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Abstract

The tracking of vehicles, pedestrians, and assets in any platform mode is
crucial for supporting various societal functions, spanning from personal
mobility services to safety and well-being. With the rise of affordable "smart"
devices, the provision of high-quality positioning services has become
essential for a wide range of wirelessly connected devices. While Global
Navigation Satellite Systems (GNSS) technologies offer a global solution of
satisfactory accuracy outdoors, their performance degrades significantly in
hybrid environments and becomes impractical indoors.

This doctoral thesis serves two primary objectives. Firstly, it focuses on
developing a framework for characterizing and modelling RF-based ranging
observables derived from disparate radio localization technologies using
empirical models. Secondly, it aims to design a methodology for
collaboratively localizing groups of autonomously moving nodes (pedestrians)
indoors. This is achieved using data derived between rover units and on-site
fixed devices (i.e., Wi-Fi Access Points) as well as among neighboring rovers.
This accompanied by the development and implementation of associated
assessment procedures for performance evaluation.

The thesis evaluates the performance of radio localization technologies
through controlled experimental trials. Statistical analysis enables the
characterization of range observable errors generated by highly accurate
Ultra-Wideband (UWB) and less accurate Wi-Fi Round-Trip Time (Wi-Fi RTT)
technologies. Analysis offers valuable insights into each technology's
capabilities at various operating conditions (i.e., static or dynamic) and in the
presence of obstacles commonly found in indoors (walls, pedestrian
shadowing, etc.). Furthermore, the thesis proposes alternative techniques for
range error mitigation, including the development and evaluation of suitable
empirical correction (linear and spatial) models.

The methodology applied for collaborative localization of a group of users
(e.g., pedestrians) leverages the hybrid nature of the range measurements
obtained by UWB and Wi-Fi RTT systems. Firstly, the proposed algorithm
calculates the standalone position of the moving nodes using the existing
communication infrastructure (Wi-Fi RTT) for Pedestrian to Infrastructure
(P21) ranges. Subsequently, the localization solution obtained in the P2l step is
combined with ad-hoc UWB (Ultra-Wideband) Pedestrian to Pedestrian (P2P)
ranges and orientation observables (i.e., loosely-coupled filtering scheme) to
serve as a baseline for implementing a distributed collaborative position
solution. The collaborative positioning system yields an improvement in
accuracy and availability compared to the absolute P2l localization solution,
while reduces the need for extensive infrastructure equipment. The quality
metrics of the localization algorithms are assessed with field as well as
simulated datasets generated using in-house developed software.



Overall, assessment of the proposed methodologies reveals an improvement
in position trueness for UWB and Wi-Fi RTT cases of the order of 74% and 54%
respectively. The proposed localization algorithm based on a P2I/P2P
configuration provides a potential improvement of position trueness up to
10% for continuous anchor availability. Its full potential is evident for short-
duration events of complete anchor loss (P2P-only), where an improvement
of up to 53% in position trueness is achieved. Overall, the performance metrics
estimated based on the extensive evaluation campaigns, demonstrate the
effectiveness of the proposed methodologies.



NepiAnyn

O evrtomiopog oxnuatwy, melwv Kot oyabwv anoteAel aVTIKEIUEVO {WTIKAG
onuaociag ywa tv umootnplen evog cupéo¢ GACUATOG AELTOUPYLWV TNG
olkovoulag Kal TNG Kowwviag YeviKOTEPQ, oL OTMOLEC KAAUTITOUV £DOpPLOYEC
TIOU €KTElvovTal QMmO UMNPEGCIEG TPOOCWTILKAG KLWNTIKOTNTOG €wG Kol
CUOTHHATA KPLoLa yLo TNV eunuepia Kat aodalela Twv moAltwy. H tpéxouca
texvoloyLkn otdbun mpoodépel Slapkwe avavopevn molkNia «EEumvwy»
CUOKEUWV, XOHnAoU KOOTOUG HE Tponypéveg Suvatdtnteg petadopdg
Sebopévwy Kat tnAemikowwviwy. OL Texvohoyieg Sopudoplkol eviomiopoU
(Global Navigation Satellite Systems, GNSS) Uvavtal va mapEXouv cuvexn,
QUTOVOMUN Kal Toykoopa Slabéowun Avon mpoodloplopol Béong e
LKOVOTIOLNTLKN aKpifela yla éva peydlo mAnBog edapuoywv GE AVOLXTOUC
Xwpoug. Qotdoo, n amodoor TOUG MELWVETAL CNUAVIIKA ot UBPLOLKA
niepBaArlovia (Letafaon PeTatl eEWTEPIKWY KAL ECWTEPLIKWY XWPWV), EVW OE
E£0WTEPLKOUC XWPOUG N AELTOUPYLKOTNTA TOUC KaBloTaTal TPAKTIKA adlvotn.

Jtoxo NG Obaktoplkng OSlatplPic oamotelel adevog, n avamtuén
pebBodoloylag yla Tov XapAKTNPEWOMO TNG Tolotntag kat tnv Slopbwon
npwtoyevwyv O6£60UEVWV  ONMOOTACEWY, OL OTMOILEC TPOKUTTOUV HECW
KOLVOTOHWY ETEPOYEVWV TEXVOAOYLWV PadLOEVTOTILOUOU Kal e TN Bonbela
KOTAANAQ SLopopPWHEVWY EUTELPLKWY MOVTEAWY. Adetépou, n SlatplPn
OTOXEVEL 0TO OXeSLOOUO KaL TNV avantuén pebodoAoyiog yLa Tov CUVEPYATLKO
EVTOTILOMO OUAVOUG KWoUMeVwY KOUPBwv (melwv) oe meplBailovta
E0WTEPLKOU XWPOU HEOW ouTopatomolnpévng Sadlkaciag aclppaTng
ouMoyng O&edopévwyv amMOOTACEWV TOCOO TPOG OCUOKEUEC UTOSOUNAG
(m.x., Wi-Fi Access Points) 600 Kol TpOg YELTOVIKOUG KIVOUUEVOUG KOUBOUG.
‘Eva emunpooBetog, aAAd e€loou oNUAVTLIKOC 0TOXOC TN SLatpLPrg, amoteAel n
epappoy] KAT@AANAwv TeEXVIKWV ofloAdynong Ttng TowoTNTAC TWvV
T(POTELVOUEVWY peBoSoAoyLwv.

H avamrtuén peBobdoloyiag ywa tnv S10pbwon mpwtoyevwyv Sedopévwv
QIMOOTACEWY OTNPL{ETOL Of OCUUTIEPACUATA TIOU QVTAOUVTOL KOATA TnV
aflohoynon emdooewv Twv TeEXVOAOylwv poadloeviomiopol  Suvdapel
TELPOLOTIKWY SOKLUWY O €AEYXOUEVEG OUVONKeG. H evOEAEXNG OTATLOTIKN
QVAAUGCH ETUTPETEL TO XAPAKTNPLOUO TNS HUONG TWV OPAAUATWY UETPIOEWVY
OIMOCTACEWY TIOU TIAPAYOVTOL XPNOLULOTOLWVTOC TNV TeXVoAoyia eviomiopol
unep-gupeiag Lwvng (Ultra-Wideband, UWB) unAdtepng akpifelag kat tnv
texvoloyia evromiopol xpovou petdfBaocng-smiotpodng Wi-Fi (Wi-Fi Round-
Trip Time, Wi-Fi RTT) xaunAotepng akpifeloc. H avaluon mapexel XpNOLUES
tAnpodopieg oXeTIKA e TIG SuvVATOTNTES TG KABE TeXvoloyiag oe Sladopeg
ouvOnkeg Aettoupylag (Mm.X. OTATIKA A KIVNUOTLKA) Kol EVOVTL EUmodiwy (1.
METPAOELS HEOW ToLyoTollaG, okiaon melwv) mMou amaviwvtal cuvnBwg o€
E0WTEPLKOUG YWpoug. Me Baon ta supnuata tng afloAdynaong, mpoTeivovTal
EVOANOKTLKEG TEXVIKEC S10pBwoNG 0DAAUATWY AMOOTACEWY E TNV AVATITUEN



Kot TNV ofloAdynon KOTAAANAWY EUMELPIKWY HOVTEAWV SlopBwoswv
(VPO KA KaL eTILpAVELOKA).

H avamntuén peBodoloylog oUVEPYOTLKOU EVIOTILOUOU CUNVOUG KWVOUUEVWV
KOUBwv (m.x. melwv) otnpiletat otn uPpldikn ¢voN TWV PETPHOEWV
OMOCTACEWV TIoU TIPoodEPEL 0 UVSUAOUOG cuotnuatwy UWB kat Wi-Fi RTT.
ApPYLIKQA, O TIPOTELVOUEVOC aAyoplBpog umtoAoyilel tnv amoAutn B€on twv v
AOYyWw Kvoluevwy KOPPBwY aflomolwvtag tnv cuvnon umdpxouoa umodoun
erukowwviag (Wi-Fi RTT) yia tn pétpnon anootdcswv MNelov npog Yrodourn
(Pedestrian to Infrastructure, P2I). ¥tn ouvéxela, n Alcon evtomiopol Tmou
umoloyiletal oto Brua P2l, xpnowuonoleital o cuvduacpo pe ad-hoc UWB
HETpNoeLC amootdoswy Melol mpog Meld (Pedestrian to Pedestrian, P2P) wg
Bdon yla tnv edpappoyr TS Katavenuévng AUonG CUVEPYQATIKOU EVIOTILOUOU
(Distributed Collaborative Positioning). Me autov tov Tpomo, To cUoTnUa
OUVEPYOTIKOU eVvTOTILOHOU emLTpémel TNV PeAtiwon tng molotntag toco 660
TPOG TNV akpifela aAAG Kal TN SLaBeCLUOTNTA TTIOU TIAPEXEL OE OXECN UE TNV
amdAutn Abon evtomopol P2I, pelwvovtag mapdAAnAa tnv avoykalotnta
vPnAng Sabeopdtntog s€omiopol umodoung. To SeSopéva AMOoTACEWV
P2l kot P2P aflomololvtal PeTd amd KAat@AANAn edappoyr Twv TEXVIKWY
810pBwong opalpdtwy mou €xouv avamtuxBel. EmumAéov, n MPOTELWVOUEVN
pebBoboloyia aflomolel aAdPAVELOKEG HETPHOEL OE OUVOUOOHUO HE TIG
METPNOELG AMOOTACEWY PEOW TIAPARETpOTIOiNOoNG TNG Stadikaciag ouvtnéng
Sebopévwv xalapng ollevéng (loosely-coupled filtering) mpokelpévou va
avtiotabulotel n  enimtwon nepuTtwoswv  PpaxunpoBeoung EAAeWPNG
Sebopévwv amootdoswv P2I. O éheyxog 0pBRG AeLToUpYLOC TNE TIPOTELVOUEVNG
peBoboloyiog  yivetar pe  aflomoinon  ektetapévwy  Sedopévwv
TipooopoilwaonNg MoU TAPAYOVTOL HE XPRON KATtAAANAou AoyLOpLKOU Ttou
ovantuxbnke ota mMAaiola tng Statplpng.

H Sokiur Twv mpotewvouevwy Lebodoloylwv amokaAUMTEL TIG SUVOTOTNTES
BeAtiwong tng amodoong toug. H edapuoyny HovieEAwv SLopBwong
anootacewv odnyel og BeAtiwon NG akpiBelag pe xprion dedopévwv UWB
Kota mepimou 74%, evw yla ta dedouéva Wi-Fi RTT odnyel og BeAtiwon tng
okpifelag éwg kat 54%. H edapupoyn Tou TPoTEWVOUEVOU aAyopiBuou
EVIOTUOMOU XPNOLUOTIOLWVTAG Ta OUuVOUNOTIKA Oedopéva  amooTACEWV
P21/P2P mapéxet Suvatotnta BeAtiwong tng akpifelag tne O£onc ewc kot 10%
yla ouvexy SlwaBeoipuotnta kOopPwv umodoung (anchors). H Suvatotnta
ETUTUXOUG €PaPUOYNG TOU TTPOTELVOEVOU alyopiBuou kabBiotatal cadng oe
ouvOnkecg mANpou¢ anwAelag anchors (povo P2P dsdopéva) yio clvroua
XPOVIKA SlaoTUaTa, OToU eMITUYXAvVETAL BeATiwon TG akpifelog tng Béong
€wg Kot 53%. ZuvoAkd, ol Oelkteg akpifelag mou ekTLwvVTOL BACEL TWV
EKTEVWV SOKIUWY a€LOAOYNONG, KATOSELKVUOUV TNV AMOTEAECUOTLKOTNTA TWV
T(POTELVOEVWYV peBodoAoyLwv.
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Chapter 1
Introduction

1.1 Overview and motivation

This doctorate thesis studies the problem of positioning a swarm of
autonomously moving nodes (pedestrians, robots etc.) under constraints in
GNSS denied environments. The overall scope of this research entails the
conceptualization, the development and testing of a suite of indoor,
cooperative localization algorithms and software tools for addressing the
problem. The basis of the proposed development resides on the combined
use of recently introduced radio-frequency (RF) ranging technologies (Wi-Fi
RTT) with well-established ones (UWB) that gradually gain interest in personal
mobility devices. The operational principle of these technologies result in
ranging observables using the two-way time of flight of the RF signal (i.e., Two-
Way Ranging, TWR). Evidently, the emphasis is placed on the development of
suitable functional models to address the problem leading into a Pedestrian
to Infrastructure (P2l) and Pedestrian to Pedestrian (P2P) modules aided by
inertial measurements for indoor positioning. At a preliminary stage,
investigations include a thorough study and manipulation of the error sources
inherent in the RF raw measurements and their mitigation through suitable
modeling.

As the working capability of GNSS is mainly targeted outdoors, tree foliage and
urban canyon conditions lead inevitably to signal attenuation and multipath
effects that deteriorate the position solution (Gikas & Perakis, 2016).
Consequently, the absence of GNSS signals indoors have steered the interest
towards the development and adoption of alternative positioning
technologies and techniques (Correa et al., 2017; Mendoza-Silva et al., 2019;
Gikas et al. 2019). The motivation for this research work stems directly from
the recent advances in IT (Information Technology) and MEMS (Micro-
Electromechanical Systems) technologies and their global adoption in
contemporary smartphone and PDA (Personal Digital Assistant) devices. In
this era, the potential of recently introduced RF ranging technologies is
significant; especially, when integrated with inertial sensor data. The driver
for undertaking this research study is driven by the recent advances and
potential in the following open research areas:

e RF ranging technologies of high accuracy in the Ultra-Wide Band
(UWB) spectrum have recently been introduced to commercial
smartphone devices. The continuously decreasing size and cost of
UWB augurs their wide adoption by the smartphone industry in near
future forecasted at 32.5% of the global market by 2025 [ABI Research
2020].

e The recently introduced Wi-Fi RTT technology can easily offer P2l
ranging services of medium nominal accuracy (0.5 m) as part of the
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default web access functionality in a widespread and seamless
manner. Its fast adoption by the smartphone industry [Want et al.
2018] dictates the pressing need for in depth studying of the ranging
capabilities and limitations, as well as, for developing methods
towards improving the derived localization solution.

The RF-based (TW-)ToF ranging principle introduces inherent and
condition-specific (bound to varying devices and environment
conditions) inaccuracies of a variable nature [Li et al. 2015,
Lederberger and D’Andrea 2017, Perakis and Gikas 2018, Horn 2020].
As a result, the need for studying thoroughly its error budget, and the
development of alternative error mitigation techniques capable to
adapt in different environments, is clearly evident.

The combination of UWB and Wi-Fi RTT technologies may offer
increased coverage and flexibility of indoor positioning solutions by
combining pre-existing P2l ranging infrastructure with ad-hoc P2P
ranging. This ubiquitous ranging setup utilizing these complementary
technologies has still not been extensively studied [Li et al. 2021].
The goal in real-life applications leans towards reducing the number
of infrastructure (anchor) nodes in order to lower procurement and
maintenance costs. Therefore, the proposed positioning solutions
should incorporate flexible architectures utilizing optimally both the
available anchor points and moving nodes. Therefore, a study
addressing the alternative setups of available anchors, moving nodes
and their geometry distribution in selected operational scenarios is
expected to provide useful insight for designing indoor positioning
systems (IPS) installations.

A crucial problem to be addressed in P2P range-based collaborative
decentralized positioning architectures, is the mitigation of errors
induced due to unknown correlations among the communicating
nodes. Relevant studies that have concluded in stable Position
Velocity and Timing (PVT) solutions are employing node classification
concepts — for instance, using primary nodes equipped with multiple
sensors and absolute position knowledge in order to provide inter-
nodal positioning input to secondary P2P-only rovers (Goel et al. 2018,
Pierre et al. 2018, Han et al. 2020). This approach requires a multi-
level rovers design whereas the overall system operates with reduced
flexibility due to its dependence to the continuous operation of high-
cost rovers. Therefore, as long as the mitigation of the propagated
position errors for collaborative P2P range-only positioning algorithms
is not addressed, the provision of a robust and scalable real-time
solution still remains an open issue.



1.2 Content and research objectives

Primary Objective 1: To develop and test a methodology for identifying and
mitigating errors in TWR (two-way ranging) RF range observations

The initial sub-objective involves conducting methodical field tests in
controlled environments to examine TWR RF range errors. These tests aim to
retrieve valuable feedback using actual data. This part of the investigation
aims at a thorough statistical analysis and characterization of the nature of
errors in range observations produced using the UWB and Wi-Fi RTT
technologies. This investigation is expected to provide useful insight
concerning the technologies’ capabilities in varying operational conditions
(e.g., static or kinematic operation) and against obstacles interaction (e.g.,
through-wall operation, pedestrian shadowing) encountered commonly
indoors.

Based on the findings of range error characterization, alternative range error
mitigation techniques are suggested. This sub-objective aims at developing,
implementing and evaluating suitable range error correction procedures
based on specific empirical range error correction models. These models are
built to be valid in environments with common characteristics (i.e., different
building layouts and/or materials), data availability setup (i.e., transceivers
number and installation geometry), obstacles (i.e., pedestrians and walls), as
well as different RF technologies (i.e., UWB and/or Wi-Fi RTT) in order to
propose a solution providing robust range error correction.

Primary Objective 2: To develop and test a robust, RF range-based positioning
approach for groups of pedestrians walking in dynamic environments
considering the hybrid nature of TWR measurements

Firstly, the proposed algorithm computes the standalone position of the
moving nodes in question aided by the existing communication infrastructure.
For this purpose, appropriate localization algorithms have been studied for
handling the Pedestrian to Infrastructure (P2l) ranges obtained by Wi-Fi RTT.
Besides, the proposed localization engine implements the range-error
correction techniques for mitigating inherent Wi-Fi RTT inaccuracies while
providing real-time functionality.

The second part of the localization approach integrates the range
measurements along with the location of the neighbor moving nodes obtained
in the previous step as a basis for the development of the distributed
Collaborative Positioning solution. This goal resides on ad-hoc Pedestrian to
Pedestrian (P2P) UWB ranging technologies in order to support and extend
the positioning availability provided by the P2l absolute pedestrian
positioning. Overly, the CP engine should be also capable to integrate range
error mitigation models whilst ensuring its ability to operate in real time.

Finally, in order for the proposed CP engine to be adaptive enough to
compensate dynamic conditions it has been designed to use optimally the P2I
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and P2P range information. The main goal is to develop a robust algorithm
able to accept different number of anchors (P2I) while minimizing the effect
of propagated P2P correlation-induced positioning errors. Appropriate
algorithms are proposed for handling the correlated and uncorrelated errors
among communicating inter-ranging moving nodes. It is noted that the
proposed CP algorithm adheres to inertial measurements via low-complexity
range/IMU fusion in order to compensate for short-term P2l range
unavailability.

Secondary Obijective: To establish and implement a unified Quality Control
(QC) framework for the assessment of the correctness and efficiency of the
proposed solutions.

The first sub-objective refers to the evaluation of the proposed range error
correction models under varying conditions, for different data-sets collected
using both TWR technologies under consideration. The field-testing
procedures is repeatable and is able to be performed in varying locations.
Through the implementation of extended, dedicated field tests, a detailed
analysis and evaluation of the different correction models should lead to
concrete proposals suitable for each RF ranging technology.

The second sub-objective refers to detailed and extended testing and
assessment of the proposed suite of positioning algorithms using real and
simulated data. The design and implementation of dedicated field
experiments enables the acquisition of complete datasets for testing the
proposed algorithm and for fine-tuning the subsequent, extensive simulations
tests. Regarding simulation testing, the development of a ranging and
orientation data generator based on simulated or real trajectories, enables the
evaluation in a controlled and repeatable manner. The generated data
simulate quality characteristics of the TWR technologies in order to provide a
straightforward assessment based on controlled reference data.

1.3 Research methodology

The research methodology followed in this thesis consists of three distinct but
interrelated implementation steps:

(a) Range measurements calibration/ correction phase

Pre-analysis stage: Initially, the raw RF range observables need to undergo a
preliminary statistical analysis in order to characterize the TWR technologies’
behavior and pave the road for the following analysis steps. For this purpose,
carefully designed experiments take place utilizing accurately surveyed test-
beds for the collection of extended range measurement datasets. The
extracted statistical measures provide insight regarding the performance
characteristics of the employed technologies. Special care is taken in order to
collect sufficient data both for the observables calibration as well as for testing
the validation of the solutions.
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Correction models development: The raw data collected in the previous stage
undergo a refinement process. The statistical metrics obtained are used in
order to guide data grouping, outlier identification, data exclusion or even the
repetition of data collection campaigns. Specifically, the empirical range error
models produce both radial (1D) and spatial (2D) range before the
implementation on real data. Additionally, the models are combined with
available RSS (Received Signal Strength) indicators as well as user orientation
information enabling investigation of the environmental effects.

Error mitigation and models validation: The developed ranging errors models
are applied on real datasets for static conditions providing initial feedback
regarding model performance. In order to ensure unbiased estimation, the
calibration evaluation is performed on data collected for validation purposes
and not on the initial data collected for the generation of error models.
Moreover, the evaluated range error models are implemented on data
referring to well-defined operational conditions (e.g., room type and
geometry) providing the evaluation of the error models based on real,
reference data.

Kinematic range error correction: Ultimately, the range errors mitigation
process is of importance for kinematic positioning sessions. The dynamic
characteristics of kinematic data provides the most demanding conditions for
TWR range error model validation due to varying environmental effects. For
validating the reliability and robustness of the models, the performance
evaluation is performed utilizing sets of test trajectories that cover the
majority of the available testbed areas.

(b) Positioning algorithms development
Tuning of positioning filter: The positioning engine's core, which is the Kalman
Filter (KF), is developed and optimized to handle UWB and Wi-Fi RTT raw
observables. During this development process, both process and
measurement noise is fine-tuned in an optimal manner. The tuning is based
on the statistical characterization performed for both TWR technologies in the
previous development step. Azimuth information obtained by onboard IMU is
included within the KF in order to compensate for epochs of gross ranging
errors or ranging measurables unavailability.

Collaborative positioning algorithms: As the proposed localization engine
needs to operate in a robust, scalable and self-contained manner, a
distributed architecture is selected. Considering the foundation of the system
relies on the utilization of Wi-Fi RTT for P2| ranging and UWB for P2P ranging,
the mathematical models and algorithms should be designed and developed
accordingly. Operational elements for each technology, such as sampling rate,
data formatting and communications scheduling are taken into account.
Careful data handling is a requirement for the unobstructed system operation
supporting data input from multiple roving nodes and for both TWR device
types able to be utilized both for real-time as well as for post-processing tests.
At this stage, the collaborative positioning operation is limited to one rover
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utilizing multiple ranges from neighbor anchors and rovers, omitting the
unknown correlation effects on positioning errors during multiple rovers’
localization.

Cross-correlation effect mitigation: An extension of the developed CP
algorithms is proposed based on the approach of Split Covariance Intersection
Filter (SCIF) which can be implemented as a variation to KF. SCIF approach
incorporates the cross-correlation in errors occurring due to relative
measurements among collaborating nodes. The proposed approach utilizes
range-only relative measurements and the communicated position state of
the rover. As this is a range-based approach the developed filter also
incorporates an adaptive KF feature for compensating abrupt orientation
change. Since absolute positioning is provided by the P2l ranging technology,
the maximum expected positioning performance is bound by the ranging
quality of Wi-Fi RTT observables.

(c) Quality Control of the Positioning engine utilizing real and simulated
datasets

Field testing campaigns: The selected testbed area needs careful selection in
order to ensure typical environmental conditions that are required at the
evaluation stage of the proposed approach. The location of the anchor
transceiver nodes is carefully selected and accurately surveyed to simulate a
standard P2l infrastructure. For the establishment of reference points, highly-
accurate checkpoints are established, for facilitating the estimation of
reference trajectories.

Raw observables simulator: A software simulator for ranges and heading is
designed and developed to aid in the development, testing, and field-testing
design of the CP algorithms. The software is based on configurable simulated
trajectory data of multiple simultaneously roving nodes. Modular errors can
be introduced for the range measurements in order to simulate the different
quality of the TWR technologies at hand. Moreover, the feature of dynamic
anchor availability enables the study of simulated obstruction effects
commonly present in indoor environments. The performance evaluation
statistics are estimated utilizing the preconfigured reference trajectories.

Performance evaluation: The overall assessment of the proposed approach is
performed assuming standard quality metrics for relevant PVT-reliant
applications (e.g., trueness, accuracy, availability) in varying operational
conditions. The estimation of the statistical measures takes place for varying
range error correction models leading to an overall evaluation of the proposed
range error mitigation approaches. Also, a crucial aspect when designing
Indoor Positioning Systems (IPS) is the location of the anchor transceivers
affecting the overall geometry of the positioning solution as well as the total
cost based on the number of required infrastructure nodes. Hence, alternative
options regarding the anchors’ geometry and availability are evaluated.
Finally, the effects of varying motion characteristics of the rovers are
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examined as different dynamics directly affect the localization engine
performance.

1.4 Research originality and innovation

The proposed approach stands out due to its originality in two main aspects.
Firstly, it focuses on developing and evaluating suitable models for correcting
range errors in RF-based TWR technologies. Secondly, it emphasizes the
development of a robust collaborative positioning engine for groups of
pedestrians. This engine is designed to handle scenarios with limited anchor
availability while also ensuring scalability through a distributed positioning
architecture using single-level setup of collaborating nodes (i.e., all nodes are
identical and no primary/ secondary classification is required).

e The impact regarding the development and systematic evaluation of
empirical range error correction models for UWB and Wi-Fi RTT is
summarized in the following:

o Development and implementation of spatial (2D) error
corrections models for RF-based technologies.

o Introduction of orientation and RSS information within the
corrections models.

o Detailed and systematic performance evaluation of the
proposed correction models leading to corresponding
variations for both UWB and Wi-Fi RTT technologies.

e The originality regarding the development and implementation of the
pedestrian indoor CP algorithm refers to:

o The combined use of Wi-Fi RTT and UWB in order to provide
a balanced solution by utilizing the strengths and restrictions
of each technology correspondingly

o The ability of the algorithm to operate efficiently while a
minimum number of anchor nodes is available for short
periods by optimally combining P2P range measurements

o The utilization of a range/heading Split Covariance
Intersection Filter for UWB/ Wi-Fi RTT/IMU Loosely Coupled
fusion in order to provide robust indoor positioning for groups
of pedestrians

1.5 Thesis outline

Chapter 1: Introduction

The overview and motivation for this work is presented in this introductory
chapter. The research objectives, the research methodology as well as a
summary of the research innovation are provided.
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Chapter 2: Background on indoor positioning

The chapter extensively examines the problem of indoor localization and
provides a literature review on the topic. It includes a detailed presentation of
relevant data collection technologies, as well as representative application
categories based on their corresponding quality requirements.

Chapter 3: Range-based collaborative positioning

Chapter 3 includes a literature review of localization techniques and
algorithms, with a focus on using distance measurement data. The main
approaches for handling errors in radio frequency technologies suitable for
indoor environments are presented, including both theoretical and empirical
models. It includes the presentation of key collaborative localization
architectures, with a focus on algorithms that solve the problem locally for the
user (distributed architecture), and showcases representative research
approaches.

Chapter 4: Range correction models

This chapter provides a description of the design and development of the
methodology for modeling range measurement corrections. The two
proposed approaches, utilizing linear and spatial empirical models, are
presented, along with a proposal to enhance the models by incorporating
orientation information of the node (pedestrian). Additionally, the software
tools developed for model estimation and their operational evaluation are
described.

Chapter 5: Position computation algorithm

The chapter describes the set of localization algorithms developed to fulfill the
objectives of the thesis. The methodology for absolute localization is
developed utilizing P2l distance measurements. Additionally, the
methodology for collaborative localization is presented, combining P2l and
P2P distance measurements, state vector, and the co-variances of moving
nodes. Furthermore, the process for evaluating the correct operation of the
localization algorithms is presented, including the computation of quality
measures for the resulting kinematic trajectories.

Chapter 6: Data Collection and Error Mitigation

Chapter 6 presents the design of the carried out experimental procedure, the
set of data collection scenarios and the employed equipment. Additionally, it
describes the basic principles, the structure, and the functionality of the
software developed to generate simulated distance measurements from both
artificial and real trajectories. Finally, the analysis for assessing the quality of
the primary distance measurement data and the evaluation of the applied
correction techniques is presented.

Chapter 7: Position Solution Estimation

The results of the analysis for calculating the localization solution using real
and simulated ranges data are presented. Essentially, this chapter pertains to
the application of the proposed localization algorithms (P21 and P21/P2P) in
different scenarios using fully controlled (simulated) or partially controlled
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(field measurements) data. The localization solution is computed for real data
in outdoor environments, aiming to reduce the influence of external error
sources. Additionally, the P2l algorithm is evaluated with indoor data in terms
of verifying its correct operation under realistic conditions. Extensive
evaluation of the P21/P2P approach is carried out using multiple repetitions
scenario implementation using simulated datasets.

Chapter 8: Discussion, Conclusions and Future Work

It includes the main points, the contribution, and the conclusions derived from
the completion of the thesis, as well as proposals for future research and
expansion of the proposed approaches.
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Chapter 2
Background on indoor positioning

Chapter 2 offers a summary on indoor positioning and sets the foundation
regarding the necessity for tackling the problem based on current societal
needs. Key technologies utilized for addressing indoor positioning are
presented and an outline of representative application categories and the
respective user requirements are provided.

2.1 Emergence of indoor positioning

Positioning of people, vehicles and assets has historically been considered
information of vital importance for supporting a broad spectrum of societal
operations, spanning from personal mobility to safety-critical systems. As the
current technological landscape offers widespread availability of smart, low-
cost devices featuring advanced telecommunication and processing
capabilities, the provision of continuous, accurate and ubiquitous positioning
functionalities has become a key element for a variety of intelligent, wirelessly
connected terminals. Notwithstanding GNSS provides a continuous,
autonomous and global positioning solution of sufficient accuracy for a large
number of outdoor applications (Kirkko-Jaakkola, et al, 2016), it
underperforms in multipath and hybrid (a combination of indoor, outdoor and
transitional environments) environments whilst it becomes totally disabled
indoors (Brena et al., 2017). In order to serve the positioning needs under such
unfavorable conditions the research undertaken on novel positioning
technologies and techniques using heterogenous, low-cost sensors attracted
increasing attention over the past decades.

Therefore, it becomes evident that the provision of a unified, global, indoor
positioning solution based on a single technology is an extremely challenging
task, if not impossible. The challenging characteristics indoors such as Line-of-
Sight obstruction, limitations in sensor placement due to building geometry as
well as the extremely dynamic conditions due to moving objects and people,
are some of the obstacles that an Indoor Positioning System (IPS) needs to
overcome.

In an effort to address respective IPS challenges, a wide range of localization
techniques have been developed in recent years utilizing a variety of sensor
technologies ranging from radio-based to inertial and optical ones. In this
regard, Pedestrian Dead reckoning (PDR), for instance, relies on inertial
sensors due to their self-contained functionality (Chen et al., 2015). Moreover,
a large portion of current research focuses on map-matching techniques that
utilize building plans information (maps) in order to integrate geographical
information and consequently bound the computed positioning solution
(Bang et al., 2016). An extension to map-matching is the development of
Simultaneous Localization and Mapping (SLAM) techniques mainly based on
the combination of visual-based mapping (3D scanning and photogrammetric
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approaches), visual-based positioning as well as PDR (Sadruddin et al., 2020).
Also, extensive research towards RF-based positioning relies on range-based
lateration as well as fingerprinting techniques utilizing technologies such as
Radio Frequency ldentification (RFID), Wireless Local Area Network (WLAN)
and Ultra-Wide Band (UWB) (Retscer & Taschl, 2016; Gikas et al., 2016, Toth
et al.,, 2017).

The selection of the appropriate technique to be implemented within an IPS is
defined by the user needs and requirements of the application it serves. User
requirements are expressed in the form of quality metrics defining the
performance of the positioning solution. Positioning accuracy, availability and
integrity are usually considered as the most critical parameters followed by
position coverage, continuity, update rate, system latency and data output
(Gikas et al. 2019). Additionally, equally important design and implementation
parameters of a position tracking system are the user-machine interface
features, their development and operational costs (Xia et al. 2019), as well as
the security and privacy requirements (Zafari et al. 2019; Mautz, 2012). Figure
2.1 summarizes the key user categories requirements for typical IPS
implementations.

Positioning requirements

Cost requirements sampling rate accuracy \
solution integrity
operational costs update rate latency coverage
maintenance costs continuity availability \
& - Positioning
Solution
data queries safety
data visualization spatial data protection

data use approval

analysis tools / privacy /

Interface requirements Legal and security requirements

Figure 2.1: Key positioning solution users requirements overview.

2.2 Indoor positioning technologies

This section provides a technological overview and the basic operating
principles of the key positioning technologies currently used indoors.
Figure 2.2 presents a graphical overview of the main Positioning, Navigation
and Timing (PNT) technologies and techniques indicating their state of
maturity and adoption (Orfanos et al., 2023).
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Figure 2.2: The PNT ecosystem state of maturity and adoption of the various available
technologies and techniques (source: Orfanos et al. 2023).

2.2.1 Ultra-Wideband (UWB)

UWB technology is based on RF signal transmissions emitted in the form of
very short pulses in the wide bandwidth of the RF waveforms, enabling low
energy consumption despite their ability to transmit large amounts of data. As
defined by the United States Federal Communications Commission (US FCC),
an emitted radio wave belongs to UWB if the bandwidth exceeds either 500
MHz or 20 % of the carrier frequency (Alarifi et al., 2016). UWB transceivers
consist of radio wave generators and receivers that transmit and capture the
emitted radio waves. The short length nature of the emitting pulses provides
range estimation of high accuracy even at long (up to hundreds of meters)
ranges (Gikas et al., 2017) via the Time of Arrival (ToA), Time Difference of
Arrival (TDoA) or Angle of Arrival (AoA) technique. Consequently, position
fixing results under circumstances at the level of decimeters.

Figure 2.3: UWB pulses basic structure (source: Oppermann et al., 2004)

The inherent characteristics of UWB signal facilitate to a great extent, both
Non-Line-of-Sight (NLOS) functionality penetrating non-metallic materials as
well as increased multipath resistance which are of great importance for
complex and indoor environments (Perakis and Gikas, 2018; Toth et al. 2017).
Moreover, as signal transmission is performed at low power spectral densities
it results in low interference compared against other narrowband receivers
while it prevents human body harmfulness (Mautz, 2012).

A standard UWB-based positioning approach setup requires the deployment
of UWB transceivers either in a fixed or a roving configuration. Considering the
variety of UWB roving tags available today in the market in terms of size and
shape, numerous mounting and installation options exist (Saeed et al., 2019).
Compared to other radio-based technologies, a key benefit of UWB
technology is the tolerance against multipath fading effects leading to small
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ranging uncertainty (< 0.10 m) even at long ranges (Gikas et al., 2017; Perakis
et al., 2017). Nevertheless, despite the high accuracy potential of UWB
technology, its relatively high cost remains a limiting factor for a large-scale
implementation in areas including positioning and guidance of personnel,
machinery and robots in extended safety-critical indoor environments (Gikas
et al. 2019).

In recent years, applied research has been undertaken in many centers
worldwide focusing on UWB positioning indoors and in hybrid environments.
However, still a number of research questions remain open. A major study
area is concerned with the characterization of raw UWB range observables
aiming to gain insights on the nature, the error sources and the factors
influencing the quality of range observables (Denis et al., 2003; Lee & Yoo,
2006; Cardinali et al., 2006; Chong et al., 2007, Kristem et al., 2014; Malajner
et al., 2015; Risset et al., 2018). Similarly, other studies focus on mitigating
identified intrinsic weaknesses in UWB measurements through modeling the
relationship of error values to building geometry and environmental factors
(i.e., relative range, relative angle, obstructions and multipath) (Bellusci et al,
2008; Wymeersch et al, 2012; Ledergerber & D’Andrea, 2017, Mao et al.,
2018; Otim et al., 2019). Notwithstanding, ToA and TDoA techniques provide
successful position fixing, several research attempts identify core weaknesses
and limitations of UWB relevant to signal obstruction as well as anchor
geometry effects (Jourdan et al., 2005; Liu et al. 2007; Meng et al. 2012;
Bellusci et al. 2012; Chéliz et al., 2012; Koppanyi et al., 2014).

A distinct area of research towards improvement of UWB position quality
refers to UWB range fusion with data obtained from aiding sensors. A first
attempt was undertaken by Tanigawa et al. (2008) who performed integrating
a low-cost GPS/MEMS INS system with a commercial-of-the-shelf UWB unit.
Similarly, Pittet et al. (2008) integrated UWB data with MEMS gyro
magnetometer and accelerometer for step detection and heading estimation.
Dierenbach et al. (2015) employed an Extended Kalman Filter for computing
both UWB standalone lateration as well as sensor fusion. UWB systems have
also been employed in hybrid environments for indoor-outdoor navigation.
Initial trials have been carried out (Grejner-Brzezinska et al, 2014)
implementing a concept of collaborative navigation, in which UWB
transceivers were served both as communication infrastructure as well as for
enabling inter-node ranging.

Today, most commercially available UWB positioning systems aim at providing
turn-key solutions for industrial environments in real time. However, the
majority of available localization engines act mainly as black-boxes generating
a direct output in the form of position fix (2D coordinates) without providing
access of the user in the raw data. Well established commercial Real Time
Location Solutions (RTLS), including but not limited to Zebra®©, Ubisense®©,
Sewio® and Inpixon®©, report nominal positioning accuracies of the order of
0.3 m to 2 m. In addition, a limited number of available UWB devices in the
market allow access to the raw range observables such as Humatics©
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(previously Time Domain©) (Dewberry et al., 2012; Kasmi et al., 2013) and
Pozyx©(Dabove et al., 2018).

2.2.2 Wi-Fi and Wi-Fi RTT

Wireless Local Area Network (WLAN) technology, also known as “Wi-Fi”
(Wireless — Fidelity), is one of the most widely used wireless communication
standards. Originally, it was developed for servicing data transfer and
communication purposes (Crane, 2003). Wi-Fi technology operates in the 2.4
GHz and 5 GHz spectrum and relies on airborne electromagnetic waves
transmitted and received from dedicated Access Points (APs). In many cases it
has been replaced wired alternatives (e.g., twisted pair, coaxial cables and
optical fiber) used in conventional LAN setups for data transmission. Typically,
it is deployed as an ad-hoc network and in a hot-spot fashion to provide
wireless Internet access coverage.

Wi-Fi-based positioning gained increased attention over the years as it does
not require dedicated infrastructure installations except for a number of APs
which are usually already available in most indoor and hybrid environments
(Kealy and Retscher, 2017). Concerning IPS applications, Wi-Fi can serve as a
standalone localization technology (Bai et al., 2014) or supplementary to other
localization systems (Antoniou et al., 2017).

Considering that the primary goal of Wi-Fi technology is to serve
communication needs, its potential for tackling the positioning problem was
naturally overlooked. In this regard, influencing factors such as signal
attenuation and connection fluctuation usually found indoors can affect
severely the achieved position accuracy as the observables’ unstable nature
translates to noisy measurements (Evennou & Marx, 2006; Khalajmehrabadi
et al., 2017).

Wi-Fi positioning resides on Received Signal Strength (RSS) values. In
principle, position fixing can be accomplished using three independent
positioning techniques; namely, Cell of Origin (CoO), (tri)lateration and
fingerprinting (Henniger, 2012; Fernandes et al., 2014; Retscher et al., 2019).
An interesting alternative to standard RSS Wi-Fi positioning, is the so-called
Differential Wi-Fi (Retscher & Taschl, 2017). In this approach, position fixing
is accomplished using RSS values correction utilizing base AP stations similarly
to differential GNSS approaches. Moreover, in the recent years, research on
Wi-Fi positioning has taken advantage of emerging Artificial Intelligence (Al);
particularly, machine learning (Salamah et al, 2016; Zhao et al., 2017) and
deep learning approaches (Zhong et al., 2019; Turgut et al., 2019; Xu et al.,
2021) have gained increased interest.

Since August 2018, the introduction of Wi-Fi Round-Trip Time (RTT)
functionality using the IEEE 802.11mc standard that initially became available
on smartphones running Android 9 has enabled range observation among
users and Wi-Fi APs via round-trip delay time technique. Wi-Fi RTT offers
improved nominal range estimation accuracy (0.2-0.5 m) compared to the
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traditional RSS approaches paving the way for demanding IPS applications
(Want et al., 2018; Van Diggelen et al, 2018, Bai et al. 2020).

WiFi 802.17mc
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Figure 2.4: Wi-Fi RTT operating principle for range estimation through Fine Timing
Measurement (source: Diggelen et al, 2018)

The promising capabilities of Wi-Fi RTT functionality have motivated research
studies that focus on raw observable performance assessment both in terms
of communication and ranging quality (Urama et al., 2018; lbrahim et al.,
2018). Moreover, extensive performance evaluation has been conducted in
order to investigate the positioning potential using Wi-Fi RTT through range
error mitigation strategies (Yu et al., 2019; Ma et al., 2020; Horn, 2020).
Recently, hybrid approaches combining Wi-Fi RTT with complementary
positioning data-sources gain researchers interest (Bai et al. 2020; Liu et al,,
2021; Guo et al., 2022; Rizk et al., 2022)

2.2.3 Other popular indoor positioning technologies

Radio Frequency ldentification (RFID): RFID systems are used broadly for
locating objects in production facilities (e.g., warehouse product-location
applications). An RFID system consists of a transmitter-tag and a receiver-
reader featuring an antenna. Data transmission from a tag to a reader usually
confines in tag ID information used in automated, time stamped record-
keeping as part of an inventory management system. (Weinstein, 2005; Gikas
and Retscher, 2015). Within an IPS, tags or reader locations are stored in a
database enabling the positioning of objects using embedded RFID tags
(Mautz, 2012). Position accuracy of several decimeters is achieved, with the
operating effective range varying from several decimeters for passive tags up
to decameters when active tags are employed. Passive tags do not ask for
extra power supply as the readers enable energy transmission via inductive
coupling of RF waves. On the other hand, active tags include a power source
enabling longer emission range and larger data storage, making it possible to
transmit additional information. A drawback of active tags is the increased
weight, size and cost. The positioning principle that is mainly employed with
RFID is that of proximity, also known as CoO. Two CoO approaches can be
distinguished, defined as the direct and reverse approach. The direct approach
assumes a setup of fixed RFID tags and roving readers (Shen et al., 2016). For
applications for which a large number of fixed points is evident the direct
approach is preferred as it is more cost-efficient; otherwise, for instance, for
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logistics-related applications where the interest is in goods tracking, it is
preferred to attach RFID tags on the large number of moving elements (Gikas
et al., 2015). Multi-lateration can be implemented using RSS values, whilst
time-based positioning techniques (ToA, TDoA, etc.) were proved to be more
challenging to implement successfully. In general, the positioning accuracy is
highly dependent both on operational and environmental conditions (Gikas et
al., 2016a; Gikas et al., 2016b).

Bluetooth: Bluetooth wireless technology relies on digitally embedded
information on RF signals realized originally by the IEEE 802.15.1 standard.
Early uses of Bluetooth have served wireless data synchronization purposes
and data exchanges in short distances as they facilitate communication
between roving or static devices, and thus eliminate the need for wire-based
connections — for instance, in hands-free mobile headsets use (Bisdikian,
2001). Bluetooth Low energy (BLE) is the evolution of traditional Bluetooth® 5
directed at loT oriented solutions, where low power consumption, advanced
security and connectivity are considered crucial features. Bluetooth-based
positioning generally relies either on tags or low energy beacons for which the
respective RSS values can be recorded (Perakis et al., 2022). Bluetooth tags
are transceivers of a small dimensions that assigned a unique ID which can be
used for locating each tag (Prasithsangaree et al., 2002). Notwithstanding
Bluetooth positioning offers low cost, low power efficient localization
capabilities, the positioning quality is generally limited both in terms of
operational range as well as accuracy (Kealy and Retscher, 2017). Recent
advances in BLE technology feature extended positioning functionalities
including presence monitoring, High Accuracy Distance Measurement
(HADM), and direction of motion (Maklada et al., 2021).

Inertial Navigation Systems (INS): Inertial systems are used to compute the
position, velocity, acceleration and orientation of a moving platform using
observables from various sensor types. They usually refer to accelerometers,
gyroscopes aided by magnetometers and barometers that altogether enable
the estimation of vehicle motion, orientation and gravity information
respectively. The linear velocity and orientation of a moving platform is
obtained at consecutive time instances via data fusion of raw observables.
The position of the moving platform is obtained based on linear velocity
estimates. However, the effectiveness of this computational process heavily
depends on two factors; firstly, the knowledge of the initial state (position and
orientation) of the moving platform, and secondly the effects of error
accumulation over time as a result of the dead reckoning process exercised on
the INS data. Particularly, the performance of Inertial Measurement Units
(IMUs) depends primarily on gyroscope observables (Weinberg and
Kourepenis, 2006) followed by the accelerometer ones (Barbour, 2010). In
order to overcome these deficiencies, inertial measurements are usually fused
with GNSS information (positions or raw observables) through Kalman filtering
to produce a more robust solution of higher availability and accuracy. In the
indoor environment, aiding positioning information may be retrieved from RF
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sensors such as Wi-Fi, UWB, BLE and RFID; however, their integration with INS
still, has not been fully resolved problem attracting the interest of many
research groups worldwide. The advent of low-cost and low-weight Micro-
Electro-Mechanical Systems (MEMS) navigation sensors has facilitated the
introduction of guidance, navigation and control capabilities into numerous
applications previously considered out of reach. In this regard, IMU-based
motion-tracking for a variety of applications including low-cost and
smartphone-based INS is an active research area (Gikas and Perakis, 2016;
Antoniou et al., 2016; Clausen, et al., 2017; Antoniou et al., 2017).

Optical Systems: Optical or vision-based positioning technologies rely on
imaging data collected by cameras and employ appropriate image processing
techniques in order to identify and/or track objects. Consecutive image
analysis is the foundation of 3D motion extraction (also known as change
detection) from optical technologies (Hofman-Wellenhof et al., 2003; Brumitt
et al., 2000). Depending on specific configuration, positioning methodology
account for changes in scale, illumination, camera position as well as small
changes in the visible scene of ab object (Hide et al., 2009; Ruotsalainen,
2013). An extension of image-based tracking capabilities is the robust scene
comparison that can be implemented using large volumes of stored images.
This relies on the ability to query databases of hundreds of thousands of
images in real-time with error rates of just a few percent, depending on the
update frequency and the nature of the environment (Cummins and Newman,
2008). Optical positioning capturing can be generally classified in two distinct
configurations. In the first configuration, the camera is mounted on the roving
node collecting pictures or video recording as it moves. Through image
similarity detection using previously collected geo-tagged images stored in a
database using the camera of a smartphone, indoor positioning can be
implemented (Werner et al.,, 2011). In the second configuration, the cameras
are fixed in vantage points within the area of interest. Using computer vision,
activity recognition or visual inspection methodologies target detection and
tracking is realized (Vu et al. 2017).

Table 2.1 presents an overview of the available positioning technologies
summarizing respective specifications and key requirements performance and
Figure 2.5 presents a corresponding graphical taxonomy.

Table 2.1: Advantages and limitations of positioning technologies

Detection  Typical

Type Technology Technique range accuracy Cost Environment
GNSS-SPP 5-10 m *
. Long-
D-GNSS Lateration 0.5-3m * outdoor
range
GNSS-SBAS 1-5m *
Radio
frequency WLAN Fingerprinting/ Mid- 1-5m * Indoor/
WiFi-RTT Lateration range 0.5-2 m *k Outdoor
Bluetooth PrOX|m.|ty/ short- 5-20 m * Indoor
lateration range
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accelerometer reckoning m/s2 Outdoor
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Figure 2.5: PNT technologies taxonomy in terms of range operation and accuracy.

2.3 Key pedestrian indoor positioning applications

Location awareness is probably the most critical feature for any mobility or
motion related application. As a result, the recent developments in PNT
technologies and techniques leading into improvements in position quality
metrics support heavily the expansion of Location Based Services (LBS).
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Clearly, quality requirements in positioning vary depending on specific
application needs. However, in addition, other quality metrics (personal data
protection, power consumption, cost, etc.) need to be addressed. For
instance, for the case of non-safety critical applications, requirements
concerning cost and ease of use might be in favor of position accuracy and
reliability metrics. On the other hand, safety- critical applications rely mainly
on the system’s ability to provide accurate and reliable position fix (COST
SaPPART, 2015; COST SaPPART, 2017). An indicative list of indoor positioning
applications is presented in Figure 2.6.

s ~

PNT applications

Personal / pedestrian navigation ~ Non-safety critical

Location-Based services (LBS)  Non-safety critical

Navigation and guidance of teams of robots  Non-safety critical
First responders and fire-fighters  Safety critical
Dismounted soldier navigation  Safety critical

Asset locationand tracking  Non-safety critical

Turn-by-turn building guidance  Non-safety critical
Vision impaired guidance  Safety critical

Underground tracking and guidance  Non-safety critical

\ Indoor parking facilities management  Safety critical /

Figure 2.6: Indicative taxonomy of indoor positioning applications

This section provides an outline of the basic features and requirements
concerned with widespread indoor and hybrid environment positioning
applications; specifically, those concerned with first responders, warehouse
management, underground mining and quarrying and competitive sports.
These application categories are selected as they are representative of the
overall applications taxonomy covering varying user requirements, spanning
from recreational to safety critical ones.

2.3.1 First responders

Emergency situations present a great challenge for officials that need to
handle optimally the available recourses (people, services and tools) to ensure
the safety of the involved parties and the efficiency of an operation. The
challenge is even greater for situations for which the first responders need to
operate in indoors and in unfordable conditions such as in unknown
whereabouts and lack of visibility. Considering that such operations
necessitate timely decisions, real-time location awareness is of utmost
importance. Besides, in addition to self-localization and tracking of personnel,
reliable mapping of the surroundings indicating escape routes and potential
hazards is critical to safely conduct search and rescue operations (Bernoulli et
al., 2010).

As GNSS is not a viable solution for first-responders localization in emergency
conditions, alternative positioning methodologies need to be implemented.
Whereas, since these constitute safety-critical applications, it is apparent that
position accuracy and reliability requirements are a priority. Hardware
requirements include robustness, autonomous operation, long battery-life,
light-weight, small-dimensions, ease of use and long-range. Finally, first
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responder systems should be operational at minimal infrastructure
installation requirements, bear embedded communication functionalities for
data-transfer to and from the control-center as well as optimized user-
interface for facilitating operators’ control (Glanzer, 2012; Bastos et al., 2015).

Most devices used for first responder localization rely primarily on inertial
sensors and the PDR (Pedestrian Dead-Reckoning) technique as it provides a
self-contained and autonomous solution (Ojeda & Borenstein, 2007;
Beauregard et al., 2008; Ferreira et al., 2018). However, due to its high drift
rate, the inertial sensors are integrated with external data, either through map
matching (Perttula et al., 2014; Peng et al., 2018), RF systems (De Cillis et al.,
2017; Ulusar et al., 2020) or optical systems (Sadruddin et al., 2020; Khan,
2021).

In short, a first-responders’ localization system should ideally be able to (De
Cillis et al., 2020):
e build on lightweight wearable sensors (GNSS, MEMS IMU, ...) for
localization
e make use of on-site infrastructures (communication equipment) if
available
® support as minimum room-level accuracy
e provide continuous node (agents) positions estimation (maximum
availability)
e furnish low-cost, low-power and computationally efficient solutions in
terms of hardware and software.

2.3.2 Warehouse management

The sustainability of modern societies relies heavily on their ability to handle
and distribute goods effectively and at minimal cost. Supply chain operations
management serves this need. Warehouses is an inherent component in this
process connecting nodes between production (raw materials and
manufacturing enterprises) and distribution (retail and customers). Therefore,
it is crucial for a warehouse to operate optimally as it affects directly the
complete supply chain.

Warehouse operations rely on a network architecture featuring a series of
interrelated tasks that include stock planning, unloading, receiving and putting
away, order picking and loading of goods. Each individual task should be
accomplished optimally for a warehouse to operate efficiently and, for the
majority of the tasks, location-awareness is identified as a key requirement
(zhao et al., 2016).

Automation of warehouse management is not a new concept. It originates
from the advent of information technologies with a variety of Warehouse
Management Systems (WMS) being developed over the past decades (Krauth
et al., 2005; Custodio & Machado, 2020). Recent trends on warehouse
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management prove the increasing interest towards completely autonomous
operations with minimal or no human intervention (Wang et al., 2018).

Since most warehouse environments are indoors, the utilization of GNSS is
usually not an option, whereas the predetermined and clearly defined layouts
along with the accessibility to standardized power sources and
communication infrastructure facilitate the use of already available RF
technologies (lbach et al, 2005; Zhao et al., 2016). Therefore, usual
approaches for WMS localization functionality include the utilization of Wi-Fi,
RFID and Bluetooth technologies in order to minimize the necessity for ad-hoc
equipment and consequently offer cost-efficient solutions (Ding et al., 2008;
Wei et al., 2016; Ahmad et al., 2019; Lee et al., 2019; Zadgaonkar et al., 2021).

As warehouses form an integral part of industry, the 4™ industrial revolution
(Industry 4.0) development has a great effect on the design and development
of smart and connected WMS (Barreto et al., 2017). Advancements of loT
technology have been extensively studied and implemented in the scope
WMS as they provide advanced data management tools, remote control,
visibility and traceability through the connectivity capability of objects while
maintaining a low-cost (Lee et al., 2018; Butak et al., 2019; Colakovi¢ et al.,
2020; Affia & Aamer, 2021). Finally, the recent introduction of the concept of
Industry 5.0 aiming at the optimal collaboration between human and “smart”
machines, naturally affects the development of novel WMS (Fatima et al.,
2022).

2.3.3 Underground mines and quarries

Mining and quarry operations rely on qualified personnel, specialized
machinery, tools and techniques. While a large portion of mining and
quarrying is an open-pit activity that ensures ease of operations, underground
exploitation has recently attracted increased interest. Underground mining
provides an attractive alternative since it offers the opportunity to extract
minerals of specific quality features present in larger depths. At the same time,
these large depths deem open-cast mining non-cost effective, and at the same
time increase environmental impact. Therefore, underground mining usually
offers a preferred alternative to traditional open-pit exploitation (Oggeri &
Oreste, 2015; King et al., 2017).

In order to ensure optimal operations in mining and quarry exploitation it is
important to facilitate: (a) increased material extraction productivity, (b)
improved safety and security, and (c) reduced environmental footprint. To
address these requirements dedicated exploitation management systems
employing Information and Communication Technologies (ICT) technologies
are necessary. However, as the majority of implementations don’t fully utilize
the capabilities of the latest technological advancements, the potential of
mining management systems optimization is rarely achieved (Ostroukh et al.,
2019).

42



Localization approaches in underground mines and quarries face a variety of
difficulties that relate to the challenging observation geometry, visibility and
signal propagation restrictions. The main localization technologies rely on RF-
based, non-RF-based and hybrid ones (Seguel et al, 2022). As RF-based
localization technologies usually ask for existing communication
infrastructure, they offer a highly cost-efficient option, albeit, signal
transmission-related challenges hinder their positioning performance (Zare et
al., 2021). The alternatives of non-RF-based approaches rely on magnetic,
inertial or Visible Light Communication (VLC) sensors are unsusceptible to RF-
transmission limitations, however they require specialized equipment and still
face respective challenges of maximum range and long-term position drift.
Recently, hybrid approaches emerge aiming at combining the strengths and
mitigate the weaknesses of sole-based technology systems (Li et al., 2019).

2.3.4 Professional sports

In the last twenty years, the expansion of ICT technologies in professional
sports aims at technique monitoring and performance improvement (Leser et
al., 2011). The capability to record systematically and analyze the unique
athlete’s kinetics and kinematics helps identifying weaknesses and applying
remedial actions to improve training steps and sports technique. Particularly,
in team sports, the demand for high coordination in fine movement gained
the interest for the development of advanced monitoring systems (Di Salvo et
al., 2007; Sirotic et al., 2009). Further analysis of individuals data such as total
distance covered and high-speed running (HSR) total time provide feedback
able to enhance performance both for individual athletes as well as provide
insight regarding tactical behavior for the whole team (Folgado et al. 2020).

With the development of novel sensor technology providing smart capabilities
to a variety of sports science applications, the utilization of tracking and
positioning techniques has become widespread. These are defined by FIFA
(International Federation of Association Football) as Electronic Performance
and Tracking Systems (EPTS) which are further categorized to Outdoor
Positioning Systems (OPS), Local Positioning Systems (LPS) and Optical-based
Systems (OPT) (Linke et al., 2018).

OPS predominantly relies on GNSS technology, while indoor sports require
dedicated optical or RF-based technologies. Numerous attempts have been
made to develop sports positioning systems and evaluate EPTS performance
for meeting relevant requirements. Commercial sports tracking systems
utilizing GNSS are evaluated in terms of sampling rate in order to assess the
suitability for varying running sessions types (Johnston et al., 2012; Johnston
et al., 2014). Dedicated RF-based indoor sport positioning and tracking
systems have been evaluated for different types of athletic activities (Hedley
et al., 2010; Sathyan et al., 2012). Specifically, the use of UWB technology for
LPS offers increased performance for sport-specific relevant metrics such as
total distance, acceleration and speed values (Serpiello et al., 2018).
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Chapter 3
Range-based collaborative positioning

Chapter 3 provides a background summary on the basic techniques, the
measuring principles and mathematical fundamentals for indoor collaborative
position determination using range observables. Inter-nodal ranging may refer
both to range measurements originating from roving nodes to static anchors
as well as between roving nodes.

3.1 Positioning techniques and methods

3.1.1 Cell of Origin

Proximity or cell-of-origin (CoO) technique is the simplest and most broadly
available localization technique. It is based on the cell identity and the known
location associated to it (Trevisiani and Vitaleti, 2004; Retscher et al., 2012).
Notwithstanding CoO is computational efficient it results only at a discrete
point solution (collocated with each cell) of low quality that is largely driven
by the number of available cells. For applications in which a compromise
between a relatively low-position quality and cost is required, the CoO
technique is generally used. Originally, the concept of smartphone positioning
employing the Global System for Mobile Communications (GSM) applies the
CoO technique using the phone's signal strength to nearby antenna masts.

Figure 3.1: Operational principle of cell-of-origin localization technique.

3.1.2 Lateration technique

Position fixing indoors based on lateration (or multilateration) techniques
makes use of range measurements originating from two or more reference
nodes to determine the coordinates of a roving device. Trilateration is a
subcase of the lateration method that confines on three ranges. Figure 3.2
demonstrates the geometric principle of trilateration given 3 measured ranges
(da, dp, d.) between a rover R and 3 anchor nodes (4, B, €) with known
coordinates.
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Figure 3.2: Trilateration geometric principle

When considering a 2-dimensional space the equations of the 3 circles locus
whose intersection solves the localization problem are:

dtzz = (xq — xi)z + Vo — yi)z (3.1)
di = (xp — x)* + (vp — y1)? (3.2)
d? = (xc - xi)z + (YC - Yi)z (3.3)

Considering error-free range measurements the intersection of the three
circles may be computed using the following equations:

b — Y1 + b — Ye)ca

xX; = 3.4

= G %) — ) F a1 =yl )
(xp — xg)c1 + (xp — xc)C
yi = — — — — (3.5)
2[(xp — x0) Vb — ¥e) + (xp — x) Vg — Yp)]
where

¢ =xp—x2+yt—yi+di—dj (3.6)
c; =xZ—xp+yi—yj+dp—d; (3.7)

For RF-based positioning, range measurement principles usually rely on
known Time-of-Arrival-based approaches, such as Time of Arrival (ToA), Two-
Way ToA (TW-ToA) and Time Difference of Arrival (TDoA).

On the other hand, the use of Angle of Arrival (AoA) measurements enables
the implementation of triangulation technique given the location of the
anchor transmitters.
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Time of Arrival (ToA)

The exact measurement of the time that is required for a signal to travel from
a transmitter to a receiver corresponds to the ToA. The product of the travel
time by the transmitted signal velocity results in the Euclidean distance
between the two devices. Since radio signals travel through non-vacuum
space, it is required to consider the inherent characteristics (i.e., dielectric
constants) of the propagation medium and the delays associated with signal
transmission. Moreover, depending on RF technology type and application
domain, accurate synchronization between the transmitter and the receiver is
critical considering that a nanosecond corresponds to an error in range of the
order of 0.3 m for electromagnetic spectrum signals

dy =cx (- ty) (3.8)

where, d, denotes the distance between transmitter A and rover Rj
c denotes the speed of light in vacuum, t, denotes the timestamp of the signal
transmission from transmitter A, and t, denotes the timestamp of the signal
reception by Ri.

Measured distance

Synchronization

Figure 3.3: Geometric principle of ToA range measurement

Two-Way Time of Arrival (TW-ToA)

In the TW-ToA measurement technique the observation time corresponds to
the time is required the transmission signal to travel from a transmitter to a
receiver device and back. The method does not depend on transmitter-
receiver synchronization, given that the precise estimation and advertisement
of the internal processing time for each device is embedded in the transmitted
ranging message. The ranging systems based on the TW-ToA technique ask for
an increased processing time considering the multiple steps of the ranging
procedure. Nevertheless, the lack of inter-device synchronization requirement
makes TW-ToA technique attractive for a wide range of applications. This
measurement principle is also referred to as Round Trip Time (RTT) range
measurement, and reads

C
dq =X (6™ - t;* = tint) (3.9)
tine = t& — t1* (3.10)
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where, d, denotes the distance between anchor A and rover Ri, c denotes the
speed of light in vacuum, t;"* denotes the timestamp of the signal reception
by Ri, t;** is the timestamp of the signal transmission from Ri, and ¢;,,; refers
to the internal time delay observed between the signal reception at anchor A
until signal transmission.

Tx R

/ \ Measured distance £\
Rx

A R

Figure 3.4: TW-ToA range measurement

Time Difference of Arrival (TDoA)

The implementation of the TDoA positioning technique requires no precise
synchronization between the receiver and the transmitter units. Considering
synchronization is achieved among transmitters, the receiver measures the
time difference in the signal broadcast by two transmitters and thus,
eliminating any significant receiver clock bias. The locus of the receiver’s
position obtained from the TDoA technique is a hyperbola, which justifies
“hyperbolic pranging” as alternative name of the method. The computation
of the 2D receiver location is possible using at least 3 transmitters, whilst 3D
positioning requires observables from at least 4 transmitters.
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Figure 3.5: Geometric representation of TDOA positioning principle.

The hyperbola locus of points is given by

drpoa = (x —x)2 = (y — y)2 =/ (x — x)2 — (y — Ya)?, for i = b,c (3.11)

Finally, the position fix of a point of interest lies on the intersection of two
hyperbolae according to Figure 3.5.
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Angle of Arrival (AoA)

The realization of the AoA positioning technique relies on measures of angles
obtained from directional antennas (e.g., phased array antennas) embedded
in RF systems. Measures of AoA determine the direction of the received signal
by measuring the TDoA at individual cells of the array. Measurements of AoA
enable position fixing of a receiver using the triangulation technique as shown
in Figure 3.6 using equations

tan g, = = (3.12)
Xi — Xq

tan @, = 222 (3.13)
Xi — Xp

The position of the target node may be estimated by

Xptan6y, — x,tan g, + —
x = p Lan Gy XqgANUg T Yq Vb (3.14)
tanf, —tanf,

(xp —x4) tan @, tan 6, + y, tan 6, — y, tan b,

= 3.15
Y tanf, —tanéf, ( )
Ri (%) %
Feen o L
i B (%o ¥b)
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Figure 3.6: Geometric representation of AoA positioning principle.

3.1.3 Fingerprinting

Fingerprinting is based on RSS values and consists of two phases: the off-line
(or training) phase and the on-line (or localization) phase (Kim et al. ,2010; Wu
et al.,, 2013). At a training phase the database which stores the sampled
locations associated to recorded signal intensity is updated (Figure 3.7). Then,
at a localization stage the RSS information is collected around the position of
interest and compared with the RSS values stored offline via a matching
strategy leading to the estimation of the final position. The applicability of the
fingerprinting technique relates to spatial distribution of the sampled
locations and is extremely sensitive to spatio-temporal variations of the
environment, including pedestrians’ movements.
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Figure 3.7: Operational principle of fingerprinting localization technique database update.

3.2 Optimization algorithms in positioning

The implementation of the positioning techniques is naturally affected by the
noisy nature of the measured data which result from the employed
measurement technologies intrinsic errors. Widely adopted positioning
methods for mitigating the effect of the errors rely on Bays theory
implementations, namely least squares approach as well as optimization
techniques that are able to model and filter out the noise. (Frattasi & Della
Rosa, 2017).

3.2.1 Bayesian framework and least squares

Bayesian framework

The Bayesian framework applying to positioning aims at computing the
position fix of mobile nodes through an estimator that minimizes the mean
square error between actual measurements and expected measurements. Key
implementations of Bayesian framework positioning include Kalman Filters
(KF) and Particle Filters (PF). For the KF group of methods the measurements
are assumed to be corrupted by white Gaussian noise, while for the PF -which
is a Monte Carlo type of algorithm- the noise component is not limited only to
Gaussian distribution. The two main steps of Bayesian filters are “Prediction”
and “Correction” (“Update”). For the prediction, it is necessary for a dynamic
model to have been defined in order to describe the system’s dynamics for
state (e.g., position, velocity, orientation etc.) evolution, while for the update
step one needs to define the observation model that connects sensor
measurements with the system’s state.

Least Squares

The Least Squares (LS) approach is an algorithm for estimating the position of
a target node through the minimization of the squared errors between real
measurements (observations) and expected measurements (estimations) as
obtained through a model that relates observations and position.
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For the estimation of position in a 2-dimensional space the coordinates of a
mobile node are X =[x, y/"and the corresponding range measurements at an
anchor node (static or mobile) are Z = /z;, z2, ..., z,/ 7. The model connecting
measurements and position may be denoted as 4;(X), then

Zi =hL(X)+ U; (316)

with, u; the model’s noise component. The best estimation of the position is
the result of the minimization of the equation

JoO = Y ut= ) [zn—hOP = Z-HOOI [Z-HO]  (3.17)

=1 =1
with, HX) = [B1(X).., ha(X)]T.

It is important to note that, while least squares technique is able to estimate
a node’s position epoch by epoch, with high accuracy based only on
measurements. However, given that the problem at hand is the estimation of
kinematic nodes, the relevant system motion knowledge could enhance the
resulting solution. The introduction of Kalman Filtering can utilize the dynamic
model of the system in order to provide improved accuracy compared to
simple least squares.

3.2.2 Kalman Filtering

Despite its name, Kalman Filter is rather an estimation algorithm and not a
filter. The basic principle is based on real-time estimation of a number of time
varying parameters of a dynamic system, such as position and velocity (Grewal
and Andrews, 2001; Kalman, 1960). It is widely used for the fusion of positions
generated by heterogenous data sources (e.g., dead reckoning positions with
absolute position updates). The term “filter” occurs from the fact that it is a
method that extracts the best estimate from noisy data by filtering out the
noise. The key elements of a Kalman filter are the state vector (X) and
covariance (P), the system model or state transition function (7), and process
noise (@), the measurement vector (Z), measurement covariance (R)and the
measurement model (H).

Extended Kalman Filter

While the implementation of KF is based on the assumption of linear
processes, the majority of positioning-related processes refers to nonlinear
models. The KF application on nonlinear observation and state transition
models is conducted by the Extended Kalman Filter (EKF) approach. The EKF
relies on locally linearizing the models through the use of Taylor expansion of
the equations utilizing the linear terms. The result is that instead of the original
state transition function and measurement model, the corresponding
Jacobian matrices are used:

d
F= %(Xt—l) (3.18)
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H—ahX 3.19
= o5 &) (319)

EKF is implemented as follows:

Initialization

%o = [Xo] (320)
Py=Q (3.21)

Prediction
Xe=FX,_, (3.22)
P;=FP,_.FT +Q (3.23)

Correction
K, = PsHT(HPHT + R)™1! (3.24)
X=X+ K. (Z, — HX?) (3.25)
P, = (I — K:H)P; (3.26)

Particle filter

The particle filter (PF) is the approach where the Bayesian Framework is
implemented through a Monte Carlo method where a finite number of
randomly sampled points (particles) is used in order to compute a result. The
strengths of PF include its ability to handle nonlinear and non-Gaussian
estimation, whereas the main weaknesses stem from the numerical problems
that characterize Monte Carlo algorithms (Gordon et al. 1993).

The implementation of a PF includes the generation of an adequate number
of points in order to get a representative sample for describing the problem,
the process of the points using the defined system model, and finally the
computation of the results based on the transformed points. The initially
generated points represent the possible states of the system while the
extracted/ estimated state of the thousands of points is carried out using
weighted statistics of the particles. A generic PF consists of the following steps:

(1) Random generation of a large number of particles that are defined by
state variables (e.g., position, heading, velocity etc.). The weights of
the particles represent the probability that each one matches the
actual state of the system. Initial weights are equal.

(2) Prediction of the next state for each of the particles based in the
predefined system model.

(3) Update the weights of the predicted particles based on their proximity
(matching) to the sensor measurements. Higher weight represents
close proximity to the measurements and vice versa.

(4) Resample of the particles by discarding the ones with lowest
probability and generate copy particles based on the ones with higher
probability.
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3.3 Range error identification and mitigation

In order for a positioning technique to produce an optimal solution, it is
important that the raw observables (ranges, directions, etc.) have undergone
through exhaustive pre-processing to mitigate gross and systematic errors
(Hao et al., 2018). Especially, in the indoor environment which is characterized
by NLOS conditions and severe signal multipath, the raw range observables
can be of low quality. Extensive research is currently undertaken by many
research groups worldwide studying the nature of RF-based range errors and
model their behavior aiming at minimizing their effect on the final position
solution (Meng et al. 2012; Koppanyi et al., 2014).

Moreover, the combined effects of NLOS conditions, multipath, signal
attenuation and scattering in wireless positioning systems deteriorate further
the position quality as it is subjected to travel from transmitter to receiver
through multiple paths. This usually results to overestimated range
measurable, known also as a positive bias, which if not eliminated or mitigated
might reflect to accuracy degradation of the final position fix. Figure 3.8
depicts this phenomenon. The direct LoS path (path 1) between TX and RX; is
the optimal (high accuracy) transmission scenario, whilst the ranges computed
for RX; are affected by multipath effect (path 2) or signal attenuation due to
obstructions (path 3).

patn 1

A A

Figure 3.8: Signal obstruction, NLOS and multipath in RF-based ranging

The effect of NLOS and multipath on received signals in TW-ToF ranging
approaches is illustrated in Figure 3.9. The LoS signal transmitted outdoors
presents a distinct peak, whereas the NLOS and multipath conditions of the
indoor environment result in multiple peaks that are difficult to distinct.
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Figure 3.9: TW-ToF ranging signal strength as received in outdoor conditions (top) and in
indoor conditions (bottom). (Source: Time Domain PulsON® Ranging & Communications, 2012)

Ranging errors may be handled either through theoretical modelling (e.g.,
probabilistic approaches handling random errors) or through empirical
modelling (e.g., geometric approaches handling systematic) of observable-
specific characteristics.

3.3.1 Theoretical modelling

Considering that NLoS conditions represent a major challenge for indoor, RF-
based positioning applications, various research efforts have focused on
methodologies aiming at mitigating NLoS effects. As in real-life applications
the existence and severity of NLoS conditions is a priori unknown, a research
approach should aim at characterizing signal as LoS or NLoS. Thereby, if a
signal is identified as a LoS one, then no prior action is required, contrarily to
signals detected as NLoS ones. The latter undergo through dedicated pre-
processing techniques for mitigating the respective errors (Wann & Hsueh,
2007; Venkatesh and Buehrer, 2008). The distinction between LoS and NLoS
observables can rely either on sequential range estimation and for outliers’
thresholding or on channel statistics (Shijie & Dan, 2014).

Relevant studies suggest that the non-Gaussian distribution nature indicates
an obstacle when working with KF algorithms since they assume that the
measurement errors follow a Gaussian distribution (Alsindi et al., 2009; Conti
et al., 2012). Subsequently, for the indoors cases of mainly non-gaussian TWR
observations nature, it is expected that they are prone to position quality
instability due to model assumptions. Attempts to overcome this limitation
usually rely on the adoption of non-linear measurement error models leading
usually to particle filters (Gentner et al., 2012; Ganti et al., 2014). However, a
PF solution asks for increased computational complexity which is not easy to
support by handheld, low-cost indoor positioning systems. Alternative
approaches include realizations of hybrid KF implementations based on
pseudo-position measurements that could handle non-Gaussian error models
(Li et al, 2016). While they offer reduced computational complexity compared

54



to PF, they still require increased processing power compared to traditional
KF.

An alternative approach for handling the non-linear nature of the range error
observables indoors is via a Gaussian Mixture (GM) filter type. Such filters can
handle error distributions with multi-peaks. (Muller et al., 2012; Muller et al.,
2014). In effect, they apply multiple Gaussian models to approximate the
complex nature of the transmitted signals; albeit, it is crucial to identify and
use the optimal number of Gaussian components to avoid unnecessary
computational complexity. Figure 3.10 illustrates an example of Gaussian
Mixture models combining five distinct Gaussian models approximating the
Gaussian likelihood of a ranging error.

Figure 3.10: Five-component Gaussian Mixture likelihood approximation of range error model.
(Source: Muller et al., 2014)

While this approach offers increased positioning accuracy for highly noisy
measurements, its computational complexity increases dramatically for multi-
node, range-based positioning. It is noted that while the KF approaches reach
their limit in highly non-linear cases, still the EKF offer a viable alternative
when handling moderately non-linear error models due to their
computationally efficient architecture (Bar-Shalom et al, 2001; Wang et al.,
2020).

3.3.2 Empirical modelling

Empirical RF range error models rely on the systematic collection of real range
observables to extract meaningful statistics that describe adequately their
nature and extract range variation behavior that might be encountered during
real-life localization applications. Examples of empirical modelling of RF-signal
for localization include the approach introduced by (Li et al., 2015) that relies
on an asymmetric, double exponential ranging error distribution model. The
error model is formulated through fitting real data whereas an extension of
tuning further the suggested model using range-based parameters is
proposed.
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Figure 3.11: Empirical fitting of asymmetric double exponential error distribution model
(Source: Li et al., 2015)

In (Jing et al., 2015) a Ranging Quality Indicator (RQl) is established based on
UWSB signal characteristics paired with the corresponding ranging error used
to train a Machine Learning (ML) algorithm. In this approach, the algorithm
produces a set of RQl values in real time, and dynamically assigns weights to
the range measurements in a UWB/IMU particle filter. In a study by (Koppanyi
& Toth, 2014) the original UWB ranges histograms are found to present
multiple peaks attributed to multipath effects. To this effect, a Maximum
Likelihood Estimator (MLE) is used for selecting the ranges with the highest
probability of true values based on a comparison against the lateration-
derived coordinates. Moreover, other empirical error models use range and
position-dependent corrections produced using curve-fitting approaches on
real data as illustrated in Figure 3.12.

e
.//
//

[ ]
o

Correction
Correction

Range X
Figure 3.12: Empirical (spatial) error correction models. 1D model (left). 2D model (right)

In a research study by (Toth et al, 2017), range error calibration is
implemented based on a grid of calibration points used for the generation of
an ad-hoc model. In this approach the calibration values are used for the 2D
linear interpolation forming the calibration function. In (Ledergerber &
D'Andrea, 2017), a Sparse Pseudo-input Gaussian Process is trained using the
known relative antenna pose (angle) and the error computed using the fixed
distances between UWB nodes. The objective is to build an error prediction
model that will be utilized in Kalman filtered based UWB positioning.

Regarding the field-testing setups followed for UWB range error analysis and
identification different approaches exist depending on testing scope. On one
hand, when extensive and characterization of the experimental area needs to
be conducted, the tests are focused on the collection of extensive datasets for
the dedicated site. For instance, (Li et al., 2015) perform a series of static
indoor field tests for estimating the range error values using multiple anchor
nodes and mobiles. The area’s concrete and steel walls result in
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predominantly NLoS conditions while the entire sets of data (LoS, multipath
and NLoS) are analyzed together simultaneously with the error models
generation for improving positioning performance. On the other hand, for
generalization purposes it is common practice for experimental
implementation to take place on test sites featuring different characteristics.
In (Toth et al., 2017) tests are conducted at variant observation conditions —
i.e., a combined outdoor open area, a forest environment and indoors. The
different environment conditions indicate the varying effects on UWB
positioning. Subsequently, the error calibration process is based on known
calibration points forming a grid.

3.4 Collaborative positioning

An increased interest towards the development of collaborative positioning
(CP) approaches is apparent in recent literature, nevertheless, the concept is
not a new one (Kurazume et al. 1994; Roumeliotis & Bekey, 2001). The
increased motivation for CP stems both from the technological developments
for utilizing optimally Peer-to-Peer (P2P) communication as well as from the
need for the minimizing the costs of permanently installed infrastructure (i.e.,
anchor RF transceivers) used by traditional RF-based positioning systems.

In many cases, P2P communication between nodes is based on technologies
that can also offer relative ranging such as Wi-Fi, UWB and Bluetooth (Goel et
al., 2016; Retscher & Tatschl, 2016). In this regard, CP implementations make
use of these technologies both for application-specific data transmission as
well as for supporting localization needs.

This section presents a short description of CP approaches, their architecture
and most prevailing CP algorithms as well as an overview of implemented CP
approaches with varying operational conditions.

3.4.1 Collaborative positioning architectures

The network architecture of a CP system can either be a centralized or
distributed one (Goel, 2017).

In a centralized architecture (Li et al., 2015; Jing et al., 2016; Goel et al., 2018;
Masiero et al., 2023), as the name suggests, the positions estimation is
performed centrally by a localization engine typically located at a control
center that collects data from all the remote nodes. Central processing
translates at increased processing power considering that state (position,
orientation, velocity) computation of all nodes in the network is undertaken
by a single processing engine. Naturally, as the information from all nodes in
the network needs to be transmitted to the central unit for the estimation to
be complete, this approach also leads to increased communication
requirements. In addition, as CP systems rely on a single, central engine
processing unit with finite processing and communication capabilities, the
expansion for increasing (scalability) the supported number of nodes, faces
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crucial limitations. Notwithstanding an appropriately designed and
implemented centralized CP engine offers high accuracy pose estimation for
all nodes and inter-nodal state correlations it suffers decreased robustness.
The dependence on a single, central processing engine for continuous
operation, it results in high probability operational malfunctions.

On the other hand, distributed CP architectures depend on their ability to self-
estimate nodal positions based on the measurements and information
collected within the CP network (Jing et al., 2015; Zhu et al., 2018; Han et al.,
2020). Practically, in order to achieve this goal, each node in the network
needs to be equipped with a portable processing unit and certain
communications infrastructure. This translates to decreased processing
capabilities, and therefore more stringent limitations on the amount of
received data that could be supported, and by extension, the accuracy
capabilities of the overall system. A useful tradeoff is the ability to operate
with limited communication among the collaborating nodes as well as to easily
integrate additional collaborating nodes, resulting to a highly scalable system.
Perhaps the most crucial weaknesses of the distributed CP approach are their
inability to maintain inter-nodal correlation at network level leading to
decreased mitigation of inter-dependent errors.
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Figure 3.13: Distinction between centralized CP architecture (left) and distributed CP
architecture (right)

Table 3.1 summarizes the strengths and weaknesses of the centralized and
distributed CP architectures.

Table 3.1: Comparison between centralized and distributed localization architectures

Approach Strength Weakness
e |ow robustness (central
e high accuracy processor failure is
critical)
Centralized e precise node states e high communication
correlation and processing
estimation requirements

e not easily scalable
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e do not require high

performance central e challenging estimation
processor of nodes correlation
Distributed e do not require
constant network- e |ow accuracy in
wide communications principle
e scalable

3.4.2 Distributed collaborative positioning algorithms

As the overall motive of this study on utilizing collaborative localization relies
on the ability of independent mobile nodes to handle independent positioning
information and relative measurements from neighboring nodes, the interest
of the current research is focused on the application of distributed
localization.

The distributed collaborative localization problem for nodes performing
relative range measurements can be addressed using four main positioning
algorithms:

Non-Linear Kalman Filter

The use of non-linear KF for solving CP problems has been the preferred
approach for a number of studies as it offers a low-complexity solution able to
be implemented on low-cost mobile devices (Stephenson et al., 2014; Nguyen
et al., 2016; Goel et al., 2018). As these approaches assume to exhibit locally
Gaussian uncertainties both for the system state and for the measurement
vector, they are limited due to the non-linearities that can be handled without
losing accuracy. For many cases the accuracy requirements deem the provided
solution quality acceptable, especially when it is possible to periodically fuse
position updates of higher grade.

Particle Filter

A PF approach offers an attractive alternative for a CP algorithm formulation
as it can handle successfully highly, non-linear data without assuming
necessarily a Gaussian distribution (Sottile et al., 2011; Li et al., 2015). PFs can
generally result in highly accurate state estimation for CP systems of a high
complexity, while they can handle multiple measurement sources (Han et al.,
2020). A common weakness of PF for CP is their complex computation
requirements due to the need for full state estimation for large numbers of
particles, rendering them not fast enough for most real-time CP applications
(Garello et al., 2012).

Belief propagation

Belief propagation algorithms rely on factor graphs, and particularly on the
well-known Sum Product Algorithm over Wireless Network (SPAWN) is an
inherently cooperative localization approach. It relies on the exchange of
messages for each node in the network to determine its a posteriori
distribution given all the available measurements (Caceres et al., 2011).
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Despite being able to provide highly accurate results, SPAWN algorithm also
suffers a high computational complexity as well as requires a specialized
configuration for handling loopy networks (i.e., the “outbound” ranging
observable, affects the consequent “inbound” observables) (Savic & Zazo,
2013; Jin et al., 2016).

Covariance intersection

When fusing information among neighboring nodes within a CP network, a
highly challenging task is the mitigation of accumulated, inter-dependent
errors; that is, the computation of state correlations among cooperating
nodes that utilize shared positions and relative range information. Clearly,
inter-nodal correlation may lead to non-converging positioning solutions if not
accounted for. A Covariance Intersection Filter (CIF) approach attempts to
mitigate the effect of unknown correlations by combining multiple estimates
of state variables in the form of means and covariances assuming that no
matter their correlation is unknown the variables are always correlated (Julier
& Uhlmann, 1997; Goel et al., 2017). The extension of the CIF concept to Split-
Covariance Intersection Filter (SCIF) aims to support this generalization of
correlation by splitting dependent (i.e., position and variance) and
independent information (i.e., ranges and error) before the covariance
intersection estimation (Li & Nashashibi, 2013). Following the formulation of
EKF, the SCIF formulation for the two estimates (X7, Pis +P1:) and (X2, Pza
+P2;) to be combined is given by Eq. 3.27 through Eq. 3.33 where, Xi
represents the state of the target node, Prsthe dependent covariance matrix
of the state describing the correlation between estimates, and P the
independent covariance matrix of the state without correlation between
estimates. The resulting state estimate is denoted by (X, Ps +FP;) with its
associated covariance matrix described by a dependent and independent
part accordingly.

P1=%+P1i (3.27)
P2=(1P_2—dw)+P2i (3.28)

K = P,HT(HP,HT + P,)™! (3.29)
X=X, +K(X, —HX;) (3.30)
P=(—-KH)P, (3.31)
P;=(—KH)P;;(I—KH)T + KP,;KT (3.32)
P,=P—P (3.33)

where, w € [0,1] coefficient is selected subject to minimize the determinant
of the resulting fused covariance matrix (Julier & Uhlmann, 2001).

As the SCIF may be implemented in the form of a modified KF, low complexity
is ensured for multiple node position estimation offering an attractive
alternative for CP networks. A limitation of SCIF is identified on the

60



requirement for the relative position to be known among cooperating nodes
for successful solution convergence.

Table 3.2 summarizes the main strengths and weaknesses for the EKF, PF,
SPAWN and CIS/SCIF algorithms.

Table 3.2: Comparison of distributed CP algorithms

Algorithm Strength Weakness
. assumes gaussian
low processing o .
. distribution in uncertainty
requirements s
EKF . of state transition and
fast solution .
. measurement affecting
computation
accuracy
high accuracy
can operate with non- high computational
PE gaussian distributions complexity (processing
of state transition/ requirements)
measurement slow computation
uncertainties
prone to divergence in
it is by principle a cases of large state size
collaborative optimal for simulated
approach scenarios but diverges in
SPAWN PP o ' g
good approximation of real life examples
the state (under e prone to divergence when
conditions) implemented on loopy-
networks
e incorporates cross-
correlation in errors e mainly implemented for
between collaborating measurements of relative
nodes osition between nodes
CIF/SCIF . P N no
can be implemented (range-only positioning
as EKF has to solve non-linearity
e suitable for real-time problem)

positioning

Given the requirements of this thesis for a low-cost, accurate distributed CP
algorithm that could rely primarily on relative range measurements of varying
accuracy, the SCIF algorithm is considered as the most appropriate option.
SCIF implementations on relevant research studies indicate the algorithm’s
ability to provide promising CP results. The introduction of SCIF in (Li &
Nashashibi, 2013) serves an Intelligent Transportation System (ITS) app
utilizing relative position measurements (i.e., the sensor measures directly the
position of the neighbor) under simulated conditions. Carrillo-Arce et al.,
(2013) employ indirect relative position measurements collected from an
overhead camera for positioning robots and provide results in combination
with simulated data as well. Wanasinghe et al. (2014) use simulated relative
pose measurements for positioning robots, while (Goel et al., 2017) utilize
simulated relative position measurements for formulating a CP algorithm for
UAV localization. (Pierre et al., 2018; Pierre, C. (PhD) 2020) uses relative range-
only measurements along with the assumption that orientation information is
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sufficiently precise to provide a SCIF solution for multiple robots in simulated
conditions as well as for a single robot in real conditions.

3.4.3 Collaborative positioning implementation approaches

A critical step at a design and implementation stage of a CP algorithm is the
establishment of appropriate working conditions to fulfill the application
requirements. Therefore, in order to evaluate and compare the alternative CP
formulations is important to demonstrate their performance in varying
operational conditions.

Based on relevant work concerned withexperimental CP (Li et al., 2015; Jing
et al. 2015; Li et al., 2016; Jing et al., 2016; Masiero et al., 2018; Zhu & Kia,
2018; Goel et al., 2018; Li et al., 2019; Liu et al., 2019; Han et al., 2020), the
selected setup and working conditions suggest the expected operational limits
of current CP systems. With regard to the number of participating nodes, the
identified implemetations utilize 2 to 10 anchors and 2 to 4 rovers. Moreover,
sampling rate can vary depending on the sensor type. Typical values for UWB
ranging spans from 3-5 Hz, IMU measurables are usually available at ~100 Hz
while the GNSS position fix and/ or raw observables vary from 1-5 Hz.

In literature, a number of CP implementations using inter-nodal
measurements is suggested. In (Al Hage et al., 2017) a multi-sensor fusion with
Fault Detection and Exclusion (FDE) based on the Kullback-Leibler Divergence,
implements collaborative multi-robot system navigation utilizing odometry
and visual inter-node measurements (Kinect, Lidar). A limiting factor is the
requirement for inter-nodal visibility due to the optical nature of the sensors.
Jin et al., (2016) propose a CP solution using RSS-based range measurements
in a SPAWN implementation to address the problem of communication
overhead and computational complexity Wang et al. (2016) present a tightly
coupled GNSS/INS/UWB CP solution for multi-sensor vehicle navigation with
range observables towards a single UWB node. The algorithm is evaluated in
post-process mode. The data is transmitted using DSRC aiming at accuracy
assessment for various satellite visibility and robustness against artificial gross
errors on GNSS and UWB. Analysis results in sub-meter accuracy however the
main positioning solution relies mainly on GNSS/INS with UWB being a
complementary sensor. Goel et al., (2017) suggest a centralized cooperative
localization scheme for UAVs positioning using GNSS/IMU/UWB. Relative
state covariance of the UAVs is estimated using Covariance Intersection. The
selection or omission of neighbors for ensuring network interaction
constraints and, subsequently, minimizing unknown correlations effect is
based on GNSS quality and UWB range differences from GNSS-based
estimated distances that exceed a threshold. Testing is performed based on
simulated results. The system is not designed to withstand complete GNSS or
anchor loss and the relative (P2P) ranges are utilized in complementary
manner. Zhu & Kia, (2018) demonstrate a CP UWB-IMU positioning approach
(using a joint correlation matrix) for 2 pedestrian agents walking in an office
building. In total 5 absolute ranging updates are realized at 5 points along the
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trajectory (i.e., ranges to anchor) and 5 relative ranging updates at 5 other
points along the trajectory are utilized. Cooperative localization for (Han et al,,
2020) resides on a UWB/IMU scheme with minimal anchors count (i.e., 1
anchor) using azimuth information within a Particle Filter. Target node
(pedestrian) can utilize one or more auxiliary nodes to initialize and perform
PF positioning. It is noted that the system is not tested in a “no-anchor
availability” scenario. (Gao (PhD), 2017) proposes a GNSS/UWB algorithm for
collaborative positioning of land vehicles. A ranging/positioning performance
assessment of a UWB system is performed. The approach evaluates the CP
algorithm for up to 2 rovers with an overall stable anchor availability. Finally,
(Goel (PhD) 2017) develops a UAV cooperative localization in partially GNSS
denied conditions using GNSS/UWB/IMU. Artificial limitation of
communication among nodes is implemented to minimize inter-node
correlation.
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Chapter 4
Range correction models

Chapter 4 presents the methodological framework for the development of
range correction models. Based on the statistical measures obtained using
UWB and Wi-Fi RTT observables, we propose distinct correction models and
describe their respective implementation steps. Model validation procedures
are established and the associated developed software is presented.

4.1 Methodology

The methodology followed for the design, development, implementation and
evaluation of the TWR range correction models relies on distinct steps as
described in this section.

4.1.1 Statistical characterization of range errors

At a first stage and before any range error modeling is applied, the raw TWR
measurements undergo preliminary statistical analysis. For this purpose, a
number of specifically designed experiments take place using an accurately
surveyed testbed. The exact (true) location of the devices defining a test range
is used to account for the error budget computation in the raw ranges in a
controlled environment. In this regard, the statistics of the raw ranges carry
useful information supporting the follow up step of developing the data-
driven range error models.

4.1.2 Empirical range error models development

In order to develop a range error model, it is essential to make available a
complete set of data covering the entire area of interest. Prior to defining a
range error model, the statistical metrics of the raw data obtained in the
previous step are evaluated to assist in data grouping, data exclusion or even
dictate further data collection. The generation of error models resides on
data-driven optimization techniques using regression analysis tools (best-
fitting curves, interpolation, etc.). Statistical evaluation of the models before
the implementation on real data, enables the identification of potential gross
deviations and data over-fitting.

4.1.3 Error mitigation

Error mitigation includes implementation of the error models on real range
data. Obviously, in order to obtain an unbiased evaluation, data correction
refers on data collected only for validation purposes excluding all data used
for building the error model. By design, and in order for the error models to
be efficient, they are classified to suit different operational conditions; usually,
by room type and geometry. Validation of the efficiency of error modeling is
undertaken using a suitable subset of static reference data.
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4.1.4 Kinematic positioning

The final step of the range correction methodology concerns with error model
performance assessment at operational level. The dynamic character of the
kinematic data provides the most demanding conditions for TWR range error
model validation due to the varying environment and user kinematics. For
validating their reliability and robustness a set of test trajectories are built that
cover the entire testbed area.

Figure 4.1 depicts the overall range correction procedure adopted in this
study.
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Figure 4.1: TWR range correction methodology steps

4.2 Statistical measures

Preliminary analyses suggest that TWR measurements do not necessarily
follow a normal distribution indoors (see §3.3) for reasons relating to
multipath and through-material propagation effects. Therefore, the selection
of a suitable statistical value is suggested. Figures 4.2 and 4.3 show typical
histograms of range datasets collected for the case of UWB and Wi-Fi RTT
devices respectively for indoor environment conditions. In these plots, in
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order to obtain optimal bin size representation, the Freedman-Diaconis rule is
used. The rule is based on the minimization of the integral of squared
differences between the histogram and the density of the theoretical
probability distribution (Freedman & Diaconis, 1981). Clearly, the histograms
in Figures 4.2 and 4.3 indicate that the mean value cannot represent
adequately the range sample. Moreover, while the median value provides a
somehow improved index using the Empirical Probability Density Function
(EPDF) for defining the maximum likelihood value (EPDFmax) provides optimal
fit.
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Figure 4.2: UWB P410 ranges histograms and representative statistical values
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Figure 4.3: Wi-Fi RTT WILD ranges histograms and representative statistical values

EPDFmax values need to be estimated, given that the respective histograms
may not be utilized as a probability measure since they consist of discrete
values (bins) that result in varying shape based on the different bin sizes. The
EPDF is estimated using kernel density estimation. It is crucial to select
appropriate kernel bandwidth values, as larger bandwidth values smooth out
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the relevant peaks of EPDF, whereas for very small values the remaining
overall fluctuation hinders correct EPDFmax value estimation. (Koppanyiet al.,
2014). The empirically estimated kernel bandwidth value of 0.005 results in a
good fit for the UWB data using the P410 module (Time Domain©), whilst the
selection of a kernel bandwidth value of 0.02 results in a good fit for the WILD
module (Compulab©) Wi-Fi RTT ranges.

4.3 Range correction models

Following previous studies, the correction process for TWR data could be
based either on empirical radial corrections applying a least squares line fit to
the range deviations as a function of the distance (Koppanyi et al.,2014) or
using a 2D range deviations plane fit (Toth et al., 2017). In this study we
examine both approaches and extend the examination to WILD Wi-fi RTT data
in order to select the appropriate correction technique that suits the
corresponding data-set.

4.3.1 Radial (1D) fitting model

The development of a radial (1D) range correction model assumes the
collection of TWR data at known (reference) distances using the RF devices of
interest. For each pair of RF-ranging devices a set of range measurements are
collected to estimate their statistics and their deviation from the reference
value. Hence, the correction value computes the difference between the one-
way, uncorrected measurement from the true (reference) distance as follows:

rangeécorrection = rangetrye — rangemeasured ( 4-1)

Obviously, the ranges correction reflects the operational characteristics of the
RF devices and the observation conditions applying in the area zone between
the RF devices in use. The correction values may be estimated for various
inter-device conditions in order to examine different environmental effects
(i.e., NLOS conditions).

The range correction models are realized through curve fitting on field data.
Depending on individual characteristics of the specific TWR technology and
environmental conditions, different fit models may apply for each approach.
The type correction models usually adopted are the “mean”, the “linear” and
the “polynomial” (2" order polynomial) fit. Figure 4.4 illustrates examples of
various empirical correction models for UWB measurements.
Notwithstanding the “polynomial” model appears to describe more closely
the nature of the range correction, a thorough examination is required in
order to avoid over-fitting effects. Within this thesis the models adopted refer
to a linear fitting approach as it has proved to better describe the collected
TWR data avoiding over-fitting effects.
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Figure 4.4: Example radial (1D) range correction models for UWB (P410 Time Domain ©) data

Figure 4.5 provides a schematic view of the procedure for empirical range
correction models generation, outlining the distinct steps.
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Figure 4.5: Empirical 1D range correction models estimation

For the case of a radial (1D) correction model two variations have been
considered in this thesis, a generic linear correction model that covers all
examined area, and a segmentation-based linear correction model to improve
spatial resolution at a room level. The structure of the segmentation-based
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approach relies on the distribution of correction points in corresponding
rooms.

The first range correction approach (All-Rooms-Linear-Correction, “aric”)
produces radial corrections for the complete test area irrespectively of room
characteristics, and therefore, no distinction is made between LOS and NLOS
conditions. The corresponding range correction equation reads:

arle = di' + fi(d}) (4.2)

where, f| is the linear range correction equation for all rooms for anchor node
n.

The second range correction variation (Room-Linear-Correction, “ric”)
produces a linear approximation of the correction values individually for each
room depending on the continuously LoS or NLoS ranging conditions to
specific anchor nodes each time. For instance, considering the case of Figure
4.5, the correction model for the left Room corresponds solely on LOS ranging
for anchors Al and A2, and on NLOS ranging for anchors A3 and A4. The
equation describing ric reads:

rlef' = dif + fi(di ) (4.3)

where, d;" is the current (i) measured range between the roving node and
anchor node n and f, is the linear range corrections equation for room j.

4.3.2 Spatial (2D) fitting model

The generation of the two-dimensional range correction approach is based on
the same underlying principle as the 1D approach. In essence, the differences
between the measured and true (reference) distances are used for the
generation of a correction database connecting the correction points. In
comparison to the linear fitting model, this approach takes into account the
spatial distribution of the test ranges in the area of interest. Therefore, this
method provides a bi-dimensional correction fit which accounts for the
location of each correction point. In order to cover the entire area of a test
site, the correction values are interpolated using natural neighbor
interpolation (Sibson, 1981), which is based on the Voronoi tessellation
method; and hence, this Voronoi-correction approach is denoted as “vc”. For
the area found outside the polygons defined by the correction points, linear
extrapolation is performed in order to extend the Voronoi correction values.
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Figure 4.6: Empirical 2D range correction models estimation
The equation describing vc reads:
n_ gn n .n
vep =d; + fu(xyi) (44)

where, f, is the bi-dimensional range corrections equation for the moving
node’s position (xi,yi) for anchor node n.

4.4 Orientation-assisted range correction models

4.4.1 Orientation assist

Perhaps the most influencing drawbacks concerned with TWR observables
indoors are NLoS effects generated by physical obstacles or multipath. In an
attempt to initially model and consequently mitigate the effect of NLoS
conditions in TWR ranges, orientation assisted range error modeling is
conceptualized and evaluated.

In this regard, the most influencing factor associated with NLoS conditions for
pedestrian, indoor positioning is the same pedestrian’s body acting a live
obstacle. In order to examine and evaluate in a systematic manner the user
orientation effect in relation to the anchor point, the data collection
campaigns’ resolution described in §4.3 are further increased by introducing
the collection of discrete ranging datasets at all four cardinal orientations
(North, East, South, West) as shown in Figure 4.7.
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Figure 4.7: The cardinal orientations for range correction model generation

According to the rlc correction model, this approach generates a linear
approximation of the correction values for each orientation. The orientation-
linear-correction model (“olc”) is described by equation:

Olcin = dln + for(d?; or) (4.5)

where, d;" is the current (/) measured range between the roving node and
anchor node n, for is the linear range corrections equation for each orientation
or.

Moreover, the expansion of the spatial (2D) correction model in order to
include an additional level of detail based on the orientation assist is proposed
and can be formulated as the orientation-Voronoi-correction model (“ovc”)
and is defined as followes:

ovel' =dl + fo, (x, yit, or) (4.6)

where, fo, is the bidimensional range corrections equation for the moving
node’s n position (x;,y;) and for each orientation or.

4.4.2 RSS-based orientation selection

In order to apply the correction models discussed in Sec. 4.2.1 in real case
scenarios user orientation should be known. Notwithstanding today’s
technology (e.g., MEMS IMU) can compute for user orientation, at this stage
we exercise an autonomous RF-based approach. The proposed approach
relies (a) on the provided data of each RF-based conversation, including both
TWR observables along with signal quality information (RSS), and (b) on the
hypothesis that the main source of RSS fluctuation for an otherwise static
rover is the change of orientation due to the imposed NLOS conditions.
Therefore, user orientation estimation relies on the comparison of the
collected real-time RSS values against those obtained from previously
collected RSS values for consequently selecting the appropriate orientation-
based correction model.

For this purpose, in addition to the linear and bi-dimensional models
generated for the TWR measurables, the database is also populated with RSS-
based linear and bi-dimensional models that are generated in a similar
manner.

For the case of “olc” model, the RSS values are employed for generating a
corresponding linear model for all anchor-rover pairs with respect to the
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reported range. These RSS models are then used during the on-line phase of
the range correction algorithm by comparing the reported RSS value with
respect to the reported uncorrected range and consequently select the closer
RSS model. Similarly, for the case of “ovc” model, the corresponding spatial
RSS models are generated and the real RSS values are compared against them
in order to select the closer RSSI model, and consequently, the most respective
“ovc” type model.

Figure 4.8 illustrates the outline of the described RSS-based orientation
selection approach.
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Figure 4.8: Proposed RSS-based orientation selection approaches. Radial-based selection (left)
and bi-dimensional-based selection (right).

4.5 Range correction models validation

In order to evaluate the appropriateness and operational efficiency of the
range correction models, certain validation approaches are implemented. At
a first stage, correction model validation refers to static ranges aiming at
computing detailed statistical measures, whilst at the same time providing
initial feedback for adopting a suitable correction model for the kinematic
case. The second stage deals with the model validation process intended for
kinematic positioning; specifically, for evaluating range error mitigation
effects under realistic positioning scenarios.

4.5.1 Internal and external parameters affecting TWR quality

Due to inherent characteristics of the TWR observables and indoor
environment conditions which is of prime interest in this work, several factors
need to be accounted at model validation stage.

Internal factors effect refers to the varying setups the TWR sensors may
provide to the user such as different signal transmission configuration values
and sampling rate. The choice of signal transmission configuration parameters
such as signal bandwidth or Pulse Integration Index (PIl) (Time Domain, 2016)
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affects ranging performance. Specifically, variations in signal configuration
might provide the ability to acquire effectively range measurements over long
distances, and in return operate in lower sampling frequencies. Moreover,
different recording bandwidths may provide variable ranging repeatability
(i.e., precision) and multipath effects or NLoS resilience. Additionally, the
choice of sampling rate values affects directly the positioning solution
performance since, for example a low sampling rate may hinder the ability to
track motions of higher dynamics. On the other hand, a very high sampling
rate might impede the localization engines of the roving nodes network as it
requires higher processing power in order to manage the increased data
throughput.

On the other hand, external effects refer to variations in the environmental
conditions when performing TWR positioning. The indoor environment
complex geometry, the presence of surrounding obstacles (static or mobile)
as well as user body as such acting as the main source of NLoS, are some of
the determinant external factors. In addition, RF signal attenuation, scattering
and fading needs to be accounted for and evaluated within a validation
procedure. The different TWR technologies adopted in this research are
expected to provide a somewhat varying performance in varying
environmental setups. Therefore, a detailed analysis takes place in order to
gain insight that will facilitate subsequent experimental evaluation of
positioning using a combination of the technologies. The NLoS being the main
ranging quality degradation effect is examined using both through-the-wall
TWR observables as well as the user’s body in a controlled and repeatable
manner.

Internal factors
Signal bandwidth
Pulse Integration Index
Sampling rate

1D/ 2D validation | TWR
procedure | performance

External factors
LOS/ NLOS
Geometry

Figure 4.9: Internal and external factors for ranges performance evaluation

4.5.2 Validation procedure of the static range correction model

The validation of the static range correction model presupposes a series of
suitable range datasets collected at different observation distances. This
enables statistical characterization of the raw observables leading to
conclusions about the performance of the correction models. The static
validation datasets are collected at the same environment as the correction
datasets, since the ad hoc error correction models suit for the similar
environmental conditions. Notably, performance assessment of the range
correction models at variable environments exceeds the scope of this
research. Naturally, in order to reach unbiased model assessment, the
evaluation of the validation datasets is performed on data collected
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specifically for validation purposes and not on those collected for error
modelling. The number of validation points selected ranges between 30% -
40% of the total datasets points which is adequate for providing reliable
evaluation results.

Field procedure includes range observation in a 1D setup from an anchor point
to a rover placed sequentially at increasing distances along a corridor-like
geometry. Also, the procedure may be performed in a 2D setup. In this
scenario the observation points are spatially distributed throughout the area
of interest and the corresponding Euclidean distances are computed based on
the known anchor coordinates.

FAN ® 'y 'y ° 'Y 'Y ' .
A A
® e FAN Anchor
* L] Correction point
° ° Validation point
A A

Figure 4.10: Examples of 1D (top) and 2D (bottom) static ranges validation layout

At implementation stage, the radial and spatial correction models and
associated software are implemented as described in §4.6. Subsequently, the
corrected ranges are cross-compared against the nominal distances resulting
in a statistical evaluation (i.e., trueness mean and standard deviation) for
gaining insight regarding the parameters analyzed in §4.5.1. Corresponding
trueness histograms facilitate the quantitative performance evaluation for
each pair. Based on the corrected ranges, the remaining error EPDFmax value
may be used for all validation points in order to generate remaining error
diagrams in contour or heatmap form.

4.5.3 Validation procedure of the kinematic range correction model

Since the aim is to enable a correction model for kinematic (dynamic) range
evaluation for real-time applications, the validation procedure needs to
expand for the kinematic case. This validation mode intends to evaluate the
performance of the developed models in a realistic manner, whilst at the same
time copes with fewer observables than the static one, per rover position and
therefore no detailed statistical measures can be estimated. For a more
detailed analysis of the procedure refer to § 5.6.
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Usually, the estimation of a reference trajectory indoors relies on the
realization of a predefined path along previously established and accurately
surveyed points. Positioning performance evaluation of relies on the
comparison of the estimated trajectories performance using the different
correction models. Moreover, the assumptions underlying each model
implementation is different considering the radial (1D) models rely only on the
measured range, while the spatial (2D) models rely on the previously
estimated position. This validation step allows for the evaluation of the model
implementation in real TWR datasets intended for trajectory estimation.
Trajectory quality metrics estimated against the reference trajectory enable
the quantitative comparison among varying models.

4.6 Developed TWR correction and validation SW

Within the scope of designing and implementing a generalized approach for
building TWR range correction models, a dedicated SW suite has been
designed and developed in Matlab® Programming Environment. The SW suite
receives as input suitably formatted raw TWR data, it generates the
corresponding correction models, performs validation checks, and finally
generates validation statistics tables (Perakis & Gikas, 2018).

The data input includes three .csv files that include the coordinates of the
anchor transceivers, the correction and validation points. Also, the .csv logfiles
for the correction points and the validation points should be stored in separate
directories “/correction” and “/validation” respectively. Figure 4.11 depicts
typical Wi-Fi RTT and UWB logfiles.

, date time, houz, |

NaN, NaN,

Figure 4.11: Example TWR logfiles as collected using Wi-Fi RTT (top) and UWB (bottom)
devices

4.6.1 Static range analysis

The initial stage of the range correction SW refers to data importing and
handling. It imports all static TWR data, as well as the surveyed anchor and
correction point coordinates along with the lever arm for estimating reference
distances. The output is the "RangeExport.mat" that contains ranges from all
anchors sorted per correction point. The file includes the collected, ranges
statistical measures of the module dataset, the range corrections compared
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to the reference distances, and the estimated reference distances. Figure 4.12
depicts the structure of the generated files.

RangeExport

[E] 11 struct with 56 fields

| RangeExportcioe o |

RangeExport.cl0_e

Fields (] id 7 Range [HRangefr [ Rssl [lAttemy [ Success [ median_con [mean cor [ std [IMLEReng [ MLE correcti [imean RsSI [ mean_RangeEn [ RefDist

SR GRS

Figure 4.12: Example structure of a RangeExport.mat file.

Range histograms for all correction points are generated as illustrated in
Figure 4.2 and Figure 4.3.

4.6.2 Range files sorter

This step is in charge with sorting the generated "RangeExport.mat" according
to the grouping type (per room, per orientation, etc.) the user selects. The
generated file is "RangesSorted.mat" in which the range corrections sorted
appropriately. An example of the generated file is given in Figure 9.13.

| RangesSorted ¢ | RangesSorted Morth
[E] 11 struct with & fields RangesSorted.North

Fields 1] id [ coords [ Refdist [ std  [FMLErange [HIMLE correction [F mean RSSI {5 mean_RangeErr

I

Figure 4.13: Example structure of a RangesSorted.mat file

4.6.3 Correction models generator

A correction model generator employs the "RangesSorted.mat" to produce
the range correction models per room grouping. The output is the
"Correction.mat" that includes all generated correction models as illustrated
in Figure 4.14 as well as the graphical presentation of the models as in Figures
4.5 and 4.6.

| correction | Correction.North
(£ %1 struct with 9 fields Correction.North
Field Value Fields [l id |&| RSSInterpolation {1 CorrLinear Y/RSSLinear |& Corrinterpolation

So o R W=

Figure 4.14: Example structure of a Correction.mat file
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4.6.4 Correction implementation on validation data

This step is in charge with importing the validation range logfiles from the
appropriate directory, implementing the correction models based on
“Correction.mat” and generating the “Validation.mat” variable including non-
corrected data, corrected data based on radial (1D) model and corrected data
based on spatial (2D) interpolation model for further analysis in the next step.
Figure 4.15 presents an example of “Validation.mat” file.

[ validation < | Validation.ValidNoCorrRangeExport

LEl 11 struct with 3 fields Validation ValidMoCorrRangeExport

Validation.ValidNoCorRangeExport.v1_s
Validation.ValidNoCorrRangeExport.v1_s

Fields [ id 7 pRM [ PRMEN

) FREEm 3 CRE  [LIMLE comection [Jmedian_correction [T]mean_correction [ std [ RefDist

le | 1207 doubl

o7

61 126700

OO

Figure 4.15: Example structure of a Validation.mat file

4.6.5 Statistical analysis export

This step makes use of the “Validation.mat” file in order to estimate and
generate “ValidationStats.mat” with tables containing range trueness mean
and standard deviation per node-pair. A typical example of this file is
presented in Figure 4.16.

ValidationStats | ValidationStats.ValidNoCorrRangeExport |

|El 1x1 struct with 3 fields ValidationStats. ValidMoCorrRangeExport

Figure 4.16: Example structure of ValidationStats.mat file

4.6.6 Validation plotter

Using the  “Validation.mat”  file, this step generates the
“ValRangesSorted.mat” required for the next step of plotting the corrected
validation ranges. Subsequently, the “ValRangesSorted.mat” is used to
generate the figures illustrating the remaining range errors after correction
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implementation in radial and spatial form and also generating the
“RemainingCorrection.mat” reporting the remaining range error values after
correction implementation. An example structure is presented in Figure 4.17.

RemainingCorrection | RemainingCorrection.AllRooms |
[E| 1x1 struct with 1 field RemainingCorrection.AllRooms

Field Value Fields el id Y9 CorrLinear || Corrinterpolation

1x5 struct

Toen B o P —

Figure 4.17: Example structure of RemainingCorrection.mat file
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Chapter 5
Position computation algorithm

The goal underlying this study is the development and evaluation of a suite of
decentralized collaborative positioning algorithms to enable the localization
of multiple rovers using RF-based TWR observables collected in a network of
roving and static nodes architecture. The basis of the absolute localization
engine relies on Extended Kalman Filtering (EKF) realized in a collaborative
manner. Considering that the adoption of a collaborative positioning (CP)
strategy entails the introduction of uncertainty due to the correlated
positioning solutions, it is expected to affect the network solution resulting in
highly inaccurate results or even inability of filter convergence. In an attempt
to optimally combine Pedestrian to Pedestrian (P2P) range measurements in
a decentralized manner, an approach is formulated based on Split Covariance
Intersection (SCI) grounds using the inter-device TWR ranges, the advertised
rover state and covariance information.

5.1 Kalman Filter formulation

For the localization of a mobile rover using P2l ranges the observation setup
relies on the provision of TWR observables from anchors of known coordinates
to the rover in a dynamic manner. The range measurements are processed
sequentially upon recording along with the reported accuracy (as estimated
by the device) and the system timestamp. In a scenario of multiple rovers,
each rover utilizes independently its corresponding measurements as they
become available. Figure 5.1 illustrates the basic system setup for single
roving pedestrian and four ranges captured sequentially from the four
anchors.
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Figure 5.1: TWR ranging setup for a single rover EKF-based localization
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Notwithstanding this experimental setup refers to a single rover it may
support multiple rovers subject to a potential limitation imposed by the
maximum TWR technology communication network capacity.

5.1.1 The measurement model

State update

The state update (correction) again in accordance with eq. 3.24 — 3.26 relies
on the estimated model-based measurement between a roving pedestrian
and anchor a:

hg, =\ (R — x2)% + U — ¥2)? + (2 — 2a)? (5.1)

The measurement model is then linearized about the point of the current state
estimate providing the linearized measurement matrix:

oh oh o0h Oh 0h Oh

H=|3 a5 % 5, 55 5% (52)

The measurement noise R is defined by the range observable standard
deviation o-.
Rf = O'r2 (5.3 )

Variables initialization

Considering that the computation of the state evolution resides on distinct
range observations captured among the rover and the available anchors per
epoch, an initial estimate of the rover state is required in order the filter to
propagate forward successfully. This is realized either by providing arbitrarily
an approximate initial position or using an initial step of least squares
estimation based on available TWR measurables prior the main EKF
implementation. In order to estimate an initial position of rover, the system
assumes static conditions, it collects at least three P2l ranges to different
anchors, and consequently implements the trilateration principle following
equations 3.4-3.7. Multi-lateration is utilized when more than 3 anchors are
available based on the work of Norrdine (2012). Therefore, the initial state
estimate reads:

Xo=1[x0 0 yo 0 z 0] (54)
where, (x0, y0, z0) is the initial position solution whilst velocity is set to zero.

Also, the state covariance matrix Py is initialized:

P, 0 0 0 0 0
0 P, 0 0 0 0
0 0 B, 0 0 0
=10 0o 0 P, 0 o0 (55)
0 0 0 0 Py 0
0 0 0 0 0 P
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Range correction implementation

At this stage, range correction is implemented based on appropriate model
selection following eq. 4.2-4.6. Therefore, the range measurement introduced
in the state vector reads:

Zy =71c+ feum (5.6)

where, ris the raw logged range, and f¢y is the corrected range for biases.

5.1.2 The dynamic model

Mathematical model

The system state contains the 3-dimensional coordinates and their velocity
components. No matter user requirements for the majority of pedestrian
indoor positioning applications suffice bi-dimensional positioning, in certain
cases the vertical component provides useful insight such as in large, indoor,
multi-level spaces identification.

Therefore, the designed pedestrian state is a 6-dimensional vector as follows:
Xe=[x x yy z 2T (5.7)

where, x,y,z and x,y,Z denote the 3-dimensional position and velocity
components of the rover at time ¢, whereas 7T denotes the vector transpose.
Following the Newtonian equations for a time step At and a constant velocity
model

R = Rq + AL (5.8)
Xe = Xeq (59)
Ve =1+ YAt (5.10)
Ve = Ye-1 (5.11)
2 =54 + 24t (5.12)
Zy = Zpq (5.13)

According to Eq. 3.18 the state evolution (transition matrix) takes the form:

1 4 0 0 0 O

0 1. 0 0 0 O

1o 0o 1 4t 0 0
F= 0 0 01 0 O (5.14)

0 0 0 0 1 At

0 0 0 0 0 1

The transition matrix enables the progression of state X'and process noise @
forward in time by a time step 4¢through Eq. 3.22 and 3.23.
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State evolution with azimuth assist

Considering the broad availability of low-cost MEMS-IMU sensors in handheld
devices today we employ them to estimate the rover’s orientation based on
the fused solution of the embedded accelerometer, gyroscope and
magnetometer readings. Provided the orientation measurements are
accurate enough this strategy improves robustness of the proposed TWR-
based localization approach. Specifically, given the absolute character of the
orientation observable Azand assuming that the y axis of the local coordinate
system is aligned to magnetic North, the relationship between the absolute
orientation information and the unknown parameters within the state
evolution function is described in Figure 5.2, in which case the orientation is
assumed constant for the timestep At.

4 i
v \ D Current state
N i

Predicted state

o et

1 Atxsindz O 0 0 O

0 1 0 0 0 O

_10 0 1 AtxcosdAz 0 O
F= 0 0 0 1 0 0 (5.15)

0 0 0 0 1 At

0 0 0 0 0 1

5.1.3 The stochastic model

Process noise definition

Assuming zero covariance in the process noise of the X coordinate variables,
matrix Qtakes the form:

Qxax2y Oexzy  Owx2)
Q= 02x2) Qy(zxz) 02x2) (5.16)

0(2X2) O(ZXZ) QZ(ZXZ)
A process noise variance scaling factor k¢ multiplied by Q enables tuning
considering application-specific dynamic characteristics of the localized node.
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5.2 Kalman Filter tuning procedures

Despite the attempts to design a realistic representation of a rover’s dynamics,
real-life scenarios suggest that rovers cannot follow exactly a specific dynamic
model due to irregular movement variations, which are hard to describe
accurately. Moreover, it is practically infeasible to model adequately the
sensors measurement errors, resulting to an additional fluctuation to the
position filter output. Therefore, when designing a Kalman filter in order to
optimally estimate the motion of an object, one must account both for the
unknown deviations resulting from the motion model as well as the sensor
measurement errors.

The term process noise is used in order to describe deviations of the “true”
motion of the pedestrian from the state evolution model. While a constant
velocity model is chosen, pedestrian motion is expected to follow a non-
constant velocity model. Besides, the system’s minor velocity variations
should not be modeled as a constant acceleration model as that imply that
sensor imperfections would eventually be identified by the filter as
acceleration instead of noise. Generally, higher-order filters could be
implemented in cases where sensor noise is identified to be orders of
magnitude lower than the expected motion acceleration. The utilization of
process noise indicates the inherent compromise of the inversely proportional
relation between the values of process noise and filter sensitivity to rapid
motion changes. For instance, a low process noise may force the filter to
ignore the true trajectory changes leading to filter estimates in favor of the
dynamic model. Contrarily, a choice of increased values of the process noise
might boost the influence of noisy measurements resulting in non-realistic
fluctuations of the estimated trajectory.

5.2.1 Process noise scaling

The process noise implemented in this thesis accounts for the state evolution
error model as the random acceleration a: as well as the process noise
variance ko?.

Given equation 3.22, the state evolution function including the random
acceleration along the x dimension (similarly for y, z dimensions) reads:

N Atz/ .
XE=FXt_1+at 2 =FXt—1+Wt (5.17)
At

with variance-covariance matrix

Q; = var(wy) (5.18)
Let
2
G, = [At /2] (5.19)
At
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At? At3
2 /4 /2

Q: = E[WtWtT] = GtE[ag]GtT = kUZGthT = ko At3/2 A¢?

(5.20)

Empirical investigation

In order a Kalman filter to be configured suitably for pedestrian motion, the
appropriate process noise variance may be estimated using real datasets of
pedestrian trajectories for which a reference trajectory as well as TWR data
are available.

For the implementation of process noise scaling procedure, a successive
number of trajectories of a pedestrian moving in realistic conditions is
employed. The extraction of position estimation of the pedestrian’s motion is
achieved using the low cost GNSS receivers u-blox EVK-M8 /NEO-MS8T acting
as rover receiver, u-blox C94-M8P acting as base receiver, the RTKGPS+®
mobile application for data logging and the RTKLIB® software for extracting
the pedestrians' trajectories by performing Post Processing Kinematic (PPK)
positioning. Detailed description of the experimental setup is further
described in Andrikopoulou et al. (2020). The reference trajectories are then
introduced to the Ranges Generator algorithm (see §6.2.2) in order to produce
the artificially generated ranges, contaminated with an appropriately
configured range error as estimated specifically for UWB-based TWR
observables.

The EKF as described in §5.1 is implemented on the produced ranges for
varying ko values and the corresponding trueness statistics are estimated
based on the known reference trajectory as illustrated in Figure 5.3.

6

Position trueness{m)

] 0.2 0.4 0.6 0.8 1
Process noise (ko)

Figure 5.3: Process noise effect investigation on pedestrian trajectory for EKF on UWB ranges

A clear relationship between the process noise and the position trueness is
observed featuring a continuous decrease both in position trueness mean and
standard deviation as the ko values increase. However, tailoring the process
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noise excessively to satisfy the performance for a specific empirical test may
yield the danger of designing a narrow-focused filter that does not operate
appropriately when introduced with slightly different datasets. Moreover, the
trajectory detail example presented in Figure 5.4 indicates the effect of
distinct ko values. While a high ko value may intuitively suggest a better
performing filter for this occasion, a moderate value that lies close to the
trueness statistics stabilizing point (e.g., ko ~0.4 for this dataset) may provide
an optimal selection for compensating potential measurement errors
extremes.

«108 Pedestrian trajectories for ko variations
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Figure 5.4: Pedestrian trajectories estimated for varying ko values.

Adaptive process noise scaling

Notwithstanding pedestrian motion is characterized as conservative in terms
of maximum achievable velocity, still it is quite difficult to model in terms of
facing orientation. In contrast to a vehicle’s motion which can be largely
modeled using detailed system dynamics equations, a pedestrian’s motion
may present unpredicted maneuvers including lateral movements, sudden
stops and instantaneous backwards steps.

In an attempt to incorporate a maneuver identification and mitigation stage
in the proposed filter, an adjustable process noise function is introduced.
Considering the occasions that an unexpected maneuver takes place, the
process noise should be able to be adjusted timely, in order to allow for the
filter to lean towards the TWR measurement. The formulation is based on the
continuous monitoring of the residual as defined in Figure 5.5. In the cases
that the residual value y = Z, — HX}, exceeds a predefined multiple of the
standard deviation of the measurement error o, the adapted process noise
Qqq is estimated using a scaling factor SFy (Zarchan and Musoff, 2015) as
defined in 5.21.
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Figure 5.5: Residual definition for EKF
Q¢ *SFy, y>mxo,
Qaa = < m % (5.21)
Qt, y Smxoy,

where, m is the multiple of range measurement standard deviation for
maneuver identification.

5.2.2 Correction models adopted for the UWB and Wi-Fi RTT range
observables internal accuracy

The TWR technologies employed in this study (i.e., Time Domain© P410 UWSB,
Compulab© WILD Wi-Fi RTT) result in range measurements with device-
generated error values. In this study two schemes for providing Dynamic
Measurement Error Estimation (DME) algorithms have been adopted and
presented.

UWB measurement error estimation

Figure 5.6 depicts in red the range differences obtained between the observed
and reference values for a UWB rover module using a preliminary data
campaign featuring 4 UWB anchors (for the detailed field test description refer
to § 6.3.2. Also, the same plots show in blue the median values (Leading-Edge
Detection, LED) and their associated standard deviations as recoded by the
sensors. According to the manufacturer, the LED flag value for LoS conditions
should equal 8, whilst larger values indicate NLoS operation. Moreover, from
the same plots a relationship between the recorded LED values and the
corresponding range deviations is observed indicating that the reported
values can be utilized as an index for characterizing range quality together
with their reported range error values.
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Figure 5.6: LED flags with corresponding range deviations along with the standard deviation
values for all UWB pairs

In this regard, the noise of range measurements is defined by the error value
reported by the UWB module for each measurement. Thorough examination
of the reported (by the sensor) range errors against their estimated
equivalents (computed standard deviation) suggests the introduction of a
scaling factor to the reported error. Based on the relationship between the
reported LED values against the computed range accuracy, an empirical
scaling tactic is engaged during real-time ranging as described by 5.22.

v _ | errf*5  7<fIEP <10

5.22
% {err[ * 10, 10 < fILEP ( )

where, oV is the UWB measurement noise implemented for timestamp ¢
erry' is the range error reported for timestamp tand /L2 is he LED flag value
reported for timestamp ¢

Wi-Fi RTT measurement error estimation

Preliminary examination of the relationship between the RSS values logged for
the Compulab© WILD units against the estimated ranging trueness values
indicates the existence of a correlation. Moreover, further investigation
reveals the discrepancy between the reported Standard Deviation (SD) values
(as provided by the Wi-Fi RTT module) and the TWR measurements trueness
with many instances of either overoptimistic or pessimistic SD values leading
to low range quality indicator integrity. Further analysis indicates the
relationship between the observed range quality of collected Wi-Fi RTT
datasets and the collected RSS values as illustrated in Figure 5.7. Here, the
estimated range trueness scatter presents an increased distribution as the RSS
values decrease suggesting a corresponding trend.

89



RSS vs Trueness
T T

-50

RSS vs Trueness

551

50l

-65)

-70)

75

RSS (dBm)
RSS (dB)

-80[ -80r

-B5F -85r

-90F -a0r

a5 n n
-20 -15 -10 5 o 5 -40 -35 -30 -25

' . .
- -20 415 10 -5 a s
Trueness (m)

Trueness (m)

Figure 5.7: Empirical RSS vs trueness diagrams for Wi-Fi RTT observables

This correlation trend is analyzed further translating to a linear approximation
of the standard deviation of range trueness against the RSS values leading to
the diagrams of Figure 5.8 and Eq. 5.23. This represents the measurement
noise adopted for the Wi-Fi RTT observables denoted as a7".
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Figure 5.8: Examples of empirical trueness sd vs RSS values for Wi-Fi RTT observables

oW = aRSS, + b (5.23)

where, o/Wis the Wi-Fi RTT measurement noise implemented for timestamp
t, RSS:is the reported Receiver Signal Strength value at timestamp ¢, whilst a
and b are the parameters of the linear fit model estimated empirically. This
linear optimal fit is introduced during real-time ranging for dynamically
assigning the range error substituting the device-generated values.

5.3 Kalman filter formulation for distributed collaborative positioning

5.3.1 Generic filter formulation

In a similar manner to the EKF formulation applied for standalone positioning
(85.1), the distributed collaborative positioning scheme encompassing
multiple roving pedestrians, relies also on sequential processing of the
recorded TWR ranges. Moreover, in addition to the P2l observables realized
via the WI-Fi RTT sensors, in this setup, the rovers are capable to perform P2P
ranging operations using the UWB technology while communicating their
corresponding state estimate along with their covariance matrix and utilize
them by implementing a SCIF scheme in a distributed architecture. Also, each
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rover is capable of storing the last available dependent and independent
covariance matrices (see equations 3.27-3.32) for all corresponding
neighboring nodes. Figure 5.9 illustrates this setup for the case of 2 roving
nodes and 4 anchors. Notably, this simplistic setup can be expanded to
incorporate more rovers and additional anchor nodes. Obviously, in this case
a potential limitation of a maximum number of nodes / TWR observed
depends on network communication capacity. The collaborative strategy
based on sequential TWR observables is formulated in a manner that could
support partial or complete anchor unavailability for a certain time windows
throughout the localization process. As the filter state prediction and update
steps rely on discrete pairwise, range-only measurements and not on range
packets from multiple anchors and/or rovers, the filter is able to continuously
provide position solution for a reduced number of available neighbors
(anchors or rovers). In the case of long-time windows of anchor unavailability,
the filter is expected to diverge. The aim is to provide a positioning scheme
robust enough to handle a low P2l observable availability and extended times
of P2l measurement inactivity. This is attempted through the introduction of
a SCIF operation in the positioning strategy aiming at minimizing the effect of
correlation induced errors between collaborating roving nodes.
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Figure 5.9: TWR ranging and communication setup for two rovers SCIF-based localization
5.3.2 State variables evolution
Following Eq. 5.7, the state vector for rover (pedestrian) jreads:
~ ] _ ) . ] . ) s 9T
X =06 %5 ¥y ¥ % %] (5.24)

Its associated state covariance matrix is formulated as:
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P, 0 0 0 0 0]
0 P, 0 0 0 0
;o 0o B 0 0 0
PP=10 0o o Py, 0 0 (5.25)
0 0 0 0 Py O
0 0 0 0 0 P,

j

The state evolution and the covariance for the absolute positioning part of the
algorithm (i.e., P2l observables) follows the formulation of Eq. 5.14 or 5.15
depending on the availability of azimuth (Az) values.

For the collaborative positioning step (i.e., P2P observables) between
pedestrians jand m, the state evolution again follows Eq. 5.14 or 5.15 whereas
the covariance evolution based on the SCIF results in:

Pe/ = FP._{/FT + Quq (5.26)
P; /™ =FP,_,J™ FT 4+ Q, (5.27)
Pi ™ = P¢ — g™ (5.28)

The last available independent covariance matrix Pt_ljml. between jand mis
already stored locally for pedestrian /.

5.3.3 State variables update

For the case of the absolute positioning scenario using P2l observables, the
state update (correction) relies on Eq. 5.1 through 5.3 as a requirement to
implement Eq. 3.24 through 3.26.

In the case of collaborative positioning, the TWR observable is the range Z;
between roving pedestrians j and m, while the neighbor’s state vector

)?t_lmalong with the covariance matrix P¢""is advertised to rover j.

The SCIF update steps as adopted after Eq. 3.27 through 3.33 are as follows:

il

—_td _J

P=—= +Pg,™ (5.29)
p;™ .
P, = R+ 5.30

e + R; ( )
K =P,HT(HP;HT + HP,HT)™! (5.31)
Pi, = (I —KH)P,_y/™ (I - KH)" + KR K" (5.33)
Pdt =Pt_Pit (534)
X=X +K@Z, - HXY) (5.35)
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5.3.4 TWR measurement model

In the proposed approach, the measurement model relies on TWR-based
range-only observables enhanced by the neighbors’ state vectors and
corresponding covariance matrices for providing insight regarding their
position accuracy. For the case of P2l observables, the uncertainty of the
anchor coordinates may be considered equal to zero; and therefore, the EKF-
based absolute positioning approach may be implemented without
accounting for the anchor position induced error. On the other hand,
concerning the P2P observables, this approach needs to account for the
moving neighbors’ position uncertainty. This is because it affects directly the
filter estimation. Considering that for the P2P case, previous ranges are
generated when the neighbor pedestrian was at a different position, however
are employed for consequent relative position estimations, entails the fact
that current state estimations between neighbors are correlated. Therefore,
the neighbor’s state covariance forms the dependent part of measurement
covariance P¢™. Whereas the P2P range measurement noise forms the
independent part of measurement covariance jo since the successive range
measurements are uncorrelated.

Figure 5.10 presents the flow chart of the developed Distributed Collaborative
Positioning (DCP) algorithm, summarizing its functionality.
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Figure 5.10: DCP algorithm implementation diagram illustrating the respective data flows,
error correction implementation, adaptive filtering steps as well as standalone or collaborative
positioning.

5.4 Metrics for trajectory evaluation

A key prerequisite for the successful development of a positioning system is
setting up the user needs and requirements based on individual application
characteristics. In this regard, meeting the needs in terms of localization
requirements (position quality metrics) is a key factor for the successful
operation of a positioning system. Position accuracy, consisting of precision
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and trueness, characterizes to a great extent any positioning system. As shown
in Figure 5.11, the precision of a localization system, results from the statistical
analysis of the parameters of the localization solution (position, speed, etc.)
and is regarded as a measure of the repeatability of the solution. Trueness is
the quality metric that describes the proximity of the positioning solution in
relation to its true (nominal) value.
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Figure 5.11: Positioning accuracy metrics definition (source: ISO 5725-1)

A prerequisite for computing reliably the trueness capability of a positioning
system resides on the ability to possess its true or nominal state. In practice,
this is normally achieved using an observation system of superior quality
(tactical grade) or performing tests under a controlled environment (Clausen
et al., 2017). Depending on the case, quality metrics can be represented in a
variety of formats. Typical representations are perceived in the time and
frequency domains. A typical example of the former is the use of estimated
error timeseries, whereas for the latter the error parameters may be
represented through probability density functions (PDF) or the cumulative
distribution functions (CDF) as illustrated in Figure 5.12.

0.5 112 15 2 22 25 3 3.5 4 45 5
1.6

Figure 5.12: Probability density and cumulative distribution functions (source: COST TU1302
Handbook, 2017)
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5.4.1 Position trueness and precision estimation

Considering a reference trajectory is available, the computation of position
trueness for a test trajectory generated resides in in-house generated
algorithms and relies on a direct comparison of each discrete position to its
corresponding (synchronous) reference positions representing the ground
truth. Precision on the other hand represents the estimation of the internal
error estimates calculated during positioning filter implementation and
represented by the state covariance values P; as defined in §3.1.2.

Position trueness of time-stamped reference trajectories

Practically, for the case of a reference trajectory realized through a series of
distinct time-stamped position fixes, horizontal position trueness refers to the
error vector represented by the Euclidean distance between the test position
and the reference position as illustrated in Figure 5.13.
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Figure 5.13: Trueness vector representation for timed trajectories

Prior to the computation of position trueness, special care needed should to
ensure time synchronization between the corresponding trajectory
timeseries. For this purpose, the logging devices (PC or mobile device) both
for the reference as well as the test trajectory are synchronized to a common
Network Time Protocol (NTP). During the evaluation process the test
trajectory positions are processed sequentially, so that for every test point its
corresponding point in the reference trajectory is identified based on time
proximity. Temporal synchronization to the corresponding reference epoch is
ensured through implementing the time-difference threshold (sync /im)
between test and reference timestamps, if the threshold is exceeded the next
process skips this time epoch. This is implemented in order to minimize the
impact of unsynchronized values to the resulting trueness values estimation.

The horizontal error vector for each point fix under examination is computed
using Eq. 5.36.

erry = O = e+ ] - ypesy? (5:36)
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;ef, y]-ref) are the reference trajectory coordinates, (x/¢5¢, yf¢st) are

the test trajectory coordinates, i corresponds to the current test trajectory
timestamp and j corresponds to the reference trajectory timestamp for
|j-i| < sync_limit.

where, (x

Position trueness for checkpoint-based reference trajectories

For the case that the establishment of a synchronized ground truth in the form
of areference trajectory is not feasible, trajectory assessment may rely on pre-
established checkpoints in the test area of known coordinates. The
checkpoints may coincide with the correction and validation points as defined
in §4.5.2 or they can be installed independently. Once the checkpoints have
been established, the test procedure needs to account for the rover to visit
the checkpoints in a specific / predefined sequence. Special care needs to be
taken in order to ensure agreement between the designed and the actually
implemented path motion through the checkpoints for ensuring the reliability
of the evaluation. Once the visit sequence of the reference checkpoint is
defined, the travel path of the rover is established in a matrix form as
presented in the 4-checkpoint example of Table 5.1.

Table 5.1: Example of checkpoint-based path

Checkpoint# X(m) Y (m)
1 0 0

2 2 3
3 3 5
4 7 3

For this reference dataset position trueness may be estimated through
calculating the error vector being the minimum distance between each test
position to the reference path linear segments as illustrated in Figure 5.14. It
is pointed out that this approach might fail in case of extreme errors. In this
case, the estimated position trueness presents outliers when the minimum
distance from reference path does not correspond to a realistic value. Hence,
it is crucial that the evaluation procedure is accompanied by visual trajectory
inspection.
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Figure 5.14: Trueness vector representation for checkpoint-based trajectories

Moreover, the reference trajectory may be generated by interjecting artificial
positions along the linear segments connecting the sequential checkpoints
using a predefined sampling value. This step enables the ability to assign
timestamps in the case that the checkpoints passings time is documented
during data collection. If this is possible then the trueness estimation follows
the procedure established for timed reference trajectories.

5.4.2 Dilution of Precision (DOP)

Considering the coordinates of the anchor nodes are known, in a similar
manner to satellite positioning, it is possible to compute the Dilution of
Precision (DOP) metric. DOP serves a quantitative measure for the effect of
the relative geometry of the rover’s location with respect to the anchors on
the rover position accuracy. An ideal geometry would include anchors
installed following a regular shape, covering symmetrically all azimuths where
the rover will operate and the angle created from the TWR observable to
anchors and the rover at the apex would never obtain small values. The values
of DOP have an inverse relation with the position quality, namely the larger
the DOP values the worse the estimated position.

For three anchors geometry DOP is computed as follows:

Ry = \/(xa —%)2+ Vo — Yr)? + (20 — 27)? (5.37)
_(xl —Xr) (3’1 —Yr (Zl — Zp)]
R, R R,
Xy — X — Zy — Z
A= ( 2 T) (3’2 yr) ( 2 r) (5.38)
R, R R,
(X3 = Xr) (3’3 —Yr (23 —Zp)
R; R, Ry |
Q = (ATA)! (5.39)
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where, R is the distance between the anchor a and rover r, A matrix contains
the unit vectors between the three anchors and the rover, and Q is the
variance-covariance matrix of x, y, z

The respective DOP values for the three-dimensional (3D), horizontal (2D) and
vertical (1D) components are given by:

PDOP = ’a,? + 05 + 02 (5.40)
HDOP = ’J,? + 0 (5.41)

VDOP = /62 (5.42)

where, the variances g2, 033, 0?2 are diagonal values of Q matrix representing
the corresponding variances.

5.4.3 Position solution availability

Position availability refers to the percentage of time during for which the
positioning terminal delivers position solution. Availability estimation is
directly determined by the corresponding user requirements for the
respective application. As it refers to the percentage of measurement time
windows T for which at least one solution is available (COST TU1302 White
Paper, 2015). The concept of availability metric is described in Figure 5.15
where an availability value of 66.66% is provided.

[+ 4] RRad R N
v v v "™
interval T

4+ available position

« available interval

Figure 5.15: Availability metric definition for positioning solutions
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Chapter 6
Data Collection and Error Mitigation

Chapter 6 aims at introducing and discussing the procedures adopted for the
generation and collection of simulated and field range data respectively for
testing the proposed positioning algorithms. Also, it presents the
experimental evaluation procedures and techniques used for error mitigation.

6.1 Test data summary and equipment employed

6.1.1 Simulated and field data campaign summary

The experimental campaigns include data collection undertaken both
outdoors and indoors. Outdoor campaigns serve as early-stage feedback of
the performance of TWR technologies examined in this thesis while at the
same time provide a basis for the planning of the indoor experiments. Indoor
campaigns serve both as a means for the detailed examination of the range
error mitigation models in the challenging conditions as well as for the
development and evaluation of the kinematic position technique developed
in this thesis. Performance assessment of the range correction models is
implemented both for the UWB and Wi-Fi RTT sensors on static as well as
kinematic data. Finally, testing with simulated datasets is crucial as it enables
the generation of controlled and realistic TWR datasets in a systematic
manner facilitating the development and optimization of the proposed
collaborative positioning algorithms. Table 6.1 summarizes the data collection
campaigns addressed in§ 6 and § 7.

Table 6.1: Field and simulation-based data collection campaigns summary

Static/

Campaign Real/

ID Simulated  Kinematic

Environment

Technology

Purpose

C#0.1 Real Static

Outdoors

uws

Assessment of nominal range quality
Investigation of maximum operational
range

Familiarization with UWB technology
operation and quality deterioration
effects for future campaigns design

Static &

Ci#o.2 Real Kinematic

Outdoors

uws

Assessment of multiple
simultaneously operating nodes
Development of preliminary UWB
range correction models
Evaluation of correction models for
static and kinematic vehicle data

Static &

C#0.3 Real . .
Kinematic

Outdoors

Wi-Fi RTT

Assessment of nominal ranging quality
Familiarization with Wi-Fi RTT
technology operation and quality
deterioration effects for future
campaigns design

Development of preliminary Wi-Fi RTT
range correction models

Evaluation of correction models for
static and kinematic pedestrian data
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Campaign
ID

Real/
Simulated

Static/
Kinematic

Environment

Technology

Purpose

C#1

Real

Static &
Kinematic

Indoors

UWB

Assessment of UWB ranging operation
performance indoors

Development of (multi-room) indoor
range correction models

Assessment of correction models for
static and kinematic pedestrian data

C#2

Real

Static &
Kinematic

Indoors

Wi-Fi RTT

Assessment of Wi-Fi RTT ranging
operation performance indoors
Development of (multi-orientation)
indoor range correction models
Assessment of correction models for
static and kinematic pedestrian data

S#1

Simulated

Kinematic

N/A

UWB & Az

Optimize absolute positioning (P21)

algorithms for (accurate) UWB TWR
data

Integrate simulated azimuth sensor
(Az) data

Assess P2l based on simulated UWB
and UWB/Az data

S#2

Simulated

Kinematic

N/A

Wi-Fi RTT &
Az

Optimize absolute positioning (P2I)
algorithms for (noisy) Wi-Fi RTT TWR
data

Integrate simulated azimuth sensor
(Az) data

Assess P2l based on simulated Wi-Fi
RTT and Wi-Fi RTT/Az data

S#3.1

Simulated

Kinematic

N/A

Wi-Fi RTT,
UWB & Az

Develop preliminary distributed
collaborative positioning (P21/ P2P)
algorithms

Absolute positioning (P2I) based on 3
Wi-Fi RTT anchors data

Collaborative positioning (P2P) based
on single UWB static “rover” data
Assess partially P21/ P2P based on
simulated UWB, Wi-Fi RTT and Az data

S#3.2

Simulated

Kinematic

N/A

Wi-Fi RTT,
UWB & Az

Optimize distributed collaborative
positioning (P21/ P2P) algorithms
Absolute positioning (P2I) based on 4
Wi-Fi RTT anchors data

Collaborative positioning (P2P) based
on 4 UWB kinematic rover data
Assess full P21/ P2P based on
simulated UWB, Wi-Fi RTT and Az data

UWB modules (Time Domain® P410)

6.1.2 Equipment employed

The UWB system employed for field testing in Campaigns C#0.1, C#0.2 and
C#1 is the P410 module by Time Domain®. Its principle of operation relies on
the coherent transmission of very short duration RF waveforms. The high
resolution of the transmitted RF pulses offers the ability to perform high
accuracy range measurements including capabilities of identifying and
rejecting NLOS and multipath ranges. The nominal high range accuracy of the
P410 module reported by the manufacturer relies on the ability of the
transceivers to precisely identify the first received pulse known also as

Leading-Edge Detection (LED) feature.
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P410 Nominal operation specs

Operating Band 3.1-5.3GHz
Center Freq 4.3 GHz
Precision 2.3cm
Accuracy 2.1cm
Max range 354 m
Max sampling rate 125 Hz

Seuree: v timedomain com

Figure 6.1: Time Domain® P410 device (left) and nominal performance characteristics (right)

The configuration of the P410 modules is realized through the Time Domain®
RangeNet® software suite whereas data logging is performed using a series of
specialized Matlab® scripts developed using the Time Domain® API
specification.

Wi-Fi RTT modules (Compulab® WILD)

Compulab® Wi-Fi Indoor Location Device (WILD) modules are utilized for
campaigns C#0.3 and CH2. They are among the first commercially available
devices that support the communication with FTM compatible Android™
smartphones. The successful FTM ranging relies on the support of Wi-Fi RTT
APl by the smartphone and through dedicated Android applications. The
operation of WILD units relies on the Compulab fitlet2 platform that
encompass an Intel AC8260 Wi-Fi processor unit.

WILD Nominal operation specs
o Bandwidths 20, 40, 80 MHz
Center Freq 2.4 and 5 GHz
IEEE Protocol 802.11mc
Nominal multi-
. 1-2m
lateration accuracy

Figure 6.2: Compulab®WILD device (left) and nominal performance characteristics (right)

Concerning data logging the open-source Android™ application WILD minimal
is selected due to compatibility standards with the WILD APs receivers as it is
developed by the device’s manufacturer. Since it is an open-source
application, certain modifications deemed necessary to fulfil the experimental
campaign needs. Firstly, the simultaneous recording of measurements from
multiple APs in .csv (comma-separated values) files and storing them locally is
configured. Secondly, different sampling rates were implemented in order to
select the maximum operational value for enabling the logging of sufficient
ranging data for monitoring rapid motions (higher dynamics). Parsing of the
raw .csv files is carried out using in-house parser scripts developed in Python,
providing formatted data files for further analysis. The extracted information
includes date, time, AP ID, smartphone ID, range, range standard deviation,
signal strength  (RSSI), attempted measurements and successful
measurements.
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Wi-Fi RTT Android™ devices

Figure 6.3: Wi-Fi RTT enabled Android smartphone devices. Google Pixel 2™ (left) and Google
Pixel 3a XL™ (right)

The employed Android™ smartphone devices are both manufactured by
Google™ as they were the first commercially available devices that support
IEEE 802.11mc protocol. For Campaign C#0.3 the Wi-Fi RTT observables are
collected using Google Pixel 2™ device employing a Qualcomm® MSM8998
Snapdragon 835 chipset. The Android™ smartphone utilized in Campaign C#2
is the Google Pixel 3a XL™ device that supports IEEE 802.11-2016 FTM
protocol enabling Wi-Fi RTT ranging. This device also enables the collection of
azimuth values utilizing the embedded MEMS IMU (accelerometer, gyroscope
and magnetometer) sensors. During data collection, the Android 9™ software
was installed on both smartphones.

6.2 Observables simulation

Simulation-based testing enables carrying out extensive trials in a repeatable
and controlled manner aiming at evaluating the performance of the
developed positioning algorithms. More specifically, the sensitivity of Kalman
filtering to variable motion dynamics, anchor availability, number of operating
rovers and measurement error level might be assessed in detail by applying
controlled changes for each one of these factors. The simulated data
generator may rely either on real trajectory data or on artificial trajectories.

At this stage, a strategy for generating artificial range and orientation datasets
from simulated rover trajectories is developed. In order to make use of them,
the artificial data should be produced in a way that relate closely to the real
data both in terms of quality performance and communication specifications.

6.2.1 Rover trajectory generator

As a first step for generating simulated range and orientation data is the
development of a trajectory generator used as a basis for computing the
corresponding raw observable datasets. The trajectory generator is capable
for providing 3D positions given an initial rover position, rover orientation,
velocity, rate of orientation change (orientation factor) and the number of
trajectory waypoints. In this process, the velocity factor is used at each epoch
as a mean velocity value around which the velocity. The velocity is configured
to change at a higher rate for the horizontal plane (x, y) than the vertical
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direction (z). The orientation factor is selected as a constant value which is
utilized at each epoch for generating the consequent orientation values
throughout the path. The number of selected waypoints indicates the length
of the path to be produced as a relation to the selected velocity, and
consequently, the length of the trajectory. For the selection of the appropriate
configuration factors’ initial values, real pedestrian trajectory datasets are
used for providing a baseline (see §5.2.1). In this way we generate input values
that closely represent the key dynamic characteristics of a pedestrian motion
in a realistic manner.

Table 6.2: Trajectory generator parameters inputs and outputs

Initial position - x, y, z(m)
Initial orientation — Az (rad)
Rover velocity — Vel (m/s)
Orientation factor — of [0,1]
Path length — number of waypoints
Time — t (sec)
Trajectory —x, y, z(m)

Inputs
(Trajectory dynamic parameters)

Outputs

Alternatively, in order to provide configurable testing area size and geometry
there is an option to predefine a specific boundary area within which the
generated trajectory is limited. Figure 6.4 provides an example for a rover with
mean velocity of Vel = 1.2 m/sec, an orientation factor of = 0.4 and a travel
path of waypoints = 150.

Figure 6.4: Example of generated waypoints in 2D view using the simulation SW

Once the initial waypoints of the path have been generated, the final
trajectory is produced by implementing a cubic spline interpolation (McKinley
& Levine, 1998) given a specific sampling rate value and consequently
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estimating the discrete time steps. Figure 6.5 shows the spline fit of the
trajectory for a sampling rate of 5 Hz.

Cubic spline trajectory

waypoints
spline points

Figure 6.5: Example of resulting trajectory after spline fit for 5Hz sampling rate using the
simulation SW

Figure 6.6 illustrates the resulting velocity and acceleration plots. Clearly, in
these plots the excessive velocity and acceleration values are the result of
orientation change while the lower fluctuation is attributed to noise effects in
the preselected parameters.
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Figure 6.6: Example of generated trajectory velocity and acceleration timeseries using the
simulated SW

In principle, the simulated trajectories can be produced for an unlimited
number of rovers, whereas the configurability of the time vector enables
variation in dataset synchronization, namely introducing a predefined time
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shift between trajectories. It is crucial for the needs of the subsequent analysis
for the trajectories to be simultaneous, and therefore, their synchronization
needs are taken seriously into account. In Figure 6.7 an example of three
simulated simultaneous trajectories is illustrated.

107 7
Br [ 1
1,
AN,
—_ 7
Trajectory 1
r Trajectory 2 i
Trajectory 3
8f jectory 3| |
-5 0 5 10 15
X(m)

Figure 6.7: Example of simultaneous generated trajectories for three roving nodes using the
simulation SW

6.2.2 RF Range generator

Generating simulated TWR observables relies on the estimation of the
Euclidean distance between each position fix of generated (simulated)
trajectory and corresponding anchor point. The range generator is capable to
operate for a varying number of anchors and rovers by appropriately handling
the total number of available nodes during Euclidian distance computation. In
order to conform to the ranging sequence among the different anchors, the
range generator estimates a unique distance for each point fix (timestamp) of
the simulated trajectory. This functionality is particularly important for the
cases where trajectories of multiple rovers need to be transformed to the
same stream of TWR observables. Figure 6.8 illustrates an example of
sequentially generated ranges in which evey range observable r; corresponds
to a distinct time instant 7 for the case of four anchors and two rovers. This
ranging sequence follows the Time Division Multiple Access (TDMA)
architecture for communication networks (Miao et al., 2016).
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Anchors
Figure 6.8: TWR sequence example among 2 rovers and 4 anchors

TDMA network principles

A Time Division Multiple Access (TDMA) network enables the parallel use of a
single RF channel by multiple users by dividing the communication sequence
into discrete time slots. In the proposed TDMA adaptation, the slots are
predetermined in a slot-map that includes the specific sequence that the
users-pairs may instantaneously occupy the channel for data exchange. The
key advantage of this approach is the maximization of the channel use since
at every possible moment of time, takes place a pair-wise communication
resulting at almost 100% utilization of the system capabilities. On the other
hand, the disadvantage of TDMA networks is the increased complexity both in
terms of the slot-map pre-configuration and maintenance needs that occur in
cases that additional users need to operate in the network. The disadvantages
of TDMA may be handled sufficiently in collaborative approaches since the
intended users are usually determined before-hand. Moreover, TDMA is able
to handle the dynamic appearance and departure of nodes provided that
these nodes have been predetermined in the slot-map. A simple slot map
featuring four networking nodes, so that every node sends range data
together with a preconfigured set of parameters (e.g.,, communication
settings, sleep mode) is illustrated in Table 6.3. When the communication
cycle of the map is complete, it starts over from slot 0. If a certain slot cannot
be served (e.g., due to a node departure) it is skipped after a preconfigured
time period.
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Table 6.3: Example of TDMA slot-map for 4 nodes

Slot# RequesterID ResponderID DataType Configurable param.

0 1 2 Range 0,0,1,0
1 1 3 Range 0,0,1,0
2 1 4 Range 0,0,1,0
3 2 3 Range 0,0,1,0
4 2 4 Range 0,0,1,0
5 3 4 Range 0,0,1,0

In the case of the proposed P2l & P2P collaborative positioning approach,
considering the anchors remain static at predetermined positions, the design
of the slot-map assumes that no need for inter-anchor ranging is necessary.
Therefore, the conversations (i.e., slots) are designed to include only pairs of
“anchor-to-rover” and “rover-to-rover”. Based on the generated trajectories
shown in Figure 6.7, for three rovers and four anchors Figure 6.9 illustrates the
resultant simulation ranges logfile format for the first 18 samples
corresponding to a complete slot-map cycle. The columns that correspond to
time, responder ID, requester ID, range and range error. In this example, a
constant value of 0.055 m is selected based on empirical UWB dataset values.
The selected value for the sampling rate corresponds to ~50 Hz in accordance
with the capabilities of UWB.

Figure 6.9: Sample of simulated ranges logfile

The corresponding generated ranges timeseries are illustrated in Figure 6.10
indicating the complexity of the ranges sequence when multiple rovers and
anchors participate as well as the stability of the developed SW. It is noted
that the ranges generator has been tested for up to 7 anchors and 4 nodes
reporting stable performance. The estimation of all possible conversations in
such setups is given by

Nyopy Mypp — 1)
Neny = (Mane * Nyop) + % (6.1)

Where n.,,, denotes the number of conversations, n,,. denotes the number
of anchors and n,.,, the number of rovers participating in the network.
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Figure 6.10: Example of simulated ranges timeseries plot for all available conversations using
the simulation SW

Range error introduction

The functionality of the simulated ranges generator algorithm, includes the
introduction of error components for each estimated distance in order to
incorporate observables imperfection in a realistic manner. The introduced
error refers both to range bias as well as range noise components that are
estimated for each employed TWR technology during ranges validation steps
(§6.1.1). The error integration to the observables is described by equation 6.2

Ticnt =T + 18] + Tsd (62)

Where 7;™t denoted the contaminated range observable, r; the originally
estimated distance, 1, the ranging bias and r; the ranging standard deviation.
13, and 1y, are estimated empirically beforehand. The resulting contaminated
ranging observables for r;, = 0.2 m and rg4 = 0.05 m areillustrated in Figure
6.11.
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Figure 6.11: Example of simulated ranges timeseries plot for all available conversations
contaminated with artificial ranging error using the simulation SW

The range error components can be dynamically assigned according to the
communicating pair of nodes, in order to accommodate the alteration
between the simulated Wi-Fi RTT and UWB ranging conversations.

6.2.3 Orientation observables generator

For the estimation of orientations values from simulated trajectories a simple
multi-point azimuth approach is used between successive positions in time as
in Figure 6.12. For every point of interest in the generated trajectory, a buffer
of a set number of points is defined to include positions lying before and after
the position in question.

Y

Figure 6.12: Azimuth estimation for points buffer
For each timestamp the azimuth value is calculated as the slope a of the least-
squares fit on the moving 3-point buffer defined as:

3

R¥(ab) = ) [yi = (ax; + D) 63)

i=1
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For each estimated azimuth value an additive error in the form of gaussian
random variable with mean value g and standard deviation o is introduced.
The values p and o are be defined using empirical data collected using MEMS-
based low-cost orientation data compared against reference equipment
(Gikas & Perakis, 2016).

6.3 Field test campaigns

Further experimental evaluation is based on field testing campaigns during
which real-life datasets are collected in varying conditions. Preliminary testing
of the TWR technologies is carried out in outdoor conditions in order to
initially examine the performance capabilities of the sensors in unobstructed
and uncontained conditions. Outdoor testing allows for minimization of
surrounding structures effect on RF-based observables and setting the
foundations for further analysis. Indoor campaigns enable the targeted
evaluation of the intended methods in the challenging conditions of closed
spaces.

6.3.1 Outdoor data collection (C#0.1 — C#0.3)

UWSB operational range assessment (C#0.1)

This campaign aims at investigating the maximum operational range of the
Time Domain® P410 UWB modules in optimal environmental conditions in
order to verify the nominal manufacturer’s specifications. The selected test
site is a coastal area in Faliro, Attica where unobstructed LOS conditions are
possible over a large inter-node distance (approx. 700m). Notwithstanding,
the maximum examined distances do not pertain to the typical application
categories targeted in this thesis, the investigation of the equipment limits
provides useful feedback for the overall potential of the employed equipment.
Two UWB units are fixed on compatible camera tripods facilitating installation
and transportation to each respective position. Inter-node reference distances
are determined using the geodetic total station Topcon GPT 3107N for
distances greater than 10m whereas shorter distances are carefully measured
using a measuring tape.

Figure 6.13: Faliro test area top-view (left), total station Topcon GPT 3107N (right) of
Campaign C#0.1

Using the embedded range correction functionality of RangeNet® SW the
UWB pair-wise range error is mitigated by estimating the mean bias value at a
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reference distance of 5 m. Notably this functionality is available only for pair-
wise range corrections. The field test nominal distances along with the actual
reference distances are summarized in Table 6.4.

Table 6.4: Campaign C#0.1 nominal and reference distances

Nominal distance (m)

2 3 10 20 50 100 200 300 400 500 720

Actual distance (m)

1,88 3,13 9,78 19,71 49,58 99,33 200,85 299,42 400,14 500,96 718,73

Additionally, the effect of antennas relative orientation is examined at a 45°
step. For this purpose, five sets of range logfiles are collected at each nominal
distance. The nominal relative orientations are illustrated in Figure 6.14.

Figure 6.14: Time Domain® P410 UWB antennas relative orientations during C#0.1

UWSB range error correction and trajectory estimation (C#0.2)

This experimental campaign aims at the preliminary evaluation of the UWB
range error models for the static and a kinematic case. The test area selection
is based on the availability of ample space for the kinematic section,
unobstructed ranging among UWB nodes as well as the unobstructed sky
visibility for the establishment of GNSS/INS reference trajectory. A parking lot
area located adjacent to the NTUA campus meets the aforementioned
requirements.

Ranging is performed among five UWB nodes four of which are utilized as
static anchors of known locations (see Figure 6.15). The fifth node is installed
using a dedicated base on the roof top of a vehicle equipped with the Novate/®
SPAN GNSS/INS reference trajectory equipment (Gikas & Perakis, 2016). The
use of vehicle enables the generation of a high accuracy reference trajectory,
as it offers a controllable platform for safely and accurately installing the
reference equipment. Notwithstanding the trajectory of a vehicle varies
substantially from pedestrian motion characteristics, this field test provides
initial feedback for the effectiveness of the correction models in a systematic
manner. The vehicle-mounted sensors’ lever arms are measured beforehand
for implementing the required offset compensation whereas the static
anchors’ locations are estimated using classical field surveying methods.
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Figure 6.15: Campaign C#0.2 test area top view (top left). Two of the installed anchor UWB
nodes (top right). The vehicle mounted sensors (bottom)

In the kinematic session of correction model estimation, the correction points
are established by performing the stop & go procedure at certain positions in
the test areas. The estimated GNSS/INS positions for the stop & go points are
used for computing reference rover-anchors ranges while at the same time
UWB datasets are collected. Inter-nodal ranging is performed between all
UWSB pairs (both static and kinematic) for which a TDMA slot map covers all
conversations at a cycle sampling rate of ~ 5 Hz.

WIiFi-RTT range correction and trajectory estimation (C#0.3)

At a preliminary stage, experimental evaluation of the Wi-Fi RTT ranges takes
place at the rooftop of Lampadario building of the School of Rural, Surveying
and Geoinformatics Engineering (SRSEGE) (NTUA, Zografou Campus, Athens).
For the stage of static 1D ranging, three WILD Access Points are successively
mounted securely on a geodetic tripod (with a known height) whereas the
android device Google Pixel 2™ is placed sequentially on the other end of
reference distance. The selected reference distances are realized at 1, 2, 5, 10,
15, 20, 25, 30, 35 and 45 m, exceeding the nominal effective range of 40 m as
reported by the manufacturer. The smartphone is installed on a geodetic pole
using a modified smartphone holder in order to ensure repeatable placement
over the reference points at a manually measured height. For each reference
point a dataset of ~100 observables are collected, repeating the process for all
three APs. Representative photos of the setup a presented in Figure 6.16.
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Figure 6.16: Wi-Fi RTT access point (left) and Android device (right) outdoors setup for the
static 1D ranging part of Campaign C#0.3

Concerning the kinematic positioning setup, three Wi-Fi RTT APs are installed
over points of known coordinates and their height is measured at their anchor
locations. The anchors are installed in an area arrangement that realizes
multiple checkpoints preinstalled and accurately surveyed at a canvas pattern
that may be utilized for checkpoint-based reference trajectory estimation. For
data in kinematic mode a pedestrian carrying the geodetic pole with the
smartphone moves along predetermined paths. Figure 6.17 shows the
kinematic test area plan along with the anchor location and a typical travel
path.

Figure 6.17: Wi-Fi RTT Anchors locations (red) and trajectory (green) for the kinematic part of
Campaign C#0.3. The top view of the area is also illustrated (bottom-right).
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6.3.2 Indoor data collection (C#1 — C#2)

UWRB indoor range correction and trajectory estimation (C#1)

Field test campaign C#1 aims at the examination of UWB observables both in
terms of range correction as well as trajectory determination. The test takes
place indoors within the premises of SRSGE, NTUA. The laboratory area
includes two separate office areas connected with a small corridor and a third
smaller room offering the ability to collect UWB ranges both in LOS and NLOS
conditions. Concerning range correction assessment, a number of correction
and validation points were defined in order to cover the entire area in a
uniform manner. Specifically, five correction points were established in Rooms
1 and 2 respectively and 1 correction point in Room 3. Similarly, three
validation points were established in Rooms 1 and 2 respectively and two
validation points in Room 3.
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Figure 6.18: Indoor laboratory top view showing the locations of the correction, validation and
anchor points during C#1

The complete test area is illustrated in Figure 6.18 indicating the room IDs, the
location of the correction and validation points and the location of the 4 UWB
anchor nodes. The UWB anchors nodes with IDs: 301, 302, 303, 304 were
installed on the surrounding walls of the laboratory (Figure 6.19, right) with
the goal of creating a symmetrical inter-nodal geometry for the needs of the
field test. Prior to conducting the data collection sessions all the points were
accurately surveyed in order to compute their coordinates in a local Cartesian
coordinate system with the lower-left corner of the laboratory set to
(100,100). Figure 6.18 illustrates axes orientation. For the collection of the
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correction and validation points the mobile UWB node 300 was attached on a
geodetic pole positioned vertically on each point of interest (Figure 6.19, left)
while the lever-arms were measured before-hand.

5 b =

Figure 6.19: Time Domain® UWB modules dring C#1 field testing - mobile nod?/dcated at
point C3 (left) and anchor node attached on the wall (right)

Data collection concerned with the correction and validation points employed
a measuring pole located on each point while the mobile UWB node was
connected to a data collection PC running the custom-built range collection
Matlab® script. The mean ranging time is 30 s spanning approximately 150
TWR measurements per anchor node. The created logfile includes the
measured range value, the estimated range error as produced by the UWB
module, the recorded Leading-Edge Detection (LED) flag and the
corresponding timestamps as illustrated in Figure 6.20.

A | B | € | D E | F G . H | | | J LK | L | M |
Internal

1 TimeStamp ReqID RspID PRM(m) PRMErr(m) FRE(m) FREErr(m) CRE(m) CREErr(m) LED flags PChour PCminutes PCseconds
2 | 407.113 300 301 1.782 0.055 1.782 0.065 1.782 0.055 9 14 8 36.041
3 | 407.129 300 302 4.461 0.055 4.461 0.065 4.461 0.055 9 14 8 36.076
4 | 407.144 300 303 7.634 0.024 7.634 0.034 7.634 0.024 8 14 8 36.092
5| 285.802 301 302 5.801 0.055 NaN NaN NaN NaN 9 14 8 36.107
6 | 285.817 301 303 8.359 0.056 NaN NaN NaN NaN 8 14 8 36.128
7| 3233729 302 304 7.733 0.056 NaN NaN NaN NaN 40 14 8 36.136
8 | 407.222 300 303 0 0 7.633 0.036 7.275 4.802 40 14 8 36.142
9 | 3233.869 302 303 5.424 10.536 NaN NaN NaN NaN 56 14 8 36.163
10 | 274227 303 304 5711 0.055 NaN NaN NaN NaN 9 14 8 36.194
11 407.284 300 302 4.461 0.055 4.461 0.058 4.461 0.055 9 14 8 36.21
12 | 407.3 300 303 7.673 0.055 7.667 0.058 7.673 0.055 8 14 8 36.23
13 | 407.316 300 304 6.861 0.056 6.853 0.059 6.861 0.056 40 14 8 36.238
14 | 285833 301 304 6.021 0.129 NaN NaN NaN NaN 16 14 8 36.245
15 285957 301 302 5.801 0.055 NaN NaN NaN NaN 9 14 8 36.264
16 | 285.957 301 302 5.801 0.055 NaN NaN NaN NaN 9 14 8 36.284
17| 3233.885 302 304 7.698 0.056 NaN NaN NaN NaN 40 14 8 36.288
18 407.378 300 303 [0} 0 7673 0.06 8.064 5.322 40 14 8 36.335

Figure 6.20: Part of the UWB ranges logfile collected during C#1 field testing

The kinematic section of the field test includes the collection of UWB ranges
using a mobile node held by a pedestrian walking along a predefined travel
path C12>V1->C3>V2>C5>V3>V6>C6>C9->C8—>C7>C10. This travel
path consists of low-speed walking sections with short (~10 sec) stop & go
parts when overpassing points C1 to C10. The travel path traverses Room 1
and Room 2 via the short corridor. The total travel time of the kinematic
trajectory is ~2.5 min while collecting a total of ~700 ranges per anchor node.
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Wi-Fi RTT indoor range error correction and trajectory estimation (C#2)

Field test Campaign C#2 examines WIiFi-RTT both for assessing range
correction models as well as for testing the pedestrian kinematic positioning
algorithms. Field testing took place at the lobby and corridor area located
within “Lampadario” building of SRSGE, NTUA. The effective area includes a
portion of the corridor which spans at approximately 20 m length and 3 m
width as well as the adjacent lobby with an area of around 70 m? providing a
total area of around 125 m?.

Figure 6.21: Campaign C#2 test area with anchor Compulab® WILD APs placed on geodetic
tripods. Corridor part (left) and lobby (right)

This experimental campaign enables the investigation of Wi-Fi RTT ranging
capabilities in realistic indoor conditions utilizing five WILD APs installed at
locations of known coordinates. Based on relevant research that investigate
the operational capabilities of Wi-Fi RTT (Horn, 2020), the anchor locations
were selected to be at an optimal geometric arrangement in order to cover
the effective area while facilitating positioning. The geometry of the test area
enables the evaluation of the system in two main anchor installation
configurations, the symmetric one prevailing in the open spaces (i.e., lobby),
and the elongated one, which is typically encountered at corridors. For this
purpose, the Google Pixel 3a XL™ is used.

As illustrated in Figure 6.22, static data collection assumes 14 Correction
Points (CP) and 4 Validation Points (VP) installed at locations that cover the
test area optimally, also considering the coverage of transition areas by
including CP6. All points are accurately surveyed using a TOPCON GPT 3003
geodetic station. In order to investigate LOS/NLOS effects on Wi-Fi RTT
observables, datasets were separately collected at the four cardinal
orientations (N, E, S, W) of each point. The smartphone device is mounted on
a geodetic pole and the constant height is measured. The data collection took
place at each point and for each orientation for approximately 15 sec. The APs
are configured to operate at 80 MHz and a sampling rate of 10 Hz resulting at
approximately 150 samples per anchor.
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Figure 6.22: Indoor test area top view showing the locations of the correction, validation and
anchor points during C#2

For the kinematic part of the campaign, a pedestrian holding the pole-
mounted smartphone walks passing over every checkpoint along a
predetermined path in the sequence C2>C3>V2>C4>V3>C9>C12->C14.
Data collection is undertaken at a slow and a fast-walking pace. For the slow
pace the user performed in stop & go mode of 5 sec over checkpoints resulting
at a total trajectory of ~1.3 min collecting approximately 450 samples per AP.
The fast-paced trajectory produced a dataset of ~ 0.8 min and ~280 samples
per AP.

Figure 6.23: Part of the Wi-Fi RTT ranges logfile collected during C#2 field testing

6.4 Range errors mitigation

The analysis of TWR observables using range correction models offers
feedback concerned with the correctness of the proposed procedures as well
for the potential of tested technology through empirical error mitigation.

6.4.1 Outdoor data analysis (C#0.1 — C#0.3)

UWB outdoor operational range evaluation analysis (C#0.1)

The collected UWB range datasets are preprocessed in regard of logfile parsing
and data grouping based on nominal distances and relative antennas
orientation sets. The levels of accuracy and precision of the measurements are
then calculated as a function of the distance and orientation of the antennas.
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Figure 6.24 shows the range deviation values obtained using the mean and
median of the measurements respectively.
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Figure 6.24: Range deviation estimation using mean (left) and median values (right) of UWB
observables for campaign C#0.1.

The plots of Fig. 6.24 reveal a trend in range deviation from the reference
distance as the inter-nodal distance increases. Also, it is evident that using the
median offers significantly improved performance. Outliers can have a
profound impact on the mean, distorting its true representation of the data.
However, the median value remains robust in the face of such outliers, making
it a more reliable measure in certain situations. These statistics provide useful
feedback for the UWB range error mitigation campaigns. Finally, it is found
that antenna orientation seems to affect the measurement accuracy at
distances greater than 500 m. It is noted that the increase in values at 300 m
for large relative antennas orientation is attributed to the existence of a
parked vehicle close by the line of sight between the receivers.
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Figure 6.25: Histograms of UWB ranges deviation from the mean value for nominal distances
200 m (top left), 400 m (top right) kat 720 m (bottom) of Campaign C#0.1.

Figure 6.25 depicts the histogram of the observed range difference from its
mean value. The high repeatability of the measurements is evident.
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Specifically, only few long ranges deviate from the mean with a 6 cm maximum
difference. It is also noted here that the presented ranging results have
previously undergone the pair-wise range correction procedure (as indicated
by the manufacturer) prior data collection. Therefore, this analysis doesn’t
concern raw uncorrected ranging observables. Notably, the longest distance
(720 m) in the experiment is confined by the size of the measurement area,
and therefore, it does not represent the maximum operational range of the
UWB system.

UWB outdoor range error correction analysis (C#0.2)

Static ranges error mitigation: Data collection employed four anchor nodes
and one rover. Range measurements were conducted among all anchors as
well as from each anchor point to the rover. Measurements collected between
anchors facilitate the assessment of distance correction process for multiple
pairs of transceivers at fixed relative distances. Indicatively, Figure 6.26
presents the ranging samples, the average value, the median as well as the
reference value both in the form of a probability density function histogram
as well as a timeseries.
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Figure 6.26:Figure X: Ranging measurements among anchor UWB nodes 101-102 during
campaign C#0.2 kinematic ranging section. timeseries (left) and Frequency histogram (right.
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Table 6.5 summarizes the range statistics (mean and median) from the
nominal distance for all anchor pairs.

Table 6.5: Anchor pairs UWB range deviation for Campaign C#0.2 before range correction

UuwB Deviation
Nodes pair Mean (m) Median (m)
101-102 0,368 0.367
101-103 0.352 0.351
101-104 0.355 0.355
102-103 0.741 0.741
102-104 0.741 0.734
103-104 0.752 0.742

Apparently, from Table 6.5 a range bias is evident as the range correction
procedure using Time Domain® software cannot compensate for the total
network corrections. The values in Table 6.5 for the median are utilized as
pairwise correction values. This is due to the absence of relative distance
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changes for anchors, making it impossible to estimate a more complex range
error model. Conclusively, the median is chosen as it best approximates the
value recorded by satisfactorily ignoring outliers. By implementing a least-
square adjustment for the anchors network, the determination of local
coordinates using UWB measurements is possible. To solve the 3D grid, the
following constraints are considered: Point 101 position is held fixed, height
values are constant as measured at the test site, and point 102 is supposed to
lie on the X-axis (Y101 = Y102). Therefore, the independent determinants of the
model are [X102, X103, Y103, X104, Y102]. The process of the Weighted Non-Linear
Least Squares (WNLLS) method is repeated to cover the entire dataset. Table
6.6 presents the deviation in ranges between the WNLLS solution and the
reference distances for the cases before and after range correction. The effect
of range correction on resulting ranges is evident resulting in maximum
deviation of 1.3 cm.

Table 6.6: Anchor pairs UWB range deviation after WNLLS implementation using both
corrected and uncorrected ranges for Campaign C#0.2

UuwB WNLLS ranges deviation
nodes pair Uncorrected (m) Corrected (m)

101-102 0.204 0.002
101-103 0.282 -0.002
101-104 0.422 0.005
102-103 0.803 0.001
102-104 0.697 0.013
103-104 0.604 -0.013

Kinematic ranges error mitigation: The correction of UWB kinematic
measurements based on the stop & go points is implemented using 3 different
empirical models: the mean value, the linear fit and 2nd degree polynomial fit
(see §4.3.1). The models are implemented radially around each fixed
transceiver, utilizing the varying deviation values from the reference distance
for each pair and distance. Corrections are then applied based on the specific
distance.

Figure 6.27 (left) presents the results obtained from the three models whereas
Figure 6.27 (right) presents the correction values obtained for transceiver 103
(red point —top left) displayed in the form of contours. In this plot the magenta
points refer to the stop & go points. The different range error models’
effectiveness is evaluated during the kinematic trajectory estimation (§ 7.2.1).
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Figure 6.27: Rover-anchors error correction models with respect to the measured distances
(left), range error contours for UWB node anchor 103 (right) for Campaign C#0.2.

WI-Fi RTT outdoor range correction analysis (C#0.3)

The pre-processing stage concerned with the static Wi-Fi RTT observables aims
at range reduction from sloped to horizontal and data grouping. Figure 6.28
presents the histogram of the range differences from reference value for all
APs for a nominal distance of 5m.
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Figure 6.28: Histograms of ranges deviation from the mean value for the nominal distance of 5
m for the three different Wi-Fi RTT APs of Campaign C#0.3.

Notably, the standard deviation of each series of observations does not
exceed 0.3m except in very few cases. As indicated in Figure 6.29 regarding
AP1 data, range trueness for reference distance 20 m and 25 m exhibits an
increase reaching a maximum value 1.2m. In addition, signal strength value
shows a drastic drop for ranges up to 15m (approximately from -45dbm to -
65dbm) and a milder drop for ranges 15 to 45 m (about -65dbm to -75dbm).
The reported standard deviation values suggest stability, whereas the increase
for the distance of 15 m suggests the potential of the system to identify
ranging quality deterioration.
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Figure 6.29: Range trueness, signal strength and std values for the nominal distances of

Campaign C#0.3 for Wi-Fi RTT AP1.

Also, Figure 6.29, suggests that range observations for a nominal distance 20
m have been contaminated by multipath originating from a metal structure
located at the side of the ranging smartphone at distance of ~2 m resulting at
increased deviation values. Moreover, it is observed that even at a nominal
distance of 45 m, still there is no drastic reduction in accuracy implying that

the system reaches maximum effecting range.

The generated range error models are presented in Figure 6.30 for the cases
of mean, linear and 2" order polynomial approximation models. These results
are produced using the EPDFmax values of the respective ranging datasets. It
is noted that the values corresponding to distances of 10, 20 and 35 m are not
utilized during models’ generation in order to be utilized as validation

distances.
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Figure 6.30: Correction models estimated for the three different Wi-Fi RTT APs of Campaign
C#0.3

Table 6.7 summarizes the resulting statistics for the different correction
models’ implementation. Clearly, no drastic improvement is evident using the
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polynomial fitting compared to the linear fit, whereas at some cases the
resulting values may even present lower accuracy. This is indicative of the
potential over-fitting effect.

Table 6.7: Statistics of range correction models effect on Wi-Fi RTT range datasets collected in
C#0.3 for the three validation distances.

Nominal Apl Ap2 Ap3
i vocor (G o Nocor T B wocor e TV
mean (m) 0.46 0.26 0.26 0.06 -0.09 -0.13 0.38 0.10 0.05
10 median (m) 0.49 0.29 0.29 0.07 -0.09 -0.13 0.41 0.12 0.07
STD (m) 0.21 0.21 0.21 0.18 0.18 0.18 0.28 0.28 0.28
mean (m) 1.03 0.72 0.71 0.87 0.58 0.48 1.15 0.74 0.63
20 median (m) 1.09 0.77 0.76 0.89 0.60 0.51 1.18 0.77 0.66
STD (m) 0.39 0.39 0.39 0.32 0.32 0.32 0.29 0.29 0.29
mean (m) 0.30 -0.20 -0.20 0.61 0.12 0.11 0.23 -0.38 -0.39
35 median (m) 0.31 -0.18 -0.19 0.60 0.11 0.10 0.20 -0.41 -0.42
STD (m) 0.25 0.25 0.25 0.26 0.26 0.26 0.46 0.46 0.46

The linear correction model is deemed sufficiently effective and is selected

for the implementation of kinematic trajectory estimation as demonstrated
in §7.3.1.

6.4.2 Indoor data analysis (C#1 — C#2)

UWB indoor range correction analysis (C#1)

Range correction models development: The scope of Campaign C#1 is to
generate the rage correction model using the rover-anchor TWR datasets
collected for each correction point. As an example, the histograms in Figure
6.31 depict the probability density function of the range dataset collected for
every pair of UWB nodes at correction point C1. Freedman-Diaconis rule is
used for optimizing the bin size selection (see § 4.2). The Empirical Probability
Density Function is estimated using Kernel density estimation with a Kernel
bandwidth value 0.005 resulting in a good fit for the P410 module UWB data.
Conclusively, the ranging values used for further processing are the ones with
the highest probability density (EPDFmax) as the most representative of the
samples. The necessity for a range correction technique is obvious based on
the offset with respect to the corresponding reference distance value.
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Figure 6.31: Range histograms for all UWB node-pairs at point C1 for C#1

Following previous studies and similarly to the results of C#0.2, the correction
process concerned with P410 UWB modules could be based either on
empirical radial corrections obtained by a least squares linear fit to the range
deviations as a function of the distance (Koppanyi et al.,, 2014) or using a
2-dimensional range deviations plane fit (Toth et al.,, 2017). In this study we
examine both approaches in order to select the appropriate correction
technique that suits the collected data-set. For the case of radial correction
two variations are encountered based on the distribution of the correction
points in the corresponding rooms.

The first variation known as “Room-Linear-Correction” or “rlc” produces a
linear approximation of the correction values for each room as dictated by the
constant LOS or NLOS ranging conditions to specific anchor nodes each time.
In essence, the correction model for Room 1 corresponds to only LOS ranges
for anchors 301 and 302 while only NLOS ranging takes place for anchors 303
and 304. The equation describing “rlc” follows Equation 4.3.
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Figure 6.32: Correction models for Room-Linear-Correction estimated for the four different
UWB anchors of Campaign C#1
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The second correction approach called “All-Rooms-Linear-Correction” or
“arlc” produces the radial corrections for the entire test area irrespectively of
the room conditions, and therefore, no distinction between LOS and NLOS

conditions can be made. The corresponding correction follows Eq. 4.2.
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Figure 6.33: Correction models for All-Rooms-Linear-Correction estimated for the four different
UWBanchors of Campaign C#1

The third method refers to a bi-dimensional correction fit which relies on the
location of each correction point using its correction value. In order to cover
the entire test area, the correction values are interpolated using natural
neighbor interpolation, which is based on the Voronoi tessellation method
(see & 4.3.2), and therefore, this correction approach is referred to as
“Voronoi-correction” or “vc”. For the area found outside the polygons defined
by the correction points a linear extrapolation is performed in order to extend

the Voronoi correction values. The range correction is described by Eq. 4.4.
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Figure 6.34: Bidimensional interpolated range error Voronoi surfaces for the different UWB

pairs for C#1
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This approach is expected to offer the most effective correction solution by
capturing the fluctuations in correction values resulting from environmental
factors. These factors can arise from changes in inter-node distance or the
impact of non-line-of-sight (NLOS) ranging through different materials. Figure
6.34 shows the results obtained from the “vc” method. The models indicate
an apparent increase in the correction values for the NLOS areas. Another
remark that relates to the values generated by the spatial extrapolation, and
especially for the right-most area of Room 1 (top) for pair 300-302, is an
irregular behavior that most likely relates to the extreme values found in the
right-most area of Room 2 and the slight offset (towards right) of C7 and C10
with respect to locations of points C2 and C5.

Static ranges validation: In order to evaluate the efficiency of the three
correction models, the range measurements collected on the validation points
are exploited in two stages; firstly, before applying any range correction and
after correction values have been implemented. Figure 6.35 shows the results
obtained for point V1 in the form of histograms along with the generated
EPDFmax values for each correction model. In the same plots the reference
distance (in yellow vertical lines) illustrates the improvement in comparison
with the uncorrected values.
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Figure 6.35: UWB ranges histograms along with calibrated “EPDF max” values for the different
correction methods at point V1 for C#1

The diagram presented in Figure 3.36 summarizes the performance of all
validation points for each correction. It reports the mean deviation from the
reference distance and its standard deviation value for all UWB pairs. As
expected, all correction models result into improved solutions compared to
the “NoCorr” results. Moreover, differences in the performance between
methods are recognized. In summary, the “arlc” technique offers less
improved results whereas the performance of “vc” proves to be marginally
better compared to “rlc”. Overall, the improvement compared to the
“NoCorr” results ranges from 32% to 86%.
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method using all validation points for C#1

Wi-Fi RTT indoor range correction analysis (C#2)

Range correction models development: Using a similar procedure to the one
employed for Campaign C#1, the TWR observables collected between the
rover and all anchor APs are processed to estimate the statistics and
associated correction values. Figure 6.37 presents the range observables
between the rover and anchors for correction point C1 at south orientation
(C1s). Again, the EPDFmax value is estimated for which the Kernel bandwidth
value 0.02 is adopted to optimally fit the data.
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Figure 6.37: Range histograms for all Wi-Fi RTT APs at point C1_south for C#2

From Figure 6.37 it becomes evident the necessity for the development and
implementation of a range correction model with cases of range bias values
of upto 8 m.

The correction models that are developed rely on the “arlc” and “vc” models
expanded suitably to incorporate the orientation parameter. The resultant

129



models are the “orientation-linear-correction” (“olc”) and the “orientation-
Voronoi-correction” (“ovc”) models (see §4.4.1). As an example, Figure 6.38
presents the “olc” models at South and North orientations for 901-301 rover-
anchor pair, the apparent variation between the models indicate the necessity
for further examining distinct orientation models effect.

OLC South OLC North
9 o 9
o O ranges © O ranges
8.5 LinearFit 8.5 LinearFit
- o “ [s]
8 T 8 hﬁ;\&k
\N\ 5 ‘“‘w‘a‘\ Le]
7.5 o 5 % 75 o (<) —
—_ _ s}
= \\\ o z ° —
= 7 o = 7 o -
< \ ]
2 e 8
H 65 o H 65
£ . £ . o
5] 5]
5.5 55
5 5
45 o 45
4 4
-10 0 5 10 15 20 -10 5 0 5 10 15 20

Measured range (m)

Measured range (m)

Figure 6.38: Correction models for South and North Orientation-Linear-Correction (OLC)
estimated for the 901-301 Wi-Fi RTT pair of Campaign C#2

Figure 6.39 presents the results for the “ovc” model for 901-301 rover-anchor
pair at South and North orientation. Again, the apparent variation between
the different orientation models indicate the necessity for examining the
effect of the oriented models. Moreover, the effect of adjacent walls is
apparent by the resulting range correction patterns. Interestingly, from these
plots it is possible to identify whether the respective anchor is located within
a corridor due to the elongated pattern of the range correction values.
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Figure 6.39: Bidimensional interpolated South and North Orientation-Voronoi-Correction (OVC)
range error Voronoi surfaces for the 901-301 Wi-Fi RTT pair for C#2

The variability observed in the "olc" and "ovc" values for each anchor strongly
implies that the environmental conditions surrounding the anchor locations
play a significant role in the subsequent model generation.

Static ranges validation: Using the three recpective correction models for the
range datasets collected at the validation points, the models evaluation is
implemented. Figure 6.40 presents the histograms generated at South
orientation of validation point 2 (V2;) after the correction models have been
applied. Both “Ic” and “vc” models present an initial improvement on the
resulting ranges; however, without indicating a predominance of a specific
model.
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The validation results for all VPs are summarized in Figure 6.41 for the
respective correction models after combining the values of the different

orientation models. The results

suggest the potential of “vc” model for

producing better perfomance in comparisson to the “Ic” model. The small
discrepancy in the results between the two approaches indicates the potential
of both for next analysis steps regarding the effect of the correction models
using kinematic datasets.
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Figure 6.41: Wi-Fi RTT ranging mean trueness with standard deviation values per correction
method using all validation points for C#2
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Chapter 7
Position Solution Estimation

Chapter 7 presents the experimental results obtained for the position solution
using the combined UWB / Wi-Fi RTT algorithmic approach and the data
sources detailed in Chapter 5 and 6 respectively. The evaluation of the
proposed positioning techniques for non-collaborative rovers relies both on
simulated and field data. The evaluation of the collaborative positioning
scheme, due to hardware limitations and adversities, relies only on exhaustive
simulated datasets generated suitably for multiple, simultaneously operating
rovers in varying availability conditions.

7.1 Test campaigns summary

For the extensive evaluation of the position solution estimation performance,
a number of tests are carried out utilizing the different positioning algorithm
implementations as presented in Chapter 5. Figure 7.1 presents graphically
the outline of the positioning campaigns and key setup aspects.

Standalone positioning (P2l)

C#0.02 c#l C#0.03 C#H2
uws uwB Wi-Fi RTT Wi-Fi RTT
Outdoors Indoors Outdoors Indoors
4 anchors 4 anchors 3 anchors 5 anchors
1 rover 1rover 1 rover 1 rover

S#2 S#3.1
Wi-Fi RTT UWSB + Wi-Fi RTT
4 anchors 4 anchors 4 anchors
4 rovers 4 rovers 4 rovers

——

Collaborative positioning (P2I & P2P)

Wi-Fi RTT (P2I) «  Wi-FiRTT (P2I)
UWB (P2P) «  UWB(P2P)

4 anchors *  4var. anchors
4 rovers *  4rovers

No anchor loss *  1lanchor loss

Wi-Fi RTT (P21)
UWB (P2P)

Wi-Fi RTT (P21)
UWB (P2P)

Wi-Fi RTT (P2I)
UWB (P2P)

4 rovers
total anchor loss

4 rovers
3 anchor loss

4 rovers
2 anchor loss

. .
. .

4 var. anchors *  4var. anchors *  4var. anchors
. 5
. .

Figure 7.1: Graphical summary of the carried-out positioning campaigns and their respective
relations

The estimation of the kinematic trajectory solutions is taking into account the
characteristics of the two TWR technologies along with the respective sensor
type and availability. For the preliminary outdoor campaigns, the positioning
algorithms rely on basic KF implementations and on traditional trilateration
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techniques enabling further development. For the indoor positioning
campaigns, the developed KF-based algorithms in combination with the
respective range error quality estimation techniques are implemented.
Regarding the simulation-based campaigns, the developed KF variations and
DCP algorithms are utilized appropriately based on the respective sensor
setup and P21/ P2P nodes availability. The DCP algorithm is evaluated initially
on full dataset availability both regarding P2l and P2P observables in order to
validate its functionality in ideal conditions. Further DCP operation capability
evaluation includes the introduction of P2l communication loss time windows.
Consequently, the varying available anchors’ number enables the algorithm’s
evaluation against both partial anchor unavailability as well as against
complete unavailability events for short and medium time intervals.

7.2 Localization solution obtained using field data

In this section, we present the performance evaluation of the proposed
positioning algorithms using field data. The objective is to assess the
algorithms' resilience in addressing the challenges encountered when working
with real TWR datasets affected by errors arising from hardware limitations
and environmental factors.

7.2.1 Outdoor data campaigns

UWB range-based trajectory estimation (C#0.2)

The trajectory obtained for a single rover using field test UWB data (Campaign
C#0.2) relies on a constant velocity EKF. In total, four variations are produced
for the rover trajectory. Three of them implement the range correction
models introduced in Chapter 4 (“mean”, “linear approx.” and “polynomial
approx.”) and the fourth one represents the uncorrected (raw TWR data)

position solution.

Figure 7.2 illustrates a typical example of the vehicle trajectory for the linear
correction model, accompanied by the coordinate timeseries of the along-
track and off-track trueness values. The latter is produced based on the
software tools developed by the author in accordance to Clausen et al. (2015).
Increased trueness values are observed for the along-track estimates with
values approaching 2 m. The improved solution mainly for the cross-track
trueness indicates the weakness of the employed EKF dynamic model
selection, as it is specifically configured for pedestrian positioning. Expansions
of this work aiming to tackle TWR-based vehicle localization may implement
appropriate filter tuning procedures for compensating for vehicle kinematics.
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Figure 7.2: Vehicle trajectory (left) and position trueness along-track (right-top) and off-track
(right-bottom) time histories using UWB ranging assuming a linear correction model
(Campaign C#0.2)

Table 7.1 provides a statistical summary for the position solution discussed in
Figure 7.2. The statistical analysis reveals the maximum improvement in the
final trajectory estimation for the “linear fit” model, whilst the “mean value”
model produces slightly less improvement. Finally, the “polynomial fit”
correction model does not indicate any actual improvement; possibly, due to
potential over-fitting induced by the relatively small correction points sample.

Table 7.1: Statistical summary of rover trajectory solution obtained using UWB for the three
range correction models (Campaign C#0.2)

No correction Meal? Linear Polynomial
correction . .
(m) (m) correction (m) correction (m)
Alone-track X 0.65 0.61 0.60 0.65
& o 0.44 0.46 0.46 0.44
x 0.21 0.12 0.10 0.21
Offtrack — — 0.14 0.09 0.08 0.14

Wi-Fi RTT-based trajectory estimation (C#0.3)

This test series analysis serves a preliminary attempt to experiment with
alternative techniques for position fixing employing the recently introduced
Wi-Fi RTT technology. Specifically, it capitalizes the knowledge obtained from
the range correction models developed for the static 1D ranging stage of
outdoor dataset C#0.3 through implementing trilateration position fixing
using the corrected TWR observables. In this case, the configuration format of
the raw ranges is realized in batches of three ranges for the same time-step.
This prevents from direct implementation the developed KF algorithm which
by design relies on sequential ranging. This limitation is restored on
subsequent data collection campaigns by introducing appropriate logging
configurations.
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Figure 7.3 shows the pedestrian trajectory computed using the linear
correction model, overlaid with the reference path and the nearby anchor
node locations. The linear correction model is applied based on the results of
the static analysis. The results indicate the suitability of the linear correction
model for this type of dataset and for the specific environmental conditions
(§ 6.4.1). Position trueness computes a mean value 0.51 m (std. 0.46 m) and a
maximum value 2.39 m. The resulting trajectory indicates the potential of Wi-
Fi RTT technology to provide useful position information still for the case of
rather simplistic localization techniques, provided a correction model has
been applied on raw rage data. Moreover, it is apparent that the
implementation of appropriately tuned KF methods would further enhance
trajectory estimation, given its suitability for handling noisy measurements.
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Figure 7.3: Pedestrian trajectory obtained using Wi-Fi RTT ranging assuming a linear correction
model (Campaign C#0.3)

Table 7.2 provides the statistical summary for the three correction models
performance on position estimation. The “linear” correction model
outperforms the respective “polynomial” one, highlighting its efficacy.

Table 7.2: Statistical summary of rover trajectory solution obtained using Wi-Fi RTT for the
three range correction models (Campaign C#0.3)

No correction Linear correction Polynomial correction
(m) (m) (m)
x 1.13 0.51 0.85
0.59 0.46 0.49

Trueness

7.2.2 UWB indoor trajectory computation CH#1

The positioning stage of Campaign C#1 relies on ranges collected between a
single rover and all available the anchors. Position estimation of the mobile
node is attained employing the EKF algorithm introduced in §5.1. The noise of
the range measurements adopted in the filtering process corresponds to the
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error values reported by the UWB module for each measurement. Specifically,
based on the relation between the reported LED values and their precision, an
empirical scaling tactic is engaged during trajectory estimation as described by
eq. 5.22.

Alternative correction methods are examined individually via implementing
the correction values to the ranges for each EKF run and in a dynamic manner.
For the case of linear corrections, the range correction value used is calculated
based on the reported range value by the device, whilst for the Voronoi
correction approach the corresponding value is established based on the last
known position estimated using the EKF. Figure 7.4 shows the results
obtained. In order to facilitate comparisons, the estimated trajectories are
overlaid on the reference travel path.
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Figure 7.4: Kinematic trajectories generated using UWB ranging and the alternative correction
methods (Campaign C#1)

137



More specifically, the plots of Figure 7.4 provide a graphical representation of
the performance of each method. The user moves starting from the top-left
corner of Room 1 and concludes at the bottom-right of Room 2. The short stop
& go sections are evident in the vicinity of each travel path, realized at the
spots for which a point cluster is observed (blue dots), while the linear
segments of the trajectory connect these clouds.

Thorough examination of Figure 7.4 reveals a number of conclusions.
Considering the “NoCorr” rover trajectory, in generally follows the actual path;
however, significant deviations from the ground truth are evident. A
systematic offset from the true trajectory and sections that appear crossing
the walls are apparent due to excessive range errors. The results derived for
the “rIc” correction method present a noticeable improvement compared to
the raw observable solution with a significant part of the trajectory to follow
precisely the true travel, particularly in the section closely to the check points.
Regarding the trajectory solution computed using the “arlc” correction model,
an improvement is also remarkable compared to the “NoCorr” method with
the entire trajectory following closely the true travel path. Clearly, there exist
no points crossing the wall barriers; however, some larger deviations appear
compared to “ric” technique. Finally, the trajectory generated with the “vc”
method reveals an overall improvement observed against all other correction
methods. The rover trajectory is more stable and lies closer to the true path
with one exception at the corridor pass from room 1 to room 2, where all the
correction methods present a weakness. This weakness is most probably the
result of missing correction points at boundary areas, such as narrow passes
between rooms with an unstable RF behavior. In this occasion, the corridor
area correction is produced with interpolated data, which effectively lack the
necessary resolution required for boundary conditions.

Overall, the implementation of any correction method improves the mobile
node position solution with the “vc¢” approach to provide superior
performance. Table 7.3 provides summary results of the aforementioned
analyses, in which, the horizontal trueness is expressed in the mean value, the

standard deviation and max value for each method.

Table 7.3: Statistical summary of range correction models obtained for the pedestrian
trajectory (Campaign C#1) using UWB

Trueness (m)

Mean Sd max

No Correction 0.35 0.20 0.85
Room Linear 0.13 0.10 0.62
All Room Linear 0.13 0.08 0.49

Voronoi Correction 0.09 0.09 0.69

7.2.3 Wi-Fi RTT indoor trajectory estimation (C#2)

Trajectory computation for Campaign C#2 relies on the ranges collected
among the rover and the available Wi-Fi RTT access points. The estimation of
the rover's position is carried out using the Extended Kalman Filter (EKF)
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described in § 5.1. The noise in the range observations is determined by the
error value estimated for each measurement. To account for the relationship
between the reported RSS values and their corresponding accuracy, an
empirical scaling technique is employed during trajectory estimation. This
approach is further elaborated in Eq. 5.23.

Two scenarios realized on the same path were undertaken for a pedestrian
walking indoors, starting from the lobby area (right-most part of Figure 7.5)
towards and into the corridor area (left-most part of Figure 7.5). The only
difference between the two data collection scenarios is the walking speed; the
first and second scenario performed at a slow and standard walking pace
respectively. The slow pace scenario enables the increase in the number of
logged range samples as it associates with a sampling rate, up to 5.9 Hz.
Different range correction approaches are implemented for both scenarios
and evaluated against the reference path providing a comparative assessment
of their performance.

Figure 7.5 illustrates the rover trajectories computed for the alternative
correction models for S#1. Apparently, if no range correction model is applied,
the positioning algorithm performs poorly with the solution rapidly diverging
from ground truth. Comparison to the “no correction” case, all range
correction models perform significantly better, especially at the lobby section
where anchor geometry is balanced. Based on the rover trajectories extracted,
all the correction models conclude in results of similar quality with the “arlc”
and “olc” models offering a more stable solution with smoother transitions
parts.
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Figure 7.5: Kinematic trajectories obtained using Wi-Fi RTT ranging for the different correction
methods for Scenario 1 (Campaign C#2)

Figure 7.6 summarizes the implication of range correction models on rover
position based on their ECDF graphs. The “no correction” model contributes a
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position trueness of worse than 5 m @ 50% of the sample, whereas the
correction trueness of the correction models ranges close to 2 m @ 50% of the
sample. The differences observed in the performance between the linear
(“arlc”, “olc”) and spatial (“vc”, “ovc”) range correction models is depicted for
the 95% of the sample. The linear model results in a position fix trueness of
2.5 m whereas the spatial ones a trueness value of 4 m (“vc”) and 5.1 m (“ovc”)
respectively.

Another quality metric being critical to the assessment of the position solution
is the availability defined as a percentage of the total time of the system in
operation. The “no correction” model provides a solution for % of the total
trajectory duration, spatial models offer availability values ranging between
69.3 - 75.6 %, and finally, the linear approaches offer the highest values
ranging between 81.9 - 84.6 % of the total time of system operation.
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Figure 7.6: ECDF graph of Position Trueness using Wi-Fi RTT ranging for the different correction
models for Scenario 1 (Campaign C#2).

Figure 7.7 illustrates the rover trajectory computed for the alternative
correction models for Scenario 2. The main difference from Scenario 1 reads
in the overall smoother nature of the trajectories (fewer position outliers) for
the approaches that succeeded at providing a solution. As previously, it is
apparent that without implementing a range correction model, the
positioning algorithm performs poorly compared to the linear correction
approach. In contrast to the “no correction” case, the linear correction
methods perform significantly better, whereas the spatial methods diverge
almost instantly. This indicates a weakness of the spatial correction approach
to successfully and systematically mitigate ranging errors for Wi-Fi RTT data.
This effect might be attributed to the highly noisy measurements that tend to
perform poorly at more complex models as they are prone to over-fitting.
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Figure 7.7: Kinematic trajectories obtained using Wi-Fi RTT ranging for the different correction
methods for Scenario 2 (Campaign C#2)

Figure 7.8 verifies the conclusions made for the rover trajectories obtained for
Scenario 2. In this case the spatial model (“vc”, “ovc”) results into a trueness
value of more than 15 m @40 % of the sample. The linear models end up in
similar performance with Scenario 1 suggesting their robustness to higher
dynamics (i.e., walking speed). The false indication of high trueness for the “no
correction” model is verified by the low (16.7 %) availability value. The spatial
models offer decreased availability values (29.5% to 35.0 %), whereas the
linear models result in more stable availability values ranging between 81.4-

81.6 %.
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Figure 7.8: ECDF graph of position trueness using Wi-Fi RTT ranging for the different correction
models for Scenario 2 (Campaign C#2).
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Table 7.4: Statistical summary of range correction models obtained for the pedestrian
trajectory (Campaign C#1) using Wi-Fi RTT

Trueness (m)

Mean availability (%)

mean sd
No Correction 5.08 4.32 21.8
All Room Linear 2.29 0.79 83
Oriented Linear 2.36 0.89 81.8
Voronoi Correction 10.39 6.76 55.3
o”i’:ﬁ‘ic\ig:“o' 1201 870 49.4

The performance statistics of Campaign C#2 for various range correction
models are summarized in Table 7.4. It is evident that the corridor's
deteriorating geometric effect is observed in the trajectories. Additionally, the
spatial error correction methods demonstrate limitations in effectively
mitigating the adverse impact of degraded observables in a consistent
manner.

7.3 Localization solution obtained using simulated data

This section aims at performance evaluation of the proposed positioning
algorithms using simulated trajectories based on artificially generated
datasets. The scope is to perform rigorous evaluation of the developed
position estimation algorithms employing four simultaneously roving nodes
(see §6.2). The simulated trajectories are realized within a test site spanning a
total area of 1600 m?sized in 40 m x 40 m. Four static anchors are distributed
at a square-like geometry, specifically for covering optimally the area.
Moreover, all four rover nodes encountered, are capable by design to perform
both P2l and P2P sequential TWR measurements enabling both scenarios of
absolute as well as cooperative positioning. Each rover is dynamically
configured to be capable to record either UWB-only, Wi-Fi RTT-only or UWB
and Wi-Fi RTT observables, whilst azimuth observables are available for all
rovers at all times. Figure 7.9 illustrates the preset geometry of the kinematic
scenarios pointing out the anchor positions.

Firstly, P2l absolute positioning is performed using UWB-only measurements
connecting the rovers to every available anchor node. This is followed by a
test trial featuring P2l absolute positioning employing only Wi-Fi RTT
measurements in a similar manner. These preliminary P2l tests aim at
validating the performance of the positioning algorithms for multiple rovers
while unveiling the peculiarities of each technology independently. At a next
stage, a preliminary evaluation of the combined use of the two technologies
for absolute positioning is examined using both Wi-Fi-RTT and UWB P2l
measurements by configuring one of the anchors to operate as a UWB node
in terms of accuracy and sampling rate. Finally, an extended evaluation of
P21/P2P distributed cooperative positioning architecture is presented
including varying anchor nodes availability for testing the robustness of the
DCP algorithm.
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Figure 7.9: Simulated trajectories generated for campaigns S#1, S#2, S#3.1 and S#3.2

Table 7.5 summarizes the technical specifications employed for building the
simulated observables sensors according to their empirical performance
evaluation.

Table 7.5: Technical specifications adopted for simulated range observables

Sensor Quality Sampling rate
UwB Bias: 0.05 (m), Std: 0.20 (m) 10 Hz
Wi-Fi RTT Bias: 0.80 (m), Std: 0.98 (m) 7 Hz

Orientation sensor Bias: 0.05 (°), Std: 2.86 (°) 50 Hz

7.3.1 Standalone positioning using UWB P2l simulated data (S#1)

In the UWB-only simulated P2l absolute positioning scenario, 4 roving nodes
and 4 infrastructure nodes are employed. At discrete timesteps each rover
measures the distance from every anchor and its self-orientation. Every rover
computes its position solution using either the EKF or the EKF/Az algorithm. In
terms of rover kinematics, the four nodes feature slightly similar velocities of
the order of 1.3 m/sec. Figure 7.10 illustrates the generated internodal P2I
ranges exhibiting UWB performance.
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Figure 7.10: Simulated UWB TWR P21 observables (Campaign S#1)
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Figure 7.11 shows the trajectories obtained for all rovers overlaid on the
reference trajectory. Clearly, the test trajectories lie close by the reference
trajectory featuring only a limited number of outliers. The noisy pattern is
attributed to the optimistic nature of the adopted internal range error
favoring at times the measurement model over the dynamic one.
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Figure 7.11: Rover trajectories obtained for a four-rover setup applying P2I UWB ranges and

azimuth (Campaign S#1)
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Figure 7.12: Performance metrics graphic summary for the generated trajectories (Campaign
S#1).

Performance assessment of the results obtained for the UWB P2l scenario
conclude in the quality metrics summarized in Figure 7.12. Internal theoretical
performance metrics (variance, top raw) of up to 0.08 m, in conjunction with
the estimates position trueness, indicate the convergence stability of the filter
implementations. Position trueness reaches a maximum value of ~1 m for all
rovers while the reported availability is 100%. This is due to the preselected
time window (1 sec) adopted for estimating position availability, as opposed
to smaller P2l range recording interval that was set at 0.1 sec. In terms of
position quality, for the case of the EKF, the estimated 2D RMSE error reports
in the range between 0.34-0.39 m. The EKF/Az solution results in slightly
better 2D RMSE values ranging between 0.31-0.33 m indicating the benefit in
position performance obtained by introducing the orientation information.
The effect of anchors/rover geometry, expressed by the DOP, results in values
over 2 recorded for rovers 902, 903 and 904 that reflect to short trueness
peaks. The computational performance of the algorithm is measured by the
ratio of processing time to the total trajectory time, resulting in values of
8.09% for the EKF algorithm and 10.19% for the EKF/Az algorithm.

7.3.2 Standalone positioning using Wi-Fi RTT P2l simulated data (S#2)

In a similar manner to the analysis discussed in §7.3.1, Wi-Fi RTT simulated P2I
data are processed to obtain the absolute position solution employing 4 rover
and 4 anchor nodes. The difference lies in the realization of the TWR
observables in terms of ranging quality (i.e., range bias and noise) and
sampling rate. Figure 7.13 illustrates the generated internodal P2l ranges
simulating Wi-Fi RTT performance.
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Figure 7.13: Simulated Wi-Fi RTT internodal P2 observables (Campaign S#2)
Figure 7.14 illustrates the horizontal trajectories generated for all four rovers.

The degradation in position quality is apparent compared to the UWB-only
solutions (see Figure 7.11).
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Figure 7.14: Rover trajectories obtained for a four-rover setup applying P21 Wi-Fi RTT ranges
and azimuth (Campaign S#2)
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Figure 7.15: Performance quality metrics graphic summary for the generated trajectories
(Campaign S#2).

Implementation of the performance assessment steps similarly to the UWB
P2l scenario result in position quality metrics shown in Figure 7.15. The
internal precision metrics (variance) reaching up to 0.60 m demonstrate the
convergence stability of the implemented filters. They also highlight the
impact of decreased accuracy in TWR ranges of WiFi-RTT compared to UWB.
During the evaluation of trajectory performance, both the EKF and EKF/Az
solutions exhibit a maximum trueness of approximately 4 m. The continuous
ranging functionality ensures 100% availability for all rovers. The 2D RMSE
values for trueness range from 0.86 to 1.61 m for EKF solutions and 0.80 to
1.55 m for EKF/Az solutions, indicating improved performance through the
introduction of the Az variable. The trueness timeseries clearly depict the
effect of Dilution of Precision (DOP), as the lower-quality TWR technology
proves to be more sensitive to geometry degradation, even for values below
2. Furthermore, the evaluation of computational efficiency yields similar
results to those described in §7.3.1, with values of 7.33% and 9.84% for EKF
and EKF/Az, respectively, as the positioning algorithm implementation
remains virtually unchanged.

7.3.3 Standalone positioning using combined Wi-Fi RTT P2l and UWB P2P
simulated data (S#3.1)

The data campaign of the combined Wi-Fi RTT P2l / UWB P2P simulated data
employs four rovers assigned to observe both Wi-Fi RTT and UWB ranges,
three anchor nodes with Wi-Fi RTT ranging capability and a static node
providing UWB ranges. The differences between Wi-Fi RTT and UWB
observables refer into to their associated precision and sampling rate.

Figure 7.16 illustrates the P2l ranges (anchors 301-303) and the P2P ranges
(anchor 304) generated to simulate the Wi-Fi RTT and UWB data respectively.
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Figure 7.16: Simulated Wi-Fi RTT and UWB TWR P2I/ P2P observables (Campaign S#3.1)

Figure 7.17 shows the trajectories produced for all rovers overlaid on the
reference trajectory. From Figure 7.16 it is apparent that the P2P-only
trajectories (red and blue) exhibit lower positioning quality and a large
number of position fix outliers compared to the P2P+P2| trajectories (orange
and yellow) for most rovers.
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Figure 7.17: Rover trajectories obtained for a four-rover setup applying P21 Wi-Fi RTT, P2P
UWSB ranges and azimuth (Campaign S#3.1)

At a first glance the DOP timeseries (Figure 7.18 @second row) show clearly
the effect of observation accuracy in position trueness (Figure 7.18 @third
row). Specifically, this is more evident for the lower quality Wi-Fi RTT-only
(P2l) solutions as they are substantially more sensitive to geometry
degradation even for DOP values bellow 2. This phenomenon can be
attributed to the fact that noisy ranging measurements can disrupt the linear
relationship assumed by the EKF, introduce inconsistencies with the predicted
state, propagate errors over time, and hinder the filter's convergence. Even
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with low DOP values, the impact of noise can still be significant and lead to
inaccuracies in the estimated position. As an example, the sensitivity in the P2I
solution is clearly apparent for rover 903 at timestamps ~80 sec and ~ 130 sec.
Moreover, as illustrated by the Cumulative Distribution Function (CDF) plots
(Figure 7.17 @bottom row) position trueness reaches a maximum value of ~4
m for P2l solutions and a ~3 m value for the P21+P2P solutions. Notably, the
obtained P2I+P2P trueness for rovers 901 and 903 results in ~1 m
improvement with respect to the P2I-only solutions while for rovers 902 and
904 the results are very similar.
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Figure 7.18: Performance quality metrics graphic summary for the generated trajectories of
(Campaign S#3.1).

Table 7.6 summarizes the statistics obtained for position trueness (RMSE
values) for the four rovers for Campaigns S#1 and S#3.1. in order to
underline the performance improvement achieved by introducing the UWB
ranging functionality along with Wi-Fi RTT in the system. The utilization of
more accurate UWB observables in combination with noisy Wi-Fi RTT clearly
enhances the resulting positioning solution. This finding highlights the
potential of the proposed approach to further leverage a combination of
both TWR observable types, ultimately leading to a more robust positioning
capability.

Table 7.6: Summary of the performance comparative evaluation statistics for the 4 rover’s
estimated trajectories between Campaigns S#1 and S#3.1

2D RMSE (m) Rovers
Scenarios 901 902 903 904
WIiFi-RTT P2I/ Az 0.83 0.82 0.89 1.01

Wi-Fi RTT P2l/ UWB P2P/ Az 0.74 0.75 0.79 0.88

7.3.4 Distributed Collaborative Positioning (DCP) using Wi-fi RTT P2l and
UWB P2P simulated data (S#3.2).

The Wi-Fi RTT/ UWB fully collaborative P21/P2P positioning simulation test
trials (S#3.2) employ four rover and four anchor nodes. The first scenario with
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uninterrupted availability of anchor nodes serves as a baseline for the
evaluation of the developed DCP algorithm in optimal conditions. The
subsequent scenarios incorporate two intentionally induced time windows (@
8 sec and 30 sec) designed suitably to simulate degradation in anchor
availability.

Specifically, the varying length of anchor availability windows have been
designed to simulate dynamic anchor connectivity loss, typically found
indoors. The DCP algorithm is therefore examined for its robustness. This is
undertaken both for a short and a long data loss window. Regarding anchor
availability, the trials examine different combinations of anchor loss for a
number of cases spanning from one up to four anchor points (i.e., complete
anchor unavailability).

In addition to the conventional rover-to-anchor Dilution of Precision (DOP)
values, specific DOP values are calculated to offer insights into the dynamic
availability of anchors ("DOP VAnch") and the collaborative nature of
neighboring nodes ("DOP CP"). These metrics are designed to provide
additional understanding of the potential positioning quality, considering the
geometric effects arising from the dynamic and collaborative aspects of the
proposed setup.

At this point, a comprehensive overview is presented, showcasing the figures
derived from data processing. This presentation encompasses an explanation
of the general implementation DCP evaluation logic and provides an overall
assessment of the performance of the proposed approach.

Figures 7.19, 7.22, 7.25, 7.28 and 7.31 illustrate the internodal P2l and P2P
ranges that simulate the Wi-Fi RTT and UWB cases. Depending on specific
scenario layout they correspond to different anchor loss for unavailability
events.

Figures 7.20, 7.23, 7.26, 7.29 and 7.32 show the horizontal trajectories
generated for all combinations of varying anchor availability. The effect of
anchor loss is progressively starting to be visible from the 2-anchor loss
scenario, in which case the P2l-only solutions exhibits increased values of
error. Clearly, in the event of a complete loss of anchors during the predefined
time windows, the position solution becomes entirely infeasible and cannot
be utilized.

Figures 7.21,7.24,7.27,7.30 and 7.33 summarize the quality metrics obtained
for each anchor loss scenario and for all the rovers. The potential of the
proposed DCP algorithm is evident as position trueness indicates
improvement compared against the traditional P2l approaches.
Notwithstanding the ECDF graphs might exhibit better accuracy statistics for
the P2l solutions, when range availability is also taken into account, it appears
that the proposed DCP offer a more robust solution even for larger time
windows of partial anchor loss or even for complete anchor loss. The
successful operation of the DCP algorithm even for P2P-only conditions
suggests the suitability of the implemented collaborative approach and
indicates its ability to improve further its functionality for anchor loss of longer
duration.
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DCP P21/P2P with no anchor loss

The initial scenario involves the implementation of distinct positioning
algorithms that support P2l and P2I/P2P functionality. The purpose is to
validate these algorithms and evaluate their positioning performance using an
ideal dataset that does not experience any communication loss.
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Figure 7.19: Simulated Wi-Fi RTT and UWB TWR P21/ P2P observables (Campaign S#3.2
without anchor loss)

Figure 7.20 demonstrates the capability of both approaches to estimate
trajectories that closely align with the reference trajectories. However, the
impact of noisy Wi-Fi RTT observables becomes evident as the trajectories of
the respective approaches (EKF and EKF/Az) exhibit outlier events and less
smooth positioning solutions. Conversely, the CPKF and CPKF/Az solutions
show significant improvements in positioning, characterized by smoother
trajectories and closer alignment with the reference solution.
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Figure 7.20: Rover trajectories for a four-rover setup applying P21 WiFi-RTT, P2P UWB ranges
and azimuth (Campaign S#3.2 without anchor loss)
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Figure 7.21: Performance quality metrics graphic summary for the generated trajectories of
(Campaign S#3.2 without anchor loss)

The results obtained and depicted in Figure 7.21 confirm the positioning
performance potential of both approaches. Although the CP solutions exhibit
smoother characteristics as shown in the third row of the figure, the
corresponding Empirical Cumulative Distribution Function (ECDF) plots
demonstrate that the computationally and communicationally less
demanding KF implementations are capable of functioning adequately. This
suggests that the adoption of CP could prove redundant under conditions (i.e.,
in cases of fully operational anchor network), as standalone KF algorithms
implementations can fulfill the minimum positioning requirements effectively.
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DCP P21/P2P with 1 anchor loss

The range loss is visible in Figure 7.22 for the anchor 304 resulting in range
observables loss for 4 node-pairs during the two unavailability events.
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Figure 7.22: Simulated Wi-Fi RTT and UWB TWR P21/ P2P observables (Campaign S#3.2 with 1
anchor loss)
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Figure 7.23. Rover trajectories obtained for a four-rover setup applying P21 WiFi-RTT, P2P UWB
ranges and azimuth (Campaign S#3.2 with 1 anchor loss). Varying anchor highlighted with red
circle.

Ref
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CPKF-SCI

CPKF-SCl-Az]

As anticipated, the inclusion of 1-anchor loss events has minimal effect on the
resulting trajectories, as depicted in Figure 7.23. The positioning estimation
closely aligns with the reference trajectories, and similar effects on position
quality, comparable to the "No-anchor-loss" scenario, are observed.

In a similar fashion to the "No-anchor-loss" scenario, the performance metrics
obtained for the "1-anchor-loss" scenario (Figure 7.24) do not indicate
significant degradation in position quality. The primary effect is observed in
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the "DOP VAnch" value, which exhibits peaks coinciding with the unavailability
events. However, these peaks have minimal or no impact on the positioning
solution. This is attributed to the presence of three remaining anchors and an
adequate sampling rate, enabling both the KF and CPKF approaches to
estimate the position with comparable success.
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Figure 7.24: Performance quality metrics graphic summary for the generated trajectories
(Campaign S#3.2 with 1 anchor loss)

DCP P21/P2P with 2 anchors loss

The range loss is apparent in Figure 7.25 for the anchors 303 and 304 resulting
in range observables loss for 8 node-pairs during the two unavailability events.
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Figure 7.25: Simulated Wi-Fi RTT and UWB TWR P21/ P2P observables (Campaign S#3.2 with 2
anchors loss)
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Figure 7.26: Rover trajectories obtained for a four-rover setup applying WiFi-RTT, P2P UWB
ranges and azimuth (Campaign S#3.2 with 2 anchor loss). Varying anchors highlighted with red
circle.

In the "2-Anchor-loss" scenario, the reduction in available ranging information
begins to manifest its impact. The KF solutions exhibit instances of trajectory
divergence, particularly when the rovers approach the boundaries of the area.
This highlights the amplification of the effect caused by the unfavorable
geometry in those regions (Figure 7.26).
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Figure 7.27: Performance quality metrics graphic summary for the generated trajectories
(Campaign S#3.2 with 2 anchors loss)

The impact of anchor loss is evident in the plots shown in Figure 7.27, where
the corresponding performance metrics demonstrate a reduction in position
accuracy, particularly in scenarios where no orientation parameter (KF, CPKF)
is available. Furthermore, the estimation of "DOP VAnch" ceases to provide
results as it requires a minimum of three anchors to calculate the Dilution of
Precision.

155



DCP P21/P2P with 3 anchors loss

The anchor loss for anchors 302, 303 and 304 result in data loss for 12 node-
pairs during anchor unavailability events.
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Figure 7.28: Simulated Wi-Fi RTT and UWB TWR P21/ P2P observables (Campaign S#3.2 with 3
anchors loss)

The impact of anchor loss is evident in nearly all of the estimated trajectories,
as depicted in Figure 7.29. As anticipated, the P2l-only approaches (KF and
KF/Az) exhibit significant position errors during the anchor loss events but
manage to reconverge once ranging data becomes available again. The "CPKF"
approach also experiences large position errors and demonstrates similar
positioning performance to the P2l approaches. Notably, “CPKF/Az” provides
a more stable position solution.

Ref KF KF-Az GPKF-SCI CPKF-SC-AZ |

Figure 7.29: Trajectories for the 4 roving nodes as estimated for, utilizing simulated P2| WiFi-
RTT, P2P UWB ranges and Azimuth (Campaign S#3.2 with 3 anchors loss). Varying anchors
highlighted with red circle.
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Figure 7.30: Performance quality metrics graphic summary for the generated trajectories
(Campaign S#3.2 with 3 anchors loss)

Figure 7.30 clearly indicates the effectiveness of incorporating orientation in
the proposed "CPKF/Az" approach becomes apparent in this scenario. It
provides stable and accurate positioning, with position trueness not exceeding
~2 m for the entire duration of the trajectories, and a maximum of ~3 m.

DCP P21/P2P for complete anchor loss

For the “Complete-anchor-loss” scenario, the anchor loss corresponds to all
four anchors 301, 302, 303 and 304 resulting in a total data loss for 16 node-

pairs during anchor unavailability events.
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Figure 7.31: Simulated Wi-Fi RTT and UWB TWR P21/ P2P observables (Campaign S#3.2 with
complete anchor loss)

Asillustrated in Figure 7.32, the "KF", "KF/Az" and "CPKF" positioning solutions
once again exhibit extreme position errors, rendering them unable to provide
accurate position fixes during unavailability events. However, the "CPKF/Az"
solution demonstrates its capability to closely align with the reference
positions, maintaining a satisfactory level of performance.
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Figure 7.32: Rover trajectories obtained for a four-rover setup applying P21 WiFi-RTT, P2P UWB
ranges and Azimuth (Campaign S#3.2 with complete anchor loss). Varying anchors highlighted
with red circle.
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Once again, Figure 7.33 emphasizes the potential of the proposed "CPKF/Az"
approach. It showcases maximum position trueness values of approximately 4
m during periods of unavailability, despite the extreme values observed in the
"DOP CP" metric. This highlights the robustness of the approach in handling
such highly challenging conditions.
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Figure 7.33: Performance quality metrics graphic summary for the generated trajectories
(Campaign S#3.2 with complete anchor loss)

A comprehensive analysis and summary of the achieved positioning results is
provided in Chapter 8. It includes a detailed discussion of the overall
performance and examines the implications of the proposed Distributed
Collaborative Positioning (DCP) algorithm. Finally, it offers insights into the
overall findings and implications derived from the positioning experiments.
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Chapter 8
Discussion, Conclusions and Potential for Future Work

Two key objectives are attained through the proposed methodologies
presented in the previous chapters. Firstly, to develop a methodology for
performing quality characterization and assessment of UWB and Wi-Fi RTT
TWR observables that enables the systematic range error mitigation through
empirical correction models. Secondly, to develop and test an algorithm for
collaborative positioning of multiple kinematic nodes based on a combination
of UWB and Wi-Fi RTT ranges, using both P2l and P2P observables. In this
chapter we present the discussion regarding the performance of the error
mitigation techniques on kinematic positioning data as well as the respective
performance of different localization algorithms using simulated datasets.
A critical analysis of the research outcomes and the research contributions are
also presented. Conclusions are drawn and, finally, suggestions for future
work are provided.

8.1 Discussion

8.1.1 Range error characterization and mitigation

Figure 8.1 summarizes the performance statistics for UWB and Wi-Fi RTT
kinematic positioning obtained utilizing the main empirical range error model
categories (i.e., “no correction”, “linear correction” and “spatial correction”)
for the entire field data available.
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Figure 8.1: Statistical summary of UWB and Wi-Fi RTT range correction models performance

The respective trueness values (mean and standard deviation) accompanied
with their associated availability measures, showcase the different accuracy
metrics obtained and underline the need for appropriate model selection.
For the UWB data, an improvement of 62% is apparent for the mean trueness
using the “linear correction” and 74.3% accordingly for the “spatial correction”
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model. Evidently, an improvement of 55% results in the standard deviation
values for both correction models. No availability issues are identified for the
UWB data which is expected given the specifications of high sampling rate,
accuracy and communication stability. Regarding Wi-Fi RTT data, an
improvement of 54.1% is apparent for the “linear correction”, whilst the
“spatial correction” models lead in worse performance both in terms of
trueness mean and standard deviation values. This is attributed to the noisier
nature of the Wi-Fi RTT observables that make the more complex nature of
the “spatial correction” models more prone to inaccuracies and extreme
values. Nevertheless, in order to reach an impartial characterization of
systems performance, it is important to study range availability values
simultaneously with trueness. Notwithstanding, the Wi-Fi RTT “no correction”
case falsely reports better performance when only trueness is taken into
account, its corresponding availability measures are reported to be 21.8% of
the total sample, whilst the “spatial correction” case reads a valid solution at
52.4% of the sample. Overall, the selection of the appropriate correction
model depends primarily on user-specific requirements as imposed by
application type. In general, the “spatial correction” model is proven suitable
for the more accurate UWB ranges, while the “linear correction” model deems
suitable for both technologies.

8.1.2 Positioning algorithms

Figure 8.2 summarizes the results obtained for positioning trueness for the
trajectories of the different simulation-based campaigns, indicating their
strengths and weaknesses and providing insight regarding the potential of the
proposed algorithms.
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Figure 8.2: Statistical summary of positioning algorithms performance obtained for the
simulation-based campaigns’ scenarios

Apparently, the introduction of UWB combination together with Wi-Fi RTT
observables in a realistic configuration (i.e., Wi-Fi RTT for P21 and UWB for P2P)
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enhances the resulting solution. Azimuth observables further improve the
positioning results increasing the system’s robustness and efficiency since
they contribute at obtaining consistently accurate and smooth solutions of
high availability.

The introduction of a single UWB anchor in a P2l configuration offers 35.1%
improvement in position trueness (S#2 = S#3.1). Moreover, the inclusion of
Azimuth observables results in 15.7% improvement in position trueness for
the Wi-Fi RTT only solutions (S#2) while it provides similar enhancement for
all the campaigns. The highlight of the Azimuth effect is apparent on the “all
anchor loss” scenario of S#3.2. In this case it enables trueness improvement
of 38.1% for the standalone solution (KF = KF Az) and 85.1% trueness
improvement for the P2I-P2P solution (CPKF = CPKF Az). This observation
underlines the necessity of orientation information for the successful
implementation of the covariance-intersection filter in order for the solution
to converge.

Regarding position availability, we observe values of 100% even for time
windows featuring one available anchor and for the standalone (P2l)
approach. Such a behavior is indicative of the effect of the proposed approach
design that relies on sequential ranging utilization. This is indicative of its
robustness, in contrast with traditional trilateration-based approaches that
require the collection sets of ranges (minimum 3) prior position estimation. At
the case of complete data loss (i.e., S#3.2, “all anchor loss”) the proposed DCP
algorithm operates successfully providing positioning solution of stable quality
regarding the reported trueness as well as 100% availability. In contrast, P2I
only approaches offer up to 74.3% availability, coinciding with the complete
anchor loss time windows which attribute for approximately 25% of the total
trajectory time. With that being said, it is important to acknowledge that the
reported 100% availability measure should be viewed as overly optimistic. This
could be due to the completely controllable simulated conditions, which fail
to account for potential data loss events caused by device malfunctions and
hardware limitations that may arise in real-world scenarios.

8.2 Contributions

Some of the main contributions of this research are summarized here:

e The proposed range correction approach enables optimal leveraging
of heterogeneous RF data, by performing statistical analysis and
evaluating raw distance measurements for both categories of the
evaluated technologies. The resulting correction models achieve
successful mitigation of inherent systematic range errors for both
types of UWB and Wi-Fi RTT sensors, enabling the selection of the
most appropriate strategy based on the respective technology.
Considering the extensive field testing conducted under diverse
environmental conditions and hardware configurations, the data
volume obtained is substantial. This allows us to confidently assert
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that the conclusions drawn from the study can be adequately
generalized.

Compared to existing approaches that attempt the combination of
UWB and Wi-Fi RTT technologies for position fixing, and to the best of
the author’s knowledge, the proposed DCP algorithm introduces for
the first time their combined utilization along with orientation
observables: (a) in kinematic conditions, (b) with range data between
moving nodes (P2P) and (c) utilizing the distance observations of each
technology separately (i.e., sequential ranging), thereby maximizing
the availability of the positioning solution. Considering that the two
utilized TWR technologies yield raw observables with inherently
distinct operational accuracy and sampling rates, the proposed
combination of these technologies takes into account and leverages
these characteristics during the design phase. This enables the
optimal utilization of their respective strengths and weaknesses.

The currently ongoing assessment of the developed DCP approach is
being conducted for a wide range of conditions encompassing diverse
sensors with varying performance capabilities, under repeatable
dynamics scenarios. This assessment thoroughly examines the
achieved performance under multiple rover configurations and
varying anchor availability. It culminates in campaigns where reliance
on P2P ranging becomes the predominant method for significant
durations throughout the trajectory periods. To the best of the
author's knowledge, this research approach is being implemented for
the first time in relation to these specific technologies and distributed
collaborative algorithms.

The developed software for generating trajectories and the respective
raw range observables simulation, is scalable and supports further
expansion of the collaborative localization  algorithm
implementations. The process employed takes into account
pedestrian detection requirements regarding personal mobility
concerns as well as the requirements for pedestrian traffic prediction
models development. It is therefore an important tool for evaluating
both the algorithms proposed in the context of the thesis and for
future research activities related to the topic under examination.
Furthermore, the software has the potential to extend its utilization
in various application fields such as surface vehicles, UAS, etc., as it
possesses the capability to handle 3D trajectories and accommodate
different rover dynamics. Additionally, it can incorporate additional
simulated sensor configurations and generate supplementary output
datasets.



8.3 Conclusions

8.3.1 Range error mitigation

The implementation of the developed correction models deems suitable for
both TWR technologies examined in this thesis and provide further insight
regarding their error characteristics. Improved suitability of spatial models for
UWB datasets has been identified. This effect demonstrates the successful
interpolation of range correction values within the test areas, using an optimal
number of check points, provided that there is adequate coverage of the
transitional areas (such as short corridors between rooms or entrances to
different rooms). Also, the linear correction models provide sufficient quality
improvement for the UWB case and in line to standard pedestrian mobility
applications requirements. Given their lower data processing complexity and
the respective lower field implementation effort, they can be selected as the
primary correction method for cases of limited resources (time, personnel
etc.) and extended area coverage. Regarding the Wi-Fi RTT technology, the
results obtained indicate clearly the use of linear correction models for error
mitigation due to the noisy nature of raw TWR data. Contrarily, the higher
complexity of the more detailed spatial correction models, makes them prone
to overfitting and outliers’ effects. Orientation assisted correction models
enhance the quality of Wi-Fi RTT ranges; however, the additional effort and
resources required should be taken into consideration at a design stage prior
the selection of the appropriate approach. Finally, the introduction of
“measurement error estimation assist” for both technologies improves the
internal quality indicators, crucial for the KF implementation stages.
Particularly, the LED flag value-based models are introduced for UWB and the
RSS-based models are proposed for Wi-Fi RTT.

8.3.2 Positioning algorithms

Regarding the standalone (P2l) positioning implementation scheme, the ad-
hoc filter configuration, employing correction models for the internal accuracy
indicators for the UWB and Wi-Fi RTT range observables, as well as pedestrian-
based tuning, is implemented providing performance improvement.
Moreover, it is observed that the respective anchor geometry represented by
the DOP values affect greatly the final solution quality for low accuracy
observables (i.e., Wi-Fi RTT). Moreover, the geometry effect is underlined
when taking into account the different DOP values estimated for both the
varying anchors exclusion (P2l observables loss) of the S#3.2 scenarios and the
inclusion of collaborative rovers (P2P observables gain).

Regarding position accuracy, as expected, the UWB scenarios provide
smoother and more accurate solutions; however, the UWB solution requires
more detailed range error modeling investigation to achieve the highest
possible performance. Wi-Fi RTT proves to be less accurate and less smooth
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but more stable when the linear range error model is selected and provides
the capability to utilize a common error model for different APs.

Regarding Wi-Fi RTT and UWB collaboration, as expected, a performance
enhancement is provided with the introduction of the accurate nature of UWB
with the overall solution quality being limited by the best possible
performance of Wi-Fi RTT data. It is noted that in order to successfully
implement the DCP algorithm, it is necessary to provide a means of
communicating the respective range measurements, range error, position and
position accuracy to neighboring nodes. Once pair communication is
established, a local separate covariance matrix needs to be built and
maintained for each rover in order to be regularly updated with every position
update step. Evidently, azimuth information enhances performance for P2I
tests, while it is necessary in P2I/P2P tests in order the CPKF solution not to
diverge, especially in complete anchor loss events. In summary, the presented
results highlight that collaborative solutions have the potential to offer more
stable and robust positioning solutions, along with increased availability
during anchor loss events, as long as there is intermittent presence of at least
one anchor.

8.4 Future work and scope

Further enhancements of the system as well as the ability to further
investigate the different variations of the proposed approaches enables future
expansion. Potential future work and scope includes:

o Implementation and assessment of the range error correction models
at varying environments. Typical environments have been utilized in
order to: (a) analyze the impact of the environmental effects
pertaining specific area types and (b) evaluate the validity of the
adopted and proposed range error mitigation approaches. Evaluating
the correction methodology in different test areas with varying
LOS/NLOS conditions can further support its generalization ability.
Moreover, extensive datasets could be utilized for potentially
introducing data-driven Al techniques (i.e., machine learning) for
investigating the ability: (a) to minimize the required number of check
points, and (b) to select the optimal checkpoints’ locations based on
multiple parameters (i.e., building geometry, TWR technology
specifications, maximum field campaign duration, etc.).

e Asthe proposed range error evaluation approach can be expanded to
virtually unlimited number of similar technologies, evaluating further
the developed software with additional RF-based ranging datasets
(i.e., low-cost UWB sensors) is suggested. By performing experimental
campaigns on the same test areas, baseline comparisons may be
provided; and subsequently, further configuration and fine tuning of
the methodology would be enabled, facilitating future methodology
generalization.
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An extension of the range observables simulator, including the ability
to simulate NLOS ranges through varying materials, would further
enhance its robustness. The configuration of the simulation variables
could rely on existing through-the-wall RF transmission models and
additional field campaigns for calibrating them with additional
datasets. Moreover, multipath-generated ranges could be introduced
through e.g., suitable combinations of ray-tracing techniques and
Monte-Carlo methods. This would enhance the ability of the simulator
to provide realistic datasets and facilitating future investigation of
complex, multi-technology and multi-environment scenarios.

As the DCP algorithm is designed based on the distributed
collaborative architecture, offering scalability and the ability to
facilitate future implementation on mobile devices, it is suitable for a
number of relevant applications. Notwithstanding a great number of
personal mobility applications relies directly on the positioning
solution produced using a single device (i.e., smartphone), a
continuously increasing amount relies on additional state information
(orientation, elevation, etc.). Given the multi-sensory character of
today’s smartphones, several applications could benefit from the
fusion of additional sensor data introduces within the loosely-coupled
architecture of the DCP solution. For example, as the UWB
functionality is already available for a number of smartphones and
given the cost limitations implicated by these mass-market devices,
the investigation of the proposed approaches using low-cost UWB
sensors would provide valuable insight regarding their large-scale
applicability. Moreover, the provision of elevation information
through barometric sensors data, or the inclusion of indoor maps that
would set boundaries for the kinematic trajectory (i.e., map-matching
approaches) would potentially increase the solution robustness. Both
the improvement of rover self-localization as well as the consequent
collaborative steps that would propagate the quality improvement to
neighbor nodes, would benefit a potentially unlimited number of
users.
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