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Περίληψη 

Η βαθιά μάθηση έχει αναδειχθεί ως ένα ισχυρό εργαλείο στην εποχή της 

πληροφορίας, αντιμετωπίζοντας πολύπλοκες προκλήσεις σε διάφορους 

ερευνητικούς τομείς. Η παρούσα εργασία επικεντρώνεται στην εφαρμογή τεχνικών 

βαθιάς μάθησης για την αποκωδικοποίηση του μηχανισμού δράσης επιλεγμένων 

φαρμάκων χρησιμοποιώντας βιολογικά σηματοδοτικά δίκτυα. Στα πλαίσια αυτής 

αναπτύχθηκε ένας αλγόριθμος που εντοπίζει σημαντικά υπο-δίκτυα μέσα στα 

δίκτυα σήμανσης που προκαλούνται από τα συστατικά των φαρμάκων. Με τη 

χρήση ενός μοντέλου βαθιάς μάθησης για γράφους, που ονομάζεται deepSNEM, 

μετασχηματίσαμε τα δίκτυα σήμανσης που προκαλούνται από τα συστατικά των 

φαρμάκων σε υψηλής διάστασης αναπαραστάσεις και στην συνέχεια εντοπίσαμε 

διακριτές ομάδες αυτών που εμπλουτίζονται σημαντικά με συγκεκριμένους 

αναστολείς (mTOR, τοποϊσομεράση, HDAC και αναστολείς σύνθεσης πρωτεΐνης). 

Επιπλέον, η μεθοδολογία που αναπτύχθηκε περιλαμβάνει μια ανάλυση σημασίας 

υπο-δικτύων, αποκαλύπτοντας κρίσιμους κόμβους και υπο-δίκτυα που σχετίζονται 

άμεσα με τους πιο κυρίαρχους μηχανισμούς δράσης μέσα στην κάθε ομάδα. Αυτή η 

ανάλυση παρέχει ένα πλαίσιο για την κατανόηση της σημασίας των μεμονωμένων 

πρωτεϊνών στο μονοπάτι. Για να αποδείξουμε την πρακτική χρησιμότητα της 

προσέγγισής αυτής, το μοντέλο deepSNEM και η ανάλυση σημασίας υπο-δικτύων 

εφαρμόστηκε χρησιμοποιώντας προφίλ έκφρασης των γονιδίων των συστατικών 

των φαρμάκων από διάφορες πειραματικές πλατφόρμες, συμπεριλαμβανομένων 

των MicroArrays και της ακολουθιακής ανάλυσης RNA. Τα αποτελέσματα δείχνουν 

τη δυνατότητα δημιουργίας ακριβών υποθέσεων σχετικά με τους μηχανισμούς 

δράσης αυτών των συστατικών. Συνολικά, η έρευνα αυτή προσφέρει μια προηγμένη 

μεθοδολογία που συνδυάζει τεχνικές βαθιάς μάθησης με δεδομένα σηματοδοτικών 

δικτύων. Μέσω της ανάλυσης σημαντικών υπο-δικτύων, η μέθοδος που αναλύεται 

συντελεί στην αναγνώριση των μηχανισμών δράσης των φαρμάκων, παρέχοντας 

σημαντικές ενδείξεις για τις υποκείμενες διεργασίες που επηρεάζουν την επίδραση 

των συστατικών.  



Abstract 

Deep learning has emerged as a powerful tool in the era of Big Data, addressing 

complex challenges across various research domains. This thesis focuses on the 

application of deep learning techniques to unravel the mechanisms of action for 

selected drugs using biological signaling networks. We present a comprehensive 

pipeline that identifies significant sub-networks within compound-induced signaling 

networks. By employing an unsupervised graph deep learning pipeline called 

deepSNEM, we transform compound-induced signaling networks into high-

dimensional representations. Utilizing the deepSNEM embeddings and clustering 

with the k-means algorithm, distinct clusters enriched for specific inhibitors (mTOR, 

topoisomerase, HDAC, and protein synthesis inhibitors) are identified. Additionally, 

our pipeline incorporates a subgraph importance analysis, revealing critical nodes 

and subgraphs directly associated with the most prevalent mechanisms of action 

within each cluster. This analysis provides an interpretable framework for 

understanding the significance of individual proteins in the pathway. To demonstrate 

the practical utility of our approach, we apply deepSNEM and the subgraph 

importance pipeline to compounds' gene expression profiles from various 

experimental platforms. The results indicate that accurate hypotheses can be 

generated regarding the mechanisms of action for these compounds. In summary, 

our research offers an advanced methodology that combines deep learning 

techniques with signaling pathway data. By analyzing important signaling sub-

networks, our pipeline contributes to the identification of drug mechanisms of 

action, providing valuable insights into the underlying processes driving compound 

effects. 
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1 Introduction 

1.1 Biology 

1.1.1 Systems Biology 

Systems biology is an integrative discipline connecting the molecular components  within a 

single biological scale and also among different scales (e.g. cells, tissues and organ systems) to 

physiological functions and organismal phenotypes through quantitative reasoning, 

computational models and high-throughput experimental technologies. The modeling and the 

revelation of the possible links between their components come with the potential of new 

discoveries regarding drugs, treatments and diseases’ biological profiles.  

Systems biology uses a wide range of quantitative experimental and computational 

methodologies to decode information flow from genes, proteins and other subcellular 

components of signaling, regulatory and functional pathways to control cell, tissue, organ and 

organismal level functions [1]. 

1.1.2 DNA 

DNA, or deoxyribonucleic acid is the central information storage system of most organisms 

including a portion of viruses. The complete set of information in an organism's DNA is called 

its genome, and it carries the information for all the proteins the organism will ever 

synthesize. The information included in it is stored as a code consisting of four chemical 

bases. These bases are adenine (A), guanine (G), cytosine (C) and thymine (T). Human DNA is 

made up of approximately three billion bases. The way that these bases are ordered and their  

sequence determines the information which are at the cell’s disposal for the survival of the 

organism. Each base A, C, T, or G can be considered as a letter in a four-letter alphabet that 

spells out biological messages in the chemical structure of the DNA . DNA’s bases pair in a 

specified way. Adenine pairs with thymine and cytosine pairs with guanine forming some 

units that are known as the base pairs. All the bases are also attached to a phosphate 

molecule and a sugar molecule. These three compounds together form the nucleotide. The 

nucleotides form two long strands and these in their turn coil around each other held by 

hydrogen bonds and form a double helix. The base pairs are the linking parts of the helix’s 

vertical sides. These sides are composed by the sugar and the phosphate molecules that were 

previously mentioned [2].  

The DNA structure is presented below. 



 

Figure 1.1: DNA structure, U.S. National Library of Medicine 

1.1.3 RNA 

RNA, or ribonucleic acid, is one of the three major biological macromolecules that are 

essential for all known forms of life, with the remaining two being DNA and proteins. RNA is a 

nucleic acid similar in terms of structure and properties to DNA, but it consists of only one 

strand of bases. The nucleotides in RNA are ribonucleotides which means they contain the 

sugar ribose (hence the name ribonucleic acid) rather than deoxyribose. Moreover, its bases 

are the same with DNA’s, except from one. Instead of the base thymine (T), RNA has another 

base called uracil (U). So, RNA’s bases are adenine (A), guanine (G), cytosine (C) and uracil (U). 

There are many types of RNA, but the three most significant and well -known are the 

messenger RNA (mRNA), the transfer RNA (tRNA) and the ribosomal RNA (rRNA). One of the 

molecules that are useful for the explanation of gene expression process is the messenger 

RNA. The mRNA is a molecule in cells that carries codes from the DNA that is present in the 

cell’s nucleus to the sites where protein synthesis takes place, in the cytoplasm (mainly 

ribosomes). The other molecule that is present in the processes is the transfer RNA (tRNA). 

This is a small molecule in cells which carries amino acids to ribosomes, where they are linked 

to form proteins [2].  

With DNA and RNA defined, one can proceed to the explanation of the processes which 

compose the gene expression.  

1.1.4 Gene Expression 

In general, with the term gene expression (GEx) we refer to the natural process in which the 

aforementioned information that is stored inside the DNA is converted into functional 



products like proteins or different types of RNA. The process of gene expression is being 

deployed by two basic operations, transcription and translation. 

 

Figure 1.2: The process of transcription (Image Credit: Genome Research Limited) 

The first step a cell takes in reading out a needed part of its genetic instructions is to copy a 

particular portion of its DNA nucleotide sequence -a gene- into an RNA nucleotide sequence. 

The information in RNA, although copied into another chemical form, is still written in 

essentially the same language as it is in DNA – the language of a nucleotide sequence. Hence 

the name transcription. RNA in the cell is completely created by DNA transcription, which 

begins by opening and unwinding of a small portion of the DNA double helix to expose the 

bases on each DNA strand. One of the two strands of the DNA double helix then acts as a 

template for the synthesis of an RNA molecule. The enzymes that perform transcription are 

called RNA polymerases and the transcript is called messenger RNA (mRNA).  

 

Figure 1.2: The process of transcription (Image Credit: Genome Research Limited) 



The second process, translation, occurs when the aforementioned messenger RNA has carried 

the transcribed the needed information from the DNA to the cells' ribosomes, in which 

proteins are being created. The translation of mRNA into protein  depends on adaptor 

molecules that can recognize and bind both to the codon (three letters) and, at another site 

on their surface, to the amino acid. These adaptors consist of a set of small RNA molecules 

known as transfer RNAs (tRNAs), each about 80 nucleotides in length. Once the tRNA is 

bound, it releases its amino acid and the adjacent amino acids all join together into a long 

chain called a polypeptide, continuing the process above until the protein is formed.[2] 

1.1.5 Proteins 

Proteins are by far one of the most chemically complex and functionally sophisticated 

molecules known so far. A protein molecule is made from a long chain of amino acids (20 

different types of amino acids) each linked to its neighbor through a covalent peptide bond, 

thus the alternate name polypeptides. Each type of protein has a unique sequence of amino 

acids. 

 

Figure 1.3: Peptide bond [2] 

The biological properties of proteins depend entirely on their physical interaction with other 

molecules. For example, antibodies, Y shaped proteins that are produced by the immune 

system, bind to viruses or bacteria, actin molecules bind to each other to assemble into actin 

filaments, and so on. The substance that is bound by the protein is called a ligand. The region 

of a protein that associates with a ligand, known as the ligand's binding site, usually consists 

of a cavity in the protein surface formed by a particular arrangement of amino acids  [2]. 

1.1.6 Transcription Factors 

Transcription factors or sequence-specific DNA-binding factors are proteins that control the 

rate of transcription of the genetic information included in the DNA to messenger RNA 



(mRNA) [3]. In fact, transcription factors are proteins that help turn specific genes “on” or 

“off” by binding to nearby DNA. The transcription factors can be either activators, in case they 

boost a gene’s transcription, or repressors, in case they decrease a gene’s transcription. 

Moreover, groups of transcription factor binding sites that are called enhancers and silencers 

can turn a gene on or off in specific parts of the body. The most significant property of the 

transcription factors is that they allow cells to perform logic operations and in fact combine 

different sources of information to determine whether a gene will be expressed or not. As 

mentioned before, at the Transcription process analysis, RNA polymerase has to attach to the 

DNA of a gene in order to make an RNA molecule. While in some organisms this process 

doesn’t require anything else, in humans and other eukaryotes, an extra step exists. In these 

cases, the transcription can happen only with the help of some proteins called basal (general) 

transcription factors. These proteins are part of the cell’s core transcription tools and are 

crucial for the transcription of any gene.  

1.1.7 Signaling Networks 

One of the most important issues in biology is the study of the various interactions between 

cellular molecules which determine their biological properties. Such interaction networks are 

usually classified according to the type of the molecules involved, these usually being genes 

or proteins. Networks that involve cell signaling, i.e. the response of a cell to internal and 

external stimuli (chemical or even of mechanical and electrical nature) and coordinate the 

regulation of its activity are called Signaling Networks. 



 

Figure 1.4: An example signaling network 

Individual pathways transmit signals along linear tracts resulting in regulation of discrete cell 

functions. This type of information transfer is an important part of the cellular repertoire of 

regulatory mechanisms. Inside the cell, there exists a particular family of proteins called 

receptors that bind to signaling molecules and initiate an initial response. Such signaling 

molecules include Hormones which are the major signaling molecules of the endocrine 

system, Neurotransmitters, which are signaling molecules of the nervous system and 

Cytokines which are signaling molecules of the immune system. Essentially, carrying out 

complex biological processes requires the cooperation of several cells along with their specific 

functions, by the process of cell signaling [4][5][6]. 

A possible malfunction of a signaling pathway may result to disease or even cancer. Signaling 

pathways provide a more structured form of genes. In contrast to gene expression that takes 

account of every gene separately, signaling pathways group together genes that take part in 

specific functions in the cell, thus providing a wider and more causal perspective to the gene 

expression topic. This method can be also considered as a higher biological level method, 

since it uses prior knowledge regarding the signaling pathways of the cell to derive the ones 

that are activated or deactivated under certain circumstances. 

 

 



1.1.8 Protein Networks 

Protein-protein interactions (PPIs) [7] are crucial to the majority of a cell’s processes. 

According to this, in order to gain knowledge and understanding of the cell’s processes, the 

study of PPIs is really important. Moreover, in a reverse way of thinking, one can use and 

analyze the activity in the PPI level to generate insights into the underlying processes of the 

cells. When the PPIs are linked, the protein-protein interaction networks (PPIN) are built. 

These are directed networks that visualize the way that the proteins interact with each other, 

which proteins are linked and as a result which is the effect of the proteins on the network. 

 

 

Figure 1.5: An example Protein-Protein network (PPI). 

 

Knowing the above mentioned PPIN and the gene expression or the transcription factor 

activity of an experiment, the protein network of a specific cell can be constructed, by 

combining these two characteristics. This network describes sufficiently the activity that takes 

place in the cell and is unique for every experiment, provided that the gene expression varies 

each time that an experiment is carried out under different circumstances. Thus, PPIN are a 

higher level biological attribute that is defined using a known PPI as a prior knowledge factor 

and the gene expression or the transcription factor activity of an experiment. This attribute 

includes some topological knowledge, based on the PPI, and also the biological experimental 

results. Their combination can lead to characteristic protein networks for the cells that are 

subjected to research each time. 

 



1.2 Artificial Intelligence – Machine Learning – Deep Learning 

Artificial Intelligence (AI) is an area of computer science that simulates the structures and 

operating principles of the human brain. Machine learning (ML) belongs to the area of AI and 

endeavors to develop models from exposure to training data. Deep Learning (DL) is another 

subset of AI, where models represent geometric transformations over many different layers. 

 

Figure 1.6: AI intra-relationships 

 

1.2.1 Neural Networks 

Deep Learning (DL) is a subfield within ML based on the use of different artificial neural 

network (ANN) algorithms that, through a sequence of layers with non-linear processing 

units, for modeling high-level abstractions contained in data. In DL architectures, each layer 

trains on a distinct set of features based on the previous layer’s output. The further you 

advance into the neural net, the more complex the features your nodes can recognize, since 

they aggregate and recombine features from the previous layer. For example, a DL algorithm 

predicting whether an image contains a face or not extracts features such as the first layer 

perceiving edges, the second layer perceiving shapes such as noses and eyes, and the final 

layer perceiving face shapes or more complex structures. This is known as feature hierarchy, 

and it is a hierarchy of increasing complexity and abstraction.  

Inspired by biological neural networks, the basic building block of ANNs are neurons which 

are essentially a form of mathematical entity that holds a real number. Each neuron accepts 

the value of previous connected neurons as input, and maps into a non-linear function, also 

called an activation function: 

𝑥𝑛𝑒𝑤 = 𝑠 ∙ (𝑤 ∙ 𝑥𝑝𝑟𝑒𝑣 + 𝑏) 



where 𝑤, 𝑏 are the trainable parameters of the node called weight and bias and s is the non -

linear activation function. Neurons, in their turn form layers a series of whom describes the 

basic architecture of a Feedforward Neural Network. In other words each neuron can be 

looked at as a processing unit and an interlinking of such neurons leads to massive computing 

power that can solve complex operations. 

 

 

Figure 1.7: An example Artificial Neural Network (ANN).  

 

A typical ANN consist of the input layer, the hidden layers and the output layer. Input, hidden 

and output layers can be linked in many fashions, which will have an impact on the 

performance of the network for different tasks. The final result of any input propagated 

through the network will depend on the pattern of connections in every layer, the functions 

controlling neuronal activation and the weights associated to each link between neurons. The 

architecture (pattern of connections) and the activation function play a critical role in the final 

result obtainable by the network; essentially they define the global model of the network, 

that has to be in line with the nature of the task to be performed. Neural networks are 

generally trained by optimizing the selected cost functions. These cost functions accept the 

networks output as well as the ground truth labels as input and are trained using optimization 

algorithms that revolve around Stochastic Gradient Descend (SGD).[8] 

When the number of hidden layers is more than two or three, for example hundreds, then 

that is known as deep neural network (DNN). 

 



1.2.2 Graph Deep Learning Models 

There have been many studies for the development of deep learning models for graph data in 

a variety of fields. These models are usually neural networks that aim to learn new task-

specific node and graph representations by using the graph’s connectivity [9].  

1.2.2.1 Graph Convolution Neural Networks 

Originally introduced by Kipf and Welling [10] Graph Convolutional Networks (GCNs) have 

become the starting point when working with graphs using neural networks. The main idea of 

the graph convolutional model can be described as the utilization of a message passing 

algorithm to learn neighborhood-level representations of the input graph. Recently, the 

successful transformer architecture for natural language processing (NLP) problems has been 

modified and applied on graph data [8,11]. 

In their simplest form, GCNs operate on undirected graphs 𝐺 = (𝑉, 𝐸) where 𝐺 is the graph 

and (𝑉, 𝐸)  describe the set of vertices and edges of the graph respectively. 

A simple propagation rule would be 

𝑓(𝐻(𝑙), 𝐴) = 𝜎(𝐴𝐻(𝑙)𝑊(𝑙)) 

when 𝑊(𝑙) is the weight matrix on layer i, 𝐴 is the adjacency matrix and 𝐻(𝑙) is the feature 

matrix of the graph nodes in layer i. Therefore, this process imitates the way typical 

Convolutional Neural Networks work, in the sense that a filter propagates around the graph, 

reading both the information of each node as well as aggregating the features of their 

neighborhood. 

1.2.2.2.Graph Transformer Networks 

Graph transformers utilize an attention mechanism for each node that is a function of the 

neighborhood’s connectivity, rather than a message passing algorithm.  

Created as an alternative to complex recurrent or convolutional neural networks, 

transformers (Vaswani et. al) follow a much simpler architecture but exhibit more powerful 

representations. The main structure makes use of the typical encoder - decoder architecture, 

bound together with an attention mechanism. It is important to explain the vanilla 

transformer to the reader, since the basic model used in this thesis belong to this family of 

neural network architectures. We will be focusing on the encoder part of the transformer and 

especially the attention mechanism as the modified variation we employ is inspired by them. 

The encoder is composed of a stack of N identical layers. Each layer has two sub-layers. The 

first is a multi-head self-attention mechanism, and the second is a simple, position-wise, fully 

connected feed-forward network. Each sublayer is also connected using residual connections 

[12]. 



 

Figure 1.8: Self-Attention Feed Forward Architecture 

In general, attention functions can be described as mapping a query and a set of key-value 

pairs to an output, where the query, keys, values, and output are all vectors. The output is 

computed as a weighted sum of the values, where the weight assigned to each value is 

computed by a compatibility function of the query with the corresponding key. 

Scaled Dot-Product Attention 

The attention mechanism between the queries, keys and values in the original paper is called 

scaled dot-product attention. In practice, for each graph we have the three 𝑄, 𝐾, 𝑉 matrices 

that correspond to the total query, key and value vectors of the graph's node features. The 

attention is calculated as: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 ∙ 𝐾𝑇

√𝑑𝐾

) 

 

where 
1

√𝑑𝐾
 is a scaling factor. Thus, nodes with features that are similar (due to their dot 

products) will be bound with a higher attention score between them than  dissimilar nodes. 

 

 



 
Figure 1.9: Scaled Dot-Product Attention [13]. 

 

Multi-Head Attention 

Instead of single dot-product attention on the whole feature vectors 𝑞, 𝑘, 𝑣 it was found that 

linearly projecting those vectors h times with different, learned linear projection was more 

beneficial. For example, if the dimensionality of the graph features 𝑑𝑚𝑜𝑑𝑒𝑙 was 1024 and we 

selected 4 heads, then we would end up with 4 triplets of 𝑄, 𝐾, 𝑉  matrices with 256 

dimensions, along with their corresponding weight matrices. In its general form, multi -head 

attention is described as: 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ) ∙ 𝑊0 

 

with each head corresponding to the previously calculated dot-product attention. 

 
Figure 1.10: Multi-Head Attention [13]. 

 



Vanilla Encoder Architecture 

The previously mentioned attentions mechanisms are the two most important parts 

concerning the architecture used in this thesis. Since it was originally designed to  deal with 

NLP tasks, the modified Graph Transformer that we employ differs with the vanilla 

transformer in terms of attentional mechanisms but not in the general encoder architecture. 

Thus, we end up with Figure 1.11 which, in this thesis, will be considered the universal 

architecture of the transformer encoder. As far as Positional Encoding is concerned, it is out 

of the scope of this thesis to thoroughly explain the math behind the original version. In 

general, it refers to a vector added to the initial node features that points each words location 

in the sentence. This positional encoding vector has a sinusoidal form, and the reader  is 

encouraged to briefly study it in the original paper. Our modified positional encoding will be 

introduces in the Methods section of this thesis [13].  

 

 
Figure 1.11: Transformer Encoder [13]. 

  



2 Material and Methods 

2.1 Data 

In general, vital for the accomplishment of a given task using AI algorithms is the model’s 

feeding dataset. In Computer Science this concept is also known as Garbage in – Garbage out 

(GIGO), which indicates the importance to ensure that the used data are of the best available 

quality in order to attain robust predictive results.  

The ways of gathering and preprocessing said data will be presented in the next sections of 

the thesis. Some of this data is available at the NTUA's System Biology Lab Github  page, but 

due to the restrictive size of others such as the signaling network graphs,  the option of 

uploading them to our repository was not available. 

2.1.1 DeepSNEM Data 

Compounds’ signaling networks were created using the CARNIVAL pipeline and the 

transcriptomic signatures of the CMap dataset, resulting in a large scale dataset of signaling 

networks that can aid future studies. 

2.1.2 CMap 

CMap or the Connectivity Map project by the Broad Institute LINCS Center for 

Transcriptomics, have played a pivotal role in this field, by providing large datasets of 

compounds’ transcriptomic signatures and methods for their analysis, comparison and 

interpretation. 

The transcriptomic signatures needed to develop the appropriate signaling networks  

retrieved from CMap. The version of CMAP that was used was the GSE92742, with a level 5 

transformed z-score. Note that only the differential expression of the 978 landmark genes in 

the L1000 assay was considered [14].  

2.1.3 TAS Quality 

For each gene expression signature, a quality score was derived, based on its transcriptional 

activity score (TAS), the number of biological replicates and whether the signature is 

considered an exemplar[14]. TAS is computed as the geometric mean of the Signature 

Strength (SS, the number of differentially expressed genes within a signature with absolute z-

score greater than 2) and the Replicate Correlation (CC, 75th quantile of the spearman 

correlations between all pairwise combinations of replicate level 4 profiles on a given 

experiment) for a signature, scaled by the square root of the number of landmark genes. TAS 

ranges from 0 to 1 and the quality score ranges from 1 to 8, with the category of quality 1, 

which corresponds to a transcriptomic activity score greater than 0.4 and more than 2 

replicates, containing the best quality signatures. For the selected experiments, only the 7788 

available signatures of Quality Score 1 were selected to ensure the validity of our results. 



Based on this quality score, only the signatures with the highest quality score were selected. 

An overview of the transcriptomic signatures used in this study can be found in Table 1. For 

each signature, TAS were inferred using the DoRothEA R package [9]. This method utilizes a 

knowledge base of signed TF-target interactions called Regulons and the VIPER enrichment 

algorithm to calculate TF activity scores [14]. 

Quality score TAS Number of replicates Exemplar 

Q1 > 0.4 > 2 True 

Q2 0.2 – 0.4 > 2 True 

Q3 0.2 – 0.4 ≤ 2 True 

Q4 0.2 – 0.4 > 2 True 

Q5 0.2 – 0.4 ≤ 2 True 

Q6 < 0.1 > 2 True 

Q7 < 0.1 ≤ 2 True 

Q8 < 0.1 < 2 False 

Table 1: Signature quality Score 

2.1.4 CARNIVAL 

CARNIVAL (CAusal Reasoning pipeline for Network identification using Integer VALue 

programming) [16] is a causal network contextualization tool, that identifies upstream 

regulatory signaling pathways by using downstream gene expression data. It integrates 

various sources of prior knowledge, like signed and directed protein-protein interaction 

networks [5][17], transcription factor targets, as well as pathway signatures. 

 

 

Figure 2.1: Schematic overview of deepSNEM. For each compound-induced differential expression 

signature, a signaling network is created using the CARNIVAL framework. Then an unsupervised DL 

model is tasked to encode the created signaling network in a high dimensional embedding that best 

captures the input graph information. 



For each signature, transcription factor (TF) activity scores were inferred using the DoRothEA 

R package. This method utilizes a knowledge base of signed TF-target interactions called 

Regulons and the VIPER enrichment algorithm to calculate TF activity scores. In addition, for 

each compound perturbation, the discretized TF activities of DoRothEA were transformed 

into signaling networks using the CARNIVAL pipeline. CARNIVAL solves an ILP optimization 

problem to infer a family of highest scoring subgraphs, from a prior knowledge network of 

signed and directed protein-protein interactions, which best explain the TF activities, subject 

to specific constraints. In our approach the OmniPath network was used as the global prior 

knowledge network [18]. Furthermore, the CARNIVAL pipeline without using the perturbation 

targets as input was utilized (InvCARNIVAL method). Finally, the Integer Linear Programing  

(ILP) formulation of the problem was solved using the IBM ILOG CPLEX solver, which is freely 

available through the Academic Initiative. 

The CARNIVAL pipeline was ran in parallel and without using the perturbation’s known targets 

as input (InvCARNIVAL). The signaling network dataset was created with an older version of 

CARNIVAL in R version 3.6, but the same parameters can be used in the latest version of 

CARNIVAL. The main parameters, which can be found in Table 2, are the time limit until the 

optimization terminates (timelimit), the allowed number of solutions to be generated 

(limitPop), the allowed number of solution to be kept in the pool of solution (poolCap) and 

the external ILP Solver used. The rest parameters can be set to the default of each CARNIVAL 

version. 

 

Execution mode Parallel 

inverseCR TRUE 

ILP Solver Cplex 

timelimit (in minutes) 1800 

limitPop 500 

poolCap 100 

Table 2: CARNIVAL pipeline parameters 

 

The end result, after using CARNIVAL, were 7788 weighted, signed and directed signaling 

networks, as well as their corresponding unweighted networks per signature, a number which 

varies from 5 to 100 per weighted signaling network. The weighted networks are produced by 

adding the unweighted ones, thus edge weights describe the percentage of times a certain 

edge appeared in the unweighted graphs. 

 



2.2 Graph Features 

In order to feed the CARNIVAL output graphs to the above described DeepSNEM model, node 

and edge features need to be properly established so that their mathematical equivalents 

provide useful representations. 

Node Features  

Each node of the graphs that is used in this thesis, is an individual protein of a cell signaling 

network. Thus, when each graph is being processed, each node's features need to have a 

multi-dimensional distributed representation that mathematically describes the proteins' 

various modes of action and their biological significance i.e. their place in the biological map. 

To deal with this issue, embeddings that are concerned with the amino acid sequence of each 

individual protein, were used. In other words the aspects of protein function and structure 

are encoded based on each individual proteins’ amino acid sequence.  

 

A novel way to represent protein sequences as continuous vectors (distributed 

representations is presented in [19]. SeqVeq (Sequence-to-Vector)2 uses a bi-directional 

model inspired from NLP tasks called ELMo [20] to capture the biophysical properties of 

sequences from big unlabeled data, specifically the UniProt50 database. This method has 

been proved rather effective in terms of predictive results in various tasks, just by using 

protein sequence data, outperforming even some methods using evolutionary information. 

 

Edge Features 

In every graph, the edges represent the type of connection two nodes share. In our case, the 

connection between two neighboring nodes (in a directed fashion) depict three different 

relational entities:  

 

Protein Interaction: In the cell signaling network, which is computationally formulated as a 

Directed Acyclic Graph (DAG), proteins either upregulate or downregulate the next protein in 

each branch of the DAG, originally being represented as a 1 or a -1 respectively. Since this 

formulation cannot be directly understood by neural networks, it was changed with one hot 

vectors, thus changing 1 to [1 0] and -1 to [0 1], enforcing a categorical attribute to this 

connection. 

Edge Weight: In the case of weighted graphs, it quantifies the appearance of the edge in each 

of the unweighted graphs from which the original was produces. Ranges from 0 to 1, where 1 

means this edge appeared in every unweighted graph. 

PPR Weight: In the Methods section, Personalized Page Rank is presented as a method to 

enforce a relative positioning feature of each protein inside the graph. This attribute is 

represented as a single number ranging from 0 to 1 and signifies the ease of getting from 

protein A to protein B and is directly linked to the aforementioned edge weight. 



2.3 Mechanisms of Action 

Each signature ID corresponds to GEx data, after a drug has been administered to a cell line, 

where the corresponding cell signaling network exhibits the cells' response to each drug. For 

much less than half of the experiments, specifically 2733 signatures, we were able to acquire 

the administered drugs' possible mechanism of action(s). Since the original labels were not 

consistent, we had to group similar labels together, e.g. grouping all DNA or kinase inhibitors, 

or arbitrarily select one of the available mechanisms of action for each drug and if possible, 

grouping that as well. By following this procedure, we end up with 261 unique mechanism of 

action labels. It is very important to take into account the fact that each one of those labels is 

not definitive and unique for each drug. More that one labels may correspond to one specific 

drug, and this heavily undermines the training evaluation metrics. The goal of those labels is 

to provide us with a baseline evaluation procedure, in order to focus our attention in 

interpreting each signaling network pathways in terms of an attributed mechanism of action. 

2.4 DeepSNEM Model 

In this thesis DeepSNEM model was used in order to investigate the relationship between the 

signaling network effect of a compound perturbation in a cellular model and the compound’s 

Mechanism of Action. 

DeepSNEM is a novel unsupervised graph deep learning pipeline, developed by the NTUA’s 

Biomedical Systems Laboratory. Its purpose is to encode the information in the compound -

induced signaling networks in fixed-length high-dimensional representations. The core of 

DeepSNEM is a graph transformer network, trained to maximize the mutual information 

between whole-graph and sub-graph representations that belong to similar perturbations.  

It is important, before the actual description of the used DeepSNEM model, to provide the 

reader with some additional and more detailed information about the methods and models 

on which the DeepSNEM model is based on. 

In the previous chapter of this thesis, brief overview of the original Transformer [13] was 

presented. In order to process the cell signaling network graphs using a neural network, 

instead of the standard way of employing a Convolutional Graph Neural Network, a modified 

version of the Transformer for graphs was implemented. There are three different functional 

differences between our model and the original version, which will be presented in the 

following section. 

Positional Encoding 

As mentioned in the theoretical section of this thesis, the original Transformer used a method 

called Positional Encoding to enforce a sense of placement of each word inside the sentence. 

In similar fashion, in order for each protein to have an edge feature that depicts its relative 

position with child and parent proteins in the DAG, an alternative algorithm was used called 

Floyd-Warshal algorithm. 



Floyd-Warshall Algorithm 

The Floyd-Warshall algorithm is an algorithm used to calculate shortest path distances in a 

weighted graph with positive or negative edges, by comparing all possible paths through the 

graph between each pair of vertices. Let 𝑑𝑖𝑠𝑡(𝑘, 𝑖, 𝑗) be the length of the shortest path from 𝑖 

to 𝑗 that uses only the vertices 𝑢1, 𝑢2, … , 𝑢𝑘  as intermediate vertices. Then: 

 

• k=0 is our base case as 𝑑𝑖𝑠𝑡(0, 𝑖, 𝑗 is the length of each vertex 𝑖 to vertex 𝑗 if it exists, and 

its 1 otherwise. 

• 𝑑𝑖𝑠𝑡(𝑘, 𝑖, 𝑗) = min (𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑖, 𝑘) +  𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑗, 𝑘), 𝑑𝑖𝑠𝑡(𝑘 − 1, 𝑖, 𝑗)    

 

The pseudocode of the Floyd-Warshall algorithm is described bellow: 

 

 
Then 𝑑𝑖𝑠𝑡[𝑁][𝑖][𝑗]  describes the shortest path distance between node 𝑖 to node 𝑗.  

 

Activity Embeddings 

Apart from the activity edge features that were described in a previous section, each node 

(protein) is embedded with two distinct positive values that range from 0 to 1. Those two 

values refer to the frequency each node in the weighted graphs had an upregulated or 

downregulated activity value in the initial unweighted graphs from which it was created.  

Instead of just plugging those values in the feature vector of each individual protein, thus 

assigning only two weight values to each activity, we decided to use a more app ropriate 

method to enhance the presence of such important features. By projecting this 1 × 2 𝑥𝑎𝑐𝑡 

vector into a 1 × 𝑑𝑘  vector, where 𝑑𝑘 is the dimensionality of each protein feature vector, we 

end up with a trainable activity vector 𝑢𝑎𝑐𝑡 = 𝑥𝑎𝑐𝑡 𝑤𝑎𝑐𝑡 , with 𝑤𝑎𝑐𝑡  being the 2 × 𝑑𝑘  weight 

matrix. The activity embedding is added with the trainable feature vector 𝑢𝑝𝑟𝑜𝑡  of each 

protein before they are processed by the Transformer encoder. 



Modified Scaled Dot-Product Attention 

The modified version of the scaled dot-product attention described in a previous section, has 

to account for both the new positional encoding method as well as the insertion of the edge 

features the DAG contains, something the word sentences that were processed with the 

original Transformer did not include. 

 

Recall the query and key matrices 𝑄, 𝐾 from equation 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 ∙ 𝐾𝑇

√𝑑𝐾

) 

 

In the modified attention scheme, 𝑈𝑎𝑐𝑡
ℎ =  𝑋𝑎𝑐𝑡

ℎ  𝑊𝑎𝑐𝑡
ℎ  and 𝑈𝑝𝑟𝑜𝑡

ℎ = 𝑋𝑝𝑟𝑜𝑡
ℎ  𝑊𝑝𝑟𝑜𝑡

ℎ  

 

represent the matrices of each proteins activity and functional features for head ℎ 

respectively. 𝑈𝑒𝑑𝑔𝑒 𝑈𝑒𝑑𝑔𝑒  represents the (3xN) edge matrix of the graph, with features 

described above in the Data section, with N being the number of proteins. So, the modified 

attention weights 𝑊𝑎𝑡𝑡𝑛  are calculated in the following scheme: 

 

𝑊𝑎𝑡𝑡𝑛
ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

(𝑈𝑎𝑐𝑡
𝑄ℎ +  𝑈𝑝𝑟𝑜𝑡

𝑄ℎ ) ∗ (𝑈𝑎𝑐𝑡
𝐾ℎ + 𝑈𝑝𝑟𝑜𝑡

𝐾ℎ )
𝑇

√𝑑𝑘

+ 𝛽 ∗ (𝑈𝑒𝑑𝑔𝑒 ⊛ 𝑊𝑒)) 

 

 

where 𝑊𝑒  is the (1x3) edge weight and b is the bias. Essentially, the process 𝑈𝑒𝑑𝑔𝑒 ⊛ 𝑊𝑒  

describes a pointwise convolution operation on the edge features. Also,  𝛽 is a trainable 

parameter that weights the importance of the edge features. 

 

Since the multi-head attention scheme remains the same, after the concatenation of 

each attention head, the value matrix 𝑉 is weighted using the concatenated attention heads 

as 

𝛸 =  𝑊𝑎𝑡𝑡𝑛 (𝑈𝑎𝑐𝑡
𝑉 +  𝑈𝑝𝑟𝑜𝑡

𝑉 ) (𝑬𝒒 𝟒. 𝟏) 

 

where 𝛸 is the (𝑁 × 𝑑𝐾) resulting node feature matrix before the pointwise feedforward 

network, following the typical Transformer architecture. Adding our relative positional  

embedding and the trainable parameter 𝑐, results in the final form of the self attention 

mechanism: 

𝑊𝑎𝑡𝑡𝑛
ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐶ℎ + 𝛽(𝑈𝑒𝑑𝑔𝑒 ⊛ 𝑊𝑒) + 𝑐 ∗ 𝑃𝐷) 

 

where 𝑃𝐷 is the relative positional encoding matrix and is shared among each head. 𝐷 is 

defined as the pairwise protein embedding multiplication matrix for each head: 

 

𝐶ℎ = (𝑈𝑎𝑐𝑡
𝑄ℎ + 𝑈𝑝𝑟𝑜𝑡

𝑄ℎ ) ∗ (𝑈𝑎𝑐𝑡
𝐾ℎ + 𝑈𝑝𝑟𝑜𝑡

𝐾ℎ )
𝑇

 



 

The Floyd-Warshall alternative exhibits a different attention scheme, which is as follows: 

𝑊𝑎𝑡𝑡𝑛
ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐶ℎ + 𝛽 ∗ (𝑈𝑒𝑑𝑔𝑒 ⊛ 𝑊𝑒) +

(𝑈𝑎𝑐𝑡
𝑄ℎ +  𝑈𝑝𝑟𝑜𝑡

𝑄ℎ )𝑅𝑐
𝐹𝑊

√𝑑ℎ𝑒𝑎𝑑

) 

 

where 𝑅𝑐
𝐹𝑊

 is the corrected 𝑅𝐹𝑊 matrix in terms of dimensions, so that the  equation above 

holds. We can now identify three different components that arise  from the attention 

mechanism. 𝐶ℎ
 is the content attention component, 𝛽(𝑈𝑒𝑑𝑔𝑒 ⊛ 𝑊𝑒) is the edge component 

and (𝑈𝑎𝑐𝑡
𝑄ℎ + 𝑈𝑝𝑟𝑜𝑡

𝑄ℎ )𝑅𝑐
𝐹𝑊

 is the position component of each  attention head. 

 

Deep Graph Infomax 

Information Theoretic Definitions [22][23] 

Entropy: Let 𝑋 be a random variable on a (discrete) space 𝑿 and 𝑥 an element sampled from 

𝑿. For every positive integer 𝑑, we denote by 𝑿 a 𝑑 −dimentional random vector 

(𝑋1, … , 𝑋𝑑) ∈ 𝑿𝒅 and by the letter x an element from 𝑿𝒅. The Shannon entropy of a random 

variable 𝑋 on a discrete space 𝑿 measures its uncertainty during an experiment and is defined 

as: 

 

𝐻[𝑋] =  − ∑ 𝑃(𝑋 = 𝑥)log [𝑃(𝑋 = 𝑥)]

𝑥∈𝑋

 

 

The joint entropy of a pair of random variables (𝑋, 𝑌) expresses the uncertainty one has 

about the combination of these variables: 

 

𝐻[𝑋, 𝑌] =  − ∑ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) log[𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)]

𝑥∈𝑋,𝑦∈𝑌

 

 

Finally, the conditional entropy of a random variable 𝑋 given another variable 𝑌 expresses the 

uncertainty on 𝑋 which remains while 𝑌 is known: 

 

𝐻[𝑋|𝑌] =  − ∑ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) log[𝑃(𝑋 = 𝑥|𝑌 = 𝑦)]

𝑥∈𝑋,𝑦∈𝑌

 

 

Mutual Information It is a general measure of the dependence between two random 

variables 𝑋, 𝑌. It expresses the quantity of information one has obtained on 𝑋 by observing 𝑌. 

The discrete mutual information between two random variables 𝑋 and 𝑌 is defined as: 

 



𝐼(𝑋; 𝑌) = ∑ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) log [
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦)
]

𝑥∈𝑋,𝑦∈𝑌

  

 

If we recall the definition of the Kullback-Leibler divergence between the distributions 𝑃, 𝑄 

 

𝐾𝐿(𝑃||𝑄) =  ∑ 𝑃(𝑥)log
𝑃(𝑥)

𝑄(𝑥)
 

𝑥∈𝑋

 

 

then Eq. 4.1 describes the KL divergence between the joint distribution 𝑃(𝑋) and the product 

distribution 𝑃(𝑋)𝑃(𝑌). In terms of Shannon entropy, MI can be defined as: 

 

𝐼(𝑋; 𝑌) = 𝐻[𝑋] − 𝐻[𝑋|𝑌] = 𝐻[𝑋] + 𝐻[𝑌[ −𝐻[𝑋, 𝑌] = 𝐻[𝑋, 𝑌] − 𝐻[𝑋|𝑌] − 𝐻[𝑌|𝑋] 

 

The Deep Graph InfoMax [24][25] approach to learning a suitable encoder relies on 

maximizing local mutual information i.e. to obtain node representations that capture the 

global information content of the entire signaling network, which in this case is represented 

by a summary vector 𝑠 . We also refer to 𝑧 as each node's patch representation after the DAG 

Transformer Encoder forward pass. 

 

For the graph-level summary vectors 𝑠, we use a readout function ℛ ∶ ℝ𝑁×𝑑𝐾, which in our 

case is either an average pooling of the node features, or the Set2Set [30] global pooling 

method (𝑠 = 𝑆𝑒𝑡2𝑆𝑒𝑡(𝑋)). 

 

In order to maximize the local MI, a discriminator 𝐷 ∶  ℝ𝑑𝐾 × ℝ𝑑𝐾 → ℝ is used so that for 

each node 𝑖 of the graph 𝐷(𝑧 𝑖 , 𝑠) it represents the probability scores assigned to the 

summary-patch pair. 

 

The functionality of the discriminator depends on the existence of both positive and negative 

samples. For the graph 𝐺 with a summary 𝑠 negative samples are produced by pairing the 

summary with patch representations from another graph 𝐺 namely 𝑧 𝑗 . We use a combination 

of corrupted samples from each input graph as well as patch representations from graphs 

with a different signature id i.e. a different experiment, that should be different in nature. 

Corrupted representations are produced from an explicit, stochastic corruption function 𝐶 ∶

 ℝ𝑁×𝑑𝐾  ×  ℝ𝑁×𝑁 →  ℝ𝑀×𝑑𝐾  × ℝ𝑀×𝑀such that �⃗� = 𝐶(𝐺). In our case, 𝐶 is a random 

permutation of both the node features as well as the edge positions of the whole graph. Note 

that we slightly abuse the notation of 𝐺. With this symbol, in our case, we represent the node 

and adjacency matrix (𝑋, 𝐴). 

 

Noise Contrastive Estimation (NCE) [26] is used as a lower bound on MI along with a standard 

Binary Cross Entropy (BCE) loss between the samples from the joint (positive examples) and 

the samples from the product of marginals (negative examples).Thus, the objective to be 

optimized is: 



 

ℒ =
1

𝛮 + 𝛭
(∑ 𝔼𝒢[𝑙𝑜𝑔𝒟(𝑧 𝑖 , 𝑠)] + ∑ 𝔼𝒢[𝑙𝑜𝑔𝒟(𝑧𝑗⃗⃗ ⃗, 𝑠)]

𝑀

𝑗=1

𝛮

𝑖=1

)  (𝑬𝒒 𝟒. 𝟐) 

 

As the discriminator probability estimation function we can choose the Fermi -Dirac 

distribution used in the Graph Autoencoder, as an alternative to the sigmoid function used in 

the original paper, due to the extra two degrees of freedom it includes. The loss function of 

Eq. 4.2 corresponds to the MI estimator used in the original Deep Graph Infomax paper.  

 

We can use a variation of this loss function based on the Jensen-Shannon Mutual Information 

estimator as in InfoGraph [27] with the following notation, based on Nowozin et.al  [28]. Let 

𝐼𝜑,𝜓  be the mutual information estimator modeled by a discriminator 𝐷𝜓 parametrised by a 

neural network with parameters 𝜓. As 𝜑, we denote the parameters of our modified 

transformer neural network. The Jensen- Shannon MI estimator is: 

 

𝐼𝜑,𝜓(ℎ𝜑
𝑖 , 𝑠𝜑 ) ≔  𝔼ℙ[−𝑠𝑝 (−𝐷𝜓,𝜑(𝑧𝜑

𝑖 , 𝑠𝜑))] − 𝔼ℙ̃[ 𝑠𝑝 (−𝐷𝜓,𝜑(𝑧𝜑
�̃� , 𝑠𝜑))] 

 

where ℙ is the empirical distribution of the input data set, ℙ̃ is the negative distribution from 

which we sample from (either via the corruption function 𝐶 or even better ℙ̃ = ℙ , i.e. 

masking networks from different signatures and 𝑠𝑝 is the softplus function 𝑠𝑝(𝑧) = (1 + 𝑒 𝑧). 

Thus, the new model's unsupervised loss is: 

ℒ = −
1

𝛮
∑ 𝐼𝜓,𝜑(𝑧𝜑

𝑖 , 𝑠𝜑) + 𝛾

𝑁

1

𝐷 𝜑,𝜓(𝕍||𝕌𝜑,𝜓) 

The second term is a regularization loss, which denotes matching the pushforward 

distribution of our summary vectors to a prior distribution, with the most successive being the 

uniform distribution.  

 

2.5 Graph Transformer Model - DeepSNEM-GT-MI 

During the model’s research and development process, different models’ variations were 

developed and tested. Based on the evaluation process’s results, the model that was selected 

for this thesis to focus on, consists of a graph transformer trained to maximize the mutual 

information of nodes belonging to the same signature (termed deepSNEM-GT-MI).  

In a technical view the deepSNEM-GT-MI model encodes the input matrices of each signaling 

network using two multi-head attention layers. Each multi-head attention layer computes the 

attention score using the key, query and value matrices, which are later combined using a 

simple feed forward network. The output of this network is used to produce the whole-graph 

representations using the Set2Set LSTM model. The mutual information is approximated 

using simple discriminators in order to train the model. The final node embedding size is set 

to 128, while the whole-graph representation embedding size is set to 256. 



In further detail, each compound-induced signaling network is represented as a labeled, 

signed and directed graph  𝐺 = (𝑉 , 𝐸), with nodes (𝑉) being the proteins and edges (𝐸) 

denoting the directed physical interaction between them.  

 

Figure 2.2: An example input graph. 

Additionally, the activity of each protein is represented as a node attribute, while the 

inhibition or activation of each edge is represented as an edge attribute. Each input graph to 

the deepSNEM-GT-MI consists of a node feature matrix 𝑋(𝑝𝑟𝑜𝑡), a node activity embedding 

𝑋(𝑎𝑐𝑡) and a node proximity embedding 𝑋(𝑒𝑑𝑔𝑒). The node feature matrix contains the initial 

protein features of each graph, which were created using the SeqVeq protein sequence 

model [41]. For each protein, the node activity embedding is a projection of the node’s 

activity to the dimensions of the SeqVeq features, using a single embedding layer.  

 The node feature and node activity matrices are added before being processed by the graph 

transformer. Finally, the node proximity embedding is a relative positional embedding, where 

each shortest path distance between nodes is calculated using the Floyd Warshall Algorithm 

[29]. Thus, the proximity embedding contains information about the relative distance of each 

node to all other nodes in the graph. The input matrices are then passed through the self -

attention mechanism of the graph transformer, resulting in a final feature matrix  𝑋 [30,31].  



 

Figure 2.312: How the graph transformer layer works. 

Finally, this feature matrix is summarized using the Set2Set global pooling method into a 

trainable whole-graph representation [32]. The model is trained fully unsupervised by 

maximizing the mutual information between node and whole-graph embeddings that are 

created from the same or duplicate transcriptomic signatures, using the CARNIVAL pipeline, 

thus resulting in similar graph representations for the same perturbation. Similar to the 

InfoGraph approach, the Jensen-Shannon Mutual Information estimator was used, while an 

additional term was added to the total loss function in order to force the embeddings to be 

uniformly distributed [27]. 

 

 

Figure 2.4: Model’s Flowchart: Outputs and Loss function 

 



2.6 DeepSNEM Clustering Analysis 

The deepSNEM-GT-MI embeddings were clustered using the k-means algorithm. K-means 

algorithm is an iterative algorithm that tries to partition the dataset into K pre-defined 

distinct non-overlapping subgroups (clusters) where each data point belongs to only one 

group. It tries to make the intra-cluster data points as similar as possible while also keeping 

the clusters as different (far) as possible. It assigns data points to a cluster such that the sum 

of the squared distance between the data points and the cluster’s centroid (arithmetic mean 

of all the data points that belong to that cluster) is at the minimum. The less variation we 

have within clusters, the more homogeneous (similar) the data points are within the same 

cluster. 

The optimal number of clusters were selected using the elbow method. The Elbow method is 

a visual method to test the consistency of the best number of clusters by comparing th e 

difference of the sum of square error (SSE) of each cluster. The most extreme difference 

forming the angle of the elbow shows the best cluster number. The elbow plot of the 

clustering is presented in Figure 2.5. Figure 2.5 shows the total within sum of squared 

distances between the centroids and the points of each cluster, for different values of k. We 

can see that the elbow starts to form around k=200.  

 

Figure 2.5: Elbow plot of the k-means clustering of the deepSNEM-GT-MI embeddings. 

This comes in agreement with the internal diversity of the dataset, where we have 261 unique 

MoA labels assigned to 912 compounds. Based on the results of Figure 2.5, the number of 

clusters was set to 200. 



2.7 Node and subgraph importance 

It is well established until today, that ANNs have the capability to exhibit human-level 

performance on various datasets and tasks. This characteristic comes with the heavy price of 

reduced interpretability, i.e. the ability to provide meaningful and understandable 

explanations to human researchers. This reduced interpretability is an extremely important 

factor to account for when dealing with biological and medicinal cases as it reduces 

confidence to predictive results coming from ANNs. That is the main reason why it is crucial to 

develop methods and pipelines in order to improve the interpretability of the developing 

models and algorithms. For the DeepSNEM approach, a subgraph importance method was 

developed to identify the most important nodes for each graph-level representation and the 

subgraphs that cause the signaling networks to cluster together.  

The average attribution of each node (protein) to the resulting signaling network embedding 

was calculated using the saliency map approach of the Captum library [33]. With the saliency 

approach the attributions are calculated based on the gradient with respect to the input [34]. 

This approach results in an attribution score for each node that shows the importance of the 

node to the model, when calculating the network embedding. Subsequently, a scoring 

function was designed in order to identify the important nodes in a specific cluster of 

signaling network embeddings. For each node, this scoring function calculates the product of 

the median rank of the node’s attribution score in the cluster and the frequency that the 

node appears in the signaling networks of the cluster. The mathematical equivalent of the 

description for the nodes’ score calculation is: 

𝕊𝑖 ~ 𝑆( 
𝜗𝐹

𝜗𝑥𝑖
,  𝑓) 

Finally, this score is normalized between 0 and 1. For visual ization purposes, the 20 most 

important nodes of each cluster were connected using the shortest paths from the OmniPath 

PPI network that maximize the overall sum of importance scores in the connected graph.  

2.8 Experimental Data – Use case 

As a use case, deepSNEM was tasked to assign clusters to compounds’ signaling networks 

generated using gene expression profiles from various experimental platforms (MicroArrays 

and RNA sequencing). Gene expression data from 7 additional compounds with known 

mechanism of action were retrieved from the GEO database.  

The details regarding the experimental data used in the use case are presented in Table 3. 

Overall, the data were collected from 6 different studies, 4 cell lines and 3 different 

experimental platforms, i.e. Affymetrix/Agilent Microarrays and Illumina next generation 

sequencing. Following the deepSNEM pipeline, each differential gene expression signature 

was transformed into a compound induced signaling network with CARNIVAL and embedded 

using the deepSNEM-GT-MI model. Finally, each embedding was assigned to one of the 

already identified clusters.  



 

Compound MoA Cell line GSE Platform 

Sirolimus 
mTOR 

inhibitor 
MCF7 GSE116447 

Affymetrix 

Microarray 

CDK-887 CDK inhibitor MCF7 GSE19638 
Affymetrix 

Microarray 

Panobinostat HDAC inhibitor A375 GSE145447 
Illumina 

NextSeq 

Sodium-

Butyrate 
HDAC inhibitor HT29 GSE61429 

Agilent 

Microarray 

Belinostat HDAC inhibitor A549 GSE96649 
Illumina 

NextSeq 

SN38 
Topoisomeras

e I inhibitor 
MCF7 GSE18552 

Affymetrix 

Microarray 

Doxorubicin 
Topoisomeras

e II inhibitor 
MCF7 GSE19638 

Affymetrix 

Microarray 

Table 3: Information regarding the perturbations used in the use case data 

  



3 Results 

Throughout this project various tasks were assigned to our DeepSNEM model . These tasks 

include clustering analysis of the output embeddings using a large scale dataset of signaling 

networks created by NTUA’s System Biology Lab, cluster assignment to a compound-induced 

gene expression signature as well as identification of the nodes and subgraphs which mostly 

influenced the proposed cluster assignment. In the section below the results of th e model’s 

performance on these tasks are presented. 

3.1 Clustering analysis for MoA identification 

As aforementioned a compound’s perturbation Mechanism of Action is being revealed by its  

signaling network effect. The deeper examination of this relationship was accomplished by a 

two step process. First we identified groups of perturbations with similar network effect, by 

clustering the deepSNEM network embeddings, and then analyzed the resulting clusters 

based on the reported MoA of the compounds. On this front, the 256-dimensional 

deepSNEM-GT-MI embeddings were clustered using the k-means algorithm. The optimal 

number of clusters was found to be 200, according to the k-means elbow plot (link to 

method’s section).  

Additionally, in order to analyze and characterize the resulting clusters, the MoA labels 

provided by the Broad’s Institute Repurposing Hub were utilized [35]. Out of the 3005 unique 

compounds, 912 were mapped to 261 unique MoA labels using the Repurposing Hub dataset. 

Figure 3.1(A) shows the 2-dimensional t-SNE projections of all available signaling network 

embeddings. It is important at this point, to note that t-SNE (t-Distributed Stochastic Neighbor 

Embedding) is a non-linear dimensionality reduction algorithm used for exploring high-

dimensional data. It maps multi-dimensional data to two or more dimensions suitable for 

human observation or processing the output data using less computational power.  

Additionally, the signaling network embeddings that belong to the top 9 most prevalent MoA 

labels in the dataset are presented with different colors (Figure 3.1(A)).  In order to 

characterize the identified clusters, we focused on the subset of clusters that are significantly 

enriched for at least one mechanism (Figure 3.1(B)) since t-SNE wasn’t able to separate the 

representations but revealed distinct areas where similar MoAs are grouped together. The 

selected clusters have at least 25% of their compound perturbations belonging to the same 

MoA, with a p-value lower than 10−6 compared to a random selection. Figure 3.1(B) shows 

the breakdown of the available MoA in the selected clusters. As it can be seen, the identified 

clusters are enriched for the same mechanisms that are most prevalent in the labeled 

dataset. As a result, DeepSNEM was able to identify 11 clusters that are significantly enriched 

for specific mechanisms, i.e.  mTOR, HDAC, topoisomerase, protein and ATP synthesis 

inhibitors. We have to note that clusters that are enriched for mTOR inhibitors are also 

enriched for PI3K inhibitors, which is expected due to the PI3K/mTOR signaling pathway.  

However, the majority of the compounds in each cluster still do not have available labels 

regarding their MoA (represented with grey color in Figure 3.1(B)). Thus, due to the unknown 



labels, the distribution of MoA between clusters that are enriched for the same MoA can still 

be quite different. 

Figure 3.1: Clustering analysis. (A) T-SNE projection of the 256-dimensional signaling network embeddings of 
deepSNEM-GT-MI. Different colors represent the 9 most prevalent MoA in the dataset, while the grey color 
represents perturbations with either unknown or other MoA. Additionally, the centers of the identified clusters 
are represented with circles (CL: cluster). (B) MoA composition of the analyzed clusters. The Y axis represents the 
frequency, as a percentage, of each MoA in the cluster (CL: cluster). 



3.2 Subgraph importance 

Although ANNs have been proven to be a powerful and versatile technology used for machine 

learning, they also have several known disadvantages. Perhaps one of the most important 

shortcoming is to determine the cause of ANN decision or result. Making a specific decision is 

almost impossible. It's hard to believe in the reliability of ANN which is formed on real -world 

problems. In addition this shortcoming makes it difficult to transfer the information learned 

by a network to the solution of related problems. Therefore, it should be understood that it is 

desirable to form the extraction method or symbolic rules for the network.  

In this case, the followed strategy, was the analysis of compound-induced signaling networks 

for MoA identification. In order to increase the interpretability and explainability of 

deepSNEM, we created a framework to identify the important subgraphs for the subset of 

clusters analyzed in the previous section. For each cluster, important nodes were identified 

using an aggregate score based on their importance to the embedding model and the nodes’ 

prevalence in the cluster’s graphs. Figure 3.2(A) shows the overlap, as a percentage, between 

the 20 most important nodes of the analyzed clusters. As it can be seen, clusters that are 

enriched for the same MoA, have a higher similarity between their most important nodes. 

Thus, the proposed importance framework can identify nodes of high importance in each 

cluster that show a connection to the cluster’s most prevalent mechanism of action. For 

visualization purposes, the most important nodes in each cluster were connected by selecting 

the shortest paths between them, from the Omnipath PPI that also maximize the overall sum 

of importance scores in the path. Figure 3.2(B) shows an example of the important subgraphs 

for the clusters that are enriched for mTOR and PI3K inhibitors. The common most important 

nodes across the presented networks include the mTOR regulated transcription factors NRF1 

and TFDP1 and the CSKNK2A1, RHOA, PRKACA and LCK proteins, which are involved in the 

PI3K-Akt-mTOR signaling pathway [36-40].  Finally, across all clusters, AKT1 and MAPK1 serve 

as central nodes that connect the most important nodes (Figure 3.2(B)). The important 

subgraphs for all analyzed clusters are presented in Figure 3.3. 



Figure 3.2: Cluster subgraph importance. (A) Heatmap showing the similarity, as percentage overlap, between 

the 20 most important nodes of each cluster. (B) Important subgraphs identified for the clusters enriched for 

mTOR and PI3K inhibitors (Clusters 8, 112 and 200). The average activity of each node in the cluster is color coded 

from blue to red. Blue nodes are inhibited, while red are activated. Each node’s importance score, ranging from 0 

to 1, is represented by the size of the node’s circle. 



 

Figure 3.3 : Important subgraphs identified for the clusters enriched for topoisomerase (Clusters 97, 125 and 158), 

HDAC (Clusters 142, 147 and 179), protein synthesis (Cluster 72) and ATP synthesis (Cluster 120) inhibitors. The 

average activity of each node in the cluster is color coded from blue to red. Blue nodes are inhibited, while red are 

activated. Each node’s importance score, ranging from 0 to 1, is represented by the size of the node’s circle. 

 



Use case: cluster assignment  

Finally, the DeepSNEM model evaluated by its ability to assign clusters to compounds’ 

signaling networks generated using gene expression profiles from various experiments.  In 

other words GEx data collected by drug perturbation experiments, were used in our case to 

predict its prevalent MoA. It is important to note at this point that the MoA for the 

compounds used in the selected experiments were known and correspond to the clusters 

DeepSNEM was able to identify. The used embeddings for this final task were generated from 

GEx data retrieved by GEO platform, following the DeepSNEM pipeline as described in the 

Methods section.  

Each embedding was assigned to one of the already identified clusters (Table 4).  

Compound MoA Cell line GSE Platform Cluster (CL) 

Sirolimus 
mTOR 

inhibitor 
MCF7 GSE116447 

Affymetrix 

Microarray 
53 

CDK-887 CDK inhibitor MCF7 GSE19638 
Affymetrix 

Microarray 
163 

Panobinostat HDAC inhibitor A375 GSE145447 
Illumina 

NextSeq 
22 

Sodium-

Butyrate 
HDAC inhibitor HT29 GSE61429 

Agilent 

Microarray 
22 

Belinostat HDAC inhibitor A549 GSE96649 
Illumina 

NextSeq 
188 

SN38 
Topoisomeras

e I inhibitor 
MCF7 GSE18552 

Affymetrix 

Microarray 
158 

Doxorubicin 
Topoisomeras

e II inhibitor 
MCF7 GSE19638 

Affymetrix 

Microarray 
33 

Table 4: Information regarding the perturbations used in the use case and their assigned clusters  

Figure 3.6(B) shows the assigned clusters and the distribution of each cluster’s available MoA. 

The topoisomerase inhibitor SN38 and the HDAC inhibitors Sodium-Butyrate, Panobinostat 

and Belinostat were assigned to clusters significantly enriched for topoisomerase and H DAC 

inhibitors respectively. Furthermore, the topoisomerase inhibitor Doxorubicin and the mTOR 

inhibitor Sirolimus were assigned to clusters enriched for their respective MoA, albeit having 

a large number of compounds with unknown MoA. Finally, the compound CDK-887 was 

assigned to a cluster that was not enriched for any particular MoA.  Thus, the deepSNEM 

pipeline can be used to assign a cluster to a compound-induced gene expression signature, 

independent of the experimental platform, and provide insight into the compound’s potential 

MoA.  

For the compounds in the use case, we also compared the cluster assignment of deepSNEM 

to a clustering of the compounds’ differential expression gene measurements . (Figure 3.6(B)). 

The MicroArray gene expression profiles following compound treatment were preprocessed 



with the RMA algorithm, while the RNAseq data with the edgeR algorithm. The transcriptomic 

signatures of the CMap dataset were clustered with the k-means algorithm, similar to the 

signaling network embeddings. The elbow plot of the gene expression clustering is shown in 

Figure 3.4. Similar to the clustering of the deepSNEM embeddings, the number of clusters k 

was set to 200. Furthermore, Figure 3.5 shows the t-SNE projections of the gene expression 

profiles, where the most prevalent MoA labels in the datasets are coded with different colors.  

  

Figure 3.4: Elbow plot of the k-means clustering of the differential gene expression profiles. 



 

 

 

 

Figure 3.5: T-SNE projection of the gene expression profiles. Different colors represent the 9 most prevalent MoA in the 
dataset, while the grey color represents perturbations with either unknown or other MoA . 

 



 

Figure 3.6 : MoA composition of the compounds’ clusters. (A) Bar plot of mechanism of action prevalence for the 
clusters that were assigned to the use case perturbations using the deepSNEM pipeline. (B) Similar bar plot for the 
assigned clusters using the gene-based clustering pipeline. 



Comparing the two approaches, SN38, Belinostat and Panobinostat were assigned to clusters 

composed of similar mechanisms. However, this is not the case for Sirolimus, Doxorubicin and 

Sodium Butyrate, which are assigned to clusters not enriched for any particular MoA, when 

the gene-clustering pipeline is used.  

Finally, for each compound of the use case, we calculated the Jaccard similarity index 

between the perturbations of the identified clusters using the two methods (deepSNEM and 

gene-based clustering) (Table 4). As it can be seen in Table 5, across all compounds the 

similarity of the clusters is very low, with only the clusters assigned to the SN38 having a 

slightly higher Jaccard index. Thus, the deepSNEM and gene-based pipeline result in a 

different clustering of the perturbations, due to the different biological hierarchy of 

information provided by the compound-induced signaling networks and differential gene 

expression signatures. 

 

Sirolimus 0.004 

CDK-887 0 

Panobinostat 0 

Sodium-Butyrate 0.006 

Belinostat 0.029 

SN38 0.162 

Doxorubicin 0.012 

Table 5: Jaccard similarity index between the clusters that the use case compounds were assigned to, 

using the gene-based and deepSNEM pipelines. 

 

  



4 Discussion 

The changes in the protein signaling network caused by a compound perturbation can aid in 

studying the compound’s mechanism of action in the cellular system. However, analyzing 

compound-induced signaling networks on a massive scale is a very complex problem, not only 

due to the limited availability of large datasets containing such networks but also due t o the 

complex structure of the data. This complex structure of signaling networks limits their 

representation abilities and poses a challenge in identifying similarities or differences 

between them.  In this study, we created a large dataset of compound-induced signaling 

networks from the CMap dataset, using the CARNIVAL network creation pipeline and 

developed an unsupervised deep learning model to transform them into high-dimensional 

and information-rich representations. This novel approach, called deepSNEM was used to 

identify clusters of perturbations with similar network representations and offer insight into 

the compounds’ MoA by analyzing the distribution of MoA in the clusters.  

The prediction of a compound’s MoA from biological response data has gained considerable 

attraction in the machine learning community [41,42]. This is evident by the recent release of 

the CTD2 Pancancer Drug Activity DREAM Challenge, which tasked the community to predict 

a compound’s MoA based on post-transcriptional and cell viability data [42]. Even though the 

learning task of MoA prediction is frequently modeled as supervised, in our approach we 

decided to develop deepSNEM in a fully unsupervised fashion. This decision was based on the 

nature of the learning task and the compounds’ MoA, wherein if a compound has a reported 

MoA based on binding affinity data, we can’t know with absolute certainty that it doesn’t 

have additional MoA labels due to other binding targets or interactions between the proteins 

in a pathway. Thus, for some compounds the negative labels for all possible MoA indications 

might not be truly negative, rather they might be simply unknown. Additionally, another 

important benefit of using an unsupervised approach, is that we can greatly increase the 

amount of available data by including transcriptomic signatures following treatment with 

compounds that have no reported MoA. In deepSNEM the learning model is tasked to 

produce meaningful representations that capture the information included solely in the 

compound-induced signaling networks without taking into account the compounds’ reported 

MoA. However, this unsupervised task makes the evaluation of the different models and the 

resulting embeddings quite challenging.  

For the task of mechanism of action identification, we decided to use the embeddings of the 

graph transformed trained to maximize the mutual information between nodes that belong 

to networks created from the same or duplicate gene expression signatures. We argue that 

this deepSNEM variation is better suited to capture the information of the signaling networks, 

due to the graph transformer architecture and due to the mutual information task that forces 

networks created from the same perturbation to have similar embeddings (see Methods 2.4). 

Finally, we have to note that the resulting 256-dimensional graph embeddings contain all the 

information of the input signaling networks, which makes it difficult for the t-SNE algorithm to 

project them in 2 dimensions, as it can be seen in Figure 3.1(A).  



The clustering analysis and MoA identification using the deepSNEM-GT-MI embeddings was 

performed by analyzing the MoA labels provided by the Broad Institute in the drug 

repurposing hub. Using this dataset, 912 out of the 3005 total compounds were mapped to 

261 unique labels. We argue that this diversity of mechanisms and large number of 

compounds with unknown MoA in the dataset resulted in the large number k (k = 200) of 

clusters that were identified using the elbow plot of the k-means algorithm. Additionally, due 

to the large number of unlabeled compounds, in order to analyze the resulting clusters, we 

focused on a specific subset that is significantly enriched for at least one specific MoA (Figure 

3.1(B)). Using this approach, we identified 11 clusters that each were enriched for the most 

prevalent mechanisms in the dataset. However, even for the clusters enriched for the same 

MoA, the large number of unknown compounds could result in different cluster compositions, 

which potentially further signifies the importance of analyzing biological response from 

different points of view, e.g. genes, pathways, signaling networks. 

There have been many studies for the identification of a compound’s MoA using biological 

response data. The majority of these approaches utilize post-transcriptional data and have 

been utilized successfully in the fields of systems pharmacology and drug repurposing [34,35]. 

Since the initial part of deepSNEM relies on transcriptomic data, similarities between the 

results and clustering of gene signatures and signaling networks are expected. This effect is 

evident in the presented use case, where some of the compounds were assigned to clusters 

with similar MoA composition between the gene-based and network-based pipeline. 

However, some compounds were assigned to clusters enriched for different MoA between 

the two approaches (Figure 3.6). Most importantly, between the two methods, each 

compound was assigned to clusters that had a very low Jaccard similarity index, meaning that 

the transcriptomic signatures and signaling network embeddings of deepSNEM cluster in a 

different way (Table 5). Thus, even though transcriptomic signatures do provide meaningful 

insight into a compound’s MoA, there are cases, where analyzing the signaling networks can 

reveal complex relationships that are hidden in the original expression data. We argue that 

this is because a compound’s effect on a biological system is usually caused by changes in the 

expression of genes that interact with each other to form specific biological processes. By 

supplying deepSNEM with this required prior knowledge of interactions in the form of the 

Omnipath PPI, the compound-specific signaling networks can provide a mechanistic view of 

the compound’s effect and translate to the identification of its MoA [18]. Additionally, 

deepSNEM’s signaling network creation via the CARNIVAL pipeline can provide a robust 

normalization factor to analyze and incorporate data from different experimental platforms 

(Table 4). Finally, the analysis of compound-induced signaling networks has the inherent 

benefit of increasing the interpretability of results. 

The interpretability and explainability of machine learning models is a concept that has gained 

considerable attraction since the creation and application of powerful and complex deep 

learning models in various fields [15]. This is especially true in the fields of drug discovery and 

systems pharmacology, where understanding why the model made specific decisions and 

predictions can not only validate and help interpret the results, but also generate new 

knowledge and hypotheses regarding the complex systems under study [21]. Here, we 



developed a node and subgraph importance method to identify which nodes the model pays 

attention to when creating the embeddings and which nodes in the original networks cause 

the embeddings to cluster together. This resulted in the better understanding and 

interpretation of the novel representations that were extracted from the DL model. Using this 

approach, we showed that the models pay attention to similar nodes in order to cluster 

together compounds with similar MoA and were able to identify important signaling 

subgraphs that are characteristic of each cluster (Figure 3.3). For example, in the clusters 

enriched for mTOR inhibitors, even though mTOR as a node was not present in the input 

signaling networks of the cluster, deepSNEM was able to extract important subgraphs that 

are related to the mTOR signaling pathway. 

  



5 Further Work 

All of the findings presented are potential source for further work on the subject of  

elucidation a compound’s Mechanism of Action (MoA) in a biological system by analyzing and 

comparing compounds’ transcriptomic signatures. 

As aforementioned the deepSNEM-GT-MI was selected to be used in this thesis’ tasks, as we 

argued it was the most appropriate due to the nature of the problem. Although the results 

were satisfactory there is no evidence that another architecture (graph convolutions or 

graph2vec) couldn’t have been equally effective. Thus, a lot of space for investigation exists 

regarding the architecture of the model. 

Moreover, the modification of the embeddings’ dimension combined with the t -SNE 

parameterization is an aspect of the problem it could be further investigated having as a 

prerequisite sufficient computing power. 

Last but not least, it is noted in the section above, that even for the clusters enriched for the 

same MoA, the large number of unknown compounds could result in different cluster 

compositions. That potentially further signifies the importance of analyzing biological 

response from different points of view, e.g. genes, pathways, signaling networks. 

Regardless the improvement of the model itself, the deepSNEM pipeline serves as proof of 

concept that compound-induced signaling networks can be analyzed on a massive scale, using 

deep learning and provide insight into the compound’s effect. In a real -world application, 

deepSNEM would be used in combination with existing methods, utilizing transcriptomic data 

or pathway signatures, for a consensus-based assignment of compound perturbations into 

clusters that are enriched for specific MoA. Subsequently, deepSNEM could be used to 

identify which nodes and subgraphs mostly influenced the proposed cluster assignment, thus 

increasing its interpretability and help generate new hypotheses. We believe that our 

signaling network dataset and the proposed pipeline can help pave the way towards more 

studies that utilize the inherent knowledge of the changes in the signaling cascade of a system 

to better elucidate a compound’s mechanism of action. 
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7 Appendix 

Some of the data is available at the NTUA's System Biology Lab Github page 

(https://github.com/BioSysLab/deepSNEM), but due to the restrictive size of others such as the 

signaling network graphs, the option of uploading them to our repository was not available  

The code for the DeepSNEM model and its implementation, as well as the code regarding the 

clustering analysis and subgraph importance can be found at the same repository.  

https://github.com/BioSysLab/deepSNEM

