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ABSTRACT In this survey, a comprehensive study is provided, regarding the use of machine learning (ML)
algorithms for effective resource management in fifth-generation and beyond (5G/B5G) wireless cellular
networks. The ever-increasing user requirements, their diverse nature in terms of performance metrics
and the use of various novel technologies, such as millimeter wave transmission, massive multiple-input-
multiple-output configurations and non-orthogonal multiple access, render the multi-constraint nature of
the radio resource management (RRM) problem. In this context, ML and mobile edge computing (MEC)
constitute a promising framework to provide improved quality of service (QoS) for end users, since
they can relax the RMM-associated computational burden. In our work, a state-of-the-art analysis of
ML-based RRM algorithms, categorized in terms of learning type and potential applications as well as MEC
implementations,is presented, to define the best-performing solutions for various RRM sub-problems. To
demonstrate the capabilities and efficiency ofML-based algorithms in RRM,we apply and compare different
ML approaches for throughput prediction, as an indicative RRM task. We investigate the problem, either as a
classification or as a regression one, using the corresponding metrics in each occasion. Finally, open issues,
challenges and limitations concerning AI/ML approaches in RRM for 5G and B5G networks, are discussed
in detail.

INDEX TERMS 5G, B5G, deep learning, machine learning, mobile edge computing, radio resource
management.

ACRONYMS
3GPP Third Generation Partnership Project.
4G 4th Generation.
5G 5th Generation.
6G 6th Generation.
ABC Artificial Bee Colony.
AI Artificial Intelligence.
AM Amplitude Modulation.
ANN Artificial Neural Networks.
B5G Beyond 5th Generation.
BBU Baseband Processing Unit.
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BER Bit Error Rate.
BP Blocking Probability.
BS Base Station.
CDMA Code Division Multiple Access.
CIR Channel Impulse Response.
CN Core Network.
CNN Convolutional Neural Network.
CRAN Cloud RAN.
CSI Channel State Information.
D2D Device-to-Device.
DL Deep Learning.
DL/UL Down/Up Link.
DNN Deep Neural Networks.
EE Energy Efficiency.
EMF Electromagnetic Field.
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eMBB Enhanced Mobile Broadband.
ETSI European Telecommunications Standards

Institute.
FC Femto-Cell.
FL Federated Learning.
FM Frequency Modulation.
FR Frequency Range.
gNodeB Next Generation Node B.
H2H Human-to-Human.
HetNets Heterogenous Networks.
IoT Internet of Things.
IP Internet Protocol.
ITU International Telecommunication Union.
k-NN k-Nearest Neighbors.
LTE Long Term Evolution.
M2M Machine-to-Machine.
MA Margin Adaptive.
MARL Multi-Agent Reinforcement Learning.
MCTS Monte Carlo Tree Search.
MEC Mobile Edge Computing.
MIMO Multiple-Input-Multiple-Output.
MINLP Mixed Integer Non-linear Programming.
ML Machine Learning.
MOS Mean Opinion Score.
mMTC Massive Machine-Type Communications.
mmWave Millimeter Wave.
m-MIMO Massive MIMO.
MNOs Mobile Network Operators.
MU-MIMO Multi-User MIMO.
MTC Mobile Type Communications.
NLP Natural Language Processing.
NOMA Non-Orthogonal Multiple Access.
non-IID Non-Independent and Identical Distribution.
NP Non-Deterministic Polynomial-Time.
NR New Radio.
OFDM Orthogonal Frequency Division

Multiplexing.
OFDMA Orthogonal Frequency Division

Multiple Access.
O-RAN Open Radio Access Network.
OTA Over-the-Air.
P2P Point-to-Point.
PF Proportional Fairness.
PRB Physical Resource Block.
QoE Quality of Experience.
QoS Quality of Service.
QPSK Quadrature Phase Shift Keying.
RA Rate Adaptive.
RAN Radio Access Network.
RAT Radio Access Technology.
RB Resource Block.
RF Radio Frequency.
RL Reinforcement Learning.
RMSE Root Mean Square Error.
RN Relay Nodes.
RRM Radio Resource Management.

RSRQ Reference Signal Received Quality.
RSRP Reference Signal Received Power.
RSSI Received Signal Strength Indicator.
SE Spectral Efficiency.
SNR Signal-to-Noise-Ratio.
SON Self-Organizing Network.
SU-MIMO Single-User MIMO.
SVM Support Vector Machines.
TDMA Time Division Multiple Access.
UAVs Unmanned Aerial Vehicles.
UE User Equipment.
UHF Ultra High Frequency Band.
URLLC Ultra-Reliable-Low-Latency

Communication.
V2M Vehicle-to-Machine.
V2V Vehicle-to-Vehicle.
WMMSE Weighted Minimum Mean Squared Error.
WWWW World-Wide-Wireless-Web.

I. INTRODUCTION
A. THE EMERGING ROLE OF MACHINE LEARNING IN 5G
The development of fifth-generation (5G) broadbandwireless
networks has been nowadays significantly accelerated and
is worldwide at the stage of installation and implementa-
tion of the backbone network [1], [2]. Moreover, mobile
network operators (MNOs) gradually launch in the market
terminal devices (mobile phones, boards, etc.) that support
5G networks. According to the studies in [3], [4], the monthly
data demand will reach 100 exabytes with about 31.6 billion
active devices by 2023, thus doubling the current require-
ments. Similar to [3], an updated whitepaper from CISCO is
expected within 2022, also predicting increased data demand
until 2024. In this context, the necessity for optimal solutions,
in terms of network management and allocation of available
radio resources, is apparent.

It is already visible that 5G acts as an integrator for diverse
applications and services. To this end, 5G networks uti-
lize vehicular communications [5], device-to-device (D2D)
communications [6], machine-to-machine (M2M) communi-
cations [7], mobile edge computing (MEC) [8], cloud com-
puting [9] and internet of things (IoT) [10], in order to meet
the needs for enhanced mobile broadband (eMBB), massive
machine-type communications (mMTC) and ultra-reliable-
low-latency-communications (URLLC) [11].

More specifically, the authors in [12], [13] summarize
the key components and innovations incorporated in 5G
networks, as: a) Modern approaches in radio-link manage-
ment, such as open radio access network (O-RAN) and vir-
tual networks, in order to meet the strict criteria of latency,
capacity and data traffic in 5G transmission, b) Extended
coverage, which includes the installation of multi-nodes and
multi-antennas in the network’s coverage area, in order to
use multi-hop techniques for fast handovers through ser-
vice cells and base stations (BSs), c) Service-based network
dimensioning, which utilizes the self-generated channel state
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information (CSI), in order to meet the enhanced URLLC
criteria. Cell and BS planning should follow even stricter
requirements to support new usage scenarios and applica-
tions (smart cities, IoT, emergency alerts). Thus, heuristic
approaches, based on data analysis and machine learning
(ML), are proposed in network dimensioning [14] and d)
Use of new frequency bands, which includes the extended
operating spectrum band and the new spectrum regimes [15].

In addition, 5G and B5G networks extend the deploy-
ment of technologies that were introduced in fourth-
generation (4G) networks and also encapsulate new ones
(see also Fig. 1). These include massive multiple-input-
multiple-output (m-MIMO) configurations [16], millimeter
wave (mmWave) transmission [17], network slicing [18],
relay nodes (RNs) [19] and non-orthogonal multiple access
(NOMA) [20]. However, the coexistence of these technolo-
gies can significantly increase network complexity, due to
the insertion of multiple computational levels and hardware
needs, thus necessitating the importance of optimal radio
resource management (RRM) strategies [21]. For example,
accurate CSI is required for the effective deployment of
m-MIMO architectures and NOMA schemes. This, in turn,
increases the overall signaling burden, due to the increased
number of pilot signals. Moreover, in typical MIMO con-
figurations, each antenna is connected to a separate radio
frequency (RF) chain, thus supporting a fully digital (FD)
beamforming approach. However, in an m-MIMO case, this
would be prohibitive, as it would significantly increase hard-
ware complexity. Hence, suboptimal techniques are proposed
in the literature, based on a hybrid analog-digital beamform-
ing approach [22].

It is, therefore, understood, that a tradeoff between optimal
network goals and computational complexity can only be
achieved through an efficient RRM. Until now, the allocation
decisions were made continuously in each timeslot, based
on local network conditions and the data traffic load to be
serviced. However, the aforementioned enhanced require-
ments of 5G networks raise the need for, if not require,
a decentralized and intelligent data management system, that
can support flexible RRM decisions. In this direction, the
utilization of data offered by ML and the features extracted
by the corresponding algorithms can effectively contribute to
fast RRM responses [23], [24].

The current research interest in incorporating ML tech-
niques in 5G networks is mainly focused on the core network
(CN) [25]–[27] (indicatively: traffic forecasting [28], [29],
network slicing [30], privacy and security [31], etc.). Lately,
ML models are introduced in RAN and the development of
artificial intelligence (AI) and ML-based RRM algorithms
has attracted scientific interest, as well (e.g. [32]–[35]; an
exhaustive analysis of ML-based schemes in 5G and B5G
RAN, focusing on RRM, is presented in section III).

The scope of this survey paper is to summarize recent
works in the field of ML-based RRM, categorize them based
on the implemented ML technique, and thus provide guide-
lines to researchers for selecting the suitable category of

ML algorithm in each RRM sub-problem and highlight open
issues, limitations and potential solutions. This is achieved
through a state-of-the-art analysis of the existing literature,
focusing on the performance of each proposed ML-algorithm
with respect to various networks’ key performance indicators
(KPIs). Moreover, in an effort to determine the capabilities
that ML methods bring to RRM-related tasks, the problem of
throughput prediction is investigated, as an indicative case of
ML utilization in 5G/B5G networks, by comparing various
ML algorithms.

B. RELATED SURVEYS—PAPER OVERVIEW
The emerging need for efficient RRM through ML, that is
presented in the previous sub-section, has motivated many
researchers over the last years. The studied surveys in this
subsection, have focused on ML deployment for effective
resource allocation strategies’ definition in 5G/B5G net-
works. Table 1 summarizes these surveys, presenting the key
problems and the corresponding contributions.

In [37], the authors considered ML, data analytics and nat-
ural language processing (NLP) in network planning and
management of 5G networks, with emphasis on RRM and
security issues.Moreover, a prediction of the channel impulse
response (CIR) problem was presented as an indicative
use case. The authors in [38] presented a state-of-the-art
approach in energy-aware 5G systems. In this framework,
ML-based solutions were investigated in practical Third Gen-
eration Partnership Project (3GPP) new radio (NR) features,
in order to maximize energy efficiency (EE). According to
the presented analysis, reinforcement learning (RL) tech-
niques are more suitable in environments with multiple con-
straints.The significance of deploying Green AI techniques,
in order to reduce power consumption in wireless networks,
is highlighted, as well. In [39], the authors focused on the
significance of RRM through ML in the development of
sixth-generation (6G) networks. In this context, the exten-
sive usage of mobile devices and the dynamic changes in
CSI and data traffic formulate a multi-dimensional quality
of service (QoS) problem. Therefore, the authors suggested
that power allocation and channel modeling should become
data-driven through ML models. In addition, they proposed
that the existing ML schemes should consider data reduc-
tion methods in the training phase, as networks’ datasets are
characterized by large amounts of data and features. Finally,
the significance of a trade-off between supported services
(e.g., augmented and virtual reality (AR/VR) for 6G net-
works) and the strict requirements for latency, power, privacy,
security and QoS, is highlighted, as well.

The authors in [40] present an overview of the existing
RRM techniques in 5G/B5G networks. In this context, the
utilization of game theory, heuristic mechanisms and ML are
presented, along with all the related constraints (e.g., latency,
QoS, EE). The main conclusion is that deep learning (DL)
and RL approaches can accelerate the performance of 5G
and B5G networks, due to their ability to quickly learn and
cooperate with all the elements of the network’s environment.
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FIGURE 1. 5G/B5G networks enablers.

In the same context, the authors in [41] focus specifically
on DL techniques. Thus, deep neural networks (DNNs) and
convolutional NNs (CNNs) are investigated in the scope of
resource allocation, security and channel estimation [27].
According to the conclusions drawn, there is an upcoming
trend towards using DL in wireless networks, since B5G
and 6G networks will integrate higher levels of intelligence
through ML, in order to support reconfigurable technolo-
gies, such as terahertz communications and unmanned aerial
vehicles (UAVs). Similarly, the authors in [42] investigated
ML utilization in different computing scenarios, such as 5G,
IoT, edge, fog, cloud and vehicular fog computing. Even
though supervised, semi-supervised and unsupervised learn-
ing approaches are presented, the authors focus on DL ones
providing a related taxonomy. They concluded that Deep RL
approaches have themost efficient results in the resource allo-
cation problem. However, data quality and hyperparameter
tuning considerations are raised in order for betterMLmodels
to be implemented. Moreover, DL integration in AI-enabled
ORAN architectures is investigated in [43]. The authors com-
pared a DL solution based on edge support, virtualization
control andmanagement, as well as energy consumption. Fur-
thermore, DL use cases and implementations are presented,
leading to high-performance learning models. Finally, open
issues on privacy and security, network slicing and energy
consumption are analyzed, as well.

The authors in [44] presented an examination of dis-
tributed AI/ML approaches in next generation commu-
nication networks. More specifically, overhead reduction,
resource distribution enhancement, privacy and security

issues in a distributed ML environment are analyzed along
with ML frameworks, based on up-to-date literature. The
authors highlighted the need to improve computing hard-
ware, cloud and edge servers in order to secure the effi-
cient performance of algorithms, with respect to strict latency
requirements, which occur in distributed computing wireless
networks.

The authors in [31] introduce AI/ML as a set of techniques
that can upgrade the performance of wireless networks, inte-
grate new usage scenarios and enable emerging technolo-
gies. In this framework, an overview concerning ML-based
solutions in physical layer aspects, channel modeling and
measurements, network management and application layer,
is provided. The authors conclude that the integration of
AI/ML is still at an early stage, and standardization progress
should be further accelerated.

The above-presented surveys describe some aspects of
the current usage of AI/ML techniques in the resource
management procedures of modern era wireless networks.
Table 1 summarizes these surveys and their contributions.
The first column states the area(s) of interest for each survey,
the second column gives the specific RRM-related problems
that are analyzed in each survey, and the last column presents
contributions and suggestions that each survey provides. Our
work is included, as well. However, the above-presented
approaches, as it is also visible from Table 1, either focus
on ML integration in multiple Open Systems Interconnection
model layers [31], [37], [39] or on a specific category of ML
algorithms for RRM [40]–[42], [44] or on a specific RRM
related sub-problem [38], [43]. Our motivation is to extend

83510 VOLUME 10, 2022



I. A. Bartsiokas et al.: ML-Based Radio Resource Management in 5G and Beyond Networks: A Survey

TABLE 1. Presentation of surveys in AI/ML for RRM.

these works and focus on all ML categories analyzing their
impact and usability in a plethora of cellular networks’ RRM
sub-problems.

The key contribution of this paper is two-fold:
1) To present a state-of-the-art summary concerning

ML-based RRM approaches. In this context, our inter-
est is mainly focused on the categorization of the
ML-based RMM schemes proposed in the litera-
ture, in terms of the type of learning, and, thus,
on defining the optimal ML solution in various RRM
sub-problems (KPIs prediction, user, subcarrier and
power allocation, etc.), with respect to different net-
work metrics (i.e., QoS, quality of experience (QoE),
throughput, etc.). In order to achieve this, first, the
general RRM problem is formulated, while significant
non-ML approaches and their limitations are high-
lighted, as well. Then, the state-of-the-art concerning
ML-based approaches in 5G/B5G RRM is presented.
As already mentioned, these approaches are catego-
rized by the type of ML models used by each one
of them (Supervised, Unsupervised, Reinforcement).

Furthermore, the coexistence of MEC and distributed
learning techniques is analyzed, as it can tackle various
challenges, especially concerning the training time of
ML models.

2) Through the above procedure, representative conclu-
sions are drawn, as far as which ML models are appro-
priate in each RRM related sub-problem, based on
the network orientation. Moreover, limitations in cur-
rent research efforts, open issues and discussion over
the state-of-the art approaches are highlighted in an
effort to both present potential solutions in these con-
siderations and motivate future work on these fields.
Thus, guidelines and research frameworks are proposed
regarding AI/ML utilization for efficient resource allo-
cation in 5G/B5G networks.

Finally, in order to highlight the significance of AI/ML
implementation in RRM, the problem of throughput pre-
diction is investigated, as an indicative RRM task, treated
either as a classification or a regression problem. Various
ML algorithms are considered, results are presented, and
performance is evaluated, based on selected ML KPIs for
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FIGURE 2. Paper structure.

each task. Finally, through the above-described analysis, lim-
itations and open issues are witnessed and potential solutions
are described.

The rest of this manuscript is organized as follows (see
also Fig. 2): In Section II, the joint user, subcarrier and
power allocation RRM problem is formulated, with respect to
the corresponding constraints. Moreover, significant non-ML
RRM works are presented and their limitations are high-
lighted. In Section III, the different types of ML are analyzed.
In the same section, a state-of-the-art presentation, concern-
ing AI/ML algorithms in 5G/B5G systems’ RRM, is per-
formed. The ML-based solutions are categorized by the type
of learning. Furthermore, the joint employment of ML and
distributed technologies (such as MEC) is presented and pro-
posed as an efficient way to tackle the existing limitations.
In Section IV, the employed ML algorithms for throughput
prediction are presented, as well as the performance com-
parison among them. In Section V, open issues in the field
of AI/ML in RRM are stated and suggestions for future
works are drawn. Finally, concluding remarks are provided
in Section VI.

II. RRM IN 5G NETWORKS
A. PROBLEM FORMULATION AND CONSTRAINTS
Even though RRM problem’s criticality originates from the
first steps of wireless and mobile communications, the signif-
icance of effectively managing the available radio resources
was empowered during the 4G era, when the increase of
data rates was accompanied by the high interference levels
(especially co-channel). In the 4G, 5G and 6G era, RRM

considers not only the allocation of physical resource blocks
(PRB’s) or subcarriers (typical subcarrier spacing is 600 kHz
in frequency range 1 (FR1) of 5G and 2400 kHz in FR2)
[15], [45], but also power management, scheduling, traffic
control and handover management.

In general, RRM considers two main objectives, that in
case can be treated as joint. The first one is power minimiza-
tion, which is referred to as margin-adaptive (MA), while the
latter is network efficiency maximization. In this framework
throughput (or rate) maximization (rate adaptive - RA) is
mainly considered. MA minimization considers overall and
per user minimization of power consumption. Respectively,
RA maximization takes into account overall and per user
minimum throughput maximization [46]. Both approaches
include a plethora of parameters, at cases mutually exclu-
sive, that can significantly increase the complexity of RRM.
In fact, in [45], the non-deterministic polynomial-time (NP)-
hardness of the resource allocation problem is proved.
Consequently, sub-optimal solutions are proposed.

In the 4G-LTE era, when OFDMA techniques were intro-
duced, RRM algorithms mostly considered the maximization
of users’ throughput, based on QoS requirements, such as
the key implementation criterion. The main categorization
was the stage at which RRM was performed, considering
sectors or BSs, with centralized or decentralized approaches.
An innovative solution was introduced by game theory, where
the RRM problem was treated as a game and each user as
a player. Techniques such as Nash bargain (NBS), Hungar-
ian NBS and Raiffa bargain (RBS) were the most common
ones [47].

In a typical 5G MIMO cellular orientation, the total band-
width, denoted as W, is divided into a predefined number
of L subcarriers, which are allocated to users, according to
their demands and overall constraints [48]. The system serves
as many users as possible, till all subcarriers are allocated
(N users). BSs are equipped with Mt transmitting anten-
nas, while users are equipped with Mr receiving ones. The
signal-to-noise-plus-interference-ratio (SNIR) for the nth user
(1 ≤ n ≤ N ), associated with the lth subcarrier (1 ≤ l ≤ L)
for a specific channel realization and assuming independently
transmitted streams among different users, is defined as fol-
lows [49]:

SNIRn,l =
Gn,n,l

rHn,lrn,lI0 +
∑

m6=n,l∈Sm Gn,m,l
(1)

where Gn,m,l = pn,ltHm,lH
H
n,sec(m),lr

H
n,lrn,lHn,sec(m),ltm,l,

Hn,sec(n),l represents the Mr × Mt channel matrix for the
lth subcarrier of the nth user relevant to its serving sector,
tn,l is the Mt × 1 transmission vector, assuming diversity
combining transmission mode, rn,l is the the Maximal Ratio
Combingmultiplying vector and pn,l denotes the transmission
power allocated to the lth subcarrier of the nth user. Moreover,
the set Sn indicates the subcarriers allocated to the nth user
and I0 is the thermal noise level. Finally, AH denotes the
conjugate transpose of matrix A. Thus, the achievable data
rate on the lth subcarrier is rn,l ← W · log2(SNIRn,l) [50],
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and the corresponding aggregate rate for the nth user is
Rn←

∑N
s∈Sn rn,s. Then, the total throughput is given by:

R =
N∑
n=1

rn,s (2)

In most of the state-of-the-art RRM works, the target is to
maximize EE, SE, Jain’s fairness index (J) and, at the same
time, minimize blocking probability. EE and SE are given by:

EE =
R∑N

n=1
∑

s∈Sn pn,s
(3)

SE =
R
W

(4)

Moreover, J index is defined as:

J =
(
∑N

n=1
∑

s∈Sn rn,s)
2

N ·
∑N

n=1
∑

s∈Sn r
2
n,s

(5)

Finally, blocking probability (BP) is defined as the ratio of
rejected users to the total number of used that tried to access
the network.

The aforementioned optimization problem is subject to the
following system constraints:
•

∑
s∈Sn pn,l ≤ pmax, where pmax denotes the maximum

power limit per user.
• pn,l ≥ 0, 1 ≤ n ≤ N , 1 ≤ l ≤ L, which demonstrates
the non-negative power constrain of the transmit power
on each subchannel

• SNIRn,l ≥ SNIRthr, which sets the minimum SNIR
threshold for acceptable QoS.

• Nl,t ≤ Nthr, 1 ≤ l ≤ L, 1 ≤ t ≤ T , where Nl,t is
the number of users, grouped in the lthr subcarrier over
time slot t, and Nthr is its upper threshold, in the case of
NOMA transmission [51].

B. REPRESENTATIVE RECENT NON-ML APPROACHES
In this section, we summarize significant up-to-date
approaches, which tackle the RRM multi-objective problem
and do not make use of ML techniques (defined as ‘‘non-
ML’’ throughout the rest of the manuscript). The relevant
literature in this sub-section is representative with respect to
various network metrics, such as throughput, QoS, interfer-
ence mitigation.

In [52], a resource allocation scheme is proposed, where
target SNIR values are accompanied by the minimization of
power consumption. In the same context, in [53], the available
spectrum is shared between macro and micro cells to maxi-
mize the number of users and achieve the SNIR requirements
of each micro or macro cell user. In [54], a different approach
is considered, where the distance-based resource allocation
scheme is replaced by a model, based on priority classes of
the mobile devices in mobile type communications (MTC)
networks. This approach, apart from SNIR, considers latency,
total induced delay and pending number of MTC devices,
as well, for priority classes construction.

FIGURE 3. Relationship between QoS and QoE [54].

A key aspect in resource management policies in 5G net-
works is the harmonization with both QoS and QoE require-
ments. While QoS defines the user’s satisfaction in a strict
technical way, QoE reflects the overall user’s happiness or
frustration. The relationship between QoS and QoE is pre-
sented in Fig. 3. According to [55], there are two main (and
one upcoming) ways to achieve the optimal joint satisfac-
tion of QoS and QoE. The first one refers to the network’s
architecture and is the use of self-organized networks (SONs).
The other one refers to the efficient tradeoff between packet
loss, latency, traffic data (objective parameters) and mean
opinion score (MOS), that should always exist. Last but not
least, the integration of ML techniques in RRM, specifically
NNs, which use data-driven (CSI-driven) techniques, in order
to solve the optimization problem, can contribute in the
direction of joint QoS and QoE requirements’ satisfaction.
These techniques will be deeply analyzed in the upcoming
sections III and IV.

In the existing literature, the significance of both QoS and
QoE requirements’ satisfaction is highlighted. For example,
the authors in [56] consider the resource allocation problem in
M2M 5G 3GPP cellular systems. An optimal radio resource
allocation method in LTE and beyond cellular networks is
developed, based on adaptive selection of channel bandwidth,
depending on the QoS requirements and priority traffic aggre-
gation. Furthermore, a novel simulator is proposed, focusing
on the joint impact ofM2M and human-to-human (H2H) traf-
fic in 5G networks. In order to ensure the satisfaction of QoS
requirements, the proposed simulator automates RRM algo-
rithms for both the M2M and H2H traffic. The simulations
and results indicate that the proposed framework improves
the radio resource management policies’ application by 13%,
concerning the LTE frame formation process.

Wang et al. [57] use QoE utility function for spectrum
and power allocation in macro and pico–cell HetNets. For
the subcarrier allocation method, they construct a weighted
bipartite graph and revise Kuhn-Munkres algorithm to obtain
perfect matching. For power allocation, they use the first-
order derivative of the network utility function, achieving
the nearly-optimal levels of power minimization. However,
increasing the cell size results in QoE deterioration. In the
same framework of using QoE utility function, the authors
in [58] consider the joint subcarrier, assignment and power
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allocation problem. The proposed approach is based on the
decomposition of the general problem into two sub-problems:
the BS selection and subcarrier allocation sub-problem and
the power allocation sub-problem. A genetic algorithm for the
first problem and an artificial bee colony (ABC) algorithm for
the second one are proposed. The simulation results indicate
that the proposed power allocation scheme reaches optimal
solution levels quickly, while MOS increases for increasing
number of active UEs or available subcarriers.

In 5G HetNets, interference can have a critical impact
on the selection of the appropriate RRM strategy. There
are three types of interference. The first one is cross-tier
interference, which occurs between users in different tiers,
such as between macrocells and fempto-cells (FCs). On the
other hand, co-tier interference is experienced by users within
the same network tier [59]. Finally, inter-cell interference
occurs mainly at the cell edges, where a user can receive
signals from multiple BSs/RNs. The authors in [60] con-
sider a 3-tier HetNet and propose a joint interference and
resource allocation strategy. The examined use cases enhance
D2D communications in macro and small cells topology.
The joint sub-band and resource block (RB) allocation prob-
lem is solved, with respect to the QoS levels and D2D
interference minimization. The proposed scheme alleviates
significantly co-tier and cross-tier interference, compared
to traditional techniques. On the other hand, the proposed
algorithm introduces delays that could cause difficulties in
the deployment of the scheme in real-world scenarios. In the
same context, authors in [61] examine the influence of inter-
cell interference in the design of effective RRM strategies.
More specifically, they formulated an EEmaximization RRM
problem for a downlink OFDMA HetNet, and solved it via
a two-step generic algorithm. The first step concerned sub-
carrier allocation under SE requirements, while the latter
power management. Simulation results indicated that a trade-
off between EE and total achieved throughput should exist,
proposing small cell deployment as a way to simultaneously
improve both factors.

Xu et al. propose in [62] a resource allocation scheme
to maximize the system throughput, by considering cross-
tier and co-tier interference for macrocell users, as well as
the transmission power in HetNets. The proposed scheme
uses a nonlinear programming formula, solved by distributed
Lagrange dual methods. This method results in interference
limitation for the users spread in the topology. However, the
adopted approach involves many iterations, thus leading to
increased overall delays.

In [63], a joint RRM problem is investigated and solved
sequentially in an mmWave environment. The first one is
related to beam selection (beamforming), while the second
one to power allocation. These problems are formulated into
mixed integer nonlinear programming (MINLP) problems.
The authors solve the first problem using cooperative games
theory. In this way, optimal beam allocation is achieved and
served as input to the second problem, where the power
allocation scheme is determined, employing Lagrange duality

and an iterative water-filling algorithm. According to the
presented results, there are significant throughput improve-
ments, compared to classic RRM schemes. On the other hand,
computational complexity is extremely increased, reaching
almost prohibitive levels.

In [64], a similar joint routing and resource allocation prob-
lem is investigated, considering multi-tier analysis approach
formmWave systems. Resource allocation concerns the phys-
ical layer, while path selection concerns the network layer.
A stochastic algorithm is used for RRM and a linear pro-
gramming one for the path selection. The EE and the overall
system throughput are significantly improved, compared to
state-of-the-art algorithms. However, a lot of delay factors
are inserted, due to the adopted cross-layer approach. There-
fore, this scheme might be inappropriate, when dealing with
URLLC demands in emergency situations.

Another significant metric that originates from throughput
is SE, which is the ‘‘clear’’ information that can be trans-
mitted over a specific spectrum area in a wireless environ-
ment. In this context, the authors in [65] propose a resource
allocation system, based on SE requirements. They make use
of a hybrid-clustering game algorithm, that mitigates co-tier
and cross-tier interferences. The clustering problem is solved
using graph theory, and more specifically a maximum K-cut
algorithm in the interference graph of the topology. Then,
inside each cluster, resources are allocated to users, imple-
menting an auction game mechanism algorithm. According
to the presented results, there are significant improvements,
compared to state-of-the art approaches, in terms of SE and
throughput. However, we should mention that, by the above
scheme, both macro and micro-cell users are treated as one
entity. In this case, the QoS and QoE metrics are not taken
into consideration.

In ultra-dense modern era networks, power consumption
becomes a key issue. Thus, the metric of EE is used to
measure the power consumption in the topology [66]. In this
context, a complex scheme is proposed in [67], that jointly
maximizes EE and SE. There are three different components
in the proposed scheme. The first one is a system to bal-
ance the load between the BS of service and other BSs in
the topology, along with handover management. The second
one aims to manage inter and intra-cell interference and
frequency reuse. Finally, the third one applies a proportional
fairness (PF) allocation policy to guarantee fairness among
users. A binary search algorithm implements the resource
allocation, maximizing EE and SE. Therefore, this approach
is beneficiary for commercial use cases, due to the fast
decision-making mechanism, leading to optimal solutions.
However, the fully centralized nature of the algorithm might
increase overhead, due to the increased round-trip time.

Another key issue in future networks is the limitation
of usable resources to tackle the spectrum scarcity prob-
lem. Dynamic spectrum sharing is proposed as a novel
method for the cooperation between 4G-LTE and 5G tech-
nologies, as different spectrum resources can be allocated,
based on users demands, establishing improved SE levels and
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spectrum utilization. The authors in [68] proposed a dual
bargaining game model to solve the spectrum sharing prob-
lem guarantee effective real-time collaboration between LTE
and 5G systems. Results indicated that this scheme improves
total throughput and service failure by 5-10% compared to
traditional approaches.

Furthermore, the increased number of traffic load from
mobile devices, which causes the densification of wireless
networks, empowered the deployment of revolutionary cen-
tralized alternatives of the classical cellular architectures,
such as Cloud RAN (CRAN) andO-RAN. In CRAN architec-
tures the baseband processing unit (BBU) is moved from the
BSs onto a centralized cloud/edge BBU pool, while O-RAN
indents to provide open air interfaces and separate user and
control plane functions. The authors in [69] proposed a
two-stage optimization algorithm for the joint secondary user
selection, spectrum allocation and time scheduling problem
of downlink transmission in CRAN. Results indicated that
improved data rates, time scheduling and prioritization for big
data transmissions can be achieved using the above scheme.
Concerning O-RAN, the authors in [70] implemented a
mixed-integer linear algorithm to solve the joint distributed
unit and subcarrier allocation problem, with respect to energy
and latency minimization for delay-sensitive communica-
tions. Results indicate that the proposed approach consumes
less energy under a larger network size, compared to a dis-
joined scheme.

C. LIMITATIONS OF NON-ML APPROACHES
In the previous sub-section, significant non-ML approaches,
concerning RRM in 5G and B5G networks, are presented,
where various sub-optimal solutions are proposed, due to the
multiparameter nature of the problem. However, focusing on
the outcomes and results of those research efforts, several
limitations can be witnessed. In most cases of LTE and early
5G networks [56], [58], [59], [64], the enactment of the RRM
policy was based on perfect knowledge of specific param-
eters, such as the instantaneous CSI and QoS requirements
of the active users. Thus, the optimal allocation problem,
described in the above paragraphs, is solved through opti-
mization procedures. However, it is also apparent from the
problem formulation that, in practical wireless orientations,
multiple difficulties may arise, thus making resource alloca-
tion a multidimensional problem. More specifically:
• Most of the non-ML techniques provide solutions which
are not universal. Optimal solutions are highly correlated
to the current circumstances in each network’s topology,
user demands and qualifications. Thus, RRM, in general,
is a problem characterized by non-conventionality [71].

• The provided solutions may not be obtainable in real
time. HetNets and IoT networks have high levels of time
variability. An optimal solution in a time slot or interval
is not by default optimal for the next time unit [63], [64].

• The wireless channel in 5G and B5G networks is
defined by an extremely high propagation scheme, with
users characterized by random or partially unknown

mobility patterns. In these scenarios, the mathematical
formulation of the problem is arduous and, in general,
not easily defined [67].

According to these considerations, more efficient RRM
solutions should be implemented in both computational
and performance perspective. In this framework, ML-based
resource allocation algorithms are proposed in the literature,
as an efficient way to deal with the abovementioned lim-
itations. In the following paragraphs, after introducing the
different types of ML, we present the state of research in the
field and draw guidelines and considerations for future work.

III. ML ALGORITHMS IN 5G/B5G SYSTEMS FOR
RRM OPTIMIZATION
A promising direction to tackle the challenges we highlighted
in the previous sections is the deployment of ML [72], [73]
in order to formulate a data-driven framework in wireless
communications’ RRM. AI/ML technologies are and will be
used extensively in the 5G/B5G communications era, both
in the CN and the RAN part of the 5G (6G) environment.
In this direction, network slicing and trafficmanagement, that
enable improved network performance and reliability, are two
representative problem cases of AI-assisted solutions [23].

However, the reported research in the field has mainly
focused on the CN, in order to deal with the routing prob-
lem or to propose efficient network slicing implementations.
In general, less research efforts are reported on traffic control
or RAN. Moreover, for traffic control, until now the reported
research has only focused on the network layer, with only a
few research reports on the application of AI technologies to
the physical, application or semantic layer.

In the following subparagraphs, the related research con-
cerning the use of AI/ML in RRM is presented, classified
in terms of type of learning and architecture (centralized
vs distributed). The performance of the used models is also
discussed, and conclusions are drawn upon them.

Finally, in order to present and discuss the existing litera-
ture concerning the use of ML in resource allocation in 5G
and B5G networks, we first introduce in sub-section III.A the
classification of ML algorithms, in terms of the type of data
they process (labeled or unlabeled), as well as in terms of the
corresponding mechanisms (see also Fig. 4).

A. TYPES OF MACHINE LEARNING
Supervised learning is based on a dataset with values
accompanied by their respective labels. These labels can be
produced either by humans or automatically by computa-
tion [23]. A common practice to deal with the dataset is to
split it in a training and a test set, where the first one is used
for model training. In other words, a mapping between the
inputs and the labels is being produced. The most indicative
use cases of supervised learning are classification or regres-
sion problems. The latter term refers to the prediction of a
target numerical value, given a set of features/attributes, also
called predictors, through an estimation function. In linear
regression the estimation function is linear, while in logistic
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regression it is a common sigmoid. Classification refers to
the prediction of a class label, by using classified example
data as input. The basic difference, compared to regression
techniques, is that the model displays the probability that
a certain value belongs to a given class [73]. The system
is trained by multiple examples of a class, along with their
labels, in order to learn how to classify new instances. The
ML techniques/algorithms, that are mostly used in RRM-
related problems, are briefly presented below and will be
reported again in section IV, where the corresponding liter-
ature is analyzed in detail.

A k-NN algorithm classifies instances by comparing its k
nearest neighbor’s labels. Then, the item is classified to the
most common of them [74], [75]. On the other hand, Support
Vector Machines (SVMs) are used for both classification and
regression. Data are plotted as a point in an n-dimensional
space, where n is the number of features of the dataset, and
classified by finding the hyper-plan, which differentiates the
problem’s classes in an optimal way [76]. Decision trees
can be used, either for regression or classification purposes.
However, traditional decision trees approaches record high
variance levels, due to their sensitivity to training data. Aim-
ing to prevent this problem, alternative approaches are imple-
mented. For instance, bagging trees classifiers use bootstrap
simulations to generate reliable results [77]. A major cate-
gory of supervised learning techniques is the artificial neural
networks (ANNs). These learning algorithms are inspired by
brain, in order to simulate, predict or store information. Their
basic building units are neurons and the connections between
them, which formulate the model. ANNs are used both in
regression and classification problems.

Furthermore, overfitting/underfitting should be checked at
each time a model is formed, in order to prevent inserting
errors, making it unable to depict properly all the attributes
of the tested dataset. Underfitting occurs when the model is
not able to obtain a low error on the training set [78]. This
means that the model cannot describe all the characteristics
in the dataset. On the other hand, overfitting takes place, when
a significant difference between the errors in training and
implementation (training set vis a vis test set) is detected [79].
This means that the model describes more characteristics,
than the actual ones.

Unsupervised Learning differs from supervised learning
(see Fig. 4b), as the model itself tries to identify the common
characteristics of the dataset [23], [79]. Moreover, labels are
not included in the dataset, as the system tries to find them
without external help. However, the concept of training and
test data remains the same. We only insert, as input in an
unsupervised model, the number of clusters or characteristics
to be mined. By the term cluster, we refer to the number of
distinctive groups, in which the dataset is classified.

Finally, Reinforcement Learning uses a learning entity,
often called agent. Agents act as representatives of the sys-
tem, for its collaboration with the environment. The infor-
mation feedback that the agent returns to the model is called
rewards (positive case) or penalty (negative case). In that way,

FIGURE 4. Types of learning: (a) Supervised learning, (b) Unsupervised
learning, (c) Reinforcement learning.

the agent creates a policy to set up its own learning scheme
and decide which actions to choose in a certain situation. The
aim of the RL task is to maximize the reward over time [78].

B. SUPERVISED LEARNING
The authors in [80] consider a SON topology. A 5G network
simulator is proposed, along with a pathloss model, using
metrics, such as SNIR and throughput (LTE KPIs) in order
to deal with the problem of dynamic frequency and band-
width allocation in these topologies. The system is tested in
several frequencies and bandwidths. In order to set the RRM
policy and predict the KPIs, several ML methods, such as
bagging trees, boosted trees, SVMs and linear regressors are
evaluated. Bagging tree prediction witnesses the best overall
performance. The main feature of this method is that it uses
bootstrap sampling in deep decision trees, in order to reduce
the variance of themodel and classify data correctly to predict
the network’s KPIs. According to the derived results, the
decision tree learning-based method reaches 95% of optimal
network’s performance. Finally, the authors highlight the
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necessity for a joint consideration of networks’ KPIs and ML
performance metrics.

Working also onKPIs prediction, the authors in [81] design
a predictive model for the overall users’ demand. Then, they
use anML-based supervised classifier to allocate the network
resources dynamically (Network Resource Allocator). The
employed metrics are bandwidth, latency, jitter times, QoS
and QoE. The decision process for data traffic and allocated
subcarriers is defined by QoS and QoE. The learning proce-
dure is based on previously gathered experience from offline
measurements. Thus, the proposed Network Resource Allo-
cator empowers an automated flexible and elastic network.
The models are employed in the network’s controller in order
to change the network topology for better traffic management
by removing the unused parts of the network to release its
unused resources (i.e., subcarriers, unused links, etc.).

In m-MIMO systems, hundreds of antennas are used
for detection, resources’ allocation and channel estimation
(via channel coefficient matrix). In [82], an SVM scheme is
proposed for the estimation of the Gaussian channel’s noise
level and pathloss prediction in urban outdoor environments.
The general form of the problem has t transmitting MIMO
antennas and r receiving ones. The model predicts the chan-
nel noise statistics, according to which the allocation and
multi-tier QoS scheme will act for each independent user
or users’ category. Three kernel techniques are investigated
(Polynomial, Gaussian and Laplacian) and compared to the
Okumura-Hatta pathloss model and an ML-based ANN one.
Laplacian SVM witnesses the best performance, in respect
to both pathloss prediction and computational complexity.
The overall satisfactory performance of the SVM approach
is due to the use of multi-dimensional representations in
feature extraction, leading, thus, to reduced training time and
increased capacity. ANNs’ performance is similar to SVMs’
approach, needing though longer training times, as multiple
initializations are requested.

Considering DL approaches, Liu propose in [83] an ANN
algorithm for channel learning, to mine undiscovered chan-
nel information data from a 5G network. They use location
features and CSI and they produce channel samples from 5G
simulators, that are latter used as training data for the model.
The channel ANN estimation algorithm calculates unseen
aspects of the channel approximation and resource allocation
scheme. The prediction accuracy improves, compared to tra-
ditional k-NN classifiers. It remains, though, limited to a level
of 75%, but could be further increased by approximately 3%,
if geographical information is used in the dataset.

Zhang et al. [84] build a deep NN (DNN)-based framework
for user, subchannel and power control in NOMA mmWave
networks. The solution of the user association problem is
given by the Lagrange dual decomposition. The subchannel
and PRB allocation is given by a semi-supervised learning
algorithm, while the power allocation is given by a DNN
model. The use of the described joint ML-based compo-
nent (for user, subcarrier and power control) delimits the
entire decision-making policy in terms of RRM.According to

the presented results, the EE of the system is significantly
improved, while the resource allocation reaches optimal lev-
els (98% accuracy).

Guerra-Gómez et al. [85] propose a dynamic resource
management scheme, based on the prediction of the total
system’s capacity. They use three different ML algorithms:
SVM, DNN, and LSTM. According to the presented results,
the scheme can perfectly reduce the underutilized resources;
however, QoS levels are not optimized. Therefore, the authors
propose two novel strategies. The first one considers data
pre-filtering and results in an additional 2% minimization of
unallocated resources. The latter one considers error shift-
ing and leads to an additional 3% reduction in unallocated
resources. However, the achieved QoS levels form a barrier
in this approach.

The authors in [86] consider the problem of optimal and
automatic BS selection in LTE and 5G environments. They
propose twoML-based classification solutions to satisfy QoS
requirements; the first one uses SVMs and the second one
Random Forest. Both approaches are compared to a non-ML
BS selection approach. The results indicate that theML-based
BS selections can improve throughput and decrease outage
probability and delay. Specifically for a 50-user topology,
ML approaches achieve 23.21% higher throughput levels,
70% lower packet loss ratio and 48% lower delays compared
with a non-ML approach.

In the same framework, Butt et al. [87] investigate the UE
positioning problem in 5G networks. The authors compare
a decision tree classifier with two DNN solutions. The first
one uses training data from the service cell and overperforms
in terms of accuracy, while the second one uses transformed
data from the cell and its neighboring ones. In general, the
DNN solutions witness an overall near-optimal performance,
in terms of accurate positioning of UEs. In fact, the 2-hidden
layer DNN witnessed a positioning error in the range of
1-1.5 m, after appropriate feature selection.

C. UNSUPERVISED LEARNING
Song et al. [88] produce a realistic 5GV2V networks’ simula-
tor, with the presence of RNs. A k-Means clustering algorithm
is responsible for implementing BS or RN selection, user
allocation and serving policy. User positioning and RN dis-
tribution in the topology are performed via ML, in a way that
the serving device, BS or RN, is optimally selected. However,
the model calculates every 2D distance from the observation
point (in that case UE) to the borders of each cluster and not to
the cluster center. Thus, the overall communication environ-
ment parameters are not taken into consideration. Moreover,
since the proposed k-NN algorithm is a generic unsupervised
ML method for clustering, its performance can be affected,
if UEs have a complex spatial distribution or clustering is per-
formed in different topologies. However, the authors intend to
further improve and configure the algorithm, to define a more
efficient selection strategy.

The authors in [89] propose a data-based resource alloca-
tion scheme, where an ML technique of affinity propagation
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is used. In general, this approach uses graph theory to perform
clustering. The basic advantage of the proposed algorithm is
that it does not require the number of the clusters as input.
In this way, knowledge and behavior extraction can be made
even under complex scenarios. The authors conclude that the
data-driven nature of the RRM policy improvs both system’s
EE and throughput, although, in some cases, the QoS levels
are not the desired ones.

Wang et al. propose in [90] an asynchronous resource allo-
cation scheme, based on aggregation graph NNs (Agg-GNN).
In this approach, every BS or RN aggregates information
from its active neighbors with a certain delay. Thus, both the
underlying network structure and the system’s asynchrony
are incorporated. According to the presented results, this
approach outperforms heuristic ones, in terms of the total
system’s capacity. The presented simulations, though, used
only a small number of active UEs in the topology. Probably,
in more complex environments, GNNs’ training time might
increase, and, thus, performance might deteriorate.

In [91], the authors propose an integrated scheme for
resource management in NOMA environments. The first
stage of the algorithm refers to the users’ grouping and sub-
carrier allocation, while the latter one to the power control.
UEs are grouped via the k-Means method, while subcar-
rier allocation and cluster definition are calculated using the
F-test method [92]. Power assignment is performed for the
allocated subcarriers, by formulating a convex optimization
problem. The presented results indicate that the proposed
approach reduces electromagnetic exposure and increases the
total served users. Although in this approach single antenna
configurations are used, both in the BSs and the UEs, the
authors are aiming to extend their work to MIMO systems.

D. REINFORCEMENT LEARNING
Alnwaimi et al. used RL in [93] to increase spectrum acces-
sibility in FCs. The proposed scheme identifies the available
spectrum opportunities; then, it selects subchannels, so that
they operate avoiding intra/inter-tier interference and meet
certain QoS requirements. A key aspect of this approach is
that the considered method reaches optimal levels, in terms of
sub-carrier allocation, even in tiny cell topologies. The basic
contribution of this approach is the reduced convergence time
and the fast decision making procedure. However, these come
at the cost of reduced accuracy which is now limited to 75%.

In [94], an RL-based algorithm chooses the frequency
channel and determines whether to change its location in the
presence of jamming and strong interference. A Q-learning
algorithm determines the above decision, while a deep CNN
accelerates the channel feature extraction. The scheme oper-
ates extremely well for huge channel numbers, in terms of
interference mitigation, and increases SNR levels compared
to a simple Q-learning system (without CNN).

The authors in [95] propose a deep RL framework for
power control in 5GHetNets. The problem is formulated aim-
ing tominimize the difference between themobile users’ allo-
cated and requested throughput, by adjusting the transmitted

power of the macro-BS or RN. According to the pre-
sented results, the proposed approach reaches optimal levels
of users’ satisfaction, based on achieved throughput com-
pared to traditional water-filling [96] and weighted minimum
mean squared error (WMMSE) approaches [97]. However,
as expected, the difference between user demands and allo-
cated throughput is increased, as the user requirements do so.

The authors in [98] propose a distributed multi-agent deep
RL (MARL) framework for joint user and power allocation,
in a dense wireless network. The data are generated by real
measurements and backhaul delays. The results, via simu-
lations in dense wireless networks, indicate that the scheme
achieves a tradeoff between sum-rate and 5th percentile rate,
similar to centralized scheduling algorithms. The authors
intend to verify the performance of the RL scheme in real-
world scenarios in the future.

The authors in [32] use QoS as the basic metric in an
ML-based resource allocation scheme. An RL (Q-learning)
algorithm is used for the radio access technology (RAT),
while the actual RRM is developed, employing the monte-
carlo tree search (MCTS)-based Q-learning algorithm. The
authors prove that optimization is achieved after a reasonable
number of searches and that it outperforms other schedul-
ing methods, with respect to the system throughput and
resource utilization. However, the computational complexity
is increased, due to the exhaustive use of the MCTS method.
This could be a disadvantage in real case scenarios.

Moreover, RL methods are utilized [33] in order to mini-
mize the total transmission power in HetNets, while jointly
satisfying the bit rate requirements of different UEs. Every
UE can be connected to one of the available BSs or to another
UE, which acts as an RN. The authors use Q-learning in the
decision-making procedure. The proposed algorithm reaches
optimal levels, in terms of the resource allocation. In addition,
the decentralized nature of the algorithm, constitutes a very
promising approach with future extensions, as it uses specific
UEs as BS/RNs.

RL methods have been also used in 5G satellite commu-
nications to efficiently perform RRM related tasks. More
specifically, the authors in [99] propose an intelligent RL
wireless channel allocation algorithm for 5G m-MIMO High
Amplitude Platform Station (HAPS) networks, based on
Q-learning and back-propagation NNs. The entire network is
trained using the Q-learning model, while CSI information is
collected in the platform, through real-time agent interaction
with the environment, and thus, updating the Q-algorithm
using a back-propagation NN. Results indicated that, even
if the number of agents is very high, the channel allocation
accuracy levels remain high (over 75%).

E. DISTRIBUTED TECHNOLOGIES AND ML
As already pointed out in the previous sub-sections, an impor-
tant bottleneck in 5G networks is data overload, in conjunc-
tion with the limited storage and computational power of
UEs and BSs. A recently proposed solution is to use dis-
tributed structures for processing reasons (Fig. 5). In wireless
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FIGURE 5. MEC implementation.

networks, this is mostly achieved via MEC architectures,
where cloud, edge andmobile processing cooperate [9].MEC
and ML are inextricably related concepts. MEC, being a dis-
tributed approach, uses ML tools in heterogenous topologies
(such as 5G and 6G networks) to obtain CSI till the network’s
edges, in order to define the resource allocation policy in each
case. The goal of MEC is to minimize the computation time,
by allocating the traffic to different processing units.

In that case, as described in [100], the processing time over-
performs the corresponding processing time without MEC.
If user n sends a computation task j to a MEC device m, then
the total MEC latency is given by the transmission time of
task j from user n to the processing unit m, plus the user
delay to process the task, plus the execution time in the MEC
device [101].

Focusing on MEC technologies in RRM, the authors
in [101] present the state-of-the-art on the employment of
MEC networks, focusing on architecture, cashing, compu-
tation and use of ML-based schemes. In general, caching
refers to the temporary storage of content (CSI in RRM-
related tasks) in centralized or decentralized databases, for
future access. The reasoning behind those storages is that
an instance (i.e., a D2D communication in RRM), that has
occurred once, is very likely to occur again in the future.
In MEC systems, these techniques are commonly used for
decision making and allocation of available resources. For
example, the authors in [102] reach a 10 – 11% lower
latency and improvements in QoE, compared to non-caching
schemes. The authors in [103] propose an efficient content
caching policy for edge using dynamic ML predictions. The
proposed Long-Short-term Memory approach provided 30%
higher caching ratio, than conventional approaches.

MEC and ML are combined in complex optimization
problems, as well. In this context, resource allocation,

beamforming and caching issues can be jointly encoun-
tered. Related works in this field use DL models, such as
ANNs, for accurate computations. Such efforts are described
in [104] and [105], considering decentralized hybrid beam-
forming in 5G next generation node BSs (gNodeBs).
The proposed novel techniques (CNN frameworks in both
[104] and [105]) outperformed state-of-the-art optimization-
based and greedy-based algorithms, both in terms of SE and
computational complexity.

A synergy of MEC and ML is also achieved through
federated learning (FL). Counter to centralized ML meth-
ods, where local data (from UEs in 5G/B5G networks) are
uploaded to a centralized server, and also counter to classical
distributed approaches, where data are uniformly distributed
among the edge devices, FL schemes use local data to train
a global model, through multiple training iterations across
interconnected edge devices (UEs), in order to achieve the
desired global accuracy. Then, local updates, generated by
each interconnected device, are aggregated to a cloud or
a MEC server (in BSs) (Fig. 6). The required accuracy is
achieved by multiple communication rounds between the
server and the edge devices, which train the model with
their local datasets. Thus, the total training time is a key
aspect in FLmodel design [106], [107]. The main reason, that
renders FL implementation an efficient method in distributed
computation problems, is the privacy and security that is
achieved through the local training of the model and the
secure aggregation to the server entities. However, in RRM-
related tasks, active UEs or edge devices have different
processing power, antenna characteristics and mobility pat-
terns, leading, thus, to heterogeneity in local datasets. More
specifically, the data generated in each UE contain different
labels and/or features and are not of the same volume. This
is called non-independent and identical distribution (non-
IID) in the generated data [106]. Therefore, the purpose of
implementing FL schemes in RRM (i.e., resource allocation,
latency minimization) is, also, to address the aforementioned
heterogeneity and, in that way, improve the accuracy of the
global model [108].

In this framework, the authors in [108] propose a UE
scheduling method in an FL-assisted wireless network, based
on the joint quality of channel and learning optimization.
When wireless resources are limited, this method improves
the overall training time, compared to traditional ones.
However, the model’s accuracy decreases in an environment
with powerful resources, due to data overload.

To deal with the problem of training latency in different
topologies of the network, the authors in [109] consider joint
optimization for user selection, frequency and transmit power
allocation, using the Majorize – Minimization algorithm and
phase shifting, by employing semidefinite relaxation and
Gaussian randomization, to reduce the training time of the
FL wireless system.

Concerning distributed computation and MEC employ-
ment in 5G/B5G networks, the classical hierarchical structure
of a cellular network is proposed to change in order to become
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FIGURE 6. FL in 5G/B5G networks.

more flexible and decentralized. In this framework, O-RAN
and CRAN architectures, analyzed in Section II, are about to
efficiently satisfy the joint requirements of increased through-
put levels with respect to QoS and QoE standards, and also to
the concept of low-energy green networks.With respect to the
aforementioned considerations, the authors in [110] proposed
a deep Q-learning framework in CRAN to maximize EE sub-
ject to the constraints analyzed in Section II-A. As previously
stated, the Q-learning method uses past learning experience
to predict future effects and make reward/penalty decisions.
However, sometimes action overestimation generates lower
probability limits for the maximum Q-value. With the use
of a double Q-learning model, the target Q-value gener-
ation leaded to bigger energy savings, whereas numerical
evaluation indicated that the method reduces by 22% and
also, improves EE at the same rate. Considering an O-RAN
architecture, the authors in [111] propose an RL based RRM
solution and deployed it in the ecosystem. The O-RAN Dis-
tributed Unit sends periodically reports to the O-RAN Inter-
face and a dynamic per-flow resource allocation strategy is
employed to set the modulation and coding scheme, accord-
ing to KPI requirements.

F. SUMMARY—COMMENTS
Table 2 summarizes the usage of ML in 5G/B5G RRM prob-
lems, and groups accordingly the research papers presented
in sub-sections A÷D.

As already stated in section III and verified by Table 2,
Supervised Learning techniques are mainly used for predic-
tion purposes. Indeed, various networks’ KPIs (throughput,
SNIR, pathloss) can be effectively predicted, in order to
empower allocation strategies [80]–[82]. DL methods, due to
their ability to mine deep data and label associations through
multiple complex hidden layers (ANNs, DNNs, CNNs), are

mainly used in user, subcarrier, power allocation and CSI
prediction tasks [86], [87]. The multiparameter nature of the
RRM problem and the complex channel feature associations
render DL approaches as the most efficient way to deal with
the total RRM problem [83]–[85].

On the other hand, Unsupervised Learning focuses, in gen-
eral, on clustering: the corresponding models are efficient in
user grouping, BS or RN selection and QoS levels formula-
tion, concerning RRM tasks [88]–[92].

RL models -as DL ones do- are more efficient dealing
with the NP-Hard problem of the overall resource allocation.
In this framework, RL approaches, such as Q-learning, are
proposed by researchers in joint user, subcarrier allocation
and energy consumption minimization problems [93]–[99].

Finally, MEC and FL methods, which refer to the most
recent evolution in the field, are proposed to face the challeng-
ing issue of training time minimization, latency minimization
and computational resources optimization [102]–[111].

From the above analysis and Table 2, a categorization
of the best performing ML algorithms for each RRM-
related sub-problem is visible. As presented in Section II,
the NP-hardness of the joint subcarrier allocation and power
control with respect to QoS, QoE constraints has led recent
research efforts to deploy more intelligent solutions, which
have the ability to communicate with the cellular environ-
ment, and change their predictions and decisions (DL, RL,
FL methods), based on the current conditions. However,
the existence of big data in transmission systems and wire-
less networks necessitates the utilization of classical ML
approaches, such as supervised ones, specifically in order to
tackle problems where the knowledge of a KPI and/or CSI
is vital for low latency responses and fast decision making
(e.g. for coding and/or modulation scheme selection in each
timeslot).

Despite the growing activity on ML usage in resource allo-
cation, the existence of several limitations and open issues,
that will be analyzed in the next section, motivate further
research.

IV. SIMULATIONS AND COMPARISON
In this section, the performance of various ML algorithms for
KPI prediction is presented. The investigated ML algorithms
have been selected based on two criteria. The first crite-
rion is their ability to satisfactorily solve the KPI prediction
problem. This means that we have selected algorithms with
performance scores over 75%. The second criterion is the
usage of these algorithms in RRM-related KPI prediction
task in 5G/B5G networks, according to the presented lit-
erature in the previous sections (i.e. [79]–[81], [89]–[91]).
More specifically, using the Lumos-5G dataset [112], the
problem of throughput prediction is investigated (Lumos5G
features are summarized in Table 3). The dataset contains
68,118 observations of 19 features, concerning UEs’ loca-
tion and mobility parameters, such as longitude, latitude,
UE speed and direction, UE-BS distance and corresponding
angles, as well as network related ones, such as network status
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(connected or not), CSI parameters (Received Signal Strength
Indicator – RSSI, Reference Signal Received Power – RSRP,
Reference Signal Received Quality – RSRQ, SNIR), and
signal strength, derived by real-world experiments and sta-
tistical analysis. The measured downlink throughput acts as
the response variable. Throughput prediction is formulated,
either as a classification or as a regression problem. On the
one hand, classification refers to the prediction of the received
throughput level by each active UE, given the dataset features.
The effective solution of this problem can be valuable in
a variety of RRM-related tasks, such as modulation levels
definition.

On the other hand, regression refers to the prediction of
the actual expected value of the metric (throughput in our
case). The information gathered by the regression task can
be valuable in RRM decision tasks, such as subcarrier and/or
power allocation, via the prediction of the values for next
timeslots.

Considering throughput prediction as a classification prob-
lem, two different approaches are considered in our analysis.
The first one concerns three preselected throughput levels
(3 classes):
• Level 0 – low throughput: from 0 to 300 Mbps,
• Level 1 – medium throughput: from 300 to 500 Mbps,
and

• Level 2 – high throughput: above 500 Mbps.
However, due to the small amount of data in the second

class of the previous approach, we consider also an alter-
nate approach, where two preselected throughput levels exist
(2 classes):
• Level 0 – low throughput: from 0 to 300 Mbps,
• Level 1 – medium throughput: above 300 Mbps.
The above-presented level limit values -in both 2-class and

3-class approaches- have been generated after performing
extensive statistical analysis to the used dataset, concerning
the goal of including satisfactory samples in each investigated
class. Thus, we examine four distinct ML-based algorithms:
• FFNN: A Feedforward NN with 100 hidden layers and
rectified sigmoid activation function (ReLU) and opti-
mized hyperparameters,

• k-NN: A k-NN-based classifier using 2 neighbors and
Chebyshev distance criterion,

• SVMs: Two SVM models, one using polynomial and
another using Gaussian kernel and

• DNN: A Deep NN with a feature input layer -using the
19 features of the dataset- and z-score normalization,
a fully connected layer with 19 × 50 weight matrix
and a 50-element vector output, a 50-channel batch-
normalization layer, a ReLU layer with a 50-element
vector output, a second fully connected layer with 3 or 2
(3-class and 2-class problem respectively) neurons and
50 × 3 (3-class problem) or 50 × 2 (2-class prob-
lem) weight matrix and a 3-element/2-element vector
output and, finally, a soft-maximization layer with a
3-element/2-element vector output. The overall DNN’s

FIGURE 7. DNN’s architecture.

TABLE 3. Lumos5G features.

structure for the 3-class problem is shown in Fig. 7.
DNN’s structure for the 2-class problem is similar and
differs only in the size of the two last layers (fully
connected layer 2, soft-max layer).

In both of the abovementioned approaches, an 80%-20%
training-test set split has been used, as well as a 10-fold
cross validation procedure. The performance of the above-
mentioned classifiers is evaluated, using the accuracy and
F1-score metrics. Accuracy is the percentage of the total
number of the correct predictions divided by the total number
of observations. In other words, accuracy is the sum of True
Positive (TP) and True Negative (TN) predictions, divided by
the number of the total predictions (TP+TN+ False Positive
(FP) + False Negative (FN)). Then, F1-score is given by the
following formula:

F1 = 2 ·
TP

TP+FP ·
TP

TP+FN
TP

TP+FP +
TP

TP+FN

(6)

Table 4 summarizes the performance of the above models
in the classification task (with two or three classes), based
on classification accuracy and F1-score. The k-NN-based
approach overperforms all the other approaches, witnessing
the best overall accuracy (0.87 and 0.90 with three and
two classes, respectively). In general, supervised learning
algorithms (such as k-NN) are the most appropriate ones
in networks’ KPIs prediction, as drawn from the existing
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TABLE 2. Research work on ML techniques in 5G/B5G RRM.

literature, analyzed in subsection E of section III. However,
concerning F1-score, DNN has the best performance (0.81) in
the 3-class problem, while k-NN (0.90) in the 2-class model.
As stated in previous paragraphs, DL algorithms, due to their
multiple hidden layer architecture, witness unseen aspects of
the dataset, and, thus, their performance is satisfactory in the
classification task. In this case, the preselected classes are
imbalanced. Therefore, F1 metric is more reliable, because
it concerns both TP, TN and FP, FN, while accuracy takes
into account only TP, TN. It is also visible from Table 4,
that, using only two classes, both accuracy and F1-metrics
are improved. Moreover, with respect to the training time
of each ML model we observe that k-NN overperforms the
other approaches, while the DNN approach reaches almost
the same performance levels. Thus, these two ML methods
are the most appropriate for the investigated problem in both
performance and training time perspective. On the other hand,
FFNN approach has significant delay in training time, even
though the performance accuracy almost coincides to the
best-performing algorithm’s one.

TABLE 4. ML Classification algorithms comparison.

Figs. 8, 9 depict the comparison of selected state-of-the-art
throughput classification approaches [113]–[115] while the
previously presented evaluation analysis is included as well.

For each of the [113]–[115] works, we pick the best per-
forming ML algorithm, and so we do for our evaluation
approach, as far as the 3-class throughput prediction problem
is concerned (i.e., k-NN algorithm, see Table 4). As it is
apparent, our evaluation approach is consistent with similar
approaches in other recent works [113]–[115].

Considering throughput prediction as a regression
problem, the following algorithms are examined:
• Linear regression: A multi-linear regression model,
using all 19 dataset features except throughput, which
is the response variable,

• Binary Decision tree: A Gaussian binary decision tree
designed for regression purposes, using auto-optimized
hyperparameters,

• SVMs: Two SVM models, one using polynomial and
another using Gaussian kernel and

• NN: A Feed Forward neural network with 100 hidden
layers, a feature input layer with the 22 features of the
dataset and z-score normalization, a 50×50 fully con-
nected layer, a 50-channel batch-normalization layer,
a ReLU layer, a soft-maximization layer and a regression
layer.

• LSTM: A LSTM neural network with a sequence input
layer for the 22 features of the dataset, an LSTM layer
with 125 hidden units, a fully connected layer and a
regression layer.

Similarly to the investigation of the problem as a classifi-
cation one, an 80%-20% training-test set split is used, as well
as a 10-fold cross validation procedure. The performance of
the abovementioned ML models is evaluated using the mean
absolute error (MAE) and RMSE metrics. MAE is defined as
the difference between the actual and the predicted values of
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FIGURE 8. Classification models comparison: accuracy.

FIGURE 9. Classification models comparison: F1-score.

the response variable (throughput), while RMSE is defined as
the square root of the squared difference between the actual
and predicted values.

Table 5 and Figs. 10, 11 summarize the performance of
the above models in the regression task, based on MAE
and RMSE. The two best performing ML-based approaches
are Binary Tree regressor and LSTM regressor, witnessing
the best overall MAE and RMSE performance (162,257 and
150, 250 respectively). As in the previous case (classifica-
tion problem), supervised and Deep learning algorithms are
the most appropriate ones in networks’ KPIs prediction as
a regression problem. In fact, decision tree algorithms and
linear regressors are designed for regression purposes. How-
ever, NN model’s performance is also highlighted, as it is the
second best in both metrics (237 and 328, respectively).

Fig. 12 depicts the comparison of the state-of-the-art
throughput prediction approach in [113] with our previously
presented evaluation analysis for the regression problem.
We pick the best performing regression ML algorithm
of [114], and so we do for our evaluation approach.
(i.e., LSTM regressor, see Table 5). The comparison is

TABLE 5. ML Regression algorithms comparison.

FIGURE 10. Regression models: MAE.

conducted using RMSE as metric. As it is apparent, our
evaluation approach is consistent with the approaches in other
recent works [114].

To conclude, we observe that, in general, both our
approaches and other recent works on the KPI prediction
problem for 5B/B5G networks propose Supervised or DL
models as the most appropriate tools for this type of problem
either as a classification or a regression one. On the one hand,
supervised learning models (k-NN, SVMs, Random Forest)
seem to have the best performance concerning training time.
But on the other hand, DL (DNNs, LSTM) models overper-
form when it comes to performance metrics, such as accuracy
and F1-score for classification purposes or RMSE, MAE for
regression ones.

V. DISCUSSION AND OPEN ISSUES
As already stated, the allocation of the available net-
work resources is a multi-objective problem, due to the
diverse nature of users’ requirements, hardware evolution
and demand for continuous connectivity. Despite the research
progress presented in section IV, some open questions and
practical challenges persist, requiring even more effort in
the field of ML-based RRM, to reach its full potential. The
critical issues that should be taken into consideration are
highlighted below and summarized in Table 6.

1) 5G and B5G networks utilize ML-based algorithms
to phase the growing number of usage scenarios in
access management. Therefore, ML performance met-
rics (such as RMSE for regression problems, accu-
racy for classification ones, etc.) should be examined
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TABLE 6. Open issues and potential solutions concerning ML employment in RRM.

FIGURE 11. Regression models: RMSE.

FIGURE 12. Regression models comparison: RMSE.

along with the network metrics (i.e., total network
throughput, QoE, etc) [80], [88]. Some approaches
(e.g. [79], [85]) focus only on the ML metrics perfor-
mance increase, without evaluating also the networks’
metrics.

2) Throughout this manuscript, we have presented the
critical role that AI/ML plays in wireless networks and
in IoT and heterogenous topologies, in general. How-
ever, researchers should not overlook some practical
limitations that exist in the implementation process of
ML-based RRM strategies, i.e., when developing the
corresponding ML model. More specifically:

• 5G datasets unavailability and/or poor quality:
A key procedure for building ML models is the
validation and training stage. 5G full deployment
throughout the world was set for 2020, before
the COVID-19 pandemic. Hence, 5G data from
implemented networks have only recently started
to be produced. The AI/MLmodels, that have been
produced until now, are using synthetic or incom-
plete data from past networks’ generations [101].
Another aspect that also affects data quality is the
fact that, in general, wireless network data are
characterized by noise and inaccuracy. In fact, even
well-established wireless network datasets -such
as DeepMIMO [116]- witness quality issues in a
variety of RRM-related problems. We should also
keep in mind that, due to the highly interferenced
environment, huge datasets, including numerous
features and observations, are, anyway, required.
All the data-related limitations presented in this
paragraph, prevent ML models from reaching high
levels of accuracy; lack of input leads to sub-
optimal or non-optimal solutions. This considera-
tion reflects every ML-based model, regardless the
type of learning. Both supervised, unsupervised,
reinforcement or deep learning approaches have
insufficient results when the quality of the input
data is moderate.

• Learning difficulties due to channel complexity
in multiuser environments: 5G wireless networks
are characterized by multipath propagation in a
highly interferenced environment. This, as stated
previously, consists one of the reasons for the need
for an enormous variety of features and channel
observations in ML datasets construction for RRM
(preferably Big Data). Hence, feature extraction
for channel information becomes a demanding
task. Linear models and generic algorithms (such
as simple-tree models, regressions, etc.) are unable
to provide optimal solutions, concerning effec-
tive resource allocation. The approaches discussed
in previous sections configure ML-algorithms by
alternating hyperparameters and evaluate accuracy
in the RRM sub-problems. In this context, per-
formance and models’ selection policies are vital
in ML-based approaches. Researchers should have
deep knowledge of the ML models, pre-trained
or not, so that they become able to correctly

83524 VOLUME 10, 2022



I. A. Bartsiokas et al.: ML-Based Radio Resource Management in 5G and Beyond Networks: A Survey

evaluate them [117]. Concerning the complexity
of the channel and the growing users’ demand in
5G/B5G networks, DL methods are proposed as
the more efficient ones.

• Computational complexity: In terms of accuracy,
the AI/ML models discussed in previous sec-
tions have improved performance, when used to
solve complex problems based on networks’ KPIs.
Concerning the URLLC requirements and the
demand for mass access to the medium in 5G/B5G
networks, RRM decision making should be done
with respect to computational complexity. How-
ever, the highly interferenced environment and ran-
dom mobility patterns of UEs act in the opposite
direction. Thus, ML techniques should succeed
in proposing a trade-off between the solution’s
accuracy and computation requirements [82], [90],
[98]. Even thoughDL solutions are proposed as the
most efficient ones, they increase computational
complexity, by employing multiple hidden layers
to yield accurate results. In this respect, distributed
approaches usingMEC architectures and FL-based
algorithms should be considered. Taking also into
account the requirement for energy efficient net-
works, researchers should maintain the computa-
tional cost to tolerable levels [83], [88].

3) Power consumption rapidly increases in 5G, and
will further increase in B5G networks, compared
to previous generations, due to the users’ growing
demands for continuous access to enhanced services
and applications. ML schemes, if effectively imple-
mented, contribute in power savings, as, hopefully,
they lead eventually to fast and more accurate RRM
decision-making. For further energy consumption mit-
igation, we should incorporate energy-efficient tech-
nologies during the models’ training phase, where
additional computational resources are needed. In this
direction, Green AI techniques and distributed process-
ing methods (such as MEC) should be further investi-
gated, so that less energy harvesting solutions become
feasible [38].

VI. CONCLUDING REMARKS
This article presents a state-of-the-art analysis concerning the
deployment of ML-based approaches in the context of effi-
cient RRM in 5G/B5Gwireless networks. A categorization of
these approaches, based on the type of learning, is provided,
in order to point out which ML algorithms should be used in
different RRM sub-problems (e.g., unsupervised clustering
algorithms in RN selection, DNNs in subcarrier allocation
and power management, etc.). Moreover, we emphasize the
need for cooperation and coexistence between AI/ML-based
RRM and distributed approaches, due to the multiparameter
nature of the problem, by presenting MEC and FL as possi-
ble solutions, which improve a variety of network and user
KPIs. Based on the above, we conclude that ML-enabled

approaches can overcome limitations that existing (non-ML)
approaches could not, such as non conventionality and real-
time integration.

Furthermore, we highlight the open issues and limitations
of ML-based RRM and, thus, propose guidelines for other
research efforts in the field. In this context, we point out that,
5G datasets unavailability or poor quality, complex channel
and high levels of interference, computational complexity and
increased energy consumption, are of most importance in the
process of building AI/ML models.

Finally, in order to demonstrate effectiveness of ML-based
RRM, and also empower the effectiveness of ML algorithms
in various RRM sub-problems, we investigate via simula-
tions the problem of throughput prediction, treated either
as a regression or as a classification one. According to the
presented results, supervised learning approaches (k-NNs,
decision trees etc.) overperform in terms of training time,
while DL ones overperform in terms of ML performance
KPIs (accuracy, F1-score, RMSE, MAE). Results evaluation
is consistent with other state-of-the-art approaches.
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