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ΠΕΡΙΛΗΨΗ 
 

Στην παρούσα μεταπτυχιακή εργασία, προτείνονται διάφορες διευρυμένες εκδόσεις 

του συστήματος Stiff Base Absorber (SBA), το οποίο βασίζεται στον ταλαντωτή 

KDamper, οι οποίες ενσωματώνουν στοιχεία αδρανείας σε διάφορες θέσεις, εκτός 

άλλων στοιχείων θετικής και αρνητικής στιβαρότητας και τεχνητών αποσβεστήρων. Οι 

βέλτιστες παράμετροι του συστήματος, σε κάθε περίπτωση, προσδιορίζονται με την 

επίλυση ενός προβλήματος βελτιστοποίησης και την αξιολόγηση των περιορισμών με 

βάση μηχανικά κριτήρια. Τα προτεινόμενα συστήματα απορρόφησης ταλαντώσεων 

σχεδιάζονται ως διευρυμένες εκδόσεις σεισμικής βάσης απορρόφησης ταλαντώσεων 

(ESBA) και προστίθεται ένα φίλτρο επιτάχυνσης ως περιορισμός για την καλύτερη 

παρατήρηση της απόδοσης του συστήματος. Έτσι, οι βέλτιστες παράμετροι 

επιλέγονται με βάση τη μέγιστη επιτάχυνση της κατασκευής, εκφρασμένη ως ποσοστό 

της μέγιστης εδαφικής επιτάχυνσης (PGA). Για τον καθορισμό του φίλτρου 

επιτάχυνσης, δημιουργείται μια βάση δεδομένων τεχνητών επιταχυνσιογραφημάτων 

συμβατών με τα φάσματα απόκρισης του EC8. Στη συνέχεια χρησιμοποιούνται 

πραγματικές καταγραφές σεισμών για την αξιολόγηση της δυναμικής συμπεριφοράς 

ενός μονοβαθμίου συστήματος (SDoF). Το μονοβάθμιο σύστημα συγκρίνεται με ένα 

αντίστοιχο σύστημα συμβατικής μόνωσης βάσης χαμηλής και υψηλής απόσβεσης. Στη 

συνέχεια, το πιο αποδοτικό από τα προτεινόμενα συστήματα ελέγχου ταλαντώσεων 

επεκτείνεται για εφαρμογή ως σεισμική βάση για πολυώροφες κατασκευές. Οι 

παράμετροι του συστήματος επιλέγονται από το προαναφερθέν πρόβλημα 

βελτιστοποίησης. Πιο συγκεκριμένα, ορίζονται και συγκρίνονται οι δυναμικές 

αποκρίσεις ενός τριώροφου και ενός πενταώροφου κτιρίου, που μοντελοποιούνται ως 

διατμητικά πλαίσια, στα ακόλουθα σενάρια: τα κτίρια θεωρούνται αρχικά πακτωμένα 

στο έδαφος, στη συνέχεια εδράζονται στην προτεινόμενη βάση απορρόφησης 

ταλαντώσεων και αργότερα, αντιπαραβάλλονται με το σενάριο να εδράζονται σε 

συμβατική μόνωση βάσης χαμηλής και υψηλής απόσβεσης, με την ίδια ή διαφορετική 

ιδιοσυχνότητα, ώστε να αποδειχθεί η αποτελεσματικότητα του προτεινόμενου 

συστήματος σεισμικής βάσης. Όλα τα κτίρια πολλαπλών βαθμών ελευθερίας (MDoF) 

υποβάλλονται σε τεχνητές και πραγματικές κοντινές ή απόμακρες σεισμικές 

διεγέρσεις. Πραγματοποιούνται αναλύσεις ευαισθησίας, εξετάζοντας, πρώτον, τη 

μεταβολή μιας παραμέτρου κάθε φορά και, δεύτερον, δύο παραμέτρων ταυτόχρονα, 

για να διερευνηθεί κατά πόσον το προτεινόμενο σύστημα ελέγχου ταλαντώσεων είναι 

ευάλωτο ή όχι σε φαινόμενα αποσυντονισμού. Τέλος, υιοθετείται μια ρεαλιστική 

διαμόρφωση εξαρτώμενη από τη μετατόπιση για την υλοποίηση του στοιχείου 

αρνητικής στιβαρότητας και συγκρίνεται η μη γραμμική δυναμική συμπεριφορά του 

συστήματος με την αρχικά αναμενόμενη γραμμική. Παρατίθεται ένας ενδεικτικός 

σχεδιασμός του προτεινόμενου συστήματος απορρόφησης ταλαντώσεων όσον αφορά 

τα στοιχεία που περιλαμβάνει. Εξάγονται διάφορα συμπεράσματα σχετικά με την 

αποτελεσματικότητα των προτεινόμενων συστημάτων απορρόφησης ταλαντώσεων. 
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ABSTRACT 
 

In this postgraduate thesis, several extended versions of the Stiff Base Absorber system 

(SBA), which relies on the KDamper oscillator, are proposed that incorporate inerter 

elements in various locations. The optimal system parameters, in each case, are 

determined by solving an optimization problem and evaluating the constraints based on 

engineering criteria. The proposed dynamic vibration absorbers are designed as 

extended seismic base absorbers (ESBA) and an acceleration filter is added as a 

constraint to better observe the system's efficiency. Thus, the optimal parameters are 

selected based on the maximum structure acceleration expressed as a percentage of 

PGA. To define the acceleration filter, a data-base of artificial accelerograms 

compatible with the EC8 response spectra is generated. Real earthquake records are 

then used to evaluate the SDOF system dynamic behavior. The SDoF system is 

compared to a corresponding SDoF system of a conventional low and high damping 

base isolation system. Subsequently, the most efficient of the proposed vibration control 

systems is extended for implementation as a stiff seismic base absorber for multistory 

structures. The system parameters are selected from the previously stated optimization 

problem. More specifically, the dynamic responses of a three-story and a five-story 

buildings, modeled as shear frames, are defined and compared in the following 

scenarios: the buildings are firstly considered fixed on the ground, then they lie on the 

proposed vibration absorption base and finally, are contrasted with the scenario of them 

being mounted on a low and high damping conventional seismic isolation bases, with 

the same or different natural frequency, to prove the efficiency of the proposed extended 

stiff seismic base absorber. All the multi degree of freedom (MDoF) buildings are 

subjected to the artificial and the real near-fault and far-fault earthquake excitations. 

Sensitivity analyses are performed, by considering: i) the variation of one parameter at 

a time and secondly, and ii) two parameters simultaneously, to investigate whether the 

proposed vibration control system is vulnerable or not to detuning phenomena. Finally, 

a realistic displacement-dependent configuration for the realization of the NS element 

is adopted and the non-linear dynamic behavior of the system is compared with the 

initially expected linear one. An indicative design of the proposed vibration absorption 

system is presented concerning its comprising elements. Several conclusions are drawn 

regarding the efficiency of the proposed extended stiffness base absorbers.  
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1 INTRODUCTION 

1.1 Statement of the problem 

This thesis focuses on protecting civil engineering structures against environmental 

excitations. The research primarily investigates the absorption of vibrations resulting 

from environmental excitations, such as seismic events and wind loads. The objective 

is to enhance the dynamic behavior of each structural system, ensuring its resilience 

and preventing collapse under extreme conditions that exceed its load-bearing capacity 

or due to fatigue, caused by seismic events or aerodynamic loads. 

In recent years, the devastating impact of seismic events, especially in densely 

populated areas located in earthquake-prone regions, has prompted revisions in the anti-

seismic codes and regulations for buildings (Warn & Ryan, 2012), (Reggio & Angelis, 

2015) and (Kangda & Bakre, 2020), bridges (Kunde & Jangid, 2003) and infrastructure 

or industrial facilities (De Angelis, Giannini, & Paolacci, 2010), (Paolacci, Giannini, & 

De Angelis, 2013) and (WHITTAKER & KUMAR, 2014). The revised approach 

emphasizes designing structures with superior seismic performance. Concerning the 

horizontal component of seismic excitations, seismic base isolation has emerged as a 

favorable alternative to conventional anti-seismic techniques (Kelly J. M., 1986). 

Unlike traditional approaches that focus on strengthening structures, seismic isolation 

aims to mitigate seismic loads by introducing a laterally low-stiffness flexible layer 

between the structure and its foundation. By doing so, the fundamental period of the 

seismically isolated system significantly increases, leading to reduced forces and 

accelerations affecting the structure. This can be clearly observed through (Fig. 1.1(a)), 

as the acceleration (and subsequently the earthquake induced loads) decrease with an 

increase of the period. The structure, with its lowered fundamental period lies on the 

descending branch of the acceleration response spectrum. Various types of isolation 

devices, ranging from simple elastomeric bearings or  laminated rubber bearings with 

or without lead core (Naeim & Kelly, 1999) to more complex configurations including 

sliding/frictional bearings (Fenz & Constantinou, 2006) have been developed over time 

to achieve effective seismic isolation, as depicted in (Fig. 1.2(a) and (b)).  

However, it is important to note that implementing seismic isolation at the base of 

structures unavoidably results in significant displacements during seismic events, as it 

can be seen in (Fig. 1.1(b)). By providing flexibility at the base of the structure, this 

leads on the increase of the period, which results in the increase of the displacements, 

as the structure, now, is located on the ascending branch of the equivalent-to-the-

acceleration displacement response spectrum.  This characteristic may not be desirable 

in all cases due to factors such as the sensitivity of seismically isolated structures to 

wind loads, specific requirements for water supply, heating and drainage systems or gas 

fittings or electrical conduits within the structures, as well as the need for adequately 

sized seismic joints to prevent collisions between neighboring buildings. Consequently, 

the application of seismic isolation might not be suitable for existing structures, as a 

retrofitting technique. Nevertheless, there have been successful implementations of 

devices that provide protection against the horizontal seismic forces in various 

construction projects. 
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Increasing the damping coefficient 𝜁 of the base isolation system or introducing 

additional dampers within the structure to mitigate excessive displacements is not 

commonly considered as a primary alternative (Symans et al., 2008). This is due to the 

significant technological demands imposed on the corresponding devices in terms of 

the size requirements. Furthermore, directly augmenting the damping coefficient leads 

to amplified interstory drifts and floor accelerations (Kelly J. M., 1999). 

 

 

 

 

Figure 1.1: Schematic representation of the response spectra in terms of (a) acceleration and (b) 

displacement and their variation due to damping increase 

 

 

 

 

Figure 1.2: Base isolation including (a) elastomeric bearings and (b) sliding bearings 

 

In an attempt to overcome the drawbacks of the conventional base isolation and 

simultaneously maintain the beneficial characteristics of it, various vibration absorption 

systems have been proposed that are based on the following concepts: 
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 Quasi Zero Stiffness oscillators (QZS) 

 Tuned Mass Dampers (TMD) (Fig. 1.3(a)) 

 Inerters 

 Negative Stiffness vibration systems (KDamper) (Fig. 1.3(b)) 

 

 

 

Figure 1.3: (a) Tuned Mass Damper and (b) KDamper configuration 

 

1.2 Scope of the thesis and methodology 

In the present thesis a novel vibration absorption system is proposed, that is based on 

previous KDamper designs. More specifically, three extended versions of the Stiff Base 

Absorber (SBA) from (Kapasakalis, Antoniadis, & Sapountzakis, 2022), (ESBA1 to 

ESBA3) are investigated, which incorporate multiple inerter elements located in 

various positions, in an attempt to maximize the dynamic performance of these systems. 

Moreover, the proposed configurations include positive and negative stiffness 

elements, damping coefficients that are parallel to the stiffness elements and an 

additional oscillating mass. Thus, the equations of motion, in each case, emerge with 

their respective free design variables and the formation of an optimization procedure is 

imperative in order to select the best values that fit to the parameters of the systems. 

The optimization is configured in a way to follow some imposed constraints and 

limitations so that a technologically feasible design of the proposed vibration 

absorption systems can be implemented and their components can lie within realizable 

limits that can meet engineering and constructional criteria. In this procedure, the 

variation of all the stiffness elements is foreseen to lead to a realistic design of the 

proposed systems. The earthquake input motion is selected to be in accordance with the 

current antiseismic codes, via artificial accelerograms that are compatible with the EC8 

acceleration response spectra. Then, a single degree of freedom system (SDoF), 

controlled by the most efficient vibration absorption system, as indicated by the 

optimization process, is chosen to be evaluated by an artificial acceleration and real 

earthquake excitations. The same configuration can be eventually considered as a 

vibration absorption base for multistory structures. The dynamic performance of both 

(a) (b) 
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the superstructure and the base can be assessed from the same artificial and real 

earthquake motions. At the same time, the dynamic performance of the SDoF system 

and the multistory structure is compared with that of a low damping and high damping 

conventional base isolation. In addition, sensitivity analyses can be performed to check 

whether the proposed system is susceptible to detuning phenomena or not. A 

displacement-based configuration is adopted for the realization of the negative stiffness 

element and the non-linear dynamic behavior of the system is compared with the 

initially expected linear one. Finally, an indicative design of the proposed vibration 

absorption system is listed in terms of all the consisting elements.  

A more thorough explanation of the concepts concerning the existing and the proposed 

vibration absorption systems is involved in the next chapters. Various MATLAB       

(The MathWorks Inc., 2022) scripts, containing algorithms, regarding the optimization 

process and the solving of equations of motion, were formed.   

 

1.3 Thesis outline  

After this introduction, the present thesis is structured as follows: 

 Chapter 1 includes the statement of the problem, regarding the advantages and 

drawbacks of the conventional base isolation system and the proposal of novel 

vibration absorption systems in an attempt to maintain the advantages and 

mitigate the disadvantages of it.  

 Chapter 2 involves a brief overview of the Quasi Zero Stiffness (QZS) 

oscillator, the Tuned Mass Damper (TMD) and the Tuned Mass Damper with 

Inerters (TMDI) 

 Chapter 3 contains a short outline of the negative stiffness vibration absorption 

systems of the KDamper, an extended version of it (EKD) and a further 

extension of it with an inerter, the Stiff Base Absorber (SBA) 

 Chapter 4 covers the proposal of three extended versions of the Stiff Base 

Absorber (ESBA1 to ESBA3), in terms of the formation of the equations of 

motion, the statement of the optimization problem with the corresponding 

algorithm, the imposed constraints, the artificial earthquake excitation and the 

algorithm that solves the equations of motion, the results of the optimization 

procedure and the dynamic performance of an SDoF, system controlled by the 

most efficient system of the proposed configurations, by an artificial and real 

earthquake excitations, compared to low and high damping conventional base 

isolation systems 

 Chapter 5 encompasses the dynamic performance of a three-story and five-story 

building, at first, considered fixed on the ground and subsequently mounted on 

the same, as in Chapter 4, proposed vibration absorption base system and is 

compared to that of the low and high damping conventional base isolation  

 Chapter 6 includes the sensitivity analyses, with respect to one at a time or two 

simultaneously altering parameters, to check the detuning phenomena, the 

negative stiffness element configuration that generates a nonlinear response and 
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a comparison of it with the initial expected linear one and the realization of the 

proposed vibration absorption base 

 Chapter 7 list the conclusions of this work and mentions some future research 

extensions of the present thesis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

2 OVERVIEW OF CONVENTIONAL VIBRATION 

ABSORBERS 

2.1 Quasi Zero Stiffness (QZS) oscillators 

True negative stiffness refers to a force that assists motion rather than opposing it, 

similar to a positive stiffness spring. This can be schematically seen in the figure (2.1) 

below. 

 

Figure 2.1: Schematic presentation of (a) a positive stiffness element and (b) a negative stiffness element 

The utilization of negative stiffness elements, also known as anti-springs, for vibration 

isolation was initially introduced by (Molyneux, 1957) and further developed by 

(Platus, 1992). These approaches revolve around the idea of significantly reducing the 

stiffness of the isolator, leading to a decrease in the system's natural frequency 

(resulting in an increase of the natural period), even approaching near-zero levels as 

demonstrated in (Carrella, Brennan, & Waters, 2007). Such systems are referred to as 

Quasi Zero Stiffness (QZS) oscillators. This design approach enhances vibration 

absorption by reducing transmissibility for frequencies above the natural frequency. 

Numerous researchers have validated the effectiveness of these devices through 

numerical simulations and experimental testing, as comprehensively reviewed by 

(Ibrahim, 2008). 

(Nagarajaiah et al., 2013) introduced a novel structural modification approach for 

seismic protection, employing an adaptive negative stiffness device that reduces 

dynamic forces imposed on the structure. To mitigate the concurrent growth of 

structural displacements, a damper is placed in parallel with the negative stiffness 

device. 

Achieving negative stiffness behavior primarily involves special mechanical designs 

that incorporate conventional pre-stressed elastic elements with positive stiffness, such 

as post-buckled beams, plates, shells and pre-compressed springs. (Winterflood, Blair, 

& Slagmolen, 2002) and (Virgin, Santillan, & Plaut, 2008) describe some interesting 

designs in this regard. However, in addition to elastic forces, other physical forces, such 

as gravitational (Dyskin & Pasternak, 2012), magnetic (Robertson, Kidner, Cazzolato, 

& Zander, 2009) or electromagnetic (Zhou & Liu, 2010) forces can be utilized to create 

an equivalent negative stiffness effect. However, for seismic mitigation in buildings or 

bridge structures that require substantial negative stiffness values, elastic forces appear 

to be the most viable choice. Quasi-Zero Stiffness (QZS) oscillators have found 

extensive applications in seismic isolation (Attary, Symans, & Nagarajaiah, 2015), 

(a) (b) 
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automotive suspensions (Lee & Goverdovskiy, 2012) and torsional vibrations (Zhou, 

Xu, & Bishop, 2015).  

Moreover, materials containing a negative stiffness phase (Lakes, 2001) have also 

demonstrated significant damping capabilities, both at the material (Jaglinski, 

Kochmann, Stone, & Lakes, 2007) and in macroscopic devices (Dong & Lakes, 2013). 

This behavior can be combined with high stiffness properties.  

Considering a structure with mass 𝑚, stiffness 𝑘 and damping coefficient 𝑐𝐷, the 

concept of a simple QZS oscillator, presented in Figure (2.2), is to add a negative 

stiffness (NS) element 𝑘𝑁 in parallel to the conventional positive stiffness element k. 

The equation of motion of the Quasi Zero Stiffness (QZS) oscillator becomes: 

 

Figure 2.2: Schematic presentation of a Quasi Zero Stiffness oscillator (QZS) 

 

𝑚�̈�𝑆 + 𝑐𝐷�̇�𝑆 + (𝑘 + 𝑘𝑁)𝑢𝑆 = 𝑚�̈�𝑆 + 𝑐𝐷�̇�𝑆 + 𝑘𝑄𝑍𝑆𝑢𝑆 = −𝑚�̈�𝑔                             (2.1) 

 

where 𝑢𝑆 = 𝑥𝑆 − 𝑥𝑔 is the relative to the ground displacement and 𝑥𝑔 is the ground 

excitation. From equation (2.1), it is obvious that the overall static stiffness of the 

system is reduced, since the negative stiffness element has a negative value (𝑘𝑄𝑍𝑆 < 𝑘 

since 𝑘𝑁 < 0). This correspondingly reduces the natural frequency of the system (or 

equivalently increases its natural period). As a result, the seismic forced and 

subsequently the accelerations are reduced. However, this limits the static loading 

capacity of the structure, which may result to unsolvable problems, especially for 

vertical vibration isolation. 
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2.2 Tuned Mass Dampers (TMD) 

Among the various control techniques for vibration mitigation, one widely utilized and 

well-established approach is the incorporation of an additional mass known as a Tuned 

Mass Damper (TMD). A TMD, also referred to as a dynamic vibration absorber, 

consists of a mass, a spring, and a viscous damper. Typically, it is installed on a 

vibrating primary system to suppress undesirable vibrations caused by wind and 

seismic loads. The concept of TMD was initially introduced by (FRAHM, Patent No. 

0989958, 1911) and after the optimization theory for designing TMD systems, 

proposed by (Den Hartog, 1956), it has been extensively employed in numerous 

systems. Notably, TMDs have found application in skyscrapers, with examples 

including the renowned Taipei 101 Tower in Taiwan (Haskett, Breukelman, Robinson, 

& Kottelenberg, 2003), one of the tallest buildings globally (Fig. 2.3). 

 

 

Figure 2.3: Tuned Mass Damper (TMD), installed on top of the Taipei 101 Tower in Taiwan 

 

The basic principle of operation of TMDs is to reduce the displacements of a structure 

by transferring energy to a vibrating system consisting of an additional mass, designed 

with appropriate characteristics and placed at a suitable location within the structure. 

The TMD, as mentioned before, typically consists of an additional mass (which 

constitutes a small percentage of the total mass) and a spring combined with an artificial 

damper. The values and parameters related to the design of such devices depend on 

both the desired results in the final dynamic response of the structure and the tuning of 

the TMD frequency to match the fundamental frequency of the original structure. This 

characteristic allows a significant amount of the structural vibration energy, due to 

seismic motion, to pass through the structure into the additional mass of the device and 

then dissipate through the damper.  
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Despite being known for their effectiveness and reliability, the main drawback of these 

devices is their sensitivity to the parameters that characterize them. Environmental and 

other external factors can easily disrupt these parameters, negatively affecting the 

device's performance and consequently, the response of the structure. The difficulty in 

constructing and placing the large additional masses required to achieve significant 

reduction in imposed seismic vibrations further limits their usage. The concept of TMD 

is illustrated in the following figure (2.4). 

 

Figure 2.4: Schematic presentation of a Tuned Mass Damper (TMD) 

 

The resulting equations of motion are listed below: 

 

𝑚�̈�𝑆 + 𝑐𝐷(�̇�𝑆 − �̇�𝐷) + 𝑘𝐷(𝑢𝑆 − 𝑢𝐷) + 𝑘𝑢𝑆 = −𝑚�̈�𝑔                                           (2.2a) 

𝑚𝐷�̈�𝐷 − 𝑐𝐷(�̇�𝑆 − �̇�𝐷) − 𝑘𝐷(𝑢𝑆 − 𝑢𝐷) = −𝑚𝐷�̈�𝑔                                                 (2.2b) 

 

Regarding the optimal design of TMD, various approaches can be found in the 

literature, depending on the specific problem. A common practice is to tune the TMD 

to the fundamental frequency of the original system, and then numerically calculate the 

damping ratio. 
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2.3 Inerters and Tuned Mass Damper Inerters (TMDI) 

In an effort to reduce the requirements for large additional mass, the principle of the 

inerter was introduced by (Smith, 2002), in the early 2000s. The inerter is a two-

terminal device that generates a force proportional to the relative acceleration across its 

terminals. This proportionality constant is called "inertance" and is measured in 

kilogram units. The main advantage of the inerter is that it does not need to have a large 

mass to achieve the same inertial effect as the additional mass in the TMD. 

An illustrative application of the inerter is shown in Figure (2.5). In this arrangement, 

the inerter connects the mass of the structure directly to the base. This reduces the 

natural frequency of the system and consequently, the seismic loads without reducing 

the load-carrying capacity of the structure or introducing additional masses. 

 

Figure 2.5: Schematic presentation of the inerter damper 

 

The equation of motion for this system is as follows: 

 

(𝑚 + 𝑏𝑡)�̈�𝑆 + 𝑐𝐷�̇�𝑆 + 𝑘𝑢𝑆 = −𝑚�̈�𝑔                                                                                  (2.3) 

 

where 𝑏𝑡 is the inertance.  

Recently, the combination of TMD with an inerter (TMDI) has been proposed (De 

Domenico, Impollonia, & Ricciardi, 2018). In this arrangement, the additional mass of 

the TMD is connected to the base through an inerter. This way, the inertial force of the 
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additional mass is increased without increasing the mass itself. The TMDI 

configuration is shown in Figure (2.6). However, proposed TMDs with inerters suffer 

from susceptibility to detuning. 

 

Figure 2.6: Schematic presentation of the Tuned Mass Damper with Inerter (TMDI) 

 

The equations of motion, now, are the following: 

 

𝑚�̈�𝑆 + 𝑐𝐷(�̇�𝑆 − �̇�𝐷) + 𝑘𝐷(𝑢𝑆 − 𝑢𝐷) + 𝑘𝑢𝑆 = −𝑚�̈�𝑔                                                    (2.4a) 

(𝑚𝐷 + 𝑏𝑡)�̈�𝐷 − 𝑐𝐷(�̇�𝑆 − �̇�𝐷) − 𝑘𝐷(𝑢𝑆 − 𝑢𝐷) = −𝑚𝐷�̈�𝑔                                        (2.4b) 
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3 NEGATIVE STIFFNESS KDAMPER-BASED 

DYNAMIC VIBRATION ABSORBERS 

3.1 The KDamper concept 

A promising group of absorbers relies on enhancing damping through the strategic 

inclusion of negative stiffness components. Taking advantage of the benefits offered by 

the traditional Tuned Mass Dampers (TMD) and the Quasi Zero Stiffness (QZS) 

oscillators, a novel concept for passive vibration absorption and damping, known as the 

KDamper concept, was introduced by (Antoniadis, Kanarachos, Gryllias, & 

Sapountzakis, 2018). The KDamper incorporates a negative stiffness element known 

for its exceptional damping properties, while avoiding the drawbacks associated with 

traditional linear oscillators or zero-stiffness designs. The overall static stiffness of the 

KDamper is designed to be similar to that of a conventional reference oscillator. 

However, it differs from both the original single-degree-of-freedom (SDoF) oscillator 

and existing negative stiffness oscillators through the strategic redistribution of 

individual stiffness elements and damping reallocation. Despite the inclusion of a 

negative stiffness element, the proposed oscillator is designed to ensure static and 

dynamic stability. Additionally, the presence of an additional mass helps mitigate the 

effects of vibrating loads by acting as an energy dissipation mechanism, transferring 

energy from the structure to the added mass. The KDamper overcomes the sensitivity 

issues associated with Tuned Mass Dampers, as the tuning is primarily controlled by 

the parameters of the negative stiffness element. 

 

Figure 3.1: Schematic presentation of the KDamper vibration absorption system  
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The KDamper has been effectively implemented in multistory buildings as a base 

absorption system (Kapasakalis, Antoniadis, & Sapountzakis, Implementation of the 

KDamper as a Stiff Seismic Absorption Base: A Preliminary Assessment, 2019) and 

has been compared to conventional base isolation systems (Kapasakalis, Antoniadis, & 

Sapountzakis, Performance assessment of the KDamper as a seismic Absorption Base, 

2019).  

As it can be clearly observed in the schematic presentation of the KDamper concept in 

(Fig. 3.1), similarly to the QZS oscillator, there is a negative stiffness element.  

However, contrary to the QZS isolator, the first basic requirement of the KDamper is 

that the overall static stiffness of the system is maintained. Thus, The KDamper concept 

effectively addresses the inherent drawback of negative stiffness (NS) isolators. 

Moreover, compared to the TMD, the negative stiffness element connects the additional 

oscillating mass to the base. In this way, the KDamper achieves the vibrations control 

with relatively small values of the additional mass. The equations of motion of this 

system become: 

 

𝑚�̈�𝑆 + 𝑐𝐷(�̇�𝑆 − �̇�𝐷) + 𝑘𝑃(𝑢𝑆 − 𝑢𝐷) + 𝑘𝑅𝑢𝑆 = −𝑚�̈�𝑔                                               (3.1a) 

𝑚𝐷�̈�𝐷 − 𝑐𝐷(�̇�𝑆 − �̇�𝐷) − 𝑘𝑃(𝑢𝑆 − 𝑢𝐷) + 𝑘𝑁𝑢𝐷 = −𝑚𝐷�̈�𝑔                                             (3.1b) 

 

3.2 Extended version of the KDamper concept 

The next dynamic vibration absorption system is an extension of the KDamper concept 

and thus, it is called extended KDamper (EKD system). Similar to the KDamper, the 

EKD incorporates a combination of masses, negative stiffness, positive stiffness 

elements and artificial dampers. The main difference lies in the system configuration, 

where the positive stiffness spring (𝑘𝑃𝑆) connects the damper mass (𝑚𝐷) to the system's 

base, while the negative stiffness element (𝑘𝑁𝑆) is connected between the damper mass 

(𝑚𝐷) and the oscillating mass (𝑚). Additionally, an extra artificial damper is introduced 

in parallel with the negative stiffness element, resulting in two dampers, namely 𝑐𝑁𝑆 

and 𝑐𝑃𝑆. Utilizing the original formulation of the KDamper expressions (Equations 

(3.1)), the following equations of motion for the EKD system are derived as follows, 

according to the figure (3.2): 

 

𝑚�̈�𝑆 + 𝑐𝑁𝑆(�̇�𝑆 − �̇�𝐷) + 𝑘𝑁𝑆(𝑢𝑆 − 𝑢𝐷) + 𝑘𝑅𝑢𝑆 = −𝑚�̈�𝑔                                              (3.2a) 

𝑚𝐷�̈�𝐷 − 𝑐𝑁𝑆(�̇�𝑆 − �̇�𝐷) − 𝑘𝑁𝑆(𝑢𝑆 − 𝑢𝐷) + 𝑐𝑃𝑆�̇�𝑆 + 𝑘𝑃𝑆𝑢𝐷 = −𝑚𝐷�̈�𝑔                      (3.2b) 

 

Since the EKD system is an extension of the classical KDamper concept, it is 

anticipated that the vibration control strategy implemented with the EKD system will 

yield similar effects to those observed with the KDamper in terms of controlling the 

dynamic behavior of the system. The configuration of the EKD system aims to ensure 



14 
 

that the displacements and velocities of the internal degrees of freedom (DoFs) remain 

within reasonable limits. This design approach aims to strike a balance between 

practicality and efficiency, allowing for a realistic and effective implementation. 

 

 

Figure 3.2: Schematic presentation of the extended KDamper concept (EKD system)  

The EKD has been successfully implemented as a seismic base absorber of multi-story 

building structures (Kapasakalis, Antoniadis, & Sapountzakis, Constrained optimal 

design of seismic base absorbers based on an extended KDamper concept, 2021), 

without or by including the effect of the Soil-Structure Interaction (SSI) for various soil 

categories (Kapasakalis, Antoniadis, & Sapountzakis, A Soil-Dependent Approach for 

the Design of Novel Negative Stiffness Seismic Protection Devices, 2021), or by 

adopting an extreme geometrical nonlinear configuration for the realization of the 

negative stiffness element (Kapasakalis & Sapountzakis, Vibration Absorption using 

KDamper-based Devices with Extreme Geometric Nonlinearity,, 2022), or as a seismic 

retrofitting measure for typical RC residential buildings (Kapasakalis, Alvertos, 

Antoniadis, & Sapountzakis, 2022) and finally as a system for vibration mitigation of 

a monopile Offshore Wind Turbine (OWT) (Kampitsis, Kapasakalis, & Via-Estrem, 

2022).  

 

3.3 Extension of KDamper Equipped with Inerter 

In figure (3.3), there is an extension of the KDamper, the EKD system, as analyzed in 

the previous section 3.2, by introducing an inerter, which directly connects the structure 

to the ground. This leads to a decrease in the natural frequency (𝑓0) of the system, 
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thereby reducing the seismic load on the structure without lessening its stiffness or 

increasing its actual mass. Simultaneously, the EKD system is implemented to 

effectively control the significant relative displacements of the structure by enhancing 

the overall damping. 

The EKD system, with the incorporation of an inerter, has been investigated as a 

vibration control base for multistory structures, called as Stiff Base Absorber (SBA), in 

the work of (Kapasakalis, Antoniadis, & Sapountzakis, 2022), as a method for the 

vertical component of earthquake excitations (Kapasakalis, Antoniadis, & 

Sapountzakis, STIFF vertical seismic absorbers, 2021) and (Kalogerakou, Kapasakalis, 

Antoniadis, & Sapountzakis, 2023) and as a vibration mitigation approach for Wind 

Turbine towers (WT) in the study of (Kapasakalis K. A., Antoniadis, Sapountzakis, & 

Kampitsis, Vibration Mitigation of Wind Turbine Towers Using Negative Stiffness 

Absorbers, 2021).     

 

 

Figure 3.3: Schematic presentation of the Stiff Base Absorber (SBA system) 

Thus, the equations of motion of this system are the following: 

 

(𝑚 + 𝑏𝑡)�̈�𝑆 + 𝑐𝑁𝑆(�̇�𝑆 − �̇�𝐷) + 𝑘𝑁𝑆(𝑢𝑆 − 𝑢𝐷) + 𝑘𝑅𝑢𝑆 = −𝑚�̈�𝑔                          (3.3a) 

𝑚𝐷�̈�𝐷 − 𝑐𝑁𝑆(�̇�𝑆 − �̇�𝐷) − 𝑘𝑁𝑆(𝑢𝑆 − 𝑢𝐷) + 𝑐𝑃𝑆�̇�𝑆 + 𝑘𝑃𝑆𝑢𝐷 = −𝑚𝐷�̈�𝑔                (3.3b) 
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4 PROPOSED NEGATIVE STIFFNESS 

VIBRATION ABSORPTION DEVICES 

4.1 Introduction to Extended Stiff Base Absorbers  

4.1.1 Schematic presentation of the proposed Extended Stiff Base Absorbers 

The present thesis aims to propose extended versions of the “Stiff Base Absorber” 

(SBA) system, as presented in the work of (Kapasakalis, Antoniadis, & Sapountzakis, 

2022). More specifically, additional inerter elements are introduced and placed in 

different locations of the proposed dynamic vibration absorber, to enhance its 

performance and maintain its previously defined advantages.  

The proposed extended versions of SBA, which will be referred as ESBA from now 

on, are presented in the following figures. The first alternative configuration, ESBA-1, 

depicted in (Fig. 4.1), introduces an additional inerter element bNS parallel to the 

negative stiffness (NS) element kNS and aims to reduce the Negative Stiffness (NS) 

stroke (relative displacement between the terminals of the NS element).  

 

Figure 4.1: Configuration of the ESBA-1 proposed system 

 

The second alternative, ESBA-2 in (Fig. 4.2), introduces an inerter element bPS parallel 

to the grounded positive stiffness element kPS, aiming to reduce the displacement of the 

additional oscillating mass.  

Finally, a third alternative is proposed, ESBA-3 in (Fig. 4.3). This is a combination of 

the two previously mentioned configurations, incorporating both the bNS and bPS 

inerters, between the additional oscillating mass and the rigid mass mounted on top, 

and the oscillating mass and the ground, respectively,  with the expectation to exhibit 

the best possibly dynamic performance. 
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Figure 4.2: Configuration of the ESBA-2 proposed system 

 

 

Figure 4.3: Configuration of the ESBA-3 proposed system 

 

4.1.2 Mathematical expression of the proposed Extended Stiff Base Absorbers 

Taking into account the various configurations of the ESBA system and its components, 

the equations of motion, that define its dynamic performance, may be formulated. 

Starting with the ESBA-1 configuration, compared to the original SBA system, as an 

extended version of the KDamper, in a similar way the following equations are 

expressed as for the rigid mass and the additional mass, respectively: 
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[𝑚𝑆 + (𝑏𝑅 + 𝑏𝑁𝑆)𝑚𝑆]�̈�𝑠 − (𝑏𝑁𝑆𝑚𝑆)�̈�𝐷 + 𝑐𝑁𝑆�̇�𝑆 − 𝑐𝑁𝑆�̇�𝐷 + (𝑘𝑅 + 𝑘𝑁𝑆)𝑢𝑆 

−𝑘𝑁𝑆𝑢𝐷   = −𝑚𝑆�̈�𝑔                                                                                                  (4.1) 

−(𝑏𝑁𝑆𝑚𝑆)�̈�𝑠 + [(𝑏𝑁𝑆𝑚𝑆) + 𝑚𝐷]�̈�𝐷 − 𝑐𝑁𝑆�̇�𝑆 + (𝑐𝑁𝑆 + 𝑐𝑃𝑆)�̇�𝐷 − 𝑘𝑁𝑆𝑢𝑆 

+(𝑘𝑃𝑆 + 𝑘𝑁𝑆)𝑢𝐷 = − 𝑚𝐷�̈�𝑔                                                                                                            (4.2) 

 

In the above equations, 𝑚𝑆 is the total mass of the rigid mass (including the mass of 

any additional superstructure elements if they exist),  𝑚𝐷 is the mass of the additional 

oscillating mass, 𝑐𝑁𝑆 is the damping coefficient of the artificial damper between the 

rigid mass and the additional oscillating mass, 𝑐𝑃𝑆 is the damping coefficient of the 

damper lying between the additional oscillating mass and the ground, 𝑘𝑁𝑆 is the 

stiffness of the negative stiffness element, 𝑘𝑃𝑆 is the stiffness of the positive stiffness 

element and 𝑘𝑅 is the stiffness of the structure. Finally, since 𝑏𝑅, 𝑏𝑁𝑆 (or 𝑏𝑃𝑆 as follows) 

express inertance, their units are in terms of mass. This is applied to various works, 

such as (De Domenico & Ricciardi, 2018) or (Qiao, Huang, De Domenico, & Wang, 

2022). However, in the present thesis a slightly different expression of inertance is used. 

They are expressed as a portion/percentage of the total mass 𝑚𝑆. Thus, the above 

equations are defined in this form. Those relations are produced by considering an 

external base excitation of the form 𝑥𝑔(𝑡). The terms 𝑢𝑆 and 𝑢𝐷 describe the relative to 

the ground displacements of the structure and the oscillating mass, respectively. The 

superimposed dot (or two dots) denote the derivative with respect of time, with the one 

dot expressing the first derivative or equivalently the relative velocity and the two dots 

the second derivative, which corresponds to the relative acceleration. 

It is convenient for the following calculations and analyses to transform the equations 

(4.1) and (4.2) in matrix form. They are defined as: 

 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒖(𝑡) = −𝝉�̈�𝑔(𝑡)                                                                                   (4.3) 

 

Where: 

 

𝑴 = [
[𝑚𝑆 + (𝑏𝑅 + 𝑏𝑁𝑆)𝑚𝑆] −(𝑏𝑁𝑆𝑚𝑆)

−(𝑏𝑁𝑆𝑚𝑆) [(𝑏𝑁𝑆𝑚𝑆) + 𝑚𝐷]
] 

𝑪 = [
𝑐𝑁𝑆 −𝑐𝑁𝑆

−𝑐𝑁𝑆 (𝑐𝑁𝑆 + 𝑐𝑃𝑆)
] 

𝑲 = [
(𝑘𝑅 + 𝑘𝑁𝑆) −𝑘𝑁𝑆

−𝑘𝑁𝑆 (𝑘𝑃𝑆 + 𝑘𝑁𝑆)
] 

𝝉 = [
𝑚𝑆

𝑚𝐷
] 

𝒖(𝑡) = [
𝑢𝑆(𝑡)
𝑢𝐷(𝑡)

]                                                                                                                      (4.4) 
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In matrix and vector notation, boldface capital variables denote matrices and boldface 

lowercase vectors, respectively. 

Continuing with the rest two ESBA configurations, the equations of motion are formed 

in the same exact way. In accordance with the above (Fig. 4.2), for the ESBA-2 it is: 

 

(𝑚𝑆 + 𝑏𝑅𝑚𝑆)�̈�𝑠 + 𝑐𝑁𝑆�̇�𝑆 − 𝑐𝑁𝑆�̇�𝐷 + (𝑘𝑅 + 𝑘𝑁𝑆)𝑢𝑆 − 𝑘𝑁𝑆𝑢𝐷 = −𝑚𝑆�̈�𝑔               (4.5)                                                  

[𝑚𝐷 + (𝑏𝑃𝑆𝑚𝑆)]�̈�𝐷 − 𝑐𝑁𝑆�̇�𝑆 + (𝑐𝑁𝑆 + 𝑐𝑃𝑆)�̇�𝐷 − 𝑘𝑁𝑆𝑢𝑆  

+(𝑘𝑃𝑆 + 𝑘𝑁𝑆)𝑢𝐷 = − 𝑚𝐷�̈�𝑔                                                                                                            (4.6) 

 

As it can be clearly observed, only the arrangement of the terms containing the inerter 

quantities is altered. So, by expressing those relations in matrix form, only the mass 

matrix is differentiated as:    

 

𝑴 = [
(𝑚𝑆 + 𝑏𝑅𝑚𝑆) 0

0 (𝑚𝐷 + 𝑏𝑃𝑆𝑚𝑆)
]                                                                            (4.7) 

 

while all the rest of the matrices remain intact. 

Finally, according to the (Fig. 4.3) the relations of the motion concerning the ESBA-3 

configuration sum up as: 

 

[𝑚𝑆 + (𝑏𝑅 + 𝑏𝑁𝑆)𝑚𝑆]�̈�𝑠 − (𝑏𝑁𝑆𝑚𝑆)�̈�𝐷 + 𝑐𝑁𝑆�̇�𝑆 − 𝑐𝑁𝑆�̇�𝐷 + (𝑘𝑅 + 𝑘𝑁𝑆)𝑢𝑆 

−𝑘𝑁𝑆𝑢𝐷   = −𝑚𝑆�̈�𝑔                                                                                                  (4.8) 

−(𝑏𝑁𝑆𝑚𝑆)�̈�𝑠 + [𝑚𝐷 + (𝑏𝑁𝑆 + 𝑏𝑃𝑆)𝑚𝑆]�̈�𝐷 − 𝑐𝑁𝑆�̇�𝑆 + (𝑐𝑁𝑆 + 𝑐𝑃𝑆)�̇�𝐷 − 𝑘𝑁𝑆𝑢𝑆  

+(𝑘𝑃𝑆 + 𝑘𝑁𝑆)𝑢𝐷 = − 𝑚𝐷�̈�𝑔                                                                                                            (4.9) 

 

Since, ESBA-3 is a combination of the other two configurations, the fact that relation 

(4.8) coincides with the (4.1) emerges. Similarly, the only different matrix is the mass 

matrix again and is configured as: 

 

𝑴 = [
[𝑚𝑆 + (𝑏𝑅 + 𝑏𝑁𝑆)𝑚𝑆] −(𝑏𝑁𝑆𝑚𝑆)

−(𝑏𝑁𝑆𝑚𝑆) [𝑚𝐷 + (𝑏𝑁𝑆 + 𝑏𝑃𝑆)𝑚𝑆]
]                                                   (4.10) 

 

Once the equations of motion of the proposed vibration absorbers (ESBA) are stated, 

the goal now is to determine the optimal system parameters. 
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4.2 Statement of the optimization problem 

As observed in the previously defined equations, there is a multitude of variables that 

render the dynamic performance of the ESBA system feasible. In order to define the 

best values of these parameters so as to enhance the performance of the ESBA system, 

an optimization procedure may be followed. A first approach can be made by adopting 

the classical minmax (H∞) procedure, as described by (Den Hartog, 1956). This 

procedure aims at the minimization of a suitably selected transfer function of the 

system. However, since there is the option to select a specific transfer function to be 

minimized, different results can be produced. As aptly mentioned in the work of 

(Kapasakalis, Alamir, Antoniadis, & Sapountzakis, 2021), the minimization of a 

transfer function referring to the relative displacement (𝐻𝑈𝑆), for example, may give 

non optimal results, while the minimization of that of the absolute acceleration (𝐻𝐴𝑆) 

may yield the optimal values of the parameters and thus, confirming that the results can 

have significant discrepancies, depending on the option of various transfer functions. 

Due to the aforementioned problem, considering non optimal, but mathematically 

acceptable results, the values of the variables that characterize the ESBA system may 

lead to non-realistic results. That means, large values of the stiffness elements, the 

dampers or the inerters can have an adverse impact on the technological design of the 

system, as it may not be feasible to design, construct and implement those components 

to meet those requirements. From the other hand, it might be financially difficult to 

apply these configurations and as a result be a disadvantageous system compared to the 

conventional base isolation.  

In order to avoid those situations, an optimization procedure that can end up in realistic 

configurations adjacent to reasonably engineered criteria is sought. The dynamic 

vibration absorber should be designed to meet all the geometrical and constructional 

limitations imposed by the structural system and retain the values of all the components 

to reasonable ranges. 

 

4.2.1 Optimization process – Harmony Search Algorithm 

Structural design optimization is a vital and complex task that has gained significant 

attention in recent years. Various mathematical methods, including linear, nonlinear, 

and dynamic programming, have been developed to tackle engineering optimization 

problems. However, these methods have limitations and none of them are entirely 

effective and robust for all types of optimization problems, according to (Lee & Geem, 

2004). Some mathematical methods exhibit drawbacks in optimization processes, as 

they require calculations with complex derivatives, have sensitivity depending on the 

initial values or demand large amount of enumeration memory. Those techniques, 

usually, search a solution in the nearby area of the initial point. If the solution 

encounters a local optimum of the many, the engineering problem may have, the result 

will not be a global optimum and solution direction will depend on the initial point. 

Moreover, due to many constraints the problem may have, gradient search may become 

difficult and unstable. Those reasons justify the fact that these methods may be 

inefficient for optimization problems, especially for large structural problems with a 
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great number of variables, and perform a large amount of gradient calculations with 

many iterative processes without a possible achievement of the global optimum. 

Scientists have moved in the direction of the approximate algorithms to overcome the 

aforementioned limitations (Alia & Mandava, 2011). Metaheuristic algorithms are well 

known approximate algorithms, which can deal with optimization problems with 

satisfying results. The special characteristic of metaheuristic algorithms is that they 

combine rules and random aspects to imitate natural phenomena. A novel metaheuristic 

algorithm, that of the Harmony Search (HS) (Geem, Kim, & Loganathan, 2001), is one 

the most efficient algorithms in the field of combinatorial optimization. It is a 

population-based algorithm that imitates the musical improvisation process where 

musicians search for the ideal state of harmony by improvising the pitch of their 

instruments. 

In (Alia & Mandava, 2011) there is an analytical explanation of the steps that HS 

algorithm involves. They are described as follows: 

At first the optimization process that has to be made is to minimize or maximize a 

function 𝑓(𝒙) which is subject to 𝑥𝑖 ∈ 𝑋𝑖 , for i=1,2,…,N. 𝑓(𝒙) is the objective 

function, 𝒙 is a set (vector solution) of each decision variable 𝑥𝑖, 𝑋𝑖  is the possible 

range of each variable and N is the number of variables. There are some parameters that 

operate the HS algorithm and are explained analytically in the steps that come after. 

 STEP 1 – Initialize Harmony Memory (HM) 

In the first step, the aim is to construct the Harmony Memory (HM) matrix. This matrix 

has dimensions of (HMS)x(N). HMS stands for Harmony Memory Size and is the first 

parameter of the procedure. It is the number of randomly generated solution vectors. 

The HM matrix has the following form: 

𝑯𝑴 =

[
 
 
 

𝑥1
1 𝑥2

1

𝑥1
2 𝑥2

2

…     𝑥𝑁
1

…     𝑥𝑁
2

⋮ ⋮
𝑥1

𝐻𝑀𝑆 𝑥2
𝐻𝑀𝑆

… ⋮
… 𝑥𝑁

𝐻𝑀𝑆]
 
 
 

                                                                         (4.11) 

Each row represents a possible solution vector which has been randomly generated for 

every variable (N in total -number of columns- for an N dimensional problem). Every 

variable 𝑥𝑙
𝑘, where 𝑘 ∈ [1, 𝐻𝑀𝑆], 𝑙 ∈ [1, 𝑁] has been randomly generated from its 

predefined range as follows: 

𝑥𝑙
𝑘 = 𝑟𝑎𝑛𝑑() · (𝑈𝑥𝑙

𝑘−𝐿𝑥𝑙
𝑘)+𝐿𝑥𝑙

𝑘                                                                         (4.12) 

Where  𝐿𝑥𝑙
𝑘 and  𝑈𝑥𝑙

𝑘
are the lower and upper limit of the range of each variable, 

respectively and 𝑟𝑎𝑛𝑑() is a random scalar drawn from the uniform distribution in the 

interval (0,1). 

Finally, in parallel with the initial HM matrix, a vector fit with dimensions (1)x(HMS) 

is constructed, that contains the objective function values generated by every set of 

variables.    
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 STEP 2 – Improvise a new harmony 

In this step a new harmony vector 𝑥′ = (𝑥1
′ , 𝑥2

′ , … , 𝑥𝑁
′ ) is generated by checking the 

probability test of HMCR. HMCR is the second parameter of the HS algorithm, it stands 

for Harmony Memory Considering Rate and since it is probability it is by definition 

HMCR ∈ [0,1]. For every new variable of the new harmony vector, if a random scalar, 

again drawn from the uniform distribution in the interval (0,1), is smaller than HMCR, 

then the new value is retrieved from a random position of the column of the already 

configured HM matrix that refers to that specific variable. If not (if the random scalar 

is larger than HMCR), then the new variable 𝑥𝑖
′ will be newly generated again from the 

previous relation (4.12). This operation is correlated with the musician’s ability to 

produce a tune from his memory or create a new one.  

However, a further mutation of the new variable may be performed if it belongs to the 

first case of the randomly inherited historical values of the HM matrix. This will be 

achieved by checking the PAR probability. PAR stands for Pitch Adjusting Rate and 

again it is PAR ∈ [0,1]. If a randomly generated scalar lies within the PAR probability, 

then the decision variable will be adjusted according to the following relation: 

 𝑥𝑖
′ = 𝑥𝑖

′ ± 𝑟𝑎𝑛𝑑() · 𝑏𝑊                                                                                              (4.13) 

Where 𝑏𝑊 is an arbitrarily chosen distance bandwidth that determines how much the 

new value will change compared to the older one. Its value depends on the nature of 

the examined engineering problem and can be different for any variable. However, for 

simplicity reasons a uniform value may be taken for all the variables and the algorithm 

should be altered to take into account that the new decision variables will not exceed 

the limits of their ranges. Moreover, the ± case can follow a 50%-50% probability 

scheme. At the other hand if the rand lies outside the PAR probability, then the decision 

variable remains intact. This operation resembles to the musician’s ability to play 

something similar to a known piece and thus he/she adjusts the pitch slightly. All the 

above can be summarized into the following relations: 

 

𝑥𝑖
′ = {

𝑥𝑖
′ ∈ {𝑥𝑖

1, 𝑥𝑖
2, … , 𝑥𝑖

𝐻𝑀𝑆} , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻𝑀𝐶𝑅

𝑥𝑖
′ ∈ 𝑟𝑎𝑛𝑔𝑒𝑋𝑖 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝐻𝑀𝐶𝑅) 

                                                 (4.14) 

𝑥𝑖,𝑤𝑖𝑡ℎ𝑖𝑛 𝐻𝑀𝐶𝑅
′ = {

𝐸𝑞 (4.13) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝐴𝑅

𝐷𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑃𝐴𝑅) 
                            (4.15) 

 

 STEP 3 – Update the Harmony Memory 

Since the new harmony vector has been configured, the new value of the objective 

function is calculated and is compared to the worst value of the objective function from 

the set of decision variables stored in the HM matrix. If the new vector yields a better 

result than the worst, then the worst vector is replaced by the new one. If this does not 

happen, then the new vector will be rejected and the HM matrix will remain intact. 
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 STEP 4 – Stopping criterion 

The steps 3 and 4 are repeated until a stopping criterion is satisfied. A common 

terminating criterion is the maximum number of total iterations. Then the best harmony 

vector is selected and considered the best solution that gives optimal results. 

The (Table 4.1), below, contains the values of the parameters of the HS algorithm that 

were adopted for the following analyses.    

 

Table 4.1: Parameters of the HS algorithm 

HMS HMCR PAR bw 

75 0.5 0.1 0.5 

 

 

4.2.2 Evaluation of optimization constraints and limitations 

Once the optimization algorithm and strategy have been figured out, the next step is to 

determine the imposed constraints and limitations that have to be set to the variables of 

the problem. Those constraints are necessary as they will result to a technologically 

feasible design of the ESBA configurations and its components will lie within realizable 

limits that will meet engineering and constructional criteria. 

The first limitation is to define the variables that have to be optimized. Since the ESBA 

configurations are an advanced extended version of the KDamper concept, they satisfy 

the first basic requirement of it (Antoniadis, Kanarachos, Gryllias, & Sapountzakis, 

2018), which is that the overall static stiffness of the system is maintained, overcoming 

the main disadvantage of the NS isolator and is expressed by the relation that follows: 

𝑘𝑅 +
𝑘𝑁𝑆𝑘𝑃𝑆

𝑘𝑁𝑆+𝑘𝑃𝑆
= 𝑘0 = (2𝜋𝑓0)

2𝑚𝑡𝑜𝑡𝑎𝑙                                                                              (4.16)        

Where 𝑘0 and 𝑓0 are the overall static stiffness and frequency of the system, respectively 

and 𝑚𝑡𝑜𝑡𝑎𝑙 is the total mass of the system, including both the total mass of the 

superstructure and the mass of the oscillating mass of the KDamper.  

Moreover, since ESBA configurations are enriched versions of the Extended KDamper 

concept, with inerters in various locations, they subsequently adopt the characteristics 

concerning the variations in the values of the stiffness elements of the system 

(Kapasakalis, Antoniadis, & Sapountzakis, Constrained optimal design of seismic base 

absorbers based on an extended KDamper concept, 2021). In other words, due to 

various reasons, like temperature variations, manufacture tolerances or nonlinear 

behaviors, all the stiffness elements may exhibit a significant behavior in practice, as 

all the negative stiffness configurations emerge from unstable nonlinear systems. So, 

the ESBA design, just like the Extended KDamper, foresees a simultaneous variation 

in the values of all the stiffness elements, in order to secure the static stability of the 
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system. This is achieved by introducing stiffness variation coefficients in the limit case 

where the system becomes statically unstable. This is realized when the stiffness matrix 

determinant becomes zero. Thus, by considering synchronous variations and more 

specifically, an increase in the absolute value of the negative stiffness by a factor 𝜀𝑁𝑆 

and a decrease in the values of the positive stiffnesses 𝑘𝑅 and 𝑘𝑃𝑆 by factors 𝜀𝑅 and 𝜀𝑃𝑆, 

respectively, the following equation is yielded: 

det(𝑲) = 0  =>    (1 − 𝜀𝑅)𝑘𝑅 +
(1+𝜀𝑁𝑆)𝑘𝑁𝑆(1−𝜀𝑃𝑆)𝑘𝑃𝑆

(1+𝜀𝑁𝑆)𝑘𝑁𝑆+(1−𝜀𝑃𝑆)𝑘𝑃𝑆
= 0                     (4.17) 

By introducing an auxiliary coefficient of the negative stiffness ratio, which is defined 

as: 

𝑘𝑛𝑠 =
𝑘𝑁𝑆

𝑘0
                                                                                                                        (4.18a) 

The values of all the rest stiffness elements can be determined with the use of stiffness 

ratios by combining the (Eq. 4.16) and (Eq. 4.17) as follows: 

𝑘𝑟 =
−𝑏−√𝑏2−4𝑎·𝑐

2𝑎
  =>    𝑘𝑅 = 𝑘𝑟 · 𝑘0                                                                       (4.18b) 

𝑘𝑝𝑠 =
𝑘𝑛𝑠−𝑘𝑟·𝑘𝑛𝑠

𝑘𝑟+𝑘𝑛𝑠−1
  =>    𝑘𝑃𝑆 = 𝑘𝑝𝑠 · 𝑘0                                                                         (4.18c) 

Where parameters 𝑎, 𝑏 and 𝑐 are defined as: 

𝑎 = 𝑅(𝑃𝑆 − 𝑁𝑆)                                                                                                                  (4.19a) 

𝑏 = 𝑘𝑛𝑠 · 𝑁𝑆(𝑃𝑆 − 𝑅) + 𝑅(𝑁𝑆 − 𝑃𝑆)                                                                           (4.19b) 

𝑐 = −𝑃𝑆 · 𝑁𝑆 · 𝑘𝑛𝑠                                                                                                             (4.19c) 

Where the auxiliary parameters 𝑅, 𝑁𝑆 and 𝑃𝑆 are the following: 

𝑅 = (1 − 𝜀𝑅)                                                                                                                (4.20a) 

𝑁𝑆 = (1 + 𝜀𝑁𝑆)                                                                                                              (4.20b) 

𝑃𝑆 = (1 − 𝜀𝑃𝑆)                                                                                                       (4.20c) 

 

From the above, it is now obvious that the optimization process can be implemented by 

adopting the following conditions: 

 The optimization problem is formed to comply with seismic design codes. The 

constraints and objective function are selected from time-domain responses. 

The procedure, from which the system is set dynamically motioned, involves 

earthquake ground excitations, which their selection is described in the next 

section (4.2.3).  

 The objective function is set to be the relative to the ground structure 

displacement. 

 Based on previous work (Kapasakalis, Antoniadis, & Sapountzakis, 2019), the 

negative stiffness stroke may be set as a constraint with an upper limit of 15cm. 
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However, in this work it is let as a free parameter, in order to check its tendency 

of variation and observe at what magnitudes it can reach. A slightly higher 

hypothetical limit of 20cm could be chosen so as to not exceed the 

constructional criteria of manufacturing tolerances.    

 The ESBA configurations are designed to be an efficient and a realistic vibration 

absorption system. So, to better observe the efficiency of the proposed 

configurations, an acceleration filter is placed. Therefore, each set of the 

optimized parameters of the ESBA refers to the maximum structure 

acceleration, expressed as a percentage of the PGA (Peak Ground Acceleration) 

of the accelerogram of the ground excitation.  

 Based, again on previous work (Kapasakalis, Antoniadis, & Sapountzakis, 

2019) the negative stiffness coefficient factor 𝜀𝑁𝑆 was taken equal to 5%. In this 

work, all the stability stiffness factors 𝜀𝑁𝑆, 𝜀𝑅 and 𝜀𝑃𝑆 are considered equal to 

10%. This increase takes into consideration larger variations in the magnitude 

of all the stiffnesses and can be judged as a conservative safety feature. 

 Considering the magnitude of the oscillating mass, since the ESBA system can 

be placed at the base of the structure, there is no a particular limitation to its 

mass. In fact, in the work of (Kapasakalis, Antoniadis, & Sapountzakis, 

Performance assessment of the KDamper as a seismic Absorption Base, 2019) 

was taken as the 5% of the total mass of the superstructure and it proved to be 

efficient. In the other work of (Kapasakalis, Antoniadis, & Sapountzakis, 2022) 

it was considered as the 0.1% reducing significantly its magnitude. In the 

present work it is taken as an intermediate value between the two 

aforementioned, that of 1%, which is again a quite small portion compared to 

that of the total mass. 

 Considering the negative stiffness, according to (Antoniadis, Kanarachos, 

Gryllias, & Sapountzakis, 2018), where the negative stiffness element is 

realized with pre-compressed springs (a more analytical description exists in 

Chapter 5), an approximate value of -100 kN/m per 1000kg mass of the 

superstructure is realistic. In this work, a 50% reduced value, that of -50 kN/m 

per 1000kg of the superstructure mass is considered, for a more efficient design 

of the system. In other words, for a 300 tonnage total mass of the base and the 

superstructure, an upper limit of -15000 kN/m is considered. The value of 300 

Mgr is an indicative value of a 3storey concrete building with a base. 

 The damping coefficients’ maximum value is set at 3 kNs/m per 1 Mgr of 

structure mass. That means, again for a 300 Mgr total mass of the structure a 

value of 900 kNs/m is set as the upper limit. So, common linear damping 

devices can be used.  

 In the work of (Kapasakalis, Antoniadis, & Sapountzakis, 2022), two cases of 

the maximum values of the inerter are examined, that of 100% and 200% of the 

total mass of the structure. In this work, since there are more inerter 

configurations in various locations and combinations, two cases of 20% and 

50% of the total mass of the structure are investigated.  

 Finally, for the nominal frequency of the ESBA system an upper limit of 1.5 Hz 

is considered. 
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The following (Table 4.2) concentrates the limits of the free design variables that are 

considered for the optimization processes of the ESBA system. 

 

Table 4.2: Limits of the free design variables 

 

By considering all the above data and by setting values to the nominal frequency of the 

system and the negative stiffness element, the rest of the stiffnesses of the system are 

automatically emerge by combining all the relations (4.16)-(4.20c). 

 

4.2.3 Generation of spectrum compatible artificial accelerograms 

As it was mentioned in the previous section (4.2.2), the optimization problem is set to 

comply with the seismic codes. The structure’s responses of absolute acceleration and 

relative displacement are controlled by the following characteristics: the structure’s 

fundamental period, damping ratio, the ground conditions and the seismic intensity. 

Since the ESBA configurations are an extended version of the KDamper, their 

application as an absorption base creates Multi-Degree of Freedom systems (MDoF) 

and therefore this renders the direct application of the design response spectra 

impossible. A solution to this, is the analysis at the time-domain level. Thus, artificial 

accelerograms that are compatible with a design response spectrum are suitable for the 

optimal design of the proposed dynamic vibration absorbers.  

In this study, 30 artificial accelerograms, that are compatible with the Eurocode 8               

(EC 8) Type 1 elastic horizontal acceleration design response spectrum, are used. They 

correspond to the quite unfavorable case of the seismic danger zone III, which gives a 

ground acceleration of 0.36g. Moreover, the importance class II is used, that refers to a 

typical residential building. The case of ground type C is used. The mean PGA of the 

artificial accelerograms is 5.19 m/sec2. More information of the spectral properties can 

be found in EC8 (EN 1998-1, 2004). The database of the artificial accelerograms is 

taken from the work of (Kapasakalis A. K., 2020). In the same work, there is an 

analytical description on how the artificial accelerograms were generated. 

In the figure below (Fig. 4.4(a)), there is the time history of an indicative artificial 

accelerogram. Its peak acceleration is quite near the mean PGA. The duration of the 

earthquake is 30 seconds. In the same figure (Fig. 4.4(b)), there is the plot of the 

acceleration response spectrum generated by the random accelerogram and the mean 

acceleration response spectrum generated by the 30 artificial accelerograms. They are 

both compared to the EC8 horizontal acceleration response spectrum. All of them are 

plotted by considering a typical viscous damping of 5%. As it can be clearly observed, 
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all the artificial accelerograms yield a well fitted response spectrum compared to the 

EC8 equivalent design. In fact there is an adequate-near perfect- match of the mean 

artificial response spectrum in the range of periods 0.2 sec to 2 sec, which are 

representative values for the structure performance. The response spectrum, generated 

by the individual random accelerogram, exhibits a similar behavior with some minor 

fluctuations in the same periods.     

 

Figure 4.4: (a) Random artificial accelerogram and (b) individual and mean artificial acceleration 

response spectrum, of the 30 generated artificial accelerograms in the database compared to the EC8 

horizontal acceleration response spectrum. 

 



28 
 

4.2.4 Newmark’s Method for solving the equations of motion 

In section (4.2.2), it was mentioned that the constraints and objective function are 

selected from time-domain responses. Thus, this becomes feasible by using numerical 

time-stepping methods for integration of the differential equation of motion. In this way 

the dynamic responses of the structure, such as the relative to the ground displacement 

and velocity or the absolute acceleration can be defined for an external force that varies 

arbitrarily with the time, like the ground excitation. One of the most commonly used 

methods, is that of Newmark’s method (Newmark, 1959). Newmark developed a family 

of time-stepping iterative methods based on the following equations: 

�̇�𝑖+1 = �̇�𝑖 + [(1 − 𝛾)𝛥𝑡]�̈�𝑖 + (𝛾𝛥𝑡)�̈�𝑖+1                                                                       (4.21a) 

𝑢𝑖+1 = 𝑢𝑖 + (𝛥𝑡)�̇�𝑖 + [(0.5 − 𝛽)(𝛥𝑡)2]�̈�𝑖 + [𝛽(𝛥𝑡)2]�̈�𝑖+1                                          (4.21b) 

From the above, 𝑢 is the relative to the ground displacement of the structure, while the 

one or two superimposed dots express the first and second derivative with respect to 

time, that correspond to the relative to the ground velocity and acceleration, 

respectively. The indices 𝑖 and 𝑖 + 1 denote an arbitrary previous time step and the 

exact next one, respectively. The parameters 𝛽 and 𝛾 are introduced to control the 

variation of the acceleration over a time step and to determine the stability and accuracy 

of the method. As depicted in the figure below (Fig. 4.5), two cases of the variation of 

the acceleration over the time step have been developed. The first one is the constant 

average, while the other is the linear variation. 

 

Figure 4.5: (a) Constant average acceleration and (b) Linear variation of acceleration over a time step 

 

The relations that correspond to the variation of the acceleration over a time step       

(Fig. 4.5) are the following: 

�̈�(𝜏) =
1

2
(�̈�𝑖+1 + �̈�𝑖)                                                                                                      (4.22a) 

�̈�(𝜏) = �̈�𝑖 +
𝜏

𝛥𝑡
(�̈�𝑖+1 − �̈�𝑖)                                                                                           (4.22b) 

From the above, 𝜏 is an arbitrary instant over the time step 𝛥𝑡. Eq. (4.22a) corresponds 

to the constant average acceleration method, while (4.22b) is for the linear method. 

(a) (b) 
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The constant average acceleration method is adopted in this work, so a further 

elaboration of only the Eq. (4.22a) is performed. Two consecutive integrations over the 

time step where 𝜏 = 𝛥𝑡 gives the velocity and displacement: 

�̇�(𝜏) = �̇�𝑖 +
𝜏

2
(�̈�𝑖+1 + �̈�𝑖)   =>    �̇�𝑖+1 = �̇�𝑖 +

𝛥𝑡

2
(�̈�𝑖+1 + �̈�𝑖)                                      (4.23a) 

𝑢(𝜏) = 𝑢𝑖 + �̇�𝑖𝜏 +
𝜏2

4
(�̈�𝑖+1 + �̈�𝑖)   =>    

𝑢𝑖+1 = 𝑢𝑖 + �̇�𝑖𝛥𝑡 +
(𝛥𝑡)2

4
(�̈�𝑖+1 + �̈�𝑖)                                                                    (4.23b) 

If, at first, a Single Degree of Freedom (SDoF) is considered, the equation of 

equilibrium at any arbitrary time step is the following by analogy with Eq. (4.3): 

𝑚�̈�𝑖+1 + 𝑐�̇�𝑖+1 + 𝑘𝑢𝑖+1 = 𝑝𝑖+1                                                                                       (4.24)  

Where, 𝑝𝑖+1 is the external force. Moreover, in the Eq. (4.21b) the quantity �̈�𝑖+1 can be 

expressed in terms of the quantity 𝑢𝑖+1 as: 

�̈�𝑖+1 =
1

𝛽(𝛥𝑡)2
(𝑢𝑖+1 − 𝑢𝑖) −

1

𝛽𝛥𝑡
�̇�𝑖 − (

1

2𝛽
− 1) �̈�𝑖                                                            (4.25a) 

Substituting the Eq. (4.25a) into Eq. (4.21a) it is: 

�̇�𝑖+1 =
𝛾

𝛽𝛥𝑡
(𝑢𝑖+1 − 𝑢𝑖) + (1 −

𝛾

𝛽
) �̇�𝑖 + 𝛥𝑡 (1 −

𝛾

2𝛽
) �̈�𝑖                                                 (4.25b) 

By substituting the Eq. (4.25a) and (4.25b) into the governing Eq. (4.24) the following 

relation emerges: 

�̂�𝑢𝑖+1 = �̂�𝑖+1                                                                                                                     (4.26) 

Where: 

�̂� = 𝑘 +
𝛾

𝛽𝛥𝑡
𝑐 +

1

𝛽(𝛥𝑡)2
𝑚                                                                                         (4.27) 

And: 

�̂�𝑖+1 = 𝑝𝑖+1 + [
1

𝛽(𝛥𝑡)2
𝑚 +

𝛾

𝛽𝛥𝑡
𝑐] 𝑢𝑖 + [

1

𝛽𝛥𝑡
𝑚 + (

𝛾

𝛽
− 1) 𝑐] �̇�𝑖 +  

[(
1

2𝛽
− 1)𝑚 + 𝛥𝑡(

𝛾

2𝛽
− 1)𝑐] �̈�𝑖                                                                                        (4.28) 

The quantity �̂� is fully known a priori, as it is defined by the structure’s properties, the 

Newmark’s method parameters and the time step. The same applies to the term  �̂�𝑖+1 as 

it is incorporates the external force and the structures dynamic responses of relative 

displacement, velocity and acceleration, which are known from the last step. In the next 

step, the updated displacement is defined by the relation (4.26) and the method 

continues with the velocity and acceleration from relations (4.25b) and (4.25a), 

respectively and again the same procedure is performed in an iterative scheme. 

Finally, the Newmark’s method is stable if the following condition is satisfied: 

𝛥𝑡

𝑇𝑁
≤

1

𝜋√2

1

√𝛾−2𝛽
                                                                                                                    (4.29)    
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Where, 𝑇𝑁 is the natural period of the structure.  

The typical values for the parameters 𝛾 and 𝛽 are 0.5 and [
1

6
  

1

4
]. For this work, the 

constant average acceleration is used and in the table below (4.3) there are the values 

of the parameters that are adopted to perform the optimization procedures.  

Table 4.3: Parameters of the constant average acceleration method 

𝜸 𝜷 𝜟𝒕 (𝒔𝒆𝒄) 

0.5 0.25 0.01 

 

The time step coincides with values generated of the artificial accelerograms. For the 

values of the constant average acceleration method, relation (4.29) gives 
𝛥𝑡

𝑇𝑁
≤ ∞. That 

means, the constant average acceleration method is unconditionally stable. So in this 

case the time step affects the accuracy of the method. The value of 0.01 sec can be 

considered small and thus, does not affect the accuracy.   

Based on all the aforementioned, the constant average acceleration method can be 

extended in MDoF systems. The scalar quantities are substituted by matrices and 

vectorial ones.  In the book of (Chopra, 2011), a pseudo-code algorithm is incorporated: 

 

Algorithm: Constant average acceleration method 

  

Determine parameters 𝛾 and 𝛽 (=0.5 and 0.25, respectively for constant average acceleration method) 

Step 1: Initial calculations 

 1.1 Initial conditions 𝒖(0), �̇�(0) 

 1.2 Initial load 𝒑(0) = −𝝉�̈�𝒈(0) 

 1.3 Initial acceleration: �̈�(0) = [𝑴]−1(𝒑(0) − 𝑪�̇�(0) − 𝑲𝒖(0)) 

 1.4 Select 𝛥𝑡 

 1.5 Compute: 𝐚1 =
1

𝛽(𝛥𝑡)2
𝑴 +

𝛾

𝛽𝛥𝑡
𝑪;  𝐚2 =

1

𝛽𝛥𝑡
𝑴 + (

𝛾

𝛽
− 1)𝑪;                                    

                                           𝐚3 = (
1

2𝛽
− 1)𝑴 + 𝛥𝑡(

𝛾

2𝛽
− 1)𝑪 

 1.6 Compute: �̂� = 𝑲 + 𝐚1 

Step 2: Calculations for each time step, 𝑖 = 0, 1, 2, … 

 2.1 �̂�𝑖+1 = −𝝉�̈�𝑔,𝑖+1 + 𝐚1𝒖𝑖 + 𝐚2�̇�𝑖 + 𝐚3�̈�𝑖 

 2.2 Solve: �̂�𝒖𝑖+1 = �̂�𝑖+1   =>    𝒖𝑖+1 = [�̂�]
−1

�̂�𝑖+1 

 2.3 �̇�𝑖+1 =
𝛾

𝛽𝛥𝑡
(𝒖𝑖+1 − 𝒖𝑖) + (1 −

𝛾

𝛽
) �̇�𝑖 + 𝛥𝑡 (1 −

𝛾

2𝛽
) �̈�𝑖   
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 2.4 �̈�𝑖+1 =
1

𝛽(𝛥𝑡)2
(𝒖𝑖+1 − 𝒖𝑖) −

1

𝛽𝛥𝑡
�̇�𝑖 − (

1

2𝛽
− 1) �̈�𝑖 

Step 3: Repetition for the next time step. Replace 𝑖 by 𝑖 + 1 and implement steps 2.1 to 2.4 for the next 

time step 

 

The external loading is modified to comply with the Eq. (4.4). 

 

4.3 Optimization curves 

By implementing all the aforementioned, the optimization curves are yielded. The 

analyses are performed by considering two cases of the maximum value of the inerters 

for all the ESBA configurations, that of 𝑏𝑚𝑎𝑥 = 0.2 and 𝑏𝑚𝑎𝑥 = 0.5, as they are 

expressed as a percentage of the total mass of the structure 𝑚𝑆. According to section 

(4.2.2) an acceleration filter is placed to observe the efficiency of the proposed vibration 

absorption system. The optimization procedure is performed in a way, so that every set 

of the optimized parameters can refer to a specific value of the structure’s absolute 

acceleration. The range of the acceleration filter is from 25% to 75% with a step of 

2.5% for every analysis. The absolute acceleration may be expressed as a percentage of 

the mean PGA of all the artificial accelerograms.  

According to the STEP 4 of the harmony search algorithm, a stopping criterion, like the 

total number of iterations, should be imposed. A total number of 100000 iterations per 

acceleration filter step is considered to yield quite accurate results. However, since there 

are many iterations and many parameters to be optimized, the whole procedure can be 

quite time-consuming. Thus, in an attempt to reduce the time consumption of the 

procedures, the following conditions were adopted, in order to get the first results: 

 Instead of optimizing the parameters of all the ESBA configurations with 

respect to the mean PGA of all the artificial accelerograms, the parameters 

are optimized by considering one random accelerogram out of the total thirty. 

After all, the PGA of this random accelerogram is 5.21m/sec2 (almost equal 

to the 5.19m/sec2 of the mean PGA) and each one of the accelerograms 

exhibit similar behavior compared to one another. In this way the total time 

of the whole optimization can be reduced to 1/30.   

 Based on (Kapasakalis, Antoniadis, & Sapountzakis, Constrained optimal 

design of seismic base absorbers based on an extended KDamper concept, 

2021) the variation of 𝑐𝑃𝑆 parameter by ±50% had an insignificant effect on 

the results. So, as a first approach, since all ESBA configurations are 

extended versions of the extended KDamper, the 𝑐𝑃𝑆 parameter is considered 

to have a fixed value, that of 100 kNs/m.    

Based on these, the first optimization curves are presented in the following figure (Fig. 

4.6(a) and 4.6(b)). The first figure (Fig. 4.6(a)) depicts the structure’s maximum relative 

to the ground displacement over the structure’s maximum absolute acceleration, 

expressed as a percentage of the PGA of the random accelerogram. As it can be 

observed, all the configurations exhibit a similar graphic behavior. As the acceleration  
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Figure 4.6: (a) Structure relative displacement and (b) NS element stroke maximum values over the 

structure absolute acceleration (% of PGA), of the ESBA configurations optimized with respect to a 

random artificial accelerogram, for bmax=0.2 and bmax=0.5 and cPS=100 kNs/m 

 

(a) 

(b) 
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filter increases, the structural drifts decrease. Moreover, as expected, by increasing the 

upper limit of the inerter elements, the structural drifts are further reduced in all ESBA 

configurations.  At the lowest filters, the relative displacement fluctuates between 

0.113m and 0.103m, with the highest value corresponding to the ESBA-1 (both inerter 

cases) and the lowest value to the ESBA-3 (again for both inerter cases). At 

intermediate filters, it is clear that all configurations coincide together in each case, with 

the higher inerter maximum value having smaller displacements. For example, for the 

45% acceleration filter, the relative displacement is approximately 0.045m for all ESBA 

configurations at 𝑏𝑚𝑎𝑥 = 0.2 and 0.039m for all ESBA configurations at 𝑏𝑚𝑎𝑥 = 0.5. 

Finally, at the highest filters ESBA-2 for 𝑏𝑚𝑎𝑥 = 0.2 is the worst case, ESBA-2 for   

𝑏𝑚𝑎𝑥 = 0.5 coincides with ESBA-1 and ESBA-3 for  𝑏𝑚𝑎𝑥 = 0.2 and ESBA-1 and 

ESBA-3 for 𝑏𝑚𝑎𝑥 = 0.5  coincide and having simultaneously the best behavior, as the 

relative displacement appears to be 0.022m. The second figure (Fig. 4.6(b)) depicts the 

NS stroke over the structure’s maximum absolute acceleration, expressed again as a 

percentage of the PGA of the random accelerogram. In general, the same apply to these 

curves. As the filter increases, the NS stroke decreases and the maximum upper limit 

inerters have reduced values in relation with the minimum upper limit. However, those 

curves, compared to the ones of the relative displacement, do not have the smoothly 

decreasing graphical scheme, especially in the ESBA-1 configuration. At lowest filters, 

they exhibit a sudden increase, reaching the values of 0.17m (for 𝑏𝑚𝑎𝑥 = 0.2) and 

0.154m (for 𝑏𝑚𝑎𝑥 = 0.5). The other two configurations produce an NS stroke slightly 

above from 0.14m (for 𝑏𝑚𝑎𝑥 = 0.2) and below from that value (for 𝑏𝑚𝑎𝑥 = 0.5). At the 

next lower and at all the intermediate filters, ESBA-2 configurations mitigate the NS 

stroke, compared to all the rest configurations. At the same filter of 45%, as previously, 

the NS stroke for ESBA-2 at 𝑏𝑚𝑎𝑥 = 0.5 is 0.062m. Finally, at the highest filters, again 

ESBA-1 and ESBA-3 coincide and present the lowest value of the NS stroke, at 

approximately 0.041m. Overall, the addition of the inerter parallel to the positive 

stiffness element (ESBA-2), has little to no contribution in the structural drifts, but 

significantly reduces the NS element stroke, especially in the intermediate and low 

acceleration filter ranges. The ESBA-3 configuration is superior, both in terms of 

structural drifts and NS stroke, by observing all the filter ranges. 

The next figure (Fig. 4.7(a) and (b)) presents the same graphs with optimization curves 

as in the previous figure (Fig. 4.6). The difference is now that those curves are 

formulated by considering all the sets of parameters, having been optimized by the one 

random artificial accelerogram, as fixed data. The scope is now to examine how those 

particular sets of parameters affect the mean maximum values of the structure’s relative 

to the ground displacement and mean NS stroke over the same absolute acceleration 

filters with respect to all the artificial accelerograms. As it can be clearly observed, they 

have the same graphic form of their descending response (in both the relative 

displacement and NS stroke) with respect to the increase of the acceleration filter. In 

fact, the only difference is that they exhibit slightly smaller values of their responses at 

the lowest filters and slightly larger values at the intermediate and highest filters.     
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Figure 4.7: (a) Structure relative displacement and (b) NS element stroke maximum values over the 

structure absolute acceleration (% of PGA), of the ESBA configurations with respect to all artificial 

accelerograms, for bmax=0.2 and bmax=0.5 and cPS=100 kNs/m 

 

(a) 

(b) 
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From the above, it can be detected that all configurations of 𝑏𝑚𝑎𝑥 = 0.5 display a better 

dynamic response compared to the case of 𝑏𝑚𝑎𝑥 = 0.2. Secondly, ESBA-3 can be 

considered as the most superior of the examined systems, in contrast with the ESBA-1, 

to some minor degree.  Hence, a second optimization procedure is performed with the 

following different characteristics from the previous optimization process: 

 Only the case of 𝑏𝑚𝑎𝑥 = 0.5 is examined now 

 All the parameters are set to be optimized (including the 𝐶𝑃𝑆) to investigate 

the global behavior of the systems 

 The total number of iterations remain 100000 for ESBA-1 and ESBA-2 and 

is raised to 300000 for ESBA-3 as it is pursued to find the best possible 

optimal sets of the parameters constrained to the same limit ranges 

The following figure (Fig. 4.8(a) and (b)) presents the optimized curves. Again, the 

dynamic responses of the relative to the ground displacement of the structure and the 

NS stroke are plotted over the structure’s absolute acceleration, expressed as a 

percentage of the PGA of the artificial accelerogram. The global behavior of the curves 

of both cases are exactly the same as in (Fig. 4.6). That means, with an increase of the 

filter, there is a decrease in the dynamic response. Moreover, the ESBA-3 configuration 

displays the best performance in overall. Indicatively, ESBA-1 and ESBA-3 curves 

coincide in (Fig. 4.8(a)) within the majority of the filters. Only at the lowest filters, 

ESBA-3 is better. Indicatively, at the lowest filter, all the configurations demonstrate a 

relative displacement that fluctuates between 0.101m (ESBA-3) and 0.106m               

(ESBA-1). At intermediate filters (45%-50%) a value just over 0.03m is reached, 

slightly smaller than of the case with fixed 𝑐𝑃𝑆 parameter. Finally, at the highest filter 

the relative displacement is 0.021m, slightly smaller than in the previous case. The same 

exactly apply to the (Fig. 4.8(b)) compared to that of (Fig. 4.6(b)). ESBA-1 

configuration exhibits again the sudden increase and decrease of the NS stroke at the 

lowest filters with a maximum value of 0.137m. At the same filters, ESBA-2 manages 

to mitigate the NS stroke to the lowest. At the intermediate and highest filters,       

ESBA-1 and ESBA-3 coincide attaining the value of 0.033m. However, all the 

configurations have smoother finishing at the highest filters. So, it is indicated that the 

optimization of all the parameters (including the 𝑐𝑃𝑆 parameter) had a minor beneficial 

impact on the global behavior of the curved. The raising of the maximum number of 

iterations to 300000 for ESBA-3 appears to not affect the final results, as it coincides 

with ESBA-1 with 100000 maximum iterations. Thus, it is a rational assumption that 

100000 iterations produce accurate results. 

In (Fig. 4.9), where all the sets of the optimized parameters are considered as given 

data, the same dynamic responses are plotted with respect to all the artificial 

accelerograms. As in the case of (Fig. 4.7) with respect to the (Fig. 4.6), the same can 

be observed compared to the results of (Fig. 4.8). The same global behavior of all the 

curves, with slightly decreased values, can be seen.   

In general, the optimization procedure gave quite realistic results that can lead to a 

technological feasible vibration absorption system, which incorporates realizable 

engineering criteria. The fact that the optimization process, performed with respect to  
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Figure 4.8: (a) Structure relative displacement and (b) NS element stroke maximum values over the 

structure absolute acceleration (% of PGA), of the ESBA configurations optimized with respect to a 

random artificial accelerogram, for bmax=0.5  

 

(a) 

(b) 
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Figure 4.9: (a) Structure relative displacement and (b) NS element stroke maximum values over the 

structure absolute acceleration (% of PGA), of the ESBA configurations with respect to all artificial 

accelerograms, for bmax=0.5 

 

(a) 

(b) 
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one artificial accelerogram, gave similar results, with respect to all the artificial 

accelerograms, states that this procedure noted a stable response.     

In the table and figure below (Table 4.4) and (Fig. 4.10), respectively, there are the 

optimal values and their graphical presentation over the structure’s absolute 

acceleration (% of PGA) of all the parameters of the ESBA-3 configuration. As it can 

be clearly noted, many of the parameters have reached their lower or upper limit at the 

intermediate and upper acceleration filters. More particularly, the system’s natural 

frequency (Fig. 4.10(a)) that controls the overall stiffness starts at approximately 

0.42Hz, at the lowest filter and ends up to the upper limit of 1.5Hz with an approximate 

linear behavior. The negative stiffness (Fig. 4.10(b)) starts at -5000kN/m and remains 

there, until the 40% filter (approximately), then, by following a steep descent it achieves 

the lower limit (upper absolute limit) of -15000kN/m at the 60% filter and above. The  

Table 4.4: Optimal values of parameters over the structure absolute acceleration (% of PGA), of the 

ESBA-3 configuration (optimized with respect to a random accelerogram for all parameters), for 

bmax=0.5 of (a) f0, (b) kNS, (c) cNS, (d) cPS, (e) bR, (f) bNS and (g) bPS 

𝑨𝑺    

(% of 

PGA) 

𝒇𝟎 (Hz) 
𝒌𝑵𝑺 

(kN/m) 

𝒄𝑵𝑺 

(kNs/m) 

𝒄𝑷𝑺 

(kNs/m) 

𝒃𝑹       

(% mS) 

𝒃𝑵𝑺       

(% mS) 

𝒃𝑷𝑺       

(% mS) 

25.00 0.4158 -4960.01 468.05 465.00 0.1729 0.1056 0.3150 

27.50 0.4169 -5408.41 633.06 382.63 0.2026 0.0780 0.4040 

30.00 0.4585 -5335.04 515.30 665.66 0.1903 0.2277 0.2820 

32.50 0.4595 -5589.84 706.53 530.17 0.2296 0.1815 0.3126 

35.00 0.5625 -4689.89 231.02 780.73 0.2139 0.3930 0.1110 

37.50 0.5733 -5024.40 332.26 846.20 0.2435 0.4100 0.1582 

40.00 0.6032 -6010.78 660.33 756.35 0.3145 0.3754 0.1464 

42.50 0.6902 -5778.11 505.04 865.06 0.3269 0.4223 0.0819 

45.00 0.7597 -6409.01 551.66 815.78 0.4557 0.3949 0.0759 

47.50 0.8443 -6756.17 507.71 891.35 0.4999 0.4101 0.0403 

50.00 0.9220 -10702.50 840.51 895.72 0.4993 0.2113 0.0001 

52.50 0.9862 -12316.63 891.92 898.64 0.4978 0.2304 0.0000 

55.00 1.0534 -13069.95 899.70 898.88 0.4994 0.2858 0.0003 

57.50 1.1089 -13411.28 882.49 898.29 0.4986 0.3375 0.0003 

60.00 1.2566 -14978.49 897.18 899.93 0.4995 0.2781 0.0010 

62.50 1.3795 -14980.67 777.78 898.62 0.4992 0.2690 0.0011 

65.00 1.4981 -14980.41 649.89 894.28 0.4991 0.2526 0.0002 

67.50 1.4996 -14968.41 669.29 899.60 0.4999 0.2780 0.0002 

70.00 1.5000 -14996.71 678.93 897.88 0.4990 0.2887 0.0006 

72.50 1.4999 -14994.91 675.28 898.58 0.5000 0.2821 0.0001 

75.00 1.5000 -14988.59 679.43 899.82 0.4998 0.2911 0.0004 
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(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.10: Optimal values of parameters over the structure absolute acceleration (% of PGA), of the 

ESBA-3 configuration (optimized with respect to a random accelerogram for all parameters), for 

bmax=0.5 of (a) f0, (b) kNS, (c) cNS, (d) cPS, (e) bR, (f) bNS and (g) bPS 

next parameter, that of the damping parallel to the negative stiffness element               

(Fig. 4.10(c)), notes a more random distribution across all filters. It fluctuates from 

230kNs/m (at 35% filter) to the upper limit (from 50% to 60%). The other damping 

parameter (Fig. 4.10(d)), starts at approximately 500kNs/m and gradually ends up to 

the upper limit of 900kNs/m at the 47.5% filter and so on. A similar form, with a more 

exponential transition, from the start of 20% approximately, to the upper limit of 50% 

at the same filter of 47.5% is developed by the external inerter 𝑏𝑅, in (Fig. 4.10(e)). The 

inerter between the structure and the oscillating mass (Fig. 4.10(f)), follows a random 

distribution in the various filters, without achieving its range limits. It closely fluctuates 

from 10% to 40%. Finally, the inerter of the oscillating mass 𝑏𝑃𝑆 in (Fig. 4.10(g)), 

reversely escalates from 32% to 0% at the 50% filter. It maintains this value until the 

last filter. This clearly indicates that from a point and beyond, this inerter has no 

contribution to the system. That is why ESBA-1 and ESBA-3 curves coincide at this 

point. By examining the overall behavior, many parameters, reaching their limits, have 

the tendency to exceed those values and possibly attaining an even better behavior. 

However, since the desired performance is to be achieved within engineering and 

constructional limitations, those values become optimal considering the imposed 

constraints. 

 

4.4 Time history analysis of SDoF system controlled with 

ESBA-3 

4.4.1 Comparison with conventional base isolation  

In order to check the effectiveness of the ESBA-3 configuration, time history responses 

of the structure’s relative to the ground displacement, the structure’s absolute 

acceleration and the shear base are compared to the equivalent responses of 

conventional base isolation systems. Those dynamic responses are due to the same 

random accelerogram with which the optimization processes are performed. From all 

(g) 
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the sets of the optimal values of the ESBA-3 system, those that correspond to the 

intermediate value of acceleration filter of 50% are chosen. The ESBA-3 configuration 

is compared to an SDoF system with a conventional base isolation, which satisfies the 

equation (4.24) (in analogy with Eq. (4.3)) of a one degree of freedom. In order to 

achieve same-size comparisons, the base isolation systems are considered to have the 

same natural frequency, that of 𝑓0 = 0.922𝐻𝑧, (according to Table 4.4) for 50% 

acceleration filter. In analogy to (Eq. 4.16), the stiffness of the base isolation system 

emerges from the following relation: 

𝑘𝐵𝐼 = 𝑚𝑠(2𝜋𝑓0)
2                                                                                                             (4.30) 

 

Figure 4.11: Dynamic responses, in terms of structure’s (a) relative to the ground displacement, (b) 

absolute acceleration and (c) base shear of the ESBA-3 vibration absorber and a conventional base 

isolated structure (BI)  
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Figure 4.12: Dynamic responses, in terms of structure’s (a) relative to the ground displacement, (b) 

absolute acceleration and (c) base shear of the ESBA-3 vibration absorber and a conventional highly 

damped base isolated structure (HDBI) 

 

Where, 𝑚𝑆 is the same total reference mass of the structure of 300 Mgr. Finally, the 

damping can be computed from the equation below: 

𝑐𝐵𝐼 = 2𝑚𝑆(2𝜋𝑓0)𝜁𝐵𝐼                                                                                                         (4.31) 

where  𝜁𝐵𝐼 is the damping ratio of the base isolation system. The value 5% can be 

considered for the case of the conventional base isolation system (BI), while that of 

20% can be adopted for the highly damped base isolation system (HDBI). 
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From the first figure (Fig. 4.11(a)), can be clearly observed that the relative to the 

ground displacement of the structure develops into 0.175m for the case of the BI 

system, while that of the ESBA-3 configuration is 0.03m. That means, ESBA-3 system 

notes 82.86% reduction at this response. Meanwhile, HDBI, in (Fig. 4.12(a)), system 

notes a maximum relative displacement of 0.084m. Again, ESBA-3 configuration’s 

response is 64.29% less than that. In (Fig. 4.11(b)) and (Fig. 4.12(b)) the absolute 

acceleration of both the base isolation systems is 5.90 m/s2 (BI) and 3.14 m/s2 (HDBI). 

ESBA-3 yielded an absolute acceleration of 2.61 m/s2, which is less than that of the BI 

by 55.76% and than HDBI by 16.88%. Finally, the base shear can by defined from the 

following relations: 

𝑉𝑏,𝐸𝑆𝐵𝐴−3 = 𝑘𝑅𝑢𝑆 + 𝑘𝑃𝑆𝑢𝐷 + 𝑐𝑃𝑆�̇�𝐷 + 𝑏𝑅�̈�𝑆 + 𝑏𝑃𝑆�̈�𝐷                                              (4.32a) 

𝑉𝑏,𝐵𝐼 = 𝑘𝐵𝐼𝑢𝑆 + 𝑐𝐵𝐼�̇�𝑆                                                                                                     (4.32b) 

Equation (4.32a) refers to the shear base of the ESBA-3 configuration, while                

(Eq. 4.32b) corresponds to same quantity of the conventional base isolation. From    

(Fig. 4.11(c)) and (Fig. 4.12(c)), the maximum values of the base shear is 1769.1kN 

and 942.4kN for the BI and HDBI, respectively. ESBA-3 base shear configures at 

796kN, which means that this quantity is reduced by 55% and 15.53%, respectively for 

both cases, with the presence of ESBA-3 system. It is observed that the ESBA-3 

manages to significantly reduce all the dynamic responses of the structure, as compared 

to the BI and HDBI system approach. 

 

4.4.2 Dynamic responses from real seismic excitations 

Real earthquake ground excitations are not stationary and do not have a fixed duration, 

as in the case of spectrum compatible artificial accelerograms, that are used for the 

design of the proposed ESBA. For this reason, it is very important to examine the 

effectiveness of the proposed vibration absorbers (ESBA), also with real earthquake 

records. In this thesis, 24 real earthquake records are selected, based on the work of 

(Kapasakalis, Antoniadis, & Sapountzakis, Constrained optimal design of seismic base 

absorbers based on an extended KDamper concept, 2021). They are widely used in the 

literature and are known to have had a devastating impact on structural systems. The 

table that follows (Table 4.5) presents the details of each ground motion. This table 

incorporates data that refer to the name of each seismic event, the year it occurred, the 

station that recorded the acceleration data, its moment magnitude scale, its PGA in g 

and its epicentral distance in km. The last characteristic can classify the earthquakes 

into two categories. Earthquakes with an epicentral distance Rjb of fewer than 25 km, 

are classified as near-fault earthquakes (NF). From the other extreme, earthquakes 

whose epicentral distance is larger than that of 25 km, are classified as far-fault 

earthquakes (FF). 

In order to check the effectiveness of the proposed vibration absorption system, the 

same ESBA-3 configuration system with the optimal values that correspond to the 50% 

acceleration filter (as in the case of section 4.4.1), is compared with a conventional base 

isolation system (BI) and a highly damped base isolation system (HDBI), with the exact 

same characteristics (same natural frequency, mass (and stiffness) and damping) as in   
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Table 4.5: List and information on the considered real earthquake records 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

the case of the section 4.4.1. The same natural frequency is chosen so that all the 

systems can have equal comparison basis.   

The system main dynamic responses, in terms of structural relative to the ground 

displacements (drifts), structural absolute acceleration, total base shear and generated 

NS element stroke are presented in Figures 4.13 and 4.14, for all the selected real near 

and far fault earthquake records, respectively, presented in Table 4.5. 

As it can be clearly observed, the ESBA-3 manages to reduce the structural drifts in all 

the earthquakes in both the NF and FF cases, compared with the equivalent response of 

the BI and HDBI. Indicatively, Kobe-N, with a PGA of 0.276g, seems to induce the   

No Earthquake Year Station Mw 
PGA 

(g) 

Rjb 

(km) 

1 Northridge-N 1994 N Hollywood 6.69 0.3087 7.89 

2 Northridge-F 1994 Montebello 6.69 0.1756 43.22 

3 Loma Prieta-N 1989 Corralitos 6.93 0.6447 0.16 

4 Loma Prieta-F 1989 APEEL 10-Skyline 6.93 0.1029 41.88 

5 L’Aquila-N 2009 V. Aterno 6.3 0.4018 0.0 

6 L’Aquila-F 2009 Ortucchio 6.3 0.0655 35.07 

7 Chi-Chi-N 1999 CHY006 7.62 0.3587 9.76 

8 Chi-Chi-F 1999 CHY012 7.62 0.0626 59.04 

9 Kocaeli-N 1999 Izmit 7.51 0.1651 3.62 

10 Kocaeli-F 1999 Fatih 7.51 0.1618 53.34 

11 Tabas-N 1978 Tabas 7.35 0.854 1.79 

12 Tabas-F 1978 Ferdows 7.35 0.0931 89.76 

13 Kobe-N 1995 Amagasaki 6.9 0.2758 11.34 

14 Kobe-F 1995 HIK 6.9 0.1394 95.72 

15 Kozani-N 1995 Kozani 6.4 0.2069 14.13 

16 Kozani-F 1995 Larisa 6.4 0.031 74.06 

17 Niigata-N 2004 NIG017 6.63 0.3781 4.22 

18 Niigata-F 2004 FKS020 6.63 0.043 101.78 

19 Landers-N 1992 Joshua tree 7.28 0.2736 11.03 

20 Landers-F 1992 Boron fire station 7.28 0.1189 89.69 

21 Duzce-N 1999 Lamont 1059 7.14 0.1524 4.17 

22 Duzce-F 1999 Mudurnu 7.14 0.1203 34.3 

23 Friuli-N 1976 Tolmezzo 6.5 0.3571 14.97 

24 Friuli-F 1976 Barcis 6.5 0.0292 49.13 
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Figure 4.13: Main dynamic responses, (a) structural drift, (b) absolute acceleration, (c) base shear and 

(d) NS stroke of the controlled structure with conventional BI, a highly damper BI (HDBI) and with the 

ESBA-3 configuration, for all the near fault real earthquake records 

 

 

Figure 4.14: Main dynamic responses, (a) structural drift, (b) absolute acceleration, (c) base shear and 

(d) NS stroke of the controlled structure with conventional BI, a highly damper BI (HDBI) and with the 

ESBA-3 configuration, for all the far fault real earthquake records 
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largest structural drift of 0.226 m  to the BI system. Increasing the damping ratio from 

5% to 20%, which corresponds to the HDBI case, the structural drift drops to 0.104 m. 

However, ESBA-3 manages to keep the drift at the value of 0.039 m, which is lower by 

the drifts of BI and HDBI by 82.74% and 62.5%, respectively (Fig. 4.13(a)). In          

(Fig. 4.14(a)) there are the drifts of the FF earthquakes. Again, Kobe-F with a PGA of 

0.139g causes the largest drift in BI, by 0.062 m. HDBI notes a drift of 0.035 m, while 

ESBA-3 a small value of 0.014 m. That means, ESBA-3 achieves a reduction of 77.42% 

and 60% of the BI and HDBI drifts, respectively. 

In terms of the absolute acceleration, according to (Fig. 4.13(b)), approximately in half 

of the NF earthquakes, the ESBA-3 configuration manages to present the lowest values. 

In the rest of the NF earthquakes, it maintains the absolute acceleration at acceptable 

levels, by slightly exceeding the values of the same response of the BI and HDBI 

systems. In the same earthquake, BI system notes an absolute acceleration of 7.64 m/s2, 

HDBI 3.76 m/s2 and ESBA-3 a value of 2.09 m/s2. ESBA-3 achieves a decrease by 

72.64% and 44.41% with respect to the BI and HDBI systems. In (Fig. 4.14(b)), the 

values of the absolute acceleration for the same vibrations systems of BI, HDBI and 

ESBA-3 are 2.10 m/s2, 1.27 m/s2 and 1.04 m/s2, respectively. The proposed system’s 

response is lower by 50.48% and 18.11% than that of the BI and HDBI. 

According to (Fig. 4.13(c)) and (Fig. 4.14(c)), the base shear of the ESBA configuration 

is lower than that of the BI system at the majority of the earthquakes. At very few cases 

there is a minor exceedance of the value of the BI or HDBI system, which means that 

ESBA-3 maintains once more this response at acceptable levels. More specifically, the 

base shear of the BI, due to the same earthquake (No 13), is approximately 2292 kN, 

for the HDBI lies on the value of 1129 kN and for ESBA-3 is configured at 920 kN. 

Again, the ESBA system notes a reduction by 59.86% and 18.51% compared to the 

values of BI and HDBI, respectively. For the earthquake No14 the same responses are 

629 kN, 382 kN and 426 kN for the BI, HDBI and ESBA-3 systems. The response of 

ESBA-3 configuration is 32.27% lower than that of BI, but 10.33% higher than that of 

HDBI.  

Finally, by observing the figures (Fig. 4.13(d)) and (Fig. 4.14(d)), the NS element stroke 

reached the maximum values of 0.111 m for the NF earthquakes (corresponding to the 

Tabas-N earthquake with the highest PGA of 0.854g) and 0.022 m for all the FF cases, 

with that value corresponding to the same No 14 earthquake. As reflected from the (d) 

plot of the figures 4.13 and 4.14, the NS stroke fluctuated within reasonable ranges. 

Overall, it is observed that the ESBA manages to significantly reduce the structural 

drifts and at the same time is able to maintain acceptable levels of structure absolute 

accelerations and base shears. The NS stroke did not surpass the stricter limit of 15 cm 

and obviously the more tolerant limit of 20 cm that was imposed during the 

optimization procedures.  
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5 PERFORMANCE ASSESSMENT OF THE 

ESBA-3 CONFIGURATION AS A SEISMIC 

PROTECTION SYSTEM FOR MULTISTORY 

BUILDING STRUCTURES 

5.1 ESBA-3 configuration as a seismic protection device for 

SDoF systems 

To examine MDoF systems (multi-story buildings) controlled by ESBA configurations, 

an expansion of the suggested vibration control approach is necessary. In order to 

achieve this, it is first demonstrated how the optimal configuration of ESBA-3, as 

outlined in Section 4.4, which was initially developed for a simplified 2-DoF system, 

can be implemented for MDoF systems. As in the work of (De Domenico & Ricciardi, 

2018), at first, an SDoF flexible structure on a fixed base is considered (Fig. 5.1(a)). Its 

characteristics are its total mass 𝑚𝑆, damping coefficient 𝑐𝑆 and stiffness 𝑘𝑆. If the 

structure is subjected to a ground excitation 𝑥𝑔, then the equation of motion is the 

following (in analogy to equations 4.3 and 4.24): 

𝑚𝑆�̈�𝑆 + 𝑐𝑆�̇�𝑆 + 𝑘𝑆𝑢𝑆 = −𝑚𝑆�̈�𝑔                                                                                            (5.1) 

Where, 𝑢𝑆 = 𝑥𝑆 − 𝑥𝑔 is the relative to the ground displacement of the structure and 𝑥𝑆 

is the total displacement of the structure. 

Then, the same flexible structure is mounted on a conventional or highly damped 

isolation base (Fig. 5.1(b)), which is another SDoF system. If again, the coupled, now, 

system is subjected to the same ground excitation, the equations of motions are: 

𝑚𝑆(�̈�𝑆 + �̈�𝐵) + 𝑐𝑆�̇�𝑆 + 𝑘𝑆𝑢𝑆 = −𝑚𝑆�̈�𝑔                                                                           (5.2a)  

𝑚𝐵�̈�𝐵 + 𝑚𝑆(�̈�𝑆 + �̈�𝐵) + 𝑐𝐵�̇�𝐵 + 𝑘𝐵𝑢𝐵 = −(𝑚𝑆 + 𝑚𝐵)�̈�𝑔                                           (5.2b) 

The quantities of 𝑚𝐵, 𝑐𝐵 and 𝑘𝐵 are the mass, the damping coefficient and the stiffness 

of the base isolation. The displacement of 𝑢𝑆 is expressed, now, as the structure’s 

relative to the base displacement and equals to 𝑥𝑆 − 𝑥𝐵. The term 𝑢𝐵 = 𝑥𝐵 − 𝑥𝑔 and is 

the relative to the ground displacement of the base. 

Finally, the same flexible structure is mounted on the extended seismic stiff base 

absorber configuration 3 (ESBA-3), which is now as an alternative base to the 

conventional or the highly damped isolation base (Fig. 5.1(c)). If the system is now 

subjected to the same ground excitation, its equations of motion will be the ones below, 

following the same logic as in the equations (5.2): 

𝑚𝑆(�̈�𝑆 + �̈�𝐵) + 𝑐𝑆�̇�𝑆 + 𝑘𝑆𝑢𝑆 = −𝑚𝑆�̈�𝑔                                                                            (5.3a) 

𝑚𝐵�̈�𝐵 + 𝑚𝑆(�̈�𝑆 + �̈�𝐵) + (𝑏𝑅𝑚𝑡𝑜𝑡)�̈�𝐵 + (𝑏𝑁𝑆𝑚𝑡𝑜𝑡)(�̈�𝐵 − �̈�𝐷) + 𝑐𝑁𝑆(�̇�𝐵 − �̇�𝐷) 

+𝑘𝑅𝑢𝐵 + 𝑘𝑁𝑆(𝑢𝐵 − 𝑢𝐷) = −𝑚𝑡𝑜𝑡�̈�𝑔                                                                              (5.3b) 

𝑚𝐷�̈�𝐷 − (𝑏𝑁𝑆𝑚𝑡𝑜𝑡)(�̈�𝐵 − �̈�𝐷) − 𝑐𝑁𝑆(�̇�𝐵 − �̇�𝐷) − 𝑘𝑁𝑆(𝑢𝐵 − 𝑢𝐷) + (𝑏𝑃𝑆𝑚𝑡𝑜𝑡)�̈�𝐷 

+𝑐𝑃𝑆�̇�𝐷 + 𝑘𝑃𝑆𝑢𝐷 = −𝑚𝐷�̈�𝑔                                                                                                (5.3c) 
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Figure 5.1: (a) Flexible structure on a fixed base, (b) flexible structure on a conventional or highly 

damped isolation base and (c) flexible structure on the extended seismic stiff base absorber configuration 

3 (ESBA-3) 

 

From the equations 5.3a-5.3c, 𝑚𝑡𝑜𝑡 = 𝑚𝑆 + 𝑚𝐵 is the total mass of the structure, 

including both the mass of the superstructure (flexible structure) and the mass of the 

base, 𝑏𝑅 , 𝑏𝑁𝑆 and 𝑏𝑃𝑆 are the inertance coefficients of the inerters that are located 

between the base and the structure, parallel to the negative stiffness and parallel to the 

positive stiffness elements, respectively. Again, the inertance coefficients are expressed 

(a) 

(b) (c) 
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as percentage of the total mass 𝑚𝑡𝑜𝑡. The terms 𝑐𝑁𝑆 and 𝑐𝑃𝑆 are the damping 

coefficients that are parallel to the negative stiffness and parallel to the positive stiffness 

elements, respectively. Eventually, the terms 𝑘𝑅, 𝑘𝑁𝑆 and 𝑘𝑃𝑆 are the stiffness of the 

base, the negative and positive stiffness, respectively. The 𝑚𝐷 quantity is the mass of 

the oscillating mass and 𝑢𝐷 = 𝑥𝐷 − 𝑥𝑔 is the relative to the ground displacement of the 

oscillating mass.  

 

5.2 Extension of ESBA-3 configuration as a seismic 

protection for MDoF systems 

In (Fig. 5.2(a)) and (Fig. 5.2(b)), a planar multi-story building, with 𝑛 degrees of 

freedom, is modeled mounted on a conventional or highly damped base isolation and 

on the extended seismic stiff base absorption configuration 3 (ESBA-3), respectively. 

By adopting some assumptions as made in (Katsikadelis, 2020), including a preliminary 

static condensation method, which is applied to eliminate the (zero-mass) rotational 

degrees of freedom, the superstructure is modeled as follows: 

 The total mass of the superstructure is concentrated at the floor levels.   

 The slabs of the floors are considered rigid, as compared to the columns. 

 The columns are inextensible and weightless, thus contributing only to the 

lateral stiffness. 

 The interaction of the soil to the structure is not taken into account. 

 The structure is considered to function within the elastic range. 

From the aforementioned assumptions, the superstructure has 𝑛 dynamic degrees of 

freedom, which equal to the total number of floors. They are represented by the 

horizontal displacements of the floor masses 𝑚𝑆𝑗 = 1,2, … , 𝑛 and are collected into the 

vector 𝒖𝑺𝒓(𝑡) = [𝑢𝑆𝑟1(𝑡) 𝑢𝑆𝑟2(𝑡)… 𝑢𝑆𝑟𝑛(𝑡)]𝑇. The index 𝑟 denotes the relative to the 

base displacement of the structure. The equations (5.2) and (5.3) still hold for MDoF 

systems. By considering the same ground excitation 𝑥𝑔, the matrices of the equation of 

motion are the following (in exact analogy of equation 4.3): 

𝑴(𝑟𝐵𝐼)𝑥(𝑟𝐵𝐼)
𝐵𝐼 = [

𝑴𝑆,(𝑛)𝑥(𝑛) 𝑴𝑆,(𝑛)𝑥(𝑛)𝝉𝑆,(𝑛)𝑥(1)

𝝉𝑆,(1)𝑥(𝑛)
𝑇 𝑴𝑆,(𝑛)𝑥(𝑛) 𝑚𝐵 + 𝑚𝑆,𝑡𝑜𝑡

]  

𝑪(𝑟𝐵𝐼)𝑥(𝑟𝐵𝐼)
𝐵𝐼 = [

𝑪𝑆,(𝑛)𝑥(𝑛) 𝟎(𝑛)𝑥(1)

𝟎(1)𝑥(𝑛) 𝑐𝐵
]  

𝑲(𝑟𝐵𝐼)𝑥(𝑟𝐵𝐼)
𝐵𝐼 = [

𝑲𝑆,(𝑛)𝑥(𝑛) 𝟎(𝑛)𝑥(1)

𝟎(1)𝑥(𝑛) 𝑘𝐵
]  

𝝉(𝑟𝐵𝐼)𝑥(1)
𝐵𝐼 = [

𝑴𝑆,(𝑛)𝑥(𝑛)𝝉𝑆,(𝑛)𝑥(1)

𝑚𝐵 + 𝑚𝑆,𝑡𝑜𝑡
] 

𝒖(𝑟𝐵𝐼)𝑥(1)
𝐵𝐼 (𝑡) = [

𝒖𝑆𝑟,(𝑛)𝑥(1)(𝑡)

𝑢𝐵(𝑡)
]                                                                                                           (5.4) 
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Figure 5.2: Multistory building with the proposed absorption base system, (a) sketch of the model 

mounted on a conventional or highly damped base isolation and (b) sketch of the model mounted on the 

extended seismic stiff absorption base configuration 3 (ESBA-3) 

(a) 

(b) 
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All the matrices of Equation (5.4) correspond to the matrix extension of Equations 

(5.2a) and (5.2b) for MDoF systems. From (Eq. 5.4), the index 𝑟𝐵𝐼 = 𝑛 + 1 is the total 

degrees of freedom, of a planar superstructure of the aforementioned assumptions with 

𝑛 degrees of freedom, mounted on a conventional or highly damped base isolation. The 

terms 𝑴𝐵𝐼, 𝑪𝐵𝐼 and 𝑲𝐵𝐼 are the mass, damping and stiffness matrices of the total 

system, respectively, while the 𝑴𝑆, the 𝑪𝑆 and the 𝑲𝑆 are the same matrices of the 

superstructure as if it is fixed on the ground, with 𝑛𝑥𝑛 dimensions each. The vector 𝝉𝑆 

is the influence vector and according to (Chopra, 2011), it represents the displacements 

of the masses resulting from static application of a unit ground displacement. For the 

present case of the planar superstructure with its assumptions, the influence vector 

coincides with the unit vector 𝟏 = [1 1…1]𝑇, containing as many ones as the 𝑛 degrees 

of freedom of the superstructure. The quantity 𝑚𝑆,𝑡𝑜𝑡 = ∑ 𝑚𝑆𝑗
𝑛
𝑗=1 , is the total mass of 

the superstructure and is equal to the sum of the floor masses, 𝑛 in total. The vector 𝟎 

with 𝑛 dimension contains zero elements. From the above clarifications the relative to 

the ground, now, displacements of the superstructure can computed from: 

𝒖𝑆(𝑡) = 𝒖𝑆𝑟(𝑡) + 𝑢𝐵(𝑡)                                                                                                       (5.5) 

as the first term of the sum is the relative to the base displacement of the structure, while 

the second term is the relative to the ground base displacement. 

The same exact logic, as in the case of the base isolation with respect to the equations 

(5.2), is followed for the ESBA-3 configuration that correspond to the matrix extension 

of equations (5.3). The matrices in this case, as formulated previously, in (Eq. 5.4) are 

the following: 

𝑴(𝑟𝐸𝑆𝐵𝐴−3)𝑥(𝑟𝐸𝑆𝐵𝐴−3)
𝐸𝑆𝐵𝐴−3 = 

 

[

𝑴𝑆,(𝑛)𝑥(𝑛) 𝑴𝑆,(𝑛)𝑥(𝑛)𝝉𝑆,(𝑛)𝑥(1)

𝝉𝑆,(1)𝑥(𝑛)
𝑇 𝑴𝑆,(𝑛)𝑥(𝑛) [𝑚𝑡𝑜𝑡 + (𝑏𝑅 + 𝑏𝑁𝑆)𝑚𝑡𝑜𝑡]

𝟎(𝑛)𝑥(1)

−(𝑏𝑁𝑆𝑚𝑡𝑜𝑡)

𝟎(1)𝑥(𝑛)                   −(𝑏𝑁𝑆𝑚𝑡𝑜𝑡) [𝑚𝐷 + (𝑏𝑁𝑆 + 𝑏𝑃𝑆)𝑚𝑡𝑜𝑡]

]  

𝑪(𝑟𝐸𝑆𝐵𝐴−3)𝑥(𝑟𝐸𝑆𝐵𝐴−3)
𝐸𝑆𝐵𝐴−3 = [

𝑪𝑆,(𝑛)𝑥(𝑛) 𝟎(𝑛)𝑥(1)

𝟎(1)𝑥(𝑛) 𝑐𝑁𝑆

𝟎(𝑛)𝑥(1)

−𝑐𝑁𝑆

𝟎(1)𝑥(𝑛)    −𝑐𝑁𝑆 (𝑐𝑁𝑆 + 𝑐𝑃𝑆)

]  

𝑲(𝑟𝐸𝑆𝐵𝐴−3)𝑥(𝑟𝐸𝑆𝐵𝐴−3)
𝐸𝑆𝐵𝐴−3 = [

𝑲𝑆,(𝑛)𝑥(𝑛) 𝟎(𝑛)𝑥(1)

𝟎(1)𝑥(𝑛) (𝑘𝑅 + 𝑘𝑁𝑆)

𝟎(𝑛)𝑥(1)

−𝑘𝑁𝑆

𝟎(1)𝑥(𝑛)     −𝑘𝑁𝑆     (𝑘𝑃𝑆 + 𝑘𝑁𝑆)

]  

𝝉(𝑟𝐸𝑆𝐵𝐴−3)𝑥(1)
𝐸𝑆𝐵𝐴−3 = [

𝑴𝑆,(𝑛)𝑥(𝑛)𝝉𝑆,(𝑛)𝑥(1)

𝑚𝐵 + 𝑚𝑆,𝑡𝑜𝑡

𝑚𝐷

] 

𝒖(𝑟𝐸𝑆𝐵𝐴−3)𝑥(1)
𝐸𝑆𝐵𝐴−3 (𝑡) = [

𝒖𝑆𝑟,(𝑛)𝑥(1)(𝑡)

𝑢𝐵(𝑡)
𝑢𝐷(𝑡)

]                                                                                     (5.6)                                                                                                      
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All the matrices of Equation (5.6) correspond to the matrix extension of Equations 

(5.3a), (5.3b) and (5.3c) for MDoF systems. From (Eq. 5.6), the index 𝑟𝐸𝑆𝐵𝐴−3 = 𝑛 + 2 

is the total degrees of freedom, of a planar superstructure of the aforementioned 

assumptions with 𝑛 degrees of freedom, mounted on the ESBA-3 configuration. The 

terms 𝑴𝐸𝑆𝐵𝐴−3, 𝑪𝐸𝑆𝐵𝐴−3 and 𝑲𝐸𝑆𝐵𝐴−3 are the mass, damping and stiffness matrices of 

the total system, respectively, while all the rest matrices, vectors and scalar quantities 

have been explained previously. The quantity 𝑚𝑡𝑜𝑡 = 𝑚𝑆,𝑡𝑜𝑡 + 𝑚𝐵 = ∑ 𝑚𝑆𝑗
𝑛
𝑗=1 + 𝑚𝐵, 

is the total mass of the superstructure and is equal to the sum of the floor masses and 

the mass of the base. 

 

5.3 Numerical application: 3-story concrete building 

structure 

5.3.1 Initial building structure 

A planar 3-story concrete building with a typical symmetric plan is considered. From 

section (5.2), it is 𝑛 = 3, regarding the matrix equations. The 3-story concrete building 

is considered to have a concentrated on the floor level mass of 80 Mgr per story (so, 

𝑚𝑆,𝑡𝑜𝑡 = 3 ∗ 80 = 240 Mgr) and the concrete of the columns is taken to belong into 

the category of C20/25 MPa. From (EN 1992-1-1, 2004), C20/25 concrete has a secant 

modulus of elasticity of 29.96 GPa (defined from the following relation:                    

𝐸𝑐𝑚 = 22 [
𝑓𝑐𝑚

10
]
0.3

, where  𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8 , in MPa and 𝑓𝑐𝑘 = 20 𝑀𝑃𝑎 for C20/25). 

From the (Fig. 5.3) below, a typical floor may include 16 columns per story and each 

column has a height of 4.0 m and a square cross section with a 0.4 m side. The effective 

stiffness of each column can be calculated from the relation: 𝑘𝑠𝑡𝑐,𝑒𝑓𝑓 =
0.5∗12𝐸𝑐𝑚𝐼𝑠𝑒𝑐

ℎ3 , 

where 𝐼𝑠𝑒𝑐 =
𝑏𝑠𝑞

4

12
 the square section’s with side 𝑏𝑠𝑞 moment of inertia, ℎ the column’s 

height and the term 0.5 is considered by adopting the recommendations of (EN 1998-

1, 2004) for cracked concrete sections of the columns. From all these as data, the mass 

and stiffness matrix which will be used in equations (5.4) or (5.6) are the following: 

𝑀𝑆,(3)𝑥(3) = 80 [
1 0
0 1

0
0

0 0 1
]  (in Mgr)                                                                                     (5.7a) 

𝐾𝑆,(3)𝑥(3) = 16 ∙ 𝑘𝑠𝑡𝑐,𝑒𝑓𝑓 [
   2 −1
−1    2

  
   0
−1

   0 −1      1
]  (in kN/m)                                                        (5.7b) 

By performing a classical model analysis, the 3-story concrete building, with those 

characteristics, the following vector, containing the natural periods, results:               

𝑇𝑆𝑖 = [0.408 0.146 0.101] (in sec). Finally, the damping matrix is indirectly defined 

by using the Rayleigh damping (Katsikadelis, 2020): 

𝐶𝑆,(3)𝑥(3) = 𝑎0𝑀𝑆,(3)𝑥(3) + 𝑎1𝐾𝑆,(3)𝑥(3) (in kNs/m)                                                           (5.7c) 

where 𝑎0 and 𝑎1 are coefficients that construct a proportional damping matrix to the 

mass and stiffness matrices. They are defined as: 
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Figure 5.3: Ground floor plan of a typical floor of the structure (dimensions in m) 

 

𝑎0 =
2𝜉𝜔𝑛𝜔𝑚

𝜔𝑛+𝜔𝑚
                                                                                                                      (5.7d) 

𝑎1 =
2𝜉

𝜔𝑛+𝜔𝑚
                                                                                                              (5.7e) 

A reasonable assumption is made for the damping ratio 𝜉, that it is fixed for all the 

modes and is taken equal to 0.03, a typical value for a concrete building. The terms 𝜔𝑛 

and 𝜔𝑚 can be the natural frequencies resulting from the first two eigenmodes. 

 

5.3.2 Numerical results 

The dynamic responses of the 3-story concrete building, firstly considered as fixed on 

the ground (noted as IN-from initial) and secondly mounted on the ESBA-3 

configuration, the conventional (BI) and highly damped (HDBI) base isolation, are 

presented. For the ESBA-3 system the values of the parameters that correspond to the 

acceleration filter of 50% are selected again (values from Table 4.4), with a 1% of the 

total mass (including the mass of the base) corresponding to the mass of the oscillating 

mass. The mass of the base is selected to be 60 Mgr, so that the total mass of the 3 

stories with the mass of the base, be equal to the total mass with which the optimization 

processes were performed. The same base mass is selected, also, for the conventional 

and highly damped base isolation cases. The stiffness and damping parameters of the 

base isolation emerge by considering the same frequency of the system, as in the case 

of ESBA-3, in order to have similar comparisons. So, in analogy with equations (4.30) 

and (4.31) the stiffness and damping of the base isolation are calculated as: 
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Figure 5.4: Comparative results, in terms of structure's (a) top floor relative to the ground displacement, 

(b) top floor absolute acceleration and (c) base shear between the fixed structure (IN), the conventional 

(BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), for an artificial 

acceleration 

(a) 

(b) 

(c) 
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Figure 5.5: Comparative results, in terms of structure's (a) first floor drift, (b) base relative to the ground 

displacement and (c) NS stroke between the fixed structure (IN), the conventional (BI) and highly 

damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), for an artificial acceleration 

 

(a) 

(b) 

(c) 
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𝑘𝐵𝐼 𝑜𝑟 𝐻𝐷𝐵𝐼 = 𝑚𝑡𝑜𝑡(2𝜋𝑓0
𝐸𝑆𝐵𝐴−3 𝑓𝑜𝑟 50% 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑖𝑙𝑡𝑒𝑟

 )
2
                                              (5.8a) 

𝑐𝐵𝐼 𝑜𝑟 𝐻𝐷𝐵𝐼 = 2𝑚𝑡𝑜𝑡(2𝜋𝑓0
𝐸𝑆𝐵𝐴−3 𝑓𝑜𝑟 50% 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑖𝑙𝑡𝑒𝑟

 )
 
𝜁𝐵𝐼 𝑜𝑟 𝐻𝐷𝐵𝐼                       (5.8b) 

where 𝜁 = 0.05 for the BI case and 𝜁 = 0.20 for the HDBI case.    

 

By implementing all these, (Fig. 5.4(a)), presents the relative to the ground 

displacement of the top floor of the fixed structure (IN) and for the ESBA-3 

configuration (ESBA3), the conventional (BI) and highly damped (HDBI) base 

isolation, according to (Eq. 5.5). Due to the same artificial accelerogram of the 

optimization processes, the fixed structure developed a relative displacement of        

0.059 m on the top floor. ESBA-3 noted a 0.041 m while the BI and HDBI cases a 

relative displacement of 0.188 m and 0.1 m, respectively. That means, the ESBA-3 

configuration manages to reduce the top relative displacement to 30.51% of the fixed 

structure. Opposite to that, the BI increases the displacement by 218.64% of the initial 

and the HDBI by 69.49% of the initial. It is clearly observed that the ESBA-3 

configuration develops a relative small value of the displacement, including the 

displacement of the base and the relative to the base displacement of the top floor. 

The figure 5.4(b), displays the absolute acceleration of the top floor for the same four 

cases. The initial structure reached the value of 14.18 m/s2, while with the aid of          

ESBA-3 configuration, this value becomes 4.25 m/s2. This response is reduced by 

70.03%. The same response is at 6.00 m/s2 and 3.83 m/s2 for the BI and HDBI cases, 

respectively, which correspond to a reduction of 57.69% and 72.99% of the initial. 

Again, the ESBA-3 notes a very satisfying performance as its response is located 

between that of the BI and HDBI systems. 

The next figure (Fig. 5.4(c)), shows the shear base of the four cases. The artificial 

acceleration creates a shear base of 2694.5 kN to the fixed structure (this is calculated 

as the equivalent elastic forced of the base, which is equal to 16 ∙ 𝑘𝑠𝑡𝑐,𝑒𝑓𝑓𝑢𝑆
1𝑠𝑡 𝑓𝑙𝑜𝑜𝑟

(𝑡)). 

ESBA-3 configuration reached the value of 876.6 kN, while the BI and the HDBI 

yielded a base shear of 1606.8 kN and 913 kN, respectively. The base shear from the 

vibration absorption bases is reduced by 67.47%, 40.37% and 66.12% for all the 

systems with respect to the initial fixed structure. Again, the ESBA-3 achieves the best 

dynamic performance in this case. 

The figure (5.5(a)) depicts the drift of the first floor. It is calculated as the % of the 

column’s height and for the absorption bases is directly calculated from the equations 

(5.4) and (5.6), as the first floor is expressed from the relative to the base displacement. 

The drift of the fixed structure is 0.70%. The same response of the ESBA-3 system 

reaches the value of 0.18%, while the BI and HDBI have a drift of 0.35% and 0.20%, 

respectively. Again, the ESBA achieves the highest reduction of the initial structure by 

74.29%. The conventional base notes a reduction of 50% and the highly damped base 

isolation decreases the drift by 71.43%. 

The next figure (5.5(b)), includes the curves that refer to the relative to the ground 

displacement of the base, on which the structure is mounted, of all the vibration 
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absorption base systems. As it can be clearly observed, the ESBA-3 configuration 

achieved the relatively small value of 0.033m, while the other two base isolations note 

a base displacement of 0.159 m (BI) and 0.086 m (HDBI). The biggest advantage of 

the proposed system is that it can reach a base displacement reduced by 79.25%, 

compared to the conventional base isolation and by 61.63% compared to the HDBI 

case. 

Finally, (Fig. 5.5(c)) exhibits the time history of the NS stroke of the ESBA 

configuration. The maximum value of 0.052 m is reached, so as to note all the above 

performance issues.  

The figures (5.6(a)-(c)) and (5.7(a)-(c)) depict the same exactly dynamic responses of 

the fixed structure and all the vibration absorption base systems, subjected to the Tabas 

Near Fault real earthquake. It has the highest PGA (0.854g) according to Table 4.5. 

Again, as it can be clearly noticed, the ESBA-3 configuration manages to outperform 

the other two base isolation systems, in terms of the structure’s relative to the ground 

displacement, base shear and first floor drift and the base displacement. As far as the 

structure’s absolute acceleration of the last floor, the ESBA-3 exhibits a maximum 

value, almost equal to that of the BI and slightly larger than that of the HDBI. More 

specifically, the fixed structure has a maximum relative displacement of 0.1 m, absolute 

acceleration of 30.29 m/s2, base shear of 4313.1 kN and first floor drift 1.12%, while 

the ESBA-3 system presented the values of the same responses of: 0.088 m (12% 

reduced), 11.43 m/s2 (62.26% reduced), 1428.1 kN (66.89% reduced) and 0.31% drift 

(72.32% reduced) and has a base displacement of 0.067 m (67% reduced compared to 

the 0.203 m of BI and 52.48% reduced with respect to the 0.141 m of the HDBI). 

Finally, a reasonable value of 0.119 m of NS stroke is yielded by the ESBA-3.      

In (Fig. 5.8(a)), there are the maximum values of the fixed structure, the BI, the HDBI 

and the ESBA-3 configurations, subjected to all the real earthquakes. In more than half 

of the real earthquakes, the ESBA-3 system presents the lowest relative to the ground 

displacements compared to the fixed structure, the BI and HDBI. In all the earthquakes 

it is lowest than that of the base isolation systems. The maximum response is produced 

by the earthquake No 7, where the BI exhibits a displacement of 0.244 m, the HDBI 

0.139 m and the ESBA 0.049 m, all larger than that of 0.045 m of the fixed structure.  

In the next figure of (5.8(b)), the absolute acceleration of the top floor is depicted for 

all the four cases. In a little less than half of the real earthquakes, the ESBA-3 yields 

the lowest responses of the absolute acceleration, which is a very satisfying 

performance as, in the previous plots of the random acceleration and the Tabas NF, was 

not the lowest. The largest values emerge from earthquake No 11 (Tabas NF), which 

was analyzed earlier. The ESBA-3 has the same response of the BI system and is 

slightly larger than the value of 10.07 m/s2 of the HDBI.  

The figure (5.8(c)) includes the bars of the maximum values of the base shear from all 

the real earthquakes for all the cases. Again, as in the case of the absolute acceleration, 

in a little less than half of the earthquakes the ESBA-3 exhibits the lowest values. The 

most extreme values appear again in the Tabas NF earthquake (No 11). The ESBA-3 

has the lowest value of 1428.1 kN compared to the base shears of the BI and the HDBI, 

which are 2051.4 kN and 1540 kN, respectively.  
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Figure 5.6: Comparative results, in terms of structure's (a) top floor relative to the ground displacement, 

(b) top floor absolute acceleration and (c) base shear between the fixed structure (IN), the conventional 

(BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), for the Tabas 

Near Fault earthquake 

(a) 

(b) 

(c) 
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Figure 5.7: Comparative results, in terms of structure's (a) first floor drift, (b) base relative to the ground 

displacement and (c) NS stroke between the fixed structure (IN), the conventional (BI) and highly 

damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), for the Tabas Near Fault 

earthquake 

 

(a) 

(b) 

(c) 
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In figure (5.9(a)), there are the drifts of the first floor for all the cases subjected to all 

the real earthquakes. Again, as in the previous cases of the absolute acceleration and 

base shear, in slightly less than half of the real earthquakes, the ESBA-3 configuration 

appears to have the lowest values of the drifts. In the rest earthquakes, the majority of 

them yield values that are slightly above the HDBI or between the BI and HDBI and in 

minor cases a bit larger than that of the base isolation systems. The largest response 

comes again from the Tabas NF earthquake, where ESBA-3 has a drift of 0.31% 

compared to that of 0.44% and 0.34% of the BI and HDBI, respectively. 

In the next figure (5.9(b)), the curves, that depict the relative to the ground displacement 

of the base of all the three systems, are presented. The major advantage is that the 

ESBA-3 configuration exhibits the smallest values for this response in all the real 

earthquakes. The largest base displacement is due to the earthquake No7, where the BI 

reached the value of 0.207 m, the HDBI 0.118 m and the ESBA-3 0.039 m (which is 

reduced by 81.16% and 66.95% of the same responses of the BI and the HDBI, 

respectively). 

Finally, in the figure (5.9(c)), there are the NS strokes of the ESBA-3, that are produced 

by the real earthquakes. The largest value is that from Tabas NF (No 11) earthquake, 

while in all the others the NS stroke does not exceed the approximate value of 0.07m, 

meaning that this configuration remains within constructional and engineering 

constraints and realizations.     

The following figure (Fig. 5.10(a)-(e)) contains the mean maximum values of all the 

main dynamic responses of the relative to the ground displacement of the top floor, the 

absolute acceleration of the top floor, the base shear, the drift of the first floor, the 

relative to the ground displacement of the base and NS stroke for all the artificial, near 

fault and far fault earthquakes. In (Fig. 5.10(a)), the ESBA-3 has the lowest relative to 

the ground displacement of the systems (including the fixed structure) for all the 

earthquakes. It exhibits a mean displacement of 0.046 m for all the artificial 

accelerations, 0.034 m for all the real NF and 0.009 m for all the FF, while the BI has 

respectively for the same responses, 0.197 m, 0.127 m and 0.027 m. In (Fig. 5.10(b)), 

the ESBA-3 has a slightly larger performance of that of the HDBI, regarding the 

absolute acceleration of the top floor. More specifically, the mean values are 4.61 m/s2, 

4.96 m/s2 and 1.2 m/s2 for all the artificial, the NF and the FF earthquakes, while the 

same values for the fixed structure and the HDBI, respectively, are the following by 

earthquake category: 15.34 m/s2, 3.89 m/s2, 11.40 m/s2, 4.64 m/s2, 3.30 m/s2 and 1.12 

m/s2. The next figure (5.10(c)) presents the base shear. Again, the ESBA-3 exhibits the 

same approximately behavior as the HDBI (in NF has a bit lower response). It yields a 

base shear of 997 kN, 693 kN and 211 kN, while the same responses of the fixed 

structure are 2775 kN, 1767 kN and 577 kN for all the artificial, NF and FF earthquakes, 

respectively. The ESBA-3 manages, again, to maintain the lowest values of all the 

systems in terms of the drift of the first floor (except the FF case where it has a minor 

increased performance compared to that of the HDBI) and the base displacement. The 

drift variates from 0.2% (for all the artificial accelerations) to 0.15% (for all the NF) 

and 0.04% (for all the FF). The displacement of the base of the ESBA-3 variated from 
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Figure 5.8: Main dynamic responses of (a) top floor relative to the ground displacement, (b) top floor 

absolute acceleration and (c) base shear between the fixed structure (IN), the conventional (BI) and 

highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), for all the near fault and 

far fault real earthquakes    

 

(a) 

(b) 

(c) 
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Figure 5.9: Main dynamic responses of (a) first floor drift, (b) relative to the ground base displacement 

and (c) NS stroke between the fixed structure (IN), the conventional (BI) and highly damped (HDBI) 

base isolation and the ESBA-3 configuration (ESBA3), for all the near fault and far fault real earthquakes    

 

(c) 

(b) 

(a) 
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Figure 5.10: Mean maximum values of dynamic responses of (a) top floor relative to the ground 

displacement, (b) top floor absolute acceleration, (c) base shear, (d) first floor drift, (e) relative to the 

ground base displacement and (f) NS stroke between the fixed structure (IN), the conventional (BI) and 

highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), for all the artificial 

accelerations and the near fault and far fault real earthquakes    
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0.037 m (all artificial earthquakes), to 0.027 m (all NF) and to 0.007 m (all FF). With 

the same earthquake category order, the BI and HDBI responses are 0.167 m, 0.108 m 

and 0.023 m and 0.09 m, 0.064 m and 0.014 m, respectively. Finally, in (Fig. 5.10(f)), 

it is noticed that the NS stroke is located within reasonable results, as it is 0.058 m for 

all the artificial, 0.043 m for all the NF and 0.011 m for all the FF. 

For the analysis of the three-story building, only, a further investigation is conducted to 

compare the time history responses of the relative to the ground displacement of the top 

floor, the absolute acceleration of the top floor, the base shear, the drift of the first floor 

and the relative to the ground base displacement that correspond to the next figure 

below (Fig. 5.11 (a)-(e)) with the same order. As it can be clearly pointed, the decrease 

of the natural frequency of the conventional and highly damped base isolations (0.4 Hz 

now) leads to the increase of the relative to the ground displacement of the top floor 

and the base displacement, which becomes problematic from a certain point and beyond 

that. However, the rest of the responses decrease.  The top displacement becomes now 

0.274 m (BI) and 0.18 m (HDBI), which are 568.29% and 339.02%, respectively, 

higher than that of ESBA-3. Similar for the base isolation, BI and HDBI note the values 

of 0.265 m and 0.174 m for base displacement, which are higher by 703.03% and 

427.27% by the ESBA-3. Quite small accelerations of 1.71 m/s2 and 1.39 m/s2, by the 

BI and HDBI respectively, are present, which are 59.76% and 67.29% lower than the 

response of the ESBa-3 configuration. 

 

 

(a) 

(b) 
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Figure 5.11: Comparative results, in terms of structure's (a) top floor relative to the ground displacement, 

(b) top floor absolute acceleration, (c) base shear, (d) first floor drift and (e) base relative to the ground 

displacement, between the ESBA-3 configuration (ESBA3) and the conventional (BI) and highly damped 

(HDBI) base isolation with natural frequency of 0.4 Hz of the base isolations, for the artificial 

acceleration 

(c) 

(d) 

(e) 
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The base shear appears to be at 505 kN and 358 kN, approximately, for the BI and 

HDBI, lower by 42% and 59% approximately from the corresponding response of the 

ESBA-3 system. Finally, the drift of the first floor is achieved at 0.11% and 0.08% from 

the base isolation systems. These responses are decreased by 39% and 55.5% 

approximately from the drift yielded by the ESBA-3. 

 

5.4 Numerical application: 5-story concrete building 

structure 

5.4.1 Initial building structure 

A planar 5-story concrete building with the same typical symmetric plan (Fig. 5.3), as 

of the 3-story building, is considered, now, in this section. From section (5.2), it       

is 𝑛 = 5, regarding the matrix equations. This building is also considered to have the 

same concentrated mass on the floor of each story of 80 Mgr, (so, 𝑚𝑆,𝑡𝑜𝑡 = 5 ∗ 80 =

400 Mgr), the same concrete material, the same number of columns (since they share 

the same plan view) and the same column’s height of 4m with the same cross section. 

From all these as data, the mass and stiffness matrix which will be used in equations 

(5.4) or (5.6) are the following: 

 𝑀𝑆,(5)𝑥(5) = 80

[
 
 
 
 
1 0
0 1

0 0 0
0 0 0

0 0
0
0

0
0

1 0 0
0
0

1 0
0 1]

 
 
 
 

  (in Mgr)                                                                    (5.9a) 

𝐾𝑆,(5)𝑥(5) = 16 ∙ 𝑘𝑠𝑡𝑐,𝑒𝑓𝑓

[
 
 
 
 
   2 −1
−1    2

0 0      0
−1    0      0

   0 −1
   0
   0

   0
  0

   2  −1      0
−1
   0

    2  −1
 −1     1]

 
 
 
 

  (in kN/m)                          (5.9b) 

By performing the classical model analysis, the 5-story concrete building, with those 

characteristics, the following vector, containing the natural periods, results:               

𝑇𝑆𝑖 = [0.638 0.219 0.139 0.108 0.095] (in sec). Finally, the damping matrix is 

indirectly defined by using again the Rayleigh damping (as in Eq. 5.7c): 

𝐶𝑆,(5)𝑥(5) = 𝑎0𝑀𝑆,(5)𝑥(5) + 𝑎1𝐾𝑆,(5)𝑥(5) (in kNs/m)                                                           (5.9c) 

where 𝑎0 and 𝑎1 are the same coefficients that construct a proportional damping matrix 

to the mass and stiffness matrices and are defined by the same equations (5.7d) and 

(5.7e), by using the same value for 𝜉 damping ratio of 0.03 and by considering the first 

two eigenmodes for computing the natural frequencies. 

 

5.4.2 Numerical results 

The dynamic responses of the 5-story concrete building, firstly considered as fixed on 

the ground (noted as IN-from initial) and secondly mounted on the ESBA-3 

configuration, the conventional (BI) and highly damped (HDBI) base isolation, are 
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presented. For the ESBA-3 system the values of the parameters that correspond to the 

acceleration filter of 50% are selected again (values from Table 4.4), with a 1% of the 

total mass (including the mass of the base, which is again selected to be the same mass 

of the 60 Mgr) corresponding to the mass of the oscillating mass. However, these values 

are modified analogically to the new total mass, in comparison to the 3-story building 

(Table 5.1). The frequency of the system is let to be unaltered, while the values of the 

negative stiffness element and that of the dampers that are parallel to the negative and 

positive stiffness elements are changed by 460/300, where 460(=5·80+60) Mgr is the 

total mass of the 5-story building with its base. The values of the inerters are identical 

to those of the 3-story case, as they express inertance by percentage of the total mass. 

Since the total mass has been modified, the inerter values refer now to it. The same base 

mass is selected, also, for the conventional and highly damped base isolation cases. The 

stiffness and damping parameters of the base isolation emerge by considering the same 

unchanged frequency of the system, as in the case of ESBA-3, in order to have similar 

comparisons. So, in analogy with equations (4.30) and (4.31) and by using the same 

equations of (5.8a) and (5.8b) with the new total mass, the stiffness and damping of the 

base isolation can be calculated. 

Table 5.1: ESBA-3 configuration parameters for the response analysis of the 5-story building 

 

By implementing all these, (Fig. 5.12(a)), presents the relative to the ground 

displacement of the top floor of the fixed structure (IN) and for the ESBA-3 

configuration (ESBA3), the conventional (BI) and highly damped (HDBI) base 

isolation, according to (Eq. 5.5). Due to the same artificial accelerogram of the 

optimization processes, the fixed structure developed a relative displacement of 0.12 m 

on the top floor. ESBA-3 noted a 0.065 m while the BI and HDBI cases a relative 

displacement of 0.193 m and 0.118 m, respectively. That means, the ESBA-3 

configuration manages to reduce the top relative displacement to 45.83% of the fixed 

structure. Opposite to that, the BI increases the displacement by 60.83% of the initial 

and the HDBI notes an approximate same response to that of the initial (reduced just 

by 1.67%). It is clearly observed that the ESBA-3 configuration develops a relative 

small value of the displacement, including the displacement of the base and the relative 

to the base displacement of the top floor. 

The figure 5.12(b), displays the absolute acceleration of the top floor for the same four 

cases. The initial structure reached the value of 13.06 m/s2, while with the aid of          

ESBA-3 configuration, this value becomes 5.37 m/s2. This response is reduced by 

58.88%. The same response is at 5.71 m/s2 and 4.32 m/s2 for the BI and HDBI cases, 

respectively, which correspond to a reduction of 56.28% and 66.92% of the initial. 

Again, the ESBA-3 notes a very satisfying performance as its response is located 

between that of the BI and HDBI systems. 

𝒇𝟎 (Hz) 
𝒌𝑵𝑺 

(kN/m) 
𝒄𝑵𝑺 

(kNs/m) 
𝒄𝑷𝑺 

(kNs/m) 

𝒃𝑹       

(% mS) 

𝒃𝑵𝑺       

(% mS) 

𝒃𝑷𝑺       

(% mS) 

0.9220 -16410.51 1288.79 1373.44 0.4993 0.2113 0.0001 
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Figure 5.12: Comparative results for the 5-story building, in terms of structure's (a) top floor relative to 

the ground displacement, (b) top floor absolute acceleration and (c) base shear between the fixed structure 

(IN), the conventional (BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration 

(ESBA3), for an artificial acceleration 

(a) 

(b) 

(c) 
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Figure 5.13: Comparative results for the 5-story building, in terms of structure's (a) first floor drift, (b) 

base relative to the ground displacement and (c) NS stroke between the fixed structure (IN), the 

conventional (BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), 

for an artificial acceleration 

 

(a) 

(b) 

(c) 
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The next figure (Fig. 5.12(c)), shows the shear base of the four cases. The artificial 

acceleration creates a shear base of 3431.2 kN to the fixed structure (this is calculated 

as the equivalent elastic forced of the base, which is equal to 16 ∙ 𝑘𝑠𝑡𝑐,𝑒𝑓𝑓𝑢𝑆
1𝑠𝑡 𝑓𝑙𝑜𝑜𝑟

(𝑡)). 

ESBA-3 configuration reached the value of 1418 kN, while the BI and the HDBI 

yielded a base shear of 1987.9 kN and 1320.3 kN, respectively. The base shear from 

the vibration absorption bases is reduced by 58.67%, 42.06% and 61.52% for all the 

systems with respect to the initial fixed structure. Again, the ESBA-3 achieves a 

satisfying performance as its response is relatively close to that of the HDBI. 

The figure (5.13(a)) depicts the drift of the first floor. It is calculated as the % of the 

column’s height and for the absorption bases is directly calculated from the equations 

(5.4) and (5.6), as the first floor is expressed from the relative to the base displacement. 

The drift of the fixed structure is 0.89%. The same response of the ESBA-3 system 

reaches the value of 0.30%, while the BI and HDBI have a drift of 0.49% and 0.31%, 

respectively. Again, the ESBA achieves the highest reduction of the initial structure by 

66.29%. The conventional base notes a reduction of 44.94% and the highly damped 

base isolation decreases the drift by 65.17%. As it emerged from the above, the      

ESBA-3 exhibits the best performance compared to the other two vibration absorption 

systems. 

The next figure (5.13(b)), includes the curves that refer to the relative to the ground 

displacement of the base, on which the structure is mounted, of all the vibration 

absorption base systems. As it can be clearly observed, the ESBA-3 configuration 

achieved the relatively small value of 0.036m (a very close value to that of the 3-story 

building), while the other two base isolations note a base displacement of 0.128 m (BI) 

and 0.083 m (HDBI). The biggest advantage of the proposed system is that it can reach 

a base displacement reduced by 71.88%, compared to the conventional base isolation 

and by 56.63% compared to the HDBI case. 

Finally, (Fig. 5.13(c)) exhibits the time history of the NS stroke of the ESBA 

configuration. The maximum value of 0.057 m is reached, so as to note all the above 

performance issues.  

The figures (5.14(a)-(c)) and (5.15(a)-(c)) depict the same exactly dynamic responses 

of the fixed structure and all the vibration absorption base systems, subjected to the 

Tabas Near Fault real earthquake. It has the highest PGA (0.854g) according to Table 

4.5. Again, as it can be clearly noticed, the ESBA-3 configuration manages to 

outperform the other two base isolation systems, in terms of the structure’s relative to 

the ground displacement, base shear and first floor drift and the base displacement. As 

far as the structure’s absolute acceleration of the last floor, the ESBA-3 exhibits a 

maximum value, slightly larger to that of the BI and a bit larger than that of the HDBI. 

More specifically, the fixed structure has a maximum relative displacement of 0.163 m, 

absolute acceleration of 20.55 m/s2, base shear of 4848.2 kN and first floor drift 1.26%, 

while the ESBA-3 system presented the values of the same responses of: 0.132 m 

(19.02% reduced), 14.11 m/s2 (31.34% reduced), 2441.4 kN (49.64% reduced) and 

0.52% drift (58.73% reduced) and has a base displacement of 0.076 m (73.24% reduced 

compared to the 0.284 m of BI and 50.97% reduced with respect to the 0.155 m of the 

HDBI). Finally, a reasonable value of 0.136 m of NS stroke is yielded by the ESBA-3.      
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Figure 5.14: Comparative results for the 5-story building, in terms of structure's (a) top floor relative to 

the ground displacement, (b) top floor absolute acceleration and (c) base shear between the fixed structure 

(IN), the conventional (BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration 

(ESBA3), for the Tabas Near Fault earthquake 

(a) 

(b) 

(c) 
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Figure 5.15: Comparative results for the 5-story building, in terms of structure's (a) first floor drift, (b) 

base relative to the ground displacement and (c) NS stroke between the fixed structure (IN), the 

conventional (BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), 

for the Tabas Near Fault earthquake 

 

(a) 

(b) 

(c) 
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In (Fig. 5.16(a)), there are the maximum values of the fixed structure, the BI, the HDBI 

and the ESBA-3 configurations, subjected to all the real earthquakes. In the majority of 

the real earthquakes, the ESBA-3 system presents the lowest relative to the ground 

displacements compared to the fixed structure, the BI and HDBI. In all the earthquakes 

it is lowest than that of the base isolation systems. The maximum response is produced 

by the earthquake No 11, analyzed earlier, where the BI exhibits a displacement of 

0.406 m, the HDBI 0.228 m and the ESBA 0.132 m. The ESBA-3 manages to exhibit 

the smallest displacement.  

In the next figure of (5.16(b)), the absolute acceleration of the top floor is depicted for 

all the four cases. In a quarter of the real earthquakes, the ESBA-3 yields the lowest 

responses of the absolute acceleration, which is a satisfying performance as, in the 

previous plots of the random acceleration and the Tabas NF, was not the lowest. The 

largest values emerge from earthquake No 11 (Tabas NF), which was analyzed earlier. 

The ESBA-3 has a slightly larger response than that of the BI system and is a bit larger 

than the value of 9.74 m/s2 of the HDBI.  

The figure (5.16(c)) includes the bars of the maximum values of the base shear from all 

the real earthquakes for all the cases. In a little less than half of the earthquakes the 

ESBA-3 exhibits the lowest values. The most extreme values appear again in the Tabas 

NF earthquake (No 11). The ESBA-3 has the lowest value of 2441.4 kN compared to 

the base shears of the BI and the HDBI, which are 4408.1 kN and 2536.6 kN, 

respectively.  

In figure (5.17(a)), there are the drifts of the first floor for all the cases subjected to all 

the real earthquakes. In slightly more than half of the real earthquakes, the ESBA-3 

configuration appears to have the lowest values of the drifts. In the rest earthquakes, 

the half of them approximately, yield values that are between the BI and HDBI and in 

the other half cases a bit larger than that of the base isolation systems. The largest 

response comes again from the Tabas NF earthquake, where ESBA-3 has a drift of 

0.52% compared to that of 1.02% and 0.59% of the BI and HDBI, respectively. 

In the next figure (5.17(b)), the curves, that depict the relative to the ground 

displacement of the base of all the three systems, are presented. The major advantage 

is that the ESBA-3 configuration exhibits the smallest values for this response in all the 

real earthquakes. The largest base displacement is due to the earthquake No11, where 

the BI reached the value of 0.284 m, the HDBI 0.155 m and the ESBA-3 0.076 m (which 

is reduced by 73.24% and 50.97% of the same responses of the BI and the HDBI, 

respectively, as previously mentioned). 

Finally, in the figure (5.17(c)), there are the NS strokes of the ESBA-3, that are 

produced by the real earthquakes. The largest value is that from Tabas NF (No 11) 

earthquake (0.136 m), while in all the others the NS stroke does not exceed the 

approximate value of 0.08m, meaning that this configuration remains within 

constructional and engineering constraints and realizations, especially for a 5-story 

building.     
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Figure 5.16: Main dynamic responses, for the 5-story building, of (a) top floor relative to the ground 

displacement, (b) top floor absolute acceleration and (c) base shear between the fixed structure (IN), the 

conventional (BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), 

for all the near fault and far fault real earthquakes 

 

(a) 

(b) 

(c) 
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Figure 5.17: Main dynamic responses, for the 5-story building, of (a) first floor drift, (b) relative to the 

ground base displacement and (c) NS stroke between the fixed structure (IN), the conventional (BI) and 

highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), for all the near fault and 

far fault real earthquakes    

 

(a) 

(b) 

(c) 
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The following figure (Fig. 5.18(a)-(e)) contains the mean maximum values of all the 

main dynamic responses of the relative to the ground displacement of the top floor, the 

absolute acceleration of the top floor, the base shear, the drift of the first floor, the 

relative to the ground displacement of the base and NS stroke for all the artificial, near 

fault and far fault earthquakes.  

In (Fig. 5.18(a)), the ESBA-3 has the lowest relative to the ground displacement of the 

systems (including the fixed structure) for all the earthquakes. It exhibits a mean 

displacement of 0.072 m for all the artificial accelerations, 0.053 m for all the real NF 

and 0.014 m for all the FF, while the BI has respectively for the same responses, 0.233 

m, 0.15 m and 0.036 m.  

In (Fig. 5.18(b)), the ESBA-3 is located between the responses of the BI and HDBI for 

all the artificial and NF earthquakes, while it has a slightly larger performance of that 

of both the base isolation systems, regarding the absolute acceleration of the top floor. 

More specifically, the mean values are 5.32 m/s2, 5.57 m/s2 and 1.5 m/s2 for all the 

artificial, the NF and the FF earthquakes, while the same values for the fixed structure 

(it has the largest values) and the HDBI (it has the smallest values), respectively, are 

the following by earthquake category: 14.93 m/s2, 4.5 m/s2, 9.56 m/s2, 4.94 m/s2,       

3.21 m/s2 and 1.3 m/s2.  

The next figure (5.18(c)) presents the base shear. Again, the ESBA-3 exhibits the same 

approximately behavior as the HDBI (in artificial has a bit lower response, whereas in 

NF a little larger). In FF it is located intermediately of the BI and HDBI. It yields a base 

shear of 1526 kN, 1081 kN and 307 kN, while the same responses of the fixed structure 

are 3804 kN, 2022 kN and 842 kN for all the artificial, NF and FF earthquakes, 

respectively.  

The ESBA-3 manages, again, to maintain the lowest values of all the systems in terms 

of the drift of the first floor (except the FF case where it has a minor increased 

performance compared to that of the HDBI) and the base displacement. The drift 

variates from 0.33% (for all the artificial accelerations) to 0.24% (for all the NF) and 

0.06% (for all the FF). The displacement of the base of the ESBA-3 variated from    

0.039 m (all artificial earthquakes), to 0.029 m (all NF) and to 0.008 (all FF). With the 

same earthquake category order, the BI and HDBI responses are 0.159 m, 0.103 m and 

0.025 m and 0.092 m, 0.064 m and 0.014 m, respectively. 

Finally, in (Fig. 5.18(f)), it is noticed that the NS stroke is located within reasonable 

results, as it is 0.063 m for all the artificial, 0.047 m for all the NF and 0.012 m for all 

the FF. 
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Figure 5.18: Mean maximum values of dynamic responses, for the 5-story building,  of (a) top floor 

relative to the ground displacement, (b) top floor absolute acceleration, (c) base shear, (d) first floor drift, 

(e) relative to the ground base displacement and (f) NS stroke between the fixed structure (IN), the 

conventional (BI) and highly damped (HDBI) base isolation and the ESBA-3 configuration (ESBA3), 

for all the artificial accelerations and the near fault and far fault real earthquakes    
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6 DETUNING PHENOMENA AND GEOMETRIC 

NONLINEAR NEGATIVE STIFFNESS 

6.1 Sensitivity analysis 

6.1.1 One parameter sensitivity analysis 

Once the optimal values of the parameters of the ESBA-3 configuration have been 

essentially established for an SDoF system and then tested on a 3-story and 

subsequently on a 5-story building, the next step is to perform a sensitivity analysis. 

This analysis is attempted to investigate how much the system’s response deflects from 

its initial by altering the ESBA-3 configuration values of its parameters from their 

respective optimal ones (detuning phenomena). In this section (6.1.1), the variation of 

one parameter at a time (while all the rest remain intact) is chosen in the interval 

of [0.8 1.2]𝑃𝑜𝑝𝑡, where 𝑃𝑜𝑝𝑡 is the optimal value of the examined parameter. That 

means a variation of 20% from the initial original optimal values of the parameters is 

examined. The case of the ESBA-3 configuration with the acceleration filter of 50% is 

studied by considering the 3-story building of the section (5.3). In total 8 parameters 

are examined, that of the system’s stiffnesses 𝑘𝑁𝑆, 𝑘𝑅 and 𝑘𝑃𝑆, the artificial dampers of 

𝑐𝑁𝑆 and 𝑐𝑃𝑆, the inerter parameters of  𝑏𝑅 and 𝑏𝑁𝑆 and since the 𝑏𝑃𝑆 was almost equal 

to 0, is not examined. Finally, the variation of the oscillating mass is searched separately 

in the interval of [0.1 2]mD. The responses of the top floor relative to the ground 

displacement, top floor absolute acceleration, base shear, relative to the ground base 

displacement and the NS stroke with respect to the optimal ones of the 3-story building 

mounted on the ESBA-3 are presented. The whole system is subjected to all the 

artificial accelerations and the average responses are compared to the optimal ones.      

In the following figure (6.1 (a)-(c)), there are the responses of the 3-story building with 

its ESBA-3 base by altering the values of the stiffness elements by 20%. Considering 

the top displacement, the negative stiffness has the largest impact, as it variates nearly 

from 1.12 to 0.96 of the optimal value for ±20% variation of the parameter value, while 

the structure stiffness exhibits minor variations for the most of the values. For the top 

acceleration, all the parameters yield nearly the same variation limits, with the structure 

stiffness 𝑘𝑅 presenting slightly larger limits. As far as the base shear, the negative 

stiffness has the lowest variations from 1.06 to 0.97, while the structure stiffness has 

the largest from 0.84 to 1.16. Regarding the base displacement, the 𝑘𝑅 seems to have a 

somewhat greater variation to the system rather than the negative stiffness, as the 

deviation fluctuates from 1.1 to 0.96. Finally, the negative stiffness presents the highest 

effect on the negative stiffness stroke as for a 20% increase of the parameter’s value, 

the NS stroke is amplified to nearly 1.18 of the initial value. Overall, the negative 

stiffness 𝑘𝑁𝑆 and the structure stiffness 𝑘𝑅 have a greater influence on the system 

responses (up to 18%), compared to the positive stiffness (up to 8%). 

The next figure (6.2 (a) and (b)), includes the variation of the responses of the system, 

by considering a 20% alteration of the values of the damping coefficients. Considering 

the top displacement the positive damping seems to produce a minor influence as it 

variated from 0.99 to 1.01, while the negative from 1.02 to 0.99. Considering the top   
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Figure 6.1: One parameter sensitivity analysis, considering 20% variation of the stiffness elements. (a) 

Negative stiffness kNS, (b) structure stiffness kR and (c) positive stiffness kPS 

 

(a) 

(b) 

(c) 
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Figure 6.2: One parameter sensitivity analysis, considering 20% variation of the damping coefficients. 

(a) Negative damping coefficient cNS and (b) positive damping coefficient cPS  

acceleration, both the damping coefficients present the same variation from 0.99 to 

1.01. A variation up to 5% is observed with respect to the base shear from the negative 

damping, while the same response is only 1% for the positive. The same exactly 

variations (with opposite direction to that of the base shear) apply to the base 

displacement for both the damping coefficients. Finally, the largest variation is noted 

by the negative damping coefficient, regarding the NS stroke. It reaches an upper limit 

of 10% variation, while the same is lower than 3% for the positive damping coefficient. 

From all the above, it can be noticed that the negative damping coefficient has a larger 

impact on the system (up to 10% of the system responses variations) compared to that 

of the positive (up to 3% variations).    

The figure below (6.3(a) and (b)), contains the variations of the system responses for a 

±20% changing from the optimal values of the inerters that connect the base of the 

structure with the ground (𝑏𝑅) and the inerter that is located parallel to the negative 

stiffness elements. As it can be seen, the variations for most of the system responses 

are similar to that of the positive damping coefficient, as up to 3% are the changes of 

(a) 

(b) 
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Figure 6.3: One parameter sensitivity analysis, considering 20% variation of the inerter values.                        

(a) Inerter between the base structure and the ground bR and (b) inerter parallel to the negative stiffness 

element bNS 

the values. The only differences is that the base shear follows an opposite trend in each 

case, as well as the top absolute acceleration and the latter response notes a variation of 

up to 6% for the 𝑏𝑅 inerter. Due to that, this inerter has a larger consequence to the 

system responses than that located in parallel with the negative stiffness element. 

Finally, in figure (6.4) the influence of the additional mass is examined. The variation 

of the mass takes place from 0.1 to 2 times of the initial mass. As it can be clearly 

observed, the variation of the additional mass has little to no impact on the structure’s 

top displacement and acceleration. A 1% variation to the responses of the base 

displacement and NS stroke is noted. As the additional mass increases, the responses 

referring to the base are decreased. Finally, a 2% variation is discernible with respect 

to the base shear. If the responses, which are connected to the superstructure, are 

concerned, then a tenth of the initial mass of the oscillating mass could be adopted to 

further mitigate the constructional issues of the mass. However, if the base responses 

(a) 

(b) 
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are of utmost importance, then the same or even increased values of the mass can be 

considered. 

From all the above, the most crucial parameters that affect the global behavior of the 

system, is that of the stiffnesses and especially that of the negative stiffness. This 

parameter presented the highest variation in the system responses of 18% of all the 

parameters. However, for a variation of 20% of the values of the parameters from their 

respective optimal ones, the system noted reasonable alterations to its responses, 

without even developing extreme values for any of the responses of any of the examined 

parameters. Thus, it can be concluded that the system is not vulnerable to detuning 

effects, considering the sensitivity analysis that performed in this section.        

 

Figure 6.4: One parameter sensitivity analysis, considering a variation from 10% to 200% of the initial 

mass of the oscillating mass  

 

6.1.2 Two parameter sensitivity analysis 

A further investigation is performed to examine the detuning phenomena by 

considering a simultaneous variation of two parameters of the systems Again, the same 

conditions, as in the previous section (6.1.1), apply for this sensitivity analysis. All the 

possible couples of the free design parameters of the negative stiffness, the damping 

coefficients and the inerter values can be examined. For the sake of brevity of the 

present thesis, only four parameter combinations are listed. As it observed in the case 

of the one parameter sensitivity analysis, the negative stiffness parameter and 

subsequently the artificial damping parallel to the negative stiffness element have the 

largest influence on the system’s dynamic performance. That is why the first parameter 

combination is that of the negative stiffness 𝑘𝑁𝑆 and its parallel damping 𝑐𝑁𝑆. The 

second couple (following the same logic) is that of the negative stiffness and its parallel 

inerter 𝑏𝑁𝑆. The other two combinations are related to the elements that produce similar 

resisting forces, like the two damping coefficients and the two inerters. In this case, 

three responses of the system are presented. The top floor absolute acceleration is 

chosen (as an indicative response of the superstructure) and the base displacement and 

the NS stroke, which refer to the base of the system.      
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Figure 6.5: Sensitivity analysis and detuning effects of the top floor absolute acceleration (a), base 

displacement (b) and NS stroke (c) by varying the free design variables kNS and cNS from their optimal 

values 

 

 

 

Figure 6.6: Sensitivity analysis and detuning effects of the top floor absolute acceleration (a), base 

displacement (b) and NS stroke (c) by varying the free design variables kNS and bNS from their optimal 

values 
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Figure 6.7: Sensitivity analysis and detuning effects of the top floor absolute acceleration (a), base 

displacement (b) and NS stroke (c) by varying the free design variables cNS and cPS from their optimal 

values 

 

 

 

Figure 6.8: Sensitivity analysis and detuning effects of the top floor absolute acceleration (a), base 

displacement (b) and NS stroke (c) by varying the free design variables bR and bNS from their optimal 

values 
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Figure (6.5(a)-(c)), exhibits the surface plots and their equivalent contours of the 

simultaneous variation of the negative stiffness and the damping coefficient parallel to 

it. As it can be noticed, the absolute acceleration decreases by 2% at the lowest, where 

the negative stiffness is increased by 10% and the damping is lowered by 20%. The 

highest increase is noted by 3.5%, where the stiffness has the lowest value and the 

damping the highest. As far as the base displacement, this response is elevated to 

maximum by 16.5% for a simultaneous decrease by 20% of both the parameters, while 

nearly 5% is the lowest response when the damping achieves the highest value and the 

stiffness an approximate 10% increase. Finally, a nearly 30% amplification of the NS 

stroke is observed when the stiffness notes its highest value and the damping its lowest. 

At the exact opposite direction of the parameters’ values, there is the lowest value of 

the stroke, that of roughly 10% decreased.   

The next figure (6.6(a)-(c)), includes the surface plots and their equivalent contours of 

the simultaneous variation of the negative stiffness and the inerter parallel to it. As it 

can be observed, the absolute acceleration decreases by 1% at the lowest, where the 

negative stiffness and inertance increase. The highest increase is noted by slightly above 

3%, where the stiffness and inertance obtain their lowest values. As far as the base 

displacement, this response is elevated to maximum by 13% for a simultaneous 

decrease by 20% of both the parameters, while nearly 5% is the lowest response when 

the inertance achieves the highest value and the stiffness an approximate 10% increase. 

Finally, a nearly 19% amplification of the NS stroke is observed when the stiffness 

notes its highest value and the inertance its lowest. At the exact opposite direction of 

the parameters’ values, there is the lowest value of the stroke, that of roughly 1.5% 

decreased.   

The next figure of (6.7(a)-(c)), contains the surface plots and their equivalent contours 

of the simultaneous variation of the negative and positive damping coefficients. As it 

can be seen, the absolute acceleration decreases by over 2% at the lowest, where the 

negative and positive damping coefficients receive their lowest values. The highest 

increase is noted by above 2%, where both the parameters have their highest values. As 

far as the base displacement, this response is elevated to maximum by 6% for a 

simultaneous decrease by 20% of the negative damping and 20% increase of the 

positive damping, while nearly 4.5% is the lowest response in the opposite direction of 

the variation of the parameters. Finally, a nearly 14.5% amplification of the NS stroke 

is observed when both damping coefficients obtain their lowest values. At the exact 

opposite direction of the parameters’ values (20% increase for both), there is the lowest 

value of the stroke, that of roughly 10.5% decreased.   

The last figure of (6.8(a)-(c)), presents the surface plots and their equivalent contours 

of the simultaneous variation of the negative and structure (external) inertance. As it 

can be noted, the absolute acceleration decreases by 6% at the lowest, where all the 

inertances receive their lowest values. The highest increase is noted by above 7%, 

where the external inertance has the highest value and the negative the lowest. As far 

as the base displacement, this response is elevated to maximum by a bit lower than 4% 

for a simultaneous decrease by 20% of both the parameters, while nearly above 3% is 

the lowest response when the two parameters receive their highest values. Finally, a 

nearly 2.3% amplification of the NS stroke is observed when both the external and 
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negative inertances obtain their lowest values. At the exact opposite direction of the 

parameters’ values (20% increase for both), there is the lowest value of the stroke, that 

of roughly 2% decreased.   

Considering the top absolute acceleration, only in the case of the inertances                   

(Fig. 6.8(a)), it can be observed that the one parameter (the external inertance 

specifically) influences the variation of the response. In the rest three cases both the 

parameters can have an effect on the response. The same approximately apply to the 

last two cases of both the damping coefficients and the inerters where the positive 

damping coefficient and the external inerter exhibit a smaller influence on this response 

compared to that of their counterpart parameter. Finally, by observing the NS stroke, 

the cases that involve the negative stiffness are those that one parameter does not have 

any special influence on the response variation. This is the negative stiffness up to a 

point compared to the negative damping coefficient and the negative inerter in the other 

case.  

From all the above, again, it is shown that the negative stiffness is the most susceptible 

parameter for the variation of the responses, as it manages to exhibit a nearly 30% 

increase in the NS stroke in relation with the negative damping coefficient. On the 

contrary, the least effect on the system appears to be in the case of the inerters, as the 

maximum alteration of the optimal response is roughly at 7%. However, by a 

simultaneous variation of two parameters by ±20%, the system developed a reasonable 

deviation from its initial response, without noting extreme values. So, again, it is shown 

that the system is not vulnerable to detuning phenomena. 

 

6.2 Geometric nonlinear negative stiffness 

6.2.1 Realization of the negative stiffness element with pre – compressed 

springs 

Negative stiffness is predominantly attained through specific mechanical designs that 

utilize conventional positive stiffness pre-stressed elastic mechanical elements. These 

elements, include post-buckled beams, plates, shells and pre-compressed springs that 

are arranged in suitable geometric configurations. This thesis applies configurations 

that employ pre-compressed springs into the mechanisms to achieve negative stiffness. 

The preference for such configurations arises from their simple design and the ease of 

controlling negative stiffness. These particular arrangements have the capability to 

provide the required negative stiffness to be applied in structural systems, such as the 

seismic protection of buildings. 

By adopting the configuration in two dimensions proposed by (Kapasakalis A. K., 

2020), based on the work of (Antoniadis, Kanarachos, Gryllias, & Sapountzakis, 2018), 

the negative stiffness in this work is realized. The two dimensional configuration is 

chosen as an effective horizontal seismic protection mechanism. According to (Fig. 

6.9(b)), the negative stiffness element, as located in the position between the 

superstructure base and the additional mass, can be realized by a vertical pre-

compressed spring with positive stiffness 𝑘𝐻, which supports the mass 𝑚𝑆 by an 

articulated mechanism that includes a rigid link.   
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Figure 6.9: (a) ESBA-3 proposed system and (b) negative stiffness element configuration 

According to this mechanism, the equations of motion, which refer to the ESBA-3 

configuration, are the following, in analogy with equations (4.8) and (4.9) by 

considering a ground excitation in the form of 𝑥𝑔: 

 

[𝑚𝑆 + 𝑏𝑅𝑚𝑆]�̈�𝑠 + (𝑏𝑁𝑆𝑚𝑆)(�̈�𝑠 − �̈�𝐷) + 𝑐𝑁𝑆(�̇�𝑆 − �̇�𝐷) + 𝑘𝑅𝑢𝑆  

+𝑓𝑁𝑆(𝑢𝑁𝑆)   = −𝑚𝑆�̈�𝑔                                                                                             (6.1) 

[𝑚𝐷 + 𝑏𝑃𝑆𝑚𝑆]�̈�𝐷 − (𝑏𝑁𝑆𝑚𝑆)(�̈�𝑠 − �̈�𝐷) + 𝑐𝑃𝑆�̇�𝐷 − 𝑐𝑁𝑆(�̇�𝑆 − �̇�𝐷) 

+𝑘𝑃𝑆𝑢𝐷 − 𝑓𝑁𝑆(𝑢𝑁𝑆) = − 𝑚𝐷�̈�𝑔                                                                                                        (6.2) 

 

Where 𝑢𝑆 and 𝑢𝐷 are the relative to the ground displacements of the base and the 

additional mass. The term 𝑓𝑁𝑆(𝑢𝑁𝑆) is the nonlinear force exerted by the positive 

stiffness spring and it depends on the relative displacement of the base and the 

oscillating mass (NS stroke). 

The potential energy of the spring is the following: 

𝑈𝑁𝑆(𝑢𝑁𝑆(𝑢𝐷)) =
1

2
𝑘𝐻(𝑙𝐻 − 𝑙𝐻𝐼)

2                                                                                       (6.3) 

Where 𝑙𝐻 and 𝑙𝐻𝐼 are the length of the spring in a randomly deformed instant and the 

initial undeformed length of the spring, respectively. Subsequently, the nonlinear force 

can be computed from the potential energy as follows: 

𝑓𝑁𝑆(𝑢𝑁𝑆) =
𝜕𝑈𝑁𝑆

𝜕𝑢𝐷
=

𝜕𝑈𝑁𝑆

𝜕𝑢𝑁𝑆
= −𝑘𝐻 (1 +

𝑙𝐻𝐼−𝑏

√𝑎2−𝑢𝑁𝑆
2

)𝑢𝑁𝑆 =  

−𝑘𝐻

(

 1 + 𝑐𝐼
1

(1−
𝑢𝑁𝑆

2

𝑎2 )

1
2

)

 𝑢𝑁𝑆                                                                                             (6.4) 

From the equation (6.4), 𝑎 is the length of the articulated mechanism (rigid link) that 

connects the additional mass with the base structure, 𝑏 is the total length of the fully 

(a) (b) 
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compressed spring and the articulated mechanism when those elements are coincidental 

(Fig. 6.9(b) initial) and the parameter 𝑐𝐼 will be defined immediately after equation 

(6.5). Since the nonlinear force is available now, the negative stiffness emerges as 

below: 

𝑘𝑁𝑆 =
𝜕𝑓𝑁𝑆

𝜕𝑢𝐷
=

𝜕𝑓𝑁𝑆

𝜕𝑢𝑁𝑆
= −𝑘𝐻

(

 1 +
𝑙𝐻𝐼−𝑏

𝑎

1

(1−
𝑢𝑁𝑆

2

𝑎2 )

3
2

)

 = −𝑘𝐻

(

 1 + 𝑐𝐼
1

(1−
𝑢𝑁𝑆

2

𝑎2 )

3
2

)

      (6.5) 

 

The length of the spring can be defined as: 

𝑙𝐻 = 𝑏 − (𝑎2 − 𝑢𝑁𝑆
2 )

1

2                                                                                                       (6.6) 

And the parameter 𝑐𝐼 is: 

𝑐𝐼 =
𝑙𝐻𝐼−𝑏

𝑎
                                                                                                                           (6.7) 

 

A realistic design of the ESBA-3 configuration is depicted in the figure (6.10) below. 

It follows the same logic as in the work of (Kapasakalis A. K., 2020). The vibration 

absorption system can be comprised by four in total devices, suitably located at the 

corners beneath of the base, on which the building with a plan floor of the figure (5.3) 

is mounted. At the columns locations, rigid elements can be considered that can 

withstand the large forces. Each device, now, is considered to bear eight positive 

stiffness springs of the vertical configuration of the figure (6.9(b)).   

 

Figure 6.10: Layout of the ESBA-3 configuration devices and their respective positions in the base  
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So, by considering the ESBA-3 configuration with its parameters, which correspond to 

the 50% acceleration filter, the negative stiffness emerged at the value of -10702.5 

kN/m according to the optimization process of the Chapter 4. That value corresponds 

to a negative stiffness of -334.45 kN/m per spring per device. For the realization of the 

positive stiffness spring, the comments from (Antoniadis, Kanarachos, Gryllias, & 

Sapountzakis, 2018) are adopted. The equivalent positive stiffness of the spring, that 

implements the negative stiffness, is yielded from equation (6.5) by considering a 

negative stiffness stroke of zero value. In this case the negative stiffness is configured 

at a 1% increased value of the respective optimal one. That means, 𝑘𝑁𝑆(𝑢𝑁𝑆 = 0) =

1.01𝑘𝑁𝑆 and it is -337.8 kN/m. However, the value of the parameter 𝑐𝐼 remains 

unknown. This is set as a free design parameter. Three cases of the 𝑐𝐼 parameter are 

considered, that of -0.01, -0.05 and -0.1. An analytical presentation of the last case 

follows, while only the results of the rest two values are included in the Tables (6.1) 

and (6.2). Generally, small values of the 𝑐𝐼 parameter are chosen so as to guarantee a 

linear behavior as far as possible. Thus, for 𝑐𝐼 = −0.1 and a zero NS stroke, a positive 

stiffness of 𝑘𝐻=375.33 kN/m is produced. The second parameter of 𝑎 can be defined 

again from equation (6.5) (for a given, now, positive stiffness and the same 𝑐𝐼 value) 

by considering the maximum value of the NS stroke. In this case the negative stiffness 

is set to be 10% less than the optimal one. That is 𝑘𝑁𝑆(𝑢𝑁𝑆 = 𝑢𝑁𝑆,𝑚𝑎𝑥) = 0.9𝑘𝑁𝑆. It is 

-301.01 kN/m. The maximum NS stroke, as it also appears in the figure (5.5(c)), is 

0.052m. Apart from the maximum NS stroke, a very small value of the order      

𝑢0=0.001 m is added to the NS stroke. A value close to 0, like the 𝑢0 , is selected so 

that an almost symmetric response around 𝑢=0 is obtained. From these data, the 

parameter 𝑎 equals to 0.0872 m for 𝑐𝐼 = −0.1.   

 

6.2.2 Nonlinear curves 

A comparison is made between the nonlinear realization of the ESBA-3 configuration, 

for the 𝑐𝐼 = −0.1 parameter and the respective linear one. The linear is considered to 

be the same exactly case as in the section (5.3). The nonlinear one has the same exact 

parameters as the linear that refer to the 3-story building and adopts the configuration 

analyzed in the previous section (6.2.1). Both systems are subjected to the same random 

artificial acceleration that used in the optimization processes. The yielding results are 

presented in the figure (6.11) that follows.  

Prior to that, it is worth mentioning that all analyses are performed with the same 

Newmark algorithm, with the difference that a portion of it is modified to include this 

geometric nonlinearity. The geometric nonlinearity is included in the negative stiffness 

(Eq. 6.5), as it depends on the NS stroke. So, by taking the pseudo-code algorithm of 

the section (4.2.4), all alterations performed are highlighted with red to distinguish the 

old steps with the current ones to compute the nonlinear responses.       

Algorithm: Constant average acceleration method (NS stroke) 

  

Determine parameters 𝛾 and 𝛽 (=0.5 and 0.25, respectively for constant average acceleration method) 

Step 1: Initial calculations 



90 
 

 1.1 Initial conditions 𝒖(0), �̇�(0), 𝑢𝑁𝑆,𝑖𝑛𝑖𝑡 , 𝑲𝑖𝑛𝑖𝑡 = 𝑓(𝑘𝑁𝑆 = 𝑔(𝑢𝑁𝑆,𝑖𝑛𝑖𝑡)) (Eq. 5.6 & 6.5) 

 1.2 Initial load 𝒑(0) = −𝝉�̈�𝒈(0) 

 1.3 Initial acceleration: �̈�(0) = [𝑴]−1(𝒑(0) − 𝑪�̇�(0) − 𝑲𝒊𝒏𝒊𝒕𝒖(0)) 

 1.4 Select 𝛥𝑡 

 1.5 Compute: 𝐚1 =
1

𝛽(𝛥𝑡)2
𝑴 +

𝛾

𝛽𝛥𝑡
𝑪;  𝐚2 =

1

𝛽𝛥𝑡
𝑴 + (

𝛾

𝛽
− 1)𝑪;                                    

                                           𝐚3 = (
1

2𝛽
− 1)𝑴 + 𝛥𝑡(

𝛾

2𝛽
− 1)𝑪 

 1.6 Compute: �̂�𝑖𝑛𝑖𝑡 = 𝑲𝑖𝑛𝑖𝑡 + 𝐚1 

Step 2: Calculations for each time step, 𝑖 = 0, 1, 2, … 

 2.1 �̂�𝑖+1 = −𝝉�̈�𝑔,𝑖+1 + 𝐚1𝒖𝑖 + 𝐚2�̇�𝑖 + 𝐚3�̈�𝑖 

 2.2 Solve: �̂�𝑖𝒖𝑖+1 = �̂�𝑖+1   =>    𝒖𝑖+1 = [�̂�𝑖]
−1

�̂�𝑖+1 

 2.3 �̇�𝑖+1 =
𝛾

𝛽𝛥𝑡
(𝒖𝑖+1 − 𝒖𝑖) + (1 −

𝛾

𝛽
) �̇�𝑖 + 𝛥𝑡 (1 −

𝛾

2𝛽
) �̈�𝑖   

 2.4 �̈�𝑖+1 =
1

𝛽(𝛥𝑡)2
(𝒖𝑖+1 − 𝒖𝑖) −

1

𝛽𝛥𝑡
�̇�𝑖 − (

1

2𝛽
− 1) �̈�𝑖 

 2.5 𝑢𝑁𝑆,𝑖+1 = (𝑢𝑏𝑎𝑠𝑒,𝑖+1 − 𝑢𝑎𝑑𝑑.𝑚𝑎𝑠𝑠,𝑖+1) + 𝑢𝑁𝑆,𝑖𝑛𝑖𝑡 (NS stroke computation) 

 2.6 𝑘𝑁𝑆,𝑖+1 = 𝑓(𝑢𝑁𝑆,𝑖+1) (Eq. 6.5), update 𝑲𝑖+1
𝐸𝑆𝐵𝐴−3(Eq. 5.6), update  

      �̂�𝑖+1 = 𝑲𝑖+1
𝐸𝑆𝐵𝐴−3 + 𝐚1    

Step 3: Repetition for the next time step. Replace 𝑖 by 𝑖 + 1 and implement steps 2.1 to 2.6 for the next 

time step 

 

Since the 𝑐𝐼 = −0.1 parameter has a small value, a quasi linear behavior is expected. 

That is why the same procedure, as in the linear problem, is followed here, considering 

the change and update of the whole system’s stiffness within the steps 2.1 to 2.6 (as 

they appear in the above pseudo-code). Moreover, the next step is considered to change 

infinitesimally with its previous, so that is why, again, the stiffness, used to yield the 

next displacements, can be changed with the previous practically displacements (NS 

stroke). 

By implementing all these, in figure (6.11(a) to (f)) the top floor relative to the ground 

displacement, the top floor absolute acceleration, the base shear, the drift of the first 

floor, the relative to the ground displacement of the base and the NS stroke of the 

ESBA-3 configuration with the nonlinear negative stiffness realization with 𝑐𝐼 = −0.1, 

are presented and compared with the same responses of the respective linear one. As it 

can be clearly observed, all curves, referring to the nonlinear realization, are in quite 

satisfactory agreement with the responses yielded from the same linear problem. In the 

biggest part of each curve/response of the nonlinear realization there is complete 

coincidence with the curve of the linear one, with the exception of some regions and 

peaks where there is a slight deviation. More specifically, in (Fig. 6.11(a)), the 

nonlinear configuration notes a maximum relative displacement of 0.042 m (3.39% 

increased with respect to the linear displacement of 0.041 m), while the acceleration of         
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(a) 

(b) 

(c) 
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Figure 6.11: Dynamic responses of the ESBA-3 system (50% acceleration filter), considering linear NS 

and non-linear NS (for ci=-0.1) for the random acceleration. (a) Top floor relative to the ground 

displacement of the 3-story building, (b) top floor absolute acceleration of the 3-story building, (c) base 

shear, (d) drift of the first floor, (e) relative to the ground base displacement and (f) NS stroke 

 

(d) 

(e) 

(f) 
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the top floor in Fig. 6.11(b), appears to be 4.26 m/s2 a value slightly over by 0.29% of 

the 4.25 m/s2 of the linear problem. In figure 6.11(c), the base shear of the nonlinear 

problem reaches the same value of the linear of 876.57 kN (in particular only a 0.0007% 

difference), which means the responses fully coincide together. The same tendency of 

the extremely close behavior is depicted in the figure (6.11(d)), where the drift of the 

first floor is 0.175% for both cases, which is translated into a 0.15% difference with 

respect to the linear problem, if more digits for accuracy are considered. Finally, the 

figures 6.11(e) and 6.11(f) show the displacement responses that are related to the base. 

The relative to the ground base displacement and the NS stroke are 3.28 cm and 5.13 

cm, respectively, which means there is an increase by 0.94% compared to the base 

displacement of 3.25 cm of the linear problem and a decrease by 0.8% with respect to 

the linear NS stroke of 5.17 cm. 

The following figure (6.12) contains the variation of the negative stiffness over the NS 

stroke, according to Eq. (6.5), considering all the positive stiffness springs that compose 

the negative stiffness. It variates between the imposed limits of the 90% and the 101% 

of the optimal value.     

 

 

Figure 6.12: Variation of the generated negative stiffness, of the proposed configuration of ESBA-3, 

over the NS stroke 

 

The Table (6.1) below, contains the parameters 𝑘𝐻 (per spring) and 𝑎 that are necessary 

to compute the nonlinear responses for all three cases of the parameter 𝑐𝐼. 

Table 6.1: Values of parameters kH and α for various cases of the cI parameter  

 

 

 

 

 

𝒄𝑰 
𝒌𝑯 

(kN/m) 
𝒂 (m) 

-0.01 341.21 0.0587 

-0.05 355.58 0.0727 

-0.1 375.33 0.0872 



94 
 

The next table (6.2), includes all the maximum dynamic responses, for all three cases 

of the 𝑐𝐼 parameter, compared to the maximum respective dynamic responses of the 

linear problem (expressed in % deviation). The (-) sign declares that the response is 

larger than that of the linear one. As it can be observed, the increase of the 𝑐𝐼 parameter 

leads to the growth of the deviation of the responses that are related to the superstructure 

(relative to the ground displacement and absolute acceleration of the top floor and the 

first floor drift) with respect to the same linear ones. In those responses, and especially 

in the displacement, the largest difference of the 3.39% of the nonlinear problem, 

compared to the linear, is noted. All these responses appear to be larger than the linear 

ones. In reference with the responses related to the base, such as the base shear, the base 

displacement and the NS stroke, the first and the third one follow an opposite pattern 

than that of the responses of the superstructure, while the second follows a random 

scheme. The amplification of the 𝑐𝐼 parameter results to the decrease of the deviation 

from the linear responses of the base shear and the NS stroke, all lower from the linear 

problem. The base displacement lowers and increases. All the base displacements are 

larger than that of the linear statement of the problem.  

     

Table 6.2: Differences (in %) of the maximum dynamic responses of various nonlinear cases with 

respect to the linear ones   

 

As concluded, the negative stiffness can be realized with positive stiffness pre-

compressed springs that develop a nonlinear behavior very close to that of the linear 

problem. For various values of the 𝑐𝐼 parameter that controls the nonlinearity, the 

largest deviation from the linear problem comes from the largest value of that parameter 

and reached the 3.39% from the same response of the linear problem. From the time 

histories of the dynamic responses, the nonlinear configuration is in agreement with the 

linear cases to a very satisfying extent.   

 

6.2.3 Realization of the ESBA-3 configuration 

The next step is to implement the ESBA-3 configuration with realizable elements.  

 Starting from the additional mass, this element can be realized by considering a 

concrete material with density of 𝜌𝑐𝑜𝑛𝑐 = 2400 kg/m3. Since the ESBA-3 can 

be realized by four devices, each one can include an oscillating mass of 750 kg, 

which corresponds to the one fourth of the 1% of the total mass of the 

superstructure. If a square floor plan is assumed with a height of 0.25 m, then 

𝒄𝑰 

% 

difference 

from 

𝑼𝑺
𝑳𝒊𝒏𝒆𝒂𝒓  

% 

difference 

from 

𝑨𝑺
𝑳𝒊𝒏𝒆𝒂𝒓 

% 

difference 

from 

𝑽𝒃𝒂𝒔𝒆
𝑳𝒊𝒏𝒆𝒂𝒓 

% 

difference 

from 

𝑫𝒓𝒊𝒇𝒕𝟏𝒔𝒕 
𝑳𝒊𝒏𝒆𝒂𝒓 

% 

difference 

from 

𝑼𝒃𝒂𝒔𝒆
𝑳𝒊𝒏𝒆𝒂𝒓 

% 

difference 

from 

𝑼𝑵𝑺 𝒔𝒕𝒓𝒐𝒌𝒆
𝑳𝒊𝒏𝒆𝒂𝒓  

-0.01 -0.9894 -0.0619 0.0453 0.0428 -0.4569 1.2921 

-0.05 -2.7426 -0.2284 0.0119 -0.1056 -0.3750 1.0084 

-0.1 -3.3924 -0.2878 7.4760e-04   -0.1457 -0.9422 0.7990 
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the sides of it are defined as: 𝑠𝑠𝑞 = √
750

2400·0.25
≈ 1.12 m. Figure (6.13) shows 

an indicative model of the additional mass. 

 The negative stiffness, as it was analyzed in the section (6.2.2), can be realized 

with eight positive stiffness pre-compressed helical springs per device, having 

a numerical positive stiffness of 375.33 kN/m. This, can be produced by 

implementing the theory of mechanical springs, provided by (Budynas & Keith, 

2011). The spring rate, or scale, or the stiffness can be defined by the following 

relation: 

𝑘𝑠𝑝𝑟 =
𝑑4𝐺

8𝐷3𝑁
                                                                                                           (6.8) 

where, d is the wire diameter of the helical spring, G is the shear modulus of the 

spring’s material, D is the mean coil diameter which equals to the external 

diameter subtracting the wire diameter and N is the number of coils of the 

helical spring. By considering a 26 mm wire diameter, 80.77 GPa steel material, 

161 mm external diameter (which corresponds to a 135 mm mean diameter) and 

five coils and using the (6.8) equation, the positive stiffness is realized as   

375.04 kN/m, very close to the theoretical one. A mean diameter larger than 

five times the wire diameter can ensure a linear behavior of the spring. In this 

way, the length of this spring, when it is fully compressed, is defined as      

𝑙𝑚𝑖𝑛 = 𝑁 · 𝑑 = 0.13 𝑚 and subsequently, the length of the spring, when it is 

fully undeformed, is demanded to be 𝑙𝐻𝐼 = 𝑙𝑚𝑖𝑛 + 𝑎 = 0.217 𝑚. So, the length 

𝑏 can be computed with the aid of the equation (6.7) and emerges as 0.226 m. 

It is almost 9 mm larger than the undeformed length 𝑙𝐻𝐼 and this renders the 

articulated mechanism functional. Figure (6.14) depicts a five coil helical spring 

that can be used to realize the negative stiffness element. 

 Continuing with the base stiffness 𝑘𝑅, from the optimization procedure, it 

reached the value of 30072.51 kN/m. The realization of the positive stiffness 

elements is possible in various ways, like, conventional steel spiral springs, 

simple elastomeric bearings (or any type of special bearings), or even 

conventional structural elements (Kapasakalis, Antoniadis, & Sapountzakis, 

2022). For the ESBA-3 configuration, simple elastomeric bearings (SI series 

elastomeric isolators) are chosen to realize the 𝑘𝑅 stiffness. They can be found 

in the catalogue of (FIP INDUSTRIALE, 2010). The series of SI elastomeric 

isolators are reinforced rubber bearings made up of alternating layers of steel 

laminates and hot-vulcanized rubber. From the catalogue, a maximum design 

displacement is required to choose from. The 𝑘𝑅 stiffness is directly connected 

to the maximum base displacement. From (Fig. 6.11) the maximum base 

displacement for the nonlinear problem is 3.28 mm, which is way too lower than 

the 100 mm, the lowest design displacement category from the catalogue. So, 

by considering two SI isolators per device, the stiffness that corresponds to each 

isolator is 3759.06 kN/m. From a maximum design displacement of 100 mm 

and by adopting a hard type elastomeric compound, the SI-H 450/54 type of 

isolator is chosen. (Fig. 6.15) shows a similar SI isolator that can be used to 

generate the 𝑘𝑅 stiffness. 
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 The same exactly apply to the positive stiffness element 𝑘𝑃𝑆. From the 

optimization process, the total positive stiffness was 23150.97 kN/m. This term 

is connected to the maximum displacement of the additional oscillating mass. 

The nonlinear problem produced a maximum displacement of 3.12 cm. Again, 

elastomeric isolators from the same series (SI-H for 100 mm maximum design 

displacement) can be used to realize the positive stiffness. As, before, by 

utilizing two isolators per device, each isolator should generate 2893.87 kN/m. 

That value, corresponds to the type of SI-H 400/50 (the previous product from 

the same series of the 𝑘𝑅 isolator). The same figure (6.15) shows the isolator 

that can be used for the 𝑘𝑃𝑆 stiffness. 

 Considering the damping coefficient that is parallel to the negative stiffness 

element 𝑐𝑁𝑆, the total value of 840.51 kNs/m emerged from the optimization 

procedure. If six parallel elements are implemented per device, then 35.02 

kNs/m correspond to each device. Since this is a low value, linear artificial 

dampers of the series LD1110 for a maximum design stroke of 100 mm, can be 

used according to the catalogue of (ITT ENIDINE Inc., 2020). The figure (6.16) 

depicts a linear artificial damper that can be used to generate the 𝑐𝑁𝑆 damping 

coefficient. 

 Similar configuration can be used to implement the damping coefficient parallel 

to the positive stiffness element 𝑐𝑃𝑆, as the values produced in this case are quite 

close to that of the negative damping coefficient. The total damping in this case 

is 895.72 kNs/m. By considering again, as previously, six parallel artificial 

dampers per ESBA-3 device, then a value of 37.32 kNs/m per damper 

corresponds. This is a very close value to the negative stiffness damper and as 

a consequence, the same LD1110 configuration can be used also in this case. 

The figure (6.16) applies to this case. 

 The ideal inerter can be defined as a mechanical two-node (two-terminal), one-

port device with the property that the equal and opposite force applied at the 

nodes is proportional to the relative acceleration between the nodes, according 

to (Smith, 2002). A very brief reference is made to the flywheel-based 

mechanical inerter, patented by (Smith, 2002). This device can be practically 

realized via a suitable arrangement of rack, pinions, gears and a flywheel, as it 

can be seen in the figure (6.17). This arrangement has the capacity to transform 

the linear movement of the rack into rotational one of the pinions, gears and the 

flywheel. The one terminal, which is the ending of the rack, moves linearly to 

the other terminal, in which the system that contains all the rotational elements 

is connected. So, the linear movement of the rack renders the rotation of the first 

gear that is in direct contact with it, via its pinion. Then, the rotational movement 

is transferred from on gear to another via a pinion-gear contact rotation. The 

number of gears can be from one to several, which the last one ends up rotating 

the flywheel. Finally, the rotation of the flywheel creates an inertial force from 

its rotational inertia (angular mass). This configuration generates an inertial 

force that can be described from the following relation: 

 

𝐹𝑖𝑛 = 𝑏𝑓(�̈�1 − �̈�2)                                                                                                (6.9a) 
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where the term �̈�1 − �̈�2 is the relative acceleration between the two terminals 

and the 𝑏𝑓 is the inertance, having dimensions of mass. This is defined as: 

𝑏𝑓 = 𝑚𝑓 (
𝑟𝑓

𝑟𝑝𝑓
)
2

[∏ (
𝑟𝑖

𝑟𝑝𝑖
)
2

𝑛𝑔

𝑖=1
]                                                                                (6.9b) 

where, 𝑛𝑔 is the number of gears, 𝑚𝑓 is the mass of the flywheel and 𝑟𝑖, 𝑟𝑝𝑖, 𝑟𝑓 

and 𝑟𝑝𝑓 are the radius of the gears, the pinions, the flywheel and the flywheel 

pinion, respectively. From the equation (6.9b), by simply adjusting the gear 

ratios or by adding gear sets, very high values of inertance can be achieved. So, 

by considering the external inertance 𝑏𝑅 of the ESBA-3 configuration, a total 

value of 0.4993𝑚𝑆=149790 kg is required, according to the optimization 

procedure. If two inerter elements, per device, are implemented, then an 

inertance of 18723.75 kg is demanded per element. By considering two gears 

with 3 gear-to-pinion ratio each and a flywheel with a 4 ratio of its gear to its 

pinion, then a flywheel of mass of 14.447 kg is needed to satisfy this 

configuration. 

 Following the same exact logic, the inerter parallel to the negative stiffness 

element can be realized with the same exact configuration. The total inertance 

required, according to the optimization, is 0.2113𝑚𝑆=63390 kg. Again, by 

considering two inerter elements per device, an inertance of 7923.75 kg 

corresponds to every element. By adopting the same configuration of two gears 

with a gear-to-pinion ratio of 3 and a ratio for the flywheel gear-to-pinion of 4, 

a mass of 6.114 kg of the flywheel is required to generate this inertance. The 

figure (6.17) applies to this case. 

 Finally, the inerter element, parallel to the positive stiffness element, can be 

omitted, since an almost equal to 0 value emerged from the optimization. For 

lower acceleration filters, this inerter can be realized with a similar way as the 

two previous inerters.  

 

 

Figure 6.13: Concrete square floor plan additional oscillating mass 
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Figure 6.14: Five coil helical spring used to realize the negative stiffness element 

 

 

Figure 6.15: SI elastomeric isolator (from FIP INDUSTRIALE) used to realize the kR and kPS stiffnesses  

 

 

Figure 6.16: Linear damping device used to produce the 𝑐𝑁𝑆 and 𝑐𝑃𝑆 damping coefficients  
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Figure 6.17: Rack and pinion inerter device used to generate the inertance of the ESBA-3 configuration 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Summary-conclusions 

This postgraduate thesis introduces several variations of the Stiff Base Absorber 

system, which is based on the KDamper concept, by incorporating inerter elements at 

different locations. The optimal parameters for each system are determined through an 

optimization process, considering engineering criteria and constraints. These dynamic 

vibration absorbers, which will be referred to hereafter as extended seismic base 

absorbers (ESBA), are designed with an additional constraint, that of an acceleration 

filter to assess the system’s efficiency. The selection of optimal parameters is based on 

the maximum structure acceleration, expressed as a percentage of the peak ground 

acceleration (PGA). A database of artificial accelerograms, compatible with EC8 

response spectra, is generated to define the ground motion input in the optimization 

process. Real earthquake records are then utilized to evaluate the dynamic behavior of 

the single-degree-of-freedom (SDOF) system, comparing it to a conventional low and 

high damping base isolation. The most effective vibration control system is further 

extended for implementation as a stiff seismic base absorber for multi-story structures, 

with system parameters determined through the optimization process, previously stated 

for a SDOF system. The dynamic responses of a three-story and a five-story building, 

modeled as shear frames, are compared under different scenarios, initially fixed base, 

placed on the proposed vibration absorption base, and contrasted with the low and the 

high damping conventional base isolations approaches of the same or different natural 

frequency. The efficiency of the proposed extended stiff seismic base absorber is 

demonstrated by subjecting the multi-degree-of-freedom (MDOF) buildings to both 

artificial and real near-fault and far-fault earthquake excitations. Sensitivity analyses 

are conducted to investigate the system's vulnerability to detuning phenomena by 

varying one parameter at a time and two parameters simultaneously. Additionally, the 

thesis explores a realistic displacement-dependent configuration for the negative 

stiffness (NS) element and compares the nonlinear dynamic behavior of the system with 

the initially expected linear response. Finally, an indicative design of the proposed 

vibration absorption system is provided, regarding its comprising elements. 

Based on the yielded results and the dynamic responses obtained, a multitude of 

remarks can be made: 

 All the ESBA configurations are realistically designed, as they incorporate an 

additional mass of relatively low value and they predict a variation of all the 

consisting stiffness elements. 

 The optimal system parameters are selected based on engineering criteria with 

proper constraints and limitations, which lead to a realizable design within 

technological capabilities. 

 All the ESBA systems are designed according to seismic codes, as the input 

ground excitation comes from a database of artificial accelerograms that are 

compatible with the EC8 response spectra. 

 From all the proposed extended stiff base seismic absorbers, the ESBA-3 

configuration, with the largest imposed limit of the inerter element (𝑏𝑚𝑎𝑥 =
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0.5), proved to be the most efficient in terms of the structure’s displacement and 

the NS stroke, for the most of the values of the acceleration filters (expressed as 

% of the PGA). 

 Very important is the fact that the addition of the inerter parallel to the positive 

stiffness element (𝑘𝑃𝑆) has little to no contribution to the highest acceleration 

filters, since its value is zero, for the ESBA-3 configuration and from this point 

the two proposed systems (ESBA-1 and ESBA-3) coincide together, in terms of 

the dynamic responses.  

 The SDoF system controlled with ESBA-3 manages to retain the structure 

absolute acceleration and base shear at acceptable levels, while at the same time 

the structure relative displacement is significantly low, compared to the 

conventional base isolation. 

 The superstructure dynamic behavior of the examined three-story building 

controlled with ESBA-3 is greatly improved. More specifically, the structure’s 

relative to the ground displacement is the lowest, compared to the fixed structure 

and the high damping isolation base. Regarding the absolute acceleration and 

the base shear, ESBA-3 maintains those values at acceptable levels and is in 

fact, very close to the corresponding values of the high damping base isolation 

system. The first floor drifts are drastically improved and again ESBA-3 

exhibits a similar behavior to that of the high damping BI. Finally, the base 

displacement is dramatically lower compared to that of the BI and HDBI (below 

of 4 cm, in contrast with the 17 cm (approximately) of the BI for the artificial 

acceleration), while the NS stroke is observed to remain to quite reasonable 

ranges of a few centimeters.  

 The decrease of the base isolation’s natural frequency, in an attempt to enhance 

its behavior, leads to a considerable increase of the structure’s relative 

displacement and base displacement (27.4 cm and 26.5 cm), which becomes 

problematic compared to the corresponding dynamic responses of the ESBA-3 

configuration. 

  By analogically altering the optimal values of the ESBA-3 system, with respect 

to the total superstructure mass, the same exact behavior in terms of the dynamic 

responses of the five-story building structure is exhibited. Again, the ESBA-3 

is a suitable seismic stiff base absorber. 

 From the uniparametric and biparametric sensitivity analyses, it seems that the 

ESBA-3 configuration is not sensitive to detuning phenomena. 

 The displacement-dependent configuration for the realization of the NS stroke, 

for various values of the 𝑐𝐼 parameter, yielded a nonlinear behavior that proved 

to be equivalent to the initially defined linear problem.  

 The imposed constraints led to the realization of all the 

parameters/elements/components within reasonable technological capabilities. 

Thus, the implementation of the ESBA-3 configuration is feasible by utilizing 

conventional structural elements. In this way, retrofitting is possible.   

 

 



102 
 

7.2 Future work 

The content of this thesis sought to investigate several topics in terms of the vibration 

absorption systems. However, there are also topics that were not addressed. The 

following are research directions that can greatly extend the present work:  

 The investigation of alternative realistic configurations for the realization of the 

negative stiffness element and the inerters using conventional structural 

elements that can generate the required elastic and inertial forces, specifically 

in relation to their applications in Civil Engineering structures. 

 Employing commercial Finite Element software to evaluate the aforementioned 

applications. The simulations should incorporate realistic constitutive models 

for both the superstructure and the components of the proposed vibration 

absorbers. In the present work, linear models are used for the modelling of all 

the examined applications, with the exception of the geometric nonlinearity for 

the realization of the negative stiffness element. Material nonlinearity should 

also be considered for the superstructure modelling, in case of extreme 

earthquake excitations. 

 Conducting experiments on realistic scaled structural systems to validate the 

proposed dynamic vibration absorbers for seismic protection. The experiments 

should involve the implementation of simple configurations with pre-

compressed springs to achieve the negative stiffness element and flywheel-

based mechanical inerters to achieve inertance. 

 Assessing the feasibility of implementing the proposed dynamic vibration 

absorbers as viable retrofitting solutions for existing building structures, while 

considering the impact of soil-structure interaction effects. 
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