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ABSTRACT The ever-increasing and diverse user demands as well as the need for uninterrupted access to the
medium with minimum latency in dense machine type communication networks, are the key driving forces
to a holistic network redesign. In this context, fifth-generation and beyond (5G/B5G) networks, incorporate
various advanced physical layer techniques, such as relaying-assisted transmission, aiming to improve
network performance and extend the coverage area of multicellular orientations. However, the deployment of
such techniques in a cellular environment characterized by high interference levels and multi-variate channel
representations, leads to increased computational complexity for radio resource management (RRM) tasks.
Machine learning (ML), and especially Deep Learning (DL), is proposed as an efficient way to support
end-to-end user applications in highly complex environments, since ML/DL models can relax the RRM-
associated computational burden. In this paper, we consider the joint problem of relay node (RN) placement
and selection subject to subcarrier allocation and power management constraints in 5G/B5G networks.
Various DL-based methods are examined and combined to solve both sub-problems. The performance of
these schemes is evaluated for various relaying-assisted transmission approaches, either considering known
channel state information (CSI) or not. According to the derived results, total system energy efficiency
(EE) and spectral efficiency (SE) can be improved by up to 30%, when considering only the DL-based
RN placement scheme compared to state-of-the-art non-ML schemes. The deployment of the reinforcement
learning (RL) model for RN selection, can improve EE up to 80%, while SE can be improved up to 75%,
compared to a system with only DL-enabled RN placement.

INDEX TERMS Relay assisted transmission, machine learning, deep learning, Q-learning, 5G networks,
system level simulations.

ACRONYMS
3D Three-dimensional.
5G Fifth Generation.
A&F Amplify-And-Forward.
AI Artificial Intelligence.
ANN Artificial Neural Networks.
AR Augmented Reality.
B5G Beyond Fifth Generation.
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BER Bit Error Rate.
BS Base Station.
CSI Channel State Information.
D&F Decode-And-Forward.
DL Deep Learning.
DNN Deep Neural Networks.
DQL Deep Q-Learning.
EE Energy Efficiency.
FEC Forward Error Correction.
FNN Feed-Forward Neural Network.
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HetNet Heterogenous Network.
IoT Internet Of Things.
KPI Key Performance Indicator.
L3 Layer 3.
LOS Line of Sight.
LSTM Long-Short Memory Network.
MANET Mobile Ad Hoc Network.
MAPE Mean Absolute Percentage Error.
MaC Macro Cell.
MC Monte Carlo.
ML Machine Learning.
m-MIMO Massive Multi-Input-Multiple-Output.
mmWave Millimeter Wave.
mMTC Massive Machine Type Communications.
MRC Maximal Ration Combining.
MSE Mean Squared Error.
NOMA Non-Orthogonal Multiple Access.
OFDMA Orthogonal Frequency Division Multiple

Access.
OP Outage Probability.
PA Power Allocation.
QoE Quality of Experience.
QoS Quality of Service.
RA Resource Allocation.
RB Resource Block.
ReLU Rectified Linear Unit.
RL Reinforcement Learning.
RN Relay Node.
RNN Recurrent Neural Network.
RRM Radio Resource Management.
SC Small Cell.
SE Spectral Efficiency.
SER Symbol Error Rate.
SNIR Signal-To-Noise-Plus-Interference-Ratio.
TD Temporal Difference.
UAV Unmanned Aerial Vehicle.
UE User Equipment.
URLLC Ultra-Reliable-Low-Latency

Communication.
UxV Unmanned ground, air, surface or undersea

Vehicle.
VR Virtual Reality.
WANET Wireless Ad Hoc Network.
WSN Wireless Sensor Network.

I. INTRODUCTION
In recent years, fifth-generation (5G) and beyond (B5G)
wireless communications systems have been established to
support the exponential growth rate of mobile data traf-
fic [1]. Moreover, the rapid evolution of wireless services,
such as high-definition video streaming, Internet of Things
(IoT) applications, augmented/virtual reality (AR/VR), wire-
less or mobile ad-hoc networks (WANETs/MANETs) and
unmanned aerial vehicles (UAVs), drove 5G/B5G standard-
ization process to deal with different telecommunication

service categories, such as ultra-reliable low-latency-
communications (URLLC), enhanced mobile broadband
(eMBB) and massive machine type communications
(mMTC) in mass access environments [2], [3]. In this con-
text, various novel physical layer technologies have been
introduced over the last years to cope with the increasing
challenges in the wireless communications domain, such as
massive multi-input- multiple-output (m-MIMO) configu-
rations, millimeter Wave (mmWave) transmission, as well
as non-orthogonal multiple access (NOMA) [4]. However,
the aforementioned advanced physical layer technologies,
when applied in a cellular environment characterized by high
interference levels and complex channel approximations,
along with increased connection density and near-random
user mobility patterns, maximize the computational cost to
support strict users’ requirements and demands. Machine
learning (ML) algorithms are proposed as an efficient way
to tackle these considerations, due to their ability to utilize
data generated by the network itself in improving network
performance and efficiency [5], [6]. ML algorithms are
trained using either data generated by the wireless network
under test or by similar ones. In this way, complex channel
calculations are encapsulated in ML models’ layers, which
leads to the decrease of computational cost and complexity
after successful training rounds. Moreover, some ML algo-
rithms (e.g., Reinforcement Learning (RL) ones), can directly
interact in real-time and support low-latency requirements of
modern era networks. It is important to highlight that when
applying ML models in physical layer optimization tasks,
both ML metrics and network metrics (such as Quality of
Experience (QoE), energy efficiency (EE), spectral efficiency
(SE), user fairness, achieved throughput, active users and
blocking probability, etc.) should be jointly examined and
evaluated [5].

The 5G/B5Gnetwork architecture is based on the heteroge-
nous networks (HetNets) model in order tomeet the increased
network capacity and ultra-density requirements. HetNets
involve the composition of a number of smaller, simpler,
and lower-power base stations (BSs), with different char-
acteristics (transmission capacities, coverage areas, carrier
frequencies, etc.) to improve cell-edge coverage and enhance
the network key performance indicators (KPIs) [7]. Several
recent research efforts have been conducted on HetNets’
performance evaluation under various radio resource man-
agement (RRM)-related tasks. Indicatively, Beshley et. al. in
[8], proposed a QoE-enabled RRM technique for 5G/B5G
multi-layer networks to reduce energy consumption in such
topologies, while distributing the service process between
Macro and small cells (MaCs, SCs). In fact, by switching
SCs to sleep mode when no active users are served, radio
usage efficiency is improved by 25% and energy consumption
by 8.7% compared to a system where SCs are constantly
operating. On the same context, authors in [9] propose a
delay-aware RRM scheme to guarantee user fairness, mini-
mize losses and provide low-latency services in eMBB 5G
HetNet scenarios, taking also into consideration Quality of
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Service (QoS) levels maintenance. The proposed algorithm
has three main phases, which are summarized as follows:
a) delay-based resource block (RB) matrix formulation,
b) flow prioritization based on a greedy algorithm, c) data
rate calculation and adjustment based on channel state infor-
mation (CSI) and available data to be scheduled. System’s
performance is evaluated with extensive system level simu-
lations, which indicate that the proposed solution achieves
a 4-5% throughput gain, a ∼65% delay decrease and a
guaranteed user fairness compared to other state-of-the-art
approaches. Similar conclusions have been presented by
authors in [10], where a secure RRM optimization problem
for HetNets is formulated, with the objective to maximize
the achieved throughput for both cell center and edge users.
The proposed Utility-based Resource Scheduling Algorithm
shares resources between least-delay users of each appli-
cation, aiming to maintain fairness and reduce cross layer
interference for real and non-real time applications. Per-
formance evaluation indicates that the adopted approach
overperforms other state-of-the-art ones in terms of achieved
throughput, user fairness and SE.

The indicative research efforts presented in [8], [9],
and [10], are focused on the direct communication link
between a BS (either this is a Macro, micro or even smaller
one) and the user equipments (UEs). However, there are
cases even in HetNet topologies, where the coverage area
of each cell should be extended for more users to be
served by the network. Such scenarios are of significant
interest in Unmanned Vehicles (UxVs) scenarios or mili-
tary/defense networks. In this context, relay nodes (RNs)
have been proposed as a ‘‘retransmission technology’’, that
can relax transmission burden from centralized BSs. Thus,
by using RN-assisted RRM mechanisms, total system’s
performance can be upgraded by further improving data
rates, mitigating interference levels and extending network
coverage [11].

An open research field concerning the use of RNs in mul-
ticellular 5G/B5G networks is the optimal relay placement
within each cell’s area, to improve various network KPIs,
such as total served users, achieved throughput and signal-
to-noise-plus-interference-ratio (SNIR), total transmitting
power and blocking probability. Moreover, the selection of
the optimal RN, from the candidate ones, to serve each active
UE in the topology is, also, of the same interest.

Compared to an established one-hop downlink communi-
cation link between a BS (transmitter) and a UE (receiver),
an n-hop relaying-assisted BS-UE link’s complexity is
increased due to the following reasons:
(a) The use of RNs was introduced in 3GPP release 16

[12], while the beginning of standardization process
can be found in release 17 (latest stable edition of
3GPP documents) [13]. This means that there are no
detailed channel, pathloss and mobility models for
RNs.

(b) The effectiveness of the RN-UE connection is based,
also, on the quality and stability of the BS-RN link.

(c) Shared resource management should be performed,
as RNs are a layer 3 (L3) entity, which needs BSs’
assistance in performing advanced RRM tasks.

Recently, ML is proposed as an efficient approach to deal
with the abovementioned problems of optimal RN placement
and optimal RN selection between candidate RNs [14]. The
key characteristic of ML-based approaches is that -using data
generated by existing systems-, they can accurately estimate
the examined system’s behavior, with the minimum compu-
tational cost. In this way, complexity is reduced, and accurate
predictions can be performed leading to real-time responses.

In this paper, we focus on solving the joint problem of
RN placement and selection by utilizing different ML-based
techniques, focusing on Deep Learning (DL) and RL. Our
contributions are the following:
• We first formulate the problem of RN placement to
maximize the number of active users in each cell of the
cellular topology. Thus, given only the number of the
RNs per cell to be deployed and a set of potential geo-
graphical positions (x-y coordinates of potential RNs),
the k best-performing RNs are selected to serve the
active users in each cell. The aforementioned selection
is performed subject to three main constraints. The first
one is the minimization of pathloss for each accepted
user, the second refers to the minimization of the total
transmitted power by each deployed RN, while the latter
is the maximization of the total accepted users in the
topology. Moreover, we test our algorithm in two dif-
ferent simulation scenarios. The first one considers the
presence of ideal CSI, while the latter considers no CSI
at all.

• To tackle the aforementioned problem, we propose
two efficient offline RN placement ML/DL algorithms
which focus on fast response times taking into consider-
ation the constraints previously presented. The fist DL
algorithm considers a Deep Artificial Neural Network
(ANN) orientation, while the latter considers a Long-
Short Memory Network (LSTM) one.

• After the optimal placement of the RNs in each cell’s
coverage area, we formulate the problem of optimal RN
selection for each accepted user in the topology. In other
words, for users not served directly by the BSs, either for
pathloss or power consumption reasons, the optimal RN
(from the k eligible) should be selected to serve them.

• To solve the aforementioned problem, we propose an
energy efficient RL-based algorithm to select the opti-
mal beam (RN) to serve each accepted user in the
topology. A Deep Q-Learning (DQL) RL algorithm is
utilized for this scope. In this context, EE and SE are the
KPIs that determine algorithm’s transitions.

• Finally, all presented approaches are evaluated by
extensive system level simulations in different usage
scenarios. Performance evaluation indicates that the
joint DL-based RN placement and selection scheme can
overperform state-of-the-art approaches in improving
various network KPIs, such as EE and SE.
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• To sum up, the utilization of DL/DRL schemes, both
for efficient RN placement in each cell of the cellu-
lar topology and for RN selection, which forms a full
ML/DL-assisted RRM framework focusing on both EE
and SE, is the key novelty of this paper.

The rest of the paper is organized as follows. In Section II,
we provide a brief overview of the existing literature on the
field of RN placement and/or selection in 5G/B5G HetNets.
In Section III, the 5G/B5G system model is introduced.
Moreover, the joint NP-Hard relay placement and selection
problem is mathematically formulated as well. Thus, after the
optimal placement of the required number of RNs in each
cell’s coverage area, each accepted user -which cannot be
served by the primary BSs system- is associated with the RN
that maximizes EE and SE. In Section IV, the proposed DL-
based algorithm for RN placement with the corresponding
deep neural networks (DNNs) structures are presented. The
performance of these algorithms is evaluated assuming both
guaranteed knowledge of CSI and not. In Section V, the
DQL algorithm for RN selection (with the corresponding
state and transition tables), is presented. Hense, the joint RN
placement and selection problem is completely formulated. In
Section VI, the performance of the proposed ML/DL-based
algorithms is evaluated using a MATLAB 5G/B5G link and
system level network simulator that has been developed in our
lab. Finally, in SectionVII, concluding remarks are presented.

II. ML-BASED RELATED WORKS
Algorithms for RN placement and selection is an active
area of research in wireless communications, especially in
5G/B5G cellular communication networks. In fact, the imple-
mentation of relaying-assisted communications is proposed
in different usage scenarios in modern era wireless systems,
such as MANET/WANET networks, supply chain manage-
ment and manufacturing. Moreover, the joint utilization of
RN-assisted communication and modern multiple access
schemes, e.g., NOMA, are also of high research interest
nowadays. In these cases, the NP-Hard optimization problem
[14] of RN placement and/or selection is solved through
either distance-based techniques with the use of graph theory
or game theory [15], [16], or via extensive search algorithms
(e.g., using ergodic capacity analysis) [17]. Furthermore,
moving RNs are, also, under research, due to the growing
interest in UAV communications [18].

In this framework, we investigateML-based solutions as an
efficient way to deal with the NP-Hardness of the aforemen-
tioned problem. In this Section, current research activities
on the field of ML-assisted RN placement and selection
are presented. The concept of ML-assisted RN placement is
introduced in [19]. Authors presented an optimal RN posi-
tioning method, aiming to improve system’s performance
in uncertain and dynamic-changing multicellular topologies.
Consequently, channel quality prediction in both BS-RN and
RN-UE link is of primary concern in defining RN position-
ing. Authors proposed a learning-based and a distance-based
method for channel prediction based on mobility patterns

of RN under test. The achieved connectivity levels are used
as the basic KPI during performance evaluation. A heuristic
optimization algorithm is used for optimal RN position-
ing, outperforming a recently developed relay positioning
algorithm.

In [14], an approach for deploying the minimum accepted
number of RNs -as a subset of given potential locations- is
considered with respect to QoS requirements in multi-hop
wireless systems. A hop count boundary is inserted to ensure
a certain blocking probability in the BS-RN link. To deal with
the NP-Hardness of the RN placement problem, a polyno-
mial time approximation algorithm using shortest path trees
and heuristically pruning the relay nodes used until the hop
count bound is violated, is proposed. Performance evaluation
indicated that this approach efficiently solves the above-
mentioned problem in various randomly generated network
scenarios. More specifically, optimal solutions are given in
over 90% of the tested scenarios. Afterwards, authors used
random graph techniques to derive an upper bound on the
average case approximation ratio for the used algorithms
based on the number of source nodes, and the hop count
bound. This average case analysis was the first one in RN
placement literature.

On the other hand, authors in [20] face RN placement
problem as a clustering one. The scenarios of interest con-
sider Wireless Sensor Networks (WSNs), where RNs are
used as mediators between users and applications’ servers
by assisting messages transmission. A k-means clustering
ML approach is activated for link restoration whenever it is
necessary based on transmitting power, number of packets
lost in a RN-BS link and BS-UE distance. Thus, for each BS,
the corresponding RN is deployed at the most frequently used
route in the network. Numerical evaluation indicated that
the proposed method outperforms existing distance-based
methods on the basis of various KPIs such as residual energy,
end-to-end delay and the number of hops required in the
network from source to destination. Moreover, k-means clus-
tering algorithm implementation can reduce the total number
of used RNs.

Considering industrial WSNs, authors in [21] studied the
placement of RNs in a realistic three-dimensional (3-D)
factory space based on the satisfaction of various physi-
cal, performance and energy-related KPIs. The study was
performed using IEEE 802.15.4e low latency deterministic
network mode in order to achieve low latency and highly reli-
able communications in harsh factory environments, which
are suffering from noise, interference and multipath fading.
Hense, frequent packet losses are reported. The authors pro-
posed the joint incorporation of RN nodes and forward error
correction (FEC) techniques leading to enhanced commu-
nication reliability. More specifically, on the one hand an
efficient and pragmatic relay-placement strategy based on
rainbow product ranking algorithm for a 3-D factory space,
and on the other hand an adaptive RL transmission scheme
(using Q-learning techniques), which incorporates coopera-
tive diversity and Reed Solomon block codes, are proposed.
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A real-world case study is performed in order to evaluate the
correctness and effectiveness of the presented solution. The
proposed RN placement strategy has improved performance
in terms of cost reduction and total number of deployed RNs
compared to other state-of-the-art approaches. Moreover, the
used Q-learning method efficiently utilized the resources in
terms of relays and BSs, making the transmission scheme
more generic in terms of, not only adopting to versatile
factory environments but also accommodating the dynamic
behavior per link in the factory space.

Amore complex scheme considering not only RN localiza-
tion but also power management in 5G networks is presented
in [22]. A mathematical analysis for defining expressions
and minimum threshold for end-to-end average symbol error
rate (SER) and outage probability (OP) is performed for in
amplify-and-forward (A&F) RNs, introducing those KPIs
as the main ones for the problem definition. As a result,
the high correlation between BS-RN and RN-UE links,
is described. Afterwards, the joint power allocation (PA) and
RN placement problem is considered. Results indicated that
RN placement optimization is more efficient than PA. Thus,
an ML implementation of the proposed convex optimization
problem is investigated. The joint problem is translated to a
regression ML problem and authors propose a feed-forward
neural network (FNN) approach (2 and 3 hidden layers are
considered). ML-models’ performance is controlled using
the mean absolute percentage error (MAPE) metric which
reached over 90% score. The simulation results demonstrated
a compromise between MAPE and computation times for the
FNN-based joint PA-RL optimization.

Authors in [23] proposed a combined RN selection and
resource allocation (RA) algorithm. A key drawback in exist-
ing approaches is the need for a large number of relays to
forward signals transmitted on multiple subcarriers. How-
ever, signal generation in multi-hop scenarios increases the
complexity of combined RN selection compared to that of
per-subcarrier relay selection, when the number of relays
increases. In dense 5G networks, the impact of that problem
is even bigger. To deal with this drawback, authors proposed
a supervised ML method. The training phase is implemented
off-line, leading to a considerable reduction to the RN selec-
tion complexity and the processing latency. An ANN scheme
is used for the best couple of relays to be selected. In each
epoch the least accuracy criterion is checked to continue
simulations. Accuracy and Mean Squared Error (MSE) are
the two considered KPIs for ANN’s performance. Numer-
ical evaluation indicated that the proposed supervised ML
approach can provide near-optimal performance with lower
computing latency, which nearly reaches the optimal relay
selection in a per-subcarrier manner.

Over the last years, RL-assisted RN selection and RA
have attracted scientific research interest as well. In this
context, Geng et al. in [24] studied the joint outage probability
minimization, RN selection optimization and transmission
power reduction problem in RN-assisted 5G networks, where
the existence of accurate CSI is extremely difficult. Thus,

the authors proposed an RL prioritized experience replay
aided framework, acting in optimal solution finding to the
above-mentioned problem without any prior knowledge of
CSI. The proposed approach is compared to other RL-based
solutions, and performance evaluation indicated that com-
munication success rate can be improved by about 5%.
On the same context, the authors in [25] proposed an RN
selection algorithm to succeed in providing guaranteed reli-
ability, low latency, and power consumption levels in large
scale multi-hop 5G topologies. The proposed scheme uses
Q-learning RN selection based on SNIR levels. Q-learning is
an RL approach, which consists of an agent, the environment,
agent’s states, actions, as well as rewards or penalties. In
learning stage, the agent learns the optimal allocation policy
to maximize the reward [26]. From network’s perspective, the
BS knows the optimal RN to select and transmit the signal.
The used RNs are decode-and-forward (D&F) ones, and the
system uses orthogonal frequency division multiple access
(OFDMA) techniques. Finally, the proposed scheme tries to
utilize optimal allocation policy based on the learning out-
comes of the previous stage, based on the SNIR. Performance
evaluation indicated that the proposed approach achieves the
same bit error rate (BER) levels as conventional RN selection
schemes in the literature. The basic advantage of the proposed
approach is the selection of fewer RNs when the target BER
is satisfied. Consequently, system’s latency is improved.

The aforementioned research efforts describe some aspects
of the utilization of Artificial Intelligence (AI)/ML methods
for the optimization of either the problem of RN placement
or RN selection -over a set of available RNs- in wireless
systems. However, most of these works evaluate the proposed
algorithms in single-cell orientations, or by limiting the num-
ber of active UEs in the topology. Our motivation is to extend
these works and present a global ML-based framework to
both train an offline ML model to place the RNs based on
the performance of simulated UEs in the topology, but also,
propose an RL method to interact with the cellular environ-
ment and select the best-performing RN for each accepted UE
in the topology.

III. SYSTEM MODEL
In this section, the studied system model under investiga-
tion is presented. Subsection A refers to the overall system
description, subsection B refers to the formulation of the
RN placement problem, while subsection C analyses the RN
selection problem.

A. SYSTEM OVERVIEW
The downlink of a cooperative wireless OFDMA 5G/B5G
multicellular HetNet is considered, as illustrated in Fig. 1.
The studied system has two different levels of base entities.
The first one, Macro-BSs, forms the primary system where
UEs can directly access and request service. The latter one,
RNs, form the secondary system, aiming to assist the primary
system in improving capacity and coverage area, by serving
UEs that have been initially rejected by the primary system.
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We should state that in our analysis and simulationsA&FRNs
are considered.

FIGURE 1. Two-hop 5G/B5G HetNet with A&F RNs.

Thus, the cooperative system consists of M BSs, R RNs
and N uniformly distributed UEs. The set of BSs is denoted
as Sb = {b1, b2, . . . , bM}, the set of RNs is denoted as
Sr = {r1, r2, . . . , rR}, while the set of UEs is denoted as Su =
{u1, u2, . . . , uN}, respectively. The potencial link between a
BS and a UE is denoted as Lb,u where b ∈ Sb and u ∈ Su,
the potential link between a BS and a RN is denoted as Lb,r
where b ∈ Sb and r ∈ Sr, while the potential link between
a RN and a UE is denoted as Lr,u where r ∈ Sr and u ∈ Su.
Note that the Cartesian coordinate system is used to locate all
enrolled entities both considering 2D or 3D space.

B. RN PLACEMENT PROBLEM FORMULATION
As previously stated, RNs are deployed to assist the pri-
mary communication’s system to support UEs that are
initially rejected due to high pathloss or other power allo-
cation reasons. The goal of this sub-problem is to select
the NCRN positions (set of x-y-z coordinates) for the best-
performing RNs to be deployed in each cell’s coverage area.
Best performing RNs are selected to optimally meet user
requirements and maximize each cell’s performance. Thus,
a predefined number of potential RNs are placed in different
positions inside each cell’s coverage area, declared as RN can.
Fig. 2 provides an illustration of such a topology for a single
5G/B5G cell where RN can = 10 candidate RNs deployed.
Thus, the NCRN best-performing RNs are selected out of

Src, where Src = {rc1, rc2, . . . , rcRN can} is the set of candi-
date RNs is each cell, subject to the following constraints:
• (C1): min(PLn),∀n ∈ N , where PLn is the pathlos
between each accepted UE by the secondary sytem, and
the RN that is assigned to.

• (C2): min(Pt,r),∀r ∈ R, where Pt,r is the total transmit-
ted power by each deployed RN.

FIGURE 2. 5G/B5G system’s cell with candidate RNs.

• (C3): max(AN r),∀r ∈ R, where AN r denotes the total
accepted UEs served by RNs.

Two offline ML-enabled methods are proposed to solve
the aforementioned problem utilizing DL principles and tech-
niques, as presented in Section IV. Moreover, both methods
are examined either under known CSI/channel conditions or
under fully unknown CSI. These aspects are also discussed in
Section IV.

C. RN SELECTION PROBLEM FORMULATION
As shown in Fig. 3, for each cell of the cellular topology, there
is an M t antenna source -which is located at the BS of each
cell, N uRN UEs -where N uRN ≤ N are the initially rejected
UEs from the primary system, that request RN assistance,
equipped with M r antennas, and NCRN RNs in the two-hop
wireless relay network. As it was previously described, the
direct link between source and destinations does not exist due
to high pathloss effect. Therefore, A&F relays are used to
process the received signal and support communication. Each
UE is connected only to one RN and orthogonal channels
are used to achieve full set gain and mitigate co-channel
interference. This sub-problem’s goal is to optimally select
the most suitable RN out of NCRN candidate ones for each
UE n ∈ N uRN , with respect to the active user maximization
for each cell of the topology.

In a two-hop 5G/B5G wireless communications system,
like the one depicted in Fig. 1, the total bandwidth, BW,
is divided into N sc subcarriers to be allocated to the accepted
UEs. There are two classes of accepted UEs. On the one
hand, the first class contains UEs that are directly accepted
by the primary system (BS-UE direct communication). The
SNIR for the nth UE (1 ≤ n ≤ N ) of this category, asso-
ciated with the l th subcarrier (1 ≤ l ≤ N sc) for a specific
channel realization and assuming independent BS-UE links,
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FIGURE 3. Two-hop 5G/B5G Relay Selection.

is denoted as follows [27]:

SNIRn,l =
Gn,n,l

rn,lHrn,lI0 +
∑

m̸=n,l∈Sm Gn,m,l
(1)

where Gn,m,l = pn,ltm,lHHn,sec(m),l
Hrn,lHrn,lHn,sec(m),ltm,l,

Hn,sec(n),l represents the M r × M t channel matrix (flat
Rayleigh fading) for the lth subcarrier of the nth UE relevant to
its serving sector sen(n), tn,l is theM t×1 transmission vector
in diversity combining transmission mode, rn,l is the Maxi-
mal Ratio Combing (MRC) multiplying vector [28] and pn,l
denotes the transmission power allocated to the lth subcarrier
of the nth UE. Moreover, the set Sn indicates the subcarriers
allocated to the nth UE and I0 is the thermal noise level.
Finally, AH denotes the conjugate transpose of matrix A.
On the other hand, the second class contains UEs that

are directly connected to the secondary system (RN-UE
connection). Thus, through relaying, BS-UE communication
link is established through multi-hop communication. In this
two-hop connection between BSs and UEs, RNs can be
defined as UEs in the BS-RN link, and as BSs in the RN-UE
link. In this case, for the nth UE (1 ≤ n ≤ N ) of this category
equation (1) is modified as follows:

SNIRn,l(RN) =
Gn,n,l(RN-UE)

rn,lHrn,lI0 + IBSn,l + IRNn,l
(2)

where IBSn,l =
∑NBS

b=1
∑

m∈UEb,l∈Sm
Gn,m,l and IRNn,l =∑NRN

r=1
∑

j∈UEr,l∈Sj
Gn,j,l are the cumulative interference lev-

els for the lth subcarrier of nth UE served by the bth BS or
rth RN. Moreover, NBS,NRN are the total number of BSs
and RNs in the topology, respectively, UEr denotes the set
of UEs served by the rth RN, while the notation x-y indicates
all possible link connections.

Total system throughput is given by [29] for the whole
two-hop wireless communication 5G/B5G system:

R =
N∑
n=1

∑
s∈Sn

rn,s

= BSC{
NBS∑
b=1

∑
n∈UEb

∑
s∈Sn

log2(1+ SNIRn,s (BS))

+

NRN∑
r=1

∑
m∈UEr

∑
s∈Sm

log2(1+ SNIRm,s (RN))} (3)

where |Sn| indicates the length of the set Sn, rn,s is the
corresponding data rate for the sth subcarrier and BSC is the
bandwidth per subcarrier. Using (3), system’s EE is defined
as:

EE =
R∑N

n=1
∑

s∈Sn pn,s
(4)

On the same context, system’s SE is defined as:

SE =
R
BW

(5)

Therefore, the overall RRM-policy that will be applied to
the system targets to maximize EE and SE subject to the
following system and power constraints:
• (C1):

∑
s∈Sn pn,s ≤ pm, where pm denotes the maximum

power limit per UE.
• (C2):

∑
n∈UEb

∑
l∈Sn pn,l ≤ Pm, where Pm denotes the

maximum power limit per BS and the set UEb consists
of the UEs that are served by the bth BS.

• (C3):SNIRn,l ≥ SNRthr, where SNRthr is the SNIR
threshold for acceptable QoS.

• (C4):
∑

n∈UEb
|Sn| ≤ N SC, as all BSs have equal access

to all available subcarriers.
A DQL scheme is proposed in Section V to solve the

aforementioned problem of selecting the suitable RN for
each accepted UE of the secondary system. DQL extends the
classic frameworks by utilizing ANNs to help software agents
to learn how to define actions and rewards. In other words, a
DQL framework optimizes underlying function approxima-
tion by the use of one (or sometimes two) ANNs to map states
and actions to the rewards they lead to. Consequently, it is
visible that such an approach can be quickly and dynamically
adjustable based on the environment. In our case, Section V
proposes a dynamic DQL framework to select the best per-
forming RN -out of the available ones- for each UEs of the
secondary (RN-assisted) 5G/B5G system.

IV. DL-BASED RN PLACEMENT
In this Section the proposed DL-based schemes for optimal
RN placement are presented. Subsection A refers to the used
dataset construction, subsection B refers to the two proposed
models (DNNs) structure, layers, and optimization, while
subsection C analyzes the performance of both schemes in
the following two scenarios:
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• Scenario 1: The channel coefficient matrix sub-table is
known for the link of eachUE and the corresponding BS.
Moreover, the channel coefficient sub-tables are known,
also, for the RN-UE link.

• Scenario 2: There is no CSI information available both
for the BS-RN and the RN-UE link. Thus, dataset con-
struction and algorithms are based only on geographical,
pathloss and topology parameters.

A. DATASET CONSTRUCTION
As expressed in [5], a key procedure for building ML models
is the validation and training stage. For this purpose, datasets
used for learning objectives should be accurate, up-to-date
and should always be evaluated. In this paper, we use a
MATLAB 5G/B5G link and system level network simulator
to construct our dataset after adequate Monte-Carlo (MC)
simulation rounds. This simulator is based on the work in
[11], where both different Inband and Outband A&F RN
scenarios are considered. The implemented simulator takes
into consideration all physical layer aspects such as small and
large scale fading, interference management and cluster def-
inition for each user of interest, etc. However, the following
improvements have been made:
• The deployment of more RNs per cell has been included.
In [11] all scenarios (both Inband and Outband ones)
consider the deployment of up to three RNs per cell,
mainly deployed in cell edges. In the updated version
of the 5G simulator, an increased number of RNs per
cell is considered, so that the best performing RN can be
selected for each accepted user in an unbiased manner.

• Moreover, channel modelling has been updated accord-
ing to the newest 3GPP specifications (basically the
latest version of 3GPP TS 138 211 regulation) by
integrating mobility parameters, existence of Line
of Sight (LOS) propagation and outage probability
estimation [30].

• The Algorithm 1 of [11] is extended to select the best
RN (out of the deployed ones in each cell) based on both
minimum pathloss and energy consumption. Hence, this
algorithm, which combines MIMO and OFDMA prin-
ciples in two-hop 5G/B5G cellular orientations, tries to
maximize both the EE and SE for the overall orientation
under evaluation.

Such a topology is presented in Fig. 2 concerning 10 poten-
tial RNs. Thus, by performing numerous MC simulations
we store the performance of various UEs, both indoor and
outdoor ones, and both moving and static ones. Then, we are
focusing only on the UEs that are served by the secondary
system. MC simulations are finalized only after adequate
UEs’ performance is simulated. For the NP-Hard RN place-
ment problem simulating 10.000 to 100.000 UEs defines
an adequate number of UEs’ performance evaluation. The
values that are stored for each UE, which is accepted by
the secondary system in the simulation round, concern both
location/localization parameters (x, y and z-axis position),
serving BS, pathloss, total losses and MIMO parameters

(channel coefficient matrix). All related variables and metrics
of interest for each simulated UE are presented in Table 1,
forming the dataset used for DL-model training.

TABLE 1. Dataset features.

In order to form the final dataset, the last feature (Hmatrix)
is decomposed into M r × M t different features, each for a
specific cell of the Hmatrix. Thus, the whole dataset feature
number is the following:

Datasetsize =

{
6+ 2× RN can +M r ×M t Scenario1
6+ 2× RN can Scenario2

(6)

B. DL MODELS STRUCTURE AND FINAL RN PLACEMENT
We propose two DL models to predict the best performing
RN for the UEs in the constructed dataset. We should note
that for hyperparameter tuning and selection the Exhaustive
Grid Search method has been utilized in both models’ design
[31]. According to that method multiple search rounds are
performed over all possible hyperparameter configurations in
order for the best performing ones to be selected based on the
KPIs of interest (in this case accuracy and F1-score).

The first one is a Deep ANN, also known as DNN network,
with the following structure (see also Fig. 4):

• Feature input later with z-score normalization of the
input, where Datasetsize features are inserted to the
DNN.

• A fully connected layer with 50×1 output size, multi-
plies the input (feature input layer) by the corresponding
weight matrix and, also, adds the bias vector.

• A batch normalization layer, to normalize data across
all observations for each channel independently, mak-
ing training of the NN faster through re-centering and
re-scaling.

• A (rectified linear unit) ReLU layer, using rectified acti-
vation function to force the input directly to the output
if it is positive, otherwise, to zero output.
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• Another, fully connected layer similar to the previous
one with output size numClasses× 1, where numClasses =

RN can.
• A soft maximization (sofmax) layer to predict the multi-
nomial probability distribution of the data. These layers
are commonly used in multi-class classification tasks,
as the one that is examined in this work.

• The classification’s output layer, which produces the
predicted best-performing RN for each UE.

FIGURE 4. Proposed DNN’s structure.

The second one is a Recurrent NN (RNN), LSTM, with the
following structure (see also Fig. 5):
• Feature input layer with z-score normalization of the
input, where Datasetsize features are inserted to the
DNN.

• An LSTM layer with 52 hidden units. This layer is
categorized as an RNN layer, which learns long-term
dependencies between data features. Additive interac-
tions between features are used to improve gradient flow
over long sequences of data throughout training phase.

• A dropout layer with 0.2 probability to randomly set
input elements to zero.

• Another LSTM layer with 40 hidden units.
• Another dropout layer, as the previous one.
• Another LSTM layer with 15 hidden units.
• Another dropout layer, as the previous ones.
• A fully connected layer like the previous one with
numClasses × 1, where numClasses = RN can.

• A soft maximization layer.
• The classification’s output layer, which produces as out-
put the predicted best-performing RN for each UE.

C. PERFORMANCE EVALUATION OF THE PROPOSED
MODELS
We consider the downlink of a wireless multicellular 5G
orientation, where extensive use of RNs takes place. A 2-tier
and 19 cell topology is considered, where UEs are uniformly
distributed. Concerning the used MIMO antenna configura-
tions, both BSs, RNs and UEs are equipped with 2 antennas.
Each BS’s antenna lays at 25 m, while each RN’s one lays
at 12,5 m and each UE’s one at 1,5 m. The relevant antenna
gains are 18/9/4 dB for BSs, RNs and UEs respectively. Each

FIGURE 5. Proposed LSTM network’s structure.

accepted UE requests 6 subcarriers in each timeslot, while
132 subcarriers are available to be allocated to UEs from
each BS. Subcarrier spacing is set to 60 kHz. A significant
configuration parameter is the possibility of direct LOS con-
nection between BSs - UEs, BSs- RNs and RNs -UEs. The
first two parameters are defined by [30], while the RN-UE
LOS existence, which is not regulated, is set to 10%.

We simulate the performance of a large number of UEs
(50.000 indoor/outdoor -with 80/20% probability- mov-
ing/static UEs) to construct the dataset used for training of our
DLmodels.Moreover, 10 candidate RNs are deployed in each
cell’s coverage area, as shown in Fig. 2. An adaptive modula-
tion scheme is used based on each UE’s demands for QoS
levels. Three different modulation levels (QPSK, 16-QAM
and 64-QAM) are considered along with their respective
threshold values. All simulation parameters are summarized
in Table 2.

TABLE 2. Dataset simulation parameters.

Using the parameters presented in Table 2, MATLAB
5G/B5G system and link level simulator produces the dataset
that is used as input to the two proposed DL models. During
the training phase of both DL-based approaches, an 80%-
20% training-test set split has been used, as well as a 10-fold
cross validation procedure to split the dataset into training,
validation and test set. The problem of optimal RN placement
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is examined as a classification one, by selecting the best
performing RN out of the 10 potential RNs for each UE. The
performance of the abovementioned classifiers is evaluated,
using the accuracy and F1-score metrics. Accuracy is the per-
centage of the total number of the correct predictions divided
by the total number of observations. In other words, accuracy
is the sum of True Positive (TP) and True Negative (TN)
predictions, divided by the number of the total predictions
(TP + TN + False Positive (FP) + False Negative (FN)). Then,
Precision, Recall and F1-score are given by the following
formulas:

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)

F1− score = 2×
Precision× Recall
Precision+ Recall

(9)

Tables 3 and 4 summarize the performance of the two
proposed DL models in the RN placement based on test set
classification accuracy, precision, recall and F1-score for both
Scenario 1 and Scenario 2.

TABLE 3. DNN performance.

TABLE 4. RNN(LSTM) performance.

As it can be observed from Tables 3 and 4 LSTM
algorithm’s performance is better that DNN’s performance
(both accuracy, precision, recall and F1-score) when CSI is
known and is included in training set’s features. Similarly,
LSTM algorithm’s performance is better (both concerning
accuracy, precision, recall and F1-score) when there is no
CSI knowledge. However, when fast, low-latency responses
are considered in 5G/B5G networks, it is vital to examine
the trade-off between ML metrics and training time required,
as also depicted in [5]. In that perspective, it is visible from
Tables 3 and 4 that LSTM networks need some more time to
train relative to DNNs. However, comparing training times
of these two approaches (LSTM, DNN), we can state that
training times are similar in both Scenario 1 and Scenario 2.
Thus, it is fair to say, that the overall performance of the
LSTM networks is better than DNN, concerning ML/DL
performance and metrics-training time trade off. The same

conclusions can be drawn from Fig. 6 as well, where the accu-
racy and loss versus training epochs are displayed both for
DNN and LSTM algorithms in the two examined scenarios.

FIGURE 6. Accuracy and Loss per training iteration and epoch.

After evaluating the two proposed DL models (ANN,
RNN) based on the ML classification KPIs, we use these two
approaches to identify the k best performing RNs out of the
10 candidate active ones placed in each cell of the topology
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(see Fig. 2). This is achieved using our lab’s MATLAB
5G/B5G link and system level network simulator, as follows:
• Simulate the performance of 100.000 UEs in the cellular
topology of Fig. 2, configured with the parameters in
Table 2.

• Select the best-performing RN for each UE using the
two proposed ML/DL models, both in Scenario 1 and
Scenario 2.

• Find the k potential RNs serving the most UEs, and thus,
assign them as deployed ones. The proposed models are
evaluated with k=3 deployed RNs in each cell of the
cellular topology.

Table 5 presents the k=3 best-performing RNs out of the
10 potential ones, that are selected to be deployed in each cell
of the cellular topology illustrated in Fig. 2, which is also used
in overall system’s performance evaluation.

TABLE 5. Deployed RNs.

V. DEEP QL FRAMEWORK FOR RN SELECTION
A. Q-LEARNING AND DEEP Q-LEARNING PRINCIPLES
RL is an ML category which is based on the interaction and
communication with the learning environment to train and
validate effective models. This is achieved by the utiliza-
tion of a learning entity called software agent [5]. As also
described in [5], ‘‘the information feedback that the agent
returns to the model is called rewards (positive case) or
penalty (negative case)’’. In that way, the agent creates a pol-
icy to set up its own learning scheme and decidewhich actions
to choose in a certain situation. The scope of an effective RL
model is to maximize the cumulative rewards over time [26].
There are several known RL schemes such as state-action-
reward-state-action [32], Q-learning [33], DQL [34], deep
deterministic policy gradient [35] and asynchronous advan-
tage actor-critic algorithm [36]. However, the most widely
used RL algorithms are Q-Learning and deep Q-Learning,
which combines Q-learning and neural networks.

Q-Learning algorithm has been proposed as an efficient
way to deal with rapidly changing and non-linear environ-
ments. For this purpose, Q-Learning fits perfectly in the
5G/B5G wireless network domain. The cellular environment
is characterized by complex propagation models, increased
interference levels, dense connections and high user mobility,
making Q-Learning a promising approach to solve com-
plex optimization problems which have to do among others
with resource allocation, power management and RN or BS
selection.

A typical Q-Learning environment is depicted in Fig. 7.
The agent (Q-function) collects feedback from the envi-
ronment and takes some action that will later affect the

environment. In other words, there is a set of potential states
and a set of potential actions that can be performed. The agent
specifies the transitions between states, based on the actions,
aiming to maximize reward. Q-function is mathematically
formulated as follows [5], [37], [38]:

Q′(st, at)← Q(st, at)+ a× (r t + γ × maxb(Q(st+1, b)

− Q(st, at)), b ∈ A (10)

where Q′ is the updated Q value, st is the state at the current
time interval and st+1 is the state at the next time interval.
Moreover, α is the learning rate and r t is the reward received
from the network when moving from the state st to state st+1
and A is the Q-table that stores all the actions. Moreover, γ is
the discount factor which determines the importance of future
rewards. In fact, 0 ≤ γ ≤ 1, where a zero value means that
only current rewards are considered, while a discount factor
close to onemeans that long-term high rewards are of interest.

FIGURE 7. Q-learning environment.

However, in 5G/B5G RRM problems (such as RN place-
ment and selection), when utilizing m-MIMO antenna con-
figurations and advanced physical layer techniques such as
OFDMA or NOMA, advance precoding and beamforming,
the Q-table with the full set of potential actions, states and
rewards can be large enough. This can exponentially increase
the optimization problem’s complexity, which comes against
the major 5G/B5G requirement for low latency responses.
In such cases, a NN can be trained to map the set of states
with the best-performing action or in other words to perform
the Q-function approximation. This RL technique is called
DQL and is widely proposed due to its’ ability to decrease
the amount of the state-action duplets of the tabular-based
Q-Learning algorithm, and, thus, produce more generalized
models in optimization tasks [39], [40].

Based on Equation (10), a DQL agent aims to gather all the
related information from the environment by minimizing the
so-called temporal difference (TD) function [41], between
the next Q-value r t + γ × maxb(Q(st+1, b)), b ∈ A and the
current Q-value Q(st, at). For this purpose, the DQL’s basic
characteristic is to utilize two approximators (NNs). The first
one is used to estimate the current best action, while the latter
is used to predict the next action. A typical DQN structure is
depicted in Fig. 8.
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FIGURE 8. DQL Methodology [37].

B. PROPOSED DQL ALGORITHM FOR RN SELECTION
There are several DQL schemes, which are classified accord-
ing to the algorithm’s calculative iterations. The first category
is the centralized DQL schemes, where a single software
agent is used to perform the information gathering and pro-
cessing from different sources placed in the environment.
In the wireless communications domain, such an agent can
be placed to the core network or on a server in a BS and
collect information from different BSs and/or RNs. The other
category is the decentralized DQL schemes, where multiple
software agents are utilized and each one of them is respon-
sible for communication and information gathering from a
specific subset of the overall environment. Such agents can
be placed in different BSs and/or be responsible for a subset
of the total accepted users in the topology.

In this paper, a semi-centralized DQL framework is pro-
posed to solve the RN selection problem subject to EE and
SE maximization. The term semi-supervised, refers to the
presence of multiple similar agents, one in each BS/cell of
the topology.

The general state, action and reward of the proposed
scheme are defined as follows:

1) STATE SPACE
Assuming that there are E number of episodes for DQL
agent training, the system state is described as S =

{S1, S2, . . . , SE}. At any time step, assuming t, the state
is described by the following information about each UE,
denoted as u, served by the secondary system (RN-assisted
communication): a) the ID of the BS which serves UE u, b)
the cell sector where UE u is positioned, c) the set of CSI
information (channel coefficient matrices) between each one
of the active RNs in the cell where UE u is located, declared
asHu = {Hu,r1 ,Hu,r2 , . . . , Su,rk}, where k is the total number
of active RNs in the considered cell.

2) ACTION SPACE
The taken actions in each one of the E algorithm’s episodes
are noted as A = {A1,A2, . . . ,AE}. At any time step, assum-
ing t, and assuming that the ks, ks ∈ (1, 2, . . . , k) RN is
currently selected for a UE u, the software agent can select
the next, the previous or the same RN as the next action. In
other words, the action that is taken at time t is denoted as

At = [a1,u1 , a2,u2 , . . . , au,uu , . . . , aN,N], where N denotes the
total number of UEs that are served by the secondary system,
am,um ∈ {RN step,−RN step, 0} is the selection of the serving
RN for UE m and RN step is the change of RN for each UE
under test. Thus, the serving RN update rule for each episode
for UE m is calculated as follows:

RNm,um (t) = RNm,um (t − 1)+ am,um (t) (11)

3) REWARD
After taking an action, as described previously, the DQL
system transits into a new state thus leading to alternate RN
selection for the UEs of the secondary system. The feedback
received at time t focuses on EE and SE levels maximization
and is expressed by:

r t = {r tEE (S t-1,At-1), r tSE (S t-1,At-1)} (12)

where,

r tEE (S t-1,At-1) =


EE t − EE t-1

EE t-1
× 100, ifEE t > EE t

0, otherwise
(13)

r tSE (S t-1,At-1) =


SE t − SE t-1

SE t-1
× 100, ifSE t > SE t

0, otherwise
(14)

Regarding the action selection strategy, the ϵ-greedy
method is used to balance the DQL algorithm’s exploration
and exploitation phases (with probabilities ϵ and 1−ϵ respec-
tively). Exploration refers to the DQL phase of improving
knowledge about each action, whereas exploitation refers to
the phase of maximizing the reward function by exploiting
the set’s action-value estimation.

Fig. 9 depicts the proposed semi-centralized DQN
algorithm, where one agent is deployed per cell/BS. Each
agent’s training is performed only for the coverage area of
the cell that is located into. This means that each agent is
responsible only for a subject of the total UEs of the network.
Thus, this approach considers C (performance evaluation
considers C = 19) DQL agents, equal to the total cells of
the topology. Each DQL agent optimizes performance in the
coverage area assigned to the BS that is located. In order to
ensure the global (for all cells) optimization of EE and SE
performance, a global reward is defined for the whole cellular
topology by the addition of all the single rewards of the C
deployed agents.

To conclude with the DQL model, the global reward-based
state transition is performed by a set of similar NNs, where
the input layer includes the space state’s triplet (serving BS
ID, sector and channel coefficient between each UE of each
cell and active RNs in a cell) for each of theC different agents
(thus the corresponding BSs). The NN includes C × N c × 3
neurons, where N c is the number of active secondary system
UEs in the cell c ∈ C . The output layer is one of the three
possible Q-value results for each UE (select the next RN,
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FIGURE 9. Proposed DQL scheme.

select the previous RN or select the sameRN) concerning sys-
tem’s EE and SE maximization. Afterwards, a global reward
optimization step is performed in order to define if the total
system will change state or not. The NN structure is depicted
in Fig. 10.

FIGURE 10. Proposed NNs architecture.

VI. PERFORMANCE EVALUATION
In this section, the performance of the proposed ML algo-
rithms for RN placement and selection is presented and
evaluated concerning the downlink of a 2-tier wireless multi-
cellular 5G/B5G orientation. In all cases, algorithms’ perfor-
mance is compared to a state-of-the-art non-ML approach,
presented in [11], as well as to a reference system where
no RNs are deployed. The deployed RNs are layer 1 RNs
(A&F) regarding the OSI level of deployment. Both Inband
and Outband RNs are considered. When Inband RNs are
used both BS-RN and RN-UE links share the same spectrum
resources. On the other hand, when Outband RNs are used,
additional spectrum resources are -a priori- exclusively for
RN usage [42].

All the simulation setups in this section were imple-
mented in MATLAB (R2022b release [43]) environment
using among others the Communications Toolbox, the Statis-
tics and Machine Learning Toolbox and Deep Learning
Toolbox.

This section is spitted in two subsections. The first refers to
the performance evaluation of the ML/DL-based RN place-
ment algorithm in different RN implementation scenarios.
The second subsection, refers to the performance evaluation
of the overall system, where both the ML/DL-based RN
placement scheme and the DQL RN selection algorithm are
deployed.

A. DL-BASED RN PLACEMENT PERFORMANCE
EVALUATION
In this subsection, the two proposed DL-schemes (DNN,
LSTM), that have been presented in section IV for the
problem of RN placement are evaluated. A 2-tier (19 BSs,
54 sectors) cellular orientation is considered, with network
and simulation parameters as depicted in Table 2. UEs are
uniformly distributed in the coverage area, while the number
of requested subcarriers varies to either 6, 8 or 11.

Regarding RN implementation, five scenarios are exam-
ined in our simulations (including reference basis of no RN
deployment), as follows: (1) No-RN: No RNs are deployed,
(2) SME-I: Inband RNs are deployed in the middle edge
of each sector, (3) SME-O: Outband RNs are deployed in
the middle edge of each sector, (4) MLP-I: ML/DL-based
Inband RN placement, (5) MLP-O: ML/DL-based Outband
RN placement. It should be noted that in our simulation
environment Outband RN scenarios use an additional band-
width of ∼55MHz to serve initially rejected UEs, leading
to interference mitigation and increased capacity gains over
Inband ones [11]. It should be also noted that as LSTM’s
performance is slightly improved compared to DNN’s per-
formance, as depicted in section IV, we pick LSTM as the
implemented ML/DL technique for RN placement for the
simulations of this section.

Extensive MC simulations were performed, where the
extracted mean values are presented for all considered KPIs.
To this end, total system’s EE is presented in Fig. 11, while
the corresponding SE is presented in Fig. 12 for the afore-
mentioned RN implementation scenarios. It should be noted
that the best-performing candidate RNs are the same for the
two scenarios that are discussed in section IV (CSI presence
or not).

As it can be observed from Fig. 11, the use of RNs
can significantly improve network’s metrics, such as EE.
Moreover, EE is increasing for increasing number of sub-
carriers per UE. In fact, for 6 subcarriers per UE, EE can
reach up to 35.45/61.45 Mbps/W for the SME-I/SME-O
scenarios, respectively. The EE values for the DL-enabled
scenarios are 42.54/79.89 Mbps/W for the MLP-I/MLP-O
scenarios, respectively. In the reference No-RN scenario, EE
is limited to 23.45 Mbps/W. These numbers indicate that
RN usage can improve total system’s EE from ∼50-240%.
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FIGURE 11. Mean total EE for various RN implementations.

FIGURE 12. Mean total SE for various RN implementations.

When considering 11 subcarriers per UE the correspond-
ing values are 52.38/75.34/110.34/90.45/143.45 Mbps/W for
the No-RN/SME-I/SME-O/MLP-I/MLP-O scenarios, respec-
tively, which lead to a ∼43-170% EE improvement. Similar
conclusions can be drawn for SE as well, as depicted in
Fig. 12, leading to a ∼20-200% SE improvement.

It can be witnessed, also, from Figs. 11, 12 that the use
of the DL scheme for RN placement further improves net-
works’ KPIs, such as EE and SE. In fact, comparing the
non-ML Inband scenario (SME-I) with the ML/DL-enabled
Inband scenario (MLP-I), a ∼20% improvement in both EE
and SE for both 6 and 11 subcarriers per UE is depicted.
Similarly, comparing the non-MLOutband scenario (SME-O)
with the ML/DL-enabled Inband scenario (MLP-O), a∼30%
improvement in both EE and SE for both 6 and 11 subcarriers
per UE is achieved.

B. OVERALL PERFORMANCE EVALUATION (RN
PLACEMENT AND RN SELECTION)
For the overall system’s performance evaluation, we consider
the same 2-tier 5G/B5G network orientation as described
in the previous subsection, with the parameters depicted in

Table 2. In this subsection the DQL scheme for RN selection,
which is analyzed in section V, is, also, enabled, acting
additively to the RN placement DL scheme presented in both
section IV and subsection A. The DQN parameters, that are
used for the simulations of this subsection, are depicted in
Table 6.

TABLE 6. DQN/DQL parameters.

A key procedure that has to be performed when evaluating
every ML-based scheme is hyperparameter tuning [5], which
refers to extensive simulations with different ML parameter
values. The scope of this procedure is the selection of the
optimal set of parameters for the proposed ML schemes.
These parameters are selected based on the overall system’s
performance optimization, based on KPIs of interest. The
hyperparameters that have been selected after various simu-
lations rounds are the following: a) number of episodes for
the DQL algorithm, which affects the total training time,
b) learning rate (α), which refers to the contribution percent-
age between the current and the previous Q-values, c) the
discount factor (γ ), which is linked to the significance of the
future rewards.

As far as RN implementation is considered, five scenarios
are examined in our simulations (including reference basis
of no RN deployment), as follows: (1) No-RN: No RNs
deployed, (2) SME-I: Inband RNs are deployed in the middle
edge of each sector, (3) SME-O: Outband RNs are deployed
in the middle edge of each sector, (4) MLP-I: ML/DL-based
Inband RN placement and DQL RN selection, (5) MLP-
O: ML/DL-based Outband RN placement and DQL RN
selection.

To this end, total system’s EE is presented in Fig. 13,
while the corresponding SE is presented in Fig. 14 for the
aforementioned RN implementation scenarios. As it can be
observed from Fig. 13, the use of DRL-based RN place-
ment can significantly improve network metrics, such as
EE compared to the reference scenario where no RNs are
deployed. In fact, for 6 subcarriers per UE, EE can reach
up to 35.45/61.45 Mbps/W for the SME-I/SME-O scenar-
ios, respectively. The EE values for the DQL scenarios
are 76.95/139.79 Mbps/W for the MLP-I/MLP-O scenarios,
respectively. In the reference No-RN scenario, EE is limited
to 23.45 Mbps/W. These numbers indicate that DQL RN
selection utilization can improve total EE from ∼140-500%.
When considering 11 subcarriers per UE the corresponding
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values are 52.38/75.34/110.34/166.35/252.45 Mbps/W for
the No-RN/SME-I/SME-O/MLP-I/MLP-O scenarios, respec-
tively, which lead to a∼200-500% EE improvement. Similar
conclusions can be drawn for SE as well, as depicted in
Fig. 14, leading to a ∼145-505% SE improvement.

FIGURE 13. Mean total EE for various RN implementations (with DQL
RN selection).

FIGURE 14. Mean total SE for various RN implementations (with DQL
RN selection).

It can be witnessed, also, from Figs. 11, 12 that the use
of the DQL RN selection scheme further improves networks’
KPIs, such as EE and SE, compared to the case where only the
DL RN placement algorithm is enabled. In fact, comparing
ML/DL Inband scenario (SME-I) in these two occasions (only
DL-based RN placement or DL-based RN placement and
DQL RN selection), a ∼75% improvement in both EE and
SE is depicted for 6 subcarriers per UE. For 11 subcarriers per
UE the improvement is∼80%. Similarly, comparing ML/DL
Inband scenario (SME-I) in these two occasions, a ∼79%
improvement in both EE and SE is depicted for 6 subcarriers

per UE. For 11 subcarriers per UE the improvement is about
∼83%. Thus, it is visible that DQL-based RN selection can
further improve overall system’s performance.

From the above presented analysis and, also, from
Figs. 11 - 14 the following outcomes can be witnessed:
• The proposed joint RN placement and selection
DL/DRL-based framework can improve the perfor-
mance of 5G/B5G networks, by the improvement of key
network metrics, such as EE and SE.

• Concerning comparison with other state-of-the-art
approaches we evaluate the proposed models in a two-
level basis. More specifically:
– The first level concerns the comparison of the pro-

posed DL-enabled RN placement models with a
5G/B5G system where RNs are statically deployed
and non-ML optimization techniques are utilized.
From the subsection A it is visible that both EE and
SE levels are improved by ∼30% compared to such a
system (as described in [11]).

– The second level concerns the comparison of the
joint RN placement and selection framework with a
5G/B5G system where RNs are statically deployed
and non-ML optimization techniques are utilized. It is
derived by the analysis in subsection B that the DRL-
based RN selection algorithm contributes even more
on the EE and SE improvement. In fact, these KPIs
can be improved by up to ∼80% compared to [11].

– Moreover, our DL/DRL approach overperforms other
state-of-the-art approaches that are not utilizing
ML/DL models for RN placement and/or selec-
tion. For example, the proposed scheme in [44]
reaches up to ∼50% improvement in EE levels com-
pared to a state-of-the-art-approach. Moreover, our
approach has similar or better performance com-
pared to recently proposed ML-based schemes. For
example, the proposed scheme in [45] reaches about
∼80% EE improvement compared to a non-ML
state-of-the-art-approach.

• Finally, it should be mentioned at this point that, in gen-
eral, Outband RN orientations overperform Inband ones
in all scenarios under test. However, in Outband cases,
extra bandwidth has been pre-allocated to RNs. Thus,
despite the aforementioned gain over Inband ones,
in real-world scenarios Outband RNs have extremely
high deployment costs, due to the external resources and
necessary hardware needed.

C. COMPUTATIONAL COMPLEXITY CONSIDERATIONS
A key aspect when designing AI/ML algorithms is the com-
putational complexity gain that is achieved compared to
traditional optimization (non-ML) approaches. In our case
this is achieved in the following ways:
• As it is presented in Tables 3, 4 both DL models need
∼4 to 5 minutes for the training phase. After this phase,
the response to select the best performing RNs deploy-
ment is instant, based on the constraints described in the
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subsection B of Section IV. In this analysis we should
add the time for dataset generation which is ∼2 hours.
In our approach presented in [11],∼1 hour is needed for
a round of ∼100 MC simulations.

• Finally, in the same context, as far as the DRL RN
placement scheme is considered, each one of the C cells
needs some time (∼1 to 2 minutes as the NNs there are
lightweight) for the models’ training, while dataset gen-
eration is performed online and, thus, there is no need
for extra time there. As is visible, the aforementioned
computation time is extremely lower than the one of a
full MC simulation.

VII. CONCLUSION
In the present work, the joint optimization problem of RN
placement and selection in 5G/B5G networks is investigated.
The two sub-problems are considered as different ones and,
thus, different approaches are proposed for each one of them.
However, in all cases, DL-enabled techniques are utilized,
forming an overall system’s DL-assisted framework for met-
rics optimization.

In fact, for the RN placement problem two offline ML/DL
methods (one DNN and one RNN/LSTM network) are pro-
posed to select the k best locations for placing RNs inside
each cell’s coverage area. ML KPIs evaluation indicated
that the LSTM network is the best-performing solution in
achieving optimal trade-off betweenMLKPIs (accuracy, pre-
cision, recall, F1-score) and required training time.Moreover,
both approaches propose the same candidate RNs as the
best-performing ones in maximizing accepted UEs in each
cell of the 2-tier cellular topology under test.

The second sub-problem refers to the selection of the best-
performing RN for the UEs of the secondary system (the
primary system refers to the UEs served directly by the BS),
subject to the joint maximization of the overall EE and SE lev-
els of the system. For this purpose, a DQN-based framework
is proposed for improving the system-level EE and SE of two-
tier 5G heterogeneous cells withmulti-channel transmissions.
Following extensive simulations using a 5G/B5G system and
link level simulator implemented in our lab, we showed
that by only enabling ML/DL-based RN placement, a 30%
improvement in both EE and SE levels can be achieved, com-
pared to the non-ML approach of [11]. Additionally, if the
DQN-based RN selection is also enabled, the EE improve-
ment can reach 80%, while SE can be improved by 75%
compared to the non-ML approach.
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