
Athens, July 2023

Thesis

submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

by

Stavros Maroulis

Diploma in Electrical and Computer Engineering
National Technical University of Athens

Adaptive Indexing for Interactive Visual

Exploration and Analytics

School of Electrical
and Computer Engineering

Computer Science Division

National Technical University of Athens

Αθήνα, Ιούλιος 2023

Διδακτορική Διατριβή

του

Σταύρου Μαρούλη

Διπλωματούχου Ηλεκτρολόγου Μηχανικού & Μηχανικού Υπολογιστών
Εθνικού Μετσοβίου Πολυτεχνείου

Προσαρμοστική ευρετηρίαση για
διαδραστική οπτική εξερεύνηση και

αναλυτική

Σχολή Ηλεκτρολόγων Μηχανικών
Και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Αθήνα, Ιούλιος 2023

Διδακτορική Διατριβή

του

Σταύρου Μαρούλη

Διπλωματούχου Ηλεκτρολόγου Μηχανικού & Μηχανικού Υπολογιστών
Εθνικού Μετσοβίου Πολυτεχνείου

Συμβουλευτική Επιτροπή: Ι. Βασιλείου
Γ. Παπαστεφανάτος
Γ. Μέντζας

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 5η Ιουλίου 2023.

Ι. Βασιλείου Γ. Παπαστεφανάτος Γ. Μέντζας
Ομότ. Καθ. ΕΜΠ Ερευνητής Β’ Καθ. ΕΜΠ

Ε. Κ. ΑΘΗΝΑ

Π. Βασιλειάδης Δ. Τσουμάκος Ν. Κοζύρης
Καθ. Παν. Ιωαννίνων Αν. Καθ. ΕΜΠ Καθ. ΕΜΠ

Γ. Στάμου
Καθ. ΕΜΠ

Προσαρμοστική ευρετηρίαση για διαδραστική

οπτική εξερεύνηση και αναλυτική

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

. . .

Σταύρος Μαρούλης

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

© 2023 - All rights reserved

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκ-
λήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση
και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την
προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.
Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να

απευθύνονται προς τον συγγραφέα.
Η έγκριση της διδακτορικής διατριβής από την Ανώτατη Σχολή Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών του Ε. Μ. Πολυτεχνείου δεν υποδηλώνει αποδοχή των γν-
ωμών του συγγραφέα (Ν. 5343/1932, ΄Αρθρο 202).

. . .

Stavros Maroulis
Doctor of Philosophy at the National Technical University of Athens

© 2023 - All rights reserved- Stavros Maroulis

Copying, storage and distribution of this work in whole or part thereof may not
be performed for commercial purposes. Reprinting, storing and distributing for non-
profit, educational or research purposes is permitted, provided the source is acknowl-
edged and this message retained. Questions regarding the use of the work for profit
should be addressed to the author.

The approval of the doctoral dissertation by the School of Electrical and Computer
Engineering of the National Technical University of Athens does not imply acceptance
of the author’s opinions.

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 The Challenges of Efficient In-Situ Visual Exploration and Analytics . 2
1.3 Research Objectives . 4
1.4 In-Situ Visual Exploration: Our Working Scenario . 5
1.5 Thesis Outline. 6

2 Related Work 7
2.1 Introduction . 7
2.2 In-situ Query Processing . 7
2.3 Exploratory Data Analysis . 8
2.4 Adaptive Indexing . 9
2.5 Multi-dimensional Indexing . 9
2.6 Visual Exploration . 11

2.6.1 Progressive Visualization . 11
2.6.2 Visualization Recommendation . 11

2.7 Data Structures & Indexing for Visual Data Exploration 12
2.8 Summary . 13

3 Visual Exploration Model 15
3.1 Introduction . 15
3.2 Basic Concepts . 15
3.3 Visual Exploration Model . 16
3.4 Exploratory Query . 18
3.5 Summary . 21

4 Indexing for Efficient 2D Visual Exploration 23
4.1 Introduction . 23
4.2 VALINOR Design . 24

4.2.1 Design Principles . 24
4.2.2 Core Elements of the VALINOR Index . 24
4.2.3 VALINOR Index Definition . 25
4.2.4 Tiles-Query Spatial Relations . 27
4.2.5 Implementation Details and Practical Considerations 28
4.2.6 Grid or R-Tree?. 28

4.3 Query Processing over the VALINOR Index . 29
4.3.1 Index Initialization & First Query Evaluation 29
4.3.2 Query Processing Overview . 31
4.3.3 Selection Clause Evaluation. 33

i

4.3.4 Determining the Tiles that Require File Access. 34

4.3.5 Incremental Index Adaptation . 34

4.3.6 File Access . 35

4.3.7 Aggregate Metadata Management . 36

4.3.8 Filter, Details & Analysis clauses Evaluation 36

4.4 Advanced Methods for Index Management – Initialization &
Adaptation . 37

4.4.1 Query-driven Index Initialization . 38

4.4.2 Query-driven Index Adaptation. 41

4.4.3 Splitting Model Analysis . 44

4.5 Operating VALINOR Index under Memory Constraints 46

4.5.1 Preliminaries . 46

4.5.2 Eviction During Query Processing . 47

4.5.3 Eviction during the Initialization Phase . 49

4.6 Experimental Analysis . 49

4.6.1 Experimental Setup . 49

4.6.2 Results . 53

4.7 Summary . 63

5 Indexing for Visual Exploration over Categorical Attributes 65

5.1 Introduction . 65

5.2 CET Tree: An Index for Categorical Attributes . 67

5.2.1 Design Principles . 67

5.2.2 CET Structure . 68

5.2.3 CET Operations . 69

5.2.4 Tree Space Analysis . 70

5.2.5 Attributes Ordering vs. Tree Space . 71

5.3 VETI: A Tile-Tree Adaptive Index . 71

5.3.1 VETI: Combining Tiles and Trees . 71

5.3.2 VETI Initialization . 72

5.4 Query Processing & Index Adaptation . 75

5.4.1 Query Processing . 76

5.4.2 Incremental Index Adaptation . 78

5.5 Resource-aware Index Initialization . 79

5.5.1 Preliminaries . 80

5.5.2 Problem Definition & Analysis . 82

5.6 SIN Algorithms . 83

5.6.1 Preliminaries . 83

5.6.2 Greedy Tile-Tree Assignments Algorithm (GRD) 85

5.6.3 Binning-Based Tile-Tree Assignment Algorithm (BINN) 87

5.7 Experimental Analysis . 89

5.7.1 Results Highlights . 89

5.7.2 Experimental Setup . 89

5.7.3 Performance . 92

5.7.4 VETI Variations . 95

5.7.5 Effect of the Data Characteristics . 99

5.8 Summary . 100

6 The RawVis Framework 101
6.1 Introduction . 101
6.2 System Overview . 102

6.2.1 Implementation Details. 103
6.3 RawVis User Interface. 103

6.3.1 UI Panels . 103
6.3.2 UI Features . 104

6.4 User Study . 105
6.4.1 Setup . 105
6.4.2 Tasks Specification. 105
6.4.3 Evaluation Scenario and Tasks. 106
6.4.4 Tasks . 106
6.4.5 Results . 107

6.5 Summary . 109

7 Conclusions and Future Work 113
7.1 Research Contributions. 113
7.2 Future Work . 114

A Extended Greek Abstract 127
A.1 Εισαγωγή . 127
A.2 Επισκόπηση διατριβής . 128

A.2.1 Μοντέλο Οπτικής Εξερεύνησης. 128
A.2.2 Ευρετηρίαση για Δισδιάστατη Οπτική Εξερεύνηση 129
A.2.3 Ευρετηρίαση για Οπτική Εξερεύνηση σε κατηγορικά πεδία 132
A.2.4 Το σύστημα RawVis . 135

A.3 Συνεισφορές της Διατριβής . 135

B Glossary 137

List of Figures

1.1 Visual Exploration Scenario Overview . 5

3.1 Raw Data File and Domain of Categorical Attributes 16
3.2 Exploratory Query . 21

4.1 The VALINOR Index Overview . 26
4.2 Query Processing over VALINOR Index . 32
4.3 Query-Driven Index Initialization . 38
4.4 Initialization Time & Index Memory Size varying the Number of

Initial Tiles . 40
4.5 Index Adaptation and Query Processing . 43
4.6 Tile Splitting Cases . 44
4.7 VALINOR: Time for Answering the 1st Query over the Raw File.

Time includes: File Parsing, Index Construction & Q0 Evaluation 52
4.8 VALINOR Initialization Phase: File Parsing, Index Construction &

Q0 Evaluation . 53
4.9 VALINOR Initialization & Adaptation Methods: Execution Time

Comparison of the 3 VALINOR Configurations . 54
4.10 VALINOR Initialization & Adaptation Methods: Number of I/O

Operations
Comparison of the 3 VALINOR Configurations . 55

4.11 Maximum Hierarchy Depth of VALINOR per query (TAXI) 56
4.12 Execution Time: VALINOR vs. Competitors . 57
4.13 Number of VALINOR Tiles varying Q0 Selectivity . 58
4.14 VALINOR Overall Execution Time for the Entire Exploration Scenario 59
4.15 VALINOR Execution Time for Filter Operations (SYNTH10) 60
4.16 VALINOR: Exploration using Pan and Zoom In/Out Operations

(TAXI) . 61
4.17 VALINOR During an Exploration Scenario . 62
4.18 VALINOR vs. R-tree . 62
4.19 Overall Execution Time of VALINOR varying the Memory Size

(SYNTH10) . 63
4.20 Overall Execution Time of VALINOR. 63
4.21 Execution Time of VALINOR varying the Memory Size (SYNTH10) . 64

5.1 Indexing Memory Requirements vs.
Number of Categorical Attributes . 66

5.2 CET Tree Overview . 67
5.3 VETI Index Overview . 72
5.4 VETI Query Processing & Index Adaptation Example 74

v

5.5 Overall Time (Broken down to Initialization & Q1∼Q99 Evaluation
Time) . 91

5.6 Evaluation Time per Query (sec). 93
5.7 VETI Evaluation Time for Q1∼Q99 (sec) . 93
5.8 VETI: Number of I/Os per Query . 94
5.9 Number of Generated Trees vs. Number of Tree Attributes 95
5.10 VETI Utility Score . 95
5.11 VETI-BINN: Evaluation Time for Q1∼Q99 (sec) vs. Number of Bins . . 96
5.12 VETI Evaluation Time for Q1∼Q99 (sec) vs. Initialization Memory

Budget . 96
5.13 VETI Utility vs. Initialization Memory Budget . 97
5.14 VETI Memory Size vs. Sorting Attributes based on Domain Size 97
5.15 VETI Evaluation Time (log) vs. Number of Objects [SYNTH10] 98
5.16 Varying the Number of Cat. Attributes [SYNTH50] 98
5.17 Varying the Domain Size of Cat. Attributes [SYNTH10] 99

6.1 RawVis Architecture . 102
6.2 RawVis User Interface. 103
6.3 Overall User Experience . 108
6.4 Task 1 Feedback. 108
6.5 Task 2 Feedback. 109
6.6 Time taken for the tasks. 110

List of Tables

3.1 Correspondences between Visual Operations and Exploratory
Queries * . 20

4.1 VALINOR Notation . 25
4.2 VALINOR Evaluation: Datasets . 49

5.1 VETI Notation . 67
5.2 SIN Example: Tile-tree Assignment Utilities . 82
5.3 VETI Evaluation: Datasets . 89
5.4 VETI Evaluation: Basic Parameters . 91

vii

viii

PREFACE

This dissertation fulfills the requirements for the Doctor of Philosophy degree
at the National Technical University of Athens’ School of Electrical and Computer
Engineering, Greece. The research was conducted at the Knowledge and Database
Systems Laboratory of NTUA and the Institute for the Management of Information
Systems at the ATHENA Research Center.

This work has been completed thanks to the assistance and encouragement of
several individuals. First, I express my gratitude to Prof. Yannis Vasileiou, whose
guidance proved instrumental in the realization of this work. I also extend my ap-
preciation to Dr. George Papastefanatos, Dr. Nikos Bikakis, and Prof. Panos
Vasileiadis. Their advice and contributions have been indispensable, and their pas-
sionate dedication to their research has served as my inspiration. I also owe a great
deal of gratitude to all my colleagues at the Athena R.C. for their support and co-
operation throughout this journey.

My heartfelt thanks go to my family and friends, who have been a pillar of support
and patience throughout these years. Special acknowledgment is due to Evmorfia
Biliri for our shared journey and friendship since our undergraduate years. I look
forward to finding a similar acknowledgment in her dissertation.

Last but certainly not least, my deep appreciation and love to the one person
who has endured even my worst moods when the pressures of this work became over-
whelming.

Stavros Maroulis
Athens, July 2023

ix

x

ΠΕΡΙΛΗΨΗ

Η παρούσα διατριβή παρουσιάζει νέες τεχνικές ευρετηρίασης που στοχεύουν στη

διευκόλυνση της οπτικής εξερεύνησης δεδομένων αποθηκευμένων σε μεγάλα πρωτο-

γενή αρχεία. Στη σύγχρονη εποχή, τα δεδομένα παράγονται με εξαιρετική ταχύτητα
και σε τεράστιες ποσότητες, και η ικανότητα για γρήγορη επεξεργασία και κατανόηση
αυτών των δεδομένων γίνεται ολοένα και πιο κρίσιμη. Τα συμβατικά εργαλεία εξ-
ερεύνησης δεδομένων βασίζονται σε μεγάλο βαθμό στα παραδοσιακά Συστήματα Δι-

αχείρισης Βάσεων Δεδομένων (ΣΔΒΔ), τα οποία απαιτούν φόρτωση δεδομένων και
ευρετηρίαση τους για μπορέσουν να αναλυθούν. Ωστόσο, αυτές οι διαδικασίες μπορούν
να είναι ακριβές, χρονοβόρες και μη πρακτικές, ιδίως όταν τα δεδομένα ενδέχεται να
μη χρησιμοποιηθούν ξανά μετά την ανάλυση τους.
Αρχικά εξετάζονται οι αδυναμίες των υπαρχόντων εργαλείων και μεθοδολογιών για

την εξερεύνηση πρωτογενών δεδομένων, επισημαίνοντας την ανάγκη για ένα πιο αποτε-
λεσματικό σύστημα. Στη συνέχεια, παρουσιάζεται ένα μοντέλο οπτικής εξερεύνησης
όπου οι ενέργειες του χρήστη μεταφράζονται σε λειτουργίες πρόσβασης στα δεδομένα.
Επιπλέον, εξετάζονται και παρουσιάζονται νέες τεχνικές ευρετηρίασης στη μνήμη, κα-
θώς και μοντέλα κόστους, με ιδιαίτερη έμφαση στην προσαρμοστική ευρετηρίαση και
τις δομές δεδομένων με ελαφρύτερο αποτύπωμα στη μνήμη. Αυτές οι τεχνικές εί-
ναι ειδικά σχεδιασμένες για τη διαχείριση μεγάλων όγκων πρωτογενών δεδομένων,
ελαχιστοποιώντας αποτελεσματικά το κόστος πρόσβασης στο αρχείο δεδομένων και

ξεκινώντας γρήγορα την αναλυτική εξερεύνηση του χρήστη, δημιουργώντας μια αρχική
έκδοση του ευρετηρίου όταν ο χρήστης ζητά πρώτη φορά να αναλύσει ένα αρχείο.
Αυτό το ευρετήριο γίνεται πιο λεπτομερές και προσαρμόζεται στην εξερεύνηση του

χρήστη με κάθε ενέργεια του χρήστη. Επιπλέον, για την αντιμετώπιση σεναρίων με
περιορισμένους υπολογιστικούς πόρους, εισάγεται ένας μηχανισμός αρχικοποίησης του
ευρετηρίου που λαμβάνει υπόψιν τη διαθέσιμη μνήμη και προτείνονται αποτελεσματικοί

αλγόριθμοι για την επίλυση του αντίστοιχου προβλήματος βελτιστοποίησης. Μέσω εκ-
τενών πειραμάτων με πραγματικά και συνθετικά σύνολα δεδομένων, οι προτεινόμενες
τεχνικές αποδεικνύονται ότι υπερτερούν των υπαρχόντων λύσεων, ανταποκρινόμενες
έτσι στην ανάγκη για πιο αποτελεσματικές μεθόδους εξερεύνησης ακατέργαστων δε-

δομένων.
Αυτές οι τεχνικές ευρετηρίασης αποτελούν τη βάση του συστήματος RawVis,

επιτρέποντας αποτελεσματική ανάλυση των δεδομένων, παρακάμπτοντας τα ακριβά στά-
δια προεπεξεργασίας τους, όπως η φόρτωση και η ευρετηρίαση τους σε ένα ΣΔΒΔ.
Το RawVis παρέχει μια πλήρη και αποτελεσματική αρχιτεκτονική πελάτη-διακομιστή
για οπτική εξερεύνηση δεδομένων απευθείας από τα πρωτογενή αρχεία, περιλαμβάνον-
τας μια πλούσια διεπαφή χρήστη που παρουσιάζει μια ευρεία γκάμα επιλογών για οπ-

τικοποίηση και ανάλυση. Μέσω μιας εκτενούς μελέτης χρηστών, αποδεικνύεται η
ικανότητα του συστήματος να προσφέρει οπτική ανάλυση μεγάλων αρχείων πρωτο-

xi

γενών δεδομένων.
Συνοψίζοντας, αυτή η διατριβή προσφέρει μια σημαντική συνεισφορά στον τομέα

της αναλυτικής δεδομένων, παρουσιάζοντας ένα νέο σύστημα και τεχνικές που βελτιώ-
νουν σημαντικά την αποδοτικότητα της διαχείρισης των δεδομένων, μειώνουν τη χρήση
πόρων και ενισχύουν την εμπειρία του χρήστη σε ό,τι αφορά την ταχύτητα και την
αλληλεπίδραση.

xii

ABSTRACT

This thesis introduces novel indexing techniques aimed at facilitating the visual
exploration of data stored in large raw files. In today’s data-driven society, data
is produced at an extraordinary pace, and the ability to rapidly process and com-
prehend this data is becoming increasingly vital. Conventional data exploration
tools heavily rely on Database Management Systems (DBMS), which require data
loading and indexing for analysis. However, these procedures can be expensive,
time-consuming, and impractical, especially when the data may be discarded after
analysis.

The initial part of this thesis sheds light on the shortcomings of existing tools and
methodologies for in-situ data exploration, establishing a compelling argument for
a more efficient system. Subsequently, we present a formal visual exploration model
where user operations are translated into data access operations. Furthermore, we
unveil novel memory indexing techniques and cost models, with a special emphasis
on adaptive indexing and lightweight data structures. These techniques are specifi-
cally designed to manage large volumes of raw data, effectively minimizing the I/O
cost of accessing the data file and quickly initiating user exploratory analysis by
generating a crude version of the index when the user first requests to analyze a file.
This index becomes more detailed and adapts to user exploration with each user op-
eration. Additionally, to handle scenarios with limited resources, a resource-aware
index initialization mechanism is introduced, and efficient approximation algorithms
are proposed to solve the corresponding optimization problem. Through extensive
experimentation using both real and synthetic datasets, the proposed techniques
have been demonstrated to outperform existing solutions, thus addressing the need
for more efficient and intuitive raw data exploration methods.

These indexing techniques and schemes form the backbone of the RawVis system,
enabling efficient query processing and bypassing expensive data preprocessing steps
such as data loading and DBMS indexing. RawVis provides a complete and efficient
client-server architecture for visual data exploration directly over the raw data files,
including a rich user interface that presents a wide array of options for visualization
and analysis. The application of RawVis is demonstrated through a user study,
highlighting its ability to offer immediate and meaningful analytics.

In summary, this thesis offers a significant contribution to the field of raw data
exploration by unveiling a novel system and techniques that notably enhance data
handling efficiency, reduce resource usage, and amplify the user experience in terms
of speed and interactivity.

xiii

Chapter 1

Introduction

1.1 Background and Motivation

Recent advancements in open science practices have led to the proliferation of a
vast number of datasets. These are openly shared in accessible repositories, and a
significant portion is in the form of raw data, i.e., files in standard formats such
as .csv and .json. Consumers of such datasets (e.g. scientists) usually have limited
skills in complex data management and analysis, and may have limited resources
or commodity hardware for use (e.g., scientist’s laptop), in contrast to, e.g., a dis-
tributed environment. At the same time the tasks the users wish to accomplish are
fairly typical and involve having a quick overview and then exploring and analyzing
the contents of a big raw data file preferably by easy-to-use visual ways, such as 2D
visualization techniques (e.g., scatter plot, map) and simple plots (e.g., bar charts),
avoiding the tedious tasks of data loading, preparation and indexing.

One common task in data exploration scenarios involves in-situ visual data analy-
sis, in which data scientists wish to visually interact and analyze large (and dynamic)
raw data files (e.g., CSV). In such scenarios, users need to perform the analysis di-
rectly over the raw files, avoiding the tedious tasks of loading and indexing the data
in a data management system. Still, they expect a very small data-to-analysis time
and they wish to interact via a rich set of visual exploration and analytic operations.

To this end, efficient in-situ processing and analysis of data stored in raw files is
a major challenge for a large number of real-world tasks over diverse domains, such
as astronomy, business intelligence, finance, telco, etc.

To better illustrate the scenario we are discussing, consider the following exam-
ples from the fields of astronomy and telecommunication:

Astronomy Example. Consider a scientist (e.g., astronomer) who wishes to vi-
sually explore and analyze sky observations stored in raw data files (e.g., csv) us-
ing available datasets; e.g., Sloan Digital Sky Survey (SDSS)1, Palomar Transient
Factory2, Zwicky Transient Facility3, Large Synoptic Survey Telescope4, in which
hundreds of millions of sky objects (e.g., stars) are described.

First, the scientist selects the file and visualizes a part of it using scatter plots
with the sky coordinates (e.g., right ascension and declination) [20]. Then, they

1www.sdss.org
2www.ptf.caltech.edu/iptf
3www.ptf.caltech.edu/ztf
4www.lsst.org

1

http://www.sdss.org
http://www.ptf.caltech.edu/iptf
http://www.ptf.caltech.edu/ztf
http://www.lsst.org

may focus on a sky region (e.g., defining coordinates and area size), for which all
contained sky objects are rendered ; move (e.g., pan left) the visualized region in
order to explore a nearby area; or zoom-in/zoom-out to explore a part of the region
or a larger area, respectively.

They may also click on a single or a set of sky objects and view details, such as
name and diameter ; filter out objects based on a specific characteristic, e.g., diam-
eter larger than 50 km; or analyze data considering all the points in the visualized
region, e.g., compute the average age of the visualized objects.

Further, they may also wish to perform further visual analysis of the sky objects
in the area they currently explore by generating for example a bar chart to visualize
the number of sky objects per type, or a heatmap to visualize the number of objects
per type and observation program.

Telecommunication Example. The data scientists working in telco companies
analyze network data in order to get insights regarding the network quality. Such
data are commonly stored in large comma-separated data files and contain signal
and latency measurements crowdsourced from IoT mobile devices, e.g., connected
cars, mobile phones.5

Assume that a data scientist wishes to visually explore the network data using a
map. First, the user renders on the map the signal measurements located in a spe-
cific geographic area, views details (e.g., network provider) for the points visualized,
or filters out the ones that refer to a specific provider. Next, they may move (e.g.,
pan left) the visualized region in order to explore a nearby area; or zoom-in/out
to explore a part of the region or a larger area, respectively. The scientist is also
interested in analyzing the data considering the points in the visualized region by
computing statistics between numeric attributes, e.g., the Pearson correlation coef-
ficient between the signal strength and the bandwidth; or visualize its values using
a scatter plot. Finally, the user may also be interested to visually analyze data, ex-
ploiting also the crucial information included in the categorical attributes ; e.g., via a
heatmap to present the average signal strength per provider and network technology,
or a bar chart to present the average signal strength for each provider, or a parallel
coordinates chart to present the number of measures grouped by provider, brand,
and network technology.

1.2 The Challenges of Efficient In-Situ Visual Ex-

ploration and Analytics

As highlighted, the significance of visual exploration and analytics applied to raw
data is fundamental in numerous real-world applications. Users often wish to utilize
a diverse range of visualization techniques that allow them to interact with data
within a 2D visual environment. For instance, rendering data objects on a map and
engaging in interactive explorations of the area. Users can then concentrate their
analysis on a specific region by zooming in, or alternatively, they can zoom out to
analyze a larger area and draw more generalized conclusions.

Complementing these map-based interactions, other visualization constructs such
as bar charts and heatmaps prove to be indispensable tools for effective data analy-

5For example, https://www.tutela.com

2

https://www.tutela.com

sis. These graphical representations are widely applied across various data analysis
tasks, ranging from feature extraction to OLAP (Online Analytical Processing) anal-
ysis, regression, and comparative analysis of spatial data [68].

Beyond the above-mentioned operations and visualization techniques, filter op-
erations provide the backbone for effective exploration mechanisms, such as faceted
search. This technique allows users to delve into specific aspects of their data, refin-
ing their exploration and analysis journey. These types of analysis and queries have
been widely optimized in traditional data warehouse systems, via spatial and mul-
tidimensional indexes, or materialized aggregated views. However, these methods
require loading the data, as well as constructing and tuning the indexes that would
be necessary for improving the interactivity of such visual analysis.

In-situ techniques, on the contrary, attempt to avoid the overhead of moving,
loading and indexing the data in a DBMS. The key objective is how to offer fast
user interactions without a long preprocessing phase.

The major challenges of such exploration scenarios include:

− First, how can we support a non-expert user with limited programming or
scripting skills to access and analyze raw data from a file through visual ways,
i.e., via an intuitive set of visual rather than data-access (e.g., querying) oper-
ations, without being overwhelmed with any data pre-prossessing tasks, such
as extracting, loading and indexing data to a database?

− Next, how can we keep the response time of such visual operations significantly
small (e.g., less than 1sec) in order to be acceptable by the user?

− Finally, how can we perform the aforementioned operations in machines with
limited computational, memory and space resources, i.e., using commodity
hardware?

Most experimental and commercial visualization tools perform well for ad-hoc
visualizations of small files (e.g., showing a trend-line or a bar chart) or over aggre-
gated data (e.g., summaries of data points, into which users can zoom in), which
can fit in main memory. For larger files, the tools usually require a preprocessing
step for data to be loaded6, indexed (e.g., a spatial index like R-tree) and handled
either via a traditional database or a distributed storage hosted in a non-commodity
hardware. Further, many commercial RDBMs and visualization tools offer also ca-
pabilities for querying external raw data files (e.g., external tables)7; however, they
limit themselves to recurrent file access each time a query is performed and achieve
poor performance [7], prohibitive for the interactive exploration purposes.

In recent years, several adaptive indexing techniques have emerged with the goal
of avoiding upfront construction of a complete index. These techniques aim at mini-
mizing the cost associated with indexing and enable self-organizing DBMSs that re-
quire less human administration. In such approaches, the indexes are incrementally
adjusted and/or the physical order of data is refined during query processing, in ac-
cordance with the characteristics of the workload. [51, 42, 99, 46, 71, 42, 43, 70, 75].

6For example, Tableau has limitations on the size of the data file that can be loaded for visu-
alization [5].

7For example, Oracle [2], MySQL [1] and PostgresSQL [3] provide mechanism that enable SQL
querying of csv files.

3

However, in most cases the data has to be previously loaded in the system, i.e., a
preprocessing phase is considered.

On the contrary, the in-situ paradigm has been recently adopted when analysis
should be performed directly on raw data files (e.g., CSV, JSON), avoiding the
overhead of fully loading and indexing the data in a DBMS. Similarly, to traditional
in-database adaptive methods, in-situ techniques achieve performance by building
indexes on-the-fly and progressively readjusting them as the user explores data.
Works in this area have proposed techniques for progressive loading and/or indexing
of raw data, for “generic” in-situ query processing [7, 49, 45, 90, 57, 56, 73, 74].

Most of these works, however, study the generic in-situ querying problem with-
out focusing on the specific needs for supporting efficient and interactive raw data
visualization and exploration. Hence, the challenge in these scenarios is to achieve
optimization of such analysis, ensuring that visual interaction with raw data is per-
formed efficiently on very large input files using commodity hardware.

1.3 Research Objectives

This research is motivated by the increasing need for efficient and effective in-situ
visual data analysis in various domains. It aims to address the challenges associated
with in-situ processing and interactive visual analysis of large, raw data files, and
contribute to the development of new techniques and tools that can support data
scientists in their work.

The following objectives outline a set of requirements for efficient in-situ visual
exploration and analytics, shaping the direction of the research presented in this
thesis:

− Minimize Data-to-Analysis Time: The aim is to enable quick data anal-
ysis without lengthy pre-processing. To this end, we need to minimize the
cost for parsing the data files. Any indexing should be performed on-the-fly
to ensure minimal data-to-analysis time. Even for large datasets, parsing and
index creation should be brief.

− Efficient Evaluation of User Operations: Quick evaluation of exploratory
and analytical operations on raw files during in-situ exploration is vital. For
large datasets, it’s essential to use an index to enable fast operation evaluation.

− Minimizing I/O Operations: Given the significant impact of I/O oper-
ations on response time, an essential requirement is to limit the number of
objects read from the file during query processing.

− Optimizing Memory Usage: With large raw data files and in-memory
indexes exceeding available memory on standard hardware, a key objective is
identifying the optimal data subset for indexing.

− Adapting to User Interaction: Efficient query evaluation is crucial in ex-
ploration scenarios. Given the prohibitive cost of full upfront indexing in the
in-situ setting and considering the requirements above, it’s necessary to adapt
the index to user interaction. This can bypass the need for a fully detailed
index, making the process more efficient.

4

Raw
Data
File

On-the-fly
Processing &

Indexing

adapt

indexes

render pan zoom filter analysisdetails
?

Visual Operations

(c) Working Scenario

2D exploration

 1 4
8

ok

oj
oi

oj
oi

ok

analysis
1

2

3 4

5

6
Abrand = {Apple, Huawei, Samsg, Xiaomi}
Aprovider = {AT&T, Veriz}
Anet = {3G, 4G, 5G}

(b) Categorical Attributes Domains

(a) Raw Data File Sample

Long Lat Signal Width Brand Provider Net

 o1 21 11 3 7 Samsg Veriz 3G
 o2 29 18 1 4 Samsg Veriz 4G
 o3 11 1 7 6 Xiaomi AT&T 4G
 o4 19 7 2 3 Huawei AT&T 5G
 o5 23 18 4 8 Huawei Veriz 5G

O
bj

ec
ts

Attributes

Figure 1.1: Visual Exploration Scenario Overview

These requirements underscore the need for a solution that addresses the distinct
challenges of in-situ visual exploration and analytics. They set the foundation for
the solution we will propose and explore in the subsequent sections of this thesis.

1.4 In-Situ Visual Exploration: Our Working Sce-

nario

This thesis introduces innovative methods for exploratory visual analysis, enabling
direct utilization of data from raw data files and thereby circumventing the tradi-
tional requirement for a database management system (DBMS). This approach’s
overarching aim are outlined using a hypothetical scenario, presented in Figure 1.1.

In this scenario, imagine a user that wishes to visually explore data through a 2D
visualization technique, such as a scatter plot or map, and perform further analysis
using various chart-based visual analytics techniques, as well as statistical methods.
The priority on 2D visual exploration in this scenario is purposeful, serving to sup-
port one of the most prevalent methods of visual analysis. While working in more
than two dimensions or broader query classes is possible, both the 2.05-dimensional
nature of the human eye [93] and the 2-dimensional nature of the media (being
paper or screen) make the key two-dimensional operators, like the aforementioned
ones, being fundamental, especially, for the initial part of the knowledge extraction
process, which is data exploration. Many datasets naturally align with this form
of analysis as they contain positional information (e.g., geographic coordinates or
astronomical coordinates like right ascension and declination). Additionally, the 2D
characteristics inherent to these exploration scenarios add an extra layer of complex-
ity in contrast to one-dimensional scenarios (e.g., time series data), making them
especially challenging to address.

The targeted visual analysis and its underlying principles are executed in a se-
quence of stages, detailed as follows:

1 The user first selects the input file and a map as the underlying visualization
layout. The file is parsed on-the-fly and an initial “crude” version of the index is
constructed. 2 Then, the user interacts and performs visual and analytic operations
on the map 3 . For example, they may generate visual data representations (e.g.,
bar charts, heatmaps), or use statistical approaches (e.g., Pearson correlation) 4 .

5

Eventually, each user interaction and analytical operation is mapped to a query
evaluated over the index structures 5 , and triggers the readjustment of the index
structure and the update of its contents 6 .

1.5 Thesis Outline

To address the research objectives and challenges previously presented, this thesis
introduces novel indexing structures and techniques to enable efficient and effective
in-situ visual data analysis. The following chapters delve into these techniques, of-
fering a detailed and comprehensive understanding of their design, implementation,
and evaluation.

The structure of this work is as follows:
Chapter 2 provides a review of the existing literature, focusing on efficient index-

ing and querying of raw data, and efficient exploration and visualization techniques.
Chapter 3 then introduces the basic concepts of the visual exploration model, form-
ing the foundation of this thesis.

The discussion extends in Chapter 4 where we present VALINOR, a main-
memory index for 2D in-situ visual exploration. In Chapter 5, we build upon this by
introducing the VETI index, an extension of VALINOR that is optimized to handle
categorical attributes.

Chapter 6 presents an application of these principles and techniques in a proto-
type system, RawVis, designed to facilitate the real-time visual exploration of raw
data files.

Finally, Chapter 7 provides a conclusion to the research, revisiting the addressed
challenges, and reflecting on the potential for future work in the area. The aim of
this thesis is to provide valuable insights into the world of in-situ visual data analysis
and pave the way for further research in this field.

6

Chapter 2

Related Work

2.1 Introduction

Several areas relate to the general problem of exploration and visualization of raw
data, which can be grouped into two main categories: efficient indexing and querying
of the raw data; and efficient and effective exploration and visualization techniques.
On the indexing and query processing part, the most relevant one deals with in-situ
query processing, i.e., how the time-consuming task of loading and indexing of the
data can be avoided such that the time-to-analysis is minimized. Also, considering
the focus given in this thesis on 2D exploration settings, we review several spatial
indexes that have been proposed for 2D querying and analysis in database settings.
On the visualization and exploration part, there is number of visualization-driven
indexes, most of them operating in main memory, that aim at speeding up user
exploration actions. In this section, we present in details these works and provide a
comparison of our approach to them.

2.2 In-situ Query Processing

Data loading and indexing usually take a large part of the overall time-to-analysis for
both traditional RDBMs and Big Data systems [45]. In-situ query processing aims
at avoiding data loading in a DBMS by accessing and operating directly over raw
data files. NoDB [7] is a philosophy for constructing a no-dbms querying engine over
raw data, and PostgresRAW is one of the first efforts for in-situ query processing.
PostgresRAW incrementally builds on-the-fly auxiliary indexing structures called
“positional maps” which store the file positions of data attributes, as well as it
stores previously accessed data into cache.

DiNoDB [90] is a distributed version of PostgresRAW. In the same direction,
PGR [57] extends the positional maps in order to both index and query files in
formats other than CSV. In the same context, Proteus [56] supports various data
models and formats. Also, Slalom [73, 74] exploits the positional maps and integrates
partitioning techniques that take into account user access patterns.

Raw data access methods have been also employed for the analysis of scientific
data, usually stored in array-based files. In this context, Data Vaults [50] and SDS/Q
[19] rely on DBMS technologies to perform analysis over scientific array-based file
formats. Further, SCANRAW [24] considers parallel techniques to speed up CPU

7

intensive processing tasks associated with raw data accesses.
To note that, several well-known DBMS support SQL querying over CSV files.

Specifically, MySQL provides the CSV Storage Engine [1], Oracle offers the External
Tables [2] and Postgres has the Foreign Data [3] However, these tools do not focus
on user interaction, parsing the entire file for each posed query, and resulting in
significantly low query performance [7] for interactive scenarios.

Despite their contributions, the aforementioned works primarily focus on the
generic in-situ querying problem, without fully considering the specific needs for
raw data visualization and exploration. For instance, the positional map in Post-
gresRAW is primarily used to reduce parsing and tokenization costs during query
evaluation. However, it does not minimize the number of objects examined during
a query’s evaluation.

In the context of in-situ visual exploration, it is crucial to minimize the time taken
to process user operations and update visual representations displayed to the user.
The aim is not solely to reduce file parsing cost but also to decrease the number of
data objects examined. In addition to indexing data objects based on their attribute
values, we can enhance the efficiency of queries that involve calculating aggregates
and statistics. This can be achieved by reusing previously computed statistics,
thereby eliminating the need to access the file for subsets of the data.

Given the potentially very large size of raw data files, existing solutions also fall
short as they overlook the consideration of available memory resources. By explicitly
accounting for the accessible memory, and for instance, establishing a more granular
indexing structure around the user’s areas of exploration, we can optimize resource
distribution, thus accelerating the early stages of exploration.

In contrast to existing approaches, this thesis places emphasis on the specific
requirements and challenges of interactive visual exploration and analytics in the
in-situ context. The solutions proposed herein aim to optimize user exploratory
operations, such as pan and zoom in a 2D exploration scenario, as well as various
chart-based visualizations and aggregate analytics. These proposals ensure efficient
visual interaction with raw data on large input files, even on commodity hard-
ware with limited memory resources, thereby underscoring the significance of taking
memory requirements into consideration.

2.3 Exploratory Data Analysis

A core objective of this work is to address the challenges of providing effective and ef-
ficient exploratory data analysis techniques. Data exploration sessions usually start
by employing statistical analysis to gain an overview of the various characteristics of
the data and find underlying trends in an iterative process, where each exploratory
query helps formulate the next one. Most traditional database systems provide
support for basic statistical analysis (e.g., aggregates, top-k, etc). More advanced
exploratory statistical analysis can be performed by tools like the R programming
language [78] or NumPy and SciPy [4]. These tools cannot handle our in-situ ex-
ploratory scenario, though, since they either assume that the data fits in memory,
or are integrated with traditional database systems which require a preprocessing
phase.

One significant challenge in exploratory statistical analysis is the time required
to compute statistics on large datasets, which often proves unsuitable for interactive

8

settings. To address this issue and enable the reuse of computations in future queries,
various approaches have been proposed. In [94], Data Canopy is introduced as a
method to reduce the amount of data accessed during statistics calculation. It
achieves this by synthesizing statistics from basic aggregates computed over chunks
of data columns, which are then cached for reuse by subsequent queries.

However, while Data Canopy enables the reuse of cached basic aggregates for
efficient calculation of more general statistics, it does not explicitly tackle the prob-
lem of fast exploration over large raw datasets. Furthermore, Data Canopy’s focus
is primarily on the one-dimensional setting, with its chunks defined over consecutive
data items from a single column. Although useful, it does not cater to the spe-
cific requirements of common visual exploration settings involving two dimensions.
Consequently, the chunking approach used in Data Canopy facilitates computing
statistics over query ranges defined between two positions in a column set, but it
cannot be effectively exploited for evaluating two-dimensional window queries.

2.4 Adaptive Indexing

An important research area related to the objectives of this thesis revolves around
the concept of adaptive indexing. The basic idea of approaches like database cracking
and adaptive indexing [51, 42, 99, 46, 71, 42, 43, 70, 75, 8, 81, 76, 47, 48, 37, 39, 82, 44]
is to incrementally build and adapt indexes and/or refine the physical order of data,
during query processing, following the characteristics of the workload.

However, in these works the data has to be previously loaded in the system,
i.e., a preprocessing phase is required. As a result, these approaches are not suit-
able for in-situ query scenarios, where the cost of the preprocessing phase has to
minimized. Additionally, the aforementioned works refine the (physical) order of
data, performing highly expensive data duplication and allocate large amount of
memory resources. As a result, these approaches are not suitable for in-situ query
scenarios, where the cost of the preprocessing phase has to be minimized. Never-
theless, in the in-situ scenarios the analysis is performed directly over immutable
raw data files considering limited resources. In addition, the existing cracking and
adaptive indexing methods have been developed in the context of column-stores
[39, 37, 46, 48, 47, 76, 8], or MapReduce systems [81].

2.5 Multi-dimensional Indexing

The focus of this work centers on an in situ exploration scenario, where users actively
participate in interactive exploration utilizing two-dimensional visualizations, such
as maps or scatter plots. This exploration involves various user operations, including
panning and zooming, to navigate and examine the data. To enable efficient query
processing across multiple dimensions, a diverse array of multi-dimensional index
structures has been introduced in both traditional databases and Big Data systems.

Traditional spatial indexes, such as the R-tree, kd-tree, quadtree [34], are de-
signed to improve the evaluation of range or nearest-neighbor queries on multi-
dimensional data, and are widely available in both disk-based and main memory
implementations. In R-trees [65], nearby objects are grouped together using mini-
mum bounding rectangles, with rectangles at higher levels of the tree aggregating

9

an increasing number of objects and leaf nodes containing the actual objects. In
the same context, several variants have been proposed to solve some of its disadvan-
tages. For example, X-trees [14] try to avoid the overlap in the bounding boxes, a
common problem in higher dimensions, by introducing a splitting algorithm and the
concept of supernodes. M-trees [25], another R-tree variant, are constructed using
a distance metric and rely on the triangle inequality for more efficient range and
k-nearest neighbor queries. In contrast to X-trees, M-trees suffer from large overlap.

R-trees, as well as its variants [65], consider several criteria (e.g., tree balance,
space coverage, node overlaps, fill guarantees) in order to improve query processing.

As a result, even main memory implementations require substantial memory and
time resources to construct, which makes them inappropriate for enabling the users
to quickly start exploring and interacting with the data, as in the case of in situ data
exploration. In contrast, lightweight indexing structures, such as those proposed
in this thesis, are more favorable for in situ data exploration. These lightweight
structures aim to expedite the raw data-to-visualization time and provide users with
a simple set of 2D visual operations, prioritizing lower memory requirements and
faster initialization time over more advanced aspects of spatial data management.

The indexing structures proposed in this work exhibit similarities with the grid
file [72] as they both partition the space and organize data objects into tiles/cells.
However, significant differences arise when considering the merging and splitting
phases, methods, and criteria employed in each approach.

Firstly, in grid files, the merging and splitting phases occur during the grid
construction phase. In contrast, our proposed indexes adapt by performing merging
and splitting operations after construction, during runtime. Furthermore, these
merging and splitting operations are executed incrementally and adaptively, based
on user interactions.

Secondly, the criteria used to determine the merging and splitting differ between
the two approaches. Grid files utilize criteria such as storage utilization, mini-
mum/maximum number of objects per tile, number of I/O accesses, and budget
size. In contrast, this work employs merging and splitting criteria based on user
interactions, particularly queries. Additionally, this work estimates the initial struc-
ture characteristics, such as tile size, based on the first user’s interaction. Further-
more, we compute and leverage specific metadata aimed at enhancing visual-based
operations and analytics.

Building upon our review of existing multi-dimensional indexing structures, it
is worth examining related studies that focus on distributed caching and perfor-
mance improvement in multi-dimensional scenarios. [102] studies the problem of
distributed caching of multi-dimensional raw arrays. The system implements a dis-
tributed caching system that improves the performance of queries that use frequently
accessed data values, focusing on similarity join over arrays queries [101]. To this
end, a method that selects which part of the data to be cached is proposed. This
method is based on an R-tree which is incrementally enriched with the data that are
accessed. Further, the caching mechanism, uses an algorithm to select in which node
the cached data have to be stored in order to minimize data transfer. This algorithm
is implemented as a search greedy algorithm which is based on incremental array
view maintenance [103]. [102] considers raw data files, as well as the incremental
indexing paradigm. However, it is important to note that these works investigate
different settings and pursue distinct goals compared to the focus of this thesis. The

10

primary objective of this work is to enable in-situ visual exploration of large raw data
files using commodity hardware, without incorporating a distributed setting. More-
over, the fundamental goal of the proposed indexing structures and techniques in
this work is to minimize I/O operations, enabling efficient and interactive evaluation
of user operations throughout the exploration process.

2.6 Visual Exploration

Visual data exploration offers the users the ability to interact with the underlying
data through visual ways, i.e., mapping user operations to data access and querying
methods [77, 15, 9, 35]. In this context, the first efforts focused on developing visual
querying languages for DBs such as [104, 10, 22, 23, 66]. Most of these languages
address the need to offer the database analyst a visual way for syntactically express-
ing a query, rather than offering visual operations for interactive data exploration.
In most interactive visualization systems, visual user operations (e.g., map panning)
are used for specifying the actual query logic and several visualization languages have
been proposed to to simplify the generation of such visualizations [28, 40, 41, 95].

2.6.1 Progressive Visualization

As already highlighted, a core challenge in visual exploration is interactivity. Many
of the existing studies, based on human cognitive constraints, state that a de-
lay of one second is the (most common) upper bound in interactive applications
[63, 83, 21, 84]. To support interactivity, many systems adopt the progressive
paradigm attempting to reduce the response time. [32, 11, 80, 100, 6, 33]. Pro-
gressive approaches, instead of performing all the computations in one step (that
can take a long time to complete), splits them in a series of short chunks of approx-
imate computations that improved with time. Therefore, instead of waiting for an
unbounded amount of time, users can see the results unfolding progressively. These
approaches can adjust the relation between the response time and the approximation
error bounds.

2.6.2 Visualization Recommendation

In order to assist users throughout the visual exploration process, several approaches
have been developed in the context of visualization recommendation [91]. These
approaches recommend the most “suitable” visualizations by taking into account
several factors, such as data characteristics, environment setting and available re-
sources (e.g., screen resolution/size, available memory) [52, 18], user preferences and
behavior [69, 36], examined task, etc. Especially considering data characteristics,
there are several systems that recommend the most suitable visualization technique
(and parameters) based on the type, attributes, distribution, or cardinality of the
input data [58, 30, 64].

11

2.7 Data Structures & Indexing for Visual Data

Exploration

Several data visualization systems have been created utilizing data structures and
indexes specifically tailored for visual exploration, aiming to enhance efficiency and
scalability. VisTrees [31] and HETree [18] are tree-based main-memory indexes that
address visual exploration use cases, i.e., they offer exploration-oriented features
such as incremental index construction and adaptation. Compared to our work,
both indexes focus on one-dimensional visualization techniques (e.g., histograms),
do not support categorical attributes and group-by analytics, and do not consider
disk storage, i.e., data stored in-memory.

Nanocubes [61], Hashedcubes [27], SmartCube [62], Gaussian Cubes [92], and
TopKubes [67] are main-memory data structures defined over spatial, categorical
and temporal data. The aforementioned works are based on main-memory varia-
tions of a data cube in order to reduce the time needed to generate visualizations.
Nanocubes [61] attempts to reduce the memory of the data cube by sharing nodes in
a single tree structure. Hashedcubes [27] follows a different approach where, instead
of materializing all possible aggregations, it uses a partial ordering of the dimen-
sions and the notion of pivot arrays to calculate on-the-fly the aggregations missing.
Smartcube [62] is a variation of Nanocubes, where instead of pre-computing all
cuboids from the start, it chooses some important ones based on the user queries, in
order to reduce memory usage. Also, it may adaptively change stored cuboids when
querying patterns change. The indexes in the aforementioned works are generated
during a preprocessing phase, and thus cannot be used in in-situ scenarios, e.g., they
do not address problems related to reducing the initialization time. Moreover, these
works assume that all the aggregations are materialized and stored in main memory,
and can often require prohibitive amounts of memory.

Further, graphVizdb [17, 16] is a graph-based visualization tool, which employs
a 2D spatial index (e.g., R-tree) and maps user interactions into window 2D queries.
To support the operation of the tool, a partition-based graph drawing approach is
proposed. Compared to the approaches presented in this work, graphVizdb requires
a loading phase where data is first stored and indexed in a relational database system.
In addition, it targets only graph-based visualization and interaction, whereas our
approach offers interaction in 2D layouts, such as maps or scatter plots.

Spatial 2D indexing is also adopted in Kyrix [87]. Kyrix is a generic platform
that supports efficient Zoom and Pan operations over arbitrary data types. Initially,
the data is stored in a database and indexed using R-trees. In both graphVizdb and
Kyrix the zoom levels are predefined, with each level having its own table and R-
tree. Each Pan and Zoom operation is mapped to a rectangle 2D query, and based
on the zoom level, is evaluated over the corresponding table and R-tree.

Compared to our setting, the aforementioned systems require a preprocessing
phase where data is first stored and indexed in a database system. On the other
hand, this thesis focuses on the in-situ setting, over limited memory resources. To
improve query evaluation performance and reduce the I/O costs, the methods pro-
posed here are based on in-memory incremental and adaptive indexing and query
evaluation methods. On the other hand, in Kyrix, queries are evaluated over fixed
database indexes, while a caching and prefetching strategy is used to reduce the

12

database access cost.
Another difference is related to the evaluation of statistics. This work focuses on

efficient statistics computations by utilizing stored metadata to reduce the required
I/O operations. On the other hand, the aforementioned works do not study the
problem of efficient statistics computations.

In another context, tile-based structures are used in visual exploration scenarios.
Semantic Windows [54] considers the problem of finding rectangular regions (i.e.,
tiles) with specific aggregate properties in an interactive data exploration scenario.
This work uses several techniques (e.g., sampling, adaptive prefetching, data place-
ment) in order to offer interactive online performance. ForeCache [12] considers a
client-server architecture in which the user visually explores data from a DBMS.
The approach proposes a middle layer which prefetches tiles of data based on user
interaction. Prefetching is performed based on strategies that predict next user’s
movements. This work considers different problems compared to the aforementioned
approaches, but some of these methods can be exploited in our framework to further
improve efficiency and estimate several parameters (e.g., splitting criteria, eviction
and initialization policy).

2.8 Summary

This chapter provided an overview of existing works related to the data exploration
and visualization of raw data. It discussed efficient indexing and query process-
ing of raw data, exploratory data analysis, adaptive indexing, multi-dimensional
indexing, and visual exploration. The chapter highlighted the limitations of existing
approaches and set the foundation for the proposed solutions that aim to optimize
user exploratory operations in the context of interactive in-situ visual exploration.

13

14

Chapter 3

Visual Exploration Model

3.1 Introduction

This chapter delves into the description of a formal visual exploration model that
serves as the foundation of the indexing structures and techniques proposed in this
thesis. The aim is to provide a comprehensive understanding of the model and its
underlying principles, enabling the facilitation of exploratory visual analysis of data
from raw data files.

The chapter first introduces the basic concepts of the visual exploration model.
It defines some preliminaries regarding the structure of a raw data file and the
objects within it, as well as the various types of attributes and how they are used in
the visual exploration model. The model outlines the various operations performed
by the user as they visually explore and analyze the raw data. Furthermore, the
chapter describes the mapping between visual operations and exploratory queries.
This mapping helps establish a clear connection between user interactions and the
underlying data access and processing operations.

Overall, this chapter serves as an essential foundation for the subsequent dis-
cussions and presentation of the novel index structures and techniques proposed to
enhance the performance and efficacy of in-situ visual exploratory analysis.

3.2 Basic Concepts

In this section, we define the foundational concepts pertinent to the visual explo-
ration scenario described above.

Raw Data File & Objects. We assume a raw data file F containing a set of
d-dimensional objects O. Each dimension j corresponds to an attribute Aj ∈ A,
where each attribute may be numeric or textual.

Each object oi contains a list of d attributes oi = (ai,1, ai,2, ..., ai,d), and it is
associated with an offset fi (a hex value) pointing to the “position” of its first
attribute (i.e., ai,1) from the beginning of the file F . Note that object entries can
be either fixed or variable-length; in the latter case they are separated by a special-
character; e.g., CR for a text file, that precedes the offsets. Note also, that we
consider flat files, i.e., files containing objects that neither exhibit any nesting or
any other complex structure (e.g., JSON formats), nor refer to data located in other
files.

15

(a) Raw Data File Sample

(b) Categorical Attributes Domains

Figure 3.1: Raw Data File and Domain of Categorical Attributes

Categorical Attributes. In our exploration model, we distinguish categorical
attributes from other textual or numeric attributes of the data file. Categorical
attributes, characterized by their non-continuity and a distinct, limited set of values,
play a pivotal role in many visualization techniques, such as bar charts or heat maps.

Let AC ⊆ A denote the categorical attributes of the objects. Each categorical
attribute AC is represented as a finite set of values AC = {v1, v2, ...vn}, which defines
the domain of the attribute, i.e., dom(AC).

Example 1. [Raw Data File & Objects] Figure 3.1a presents a sample of a raw file
containing five entries/objects (o1 - o5). Each entry represents a signal measurement
and contains information regarding the: geographic location (Lat, Long), signal
strength (Signal) and network bandwidth (Width), as well as network and device
characteristics which take categorical values such as: device brand, network provider,
and network technology (Net). To gain a better understanding of the categorical
attributes, Figure 3.1b presents the domain of each categorical attribute in the data
file.

Further, for each object oi, there exists a file pointer fi that indicates the offset
of oi from the beginning of the file. This file pointer can be utilized to access the
attributes of oi in a random-access manner.

3.3 Visual Exploration Model

Given a raw data file F containing a set of d-dimensional objects, the user arbitrarily
selects1 two attributes Ax,Ay ∈ A, with numeric values that can be mapped to the
X and Y axis of a 2D visualization layout (e.g., a map, scatter diagram). The Ax
and Ay attributes are denoted as axis attributes, while the rest as non-axis. The

1We assume that the user is familiar with the schema of the data file; otherwise, as a first step,
they may have a preview of it, in terms of loading a small sample.

16

non-axis attributes include all the other numeric or textual attributes of the data
file, including the categorical attributes AC .

The user selects to visualize a rectangular area Φ = (Ix, Iy,OΦ,DΦ,GΦ,NΦ),
called visualized area, which is defined by the two intervals Ix = [x1, x2] and Iy = [y1, y2]
over the axis attributes Ax and Ay, respectively; i.e., Φ corresponds to the 2D area
Ix × Iy. The visualized area, contains a set of visible objects OΦ ⊂ O, for which the
values of their axis attributes fall within the ranges of that area. Note that the
mapping of the position (x, y) of the objects in the visualized area to their values
Ax and Ay in the data is linear, e.g., spatial coordinates or any other affine mapping.

Each object oi ∈ OΦ is associated with a set of visual annotations DΦ presenting
values from a set of {A1,A2, ...Ak} non-axis attributes. Further, Φ can be linked
to visual annotations GΦ in order to differentiate objects based on their values for
specific categorical attributes C. Finally, Φ can be associated with a set of visual
annotations NΦ obtained by applying a collection of N aggregate functions to either
all objects OΦ or groups of objects determined by GΦ. Note that, the OΦ, DΦ, GΦ

and NΦ can be empty sets.
We define a visual operation V O ∶ Φ → Φ′ as a 2D transformation on the visu-

alized area, which transforms it to a new area Φ′ = (I ′x, I ′y,O′
Φ,D

′
Φ,G

′
Φ,N

′
Φ). The

following basic visual operations/interactions are considered:

− render: visualizes all objects contained in the visualized area. Formally:
V Orender ∶ Φ(Ix, Iy,∅,DΦ,GΦ,NΦ)→ Φ′(Ix, Iy,OΦ,DΦ,GΦ,NΦ). Note that the
objects may be visualized as points or other visual elements.

− move: translates the boundary of the visualized area with shift constants kx
and ky (i.e., number of pixels) on the X and Y axis, respectively. Formally:
V Omove ∶ Φ(Ix, Iy,OΦ,DΦ,GΦ,NΦ)→ Φ′(I ′x, I ′y,O′

Φ,D
′
Φ,G

′
Φ,N

′
Φ), where I ′x = [x1+

kx, x2 + kx], I ′y = [y1 + ky, y2 + ky]

− zoom in/out: zooms in/out the boundary of the visualized area keeping the
point φ = (φx, φy) inside Φ as fixed point with a zoom factor z%, with z ∈ R+.
Formally: V Ozoom ∶ Φ(Ix, Iy,OΦ,DΦ,GΦ,NΦ) → Φ′(I ′x, I ′y,O′

Φ,D
′
Φ,G

′
Φ,N

′
Φ),

where I ′x = (φx −
√
z
∣Ix∣
2
, φx +

√
z
∣Ix∣
2

), I ′y = (φy −
√
z
∣Ix∣
2
, φx +

√
z
∣Ix∣
2

). V Ozoom

corresponds to Zoom in operation when 0 < z < 1, and to Zoom out when z > 1.
Note that this operation assumes a scale on the X and Y coordinates and a
subsequent translation to keep the area center φ fixed.

− filter: excludes objects visualized in Φ, based on conditions over the non-axis
attributes. Formally: V Ofilter ∶ Φ(Ix, Iy,OΦ,DΦ,G′

Φ,NΦ)→ Φ′(Ix, Iy,O′
Φ,D

′
Φ,N

′
Φ),

where O′
Φ ⊂ OΦ.

− details: visualizes annotations with values for non-axis attributes on every ob-
ject included in Φ. Formally: V Odetails ∶ Φ(Ix, Iy,OΦ,∅,GΦ,NΦ)→ Φ′(Ix, Iy,OΦ,DS,NΦ).

− group: finds groups of objects based on one or more categorical attributes, i.e.,
similar to the group-by operation defined in SQL. The visual result of this op-
eration could be some visual annotation distinguishing objects based on their
group. Formally: V Ogroup ∶ Φ(Ix, Iy,OΦ,DΦ,∅,NΦ)→ Φ′(Ix, Iy,OΦ,DΦ,GΦ,N ′

Φ),
where the objects in O′

Φ are partitioned into groups based on their categorical
attributes. The resulting groups are represented visually within Φ′.

17

− analyze: computes aggregate values for all objects or groups of objects in-
cluded in Φ and visualizes them appropriately as annotations of the entire
area or the groups within it. For example, the aggregate values per group may
be visualized through suitable techniques like bar charts, pie charts or heat
maps, depending on the number of attributes involved in the group operation.
Formally: V Oanalyze ∶ Φ(Ix, Iy,OΦ,DΦ,GΦ,∅) → Φ′(Ix, Iy,OΦ,DΦ,GΦ,N ′

Φ),
where N ′

Φ includes aggregate values computed over either all objects or groups
of objects in O′

Φ.

These operations may be combined in a sequence, e.g., zoom in a region and then
filter the presented objects. Subsequent user actions form the user’s exploration
model, e.g., the user first renders a specific area Φ and then moves to render a
neighboring area Φ′. Thus, a user’s exploration model is a finite ordered set of
visual operations applied by the user on the 2D space.

3.4 Exploratory Query

Considering the aforementioned visual operations, we proceed with mapping them
to data-access operators, which operate on the underlying data file. Data-access
operators are essentially the building blocks of a single query applied on the data,
which we call exploratory query. In what follows, we formulate this notion and
provide the definition of each operator. Next, we provide the mapping of visual to
data access operators.

Given a set of objects O and the axis attributes Ax and Ay, an exploratory query
Q over O is defined by the tuple ⟨S,F,D,G,N⟩, where:

– Selection clause S: defines a 2D range query (i.e., window query) specified by two
intervals Ix and Iy over the axis attributes Ax and Ay, respectively. The Selection
clause is denoted as S = (Ix, Iy) and its intervals are S.Ix and S.Iy. This clause
selects the objects OS ⊆ O, for which the values of their axis attributes fall within
the respective intervals, S.Ix and S.Iy. The Selection clause is mandatory in a
query Q, while the remaining clauses are optional.

– Filter clause F: defines a set of conjunction conditions that are applied on the non-
axis attributes. The Filter clause is defined as F = {F1, F2, ...Fk}, where a condition
Fi is a predicate involving an atomic unary or binary operation over object attributes
and constants. The Filter clause is applied over the selected objects OS, returning
the objects OQ that satisfy the F conditions.

– Details clause D: defines a set of non-axis attributes D = {A1,A2, ...Ak}, for which
the values of the objects OQ, will be returned by the query.

– Group-by clause G: defines a set of categorical attributes G = {A1,A2, ...Ak} with
Ai ∈ C, which are used in a group-by operation. Given a set of objects O and an
attributes set C, the group-by operation partitions O into a set of distinct groups,
denoted as GCO, based on the different combinations of the values of the C attributes
in the O objects. Thus, here, the Group-by clause G performs a group-by operation
based on its attributes, over the objects satisfying the filter OQ, resulting in the
groups GGOQ .

– Analysis clause L: defines two sets of algebraic aggregate functions (e.g., count,
mean) [38], where each of them is applied over a set of numeric attributes, returning

18

a single numeric value. Particularly, the Analysis clause defines two sets of functions:
(1) LQ that are computed over the objects OQ returned by the query ; and (2) LG

that are computed over each group of objects resulted by the group-by operations.
Thus, the analysis clause is defined as: L = (LQ, LG).
Note that, the support of algebraic aggregate functions in our model enables the
computation of a large number of complex statistics, e.g., Pearson correlation, co-
variance.2

Intuitively, the Selection and Filter clauses apply restrictions (the equivalent of
selection in relational algebra) to the entire space of objects, resulting in a set of
qualifying objects OQ, which is visually presented. For each object in OQ, the values
of the attributes included in the Details clause will be returned. Then, Group-
by clause evaluates group-by operations over the OQ objects. Finally, the set of
aggregate functions of the Analysis clause is computed over the objects of OQ, and
the objects’ groups generated by the Group-by clause.

The semantics of query execution involves the evaluation of the different clauses
of the query in the following order: (1) Selection; (2) Filter ; (3) Details ; (4) Group-
by ; (5) Analysis.

Mapping User Interactions to Exploratory Queries.
A user interaction can be mapped to clauses of an exploratory query. Table 3.1

presents the correspondences for the six aforementioned visual operations. Specif-
ically, the render, move, and zoom operations are implemented by the Selection
clause; the render operation sets the Selection intervals Ix and Iy equal to the re-
gion of the visualized area, move sets the intervals equal to the new intervals of
the shifted area and zoom in/out operations set the Selection intervals to the new
coordinates of the contained/containing visualized regions, respectively. Finally, the
filter, details, group, and analyze operations are implemented by the query’s Filter,
Details, Group-by and Analysis clauses, respectively.

Query Result. The result R of an exploratory query Q over O is defined as
R = (Vx,y,D,VLQ ,VG), where:
(1) Vx,y,D is a set of tuples corresponding to the objects OQ returned by the query.
For each object, its tuple contains: (a) the values of the axis attributes Ax and
Ay; and (b) the values of the attributes D defined in the Details clause. Formally,
Vx,y,D = {⟨oi ∶ αi,x, αi,y, αi,A1 , ...αi,Ak⟩,∀oi ∈ OQ}, where {A1, ...Ak} = D.

(2) VLQ is a list of the numeric values produced by the aggregate functions LQ over
the objects OQ. Formally, VLQ = {`1(OQ), `2(OQ), ...`k(OQ)}, ∀`i ∈ LQ.

(3) VG contains the results of the group-by clause. Particularly, VG is a set of
tuples, where each tuple corresponds to a gi group from GGOQ . Each tuple con-

tains: (a) the values of the attributes G defined in the group-by clause; and (b) the
results of the aggregate functions LG (computed over gi). Formally, VG = {⟨gi ∶
ai,A1 , ...ai,Ak , `1(gi), ...`z(gi)⟩,∀gi ∈ GGOQ}, where {A1, ...Ak} = G and {`1, ...`z} = LG.

Example 2. [Exploratory Query]
Figure 3.2 presents a 2D representation of 12 objects from the file presented in

Figure 3.1a, in which the attributes Lat and Lon have been selected as the axis

2More than 90% and 75% of the statistics supported by SciPy and Wolfram, respectively, are
defined as algebraic aggregate functions [94].

19

T
a
b
le

3
.1
:

C
orresp

on
d

en
ces

b
etw

een
V

isu
al

O
p

eration
s

an
d

E
x
p

loratory
Q

u
eries

*
D

e
sc

r
ip

tio
n

V
isu

a
l

O
p

e
r
a
tio

n
E

x
p

lo
r
a
to

r
y

Q
u

e
r
y

R
en

d
er

th
e

o
b

jects
in

clu
d

ed
in

th
e

v
isu

a
lized

r
e
n

d
e
r

Φ
S
=
(I
x
,I
y)

2
D

a
rea

Φ
d

efi
n

ed
b
y

th
e

in
terv

a
ls
I
x
,I
y
.

M
o
v
e

th
e

v
isu

a
lized

a
rea

Φ
to

a
n

ew
Φ
′.

m
o
v
e

fro
m

Φ
to

Φ
′

S
=
(I ′x

,I ′y)
Φ
′=

I ′x ×
I ′y

Z
o
o
m

in
/
o
u

t
o
v
er

th
e

v
isu

a
lized

a
rea

Φ
,

h
a
v
in

g
a
s

zo
o
m

z
o
o
m

in
/
o
u

t
z
%

o
v
er

Φ
S
=
(I ′x

,I ′y)
cen

ter
th

e
p

o
in

t
φ

in
sid

e
Φ

,
a
n

d
a

zo
o
m

fa
cto

r
z
%

.
w

ith
cen

ter
φ

Z
o
o
m

in
:

0
<
z
<

1
Z

o
o
m

o
u

t:
z
>

1
φ
=
(φ
x
,φ
y),

z
∈
R
+

S
.I ′x

=
[φ
x
−
√
z ∣I

x ∣
2

,
φ
x
+
√
z ∣I

x ∣
2

]

S
.I ′y

=
[φ
y
−
√
z ∣I

y ∣
2

,
φ
y
+
√
z ∣I

y ∣
2

]

F
ilter

th
e

o
b

jects
in

clu
d

ed
in

th
e

v
isu

a
lized

a
rea

Φ
,

fi
lte

r
th

e
o
b

jects
in

sid
e

Φ
,{
c
1
,c

2
,...c

k }
S
=
(I
x
,I
y)

b
y

a
p

p
ly

in
g

th
e

set
o
f

co
n

d
itio

n
s
{
c
1
,c

2
,...c

k }
F
=
{
c
1
,c

2
,...c

k }

P
resen

ts
th

e
v
a
lu

es
o
f

th
e

a
ttrib

u
tes

{
A

1
,A

2
,...A

k }
d

e
ta

il
th

e
o
b

jects
in

sid
e

Φ
,{
A

1
,A

2
,...A

k }
S
=
(I
x
,I
y)

fo
r

th
e

o
b

jects
in

clu
d

ed
in

th
e

v
isu

a
lized

a
rea

Φ
.

D
=
{
A

1
,A

2
,...A

k }

G
ro

u
p

th
e

o
b

jects
in

th
e

v
isu

a
lized

a
rea

Φ
g
r
o
u

p
th

e
o
b

jects
in

sid
e

Φ
,{
A

1
,A

2
,...A

k }
w

ith
A
i ∈C

S
=
(I
x
,I
y)

b
a
sed

o
n

o
n

e
o
r

m
o
re

ca
teg

o
rica

l
a
ttrib

u
tes.

G
=
G
CO

Φ

A
n

a
ly

ze
th

e
o
b

jects
in

th
e

v
isu

a
lized

a
rea

Φ
,

a
n

a
ly

z
e

th
e

o
b

jects
in

sid
e

Φ
,{
F

1
,F

2
,...F

k }
S
=
(I
x
,I
y)

b
a
sed

o
n

a
set

o
f

fu
n

ctio
n

s
{
F

1
,F

2
,...F

k }
.

N
=
{
F

1
,F

2
,...F

k }

*
Φ

is
th

e
v
isu

a
lized

2
D

a
rea

I
x
×
I
y

20

Figure 3.2: Exploratory Query

attributes AX and AY , respectively.
Also, an exploratory query Q is presented in the figure. The Selection clause of

Q is defined by the two intervals S.Ix=[19, 31] and S.Iy=[9, 22]. The query selects
all objects contained in this 2D area. The objects OS selected by the Selection clause
are o1, o2, o5. Assuming that the query has only a Selection clause, the result fetches
only axis attribute values, i.e., R = (Vx,y,D = ⟨o1 ∶ 21,11⟩, ⟨o2 ∶ 29,18⟩, ⟨o5 ∶ 23,12⟩).

If we enrich the query with a Filter clause F = Width > 5, which applies a
condition over the bandwidth attribute, i.e., FA = Signal, then the result will be
R = (Vx, y,D = ⟨o1 ∶ 21,11⟩, ⟨o5 ∶ 23,12⟩), as the o2 is omitted due to its bandwidth
value of 4. Furthermore, adding to the above query a Details clause D = Signal,
the result becomes R = (Vx,y,D = ⟨o1 ∶ 21,11,3⟩, ⟨o5 ∶ 23,12,4⟩).

Further, assume that the user wishes to group the objects based on their values
for the categorical attribute Signal. After establishing the grouping, the user then
defines an Analysis clause L = (LQ, LG) for the query. Here, the LQ function set
applies to the overall query, whereas the LG function set applies to each group defined
in the Group-by clause. In this example, for the overall query analysis clause LQ, the
user has specified a function corr(Signal,Width) which calculates the correlation
(i.e., Pearson correlation coefficient) between Signal and Width. This function is
computed only over the objects included in the query result; i.e., o1 and o5. For
each group, the user also specifies an analysis function, Avg(Signal), in the group
analysis clause LG.

As a result, the query result now includes both overall and group-wise aggregate
results, and becomes:
R = (Vx,y,D = ⟨o1 ∶ 21,11,3⟩, ⟨o5 ∶ 23,12,4⟩,VLQ = ⟨corr(Signal,Width) ∶ 0.996⟩,

VG = ⟨Avg(Signal) ∶ ⟨V eriz ∶ 3,3⟩, ⟨AT&T ∶ 4,4⟩⟩

3.5 Summary

This chapter introduced a formal model for the in-situ visual exploratory analysis
that this thesis attempts to address. Essential concepts such as the structure of raw
data files, attributes, and the stages involved in the targeted visual analysis were
detailed. The model offers an in-depth examination of the connection between user
interactions, visual and analytic operations, and query evaluation. The chapter also

21

scrutinized the critical role of exploratory queries in defining various data analysis
operations. With an established link between visual operations and these queries,
the chapter provides a clear understanding of how user interactions connect with
underlying data access and processing operations. This understanding serves as
the foundation for presenting the novel techniques and index structures proposed
in subsequent sections in the context of in situ visual exploration of large raw data
files.

22

Chapter 4

Indexing for Efficient 2D Visual
Exploration

4.1 Introduction

In this chapter, our primary objective is to enable efficient 2D user exploration
scenarios over raw data files, utilizing 2D visualizations such as maps or scatter
plots for user interaction. Considering the visual exploration model outlined in
Chapter 3, we concentrate on addressing the challenges of efficiently executing 2D
operations such as render, move, zoom in/out, as well as improving the efficiency of
analyze operations to calculate aggregate statistics over the 2D window visualized
by the user. To this end, we introduce a main-memory index designed explicitly
for 2D in-situ visual exploration of large raw data. This index, named VALINOR
(Visual AnaLysis Index On Raw data), features a hierarchical, tile-based structure
that groups objects based on two numeric attributes (e.g., latitude and longitude for
geospatial data). Augmented with aggregated metadata, the index offers enhanced
analytic capabilities.

Following the introduction of the index, we describe a user-driven initialization
algorithm that employs the user’s first query and a locality-based probabilistic ap-
proach. This approach significantly accelerates the initial stages of user interaction
by decreasing response time. We also propose a query-based adaptation technique
that improves overall performance, specifically for analytic tasks. This technique
involves incrementally refining the index structure based on user interaction, opti-
mizing the utilization of I/O operations for updating index metadata. Further, to
address potential memory limitations, we incorporate an eviction mechanism, allow-
ing parts of the index to be stored on disk when necessary. Finally, to substantiate
the theoretical propositions detailed in this chapter, we undertake an exhaustive ex-
perimental evaluation using both real-world and synthetic datasets and demonstrate
that our methodology consistently surpasses comparative systems, often resulting
in a 5-10 times speed increase.

23

4.2 VALINOR Design

4.2.1 Design Principles

The VALINOR index is a lightweight tile-based multilevel index, which is stored in
memory and organizes the data objects of a raw file, into tiles. The index is con-
structed on-the-fly given the first user query and incrementally adjusts its structure
to the user visual interactions. Each tile is constructed, during initialization, over
specific ranges for the Ax and Ay axis attributes, by dividing the Euclidean space
into initial tiles (see Sect 4.4.1 for the initialization method). Further, considering
the distributivity of the employed aggregate functions, each tile contains metadata
that allows efficient query evaluation. Subsequent user operations split these tiles
into more fine-grained ones, thus forming a hierarchy of tiles. Overall, the design
of our index relies on the following basic principles: (1) fast on-the-fly construc-
tion; and (2) effective metadata computations and storing, which in turn, offers
efficient computation of aggregate functions. These principles are further enhanced
by exploiting advanced methods in the context of user exploration scenarios.

4.2.2 Core Elements of the VALINOR Index

Object Entry. For an object oi its object entry ei is defined as ⟨ai,x, ai,y, fi⟩, where
ai,x, ai,y are the values of the axis attributes and fi the offset (a hex value) of oi in
the raw file.

Tile. A tile t is a part of the Euclidean space defined by two left-closed, right-open
intervals t.Ix and t.Iy. In this work, we assume hierarchies of tiles (i.e., forest),
although a hierarchy with a single root tile can also be defined. A tile can have
an arbitrary number of child nodes, whereas leaf tiles are the tiles without child
nodes. A non-leaf tile covers an area that encloses the area represented by any of
its children: given a tile t with t.Ix = [x1, x2) and t.Ix = [y1, y2), for each child node
t′ of t, with t′.Ix = [x′1, x′2) and t′.Ix = [y′1, y′2), it holds that x1 ≤ x′1, x2 ≥ x′2, y1 ≤ y′1
and y2 ≥ y′2. In each level of the hierarchy, there are no overlaps between the tiles of
the same level (i.e., disjoint tiles). Further, leaf tiles can appear at different levels
in the hierarchy.

Each tile t is associated with a set of object entries t.E , if it is a leaf tile, or a
set of child tiles t.C, if it is a non-leaf tile. The set t.E is the set of object entities,
such that for each ei ∈ t.E its attribute values ai,x and ai,y fall within the intervals
of the tile t, t.Ix and t.Iy respectively.

Synopsis metadata Apart from object entries, each tile t is associated with a set
of synopsis metadata t.M which are aggregated or computed values computed from
the t.E objects contained in the tile over their attributes. For simplicity, synopsis
metadata is also referred to as metadata. As t.MA we denote the set of attributes
for which metadata has been computed for the tile t.

The synopsis metadata t.M of a tile t are numeric values calculated by algebraic
aggregate functions, over all objects t.E in t. Exploring the synopsis metadata
for a set of tiles Tk, we can compute values for more complex algebraic aggregate
functions, for the objects included in tiles Tk. The main idea is that metadata are

24

Table 4.1: VALINOR Notation

Symbol Description

F Raw data file

O, oi Set of d-dimensional objects, an object

fi Position of oi in the file F

A List of attributes

Aj , ai,j the jth attribute of the list, the value of attribute Aj of the object oi

Ax, Ay Axis attributes

Φ, φ 2D visualized area, center of the visualized area

Q Exploratory Query

S, F, D, N Select, Filter, Details & Analysis clause

OS, OQ Objects selected from S, Objects resulted from OS after evaluating F

Vx,y,D Values of axis attributes along with Details attributes’ values

VN Numeric values resulted from the Analysis clause

(Vx,y,D, VN) Query result

I VALINOR index

T , t Set of tiles in the index, a tile

t.Ix , t.Iy Intervals of tile t

t.E Object entries in tile t

t.M Metadata of tile t

IP,AP,MH Initialization, Adaptation policy & Metadata handler

t.ES Objects of t that are included in the 2D area specified by S

RS
t 2D area of t that overlaps with the area specified by S

tQ Query subtile

defined at the level of a single tile (i.e., for the objects of a tile, we carry the
aggregate values of several aggregate functions over all the objects of a tile). When
the tile has children, we can compute the aggregate statistics for the tile, from the
aggregate statistics of its children. Naturally, this requires the restriction of the
employed aggregate functions to algebraic ones, which by definition can distribute
the computation of the aggregate statistic over a set to a composition of aggregate
statistics over its subsets [59]. Specifically, we employ functions like count, sum,
mean, sumOfSquaresOfDeltas, min, max over the objects of a tile. Whenever
an aggregate computation is required over tiles that are fully contained in the query,
their existing stats can be exploited directly, without having to go to the disk to
retrieve the necessary columns and compute them.

4.2.3 VALINOR Index Definition

Given a raw data file F and two axis attributes Ax, Ay, the index organizes the
objects into hierarchies of non-overlapping rectangle tiles based on its Ax, Ay values.
Specifically, the VALINOR index I is defined by a tuple ⟨T , IP,AP,MH⟩, where T is
the set of tiles defined in the index; IP is the initialization policy defining the methods
to compute the sizes of tiles and construct the tiles during the initialization phase;

AP is the adaptation policy defining the method for reconstructing the index

25

T
ile

 t
z

o
bje

ct e
n
trie

s t
z .ℰ

o
1

 : ⟨2
1

 1
1

 f
1

 ⟩

o
2

 : ⟨2
3

 1
2

 f
2

 ⟩

o
5

 : ⟨2
9

 1
8

 f
5

 ⟩

 A
sc D

e
cl file

 o
ff

tz .I
A

sc =
 [2

0
, 3

0
)

tz .I
D

ecl =
 [10

, 2
0

)

in
te

rv
als

(b) V
A

LIN
O

R
 Ind

ex
(c) T

ile

…

File
O

ffse
t

f
1

f
2

f
3

f
4

f
5

A
sc D

ecl A
g
e D

iam

o
1

 2
1

 1
1

 3
 7

o
2

 2
3

 1
2

 1
 4

o
3

 1
1

 1
 7

 6

o
4

 1
9

 7
 2

 3

o
5

 2
9

 1
8

 4
 8

Objects

A
ttributes

D
e
cl

 1
0

 2
0

 3
0

A

sc

t
z

o
1

o
5

o
2

o
4

o
3

1
0

2
0

tz

(a) R
aw

 D
ata File

child
 tile

s tz. �
 =

 ∅

m
e
tad

ata t
z ℳ

 m
a
x

(D
ia

m
)=

8

 ∑
D

ia
m

=
1

8

 ∑
D

ia
m

2=
1

2
9

 m
i
n

(A
g

e
)=

1

 ∑
A

g
e

=
8

 ∑
A

g
e

2
 =

2
6

n
 =

 3

A
g

e

A
g

e
 &

 D
ia

m

D
ia

m

∑
A

g
e

 D
ia

m
=

5
7

t
Jt
J
a

t
J
d

t
J
b

t
J h

ie
rarchy

[10
, 2

0
)⨯

[0
, 10

)

t
J

t
J
a

t
J
b

t
J
c

t
J
d

[10
, 13

)⨯
[0

, 6
)

[13
, 2

0
)⨯

[0
, 6

)

O
3

O
4

[13
, 2

0
)⨯

[6
, 10

)
[10

, 13
)⨯

[6
, 10

)

t
J
c

(d
) T

ile H
ie

rarchy

F
ig
u
re

4
.1
:

T
h

e
V

A
L

IN
O

R
In

d
ex

O
verv

iew

26

and reorganizing object entries following user’s interaction; and MH is the metadata
handler which performs the computations in the metadata stored in each tile.

Example 3. [VALINOR Index] Figure 4.1(a) presents a sample of a raw data
file, containing five objects (o1-o5), where each object represents an observation of
a sky object, such as a star. Each object is described by four attributes. The
attributes Asc and Decl correspond to right ascension and declination, respectively,
measured in degrees. Practically, right ascension corresponds to terrestrial longitude
and declination to geographic latitude; their combination gives the position of an
object in the sky. The Age attribute measures the age of the star in billion years,
and the diameter (Diam) measures the diameter in km.

Assume that the attributes Asc and Decl have been selected as the axis attributes
AX and AY , respectively. Figure 3(b) presents a version of the VALINOR index,
which (in the upper-level) divides the 2D space into 4×3 equally sized disjoint tiles,
and the tile tj is further divided into 2×2 subtitles of arbitrary sizes. The multilevel
structure of the tile tj is presented as a hierarchy in the Figure 4.1(d). Figure 4.1(c)
presents the contents of a tile tz, highlighted with grey color in the index. For each
tile, the index stores its intervals tz.IAsc and tz.IDecl, the object entries tz.E contained
in this tile and a set of metadata computed over axis or non-axis attributes of the
contained objects. In the example, tz contains o1, o2 and o5.

Furthermore, for each object in the tile, the index stores the values of the axis
attributes along with the offset pointing to the position of the object in the file. For
example, the entry for the object o1 is ⟨31,11, f1⟩, where 33 and 11, are the Asc and
Decl values of the o1, respectively.

Finally, in our example the index stores for tz the number of enclosed objects
(n = 3), as well various statistics for the two non-axis attribute Age and Diam, such
as the min, max, sum values, the sum of squares and the sum of their product.

4.2.4 Tiles-Query Spatial Relations

Consider an exploratory query Q (Sec. 3.4), with S being its Selection clause. Recall
that the Selection clause defines a 2D range query (i.e., window query) over the axis
attributes Ax and Ay, respectively. Also, let T be the tiles defined in the VALINOR
index.

Considering the spatial relations between the Selection clause of the query and
tiles included in the VALINOR, we denote as TS ∈ T the leaf tiles that overlap with the
2D area (plane) specified by S. Also, the tiles TS are divided into two disjointed tile
sets TSf and TSp , which denote the tiles of TS that are fully- and partially-contained
in S, respectively.

Further, given a tile t ∈ TS, we denote the object entities of t that are included in
the 2D area specified by S as t.ES. Note that, in case that t is a fully-contained tile,
then t.ES = t.E .

Additionally, given a tile t ∈ TS, we denote the plane of t that overlap with S as
RS
t . Hence, in case that a tile t is fully-contained by the query, then RS

t corresponds
to the area defined by t.

27

4.2.5 Implementation Details and Practical Considerations

To make our implementation work, we have adopted several design choices and
assumptions. Firstly, we presume that the data in a CSV file are arranged in ho-
mogeneous records delineated by a new line character, excluding any headers in the
file; these records share an identical schema, hence contain an equal number of at-
tributes. Each record’s attributes are divided by a comma, succeeded by a new line
symbol indicating the beginning of the next record in the file.

In our system, the offset of the record corresponds to its first character’s position
in the file, defined as the hex value of the location immediately following the new
line delimiter. To maintain a connection between each tile and its corresponding
records in the data file, we retain a list of each record’s offset (hex value) start.

During the raw file parsing phase, we optimize tokenizing and parsing costs by
only processing the attributes necessary for a query. We stop tokenizing as soon as
the last required attribute for the query or initialization is found in the row.

From the user’s side, the necessary input is minimal. Users only need to specify
the delimiter of the CSV file (e.g., comma or tab), identify the axis attributes, and
provide a reasonable estimate of their ranges. This approach eliminates the need for
scanning the raw file to discern these ranges.

In the context of the system’s structure, each object within a tile consists pre-
cisely of two float values (x, y coordinates) and a long value (offset). Importantly,
the index tiles are not of uniform size.

4.2.6 Grid or R-Tree?

The insightful reader might wonder what are the benefits of following a grid-based
approach, rather than an R-Tree one. We surveyed the literature on the comparison
of grid files and R-trees. As already mentioned, regarding the construction of an
R-tree, its inherent objectives (i.e., tree balance, space coverage, node overlaps, fill
guarantees) result in the need for substantial memory and time resources (even main
memory implementations), which makes them inappropriate for enabling the users
to quickly start exploring and interacting with the data, as in the case of in-situ data
exploration. Hence, one major limitation of using spatial structures in our scenario
is related to efficient construction phase.

The expensive construction phase of several (main-memory) spatial indexes is
also validated by several studies. Regarding our case, considering that the construc-
tion cost of the initial VALINOR version, is similar to the construction cost of a grid
structure [72]. In this context, the better performance of main-memory grid over
several spatial structures (e.g., R-tree variances, quadtree) is demonstrated in sev-
eral recent experimental studies. In more details, several studies have demonstrated
that main memory grid indexes have considerable better performance on construc-
tion phase [86, 98, 88]. Further, some studies suggest that grid indexes have better
performance even over the R-tree versions that use efficient bulk loading methods
[98, 88]; i.e., STR [60] and Hilbert R-Tree [55].

Regarding the query performance, recent studies [85, 53, 86], show that the
grid index, have noticeably better performance in range and kNN queries, as well as
update operations, compared to R-tree variances and quad-tree, when the indexing is
performed in 2 dimensions and the indexes are stored in main memory. Additionally,

28

Algorithm 1. VALINOR Initialization & First Query Evaluation (F , Ax, Ay,

Q0)
Input: F : raw data file; Ax, Ay : X and Y axis attributes; Q0 ⟨S,F,D,N⟩: first query

Parameters: IP: initialization policy; MH: metadata handler

Output: I: initialized index; (Vx,y,D,VN): first query result R
Variables: V : the attribute values used in Analysis clause computation

1 V ← ∅
2 `x0 , `y0 ← IP.computeInitialTileSize(Ax,Ay) //determine the initial tile size

3 I,T ← IP.constructInitialTiles(`x0 , `y0) //determine the intervals of the tiles and construct the tiles T that initialize the index I

4 foreach oi ∈ F do //read objects from file, assign them to the constructed tiles, and evaluate the first queryQ0

5 read ai,x, ai,x from F
6 fi ← offset of ai,1 in F
7 append ⟨ai,x, ai,y , fi⟩ to tile entries t.E, where t ∈ T determined from ai,x, ai,y and t intervals //assign

the object oi to tiles t

8 MH.updateMetadata(t.M, oi)
9 if oi included in Selection clause S and satisfies the Filter clause F then //evaluate the query

10 αi,AD1
, ...αi,ADk

← for oi read the values of the attributes D1, ...Dk referred in the Details

clause D

11 insert ⟨oi ∶ αi,x, αi,y , αi,AD1
, ...αi,ADk

⟩ into Vx,y,D //insert a result tuple into results

12 insert into V the values of oi for the attributes NA referred in the Analysis clause A

13 VN ← use the values of V to compute the statistics of the Analysis clause A

14 return I, (Vx,y,D,VN)

[86] concludes that grid index is surprisingly robust to varying parameters of the
query workloads.

4.3 Query Processing over the VALINOR Index

This section describes the process for the evaluation of exploratory queries over the
index. It first presents the initialization of the index, which is constructed by the first
query posed, and then it describes the evaluation of subsequent queries performed
over the initialized index.

4.3.1 Index Initialization & First Query Evaluation

In our approach, we do not consider any loading phase for the index construction, but
rather the index is constructed on-the-fly the first time the user requests to visualize
a part of the file. Considering an interactive scenario, the index construction should
entail a small overhead in the response time of the first query. Thus, a lightweight
version of the index is constructed, which corresponds to a flat tile structure, by
parsing the raw file once.

Algorithm 1 describes the initialization phase. The algorithm takes as input,
the raw file F , the axis attributes Ax, Ay, and the first exploratory query Q0,
and provides as output, the initialized index I and the results of the first query
(Vx,y,D,VN).

First, the initialization policy IP uses the computeInitialTileSize method to deter-
mine an initial tile size `x0 , `y0 (line 2). Then, using this initial size, the constructIni-

29

Algorithm 2. VALINOR Query Processing (I, Q, F)
Input: I: index (initialized); Q ⟨S,F,D,N⟩: query; F : raw data file

Variables: OS: objects selected from Select clause; TS: leaf tiles that overlapped with the Select

clause;

TSF : leaf tiles for which file access is required; T ′SF : tiles resulted from TSF after splitting;

VFA : values of the attributes included in the Filter clause; VD: values of the attributes

defined in the Details clause;

VNA : values of the attributes required for the Analysis clause computation;

Vx,y,D: objects of the result along with the detail values; VN: numeric values resulted from

the Analysis clause

Parameters: AP: adaptation policy; MH: metadata handler

Output: (Vx,y,D,VN): query result R

1 OS, TS ← evaluateSelectionClause (I,S)

2 TSF ← getTilesRequireFileAccess (TS, Q)

3 T ′SF ← AP.adaptTiles (TSF , OS)

4 if TSF ≠ ∅ then

5 VFA , VD, VNA , ← readFile (T ′SF , OS, Q, F)

6 if T ′SF ≠ TSF then

7 MH.updateMetadata (T ′SF , Q, VAF
, VNA)

8 OQ ← evaluateFilterClause (OS, VFA)

9 Vx,y,D ← construct the tuples by combining OQ and VD
10 VN ← evaluateAnalysisClause (OQ, N, VNA)

11 return (Vx,y,D,VN)

tialTiles method constructs the tiles T of the index, which corresponds to the initial
flat structure of the index without any computed metadata on each tile.

For instance, an initial tile size can be either (1) given explicitly by the user (e.g.,
in a map the user defines a default scale of coordinates for the initial visualization);
(2) provided by the visualization setting considering certain characteristics (e.g.,
screen size/resolution, visualization type) [52, 12, 89, 18]; or, (3) computed from the
data in the raw file based on a binning technique that divides the data space into
equal size tiles. We consider the latter as the baseline method for the initialization
of the index. In Section 4.4.1, we propose an advanced method that determines and
constructs varying tile sizes by considering the user exploration entry point, i.e., the
position of the first user query in the 2D space.

In the next step, the algorithm scans once the file F (loop in line 4). For each
object, the algorithm reads the attribute values of ai,x, ai,y and the file offset fi
(lines 5 & 6). Then, it appends the object to the entries t.E of the corresponding
tile t (line 7). The updateMetadata method considers the values of oi to compute and
update the metadata t.E of the tile t (line 8).

Next, the algorithm evaluates the query (lines 9-13). It first checks if the object
oi is included in the query result (line 9), i.e., whether oi is selected by the Select
clause, and satisfies the conditions of the Filter clause. Then, it reads the attribute
values in the Details clause, constructs the result tuple of o (line 10), and inserts
the tuple to the result set Vx,y,D (line 11).

As a final step, the algorithm reads the attribute values of oi (line 12) and
computes the Analysis clause for each tile (line 13). Finally, the result of the first
query and the initialized index are returned (line 14).

30

4.3.2 Query Processing Overview

The following process describes the evaluation of all subsequent queries. An overview
of the query evaluation is presented in the Algorithm 4 and details for each operator
are provided in following subsections. Algorithm 4 takes as input, the initialized
index, an exploratory query and the raw file. The algorithm returns (a) the values
of the two axis attributes of the objects in the result set along with the values of the
attributes defined in the Detail clause of the query, and, (b) the values computed
for each tile in the Analysis clause.

First, the Selection clause is evaluated (line 1), using the evaluateSelectionClause

procedure (Proc. 1). Given a query Q, this procedure first looks up the index I and
determines the leaf tiles TS overlapping with the Selection clause of the query. For
each tile, we examine its objects and select the objects OS, contained in the query
window. The getTilesRequireFileAccess procedure (Proc. 2) determines the leaf tiles
TSF ∈ TS for which access to the raw file is required (line 2). In the next step (line
3), each leaf tile t ∈ TSF is examined for splitting, based on the adaptation procedure
adaptTiles (Proc. 3). The splitting process results in a new set of tiles T ′SF , which is
a super-set of TSF , containing also the subtiles created by the splitting (as well as
the tiles’ hierarchies info).

Next, the procedure readFile (Proc. 4) retrieves from the file the objects tES of
each leaf tile t from T ′SF ; specifically it retrieves the values of all attributes VD,
VFA , VNA required for the evaluation of the Details, Filter, and Analysis clauses,
respectively (line 5).

If tile splitting is performed (line 6), the updateMetadata procedure computes and
updates the metadata in tiles T ′SF (line 7). Finally, the Filter (line 8), Details (line
9) and Analysis (line 10) clauses are evaluated.

Example 4. [VALINOR Query Processing] In this example we assume an ex-
ploratory query Q with the following clauses: (1) Selection clause: S.Ix=[19○, 31○],
S.Iy=[9○, 22○]; (2) Filter clause: F = {Diam < 5 km}; and (3) Analysis clause:
N = {corr(Age,Diam),Avg(Age)}. Further, we assume the index described in
Example 3 and presented in Figure 4.1.

The query processing procedure is depicted in Figure 4.2. We assume that the
index is already initialized (i.e., the Q is not the first query). Ê depicts the index
before the queryQ is posed, whereas Ë depicts the updated index afterQ evaluation.

First, we have to evaluate the Selection clause. We identify the tiles that over-
lapped with the query; i.e., t1, t2, t3, t4. Then, for each of these tiles, we select these
objects that are selected by the query; i.e., o1, o2, o4.

Next, we have to identify for which of the overlapped tiles we have to access
the file. In our case, the tiles t1 and t4 are omitted from the process that follows,
since these tiles do not include any of the selected objects. Both tiles t2 and t3
are partially contained in the query. As a result, we do not have the metadata for
the selected objects to compute the Analysis and Filter clause defined in the query.
Recall that, the metadata is computed and stored per tile.

Hence, we have to access the file for objects o1, o2, o4, and read the attribute
values required for the evaluation and, particularly, the attributes Diam and Age
that are used in the Filter and/or Analysis clause. Using the retrieved values, we
can evaluate all the parts of the query.

Along with the query evaluation, the index structure is adapted via splitting.

31

T
ile

 t
2
c

o
b
je

ct e
ntrie

s t
2
c .ℰ

m
e
tad

ata t2
c ℳ

 A
sc D

e
cl file

 o
ff

t2
c .I

A
sc =

 [2
0

, 2
8

)

t2
c .I

D
e
cl =

 [10
, 14

)

inte
rv

als

 m
a
x

(D
ia

m
)=

7

 ∑
D

ia
m

=
1

1

 ∑
D

ia
m

2=
6

5

 1
0

 2
0

 3
0

P
e
rfo

rm
 Q

u
e
ry

 Q

1

E
v
alu

ate
 Q

u
e
ry

 Q

2

D
e
cl

A
sc

t
2

o
5

o
3

1
0

2
0

Qo
4

o
1

o
2

D
e
cl

 1
0

 2
0

 3
0

A

sc

o
1

o
5

o
2

o
4

o
3

1
0

2
0

o
1

o
5

o
2

 1
0

2
0

1
4

2
0

 2
8

 3
0

t
2

d

t
2

a
t

2
b

t2
 after sp

lit

t2
c

 m
i
n

(A
g

e
)=

1

 ∑
A

g
e

=
4

 ∑
A

g
e

2
 =

1
0

n
 =

 2

A
g

e

A
g

e
 &

 D
ia

m

D
ia

m

∑
A

g
e

 D
ia

m
=

2
5

o
1

 : ⟨2
1

 1
1

 f
1

 ⟩

o
2

 : ⟨2
3

 1
2

 f
2

 ⟩

child
 tiles t 2

c .�
 =

 ∅

t
2

c Q
t

1

t
3

t
2

a
t
2

b

t
2

d

co
m

p
u
te

d
 m

e
tad

ata u
sin

g
 the

 d
ata

re
triv

e
d
 fro

m
 file

 fo
r o

1 &
 o

2

re
trie

v
e
 fro

m
 file

 the
 A

g
e
 &

 D
iam

v
alu

e
s fo

r o
1 &

 o
2

t
4

t
1

t
3

t
4

[2
0

, 3
0

)⨯
[10

, 2
0

)

t
2

t
2

a
t
2

b
t
2

c
t
2

d

[2
0

, 2
8

)⨯
[14

, 2
0

)
[2

0
, 2

8
)⨯

[10
, 14

)
[2

8
, 3

0
)⨯

[10
, 14

)

O
1 , O

2

O
5

[2
8
, 3

0
)⨯

[14
, 2

0
)

t2
 hie

rarchyF
ig
u
re

4
.2
:

Q
u

ery
P

ro
cessin

g
over

V
A

L
IN

O
R

In
d

ex

32

Procedure 1: evaluateSelectionClause(I, S)
Input: I: index; S : Selection clause of the query

Output: OS: objects selected from Selection clause; TS: leaf tiles that overlapped with Selection

clause

1 TS ← getSelectOverlappedLeafTiles (I,S)
2 forall t ∈ TS do

3 t.ES ← getSelectedObjectsFromTile (t,S)
4 insert t.ES into OS

5 return OS, TS

In our example, the tile t2 is split into four disjoint subtiles t2a , t2b , t2c , t2d . As
previously mentioned, we have to access the file for the objects o1 and o2, which
are the objects included in subtile t2c . Using the retrieved attribute values, we can
compute the metadata for the subtile t2c . Overall, during the query processing,
we evaluate the query; and we construct subtiles and compute metadata for the
constructed subtiles. A detailed example for the splitting process is presented later
in the adaptation section (Sect. 4.4.2, Ex. 5).

4.3.3 Selection Clause Evaluation

In order to evaluate the Selection Clause over the index (Alg. 2, line 1), we have to
identify the OS objects by accessing the leaf tiles TS which overlap with the window
query specified in the Selection Clause of Q.

First, we define the following simple function used in the Selection Clause eval-
uation.

− getSelectOverlappedLeafTiles(I,S): This function returns the leaf tiles TS which
overlap with the Selection clause S of the query. It identifies the highest-level
overlapped tiles. Then, for each tile, it traverses the hierarchy to determine
the overlapped leaf tiles TS.

− getSelectedObjectsFromTile(t,S): This function scans all objects t.E of a tile t
and returns the objects t.ES that are included in the Selection clause S of the
query.

In case that the tile t is fully-contained in the Selection clause, the returned
objects t.ES correspond to all objects included in the t; i.e., t.E . On the
other hand, if t is partially-contained, the returned objects t.ES are the objects
included in the overlapped 2D area RS

t .

The evaluation of Selection clause is described in the evaluateSelectionClause pro-
cedure (Proc. 1). First, it identifies the leaf tiles TS using the function getSelectOver-

lappedLeafTiles (line 1). Then, for each of the identified leaf tile t ∈ TS, the function
getSelectedObjectsFromTile returns the objects t.ES that overlap with the Selection
clause of the query (line 3). Finally, the evaluateSelectionClause procedure returns
the objects OS selected from the Selection clause and the leaf tiles TS (line 5).

33

Procedure 2: getTilesRequireFileAccess(TS, Q)
Input: TS: leaf tiles that overlap with the Selection clause of the query; Q ⟨S,F,D,N⟩: query

Output: TSF : leaf tiles that require file access

1 forall t ∈ TS do

2 if t ∈ TSf then //tile is fully-contained in S

3 if D ≠ ∅ or F can not be evaluated using t.M then //Filter and/or Analysis clause is included and can

evaluated using t.M
4 accessRequired← true

5 else //tile is partially-contained in S; i.e., t ∈ TSp
6 if D ≠ ∅ then //Details clause is included

7 accessRequired← true //access file for the t.ES objects in t

8 else if F = ∅ and N = ∅ then //no Filter & Analysis clauses

9 accessRequired← false

10 else if N and F can be evaluated using t.M then //Filter and/or Analysis clause is included and can evaluated

using t.M
11 accessRequired← false

12 else

13 accessRequired← true

14 if accessRequired is true then //we have to access the file for the objects t.ES
15 insert t into TSF

16 return TSF

4.3.4 Determining the Tiles that Require File Access

The getTilesRequireFileAccess (Proc. 2) determines the tiles for which we have to access
the file and read the attributes values. File access is determined by the intersection
between a tile and the query (fully/partially contained), the operations defined in
the query, and the metadata stored in each tile.

Particularly, Procedure 2 for each tile t ∈ TS, examines if the tile is partially/fully-
contained in query (line 2), and if the operations defined in the query can be evalu-
ated by tile’s metadata (lines 2-13). The procedure returns the tiles for which a file
access is required (line 16). In case of fully-contained tiles (line 2) we have to access
the file if a Details clause is defined, or a Filter is included, and its condition can
not be computed using metadata. On the other hand, if tile is partially-contained
(line 5), in case that a Details clause is defined in the query (line 6), we always have
to read from the file the values of the objects included in the Details clause. Also,
we have to examine if the computations defined in the Analysis and Filter clauses
can be evaluated using the metadata that are already available in each tile (line 10).

4.3.5 Incremental Index Adaptation

During query evaluation, we employ an incremental index adaptation policy AP,
which adapts the index structure based on the user interaction. Particularly, the
index adaptation is performed using a tile splitting method, in which the tiles are
incrementally split into subtiles and construct tiles’ hierarchies. For each new sub-
tile, its metadata are computed.

The adaptTiles (Proc. 3) reorganizes objects in the index by splitting tiles into
smaller ones, based on the adaptation policy AP. The procedure takes as input the

34

Procedure 3: adaptTiles(TSF ,Q)
Input: TSF : leaf tiles for which file access is required; Q: query

Parameters: AP: adaptation policy

Output: T ′SF : tiles resulted from TSF after splitting

1 forall t ∈ TSF do

2 if AP.splitRequired (t) = true then

3 Ta ← AP.split (t) //construct the subtiles Ta by splitting tile t

4 AP.reorganizeObjectsInSplittedTiles (Ta, Q)

5 else

6 Ta ← t

7 insert Ta into T ′SF
8 return T ′SF

Procedure 4: readFile(TSF , OS, Q, F)
Input: TSF : tiles for which file access is required; OS : objects included in Selection clause;

Q ⟨S,F,D,N⟩: query; F : raw data file

Output: VFA , VD, VNA , attributes values required for the Filter, Details & Analysis clause

1 forall oi included in tiles TSF with oi ∈ OS do

2 access F at file offset fi

3 VFAi , VDi , VNAi , ← read the oi attributes values that are required for the F, D and N clauses

4 insert VFAi into VFA ; insert VDi into VD; insert VNAi into VNA ;

5 return VFA , VD, VNA

set of tiles for which, access to the file is required TSF , and returns a new set of tiles
T ′SF , which is a super-set of TSF , containing the subtiles created by the splitting as
well as the tiles’ hierarchies info. For each tile t ∈ TSF the procedure examines if t
has to be split using the method splitRequired, and, if so, reorganizes the objects into
the new tiles.

Note that, a tile may be split, only when a query overlaps with it. This re-
structuring attempts to maximize the number of tiles which are fully-contained in
subsequent queries. Fully contained tiles may improve the performance, by reducing
the I/Os operations needed for answering the query (more details are presented in
Section 4.4).

In our baseline implementation for VALINOR, the splitRequired method defines
a numeric threshold for the maximum number of objects that a tile should contain.
In case that more objects are contained in the tile a split is performed. The split

procedure in our baseline implements a Quadtree method. That is, each tile t
overlapping with the query and containing more objects than the threshold is split
into 4 equally sized subtiles.

4.3.6 File Access

The procedure getTilesRequireFileAccess (Proc. 2), identifies the leaf tiles TSF , for
which we have to access the file F in order to evaluate the query. Here, we present
the readFile (Proc. 4) which reads from file data for the objects included in the TSF
tiles.

For each object oi in which is selected from the Selection clause, and contained

35

in a tile for which file access is required, we read from the file at the offset fi (lines
1, 2) the attributes values required for the Filter, Details & Analysis clause (line 3).

One of the goals we try to achieve in the design of the index, is to reduce the
cost of I/O operations. For that, we first store the file offset of each object and
we start reading the file from this position to retrieve its attribute values. Second,
exploiting the way that VALINOR constructs and stores the object entries, we are
able to access the raw file in a sequential manner. The sequential file scan increases
the number of I/Os over continuous disk blocks and improves the utilization of the
look-ahead disk cache.

During the initialization phase, the object entries are appended into tiles entries
as the file is parsed (Alg. 1). Implementing tile entries t.E as a list, the entries in
each tile are sorted based on its file offset. That is, for each t ∈ T , ∀oi, oj ∈ t.M,
with list positions i < j, we have that oi.f < oj.f . Hence, in the query evaluation, we
identify the tiles TF for which we have to read the file (Alg. 2, line 2). Then, from
the lists of object entries in TF , we read the objects from lists following a k-way
merge based on objects file offset. This way, object values are read by accessing the
file in sequential order. Note that, in our experiments, the sequential access results
in about 8 × faster I/O operations compared to accessing the file by reading objects
on a tile basis (i.e., read the objects of tile ti, then read the objects of tile tk, etc.).

4.3.7 Aggregate Metadata Management

The metadata is used to improve the performance of queries with an Analysis and/or
Filter clause, by reducing both I/O and computation cost.

After the adaptation of the tiles, the metadata handler MH, using the values
retrieved from the file, recomputes and updates the metadata for the subtiles created
by the adaptation process.

The updateMetadata procedure (Algo 2, line 7): (1) determines for which at-
tributes to compute or update the metadata; (2) computes metadata; and (3) up-
dates metadata in the hierarchies of the tiles in case of splitting.

The metadata stored in the tiles is determined by the metadata handler MH
considering the functions that are used in the Analysis clauses of the query.For every
tile, the metadata handler keeps a hash table with keys the column number of a non-
axis column in the raw file. Each key is mapped to that tile’s synopsis metadata for
that non-axis column. If the Analysis clause of query requests bivariate statistics
for two attributes (e.g., correlation or covariance), the metadata handler also keeps
metadata pertaining to the pair of attributes.

4.3.8 Filter, Details & Analysis clauses Evaluation

In the general case, the Filter clause requires to retrieve from file the values VFA of
the attributes included in the Filter conditions (Alg. 2, line 5). Using the retrieved
values VFA , the filter conditions are evaluated over the OS objects for filtering out
the query objects OQ. However, there are cases where the metadata (e.g., min, max)
may be used to evaluate the filter conditions and avoid file access.

To evaluate the Details clause, we have to access the file, since in order to reduce

36

the index size, we do not store attribute values other than the two axis attributes1.
For the objects OQ we retrieve the values VD of the attributes included in the Details
clause (Alg. 2, line 5). Then, for each object ofOQ the details values VD are combined
with the axis attribute values, resulting to the set of tuples Vx,y,D.

Finally, the Analysis clause is evaluated using: (1) the existing metadata of the
fully-contained tiles; and (2) the values retrieved from the file, for the partially-
contained tiles.

Note that, although both the Select and Filter clauses operate as traditional
selection operations on the data (the Select clause is evaluated over the two axis
attributes, whereas the Filter clause on the non-indexed attributes), we explicitly
consider them as different operations in our query model in order to speed up visual
exploration operations. Filtering on non-axis fields has an implicit benefit on the
performance, in the case that metadata for this attribute exists (e.g., a user revisits
a tile with the same filter condition).

We have a similar restriction on the expressiveness of our approach for the group-
ing operation. Grouping primarily targets the two axis attributes, i.e., aggregates
are computed at the level of the tiles included in the query window, whereas group-
ing on a non-index attribute (e.g., average age by gender) is implicitly enabled via
filtering operations (i.e., average age per tile filtering the gender). We are aware of
this restriction, nevertheless our model is not a general-purpose query model but
rather serves the needs of basic exploration operations (e.g., panning, zooming)

4.4 Advanced Methods for Index Management –

Initialization & Adaptation

In this section, we present two methods for the initialization and adaptation of the
index during query evaluation. One of the goals for improving the query performance
is to reduce the costly file reads that are needed for answering the query. The Details,
Filter and Analysis clauses of the query usually require access to the raw file to fetch
the values for the extra attributes involved in these clauses. In order to handle these
cases, we compute and store per tile aggregated metadata for the contained objects.
A subsequent query overlapping with this tile may use the stored metadata and
avoid accessing the file in order to evaluate the query.

What makes possible for a query to exploit the metadata depends on whether
the overlapping tile is fully or partially contained in the query; i.e., all of its objects
are needed for answering the query or a subset of. In a partially-contained tile t,
we have to: (1) traverse the objects in t in order to find the objects t.ES that are
included in the Selection clause of the query; and (2) access the file in order to
compute the metadata for t.ES objects. On the other hand, for a fully-contained
tile t, there is no need to perform any of the aforementioned operations as (1) the
required metadata have already been computed for t; and (2) there is no need to
iterate over the objects in t to find the ones that are included in the window. As
a result, we neither have to access the file for any of the object contained in t (i.e.,

1Note that, for both Filter and Details clauses evaluation, we can avoid file accesses by storing
values for attributes other than axis. However, here we describe the setting which requires the
minimum memory resources.

37

Ax

Ay

Q0
⨯

ℓ0x

ℓ0y

Figure 4.3: Query-Driven Index Initialization

I/Os cost), nor identify t.ES (i.e., computation cost). Hence, fully-contained tiles
reduce both computation and I/Os cost (for more details see Sect. 4.4.3).

In what follows we present our techniques, which aim to increase the number
of fully contained tiles in a user exploration scenario by adjusting the initial tile
structure, as well as incrementally performing index reorganization and metadata
computations during query processing.

4.4.1 Query-driven Index Initialization

This section presents an advanced approach for the initialization of the VALINOR
index. In our baseline initialization policy, we group objects into equal-size tiles but
do not take into account the location of the initial user query in the 2D space as
well as any subsequent user exploration actions for building the initial sizes of the
tiles.

Assume that the user starts with an initial query Q0, with (xc, yc) being the
center of the Selection clause, lying in the tile t0 and continues the exploration by
applying the set of visual operations presented in Ch. 3. Recall that only the move
and zoom operations change the visualized area to a new range; thus, subsequent
queries corresponding to user operations performed at the early stages of the user
exploration (i.e., user session) are highly likely to reside (overlap) in tiles near to the
initial tile t0.

To take advantage of this locality, VALINOR initializes tiles via a tile structure
that is more fine-grained (i.e., having a large number of smaller tiles) in the area
around the initial query. This is depicted in Figure 4.3, where given the first query,
the size of initial tiles becomes larger as their distance from the initial query center
(xc, yc) gets bigger.

Increasing the number of tiles near the first query, increases the possibility that
subsequent user queries in this neighborhood overlap with fully-contained tiles,
which in turn reduce the computation and I/O cost.

In what follows, we build upon the locality-based characteristic of the exploration
model and propose a new approach, called query-driven initialization policy, for
initializing the tiles of the index, based on the first user query and the potential next
user actions. Note that the new method replaces the existing baseline initialization
policy (line 2 of Algorithm 1) and is executed before the population of the tiles
with object entries. At this stage, the query-driven initialization aims at speeding

38

up the initial actions of the user session. When combined with the adaptive splitting
(Sect. 4.4.2) the method provides fast results for the entire user session.

4.4.1.1 Query-driven Initialization Policy Overview

Our method considers that an initial set of tiles T0 is constructed for the index
following the baseline equal-size initialization method, with each tile having a fixed
size `0x × `0y . Then, the Query-driven Initialization method takes as input: the
constructed tiles T0, the first user’s query Q0, and the number of extra tiles TS
it will create. For each tile t ∈ T0 the initialization method computes a numeric
initialization split factor (SF). The SF factor determines the number of equally-
sized subtiles which the tile t will be split into. In this case, the tile t will be the
father tile of the new subtiles. For example, assume an initial query Q0 and a tile
t ∈ T0; then, if SFQ0(t) = 4, the tile t will be split into 4 equally-sized subtiles, with
size of `0x/2 × `0y/2.

4.4.1.2 Subtiles Size

Let T0 be the initial set of equally-sized tiles with area size `0x × `0y (i.e., ∀t ∈
T0, ∣t.Ix∣ = `0x , ∣t.Iy ∣ = `0y); Q0 is the initial user query with ranges Q0.Ix,Q0.Iy and
query center (xc, yc); and T = T0 ∪ TS is the set of tiles which the index will contain,
with TS being the subtiles created by splitting tiles in T0. The number of equally-
sized subtiles, which a tile t ∈ T0 will be split into, is determined by its initialization
split factor (SF). SF is used for calculating the dimensions `x(t), `y(t) of t’s subtiles
with respect to its initial dimensions `0x and `0y , as follows:

`x(t) =
⎧⎪⎪⎨⎪⎪⎩

`0x/⌊
√
SFQ0(t)⌋ if SFQ0(t) ≥ 4

`0x otherwise
`y(t) =

⎧⎪⎪⎨⎪⎪⎩

`0y/⌊
√
SFQ0(t)⌋ if SFQ0(t) ≥ 4

`0y otherwise

Note that, splitting occurs only when SFQ0(t) ≥ 4, i.e.,
√
SFQ0(t) ≥ 2; and the

floor function is used for truncating the split factor to an integer value.

4.4.1.3 Initialization Split Factor (SF)

To compute the SF for a tile t, we model the likelihood that a subsequent query
will overlap with t as a probability distribution over the distance of each point in t
from the initial query Q0 center (xc, yc), i.e.,

SFQ0(t) = %t ⋅ ∣TS ∣

where, %t = P (X ∈ t.Ix, Y ∈ t.Iy) is the probability that the next user query moves
the query center within tile t. In other words, we treat X,Y as random variables
corresponding to the center of a subsequent query performed by the user in the
plane.

The formula distributes a fixed number of new subtitles to the initial set of tiles
based on a probability distribution. The probability aims to adjust the splitting
factor based on the distance of each initial tile from the initial query center. To
achieve this locality-based splitting, the distribution of %t should decrease as the

39

5

6

7

8

In
it

ia
liz

at
io

n
 t

im
e

(m
in

)

Initial number of tiles

0

5

10

15

20

25

In
d

ex
 S

iz
e

(G
B

)

Initial number of tiles

Figure 4.4: Initialization Time & Index Memory Size varying the Number of Initial Tiles

distance from (xc, yc) becomes larger. Although this probability can be computed
using several factors, such as user moving patterns, visualization setting character-
istics (e.g., screen size/resolution, visualization type) [52, 12, 89], we consider that
it follows a bivariate normal distribution over the X,Y random variables; however,
other distributions with similar characteristics could be considered. The probability
density function is given by:

p(x, y) =
exp{−1

2 [(x−µxσx
)2 + (y−µyσy

)
2
]}

2πσxσy

where, X,Y are independent (covariance is zero); µx = xc, µy = yc (the initial query’s
center); and σx = ∣Q0.Ix∣, σy = ∣Q0.Iy ∣, i.e., we set the standard deviation equal to the
initial query range for the X and Y variables, respectively. The reason is that we
require the majority of the new subtitles to be allocated in tiles at a distance of 3
query ranges from the initial query center.2 This way we achieve a dense distribution
around the initial query, entailing to smaller fully-contained tiles for the first user
queries following the initial one.

4.4.1.4 Initialization Parameters Analysis

The initialization formula depends on the `0x , `0y ranges for the initial tiles T0, and
the number of new subtiles ∣TS ∣ the index will create after the splitting.

We can express `0x , `0y at a scale of the overall exploration area, i.e., the ranges
∣max − min∣ of the Ax and Ay attributes; i.e., `0x = l ⋅ ∣max(Ax) −min(Ax)∣ and
`0y = l ⋅ ∣max(Ay) −min(Ay)∣, with l ∈ (0,1]. Large values of l (the edge case of
l = 1 is that initial range is the entire exploration area) result in a coarse-grained
initial tile structure, especially for the areas far from the initial user session. The
trade-off is that very large tiles are less likely to be fully-contained by subsequent
queries, entailing an increased I/O and adaptation cost, when user moves to that
area. On the other hand, too small l values increase the initial number of tiles even in
locations far from the initial query, thus the memory and processing requirements of

2Recall that, according to the empirical 68-95-99.7 rule for the normal distribution, the 68% of
the data is within 1 standard deviation (σ) of the mean (µ), 95% of the data is within 2 standard
deviations (σ) of the mean (µ), and 99.7% of the data is within 3 standard deviations (σ) of the
mean (µ).

40

the index. The edge case is creating more tiles than the number of objects, because
for non-uniform datasets, there will be parts of the space with tiles containing no
objects. Figure 4.4 presents the initialization time and index size in relation to the
number of initial tiles for a synthetic dataset SYNTH10 (see Sect. 4.6). As can be
seen, for larger numbers of initial tiles (i.e., smaller values of l) the initialization
time and the memory requirements of the index increase. For example, for an initial
number of tiles of 10K (l = 1/100) the initialization time and the index size are 5.27
min and 4.33 GB respectively, while for 25M tiles (l = 1/5000) it requires around 7.8
min and 21 GB.

In our experiments, we vary the l parameter with respect to the Ax and Ay
ranges for several datasets with different distributions. From our study, we found
that a value between 1/100 and 1/500 provides very good results for most of our
datasets; i.e., the initial tiles of the equal-width methods is between 10K and 250K.

As previously mentioned, the above parameters can be estimated based on
large number of factors, such as: visualization setting characteristics (e.g., screen
size/resolution), visualization type, user moving patterns [52, 12, 89, 18]. However,
this is beyond the scope of this work.

4.4.1.5 Memory Space Analysis

An upper bound of the total number T of tiles allocated during the initializa-
tion can be determined based on the memory constraints of the environment, as
follows. Let mem(t) be the footprint of each tile entry in memory, such that
mem(t) = bt + bo ⋅ ∣t.E ∣, where bt is a fixed number of bytes allocated for each
tile record for holding its 2 ranges (e.g., 4 floats), initially computed metadata
(e.g., 1 float) and a list of references (integers) to its children (if it is a non-
leaf tile); bo is a constant value for each object entry in the tile, keeping the
Ax, and Ay values (e.g., 2 doubles) and its offset (e.g., a big int) from the be-
ginning of file. The initial index memory footprint (before splitting) for T0 tiles is
mem(T0) = ∑t∈T0

mem(t) = ∣T0∣ ⋅bt+bo ⋅ ∣O∣, whereas after splitting the index footprint
becomes mem(T) = ∑t∈T mem(t) = ∣T0∣ ⋅ bt + ∣TS ∣ ⋅ bt + bo ⋅ ∣O∣, as all object entries are
contained in leaf nodes, thus considered only once in the memory allocation. Let
memMAX be the maximum memory to be reserved for the initialization of the index,
then mem(T) ≤memMAX ; i.e., ∣TS ∣ ≤ (memMAX − ∣T0∣ ⋅ bt − bo ⋅ ∣O∣)/bt.

Note that, as ∣O∣ ≫ ∣T ∣, the memory requirement for the index is heavily deter-
mined by the number of objects in the raw file. Also, the index size is not affected
by the number of attributes comprising a record in the file as the VALINOR stores
only the two attributes Ax,Ay of each object. In Section 4.5, we provide an evic-
tion method for handling cases wherethe size of objects in memory do not fit in the
allocated memory resources.

4.4.2 Query-driven Index Adaptation

In this section we present a method, called Query-driven Tile Splitting for restruc-
turing the index based on the query window posed by the user. Particularly, this
method implements the split function (line 3) of the adaptTiles procedure in Sec-
tion 4.3.5. As presented, in Section 4.3, tiles visited by the query can be split into
smaller ones, i.e., the index is incrementally adapted to the user’s interaction. The
index adaptation performs tile splitting, computes metadata and reorganizes objects

41

into smaller groups during user exploration. The smaller tiles may result in larger
numbers of fully-contained tiles during user exploration. The metadata of fully-
contained tiles are going to be exploited by the next queries to reduce both I/O and
computation cost. The basic characteristics of our adaptation method is that: (1)
it follows a tile splitting process, where tiles split into subtiles, building tiles hierar-
chies; and (2) the subtile ranges are determined by the query ranges. The proposed
method allows to perform the adaptation (compute the metadata, construct subtiles
and reassign objects) without performing any extra I/O operations except the ones
required for the query evaluation.

The baseline method we consider for VALINOR splits a tile that overlaps with
the query to equally sized sub-tiles (Quadtree like). The main drawback of this
method, is that in many cases where the split is performed, however, no metadata
is computed for any of the constructed subtiles. Hence, the I/O that are performed
during the query evaluation is not used anywhere. This occurs when the subtiles
constructed by the splitting are not fully-contained in the query. On the other hand,
in our query-driven splitting method, all the performed I/O operations are exploited
to compute the metadata of subtiles. In what follows we outline the basic idea of
our Query-driven Tile Splitting method.

4.4.2.1 Query-driven Tile Splitting Overview

We consider a query which contains an Analysis clause; i.e., non-axis attributes
data is required for the query evaluation. Recall that during evaluation, for each
partially-contained tile t, we access the file, and, for each object in the 2D area RS

t

that overlaps with the query, we retrieve the attribute values that are required for
the Analysis clause. Then, we have to compute the metadata for the area RS

t , for
these objects.

Our method, during the processing of a query Q, splits t into subtiles, such that
one of them t′ corresponds to the RS

t area. The metadata for the tile t′ is computed
during the evaluation of Q. Hence, in the case where one of the subsequent queries
fully contains t′, there is no need to access the file in order to compute metadata for
this part of the query. The basic idea is better illustrated in the next example.

Example 5. [VALINOR Adaptation & Query Processing] Considering Example 4,
after evaluating the query Q and adapting the index (Fig. 4.2), a subsequent query
Q′ is performed, as presented in Figure 4.5. We observe that the query Q′ overlaps
with the tiles t2a , t2b , t2c , t2d . Similarly to Example 4, in order to evaluate Q′, we
have to examine the overlapping tiles and identify the selected objects; also, for
these tiles we have to determine for which of them we have to access the file.

We observe that the tile t2c , constructed during Q evaluation, is now fully-
contained in Q′ and its metadata has been already computed. Hence, for Q′ evalu-
ation we do not have to access the file for the objects o1 and o2 included in t2c .

For the evaluation of Q′, we access only o5, whereas in the case that no splitting
occurs we had to access o1, o2 and o5. Similarly to Example 4, during Q′ evaluation,
the tile t2b is further split in two subtiles t2ba and t2bb . The tiles t2a and t2d are ignored
since they do not contain any objects. Note, that the tile t2c is fully-contained to
the query and its metadata has been previously computed. So, in case that t2c is
split in this step, we have to compute metadata for the resulted subtiles. As result,
we have to perform extra I/O operations to access the values of o1 and o2 from the

42

2

Perform & Evaluate Query Q’

3

Decl

 10 20 30 Asc

o1

o5

o2

o4

o3

10

20

Q
Q’

Decl

 10 20 30 Asc

o1

o5

o2

o4

o3

10

20

t2aQ

After Q Evaluation

t2d

t2b

t2d

t2bat2a

20

18

14

o5

28 30

t2ba

t2bb

t2ba

t2b after split

t2 hierarchy
(after splits)

[20, 30)⨯[10, 20)

t2

t2a t2b t2c t2d

[20, 28)⨯[14, 20) [20, 28)⨯[10, 14) [28, 30)⨯[10, 14)

O1, O2

O5

[28, 30)⨯[14, 20)

t2aa
t2bb

[28, 30)⨯[14, 18) [28, 30)⨯[18, 20)

Figure 4.5: Index Adaptation and Query Processing

file.

4.4.2.2 Tile Splitting & Subtiles Construction

In our approach, each tile t of the partially-contained tiles TQp is split into a set of
disjointed subtiles. The subtiles are created based on the area RS

t which captures
the area that the query Q overlaps with t. Particularly, one of the new subtiles of t,
denoted as Query Subtile tQ, corresponds to the area RS

t . In Figure 4.5, at the left,
the query subtile corresponds to t2c .

Here, for ease of presentation, given a query Q, the intervals of the Selection
clause S.Ix and S.Iy are denoted as Qx and Qy, respectively. Given a tile t, the
intervals of the tile t.Ix and t.Iy are denoted as tx and ty and we assume closed
intervals for tiles. In what follows, we refer that an interval I = [a, b] is contained
into an interval I ′ = [c, d], denoted as I ⊆ I ′, when a ≥ c and b ≤ d. Otherwise, I
is not contained in I ′, denoted as I ⊈ I ′. Further, we assume that the tile t with
tx = [tx1, tx2] and ty = [ty1, ty2], is partially-contained in the Selection clause of the
query Q with Qx = [Qx1,Qx2] and Qy = [Qy1,Qy2].

Based on the spatial relation between a partially-contained the tile t and the
query Q, there are four cases based on which the subtiles are created. Figure 4.6
presents these four cases.

– Case 1. Case 1 holds when: (1) tx ⊆ Qx and Qy ⊈ ty and ty ⊈ Qy; or (2) ty ⊆ Qy

and Qx ⊈ tx and tx ⊈ Qx. In the following definition and the Fig. 4.6, we assume the
first condition. The second condition is also defined, in analogy.

In this case, two subtiles tQ and ta are constructed, where: (tQ) tQx = [tx1, tx2],
tQy = [ty1,Qy2]; (ta) tax = [tx1, tx2], tay = [Qy2, ty2].

– Case 2. In the Case 2, we construct three subtiles. This case holds when:
(1) tx ⊆ Qx and Qy ⊆ ty; or (2) ty ⊆ Qy and Qx ⊆ ty. In the subtiles definition we
assume the first condition (the case depicted in Fig. 4.6). In analogy, the second
condition is defined.

In this case, three subtiles tQ, ta and tb are constructed, where: (tQ) tQx = [tx1, tx2],
tQy = [Qy1,Qy2]; (ta) tax = [tx1, tx2], tay = [Qy2, ty2]; (tb) tbx = [tx1, tx2], tby = [ty1,Qy1].

– Case 3. Case 3 holds when: (1) tx ⊈ Qx; and Qx ⊈ tx; and ty ⊈ Qy; and Qy ⊈ ty. In
this case, four subtiles tQ, ta, tb, and tc are constructed, where: (tQ) tQx = [Qx1, tx2],

43

split

Q

t

Q

t t

Q

t

Q

tQ

ta tb

tc

ta tQ

ta

tb

tQ

tb tc

te

ta

td

tf tg th

case 1 case 2 case 3 case 4

tQ

After
Splitting

Before
Splitting

Figure 4.6: Tile Splitting Cases

tQy = [ty1,Qy2]; (ta) tax = [tx1,Qx1], tay = [Qy2, ty2]; (tb) tbx = [Qx1, tx2], tby = [Qy2, ty2];
(tc) tcx = [tx1,Qx1], tcy = [ty1,Qy2].

– Case 4. This case holds when: tx ⊆ Qx and ty ⊆ Qy. In this case, nine sub-
tiles tQ, ta, tb, ... th are constructed, where: (tQ): tQx = [Qx1,Qx2], tQy = [Qy1,Qy2];
(ta) tax = [tx1,Qx1], tay = [Qy2, tx2]; (tb) tbx = [Qx1,Qx2], tby = [Qy2, ty2]; (tc) tcx = [Qx2, tx2],
tcy = [Qy2, ty2]; (td) tdx = [tx1,Qx1], tdy = [Qy1,Qy2]; (te) tex = [Qx2, tx2], tey = [Qy1,Qy2];
(tf) tfx = [tx1,Qx1], tfy = [ty1,Qy1]; (tg) tgx = [Qx1,Qx2], tgy = [ty1,Qy1]; (th) thx = [Qx2, tx2],
thy = [ty1,Qy1].

4.4.3 Splitting Model Analysis

In this section, we analyze the cost of query evaluation via our splitting approach.

4.4.3.1 I/O Cost

We assume that the cost for reads is the same as the cost of writes, as cio we denote
the I/O cost, which is the cost for reading/writing one object entry from/to the disk.

4.4.3.2 Cost for Evaluating a Fully & Partially-contained Tile

The cost for a query is different when it is evaluated over a partially or a fully
contained tile. Assume that a tile t is partially-contained in a query Q, with RS

t to
be the overlapped area. Recall that, t.E are the objects included in t; t.ES are the
objects of t selected by Q (i.e., the objects included in the overlapped area RS

t); and
cio be the cost of one I/O operation. Thus, the cost CQ

part(t) of the evaluation of a
query over a partially-contained tile t is:

CQ
part(t) = t.E + cio ⋅ t.ES (4.1)

The t.E is the cost of scanning the objects t.E included in t in order to identify
the objects t.ES that are included in the Selection clause S of the query. This is the
cost of getSelectedObjectsFromTile function described in Section 4.3.3. Then, for each
of the t.ES objects we have to access the file, and the cost is cio ⋅ t.ES.

44

On the other hand, if t is fully-contained in a query Q, then t.E = t.ES; thus there
is no need to scan every single object in t to assess whether it should be selected by
the query nor to access the file for computing metadata for the tile (we assume that
metadata is already computed by a previous query). Hence, the cost CQ

full(t) of the
evaluation of a query over a fully-contained tile t is:

CQ
full(t) = 0 (4.2)

4.4.3.3 Splitting & Subtiles Construction Cost

The overall cost of splitting consists of the cost of splitting the tile t, constructing
its subtitles, and reallocating the object entries of t in the new subtiles.

First, we have to determine the intervals of each subtile of t, and in the same
time we define the subtiles as child tiles of t (i.e., initialize the child pointers). These
can be performed without a cost, since the intervals of the subtiles are directly
determined by the query select area RS

t (Sect. 4.4.2.1). Then, we have to assign
the objects t.E of the tile to the new subtiles. In the worst case 9 subtiles will be
constructed (Case 4, Sect.4.4.2.1). Therefore, the cost for splitting a tile t is: 9 ⋅ t.E .

4.4.3.4 Evaluation Cost in case of Splitting and not Splitting

Here, we are going to study, the improvement gained by performing a split. This
analysis is going to be used in order to define the criterion for performing a split or
not.

Assume a query Q that partially contains a tile t, and thus t is split based on
our method resulting in a set of disjoint subtiles, one of which matches the query
overlapping area, denoted as tQ. Then, assume that the next query Q′, partial con-
tains t and fully contains tQ.3 Note that, this is a very common case in exploration
scenarios, since as previously analyzed the user tends to explore nearby areas.

Next, we examine the cost for evaluating Q′, in case of performing and not
performing a split during the Q evaluation.

In case of no split, we have that Q′ partially contains t. Thus, based on Eq. 4.1
the evaluation cost ΦQ,Q′

nosplit of Q′ in case of no split :

ΦQ,Q′
nosplit = C

Q′
part(t) = t.E + cio ⋅ t.ES′ (4.3)

In case of a split, Q′ partially contains t and fully contains tQ. In order to
determine the evaluation cost in case of splitting we consider: the cost to evaluate
the fully and partially-contained tiles (Eq. 4.1, 4.2); the tile’s splitting cost (9 ⋅ t.E);
and the cost to access the child tiles of t, which in worst case, we have to traverse 9
child pointers of t. Therefore, the evaluation cost ΦQ,Q′

split for Q′ in case of split is:

ΦQ,Q′
split = (t.E − t.ES) + cio ⋅ (t.ES′ − t.ES) + (9 ⋅ t.E) + 9 (4.4)

3The assumption that Q′ is the next query, can be generalized to considering that Q′ is one of
the following queries (not strictly the next), if we consider that the tile t is not further split after
Q.

45

4.4.3.5 Expected Splitting Gain

We use the costs CQ,Q′
nosplit and CQ,Q′

split of evaluating Q′ in the two cases of not splitting
and splitting, respectively. We define the expected splitting gain as the improvement
in the performance of evaluating Q′ in case of splitting the tile t during Q evaluation.
Hence, based on the Eq. 4.3 & 4.4, the expected splitting gain ∆ΦQ′ for the query
Q′ is defined as:

∆ΦQ,Q′ = ΦQ,Q′
nosplit −ΦQ,Q′

split = cio ⋅ t.ES (4.5)

The final part of the equation results by omitting the cost of memory-based
operations (i.e., tile’s object scanning and splitting cost), since the cost of these
operations is clearly dominated by the cio cost of I/O operations.

4.4.3.6 Splitting Criterion: To Split, or not to Split?

We use the expected splitting gain as a criterion to determine, during the query
evaluation, whether to perform a split or not. This gain is only an approximation
indication, since it indicates the improvement over a single query when splitting
is performed, without however taking into account future splits and queries. Oth-
erwise, at an exhaustive scenario, we have to enumerate all possible queries and
splitting scenarios which is prohibited in our online setting.

Let a numeric splitting threshold ε ∈ R+. Using the expected splitting gain ∆ΦQ,Q′

and the splitting threshold ε, we define a splitting criterion, in which a splitting is
performed only when ∆ΦQ,Q′ > ε. Hence, based on Eq. 4.5 we have:4

Splitting Criterion ∶ if (cio ⋅ t.ES) > ε , perform a split (4.6)

We can observe in Eq. 4.6 that the criterion is defined based on I/O cost cio and
the objects t.ES of the tile t, selected by the query Q. These objects are computed
during the Q evaluation; hence, defining the I/O cost, we are able to compute the
splitting criterion on-the-fly during the evaluation of the Q.

4.5 Operating VALINOR Index under Memory

Constraints

There are cases where the size of the index exceeds the memory available for its
operation and parts of the structure have to be stored at the disk. Here, we define
the eviction policy that determines which parts of the index are removed from main
memory and written to the disk.

4.5.1 Preliminaries

4.5.1.1 Disk Storage Model

The eviction policy used in VALINOR is defined at the “tile-level”. Whenever a
tile is evicted from main memory, all its records are removed from main memory

4The threshold ε can be determined based on numerous factors such: hardware performance,
tiles and query sizes, etc. However, this is beyond the scope of this work.

46

and written to disk, or conversely, read from disk to memory (i.e., fetched) when we
retrieve it for usage. Note that, the “tile-level” policy described here can be easily
adapted to accommodate a “record-level” policy, in which individual records from
tiles can be selectively evicted and stored in disk.

Each time a tile is selected to be evicted, all of its objects currently residing in
memory are written to the disk5 The objects of a tile may be written to different
positions in the disk (i.e., organized in different files) and a pointer attached to the
tile indicates the tile’s position in the disk. The use of different files allows to store
the objects of each tile in sequential manner. In our disk storage model, we denote
as N = ∣O∣ the number of objects in the dataset. Further, we assume that the main
memory can fit M objects6, with N >M .7

4.5.1.2 Eviction Phases

The objects’ evictions are performed in two different phases. The first is during the
index initialization phase, and the second is during query processing. Recall that
eviction is performed only when the size of objects in tiles exceeds the memory size.

During the index initialization and while reading the objects from the source
file and building the index, if the memory gets full, we evict tiles (and write them
in disk), in order to free memory up and read the remaining objects. Recall that,
during initialization all objects must be read from the source file and indexed.

During query processing, a query may overlap with tiles which have been evicted
and stored in the disk. In that case, we first have to free memory and then fetch
previously evicted tiles needed by the query; i.e., first we write “memory-based”
tiles to the disk, and then we fetch the evicted tiles from the disk into memory. In
what follows, we describe the eviction during the two phases.

4.5.2 Eviction During Query Processing

An eviction is performed when a query overlaps with a tile which has been previously
written to disk. In that case, in order to fetch the required tile, we have to free
memory by writing another tile to the disk. Before we define the eviction policy, we
present some necessary definitions.

Tile Disk Access Cost. Each tile t is associated with a disk cost Cio(t) that is
the cost of reading/writing the objects entries t.E from/to the disk. Recall that, we
assume that the cost for reads is the same as the cost of writes, as cio we denote
the cost for reading/writing one object entry from/to the disk (Sect. 4.4.3). The tile
disk cost Cio(t) for tile t is the cost of reading/writing all objects of t from/to disk.
That is, Cio(t) = cio ⋅ ∣t.E ∣. Note that, the cost Cio(t) is imposed in both cases where:
(1) the eviction policy selects to write a tile t to the disk; and (2) a query accesses
a tile t, which is stored in the disk.

5Tile’s metadata will also be written to the disk, however here for simplicity we assume that
there are no metadata stored in tiles.

6Section 4.4.1 presents the memory requirements of a tile and an object.
7Note that, here for simplicity, we assume that M has be calculated by excluding from “actual”

memory size, the memory required to store the information related to the index structure; e.g.,
tiles intervals, pointers, etc.

47

Tile Eviction Score. A tile t is associated with a numeric eviction score tevSc ∈
[0,1], which formulates the possibility that the tile t is going to be selected by (i.e.,
overlapped with) a next query. The highest is the score, the more likely is for the tile
to be selected by a subsequent query. This score can be computed considering several
factors, such as: the size of the tile’s area w.r.t. query’ selection area size; tempo-
ral and spatial locality of the tile w.r.t. previously expressed queries; user moving
patterns, visualization type, screen size/resolution [52, 12, 89, 18]. However, this is
beyond the scope of this work. In our implementation, considering the “locality” of
exploration scenarios, we define the eviction score based on the Euclidean distance
between the tile and the query.

Expected Eviction Cost. The expected eviction cost Et for a tile t combines (1)
the tile disk access cost Cio(t); and (2) the eviction score tevSc of t, as

Et = tevSc ⋅Cio(t) (4.7)

The overall expected eviction cost for a set of tiles Te, is computed as the sum of
the costs of all tiles. That is, ETe = ∑

∀ti∈Te
Eti . Obviously (also in our implementation)

one can consider Cio(t) to be constant, especially, if all accesses are at the same
disk.

Based on the aforementioned definitions, in what follows, we formulate eviction
policy that is adopted during query processing.

Eviction Policy. Let V be the number of objects, which have to be evicted from
memory. The eviction policy selects the tiles Te to be evicted, such as the overall
expected eviction cost ETe of Te is minimized and the tiles of Te contains at least V
objects. Hence, formally we have:

minimize ∑
∀ti∈Te

Eti subject to ∑
∀ti∈Te

∣ti.E ∣ ≥ V (4.8)

Selecting Tiles to be Evicted. Considering the objective of the eviction policy
(Eq. 4.8), we adopt a generally known approximation approach to select the tiles
that are going to be evicted. Initially, we sort the tiles based on their expected
eviction cost Et, in descending order. Then, we select and evict the top tiles which
in sum contain at least V objects.

Reconstruction If, during query processing, a tile that has been evicted overlaps
a query and we need to examine its objects, we fetch the objects that are in the
disk and we merge with the ones in memory to recreate the complete list of a tile’s
objects. Note that during this recreation, the list of objects preserves its original
order of insertion. To minimize the associated I/O costs, during fetching, no objects
are erased from the disk. In this way, if a tile needs to be evicted again, we remove
its objects from memory and only write to the disk the ones that were not written
before.

48

Table 4.2: VALINOR Evaluation: Datasets
Name Num of Object Num of Attributes Data Size (GB)

Real Datasets

SDSS 40M 446 270

TAXI 165M 18 26

Synthetic Datasets

SYNTH10 100M 10 11

SYNTH50 100M 50 51

4.5.3 Eviction during the Initialization Phase

In this section we describe the eviction method that is followed during the initializa-
tion phase. As already mentioned, we adopt a “Tile-level” eviction method. During
the initialization phase, new records read from the source file are placed into tiles. If
the main memory gets full as we read the objects from the source file,we have to free
memory by writing tiles to the disk in order to make space and read the remaining
objects. “Tile-level” eviction means that all tile objects which have been read into
memory up to the time eviction occurs are stored to disk, while the population of
the tile continues. That means that an eviction may occur on a tile, when its current
objects exceed the memory limitations and the tile may keep receiving new objects
from the file parsing and store them in memory, after that last eviction. In this way,
some of the objects of a tile may reside in the disk, and some may be in memory.

During the initialization phase, each time the memory gets full, the eviction pol-
icy selects the tile with the following two properties: (1) it has not been previously
evicted, and, (2) it has the minimum eviction score among all candidates (specifi-
cally, this is the tile located far away from the initial query’s range), and writes its
objects currently residing in memory to disk.

4.6 Experimental Analysis

In this section, we conduct the experimental evaluation of VALINOR. We first
present the experimental setup which describes the datasets, the evaluation scenario,
the setting for the competitors and details about the implementation of VALINOR
and present the results.

4.6.1 Experimental Setup

4.6.1.1 Datasets

We have used two real datasets, the NYC Yellow Taxi Trip Records (TAXI), which is
a csv file, containing information regarding yellow taxi rides in NYC8, and the Sloan
Digital Sky Survey dataset (SDSS). From the TAXI dataset, we selected a subset
that includes taxi trip records in 2014 (165M objects, 26 GB) with each record object
referring to a specific taxi ride described by 18 attributes (e.g., pick-up and drop-off
dates and locations, trip distances, fares, and tip amount). Table 4.2 presents the
basic characteristics of the datasets. In our experiments for the TAXI dataset, the

8Available at: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

49

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

pickup location longitude and latitude were selected as the axis attributes, and the
two attributes for which statistics were calculated were the trip distance and the tip
amount. Each query is defined over an area of 500m × 500m size (i.e., window size),
simulating a map-based exploration at the neighborhood zoom level, with the first
query Q0 posed in central Manhattan (a very dense area).

From the Sloan Digital Sky Survey dataset, we used in our experiments a csv file
(270 GB) containing 40M rows of the the PhotoObjAll table, each row described by
446 attributes. The right ascension and declination attributes were selected as the
axis attributes of our exploration scenario.

Regarding the synthetic datasets (SYNTH10/50), we have generated two csv
files of 100M data objects, having 10 and 50 attributes (11 and 51 GB, respectively).
Each attribute value is a real number in the range (0, 1000) and follows a uniform
distribution. For the query sequences we generated for the synthetic dataset, we
used a window size with approximately 90K objects.

4.6.1.2 Evaluation Scenarios

We study the following visual exploration scenario: (1) First, the user selects the
two axis attributes and requests to explore a region of the data from the raw file,
specifying also the attributes for which statistics will be calculated. For this action,
referred to as “From-Raw Data-to-1stResults”, we measure the execution time for
creating the index and answering the first query, the results of which are evaluated
directly on the raw file, during index initialization. (2) Next, the user continues
exploring areas of the dataset.

User’s Entry Point. For selecting the entry point (initial query Q0) of the user
we adopt the following. In the TAXI dataset, the position of Q0 is defined over the
NY Manhattan area. In the SYNTH10/50 datasets, the position of the initial query
is randomly selected over the whole area. Finally, the SDSS dataset is very sparse,
there are numerous, large empty areas (i.e., without containing objects), so we find
a not-empty area to evaluate our queries.

Query Size. The initial size of the queries, for the TAXI dataset the size cor-
responds to one city block in the Manhattan. For the SYNTH10/50 and SDSS
datasets, we follow an approach which is based on visualization-based assumptions.
The maximum number of objects that can be visualized without having objects’
overlaps (i.e., two objects are very close and appear as a single object) can be esti-
mated assuming that: each can be visualized in one pixel, and there are no objects
in the pixels around it.

In this setting, the maximum number of visualized objects is (w × h)/9, where
w×h is the resolution of the screen. Today the most common resolutions in desktops
are 1366× 768 and 1920× 10809, which results in about 100K to 200K objects to be
visualized. Therefore, the size of the queries in SYNTH10/50 contains about 100K
objects, and in SDSS about 200K objects.

Exploration Scenarios. In our evaluation we examine two exploration scenarios.
In the first scenario, we generated sequences of 100 overlapping queries, with each
window query shifted in relation to its previous one by 1-20% towards a random

9https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide

50

https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide

direction (N, E, S, W, NE, NW, SE, SW). This scenario attempts to formulate a
common user’s behavior in 2D visual exploration, where the user explores nearby
regions using pan operations. [101, 102, 54, 89, 12, 96, 26, 29]. For example, as-
sume the common ”region-of-interest” or ”following-a path” scenarios in map visual
exploration.

The second exploration scenario combines pan and zoom operations. Particu-
larly, based on the findings of [12] for 2D exploration, the users perform almost equal
number of pan and zoom operations. Further studies [79] have shown that in general
in map-based visual exploration tasks, the users change the zoom level at most 3
(i.e., +/- 3 levels w.r.t. zero level). Thus, in our second scenario, we assume that
a user performs a pan or a zoom operation with equal probability. In case of pan,
we follow the strategy used in the first scenario (i.e., random shift 1-20% toward
a random direction). For the zoom operations, we consider that a user has equal
probability of performing a zoom-in or a zoom-out operation. Each zoom-in/zoom-
out operation increases or decreases the visualized area to 150% in relation to the
previous one.

4.6.1.3 VALINOR Variations

To assess the effect of the initialization and adaptation policy, we measure the per-
formance of three variations of VALINOR. In the first variation called VALINOR-S,
we use the basic initialization mode without index adaptation. With this setting,
VALINOR essentially works as a static flat-tile structure that does not adapt to
the query workload. In the second variation, called VALINOR-B, we use our ba-
sic initialization mode with the basic quad-tree like adaptation mode, while in the
third (VALINOR), we use the query-based initialization mode (Sect. 4.4.1) with the
query-driven adaptation mode (Sect. 4.4.2). For every one of the variations, we ini-
tialized the index with l = 1/100 resulting in an initial grid of 100 × 100 equal-width
tiles (this number of initial tiles is used in all the experiments). Also, we set the
number of extra tiles ∣TS ∣ which will be created during the Query-driven initializa-
tion method to a 20% of the number ∣T0∣ of initial tiles. Recall, these new tiles will
be distributed around the first query Q0. For both adaptation modes, we set the
threshold for the number of objects required in order to split a tile equal to 200.

4.6.1.4 Competitors

We have compared with: (1) A traditional DBMS (MySQL 8.0.15), where the user
has to load all data in advance in order to execute queries; three indexing settings
are considered: (a) no indexing (SQL-0I); (b) one composite B-tree on the two axis
attributes (SQL-1I); and (c) two single B-trees, one for each of the two axis attributes
(SQL-2I). MySQL also supports SQL querying over external files (see CSV Storage
Engine in Chapter 2); however, due to low performance [7], we do not consider it
as a competitor in our evaluation10. (2) PostgresRaw (PostgresRaw)11, build on top

10We refer the reader to [7], which has performed several experiments comparing the Postgres-
Raw against two DBMSs (MySQL and a commercial DBMS). The experiments demonstrated the
(noticeable) poor performance of the DBMS systems against PostgresRaw (e.g., in some experi-
ments PostgresRaw is about 12× faster than the MySQL), which is due to the fact that each time
a query is posed to external data, the whole file needs to be parsed.

11https://github.com/HBPMedical/PostgresRAW

51

https://github.com/HBPMedical/PostgresRAW

0

4000

8000

12000

16000

20000

SYNTH10 SYNTH50 TAXI SDSS

Ra
w

 D
at

a-
to

-1
st

Re
su

lt
Ti

m
e

(s
ec

) SQL-0I SQL-1I SQL-2I R-tree PGR VALINOR

28000 sec

Figure 4.7: VALINOR: Time for Answering the 1st Query over the Raw File. Time
includes: File Parsing, Index Construction & Q0 Evaluation

of Postgres 9.0.0 [7], which is a generic platform for in-situ querying over raw data
(Ch.. 2). (3) A main memory Java implementation of the R*-tree12 [13]. We have
tested various configurations for R-tree index fan-out, ranging from 4 to 128; as
the difference in the performance is marginal, we only report on the best one, i.e.,
16. For all the other tuning decisions, with respect to its performance and memory
minimization, we have setup the R*-tree with the configuration recommended in its
GitHub repository.

4.6.1.5 Metrics

We compare our method with the existing solutions, as well as with our baseline
approach. We measure the: (1) execution times for each query in the sequence;
(2) accumulative execution time for the entire exploration scenario; (3) memory
consumption; (4) the performance of the eviction mechanism under varying memory
constraints; and (5) the number of I/O operations. In all cases, the reported time
values are the averages of 10 executions.

4.6.1.6 Implementation

We have implemented RawVis13 on JVM 1.8 and the experiments were conducted on
an 3.60GHz Intel Core i7-3820 with 64GB of RAM. We applied memory constraints
(max Java heap size) in order to measure the performance of our approach and
our competitors in a commodity hardware setting. For large datasets, PostgresRaw
required a significant amount of memory (in some cases more than 32GB); the same
held for the in-memory R-Tree implementation (>16GB in most cases). In contrast,
VALINOR performed well in all datasets (>250GB) for heap size less than 10GB
(see Sect. 4.6.2).

12https://github.com/davidmoten/rtree
13The source code is available at https://github.com/Ploigia/RawVis

52

https://github.com/davidmoten/rtree
https://github.com/Ploigia/RawVis

0

40

80

120

160

1M 10M 50M 100M

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Objects

Q0 Indexing Parsing

Figure 4.8: VALINOR Initialization Phase: File Parsing, Index Construction & Q0

Evaluation

4.6.2 Results

4.6.2.1 From-Raw Data-to-1st Result Time

In this experiment, we measured the time required to answer the first query Q0.
This time includes the time required to load and index the data for MySQL, and to
construct the positional map for PostgresRaw. For the VALINOR and R-tree cases
the in-memory indexes must be built. For the R-tree construction, bulk-loading was
used.

Figure 4.7 presents the results for the datasets used. In these results, we omit
MySQL for the SDSS dataset as it took more than 5 hours just to load the dataset
without creating any indexes. VALINOR outperforms the MySQL and R-tree meth-
ods, for all datasets. Before being able to answer the first query, MySQL needs to
parse and convert all attributes of the raw file and store all data on disk. Also,
for the SQL-1I and SQL-2I cases, the corresponding indexes must be built, which
explains the increased initialization time in relation to SQL-0I where no index is
generated.

Further, as expected, VALINOR exhibits a lower initialization time than R*-
tree; the latter must determine multilayer MBRs and assign objects to leaf nodes as
opposed to our approach which is initialized with fixed tile sizes.

In this experiment, VALINOR exhibits a slightly higher initialization time in
relation to PostgresRaw for the SYNTH10/50 and TAXI datasets. This can be
attributed to the non-optimized csv parsing and slower I/O Java operations, as
opposed to the efficiency provided by the programming language of PostgresRaw
(i.e., C) – of course, improving our implementation in terms of parsing and I/O is
open for exploration in the future.

Despite this slight difference in initialization time, as demonstrated latter, VALINOR
is considerable faster in answering queries during an exploration scenario. Particu-
larly, during exploration, in most cases, VALINOR is about 5-10× faster compared
to existing systems.

For the largest dataset (SDSS), which contains 446 attributes, VALINOR out-
performs the other methods. Particularly, VALINOR populates the index only for
the two axis attributes and stores tile metadata for the attributes requested in the

53

Figure 4.9: VALINOR Initialization & Adaptation Methods: Execution Time
Comparison of the 3 VALINOR Configurations

analysis clause of the queries. PostgresRaw, on the other hand, populates its index
(positional map) with the position of all tokenized attributes until the last attribute
requested in the query. For the queries posed in SDSS, this last attribute corre-
sponds to the declination which is the 398th attribute in the dataset. As a result,
PostgresRaw keeps in the positional map the position of the first 398 attributes,
which explains the slower initialization time.

Finally, for assessing the time required for VALINOR for answering the 1st query
Q0, we have separately measured the time of the initialization phase that spent to:
parse and read the file, construct the index and determine the objects of the first
query Q0. In our experiment we use the SYNTH10 data varying the number of
objects from 1M to 100M objects. The results are presented in the Figure 4.8. In all
cases, the time required for parsing the file clearly dominates (more than 70%) the
overall initialization time. On the other hand, since the first query Q0, is evaluated
during the file parsing and the index construction, the query evaluation overhead is
negligible.

4.6.2.2 Initialization & Adaptation Methods

Next, we evaluate the performance of the three VALINOR variations, and show that
the query-driven initialization and adaptation policies improve query execution time,
especially for the first operations of the exploration scenario. Figure 4.9 presents
the execution time for queries Q1 ∼ Q99. Note that Q0 is not depicted in the figures.
This query, which triggers the initialization of the index, is answered directly from
the raw file and does not exhibit any significant difference among the VALINOR
variations presented.

As we can observe, VALINOR-S exhibits the worst performance for all datasets.
In VALINOR-S, there is no adaptation to the workload in order to increase the num-
ber of fully-contained tiles with precomputed aggregate values. Both, VALINOR-

54

 (a) SYNTH10 (b) SYNTH50

 (c) TAXI (d) SDSS

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
er

at
io

n
s

Query Sequence

VALINOR-S VALINOR-B VALINOR

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
er

at
io

n
s

Query Sequence

VALINOR-S VALINOR-B VALINOR

0.E+0

1.E+6

2.E+6

3.E+6

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
er

at
io

n
s

Query Sequence

VALINOR-S VALINOR-B VALINOR

0.0E+0

1.1E+5

2.2E+5

3.3E+5

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/
O

 o
p

er
at

io
n

s

Query Sequence

VALINOR-S VALINOR-B VALINOR

Figure 4.10: VALINOR Initialization & Adaptation Methods: Number of I/O Opera-
tions
Comparison of the 3 VALINOR Configurations

B and VALINOR perform tile splitting to minimize future file reads, however in
VALINOR, as can be seen, the query-driven initialization and adaptation policies
used provide an initial boost in query performance. This boost is more significant
for the TAXI and SDSS datasets, since the window size used for their workload
is much smaller in relation to the initial tile size. In VALINOR, the query-driven
initialization policy splits the area around the first query in a more fine-grained
fashion, making subsequent neighboring queries fully overlap more tiles sooner and
reducing their execution time. This initial boost in query performance is also the re-
sult of the query-driven adaptation policy employed. Using this adaptation method,
the subtiles that correspond to the intersection with the query are more likely to
fully overlap with similarly-sized subsequent queries. This is in contrast to the basic
adaptation mode, where a tile may need to be split multiple times to create subtiles
small enough to be fully contained by the next queries. Also, in the query-driven
adaptation policy, we exploit all the I/O operations for the subtiles that correspond
to the intersection with the query by computing metadata for them. As a result, in
VALINOR, the index adapts to the workload and executes the first queries faster
than in VALINOR-B. However, as can be seen in Figure 4.9, both adaptation meth-
ods manage to adapt to the workload and exhibit a similar performance after a
number of queries (e.g., approximately after 15 to 20 queries). Note that, this be-
havior is aligned with the goals of the optimizations proposed in this work; i.e., to
improve the overall response time, especially for the user operations performed at
the early stages of the exploration scenario.

The execution time examined above, is mainly determined by the number of I/O
operations required to answer each query. This is evident in Figure 4.10, where as it

55

0

3

6

9

12

15

Q0 Q11 Q22 Q33 Q44 Q55 Q66 Q77 Q88 Q99

M
ax

im
um

 D
ep

th

Query Sequence

Figure 4.11: Maximum Hierarchy Depth of VALINOR per query (TAXI)

can be seen, the plots follow closely the corresponding execution time plots in Figure
4.9. Regarding the two synthetic datasets (SYNTH10/50), their I/O plots almost
completely match (Fig. 4.10a, b). These two datasets have the same number of rows
and all of their attributes have values uniformly distributed in the same range. Their
only difference is the number of attributes each one has (i.e., 10 and 50 respectively).
Thus, since we use the same query workload and the same initialization setting, the
I/O operations required for both datasets are similar. Also, every query in their
workload had the same window size and selected approximately the same number
of objects. This explains why in VALINOR-S, where the index does not perform
tile splitting in order to reduce the file accesses of subsequent queries, the number
of I/O operations does not change from query to query. Overall, for the synthetic
datasets, VALINOR requires around 30% less I/Os compared to VALINOR-B and
80% less compared to VALINOR-S; 22% and 87% for TAXI, 30% and 92% for SDSS
respectively.

Regarding the index adjustment to the query selection predicate, the incremen-
tal index adaptation performs a larger number of tile splittings in areas that are
frequently visited by the user. As a result, an unbalanced index is constructed, with
deeper tile hierarchies in those areas. On the other hand, the threshold used by
our splitting method (Sect. 4.4.3) limits the number of times a tile is split. Fig-
ure 4.11 presents the maximum depth of the index resulting from every query in the
sequence for the TAXI dataset. The initial depth of the index after Q0 is one. Be-
tween queries Q1 ∼ Q99 where the user explores neighboring areas, the query-driven
adaptation method, further splits the tiles and increases the maximum depth of the
index. We observe, however, that due to the threshold limit, the depth converges to
a maximum value (14 for the TAXI dataset).

To assess the influence of Q0 on how the index is refined during the entire ex-
ploration scenario, we have conducted an experiment in SYNTH10, in which we
varied the initial query, while keeping constant the remaining workload of queries
Q1 ∼ Q99. Since this dataset has a uniform distribution, the position of Q0 does not
significantly affect the initial tiling of the index. Thus, we only varied the Q0 size
(from 0.01% to 10% selectivity on the dataset) and we measured the way the index
is refined (number of total tiles) after every query. Figure 4.13 shows that although
Q0 size affects the initial tile structure, VALINOR attempts to adjust the number

56

Figure 4.12: Execution Time: VALINOR vs. Competitors

of tile splittings that happen after Q0. For small Q0 sizes, the index is already split
in more small tiles around Q0 and following queries create fewer tiles compared to
larger sizes of Q0. This explains why for larger Q0 the number of total tiles increases
more rapidly at first. Still, as can be seen in the figure, after Q85 the number of new
tiles created by tile splittings are approximately the same despite different Q0.

4.6.2.3 VALINOR vs. Competitors during Exploration Scenarios

In this experiment, we compare the behavior of VALINOR against the existing
solutions. Figure 4.12 shows the execution time for queries Q1 ∼ Q99, without the
first query that includes the initialization stages for every system (e.g., loading and
indexing the data for MySQL).

In the results, we omit the plots for SQL-0I for the two synthetic datasets, and
the ones for SQL-0I and SQL-1I for the TAXI, as the corresponding execution times
were much higher (more than 350sec). Also, in the SDSS dataset, we did not run
the query sequence for any of the MySQL settings, as it took more than 5 hours
just to load the data.

Compared to the other methods, VALINOR exhibits significantly lower execution
time in almost all cases. Particularly in TAXI dataset, where VALINOR times range
between 0.3 to 12 sec, VALINOR is more than 2× faster in all queries and more than
10× faster in 35% of queries than the best competitor, and in the rest of datasets
VALINOR is about 2-5× faster.

Regarding PostgresRaw, we observe that it requires approximately the same
time for every query. The positional map used in PostgresRaw, attempts to reduce

57

9000

10000

11000

12000

13000

14000

15000

Q0 Q14 Q28 Q42 Q56 Q70 Q84 Q98

N
um

be
r o

f T
ile

s

Query Sequence

0.01% 0.05% 0.5% 10%

Figure 4.13: Number of VALINOR Tiles varying Q0 Selectivity

the parsing and tokenizing costs of future queries, by maintaining the position of
specific attributes for every object in the raw file. However, PostgresRaw still needs
to examine all objects in the dataset in order to select the ones contained in a 2D
window query. Also, in contrast to VALINOR, PostgresRaw does not keep any
metadata in order to efficiently compute the aggregate queries. This is also the
main reason why the R-tree is significantly slower compared to VALINOR. For
the evaluation of the analysis clause of a query the R-tree cannot reuse previously
computed metadata in order to reduce the number of I/O operations, and has to go
to the raw file for every object contained in the selection clause of the query.

Besides the positional map used in PostgresRaw, a cache is also employed to
hold the values of previously accessed attributes and avoid access to the raw file
altogether. So, for queries Q1 ∼ Q99 where the cache is already populated, and the
attributes requested are the same as in Q0, PostgresRaw does not need to access
the raw file. The time to execute every query then depends mainly on the number
of objects contained in the dataset. For example, for TAXI which contains 165M
objects every query takes around 26 sec, while for SDSS which contains 40M objects,
4.7 sec. This explains why PostgresRaw is faster for some of the queries in the SDSS
dataset compared to VALINOR. VALINOR, despite adapting to the workload in
order to minimize file reads, still needs to access the raw file for the objects of
partially-contained tiles. For SDSS, these raw file accesses are particularly expensive
considering its disk size (270GB). Nevertheless, VALINOR performs better than
PostgresRaw for most of the queries in SDSS, needing approximately 51% less total
time to execute queries Q1 ∼ Q99.

The accumulative time needed to execute the query sequence of the exploration
scenario for every dataset is shown in Figure 4.14. The accumulative time captures
the overall performance of the user scenario. This time includes Q0 which is depicted
separately from all subsequent queries. As it can be seen, the cumulative time
needed to execute the complete workload by VALINOR is much lower in relation to
other systems. For example, for the TAXI dataset VALINOR needs around 15 min,
while PostgresRaw, which is the best competitive method for this dataset, requires
approximately 51 min. Even though PostgresRaw needs less time to answer the first
query for the TAXI dataset, as well as for SYNTH10/50, the rest of the sequence is
executed mush faster by VALINOR, resulting in better overall performance.

58

Figure 4.14: VALINOR Overall Execution Time for the Entire Exploration Scenario

4.6.2.4 Discussion

We observe that VALINOR achieves for most queries (except Q1) of SYNTH10
and SYNTH50 response times between 0.07 and 0.55 and between 0.1 and 0.8,
respectively. Note that, in SYNTH10 only one query reports time more than 0.5 sec,
and in the SYNTH50 dataset 11 queries. Regarding the SDSS and TAXI datasets,
due to a noticeable larger number of I/Os (about two orders of magnitude more),
the response times are larger. Particularly, in SDSS we have times between 0.15 and
9.5. However, in more than 35% of the queries the time is less than 1 sec. On the
other hand, the best competitive method (PostgresRaw), reports times more than
4.2 sec in all queries. In the TAXI dataset, where we have the larger number of I/Os,
we have times between 0.3 and 11, with 4.2 seconds being the average value. On the
other hand, the best competitive method (PostgresRaw), reports times between 23
and 28, with 26 as average value. Further, in PostgresRaw about 85% of the queries
require more than 25 sec. Hence, in 85% of the queries the PostgresRaw reports
more than twice worse performance compared to our worst case (11 sec). Overall,
in our experiments, the proposed method, in most cases, is about 5-10× faster than
the competitors, and requires significantly less memory resources.

Finally, we have to note that the system’s performance is highly affected by
implementation issues. For example, in our case, the disk I/O operations cost,
dominates the response time. The VALINOR has been implemented as a prototype
using the Java programming language, which is known to have poor performance in
I/O operations, compared to other programming languages; e.g., C/C++. So, the
use of other programming languages will have an impact on performance.

59

0
5

10
15
20
25
30
35

Q0 Q0' Q0'' Q1 Q1' Q1'' Q2 Q2' Q2'' Q3 Q3' Q3''

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query

VALINOR
PGR~~

Figure 4.15: VALINOR Execution Time for Filter Operations (SYNTH10)

4.6.2.5 Evaluating Filter Operations

For assessing the behaviour of VALINOR with regard to varying filtering on non-
axis attributes, we compare VALINOR against PostgresRaw while varying the filter
clause. For this, we generate 4 queries for SYNTH10, keeping the selection clause
(i.e. window query) fixed, while alternating their filter condition. Specifically, the
filter clause of each query includes a condition over a different non-axis attribute.
For example, Q0 filters objects having their 8th attribute greater than 700; Q2

filters objects with the 6th attribute less than 200, etc. The same workload of
queries Q0 ∼ Q3 are repeated 3 times and the results are shown in Figure 4.15. In
the plot, the first iteration of Q0 includes the initialization time for both systems,
which explains the significantly higher execution time. As can be seen, VALINOR
outperforms PostgresRaw in this experiment. For every such query, VALINOR
first evaluates the selection clause, and may read the raw file to retrieve the non-
axis attribute included in the filter clause only for the objects contained in the
window query. Also, while reading these non-axis attributes, it stores tile metadata
for them, which assists next filter queries avoid expensive IO operations. This is
evident especially for Q3. The first time Q3 is executed, there is no tile metadata
for the 9th attribute which its filter condition references. As a result, VALINOR
needs to retrieve this attribute for all objects contained in the selection clause.
Simultaneously, while reading this attribute, it populates fully-contained tiles with
related metadata (e.g., min, max for this attribute). When the same query Q3 is
executed again, VALINOR utilizes this metadata to avoid most I/O operations,
which explains its faster execution time. Regarding PostgresRaw, we can observe
that apart from the first iteration of Q0, which initializes the positional map and
cache of the system and thus exhibits much higher execution time, PostgresRaw
also exhibits a significantly slower execution time for the first iteration of Q1 ∼ Q3

as it populates the positional map for the corresponding non-axis attributes of each
query’s filter condition. Next iterations of these queries require less time, as they
can utilize the already populated structures of PostgresRaw.

4.6.2.6 Combining Pan and Zoom Operations

In this experiment, we compare VALINOR’s performance with that of PostgresRaw
and R-tree, for the second exploration scenario which includes pan, zoom-in and

60

0

10

20

30

40

50

60

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query Sequence

RTREE
PGR
VALINOR

Figure 4.16: VALINOR: Exploration using Pan and Zoom In/Out Operations (TAXI)

zoom-out operations on the TAXI dataset. Figure 4.16 presents the results, where
VALINOR exhibits better performance for every query Q0 ∼ Q99. Compared to the
first exploration scenario which did not include zoom operations, we can observe that
in this, query execution times vary significantly. Zoom-out operations increase the
number of objects contained in a window query and result in slower execution times
in general. For example, Q9, Q13 and Q74 correspond to zoom-out operations, which
explains the significantly higher execution time observed for all 3 methods examined.
On the other hand, zoom-in operations restrict the visualized area and reduce the
objects that need to be examined. As a result, queries like Q2 or Q42 correspond
to drops in execution time. The aforementioned behavior, where larger window
queries result in slower execution time, is more consistent for the PostgresRaw and
R-tree methods, where all contained objects have to be examined and their non-axis
attributes included in the analysis clause of the query, either fetched from disk for R-
tree, or from disk or cache for PostgresRaw. On the contrary, VALINOR performs
tile splittings and populates fully-contained tiles with metadata for the non-axis
attributes that are retrieved. As a result, even for a zoom-out operation (e.g., Q82),
VALINOR may require less time than the previous, smaller window query, if it can
utilize tile metadata to avoid I/O operations.

4.6.2.7 Memory Consumption

In this experiment, we examine how VALINOR’s size in memory changes while it is
adapted to the query workload. The experiment was ran on the synthetic datasets
with the index operating using its query-driven initialization and adaptation policies.
Note that, the memory consumption in VALINOR is not affected by the objects’
dimensionality, since in each case, only the two axis attributes are indexed. As a
result, using either of the two synthetic datasets (SYNTH10/50) would require the
same memory. The query workload used is the same as in previous experiments,
with each query requesting bivariate statistics on two non-axis attributes. Figure
4.17 shows the results. We can observe that the total size of the index increases
slightly as queries are processed. This is the result of tile splitting to adapt to the
query workload and of metadata being stored for fully-contained tiles.

Figure 4.18 presents VALINOR’s memory footprint compared to R-tree. We
did not consider PostgresRaw and MySQL settings since they exhibit different
memory requirements due to their tight-coupling with the RDBMS. Nevertheless,
PostgresRaw required a significant amount of memory for its positional map and

61

4.328

4.329

4.33

4.331

4.332

4.333

Q0 Q15 Q30 Q45 Q60 Q75 Q90

M
em

o
ry

 (
G

B
)

Query Sequence

Figure 4.17: VALINOR During an Exploration Scenario

0

5

10

15

1M 10M 50M 100M

M
em

o
ry

 (
G

B
)

#Objects

R-tree VALINOR

Figure 4.18: VALINOR vs. R-tree

cache for datasets with more attributes (in some cases more than 32GB). For this
experiment, we measured the memory used to build VALINOR and R-tree varying
the number of objects in the synthetic dataset. Note that, same as VALINOR, the
memory of R-tree is not affected by the objects’ dimensionality. So, SYNTH10 is
the same as SYNTH50. We can observe that VALINOR requires significantly less
memory than R-tree, with R-tree requiring 2× more memory for 100M objects.

4.6.2.8 Performance of VALINOR under Memory Constraints.

Next, we examine the behavior of VALINOR when operating under memory lim-
itations and its index structure size exceeds the available memory size. In this
scenario, parts of the index have to be evicted to the disk and loaded again into
memory as needed. For this experiment, we used the SYNTH10 dataset running
the same workload as before, but varying the percentage of objects that can fit into
the memory available between 25%, 50%, 75% and 100%. To show the effect of
eviction during query processing, we modified the workload used previously for the
synthetic dataset, generating sequences of 100 overlapping queries, increasing the
window size (5×) and shifting each query in relation to its previous one by a shift
amount of 50%.

Figure 4.19 presents the cumulative time needed to answer the query sequence for
every case. As we can see, VALINOR’s initialization time increases under memory
pressure. Since the objects cannot fit in memory, some objects are evicted during
the initialization phase. To better demonstrate how memory pressure affects query

62

0

100

200

300

400

500

600

10% 25% 50% 75% 100%

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Percentage of objects in memory

Q1-Q99 Initialization & Q0

Figure 4.19: Overall Execution Time of VALINOR varying the Memory Size (SYNTH10)

0

20

40

60

80

100

10% 25% 50% 75% 100%

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Percentage of objects in memory

Q1-Q99

Figure 4.20: Overall Execution Time of VALINOR

processing, we present separately in Figure 4.20 the cumulative time needed to
answer Q1 ∼ Q99. As can be seen, the time needed to answer queries after the initial
one, is not greatly affected. Since we follow an eviction policy based on the distance
from the query, and the workload consists of neighboring and overlapping queries,
very few evictions need to happen during query processing. Specifically, the effect
is more pronounced when restricting the available memory to 10% of the dataset,
as can also be seen in Figure 4.21, which presents the execution time for queries
Q1 ∼ Q99.

4.7 Summary

This chapter has introduced the VALINOR index, a core component of our proposed
approach for efficient visual exploration and analytics over large raw data files.
Our focus has been on the scenarios where users interact with data in a 2D visual
exploration context, and the index is optimized to handle such scenarios, particularly
when the data is based on two numeric attributes.

We outlined the hierarchical, tile-based structure of the VALINOR index and
discussed its role in grouping objects for efficient access and analysis. The aggregated
metadata associated with each tile not only enriches the index but also speeds up
analytic operations.

We delved into the user-driven initialization algorithm for building the index.

63

0

1

2

3

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Query Sequence

10% 25% 50% 75% 100%

Figure 4.21: Execution Time of VALINOR varying the Memory Size (SYNTH10)

The novelty of this approach lies in its usage of a locality-based probabilistic ap-
proach, facilitating faster user interaction at the initial stages of the exploration.

The chapter further explained our unique query-based adaptation technique.
This method incrementally adjusts the index structure based on user interaction,
enhancing performance, particularly for analytic tasks.

We also touched upon the practical considerations of implementing such a sys-
tem, discussing the index’s space complexity and our mechanism for dealing with
memory constraints. The eviction mechanism provides a balanced approach to mem-
ory management, allowing parts of the index to be stored on disk when necessary.

The chapter concluded with an extensive experimental evaluation of the pro-
posed methods and their performance. The results demonstrated the superiority
of our approach compared to competitive systems in terms of execution time, I/O
operations, memory consumption, and scalability.

In conclusion, the VALINOR index is a robust solution for enhancing the speed
and efficiency of 2D visual exploration and analytic operations over large raw data
files. As we progress into the next chapter, our emphasis will shift towards the adept
handling of visual analysis over categorical attributes, with a specific focus on the
efficient execution of group and filter operations on these attributes.

64

Chapter 5

Indexing for Visual Exploration
over Categorical Attributes

5.1 Introduction

Visual exploration and analysis of raw data is a challenging yet critical task in many
domains. This task often involves multiple visual techniques that leverage various
types of attributes, such as numerical and categorical. In the previous chapter, we
introduced the VALINOR index, which mainly focuses on 2D exploration scenarios
involving two numeric attributes. While this approach is highly effective for visual
scenarios like scatter plots or geospatial maps, it is not directly applicable to ex-
ploratory visual analysis that also uses categorical attributes. Many common visual
techniques, such as bar charts or heat maps, rely heavily on categorical attributes.
The efficient handling of such attributes in in-situ exploration scenarios presents
significant challenges, which we attempt to address in this chapter.

Considering the visual exploration model presented in Chapter 3, VALINOR was
designed to efficiently evaluate operations such as render, move, zoom in/out, as
well as the analyze operation which calculates aggregate statistics over the entire
2D window query. However, in this chapter, our focus shifts towards operations
involving categorical attributes, such as filter, group, and the analyze operations
to compute aggregate statistics per group. Group-by analysis is required to generate
well-known visualization types, such as bar charts, heatmaps, parallel coordinates,
binned scatter plots, radar charts, pies, etc. The importance of categorical-based vi-
sualization types in data analysis is verified by [68], showing that bar charts are the
most commonly used visualization type. Many of these charts and interactions are
largely employed in common data analysis tasks, such as feature extraction, OLAP
analysis, regression, and comparative analysis of spatial data [68]. Beyond visual
analytics requiring group-by operations, filter operations over categorical attributes
enable support for effective exploration mechanisms, such as faceted search. These
types of analysis and queries have been widely optimized in traditional data ware-
house systems, via spatial and multidimensional indexes, and with pre-aggregated
materialized views over the data. However, these methods require loading the data,
tuning the indexes and materializing the aggregated views.

The in-situ visual exploration scenario that this work focuses on attempts to
avoid the overhead of moving, loading, and indexing the data in a DBMS and to
improve performance by progressively adapting an index as the user explores data.

65

0

10

20

30

40

50

60

1 2 3 4 5

M
e

m
o

ry
 (

G
B

)
Number of categorical attributes

crashed

Figure 5.1: Indexing Memory Requirements vs.Number of Categorical Attributes

The key objective is to offer fast user interactions without a preprocessing phase.
Despite the challenges faced when performing 2D in-situ visual exploratory analysis
that the previous chapter attempted to address (e.g., on-the-fly index construction,
small data-to-analysis time, reducing the cost of I/O operations to the raw data
files), in cases where categorical attributes are involved, the memory required to
index the dataset becomes prohibitive even for a small number of attributes.

For example, Figure 5.1 shows the memory allocated for our initial ”crude”
version of VALINOR expanded to also index the objects based on the categorical
attributes, over different numbers of attributes, on a dataset with 100M objects
(SYNTH10 dataset, Sect.5.7). We observe that for 4 categorical attributes, the
size of the index is 31GB, while indexing 5 attributes requires more than 64GB
of memory. These amounts of memory are not usually available in commodity
hardware-based scenarios. The challenge here is: what part of the data do we
choose to index and how do we optimize the index given a predefined memory size?

Moreover, another challenge is related to the efficient query evaluation over
the index in exploratory operations involving categorical attributes. The meta-
data stored in the tiles of VALINOR refer to all the objects of the tile, and cannot
be utilized if a query involves a Group-by clause or even a Filter clause that involves
a categorical attribute. Thus, the challenge here is: how to effectively enrich the
index so that it can efficiently evaluate such categorical-based operations?

To address these challenges, in this chapter, we propose an indexing scheme
called the VETI index, designed to cater specifically to in-situ visual analytics sce-
narios that involve categorical-based operations, including group-by and filter oper-
ations, in combination with 2D visual interactions and statistics. This index extends
VALINOR, and is built on top of the tile-based structure, which efficiently supports
visual exploration over the 2D plane. Additionally, it is enhanced with a tree-based
structure that organizes a tile’s objects based on their categorical values. This dual
structure offers an effective approach to handling both categorical and numerical
attributes, thereby making it highly adaptable to a range of visual exploration and
analytic scenarios.

This chapter will cover the key aspects of the VETI index, including the CET
tree for enhancing the VALINOR tile structure with categorical-based indexing,
the query evaluation and index adaptation mechanism, the resource-aware index
initialization approach, and the proposed algorithms for handling the correspond-
ing optimization problem. To demonstrate the effectiveness and robustness of our

66

Table 5.1: VETI Notation

Symbol Description

O, oi Set of objects, an object

A, ai,A Set of attributes, the value of attribute A of the object oi

Ax, Ay , AC X Y Axis & Categorical attributes

C Ordered set of categorical attributes

Q, R Exploratory Query, its Results

I, IT VETI index; its Tiles

h, h.C CET tree; its Categorical attributes

h.N Number of CET nodes

t.h Tree h of tile t

ρt, ρh Tile & Tree utility

HPC Attributes-based Tree Powerset, given a set C
πht , πht .ω A Tile-Tree Assignment and its Utility

IΠ, Ω(IΠ) Index Assignments; Index Utility

B Initialization memory budget

πht .Φ Memory cost estimation for assignment πht
H Candidate tree set

Icost, IT cost, IHcost Memory cost of: index I, its tiles IT and its trees IH

AT&TVeriz

Apple

Samsg Huawei

Xiaomi

Apple

Samsg
Huawei

Xiaomi

Pr
ov

id
er

le
ve

r
Br

an
d

le
ve

l

o1 o2 o5 o3 o4

a

b c

d e f g h i j k

c.S = AT&T, *
c.𝒪 = {o3, o4}

(a) CET Tree

d.S = Veriz, Samsg
d.𝒪 = {o1, o2}

object entries d.ℰ

o1 : ⟨21 11 f1 ⟩

o2 : ⟨29 18 f2 ⟩

 Long Lat File off.

metadata d.ℳ

 max(Width)=7
 ∑Width=11
 ∑Width2=65

 min(Signal)=1
 ∑Signal=4
 ∑Signal2 =10

Signal Width

n = 2
#Obj Signal & Width

∑Signal ∗ Width=25

(b) Contents of Leaf d

Leaf d

Figure 5.2: CET Tree Overview

approach, we will provide a detailed performance evaluation based on real and syn-
thetic datasets. Our results highlight the remarkable speed and efficiency of our
methods, achieving interactive query response times even over large raw files.

5.2 CET Tree: An Index for Categorical Attributes

5.2.1 Design Principles

In this section, we present a tree structure that organizes objects based on their
categorical attribute values, named CET (Categorical Exploration Tree). CET is
designed as a lightweight, memory-oriented, trie-like tree structure. In a nutshell,
each tree level corresponds to a different categorical attribute, and edges to attribute
values. Based on the tree hierarchy, each node is associated with a set of objects,
that are determined based on the node path. These objects are stored in the leaf
nodes.

Overall, the design of the CET tree relies on the following principles and chal-
lenges. First, considering the number of attribute-value combinations which are re-
quired for categorical indexing, a significant amount of memory is required (Fig. 5.1).
Hence, the design of a memory-efficient categorical structure is a major challenge,
especially in our scenario, where we consider limited available resources. To reduce

67

the memory footprint of the tree, we implement the following techniques: (1) Each
object allocates three numeric values : (a) two numeric values for the axis attributes;
and (b) one numeric value (i.e., file offset) that offers object-based, precise “con-
nection” between object and raw file (2) Statistics are stored only in one tree level
(in leaves), while the hierarchical structure of CET allows the efficient computa-
tion of statistics over different levels, by performing efficient, in-memory aggregate
operations.

(3) The number of tree elements is reduced (i.e., nodes/edges) during tree con-
struction, by considering attribute characteristics, i.e., size of the attributes’ domain
(see Sect. 5.2.3).

A second challenge is to reduce the cost of I/O operations which are crucial in
such I/O-sensitive settings. Exploiting the way CET stores the objects during the
initialization phase (Sect. 5.3.2), we are able to access the raw file in a sequential
manner. As we previously noted in the context of the VALINOR index, performing
a sequential file scan enhances the number of I/O operations over contiguous disk
blocks, consequently improving the utilization of the look-ahead disk cache. This
is confirmed by our experiments, in which the sequential access results in about 8×
faster I/O operations (more details in Sect. 5.4.1).

5.2.2 CET Structure

In this section, we present the basic concepts of the CET tree. Given a set of objects
O and an ordered set (list) of categorical attributes C = {AC0 ,AC1 , ...ACk}, a CET
tree h organizes the objects h.O based on the values of the categorical attributes
h.C. The height of h is ∣C∣, so it has ∣C∣+ 1 levels (from 0 to ∣C∣), with the leaf nodes
storing the objects.

CET follows a “level-based” organization, where each level corresponds to a dif-
ferent attribute. Specifically, based on the given order of the attributes C, the nodes
at level i have edges that correspond to a different value of the attribute ACi ∈ C,
i.e., dom(ACi).

Each node n, is associated with a sequence of attribute values n.S = ⟨v0, v1..., vk⟩,
that is defined by the path from the root to node n. The sequence contains ∣C∣ values,
where the value vi corresponds to a value of the attribute in level i. Specifically, for
a node n at the level i, the first ith values in n.S are the attributes values found in
the path from the root to n, while the rest ∣C∣− i values are assigned with the value
any, denoted as ∗.

Based on the sequence of values n.S, a node is associated with a set of objects
n.O ∈ O, where its attribute values are equal to the sequence’s values. As a result,
the tree defines an aggregation structure, where in each node, the associated objects
are the union of the objects associated with its child nodes. Note that, to reduce the
memory requirements of the index, we maintain a hash table for each categorical
attribute mapping its values to numeric hashes.

Object Entries. Leaf nodes contain references to the data objects, i.e., object
entries. Note that, object entries are not included in internal nodes. As in the case
of VALINOR, for each object oi ∈ n.O, an object entry ei is defined as ⟨ai,x, ai,y, fi⟩,
where ai,x, ai,y are the values of the axis attributes and fi the offset (a hex value)
of oi in the raw file. As n.E we denote the set of object entries stored in the leaf
node n. In any case, an object entry has a constant size that is not affected by the

68

object’s characteristics (e.g, number of attributes), and is equal to three numeric
values: the object’s Ax and Ay (e.g., two double), and the object’s offset from the
beginning of the file, e.g., a long. The file offset fi defines a “direct and precise”
object-based connection between an object and the raw file.

Synopsis Metadata. Apart from object entries, each leaf node n is associated with
a set of synopsis metadata n.M, which are (numeric) values calculated by algebraic
aggregate functions [38] over one or more attributes of the n.E objects.

Recall that, combining the algebraic aggregate functions allows us to support a
large number of statistics, e.g., Pearson correlation, covariance.2 For example, we
employ functions like sum, mean, sum of squares of deltas over the objects of a leaf.

Using leaf metadata, we are able to compute the metadata of any internal node n,
by aggregating the metadata of the descendant nodes of n, in a bottom-up fashion.

Example 6. [CET Tree] Figure 5.2a presents the CET index constructed for the
categorical attributes C = {AProvider, ABrand} of a raw data file with network signal
measurements, a sample of which is presented in 3.1a. The dotted lines indicate
parts of the tree that will not be constructed for the particular dataset.

Considering the level-based organization, the level 0 corresponds to the Provider
attribute (the first attribute in C), and level 1 to Brand. The nodes in each level
have as edges the values of the level’s corresponding attribute, e.g., edges of node a
are the Provider values: Provider = {Ver, AT&T}.

Also, the node c has the associated sequence values c.S = ⟨AT&T, ∗⟩, where
AT&T corresponds to the path of c, and the value any is produced by the absence
of the Brand attribute (in the path). Further, c is associated with the objects c.O =
{o3, o4} that “match” with the c.S values, i.e., have as Provider the value AT&T
and the value any for Brand.

Regarding the leaf nodes, the leaf d stores the object entries d.E and the metadata
d.M for the objects d.O = {o1, o2} that matches its values d.S = ⟨Veriz, Samsg⟩
(Fig. 5.2b). Here, metadata stores statistics regarding the Signal and the Width
numeric attributes.

5.2.3 CET Operations

This section presents the basic operations of the CET tree and analyzes their com-
putational complexity.

5.2.3.1 Insert & Tree Construction

Insertion takes as input, a tree h, an object o, and an ordered set of categorical
attributes C = {AC0 ,AC1 , ...ACk} and inserts o in a leaf node based on the values ACi
of its categorical attributes, constructing new edges and nodes for the values that
do not exist in the tree. Also, the leaf metadata is updated w.r.t. the o numeric
attributes. The tree construction is implemented via sequential insert operations of
its objects.

The computation complexity of the insert operation is O(∣C∣), and that of con-
struction considering n objects is O(n ∣C∣)).

69

5.2.3.2 Get Leaves/Objects Based on Filter Conditions

The get leaves operation returns the leaf nodes L of a tree h. Based on the conditions
in the Filter clause F of a query, the operation constructs paths p starting from the
root to the leaf nodes and returns the leaves L reached by all paths. The get objects
operation returns the object entries of the leaves L.

Regarding the computation complexity of the get leaves and get objects opera-
tions, the worst case occurs when we have to access all the leaf nodes in the tree. In
that case, the complexity is O(h.N) and O(h.N + ∣h.O∣) respectively, where h.N is
the number of nodes in the tree and h.O its objects.

5.2.3.3 Expand Tree with New Attributes

The expand tree operation adds new levels in the tree and reorganizes the objects in
the leaves. It is used when a query requests attributes not existing in the tree. In
such cases, the values of the missing attributes retrieved from the file expand the
tree (see Sect. 5.4). The operation takes as input the new categorical attributes C,
and a subset of leaf nodes L of a tree h, which should be reorganized based on C.
For each leaf node li ∈ L, a subtree hi having li as root is constructed, where hi
has one level for each attribute AC ∈ C and leaf nodes Lhi . The objects of each leaf
node li are organized based on C attributes and stored to the leaf nodes Lhi of the
generated tree hi. Further, the metadata of the new leaf nodes Lhi are computed.

Note that after the expand tree operation, the leaf nodes of the tree may appear
at different levels, as only the subset of leaf nodes needed to evaluate a query are
expanded with the new attributes. This way, we avoid unnecessary I/O operations
by reading only the attributes for the objects included in the query. Otherwise, we
would need to read the new attributes for every object in the tree in order to fully
create the new attribute levels.

Regarding, the computational complexity, the worst case appears when the leafs
L to expand, enclose all the tree objects h.O. In such a case, the complexity is
O(∣h.O∣ ∣C∣).

5.2.4 Tree Space Analysis

Considering the CET insertion process, nodes are created based on the values of the
objects being inserted in the tree. We can easily verify that the maximum number of
nodes in a CET tree occurs when all possible combinations of values for its attributes
appear in the objects it contains. Given the tree attributes h.C = {AC0 ,AC1 , ...ACk},
the maximum number of nodes h.N is: 1 + ∣dom(AC0)∣ + ∣dom(AC0)∣ ⋅ ∣dom(AC1)∣ +

...+ ∣dom(AC0)∣ ⋅ ∣dom(AC1)∣ ⋅ ... ⋅ ∣dom(ACk)∣ = 1+
∣h.C∣−1

∑
i=0

i

∏
j=0

∣dom(ACj)∣. Note that the

term “1” corresponds to the root node.
Considering that a leaf node is created only if it is associated with at least

one object, the maximum number of leaf nodes is equal to the number of objects.
Similarly, at each level of the tree the number of nodes cannot be larger than the
number of objects. In what follows, we consider the number of objects, in order to
define a tighter upper bound for the total number of nodes.

The maximum number of nodes can be determined using the following recursive
formula: Γ0 = 1 and Γi =min(Γi−1 ⋅ ∣dom(ACi−1

)∣, ∣h.O∣), with 1 ≤ i ≤ ∣h.C∣. So, if we

70

consider the number of objects is much greater than the product of the size of the

attribute domains, we have that the maximum number of nodes is : 1+
∣h.C∣
∑
i=1

Γi.

Since the memory for each node is almost the same (except for the leaves where
metadata is stored), here, for simplicity, we assume that all nodes allocate equal
memory. Furthermore, all object entries have the same size (about four numeric

values). Therefore, the space complexity of CET is: O(α +α
∣h.C∣
∑
i=1

Γi + β ∣h.O∣), where

α and β are the memory allocated by a node and an object entry, respectively.

5.2.5 Attributes Ordering vs. Tree Space

Based on the complexity analysis, we can easily verify that the number of nodes in a
tree h depends on the mapping of its attributes h.C to the levels of the tree and the
size of their domain. Assuming that the data follow a uniform distribution over the
domain values of each attribute, we can reduce the number of nodes (and edges) in
the tree, by placing the attributes at the levels of the tree in a top-down way based on
their domain size, i.e., smaller domains are placed closer to the root. So, constructing
a tree following this attribute order, will result in lower space requirements. In our
experiments, this attribute order led to up to 10% reduction in total index memory
requirements, compared to a random order (Fig. 5.14).

5.3 VETI: A Tile-Tree Adaptive Index

In this section, we present the VETI indexing scheme (Visual Exploration Tile-Tree
Index), that combines the tile-based index presented in Ch. 4 and the CET tree
structure to support efficient exploratory operations over the 2D space along with
analytics operations based on the values of the categorical attributes. The design of
VETI relies on the basic challenges posed by the in-situ exploration scenarios. First,
the index construction should entail a small overhead in the raw data-to-analysis
time. To this end, a lightweight, “crude” version of VETI is initially constructed on-
the-fly, by parsing the raw file once. Moreover, the characteristics of this initial VETI
version are defined by considering query and data-related factors in order to improve
the performance of the initial user interactions. Second, during the exploration,
the index should support efficient exploratory and analytic operations. Thus, based
on user exploration, efficient structure adaptation and object reorganization are
employed to adjust the index to user interactions. Third, considering the limited
available resources, VETI uses lightweight tree and tile structures with predefined
memory resources allocated to them (Sect. 5.5).

5.3.1 VETI: Combining Tiles and Trees

VETI is built on top of the VALINOR tile-based index, expanding its tile-structure
to further support the efficient evaluation of operations that involve the categorical
attributes. To this end, VETI combines the tile-structure of VALINOR with the
CET trees presented in Section 5.2.

VETI is defined as follows: given a raw data file F , two axis attributes Ax and
Ay, and a set C of categorical attributes of the objects stored in F , the VETI index

71

Lat

 10 20 30 Long

o1

o2

o5

o4

o3

10

20

tZ

Tile tz

tz.ILong = [10, 20)
tz.ILong = [0, 10)

intervals

child tiles =

Tree tz.h

Huawei

AT&T

Xiaomi

a

c

o3
j o4

k

tk
object entries k.

Contents of leaf k

...

metadata k.
...

Figure 5.3: VETI Index Overview

I organizes the objects stored in F into hierarchies of non-overlapping tiles based
on its Ax, Ay values, where tiles are also associated with CET trees which organize
objects based on categorical attributes from C.

Let IT be the tiles of I. Each leaf tile t ∈ IT is associated with a CET tree h,
denoted as t.h. The associated tree t.h of a tile t, organizes the objects t.O enclosed
by t, based on a set of categorical attributes C′ ⊂ C, i.e., h.O = t.O and h.C = C′.
Thus, trees of different tiles may organize their objects based on different sets of
categorical attributes.

The objects t.O enclosed in a tile t are stored in the leaf nodes of the associated
tree t.h and can be accessed via a pointer to the root node of the tree t.h. In case the
objects of a tile are not indexed based on any categorical attribute (i.e., h.C = ∅),
the tree h corresponds to a node (root) that stores all the object entries.

The VETI index I is defined by a tuple ⟨IT , IT, IH,AS⟩, where IT is the tile
structure (along with the its trees) defined in the index; IT is the tiles initialization
strategy defining the methods that determine the characteristics of the tile structure;
IH is the tree initialization strategy defining the methods that determine the charac-
teristics of the tree structures over the tiles; AS is the adaptation strategy defining
the methods for reconstructing the tiles and trees based on user interaction.

The basic operations of VETI are: initialization (Sect. 5.3.2), query evaluation
(Sect. 5.4), and adaptation (Sect. 5.4.2).

Example 7. [VETI Index] Figure 5.3 presents the contents of tile tz, highlighted
with grey color in the index, that contains objects o3 and o4. For tile tz, the index
stores its intervals tz.ILat and tz.ILong, its child tiles tz.C, and a pointer to its tree
tz.h, which contains nodes a, c, j, and k. Finally, the contents of the leaf node k are
shown in the figure (we omit presenting the detailed object entry and the metadata).

5.3.2 VETI Initialization

In our in situ visual exploration approach, we do not require any preprocessing
or loading phase. VETI is constructed on-the-fly when the user first requests to
visualize the file. During the initialization phase, the following tasks are realized.
First, the characteristics of the index are determined, i.e., the initial set of tiles and
the structure of each tree assigned to each tile are defined; then, the file is parsed

72

Algorithm 3. VETI Initialization (F , Ax, Ay, C, Q0, B)
Input: F : raw data file; Ax, Ay : axis attributes;

C: categorical attributes; Q0: first query
Output: I: initialized index; R0: result of query Q0

1 IT ← IT.constructTiles(Ax,Ay ,AC ,Q0) //determine the number, size & intervals of the tiles, and construct them

2 IΠ ← find tile-tree assignments //see Sect. 5.5

3 foreach oi ∈ F do //read objects from file, insert them to trees & evaluateQ0

4 read from F the values of axis and categorical C, and the attributes required to
evaluate the Q0 Analysis clause

5 use the oi attributes to evaluate Q0

6 ti ← find the tile ti ∈ IT that encloses oi based on its axis attributes values

7 insertToTree(ti.h,C, oi) //insert oi to tree ti.h (Proc. 1, Sect. 5.2.3)

8 return I, R0

and the index is populated; finally, the first user query is evaluated.

Algorithm 3 outlines the initialization phase. It takes as input, the raw file F ,
the axis and categorical attributes Ax, Ay and AC, and the first exploratory query
Q0; and returns the initialized index I and the results R0 of the Q0.

Initially, the tile structure characteristics are determined (i.e., number, size and
intervals of the tiles) and the tiles IT are constructed (line 1). Next, based on the
constructed tile structure, the assignments IΠ of trees to tiles IT are determined
(line 2). Details about the assignment selection methods are presented in Section
5.5.

In the next part (loop in line 3), the algorithm scans the file F and reads, for
each object oi, the values of the axis attributes ai,x, ai,y, the categorical attributes,
and the attributes which are required to evaluate the Analysis clause of Q0 (line
4). Next, the tile ti that encloses oi is found (line 6), and the insertToTree method
(Procedure 1), inserts oi into the tree ti.h (line 7). During the insertion, the object
entry is constructed, the tree metadata are updated, and new parts (i.e., nodes,
edges) of the tree may be constructed.

Tile Structure Initialization. The constructTiles method is defined by the tile ini-
tialization strategy IT, and determines the tile structure characteristics, e.g., num-
ber, size and intervals of the tiles. As already discussed in 4.3.1 and 4.4.1, these
characteristics can be defined via numerous approaches (for more details see [79]).
For instance, they can be either given explicitly by the user, e.g., in a map the
user defines a default scale of coordinates for the initial visualization; determined by
the visualization setting, considering certain characteristics (e.g., visualization type,
screen size/resolution), previous sessions, task, user preferences [79, 52, 12, 89]; or
computed based on techniques that consider data characteristics in order to divide
the data space into tiles of equal size, like the baseline initialization approach em-
ployed by VALINOR.

For the initialization of VETI, we use the query-driven initialization policy for
initializing the tiles discussed in 4.4.1. Recall that this policy considers: (1) the
user exploration entry point, i.e., the position of the first user query in the 2D
space; (2) the window size of the first query; and (3) the locality-based behavior
of the exploration scenarios, i.e., users are more likely to explore nearby regions of
their initial entry point [102, 54, 89, 12, 96, 26]. In a nutshell, the query-driven
tile initialization defines a tile structure that is more fine-grained (i.e., has a larger

73

L
a

t

 10
 20 30

L
o

n
g

o
1

o
2

o
5

o
4

o
3

10 2
0

t
1

t
3

exp
an

d
 t

2
c .h

 &
 t

3 .h
 ad

d
in

g
a n

od
e w

ith the N
et value 5G

t
4

t
2

H
uaw

ei

V
eriz

Sam
sg

o
1

 o
2

o

5

t
2 .h

t
2
c .h

t
2
b .h

gen
erated

 trees t
2
c
. h

 &
 t

2
b

. h

resulted
 b

y splitting tile
 t

2

Q
u

ery Q

H
uaw

ei

V
eriz

Sam
sgo

1

o
5

Sam
sg

V
eriz

o

2

t
2
c .h

t
1

t
3

t
4

t2
a

t2
d

t2
b

t2
c

L
a

t

 10
 20 30

L
o

n
g

o
1

o
2

o
5

o
4

o
3

10 2
0

Q

5G

H
uaw

ei

V
eriz

Sam
sgo

1

o

5

H
u

aw
e

i

A
T

&
T

X
iao

m
i

o

3

o

4

5
G

t
3 .h

Q

2

retrieve fro
m

 th
e file:

 th
e N

et valu
es fo

r o
4
 &

 o
5

o
4 o

5

N
et

co
m

p
u

te resu
lt

u
sin

g t
2
c .h

 &
 t

3 .h

(
 {

 o
4
 : 1

9
, 7

 , o
5
 : 2

3
, 1

2

 } ,

{
 A

T
&

T
, 1 , V

eriz
, 1

 }
)

R
e
su

lt

1

2

5

z

3

sp
lit t

2
 in

to
 tiles:

t
2

a
 t

2
b

 t
2
c
 t

2
d

4

fin
d

 o
b

jects fo
r w

h
ich

 w
e h

ave to
 re

trieve
 attrib

u
te valu

e
s

Ste
p

 1
 find trees w

h
ich th

eir tiles o
verlap w

ith
 the query: t

2
c .h

, t
2

b .h
, t

3 .h

Ste
p

 2
 find leaves b

ased
 on

 th
e filter con

dition
 (B

ran
d = H

u
aw

ei):
 ,

Ste
p

 3
 find ob

jects co
ntained

 in leaves
 ,

 o

4 , o
5

 fin
d

 w
h

ich
 a

re th
e

 m
issin

g attrib
u

te
s

th
at are

 req
u

ired
 in

 th
e

 q
u

e
ry

N
et a

ttrib
u

te
: in

clu
d

e
d

 in
 th

e

Filter clau
se

o
4
 : N

e
t =

 5
G

o
5

 : N
e
t =

 5
G

F
ile

6

7

8

t
3 .h

H
u

aw
ei

A
T&

T

X
iaom

i

o

4
o

3

1

Selection
: S.ILo

n
g=[15, 26], S.ILa

t=[5, 17]
Filter: F = {Brand = H

u
aw

ei, N
et = 5G

}
G

ro
u

p
-b

y: G
 =

 {P
ro

vid
e

r}
A

nalysis A
 =

 {co
u

n
t(*

)}

determ
ine tiles that overlap

ped

w
ith

 q
u

ery (t
1
 t

2
 t

3
 t

4)

1
fin

d
 th

e tiles th
at o

verlap
pe

d w
ith th

e q
u

ery

2
sp

lit th
e tiles o

verlapp
e

d w
ith

 th
e q

u
ery

3
gen

erate the
 trees fo

r th
e ne

w
 sub

tiles

4
fin

d
 th

e attribu
te

s w
hich w

e have to
 retrie

ve fro
m

 th
e file

5
fin

d
 th

e o
b

je
cts fo

r w
h

ich
 w

e
 h

ave to
 re

trieve
 attrib

u
te valu

es fro
m

 th
e file

6
read

 th
e m

issin
g valu

es fro
m

 th
e file

7
ad

apt trees (i.e
., e

xp
an

d
) &

 u
p

date m
etad

ata based
 o

n
 th

e retrie
ved

 attribu
te

 value
s

8
co

m
pu

te th
e result u

sing th
e d

ete
rm

in
ed

 o
b

jects, an
d

 th
e up

d
ated

 tre
es &

 m
etadata

F
ig
u
re

5
.4
:

V
E

T
I

Q
u

ery
P

ro
cessin

g
&

In
d

ex
A

d
ap

tation
E

x
am

p
le

74

number of smaller tiles) in the area around the initial query, whereas the size of tiles
becomes larger as their distance from the initial query increase.

Increasing the number (i.e., decreasing the size) of tiles near the first query,
increases the probability that subsequent queries in this neighborhood overlap with
fully-contained tiles, which in turn reduce the number of I/O’s. More details about
query evaluation are presented in the next section.

Discussion. Note that, beyond CET trees, we also studied alternative structures
for indexing categorical attributes in VETI. Specifically, we considered the use of
bitmap structures which are effective for indexing low cardinality attributes and are
highly compressible. In brief, in a VETI variation we implemented, we combined
the tile structure with a set of bitmap structures instead of CET trees. In this
variation, based on the objects t.O of a tile t, a bitmap structure is constructed for
each distinct value of every categorical attribute in t.C.

As in our approach, apart from the object entries, each bitmap is also associated
with a set of metadata pertaining to its objects indexed in it.

In our experiments, as it was expected, the bitmap variations requires, in general,
less memory than the VETI with CET trees. This is not only the result of the use of
the highly compressible bitmaps, but also because the bitmap variations maintain
metadata for single categorical attribute values and not for different combinations.
On the other hand, the query evaluation performance is significantly lower. The
limited metadata stored in the bitmap variations cannot be utilized to avoid I/Os
for queries that involve two or more categorical attributes. As a result, VETI is in
most queries more than 2-3× faster and requires less than the half I/O operations
compared to the bitmap implementations.

5.4 Query Processing & Index Adaptation

This section describes the query processing methods of VETI. Figure 5.4 outlines
the workflow, whose steps are described in the following example1. More details
on the query evaluation over the index are given in Section 5.4.1 and on index
adaptation in Section 5.4.2.

Example 8. [Query Processing & Index Adaptation] As input we have the ini-
tialized index, an exploratory query and a raw file. Considering the objects in
Figure 1.1, we assume an exploratory query Q with the following clauses (left upper
corner in Fig. 5.4) : (1) Selection clause: S with S.ILong=[15, 26] & S.ILat=[5, 17];
(2) Filter clause: F = {Brand = Huawei, Net = 5G}; and (3) Group-by clause: G
= {Provider}; and (4) Analysis clause: L = {count(∗)}.

Further, we assume that the index is initialized and every tile has a tree with
the attributes Provider and Brand. Additionally, the tree leaves contain aggregate
metadata for the Signal attribute. The query processing and index adaptation are
depicted in Figure 5.4.

1 To evaluate query Q we first find the leaf tiles that spatially overlap (i.e.,
partially or fully-contained) with its Selection clause, i.e., t1, t2, t3, t4. 2 Next, we

1Note that, since several details are omitted, the order of the steps may be different compared
to the following paragraphs, where the process is presented in detail. Also, in the implementation,
several of these steps are performed in parallel.

75

check if the overlapping tiles need to be split, in such case, the tiles are split into
smaller subtiles. The tile splitting may be performed based on different methods,
such as: equally or arbitrary-sized splitting. In each splitting step, the process
considers criteria related to I/O cost in order to decide whether to perform a split
or not (more details at Sect. 5.4.2). In our example, we assume that t2 is split into
four equal disjoint subtiles: t2a , t2b , t2c , t2d . 3 Then, the objects are reassigned to
the new subtiles and their trees are generated ; here, the trees t2c.h and t2b.h of the
new subtiles t2b and t2c .

4 We, then, find the attributes of the query which are not contained in the
index, and for which their values have to be retrieved from the file. In our example,
the query’s Filter clause includes conditions over the Brand and Net attributes,
i.e., Brand = Huawei, Net = 5G. Also, the Group-by clause contains the Provider
attribute. Since the index was initialized to include the categorical attributes Brand
and Provider, values for the Net attribute are not available in the index.

5 We determine the objects for which we have to read the NET attributes from
the file. For that, considering the tiles that overlapped with the query (t2a , t2b , t2c ,
t2d , t3, t4), we identify the trees of these tiles (t2b .h, t2c .h and t3.h.) and we traverse
each tree for identifying their leaves which evaluate to the query’s condition Brand
= Huawei. These leaves are `1 and `2 from the trees t2c .h and t3.h, which contain
the objects o4 and o5. 6 For these objects, we read the file and retrieve the Net
attribute values.

7 Based on the values retrieved from the file, trees are adapted/expanded (e.g.,
create new nodes/edges, reorganize leaf objects) in order to include the new attribute
and update the metadata. Here, using the retrieved Net values of o4 and o5, the trees
t2c .h and t3.h are expanded to include the new categorical attribute NET (see expand
operation, Sect. 5.2.3).

8 Finally, query Q is evaluated on the objects o4 and o5 for the condition Net
= 5G, and on the tree metadata for the Group by and Analysis clauses. In our
example, the count function is calculated by the number of objects in each leaf
node. The result consists of: the tuples of the selected objects o4 and o5 and their
axis attributes ({⟨o4 ∶ 19,7⟩, ⟨o5 ∶ 23,12⟩}); and the tuples that form the result of
the Group by and Analysis clause ({⟨AT&T,1⟩, ⟨V eriz,1⟩}).

5.4.1 Query Processing

The main query processing is presented in Algorithm 4. The algorithm also includes
the index adaptation phases, which are analyzed in the next section. The algorithm
takes as input, the initialized index I, an exploratory query Q and the raw file F .
Next we provide details on the implementation of each step presented in the previous
example.

Find and Adapt Query’s Overlapped Tiles & Trees. Once the index has been
initialized, the algorithm finds the leaf tiles TS that overlap with the 2D area defined
in the query’s Selection clause S (line 2). The function getLeafTiles OverlappedWithQuery

determines the overlapping tiles at the highest-level, and then traverses the tile
hierarchy to find the set of overlapping leaf tiles TS.

Next, based on the adaptation strategy AS, the adaptTileAndTree procedure (line 4),
performs the tile splitting and reorganizes the trees (constructing new or modifying

76

Algorithm 4. VETI Query Processing (I, Q, F)
Input: I: index (initialized); Q⟨S,F,D,G,L⟩: query; F : raw data file
Variables: TS: leaf tiles that overlap with the Selection clause, i.e., 2D area; Ta: tiles resulted from

adaptation; L: tree leaf nodes selected by the Query; W(⟨l,V⟩): set of tuples ⟨l,V⟩,
where V are objects’ attributes, and l its leaf

Parameters: AS: adaptation strategy;
Output: R: result of query Q

1 L ← ∅
2 TS ← getLeafTilesOverlappedWithQuery (IT ,S)
3 foreach ts ∈ TS do
4 Ta ← AS.adaptTileAndTree (ts,Q) //see Sect. 5.4.2

5 ∀ta ∈ Ta : L ← L ⋃ getLeavesBasedOnFilter (ta.h, F) //Procedure 2 (Sect. 5.2.3)

6 W(⟨l,V⟩)← getLeavesRequiringFileAccess (L,Q) //set of tuples, where V are the attributes of a leaf lwhose their values need to

be retrieved from the file

7 if W ≠ ∅ then //values are missing — read from file

8 read from file the values of attributes V for the objects of leaf l, ∀⟨l,V⟩ ∈W
9 expandTree (l, V) ∀⟨l,V⟩ ∈W //update tree based on retrieved attributes; i.e., expand tree’s leaf lwith its missing attributes V

(Sect. 5.2.3)

10 updateLeafMetadata (l) ∀l ∈W
11 R← evaluate Q using the objects and the metadata of leaves L
12 return R

existing) that are included in the tiles Ta created by the splitting process (more de-
tails in Sect. 5.4.2). Finally, considering any conditions over categorical attributes
that are defined in the Filter clause, getLeavesBasedOnFilter retrieves the leaf nodes L
of the Ta trees (line 5).

Determine the Objects that Require File Access. After identifying the tiles
overlapping with the query and the corresponding leaves, we determine the objects
for which we have to access the raw file in order to answer the query.

Procedure getLeavesRequiringFileAccess (L,Q) (line 6), first, considers the spatial
relation between the 2D area specified in a Select clause and the tiles it overlaps.
Specifically, a tile t that overlaps a query Q can be partially-contained or fully-
contained in Q. So, the procedure for each leaf node in L, first checks if the tile
it belongs to, is partially or fully-contained in the query Q. In the case that a leaf
belongs to a partially-contained tile, the leaf metadata can not be used, since only
a subset of a (leaf’s) objects could be selected by the query. Hence, we need to find
the objects of the leaf that are contained in the query; then, for these objects, we
retrieve from the file the attributes required to compute the metadata and evaluate
the Analysis clause of the query.

Apparently, in the case that a leaf belongs to a fully-contained tile, we do not
need to traverse its objects in order to find the ones that are included in the window
and the tile’s metadata can be used without the need to access the file. In fully-
contained tiles, file access is needed only when the query refers to attributes for which
information is not stored in the index, e.g., Net attribute in the query example.

Based on the aforementioned, the procedure getLeavesRequiringFileAccess identifies
the attributes, whose values have to be retrieved from the file. Finally, it returns
a list W of tuples ⟨l,V⟩, where V are the attributes that must be retrieved for the
objects included in the leaf l.

Read Objects’ Attributes from File. To reduce the cost of reading the missing
attributes from file (line 8), we exploit the way the object entries are stored in the

77

leaves in order to access the file in a sequential manner. During the initialization of
the index, we append the object entries into the leaf nodes of the CET trees as the
file is parsed. As a result, object entries in every leaf node are stored sorted based
on their file offset. When accessing the file, we read the objects from the leaves
following a k-way merge based on their file offset. Thus, we are able to access the
raw file in a sequential manner. The sequential file scan increases the number of I/O
operation over continuous disk blocks and improves the utilization of the look-ahead
disk cache. Note that, in our experiments, the sequential access results in about 8×
faster I/O operations compared to accessing the file by reading objects on a “leaf
basis”, i.e., read the objects of leaf li, then read the objects of tile lk, etc.

Adapt Trees and Update Metadata based on the Attributes Read from
File. Next, based on the attributes for which values are read from the file, the trees
(of fully-contained tiles) are adapted/enriched to include the retrieved attributes.
Particularly, the expandTree procedure (Sect. 5.2.3) adapts/enriches the trees by in-
cluding the retrieved attributes and reorganizes the objects (line 9). As already
discussed in Section 5.2.3, the expandTree procedure expands the trees only for the
objects that it needs to read from the file to evaluate the query. This partial tree
expansion adapts the trees with new attributes without performing unnecessary
I/O operations. Then, the function updateLeafMetadata computes and updates the
metadata using the values retrieved from the file (line 10).

Evaluate Query. Finally, we evaluate query Q using the objects and metadata of
the leaf nodes L (line 11). Here we use the attribute values retrieved from the file to
check the filter conditions that do not involve categorical attributes. Also, we need
to check the objects belonging to trees missing some of the categorical attributes
included in the Filter clause. Finally, the Group-by and Analysis clauses are evalu-
ated using: (1) existing metadata of the fully-contained tiles, if their corresponding
CET trees include all the categorical attributes of the query; (2) for all other cases,
the values retrieved from the file.

5.4.2 Incremental Index Adaptation

VETI employs an incremental index adaptation model that attempts to adapt the
index structure to the query workflow of the user exploration. Each query may re-
sult in splitting the tiles overlapping the Selection clause into smaller subtiles. Tile
splitting increases the likelihood that a tile included in the area that the user explo-
ration focuses on, will be fully-contained in a future query and the use of metadata
in fully-contained tiles will reduce the number of file accesses, improving the query
performance. For that reason, splitting is performed as a first step of the query
evaluation process, such that we compute metadata for the new subtiles and then
evaluate the query over a more fine-grained index. Specifically, it is performed after
function getLeafTiles OverlappedWithQuery has determined the leaf tiles that overlap
with the Selection clause (line 2).

Procedure adaptTileAndTree (line 4) is responsible for the incremental adaptation.
It takes as input a tile t and a query Q and returns a set of subtiles Ta if t needs
to be split. To determine if a tile t requires (further) splitting, we estimate the
expected splitting gain in terms of I/O cost, for evaluating a (future) query Q, in
case of splitting t. If the expected splitting gain for a tile, exceeds a given splitting

78

threshold, a split is performed. A more detailed analysis of the splitting model was
presented in 4.4.3.

In our implementation for VETI, the I/O cost is formulated by the selectivity of
Q over t, where selectivity is computed by the number of objects in t and the filter
conditions defined in Q.

Tile Splitting. After the tile splitting, the adaptTileAndTree (line 4) procedure
returns a set of subtiles Ta. Each one of the children contains a tree with the same
set of categorical attributes as their parent tile. The objects contained in the leaf
nodes of the parent tile’s tree are reorganized in the leaf nodes of the new trees
according to their values for the axis attributes, as well as the categorical attributes.

As with VALINOR, we can employ various approaches for splitting a tile. For
example, we can employ a quad-tree-like splitting approach in which a tile is split into
4 equal subtiles or the more sophisticated query-based splitting method introduced
in 4.4.2.

Reorganize Trees in Splitted Tiles. As discussed in Section 5.2.3, the order
of the attributes in a tree affects its size (number of nodes/edges). Hence, during
splitting, the attributes of the trees that are generated in the new subtiles, are sorted
so that the attributes with smaller domain sizes are placed closer to the root. For
this, we consider the distinct values of the categorical attributes within the bounds
of the parent tile t. Then, we reorganize the objects of t into the trees of the children
Ta.

To reorganize the objects, we perform Depth-first search in the tree t.h to iterate
over all of its leaf nodes. Based on the path of every leaf node from the root, we can
determine the values of its categorical attributes. Then, for each object entry of a
leaf node, we find the subtile that encloses it and we insert it into its tree (using the
insert operation).

Adaptation Computation Complexity. The overall computational cost of tile
splitting, consists of the cost of splitting the tile t, constructing Ta, and reorganizing
the objects t.O in Ta trees. First, we have to determine the intervals of Ta, and
define the subtiles as child tiles of t, i.e., initialize the child pointers. These can be
performed in constant time O(1). Then, we perform Depth-first search (DFS) in
the tile’s tree h, and reinsert its objects into the trees of the subtiles. The cost of
DFS is O(h.N), where h.N is the number of nodes in the tree, and the cost of the
insert operation is O(∣h.C∣). So, the overall cost is O(h.N + ∣t.O∣ ∣h.C∣).

5.5 Resource-aware Index Initialization

In this section, we present the initialization of the CET trees and their assignment
to tiles. Recall from Figure 5.1, that more than 64GB is required for VETI to
create full trees from five categorical attributes. Our goal here is to determine the
structures of the trees (the categorical attributes that will be placed as levels in the
tree) and assign them to tiles based on the “utility” of each tree. The latter depends
on the utility of the categorical attributes it contains; we consider that an attribute
has a higher utility score when its inclusion in the tile’s tree is expected to improve
the performance in the user exploration scenario.

79

We define the ReSource-aware INdex Initialization (SIN) problem and formulate
and solve it as an optimization problem of assigning trees to tiles based on the utility
score. In what follows, we first provide some preliminaries and then define the SIN
problem.

5.5.1 Preliminaries

Before we formally introduce our problem, we present some necessary definitions. 2

Tile Utility. Let a tile t, the tile utility ρt ∈ [0,1] formulates the possibility that
a future exploratory query will overlap with t. For the distribution of ρt, we follow
the approach presented in 4.4.2. Based on the locality-based characteristics of 2D
exploration scenarios, users are more likely to explore nearby regions of their initial
exploration entry point [102, 54, 89, 12, 96, 26]. Thus, given an initial query Q0,
the next queries are more likely to overlap with tiles near Q0 and the value of ρt is
larger in tiles near Q0. Particularly, as we presented in 5.4.2 the probability that a
query overlaps with a tile t is modeled considering a bivariate normal distribution
based on the distance of the tiles from the center of Q0.

Attribute Score & Tree Utility. We assume that each categorical attribute c has
a score c.S ∈ [0,1], that represents the probability that a future query will request
this attribute. We define the attribute score based on the “repetitive calculation
of statistics” that appears in exploration scenarios [94], i.e., we assume that the
attributes requested by the initial query Q0, are more likely to be requested by next
user interactions. Using the attributes scores, the tree utility is defined as follows.

Given a tree h, the tree utility ρh ∈ [0,1] formulates the possibility that an
exploratory query requests information stored in the tree. Without loss of generality,
we define the tree utility ρh as the normalized sum of the scores of the tree attributes
h.C:

ρh =
∑ c.S

∀c ∈ h.C

∑ c.S
∀c ∈ C

(5.1)

Example 9. [Running Example] Consider a VETI index with six tiles (t1- t6);
three categorical attributes Provider (P), Brand (B) and Net (N), with domain
size 2, 4, and 3, respectively; and a query Q0 that includes a Group-by clause on
attribute P , and a Filter clause on attribute B. We assume that Q0 overlaps with
t1 and based on the other tiles’ position, the tile utilities are: ρt1 = 0.6, ρt2 = 0.1,
ρt3 = 0.1, ρt4 = 0.1, ρt5 = 0.05, and ρt6 = 0.05.

Regarding the categorical attribute scores, the attributes P and B are included
in Q0 and assigned with a score 0.8, whereas N has score 0.1. Additionally, assume
the trees: hP,B.C = {P,B}, and hP,N .C = {P,N}. The tree hP,B that includes both

2Note that, several of the problem’s involved metrics (e.g., tile and tree utility) can be computed
using a large number of factors, e.g., device and visualization type, interface, user profile, task,
domain [79]. However, this is beyond the scope of this work.

80

attributes of Q0 will have a larger utility than hP,N which includes only one of them.
Based on the Eq. 5.1 the tree utilities are ρhP,B = 0.96 and ρhP,N = 0.82.

Tile-Tree Assignment. A tile-tree assignment (or simply assignment) πht , assigns
a tree h to a tile t. So, given a tile t and a tree x an assignment πxt defines that
ti.h = x.

Tile-Tree Assignment Utility Each tile-tree assignment πht is associated with a
utility πht .ω ∈ [0,1], which formulates the possibility that a query is going to request
information from the tile t involving the attributes h.C of its tree. Intuitively, the
utility formulates the “effectiveness of the information” contained by a tile-tree
assignment during query evaluation. The tile-tree assignment utility is defined as
the joint probability of the tile utility ρt and the tree utility ρh:

πht .ω = ρt ⋅ ρh (5.2)

Attributes-based Tree Powerset. Given a set of categorical attributes C, the
attributes-based tree powerset HPC, contains the trees generated by considering all
possible subsets of C. That is 2∣C∣ trees, containing also the tree with no attributes,
i.e., empty tree.

Index Assignments. Given a VETI index I, its tiles IT , and the categorical at-
tributes C; the index assignment set IΠ contains all the tile-tree assignments defined
in the index tiles IT , i.e., IΠ = {πht ∶ t ∈ IT and h ∈HPC}.

Example 10. [Assignments] Consider the index of the Example 9. The attributes-
based tree powerset for the attributes P,B,N is: HP{P,B,N} = {hP,B,N , hP,B, hP,N , hB,N , hP , hB, hN , hempty}.
An assignment over I can include any tree from this set, e.g., the index assignment

set IΠ = {πhP,B,Nt1
, πhNt2 , π

hP,B,N
t3

}
assigns the tree hP,B,N to tiles t1, t3; hN to t2, and no assignments (i.e., empty

tree) are made for tiles t4, t5, t6.

Index Utility. The index utility Ω of the entire index I is the sum of the utilities
of all tile-tree assignments IΠ made in the index, which is defined as:

Ω(IΠ) =∑ πht .ω
∀πht ∈ IΠ

(5.3)

Index Initialization Cost. The index initialization cost Icost denotes the resources
(e.g., memory, time) that are required for the VETI initialization. Here, as resource
we only refer to memory. Specifically, the index initialization cost denotes the mem-
ory allocated by the index structures (i.e., tiles, trees, metadata), and does not
include the memory required by the object entries that allocate a constant amount
of memory; each object allocates three numeric values (Sect. 5.2).

This cost includes: (1) the IT cost of constructing the tiles IT , which is mainly
the memory allocated for the tile intervals, pointers to subtiles, and the pointers
connecting tiles and trees; and (2) the IHcost of constructing the CET trees of
the tiles (i.e., the trees defined in the tile-tree assignments), which is the memory

81

Table 5.2: SIN Example: Tile-tree Assignment Utilities

Tree

Tile hP,B,N (33) hP,B (9) hP,N (11) hB,N (16) hP (2) hB (4) hN (3)

t1 (0.6) 0.60 0.56 0.32 0.32 0.28 0.28 0.04

t2 (0.1) 0.10 0.09 0.05 0.05 0.05 0.05 0.01

t3 (0.1) 0.10 0.09 0.05 0.05 0.05 0.05 0.01

t4 (0.1) 0.10 0.09 0.05 0.05 0.05 0.05 0.01

t5 (0.05) 0.05 0.05 0.03 0.03 0.02 0.02 0.00

t6 (0.05) 0.05 0.05 0.03 0.03 0.02 0.02 0.00

allocated for the tree nodes, edges and metadata stored in the leaf nodes. Thus, the
VETI initialization cost is: Icost = IT cost + IHcost.

Index Initialization Budget. We assume an index initialization budget B, which
is the upper bound of the index initialization cost Icost. In other words, B denotes
the maximum memory size that can be allocated during the initialization.

5.5.2 Problem Definition & Analysis

The ReSource-aware INdex Initialization problem is defined as follows.

Problem 1. [Resource-aware Index Initialization Problem (SIN).] Given
a set of objects O with categorical attributes C, a set of tiles IT , and a budget B;
our goal is to find the index tile-tree assignments set I∗Π of a VETI index I with
tiles IT , such that the index utility Ω is maximized and the index initialization
cost Icost is lower than the budget B.

Ω(I∗Π) = arg max Ω(IΠ) and Icost ≤ B

Example 11. [SIN Problem] Based on Example 9, we assume the six tiles (t1 − t6)
and the attributes P , B, N . Table 5.2 presents the tile-tree assignment utilities
(Eq. 5.2) for all the possible assignments over the tiles, the tiles utilities (in paren-
thesis), and the cost of every possible tree (in parenthesis). Here, the cost of the
trees is expressed in number of tree nodes, and we assume that all combinations
of attribute values appear in the data (for space complexity see Sect. 5.2.3). For
example, based on the domain of the attributes P , B, N (Example 9) the tree

hP,B,N has cost (number of nodes) equal to 33. Also, the assignment π
hP,B,N
t1

that

assigns tree hP,B,N to tile t1 has utility π
hP,B,N
t1

.ω = 0.6.
In order to solve SIN from Table 5.2 we have to determine the tile-tree assign-

ments that maximize the total index utility and keeps the assignment cost lower
than the available budget. Let 50 be the budget available for the tree structures,
expressed in total number of tree nodes in the index. We can verify, that the index

assignment set IΠ = {πhP,Bt1
, π

hP,B
t2

, π
hP,B
t3

, π
hP,B
t4

, π
hP,B
t5

, πhPt6 } corresponds to a solution
of SIN. Particularly, these assignments result in a total index utility Ω(IΠ) equal to
0.9 (which is the largest), and the cost IHcost of its trees is 47.

Theorem 1. The SIN problem is NP-hard.

82

Proof Sketch. We reduce our problem to the 0-1 Knapsack Problem (KP), which
is known to be NP-hard and which states that there is a bin with a capacity, and a
set of items. Each item has a weight and a profit. The goal is to find a set of items
that maximizes the sum of the profits and the sum of weights is lower than the bin’s
capacity.

We consider a restricted instance of SIN, where: (1) the index contains one tile;
(2) the tile utility is equal to one;

(3) each attribute has a construction cost (i.e., the memory overhead when it is
included in a tree); and the tree cost is the sum of its attributes’ costs.

We reduce SIN to KP via the following associations : (1) bin to tile; (2) bin
capacity to memory budget minus the cost for constructing the tiles; (3) item to
categorical attribute; (4) item profit to attribute score; and (5) item weight to
attribute construction cost. We can verify that, the index utility in SIN corresponds
to the total profit in KP; and the budget constraint to the capacity constraint,
respectively. ∎

5.6 SIN Algorithms

In this section, we propose two approximation algorithms in order to solve the SIN
problem.

The optimal solution of the SIN problem would be to examine the utility scores
of all possible tree assignments from the powerset HPC to the tiles IT , and select the
set of assignments that maximizes the total utility and its index initialization cost
is lower than the memory budget. In the worst case we have to examine O(2∣C∣∣IT ∣)
tile-tree assignments (including empty trees).

In what follows we present two approximation algorithms to solve the SIN prob-
lem. The algorithms is based on two concepts: they examine a subset of candidate
trees from the powerset HPC, in order to prune the space of the possible assign-
ments; and they estimate a memory cost for the trees in order to handle the budget
constraint. In what follows, we define the basic concepts.

5.6.1 Preliminaries

Candidate Trees. The candidate trees is a subset of the HPC set, that contains
∣C∣ trees with “promising” categorical attributes, i.e., the ones that are expected
to increase the index utility. To determine the promising attributes, we sort the
attributes C in a descending order, by a gain score gain(c), that combines: (1)
the attribute score c.S (Sect. 5.5.1); and (2) the attribute memory cost. The latter
formulates the memory overhead, when c is included in a tree. Since the memory
cost of a tree depends on the number of distinct values of its attributes, we consider
the domain size ∣dom(c)∣ to quantify each attribute’s memory cost.

We define the gain score of an attribute c as: gain(c) = c.S
∣dom(c)∣ .

Given a gain-ordered list Lg of attributes C, the candidate tree set H, is defined by
∣C∣ trees, where each tree hi ∈ H contains the first (i + 1)th attributes of Lg. There-
fore, the candidate tree set is H = {h0, ..h∣C∣−1}, with hi.C = {Lg[0], ...Lg[i]}. The
computational cost for generating the candidate tree set, employing a linearithmic
sorting algorithm (e.g., mergesort) is O(∣C∣ log∣C∣).

83

The candidate tree set can be characterized as a small number of trees, where
each of them has different memory cost (i.e., number of attributes), while containing
as many “promising” attributes as possible. The proposed algorithms consider only
the candidate trees in the assignment selection process. This way, we reduce the 2∣C∣

possible trees we have to examine to ∣C∣, significantly pruning the search space of
the SIN problem.

Example 12. [Candidate Trees] From Example 9 we have the attribute scores:
AP .S = 0.8, AB.S = 0.8, and AN .S = 0.1. Also, we have the the following domain
sizes : ∣dom(P)∣ = 2, ∣dom(B)∣ = 4, and ∣dom(N)∣ = 3. Hence, the attributes gain
scores are gain(P) = 0.8/2, gain(B) = 0.8/4, and gain(N) = 0.1/3. Based on the
gain scores, the sorted list of attributes is Lg = {P,B,N}. Thus, the candidate
trees are H = {hP , hP,B, hP,B,N}, where hP .C = {P}, hP,B.C = {P,B}, and hP,B,N .C =
{P,B,N}.

Tile-Tree Assignment Cost Estimation. The tile-tree assignment cost denotes
the memory allocated by the assignment’s tree. Recall from Section 5.2 that, a tree
is populated during the initial file parsing, with the distinct values that appear in
the categorical attributes of the data objects it contains. Therefore, the actual tree
size is not known a priori, and should be estimated during index initialization.

As estimation we consider the worst case (i.e., the maximum memory a tree
can require), that is defined by the maximum number of nodes the tree can have
(see Tree space complexity analysis in Sect. 5.2.3). Let nodesmax(ν,C) denote the
maximum number of nodes of a tree that contains C attributes and ν objects.

Assuming a uniform distribution of objects over the tiles, the estimated number
of nodes per tile is νt = ∣ODS ∣ ⋅ areaSize(t)

areaSize(DS) , where areaSize(DS) and areaSize(t)
are the sizes of the 2D areas defined by the dataset objects (i.e., grid area size
∣dom(Ax)∣ ⋅ ∣dom(Ay)∣), and a tile t, respectively; and ∣ODS ∣ is the number of objects
in the dataset. So, the maximum cost estimation for an assignment πht is πht .Φ =
nodesmax(νt,C) ⋅ ncost, where ncost is the memory allocated by a single node.3

Eviction Mechanism. During both the assignment selection process and subse-
quent user exploration, the memory allocated for constructing and storing trees,
tiles, and statistics may exceed the initial estimates or the available memory. To
handle these cases, we introduce an eviction mechanism.

In the event that the memory demand exceeds the allocated budget, some trees
need to be removed from memory. Our eviction policy is centered around tile utility
value ρt. Specifically, the tree corresponding to the tile with the lowest utility is
selected for eviction. This eviction process involves erasing the tree’s structure (i.e.,
nodes, edges, and metadata) and reassigning its object entries to a single root node
attached to the respective tile.

This policy does not involve writing trees to the disk. However, when the memory
consumed by object entries exceeds the memory budget, the eviction mechanism
presented in Section 4.5 is employed. This mechanism writes a tile’s object entries
to the disk and fetches them back into memory when a future query overlaps with
that tile.

3Recall that, the memory for each node is (almost) the same, with the exception of the leaf
nodes where metadata is stored. For simplicity, we assume that all nodes have equal memory size.

84

Algorithm 5. GRD (IT ,AC ,BΠ)

Input: IT : initialized tiles; AC : categorical attributes;
BΠ: memory budget for trees

Output: IΠ: selected tile-tree assignments list
Variables: Wπ : assignments list max-heap;

CostΠ: selected assignments appr. cost

1 H← generateCandTrees(AC) //generate candidate trees

2 foreach (t, h) ∈ IT ×H do //generate assignments & compute utilities

3 compute πht .ω and πht .Φ //assignment utility (Eq.5.2) & appr. cost (Sect.5.5.1)

4 πht .score← assgnScore(πht .ω, πht .Φ) //compute assignment score w.r.t. assignment’s utility πht .ω and appr. cost πht .Φ

5 push πht to Wπ //initialize assignments max-heap

6 CostΠ ← 0;

7 while CostΠ < BΠ and Wπ ≠ ∅ do //select assignments

8 π
hγ
tγ
← pop(Wπ) //select (and remove) the top assignment

9 insert π
hγ
tγ

into IΠ //the selected assignment is inserted into assignments list

10 CostΠ ← CostΠ + πhγtγ .Φ
11 return IΠ

5.6.2 Greedy Tile-Tree Assignments Algorithm (GRD)

Here we present a greedy algorithm (GRD) that finds the tile-tree assignments. The
basic idea is that we first compute a utility score for each candidate assignment
between a tree and a tile. All assignments are sorted in descending order based on
their score. The algorithm selects the top assignments and aggregates their cost up
to the one for which the total estimated cost is lower than the budget.

Algorithm Description. Algorithm 5 presents the pseudocode of GRD. GRD
first generates the candidate tree set H, using the generateCandTrees function (line 1).
For each tile t ∈ IT and candidate tree h ∈ H (loop in line 2), the algorithm defines
the assignment πht , computes the assignment’s utility πht .ω, and the assignment’s
estimated cost πtt.Φ (line 3).

Using these metrics, the function assgnScore computes the assignment score πht .score,
which increases w.r.t. assignment utility and decreases w.r.t. assignment cost (line 4).
Formally, let x1 and x2 assignments utilities, and y1 and y2 assignments costs, then:
assgnScore(x1, y1) ≥ assgnScore(x2, y1)⇔ x1 ≥ x2, and assgnScore(x1, y1) ≥ assgnScore(x1, y2)
⇔ y1 ≤ y2.

Next, the assignment is inserted (using the push operation) into a max-heap Wπ

that sorts the assignments in descending order based on πht .score (line 5).
Next, GRD selects assignments as far as the total estimated cost Πcost for the

selected assignments is lower than the memory budget BΠ, and the heap is not
empty (loop in line 7). The assignment π

hγ
tγ which has the largest score is selected

and removed from the heap via the pop operation (line 8). Next, π
hγ
tγ is inserted into

the selected assignments list IΠ (line 9) and the estimated cost is updated (line 10).
Obviously, if an assignment for a tile t is selected, the rest of the assignments referring
to t are not examined.

Example 13. [GRD Algorithm] In this example, we assume that the estimated
cost πtt.Φ of an assignment is equal to the cost presented in Table 5.2. Also, the
assignment score is equal to assignment utility presented in Table 5.2. Finally, as in
Example 11, we assume a budget of 50.

85

Algorithm 6. BINN (IT ,AC ,BΠ)

Input: IT : initialized tiles; AC : categorical attributes;
BΠ: memory budget for trees

Parameters: BS: binning strategy; AI: assignments initialization strategy;
TS: tree selection strategy

Output: IΠ: selected tile-tree assignments list
Variables: LI : list of bins’ intervals; LT : list of tile sets per bin; LH: list of selected trees for the

tiles of each bin;
H: candidate trees; CostΠ: selected assignments appr. cost

1 LI ← BS.determineBinsIntervalsOverTilesProb(IT) //intervals are defined

over tiles’ probabilities ρt ; LI[i] is the interval of ith bin; intervalsLI are in ascending order

2 LT ← group tiles IT into bins based on intervals LI //LT [i] is the set of tiles contained in the bin i that is defined

by the intervalLI[i]

3 H← generateCandTrees(AC) //generate candidate trees

4 LH[i]← ∅ 0 ≤ i ≤ ∣LI ∣ − 1 //selected trees list;LH[i] contains the tree selected for the tilesLT [i] of the bin i

5 CostΠ ← 0 //selected assignments appr. cost

6 if AI is defined then //an assignments initialization strategy has been defined

7 for i← 0 to ∣LI ∣ − 1 do //assignments initialization – assign initial trees to bins

8 LH[i]← AI.selectInitialTreeForBin(i,LH, LT ,H,BΠ,CostΠ)
9 CostΠ ← CostΠ + assignmentsCostInBin(LT [i], LH[i])

10 if CostΠ ≥ BΠ then break

11 for i← 0 to ∣LI ∣ − 1 do //find trees for bins (and possibly update/replace the inital)

12 LH[i]← TS.selectTreeForBin(i,LH, LT ,H,BΠ,CostΠ)
13 CostΠ ← CostΠ + assignmentsCostInBin(LT [i], LH[i])
14 if CostΠ ≥ BΠ then break

15 for i← 0 to ∣LI ∣ − 1 do //generate assignments

16 ∀t ∈ LT [i] : insert π
LH[i]
t into IΠ

17 return IΠ

Initially, the algorithm computes the assignment scores for each tile (t1 - t6) and
the candidate trees H = {hP , hP,B, hP,B,N}. Then, based on their score, the tile-tree
assignments are sorted in descending order.

Then, the algorithm selects the assignment with the largest score, i.e., π
hP,B,N
t1

.
After this selection the assignments referring to tile t1 are omitted. During the
selection process, in each selection the algorithm ensures that the cost for the selected
assignments does not exceed the available budget.

In the end, the algorithm selects the assignments IΠ = {πhP,B,Nt1
, π

hP,B
t2

, πhPt3 , πhPt4 ,

πhPt5 , πhPt6 }, in this order. The index utility Ω(IΠ) for these assignments is 0.835 and
the estimated construction cost 50.

Complexity Analysis.

The candidate trees require O(∣C∣ log∣C∣) (line 1). The first loop (lines 2-5)
is executed ∣IT ∣ ∣C∣ times. The score (lines 4 & 5) is computed in constant time
O(1), and the push operation (line 5) is performed in O(1), assuming that Wπ is
a Fibonacci max-heap. Thus, the loop cost is O(∣IT ∣ ∣C∣). The second loop (lines
7-10), in the worst case is executed ∣IT ∣ ∣C∣ times. The insertion in a linked list
is O(1), and the amortized cost of each pop operation is O(log(∣IT ∣ ∣C∣)). Thus,
the (amortized) complexity for the second loop is: O(∣IT ∣ ∣C∣ (log(∣IT ∣ ∣C∣) + 1)) =
O(∣IT ∣ ∣C∣ log(∣IT ∣ ∣C∣)). Therefore, the overall (amortized) complexity for the GRD
algorithm is: O(∣C∣ log∣C∣ + ∣IT ∣ ∣C∣ + ∣IT ∣ ∣C∣ log(∣IT ∣ ∣C∣)) = O(∣IT ∣ ∣C∣ log(∣IT ∣ ∣C∣)).

86

5.6.3 Binning-Based Tile-Tree Assignment Algorithm (BINN)

In this section, we propose the Binning-Based Tile-Tree Assignment algorithm
(BINN). The basic idea of BINN is that the tiles are organized into bins, and
the same candidate tree is assigned to every tile belonging to the same bin.

BINN Basic Characteristics. (1) The bin-based tile organization phase, in which
the tiles are grouped into bins. The tree assignments are defined at bin-level and,
thus, are not “strictly” affected by tile-specific factors, which in many cases may not
be accurately estimated, such as the tile probability and the tile-tree assignment cost.

(2) The assignment initialization phase, which defines “default” assignments for
(some) tiles. These assignments may be updated/replaced during the assignment
selection process. Hence, this phase enables the algorithm to “impose” assignments
to a set of tiles and/or “influence” the assignment selections that follow. For exam-
ple, BINN may assign a tree with one attribute to the tiles with probability larger
than a threshold, or to the top-k tiles.

(3) The assignment selection phase, which traverses and assigns a tree to each
bin, by considering the selected and the default assignments in the rest of the bins.

BINN vs. GRD. BINN tackles a shortcoming of the GRD algorithm. Particularly,
GRD allocates most of the budget assigning trees with all categorical attributes
included (Fig. 5.9). As a result, trees are assigned to a smaller number of tiles. On
the other hand, the bin-based approach adopted by the BINN algorithm leads to a
more “balanced” allocation of the budget, with more tiles being assigned with trees
having fewer categorical attributes. As demonstrated (Sect.5.7), in many cases, the
small number of trees assigned by GRD compared to BINN has great impact in
algorithms performance. In general, BINN is more than 1.5× faster and perform the
half I/Os compared to GRD. To also remark that, in several cases BINN is more
than 100× faster (Fig. 5.12).

Algorithm Description. Algorithm 6 presents the pseudocode.
Using the binning strategy BS, the algorithm determines the bins as a list of

probability intervals LI , which are defined based on the probabilities of the input
tiles IT (line 1). Then, tiles are inserted into the list LT (line 2) and the candidate
trees H are generated (line 3).

In the next step, if an assignment initialization strategy AI has been defined
(line 6), the algorithm performs the assignments initialization phase.

For each bin i (loop in line 7), function selectInitialTreeForBin determines the default
tree LH[i] of the ith bin (line 8). Next, function assignmentsCostInBin computes the
cost of this assignment, considering the assigned tree LH[i] for the tiles LT [i] of bin
i (line 9).

In the assignment selection phase (loop in line 11) and based on the tree selection
strategy TS, the selectTreeForBin assigns one of the candidate trees H to bin i (line
12). In cases where an initialization phase is performed, the default tree may be

replaced by the selected ones. Finally, it generates the tree assignments π
LH[i]
t (loop

in line 15) based on the tree LH[i] selected for each bin i.

Strategies Details. Without loss of generality, in our experiments, the binning strat-
egy BS uses equal frequency binning to define the bin intervals. The selectInitialTreeForBin

(line 8) and selectTreeForBin (line 12) functions may consider several factors such as:

87

the already assigned trees LH (assigned either during initialization, or during selec-
tion), the currently available budget (BΠ −CostΠ), the distribution of tile probabil-
ities, etc.

In our implementation, we define a simple selectTreeForBin function, which assigns
to each bin the candidate tree H[k] with the larger number of attributes, such that
the cost of already selected and initialized assignments is lower than the budget. So,
the function selectTreeForBin for a bin i selects:

H[k] s.t. arg maxH[k] and

CostΠ + assignmentsCostInBin(LT [i],H[k]) < BΠ.

Example 14. [BINN Algorithm] As in the previous example, we assume that the
estimated assignment cost and score are equal to the cost and the utility presented
in Table 5.2, and the budget is equal to 50. We adopt an equal frequency binning
strategy to define the bin intervals (e.g., we consider two bins), and as selectTreeForBin

we use the method described above.

Based on the tile utilities shown (in parenthesis) in Table 5.2, the following bins
of tiles are defined: LT = {{t1, t2, t3},{t4, t5, t6}}.

First, we consider the case where no assignment initialization strategy AI is used.
Then, the list of trees selected for the bins is: LH = {hP,B, hP}, i.e., hP,B selected
for the first bin. Finally, the tile-tree assignment set selected by the algorithm is:

IΠ = {πhP,Bt1
, π

hP,B
t2

, π
hP,B
t3

, πhPt4 , πhPt5 , πhPt6 }, which results in a total index utility Ω(IΠ)
equal to 0.85 and total estimated cost 33. Considering an AI strategy which pre-

assigns a default hP,B to every tile, the final assignments become IΠ = {πhP,Bt1
, π

hP,B
t2

,

π
hP,B
t3

, π
hP,B
t4

, π
hP,B
t5

, πhPt6 }, which result in total index utility Ω(IΠ) = 0.9 and total
estimated cost 47.

Complexity Analysis. To determine the intervals of the bins (line 1) adopting
a simple binning method (e.g., equal width/ frequency binning) can be performed
by sorting (e.g., mergesort) and traversing once the tiles list. That is performed in
O(∣IT ∣ log∣IT ∣ + ∣IT ∣). Then, in the worst case, organizing the tiles into bins (line 2)
are performed in O(∣IT ∣). The candidate trees require O(∣C∣ log ∣C∣) (line 3).

We can easily verify that a large number of “rational” selectInitialTreeForBin (line
8) and selectTreeForBin (line 12) functions, cost O(∣LT [i]∣∣C∣) in order to select a tree
for bin i. In each selection, these functions examine the candidate trees CT , and
in the same time compute the different costs. Since, in such functions the cost is
computed during the selection, the function assignmentsCostInBin is omitted. Note
that, the same complexities also hold in the functions used in our implementation.
Thus, in the worst case, the loop in line 7 costs O(∣IT ∣∣C∣); the same also holds for
the loop in line 11.

In the last loop in the worst case, the insert operation (line 16) is executed ∣IT ∣
times. Thus, the cost of the insertions in the linked list is O(∣IT ∣).

Therefore, in the the worst case the complexity of BINN is the sum of the
aforementioned steps: O(∣IT ∣ log∣IT ∣ + ∣IT ∣ + ∣IT ∣ + ∣C∣ log∣C∣ + ∣IT ∣∣C∣ + ∣IT ∣∣C∣ + ∣IT ∣) =
O(∣IT ∣ log∣IT ∣ + ∣C∣ log∣C∣ + ∣IT ∣ ∣C∣).

88

Table 5.3: VETI Evaluation: Datasets
Name #Object #Attributes #Cat. Attributes Raw Data File Size (GB)

Real Datasets

TAXI 165M 18 5 26

NET 40M 150 6 45

Synthetic Datasets

SYNTH10 100M 10 6 11

SYNTH50 100M 50 15 51

5.7 Experimental Analysis

The objective of our evaluation is to assess the performance of our approach in terms
of time and number of I/Os. We evaluate different VETI variations and several
competitors over two real and two synthetic datasets. In what follows we outline
the key findings of our experiments. Following that, we provide the characteristics
of the experimental setup and the detailed results of our evaluation study.

5.7.1 Results Highlights

(1) Performance Overview : In most queries, VETI exhibits response time less than
0.04sec, over large raw files (e.g., 45GB). Regarding the best of the examined sys-
tems, in most queries VETI is up to 100× faster and performs up to 2 orders of
magnitude fewer I/O operations.
(2) Data Characteristics : All VETI variations report (sub-)linear performance w.r.t.
the number of objects and categorical attributes, as well as the domain size.
(3) VETI Variations : Regarding the VETI variations, both VETI-BINN and VETI-
GRD outperform the naive VETI-RND. VETI-BINN is more than 1.5× faster and
requires about half the I/O operations compared to VETI-GRD. VETI-BINN per-
forms even better when the user moves further away from the initial query and/or
when the initialization budget is small.
(4) Initialization Phase: In the initialization phase, VETI-BINN is on average 8×
faster than MySQL, 1.2× faster than PostgresRaw, and slightly slower than VALI-
NOR.

5.7.2 Experimental Setup

5.7.2.1 Datasets & Queries

In our experimental evaluation of VETI, we have used two real datasets, the NYC
Yellow Taxi Trip Records (TAXI) and a telecommunication network quality dataset
(NET); and two synthetic ones (SYNTH10 / 50).4 Table 5.3 presents the basic
characteristics of the datasets used.

Queries Template. Each query contains: (1) a Select clause defined over the axis-
attributes; (2) a Group-by clause on a categorical attribute; (3) a Filter clause that
contains either 1 or 2 equality conditions, specified over randomly selected categor-
ical attributes and values from their corresponding domains; and (4) an Analysis

4The data generator and the queries are available at: github.com/VisualFacts/RawVis

89

https://github.com/VisualFacts/RawVis

clause that computes 5 aggregate functions over a numeric attribute, i.e., min, max,
std, variance, and mean.

TAXI Real Dataset. The TAXI dataset is a CSV file, containing information re-
garding taxi rides in NYC.5 Each record corresponds to a trip, described by 18 at-
tributes. From these attributes, 5 are categorical: Payment Type, Passenger Count,
Rate Type, Provider Code and Store & Forward Flag. We selected a subset of this
dataset for 2014 trips with 165M objects and 26 GB CSV file size.

The Longitude and Latitude of the pick-up location are the axis attributes of
the exploration. The Select clause is defined over an area of 2km × 2km size, with
the first query Q0 posed in central Manhattan. The Group-by clause contains the
Passenger Count attribute, and the Analysis clause the Tip Amount.

NET Real Dataset. The second real dataset (NET) is an anonymized proprietary
telecommunication quality network dataset containing latency and signal strength
measurements crowdsourced from mobile devices in the Greater Tokyo Area (40M
objects, 45GB csv file). Each record is described by 150 attributes. We selected the
categorical attributes : Network Type (e.g., 4G), Network Operator Name, Device
Manufacturer, Location Provider, OS version, and Success Flag.

The Latitude and Longitude are the axis attributes, simulating a map-based
exploration scenario, starting from central Tokyo. The Select clause is defined over
a 4km × 4km area. The Group-by clause contains the Network Type, and Latency
is used in the Analysis clause.

SYNTH10 / 50 Synthetic Datasets. Regarding the synthetic datasets (SYNTH10 /
50), we have generated two CSV files of 100M data objects (in the default setting),
having 10 and 50 attributes (11 and 51 GB, respectively). The datasets contain
numeric attributes in the range [0, 1000], as well as categorical attributes, where
the values of the numeric and categorical attributes follow a uniform distribution.
In our experiments, we vary the number of objects from 1M to 500M, objects with
100M being the default value, where the size of the dataset having 500M objects is
52GB. Regarding queries, as in 4.6, the Select clause is defined over two numeric
attributes that specify a window size containing approximately 100K objects.

5.7.2.2 Exploration Scenario

In our evaluation, we consider a typical exploration scenario in which the user ex-
plores different areas, and also filters, and performs Group-by operations. We have
generated sequences of 100 overlapping queries, with each window query shifted (i.e.,
pan operation) in relation to its previous one by 10% towards a random direction.

This scenario attempts to formulate a common user behavior in 2D visual ex-
ploration, where the user explores nearby regions using pan and zoom operations
[102, 54, 89, 12, 96, 26], such as the “region-of-interest” or “following-a-path” sce-
narios which are commonly used in map-based visual exploration.

Additionally, to formulate the “repetitive calculation of statistics” that com-
monly appears in exploration scenarios (Sect. 5.5.1) [94], we included the attributes
of the initial query in the generated sequence of queries four times more frequently
than the other dataset attributes.

5www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

90

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Table 5.4: VETI Evaluation: Basic Parameters

Description Values

Synthetic Datasets

Number of Objects (Millions) 5, 10, 50, 100M, 200, 500

Number of Categorical Attributes 3, 4, 6, 10, 15

Categorical Attribute Domain Size 5 10, 20, 50

Synthetic & Real Datasets

Budget Size (GB) 0.5, 1, 2, 3, 5

Number of Bins 50, 100, 500, 1000

 (a) SYNTH10 (b) SYNTH50 (c) TAXI (d) NET

0

200

400

600

800

1000

1200

1400

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c)

Q1-Q99 Execution

Initialization & Q0

SQL-0I > 8K sec
SQL-1I > 2.9K sec
SQL-2I > 5.3K sec

⧛

0

1000

2000

3000

4000

5000

6000

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c) Q1-Q99 Execution

Initialization & Q0

SQL-0I > 9.5K sec
SQL-2I > 30K sec

⧛

0

1000

2000

3000

4000

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c)

Q1-Q99 Execution

Initialization & Q0

SQL-0I > 38K sec
SQL-1I > 38K sec
SQL-2I > 15K sec

⧛

⧛

0

400

800

1200

1600

2000

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

O
ve

ra
ll

Ti
m

e
 (

se
c)

Q1-Q99 Execution

Initialization & Q0

SQL-0I > 24K sec
SQL-1I > 22K sec
SQL-2I > 7K sec

⧛⧛ ⧛

Figure 5.5: Overall Time (Broken down to Initialization & Q1∼Q99 Evaluation Time)

5.7.2.3 VETI Parameters

Regarding VETI’s tile structure, we adopt the setting used in 4.6, where the tile
structure is initialized with 100 × 100 equal-width tiles, while an extra 20% of the
number ∣T0∣ of initial tiles was also distributed around the first query Q0 using the
Query-driven initialization method (Sec. 4.4.1). Also, the numeric threshold for the
adaptation of VETI was set to 200 objects.

The index initialization budget, is varied from 0.5 to 5GB, with 2GB being the
default value. Recall that this memory budget includes only the memory allocated
by the tile and tree structures, and does not include the memory required to store
the object entries.

5.7.2.4 VETI Variations

We evaluate two versions of VETI, named VETI-GRD and VETI-BINN, based on
the GRD and BINN algorithms (Sect.5.6). Moreover, we consider a naive assignment
approach, titled VETI-RND, which follows a random tile-tree assignment strategy.
It first sorts the tiles based on the tile probability ρt, then assigns a randomly
selected tree from the entire powerset HPC to each tile, until the budget constraint
B is satisfied.

5.7.2.5 Competitors

We compare our method with: (1) VALINOR which contains only the tile-based in-
dexing structure without the CET index; (2) A traditional DBMS (MySQL 8.0.22),
where data is loaded and indexed in advance; three indexing settings are consid-
ered: (a) no indexing (SQL-0I); (b) one composite B-tree on the two axis attributes
(SQL-1I); and (c) two single B-trees, one for each of the two axis attributes (SQL-2I).

91

MySQL also supports SQL querying over external files (see CSV Storage Engine in
Sec. 2.2); however, due to low performance [7], we do not consider it as a competi-
tor. (3) PostgresRaw (PostgresRaw)6, built on top of Postgres 9.0.0 [7], which is a
generic platform for in-situ querying over raw data (Sect. 2.2). Note that, due to
parsing/processing problems on the NET dataset with the PostgresRaw, we did not
manage to load and report experiments on this combination.

5.7.2.6 Metrics

In our experiments, we measure the: (1) Evaluation Time of a query; (2) Initializa-
tion Time, which corresponds to the time required to initialize the index and return
the results of the first query Q0, i.e., from-raw data-to-1st result time. Regarding
the initialization phase of the examined systems we have: (a) before evaluating Q0,
MySQL needs to parse the raw file, load, and index (except SQL-0I) the data; (b)
during evaluating Q0, PostgresRaw needs to parse the raw file and construct the
positional map; (c) during evaluating Q0, VALINOR parses the raw file, generates
the tile index structure, and populates it with the object entries; and (d) during
evaluating Q0, beyond the actions performed by VALINOR, VETI also parses the
categorical attributes and constructs the tree indexes over the tiles. (3) Overall
Execution Time of an exploration scenario, that includes: initialization time and
query evaluation time for all the queries included in the exploration scenario, i.e.,
workload; (4) I/O Operations performed during query evaluation (for I/O definition
see Sect. 5.3.2); and (5) Index Utility. Table 5.4 summarizes the parameters that we
vary in the experiments.

5.7.2.7 Implementation

VETI is implemented on JVM 1.8 and the experiments were conducted on an
3.60GHz Intel Core i7-3820 with 64GB of RAM. We applied memory constraints
(32GB max Java heap size) in order to measure the performance of our approach
and our competitors. However, PostgresRaw required more than 32GB of memory
for the synthetic datasets and more than 50GB for the TAXI dataset.

5.7.3 Performance

5.7.3.1 Initialization Phase: From-Raw Data-to-1st Result Time

Figure 5.5 presents the overall execution time which is split between the initial-
ization time and the time for evaluating all the queries Q1∼Q99. Recall that, the
initialization time includes the time for parsing, loading the data (in the case of
MySQL), constructing the index and answering the first query Q0. In Figure 5.5
we can observe that the MySQL settings we examined exhibit the worst perfor-
mance for evaluating Q0, since MySQL needs to parse all attributes of the raw file
and load the data in the disk. Also, for the SQL-1I and SQL-2I cases, the corre-
sponding indexes must be built, which explains the increased initialization time in
relation to SQL-0I where no index is generated. Both VALINOR and the VETI
variations exhibit better initialization performance compared to PostgresRaw for
the SYNTH50 and TAXI datasets, while for the SYNTH10 dataset, VETI requires

6https://github.com/HBPMedical/PostgresRAW

92

https://github.com/HBPMedical/PostgresRAW

 (a) SYNTH10 (b) SYNTH50

 (c) TAXI (d) NET

0
1
2
3
4
5
6
7
8
9

10

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND VETI-GRD

VETI-BINN SQL-1I SQL-2I SQL-0I > 75sec

0
1
2
3
4
5
6
7
8
9

10

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND VETI-GRD

VETI-BINN SQL-1I SQL-2I SQL-0I > 70 sec

0

5

10

15

20

25

30

35

40

45

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND

VETI-GRD VETI-BINN SQL-2I

> 250 sec

SQL-0I > 340 sec
SQL-1I > 344 sec

0
3
6
9

12
15
18
21
24
27
30

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

Ev
al

u
at

io
n

 T
im

e
 (

se
c)

Query Sequence

PRAW VALINOR VETI-RND

VETI-GRD VETI-BINN SQL-2I
SQL-0I > 180 sec
SQL-1I > 160 sec

Figure 5.6: Evaluation Time per Query (sec)

VALINOR VETI-RND VETI-GRD VETI-BINN PRAW SQL-0I SQL-1I SQL-2I

 (a) SYNTH10 (b) SYNTH50 (c) TAXI (d) NET

0

100

200

300

400

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

PRAW > 860 sec
SQL-0I > 7.5K sec
SQL-1I > 1.5K sec

⧛
0

500

1000

1500

2000

2500

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

SQL-0I > 7.5K sec
SQL-2I > 4.5K sec

0

300

600

900

1200

1500

1800

2100

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

P
R

A
W

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

SQL-0I > 35K sec
SQL-1I > 35K sec
SQL-2I > 4K sec

⧛

0

300

600

900

1200

1500

1800

V
A

LI
N

O
R

V
ET

I-
R

N
D

V
ET

I-
G

R
D

V
ET

I-
B

IN
N

SQ
L-

0
I

SQ
L-

1
I

SQ
L-

2
I

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

SQL-0I > 22K sec
SQL-1I > 20K sec
SQL-2I > 3K sec

⧛

Figure 5.7: VETI Evaluation Time for Q1∼Q99 (sec)

a slightly higher initialization time. As it is expected, VETI variations are slightly
slower during the initialization compared to VALINOR, since VETI needs to deter-
mine the tile-tree assignments, parse the categorical attributes, and create the tree
structures. All VETI variations, however, exhibit similar initialization time, since
the tile-tree assignment time is negligible compared to the time for parsing the file.

5.7.3.2 Evaluation Time per Query

Figure 5.6 presents the evaluation time for each individual query. Compared to the
other methods, all VETI variations exhibit significantly lower evaluation time in
almost all queries and datasets. In most queries, VETI reports evaluation time less
than 0.04sec. On the other hand, the best competitors, PostgresRaw and VALINOR
require for most queries more than 8 and 4sec, respectively. Overall, VETI is more
than 200× and 100× faster compared to PostgresRawand VALINOR, respectively.

Regarding SQL, SQL-0I performs worse than the 3 SQL settings we examined,
and requires approximately the same time for each query. This is expected as

93

 (a) SYNTH10 (b) TAXI (c) NET

0.E+0

2.E+4

4.E+4

6.E+4

8.E+4

1.E+5

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/
O

 o
p

e
ra

ti
o

n
s

Query Sequence

VALINOR VETI-RND

VETI-GRD VETI-BINN

0.E+0

2.E+5

4.E+5

6.E+5

8.E+5

1.E+6

Q1 Q15 Q29 Q43 Q57 Q71 Q85 Q99

I/

O
 o

p
e

ra
ti

o
n

s

Query Sequence

VALINOR
VETI-RND
VETI-GRD
VETI-BINN

Figure 5.8: VETI: Number of I/Os per Query

SQL-0I has no index. From the other 2 settings, SQL-1I is for most queries faster
than SQL-2I for the two synthetic datasets, and slower for TAXI and NET.

Regarding PostgresRaw, we observe that it exhibits a stable performance (after
the first queries), which is however worse than both VALINOR and VETI in all
datasets. The positional map used in PostgresRaw, attempts to reduce the pars-
ing and tokenizing costs of future queries, by maintaining the position of specific
attributes for every object in the raw file. However, PostgresRaw still needs to
examine all objects in the dataset in order to select the ones contained in a 2D
window query. Also, in contrast to VETI, PostgresRaw does not keep any metadata
in order to efficiently compute the aggregate queries. Some of the early queries (ap-
proximately until Q15) PostgresRaw exhibits noticeably higher time than the rest,
and comparable to the time required to answer Q0. This is due to the filter con-
ditions of the queries. When a query refers to an attribute that was not included
in Q0, PostgresRaw needs to populate the positional map with it. In subsequent
queries, which refer to indexed attributes, PostgresRaw exhibits a relatively constant
evaluation time.

Regarding VALINOR, all variations of VETI report smaller evaluation time.
Even though both VALINOR and VETI attempt to adapt to the workload and
maintain metadata to speed up query evaluation time by reducing I/Os, VALINOR
does not include any indexing capabilities for categorical attributes and thus it needs
to access the file in order to evaluate queries with conditions to such attributes. In
contrast, VETI variations exploit the tree organization for evaluating filter condi-
tions on categorical attributes and the metadata stored in the leaves for evaluating
the analysis and grouping operations of queries overlapping with fully contained
tiles.

5.7.3.3 Evaluation Time for all Q1∼Q99 Queries

Figure 5.7 presents the evaluation time for the Q1∼Q99 queries. The behavior of
the methods is similarly between the datasets, the variations of VETI significantly
outperform the competitors. The best competitor, VALINOR needs about 30, 60,
7 and 20× more time for SYNTH10, SYNTH50, TAXI and NET, respectively, to
evaluate all queries. Also, PostgresRaw is 270, 380 and 11× slower for SYNTH10/50
and TAXI, respectively.

5.7.3.4 I/O Operations

The evaluation time for VETI and VALINOR is mainly determined by the number
of I/O operations. This can be observed in Figure 5.8, where the number of I/O
operations per query exhibits approximately the same behavior with that of the
evaluation time (Fig. 5.6). Note that we do not present the I/Os for PostgresRaw and

94

 (a) TAXI (b) NET

0

500

1000

1500

2000

2500

1 2 3 4 5

N
u

m
b

e
r

o
f

tr
e

e
s

Number of Tree Attributes

VETI-RND VETI-GRD VETI-BINN

0

400

800

1200

1600

1 2 3 4 5 6

N
u

m
b

e
r

o
f

tr
e

e
s

Number of Tree Attributes

VETI-RND VETI-GRD VETI-BINN

Figure 5.9: Number of Generated Trees vs. Number of Tree Attributes

 (a) TAXI (b) NET

0.645

0.983 0.991

0

0.2

0.4

0.6

0.8

1

VETI-RND VETI-GRD VETI-BINN

U
ti

lit
y

0.619

0.992 0.998

0

0.2

0.4

0.6

0.8

1

VETI-RND VETI-GRD VETI-BINN
U

ti
lit

y

Figure 5.10: VETI Utility Score

SQL, since they follow different workflows/methods for accessing the file, compared
to our work. Also, the plot for SYNTH50 is omitted since it closely matches that for
SYNTH10. Compared to VALINOR, the VETI variations perform up to 2 orders
of magnitude less I/Os. This occurs since VALINOR has to access the raw file for
every object contained in the 2D window query in order to retrieve the categorical
attribute values required by the query.

5.7.4 VETI Variations

5.7.4.1 Performance & Assignments

Here, we compare the performance of the three VETI initialization variations. Over-
all, considering the performance of VETI variations (Fig. 5.6), both VETI-GRD and
VETI-BINN lead to faster query responses than the naive VETI-RND, in almost all
cases. Also, VETI-BINN significantly outperforms the other two in the number of
I/Os (Fig. 5.8). Considering the time required for all queries (Fig. 5.7), VETI-RND
is on average 3× slower than VETI-GRD and VETI-BINN. Comparing VETI-GRD
and VETI-BINN, VETI-BINN is more than 1.5× faster than VETI-GRD (in some
cases more than 100× faster) (Fig. 5.7), and performs more than 3× less I/Os.

The difference in performance is the result of the different assignment policies
(see Sect.5.6.3 for the policies used in VETI-BINN). Figure 5.9 depicts the number
of trees generated during the initialization w.r.t. the number of attributes they have.
For brevity, we omit the results for the synthetic datasets, as they exhibit similar
behavior. We can observe, that VETI-RND follows a uniform distribution w.r.t.
the number of tree attributes. In VETI-GRD the budget is mostly allocated at
constructing trees that contain all of the categorical attributes. In contrast, VETI-
BINN creates a more balanced distribution of the trees’ number of attributes. As

95

 (a) SYNTH10 (b) SYNTH50 (c) TAXI (d) NET

50 500 1000
0

2

4

6

8

10

12

14

16

18

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

50 500 1000
0

5

10

15

20

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

50 500 1000
0

50

100

150

200

250

300

350

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

50 500 1000
0

50

100

150

200

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Bins

VETI-BINN

VETI-RND

VETI-GRD

Figure 5.11: VETI-BINN: Evaluation Time for Q1∼Q99 (sec) vs. Number of Bins

 (a) TAXI (b) NET

0.5 1 2 3 5
0

100

200

300

400

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Initialization Budget (GB)

VETI-RND
VETI-GRD
VETI-BINN

0.5 1 2 3 5
0

50

100

150

200

250

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Initialization Budget (GB)

VETI-RND

VETI-GRD

VETI-BINN

Figure 5.12: VETI Evaluation Time for Q1∼Q99 (sec) vs. Initialization Memory Budget

a result, VETI-GRD assigns “taller” trees to a smaller number of tiles. So, due to
location-based assignments process we follow, the tiles located farther away from
Q0 tend to not contains trees. This is why, compared to VETI-GRD, VETI-BINN
tends to perform even better when the user moves away from the initial starting
point. This is demonstrated, in the query performance where, in most cases, after
query Q75, VETI-BINN is 10× faster than VETI-GRD in (Fig. 5.6); also, in some
queries is up to 400× faster (Fig. 5.6d).

The impact of the different assignment strategies is also shown in the utility
score (Fig. 5.10). Due to randomized tree assignments, VETI-RND results in a
lower utility score, whereas VETI-BINN exhibits larger utility compared to VETI-
GRD.

5.7.4.2 VETI-BINN: Varying the Number of Bins

In this experiment we study the performance of VETI-BINN w.r.t. the number of
bins. Figure 5.11 presents the evaluation time for Q1∼Q99, varying the number of
bins from 50 to 1000. Note that, in the plots we include VETI-RND and VETI-GRD
for the sake of comparison, even though they do not depend on the number of bins.

As we can observe, the performance of VETI-BINN is not highly affected by the
number of bins, except for small number of bins, i.e., between 50 and 100. Based on
our adopted assignment policies for VETI-BINN (Sect. 5.6.3), the following holds.
For small numbers of bins, the assignment is more coarse-grained, i.e., shorter trees
are assigned to the majority of the tiles. Increasing the number of bins results in
more fine-grained assignments of trees to (bins of) tiles. However, trees that are
assigned to bins near Q0 will be taller, whereas the trees assigned to the remaining
bins will be short. This explains why, in general, as the number of bins increase, the

96

 (a) TAXI (b) NET

0.5 1 2 3 5
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Initialization Budget (GB)

VETI-RND

VETI-GRD

VETI-BINN

0.5 1 2 3 5
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Initialization Budget (GB)

VETI-RND

VETI-GRD

VETI-BINN

Figure 5.13: VETI Utility vs. Initialization Memory Budget

6

6,4

6,8

7,2

7,6

VETI-BINN VETI-GRD

M
e

m
o

ry
 (

G
B

)
ASC RAND DESC

Figure 5.14: VETI Memory Size vs. Sorting Attributes based on Domain Size

performance of VETI-BINN approaches that of VETI-GRD. Recall that VETI-GRD
assigns mostly tall trees (Fig. 5.9).

As previously mentioned, we should note that, the definition of bins depends on
the dataset characteristics and the exploration scenario. As a general observation,
in exploration scenarios with queries affecting areas away from the initial starting
point, the number of bins should be kept relatively small in order to create trees
(even short ones) to the majority of the tiles, whereas in scenarios focused on a
specific area, increasing the number of bins performs better.

5.7.4.3 Varying the Initialization Memory Budget

In the first experiment, we evaluate the performance of VETI while varying the
initialization budget from 0.5 to 5GB. Recall that this memory budget includes only
the memory allocated by the tile and tree structures, and does not include the mem-
ory required to store the object entries. Note that, the plots for the SYNTH10/50
datasets are omitted since they are similar to the ones presented.

The evaluation time needed to evaluate all the queries is shown in Figure 5.12.
The evaluation time decreases as the available memory budget increases. This is the
result of the larger number and more detailed tree structures that are constructed
with more budget, which leads to faster query evaluation. This is observed in both
VETI-GRD and VETI-BINN. Regarding VETI-RND, its performance does not
always improve when increasing the budget, as it allocates the budget in random
tile-tree assignments.

Compared to VETI-GRD, VETI-BINN’s performance is less dependent on the
available budget. VETI-GRD performs much worse for low values of memory bud-

97

10M 100M 200M 500M
1

10

100

1000

10000

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

(l
o

g)

Number of Objects

VETI-RND
VETI-GRD
VETI-BINN
VALINOR

10M 100M 200M 500M
1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

I/
O

 O
p

e
ra

ti
o

n
s

(Q
1

-Q
9

9
)

(l
o

g)

Number of Objects

VETI-RND

VETI-GRD

VETI-BINN

VALINOR

Figure 5.15: VETI Evaluation Time (log) vs. Number of Objects [SYNTH10]

3 4 6 10 15
0

50

100

150

200

250

300

350

Ev
al

u
at

io
n

 T
im

e
 (

Q
1

-Q
9

9
)

Number of Categorical Attributes

VETI-RND
VETI-GRD
VETI-BINN
VALINOR

(a) Evaluation Time (sec)

3 4 6 10 15
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Number of Categorical Attributes

VETI-RND

VETI-GRD

VETI-BINN

(b) Utility

Figure 5.16: Varying the Number of Cat. Attributes [SYNTH50]

get, as it mostly assigns trees with all the categorical attributes which quickly de-
pletes the budget on very few tiles. On the other hand, as the budget increases, the
performance of VETI-GRD is comparable with that of VETI-BINN.

In more details, on small amounts of budget, VETI-BINN evaluates all the
queries of the exploration scenario in half the time compared to VETI-GRD (Fig. 5.12).
Moreover, at query level, in several queries, compared to VETI-GRD, VETI-BINN is
from 100 to 3000× faster for the NET dataset; and more than 50× for SYNTH10/50.

In this experiment, we compute the utility score w.r.t. memory budget. (Fig. 5.13).
The results closely match the evaluation time presented above. Specifically, the total
index utility increases with higher budget for both VETI-GRD and VETI-BINN.
Also, the utility of VETI-GRD is much lower than that of VETI-BINN for smaller
amounts of budget, but their values converge as the budget increases.

5.7.4.4 VETI Memory Size vs. Sorting Tree Attributes

In this experiment, we examine how the sorting of tree attributes w.r.t. their domain
size affects the allocated memory (more details in Sect. 5.2). In order to assess the
effect of domain size, we create a version of the SYNTH10 where its categorical
attributes had a different domain size, varying from 2 to 100. We measured the
VETI memory size after initialization while sorting the attributes based on their
domain sizes in ascending (ASC), descending (DESC), and random (RAND) order.
As it can be seen in Figure 5.14, ASC ordering corresponds to the best case, while
DESC to the worst. Specifically, for VETI-BINN the ASC ordering results in a
decrease in memory size of around 10% and 8% in relation to DESC and RAND,
respectively. Similar results are reported for VETI-GRD.

98

5 10 20 50
0

0.2

0.4

0.6

0.8

1

U
ti

lit
y

Domain Size

VETI-RND
VETI-GRD
VETI-BINN

5 10 20 50
0
2
4
6
8
10
12
14
16
18
20
22
24

Ev
al

u
ti

o
n

 T
im

e
 (

Q
1

-Q
9

9
)

Domain Size

VETI-RND
VETI-GRD
VETI-BINN

VALINOR > 100 sec
PRAW > 800 sec

(a) Evaluation Time (sec) (b) Utility

Figure 5.17: Varying the Domain Size of Cat. Attributes [SYNTH10]

5.7.5 Effect of the Data Characteristics

5.7.5.1 Varying the Number of Objects

In this experiment, we evaluate the impact of the number of objects on the perfor-
mance of VETI. For this, we vary the number of objects of SYNTH10 from 5 to
500M, and the evaluation time for Q1∼Q99 is presented in Figure 5.15. As the total
number of objects in the file increase, the evaluation time increases (sub-)linearly
for all variations of VETI as well as for VALINOR. This is reasonable considering
that the index becomes more dense, the queries relatively select more objects and
the number of required I/O operations increase; also, the cost of an I/O opera-
tion becomes ”relatively” larger when the file size increase. Regarding VETI-RND,
its performance is affected to a much greater extent compared to VETI-GRD and
VETI-BINN, as its randomized tree assignment lead to a much higher I/O cost.

5.7.5.2 Varying the Number of Categorical Attributes

In this experiment, we vary the number of categorical attributes (Fig. 5.16). Here,
we used the SYNTH50 dataset in order to be able to select up to 15 categorical
attributes. For brevity the SQL and PostgresRaw methods are omitted, as they
exhibit much higher evaluation time. Also, we could not evaluate PostgresRaw
for 15 categorical attributes, due to increased memory requirements. Note that
VALINOR’s performance is not affected by the number of categorical attributes,
since it does not consider them in its index structure.

As we can observe, query evaluation time increases for all methods, along with
the number of attributes (Fig. 5.16(a)). VETI-BINN outperforms both VETI-RND
and VETI-GRD. Regarding VETI-GRD, we can observe that it outperforms VETI-
RND in every case except for the case of 15 categorical attributes. This is due
to the fact that VETI-GRD allocates most of the budget for creating trees with
all the categorical attributes. As a result, with a higher number of categorical
attributes, VETI-GRD assigns trees to very few tiles, which explains its performance
deterioration for 15 attributes. This is also depicted in Figure 5.16(b) which presents
the utility score. As we can observe, in all VETI variations the utility score decreases
as the number of categorical attributes indexed increase. This decrease is even more
notable in the case of VETI-GRD, which after 10 attributes gets worse than both
VETI-BINN and VETI-RND.

99

5.7.5.3 Varying the Domain Size of Categorical Attributes

In this experiment, we study the effect of the domain size. We generate 4 different
versions of the SYNTH10 dataset, where the domain size of each categorical attribute
for each one was set to 5, 10, 20 and 50. Note that, the results for the SYNTH50
are not presented since they are similar.

The evaluation time needed to execute the Q1∼Q99 is shown in Figure 5.17(a).
Note that the plot shows only the VETI variations, since VALINOR does not depend
on the domain, and others exhibit much higher evaluation time. We can observe
that the evaluation time of VETI-GRD (resp. VETI-BINN) decreases from domain
size 5 to 10 (resp. 20), and then increases.

This behavior is explained as follows. The attributes in the synthetic dataset
have values, which are uniformly distributed over the objects. As the domain size of
an attribute increases, the number of objects, which evaluate to the filter condition
on this attribute, decreases, and so does the number of I/O operations. This explains
the initial drop in query evaluation time for both VETI-GRD and VETI-BINN.

On the other hand, given the same number of attributes, a larger domain size
results in trees with larger size in memory (Sect. 5.2.3). This explains the increase
in evaluation time after domain size 10 for VETI-GRD and 20 for VETI-BINN, as
the larger tree sizes result in fewer tiles getting assigned with trees.

5.8 Summary

In this chapter, we have explored the VETI index, our proposed solution for enabling
efficient visual exploration and analysis of data existing in raw data fiels. The VETI
index, as we have detailed, offers a significant expansion on the capabilities of the
VALINOR index, focusing on the effective handling of categorical attributes often
found in various visual techniques such as bar charts and heat maps.

We designed VETI as a hybrid main-memory indexing scheme that organizes
data based on both numeric (or spatial) and categorical attributes. The index,
which is built on-the-fly from the first user query, is designed to adapt progressively
with user interactions and the specific types of analysis being conducted.

Recognizing the potential for high memory requirements, we proposed a resource-
aware index initialization approach. This we formulated as an optimization problem
and provided two approximate algorithms for its efficient solution.

To further optimize performance, we designed efficient query evaluation meth-
ods. By making effective use of the metadata stored in the index, these methods
significantly reduce I/O operations, contributing to faster user response times.

In extensive experimental evaluations involving both real-world and synthetic
datasets, VETI has shown significant superiority over existing solutions in terms of
query response time and minimization of I/O operations.

In conclusion, the VETI index serves as a demonstration of how sophisticated
indexing and adaptive query evaluation techniques can successfully address the chal-
lenges posed by large raw data files in visual explorations, particularly when dealing
with categorical attributes.

100

Chapter 6

The RawVis Framework

6.1 Introduction

This chapter presents RawVis, an innovative tool that enables real-time visual explo-
ration of raw data files. RawVis represents the culmination of concepts, techniques,
and indexing schemes presented in previous chapters. It exemplifies how these prin-
ciples can be combined into a coherent system to facilitate data exploration in an
intuitive, interactive manner.

In particular, RawVis employs the exploration model and indexing schemes dis-
cussed in the previous chapters to enable efficient and interactive visual exploration
and analysis of raw data files. This approach bypasses the need for data pre-
processing, and instead, the system adjusts dynamically to the user’s exploration
patterns and the type of analysis performed. The result is a tool that offers a
user-centric, responsive environment for data exploration.

The chapter is organized as follows:

− In Section 6.2, we discuss the architectural design of the RawVis system, pro-
viding an overview of its various components.

− Section 6.3 presents a detailed examination of the user interface components.

− Section 6.4 details the user study we conducted to evaluate the usability and
performance of our tool.

101

2 3 4user
interactions

results

parse
file

construct
index

Tile-Tree
Index

Analytics
Computations

Query
Evaluation

6

Raw
Data
File

Eviction
Handler

Index
Initialization

1
tiles-trees

I/O

tiles-trees
on disk

1

A

Data
Reduction

Operation
Translation

Index
Adaptation

�
only in first
interaction

5

query query

 1 4 8

ok

oj

oi

2D Visualization

explore

analysis

Visual Analytics & Statistics

render pan zoom filter analyzedetails

?
Basic Operations

B

C

Figure 6.1: RawVis Architecture

6.2 System Overview

Figure 6.1 presents the architecture of the RawVis system; the frontend (web-based)
is presented on the left side of the figure, and the backend on the right. In our work-
ing scenario, we consider that a user visually explores the data stored in a single
csv data file A in disk using a 2D visualization technique (e.g., map, scatter plot)
B , and analyzes it using visual (e.g., bar and line charts, heatmaps, parallel coor-
dinates), and statistical methods C (e.g., Pearson correlation, covariance). Data
attributes may be numeric, spatiotemporal, categorical, or textual; at least two of
them must be numeric (e.g., longitude, latitude) and can be mapped to the X and
Y axis of the 2D visualization.

In the backend, Ê the first time the user requests to visualize or analyze a new
dataset, the file is parsed and indexed on-the-fly, generating a “crude” initial version
of the index (Index Initialization component). RawVis is built on top of the VETI
index, combining the tile-based multilevel structure of VALINOR for organizing data
into tiles for efficient exploration in the 2D plane; with the CET structure for further
organizing a tile’s objects based on its categorical values to offer efficient categorical-
based group-by and filter operations.

In parallel with the index construction, the results corresponding to the first

user request are evaluated. Ë Based on the exploration model the user’s visual and
analytic operations (i.e., interactions) are translated to data-access operations (Oper-

ation Translation component), which are then Ì evaluated over the VETI Tile-Tree
index structure (Query Evaluation component) to compute and fetch the results.

Í Based on the last user request, the index is adapted progressively, reorganizing

its contents, and updating computed statistics (Index Adaptation component). Î
The query results are further processed and reduced (e.g., via clustering, sampling,
aggregation) before they are rendered in the visualization component, such that

over-plotting issues are properly addressed (Data Reduction component). Ï Fi-
nally, the results are returned and visualized to the user. Note that, during the
index construction or the query evaluation, the index structure may not fit in main
memory; in such cases, the Eviction Handler component stores parts of the index
structure in the disk.

In the frontend, a 2D visual data representation is presented, as well as explo-
ration operations, visual analytics and statistics (Sect. 6.3).

102

A

B

C

D

E

F

Figure 6.2: RawVis User Interface

6.2.1 Implementation Details.

RawVis is implemented on top of several open-source tools and libraries and is avail-
able under GNU/GPL.1 The frontend was developed in TypeScript as a single-page
application using the React library, while the backend was developed in Java 1.8.
The frontend client app interacts with the backend with a REST API. For the
visualization of the results the Leaflet and Highcharts libraries were used.

6.3 RawVis User Interface

This section briefly introduces the RawVis visual interface (Fig. 6.2). The tool
is available at: http://rawviz.imsi.athenarc.gr. Also a video presenting the basic
functionality of our prototype is available at: https://vimeo.com/500596816.

Figure 6.2 depicts pick-up points from the NYC Yellow Taxi Trip dataset1, which
is CSV files, containing information regarding yellow taxi rides in NYC. Each object
refers to a specific taxi ride described by several attributes, such as pick-up location,
trip distance, payment type, passenger count, tip amount.

6.3.1 UI Panels

The UI consists of the following panels:

− Dataset Information Panel A : This panel allows the user to select the CSV
file to explore. It presents details about the dataset, such as the axis attributes
(latitude and longitude) that will be used for map-based exploration. Selecting
a different CSV file loads its specific data attributes and updates the rest of
the UI components.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

103

http://rawviz.imsi.athenarc.gr
https://vimeo.com/500596816
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

− Map Visualization Panel B : This panel offers map-based exploration,
allowing the user to interact with the map through actions like zooming and
panning.

− Area Selection Panel C : This panel enables the user to select a specific
area on the map by drawing a rectangle.

− Filtering Panel D : This panel provides filtering operations over categorical
attributes, allowing the user to perform faceted exploration.

− Statistics Panel E : This panel presents statistics regarding the selected
objects, such as univariate statistics (e.g., correlation, standard deviation)
and bivariate statistics (e.g., Pearson correlation).

− Analysis Panel F : This panel allows the user to perform data analysis
tasks by selecting a visualization type (e.g., bar chart, heatmap, pie), data
attributes, and an aggregate function.

6.3.2 UI Features

Here, we outline the basic features provided by the RawVis interface:

Map-based Visual Exploration. The user is able to explore, analyze and com-
pare data over different geographical areas using operations like panning and zoom-
ing. For example, they may navigate and compute statistics over two different
cities. Also, the user can focus on a specific area (e.g., neighborhood) by drawing a
rectangle over the map C .

Faceted Exploration. Faceted exploration and analysis is supported by allowing
the user to define multiple filters over the categorical attributes via the Filtering
panel D . For example, in Figure 6.2, the user has selected to analyze the taxi trips
which have been paid using a credit card (Payment type is CRD).

Statistics Computations. The interface offers the user the ability to analyze the
data, through the statistics panel E . Particularly, the user can examine univariate
(e.g., mean, variance, standard deviation) or bivariate statistics (e.g., the Pearson
correlation, covariance) over the data attributes. In Figure 6.2, univariate statistics
have been computed for the fare amount, and bivariate for the fare and tip amount.

Visual Analysis. The user is able to visually analyze the data by selecting the most
suitable visualization type and metrics to accomplish their analysis F . Particularly,
the user can select one or more variables to analyze, as well as the visualization type
and metric. For example, in Figure 6.2, the user has selected a bar char to visualize
the average tip value w.r.t. the payment method (e.g., cash, credit card). In the
second case, the user has selected a heatmap, to visualize the average taxi fare per
passenger count and payment type.

104

6.4 User Study

In order to study the usability and the performance of our tool, we conducted a
user study. We considered a use case from the travel industry, using a dataset
that contains information of approximately 180K hotels in the US gathered from
multiple travel agencies. Each hotel is described by several attributes such as name,
address, price, etc. The larger part of the data is retrieved from the public API of
FACTUAL2.

6.4.1 Setup

In our study, 44 participants took part. The participants were computer science
graduate students, researchers, and analysts from the industry who were contacted
via email. At the beginning of the evaluation, each participant was introduced to
the system by an instructor who provided a brief tutorial on the required features
for the tasks. After the instructions, the participants familiarized themselves with
the system.

During the evaluation, each participant performed two tasks, as described be-
low. In each task, we asked the participants to answer 10 Likert scale questions with
five response options ranging from ”Strongly agree” to ”Strongly disagree.” Some
questions were related to the efficiency of the tool, such as ”I found the ’Pan &
Zoom’ interactions efficient, reporting small response times.” Another set of ques-
tions focused on the usability of the tool, for example, ”I found it easy to obtain the
requested information using a single chart.” Finally, at the end of the evaluation,
we asked the participants to answer questions regarding their overall experience.

6.4.2 Tasks Specification

To define the user tasks, we aimed to include several user interactions required for
each task. Therefore, during the task specification, we considered the following
well-known user interactions used in information visualization [97]. Specifically,
we employed the following set of interactions to design the tasks and assess the
capabilities of our tool:

Explore: Explore interaction techniques enable users to gradually examine spe-
cific subsets of the visualized datasets. Exploration refers to the set of operations
with which a user can visualize only a part of a very large dataset at a time, exam-
ining it to gain understanding and insight, and then move on to view other parts
of the data. An example of exploration is panning on a map or a scatter diagram,
where the user visualizes only the data points within the visible screen window.

Filter: Filter techniques enable users to change the set of data items being
presented based on a range of filter expressions. These expressions are conditions on
specific attribute values that data points must have. Examples of filter conditions
include arithmetic conditions (e.g., show me the population older than 40 years old),
date-specific conditions (show me average temperatures between July and August),
or categorical conditions (show me life expectancy rate only in Germany).

Connect: Connect techniques are usually employed to show associations and
relationships between data items that are either in the same or different represen-

2https://www.factual.com/

105

tations. For example, in graph visualizations, a user may choose to show or hide a
subset of the edges connecting the nodes of the graph. In multiple representations
(e.g., a map associated with a bar chart), the user selects a data region on the
map, and the associated value in the bar chart is highlighted, denoting an implicit
relationship between the two visual representations.

Encode: Encode techniques allow users to change the visual appearance (e.g.,
color, size, and shape) of the data points. Visual appearance is important as it
can help users better understand the differences, relationships, and distributions of
the data elements. For example, by encoding height information to a map using
a color scale, users can better identify the height information (e.g., the height of a
mountain) without altering the spatial arrangement of the map.

Reconfigure: Reconfigure techniques provide users with the ability to change
the layout, i.e., the spatial arrangement or alignment of the data in the visualization
area, and present different perspectives. Examples include changing the X-axis of
a bar diagram, the ordering (ascending or descending) of values, or the layout of a
graph diagram.

Abstract: Abstract techniques allow users to adjust the level of abstraction of
a data visualization, from an overview down to the details of individual data points.
Abstraction often follows a hierarchical interaction relationship in the visualization,
where the top-level overview contains many in-between levels of visualized data. A
popular abstraction method is the zoom-in and zoom-out capability applied to data
points visualized on a map. Through zooming, the scale of the map changes at a
fixed set of abstraction levels, allowing users to see a bigger or smaller region of the
map with all the contained data points.

6.4.3 Evaluation Scenario and Tasks

Consider the following example: You are a data analyst working for a consulting
company that helps hotels advertise their business and offerings across booking
platforms. Your company specializes in 4-star hotels. You wish to explore the data
retrieved from booking platforms like Booking and Trivago, and analyze them based
on hotel location, amenities, rating, and prices. The data is collected via available
data APIs and stored in plain data files in raw formats (e.g., CSV) on your computer.
You are requested to perform the following visual exploration tasks:

1. Gain an overview of which booking platforms have a high number of 4-star
hotels. Navigate to the location of interest, filter out the 4-star hotels, and
generate a chart showing the number of hotels per booking platform.

2. Inspect the platforms’ coverage for different types of hotels and amenities and
decide which one(s) cover most of your clients.

6.4.4 Tasks

In this section, we describe the tasks used in the user evaluation process. The tasks
are designed to involve basic visual interactions and require users to test different
functionalities of the tool.

106

Task 1. Navigate to Manhattan and zoom in to the maximum level. Select four-star
hotels. From the chart panel, organize the hotels per booking platform and report
the source with the largest number of hotels.

To solve this task, participants need to:

1. Pan and zoom to select the area they wish to explore (explore interaction).

2. Use the filtering panel to display only the four-star hotels (filter interaction).

3. Generate a graph (histogram, line, or area chart) that shows the COUNT of
any measure, with the categorical attribute being the data source (connect
interaction).

Overall, in this task, explore, filter, and connect interactions are involved.

Task 2. Navigate to Manhattan, and zoom in to the maximum level. Select four-
star hotels. Find the booking platform(s) that cover all types of hotels in the visible
neighborhood.

To solve this task, participants need to:

1. Pan and zoom to select the area they wish to explore (explore interaction).

2. Use the filtering panel to display only the four-star hotels (filter interaction).

3. Generate a heatmap with the categorical attributes being booking platform
and hotel type, and the cells representing the aggregate number of hotels
(COUNT) (connect interaction). The colors of the cells visually represent the
relations between booking platforms, hotel types, and the number of hotels
(encode interaction).

Overall, in this task, explore, filter, connect, and encode interactions are per-
formed.

6.4.5 Results

In this section, we present the results of our user study.

6.4.5.1 Overall Experience

Figure 6.3 presents the responses regarding the overall experience of the users during
the evaluation. We can see that 70% (30 out of 44) of the users strongly agree
regarding the system efficiency, and 23% agree (83% combined). We can observe
that, in all tasks, approximately 93% strongly agree and agree that the system is
efficient.

Regarding the usability of the tool (Figure 6.3), approximately 95% of the users
find it easy to use, rating it as strongly agree, agree, or borderline. Regarding task
difficulty, 55% of the users found the tasks easy, while 38% of them encountered
difficulties. These results can be explained by differences in the users’ backgrounds.

107

Figure 6.3: Overall User Experience

6.4.5.2 Features Usability

Figure 6.4 shows that the filter and chart generation features were found easy to
use by the users, with 75% strongly agreeing or agreeing. The results are different
for the feedback regarding extracting information from a single chart (Fig. 6.5,
which proved more difficult for the users. This can be explained by the fact that
Task 2 requires the use of a single heatmap chart, and participants have to inspect
color variations in order to answer. This turned out to be challenging both due to
the increased complexity of this chart and to the specific color scheme used in our
implementation.

Figure 6.4: Task 1 Feedback

6.4.5.3 Time to Complete the Tasks

Figure 6.6 shows the approximate time users spent to accomplish each task. We can
observe that for Task 1 and 2, more than 50% of the users spent less than 2 minutes,

108

Figure 6.5: Task 2 Feedback

and about 15-20% spent less than 1 minute. In the case of Task 3, approximately
30% of the users spent about 3 minutes. The reported times depict the complexity of
each task, with the first one being the easiest. Considering the tasks’ requirements
and difficulty, we believe that the reported times can be considered reasonable. Also,
from Figure 6.6, we can observe that all users completed all the tasks, demonstrating
their confidence in using the tool. Considering the time spent by users to accomplish
the tasks and the high correctness of the responses provided, we can claim that the
tool effectively assists users in accomplishing different tasks in various scenarios.

6.4.5.4 Results Summary

Here we outline the basic outcomes of our user study:

− The tool is highly efficient, with almost all users (more than 90%) agreeing
that the tool has low response time in all actions.

− In each task, more than 70% of the users selected the correct answers.

− Considering the high correctness of answers and the time spent by users to
accomplish the tasks, we can claim that the tool effectively assists users in
accomplishing different tasks in various scenarios.

− The users showed confidence in using the tool, with all users completing all
the tasks.

− There are some issues that need to be improved in the user interface.

6.5 Summary

This chapter introduced RawVis, a system for efficient, interactive exploration of
large raw data files. We detailed the various aspects of RawVis’s interface, explor-
ing how it leverages techniques discussed in previous chapters to offer a powerful

109

(a) Task 1 Time

(b) Task 2 Time

Figure 6.6: Time taken for the tasks.

110

platform for the visual exploration of raw data, eliminating the necessity of relying
on a traditional database management system.

Further, we presented and discussed the results of a user study that we conducted
to examine the usability and performance of RawVis.

In conclusion, RawVis demonstrates the potential of the techniques discussed in
this work, offering a substantial contribution to data exploration and visualization.

111

112

Chapter 7

Conclusions and Future Work

This work was driven by the increasing need for efficient and effective in-situ visual
data analysis across a range of domains. It sought to address the challenges associ-
ated with in-situ processing and interactive visual analysis of large, raw data files.
The ultimate aim was to develop new techniques and tools that can support data
scientists in their work.

Central to this research was the premise that user interactions play a significant
role in guiding the visual exploration and data analysis process. As such, a key aim
was to incorporate these interactions into the proposed methods to achieve more
efficient visual analysis.

7.1 Research Contributions

The research conducted in this work has resulted in several significant contributions,
which are organized in accordance with the research objectives outlined in 1.3.

− Minimize Data-to-Analysis Time: User-driven initialization strategies
were proposed to minimize the time required to start the analysis while en-
suring efficient query evaluation. These strategies guided the construction of
the VALINOR and VETI indexing schemes based on the initial user query.
Instead of constructing fully detailed indexes, the indexes are built on-the-fly
with enhanced granularity in the areas that are most relevant to the user’s
exploration, resulting in shorter construction time.

− Efficient Evaluation of User Operations: This work introduced a set of
visual operations for 2D exploration, which were mapped to query operators
over the underlying VALINOR and VETI indexing schemes. Moreover, it
formulated exploratory and analytical operations over categorical attributes,
thereby enabling efficient evaluation of user operations directly over raw files
during in-situ exploration.

− Minimizing I/O Operations: The design of the indexing schemes, along
with the efficient use of metadata, allowed for reduced I/O operations and
faster user response times. These measures ensured efficient raw file parsing
and reduced access to the file.

− Optimizing Memory Usage: A resource-aware approach to index initial-
ization was implemented, which was formulated as an optimization problem.

113

Two approximation algorithms were provided to solve it, allowing for the op-
timal subset of data to be indexed and the index to be optimized within a
predefined memory size.

− Adapting to User Interaction: Interaction-based adaptation techniques
were designed that progressively adjust the index structure and metadata
based on user interactions. These methods allowed for efficient query eval-
uation over the index in exploration scenarios and improved query evaluation
efficiency by using information inferred from user interactions and analysis
tasks.

− Additional Contributions: This work resulted in the RawVis open source
visualization system, which implements the proposed methods. This system
enables users to perform visual exploration and analytical operations over large
raw datasets with low response times, even on commodity hardware, making
it suitable for various interactive applications.

Overall, these contributions extend our understanding of how to enable efficient
in-situ visual exploration and analysis of raw data, providing practical tools and
techniques for the data science community.

7.2 Future Work

Despite the contributions of this work towards facilitating efficient in-situ visual
exploration and analysis of raw data, there are various directions to further extend
and enhance these efforts:

− Expanding User Analytic Operations and Visualizations: The research
detailed in this work centers around exploratory and analytic operations tai-
lored for the visual analysis of raw data files. Yet, the analytical spectrum
of end-users often extends to more complex and domain-specific operations.
Such operations could include advanced statistical analyses, outlier detection,
or even predictive modelling executed directly on the raw data.

In order to broaden the applicability of our indexing approach, future work
could aim to adapt and enhance the current indexing schemes to effectively
support such advanced operations. This could involve enriching the tile-based
structure of the index and its accompanying metadata with additional statis-
tical and aggregate information. This expansion would not only facilitate the
execution of more complex operations but could also substantially improve
their performance, providing a more robust and versatile platform for in-situ
visual exploration and analysis.

− Incorporating Spatial Partitioning Schemes: The tile-based 2D index
used in this work, while not explicitly designed for spatial coordinates, could
potentially be enhanced by integrating established spatial partitioning schemes.
Examples of such schemes include Geohash or Uber’s H31, which are particu-
larly beneficial in map-based exploration scenarios. These schemes offer effi-
cient spatial partitioning at multiple resolutions and are extensively used for

1https://eng.uber.com/h3/

114

https://eng.uber.com/h3/

visual aggregation, such as heatmap generation. Incorporating these schemes
into the index structure could not only improve performance in specific vi-
sual exploration tasks, but also expand the index’s versatility in supporting
different data types and queries. The main challenges lie in adapting these
multi-level partitioning schemes to effectively complement the tile-based in-
dex and devising ways to maximize their utility for in-situ visual exploration of
raw data. Given their inherent multi-level partitioning with more fine-grained
divisions at some levels, these characteristics could be effectively harnessed
within our index’s adaptive and flexible structure.

− Handling Time Series and Spatio-Temporal Data: The proposed in-
dexing schemes and exploration techniques present intriguing potential when
applied to time series and spatio-temporal data, which offer a distinct set of
challenges. These types of data are characterized by the continuous and vo-
luminous influx of data points. Commonly, such data is streamed and stored
in specialized time-series databases. However, in certain instances, they might
also be batch-stored in file formats like CSV or Parquet within cloud storage
systems. The efficient visual analysis of time series and spatio-temporal data,
therefore, calls for the design and implementation of innovative techniques and
algorithms. An initial direction could be the adaptation and augmentation of
the indexing schemes developed in this work, introducing additional layers of
indexing or metadata designed to handle the temporal and spatial dimensions
effectively. Additionally, the indexing structures should be suitably enhanced
to support the analysis of time series data stored across multiple batch files,
allowing for seamless in-situ visual exploration over time-evolving datasets.

− Approximate Visualization: In the context of visual exploratory analy-
sis, users often value speed and interactivity over total accuracy. This dy-
namic is especially noticeable during in-situ visual analysis, where parsing
the necessary data objects from raw data files for certain operations can be
time-consuming. Future work could explore the development of approximate
query answering techniques specifically tailored to visual exploratory analysis.
These techniques could involve a variety of strategies, from random sampling
to statistical approximation, aiming to balance faster response times with a
quantifiable degree of accuracy. In order to provide such approximate results
with error bounds, the tile-based structure of the index and the metadata
stored within each tile could be utilized. In this way, users could receive fast,
approximate results without requiring a full data file access, while also being
aware of the trade-off they are making between speed and accuracy.

− Incremental Visualization Techniques: Complementing approximate tech-
niques, incremental visualization methods could provide further improvement.
Such methods would allow users to receive and interpret intermediate results
while data are still being processed. This would offer users the ability to get
early insights from their data, which could be progressively refined as more
data are processed. Possible approaches for realizing this could include devel-
oping progressive querying mechanisms that visualize partial results based on
the data processed so far, coupled with the presentation of appropriate error
metrics that help users judge the reliability of the visualized data.

115

These directions, among others, provide ample opportunities to build upon the
foundations laid in this work. Future research in these areas has the potential to
further improve the way data scientists work with large, raw data files.

116

Bibliography

[1] MySQL: The CSV Storage Engine. https://dev.mysql.com/doc/refman/

8.0/en/csv-storage-engine.html.

[2] Oracle: External Table Enhancements in Oracle Database
12c Release 1. https://oracle-base.com/articles/12c/

external-table-enhancements-12cr1.

[3] PostgreSQL: Foreign Data. https://www.postgresql.org/docs/current/

ddl-foreign-data.html.

[4] SciPy: Open Source Scientific Tools for Python. http://www.scipy.org.

[5] Tableau: Limitations to Data and File Sizes with Jet-based
Data Sources. https://kb.tableau.com/articles/Issue/

limitations-to-data-and-file-sizes-with-jet-based-data-sources.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: Queries with Bounded Errors and Bounded Response Times on Very
Large Data. In European Conference on Computer Systems (EuroSys), 2013.

[7] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: Effi-
cient Query Execution on Raw Data Files. In ACM Intl. Conf. on Management
of Data (SIGMOD), 2012.

[8] K. Alexiou, D. Kossmann, and P. Larson. Adaptive Range Filters for Cold
Data: Avoiding Trips to Siberia. VLDB Endowment, 6(14), 2013.

[9] G. Andrienko, N. Andrienko, S. Drucker, J.-D. Fekete, D. Fisher, S. Idreos,
T. Kraska, G. Li, K.-L. Ma, J. D. Mackinlay, A. Oulasvirta, T. Schreck,
H. Schmann, M. Stonebraker, D. Auber, N. Bikakis, P. K. Chrysanthis, G. Pa-
pastefanatos, and M. Sharaf. Big Data Visualization and Analytics: Future
Research Challenges and Emerging Applications. In Workshop on Big Data
Visual Exploration and Analytics (BigVis 2020), 2020.

[10] M. Angelaccio, T. Catarci, and G. Santucci. Query by diagram: A fully visual
query system. J. Vis. Lang. Comput., 1(3), 1990.

[11] M. Angelini, G. Santucci, H. Schumann, and H. Schulz. A Review and Char-
acterization of Progressive Visual Analytics. Informatics, 5(3):31, 2018.

[12] L. Battle, R. Chang, and M. Stonebraker. Dynamic Prefetching of Data Tiles
for Interactive Visualization. In ACM Intl. Conf. on Management of Data
(SIGMOD), 2016.

117

https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
https://oracle-base.com/articles/12c/external-table-enhancements-12cr1
https://www.postgresql.org/docs/current/ddl-foreign-data.html
https://www.postgresql.org/docs/current/ddl-foreign-data.html
http://www.scipy.org
https://kb.tableau.com/articles/Issue/limitations-to-data-and-file-sizes-with-jet-based-data-sources
https://kb.tableau.com/articles/Issue/limitations-to-data-and-file-sizes-with-jet-based-data-sources

[13] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles. In ACM Intl.
Conf. on Management of Data (SIGMOD), 1990.

[14] S. Berchtold, D. A. Keim, and H. Kriegel. The X-tree : An Index Structure
for High-Dimensional Data. In Intl. Conf. on Very Large Databases (VLDB),
1996.

[15] N. Bikakis. Big Data Visualization Tools. In Encyclopedia of Big Data Tech-
nologies. 2019.

[16] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. Sellis.
Towards Scalable Visual Exploration of Very Large Rdf Graphs. In Extended
Semantic Web Conf. (ESWC), 2015.

[17] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. Sellis.
Graphvizdb: A Scalable Platform for Interactive Large Graph Visualization.
In IEEE Intl. Conf. on Data Engineering (ICDE), 2016.

[18] N. Bikakis, G. Papastefanatos, M. Skourla, and T. Sellis. A Hierarchical Ag-
gregation Framework for Efficient Multilevel Visual Exploration and Analysis.
Semantic Web Journal, 2017.

[19] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel Data Analysis
Directly on Scientific File Formats. In ACM Intl. Conf. on Management of
Data (SIGMOD), 2014.

[20] D. F. Carbon, C. Henze, and B. C. Nelson. Exploring the SDSS Data Set
with Linked Scatter Plots. I. EMP, CEMP, and CV Stars. The Astrophysical
Journal Supplement Series, 228(2), 2017.

[21] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visualizer,
an information workspace. In Intl. Conf. on Human Factors in Computing
Systems (CHI), 1991.

[22] L. Caruccio, V. Deufemia, and G. Polese. Visual data integration based on
description logic reasoning. In IDEAS, 2014.

[23] S. Chang. Visual Languages: A Tutorial and Survey. IEEE Software, 4(1),
1987.

[24] Y. Cheng and F. Rusu. SCANRAW: a Database Meta-operator for Paral-
lel In-situ Processing and Loading. ACM Transactions on Database Systems
(TODS), 40(3), 2015.

[25] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Intl. Conf. on Very Large Databases
(VLDB), 1997.

[26] S. Dar, M. J. Franklin, B. THór Jónsson, D. Srivastava, and M. Tan. Seman-
tic Data Caching and Replacement. In Intl. Conf. on Very Large Databases
(VLDB), 1996.

118

[27] C. A. de Lara Pahins, S. A. Stephens, C. Scheidegger, and J. L. D. Comba.
Hashedcubes: Simple, Low Memory, Real-time Visual Exploration of Big
Data. IEEE Trans. Vis. Comput. Graph. (TVCG), 23(1), 2017.

[28] M. Derthick, J. Kolojejchick, and S. F. Roth. An Interactive Visualization En-
vironment for Data Exploration. In ACM Intl. Conf. on Knowledge Discovery
and Data Mining (KDD), 1997.

[29] P. R. Doshi, E. A. Rundensteiner, and M. O. Ward. Prefetching for Visual
Data Exploratio. In Intl. Conf. on Database Systems for Advanced Applica-
tions (DASFAA), 2003.

[30] H. Ehsan, M. A. Sharaf, and P. K. Chrysanthis. Muve: Efficient Multi-
objective View Recommendation for Visual Data Exploration. In IEEE Intl.
Conf. on Data Engineering (ICDE), 2016.

[31] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska. Vistrees: Fast Indexes
for Interactive Data Exploration. In Workshop on Human-In-the-Loop Data
Analytics (HILD), 2016.

[32] J. Fekete, D. Fisher, A. Nandi, and M. Sedlmair. Progressive Data Analysis
and Visualization (Dagstuhl Seminar 18411). Dagstuhl Reports, 8(10), 2018.

[33] D. Fisher, I. O. Popov, S. M. Drucker, and M. C. Schraefel. Trust Me, I’m Par-
tially Right: Incremental Visualization Lets Analysts Explore Large Datasets
Faster. In Intl. Conf. on Human Factors in Computing Systems (CHI), 2012.

[34] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Comput.
Surv., 30(2), 1998.

[35] P. Godfrey, J. Gryz, and P. Lasek. Interactive Visualization of Large Data
Sets. IEEE Transactions on Knowledge and Data Engineering (TKDE), 28(8),
2016.

[36] D. Gotz and Z. Wen. Behavior-driven Visualization Recommendation. In Intl.
Conference on Intelligent User Interfaces (IUI), 2009.

[37] G. Graefe and H. A. Kuno. Self-selecting, self-tuning, incrementally optimized
indexes. In Intl. Conf. on Extending Database Technology (EDBT), 2010.

[38] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Opera-
tor Generalizing Group-by, Cross-Tab, and Sub Totals. Data Min. Knowl.
Discov., 1(1), 1997.

[39] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic Database Crack-
ing: Towards Robust Adaptive Indexing in Main-Memory Column-Stores.
VLDB Endowment, 5(6), 2012.

[40] P. Hanrahan. VizQL: A Language for Query, Analysis and Visualization. In
ACM Intl. Conf. on Management of Data (SIGMOD), 2006.

119

[41] J. Heer and M. Bostock. Declarative Language Design for Interactive Visual-
ization. IEEE Trans. Vis. Comput. Graph. (TVCG), 16(6), 2010.

[42] P. Holanda and S. Manegold. Progressive mergesort: Merging batches of
appends into progressive indexes. In Conf on Extending Database Technology
(EDBT), 2021.

[43] P. Holanda, S. Manegold, H. Mühleisen, and M. Raasveldt. Progressive In-
dexes: Indexing for Interactive Data Analysis. PVLDB, 12(13), 2019.

[44] P. Holanda, M. Nerone, E. C. de Almeida, and S. Manegold. Cracking kd-tree:
The first multidimensional adaptive indexing (position paper). In In Proc. of
the Intl. Conf. on Data Science, Technology and Applications (DATA), 2018.

[45] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here Are My Data
Files. Here Are My Queries. Where Are My Results? In Conf. on Innovative
Data Systems Research (CIDR), 2011.

[46] S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In Conf. on
Innovative Data Systems Research (CIDR), 2007.

[47] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple reconstruction
in column-stores. In ACM Intl. Conf. on Management of Data (SIGMOD),
2009.

[48] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging What’s Cracked,
Cracking What’s Merged: Adaptive Indexing in Main-Memory Column-
Stores. VLDB Endowment, 4(9), 2011.

[49] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of Data Explo-
ration Techniques. In ACM Intl. Conf. on Management of Data (SIGMOD),
2015.

[50] M. Ivanova, M. L. Kersten, S. Manegold, and Y. Kargin. Data Vaults:
Database Technology for Scientific File Repositories. Computing in Science
and Engineering, 15(3), 2013.

[51] A. H. Jensen, F. Lauridsen, F. Zardbani, S. Idreos, and P. Karras. Revisit-
ing multidimensional adaptive indexing [experiment & analysis]. In Conf on
Extending Database Technology (EDBT), 2021.

[52] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. VDDa: Automatic
Visualization-driven Data Aggregation in Relational Databases. Journal on
Very Large Data Bases (VLDBJ), 2015.

[53] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main Memory Eval-
uation of Monitoring Queries Over Moving Objects. Distributed and Parallel
Databases, 15(2), 2004.

[54] A. Kalinin, U. Çetintemel, and S. B. Zdonik. Interactive Data Exploration
Using Semantic Windows. In ACM Intl. Conf. on Management of Data (SIG-
MOD), 2014.

120

[55] I. Kamel and C. Faloutsos. On Packing R-trees. In Intl. Conf. on Information
and Knowledge Management, 1993.

[56] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries Over Het-
erogeneous Data Through Engine Customization. VLDB Endowment, 9(12),
2016.

[57] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive
Query Processing on Raw Data. VLDB Endowment, 7(12), 2014.

[58] A. Key, B. Howe, D. Perry, and C. R. Aragon. Vizdeck: Self-organizing
Dashboards for Visual Analytics. In ACM Intl. Conf. on Management of
Data (SIGMOD), 2012.

[59] H. Lenz and B. Thalheim. OLAP Databases and Aggregation Functions. In
SSDBM, 2001.

[60] S. T. Leutenegger, J. M. Edgington, and M. A. López. STR: A Simple and Effi-
cient Algorithm for R-Tree Packing. In IEEE Intl. Conf. on Data Engineering
(ICDE), 1997.

[61] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for Real-Time
Exploration of Spatiotemporal Datasets. IEEE Trans. Vis. Comput. Graph.
(TVCG), 19:2456–2465, 2013.

[62] C. Liu, C. Wu, H. Shao, and X. Yuan. Smartcube: An adaptive data manage-
ment architecture for the real-time visualization of spatiotemporal datasets.
IEEE Trans on Visualization & Computer Graphics, 26(1), 2020.

[63] Z. Liu and J. Heer. The Effects of Interactive Latency on Exploratory Visual
Analysis. IEEE Trans. Vis. Comput. Graph., 20(12), 2014.

[64] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic Presenta-
tion for Visual Analysis. IEEE Trans. Vis. Comput. Graph. (TVCG), 13(6),
2007.

[65] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis.
R-Trees: Theory and Applications. Springer, 2006.

[66] A. Massari, S. Pavani, L. Saladini, and P. K. Chrysanthis. Qbi: Query by
icons. In ACM SIGMOD Record, volume 24, 1995.

[67] F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva. TopKube: A Rank-
Aware Data Cube for Real-Time Exploration of Spatiotemporal Data. IEEE
Trans. Vis. Comput. Graph. (TVCG), 24:1394–1407, 2017.

[68] K. Morton, M. Balazinska, D. Grossman, and J. D. Mackinlay. Support
the Data Enthusiast: Challenges for Next-generation Data-analysis Systems.
VLDB Endowment, 7(6), 2014.

[69] B. Mutlu, E. E. Veas, and C. Trattner. Vizrec: Recommending Personalized
Visualizations. ACM Transactions on Interactive Intelligent Systems (TIIS),
6(4), 2016.

121

[70] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning multi-dimensional
indexes. In ACM Conf on Management of Data (SIGMOD), 2020.

[71] M. Nerone, P. Holanda, E. C. de Almeida, and S. Manegold. Multidimen-
sional Adaptive and Progressive Indexes. In IEEE Conf on Data Engineering
(ICDE), 2021.

[72] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Trans. Database Syst., 9(1), 1984.

[73] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Aila-
maki. Slalom: Coasting through Raw Data Via Adaptive Partitioning and
Indexing. VLDB Endowment, 10(10), 2017.

[74] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Aila-
maki. Adaptive partitioning and indexing for in situ query processing. The
VLDB Journal, 2019.

[75] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki. QUASII: query-
aware spatial incremental index. In Conf on Extending Database Technology
(EDBT), 2018.

[76] E. Petraki, S. Idreos, and S. Manegold. Holistic Indexing in Main-memory
Column-stores. In ACM Intl. Conf. on Management of Data (SIGMOD),
2015.

[77] X. Qin, Y. Luo, N. Tang, and G. Li. Making data visualization more efficient
and effective: a survey. Journal on Very Large Data Bases (VLDBJ), 2020.

[78] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, 2018.

[79] P. Rahman, L. Jiang, and A. Nandi. Evaluating Interactive Data Systems.
VLDB J., 29(1), 2020.

[80] S. Rahman, M. Aliakbarpour, H. Kong, E. Blais, K. Karahalios, A. G.
Parameswaran, and R. Rubinfeld. I’ve Seen ”Enough”: Incrementally Im-
proving Visualizations to Support Rapid Decision Making. VLDB Endowment,
10(11), 2017.

[81] S. Richter, J. Quiané-Ruiz, S. Schuh, and J. Dittrich. Towards zero-overhead
static and adaptive indexing in Hadoop. Journal on Very Large Data Bases
(VLDBJ), 23(3), 2014.

[82] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The uncracked pieces in
database cracking. VLDB Endowment, 7(2), 2013.

[83] S. C. Seow. Designing and Engineering Time: The Psychology of Time Per-
ception in Software. Addison-Wesley Professional, 2008.

[84] B. Shneiderman. Response Time and Display Rate in Human Performance
with Computers. ACM Comput. Surv., 16(3), 1984.

122

[85] D. Sidlauskas and C. S. Jensen. Spatial Joins in Main Memory: Implementa-
tion Matters! VLDB Endowment, 8(1), 2014.

[86] D. Sidlauskas, S. Saltenis, C. W. Christiansen, J. M. Johansen, and D. Saulys.
Trees or grids?: indexing moving objects in main memory. In ACM SIGSPA-
TIAL Intl. Conf. on Advances in Geographic Information Systems, 2009.

[87] W. Tao, X. Liu, Y. Wang, L. Battle, Ç. Demiralp, R. Chang, and M. Stone-
braker. Kyrix: Interactive pan/zoom visualizations at scale. Comput. Graph.
Forum, 38(3), 2019.

[88] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann, H. Markram, and A. Aila-
maki. Accelerating Range Queries for Brain Simulations. In IEEE Intl. Conf.
on Data Engineering (ICDE), 2012.

[89] F. Tauheed, T. Heinis, F. Schürmann, H. Markram, and A. Ailamaki. SCOUT:
Prefetching for Latent Feature Following Queries. VLDB Endowment, 5(11),
2012.

[90] Y. Tian, I. Alagiannis, E. Liarou, A. Ailamaki, P. Michiardi, and M. Vukolic.
Dinodb: An Interactive-speed Query Engine for Ad-hoc Queries on Temporary
Data. IEEE Transactions on Big Data, 2017.

[91] M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. G. Parameswaran.
Towards Visualization Recommendation Systems. SIGMOD Record, 45(4),
2016.

[92] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger. Gaussian
cubes: Real-time modeling for visual exploration of large multidimensional
datasets. IEEE Trans on Visualization & Computer Graphics, 23(1), 2017.

[93] C. Ware. Visual Thinking: for Design. Morgan Kaufmann, 2008.

[94] A. Wasay, X. Wei, N. Dayan, and S. Idreos. Data Canopy: Accelerating
Exploratory Statistical Analysis. In ACM Intl. Conf. on Management of Data
(SIGMOD), 2017.

[95] E. Wu, L. Battle, and S. R. Madden. The Case for Data Visualization Man-
agement Systems. VLDB Endowment, 7(10), 2014.

[96] S. Yesilmurat and V. Isler. Retrospective adaptive prefetching for interactive
Web GIS applications. GeoInformatica, 16(3), 2012.

[97] J. S. Yi, Y. ah Kang, J. Stasko, and J. A. Jacko. Toward a deeper understand-
ing of the role of interaction in information visualization. IEEE transactions
on visualization and computer graphics, 13(6):1224–1231, 2007.

[98] E. T. Zacharatou, D. Sidlauskas, F. Tauheed, T. Heinis, and A. Ailamaki.
Efficient Bundled Spatial Range Queries. In ACM SIGSPATIAL Intl. Conf.
on Advances in Geographic Information Systems, 2019.

[99] F. Zardbani, P. Afshani, and P. Karras. Revisiting the theory and practice of
database cracking. In Conf on Extending Database Technology (EDBT), 2020.

123

[100] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska. How Progres-
sive Visualizations Affect Exploratory Analysis. IEEE Trans. Vis. Comput.
Graph., 23(8), 2017.

[101] W. Zhao, F. Rusu, B. Dong, and K. Wu. Similarity Join over Array Data. In
ACM Intl. Conf. on Management of Data (SIGMOD), 2016.

[102] W. Zhao, F. Rusu, B. Dong, K. Wu, A. Y. Q. Ho, and P. Nugent. Distributed
caching for processing raw arrays. In Intl. Conf. on Scientific and Statistical
Database Management (SSDBM), 2018.

[103] W. Zhao, F. Rusu, B. Dong, K. Wu, and P. Nugent. Incremental View Main-
tenance over Array Data. In ACM Intl. Conf. on Management of Data (SIG-
MOD), 2017.

[104] M. M. Zloof. Query-by-example: A data base language. IBM systems Journal,
16(4), 1977.

124

Research publications

Peer-reviewed journals:

− Maroulis, S., Bikakis, N., Papastefanatos, G., Vassiliadis, P., & Vassiliou, Y.
(2022). Resource-aware adaptive indexing for in situ visual exploration and
analytics. The VLDB Journal, 1-29.

− Bikakis, N., Maroulis, S., Papastefanatos, G., & Vassiliadis, P. (2021). In-situ
visual exploration over big raw data. Information Systems, 95, 101616.

Peer-reviewed conference proceedings:

− Maroulis, S., Bikakis, N., Papastefanatos, G., Vassiliadis, P., & Vassiliou, Y.
(2021, June). RawVis: A System for Efficient In-situ Visual Analytics. In
Proceedings of the 2021 International Conference on Management of Data
(pp. 2760-2764).

− Maroulis, S., Bikakis, N., Papastefanatos, G., Vassiliadis, P., & Vassiliou, Y.
(2021). Adaptive Indexing for In-situ Visual Exploration and Analytics. In
DOLAP (pp. 91-100).

− Bikakis, N., Maroulis, S., Papastefanatos, G., & Vassiliadis, P. (2018, Septem-
ber). RawVis: visual exploration over raw data. In European Conference
on Advances in Databases and Information Systems (pp. 50-65). Springer,
Cham.

125

126

Appendix A

Extended Greek Abstract

Εκτεταμένη περίληψη στα Ελληνικά

Προσαρμοστική ευρετηρίαση για διαδραστική οπ-

τική εξερεύνηση και αναλυτική

A.1 Εισαγωγή

Η επέκταση των πρακτικών της ανοιχτής επιστήμης έχει οδηγήσει σε αυξημένη διαθεσ-

ιμότητα ανοιχτών συνόλων δεδομένων, μεγάλο μέρος από τα οποία παρέχονται με τη
μορφή μεγάλων αρχείων δεδομένων(π.χ. CSV, JSON). Οι χρήστες που ενδιαφέρονται
να εξερευνήσουν και να αναλύσουν τα δεδομένα αυτά, συχνά δεν έχουν εξειδικευμένες
γνώσεις σε τεχνικές διαχείρισης δεδομένων, και διαθέτουν περιορισμένους υπολογισ-
τικούς πόρους (π.χ. ένα laptop). Παράλληλα, συνήθως επιθυμούν την ανάλυση των
δεδομένων αυτών με χρήση εύληπτων τεχνικών οπτικής εξερεύνησης κατευθείαν πάνω

στα πρωτογενή αρχεία δεδομένων, αποφεύγοντας χρονοβόρες διαδικασίες για προε-
τοιμασία των δεδομένων, όπως φόρτωση τους σε ένα Σύστημα Διαχείρισης Βάσεων
Δεδομένων(ΣΔΒΔ), καθώς κι ευρετηρίασης τους σε αυτό.

Τα υπάρχοντα εργαλεία οπτικοποίησης είναι κατάλληλα για μικρά αρχεία που μπορούν

να χωρέσουν στη μνήμη του συστήματος. Ωστόσο, αντιμετωπίζουν δυσκολίες με
μεγαλύτερα αρχεία. Για την εξερεύνηση και ανάλυση αυτών των αρχείων, απαιτούν-
ται χρονοβόρα βήματα προεπεξεργασίας όπως φόρτωση κι ευρετηρίαση, διαδικασίες οι
οποίες προϋποθέτουν εμπειρία του χρήστη για την πραγματοποίηση τους. Αν και ορισ-
μένες εμπορικές βάσεις δεδομένων υποστηρίζουν την εκτέλεση ερωτημάτων απ’ευθείας
πάνω σε πρωτογενή αρχεία δεδομένων, χαρακτηρίζονται συνήθως από πολύ κακή από-
δοση λόγω της ανάγκης για επανειλημμένη πρόσβαση στο αρχείο.

Πρόσφατα, έχουν προταθεί τεχνικές προσαρμοστικής ευρετηρίασης που στοχεύουν
να αποφύγουν την αρχική κατασκευή ενός πλήρους ευρετηρίου, βελτιώνοντας αντίθετα
το ευρετήριο και την ταξινόμηση των δεδομένων στη βάση κατά την εκτέλεση των

ερωτημάτων. Ωστόσο, οι περισσότερες από αυτές τις τεχνικές απαιτούν ακόμη ένα
στάδιο προεπεξεργασίας για τη φόρτωση των δεδομένων.

Παράλληλα, το in-situ πρότυπο που έχει αναδειχθεί τα τελευταία χρόνια, στοχεύει

127

στην αποτίμηση ερωτημάτων απευθείας σε πρωτογενή αρχεία δεδομένων χωρίς την

πλήρη φόρτωση και ευρετηρίαση τους σε ένα ΣΔΒΔ. Αυτό το πρότυπο δημιουργεί
δομές κι ευρετήρια κατά τη διάρκεια της επερώτησης των δεδομένων από τον χρήστη

και τα προσαρμόζει ανάλογα, με στόχο τη μείωση του κόστους πρόσβασης στα αρχεία
και τη γρηγορότερη απάντηση στα ερωτήματα. Ωστόσο, οι περισσότερες υπάρχουσες
εργασίες δεν επικεντρώνονται στις συγκεκριμένες ανάγκες για την υποστήριξη δι-

αδραστικής οπτικής εξερεύνησης τέτοιων δεδομένων.
Αυτή η διατριβή επιχειρεί να αντιμετωπίσει αυτές τις προκλήσεις, επικεντρώνοντας

στην αποτελεσματική in-situ οπτική ανάλυση δεδομένων. Οι στόχοι της είναι η αποτε-
λεσματική αποτίμηση των ενεργειών εξερεύνησης και ανάλυσης του χρήστη πάνω σε

πρωτογενή αρχεία δεδομένων, η δημιουργία ευρετηρίων με βάση την πρώτη ενέργεια
του χρήστη με ελαχιστοποίηση του χρόνου αρχικοποίησης της ανάλυσης, η μείωση
των λειτουργιών πρόσβασης στο αρχείο, η βελτιστοποίηση της χρήσης της μνήμης,
και η προσαρμοστική ευρετηρίαση που προσαρμόζεται στα ερωτήματα του χρήστη. Ο
τελικός στόχος είναι να προτείνει μια λύση που χειρίζεται αποτελεσματικά την in-situ
οπτική εξερεύνηση και ανάλυση μεγάλων πρωτογενών αρχείων δεδομένων.

A.2 Επισκόπηση διατριβής

A.2.1 Μοντέλο Οπτικής Εξερεύνησης

Στο πλαίσιο της οπτικής αναλυτικής που στοχεύει η διατριβή, διατυπώνεται ένα μον-
τέλο οπτικής εξερεύνησης που παρέχει ένα σύνολο από διαθέσιμες αναλυτικές και

εξερενητικές ενέργειες που μπορεί να εκτελέσει ένας χρήστης στα πρωτογενή αρ-

χεία δεδομένων. Παράλληλα, παρέχεται μια σαφής αντιστοίχιση μεταξύ των οπτικών
λειτουργιών και των διερευνητικών ερωτημάτων με στόχο τη συσχέτιση των αλλη-

λεπιδράσεων των χρηστών με την πρόσβαση και την επεξεργασία των υποκείμενων

δεδομένων.
Το μοντέλο οπτικής εξερεύνησης που παρουσιάζεται προϋποθέτει ένα αρχείο δε-

δομένων που περιέχει ένα σύνολο πολυδιάστατων αντικειμένων. Κάθε διάσταση αντισ-
τοιχεί σε ένα πεδίο το οποίο μπορεί να είναι αριθμητικό, αλφαριθμητικό ή κατηγορικό.
Επιπλέον, κάθε αντικείμενο συνδέεται με μια αριθμητική τιμή που υποδηλώνει τη θέση
του εντός του αρχείου. Ιδιαίτερη έμφαση δίνεται στη 2διάστατη εξερεύνηση των δε-
δομένων. Ο χρήστης επιλέγει δύο αριθμητικά πεδία που μπορούν να αντιστοιχιστούν
σε μια διάταξη δισδιάστατης οπτικοποίησης (π.χ. χαρτογραφική αναπαράσταση, διά-
γραμμα διασποράς). Οι χρήστες μπορούν να οπτικοποιήσουν μια ορθογώνια περιοχή,
στην οποία απεικονίζεται το σύνολο των αντικειμένων του αρχείου των οποίων οι τιμές

πέφτουν εντός του εύρους της περιοχής. Κάθε αντικείμενο της οπτικής αυτής αναπράσ-
τασης μπορεί επίσης να συσχετιστεί με οπτικά χαρακτηριστικά που αντιπροσωπεύουν

τιμές από άλλα πεδία, πλην των δυο που αντιστοιχούν στους άξονες της δισδιάστατης
απεικόνισης. Οπτικές λειτουργίες, όπως προβολή, μετακίνηση, μεγέθυνση/σμίκρυνση
(zoom-in/out), φιλτράρισμα, ομαδοποίσης και ανάλυση, διευκολύνουν την εξερεύνηση
του χρήστη στο δισδιάστατο χώρο και την περεταίρω ανάλυση των δεδομένων.
Κάθε οπτική λειτουργία από αυτές αντιστοιχείται τελικά σε τελεστές πρόσβασης

στα αρχεία δεδομένων. Αυτοί οι τελεστές αποτελούν τη βάση ενός ερωτήματος εξ-
ερεύνησης, που στοχεύει στην ανάκτηση δεδομένων σύμφωνα με τις οπτικές λει-
τουργίες του χρήστη, παρέχοντας μια βάση για οπτική εξερεύνηση και ανάλυση δε-
δομένων.

128

A.2.2 Ευρετηρίαση για Δισδιάστατη Οπτική Εξερεύνηση

Για να επιτευχθεί δισδιάστατη εξερεύνηση αρχείων πρωτογενών δεδομένων από τους

χρήστες, στο πλαίσιο της διατριβής αυτής παρουσιάζεται ένα ευρετήριο, το VALINOR.
Το VALINOR αποτελεί ένα ευρετήριο που αποθηκεύεται στη μνήμη και είναι σχεδιασ-
μένο ειδικά για δισδιάστατη in-situ οπτική εξερεύνηση μεγάλων αρχείων δεδομένων.
Βασισμένο στο μοντέλο οπτικής εξερεύνησης, το VALINOR αποτιμάει αποτελεσματικά
δισδιάστατες ενέργειες του χρήστη, όπως προβολή (render), μετακίνηση (move) και
μεγέθυνση (zoom-in), πάνω στα αρχεία δεδομένων.
΄Ενα χαρακτηριστικό του VALINOR είναι η ιεραρχική δομή του, βασισμένη σε

πλακίδια, η οποία ομαδοποιεί τα αντικείμενα ενός αρχείου βάσει δύο αριθμητικών χαρακ-
τηριστικών, όπως το γεωγραφικό πλάτος και το γεωγραφικό μήκος στην περίπτωση
μιας χαρτογραφικης οπτικοποίησης. ΄Ενα πλακίδιο είναι μια υποπεριοχή του ευκλείδιου
χώρου που ορίζεται από δύο διαστήματα στα 2 πεδία που αποτελούν τους άξονες της
δισδιάστασης απεικόνισης. Τα πλακίδια στο τέλος της ιεραρχίας, που δεν έχουν άλλα
πλακίδια απογόνους, ονομάζονται πλακίδια-φύλλα και σε αυτά αποθηκεύονται τα αν-
τικείμενα του αρχείου. Συγκεκριμένα, για κάθε αντικείμενο αποθηκεύεται μια πλειάδα
που περιέχει τις τιμές των πεδίων του άξονα και τη θέση του αντικειμένου στο αρχείο.
Επιπλέον, το VALINOR ενσωματώνει μεταδεδομένα σύνοψης σε κάθε πλακίδιο. Αυτές
είναι αριθμητικές τιμές που υπολογίζονται από αλγεβρικές συναρτήσεις (π.χ. άθροισμα,
ελάχιστο, μέγιστο) πάνω σε όλα τα αντικείμενα σε ένα συγκεκριμένο πλακίδιο. ΄Οταν
ένα ερώτημα απαιτεί υπολογισμό κάποιων στατιστικών τιμών, αυτά τα μεταδεδομένα
μπορούν να αξιοποιηθούν χωρίς να απαιτείται η ανάκτηση των αντίστοιχων πεδίων από

το αρχείο. Η ικανότητα ενός ερωτήματος να εκμεταλλευτεί τα μεταδεδομένα εξαρτάται
από το εάν το επικαλυπτόμενο πλακίδιο περιέχεται πλήρως ή εν μέρει στη δισδιάστατη

περιοχή που ορίζεται στο ερώτημα. Σε ένα εν μέρει περιέχομενο πλακίδιο, πρέπει να
διατρέξουμε τα αντικείμενα του για να βρούμε αυτά που περιλαμβάνονται στο δισδιάσ-

τατο παράθυρο του ερωτήματος, και στη συνέχεια να διαβάσουμε τις τιμές για άλλα
πεδία αυτών των αντικειμένων από το αρχείο. Αντίθετα, σε ένα πλήρως περιέχομενο
πλακίδιο, δεν χρειάζεται να πραγματοποιήσουμε αυτές τις λειτουργίες καθώς τα μεταδε-
δομένα του μπορούν να χρησιμοποιηθούν χωρίς να χρειάζεται περεταίρω πρόσβαση στο

αρχείο για τα αντικείμενα του.
Κατά την αλληλεπίδραση με μεγάλα αρχεία δεδομένων, ένα σημαντικό ζήτημα είναι

η διαδικασία δυναμικής δημιουργίας ενός ευρετηρίου κατόπιν του πρώτου ερωτήμα-

τος ενός χρήστη, αντί για τη δημιουργία ενός πλήρως λεπτομερούς ευρετηρίου εκ
των προτέρων. Αυτή η προσέγγιση παρέχει μια ισορροπία μεταξύ ταχύτητας και
βάθους ανάλυσης, διασφαλίζοντας ότι ο αρχικός χρόνος απόκρισης σε ένα ερώτημα
είναι ελάχιστος. Για το σκοπό αυτό, αρχικά δημιουργείται μια λιγότερο λεπτομερής
εκδοχή του ευρετηρίου. Αυτή η εκδοχή είναι γρήγορη στην κατασκευή, διατηρώντας
τον χρόνο για την αποτίμηση της πρώτης ενέργειας του χρήστη χαμηλό, αλλά περιέχει
αρκετές λεπτομέρειες για να είναι χρήσιμη για την αρχική εξερεύνηση των δεδομένων.
Κατά την αρχικοποίηση του VALINOR, στη βασική μέθοδο αρχικοποίησης που

παρουσιάζουμε, τα αντικείμενα ομαδοποιούνται σε πλακίδια ίδιου μεγέθους χωρίς να
λαμβάνεται υπόψη η τοποθεσία του αρχικού ερωτήματος του χρήστη. Ωστόσο, σε
ένα σενάριο εξερεύνησης, τα επόμενα ερωτήματα του χρήστη είναι πολύ πιθανό να
επικαλύπτονται με πλακίδια κοντά στο αρχικό ερώτημα. Για να εκμεταλλευτούμε αυτήν
την τοπικότητα, προτείνουμε μια μέθοδο αρχικοποίησης με βάση το πρώτο ερώτημα
του χρήστη, όπου η αρχική δομή των πλακιδίων δημιοθργίεται με μια πιο λεπτομερή
διαμόρφωση πλακιδίων στην περιοχή γύρω από το αρχικό ερώτημα. Η ιδέα είναι να

129

αυξήσουμε τον αριθμό των πλακιδίων κοντά στο πρώτο ερώτημα, το οποίο αυξάνει την
πιθανότητα επόμενα ερωτήματα του χρήστη να επικαλύπτονται με πλήρως περιέχομενα

πλακίδια και μειώνει τα υπολογιστικά κόστη, καθώς και το κόστος ανάγνωσης από το
αρχείο.

Συγκεκριμένα, η διαδικασία αρχικοποίησης ξεκινά με την κατασκευή ενός αρχικού
συνόλου ισομεγέθων πλακιδίων χρησιμοποιώντας τη βασική μέθοδο αρχικοποίησης με

πλακίδια ίσου μεγέθους. Στη συνέχεια, για κάθε ένα από τα αρχικά αυτά πλακίδια
υπολογίζεται ένας συντελεστής διαίρεσης που καθορίζει τον αριθμό των ισομεγέθων

υπο-πλακιδίων στα οποία θα διαιρεθεί το πλακίδιο. Ο συντελεστής αυτός υπολογίζε-
ται βάσει της πιθανότητας που θα περιέχει ένα επόμενο ερώτημα το πλακίδιο. Στην
πραγματικότητα, αυτή η τεχνική βασίζεται στην παραδοχή ότι τα επόμενα ερωτήματα
του χρήστη θα είναι κοντά στο αρχικό ερώτημα, το οποίο είναι συχνά αληθές σε
σενάρια όπως η αναλυτική επεξεργασία δεδομένων, όπου οι χρήστες συχνά εξετάζουν
γειτονικές περιοχές.

Μετά την αρχικοποίηση του ευρετηρίου, τα επόμενα ερωτήματα του χρήστη μπορούν
να το εκμεταλλευτούν για τη γρηγορότερη εκτέλεση τους. Η διαδικασία βασίζεται στη
συνεχή ενημέρωση και βελτίωση του ευρετηρίου ως απάντηση στις αλληλεπιδράσεις

των χρηστών. Αυτό επιτρέπει στο σύστημα να παρέχει πιο λεπτομερή αποτελέσματα
καθώς γίνονται περισσότερα ερωτήματα. Η μέθοδος προσαρμογής του VALINOR,
προσαρμόζει τη δομή των πλακιδίων με το να τα διαιρεί σε μικρότερα. Με αυτόν τον
τρόπο, μειώνει τον αριθμό των αντικειμένων που χρειάζεται να ανακτηθούν από το αρ-
χείο κατά τη εκτέλεση του ερωτήματος, καθώς τα μικρότερα πλακίδια είναι πιο πιθανό
να περιέχονται πλήρως στο ερώτημα του χρήστη.

Κατά την εκτέλεση ενός ερωτήματος, εξετάζεται ποια από τα πλακίδια που επικαλύπτει
το ερώτημα χρειάζεται να διαιρεθούν σε μικρότερα. Για τη διαμέριση ενός πλακιδίου σε
μικρότερα υποπλακίδια, δοκιμάστηκαν διάφορες μέθοδοι. Για παράδειγμα, στη βασική
μέθοδο που εξετάστηκε, ένα πλακίδιο που επικαλύπτεται με το ερώτημα του χρήστη
μπορεί να χωριστεί σε 4 υποπλακίδια ίδιου μεγέθους (παρόμοια με την προσέγγιση
που ακολουθείται στο Quad-tree). Το κύριο μειονέκτημα αυτής της μεθόδου είναι ότι
σε πολλές περιπτώσεις όπου γίνεται η διαίρεση, δεν υπολογίζονται μεταδεδομένα για
κανένα από τα δημιουργηθέντα υποπλακίδια. Αυτό συμβαίνει όταν τα πλακίδια που
δημιουργούνται από τη διαίρεση δεν είναι πλήρως περιεχόμενα στο ερώτημα.

Για την αντιμετώπιση αυτού του προβλήματος, παρουσιάζουμε μια μέθοδο που ανα-
διοργανώνει το ευρετήριο με βάση το δισδιάστατο παράθυρο ερωτήματος του χρήστη.
Η διαδικασία του χωρισμού περιλαμβάνει την κατασκευή υποπλακιδίων από ένα πλακί-

διο βάσει της περιοχής επικάλυψης του με το ερώτημα. Με αυτή τη διαίρεση των
πλακιδίων, η μέθοδος εξασφαλίζει ότι τουλάχιστον το παραγόμενο πλακίδιο που αντι-
στοιχεί στην τομή με το ερώτημα, θα είναι πλήρως περιεχόμενο μέσα στην περιοχή του
ερωτήματος, και θα μπορέσει να αξιοποιήσει τις λειτουργίες εισόδου/εξόδου που εκ-
τελούνται κατά τη διεργασία του ερωτήματος για τον υπολογισμό των μεταδεδομένων

του. Με τον χωρισμό των πλακιδίων και τον υπολογισμό των μεταδεδομένων για τα
υποπλακίδια, η μέθοδος μειώνει το κόστος πρόσβασης στο αρχείο και τον υπολογισμό
των μεταδεδομένων για τα επόμενα ερωτήματα, βελτιώνοντας τελικά την εκτέλεση των
ερωτημάτων.

Για την αντιμετώπιση σεναρίων εξερεύνησης με ιδιαίτερα περιορισμένη μνήμη, μέρος
του VALINOR μπορεί να χρειαστεί να αποθηκευτεί στον δίσκο. Στο πλαίσιο αυτό,
ορίζεται μια πολιτική που καθορίζει ποια μέρη του ευρετηρίου πρέπει να αφαιρεθούν από

τη μνήμη και να γραφούν στον δίσκο. Η πολιτική που ακολουθείται είναι βασισμένη

130

σε πλακίδια, και μεταφέρει τα αντικείμενα ενός πλακιδίου στο δίσκο. Για την επιλογή
των πλακιδίων που θα μεταφερθούν στο δίσκο, ακολουθείται μια πολιτική με βάση
την πιθανότητα να επικαλύπτει ένα επόμενο ερώτημα του χρήστη ένα πλακίδιο, και
μεταφέρει στο δίσκο τα πλακίδια που βρίσκονται σε μεγαλύτερη απόσταση σε σχέση

με το τελευταίο ερώτημα του χρήστη.

Κατά τη επεξεργασία ενός ερωτήματος, όταν ένα ερώτημα επικαλύπτεται με ένα
πλακίδιο που έχει ήδη μεταφερθεί στο δίσκο, χρειάζεται να ανακτηθεί από αυτόν. Για να
ανακτηθεί το απαιτούμενο πλακίδιο, απελευθερώνεται μνήμη με το να γραφεί ένα άλλο
πλακίδιο στον δίσκο. Η πολιτική αποβολής στοχεύει στην ελαχιστοποίηση του συνο-
λικού αναμενόμενου κόστους αποβολής ενώ εξασφαλίζει ότι τα αποβαλλόμενα πλακίδια

περιέχουν τουλάχιστον έναν καθορισμένο αριθμό αντικειμένων. Από την άλλη, κατά
τη φάση αρχικοποίησης του ευρετηρίου, η μεταφορά στο δίσκο πραγματοποιείται καθώς
νέες εγγραφές διαβάζονται από το αρχείο δεδομένων και τοποθετούνται σε πλακίδια.
Εάν η μνήμη γεμίσει, επιλέγονται τα πλακίδια που δεν έχουν προηγουμένως μεταφερ-
θεί στο δίσκο, με βάση την απόσταση τους από το αρχικό ερώτημα του χρήστη. Τα
αντικείμενα που βρίσκονται ήδη στη μνήμη γράφονται στον δίσκο. Αυτή η διαδικασία
επιτρέπει την προσθήκη νέων αντικειμένων στο πλακίδιο μετά την αποβολή, πράγμα
που σημαίνει ότι ορισμένα αντικείμενα μπορεί να βρίσκονται στη μνήμη ενώ άλλα απο-

θηκεύονται στον δίσκο.

Η ανακατασκευή είναι απαραίτητη κατά την επεξεργασία ερωτημάτων όταν ένα

αποβαλλόμενο πλακίδιο επικαλύπτεται με ένα ερώτημα. Σε τέτοιες περιπτώσεις, τα
αντικείμενα του πλακιδίου ανακτώνται από τον δίσκο και συνδυάζονται με τα αντικεί-

μενα στη μνήμη για να ανακατασταθεί η πλήρης λίστα των αντικειμένων του πλακιδίου.
Η αρχική σειρά εισαγωγής διατηρείται κατά τη διάρκεια αυτής της ανακατασκευής.
Προκειμένου να ελαχιστοποιηθούν οι λειτουργίες εισόδου/εξόδου, δεν διαγράφονται
αντικείμενα από τον δίσκο κατά τη διάρκεια της διαδικασίας ανάκτησης. Εάν ένα
πλακίδιο χρειαστεί να αποβληθεί ξανά, αφαιρούνται μόνο τα αντικείμενα που δεν έχουν
ήδη εγγραφεί στον δίσκο, απελευθερώνοντας μνήμη και γράφοντας τα στο δίσκο.

Αξιολογήσαμε πειραματικά το VALINOR χρησιμοποιώντας τόσο πραγματικά, όσο
και συνθετικά σύνολα δεδομένων, σε σενάρια που περιλαμβάνουν την εξερεύνηση πε-
ριοχών των δεδομένων και τη μέτρηση των χρόνων εκτέλεσης και της κατανάλωσης

μνήμης. Στη σύγκριση περιλαμβάνονται επίσης ανταγωνιστές όπως ένα παραδοσιακό
σύστημα διαχείρισης βάσεων δεδομένων (DBMS), το σύστημα PostgresRaw [7], που
αφορά στην εκτέλεση SQL ερωτημάτων κατευθείαν πάνω σε πρωτογενή αρχεία δε-
δομένων και μια υλοποίηση του R-tree στη μνήμη. Μετρώνται διάφορες μετρικές,
όπως οι χρόνοι εκτέλεσης, η κατανάλωση μνήμης και οι λειτουργίες εισόδου/εξόδου.
Τα αποτελέσματα δείχνουν ότι το VALINOR επιδεικνύει πολύ καλή απόδοση σε σύγκρ-
ιση με άλλες λύσεις, ιδίως σε σενάρια με περιορισμένους πόρους μνήμης και για μεγάλα
σύνολα δεδομένων.

΄Οσον αφορά την αρχικοποίηση ερωτημάτων, το VALINOR υπερτερεί σε σχέση με
τις μεθόδους MySQL και R-tree για όλα τα σύνολα δεδομένων. Η MySQL απαιτεί
σημαντικό χρόνο για την φόρτωση των δεδομένων στον δίσκο. Ο ελαφρώς υψηλότερος
χρόνος αρχικοποίησης του VALINOR σε σύγκριση με τη PostgresRaw σε ορισμένες
περιπτώσεις μπορεί να αποδοθεί σε μη βελτιστοποιημένη ανάγνωση του CSV και σε
πιο αργές λειτουργίες εισόδου/εξόδου στην Java. Ωστόσο, το VALINOR εμφανίζει
ταχύτερη εκτέλεση ερωτημάτων κατά την εξερεύνηση, όπου είναι περίπου 5-10 φορές
πιο γρήγορο από τα υπάρχοντα συστήματα για τα περισσότερα σύνολα δεδομένων.

΄Οσον αφορά τον χρόνο εκτέλεσης ερωτημάτων, το VALINOR υπερτερεί σε σχέση

131

με τους ανταγωνιστές. Η PostgresRaw απαιτεί παρόμοιο χρόνο για κάθε ερώτημα, κα-
θώς χρειάζεται να εξετάσει όλα τα αντικείμενα στο σύνολο δεδομένων, ενώ η μέθοδος
R-tree είναι σημαντικά πιο αργή σε σύγκριση με το VALINOR λόγω της έλλειψης
μεταδεδομένων για αποδοτικό υπολογισμό συγκεντρωτικών στατιστικών. Ο συνολικός
χρόνος που απαιτείται από το VALINOR για να εκτελέσει το πλήρες φορτίο ερωτη-
μάτων είναι πολύ χαμηλότερος σε σύγκριση με άλλα συστήματα, καταδεικνύοντας την
ανώτερη συνολική απόδοσή του.

Τα πειράματα κατανάλωσης μνήμης αποκαλύπτουν ότι, αν και το μέγεθος του
VALINOR στη μνήμη αυξάνεται ελαφρώς καθώς επεξεργάζεται ερωτήματα λόγω του
χωρισμού πλακιδίων και της αποθήκευσης μεταδεδομένων για πλήρως περιεχόμενα

πλακίδια, έχει σημαντικά μικρότερες απαιτήσεις μνήμης σε σύγκριση με τους ανταγ-
ωνιστές.

Παράλληλα, αξιολογήσαμε τις μεθόδους αρχικοποίησης και προσαρμογής του. Συγ-
κεκριμένα, η μέθοδος αρχικοποίησης με βάση το πρώτο ερώτημα του χρήστη βελτιώνει
αποτελεσματικά το χρόνο απόκρισης στα πρώτα ερωτήματα του χρήστη. Αντίστοιχα,
η μέθοδος προσαρμογής του ευρετηρίου με τη διαμέριση των πλακιδίων με βάση το

ερώτημα, παρουσιάζει καλύτερη απόδοση προσαρμόζοντας τελικά το ευρετήριο καλύτερα
σε σχέση με τις ενέργειες του χρήστη.

A.2.3 Ευρετηρίαση για Οπτική Εξερεύνηση σε κατηγορικά

πεδία

Η δισδιάστατη οπτική εξερεύνηση δεδομένων, αν και σημαντική κι ευρέως διαδεδομένη
(π.χ. χαρτογραφική οπτικοποίηση), αποτελεί ένα μέρος μόνο της εξερευνητικής ανάλυσης
που μπορεί να θέλει να πραγματοποιήσει ένας χρήστης. ΄Ενα άλλο είδος ανάλυσης που
πραγματοποιείται συχνά, περιλαμβάνει τη δημιουργία γραφημάτων, όπως ένα γράφημα
στηλών. Τέτοια γραφήματα συνήθως απαιτούν λειτουργίες ομαδοποίησης των δε-
δομένων ως προς κάποια κατηγορικά πεδία και τον υπολογισμό στατιστικών τιμών για

κάθε ομάδα. Παράλληλα, τα κατηγορικά πεδία χρησιμοποιούνται συχνά και για το φιλ-
τράρισμα των δεδομένων. Αυτές οι λειτουργίες έχουν βελτιστοποιηθεί σε παραδοσιακά
συστήματα, όπως για παράδειγμα σε αποθήκες δεδομένων, αλλά απαιτούν τη φόρτωση
των δεδομένων και τη δημιουργία κατάλληλων ευρετηρίων ή τον προϋπολογισμό όψεων

των δεδομένων (π.χ. μοντέλο κύβου) για την γρηγορότερη αποτίμηση τους. ΄Ομως, το
in-situ σενάριο στο οποίο εστιάζει η διατριβή, αποσκοπεί στην αποφυγή του επιπλέον
κόστους μετακίνησης και ευρετηρίασης δεδομένων σε ένα σύστημα διαχείρισης βάσεων

δεδομένων και στη βελτίωση της απόδοσης μέσω της σταδιακής προσαρμογής ενός

ευρετηρίου στη μνήμη κατά τη διάρκεια της εξερεύνησης των δεδομένων.

Το ευρετήριοVALINOR, αν και αποτελεσματικό για δισδιάστατα σενάρια εξερεύνησης,
αντιμετωπίζει δυσκολίες στην εκτέλεση ενεργειών εξερεύνησης που περιλαμβάνουν

κατηγορικά πεδία. Για το σκοπό αυτό, προτείνουμε ένα νέο σχήμα ευρετηρίασης, το ευ-
ρετήριο VETI, που σχεδιάστηκε για την αποτελεσματική εκτέλεση τέτοιων ενεργειών.
Αυτό το ευρετήριο επεκτείνει το VALINOR με μια δενδρική δομή για το χειρισμό κατη-
γορικών τιμών, καθιστώντας το κατάλληλο για σενάρια εξερεύνησης που συνδυάζουν
τη δισδιάστατη οπτική εξερεύνηση, μαζί με τη διανέργεια επιπλέον ανάλυσης με βάση
τα κατηγορικά πεδία, όπως η δημιουργία γραφημάτων.

Η δομή CET που επεκτείνει το VALINOR, οργανώνει τα αντικείμενα με βάση
τα κατηγορικά πεδία, με κάθε επίπεδο να αντιστοιχεί σε διαφορετικό πεδίο. Κάθε
κόμβος συσχετίζεται με μια ακολουθία τιμών για τα πεδία αυτά που καθορίζεται από

132

το μονοπάτι από τη ρίζα μέχρι εκείνο τον κόμβο. Τα αντικείμενα περιέχονται στα φύλλα
του δέντρου. Τα φύλλα περιλαμβάνουν επίσης μεταδεδομένα σύνοψης - αριθμητικές
τιμές που υπολογίζονται πάνω σε αριθμητικά πεδία των δεδομένων. Ο αριθμός των
κόμβων σε ένα δέντρο CET εξαρτάται από την αντιστοίχιση των πεδίων στα επίπεδα
του δέντρου και το αριθμό των διαφορετικών τιμών που αυτά μπορούν να πάρουν. Για
το λόγο αυτό, τα πεδία με μικρότερο αριθμό τιμών τοποθετούνται πιο κοντά στη ρίζα,
μειώνοντας τον αριθμό των κόμβων και των ακμών στο δέντρο.

Χρησιμοποιώντας τη δομή αυτή, παρουσιάζουμε το σχήμα ευρετηρίασης VETI,
το οποίο συνδυάζει την δομή πλακιδίων του VALINOR με τη δομή δέντρου CET
για την υποστήριξη αποτελεσματικών λειτουργιών τόσο στον δισδιάστατο χώρο όσο

και σε κατηγορικά πεδία. ΄Ενα πλακίδιο μπορεί να συσχετίζεται με ένα δέντρο CET
που οργανώνει τα αντικείμενα με βάση ένα υποσύνολο κατηγορικών πεδίων. Διάφορα
πλακίδια μπορεί να οργανώνουν αντικείμενα με βάση διαφορετικά σύνολα πεδίων, ενώ
δεν είναι απαραίτητο όλα τα πλακίδια να έχουν ένα CET δέντρο.

΄Οπως και με το VALINOR, με το πρώτο ερώτημα του χρήστη, δημιουργείται αρχικά
μια πιο ελαφριά έκδοση του VETI. Αυτή η έκδοση έχει σχεδιαστεί για να βελτιώσει την
απόδοση των αρχικών αλληλεπιδράσεων του χρήστη χωρίς τη σημαντική άυξηση του

χρόνου μέχρι την αρχική ανάλυση των δεδομένων. Η φάση αρχικοποίησης περιλαμβάνει
τον καθορισμό των χαρακτηριστικών της δομής των πλακιδίων και των δέντρων τους,
την ανάγνωση του αρχείου και την αντιστοίχιση των αντικειμένων στα πλακίδια και

στα φύλλα των CET δέντρων. Η πολιτική αρχικοποίησης που χρησιμοποιείται στο
VETI, λαμβάνει υπόψη το σημείο εισόδου της εξερεύνησης του χρήστη, το μέγεθος
του παραθύρου του πρώτου ερωτήματος και τα κατηγορικά πεδία που περιλαμβάνονται

στο πρώτο ερώτημα. Αυτή η πολιτική οδηγεί σε μια δομή πλακιδίων που είναι πιο
λεπτομερής κοντά στο αρχικό ερώτημα και πιο αδρή όσο μεγαλώνει η απόσταση από

αυτό.

Μετά την αρχικοποίηση του VETI, επόμενα ερωτήματα αποτιμώνται σε αυτό. Η
εκτέλεση ενός ερωτήματος περιλαμβάνει αρκετά βήματα: εύρεση και προσαρμογή των
επικαλυπτόμενων πλακιδίων και δέντρων, καθορισμός των αντικειμένων που απαιτούν
πρόσβαση στο αρχείο, ανάγνωση των πεδίων των αντικειμένων από το αρχείο που δεν
περιλαβμάνονται στα δέντρα, προσαρμογή των δέντρων, ενημέρωση των μεταδεδομένων
και αποτίμηση του ερωτήματος. Το μοντέλο σταδιακής προσαρμογής του ευρετηρίου
στο VETI αποσκοπεί στην προσαρμογή της δομής του ευρετηρίου στα ερωτήματα του
χρήστη. Παράλληλα με τη διαίρεση των πλακιδίων, πραγματοποιείται και αναδιοργάν-
ωση των αντικειμένων στα δέντρα τους, με την προσθήκη κατηγορικών πεδίων που
ζητούνται στο τρέχον ερώτημα αλλά δεν υπάρχουν στα δέντρα.

Μια σημαντική πρόκληση όσον αφορά στην ευρετηρίαση κατηγορικών πεδίων στο

πλαίσιο in-situ οπτικής εξερεύνησης, είναι οι αυξημένες απαιτήσεις σε μνήμη. Λαμ-
βάνοντας υπόψιν τους περιορισμούς μνήμης που αντιμετωπίζουμε στο σενάριο που

εξετάζουμε, ένα σημαντικό θέμα είναι ο προσδιορισμός των δέντρων CET που θα
ανατεθούν σε κάθε πλακίδιο του ευρετηρίου. Ο στόχος είναι να προσδιορίσουμε τις
δομές των δέντρων και να τα αναθέσουμε στα πλακίδια με βάση τη χρησιμότητά τους,
λαμβάνοντας υπόψη τη διαθέσιμη μνήμη. Η χρησιμότητα (utility) του πλακιδίου αν-
τιπροσωπεύει την πιθανότητα επικάλυψης του από μελλοντικό ερώτημα, ενώ ο βαθμός
χρησιμότητας ενός κατηγορικού πεδίου αντιπροσωπεύει την πιθανότητα ζήτησης του

συγκεκριμένου πεδίου από ένα μελλοντικό ερώτημα. Ο βαθμός χρησιμότητας ενός
CET δέντρου καθορίζεται από το άθροισμα των επιμέρους βαθμών χρησιμότητας των
πεδίων που περιλαμβάνονται σε αυτό. Ορίζουμε επίσης το βαθμό χρησιμότητας μιας

133

ανάθεσης ενός δέντρου σε ένα πλακίδιο ως το συνδυαστικό βαθμό χρησιμότητας του

πλακιδίου και του δέντρου. Το πρόβλημα αρχικοποίησης (SIN) περιλαμβάνει την ανά-
θεση δέντρων σε πλακίδια βάσει του βαθμού χρησιμότητάς τους.

Ο στόχος είναι να μεγιστοποιηθεί ο συνολικός βαθμός χρησιμότητας του ευρετηρίου,
που είναι το άθροισμα των βαθμών χρησιμότητας όλων των αναθέσεων πλακιδίου-
δέντρου, χωρίς το κόστος αρχικοποίησης να ξεπερνά τη διαθέσιμη μνήμη. Το κόστος
αυτό, περιλαμβάνει τόσο τη μνήμη που απαιτεί η κατασκευή των πλακιδίων, όσο και
αυτή για την κατασκευή των δέντρων. Η βέλτιστη λύση του προβλήματος SIN περιλαμ-
βάνει την εξέταση των βαθμών χρησιμότητας όλων των πιθανών αναθέσεων δέντρων

στα πλακίδια και την επιλογή του συνόλου αναθέσεων που μεγιστοποιεί τη συνο-

λική χρησιμότητα, διασφαλίζοντας ότι το κόστος αρχικοποίησης του ευρετηρίου είναι
μικρότερο από τον προϋπολογισμό της μνήμης. Αυτό απαιτεί την εξέταση ενός μεγάλου
αριθμού αναθέσεων πλακιδίου-δέντρου, και μπορεί να αποδειχθεί ότι το πρόβλημα είναι
NP-δύσκολο.

Για την αποτελεσματική λύση του προβλήματος, προτείνουμε δυο προσεγγιστικούς
αλγόριθμους. Αρχικά, για τη μείωση του χώρου αναζήτησης, προσδιορίζεται ένα υπ-
οσύνολο από τα πιθανά δέντρα, που ονομάζονται υποψήφια δέντρα. Για τον προσδιορ-
ισμών των υποψήφιων δέντρων, τα κατηγορικά πεδία ταξινομούνται βάσει ενός βαθμού
κέρδους που συνδυάζει το βαθμό χρησιμότητας του γνωρίσματος και το κόστος μνήμης

του. Το σύνολο των υποψήφιων δέντρων αποτελείται από δέντρα που περιλαμβάνουν
σταδιακά περισσότερα πεδία από την ταξινομημένη λίστα. Επιλέγοντας μόνο τα υποψή-
φια δέντρα, μειώνουμε σημαντικά τον αριθμό των αναθέσεων δέντρου που πρέπει να
εξεταστούν. Παράλληλα, εκτιμούμε το κόστος μνήμης για κάθε ανάθεση πλακιδίου-
δέντρου βάσει του μέγιστου αριθμού κόμβων που μπορεί να έχει ένα δέντρο. Αυτή
η εκτίμηση βοηθά στη διαχείριση της διαθέσιμης μνήμης κατά τη διαδικασία επιλογής

των αναθέσεων.

Ο πρώτος αλγόριθμος που προτείνεται, που ονομάζεται GRD, βρίσκει αναθέσεις
πλακιδίου-δέντρου υπολογίζοντας το βαθμό χρησιμότητας για κάθε υποψήφια ανάθεση
και επιλέγοντας τις αναθέσεις με το μεγαλύτερο βαθμό χρησιμότητας των οποίων το

συνολικό εκτιμώμενο κόστος είναι μικρότερο από τον προϋπολογισμένο. Από την άλλη,
ο 2ος προσεγγιστικός αλγόριθμος, που ονομάζεται αλγόριθμος ανάθεσης πλακιδίου-
δέντρου βασισμένος σε ομαδοποίηση (binning), οργανώνει τα πλακίδια σε ομάδες και
αναθέτει το ίδιο υποψήφιο δέντρο σε κάθε πλακίδιο μιας ομάδας. Ο αλγόριθμος BINN
εξασφαλίζει μια πιο ισορροπημένη κατανομή της διαθέσιμης μνήμης και οδηγεί σε βελτι-

ωμένη απόδοση σε σύγκριση με τον αλγόριθμο GRD. Στην προσέγγιση αυτή, τα
πλακίδια ομαδοποιούνται με βάση διαστήματα πιθανοτήτων ή άλλους σχετικούς παρά-

γοντες, και ξεκινώντας με τις ομάδες με μεγαλύτερο βαθμό χρησιμότητας, ανατίθεται
ένα δέντρο με τα ίδια κατηγορικά πεδία σε όλα τα πλακίδια κάθε ομάδας, λαμβάνοντας
υπόψιν τη διαθέσιμη μνήμη. Ο αλγόριθμος BINN επιτυγχάνει ταχύτερη επεξεργασία
και απαιτεί λιγότερες αναγνώσεις αντικειμένων από το αρχείο σε σύγκριση με τον

αλγόριθμο GRD.

Για την πειραματική αξιολόγηση του VETI στην αποτίμηση ερωτημάτων που περ-
ιλαμβάνουν κατηγορικά πεδία, εξετάσαμε την απόδοση του σε σχέση τόσο με το
VALINOR, όσο και με ανταγωνιστές, όπως ένα παραδοσιακό ΣΔΒΔ και το σύστημα
PostgresRaw για αφορά σε ένα σύστημα βασισμένο στην PostgreSQL για την αποδοτικότερη
εκτέλεση ερωτημάτων απ’ευθείας σε πρωτογενή αρχεία δεδομένων. Το VETI επι-
δεικνύει χρόνους απόκρισης μικρότερους των 0,04 δευτερολέπτων στα περισσότερα
ερωτήματα, ακόμα και κατά την επεξεργασία μεγάλων αρχείων έως και 45GB. Σε

134

σύγκριση με τα πιο αποδοτικά ανταγωνιστικά συστήματα, το VETI επιτυγχάνει βελτιώ-
σεις των χρόνων απόκρισης έως και 100 φορές και απαιτεί έως και δύο τάξεις μικρότερο
αριθμό λειτουργιών Ε/Ε.

Παράλληλα, αξιολογήθηκαν οι αλγόριθμοι αρχικοποίησης που προτείνονται, με τον
αλγόριθμο BINN να υπερτερεί γενικά από το GRD. Συγκεκριμένα, η αρχικοποίηση
με τον αλγόριθμο BINN βελτιώνει την αποτίμηση των ερωτημάτων και είναι περισ-
σότερο από 1,5 φορές γρηγορότερη σε σύγκριση με την αρχικοποίηση με το GRD.
Ειδικότερα, ο BINN επιδεικνύει εξαιρετική απόδοση όταν ο χρήστης εξερευνά περιο-
χές που βρίσκονται πιο μακριά από το αρχικό ερώτημα ή όταν η διαθέσιμη μνήμη για το

ευρετήριο είναι πολύ περιορισμένη. Συνολικά, η πειραματική αξιολόγηση υπογραμμίζει
την υπερισχύουσα απόδοση του VETI, ειδικά όταν χρησιμοποιείται η αρχικοποίηση με
χρήση του αλγορίθμου BINN.

A.2.4 Το σύστημα RawVis

Το μοντέλο οπτικής εξερεύνησης και οι τεχνικές ευρετηρίασης που παρουσιάζονται

στο πλαίσιο της διατριβής, αποτελούν τη βάση του συστήματος RawVis, επιτρέπον-
τας την αποτελεσματική ανάλυση των δεδομένων χωρίς την απαίτηση για χρονοβόρα

προεπεξεργασία τους, όπως η φόρτωση και η ευρετηρίαση τους σε ένα ΣΔΒΔ. Το
RawVis ακολουθεί μια αρχιτεκτονική πελάτη-διακομιστή και παρέχει τη δυνατότητα
για οπτική εξερεύνηση δεδομένων απευθείας από τα πρωτογενή αρχεία, περιλαμβάνον-
τας μια πλούσια διεπαφή χρήστη και μια ευρεία γκάμα επιλογών για οπτικοποίηση κι

εξερεύνηση. Το back-end του RawVis είναι υπεύθυνο για τη δημιουργία και διαχείριση
των ευρετηρίων για την οπτική ανάλυση των πρωτογενών αρχείων. Παράλληλα, μετα-
τρέπει τις αλληλεπιδράσεις του χρήστη σε λειτουργίες αποτίμησης των ερωτημάτων

στα ευρετήρια και σε λειτουργίες Ε/Ε στα αρχεία δεδομένων. Με βάση τα ερωτήματα
αυτά, τα ευρετήρια που δημιουργούνται προσαρμόζονται σταδιακά βελτιώνοντας την
εκτέλεση των ερωτημάτων του χρήστη.

Η διεπαφή χρήστη επιτρέπει στο χρήστη να επιλέξει το αρχείο δεδομένων που

επιθυμεί να εξερευνήσει, και παρουσιάζει μια χαρτογραφική αναπαράσταση των αν-
τικειμένων του αρχείου για διαδραστική εξερεύνηση με λειτουργίες όπως μετακίνηση

της περιοχής που εμφανίζεται (pan), μεγέθυνση ή σμίκρυνση (zoom-in/out), φιλ-
τράρισμα, παραγωγή στατιστικών και ανάλυση των δεδομένων με δημιουργία γραφη-
μάτων. Το εργαλείο υλοποιήθηκε χρησιμοποιώντας εργαλεία και βιβλιοθήκες ανοικτού
κώδικα και είναι διαθέσιμο ως ανοιχτό λογισμικό.

Για την αξιολόγηση του συστήματος RawVis, πραγματοποιήσαμε μια μελέτη χρήστη
που περιλάμβανε δύο εργασίες που σχετίζονταν με ένα σενάριο όπου οι συμμετέχοντες

ανέλυαν δεδομένα από ξενοδοχεία. Τα αποτελέσματα της αξιολόγησης ήταν αρκετά εν-
θαρρυντικά, και η πλειονότητα θεώρησε το εργαλείο αποδοτικό και εύκολο στη χρήση,
ενώ έγιναν προτάσεις για μελλοντική βελτίωση του, ειδικά όσον αφορά στη διεπαφή
χρήστη.

A.3 Συνεισφορές της Διατριβής

Η παρούσα διατριβή είχε ως στόχο την αντιμετώπιση των προκλήσεων της επεξερ-

γασίας ερωτημάτων in-situ και της διαδραστικής οπτικής ανάλυσης μεγάλων αρχείων
δεδομένων. Οι συνεισφορές της παρούσας έρευνας περιλαμβάνουν:

135

− Αποδοτική αποτίμηση των ενεργειών του χρήστη: Αυτή η διατριβή
πρότεινε τις δομές ευρετηρίασης VALINOR, CET και VETI για την υποστήριξη
της διαδραστικής οπτικής εξερεύνησης απευθείας πάνω σε μεγάλα αρχεία πρω-

τογενών δεδομένων, χωρίς την απαίτηση για φόρτωση και ευρετηρίαση τους σε
ένα παραδοσιακό ΣΔΒΔ.

− Ελαχιστοποίηση αρχικοποίησης ανάλυσης: Αναπτύχθηκαν μέθοδοι
αρχικοποίησης των ευρετηρίων VALINOR και VETI βάσει του πρώτου ερωτήμα-
τος του χρήστη. Το ευρετήριο κατασκευάζεται δυναμικά, εξασφαλίζοντας μικρό
χρόνο από την εισαγωγή των δεδομένων έως την ανάλυση, ακόμη και για πολύ
μεγάλα σύνολα δεδομένων.

− Ελαχιστοποίηση κόστους ανάγνωσης από το αρχείο: Ο σχεδιασμός
των σχημάτων ευρετηρίασης, μαζί με την αποδοτική χρήση των μεταδεδομένων,
επέτρεψε τη μείωση των λειτουργιών I/O και των χρόνων απόκρισης του χρήστη.
Αυτά τα μέτρα εξασφάλισαν αποτελεσματική ανάλυση αρχείων και μείωση της

πρόσβασης στο αρχείο.

− Βελτιστοποίηση Χρήσης Μνήμης: Εφαρμόστηκε μια προσέγγιση που
λαμβάνει υπόψη τους περιορισμούς της μνήμης για την κατασκευή του ευρετηρίου,
η οποία διατυπώθηκε ως πρόβλημα βελτιστοποίησης. Παρέχονται δύο προσεγ-
γιστικοί αλγόριθμοι για την επίλυσή του, επιτρέποντας τη βελτιστοποίηση του
ευρετηρίου εντός ενός προκαθορισμένου μεγέθους μνήμης.

− Προσαρμογή στις ενέργειες του χρήστη: Σχεδιάστηκαν τεχνικές προσαρ-
μογής βάσει των αλληλεπιδράσεων του χρήστη που προοδευτικά προσαρμόζουν

τη δομή του ευρετηρίου και τα μεταδεδομένα.

− Σύστημα RawVis: Η παρούσα έρευνα οδήγησε στην ανάπτυξη του εργαλείου
οπτικοποίησης RawVis, το οποίο υλοποιεί τις προτεινόμενες μεθόδους. Αυτό το
σύστημα επιτρέπει στους χρήστες να πραγματοποιούν οπτική εξερεύνηση και ανα-

λυτικές λειτουργίες σε μεγάλα αρχεία δεδομένων με χαμηλούς χρόνους απόκρ-

ισης..

Συνολικά, αυτές οι συνεισφορές επεκτείνουν την κατανόησή μας για το πως μπορούμε
να παρέχουμε αποδοτικής in-situ οπτικής εξερεύνησης και ανάλυσης μεγάλων αρχείων
δεδομένων, παρέχοντας πρακτικά εργαλεία και τεχνικές για την κοινότητα των επιστη-
μόνων δεδομένων.

136

Appendix B

Glossary

Γλωσσάρι

Αγγλικός ΄Ορος Μετάφραση

adaptive indexing προσαρμοστική ευρετηρίαση

aggregate function συνάρτηση συσσώρευσης

aggregate statistics συγκεντρωτικές στατιστικές

approximation algorithm προσεγγιστικός αλγόριθμος

bar chart γράφημα με ράβδους

big data μεγάλα δεδομένα

binning ομαδοποίηση

bivariate statistics διμεταβλητές στατιστικές

categorical attributes κατηγορικά πεδία

chart γράφημα

complexity πολυπλοκότητα

data exploration εξερεύνηση δεδομένων

data object αντικείμενο δεδομένων

dataset σύνολο δεδομένων

Database Management System
(DBMS)

Σύστημα Διαχείρισης Βάσεων Δεδομένων (ΣΔΒΔ)

dimension διάσταση

distributed system κατανεμημένο σύστημα

domain πεδίο τιμών

exploratory data analysis εξερευνητική ανάλυση δεδομένων

exploratory query ερώτημα εξερεύνησης

file offset θέση στο αρχείο

greedy algorithm άπληστος αλγόριθμος

group-by operation λειτουργία ομαδοποίησης

heatmap θερμικός χάρτης

I/O operations λειτουργίες εισόδου/εξόδου
in-situ query processing επεξεργασία ερωτημάτων απευθείας στα αρχεία δε-

δομένων

incremental index adaptation σταδιακή προσαρμογή ευρετηρίου

index ευρετήριο

137

leaf φύλλο

metadata μεταδεδομένα

multi-dimensional indexing πολυδιάστατη ευρετηρίαση

node κόμβος

NP-hard NP-δύσκολο
optimization problem πρόβλημα βελτιστοποίησης

query ερώτημα

raw data file αρχείο πρωτογενών δεδομένων

scatter plot γράφημα διασποράς

spatial index χωρικό ευρετήριο

tile πλακίδιο

tile splitting διαίρεση πλακιδίων

user interface διεπαφή χρήστη

user interaction αλληλεπίδραση χρήστη

utility χρησιμότητα

visual analysis οπτική ανάλυση

visual exploration οπτική εξερεύνηση

138

	Introduction
	Background and Motivation
	The Challenges of Efficient In-Situ Visual Exploration and Analytics
	Research Objectives
	In-Situ Visual Exploration: Our Working Scenario
	Thesis Outline

	Related Work
	Introduction
	In-situ Query Processing
	Exploratory Data Analysis
	Adaptive Indexing
	Multi-dimensional Indexing
	Visual Exploration
	Progressive Visualization
	Visualization Recommendation

	Data Structures & Indexing for Visual Data Exploration
	Summary

	Visual Exploration Model
	Introduction
	Basic Concepts
	Visual Exploration Model
	Exploratory Query
	Summary

	Indexing for Efficient 2D Visual Exploration
	Introduction
	VALINOR Design
	Design Principles
	Core Elements of the VALINOR Index
	VALINOR Index Definition
	Tiles-Query Spatial Relations
	Implementation Details and Practical Considerations
	Grid or R-Tree?

	Query Processing over the VALINOR Index
	Index Initialization & First Query Evaluation
	Query Processing Overview
	Selection Clause Evaluation
	Determining the Tiles that Require File Access
	Incremental Index Adaptation
	File Access
	Aggregate Metadata Management
	Filter, Details & Analysis clauses Evaluation

	Advanced Methods for Index Management – Initialization & Adaptation
	Query-driven Index Initialization
	Query-driven Index Adaptation
	Splitting Model Analysis

	Operating VALINOR Index under Memory Constraints
	Preliminaries
	Eviction During Query Processing
	Eviction during the Initialization Phase

	Experimental Analysis
	Experimental Setup
	Results

	Summary

	Indexing for Visual Exploration over Categorical Attributes
	Introduction
	CET Tree: An Index for Categorical Attributes
	Design Principles
	CET Structure
	CET Operations
	Tree Space Analysis
	Attributes Ordering vs. Tree Space

	VETI: A Tile-Tree Adaptive Index
	VETI: Combining Tiles and Trees
	VETI Initialization

	Query Processing & Index Adaptation
	Query Processing
	Incremental Index Adaptation

	Resource-aware Index Initialization
	Preliminaries
	Problem Definition & Analysis

	SIN Algorithms
	Preliminaries
	Greedy Tile-Tree Assignments Algorithm (GRD)
	Binning-Based Tile-Tree Assignment Algorithm (BINN)

	Experimental Analysis
	Results Highlights
	Experimental Setup
	Performance
	VETI Variations
	Effect of the Data Characteristics

	Summary

	The RawVis Framework
	Introduction
	System Overview
	Implementation Details.

	RawVis User Interface
	UI Panels
	UI Features

	User Study
	Setup
	Tasks Specification
	Evaluation Scenario and Tasks
	Tasks
	Results

	Summary

	Conclusions and Future Work
	Research Contributions
	Future Work

	Extended Greek Abstract
	
	 ß
	
	
	
	 µ RawVis

	 ß

	Glossary

