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Abstract

One of the most common and deadly diseases is cancer, which affects millions of people worldwide.
The detection and treatment of cancer have advanced significantly thanks to medical research, but
the subject is still complex and challenging and requires continuous improvements in methodology
and technology. Machine learning algorithms have recently demonstrated significant potential in
the field of medical research, in particular in analysing huge amounts of data for the diagnosis of
malignant tumours. However, the quality and balance of training data have a significant impact
on how well these algorithms perform. Machine learning algorithms may perform poorly on im-
balanced datasets where one tumor type predominates over another, leading to models that do
not recognize the minority category. This thesis focuses on the application of sampling methods
for balancing the minority class, namely Random Oversampling and Undersampling, SMOTE and
ADASYN, with the goal of producing models that adequately identify both malignant and benign
tumors. The performance of three classifiers, specifically Decision Trees, Random Forests, and XG-
Boost, was evaluated using these sampling techniques and compared to the same classifiers without
sampling. Additionally, to assess the impact of not addressing the class imbalance problem, two
models, namely the Multilayer Perceptron and the LASSO logistic regression with feature selection,
were applied to the utilized dataset without sampling, and their performance was examined. The

best achieved accuracy both with and without sampling techniques surpassed 96 % on the test set.

Keywords: breast cancer, machine learning, classification, dataset imbalance, sampling, neural

networks.



1 Introduction

1.1 Breast Cancer

Breast cancer is a prevalent form of cancer affecting women, accounting for more than 10% of
new cancer cases annually. It is the second leading cause of cancer-related deaths among women
worldwide. Anatomically, the breast’s milk-producing glands are located in front of the chest wall,
supported by ligaments connecting them to the chest wall and resting on the pectoralis major
muscle. The breast is composed of 15-20 lobes arranged in a circular pattern, and their size and

shape are determined by the fat surrounding the lobes (Alkabban and Ferguson (2022)).

Each lobe consists of lobules, which contain glands responsible for milk production when stim-
ulated by hormones. Breast cancer typically develops silently, and many individuals become aware
of the disease through routine screenings. However, it can also present as a breast lump discovered
accidentally, changes in breast size or contour, or nipple discharge. Mastalgia, or breast pain, is
a common condition but is not necessarily indicative of breast cancer (Alkabban and Ferguson
(2022)).

Diagnosing breast cancer involves a physical examination, imaging techniques such as mammog-
raphy, and a tissue biopsy. Early detection plays a crucial role in improving survival rates. The
aggressive spread of breast cancer through the lymphatic and hematological systems can lead
to poor prognosis and distant metastasis. Therefore, the importance of breast cancer screening
initiatives is underscored by these factors (Alkabban and Ferguson (2022)).

1.1.1 Pathophysiology

Breast cancer is caused by genetic mutations and DNA damage, both of which can be impacted
by estrogen exposure. Sometimes, DNA flaws or cancer-causing genes like BRCA1 and BRCA2
are inherited. Therefore, having ovarian or breast cancer in the family raises the risk of developing
breast cancer. In a healthy person, cells with aberrant DNA or abnormal development are attacked
by the immune system. When breast cancer patients experience this failure, tumors develop and
spread (Alkabban and Ferguson (2022)).

1.1.2 Etiology

In general health screening for women, determining characteristics linked to a higher risk of breast
cancer development is crucial. Seven major categories can be used to classify breast cancer risk
factors (Alkabban and Ferguson (2022)):

1. Age: The age-adjusted incidence of breast cancer continues to increase with the advancing

age of the female population.
2. Gender: Most breast cancers occur in women.

3. Personal history of breast cancer: A history of cancer in one breast increases the likeli-

hood of a second primary cancer in the contralateral breast.

4. Histologic risk factors: Breast biopsy histologic abnormalities are a significant group of
breast cancer risk factors. These abnormalities include proliferative alterations with atypia

and lobular carcinoma in situ (LCIS).

5. The family history of breast cancer and genetic risk factors: First-degree relatives

of breast cancer patients have a 2- to 3-fold increased risk of getting the illness. Genetic



factors may be the cause of 5% to 10% of all breast cancer occurrences, but they may also be
the cause of 25% of instances in women under the age of 30. The two most significant genes
linked to an elevated risk of breast cancer are BRCA1 and BRCA2.

6. Reproductive risk factors: Women are assumed to have an increased chance of develop-
ing breast cancer after reproductive milestones that raise their lifetime estrogen exposure.
Menarche starting before the age of 12, the first live birth occurring after the age of 30,

nulliparity, and menopause occurring after the age of 55 are some of these.

7. Exogenous hormone use: The two most frequent uses of therapeutic or supplementary
estrogen and progesterone are contraception in premenopausal women and hormone replace-

ment treatment in postmenopausal women.

1.1.3 Epidemiology

Breast cancer holds the position as the most prevalent malignant tumor affecting women world-
wide. It accounts for a significant portion, approximately 36%, of all cancer cases. In 2018, an
estimated 2.089 million women received a breast cancer diagnosis. The incidence of this type of
cancer is on the rise across all regions globally, with the highest rates observed in industrialized
nations. Developed countries contribute to almost half of all reported cases. This increase can
be attributed primarily to the adoption of a Western lifestyle characterized by unhealthy eating
habits, tobacco use, high stress levels, and sedentary behavior.Mammography has emerged as the
recognized screening method for breast cancer. It offers substantial benefits, particularly for women
aged 50 to 69. Classical mammography demonstrates a sensitivity and specificity ranging from 75%
to 95% and an accuracy level of 80% to 95%. In cases where there is suspicion of hereditary breast
cancer, magnetic resonance mammography is employed as a screening tool. If a mammogram re-
veals a suspicious lesion, an ultrasound examination is conducted, followed by a thick needle biopsy
if necessary. The tumor is then subjected to a histopathological examination for further evaluation
(Smolarz et al. (2022)).

For a specific tumour in a given population, crude rates are calculated simply by dividing the
number of new cancers or cancer deaths observed during a given time period by the corresponding
number of individuals in the population at risk. For cancer, the result is commonly expressed
as an annual rate per 100 000 individuals at risk (Smolarz et al. (2022)). In 2018, the United
States recorded 234,087 cases of breast cancer (crude rate: 85/105), followed by 55,439 cases in the
United Kingdom (crude rate: 94/105), 56,162 cases in France (crude rate: 99/105), 71,888 cases
in Germany (crude rate: 85.4/105), and 66,101 cases in Japan (crude rate: 58,/105).

Belgium has the highest incidence rate worldwide (crude rate: 113/105), with Australia lead-
ing among continents (crude rate: 94/105). Poland also experiences breast cancer as the most
commonly diagnosed malignant tumor in women, showing a consistent increase in cases from 8,000
new cases in 1990 to 20,203 new cases in 2018. The average incidence rate in Europe stands at
84/105. In Southeast Asian and African countries, breast cancer has the lowest incidence, with
standardized rates not exceeding 25/105. Bhutan (crude rate: 5/105) and the Republic of The
Gambia (crude rate: 6.5/105) recorded the lowest incidence rates in 2018. Despite advances in
diagnostics and pharmacotherapy, breast cancer remains the leading cause of death from malignant
tumors among women worldwide, claiming the lives of 626,679 individuals in 2018. The highest
mortality rates are observed in developing countries, such as Fiji (crude rate: 36/105), Somalia
(crude rate: 29/105), Ethiopia (crude rate: 23/105), Egypt (crude rate: 21/105), Indonesia (crude



rate: 17/105), and Papua New Guinea (crude rate: 25/105), where 60% of all breast cancer deaths
occur. This trend primarily stems from limited screening opportunities, and lack of access to di-

agnostics, and modern treatment methods (Smolarz et al. (2022)).

In contrast, Belgium reports a standardized death crude rate of 16.3/105, the United States at
13/105, and Japan at 9.3/105. Poland exhibits significantly lower breast cancer incidence com-
pared to EU countries, with a standardized incidence rate of 51.8 for Poland compared to 106.6
for the EU in 2013. The incidence of breast cancer among adult premenopausal women (20-49
years) has nearly doubled over the past three decades. Unfortunately, Polish women show lower
sensitivity towards prevention, often neglecting their breast health and underestimating the impor-
tance of regular check-ups. In comparison to other European countries, Polish women have lower
rates of preventive care, with only 44% reporting free mammogram prevention programs, while the
Netherlands reports 80% and England reports 71%. The 5-year survival rate for breast cancer in
Poland stands at 78.5%, significantly lower than the 90% achieved in the United States (Smolarz
et al. (2022)).

Based on the research conducted by the Global Cancer Observatory, breast cancer accounted
for 27.5% of cancer cases among the female population of Greece in 2020, as depicted in Figure 1.
Additionally, the corresponding death rate for these cases was 7.0%. The age-standardized inci-
dence rate per 100,000 females was 71.9%, while the mortality rate was 14.5%. An age-standardized
rate (ASR) is a comprehensive measure of the rate that would be observed if the population had a
standard age structure. Standardization becomes necessary when comparing multiple populations
that differ in terms of age because age strongly influences the risk of cancer. The ASR is calculated
as a weighted average of the age-specific rates, with the weights determined by the population dis-
tribution of a standard population. The World (W) Standard Population is the most commonly

used standard population for this purpose.

Breast

7772 (27 5%)
Other cancers
11 761 (41.6%)
Pancreas Colorectum
1 060 (3.8%) 3365 (11.9%)
Corpus uteri Lung
2117 (7.5%) 2174 (7.7%)

Total: 28 249

Figure 1: Pie chart for cancer cases in Greece during 2020 (Global Cancer Observatory)
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Roughly 13% of women in United States of America, which is equivalent to 1 in 8, are expected

to receive a diagnosis of invasive breast cancer during their lifetime. Furthermore, approximately

3% of women, or 1 in 39, will unfortunately succumb to the disease as shown in Table 1. Lifetime

risk takes into account the possibility of deaths from other causes that may occur before a breast

cancer diagnosis. While the risk of being diagnosed with breast cancer reaches its highest point

among women aged 70-79 years (4.1%) and decreases afterward, the risk of mortality due to the

disease continues to rise as age advances (Giaquinto et al. (2022)).

Current age, years | Diagnosed with invasive breast cancer | Dying from breast cancer
20 0.1% (1 in 1439) <0.1% (1 in 18,029)
30 0.5% (1 in 204) <0.1% (1 in 2945)
40 1.6% (1 in 63) 0.1% (1 in 674)
50 2.4% (1 in 41) 0.3% (1 in 324)
60 3.5% (1 in 28) 0.5% (1 in 203)
70 4.1% (1 in 24) 0.7% (1 in 137)
80 3.0% (1 in 33) 1.0% (1 in 100)
Lifetime risk 12.9% (1 in 8) 2.5% (1 in 39)

Table 1: Breast cancer risk by age. Probability is among those who have not been previously
diagnosed with cancer and reflects the likelihood of diagnosis/death within 10 years of current
age. Percentages and “1 in” numbers may not be numerically equivalent because of rounding

(Giaquinto et al. (2022)).




1.2 Literature Review

Countless people worldwide are impacted by the common and deadly disease known as breast can-
cer. Breast cancer survival rates and patient outcomes can be greatly enhanced by early and precise
identification. The use of machine learning and data mining approaches for the classification of
breast cancer has attracted increasing interest in recent years. These methods have demonstrated
substantial potential for helping doctors make accurate diagnoses and treatment decisions. Breast
cancer is categorized by dividing tumor samples into groups such as malignant (cancerous) and
benign (non-cancerous). Mammography and histological examination are two examples of tradi-
tional diagnostic techniques that have limits in terms of precision and dependability. On the other
hand, machine learning algorithms have the capacity to examine complex patterns and correlations

inside huge datasets, enabling more precise and effective breast cancer classification.

This literature review seeks to present a summary of the current research on machine learning
algorithms for breast cancer classification. It will examine numerous techniques used in research,
including support vector machines, random forests, artificial neural networks, and ensemble meth-
ods. The evaluation will also point out the field’s advances, strengths, and limits as well as possible
future directions. This study aims to add to the knowledge of the present state-of-the-art in breast
cancer classification using machine learning approaches by synthesizing and assessing the available
research. It attempts to find the best techniques, and characteristics for precise and trustworthy
categorization. Researchers, physicians, and other healthcare professionals involved in the detec-

tion and treatment of breast cancer can benefit greatly from the conclusions of this analysis.

Ara et al. (2021) utilized the Wisconsin Breast Cancer Dataset (WBCD) from the FNA biopsy
system to apply various machine learning (ML) classifiers and determine the type of breast cancer
in a suspected patient. Six classification models were employed, including Random Forest, Logistic
Regression, Decision Tree, Naive Bayes, Support Vector Machines (SVM), and K-Nearest Neigh-
bors (KNN). To identify the most suitable model for breast cancer prediction, the obtained results
were evaluated to compare the algorithms. The best models, based on testing accuracy, were
identified as Random Forest and SVM, both achieving an accuracy of 96.5 %. According to Abed
et al. (2016), a hybrid classification algorithm combining the Genetic Algorithm (GA) and KNN
is suggested. The GA algorithm is utilized for its primary purpose as an optimization technique
for KNN, involving feature selection and optimization of the k value. On the other hand, kNN
is employed for classification purposes. The effectiveness of the proposed algorithm is evaluated
by applying it to the WBCD. The algorithm is compared to different classifier algorithms using
the same database. The evaluation results of the proposed algorithm demonstrate a remarkable

accuracy of 99%.

The classification accuracy, sensitivity, specificity, and other characteristics of four machine learn-
ing algorithms—Logistic Regression, SVM, KNN, and Naive Bayes—are calculated and compared
in the work of Kumar et al. (2020). The various hyperparameters utilized by various ML algo-
rithms were chosen manually. SVM outperformed all other methods, with an accuracy of roughly
98.24%. Moreover, an efficient hybridized classifier for diagnosing breast cancer is suggested in
the paper of Mittal et al. (2015). Self organizing maps (SOM), an unsupervised artificial neural
network (ANN) technique, and stochastic gradient descent (SGD), a supervised classifier, are used
to create the classifier. Additionally, a comparison is made between the suggested method and
three cutting-edge supervised machine learning techniques: decision trees (DTs), random forests
(RF), and SVM. The SGD approach is initially employed independently for the classification task,



then after being hybridized with the unsupervised ANN methodology on the WBCD, it is made to
conduct the classification. The findings of the classification experiment employing the hybridiza-
tion of SOM and SGD are much better than SGD alone.

The utilization of deep learning technology for breast cancer diagnosis is demonstrated in the
paper of Khuriwal and Mishra (2018a). Despite being commonly employed in high-task objec-
tive areas such as Computer Vision, Image Processing, Medical Diagnosis, and Natural Language
Processing, the application of deep learning techniques on the WBCD is explored. The results
reveal the significant benefits of utilizing deep learning technology, achieving an impressive accu-
racy of 99.67% for breast cancer diagnosis. The paper is structured into three parts, beginning
with data collection and the application of preprocessing algorithms to scale and filter the data.
Subsequently, the dataset is split into training and testing subsets, with visualizations generated
to aid data comprehension. Finally, the model is implemented on the training dataset, leading to
the accuracy of 99.67%.

In the paper of Algarni et al. (2021), a deep learning architecture is proposed to support the
detection of breast tumors using structured features. First, the performance of multiple state-of-
the-art machine learning approaches, including SVM, DT, Logistic Regression, and Convolutional
Neural Networks (CNN), was evaluated and compared. Additionally, a combined ensemble model
with three base models was constructed to induce better generalization performance. These ap-
proaches were evaluated for automatically classifying tumors using the publicly available breast
cancer dataset, the WBCD. Experimental results indicate that the highest classification accuracy
(98%) is achieved by the proposed CNN deep model classifier.

RF and Extreme Gradient Boosting (XGBoost), two ensemble machine learning classifiers, are
compared in terms of performance on the WBCD in the research of Abdulkareem and Abdulka-
reem (2021). The major goal of this study is to evaluate the accuracy of the classifiers in terms of
their effectiveness and efficiency in classifying the dataset. This was accomplished by using both
the dataset’s full set of features as well as its reduced set, which was produced using the Recursive
Feature Elimination (RFE) feature selection approach. Accuracy, Precision, Recall, and F1-Score
were the four metrics utilized in the study to assess the classifiers. The results of the experiment
demonstrate that the XGBoost algorithm with 5 reduced features and the RFE feature selection

approach provides the best accuracy (99.02%) and lowest error rate.

In the study of Basunia et al. (2020), an ensemble method named ”stacking classifier” was pro-
posed, which combines multiple classification techniques and effectively classifies the benign and
malignant tumor. The WBCD was used for the experiment. Different classification techniques
were applied over the dataset, and their parameters were tuned to improve accuracy. The three
best classifiers, namely KNN, SVM, and RF, were chosen for the proposed method. Generally, the
proposed stacking classifier combined the results of those best classifiers using a meta classifier,
specifically Logistic Regression, and achieved a breast cancer prediction accuracy of 97.20%. Fur-
thermore, in the paper of Khuriwal and Mishra (2018b), an adaptive ensemble voting method was
proposed for diagnosing breast cancer using the WBCD. The aim of this work is to compare and
explain how a better solution is provided by the Artificial Neural Networks (ANN) and Logistic
Regression algorithm when working with ensemble machine learning algorithms for breast cancer
diagnosis, even with reduced variables. When compared to related work from the literature, it
is demonstrated that an accuracy of 98.50% is achieved by the ANN approach with the Logistic

algorithm, surpassing that of other machine learning algorithms.



The paper of Telsang and Hegde (2020) introduces a breast cancer prediction utilizing various
machine learning algorithms, comparing their prediction accuracy, area under the receiver op-
erating characteristic curve (AUC), and performance parameters. The WBCD is employed for
simulation purposes. Through analysis, the SVM model achieves an accuracy of 96.25% with an
AUC of 99.4. Additionally, there is potential to enhance the breast cancer prediction by modifying
the mathematical models of these algorithms. Similarly, the research of Sinha (2020) utilized the
WBCD, renowned as the benchmark database for result comparison across various algorithms. The
classification of benign and malignant tumors was performed using the following machine learning
classification techniques: SVM, KNN, RF, Adaboost Classifier, and XGboost Classifier. The ac-
curacy achieved in scaled features for this classifiers is 96%, 57%, 75%, 94% and 98% respectively.
In the same research pattern, the paper of Singh and Thakral (2018) utilized the WBCD by im-
plementing a classification analysis using DT classifier (J4.8, Simple CART) and Bayes classifier
(Naive Bayes, Bayesian Logistic Regression). The experimental result shows that among all the

classifiers, DT classifier i.e. Simple CART (98.13%) gives higher accuracy.

The research of Agarap (2018) presents a comparative analysis of six machine learning (ML)
algorithms: GRU-SVM, Linear Regression, Multilayer Perceptron (MLP), Nearest Neighbor (NN)
search, Softmax Regression, and SVM. The performance of these algorithms is evaluated using the
WBCD, which contains features computed from digitized images on breast masses. The dataset
is divided into a 70% training set and a 30% testing set. The classification test accuracy, sensi-
tivity, and specificity values are measured for each algorithm. The results indicate that all the
ML algorithms perform well, with test accuracies exceeding 90%. Notably, the MLP algorithm

demonstrates outstanding performance, achieving a test accuracy of approximately 99.04%.

The paper of Sidey-Gibbons and Sidey-Gibbons (2019) addresses the growing interest in machine
learning techniques for medical research and clinical applications. It provides both a conceptual
introduction and a practical guide to developing and evaluating predictive algorithms using freely-
available open source software and public domain data. The study focuses on cancer diagnosis and
demonstrates the use of machine learning techniques by developing three predictive models using
WBCD. Algorithms including General Linear Model Regression (GLMs) and specifically LASSO
Logistic Regression, SVM, and ANN are trained on the evaluation sample and used to predict diag-
nostic outcomes. The results show that the trained algorithms achieve high accuracy (0.94 - 0.96),
sensitivity (0.97 - 0.99), and specificity (0.85 - 0.94) in classifying cell nuclei. The SVM algorithm
achieves the highest accuracy (0.96) and area under the curve (0.97). The performance slightly
improves when the algorithms are combined into a voting ensemble (accuracy = 0.97, sensitivity
= 0.99, specificity = 0.95).

The paper of Gosain and Sardana (2017) addresses the Class Imbalance Problem (CIP), which
refers to the situation where the distribution of classes in a dataset is significantly skewed, with
one class being heavily represented compared to the others. Four oversampling techniques, namely
Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling approach
(ADASYN), Borderline-SMOTE, and Safe-Level SMOTE, were utilized to handle this problem.
The performance of these oversampling techniques in dealing with the CIP is compared using four
publicly available datasets, with one of them being the WBCD. Popular classification models, in-
cluding Naive Bayes, SVM, and KNN, are employed for the comparison. The evaluation metrics
used to assess performance include Overall Accuracy, Sensitivity, Specificity, Precision, F-measure,
G-mean, and Area under the curve (AUC) value. Based on the results, Safe-Level SMOTE demon-



strates superior performance, particularly in terms of F-measure and G-mean across most datasets.
The generation of minority instances around larger safe levels contributes to its higher accuracy
performance compared to SMOTE, ADASYN, and Borderline-SMOTE.

The paper of Wang et al. (2021) proposes an improved version of the SMOTE algorithm for
the expansion and classification of imbalanced data. The authors compare the performance of the
proposed algorithm to the original SMOTE algorithm on several imbalanced datasets, including
WDBC. The experimental results show that the proposed algorithm achieves better classification
performance than the original SMOTE algorithm on all datasets, including WDBC. Specifically
for WDBC dataset, the proposed algorithm achieved an Area under the ROC of 96.49%, which is
slightly higher than the AUC achieved by the original SMOTE algorithm (95.61%).

This research of Cahyana et al. (2019) explores the use of oversampling techniques (SMOTE,
Borderline-SMOTE, and ADASYN) to address imbalanced data classification challenges. The
study evaluates their impact on classification accuracy using the XGBoost algorithm and seven
datasets. Results show that oversampling improves accuracy by 2% to 11% in most datasets, with
Borderline-SMOTE yielding the highest improvements. Interestingly, the WBCD exhibits steady
accuracy regardless of oversampling. However, the effectiveness of oversampling depends on the
dataset and algorithm sensitivity, highlighting the need for careful consideration when applying

these techniques.

The study of Cai (2018) presents a model that combines an ensemble method and an imbalanced
learning technique for the classification of breast cancer data, specifically utilizing the WBCD.
The model consists of two main steps. Firstly, the Synthetic Minority Over-Sampling Technique
(SMOTE) is applied to the selected dataset. Secondly, multiple baseline classifiers are tuned using
Bayesian Optimization. Finally, a stacking ensemble method is employed to combine the optimized
classifiers for the final decision. Comparative analysis demonstrates that the proposed model out-
performs conventional methods in terms of classification accuracy, specificity, and AUC. The best
baseline accuracy arose for XGBoost classifier with SMOTE approximately in 97%. The ensemble
method with SMOTE achieved an accuracy of 97.5%.

The research of S. A. Mohammed et al. (2020) focuses on improving the accuracy and perfor-
mance of three classifiers (Decision Tree (J48), Naive Bayes, and Sequential Minimal Optimization
(SMO)) for predicting early-stage breast cancer. The classifiers are validated and compared us-
ing two benchmark datasets: WBCD and Breast Cancer. The paper addresses the challenge of
imbalanced classes in the data and proposes a data-level approach of resampling to mitigate the
impact of class imbalance. The evaluation is done using 10-fold cross-validation, and the classifiers’
efficiency is assessed based on various metrics such as true positive rate, false positive rate, ROC
curve, and accuracy. The experimental results demonstrate that using a resample filter enhances
the classifiers’ performance, with SMO performing best on the WBCD and J48 outperforming

others on the Breast Cancer dataset.

The study of Solanki et al. (2021) focuses on improving the accuracy of machine learning models
for breast cancer prognosis. It explores wrapper-based feature selection methods and uses SVM,
J48 DT, and Multilayer Perceptron (MLP) classifiers. The research emphasizes handling imbal-
anced datasets and evaluates different sampling techniques, such as SMOTE. The results show
that the J48 DT classifier, combined with genetic search for feature selection, achieves high accu-

racy (98.83%) and other performance metrics. The study highlights the importance of sampling



techniques in addressing class imbalance for accurate breast cancer prognosis.

Comparing different models using the same dataset is essential because model performance can
vary widely when applied to different datasets. By using the same dataset, researchers ensure a
fair and unbiased evaluation. This approach allows for a direct comparison of the advantages and
disadvantages of each model, considering how well they perform with the specific data features
and patterns in the dataset. Using a consistent dataset helps establish a reliable benchmark for
comparison, enabling researchers to select the best model for their specific problem. It also high-
lights the importance of robustness and generalizability, as models that work well on one dataset
may not be as effective on new, unseen data. Ultimately, using the same dataset for evaluation

improves the reliability of the study and leads to more accurate findings.



2 Theoretical Background

2.1 Logistic Regression

Multivariable problems are frequently encountered in medical research. A typical question of re-
searchers is to what extent a variable or a set of them affects a disease outcome. The disease
outcome considered dichotomous with 0 representing not diseased and 1 representing diseased.
To evaluate the extent to which the variables are associated with the outcome, the multivariable
problem considers the variables independent and the outcome is set as a dependent binary variable
(Kleinbaum and Klein (2006)). Logistic Regression is a modeling approach that can be used to

describe the relationship of several variables to a dichotomous dependent variable.

The equation 1 presents the function on which the Logistic Regression is based. The plot of
this function is presented in figure 2. When z approaches —oo, the logistic function f(z) equals 0.
On the other side, when z approaches oo, the logistic function f(z) equals 1. Thus, as the graph

describes, the range of f(z) is between 0 and 1, regardless of the value of z.

1

f(Z):m

(1)

The fact that the logistic function f(z) varies between 0 and 1 is the fundamental reason the
logistic model is so popular. The model is designed to describe a probability, which is always a
value between 0 and 1. In medical terms, such a probability conveys the risk of an individual
contracting a disease. So, the logistic model is constructed to guarantee that whatever estimate of

risk is received, the risk will always be a value between 0 and 1.

—oo 0 +oo

Figure 2: Logistic Function (Kleinbaum and Klein (2006))

The logistic function’s shape is another factor contributing to the logistic model’s applicability. As
shown in the figure 2, if it started at z = —oco and go to the right, then as z increases, the value of
f(2) hovers close to zero for a while, then starts to increase dramatically toward 1, and then levels
off around 1 as z increases approaching co. This S-shape image of f(z) implies that the effect of
z on an individual’s risk is modest for low z’s until some threshold is achieved. The danger then
increases quickly over a specific range of intermediate z values, and once z is large enough, it stays

extraordinarily high around 1.

2.1.1 Logistic Model

The logistic function can be utilized to model the probability of the disease outcome D. More
specifically, considering the observation of the independent variables X1, X, ..., X, for a group of
subjects for whom the outcome D = 1 or 0 is determined, the probability of a new observation to get

the disease can be modeled. To obtain the logistic model from the logistic function, z is expressed
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as a linear combination of the independent variables and f(z) is linked with the probability of the
disease outcome D = 1 given the values of X1, X5, ..., X,,. The logistic function (Kleinbaum and
Klein (2006)) then models that probability through the equation 1:

1
- 1+ e~ (Bo+327_1 BiXs) (2)

P(D=1]|X,Xs,... X,)

The terms a and b; are unknown parameters that must be calculated using the information of the
independent variables and their linked outcome on the group of subjects. Using the equation 3,
the probability of the negative outcome D = 0 can be calculated (Kleinbaum and Klein (2006)) by

the rule of subtraction:

P(D =0 | X1, Xo, ...,Xp) =1- P(D =1 | X1, Xo, ...,Xp)
e~ (Bot+227_, BiXi) (3)
o 1+ e~ (Bo+327_, BiXi)

P(D=0]| X1, Xs,....,X,)

2.1.2 Fitting of the Logistic model

Fitting the logistic model is equivalent to determining the unknown parameters - coefficients of
the equation 3 by the maximization of the log-likelihood of the N observations that correspond to

the known group of subjects. The log-likelihood of the model is given by:

N
(o) = Z log pg, (zi; B) (4)

where py (z;;8) = P(D = k | x;;8) for k = 0,1. [ represents the vector of all the unknown
parameters and x; = [1, X1, X2, ..., X,]T. The two classes are coded through g; via 0/1 response
yi, where y; = 1 when g; = 1 and y; = 0 when g; = 0. Because the problem consists of two classes
p1 (z;8) = p(a;8) and po (x5 8) = 1 — p(a;;8). Therefore, the log-likelihood can be written
(Hastie et al. (2009)):

N
{(B) = Z {yilogp (zi; B) + (1 — y:i)log (1 — p (z:; 8))}

N
= Z {yiﬁTxi — log (1 + eﬂT‘Ti> } .
i=1
To maximize the log-likelihood, the derivatives are set to zero:

N
(%gg)zz:xi(yi—p(xi;ﬁ))zo ©

i=1

which are p+1 equations nonlinear in 8. To solve these equations, Newton-Raphson algorithm is
utilized (Hastie et al. (2009)):

9%0(B) )1 a4(p)

new __ pold
=~ (gmm) s

(7)
Let y denote the vector of y; values, X the N x (p + 1) matrix of x; values, p the vector of fitted

probabilities with ith element p(z;; 5°?) and W a N x N diagonal matrix of weights with ith
diagonal element p(z;; 3°9)(1 — p(z;; 4°?)). Then (Hastie et al. (2009)):
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Thus, the Newton step is:

ﬂnew — BOM + (XTWX) -1 XT (y _ p)
= (XTWX) ' XTW (X + Wl (y - p)) )
= (X"WX) ' XTWz

In the second and third line the Newton step has been re-expressed as a weighted least squares
step, with the response:
z=Xg" + Wy - p) (10)

These equations are solved repeatedly, since at each iteration p changes, and hence so does W
and z. This algorithm is referred to as Iteratively Reweighted Least Squares or IRLS (Hastie et al.

(2009)), since each iteration solves the weighted least squares problem:
B« arg mﬁin(z —X3)TW(z — Xp) (11)

2.1.3 Wald test

By applying the Newton-Raphson method using the equation 11, the logistic regression coefficients
3 are estimated. However, the corresponding variables might not be statistically significant for
the model. To determine this information, Wald test must be applied under the Hy hypothesis of
B; = 0 and the alternate hypothesis Hy of 8; # 0, as it is considered in Likelihood Ratio test in
equation 14. The estimator of the Maximum Likelihood of the model follows asymptotically the

Normal distribution (Karoni and Oikonomou (2017)) and hence it is approximately true that:

B; = B
(I-1(B);,)?

where p is the number of coefficients and I(3) is the observed information matrix. The in-

~N(0,1), 5=0,1,...,p (12)

formation matrix is defined as the matrix product XTWX where W is the diagonal matrix
W = diag(exiTﬁ). Based on theory of Maximum Likelihood it is shown that the variance of
the coefficient Bj, V(B]) is the j-th element of the matrix I~1(j3) with corresponding standard

error se(ﬁAj) = (V(BJ))% = (I_I(B)jj)% (Karoni and Oikonomou (2017)).

2.1.4 Deviance and Goodness of Fit

When it comes to the selection of a model for a specific dataset, it is very important to evaluate
the eligibility of the model under specific requirements. A very significant factor is the quality of
the data description that the model offers. This information could be measured using the scaled

Deviance function for the model Mj:
Do = —2(ly — l5) ~ x> (13)

where /, is the maximized log-likelihood of the model Mj. g is the corresponding maximized

log-likelihood of the saturated model, which is described by the same number of coefficients as the
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number of samples. d is equal to the difference between the number of coefficients of My model
and the saturated model (Karoni and Oikonomou (2017)). The saturated model has perfect fit on
the data and hence, the deviance function measures how much the model My deviates from the
saturated one. If the deviance is large, then the model adaptation to the data is poor and another

model with different variables must be evaluated.

Nevertheless, the purpose in data analysis is not only to find one model that fits well enough
to the data, but to determine the best model out of many possible ones, which are comprised of
different combinations of the independent variables. Deviance function is a suitable indicator of
the goodness of fit to the data. Therefore, the difference of deviances of two models could measure
the comparison of the adaptation of these models to the data. More specifically, if the model My
contains pgy variables that are a subset of the p; variables of a model M7, then these models are
considered nested. My model arises from M;, if d = p; — po constraints like 3; = 0 are set for d
independent variables of M;. Equation 13 is valid for nested models asymptotically and hence, if
D, and Dy are the deviance values of the models M; and My respectively (Karoni and Oikonomou
(2017)), then the Likelihood Ratio test is:

Do — Dy = —2(lg — ls) + 2(fy — bs) = —2(fy — 1) ~ X3 (14)

2.1.5 L; Regularization

L1 regularization is a technique used in Logistic Regression to prevent overfitting of the model. In
L1 regularization, a penalty term is added to the log-likelihood function 5 of the Logistic Regression
model, which encourages the model to have small weights for some of the features. Mathematically,
the L1 regularization penalty is defined as the sum of the absolute values of the weights except the
intercept (Hastie et al. (2009)):

»
ax > {yz (Bo + B ;) — log (1 + eﬁ°+5T“>} -2 184l (15)
’ i=1 j=1

The regularization term contains the L; norm of the vector of the coefficients and when the
expression of 15 is maximized then some of the coefficients might be pushed towards zero or
even become exactly zero. Equation 11 results in a solution B, as it is presented in figure 3. L
regularization finds the first point where the elliptical contours hit the blue constraint region. For

L, regularization this constraint region is given by the equation (Hastie et al. (2009)):

P
Mgl <t (16)
=1

If the solution occurs at a corner, then it has one parameter ; equal to zero. When p > 2, the
blue region becomes a rhomboid with numerous corners, flat edges and faces. Hence, the odds of

the estimated coefficients being zero are much higher.
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Figure 3: Estimation picture for L1 regularization.The solid blue areas are the constraint regions
of the coefficients, while the red ellipses are the contours of the IRLS error function (Hastie et al.
(2009))

2.1.6 Coordinate Descent

The Newton algorithm for maximizing log-likelihood of equation 5 amounts to IRLS. Hence if
the current estimates of the parameters are (507 B), a quadratic approximation is formed to the
log-likelihood (Friedman et al. (2010)) which is:

N
126) (5075):—%211% (Zi—ﬁo—f;rﬁ)2+c(5~o»ﬁ~)2 (17)
i=1

where:

T 1D
R e [ Aes) as)

w; = p(z;) (1 —p(z:))

where p (z;) = p (x;; 8) is evaluated at the current parameters. For each value of A, an outer loop is
created that computes the quadratic approximation 17 about the current parameters (Bo, B) Then,
the coordinate descent is utilized to solve the penalized weighted least-squares problem (Friedman
et al. (2010)):

P
min —/ ,B8)+ A i 19
o in e (Bo, B) ; 1651 (19)
This amounts to a sequence of nested loops:
1. outer loop: Decrement of \

2. middle loop: Update the quadratic approximation fg using the current parameters (50, BN)

3. inner loop: Run the coordinate descent algorithm on the penalized weighted-least-squares

problem
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2.2 Decision Trees

In supervised learning, the value of one or more response variables that describe an outcome can be
predicted using a collection of independent variables (predictors). A prediction model is utilized
to match the independent predictors with a specific outcome. The main objective is to create
a model that is capable of predicting the value of the response variable by learning rules that
arise through the independent predictors. The data used to assess the prediction model consists
of a set of observations that include the independent features and the response variable. When

the response variable is unknown, the fitted model is employed to predict its value. (Saxena (2022)).

A structure called a Decision Tree can group data by applying a set of straightforward rules
on the independent variables. Fach observation is classified into a group based on the applied
rules on its independent variables. The outcome of the successive rules on the tree’s structure
constitutes a hierarchy of groups inside other groups. The groups in each level of the hierarchy are
called nodes, and the first group that belongs to the root node is formed by the whole set of data.
A node and its successors create a branch from this node and the last nodes of the hierarchy are
the leaves of the tree structure. A selection that is applied in each of the leaves’ instances is made
by employing the last rules in each of the leaves. In supervised learning, this selection concerns

the predicted value of the response variable (Saxena (2022)).

This non-parametric supervised learning technique is utilized for both classification and regres-
sion applications (Saxena (2022)). A regression tree represents a continuous response, whereas a
classification tree models a categorical response as can be visualized in figure 4. Because the model

is written as a series of if-then statements, both forms of trees are referred to as decision trees.

Target Variable Type of Decision Tree

Classification
Categorical DD 3 Triee

Regression
Continuous r Tree

Figure 4: Classification and Regression Trees

Tree models can utilize both categorical and numerical features, and the space that represents
them includes all their possible combinations. This space is split into non-overlapping parts that
are depicted by the leaves of the tree. The root node, which contains the whole set of data, is
repeatedly separated until a stopping criterion is met. By selecting an independent variable and
a splitting value for that variable that minimizes the variability according to a defined measure
in the outcome variable for all child nodes, the parent node is then split into child nodes at each
stage. Different measures like the Gini index, entropy, and residual sum of squares can be used to
assess the candidate splits for each node. The selected independent variable and its splitting value

are called the primary splitting rule. (Saxena (2022)).

The instances are classified with guidance from the root node to the leaves, according to the

results of the rule application along the tree path. Specifically, the root node and corresponding
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feature are evaluated to determine which branch of the tree the observed value corresponds to.
Then, the next node of the specific branch is evaluated, and the procedure is repeated until a leaf
is reached. It should be noted that both categorical and numerical features are incorporated into
the tree structure (Rokach and Maimon (2008)). In case of numeric attributes, decision trees can
be geometrically interpreted as a collection of hyperplanes, each orthogonal to one of the axes, as

it is visualized in figure 5.

Figure 5: Perspective plot of the prediction surface of 3-dimensional input variable decision tree
(Hastie et al. (2009))
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2.2.1 Splitting Criteria

The splitting criteria used at the root node of a decision tree is of significant importance as it deter-
mines how the initial split is made, which subsequently affects the entire structure and predictive
accuracy of the decision tree. The splitting criteria in the root node is typically chosen based on
the features of the input data, and it plays a critical role in dividing the data into distinct subsets

or branches.

The importance of the splitting criteria at the root node of a decision tree can be summarized
as follows (Rokach and Maimon (2008)):

1. Decision-making: The primary separation criterion in the root node determines the feature
or property used to make the initial decision for separating the data into different branches.
This initial separation sets the foundation for subsequent divisions in the tree, leads to the
creation of decision rules, and determines the final predicted results for unseen data in the

model.

2. Predictive accuracy: The selection of the split criterion in the root node determines the
accuracy of the tree model. A well-selected split criterion could lead to more homogeneous
data subsets in the branches and, subsequently, better predicted accuracy. On the other
hand, a poorly chosen separation criterion could lead to imbalanced or insufficiently separated

subsets and, therefore, reduced accuracy and lower quality decision rules.

3. Interpretability: The root node separation criterion could affect the interpretability of the
tree model. A decision tree with a clear and meaningful separation criterion in the root node
could be easily understood and interpreted by human users, making it useful for explaining

the decision-making process and gaining insights from the model’s predictions.

4. Computational efficiency: The selection of the separation criterion in the root node could
affect the computational efficiency of the tree model. Some separation criteria may require
more computational resources for calculation or evaluation, while others may be less costly in
terms of computing resources. Determining a suitable separation criterion could contribute

to the optimization of the decision tree construction efficiency.

In the ID3 algorithm, the information gain criterion is employed for split selection. Given a training
set D, the entropy of D is defined as (Zhou (2012)):

Ent(D) = =Y Py | D)log Py | D) (20)
yey

where P(y | D) is the probability of randomly selecting an example in class y from possible classes
that are included in ). Entropy is the degree of uncertainty, impurity or disorder of a random
variable. It characterizes the impurity of an arbitrary class of examples in a node. If the training
set D is divided into subsets Dy, Do, ..., D, the entropy may be reduced, and the amount of the
reduction is the information gain (Zhou (2012)):

G (D;Dy,...,Dy) = Z |D Ent (Dy,) (21)

The attribute that is used for each split is the one that maximizes the information gain. CART

is another famous decision tree algorithm, which uses Gini index (Zhou (2012)) for selecting the
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split maximizing the gain equation:

D
Ggim‘(D;Dl,...,D Z||l)/€||
(22)
where I(D) :1,Zpy|D

yey

The Gini Index or Impurity I(D) measures the probability for a random instance being misclassified

when chosen randomly. The lower the Gini Index, the lower the likelihood of misclassification.

2.2.2 Stopping Criteria

Decision trees created from a training data sample are not ideal classifiers for the entire population
of data objects for a variety of reasons. It frequently occurs that the descriptions of data objects
are noisy, and this noise may originate from erroneous measurements. Also, there are a lot of
local minima that “conceal” the global minimum, and learning machines’ decision functions are
ineffective at explaining hidden dependencies. When overfitting happens close to the root node,
the tree model is utterly wrong and frequently cannot be fixed. But when overfitting is caused by
splits close to the leaves, pruning certain tree branches can be a successful remedy that simplifies
the models. Pruning is a technique that removes the parts of the Decision Tree which prevent it
from growing to its full depth (Krzysztof (2014)).

Most of the commonly used pruning techniques belong to one of two groups (Krzysztof (2014)):

1. pre-pruning: the methods acting within the process of decision tree construction, which can

block splitting particular nodes

2. post-pruning: the methods that act after complete trees are built and prune them afterwards

by removing the nodes estimated as not generalizing well
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2.3 Random Forests
2.3.1 Bagging

The abbreviation ’Bagging’ has arisen from the combination of ’Bootstrap’ and ’Aggregating’.
As this name suggests, the process of Bagging consists of two main elements: bootstrapping and
aggregation. Its aim is to achieve highly effective reduction of errors through the combination
of base learners with simple assumptions. One method to achieve independence among the base
learners is to train each of them on a non-overlapping data subset derived from a large training set.
However, due to the lack of training data, this procedure could produce insignificant and unrep-

resentative samples that might negatively affect the performance of the base learner (Zhou (2012)).

Bootstrapping is used by Bagging to construct many base learners. More specifically, a boot-
strap sample from a learning sample L,, of size n is obtained by randomly drawing n observations
from L, with replacement. Each observation (X,,Y;) in L, has a probability of 1/n of being
selected in each draw (Genuer and Poggi (2020)). While some instances may be absent from the
sample, other samples may appear more than once. T samples of n training instances are obtained
by repeating the algorithm 7" times. Then, the algorithm can be used to train one base learner for

each sample.

Voting for classification and mean value for regression are the most common processes used by
Bagging to combine the results of the base learners. During the prediction of a testing observation,
Bagging feeds the instance to its base learners, collects the outputs, votes for the targets, and uses
the label with the majority of votes as the prediction, with ties arbitrarily broken (Zhou (2012)).

Bagging can handle both multiclass and binary classification.

2.3.2 Forests

Examples of modern ensemble approaches are the Random Forests. It is a development of bagging,
with the addition of randomized feature selection being the main distinction from simple bagging.
The base learners of the random forests are simple decision trees, that their rules are based on the
random selected subset of the features. In each split selection step, during the development of a
component decision tree, random forests randomly picks a subset of features before performing the

standard separation selection technique inside the chosen feature subset (Zhou (2012)).
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2.4 Extreme Gradient Boosting
2.4.1 Boosting

The Boosting technique is based on the existence of a weak or simple learning algorithm, which,
when given labeled training data, produces a weak or simple classifier. By presenting the weak
learning algorithm as a ’black box’ that can be used repeatedly as a subroutine, but whose internal
operations cannot be altered, the Boosting technique aims to enhance its effectiveness (Schapire
and Freund (2014)).

To the extent that the error rates are slightly better than a classifier where each prediction is
a random guess, the weak learners could be sketchy and somewhat inaccurate, but they are not
completely simple and uninformative. The assumption of weak learning, which is fundamental for
the boosting technique, states that the principal model produces a weak hypothesis that is slightly
better than a random guess on the data that has been trained (Schapire and Freund (2014)).

The main principle that regualtes the Boosting technique refers to the selection of training samples
in a way that forces the base learner to extract a new conclusion every time it is called. This can be
achieved by selecting training sets in which it is expected that the performance of the base learner
will be very poor, even worse than its typical weak performance. If successful, it can be predicted
that the Boosting model will produce a new classifier that significantly differs from its predeces-
sors. This is because although the basic classifier is considered to be a weak and mediocre learning
algorithm, it is expected to produce classifiers that can make complex predictions (Schapire and
Freund (2014)).

2.4.2 Key Mathematical features of XGBoost

The base learners of the XGBoost algorithm are the so called Classification and Regression Trees
(CART). Each tree contains a continuous score on each of its leaves. This score is represented by
w; and it corresponds to the i-th leaf. For a given observation, the rules of the decision trees will
be used to classify it into the leaves. The final prediction will be given by the sum of the scores
of the corresponding leaves in each of the trees (given by w). In order to determine the specific
tree rules that create these leaves, the objective function of the loss with regularization should be
minimized (Chen and Guestrin (2016)):

L(¢) = Zl(ﬁi,yi) + ZQ(fk)
where Q(f) =~T + §A||w|\2

where T is the number of leaves in each of the k trees that are take part in the classifier and ) is
the regularization coefficient. The f; functions represent the subset of the feature rules in each of
the k trees that correspond to the score in the specific leaf. The loss function 1 is differentiable,
convex and calculates the difference between the prediction g; and the target y;. The second term
penalizes the model’s complexity. In order to prevent over-fitting, the extra regularization term
Q helps to smooth the learned weights. It makes sense that the regularized objective would favor

models with straightforward and predictive functions (Chen and Guestrin (2016)).

The fr functions are parameters in the tree ensemble model in 23, which makes it impossible

to optimize it using conventional Euclidean-space techniques (Chen and Guestrin (2016)). The

model is instead trained in an additive way. Formally, if gjt(t) is the prediction of i-th instance on
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the t¢-th iteration tree, f; needs to be added in order to minimize the objective function:

20— Zz (428770 + £ 60)) +2(£0) @9

The f; that is chosen greedily is the one that most improves the model based on the minimiza-
tion of the objective function 23. Second-order Taylor approximation is applied to speed up the
optimization of the objective (Chen and Guestrin (2016)):

n

1

L0y [z (56 570) - gufe () + ghf? (xi)} Q) (25)
i=1

where g; and h; are the first and second order gradients of the loss function with respect to §(¢t=1.

By removing the constant terms and by expanding 2 from equation 23, the equation 25 can be

rewritten:
n

T
L£O) — Z {gift (%) + %hsz (Xl)} +T + %)\ijz

i=1 j=1
(26)
1
:Z Zgi wj+§ Zhi—l—)\ w?| +4T
j=1 | \écl; i€l

This is a second order formula of w; which has its minimum value at (Chen and Guestrin (2016)):

Yier, Yi
W= ——2" (27)
’ Dier; hi+ A

where I; = {i|q(x;) = j} the instance set of leaf j for the specific tree structure g. The corresponding

optimal value of the objective function is (Chen and Guestrin (2016)):

2
(ugz)
£ =—*Z =L T (28)
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2.5 Neural Networks

Neural networks have become a powerful and adaptable family of machine learning algorithms that
are capable of tackling challenging issues in a variety of fields, including speech recognition, image
recognition, natural language processing, and game playing. The Multi Layer Perceptron (MLP),
a feedforward neural network with several hidden layers, is one common form of neural network
design (Mehrotra et al. (1999)).

Neural networks, such as Multi Layer Perceptrons (MLPs), work by simulating the structure and
operation of the human brain in order to analyze information and generate predictions. Neural
networks are made up of connected nodes or neurons that are arranged in layers. Weights are used
to represent the connections between neurons and are learnt from training data throughout the
training phase. Each neuron in a neural network receives inputs, applies an activation function,

and produces an output that is sent to the next layer (Graupe (2013)).

An input layer, one or more hidden layers, and an output layer are the three components of
MLPs which is a feedforward neural network. In the hidden and output layers, each neuron calcu-
lates the weighted total of its inputs, applies an activation function, and generates an output that
is sent to the next layer. By introducing non-linearity, the activation function enables MLPs to

describe non-linear interactions between input and output data (Graupe (2013)).

MLP training typically consists of two main steps: the forward pass, which propagates input
data through the network to compute predicted output, and the backward pass (also known as
backpropagation), which computes the gradients of the loss function with respect to the weights
and biases and uses them to update the weights and biases in order to reduce prediction error.
Up until the model converges to a desirable extent of accuracy, this procedure is done repeatedly
(Graupe (2013)).

MLPs provide a number of benefits, including the capacity to learn complex patterns from mas-
sive volumes of data, the ability to approximate any continuous function, and the adaptability in
processing a broad range of data formats. They have been extensively employed in many different
applications, including financial forecasting, natural language processing, picture and audio recog-

nition, and recommendation systems (Graupe (2013)).

MLPs do, however, have certain drawbacks, such as their susceptibility to overfitting, the require-
ment for a substantial quantity of training data, and the lack of interpretability of their predictions.
Nevertheless, MLPs may be extremely successful in achieving state-of-the-art performance with the

right tuning, regularization strategies, and careful consideration of model design (Graupe (2013)).

It is very important to distinguish the different steps that are included in the training of the
MLPs. Backpropagation algorithm constitutes an effective training algorithm of the weights of the

neural network and it will be presented in the next steps. Some useful notation is:
1. X represents the input data.
2. Y represents the target output.
3. WO represents the weight matrix for layer I.

4. b represents the bias vector for layer [.

22



5. o(z) represents the activation function, where z is the input to the function.

Here are the steps involved in training an MLP with logarithmic loss and backpropagation (Good-
fellow et al. (2018)):

1. Initialize the weights and biases for all the layers. For a network with L layers, the following
parameters should be initialized:
wm o wE)

SR SR
2. Compute the output of the network for a given input X using forward propagation. For each
layer [:

a) Compute the pre-activation values: z() = W® (=1 4 )
(a) p p

(b) Compute the activation values: a¥ = o(2()) where a(® = X and o the activation

function.

3. Compute the loss function for the predicted output and the actual output using the logarith-

mic loss function:

T,9) =~ > lyiToa(di) + (1~ i) los(1 — 5] (29)

i=1

where n is the number of training examples, y; is the true label for the i-th training example,

and ¢; is the predicted label for the i-th training example.

4. Compute the error in the output layer:
0" = J(g,y)

where g is the predicted output and y is the true output.

5. Compute the error for the previous layers using backpropagation. For each layer [, compute
the error:
6(l) _ (W(l+1))T5(l+1) o O'/(Z(l)) (30)

where ® denotes element-wise multiplication and ¢’(2(")) is the derivative of the activation

function o(z().
6. Compute the gradients for the weights and biases for each layer. For each layer [:

(a) Compute the weight gradient: Vi, J(y, ) = 60 (al=)T
(b) Compute the bias gradient: V) J(y,§) = 6®

7. Update the weights and biases for each layer using gradient descent:

(a) Update the weights: W) = WO —aV o) J(y,9)
(b) Update the biases: b) = b) — V) J(y,7)

where « is the learning rate.

8. Repeat steps
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2.6 Metrics and Statistics

Metrics are very informative tools for evaluating the performance of a machine learning model.
By using different metrics, the model becomes easier to interpret and evaluate, as insights such
as patterns or anomalies in different classes become more apparent. Measuring key performance
metrics such as accuracy, precision, recall and specificity, and calculating the corresponding con-

fusion matrix, the model’s parameters can be tuned, and the best models can eventually be selected.

The Confusion Matrix indicates the number of correct and incorrect predictions for each class.
In particular, each row corresponds to the class predicted by the model and each column to the
actual class. Therefore, each element of the matrix indicates the number of predictions made by
the model for the class of that particular row while the observation belongs to the class of that
particular column. In this way, the following items (Larose and Larose (2015)) can be calculated

for each class:

1. True Positive (TP): These are the cases where the model correctly predicts the positive class.

In other words, the model predicts a positive outcome, and the actual outcome is also positive.

2. True Negative (TN): These are the cases where the model correctly predicts the negative
class. In other words, the model predicts a negative outcome, and the actual outcome is also

negative.

3. False Positive (FP): These are the cases where the model predicts a positive outcome, but
the actual outcome is negative. In other words, the model incorrectly predicts a positive

outcome.

4. False Negative (FN): These are the cases where the model predicts a negative outcome, but
the actual outcome is positive. In other words, the model incorrectly predicts a negative

outcome.

Based on this elements, the following metrics are computed for each class, which the higher they

are, the more efficient the model is evaluated (Larose and Larose (2015)):

1. Accuracy is the proportion of all correctly classified instances (both positive and negative)

out of the total number of instances.

TP+TN
TP+TN+FP+FN

Accuracy = (31)
2. Precision is the proportion of true positives out of all predicted positive instances. It measures

how precise the model is when it predicts a positive outcome.

TP
Precision = ———— 32
TP+ FP (32)
3. Sensitivity (also known as recall or true positive rate) is the proportion of true positives out of

all actual positive instances. It measures how well the model can identify positive instances.

TP

TP+ FN (33)

Sensitivity =
4. Specificity (also known as true negative rate) is the proportion of true negatives out of all

actual negative instances. It measures how well the model can identify negative instances.

TN

—_— 4
TN+ FP (34)

Speci ficity =
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The Youden index, also known as the Youden’s J statistic, is a performance metric that combines
the sensitivity and specificity of a machine learning model into a single value (Schisterman and
Perkins (2007)). The Youden index ranges from 0 to 1, with higher values indicating better
performance. The importance of the Youden index is that it provides a useful summary of the
overall performance of a model in identifying both positive and negative instances. The Youden

index is calculated as follows:

TP N TN )
" TP+FN TN+ FP

J = Sensitivity + Specificity — 1 (35)
The Youden index can be used to determine the optimal cut-off point for a binary classification
model. The cut-off point is the threshold probability value above which an instance is classified
as positive, and below which it is classified as negative (Schisterman and Perkins (2007)). The
optimal cut-off point is the one that maximizes the Youden index, which corresponds to the point

on the ROC curve where sensitivity and specificity are balanced.
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2.7 Handling imbalance

2.7.1 Random Oversampling and Undersampling

Random Oversampling is a data augmentation technique that is commonly used to handle class
imbalance problems in machine learning. In this technique, samples from the minority class are
randomly duplicated to create an equal number of samples for both the minority and majority
classes, as it is visualized in figure 6. This technique is easy to implement and does not require sig-
nificant computational power. However, random oversampling has its limitations, the most severe
being overfitting on the training data, as the model sees the same examples multiple times during
training. Moreover, it may not provide a significant improvement in the model’s performance,
particularly when dealing with highly imbalanced data. Nonetheless, it is a promising starting
point to address class imbalance, and it can be combined with other techniques to enhance the

model’s performance (Ganganwar (2012)).

Random undersampling is a popular data reduction technique commonly used to handle imbalance
problems that often arise during the training of machine learning algorithms. In this method, sam-
ples from the majority class are removed from the training set to achieve a balanced distribution
of samples between the two classes. Random undersampling is easy to implement and computa-
tionally inexpensive, but it can lead to a loss of useful information, especially if the majority class
contains informative samples. Therefore, it is crucial to carefully select the appropriate ratio of
minority and majority samples for undersampling to ensure that the model’s performance is not

adversely affected (Ganganwar (2012)).

Undersampling Oversampling

Adding samples |
to minority class /

Removing samples
)\ _from majority class

Orignial DataSet Original DataSet

Figure 6: Random Oversampling and Undersampling techniques (R. Mohammed et al. (2020))

2.7.2 SMOTE

Synthetic Minority Over-sampling Technique or SMOTE is an oversampling approach where the
minority class is oversampled using synthetic observations and not by simple oversampling with
replacement (Chawla et al. (2002)). The idea for this approach came from a successful technique in
handwritten character recognition. Instead of using application-specific features, such as rotation
and warping, synthetic samples were generated in feature space. In oversampling the minority
class, synthetic examples are introduced along the line segments that join any or all of the k
nearest neighbors. Each instance of the minority class is taken for this purpose. Depending on the

amount of oversampling required, five nearest neighbors are currently used in the implementation,
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from which the neighbors are randomly selected. The visualization of this procedure is presented

in figure 7.

Majority class samples

@ Minority class samples

@ Synthetic samples

Figure 7: Smote visualization (Rida (2019))

The synthetic examples are generated by taking the difference between the feature vector (sample)
under consideration and its nearest neighbor, multiplying this difference by a random number
between 0 and 1, and then adding it to the feature vector. This creates a random point along the
line segment between two specific features, making the decision area of the minority class more
general (Chawla et al. (2002)). This approach effectively eliminates the bias in the model caused
by class imbalance, resulting in better model performance.The algorithm 1 shows the step-by-step

procedure that is implemented to balance the minority class with the majority class.

Algorithm 1 SMOTE Algorithm (Chawla et al. (2002))

1: Initialize the synthetic sample set S to be empty.
2: For each minority sample x; in the dataset, find its k£ nearest neighbors.

N; = find_k_nearest _neighbors(x;, k)

3: For each minority sample x;, select n samples from its k nearest neighbors and generate n
synthetic samples between x; and each of the n selected neighbors. The synthetic sample is
created as follows:

Tinew = Li + )\(xnn - xz) S =Su Tinew

where x,,, is one of the n nearest neighbors of x;, A is a random number between 0 and 1,
and ; neq is the newly generated synthetic sample.
4: If the desired balance between classes is achieved or if the maximum number of iterations is
reached, terminate the algorithm. Otherwise, go to step 2.
.. |minority class|

— > desired balance or max iterations reached: return
|majority class|
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2.7.3 ADASYN

The key idea of the Adaptive synthetic sampling or ADASYN algorithm is to utilize a density

distribution #; as a criterion to automatically determine the number of synthetic samples that

should be generated for each minority data instance. 7; is a measure of the distribution of weights

for different minority class instances based on their level of difficulty in learning. The resulting

dataset after applying ADASYN not only provides a balanced representation of the data distribu-

tion, according to the desired balance level defined by the g coefficient, but also forces the learning

algorithm to focus on those instances that are difficult to learn. This is a significant difference

from the SMOTE algorithm, where the same number of synthetic samples are generated for each
minority data instance (He et al. (2008)).

Algorithm 2 ADASYN Algorithm (He et al. (2008))

1:

Initialize the synthetic sample set S to be empty.

2: Compute the density distribution function g(x) for each sample = in the minority class.
3: Compute the relative importance of each sample x based on its density distribution g(x) as:

g(z)
Zm’GXmm g(xl)

Compute the number of synthetic samples to generate for each minority sample z; as:

Wy =

Gi = Lwi X NmajJ

where Nyq; is the number of samples in the majority class.
For each minority sample x;, select GG; samples from its k nearest neighbors and generate G;
synthetic samples between x; and each of the G; selected neighbors. The synthetic sample is
created as follows:

Tinew = Lq + )\(mnn - xz) S =Su Tinew

where x,,, is one of the G; nearest neighbors of z;, A is a random number between 0 and 1,
and Z; pew is the newly generated synthetic sample.

Combine the original minority class and the synthetic samples to form the new minority
class.
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3 Application

3.1 Exploratory Analysis

In this study, the Breast Cancer Wisconsin (Diagnostic) Data Set will be examined in order to
utilize and evaluate different machine learning algorithms. With 569 observations and 30 features,
this dataset presents a rich and vast source of information that will be thoroughly investigated
using a diverse range of techniques and visualizations to uncover hidden trends and relationships
that may not be readily apparent. As it is presented in figure 8, the features are related to the
image of the benign or malignant tumor cells. The primary objective of this analysis is to determine
the basic statistics of these features such as mean values and standard deviations, first and third
quantiles and extreme values to gain deeper insights into the underlying characteristics of the data

that are inherent to breast cancer tumors.

Figure 8: Images of benign and malignant tumor cells (Mohammad et al. (2022))

In the forthcoming analysis, ten out of thirty features will be chosen for examination. These fea-
tures are represented by the mean values of various characteristics exhibited by cancerous tumors.
All variables are numeric, and there are no missing values. The dataset was partitioned into two
distinct subsets, namely the training set and the test set, in accordance with a predetermined ratio
of 0.8 to 0.2, respectively. The specific variables concerning the cancerous tumors for the train set

that are identified for the analysis, are as follows:

1. Radius

The variable radius_mean exhibits a distribution with a mean value of 14.127 and a standard
deviation of 3.524. The distributions of this variable for each class do not significantly overlap,
suggesting that it can be considered a reliable indicator for discriminating between the two classes.
The first quartile of the data accumulates at a value of 11.7, while the third quartile accumulates

at a value of 15.7.

29


https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

Density per M/ B

020
on
o
. o
2 oos
8 010
o0s
oot
008
o2
000 000
; T ® £ %

15 B B3 EY

5
radius_mean radius_mean

in

’

!

W []
Class Class

Average radius_mean
radius_mean

Figure 9: Top left: Distribution of the variable radius _mean, Top right: Distribution of the vari-
able radius_mean per class, Bottom left: Average value per class for the variable radius_mean,
Bottom right: boxplots per class for variable radius_mean

2. Area

The variable areamean has a distribution with a mean value of 654.88 and a standard deviation
of 351.91 that characterizes it. This variable may be a reliable indicator for differentiating between
the two classes because the distributions for each class show little overlap. The data accumulates
at a value of 420.3 for the first quartile and 782.7 for the third quartile.
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Figure 10: Top left: Distribution of the variable area mean, Top right: Distribution of the vari-
able area__mean per class, Bottom left: Average value per class for the variable area_mean, Bot-
tom right: boxplots per class for variable area mean

3. Compactness

The variable compactness _mean displays a distribution with a mean of 0.104 and a standard devi-
ation of 0.053. The distributions of this variable for each class show mediocre overlap, suggesting
that it might not be a reliable indicator for distinguishing between the two classes. The first quar-
tile of the data concentrates at a value of 0.065, while the third quartile concentrates at a value of
0.130.
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Figure 11: Top left: Distribution of the variable compactness mean, Top right: Distribution of
the variable compactness _mean per class, Bottom left: Average value per class for the variable
compactness _mean, Bottom right: boxplots per class for variable compactness mean

4. Concave points

The variable concave points mean exhibits a distribution characterized by a mean value of 0.049
and a standard deviation of 0.039. This distribution suggests that concave points mean may
serve as a dependable indicator for distinguishing between the two classes, as there is minimal
overlap in the distributions for each class. The first quartile of the data concentrates at a value of

0.02, while the third quartile concentrates at a value of 0.074.
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Figure 12: Top left: Distribution of the variable concave points mean, Top right: Distri-
bution of the variable concave points _mean per class, Bottom left: Average value per class
for the variable concave points mean, Bottom right: boxplots per class for variable con-
cave points_mean

5. Concavity

The variable concavity mean demonstrates a distribution characterized by an average value of
0.089 and a standard deviation of 0.079. The distributions per class suggest that concavity mean
may be a reliable indicator for distinguishing between the two classes, as there is minimal overlap
between them. The first quartile of the data is accumulated by the value of 0.029, while the third

quartile is centered around a value of 0.131.
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Figure 13: Top left: Distribution of the variable concavity mean, Top right: Distribution of the
variable concavity mean per class, Bottom left: Average value per class for the variable concav-
ity _mean, Bottom right: boxplots per class for variable concavity mean

6. Fractal Dimension

The distribution for the variable fractal dimension mean has a mean of 0.063 and a standard
deviation of 0.007. Significant overlap between the distributions of this variable for each class
indicates that it might not be a valid indicator for differentiating between the two classes. The

data’s first quartile is concentrated at 0.058, while the third quartile is concentrated at 0.066.
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Figure 14: Top left: Distribution of the variable fractal dimension mean, Top right: Distribu-
tion of the variable fractal dimension mean per class, Bottom left: Average value per class for
the variable fractal dimension mean, Bottom right: boxplots per class for variable fractal di-
mension __mean

7. Perimeter

The variable perimeter mean demonstrates a distribution with a mean value of 91.96 and a stan-
dard deviation of 24.29. The distributions per class suggest that perimeter mean may be a reliable
indicator for distinguishing between the two classes, as there is minimal overlap between them. The
first quartile of the data is accumulated by the value of 75.17, while the third quartile is centered

around a value of 104.1.
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Figure 15: Top left: Distribution of the variable perimeter mean, Top right: Distribution of the
variable perimeter mean per class, Bottom left: Average value per class for the variable perime-
ter _mean, Bottom right: boxplots per class for variable perimeter mean

8.Smoothness
The distribution for the variable fractal dimension mean has a mean of 0.096 and a standard

deviation of 0.014. Significant overlap between the distributions of this variable for each class
indicates that it might not be a valid indicator for differentiating between the two classes. The

data’s first quartile is concentrated at 0.086, while the third quartile is concentrated at 0.105.
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Figure 16: Top left: Distribution of the variable smoothness mean, Top right: Distribution of
the variable smoothness mean per class, Bottom left: Average value per class for the variable
smoothness mean, Bottom right: boxplots per class for variable smoothness mean

9. Symmetry
The mean and standard deviation of the distribution for the variable symmetry mean are 0.181

and 0.027, respectively. This variable’s distributions for the two groups significantly overlap, which
suggests that it might not be a reliable indicator for discriminating between the two classes. The

first and third quartiles of the data are concentrated at 0.161 and 0.196, respectively.
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Figure 17: Top left: Distribution of the variable symmetry mean, Top right: Distribution of the
variable symmetry mean per class, Bottom left: Average value per class for the variable symme-
try _mean, Bottom right: boxplots per class for variable symmetry mean

10. Texture

For the variable texture mean, the distribution’s mean and standard deviation are, respectively,
19.28 and 4.3. The distributions of this variable for the two groups greatly overlap, which raises
the possibility that it may not be an accurate marker for differentiating between the two classes.

The data are concentrated in the first and third quartiles at 16.17 and 18.84, respectively.
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Figure 18: Top left: Distribution of the variable texture mean, Top right: Distribution of the
variable texture mean per class, Bottom left: Average value per class for the variable tex-
ture_mean, Bottom right: boxplots per class for variable texture mean
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In Figure 19, the countplot displays the distribution of the target variable in the dataset, revealing
that the negative class (benign tumors) comprises a significant majority, accounting for 62.74% of
the samples, while the positive class (malignant tumors) represents a smaller proportion of 37.26%.
The heights of the bars on the countplot depict the frequency of occurrences for each class, with
the vertical axis indicating the counts and the horizontal axis denoting the class labels. It can be
observed that the negative class dominates the dataset, surpassing the positive class. The countplot
provides a visual representation of this class imbalance, which should be taken into consideration
during model development and evaluation to account for potential biases and ensure optimal model

performance.

Target Variable Distribution (positive class = "Malignant")

count

Positive class (37.26%) Negative class (62.74%)

class

Figure 19: Target Variable Distribution
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3.2 Methodology

One of the most common and deadly diseases is cancer that affects millions of individuals globally.
Cancer detection and treatment have advanced significantly thanks to medical research, but the
subject is still complicated and challenging and calls for ongoing improvements in methodology and
technology. Machine learning algorithms have recently shown considerable potential in the field of
medical research, particularly in the analysis of vast amounts of data for the diagnosis of malignant
tumors. However, the quality and balance of the training data have a significant impact on how
well these algorithms perform. Machine learning algorithms may perform poorly in unbalanced
datasets where one type of tumor predominates over the other, leading to biased models that do
not identify the minority class (Mohammad et al. (2022)).

In medical research on cancer tumors, handling unbalanced datasets is crucial to ensuring that the
models produce accurate and trustworthy predictions. Missed diagnosis, postponed treatments,
and more severe mortality rates could result from biased algorithms that are unable to identify
the minority class. Falsely positive tests may also result in therapies that are not essential and
may cause patients’ adverse side effects and psychological discomfort. Hence, researchers should
develop effective strategies for handling unbalanced datasets and improve the efficiency of machine
learning algorithms in cancer tumor detection. Resampling, ensemble learning, and cost-sensitive
learning are examples of specialized techniques that can be used to reduce the effects of unbal-
anced datasets and provide objective and precise predictions for medical diagnosis and treatment
(Mohammad et al. (2022)).

Random undersampling, random oversampling, SMOTE (Synthetic Minority Over-sampling Tech-
nique), and ADASYN (Adaptive Synthetic Sampling) are techniques used to handle imbalanced

datasets in machine learning algorithms.

3.2.1 Cancer Tumor Classification Problem

The Wisconsin Breast Cancer Dataset (WBCD) has been widely used for classification studies
due to its characteristics, which include a relatively small number of input variables and binary
classification. In this study, a classification problem on the BCW dataset will be tackled using
several machine learning algorithms, namely Lasso Logistic Regression, Decision Trees, Random
Forests, XGBoost, and Multilayer Perceptrons (MLP).

Lasso Logistic Regression is a variant of Logistic Regression that uses L1 regularization to prevent
overfitting and improve the model’s interpretability. It is useful for datasets with many features,
as it can automatically perform feature selection by reducing the coefficients of irrelevant variables
to zero. Decision Trees, on the other hand, are simple and powerful models that can capture
nonlinear relationships between variables. Random Forests are an extension of Decision Trees that

use multiple trees and bagging to reduce overfitting and improve the model’s generalizability.

XGBoost is a gradient boosting algorithm that has achieved state-of-the-art performance in vari-
ous machine learning competitions. It uses an ensemble of decision trees and gradient descent to
minimize the loss function, resulting in a highly accurate and interpretable model. Finally, MLPs
are a type of artificial feedforward neural network that can learn complex relationships between
variables. They consist of multiple layers of interconnected neurons that can capture nonlinearities

and interactions in the data.
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In this study, the performance of these algorithms will be compared in terms of accuracy, pre-
cision, recall, area under the ROC curve. Furthermore, sampling techniques such as Random
OverSampling, SMOTE and ADASYN will be applied in tree based algorithms namely Decision
Trees, Random Forests and XGBoost. The BCW dataset is preprocessed to standardize the in-
put variables. Gridsearch will be used to tune the hyperparameters of each algorithm and avoid
overfitting. The results will be analyzed to determine which algorithm performs best and provide

insights into the factors that influence breast cancer diagnosis.

3.2.2 Experiment Design and Architecture

In this study, five different classifiers will be examined to classify observations of cancer tumors as
either benign or malignant. Each classifier will be assessed based on its own parameters, and their
results will be compared in terms of accuracy, precision, and recall. Tree-based methods will use
sampling techniques to handle the imbalance problem, and the models will be evaluated based on
the area under the ROC curve. The implementation of Lasso Logistic Regression is based on the
glmnet package in R, while the Multilayer Perceptron and tree-based methods are implemented in

Python using the PyTorch and scikit-learn libraries.

Lasso Logistic Regression

Lasso Logistic Regression will be performed using the cv.glmnet function of glmnet package in R.
glmnet is a package that uses penalized maximum likelihood to fit generalized linear models. For
the regularization parameter lambda, the regularization route is calculated for the lasso or elastic
net penalty at a grid of values (on the log scale). The algorithm is very quick and takes use of the

input matrix’s sparsity. glmnet solves the problem:
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over a grid of values of A covering a wide range of possible solutions. f is a vector of model co-
efficients, A is the regularization parameter, and « controls the weighting between the Lasso (L1)
and Ridge (L2) penalties in the Elastic Net regularization. In this study, the goal is to perform
feature selection, and hence, the Lasso penalty will be utilized by setting the parameter « to 1.
The cv.glmnet function uses k-fold cross-validation to evaluate the model on different values of
A. Two values along the A\ sequence are of major importance, as well as their corresponding (8
coefficients. These values are Ay, which returns the minimum mean cross-validated error, while
A1se 18 the value of A that gives the most regularized model, such that the cross-validation error is

within one standard error of the minimum value.

Due to the high imbalance of the data, it is important to determine the proper cut-off point
for the probability of the class threshold. This can be calculated using the coords function from
the pROC R package. The associated metrics will be evaluated for both thresholds: the default
threshold, which is 0.5, and the best threshold determined using the Youden’s statistic.

Multi Layer Perceptron

In this study, Multi Layer Perceptron will be used to implement a feedforwrd architecture of neural

networks. The input layer will consist of 10 neurons, which corresponds to the number of variables
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to be analyzed. The hidden layer will contain 8 neurons that are fully connected with the input
neurons. The output layer will have 2 neurons since it needs to predict two classes for the binary
classification problem. The learning rate of the gradient descent algorithm is set to 10~2 and the

loss function applied to the logits of the output layer is the Cross Entropy Loss Function:

N
£(vy) = =5 2 lslog(d) + (1 — ) og(1 — 51 (37)

Here, ¢ is the predicted probability vector, y is the true label vector, and N is the number of
samples. Furthermore, due to the imbalance of the dataset, it is necessary to calculate the proper
cut-off threshold based on the Youden’s index.

Tree Based Methods with sampling techniques

The imbalance of the dataset forces the analysis to move towards sampling techniques in order to
produce models that are not biased on the majority class. Three classifiers will be examined using
sampling techniques: Decision Trees, Random Forests, and XGBoost. Their performance will be
compared to the same classifiers without sampling. Moreover, Youden’s index will be calculated
in order determine the best cut-off point to balance between sensitivity and specificity. To achieve
the best possible prediction performance, GridSearch will be applied to each classifier. These clas-
sifiers are from the scikit learn Python library, and the parameters to be examined come from their

respective classes in the library. The tables 2, 3 and 4 summarize the grid of parameters for each

classifier.
Parameter Values Description
criterion gini, entropy Splitting criterion
min_samples leaf 25, 50, 100 | Minimum number of samples required to be at a leaf node
min _impurity decrease | 0.0, 0.05, 0.1 Minimum impurity decrease required for a split
Table 2: GridSearch Parameters for Decision Tree
Parameter Values Description
n_estimators 50, 100, 200 Number of trees in the forest
max_ depth 3,4,5,6 Maximum depth of the tree
min_samples leaf | 10, 20, 30 | Minimum number of samples required to be at a leaf node

Table 3: GridSearch Parameters for Random Forest

Parameter Values Description
n_estimators | 50, 100, 200 Number of boosting trees
max__depth 3,4,5,6 Maximum depth of each tree
learning rate 0.1, 0.01 Learning rate for the boosting process

Table 4: GridSearch Parameters for XGBoost
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3.3 Results
3.3.1 Logistic Regression

Lasso Logistic Regression is implemented using the function cv.glmnet from glmnet package in R.
This technique acts like a feature selection method because some of the coefficients are pushed
towards zero. The cv.glmnet function is used to perform cross-validation for a range of lambda
values in the context of fitting a generalized linear model. When cv.glmnet runs for a logistic re-
gression model with a binary response variable, the function returns a plot of the cross-validation

error versus the log of the lambda sequence.

The plot, as it is presented in figure 20, shows how the cross-validation error changes as the penalty
parameter lambda is varied. The x-axis of the plot represents the log of the lambda sequence, and
the y-axis represents the cross-validation error for misclassification, which is a measure of how well
the model predicts new data that was not used in fitting the model. The plot indicates two specific
values of lambda regularization parameter that are important for the model implementation. These
values along the A sequence are of major importance, as well as their corresponding 8 coefficients.
These values are Ay, which returns the minimum mean cross-validation error, while ¢ is the
value of A\ that gives the most regularized model, such that the cross-validation error is within one
standard error of the minimum value. For this dataset, Api, = 0.00827531 and A1 = 0.03340757.
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Figure 20: Cross Validation lambda sequence
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The corresponding 3 coefficients for A, and Aqg are presented in Table 5. In general, the lambda
value with the minimum cross-validation error (Ap,) will provide the model with the best predictive
performance. However, this lambda value may result in a model that is too complex and overfits the
training data. The lambda value with the largest lambda within one standard error of the minimum
(A1se) can be used to obtain a simpler model that has slightly worse predictive performance, but
may generalize better to new data. The idea behind using A1 is that it is less likely to overfit the
training data compared to Ay, As can be observed from Table 5, seven out of the eleven coefficients
of the A1z model are set to zero. As a result, a simpler model than the one corresponding to Apin

is found with cv.glmnet. Therefore, predictions will be made using the simpler model of Aq.

Variables AMse Amin
intercept -0.577 | -0.579
radius mean 0.979 | 1.826
texture mean 0.532 | 1.135
perimeter mean 0 0
area_ mean 0 0.335

smoothness mean 0.427
compactness mean 0
concavity mean 0

0

0

0
concave.points mean 2.018 | 2.353

0

0

symmetry mean 0.189
fractal.dimension mean 0

Table 5: 3 coefficients for Ay, and Aqg for Lasso Logistic Regression optimization problem

In order to calculate the prediction metrics on the test set, the dataset’s imbalance must be taken
into account. Youden index will be calculated for different cut-off points to determine the one that
maximizes this statistic. The maximization of Youden index indicates the balance between the
true positive rate and true negative rate, and therefore optimizes the model’s resolution between
the two discreet classes. For this specific dataset, Youden index is maximized at a cut-off point of
0.2523426 for the positive class. This means that if an observation corresponds to a probability

beyond this threshold, it will be classified as a malignant tumor.

The test set used to evaluate the model has high performance metrics, with an area under the
receiver operating characteristic curve (AUC) of 0.99. This means that the predictive power of
the model is very high using different cut-off point probabilities. The model also achieves high
recall of 0.875, indicating that it can accurately identify the majority of positive cases. Moreover,
the precision metric of 1.00 suggests that when the model predicts a positive case, it is almost
always correct. The model also has a high accuracy score of 0.921, which indicates that it is able
to correctly classify the majority of both positive and negative cases. Overall, the performance
metrics of the model on the test set suggest that it is highly effective in accurately identifying

positive cases while maintaining a low rate of false positives.
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Figure 21: Reciever Operator Curve for Lasso Logistic Regression
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3.3.2 Multi Layer Perceptron

The multilayer perceptron is trained for 50 epochs and the training and test loss in each epoch is

visualized in figure 22. As it is presented in this figure, the main conclusions that are arisen are:

1. The model is overfitting after the twentieth epoch: Overfitting occurs when a model
becomes too complex and starts to memorize the training data instead of learning generaliz-
able patterns. As a result, the model’s performance on new, unseen data (testing data) starts
to degrade. If the training loss is consistently lower than the testing loss after the twentieth
epoch, it suggests that the model is well-regularized and has learned generalizable patterns
during the initial training epochs. However, after the twentieth epoch, the model starts to

overfit to the training data, leading to a higher testing loss.

2. The model may benefit from early stopping: Early stopping is a regularization tech-
nique that stops the training process when the performance on the validation set starts to
degrade. If the model is overfitting after the twentieth epoch, it suggests that the training
process could benefit from early stopping to prevent the model from memorizing the training

data and to improve its generalization performance.

3. The model may benefit from more regularization: If the training loss is consistently
higher than the testing loss during the first twenty epochs and lower after the twentieth
epoch, it suggests that the model is not fully capturing the underlying patterns in the data
and is overfitting to the training set. In this case, adding more regularization techniques
such as dropout, weight decay, or early stopping may help the model generalize better to
unseen data. Increasing the amount of regularization can help the model learn more robust
and generalized features by reducing the model’s sensitivity to the specific examples in the

training data.

Loss vs epochs
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Figure 22: Training and Testing loss for the multilayer perceptron
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Youden’s index must be calculated for this specific dataset due to its inherent imbalance. The
cut-off point that balances the true positive rate and the true negative rate, and maximizes the
Youden’s index statistic, is determined to be 0.546. This means that if an observation corresponds

to a probability beyond this threshold, it will be classified as a malignant tumor.

The testing set used to evaluate the performance of a multilayer perceptron (MLP) model has
yielded impressive results. The area under the receiver operating characteristic curve (AUC) is
0.987, indicating that the model’s ability to distinguish between positive and negative classes is
excellent. The recall score of 0.95 suggests that the model can correctly identify 95% of the actual
positive cases in the test set. The precision score of 0.93 indicates that the model is precise in its
predictions, as it correctly identifies 93% of the positive predictions. Finally, the accuracy score of
0.96 shows that the model is able to make correct predictions for 96% of the total cases in the test
set. These metrics indicate that the MLP model has performed well on the testing set and can be

considered as a reliable predictor for the specific task.

The confusion matrix visualized in Figure 23 depicts the overall performance of the MLP model.
A True Positive rate of 0.95 suggests that the model has a high predictive power for positive out-
comes, as does the True Negative rate of 0.96 for negative outcomes. However, the False Positive
rate of 0.042 indicates that around 4% of positive predictions are falsely classified as malignant
tumors, when they are actually benign. Similarly, the False Negative rate of 0.048 suggests that
around 4.8% of negative predictions are falsely classified as benign tumors, when they are actually

malignant.

r0.8

True label

0.2

Predicted label

Figure 23: Confusion Matrix on the test set for multilayer perceptron
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3.3.3 Tree based methods with sampling techniques

Decision Trees

In the field of machine learning and data analysis, decision tree models are widely used for clas-
sification tasks. Decision trees provide a transparent and interpretable framework for making
predictions based on a set of rules derived from the training data. They partition the feature space
into regions that correspond to different class labels, allowing for accurate classification of new

instances.

However, when dealing with imbalanced datasets, where one class significantly outnumbers the
other, decision tree models can face challenges in accurately representing and classifying the mi-
nority class. In the context of classifying benign and malignant tumors, the presence of class
imbalance poses a significant problem. The minority class (malignant tumors) may be underrep-

resented, leading to biased predictions and reduced performance.

To address this issue, various sampling techniques have been developed to rebalance the class dis-
tribution and improve the performance of decision tree models. Random Oversampling, Random
Undersampling, SMOTE (Synthetic Minority Over-sampling Technique), and ADASYN (Adaptive
Synthetic Sampling) are among the commonly used sampling techniques. For each sampling tech-
nique, a Gridsearch is performed to find the optimal parameters that maximize the Area under
the ROC Curve. The results on the test set for decision trees with the corresponding sampling

techniques are presented in Table 6.

Sampling Technique | Cut-off | Accuracy | AUC | Recall | Precision
SMOTE 0.30 0.868 0.886 | 0.952 0.944
Random Oversampling 0.55 0.903 0.909 0.927 0.830
Random Undersampling 0.64 0.903 0.904 | 0.905 0.844
ADASYN 0.78 0.903 0.909 | 0.929 0.830
No Sampling 0.42 0.903 0.904 | 0.904 0.844

Table 6: Decision Tree evaluation metrics on the test set

The summarization of these results is presented below:

1. SMOTE: This technique achieved an accuracy of 0.868 and an AUC of 0.886. It performed
well in terms of recall with a score of 0.952, indicating its ability to correctly identify positive
cases. The precision score of 0.944 also suggests a low rate of false positives. Overall, SMOTE

showed a balanced performance in terms of accuracy, AUC, recall, and precision.

2. Random Oversampling: With an accuracy of 0.903 and an AUC of 0.909, this technique
improved upon the performance of SMOTE. It achieved a good recall score of 0.927, indicating
its ability to correctly identify positive cases. However, the precision score of 0.830 suggests

a higher rate of false positives compared to SMOTE.

3. Random Undersampling: This technique also achieved an accuracy of 0.903, similar to Ran-
dom Oversampling. It had a slightly lower AUC of 0.904 but maintained a good recall score
of 0.905. The precision score of 0.844 indicates a relatively low rate of false positives. Ran-
dom Undersampling provided a balanced performance in terms of accuracy, AUC, recall, and

precision.
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4. ADASYN: Similar to Random Oversampling, ADASYN achieved an accuracy of 0.903 and
an AUC of 0.909. It showed a good recall score of 0.929, indicating its ability to correctly
identify positive cases. However, the precision score of 0.830 suggests a higher rate of false

positives compared to other techniques.

5. No Sampling: The decision tree without sampling achieved the same accuracy as Random
Undersampling and ADASYN. The AUC score of this technique reached the level of 0.904. It
had a precision score of 0.844, similar to Random Undersampling. This technique provided

a balanced performance with respect to accuracy, AUC, recall, and precision.

Based on the above analysis, the best model in terms of overall performance, particularly based
on the AUC score, is the decision tree with ADASYN. This specific model will be compared to
the biased no-sampling model based on the importance of the features, the ROC curves, and the
confusion matrices. Figures 24 and 25 show the difference in the importance of the features in each

classifier with the corresponding sampler.

The importance of a feature is computed as the (normalized) total reduction of the criterion
brought by that feature. As shown below, six out of ten features are participating in the creation
of the decision tree rules, particularly in the classifier with the ADASYN sampler. The most impor-
tant feature is the concave.points mean and the less important one but with contribution to the
total reduction of the criterion is the concavity. The biased model with no sampling is constructed
with even fewer features, specifically four out of ten. The decision rules of this classifier consists

of concave.points _mean, perimeter mean, texture _mean and compactness_mean.

Feature Importances of Decision Tree & ADASYN
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Figure 24: Feature Importance for Decision Tree and ADASYN
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Feature Importances of Decision Tree
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Figure 25: Feature Importance for Decision Tree and no sampling

The performance of classification models is often evaluated using the Receiver Operating Char-
acteristic (ROC) curve. The ROC curve demonstrates its effectiveness in differentiating between
benign and malignant tumors in the setting of the model using ADASYN sampling approach, as it
is visualized in Figure 26. The decision tree with ADASYN model exhibits strong discriminatory
power with an AUC of 0.909, suggesting its capacity to precisely categorize examples from both
groups. By maximizing the Youden’s index, the 0.78 cut-off point was set to further improve the
model’s performance by balancing the trade-off between true positive rate and false positive rate.
This indicates that the model may provide a high true positive rate while maintaining a reasonably

low false positive rate, leading to a more accurate classification of malignant tumors.

The model without sampling, on the other hand, has a somewhat lower AUC of 0.904, as it is
visualized in Figure 27. Although it still shows a respectable level of discriminating ability, it falls
slightly short of the ADASYN model. Based on the Youden’s index, a new threshold for catego-
rizing cases is indicated by the chosen cut-off point of 0.42. The model without sampling can still
successfully identify between benign and malignant tumors despite having a lower AUC, but it can
have a different ratio of true positive to false positive predictions than the ADASYN model.
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Figure 26: ROC Curve for Decision Tree and ADASYN
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Figure 27: ROC Curve for Decision Tree and no sampling

The confusion matrix visualized in Figure 28 depicts the overall performance of the decision tree
with ADASYN model. A True Positive rate of 0.93 suggests that the model has a high predictive
power for positive outcomes, as does the True Negative rate of 0.89 for negative outcomes. However,
the False Positive rate of 0.071 indicates that around 7% of positive predictions are falsely classified
as malignant tumors, when they are actually benign. Similarly, the False Negative rate of 0.11
suggests that around 11% of negative predictions are falsely classified as benign tumors, when they

are actually malignant.
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Figure 28: Confusion Matrix on the test set for Decision Tree and ADASYN

The decision tree with no sampling overall effectiveness is shown by the confusion matrix in Figure
29. A true positive rate of 0.9 and a True Negative rate of 0.9 both point to the model’s strong
prediction ability for malignant and benign outcomes. The False Positive rate of 0.097, however,
shows that almost 9.7% of positive predictions are mistakenly labeled as malignant tumors when
they are benign. Similarly, the False Negative rate of 0.095 indicates that around 9.5% of negative

predictions are mistakenly labeled as benign tumors when they are actually malignant.
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Figure 29: Confusion Matrix on the test set for Decision Tree and no sampling

Random Forests

Balancing the minority class is of utmost importance in random forests to ensure accurate and ro-
bust predictions. Random forests are ensemble models composed of multiple decision trees. Each
decision tree is trained on a bootstrapped sample of the data, which introduces randomness and
variability into the model. However, when the dataset is imbalanced, with the minority class being
significantly underrepresented, the random forest tends to prioritize the majority class, resulting

in biased predictions and poor performance on the minority class.

Different sampling methods have been devised to solve this problem, equalize the class distribution,
and enhance the functionality of decision tree models. Among the often employed sampling tech-
niques are Random Oversampling, Random Undersampling, SMOTE (Synthetic Minority Over-
sampling Technique), and ADASYN (Adaptive Synthetic Sampling). A Gridsearch is conducted
for each sample strategy to identify the ideal parameters that maximize the Area under the ROC

Curve. Table 7 displays the findings from the test set using the aforementioned sampling methods.

Sampling Technique | Cut-off | Accuracy | AUC | Recall | Precision
SMOTE 0.62 0.939 0.932 | 0.905 0.927
Random Oversampling 0.63 0.927 0.932 | 0.905 0.927
Random Undersampling 0.45 0.921 0.928 0.952 0.851
ADASYN 0.61 0.956 0.960 | 0.976 0.911
No Sampling 0.20 0.903 0.919 | 0.976 0.804

Table 7: Random Forest evaluation metrics on the test set

The summarization of the results are:

1. SMOTE: This technique achieved an accuracy of 0.939 and an AUC of 0.932. It performed
well in terms of recall with a score of 0.905, indicating its ability to correctly identify positive
cases. The precision score of 0.927 suggests a low rate of false positives. Overall, SMOTE

showed a balanced performance in accuracy, AUC, recall, and precision.

2. Random Oversampling: This method underperformed SMOTE with an accuracy of 0.927 and
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an AUC of 0.932. It successfully attained a recall score of 0.905, demonstrating its capacity
to recognize positive instances. The precision score of 0.927, however, points to a comparable

number of false positives as compared to SMOTE.

3. Random Undersampling: This method demonstrated comparable performance to Random
Oversampling, achieving an accuracy of 0.921 and an AUC of 0.928. Notably, it achieved
a higher recall score of 0.952, indicating its effectiveness in accurately identifying positive
cases. Moreover, with a precision score of 0.851, Random Undersampling exhibited a lower
rate of false positives when compared to Random Oversampling. These results highlight
the balanced performance of Random Undersampling in terms of accuracy, AUC, recall, and

precision.

4. ADASYN: This technique attained an accuracy of 0.956 and an AUC of 0.960. It demon-
strated a notable recall score of 0.976, signifying its efficiency in accurately detecting positive
cases. With a precision score of 0.911, ADASYN exhibited a reduced occurrence of false pos-
itives compared to Random Oversampling. However, it should be noted that the precision

score of ADASYN is slightly lower than that of Random Oversampling.

5. No Sampling: The random forest without any sampling achieved an accuracy of 0.903 and
an AUC of 0.919. It had a high recall score of 0.976 similar to ADASYN, and a precision
score of 0.804. This technique provided a balanced performance in terms of accuracy, AUC,

recall, and precision.

The random forest with ADASYN is the model with the highest overall performance, especially
when considering the AUC score, according to the aforementioned research. The significance of
the features, the ROC curves, and the confusion matrices of this particular model will be com-
pared to the biased no-sampling model. Figures 30 and 31 illustrate how the importance scores

are distributed to various features in each classifier and accompanying sampler.

Random forests have a large number of decision trees, which means that more features are used to
create the decision rules compared to single decision trees. This can be seen in Figures 30 and 31,
where all ten features contribute to the creation of decision rules in both ADASYN and no-sampling
techniques. The feature concave.points_mean is the most important feature in both ADASYN and
no-sampling. In the ADASYN sampler, the least significant feature is fractal dimension_mean,

while in the no-sampling technique, the least important feature is symmetry _mean.
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Figure 30: Feature Importance for Random Forest and ADASYN

49



Feature Importances of RandomForest
concave points_mean
perimeter_mean
area_mean
concavity_mean

radius_mean

Features

compactness_mean
texture_mean
smoothness_mean

fractal_dimension_mean

symmetry_mean

T
0.00 010

Score

Figure 31: Feature Importance for Random Forest and no sampling

The random forest model using ADASYN shows strong discriminatory power with an impressive
AUC of 0.960, indicating its ability to accurately classify examples from both groups, as it is visu-
alized in Figure 32. By carefully selecting a cut-off point of 0.61 based on maximizing the Youden’s
index, the model strikes a balance between correctly identifying positive cases and minimizing false
positives. This means that the ADASYN model can achieve a high rate of correctly identifying

malignant tumors while keeping false positives to a minimum.

On the other hand, the model without sampling has a lower AUC of 0.919, as shown in Figure 33.
Despite this, it still demonstrates a decent ability to distinguish between benign and malignant
tumors. Using the Youden’s index, a new threshold for classifying cases is determined with a cut-off
point of 0.20. Although the model without sampling may not perform as well as the ADASYN
model in terms of AUC, it can still effectively differentiate between benign and malignant tumors.
However, it’s important to note that the balance between correctly identifying true positives and
false positives may differ from the ADASYN model.
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Figure 32: ROC Curve for Random Forest and ADASYN
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Figure 33: ROC Curve for Random Forest and no sampling

The confusion matrix, as shown in Figure 34, provides an overview of the overall performance of
the random forest model with ADASYN. A True Positive rate of 0.98 indicates that the model is
highly accurate in predicting positive outcomes, while a True Negative rate of 0.94 demonstrates
its proficiency in predicting negative outcomes. However, the False Positive rate of 0.056 reveals
that approximately 5.6% of positive predictions are incorrectly classified as malignant tumors when
they are actually benign. Likewise, the False Negative rate of 0.024 suggests that around 2.4% of

negative predictions are falsely identified as benign tumors when they are actually malignant.

On the other hand, the effectiveness of the random forest model without sampling is illustrated by
the confusion matrix displayed in Figure 29. A true positive rate of 0.98 and a true negative rate
of 0.86 both indicate the model’s strong predictive capability for identifying malignant and benign
outcomes. However, the false positive rate of 0.14 reveals that approximately 14% of positive pre-
dictions are incorrectly classified as malignant tumors when they are actually benign. Similarly,
the false negative rate of 0.024 suggests that around 2.4% of negative predictions are mistakenly

labeled as benign tumors when they are, in fact, malignant.
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Figure 34: Confusion Matrix on the test set for Random Forest and ADASYN
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Figure 35: Confusion Matrix on the test set for Random Forest and no sampling

XGBoost

Having a balanced representation of different classes is very important in XGBoost to deal with
class imbalance and improve the model’s performance. XGBoost is a powerful algorithm that is
good at handling complex data. However, when there is an imbalance between classes, with one
class having very few examples, XGBoost tends to focus more on the majority class during training.

This can result in biased predictions and less accurate results for the minority class.

Sampling techniques play a key role in addressing class imbalance, specifically in XGBoost. For
example, oversampling techniques like SMOTE or random oversampling increase the number of
examples in the smaller class by creating additional synthetic examples. This helps make the
representation of both classes more balanced in the training data. On the other hand, undersam-
pling techniques like Random Undersampling reduce the number of examples in the larger class,

ensuring a more fair representation of both classes. By creating a balanced training dataset, sam-
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pling techniques help XGBoost learn from a more fair distribution of examples and make accurate
predictions for both the larger and smaller classes. This prevents bias towards the larger class
and allows XGBoost to better understand the unique patterns and characteristics of the smaller
class, resulting in improved performance and more reliable predictions in real-world situations. To
determine the optimal parameters that maximize the Area under the ROC Curve, a Gridsearch is
performed for each sampling strategy. The results obtained from the test set using these sampling

methods are summarized in Table 8.

Sampling Technique | Cut-off | Accuracy | AUC | Recall | Precision
SMOTE 0.59 0.956 0.955 | 0.952 0.930
Random Oversampling 0.42 0.947 0.948 | 0.952 0.909
Random Undersampling 0.86 0.956 0.955 | 0.952 0.930
ADASYN 0.46 0.960 0.960 | 0.976 0.911
No Sampling 0.23 0.947 0.953 | 0.976 0.891

Table 8: XGBoost evaluation metrics on the test set

The results indicate the following conclusions:

1. SMOTE: The accuracy and AUC of the SMOTE approach are 0.956 and 0.955 respectively,
showing high overall performance. With a recall score of 0.952, it demonstrates a high level
of reliability in identifying positive cases. Furthermore, a reasonably low proportion of false
positives is shown by the precision score of 0.930. SMOTE displays balanced performance in

terms of recall, accuracy, AUC, and precision.

2. Random Oversampling: This technique achieves an accuracy of 0.947 and an AUC of 0.948.
It demonstrates a similar recall score of 0.952 compared to SMOTE, suggesting effective
identification of positive cases. However, the precision score of 0.909 indicates a higher rate
of false positives compared to SMOTE. Random Oversampling performs well but falls slightly
short of SMOTE in terms of accuracy, AUC, and precision.

3. Random Undersampling: Similar to SMOTE, Random Undersampling achieves an accuracy
of 0.956 and an AUC of 0.955. It exhibits the same recall score of 0.952, indicating its ability
to correctly identify positive cases. The precision score of 0.930 suggests a relatively low rate
of false positives, matching SMOTE’s performance. Random Undersampling demonstrates

balanced performance across all evaluation metrics, comparable to SMOTE.

4. ADASYN: With an accuracy of 0.960 and an AUC of 0.960, ADASYN showcases strong
overall performance. It achieves an exceptional recall score of 0.976, indicating its ability to
correctly identify positive cases. The precision score of 0.911 suggests a relatively low rate of
false positives. ADASYN performs competitively across accuracy, AUC, recall, and precision,

showcasing its effectiveness.

5. No Sampling: The XGBoost model without any sampling achieves an accuracy of 0.947,
similar to Random Oversampling, and an AUC of 0.953. It achieves a high recall score of
0.976 and a precision score of 0.891. Although it falls slightly short in precision compared
to other techniques, it still demonstrates balanced performance in terms of accuracy, AUC,

recall, and precision.

The XGBoost model with ADASYN is the one with the highest overall performance, especially
when considering the AUC score, according to the aforementioned research. The significance of
the features, the ROC curves, and the confusion matrices of this particular model will be com-

pared to the biased no-sampling model. Figures 36 and 37 illustrate how the importance scores
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are distributed to various features in each classifier and the corresponding sampler.

XGBoost consist of numerous decision trees, allowing for the utilization of more features in the
creation of decision rules compared to individual decision trees. This characteristic is evident in
Figures 36 and 37, where all ten features play a role in constructing decision rules for both the
ADASYN and no-sampling techniques. Notably, the feature concave.points_mean emerges as the
most influential in both the ADASYN and no-sampling approaches. In the ADASYN sampler, the
symmetry mean exhibits the least significance, while in the no-sampling technique, the feature

fractal _dimension_mean holds the least importance.
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Figure 36: Feature Importance for XGBoost and ADASYN
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Figure 37: Feature Importance for XGBoost and no sampling

The XGBoost model with ADASYN showcases exceptional discriminatory strength, as indicated
by its AUC of 0.960 in Figure 38. This suggests its ability to accurately classify examples from
both groups. In order to further enhance the model’s performance and strike a balance between
the true positive rate and false positive rate, a cut-off point of 0.46 is selected by maximizing the
Youden’s index. By employing this threshold, the model achieves a high true positive rate while

keeping the false positive rate low, resulting in more precise identification of malignant tumors.
On the contrary, the model without sampling exhibits a slightly lower AUC of 0.953, as observed

in Figure 39. Nevertheless, it still demonstrates a commendable level of discriminatory capability,

although not as strong as the ADASYN model. In line with the maximization of Youden’s index, a
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new threshold is determined using a cut-off point of 0.23 to classify cases. Despite the lower AUC,

the model without sampling effectively differentiates between benign and malignant tumors.
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Figure 38: ROC Curve for XGBoost and ADASYN
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Figure 39: ROC Curve for XGBoost and no sampling

The confusion matrix, which is shown graphically in Figure 40, offers a thorough evaluation of the
overall effectiveness of the XGBoost model with ADASYN. The model predicts malignant tumors
with a very high True positive rate of 0.98, while it predicts negative outcomes with an impressively
high True Negative rate of 0.94. The False Positive rate of 0.056 suggests that 5.6% of positive
predictions, however, are incorrectly labeled as malignant tumors when they are benign tumors.
Similar to the False Positive rate, the False Negative rate of 0.024 indicates that 2.4% of negative

predictions are mistakenly classified as benign tumors when they are, in practice, malignant tumors.
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Figure 40: Confusion Matrix on the test set for XGBoost and ADASYN

On the contrary, the effectiveness of the XGBoost model without sampling can be observed through
the confusion matrix presented in Figure 41. With a true positive rate of 0.98 and a true negative
rate of 0.93, the model exhibits a strong predictive capability in identifying both malignant and
benign outcomes. However, the false positive rate of 0.069 reveals that approximately 6.9% of
positive predictions are incorrectly classified as malignant tumors when they are actually benign.
Likewise, the false negative rate of 0.024 suggests that around 2.4% of negative predictions are

mistakenly categorized as benign tumors.
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Figure 41: Confusion Matrix on the test set for XGBoost and no sampling
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3.4 Discussion

The scope of this research was to establish a methodology for handling imbalanced datasets in order
to produce unbiased models. LASSO Logistic Regression and Multilayer Perceptrons were utilized
without the technique of sampling, resulting in biased models with respect to the majority class.
To address this bias, three different classifiers were applied to the dataset, and various sampling
methods were used to balance the minority class. The models that achieved the highest AUC
scores utilized the ADASYN sampling method and are therefore considered the ones that could
generalize the best. The accuracy of these methods is presented in Table 9, and the corresponding

AUC scores are presented in Table 10.

Model Accuracy on Test Set
LASSO 0.921
MLP 0.960
Decision Tree with ADASYN 0.903
Random Forest with ADASYN 0.956
XGBoost with ADASYN 0.960

Table 9: Accuracy on the test set for all models

Model AUC on Test Set
LASSO 0.990
MLP 0.987
Decision Tree with ADASYN 0.909
Random Forest with ADASYN 0.960
XGBoost with ADASYN 0.960

Table 10: AUC on the test set for all models

Based on the provided tables of model performance on the test set, the following conclusions can

be arisen:

1. Accuracy Comparison:
(a) The MLP (Multilayer Perceptron) model achieved the highest accuracy on the test set,
with an accuracy of 96.0%.
(b) The LASSO model performed slightly lower than the MLP, with an accuracy of 92.1%.

(¢) The Decision Tree model with ADASYN sampling achieved an accuracy of 90.3%, which
is lower than both the MLP and LASSO models.

(d) The Random Forest and XGBoost models with ADASYN sampling achieved comparable
high accuracies of 95.6% and 96.0%, respectively.
2. AUC Comparison:
(a) The LASSO model achieved the highest AUC (Area Under the Curve) score on the test
set, with a value of 0.990.
(b) The MLP model closely followed with an AUC of 0.987.
(¢) The Decision Tree model with ADASYN sampling achieved an AUC of 0.909, indicating

moderate performance compared to the other models.

(d) Both the Random Forest and XGBoost models with ADASYN sampling achieved iden-
tical AUC scores of 0.960.
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Based on these results, it can be concluded that the MLP model demonstrates the highest accuracy
among all the models, suggesting its effectiveness in correctly classifying instances in the test set.
The LASSO model achieves the highest AUC score, indicating its ability to distinguish between
positive and negative instances with high accuracy. Models utilizing ADASYN sampling, such
as Random Forest and XGBoost, perform consistently well, achieving comparable accuracies and
AUC scores.

As it could be seen from this tables, the models without sampling perform the best in respect
to AUC score, but this result could be misleading because of the imbalanced nature of the dataset.
When working with unbalanced datasets, biased models might be created since the distribution
of classes is frequently defined by the dominance of the majority class over one or more minority
classes. Without being addressed, this class imbalance can lead to biased model performance,
favoring the majority class while potentially ignoring important patterns within the minority class.
The dataset may be balanced and a more representative training set can be given to the model by
using the right sampling procedures, such as oversampling the minority class or undersampling the
dominant class. This makes it possible to reduce bias and increase the model’s capacity to identify

and predict trends in both the majority and minority groups.

As a consequence, a trade-off exists between the increased accuracy or AUC score and the pro-
duction of non-biased models, which must be considered when selecting an appropriate model for
a specific application. Particularly, when the minority class pertains to the cancer tumor class,
where the patient’s survival is at stake, it becomes crucial to choose a model capable of identifying
patterns within the minority class to accurately classify a malignant tumor. Thus, selecting a

non-biased model is preferred when the minority class is associated with the patient’s survival.

The LASSO logistic regression model trained for this research demonstrates lower performance
compared to the model trained in the paper by Sidey-Gibbons and Sidey-Gibbons (2019). Specifi-
cally, the accuracy achieved in the paper is 95%, whereas the LASSO model trained for this thesis
achieves 92% accuracy. Regarding the MLP model, the predicted accuracy matches the 96% accu-
racy achieved in the paper by Agarap (2018). In the study conducted by Cahyana et al. (2019), the
ADASYN sampling technique is utilized alongside the XGBoost classifier, resulting in an accuracy

of 97%, which surpasses the corresponding accuracy in this thesis of 96%.
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4 Conclusions

According to data from throughout the world, breast cancer is one of the most prevalent diseases
in women and accounts for the majority of new cancer cases and cancer-related deaths, making it
a serious public health issue in today’s society. Because it can encourage prompt clinical care for
patients, an early diagnosis of breast cancer can considerably enhance the prognosis and likelihood
of survival. A more precise categorization of benign tumors might spare people from receiving
unneeded medical care. As a result, there is a lot of study on the proper diagnosis of breast cancer
and the classification of individuals into benign or malignant categories. Machine learning is widely
acknowledged as the preferred approach in breast cancer pattern classification and forecast mod-
eling due to its distinct advantages in essential features discovery from complicated breast cancer

datasets.

In this thesis, five different machine learning models were applied in order to classify instances
that correspond to benign or malignant tumor features. The utilized dataset is the Breast Cancer
Wisconsin (Diagnostic) Data Set which contains 569 instances of features that describe tumor cells.
However, the Class Imbalance Problem characterizes this dataset because the malignant class is
underrepresented. The problem with class imbalance in machine learning models arises when there
is a significant disparity in the number of observations between different classes. This can lead to
biased model performance, as the model tends to favor the majority class, ignoring or misclassify-

ing instances from the minority class.

The imbalanced distribution of classes can result in models with poor predictive accuracy, low
sensitivity, and high false positive rates for the minority class. In such cases, the model may in-
correctly classify most instances as belonging to the majority class, thus compromising the overall
performance and effectiveness of the model. Addressing class imbalance is crucial to ensure that
the model can accurately capture patterns and make informed predictions for both the majority

and minority classes.

Due to the imbalance in the dataset, sampling techniques were employed in the analysis to develop
unbiased models that address the majority class. The performance of three classifiers, specifically
Decision Trees, Random Forests, and XGBoost, was evaluated using these sampling techniques
and compared to the same classifiers without sampling. Furthermore, Youden’s index was utilized
to determine the optimal threshold for achieving a balance between sensitivity and specificity. Ad-
ditionally, to assess the impact of not addressing the class imbalance problem, two models, namely
the Multilayer Perceptron and the LASSO logistic regression with feature selection, were applied

to the dataset without sampling, and their performance was examined.

In summary, although models without sampling achieved the highest AUC score, this result can be
misleading due to the imbalanced dataset. Class imbalance can lead to biased model performance,
favoring the majority class and overlooking patterns in the minority class. Balancing the dataset
through appropriate sampling techniques reduces bias, especially when the minority class is critical,
such as in cancer tumor classification with patient survival at stake. Therefore, it is important to
consider a non-biased model when dealing with imbalanced data and crucial outcomes like patient

survival.
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ITepiAndn

Mo ané Tic mo xowég xan Qavortngdeeg acbéveieg eivan o xapxivog mou TAATTEL exotoupdpla dTOU
nayxooping. H aviyveuor xou 1 Oepaneia Tou xapxivou €xouv mpoyweroet onuoavTixd xden oty el
gpeuva, oANG To Bépa e€axorovbel va elvon mepinhoxo xow dloxolo xou amoutel cuveyelc BeTidoElS
ot pebodoloyla xou v texvoloyio. Ou ahyoplbuol unyavixhc udbnong éxouv npdopata emidellel
ONUAVTIXES DUVATOTNTES OTOV TOpEN TNG LaTEMS €peuvag, WG oTNY avdiuon TepdoTiou dyxou
BedoUEveV yiol TN Bdyvwor xaxofBwy dyxwv. 20T600, 1 TOLOTNTA XAl 1) LOOPEOTHA TOV BESOUEVKV
exmalBevong €xouv onuavTind aviixTuto 610 T660 XoNd anodidouv autol ot ohyoptBuot. O akydetbuol
unyovixic pddnong unopel va amodidouy avEMUEX®OS OE W1 LOOPEOTNUEVA GUVONA BEBOUEVKY OTOU
0 évag TUTOC Gyxou LTEPLOYDEL EVOVTL TOU GANOU, OBNYOVTUS OE HOVTENA Tou dev ovaryvewpilouv
T peodneua) xatnyopie. H ouyxexpiévn dimhouatig epyacio eotidler oty eqoppoyn uedddwv
devypatorndlag, omwg 1 tuyala uteedelypotorndio, n Tuyalo utoderyuatorndla, xou ot texvixéc SMOTE
xat ADASYN, vy v e&iooppdnnon e xN\done peodnplag, Ue 0TOX0 TNV TORAYOYT LOVIEAWY
ToU avory VwpiCouv ETapXOC T600 TOUS xopxvixols 600 xal Toug xanonbelg 6yxoug.H anddoorn teundv
TagvounTY, cuyxexpiéva twyv Decision Trees, twv Random Forests xou tou XGBoost, aglohoyrnxe
HE TN XeNOoT ATV TwV TeEXVXGY derypotorndioc xar cuyxplBnxe pe toug (Bloug tadivountés xweic
devyparorndia. Emmiéov, yio va extiunfel o avtixtunog tng un avIeeTdmons tou TpoAAUaTos Tne
aVioopeoTiag TV XAACEWY, BUo WovTéNa, ouyxexpldéva to Multilayer Perceptron xou 1 Aoyiotxr
noavdpounon LASSO ue emhoyy| xopaxtnploTixy, e@apudéctnxay oto cOVONo Bedouévuv Yuplc
derypatoandlo xou e€etdotnxe 1 anddoor| toug. H xarOtepn emteuyBeioa axplPela 1600 ye oo xau

ywplc texvixéc devypatorndios Eemépooe 0 96 % oT0 GUVONO doXPOY.

AgZeig-nhedid: xapxivoc Tou pao o0, unyavixd udbnon, tagivounon, avicoppomior GUVONOU BESOUEVLV,

derypatorndla, vevpwvixd dixtuo.



A  Extetopévn EXAnvixn Ilepiindn

A.1 Kepdlowo 1: Ewcayoyn

O xopxivog tou Yoo tol elvon uio Sladedouévr Lop®T xapxivou tou enneedlel TIC YUVAIXES, ATOTEN®-
VToG TEplocoTepo amd to 10% twv Véwv xpououdtwy xapxivou etnolwe. Anotelel tn Seltepn xlpla
autiar Bavdtou and xopxivo oTic yuvaixee maryxoopinwe. Avotowuxd, ot adéves moparywyRc YENIXTOC
Tou Yoo tol Beloxovion unpootd and To Tolywua Tou othoug, unootneilovtal and deouldec xan To-
nofeTodvVToL GTOV YU Tou Yeydiou xpepactipd. O paotoc amotehelton amd 15-20 XoPia mou Budtaly)
ToUg elval XUXAXY, xou To PéyeBog xou 1 wop®t toug xabopilovton and 1o Nimog mou meptPdrNel Toug
NoPoic (Alkabban xou Ferguson (2022)).

KdBe Moo amotekeitor and N6PLa, ta omolo nepiéyouy adévec mou etvar uebBuvol yiot TNV TapaY YT
yéhaxtog dtav deyelipovton and opudves. O xopxivog Tou Yactold avartiooeto cuvibng addpufa, xau
TOANOL aVOXAAUTTOUY TNV aoBévela péow ToxTXDY ENEYYwY. oT600, UNopel ETONG Vo EUPAVIC TEl
¢ €va axo0olo VENU dYXOU GTO PACTO, ONAYEC 0To Uéyebog 1) TN wopt| Tou paoTol, 1) Sidyuon
am6 to Onhio. H poaotoyio, dnhadh o tévog 6To poo 1o, elvor Wa cUVNOLOUEVN XATAGTACT), OAN Sev

elvon amopaitnta evdextind| Tou xapxivou tou pactod (Alkabban xou Ferguson (2022)).

H 8dyvwon tou xapxivou tou pactol mepthopPdvel pior Quotxy| e€€taom, TEXVIXEC amedVIoNne O-
g 1 poctoypapla xou W Prodla .otod. H éyxoupn aviyveuon noilel xplowo pdro otn Pedtiwon
TV 10600V emiPinone. H enextannf e€dniwon tou xopxivou ToU HAGTOU PESK TOU AERPITIXNOD
X0 TOU OUUATONOYIXOU CUCTAUNTOS UTOREL VoL OB1YHOEL OE DUCUEVY| TEOYVWOT| X0l ATOUUXPUOHEVES
petaoctdoelc. Emopévog, n onuacio tov mpoTtofoulloy yio Tov EXEYXO TOU XoEXIVOU TOU UacTOU

unoypoppiletar and autolc toug Topdyoviee (Alkabban xaw Ferguson (2022)).

A’1.1 IToBoguoioloyia

O xopxivog tou paotod mpoxohelton and yevetixés uetorNdels xar @hopéc oo DNA, oL onoleg uno-
polV va ennpeac Tovy and TNy éxbeon oe oloTpoyovo. Mepixéc gopée, ehattdpata oto DNA ¥ yovidia
Tou TpoxoXoLV xapxivo, 6mwe T BRCA1 xou BRCA2, xhnpovopolvtar. Enopévec, n Orapén xopxi-
VOU TV wofNxdY 1} ToU HaGTOU GTNY 0OYEVEL AUERVEL TOV XIVBUVO EUPAVIONS XOPXIVOU TOU YOG TOU.
Ye évav vy dvBpwro, ta xOtTapa pe avopariec 6to DNA 1 avopBddoly avdmtuln xatamoNepdvton
and to avoconountixd cUotnua. ‘Otav ot acbevelc pe xapxivo tou pootol avtetonillouv authiv Ty

amotuyla, avantiooovtor 6yxol xou eZamhavovton (Alkabban xou Ferguson (2022)).

A’1.2 XIraticTixd XTowyeia

Bdoel tne épeuvag mou deyfn and to Global Cancer Observatory, o xopxivog tou yacto) avtinpo-
owneve 10 27,5% Tov TEpntioEny xopxivou peTall tou On\uxol TAnBucpol e EXNddoc to 2020.
Eminhéov, o avtiotowog pubudc Bavdtou yio autée tic mepintaoels rav 7,0%. O npocuppoopévos oe
o puBude mpooPoric avd 100.000 yuvaixeg Arav 71,9%, eved o puBude Bvnténtag Hrav 14,5%. O
TPOGUPUOoUEVOS oTny NAtxio pubude (ASR) eivar Eva oNoxANpwUévo pétpo tou pubuol Tou Bo nopo-
TNeoUVTAY av 0 TANBUCUOC elye Wi Tumer NAxioxy| dour. H npocapuoyy| yiveton anapaitntn xatd
oUYAELOT TOANUTAGDY TANBUGHOY ToU SLapEpouy wg Teog TNV NALxia, xaBdg 1 nuda enneedlet évtova
Tov x{vduvo tou xapxivou. O mpocapuocuévos oe NAia puBUGS LToXoYIlETaL G EVAS XATAVEUNUEVOS
Hécog 6poc TV NALLOXOV pLBUGDY, pe o Bden Tou xabopilovton amd TNV MALLAXT XxaTovou EVOS
kol TANBuopol. O Hoyxdouoe (W) Tumuxde IMnBuoude eivar 0 cuyve YpnoyLototoOevos yLo

AUTOV TOV OXOTO.


https://gco.iarc.fr/

A’.2 Kegpdlowo 2: Osopntixd Ynofabeo

Apétpnrol dvbpwmol naryxoouing TAATTOVTAL amd TNV xowr| xou Bavatnpdea acBéveia mou elvon Yvwo T
¢ xapxivog tou paotol. Ta nococtd emPlwong Tou xupxivou Tou YaGTOV XoL To ATOTENECUATO TV
acBeviv unopoiv va Betiwbody onuavtixd ue v Eyxonpn xan axplfn avayvoplon. H yerion npoocey-
vioewv unyovixic pdbnong xon e£6puEng BedopEvev YLl TNV TAEVOUNCT TOU XoEXIVOU TOU UG TOU EXEL
TPOGENXVGEL ALEAVOUEVO EVBLOPEROY Ta TeENeuTala Yedvia. Ot pébodol awtég éxouv emdellel onuovti-
%€ duvatdTnTES YIor Vo Bonboouy toug yiatpols va xdvouv axplPelc Sy veoels xat vor Ao dvouy
anogdoelg yia TN Bepanetla. O xapxivog Tou pactol xatnyoplomoleiton e ) dialpeot) TV Selypdtomv
Oynwv og ouddec 6mwe xoxoRbelc (xopxvixéc) xon xahoRdes (un xopxwvixéc). H pootoypopio o
1 wotohoyx e€étoon elvar 800 TapadelyUoTa TUEUBOCLUXDY DLy VOO TIXMY TEYVLXMY TOU €Y0UV Gplat
600V aopd v oxpifeta xou Ty allomotio. Ané TV IANT Theupd, o akybdeBuol unyovixrc udbn-
one €youv v xavotnta vo e€etdlouy morUmhoxa potifo xou cuoyetioelc Yuéoa o tepdoTior VoA
BEBOUEVOV, ETUTRETOVTOG UXELPECTERN X0 ATOTENECUATIXOTERT] TAEWVOUNGCT) TOU XaEXiVOU TOU UAGTOV.
I tov oxond autd moapouctdlovion EVIEXTIXG TEVTE oy opluol unyavixic udbnone mou yenowonot-
ROy 0Ty cuyxEXEEVT eQaproyY) xaBdeg enlong xou BVo ahyopBuol Bayelpnong Tne avicoppotiag

Twv dedouévwv, TpoPAnua To onolo eupavileton cLYVE TNV LATEIXY EPELVA.

A’.2.1 AoywoTixn ITolwdpounon

H Aoyotin Haawvdpdunon etvan wia toyupr] Texvixr) 6o medlo tne pnyavixic uddnong mou yenoipo-
motelton yior Ty TEdPAeYN xaTnyopdy petofSAnTdyv. Avtifeto and tn yeopuix Ttokvdpdunon tou
aoyohelton pe TNV medPAEPT cuvexdy PETAUBANTOY, N NoYIOoTIX TaAVOEOUNGT Vol XUTEANTAT Yiat
npoPiédec mbBavotAtwv xou Tagvdunone oe didpopes xatryoples. Kotd tnv exnaidevon evoc povté-
AOU AOYIO TXAC TONLVBEOUNOTS, XeNotdonololvTal Sedouéva exmaibeucnc Tou Tepthopdvouy 1600 Ti
aveEdptntee yetafAntéc 6co xou v e€optnuévy uetafinty mou embuyolue vo npofiédouue. To
povTéro mpocappoletal oo dedopéva exnaideuone ue oxond va udbel ) oyéon petald twv yetafin-

TV xou Vo exTifioel TNy lovotnta e eapTnUévne LeTaAnTrc vo aviixet o€ pia and Tic xotnyoplec.

H Noyio i) manwvdpounon Booiletoan otn xphon e Aoyio Tixig cuvdeTnong, YVwo THS X0t 1 OLYUOEL-
0 ouvdptnon. Auth 1 cuvdptnon petaoyNUatilel To YpPoUULXO LOVTENO GE Uiol cLVAETNGN TlaVOQd-
VELOG, XaBloTOVTOC duvath TNV extiunon twv mlavotitev e xdfe xatnyoplac. Autd emtpénel oTo
povtélo va mpofAénel Ty mboavdtnta evog delypatog va avixel ot uio cuyxexplévn xotnyoplia, Baot-
Copevo otic Tég Twy aveldptntov yetafintadyv. H Noylotu] nakvdpounon yxenouylomoleltal eupéwg
o€ TOANOUG TOUE(S, OTWS 1 Avary VdpLom TPOTOTWYV, N XAUTNYOPLOTONCT EXOVWY XAk TO QINTEAPLOU o-
VETLOOUNTOV UNVUUATWY G TNV NAEXTEOVIXY adAn\oypaplo. Emlong, 1 Aoyiotur nokvdpdunor unopet
vo emextael Yl TNV OVTIHETOTIOT TONUXATIYOPXGY TEoBANUdTLY, 6mou 1 e€apTnuévn UetafAnTA
unopel var aviixel oe neplocdTEpES antd uia xatnyopieg. Me tn Borfeia tng NoyioTixrg mavdpounong,
elvon Buvath 1 xatnyoptonoinon xou 1 tedBAedn oe TONUTNOXA TEOPAAPATA TAEVOUNOTC.

A’2.2 Aévipa Andpacng

To Aévtpa Andgaong eivon évag and toug mo dnuogiieic oryopiBuoug unyavixhic puébnong mouv xen-
owgonoolvTaL Yl TV avdAuon xow Ty tedfBAedr dedouévav. Autol ol anybeBuol Boaoilovton oe o
dour) dévtpou, émou xdbe xéuPog avTimpoownelel wo andPaoy xou Xdbe POANO aVTITEOCKNEVEL ULo
el xotnyopla ¥y wa tedPredn. H Snuiovpyla evdg Aévtpou Andgaone yivetar e tnv avdiuon
TwV dedopévey exmaldeuong xou TNV VPEST TV PENTIOTWY Xavovey andgaong yia T dipeon Tov
dedouévov oe dhaddoelc. Katd v avdmtuén tou 8évtpou, yivetou enlong xpron xettnpiov, étwg
n evtpotnia xou To Gini, yia TV emAoy TV PENTIOTOV Blaxhaddoewy xou T dnuovpyio evdg Loop-

POTNHUEVOU XAl ATOBOTLXOU BEVTEOU.



Toa Aévtpa Andgoong elvar 0x0N0L EQUNVEUGLUO XoU UTOPOUY Vo, Topdyouv axpiPelc mpoPédec. E-
TUTAEOV, UTOopoLY va yenoylonoinfody yiot TNV avTETONLOYN TEOBANUATWY TavOUNoNS oL TTAAY-
dpdunong, xaoe unopolv vo tpoPrédouv tny xatnyoplo evog Belyuatoc 1 TNV TN pLog ouveyoUg
petofAntic. ‘Eva and ta mheovextipota tov Aévipov Amdgaone elvor 1 SuvaTOTNTO AVTIETOTONG
ATOPICEWMY UE TONNUTNG XELTHELA %ot TONNATAES weTafAntéc. Emmiéov, unopolv va avtipetonicouy
xon aENUEVO aplBud Bedouévmyv, xabng 1 anddoon toug dev e€optdton and to péyeboc Tou cuvolou
oedopévoy. §lotéc0, €va amd T mhavd pelovextiuata Twv Aévtpov Andgaong elvon n tdom mpog

UTEPTIPOCUPUOY ) O T DEDOPEVA EXTIUUBEUOTE, TEOXONWVTAS Thov yaun\1) amddoon oe véa dedouéval.

A’.2.3 Tuyaia Adom

Tao Tuyalo Adon elvar évag and Toug o LoyUEoVS o EUEAXTOUS oNYoplbuoug unyovixre wdbnong
TIOU YPNOWOTOLOOVTOL YLl TNV avdAuon xot Ty TebPAedn dedouévwyv. Baollovton otny Wéa tng ouv-
duaouévng TedPNedng amd TOANG aveEdptnTa dévtpa andpacng, YVwoTd xa wg Aévtpa Andgpacnc.
Kdbe dévtpo andgaone dnuiovpyeitar pe Tuyolor ETNOYY BELYUATWY X0l XUPAUXTNEICTIX®Y and To a¥-

VOXO exmaidevone.

H xOpla 16éa niow and ta Tuyaio Adon eivon 1 cuvduaotiny) BOVAUN TWV TOANATAGY JEVIPWY O-
nogaons. Kdbe dévtpo mapéyer o mpdPredn xan 1 tehinr) mpdBredm yivetan ye Pdon v mhelodngpia
TV TpoPAEPenv and ta dévtpa. AutH 1 cuvbuaoTixh Tpocéyyion Pondd ot pelwon tne uneptpocp-
poyhc xou e dlaxvpavone twv tpoPrédewy, tpocpépovtag o otabepd xan aELOTOTA AMOTENEGUATOL.
Toa Tuyala Adon umopolv va xenoiponoinfody 1660 yiot teofAAuata Tagvounone 0G0 ol TONLV-
dpounone. Emmiéov, uropolv va avtipetonicouy geydho chvora dedouévav xou VPniéc dlac tdoelc

OEAXTNELO TNV, xoBHC 1) anddoor] Toug dev emnpedleTton apVNTIXA omd TNV aLENon Twv Blac TdcEwV.

A’.2.4 Extreme Gradient Boosting

O XGBoost (eXtreme Gradient Boosting) eivou évag toyvpds orybplbuog unxovixhc udbnong mou
avixel TNy xotnyopla Twy ensemble methods. "Exet yivel Snuopuific Noyw TNE AmOTENECUATIXOTNTS
ToU GTNV avdiuon dedopévov xou Ty teoPiedn. O XGBoost yenowwonotel pla teyvixs tou ovoud-
Cetan gradient boosting, n onola eivon évac cuvduaoude and dévipa andpaone xou gradient descent.
Kdéfe 8évtpo mou npootifeton 610 woviéNo o Tdlel OTNY ENAYIOTOTOMGT TOU GOANUATOS TOV TROT-
YoUUEVOL B3EVTEou, dNUIOLEYOVTOS Vel GUVONO BEVTPWY Tou cuvepydlovTan yior vor BENTLOCOUY TNV
TeoPAenTixy xavotnTa Tou wovtélou. ‘Eva and ta wlpta yopoxtneic txd tou XGBoost elvon 1 du-
vatdtnta Tou va xelplleton Yeydha olvora Sedopévav ot UPNAEC BLUO TACELS YOPUXTNELO TIXWY, EVE
TOROPEVEL YRTYOPOC Xl anodoTixde. AuTo emttuyydveton U€ow Tng XeNone PeltioTonoimnpévoy oaryo-

plBpwy xou TEYVIXOY OTwe 1 oupnicon dedopévwy xat 1 ToEEAANAY enelepyacia.

Emnhéov, o XGBoost npoo@épet xou dAXat xopoxTneto Txd mou cUUBSIANOUY GTNV OmOTENECUATIXT
avéiuon dedopévwy. Mepixd amd autd mephauPdvouy TV auToOuaTn EPUOULOT TWV UTERTOLOUETEMY
TOU HOVTENOU, TNV aviyveuot xan eEGNeW)n TV AVETOOUNTOVY YOPAUXTNELO TIXWY XAk TNV AVTLUETWOTLOT
e avicoppotiog x\doewyv. Téhog, o XGBoost éxel epapuoyéc oe toAholg touelc, cuunepthopPovoué-
VOV TNG avoy vaplong Teotinwy, e tedfiedng xon tne xatdtagng. H uavdtntd tou va avtipetonilet
ToXUTNOXa TpoPAfuato xon var Topdyel axplfelc mpoPAédec Tov xabotd éva amd T o aflomio T

gpyohelo oTOV TOUER TNG UnyaviXhc wdbnorne.



A’.2.5 Nevpovixd Aixtua

To vevpwvixd Bixtua amoteloly pla loyuet xat anodotxt| uébodo unyavixic udbnong, mouv Bacileton
otny amouiunon Tou avlpwmivou eyxepdiou. H dour| Toug etvon xplown yia TNy andédoor xou Tny oxpl-
Bewt Twv anotelecpdtov mou emtuyydvouv. Ta veupovixd dixtuo anoterobvton and didpopa enlneda
vevpwvov. Kdbe eninedo amotekeiton and plo oudda veuptdvwv mou Aopfdvouv eoéboug, exteroly
unoloylopols xou mopdyouv e€68ouc. Ta enineda cuvdéovtar uetald toug pe Pdorn tov TpdéTo Tou

petadidovton ol TAnpogoples.

H opyitextovind] Tou YEUpVLXOD BIXTUOU AVAPERETOL OTOY TEOTO UE TOV OTO(0 TA ETUTEDA VEURDVWY
elvan opyavouéva xow cuvdedeuéva. Y TdE 0oLV BLAPOPES JPYLTEXTOVIXES, OTWE To EMovVONaPovoueva
veupwvixd dixtua (RNNSs), to suvelintind veupwvixd dixtuo (CNNs) xat tor ThHpwc cuvdedepéva veu-
pwvixd dixtua (FNNs). H cuvdptnon evepyonoinone xabopilet tov 1pdéno pe Tov onoio évag veupivag
avtoamoxpivetal ot pla glcodo xau mapdyel pla é£odo. Kowég cuvapthioeic evepyonolnong slvon 1 ovy-
poedic (sigmoid), n unepBolux epantouévn (tanh) xou ) cuvdptnon evepyonoinone ReLU (Rectified
Linear Unit). H exnai{Beuom twv veupovixdy dixtiwy anatel T pOBUon Tov TUpopéTeny ToUS Yo TNV
entteuén embBuuntodv anoteleopdtov. H Swbixacio extaldevone cuvhiBuc nepthaufdvel tnv npocope-
poY” Twv Bopdv TV VELPGVWY UE TN XeHon aryoplBuwy BeXtiototoinong, étwe to backpropagation

xat ot uEhodot xatdfaone tne xhione (gradient descent).

H Bopn tov vevpwvix®yv dxtimy enneedlel v xavotntd toug va udfouv and ta dedopéva xou vo
nopdryouy axplPelc teofNédeic. H emhoyh g xatdAAning Sourg elvon onpovtier yiot Ty enitevén

TWV EMOUUNTOV ATOTENECUATWY GE Wil EQopROYY| unyavixic udbnong.

A’.2.6 Awxyxeipnorn Avicopponioc Asdopevoyv

H tuyoda urepdelypatorndio etvar pio teyvixn enavénone dedouévmv Tou yenotponote(ton cuvifng Lo
TNV OVTWETOTLON TEOBANUATOV avioopeoTiag XNAcewy TN unyavixy pdnon. e auth v texviny,
T Belyportar omd Ty ¥xA&om e petovotnTae dimhaotdlovton tuyado ylar vo dnwoveyndel (cog optBuoc
delypdtwy T600 Yo TNV XNAoN TN petovoTnTag 600 xou yLol THY xAdom e Taetodngioc. H texvind
auty) elvon eOXONT G TNV e@oppoyYn xa Bev amoutel onuovTixy utoloyloTixy woyl. {lotdoo, 1 Tuyalo
umepdelypatorndla €xel Toug TEPLOPIOUOUE TNE, UE TOV GoPopdTepo Vo lvol 1) UTEPTROGUPUOYY G TA
dedopéva exmaidevong, xobde To poviého BAEmel Ta (Blar mopadelypata TOANES Popég xotd T Bidpxela
e exnofdevong. Emmhéov, evbéyeton va uny mopéyel onuoavtixy Bertioon otny anédoor tou yovté-
Aou, 1Blwe otay mpoxeLton yio dedouéva Ye peydnn avicoppotia. Ilap’ dXa autd, amotelel évo TOANS
UTOOYOUEVO ONUElD EXXIVNONE Yot TNV AVTUETOTION TNG AVLOOPEOTHAC TOV XAACEWY Xol UTOpEl Vol
ouVBUNOTEL Ue SANES TeVIXES Yot TN Pertiwon tTng andboang tou poviérov. Emnpdcbeta, uropolv

va xenotporoinBoly texvixéc noaporywyng ouvBetixwy derypdtov étog etvar 1 SMOTE xou n ADASYN.

H tuyodo unoderypatorndio ebvon wor Snuopizic texvixy uelwong dedopévmv Tou yenotuonoleital ou-
vRBOC YLoL TNV OVTIIETOTION TEOBANUATOV AVICOpEOTIAS TOU GUY VY TEOXVUTTOUY XATd TNV EXTUDEVCT
aAyoplBuwy unyavixic udbnone. Xe auth ™ wébodo, delypata and tnv mielodnpodoa xNdoT| opot-
polVTOL oMo TO GUVONO exmaideuomng Yo va emiteuyBel par looppomnuévn xotavour Twy BELYUdTWY
peto€l Twv BVo wXdoewv. H tuyaio unoderypatorndio eivan e0XONT GTNV EQUPUOYT XOll UTONOYLOTL-
%8 avéZodn, oG umopel Vo OBNYHOEL OE ATMWAELYL (PHOW®OV TANPOPOPLMY, EWBXE oV 1 TAELOPNPLXN
Ao nepiéyel TAnpogoploxd dSelypato. Enouévog, elvon {otixhc onuaciog vo emhéyetal Toocextixd
N XAUTINANAY ovooylar SeryudTov pelovotTnTag xon TAelodnelag yioo Ty unoderypoatorndio, wote va

dlaopaileton 6Tl 1 anédoan Tou YovTENOL Bev ennpedleTal apvNTIXd.



A’.3 Kegpdiowo 3: E@apuoyr xaw Anotedéopata

Ly napoloa yenétn, Ba eZetactel 1o Breast Cancer Wisconsin (Diagnostic) Data Set npoxeévou
va xenoonomnBoiv xau vo a€lohoynBolv didpopotl akyoplduot pnyavixhc pddnone. Me 569 mopatn-
proelg xou 30 yaeaxTNELO TIXd, aUT6 To GUVONO BEBOUEVKV amOTENE! Yl TAOUCLOL ol TERAC TLOL TUNYT)
TANEoQopELY Tou Ba BiepeuvnBel Sielodixd YENOLWOTOLOVTUC Vel EUPU (PACUA TEXVIXWY Xl OTTIXO-
TOLACEWY VLol TNV ATOXGAUPT] XEUPWY TACEWY Xl OYECEWY TOU Umopel vor unv elval dueco eppovels.
‘Onwe napoustdletar otny emdva 42, tor yopaxtneto txd oxetiloviol Ue T Exova Tov xoroRbwv 1

X0V XAEHVIXDY XUTTAPWV.

Eyfua 42: Ewdvee xahonfodv xaw xaxondov xapxivixdyv xuttdpewy (Mohammad ».4.
(2022))

Yty emxelyevn avéiuor, déxo amd Ta TpLdvTa KopoxTnetoTid Ba emheyolv v e€étaon. Ta yopa-
XTNPLO TIXE QUTE OVTLTPOCWTEVOVTOL OO TIC HETES TUES BLOPORMY YAUPUXTNPLO TIXEY TOU TUPOVGLELOLY
oL xopxwvixol oyxol. ‘Olec ol yetafinté etvon aptbuntixés xou dev undpyouv exielnovoeg Twwés. To
oUVoOXO dedouévay ywelotnxe oe 800 Slaxpitd utocivora, SMAadY T0 GUVONO exTABEVGTE Xt TO GU-
VOAO Boxhc, olupwva Ue Wia tpoxaboplouévr avoroyio 0.8 tpog 0.2, avtiotourya. Ou cuyxexpuéveg
HETAPANTES TTOL aPOPOVY TOUC UENETOUUEVOUS Oyxoug elvar oL axdlouleg:

1. Radius

2. Area

3. Compactness

4. Concave Points

5. Concavity

6. Fractal Dimension
7. Perimeter

8. Smoothness

9. Symmetry

10. Texture


https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data

No1600, 670 cUYKEXPWEVO dataset, oL XNAGELS IOV TEpLYEAPOLY Ta BEBOPEVX BEV EXOUY (0T AVTLTPOCW-
nevot. Eddtepa, 1 xNAom TV Xapxvixdv Y%y xotooufdverl 1o 37.26% Tov cUVOAXOY dedopé-
VOV EVO 1 XNEOT) TV xahonBdy dyxwy aviinpocwreleta and 1o 62.74%, bnwe mopovoidletar oTo
paPddypouua TG ewxovag 43. Auto umopel vo odnyrioel oe dnuiovpyiot ovTENwY mou eivon BeTind
Tpooxelpevo oy xAdon maeodngiog. o tov oxond autd Ba yenowwononBoldy akyoplbuol devypo-
Toanioc yio va e€ioopppomnbel 1 xhdon yeodnelac. Ewdwdtepa, Ba yenowonomnBolv ol aryoplbuol
Random Oversampling, Random Undersampling, SMOTE xou. ADASYN.

Target Variable Distribution (positive class = "Malignant")

count

Positive class (37.26%) Negative class (62.74%)

class

Yyua 43: Katovopr uetoaffAntrig otéyou

To avtixeipevo tng tapodoog épeuvag Nty 1 Snuioveyia wog pebodoroyiag yio TOV (EIPIOUS CUVOALY
BEBOUEVLV UE OVICOPEOTHOL XAJCEWMY, TEOXEWEVOL Vo Tapoy 800y auepdAnTTa WovTéEND. Xenolonol-
nOnxov 1 Noyoter) mowvdpounon LASSO xon ta Multilayer Perceptrons ywelc v texviny tng
devyparorndloe, e anotéeopo va TeoxOPouV UEPONNTTIXG HOVTENT OE OXEaN UE TNV TAElonPoloa
x\dom. T vor avtipetomotel auth 1 wepondla, epappdoTnxay Teelg dpopeTtixol Tofvountés aTo
oUVONO Bedopévev xau xenolonoidnxay Sudpopeg uébodol derypatorndiog yia Ty e€lcoppdnnoy TNg
x\dong petovotntog. Ta poviéla mou nétuyay to udhniotepa AUC ypnoiponoinooy tn pébodo deiypo-
toandioc ADASYN xou, enopévog, Bewpobvtar autd mou Bo umopovcay vo yevixeboouy xanvtepa. H
axpifeta autdv TV YeBddwv tapouctdleton otov Ilivaxa 11, xou ta avtiotorya AUC napouctdlovran

otov Iivaxo 12.

Model Accuracy on Test Set
LASSO 0.921
MLP 0.960
Decision Tree with ADASYN 0.903
Random Forest with ADASYN 0.956
XGBoost with ADASYN 0.960

ITivaxag 11: AxpiPeta 010 6OVONO Boxinc yLor OXaL ToL LOVTENA



Model AUC on Test Set
LASSO 0.990
MLP 0.987
Decision Tree with ADASYN 0.909
Random Forest with ADASYN 0.960
XGBoost with ADASYN 0.960

IMivaxog 12: AUC oto chvoro Soxipfic yior ONa oL LOVTEND

Me Bdon autd o anoteNéopota, unopel va ouvaybel to cuunépaopa 6Tl to poviéno MLP napouoidle
v uPnNGTeEn oxp(Pelo eTAE ) HXWY TWV HOVTENWY, YEYOVOC TTOU UTOBNAWVEL TNV ATOTENECUATIXOTNTY
ToU aTNY 0p07 THEWVOUNOT TV TEPTOOEWY GTO GOVOXo doxuuwy. To poviého LASSO emtuyyd-
vel v udmidtepn Pobuoroyia AUC, unodnidvovtag v ixavotntd tou vo dtaxpivel ueta€d Betinddv
XL ApVNTIXAOY Teptntdoeny Ue VPNNA axpeifeio. Ta povtéla mou yenoiwonotolyv tn devyuatorndla
ADASYN, é6nwc to Random Forest xou to XGBoost, anodidouv ctaflepd xand, emtuyydvovtog ou-

vxplowec axpifeiec xou AUC.

‘Onwce gaivetar and toug mivaxeg awtols, To HoVTENS Ywpls derypatorndio éxouv Tic xakUTepes emdd-
oelg 600V 0popd we tpog To0 AUC, adhd to anotéeopo autd Bo uropovioe vo elvat topamhavntind Aoyw
NG avloopEoTiag TOU GUVONOL dedopévey. Katd tnv epyaocia ye un .ooppomnuévo cbvora BedouEvoy,
evdéyetar vo dnuoupyNBoly UEpOANTTIXG HOVTEND, XoBOS 1 xaTavour TV x\doewv oplleTton cuyvd
and v xvplapylo TNE TAELOPNPMC XNAOTE EVaVTL oS 1) TEQIGCOTEPWY HELOPNPXDY XNdoE0Y. Xo-
plg VoL aVTIHETWTLO TEl, AUTH 1 AVIOOEEOTA TWV XAACEWY UTOREL VoL OBTYAOEL OE HECOATTIXY ATOBOOT)
TOU HOVTENOU, ELVOWVTOG TNV XAJOY TNG TAELoPNplog, EVE duvnTind ayvoel onuavTixd Tedtuna o TNy
x\&omn e petovotntac. To ohvoro dedopévev uropel va e€loopponnbel xan vo dobel oto poviého éva
TUO AVTITPOCWTEVTIXG GUVONO EXTIUBEUCTC XENOLLOTIOLOVTOS TIC Owo TG dladixaoleg derypotorndlag,
Onwg N uTeEBELypaToNTla TNE TEENS TNG petovoTNTag 1) 1) utoderypatoandio Tng xuplopyn; T4En. Auto
xablotd Buvarty) ) pelwon e yeporndlag xow v adEnon TS XAVOTNTS TOU LOVTENOL va evTonilet

xat Vo TpoPAETEL THOELS TOG0 0TI TAEOPNPIXES HOO XL GTIG PELOVOTIXES OUADES.

Kotd cuvénela, umdpyel pla avtiotdbuion wetadld e auvgnuévng oxpeifetag 1 tou AUC xou tng mo-
poyWYNS HUEPOANTTOV HOVTEAWY, TO OTO{0 TEETEL Vo Ao fdvetan uTddn xotd TV emNoYY| EVOC XUTAN-
ATAOU LOVTENOU 7YLOL ULAL CUYXEXOLIEVT] EapuoyT). ISialtepa, dtav 1 uelovoter] xatnyopia agopd Tnv
XOTNY 0Pl TV XoEXIVIXDY Oyxwy, 6mou Blaxufetetar 1 emPlowon tou acbevoie, xabloTatar Lwtixhc
onuociog 1 emhoy evog HOVTENOU txavol va evtonilel wotifo evidg Tne UelovoTixig XAAoNg yLot TNV
axplff Tagvounon evoc xaxonBouc 6yxou. ‘Etol, n emhoyh evoc auepOANTTOU LOVTENOU TpoTUdTan

otav 1 x\dor yelovotnrac oyetileton ye Ty emPlwon tou acbevoic.
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