖, 𝛿 > 0, we can compute a Boolean
product distribution ̂︀𝒟(̂︀𝑝) such that 𝑑TV(𝒟, ̂︀𝒟) ≤ 𝜖, with probability at least 1− 𝛿,
using 𝑂

(︁
𝑘 log(𝑑) log(𝑑/𝛿)

𝜖2𝛼

)︁
samples from the truncated distribution 𝒟𝑆.

2.2.5 Learning Ranking Distributions from Truncated
Samples

An interesting application of Theorem 2.2.3 is parameter estimation of rank-
ing distributions from truncated samples. For clarity, we next focus on Mallows
distributions. Our techniques imply similar results for other well known models of
ranking distributions, such as Generalized Mallows distributions (FV86) and the
models of (Pla75; Luc59), (BT52a) and (Bab50).

Definition and Notation. We start with some notation specific to this sec-
tion. Let 𝒮𝑑 be the symmetric group over the finite set of items [𝑑]. Given a ranking
𝜋 ∈ 𝒮𝑑, we let 𝜋(𝑖) denote the position of item 𝑖 in 𝜋. We say that 𝑖 precedes 𝑗
in 𝜋, denoted by 𝑖 ≻𝜋 𝑗, if 𝜋(𝑖) < 𝜋(𝑗). The Kendall tau distance of two rankings
𝜋 and 𝜎, denoted by 𝐷𝜏 (𝜋, 𝜎), is the number of discordant item pairs in 𝜋 and 𝜎.
Formally,

𝐷𝜏 (𝜋, 𝜎) =
∑︁

1≤𝑖<𝑗≤𝑑

1{(𝜋(𝑖)− 𝜋(𝑗))(𝜎(𝑖)− 𝜎(𝑗)) < 0} . (2.3)

The Mallows model (Mal57) is a family of ranking distributions parameterized
by the central ranking 𝜋0 ∈ 𝒮𝑑 and the spread parameter 𝜑 ∈ [0, 1]. Assum-
ing the Kendall tau distance between rankings, the probability mass function is
ℳ(𝜋0, 𝜑;𝜋) = 𝜑𝐷𝜏 (𝜋0,𝜋)/𝑍(𝜑), where the normalization factor is 𝑍(𝜑) =

∏︀𝑑
𝑖=1

1−𝜑𝑖

1−𝜑 .
For a given Mallows distribution ℳ(𝜋0, 𝜑), we denote 𝑝𝑖𝑗 = Pr𝜋∼ℳ[𝑖 ≻𝜋 𝑗] the
probability that item 𝑖 precedes item 𝑗 in a random sample fromℳ.

Truncated Mallows Distributions. We consider parameter estimation for a
Mallows distributionℳ(𝜋0, 𝜑) with sample access to its truncationℳ𝑆 by a subset
𝑆 ⊆ 𝒮𝑑. Then,ℳ𝑆(𝜋) =ℳ(𝜋)/ℳ(𝑆), for each 𝜋 ∈ 𝑆, andℳ𝑆(𝜋) = 0, otherwise.
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Next, we generalize the notion of fatness to truncated ranking distributions and
prove the equivalent of Theorem 2.2.4 and Corollary 2.2.5.

For a ranking 𝜋, we let flip(𝜋, 𝑖, 𝑗) denote the ranking 𝜋′ obtained from 𝜋 with
the items 𝑖 and 𝑗 swapped. Formally, 𝜋′(ℓ) = 𝜋(ℓ), for all items ℓ ∈ [𝑑] ∖ {𝑖, 𝑗},
𝜋′(𝑗) = 𝜋(𝑖) and 𝜋′(𝑖) = 𝜋(𝑗). We say that a truncated Mallows distribution ℳ𝑆

is 𝛼-fat for the pair (𝑖, 𝑗), if Pr𝜋∼ℳ𝑆
[flip(𝜋, 𝑖, 𝑗) ∈ 𝑆] ≥ 𝛼, for some 𝛼 > 0. A

truncated Mallows distributionℳ𝑆(𝜋0, 𝜑) is 𝛼-fat, ifℳ𝑆 is 𝛼-fat for all pairs (𝑖, 𝑗),
and neighboring 𝛼-fat, if ℳ𝑆 is 𝛼-fat for all pairs (𝑖, 𝑗) that occupy neighboring
positions in the central ranking 𝜋0, i.e., for all pairs (𝑖, 𝑗) with |𝜋0(𝑖)− 𝜋0(𝑗)| = 1.

Parameter Estimation and Learning of Mallows Distributions from
Truncated Samples. We present Algorithm 3 that draws a sample from the
truncated Mallows distributionℳ𝑆 and updates a vector 𝑞 with estimations ̂︀𝑝𝑖𝑗 =
𝑞𝑖𝑗/(𝑞𝑖𝑗 + 𝑞𝑗𝑖) of the probability 𝑝𝑖𝑗 that item 𝑖 precedes item 𝑗 in a sample from
the true Mallows distributionℳ.

Algorithm 3 Update the estimate 𝑞𝑖𝑗 using one sample fromℳ𝑆

1: procedure Sample(ℳ𝑆, 𝑞) ◁ℳ𝑆 is (neighboring) 𝛼-fat.
2: Draw sample 𝜋 ∼ℳ𝑆

3: for all (𝑖, 𝑗) such that flip(𝜋, 𝑖, 𝑗) ∈ 𝑆 do ◁ We assume oracle
access to ℳ𝑆.

4: if 𝑖 ≻𝜋 𝑗 then
5: 𝑞𝑖𝑗 ← 𝑞𝑖𝑗 + 1
6: else
7: 𝑞𝑗𝑖 ← 𝑞𝑗𝑖 + 1

8: return 𝑞

The vector 𝑞 is initialized to 0 for all item pairs (𝑖, 𝑗) and is updated through
successive calls to Algorithm 3. For each sample 𝜋 ∼ ℳ𝑆 , Algorithm 3 updates
either 𝑞𝑖𝑗 or 𝑞𝑗𝑖 for all item pairs (𝑖, 𝑗) such that flip(𝜋, 𝑖, 𝑗) ∈ 𝑆. Thus, we can
show the following:

Theorem 2.2.10. Let ℳ(𝜋0, 𝜑) be a Mallows distribution with 𝜋0 ∈ 𝒮𝑑 and 𝜑 ∈
[0, 1−𝛾], for some constant 𝛾 > 0, and letℳ𝑆 be any neighboring 𝛼-fat truncation
of ℳ. Then,

(i) For any 𝛿 > 0, we can learn the central ranking 𝜋0, with probability at least
1 − 𝛿, using an expected number of 𝑂(log(𝑑) log(𝑑/𝛿)/(𝛾2𝛼)) samples from
ℳ𝑆.

(ii) Assuming that the central ranking 𝜋0 is known, for any 𝜖, 𝛿 > 0, we can
compute an estimation ̂︀𝜑 of the spread parameter such that |𝜑 − ̂︀𝜑| ≤ 𝑂(𝜖),
with probability at least 1−𝛿, using an expected number of 𝑂(log(1/𝛿)/(𝜖2𝛼))
samples from ℳ𝑆.
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(iii) For any 𝜖, 𝛿 > 0, we can compute a Mallows distribution ̂︁ℳ(𝜋0, ̂︀𝜑) so that

𝑑TV(ℳ, ̂︁ℳ) ≤ 𝑂(𝜖) ,

with probability at least 1− 𝛿, using an expected number of

𝑂(log(𝑑) log(𝑑/𝛿)/(𝛾2𝛼) + 𝑑 log(1/𝛿)/(𝜖2𝛼))

samples from ℳ𝑆.

The following is similar in spirit to Theorem 2.2.4. To estimate 𝑝𝑖𝑗 , we call Al-
gorithm 3 as long as 𝑞𝑖𝑗 + 𝑞𝑗𝑖 < log(2/𝛿)/𝜖2. For the proof, we apply the argument
used in the proof of Theorem 2.2.3.(𝑖) and the Hoeffding bound used in the proof
of Theorem 2.2.4.

Corollary 2.2.11. Letℳ be a Mallows distribution and letℳ𝑆 be any truncation
ofℳ. Ifℳ𝑆 is 𝛼-fat for pair (𝑖, 𝑗), for any 𝜖, 𝛿 > 0, we can compute an estimation̂︀𝑝𝑖𝑗 of the probability 𝑝𝑖𝑗 = Pr𝜋∼ℳ[𝑖 ≻𝜋 𝑗] such that |𝑝𝑖𝑗 − ̂︀𝑝𝑖𝑗 | ≤ 𝜖, with probability
at least 1− 𝛿, using an expected number of 𝑂(log(1/𝛿)/(𝜖2𝛼)) samples from ℳ𝑆.

We next give a detailed proof of Theorem 2.2.10, which shows how Algorithm 3
can efficiently estimate the parameters of (and learn in total variation distance) a
Mallows distributionℳ using samples from any neighboring 𝛼-fat truncationℳ𝑆

ofℳ.

Proof of Theorem 2.2.10. To prove (i), we use the fact that there is a bijective
mapping from rankings in 𝒮𝑑 to transitive tournaments on 𝑑 nodes. So, we think
of 𝑞 as a directed graph 𝐺 on 𝑑 nodes, where there is an edge between 𝑖 and 𝑗 if
𝑞𝑖𝑗 + 𝑞𝑗𝑖 ≥ 𝑛, for some 𝑛 sufficiently large, which, for simplicity, will be determined
at the end of the proof. The edge is from 𝑖 to 𝑗, if 𝑞𝑖𝑗 > 𝑞𝑗𝑖, and from 𝑗 to 𝑖,
otherwise. We keep calling Algorithm 3 until a directed path including all nodes
(i.e., a total order) is formed in 𝐺. If a cycle is formed in 𝐺, before a total order
appears, we discard 𝑞 and start the algorithm from scratch.

Since ℳ𝑆 is neighboring 𝛼-fat, for any such pair (𝑖, 𝑗) of neighboring items in
𝜋0, the probability that a fresh sample 𝜋 ∼ℳ𝑆 in Algorithm 3 increases 𝑞𝑖𝑗 + 𝑞𝑗𝑖
is at least 𝛼 (by the definition of neighboring 𝛼-fatness). Using exactly the same
reasoning as in the proof of Theorem 2.2.3.(𝑖𝑖), we show that the expected number
of samples before 𝑑 edges appear in 𝐺 is 𝑂(𝑛 log(𝑑)/𝛼).

Let us fix any pair of items 𝑖 and 𝑗 such that 𝑖 ≻𝜋0 𝑗 and there is an edge
between 𝑖 and 𝑗 in 𝐺. For simplicity, we assume that 𝑞𝑖𝑗 + 𝑞𝑗𝑖 = 𝑛. For sake of
intuition, one may think of 𝑖 and 𝑗 as neighboring in 𝜋0, but our analysis does
not require so. We note that E[𝑞𝑖𝑗 ] = 𝑛𝑝𝑖𝑗 and E[𝑞𝑗𝑖] = 𝑛𝑝𝑗𝑖, and let 𝑚𝑖𝑗 =

𝑝𝑖𝑗 − 𝑝𝑗𝑖. Working as in (CPS13, (1)), we can show that 𝑚𝑖𝑗 ≥ 1+𝜑
1−𝜑 = Ω(𝛾) (see

also (BFFSZ19, Theorem 12)). Therefore, E[𝑞𝑖𝑗 ] = 𝑛 · 1+𝑚𝑖𝑗

2 and E[𝑞𝑗𝑖] = 𝑛 · 1−𝑚𝑖𝑗

2 .
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A standard application of the Hoeffding bound shows that if 𝑛 = 𝑂(log(𝑑/𝛿)/𝑚2
𝑖𝑗),

Pr[𝑞𝑖𝑗 ≤ 𝑛/2] ≤ 𝛿/𝑑2. Therefore, assuming that an edge between 𝑖 and 𝑗 is present
in 𝐺, the edge is directed from 𝑖 to 𝑗 (i.e., as in 𝜋0) with probability at least 1−𝛿/𝑑2.
Applying the union bound, we get that when we stop calling Algorithm 3, all edges
present in 𝐺 are as in 𝜋0 with probability at least 1− 𝛿.

We are ready to finish the proof of Item (𝑖). Putting everything together, we
get that after an expected number of 𝑂(log(𝑑) log(𝑑/𝛿)/(𝛼𝛾2)) samples from the
truncated Mallows distribution ℳ𝑆 , a total order consistent with 𝜋0 is formed in
𝐺, with probability at least 1 − 𝛿. Increasing 𝑛 by a constant factor makes the
probability that a cycle appears in 𝐺 polynomially small in 𝑑, which allows us to
bound the expected number of samples fromℳ𝑆 before we find a total order in 𝐺
by 𝑂(log(𝑑) log(𝑑/𝛿)/(𝛼𝛾2)).

For (ii), we assume that we know the central ranking 𝜋0. For simplicity, we
assume that 𝜋0 = (1, . . . , 𝑑). Then, as in Corollary 2.2.11, we can estimate the
probability 𝑝12 = Pr𝜋∼ℳ[1 ≻𝜋 2] such that |𝑝12 − ̂︀𝑝12| ≤ 𝜖, with probability at
least 1 − 𝛿, using an expected number of 𝑂(log(1/𝛿)/(𝜖2𝛼)) samples from ℳ𝑆 .
Using ̂︀𝑝12, we compute an estimation ̂︀𝑚12 = 2̂︁𝑝12 − 1 of 𝑚12 = 2𝑝12 − 1. It is
straightforward to verify that |𝑝12− ̂︀𝑝12| ≤ 𝜖 implies that |𝑚12− ̂︀𝑚12| ≤ 𝜖. Working
as in (CPS13, (1)), we show that for each pair of neighboring items 𝑖 and 𝑖+ 1 in
the central ranking 𝜋0, 𝑚𝑖(𝑖+1) =

1−𝜑
1+𝜑 . The reason is that for any ranking 𝜋 and

any pair of items 𝑖 and 𝑖+1, with 𝑖 ≻𝜋 𝑖+1, that are neighboring in 𝜋0, swapping
𝑖 and 𝑖+1 results in a ranking 𝜋′ with 𝐷𝜏 (𝜋

′, 𝜋0) = 𝐷𝜏 (𝜋, 𝜋0)+ 1. Our estimation
of 𝜑 is ̂︀𝜑 = 1−̂︀𝑚12

1+̂︀𝑚12
, where |𝑚12 − ̂︀𝑚12| ≤ 𝜖 implies that |𝜑− ̂︀𝜑| ≤ 𝑂(𝜖).

Part (iii) follows from (i), (ii) and (BFFSZ19, Theorem 15). We can learn
𝜋0 using the algorithm of (i) and an estimation ̂︀𝜑 of 𝜑 such that |̂︀𝜑 − 𝜑| ≤ 𝜖/

√
𝑑

using the estimator of (ii), with an expected number of 𝑂(𝑑 log(1/𝛿)/(𝜖2𝛼)) sam-
ples from ℳ𝑆 . (BFFSZ19, Theorem 15) shows that if |̂︀𝜑 − 𝜑| ≤ 𝜖/

√
𝑑, then

𝑑TV(ℳ(𝜋0, 𝜑), ̂︁ℳ(𝜋0, ̂︀𝜑) ≤ 𝑂(𝜖).

In this section, we focused on various implications of a truncation set being
fat. We close this section with some comments about efficiently learning truncated
Mallows models and performing e.g., identity testing when the 𝛼-fatness property
does not hold true.

Let us recall the problem of learning truncated Mallows models. We will fo-
cus on estimating the central ranking assuming that the dispersion parameter is
known. In this setting, there exists a central ranking 𝜋0 and the learner observes
i.i.d. samples from ℳ𝑆(𝜋0, 𝜑). The goal is to efficiently estimate 𝜋0. In the non-
truncated setting, Θ(log(𝑑)) samples are required. Under the fatness condition, we
provided an 𝑂(log2(𝑑)) sample algorithm. However, the fatness condition can be
dropped but it may be still possible to retrieve the central ranking. Using the tech-
niques of the upcoming sections, one could execute the Projected SGD approach
(Section 2.4) and, under some structural conditions on the Boolean product distri-
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bution of dimension 𝑂(𝑑2) and the truncation set (e.g., anti-concentration), recover
the central ranking using poly(𝑑) samples. However, it is not clear whether this
reduction is optimal. It is an interesting question for future work to give the right
characterization of learnability for truncated Mallows distributions.

In the task of identity testing of truncated Boolean product distributions, there
exists a target distribution 𝒟⋆ specified to the tester via its 𝑑 success probabilities
and the algorithm observes i.i.d. samples from the unknown truncated Boolean
product distribution 𝒟𝑆 . The goal is to accept if 𝒟 = 𝒟⋆ with probability 2/3
and to reject if 𝑑TV(𝒟,𝒟⋆) > 𝜖 with probability 2/3. We assume that the tester
has membership oracle access to the set 𝑆 (note that the truncated target 𝒟⋆

𝑆

cannot even be parsed efficiently by the tester since its size may be exponential in
𝑑). If the fatness condition fails but the conditions of Section 2.3 hold true, then
one could still perform the SGD approach (Section 2.4), learn the distribution
and hence perform identity testing using a polynomial number of samples. It is
an interesting question whether one could efficiently perform identity testing from
truncated samples without learning the distribution.

2.3 Efficient Learnability from Truncated Sam-
ples: Necessary Conditions

We next discuss necessary conditions for identifiability and efficient learnability
of a Boolean product distribution from truncated samples. For Assumption 1 and
Lemma 2.3.1, we recall that we can assume without loss of generality that 𝑆 is
normalized so that 𝒟𝑆(0) > 0.

Assumption 1. For the truncated Boolean product distribution 𝒟𝑆, 𝒟𝑆(0) > 0
(after possible normalization) and there are 𝑑 linearly independent 𝑥(1), . . . ,𝑥(𝑑) ∈
𝑆 with 𝒟𝑆(𝑥

(𝑗)) > 0, 𝑗 ∈ [𝑑].

The proof of Lemma 2.3.1 demonstrates that recovering 𝑝 requires the solution
to a linear system, similar to that in Footnote 4, which is solvable if and only if
Assumption 1 holds.

Lemma 2.3.1. A Boolean product distribution 𝒟(𝑝) on Π𝑑 is identifiable from its
truncation 𝒟𝑆 if and only if Assumption 1 holds.

Proof. Let us assume that 0 ∈ 𝑆 and there are 𝑑 linearly independent vectors
𝑥(1), . . . ,𝑥(𝑑) ∈ 𝑆. We have that 𝒟(0) =

∏︀𝑑
𝑖=1(1− 𝑝𝑖), and for each 𝑗 ∈ [𝑑],∏︁

𝑖:𝑥
(𝑗)
𝑖 =1

𝑝𝑖
∏︁

𝑖:𝑥
(𝑗)
𝑖 =0

(1− 𝑝𝑖) = 𝒟(𝑥(𝑗)) . (2.1)

However, the right-hand side of Equation (2.1) cannot be directly obtained from
the truncated distribution 𝒟𝑆 . Hence, we normalize Equation (2.1), by dividing
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both sides by 𝒟𝑆(0), and get that∏︁
𝑖:𝑥

(𝑗)
𝑖 =1

𝑝𝑖
1− 𝑝𝑖

=
𝒟(𝑥(𝑗))

𝒟(0)
. (2.2)

We observe that 𝒟(𝑥(𝑗))
𝒟(0) = 𝒟𝑆(𝑥

(𝑗))
𝒟𝑆(0)

, because for all 𝑥 ∈ 𝑆, 𝒟𝑆(𝑥) = 𝒟(𝑥)/𝒟(𝑆).
So, after normalization, the right-hand side of Equation (2.2) becomes a constant
𝑞𝑗

def
= 𝒟𝑆(𝑥

(𝑗))
𝒟𝑆(0)

> 0, for all 𝑗 ∈ [𝑑].
Taking logarithms in Equation (2.2), we obtain that

∑︀
𝑖:𝑥

(𝑗)
𝑖 =1

𝑧𝑖 = log 𝑞𝑗 , where

𝑧𝑖 = log 𝑝𝑖
1−𝑝𝑖

, or equivalently 𝑧𝑇𝑥(𝑗) = log 𝑞𝑗 . Since 𝑥(1), . . . ,𝑥(𝑑) are linearly
independent, the corresponding linear system with 𝑑 equations and 𝑑 unknowns
has a unique solution. Solving the linear system

{︀
𝑧𝑇𝑥(𝑗) = log 𝑞𝑗

}︀
𝑗∈[𝑑], we recover

𝑧 and eventually 𝑝.
The converse follows from the observation that solving a linear system as the

one above is the only way to recover 𝑝 from 𝒟𝑆 (a linear system is the input to
any potential solver from an information-theoretic viewpoint). Specifically, the
only way to recover 𝑝 from 𝒟𝑆 is to solve the system consisting of Equation (2.1),
for 𝑗 = 1, . . . , 𝑑, or some other equivalent system with 𝑑 equations and 𝑝1, . . . , 𝑝𝑑
as unknowns. The only way to recover 𝒟(𝑥) is to normalize Equation (2.1) by
dividing by 𝒟(𝑥′), for some 𝑥′ ∈ 𝑆 with 𝒟𝑆(𝑥

′) > 0. We can assume without
loss of generality that 𝑥′ = 0, since we can normalize 𝑆 so that 𝑥′ becomes 0.
After normalizing by 𝒟𝑆(0) and taking logarithms in Equation (2.2), recovering 𝑧
and 𝑝 requires a collection of 𝑑 linearly independent equations, which correspond
to 𝑑 linearly independent 𝑥(1), . . . ,𝑥(𝑑) ∈ 𝑆 with 𝒟𝑆(𝑥

(𝑗)) > 0, for each 𝑗 ∈ [𝑑].
Technically, if Assumption 1 does not hold, the input contains a matrix with rank
< 𝑑 and hence the true 𝑝 is not uniquely identifiable.

We proceed to show two necessary conditions for efficient learnability. Our first
condition is that we have oracle access to the truncation set 𝑆. More formally, we
assume that:

Assumption 2. 𝑆 is accessible through a membership oracle, which reveals whether
𝑥 ∈ 𝑆, for any 𝑥 ∈ Π𝑑.

Based on the proof of (DGTZ18, Lemma 12), we show that if Assumption 2
does not hold, we can construct a (possibly exponentially large) truncation set 𝑆
so that 𝒟𝑆 appears identical to the uniform distribution 𝒰 on Π𝑑 as long as all the
samples are distinct.

Lemma 2.3.2. For any Boolean product distribution 𝒟(𝑝), there is a truncation
set 𝑆 so that without additional information about 𝑆, we cannot distinguish between
sampling from 𝒟𝑆 and sampling from the uniform distribution 𝒰 on Π𝑑, before an
expected number of Ω(

√︀
|𝑆|) samples are drawn.
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Proof. The truncation set 𝑆 = 𝑆1× · · · ×𝑆𝑑 is the product of 𝑑 truncation sets 𝑆𝑖,
one in each direction 𝑖 ∈ [𝑑]. If 𝑝𝑖 ≥ 1/2, 𝑆𝑖 = {0, 1} with probability 1−𝑝𝑖

𝑝𝑖
, and

𝑆𝑖 = {0}, otherwise. If 𝑝𝑖 < 1/2, 𝑆𝑖 = {0, 1} with probability 𝑝𝑖
1−𝑝𝑖

, and 𝑆𝑖 = {1},
otherwise. There is a constant 𝑐 > 0 such that if |𝑝𝑖 − 1/2| ≤ 𝑐, for all 𝑖 ∈ [𝑑], |𝑆|
is exponential in 𝑑 with constant probability.

By the principle of deferred decisions, we can think of the sampling process
from 𝒟𝑆 as follows: we draw a sample 𝑥 ∼ 𝒟. If this is the first time that 𝑥
is drawn from 𝒟, for each 𝑖 ∈ [𝑑], independently, 𝑥𝑖 survives with probability
min{ℬ𝑒(𝑝𝑖; 1−𝑥𝑖)/ℬ𝑒(𝑝𝑖;𝑥𝑖), 1}. If every 𝑥𝑖 survives, 𝑥 is added to 𝑆 and becomes
a sample from 𝒟𝑆 . If 𝑥 has been drawn before, 𝑥 becomes a sample from 𝒟𝑆 if
and only if 𝑥 ∈ 𝑆, so that new samples are treated consistently with past ones.

We note that as long as a duplicate sample does not appear, the probability
that 𝑥𝑖 = 0 and 𝑥𝑖 survives is equal to the probability that 𝑥𝑖 = 1 and 𝑥𝑖 survives,
for all 𝑖 ∈ [𝑑]. In fact, the following process samples from the uniform distribution
𝒰𝑑 on Π𝑑: we draw a sample 𝑥 ∼ 𝒟. Then, for each 𝑖 ∈ [𝑑], independently, 𝑥𝑖
survives with probability min{ℬ𝑒(𝑝𝑖; 1 − 𝑥𝑖)/ℬ𝑒(𝑝𝑖;𝑥𝑖), 1}. If every 𝑥𝑖 survives, 𝑥
is returned as a sample from 𝒰𝑑. The difference is that there is no truncation set.
So, we do not need to treat new samples consistently with past ones.

Before the first duplicate sample is drawn from 𝒟𝑆 , there is no way to distin-
guish between sampling from 𝒟𝑆 and sampling from 𝒰𝑑. By the birthday problem,
the appearance of the first duplicate sample from 𝒟𝑆 requires an expected number
of Ω(

√︀
|𝑆|) samples from 𝒟𝑆 .

We highlight that we can easily distinguish between sampling from 𝒟𝑆 and
sampling from 𝒰 , if we have oracle access to the truncation set 𝑆.

Our second necessary condition for efficient learnability is that the truncated
distribution is not extremely well concentrated in any direction. Intuitively, we
need the Boolean product distribution 𝒟, and its truncation 𝒟𝑆 , to behave well, so
that we can get enough information about 𝒟 based on few samples from 𝒟𝑆 . More
formally, we quantify 𝒟𝑆 ’s anti-concentration using 𝜆⋆, which is the maximum
positive number so that for all unit vectors 𝑤 ∈ R𝑑, ‖𝑤‖2 = 1, and all 𝑐 ∈
R, Pr𝑥∼𝒟𝑆

[𝑤𝑇𝑥 ̸∈ (𝑐 − 𝜆⋆, 𝑐 + 𝜆⋆)] ≥ 𝜆⋆. Assumption 3 requires that 𝜆⋆ is
polynomially large in 1/𝑑.

Assumption 3. There exists a 𝜆 ≥ 1/poly(𝑑) such that for all unit vectors 𝑤 ∈ R𝑑,
‖𝑤‖2 = 1, and all 𝑐 ∈ R, Pr𝑥∼𝒟𝑆

[𝑤𝑇𝑥 ̸∈ (𝑐− 𝜆, 𝑐+ 𝜆)] ≥ 𝜆.

We note that Assumption 3 is a stronger version of Assumption 1. It also implies
that all parameters 𝑝𝑖 ∈ (0, 1) are bounded away from 0 and 1 by a safe margin (we
will focus on parameters whose margin from 0 and 1 is dimension-independent).
We next show that if 𝒟𝑆 is well concentrated in some direction, estimating the
parameter vector 𝑝 requires a large number of samples from 𝒟𝑆 . More specifically,
we show that either estimating 𝒟𝑆(0), which is needed for normalizing the linear
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system in Lemma 2.3.1, or sampling 𝑑 vectors that result in a well-conditioned linear
system, require Ω(1/𝜆⋆) samples from 𝒟𝑆 . Therefore, if Assumption 3 does not
hold, estimating 𝑝 with truncated samples from 𝒟𝑆 has superpolynomial sample
complexity.

Lemma 2.3.3. Assume that Assumption 3 does not hold true, i.e., the optimal
anti-concentration parameter 𝜆⋆ satisfies 1/𝜆⋆ = 𝜔(poly(𝑑)). Let 𝒟(𝑝) be a Boolean
product distribution and let 𝒟𝑆 be a truncation of 𝒟. Then, computing an estima-
tion ̂︀𝑝 of the parameter vector 𝑝 of 𝒟 such that ‖𝑝− ̂︀𝑝‖2 ≤ 𝑜(1) requires an expected
number of Ω(1/𝜆⋆) samples from 𝒟𝑆.

Let us first provide some intuition. For a unit vector 𝑤 ∈ R𝑑, we think of the
space 𝐻𝑤 = {𝑥 ∈ 𝑆 : 𝑤𝑇𝑥 ∈ (𝑐−𝜆, 𝑐+𝜆)}. If 𝜆⋆ is very small, there is a direction
𝑤 such that virtually all samples 𝑥 ∼ 𝒟𝑆 lie in 𝐻𝑤. Intuitively, recovering (𝑧
and) 𝑝 boils down to the solution of a linear system as that in Footnote 4 and in
Lemma 2.3.1. For that, we need 𝑑 linearly independent vectors 𝑥(1), . . . ,𝑥(𝑑) ∈ 𝑆
and an additional fixed element 𝑥⋆ ∈ 𝑆 for the normalization of the probabilities in
the right-hand side. With high probability, all 𝑥(1), . . . ,𝑥(𝑑) ∈ 𝐻𝑤. If 𝑥⋆ is also in
𝐻𝑤, normalizing the system by 𝑥⋆ results in an ill-conditioned system. In fact, we
can show that the condition number of the system is Ω(1/𝜆⋆). Therefore, solving
the linear system efficiently requires sampling a vector 𝑥⋆ ̸∈ 𝐻𝑤 for normalization.
However, the probability that we sample (and thus, can use for normalization) a
vector 𝑥⋆ ̸∈ 𝐻𝑤 is at most 𝜆⋆.

We now proceed with the proof of Lemma 2.3.3.

Proof. Next, we formalize the intuition behind the sketch of the proof. We recall
that for a fixed unit vector 𝑤 ∈ R𝑑, we let 𝐻𝑤 = {𝑥 ∈ 𝑆 : 𝑤𝑇𝑥 ∈ (𝑐− 𝜆, 𝑐+ 𝜆)}.
By the definition of 𝜆*, for any 𝜆 > 𝜆*, there is a unit vector 𝑤 ∈ R𝑑 and a 𝑐 ∈ R
such that Pr𝑥∼𝒟𝑆

[𝑥 ̸∈ 𝐻𝑤] < 𝜆, or equivalently, Pr𝑥∼𝒟𝑆
[𝑥 ∈ 𝐻𝑤] ≥ 1− 𝜆.

We recall that we assume without loss of generality that 𝑆 is normalized so that
0 ∈ 𝑆 and 𝒟𝑆(0) > 0. In fact, 0 plays the role of the fixed element 𝑥⋆, discussed
in the sketch, which we use for normalization. Next, we distinguish between two
cases based on whether 0 ∈ 𝐻𝑤 or not.

Let us first fix 𝜆 > 𝜆⋆ that lies in a small neighborhood of 𝜆⋆ of radius 𝜖,
where 𝜖 is sufficiently small. We will show that for any such 𝜆 (that satisfies that
1/𝜆 is (almost) super-polynomial in 𝑑), we get a sample complexity of order 1/𝜆.
Since this property will hold arbitrarily close to 𝜆⋆, the sample complexity will be
super-polynomial in the dimension 𝑑.

Having chosen 𝜆 as above, there is a direction 𝑤 and a translation 𝑐 ∈ R, that
define the space 𝐻𝑤, such that Pr𝑥∼𝒟𝑆

[𝑥 ̸∈ 𝐻𝑤] < 𝜆. There are two cases for the
translation 𝑐.

Case A: We may first assume that 𝑐 is small enough, that is |𝑐| < 𝜆 and, hence,
0 ∈ (𝑐−𝜆, 𝑐+𝜆). Let 𝑋 be any set of 𝑂(1/𝜆) samples from 𝒟𝑆 . Then, with constant
probability, all 𝑋 ⊆ 𝐻𝑤. Let 𝑋𝑑 = [𝑥(1), . . . ,𝑥(𝑑)]𝑇 be the matrix obtained by any
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𝑑 elements 𝑥(1), . . . ,𝑥(𝑑) ∈ 𝑋 different from 0. By Lemma 2.3.1, recovering 𝑝 re-
quires the solution of the linear system 𝑋𝑑𝑧 = log(𝑞), where log(𝑞) = (log(𝑞𝑗))𝑗∈[𝑑]

and 𝑞𝑗 =
𝒟𝑆(𝑥

(𝑗))
𝒟𝑆(0)

, for each 𝑗 ∈ [𝑑].
We next show that since 𝑐 ∈ (−𝜆, 𝜆), with constant probability, the matrix 𝑋𝑑

is ill-conditioned and has condition number 6 𝜅(𝑋𝑑) = Ω(1/𝜆).
Specifically, since all 𝑥(1), . . . ,𝑥(𝑑) are different from 0, there is a unit vector

𝑤′ ∈ R𝑑 so that ‖𝑋𝑑𝑤
′‖2 ≥ 1. On the other hand, by the hypothesis that with

constant probability, 𝑋 ⊆ 𝐻𝑤, ‖𝑋𝑑𝑤‖2 ≤ (|𝑐|+ 𝜆) ·
√
𝑑 ≤ 2𝜆 ·

√
𝑑. Therefore, the

condition number of the matrix 𝑋𝑑 is 𝜅(𝑋𝑑) = Ω(1/(𝜆·
√
𝑑)) for the fixed 𝜆 > 𝜆* in

the neighborhood of 𝜆⋆. This implies that the condition matrix is of order Ω(1/𝜆).
Hence, with constant probability, we cannot recover (𝑧 and) 𝑝 within accuracy
𝑜(1), unless we estimate the right-hand side 𝑞 of the linear system 𝑋𝑑𝑧 = log(𝑞)
with accuracy 𝑜(𝜆), which requires 𝜔(1/𝜆) samples.

Case B: Otherwise, if |𝑐| > 𝜆, then 0 ̸∈ (𝑐 − 𝜆, 𝑐 + 𝜆). Since 𝑤𝑇0 = 0, the
probability that 0 is sampled from 𝒟𝑆 is at most 𝜆. Hence, unless we take 𝜔(1/𝜆)
samples, we cannot find a good estimation of 𝒟𝑆(0), which is required for the linear
system 𝑋𝑑𝑧 = log(𝑞), whose solution recovers (𝑧 and) 𝑝.

Finally, since either Case A or B will hold for any 𝜆 > 𝜆* in the 𝜖-neighborhood
of 𝜆⋆, we let 𝜆 ↓ 𝜆* and hence we get that an expected number of Ω(1/𝜆*) samples
is required, which is super-polynomial in 𝑑.

The above condition highlights a gap between the continuous problem of learn-
ing truncated Gaussian distributions (DGTZ18) and the discrete case, where trun-
cation can be quite restrictive.

For the efficient estimation of 𝑧, we also need to assume that the truncation
set 𝑆 is large enough. Namely, we assume that:

Assumption 4. For the truncation set 𝑆, there is a constant 𝛼 > 0 so that the
Boolean product distribution 𝒟 has 𝒟(𝑆) ≥ 𝛼.

Assumption 4 is not necessary for efficient learning, in the sense that e.g., there
may be 𝛼-fat product distributions which do not satisfy this condition, but are still
efficiently learnable using Corollary 2.2.8.

We conclude this section with a remark. Note that complex models, such as
Bayes networks and Ising models, can be cast as truncated product distributions
in a Boolean hypercube of appropriately high dimension (the translation is concep-
tually similar to that for Mallows models in Section 2.2.5). For instance, the Ising
model over {−1,+1}𝑑 with interaction matrix 𝐽 (with 𝐽𝑖𝑖 = 0) and external field ℎ
is defined by normalizing the function 𝜋(𝑥) = ⟨𝑥, 𝐽𝑥⟩+ℎ𝑇𝑥. We have a dimension

6Let 𝐴 be a 𝑑 × 𝑑 square matrix with singular values 𝑠1 ≥ · · · ≥ 𝑠𝑑 ≥ 0. We will
denote with 𝑠max(𝐴) = 𝑠1 and with 𝑠min(𝐴) = 𝑠𝑑. The condition number of the 𝐴 is
𝜅(𝐴) = 𝑠max(𝐴)/𝑠min(𝐴). The condition number 𝜅(𝐴) ∈ [1,∞] quantifies the sensitivity
of the solution to a linear system 𝐴𝑧 = 𝑏 to the small perturbations of 𝑏.
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for each edge and a dimension for each spin (so the Boolean Product distribution
is a measure over {−1,+1}(

𝑑
2)+𝑑) and the truncation set 𝑆Ising consists of all 2𝑑

binary vectors with valid edge labels (i.e., vectors with edge labels consistent with
some allocation of {+,−} to the vertices). Hence, we can consider the product
probability measure over the points 𝑥 ∈ {−1,+1}(

𝑑
2)+𝑑 with density

𝒟(𝑥) = 𝒟((𝑥𝑢𝑣)𝑢,𝑣∈𝐸 , (𝑥𝑢)𝑢∈𝑉 ) =
∏︁

(𝑢,𝑣)∈𝐸

exp(𝐽𝑢𝑣𝑥𝑢𝑣)

2 cosh(𝐽𝑢𝑣)

∏︁
𝑢∈𝑉

exp(ℎ𝑢𝑥𝑢)

2 cosh(ℎ𝑢)
.

Casting an Ising model 𝜇 to our setting results in a truncated Boolean product
distribution 𝜇(𝑥) = 𝒟(𝑥)1{𝑥 ∈ 𝑆}/𝒟(𝑆Ising) that satisfies Assumption 1, Assump-
tion 2 and Assumption 3 (assuming that the parameters of the Ising model are
“sufficiently nice” so that the

(︀
𝑑
2

)︀
+ 𝑑 parameters of 𝒟 are bounded away from 0

and 1), but it is not guaranteed to satisfy Assumption 4 (which is in accordance
with the fact that sampling from an Ising model is computationally hard in general
(see e.g., (Hub99))).

In the following section, we present the Projected Stochastic Gradient Descent
algorithm and show that assumptions 2, 3 and 4 are sufficient for the efficient
estimation of the natural parameter vector 𝑧 of the Boolean product distribution
𝒟 by sampling from its truncation 𝒟𝑆 .

2.4 PSGD for Learning Truncated Boolean Prod-
uct Distributions

We next show how to estimate efficiently the natural parameter vector 𝑧⋆ of
a Boolean product distribution 𝒟(𝑧⋆) using samples from its truncation 𝒟𝑆(𝑧

⋆),
assuming that the true distribution satisfies the conditions 2, 3 and 4.

Similarly to (DGTZ18), we use Projected Stochastic Gradient Descent (SGD)
on the negative log-likelihood of the truncated samples. Our SGD algorithm is
described in Algorithm 4. We should highlight that Algorithm 4 runs in the space
of the natural parameters 𝑧 of the Boolean product distribution. Changing the
parameters from 𝑝 to 𝑧 results in a linear system, similar to that in Footnote 4
and in the proof of Lemma 2.3.1 and simplifies the analysis of the log-likelihood
function. Furthermore, by Proposition 2.1.3, estimating 𝑧⋆ within error at most
𝜖 in 𝐿2 norm results in a distribution within total variation distance at most 𝜖 to
𝒟(𝑧⋆).

Throughout the analysis of Algorithm 4, we make use of Assumptions 2 - 4.
The technical details of the analysis are deferred to Section 2.4.1. The analysis
goes as follows: we first derive the negative log-likelihood function that Algorithm 4
optimizes. Since the truncation set 𝑆 is only accessed through membership queries,
we do not have a closed form of the log-likelihood.
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Algorithm 4 Projected Stochastic Gradient Descent with Samples from
𝒟𝑆(𝑝

⋆).
1: procedure SGD(𝑀, 𝜂) ◁ 𝑀 : number of steps, 𝜂 : parameter
2: 𝑧(0) ← ̂︀𝑧 ◁ ̂︀𝑧 is the empirical estimate of Lemma 2.5.3.
3: for 𝑡 = 1..𝑀 do
4: Sample 𝑥(𝑡) from 𝒟𝑆

5: repeat
6: Sample 𝑦 from 𝒟(𝑧(𝑡−1))
7: until 𝑦 ∈ 𝑆 ◁ We assume oracle access to 𝑆.
8: 𝑣(𝑡) ← −𝑥(𝑡) + 𝑦
9: 𝑧(𝑡) ← Πℬ(𝑧

(𝑡−1) − 1
𝑡·𝜂𝑣

(𝑡)) ◁ 𝜂𝑡 = 1/(𝑡 · 𝜂): step size

10: return 𝑧 ← 1
𝑀

∑︀𝑀
𝑡=1 𝑧

(𝑡)

However, we can show that it is convex for any truncation set 𝑆. We prove
that the natural parameter vector ̂︀𝑧 corresponding to the empirical estimate ̂︀𝑝𝑆

is a good initialization for Algorithm 4. Specifically, we show that ̂︀𝑝𝑆 is close to
the true parameter vector 𝑝⋆ in 𝐿2 distance, and that this proximity holds for the
corresponding natural parameter vectors as well.

For the correctness of Algorithm 4, it is essential that it runs in a convex region.
We can show that there exists a ball ℬ, centered at the initialization point ̂︀𝑧, which
contains 𝑧⋆. The radius of the ball depends only on the lower bound 𝛼 of 𝒟(𝑆)
(Assumption 4). We can prove that Assumptions 3 and 4 always hold inside ℬ.
That is, for any vector 𝑧 ∈ ℬ (and the corresponding parameter vector 𝑝), the anti-
concentration assumption holds for 𝒟𝑆(𝑝) and the mass assigned to the truncation
set 𝑆 by 𝒟𝑆(𝑝) can be lower bounded by a polynomial function of 𝛼.

Under these two assumptions, we can prove that the negative log-likelihood
is strongly-convex inside the ball ℬ. Hence, while Algorithm 4 iterates inside
ℬ, the truncation set has always constant mass and the negative log-likelihood
remains strongly-convex. Consequently, Algorithm 4 converges to the true vector
of natural parameters 𝑧⋆. The following theorem is the main result of the steps
described above. For the next result, recall that we consider a target Boolean
product distribution 𝒟(𝑝⋆) whose parameters’ margin from 0 and 1 is dimension-
independent.

Theorem 2.4.1. Given oracle access to a measurable set 𝑆 ⊆ Π𝑑 (Assumption 2),
whose measure under some unknown Boolean product distribution 𝒟(𝑧⋆) is at least
some constant 𝛼 > 0 (Assumption 4) and where the truncated distribution 𝒟𝑆(𝑧

⋆)
satisfies Assumption 3 with parameter 𝜆, and given samples from the truncation
𝒟𝑆(𝑧

⋆), there exists a polynomial-time algorithm that recovers an estimation 𝑧 of
𝑧⋆. For any 𝜖 > 0, the algorithm uses poly(1/𝜆) ̃︀𝑂(𝑑/𝜖2) truncated samples from
𝒟𝑆(𝑧

⋆) and membership queries to 𝑆 and guarantees that ‖𝑧⋆ − 𝑧‖2 ≤ 𝜖, with
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probability 99%. Under these conditions, it also holds that 𝑑TV(𝒟(𝑧⋆),𝒟(𝑧)) ≤
𝑂(𝜖).

2.4.1 Projected SGD: Algorithm’s Description

In this section, we present and explain the Projected SGD algorithm that learns
the true natural parameter vector 𝑧⋆ and, consequently, as we showed in Propo-
sition 2.1.3, learns the true Boolean product distribution 𝒟(𝑝⋆) in total variation
distance.

We are now ready to present the main steps of our SGD Algorithm 4. The input
of the algorithm is the number of the steps 𝑀 and a parameter 𝜂, that modifies
the step size. The initialization point 𝑧(0) of the algorithm will be the point ̂︀𝑧,
that equals to the natural parameter vector of the empirical estimate ̂︀𝑝𝑆 , defined
by Equation (2.3). For 𝑡 ∈ [𝑀 ], our guess for the true natural parameter vector 𝑧⋆

will be denoted by 𝑧(𝑡). In each round 𝑡, we produce a guess 𝑧(𝑡) as follows: Firstly,
we draw a sample 𝑥(𝑡) from the unknown truncated Boolean product distribution
𝒟𝑆(𝑝

⋆). Also, we draw a second sample 𝑦 from the distribution induced by our
previous guess 𝑧(𝑡−1). Note that it is possible that the generated sample 𝑦 does not
lie in the truncation set 𝑆. Hence, we have to iterate until we draw a sample that
lies in 𝑆, that is 𝑀𝑆(𝑦) = 1𝑦∈𝑆 is equal to 1. As we have already mentioned, the
function that we are minimizing is the negative log-likelihood for the population
model. As we will see in Lemma 2.5.1 and Equation (2.2), the true gradient of this
function is equal to

− E
𝑥∼𝒟𝑆(𝑧⋆)

[𝑥] + E
𝑦∼𝒟𝑆(𝑧)

[𝑦] .

In Algorithm 4, this quantity corresponds to a random direction denoted by
𝑣(𝑡) at step 𝑡 and is equal to −𝑥(𝑡) + 𝑦. Note that its expected value is equal to
the true gradient. Hence, as in the classical gradient descent setting, we update
our guess using the following update rule

𝑧(𝑡) ← 𝑧(𝑡−1) − 𝜂𝑡𝑣
(𝑡) .

As we have explained, we perform the SGD algorithm in a ball ℬ of radius.
Hence, it may be the case that our new guess 𝑧(𝑡) lies outside ℬ. Hence, we have to
project that point back to the ball. For that reason, we use the projection function
Πℬ, that equals to the mapping

Πℬ(𝑥) = argmin
𝑧∈ℬ

‖𝑥− 𝑧‖2 for 𝑥 ∈ R𝑑 .

Finally, after 𝑀 steps, the SGD algorithm returns an estimate 𝑧 that is close
to the minimizer of the negative log-likelihood function. As we will show, this min-
imizer corresponds to the true natural parameters vector 𝑧⋆. In the next section,
we perform the theoretical analysis of the projected stochastic gradient descent
algorithm for truncated Boolean product distributions.
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2.5 Projected SGD: Theoretical Analysis
Our goal is to prove Theorem 2.4.1. The roadmap of the proof is presented as

follows:

• Convexity of the objective. In Section 2.5.1, we show that the population
version of the negative log-likelihood objective is convex with respect to the
natural parameter vector (see Lemma 2.5.1 and Section 2.5.1).

• Initial feasible point. In Section 2.5.2, we efficiently compute a good
initialization point for the SGD algorithm. The statement is presented in
Lemma 2.5.3.

• Feasible region. In Section 2.5.3, we show that there exists a ball (and
hence an easy-to-project set) that contains the true vector 𝑧⋆ (see Lemma 2.5.6)
and each point in the ball satisfies Assumptions 3 (see Lemma 2.5.9) and 4
(see Lemma 2.5.7).

• Unbiased estimation of the gradient. In Section 2.5.4, we show how to
obtain an unbiased estimation of the gradient of the objective efficiently.

• Strong convexity inside the feasible region. In Section 2.5.5, we estab-
lish that the negative log-likelihood objective is strongly-convex inside the
ball of Section 2.5.3.

• Analysis of the SGD algorithm. In Section 2.5.6, we show that the
bounded variance step property holds (see Lemma 2.5.13). Hence, combining
this result with the strong-convexity inside the ball, we can apply Fact 1 and
get Theorem 2.4.1.

2.5.1 Convexity of the negative log-likelihood
Let 𝑆 be a subset of the hypercube Π𝑑 and 𝒟(𝑝) be an arbitrary Boolean

product distribution. We remind the reader that, for 𝑥 ∈ Π𝑑:

𝒟(𝑝;𝑥) = ℬ𝑒(𝑝1;𝑥1)⊗ · · · ⊗ ℬ𝑒(𝑝𝑑;𝑥𝑑) =
∏︁
𝑖∈[𝑑]

(𝑝𝑥𝑖
𝑖 (1− 𝑝𝑖)

1−𝑥𝑖) .

Let 𝑧 be the natural parameters vector with 𝑧𝑖 = log 𝑝𝑖
1−𝑝𝑖

for 𝑖 ∈ [𝑑]. Rewriting
the distribution as an exponential family, we get that:

𝒟(𝑝;𝑥) =
∏︁
𝑖∈[𝑑]

exp
(︁
𝑥𝑖 log

𝑝𝑖
1− 𝑝𝑖

+ log(1− 𝑝𝑖)
)︁
,

or equivalently:

𝒟(𝑧;𝑥) = exp(𝑥𝑇𝑧)∏︀
𝑖∈[𝑑](1 + exp(𝑧𝑖))

.
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The truncation set 𝑆 induces a distribution 𝒟𝑆(𝑧), that is equal to:

𝒟𝑆(𝑧;𝑥) = 1𝑥∈𝑆
exp(𝑥𝑇𝑧)∑︀
𝑦∈𝑆 exp(𝑦𝑇𝑧)

.

Afterwards, we compute the negative log-likelihood ℓ(𝑧) of the truncated sam-
ples drawn from the truncated distribution 𝒟𝑆(𝑧) and study its behavior in terms
of convexity.

Log-likelihood for a Single Sample

Notice that the structure of the truncated Boolean product distribution 𝒟𝑆(𝑧),
expressed as an exponential family, is quite useful when computing the negative
log-likelihood for a single sample 𝑥 drawn from a distribution 𝒟𝑆(𝑧), that is:

ℓ(𝑧;𝑥) = − log𝒟𝑆(𝑧;𝑥) = −𝑥𝑇𝑧 + log
(︁∑︁

𝑦∈𝑆
𝑒𝑦

𝑇 𝑧
)︁
. (2.1)

The convexity of the negative log-likelihood ℓ(𝑧) of the truncated Boolean
product distribution 𝒟𝑆(𝑧) follows immediately if one computes the gradient and
the Hessian of ℓ(𝑧) with respect to the natural parameter vector 𝑧. This result is
presented in the following Lemma.

Lemma 2.5.1. The negative log-likelihood objective ℓ(𝑧;𝑥), as defined in Equa-
tion (2.1), is convex with respect to 𝑧 for all 𝑥 ∈ Π𝑑.

Proof. Observe that the negative log-likelihood of a single sample 𝑥 ∼ 𝒟𝑆(𝑧) will
be

ℓ(𝑧;𝑥) = −𝑥𝑇𝑧 + log
(︁∑︁

𝑦∈𝑆
𝑒𝑦

𝑇 𝑧
)︁
.

We now compute the gradient of ℓ(𝑧;𝑥) with respect to the parameter 𝑧.

∇𝑧ℓ(𝑧;𝑥) = −𝑥+

∑︀
𝑦∈𝑆 𝑦𝑒𝑦

𝑇 𝑧∑︀
𝑦∈𝑆 𝑒𝑦𝑇 𝑧

= −𝑥+ E
𝑦∼𝒟𝑆(𝑧)

[𝑦] .

Finally, we compute the Hessian of the negative log-likelihood:

𝐻ℓ(𝑧) =

∑︀
𝑦∈𝑆 𝑦𝑦𝑇 𝑒𝑦

𝑇 𝑧∑︀
𝑦∈𝑆 𝑒𝑦𝑇 𝑧

−
∑︀

𝑦∈𝑆 𝑦𝑒𝑦
𝑇 𝑧∑︀

𝑦∈𝑆 𝑒𝑦𝑇 𝑧

∑︀
𝑦∈𝑆 𝑦𝑒𝑦

𝑇 𝑧∑︀
𝑦∈𝑆 𝑒𝑦𝑇 𝑧

= Cov𝑦∼𝒟𝑆(𝑧)[𝑦,𝑦] .

The Hessian of the negative log-likelihood 𝐻ℓ is semi-positive definite since it
equals to a covariance matrix (in particular, it equals to the covariance matrix of
the sufficient statistics of the exponential family). The result follows.
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Log-likelihood for the Population Model

Our Projected SGD algorithm will optimize the negative log-likelihood for the
population model, that will be denoted with ℓ. This function is defined as the
expected value of the negative log-likelihood function with respect to the true
truncated Boolean product distribution 𝒟𝑆(𝑧

⋆), that is

ℓ(𝑧) = E
𝑥∼𝒟𝑆(𝑧⋆)

[ℓ(𝑧;𝑥)] .

Using the formula of Equation (2.1), we get that

ℓ(𝑧) = E
𝑥∼𝒟𝑆(𝑧⋆)

[︁
− 𝑥𝑇𝑧 + log

(︁∑︁
𝑦∈𝑆

𝑒𝑦
𝑇 𝑧
)︁]︁

.

But, since the second term is just a normalization constant, and hence independent
of the random variable 𝑥, we get that:

ℓ(𝑧) = E
𝑥∼𝒟𝑆(𝑧⋆)

[−𝑥𝑇𝑧] + log
(︁∑︁

𝑦∈𝑆
𝑒𝑦

𝑇 𝑧
)︁
.

Similarly, as in the proof of Lemma 2.5.1, one can compute the gradient with
respect to 𝑧 and get that:

∇𝑧ℓ(𝑧) = − E
𝑥∼𝒟𝑆(𝑧⋆)

[𝑥] + E
𝑦∼𝒟𝑆(𝑧)

[𝑦] . (2.2)

Hence, computing in the exact same way the Hessian of ℓ(𝑧), we get the convexity
of the negative log-likelihood for the population model with respect to the natural
parameter vector 𝑧.

Also, notice that the gradient ∇𝑧ℓ(𝑧) vanishes when 𝑧 = 𝑧⋆. So, the true
parameter vector 𝑧⋆ minimizes the negative log-likelihood function of the truncated
samples for the population model. This fact combined with the convexity of the
population version of the negative log-likelihood yield the following.

Lemma 2.5.2. For any 𝑧 ∈ R𝑑, it holds that

ℓ(𝑧⋆) ≤ ℓ(𝑧) ,

where 𝑧⋆ ∈ R𝑑 is the true parameter vector and ℓ is the population negative log-
likelihood objective, whose expectation is with respect to the truncated Boolean prod-
uct distribution 𝒟𝑆(𝑧

⋆), for some arbitrary truncation set 𝑆 ⊆ Π𝑑.

2.5.2 Initialization Lemma
Our next goal is to find a good initialization point for our SGD algorithm.

Assume that for the truncation set 𝑆, it holds that 𝒟(𝑝⋆;𝑆) = 𝛼. We claim that,
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if one draws 𝑛 = ̃︀𝑂(𝑑) samples {𝑥(𝑡)}𝑛𝑡=1 from the truncated Boolean product
distribution 𝒟𝑆(𝑝

⋆), the empirical mean

̂︀𝑝𝑆 =
1

𝑛

𝑛∑︁
𝑡=1

𝑥(𝑡) (2.3)

is close in 𝐿2 distance to the true mean parameter vector 𝑝⋆ with high probability.
In the following lemma, we provide the proximity result between the empiri-

cal mean ̂︀𝑝𝑆 of the truncated Boolean product distribution 𝒟𝑆(𝑝
⋆) and the true

parameter vector 𝑝⋆. This lemma will be useful in the upcoming section.

Lemma 2.5.3. Let 𝒟(𝑝⋆) be the unknown Boolean product distribution and con-
sider the truncation set 𝑆 ⊆ Π𝑑 such that 𝒟(𝑝⋆;𝑆) = 𝛼. The empirical mean ̂︀𝑝𝑆,
computed using 𝑂

(︀
𝑑 log(𝑑𝛿 )

)︀
samples from the truncated Boolean product distribu-

tion 𝒟𝑆(𝑝
⋆), satisfies:

‖̂︀𝑝𝑆 − 𝑝⋆‖2 ≤ 𝑂
(︁√︀

log(1/𝛼)
)︁
,

with probability 1− 𝛿.

Proof. The proof of Lemma 2.5.3 can be decomposed in the following two lemmas.
Combining the following two lemmas (we apply Lemma 2.5.4 with accuracy 𝜖 a
small constant like

√︀
log(1/𝛼)/10, since 𝛼 is also a constant) using the triangle

inequality for the 𝐿2 norm, Lemma 2.5.3 follows.

Lemma 2.5.4. Consider 𝑆 ⊆ Π𝑑 and let 𝑝𝑆 be the parameter vector of the trun-
cated Boolean product distribution 𝒟𝑆(𝑝

⋆). There exists an algorithm that uses
𝑂( 𝑑

𝜖2
log(𝑑𝛿 )) samples from 𝒟𝑆(𝑝

⋆) and computes an estimate ̂︀𝑝𝑆 such that

‖̂︀𝑝𝑆 − 𝑝𝑆‖2 ≤ 𝜖 ,

with probability 1− 𝛿.

Proof. Consider the truncated true Boolean product distribution𝒟𝑆(𝑝
⋆) with trun-

cation set 𝑆 ⊆ Π𝑑. Consider the algorithm that, given 𝑛 samples {𝑥(𝑡)} from
𝒟𝑆(𝑝

⋆), computes the empirical mean vector:

̂︀𝑝𝑆 =
1

𝑛

𝑛∑︁
𝑡=1

𝑥(𝑡) .

Note that E ̂︀𝑝𝑆 = 𝑝𝑆 . Fix a coordinate 𝑗 ∈ [𝑑]. By applying Hoeffding’s inequality
at ̂︀𝑝𝑆,𝑗 = 1

𝑛

∑︀𝑛
𝑡=1 𝑥

(𝑡)
𝑗 (these random variables are bounded in [0, 1]), one gets

Pr
[︁
|̂︀𝑝𝑆,𝑗 − 𝑝𝑆,𝑗 | > 𝜖/

√
𝑑
]︁
≤ 2𝑒−2𝑛 𝜖2

𝑑 .
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We can now use union bound and require the left hand side to be at most 𝛿. Hence,
we get that

2𝑑𝑒−2𝑛 𝜖2

𝑑 ≤ 𝛿 ⇒ 𝑛 = Ω

(︂
𝑑

𝜖2
log

(︂
𝑑

𝛿

)︂)︂
.

Consequently, given Θ( 𝑑
𝜖2
log(𝑑𝛿 )) samples, we get that the empirical mean estimate

𝑝𝑆 is within error 𝜖 in 𝐿2 distance with probability 1− 𝛿.

Lemma 2.5.5. Consider the unknown Boolean product distribution 𝒟(𝑝⋆) and a
truncation set 𝑆 such that 𝒟(𝑝⋆;𝑆) = 𝛼. Let 𝑝𝑆 be the parameter vector of the
truncated Boolean product distribution 𝒟𝑆(𝑝

⋆). Then, it holds that

‖𝑝𝑆 − 𝑝⋆‖2 ≤ 𝑂
(︁√︀

log(1/𝛼)
)︁
.

Proof. Consider an arbitrary direction 𝑤 with ‖𝑤‖2 = 1. Consider the random
variable 𝑤𝑇𝑥 where 𝑥 ∼ 𝒟(𝑝⋆). Note that E𝑥∼𝒟(𝑝⋆)[𝑤

𝑇𝑥] = 𝑤𝑇𝑝⋆. By applying
Hoeffding’s inequality:

Pr
𝑥∼𝒟(𝑝⋆)

[𝑤𝑇𝑥 > 𝑤𝑇𝑝⋆ + 𝐶] ≤ 𝑒−2𝐶2
.

Hoeffding’s inequality implies that the marginal of the true distribution in direction
𝑤 has exponential tail and that holds for any (unit) direction. But, the worst case
set 𝑆 would assign mass 𝛼 to the tail (in order to maximize the distance between
the two means) and, hence:

𝛼 ≤ 𝑒−2𝐶2 ⇒ 𝐶 = 𝑂

(︃√︂
log

1

𝛼

)︃
.

The result follows.

2.5.3 Ball in the 𝑧-space
We will perform Projected SGD to a convex subspace of R𝑑. The algorithm

will optimize the negative log-likelihood for the population model ℓ with respect to
the natural parameters 𝑧 = (𝑧1, . . . , 𝑧𝑑)

𝑇 with 𝑧𝑖 = log 𝑝𝑖
1−𝑝𝑖

in order to learn the

true parameters 𝑧⋆ = (𝑧⋆1 , . . . , 𝑧
⋆
𝑑)

𝑇 with 𝑧⋆𝑖 = log
𝑝⋆𝑖

1−𝑝⋆𝑖
. Our initial guess is ̂︀𝑧 =

(̂︀𝑧1, . . . , ̂︀𝑧𝑑)𝑇 with ̂︀𝑧𝑖 = log
̂︀𝑝𝑆,𝑖

1−̂︀𝑝𝑆,𝑖 . Afterwards, SGD will iterate over estimations 𝑧

of the true parameters 𝑧⋆.
In this section, we show that there exists a convex set that contains the true

vector 𝑧⋆ and each point in that set satisfies Assumptions 3 and 4.
In fact, we show that there exists a ball B of radius 𝐵 centered at ̂︀𝑧, that

contains the true natural parameters 𝑧⋆, with high probability. Additionally, every
point 𝑧 of that ball satisfies Assumptions 3 and 4. That is, for any 𝑧 ∈ B, let 𝒟(𝑧)

64



be the Boolean product distribution and 𝒟𝑆(𝑧) be an arbitrary truncation of 𝒟(𝑧).
Then, 𝒟𝑆(𝑧) will be anti-concentrated too, in the sense of Assumption 3, and we
will have 𝒟(𝑧;𝑆) > 𝑐𝛼 for some constant 𝑐𝑎, that depends only on the initial mass
of the set 𝑆. The existence of such a ball is presented in the following lemma.

Lemma 2.5.6. There exists 𝐵 > 0 such that the ball centered at the empirical
estimate ̂︀𝑧 :

B = {𝑧 : ‖𝑧 − ̂︀𝑧‖2 ≤ 𝐵}

contains the true natural parameters, i.e.,

‖𝑧⋆ − ̂︀𝑧‖2 ≤ 𝐵 ,

with high probability, where the randomness is over the estimate ̂︀𝑧.

Proof. We can assume that the real mean vector 𝑝⋆ lies in (0, 1)𝑑. Firstly, note that̂︀𝑧 ∈ (−∞,∞)𝑑, since (̂︀𝑧)𝑖 = log
̂︀𝑝𝑆,𝑖

1−̂︀𝑝𝑆,𝑖 and 0 < ̂︀𝑝𝑆,𝑖 < 1 for any 𝑖 ∈ [𝑑]. From now
on, fix a coordinate 𝑖 ∈ [𝑑] and consider the mapping 𝑓(𝑥) = log 𝑥

1−𝑥 for 𝑥 ∈ (0, 1).
Note that 𝑓 corresponds to the transformation of 𝑝𝑖 to the natural parameter 𝑧𝑖
and, hence:

|𝑧⋆𝑖 − ̂︀𝑧𝑖| = |𝑓(𝑝⋆𝑖 )− 𝑓(̂︀𝑝𝑆,𝑖)| .
Using the anti-concentration condition (see Assumption 3 and the discussion after
this assumption), we get that there exists a positive constant 𝛾 such that 𝑝⋆𝑖 , ̂︀𝑝𝑆,𝑖 ∈
(𝛾, 1− 𝛾) for any 𝑖 ∈ [𝑑]. Then, observe that there exists a positive finite constant
𝐶 such 𝑓 is 𝐶-Lipschitz in that interval. Hence,

|𝑧⋆𝑖 − ̂︀𝑧𝑖| = |𝑓(𝑝⋆𝑖 )− 𝑓(̂︀𝑝𝑆,𝑖)| ≤ 𝐶|𝑝⋆𝑖 − ̂︀𝑝𝑆,𝑖| .
Squaring each side and summing over 𝑖 ∈ [𝑑], we get that

‖𝑧⋆ − ̂︀𝑧‖2 ≤ 𝑂

(︃√︂
log

1

𝛼

)︃
,

with high probability, where we used the proximity Lemma 2.5.3. Hence, the ball
centered at ̂︀𝑧 with radius 𝐵 = 𝑂

(︁√︁
log 1

𝛼

)︁
, i.e., the set

B = {𝑧 : ‖𝑧 − ̂︀𝑧‖2 ≤ 𝐵}

contains the true natural parameters 𝑧⋆ and any point 𝑧 ∈ B is finite in each
coordinate, since

∑︀𝑑
𝑖=1(𝑧𝑖 − ̂︀𝑧𝑖)2 ≤ 𝐵2.

The value of 𝐵 is equal to 𝑂(
√︀
log(1/𝛼)). From now on, we will denote by B

the ball of Lemma 2.5.6. In order to be able to perform the SGD algorithm, we
have to prove that Assumptions 3 and 4 hold for any guess of our algorithm. Since
the algorithm runs inside the ball B, we have to prove that the two assumptions
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are preserved inside the ball. We remind the reader that any guess that lies outside
the ball, is efficiently projected to its 𝐿2 closest point 𝑦 ∈ B.

Firstly, in Lemma 2.5.7, we prove that, in each iteration, every natural param-
eter vector 𝑧 inside the ball B, that corresponds to a mean vector 𝑝 and induces a
distribution 𝒟(𝑝), will assign constant non-trivial mass to the set 𝑆.

Lemma 2.5.7 (Non-trivial mass inside the ball). Consider the true Boolean prod-
uct distribution 𝒟(𝑝⋆) and 𝒟(𝑝) be another Boolean product distribution such that
the corresponding natural parameter vectors satisfy

‖𝑧⋆ − 𝑧‖2 ≤ 𝐵 = 𝑂
(︁√︀

log(1/𝛼)
)︁
.

Suppose that for a truncation set 𝑆 we have that:

E
𝑥∼𝒟(𝑝⋆)

[1𝑥∈𝑆 ] ≥ 𝛼 .

Then, it holds that
E

𝑥∼𝒟(𝑝)
[1𝑥∈𝑆 ] ≥ poly(𝛼) .

Proof. Let 𝒟(𝑝⋆;𝑆) = 𝛼 and 𝒟(𝑝;𝑆) = 𝛼′. Firstly, notice that one can express
the mass of the set 𝑆 assigned by 𝒟(𝑝) as:

𝒟(𝑝;𝑆) = E
𝑥∼𝒟(𝑝⋆)

[︂
1𝑥∈𝑆

𝒟(𝑝;𝑥)
𝒟(𝑝⋆;𝑥)

]︂
.

This is equivalent to:

𝒟(𝑝;𝑆) = E
𝑥∼𝒟(𝑝⋆)

[︂
𝑒
− log

𝒟(𝑝⋆;𝑥)
𝒟(𝑝;𝑥) 1𝑥∈𝑆

]︂
.

We remind the reader that:

𝒟(𝑧;𝑥) = exp(𝑥𝑇𝑧)
1∏︀

𝑖∈[𝑑](1 + exp(𝑧𝑖))
.

Writing the log ratio in terms of the natural parameters 𝑧, we get that:

log
𝒟(𝑧⋆;𝑥)

𝒟(𝑧;𝑥)
= 𝑥𝑇 (𝑧⋆ − 𝑧) + 𝐶 , (2.4)

where 𝐶 = − log
∏︀

𝑖∈[𝑑](1+𝑒𝑧
⋆
𝑖 )+log

∏︀
𝑖∈[𝑑](1+𝑒𝑧𝑖) = log

∏︀
𝑖∈[𝑑](1−𝑝⋆𝑖 )∏︀
𝑖∈[𝑑](1−𝑝𝑖)

is independent
of 𝑥 ∼ 𝒟(𝑝⋆). Since both 𝑧 and 𝑧⋆ lie inside the ball ℬ and are finite, 𝐶 corresponds
to a constant. Now, set 𝑔(𝑥) = log 𝒟(𝑝⋆;𝑥)

𝒟(𝑝;𝑥) and observe that:

E
𝑥∼𝒟(𝑝⋆)

[𝑔(𝑥)] = 𝐷𝐾𝐿(𝒟(𝑝⋆) ‖ 𝒟(𝑝)) .

66



Using Hoeffding’s inequality on Equation (2.4), we get that:

Pr
𝑥∼𝒟(𝑝⋆)

[︁
𝑔(𝑥)− E 𝑔 ≥ 𝑡

]︁
≤ exp(−2𝑡2/‖𝑧⋆ − 𝑧‖22) .

Setting 𝑡 =
√︀
log(2/𝛼)‖𝑧⋆ − 𝑧‖22, it follows that:

Pr
𝑥∼𝒟(𝑝⋆)

[︂
𝑔(𝑥)− E 𝑔 ≥

√︁
log(2/𝛼)‖𝑧⋆ − 𝑧‖22

]︂
≤ 𝛼/2 .

So, with probability at least 1− 𝛼/2, we get that the ratio −𝑔(𝑥) = − log 𝒟(𝑝⋆;𝑥)
𝒟(𝑝;𝑥)

will be at least
−E 𝑔 −

√︁
log(2/𝛼)‖𝑧 − 𝑧⋆‖22 ,

where we have that E 𝑔 = 𝐷𝐾𝐿(𝒟(𝑝⋆) ‖ 𝒟(𝑝)) ≤ 𝐵2, by Proposition 2.1.3.(𝑖).
Hence, with probability at least 1 − 𝛼/2, we get that the ratio − log 𝒟(𝑝⋆;𝑥)

𝒟(𝑝;𝑥)

will be at least −𝐵2 − 𝐵
√︀
log(2/𝛼) = 𝑐 · log(1/𝛼), for some constant 𝑐. Hence,

𝛼′ ≥ 𝛼
2 𝑒

−𝑂(log(1/𝛼)) = poly(𝛼). This concludes the proof.

Applying the above lemma for the initial guess ̂︀𝑝𝑆 , we get that:

Corollary 2.5.8. Consider a truncated Boolean product distribution 𝒟𝑆(𝑝
⋆) with

mass 𝒟(𝑝⋆;𝑆) ≥ 𝛼 > 0. The empirical mean ̂︀𝑝𝑆, obtained by Lemma 2.5.3, satisfies
𝒟(̂︀𝑝𝑆 ;𝑆) ≥ 𝑐𝛼, with high probability, for some constant 𝑐𝛼 that depends only on
the constant 𝛼 > 0. The high probability result is over the randomness of the
initialization ̂︀𝑝𝑆 .

Hence, both at the initialization point ̂︀𝑧 and while moving inside the ball B of
Lemma 2.5.6, the mass assigned to the set 𝑆 is always non-trivial.

We also need to show that the anti-concentration assumption is valid inside
the ball ℬ. Assumption 3 states that the truncated distribution 𝒟𝑆(𝑝

⋆) of the true
parameters is anti-concentrated. We will show that this holds for every truncated
distribution 𝒟𝑆(𝑧), induced by 𝑧 that lies inside the ball B. This is proven by the
following lemma.

Lemma 2.5.9 (Anti-concentration inside the ball). Consider the true Boolean
product distribution 𝒟(𝑝⋆) and 𝒟(𝑝) be another Boolean product distribution such
that the corresponding natural parameter vectors satisfy:

‖𝑧⋆ − 𝑧‖2 ≤ 𝐵 = 𝑂
(︁√︀

log(1/𝛼)
)︁
.

Consider an arbitrary truncation set 𝑆 ⊆ Π𝑑 such that 𝒟(𝑝⋆;𝑆) ≥ 𝛼. Assume
that Assumption 3 holds for the true truncated distribution 𝒟𝑆(𝑝

⋆) with constant
𝜆. Then, Assumption 3 still holds for 𝒟𝑆(𝑝) with constant poly(𝛼, 𝜆).
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Proof. Consider the true Boolean product distribution 𝒟(𝑝⋆). Let 𝑆 be the trun-
cation set, where 𝒟(𝑝⋆;𝑆) = 𝛼. The true truncated Boolean product distribution
𝒟𝑆(𝑝

⋆) satisfies Assumption 3. Hence, there exists a 𝜆, such that, for any arbi-
trary hyperplane defined by 𝑤 ∈ R𝑑 with ‖𝑤‖2 = 1 and 𝑐 ∈ R, we have that
𝒟𝑆(𝑝

⋆;𝐻) = 𝜆, where 𝐻 = {𝑥 : 𝑤𝑇𝑥 ̸∈ (𝑐 − 𝜆, 𝑐 + 𝜆)} ⊆ Π𝑑. Hence, the mass
assigned by the true Boolean product distribution to the space 𝐻 ∩ 𝑆 is equal to
𝒟(𝑝⋆;𝐻 ∩ 𝑆) = 𝜆𝛼.

Now, note that Lemma 2.5.7 holds for arbitrary set 𝑆. Hence, we can take the
truncation set to be equal to 𝐻∩𝑆. Then, note that the hypotheses of Lemma 2.5.7
hold with 𝒟(𝑝⋆;𝐻 ∩ 𝑆) ≥ 𝜆𝛼. Applying the result of Lemma 2.5.7, we get that:
𝒟(𝑝;𝐻 ∩ 𝑆) = poly(𝛼, 𝜆). Hence, 𝒟𝑆(𝑝;𝐻) = poly(𝛼, 𝜆).

Applying the above lemma for the initial guess ̂︀𝑝𝑆 , we get that:

Corollary 2.5.10. Consider a truncated Boolean product distribution 𝒟𝑆(𝑝
⋆) for

which Assumption 3 holds. The truncated Boolean product distribution 𝒟𝑆(̂︀𝑝𝑆) in-
duced by the empirical mean ̂︀𝑝𝑆, obtained by Lemma 2.5.3, satisfies Assumption 3,
with high probability over the randomness of the initialization ̂︀𝑝𝑆 .

Hence, any natural parameter vector 𝑧 ∈ B, induces a distribution 𝒟(𝑧) such
that the truncated distribution 𝒟𝑆(𝑧) satisfies the anti-concentration assumption.

2.5.4 Unbiased Estimation of the Gradient
In this section, we discuss the rejection sampling algorithm in order to obtain

an unbiased estimate for the gradient of the population version of the negative
log-likelihood objective. Recall that

∇𝑧ℓ(𝑧) = − E
𝑥∼𝒟𝑆(𝑧⋆)

[𝑥] + E
𝑦∼𝒟𝑆(𝑧)

[𝑦] .

To compute an unbiased estimate for the first term, it suffices to draw a single
sample from the distribution 𝒟𝑆(𝑧

⋆) (we have oracle access to this distribution).
For the second term, we perform rejection sampling as follows: we draw a vector
𝑦 ∼ 𝒟(𝑧) and we check whether 𝑦 ∈ 𝑆, using the membership oracle access to the
truncation set 𝑆. If 𝑦 lies in 𝑆, we use it to obtain the unbiased gradient estimate;
otherwise, we reject this sample and repeat the procedure. We remind the reader
that in each iteration we project the guess vector back to the feasible region B.
Since the mass of the set 𝑆 inside the ball B is non-trivial and depends only on 𝛼
(see Lemma 2.5.7), we get that the rejection sampling algorithm takes poly(1/𝛼)
samples from the Boolean product distribution 𝒟(𝑧) with high probability.
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2.5.5 Strong-convexity of the negative log-likelihood
A crucial ingredient of our SGD algorithm is the strong convexity of ℓ(𝑧), that

is the negative log-likelihood for the population model that corresponds to the
truncated Boolean product distribution 𝒟𝑆(𝑧). Specifically:

Definition 2.5.11. Let 𝑓 : R𝑑 → R with Hessian matrix 𝐻𝑓 . Then, 𝑓 will be
called 𝜆-strongly convex if it holds that 𝐻𝑓 ⪰ 𝜆I.

As a last step before the analysis of our SGD algorithm, we will use Lemma 2.5.12
to show that ℓ(𝑧) is strongly convex for any 𝑧 ∈ B. Let 𝐻ℓ be the corresponding
Hessian of ℓ with the presence of arbitrary truncation 𝑆 ⊆ Π𝑑.

Lemma 2.5.12 (Strong Convexity). Consider an arbitrary truncation set 𝑆 ⊆ Π𝑑

whose mass with respect to the true Boolean product distribution is 𝒟(𝑝⋆;𝑆) = 𝛼
and the truncated Boolean product distribution 𝒟𝑆(𝑝) with the respective natural
parameter 𝑧 with 𝑧 ∈ B. Then 𝐻ℓ is 𝜆𝑧-strongly convex, where 𝜆𝑧 = poly(𝛼, 𝜆),
where 𝜆 is introduced in Assumption 3.

Proof. We have that 𝐻ℓ = Cov𝑥∼𝒟𝑆(𝑝)[𝑥,𝑥]. We will call this matrix 𝐶𝑝. Then,
we have that

𝐶𝑝 = E
𝑥∼𝒟𝑆(𝑝)

[︁
(𝑥− E

𝑦∼𝒟𝑆(𝑝)
[𝑦])(𝑥− E

𝑦∼𝒟𝑆(𝑝)
[𝑦])𝑇

]︁
.

For arbitrary vector 𝑣 ∈ R𝑑 with ‖𝑣‖2 = 1, we have that to show that

𝑣𝑇𝐶𝑝𝑣 > 0 .

Let us set 𝑚 = E𝑦∼𝒟𝑆(𝑝)[𝑦]. Note that

𝑣𝑇𝐶𝑝𝑣 = E
𝑥∼𝒟𝑆(𝑝)

[𝑝𝑣(𝑥)] ,

where, after some algebraic manipulation, we can get:

𝑝𝑣(𝑥) =

𝑑∑︁
𝑗=1

𝑣𝑗(𝑥𝑗 −𝑚𝑗)

𝑑∑︁
𝑖=1

𝑣𝑖(𝑥𝑖 −𝑚𝑖) = (𝑣𝑇 (𝑥−𝑚))2 .

For the distribution 𝒟𝑆(𝑝), Assumption 3 holds (using Lemma 2.5.9, since the
respective natural parameters 𝑧 lie inside the ball B) with a positive constant
𝜆𝑝 = poly(𝛼, 𝜆). Specifically, setting 𝑤 = 𝑣 and 𝑐 = 𝑣𝑇𝑚, Assumption 3 implies
that there exists a positive constant 𝜆𝑝 such that:

Pr
𝑥∼𝒟𝑆(𝑝)

[︁
|𝑣𝑇𝑥− 𝑐| > 𝜆𝑝

]︁
≥ 𝜆𝑝 .

Hence, it follows that:
𝑣𝑇𝐶𝑝𝑣 > 𝜆3

𝑝 > 0 ,

for any arbitrary unit vector 𝑣 ∈ R𝑑.
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2.5.6 Analysis of SGD
Up to that point, we have showed that, using ̃︀𝑂 (𝑑) samples, there exists an

initial guess, that is the empirical mean vector ̂︀𝑧 such that there exists a ball
B of radius 𝐵 = 𝑂

(︁√︁
log 1

𝛼

)︁
centered at the ̂︀𝑧, that contains the true natural

parameters 𝑧⋆, with high probability. Additionally, every point that falls inside
that ball satisfies Assumptions 3 and 4 and that ℓ is strongly convex inside B.

Apart from the previous analysis, in order to provide the theoretical guarantees
of the Projected SGD algorithm, we have to show that, at each iteration, the square
of the norm of the gradient vector of the ℓ is bounded. This is proved in the
following lemma.

Let 𝑣(𝑡) be the gradient of the negative log-likelihood that our SGD algorithm
computes at step 𝑡. We remind the reader that 𝑣(𝑡) = −𝑥(𝑡)+𝑦 (see Algorithm 4).

Lemma 2.5.13 (Bounded Variance Step). Let 𝑧⋆ ∈ R𝑑 be the true natural param-
eter vector and let 𝑧 be the guess after step 𝑡− 1 according to which the gradient is
computed. Assume that 𝑧 and 𝑧⋆ lie inside the ball B and that

min{𝒟(𝑧;𝑆),𝒟(𝑧⋆;𝑆)} ≥ 𝛽 .

Then, we have that:

E
[︁
‖𝑣(𝑡)‖22

]︁
≤ 4𝑑

𝛽
.

Proof. Let 𝑝 (resp. 𝑝⋆) be the corresponding mean parameter vector of the natural
parameter vector 𝑧 (resp. 𝑧⋆). According to line 8 of the SGD Algorithm 4 and
the Equation (2.2), we have that

E
[︁
‖𝑣(𝑡)‖22

]︁
= E

𝑥∼𝒟𝑆(𝑝⋆)

[︃
E

𝑦∼𝒟𝑆(𝑝)
‖𝑥− 𝑦‖22

]︃
,

and hence
E
[︁
‖𝑣(𝑡)‖22

]︁
≤ 2 E

𝑥∼𝒟𝑆(𝑝⋆)

[︁
‖𝑥‖22

]︁
+ 2 E

𝑦∼𝒟𝑆(𝑝)

[︁
‖𝑦‖22

]︁
. (2.5)

Now, since the measure of 𝑆 is greater than 𝛽 for both parameter vectors and since
both parameters lie inside the ball, we can appropriately bound the above quantity.
Observe that:

E
𝑦∼𝒟𝑆(𝑝)

[︁
‖𝑦‖22

]︁
≤ 1

𝛽
E

𝑦∼𝒟(𝑝)

[︁
‖𝑦‖22

]︁
≤ 𝑑

𝛽
.

Similarly, we have that:

E
𝑥∼𝒟𝑆(𝑝⋆)

[︁
‖𝑥‖22

]︁
≤ 𝑑

𝛽
.

The result follows by combining the two inequalities to Equation (2.5).
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Let ℓ be the negative log-likelihood for the population model. We present a
folklore SGD theorem. The formulation we use is from (SSBD14).

Fact 1. Let 𝑓 = ℓ. Assume that 𝑓 is 𝜇-strongly convex, that E[𝑣(𝑡)|z(𝑡−1)] ∈
𝜕𝑓(z(𝑡−1)) and that E

[︁
‖𝑣(𝑡)‖22

]︁
≤ 𝜌2. Let z⋆ ∈ argmin𝑧∈ℬ 𝑓(z) be an optimal

solution. Then,

E[𝑓(z)]− 𝑓(z⋆) ≤ 𝜌2

2𝜇𝑀
· (1 + log𝑀) ,

where z is the output of the SGD Algorithm 4.

As an application of Fact 1 and Lemma 2.5.13, we obtain directly the following
result.

Lemma 2.5.14. Let 𝑧⋆ be the true parameters of the model, let 𝑓 = ℓ be defined as
above, 𝛽 = min𝑧∈ℬ 𝐷(𝑧;𝑆), 𝜇 ≥ min𝑧∈ℬ 𝜆𝑧, then there exists a universal constant
𝐶 > 0 such that

E[𝑓(𝑧)]− 𝑓(𝑧⋆) ≤ 𝐶𝑑

𝛽𝜇𝑀
· (1 + log𝑀) .

We are now ready to prove our main Theorem 2.4.1.

Proof. Using Lemma 2.5.14 and applying Markov’s inequality, it follows that:

Pr
[︁
𝑓(𝑧)− 𝑓(𝑧⋆) ≥ 3𝐶𝑑

𝛽𝜇𝑀
· (1 + log𝑀)

]︁
≤ 1

3
.

We can amplify the probability of success to 1 − 𝛿 by repeating 𝑁 = log(1/𝛿)
independently from scratch the SGD procedure and keeping the estimation that
achieves the maximum log-likelihood value. The procedure is completely similar to
the proof of Theorem 1 of (DGTZ18) and we repeat it here for completeness. Let ℰ
be the set of our 𝑁 estimates. The optimal estimate would be ̃︀𝑧 = argmin𝑧∈ℰ ℓ(𝑧),
but we cannot compute exactly 𝑓 = ℓ. Using the Markov’s inequality, we get that,
with probability at least 1− 𝛿, at least 2/3 of our estimates satisfy

𝑓(𝑧)− 𝑓(𝑧⋆) ≤ 3𝐶𝑑

𝛽𝜇𝑀
· (1 + log𝑀) .

Let us set 𝜁 := 3𝐶𝑑
𝛽𝜇𝑀 (1+log𝑀). As we will see, using the strong convexity property,

we get that 𝑓(𝑧) − 𝑓(𝑧⋆), implies ‖𝑧 − 𝑧⋆‖2 ≤ 𝑐𝜁, for some 𝑐. Hence, with high
probability 1−𝛿 for at least 2/3 of our estimations, the 𝐿2 norm is at most 2𝑐𝜁. So,
we can set appropriately the value of ̃︀𝑧 to be a point that is at least 2𝑐𝜁 close to more
that the half of our 𝑁 estimations. That value will satisfy 𝑓(̃︀𝑧)− 𝑓(𝑧⋆) ≤ 𝜁. Now,
using Lemmata 2.5.9 and 2.5.7, there are quantities 𝑐𝛼 = poly(𝛼), 𝑐𝛼,𝜆 = poly(𝛼, 𝜆)
such that 𝛽 ≥ 𝑐𝛼 and 𝜇 ≥ 𝑐𝛼,𝜆, where 𝛼 is the constant of Assumption 4 and 𝜆 is
the parameter of Assumption 3. This leads to the following statement:

With probability at least 1− 𝛿, we have that: 𝑓(̃︀𝑧)− 𝑓(𝑧⋆) ≤ 𝑐′ 𝑑
𝑀 (1 + log𝑀),

where 𝑐′ is poly(1/𝛼, 1/𝜆). Now, we can use the Lemma 13.5 of (SSBD14) about
strong convexity:
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Fact 2. If 𝑓 is 𝜇-strongly convex and 𝑧⋆ is a minimizer of 𝑓 , then, for any 𝑧, it
holds that:

𝑓(𝑧)− 𝑓(𝑧⋆) ≥ 𝜇

2
‖𝑧 − 𝑧⋆‖22 .

Using this result, we can get

‖̃︀𝑧 − 𝑧⋆‖2 ≤ 𝑐′′
√︂

𝑑

𝑀
· (1 + log𝑀) ,

where 𝑐′′ is poly(1/𝛼, 1/𝜆).
Hence, the number of samples is 𝑂(𝑁𝑀) and the running time is poly(𝑁,𝑀, 𝑑, 1/𝜖).

For 𝑁 = log(1/𝛿) and 𝑀 ≥ poly(1/𝛼, 1/𝜆) ̃︀𝑂 (︀ 𝑑
𝜖2

)︀
, the result follows.

2.6 Appendix: Deferred Proofs
In this section, we provide the proof of Proposition 2.1.2.

Proof. We define the pair of functions on the space (𝑝, 𝑞) ∈ (0, 1)2:

𝑓(𝑝, 𝑞) = 𝑝 log
𝑝

𝑞
+ (1− 𝑝) log

1− 𝑝

1− 𝑞

and
𝑔(𝑝, 𝑞) =

(︁
log

𝑝

1− 𝑝
− log

𝑞

1− 𝑞

)︁2
.

Both functions have a root at 𝑝 = 𝑞 = 1/2. Notice that 𝑔 is symmetric. Fix
𝑞. We will denote with 𝑓𝑞 (resp. 𝑔𝑞) the projection of 𝑓 (resp. 𝑔) in the 𝑝-space,
having fixed 𝑞. Then, 𝑓𝑞(𝑞) = 𝑔𝑞(𝑞) = 0 is the unique root for 𝑝 ∈ (0, 1). Let
ℎ(𝑝) = 𝑓𝑞(𝑝) − 𝑔𝑞(𝑝). We claim that ℎ has a unique root at 𝑞 for 𝑝 ∈ (0, 1). The
derivate of ℎ with respect to 𝑝 is equal to:

𝑑ℎ

𝑑𝑝
= log

(︂
𝑝(1− 𝑞)

𝑞(1− 𝑝)

)︂(︁
1− 2

𝑝(1− 𝑝)

)︁
.

Notice that: 1− 2
𝑝(1−𝑝) < 0 ∀𝑝 ∈ (0, 1) and that:

log

(︂
𝑝(1− 𝑞)

𝑞(1− 𝑝)

)︂
=

⎧⎪⎨⎪⎩
< 0 for 𝑝 < 𝑞 ,

0 for 𝑝 = 𝑞 ,

> 0 for 𝑝 > 𝑞 .

Hence, ℎ′(𝑞) = 0 and, hence, ℎ is strictly increasing for 𝑝 < 𝑞 and ℎ is strictly
decreasing for 𝑝 > 𝑞. Also, 𝑝 = 𝑞 is the unique solution of the equation ℎ(𝑝) = 0
for 𝑝 ∈ (0, 1).

For 𝑝 < 𝑞 ⇒ ℎ(𝑝) < 0 ⇒ 𝑓𝑞(𝑝) < 𝑔𝑞(𝑝) and for 𝑝 > 𝑞 ⇒ ℎ(𝑝) < 0 ⇒ 𝑓𝑞(𝑝) <
𝑔𝑞(𝑝). So, the desired inequality holds for the arbitrary fixed 𝑞 ∈ (0, 1). Hence, the
inequality follows for every 𝑝, 𝑞 ∈ (0, 1).
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Chapter 3

Learning from Coarse Labels

We decompose this chapter into two parts. The first one deals with classification
with coarse labels and the second one with the problem of estimating the mean of
a Gaussian distribution from coarse data.

3.1 Classification with Coarse Data
We begin this chapter by reminding to the reader the generative model of

coarsely labeled data that we consider in this semi-supervised setting. We model
coarse labels as subsets of the domain of all possible fine labels. Our coarse data
model is defined as follows.

Definition 3.1.1 (Generative Process of Coarse Data with Context). Let 𝒳 be an
arbitrary domain, and let 𝒵 = {1, . . . , 𝑘} be the discrete domain of all possible fine
labels. We generate coarsely labeled examples as follows: (i) Draw a finely labeled
example (𝑥, 𝑧) from a distribution 𝒟 on 𝒳 ×𝒵, (ii) Draw a coarsening partition 𝒮
(of 𝒵) from a distribution 𝜋, (iii) Find the unique set 𝑆 ∈ 𝒮 that contains the fine
label 𝑧. Finally, we observe the coarsely labeled example (𝑥, 𝑆). We denote 𝒟𝜋 the
distribution of the coarsely labeled example (𝑥, 𝑆).

In this chapter, our main focus is to answer the following question which sum-
marizes the challenges behind the coarse labels’ problem.

Question 2. Can we train a model, using coarsely labeled examples (𝑥, 𝑆) ∼ 𝒟𝜋,
that classifies finely labeled examples (𝑥, 𝑧) ∼ 𝒟 with accuracy comparable to that
of a classifier that was trained on examples with fine grained labels?

The above Definition 3.1.1 imposes no restrictions on the distribution over par-
titions 𝜋. In order for Question 2 to be statistically possible, we need to consider
distributions over partitions 𝜋 that preserve fine-label information. The following
definition quantifies this by stating that reasonable partition distributions 𝜋 are
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those that preserve the total variation distance between different distributions sup-
ported on the domain of the fine labels 𝒵. We remark that the following definition
does not require 𝒟 to be supported on pairs (𝑥, 𝑧) but is a general statement for
the unsupervised version of the problem, see also Definition 3.1.4.

Definition 3.1.2 (Information Preserving Partition Distribution). Let 𝒵 be any
domain and let 𝛼 ∈ (0, 1]. We say that 𝜋 is an 𝛼-information preserving partition
distribution if for every two distributions 𝒟1,𝒟2 supported on 𝒵, it holds that
𝑑TV(𝒟1

𝜋,𝒟2
𝜋) ≥ 𝛼 · 𝑑TV(𝒟1,𝒟2), where 𝑑TV(𝒟1,𝒟2) is the total variation distance

of 𝒟1 and 𝒟2.

Crucially, our generative model allows the partitions to have arbitrarily com-
plex combinatorial structure that makes the process of “inverting" the partition
transformation computationally challenging.

We continue with the main result of this chapter. Formally, we design an
algorithm (Algorithm 5) that, given coarsely labeled examples (𝑥, 𝑆), efficiently
simulates statistical queries over finely labeled examples (𝑥, 𝑧). Surprisingly, the
runtime and sample complexity of our algorithm do not depend on the combina-
torial structure of the partitions, but only on the number of fine labels 𝑘 and the
information preserving parameter 𝛼 of the partition distribution 𝜋.

Theorem 3.1.3 (SQ from Coarsely Labeled Examples). Consider a distribu-
tion 𝒟𝜋 over coarsely labeled examples in R𝑑 × [𝑘], (see Definition 3.1.1) with
𝛼-information preserving partition distribution 𝜋. Let 𝑞 : R𝑑 × [𝑘] → [−1, 1] be a
query function, that can be evaluated on any input in time 𝑇 , and 𝜏, 𝛿 ∈ (0, 1).
There exists an algorithm (Algorithm 5), that draws 𝑁 = ̃︀𝑂(𝑘4/(𝜏3𝛼2) log(1/𝛿))
coarsely labeled examples from 𝒟𝜋 and, in poly(𝑁,𝑇 ) time, computes an estimatê︀𝑟 such that, with probability at least 1− 𝛿, it holds

⃒⃒
E(𝑥,𝑧)∼𝒟[𝑞(𝑥, 𝑧)]− ̂︀𝑟⃒⃒ ≤ 𝜏 .

Before proving the above result, we review the prior work on the field.

3.1.1 Related Work
Our work is closely related to the literature of learning from censored-truncated

data and learning with noise. There has been a large number of recent works dealing
inference with truncated data from a Gaussian distribution (DGTZ18; KTZ19),
mixtures of Gaussians (NP19), linear regression (DGTZ19b; IZD20; DRZ20), sparse
Graphical models (BDNP20) or Boolean product distributions (FKT20), and non-
parametric estimation (DKTZ21). A significant feature of our work is that it can
capture the closely related field of censored statistics (Coh16; Bre96; Wol79).

The area of robust statistics (Hub04) is also very related to our work as it
also deals with biased data-sets and aims to identify the distribution that gen-
erated the data. Recently, there has been a large volume of theoretical work for
computationally-efficient robust estimation of high-dimensional distributions (DKK+16;
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CSV17; LRV16b; DKK+17; DKK+18; KKM18; HL19; DKK+19a; CDGS20; BDH+20)
in the presence of arbitrary corruptions to a small 𝜀 fraction of the samples.

The line of research dealing with statistical queries (Kea98; BFKV98; FPV15;
FGV17; Fel17; FGR+17; DKS17b) is closely related to one of our main results
(Theorem 3.1.3). It is generally believed that SQ algorithms capture all reason-
able machine learning algorithms (AD98; BFKV98; BDMN05; DV08; FGR+17;
BF15; FGV17) and there is a rich line of research indicating SQ lower-bounds for
these classes of algorithms (FGR+17; DKS17b; Sha18; VW19? ; DKZ20; GGJ+20;
GGK20).

Another strand of research closely related to our problem is the Partial La-
bel Learning task: a weakly supervised learning problem where each training
example is associated with a set of candidate labels among which only one is
true (CST11b; CPCP14; YZ16a). For a small sample of the numerous works
related to this problem from the applied CS community, we refer the reader to
(NC08a; JG02; ZY15; ZZL16; ZYT17a; XLG19; XQGZ21; WZL21) and the refer-
ences therein.

The problem of learning from coarse labels falls in the regime of semi-supervised
learning (CSZ06) and it appears in various literatures (at least) termed as (i)
partial label learning (CST11a), (ii) ambiguous label learning (CSJT09; HB06),
(iii) superset label learning (HC15) and (iv) soft label learning (CODA08). Closely
related to these tasks are the problems of learning from complementary labels
(INHS17) and, more generally, learning from noisy and corrupted examples (AL88;
SBH13; BS14; VRW17; LBMK20).

We stick with the term partial label learning for now since this is the most
widely used. Many real-world learning tasks were solved under the framework of
partial label learning such as multimedia content analysis (CSJT09; CST11a) and
semantic image segmentation (PCMY15). For instance, in the breakthrough work
of (CSJT09), one of the experiments conducted goes as follows: Using a screenplay
(a specific shot from a movie and the associated dialogues), the observer (i.e., the
learning algorithm) can tell who appears in a given scene (from the names par-
ticipating in the dialogue), but for each face detected in the scene, the person’s
identity is ambiguous. Hence, each face is partially labeled with the set of char-
acters appearing in the scene (RBK07). The goal is to remove this ambiguity and
learn the name of each character from few screenplays.

We refer to (JG02; NC08b) and the references therein for some seminal papers
in the area. Through the years, various approaches have been proposed to solve this
challenging and interesting problem by utilizing major machine learning techniques,
such as maximum likelihood estimation and Expectation-Maximization (JG02),
convex optimization (CST11a), 𝑘-nearest neighbors (HB06) and error-correcting
output codes (Zha14; ZYT17b). For an overview of the practical treatment on the
problem, we refer the interested reader to (YZ16b; XQGZ21; WCH+21) (and the
references therein) and more broadly to (TGH15; VEH20).

Despite extensive studies on partial label learning from an industrial perspec-
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tive (applied ML), our theoretical level of understanding is still limited. A fun-
damental line of research deals with the statistical consistency (see e.g., (CST11a;
CSGGSR14; FLH+20; CRB20; LXF+20; WCH+21)) and the learnability (LD14)
of partial label learning algorithms. Moreover, (CGAD22) present a methodol-
ogy between partial supervision and validation, developing a conformal prediction
framework (SV08).

Closer to our learning from coarse labels approach are the works of (CS12) and
(VRW17). In the former, the goal is to estimate the posterior class probabilities
from partially labelled data while, in the latter, the authors study a more general
problem of learning from corrupted labels and aim to “invert” the corruption. Their
technique is inspired by the work of (NDRT13), where they proposed the method
of unbiased estimators (which is quite close to the connection between random
classification noise and the SQ framework of (Kea98)). This backward correction
procedure of (NDRT13; CS12; VRW17) recovers the information lost from the
corrupted labels (under some structural assumptions) and results in an unbiased
estimate of the risk with respect to true distribution. Crucially, these works have
to assume that the corruption process (i.e., the coarsening mechanism) is known.
This is also commented in (CRB20). Our SQ reduction does not require to know
the mechanism; in some sense, the algorithm uses rejection sampling and learning
coarse discrete distributions (which is an unsupervised learning problem) in order
to invert the coarsening in the sense of (VRW17) and obtain statistical queries with
respect to the distribution over the finely-labeled examples.

3.1.2 Technical Details for Learning from Coarse Labels
In this section, we consider the problem of supervised learning from coarse

data. In this setting, there exists some underlying distribution over finely labeled
examples, 𝒟. However, we have sample access only to the distribution associated
with coarsely labeled examples 𝒟𝜋, see Definition 3.1.1. Under this setting, even
problems that are naturally convex when we have access to examples with fine
labels, become non-convex when we introduce coarse labels (e.g., multiclass logistic
regression). The main result of this section is Theorem 3.1.3, which allows us to
compute statistical queries over finely labeled examples.

Overview of the Proof of Theorem 3.1.3

In order to simulate a statistical query we take a two step approach. Our
first building block considers the unsupervised version of the problem, see Defini-
tion 3.1.4, i.e., we marginalize the context 𝑥 and try to learn the distribution of the
fine labels 𝑧 given coarse samples 𝑆. This can be viewed as learning a general dis-
crete distribution supported on 𝒵 = {1, . . . , 𝑘} given coarse samples, i.e., subsets
of 𝒵. We show that, when the partition distribution 𝜋 is 𝛼-information preserving,
this can be done efficiently, see Proposition 3.1.5. Our algorithm (Algorithm 5) ex-
ploits the fact that even though in general having coarse data results in non-concave
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likelihood objectives, when we consider parametric models (see, for example, the
case of logistic regression in Section 3.1.4), this is not true when we maximize over
all discrete distributions. In Proposition 3.1.5, we show that ̃︀𝑂(𝑘/(𝜖𝛼)2) samples
are sufficient for this step. For the details of this step, see Section 3.1.2.

Using the above algorithm, one could try to separately learn the marginal
distribution over 𝑥, 𝒟𝑥 and the distribution of the fine labels 𝑧 conditional on
some fixed 𝑥; let us denote this distribution as 𝒟𝑥

𝑧 . Then one could generate finely
labeled examples (𝑥, 𝑧) and use them to estimate the query E(𝑥,𝑧)∼𝒟[𝑞(𝑥, 𝑧)]. The
reason that this naive approach fails is that it requires many coarse examples (𝑥, 𝑆)
with exactly the same value of 𝑥. Unless the domain 𝒳 is very small, the probability
that we observe samples with the same value of 𝑥 is going to be tiny. In order to
overcome this obstacle, at a high level, our approach is to split the domain 𝒳 into
larger sets and then, learn the conditional distribution of the labels, not on a fixed
point 𝑥, but on these larger sets of non-trivial mass.

Intuitively, in order to have an effective partition of the domain 𝒳 , we want to
group together points 𝑥 whose values 𝑞(𝑥, 𝑧) are close. Since 𝑧 belongs in a discrete
domain 𝒵 = [𝑘], we can decompose the query 𝑞(𝑥, 𝑧) as 𝑞(𝑥, 𝑧) =

∑︀𝑘
𝑖=1 𝑞(𝑥, 𝑖)1{𝑧 =

𝑖}. We estimate the value of E(𝑥,𝑧)∼𝒟[𝑞(𝑥, 𝑖)1{𝑧 = 𝑖}] separately. To find a suit-
able reweighting of the domain 𝒳 , we perform rejection sampling, accepting a pair
(𝑥, 𝑆) ∼ 𝒟 with probability 𝑞(𝑥, 𝑖) 1: points 𝑥 that have small value 𝑞(𝑥, 𝑖) con-
tribute less in the expectation and are less likely to be sampled. After performing
this rejection sampling process based on 𝑥, we have pairs (𝑥, 𝑆), conditional that
𝑥 was accepted. Now, using our previous maximum likelihood learner of Proposi-
tion 3.1.5 we learn the marginal distribution over fine labels and use it to answer
the query. We provide the details of this rejection sampling step in the full proof
of Theorem 3.1.3, see Section 3.1.2.

For a description of the corresponding algorithm that simulates statistical
queries, see Algorithm 5. To keep the presentation simple we state the algorithm
for the case where the query function 𝑞(𝑥, 𝑧) is positive. It is straightforward to
generalize it for general queries, see Section 3.1.2.

Remark 1 (Empirical Likelihood Approach). One could try to use the empirical
likelihood directly over the coarsely labeled data (as defined in (Owe01)). How-
ever, in general, these empirical likelihood objectives are non-convex when the data
are coarse and therefore it is computationally hard to optimize them directly. Our
approach for simulating statistical queries consists of two ingredients: reweight-
ing the feature space via rejection sampling in order to group together points and
learning discrete distributions from coarse data. To learn the discrete distributions
(Section 3.1.2), we use a (direct) empirical likelihood approach similar to that of
(Owe88; Owe90; Owe01). However, our main contribution is the use of rejection
sampling to reduce the initial non-convex problem to the special case of learning a

1It is easy to handle the case where this function takes negative values, see the proof
of Theorem 3.1.3.
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Algorithm 5 Statistical Queries from Coarse Labels.
1: Input: Query 𝑞 : 𝒳 × 𝒵 ↦→ (0, 1], tolerance 𝜏 ∈ [0, 1], confidence 𝛿 ∈

[0, 1].
2: Oracle: Access to coarsely labeled samples (𝑥, 𝑆) ∼ 𝒟𝜋, 𝜋 is 𝛼-

information preserving.
3: Output: Estimate ̂︀𝑟 such that

⃒⃒
E(𝑥,𝑧)∼𝒟[𝑞(𝑥, 𝑧)]−̂︀𝑟⃒⃒ ≤ 𝜏 with probability

at least 1− 𝛿.

4: procedure StatQuery(𝑞, 𝜏, 𝛿)
5: Compute ̂︀𝑟𝑖 ← SQ(𝑞, 𝑖, 𝑂(𝜏/𝑘), 𝛿/𝑘) for any 𝑖 ∈ 𝒵.
6: Output ̂︀𝑟 ←∑︀𝑘

𝑖=1 ̂︀𝑟𝑖.
7: procedure SQ(𝑞, 𝑖, 𝜌, 𝛿)
8: Draw 𝑁1 = ̃︀Θ(︀ log(1/𝛿)

𝜌2

)︀
samples (𝑥𝑗, 𝑆𝑗) from 𝒟𝜋.

9: Compute ̂︀𝜇𝑖 ← 1
𝑁1

∑︀𝑁1

𝑗=1 𝑞(𝑥𝑗, 𝑖).
10: if ̂︀𝜇𝑖 ≤ 𝜌 do
11: Output ̂︀𝑟𝑖 ← 0.
12: end
13: Draw 𝑁2 = ̃︀Θ(︀𝑘 log(1/𝛿)

𝜌3𝛼2

)︀
samples (𝑥𝑗, 𝑆𝑗) from 𝒟𝜋. ◁ ̃︀Θ(︀𝑘4 log(1/𝛿)

𝜏3𝛼2

)︀
examples overall.

14: 𝑇𝑎𝑐𝑐𝑒𝑝𝑡 ← ∅. ◁ Training set of accepted samples.
15: Add 𝑆𝑗 in 𝑇𝑎𝑐𝑐𝑒𝑝𝑡 with probability 𝑞(𝑥𝑗, 𝑖), ∀𝑗 ∈ [𝑁2]. ◁ Rejection

Sampling Process.
16: Compute ̃︀𝒟 using Proposition 3.1.5 with input (𝑇𝑎𝑐𝑐𝑒𝑝𝑡, 𝜌, 𝛿).

17: Output ̂︀𝑟𝑖 ← ̂︀𝜇𝑖 · ̃︀𝒟(𝑖).
discrete distribution (with small support) from coarse data which, as we prove, is
a tractable (convex) problem. For more connections with censored statistics tech-
niques, we refer the reader to (TG75; Owe88; GVDLR97; Owe01).

Learning Marginals Over Fine Labels

In this subsection, we deal with unsupervised learning from coarse data in
discrete domains. Although this is an ingredient of our main result for simulating
statistical queries in a supervised setting where labeled data (𝑥, 𝑆) are given, the
result of this section does not depend on the points 𝑥 and concerns the unsupervised
version of the problem. To keep the notation simple, we will use 𝒟 to denote a
distribution over finite labels 𝒵.

Definition 3.1.4 (Generative Process of Coarse Data). Let 𝒵 be a discrete domain
and 𝒟 be a distribution supported on 𝒵. Moreover, let 𝜋 be a distribution supported
on partitions of 𝒵. We consider the following generative process:
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1. Draw 𝑧 from 𝒟.

2. Draw a partition 𝒮 from the distribution over all partitions 𝜋.

3. Observe the set 𝑆 ∈ 𝒮 that contains 𝑧.

We denote the distribution of 𝑆 as 𝒟𝜋.

The assumption that we require is that the partition distribution 𝜋 is 𝛼-
information preserving, see Definition 3.1.2. At this point we give some examples
of information preserving partition distributions. We first observe that 𝛼 = 0 if
and only if the problem is not identifiable. For instance, if 𝜋 is supported only
on the partition 𝒮 = {{1, 2}, {3, . . . , 𝑘}}, the problem is not identifiable, since,
for example, the fine label 1 is indistinguishable from the fine label 2. The value
𝛼 = 1 is attained when the partition totally preserves the distribution distance.
Intuitively, the value 1 − 𝛼 corresponds to the distortion that the coarse labeling
introduces to a finely labeled dataset.

In many cases most fine labels may be missing. Consider two data providers
that use different methods to round their samples. The rounding’s uncertainty can
be viewed as a coarse labeling of the data. Assume that we add discrete (balanced
Bernoulli) noise 𝜉 to some true value 𝑥 ∈ [0..𝑘]. Consider two partitions {𝒮1,𝒮2}
with 𝒮1 = {{0, 1}, {2, 3}, . . . , {𝑘 − 1, 𝑘}, {𝑘 + 1}} and 𝒮2 = {{0}, {1, 2}, . . . {𝑘 −
1, 𝑘}}. Observe that, when 𝑥+ 𝜉 is odd, we can think of the rounded sample, as a
draw from 𝒮1 and when 𝑥+ 𝜉 is even, as a draw from 𝒮2. This example shows that
we can capture the problem of deconvolution of two distributions 𝒟1,𝒟2, where
one of them is known and we observe samples 𝑥1 + 𝑥2, 𝑥𝑖 ∼ 𝒟𝑖.

The following proposition establishes the sample complexity of unsupervised
learning of discrete distributions with coarse data. Our goal is to compute an es-
timate of the discrete distribution 𝒟⋆ with probability vector 𝑝⋆ ∈ Δ𝑘 from 𝑁
coarse samples 𝑆1, . . . , 𝑆𝑁 drawn from the distribution 𝒟⋆

𝜋. Our algorithm max-
imizes the empirical likelihood. Analyzing the empirical log-likelihood objective
ℒ𝑁 (𝑝) = 1

𝑁

∑︀𝑁
𝑛=1 log

(︀∑︀
𝑖∈𝑆𝑛

𝑝𝑖

)︀
, where 𝑝 ∈ Δ𝑘 is a guess probability vector, we

observe that the problem is concave and, therefore, can be efficiently optimized
(e.g., by gradient descent).

Proposition 3.1.5. Let 𝒵 be a discrete domain of cardinality 𝑘 and let 𝒟 be
a distribution supported on 𝒵. Moreover, let 𝜋 be an 𝛼-information preserving
partition distribution for some 𝛼 ∈ (0, 1]. Then, with 𝑁 = ̃︀𝑂(𝑘/(𝜖2𝛼2) log(1/𝛿))
samples from 𝒟𝜋 and in time polynomial in the number of samples 𝑁 , we can
compute a distribution ̃︀𝒟 supported on 𝒵 such that 𝑑TV( ̃︀𝒟,𝒟) ≤ 𝜖.

Proof. Let 𝒟⋆ be the target discrete distribution, supported on a discrete domain
of size 𝑘, and let 𝑝⋆ ∈ Δ𝑘 be the corresponding probability vector. For some
distribution 𝒟 supported on a discrete domain of size 𝑘, we define the following
population log-likelihood objective.

ℒ(𝒟) = E
𝑆∼𝒟⋆

𝜋

[log𝒟(𝑆)] = E
𝑆∼𝒟⋆

𝜋

[︁
log
(︀∑︁
𝑖∈𝑆
𝒟(𝑖)

)︀]︁
. (3.1)

79



Since 𝒟 is a discrete distribution for simplicity we may identify with its probability
vector 𝑝, where 𝑝𝑖 = 𝒟(𝑖). Therefore, for any 𝑝 in the probability simplex Δ𝑘, we
define

ℒ(𝑝) = E
𝑆∼𝒟⋆

𝜋

[︁
log
∑︁
𝑖∈𝑆

𝑝𝑖

]︁
. (3.2)

The corresponding empirical log-likelihood objective after drawing 𝑁 independent
samples 𝑆1, . . . , 𝑆𝑁 from 𝒟⋆

𝜋 is given by

ℒ𝑁 (𝑝) =
1

𝑁

𝑁∑︁
𝑛=1

log

(︃∑︁
𝑖∈𝑆𝑛

𝑝𝑖

)︃
. (3.3)

We first observe that the log-likelihood (both the population and the empirical)
is a concave function and therefore can be efficiently optimized (e.g., by gradient
descent). Thus, our main focus in this proof is to bound its sample complexity.
We first observe that when the guess 𝑝 ∈ Δ𝑘 has some very biased coordinates,
i.e., for some subset 𝑆 the corresponding 𝑝𝑖’s are close to 0, the probability of a set
𝑆,
∑︀

𝑖∈𝑆 𝑝𝑖 will be close to zero and therefore log
(︀∑︀

𝑖∈𝑆 𝑝𝑖

)︀
will be large. Thus,

we have to restrict our search to a subset of the probability simplex, i.e., have
𝑝𝑖 ≥ 𝜖/𝑘. We set ̃︀Δ𝑘 = {𝑝 ∈ Δ𝑘,𝑝𝑖 ≥ 𝜖/𝑘 for all 𝑖 = 1, . . . , 𝑘 }. We now prove
that, given roughly 𝑘/(𝜖2𝛼2) samples, we can guarantee that probability vectors
that are far from the optimal vector 𝑝⋆ will also be significantly sub-optimal in the
sense that they are far from being maximizers of the empirical log-likelihood.

Claim 1. Let 𝑁 ≥ ̃︀Ω(𝑘/(𝜖2𝛼2) log(1/𝛿)). With probability at least 1− 𝛿, we have
that, for every 𝑝 ∈ ̃︀Δ𝑘 such that ‖𝑝− 𝑝⋆‖1 ≥ 𝜖, it holds

max
𝑞∈̃︀Δ𝑘

ℒ𝑁 (𝑞)− ℒ𝑁 (𝑝) ≥ Ω
(︀
(𝜖𝛼)2

)︀
.

Proof. We first construct a cover of the probability simplex ̃︀Δ𝑘 by discretizing
each coordinate 𝑝𝑖 to integer multiples of 𝑂((𝜖3/2𝛼/𝑘)2). The resulting cover 𝒞
contains 𝑂((𝑘/(𝜖3/2𝛼))2𝑘) elements. We first observe that we can replace any
element 𝑝 ∈ ̃︀Δ𝑘 with an element 𝑝′ inside our cover 𝒞 without affecting the value
of the objective ℒ𝑁 (𝑝) by a lot. In particular, using the fact that 𝑥 ↦→ log(𝑥) is
1/𝑟-Lipschitz in the interval [𝑟,+∞), we have that for any set 𝑆 ⊆ {1, . . . , 𝑘} it
holds ⃒⃒⃒

log
(︁∑︁

𝑖∈𝑆
𝑝𝑖

)︁
− log

(︁∑︁
𝑖∈𝑆

𝑞𝑖

)︁⃒⃒⃒
≤ 1∑︀

𝑖∈𝑆 𝑝𝑖

⃒⃒⃒∑︁
𝑖∈𝑆

(𝑝𝑖 − 𝑞𝑖)
⃒⃒⃒
≤ 𝑘

𝜖
‖𝑝− 𝑞‖1 ,

where we used the fact that, since 𝑝 ∈ ̃︀Δ𝑘, it holds 𝑝𝑖 ≥ 𝜖/𝑘. Therefore, when we
round each coordinate of a vector 𝑝 to the closest integer multiple of 𝑂((𝜖3/2𝛼/𝑘)2)
we get a vector 𝑝′ ∈ 𝒞 such that for any set 𝑆 it holds | log(

∑︀
𝑖∈𝑆 𝑝𝑖)−log(

∑︀
𝑖∈𝑆 𝑞𝑖)| ≤

𝜖2𝛼2/6 which implies that the empirical log-likelihood satisfies |ℒ𝑁 (𝑝)−ℒ𝑁 (𝑝′)| ≤
𝜖2𝛼2/6. We will now show that, with high probability, any element 𝑝 of the cover
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𝒞 such that ‖𝑝 − 𝑝⋆‖1 ≥ 𝜖, satisfies ℒ𝑁 (𝑝⋆) − ℒ𝑁 (𝑝) ≥ 𝜖2𝛼2/2. We will use the
following concentration result on likelihood ratios.

Lemma 3.1.6 (Proposition 7.27 of (Mas07)). Let 𝒟1,𝒟2 be two distributions (on
any domain) with positive density functions 𝑓, 𝑔 respectively. For any 𝑥 ∈ R, it
holds

Pr
𝑥1,...,𝑥𝑁∼𝒟1

[︃
1

𝑁

𝑁∑︁
𝑛=1

log
𝑓(𝑥𝑛)

𝑔(𝑥𝑛)
≤ (𝑑TV(𝒟1,𝒟2))

2 − 2𝑥/𝑁

]︃
≤ 𝑒−𝑥 .

Using the above lemma with 𝑥 = 𝑂(log(|𝒞|/𝛿)) = 𝑂(𝑘 log(𝑘/(𝜖𝛿))) and

𝑁 = Θ(𝑘 log(𝑘/(𝜖𝛿))/(𝛼2𝜖2)) ,

we obtain that, with probability at least 1 − 𝛿/|𝒞|, it holds ℒ𝑁 (𝑝⋆) − ℒ𝑁 (𝑝) ≥
𝑑TV(𝐷𝜋, 𝐷

⋆
𝜋)

2 − 𝛼2𝜖2/2. From the union bound, we obtain that the same is true
for all vectors 𝑝 ∈ 𝒞 with probability at least 1− 𝛿. We are now ready to finish the
proof of the claim. Let 𝑝 ∈ ̃︀Δ𝑘 be any probability vector such that ‖𝑝− 𝑝⋆‖1 ≥ 𝜖.
Let 𝑝 ∈ ̃︀Δ𝑘 be the maximizer of the empirical likelihood constrained on ̃︀Δ𝑘, i.e.,
𝑝 = argmax

𝑞∈̃︀Δ𝑘 ℒ𝑁 (𝑞) and let ̃︀𝑝⋆ be the closest vector of the cover 𝒞 to 𝑝⋆. We
have

ℒ𝑁 (𝑝)− ℒ𝑁 (𝑝) ≥ ℒ𝑁 (̃︀𝑝⋆)− ℒ𝑁 (𝑝) ≥ ℒ𝑁 (𝑝⋆)− 𝜖2𝛼2/6− ℒ𝑁 (𝑝) .

The first inequality holds since both 𝑝 and ̃︀𝑝⋆ lie in ̃︀Δ𝑘. The second inequality
holds since we can replace the point of the cover ̃︀𝑝⋆ ∈ 𝒞, with each closest point in
the simplex 𝑝⋆ without affecting the likelihood value by a lot. Finally, since 𝑝 lies
in ̃︀Δ𝑘, we can replace it with a point 𝑝′ in the cover with ‖𝑝′ − 𝑝⋆‖1 ≥ 𝜖, and get
that

ℒ𝑁 (𝑝)− ℒ𝑁 (𝑝) ≥ ℒ𝑁 (𝑝⋆)− 𝜖2𝛼2/6− ℒ𝑁 (𝑝′)− 𝜖2𝛼2/6 ,

and, since ℒ𝑁 (𝑝⋆)−ℒ𝑁 (𝑝′) ≥ 𝜖2𝛼2/2, we have that ℒ𝑁 (𝑝)−ℒ𝑁 (𝑝) = Ω(𝜖2𝛼2) .

This concludes the proof of Proposition 3.1.5.

The Proof of Theorem 3.1.3

In this subsection, we prove Theorem 3.1.3. Our goal is to simulate a statistical
query oracle which takes as input a query function 𝑞 with domain 𝒳 × 𝒵 and
outputs an estimate of its expectation with respect to finely labeled examples
E(𝑥,𝑧)∼𝒟[𝑞(𝑥, 𝑧)], using coarsely labeled examples. Recall that since we have sample
access only to coarsely labeled examples (𝑥, 𝑆) ∼ 𝒟𝜋, we cannot directly estimate
this expectation. The key idea is to perform rejection sampling on each coarse
sample (𝑥, 𝑆) with acceptance probability 𝑞(𝑥, 𝑗) for any fine label 𝑗 ∈ 𝒵. Because
of the rejection sampling process, this marginal distribution is not the marginal of
𝒟 on the fine labels 𝒵, but the marginal of 𝒟 on the fine labels, conditional on the
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accepted samples. However, the task of estimating from this marginal distribution
can be still reduced to the unsupervised problem (see Proposition 3.1.5) of the
previous section. Consider an arbitrary query function 𝑞 : 𝒳 × 𝒵 → [−1, 1] and,
without loss of generality, let 𝒵 = [𝑘]. Recall that 𝒟 is the joint probability
distribution on the finely labeled examples (𝑥, 𝑧). We have that

E
(𝑥,𝑧)∼𝒟

[𝑞(𝑥, 𝑧)] =
𝑘∑︁

𝑗=1

E
(𝑥,𝑧)∼𝒟

[︁
𝑞(𝑥, 𝑗)1{𝑧 = 𝑗}

]︁
=

𝑘∑︁
𝑗=1

E
(𝑥,𝑧)∼𝒟

[︁
𝑞𝑗(𝑥)1{𝑧 = 𝑗}

]︁
.

(3.4)
Since we would like to estimate the expectation of the query 𝑞(𝑥, 𝑧) with tolerance
𝜏, it suffices to estimate the expectation of each query 𝑞𝑗(𝑥)1{𝑧 = 𝑗} with toler-
ance 𝜏/𝑘 for any 𝑗 ∈ [𝑘]. Hence, it suffices to estimate expectations of the form
E(𝑥,𝑧)∼𝒟[𝑓(𝑥)1{𝑧 = 𝑗}] for arbitrary functions 𝑓 : 𝒳 → [0, 1]2 and 𝑗 ∈ [𝑘].

Let 𝒟𝑥 denote the marginal distribution of the examples 𝑥 ∈ 𝒳 . The algorithm
performs rejection sampling. Each coarsely labeled example (𝑥, 𝑆) ∼ 𝒟𝜋 is accepted
with probability 𝑓(𝑥), that does not depend on the coarse label 𝑆. Hence, the
rejection sampling process induces a distribution 𝒟𝑓 over finely labeled examples
(𝑥, 𝑧) ∈ 𝒳 × 𝒵 with density

𝒟𝑓 (𝑥, 𝑧) =
𝑓(𝑥)

E𝑥∼𝒟𝑥 [𝑓(𝑥)]
𝒟(𝑥, 𝑧) .

We remark that, we do not have sample access to 𝒟𝑓 because we do not have
sample access to the distribution 𝒟 of the fine examples; we introduced the above
notation for the purposes of the proof. Similarly, to 𝒟𝑥, we define 𝒟𝑓

𝑥 to be the
marginal distribution of 𝑥 conditional on its acceptance, i.e.,

𝒟𝑓
𝑥(𝑥) =

𝑓(𝑥)

E𝑥∼𝒟𝑥 [𝑓(𝑥)]
𝒟𝑥(𝑥) . (3.5)

Let 𝒟𝑧 denote the marginal distribution of the fine labels [𝑘] and let 𝒟𝑧(·|𝑥) be the
marginal distribution conditional on the example 𝑥. We have that

E
(𝑥,𝑧)∼𝒟

[︁
𝑓(𝑥)1{𝑧 = 𝑗}

]︁
=

∫︁
𝒳
𝑓(𝑥)𝒟(𝑥, 𝑗)𝑑𝑥 =

∫︁
𝒳
𝑓(𝑥)𝒟𝑥(𝑥)𝒟𝑧(𝑗|𝑥)𝑑𝑥 .

The above expectation can be equivalently written, by multiplying and dividing by
𝒟𝑓

𝑥 ,

E
(𝑥,𝑧)∼𝒟

[︁
𝑓(𝑥)1{𝑧 = 𝑗}

]︁
=

∫︁
𝒳

(︁𝑓(𝑥)𝒟𝑥(𝑥)

𝒟𝑓
𝑥(𝑥)

)︁(︁
𝒟𝑓

𝑥(𝑥)𝒟𝑧(𝑗|𝑥)
)︁
𝑑𝑥 .

The first term in the integral is equal to E𝑥∼𝒟𝑥 [𝑓(𝑥)], by substituting Equation (3.5)
and, hence, is constant. The second term corresponds to the probability of observ-
ing the fine label 𝑗, given an example 𝑥, that has been accepted from the rejection

2Any function 𝑓 : 𝒳 → [−1, 1] can be decomposed into 𝑓 = 𝑓+ − 𝑓− with 𝑓+, 𝑓− ≥ 0
and, by linearity of expectation, it suffices to work with functions 𝑓 with image in [0, 1].
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sampling process. Similarly, to the marginal 𝒟𝑧, we define 𝒟𝑓
𝑧 to be the marginal

distribution of the fine labels 𝑧 conditional on acceptance. Hence, we can write

E
(𝑥,𝑧)∼𝒟

[︁
𝑓(𝑥)1{𝑧 = 𝑗}

]︁
= E

𝑥∼𝒟𝑥

[𝑓(𝑥)] · Pr
𝑧∼𝒟𝑓

𝑧

[𝑧 = 𝑗] . (3.6)

The decomposition of the expectation of Equation (3.6) is a key step: we now only
need to learn the marginal distribution of fine labels conditional on acceptance 𝒟𝑓

𝑧 .
Recall that our goal is to estimate the left hand side expectation of Equa-

tion (3.6) with tolerance 𝜏/𝑘. We claim that it suffices to estimate each term of
the right hand side product of Equation (3.6) with tolerance 𝜏/(2𝑘). This is im-
plied from the following: consider an estimate ̃︀𝜇 of the value E𝑥∼𝒟𝑥 [𝑓(𝑥)] and an
estimate ̃︀𝑝 of the value Pr

𝑧∼𝒟𝑓
𝑧
[𝑧 = 𝑗]. Then, using Equation (3.6), we have that⃒⃒⃒̃︀𝜇 · ̃︀𝑝− E

(𝑥,𝑧)∼𝒟
[𝑓(𝑥)1{𝑧 = 𝑗}]

⃒⃒⃒
=
⃒⃒⃒̃︀𝜇 · ̃︀𝑝− E

𝑥∼𝒟𝑥

[𝑓(𝑥)] · Pr
𝑧∼𝒟𝑓

𝑧

[𝑧 = 𝑗]
⃒⃒⃒
,

and, hence, by adding and subtracting the term ̃︀𝜇 Pr
𝑧∼𝒟𝑓

𝑧
[𝑧 = 𝑗], using the triangle

inequality and, since both E𝑥∼𝒟𝑥 [𝑓(𝑥)] and Pr
𝑧∼𝒟𝑓

𝑧
[𝑧 = 𝑗] are at most 1, we get

that ⃒⃒⃒̃︀𝜇 · ̃︀𝑝− E
(𝑥,𝑧)∼𝒟

[𝑓(𝑥)1{𝑧 = 𝑗}]
⃒⃒⃒
≤
⃒⃒⃒̃︀𝜇− E

𝑥∼𝒟𝑥

[𝑓(𝑥)]
⃒⃒⃒
+
⃒⃒⃒̃︀𝑝− Pr

𝑧∼𝒟𝑓
𝑧

[𝑧 = 𝑗]
⃒⃒⃒
.

We will show that 𝑂(𝑘4/(𝜏3𝛼2) log(1/𝛿)) samples are sufficient to bound each term
of the right hand side by 𝜏/(2𝑘), with high probability. In order to estimate the
expectation E(𝑥,𝑧)∼𝒟[𝑞(𝑥, 𝑧)], the algorithm applies (in parallel) the above process
𝑘 times with 𝑓 = 𝑞𝑗 for any 𝑗 ∈ [𝑘] (using Equation (3.4)) using a single training
set of size 𝑁 = 𝑂(𝑘4/(𝜏3𝛼2) log(1/𝛿)) drawn from the distribution 𝒟𝜋 of coarsely
labeled examples. Moreover, the running time is polynomial in the number of
samples 𝑁 . To conclude the proof, it suffices to show the following claims.

Claim 2. There exists an algorithm that, uses 𝑁 = ̃︀𝑂(𝑘4/(𝜏3𝛼2) log(1/𝛿)) samples
from 𝒟𝜋 and computes an estimate ̃︀𝑝, that satisfies

⃒⃒⃒̃︀𝑝−Pr
𝑧∼𝒟𝑓

𝑧
[𝑧 = 𝑗]

⃒⃒⃒
≤ 𝜏/(2𝑘) ,

with probability at least 1− 𝛿.

Proof. Recall that the distribution 𝒟𝑓
𝑧 is the marginal distribution of the fine labels

𝑧 ∈ 𝒵 = [𝑘], conditional that the example 𝑥 ∼ 𝒟𝑓
𝑥 , i.e., that the example 𝑥 ∈ 𝒳

has been accepted by the rejection sampling process. Hence, the distribution 𝒟𝑓
𝑧 is

supported on 𝒵. We can then directly apply Proposition 3.1.5, using as training set
the set of accepted coarsely labeled samples (𝑥, 𝑆) and can compute an estimatẽ︀𝒟, that is 𝜖-close in total variation distance to 𝒟𝑓

𝑧 . By setting 𝜖 = 𝜏/(2𝑘), the
algorithm uses ̃︀𝑂(𝑘3/(𝜏2𝛼2) log(1/𝛿)) samples from the set of accepted samples and
outputs the estimate ̃︀𝑝 = ̃︀𝒟(𝑗). For the example 𝑥 ∈ 𝒳 , the acceptance probability
𝑓(𝑥) can be considered Ω(𝜏/𝑘). Otherwise, we can set the desired expectation
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equal to 0. Hence, the algorithm needs to draw in total ̃︀𝑂(𝑘4/(𝜏3𝛼2) log(1/𝛿))
samples from 𝒟𝜋 in order to compute an estimate ̃︀𝑝 that satisfies⃒⃒⃒̃︀𝑝− Pr

𝑧∼𝒟𝑓
𝑧

[𝑧 = 𝑗]
⃒⃒⃒
≤ 𝜏/(2𝑘) ,

with probability at least 1− 𝛿.

Claim 3. There exists an algorithm that, uses 𝑁 = 𝑂((𝑘2/𝜏2) log(1/𝛿)) samples
from 𝒟𝜋 and computes an estimate ̃︀𝜇, that satisfies

⃒⃒⃒̃︀𝜇 − E𝑥∼𝒟𝑥 [𝑓(𝑥)]
⃒⃒⃒
≤ 𝜏/(2𝑘) ,

with probability at least 1− 𝛿.

Proof. The algorithms draws 𝑁 coarsely labeled examples from 𝒟𝜋 and computes
the estimate ̃︀𝜇 = 1

𝑁

∑︀𝑁
𝑖=1 𝑓(𝑥𝑖). From the Hoeffding bound, since the estimate is

a sum of independent bounded random variables, we get

Pr

[︂ ⃒⃒⃒̃︀𝜇− E
𝑥∼𝒟𝑥

[𝑓(𝑥)]
⃒⃒⃒
≥ 𝜏/(2𝑘)

]︂
≤ 2 exp(−𝑁𝜏2/(2𝑘2)) .

Using 𝑁 = 𝑂((𝑘2/𝜏2) log(1/𝛿)) samples, the algorithm estimates the desired expec-
tation with error 𝜏/(2𝑘), with probability at least 1− 𝛿. Note that, if ̃︀𝜇 < 𝜏/(2𝑘),
the algorithm can output 0, since the estimated value will lie in the desired toler-
ance interval.

3.1.3 Training Models from Coarse Data
Consider a parameterized family of functions 𝑥 → 𝑓(𝑥;𝑤), where the pa-

rameters 𝑤 lie in some parameter space 𝒲 ⊆ R𝑝. For instance, the family may
correspond to a feed-forward neural network with 𝐿 layers. Given a finely labeled
training sample (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 ) ∈ 𝒳 ×𝒴, the parameters 𝑤 are chosen using
a gradient method in order to minimize the empirical risk,

ℒ𝑁 (𝑤) =
1

𝑁

𝑁∑︁
𝑖=1

ℓ(𝑓(𝑥𝑖;𝑤), 𝑦𝑖) ,

for some loss function ℓ : 𝒴 × 𝒴 → R and the goal of this optimization task is to
minimize the population risk function ℒ(𝑤) = E(𝑥,𝑦)∼𝒟(𝑤⋆)[ℓ(𝑓(𝑥;𝑤), 𝑦)] (where
the distribution 𝒟(𝑤⋆) is unknown). For simplicity, let us focus on differentiable
loss functions. Performing the SGD algorithm, we can circumvent the lack of
knowledge of the population risk function ℒ. Specifically, instead of computing
the gradient of ℒ(𝑤), the algorithm steps towards a random direction 𝑣 with
the constraint that the expected value of 𝑣 is equal to the negative of the true
gradient, i.e., it is an unbiased estimate of −∇ℒ(𝑤). Such a random vector 𝑣 can
be computed without knowing 𝒟(𝑤⋆) using the interchangeability between the
expectation and the gradient operators. Assume that the algorithm is at iteration
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𝑡 ≥ 1. Let (𝑥, 𝑦) ∼ 𝒟(𝑤⋆) be a fresh sample and define 𝑣𝑡 be the gradient of the
loss function with respect to 𝑤, at the point 𝑤𝑡, i.e.,

E[𝑣𝑡|𝑤𝑡] = E
(𝑥,𝑦)∼𝒟(𝑤⋆)

[∇ℓ(𝑓(𝑥;𝑤𝑡), 𝑦)] = ∇ E
(𝑥,𝑦)∼𝒟(𝑤⋆)

[ℓ(𝑓(𝑥;𝑤𝑡), 𝑦)] = ∇ℒ(𝑤𝑡) .

Hence, an algorithm that has query access to a SQ oracle can implement a
noisy version of the above iterative process (with inexact gradients, see e.g., (d’A08;
DGN14; FGV17)) using the query functions 𝑞𝑖(𝑥, 𝑦) = (∇ℓ(𝑓(𝑥;𝑤𝑡), 𝑦))𝑖 for any
𝑖 ∈ [𝑝]. Note that the algorithm knows the loss function ℓ, the parameterized
functions’ family {𝑓(· ;𝑤) : 𝑤 ∈ 𝒲} and the current guess 𝑤𝑡. Specifically, the
algorithm performs 𝑝 queries (one for each coordinate of the parameter vector)
and the oracle returns to the algorithm a noisy gradient vector 𝑟𝑡 that satisfies
‖𝑟𝑡 −∇ℒ(𝑤𝑡)‖∞ ≤ 𝜏 .

In our setting, we do not have access to the SQ oracle with finely labeled
examples. Our main result of this section (Theorem 3.1.3) is a mechanism that
enables us to obtain access to such an oracle using a few coarsely labeled examples
(with high probability). Hence, we can still perform the noisy gradient descent of
the previous paragraph with an additional overhead on the sample complexity, due
to the reduction.

3.1.4 Multiclass Logistic Regression with Coarsely La-
beled Data

A first application for the above generic reduction from coarse data to statis-
tical queries is the case of coarse multiclass logistic regression. In the standard
(finely labeled) multiclass logistic regression problem, there are 𝑘 fine labels (that
correspond to classes), each one associated with a weight vector 𝑤𝑧 ∈ R𝑛 with
𝑧 ∈ [𝑘]. We can consider the weight matrix 𝑊 ∈ R𝑘×𝑛. Given an example 𝑥 ∈ R𝑛,
the vector 𝑥 is filtered via the softmax function 𝜎(𝑊 ,𝑥), which is a probability
distribution over Δ𝑘 with 𝜎(𝑊 ,𝑥; 𝑧) = exp(𝑤𝑇

𝑧 𝑥)/
∑︀

𝑦∈[𝑘] exp(𝑤
𝑇
𝑦 𝑥), 𝑧 ∈ [𝑘] and

the output is the finely labeled example (𝑥, 𝑧) ∈ R𝑛 × [𝑘]. The goal is to estimate
the weight matrix 𝑊 , given finely labeled examples. Let us denote by 𝒟(𝑊 ) the
joint distribution over the finely labeled examples for simplicity. When we have
access to finely labeled examples (𝑥, 𝑧) ∼ 𝒟(𝑊 ⋆), the population log-likelihood
objective ℒ of the multiclass logistic regression problem

ℒ(𝑊 ) = E
(𝑥,𝑧)∼𝒟(𝑊 ⋆)

[︁
𝑤𝑇

𝑧 𝑥− log
(︁∑︁

𝑗∈𝒵
exp(𝑤𝑇

𝑗 𝑥)
)︁]︁

,

is concave (see (FHT01)) with respect to the weight matrix 𝑊 ∈ R𝑘×𝑛 and is
solved using gradient methods. On the other hand, if we have sample access only
to coarsely labeled examples (𝑥, 𝑆) ∼ 𝒟𝜋(𝑊

⋆), the population log-likelihood ob-
jective ℒ𝜋 of the coarse multiclass logistic regression problem

ℒ𝜋(𝑊 ) = E
(𝑥,𝑆)∼𝒟𝜋(𝑊 ⋆)

[︁
log
(︁∑︁

𝑧∈𝑆
exp(𝑤𝑇

𝑧 𝑥)
)︁
− log

(︁∑︁
𝑗∈𝒵

exp(𝑤𝑇
𝑗 𝑥)

)︁]︁
,
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which is no more concave. However, as an application of our main result (Theo-
rem 3.1.3), we can still solve it. In fact, since we can implement statistical queries
using the sample access to the coarse data generative process 𝒟𝜋(𝑊

⋆), we can
compute the gradients of the log-likelihood objective that corresponds to the finely
labeled examples. Hence, the total sample complexity of optimizing this non-convex
objective is equal to the sample complexity of solving the convex problem with an
additional overhead at each iteration of computing the gradients, that is given by
Theorem 3.1.3.

3.2 Gaussian Mean Estimation from Coarse Data
In this section, we consider the fundamental problem of efficiently learning

coarse Gaussian distributions in high dimensions. Lately, significant progress has
been made from a computational point of view in such censored/truncated settings
in the distribution specific setting, e.g., when the underlying distribution is Gaus-
sian (DGTZ18; KTZ19), mixtures of Gaussians (NP19), linear regression (DGTZ19b;
IZD20; DRZ20). In this distribution specific setting, we consider the most funda-
mental problem of learning the mean of a Gaussian distribution given coarse data.
Let us recall the generative process to the reader.

Definition 3.2.1 (Coarse Gaussian Data). Consider the Gaussian distribution
𝒩 (𝜇⋆), with mean 𝜇⋆ ∈ R𝑑 and identity covariance matrix. We generate a sample
as follows: (i) Draw 𝑧 from 𝒩 (𝜇⋆), (ii) Draw a partition 𝒮 (of R𝑑) from 𝜋. Finally,
we observe the set 𝑆 ∈ 𝒮 that contains 𝑧. We denote the distribution of 𝑆 as
𝒩𝜋(𝜇

⋆).

We remark that we only require membership oracle access to the subsets of the
partition 𝒮. A set 𝑆 ⊆ R𝑑 corresponds to a membership oracle 𝒪𝑆 : R𝑑 → {0, 1}
that given 𝑥 ∈ R𝑑 outputs whether the point lies inside the set 𝑆 or not.

The main results of this section can be summarized in the following two state-
ments.

Theorem 3.2.2 (Hardness of Matching the Observed Distribution with General
Partitions). Let 𝜋 be a general partition distribution. Unless P = NP, no algorithm
with sample access to 𝒩𝜋(𝜇

⋆), can compute, in poly(𝑑) time, a ̃︀𝜇 ∈ R𝑑 such that
𝑑TV(𝒩𝜋(̃︀𝜇),𝒩𝜋(𝜇

⋆)) < 1/𝑑𝑐 for some absolute constant 𝑐 > 1.

We prove our hardness result using a reduction from the well known Max-
Cut problem, which is known to be NP-hard, even to approximate (Hås01). In
our reduction, we use partitions that consist of simple sets: fat hyperplanes, ellip-
soids and their complements: the computational hardness of this problem is rather
inherent and not due to overly complicated sets.

On the positive side, we identify a geometric property that enables us to design
a computationally efficient algorithm for this problem: Namely we require all the
sets of the partitions to be convex.
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Theorem 3.2.3 (Gaussian Mean Estimation with Convex Partitions). Let 𝜖, 𝛿 ∈
(0, 1). Consider the generative process of coarse 𝑑-dimensional Gaussian data
𝒩𝜋(𝜇

⋆), as in Definition 3.2.1. Assume that the partition distribution 𝜋 is 𝛼-
information preserving and is supported on convex partitions of R𝑑. The following
hold.

1. The empirical log-likelihood objective

ℒ𝑁 (𝜇) =
1

𝑁

𝑁∑︁
𝑖=1

log𝒩 (𝜇;𝑆𝑖)

is concave with respect to 𝜇 where the sets 𝑆𝑖 for 𝑖 ∈ [𝑁 ] are i.i.d. samples
from 𝒩𝜋(𝜇

⋆).

2. There exists an algorithm, that draws 𝑁 = ̃︀𝑂(𝑑/(𝜖2𝛼2) log(1/𝛿)) samples
from 𝒩𝜋(𝜇

⋆) and computes an estimate ̃︀𝜇 that satisfies 𝑑TV(𝒩 (̃︀𝜇),𝒩 (𝜇⋆)) ≤
𝜖 , with probability at least 1− 𝛿.

3.2.1 The Proofs of Theorem 3.2.2 & 3.2.3
In this section, we present the proofs of our results regarding the fundamental

problem of learning a Gaussian distribution given coarse data. In Section 3.2.2, we
show that, under general partitions, this problem is NP-hard. In Section 3.2.3, we
show that we can efficiently estimate the Gaussian mean under convex partitions
of the space.

3.2.2 Computational Hardness under General Partitions
In this section, we consider general partitions of the 𝑑-dimensional Euclidean

space, that may contain non-convex subsets. For instance, a compact convex body
and its complement define a non-convex partition of R𝑑. In order to get this compu-
tational hardness result, we reduce from Max-Cut and make use of its hardness of
approximation (see (Hås01)). Recall that Max-Cut can be viewed as a maximiza-
tion problem, where the objective function corresponds to a particular quadratic
function (associated with the Laplacian graph of the given graph instance) and the
constraints restrict the solution to lie in the Boolean hypercube (the constraints
can be seen geometrically as the intersection of bands, see Figure 3.1).

We first define Max-Cut and a variant of Max-Cut where the optimal cut
score is given as part of the input. Let 𝐺 = (𝑉,𝐸) be a graph3 with 𝑑 vertices. A
cut is a partition of 𝑉 into two subsets 𝑆 and 𝑆′ = 𝑉 ∖ 𝑆 and the value of the cut
(𝑆, 𝑆′) is 𝑐(𝑆, 𝑆′) =

∑︀
𝑢,𝑣∈𝐸 1{𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆′}. The goal of the problem is find the

maximum value cut in 𝐺, i.e., to partition the vertices into two sets so that the

3We are going to work with graphs with unit weights.
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number of edges crossing the cut is maximized. We can define Max-Cut as the
following maximization problem for the graph 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑑:

max
∑︁

(𝑖,𝑗)∈𝐸

(𝑥𝑖 − 𝑥𝑗)
2 , subj. to 𝑥𝑖 ∈ {−1,+1} ∀𝑖 ∈ [𝑑] .

The objective function is the quadratic form 𝑥𝑇𝐿𝐺𝑥, where 𝐿𝐺 is the Laplacian
matrix of the graph 𝐺. We may also assume that the value of the optimal cut is
known and is equal to opt.4 Before proceeding with the overview of the proof, we
state a key result of (Hås01) about the inapproximability of Max-Cut .

Lemma 3.2.4 (Inapproximability of Maximum Cut Problem (Hås01)). It is NP-
hard to approximate Max-Cut to any factor higher than 16/17.

𝑥1

𝑥2

𝑥1

𝑥2

Figure 3.1: The geometry of the Max-Cut instance. The left figure cor-
responds to the fat hyperplanes, i.e., the constraints of Max-Cut and the
right figure (the ellipsoid) corresponds to the objective function of Max-Cut
. The green points lie in the Boolean hypercube.

Sketch of the Proof of Theorem 3.2.2

The first step of the proof is to construct the distribution over partitions of R𝑑.
The Max-Cut problem can be viewed as a collection of 𝑑+1 non-convex partitions
of the 𝑑-dimensional Euclidean space. Consider an instance of Max-Cut with
|𝑉 | = 𝑑 and optimal cut value opt. Consider the collection of 𝑑 + 1 partitions
ℬ = {𝒮1, . . . ,𝒮𝑑, 𝒯 }. We define the partitions as follows: for any 𝑖 = 1, . . . , 𝑑,
we let 𝑆𝑖 = {𝑥 : −1 ≤ 𝑥𝑖 ≤ 1} be the sets that correspond to fat hyperplanes
of Figure 3.1(a) and the partitions 𝒮𝑖 = {𝑆𝑖, 𝑆

𝑐
𝑖 }, i.e., pairs of fat hyperplanes

4Observe that this problem is still hard, since the maximum value of a cut is bounded
by 𝑑2 and, hence, if this problem could be solved efficiently, one would be able to solve
Max-Cut by trying all possible values of opt.
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and their complements (see Figure 3.2(a,b)). These 𝑑 partitions will simulate the
Max-Cut constraints, i.e., that the solution vector lies in the hypercube {−1, 1}𝑑.
It remains to construct 𝒯 , which intuitively corresponds to the quadratic objective
of Max-Cut .

Figure 3.2: The mixture of partitions that corresponds to the Max-Cut
problem. In figures (𝑎) and (𝑏), we partition the Euclidean space using
fat hyperplanes (the blue set 𝑆1 and the red set 𝑆2 respectively) and their
complements 𝑆𝑐

1 = R𝑑∖𝑆1 and 𝑆𝑐
2 = R𝑑∖𝑆2. The third figure (𝑐) partitions R𝑑

using the ellipsoid 𝑇 = {𝑥 : 𝑥𝑇Σ−1𝑥 ≤ 𝑞} and its complement 𝑇 𝑐 = R𝑑 ∖ 𝑇
(for some 𝑑× 𝑑 covariance matrix Σ and positive real 𝑞).

Fix the covariance matrix Σ = 𝐿−1
𝐺 opt 5 , i.e., Σ is the inverse of the Laplacian

normalized by opt. We let 𝑇 = {𝑥 : 𝑥𝑇Σ−1𝑥 ≤ 𝑞} for some positive value 𝑞 to be
defined later (see Figure 3.1(b) and Figure 3.2(c)). Then, we let 𝒯 = {𝑇, 𝑇 𝑐}. We
construct a mixture 𝜋 of these partitions by picking each one uniformly at random,
i.e., with probability 1/(𝑑+ 1).

Let us assume that there exists an algorithm that, given access to samples from
𝒩𝜋(𝜇

⋆,Σ), with known covariance Σ, computes, in time poly(𝑑), a mean vector
𝜇 so that the output distributions are matched, i.e., 𝑑TV(𝒩𝜋(𝜇,Σ),𝒩𝜋(𝜇

⋆,Σ)) is
upper bounded by 1/𝑑𝑐 for some absolute constant 𝑐 > 1. Equivalently this means
that the mass that 𝒩 (𝜇,Σ) assigns to each set 𝑆𝑖 and 𝑇 is within poly(1/𝑑) of the
corresponding mass that 𝒩𝜋(𝜇

⋆,Σ) assigns to the same set. There are two main
challenges in order to prove the reduction:

1. How can we generate coarse samples from 𝒩𝜋(𝜇
⋆,Σ) since 𝜇⋆ is the solution

of the Max-Cut problem and therefore is unknown?

2. Given opt, is it possible to pick the threshold 𝑞 of the ellipsoid 𝑇 = {𝑥 ∈
R𝑑 : 𝑥𝑇Σ−1𝑥 ≤ 𝑞} so that any vector 𝜇 (rounded to belong in {−1, 1}𝑑),

5In fact, 𝐿𝐺 has zero eigenvalue with eigenvector (1, . . . , 1): we have to project the
Laplacian to the subspace orthogonal to (1, . . . , 1) to avoid this. We ignore this technicality
here for simplicity.
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that achieves 𝒩 (𝜇,Σ;𝑇 ) ≈ 𝒩 (𝜇⋆,Σ;𝑇 ) and 𝒩 (𝜇,Σ;𝑆𝑖) ≈ 𝒩 (𝜇⋆,Σ;𝑆𝑖),
also achieves an approximation ratio better than 16/17 for the Max-Cut
objective ?

The key observation to answer the first question is that, by the rotation invari-
ance of the Gaussian distribution, the probability

𝒩 (𝜇⋆,Σ;𝑇 ) = Pr
𝑥∼𝒩 (𝜇⋆,Σ)

[︀
𝑥𝑇Σ−1𝑥 ≤ 𝑞

]︀
is a constant 𝑝 that only depends on the value opt of the Max-Cut problem.
Therefore, having this value 𝑝, we can flip a coin with this probability and give
the coarse sample 𝑇 if we get heads and 𝑇 𝑐 otherwise. Similarly, the value of
𝒩 (𝜇⋆,Σ;𝑆𝑖) is an absolute constant that does not depend on 𝜇⋆ ∈ {−1, 1}𝑑 and
therefore we can again simulate coarse samples by flipping a coin with probability
equal to 𝒩 (𝜇⋆,Σ;𝑆𝑖).

To resolve the second question, we first show that any vector 𝜇 that approxi-
mately matches the probabilities of the 𝑑 fat halfspaces, lies very close to a corner
of the hypercube, see Lemma 3.2.7. Therefore, by rounding this guess 𝜇, we ob-
tain exactly a corner of the hypercube without affecting the probability assigned
to the ellipsoid constraint by a lot. We then show that any vector of the hypercube
that almost matches the probability of the ellipsoid achieves large cut value. In
particular, we prove that there exists a value for the threshold 𝑞 of the ellipsoid
𝑥𝑇Σ−1𝑥 ≤ 𝑞 that makes the probability 𝒩 (𝜇,Σ;𝑇 ) very sensitive to changes of
𝜇. Therefore, the only way for the algorithm to match the observed probability is
to find a 𝜇 that achieves large cut value. We show the following lemma.

Lemma 3.2.5 (Sensitivity of Gaussian Probability of Ellipsoids). Let 𝒩 (𝜇⋆,Σ),
𝒩 (𝜇,Σ) be 𝑑-dimensional Gaussian distributions. Let 𝑣⋆ = Σ−1/2𝜇⋆, 𝑣 = Σ−1/2𝜇
and assume that ‖𝑣‖2 ≤ ‖𝑣⋆‖2 = 1. Denote 𝑞 = 𝑑+ ‖𝑣⋆‖22+

√︀
2𝑑+ 4‖𝑣⋆‖22. Then,

assuming 𝑑 is larger than some sufficiently large absolute constant, it holds that⃒⃒⃒
Pr

𝑥∼𝒩 (𝜇⋆,Σ)

[︀
𝑥𝑇Σ−1𝑥 ≤ 𝑞

]︀
− Pr

𝑥∼𝒩 (𝜇,Σ)

[︀
𝑥𝑇Σ−1𝑥 ≤ 𝑞

]︀⃒⃒⃒
≥ ‖𝑣

⋆‖22 − ‖𝑣‖22
6
√
2𝑑+ 4

−𝑜(1/
√
𝑑) .

Notice that with Σ = 𝐿−1
𝐺 opt, in the above lemma, we have ‖𝑣⋆‖22 = 1, since

𝜇⋆ achieves cut value opt. By assumption, we know that the learning algorithm
can find a guess 𝜇 that makes the left hand side of the inequality of Lemma 3.2.5
smaller than poly(1/𝑑). Thus, we obtain that, for 𝑑 large enough, it must be that
‖𝑣‖22 = 𝜇𝑇𝐿𝐺𝜇/opt ≥ 16/17. Therefore, 𝜇 achieves value greater than (16/17)opt.

Remark 2. The transformation 𝜋 used in the above hardness result is not informa-
tion preserving. In Theorem 3.2.2, we prove that it is computationally hard to find a
vector 𝜇 ∈ R𝑑 that matches in total variation the observed distribution over coarse
labels. In contrast, as we will see in the upcoming Section 3.2.3, when the sets
of the partitions are convex, we show that there is an efficient algorithm that can
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solve the same problem and compute some 𝜇 ∈ R𝑑 such that TV(𝒩𝜋(𝜇
⋆),𝒩𝜋(𝜇)) is

small regardless of whether the transformation 𝜋 is information preserving. When
the transformation is information preserving, we can further show that the vector
𝜇 that we compute will be close to 𝜇⋆.

Sensitivity of Gaussian Probabilities

We now prove Lemma 3.2.5, namely that the probability of an ellipsoid with
respect to the Gaussian distribution is sensitive to small changes of its mean.

Proof of Lemma 3.2.5. We first observe that

Pr
𝑥∼𝒩 (𝜇,Σ)

[︀
𝑥𝑇Σ−1𝑥 ≤ 𝑞

]︀
= Pr

𝑥∼𝒩 (0,𝐼)

[︀
𝑥𝑇𝑥+ 2𝜇𝑇Σ−1/2𝑥 ≤ 𝑞 − 𝜇𝑇Σ−1𝜇

]︀
= Pr

𝑥∼𝒩 (0,𝐼)

[︀
𝑥𝑇𝑥+ 2𝑣𝑇𝑥 ≤ 𝑞 − ‖𝑣‖22

]︀
,

where 𝑣 = Σ−1/2𝜇. Similarly, we have

Pr
𝑥∼𝒩 (𝜇⋆,Σ)

[︀
𝑥𝑇Σ−1𝑥 ≤ 𝑞

]︀
= Pr

𝑥∼𝒩 (0,𝐼)

[︀
𝑥𝑇𝑥+ 2(𝑣⋆)𝑇𝑥 ≤ 𝑞 − ‖𝑣⋆‖22

]︀
,

where 𝑣⋆ = Σ−1/2𝜇⋆. From the rotation invariance of the Gaussian distribution,
we may assume, without loss of generality, that 𝑣 = ‖𝑣‖𝑒1 and 𝑣⋆ = ‖𝑣⋆‖𝑒1.
Notice that (‖𝑣‖2 +𝑥1)

2 +
∑︀𝑑

𝑖=2 𝑥
2
𝑖 is a sum of independent random variables. To

estimate these probabilities we are going to use the central limit theorem.

Lemma 3.2.6 (CLT, Theorem 1, Chapter XVI in (Fel57) ). Let 𝑋1, . . . , 𝑋𝑛 be
independent random variables with E[|𝑋𝑖|3] < +∞ for all 𝑖. Let 𝑚1 = E[

∑︀𝑛
𝑖=1𝑋𝑖]

and 𝑚𝑗 =
∑︀𝑛

𝑖=1 E[(𝑋𝑖 − E[𝑋𝑖])
𝑗 ]. Then,

Pr

[︂
(
∑︀𝑛

𝑖=1𝑋𝑖)−𝑚1√
𝑚2

≤ 𝑥

]︂
− Φ(𝑥) = 𝑚3

(1− 𝑥2)𝜑(𝑥)

6𝑚
3/2
2

+ 𝑜
(︁
𝑛/𝑚

3/2
2

)︁
,

where Φ(·), resp., 𝜑(·) is the CDF resp., PDF of the standard normal distribution
and the convergence is uniform for all 𝑥 ∈ R.

Using the above central limit theorem we obtain

Pr
𝑥∼𝒩 (0,𝐼)

[︃
(‖𝑣⋆‖2 + 𝑥1)

2 +

𝑑∑︁
𝑖=2

𝑥2
𝑖 ≤ 𝑞

]︃
= Φ(𝑞1)+𝑂

(︂
1√
𝑑

)︂
(1−𝑞12)𝜑(𝑞1)+𝑜

(︁
1/
√
𝑑
)︁
,

where 𝑞1 =
𝑞−(𝑑+‖𝑣⋆‖22)√

2𝑑+4‖𝑣⋆‖22
. Since 𝑞 = 𝑑 + ‖𝑣⋆‖2 +

√︀
2𝑑+ 4‖𝑣⋆‖22 we obtain 𝑞1 = 1

and therefore

Pr
𝑥∼𝒩 (0,𝐼)

[︀
𝑥𝑇𝑥+ 2(𝑣⋆)𝑇𝑥 ≤ 𝑞 − ‖𝑣⋆‖22

]︀
= Φ(1) + 𝑜

(︁
1/
√
𝑑
)︁
.
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Similarly, from the central limit theorem, we obtain

Pr
𝑥∼𝒩 (0,𝐼)

[︃
(‖𝑣‖2 + 𝑥1)

2 +

𝑑∑︁
𝑖=2

𝑥2
𝑖 ≤ 𝑞

]︃
= Φ(𝑞2)+𝑂

(︂
1√
𝑑

)︂
(1−𝑞22)𝜑(𝑞2)+𝑜

(︁
1/
√
𝑑
)︁
,

where 𝑞2 =
𝑞−(𝑑+‖𝑣‖22)√

2𝑑+4‖𝑣‖22
= 1 +𝑂(1/

√
𝑑). Therefore, we have

Pr
𝑥∼𝒩 (0,𝐼)

[︀
𝑥𝑇𝑥+ 2𝑣𝑇𝑥 ≤ 𝑞 − ‖𝑣‖22

]︀
= Φ(𝑞2) + 𝑜

(︁
1/
√
𝑑
)︁
.

Moreover, we have that 𝑞2 ≥ 1 + (‖𝑣⋆‖22 − ‖𝑣‖22)/(
√︀

2𝑑+ 4‖𝑣‖22). Using the fact
that 𝑑 is sufficiently large and standard approximation results on the Gaussian
CDF, we obtain

Φ

(︃
1 +
‖𝑣⋆‖22 − ‖𝑣‖22√︀
2𝑑+ 4‖𝑣‖22

)︃
− Φ(1) ≥ (‖𝑣⋆‖22 − ‖𝑣‖22)/

(︂
6
√︁
2𝑑+ 4‖𝑣‖22

)︂
,

and, since ‖𝑣‖2 ≤ 1, we conclude that the left-hand side satisfies

Φ

(︃
1 +
‖𝑣⋆‖22 − ‖𝑣‖22√︀
2𝑑+ 4‖𝑣‖22

)︃
− Φ(1) ≥ (‖𝑣⋆‖22 − ‖𝑣‖22)/

(︁
6
√
2𝑑+ 4

)︁
.

The result follows.

We will also require the following sensitivity lemma about the Gaussian proba-
bility of bands, i.e., sets of the form {𝑥 : |𝑥𝑖| ≤ 1}. We show that the probabilities
of such regions are also sensitive under perturbations of the mean of the Gaus-
sian. This means that any vector 𝜇 that has Pr𝑥∼𝒩 (𝜇,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1

]︀
close to

Pr𝑥∼𝒩 (𝜇⋆,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1

]︀
must be very close to a corner of the hypercube.

Lemma 3.2.7 (Sensitivity of Gaussian Probability of Bands). Let 𝒩 (𝜇⋆,Σ),𝒩 (𝜇,Σ)
be two 𝑑-dimensional Gaussian distributions with 𝑒𝑇𝑖 Σ𝑒𝑖 ≤ 𝑄, and |𝜇⋆

𝑖 | = 1 for all
𝑖 ∈ [𝑑]. Then, for any 𝑖 ∈ [𝑑], it holds that⃒⃒⃒⃒

Pr
𝑥∼𝒩 (𝜇⋆,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1

]︀
− Pr

𝑥∼𝒩 (𝜇,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1

]︀⃒⃒⃒⃒
≥ 𝑐 · min(1, (1− |𝜇𝑖|)2)

𝑄4
,

for some absolute constant 𝑐 ∈ (0, 1].

Proof. Let us fix 𝑖 ∈ [𝑑], define 𝜇⋆ (resp. 𝜇) for 𝜇⋆
𝑖 (resp. 𝜇𝑖), and 𝜎2 = Σ𝑖𝑖. With-

out loss of generality since both Gaussians have the same variance 𝜎 by symmetry
we may assume that 𝜇⋆ = 1 and 𝜇 ∈ [0,+∞). We first deal with the case 𝜇 > 1.
We have

Pr
𝑥∼𝒩 (𝜇⋆,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1

]︀
− Pr

𝑥∼𝒩 (𝜇,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1

]︀
= E

𝑡∼𝒩 (1,𝜎2)

[︂
1{|𝑡| ≤ 1}

(︂
1− 𝒩 (𝜇, 𝜎2; 𝑡)

𝒩 (1, 𝜎2; 𝑡)

)︂]︂
.
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We have that since 𝜇 > 1 the ratio 𝒩 (𝜇,𝜎2;𝑡)
𝒩 (1,𝜎2;𝑡)

= 𝑒
(𝜇−1)(−𝜇+2𝑡−1)

2𝜎2 is maximized for

𝑡 = 1 and has maximum value 𝑒−
(𝜇−1)2

2𝜎2 . By taking the derivative with respect to
𝜎 we observe that the probability that 𝑁(1, 𝜎) assigns to [−1, 1] is decreasing with
respect to 𝜎 and therefore it is minimized for 𝜎 = 1. We have that Pr𝑡∼𝒩 (1,𝜎)[−1 <
𝑡 < 1] = Ω(1/𝜎) and therefore Pr𝑥∼𝒩 (𝜇⋆,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1

]︀
−Pr𝑥∼𝒩 (𝜇,Σ)

[︀
− 1 ≤

𝑥𝑖 ≤ 1
]︀
≥ 𝐶 ·

(︂
1− 𝑒−

(𝜇−1)2

2𝜎2

)︂
. We can obtain the significantly weaker lower bound

of 𝑐min(1, (1− |𝜇|)2) for some absolute constant 𝑐 ∈ (0, 1] by using the inequality
1− 𝑒−𝑥 ≥ 1/2min(1, 𝑥) that holds for all 𝑥 ∈ [0,+∞).

We now deal with the case 𝜇 ∈ [0, 1). In that case the expression of their ratio
of the densities of 𝒩 (1, 𝜎) and 𝒩 (𝜇, 𝜎) derived above shows us that they cross at
𝑡 = (1 + 𝜇)/2. Therefore, they completely cancel out in the interval [𝜇, 1]. We
have Pr𝑥∼𝒩 (𝜇,Σ)[−1 ≤ 𝑥𝑖 ≤ 1] − Pr𝑥∼𝒩 (𝜇⋆,Σ)[−1 ≤ 𝑥𝑖 ≤ 1] = Pr𝑡∼𝒩 (𝜇,𝜎)[−1 ≤
𝑡 ≤ 𝜇] − Pr𝑡∼𝒩 (1,𝜎)[−1 ≤ 𝑡 ≤ 𝜇] = Ω((1 − 𝜇)/(1 + 𝜎4)) , where to obtain the last
inequality we use standard approximations of Gaussian integrals. Combining the
above two cases we obtain the claimed lower bound.

The Proof of Theorem 3.2.2

We are now ready to provide the complete proof of Theorem 3.2.2. Consider an
instance of Max-Cut with |𝑉 | = 𝑑 and optimal value opt = 𝑂(𝑑2). Let 𝐿𝐺 be the
Laplacian matrix of the (connected) graph 𝐺. Since the minimum eigenvalue of 𝐿𝐺

is 0, we project the matrix onto the subspace 𝑉 that is orthogonal to 1 = (1, . . . , 1).
We introduce a (𝑑−1)×𝑑 partial isometry 𝑅, that satisfies 𝑅𝑅𝑇 = 𝐼 and 𝑅1 = 0,
i.e., 𝑅 projects vectors to the subspace 𝑉 . We consider 𝐿′

𝐺 = 𝑅𝐿𝐺𝑅
𝑇 . It suffices

to find a solution 𝑥 ∈ 𝑉 and then project back to R𝑑: 𝑦 = 𝑅𝑇𝑥. We note that the
matrix 𝐿′

𝐺 is positive definite (the smallest eigenvalue of 𝐿′
𝐺 is equal to the second

smallest eigenvalue of 𝐿𝐺) and preserves the optimal score value, in the sense that

opt = max
𝑦∈R𝑑

𝑦𝑇𝐿𝐺𝑦 = max
𝑥∈R𝑑

(𝑅𝑇𝑥)𝑇𝐿𝐺(𝑅
𝑇𝑥) = max

𝑥∈𝑉
𝑥𝑇𝐿′

𝐺𝑥 .

Assume that there exists an efficient black-box algorithm 𝒜, that, given sample
access to a generative process of coarse Gaussian data 𝒩𝜋(𝜇

⋆,Σ) with known
covariance 6 matrix Σ, computes an estimate ̃︀𝜇 in poly(𝑑) time, that satisfies

𝑑TV(𝒩𝜋(̃︀𝜇,Σ),𝒩𝜋(𝜇
⋆,Σ)) < 1/𝑑𝑐 .

We choose the known covariance matrix to be equal to Σ = (𝐿′
𝐺)

−1opt, where opt
is the given optimal Max-Cut value and let 𝜇⋆ ∈ {−1, 1}𝑑−1 be the unknown mean

6We remark that our hardness result is stated for identity covariance matrix (and not
for an arbitrary known covariance matrix). In order to handle this case, we provide a
detailed discussion after the end of the proof of Theorem 3.2.2.
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vector. Recall that, not only the black-box algorithm 𝒜, but also the generative
process that we design is agnostic to the true mean. However, as we will see the
knowledge of the optimal value opt and the fact that the true mean lies in the
hypercube {−1, 1}𝑑−1 suffice to generate samples from the true coarse generative
process 𝒩𝜋(𝜇

⋆,Σ).
In what follows, we will construct such a coarse generative process using the

objective function and the constraints of the Max-Cut problem. Specifically, we
will design a collection ℬ = {𝒮1, . . . ,𝒮𝑑−1, 𝒯 } of 𝑑 partitions of the 𝑑-dimensional
Euclidean space and let the partition distribution 𝜋 be the uniform probability
measure over ℬ.

We define the partitions as follows: for any 𝑖 = 1, . . . , 𝑑 − 1, let 𝑆𝑖 = {𝑥 :
−1 ≤ 𝑥𝑖 ≤ 1} and 𝒮𝑖 = {𝑆𝑖, 𝑆

𝑐
𝑖 }. These 𝑑 − 1 partitions simulate the integrality

constraints of Max-Cut , i.e., the solution vector should lie in the hypercube
{−1, 1}𝑑−1. It remains to construct 𝒯 , which corresponds to the quadratic objective
of Max-Cut . We let 𝑇 = {𝑥 ∈ R𝑑 : 𝑥𝑇Σ−1𝑥 ≤ 𝑞}, for 𝑞 > 0 to be decided. Then,
we let 𝒯 = {𝑇, 𝑇 𝑐}. Recall that the known covariance matrix Σ = (𝐿′

𝐺)
−1opt lies

in R(𝑑−1)×(𝑑−1) and, so, we will use 𝑑− 1 bands (i.e., fat hyperplanes).
The main question to resolve is how to generate efficiently samples from the

designed general partition, i.e., the distribution 𝒩𝜋(𝜇
⋆,Σ), without knowing the

value of 𝜇⋆. The key observation is that, by the rotation invariance of the Gaus-
sian distribution, the probability 𝒩 (𝜇⋆,Σ;𝑇 ) = Pr𝑥∼𝒩 (𝜇⋆,Σ)

[︀
𝑥𝑇Σ−1𝑥 ≤ 𝑞

]︀
is a

constant 𝑝 that only depends on the value opt of the maximum cut (see the proof
of Lemma 3.2.5). Therefore, having this value 𝑝, we can flip a coin with this prob-
ability and give the coarse sample 𝑇 if we get heads and 𝑇 𝑐 otherwise. At the same
time, the value of 𝒩 (𝜇⋆,Σ;𝑆𝑖) is an absolute constant that does not depend on
𝜇⋆ ∈ {−1, 1}𝑑−1 and, therefore, we can again simulate coarse samples by flipping a
coin with probability equal to 𝒩 (𝜇⋆,Σ;𝑆𝑖). More precisely, since 𝑆𝑖 is a symmetric
interval around 0, we have that

Pr
𝑥∼𝒩 (𝜇⋆,Σ)

[︀
− 1 ≤ 𝑥𝑖 ≤ 1] = Pr

𝑡∼𝒩 (1,Σ𝑖𝑖)

[︀
− 1 ≤ 𝑡 ≤ 1] .

Notice that the above constant only depends on the known constant Σ𝑖𝑖 and can be
computed to very high accuracy using well known approximations of the Gaussian
integral or rejection sampling.

Moreover, all the probabilities 𝒩 (𝜇⋆,Σ;𝑆𝑖),𝒩 (𝜇⋆,Σ;𝑇 ) are at least polyno-
mially small in 1/𝑑. In particular, 𝒩 (𝜇⋆,Σ;𝑆𝑖), is always larger than Ω(1/𝜎) ≥
poly(1/𝑑) and smaller than 1/2 and 𝒩 (𝜇⋆,Σ;𝑇 ) = Φ(1)+𝑜(1/

√
𝑑) 7, see the proof

of Lemma 3.2.5. Having these values we can generate samples from 𝒩𝜋 as follows:

1. Pick one of the 𝑑 sets 𝑆1, . . . , 𝑆𝑑−1, 𝑇 uniformly at random.

2. Flip a coin with success probability equal to the probability of the corre-
sponding sets and return either the set or its complement.

7Φ(·) is the CDF of the standard Normal distribution.
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Giving sample access to the designed oracle with ℬ = {𝒮1, . . . ,𝒮𝑑−1, 𝒯 }, the
black-box algorithm 𝒜 computes efficiently and returns an estimate ̃︀𝜇 ∈ R𝑑−1, that
satisfies

𝑑TV(𝒩𝜋(̃︀𝜇,Σ),𝒩𝜋(𝜇
⋆,Σ)) < 𝑜(1/𝑑𝑐) .

We proceed with two claims: (𝑖) the algorithm’s output ̃︀𝜇 should lie in a ball of
radius poly(1/𝑑), centered at one of the vertices of the hypercube {−1, 1}𝑑−1 and
(𝑖𝑖) it will hold that the rounded vector ̂︀𝜇 = (sgn(̃︀𝜇𝑖))1≤𝑖≤𝑑−1 ∈ {−1, 1}𝑑−1 will
attain a cut score, that approximates the Max-Cut within a factor larger than
16/17. By the algorithm’s guarantee, since 𝜋 is the uniform distribution, we get
that

|𝒩 (̃︀𝜇,Σ;𝑇 )−𝒩 (𝜇⋆,Σ;𝑇 )|+
𝑑−1∑︁
𝑖=1

|𝒩 (̃︀𝜇,Σ;𝑆𝑖)−𝒩 (𝜇⋆,Σ;𝑆𝑖)| = 𝑜(1/𝑑𝑐−1) .

Hence, we get that each of the above 𝑑 summands is at most 𝑜(1/𝑑𝑐−1).

Claim 4. It holds that ‖̃︀𝜇− ̂︀𝜇‖∞ < 𝜖, where ̃︀𝜇 is the black-box algorithm’s estimate
and ̂︀𝜇 its rounding to {−1, 1}𝑑−1.

Proof. For any coordinate 𝑖 ∈ [𝑑−1], we will apply Lemma 3.2.7 in order to bound
the distance between the estimated guess and the true, based on the Gaussian mass
gap in each one of the 𝑑− 1 bands.

Note that |𝜇⋆
𝑖 | = 1 for all 𝑖 ∈ [𝑑−1]. Also, note that the (𝑑−1)×(𝑑−1) matrix

𝐿′
𝐺 is positive definite and the minimum eigenvalue 𝜆(𝐿′

𝐺) is equal to the second
smallest eigenvalue of the 𝑑 × 𝑑 Laplacian matrix 𝐿𝐺. It holds that 𝜆(𝐿′

𝐺) > 0.
Hence, the maximum entry of the covariance matrix Σ = (𝐿′

𝐺)
−1opt is upper

bounded by 1/(opt · 𝜆(𝐿′
𝐺)) < 𝑄 = poly(𝑑) for some value 𝑄. Using Lemma 3.2.7

and the algorithm’s guarantee, we have that

(|̃︀𝜇𝑖| − 1)2/𝑄4 ≤ |𝒩 (̃︀𝜇,Σ;𝑆𝑖)−𝒩 (𝜇⋆,Σ;𝑆𝑖)| = 𝑜
(︀
1/𝑑𝑐−1

)︀
.

For sufficiently large 𝑐, we get that each coordinate of the estimated vector ̃︀𝜇
lies in an interval, centered at either 1 or −1 of length 𝑜(1/𝑑𝑐−1). This implies
that ‖̃︀𝜇 −𝑤‖∞ < 𝜖 for some 𝜖 = 𝑜(1/𝑑𝑐−1) and some vertex 𝑤 of the hypercube
{−1, 1}𝑑−1. Hence, we have that ̃︀𝜇 should lie in a ball, with respect to the 𝐿∞
norm, centered at one of the vertices of the (𝑑− 1)-hypercube with radius of order
𝜖 and note that this vertex corresponds to the rounded vector ̂︀𝜇 of the estimated
vector.

We continue by claiming that the rounded vector ̂︀𝜇 attains a Max-Cut value,
that approximates the optimal value opt withing a factor strictly larger than 16/17.

Claim 5. The Max-Cut value of the rounded vector ̂︀𝜇 ∈ {−1, 1}𝑑−1 satisfies

̂︀𝜇𝑇𝐿′
𝐺̂︀𝜇 > (16/17) · opt .
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Proof. We will make use of Lemma 3.2.5, in order to get the desired result via
the Gaussian mass gap between the two means on the designed ellipsoid. In order
to apply this Lemma, note that, for the true mean 𝜇⋆, we have that ‖𝑣⋆‖22 =
‖(Σ⋆)−1/2𝜇⋆‖22 = ((𝜇⋆)𝑇𝐿′

𝐺𝜇
⋆)/opt = 1, since the true mean attains the optimal

Max-Cut score. Similarly, for the rounded estimated mean ̂︀𝜇, the associated
vector ̂︀𝑣 satisfies ‖̂︀𝑣‖2 ≤ 1, since its cut value is at most opt. So, we can apply
Lemma 3.2.5 with 𝑣⋆ = Σ−1/2𝜇⋆ and 𝑣 = Σ−1/2̂︀𝜇 and get that

1−
(︀̂︀𝜇𝑇𝐿′

𝐺̂︀𝜇)︀ /opt
6
√
2𝑑+ 4

− 𝑜
(︁
1/
√
𝑑
)︁
< 𝑜

(︀
1/𝑑𝑐−1

)︀
,

which implies that, for some small constant 𝑐′, the value of the estimated mean
satisfies ̂︀𝜇𝑇𝐿′

𝐺̂︀𝜇 > (1 − 𝑐′ − 1/𝑑𝑐−1)opt. This implies that the algorithm 𝒜 can
approximate the Max-Cut value within a factor higher than 16/17.

Known Covariance vs. Identity Covariance. Recall that our hardness
result (Theorem 3.2.2) states that there is no algorithm with sample access to
𝒩𝜋(𝜇

⋆) = 𝒩𝜋(𝜇
⋆, 𝐼), that can compute a mean ̃︀𝜇 ∈ R𝑑 in poly(𝑑) time such

that 𝑑TV(𝒩𝜋(̃︀𝜇),𝒩𝜋(𝜇
⋆)) < 1/𝑑𝑐 for some absolute constant 𝑐 > 1. In order to

prove our hardness result, we assume that there exists such a black-box algorithm
𝒜. Hence, to make use of 𝒜, one should provide samples generated by a coarse
Gaussian with identity covariance matrix. However, in our reduction, we show
that we can generate samples from a coarse Gaussian (which is associated with
the Max-Cut instance) that has known covariance matrix Σ. Let us consider a
sample 𝑆 ∼ 𝒩𝜋(𝜇

⋆,Σ). Since Σ is known, we can rotate the sets and give as input
to the algorithm 𝒜 the set

Σ−1/2 · 𝑆 :=
{︁
Σ−1/2𝑥 : 𝑥 ∈ 𝑆

}︁
,

i.e., we can implement the membership oracle 𝒪Σ−1/2·𝑆(·), assuming oracle access
to 𝒪𝑆(·). We have that 𝒪Σ−1/2·𝑆(𝑥) = 𝒪𝑆(Σ

1/2𝑥). We continue with a couple of
observations.

1. We first observe that, for any partition 𝒮 of the 𝑑-dimensional Euclidean
space, there exists another partition Σ−1/2 ·𝒮 consisting of the sets Σ−1/2 ·𝑆,
where 𝑆 ∈ 𝒮. Note that since Σ−1/2 is full rank, the mapping 𝑥 ↦→ Σ−1/2𝑥
is a bijection and so Σ−1/2 · 𝒮 is a partition of the space with 𝜋(Σ−1/2 · 𝒮) =
𝜋(𝒮).

2. We have that 𝑥 ∈ 𝑆 if and only if Σ−1/2𝑥 ∈ Σ−1/2 · 𝑆 and so

E
𝑥∼𝒩 (𝜇,Σ)

[1{𝑥 ∈ 𝑆}] = E
𝑥∼𝒩 (𝜇,Σ)

[1{Σ−1/2𝑥 ∈ Σ−1/2 · 𝑆}] .
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Since it holds that 𝑤 ∼ 𝒩 (𝜇,Σ) if and only if 𝑤 = Σ1/2𝑧 + 𝜇 with 𝑧 ∼
𝒩 (0, 𝐼), we get for an arbitrary subset 𝑆 ⊆ R𝑑 that

E
𝑥∼𝒩 (𝜇,Σ)

[1{𝑥 ∈ 𝑆}] = E
𝑥∼𝒩 (0,𝐼)

[︁
1
{︁
Σ−1/2

(︁
Σ1/2𝑥+ 𝜇

)︁
∈ Σ−1/2 · 𝑆

}︁]︁
= E

𝑥∼𝒩 (Σ−1/2𝜇,𝐼)

[︁
1{𝑥 ∈ Σ−1/2 · 𝑆}

]︁
.

Let us consider a set 𝑆 ⊆ R𝑑 distributed as 𝒩𝜋(𝜇
⋆,Σ). This set is the one that

the algorithm with the known covariance matrix works with. We are now ready to
combine the above two observations in order to understand what is the input to
the identity covariance matrix algorithm. We have that

Pr
𝑆∼𝒩𝜋(𝜇⋆,Σ)

[𝑆] =
∑︁
𝒮

1{𝑆 ∈ 𝒮}𝜋(𝒮)𝒩 (𝜇⋆,Σ;𝑆)

=
∑︁
𝒮

1{𝑆 ∈ 𝒮}𝜋(𝒮)𝒩 (Σ−1/2𝜇⋆, 𝐼;Σ−1/2 · 𝑆)

=
∑︁

Σ−1/2·𝒮

1{Σ−1/2 · 𝑆 ∈ Σ−1/2 · 𝒮}𝜋(Σ−1/2 · 𝒮)𝒩 (Σ−1/2𝜇⋆, 𝐼;Σ−1/2 · 𝑆)

= Pr
𝑆′∼𝒩𝜋′ (Σ−1/2𝜇⋆,𝐼)

[𝑆′] ,

where the set 𝑆′ is distributed as𝒩𝜋′(Σ−1/2𝜇⋆, 𝐼) where 𝜋′ is the ’rotated’ partition
distribution supported on the rotated partitions Σ−1/2 ·𝒮 for each 𝒮 with 𝜋(𝒮) > 0.
We remark that the second equation follows from the second observation and the
third equation from the first one. Hence, the algorithm 𝒜 (the one that works with
identity matrix) obtains the rotated sets (i.e., membership oracles) Σ−1/2 · 𝑆 and
the (unknown) target mean vector is 𝑢 = Σ−1/2𝜇⋆.

3.2.3 Efficient Mean Estimation under Convex Parti-
tions

In this section, we formally state and prove Theorem 3.2.3: we provide an
efficient algorithm for Gaussian mean estimation under convex partitions. The
following definition of information preservation is very similar with the one given
in Definition 3.1.2. The difference is that we only require from 𝜋 to preserve the
distances of Gaussians around the true Gaussian 𝒩 (𝜇⋆) as opposed to the distance
of any pair of Gaussians 𝒩 (𝜇⋆): this is a somewhat more flexible assumption about
the partition distribution 𝜋 and the true Gaussian 𝒩 (𝜇*) as a pair.

Definition 3.2.8 (Information Preserving Partition Distribution for Gaussians).
Let 𝛼 ∈ [0, 1] and consider a 𝑑-dimensional Gaussian distribution 𝒩 (𝜇⋆). We
say that 𝜋 is an 𝛼-information preserving partition distribution with respect to
the true Gaussian 𝒩 (𝜇⋆) if for any Gaussian distribution 𝒩 (𝜇), it holds that
𝑑TV(𝒩𝜋(𝜇),𝒩𝜋(𝜇

⋆)) ≥ 𝛼 · 𝑑TV(𝒩 (𝜇),𝒩 (𝜇⋆)).
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We refer to Section 3.2.4 for a geometric condition, under which a partition is
𝛼-information preserving. In particular, we prove that a partition is 𝛼-information
preserving if, for any hyperplane, it holds that the mass of the cells of the partition
that do not intersect with the hyperplane is at least 𝛼. This is true for most natural
partitions, see e.g., the Voronoi diagram of Figure 1.1.

In this section, we discuss and establish the two structural lemmata required in
order to prove Theorem 3.2.3. Our goal is to maximize the empirical log-likelihood
objective

ℒ𝑁 (𝜇) =
1

𝑁

𝑁∑︁
𝑖=1

log𝒩 (𝜇;𝑆𝑖) , (3.1)

where the 𝑁 (convex) sets 𝑆1, . . . , 𝑆𝑁 are drawn from the coarse Gaussian genera-
tive process 𝒩𝜋(𝜇

⋆). We first show that the above empirical likelihood is a concave
objective with respect to 𝜇 ∈ R𝑑. In the following lemma, we show that the log-
probability of a convex set 𝑆, i.e., the function log𝒩 (𝜇;𝑆) is a concave function
of the mean 𝜇.

Lemma 3.2.9 (Concavity of Log-Likelihood). Let 𝑆 ⊆ R𝑑 be a convex set. The
function log𝒩 (𝜇;𝑆) is concave with respect to the mean vector 𝜇 ∈ R𝑑.

In order to prove that the Hessian matrix of this objective is negative semi-
definite, we use a variant of the Brascamp-Lieb inequality. Having established
the concavity of the empirical log-likelihood, we next have to bound the sample
complexity of the empirical log-likelihood. We prove the following lemma.

Lemma 3.2.10 (Sample Complexity of Empirical Log-Likelihood). Let 𝜖, 𝛿 ∈ (0, 1)
and consider a generative process for coarse 𝑑-dimensional Gaussian data 𝒩𝜋(𝜇

⋆)
(see Definition 3.2.1). Also, assume that every 𝒮 ∈ supp(𝜋) is a convex partition
of the Euclidean space. Let 𝑁 = ̃︀Ω(𝑑/(𝜖2𝛼2) log(1/𝛿)). Consider the empirical
log-likelihood objective

ℒ𝑁 (𝜇) =
1

𝑁

𝑁∑︁
𝑖=1

log𝒩 (𝜇;𝑆𝑖) .

Then, with probability at least 1 − 𝛿, we have that, for any Gaussian distribu-
tion 𝒩 (𝜇) that satisfies 𝑑TV(𝒩 (𝜇),𝒩 (𝜇⋆)) ≥ 𝜖, it holds that max̃︀𝜇∈R𝑑 ℒ𝑁 (̃︀𝜇) −
ℒ𝑁 (𝜇) ≥ Ω(𝜖2𝛼2) .

The above lemma states that, given roughly ̃︀𝑂(𝑑/(𝜖2𝛼2)) samples from 𝒩𝜋(𝜇
⋆),

we can guarantee that the maximizer ̃︀𝜇 of the empirical log-likelihood achieves a to-
tal variation gap at most 𝜖 against the true mean vector 𝜇⋆, i.e., 𝑑TV(𝒩 (̃︀𝜇),𝒩 (𝜇⋆)) ≤
𝜖. In fact, thanks to the concavity of the empirical log-likelihood objective, it suf-
fices to show that Gaussian distributions 𝒩 (𝜇), that satisfy 𝑑TV(𝒩 (𝜇),𝒩 (𝜇⋆)) >
𝜖, will also be significantly sub-optimal solutions of the empirical log-likelihood
maximization. The key idea in order to attain the desired sample complexity, is
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that is suffices to focus on guess vectors 𝜇 that lie in a sphere of radius Ω(𝜖). Tech-
nically, the proof of Lemma 3.2.10 relies on a concentration result of likelihood
ratios and in the observation that, while the empirical log-likelihood objective ℒ𝑁
is concave (under convex partitions), the regularized objective ℒ𝑁 (𝜇) + ‖𝜇‖22 is
convex with respect to the guess mean vector 𝜇.

Concavity of Log-likelihood: Proof of Lemma 3.2.9

In this section, we show that the log-likelihood is concave when the underly-
ing partitions are convex. The Hessian of the log-likelihood ℒ for the set 𝑆 has a
notable property. When restricted to a direction 𝑣 ∈ R𝑑, the quadratic 𝑣𝑇 (∇2ℒ)𝑣
quantifies the variance reduction, observed between the distributions 𝒩𝑆 (Gaus-
sian conditioned on 𝑆) and 𝒩 (unrestricted Gaussian, i.e., 𝑆 = R𝑑). When the set
𝑆 is convex (and, hence the indicator function 1𝑆 is log-concave), the variance of
the unrestricted Gaussian is always larger than the conditional one. This intrigu-
ing result is an application of a variation of the Brascamp-Lieb inequality, due to
Hargé (see Lemma 3.2.11 for the inequality that we utilize). Recall that, both the
empirical and the population log-likelihood objectives are convex combinations of
the function 𝑓(𝜇,Σ;𝑆) = log𝒩 (𝜇,Σ;𝑆) and, hence, it suffices to show that 𝑓 is
concave with respect to 𝜇 ∈ R𝑑, when the set 𝑆 is convex.

Proof of Lemma 3.2.9. Without loss of generality, we can take Σ = 𝐼 ∈ R𝑑×𝑑. Let
𝑓(𝜇;𝑆) = log𝒩 (𝜇, 𝐼;𝑆) for an arbitrary convex set 𝑆 ⊆ R𝑑. The gradient ∇𝜇𝑓(𝜇)
of 𝑓 with respect to 𝜇 is equal to

∇𝜇

(︃
log

∫︁
𝑆

1√︀
(2𝜋)𝑑

exp

(︂
−(𝑥− 𝜇)𝑇 (𝑥− 𝜇)

2

)︂
𝑑𝑥

)︃
=

∫︀
𝑆 𝑥 exp(−(𝑥− 𝜇)𝑇 (𝑥− 𝜇)/2)𝑑𝑥∫︀
𝑆 exp(−(𝑥− 𝜇)𝑇 (𝑥− 𝜇)/2)𝑑𝑥

−𝜇 .

Hence, we get that
∇𝜇𝑓(𝜇) = E

𝑥∼𝒩𝑆(𝜇,𝐼)
[𝑥]− 𝜇 .

We continue with the computation of the Hessian of the function 𝑓 with respect
to 𝜇

∇2
𝜇𝑓(𝜇) = −𝐼+

∫︀
𝑆 𝑥(𝑥− 𝜇)𝑇𝒩 (𝜇, 𝐼;𝑥)𝑑𝑥

𝒩 (𝜇, 𝐼;𝑆)
−

(︁ ∫︀
𝑆 𝑥𝒩 (𝜇, 𝐼;𝑥)𝑑𝑥

)︁(︁ ∫︀
𝑆(𝑥− 𝜇)𝑇𝒩 (𝜇, 𝐼;𝑥)𝑑𝑥

)︁
𝒩 (𝜇, 𝐼;𝑆)2

,

and, so, we have that

∇2
𝜇𝑓(𝜇) = −𝐼+

(︁
E

𝑥∼𝒩𝑆(𝜇,𝐼)
[𝑥𝑥𝑇 ]− E

𝑥∼𝒩𝑆(𝜇,𝐼)
[𝑥] E

𝑥∼𝒩𝑆(𝜇,𝐼)
[𝑥𝑇 ]

)︁
= Cov

𝑥∼𝒩𝑆(𝜇,𝐼)
[𝑥]−𝐼 .

Observe that, when 𝑆 = R𝑑, we get that both the gradient and the Hessian vanish.
In order to show the concavity of 𝑓 with respect to the mean vector 𝜇, consider an
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arbitrary vector 𝑣 ∈ R𝑑 in the ball ‖𝑣‖2 = 1. We have the quadratic form

𝑣𝑇∇2
𝜇𝑓(𝜇)𝑣 = 𝑣𝑇 Cov

𝑥∼𝒩𝑆(𝜇,𝐼)
[𝑥]𝑣−1 = E

𝑥∼𝒩𝑆(𝜇,𝐼)

[︁
(𝑣𝑇𝑥)2

]︁
−
(︁

E
𝑥∼𝒩𝑆(𝜇,𝐼)

[𝑣𝑇𝑥]
)︁2
−1 .

In order to show the desired inequality, we will apply the following variant of the
Brascamp-Lieb inequality.

Lemma 3.2.11 (Brascamp-Lieb Inequality, Hargé (see (Gui09))). Let 𝑔 be convex
function on R𝑑 and let 𝑆 be a convex set on R𝑑. Let 𝒩 (𝜇,Σ) be the Gaussian
distribution on R𝑑. It holds that

E
𝑥∼𝑁𝑆

[︂
𝑔

(︂
𝑥+ 𝜇− E

𝑥∼𝒩𝑆

[𝑥]

)︂]︂
≤ E

𝑥∼𝒩
[𝑔(𝑥)] . (3.2)

We apply the above Lemma with 𝑔(𝑥) = (𝑣𝑇𝑥)2. We get that∫︁
R𝑑

(𝑣𝑇 (𝑥+𝜇− E
𝑦∼𝒩𝑆(𝜇,𝐼)

𝑦))2 · 1𝑆(𝑥)𝒩 (𝜇, 𝐼;𝑥)𝑑𝑥∫︀
R𝑑 1𝑆(𝑥)𝒩 (𝜇, 𝐼;𝑥)𝑑𝑥

≤
∫︁
R𝑑

(𝑣𝑇𝑥)2𝒩 (𝜇, 𝐼;𝑥)𝑑𝑥 .

Hence, we get the desired variance reduction in the direction 𝑣

Var
𝑥∼𝒩𝑆(𝜇,𝐼)

[𝑣𝑇𝑥] ≤ Var
𝑥∼𝒩 (𝜇,𝐼)

[𝑣𝑇𝑥] ,

that implies the concavity of the function log𝒩 (𝜇,Σ;𝑆) for convex sets 𝑆 with
respect to the mean vector 𝜇 ∈ R𝑑.

Sample Complexity of Empirical Log-Likelihood: Proof of Lemma 3.2.10

In this section, we provide the proof of Lemma 3.2.10. This lemma analyzes the
sample complexity of the empirical log-likelihood maximization ℒ𝑁 , whose concav-
ity (in convex partitions) was established in Lemma 3.2.9. We show that, given
roughly 𝑁 = ̃︀𝑂(𝑑/(𝜖2𝛼2)) samples from 𝒩𝜋(𝜇

⋆), we can guarantee that Gaus-
sian distributions 𝒩 (𝜇) with mean vectors 𝜇, that are far from the true Gaussian
𝒩 (𝜇⋆) in total variation distance, will also be sub-optimal solutions of the em-
pirical maximization of the log-likelihood objective, i.e., they are far from being
maximizers of the empirical log-likelihood objective. We first give an overview of
the proof of Lemma 3.2.10. In Proposition 3.1.5 we provided a similar sample
complexity bound for an empirical log-likelihood objective. However, in contrast
to the analysis of Proposition 3.1.5, the parameter space is now unbounded – 𝜇
can be any vector of R𝑑 – and we cannot construct a cover of the whole space
with finite size. However, thanks to the concavity of the empirical log-likelihood
objective ℒ𝑁 , we can show that it suffices to focus on guess vectors 𝜇 that lie in
a sphere 𝜕ℬ (i.e., the boundary of a ball ℬ) of radius Ω(𝜖). This argument heav-
ily relies on the claim that the maximizer of the empirical log-likelihood ℒ𝑁 lies
inside ℬ, which can be verified by monotonicity properties of the log-likelihood.
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Afterwards, we consider a discretization 𝒞 of the sphere and, for any vector 𝜇 ∈ 𝒞,
we can prove that ℒ𝑁 (𝜇⋆) − ℒ𝑁 (𝜇) ≥ Ω(𝛼2𝜖2). The main technical tool for this
claim is a concentration result on likelihood ratios and the fact that the partition
distribution is 𝛼-information preserving. In order to extend this property to the
whole sphere, we exploit the convexity (with respect to 𝜇) of a regularized version
of the empirical log-likelihood objective ℒ𝑁 (𝜇)+‖𝜇‖22. The complete proof follows.

Proof of Lemma 3.2.10. Let ̃︀𝜇 be the maximizer of the empirical log-likelihood
objective

̃︀𝜇 = arg max
𝜇∈R𝑑

1

𝑁

𝑁∑︁
𝑖=1

log𝒩 (𝜇;𝑆𝑖) .

Since ̃︀𝜇 is the maximizer of the empirical objective, it is sufficient to prove that
for any Gaussian 𝒩 (𝜇) whose total variation distance with 𝒩 (𝜇⋆) is greater than
𝜖, it holds that ℒ𝑁 (𝜇⋆)− ℒ𝑁 (𝜇) ≥ Ω(𝛼2𝜖2).

Moreover, we know that when ‖𝜇1 − 𝜇2‖2 is smaller than some sufficiently
small absolute constant, it holds 𝑑TV(𝒩 (𝜇1),𝒩 (𝜇2)) ≥ Ω(‖𝜇1−𝜇2‖2). Therefore,
any Gaussian whose mean 𝜇 is far from 𝜇⋆, i.e., ‖𝜇−𝜇⋆‖2 ≥ Ω(𝜖) will be in total
variation distance at least 𝜖 from 𝒩 (𝜇⋆) Therefore, to prove the lemma, it suffices
to prove it for Gaussians whose means lie outside of a ball ℬ of radius 𝜌 := Ω(𝜖)
around 𝜇⋆.

Since all observed sets 𝑆𝑖 are convex, the empirical log-likelihood objective
ℒ𝑁 (𝜇) is concave with respect to 𝜇, see Lemma 3.2.9. Since ℒ𝑁 is concave, it
suffices to prove that for any 𝜇 that lies exactly on the sphere of radius 𝜌, i.e.,
the surface of the ball ℬ it holds ℒ𝑁 (𝜇⋆) − ℒ𝑁 (𝜇) ≥ Ω(𝛼2𝜖2). To prove this we
first show that the maximizer of the empirical objective ̃︀𝜇 has to lie inside the ball
ℬ. Assuming that ̃︀𝜇 lies outside of ℬ, let 𝑟1 and 𝑟2 be the antipodal points on
the sphere 𝜕ℬ that belong to the line ̃︀𝜇 connecting ̃︀𝜇 and 𝜇⋆ and assume that 𝑟2
lies between 𝜇⋆ and ̃︀𝜇. In that case the restriction of ℒ𝑁 on that line cannot be
concave, since it has to be increasing from 𝑟1 to 𝜇⋆, decreasing from 𝜇⋆ to 𝑟2 and
then increase again from 𝑟2 to ̃︀𝜇. Thus, ̃︀𝜇 lies inside ℬ. Now, by concavity of ℒ𝑁 ,
we obtain that, by projecting any point 𝜇 that lies outside of the ball ℬ onto ℬ,
we can only increase its empirical likelihood. Therefore, it suffices to consider only
points that lie on the sphere 𝜕ℬ.

We will now show that the claim is true for any 𝜇 ∈ 𝜕ℬ. We can create a
cover of the sphere of radius 𝜌

√
1 + 𝑐𝛼2, centered at 𝜇⋆ for some sufficiently small

absolute constant 𝑐 > 0, whose convex hull contains ℬ. The following lemma shows
that such a cover can be constructed with (1/(𝛼𝜖))𝑂(𝑑) points.

Lemma 3.2.12 (see, e.g., Corollary 4.2.13 of (Ver18)). For any 𝜖 > 0, there exists
an 𝜖-cover 𝒞 of the unit sphere in R𝑘, with respect to the ℓ2-norm, of size 𝑂((1/𝜖)𝑘).
Moreover, the convex hull of the cover 𝒞 contains the sphere of radius 1− 𝜖.
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Since the partition distribution 𝜋 is 𝛼-information preserving we obtain that
for any 𝜇 ∈ 𝒞, it holds 𝑑TV(𝒩𝜋(𝜇),𝒩𝜋(𝜇

⋆)) ≥ Ω(𝛼𝜖). Applying Lemma 3.1.6 with
𝑥 = 𝑂(log(|𝒞|/𝛿)) = 𝑂(𝑑 log(1/(𝜖𝛿))), we get that, with 𝑁 = ̃︀𝑂(𝑑/(𝛼2𝜖2) log(1/𝛿)),
with probability at least 1− 𝛿, it holds that, for any 𝜇 in the cover 𝒞, we have

ℒ𝑁 (𝜇⋆)− ℒ𝑁 (𝜇) ≥ 𝑑TV(𝒩𝜋(𝜇
⋆),𝒩𝜋(𝜇))

2 − 𝛼2𝜖2/2 ≥ Ω(𝛼2𝜖2) . (3.3)

Next, we need to extend this bound from the elements of the cover 𝒞 to all
elements of the sphere 𝜕ℬ. In what follows, in order to simplify notation, we may
assume without loss of generality that 𝜇⋆ = 0. We are going to use the fact that
log(𝒩 (𝜇;𝑆𝑖)) + ‖𝜇‖22/2 is convex. To see that, write

log(𝒩 (𝜇;𝑆𝑖))+‖𝜇‖22/2 = log
(︁
𝑒‖𝜇‖22/2

∫︁
𝑆
𝑒−‖𝑥−𝜇‖22/2𝑑𝑥

)︁
= log

(︁∫︁
𝑆
𝑒−‖𝑥‖22/2+𝑥𝑇𝜇𝑑𝑥

)︁
,

which is a log-sum-exp function and thus convex (this can also be verified by directly
computing the Hessian with respect to 𝜇). This means that ℒ𝑁 (𝜇) + ‖𝜇‖22 is also
convex with respect to 𝜇. Let 𝜇 ∈ 𝜕𝐵. From the construction of the cover 𝒞, we
have that its convex hull contains the sphere 𝜕𝐵. Therefore, 𝜇 can be written as a
convex combination of points of the cover, i.e., 𝜇 =

∑︀|𝒞|
𝑖=1 𝛼𝑖𝜇𝑖, where 𝜇𝑖 ∈ 𝒞. The

convexity of ℒ𝑁 (𝜇) + ‖𝜇‖22 implies that

ℒ𝑁 (𝜇) + ‖𝜇‖22 ≤
|𝒞|∑︁
𝑖=1

𝛼𝑖(ℒ𝑁 (𝜇𝑖) + ‖𝜇𝑖‖22) ≤ max
𝑖
ℒ𝑁 (𝜇𝑖) + 𝜌2(1 + 𝑐𝛼2) ,

where to get the last inequality we used the fact that all points of our cover 𝒞
belong to the sphere of radius 𝜌

√
1 + 𝑐𝛼2. Since ‖𝜇‖22 = 𝜌2 the above inequal-

ity implies that ℒ𝑁 (𝜇) ≤ max𝑖 ℒ𝑁 (𝜇𝑖) + 𝑐𝛼2𝜌2. Combining this inequality with
Equation (3.3), we obtain that, since 𝑐 is sufficiently small and 𝜌 = Θ(𝜖), it holds
ℒ𝑁 (𝜇) ≤ ℒ𝑁 (𝜇⋆)− Ω(𝜖2𝛼2).

The Proof of Theorem 3.2.3

We conclude this section with the proof of Theorem 3.2.3. Since the likelihood
function is concave (and therefore can be efficiently optimized) we focus mainly on
bounding the sample complexity of our algorithm.

Proof of Theorem 3.2.3. Let us assume that the partition distribution 𝜋 is 𝛼-
information preserving and that is supported on convex partitions of R𝑑. Our goal
is to show that there exists an algorithm, that draws ̃︀𝑂(𝑑/(𝜖2𝛼2) log(1/𝛿)) samples
from 𝒩𝜋(𝜇

⋆) and computes an estimate ̃︀𝜇 ∈ R𝑑 so that 𝑑TV(𝒩 (̃︀𝜇),𝒩 (𝜇⋆)) ≤ 𝜖
with probability at least 1 − 𝛿. The algorithm works as follows: it optimizes the
empirical log-likelihood objective

ℒ𝑁 (𝜇) =
1

𝑁

𝑁∑︁
𝑖=1

log𝒩 (𝜇;𝑆𝑖) ,
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where the samples are i.i.d. and 𝑆𝑖 ∼ 𝒩𝜋(𝜇
⋆) for any 𝑖 ∈ [𝑁 ]. Using Lemma 3.2.9,

we establish that the function ℒ𝑁 is concave with respect to the mean 𝜇 ∈ R𝑑.
This follows from the fact that convex combinations of concave functions remain
concave. From Lemma 3.2.10, we obtain that it suffices to compute a point 𝜇 such
that ℒ𝑁 (𝜇) ≥ max𝜇′ ℒ𝑁 (𝜇′) − 𝑂(𝛼2𝜖2). Specifically, given roughly ̃︀𝑂(𝑑/(𝜖2𝛼2))
samples from 𝒩𝜋(𝜇

⋆), we can guarantee, with high probability, that the maximizer̃︀𝜇 of the empirical log-likelihood achieves a total variation gap at most 𝜖 against
the true mean vector 𝜇⋆, i.e., 𝑑TV(𝒩 (̃︀𝜇),𝒩 (𝜇⋆)) ≤ 𝜖.

We proceed with a discussion about the running time of the above algorithm.
Since ℒ𝑁 (𝜇) is a concave function with respect to 𝜇, this can be done efficiently.
For example, we may perform gradient-ascent: for a fixed convex set 𝑆 ⊆ R𝑑

the gradient of the function 𝑓(𝜇) = log𝒩 (𝜇;𝑆) = logE𝑥∼𝒩 (𝜇) [1{𝑥 ∈ 𝑆}] (see
Lemma 3.2.9) is equal to

∇𝜇𝑓(𝜇) = E
𝑥∼𝒩𝑆(𝜇)

[𝑥]− 𝜇 .

In order to compute the gradient of 𝑓 , it suffices to approximately compute E𝑥∼𝒩𝑆(𝜇)[𝑥]
= E𝑥∼𝒩 (𝜇)[𝑥 1{𝑥 ∈ 𝑆}] /𝒩 (𝜇;𝑆) . Both terms of this ratio can be estimated using
independent samples from the distribution 𝒩 (𝜇) and access to the oracle 𝒪𝑆(·),
since the mean 𝜇 is known (the current guess of the learning algorithm). Hence, the
running time will be polynomial in the number of samples using, e.g., the ellipsoid
algorithm.

Remark 3. We remark that a precise calculation of the runtime would also depend
on the regularity of the concave objective (Lipschitz or smoothness assumptions
etc.) which in turn depend on the geometric properties of the sets. We opt not to
track such dependencies since our main result is that, in this setting, the likelihood
objective is concave and therefore can be efficiently optimized using standard black-
box optimization techniques.

3.2.4 Geometric Information Preservation
In this section, we aim to provide some intuition behind the notion of informa-

tion preserving partitions. The following result provides a geometric property for
the partition distribution 𝜋. We show that if the partition distribution satisfies this
particular geometric property, then it is also information preserving. We underline
that the geometric property is quite important for our better understanding and it
has the advantage that it is easy to verify. Hence, while the notion of information
preserving distributions may be less intuitive, we believe that the geometric preser-
vation property that we state in Lemma 3.2.13 can fulfill this lack of intuition. The
property informally states that, for any hyperplane, the sets in the partition that
are not cut by this hyperplane have non trivial probability mass with respect to
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Figure 3.3: (a) is a very rough partition that makes learning the mean im-
possible: Gaussians 𝒩 ((0, 𝑧)) centered along the same vertical line (0, 𝑧)
assign exactly the same probability to all cells of the partitions and there-
fore, 𝑑TV(𝒩𝜋((0, 𝑧1)),𝒩𝜋((0, 𝑧2))) = 0: it is impossible to learn the second
coordinate of the mean. (b) is a convex partition of R2, that makes recovering
the Gaussian possible.

the true Gaussian. In the case of mixtures of convex partitions, we would like the
same property to hold in expectation.

Before stating Lemma 3.2.13, let us return to Figure 3.3. Observe that, in
the first example with the four halfspaces, the geometric property does not hold,
since there exists a line (i.e., a hyperplane) that intersects with all the sets. On
the other hand, if we consider the second example with the Voronoi partition and
assume that the true mean lies in the middle of the picture, we can see that any
hyperplane does not intersect with a sufficient number of sets and, hence, the union
of the uncut sets has non trivial probability mass for any hyperplane.

For a hyperplane ℋ𝑤,𝑐 = {𝑥 ∈ R𝑑 : 𝑤𝑇𝑥 = 𝑐} with normal vector 𝑤 ∈ R𝑑 and
threshold 𝑐 ∈ R, we denote the two associated halfspaces by ℋ+

𝑤,𝑐 = {𝑥 ∈ R𝑑 :

𝑤𝑇𝑥 > 𝑐} and ℋ−
𝑤,𝑐 = {𝑥 ∈ R𝑑 : 𝑤𝑇𝑥 < 𝑐}. Before stating the next Lemma, we

shortly describe what means for a hyperplane to cut a set with respect to a Gaussian
𝒩 . The set 𝑆 is not cut by the hyperplane ℋ, if it totally lies in a halfspace induced
by the hyperplane, say ℋ+, i.e., it holds that 𝒩 (𝑆) = 𝒩 (𝑆 ∩ℋ+).

Lemma 3.2.13 (Geometric Information Preservation). Consider the generative
process of coarse 𝑑-dimensional Gaussian data 𝒩𝜋(𝜇

⋆), (see Definition 3.2.1). Con-
sider an arbitrary hyperplane ℋ𝑤,𝑐 with normal vector 𝑤 ∈ R𝑑 and threshold 𝑐 ∈ R.
For a partition 𝒮 ∈ supp(𝜋) of R𝑑, consider the collection that contains all the sets
that are not cut by the hyperplane ℋ𝑤,𝑐, i.e.,

𝑈𝑤,𝑐,𝒮 =
⋃︁{︁

𝑆 ∈ 𝒮 : 𝒩 ⋆(𝑆 ∩ℋ+
𝑤,𝑐) = 𝒩 ⋆(𝑆) ∨𝒩 ⋆(𝑆 ∩ℋ−

𝑤,𝑐) = 𝒩 ⋆(𝑆)
}︁
.

Assume that 𝜋 satisfies
E

𝒮∼𝜋

[︁
𝒩 (𝜇⋆;𝑈𝑤,𝑐,𝒮)

]︁
≥ 𝛼 , (3.4)
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for some 𝛼 ∈ (0, 1]. Then, for any Gaussian distribution 𝒩 (𝜇), it holds that

𝑑TV(𝒩𝜋(𝜇),𝒩𝜋(𝜇
⋆)) ≥ 𝐶𝛼 · 𝑑TV(𝒩 (𝜇),𝒩 (𝜇⋆)) ,

for some 𝐶𝛼 that depends only on 𝛼 and satisfies 𝐶𝛼 = poly(𝛼), i.e., the partition
distribution is 𝐶𝛼-information preserving.

Hence, the above geometric property is sufficient for information preserva-
tion. If we assume that the total variation distance between the true Gaus-
sian distribution 𝒩 (𝜇⋆) and a possible guess 𝒩 (𝜇) is at least 𝜖 and the parti-
tion distribution satisfies the geometric property of Equation (3.4), we get that
the coarse generative process preserves a sufficiently large gap, in the sense that
𝑑TV(𝒩𝜋(𝜇

⋆),𝒩𝜋(𝜇)) ≥ poly(𝛼)𝜖. The proof of the above lemma, which relies on
high-dimensional anti-concentration results on Gaussian distributions, follows.

Proof of Lemma 3.2.13. Let us denote the true distribution by 𝒩 ⋆ = 𝒩 (𝜇⋆, 𝐼)
for short. Consider an arbitrary hyperplane ℋ𝑤,𝑐 with normal vector 𝑤 ∈ R𝑑

and threshold 𝑐 ∈ R. Since the partition distribution (supported on a family
of partitions ℬ) satisfies Equation (3.4), we have that, for the random variable
𝒩 ⋆(𝑈𝑤,𝑐,𝒮), that takes values in [0, 1], there exists 𝛼 such that

E
𝒮∼𝜋

[︁
𝒩 ⋆(𝑈𝑤,𝑐,𝒮)

]︁
= 𝛼 .

We will use the following simple Markov-type inequality for bounded random vari-
ables.

Fact 3 (Lemma B.1 from (SSBD14)). Let 𝑍 be a random variable that takes values
in [0, 1]. Then, for any 𝛼 ∈ (0, 1), it holds that

Pr[𝑍 > 𝛼] ≥ E[𝑍]− 𝛼

1− 𝛼
≥ E[𝑍]− 𝛼 .

By the Fact 3, it holds that

Pr
𝒮∼𝜋

[︁
𝒩 ⋆(𝑈𝑤,𝑐,𝒮) ≥ 𝛼/2

]︁
≥ 𝛼/2 .

Hence, the mass of the “good” partitions is at least 𝛼/2. Fix such a partition 𝒮 ∈ ℬ
(in the support of the partition distribution) and consider the true 𝒩 ⋆ = 𝒩 (𝜇⋆)
and the guess 𝒩 = 𝒩 (𝜇) distributions. For this pair of distributions, consider the
set

ℋ =
{︁
𝑥 ∈ R𝑑 : 𝑥𝑇 (𝜇− 𝜇⋆) =

(︀
‖𝜇‖22 − ‖𝜇⋆‖22

)︀
/2
}︁
.

Observe that this set is a hyperplane with normal vector 𝜇⋆−𝜇, that contains the
midpoint 1

2(𝜇+ 𝜇⋆) (see Figure 3.4).
Our main focus is to lower bound the total variation distance of the coarse

distributions 𝒩 ⋆
𝜋 and 𝒩𝜋. We claim that this lower bound can be described as a
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𝜇1 = 𝜇*

𝜇2
ℋ

Figure 3.4: Illustration of the worst-case set in testing the hypotheses ℎ1 =
{𝜇1 = 𝜇⋆} and ℎ2 = {𝜇2 = 𝜇⋆}.

fractional knapsack problem and, hence, it is attained by a worst-case set, that
(intuitively) places points as close as possible to the hyperplane ℋ, until its mass
with respect to the true Gaussian 𝒩 ⋆ is at least 𝛼/2. Recall that the total variation
distance between the two coarse distributions is

𝑑TV(𝒩𝜋,𝒩 ⋆
𝜋 ) =

∑︁
𝒮∈ℬ

𝜋(𝒮)
∑︁
𝑆∈𝒮

⃒⃒⃒
𝒩 (𝑆)−𝒩 ⋆(𝑆)

⃒⃒⃒
.

So, the LHS is at least Θ(𝛼) times the absolute gap of the masses assigned by𝒩 and
𝒩 ⋆ over a worst-case set that lies in a good partition (one with 𝒩 ⋆(𝑈𝑤,𝑐,𝒮) ≥ 𝛼/2).
This holds since the probability to draw a good partition is at least 𝛼/2. The
following optimization problem gives a lower bound on the mass gap of a worst-
case set in a good partition and, consequently, a lower bound on the total variation
distance between 𝒩 ⋆

𝜋 and 𝒩𝜋.

min
𝑆

⃒⃒⃒ ∫︁
(𝒩 (𝜇⋆;𝑥)−𝒩 (𝜇;𝑥))1𝑆(𝑥)𝑑𝑥

⃒⃒⃒
,

subj. to
∫︁
𝒩 (𝜇⋆;𝑥)1𝑆(𝑥)𝑑𝑥 ≥ 𝛼/2 .

We begin with a claim about the shape of the worst case set. Let 𝑡 = (‖𝜇‖22 −
‖𝜇⋆‖22)/2 be the hyperplane threshold.

Claim 6. Let ℋ+ = {𝑥 : 𝑥𝑇 (𝜇− 𝜇⋆) < 𝑡} and ℋ− = {𝑥 : 𝑥𝑇 (𝜇− 𝜇⋆) > 𝑡}. The
mass of the solution of the fractional knapsack is totally contained in either ℋ+ or
ℋ−.

Since the partition distribution satisfies Equation (3.4) with respect to the true
Gaussian 𝒩 (𝜇⋆) and since the set ℋ is a hyperplane, the probability mass that is
not cut by ℋ is at least 𝛼. Hence, there exists a halfspace (either ℋ+ or ℋ−) with
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mass at least 𝛼/2. Also, observe that the hyperplane ℋ is the zero locus of the
polynomial 𝑞(𝑥) = ‖𝑥− 𝜇‖22 − ‖𝑥− 𝜇⋆‖22 and, hence, it is the set of points where
the two spherical Gaussians 𝒩 (𝜇) and 𝒩 (𝜇⋆) assign equal mass. We have that

ℋ+ =
{︁
𝑥 : 𝒩 (𝜇⋆) > 𝒩 (𝜇)

}︁
.

Hence, we can assume that the worst-case set lies totally in ℋ+ and, then, the
optimization problem can be written as

min
𝑆

∫︁ (︂
1− 𝒩 (𝜇;𝑥)

𝒩 (0;𝑥)

)︂
𝒩 (0;𝑥)1𝑆(𝑥)𝑑𝑥 ,

subj. to
∫︁
𝒩 (0;𝑥)1𝑆(𝑥)𝑑𝑥 ≥ 𝛼/2, 𝑆 ∈ ℋ+ .

Without loss of generality, we assume that 𝒩 ⋆ = 𝒩 (0, 𝐼) and 𝒩 = 𝒩 (𝜇, 𝐼). In
order to design the worst-case set, since the optimization has the structure of the
fractional knapsack problem, we can think of each point 𝑥 ∈ ℋ+ as having weight
equal to its contribution to the mass gap (𝒩 (0;𝑥)−𝒩 (𝜇;𝑥)) and value equal to
its density with respect to the true Gaussian 𝒩 (0;𝑥). Hence, in order to design
the worst-case set, the points 𝑥 ∈ ℋ+ should be included in the set in order of
increasing ratio of weight over value, until reaching a threshold 𝑇 . So, we can
define the worst-case set to be

𝑆 =
{︁
𝑥 ∈ ℋ+ : 1− 𝒩 (𝜇;𝑥)

𝒩 (0;𝑥)
≤ 𝑇

}︁
=
{︁
𝑥 ∈ ℋ+ : 1− exp(𝑝(𝑥)) ≤ 𝑇

}︁
,

where 𝑝(𝑥) = −1
2(𝜇−𝑥)

𝑇 (𝜇−𝑥)+ 1
2𝑥

𝑇𝑥 = −1
2𝜇

𝑇𝜇+𝜇𝑇𝑥 and note that 𝑝(𝑥) ≤ 0
for any 𝑥 ∈ ℋ+. We will use the following anti-concentration result about the
Gaussian mass of sets, defined by polynomials.

Lemma 3.2.14 (Theorem 8 of (CW01)). Let 𝑞, 𝛾 ∈ R+,𝜇 ∈ R𝑑 and Σ in the
positive semidefinite cone S𝑑+. Consider 𝑝 : R𝑑 → R a multivariate polynomial of
degree at most ℓ and let

𝒬 =
{︁
𝑥 ∈ R𝑑 : |𝑝(𝑥)| ≤ 𝛾

}︁
.

Then, there exists an absolute constant 𝐶 such that

𝒩 (𝜇,Σ;𝒬) ≤ 𝐶𝑞𝛾1/ℓ

(E𝑧∼𝒩 (𝜇,Σ)[|𝑝(𝑧)|𝑞/ℓ])1/𝑞
.

We can apply Lemma 3.2.14 for the quadratic polynomial 𝑝(𝑥) by setting 𝛾 =
𝛼2

256𝐶2

√︀
E𝑥∼𝒩 ⋆ [𝑝2(𝑥)] with 𝑞 = 4, where 𝐶 is the absolute Carbery-Wright constant.

Hence, we get that the Gaussian mass of the set 𝒬 = {𝑥 : |𝑝(𝑥)| ≤ 𝛾} is equal to

𝒩 ⋆(𝒬) ≤ 𝛼/4 .
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So, for any point 𝑥 in the remaining 𝛼/4 mass of the set 𝑆, it holds that |𝑝(𝑥)| ≥ 𝛾.
We first observe that 𝛾 can lower bounded by the total variation distance of 𝒩 ⋆

and 𝒩 . It suffices to lower bound the expectation E𝑥∼𝒩 ⋆ [𝑝2(𝑥)]. We have that

E
𝑥∼𝒩 ⋆

[︁
𝑝2(𝑥)

]︁
≥ Var

𝑥∼𝒩 ⋆

[︁
𝑝(𝑥)

]︁
= Var

𝑥∼𝒩 ⋆

[︁
− 1

2
𝜇𝑇𝜇+ 𝜇𝑇𝑥

]︁
= ‖𝜇‖22 ,

and, hence

𝛾 ≥ 𝛼2

256𝐶2
· ‖𝜇‖2 .

We will use the following lemma for the total variation distance of two Normal
distributions.

Lemma 3.2.15 (see Corollaries 2.13 and 2.14 of (DKK+16)). Let 𝑁1 = 𝒩 (𝜇1,Σ1), 𝑁2 =
𝒩 (𝜇2,Σ2) be two Normal distributions. Then, it holds

𝑑TV(𝑁1, 𝑁2) ≤
1

2

⃦⃦⃦
Σ

−1/2
1 (𝜇1 − 𝜇2)

⃦⃦⃦
2
+
√
2
⃦⃦⃦
𝐼 −Σ

−1/2
1 Σ2Σ

−1/2
1

⃦⃦⃦
𝐹
.

Applying Lemma 3.2.15 to the above inequality, we get

𝛾 ≥ 𝛼2

256𝐶2
· 𝑑TV(𝒩 (𝜇),𝒩 (𝜇⋆)) .

To conclude, we have to lower bound the 𝐿1 gap between 𝒩 (0, 𝐼;𝑥)1𝑆(𝑥) and
𝒩 (𝜇, 𝐼;𝑥)1𝑆(𝑥) and since 𝑆 lies totally in ℋ+∫︁

𝑆
(𝒩 (0;𝑥)−𝒩 (𝜇;𝑥))𝑑𝑥 = E

𝑥∼𝒩 ⋆

[︁
1− exp(𝑝(𝑥))

⃒⃒⃒
1𝑆(𝑥)

]︁
.

To proceed, we distinguish two cases: First, assume that 𝛾 ≤ 1 and recall that
𝒬 = {𝑥 : |𝑝(𝑥)| ≤ 𝛾}. Note that for 𝑦 ∈ [−1, 0], it holds that 1 − exp(𝑦) ≥ |𝑦|/2
and, hence, we have that:∫︁

𝑆
(𝒩 (0;𝑥)−𝒩 (𝜇;𝑥))𝑑𝑥 ≥ E

𝑥∼𝒩 ⋆

[︂
|𝑝(𝑥)|
2

1𝑆∖𝒬(𝑥)

]︂
≥ 𝛾 E

𝑥∼𝒩 ⋆

[︀
1𝑆∖𝒬(𝑥)

]︀
≥ 𝛼𝛾

4
,

and, by the lower bound for 𝛾, we get∫︁
𝑆
(𝒩 (0, 𝐼;𝑥)−𝒩 (𝜇, 𝐼;𝑥))𝑑𝑥 ≥ 𝐶𝛼 · 𝑑TV(𝒩 (𝜇),𝒩 (𝜇⋆)) ,

for some 𝐶𝛼 = Ω(𝛼3). Otherwise, let 𝛾 > 1. Note that for 𝑦 < −1, it holds that
1− exp(𝑦) ≥ 1/2. Hence, we get that∫︁

𝑆
(𝒩 (0;𝑥)−𝒩 (𝜇;𝑥))𝑑𝑥 ≥ E

𝑥∼𝒩 ⋆

[︂
1

2
1𝑆∖𝒬(𝑥)

]︂
≥ 𝛼/8 .

In conclusion, we get that

𝑑TV(𝒩 *
𝜋 ,𝒩𝜋) ≥ 𝐶𝛼 · 𝑑TV(𝒩 ⋆,𝒩 ) ,

where 𝐶𝛼 = poly(𝛼) and depends only on 𝛼.
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Chapter 4

Learning with Bounded Noise

4.1 Main Definitions and Results
We remind the reader some basic notions introduced in Section 1.4.3. Label

Ranking is the problem of learning a hypothesis that maps features to rankings
over a finite set of labels. Given a feature vector 𝑥 ∈ R𝑑, a sorting function 𝜎(·)
maps it to a ranking of 𝑘 alternatives, i.e., 𝜎(𝑥) is an element of the symmetric
group with 𝑘 elements, S𝑘. We focus on the fundamental concept class of Linear
Sorting functions (HPRZ03). A linear sorting function parameterized by a matrix
𝑊 ∈ R𝑘×𝑑 with 𝑘 rows 𝑊1, . . . ,𝑊𝑘 takes a feature 𝑥 ∈ R𝑑, maps it to 𝑊𝑥 = (𝑊1·
𝑥, . . . ,𝑊𝑘 ·𝑥) ∈ R𝑘 and then outputs an ordering (𝑖1, . . . , 𝑖𝑘) of the 𝑘 alternatives
such that 𝑊𝑖1 · 𝑥 ≥𝑊𝑖2 · 𝑥 ≥ . . . ≥𝑊𝑖𝑘 · 𝑥.

We consider the natural setting where the feature vector 𝑥 ∈ R𝑑 is generated
by a standard normal distribution and the ground-truth ranking for each sample 𝑥
is given by the LSF 𝜎𝑊 ⋆(𝑥) for some unknown parameter matrix 𝑊 ⋆ ∈ R𝑘×𝑑. For
a fixed 𝑥, the ranking that we observe comes from an 𝜂-noisy ranking distribution
with ground-truth ranking 𝜎𝑊 ⋆(𝑥).

In particular, we observe samples generated as follows.

Definition 4.1.1 (Noisy Linear Label Ranking Distribution). Fix 𝜂 ∈ [0, 1/2) and
some ground-truth parameter matrix 𝑊 ⋆ ∈ R𝑘×𝑑. We assume that the 𝜂-noisy
linear label ranking distribution 𝒟 over R𝑑 × S𝑘 satisfies the following:

1. The 𝑥-marginal of 𝒟 is the 𝑑-dimensional standard normal distribution.

2. For any (𝑥, 𝜋) ∼ 𝒟, the distribution of 𝜋 conditional on 𝑥 is an 𝜂-noisy
ranking distribution with ground-truth ranking 𝜎𝑊 ⋆(𝑥), i.e., for any 𝑖, 𝑗 ∈
[𝑘], with 𝑖 ̸= 𝑗, satisfies Pr𝜋∼ℳ(𝜎⋆)[𝑖 ≺𝜋 𝑗 | 𝑖 ≻𝜎⋆ 𝑗] ≤ 𝜂.

We refer to the above generative process as the bounded noise model (following
the standard terminology in the literature). The main contributions of this chapter
are the first efficient algorithms for learning LSFs with bounded noise with respect
to Kendall’s Tau distance and top-𝑟 disagreement loss.
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Learning in Kendall’s Tau Distance. The most standard metric in rank-
ings (SSBD14) is Kendall’s Tau (KT) distance which, for two rankings 𝜋, 𝜏 ∈ S𝑘,
measures the fraction of pairs (𝑖, 𝑗) on which they disagree. That is, ΔKT(𝜋, 𝜏) =∑︀

𝑖≺𝜋𝑗
1{𝑖 ≻𝜏 𝑗}/

(︀
𝑘
2

)︀
. Our first result is an efficient learning algorithm that, given

samples from an 𝜂-noisy linear label ranking distribution 𝒟, computes a parameter
matrix 𝑊 that ranks the alternatives almost optimally with respect to the KT
distance from the ground-truth ranking 𝜎𝑊 ⋆(·).

Theorem 4.1.2 (Learning LSFs in KT Distance). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1).
Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assumptions of
Definition 4.1.1 with ground-truth LSF 𝜎𝑊 ⋆(·). There exists an algorithm that
draws 𝑁 = ̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6
log(𝑘/𝛿)

)︁
samples from 𝒟, runs in sample-polynomial time,

and computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿,

E
𝑥∼𝒩𝑑

[ΔKT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

Our proper learning algorithm consists of two steps: an improper learning al-
gorithm that decomposes the ranking problem to 𝑂(𝑘2) binary linear classification
problems and a convex (second order conic) program that “compresses” the 𝑘2 lin-
ear classifiers to obtain a 𝑘× 𝑑 matrix 𝑊 . Our improper learning algorithm splits
the ranking learning problem into 𝑂(𝑘2) binary, 𝑑-dimensional linear classification
problems with Massart noise. In particular, for every pair of elements 𝑖, 𝑗 ∈ [𝑘],
each binary classification task asks whether element 𝑖 is ranked higher than ele-
ment 𝑗 in the ground-truth permutation 𝜎𝑊 ⋆(𝑥). As we already discussed, we have
that, under the Gaussian distribution, there exist efficient Massart learning algo-
rithms (BZ17; MV19; DKTZ20; ZSA20; ZL21) that can recover linear classifiers
sgn(𝑣𝑖𝑗 · 𝑥) that correctly order the pair 𝑖, 𝑗 for all 𝑥 apart from a region of 𝑂(𝜖)-
Gaussian mass. However, we still need to aggregate the results of the approximate
binary classifiers in order to obtain a ranking of the 𝑘 alternatives for each 𝑥. We
first show that we can design a “voting scheme” that combines the results of the
binary classifiers using an efficient constant factor approximation algorithm for the
Minimum Feedback Arc Set (MFAS) problem (ACN08). This gives us an efficient
but improper algorithm for learning LSFs in Kendall’s Tau distance. In order to
obtain a proper learning algorithm, we further “compress” the 𝑂(𝑘2) approximate
linear classifiers with normal vectors 𝑣𝑖𝑗 and obtain a matrix 𝑊 ∈ R𝑘×𝑑 with the
property that the difference of every two rows 𝑊𝑖−𝑊𝑗 is 𝑂(𝜖)-close to the vector
𝑣𝑖𝑗 . More precisely, we show that, given the linear classifiers 𝑣𝑖𝑗 ∈ R𝑑, we can ef-
ficiently compute a matrix 𝑊 ∈ R𝑘×𝑑 such that the following angle distance with
𝑊 ⋆ is small:

𝑑angle(𝑊 ,𝑊 ⋆) , max
𝑖,𝑗

𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 ) ≤ 𝑂(𝜖) . (4.1)

It is not hard to show that, as long as the above angle metric is at most 𝑂(𝜖),
then (in expectation over the standard Gaussian) Kendall’s Tau distance between
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the LSFs is also 𝑂(𝜖). A key technical difficulty that we face in this reduction is
bounding the “condition number” of the convex (second order conic) program that
finds the matrix 𝑊 given the vectors 𝑣𝑖𝑗 , see Claim 8. Finally, we remark that
the proper learning algorithm of Theorem 4.1.2 results in a compact and efficient
sorting function that requires: (i) storing 𝑂(𝑘) weight vectors as opposed to the
initial 𝑂(𝑘2) vectors of the improper learner; and (ii) evaluating 𝑘 inner products
with 𝑥 to find its ranking (instead of 𝑂(𝑘2)).

Learning in top-𝑟 Disagreement. We next present our learning algorithm
for the top-𝑟 metric formally defined as Δtop−𝑟(𝜋, 𝜏) = 1{𝜋1..𝑟 ̸= 𝜏1..𝑟}, where by
𝜋1..𝑟 we denote the ordering on the first 𝑟 elements of the permutation 𝜋. The
top-𝑟 metric is a disagreement metric in the sense that it takes binary values and
for 𝑟 = 1 captures the standard (multiclass) top-1 classification loss. We remark
that, in contrast with the top-𝑟 classification loss, which only requires the predicted
label to be in the top-𝑟 predictions of the model, the top-𝑟 ranking metric that we
consider here requires that the model puts the same elements in the same order as
the ground truth in the top-𝑟 positions.

Theorem 4.1.3 (Learning LSFs in top-𝑟 Disagreement). Fix 𝜂 ∈ [0, 1/2), 𝑟 ∈ [𝑘]
and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying
the assumptions of Definition 4.1.1 with ground-truth LSF 𝜎𝑊 ⋆(·). There exists an
algorithm that draws 𝑁 = ̃︀𝑂 (︁ 𝑑𝑟𝑘

𝜖(1−2𝜂)6
log(1/𝛿)

)︁
samples from 𝒟, runs in sample-

polynomial time and computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with probability at
least 1− 𝛿,

E
𝑥∼𝒩𝑑

[Δtop−𝑟(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

Suppose that we are interested in recovering only the top element of the ranking
(𝑟 = 1). One approach would be to directly use the improper learning algorithm for
this task and ask for KT distance of order roughly 𝜖/𝑘2. The resulting hypothesis
would produce good predictions for the top element but the required sample com-
plexity would be 𝑂(𝑑𝑘2). While it seems that training 𝑂(𝑘2) 𝑑-dimensional binary
classifiers inherently requires 𝑂(𝑑𝑘2) samples, we show that, using the proper KT
distance learning algorithm of Theorem 4.1.2, we can also obtain improved sample
complexity results for the top-𝑟 metric. Our main technical contribution here is a
novel estimate of the top-𝑟 disagreement in terms of the angle metric. In general,
one can show that the top-𝑟 disagreement is at most 𝑂(𝑘2) 𝑑angle(𝑊 ,𝑊 ⋆). We
significantly sharpen this estimate by showing the following lemma.

Lemma 4.1.4 (Top-𝑟 Disagreement via Parameter Distance). Consider two ma-
trices 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑 and let 𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We
have that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑊𝑥) ̸= 𝜎1..𝑟(𝑊
⋆𝑥)] ≤ ̃︀𝑂(𝑘𝑟) 𝑑angle(𝑊 ,𝑊 ⋆) .
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We remark that Lemma 4.1.4 is a general geometric tool that we believe will
be useful in other distribution-specific multiclass learning settings. The proof of
Lemma 4.1.4 mainly relies on geometric Gaussian surface area computations that
we believe are of independent interest. For the details, we refer the reader to
Section 4.5. An interesting question with a convex-geometric flavor is whether the
sharp bound of Lemma 4.1.4 also holds under the more general class of isotropic
log-concave distributions.

4.2 Related Work
Robust Supervised Learning. We start with a summary of prior work on
PAC learning with Massart noise. The Massart noise model was formally defined in
(MN06) but similar variants had been defined by Vapnik, Sloan and Rivest (Vap06;
Slo88; Slo92; RS94; Slo96). This model is a strict extension of the Random Classifi-
cation Noise (RCN) model (Ang88), where the label noise is uniform, i.e., context-
independent and is a special case of the agnostic model (Hau18; KSS94), where
the label noise is fully adversarial and computational barriers are known to exist
(GR09; FGKP06; Dan16; DKZ20; GGK20; DKPZ21; HSSVG22). Our work par-
tially builds upon on the algorithmic task of PAC learning halfspaces with Massart
noise (BH20). In the distribution-independent setting, known efficient algorithms
(DGT19b; CKMY20; DKT21) achieve error 𝜂+ 𝜖 and the works of (DK20; NT22)
indicate that this error bound is the best possible in the Statistical Query model
(Kea98). This lower bound motivates the study of the distribution-specific setting
(which is also the case of our work). There is an extensive line of work in this direc-
tion: (ABHU15; ABHZ16; YZ17; ZLC17; BZ17; MV19; DKTZ20; ZSA20; ZL21)
with the currently best algorithms succeeding for all 𝜂 < 1/2 with a sample and
computational complexity poly(𝑑, 1/𝜖, 1/(1 − 2𝜂)) under a class of distributions
including isotropic log-concave distributions. For details, see (DKK+21). In this
chapter we focus on Gaussian marginals but some of our results extend to larger
distribution classes.

Label Ranking. Our results of this chapter lie in the area of Label Rank-
ing, which has received significant attention over the years (SS07; HFCB08; CH08;
HPRZ03; FHMB08; DSM03). There are multiple approaches for tackling this prob-
lem (see (VG10), (ZLY+14)). Some of them are based on probabilistic models
(CH08; CDH10; GDV12; ZLGQ14) or may be tree based, such as decision trees
(CHH09), entropy based ranking trees and forests (RdSRSK15; dSSKC17), bagging
techniques (AGM17) and random forests (ZQ18). There are also works focusing
on supervised clustering (GDGV13). Finally, (CH08; CDH10; CHH09) adopt an
instance-based approaches using nearest neighbors approaches. The above results
are industrial. From a theoretical perspective, LR has been mainly studied from a
statistical learning theory framework (CV20; CKS18; KGB18; KCS17). (FKP21)
provide some computational guarantees for the performance of decision trees in the
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noiseless case and some experimental results on the robustness of random forests
to noise. The setting of (DGR+14) is close to ours but is investigated from an
experimental standpoint. We remark that while reducing LR to multiple binary
classification tasks has been used in prior literature (HFCB08; CH12; FKP21),
standard reductions can not tolerate noise in rankings (nevertheless, from an ex-
perimental perspective, e.g., random forests seem robust to noise but lack formal
theoretical guarantees). Our reduction crucially relies on the existence of efficient
learning algorithms for binary linear classification with Massart noise.

4.3 Notation and Preliminaries
General Notation. We use ̃︀𝑂(·) to omit poly-logarithmic factors. A learning

algorithm has sample-polynomial runtime if it runs in time polynomial in the size
of the description of the input training set. We denote vectors by boldface 𝑥 (with
elements 𝑥𝑖) and matrices with 𝑊 , where we let 𝑊𝑖 ∈ R𝑑 denote the 𝑖-th row of
𝑊 ∈ R𝑘×𝑑 and 𝑊𝑖𝑗 its elements. We denote 𝑎 · 𝑏 the inner product of two vectors
and 𝜃(𝑎, 𝑏) their angle. Let 𝒩𝑑 denote the 𝑑-dimensional standard normal and Γ(·)
the Gaussian surface area.

Rankings. We let argsort𝑖∈[𝑘]𝑣 denote the ranking of [𝑘] in decreasing order
according to the values of 𝑣. For a ranking 𝜋, we let 𝜋(𝑖) denote the position of
the 𝑖-th element. If 𝜋 = 𝜋(𝑥), we may also write 𝜋(𝑥)(𝑖) to denote the position
of 𝑖. We often refer to the elements of a ranking as alternatives. For a ranking 𝜎,
we let 𝜎1..𝑟 denote the top-𝑟 part of 𝜎. When 𝜎 = 𝜎(𝑥), we may also write 𝜎1..𝑟(𝑥)
and 𝜎ℓ(𝑥) will be the alternative at the ℓ-th position. We let ΔKT denote the
(normalized) KT distance, i.e., ΔKT(𝜋, 𝜏) =

∑︀
𝑖≺𝜋𝑗

1{𝑖 ≻𝜏 𝑗}/
(︀
𝑘
2

)︀
for 𝜋, 𝜏 ∈ S𝑘.

4.4 Learning in KT distance: Theorem 4.1.2
In this section, we present the main tools required to obtain our proper learning

algorithm of Theorem 4.1.2. Our proper algorithm adopts a two-step approach:
it first invokes an efficient improper algorithm which, instead of a linear sorting
function (i.e., a matrix 𝑊 ∈ R𝑘×𝑑), outputs a list of 𝑂(𝑘2) linear classifiers. We
then design a novel convex program in order to find the matrix 𝑊 satisfying the
guarantees of Theorem 4.1.2. Let us begin with the improper learner for LSFs with
bounded noise with respect to the KT distance, whose description can be found in
Algorithm 6.

4.4.1 Improper Learning Algorithm
Let us assume that the target function is 𝜎⋆(𝑥) = 𝜎𝑊 ⋆(𝑥) = argsort(𝑊 ⋆𝑥)

for some 𝑊 ⋆ ∈ R𝑘×𝑑.
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Algorithm 6 Non-proper Learning Algorithm ImproperLSF

Input: Training set 𝑇 = {(𝑥𝑡, 𝜋𝑡)}𝑡∈[𝑁 ], 𝜖, 𝛿 ∈ (0, 1), 𝜂 ∈ [0, 1/2)
Output: Sorting function ℎ : R𝑑 → S𝑘

For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, create 𝑇𝑖𝑗 = {(𝑥𝑡, sgn(𝜋𝑡(𝑖)− 𝜋𝑡(𝑗)))}
For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, compute 𝑣𝑖𝑗 = MassartLTF(𝑇𝑖𝑗,

𝜖
4
, 𝛿
10𝑘2

, 𝜂) ◁ See
Appendix 4.6.1
Ranking Phase: Given 𝑥 ∈ R𝑑:

(a) Construct directed graph 𝐺 with 𝑉 (𝐺) = [𝑘] and edges 𝑒𝑖→𝑗

only if 𝑣𝑖𝑗 · 𝑥 > 0 ∀𝑖 ̸= 𝑗
(b) Output ℎ(𝑥) = MFAS(𝐺) ◁ See Appendix 4.6.1

Step 1: Binary decomposition and Noise Structure. For each drawn
example (𝑥, 𝜋) from the 𝜂-noisy linear label ranking distribution 𝒟 (see Defini-
tion 4.1.1), we create

(︀
𝑘
2

)︀
binary examples (𝑥, 𝑦𝑖𝑗) with 𝑦𝑖𝑗 = sgn(𝜋(𝑖) − 𝜋(𝑗)) for

any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. We have that

Pr
(𝑥,𝜋)∼𝒟

[︀
𝑦𝑖𝑗 · sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) < 0 | 𝑥

]︀
= Pr

𝜋∼ℳ(𝜎⋆(𝑥))

[︀
𝜋(𝑖) < 𝜋(𝑗) |𝑊 ⋆

𝑖 · 𝑥 < 𝑊 ⋆
𝑗 · 𝑥

]︀
.

Since ℳ(𝜎⋆(𝑥)) is an 𝜂-noisy ranking distribution (see Definition 1.4.3), we get
that the above quantity is at most 𝜂 < 1/2. Therefore, each sample (𝑥, 𝑦𝑖𝑗) can
be viewed as a sample from a distribution 𝒟𝑖𝑗 with Gaussian 𝑥-marginal, optimal
linear classifier sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) ·𝑥), and Massart noise 𝜂. Hence, we have reduced

the task of learning noisy LSFs to a number of
(︀
𝑘
2

)︀
sub-problems concerning the

learnability of halfspaces in the presence of bounded (Massart) noise.

Step 2: Solving Binary Sub-problems. We can now apply the algo-
rithm MassartLTF for LTFs with Massart noise under standard Gaussian marginals
(ZSA20) (for details, see Appendix 4.6.1): for all the pairs of alternatives 1 ≤ 𝑖 <
𝑗 ≤ 𝑘 with accuracy parameter 𝜖′, confidence 𝛿′ = 𝑂(𝛿/𝑘2), and a total number
of 𝑁 = ̃︀Ω(︁ 𝑑

𝜖′(1−2𝜂)6
log(𝑘/𝛿)

)︁
i.i.d. samples from 𝒟, we can obtain a collection of

linear classifiers with normal vectors 𝑣𝑖𝑗 for any 𝑖 < 𝑗. We remark that each one
of these halfspaces 𝑣𝑖𝑗 achieves 𝜖 disagreement with the ground-truth halfspaces
𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 with high probability, i.e.,

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖′ .

Step 3: Ranking Phase. We now have to aggregate the linear classifiers
and compute a single sorting function ℎ : R𝑑 → S𝑘. Given an example 𝑥, we
create the tournament graph 𝐺 with 𝑘 nodes that contains a directed edge 𝑒𝑖→𝑗

if 𝑣𝑖𝑗 · 𝑥 > 0. If 𝐺 is acyclic, we output the induced permutation; otherwise, the
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graph contains cycles which should be eliminated. In order to output a ranking,
we remove cycles from 𝐺 with an efficient, 3-approximation algorithm for MFAS
(ACN08; VZW09). Hence, the output ℎ(𝑥) and the true target 𝜎⋆(𝑥) will have
E𝑥∼𝒩𝑑

[ΔKT(ℎ(𝑥), 𝜎
⋆(𝑥))] ≤ 𝜖′ + 3𝜖′ = 4𝜖′ . This last equation indicates why a

constant factor approximation algorithm suffices for our purposes – we can always
pick 𝜖′ = 𝜖/4 and complete the proof. For details, see Appendix 4.6.1.

4.4.2 Proper Learning Algorithm: Theorem 4.1.2
Having obtained the improper learning algorithm, we can now describe our

proper Algorithm 7. Initially, the algorithm starts similarly with the improper
learner and obtains a collection of binary linear classifiers. The crucial idea is the
next step: the design of an appropriate convex program which will efficiently give
the matrix 𝑊 . We proceed with the details. For the proof, see Appendix 4.6.2.

Algorithm 7 Proper Learning Algorithm ProperLSF

Input: Training set 𝑇 = {(𝑥𝑡, 𝜋𝑡)}𝑡∈[𝑁 ], 𝜖, 𝛿 ∈ (0, 1), 𝜂 ∈ [0, 1/2)
Output: Linear Sorting function ℎ : R𝑑 → S𝑘, i.e., ℎ(·) = 𝜎𝑊 (·) for some
matrix 𝑊 ∈ R𝑘×𝑑

Compute (𝑣𝑖𝑗)1≤𝑖<𝑗≤𝑘 = ImproperLSF(𝑇, 𝜖, 𝛿, 𝜂) ◁ See Algorithm 6
Setup the CP 4.1 and compute 𝑊 = Ellipsoid(CP) ◁ See Appendix
4.6.2
Ranking Phase: Given 𝑥 ∈ R𝑑, output ℎ(𝑥) = argsort(𝑊𝑥)

Step 1: Calling Non-proper Learners. As a first step, the algorithm calls
Algorithm 6 with parameters 𝜖, 𝛿 and 𝜂 ∈ [0, 1/2) and obtains a list of linear
classifiers with normal vectors 𝑣𝑖𝑗 for 𝑖 < 𝑗. Without loss of generality, assume that
‖𝑣𝑖𝑗‖2 = 1.

Step 2: Designing and Solving the CP 4.1. Our main goal is to find a
matrix 𝑊 whose LSF is close to the true target in KT distance. We show the
following lemma that connects the KT distance between two LSFs with the angle
metric 𝑑angle(·, ·) defined in Eq. (4.1). The proof can be found in the Appendix
4.6.2.

Lemma 4.4.1. For 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑, it holds E𝑥∼𝒩𝑑
[ΔKT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤

𝑑angle(𝑊 ,𝑊 ⋆) .

The above lemma states that, for our purposes, it suffices to control the 𝑑angle
metric between the guess 𝑊 and the true matrix 𝑊 ⋆. It turns out that, given the
binary classifiers 𝑣𝑖𝑗 , we can design a convex program whose solution will satisfy
this property. Thinking of the binary classifier 𝑣𝑖𝑗 as a proxy for 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 , we

want each difference 𝑊𝑖−𝑊𝑗 to have small angle with 𝑣𝑖𝑗 or equivalently to have
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large correlation with it, i.e., (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≈ ‖𝑊𝑖 −𝑊𝑗‖2. To enforce this
condition, we can therefore use the second order conic constraint (𝑊𝑖−𝑊𝑗) ·𝑣𝑖𝑗 ≥
(1− 𝜑)‖𝑊𝑖−𝑊𝑗‖2. We formulate the following convex program 4.1 with variable
the matrix 𝑊 :

Find 𝑊 ∈ R𝑘×𝑑, ‖𝑊 ‖𝐹 ≤ 1,

such that (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1− 𝜑) · ‖𝑊𝑖 −𝑊𝑗‖2 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘,
(4.1)

for some 𝜑 ∈ (0, 1) to be decided. Intuitively, since any 𝑣𝑖𝑗 has good correlation
with 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 (by the guarantees of the improper learning algorithm) and the

CP 4.1 requires that its solution 𝑊 similarly correlates well with 𝑣𝑖𝑗 , we expect
that 𝑑angle(𝑊 ,𝑊 ⋆) will be small. We show that:

Claim 7. The convex program 4.1 is feasible and any solution 𝑊 of 4.1 satisfies
𝑑angle(𝑊 ,𝑊 ⋆) ≤ 𝜖.

To see this, note that any solution of CP 4.1 is a matrix 𝑊 whose angle metric
(see Eq. (4.1)) with the true matrix is small by an application of the triangle
inequality between the angles of (𝑣𝑖𝑗 ,𝑊𝑖−𝑊𝑗) and (𝑣𝑖𝑗 ,𝑊

⋆
𝑖 −𝑊 ⋆

𝑗 ) for any 𝑖 ̸= 𝑗.
We next have to deal with the feasibility of CP 4.1. Our goal is to determine the
value of 𝜑 that makes the CP 4.1 feasible. For the pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, the guess
𝑣𝑖𝑗 and the true normal vector 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 satisfy, with high probability,

Pr
𝑥∼𝒟𝑥

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 . (4.2)

Under the Gaussian distribution (which is rotationally symmetric), it is well known
that the angle 𝜃(𝑢,𝑣) between two vectors 𝑢,𝑣 ∈ R𝑑 is equal to 𝜋 ·Pr𝑥∼𝒩𝑑

[sgn(𝑢 ·
𝑥) ̸= sgn(𝑣 · 𝑥)]. Hence, using Eq. (4.2), we get that the angle between the guess
𝑣𝑖𝑗 and the true normal vector 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 is 𝜃(𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ,𝑣𝑖𝑗) ≤ 𝑐𝜖. For sufficiently

small 𝜖, this bound implies that the cosine of the above angle is of order 1− (𝑐𝜖)2

and so the following inequality will hold (since 𝑣𝑖𝑗 is unit):

(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 2(𝑐𝜖)2) · ‖𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ‖2 .

Hence, by setting 𝜑 = 2(𝑐𝜖)2, the convex program 4.1 with variables 𝑊 ∈ R𝑘×𝑑

will be feasible; since ‖𝑊 ⋆‖𝐹 ≤ 1 comes without loss of generality, 𝑊 ⋆ will be a
solution with probability 1− 𝛿.

Next, we have to control the volume of the feasible region. This is crucial
in order to apply the ellipsoid algorithm (for details, see in Appendix 4.6.2) and,
hence, solve the convex program. We show the following claim (see Appendix 4.6.2
for the proof):

Claim 8. There exists 𝜌 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) so that the feasible set of CP 4.1
with 𝜑 = 𝑂(𝜖2) contains a ball (with respect to the Frobenius norm) of radius 𝜌.

Critically, the runtime of the ellipsoid algorithm is logarithmic in 1/𝜌. So, the
ellipsoid runs in time polynomial in the parameters of the problem and outputs
the desired matrix 𝑊 .
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4.5 Learning in top-𝑟 Disagreement: Theorem 4.1.3
In this section we show that the proper learning algorithm of Section 4.4.2

learns noisy LSFs in the top-𝑟 disagreement metric. We have seen that, with̃︀𝑂(𝑑 log(𝑘)/𝜖) samples, Algorithm 7 of Section 4.4.2 computes a matrix 𝑊 such
that 𝑑angle(𝑊 ,𝑊 ⋆) ≤ 𝜖, see Claim 7. Let us be more specific. Lemma 4.4.1
relates the expected KT distance with the angle metric of the two matrices (see
also Equation (4.1)). Our Algorithm 7 essentially gives an upper bound on this
angle metric. When we shift our objective and our goal is to control the top-𝑟
disagreement, we can still apply Algorithm 7 which essentially controls the angle
metric. The crucial ingredient that is missing is the relation between the loss
we have to control, i.e., the expected top-𝑟 disagreement and the angle metric of
Equation 4.1. This relation is presented right after and essentially says that the
expected top-𝑟 disagreement is at most 𝑂(𝑘𝑟) times this angle metric. Hence, in
order to get top-𝑟 disagreement of order 𝜖, it suffices to apply our Algorithm 7 with
𝜖′ = 𝑂(𝜖/(𝑘𝑟)).

We continue with our main contribution which is the following lemma that
connects the top-𝑟 disagreement metric with the geometric distance 𝑑angle(·, ·),
recall Lemma 4.1.4. To keep this sketch simple we shall present a sketch of the
proof of Lemma 4.1.4 for the special case of top-1 classification, which we restate
below. The proof of the top-1 case can be found at the Appendix 4.7. The detailed
proof of the general case (𝑟 > 1) can be found in the Appendix 4.8.

Lemma 4.5.1 (Top-1 Disagreement Loss via 𝑑angle(·, ·)). Consider two matrices
𝑈 ,𝑉 ∈ R𝑘×𝑑 and let 𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] ≤ 𝑂
(︁
𝑘
√︀
log 𝑘

)︁
𝑑angle(𝑈 ,𝑉 ) .

We observe that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] . (4.1)

We denote by 𝒞(𝑖)𝑈 , 1{𝑥 : 𝜎1(𝑈𝑥) = 𝑖} =
∏︀

𝑗 ̸=𝑖 1{(𝑈𝑖 − 𝑈𝑗) · 𝑥 ≥ 0}, i.e., this
is the set where the ranking corresponding to 𝑈 picks 𝑖 as the top element. Note
that 𝒞(𝑖)𝑈 is the indicator of a homogeneous polyhedral cone since it can be written
as the intersection of homogeneous halfspaces. Using these cones we can rewrite
the top-1 disagreement of Eq. (4.1) as

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝐶
(𝑖)
𝑈 (𝑥) = 1, 𝐶

(𝑖)
𝑉 (𝑥) = 0] . (4.2)

Hence, our task is to control the mass of the disagreement region of two cones. The
next Lemma 4.5.2 achieves this task and, combined with Eq. (4.2) directly gives
the conclusion of Lemma 4.5.1.
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Next we work with two general homogeneous polyhedral cones with set indica-
tors 𝐶1, 𝐶2:

Lemma 4.5.2 (Cone Disagreement). Let 𝐶1, 𝐶2 : R𝑑 ↦→ {0, 1} be homogeneous
polyhedral cones defined by the 𝑘 unit vectors 𝑣1, . . . ,𝑣𝑘 and 𝑢1, . . . ,𝑢𝑘 respec-
tively. For some universal constant 𝑐 > 0, it holds that Pr𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤
𝑐
√
log 𝑘 max𝑖∈[𝑘] 𝜃(𝑣𝑖,𝑢𝑖) .

Roadmap of the Proof of Lemma 4.5.2: Assume that we rotate one face
of the polyhedral cone 𝐶1 by a very small angle 𝜃 to obtain the perturbed cone
𝐶2. At a high-level, we expect the probability of the disagreement region between
the new cone 𝐶2 and 𝐶1 to be roughly (this is an underestimation) equal to the
size of the perturbation 𝜃 times the (Gaussian) surface area of the face of the
convex cone that we perturbed. The Gaussian Surface Area (GSA) of a convex set
𝐴 ⊂ R𝑑, is defined as Γ(𝐴) ,

∫︀
𝜕𝐴 𝜑𝑑(𝑥)𝑑𝜇(𝑥), where 𝑑𝜇(𝑥) is the standard surface

measure in R𝑑 and 𝜑𝑑(𝑥) = (2𝜋)−𝑑/2 · exp(−‖𝑥‖22/2). In fact, in Claim 9 below,
we show that the probability of the disagreement between 𝐶1 and 𝐶2 is roughly
𝑂(𝜃)Γ(𝐹1)

√︀
log(1/Γ(𝐹1) + 1), where 𝐹1 is the face of cone 𝐶1 that we rotated.

Now, when we perturb all the faces by small angles (all perturbations are at most
𝜃), we can show (via a sequence of triangle inequalities) that the total probability
of the disagreement region is bounded above by the perturbation size 𝜃 times the
sum of the Gaussian surface area of every face (times a logarithmic blow-up factor):

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑂(𝜃)
𝑘∑︁

𝑖=1

Γ(𝐹𝑖)
√︀
log(1/Γ(𝐹𝑖) + 1) .

Surprisingly, for homogeneous convex cones, the above sum cannot grow very fast
with 𝑘. In fact, we show that it can be at most 𝑂(

√
log 𝑘). To prove this, we

crucially rely on the following convex geometry result showing that the Gaussian
surface area of a homogeneous convex cone is 𝑂(1) regardless of the number of its
faces 𝑘.

Lemma 4.5.3 ((Naz03)). Let 𝐶 be a homogeneous polyhedral cone with 𝑘 faces
𝐹1, . . . , 𝐹𝑘. Then 𝐶 has Gaussian surface area Γ(𝐶) =

∑︀𝑘
𝑖=1 Γ(𝐹𝑖) ≤ 1.

Using an inequality similar to the fact that the maximum entropy of a dis-
crete distribution on 𝑘 elements is at most log 𝑘, and, since, from Lemma 4.5.3,
it holds that

∑︀𝑘
𝑖=1 Γ(𝐹𝑖) ≤ 1, we can show that

∑︀𝑘
𝑖=1 Γ(𝐹𝑖)

√︀
log(1/Γ(𝐹𝑖) + 1) =

𝑂(
√
log 𝑘). Therefore, with the above lemma we conclude that, if the maximum

angle perturbation that we perform on 𝐶1 is 𝜃, then the probability of the disagree-
ment region is 𝑂(𝜃). We next give the formal proof resulting in the upper bound
of 𝑂(

√
log 𝑘 𝜃) for the disagreement.

Single Face Perturbation Bound: Claim 9: We will use the following
notation for the positive orthant indicator 𝑅(𝑧) =

∏︀𝑘
𝑖=1 1{𝑧𝑖 ≥ 0}. Notice that

the homogeneous polyhedral cone 𝐶1 can be written as 𝐶1(𝑥) = 𝑅(𝑉 𝑥) = 𝑅(𝑣1 ·

118



𝑥, . . . ,𝑣𝑘 · 𝑥). Claim 9 below shows that the disagreement of two cones that differ
on a single normal vector is bounded by above by the Gaussian surface area of a
particular face 𝐹1 times a logarithmic blow-up factor

√︀
log(1/Γ(𝐹1) + 1).

Claim 9. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently
small 𝜃 ∈ (0, 𝜋/2). Let 𝐹1 be the face with 𝑣1 ·𝑥 = 0 of the cone 𝑅(𝑉 𝑥) and 𝑐 > 0
be some universal constant. Then,

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐·𝜃·Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
.

Proof Sketch of Claim 9. Since the constraints 𝑣2·𝑥 ≥ 0, . . . ,𝑣𝑘 ·𝑥 ≥ 0 are common
in the two cones, we have that 𝑅(𝑣1 ·𝑥, . . . ,𝑣𝑘 ·𝑥) ̸= 𝑅(𝑟 ·𝑥,𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥) only
when the first “halfspaces” disagree, i.e., when (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0. Thus, we have
that the LHS probability of Claim 9 is equal to

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) · 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}] . (4.3)

This expectation contains two terms: the term 𝑅(𝑣2 · 𝑥, . . .𝑣𝑘 · 𝑥) that contains
the last 𝑘 − 1 common constrains of the two cones and the region where the first
two halfspaces disagree, i.e., the set {𝑥 : (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}. In order to upper
bound this integral in terms of the angle 𝜃, we observe that (for 𝜃 sufficiently
small) it is not hard to show (see Appendix B) that the disagreement region, which
is itself a (non-convex) cone, is a subset of the region {𝑥 : |𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|},
where 𝑞 the normalized projection of 𝑟 onto the orthogonal complement of 𝑣1, i.e.,
𝑞 = proj𝑣⊥

1
𝑟/‖proj𝑣⊥

1
𝑟‖2. Therefore, we have that the integral of Eq. (4.3) is at

most
E

𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] .

This is where the definition of the Gaussian surface area appears. In fact, we
have to compute the derivative of the above expression (which is a function of 𝜃)
with respect to 𝜃 and evaluate it at 𝜃 = 0. The idea behind this computation is
that we can upper bound probability mass of the cone disagreement, i.e., the term
Pr𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] by its derivative with re-
spect to 𝜃 (evaluated at 0) times 𝜃 by introducing 𝑜(𝜃) error. Hence, it suffices to
upper bound the value of this derivative at 0, which is:

2 E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] ,

where 𝛿 is the Dirac delta function. Notice that, if we did not have the term |𝑞 ·𝑥|,
the above expression would be exactly equal to two times the Gaussian surface area
of the face with 𝑣1 · 𝑥 = 0, i.e., it would be equal to 2Γ(𝐹1). We now show that
this extra term of |𝑞 · 𝑥| can only increase the above surface integral by at most a
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logarithmic factor. For some 𝜉 to be decided, we have that

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] =
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) +
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) +

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. The first integral above is
exactly equal to the Gaussian surface area of the face 𝐹1. To bound from above
the second term we can use the next claim showing that not a lot of mass of the
face 𝐹1 can concentrate on the region where |𝑞 ·𝑥| is very large. Its proof relies on
standard Gaussian concentration arguments, and is provided in Appendix 4.7.

Claim 10. It holds that
∫︀
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ≤ 𝑂(exp(−𝜉2/2)) .

Using the above result, we get that

𝑑

𝑑𝜃

(︁
E

𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}]
)︁⃒⃒⃒

𝜃=0
≤ 𝑂(𝜉) Γ(𝐹1)+𝑂(exp(−𝜉2/2)) .

By picking 𝜉 = Θ(
√︀

log(1 + 1/Γ(𝐹1))), the result follows since, up to introducing
𝑜(𝜃) error, we can bound the term Pr𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]
by its derivative with respect to 𝜃, evaluated at 0, times 𝜃.

4.6 Learning LSFs with Bounded Noise in Kendall’s
Tau distance

4.6.1 Improperly Learning LSFs with Bounded Noise
We provide an improper learner for LSFs in the presence of bounded noise.

We first restate the main result of this section, whose proof relies on a connection
between noisy linear label ranking distributions and the Massart noise model.

Theorem 4.6.1 (Non-Proper Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈
(0, 1). Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assump-
tions of Definition 4.1.1. ImproperLSF (Algorithm 6) draws 𝑁 = ̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6
log(𝑘/𝛿)

)︁
samples from 𝒟, runs in poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) time and, with probability at least
1− 𝛿, outputs a hypothesis ℎ : R𝑑 → S𝑘 that is 𝜖-close in KT distance to the target.

Proof. Assume that the target function is 𝜎⋆(𝑥) = 𝜎𝑊 ⋆(𝑥) = argsort(𝑊 ⋆𝑥) for
some unknown matrix 𝑊 ⋆ ∈ R𝑘×𝑑. Consider a collection of 𝑁 i.i.d. samples from
an 𝜂-noisy linear label ranking distribution 𝒟 (see Definition 4.1.1) and let 𝑇 be the
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associated training set. For each example (𝑥, 𝜋) ∈ 𝑇 , we create a list of
(︀
𝑘
2

)︀
binary

examples (𝑥, 𝑦𝑖𝑗) with 𝑦𝑖𝑗 = sgn(𝜋(𝑖) − 𝜋(𝑗)) for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, where 𝜋(𝑖)
denotes the position of the element 𝑖. Hence, we create the datasets 𝑇𝑖𝑗 consisting
of the binary labeled examples (𝑥, 𝑦𝑖𝑗). We have that

Pr
(𝑥,𝜋)∼𝒟

[︀
𝑦𝑖𝑗 · sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) < 0 | 𝑥

]︀
= Pr

𝜋∼ℳ(𝜎⋆(𝑥))

[︀
𝜋(𝑖) < 𝜋(𝑗) |𝑊 ⋆

𝑖 · 𝑥 < 𝑊 ⋆
𝑗 · 𝑥

]︀
.

Since ℳ(𝜎⋆(𝑥)) is an 𝜂-bounded noise ranking distribution (see Definition 1.4.3),
we get that

Pr
𝜋∼ℳ(𝜎⋆(𝑥))

[𝜋(𝑖) < 𝜋(𝑗) | 𝜎⋆(𝑥)(𝑖) > 𝜎⋆(𝑥)(𝑗)] ≤ 𝜂 < 1/2 ,

where 𝜎⋆(𝑥)(𝑖) denotes the position of the element 𝑖 in the ranking 𝜎⋆(𝑥). Focusing
on the training set 𝑇𝑖𝑗 , we have that the sign 𝑦𝑖𝑗 is flipped with probability at most
𝜂. So, we have reduced the problem to

(︀
𝑘
2

)︀
sub-problems concerning the learnability

of halfspaces in the presence of Massart noise. The Massart noise model is a
special case of Definition 4.1.1 where 𝑘 = 2. Note also that for each training set
𝑇𝑖𝑗 , the features 𝑥 have the same distribution. We can now apply the following
result for LTFs with Massart noise for the standard Gaussian distribution. Recall
that the concept class of homogeneous halfspaces (or linear threshold functions) is
𝒞LTF = {ℎ𝑤(𝑥) = sgn(𝑤 · 𝑥) : 𝑤 ∈ R𝑑}.

Lemma 4.6.2 (Learning Halfspaces with Massart noise (ZSA20)). Fix 𝜂 ∈ [0, 1/2)
and let 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying
the assumptions of Definition 4.1.1 with 𝑘 = 2 (where 𝒞LSF = 𝒞LTF). There is
a computationally efficient algorithm MassartLTF that draws 𝑚 = 𝑂(𝑑 polylog(𝑑)

𝜖(1−2𝜂)6
·

log(1/𝛿)) samples from 𝒟, runs in poly(𝑚) time and outputs a linear threshold
function ℎ that is 𝜖-close to the target linear threshold function ℎ⋆ with probability
at least 1− 𝛿, i.e., it holds Pr𝑥∼𝒩𝑑

[ℎ(𝑥) ̸= ℎ⋆(𝑥)] ≤ 𝜖.

We can invoke the algorithm of Lemma 4.6.2 for any alternatives 1 ≤ 𝑖 < 𝑗 ≤ 𝑘
with accuracy 𝜖′ = 𝑂(𝜖), 𝛿′ = 𝑂(𝛿/𝑘2) and error rate 𝜂 < 1/21. We remark that
Lemma 4.6.2 returns a halfspace. Each one of the

(︀
𝑘
2

)︀
calls will provide a vector

𝑣𝑖𝑗 ∈ R𝑑 such that, with probability at least 1− 𝛿′, it satisfies

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖′ ,

where the true target halfspace has normal vector 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 . Moreover, for any
𝑖 < 𝑗, the algorithm requires that the training set 𝑇𝑖𝑗 is of size

|𝑇𝑖𝑗 | = Ω

(︂
𝑑

𝜖′
· 1

(1− 2𝜂)6
· log(1/𝛿′)

)︂
,

1We can assume that 𝜂 is known without loss of generality.
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and, so, a total number of

𝑁 = Ω

(︂
𝑑

𝜖
· 1

(1− 2𝜂)6
· log(𝑘/𝛿)

)︂
,

samples (𝑥, 𝜋) is required from the distribution 𝒟. Given a collection of linear
classifiers with normal vectors 𝑣𝑖𝑗 for any 𝑖 < 𝑗, it remains to aggregate them and
compute a sorting function ℎ : R𝑑 → S𝑘. To this end, the estimator ℎ, given an
example 𝑥, creates the directed complete graph 𝐺 with 𝑘 nodes with directed edge
𝑖 → 𝑗 if 𝑣𝑖𝑗 · 𝑥 > 0. If all the linear classifiers are correct (which occurs with
probability 1 − 𝑂(𝜖𝑘2) over 𝒟𝑥 due to the union bound), the graph 𝐺 is acyclic
(since it will match the true directions induced by 𝑊 ⋆) and the estimator ℎ outputs
the induced permutation. Observe that the KT distance is

1(︀
𝑘
2

)︀ · E
𝑥∼𝒩𝑑

⎡⎣ ∑︁
1≤𝑖<𝑗≤𝑘

1{sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)}

⎤⎦ ≤ 𝜖′ .

Otherwise, the classifiers are inconsistent and 𝐺 contains cycles. So, the expected
number of mistakes in the graph 𝐺 is 𝜖𝑘2. The estimator in order to output a
ranking uses a deterministic constant approximation algorithm for the minimum
Feedback Arc Set (ACN08) in order to remove the cycles. For an overview of this
fundamental line of research, we refer to (ACN08; VZW09; KMS06).

Lemma 4.6.3 (3-Approximation Algorithm for mimimum FAS (see (VZW09;
ACN08))). There is a deterministic algorithm MFAS for the minimum Feedback Arc
Set on unweighted tournaments with 𝑘 vertices that outputs orderings with cost less
than 3 ·OPT. The running time is poly(𝑘).

In the above, OPT is the minimum number of flips the algorithm should per-
form. With input the cyclic directed graph 𝐺 induced by the estimated linear clas-
sifiers, the algorithm of Lemma 4.6.3 computes, in poly(𝑘) time, a 3-approximation
of the optimal solution (i.e., instead of correcting 𝜖0 directed edges, the algorithm
will provide a directed acyclic graph with 3𝜖0 changed edges). Hence, for the hy-
pothesis ℎ : R𝑑 → S𝑘, where ℎ(𝑥) is the output of the minimum FAS approximation
algorithm with input 𝐺 (𝐺 depends on the input 𝑥, the randomness of the samples
and the internal randomness of the

(︀
𝑘
2

)︀
calls of the Massart linear classifiers), and

the target function 𝜎⋆(𝑥), we have that

E
𝑥∼𝒩𝑑

[Δ𝐾𝑇 (ℎ(𝑥), 𝜎
⋆(𝑥))] ≤ (𝜖′ + 3𝜖′) = 4𝜖′ ,

which completes the proof, by setting 𝜖′ = 𝜖/4.

Remark 4. Consider the following variant of the above procedure: compute the
𝑂(𝑘2) linear classifiers with accuracy 𝜖′ = 𝜖/𝑘2: If the induced directed graph is
acyclic, output the ranking; otherwise, output a random permutation. With prob-
ability 𝜖, the KT distance will be of order 𝑘2. Hence, one has to draw in total
𝑂(𝑘4𝑑/𝜖) samples to make the expected KT distance roughly 𝑂(𝜖). The algorithm
of Theorem 4.6.1 improves on this approach.
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4.6.2 The Proof of Theorem 4.1.2: Properly Learning
LSFs with Bounded Noise

We first restate the main result of this section.

Theorem 4.6.4 (Proper Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1).
Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assumptions
of Definition 4.1.1. ProperLSF (Algorithm 7) draws 𝑁 = ̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6
log(𝑘/𝛿)

)︁
samples from 𝒟, runs in poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) time and, with probability at least
1− 𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in KT distance
to the target.

We are now ready to provide the proof of our efficient proper learning algorithm
for the class of Linear Sorting functions in the presence of bounded noise with
respect to the standard Gaussian probability measure.

Proof. As a first step, the algorithm calls the improper learning algorithm ImproperLSF
(Algorithm 6) with parameters 𝜖, 𝛿 and 𝜂 < 1/2 and obtains a list of linear classi-
fiers with normal vectors 𝑣𝑖𝑗 for 𝑖 < 𝑗. The utility of this step implies that, with
probability at least 1 − 𝛿, each one of the classifiers 𝜖-learns the associated true
halfspace, i.e., it holds

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 ,

where 𝑊 ⋆ is the matrix of the target Linear Sorting function. Without loss of
generality, assume that ‖𝑣𝑖𝑗‖2 = 1. In order to make the learner proper, it suffices
to solve the following convex program on 𝑊 :

Find 𝑊 ∈ R𝑘×𝑑, (4.1)
such that (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1− 𝜑) · ‖𝑊𝑖 −𝑊𝑗‖2 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , (CP)

(4.2)

‖𝑊 ‖𝐹 ≤ 1 , (4.3)

for some 𝜑 ∈ (0, 1) to be decided. The main key ideas are summarized in the next
claim.

Claim 11. The following properties hold true for 𝜑 = 𝑂(𝜖2) with probability at
least 1− 𝛿.

1. The convex program 4.1 is feasible.

2. Any solution of the convex program 4.1 induces an LSF that is 𝜖-close in KT
distance to the true target 𝜎𝑊 ⋆(·).

3. The feasible set of the convex program 4.1 contains a ball of radius 𝑟 =
2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and is contained in a ball of radius 1. Both balls are
with respect to the Frobenius norm.
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4. The convex program 4.1 can be solved in time poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) using
the ellipsoid algorithm.

Proof of Item 1. First, we can choose the error 𝜑 so that this convex program
is feasible. Let us set 𝑊 = 𝑊 ⋆, where 𝑊 ⋆ is the underlying matrix of the
target Linear Sorting function 𝜎⋆ with 𝜎⋆(𝑥) = argsort(𝑊 ⋆𝑥). Recall that, by the
guarantees of the improper learning algorithm, for the pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, it holds

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 . (4.4)

Since the standard Gaussian is rotationally symmetric, the angle 𝜃(𝑢,𝑣) between
two vectors 𝑢,𝑣 ∈ R𝑑 is equal to 𝜋 ·Pr𝑥∼𝒩𝑑

[sgn(𝑢 ·𝑥) ̸= sgn(𝑣 ·𝑥)]. Hence, using
this observation and Equation (4.4), we get that the angle between the guess vector
𝑣𝑖𝑗 and the true normal vector 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 is

𝜃(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ,𝑣𝑖𝑗) ≤ 𝑐 · 𝜖 ,

for some constant 𝑐 > 0. For sufficiently small 𝜖, this bound implies that the cosine
of the above angle is of order 1− (𝑐𝜖)2 and so the following inequality will hold

(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 2(𝑐𝜖)2) · ‖𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ‖2 ,

since 𝑣𝑖𝑗 is unit. Hence, by setting 𝜑 = 2(𝑐𝜖)2, the convex program with variables
𝑊 ∈ R𝑘×𝑑 will be feasible; 𝑊 ⋆ will be a solution with probability 1 − 𝛿, where
the randomness is over the output of the algorithm dealing with the Massart linear
classifiers. Note that we can assume that ‖𝑊 ⋆‖𝐹 ≤ 1 without loss of generality,
since we can divide each row with the Frobenius norm.

Proof of Item 2. Let ̃︁𝑊 be a solution of the convex program.We will make use
of the observation that the angle between two vectors is equal to the disagreement
of the associated linear threshold functions with respect to the standard normal
times 𝜋. Observe that any solution ̃︁𝑊 to the convex program will satisfy that

(∀𝑖, 𝑗) 𝜃(𝑣𝑖𝑗 ,̃︁𝑊𝑖 − ̃︁𝑊𝑗) ≤ 𝑂(
√︀
𝜑) = 𝑐𝜖 .

and
(∀𝑖, 𝑗) 𝜃(𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ,𝑣𝑖𝑗) ≤ 𝜖 .

This implies that
𝑑angle(𝑊

⋆,̃︁𝑊 ) ≤ 𝑐′ 𝜖

Claim 12. For the matrices 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑, it holds that

E
𝑥∼𝒩𝑑

[ΔKT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝑑angle(𝑊 ,𝑊 ⋆) .
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Proof. We have that

E
𝑥∼𝒩𝑑

[ΔKT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] =
1(︀
𝑘
2

)︀ · E
𝑥∼𝒩𝑑

[
∑︁

1≤𝑖<𝑗≤𝑘

1{((𝑊𝑖 −𝑊𝑗) · 𝑥) ((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥) < 0}

=
1(︀
𝑘
2

)︀ · ∑︁
1≤𝑖<𝑗≤𝑘

Pr
𝑥∼𝒩𝑑

[sgn(𝑊𝑖 −𝑊𝑗) · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)]

=
1

𝜋
max
𝑖,𝑗

𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 )

≤ 𝑑angle(𝑊 ,𝑊 ⋆) .

Using the above claim, we get an expected KT distance bound of order 𝑂(𝜖).
This gives the desired result.

Proof of Item 3. We will make use of the next lemma.

Lemma 4.6.5. Fix 𝜖, 𝛿 ∈ (0, 1). Let 𝑊 ⋆ ∈ R𝑘×𝑑 be the true parameter matrix.
There exists a matrix ̃︁𝑊 ⋆ ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿:

• Pr𝑥∼𝒩𝑑
[sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) ·𝑥) ̸= sgn((̃︁𝑊 ⋆

𝑖 −̃︁𝑊 ⋆
𝑗 ) ·𝑥)] ≤ 𝜖 for all 𝑖 ̸= 𝑗, and,

• ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) for any 𝑖 ̸= 𝑗.

Proof of Lemma 4.6.5. The above lemma is a result of the next Section 4.6.2. In
particular, it is a direct implication of Lemma 4.6.7 and Corollary 4.6.9.

Note that the above lemma implies that

(∀𝑖, 𝑗) Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 2𝜖 ,

with probability at least 1 − 2𝛿. Hence, up to constants, the analysis concerning
the feasibility of the true matrix 𝑊 ⋆ (see Item 1) will still hold for ̃︁𝑊 ⋆. From
now on we can work with this matrix ̃︁𝑊 ⋆ which enjoys the “well-conditionedness”
property of the second item of the lemma.

We will use the above lemma in order to prove Item 3 which controls the
volume of the feasible region: it states that there exist 0 < 𝑟 < 𝑅 so that the
feasible region of the convex program contains a ball of radius 𝑟 and is contained
in a ball of radius 𝑅 (where the balls are with respect to the Frobenius norm).
Moreover, 𝑟 = 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and 𝑅 = 1.

For the chosen 𝜑 ∈ (0, 1), the feasible set contains matrices 𝑊 ∈ R𝑘×𝑑 that
satisfy ‖𝑊 − ̃︁𝑊 ⋆‖𝐹 ≤ 2𝑟, 𝑟 to be decided. For any 𝑖 ̸= 𝑗, we have that the
following properties hold:

1. ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) (well-conditionedness).
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2. (̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 𝜑) ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 (feasibility).

3. ‖𝑊 −̃︁𝑊 ⋆‖𝐹 ≤ 2𝑟 which implies that ‖𝑊𝑖−̃︁𝑊 ⋆
𝑖 ‖2 ≤ 2𝑟 for any 𝑖 ∈ [𝑘] (ball

around feasible point).

4. ‖𝑣𝑖𝑗‖2 = 1.

Our goal is to prove that for a matrix in the above ball it holds (𝑊𝑖−𝑊𝑗)·𝑣𝑖𝑗 ≥
(1− 𝜑) ‖𝑊𝑖 −𝑊𝑗‖2.

We have that

(̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 = (̃︁𝑊 ⋆
𝑖 −𝑊𝑖) · 𝑣𝑖𝑗 + (𝑊𝑗 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗
≤ ‖̃︁𝑊 ⋆

𝑖 −𝑊𝑖‖2 + ‖𝑊𝑗 − ̃︁𝑊 ⋆
𝑗 ‖2 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗

≤ 4𝑟 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 .

More to that

‖𝑊𝑖 −𝑊𝑗‖2 = ‖𝑊𝑖 − ̃︁𝑊 ⋆
𝑖 + ̃︁𝑊 ⋆

𝑖 − ̃︁𝑊 ⋆
𝑗 + ̃︁𝑊 ⋆

𝑗 −𝑊𝑗‖2
≤ ‖𝑊𝑖 − ̃︁𝑊 ⋆

𝑖 ‖2 + ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 + ‖̃︁𝑊 ⋆
𝑗 −𝑊𝑗‖2

≤ 4𝑟 + ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ,

and similarly: ‖𝑊𝑖 −𝑊𝑗‖2 ≥ ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 − 4𝑟.
Combining the above inequalities, we get that

(𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 − 4𝑟

≥ (1− 𝜑) ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 − 4𝑟

≥ (1− 𝜑) (‖𝑊𝑖 −𝑊𝑗‖2 − 4𝑟)− 4𝑟

= (1− 𝜑) ‖𝑊𝑖 −𝑊𝑗‖2 − 8𝑟 .

We pick 𝑟 sufficiently small and of order 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and get that 𝑊
is a feasible solution of the convex program. Moreover, we can select 𝑅 = 1 since
‖̃︁𝑊 ⋆‖𝐹 = 1 without loss of generality, since we can normalize the row differences
of ̃︁𝑊 ⋆ with the norm ‖̃︁𝑊 ⋆‖𝐹 .

Proof of Item 4. We apply the ellipsoid algorithm in order to solve the convex
program 4.1 and compute a matrix ̃︁𝑊 ∈ R𝑘×𝑑. The algorithm ProperLSF outputs
the linear sorting function ℎ(·) = 𝜎̃︁𝑊 (·).

Lemma 4.6.6 (Efficiency of the Ellipsoid Algorithm (Vis21)). Suppose that 𝑃 ⊆
R𝑑 is a full-dimensional polytope that is contained in a 𝑑-dimensional Euclidean
ball of radius 𝑅 > 0 and contains a 𝑑-dimensional Euclidean ball of radius 𝑟 > 0.
Then, the ellipsoid method outputs a point ̃︀𝑥 ∈ 𝑃 after 𝑂(𝑑2 log(𝑅/𝑟)) iterations.
Moreover, every iteration can be implemented in 𝑂(𝑑2 + 𝑇sep) time, where 𝑇sep is
the time required to answer a single query by the separation oracle.
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Assume that Item 3 holds true. Then the algorithm can be used with 𝑟 =
2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and 𝑅 = 1. Hence, the ellipsoid algorithm will provide in time
poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) a point ̃︁𝑊 that lies in the feasible region of the convex
program 4.12.

Remark 5. We remark that both the improper (Algorithm 6) and the proper (Algo-
rithm 7) learning algorithms hold for the more general case where the 𝑥-marginal
lies in the class of isotropic log-concave distributions (LV07): A distribution 𝒟𝑥

lies inside the class of isotropic log-concave distributions ℱLC over R𝑑 if 𝒟𝑥 has a
probability density function 𝑓 over R𝑑 such that log 𝑓 is concave, its mean is zero,
and its covariance is identity, i.e., E𝑥∼𝒟𝑥 [𝑥𝑥

⊤] = 𝐼.

The proof of Lemma 4.6.5

We provide the following result.

Lemma 4.6.7. Fix 𝜖, 𝛿 ∈ (0, 1). Let 𝑊 ⋆ ∈ R𝑘×𝑑 be the true parameter matrix.
There exists a matrix 𝑊 ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿:

• Pr𝑥∼𝒩𝑑
[sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) ·𝑥) ̸= sgn((𝑊𝑖−𝑊𝑗) ·𝑥)] ≤ 𝜖 for all 𝑖 ̸= 𝑗, and,

• The bit complexity of 𝑊 is poly(𝑘, 𝑑, 1/𝜖, log(1/𝛿))

Proof. The matrix 𝑊 will be the output of a linear program that can be used to
learn the LSF 𝜎𝑊 ⋆(·) in the noiseless setting.

Consider the unit sphere 𝒮𝑑−1 and a 𝛿0-cover of the unit sphere with parameter
𝛿0 > 0 to be decided. For any sample (𝑥, 𝜋) ∼ 𝒟 of the 0-noisy linear label ranking
distribution, i.e., 𝑥 ∼ 𝒩𝑑 and 𝜋 = 𝜎𝑊 ⋆(𝑥), we consider the rounded sample (̃︀𝑥, 𝜋)
where ̃︀𝑥 is obtained by first projecting 𝑥 ∈ R𝑑 to 𝒮𝑑−1 and then by obtaining the
closest point of ̂︀𝑥 in the cover. The cover’s size is 𝑂(1/𝛿0)

𝑑.
Let us fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and set 𝑦𝑖𝑗 = sgn(𝜋(𝑖) − 𝜋(𝑗)). For a training set

{(𝑥(𝑡), 𝜋(𝑡))}𝑡∈[𝑁 ] of size 𝑁 , we create the following linear system L𝑖𝑗 with variables
𝑊 ∈ R𝑘×𝑑:

𝑦
(𝑡)
𝑖𝑗 (𝑊𝑖 −𝑊𝑗) · ̃︀𝑥(𝑡) ≥ 0 , 𝑡 ∈ [𝑁 ] (L𝑖𝑗) .

Consider the concatenation of the linear systems L = ∪𝑖<𝑗L𝑖𝑗 . The number of
equations in the linear system of equations L is 𝑁 ·

(︀
𝑘
2

)︀
.

We first have to show that, with high probability, the system L is feasible, i.e.,
there exists 𝑊 that satisfies the system’s equations. Note that if we replace ̃︀𝑥(𝑡)

with the original points 𝑥(𝑡), the true matrix 𝑊 ⋆ is a solution to the system. We
now have to study the rounded linear system.

2We remark that the runtime will also depend on the time required to answer a single
query by the separation oracle. We assume that this time is polynomial in the parameters
of our problem and we opt not to track these details in our work.
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Claim 13. The (rounded) linear system L is feasible with high probability.

Proof. In order to show the feasibility of L, we will use the anti-concentration
properties of the Gaussian.

Fact 4 ((DKM05)). Let 𝒫 be the standard normal distribution over R𝑑. For any
fixed unit vector 𝑎 ∈ R𝑑 and any 𝛾 ≤ 1,

𝛾/4 ≤ Pr
𝑥∼𝒫

[︂
|𝑎 · 𝑥

‖𝑥‖2
| ≤ 𝛾√

𝑑

]︂
≤ 𝛾 .

Let us focus on the pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. We first observe that scaling all samples
to lie on the unit sphere does not affect the feasibility of the system. It suffices
to focus on that single halfspace with normal vector 𝑣𝑖𝑗 = 𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ∈ R𝑑 and

consider the probability of the event that the collection of the 𝑁 rounded points
{̃︀𝑥(𝑡)}𝑡 with labels {𝑦(𝑡)𝑖𝑗 }𝑡, that come from 𝑁 Gaussian vectors {𝑥(𝑡)}𝑡 which are

linearly separable (with labels {𝑦(𝑡)𝑖𝑗 }𝑡), becomes non-linearly separable. For this it
suffices to control the probability that the rounding procedure flips the label of the
data point. Using the union bound, we have that, if the rounding has accuracy 𝛿0,
the described bad event has probability

Pr
𝑥(1),...,𝑥(𝑁)∼𝒩𝑑

[∃𝑡 ∈ [𝑁 ] : sgn(𝑣𝑖𝑗 ·̃︀𝑥(𝑡)) ̸= sgn(𝑣𝑖𝑗 ·𝑥(𝑡))] ≤ 𝑁 · Pr
𝑥∼𝒩𝑑

[|𝑣𝑖𝑗 · 𝑥/‖𝑥‖2| ≤ 2𝛿0] ,

and,
𝑁 · Pr

𝑥∼𝒩𝑑

[|𝑣𝑖𝑗 · 𝑥/‖𝑥‖2| ≤ 2𝛿0] ≤ 𝑁 ·𝑂(𝛿0
√
𝑑) ,

where we remark that the first event is scale invariant and so we can assume that
the normal vector is unit, the first inequality follows from the fact that it suffices
to control the mass assigned to a strip of width 2𝛿0 (due to the discretization) and
the second inequality follows from Fact 4. We now have to select the discretization.
Let 𝛿 ∈ (0, 1). By choosing 𝛿0 = 𝑂( 𝛿

𝑁
√
𝑑𝑘2

), the bad event for all the pairs 𝑖 < 𝑗

occurs with probability at most 𝛿, i.e., with probability at least 1− 𝛿, each one of
the 𝑁 drawn i.i.d. samples does not fall in any one of the

(︀
𝑘
2

)︀
“bad” strips.

We can now consider the case that the system L is feasible (with the target
matrix 𝑊 ⋆ being a feasible point) that occurs with probability 1− 𝛿. The class of
homogenous halfspaces in 𝑑 dimensions has VC dimension 𝑑; therefore, the sample
complexity of learning halfspaces using ERM is 𝑂((𝑑+ log(1/𝛿))/𝜖). Moreover, in
the realizable case, we can implement the ERM using e.g., linear programming and
find a solution in poly(𝑑, 1/𝜖, log(1/𝛿)) time. We next focus on the quality of the
solution which will give the desired sample complexity.

Claim 14. Assume that the algorithm draws 𝑁 = ̃︀𝑂(𝑑+log(𝑘/𝛿)
𝜖 ) i.i.d. samples of

the form (𝑥, 𝜋) with 𝑥 ∼ 𝒩𝑑 and 𝜋 = 𝜎𝑊 ⋆(𝑥). For any 𝑖 ̸= 𝑗 and with probability
at least 1− 2𝛿, the solution 𝑊 of the linear system L satisfies

Pr
𝑥∼𝒩𝑑

[sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥) ̸= sgn((𝑊𝑖 −𝑊𝑗) · 𝑥)] ≤ 𝜖 .
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Proof. Since the matrix 𝑊 satisfies the sub-system L𝑖𝑗 , the result follows using a
union bound on the events that (i) the linear system is feasible and (ii) the ERM
is a successful PAC learner.

Claim 15. Consider the solution 𝑊 of the linear system. Then, 𝑊 has bounded
bit complexity of order poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)).

Proof. We will make use of the following result that relates the size of the input
and the output of a linear program using Cramer’s rule.

Lemma 4.6.8 ((Sch98; Pap81)). Let 𝐴 ∈ Z𝑚×𝑛, 𝑏 ∈ Z𝑚, 𝑐 ∈ Z𝑛. Consider a
linear program min 𝑐 ·𝑥 subject to 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0. Let 𝑈 be the maximum size
of 𝐴𝑖𝑗 , 𝑏𝑖, 𝑐𝑗. The output of the linear program has size 𝑂(𝑚(𝑛𝑈 + 𝑛 log(𝑛))) bits.

We will apply the above lemma (which holds even by dropping the constraint
𝑥 ≥ 0) to our setting where 𝐴𝑤 ≥ 0 where 𝑤 = (𝑊𝑖)𝑖∈[𝑘] ∈ Q𝑘𝑑, i.e., 𝑤 is
the vectorization of the matrix 𝑊 . Moreover, 𝐴 is the matrix containing the
𝑁 (rounded) Gaussian samples ̃︀𝑥(𝑡). We have that the matrix 𝐴 has dimension
𝑁
(︀
𝑘
2

)︀
× 𝑘𝑑 and each entry 𝐴𝑖𝑗 is an integer and has size at most 𝑈 = poly(𝑑, 𝑘)

(since the samples are rounded on the 𝛿0-cover of the sphere. Recall that the
labels 𝑦

(𝑡)
𝑖𝑗 ∈ {−1,+1} and ̃︀𝑥(𝑡) lie in the unit sphere. In particular, each row of

the matrix 𝐴 has 2𝑑 non-zero entries and is associated with a tuple (𝑖, 𝑗, 𝑡) for
1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝑡 ∈ [𝑁 ]. Then, it holds that the output has size at most
𝑂(𝑁𝑘2(𝑑𝑈 + 𝑑𝑘 log(𝑑𝑘))) bits. So, we get that the output 𝑊 can be described
using at most poly(𝑑, 𝑘, 1/𝜖, 𝑈, log(1/𝛿)) = poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) bits (due to the
size of the entries of the matrix 𝐴).

Combining the above claims, we conclude the proof.

As a corollary of the bounded bit complexity, we obtain the following key result.

Corollary 4.6.9. Let 𝜖 > 0. Assume that 𝑊 ∈ R𝑘×𝑑 has bit complexity at most
poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)). Then, for any 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ̸= 𝑗, it holds that ‖𝑊𝑖 −
𝑊𝑗‖2 > 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)).

Proof. First, we can assume that 𝑊𝑖 ̸= 𝑊𝑗 for any 𝑖 ̸= 𝑗; in case of equal rows,
we obtain a low-dimensional instance. Then, since any vector 𝑊𝑖 has bounded bit
complexity, we have that the difference of any two such vectors, provided that it is
non-zero, has a lower bound in its norm, i.e., ‖𝑊𝑖 −𝑊𝑗‖2 > 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿))

for any 𝑖, 𝑗 ∈ [𝑘].

4.7 Learning in Top-1 Disagreement from La-
bel Rankings

Let us set 𝜎1(𝑊𝑥) = argmax𝑖∈[𝑘]𝑊𝑖 · 𝑥 for 𝑥 ∈ R𝑑. The main result of this
section follows.
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Theorem 4.7.1 (Proper Top-1 Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈
(0, 1). Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assump-
tions of Definition 4.1.1. There exists an algorithm that draws 𝑁 = 𝑂

(︁
𝑑𝑘

√
log 𝑘

𝜖(1−2𝜂)6
log(𝑘/𝛿)

)︁
samples from 𝒟, runs in poly(𝑁) time and, with probability at least 1− 𝛿, outputs
a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in top-1 disagreement to the
target.

Proof. Note that the MassartLTF algorithm (see Lemma 4.6.2) has the guarantee
that it returns a vector 𝑤 so that

Pr
𝑥∼𝒩𝑑

[sgn(𝑤 · 𝑥) ̸= sgn(𝑤⋆ · 𝑥)] ≤ 𝜖 ,

with probability 1 − 𝛿, where 𝑤⋆ is the target normal vector. Since the above
misclassification probability with respect to 𝒩𝑑 is directly connected with the angle
𝜃(𝑤,𝑤⋆), we get that we can control the angle between 𝑤 and 𝑤⋆ efficiently.
Moreover, in our setting, for a matrix 𝑊 ∈ R𝑘×𝑑, there exist

(︀
𝑘
2

)︀
homogeneous

halfspaces with normal vectors 𝑊𝑖 −𝑊𝑗 and so we can control the angles 𝜃(𝑊𝑖 −
𝑊𝑗 ,𝑊

⋆
𝑖 −𝑊 ⋆

𝑗 ). In order to deduce the sample complexity bound of Theorem 4.7.1,
we show the next lemma which essentially bounds the top-1 misclassification error
using the angles of these 𝑂(𝑘2) halfspaces. We apply Lemma 4.7.2 with 𝑈 = 𝑊
and 𝑉 = 𝑊 ⋆ and so we can take 𝜖′ = 𝜖/(𝑘

√
log 𝑘) and invoke the proper learning

algorithm of Algorithm 7. This completes the proof.

We continue with the proof of our key lemma.

Lemma 4.7.2 (Misclassification Error). Consider two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑 and
let 𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] ≤ 𝑐 · 𝑘 ·
√︀
log 𝑘 ·max

𝑖 ̸=𝑗
𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

where 𝑐 > 0 is some universal constant.

Proof. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] .

We have that 𝒞(𝑖)𝑈 = 1{𝑥 : 𝜎1(𝑈𝑥) = 𝑖} =
∏︀

𝑗 ̸=𝑖 1{(𝑈𝑖 − 𝑈𝑗) · 𝑥 ≥ 0} is the set
indicator of a homogeneous polyhedral cone as the intersection of 𝑘−1 homogeneous
halfspaces. Similarly, we consider the cone 𝒞(𝑖)𝑉 = {𝑥 : 𝜎1(𝑉 𝑥) = 𝑖}. Hence, we
have that {𝑥 : 𝜎1(𝑉 𝑥) ̸= 𝑖} is the complement of a homogeneous polyhedral cone.
Let us define 𝐶

(𝑖)
𝑈 : R𝑑 ↦→ {0, 1} and 𝐶

(𝑖)
𝑉 : R𝑑 ↦→ {0, 1} be the associated indicator

functions of the two cones. We have that

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] = Pr
𝑥∼𝒩𝑑

[𝐶
(𝑖)
𝑈 (𝑥) = 1, 𝐶

(𝑖)
𝑉 (𝑥) = 0] .
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Finally, we have that

𝒞(𝑖)𝑈 ∩
(︁
𝒞(𝑖)𝑉

)︁𝑐
= 𝒞(𝑖)𝑈 ∖ 𝒞

(𝑖)
𝑉 ⊆ 𝒞

(𝑖)
𝑈 ∖ 𝒞

(𝑖)
𝑉 ∪ 𝒞

(𝑖)
𝑉 ∖ 𝒞

(𝑖)
𝑈 .

We can hence apply Lemma 4.7.3 for the cones 𝒞(𝑖)𝑈 , 𝒞(𝑖)𝑉 for each 𝑖 ∈ [𝑘].

Lemma 4.7.3 (Cone Disagreement). Let 𝐶1 : R𝑑 ↦→ {0, 1} be the indicator function
of the homogeneous polyhedral cone defined by the 𝑘 unit vectors 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑,
i.e., 𝐶1(𝑥) =

∏︀𝑘
𝑖=1 1{𝑣𝑖 · 𝑥 ≥ 0}. Similarly, define 𝐶2 : R𝑑 ↦→ {0, 1} to be the

homogeneous polyhedral cone with normal vectors 𝑢1, . . . ,𝑢𝑘. It holds that

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐
√︀
log(𝑘) max

𝑖∈[𝑘]
𝜃(𝑣𝑖,𝑢𝑖) ,

where 𝑐 > 0 is some universal constant.

Proof. To simplify notation, denote 𝜃 = max𝑖∈[𝑘] 𝜃(𝑣𝑖,𝑢𝑖). We first observe that
it suffices to prove the upper bound on the probability of 𝐶1(𝑥) ̸= 𝐶2(𝑥) for
sufficiently small values of 𝜃. Indeed, if we have that the bound is true for 𝜃 smaller
than some 𝜃0 we can then form a path of sufficiently large length 𝑁 (in particular we
need 𝜃/𝑁 ≤ 𝜃0) starting from the vectors 𝑣1, . . . ,𝑣𝑘 to the final vectors 𝑢1, . . . ,𝑢𝑘,
where at each step we only rotate the vectors by at most 𝜃/𝑁 ≤ 𝜃0. By the triangle
inequality, we immediately obtain that the probability that 𝐶1(𝑥) ̸= 𝐶2(𝑥) is at
most equal to the sum of the probabilities of the intermediate steps which is at
most

∑︀𝑁
𝑖=1 𝑐

√︀
log(𝑘) 𝜃

𝑁 = 𝑐
√︀

log(𝑘)𝜃. Notice in the above argument the constant
𝜃0 can be arbitrarily small and may also depend on 𝑘 and 𝑑.

We define the indicator of the positive orthant in 𝑘 dimensions to be 𝑅(𝑡) =∏︀𝑘
𝑖=1 1{𝑡𝑖 ≥ 0}. Using this notation, we have that the cone indicator can be written

as 𝐶1(𝑥) = 𝑅(𝑣1 ·𝑥, . . . ,𝑣𝑘 ·𝑥) = 𝑅(𝑉 𝑥), where 𝑉 is the 𝑘× 𝑑 matrix whose 𝑖-th
row is the vector 𝑣𝑖. Moreover, we define the 𝑖-th face of the cone 𝑅(𝑉 𝑥) to be

𝐹𝑖(𝑉 𝑥) = 𝑅(𝑉 𝑥) 1{𝑣𝑖 · 𝑥 = 0} .

We will first handle the case where only one of the normal vectors 𝑣𝑖 changes.
We show the following claim.

Claim 16. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently
small 𝜃 ∈ (0, 𝜋/2). It holds that

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐·𝜃·Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
,

where 𝐹1 is the face with 𝑣1 · 𝑥 = 0 of the cone 𝑅(𝑉 𝑥) and 𝑐 is some universal
constant.
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𝑟

𝑣1𝑞

Figure 4.1: The vectors 𝑟,𝑣1 and 𝑞 and the disagreement region of the
halfspaces with normal vectors 𝑟 and 𝑣1.

Proof. We have

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[|𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)−𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

= E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}|] .

We have that |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}| = 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}, i.e., this
is the event that the halfspaces 1{𝑣1 · 𝑥 ≥ 0} and 1{𝑟 · 𝑥 ≥ 0} disagree. Let
𝑞 be the normalized projection of 𝑟 onto the orthogonal complement of 𝑣1, i.e.,
𝑞 = proj𝑣⊥

1
𝑟/‖proj𝑣⊥

1
𝑟‖2. We have that 𝑣1 and 𝑞 is an orthonormal basis of the

subspace spanned by the vectors 𝑣1 and 𝑟. We have that 𝑟 = cos 𝜃(𝑣1, 𝑟)𝑣1 +
sin 𝜃(𝑣1, 𝑟)𝑞. Moreover, we have that the region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is equal to

{0 < 𝑣1 · 𝑥 < −(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟)} ∪ {−(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟) < 𝑣1 · 𝑥 < 0} .

Thus, we have that the disagreement region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is a subset of
the region {|𝑣1 · 𝑥| ≤ |𝑞 · 𝑥| tan 𝜃(𝑣1, 𝑟)}. Since tan 𝜃(𝑣1, 𝑟) ≤ 𝜃 and we have that
𝜃 is sufficiently small we can also replace the above region by the larger region:
{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}. Therefore, we have

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}}]

≤ E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] .

132



The derivative of the above expression with respect to 𝜃 is equal to

E
𝑥∼𝒩𝑑

[︂
𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 𝛿

(︂
|𝑣1 · 𝑥|
2|𝑞 · 𝑥|

− 𝜃

)︂]︂
,

where 𝛿(𝑡) is the Dirac delta function. At 𝜃 = 0 and using the property that
𝛿(𝑡/𝑎) = 𝑎𝛿(𝑡), we have that the above derivative is equal to

2 E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] .

Notice that, if we did not have the term |𝑞 · 𝑥|, the above expression would be
exactly equal to two times the Gaussian surface area of the face with 𝑣1 · 𝑥 = 0,
i.e., it would be equal to 2Γ(𝐹1). We now show that this extra term of |𝑞 · 𝑥| can
only increase the above surface integral by at most a logarithmic factor. We have
that

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] =
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) +
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) +

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. The first term above is exactly
equal to the Gaussian surface area of the face 𝐹1. To bound from above the second
term we can use the fact that the face 𝐹1 is a subset of the hyperplane 𝑣1 · 𝑥 = 0,
i.e., it holds that 𝐹1 ⊆ {𝑥 : |𝑣1 ·𝑥| = 0}. To simplify notation we may assume that
𝑣1 = 𝑒1 and 𝑞 = 𝑒2 (recall that 𝑣1 and 𝑞 are orthogonal unit vectors), and in this
case we obtain∫︁

𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ≤
∫︁
𝑥1=0

𝜑𝑑(𝑥)|𝑥2|1{|𝑥2| ≥ 𝜉}𝑑𝜇(𝑥)

=
1√
2𝜋

∫︁ +∞

−∞
|𝑥2|1{|𝑥2| ≥ 𝜉}𝑒

−𝑥2
2/2

√
2𝜋

𝑑𝑥2

=
1

𝜋
𝑒−𝜉2/2 .

Combining the above bounds we obtain that the derivative with respect to 𝜃 of the
expression E𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] is equal to

𝑑

𝑑𝜃

(︁
E

𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}]
)︁⃒⃒⃒

𝜃=0
≤ 2𝜉Γ(𝐹1) +

2𝑒−𝜉2/2

𝜋
.

By picking 𝜉 =
√︀

2 log(1 + 1/Γ(𝐹1)), the result follows since up to introducing 𝑜(𝜃)
error we can bound the term Pr𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]
by its derivative with respect to 𝜃 (evaluated at 0) times 𝜃.
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We can complete the proof of Lemma 4.7.3 using Claim 16. In order to bound
the disagreement of the cones 𝐶1 and 𝐶2 we can start from 𝐶1 and change one of
its vectors at a time so that we can use Claim 16 that can handle this case. For
example, at the first step, we can swap 𝑣1 for 𝑢1 and use the triangle inequality to
obtain that

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥 . . . ,𝑣𝑘 · 𝑥)]

+ Pr
𝑥∼𝒩𝑑

[𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑢2 · 𝑥 . . . ,𝑢𝑘 · 𝑥)]

≤ 𝑐 · 𝜃 Γ(𝐹1)
√︀
log(1/Γ(𝐹1) + 1)

+ Pr
𝑥∼𝒩𝑑

[𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑢2 · 𝑥 . . . ,𝑢𝑘 · 𝑥)] ,

where 𝐹1 = 𝐹1(𝑉 𝑥) is the face with 𝑣1 ·𝑥 = 0 of the cone 𝐶1. Notice that we have
replaced 𝑣1 by 𝑢1 in the above bound. Our plan is to use the triangle inequality
and continue replacing the vectors of 𝐶1 by the vectors of 𝐶2 sequentially. To make
this formal we define the matrix 𝐴(𝑖) ∈ R𝑘×𝑑 whose first 𝑖− 1 rows are the vectors
𝑢1, . . . ,𝑢𝑖−1 and its last 𝑘 − 𝑖+ 1 rows are the vectors 𝑣𝑖, . . . ,𝑣𝑘, i.e.,

𝐴
(𝑖)
𝑗 =

{︃
𝑢𝑗 if 1 ≤ 𝑗 ≤ 𝑖− 1,

𝑣𝑗 if 𝑖 ≤ 𝑗 ≤ 𝑘 .

Notice that 𝐴(1) = 𝑉 and 𝐴(𝑘+1) = 𝑈 . Using the triangle inequality we obtain
that

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤
𝑘∑︁

𝑖=1

Pr
𝑥∼𝒩𝑑

[𝑅(𝐴(𝑖)𝑥) ̸= 𝑅(𝐴(𝑖+1)𝑥)].

Since the matrices 𝐴(𝑖) and 𝐴(𝑖+1) only differ on one row, we can use Claim 16 to
obtain the following bound:

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐 · 𝜃 ·
𝑘∑︁

𝑖=1

Γ(𝐹𝑖(𝐴
(𝑖)𝑥))

√︃
1

Γ(𝐹𝑖(𝐴(𝑖)𝑥))
+ 1 .

We now observe that the Gaussian surface area Γ(𝐹𝑖(𝐴
(𝑖)𝑥)) is a continuous func-

tion of the matrix 𝐴(𝑖). By flattening the matrix 𝐴(𝑖) (since it is isomorphic to a
vector 𝑧 ∈ R𝑛2

) and letting 𝑆𝑧 be the induced surface {𝑥 : 𝑅(𝐴(𝑖)𝑥) = 1∧ 𝑣𝑖 ·𝑥 =
0}, it suffices to show that

lim
𝑤→𝑧

∫︁
𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑤}𝑑𝜇(𝑥) =

∫︁
𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑧}𝑑𝜇(𝑥) ,

by the smoothness of the surface 𝑆𝑧. Consider a sequence of functions (𝑔𝑚) and
vectors (𝑤𝑚) so that 𝑔𝑚(𝑥) = 𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑤𝑚} and lim𝑚→∞𝑤𝑚 = 𝑧. Note that
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|𝑔𝑚(𝑥)| ≤ 1 everywhere. Hence, by the dominated convergence theorem, we have
that

lim
𝑚→∞

∫︁
𝑔𝑚(𝑥)𝑑𝜇(𝑥) =

∫︁
lim

𝑚→∞
𝑔𝑚(𝑥)𝑑𝜇(𝑥) =

∫︁
𝜑𝑛(𝑥) lim

𝑚→∞
1{𝑥 ∈ 𝑆𝑤𝑚}𝑑𝜇(𝑥) .

Since the sequence consists of smooth surfaces, we have that lim𝑚→∞ 1{𝑥 ∈
𝑆𝑤𝑚} = 1{𝑥 ∈ 𝑆𝑧} and so the Gaussian surface area is continuous with respect to
the matrix 𝐴(𝑖) for any 𝑖 ∈ [𝑘].

Also, as 𝜃 → 0, we have that 𝐴(𝑖) → 𝑉 . This is because the sequence of
matrices 𝐴(𝑖) depends only on the vectors 𝑢𝑗 and 𝑣𝑗 for 𝑗 ∈ [𝑘] and the following
two properties hold true: 𝜃 = max𝑗∈[𝑘] 𝜃(𝑣𝑗 ,𝑢𝑗) and all the vectors are unit. Hence,
as 𝜃 tends to zero, they tend to become the same vectors and so any matrix 𝐴(𝑖)

tends to become 𝑉 . Therefore, taking this limit we obtain that for 𝜃 → 0 it holds
that

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)]

𝜃
≤ 𝑐 ·

𝑘∑︁
𝑖=1

Γ(𝐹𝑖(𝑉 𝑥))
√︀
log (1/Γ(𝐹𝑖(𝑉 𝑥)) + 1) . (4.1)

We will now use the following lemma that shows that the surface area of any
homogeneous polyhedral cone is independent of the number of faces 𝑘 and in fact
is at most 1 for all 𝑘.

Lemma 4.7.4 (Gaussian Surface Area of Homogeneous Cones (Naz03)). Let 𝐶 be
a cone with apex at the origin (i.e., an intersection of arbitrarily many halfspaces
all of whose boundaries contain the origin). Then 𝐶 has Gaussian surface area
Γ(𝐶) at most 1.

Using Lemma 4.7.4 we obtain that
∑︀𝑘

𝑖=1 Γ(𝐹𝑖(𝑉 𝑥)) ≤ 1. Next, we observe
that, when the positive numbers 𝑎1, . . . , 𝑎𝑘 satisfy

∑︀𝑘
𝑖=1 𝑎𝑖 ≤ 1, it holds that∑︀𝑘

𝑖=1 𝑎𝑖
√︀
log(1/𝑎𝑖) ≤

√︁∑︀𝑘
𝑖=1 𝑎𝑖 log(1/𝑎𝑖) ≤

√︀
log(𝑘) (using the fact that the uni-

form distribution maximizes the entropy). Using this fact and Equation (4.1), we
obtain

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)]

𝜃
≤ 𝑐
√︀
log(𝑘) .

Thus, we have shown that, for sufficiently small 𝜃, it holds that Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸=

𝐶2(𝑥)] ≤ 𝑐
√︀

log(𝑘)𝜃, but, as we discussed in the start of the proof, the general
bound follows directly from the bound for sufficiently small values of 𝜃 > 0.

4.8 Learning in Top-𝑟 Disagreement from Label
Rankings

We prove the next result which corresponds to a proper learning algorithm for
LSF in the presence of bounded noise with respect to the top-𝑟 disagreement.
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Theorem 4.8.1 (Proper Top-𝑟 Learning Algorithm). Fix 𝜂 ∈ [0, 1/2), 𝑟 ∈ [𝑘]
and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying
the assumptions of Definition 4.1.1. There exists an algorithm that draws 𝑁 =̃︀𝑂 (︁ 𝑑 𝑟𝑘

𝜖(1−2𝜂)6
log(1/𝛿)

)︁
samples from 𝒟, runs in poly(𝑁) time and, with probability

at least 1−𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in top-𝑟
disagreement to the target.

The main result of this section is the next lemma, which directly implies the
above theorem (using the same steps as the proof of Theorem 4.7.1).

Lemma 4.8.2 (Top-𝑟 Misclassification). Let 𝑟 ∈ [𝑘]. Consider two matrices
𝑈 ,𝑉 ∈ R𝑘×𝑑 and let 𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We have
that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] ≤ 𝑐 · 𝑘 · 𝑟 ·
√︀

log(𝑘𝑟) ·max
𝑖 ̸=𝑗

𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

where 𝑐 > 0 is some universal constant.

Proof. Let us set 𝜎1..𝑟(𝑊𝑥) denote the ordering of the top-𝑟 alternatives in the
ranking 𝜎(𝑊𝑥). Moreover, recall that 𝜎ℓ(𝑊𝑥) denotes the alternative in the ℓ-th
position of the ranking 𝜎(𝑊𝑥). For two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑, we have that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] =
𝑘∑︁

𝑗=1

Pr
𝑥∼𝒩𝑑

[︃
𝑟⋃︁

ℓ=1

{𝑗 = 𝜎ℓ(𝑈𝑥), 𝑗 ̸= 𝜎ℓ(𝑉 𝑥)}

]︃
.

The first step is to understand the geometry of the set
⋃︀𝑟

ℓ=1{𝑥 : 𝑗 = 𝜎ℓ(𝑈𝑥)} =
{𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑈𝑥)} for 𝑗 ∈ [𝑘]. We have that this set is equal to

𝒯 (𝑗)
𝑈 =

⋃︁
𝑆⊆[𝑘]:|𝑆|≤𝑟−1

⋂︁
𝑖∈𝑆
{𝑥 : (𝑈𝑖 −𝑈𝑗) · 𝑥 ≥ 0} ∩

⋂︁
𝑖/∈𝑆

{𝑥 : (𝑈𝑖 −𝑈𝑗) · 𝑥 ≤ 0} .

In words, 𝒯 (𝑗)
𝑈 iterates over any possible collection of alternatives that can win the

element 𝑗 (they lie in the set of top elements 𝑆) and the remaining elements lose
when compared with 𝑗 (they lie in the complement set [𝑘]∖𝑆). Overloading the no-
tation, let us define the mapping 𝑇 (𝑡) = 𝑇 (𝑡1, ..., 𝑡𝑘) =

∑︀
𝑆⊆[𝑘]:|𝑆|≤𝑟−1

∏︀
𝑖∈𝑆 1{𝑡𝑖 ≥

0}
∏︀

𝑖/∈𝑆 1{𝑡𝑖 ≤ 0}. Using this mapping, we can define the indicator of the set
𝑇
(𝑗)
𝑈 as 𝑇 ((𝑈1 − 𝑈𝑗) · 𝑥, . . . , (𝑈𝑘 − 𝑈𝑗) · 𝑥). The top-𝑟 disagreement Pr𝑥∼𝒩𝑑

[𝑗 ∈
𝜎1..𝑟(𝑈𝑥), 𝑗 /∈ 𝜎1..𝑟(𝑉 𝑥)] is equal to:

Pr
𝑥∼𝒩𝑑

[𝑇 ((𝑈1−𝑈𝑗) ·𝑥, ..., (𝑈𝑘−𝑈𝑗) ·𝑥) = 1, 𝑇 ((𝑉1−𝑉𝑗) ·𝑥, ..., (𝑉𝑘−𝑉𝑗) ·𝑥) = 0] .

So we have that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] =
𝑘∑︁

𝑗=1

Pr
𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) = 1, 𝑇𝑗(𝑉 𝑥) = 0] ≤
𝑘∑︁

𝑗=1

Pr
𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)] .

In order to show the desired bound, it suffices to prove the following two lemmas.
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Lemma 4.8.3 (Disagreement Region). Consider a positive integer 𝑟 ≤ 𝑘. Fix
𝑗 ∈ [𝑘] and let 𝜃 = max𝑖∈[𝑘] 𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗). Then it holds that

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
,

where 𝑐 > 0 is some constant and 𝐹 𝑗
𝑖 is the surface {𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 :

𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥} for the matrix 𝑉 ∈ R𝑘×𝑑.

and,

Lemma 4.8.4. Let 𝐹 𝑗
𝑖 , 𝑟, 𝑘 as in the previous lemma. It holds that∑︁

𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ(𝐹 𝑗
𝑖 ) ≤ 2𝑘𝑟 .

Applying these two lemmas with 𝜃 = max𝑖 ̸=𝑗 𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗), we get that

𝑍 := lim
𝜃→0

∑︀
𝑗∈[𝑘]Pr𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐·

∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
.

Let us set Γ′(𝐹 𝑗
𝑖 ) = Γ(𝐹 𝑗

𝑖 )/(2𝑘𝑟). Then we have that

𝑍 ≤ 2𝑐𝑘𝑟 ·
∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ′(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

2𝑘𝑟 · Γ′(𝐹 𝑗
𝑖 )

+ 1

)︃
.

It suffices to bound the quantity

∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ′(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ′(𝐹 𝑗
𝑖 )

+ 1

)︃
= 𝑂

(︁
𝑘𝑟
√︀
log(𝑘𝑟)

)︁
,

where we used a similar “entropy-like” inequality as we did in the top-1 case. This
yields (by recalling that it is sufficient to consider only the case of arbitrarily small
angles, as in the top-1 case) that

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] ≤ 𝑐 𝑟𝑘
√︀

log(𝑘𝑟) ·max
𝑖 ̸=𝑗

𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

for some universal constant 𝑐.
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4.8.1 The proof of Lemma 4.8.3
We proceed with the proof of the key lemma concerning the disagreement re-

gion. We first show the following claim where we only change a single vector.
Recall that

𝑇 (𝑉 𝑥) =
∑︁

𝑆:|𝑆|≤𝑟−1

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0} .

We will be interested in the surface 𝐹1 := 𝐹1(𝑉 𝑥) = 𝑇 (𝑉 𝑥)1{𝑣1 · 𝑥 = 0}.

Claim 17. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently
small 𝜃 ∈ (0, 𝜋/2). It holds that

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1·𝑥, . . . ,𝑣𝑘 ·𝑥) ̸= 𝑇 (𝑟·𝑥,𝑣2·𝑥, . . . ,𝑣𝑘 ·𝑥)] ≤ 𝑐·𝜃·Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
,

where 𝐹1 is the surface 𝑇 (𝑉 𝑥)∩{𝑥 : 𝑣1 ·𝑥 = 0} and 𝑐 is some universal constant.

Proof. We first decompose the sum of 𝑇 (𝑉 𝑥) depending on whether 1 ∈ 𝑆 or not.
Hence, we have that 𝑇 (𝑣1·𝑥, . . . ,𝑣𝑘 ·𝑥) = 𝑇+(𝑣1·𝑥, . . . ,𝑣𝑘 ·𝑥)+𝑇−(𝑣1·𝑥, . . . ,𝑣𝑘 ·𝑥)
where

𝑇+(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) =
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

=
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

1{𝑣1 · 𝑥 ≥ 0} ·
∏︁

𝑖∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

= 1{𝑣1 · 𝑥 ≥ 0} ·
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

∏︁
𝑖∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

=: 1{𝑣1 · 𝑥 ≥ 0} ·𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ,

and similarly

𝑇−(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) = 1{𝑣1 · 𝑥 ≤ 0} ·
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1/∈𝑆

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁

𝑖/∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≤ 0}

=: 1{𝑣1 · 𝑥 ≤ 0} ·𝐺−(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) .

Notice that the indicator 𝐺𝑠 does not depend on the alternative 1 for 𝑠 ∈ {−,+}.
Since 𝑇 : R𝑘 → {0, 1}, we have that

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[|𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)− 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

≤
∑︁

𝑠∈{−,+}
E

𝑥∼𝒩𝑑

[|𝑇 𝑠(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)− 𝑇 𝑠(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

=
∑︁

𝑠∈{−,+}
E

𝑥∼𝒩𝑑

[𝐺𝑠(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) · |1{𝑠 · 𝑣1 · 𝑥 ≥ 0} − 1{𝑠 · 𝑟 · 𝑥 ≥ 0}|] .
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Let us focus on the case 𝑠 = +. The difference between the two indicators in
the last line of the above equation corresponds to the event that the halfspaces
1{𝑣1 · 𝑥 ≥ 0} and 1{𝑟 · 𝑥 ≥ 0} disagree. Hence, we have that |1{𝑣1 · 𝑥 ≥
0} − 1{𝑟 · 𝑥 ≥ 0}| = 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}. Note that the above indicator depends
on both 𝑣1 and 𝑟. We would like to work only with one of these two vectors. To
this end, let us introduce 𝑞, the normalized projection of 𝑟 onto the orthogonal
complement of 𝑣1, i.e., 𝑞 = proj𝑣⊥

1
𝑟/‖proj𝑣⊥

1
𝑟‖2. We have that 𝑣1 and 𝑞 is an

orthonormal basis of the subspace spanned by the vectors 𝑣1 and 𝑟. Notice that 𝑟 =
cos 𝜃(𝑣1, 𝑟)𝑣1 + sin 𝜃(𝑣1, 𝑟)𝑞, by the construction of 𝑞. Our goal is to understand
the structure of the region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0. This set is equal to

{0 < 𝑣1 · 𝑥 < −(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟)} ∪ {−(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟) < 𝑣1 · 𝑥 < 0} .

To see this, we have that (𝑣1 ·𝑥)(𝑟 ·𝑥) = (𝑣1 ·𝑥)(cos 𝜃(𝑣1, 𝑟)𝑣1 ·𝑥+sin 𝜃(𝑣1, 𝑟)𝑞 ·𝑥).
This quantity must be negative. The left-hand set considers the case where 𝑣1 ·𝑥 >
0 and so tan 𝜃(𝑣1, 𝑟)(𝑞 · 𝑥) < −𝑣1 · 𝑥. We obtain the right-hand set in a similar
way. Thus, we have that the disagreement region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is a subset of
the region {|𝑣1 · 𝑥| ≤ |𝑞 · 𝑥| tan 𝜃(𝑣1, 𝑟)}. Since tan 𝜃(𝑣1, 𝑟) ≤ 𝜃 and we have that
𝜃 is sufficiently small we can also replace the above region by the larger region:
{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}. Therefore, we have

E
𝑥∼𝒩𝑑

[︀
𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}}

]︀
≤ E

𝑥∼𝒩𝑑

[︀
𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}

]︀
.

From this point, the proof goes as in the top-1 case. In total, we will get that

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[︀
(𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) +𝐺−(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)

]︀
≤ 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤ 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) + 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 2𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) + 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. Let us explain the first in-
equality above. Note that the space induced by 𝐺−(𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥) contains the
space induced by 𝐺+(𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥). Hence, in the integration, we can integrate
over the surface 𝐹1 = 𝑇 (𝑉 𝑥)∩1{𝑥 : 𝑣1 ·𝑥 = 0} twice. Essentially, this surface cor-
responds to 1{𝑣1 ·𝑥 = 0} ·

∑︀
𝑆⊆[𝑘]∖{1}:|𝑆|≤𝑟−1

∏︀
𝑖∈𝑆 1{𝑣𝑖 ·𝑥 ≥ 0}

∏︀
𝑖/∈𝑆 1{𝑣𝑖 ·𝑥 ≤ 0}.

Applying the steps of the top-1 case, we can obtain the desired bound in terms of
the Gaussian surface area of 𝐹1.
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Next, for fixed 𝑗 ∈ [𝑘], we can apply the above claim sequentially (as we did in
the end of the top-1 case) to get

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
,

for some small constant 𝑐 > 0.

4.8.2 The proof of Lemma 4.8.4
Using the above result, we get that it suffices to control the value Γ(𝐹 𝑗

𝑖 ), where
𝐹 𝑗
𝑖 is the surface of 𝑇𝑗(𝑉 𝑥) ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥} for the matrix 𝑉 and 𝑖, 𝑗 ∈ [𝑘].

We next have to control the Gaussian surface area of the induced shape, i.e., the
quantity

Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}) .

To this end, we give the next lemma.

Lemma 4.8.5. Let 𝑟 ≤ 𝑘 with 𝑟, 𝑘 ∈ N. For any matrix 𝑉 ∈ R𝑘×𝑑 and 𝑖, 𝑗 ∈ [𝑘],
there exists a matrix 𝑄 = 𝑄(𝑖) ∈ R𝑘×𝑑 which depends only on 𝑖 such that

Γ(𝐹 𝑗
𝑖 ) := Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}) ≤ 2 · Pr

𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] .

Before proving this result, let us see how to apply it in order to get Lemma 4.8.4.
We will have that∑︁

𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ(𝐹 𝑗
𝑖 ) =

∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥})

≤ 2
∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄
(𝑖)𝑥)]

= 2
∑︁
𝑖∈[𝑘]

E
𝑥∼𝒩𝑑

[|𝜎1..𝑟(𝑄(𝑖)𝑥)|]

= 2
∑︁
𝑖∈[𝑘]

𝑟

= 2𝑘𝑟 .

Proof of Lemma 4.8.5. For this proof, we fix 𝑖, 𝑗 ∈ [𝑘]. The first step is to design
the matrix 𝑄. As a first observation, we can subtract the vector 𝑉𝑖 from each
weight vector and do not affect the resulting orderings. Second, we can assume
that the weight vectors that correspond to indices which 𝑗 beats are unit. Let us
be more specific Assume that initially we have that

(𝑉𝑗 − 𝑉ℓ) · 𝑥 ≥ 0 .
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The first observation gives that

(𝑉𝑗 − 𝑉𝑖) · 𝑥 ≥ (𝑉ℓ − 𝑉𝑖) · 𝑥 .

Let us set ̃︀𝑄 the intermediate matrix with rows 𝑉𝑗 − 𝑉𝑖. The second observation
states that the inequalities where 𝑗 beats some index ℓ are not affected by nor-
malization. Note that ̃︀𝑄𝑗 · 𝑥 = 0 and hence ̃︀𝑄ℓ · 𝑥 ≤ 0. Hence, dividing with
non-negative numbers will not affect the order of these two values, i.e.,̃︀𝑄𝑗 · 𝑥

‖ ̃︀𝑄𝑗‖2
≥
̃︀𝑄ℓ · 𝑥
‖ ̃︀𝑄ℓ‖2

.

Note that the above ordering is 𝑥-dependent, since the indices that 𝑗 beats depend
on 𝑥. However, we can normalize any row of ̃︀𝑄 without affecting the fact that
the element 𝑗 is top-𝑟 (since the sign of the inner products is not affected by
normalization). This transformation yields a matrix 𝑄 = 𝑄(𝑖) and depends only
on 𝑖 (crucially, it is independent of 𝑗). For simplicity, we will omit the index 𝑖 in
what follows. For this matrix, we have that

{𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥),𝑄𝑗 · 𝑥 = 0} = {𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥),𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥} .

We will now prove that

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] ≥
Γ(𝐹 𝑗

𝑖 )

2
.

Let us fix some 𝑥 and set 𝑥‖ = proj𝑄𝑗
𝑥 and 𝑥⊥ = proj𝑄⊥

𝑗
𝑥. We assume that 𝑥

lies in the set {𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)}. This implies that there exist an index set 𝐼 of
size at least 𝑘 − 𝑟 so that if ℓ ∈ 𝐼 then

𝑄𝑗 · 𝑥‖ +𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥‖ +𝑄ℓ · 𝑥⊥ .

Let us condition on the event

𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥⊥ .

We hence get that

𝑄𝑗 · 𝑥‖ = (𝑄𝑗 ·𝑄𝑗) · (𝑄𝑗 · 𝑥) ≥ 𝑄ℓ · 𝑥‖ = (𝑄ℓ ·𝑄𝑗) · (𝑄𝑗 · 𝑥)

Using that 𝑄𝑗 is unit, that the inner product between 𝑄ℓ and 𝑄𝑗 is at most one
and that 𝑄𝑗 · 𝑥 is a univariate Gaussian, we get that

Pr
𝑧∼𝒩 (0,1)

[𝑧 · (1−𝑄ℓ ·𝑄𝑗) ≥ 0] = 1/2 .

The above discussion implies that

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] = Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼) 𝑄𝑗 · 𝑥‖ +𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥‖ +𝑄ℓ · 𝑥⊥]
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and so Pr𝑥∼𝒩𝑑
[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] equals to

Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥‖ ≥ 𝑄𝑗 ·𝑥‖ | (∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥⊥ ≥ 𝑄ℓ·𝑥⊥]· Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥⊥ ≥ 𝑄ℓ·𝑥⊥] .

However, in the above product, we have that the first term is 1/2 and the second
term is the probability that 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥⊥), i.e.,

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] ≥ Pr[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥⊥)]

2
= Γ(𝐹 𝑗

𝑖 )/2 ,

since the space in the RHS is low-dimensional and corresponds to the desired
surface.

4.9 Distribution-Free Lower Bounds for Top-1
Disagreement Error

We begin with some definitions concerning the PAC Label Ranking setting.
Let 𝒳 be an instance space and 𝒴 = S𝑘 be the space of labels, which are rankings
over 𝑘 elements. A sorting function or hypothesis is a mapping ℎ : 𝒳 → S𝑘. We
denote by ℎ1(𝑥) the top-1 element of the ranking ℎ(𝑥). A hypothesis class is a set
of classifiers ℋ ⊂ S𝒳𝑘 .

Top-1 Disagreement Error. The top-1 disagreement error with respect to
a joint distribution 𝒟 over 𝒳 × S𝑘 equals to the probability Pr(𝑥,𝜎)∼𝒟[ℎ1(𝑥) ̸=
𝜎−1(1)]. We mainly consider learning in the realizable case, which means that
there is ℎ⋆ ∈ ℋ which has (almost surely) zero error. Therefore, we can focus
on the marginal distribution 𝒟𝑥 over 𝒳 and denote the top-1 disagreement error
of a sorting function ℎ with respect to the true hypothesis ℎ⋆ by Err𝒟𝑥,ℎ⋆(ℎ) :=
Pr𝑥∼𝒟𝑥 [ℎ1(𝑥) ̸= ℎ⋆1(𝑥)].

A learning algorithm is a function 𝒜 that receives a training set of 𝑚 instances,
𝑆 ∈ 𝒳𝑚, together with their labels according to ℎ⋆. We denote the restriction of ℎ⋆

to the instances in 𝑆 by ℎ⋆|𝑆 . The output of the algorithm 𝒜, denoted 𝒜(𝑆, ℎ⋆|𝑆) is
a sorting function. A learning algorithm is proper if it always outputs a hypothesis
from ℋ.

The top-1 PAC Label Ranking sample complexity of a learning algorithm 𝒜 is
the function 𝑚

(1)
𝒜,ℋ defined as follows: for every 𝜖, 𝛿 > 0, 𝑚(1)

𝒜,ℋ(𝜖, 𝛿) is the minimal

integer such that for every 𝑚 ≥ 𝑚
(1)
𝒜,ℋ(𝜖, 𝛿), every distribution 𝒟𝑥 on 𝒳 , and every

target hypothesis ℎ⋆ ∈ ℋ, Pr𝑆∼𝒟𝑚
𝑥
[Err𝒟𝑥,ℎ⋆(𝒜(𝑆, ℎ⋆|𝑆)) > 𝜖] ≤ 𝛿. In this case,

we say that the learning algorithm (𝜖, 𝛿)-learns the class of sorting functions ℋ
with respect to the top-1 disagreement error. If no integer satisfies the inequality
above, define 𝑚

(1)
𝒜 (𝜖, 𝛿) = ∞. ℋ is learnable with 𝒜 if for all 𝜖 and 𝛿 the sample

complexity is finite. The top-1 PAC Label Ranking sample complexity of
a class ℋ is 𝑚

(1)
PAC,ℋ(𝜖, 𝛿) = inf𝒜𝑚

(1)
𝒜,ℋ(𝜖, 𝛿), where the infimum is taken over all
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learning algorithms. Clearly, the above top-1 definition can be extended to the
top-𝑟 setting.

In this section, we show the next result. We denote by ℒ𝑑,𝑘 the class of Linear
Sorting functions in 𝑑 dimensions with 𝑘 labels.

Theorem 4.9.1. In the realizable PAC Label Ranking setting, any algorithm that
(𝜖, 𝛿)-learns the class ℒ𝑑,𝑘 with respect to the top-1 disagreement error requires at
least Ω((𝑑𝑘 + log(1/𝛿))/𝜖) samples.

4.9.1 Top-1 Ranking Natarajan Dimension
In order to establish the above result, we introduce a variant of the standard

Natarajan dimension (Nat89; BDCBL92; DSBDSS11; DSS14). For a ranking 𝜋,
we will also let 𝐿1(𝜋) its top-1 element and 𝐿3..𝑘(𝜋) the ranking after deleting its
top-2 part.

Definition 4.9.2 (Top-1 Ranking Natarajan Dimension). Let ℋ ⊆ S𝒳𝑘 be a hypoth-
esis class of sorting functions and let 𝑆 ⊆ 𝒳 . We say that ℋ 𝑁 -shatters 𝑆 if there
exist two mappings 𝑓1, 𝑓2 : 𝑆 → S𝑘 such that for every 𝑦 ∈ 𝑆, 𝐿1(𝑓1(𝑦)) ̸= 𝐿1(𝑓2(𝑦))
and 𝐿3..𝑘(𝑓1(𝑦)) = 𝐿3..𝑘(𝑓2(𝑦)) and for every 𝑇 ⊆ 𝑆, there exists a sorting function
𝑔 ∈ ℋ such that

(𝑖) ∀𝑥 ∈ 𝑇, 𝑔(𝑥) = 𝑓1(𝑥), and (𝑖𝑖) ∀𝑥 ∈ 𝑆 ∖ 𝑇, 𝑔(𝑥) = 𝑓2(𝑥) .

The top-1 Ranking Natarajan dimension of ℋ, denoted 𝑑
(1)
𝑁 (ℋ) is the maximal

cardinality of a set that is 𝑁 -shattered by ℋ.

First, we connect PAC Label Ranking learnability to the top-1 disagreement
error with the notion of top-1 Ranking Natarajan dimension.

Theorem 4.9.3 (Top-1-Natarajan Lower Bounds Sample Complexity). In the re-
alizable PAC Label Ranking setting, we have for every hypothesis class ℋ ⊆ S𝒳𝑘

𝑚
(1)
PAC,ℋ(𝜖, 𝛿) = Ω

(︃
𝑑
(1)
𝑁 (ℋ) + log(1/𝛿)

𝜖

)︃
.

Proof. Let ℋ ⊆ S𝒳𝑘 be a class of sorting functions of top-1-Natarajan dimension
𝑑
(1)
𝑁 = 𝑑𝑁 . Consider the binary hypothesis class ℋbin = {0, 1}[𝑑𝑁 ] which contains

all the classifiers from [𝑑𝑁 ] = {1, ..., 𝑑𝑁} to {0, 1}. It suffices to show the following.

Claim 18. It holds that 𝑚(1)
PAC,ℋ(𝜖, 𝛿) ≥ 𝑚PAC,ℋbin

(𝜖, 𝛿).

This is sufficient since we have that 𝑚PAC,ℋbin
(𝜖, 𝛿) = Ω

(︁
VC(ℋbin)+log(1/𝛿)

𝜖

)︁
and

VC(ℋbin) = 𝑑𝑁 . Let us now prove the claim.
We assume that the instance space is the set 𝒳 . Assume that 𝐴 is a learning

algorithm for the hypothesis class ℋ ⊆ S𝒳𝑘 and 𝐴bin is a learning algorithm for
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the associated binary class ℋbin. It suffices to show that 𝐴 requires at least as
many samples as 𝐴bin. In fact, we will show that whenever 𝐴bin errs, so does 𝐴.
Let 𝑆 = {𝑠1, ..., 𝑠𝑑𝑁 }, 𝑓0, 𝑓1 be the set and the two functions that witness that
the top-1-Natarajan dimension of ℋ is 𝑑𝑁 . Given a training set (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑚] ∈
([𝑑𝑁 ]×{0, 1})𝑚, we set 𝑔 : 𝒳 → S𝑘 be equal to the output of the algorithm 𝐴 with
input (𝑠𝑥𝑖 , 𝑓𝑦𝑖(𝑥𝑖))𝑖∈[𝑚] ∈ (𝑆 × S𝑘)𝑚. We also set 𝑓 be the output of the algorithm
𝐴bin with input (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑚] by setting 𝑓(𝑖) = 1 if and only if 𝐿1(𝑔(𝑠𝑖)) = 𝐿1(𝑓1(𝑠𝑖)).
We will show that whenever 𝐴bin errs, so does 𝐴. Fix (𝑥𝑖, 𝑦𝑖) ∈ 𝑆×{0, 1}. Assume
that 𝐴bin(𝑥𝑖) ̸= 𝑦𝑖 and say 𝑦𝑖 = 0. Then 𝑓(𝑖) = 1 and so 𝐿1(𝑔(𝑠𝑖)) = 𝐿1(𝑓1(𝑠𝑖)) ̸=
𝐿1(𝑓0(𝑠𝑖)). This implies that 𝐴 errs. The case 𝑦𝑖 = 1 is similar.

4.9.2 Lower Bound for top-1 disagreement error for LSFs
Theorem 4.9.4 (Top-1 Natarajan Dimension of LSFs). Consider the hypothesis
class ℒ𝑑,𝑘 = {𝜎𝑊 : R𝑑 → S𝑘 : 𝜎𝑊 (𝑥) = argsort(𝑊𝑥),𝑊 ∈ R𝑘×𝑑}. Then,
𝑑
(1)
𝑁 (ℒ𝑑,𝑘) = Ω(𝑑𝑘).

Proof. Fix 𝑘 ∈ N. Let us consider the case 𝑑 = 2 that will correspond as the
building block for the general case 𝑑 > 2. Let us first choose the set of points: Set
𝑃 be the collection of pairs 𝑃 = {(2𝑖 − 1, 2𝑖)}𝑖∈[𝑏] for any 𝑖 ∈ [𝑏] with 𝑏 = ⌊𝑘/2⌋
and 𝑆 = {𝑥𝑚}𝑚∈𝑃 where these points correspond to |𝑃 | equidistributed points on
the unit sphere in R2. This set of points has size |𝑃 | = Θ(𝑘) and we are going to
𝑁 -shatter it using ℒ2,𝑘.

Consider the matrix 𝑊 ∈ R𝑘×2 so that {𝑊𝑖}𝑖∈[𝑘] correspond to the rows of
𝑊 . The structure of the problem relies on the hyperplanes with normal vectors
(𝑊𝑖 −𝑊𝑗)𝑖 ̸=𝑗 and our choice of 𝑊 will rely on these hyperplanes. For any 𝑚 =
(2𝑖 − 1, 2𝑖), we set 𝑊2𝑖−1,𝑊2𝑖 on the unit sphere so that 𝑊2𝑖−1 ·𝑊2𝑖 = 1 − 𝜑
with 𝜑 ∈ (0, 1) sufficiently small (set arccos(1 − 𝜑) = 2𝜋/(100𝑘)) and let 𝐶𝑚 be
the cone generated by these two vectors with axis 𝐼𝑚. We place 𝑊2𝑖−1 so that
the distance between 𝑥𝑚 and the hyperplane 𝐼𝑚 is sufficiently small (say that the
angle between 𝑥𝑚 and 𝐼𝑚 is arccos(1 − 𝜑)/100). Note that the normal vector of
𝐼𝑚 is 𝑊2𝑖−1 −𝑊2𝑖 and we place 𝑥𝑚 so that it has positive correlation with this
vector. This uniquely identifies the location of 𝑊2𝑖. Crucially, each vector 𝑥𝑚 has
the following properties: (i) 𝑥𝑚 is very close to the boundary of the hyperplane
with normal vector (𝑊2𝑖−1 −𝑊2𝑖), (ii) 𝑊2𝑖−1 · 𝑥𝑚 > 𝑊2𝑖 · 𝑥 > 𝑊𝑗 · 𝑥𝑚 for any
𝑗 /∈ 𝑚 and (iii) 𝑥𝑚 is far from any boundary induced by hyperplanes with normal
vectors 𝑊𝑗 −𝑊𝑗′ for any (𝑗, 𝑗′) ̸= 𝑚.

Since the points are well-separated on the unit sphere, for any 𝑚 = (2𝑖−1, 2𝑖) ∈
𝑃 , we have 𝑊2𝑖−1 ·𝑊2𝑖 = 1 − 𝜑 ≈ 1 and for any other pair of indices (𝑖, 𝑗) /∈ 𝑃 ,
there exists 𝑐 = 𝑐(𝑘) ∈ (0, 1), |⟨𝑊𝑖,𝑊𝑗⟩| ≤ 𝑐.

For any 𝑚 = (2𝑖 − 1, 2𝑖) ∈ 𝑃 , we set 𝑊 ′
2𝑖−1 −𝑊 ′

2𝑖 = 𝑅𝜃(𝑊2𝑖−1 −𝑊2𝑖) for
some 𝜃 to be chosen, where 𝑅𝜃 is the 2× 2 rotation matrix. We choose 𝜃 so that
each point 𝑥𝑚 for 𝑚 = (2𝑖 − 1, 2𝑖) ∈ 𝑃 with (𝑊2𝑖−1 −𝑊2𝑖) · 𝑥𝑚 > 0 satisfies
(𝑊 ′

2𝑖−1−𝑊 ′
2𝑖) ·𝑥𝑚 < 0. The main idea is that since 𝑥𝑚 has the properties (i)-(iii)
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described above, the rankings induced by the vectors 𝑊𝑥𝑚 and 𝑊 ′𝑥𝑚 will be
different in the first two positions but the same in the rest.

Given the training set {𝑥𝑚}𝑚∈𝑃 , we have to construct 𝑓0, 𝑓1 and verify that
they satisfy the top-1 Ranking Natarajan conditions. For 𝑚 = (2𝑖 − 1, 2𝑖), we
have that 𝑓0(𝑥𝑚) = (2𝑖 − 1, 2𝑖, 𝜋) and 𝑓1(𝑥𝑚) = (2𝑖, 2𝑖 − 1, 𝜋) for some ranking
𝜋 of size 𝑘 − 2 that depends on 𝑚. Specifically, we will set 𝑓0(𝑥) = 𝜎(𝑊𝑥) and
𝑓1(𝑥) = 𝜎(𝑊 ′𝑥), where 𝜎 gives the decreasing ordering of the elements of the
input vector. By the choice of the set 𝑆 and 𝑊 ,𝑊 ′, it remains to show that the
𝑘 − 2 last elements of the rankings 𝑓0(𝑥𝑚) (say 𝜋0) and of 𝑓1(𝑥𝑚) (say 𝜋1) are
in the same order, i.e., 𝐿3..𝑘(𝑓0(𝑥𝑚)) = 𝐿3..𝑘(𝑓1(𝑥𝑚)) . Assume that 𝑢 ≻ 𝑣 in
𝜋0. It suffices to show that (𝑊 ′

𝑢 −𝑊 ′
𝑣) · 𝑥𝑚 ≥ 0, i.e., the order of 𝑢 and 𝑣 is

preserved when transforming 𝑊 to 𝑊 ′. We have that (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚 > 𝑐1 for
some constant 𝑐1 > 0 (𝑐1 is the minimum over (𝑢, 𝑣) ̸= 𝑚 = (2𝑖 − 1, 2𝑖)). Hence,
we can pick 𝜃 small enough so that (𝑊 ′

𝑢−𝑊 ′
𝑣) ·𝑥𝑚 > 𝑐2 and this can be done for

any pair 𝑢, 𝑣 that does not correspond to 𝑚. This implies that 𝜋0 = 𝜋1 = 𝜋. In
particular, we have that

(𝑊 ′
𝑢−𝑊 ′

𝑣) ·𝑥𝑚 = cos(𝜃) · (𝑊𝑢−𝑊𝑣) ·𝑥𝑚+sin(𝜃) · (𝑊 (1)
𝑢𝑣 𝑥(2)𝑚 −𝑊 (2)

𝑢𝑣 𝑥(1)𝑚 ) > 𝑐2 > 0

for some 𝜃 sufficiently small, where 𝑊
(𝑡)
𝑢𝑣 is the 𝑡-th entry of the vector 𝑊𝑢 −𝑊𝑣

for 𝑡 ∈ {1, 2} and 𝑥𝑚,𝑊𝑢,𝑊𝑣 are unit vectors.
For any subset 𝑇 of 𝑆, it remains to choose a linear classifier in ℒ2,𝑘 (which

is allowed to depend on 𝑇 ). For any 𝑇 ⊆ 𝑆 = {𝑥𝑚}𝑚∈𝑃 , we consider the matrix
𝑊 ∈ R𝑘×2 so that for the 𝑖-th row 𝑊 𝑖 = 𝑊𝑖1{𝑖 ∈ 𝑚 ∈ 𝑇}+𝑊 ′

𝑖 1{𝑖 ∈ 𝑚 ∈ 𝑆 ∖ 𝑇}
for any 𝑖 ∈ [𝑘]. This is valid since the pairs 𝑚 ∈ 𝑃 partition [𝑘]. We have to show
the following two properties: (i) 𝜎(𝑊𝑥) = 𝑓0(𝑥) for 𝑥 ∈ 𝑇 and (ii) 𝜎(𝑊𝑥) = 𝑓1(𝑥)
for 𝑥 ∈ 𝑆 ∖ 𝑇 .

Assume that 𝑚 = (2𝑖−1, 2𝑖) and 𝑥𝑚 ∈ 𝑇 . We have that 𝑓0(𝑥𝑚) = (2𝑖−1, 2𝑖, 𝜋)
and 𝑊 2𝑖−1 −𝑊 2𝑖 = 𝑊2𝑖−1 −𝑊2𝑖 and so 2𝑖− 1 ≻ 2𝑖 in the ranking 𝜎(𝑊𝑥𝑚). It
remains to show that the remaining

(︀
𝑘
2

)︀
− 1 pairwise comparisons are the same in

the two rankings. Let us consider a pair of points 𝑢 ̸= 𝑣 so that 𝑢 ≻ 𝑣 in 𝑓0(𝑥𝑚).
It suffices to show that 𝑢 ≻ 𝑣 in 𝜎(𝑊𝑥𝑚).

1. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊𝑢 −𝑊𝑣, the result holds.

2. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊𝑢 −𝑊 ′
𝑣: In this case, 𝑢 and 𝑣 lie in a

different pair of 𝑃 and this implies that the correct direction is preserved if
𝜃 is appropriately chosen. For 𝜃 as above, it holds that (𝑊𝑢 −𝑅𝜃𝑊𝑣) · 𝑥𝑚

has the same sign as (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚. In particular,

𝑊𝑢·𝑥𝑚−𝑅𝜃𝑊𝑣·𝑥𝑚 = 𝑊𝑢·𝑥𝑚−(cos(𝜃)𝑊 (1)
𝑣 −sin(𝜃)𝑊 (2)

𝑣 )𝑥(1)𝑚 −(sin(𝜃)𝑊 (1)
𝑣 +cos(𝜃)𝑊 (2)

𝑣 )𝑥(2)𝑚 ,

and so

(𝑊𝑢−𝑊 ′
𝑣) ·𝑥𝑚 = cos(𝜃) ·(𝑊𝑢−𝑊𝑣) ·𝑥𝑚+sin(𝜃)(𝑊 (2)

𝑣 𝑥(1)𝑚 −𝑊 (1)
𝑣 𝑥(2)𝑚 ) > 0 .
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3. If 𝑢, 𝑣 are so that 𝑊 𝑢−𝑊 𝑣 = 𝑊 ′
𝑢−𝑊 ′

𝑣, the analysis for the inner product
with 𝑥𝑚 will be similar.

We now have to extend this proof for 𝑑 > 2. We will “tensorize” the above
construction as follows. Let 𝑆 = {𝑦𝑚𝑗}𝑚∈[𝑏],𝑗∈[𝑑/2] with |𝑆| = ⌊𝑘/2⌋·⌊𝑑/2⌋. We first
define the points of 𝑆: For 𝑠 ∈ [𝑑], set 𝑦𝑚𝑗 [𝑠] = 𝑥𝑚[1]1{𝑠 = 2𝑗−1}+𝑥𝑚[2]1{𝑠 = 2𝑗}
with 𝑦𝑚𝑗 ∈ R𝑑, i.e., 𝑦𝑚𝑗 has the values of 𝑥𝑚 at the consecutive entries indicated
by 𝑚 = (2𝑖− 1, 2𝑖) ∈ 𝑃 and zeros at the other positions.

We have to show that the set 𝑆 is 𝑁 -shattered. Given 𝑇 ⊆ 𝑆, we are going
to create the matrix 𝑊 ∈ R𝑘×𝑑. For illustration, think of each row of the matrix
as having 𝑑/2 blocks of size two. If 𝑦𝑚𝑗 ∈ 𝑇 with 𝑚 = (2𝑖 − 1, 2𝑖), set the two
associated rows (indicated by 𝑚) of 𝑊 with 𝑊2𝑖−1,𝑊2𝑖 at the 𝑗-th block and
with 𝑊 ′

2𝑖−1,𝑊
′
2𝑖 otherwise. We will have that 𝜎(𝑊𝑦) = 𝑓0(𝑦) if 𝑦 ∈ 𝑇 and

𝜎(𝑊𝑦) = 𝑓1(𝑦) otherwise and the analysis is the same as the 𝑑 = 2 case.

4.10 Examples of Noisy Ranking Distributions
Definition 4.10.1 (Mallows model (Mal57)). Consider 𝑘 alternatives and let 𝜋 ∈
S𝑘, 𝜑 ∈ [0, 1]. The Mallows distribution ℳMal(𝜋, 𝜑) with central ranking 𝜋 and
spread parameter 𝜑 is a probability measure over S𝑘 with density Pr𝜎∼ℳMal(𝜋,𝜑)[𝜎]

that is proportional to 𝜑𝑑(𝜎,𝜋), where 𝑑 is a ranking distance.

We focus on Mallows models accociated with the Kendall’s Tau distance 𝑑 =
𝑑𝐾𝑇 (the standard distance, not the normalized one), which measures the number
of discordant pairs.

Fact 5. When 𝜑 < 1, the Mallows modelℳMal(𝜋, 𝜑) is a ranking distribution with
bounded noise at most 1+𝜑

4 < 1/2.

Proof. The following property holds (Mal57)

Pr
𝜎∼ℳMal(𝜋,𝜑)

[𝜎(𝑖) < 𝜎(𝑗)|𝜋(𝑖) < 𝜋(𝑗)] =
𝜋(𝑗)− 𝜋(𝑖) + 1

1− 𝜑𝜋(𝑗)−𝜋(𝑖)+1
− 𝜋(𝑗)− 𝜋(𝑖)

1− 𝜑𝜋(𝑗)−𝜋(𝑖)
≥ 1

2
+
1− 𝜑

4
.

The Bradley-Terry-Luce model (BT52b; Luc12) is the most studied pairwise
comparisons model. In his seminal paper, Mallows (Mal57) also studied the fol-
lowing natural ranking distribution:

Definition 4.10.2 (Bradley-Terry-Mallows (Mal57)). Consider a score vector 𝑤 ∈
R𝑘
+ with 𝑘 distinct entries and let 𝜋 be the ranking induced by the values of 𝑤 in

decreasing order. The Bradley-Terry-Mallows distribution ℳBTM(𝑤) with central
ranking 𝜋 is a probability measure over S𝑘 with density Pr𝜎∼ℳBTM(𝑤)[𝜎] that is
proportional to

∏︀
𝑖≻𝜎𝑗

𝑤𝑖
𝑤𝑖+𝑤𝑗

.
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Lemma 4.10.3. There exists a real number 0 < 𝜂 < 1/2 so that the Bradley-
Terry-Mallows distributionℳBTM(𝑤) is a ranking distribution with bounded noise
at most 𝜂.

Proof. In the standard Bradley-Terry-Luce model, the pairwise comparison be-
tween the alternatives 𝑖, 𝑗 is a Bernoulli random variable with Pr[𝑖 ≻ 𝑗] = 𝑤𝑖/(𝑤𝑖+
𝑤𝑗). The Bradley-Terry-Mallows distribution can be considered as the Bradley-
Terry-Luce model conditioned on the event that all the pairwise comparisons are
consistent to a ranking. Hence, we have that

Pr
𝜎∼ℳBTM(𝑤)

[𝜎] =
1

𝑍(𝑘,𝑤)

∏︁
𝑖≻𝜎𝑗

𝑤𝑖

𝑤𝑖 + 𝑤𝑗
.

Let us set 𝒜𝑖≻𝑗 = {𝜎 ∈ S𝑘 : 𝜎(𝑖) < 𝜎(𝑗)}. We are interested in the following
probability

Pr
𝜎∼ℳBTM(𝑤)

[𝑖 ≻𝜎 𝑗|𝑤𝑖 > 𝑤𝑗 ] = Pr
𝜎∼ℳBTM(𝑤)

[𝜎(𝑖) < 𝜎(𝑗)|𝑤𝑖 > 𝑤𝑗 ]

=
1

𝑍(𝑘,𝑤)

∑︁
𝜎∈𝒜𝑖≻𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
.

Note that in order to show the desired property, it suffices to show that∑︁
𝜎∈𝒜𝑖≻𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
>

∑︁
𝜎∈𝒜𝑖≺𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
.

First, observe that there exists a correspondence mapping 𝜎 ∈ 𝒜𝑖≻𝑗 to 𝒜𝑖≺𝑗 , where
one flips the elements 𝑖 and 𝑗. Hence, it suffices to show that the mass of the
ranking (𝑢𝑎)𝑖(𝑢𝑏)𝑗(𝑢𝑐) is larger than the one of the ranking (𝑢𝑎)𝑗(𝑢𝑏)𝑖(𝑢𝑐), where
𝑢𝑎, 𝑢𝑏, 𝑢𝑐 are permutations of length between 0 and 𝑘−2 with elements in [𝑘]∖{𝑖, 𝑗}.
For the two above rankings, the only terms of the product that are not identical
are the following

𝑤𝑖

𝑤𝑖 + 𝑤𝑗

∏︁
𝑥∈𝑢𝑏

𝑤𝑖

𝑤𝑖 + 𝑤𝑥

𝑤𝑥

𝑤𝑥 + 𝑤𝑗
>

𝑤𝑗

𝑤𝑖 + 𝑤𝑗

∏︁
𝑥∈𝑢𝑏

𝑤𝑗

𝑤𝑗 + 𝑤𝑥

𝑤𝑥

𝑤𝑥 + 𝑤𝑖
,

since 𝑤𝑖 > 𝑤𝑗 and so the result follows.
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Chapter 5

Replicable Bandits

In this chapter, we study the notion of replicability in the context of interactive
learning and, in particular, in the fundamental setting of stochastic bandits.

Stochastic multi-armed bandits for the general setting without structure have
been studied extensively (Sli19; LS20; BCB+12; ACBF02; CBF98; KCG12; ABM10;
AG12; KKM12). In this setting, the optimum regret achievable is 𝑂

(︀
log(𝑇 )

∑︀
𝑖:Δ𝑖>0Δ

−1
)︀
;

this is achieved, e.g., by the upper confidence bound (UCB) algorithm of (ACBF02).
The setting of 𝑑-dimensional linear stochastic bandits is also well-explored (DHK08;
AYPS11) under the well-specified linear reward model, achieving (near) optimal
problem-independent regret of 𝑂(𝑑

√︀
𝑇 log(𝑇 )) (LS20). Note that the best-known

lower bound is Ω(𝑑
√
𝑇 ) (DHK08) and that the number of arms can, in principle,

be unbounded. For a finite number of arms 𝐾, the best known upper bound is
𝑂(
√︀

𝑑𝑇 log(𝐾)) (BCBK12). In general, there is also extensive work in adversarial
bandits and we refer the interested reader to (LS20).

Our work focuses on the design of replicable bandit algorithms and we hence
consider only stochastic environments. We now remind to the reader our definition
of replicability in the bandit setting.

Definition 5.0.1 (Replicable Bandit Algorithm). Let 𝜌 ∈ [0, 1]. We call a bandit
algorithm A 𝜌-replicable in the stochastic setting if for any distribution 𝒟𝑎𝑗 over
[0, 1] of the rewards of the 𝑗-th arm 𝑎𝑗 ∈ 𝒜, and for any two executions of A, where
the internal randomness 𝜉 is shared across the executions, it holds that

Pr
𝜉,𝑟(1),𝑟(2)

[︁(︁
𝑎
(1)
1 , . . . , 𝑎

(1)
𝑇

)︁
=
(︁
𝑎
(2)
1 , . . . , 𝑎

(2)
𝑇

)︁]︁
≥ 1− 𝜌 .

Here, 𝑎(𝑖)𝑡 = A(𝑎(𝑖)1 , 𝑟
(𝑖)
1 , ..., 𝑎

(𝑖)
𝑡−1, 𝑟

(𝑖)
𝑡−1; 𝜉) is the 𝑡-th action taken by the algorithm A

in execution 𝑖 ∈ {1, 2}.

Our results are summarized in the next table.
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Summary of Results
Setting Algorithm Regret Theorem

Stochastic MAB Algorithm 8 ̃︀𝑂 (︁𝐾2 log3(𝑇 )𝐻Δ

𝜌2

)︁
Theorem 5.2.1

Stochastic MAB Algorithm 9 ̃︀𝑂 (︁𝐾2 log(𝑇 )𝐻Δ

𝜌2

)︁
Theorem 5.3.1

Stochastic Linear Bandits Algorithm 10 ̃︀𝑂 (︁𝐾2
√
𝑑𝑇

𝜌2

)︁
Theorem 5.4.2

Stochastic Linear Bandits
Infinite Action Space

Algorithm 11 ̃︀𝑂 (︁poly(𝑑)
√
𝑇

𝜌2

)︁
Theorem 5.4.6

Table 5.1: Our results for replicable stochastic general multi-armed and linear
bandits. In the expected regret column, ̃︀𝑂(·) subsumes logarithmic factors.
𝐻Δ is equal to

∑︀
𝑗:Δ𝑗>0 1/Δ𝑗, Δ𝑗 is the difference between the mean of action

𝑗 and the optimal action, 𝐾 is the number of arms, 𝑑 is the ambient dimension
in the linear bandit setting.

5.1 Stochastic Bandits and Replicability
In this section, we first highlight the main challenges in order to guarantee

replicability and then discuss how the results of (ILPS22) can be applied in our
setting.

5.1.1 Warm-up I: Naive Replicability and Challenges
Let us consider the stochastic two-arm setting (𝐾 = 2) and a bandit algorithm

A with two independent executions, A1 and A2. The algorithm A𝑖 plays the se-
quence 1, 2, 1, 2, . . . until some, potentially random, round 𝑇𝑖 ∈ N after which one
of the two arms is eliminated and, from that point, the algorithm picks the winning
arm 𝑗𝑖 ∈ {1, 2}. The algorithm A is 𝜌-replicable if and only if 𝑇1 = 𝑇2 and 𝑗1 = 𝑗2
with probability 1− 𝜌.

Assume that |𝜇1 − 𝜇2| = Δ where 𝜇𝑖 is the mean of the distribution of the
𝑖-th arm. If we assume that Δ is known, then we can run the algorithm for
𝑇1 = 𝑇2 = 𝐶

Δ2 log(1/𝜌) for some universal constant 𝐶 > 0 and obtain that, with
probability 1−𝜌, it will hold that ̂︀𝜇(𝑗)

1 ≈ 𝜇1 and ̂︀𝜇(𝑗)
2 ≈ 𝜇2 for 𝑗 ∈ {1, 2}, where ̂︀𝜇(𝑗)

𝑖

is the estimation of arm’s 𝑖 mean during execution 𝑗. Hence, knowing Δ implies
that the stopping criterion of the algorithm A is deterministic and that, with high
probability, the winning arm will be detected at time 𝑇1 = 𝑇2. This will make the
algorithm 𝜌-replicable.

Observe that when 𝐾 = 2, the only obstacle to replicability is that the algo-
rithm should decide at the same time to select the winning arm and the selection
must be the same in the two execution threads. In the presence of multiple arms,
there exists the additional constraint that the above conditions must be satisfied
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during, potentially, multiple arm eliminations. Hence, the two questions arising
from the above discussion are (i) how to modify the above approach when Δ is
unknown and (ii) how to deal with 𝐾 > 2 arms.

A potential solution to the second question (on handling 𝐾 > 2 arms) is the
Execute-Then-Commit (ETC) strategy. Consider the stochastic 𝐾-arm bandit set-
ting. For any 𝜌 ∈ (0, 1), the ETC algorithm with known Δ = min𝑖Δ𝑖 and horizon
𝑇 that uses 𝑚 = 4

Δ2 log(1/𝜌) deterministic exploration phases before commitment
is 𝜌-replicable. The intuition is exactly the same as in the 𝐾 = 2 case. The
caveats of this approach are that it assumes that Δ is known and that the ob-
tained regret is quite unsatisfying. In particular, it achieves regret bounded by
𝑚
∑︀

𝑖∈[𝐾]Δ𝑖 + 𝜌 · (𝑇 −𝑚𝐾)
∑︀

𝑖∈[𝑘]Δ𝑖.
Next, we discuss how to improve the regret bound without knowing the gaps

Δ𝑖. Before designing new algorithms, we will inspect the guarantees that can be
obtained by combining ideas from previous results in the bandits literature and the
recent work in replicable learning of (ILPS22).

5.1.2 Warm-up II: Bandit Algorithms and Replicable
Mean Estimation

First, we remark that we work in the stochastic setting and the distributions
of the rewards of the two arms are subgaussian. Thus, the problem of estimating
their mean is an instance of a statistical query for which we can use the algorithm
of (ILPS22) to get a replicable mean estimator for the distributions of the rewards
of the arms.

Proposition 5.1.1 (Replicable Mean Estimation (ILPS22)). Let 𝜏, 𝛿, 𝜌 ∈ [0, 1].
There exists a 𝜌-replicable algorithm ReprMeanEstimation that draws Ω

(︁
log(1/𝛿)
𝜏2(𝜌−𝛿)2

)︁
samples from a distribution with mean 𝜇 and computes an estimate ̂︀𝜇 that satisfies
|̂︀𝜇− 𝜇| ≤ 𝜏 with probability at least 1− 𝛿.

Notice that we are working in the regime where 𝛿 ≪ 𝜌, so the sample com-
plexity is Ω

(︁
log(1/𝛿)
𝜏2𝜌2

)︁
. The straightforward approach is to try to use an optimal

multi-armed algorithm for the stochastic setting, such as UCB or arm-elimination
(EDMMM06), combined with the replicable mean estimator. However, it is not
hard to see that this approach does not give meaningful results: if we want to
achieve replicability 𝜌 we need to call the replicable mean estimator routine with
parameter 𝜌/(𝐾𝑇 ), due to the union bound that we need to take. This means that
we need to pull every arm at least 𝐾2𝑇 2 times, so the regret guarantee becomes
vacuous. This gives us the first key insight to tackle the problem: we need to
reduce the number of calls to the mean estimator. Hence, we will draw inspiration
from the line of work in stochastic batched1 bandits (GHRZ19; EKMM21) to derive
replicable bandit algorithms.

1While sequential bandit problems have been studied for almost a century, there is
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5.2 Replicable Mean Estimation for Batched
Bandits

As a first step, we would like to show how one could combine the existing
replicable algorithms of (ILPS22) with the batched bandits approach of (EKMM21)
to get some preliminary non-trivial results. We build an algorithm for the 𝐾-arm
setting, where the gaps Δ𝑗 are unknown to the learner. Let 𝛿 be the confidence
parameter of the arm elimination algorithm and 𝜌 be the replicability guarantee
we want to achieve. Our approach is the following: let us, deterministically, split
the time interval into sub-intervals of increasing length. We treat each sub-interval
as a batch of samples where we pull each active arm the same number of times
and use the replicable mean estimation algorithm to, empirically, compute the true
mean. At the end of each batch, we decide to eliminate some arm 𝑗 using the
standard UCB estimate. Crucially, if we condition on the event that all the calls
to the replicable mean estimator return the same number, then the algorithm we
propose is replicable.

Algorithm 8 Mean-Estimation Based Replicable Algorithm for Stochastic
MAB (Theorem 5.2.1)
1: Input: time horizon 𝑇, number of arms 𝐾, replicability 𝜌
2: Initialization: 𝐵 ← log(𝑇 ), 𝑞 ← 𝑇 1/𝐵, 𝑐0 ← 0, 𝒜 ← [𝐾], 𝑟 ← 𝑇 ,̂︀𝜇𝑎 ← 0, ∀𝑎 ∈ 𝒜
3: for 𝑖 = 1 to 𝐵 − 1 do
4: if ⌊𝑞𝑖⌋ · |𝒜| > 𝑟 then
5: break
6: 𝑐𝑖 = 𝑐𝑖−1 + ⌊𝑞𝑖⌋
7: Pull every arm 𝑎 ∈ 𝒜 for ⌊𝑞𝑖⌋ times
8: for 𝑎 ∈ 𝒜 do
9: ̂︀𝜇𝑎 ← ReprMeanEst(𝛿 = 1

2𝐾𝑇𝐵
, 𝜏 = min{1,

√︀
log(2𝐾𝑇𝐵)/𝑐𝑖}, 𝜌′ =

𝜌
𝐾𝐵

) ◁ Proposition 5.1.1
10: 𝑟 ← 𝑟 − |𝒜| · ⌊𝑞𝑖⌋
11: for 𝑎 ∈ 𝒜 do
12: if ̂︀𝜇𝑎 < max𝑎∈𝒜 ̂︀𝜇𝑎 − 2𝜏 then
13: Remove 𝑎 from 𝒜
14: In the last batch play the arm from 𝒜 with the smallest index

much interest in the batched setting too. In many settings, like medical trials, one has to
take a lot of actions in parallel and observe their rewards later. The works of (AO10) and
(CBDS13) provided sequential bandit algorithms which can easily work in the batched
setting. The works of (GHRZ19) and (EKMM21) are focusing exclusively on the batched
setting.
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Theorem 5.2.1. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm
(presented in Algorithm 8) for the stochastic bandit problem with 𝐾 arms and gaps
(Δ𝑗)𝑗∈[𝐾] whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝐾
2 log2(𝑇 )

𝜌2

∑︁
𝑗:Δ𝑗>0

(︂
Δ𝑗 +

log(𝐾𝑇 log(𝑇 ))

Δ𝑗

)︂
,

where 𝐶 > 0 is an absolute numerical constant, and its running time is polynomial
in 𝐾,𝑇 and 1/𝜌.

The above result, whose proof can be found in Section 5.5, states that, by com-
bining the tools from (ILPS22) and (EKMM21), we can design a replicable bandit
algorithm with (instance-dependent) expected regret 𝑂(𝐾2 log3(𝑇 )/𝜌2). Notice
that the regret guarantee has an extra 𝐾2 log2(𝑇 )/𝜌2 factor compared to its non-
replicable counterpart in (EKMM21) (Theorem 5.1). This is because, due to a
union bound over the rounds and the arms, we need to call the replicable mean
estimator with parameter 𝜌/(𝐾 log(𝑇 )). In the next section, we show how to get
rid of the log2(𝑇 ) by designing a new algorithm.

5.3 Improved Algorithms for Replicable Stochas-
tic Bandits

While the previous result provides a non-trivial regret bound, it is not optimal
with respect to the time horizon 𝑇 . In this section, we show to improve it by
designing a new algorithm, presented in Algorithm 9, which satisfies the guarantees
of Theorem 5.3.1 and, essentially, decreases the dependence on the time horizon
𝑇 from log3(𝑇 ) to log(𝑇 ). Our main result for replicable stochastic multi-armed
bandits with 𝐾 arms follows.

Theorem 5.3.1. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm
(presented in Algorithm 9) for the stochastic bandit problem with 𝐾 arms and gaps
(Δ𝑗)𝑗∈[𝐾] whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝐾
2

𝜌2

∑︁
𝑗:Δ𝑗>0

(︂
Δ𝑗 +

log(𝐾𝑇 log(𝑇 ))

Δ𝑗

)︂
,

where 𝐶 > 0 is an absolute numerical constant, and its running time is polynomial
in 𝐾,𝑇 and 1/𝜌.

Note that, compared to the non-replicable setting, we incur an extra factor of
𝐾2/𝜌2 in the regret. The proof can be found in Section 5.6. Let us now describe
how Algorithm 9 works. We decompose the time horizon into 𝐵 = log(𝑇 ) batches.
Without the replicability constraint, one could draw 𝑞𝑖 samples in batch 𝑖 from
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Algorithm 9 Replicable Algorithm for Stochastic Multi-Armed Bandits
(Theorem 5.3.1)
1: Input: time horizon 𝑇, number of arms 𝐾, replicability 𝜌
2: Initialization: 𝐵 ← log(𝑇 ), 𝑞 ← 𝑇 1/𝐵, 𝑐0 ← 0, 𝒜0 ← [𝐾], 𝑟 ← 𝑇 ,̂︀𝜇𝑎 ← 0,∀𝑎 ∈ 𝒜0

3: 𝛽 ← ⌊max{𝐾2/𝜌2, 2304}⌋
4: for 𝑖 = 1 to 𝐵 − 1 do
5: if 𝛽⌊𝑞𝑖⌋ · |𝒜𝑖| > 𝑟 then
6: break
7: 𝒜𝑖 ← 𝒜𝑖−1

8: for 𝑎 ∈ 𝒜𝑖 do
9: Pull arm 𝑎 for 𝛽⌊𝑞𝑖⌋ times

10: Compute the empirical mean ̂︀𝜇(𝑖)
𝛼

11: 𝑐𝑖 ← 𝑐𝑖−1 + ⌊𝑞𝑖⌋
12: ̃︀𝑐𝑖 ← 𝛽𝑐𝑖
13: ̃︀𝑈𝑖 ←

√︀
2 log(2𝐾𝑇𝐵)/̃︀𝑐𝑖

14: 𝑈𝑖 ←
√︀

2 log(2𝐾𝑇𝐵)/𝑐𝑖
15: 𝑈 𝑖 ← Uni[𝑈𝑖/2, 𝑈𝑖]
16: 𝑟 ← 𝑟 − 𝛽 · |𝒜𝑖| · ⌊𝑞𝑖⌋
17: for 𝑎 ∈ 𝒜𝑖 do
18: if ̂︀𝜇(𝑖)

𝑎 + ̃︀𝑈𝑖 < max𝑎∈𝒜𝑖
̂︀𝜇(𝑖)
𝑎 − 𝑈 𝑖 then

19: Remove 𝑎 from 𝒜𝑖

20: In the last batch play the arm from 𝒜𝐵−1 with the smallest index

each arm and estimate the mean reward. With the replicability constraint, we
have to boost this: in each batch 𝑖, we pull each active arm 𝑂(𝛽𝑞𝑖) times, for some
𝑞 to be determined, where 𝛽 = 𝑂(𝐾2/𝜌2) is the replicability blow-up. Using these
samples, we compute the empirical mean ̂︀𝜇(𝑖)

𝛼 for any active arm 𝛼. Note that̃︀𝑈𝑖 in Algorithm 9 corresponds to the size of the actual confidence interval of the
estimation and 𝑈𝑖 corresponds to the confidence interval of an algorithm that does
not use the 𝛽-blow-up in the number of samples. The novelty of our approach comes
from the choice of the interval around the mean of the maximum arm: we pick a
threshold uniformly at random from an interval of size 𝑈𝑖/2 around the maximum
mean. Then, the algorithm checks whether ̂︀𝜇(𝑖)

𝑎 + ̃︀𝑈𝑖 < max ̂︀𝜇(𝑖)
𝑎′ − 𝑈 𝑖, where max

runs over the active arms 𝑎′ in batch 𝑖, and eliminates arms accordingly. To prove
the result we show that there are three regions that some arm 𝑗 can be in relative to
the confidence interval of the best arm in batch 𝑖 (cf. Section 5.6). If it lies in two
of these regions, then the decision of whether to keep it or discard it is the same in
both executions of the algorithm. However, if it is in the third region, the decision
could be different between parallel executions, and since it relies on some external
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and unknown randomness, it is not clear how to reason about it. To overcome this
issue, we use the random threshold to argue about the probability that the decision
between two executions differs. The crucial observation that allows us to get rid of
the extra log2(𝑇 ) factor is that there are correlations between consecutive batches:
we prove that if some arm 𝑗 lies in this “bad” region in some batch 𝑖, then it will
be outside this region after a constant number of batches.

5.4 Replicable Stochastic Linear Bandits
We now investigate replicability in the more general setting of stochastic linear

bandits. In this setting, each arm is a vector 𝑎 ∈ R𝑑 belonging to some action set
𝒜 ⊆ R𝑑, and there is a parameter 𝜃⋆ ∈ R𝑑 unknown to the player. In round 𝑡, the
player chooses some action 𝑎𝑡 ∈ 𝒜 and receives a reward 𝑟𝑡 = ⟨𝜃⋆, 𝑎𝑡⟩+𝜂𝑡, where 𝜂𝑡
is a zero-mean 1-subgaussian random variable independent of any other source of
randomness. This means that E[𝜂𝑡] = 0 and satisfies E[exp(𝜆𝜂𝑡)] ≤ exp(𝜆2/2) for
any 𝜆 ∈ R. For normalization purposes, it is standard to assume that ‖𝜃⋆‖2 ≤ 1 and
sup𝑎∈𝒜 ‖𝑎‖2 ≤ 1. In the linear setting, the expected regret after 𝑇 pulls 𝑎1, . . . , 𝑎𝑇
can be written as

E[𝑅𝑇 ] = 𝑇 sup
𝑎∈𝒜
⟨𝜃⋆, 𝑎⟩ − E

[︃
𝑇∑︁
𝑡=1

⟨𝜃⋆, 𝑎𝑡⟩

]︃
.

In Section 5.4.1 we provide results for the finite action space case, i.e., when
|𝒜| = 𝐾. Next, in Section 5.4.2, we study replicable linear bandit algorithms
when dealing with infinite action spaces. In the following, we work in the regime
where 𝑇 ≫ 𝑑. We underline that our approach leverages connections of stochastic
linear bandits with G-optimal experiment design, core sets constructions, and least-
squares estimators. Roughly speaking, the goal of G-optimal design is to find a
(small) subset of arms 𝒜′, which is called the core set, and define a distribution
𝜋 over them with the following property: for any 𝜀 > 0, 𝛿 > 0 pulling only these
arms for an appropriate number of times and computing the least-squares estimatê︀𝜃 guarantees that sup𝑎∈𝒜⟨𝑎, 𝜃* − ̂︀𝜃⟩ ≤ 𝜀, with probability 1 − 𝛿. For an extensive
discussion, we refer to Chapters 21 and 22 of (LS20).

5.4.1 Finite Action Set
We first introduce a lemma that allows us to reduce the size of the action set

that our algorithm has to search over.

Lemma 5.4.1 (See Chapters 21 and 22 in (LS20)). For any finite action set 𝒜
that spans R𝑑 and any 𝛿, 𝜀 > 0, there exists an algorithm that, in time polynomial
in 𝑑, computes a multi-set of Θ(𝑑 log(1/𝛿)/𝜀2 + 𝑑 log log 𝑑) actions (possibly with
repetitions) such that (i) they span R𝑑 and (ii) if we perform these actions in a
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batched stochastic 𝑑-dimensional linear bandits setting with true parameter 𝜃⋆ ∈ R𝑑

and let ̂︀𝜃 be the least-squares estimate for 𝜃⋆, then, for any 𝑎 ∈ 𝒜, with probability
at least 1− 𝛿, we have

⃒⃒⃒⟨
𝑎, 𝜃⋆ − ̂︀𝜃⟩⃒⃒⃒ ≤ 𝜀.

Essentially, the multi-set in Lemma 5.4.1 is obtained using an approximate G-
optimal design algorithm. Thus, it is crucial to check whether this can be done in
a replicable manner. Recall that the above set of distinct actions is called the core
set and is the solution of an (approximate) G-optimal design problem. To be more
specific, consider a distribution 𝜋 : 𝒜 → [0, 1] and define 𝑉 (𝜋) =

∑︀
𝑎∈𝒜 𝜋(𝑎)𝑎𝑎⊤ ∈

R𝑑×𝑑 and 𝑔(𝜋) = sup𝑎∈𝒜 ‖𝑎‖2𝑉 (𝜋)−1 . The distribution 𝜋 is called a design and the
goal of G-optimal design is to find a design that minimizes 𝑔. Since the number
of actions is finite, this problem reduces to an optimization problem which can
be solved efficiently using standard optimization methods (e.g., the Frank-Wolfe
method). Since the initialization is the same, the algorithm that finds the optimal
(or an approximately optimal) design is replicable under the assumption that the
gradients and the projections do not have numerical errors. This perspective is
orthogonal to the work of (AJJ+22), that defines replicability from a different
viewpoint.

Algorithm 10 Replicable Algorithm for Stochastic Linear Bandits (Theo-
rem 5.4.2)
1: Input: number of arms 𝐾, time horizon 𝑇, replicability 𝜌
2: Initialization: 𝐵 ← log(𝑇 ), 𝑞 ← (𝑇/𝑐)1/𝐵, 𝒜 ← [𝐾], 𝑟 ← 𝑇
3: 𝛽 ← ⌊max{𝐾2/𝜌2, 2304}⌋
4: for 𝑖 = 1 to 𝐵 − 1 do
5: ̃︀𝜀𝑖 =√︀𝑑 log(𝐾𝑇 2)/(𝛽𝑞𝑖)

6: 𝜀𝑖 =
√︀

𝑑 log(𝐾𝑇 2)/𝑞𝑖

7: 𝑛𝑖 = 10𝑑 log(𝐾𝑇 2)/𝜀2𝑖
8: 𝑎1, . . . , 𝑎𝑛𝑖

← multi-set given by Lemma 5.4.1 with parameters 𝛿 = 1/(𝐾𝑇 2) and 𝜀 = ̃︀𝜀𝑖
9: if 𝑛𝑖 > 𝑟 then

10: break
11: Pull every arm 𝑎1, . . . , 𝑎𝑛𝑖

and receive rewards 𝑟1, . . . , 𝑟𝑛𝑖

12: Compute the LSE ̂︀𝜃𝑖 ← (︁∑︀𝑛𝑖

𝑗=1 𝑎𝑗𝑎
𝑇
𝑗

)︁−1 (︁∑︀𝑛𝑖

𝑗=1 𝑎𝑗𝑟𝑗

)︁
13: 𝜀𝑖 ← Uni[𝜀𝑖/2, 𝜀𝑖]
14: 𝑟 ← 𝑟 − 𝑛𝑖

15: for 𝑎 ∈ 𝒜 do
16: if ⟨𝑎, ̂︀𝜃𝑖⟩+ ̃︀𝜀𝑖 < max𝑎∈𝒜⟨𝑎, ̂︀𝜃𝑖⟩ − 𝜀𝑖 then
17: Remove 𝑎 from 𝒜
18: In the last batch play argmax𝑎∈𝒜⟨𝑎, ̂︀𝜃𝐵−1⟩

In our batched bandit algorithm (Algorithm 10), the multi-set of arms 𝑎1, . . . , 𝑎𝑛𝑖
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computed in each batch is obtained via a deterministic algorithm with runtime
poly(𝐾, 𝑑), where |𝒜| = 𝐾. Hence, the multi-set will be the same in two different
executions of the algorithm. On the other hand, the LSE will not be since it de-
pends on the stochastic rewards. We apply the techniques that we developed in
the replicable stochastic MAB setting in order to design our algorithm. Our main
result for replicable 𝑑-dimensional stochastic linear bandits with 𝐾 arms follows.
For the proof, we refer to Section 5.7.

Theorem 5.4.2. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm
(presented in Algorithm 10) for the stochastic 𝑑-dimensional linear bandit problem
with 𝐾 arms whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝐾
2

𝜌2

√︀
𝑑𝑇 log(𝐾𝑇 ) ,

where 𝐶 > 0 is an absolute numerical constant, and its running time is polynomial
in 𝑑,𝐾, 𝑇 and 1/𝜌.

Note that the best known non-replicable algorithm achieves an upper bound of̃︀𝑂(
√︀
𝑑𝑇 log(𝐾)) and, hence, our algorithm incurs a replicability overhead of order

𝐾2/𝜌2. The intuition behind the proof is similar to the multi-armed bandit setting
in Section 5.3.

5.4.2 Infinite Action Set
Let us proceed to the setting where the action set 𝒜 is unbounded. Unfortu-

nately, even when 𝑑 = 1, we cannot directly get an algorithm that has satisfactory
regret guarantees by discretizing the space and using Algorithm 10. The approach
of (EKMM21) is to discretize the action space and use an 1/𝑇 -net to cover it, i.e. a
set 𝒜′ ⊆ 𝐴 such that for all 𝑎 ∈ 𝒜 there exists some 𝑎′ ∈ 𝒜′ with ||𝑎− 𝑎′||2 ≤ 1/𝑇 .
It is known that there exists such a net of size at most (3𝑇 )𝑑 (Ver18, Corollary
4.2.13). Then, they apply the algorithm for the finite arms setting, increasing their
regret guarantee by a factor of

√
𝑑. However, our replicable algorithm for this set-

ting contains an additional factor of 𝐾2 in the regret bound. Thus, even when
𝑑 = 1, our regret guarantee is greater than 𝑇, so the bound is vacuous. One way to
fix this issue and get a sublinear regret guarantee is to use a smaller net. We use a
1/𝑇 1/(4𝑑+2)−net that has size at most (3𝑇 )

𝑑
4𝑑+2 and this yields an expected regret

of order 𝑂(𝑇 4𝑑+1/(4𝑑+2)
√︀

𝑑 log(𝑇 )/𝜌2). For further details, we refer to Section 5.8.
Even though the regret guarantee we managed to get using the smaller net

of Section 5.8 is sublinear in 𝑇 , it is not a satisfactory bound. The next step
is to provide an algorithm for the infinite action setting using a replicable LSE
subroutine combined with the batching approach of (EKMM21). We will make use
of the next lemma.
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Lemma 5.4.3 (Section 21.2 Note 3 of (LS20)). There exists a deterministic al-
gorithm that, given an action space 𝒜 ⊆ R𝑑, computes a 2-approximate G-optimal
design 𝜋 with a core set of size 𝑂(𝑑 log log(𝑑)).

We additionally prove the next useful lemma, which, essentially, states that we
can assume without loss of generality that every arm in the support of 𝜋 has mass
at least Ω(1/(𝑑 log(𝑑))). We refer to Section 5.10.1 for the proof.

Lemma 5.4.4 (Effective Support). Let 𝜋 be the distribution that corresponds to
the 2-approximate optimal G-design of Lemma 5.4.3 with input 𝒜. Assume that
𝜋(𝑎) ≤ 𝑐/(𝑑 log(𝑑)), where 𝑐 > 0 is some absolute numerical constant, for some
arm 𝑎 in the core set. Then, we can construct a distribution ̂︀𝜋 such that, for any
arm 𝑎 in the core set, ̂︀𝜋(𝑎) ≥ 𝐶/(𝑑 log(𝑑)), where 𝐶 > 0 is an absolute constant,
so that it holds

sup
𝑎′∈𝒜
‖𝑎′‖2𝑉 (̂︀𝜋)−1 ≤ 4𝑑 .

The upcoming lemma is a replicable algorithm for the least-squares estimator
and, essentially, builds upon Lemma 5.4.3 and Lemma 5.4.4. Its proof can be found
at Section 5.10.2. We believe that this technical result could be interesting on its
own since it can be applied to other problems as well.

Lemma 5.4.5 (Replicable LSE). Let 𝜌, 𝜀 ∈ (0, 1] and 0 < 𝛿 ≤ min{𝜌, 1/𝑑}2.
Consider an environment of 𝑑-dimensional stochastic linear bandits with infinite
action space 𝒜. Assume that 𝜋 is a 4-approximate optimal design with associated
core set 𝒞 as computed by Lemma 5.4.3 with input 𝒜. There exists a 𝜌-replicable
algorithm that pulls each arm 𝑎 ∈ 𝒞 a total of

Ω

(︂
𝑑4 log(𝑑/𝛿) log2 log(𝑑) log log log(𝑑)

𝜀2𝜌2

)︂
times and outputs an estimate 𝜃SQ that satisfies sup𝑎∈𝒜 |⟨𝑎, 𝜃SQ − 𝜃⋆⟩| ≤ 𝜀 , with
probability at least 1− 𝛿.

The main result for the infinite actions’ case, obtained by Algorithm 11, follows.
Its proof can be found at Section 5.9.

Theorem 5.4.6. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm
(presented in Algorithm 11) for the stochastic 𝑑-dimensional linear bandit problem
with infinite action set whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝑑
4 log(𝑑) log2 log(𝑑) log log log(𝑑)

𝜌2

√
𝑇 log3/2(𝑇 ) ,

where 𝐶 > 0 is an absolute numerical constant, and its running time is polynomial
in 𝑇 𝑑 and 1/𝜌.

2We can handle the case of 0 < 𝛿 ≤ 𝑑 by paying an extra log 𝑑 factor in the sample
complexity.
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Our algorithm for the infinite arm linear bandit case enjoys an expected regret
of order ̃︀𝑂(poly(𝑑)

√
𝑇 ). We underline that the dependence of the regret on the time

horizon is (almost) optimal, and we incur an extra 𝑑3 factor in the regret guarantee
compared to the non-replicable algorithm of (EKMM21). We now comment on the
time complexity of our algorithm.

Remark 6. The current implementation of our algorithm requires time exponential
in 𝑑. However, for a general convex set 𝒜, given access to a separation oracle for it
and an oracle that computes an (approximate) G-optimal design, we can execute it
in polynomial time and with polynomially many calls to the oracle. Notably, when
𝒜 is a polytope such oracles exist. We underline that computational complexity
issues also arise in the traditional setting of linear bandits with an infinite number
of arms and the computational overhead that the replicability requirement adds is
minimal. For further details, we refer to Section 5.11.

5.5 The Proof of Theorem 5.2.1
Theorem. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm (presented
in Algorithm 8) for the stochastic bandit problem with 𝐾 arms and gaps (Δ𝑗)𝑗∈[𝐾]

whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝐾
2 log2(𝑇 )

𝜌2

∑︁
𝑗:Δ𝑗>0

(︂
Δ𝑗 +

log(2𝐾𝑇 log(𝑇 ))

Δ𝑗

)︂
,

where 𝐶 > 0 is an absolute numerical constant, and its running time is polynomial
in 𝐾,𝑇 and 1/𝜌.

Proof. First, we claim that the algorithm is 𝜌-replicable: since the elimination de-
cisions are taken in the same iterates and are based solely on the mean estimations,
the replicability of the algorithm of Proposition 5.1.1 implies the replicability of
the whole algorithm. In particular,

Pr[(𝑎1, ..., 𝑎𝑇 ) ̸= (𝑎′1, ..., 𝑎
′
𝑇 )] = Pr[∃𝑖 ∈ [𝐵],∃𝑗 ∈ [𝐾] : ̂︀𝜇(𝑖)

𝑗 was not replicable] ≤ 𝜌 .

During each batch 𝑖, we draw for any active arm ⌊𝑞𝑖⌋ fresh samples for a to-
tal of 𝑐𝑖 samples and use the replicable mean estimation algorithm to estimate its
mean. For an active arm, at the end of some batch 𝑖 ∈ [𝐵], we say that its esti-
mation is “correct” if the estimation of its mean is within

√︀
log(2𝐾𝑇𝐵)/𝑐𝑖 from

the true mean. Using Proposition 5.1.1, the estimation of any active arm at the
end of any batch (except possibly the last batch) is correct with probability at
least 1− 1/(2𝐾𝑇𝐵) and so, by the union bound, the probability that the estima-
tion is incorrect for some arm at the end of some batch is bounded by 1/𝑇 . We
remark that when 𝛿 < 𝜌, the sample complexity of Proposition 5.1.1 reduces to
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𝑂(log(1/𝛿)/(𝜏2𝜌2)). Let ℰ denote the event that our estimates are correct. The
total expected regret can be bounded as

E[𝑅𝑇 ] ≤ 𝑇 · 1/𝑇 + E[𝑅𝑇 |ℰ ] .

It suffices to bound the second term of the RHS and hence we can assume that
each gap is correctly estimated within an additive factor of

√︀
log(2𝐾𝑇𝐵)/𝑐𝑖 after

batch 𝑖. First, due to the elimination condition, we get that the best arm is never
eliminated. Next, we have that

E[𝑅𝑇 |ℰ ] =
∑︁

𝑗:Δ𝑗>0

Δ𝑗 E[𝑇𝑗 |ℰ ] ,

where 𝑇𝑗 is the total number of pulls of arm 𝑗. Fix a sub-optimal arm 𝑗 and assume
that 𝑖+ 1 was the last batch it was active. Since this arm is not eliminated at the
end of batch 𝑖, and the estimations are correct, we have that

Δ𝑗 ≤
√︀
log(2𝐾𝑇𝐵)/𝑐𝑖 ,

and so 𝑐𝑖 ≤ log(2𝐾𝑇𝐵)/Δ2
𝑗 . Hence, the number of pulls to get the desired bound

due to Proposition 5.1.1 is (since we need to pull an arm 𝑐𝑖/𝜌
2
1 times in order to

get an estimate at distance
√︁
log(1/𝛿)/𝑐2𝑖 with probability 1− 𝛿 in a 𝜌1-replicable

manner when 𝛿 < 𝜌1)

𝑇𝑗 ≤ 𝑐𝑖+1/𝜌
2
1 = 𝑞/𝜌21(1 + 𝑐𝑖) ≤ 𝑞/𝜌21 · (1 + log(2𝐾𝑇𝐵)/Δ2

𝑗 ) .

This implies that the total regret is bounded by

E[𝑅𝑇 ] ≤ 1 + 𝑞/𝜌21 ·
∑︁

𝑗:Δ𝑗>0

(︂
Δ𝑗 +

log(2𝐾𝑇𝐵)

Δ𝑗

)︂
.

We finally set 𝑞 = 𝑇 1/𝐵 and 𝐵 = log(𝑇 ). Moreover, we have that 𝜌1 = 𝜌/(𝐾𝐵).
These yield

E[𝑅𝑇 ] ≤
𝐾2 log2(𝑇 )

𝜌2

∑︁
𝑗:Δ𝑗>0

(︂
Δ𝑗 +

log(2𝐾𝑇 log(𝑇 ))

Δ𝑗

)︂
.

This completes the proof.

5.6 The Proof of Theorem 5.3.1
Theorem. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm (presented
in Algorithm 9) for the stochastic bandit problem with 𝐾 arms and gaps (Δ𝑗)𝑗∈[𝐾]

whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝐾
2

𝜌2

∑︁
𝑗:Δ𝑗>0

(Δ𝑗 + log(𝐾𝑇 log(𝑇 ))/Δ𝑗) ,
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for some absolute numerical constant 𝐶 > 0, and its running time is polynomial in
𝐾,𝑇 and 1/𝜌.

To give some intuition, we begin with a non tight analysis which, however,
provides the main ideas behind the actual proof.

Non Tight Analysis Assume that the environment has 𝐾 arms with unknown
means 𝜇𝑖 and let 𝑇 be the number of rounds. Consider 𝐵 to the total number of
batches and 𝛽 > 1. We set 𝑞 = 𝑇 1/𝐵. In each batch 𝑖 ∈ [𝐵], we pull each arm
𝛽⌊ 𝑞𝑖⌋ times. Hence, after the 𝑖-th batch, we will have drawn ̃︀𝑐𝑖 = ∑︀

1≤𝑗≤𝑖 𝛽⌊𝑞𝑗⌋
independent and identically distributed samples from each arm. Let us also set
𝑐𝑖 =

∑︀
1≤𝑗≤𝑖⌊𝑞𝑗⌋.

Let us fix 𝑖 ∈ [𝐵]. Using Hoeffding’s bound for subgaussian concentration, the
length of the confidence bound for arm 𝑗 ∈ [𝐾] that guarantees 1 − 𝛿 probability
of success (in the sense that the empirical estimate ̂︀𝜇𝑗 will be close to the true 𝜇𝑗)
is equal to ̃︀𝑈𝑖 =

√︀
2 log(1/𝛿)/̃︀𝑐𝑖 ,

when the estimator uses ̃︀𝑐𝑖 samples. Also, let

𝑈𝑖 =
√︀
2 log(1/𝛿)/𝑐𝑖 .

Assume that the active arms at the batch iteration 𝑖 lie in the set 𝒜𝑖. Consider
the estimates {̂︀𝜇(𝑖)

𝑗 }𝑖∈[𝐵],𝑗∈𝒜𝑖
, where ̂︀𝜇(𝑖)

𝑗 is the empirical mean of arm 𝑗 using ̃︀𝑐𝑖
samples. We will eliminate an arm 𝑗 at the end of the batch iteration 𝑖 if

̂︀𝜇(𝑖)
𝑗 + ̃︀𝑈𝑖 ≤ max

𝑡∈𝒜𝑖

̂︀𝜇(𝑖)
𝑡 − 𝑈 𝑖 ,

where 𝑈 𝑖 ∼ Uni[𝑈𝑖/2, 𝑈𝑖]. For the remaining of the proof, we condition on the
event ℰ that for every arm 𝑗 ∈ [𝐾] and every batch 𝑖 ∈ [𝐵] the true mean is withiñ︀𝑈𝑖 from the empirical one.

We first argue about the replicability of our algorithm. Consider a fixed round
𝑖 (end of 𝑖-th batch) and a fixed arm 𝑗. Let 𝑖⋆ be the optimal empirical arm after
the 𝑖-th batch.

Let ̂︀𝜇(𝑖)′

𝑗 , ̂︀𝜇(𝑖)′

𝑖⋆ the empirical estimates of arms 𝑗, 𝑖⋆ after the 𝑖-th batch, under
some other execution of the algorithm. We condition on the event ℰ ′ for the other
execution as well. Notice that |̂︀𝜇(𝑖)′

𝑗 − ̂︀𝜇(𝑖)
𝑗 | ≤ 2̃︀𝑈𝑖, |̂︀𝜇(𝑖)′

𝑖⋆ − ̂︀𝜇(𝑖)
𝑖⋆ | ≤ 2̃︀𝑈𝑖. Notice that,

since the randomness of 𝑈 𝑖 is shared, if ̂︀𝜇(𝑖)
𝑗 + ̃︀𝑈𝑖 ≥ ̂︀𝜇(𝑖)

𝑖⋆ −𝑈 𝑖 +4̃︀𝑈𝑖, then the arm 𝑗
will not be eliminated after the 𝑖-th batch in some other execution of the algorithm
as well. Similarly, if ̂︀𝜇(𝑖)

𝑗 + ̃︀𝑈𝑖 < ̂︀𝜇(𝑖)
𝑖⋆ − 𝑈 𝑖 − 4̃︀𝑈𝑖 the the arm 𝑗 will get eliminated

after the 𝑖-th batch in some other execution of the algorithm as well. In particular,
this means that if ̂︀𝜇(𝑖)

𝑗 −2̃︀𝑈𝑖 > ̂︀𝜇(𝑖)
𝑖⋆ + ̃︀𝑈𝑖−𝑈𝑖/2 then the arm 𝑗 will not get eliminated

in some other execution of the algorithm and if ̂︀𝜇(𝑖)
𝑗 +5̃︀𝑈𝑖 < ̂︀𝜇(𝑖)

𝑖⋆ −𝑈𝑖 then the arm
𝑗 will also get eliminated in some other execution of the algorithm with probability
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1 under the event ℰ ∩ ℰ ′. We call the above two cases good since they preserve
replicability. Thus, it suffices to bound the probability that the decision about arm
𝑗 will be different between the two executions when we are in neither of these cases.
Then, the worst case bound due to the mass of the uniform probability measure is

16
√︀

2 log(1/𝛿)/̃︀𝑐𝑖√︀
2 log(1/𝛿)/𝑐𝑖

.

This implies that the probability mass of the bad event is at most 16
√︀
𝑐𝑖/̃︀𝑐𝑖 =

16
√︀

1/𝛽. A union bound over all arms and batches yields that the probability that
two distinct executions differ in at least one pull is

Pr[(𝑎1, . . . , 𝑎𝑇 ) ̸= (𝑎′1, . . . , 𝑎
′
𝑇 )] ≤ 16𝐾𝐵

√︀
1/𝛽 + 2𝛿 ,

and since 𝛿 ≤ 𝜌 it suffices to pick 𝛽 = 768𝐾2𝐵2/𝜌2.
We now focus on the regret of our algorithm. Let us set 𝛿 = 1/(𝐾𝑇𝐵). Fix

a sub-optimal arm 𝑗 and assume that batch 𝑖 + 1 was the last batch that is was
active. We obtain that the total number of pulls of this arm is

𝑇𝑗 ≤ ̃︀𝑐𝑖+1 ≤ 𝛽𝑞(1 + 𝑐𝑖) ≤ 𝛽𝑞(1 + 8 log(1/𝛿)/Δ2
𝑗 )

From the replicability analysis, it suffices to take 𝛽 of order 𝐾2 log2(𝑇 )/𝜌2 and so

E[𝑅𝑇 ] ≤ 𝑇 ·1/𝑇+E[𝑅𝑇 |ℰ ] = 1+
∑︁

𝑗:Δ𝑗>0

Δ𝑗 E[𝑇𝑗 |ℰ ] ≤
𝐶 ·𝐾2 log2(𝑇 )

𝜌2

∑︁
𝑗:Δ𝑗>0

(︂
Δ𝑗 +

log(𝐾𝑇 log(𝑇 ))

Δ𝑗

)︂
,

for some absolute constant 𝐶 > 0.
Notice that the above analysis, which uses a naive union bound, does not yield

the desired regret bound. We next provide a more tight analysis of the same
algorithm that achieves the regret bound of Theorem 5.3.1.

Improved Analysis (The Proof of Theorem 5.3.1) In the previous anal-
ysis, we used a union bound over all arms and all batches in order to control the
probability of the bad event. However, we can obtain an improved regret bound
as follows. Fix a sub-optimal arm 𝑖 ∈ [𝐾] and let 𝑡 be the first round that it ap-
pears in the bad event. We claim that after a constant number of rounds, this arm
will be eliminated. This will shave the 𝑂(log2(𝑇 )) factor from the regret bound.
Essentially, as indicated in the previous proof, the bad event corresponds to the
case where the randomness of the cut-off threshold 𝑈 can influence the decision
of whether the algorithm eliminates an arm or not. The intuition is that during
the rounds 𝑡 and 𝑡 + 1, given that the two intervals intersected at round 𝑡, we
know that the probability that they intersect again is quite small since the interval
of the optimal mean is moving upwards, the interval of the sub-optimal mean is
concentrating around the guess and the two estimations have been moved by at
most a constant times the interval’s length.
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Since the bad event occurs at round 𝑡, we know that

̂︀𝜇(𝑡)
𝑗 ∈

[︁̂︀𝜇(𝑡)
𝑡⋆ − 𝑈𝑡 − 5̃︀𝑈𝑡, ̂︀𝜇(𝑡)

𝑡⋆ − 𝑈𝑡/2 + 3̃︀𝑈𝑡

]︁
.

In the above ̂︀𝜇𝑡
𝑡⋆ is the estimate of the optimal mean at round 𝑡 whose index is

denoted by 𝑡⋆. Now assume that the bad event for arm 𝑗 also occurs at round 𝑡+𝑘.
Then, we have that

̂︀𝜇(𝑡+𝑘)
𝑗 ∈

[︁̂︀𝜇(𝑡+𝑘)
(𝑡+𝑘)⋆ − 𝑈𝑡+𝑘 − 5̃︀𝑈𝑡+𝑘, ̂︀𝜇(𝑡+𝑘)

(𝑡+𝑘)⋆ − 𝑈𝑡+𝑘/2 + 3̃︀𝑈𝑡+𝑘

]︁
.

First, notice that since the concentration inequality under event ℰ holds for rounds
𝑡, 𝑡+ 𝑘 we have that ̂︀𝜇(𝑡+𝑘)

𝑗 ≤ ̂︀𝜇(𝑡)
𝑗 + ̃︀𝑈𝑡 + ̃︀𝑈𝑡+𝑘. Thus, combining it with the above

inequalities gives us

̂︀𝜇(𝑡+𝑘)
(𝑡+𝑘)⋆ − 𝑈𝑡+𝑘 − 5̃︀𝑈𝑡+𝑘 ≤ ̂︀𝜇(𝑡+𝑘)

𝑗 ≤ ̂︀𝜇(𝑡)
𝑗 + ̃︀𝑈𝑡 + ̃︀𝑈𝑡+𝑘 ≤ ̂︀𝜇(𝑡)

𝑡⋆ − 𝑈𝑡/2 + 4̃︀𝑈𝑡 + ̃︀𝑈𝑡+𝑘.

We now compare ̂︀𝜇(𝑡)
𝑡⋆ , ̂︀𝜇(𝑡+𝑘)

(𝑡+𝑘)⋆ . Let 𝑜 denote the optimal arm. We have that

̂︀𝜇(𝑡+𝑘)
(𝑡+𝑘)⋆ ≥ ̂︀𝜇(𝑡+𝑘)

𝑜 ≥ 𝜇𝑜 − ̃︀𝑈𝑡+𝑘 ≥ 𝜇𝑡⋆ − ̃︀𝑈𝑡+𝑘 ≥ ̂︀𝜇(𝑡)
𝑡⋆ − ̃︀𝑈𝑡 − ̃︀𝑈𝑡+𝑘.

This gives us that

̂︀𝜇(𝑡)
𝑡⋆ − 𝑈𝑡+𝑘 − 6̃︀𝑈𝑡+𝑘 − ̃︀𝑈𝑡 ≤ ̂︀𝜇(𝑡+𝑘)

(𝑡+𝑘)⋆ − 𝑈𝑡+𝑘 − 5̃︀𝑈𝑡+𝑘.

Thus, we have established that

̂︀𝜇(𝑡)
𝑡⋆ − 𝑈𝑡+𝑘 − 6̃︀𝑈𝑡+𝑘 − ̃︀𝑈𝑡 ≤ ̂︀𝜇(𝑡)

𝑡⋆ − 𝑈𝑡/2 + 4̃︀𝑈𝑡 + ̃︀𝑈𝑡+𝑘 =⇒

𝑈𝑡+𝑘 ≥ 𝑈𝑡/2− 7̃︀𝑈𝑡+𝑘 − 5̃︀𝑈𝑡 ≥ 𝑈𝑡/2− 12̃︀𝑈𝑡.

Since 𝛽 ≥ 2304, we get that 12̃︀𝑈𝑡 ≤ 𝑈𝑡/4. Thus, we get that

𝑈𝑡+𝑘 ≥ 𝑈𝑡/4.

Notice that
𝑈𝑡+𝑘

𝑈𝑡
=

√︂
𝑐𝑡

𝑐𝑡+𝑘
,

thus it immediately follows that

𝑐𝑡
𝑐𝑡+𝑘

≥ 1

16
=⇒ 𝑞𝑡+1 − 1

𝑞𝑡+𝑘+1 − 1
≥ 1

16
=⇒ 16

(︂
1− 1

𝑞𝑡+1

)︂
≥ 𝑞𝑘 − 1

𝑞𝑡+1
=⇒

𝑞𝑘 ≤ 16 +
1

𝑞𝑡+1
≤ 17 =⇒ 𝑘 log 𝑞 ≤ log 17 =⇒ 𝑘 ≤ 5,

when we pick 𝐵 = log(𝑇 ) batches. Thus, for every arm the bad event can hap-
pen at most 6 times, by taking a union bound over the 𝐾 arms we see that the
probability that our algorithm is not replicable is at most 𝑂(𝐾

√︀
1/𝛽), so picking

𝛽 = Θ(𝐾2/𝜌2) suffices to get the result.
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5.7 The Proof of Theorem 5.4.2
Theorem. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm (presented
in Algorithm 10) for the stochastic 𝑑-dimensional linear bandit problem with 𝐾
arms whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝐾
2

𝜌2

√︀
𝑑𝑇 log(𝐾𝑇 ) ,

for some absolute numerical constant 𝐶 > 0, and its running time is polynomial in
𝑑,𝐾, 𝑇 and 1/𝜌.

Proof. Let 𝑐, 𝐶 be the numerical constants hidden in Lemma 5.4.1, i.e., the size of
the multi-set is in the interval [𝑐𝑑 log(1/𝛿)/𝜀2, 𝐶𝑑 log(1/𝛿)/𝜀2]. We know that the
size of each batch 𝑛𝑖 ∈ [𝑐𝑞𝑖, 𝐶𝑞𝑖] (see Lemma 5.4.1), so by the end of the 𝐵 − 1
batch we will have less than 𝑛𝐵 pulls left. Hence, the number of batches is at most
𝐵.

We first define the event ℰ that the estimates of all arms after the end of each
batch are accurate, i.e., for every active arm 𝑎 at the beginning of the 𝑖-th batch,
at the end of the batch we have that

⃒⃒⃒⟨
𝑎, ̂︀𝜃𝑖 − 𝜃⋆

⟩⃒⃒⃒
≤ ̃︀𝜀𝑖. Since 𝛿 = 1/(𝐾𝑇 2) and

there are at most 𝑇 batches and 𝐾 active arms in each batch, a simple union bound
shows that ℰ happens with probability at least 1− 1/𝑇. We condition on the event
ℰ throughout the rest of the proof.

We now argue about the regret bound of our algorithm. We first show that
any optimal arm 𝑎* will not get eliminated. Indeed, consider any sub-optimal arm
𝑎 ∈ [𝐾] and any batch 𝑖 ∈ [𝐵]. Under the event ℰ we have that

⟨𝑎, ̂︀𝜃𝑖⟩ − ⟨𝑎*, ̂︀𝜃𝑖⟩ ≤ (⟨𝑎, 𝜃*⟩+ ̃︀𝜀𝑖)− (⟨𝑎*, 𝜃*⟩ − ̃︀𝜀𝑖) < 2̃︀𝜀𝑖 < 𝜀𝑖 + 𝜀𝑖.

Next, we need to bound the number of times we pull some fixed suboptimal arm
𝑎 ∈ [𝐾]. We let Δ = ⟨𝑎*−𝑎, 𝜃*⟩ denote the gap and we let 𝑖 be the smallest integer
such that 𝜀𝑖 < Δ/4. We claim that this arm will get eliminated by the end of batch
𝑖. Indeed,

⟨𝑎*, ̂︀𝜃𝑖⟩ − ⟨𝑎, ̂︀𝜃𝑖⟩ ≥ (⟨𝑎*, ̂︀𝜃𝑖⟩ − ̃︀𝜀𝑖)− (⟨𝑎, ̂︀𝜃𝑖⟩+ ̃︀𝜀𝑖) = Δ− 2̃︀𝜀𝑖 > 4𝜀𝑖 − 2̃︀𝜀𝑖 > ̃︀𝜀𝑖 + 𝜀𝑖.

This shows that during any batch 𝑖, all the active arms have gap at most 4𝜀𝑖−1.
Thus, the regret of the algorithm conditioned on the event ℰ is at most

𝐵∑︁
𝑖=1

4𝑛𝑖𝜀𝑖−1 ≤ 4𝛽𝐶
𝐵∑︁
𝑖=1

𝑞𝑖
√︁

𝑑 log(𝐾𝑇 2)/𝑞𝑖−1 ≤ 6𝛽𝐶𝑞
√︀
𝑑 log(𝐾𝑇 )

𝐵−1∑︁
𝑖=0

𝑞𝑖/2 ≤

𝑂
(︁
𝛽𝑞𝐵/2+1

√︀
𝑑 log(𝐾𝑇 )

)︁
= 𝑂

(︂
𝐾2

𝜌2
𝑞𝐵/2+1

√︀
𝑑 log(𝐾𝑇 )

)︂
= 𝑂

(︂
𝐾2

𝜌2
𝑞
√︀

𝑑𝑇 log(𝐾𝑇 )

)︂
.

Thus, the overall regret is bounded by 𝛿 · 𝑇 + (1 − 𝛿) · 𝑂
(︁
𝐾2

𝜌2
𝑞
√︀
𝑑𝑇 log(𝐾𝑇 )

)︁
=

𝑂
(︁
𝐾2

𝜌2
𝑞
√︀

𝑑𝑇 log(𝐾𝑇 )
)︁
.
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We now argue about the replicability of our algorithm. The analysis follows
in a similar fashion as in Theorem 5.3.1. Let ̂︀𝜃𝑖, ̂︀𝜃′𝑖 be the LSE after the 𝑖-th
batch, under two different executions of the algorithm and assume that the set
of active arms. We condition on the event ℰ ′ for the other execution as well.
Assume that the set of active arms is the same under both executions at the
beginning of batch 𝑖. Notice that since the set that is guaranteed by Lemma 5.4.1
is computed by a deterministic algorithm, both executions will pull the same arms
in batch 𝑖. Consider a suboptimal arm 𝑎 and let 𝑎𝑖* = argmax𝑎∈𝒜⟨̂︀𝜃𝑖, 𝑎⟩, 𝑎′𝑖* =

argmax𝑎∈𝒜⟨̂︀𝜃′𝑖, 𝑎⟩. Under the event ℰ ∩ℰ ′ we have that |⟨𝑎, ̂︀𝜃𝑖−̂︀𝜃′𝑖⟩| ≤ 2̃︀𝜀𝑖, |⟨𝑎𝑖* , ̂︀𝜃𝑖−̂︀𝜃′𝑖⟩| ≤ 2̃︀𝜀𝑖, and |⟨𝑎′𝑖* , ̂︀𝜃′𝑖⟩ − ⟨𝑎𝑖* , ̂︀𝜃𝑖⟩| ≤ 2̃︀𝜀𝑖. Notice that, since the randomness of 𝜀𝑖
is shared, if ⟨𝑎, ̂︀𝜃𝑖⟩+ ̃︀𝜀𝑖 ≥ ⟨𝑎𝑖* , ̂︀𝜃𝑖⟩ − 𝜀𝑖 + 4̃︀𝜀𝑖, then the arm 𝑎 will not be eliminated
after the 𝑖-th batch in some other execution of the algorithm as well. Similarly,
if ⟨𝑎, ̂︀𝜃𝑖⟩ + ̃︀𝜀𝑖 < ⟨𝑎𝑖* , ̂︀𝜃𝑖⟩ − 𝜀𝑖 − 4̃︀𝜀𝑖 the the arm 𝑎 will get eliminated after the 𝑖-th
batch in some other execution of the algorithm as well. In particular, this means
that if ⟨𝑎, ̂︀𝜃𝑖⟩ − 2̃︀𝜀𝑖 > ⟨𝑎𝑖* , ̂︀𝜃𝑖⟩ + ̃︀𝜀𝑖 − 𝜀𝑖/2 then the arm 𝑎 will not get eliminated
in some other execution of the algorithm and if ⟨𝑎, ̂︀𝜃𝑖⟩ + 5̃︀𝜀𝑖 < ⟨𝑎𝑖* , ̂︀𝜃𝑖⟩ − 𝜀𝑖 then
the arm 𝑗 will also get eliminated in some other execution of the algorithm with
probability 1 under the event ℰ ∩ ℰ ′. Thus, it suffices to bound the probability
that the decision about arm 𝑗 will be different between the two executions when
we are in neither of these cases. Then, the worst case bound due to the mass of
the uniform probability measure is

16
√︀
𝑑 log(1/𝛿)/̃︀𝑐𝑖√︀

𝑑 log(1/𝛿)/𝑐𝑖
.

This implies that the probability mass of the bad event is at most 16
√︀
𝑐𝑖/̃︀𝑐𝑖 =

16
√︀

1/𝛽. A naive union bound would require us to pick 𝛽 = Θ(𝐾2 log2 𝑇/𝜌2). We
next show to avoid the log2 𝑇 factor. Fix a sub-optimal arm 𝑎 ∈ [𝐾] and let 𝑡 be
the first round that it appears in the bad event.

Since the bad event occurs at round 𝑡, we know that

⟨𝑎, ̂︀𝜃𝑡⟩ ∈ [︁⟨𝑎𝑡* , ̂︀𝜃𝑡⟩ − 𝜀𝑡 − 5̃︀𝜀𝑡, ⟨𝑎𝑡* , ̂︀𝜃𝑡⟩ − 𝜀𝑡/2 + 3̃︀𝜀𝑡]︁ .
In the above, 𝑎𝑡* is the optimal arm at round 𝑡 w.r.t. the LSE. Now assume that
the bad event for arm 𝑎 also occurs at round 𝑡+ 𝑘. Then, we have that

⟨𝑎, ̂︀𝜃𝑡+𝑘⟩ ∈
[︁
⟨𝑎(𝑡+𝑘)* , ̂︀𝜃𝑡+𝑘⟩ − 𝜀𝑡+𝑘 − 5̃︀𝜀𝑡+𝑘, ⟨𝑎(𝑡+𝑘)* , ̂︀𝜃𝑡+𝑘⟩ − 𝜀𝑡/2 + 3̃︀𝜀𝑡+𝑘

]︁
.

First, notice that since the concentration inequality under event ℰ holds for rounds
𝑡, 𝑡 + 𝑘 we have that ⟨𝑎, ̂︀𝜃𝑡+𝑘⟩ ≤ ⟨𝑎, ̂︀𝜃𝑡⟩ + ̃︀𝜀𝑡 + ̃︀𝜀𝑡+𝑘. Thus, combining it with the
above inequalities gives us

⟨𝑎(𝑡+𝑘)* , ̂︀𝜃𝑡+𝑘⟩−𝜀𝑡+𝑘−5̃︀𝜀𝑡+𝑘 ≤ ⟨𝑎, ̂︀𝜃𝑡+𝑘⟩ ≤ ⟨𝑎, ̂︀𝜃𝑡⟩+̃︀𝜀𝑡+̃︀𝜀𝑡+𝑘 ≤ ⟨𝑎𝑡* , ̂︀𝜃𝑡⟩−𝜀𝑡/2+4̃︀𝜀𝑡+̃︀𝜀𝑡+𝑘.
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We now compare ⟨𝑎𝑡* , ̂︀𝜃𝑡⟩, ⟨𝑎(𝑡+𝑘)* , ̂︀𝜃𝑡+𝑘⟩. Let 𝑎* denote the optimal arm. We have
that

⟨𝑎(𝑡+𝑘)* , ̂︀𝜃𝑡+𝑘⟩ ≥ ⟨𝑎*, ̂︀𝜃𝑡+𝑘⟩ ≥ ⟨𝑎*, 𝜃*⟩−̃︀𝜀𝑡+𝑘 ≥ ⟨𝑎𝑡* , 𝜃*⟩−̃︀𝜀𝑡+𝑘 ≥ ⟨𝑎𝑡* , ̂︀𝜃𝑡⟩−̃︀𝜀𝑡+𝑘−̃︀𝜀𝑡.
This gives us that

⟨𝑎𝑡* , ̂︀𝜃𝑡⟩ − 𝜀𝑡+𝑘 − 6̃︀𝜀𝑡+𝑘 − ̃︀𝜀𝑡 ≤ ⟨𝑎(𝑡+𝑘)* , ̂︀𝜃𝑡+𝑘⟩ − 𝜀𝑡+𝑘 − 5̃︀𝜀𝑡+𝑘.

Thus, we have established that

⟨𝑎𝑡* , ̂︀𝜃𝑡⟩ − 𝜀𝑡+𝑘 − 6̃︀𝜀𝑡+𝑘 − ̃︀𝜀𝑡 ≤ ⟨𝑎𝑡* , ̂︀𝜃𝑡⟩ − 𝜀𝑡/2 + 4̃︀𝜀𝑡 + ̃︀𝜀𝑡+𝑘 =⇒
𝜀𝑡+𝑘 ≥ 𝜀𝑡/2− 7̃︀𝜀𝑡+𝑘 − 5̃︀𝜀𝑡 ≥ 𝜀𝑡/2− 12̃︀𝜀𝑡.

Since 𝛽 ≥ 2304, we get that 12̃︀𝜀𝑡 ≤ 𝜀𝑡/4. Thus, we get that

𝜀𝑡+𝑘 ≥ 𝜀𝑡/4.

Notice that
𝜀𝑡+𝑘

𝜀𝑡
=

√︃
𝑞𝑡

𝑞𝑡+𝑘
,

thus it immediately follows that

𝑞𝑡

𝑞𝑡+𝑘
≥ 1

16
=⇒ 𝑞𝑘 ≤ 16 =⇒ 𝑘 log 𝑞 ≤ log 16 =⇒ 𝑘 ≤ 4,

when we pick 𝐵 = log(𝑇 ) batches. Thus, for every arm the bad event can hap-
pen at most 5 times, by taking a union bound over the 𝐾 arms we see that the
probability that our algorithm is not replicable is at most 𝑂(𝐾

√︀
1/𝛽), so picking

𝛽 = Θ(𝐾2/𝜌2) suffices to get the result.

5.8 Naive Application of Algorithm 10 with In-
finite Action Space

We use a 1/𝑇 1/(4𝑑+2)−net that has size at most (3𝑇 )
𝑑

4𝑑+2 . Let 𝒜′ be the new
set of arms. We then run Algorithm 10 using 𝒜′. This gives us the following result,
that is proved right after.

Corollary 5.8.1. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There is a 𝜌-replicable algorithm for the
stochastic 𝑑-dimensional linear bandit problem with infinite arms whose expected
regret is at most

E[𝑅𝑇 ] ≤ 𝐶 · 𝑇
4𝑑+1
4𝑑+2

𝜌2

√︀
𝑑 log(𝑇 ) ,

where 𝐶 > 0 is an absolute numerical constant.
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Proof. Since 𝐾 ≤ (3𝑇 )
𝑑

4𝑑+2 , we have that

𝑇 sup
𝑎∈𝒜′
⟨𝑎, 𝜃*⟩ − E

[︃
𝑇∑︁
𝑖=1

⟨𝑎𝑡, 𝜃*⟩

]︃
≤ 𝑂

(︃
(3𝑇 )

2𝑑
4𝑑+2

𝜌2

√︂
𝑑𝑇 log

(︁
𝑇 (3𝑇 )

𝑑
4𝑑+2

)︁)︃
= 𝑂

(︃
𝑇

4𝑑+1
4𝑑+2

𝜌2

√︀
𝑑 log(𝑇 )

)︃
Comparing to the best arm in 𝒜, we have that:

𝑇 sup
𝑎∈𝒜
⟨𝑎, 𝜃*⟩ − E

[︃
𝑇∑︁
𝑖=1

⟨𝑎𝑡, 𝜃*⟩

]︃
=

(︂
𝑇 sup

𝑎∈𝒜
⟨𝑎, 𝜃*⟩ − 𝑇 sup

𝑎∈𝒜′
⟨𝑎, 𝜃*⟩

)︂
+

(︃
𝑇 sup

𝑎∈𝒜′
⟨𝑎, 𝜃*⟩ − E

[︃
𝑇∑︁
𝑖=1

⟨𝑎𝑡, 𝜃*⟩

]︃)︃

Our choice of the 1/𝑇 1/(4𝑑+2)-net implies that for every 𝑎 ∈ 𝒜 there exists some
𝑎′ ∈ 𝒜′ such that ||𝑎−𝑎′||2 ≤ 1/𝑇 1/(4𝑑+2). Thus, sup𝑎∈𝒜⟨𝑎, 𝜃*⟩− sup𝑎′∈𝒜′⟨𝑎′, 𝜃*⟩ ≤
||𝑎− 𝑎′||2||𝜃*||2 ≤ 1/𝑇 1/(4𝑑+2). Thus, the total regret is at most

𝑇 · 1/𝑇 1/(4𝑑+2) +𝑂

(︃
𝑇

4𝑑+1
4𝑑+2

𝜌2

√︀
𝑑 log(𝑇 )

)︃
= 𝑂

(︃
𝑇

4𝑑+1
4𝑑+2

𝜌2

√︀
𝑑 log(𝑇 )

)︃
.

5.9 The Proof of Theorem 5.4.6
Theorem. Let 𝑇 ∈ N, 𝜌 ∈ (0, 1]. There exists a 𝜌-replicable algorithm (presented
in Algorithm 11) for the stochastic 𝑑-dimensional linear bandit problem with infinite
action set whose expected regret is

E[𝑅𝑇 ] ≤ 𝐶 · 𝑑
4 log(𝑑) log2 log(𝑑) log log log(𝑑)

𝜌2

√
𝑇 log3/2(𝑇 ) ,

for some absolute numerical constant 𝐶 > 0, and its running time is polynomial in
𝑇 𝑑 and 1/𝜌.

Proof. First, the algorithm is 𝜌-replicable since in each batch we use a replicable
LSE sub-routine with parameter 𝜌′ = 𝜌/𝐵. This implies that

Pr[(𝑎1, ..., 𝑎𝑇 ) ̸= (𝑎′1, ..., 𝑎
′
𝑇 )] = Pr[∃𝑖 ∈ [𝐵] : ̂︀𝜃𝑖 was not replicable] ≤ 𝜌 .

Let us fix a batch iteration 𝑖 ∈ [𝐵 − 1]. Set 𝒞𝑖 be the core set computed by
Lemma 5.4.3. The algorithm first pulls 𝑛𝑖 =

𝐶𝑑4 log(𝑑/𝛿) log2 log(𝑑) log log log(𝑑)
𝜀2𝑖 𝜌

′2 times
each one of the arms of the 𝑖-th core set 𝒞𝑖, as indicated by Lemma 5.4.5 and
computes the LSE ̂︀𝜃𝑖 in a replicable way using the algorithm of Lemma 5.4.5.
Let ℰ be the event that over all batches the estimations are correct. We pick
𝛿 = 1/(2|𝒜′|𝑇 2) so that this good event does hold with probability at least 1−1/𝑇 .
Our goal is to control the expected regret which can be written as

E[𝑅𝑇 ] = 𝑇 sup
𝑎∈𝒜
⟨𝑎, 𝜃⋆⟩ − E

𝑇∑︁
𝑡=1

⟨𝑎𝑡, 𝜃⋆⟩ .
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We have that
𝑇 sup

𝑎∈𝒜
⟨𝑎, 𝜃⋆⟩ − 𝑇 sup

𝑎′∈𝒜′
⟨𝑎′, 𝜃⋆⟩ ≤ 1 ,

since 𝒜′ is a deterministic 1/𝑇 -net of 𝒜. Also, let us set the expected regret of the
bounded action sub-problem as

E[𝑅′
𝑇 ] = 𝑇 sup

𝑎′∈𝒜′
⟨𝑎′, 𝜃⋆⟩ − E

𝑇∑︁
𝑡=1

⟨𝑎𝑡, 𝜃⋆⟩ .

We can now employ the analysis of the finite arm case. During batch 𝑖, any active
arm has gap at most 4𝜀𝑖−1, so the instantaneous regret in any round is not more
than 4𝜀𝑖−1. The expected regret conditional on the good event ℰ is upper bounded
by

E[𝑅′
𝑇 |ℰ ] ≤

𝐵∑︁
𝑖=1

4𝑀𝑖𝜀𝑖−1 ,

where 𝑀𝑖 is the total number of pulls in batch 𝑖 (using the replicability blow-
up) and 𝜀𝑖−1 is the error one would achieve by drawing 𝑞𝑖 samples (ignoring the
blow-up). Then, for some absolute constant 𝐶 > 0, we have that

E[𝑅′
𝑇 |ℰ ] ≤

𝐵∑︁
𝑖=1

4

(︂
𝑞𝑖
𝑑3 log(𝑑) log2 log(𝑑) log log log(𝑑) log2 𝑇

𝜌2

)︂
·
√︁
𝑑2 log(𝑇 )/𝑞𝑖−1 ,

which yields that

E[𝑅′
𝑇 |ℰ ] ≤ 𝐶

𝑑4 log(𝑑) log2 log(𝑑) log log log(𝑑) log(𝑇 )
√︀
log(𝑇 )

𝜌2
· 𝑆 ,

where we set

𝑆 :=

𝐵∑︁
𝑖=1

𝑞𝑖

𝑞(𝑖−1)/2
= 𝑞1/2

𝐵∑︁
𝑖=1

𝑞𝑖/2 = 𝑞(1+𝐵)/2 .

We pick 𝐵 = log(𝑇 ) and get that, if 𝑞 = 𝑇 1/𝐵 then 𝑆 = Θ(
√
𝑇 ). We remark that

this choice of 𝑞 is valid since

𝐵∑︁
𝑖=1

𝑞𝑖 =
𝑞𝐵+1 − 𝑞

𝑞 − 1
= Θ(𝑞𝐵)− 1 ≥ 𝑇𝜌2

𝑑3 log(𝑑) log2 log(𝑑) log log log(𝑑)
.

Hence, we have that

E[𝑅′
𝑇 |ℰ ] ≤ 𝑂

(︂
𝑑4 log(𝑑) log2 log(𝑑) log log log(𝑑)

𝜌2

√
𝑇 log3/2(𝑇 )

)︂
.

Note that when ℰ does not hold, we can bound the expected regret by 1/𝑇 ·𝑇 = 1.
This implies that the overall regret E[𝑅𝑇 ] ≤ 2 + E[𝑅′

𝑇 |ℰ ] and so it satisfies the
desired bound and the proof is complete.
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5.10 Deferred Lemmata

5.10.1 The Proof of Lemma 5.4.4
Proof. Consider the distribution 𝜋 that is a 2-approximation to the optimal G-
design and has support |𝒞| = 𝑂(𝑑 log log 𝑑). Let 𝒞′ be the set of arms in the support
such that 𝜋(𝑎) ≤ 𝑐/𝑑 log 𝑑. We consider ̃︀𝜋 = (1−𝑥)𝜋+𝑥𝑎, where 𝑎 ∈ 𝒞′ and 𝑥 will
be specified later. Consider now the matrix 𝑉 (̃︀𝜋). Using the Sherman-Morrison
formula, we have that

𝑉 (̃︀𝜋)−1 =
1

1− 𝑥
𝑉 (𝜋)−1 − 𝑥𝑉 (𝜋)−1𝑎𝑎⊤𝑉 (𝜋)−1

(1− 𝑥)2
(︁
1 + 1

1−𝑥 ||𝑎||
2
𝑉 (𝜋)−1

)︁ =
1

1− 𝑥

(︃
𝑉 (𝜋)−1 − 𝑥𝑉 (𝜋)−1𝑎𝑎⊤𝑉 (𝜋)−1

1− 𝑥+ ||𝑎||2
𝑉 (𝜋)−1

)︃
.

Consider any arm 𝑎′. Then,

||𝑎′||2𝑉 (̃︀𝜋)−1 =
1

1− 𝑥
||𝑎||2𝑉 (𝜋)−1 −

𝑥

1− 𝑥
· (𝑎⊤𝑉 (𝜋)−1𝑎′)2

1− 𝑥+ ||𝑎||2
𝑉 (𝜋)−1

≤ 1

1− 𝑥
||𝑎||2𝑉 (𝜋)−1 .

Note that we apply this transformation at most 𝑂(𝑑 log log 𝑑) times. Let ̂︀𝜋 be
the distribution we end up with. We see that

||𝑎′||2𝑉 (̂︀𝜋)−1 ≤
(︂

1

1− 𝑥

)︂𝑐𝑑 log log 𝑑

||𝑎||2𝑉 (𝜋)−1 ≤ 2

(︂
1

1− 𝑥

)︂𝑐𝑑 log log 𝑑

𝑑.

Notice that there is a constant 𝑐′ such that when 𝑥 = 𝑐′/𝑑 log 𝑑 we have that(︁
1

1−𝑥

)︁𝑐𝑑 log log 𝑑
≤ 2. Moreover, notice that the mass of every arm is at least 𝑥(1−

𝑥)|𝒞| ≥ 𝑥−|𝒞|𝑥2 = 𝑐′/(𝑑 log(𝑑))− 𝑐′′𝑑 log log 𝑑/(𝑑2 log2(𝑑)) ≥ 𝑐/(𝑑 log(𝑑)), for some
absolute numerical constant 𝑐 > 0. This concludes the claim.

5.10.2 The Proof of Lemma 5.4.5
Proof. The proof works when we can treat Ω(⌈𝑑 log(1/𝛿)𝜋(𝑎)/𝜀2⌉) as Ω(𝑑 log(1/𝛿)𝜋(𝑎)/𝜀2),
i.e., as long as 𝜋(𝑎) = Ω(𝜀2/𝑑 log(1/𝛿)). In the regime we are in, this point is han-
dled thanks to Lemma 5.4.4. Combining the following proof with Lemma 5.4.4, we
can obtain the desired result.

We underline that we work in the fixed design setting: the arms 𝑎𝑖 are deter-
ministically chosen independently of the rewards 𝑟𝑖. Assume that the core set of
Lemma 5.4.3 is the set 𝒞. Fix the multi-set 𝑆 = {(𝑎𝑖, 𝑟𝑖) : 𝑖 ∈ [𝑀 ]}, where each
arm 𝑎 lies in the core set and is pulled 𝑛𝑎 = Θ(𝜋(𝑎)𝑑 log(𝑑) log(|𝒞|/𝛿)/𝜀2) times3.
Hence, we have that

𝑀 =
∑︁
𝑎∈𝒞

𝑛𝑎 = Θ
(︀
𝑑 log(𝑑) log(|𝒞|/𝛿)/𝜀2

)︀
.

3Recall that 𝜋(𝑎) ≥ 𝑐/(𝑑 log(𝑑)), for some constant 𝑐 > 0, so the previous expression is
Ω(log(𝛿/|𝒞|)/𝜀2).
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Let also 𝑉 =
∑︀

𝑖∈[𝑀 ] 𝑎𝑖𝑎
⊤
𝑖 . The least-squares estimator can be written as

𝜃
(𝜀)
LSE = 𝑉 −1

∑︁
𝑖∈[𝑀 ]

𝑎𝑖𝑟𝑖 = 𝑉 −1
∑︁
𝑎∈𝒞

𝑎
∑︁
𝑖∈[𝑛𝑎]

𝑟𝑖(𝑎) ,

where each 𝑎 lies in the core set (deterministically) and 𝑟𝑖(𝑎) is the 𝑖-th reward gen-
erated independently by the linear regression process ⟨𝜃⋆, 𝑎⟩+ 𝜉, where 𝜉 is a fresh
zero mean sub-gaussian random variable. Our goal is to reproducibly estimate the
value

∑︀
𝑖∈[𝑛𝑎]

𝑟𝑖(𝑎) for any 𝑎. This is sufficient since two independent executions of
the algorithm share the set 𝒞 and 𝑛𝑎 for any 𝑎. Note that the above sum is a random
variable. In the following, we condition on the high-probability event that the av-
erage reward of the arm 𝑎 is 𝜀-close to the expected one, i.e., the value ⟨𝜃⋆, 𝑎⟩. This
happens with probability at least 1− 𝛿/(2|𝒞|), given Ω(𝜋(𝑎)𝑑 log(𝑑) log(|𝒞|/𝛿)/𝜀2)
samples from arm 𝑎 ∈ 𝒞. In order to guarantee replicability, we will apply a re-
sult from (ILPS22). Since we will union bound over all arms in the core set and
|𝒞| = 𝑂(𝑑 log log(𝑑)) (via Lemma 5.4.3), we will make use of a (𝜌/|𝒞|)-replicable
algorithm that gives an estimate 𝑣(𝑎) ∈ R such that

|⟨𝜃⋆, 𝑎⟩ − 𝑣(𝑎)| ≤ 𝜏 ,

with probability at least 1− 𝛿/(2|𝒞|). For 𝛿 < 𝜌, the algorithm uses

𝑆𝑎 = Ω
(︀
𝑑2 log(𝑑/𝛿) log2 log(𝑑) log log log(𝑑)/(𝜌2𝜏2)

)︀
many samples from the linear regression with fixed arm 𝑎 ∈ 𝒞. Since we have
conditioned on the randomness of 𝑟𝑖(𝑎) for any 𝑖, we get⃒⃒⃒⃒
⃒⃒ 1𝑛𝑎

∑︁
𝑖∈[𝑛𝑎]

𝑟𝑖(𝑎)− 𝑣(𝑎)

⃒⃒⃒⃒
⃒⃒ ≤

⃒⃒⃒⃒
⃒⃒ 1𝑛𝑎

∑︁
𝑖∈[𝑛𝑎]

𝑟𝑖(𝑎)− ⟨𝜃*, 𝑎⟩

⃒⃒⃒⃒
⃒⃒+ |⟨𝜃*, 𝑎⟩ − 𝑣(𝑎)| ≤ 𝜀+ 𝜏 ,

with probability at least 1 − 𝛿/(2|𝒞|). Hence, by repeating this approach for all
arms in the core set, we set 𝜃SQ = 𝑉 −1

∑︀
𝑎∈𝒞 𝑎 𝑛𝑎 𝑣(𝑎). Let us condition on the

randomness of the estimate 𝜃
(𝜀)
LSE. We have that

sup
𝑎′∈𝒜
|⟨𝑎′, 𝜃SQ − 𝜃⋆⟩| ≤ sup

𝑎′∈𝒜
|⟨𝑎′, 𝜃SQ − 𝜃

(𝜀)
LSE⟩|+ sup

𝑎′∈𝒜
|⟨𝑎′, 𝜃(𝜀)LSE − 𝜃⋆⟩| .

Note that the second term is 𝜀 with probability at least 1−𝛿 via Lemma 5.4.1. Our
next goal is to tune the accuracy 𝜏 ∈ (0, 1) so that the first term yields another 𝜀
error. For the first term, we have that

sup
𝑎′∈𝒜
|⟨𝑎′, 𝜃SQ − 𝜃

(𝜀)
LSE⟩| ≤ sup

𝑎′∈𝒜

⃒⃒⃒⃒
⃒⟨𝑎′, 𝑉 −1

∑︁
𝑎∈𝒞

𝑎 𝑛𝑎 (𝜀+ 𝜏)⟩

⃒⃒⃒⃒
⃒
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Note that 𝑉 = 𝐶𝑑 log(𝑑) log(|𝒞|/𝛿)
𝜀2

∑︀
𝑎∈𝒞 𝜋(𝑎)𝑎𝑎

⊤ and so 𝑉 −1 = 𝜀2

𝐶𝑑 log(𝑑) log(|𝒞|/𝛿)𝑉 (𝜋)−1,
for some absolute constant 𝐶 > 0. This implies that

sup
𝑎′∈𝒜
|⟨𝑎′, 𝜃SQ−𝜃(𝜀)LSE⟩| ≤ (𝜀+𝜏) sup

𝑎′∈𝒜

⃒⃒⃒⃒
⃒
⟨
𝑎′,

𝜀2

𝐶𝑑 log(𝑑) log(|𝒞|/𝛿)
𝑉 (𝜋)−1

∑︁
𝑎∈𝒞

𝐶𝑑 log(𝑑) log(|𝒞|/𝛿)𝜋(𝑎)
𝜀2

𝑎

⟩⃒⃒⃒⃒
⃒ .

Hence, we get that

sup
𝑎′∈𝒜
|⟨𝑎′, 𝜃SQ − 𝜃

(𝜀)
LSE⟩| ≤ (𝜀+ 𝜏) sup

𝑎′∈𝒜

⃒⃒⃒⃒
⃒
⟨
𝑎′, 𝑉 (𝜋)−1

∑︁
𝑎∈𝒞

𝜋(𝑎)𝑎

⟩⃒⃒⃒⃒
⃒ .

Consider a fixed arm 𝑎′ ∈ 𝒜. Then,⃒⃒⃒⃒
⃒
⟨
𝑎′, 𝑉 (𝜋)−1

∑︁
𝑎∈𝒞

𝜋(𝑎)𝑎

⟩⃒⃒⃒⃒
⃒ ≤∑︁

𝑎∈𝒞
𝜋(𝑎)

⃒⃒
⟨𝑎′, 𝑉 (𝜋)−1𝑎⟩

⃒⃒
≤
∑︁
𝑎∈𝒞

𝜋(𝑎)
(︁
1 +

⃒⃒
⟨𝑎′, 𝑉 (𝜋)−1𝑎⟩

⃒⃒2)︁
= 1 +

∑︁
𝑎∈𝒞

𝜋(𝑎)
⃒⃒
⟨𝑎′, 𝑉 (𝜋)−1𝑎⟩

⃒⃒2
= 1 + ||𝑎′||2𝑉 (𝜋)−1

≤ 4𝑑+ 1 ,

where the last inequality follows from the fact that 𝜋 is a 4-approximation of the
𝐺-optimal design. Hence, in total, by picking 𝜏 = 𝜀, we get that

sup
𝑎′∈𝒜
|⟨𝑎′, 𝜃SQ − 𝜃⋆⟩| ≤ 11𝑑𝜀 .

Thus, for any 𝜀 > 0, the total number of pulls of each arm is

Ω
(︀
𝑑4 log(𝑑/𝛿) log2 log(𝑑) log log log(𝑑)/(𝜌2𝜀2)

)︀
,

to get
sup
𝑎′∈𝒜
|⟨𝑎′, 𝜃SQ − 𝜃⋆⟩| ≤ 𝜀 .

5.11 Computational Performance of Algorithm 11
In this appendix, we discuss the barriers towards computational efficiency re-

garding Algorithm 11. The reasons why Algorithm 11 is computationally inefficient
are the following: (a) we have to compute the arm in the set of active arms that
has maximum correlation with the estimate ̂︀𝜃𝑖, (b) we have to eliminate arms based
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on this value and (c) we have to run at each batch the Frank-Wolfe algorithm (or
some other optimization method needed for Lemma 5.4.1) in order to obtain an
approximate G-optimal design. As a minimal assumption in what follows, we focus
on the case where the action set 𝒜 is convex and we have access to a separation
oracle for it.

Note that executing both (a) and (b) naively requires time exponential in 𝑑.
However, on the one side arm elimination (issue (b)) reduces to finding the in-
tersection of the current active set with a halfspace ℋ whose normal vector is ̂︀𝜃𝑖
and the threshold is, roughly speaking, the maximum correlation. This maximum
correlation can also be computed efficiently. Finding an arm with (almost) maxi-
mum correlation relates to the problem of finding a point that maximizes a linear
objective under the constraint that the point lies in the intersection of the active
arm set with some linear constraints. Thus, we can use the ellipsoid algorithm to
implement this step.

The above discussion deals with issues (a) and (b) and, essentially, states that
even with infinitely many actions, one could implement these steps efficiently. We
now focus on issue (c). The Frank-Wolfe method first requires a proper initializa-
tion. As mentioned in (LS20), if the starting point is chosen to be the uniform
distribution over 𝒜′, then the number of iterations before getting a 2-approximate
optimal design is roughly ̃︀𝑂(𝑑). The issue is that since 𝒜′ is exponential in 𝑑, it
is not clear how to work with such an initialization efficiently. Notably there is a
different initialization (Fed13; LSW20) with support 𝑂(𝑑) for which the method
runs in 𝑂(𝑑 log log(𝑑)) rounds (see Note 3 at Section 21.2 of (LS20) and (LSW20)).
There are two issues: first, one requires an oracle to provide this good initialization.
Second, each iteration of the Frank-Wolfe method (with current design guess 𝜋) re-
quires computing a point in the current active set with maximum 𝑉 (𝜋)−1-norm. As
noted in (Tod16), a good initialization for finding a G-optimal design, i.e., a min-
imum volume enclosing ellipsoid (MVEE) should be sufficiently sparse (compared
to the number of active arms) and assign positive mass to arms that correspond
to extreme points, i.e., points that are close to the border of MVEE. The work of
(KY05) provides an initial core set that depends only on 𝑑 but not on the number
of points. The algorithm works as follows: it runs for 𝑑 iterations and, in each
round, it adds 2 arms into the core set. Initially, we set the core set 𝒞0 = ∅ and let
Ψ = {0}. In each iteration 𝑖 ∈ [𝑑], the algorithm draws a random direction 𝑣𝑖 in the
orthogonal complement of Ψ (this step is replicable thanks to the shared random-
ness) and computes the vectors in the active arms’ set with the maximum and the
minimum correlation with 𝑣𝑖, say 𝑎+𝑖 , 𝑎

−
𝑖 . It then extends 𝒞0 ← 𝒞0 ∪ {𝑎+𝑖 , 𝑎

−
𝑖 } and

sets Ψ← span(Ψ, {𝑎+𝑖 −𝑎−𝑖 }). Hence, the runtime of this algorithm corresponds to
the runtime of the tasks max𝑎∈𝒜′⟨𝑎, 𝑣𝑖⟩ and min𝑎∈𝒜′⟨𝑎, 𝑣𝑖⟩. One can efficiently ap-
proximate these values using the ellipsoid algorithm and hence efficiently initialize
the Frank-Wolfe algorithm as in (Tod16) (e.g., set the weights uniformly 1/(2𝑑)).

Our second challenge deals with finding a point in the active arm set with
maximum 𝑉 (𝜋)−1-norm for some current guess 𝜋. Even if the current active set is a
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polytope, finding an exact norm maximizer is NP-hard (FO85; MS86)4. Hence, one
should focus on efficient approximation algorithms. We note that even a poly(𝑑)-
approximate maximizer is sufficient to get ̃︀𝑂(poly(𝑑)

√
𝑇 ) regret. Such an algorithm

for polytopes, which gets an 1/𝑑2-approximation, is provided in (Ye92; Vav93).
As a general note, if we assume that we have access to an oracle𝒪 that computes

a 2-approximate G-optimal design in time 𝑇𝒪, then our Algorithm 11 runs in time
polynomial in 𝑇𝒪.

4In fact, even finding a constant factor approximation, for some appropriate constant,
is NP-hard (BR93).
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Algorithm 11 Replicable LSE Algorithm for Stochastic Infinite Action Set
(Theorem 5.4.6)

1: Input: time horizon 𝑇, action set 𝒜 ⊆ R𝑑, replicability 𝜌
2: 𝒜′ ← 1/𝑇 -net of 𝒜
3: Initialization: 𝑟 ← 𝑇,𝐵 ← log(𝑇 ), 𝑞 ← (𝑇/𝑐)1/𝐵

4: for 𝑖 = 1 to 𝐵 − 1 do
5: 𝑞𝑖 denotes the number of pulls of all arms before the replicability

blow-up
6: 𝜀𝑖 = 𝑐 · 𝑑

√︀
log(𝑇 )/𝑞𝑖

7: The blow-up is 𝑀𝑖 = 𝑞𝑖 · 𝑑3 log(𝑑) log2 log(𝑑) log log log(𝑑) log2(𝑇 )/𝜌2
8: 𝑎1, . . . , 𝑎|𝒞𝑖| ← core set 𝒞𝑖 of the design given by Lemma 5.4.3 with parameter 𝒜′

9: if ⌈𝑀𝑖⌉ > 𝑟 then
10: break
11: Pull every arm 𝑎𝑗 for 𝑁𝑖 = ⌈𝑀𝑖⌉/|𝒞𝑖| rounds and receive rewards

𝑟
(𝑗)
1 , ..., 𝑟

(𝑗)
𝑁𝑖

for 𝑗 ∈ [|𝒞𝑖|]
12: 𝑆𝑖 = {(𝑎𝑗, 𝑟(𝑗)𝑡 ) : 𝑡 ∈ [𝑁𝑖], 𝑗 ∈ [|𝒞𝑖|]}
13: ̂︀𝜃𝑖 ← ReplicableLSE(𝑆𝑖, 𝜌

′ = 𝜌/(𝑑𝐵), 𝛿 = 1/(2|𝒜′|𝑇 2), 𝜏 =
min{𝜀𝑖, 1})

14: 𝑟 ← 𝑟 − ⌈𝑀𝑖⌉
15: for 𝑎 ∈ 𝒜′ do
16: if ⟨𝑎, ̂︀𝜃𝑖⟩ < max𝑎∈𝒜′⟨𝑎, ̂︀𝜃𝑖⟩ − 2𝜀𝑖 then
17: Remove 𝑎 from 𝒜′

18: In the last batch play argmax𝑎∈𝒜′⟨𝑎, ̂︀𝜃𝐵−1⟩
19:
20: ReplicableLSE(𝑆, 𝜌, 𝛿, 𝜏)
21: for 𝑎 ∈ 𝒞 do
22: 𝑣(𝑎)← ReplicableSQ(𝜑 : 𝑥 ∈ R ↦→ 𝑥 ∈ R, 𝑆, 𝜌, 𝛿, 𝜏) ◁ (ILPS22)
23: return (

∑︀
𝑗∈|𝑆| 𝑎𝑗𝑎

⊤
𝑗 )

−1 · (
∑︀

𝑎∈𝒞 𝑎 𝑛𝑎 𝑣(𝑎))
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Chapter 6

Statistical Indistinguishability of
Learning Algorithms

6.1 Replicability, Differential Privacy and TV
Indistinguishability

We shortly remind the reader the three crucial definitions of this chapter, which
had been extensively discussed in Section 1.4.5

Definition 6.1.1 (Replicability (ILPS22)). Let ℛ be a distribution over random
strings. A learning algorithm 𝐴 is 𝑛-sample 𝜌-replicable if for any distribution 𝒟
over inputs and two independent sets 𝑆, 𝑆′ ∼ 𝒟𝑛 it holds that

Pr
𝑆,𝑆′∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) ̸= 𝐴(𝑆′, 𝑟)] ≤ 𝜌 .

Definition 6.1.2 (Approximate Differential Privacy (DKM+06)). A learning rule
𝐴 is an 𝑛-sample (𝜖, 𝛿)-differentially private if for any pair of samples 𝑆, 𝑆′ ∈
(𝒳 ×{0, 1})𝑛 that disagree on a single example, the induced posterior distributions
𝐴(𝑆) and 𝐴(𝑆′) are (𝜖, 𝛿)-indistinguishable.

Definition 6.1.3 (Total Variation Indistinguishability). A learning rule 𝐴 is 𝑛-
sample 𝜌-TV indistinguishable if for any distribution over inputs 𝒟 and two inde-
pendent sets 𝑆, 𝑆′ ∼ 𝒟𝑛 it holds that

E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆), 𝐴(𝑆′))] ≤ 𝜌 .

In this chapter, we investigate the connections between TV indistinguishability,
replicability and differential privacy.
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6.2 Generalization Bounds for TV Indistinguish-
able Learners

As a warmup, we start by proving a generalization result for TV indistin-
guishable learners. Recall that if we fix some binary classifier we can show, using
standard concentration bounds, that its performance on a sample is close to its per-
formance on the underlying population. However, when we train an ML algorithm
using a dataset 𝑆 to output a classifier ℎ we cannot just use the fact that it has
small loss on 𝑆 to claim that its loss on the population is small because ℎ depends
on 𝑆. The following result shows that we can get such generalization bounds if 𝐴
is a 𝜌-TV indistinguishable algorithm. We remark that a similar result regarding
replicable algorithms appears in (ILPS22). The formal proof, stated in a slightly
more general way, is in Section 6.12.

Proposition 6.2.1 (TV Indistinguishability Implies Generalization). Let 𝛿, 𝜌 ∈
(0, 1)2. Let 𝒟 be a distribution over inputs and 𝑆 = {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑛] be a sample
of size 𝑛 drawn i.i.d. from 𝒟. Let ℎ : 𝒳 → {0, 1} be the output of an 𝑛-sample
𝜌-TV indistinguishable learning rule 𝐴 with input 𝑆. Then, with probability at least
1− 𝛿 − 4

√
𝜌 over 𝑆, it holds that,⃒⃒⃒⃒

⃒ E
ℎ∼𝐴(𝑆)

[𝐿(ℎ)]− E
ℎ∼𝐴(𝑆)

[︁̂︀𝐿(ℎ)]︁⃒⃒⃒⃒⃒ ≤
√︂

log(2/𝛿)

2𝑛
+
√
𝜌 ,

where 𝐿(ℎ) , Pr(𝑥,𝑦)∼𝒟[ℎ(𝑥) ̸= 𝑦] and ̂︀𝐿(ℎ) , 1
𝑛

∑︀
(𝑥,𝑦)∈𝑆 1{ℎ(𝑥) ̸= 𝑦}.

6.3 Related Work
This chapter falls in the research agenda of replicable algorithm design, which

was initiated by (ILPS22). In particular, (ILPS22) introduced the notion of repli-
cable learning algorithms, established that any statistical query algorithm can be
made replicable, and designed replicable algorithms for various applications such
as halfspace learning. Next, (AJJ+22) studied reproducibility in optimization and
(EKK+22) provided replicable bandit algorithms.

The most closely related prior work to ours is the recent paper by (BGH+23).
In particular, as we discuss below in greater detail, an alternative proof of the
equivalence between TV indistinguishability, replicability, and differential privacy
follows from (BGH+23). In contrast with our equivalence, the transformations
by (BGH+23) are restricted to finite classes. On the other hand, (BGH+23) give
a constructive proof whereas our proof is purely information-theoretic.

In more detail, (BGH+23) establish a variety of equivalences between different
notions of stability such as differential privacy, replicability, and one-way perfect
generalization, and the latter contains TV indistinguishability as a special case:
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Definition 6.3.1 ((One-Way) Perfect Generalization (CLN+16; BF16)). A learn-
ing rule 𝐴 : 𝒳 𝑛 → 𝒴 is (𝛽, 𝜀, 𝛿)-perfectly generalizing if, for every distribution 𝒟
over 𝒳 , there exists a distribution 𝒫𝒟 such that, with probability at least 1−𝛽 over
𝑆 consisting of 𝑛 i.i.d. samples from 𝒟, and every set of outcomes 𝒪 ⊆ 𝒴

𝑒−𝜀

(︂
Pr
𝒫𝒟

[𝒪]− 𝛿

)︂
≤ Pr[𝐴(𝑆) ∈ 𝒪] ≤ 𝑒𝜖Pr

𝒫𝒟
[𝒪] + 𝛿 .

Moreover, 𝐴 is (𝛽, 𝜖, 𝛿)-one-way perfectly generalizing if Pr[𝐴(𝑆) ∈ 𝒪] ≤ 𝑒𝜖Pr𝒫𝒟 [𝒪]+
𝛿.

Note indeed that plugging 𝜖 = 0 to the definition of perfect generalization spe-
cializes the above definition to an equivalent variant of TV indistinguishability (see
also Definition 6.7.9). (BGH+23) derives an equivalence between replicability and
one-way perfect generalization with 𝜖 > 0. However, in a personal communication
they pointed out to us that their argument also applies to the case 𝜖 = 0, and hence
to TV indistinguishability. In more detail, an intermediate step of their proof shows
that any (𝛽, 𝜖, 𝛿)-perfectly generalizing algorithm 𝐴 is also (𝛽, 0, 2𝜀 + 𝛿)-perfectly
generalizing, which is qualitatively equivalent with our main definition (see Defini-
tion 6.1.3). As noted earlier our proof applies more generally to infinite countable
domains but is non-constructive.

Differential Privacy. Differential privacy (Dwo08; DRV10; Vad17; DR14) is
quite closely related to replicability. The first connection between replicability and
DP in the context of PAC learning was, implicitly, established by (GKM21) (for
finite domains 𝒳 ), via the technique of correlated sampling (see Section 6.7.4) and
the notion of pseudo-global stability (which is equivalent to replicability as noticed
by (ILPS22)):

Definition 6.3.2 (Pseudo-Global Stability (GKM21)). Let ℛ be a distribution over
random strings. A learning algorithm 𝐴 is said to be 𝑛-sample (𝜂, 𝜈)-pseudo-globally
stable if for any distribution 𝒟 there exists a hypothesis ℎ𝑟 for every 𝑟 ∈ supp(ℛ)
(depending on 𝒟) such that

Pr
𝑟∼ℛ

[︂
Pr

𝑆∼𝒟𝑛
[𝐴(𝑆, 𝑟) = ℎ𝑟] ≥ 𝜂

]︂
≥ 𝜈 .

The high-level connection between these notions appears to boil down to the
notion of stability (BE02; PRMN04; DFH+15; ALMT17; BNS+16a; LM20) (see
(ABL+22) for further details between stability, online learnability and differential
privacy). In particular, (GGKM21) showed that a class of finite Littlestone di-
mension admits a list-globally stable learner (see Theorem 18 in (GKM21)). The
work of (GKM21) (among other things) showed (i) how to perform a reduction
from list-global stability to pseudo-global stability via correlated sampling in finite
domains (see Theorem 20 in (GKM21)) and (ii) how to perform a reduction from
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pseudo-global stability to approximate DP via DP selection (see Theorem 25 in
(GKM21)). We highlight that this equivalence between differential privacy and
replicability for finite domains was made formal by (BGH+23) and was extended
to arbitrary statistical tasks.

TV Stability. The definition of TV indistinguishability that we propose has
close connections with the definition of TV stability. This notion has appeared in
the context of adaptive data analysis. The work of (BNS+16a) studied the following
problem: suppose there is an unknown distribution 𝑃 and a set 𝑆 of 𝑛 independent
samples drawn i.i.d. from 𝑃 . The goal is to design an algorithm that, with input 𝑆,
will accurately answer a sequence of adaptively chosen queries about the unknown
distribution 𝑃 . The main question is how many samples must one draw from the
distribution, as a function of the type of queries, the number of queries, and the
desired level of accuracy to perform well? (BNS+16a) provide various results that
rely on the connections between algorithmic stability, differential privacy and gen-
eralization. To this end, they think of differential privacy as max-KL stability and
study the performance of other notions of stability such as TV stability. Crucially,
in their definition, TV stability considers any pair of neighboring datasets 𝑆, 𝑆′ and
not two independent draws from 𝑃 . More concretely, they propose the following
definition.

Definition 6.3.3 (Total Variation Stability (BNS+16a)). A learning rule 𝐴 is 𝑛-
sample 𝜌-TV stable if for any pair of samples 𝑆, 𝑆′ ∈ (𝒳 × {0, 1})𝑛 that disagree
on a single example, it holds that 𝑑TV(𝐴(𝑆), 𝐴(𝑆′)) ≤ 𝜌.

We underline that for any constant 𝜌1 it is not challenging to obtain a 𝜌-TV
stable algorithm in the learning setting we are interested in. It suffices to just
sub-sample a small enough subset of the data. Hence, any class with finite VC
dimension is TV stably learnable under this definition. As it is evident from our
results (cf. Theorem 6.5.2), this is in stark contrast with the definition we propose.
We remind the readers that just sub-sampling the dataset is not enough to achieve
differential privacy. This is because it is required that 𝛿 = 𝑜(1/𝑛). We remark that
the definition of total variation stability à la (BNS+16a) also appears in (RRT+16).

The above definition of TV stability has close connections to machine unlearn-
ing. This problem refers to the ability of a user to delete their data that were used
to train a ML algorithm. When this happens, the machine learning algorithm has
to move to a state as if it had never used that data for training, hence the term
machine unlearning. One can see that Definition 6.3.3 is suitable for this setting
since it states that if one point of the dataset is deleted, the distribution of the al-
gorithm should not be affected very much. For convex risk minimization problems,
(UMR+21) design TV stable algorithms based on noisy Stochastic Gradient De-
scent (SGD). Such approaches lead to the design of efficient unlearning algorithms,

1In fact, even for 𝜌 ≥ 1/𝑛𝑐, 0 < 𝑐 < 1.
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which are based on sub-sampling the dataset and constructing a maximal coupling
of Markov chains for the noisy SGD procedure.

KL Stability and PAC-Bayes. In Section 6.7.3 we provide some equiva-
lent definitions to TV indistinguishability. In particular, Definition 6.7.9 has con-
nections with the line of work that studies distribution-dependent generalization
bounds. To be more precise, if instead of the TV distance we use the KL diver-
gence to measure the distance between the prior and the output of the algorithm
we get the definition of the quantity that is used to derive PAC-Bayes generaliza-
tion bounds. Interestingly, (LM20) show that the PAC-Bayes framework cannot be
used to derive distribution-free PAC learning bounds for classes that have infinite
Littlestone dimension; they show that for any algorithm that learns 1-dimensional
linear classifiers (thresholds), there exists a realizable distribution for which PAC-
Bayes bounds are trivial. Recently, a similar PAC-Bayes framework was proposed
in (AEMM22), where the KL divergence is replaced with a general family of Inte-
gral Probability Metrics (cf. Definition 6.7.2).

Probably Eventually Correct Learning. The work of (MM22) introduced
the Probably Eventually Correct (PEC) model of learning. In this model, a learner
outputs the same hypothesis2, with probability one, after a uniformly bounded
number of revisions. Intuitively, this corresponds to the property that the global
stability parameter is close to 1. Interestingly, prior work on global stability
(BLM20; GGKM21) had characterized Littlestone classes as being PAC learnable
by an algorithm which outputs some fixed hypothesis with nonzero probability.
However, the frequency of this hypothesis was typically very small and its loss
was a priori non-zero. (MM22) give a new characterization to Littlestone classes
by identifying them with the classes that can be PEC learned in a stable fashion.
Informally, this means that the learning rule for ℋ stabilizes on some hypothesis
after changing its mind at most 𝐿 times, where 𝐿 is the Littlestone dimension of ℋ
(cf. Definition 6.7.3). Interestingly, (MM22) manage to show that the well-known
Standard Optimal Algorithm (SOA) (Lit88) is a stable PEC learner, using tools
from the theory of universal learning (BHM+21; BHM+22; KVK22; HKMV22).
Moreover, they list various different notions of algorithmic stability and show that
they all have something in common: a class ℋ is learnable by such learners if
and only if its Littlestone dimension is finite. Our main result shows that, indeed,
classes that are learnable by TV indistinguishable learners fall into that category.

2Except maybe for a subset of 𝒳 that has measure zero under the data-generating
distribution.
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6.4 TV Indistinguishability and Replicability
Our information-theoretic definition of TV indistinguishability seems to put

weaker restrictions on learning rules than the notion of replicability in two ways:
(i) it allows for arbitrary couplings between the two executions of the algorithm
(recall the coupling definition of TV distance, see Eq.(1.1)), and, (ii) it allows for
different couplings between every pair of datasets 𝑆, 𝑆′ (the optimal coupling in
the definition of TV distance will depend on 𝑆, 𝑆′ of Definition 6.1.3). In short,
our definition allows for arbitrary data-dependent couplings, instead of just sharing
the randomness across two executions. TV indistinguishability can be viewed as
a statistical generalization of replicability (cf. Definition 6.1.1) since it describes a
property of learning rules rather than learning algorithms.

In this section, we will show that TV indistinguishability and replicability are
(perhaps surprisingly) equivalent in a rather strong sense: under a mild measure-
theoretic condition, every TV indistinguishable algorithm can be converted into an
equivalent replicable one by re-interpreting its internal randomness. This will be
made formal shortly.

We start by showing that any replicable algorithm is TV indistinguishable.

Theorem 6.4.1 (Replicability⇒ TV Indistinguishability). If a learning rule 𝐴 is
𝑛-sample 𝜌-replicable, then it is also 𝑛-sample 𝜌-TV indistinguishable.

Proof. Fix some distribution 𝒟 over inputs. Let 𝐴 be 𝑛-sample 𝜌-replicable with
respect to 𝒟. For the random variables 𝐴(𝑆), 𝐴(𝑆′) where 𝑆, 𝑆′ ∼ 𝒟𝑛 are two
independent samples and using Eq.(1.1), we have

E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆), 𝐴(𝑆′))] = E
𝑆,𝑆′∼𝒟𝑛

[︂
inf

(ℎ,ℎ′)∼Π(𝐴(𝑆),𝐴(𝑆′))
Pr[ℎ ̸= ℎ′]

]︂
. (6.1)

Let ℛ be the source of randomness that 𝐴 uses. The expected optimal coupling of
Eq.(6.1) is at most E𝑆,𝑆′∼𝒟𝑛 [Pr𝑟∼ℛ[𝐴(𝑆, 𝑟) ̸= 𝐴(𝑆′, 𝑟)]]. This inequality follows
from the fact that using shared randomness between the two executions of 𝐴 is
a particular way to couple the two random variables. To complete the proof, it
suffices to notice that this upper bound is equal to

Pr
𝑆,𝑆′∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) ̸= 𝐴(𝑆′, 𝑟)] ≤ 𝜌 .

The last inequality follows since 𝐴 is 𝜌-replicable.

We now deal with the opposite direction, i.e., we show that TV indistinguisha-
bility implies replicability. In order to be formal, we need to discuss some measure
theoretic properties first. Let us recall the definition of absolute continuity for two
measures.

Definition 6.4.2 (Absolute Continuity). Consider two measures 𝑃,𝑄 on a 𝜎-
algebra ℬ of subsets of Ω. We say that 𝑃 is absolutely continuous with respect to
𝑄 if for any 𝐸 ∈ ℬ such that 𝑄(𝐸) = 0, it holds that 𝑃 (𝐸) = 0.
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Since the learning rules induce posterior distributions over hypotheses, this
definition extends naturally to such rules.

Definition 6.4.3. Given learning rule 𝐴, distribution over inputs 𝒟 and reference
probability measure 𝒫, we say that 𝐴 is absolutely continuous with respect to 𝒫 on
inputs from 𝒟 if, for almost every sample 𝑆 drawn from 𝒟, the posterior distribution
𝐴(𝑆) is absolutely continuous with respect to 𝒫.

In the previous definition, we fixed the data-generating distribution 𝒟. We
next consider its distribution-free version.

Definition 6.4.4. Given learning rule 𝐴 and reference probability measure 𝒫, we
say that 𝐴 is absolutely continuous with respect to 𝒫 if, for any distribution over
inputs 𝒟, 𝐴 is absolutely continuous with respect to 𝒫 on inputs from 𝒟.

If 𝒳 is finite, then one can take 𝒫 to be the uniform probability measure over
{0, 1}𝒳 and any learning rule is absolutely continuous with respect to 𝒫. We now
show how we can find such a prior 𝒫 in the case where 𝒳 is countable.

Claim 19 (Reference Probability Measure for Countable Domains). Let 𝒳 be a
countable domain and 𝐴 be a learning rule. Then, there is a reference probability
measure 𝒫 such that 𝐴 is absolutely continuous with respect to 𝒫.

Proof. Since 𝒳 is countable, for a fixed 𝑛, we can consider an enumeration of all
the 𝑛-tuples {𝑆𝑖}𝑖∈N. Then, we can take 𝒫 to be a countable mixture of these
probability measures, i.e., 𝒫 =

∑︀∞
𝑖=1

1
2𝑖
𝐴(𝑆𝑖). Notice that since, each 𝐴(𝑆𝑖) is a

measure and 1/2𝑖 > 0 for 𝑖 ∈ N, and,
∑︀∞

𝑖=1 1/2
𝑖 = 1, we have that 𝒫 is indeed

a probability measure. We now argue that each 𝐴(𝑆𝑖) is absolutely continuous
with respect to 𝒫. Assume towards contradiction that this is not the case and let
𝐸 ∈ ℬ be a set such that 𝒫(𝐸) = 0 but 𝐴(𝑆𝑗)(𝐸) ̸= 0, for some 𝑗 ∈ N. Notice that
𝐴(𝑆𝑗) appears with coefficient 1/2𝑗 > 0 in the mixture that we consider, hence if
𝐴(𝑆𝑗)(𝐸) > 0 =⇒ 1/2𝑗𝐴(𝑆𝑗)(𝐸) > 0. Moreover 𝐴(𝑆𝑖)(𝐸) ≥ 0, ∀𝑖 ∈ N, which
means that 𝒫(𝐸) > 0, so we get a contradiction.

We next define when two learning rules 𝐴,𝐴′ are equivalent.

Definition 6.4.5 (Equivalent Learning Rules). Two learning rules 𝐴,𝐴′ are equiv-
alent if for every sample 𝑆 it holds that 𝐴(𝑆) = 𝐴′(𝑆), i.e., for the same input they
induce the same distribution over hypotheses.

In the next result, we show that for every TV indistinguishable algorithm 𝐴,
that is absolutely continuous with respect to some reference probability measure
𝒫, there exists an equivalent learning rule which is replicable.

Theorem 6.4.6 (TV Indistinguishability ⇒ Replicability). Let 𝒫 be a reference
probability measure over {0, 1}𝒳 , and let 𝐴 be a learning rule that is 𝑛-sample 𝜌-TV
indistinguishable and absolutely continuous with respect to 𝒫. Then, there exists
an equivalent learning rule 𝐴′ that is 𝑛-sample 2𝜌

1+𝜌 -replicable.
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In this section, we only provide a sketch of the proof and we refer the reader to
Section 6.9.1 for the complete one. Let us first state how we can use the previous
result when 𝒳 is countable.

Corollary 6.4.7. Let 𝒳 be a countable domain and let 𝐴 be a learning rule that
is 𝑛-sample 𝜌-TV indistinguishable. Then, there exists an equivalent learning rule
𝐴′ that is 𝑛-sample 2𝜌

1+𝜌 -replicable.

The proof of this result follows immediately from Claim 19 and Theorem 6.4.6.

Proof Sketch of Theorem 6.4.6. Let us consider a learning rule 𝐴 satisfying
the conditions of Theorem 6.4.6. Fix a distribution 𝒟 over inputs. The crux of the
proof is that given two random variables 𝑋,𝑌 whose TV distance is bounded by 𝜌,
we can couple them using only a carefully designed source of shared randomness ℛ
so that the probability that the realizations of these random variables differ is at
most 2𝜌/(1+𝜌). We can instantiate this observation with 𝑋 = 𝐴(𝑆) and 𝑌 = 𝐴(𝑆′).
Crucially, in the countable 𝒳 setting, we can pick the shared randomnessℛ in a way
that only depends on the learning rule 𝐴, but not on 𝑆 or 𝑆′. Let us now describe
how this coupling works. Essentially, it can be thought of as a generalization
of the von Neumann rejection-based sampling which does not necessarily require
that the distribution has bounded density. Following (AS19), we pick ℛ to be a
Poisson point process which generates points of the form (ℎ, 𝑦, 𝑡) with intensity3

𝒫 × Leb× Leb, where 𝒫 is a reference probability measure with respect to which
𝐴 is absolutely continuous and Leb is the Lebesgue measure over R+. Intuitively,
ℎ ∼ 𝒫 lies in the hypotheses’ space, 𝑦 is a non-negative real value and 𝑡 corresponds
to a time value. The coupling mechanism performs rejection sampling for each
distribution we would like to couple (here 𝐴(𝑆) and 𝐴(𝑆′)): it checks (in the
ordering indicated by the time parameter) for each point (ℎ, 𝑦, 𝑡) whether 𝑓(ℎ) > 𝑦
(i.e., if 𝑦 falls below the density curve 𝑓 at ℎ) and accepts the first point that
satisfies this condition. In the formal proof, there will be two density functions;
𝑓 (resp. 𝑓 ′) for the density function of 𝐴(𝑆) (resp. 𝐴(𝑆′)). We also refer to
Figure 6.1. One can show (see Theorem 6.7.13) that ℛ gives rise to a coupling
between 𝐴(𝑆) and 𝐴(𝑆′) under the condition that both measures are absolutely
continuous with respect to the reference probability measure 𝒫.

This coupling technique appears in (AS19). We can then apply it and get

Pr
𝑟∼ℛ

[𝐴(𝑆, 𝑟) ̸= 𝐴(𝑆′, 𝑟)] ≤ 2𝑑TV(𝐴(𝑆), 𝐴(𝑆′))

1 + 𝑑TV(𝐴(𝑆), 𝐴(𝑆′))
.

Taking the expectation with respect to the draws of 𝑆, 𝑆′, we show (after some
algebraic manipulations) that Pr𝑆,𝑆′∼𝒟𝑛𝑟∼ℛ[𝐴(𝑆, 𝑟) ̸= 𝐴(𝑆′, 𝑟)] ≤ 2𝜌/(1 + 𝜌). We
conclude this section with the following remarks.

3Roughly speaking, a point process is a (general) Poisson point process with intensity
𝜆 if (i) the number of points in a bounded Borel set 𝐸 is a Poisson random variable with
mean 𝜆(𝐸) and (ii) the numbers of points in 𝑛 disjoint Borel sets forms 𝑛 independent
random variables. For further details, we refer to (LP17a).
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Figure 6.1: Our goal is to couple 𝐴(𝑆) with 𝐴(𝑆 ′), where these two distri-
butions are absolutely continuous with respect to the reference probability
measure 𝒫 . A sequence of points of the form (ℎ, 𝑦, 𝑡) is generated by the
Poisson point process with intensity 𝒫 ×Leb×Leb where ℎ ∼ 𝒫 , (𝑦, 𝑡) ∈ R2

+

and Leb is the Lebesgue measure over R+ (note that we do not have upper
bounds for the densities). Intuitively, ℎ lies in the hypotheses’ space, 𝑦 is
a non-negative real value and 𝑡 corresponds to a time value. Let 𝑓 be the
Radon-Nikodym derivate of 𝐴(𝑆) with respect to 𝒫 . We assign the first
(the one with minimum 𝑡) value ℎ to 𝐴(𝑆) that satisfies the property that
𝑓(ℎ) > 𝑦, i.e., 𝑦 falls below the density curve of 𝐴(𝑆). We assign a hypothe-
sis to 𝐴(𝑆 ′) in a similar manner. This procedure defines a data-independent
way to couple the two random variables and naturally extends to multiple
ones. In the figure’s example, we set 𝐴(𝑆) = ℎ2 and 𝐴(𝑆 ′) = ℎ4 given that
𝑡1 < 𝑡2 < 𝑡3 < 𝑡4.

Remark 7 (General Equivalence). In Section 6.9.2, we discuss how the above
equivalence actually holds for general statistical tasks beyond binary classification.
We first generalize the notions of indistinguishability, replicability and TV indis-
tinguishability for general input spaces ℐ and output spaces 𝒪. We then discuss
that replicability and TV indistinguishability remain equivalent (under the same
measure theoretic conditions) in these more general abstract learning scenarios.

Remark 8 (Implementation of the Coupling). We note that, in order to implement
algorithm 𝐴′ of Theorem 6.4.6, we need sample access to a Poisson point process
with intensity 𝒫 × Leb × Leb, where 𝒫 is the reference probability measure from
Claim 19 and Leb is the Lebesgue measure over R+. Importantly, 𝒫 depends only
on 𝐴. Moreover, we need full access to the values of the density 𝑓𝑖 of the distribution
𝐴(𝑆𝑖) with respect to the reference probability measure 𝒫, for any sample 𝑆𝑖. We
underline that these quantities do not depend on the data-generating distribution 𝒟
(since we iterate over any possible sample).
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Remark 9 (TV Indistinguishability vs. Replicability). Notice that in the definition
of replicability (cf. Definition 6.1.1) the source of randomness ℛ needs to be spec-
ified and by changing it we can observe different behaviors for coupled executions
of the algorithm. On the other hand, the definition of TV indistinguishability (cf.
Definition 6.1.3) does not require the specification of ℛ as it states a property of
the posterior distribution of the learning rule.

6.5 TV Indistinguishability and Differential Pri-
vacy

In this section we investigate the connections between TV indistinguishability
and approximate DP in binary classification. Consider a hypothesis class ℋ ⊆
{0, 1}𝒳 . We will say that ℋ is learnable by a 𝜌-TV indistinguishable learning rule
𝐴 if this rule satisfies the notion of learnability under the standard realizable PAC
learning model and is 𝜌-TV indistinguishable (see Definition 6.7.5).

The main result of this section is an equivalence between approximate DP and
TV indistinguishability for countable domains 𝒳 , in the context of PAC learning.
We remark that the equivalence of differential privacy with the notion of replicabil-
ity is formally stated for finite outcome spaces (i.e., under the assumption that 𝒳
is finite) due to the use of a specific correlated sampling strategy for the direction
that “DP implies replicability” in the context of classification (GKM21). Moreover,
(BGH+23) gave a constructive way to transform a DP algorithm to a replicable
one for general statistical tasks and for finite domains. Thus, combining our results
in Section 6.4 and the result of (GKM21; ILPS22; BGH+23), the equivalence of
TV indistinguishability and DP for finite domains is immediate. We will elaborate
more on the differences of our approach and (GKM21; BGH+23) later on. We also
discuss our coupling and correlated sampling in Section 6.7.4.

Recall that a learner is (𝛼, 𝛽)-accurate if its misclassification probability is at
most 𝛼 with probability at least 1− 𝛽.

Theorem 6.5.1 ((𝜖, 𝛿)-DP ⇒ TV Indistinguishability). Let 𝒳 be a (possibly infi-
nite) domain and ℋ ⊆ {0, 1}𝒳 . Let 𝛾 ∈ (0, 1/2), 𝛼, 𝛽, 𝜌 ∈ (0, 1)3. Assume that
ℋ is learnable by an 𝑛-sample (1/2 − 𝛾, 1/2 − 𝛾)-accurate (0.1, 1/(𝑛2 log(𝑛)))-
differentially private learner. Then, it is also learnable by an (𝛼, 𝛽)-accurate 𝜌-TV
indistinguishable learning rule.

Proof Sketch of Theorem 6.5.1. The proof goes through the notion of
global stability (cf. Definition 6.7.8). The existence of an (𝜖, 𝛿)-DP learner im-
plies that the hypothesis class ℋ has finite Littlestone dimension (ALMM19) (cf.
Theorem 6.10.3). Thus, we know that there exists a 𝜌-globally stable learner for
ℋ (BLM20) (cf. Theorem 6.10.4). The next step is to use the replicable heavy-
hitters algorithm (cf. Algorithm 12, (ILPS22)) with frequency parameter 𝑂(𝜌) and
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replicability parameter 𝑂(𝜌′), where 𝜌′ ∈ (0, 1) is the desired TV indistinguishabil-
ity parameter of the learning rule. The global stability property implies that the
list of heavy-hitters will be non-empty and it will contain at least one hypothesis
with small error rate, with high probability. Finally, since the list of heavy-hitters
is finite and has bounded size, we feed the output into the replicable agnostic
learner (cf. Algorithm 13). Thus, we have designed a replicable learner for ℋ,
and Theorem 6.4.1 shows that this learner is also TV indistinguishable.

The formal proof of Theorem 6.5.1 is deferred to Section 6.10.2. We also in-
clude a result which shows that list-global stability implies TV indistinguishability
for general domains and general statistical tasks, which could be of independent
interest (cf. Proposition 6.10.12).

We proceed to the opposite direction where we provide an algorithm that takes
as input a TV indistinguishable learning rule for ℋ and outputs a learner for ℋ
which is (𝜖, 𝛿)-DP. In this direction countability of 𝒳 is crucial.

Theorem 6.5.2 (TV Indistinguishability ⇒ (𝜖, 𝛿)-DP). Let 𝒳 be a countable do-
main. Assume that ℋ ⊆ {0, 1}𝒳 is learnable by an (𝛼, 𝛽)-accurate 𝜌-TV indis-
tinguishable learner 𝐴, for some 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 1/2), 𝛽 ∈

(︁
0, 1−𝜌

1+𝜌

)︁
. Then,

for any (𝛼′, 𝛽′, 𝜀, 𝛿) ∈ (0, 1)4, it is also learnable by an (𝛼+ 𝛼′, 𝛽′)-accurate (𝜀, 𝛿)-
differentially private learner 𝐴′.

We refer to Section 6.10.4 for the proof. In the above statements, we omit the
details about the sample complexity. We refer to Proposition 6.10.12 and Propo-
sition 6.10.16 for these details. Let us now comment on the differences between
(GKM21; BGH+23) which establish a transformation from a replicable learner to
an approximately DP learner and our result. The high-level idea to obtain both
of these results is similar. Essentially, the proof of (GKM21; BGH+23) can be
viewed as a coupling between sufficiently many posteriors of the replicable learn-
ing rule using shared randomness in order to achieve this coupling. In our proof,
instead of using shared randomness we use the reference measure we described
in previous sections to achieve this coupling. We remark that we could have ob-
tained the same qualitative result, i.e., that TV indistinguishability implies ap-
proximate DP, by using the transformation from replicability to approximate DP
of (GGKM21; BGH+23) in a black-box manner along with our result that TV
indistinguishability implies replicability (cf. Theorem 6.4.6). However, this leads
to worse guarantees in terms of the range of the parameters 𝛼, 𝛽, 𝛿, 𝜖, 𝜌 than the
ones stated in Theorem 6.5.2. Thus, we have chosen to do a more careful analysis
based on the coupling we proposed that leads to a stronger quantitative result.
More concretely, the proof in (GKM21; BGH+23) starts by sampling many ran-
dom strings independently of the dataset {𝑆𝑖}𝑖∈[𝑘] and considers many executions
of the algorithm using the same random strings but different data. In our algorithm
we first sample the sets {𝑆𝑖}𝑖∈[𝑘] and then we consider an optimal coupling along
the {𝐴(𝑆𝑖)}𝑖∈[𝑘] which is also independent of the dataset, thus it satisfies the DP
requirements. Moreover, our procedure covers a wider range of parameters 𝛼, 𝛽, 𝜌
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compared to (GKM21). The reason we need countability of 𝒳 is because it allows
us to design a data-independent reference probability measure 𝒫, the same one as
in Claim 19. Then, using this reference probability measure for the coupling helps
us establish the DP properties. Nevertheless, we propose a simple change to our
approach which we conjecture applies to general domains 𝒳 and we leave it open as
an interesting future direction. For a more detailed discussion, we refer the reader
to Section 6.10.5.

Interestingly, we underline that, as is shown in (GKM21; BGH+23) and as
opposed to Theorem 6.5.2, replicability implies DP in general spaces (cf. Theo-
rem 6.10.5).

We conclude this section by stating a general equivalence between (𝜖, 𝛿)-DP
and replicability for PAC learning, that follows from the previous discussion, in
particular by combining Theorem 6.10.5 (GKM21; BGH+23), and Lemma 6.10.8.

Theorem 6.5.3 (Replicability ⇐⇒ Differential Privacy in PAC Learning). Let 𝒳
be a (possibly infinite) domain and let ℋ ⊆ {0, 1}𝒳 . Then, ℋ is replicably learnable
if and only if it is approximately-DP learnable.

Remark 10 (Dependence on the Parameters). In the case of TV indistinguisha-
bility ⇒ DP, the blowup in the sample complexity is stated explicitly in Proposi-
tion 6.10.16.

For the direction DP ⇒ TV indistinguishability it is a bit trickier to state the
exact sample complexity blow-up because we do not make explicit use of the DP
learner. Instead, we use the fact that the existence of a non-trivial DP learner im-
plies that the class has finite Littlestone dimension and then we use an appropriate
algorithm that is known to work for such classes. In this case, it suffices to let the
parameters of the DP learner to be 𝜖 ∈ (0, 0.1), 𝛿 ∈

(︁
0, 1

𝑛2 log(𝑛)

)︁
, 𝛼 ∈ (0, 1/2), 𝛽 ∈

(0, 1/2) and the parameters of the desired TV indistinguishable (𝛼′, 𝛽′)-accurate
learner are unconstrained, i.e., 𝜌 ∈ (0, 1), 𝛼′ ∈ (0, 1), 𝛽′ ∈ (0, 1). If we denote the
Littlestone dimension of the class by 𝐿, then, as shown in Proposition 6.10.12 the
sample complexity of the TV indistinguishable learner is poly(𝐿, 1/𝜌, 1/𝛼′, log(1/𝛽′))4.

Remark 11 (Beyond Binary Classification). The only transformation that is re-
stricted to binary classification is the one from DP to TV indistinguishability. All
the other transformations, (and the boosting algorithms that we present in the up-
coming section), extend to general statistical tasks. Let us now shortly discuss
how to extend our result e.g., to the multi-class setting, using results from the pri-
vate multiclass learning literature (JKT20; SBG21). (JKT20) showed that private
multiclass learnability implies finite multiclass Littlestone dimension and (SBG21)
showed how to extend the binary list-globally stable learner that we use to the mul-
ticlass setting. Using these two main ingredients, the rest of our approach for the

4This holds under the (standard) assumption that uniform convergence holds for Lit-
tlestone classes. If this is not the case, we get poly(22

𝐿

, 1/𝜌, 1/𝛼′, log(1/𝛽′)) sample com-
plexity (Corollary 6.10.9).
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binary classification setting should extend to the multiclass setting. The extension
to the regression problem seems to be more challenging. Even though (JKT20)
showed that private regression implies finiteness of some appropriate Littlestone
dimension, it is not clear yet how to derive a (list-)globally stable algorithm for this
problem.

6.6 Amplifying and Boosting TV Indistinguish-
able Algorithms

In this section we study the following fundamental question.

Question 3. Consider a weak TV indistinguishable learning rule both in terms
of the indistinguishability parameter and the accuracy. Is it possible to amplify its
indistinguishability and to boost its accuracy?

For instance, in the context of approximate differential privacy, a series of works
has lead to (constructive) algorithms that boost the accuracy and amplify the
privacy guarantees (e.g., (DRV10; BLM20; BGH+23)). This result builds upon the
equivalence of online learnability and approximate differential privacy. Our result
relating DP to TV indistinguishability implies the following existential result.

Corollary 6.6.1. Let 𝒳 be a countable domain. Suppose that for some sample
size 𝑛0, there exists an (𝛼0, 𝛽0)-accurate 𝜌0-TV indistinguishable learner 𝐴 for a
class ℋ ⊆ {0, 1}𝒳 with 𝛼0 ∈ (0, 1/2), 𝜌0 ∈ (0, 1), 𝛽0 ∈

(︁
0, 1−𝜌0

1+𝜌0

)︁
. Then, for any

(𝛼, 𝛽, 𝜌) ∈ (0, 1)3, ℋ admits an (𝛼, 𝛽)-accurate 𝜌-TV indistinguishable learner 𝐴′.

This result relies on connections between learnability by TV indistinguishable
learners and finiteness of the Littlestone dimension of the underlying hypothesis
class that were discussed in Section 6.5. In particular, Corollary 6.10.17 shows that
the existence of such a non-trivial TV indistinguishable learner implies that the ℋ
has finite Littlestone dimension, and Proposition 6.10.12, states that the finiteness
of the Littlestone dimension of ℋ implies the existence of an (𝛼, 𝛽)-accurate 𝜌-TV
indistinguishable learner, for arbitrarily small choices of 𝛼, 𝛽, 𝜌. It is not hard to
see that we need to constrain 𝛼 ∈ (0, 1/2), because the algorithm needs to have
an advantage compared to the random classifier. Moreover, it should be the case
that 𝛽 ∈ (0, 1 − 𝜌). If 𝛽 ≥ 1 − 𝜌 then the algorithm which outputs a constant
classifier with probability 𝛽 and an 𝛼-good one with the remaining probability
is 𝜌-TV indistinguishable and (𝛼, 𝛽)-accurate. An interesting open problem is to
investigate what happens when 𝛽 ∈

(︁
1−𝜌
1+𝜌 , 1− 𝜌

)︁
.

We underline that Corollary 6.6.1 is existential and does not make actual use of
the weak TV indistinguishable learner that is given as input. Hence, it is natural
to try to come up with sample-efficient and constructive approaches that utilize
the weak learner through black-box oracle calls to it during the derivation of the
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strong one. In what follows, we aim to design such algorithms. We remind the
reader that if we constrain ourselves to work in the setting where 𝒳 is countable,
then the absolute continuity requirement in the next theorems comes immediately,
due to Claim 19.

Indistinguishability Amplification. We first consider the amplification of
the indistinguishability guarantees of an algorithm. An important ingredient of
our approach is a replicable algorithm for finding heavy hitters of a distribution,
i.e., elements whose frequency is above some given threshold. This algorithm has
appeared in (GKM21; ILPS22). However, the dependence of the number of samples
in the confidence parameter in these works is polynomial. We present a new variant
of this algorithm that has polylogarithmic dependence on the confidence parameter.
Moreover, using a stronger concentration inequality, we improve the dependence
of the number of samples on the error parameter. We believe that this result
could be of independent interest. We also design an agnostic learner for finite
hypothesis classes. However, the dependence of the number of samples on |ℋ| is
polynomial. We believe that an interesting question is to design agnostic learners
with polylogarithmic dependence on |ℋ|. We refer the reader to Section 6.11.

Theorem 6.6.2 (Indistinguishability Amplification). Let 𝒫 be a reference proba-
bility measure over {0, 1}𝒳 and 𝒟 be a distribution over inputs. Consider the source
of randomness ℛ to be a Poisson point process with intensity 𝒫×Leb×Leb, where
Leb is the Lebesgue measure over R+. Consider a weak learning rule 𝐴 that is (i)
𝜌-TV indistinguishable with respect to 𝒟 for some 𝜌 ∈ (0, 1), (ii) (𝛼, 𝛽)-accurate
for 𝒟 for some (𝛼, 𝛽) ∈ (0, 1)2, such that 𝛽 < 2𝜌

𝜌+1−2
√︁

2𝜌
𝜌+1+1, and, (iii) absolutely

continuous with respect to 𝒫 on inputs from 𝒟. Then, for any 𝜌′, 𝜖, 𝛽′ ∈ (0, 1)3,
there exists a learner Ampl(𝐴,ℛ, 𝛽′, 𝜖, 𝜌′) that is 𝜌′-TV indistinguishable with re-
spect to 𝒟, and (𝛼+ 𝜖, 𝛽′)-accurate for 𝒟.

We remark that the above result makes strong use of the equivalence between
replicability and TV indistinguishability. Our algorithm is a variant of the ampli-
fication algorithm that appeared in (ILPS22), which (i) works for a wider range of
parameters and (ii) its sample complexity is polylogarithmic in the parameter 𝛽′.

Accuracy Boosting. Next, we design an algorithm that boosts the accuracy of
an 𝑛-sample 𝜌-TV indistinguishable algorithm and preserves its TV indistinguisha-
bility guarantee. Our algorithm is a variant of the boosting mechanism provided
in (ILPS22). Similarly as in the case of amplification, our variant improves upon
the dependence of the number of samples on the parameter 𝛽′.

Theorem 6.6.3 (Accuracy Boosting). Let 𝒫 be a reference probability measure
over {0, 1}𝒳 and 𝒟 be a distribution over inputs. Consider the source of random-
ness ℛ to be a Poisson point process with intensity 𝒫 × Leb × Leb, where Leb is
the Lebesgue measure over R+. Consider a weak learning rule 𝐴 that is (i) 𝜌-TV
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indistinguishable with respect to 𝒟 for some 𝜌 ∈ (0, 1), (ii) (1/2−𝛾, 𝛽)-accurate for
𝒟 for some (𝛾, 𝛽) ∈ (0, 1)2, and, (iii) absolutely continuous with respect to 𝒫 on in-
puts from 𝒟. Then, for any 𝛽′, 𝜖, 𝜌′ ∈ (0, 1)3, there exists a learner Boost(𝐴,ℛ, 𝜖)
that is 𝜌′-TV indistinguishable with respect to 𝒟 and (𝜖, 𝛽′)-accurate for 𝒟.

We can combine the amplification and boosting results for a wide range of
parameters and get the next corollary.

Corollary 6.6.4. Let 𝒳 be a countable domain and 𝐴 be an 𝑛-sample 𝜌-TV in-
distinguishable (𝛼, 𝛽)-accurate algorithm, for some 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 1/2), 𝛽 ∈(︁
0, 2𝜌

𝜌+1 − 2
√︁

2𝜌
𝜌+1 + 1

)︁
. Then, for any 𝜌′, 𝛼′, 𝛽′ ∈ (0, 1)3, there exists a 𝜌′-TV indis-

tinguishable (𝛼′, 𝛽′)-accurate learner 𝐴′ that requires at most 𝑂 (poly (1/𝜌, 1/𝛼′, log(1/𝛽′)) · 𝑛)
samples from 𝒟.

The proof of this result follows immediately from Theorem 6.6.2, Theorem 6.6.3,
and from the fact that we can design the reference probability measure 𝒫 for
countable domains (cf. Claim 19). This result leads to two natural questions:
what is the tightest range of 𝛽 for which we can amplify the stability parameter
𝜌 and under what assumptions can we design such boosting and amplification
algorithms for general domains 𝒳 ? For a more detailed discussion, we refer the
reader to Section 6.11.3, Section 6.11.4.

Remark 12 (Dependence on the Parameters). We underline that the polynomial
dependence on 𝜌 in the boosting result is not an artifact of the algorithmic procedure
or the analysis we provide, but it is rather an inherent obstacle in TV indistin-
guishability. (ILPS22) show that in order to estimate the bias of a coin 𝜌-replicably
with accuracy 𝜏 one needs at least 1/(𝜏2𝜌2) coin tosses. Since 𝜌-TV indistinguisha-
bility implies (2𝜌/(1 + 𝜌))-replicability as we have shown (without any blow-up in
the sample complexity), we also inherit this lower bound. Our main goal behind
the study of the boosting algorithms is to identify the widest range of parameters
𝛼, 𝜌, 𝛽 such that coming up with a 𝜌-TV indistinguishable algorithm switches from
being trivial to being difficult. For example, in PAC learning we know that if the
accuracy parameter is strictly less than 1/2, then there are sample-efficient boosting
algorithms that can drive it down to any 𝜖 > 0. In the setting we are studying, it
is crucial to understand the relationship between 𝛽, 𝜌, see Section 6.11.3.

6.7 Preliminaries and Additional Definitions

6.7.1 Preliminaries
Probability Theory. We first review some standard definitions from proba-
bility theory.
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Definition 6.7.1 (Coupling). A coupling of two probability distributions 𝑃 and 𝑄
is a pair of random variables (𝑋,𝑌 ), defined on the same probability space, such
that the marginal distribution of 𝑋 is 𝑃 and the marginal distribution of 𝑌 is 𝑄.

Definition 6.7.2 (Integral Probability Metric). The Integral Probability Metric
(IPM) between two probability measures 𝑃 and 𝑄 over 𝒪 is defined as

𝑑ℱ ,𝒪(𝑃,𝑄) = sup
𝑓∈ℱ

⃒⃒⃒⃒∫︁
𝒪
𝑓𝑑𝑃 −

∫︁
𝒪
𝑓𝑑𝑄

⃒⃒⃒⃒
= sup

𝑓∈ℱ

⃒⃒⃒⃒
E

𝑥∼𝑃
[𝑓(𝑥)]− E

𝑥∼𝑄
[𝑓(𝑥)]

⃒⃒⃒⃒
,

where ℱ is a set of real-valued bounded functions 𝒪 → R.

IPM distance measures are symmetric and non-negative. Note that the KL-
divergence is not a special case of IPM, rather it belongs to the family of 𝑓 -
divergences, that intersect with IPM only at the TV distance. Such measures were
recently used in order to derive PAC-Bayes style generalization bounds (AEMM22).
The definition of an 𝑓 -divergence will not be useful in this chapter and we refer
the interested reader to e.g., (SV16).

Learning Theory. We next review some standard definitions in statistical
learning theory. We start with the definition of the Littlestone dimension (Lit88).

Definition 6.7.3 (Littlestone Dimension (Lit88)). Consider a complete binary tree
𝑇 of depth 𝑑+1 whose internal nodes are labeled by points in 𝒳 and edges by {0, 1},
when they connect the parent to the right, left child, respectively. We say that ℋ ⊆
{0, 1}𝒳 Littlestone-shatters 𝑇 if for every root-to-leaf path 𝑥1, 𝑦1, . . . , 𝑥𝑑, 𝑦𝑑, 𝑥𝑑+1

there exists some ℎ ∈ ℋ such that ℎ(𝑥𝑖) = 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑑. The Littlestone dimension
is denoted by Ldim(ℋ) is defined to be the largest 𝑑 such that ℋ Littlestone-shatters
such a binary tree of depth 𝑑 + 1. If this happens for every 𝑑 ∈ N we say that
Ldim(ℋ) =∞.

We work under the well-known PAC learning model that was introduced in
(Val84). Let us denote the misclassification probability of a classifier ℎ by err𝒟(ℎ) =
Pr(𝑥,𝑦)∼𝒟[ℎ(𝑥) ̸= 𝑦]. Also, we say that 𝒟 is realizable with respect to ℋ if there
exists some ℎ* ∈ ℋ such that err𝒟(ℎ

*) = 0. Below, we slightly abuse notation and
use the misclassification probability for distributions over classifiers.

Definition 6.7.4 (PAC Learnability (Val84; SSBD14)). An algorithm 𝐴 is 𝑛-
sample (𝛼, 𝛽)-accurate for a hypothesis class ℋ ⊆ {0, 1}𝒳 if, for any realizable
distribution 𝒟, it holds that Pr𝑆∼𝒟𝑛 [err𝒟(𝐴(𝑆)) > 𝛼] ≤ 𝛽 . A hypothesis class ℋ
is PAC learnable if, for any 𝛼, 𝛽 ∈ (0, 1)2, there exist some 𝑛0(𝛼, 𝛽) ∈ N and an
algorithm 𝐴 such that 𝐴 is 𝑛-sample (𝛼, 𝛽)-accurate for ℋ, for any 𝑛 ≥ 𝑛0(𝛼, 𝛽).

For the purposes of this work, an algorithm 𝐴 should be thought of as a mapping
from samples to a distribution over hypotheses. We want to design algorithms that
satisfy two desiderata: they are PAC learners for some given hypothesis classℋ and
they are total variation indistinguishable. In particular, we consider the following
learning setting combining Definition 6.1.3 and 6.7.4.
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Definition 6.7.5 (Realizable Learnability by TV Indistinguishable Learner). An
algorithm 𝐴 is 𝑛-sample (𝛼, 𝛽)-accurate 𝜌-TV indistinguishable for a hypothesis
class ℋ ⊆ {0, 1}𝒳 if, for any realizable distribution 𝒟, it holds that (𝑖) 𝐴 is 𝑛-sample
𝜌-TV indistinguishable and (𝑖𝑖) Pr𝑆∼𝒟𝑛 [err𝒟(𝐴(𝑆)) > 𝛼] ≤ 𝛽. A hypothesis class
ℋ is learnable by a TV indistinguishable algorithm if, for any 𝛼, 𝛽, 𝜌 ∈ (0, 1), there
exist some 𝑛0(𝛼, 𝛽, 𝜌) ∈ N and an algorithm 𝐴 such that 𝐴 is 𝑛-sample (𝛼, 𝛽)-
accurate 𝜌-TV indistinguishable for ℋ for any 𝑛 ≥ 𝑛0(𝛼, 𝛽, 𝜌).

In the above definition, 𝑛 depends on 𝛼, 𝛽, 𝜌 (and ℋ), but not on the distribu-
tion.

Definition 6.7.6 (Uniform Convergence Property). We say that a domain 𝒳 and
a class ℋ ⊆ {0, 1}𝒳 satisfy the uniform convergence property if there exists a
function 𝑚UC : (0, 1)2 → N such that for any 𝜖, 𝛿 ∈ (0, 1), and for every distribution
𝒟 over 𝒳 × {0, 1} it holds that if 𝑆 ∼ 𝒟𝑚 and 𝑚 ≥ 𝑚UC(𝜖, 𝛿), it holds that
supℎ∈ℋ |𝐿𝑆(ℎ) − 𝐿𝒟(ℎ)| ≤ 𝜖, with probability at least 1 − 𝛿, where 𝐿𝑆 (resp. 𝐿𝒟)
is the empirical (resp. population) loss.

The fundamental theorem of learning theory (VC15; BEHW89) states that the
uniform convergence property is equivalent to the finiteness of the VC dimension
of ℋ. However, one needs to make some (standard) measurability assumptions on
𝒳 ,ℋ to rule out pathological cases. For instance, it is known that there classes
with VC dimension 1 where uniform convergence does not hold (BD15)5. It is
known that when ℋ is countable and has finite VC dimension uniform convergence
holds (BM02).

6.7.2 General Definition of Indistinguishability
While in the main body of the paper, we focused on binary classification, (most

of) our proofs extend to general learning problems and so we first present a general
abstract framework.

For general learning tasks, we can view learning rules (or algorithms) as ran-
domized mappings 𝐴 : ℐ → Δ𝒪 which take as input instances from a domain ℐ
and map them to an element of the output space 𝒪. We assume that there is a
distribution 𝜇 on ℐ that generates instances.

A second way to view the learning algorithm is via the mapping 𝐴 : ℐ ×
ℛ → 𝒪. Then 𝐴 takes as input an instance 𝐼 ∼ 𝜇 and a random string 𝑟 ∼ ℛ
(we use ℛ for both the probability space and the distribution) corresponding to
the algorithm’s internal randomness and outputs 𝐴(𝐼, 𝑟) ∈ 𝒪. Thus, 𝐴(𝐼) is a
distribution over 𝒪 whose randomness comes from the random variable 𝑟, while
𝐴(𝐼, 𝑟) is a deterministic object.

The space Δ𝒪 is endowed with some statistical dissimilarity measure.

5We note that the proof of the existence of such a class holds under the continuum
hypothesis.
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Definition 6.7.7 (Indistinguishability). Let ℐ be an input space, 𝒪 be an output
space and 𝑑 be some statistical dissimilarity measure. A learning rule 𝐴 satisfies
𝜌-indistinguishability with respect to 𝑑 if for any distribution 𝜇 over ℐ and two
independent instances 𝐼, 𝐼 ′ ∼ 𝜇, it holds that

E
𝐼,𝐼′∼𝜇

[𝑑
(︀
𝐴(𝐼), 𝐴(𝐼 ′)

)︀
] ≤ 𝜌 .

To illustrate the generality of our definition, we now show how we can instan-
tiate ℐ,𝒪, 𝜇, 𝑑 to recover other definitions about stability of learning algorithms
appearing in prior work.

Global Stability. Global stability (BLM20) is a fundamental property of learn-
ing algorithms that was recently used to establish an equivalence between online
learnability and approximate differential privacy in binary classification. We show
how we can recover the definition of global stability. Let us first recall the definition.

Definition 6.7.8 (Global Stability (BLM20)). Let ℛ be a distribution over random
strings. A learning rule A is 𝑛-sample 𝜂-globally stable if for any distribution 𝒟
there exists a hypothesis ℎ𝒟 such that

Pr
𝑆∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) = ℎ𝒟] ≥ 𝜂 .

In order to recover Definition 6.7.8 using Definition 6.7.7 we let (𝑆, 𝑟) ∈ ℐ, 𝜇 =
𝒟𝑛 ×ℛ and 𝑑(𝐴(𝐼, 𝑟), 𝐴(𝐼 ′, 𝑟′)) = 1𝐴(𝐼,𝑟)̸=𝐴(𝐼′,𝑟′). Thus, we have that

E
𝑆,𝑆′∼𝒟𝑛,𝑟,𝑟′∼ℛ

[1𝐴(𝑆,𝑟)̸=𝐴(𝑆′,𝑟′)] ≤ 𝜌 =⇒

Pr
𝑆,𝑆′∼𝒟𝑛,𝑟,𝑟′∼ℛ

[𝐴(𝑆, 𝑟) ̸= 𝐴(𝑆′, 𝑟′)] ≤ 𝜌.

Notice that this gives us a two-sided version of the definition of global-stability.
So far we have established that Pr𝑆,𝑆′∼𝜇,𝑟,𝑟′∼ℛ[𝐴(𝑆, 𝑟) = 𝐴(𝑆′, 𝑟′)] ≥ 1 − 𝜌 > 0.
Since two independent draws of the random variable 𝐴(𝑆, 𝑟) are the same with
non-zero probability it means that it must have point masses. Moreover, there are
countably many such point masses. Letℋ𝑚 = {ℎ ∈ ℋ : Pr𝑆∼𝒟𝑛,𝑟∼ℛ[𝐴(𝑆, 𝑟) = ℎ]}.
Then,

Pr
𝑆,𝑆′∼𝜇,𝑟,𝑟′∼ℛ

[𝐴(𝑆, 𝑟) = 𝐴(𝑆′, 𝑟′)] =
∑︁

ℎ∈ℋ𝑚

(︂
Pr

𝑆∼𝒟𝑛,𝑟∼ℛ
[𝐴(𝑆, 𝑟) = ℎ]

)︂2

≤ max
ℎ∈ℋ𝑚

Pr
𝑆∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) = ℎ] ·
∑︁

ℎ∈ℋ𝑚

Pr
𝑆∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) = ℎ]

≤ max
ℎ∈ℋ𝑚

Pr
𝑆∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) = ℎ]

= max
ℎ∈ℋ

Pr
𝑆∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) = ℎ]

Thus, by chaining the two inequalities we have established, we get that maxℎ∈ℋ𝑚 Pr𝑆∼𝒟𝑛,𝑟∼ℛ[𝐴(𝑆, 𝑟) =
ℎ] ≥ 1− 𝜌, so the algorithm 𝐴 satisfies the notion of global stability.
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6.7.3 Alternative Definitions of TV Indistinguishability
We now discuss alternative ways to define TV indistinguishability.

TV Indistinguishability with Fixed Prior

First, observe that the definition we propose is two-sided in the sense that we
require drawing two sets of i.i.d. samples. A different way to view TV indistin-
guishability is by requiring that the output of the algorithm is close, in TV distance,
to some prior distribution, which depends on the data-generating process 𝒟 but is
independent of the sample. Notice that we could introduce a similar one-sided gen-
eral definition as a second viewpoint of Definition 1.4.6 (named Indistinguishability
with Fixed Prior).

Definition 6.7.9 (TV Indistinguishability with Fixed Prior). A learning rule 𝐴 is
𝑛-sample 𝜌-fixed prior TV indistinguishable if for any distribution over inputs 𝒟,
there exists some prior 𝒫𝒟 such that for 𝑆 ∼ 𝒟𝑛 it holds that

E
𝑆∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟)] ≤ 𝜌 .

Notice that, using the triangle inequality, we can see that this definition is
equivalent to Definition 6.1.3, up to a factor of 2. Formally, we have the following
result.

Lemma 6.7.10. If 𝐴 is 𝜌-TV indistinguishable then it is 𝜌-fixed prior TV indistin-
guishable. Conversely, if 𝐴 is 𝜌-fixed prior TV indistinguishable then it is 2𝜌-TV
indistinguishable.

We remark that if 𝐴 is TV indistinguishable with respect to a distribution over
inputs 𝒟, one can show that it is also fixed prior TV indistinguishable with respect
to 𝒟 where the fixed prior is equal to 𝒫𝒟 =

∫︀
𝑆 𝐴(𝑆)𝑑(𝒟𝑛).

Proof. For the first direction, we let 𝒫𝑆,𝑆′ be a distribution with the property
that 𝑑TV(𝐴(𝑆),𝒫𝑆,𝑆′) = 𝑑TV(𝐴(𝑆′),𝒫𝑆,𝑆′) = 𝑑TV(𝐴(𝑆), 𝐴(𝑆′))/2, e.g., 𝒫𝑆,𝑆′ =
1/2 · (𝐴(𝑆) + 𝐴(𝑆′)), for every 𝑆, 𝑆′ ∼ 𝒟𝑛. We now define 𝒫𝒟 to be the average
of 𝒫𝑆,𝑆′ with respect to the measure of the product distribution of 𝑆, 𝑆′. We have
that

𝒫𝒟 =

∫︁
𝑆,𝑆′
𝒟𝑛(𝑆)𝒟𝑛(𝑆′)

𝐴(𝑆) +𝐴(𝑆′)

2
𝑑𝑆𝑑𝑆′

=

∫︁
𝑇

(︂
𝒟𝑛(𝑇 )1{𝑆 = 𝑇}𝐴(𝑇 )

2

(︂∫︁
𝑆′
𝒟𝑛(𝑆′)

)︂
+𝒟𝑛(𝑇 )1{𝑆′ = 𝑇}𝐴(𝑇 )

2

(︂∫︁
𝑆
𝒟𝑛(𝑆)

)︂)︂
𝑑𝑆𝑑𝑆′ =

=

∫︁
𝑇
𝒟𝑛(𝑇 )𝐴(𝑇 )𝑑𝑇 .

This means that E𝑆∼𝒟𝑛 [𝑑TV(𝐴(𝑆),𝒫𝒟)] =
∫︀
𝑆 𝒟

𝑛(𝑆)𝑑TV

(︀
𝐴(𝑆),

∫︀
𝑇 𝒟

𝑛(𝑇 )𝐴(𝑇 )𝑑𝑇
)︀
𝑑𝑆 ≤

𝜌.
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For the converse, notice that

E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆), 𝐴(𝑆′))] ≤ E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟) + 𝑑TV(𝐴(𝑆′),𝒫𝒟)]

= E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟)] + E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆′),𝒫𝒟)]

= 2 E
𝑆∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟)]

≤ 2𝜌.

With High Probability TV Indistinguishability

A different direction in which we can extend the definition of total variation
indistinguishability has to do with replacing the expectation with a high-probability
style of bound. We remark that (ILPS22) provide a similar alternative definition
in the context of their work.

Definition 6.7.11 (High-Probability TV Indistinguishability). A learning rule 𝐴
is 𝑛-sample high-probability (𝜂, 𝜈)-TV indistinguishable if for any distribution 𝒟
there exists some prior 𝒫𝒟 such that

Pr
𝑆∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟) ≤ 𝜂] ≥ 1− 𝜈 .

Notice that in the above definition we have used the fixed prior version of TV
indistinguishability to reduce the number of parameters, but it can also be stated
in its the two-sided version. It is not hard to see that the “in expectation” and
the “with high probability” versions of the definition are qualitatively equivalent.
Moreover, we can establish a quantitative connection as follows.

Lemma 6.7.12. If a learning rule 𝐴 is an 𝑛-sample 𝜌-fixed prior TV indistinguish-
able learner (cf. Definition 6.7.9) then it is an 𝑛-sample high-probability (𝜌/𝜈, 𝜈)-
TV indistinguishable learning rule (cf. Definition 6.7.11), for any 𝜌 ≤ 𝜈 < 1.
Conversely, if a learnigng rule 𝐴 is an 𝑛-sample high-probability (𝜂, 𝜈)-TV indis-
tinguishable learner then it is an 𝑛-sample (𝜂 + 𝜈 − 𝜂 · 𝜈)-fixed prior TV indistin-
guishable learning rule.

Proof. The proof of the first part of claim is a direct consequence of Markov’s
inequality. Notice that 𝑑TV(𝐴(𝑆),𝒫𝒟) is random variable whose expected value is
bounded by 𝜌. Thus, we have that

Pr
𝑆∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟) ≥ 𝜌/𝜈] ≤ 𝜈 .

Hence, we can see that 𝐴 is a high-probability (𝜌/𝜈, 𝜈)-TV indistinguishable learn-
ing rule.
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We now move to the second part of the claim. Let ℰ be the event that
𝑑TV(𝐴(𝑆),𝒫𝒟) ≥ 𝜂. Then, we have that

E
𝑆∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟)] = E
𝑆∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟)|ℰ ]Pr[ℰ ] + E
𝑆∼𝒟𝑛

[𝑑TV(𝐴(𝑆),𝒫𝒟)|ℰ𝑐]Pr[ℰ𝑐]

≤ 1 · 𝜈 + 𝜂 · (1− 𝜈)

= 𝜂 + 𝜈 − 𝜂 · 𝜈.

6.7.4 Coupling and Correlated Sampling
Coupling is a fundamental notion in probability theory with many applications

(LP17b). The correlated sampling problem, which has applications in various do-
mains, e.g., in sketching and approximation algorithms (Bro97; Cha02), is described
in (BGH+16) as follows: Alice and Bob are given probability distributions 𝑃 and
𝑄, respectively, over a finite set Ω. Without any communication, using only shared
randomness as the means to coordinate, Alice is required to output an element 𝑥
distributed according to 𝑃 and Bob is required to output an element 𝑦 distributed
according to 𝑄. Their goal is to minimize the disagreement probability Pr[𝑥 ̸= 𝑦],
which is comparable with 𝑑TV(𝑃,𝑄). Formally, a correlated sampling strategy for
a finite set Ω with error 𝜖 : [0, 1] → [0, 1] is specified by a probability space ℛ
and a pair of functions 𝑓, 𝑔 : ΔΩ ×ℛ → Ω, which are measurable in their second
argument, such that for any pair 𝑃,𝑄 ∈ ΔΩ with 𝑑TV(𝑃,𝑄) ≤ 𝛿, it holds that
(i) the push-forward measure {𝑓(𝑃, 𝑟)}𝑟∼ℛ (resp. {𝑔(𝑄, 𝑟)}𝑟∼ℛ) is 𝑃 (resp. 𝑄)
and (ii) Pr𝑟∼ℛ[𝑓(𝑃, 𝑟) ̸= 𝑔(𝑄, 𝑟)] ≤ 𝜖(𝛿). We underline that a correlated sampling
strategy is not the same as a coupling, in the sense that the latter requires a single
function ℎ : ΔΩ × ΔΩ → ΔΩ×Ω such that for any 𝑃,𝑄, the marginals of ℎ(𝑃,𝑄)
are 𝑃 and 𝑄 respectively. It is known that for any coupling function ℎ, it holds
that Pr(𝑥,𝑦)∼ℎ(𝑃,𝑄)[𝑥 ̸= 𝑦] ≥ 𝑑TV(𝑃,𝑄) and that this bound is attainable. Since
{(𝑓(𝑃, 𝑟), 𝑔(𝑄, 𝑟))}𝑟∼ℛ induces a coupling, it holds that 𝜖(𝛿) ≥ 𝛿 and, perhaps sur-
prisingly, there exists a strategy with 𝜖(𝛿) ≤ 2𝛿

1+𝛿 (Bro97; KT02; Hol07) and this
result is tight (BGH+16). A second difference between coupling and correlated
sampling has to do with the size of Ω: while correlated sampling strategies can
be extended to infinite spaces Ω, it remains open whether there exists a correlated
sampling strategy for general measure spaces (Ω,ℱ , 𝜇) with any non-trivial error
bound (BGH+16). On the other hand, coupling applies to spaces Ω of any size.

(GKM21) studied user-level privacy and introduced the notion of pseudo-global
stability, which is essentially the same as replicability as observed by (ILPS22).
(GKM21) showed that pseudo-global stability is qualitatively equivalent to ap-
proximate differential privacy. Their main technique was the use of correlated
sampling that allowed users to output the same learned hypothesis (stability) em-
ploying shared randomness. We mention that (GKM21) provide their results for
finite outcome space (i.e., 𝒳 is finite and thus ℋ ⊆ {0, 1}𝒳 is too). In particular,
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they need finiteness of the domain in order to apply correlated sampling which is
used during their “DP implies pseudo-global stability” reduction. They mention
that their results can be extended to the case where 𝒳 is infinite and that this does
require non-trivial generalization of tools such as correlated sampling and some
measure-theoretic details to that setting6; we refer to a discussion in Section 5.3 of
(BGH+16) about the assumptions needed in order to achieve correlated sampling
in infinite spaces. Similarly, the last step of the constructive transformation of
a DP algorithm to a replicable one provided in (BGH+23) uses correlated sam-
pling and is hence also given for finite domains. For further comparisons between
our coupling and the correlated sampling problem of (BGH+16), we refer to the
discussion in (AS19) after Corollary 4.

A very useful tool for our derivations is a coupling protocol that can be found
in (AS19).

Theorem 6.7.13 (Pairwise Optimal Coupling (AS19)). Let 𝒮 be any collection of
random variables that are absolutely continuous with respect to a common proba-
bility measure7 𝜇. Then, there exists a coupling of the variables in 𝒮 such that, for
any 𝑋,𝑌 ∈ 𝒮,

Pr[𝑋 ̸= 𝑌 ] ≤ 2𝑑TV(𝑋,𝑌 )

1 + 𝑑TV(𝑋,𝑌 )
.

Moreover, this coupling requires sample access to a Poisson point process with in-
tensity 𝜇×Leb×Leb, where Leb is the Lebesgue measure over R+, and full access
to the densities of all the random variables in 𝒮 with respect to 𝜇.

An intuitive illustration of how it works can be found in Figure 6.1.

6.7.5 Discussion on Definition 6.1.3
We discuss more extensively the TV Indistinguishability definition. One im-

portant motivation for the definition of TV indistinguishability is to show that
replicability can be equivalently defined using the same high-level template like
the well-studied PAC-Bayes framework, where one shows that the outputs of the
algorithms are close, under the KL divergence, with some data-independent priors.
In other words, our results show how to organize and view different well-studied
notions of stability using the same template.

Moreover, an interpretation of the replicability definition is that two executions
of the algorithm over independent datasets should be coupled using just shared
internal randomness. However, this is one of potentially infinite ways to couple

6To be more specific, the proof of Theorem 20 in (GKM21) requires to define the corre-
lated sampling strategy over the space 2𝒳 a priori (independently of the observed samples
and input algorithm). Hence while the strategy is applied to distributions with finite
support, an extension to infinite domain in that proof would require some modifications.

7This result extends to the setting where 𝜇 is a 𝜎-finite measure, but it is not needed
for the purposes of our work.
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the two executions. Our definition, which we find quite natural, captures exactly
this observation and allows for general couplings between two random runs. It is
also worth noting that, to the best of our knowledge, all the notions of algorithmic
stability that have been proposed in the past do not depend on the source of internal
randomness of the algorithm. However, this is not the case with replicability.

Let us now present a concrete algorithm whose stability property is easier to
prove under the new definition. (GKM21) presented a procedure that transforms a
list-globally stable algorithm to a replicable one (Algorithm 1, page 9 in (GKM21)).
Crucially, in the last step of this algorithm the authors use a correlated sampling
procedure to prove the replicability property. This procedure induces a computa-
tional overhead to the overall algorithm, and it is not clear even if it is computable
beyond finite domains. On the other hand, the TV indistinguishability property
is immediate. Thus, the transformation from list-global stability to TV indistin-
guishability is computationally efficient and holds for general domains whereas the
transformation from list-global stability to replicability is not.

To the best of our knowledge, most of the replicable algorithms that have been
developed use their internal randomness over data-independent distributions. To
make this point more clear let us consider the replicable SQ oracle of (ILPS22).
In this work, the authors use randomness over distributions that are independent
of the input sample 𝑆. Thus, no matter how the internal randomness is imple-
mented, when one shares it across two executions the internal random choices of
the algorithm are the same.

However, there are algorithms, like Algorithm 1 in (GKM21), that use internal
randomness over a data-dependent distribution. If the algorithm makes random
choices over data-dependent quantities like in (GKM21), when one shares the ran-
domness across two executions the internal random choices are not necessarily the
same even if the TV distance between the two distributions is small, unless one
specifies carefully the source of internal randomness (i.e., using some coupling).
This can lead to significant computational overhead when the domain is finite,
computability issues when the domain is countable, and for general domains it is
not clear yet that going from TV indistinguishability to replicability is possible.
Hence, one advantage of TV indistinguishability is that it provides a relaxation
over the stronger definition of replicability, which is the notion that our definition
builds upon.

6.8 Useful Replicable Subroutines
In this section we present various replicable subroutines that will be useful in

the derivation of our results.
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6.8.1 Replicability Preliminaries
Recall the Statistical Query (SQ) model that was introduced by (Kea98) and

is a restriction of the PAC learning model, appearing in various learning theory
contexts (BKW03; GHRU11; CKMY20; GGK20; FKKT21). In the SQ model,
the learner interacts with an oracle in the following way: the learner submits
a statistical query to the oracle and the oracle returns its expected value, after
adding some noise to it. More formally, we have the following definition.

Definition 6.8.1 ((Kea98)). Let 𝜏, 𝛿 ∈ (0, 1)2,𝒟 be a distribution over the domain
𝒳 and 𝜑 : 𝒳 → [0, 1] be a query. Let 𝑆 be an i.i.d. sample of size 𝑛 = 𝑛(𝜏, 𝛿).
Then, the statistical query oracle outputs a value 𝑣 such that |𝑣−E𝑥∼𝒟[𝜑(𝑥)]| ≤ 𝜏,
with probability at least 1− 𝛿.

Essentially, using a large enough number of samples, the SQ oracle returns an
approximation of the expected value of a statistical query whose range is bounded.
(ILPS22) provide a replicable implementation of an SQ oracle with a mild blow-up
in the sample complexity.

Theorem 6.8.2 (Replicable SQ Learner (ILPS22)). Let 𝜏, 𝛿, 𝜌 ∈ (0, 1)3, 𝛿 ≤ 𝜌/3,𝒟
be a distribution over some domain 𝒳 , and 𝜑 : 𝒳 → [0, 1] be a query. Let 𝑆 be an
i.i.d. sample of size

𝑛 = 𝑂

(︂
1

𝜏2𝜌2
log(1/𝛿)

)︂
.

Then there exists a 𝜌-replicable SQ oracle for 𝜑.

The interpretation of the previous theorem is that we can estimate replicably
statistical queries whose range is bounded.

The following result that was proved in (ILPS22) is useful for our derivations.

Claim 20 (𝜌-Replicability =⇒ (𝜂, 𝜈)-Replicability (ILPS22)). Let 𝐴 be a 𝜌-
replicable algorithm and ℛ be its source of randomness. Then for any 𝜈 ∈ [𝜌, 1), it
holds that

Pr
𝑟∼ℛ

[︂{︂
∃ℎ ∈ ℋ : Pr

𝑆∼𝒟𝑛
[𝐴(𝑆, 𝑟) = ℎ] ≥ 1− 𝜌

𝜈

}︂]︂
≥ 1− 𝜈 .

Notice that in the definition of replicability (Definition 6.1.1), the learner shares
all the internal random bits across its two executions. A natural extension is to
consider learners that share only part of their random bits, i.e., they have access to
private random bits that are not shared across its executions and public random
bits that are shared. A result in (ILPS22) shows that these learners are, essentially,
equivalent to the ones that use only private bits. To be more precise, we say that
a learner 𝐴 is 𝜌-replicable with respect to 𝑟𝑝𝑢𝑏 if

Pr
𝑆,𝑆′∼𝒟𝑛,𝑟𝑝𝑟𝑖𝑣 ,𝑟′𝑝𝑟𝑖𝑣 ,𝑟𝑝𝑢𝑏∼ℛ

[𝐴(𝑆, 𝑟𝑝𝑟𝑖𝑣, 𝑟𝑝𝑢𝑏) = 𝐴(𝑆′, 𝑟′𝑝𝑟𝑖𝑣, 𝑟𝑝𝑢𝑏)] ≥ 1− 𝜌 .

The following result states this property formally.
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Lemma 6.8.3 (Public, Private Replicability =⇒ Replicability (ILPS22)). Let
𝐴 be an 𝑛-sample 𝜌-replicable learner with respect to 𝑟𝑝𝑢𝑏. Then, 𝐴 is a 𝑛-sample
𝜌-replicable learner with respect to (𝑟𝑝𝑢𝑏, 𝑟𝑝𝑟𝑖𝑣).

This result allows us to think of a replicable learner as having access to two
different sources of randomness, one that is private to its execution and one that is
shared across the executions. We will make use of it in transformations from DP
learners to replicable learners and some boosting results.

6.8.2 Replicable Heavy-Hitters
In the analysis of the replicable heavy-hitter algorithm (cf. Algorithm 12) we

will use the Bretagnolle-Huber-Carol inequality that bounds the estimation error
of the parameters of a multinomial distribution from samples.

Lemma 6.8.4 (Bretagnolle-Huber-Carol Inequality (VW97)). Let 𝑝 = (𝑝1, . . . , 𝑝𝑘)
multinomial distribution supported on 𝑘 elements. Then, given access to 𝑛 i.i.d.
samples from 𝑝 we have that

Pr

[︃
𝑘∑︁

𝑖=1

|̂︀𝑝𝑖 − 𝑝𝑖| ≥ 𝜀

]︃
≤ 2𝑘𝑒−𝑛𝜀2/2 ,

for every 𝜀 ∈ (0, 1), where ̂︀𝑝𝑖 is the empirical frequency of item 𝑖 in the sample 𝑆.

The replicable heavy-hitters algorithm is depicted in Algorithm 12. As we
alluded before, this approach is very similar to (GKM21; ILPS22). However, in
our approach we treat the confidence parameter and the reproducibility parameters
differently. Moreover, since we make use of Lemma 6.8.4, we are able to reduce the
sample complexity of the algorithm.

Lemma 6.8.5. Let 𝒟 be distribution supported on some domain 𝒳 and denote
by 𝒟(𝑥) the mass that it puts on 𝑥 ∈ 𝒳 . For any 𝜖, 𝛿, 𝜌, 𝑣 ∈ (0, 1)4 such that
(𝑣 − 𝜖, 𝑣 + 𝜖) ⊆ (0, 1), Algorithm 12 is 𝜌-replicable and outputs a list 𝐿 such that,
with probability 1− 𝛿, for all 𝑥 ∈ 𝒳 :

• If 𝒟(𝑥) < 𝑣 − 𝜖 then 𝑥 /∈ 𝐿.

• If 𝒟(𝑥) > 𝑣 + 𝜖 then 𝑥 ∈ 𝐿.

Its sample complexity is at most 𝑂
(︁
log(1/(min{𝛿,𝜌}(𝑣−𝜀)))

(𝑣−𝜀)𝜌2𝜀2

)︁
.

Proof. We first prove the correctness of the algorithm with the desired accuracy 𝜀
and confidence 𝛿. For simplicity, let us assume that 𝛿 ≤ 𝜌/4. Otherwise, we can
simply set 𝛿 = 𝜌/4. After we pick 𝑛1 points, the probability that a (𝑣 − 𝜀)-heavy-
hitter of the distribution is not included in 𝑆1 is at most

(1− (𝑣 − 𝜀))𝑛1 ≤ 𝑒−(𝑣−𝜀)·𝑛1 ≤ 𝛿 · (𝑣 − 𝜀)

2
.
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Algorithm 12 Replicable Heavy-Hitters
1: Input: Sample access to a distribution 𝒟 over some domain
𝒳

2: Parameters: Threshold 𝑣, error 𝜖, confidence 𝛿,
replicability 𝜌

3: Output: List of elements 𝐿 in 𝒳
4: 𝑛1 ← log(2/(min{𝛿,𝜌}(𝑣−𝜀)))

𝑣−𝜀

5: 𝑆1 ← 𝑛1 i.i.d. samples. from 𝒟
6: 𝒳ℎ ← unique elements of 𝑆1 ◁ Notice that |𝒳ℎ| ≤ 𝑛1.

7: 𝑛2 ← 32(log(2/min{𝛿,𝜌})+|𝒳 |+1)
𝜌2𝜖2

8: 𝑆2 ← 𝑛2 i.i.d. samples from 𝒟
9: ̂︀𝑝𝑥 ← freq𝑆(𝑥),∀𝑥 ∈ 𝒳ℎ ◁ ̂︀𝑝𝑥 is the empirical frequency of every

potential heavy hitter
10: 𝑣′ ← 𝑈 [𝑣 − 𝜀/2, 𝑣 + 𝜀/2] ◁ Set the threshold for acceptance of a

heavy-hitter.
11: 𝐿← {𝑥 ∈ 𝒳ℎ : ̂︀𝑝𝑥 ≥ 𝑣′} ◁ Drop the elements of 𝒳ℎ that fall below the

threshold.
12: Output 𝐿

Since there are at most 1/(𝑣 − 𝜀) such heavy-hitters, we can see that with
probability at least 𝛿/2 all of the are included in 𝑆1. Let us call this event ℰ1 and
condition on it for the rest of the proof.

Let us consider a distribution ̂︀𝒟 that puts the same mass on every element of
𝒳ℎ as 𝒟 and the remaining mass on a new special element 𝑒. We can sample from̂︀𝒟 in the following way: we draw a sample from 𝒟 and if it falls in 𝒳ℎ we return it,
otherwise we return 𝑒. Thus, we can see that if we draw 𝑛 samples from ̂︀𝒟, they are
distributed according to a multinomial distribution supported on 𝒳ℎ ∪ {𝑒}. Thus,
Lemma 6.8.4 applies to this setting which means that if we draw 𝑛2 i.i.d. samples
from ̂︀𝒟 we have that

Pr

[︃
𝑘∑︁

𝑖=1

|̂︀𝑝𝑖 − 𝑝𝑖| ≥
𝜀𝜌

4

]︃
≤ 2𝑘𝑒−𝑛2𝜀2𝜌2/32 ≤ 𝑒𝑘𝑒−𝑛2𝜀2𝜌2/32 = 𝑒𝑘−𝑛2𝜀2𝜌2/32 ,

where 𝑘 = |𝒳ℎ| + 1. Thus, 𝑒𝑘−𝑛2𝜀2𝜌2/32 = 𝑒− log(2/𝛿) ≤ 𝛿
2 . We call this event ℰ2

and condition on it for the rest of the proof. Notice that under this event we
have that |̂︀𝑝𝑥 − 𝑝𝑥| ≤ 𝜖𝜌

4 < 𝜖
2 , ∀𝑥 ∈ 𝒳ℎ. Since 𝑣′ ≥ 𝑣 − 𝜖/2 it means that if̂︀𝑝𝑥 ≥ 𝑣′ ≥ 𝑣 − 𝜖/2 =⇒ 𝑝𝑥 + 𝜖/2 > 𝑣 − 𝜖/2 =⇒ 𝑝𝑥 > 𝑣 − 𝜖. Similarly, we get

that if ̂︀𝑝𝑥 < 𝑣′ =⇒ 𝑝𝑥 < 𝑣 + 𝜖. Hence, we see that the algorithm is correct with
probability at least 1− 𝛿/2− 𝛿/2 = 1− 𝛿. This concludes the correctness proof.

We now focus on the replicability of the algorithm. Let 𝒳 1
ℎ be the unique

elements at Line 6 of the algorithm in the first run and 𝒳 2
ℎ in the second run. Notice
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that if 𝑥 ∈ (𝒳 1
ℎ ∖𝒳 2

ℎ )∪(𝒳 2
ℎ ∖𝒳 1

ℎ ) then, with probability at least 1−𝛿/2−𝛿/2 = 1−𝛿,
the element 𝑥 is not a (𝑣−𝜖)-heavy-hitter, so, with probability at least 1−𝛿/2, it will
not be included in the output of the execution that it appears in. Let 𝐸 = 𝒳 1

ℎ ∩𝒳 2
ℎ

and denote by 𝐿1, 𝐿2, the outputs of the first, second execution, respectively. We
need to bound the probability of the event ℰ = {∃𝑥 ∈ 𝐸 : 𝑥 ∈ 𝐿1 ∖ 𝐿2 ∪ 𝐿2 ∖ 𝐿1}.
Let ̂︀𝑝1𝑥, ̂︀𝑝2𝑥 the empirical frequencies of 𝑥 in the first, second execution, respectively.
Due to the concentration inequality we have used, we have that∑︁

𝑥∈𝒳1∩𝒳2

|̂︀𝑝𝑖𝑥 − 𝑝𝑥| ≤
𝜀𝜌

4
, 𝑖 ∈ {1, 2} ,

with probability at least 1− 𝛿. Under this event, using the triangle inequality, this
means that ∑︁

𝑥∈𝒳1∩𝒳2

|̂︀𝑝1𝑥 − ̂︀𝑝2𝑥| ≤ 𝜀𝜌

2
, 𝑖 ∈ {1, 2} ,

Notice that since pick a number uniformly at random from an interval with range
𝜖, for some given 𝑥 ∈ 𝒳1∩𝒳2, we have that Pr[𝑥 ∈ 𝐿1 ∖𝐿2∪𝐿2 ∖𝐿1] ≤ |̂︀𝑝1𝑥− ̂︀𝑝2𝑥|/𝜖.
Thus, taking a union bound over 𝑥 ∈ 𝒳1 ∩ 𝒳2, we see that

Pr[ℰ ] ≤
∑︀

𝑥∈𝒳1∩𝒳2
|̂︀𝑝1𝑥 − ̂︀𝑝2𝑥|

2𝜖
≤ 𝜖𝜌

2𝜖
=

𝜌

2
.

Putting everything together, we see that the probability that the two outputs of
the algorithm differ is at most 𝛿 + 𝛿/2 + 𝜌/2 < 𝜌.

6.8.3 Replicable Agnostic PAC Learner for Finite ℋ
In this section we present a replicable agnostic PAC learner for finite hypothesis

classes, i.e., a learner whose output is a hypothesis that has error rate close to the
best one in the class. Our construction relies on the replicable SQ oracle from
(ILPS22) (see Theorem 6.8.2). The idea is simple: since the error rate of every
ℎ ∈ ℋ can be replicably estimated using Theorem 6.8.2, we do that for every ℎ ∈ ℋ
and then we return the one that has the smallest estimated value.

Algorithm 13 Replicable Agnostic Learner for Finite ℋ
1: Input: Hypothesis class ℋ, sample access to a distribution
𝒟 over 𝒳 × {0, 1}

2: Parameters: accuracy 𝜖, confidence 𝛿, replicability 𝜌
3: Output: Classifier ℎ that is 𝜖-close to the best one in ℋ

and its estimated error on 𝒟
4: ̂︀𝛼ℎ ← ReprErrorEst(𝜖/2, 𝛿/|ℋ|, 𝜌/|ℋ|),∀ℎ ∈ ℋ ◁ Theorem 6.8.2.
5: ̂︀ℎ* ← argminℎ∈ℋ ̂︀𝑎ℎ ◁ Break ties arbitrarily in a consistent manner.
6: Output (̂︀ℎ*, ̂︀𝛼̂︀ℎ*)
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It is not hard to see that Algorithm 13 is 𝜌-replicable and returns a hypothesis
whose error is 𝜖-close to the best one.

Claim 21. Let ℋ be a finite hypothesis class and 𝜖, 𝛿, 𝜌 ∈ (0, 1)3. Given 𝑂
(︁
|ℋ|3
𝜖2𝜌2

log
(︁
|ℋ|
𝛿

)︁)︁
i.i.d. samples from 𝒟, Algorithm 13 is 𝜌-replicable and returns a classifier ̂︀ℎ* with
err(̂︀ℎ*) < minℎ∈ℋ err(ℎ) + 𝜖, with probability at least 1− 𝛿.

Proof. The replicability of the algorithm follows from the fact that we estimate
each ̂︀𝑎ℎ replicably with parameter 𝜌/|ℋ| and we make |ℋ| such calls.

Notice that for each call to the replicable error estimator we need 𝑛ℎ = 𝑂
(︁
|ℋ|2
𝜖2𝜌2

log
(︁
|ℋ|
𝛿

)︁)︁
samples and we make |ℋ| such calls.

Since the accuracy parameter of the statistical query oracle is 𝜖/2, using the
triangle inequality, we have that |̂︀𝑎̂︀ℎ* −minℎ∈ℋ 𝑎ℎ| ≤ 𝜖.

Finally, the correctness of the algorithm follows from a union bound over the
correctness of every call to the oracle.

6.9 TV Indistinguishability and Replicability
In this section, we will study the connection between TV indistinguishability

and replicability.

6.9.1 The Proof of Theorem 6.4.6
We are now ready to establish the connection between TV indistinguishability

and replicability. The upcoming result is particularly useful because it provides a
data-independent way to couple the random variables.

Proof of Theorem 6.4.6. Let ℛ be Poisson point process with intensity 𝒫 × Leb×
Leb, where Leb is the Lebesgue measure over R+ (cf. Theorem 6.7.13, Figure 6.1).
The learning rule 𝐴′ is defined in the following way. For every 𝑆 ∈ ({𝒳 × {0, 1})𝑛,
let 𝑟 = {(ℎ𝑖, 𝑦𝑖, 𝑡𝑖)}𝑖∈N be an infinite sequence of the Poisson point process ℛ and
let 𝑗 = argmin𝑖∈N{𝑡𝑖 : 𝑓𝑆(ℎ𝑖) > 𝑦𝑖}. The output of 𝐴′ is ℎ𝑗 and we denote it by
𝐴′(𝑆, 𝑟). We will shortly explain why this is well-defined, except for a measure zero
event. The fact that 𝐴′ is equivalent to 𝐴 follows from the coupling guarantees of
this process (cf. Theorem 6.7.13). In particular, we can instantiate this result with
the single random variable {𝐴(𝑆)}. We can now observe that, except for a measure
zero event, (i) since 𝐴 is absolutely continuous with respect to 𝒫, there exists such
a density 𝑓𝑆 , (ii) the set over which we are taking the minimum is not empty, (iii)
the minimum is attained at a unique point. This means that 𝐴′ is well-defined,
except for a measure zero event8, and, by the correctness of the rejection sampling
process (AS19), 𝐴′(𝑆) has the desired probability distribution.

8Under the measure zero event that at least one of these three conditions does not hold,
we let 𝐴′(𝑆, 𝑟) be some arbitrary classifier.
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We now prove that 𝐴′ is replicable. Since 𝐴 is 𝜌-TV indistinguishable, it follows
that

E
𝑆,𝑆′∼𝒟𝑛

[𝑑TV(𝐴(𝑆), 𝐴(𝑆′))] ≤ 𝜌.

We have shown that 𝐴′ is equivalent to 𝐴, so we can see that E𝑆,𝑆′∼𝒟𝑛 [𝑑TV(𝐴
′(𝑆), 𝐴′(𝑆′))] ≤

𝜌. Thus, using the guarantees of Theorem 6.7.13, we have that for any datasets
𝑆, 𝑆′

Pr
𝑟∼ℛ

[𝐴′(𝑆, 𝑟) ̸= 𝐴′(𝑆′, 𝑟)] ≤ 2𝑑TV(𝐴
′(𝑆), 𝐴′(𝑆′))

1 + 𝑑TV(𝐴′(𝑆), 𝐴′(𝑆′))
.

By taking the expectation over 𝑆, 𝑆′, we get that

E
𝑆,𝑆′∼𝒟𝑛

[︂
Pr
𝑟∼ℛ

[𝐴′(𝑆, 𝑟) ̸= 𝐴′(𝑆′, 𝑟)]

]︂
≤ E

𝑆,𝑆′∼𝒟𝑛

[︂
2𝑑TV(𝐴

′(𝑆), 𝐴′(𝑆′))

1 + 𝑑TV(𝐴′(𝑆), 𝐴′(𝑆′))

]︂
≤

2E𝑆,𝑆′∼𝒟𝑛 [𝑑TV(𝐴
′(𝑆), 𝐴′(𝑆′))]

1 + E𝑆,𝑆′∼𝒟𝑛 [𝑑TV(𝐴′(𝑆), 𝐴′(𝑆′))]

≤ 2𝜌

1 + 𝜌
,

where the first inequality follows from Theorem 6.7.13 and taking the expectation
over 𝑆, 𝑆′, the second inequality follows from Jensen’s inequality, and the third
inequality follows from the fact that 𝑓(𝑥) = 2𝑥/(1 + 𝑥) is increasing. Now notice
that since the source of randomness ℛ is independent of 𝑆, 𝑆′, we have that

E
𝑆,𝑆′∼𝒟𝑛

[︂
Pr
𝑟∼ℛ

[𝐴′(𝑆, 𝑟) ̸= 𝐴′(𝑆′, 𝑟)]

]︂
= Pr

𝑆,𝑆′∼𝒟𝑛,𝑟∼ℛ
[𝐴′(𝑆, 𝑟) ̸= 𝐴′(𝑆′, 𝑟)] .

Thus, we have shown that

Pr
𝑆,𝑆′∼𝒟𝑛,𝑟∼ℛ

[𝐴′(𝑆, 𝑟) ̸= 𝐴′(𝑆′, 𝑟)] ≤ 2𝜌

1 + 𝜌
,

so the algorithm 𝐴′ is 𝑛-sample 2𝜌
1+𝜌 -replicable, which concludes the proof.

6.9.2 A General Equivalence Result
In this section, we focus on the following two stability/replicability definitions.

Definition 6.9.1 (Replicability (ILPS22)). Let ℛ be a distribution over random
strings. A learning rule 𝐴 is 𝜌-replicable if for any distribution 𝜇 over ℐ and two
independent instances 𝐼, 𝐼 ′ ∼ 𝜇 it holds that

Pr
𝐼,𝐼′∼𝜇,𝑟∼ℛ

[𝐴(𝐼, 𝑟) ̸= 𝐴(𝐼 ′, 𝑟)] ≤ 𝜌 .
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Definition 6.9.2 (Total Variation Indistinguishability). A learning rule 𝐴 is 𝜌-TV
indistinguishable if for any distribution 𝜇 and two independent instances 𝐼, 𝐼 ′ ∼ 𝜇
it holds that

E
𝐼,𝐼′∼𝜇

[𝑑TV(𝐴(𝐼), 𝐴(𝐼
′))] ≤ 𝜌 .

A learning rule 𝐴 is 𝜌-fixed prior TV indistinguishable if for any distribution 𝜇,
there exists some prior 𝒫𝜇 such that for 𝐼 ∼ 𝜇 it holds that

E
𝐼∼𝜇

[𝑑TV(𝐴(𝐼),𝒫𝜇)] ≤ 𝜌 .

Definition 6.9.3 (Pseudo-Global Stability). Let ℛ be a distribution over random
strings. A learning rule 𝐴 is said to be (𝜂, 𝜈)-pseudo-globally stable if for any
distribution 𝜇 there exists an element 𝑜𝑟 ∈ 𝒪 for every 𝑟 ∈ supp(ℛ) (depending on
𝜇) such that

Pr
𝑟∼ℛ

[︂
Pr
𝐼∼𝜇

[𝐴(𝐼, 𝑟) = 𝑜𝑟] ≥ 𝜂

]︂
≥ 𝜈 .

Our general equivalence result follows.

Proposition 6.9.4 (TV Indistinguishability ≡ Replicability). Let ℐ be an input
space and 𝒪 be an output space.

• If a learning rule 𝐴 is 𝜌-replicable, then it is also 𝜌-TV indistinguishable.

• Consider a prior distribution 𝒫 over 𝒪. Consider a learning rule 𝐴 that is
𝜌-TV indistinguishable and absolutely continuous with respect to 𝒫. Then,
there exists a learning rule 𝐴′ that is equivalent to 𝐴 and 𝐴′ is 2𝜌/(1 + 𝜌)-
replicable.

We remark that one can adapt the proofs of Theorem 6.4.1 and Theorem 6.4.6
by setting ℐ = (𝒳 × {0, 1})𝑛, 𝜇 = 𝒟𝑛 and 𝒪 = {0, 1}𝒳 . Moreover, when ℐ is
countable, the design of the reference probability measure works in a similar way.
Hence, we get the following corollary.

Corollary 6.9.5. Let ℐ be a countable domain and let 𝐴 be a learning rule that is
𝜌-TV indistinguishable. Then, there exists a 2𝜌

1+𝜌 -replicable learning rule 𝐴′ that is
equivalent to 𝐴.

6.10 TV Indistinguishability and Differential Pri-
vacy

6.10.1 DP Preliminaries
We introduce some standard tools from the DP literature. We start with the

Stable Histograms algorithm (KKMN09; BNS16b). Let 𝒳 be some domain and let
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𝑆 ∈ 𝒳 𝑛 be a (multi)set of its elements. We denote by freq𝑆(𝑥) =
1
𝑛 · |{𝑖 ∈ [𝑛] : 𝑥𝑖 =

𝑥}|, i.e., the fraction of times that 𝑥 appears in 𝑆. The following result holds. It
essentially allows us to privately publish a short list of elements that appear with
high frequency in a dataset.

Lemma 6.10.1 (Stable Histograms (KKMN09; BNS16b)). Let 𝒳 be some domain.
For

𝑛 ≥ 𝑂

(︂
log(1/(𝜂𝛽𝛿))

𝜂𝜀

)︂
there exists an (𝜀, 𝛿)-differentially private algorithm StableHist which, with prob-
ability at least 1− 𝛽, on input 𝑆 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝒳 𝑛, outputs a list 𝐿 ⊆ 𝒳 and a
sequence of estimates 𝑎 ∈ [0, 1]|𝐿| such that

• Every 𝑥 with freq𝑆(𝑥) ≥ 𝜂 appears in 𝐿.

• For every 𝑥 ∈ 𝐿, the estimate 𝑎𝑥 satisfies |𝑎𝑥 − freq𝑆(𝑥)| ≤ 𝜂.

We also recall the agnostic private learner for finite classes that was proposed
in (KLN+11) and is based on the Exponential Mechanism of (MT07).

Lemma 6.10.2 (Generic Private Learner (KLN+11)). Let ℋ ⊆ {0, 1}𝒳 . There is
an (𝜀, 0)-differentially private algorithm GenPrivLearner which given

𝑛 = 𝑂

(︂
log(|ℋ|/𝛽) ·max

{︂
1

𝜀𝛼
,
1

𝛼2

}︂)︂
samples from 𝒟, outputs a hypothesis ℎ such that

Pr

[︂
err𝒟(ℎ) ≤ min

ℎ′∈ℋ
err𝒟(ℎ

′) + 𝛼

]︂
≥ 1− 𝛽 .

Finally, we state a result relating weak learners and privacy.

Theorem 6.10.3 (Weakly Accurate Private Learning =⇒ Finite Littlestone Di-
mension (ALMM19)). Let 𝒳 be some domain and 𝐻 ⊆ {0, 1}𝒳 be a hypothesis class
with Littlestone dimension 𝑑 ∈ N∪{∞} and let 𝐴 be a weakly accurate learning al-
gorithm (i.e., (𝛼, 𝛽)-accurate with 𝛼 = 1/2−𝛾, 𝛽 = 1/2−𝛾) for 𝐻 with sample com-
plexity 𝑛 that satisfies (𝜀, 𝛿)-differential privacy with (𝜀, 𝛿) = (0.1, 1/(𝑛2 log(𝑛))).
Then, 𝑛 ≥ Ω(log⋆(𝑑)).

In particular any class that is privately weakly-learnable has a finite Littlestone
dimension.

We remark that this theorem appears in (ALMM19) with accuracy constant
0.1. However, it is known from (DRV10) that a DP algorithm with error 1/2 − 𝛾
can be boosted to one with arbitrarily small error with negligible loss in the privacy
guarantees.

The following result that appears in (BLM20) shows that if ℋ has finite Lit-
tlestone dimension, then there exists a 𝜌-globally stable learner for this class.
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Theorem 6.10.4 (Finite Littlestone Dimension =⇒ Global Stability (BLM20)).
Let 𝒳 be some domain and ℋ ⊆ {0, 1}𝒳 be a hypothesis class with Littlestone
dimension 𝑑 <∞. Let 𝛼 > 0 be the accuracy parameter and define 𝑛 = 22

𝑑+2+14𝑑+1·⌈︁
2𝑑+2

𝛼

⌉︁
. Then, there exists a randomized algorithm 𝐴 : (𝒳 ×{0, 1})𝑛×ℛ → {0, 1}𝑋

such that for any realizable distribution 𝒟 there exists a hypothesis 𝑓𝒟 for which

Pr
𝑆∼𝒟𝑛,𝑟∼ℛ

[𝐴(𝑆, 𝑟) = 𝑓𝒟] ≥
1

(𝑑+ 1)22𝑑+1
, Pr

(𝑥,𝑦)∼𝒟
[𝑓𝒟(𝑥) ̸= 𝑦] ≤ 𝛼 ,

where ℛ is the source of internal randomness of 𝐴.

We also include a result from (GKM21; BGH+23) which states that replicability
implies differential privacy under general input domains9.

Theorem 6.10.5 (Replicability =⇒ Differential Privacy (GKM21; BGH+23)).
Let ℋ ⊆ {0, 1}𝒳 , where 𝒳 is some input domain. If ℋ is learnable by an 𝑛-
sample (𝛼, 𝛽)-accurate 𝜌-replicable learner 𝐴, for 𝛼 ∈ (0, 1/2), 𝜌 ∈ (0, 1), 𝛽 ∈(︁
0, 2𝜌

𝜌+1 − 2
√︁

2𝜌
𝜌+1 + 1

)︁
, then, for any (𝛼′, 𝛽′, 𝜖, 𝛿) ∈ (0, 1)4 it is learnable by an

(𝛼+𝛼′, 𝛽′)-accurate (𝜀, 𝛿)-differentially private learner. Moreover, its sample com-
plexity is

𝑛 · poly(1/𝛼′, 1/𝜀, log(1/𝛿), log(1/𝛽′)) .

6.10.2 The Proof of Theorem 6.5.1
In this section we show that Global Stability (cf. Definition 6.7.8) implies

TV indistinguishability in the context of PAC learning. In particular, we show
that given black-box access to a 𝜌-globally stable learner 𝐴 whose stable output
is 𝛼-accurate, e.g., the one described in Theorem 6.10.4, we can transform it to a
𝜌-TV indistinguishable learner which is (𝛼+ 𝛼′, 𝛽)-accurate, with a multiplicative
poly(1/𝜌, 1/𝛼′, log(1/𝛽) blow-up in its sample complexity. We remark that this
transformation is not restricted to countable domains 𝒳 . As an intermediate result,
we show that global stability implies replicability.

Lemma 6.10.6 (Global Stability =⇒ Replicability). Let 𝐴 be an 𝑛-sample
𝜌-globally stable learner whose stable hypothesis is 𝛼-accurate. Then, for every
𝜌′, 𝛼′, 𝛽 ∈ (0, 1)3, there exists a learner 𝐴′ (Algorithm 14) that is 𝜌′-replicable and
(𝛼+ 𝛼′, 𝛽)-accurate. Moreover, 𝐴′ needs

̃︀𝑂(︂ log(1/𝛽)

𝜌′2𝜌3

)︂
9In fact, this result holds for general statistical tasks. The parameters stated in

(BGH+23) are slightly looser, but using our boosting results we can generalize them and
use the ones that appear in the statement.
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oracle calls to 𝐴 and uses

̃︀𝑂(︂ log(1/𝛽)

𝜌2𝜌′3
·
(︂
𝑛+

1

𝛼′2

)︂)︂
samples.

Proof. We first argue about the accuracy and the confidence of the algorithm. Let
ℎ𝐴 be the hypothesis such that Pr𝑆∼𝒟𝑛 [𝐴(𝑆) = ℎ] ≥ 1− 𝜌. The replicable heavy
hitters algorithm (Algorithm 12) guarantees that, with probability at least 1−𝛽/2,
ℎ𝐴 will be contained in the output list 𝐿 (Lemma 6.8.5). We call this event 𝐸0

and we condition on it. In the next step, we call the replicable agnostic learner on
𝐿 (Algorithm 13). Since there is a hypothesis whose error rate is at most 𝛼, we
know that the output of the agnostic learner will have error rate at most 𝛼 + 𝛼′,
with probability at least 1− 𝛽/2 (Lemma 6.10.2). Let us call this event 𝐸1. Thus,
we see that by taking a union bound over the probabilities of these two events, the
error rate of the output of our algorithm will be at most 𝛼 + 𝛼′, with probability
at least 1− 𝛽.

We now shift our focus to the replicability of our algorithm. First, notice that
because of the guarantees of the replicable heavy hitters (Lemma 6.8.5) the list
𝐿 will be the same across two executions when the randomness is shared, with
probability at least 1− 𝜌′/2. Let us call this event 𝐸2. Similarly, under the event
𝐸2, the output of the agnostic learner will be the same across two executions with
probability 1−𝜌′/2. Let us call this event 𝐸3. By taking a union bound over 𝐸2, 𝐸3,
we see that the algorithm is 𝜌′-replicable.

The sample complexity of the algorithm follows by the sample complexity
of the replicable heavy hitters and the replicable agnostic learner (Lemma 6.8.5,
Lemma 6.10.2). In particular, we need

̃︀𝑂(︂𝑛 · log(1/𝛽)
𝜌2𝜌′3

)︂
,

samples for this step and since the list has size 𝑂(1/𝜌′) we need

̃︀𝑂(︂ log(1/𝛽)

𝛼′2𝜌2𝜌′3

)︂
,

for the replicable agnostic learner.

Corollary 6.10.7. Let 𝐴 be an 𝑛-sample 𝜌-globally stable learner whose stable
hypothesis is 𝛼-accurate. Then, for every 𝜌′, 𝛼′, 𝛽 ∈ (0, 1)3, there exists a learner 𝐴′

(Algorithm 14) that is 𝜌′-TV indistinguishable and (𝛼+𝛼′, 𝛽)-accurate. Moreover,
𝐴′ needs ̃︀𝑂(︂ log(1/𝛽)

𝜌′2𝜌3

)︂
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Algorithm 14 From Global Stability to Replicability
1: Input: Black-box access to a 𝑛-sample 𝜌-globally stable

learner 𝐴 with 𝛼-accurate stable hypothesis, sample access
to distribution 𝒟

2: Parameters: 𝜌′, 𝛼′, 𝛽 ∈ (0, 1)3

3: Output: Classifier ℎ : 𝒳 → {0, 1}
4: 𝒟′ ← distribution induced by drawing 𝑆 ∼ 𝒟𝑛 and running 𝐴(𝑆)
5: 𝐿← output of ReplicableHeavyHitters (Algorithm 12) with threshold

𝜌/2, error 𝜌/4, confidence 𝛽/2, replicability 𝜌′/4
6: Output AgnosticReplicableLearner (Algorithm 13) on hypothesis

class 𝐿, with accuracy 𝛼′, confidence 𝛽′/2 and replicability 𝜌′/2

oracle calls to 𝐴 and uses

̃︀𝑂(︂ log(1/𝛽)

𝜌2𝜌′3
·
(︂
𝑛+

1

𝛼2

)︂)︂
samples.

Proof. The proof follows immediately from Lemma 6.10.6 and the fact that a 𝜌′-
replicable algorithm is 𝜌′-TV indistinguishable (Theorem 6.4.1).

We now explain how we can use the previous results in the previous section to
design a replicable algorithm for a class ℋ ⊆ {0, 1}𝒳 when we know that ℋ admits
a DP learner, for general domains 𝒳 . Formally, we prove the following result.

Lemma 6.10.8 (Differential Privacy =⇒ Replicability in General Domains). Let
ℋ ⊆ {0, 1}𝒳 be a hypothesis class, where 𝒳 is some input domain. Let 𝐴 be an 𝑛-
sample (0.1, 1/(𝑛2 log(𝑛)))-differentially private (1/2−𝛾, 1/2−𝛾)-accurate learner
for ℋ, for some 𝛾 ∈ (0, 1/2]. Then, for every 𝜌, 𝛼, 𝛽 ∈ (0, 1)3 there exists a learner
𝐴′ that is 𝜌-replicable and (𝛼, 𝛽)-accurate. Moreover, 𝐴′ uses

̃︀𝑂(︃(𝑑+ 1)323·(2
𝑑+1) log(1/𝛽)

𝜌2
·
(︂
22

𝑑+2+14𝑑+1 ·
⌈︂
2𝑑+2

𝛼

⌉︂
+

1

𝛼2

)︂)︃

samples, where 𝑑 is the Littlestone dimension of ℋ.

Proof. The first step in the proof is to notice that the existence of such a DP
learner for ℋ implies that its Littlestone dimension 𝑑 is finite ((ALMM19), Theo-
rem 6.10.3). Then, we instantiate Algorithm 14 with the globally stable algorithm
from (BLM20) (Theorem 6.10.4) with accuracy 𝛼/2. Notice that since the ran-
dom bits for the globally stable need to be different across two executions of the
algorithm, we use two different sources of randomness, one that is public, i.e.,
shared across two executions, and one that is private, i.e., not shared across two
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executions. Due to Lemma 6.8.3, this is equivalent to the original definition of
replicability (Definition 6.1.1). For the remaining two steps, i.e., the replicable
heavy-hitters and the replicable agnostic learner, we use public random bits. The
sample complexity of the algorithm follows from the sample complexity of Theo-
rem 6.10.4 and Lemma 6.10.6.

Corollary 6.10.9 (Differential Privacy =⇒ TV Indistinguishability in General
Domains). Let ℋ ⊆ {0, 1}𝒳 be a hypothesis class, where 𝒳 is some input domain.
Let 𝐴 be an 𝑛-sample (0.1, 1/(𝑛2 log(𝑛)))-differentially private (1/2− 𝛾, 1/2− 𝛾)-
accurate learner for ℋ, for some 𝛾 ∈ (0, 1/2]. Then, for every 𝜌, 𝛼, 𝛽 ∈ (0, 1)3 there
exists a learner 𝐴′ that is 𝜌-TV indistinguishable and (𝛼, 𝛽)-accurate. Moreover,
𝐴′ uses

̃︀𝑂(︃(𝑑+ 1)323·(2
𝑑+1) log(1/𝛽)

𝜌2
·
(︂
22

𝑑+2+14𝑑+1 ·
⌈︂
2𝑑+2

𝛼

⌉︂
+

1

𝛼2

)︂)︃
samples, where 𝑑 is the Littlestone dimension of ℋ.

Proof. The proof of this result follows immediately by Lemma 6.10.8 and the fact
that replicable learners are also TV indistinguishable learners (Theorem 6.4.1).

6.10.3 List-Global Stability =⇒ TV Indistinguishabil-
ity

In this section we provide a different TV indistinguishable learner for classes
with finite Littlestone dimension that has polynomial sample complexity depen-
dence on the Littlestone dimension of the class. This learner builds upon the
results of (GGKM21; GKM21). In particular, (GGKM21) show that a class with fi-
nite Littlestone dimension admits a list-globally stable learner (Definition 6.10.10).
This learner constructs a sequence of hypothesis classes whose Littlestone dimen-
sion is at most that of ℋ, and part of the proof requires that uniform convergence
(Definition 6.7.6) holds for all of them. In order to avoid making measurability
assumptions on the domain 𝒳 and the hypothesis class ℋ that would imply such a
claim, we only state the results for countable ℋ. Nevertheless, we emphasize that
they hold for more general settings.

We underline that the result in (GKM21) which designs a pseudo-globally stable
learner for classes with finite Littlestone dimension, holds in the setting where 𝒳 is
finite because it relies on correlated sampling. The reason behind this fact is that
they have to convert a DP learner to a pseudo-globally stable one. In our case,
we have to show that if ℋ is learnable by a DP algorithm, it also admits a TV
indistinguishable one. The proof of Theorem 6.5.1 follows almost directly from a
result appearing in (GKM21).

Definition 6.10.10 (List-Global Stability (GKM21)). A learning algorithm 𝐴 is
said to be 𝑚-sample 𝛼-accurate (𝐿, 𝜂)-list-globally stable if 𝐴 outputs a set of at
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most 𝐿 hypotheses and there exists a hypothesis ℎ (that depends on 𝒟) such that
Pr(𝑥1,𝑦1),...,(𝑥𝑚,𝑦𝑚)∼𝒟𝑛 [ℎ ∈ 𝐴((𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚))] ≥ 𝜂 and err𝒟(ℎ) ≤ 𝛼.

(GKM21) showed the following result regarding list 𝑚-list-globally stable learn-
ers, which is a modification of a result of (GGKM21).

Lemma 6.10.11 (Finite Littlestone⇒ List-Global Stability (GKM21; GGKM21)).
Let 𝛼, 𝜁 > 0. and ℋ ⊆ {0, 1}𝒳 be a countable hypothesis class with Ldim(ℋ) = 𝑑 <
∞, where 𝒳 is an arbitrary domain. Then, there is a (𝑑 log(1/𝜁)/𝛼)𝑂(1)-sample 𝛼-
accurate

(︀
exp

(︀
(𝑑/𝛼)𝑂(1)

)︀
,Ω(1/𝑑)

)︀
-list-globally stable learner for ℋ such that, with

probability at least 1−𝜁, every hypothesis ℎ′ in the output list satisfies err𝒟(ℎ′) ≤ 2𝛼.

Algorithm 15 List-Global Stability =⇒ TV Indistinguishability (Essen-
tially Algorithm 1 in (GKM21))
1: Input: Black-box access to list-globally stable learner 𝐴
2: Parameters: 𝛼, 𝛽, 𝜌, 𝜂, 𝐿
3: Output: Classifier ℎ : 𝒳 → {0, 1}
4: 𝜏 ← 0.5𝜂

5: 𝛾 ← 106 log(𝐿/(𝜌𝜏))
𝜏

6: 𝑘1 ← 106 log(𝐿/(𝜌𝜏))
𝜏2

7: 𝑘2 ←
⌈︁
106𝛾2 log(𝐿/(𝜌𝜏))

𝜌2

⌉︁
8: 𝑚← (𝑑 log(𝑘1/𝛽)/𝛼)

𝑂(1) ◁ Number of samples to run list-globally
stable learner with parameters (𝛼, 𝛽/𝑘1) (Lemma 6.10.11)

9: for 𝑖← 1 to 𝑘1 do
10: Draw 𝑆𝑖 ∼ 𝒟𝑚, run 𝐴 on 𝑆𝑖 to get a set 𝐻𝑖

11: Let 𝐻 be the set of all ℎ ∈ ℋ that appear in at least 𝜏 · 𝑘1 of the sets
𝐻1, . . . , 𝐻𝑘1

12: for 𝑗 ← 1 to 𝑘2 do
13: Draw 𝑇𝑗 ∼ 𝒟𝑚, run 𝐴 on 𝑇𝑗 to get a set 𝐺𝑗

14: for ℎ ∈ 𝐻 do
15: Let ̂︀𝑄𝐻,𝐺1,...,𝐺𝑘2

(ℎ) =
|{𝑗∈[𝑘2]|ℎ∈𝐺𝑗}|

𝑘2

16: Let ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2
be the probability distribution on ℋ defined by

̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2
(ℎ) =

⎧⎨⎩
exp(𝛾 ̂︀𝑄𝐻,𝐺1,...,𝐺𝑘2

(ℎ))∑︀
ℎ′∈𝐻 exp(𝛾 ̂︀𝑄𝐻,𝐺1,...,𝐺𝑘2

(ℎ′))
, ℎ ∈ 𝐻,

0, otherwise.

17: Output ℎ ∼ ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2
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Proposition 6.10.12 (Adaptation from (GKM21)). Let ℋ ⊆ {0, 1}𝒳 be a count-
able hypothesis class with Ldim(ℋ) = 𝑑 < ∞ and 𝒳 be an arbitrary domain.
Then, for all 𝛼, 𝛽, 𝜌 ∈ (0, 1)3, there exists an 𝑛-sample 𝜌-TV indistinguishable al-
gorithm (Algorithm 15) that is (𝛼, 𝛽)-accurate with respect to the data-generating
distribution 𝒟, where

𝑛 = poly(𝑑, 1/𝛼, 1/𝜌, log(1/𝛽)) .

Proof. First, Lemma 6.10.11 guarantees the existence of a list-globally stable learner
𝐴 for ℋ. We will borrow some notation from (GKM21). We remark that the proof
is a simple adaptation of the proof of Theorem 20 in (GKM21) but we include
it for completeness. We will use Algorithm 15 essentially appearing in (GKM21)
(this algorithm is the same as Algorithm 1 in (GKM21); their algorithm has an
additional last step which performs correlated sampling). We will show that Al-
gorithm 15 satisfies the conclusion of Proposition 6.10.12 and is the desired TV
indistinguishable learner.

Sample Complexity. The number of samples used by Algorithm 15 is 𝑚 ·
(𝑘1 + 𝑘2), where 𝑚 is the number of samples used for the black-box list-globally
stable learner 𝐴. In particular, we have that

𝑛(𝛼, 𝛽, 𝜌) = poly(𝑑, 1/𝛼, 1/𝜌, log(1/𝛽)) .

Accuracy Analysis. By the guarantees of algorithm 𝐴, we get that the output
of 𝐴 consists only of hypotheses with distributional error at most 𝛼 with probability
1 − 𝛽/𝑘1, a union bound implies that this holds for all hypotheses in 𝐻 with
probability 1− 𝛽. This implies the accuracy guarantee for Algorithm 15.

TV Indistinguishability Analysis. Let us set 𝑄(ℎ) = Pr𝑆∼𝒟𝑛 [ℎ ∈ 𝐴(𝑆)],
let 𝐻≥0.9𝜏 = {ℎ ∈ 2𝒳 : 𝑄(ℎ) ≥ 0.9𝜏} and 𝐻≥1.1𝜏 = {ℎ ∈ 2𝒳 : 𝑄(ℎ) ≥ 1.1𝜏}. First,
Algorithm 15 creates the set 𝐻 that contains all ℎ ∈ ℋ that appear in at least
𝜏 · 𝑘1 of the realizations 𝐴(𝑆1), . . . , 𝐴(𝑆𝑘1).

The first lemma controls the probability that 𝐻 contains hypotheses that are
”heavy hitters” for 𝐴 and does not contain hypotheses ℎ whose 𝑄(ℎ) is small.

Lemma 6.10.13 (Adaptation of Lemma 22 in (GKM21)). Let ℰ denote the good
event that 𝐻1.1𝜏 ⊆ 𝐻 ⊆ 𝐻0.9𝜏 . Then Pr[ℰ ] ≥ 1− 𝜌, where the randomness is over
the datasets 𝑆1, ..., 𝑆𝑘1 and 𝐴.

Proof. We will first show that Pr[𝐻1.1𝜏 ⊆ 𝐻] ≥ 1− 𝜌/2. Since 𝐴 outputs a list of
size at most 𝐿, 𝐻1.1𝜏 ≤ 𝐿

1.1𝜏 ≤ 𝐿/𝜏 . For any 𝑓 ∈ 𝐻1.1𝜏 , we have that 1{𝑓 ∈ 𝐻} is an
i.i.d. Bernoulli random variable with success probability 𝑄(𝑓) ≥ 1.1𝜏 . Hoeffding’s
inequality implies that

Pr[𝑓 /∈ 𝐻] ≤ exp(−0.02𝜏2𝑘1) ≤ 0.01𝜌𝜏/𝐿 .
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A union bound over all hypotheses in 𝐻1.1𝜏 , implies the desired inequality. The
other direction follows by a similar argument and we refer to (GKM21) for the
complete argument.

The next step is to define the distribution 𝒫 with density 𝒫(ℎ) ∝ exp(𝛾𝑄(ℎ))1{ℎ ∈
𝐻≥0.9𝜏}. We can also define 𝒫𝐻(ℎ) ∝ exp(𝛾𝑄((ℎ))1{ℎ ∈ 𝐻}, where 𝛾 is as in Al-
gorithm 15. The next lemma relates the two distributions.

Lemma 6.10.14 (Adaptation of Lemma 23 in (GKM21)). Under the event ℰ, it
holds that 𝑑TV(𝒫,𝒫𝐻) ≤ 𝜌/2.

Proof. The proof is exactly the same as the one of Lemma 23 in (GKM21) with
the single modification that we pick 𝛾 to be of different value, indicated by Algo-
rithm 15.

Given a list-globally stable learner 𝐴 (which exists thanks to Lemma 6.10.11),
we can construct the distribution over hypotheses ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2

appearing in Al-
gorithm 15. We can then relate the empirical distribution ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2

with its
population analogue 𝒫𝐻 .

Lemma 6.10.15 (Adaptation of Lemma 24 in (GKM21)). It holds that E[𝑑TV(𝒫𝐻 , ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2
)] ≤

𝜌/2, where the expectation is over the sets 𝑇1, ..., 𝑇𝑘2 and the randomness of 𝐴.

Proof. The proof is exactly the same as the one of Lemma 24 in (GKM21) with
the single modification that we pick 𝑘2 to be of different value, indicated by Algo-
rithm 15.

Combining the above lemmas (as in (GKM21)), we immediately get that E[𝑑TV(𝒫, ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2
)] ≤

𝜌, where the expectation is over all the sets 𝑆1, ..., 𝑆𝑘1 and 𝑇1, ..., 𝑇𝑘2 given as in-
put to the learner 𝐴 and 𝐴’s internal randomness. Note that 𝒫 is independent
of the data and depends only on 𝐴. Both 𝒫 and ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2

are supported on a
finite domain. Note that Algorithm 15 that, given a training set 𝑆, outputs the
distribution over hypotheses ̂︀𝒫𝐻,𝐺1,...,𝐺𝑘2

(obtained by Algorithm 15) satisfies TV
indistinguishiability with parameter 2𝜌 using triangle inequality. Hence, two inde-
pendent runs of Algorithm 15 will be 2𝜌-close in total variation in expectation and
the algorithm is TV indistinguishable, as promised.

6.10.4 The Proof of Theorem 6.5.2
We are now ready to show that TV indistinguishability implies approximate

DP. We first start by showing that a non-trivial TV indistinguishable learner for
a class ℋ gives rise to a non-trivial DP learner for ℋ. The algorithm is described
in Algorithm 16. The result then follows from the fact that classes which admit
non-trivial DP learners have finite Littlestone dimension (Theorem 6.10.3).
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Algorithm 16 From TV Indistinguishability to Differential Privacy
1: Input: Black-box access to (𝛼, 𝛽)-accurate 𝜌-TV

Indistinguishable Learner 𝐴, Sample 𝑆
2: Parameters: 𝛼′, 𝛽′, 𝜀, 𝛿
3: Output: Classifier ℎ : 𝒳 → {0, 1}
4: 𝑘 ← 𝑂𝛽,𝜌

(︁
log(log(1/𝛽′)/(𝛽′𝛿))

𝜀

)︁
, 𝑘′ ← 𝑂𝛽,𝜌(log(1/𝛽

′))

5: Break 𝑆 into disjoint {𝑆𝑗
𝑖 }𝑖∈[𝑘],𝑗∈[𝑘′] with |𝑆𝑗

𝑖 | = 𝑛,∀𝑖 ∈ [𝑘], 𝑗 ∈ [𝑘′]
6: 𝒫 ← data-independent reference probability measure from Claim 19
7: (𝑋𝑗

1 , . . . , 𝑋
𝑗
𝑘)← Πℛ(𝐴(𝑆

𝑗
1), . . . , 𝐴(𝑆

𝑗
𝑘)),∀𝑗 ∈ [𝑘′] using the Poisson point

process ℛ with intensity 𝒫 × Leb× Leb ◁ 𝐴(𝑆𝑗
𝑖 ) is a distribution over

classifiers, the coupling Πℛ is described in Theorem 6.7.13.
8: Compute list 𝐿𝑗 ← StableHist(𝑋𝑗

1 , . . . , 𝑋
𝑗
𝑘), with 𝜂 =

𝑂𝛽,𝜌(1/ log(1/𝛽
′)), correctness 𝛽′/3, privacy (𝜀/2, 𝛿),∀𝑗 ∈ [𝑘′] ◁

Lemma 6.10.1
9: ̃︀𝐿𝑗 ← Remove elements from 𝐿𝑗 that appear less than 𝜂/2 times, ∀𝑗 ∈ [𝑘′]

10: Output GenPrivLearner(̃︀𝐿1, . . . , ̃︀𝐿𝑘′) with accuracy (𝛼′/2, 𝛽′/3) , privacy
(𝜀/2, 0) ◁ Lemma 6.10.2

Before we state the result formally, let us first provide some intuition behind
the approach. On a high level it resembles the approaches of (BLM20; GKM21;
BGH+23) to show that (pseudo-)global stability implies differential privacy. We
consider 𝑘′ different batches of 𝑘 datasets of size 𝑛. For each such batch, our goal
is to couple the 𝑘 different executions of the algorithm on an input of size 𝑛, so
that most of these outputs are, with high probability, the same. One first approach
would be to use a random variable as a “pivot” element in each batch: we first draw
𝐴(𝑆1

1) according to its distribution and the remaining {𝐴(𝑆1
𝑖 )}𝑖∈[𝑘]∖{1} from their

optimal coupling with 𝐴(𝑆1
1), given its realized value. Even though this coupling

has the property that, in expectation, most of the outputs will be the same, it is
not robust at all. If the adversary changes a point of 𝑆1

1 , then the values of all the
outputs will change! This is not privacy preserving. For this reason, we use the
coupling that is described in Theorem 6.7.13. We use the fact that 𝒳 is countable
to design a reference probability measure 𝒫 that is independent of the data. This
is the key step that leads to privacy-preservation. Then, we can argue that if we
follow this approach for multiple batches, there will be a classifier whose frequency
and performance are non-trivial. The next step is to feed all these hypotheses into
the Stable Histograms algorithm (cf. Lemma 6.10.1), which will output a list of
frequent hypotheses that includes the non-trivial one we mentioned above. Finally,
we feed these hypotheses into the Generic Private Learner (cf. Lemma 6.10.2) and
we get the desired result.

Proposition 6.10.16. Let ℋ ⊆ {0, 1}𝒳 where 𝒳 is countable. Assume that ℋ
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is learnable by an (𝛼, 𝛽)-accurate 𝜌-TV indistinguishable learner 𝐴 using 𝑛TV

samples, where 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 1/2), 𝛽 ∈ (0, (1 − 𝜌)/(1 + 𝜌)). Then, for
any (𝛼′, 𝛽′, 𝜀, 𝛿) ∈ (0, 1)4, it is also learnable by an (𝛼+ 𝛼′, 𝛽′)-accurate (𝜀, 𝛿)-
differentially private learner and the sample complexity is

𝑛DP = 𝑂𝛽,𝜌

(︂
log(1/𝛽′) · log(log(1/𝛽′)/(𝛽′𝛿))

𝜀
+ log(1/𝜂𝛽′) ·max

{︂
1

𝜀𝛼′ ,
1

𝛼′2

}︂)︂
·𝑛TV .

Proof. Let 𝐴 be the TV indistinguishable algorithm. We need to argue that the
output of Algorithm 16 is (𝛼+ 𝛼′, 𝛽′)-accurate and (𝜀, 𝛿)-DP. We start with the
former property.

Performance Guarantee. Let us consider the following experiment. We
draw 𝑘 samples, each one of size 𝑛 = 𝑛TV. Let 𝑆1

1 , . . . , 𝑆
1
𝑘 be these samples and

𝐴(𝑆1
1), . . . , 𝐴(𝑆1

𝑘) be the distributions of the outputs of the algorithm on these sam-
ples. We denote by 𝑋1

𝑖 the random variable that follows the distribution 𝐴(𝑆1
𝑖 ).

Let us consider a coupling of this collection of variables. Then, we have that

E
coupling

[︃
min
𝑗∈[𝑘]

𝑘∑︁
𝑖=1

1𝑋1
𝑖 ̸=𝑋1

𝑗

]︃
≤ E

coupling

[︃
𝑘∑︁

𝑖=1

1𝑋1
𝑖 ̸=𝑋1

1

]︃

=
𝑘∑︁

𝑖=1

E
coupling

[︁
1𝑋1

𝑖 ̸=𝑋1
1

]︁
=

𝑘∑︁
𝑖=1

Pr
coupling

[𝑋1
𝑖 ̸= 𝑋1

1 ] .

Note that the above hold for any coupling between the random variables (𝑋1
𝑖 )𝑖∈[𝑛].

Let us fix the DP parameters (𝜖, 𝛿). We will use the coupling protocol of Theo-
rem 6.7.13 with Ω = {0, 1}𝒳 , 𝒫 the probability measure described in Claim 19,
and ℛ the Poisson point process with intensity 𝒫 × Leb × Leb. We remark that
this choice of 𝒫 satisfies two properties: the collection 𝐴(𝑆1

𝑖 ) is absolutely contin-
uous with respect to 𝒫 and 𝒫 is data-independent, so it will help us establish the
differential privacy guarantees. The guarantees of the coupling of Theorem 6.7.13
imply that

Pr
ℛ
[𝑋1

𝑖 ̸= 𝑋1
1 ] ≤

2𝑑TV(𝑋
1
𝑖 , 𝑋

1
1 )

1 + 𝑑TV(𝑋1
𝑖 , 𝑋

1
1 )

,

for all 𝑖 ∈ [𝑘]. Thus, we have that

E
ℛ

[︃
min
𝑗∈[𝑘]

𝑘∑︁
𝑖=1

1𝑋1
𝑖 ̸=𝑋1

𝑗

]︃
≤

𝑘∑︁
𝑖=1

2𝑑TV(𝑋
1
𝑖 , 𝑋

1
1 )

1 + 𝑑TV(𝑋1
𝑖 , 𝑋

1
1 )

.
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By taking the expectation over the random draws of the samples 𝑆1, . . . , 𝑆𝑘, we see
that

E
𝑆1
1 ,...,𝑆

1
𝑘,ℛ

[︃
𝑘∑︁

𝑖=1

1𝑋1
𝑖 ̸=𝑋1

1

]︃
≤ E

𝑆1
1 ,...,𝑆

1
𝑘

[︃
𝑘∑︁

𝑖=1

2𝑑TV(𝑋
1
𝑖 , 𝑋

1
1 )

1 + 𝑑TV(𝑋1
𝑖 , 𝑋

1
1 )

]︃

=

𝑘∑︁
𝑖=1

E
𝑆1
1 ,...,𝑆

1
𝑘

[︂
2𝑑TV(𝑋

1
𝑖 , 𝑋

1
1 )

1 + 𝑑TV(𝑋1
𝑖 , 𝑋

1
1 )

]︂

≤
𝑘∑︁

𝑖=1

2E𝑆1
1 ,...,𝑆

1
𝑘
[𝑑TV(𝑋

1
𝑖 , 𝑋

1
1 )]

1 + E𝑆1
1 ,...,𝑆

1
𝑘
[𝑑TV(𝑋1

𝑖 , 𝑋
1
1 )]

≤ 2𝜌

1 + 𝜌
· 𝑘,

where the second to last step follows by Jensen’s inequality since the function
𝑓(𝑥) = 2𝑥/(1+𝑥) is concave in (0, 1) and the last step because E𝑆1

1 ,...,𝑆
1
𝑘
[𝑑TV(𝑋

1
𝑖 , 𝑋

1
1 )] ≤

𝜌 and 𝑓 is increasing in (0, 1). To make the notation cleaner, we let 𝜌′ = 2𝜌
1+𝜌 . Notice

that if 𝜌 < 1 then 𝜌′ < 1. Now using Markov’s inequality we get that

Pr

[︃
𝑘∑︁

𝑖=1

1𝑋1
𝑖 ̸=𝑋1

1
≥ 𝜈𝑘𝜌′

]︃
≤ 1

𝜈
=⇒ Pr

[︃
𝑘∑︁

𝑖=1

1𝑋1
𝑖 =𝑋1

1
≥ (1− 𝜈𝜌′)𝑘

]︃
≥ 1− 1

𝜈
,

where the probability is with respect to the randomness of the samples and the
coupling.

We denote by ℰ1𝜈 =
{︁∑︀𝑘

𝑖=1 1𝑋1
𝑖 =𝑋1

1
≥ (1− 𝜈𝜌′)𝑘

}︁
the event that a (1 − 𝜈𝜌′)-

fraction of the outputs has the same value. Let us now focus on the number of
classifiers in a single experiment that are correct, i.e., their error rate is at most
𝛼 < 1/2. Let 𝑌 1

𝑖 = 1err(𝑋1
𝑖 )≥1/2. Notice that because of the coupling we have used,

{𝑌 1
𝑖 }𝑘𝑖=1 are not independent, so we cannot simply apply a Chernoff bound to get

concentration. Let ℰ1𝛽 be the event that the classifier 𝑋1
1 is correct. We know that

Pr[ℰ1𝛽 ] ≥ 1−𝛽, where the probability is taken with respect to the random draws of
the input and the randomness of the algorithm. Now notice that under the event
ℰ1𝜈 ∩ ℰ1𝛽 at least (1 − 𝜈𝜌′)𝑘 classifiers are correct and have the same output. By a
union bound we see that

Pr[ℰ1𝜈 ∩ ℰ1𝛽 ] ≥ 1− 𝛽 − 1

𝜈
.

We now pick 𝜈 so that

1− 𝛽 − 1

𝜈
=

1− 𝛽 − 𝜌′

2
> 0 =⇒ 𝜈 =

2

𝜌′ − 𝛽 + 1
.

Thus, under ℰ1𝜈 ∩ℰ1𝛽 there are 1−𝛽−𝜌′

1−𝛽+𝜌′𝑘 classifiers that are equal to one another and

are correct. We let 𝑞 = 1−𝛽−𝜌′

1−𝛽+𝜌′ . As we discussed, the probability of this event is at
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least 1−𝛽−𝜌′

2 = 𝑝, so if we execute it 𝑘′ times we have that with probability at least

1 − 𝑒−𝑝𝑘′ it will occur at least once, i.e., Pr
[︁
∪𝑗∈[𝑘′]{ℰ

𝑗
𝜈 ∩ ℰ𝑗𝛽}

]︁
≥ 1 − 𝑒−𝑝𝑘′ . We

pick 𝑘′ = 1/𝑝 · log(3/𝛽′). Thus, with probability at least 1− 𝛽′/3 there is a correct
classifier that appears at least 𝑞𝑘 times. We condition on this event for the rest of
proof and we let 𝑆𝑗

𝑖 , 𝑋
𝑗
𝑖 ∼ 𝐴(𝑆𝑗

𝑖 ) be the 𝑖-th sample, classifier of the 𝑗-th batch,
respectively.

The next step is to feed these classifiers into the Stable Histograms algorithm
(cf. Lemma 6.10.1). We have shown that there exists a good classifier whose
frequency is at least 𝜂 = 𝑞𝑘

𝑘·𝑘′ = 𝑞
𝑘′ . Thus, our goal is to detect hypotheses with

frequency at least 𝜂/2. We pick the correctness parameter of the algorithm to be
𝛽′/3 and the DP parameters to be (𝜀/2, 𝛿). In total, we need

𝑛′ = 𝑂

(︂
log(1/(𝜂𝛽′𝛿))

𝜂𝜀

)︂
= 𝑂

(︂
log(1/𝛽′) · log (log(1/𝛽′)/(𝑞𝑝𝛽′𝛿))

𝑞𝑝𝜀

)︂
,

hypotheses in our list. Since 𝑛′ = 𝑘 · 𝑘′ it suffices to pick

𝑘 = 𝑂

(︂
log (log(1/𝛽′)/(𝑞𝑝𝛽′𝛿))

𝑞𝜀

)︂
.

Hence, with probability at least 1 − 𝛽′/3, the output of the algorithm will be
a list 𝐿 that contains all the hypotheses with frequency at least 𝜂/2 along with
estimates 𝑎𝑥 such that |𝑎𝑥 − freq𝑆(𝑥)| ≤ 𝜂/2. Let 𝑥* be the correct and frequent
hypothesis whose existence we have established. We know that 𝑎𝑥* ≥ 𝜂/2. Since
this algorithm is DP, we can drop from its output all the elements 𝑥 ∈ 𝐿 for which
𝑎𝑥 < 𝜂/2 without affecting the privacy guarantees. Thus, we end up with a new
list 𝐿′ whose size is 𝑂(1/𝜂).

The last step of the algorithm is to feed this list into the Generic Private Learner
(cf. Lemma 6.10.2) with privacy parameters (𝜀/2, 0) and accuracy parameters
(𝛼′/2, 𝛽′/3). The total number of samples we need for this step is

𝑛′′ = 𝑂

(︂
log(1/𝜂𝛽′) ·max

{︂
1

𝜀𝛼′ ,
1

𝛼′2

}︂)︂
.

Since there is an element in the list whose error is at most 𝛼, the guarantees of the
algorithm give us that with probability at least 1 − 𝛽′/3 the output has error at
most 𝛼+ 𝛼′.

Thus, by taking a union bound over the correctness of the three steps we
described, we see that with probability 1− 𝛽′ the algorithm outputs a hypothesis
whose error is at most 𝛼+ 𝛼′. We now argue that the algorithm is (𝜀, 𝛿)−DP.

Privacy Guarantee. First we need to show that the coupling step is differen-
tially private. This is a direct consequence of the coupling protocol that we have
provided (cf. Theorem 6.7.13) and the fact that the reference probability measure
is data-independent. If the adversary changes an element in 𝑆𝑗

𝑖 , 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑘′],
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then the coupling is robust, in the sense that if we fix the internal randomness,
then at most one of the elements that the coupling outputs will change. The result
for the privacy preservation of this step follows by integrating over the internal
randomness.

For the remaining two steps, i.e., the Stable Histograms and the Exponential
Mechanism the privacy guarantee follows from their definition. Using the pri-
vacy composition, we get that overall our algorithm is (𝜀/2, 𝛿) + (𝜀/2, 0) = (𝜀, 𝛿)-
differentially private.

Corollary 6.10.17. Let ℋ ⊆ {0, 1}𝒳 , where 𝒳 is a countable domain. If ℋ is
learnable by a (𝛼, 𝛽)-accurate 𝜌-TV indistinguishable learner using 𝑛TV samples,
where 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 1/2), 𝛽 ∈ (0, (1− 𝜌)/(1 + 𝜌)), then Ldim(ℋ) <∞.

Proof. The proof follows directly by combining Proposition 6.10.16 and Theo-
rem 6.10.3.

6.10.5 Going Beyond Countable 𝒳
We now propose an approach that we believe can lead to a generalization of the

algorithm beyond countable domains. The only change that we make in the algo-
rithm has to do with Line 6, where for every batch 𝑗 we pick 𝒫𝑗 = 1

𝑘

∑︀𝑘
𝑖=1𝐴(𝑆𝑗

𝑖 ).

Notice that for every 𝑗 ∈ [𝑘′] the {𝐴(𝑆𝑗
𝑖 )}𝑖∈[𝑘] are absolutely continuous with re-

spect to 𝒫𝑗 . However, it is not immediate now that the choice of {𝒫𝑗}𝑗∈[𝑘′] leads
to a DP algorithm. We believe that it is indeed the case that the algorithm is
approximately differentially private and we leave it as in interesting open problem.

6.11 Amplification and Boosting

6.11.1 The Proof of Theorem 6.6.2
Let us first restate the theorem along with the sample complexity of the algo-

rithm.

Theorem (Indistinguishability Amplification). Let 𝒫 be a reference probability
measure over {0, 1}𝒳 and 𝒟 be a distribution over inputs. Consider the source of
randomness ℛ to be a Poisson point process with intensity 𝒫 × Leb × Leb, where
Leb is the Lebesgue measure over R+. Consider a weak learning rule 𝐴 that is (i)
𝜌-TV indistinguishable with respect to 𝒟 for some 𝜌 ∈ (0, 1), (ii) (𝛼, 𝛽)-accurate
for 𝒟 for (𝛼, 𝛽) ∈ (0, 1)2, 𝛽 < 2𝜌

𝜌+1 − 2
√︁

2𝜌
𝜌+1 + 1, and, (iii) absolutely continuous

with respect to 𝒫 on inputs from 𝒟. Then, for any 𝜌′, 𝜖, 𝛽′ ∈ (0, 1)3, there exists an
algorithm IndistAmpl(𝐴,ℛ, 𝛽′, 𝜖, 𝜌′) (Algorithm 17) that is 𝜌′-TV indistinguishable
with respect to 𝒟 and (𝛼+ 𝜖, 𝛽′)-accurate for 𝒟.
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Let 𝑛𝐴(𝛼, 𝛽, 𝜌) denote the sample complexity of the weak learning rule 𝐴 with input
𝛽′, 𝜖, 𝜌′. Then, the learning rule IndistAmpl(𝐴,ℛ, 𝛽′, 𝜖, 𝜌′) uses

̃︀𝑂
⎛⎜⎝ log3

(︁
1
𝛽′

)︁
(︁

2𝜌
𝜌+1 − 2

√︁
2𝜌
𝜌+1 + 1− 𝛽

)︁2 (︁
1−

√︁
2𝜌
𝜌+1

)︁
𝜖2𝜌′2

· 𝑛𝐴(𝛼, 𝛽, 𝜌)

⎞⎟⎠
i.i.d. samples from 𝒟.

Algorithm 17 Amplification of Indistinguishability Guarantees
1: Input: Black-box access to (𝛼, 𝛽)-accurate 𝜌-TV

Indistinguishable Learner 𝐴, Sample access to 𝒟, Access
to Poisson point process ℛ with intensity 𝒫 × Leb× Leb ◁ 𝒫
is the reference probability measure from Claim 19.

2: Parameters: 𝛽′, 𝜖, 𝜌′

3: Output: Classifier ℎ : 𝒳 → {0, 1}
4: 𝜂, 𝜈 ←

√︁
2𝜌
1+𝜌

,
√︁

2𝜌
1+𝜌

5: 𝒫 ← data-independent reference probability measure from Claim 19
6: 𝑘 ← log(3/𝛽′)

1−𝜈−𝛽/(1−𝜂)

7: 𝑟𝑖 ← an infinite sequence of the Poisson Point Process ℛ, ∀𝑖 ∈ [𝑘] ◁ cf.
Theorem 6.7.13.

8: 𝒟𝑟𝑖 ← the distribution of hypotheses that is induced by 𝐴(𝑆, 𝑟𝑖) when
𝑆 ∼ 𝒟𝑛,∀𝑖 ∈ [𝑘]

9: 𝐿𝑖 ← HeavyHitters
(︀
𝒟𝑟𝑖 ,

3
4
(1− 𝜂), 1

4
(1− 𝜂), 𝜌′/(2𝑘), 𝛽′/(3𝑘)

)︀
,∀𝑖 ∈ [𝑘] ◁

Algorithm 12.
10:
(︁̂︀ℎ𝑖,̂︁err(̂︀ℎ𝑖)

)︁
← AgnosticLearner(𝐿𝑖, 𝜖/2, 𝜌

′/(2𝑘), 𝛽′/(3𝑘)),∀𝑖 ∈ [𝑘] ◁

Algorithm 13.
11: for 𝑖← 1 to 𝑘 do
12: if ̂︁err(̂︀ℎ𝑖) ≤ 𝛼 + 𝜖/2 then
13: Output ̂︀ℎ𝑖

14: Output the all 1 classifier

Proof. Since 𝐴 is 𝜌-TV indistinguishable there is an equivalent learning rule 𝐴′

that is 2𝜌
1+𝜌 -replicable (cf. Theorem 6.4.6) and uses randomness ℛ, where ℛ is a

Poisson point process with intensity 𝒫 × Leb× Leb, with Leb being the Lebesgue
measure over R+. Let

ℛ𝜂 =

{︂
𝑟 ∈ ℛ : ∃ℎ ∈ ℋ s.t. Pr

𝑆∼𝒟𝑛
[𝐴′(𝑆, 𝑟) = ℎ] ≥ 1− 𝜂

}︂
,
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We have that Pr𝑟∼ℛ[𝑟 ∈ ℛ𝜂] ≥ 1 − 𝜈, for 𝜂 =
2𝜌
1+𝜌

𝜈 , 𝜈 ∈
[︁

2𝜌
1+𝜌 , 1

)︁
(cf. Claim 20).

For each 𝑟 ∈ ℛ𝜂 let ℎ𝑟 ∈ ℋ be an element that witnesses its inclusion in ℛ𝜂
10.

Notice that since 𝐴′ is (𝛼, 𝛽)-accurate there is at most a 𝛽
1−𝜂 -fraction of 𝑟 ∈ ℛ

such that 𝑟 ∈ ℛ𝜂, err(ℎ𝑟) > 𝛼. Let ℛ*
𝜂 = {𝑟 ∈ ℛ𝜂 : err(ℎ𝑟) ≤ 𝛼} . Now notice that

Pr𝑟∼ℛ[𝑟 ∈ ℛ*
𝜂] ≥ 1 − 𝜈 − 𝛽

1−𝜂 . Thus, by picking 𝑘 = log(3/𝛽′)
1−𝜈−𝛽/(1−𝜂) i.i.d. samples

from ℛ we have that with probability at least 1−𝛽′/3 there will be some 𝑟𝑖* ∈ ℛ*
𝜂.

We denote this event by ℰ1 and we condition on it for the rest of the proof.
Let us now focus on the call to the replicable heavy hitters subroutine. We have

that, with probability at least 1−𝛽′/(3𝑘), every call will return a list that contains
all the (1 − 𝜂)-heavy-hitters and no elements whose mass is less than (1 − 𝜂)/2.
By a union bound, this happens with probability at least 1− 𝛽′/3 for all the calls.
Let us call this event ℰ2 and condition on it for the rest of the proof. Notice that
under these two events, the list 𝐿𝑖* that corresponds to 𝑟𝑖* will be non-empty and
will contain a classifier whose error is at most 𝛼.

We now consider the calls to the replicable agnostic learner. Notice that every
list that this algorithm takes as input has size at most 2

1−𝜂 . Moreover, with prob-
ability at least 1− 𝛽/3′, the estimated error of every classifier will be at most 𝜖/2
away from its true error. We call this event ℰ3 and condition on it. Hence, for anŷ︀ℎ𝑗 , 𝑗 ∈ [𝑘], that passes the test in the “if” statement, we have that err(̂︀ℎ𝑗) ≤ 𝛼+ 𝜖.

In particular, the call to 𝐿𝑖* will return ̂︀ℎ𝑖* , with estimated error ̂︁err(̂︀ℎ*𝑖 ) ≤ 𝛼+𝜖/2,
which means that err(̂︀ℎ*𝑖 ) ≤ 𝛼+ 𝜖. Hence, the algorithm will such a classifier and,
by a union bound, the total probability that this event happens is at least 1− 𝛽′.

The replicability of the algorithm follows from a union bound over the replica-
bility of the calls to the heavy hitters and the agnostic learner (cf. Lemma 6.8.5,
Claim 21). In particular, since we call the replicable heavy hitters algorithm 𝑘 times
with replicability parameter 𝜌′/(2𝑘) and the replicable agnostic leaner 𝑘 times with
replicability parameter 𝜌′/(2𝑘), we know that with probability at least 1 − 𝜌′ all
these calls will return the same output across two executions of the algorithm.

For the sample complexity notice that each call to the replicable heavy hitters
algorithm requires 𝑂

(︁
𝑘2 log(𝑘/𝛽′(1−𝜂))

(1−𝜂)3𝜌′2

)︁
(cf. Lemma 6.8.5.) Under the events we

have conditioned on, we see that |𝐿𝑖| = 𝑂(1/(1−𝜂)), ∀𝑖 ∈ [𝑘], hence each call to the
agnostic learner requires 𝑂

(︁
𝑘2

(1−𝜂)3𝜖2𝜌′2 log
(︁
𝑘(1−𝜂)

𝛽′

)︁)︁
(cf. Claim 21). Substituting

the value of 𝑘 gives us that the sample complexity is at most

𝑂

⎛⎝ log3
(︁

log(1/𝛽′)
𝛽′((1−𝜂)(1−𝜈)−𝛽)

)︁
((1− 𝜂)(1− 𝜈)− 𝛽)2 (1− 𝜂)𝜖2𝜌′2

⎞⎠ .

Plugging in the values of 𝜂, 𝜈 we get the stated bound.
10If there are multiple such elements then we pick an arbitrary one using a consistent

rule.
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6.11.2 The Proof of Theorem 6.6.3
Let us first recall the result we need to prove along with its sample complexity.

Theorem (Accuracy Boosting). Let 𝒫 be a reference probability measure over
{0, 1}𝒳 and 𝒟 be a distribution over inputs. Consider the source of randomness
ℛ to be a Poisson point process with intensity 𝒫 × Leb × Leb, where Leb is the
Lebesgue measure over R+. Consider a weak learning rule 𝐴 that is (i) 𝜌-TV indis-
tinguishable with respect to 𝒟 for some 𝜌 ∈ (0, 1), (ii) (1/2− 𝛾, 𝛽)-accurate for 𝒟
for some 𝛾 ∈ (0, 1/2), 𝛽 ∈

(︁
0, 2𝜌

𝜌+1 − 2
√︁

2𝜌
𝜌+1 + 1

)︁
, and, (iii) absolutely continuous

with respect to 𝒫 on inputs from 𝒟. Then, for any 𝜌′, 𝜖, 𝛽′ ∈ (0, 1)3, there exists
an algorithm IndistBoost(𝐴,ℛ, 𝜖) (Algorithm 18) that is 𝜌′-TV indistinguishable
with respect to 𝒟 and (𝜖, 𝛽′)-accurate for 𝒟.
If 𝑛𝐴(𝛾, 𝛽, 𝜌) is the sample complexity of the weak learning rule 𝐴 with input 𝛾, 𝛽, 𝜌,
then IndistBoost(𝐴,ℛ, 𝜖) uses

̃︀𝑂(︂𝑛𝐴(𝛾, 𝛽
′𝜖𝛾2/6, 𝜌𝜖𝛾2/(3(1 + 𝜌))) log(1/𝛽′)

𝜖2𝛾2
+

log(1/𝛽′)

(2𝜌/(1 + 𝜌))2𝜖3𝛾2

)︂
i.i.d. samples from 𝒟.

Proof of Theorem 6.6.3. In the sample complexity bound of Theorem 6.6.3, we
remark that the first term is the number of samples used by the RejectionSampling
mechanism (appearing in (ILPS22)) in the 𝑇 rounds and the second term controls
the number of samples used for the IndistingTestMeasure procedure (appearing
in (ILPS22)) for the 𝑇 rounds (see Algorithm 18). Let [𝑇 ] = {1, ..., 𝑇}. As in
(ILPS22)[Theorem 6.1], we consider that the shared randomness between the two
executions consists of a collection of 3𝑇 tapes with uniformly random bits. We
denote the 𝑗-th tape in round 𝑡 by ℛ(𝑗)

𝑡 for 𝑗 ∈ [3] and 𝑡 ∈ [𝑇 ]. Since 𝐴 is 𝑛-sample
𝜌-TV indistinguishable there is an equivalent learning rule 𝐴′ that is 𝑛-sample 2𝜌

1+𝜌 -
replicable (cf. Theorem 6.4.6) and uses randomness ℛ, where ℛ is a Poisson point
process with intensity 𝒫 × Leb× Leb, with Leb being the Lebesgue measure over
R+. Let us set 𝜌′ = 2𝜌/(1 + 𝜌). The boosting algorithm that we provide below
interprets the random strings as follows: for any 𝑡 ∈ [𝑇 ], we set ℛ(2)

𝑡 = ℛ (these
will be the tapes used by the equivalent learning algorithm 𝐴′) and the remaining
tapes ℛ(𝑗)

𝑡 corresponds to random samples from the uniform distribution in [0, 1]
for 𝑗 ∈ {1, 3} (these will be the tapes used by our sub-routines RejectionSampling
and IndistingTestMeasure.

The boosting algorithm works as follows:

1. As in (Ser03), it uses a measure 𝜇𝑡 to assign different scores to points of 𝒳 .
First, 𝜇1(𝑥) = 1 for any point. We will not delve into the details on how this
step works. For details we refer to (Ser03) (as in (ILPS22) since this step is
not crucial for the proof).
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Algorithm 18 Boosting of Accuracy Guarantee

1: Input: Black-box access to weak (1
2
− 𝛾, 𝛽)-accurate 𝜌-TV

Indistinguishable Learner 𝐴, Sample 𝑆 ∼ 𝒟𝑛, Access to
Poisson point process ℛ with intensity 𝒫 × Leb× Leb ◁ 𝒫 is
the reference probability measure from Claim 19.

2: Target : 𝜖, 𝛽′

3: Output: Classifier ℎ : 𝒳 → {0, 1}
4: IndistBoost() ◁ This algorithm appears in (ILPS22)
5: 𝜌′ = 2𝜌/(1 + 𝜌)
6: 𝑇 = 100/(𝜖𝛾2)
7: 𝜇1(𝑥) = 1

8: 𝑛𝑤 = 𝑛𝐴

(︁
𝛾, 𝛽′

3𝑇
, 𝜌′

6𝑇

)︁
9: for 𝑡 = 1..𝑇 do

10: 𝒟𝜇𝑡(𝑥) =
𝜇𝑡(𝑥)𝒟𝑋(𝑥)

𝑑(𝜇𝑡)

11: 𝑆𝑡 ← 𝑛𝑤/𝜖 · log(𝑇/𝛽′)

12: 𝑆 ′
𝑡 ← RejectionSampling

(︁
𝑆𝑡, 𝑛𝑤, 𝜇𝑡,ℛ(1)

𝑡

)︁
13: ℎ𝑡 ∼ 𝐴

(︁
𝑆 ′
𝑡,ℛ

(2)
𝑡

)︁
14: Update 𝜇𝑡+1(𝑥) using smooth boosting trick of (Ser03).
15: Draw 𝑆 ′′

𝑡 = 𝑂(1/(𝜌′2𝜖3𝛾2)) i.i.d. samples from 𝒟
16: If IndistingTestMeasure

(︁
𝜇𝑡+1, 𝑆

′′
𝑡 ,ℛ

(3)
𝑡 , 𝜌′/(3𝑇 ), 𝛽′/(3𝑇 )

)︁
≤

2𝜖/3 then output sgn (
∑︀

𝑖 ℎ𝑖)

17: RejectionSampling(𝑆in, size_out, 𝜇,ℛ)
18: 𝑆out = ∅
19: for (𝑥, 𝑦) ∈ 𝑆in do
20: Pick 𝑏 ∈ [0, 1] using ℛ
21: If 𝜇(𝑥) ≥ 𝑏 then 𝑆out ← append(𝑆out, (𝑥, 𝑦))
22: If |𝑆out| > size_out then output 𝑆out

23: IndistingTestMeasure(𝜇, 𝑆,ℛ, 𝜌′, 𝛽)
24: Call Algorithm 1 in (ILPS22) (see Theorem 6.8.2) with source of ran-

domness ℛ and dataset 𝑆, error 𝜖/3, confidence 𝛽, replicability 𝜌 and
query function 𝜇

2. At every round 𝑡, the algorithm performs rejection sampling on a fresh
dataset 𝑆𝑡 using the routine RejectionSampling. This algorithm is TV
indistinguishable since it uses the source of randomness ℛ(1)

𝑡 that provides
uniform samples in [0, 1] (it is actually replicable).

3. The part of the dataset that was accepted from this rejection sampling pro-
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cess is given to replicable learner 𝐴′, which is equivalent to the TV indis-
tinguishable weak learner 𝐴. This algorithm uses the shared Poisson point
processℛ(2)

𝑡 with intensity 𝒫×Leb×Leb, where 𝒫 is the reference probability
measure from Claim 19, and outputs the same hypothesis with probability
1− 𝜌′/(6𝑇 ).

4. Then we use the smooth update rule of (Ser03) to design the new measure
𝜇𝑡+1 for the upcoming iteration. This step is deterministic.

5. Last we check whether the boosting procedure is completed. To this end, we
check whether 𝜇𝑡 is in expectation small. This step again uses a uniformly
random threshold in [0, 1] and so makes use of the source ℛ(3)

𝑡 .

The algorithm runs for 𝑇 = 𝐶
𝜖𝛾2 rounds for some numerical constant 𝐶 > 0.

Hence, we will assume access to 3𝑇 tapes of randomness, 𝑇 with points from the
Poisson point process and 2𝑇 with uniform draws from [0, 1]. The correctness of
the algorithm follows from (Ser03) and (ILPS22)[Theorem 6.1]. As for the TV
indistinguishability, this is implied by the replicability of the whole procedure.
We have that the weak learner 𝐴′ is called 𝑇 times with TV indistinguishability
parameter 𝜌′/(6𝑇 ), the rejection sampler is called 𝑇 times so that it outputs ⊥
with probability 𝜌′/(6𝑇 ) and the indistinguishable measure tester is 𝜌′/(3𝑇 )-TV
indistinguishable and called 𝑇 times. A union bound gives the desired result. For
further details, we refer to (ILPS22) since the analysis is essentially the same.

For the failure probability 𝛽′, the algorithm can fail if the rejection sampling
algorithm outputs ⊥, if the weak learner fails, and if the replicable SQ oracle
(Theorem 6.8.2) fails. We have that the probability that the rejection sampling
gives ⊥ using 𝑛𝑤/𝜖 · log(𝑇/𝛽′) is at most 𝛽′/𝑇 (which can be considered much
smaller than 𝜌′/(6𝑇 )). Since each one of the three probabilities are upper bounded
by 𝛽′/(3𝑇 ), the indistinguishable boosting algorithm succeeds with probability
1− 𝛽′.

6.11.3 Tight Bound Between 𝛽, 𝜌

As we alluded before, Proposition 6.10.16 shows that if we have a 𝜌-TV indistin-
guishable (𝛼, 𝛽)-accurate learner with 𝜌 ∈ (0, 1), 𝛼 ∈ (0, 1/2), 𝛽 ∈

(︁
0, 1−𝜌

1+𝜌

)︁
, then

the class ℋ has finite Littlestone dimension. The reason we need 𝛽 ∈
(︁
0, 1−𝜌

1+𝜌

)︁
is

because, in expectation over the random draws of the samples and the randomness
of the coupling, this is the fraction of the executions of the algorithm that will give
the same output. The results of (AS19) show that under certain conditions, if we
want to couple 𝑘 random variables whose pairwise TV distance is at most 𝜌, then
under the pairwise optimal coupling the probability that the realization of a pair
of them differs is 2𝜌

1+𝜌 . However, it is unclear what the implication of this result is
in the setting we are interested in.
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6.11.4 Beyond Countable 𝒳
The barrier to push our approach beyond countable 𝒳 is very closely related to

the one we explained in the DP section. To be more precise, it is not clear how one
can design a data-independent reference probability measure 𝒫 when 𝒳 is uncount-
able. Hence, one idea would be to use some data-dependent probability measure 𝒫.
This would affect our algorithm in the following way: instead of first sampling the
random Poisson point process sequence independently of the data, we first sample
𝑆1, . . . , 𝑆𝑘 and let the reference probability measure be 𝒫 = 1

𝑘

∑︀𝑘
𝑖=1𝐴(𝑆𝑖). The

difficult step is to show that this algorithm is TV indistinguishable. When we
consider a different execution of the algorithm we let 𝑆′

1, ..., 𝑆
′
𝑘 be the new sam-

ples and 𝒫 ′ = 1
𝑘

∑︀𝑘
𝑖=1𝐴(𝑆

′
𝑖) be the new reference probability measure. A natural

approach to establish the TV indistinguishability property of the algorithm is to
try to couple 𝒫,𝒫 ′ and show that under this coupling, the expected TV distance
of two executions of the new algorithm is small. We leave this question open for
future work.

6.12 TV Indistinguishability and Generalization
Recall that in Proposition 6.2.1 we claimed that the generalization bound can

shave the dependence on the VC dimension by paying an overhead in the con-
fidence parameter. A similar result appears in (ILPS22) relating replicability to
generalization. We now present its proof.

Proof of Proposition 6.2.1. Let 𝑆 be a sample from 𝒟𝑛. Since 𝐴 is 𝜌-TV indistin-
guishable, it is also 𝜌-fixed prior TV indistinguishable and let 𝒫𝒟 be the sample-
independent prior. Consider two samples ℎ1 ∼ 𝐴(𝑆) and ℎ2 ∼ 𝒫𝒟. We consider
the following quantities:

• ̂︀𝐿(ℎ1) = 1
𝑛

∑︀
(𝑥,𝑦)∈𝑆 1{ℎ1(𝑥) ̸= 𝑦} is the empirical loss of ℎ1 in 𝑆.

• ̂︀𝐿(ℎ2) = 1
𝑛

∑︀
(𝑥,𝑦)∈𝑆 1{ℎ2(𝑥) ̸= 𝑦} is the empirical loss of ℎ2 in 𝑆.

• 𝐿(ℎ1) = Pr(𝑥,𝑦)∼𝒟[ℎ1(𝑥) ̸= 𝑦] is the population loss of ℎ1 with respect to 𝒟.

We will show that all these three quantities are close to each other. First, let us
consider the space of measurable functions ℱ = {𝑓 : ‖𝑓‖∞ ≤ 1}. We have that

𝑑TV(𝑃,𝑄) = sup
𝑓∈ℱ

⃒⃒⃒⃒
E

𝑥∼𝑃
[𝑓(𝑥)]− E

𝑥∼𝑄
[𝑓(𝑥)]

⃒⃒⃒⃒
.

This means that the total variation distance between two distributions is essentially
the worst case bounded distinguisher 𝑓 . Since ̂︀𝐿 : {0, 1}𝒳 → [0, 1], we have that⃒⃒⃒⃒

⃒ E
ℎ1∼𝐴(𝑆)

[︁̂︀𝐿(ℎ1)]︁− E
ℎ2∼𝒫𝒟

[︁̂︀𝐿(ℎ2)]︁
⃒⃒⃒⃒
⃒ ≤ 𝑑TV(𝐴(𝑆),𝒫𝒟) .
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Similarly, we get that⃒⃒⃒⃒
⃒ E
ℎ1∼𝐴(𝑆)

[𝐿(ℎ1)]− E
ℎ2∼𝒫𝒟

[𝐿(ℎ2)]

⃒⃒⃒⃒
⃒ ≤ 𝑑TV(𝐴(𝑆),𝒫𝒟) .

Now, since 𝐴 is 𝜌-fixed prior TV indistinguishable, using Markov’s inequality, we
have that ∀𝜖1 > 0,

E
𝑆∼𝒟𝑛

[︃⃒⃒⃒⃒
⃒ E
ℎ1∼𝐴(𝑆)

[︁̂︀𝐿(ℎ1)]︁− E
ℎ2∼𝒫𝒟

[︁̂︀𝐿(ℎ2)]︁
⃒⃒⃒⃒
⃒
]︃
≤ 𝜌⇒ Pr

𝑆∼𝒟𝑛

[︃⃒⃒⃒⃒
⃒ E
ℎ1∼𝐴(𝑆)

[︁̂︀𝐿(ℎ1)]︁− E
ℎ2∼𝒫𝒟

[︁̂︀𝐿(ℎ2)]︁
⃒⃒⃒⃒
⃒ > 𝜖1

]︃
≤ 𝜌

𝜖1
.

In a similar manner, we get

Pr
𝑆∼𝒟𝑛

[︃⃒⃒⃒⃒
⃒ E
ℎ1∼𝐴(𝑆)

[𝐿(ℎ1)]− E
ℎ2∼𝒫𝒟

[𝐿(ℎ2)]

⃒⃒⃒⃒
⃒ > 𝜖1

]︃
≤ 𝜌

𝜖1

We note that, since 𝒫𝒟 is sample-independent, we have that the statistic

E
ℎ2∼𝒫𝒟

[̂︀𝐿(ℎ2)] = 1

𝑛

∑︁
(𝑥,𝑦)∈𝑆

Pr
ℎ2∼𝒫𝒟

[ℎ2(𝑥) ̸= 𝑦]

is a sum of independent random variables with expectation Eℎ2∼𝒫𝒟 [𝐿(ℎ2)]. We
can use standard concentration of independent random variables and get

Pr
𝑆∼𝒟𝑛

[︂⃒⃒⃒⃒
E

ℎ2∼𝒫𝒟

[︁̂︀𝐿𝑆(ℎ2)
]︁
− E

ℎ2∼𝒫𝒟
[𝐿𝒟(ℎ2)]

⃒⃒⃒⃒
≥ 𝜖2

]︂
≤ 2𝑒−2𝑛𝜖22 ,

for any 𝜖2 > 0. This means that

Pr
𝑆∼𝒟𝑛

[︃⃒⃒⃒⃒
⃒ E
ℎ1∼𝐴(𝑆)

[︁̂︀𝐿𝑆(ℎ1)
]︁
− E

ℎ1∼𝐴(𝑆)
[𝐿𝒟(ℎ1)]

⃒⃒⃒⃒
⃒ ≥ 2𝜀1 + 𝜀2

]︃
≤ 2𝜌/𝜖1 + 2𝑒−2𝑛𝜖22 ,

so we have that, with probability at least 1− 4𝜌/𝜖− 𝛿,⃒⃒⃒⃒
⃒ E
ℎ1∼𝐴(𝑆)

[︁̂︀𝐿𝑆(ℎ1)
]︁
− E

ℎ1∼𝐴(𝑆)
[𝐿𝒟(ℎ1)]

⃒⃒⃒⃒
⃒ ≤ 𝜖+

√︂
log(2/𝛿)

2𝑛
.

We note that we obtain the result of Proposition 6.2.1 by taking 𝜖 =
√
𝜌.
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6.13 Extended Abstract in Greek
Στην παρούσα διδακτορική διατριβή μελετούνται θεωρητικά προβλήματα στην πε-

ριοχή του Reliable Machine Learning με στόχο των σχεδιασμό αλγορίθμων που είναι
ανθεκτικοί σε θόρυβο και μεροληψία (Robust Machine Learning)και ικανοποιούν ιδι-
ότητες οπώς η ιδιωτικότητα και η αναπαραγωγικότητα (Responsible Machine Learn-
ing).
Στον τομέα του Robust Machine Learning,σχεδιάζουμε υπολογιστικά αποδοτι-

κούς αλγορίθμους για προβλήματα στους τομείς των Truncated Statistics, Censored
Statistics και Robust Statistics.Συγκεκριμένα, σχεδιάζουμε τις πρώτες αποδοτικές
μεθόδους για μάθηση από truncated διακριτές κατανομές και παραγωγή τέλειων δειγ-
μάτων από truncated δείγματα. ΄Επειτα, ασχολούμαστε με το θεμελιώδες πρόβλημα
μάθησης με partial/coarse labels.Σε αυτή την κατέθυνση δίνουμε μία γενική θετική α-
πάντηση αποδεικνύοντας πως κάθε πρόβλημα που λύνεται με Statistical Queries,μπορεί
να λύθεί και με coarse labels,αν το coarsening είναι επαρκώς information preserv-
ing.Παραλληλα, απαντάμε στο ερώτημα της μάθησης του μέσου μίας Gaussian κα-
τανομής σε υψηλές διαστάσεις από coarse δείγματα. Τέλος, μελετάμε το πρόβλημα
μάθησης γραμμικών συναρτήσεων ταξινόμησης υπο την παρουσίας bounded noise,ένα
πρόβλημα που γενικεύει το θεμελιώδες πρόβλημα μάθησης halfspaces με Massart
noise. Στον τομέα του Responsible Machine Learning,μελετάμε την έννοια της α-
ναπαραγωγικότητας (replicability) ως αλγοριθμικής ιδιότητας και προτείνουμε ένα
μοντέλο αναπαραγωγικότητας στον τομέα του interactive learningμε εφαρμογή στο
θεμελιώδες πρόβλημα των στοχαστικών bandits. Συγκεκριμένα, σχεδιάζουμε τους
πρώτους replicable bandit αλγόριθμους που επιτυγχάνουν χαμηλό expected regret
σε προβλήματα Multi-Armed Bandits και Linear Bandits.Παράλληλα, θεμελειώνου-
με στατιστικές συνδέσεις μεταξύ της έννοιας της αναπαραγωγικότητας με αυτήν της

διαφορικής ιδιωτικότητας differential privacy. Αποδεικνύουμε πως κάθε replicable
αλγόριθμος μπορεί να μετατραπεί σε ένα differentially private αλγόριθμο και ότι κάθε
differentially private αλγόριθμος μπορεί να μετατραπεί σε ένα replicable αλγόριθμο.

6.13.1 Εισαγωγή

Η Μηχανική Μάθηση αποτελεί θεμελιώδες δομικό στοιχείο της σύγχρονης ζω-

ής με πολυάριθμες εφαρμογές. Ο αντίκτυπός της είναι εκτεταμένος και παρατηρείται

συχνά σε τομείς όπως η υγειονομική περίθαλψη, οι μεταφορές, τα οικονομικά και

η εκπαίδευση. Για παράδειγμα, η Μηχανική Μάθηση μπορεί να χρησιμοποιηθεί για

τη βελτίωση της υγειονομικής περίθαλψης μέσω καλύτερων διαγνώσεων και εξατο-

μικευμένης θεραπείας και για τη μείωση της κυκλοφοριακής συμφόρησης χρησιμο-

ποιώντας προγνωστικά αναλυτικά στοιχεία. Ενώ τέτοιες εφαρμογές της Επιστήμης

Υπολογιστών και Δεδομένων μπορούν να οδηγήσουν σε μια ασφαλέστερη, πιο απο-

τελεσματική και πιο δίκαιη κοινωνία, υπάρχουν διάφοροι κίνδυνοι που κρύβονται πίσω

από μια τέτοια τεχνολογία. Διάφορες πηγές προκατάληψης ή κακόβουλων επιθέσεων

μπορούν να επηρεάσουν την ποιότητα, την απόδοση, τη δικαιοσύνη και το απόρρητο
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των συστημάτων Μηχανικής Μάθησης. Ως εκ τούτου, είναι πρωταρχικής σημασίας η

παροχή αξιόπιστων μοντέλων μηχανικής εκμάθησης που διασφαλίζουν την καλή συ-

μπεριφορά των αναπτυγμένων συστημάτων με αποδεδειγμένες εγγυήσεις όσον αφορά

την ευρωστία και την απόδοση.

Η παρούσα διατριβή εστιάζει στο σχεδιασμό και την απόκτηση τυπικών θεωρητι-

κών εγγυήσεων σχετικά με τέτοια αξιόπιστα συστήματα που διασφαλίζουν (ι) ανθεκτι-

κότητα στην προκατάληψη, (ιι) διαφορική ιδιωτικότητα και (ιιι) αναπαραγωγισιμότητα.

6.13.2 Robust Machine Learning
Πολλές κοινώς χρησιμοποιούμενες στατιστικές μέθοδοι βασίζονται σε μια κρίσιμη

υπόθεση: ότι τα δεδομένα κατανέμονται ανεξάρτητα και πανομοιότυπα (i.i.d.).Σύμφωνα
με αυτή την υπόθεση, κάθε δείγμα λαμβάνεται υπό συνεπείς συνθήκες και δεν επηρε-

άζει τα υπόλοιπα δείγματα. Ωστόσο, αυτή η υπόθεση δεν λαμβάνει υπόψη τις διάφορες

προκλήσεις στη διαδικασία συλλογής δεδομένων, οδηγώντας σε μεροληπτικά σύνολα

δεδομένων. Η παρουσία τέτοιας μεροληψίας μπορεί να αποφέρει παραπλανητικά ή

άδικα στατιστικά συμπεράσματα. Κατά συνέπεια, καθίσταται σημαντικό να εντοπι-

στούν οι πηγές της μεροληψίας και, το πιο σημαντικό, να επινοηθούν στρατηγικές

για τη διεξαγωγή στατιστικών αναλύσεων παρουσία μεροληψίας. Αυτό το ζήτημα

είναι ένα θεμελιώδες πρόβλημα με εκτεταμένες εφαρμογές σε διάφορα επιστημονικά

πεδία, συμπεριλαμβανομένης της Ιατρικής Επιστήμης και της Οικονομίας. Ο τομέας

του Robust Machine Learning στοχεύει να ασχοληθεί με τέτοια προκατειλημμένα
σύνολα δεδομένων και αλγόριθμους σχεδιασμού που αποδεδειγμένα αντιμετωπίζουν

τέτοια φαινόμενα.

Στο πρώτο μέρος αυτής της διατριβής, παρέχουμε θεωρητική κατανόηση όταν τα

δεδομένα είναι προκατειλημμένα λόγω των ακόλουθων σημαντικών και αναδυόμενων

προκλήσεων: (1) truncation, (2) coarsening και (3) corruptions με ημιτυχαίο θόρυβο.

6.13.3 Responsible Machine Learning
Καθώς η Μηχανική Μάθηση γίνεται όλο και περισσότερο μέρος των εφαρμογών

της πραγματικής ζωής, οι επιστήμονες δεδομένων στοχεύουν στην ανάπτυξη μοντέλων

και αλγορίθμων Μηχανικής Μάθησης με τρόπο που να ευθυγραμμίζεται με τις ηθικές

αρχές και αξίες και με τρόπο ώστε τα παρεχόμενα αποτελέσματα να είναι αξιόπιστα

και έγκυρα.

Το ζήτημα της ιδιωτικότητας κατά την ανάλυση δεδομένων έχει πλούσιο ιστορικό

υπόβαθρο που περιλαμβάνει διάφορους τομείς σπουδών. Με την προηγμένη τεχνολο-

γία που επιτρέπει την όλο και πιο ισχυρή συλλογή και οργάνωση δεδομένων χρηστών,

υπάρχει μια αυξανόμενη ζήτηση για μια αυστηρή και καλά καθορισμένη έννοια της ι-

διωτικής ζωής. Η έννοια της διαφορικής ιδιωτικότητας αναδύεται ως θεμελιώδης λύση

στους κλάδους, παρέχοντας έναν τρόπο προστασίας του απορρήτου των δεδομένων

ακόμα και όταν συλλέγονται δεδομένα από μια μεγάλη ομάδα ατόμων. Διασφαλίζει

ότι τα άτομα δεν μπορούν να εντοπιστούν μέσω των δεδομένων τους, ενώ ταυτόχρονα
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παρέχει πολύτιμες πληροφορίες που μπορούν να βελτιώσουν τις υπηρεσίες.

Η αναπαραγωγισιμότητα είναι σημαντική γιατί επιτρέπει σε άλλους να επαληθε-

ύουν και να επικυρώνουν τα ευρήματα οποιασδήποτε έρευνας ή πειράματος. Χωρίς

αναπαραγωγισιμότητα, τα ευρήματα της έρευνας δεν είναι αξιόπιστα και η επιστημο-

νική πρόοδος καταπνίγεται. Συγκεκριμένα, προκειμένου τα επιστημονικά ευρήματα

να είναι έγκυρα και αξιόπιστα, η πειραματική διαδικασία πρέπει να είναι επαναλήψιμη

και πρέπει να παρέχει συνεκτικά αποτελέσματα και συμπεράσματα σε αυτές τις επανα-

λήψεις. Εν ολίγοις, η αναπαραγωγισιμότητα μπορεί να μειώσει την προκατάληψη και

να αυξήσει τη διαφάνεια στην έρευνα, γεγονός που μπορεί να βοηθήσει να διασφαλι-

στεί ότι τα αποτελέσματα είναι δίκαια και ακριβή. Στην πραγματικότητα, η έλλειψη

αναπαραγωγισιμότητας ήταν ένα σημαντικό ζήτημα σε πολλούς επιστημονικούς τομε-

ίς, που συνήθως αναφέρονται ως την «κρίση αναπαραγωγισιμότητας». Μια έρευνα του

2016 που εμφανίστηκε στο Nature (Bak16b)αποκάλυψε ότι περισσότερο από το 70%
των ερευνητών απέτυχαν στην προσπάθειά τους να αναπαράγουν τα πειράματα ενός

άλλου ερευνητή.

Στο δεύτερο μέρος αυτής της διατριβής, εμείς κάνουμε συνεισφορές στον το-

μέα της Υπεύθυνης Μηχανικής Μάθησης: καθιερώνουμε αυστηρές συνδέσεις μεταξύ

των προαναφερθέντων εννοιών της (1) διαφορικής ιδιωτικότητας και της (2)αναπα-

ραγωγισιμότητας και σχεδιάζουμε αλγόριθμους που επιλύουν σημαντικά στατιστικά

προβλήματα υπό περιορισμούς αναπαραγωγισιμότητας.

6.13.4 Σύνοψη Αποτελεσμάτων

Σε αυτή την ενότητα συνοψίζουμε τα αποτελέσματα αυτής της διατριβής και παρου-

σιάζουμε μια επισκόπηση της δομής της διατριβής. Ξεκινάμε εξηγώντας σύντομα το

περιεχόμενο καθενός από τα κεφάλαια. Το πρώτο μισό της διατριβής ασχολείται με τη

Στιβαρή Μηχανική Μάθηση, ενώ το δεύτερο χειρίζεται προβλήματα που σχετίζονται

με την Υπεύθυνη Μηχανική Μάθηση.

Στο πρώτο μέρος της διατριβής (Chapter 2-4),θα ασχοληθούμε με ερωτήσεις σχε-
τικά με τη Στιβαρή Μηχανική Μάθηση. Ειδικότερα, τα τρία πρώτα κεφάλαια οργα-

νώνονται ως εξής.

Κεφάλαιο 2 - Περικομμένα δεδομένα.

Αρχικά μελετάμε το πρόβλημα της εκτίμησης των παραμέτρων μιας κατανομής

γινομένου Boole σε 𝑑 διαστάσεις, όταν τα δείγματα περικόπτονται από ένα σύνολο
𝑆 ⊆ {0, 1}𝑑 προσβάσιμο μέσω ενός membership oracle.Εισάγουμε μια φυσική έν-
νοια του πάχους του συνόλου περικοπής 𝑆, σύμφωνα με την οποία τα περικομμένα
δείγματα αποκαλύπτουν αρκετές πληροφορίες σχετικά με την πραγματική κατανομή.

Δείχνουμε ότι εάν το σύνολο περικοπής είναι επαρκώς παχύ, τα δείγματα από την

πραγματική κατανομή μπορούν να δημιουργηθούν από περικομμένα δείγματα. Μια

εκπληκτική συνέπεια είναι ότι σχεδόν οποιοδήποτε στατιστική εργασία που μπορε-

ί να εκτελεστεί αποτελεσματικά για κατανομές γινόμενα Boole, μπορούν επίσης να
πραγματοποιηθούν από περικομμένα δείγματα, με μικρή αύξηση σε πολυπλοκότητα
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δείγματος. Εξερευνώντας τα όρια εκμάθησης διακριτών μοντέλων από περικομμένα

δείγματα, προσδιορίζουμε τις φυσικές συνθήκες που είναι απαραίτητες για αποτελε-

σματική ταυτοποίηση. Προσαρμόζοντας προσεκτικά την προσέγγιση Στοχαστικής

Κάθοδος Κλίσης του (DGTZ18),δείχνουμε ότι αυτές οι συνθήκες είναι επίσης επαρ-
κείς για την αποτελεσματική εκμάθηση των περικομμένων κατανομών.

Κεφάλαιο 3 - Coarsened Data.

Σε αυτό το κεφάλαιο, ορίζουμε και μελετάμε επίσημα το πρόβλημα της μάθησης α-

πό μερικά δεδομένα (Challenge 2).Αντί να παρατηρούμε τις πραγματικές ετικέτες από
ένα σύνολο 𝒵, παρατηρούμε χονδροειδείς ετικέτες που αντιστοιχούν σε μια κατάτμη-
ση 𝒵 (ή σε ένα μείγμα κατατμήσεων). Το κύριο αλγοριθμικό μας αποτέλεσμα είναι
ότι ουσιαστικά οποιοδήποτε πρόβλημα μαθαίνεται από fine ετικέτες, μπορεί επίσης να
μαθευτεί αποτελεσματικά και όταν τα coarse δεδομένα είναι επαρκώς ενημερωτικά.
Λαμβάνουμε το αποτέλεσμά μας μέσω μιας γενικής αναγωγής για την απάντηση στα

στατιστικά ερωτήματα (SQ) έναντι των fine ετικετών που δίνονται μόνο σε coarse ε-
τικέτες. Ο αριθμός των coarse ετικετών που απαιτούνται εξαρτάται πολυωνυμικά από
την παραμόρφωση των πληροφοριών που οφείλεται στη χονδροποίηση και τον αριθμό

των λεπτών ετικετών |𝒵|. Επίσης, ερευνούμε ένα κεντρικό πρόβλημα σε λογοκριμένα
στατιστικά: αυτό της εκτίμησης του Gaussian μέσου όρου από coarse δεδομένα. Πα-
ρέχουμε έναν αποτελεσματικό αλγόριθμο όταν τα σύνολα είναι κυρτά και δείχνουμε

ότι το πρόβλημα είναι NP-hard ακόμη και για πολύ απλά μη κυρτά σύνολα. Από
τεχνικής πλευράς, το αλγοριθμικό μας αποτέλεσμα βασίζεται στην κομψή ανισότητα

Brascamp–Lieb και το hardness αποτέλεσμα μας βασίζεται σε (ίσως απροσδόκητες)
συνδέσεις μεταξύ coarse κατανομών Gauss και του θεμελιώδους προβλήματος της ε-
ύρεσης της μέγιστης τομής σε ένα γράφημα, το οποίο είναι γνωστό ότι είναι NP-hard
ακόμα και κατά προσέγγιση.

Κεφάλαιο 4 - Αλλοιωμένα δεδομένα.

Η κατάταξη ετικετών είναι η εποπτευόμενη εργασία εκμάθησης μιας συνάρτησης

ταξινόμησης που αντιστοιχίζει τα χαρακτηριστικά διανύσματα 𝑥 ∈ R𝑑
στις ταξινο-

μήσεις 𝜎(𝑥) ∈ S𝑘 σε ένα πεπερασμένο σύνολο από 𝑘 ετικέτες. Εστιάζουμε στη θε-
μελιώδη περίπτωση της εκμάθησης συναρτήσεων γραμμικής ταξινόμησης (LSF) κάτω
από τα περιθώρια Gauss:𝑥 λαμβάνεται ως δείγμα από την 𝑑-dimensional standard
normal και η βασική κατάταξη αλήθειας 𝜎⋆(𝑥) είναι η σειρά που προκαλείται από την
ταξινόμηση των συντεταγμένων του διανύσματος 𝑊 ⋆𝑥, όπου 𝑊 ⋆ ∈ R𝑘×𝑑

. Θεωρο-

ύμε την εκμάθηση LSF παρουσία περιορισμένου θορύβου (Challenge 3): υποθέτοντας
ότι ένα αθόρυβο παράδειγμα είναι της μορφής (𝑥, 𝜎⋆(𝑥)), παρατηρούμε (𝑥, 𝜋), όπου
για οποιοδήποτε ζεύγος στοιχείων 𝑖 ̸= 𝑗, η πιθανότητα ότι η σειρά των 𝑖, 𝑗 είναι δια-
φορετική στο 𝜋 από ότι στο 𝜎⋆(𝑥) είναι το πολύ 𝜂 < 1/2. Σχεδιάζουμε αποδοτικούς
αλγόριθμους μάθησης που μαθαίνουν υποθέσεις εντός κανονικοποιημένης απόστασης

Kendall’s Tau 𝜖 από τη βασική αλήθεια με 𝑁 = ̃︀𝑂(𝑑 log(𝑘)/𝜖) παραδείγματα και χρόνο
εκτέλεσης poly(𝑁, 𝑘). Για την πιο απαιτητική loss function top-𝑟, δίνουμε έναν απο-
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δοτικό αλγόριθμο μάθησης που επιτυγχάνει 𝜖 τοπ-𝑟 διαφωνία με τη βασική αλήθεια
με 𝑁 = ̃︀𝑂(𝑑𝑘𝑟/𝜖) δείγματα και poly(𝑁) χρόνο εκτέλεσης.
Στο δεύτερο μέρος της διατριβής (Chapter 5-6),μελετάμε προβλήματα που αφο-

ρούν την Υπεύθυνη Μηχανική Μάθηση. Τα κεφάλαια οργανώνονται ως εξής.

Κεφάλαιο 5 - Replicable Bandit Algorithm Design.

Εισάγουμε την έννοια των αναπαραγόμενων πολιτικών στο πλαίσιο των στοχα-

στικών bandits , ένα από τα κανονικά προβλήματα στη διαδραστική μάθηση. Μια
πολιτική στο περιβάλλον bandits ονομάζεται αναπαραγώγιμη εάν τραβάει, με μεγάλη
πιθανότητα, την ακριβώς ίδια ακολουθία arms σε δύο διαφορετικές και ανεξάρτητες
εκτελέσεις (δηλαδή υπό ανεξάρτητες πραγματοποιήσεις ανταμοιβής). Δείχνουμε ότι

όχι μόνο υπάρχουν αναπαραγόμενες πολιτικές, αλλά και επιτυγχάνουν σχεδόν τα ίδια

βέλτιστα (μη αναπαραγόμενα) όρια regret όσον αφορά το χρονικό ορίζοντα. Πιο συ-
γκεκριμένα, στο πλαίσιο των στοχαστικών bandits πολλαπλών arms , αναπτύσσουμε
μια πολιτική με βέλτιστο regret που εξαρτάται από το πρόβλημα του οποίου η εξάρτηση
από την παράμετρο αναπαραγωγιμότητας είναι επίσης βέλτιστη. Ομοίως, για στοχα-

στικούς γραμμικούς bandits (με πεπερασμένους και άπειρους arms ) αναπτύσσουμε
αναπαραγόμενες πολιτικές που επιτυγχάνουν τα πιο γνωστά όρια regret ανεξάρτητα
από το πρόβλημα με βέλτιστη εξάρτηση από την παράμετρο αναπαραγωγιμότητας. Τα

αποτελέσματά μας δείχνουν ότι, παρόλο που η τυχαιοποίηση είναι ζωτικής σημασίας

για την αντιστάθμιση εξερεύνησης-εκμετάλλευσης, μπορεί να επιτευχθεί μια βέλτιστη

ισορροπία ενώ τραβάμε τα ίδια ακριβώς arms σε δύο διαφορετικούς γύρους εκτελέσε-
ων.

Summary of Results
Setting Algorithm Regret Theorem

Stochastic MAB Algorithm 8 ̃︀𝑂 (︁𝐾2 log3(𝑇 )𝐻Δ

𝜌2

)︁
Theorem 5.2.1

Stochastic MAB Algorithm 9 ̃︀𝑂 (︁𝐾2 log(𝑇 )𝐻Δ

𝜌2

)︁
Theorem 5.3.1

Stochastic Linear Bandits Algorithm 10 ̃︀𝑂 (︁𝐾2
√
𝑑𝑇

𝜌2

)︁
Theorem 5.4.2

Stochastic Linear Bandits
Infinite Action Space

Algorithm 11 ̃︀𝑂 (︁poly(𝑑)
√
𝑇

𝜌2

)︁
Theorem 5.4.6

Κεφάλαιο 6 - Statistical Indistinguishability, Privacy and Replica-
bility. ΄Οταν δύο διαφορετικές εκτελέσεις χρησιμοποιούν τον ίδιο κανόνα μάθησης
στα δικά τους δεδομένα, πώς μπορούμε να ελέγξουμε εάν οι κατανομές των δύο α-

ποτελεσμάτων είναι παρόμοιες· Σε αυτό το κεφάλαιο, μελετάμε την ομοιότητα των

αποτελεσμάτων των κανόνων μάθησης μέσα από την Total Variationαπόσταση κατα-
νομών. Λέμε ότι ένας κανόνας μάθησης δεν διακρίνεται στην TV απόστασταση εάν
η αναμενόμενη TV απόσταση μεταξύ των posterior κατανομών των εξόδων του, που
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εκτελούνται σε δύο σύνολα δεδομένων εκπαίδευσης που έχουν σχεδιαστεί ανεξάρτη-

τα από την ίδια κατανομή, είναι μικρή. Αρχικά διερευνούμε τη δυνατότητα εκμάθησης

χρησιμοποιώντας TV αδιάκριτους αλγόριθμους. Τα κύρια αποτελέσματά μας είναι οι
θεωρητικές-στατιστικές ισοδυναμίες μεταξύ της TV δυσδιάκρισης και των υπαρχου-
σών εννοιών αλγοριθμικής σταθερότητας, όπως η δυνατότητα αναπαραγωγής και η

διαφορική ιδιωτικότητα.

6.13.5 Βασικά Αποτελέσματα

Σε αυτή την ενότητα παρουσιάζεται μία λίστα με τα βασικά αποτελέσματα της

διδακτορικής διατριβής.

Informal Theorem. Με ένα εκτιμόμενο αριθμό𝑂(log(𝑑)/𝛼) δειγμάτων από μία
𝛼-fat truncation μίας κατανομής γινομένου Boole 𝒟, μπορούμε να παράξουμε ένα
δείγμα 𝑥 ∈ {0, 1}𝑑 κατανεμημένο όπως η 𝒟.

Informal Theorem. Κάτω από τις υποθέσεις (1) - (4), υπάρχει αλγόριθμος που
υπολογίζει μία εκτίμηση ̂︀𝑧 του logit διανύσματος 𝑧 της αληθινής κατανομής 𝒟
τέτοιο ώστε ‖𝑧 − ̂︀𝑧‖2 ≤ 𝜖 με πιθανότητα τουλάχιστον 1 − 𝛿, και επιτυγχάνει
χρονική και δειγματική ποπυπλοκότητα πολυωνυμική στο 𝑑, 1/𝜖 και log(1/𝛿).

Informal Theorem. Κάθε κλάση 𝒞 ⊆ [𝑘]𝒳 που μαθαίνεται αποδοτικά από 𝑀
statistical queries από finely labeled examples (𝑥, 𝑧) ∼ 𝒟, μαθαίνεται αποδοτικά
και από 𝑂(poly(𝑘/𝛼)) ·𝑀 coarsely labeled examples (𝑥, 𝑆) ∼ 𝒟𝜋 κάτω από κάθε

𝛼-information preserving partition distribution 𝜋.

Informal Theorem. ΄Εστω 𝜋 μία γενική κατανομή διαμέρισης. Εκτός εάν
RP = ΝΠ, κανένας αλγόριθμος με πρόσβαση στην 𝒩𝜋(𝜇

⋆), δεν μπορεί σε χρόνο
poly(𝑑), να υπολογίσει ενα ̃︀𝜇 ∈ R𝑑

τέτοιο ώστε 𝑑TV(𝒩𝜋(̃︀𝜇),𝒩𝜋(𝜇
⋆)) < 1/𝑑𝑐 για

μία απόλυτη σταθερά 𝑐 > 1.

Informal Theorem. ΄Εστω 𝜖 ∈ (0, 1) και η κατανομή 𝒩𝜋(𝜇
⋆) σε 𝑑 διαστάσεις.

Υποθέτουμε ότι η κατανομή διαμέρισης 𝜋 είναι 𝛼-information preserving και
είναι supported σε κυρτές διαμερίσεις του R𝑑

. Τότε υπάρχει αλγόριθμος που

χρησιμοποιεί 𝑁 = ̃︀𝑂(𝑑/(𝜖2𝛼2)) δείγματα από την 𝒩𝜋(𝜇
⋆) και υπολογίζει μία
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εκτίμηση ̃︀𝜇 που ικανοποιεί 𝑑TV(𝒩 (̃︀𝜇),𝒩 (𝜇⋆)) ≤ 𝜖 , με πιθανότητα τουλάχιστον
99%.

Informal Theorem. ΄Εστω 𝜂 ∈ [0, 1/2) και 𝜖, 𝛿 ∈ (0, 1). ΄Εστω 𝒟 μία 𝜂-noisy
linear label ranking κατανομή που ικανοποιεί τον ορισμό 4.1.1 με αληθινό LSF
𝜎𝑊 ⋆(·). Τότε υπάρχει αλγόριθμος που χρησιμοποιεί 𝑁 = ̃︀𝑂 (︁ 𝑑

𝜖(1−2𝜂)6
log(𝑘/𝛿)

)︁
δείγματα από την 𝒟, και σε χρόνο πολυωνιμικό στο πλήθος των δειγμάτων υπο-
λογίζει έναν πίνακα 𝑊 ∈ R𝑘×𝑑

ώστε με πιθανότητα τουλάχιστον 1− 𝛿,

E
𝑥∼𝒩𝑑

[ΔKT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

Informal Theorem. ΄Εστω 𝜌 ∈ (0, 1), 𝑇 ∈ N και 𝐻Δ =
∑︀

𝑗:Δ𝑗>0 1/Δ𝑗 , όπου

Δ𝑗 είναι η διαφορά μεταξύ της επιλογής 𝑗 και της βέλτιστης.

1. Υπάρχει ένας 𝜌-αναπαραγωγίσιμος αλγόριθμος για το stochastic MAB set-
ting με 𝐾 arms με αναμενόμενο regret

̃︀𝑂(𝐾2 log(𝑇 )𝐻Δ/𝜌
2) .

2. Υπάρχει ένας 𝜌-αναπαραγωγίσιμος αλγόριθμος για το stochastic 𝑑-dimensional
linear bandit setting με 𝐾 arms με αναμενόμενο regret

̃︀𝑂(𝐾2
√
𝑑𝑇/𝜌2) .

Informal Theorem. Τα παρακάτω είναι αληθή.

• Εάν ένας κανόνας μάθησης 𝐴 είναι 𝑛-sample 𝜌-replicable, τότε είναι και
𝑛-sample 𝜌-TV indistinguishable.

• ΄Εστω 𝒳 μετρήσιμο και 𝐴 ένας κανόνας μάθησης που είναι 𝑛-sample 𝜌-TV
indistinguishable. Τότε υπάρχει ισοδύναμος κανόνας 𝐴′

που είναι 𝑛-sample
2𝜌
1+𝜌 -replicable.
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Informal Theorem. Τα παρακάτω είναι αληθή.

• Εστω 𝛾 ∈ (0, 1/2), 𝛼, 𝛽, 𝜌 ∈ (0, 1)3. Αν η ℋ είναι learnable by an 𝑛-
sample (1/2− 𝛾, 1/2− 𝛾)-accurate (0.1, 1/(𝑛2 log(𝑛)))-differentially pri-
vate learner, τότε είναι learnable by an (𝛼, 𝛽)-accurate 𝜌-TV indistin-
guishable learning rule.

• ΄Εστω 𝒳 μετρήσιμο. Αν η ℋ ⊆ {0, 1}𝒳 είναι learnable by an (𝛼, 𝛽)-
accurate 𝜌-TV indistinguishable learner 𝐴, για κάποιο 𝜌 ∈ (0, 1), 𝛼 ∈
(0, 1/2), 𝛽 ∈

(︁
0, 1−𝜌

1+𝜌

)︁
, τότε για κάθε (𝛼′, 𝛽′, 𝜀, 𝛿) ∈ (0, 1)4, είναι learnable

by an (𝛼+ 𝛼′, 𝛽′)-accurate (𝜀, 𝛿)-differentially private learner 𝐴′.

6.13.6 Βιβλιογραφικές Παρατηρήσεις

Τα αποτελέσματα που περιγράφονται σε αυτή τη διατριβή έχουν ήδη εμφανιστεί

σε υπάρχουσες δημοσιεύσεις, τις οποίες εμείς αναφέρω εν συντομία παρακάτω.

Το κεφάλαιο 2 βασίζεται στο (FKT20) που παρουσιάστηκε στο COLT 2020.
Το κεφάλαιο 3 βασίζεται στο (FKKT21) που παρουσιάστηκε στο COLT 2021. Το
κεφάλαιο 4 βασίζεται στο (FKKT22) που παρουσιάστηκε στο NeurIPS 2022. Το κε-
φάλαιο 5 βασίζεται στο (EKM+23) που παρουσιάστηκε στο ICLR 2023. Το κεφάλαιο
6 βασίζεται στο (KKMV23) που παρουσιάστηκε στο ICML 2023.
΄Αλλες εργασίες του συγγραφέα κατά τη διάρκεια του διδακτορικού του που δεν

περιλαμβάνονται στην παρούσα διατριβή είναι (FKS21; FKP21; KSZ22; MKFI22;
FKT22; KVK22).

231



Bibliography

[ABHU15] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth
Urner. Efficient learning of linear separators under bounded noise.
In Conference on Learning Theory, pages 167–190. PMLR, 2015. 15,
112

[ABHZ16] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and
Hongyang Zhang. Learning and 1-bit compressed sensing under
asymmetric noise. In Conference on Learning Theory, pages 152–
192. PMLR, 2016. 15, 112

[ABL+22] Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay
Moran. Private and online learnability are equivalent. ACM Journal
of the ACM (JACM), 2022. 35, 176

[ABM10] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm
identification in multi-armed bandits. In COLT, pages 41–53. Cite-
seer, 2010. 148

[ABSV14] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vija-
yaraghavan. Learning mixtures of ranking models. arXiv preprint
arXiv:1410.8750, 2014. 28

[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time anal-
ysis of the multiarmed bandit problem. Machine learning, 47(2):235–
256, 2002. 148

[ACK15a] Jayadev Acharya, Clément L. Canonne, and Gautam Kamath.
Adaptive Estimation in Weighted Group Testing. In Proceedings
of the 2015 IEEE International Symposium on Information Theory,
ISIT ’15, pages 2116–2120. IEEE Computer Society, 2015. 40

[ACK15b] Jayadev Acharya, Clément L. Canonne, and Gautam Kamath. A
Chasm Between Identity and Equivalence Testing with Conditional
Queries. In Approximation, Randomization, and Combinatorial Op-

232



timization. Algorithms and Techniques., RANDOM ’15, pages 449–
466, 2015. 40

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating in-
consistent information: ranking and clustering. Journal of the ACM
(JACM), 55(5):1–27, 2008. 110, 115, 122

[AD98] Javed A Aslam and Scott E Decatur. General bounds on statistical
query learning and pac learning with noise via hypothesis boosting.
Information and Computation, 141(2):85–118, 1998. 24, 75

[ADK15] Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath.
Optimal Testing for Properties of Distributions. In Proceedings of
the 28th International Conference on Neural Information Processing
Systems (NIPS), pages 3591–3599, 2015. URL: http://arxiv.org/
abs/1507.05952. 21

[AEMM22] Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. In-
tegral probability metrics pac-bayes bounds. arXiv preprint
arXiv:2207.00614, 2022. 178, 189

[AG12] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for
the multi-armed bandit problem. In Conference on learning theory,
pages 39–1. JMLR Workshop and Conference Proceedings, 2012. 148

[AGM17] Juan A Aledo, José A Gámez, and David Molina. Tackling the super-
vised label ranking problem by bagging weak learners. Information
Fusion, 35:38–50, 2017. 27, 112

[AJJ+22] Kwangjun Ahn, Prateek Jain, Ziwei Ji, Satyen Kale, Praneeth Netra-
palli, and Gil I Shamir. Reproducibility in optimization: Theoretical
framework and limits. arXiv preprint arXiv:2202.04598, 2022. 31,
34, 155, 175

[AL88] Dana Angluin and Philip Laird. Learning from noisy examples. Ma-
chine Learning, 2(4):343–370, 1988. 75

[ALMM19] Noga Alon, Roi Livni, Maryanthe Malliaris, and Shay Moran. Pri-
vate pac learning implies finite littlestone dimension. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 852–860, 2019. 35, 183, 204, 207

[ALMT17] Jacob D Abernethy, Chansoo Lee, Audra McMillan, and Ambuj
Tewari. Online learning via differential privacy. 2017. 176

233

http://arxiv.org/abs/1507.05952
http://arxiv.org/abs/1507.05952


[Ang88] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1988. 112

[AO10] Peter Auer and Ronald Ortner. Ucb revisited: Improved regret
bounds for the stochastic multi-armed bandit problem. Periodica
Mathematica Hungarica, 61(1-2):55–65, 2010. 151

[APA18] Arpit Agarwal, Prathamesh Patil, and Shivani Agarwal. Accelerated
spectral ranking. In International Conference on Machine Learning,
pages 70–79. PMLR, 2018. 28

[AS19] Omer Angel and Yinon Spinka. Pairwise optimal coupling of multiple
random variables. arXiv preprint arXiv:1903.00632, 2019. 181, 195,
201, 221

[AYPS11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved
algorithms for linear stochastic bandits. Advances in neural infor-
mation processing systems, 24, 2011. 148

[Bab50] Babington B. Smith. Discussion of Professor Ross’s paper. Journal
of Royal Statistical Society B, 12:53–56, 1950. 48

[Bak16a] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature,
533(7604), 2016. 15, 16

[Bak16b] Monya Baker. Reproducibility crisis. Nature, 533(26):353–66, 2016.
13, 31, 226

[BC18] Rishiraj Bhattacharyya and Sourav Chakraborty. Property Testing
of Joint Distributions using Conditional Samples. Transactions on
Computation Theory, 10(4):16:1–16:20, 2018. 40

[BCB+12] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems. Founda-
tions and Trends® in Machine Learning, 5(1):1–122, 2012. 148

[BCBK12] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. To-
wards minimax policies for online linear optimization with bandit
feedback. In Conference on Learning Theory, pages 41–1. JMLR
Workshop and Conference Proceedings, 2012. 148

[BD15] Shai Ben-David. 2 notes on classes with vapnik-chervonenkis dimen-
sion 1. arXiv preprint arXiv:1507.05307, 2015. 190

[BDCBL92] Shai Ben-David, Nicolò Cesa-Bianchi, and Philip M Long. Charac-

234



terizations of learnability for classes of {O,. . . , n}-valued functions.
In Proceedings of the fifth annual workshop on Computational learn-
ing theory, pages 333–340, 1992. 143

[BDH+20] Ainesh Bakshi, Ilias Diakonikolas, Samuel B Hopkins, Daniel Kane,
Sushrut Karmalkar, and Pravesh K Kothari. Outlier-robust cluster-
ing of gaussians and other non-spherical mixtures. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS),
pages 149–159. IEEE Computer Society, 2020. 75

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim.
Practical privacy: the sulq framework. In Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 128–138, 2005. 24, 75

[BDNP20] Arnab Bhattacharyya, Rathin Desai, Sai Ganesh Nagarajan, and
Ioannis Panageas. Efficient statistics for sparse graphical models
from truncated samples. arXiv preprint arXiv:2006.09735, 2020. 74

[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization.
The Journal of Machine Learning Research, 2:499–526, 2002. 176

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Man-
fred K Warmuth. Learnability and the vapnik-chervonenkis dimen-
sion. Journal of the ACM (JACM), 36(4):929–965, 1989. 190

[BF15] Maria Florina Balcan and Vitaly Feldman. Statistical active learning
algorithms for noise tolerance and differential privacy. Algorithmica,
72(1):282–315, 2015. 24, 75

[BF16] Raef Bassily and Yoav Freund. Typicality-based stability and pri-
vacy. arXiv preprint arXiv:1604.03336, 2016. 176

[BFFSZ19] Róbert Busa-Fekete, Dimitris Fotakis, Balázs Szörényi, and Manolis
Zampetakis. Optimal learning of mallows block model. In Con-
ference on Learning Theory, pages 529–532. PMLR, 2019. 28, 50,
51

[BFKV98] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A
polynomial-time algorithm for learning noisy linear threshold func-
tions. Algorithmica, 22(1):35–52, 1998. 24, 75

[BGH+16] Mohammad Bavarian, Badih Ghazi, Elad Haramaty, Pritish Ka-
math, Ronald L Rivest, and Madhu Sudan. Optimality of correlated

235



sampling strategies. arXiv preprint arXiv:1612.01041, 2016. 194,
195

[BGH+23] Mark Bun, Marco Gaboardi, Max Hopkins, Russell Impagliazzo, Rex
Lei, Toniann Pitassi, Satchit Sivakumar, and Jessica Sorrell. Stabil-
ity is stable: Connections between replicability, privacy, and adap-
tive generalization. arXiv preprint arXiv:2303.12921, 2023. 34, 35,
38, 175, 176, 177, 183, 184, 185, 186, 195, 205, 212

[BH20] Maria-Florina Balcan and Nika Haghtalab. Noise in classification.,
2020. 112

[BHM+21] Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon Van Handel,
and Amir Yehudayoff. A theory of universal learning. In Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 532–541, 2021. 178

[BHM+22] Olivier Bousquet, Steve Hanneke, Shay Moran, Jonathan Shafer,
and Ilya Tolstikhin. Fine-grained distribution-dependent learning
curves. arXiv preprint arXiv:2208.14615, 2022. 178

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learn-
ing, the parity problem, and the statistical query model. Journal of
the ACM (JACM), 50(4):506–519, 2003. 197

[BLM20] Mark Bun, Roi Livni, and Shay Moran. An equivalence between pri-
vate classification and online prediction. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages
389–402. IEEE, 2020. 34, 35, 178, 183, 186, 191, 204, 205, 207,
212

[BM02] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal of Ma-
chine Learning Research, 3(Nov):463–482, 2002. 190

[BM09] Mark Braverman and Elchanan Mossel. Sorting from noisy informa-
tion. arXiv preprint arXiv:0910.1191, 2009. 28

[BNS+16a] Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri
Stemmer, and Jonathan Ullman. Algorithmic stability for adap-
tive data analysis. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 1046–1059, 2016. 176,
177

236



[BNS16b] Mark Bun, Kobbi Nissim, and Uri Stemmer. Simultaneous private
learning of multiple concepts. In Proceedings of the 2016 ACM Con-
ference on Innovations in Theoretical Computer Science, pages 369–
380, 2016. 203, 204

[BR93] Mihir Bellare and Phillip Rogaway. The complexity of approximating
a nonlinear program. In Complexity in numerical optimization, pages
16–32. World Scientific, 1993. 172

[Bre96] Richard Breen. Regression models: Censored, sample selected, or
truncated data, volume 111. Sage, 1996. 25, 74

[Bro97] Andrei Z Broder. On the resemblance and containment of doc-
uments. In Proceedings. Compression and Complexity of SE-
QUENCES 1997 (Cat. No. 97TB100171), pages 21–29. IEEE, 1997.
194

[BS14] Gilles Blanchard and Clayton Scott. Decontamination of mutually
contaminated models. In Artificial Intelligence and Statistics, pages
1–9. PMLR, 2014. 75

[BSS+20] Guy Bukchin, Eli Schwartz, Kate Saenko, Ori Shahar, Rogerio Feris,
Raja Giryes, and Leonid Karlinsky. Fine-grained angular contrastive
learning with coarse labels. arXiv preprint arXiv:2012.03515, 2020.
22

[BT52a] R.A. Bradley and M.E. Terry. Rank Analysis of Incomplete Block
Designs: I. The Method of Paired Comparisons. Biometrika, 39:324,
1952. 48

[BT52b] Ralph Allan Bradley and Milton E Terry. Rank analysis of in-
complete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952. 28, 146

[BZ17] Maria-Florina F Balcan and Hongyang Zhang. Sample and compu-
tationally efficient learning algorithms under s-concave distributions.
Advances in Neural Information Processing Systems, 30, 2017. 15,
29, 110, 112

[Can15] Clément L. Canonne. Big Data on the Rise? - Testing Monotonicity
of Distributions. In Proceedings of the 42nd International Colloquium
on Automata, Languages, and Programming, ICALP ’15, pages 294–
305, 2015. 40

237



[CBDS13] Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning
with switching costs and other adaptive adversaries. Advances in
Neural Information Processing Systems, 26, 2013. 151

[CBF98] Nicolo Cesa-Bianchi and Paul Fischer. Finite-time regret bounds
for the multiarmed bandit problem. In ICML, volume 98, pages
100–108. Citeseer, 1998. 148

[CCK+19] Clément L Canonne, Xi Chen, Gautam Kamath, Amit Levi, and
Erik Waingarten. Random Restrictions of High-Dimensional Distri-
butions and Uniformity Testing with Subcube Conditioning. CoRR,
abs/1911.07357, 2019. 40

[CDCM18] Zhuo Chen, Ruizhou Ding, Ting-Wu Chin, and Diana Marculescu.
Understanding the impact of label granularity on cnn-based image
classification. In 2018 IEEE International Conference on Data Min-
ing Workshops (ICDMW), pages 895–904. IEEE, 2018. 14, 22

[CDGS20] Yu Cheng, Ilias Diakonikolas, Rong Ge, and Mahdi Soltanolkotabi.
High-dimensional robust mean estimation via gradient descent. In
International Conference on Machine Learning, pages 1768–1778.
PMLR, 2020. 75

[CDH10] Weiwei Cheng, Krzysztof Dembczynski, and Eyke Hüllermeier. La-
bel ranking methods based on the plackett-luce model. In ICML,
2010. 27, 112

[CDKS17] Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, and Alis-
tair Stewart. Testing Bayesian Networks. In Proceedings of the 30th
Annual Conference on Learning Theory, (COLT), pages 370–448,
2017. URL: http://arxiv.org/abs/1612.03156. 21, 46, 47

[CDS20] Clément L Canonne, Anindya De, and Rocco A. Servedio. Learning
from satisfying assignments under continuous distributions. In 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 82–101. SIAM, 2020. 40

[CFGM13] Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie
Matsliah. On the Power of Conditional Samples in Distribution
Testing. In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, ITCS ’13, pages 561–580. ACM, 2013.
40

[CGAD22] Maxime Cauchois, Suyash Gupta, Alnur Ali, and John Duchi.

238

http://arxiv.org/abs/1612.03156


Predictive inference with weak supervision. arXiv preprint
arXiv:2201.08315, 2022. 76

[CH08] Weiwei Cheng and Eyke Hüllermeier. Instance-based label ranking
using the mallows model. In ECCBR Workshops, pages 143–157,
2008. 27, 112

[CH12] Weiwei Cheng and Eyke Hüllermeier. Probability estimation for
multi-class classification based on label ranking. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases, pages 83–98. Springer, 2012. 113

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding
algorithms. In Proceedings of the thiry-fourth annual ACM sympo-
sium on Theory of computing, pages 380–388, 2002. 194

[CHH09] Weiwei Cheng, Jens Hühn, and Eyke Hüllermeier. Decision tree
and instance-based learning for label ranking. In Proceedings of the
26th Annual International Conference on Machine Learning, pages
161–168, 2009. 27, 112

[CKM+19] Clément L. Canonne, Gautam Kamath, Audra McMillan, Jonathan
Ullman, and Lydia Zakynthinou. Private Identity Testing for High-
Dimensional Distributions. In arXiv preprint arXiv:1905.11947,
2019. URL: http://arxiv.org/abs/1905.11947. 21

[CKMY20] Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classi-
fication under misspecification: Halfspaces, generalized linear mod-
els, and evolvability. Advances in Neural Information Processing
Systems, 33:8391–8403, 2020. 15, 29, 112, 197

[CKS18] Stephan Clémençon, Anna Korba, and Eric Sibony. Ranking median
regression: Learning to order through local consensus. In Algorith-
mic Learning Theory, pages 212–245. PMLR, 2018. 112

[CLN+16] Rachel Cummings, Katrina Ligett, Kobbi Nissim, Aaron Roth, and
Zhiwei Steven Wu. Adaptive learning with robust generalization
guarantees. In Conference on Learning Theory, pages 772–814.
PMLR, 2016. 16, 176

[CODA08] Etienne Côme, Latifa Oukhellou, Thierry Denœux, and Patrice
Aknin. Mixture model estimation with soft labels. In Soft Methods
for Handling Variability and Imprecision, pages 165–174. Springer,
2008. 75

239

http://arxiv.org/abs/1905.11947


[Coh16] A Clifford Cohen. Truncated and censored samples: theory and ap-
plications. CRC press, 2016. 25, 74

[CPCP14] Yi-Chen Chen, Vishal M Patel, Rama Chellappa, and P Jonathon
Phillips. Ambiguously labeled learning using dictionaries. IEEE
Transactions on Information Forensics and Security, 9(12):2076–
2088, 2014. 75

[CPS13] Ioannis Caragiannis, Ariel D Procaccia, and Nisarg Shah. When do
noisy votes reveal the truth? In Proceedings of the fourteenth ACM
conference on Electronic commerce, pages 143–160, 2013. 28, 50, 51

[CRB20] Vivien Cabannnes, Alessandro Rudi, and Francis Bach. Structured
prediction with partial labelling through the infimum loss. In Inter-
national Conference on Machine Learning, pages 1230–1239. PMLR,
2020. 14, 76

[CRS14] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing
equivalence between distributions using conditional samples. In Pro-
ceedings of the 25th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’14, pages 1174–1192. SIAM, 2014. 40

[CRS15] Clément L. Canonne, Dana Ron, and Rocco A. Servedio. Testing
probability distributions using conditional samples. SIAM Journal
on Computing, 44(3):540–616, 2015. 40

[CS12] Jesús Cid-Sueiro. Proper losses for learning from partial labels. Ad-
vances in neural information processing systems, 25, 2012. 76

[CSGGSR14] Jesús Cid-Sueiro, Darío García-García, and Raúl Santos-Rodríguez.
Consistency of losses for learning from weak labels. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases, pages 197–210. Springer, 2014. 14, 76

[CSJT09] Timothee Cour, Benjamin Sapp, Chris Jordan, and Ben Taskar.
Learning from ambiguously labeled images. In 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 919–926.
IEEE, 2009. 75

[CST11a] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial
labels. The Journal of Machine Learning Research, 12:1501–1536,
2011. 14, 75, 76

[CST11b] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial

240



labels. The Journal of Machine Learning Research, 12:1501–1536,
2011. 75

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learn-
ing from Untrusted Data. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Mon-
treal, QC, Canada, June 19-23, 2017, pages 47–60, 2017. 39, 75

[CSZ06] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-
Supervised Learning (Adaptive Computation and Machine Learning).
The MIT Press, 2006. 75

[CV20] Stéphan Clémençon and Robin Vogel. A multiclass classification
approach to label ranking. In International Conference on Artifi-
cial Intelligence and Statistics, pages 1421–1430. PMLR, 2020. URL:
https://arxiv.org/abs/2002.09420. 112

[CW01] Anthony Carbery and James Wright. Distributional and 𝐿𝑞 norm
inequalities for polynomials over convex bodies in R𝑛. Mathematical
Research Letters, 8, 05 2001. 107

[d’A08] Alexandre d’Aspremont. Smooth optimization with approximate
gradient. SIAM Journal on Optimization, 19(3):1171–1183, 2008.
85

[Dan16] Amit Daniely. Complexity theoretic limitations on learning halfs-
paces. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pages 105–117, 2016. 112

[DDS14] Anindya De, Ilias Diakonikolas, and Rocco A. Servedio. Learning
from Satisfying Assignments. In Proceedings of the twenty-sixth an-
nual ACM-SIAM symposium on Discrete algorithms, pages 478–497.
SIAM, 2014. 40

[DFH+15] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi,
Omer Reingold, and Aaron Leon Roth. Preserving statistical validity
in adaptive data analysis. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 117–126, 2015. 176

[DGN14] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order
methods of smooth convex optimization with inexact oracle. Math-
ematical Programming, 146(1):37–75, 2014. 85

[DGR+14] Nemanja Djuric, Mihajlo Grbovic, Vladan Radosavljevic, Narayan

241

https://arxiv.org/abs/2002.09420


Bhamidipati, and Slobodan Vucetic. Non-linear label ranking for
large-scale prediction of long-term user interests. In Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2014. 27, 113

[DGT19a] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos.
Distribution-Independent PAC Learning of Halfspaces with Massart
Noise. Curran Associates Inc., Red Hook, NY, USA, 2019. 15

[DGT19b] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos.
Distribution-independent pac learning of halfspaces with massart
noise. Advances in Neural Information Processing Systems, 32, 2019.
15, 29, 112

[DGTZ18] Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and
Manolis Zampetakis. Efficient Statistics, in High Dimensions, from
Truncated Samples. In 59th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 639–649. IEEE, 2018. 14,
17, 19, 20, 21, 22, 25, 26, 39, 53, 56, 57, 71, 74, 86, 227

[DGTZ19a] Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and
Manolis Zampetakis. Computationally and Statistically Efficient
Truncated Regression. In Conference on Learning Theory (COLT),
pages 955–960, 2019. 14, 19, 20, 39

[DGTZ19b] Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and
Manolis Zampetakis. Computationally and statistically efficient
truncated regression. In Conference on Learning Theory, pages 955–
960. PMLR, 2019. 25, 74, 86

[DHK08] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic lin-
ear optimization under bandit feedback. In 21st Annual Conference
on Learning Theory, pages 355–366, 2008. 148

[DK19] Ilias Diakonikolas and Daniel M Kane. Recent advances in
algorithmic high-dimensional robust statistics. arXiv preprint
arXiv:1911.05911, 2019. 15

[DK20] Ilias Diakonikolas and Daniel M Kane. Hardness of learning half-
spaces with massart noise. arXiv preprint arXiv:2012.09720, 2020.
29, 112

[DKFF13] Jia Deng, Jonathan Krause, and Li Fei-Fei. Fine-grained crowdsourc-
ing for fine-grained recognition. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR

242



’13, page 580–587, USA, 2013. IEEE Computer Society. 22

[DKK+16] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li,
Ankur Moitra, and Alistair Stewart. Robust Estimators in High Di-
mensions without the Computational Intractability. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jer-
sey, USA, pages 655–664, 2016. 39, 42, 74, 108

[DKK+17] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li,
Ankur Moitra, and Alistair Stewart. Being Robust (in High Dimen-
sions) Can Be Practical. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, pages 999–1008, 2017. 39, 75

[DKK+18] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li,
Ankur Moitra, and Alistair Stewart. Robustly Learning a Gaus-
sian: Getting Optimal Error, Efficiently. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 2683–2702, 2018. 39, 75

[DKK+19a] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and Al-
istair Stewart. Sever: A robust meta-algorithm for stochastic op-
timization. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, pages 1596–1606, 2019. 75

[DKK+19b] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur
Moitra, and Alistair Stewart. Robust estimators in high-dimensions
without the computational intractability. SIAM Journal on Com-
puting, 48(2):742–864, 2019. 15

[DKK+21] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos
Tzamos, and Nikos Zarifis. Learning general halfspaces with gen-
eral massart noise under the gaussian distribution. arXiv preprint
arXiv:2108.08767, 2021. 112

[DKM05] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni.
Analysis of perceptron-based active learning. In International con-
ference on computational learning theory, pages 249–263. Springer,
2005. 128

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. Our data, ourselves: Privacy via dis-

243



tributed noise generation. In Annual international conference on the
theory and applications of cryptographic techniques, pages 486–503.
Springer, 2006. 35, 174

[DKPZ21] Ilias Diakonikolas, Daniel M Kane, Thanasis Pittas, and Nikos Zari-
fis. The optimality of polynomial regression for agnostic learning
under gaussian marginals. arXiv preprint arXiv:2102.04401, 2021.
112

[DKS17a] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statisti-
cal Query Lower Bounds for Robust Estimation of High-dimensional
Gaussians and Gaussian Mixtures. In 2017 IEEE 58th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 73–84.
IEEE, 2017. 21

[DKS17b] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical
query lower bounds for robust estimation of high-dimensional gaus-
sians and gaussian mixtures. In 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pages 73–84. IEEE,
2017. 75

[DKT21] Ilias Diakonikolas, Daniel Kane, and Christos Tzamos. Forster de-
composition and learning halfspaces with noise. Advances in Neural
Information Processing Systems, 34, 2021. 15, 112

[DKTZ20] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos
Zarifis. Learning halfspaces with massart noise under structured
distributions. In Conference on Learning Theory, pages 1486–1513.
PMLR, 2020. 15, 29, 110, 112

[DKTZ21] Constantinos Daskalakis, Vasilis Kontonis, Christos Tzamos, and
Emmanouil Zampetakis. A statistical taylor theorem and extrap-
olation of truncated densities. In Conference on Learning Theory,
pages 1395–1398. PMLR, 2021. 74

[DKZ20] Ilias Diakonikolas, Daniel Kane, and Nikos Zarifis. Near-optimal sq
lower bounds for agnostically learning halfspaces and relus under
gaussian marginals. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 13586–13596. Curran Associates,
Inc., 2020. 75, 112

[DOS18] Anindya De, Ryan O’Donnell, and Rocco Servedio. Learning
sparse mixtures of rankings from noisy information. arXiv preprint

244



arXiv:1811.01216, 2018. 28

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical Com-
puter Science, 9(3–4):211–407, 2014. 16, 35, 176

[DRV10] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and
differential privacy. In 2010 IEEE 51st Annual Symposium on Foun-
dations of Computer Science, pages 51–60. IEEE, 2010. 176, 186,
204

[DRZ20] Constantinos Daskalakis, Dhruv Rohatgi, and Manolis Zampetakis.
Truncated linear regression in high dimensions. arXiv preprint
arXiv:2007.14539, 2020. 25, 74, 86

[DSBDSS11] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-
Shwartz. Multiclass learnability and the erm principle. In Pro-
ceedings of the 24th Annual Conference on Learning Theory, pages
207–232. JMLR Workshop and Conference Proceedings, 2011. 30,
143

[DSM03] Ofer Dekel, Yoram Singer, and Christopher D Manning. Log-linear
models for label ranking. Advances in neural information processing
systems, 16:497–504, 2003. 27, 112

[DSS14] Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multi-
class problems. In Conference on Learning Theory, pages 287–316.
PMLR, 2014. 143

[dSSKC17] Cláudio Rebelo de Sá, Carlos Soares, Arno Knobbe, and Paulo
Cortez. Label ranking forests. Expert systems, 34(1):e12166, 2017.
27, 112

[DV08] John Dunagan and Santosh Vempala. A simple polynomial-time
rescaling algorithm for solving linear programs. Mathematical Pro-
gramming, 114(1):101–114, 2008. 24, 75

[Dwo08] Cynthia Dwork. Differential privacy: A survey of results. In Inter-
national conference on theory and applications of models of compu-
tation, pages 1–19. Springer, 2008. 176

[EDMMM06] Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahade-
van. Action elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. Journal of machine

245



learning research, 7(6), 2006. 150

[EKK+22] Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause,
Vahab Mirrokni, and Grigoris Velegkas. Reproducible bandits. arXiv
preprint arXiv:2210.01898, 2022. 34, 175

[EKM+23] Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris
Velegkas, and Felix Zhou. Replicable clustering. arXiv preprint
arXiv:2302.10359, 2023. 34, 38, 231

[EKMM21] Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, and Vahab
Mirrokni. Regret bounds for batched bandits. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 7340–
7348, 2021. 150, 151, 152, 156, 158

[Fed13] Valerii Vadimovich Fedorov. Theory of optimal experiments. Else-
vier, 2013. 171

[Fel57] William Feller. An introduction to probability theory and its appli-
cations. John Wiley, 1957. 91

[Fel17] Vitaly Feldman. A general characterization of the statistical query
complexity. In Conference on Learning Theory, pages 785–830.
PMLR, 2017. 75

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Ku-
mar Ponnuswami. New results for learning noisy parities and half-
spaces. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pages 563–574. IEEE, 2006. 112

[FGR+17] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vempala,
and Ying Xiao. Statistical algorithms and a lower bound for detect-
ing planted cliques. Journal of the ACM (JACM), 64(2):1–37, 2017.
24, 75

[FGRW12] Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and
Yi Wu. Agnostic learning of monomials by halfspaces is hard. SIAM
J. Comput., 41(6):1558–1590, 2012. 15

[FGV17] Vitaly Feldman, Cristóbal Guzmán, and Santosh Vempala. Statis-
tical query algorithms for mean vector estimation and stochastic
convex optimization. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1265–1277,
2017. 24, 25, 75, 85

246



[FHMB08] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, and
Klaus Brinker. Multilabel classification via calibrated label ranking.
Machine learning, 73(2):133–153, 2008. 27, 112

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The ele-
ments of statistical learning, volume 1. Springer series in statistics
New York, 2001. 24, 85

[Fis31] RA Fisher. Properties and applications of Hh functions. Mathemat-
ical tables, 1:815–852, 1931. 19

[FJO+15] Moein Falahatgar, Ashkan Jafarpour, Alon Orlitsky, Venkatadheeraj
Pichapati, and Ananda Theertha Suresh. Faster Algorithms for Test-
ing under Conditional Sampling. In Proceedings of the 28th Annual
Conference on Learning Theory, COLT ’15, pages 607–636, 2015. 40

[FKKT21] Dimitris Fotakis, Alkis Kalavasis, Vasilis Kontonis, and Christos
Tzamos. Efficient algorithms for learning from coarse labels. In
Conference on Learning Theory, pages 2060–2079. PMLR, 2021. 38,
197, 231

[FKKT22] Dimitris Fotakis, Alkis Kalavasis, Vasilis Kontonis, and Christos
Tzamos. Linear label ranking with bounded noise. Advances in
Neural Information Processing Systems, 35:15642–15656, 2022. 38,
231

[FKP21] Dimitris Fotakis, Alkis Kalavasis, and Eleni Psaroudaki. La-
bel ranking through nonparametric regression. arXiv preprint
arXiv:2111.02749, 2021. 38, 112, 113, 231

[FKS21] Dimitris Fotakis, Alkis Kalavasis, and Konstantinos Stavropoulos.
Aggregating incomplete and noisy rankings. In International Con-
ference on Artificial Intelligence and Statistics, pages 2278–2286.
PMLR, 2021. 28, 38, 231

[FKT20] Dimitris Fotakis, Alkis Kalavasis, and Christos Tzamos. Efficient
parameter estimation of truncated boolean product distributions.
In Conference on Learning Theory, pages 1586–1600. PMLR, 2020.
38, 74, 231

[FKT22] Dimitris Fotakis, Alkis Kalavasis, and Christos Tzamos. Perfect sam-
pling from pairwise comparisons. arXiv preprint arXiv:2211.12868,
2022. 38, 231

247



[FLH+20] Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An,
and Masashi Sugiyama. Provably consistent partial-label learn-
ing. Advances in Neural Information Processing Systems, 33:10948–
10960, 2020. 14, 76

[FO85] Robert M Freund and James B Orlin. On the complexity of four
polyhedral set containment problems. Mathematical programming,
33(2):139–145, 1985. 172

[FPV15] V. Feldman, W. Perkins, and S. Vempala. On the complexity of
random satisfiability problems with planted solutions. In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC, 2015, pages 77–86, 2015. 75

[FV86] Michael A Fligner and Joseph S Verducci. Distance Based Ranking
Models. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 359–369, 1986. 48

[Gal97] Francis Galton. An examination into the registered speeds of Amer-
ican trotting horses, with remarks on their value as hereditary data.
Proceedings of the Royal Society of London, 62(379-387):310–315,
1897. 19

[GDGV13] Mihajlo Grbovic, Nemanja Djuric, Shengbo Guo, and Slobodan
Vucetic. Supervised clustering of label ranking data using label pref-
erence information. Machine learning, 93(2-3):191–225, 2013. 112

[GDV12] Mihajlo Grbovic, Nemanja Djuric, and Slobodan Vucetic. Learning
from pairwise preference data using gaussian mixture model. Pref-
erence Learning: Problems and Applications in AI, 33, 2012. 27,
112

[GFI16] Steven N Goodman, Daniele Fanelli, and John PA Ioannidis. What
does research reproducibility mean? Science translational medicine,
8(341):341ps12–341ps12, 2016. 31

[GGJ+20] Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar,
and Adam Klivans. Superpolynomial lower bounds for learning one-
layer neural networks using gradient descent. In International Con-
ference on Machine Learning, pages 3587–3596. PMLR, 2020. 75

[GGK20] Surbhi Goel, Aravind Gollakota, and Adam Klivans. Statistical-
query lower bounds via functional gradients. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-

248



vances in Neural Information Processing Systems, volume 33, pages
2147–2158. Curran Associates, Inc., 2020. 75, 112, 197

[GGKM21] Badih Ghazi, Noah Golowich, Ravi Kumar, and Pasin Manurangsi.
Sample-efficient proper pac learning with approximate differential
privacy. In Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 183–196, 2021. 35, 176, 178,
184, 208, 209

[GHRU11] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman.
Privately releasing conjunctions and the statistical query barrier. In
Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 803–812, 2011. 197

[GHRZ19] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched
multi-armed bandits problem. Advances in Neural Information Pro-
cessing Systems, 32, 2019. 150, 151

[GKM21] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. User-level differ-
entially private learning via correlated sampling. Advances in Neural
Information Processing Systems, 34:20172–20184, 2021. 16, 35, 176,
177, 183, 184, 185, 187, 194, 195, 196, 198, 205, 208, 209, 210, 211,
212

[GLB+18] Yanming Guo, Yu Liu, Erwin M Bakker, Yuanhao Guo, and
Michael S Lew. Cnn-rnn: a large-scale hierarchical image classi-
fication framework. Multimedia tools and applications, 77(8):10251–
10271, 2018. 14, 22

[Gou00] Christian Gourieroux. Econometrics of qualitative dependent vari-
ables. Cambridge university press, 2000. 25

[GR09] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learn-
ing halfspaces with noise. SIAM Journal on Computing, 39(2):742–
765, 2009. 112

[GTZ17] Themistoklis Gouleakis, Christos Tzamos, and Manolis Zampetakis.
Faster Sublinear Algorithms Using Conditional Sampling. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’17, pages 1743–1757. SIAM, 2017. 40

[Gui09] Alice Guionnet. Large random matrices, volume 1957. Springer
Science & Business Media, 2009. 100

249



[GVDLR97] Richard D Gill, Mark J Van Der Laan, and James M Robins. Coars-
ening at random: Characterizations, conjectures, counter-examples.
In Proceedings of the First Seattle Symposium in Biostatistics, pages
255–294. Springer, 1997. 78

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of
the ACM (JACM), 48(4):798–859, 2001. 26, 86, 87, 88

[Hau18] David Haussler. Decision theoretic generalizations of the pac model
for neural net and other learning applications. In The Mathematics
of Generalization, pages 37–116. CRC Press, 2018. 112

[HB06] Eyke Hüllermeier and Jürgen Beringer. Learning from ambiguously
labeled examples. Intelligent Data Analysis, 10(5):419–439, 2006. 75

[HC15] Eyke Hüllermeier and Weiwei Cheng. Superset learning based on
generalized loss minimization. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages 260–
275. Springer, 2015. 75

[HFCB08] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus
Brinker. Label ranking by learning pairwise preferences. Artificial
Intelligence, 172(16):1897–1916, 2008. 27, 112, 113

[HIB+18] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau,
Doina Precup, and David Meger. Deep reinforcement learning that
matters. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018. 31

[HKMV22] Steve Hanneke, Amin Karbasi, Shay Moran, and Grigoris Velegkas.
Universal rates for interactive learning. Advances in Neural Infor-
mation Processing Systems, 35:28657–28669, 2022. 178

[HL19] Samuel B Hopkins and Jerry Li. How Hard is Robust Mean Esti-
mation? In Conference on Learning Theory, pages 1649–1682, 2019.
39, 75

[Hol07] Thomas Holenstein. Parallel repetition: simplifications and the no-
signaling case. In Proceedings of the thirty-ninth annual ACM sym-
posium on Theory of computing, pages 411–419, 2007. 194

[HPRZ03] Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint
classification for multiclass classification and ranking. Ad-
vances in neural information processing systems, pages 809–816,

250



2003. URL: https://proceedings.neurips.cc/paper/2002/file/
16026d60ff9b54410b3435b403afd226-Paper.pdf. 28, 109, 112

[HSSVG22] Daniel Hsu, Clayton Sanford, Rocco Servedio, and Emmanouil-
Vasileios Vlatakis-Gkaragkounis. Near-optimal statistical query
lower bounds for agnostically learning intersections of halfspaces
with gaussian marginals. arXiv preprint arXiv:2202.05096, 2022.
112

[Hub64] Peter J Huber. Robust estimation of a location parameter. Ann.
Math. Statist., 35:73–101, 1964. 15

[Hub99] Mark Huber. Efficient Exact Sampling from the Ising Model Using
Swendsen-Wang. In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’99, page 921–922, USA,
1999. Society for Industrial and Applied Mathematics. 57

[Hub04] Peter J Huber. Robust statistics, volume 523. John Wiley & Sons,
2004. 74

[Hun04] David R Hunter. Mm algorithms for generalized bradley-terry mod-
els. The annals of statistics, 32(1):384–406, 2004. 28

[ILPS22] Russell Impagliazzo, Rex Lei, Toniann Pitassi, and Jessica Sorrell.
Reproducibility in learning. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, page 818–831, New
York, NY, USA, 2022. Association for Computing Machinery. 16,
31, 34, 35, 38, 149, 150, 151, 152, 169, 173, 174, 175, 176, 183, 187,
188, 193, 194, 196, 197, 198, 200, 202, 219, 220, 221, 222

[INHS17] Takashi Ishida, Gang Niu, Weihua Hu, and Masashi Sugiyama.
Learning from complementary labels. Advances in neural informa-
tion processing systems, 30, 2017. 75

[Ioa05] John PA Ioannidis. Why most published research findings are false.
PLoS medicine, 2(8):e124, 2005. 31

[IZD20] Andrew Ilyas, Emmanouil Zampetakis, and Constantinos
Daskalakis. A theoretical and practical framework for regres-
sion and classification from truncated samples. In International
Conference on Artificial Intelligence and Statistics, pages 4463–4473.
PMLR, 2020. 25, 74, 86

[JG02] Rong Jin and Zoubin Ghahramani. Learning with multiple labels.

251

https://proceedings.neurips.cc/paper/2002/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/16026d60ff9b54410b3435b403afd226-Paper.pdf


Advances in neural information processing systems, 15, 2002. 75

[JKT20] Young Jung, Baekjin Kim, and Ambuj Tewari. On the equivalence
between online and private learnability beyond binary classification.
Advances in neural information processing systems, 33:16701–16710,
2020. 185, 186

[JLL+20] Qihan Jiao, Zhi Liu, Gongyang Li, Linwei Ye, and Yang Wang. Fine-
grained image classification with coarse and fine labels on one-shot
learning. In 2020 IEEE International Conference on Multimedia &
Expo Workshops (ICMEW), pages 1–6. IEEE, 2020. 22

[JLYW19] Qihan Jiao, Zhi Liu, Linwei Ye, and Yang Wang. Weakly labeled fine-
grained classification with hierarchy relationship of fine and coarse
labels. Journal of Visual Communication and Image Representation,
63:102584, 2019. 14, 22

[KCG12] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On
bayesian upper confidence bounds for bandit problems. In Artifi-
cial intelligence and statistics, pages 592–600. PMLR, 2012. 148

[KCS17] Anna Korba, Stephan Clémençon, and Eric Sibony. A learning the-
ory of ranking aggregation. In Artificial Intelligence and Statistics,
pages 1001–1010. PMLR, 2017. 112

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical
queries. Journal of the ACM (JACM), 45(6):983–1006, 1998. 24,
29, 75, 76, 112, 197

[KGB18] Anna Korba, Alexandre Garcia, and Florence d’Alché Buc. A
structured prediction approach for label ranking. arXiv preprint
arXiv:1807.02374, 2018. 112

[KKM12] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson
sampling: An asymptotically optimal finite-time analysis. In Inter-
national conference on algorithmic learning theory, pages 199–213.
Springer, 2012. 148

[KKM18] A. R. Klivans, P. K. Kothari, and R. Meka. Efficient algorithms for
outlier-robust regression. In Conference On Learning Theory, COLT
2018, pages 1420–1430, 2018. 75

[KKMN09] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and
Alexandros Ntoulas. Releasing search queries and clicks privately.

252



In Proceedings of the 18th international conference on World wide
web, pages 171–180, 2009. 203, 204

[KKMV23] Alkis Kalavasis, Amin Karbasi, Shay Moran, and Grigoris Velegkas.
Statistical indistinguishability of learning algorithms. arXiv preprint
arXiv:2305.14311, 2023. 38, 231

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. What can we learn privately?
SIAM Journal on Computing, 40(3):793–826, 2011. 204

[KLSU18] Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan Ullman.
Privately learning high-dimensional distributions. arXiv preprint
arXiv:1805.00216, 2018. 47

[KMS06] Claire Kenyon-Mathieu and Warren Schudy. How to rank with
few errors–a ptas for weighted feedback arc set on tournaments.
In ELECTRONIC COLLOQUIUM ON COMPUTATIONAL COM-
PLEXITY, REPORT NO. 144 (2006). Citeseer, 2006. 122

[KSS94] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward
efficient agnostic learning. Machine Learning, 17(2):115–141, 1994.
112

[KSZ22] Alkis Kalavasis, Konstantinos Stavropoulos, and Emmanouil Zam-
petakis. Learning and covering sums of independent random vari-
ables with unbounded support. Advances in Neural Information Pro-
cessing Systems, 35:25185–25197, 2022. 38, 231

[KT02] Jon Kleinberg and Eva Tardos. Approximation algorithms for clas-
sification problems with pairwise relationships: Metric labeling and
markov random fields. Journal of the ACM (JACM), 49(5):616–639,
2002. 194

[KT19] Gautam Kamath and Christos Tzamos. Anaconda: A Non-Adaptive
Conditional Sampling Algorithm for Distribution Testing. In Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 679–693. SIAM, 2019. 40

[KTZ19] Vasilis Kontonis, Christos Tzamos, and Manolis Zampetakis. Ef-
ficient Truncated Statistics with Unknown Truncation. In 260th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 1578–1595. IEEE, 2019. 14, 19, 20, 25, 39, 74, 86

253



[KVK22] Alkis Kalavasis, Grigoris Velegkas, and Amin Karbasi. Multiclass
learnability beyond the pac framework: Universal rates and partial
concept classes. arXiv preprint arXiv:2210.02297, 2022. 38, 178, 231

[KY05] Piyush Kumar and E Alper Yildirim. Minimum-volume enclosing
ellipsoids and core sets. Journal of Optimization Theory and appli-
cations, 126(1):1–21, 2005. 171

[LB11] Tyler Lu and Craig Boutilier. Learning mallows models with pairwise
preferences. In ICML, 2011. 28

[LBMK20] Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv
Kumar. Does label smoothing mitigate label noise? In International
Conference on Machine Learning, pages 6448–6458. PMLR, 2020. 75

[LD14] Liping Liu and Thomas Dietterich. Learnability of the superset label
learning problem. In International Conference on Machine Learning,
pages 1629–1637. PMLR, 2014. 76

[Lee14] Alice Lee. Table of the Gaussian "Tail" Functions; When the "Tail"
is Larger than the Body. Biometrika, 10(2/3):208–214, 1914. 19

[LGW17] Jie Lei, Zhenyu Guo, and Yang Wang. Weakly supervised image
classification with coarse and fine labels. In 2017 14th Conference
on Computer and Robot Vision (CRV), pages 240–247. IEEE, 2017.
14, 22

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine learning,
2(4):285–318, 1988. 178, 189

[LKM+18] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and
Olivier Bousquet. Are gans created equal? a large-scale study. Ad-
vances in neural information processing systems, 31, 2018. 31

[LM18] Allen Liu and Ankur Moitra. Efficiently learning mixtures of mallows
models. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 627–638. IEEE, 2018. 28

[LM20] Roi Livni and Shay Moran. A limitation of the pac-bayes framework.
Advances in Neural Information Processing Systems, 33:20543–
20553, 2020. 176, 178

[LM21] Allen Liu and Ankur Moitra. Robust voting rules from algorithmic

254



robust statistics. arXiv preprint arXiv:2112.06380, 2021. 28

[LP17a] Günter Last and Mathew Penrose. Lectures on the Poisson process,
volume 7. Cambridge University Press, 2017. 181

[LP17b] David A Levin and Yuval Peres. Markov chains and mixing times,
volume 107. American Mathematical Soc., 2017. 194

[LRV16a] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estima-
tion of mean and covariance. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 665–674. IEEE,
2016. 15

[LRV16b] Kevin A. Lai, Anup B. Rao, and Santosh Vempala. Agnostic Esti-
mation of Mean and Covariance. In IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 665–674, 2016.
39, 75

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge
University Press, 2020. 148, 154, 157, 171

[LSW20] Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with
good feature representations in bandits and in rl with a generative
model. In International Conference on Machine Learning, pages
5662–5670. PMLR, 2020. 171

[Luc59] R.D. Luce. Individual Choice Behavior. Wiley, 1959. 48

[Luc12] R Duncan Luce. Individual choice behavior: A theoretical analysis.
Courier Corporation, 2012. 28, 146

[LV07] László Lovász and Santosh Vempala. The geometry of logconcave
functions and sampling algorithms. Random Structures & Algo-
rithms, 30(3):307–358, 2007. 127

[LXF+20] Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi
Sugiyama. Progressive identification of true labels for partial-label
learning. In International Conference on Machine Learning, pages
6500–6510. PMLR, 2020. 14, 76

[Mad86] Gangadharrao S Maddala. Limited-dependent and qualitative vari-
ables in econometrics. Number 3. Cambridge university press, 1986.
25

[Mal57] Colin L Mallows. Non-null ranking models. i. Biometrika,

255



44(1/2):114–130, 1957. 28, 48, 146

[Mas07] Pascal Massart. Concentration inequalities and model selection, vol-
ume 6. Springer, 2007. 81

[McN14] Marcia McNutt. Reproducibility. Science, 343(6168):229–229, 2014.
31

[MKFI22] Jason Milionis, Alkis Kalavasis, Dimitris Fotakis, and Stratis Ioan-
nidis. Differentially private regression with unbounded covariates.
In International Conference on Artificial Intelligence and Statistics,
pages 3242–3273. PMLR, 2022. 38, 231

[MM22] Maryanthe Malliaris and Shay Moran. The unstable formula theorem
revisited. arXiv preprint arXiv:2212.05050, 2022. 178

[MN06] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learn-
ing. The Annals of Statistics, 34(5):2326–2366, 2006. 15, 30, 112

[MS86] Olvi L Mangasarian and T-H Shiau. A variable-complexity norm
maximization problem. SIAM Journal on Algebraic Discrete Meth-
ods, 7(3):455–461, 1986. 172

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differ-
ential privacy. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 94–103. IEEE, 2007. 204

[MV19] Oren Mangoubi and Nisheeth K Vishnoi. Nonconvex sampling with
the metropolis-adjusted langevin algorithm. In Conference on Learn-
ing Theory, pages 2259–2293. PMLR, 2019. 15, 29, 110, 112

[MW20] Cheng Mao and Yihong Wu. Learning mixtures of permutations:
Groups of pairwise comparisons and combinatorial method of mo-
ments. arXiv preprint arXiv:2009.06784, 2020. 28

[Nat89] Balas K Natarajan. On learning sets and functions. Machine Learn-
ing, 4(1):67–97, 1989. 30, 143

[Naz03] Fedor Nazarov. On the maximal perimeter of a convex set in R𝑛 with
respect to a gaussian measure. In Geometric aspects of functional
analysis, pages 169–187. Springer, 2003. 118, 135

[NC08a] Nam Nguyen and Rich Caruana. Classification with partial labels.
In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 551–559, 2008. 75

256



[NC08b] Nam Nguyen and Rich Caruana. Classification with partial labels.
In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 551–559, 2008. 75

[NDRT13] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar,
and Ambuj Tewari. Learning with noisy labels. Advances in neural
information processing systems, 26, 2013. 76

[NOS17] Sahand Negahban, Sewoong Oh, and Devavrat Shah. Rank cen-
trality: Ranking from pairwise comparisons. Operations Research,
65(1):266–287, 2017. 28

[NP19] Sai Ganesh Nagarajan and Ioannis Panageas. On the Analysis of
EM for truncated mixtures of two Gaussians. In 31st International
Conference on Algorithmic Learning Theory (ALT), pages 955–960,
2019. 14, 19, 25, 39, 74, 86

[NT22] Rajai Nasser and Stefan Tiegel. Optimal sq lower bounds for learn-
ing halfspaces with massart noise. arXiv preprint arXiv:2201.09818,
2022. 29, 112

[Owe88] Art B Owen. Empirical likelihood ratio confidence intervals for a
single functional. Biometrika, 75(2):237–249, 1988. 77, 78

[Owe90] Art Owen. Empirical likelihood ratio confidence regions. The Annals
of Statistics, 18(1):90–120, 1990. 77

[Owe01] Art B Owen. Empirical likelihood. CRC press, 2001. 77, 78

[Pap81] Christos H Papadimitriou. On the complexity of integer program-
ming. Journal of the ACM (JACM), 28(4):765–768, 1981. 129

[PCMY15] George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and
Alan L Yuille. Weakly-and semi-supervised learning of a deep convo-
lutional network for semantic image segmentation. In Proceedings of
the IEEE international conference on computer vision, pages 1742–
1750, 2015. 75

[PL08] Karl Pearson and Alice Lee. On the Generalised Probable Error in
Multiple Normal Correlation. Biometrika, 6(1):59–68, 1908. 19

[Pla75] R. Plackett. The Analysis of Permutations. Applied Statistics,
24:193–202, 1975. 48

[PRMN04] Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Partha Niyogi.

257



General conditions for predictivity in learning theory. Nature,
428(6981):419–422, 2004. 176

[PSF+19] Joelle Pineau, Koustuv Sinha, Genevieve Fried, Rosemary Nan Ke,
and Hugo Larochelle. Iclr reproducibility challenge 2019. ReScience
C, 5(2), May 2019. 16, 31

[PVLS+21] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent
Larivière, Alina Beygelzimer, Florence d’Alché Buc, Emily Fox, and
Hugo Larochelle. Improving reproducibility in machine learning
research: a report from the neurips 2019 reproducibility program.
Journal of Machine Learning Research, 22, 2021. 16, 31

[QCJ+20] Zengyi Qin, Jiansheng Chen, Zhenyu Jiang, Xumin Yu, Chunhua
Hu, Yu Ma, Suhua Miao, and Rongsong Zhou. Learning fine-grained
estimation of physiological states from coarse-grained labels by dis-
tribution restoration. Scientific Reports, 10(1):1–10, 2020. 14, 22

[RBK07] Deva Ramanan, Simon Baker, and Sham Kakade. Leveraging
archival video for building face datasets. In 2007 IEEE 11th In-
ternational Conference on Computer Vision, pages 1–8. IEEE, 2007.
75

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li. Im-
agenet large scale visual recognition challenge. International journal
of computer vision, 115(3):211–252, 2015. 22

[RdSRSK15] Cláudio Rebelo de Sá, Carla Rebelo, Carlos Soares, and Arno
Knobbe. Distance-based decision tree algorithms for label ranking.
In Portuguese Conference on Artificial Intelligence, pages 525–534.
Springer, 2015. 27, 112

[RGGV15] M. Ristin, J. Gall, M. Guillaumin, and L. Van Gool. From categories
to subcategories: Large-scale image classification with partial class
label refinement. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 231–239, 2015. 22

[RRT+16] Maxim Raginsky, Alexander Rakhlin, Matthew Tsao, Yihong Wu,
and Aolin Xu. Information-theoretic analysis of stability and bias of
learning algorithms. In 2016 IEEE Information Theory Workshop
(ITW), pages 26–30. IEEE, 2016. 177

258



[RS94] Ronald L Rivest and Robert Sloan. A formal model of hierarchi-
cal concept-learning. Information and Computation, 114(1):88–114,
1994. 15, 112

[SBG21] Satchit Sivakumar, Mark Bun, and Marco Gaboardi. Multiclass
versus binary differentially private pac learning. Advances in Neural
Information Processing Systems, 34:22943–22954, 2021. 185

[SBH13] Clayton Scott, Gilles Blanchard, and Gregory Handy. Classification
with asymmetric label noise: Consistency and maximal denoising.
In Conference on learning theory, pages 489–511. PMLR, 2013. 75

[Sch86] Helmut Schneider. Truncated and censored samples from normal
populations. Marcel Dekker, Inc., 1986. 25

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998. 129

[Ser03] Rocco A Servedio. Smooth boosting and learning with malicious
noise. The Journal of Machine Learning Research, 4:633–648, 2003.
219, 220, 221

[SFG+09] Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bern-
hard Schölkopf, and Gert RG Lanckriet. On integral probability
metrics,∖phi-divergences and binary classification. arXiv preprint
arXiv:0901.2698, 2009. 34

[Sha18] Ohad Shamir. Distribution-specific hardness of learning neural net-
works. The Journal of Machine Learning Research, 19(1):1135–1163,
2018. 75

[SL22] Gil I Shamir and Dong Lin. Real world large scale recommenda-
tion systems reproducibility and smooth activations. arXiv preprint
arXiv:2202.06499, 2022. 31

[Sli19] Aleksandrs Slivkins. Introduction to multi-armed bandits. Founda-
tions and Trends® in Machine Learning, 12(1-2):1–286, 2019. 148

[Slo88] Robert Sloan. Types of noise in data for concept learning. In Pro-
ceedings of the first annual Workshop on Computational Learning
Theory, pages 91–96, 1988. 15, 112

[Slo92] Robert H Sloan. Corrigendum to types of noise in data for concept
learning. In Proceedings of the fifth annual workshop on Computa-

259



tional learning theory, page 450, 1992. 15, 112

[Slo96] Robert H Sloan. Pac learning, noise, and geometry. In Learning and
Geometry: Computational Approaches, pages 21–41. Springer, 1996.
15, 112

[SS07] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and ap-
plications. PhD thesis, The Hebrew University of Jerusalem, 2007.
27, 112

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine
learning: From theory to algorithms. Cambridge university press,
2014. 29, 71, 105, 110, 189

[SV08] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction.
Journal of Machine Learning Research, 9(3), 2008. 76

[SV16] Igal Sason and Sergio Verdú. 𝑓 -divergence inequalities. IEEE Trans-
actions on Information Theory, 62(11):5973–6006, 2016. 189

[TG75] David R Thomas and Gary L Grunkemeier. Confidence interval
estimation of survival probabilities for censored data. Journal of the
American Statistical Association, 70(352):865–871, 1975. 78

[TGH15] Isaac Triguero, Salvador García, and Francisco Herrera. Self-labeled
techniques for semi-supervised learning: taxonomy, software and em-
pirical study. Knowledge and Information systems, 42(2):245–284,
2015. 75

[TKD+19] Fariborz Taherkhani, Hadi Kazemi, Ali Dabouei, Jeremy Dawson,
and Nasser M Nasrabadi. A weakly supervised fine label classifier
enhanced by coarse supervision. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 6459–6468, 2019.
22

[Tob58] James Tobin. Estimation of relationships for limited dependent vari-
ables. Econometrica: journal of the Econometric Society, pages 24–
36, 1958. 25

[Tod16] Michael J Todd. Minimum-volume ellipsoids: Theory and algo-
rithms. SIAM, 2016. 171

[TSD+20] Hugo Touvron, Alexandre Sablayrolles, Matthijs Douze, Matthieu
Cord, and Hervé Jégou. Grafit: Learning fine-grained image rep-

260



resentations with coarse labels. arXiv preprint arXiv:2011.12982,
2020. 14, 22

[Tsi06] Anastasios A. Tsiatis. Semiparametric theory and missing data.
Springer Series in Statistics. Springer, New York, 2006. 14

[Tuk60] John Wilder Tukey. A survey of sampling from contaminated distri-
butions. Contributions to probability and statistics, pages 448–485,
1960. 15

[UMR+21] Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman
Arora. Machine unlearning via algorithmic stability. In Conference
on Learning Theory, pages 4126–4142. PMLR, 2021. 177

[Vad17] Salil Vadhan. The complexity of differential privacy. In Tutorials
on the Foundations of Cryptography, pages 347–450. Springer, 2017.
176

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134–1142, 1984. 189

[Vap06] Vladimir Vapnik. Estimation of dependences based on empirical data.
Springer Science & Business Media, 2006. 15, 112

[Vav93] Stephen A Vavasis. Polynomial time weak approximation algorithms
for quadratic programming. In Complexity in numerical optimiza-
tion, pages 490–500. World Scientific, 1993. 172

[VC15] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their probabilities. In
Measures of complexity, pages 11–30. Springer, 2015. 190

[VEH20] Jesper E Van Engelen and Holger H Hoos. A survey on semi-
supervised learning. Machine Learning, 109(2):373–440, 2020. 75

[Ver18] Roman Vershynin. High-dimensional probability: An introduction
with applications in data science, volume 47. Cambridge university
press, 2018. 101, 156

[VG10] Shankar Vembu and Thomas Gärtner. Label ranking algorithms: A
survey. In Preference learning, pages 45–64. Springer, 2010. 112

[Vis21] Nisheeth K Vishnoi. Algorithms for convex optimization. Cambridge
University Press, 2021. 126

261



[VRW17] Brendan Van Rooyen and Robert C Williamson. A theory of learning
with corrupted labels. J. Mach. Learn. Res., 18(1):8501–8550, 2017.
75, 76

[VW97] AW van der Vaart and Jon A Wellner. Weak convergence and empiri-
cal processes with applications to statistics. Journal of the Royal Sta-
tistical Society-Series A Statistics in Society, 160(3):596–608, 1997.
198

[VW19] Santosh Vempala and John Wilmes. Gradient descent for one-
hidden-layer neural networks: Polynomial convergence and sq lower
bounds. In Conference on Learning Theory, pages 3115–3117.
PMLR, 2019. 75

[VZW09] Anke Van Zuylen and David P Williamson. Deterministic pivoting
algorithms for constrained ranking and clustering problems. Mathe-
matics of Operations Research, 34(3):594–620, 2009. 115, 122

[WCH+21] Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang,
and Zhouchen Lin. Leveraged weighted loss for partial label learn-
ing. In International Conference on Machine Learning, pages 11091–
11100. PMLR, 2021. 14, 75, 76

[WDS19] Shanshan Wu, Alexandros G. Dimakis, and Sujay Sanghavi. Learn-
ing distributions generated by one-layer relu networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 8105–8115, 2019. 25, 27

[Wol79] MS Wolynetz. Algorithm as 139: Maximum likelihood estimation
in a linear model from confined and censored normal data. Jour-
nal of the Royal Statistical Society. Series C (Applied Statistics),
28(2):195–206, 1979. 25, 74

[WZL21] Deng-Bao Wang, Min-Ling Zhang, and Li Li. Adaptive graph guided
disambiguation for partial label learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021. 75

[XLG19] Ning Xu, Jiaqi Lv, and Xin Geng. Partial label learning via label
enhancement. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5557–5564, 2019. 75

262



[XQGZ21] Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-
dependent partial label learning. Advances in Neural Information
Processing Systems, 34, 2021. 75

[Ye92] Yinyu Ye. On affine scaling algorithms for nonconvex quadratic
programming. Mathematical Programming, 56(1):285–300, 1992. 172

[YZ16a] Fei Yu and Min-Ling Zhang. Maximum margin partial label learn-
ing. In Asian conference on machine learning, pages 96–111. PMLR,
2016. 75

[YZ16b] Fei Yu and Min-Ling Zhang. Maximum margin partial label learn-
ing. In Asian conference on machine learning, pages 96–111. PMLR,
2016. 75

[YZ17] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient
and label-optimal learning of halfspaces. Advances in Neural Infor-
mation Processing Systems, 30, 2017. 15, 112

[Zha14] Min-Ling Zhang. Disambiguation-free partial label learning. In Pro-
ceedings of the 2014 SIAM International Conference on Data Min-
ing, pages 37–45. SIAM, 2014. 75

[ZL21] Chicheng Zhang and Yinan Li. Improved algorithms for efficient ac-
tive learning halfspaces with massart and tsybakov noise. In Mikhail
Belkin and Samory Kpotufe, editors, Proceedings of Thirty Fourth
Conference on Learning Theory, volume 134 of Proceedings of Ma-
chine Learning Research, pages 4526–4527. PMLR, 15–19 Aug 2021.
15, 29, 110, 112

[ZLC17] Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time
analysis of stochastic gradient langevin dynamics. In Conference on
Learning Theory, pages 1980–2022. PMLR, 2017. 15, 112

[ZLGQ14] Yangming Zhou, Yangguang Liu, Xiao-Zhi Gao, and Guoping Qiu. A
label ranking method based on gaussian mixture model. Knowledge-
Based Systems, 72:108–113, 2014. 27, 112

[ZLY+14] Yangming Zhou, Yangguang Liu, Jiangang Yang, Xiaoqi He, and
Liangliang Liu. A taxonomy of label ranking algorithms. J. Comput.,
9(3):557–565, 2014. 112

[ZQ18] Yangming Zhou and Guoping Qiu. Random forest for label ranking.
Expert Systems with Applications, 112:99–109, 2018. 27, 112

263



[ZSA20] Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Efficient active
learning of sparse halfspaces with arbitrary bounded noise. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, vol-
ume 33, pages 7184–7197. Curran Associates, Inc., 2020. 15, 29,
110, 112, 114, 121

[ZY15] Min-Ling Zhang and Fei Yu. Solving the partial label learning prob-
lem: An instance-based approach. In Twenty-fourth international
joint conference on artificial intelligence, 2015. 75

[ZYT17a] Min-Ling Zhang, Fei Yu, and Cai-Zhi Tang. Disambiguation-free
partial label learning. IEEE Transactions on Knowledge and Data
Engineering, 29(10):2155–2167, 2017. 75

[ZYT17b] Min-Ling Zhang, Fei Yu, and Cai-Zhi Tang. Disambiguation-free
partial label learning. IEEE Transactions on Knowledge and Data
Engineering, 29(10):2155–2167, 2017. 75

[ZZL16] Min-Ling Zhang, Bin-Bin Zhou, and Xu-Ying Liu. Partial label
learning via feature-aware disambiguation. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 1335–1344, 2016. 75

264


	Introduction
	Challenges in Robust Machine Learning
	Challenges in Responsible Machine Learning
	Summary of Contribution
	Technical Overview of the Thesis
	Learning from Truncated Samples - chapter:learning-truncated
	Learning from Coarse Labels - chapter:learning-coarse-labels
	Learning with Bounded Noise - chapter:learning-massart
	Replicable Bandit Algorithms - chapter:replicable-bandits
	Statistically Indistinguishable Learning Algorithms - chapter:stat-ind

	Bibliographic Information

	Learning from Truncated Samples
	Preliminaries
	Boolean Product Distributions Truncated by Fat Sets
	Sampling from a Boolean Product Distribution using Samples from its Fat Truncation
	Parameter Estimation and Learning in Total Variation Distance
	Identity and Closeness Testing with Access to Truncated Samples
	Learning in Total Variation Distance
	Learning Ranking Distributions from Truncated Samples

	Efficient Learnability from Truncated Samples: Necessary Conditions
	PSGD for Learning Truncated Boolean Product Distributions
	Projected SGD: Algorithm's Description

	Projected SGD: Theoretical Analysis
	Convexity of the negative log-likelihood
	Initialization Lemma
	Ball in the z-space
	Unbiased Estimation of the Gradient
	Strong-convexity of the negative log-likelihood
	Analysis of SGD

	Appendix: Deferred Proofs

	Learning from Coarse Labels
	Classification with Coarse Data
	Related Work
	Technical Details for Learning from Coarse Labels
	Training Models from Coarse Data
	Multiclass Logistic Regression with Coarsely Labeled Data

	Gaussian Mean Estimation from Coarse Data
	The Proofs of theorem:impossibility-gaussian2 & 3.2.3
	Computational Hardness under General Partitions 
	Efficient Mean Estimation under Convex Partitions
	Geometric Information Preservation


	Learning with Bounded Noise
	Main Definitions and Results
	Related Work
	Notation and Preliminaries
	Learning in KT distance: theorem-main-proper
	Improper Learning Algorithm
	Proper Learning Algorithm: theorem-main-proper

	Learning in top-r Disagreement: theorem-main-topr
	Learning LSFs with Bounded Noise in Kendall's Tau distance
	Improperly Learning LSFs with Bounded Noise
	The Proof of theorem-main-proper: Properly Learning LSFs with Bounded Noise

	Learning in Top-1 Disagreement from Label Rankings
	Learning in Top-r Disagreement from Label Rankings
	The proof of lem:disagreement-top-r
	The proof of lem:gsa-top-r

	Distribution-Free Lower Bounds for Top-1 Disagreement Error
	Top-1 Ranking Natarajan Dimension
	Lower Bound for top-1 disagreement error for LSFs

	Examples of Noisy Ranking Distributions

	Replicable Bandits
	Stochastic Bandits and Replicability
	Warm-up I: Naive Replicability and Challenges
	Warm-up II: Bandit Algorithms and Replicable Mean Estimation

	Replicable Mean Estimation for Batched Bandits
	Improved Algorithms for Replicable Stochastic Bandits
	Replicable Stochastic Linear Bandits
	Finite Action Set
	Infinite Action Set

	The Proof of thm:multi-armed bandits with reproducible mean estimation
	The Proof of theorem:reproducible-multi-arm-bandit
	The Proof of theorem:reproducible-linear-finite-arm-bandit
	Naive Application of algo:reproducible-linear-finite-arm-bandit with Infinite Action Space
	The Proof of thm:multi-armed bandits with reproducible infinite arm mean estimation
	Deferred Lemmata
	The Proof of prop:effective-support
	The Proof of prop:lse-rep

	Computational Performance of algo:reproducible-infinite-arm-mean-estimation

	Statistical Indistinguishability of Learning Algorithms
	Replicability, Differential Privacy and TV Indistinguishability
	Generalization Bounds for TV Indistinguishable Learners
	Related Work
	TV Indistinguishability and Replicability
	TV Indistinguishability and Differential Privacy
	Amplifying and Boosting TV Indistinguishable Algorithms
	Preliminaries and Additional Definitions
	Preliminaries
	General Definition of Indistinguishability
	Alternative Definitions of TV Indistinguishability
	Coupling and Correlated Sampling
	Discussion on def:TV stability

	Useful Replicable Subroutines
	Replicability Preliminaries
	Replicable Heavy-Hitters
	Replicable Agnostic PAC Learner for Finite H

	TV Indistinguishability and Replicability
	The Proof of lem:TV stability to replicability
	A General Equivalence Result

	TV Indistinguishability and Differential Privacy
	DP Preliminaries
	The Proof of prop:dp to stab
	List-Global Stability -3mu TV Indistinguishability
	The Proof of prop:stab to dp
	Going Beyond Countable X

	Amplification and Boosting
	The Proof of lem:stability amplification
	The Proof of thm:boosting algorithm
	Tight Bound Between , 
	Beyond Countable X

	TV Indistinguishability and Generalization
	Extended Abstract in Greek
	
	greekenglishRobust Machine Learninggreekgreek
	englishenglishResponsible Machine Learningenglishgreek
	 µ
	 µ
	englishgreekß 



