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Περίληψη 
 

Τα τελευταία χρόνια, έχουν αναπτυχθεί συστήματα ασύρματων επικοινωνιών πέμπτης και 

επόμενης γενιάς (5G/Β5G) για να υποστηρίξουν τον εκθετικό ρυθμό αύξησης της δικτυακής 

κίνησης και την πυκνή διασύνδεση των χρηστών, που απαιτεί αδιάλειπτη πρόσβαση στο 

μέσο. Η αυξανόμενη ανάγκη για νέους τύπους εφαρμογών (εφαρμογές Διαδικτύου των 

Πραγμάτων (IoT), επαυξημένη/εικονική πραγματικότητα (AR/VR), μη επανδρωμένα 

οχήματα (UAVs)) έχει οδηγήσει σε νέες κατηγορίες υπηρεσιών που εξυπηρετούνται από τα 

δίκτυα 5G/B5G. Έτσι, η υποστήριξη αξιόπιστης επικοινωνίας με χαμηλή καθυστέρηση 

(URLLC), η ενισχυμένη κινητή ευρυζωνικότητα (eMBB) και η μαζική επικοινωνία μηχανών 

(mMTC) σε περιβάλλοντα μαζικής πρόσβασης αποκτούν καίρια σημασία στα δίκτυα 

5G/B5G. Επιπλέον, τα τελευταία χρόνια έχουν εισαχθεί καινοτόμες τεχνολογίες φυσικού 

επιπέδου για την αντιμετώπιση των αυξανόμενων προκλήσεων στον τομέα των ασύρματων 

επικοινωνιών, όπως τα κεραιοσυστήματα πολλαπλών εισόδων-πολλαπλών εξόδων (m-

MIMO), οι χιλιοστομετρικές επικοινωνίες (mmWave), οι κόμβοι αναμετάδοσης (RNs), 

καθώς και η μη ορθογώνια πολλαπλή πρόσβαση (NOMA). Ωστόσο, οι προηγμένες αυτές 

τεχνολογίες φυσικού επιπέδου, όταν εφαρμόζονται σε ένα κυψελωτό περιβάλλον που 

χαρακτηρίζεται από υψηλά επίπεδα παρεμβολών και δυσχερείς συνθήκες διάδοσης, μπορούν 

να αυξήσουν το υπολογιστικό κόστος για την υποστήριξη των αυστηρών απαιτήσεων των 

χρηστών. 

Σε αυτό το πλαίσιο, προτείνονται αλγόριθμοι μηχανικής μάθησης (Machine Learning - 

ML), ως ένας αποτελεσματικός τρόπος αντιμετώπισης των παραπάνω προβλημάτων, εξαιτίας 

της ικανότητάς τους να χρησιμοποιούν δεδομένα που παράγονται από το ίδιο το δίκτυο για 

τη βελτίωση της αποδοτικότητας του δικτύου. Οι αλγόριθμοι ML εκπαιδεύονται 

χρησιμοποιώντας, είτε δεδομένα που παράγονται από το ίδιο το ασύρματο δίκτυο, είτε από 

παρόμοια δίκτυα. Με αυτόν τον τρόπο, οι πολύπλοκοι υπολογισμοί για τα δεδομένα του 

καναλιού ενσωματώνονται στα επίπεδα των μοντέλων ML, γεγονός που οδηγεί στη μείωση 

του υπολογιστικού κόστους και της πολυπλοκότητας μετά από πολλαπλούς διαδοχικούς 

γύρους (rounds) εκπαίδευσης. Ορισμένοι αλγόριθμοι ML (π.χ. αλγόριθμοι ενισχυτικής 

μάθησης (Reinforcement Learning - RL)) μπορούν να αλληλεπιδρούν άμεσα σε πραγματικό 

χρόνο με το περιβάλλον και να υποστηρίζουν τις απαιτήσεις για χαμηλή καθυστέρηση σε 

δίκτυα 5G/B5G. 

Αντικείμενο της παρούσας διδακτορικής διατριβής είναι η μελέτη και ανάπτυξη μεθόδων 

ML και Βαθιάς Μάθησης (Deep Learning – DL) για την αποτελεσματική ανάθεση 

ραδιοπόρων (Radio Resource Management – RRM) σε ασύρματα δίκτυα επικοινωνιών 

5G/B5G. Συγκεκριμένα, μελετώνται  ML/DL αλγόριθμοι για διάφορα RRM υποπροβλήματα, 

όπως η κατανομή υποφερόντων σε χρήστες (User Equipments – UEs), η επιλογή σταθμού 

βάσης (Base Station - BS) ή κόμβου αναμετάδοσης (Relay Node –RN) για χρήστες που 

εισέρχονται στην κυψελική τοπολογία, αλλά και η πρόβλεψη μετρικών δικτύου, όπως ο 

ρυθμός διέλευσης (throughput). Γενικά, οι αυξημένες απαιτήσεις των UEs για αδιάλειπτη 

ποιότητα υπηρεσίας (Quality of Service - QoS), ελαχιστοποιημένη καθυστέρηση και μεγάλη 

πυκνότητα διασυνδεδεμένων συσκευών, καθιστούν αναγκαία τη χρησιμοποίηση τεχνικών 

ML/DL για τα παραπάνω RRM προβλήματα. Μάλιστα, όταν στα 5G/B5G συστήματα γίνεται 

εκτενής χρήση προηγμένων τεχνολογιών φυσικού επιπέδου, όπως τα massive MIMO (m-

MIMO) κεραιοσυστήματα, οι χιλιοστομετικές μπάντες συχνοτήτων (mmWaves) και η μη 

ορθογωνική πολλαπλή πρόσβαση διαίρεσης συχνότητας (non-orthogonal multiple access - 

NOMA), τότε η πολυπλοκότητα των RRM προβλημάτων και οι απαιτήσεις καθιστούν 

αναγκαίες ακόμη πιο εξελιγμένες ML τεχνικές. Για αυτόν το λόγο, πέραν των κλασσικών 

τεχνικών Επιβλεπόμενης (Supervised) και Μη-Επιβλεπόμενης (Unsupervised) μάθησης, η 
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παρούσα διδακτορική διατριβή μελετά και αναπτύσσει και τεχνικές Βαθιάς Ενισχυτικής 

Μάθησης (Deep Reinforcement Learning – DRL), και Deep Q-Learning αλγορίθμους. Στο 

ίδιο μήκος κύματος, μελετώνται και εφαρμόζονται στα παραπάνω RRM υποπροβλήματα και 

τεχνικές κατανεμημένης ML, όπως η Συνεργατική Μάθηση (Federated Learning – FL), όπου 

συνδυάζονται τα οφέλη της ML και του κινητού υπολογισμού (Mobile Edge Computing – 

MEC).  

Αρχικά, στα πλαίσια της διατριβής, αναλύεται η υφιστάμενη κατάσταση, όσον αφορά στη 

ανάπτυξη ML αλγορίθμων για RRM προβλήματα για δίκτυα 5G/B5G, η σχετική 

βιβλιογραφία κατηγοριοποιείται με βάση το υπό μελέτη RRM πρόβλημα, αλλά και την 

εφαρμοζόμενη τεχνική ML.  

Στη συνέχεια, αφού μοντελοποιηθεί μαθηματικά το RRM πρόβλημα σε δίκτυα 5G/B5G, 

τονίζεται η σημασία της πρόβλεψης των δικτυακών μετρικών (Key Performance Indicators - 

KPIs) για την αποδοτική επίλυση RRM προβλημάτων και πολλοί ML/DL αλγόριθμοι 

αναπτύσσονται και αξιολογούνται ως προς την απόδοσή τους στην πρόβλεψη του ρυθμού 

διέλευσης σε δίκτυα 5G/B5G. 

Ένα ακόμα καίριο πρόβλημα σε 5G/B5G δίκτυα, όπου χρησιμοποιούνται Κόμβοι 

Αναμετάδοσης, είναι η βέλτιστη τοποθέτηση και επιλογή τους για κάθε χρήστη που 

εισέρχεται στην κυψελική τοπολογία. Επομένως, αφού μοντελοποιηθούν μαθηματικά και τα 

δύο αυτά προβλήματα (τοποθέτηση και επιλογή RN), μελετώνται ML/DL τεχνικές για την 

αποτελεσματική τους επίλυση. Για το πρόβλημα τοποθέτησης RN, προτείνονται δύο 

διαφορετικές DL προσεγγίσεις, οι οποίες εκπαιδεύονται και αξιολογούνται, βασιζόμενες σε 

σύνολα δεδομένων που παράχθηκαν από ένα MATLAB προσομοιωτή επιπέδου ζεύξης και 

συστήματος για 5G/B5G δίκτυα, όπου γίνεται εκτενής χρήση RN. Οι παραπάνω ML/DL 

αλγόριθμοι εκπαιδεύονται αρχικά σε ένα μόνο μηχάνημα, αλλά προτείνεται επίσης και ένα 

σχήμα Συνεργατικής Μάθησης για την κατανεμημένη εκπαίδευσή τους. Το σχήμα αυτό 

βασίζεται στη συνύπαρξη πολλών διασυνδεδεμένων συσκευών σε δίκτυα 5G/B5G, με 

αποτέλεσμα την αποφυγή υπερφόρτωση του δικτύου. Όσον αφορά στο πρόβλημα επιλογής 

RN, προτείνεται ένας καινοτόμος αλγόριθμος Βαθιάς Q-Learning μάθησης, που βασίζεται 

στην ταυτόχρονη μεγιστοποίηση της ενεργειακής αποδοτικότητας (Energy Efficiency - EE) 

και της φασματικής αποδοτικότητας (Spectral Efficiency - SE) για κάθε χρήστη της 

κυψελικής τοπολογίας. Επιπλέον, προτείνεται ένας συνολικός μηχανισμός για τη 

μεγιστοποίηση και της EE και της SE του συνολικού συστήματος. 

Τέλος, οι παραπάνω προτεινόμενες λύσεις αξιολογούνται μέσω εκτενών προσομοιώσεων. 

Η αξιολόγησή τους περιλαμβάνει, επίσης, την μεταξύ τους συγκριτική αποτίμηση, αλλά και 

τη σύγκριση της απόδοσής τους έναντι άλλων προσεγγίσεων της πρόσφατης βιβλιογραφίας. 

Σε κάθε περίπτωση, οι ML προσεγγίσεις της παρούσας διατριβής επιτυγχάνουν σημαντικά 

κέρδη, όσον αφορά στα συνολικά επίπεδα EE και SE, και στην αξιοποίηση του διαθέσιμου 

φάσματος, ενώ λαμβάνεται υπόψιν και η υπολογιστική τους πολυπλοκότητα. 

 

Λέξεις Κλειδιά: Δίκτυα 5ης Γενιάς, Δίκτυα Επόμενης Γενιάς, Βαθιά Μάθηση, Μηχανική 

Μάθηση, Ανάθεση Ραδιοπόρων, Επικοινωνίες υποβοηθούμενες από Κόμβους 

Αναμετάδοσης, Q-Μάθηση, Ενισχυτική Μάθηση, Συνεργατική Μάθηση, Προσομοιώσεις 

Συστηματικού Επιπέδου, Κινητός Υπολογισμός στην Άκρη του Δικτύου. 

 

 

 

 



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks 
_______________________________________________________________________________________________________________ 

11 
Ioannis A. Bartsiokas 

Abstract 
 

Fifth-generation (5G) and beyond (B5G) wireless communications systems have been 

established to support the exponential growth rate of mobile data traffic and dense user 

connectivity, which requires uninterrupted and location-free access to the medium. The 

emerging need for new application types (Internet of Things (IoT) applications, 

augmented/virtual reality (AR/VR), unmanned aerial vehicles (UAVs), etc.) has enabled 

telecommunication service categories served by 5G/B5G networks. In this context, the 

support of ultra-reliable low latency-communications (URLLC), enhanced mobile broadband 

(eMBB) and massive machine type communications (mMTC) in mass access environments 

is of utmost importance in 5G/B5G networks. Moreover, various novel physical layer 

technologies have been introduced over the last years to cope with the increasing challenges 

in the wireless communications domain, such as massive multi-input- multiple-output (m-

MIMO) configurations, millimeter Wave (mmWave) transmission, Relay Nodes (RNs) as 

well as, non-orthogonal multiple access (NOMA). However, the aforementioned advanced 

physical layer technologies, when applied in a cellular environment characterized by high 

interference levels and complex channel approximations, can maximize the computational 

cost to support strict users’ requirements. 

Machine learning (ML) algorithms are proposed as an efficient way to tackle these 

considerations, due to their ability to utilize data generated by the network itself in improving 

network performance and efficiency. ML algorithms are trained using either data generated 

by the wireless network under test or by similar ones. In this way, complex channel 

calculations are encapsulated in ML models’ layers, leading to a computational cost and 

complexity decrease, after multiple successful training rounds. Moreover, there are ML 

algorithms (e.g., Reinforcement Learning (RL) ones), which can directly interact in real-time 

and support low-latency requirements of modern era networks. 

In the present thesis ML and Deep Learning (DL) methods are developed for efficient 

RRM in 5G/B5G wireless communication networks. More specifically, ML/DL algorithms 

are examined in various RRM subproblems, such as subcarrier allocation to active users (User 

Equipments - UEs), base station (BS) or RN placement and selection for users entering the 

cellular topology, as well as prediction of network key performance indicators (KPIs), such 

as throughput. The increased demands of the UEs for uninterrupted QoS, ultra-low latency 

and high density of connected devices necessitate the use of ML/DL techniques for the 

aforementioned RRM problems. Therefore, in addition to classical Supervised and 

Unsupervised learning techniques, this thesis explores Deep Reinforcement Learning (DRL) 

techniques, primarily Deep Q-Learning algorithms. Additionally, distributed ML techniques, 

such as Federated Learning (FL), are proposed for the aforementioned RRM subproblems, 

combining the benefits of ML and Mobile Edge Computing (MEC). 

In the context of this thesis, a state-of-the-art analysis regarding ML-based RRM in 

5G/B5G networks is firstly performed. The corresponding research works are categorized, 

based on both the RRM sub-problem, and the employed ML technique.  

Then, the RRM problem in 5G/B5G networks is formulating and the significance of KPI 

prediction for RRM tasks is highlighted, while several ML/DL algorithms are developed 

concerning their performance in throughput prediction for 5G/B5G networks. 

An additional key problem in 5G/B5G orientations, where RNs are deployed to extend 

each cell’s coverage area and increase network’s capacity, is the optimal RN placement and 

selection for each user entering the cellular topology. After formulating both problems (RN 

placement and selection) ML/DL frameworks are studied. Regarding the RN placement 

problem, two different DL approaches are developed and evaluated based on datasets created 

by a MATLAB RN-assisted 5G/B5G link and system level simulator. These ML algorithms 
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are not only deployed in a centralized manner, but also an FL framework is proposed. The 

coexistence of several interconnected devices in 5G/B5G networks, which can assist in 

splitting the computational overload among them, to efficiently utilize network resources. As 

far as the RN selection problem is concerned, a novel Deep Q-Learning scheme is proposed, 

based on the joint Energy Efficiency (EE) and Spectral Efficiency (SE) maximization for each 

user of the cellular topology. In addition, a specific mechanism is, also, implemented for the 

total system’s EE and SE maximization. 

Finally, all proposed solutions are thoroughly evaluated and tested via extended 

simulations. Comparisons are made, both among them and against other up-to-date 

approaches. In each case, significant performance gains are identified, leading to increased 

systems’ EE and SE levels and important spectrum utilization, while the advantages of the 

proposed frameworks are, also, mirrored in terms of computational costs. 

 

Keywords: 5G, B5G, Deep Learning, Machine Learning, Radio Resource Management, 

Relay Assisted Transmission, Reinforcement Learning, Q-Learning, Federated Learning, 

System Level Simulations, Mobile Edge Computing 
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Εκτεταμένη Περίληψη 
 

Η ανάπτυξη δικτύων 5ης γενιάς (5G) επέφερε θεμελιώδεις αλλαγές στην αρχιτεκτονική, 

την υποδομή και τα λειτουργικά χαρακτηριστικά των ασύρματων δικτύων επικοινωνιών. Τα 

δίκτυα 5G έχουν αναπτυχθεί για να αντιμετωπίσουν τη μαζική συνδεσιμότητα και τις 

αυξημένες απαιτήσεις των χρηστών για αδιάλειπτες και διαφανείς επικοινωνίες χαμηλής 

καθυστέρησης, με την παράλληλη διατήρηση των επιθυμητών επιπέδων ποιότητας υπηρεσίας 

(Quality of Service – QoS) και ποιότητας εμπειρίας (Quality of Experience – QoE). Ωστόσο, 

νέες κατηγορίες εφαρμογών όπως οι επικοινωνίες οχημάτων (Vehicle-to-Vehicle 

communications), το διαδίκτυο των πραγμάτων (Internet of Things – IoT), η επαυξημένη και 

εικονική πραγματικότητα (AR/VR), οι ολογραφικές επικοινωνίες και η τηλεϊατρική, έχουν 

κάνει αισθητή την εμφάνισή τους απαιτώντας επικοινωνίες ακόμα μεγαλύτερου εύρους 

ζώνης, μηδενικής καθυστέρησης και εγγυημένων επιπέδων QoS, QoE με σχεδόν μηδενική 

μάλιστα πιθανότητα αποκοπής (99,99999% πιθανότητα εξυπηρέτησης). Για αυτούς τους 

λόγους, τα δίκτυα επόμενης γενιάς (Beyond 5G – B5G) βρίσκονται προ των πυλών, με 

ερευνητικές ομάδες τις 3GPP ήδη να εργάζονται πάνω στην προτυποποίησή  τους με 

ορίζονται την έκδοση 19 (Release 19) των 3GPP τεχνικών προδιαγραφών. 

Σε αυτό το πλαίσιο νέες τεχνολογίες φυσικού επιπέδου καλούνται να εφαρμοστούν σε 

5G/B5G δίκτυα με στόχο την καλύτερη εξυπηρέτηση των μαζικών επιπέδων δικτυακής 

κίνησης και του ελέγχου της προκαλούμενης συμφόρησης. Τέτοιες τεχνολογίες, με καίρια 

σημασία σε 5G/B5G δίκτυα, είναι τα μαζικά κεραιοσυστήματα πολλαπλών εισόδων και 

πολλαπλών εξόδων (Massive Multiple-Input-Multiple-Output), οι κόμβοι αναμετάδοσης 

(Relay Nodes), η μη ορθογώνια πολλαπλή πρόσβαση (Non Orthogonal Multiple Access – 

NOMA) και άλλες. 

Σε αυτό το περιβάλλον, η σημασία του καθορισμού αποτελεσματικών πολιτικών για την 

αποδοτική ανάθεση των διαθέσιμων ραδιοπόρων (Radio Resource Management – RRM) 

είναι τεράστιας σημασίας. Οι περιορισμένοι πόροι του δικτύου θα πρέπει να διατίθενται με 

έξυπνο τρόπο για να εξυπηρετούν τον αυξανόμενο αριθμό των ταυτόχρονα διασυνδεδεμένων 

συσκευών, την αυξημένη πυκνότητα των συνδέσεων αυτών, βελτιστοποιώντας ταυτόχρονα 

την χρήση του διαθέσιμου φάσματος και τη μείωση της συνολικής κατανάλωσης ενέργειας 

του συστήματος. Με άλλα λόγια, η ενεργειακή και η φασματική αποδοτικότητα (Energy 

Efficiency, Spectral Efficiency) αναδεικνύονται ως οι σημαντικότερες προς μεγιστοποίηση 

μετρικές δικτύου, σε σύγκριση με προηγούμενες γενιές δικτύων ασυρμάτων επικοινωνιών 

όπου η αξιολόγηση της απόδοσης των RRM πολιτικών που εφαρμόζονταν λάμβανε υπόψιν 

μόνο τη μεγιστοποίηση του ρυθμού διέλευσης. Ωστόσο, μια ακόμα σημαντική παράμετρος 

όπου θα πρέπει να λαμβάνεται υπόψιν κατά τη διαδικασία του RRM είναι η υπολογιστική 

πολυπλοκότητα (Computational Complexity) των προτεινόμενων RRM αλγορίθμων. Για την 

ακρίβεια σε δίκτυα 5G/B5G η συγκεκριμένη παράμετρος αποκτά ιδιαίτερη σημασία καθώς η 

συνύπαρξη προηγμένων τεχνικών φυσικού επιπέδου και πυκνών συνδέσεων, τείνει να 

αυξάνει εκθετικά τους χρόνους απόφασης. 

Ως εκ τούτου, είναι κατανοητό ότι η επίτευξη της ιδανικής αναλογίας μεταξύ της 

βελτιστοποίησης των μετρικών δικτύου (EE, SE, ρυθμός διέλευσης) και της υπολογιστικής 

πολυπλοκότητας μπορεί να επιτευχθεί μόνο μέσω ενός αποτελεσματικού RRM μηχανισμού. 

Μέχρι τώρα, οι αποφάσεις RRM λαμβάνονταν ξεχωριστά για κάθε χρονοθυρίδα, με βάση τις 

τοπικές συνθήκες του δικτύου και τη συμφόρηση των συνδέσεων προς εξυπηρέτηση. 

Ωστόσο, οι αυξημένες απαιτήσεις των δικτύων 5G/B5G ενισχύουν την ανάγκη για ένα 

αποκεντρωμένο σύστημα που μπορεί να υποστηρίξει ευέλικτες αποφάσεις RRM. Προς αυτή 

την κατεύθυνση, η αξιοποίηση των δικτυακών δεδομένων μέσω της Μηχανικής Μάθησης 

(Machine Learning – ML) και η εξαγωγή χαρακτηριστικών μέσω των αντίστοιχων 
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αλγορίθμων, μπορούν να συμβάλουν αποτελεσματικά στην βελτιστοποίηση των RRM 

πολιτικών που εφαρμόζονται. 

Αντικείμενο της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη και εφαρμογή 

μεθόδων Μηχανικής (Machine Learning – ML) και Βαθιάς Μάθησης (Deep Learning – DL) 

για την αποτελεσματική ανάθεση ραδιοπόρων (Radio Resource Management – RRM) σε 

ασύρματα δίκτυα επικοινωνιών 5G/B5G. Συγκεκριμένα, μελετώνται ML/DL αλγόριθμοι σε 

RRM υποπροβλήματα, όπως η κατανομή υποφερόντων σε χρήστες (User Equipments – UEs), 

η επιλογή σταθμού βάσης (Base Station - BS) ή κόμβου αναμετάδοσης (Relay Node –RN) 

για χρήστες που εισέρχονται στην τοπολογία, αλλά και η πρόβλεψη μετρικών δικτύου, όπως 

ο ρυθμός διέλευσης (throughput). Γενικά, οι αυξημένες απαιτήσεις των UEs για αδιάλειπτη 

ποιότητα υπηρεσίας (Quality of Service - QoS), ελάχιστη καθυστέρηση μετάδοσης και 

μεγάλη πυκνότητα διασυνδεδεμένων συσκευών, καθιστούν αναγκαία τη χρησιμοποίηση 

τεχνικών ML/DL για τα παραπάνω RRM προβλήματα. Επιπλέον, καθότι στα 5G/B5G 

συστήματα γίνεται εκτενής χρήση προηγμένων τεχνολογιών φυσικού επιπέδου, όπως τα 

massive MIMO (m-MIMO) κεραιοσυστήματα, οι χιλιοστομετρικές μπάντες συχνοτήτων 

(mmWaves) και η μη ορθογωνική πολλαπλή πρόσβαση διαίρεσης συχνότητας (non-

orthogonal multiple access - NOMA), λόγω της πολυπλοκότητας των RRM προβλημάτων 

και των απαιτήσεων για άμεση απόκριση, απαιτούνται ακόμα πιο εξελιγμένες τεχνικές 

μηχανικής μάθησης. Η παρούσα διδακτορική διατριβή ασχολείται με τεχνικές Βαθιάς 

Ενισχυτικής Μάθησης (Deep Reinforcement Learning – DRL), και κυρίως με Deep Q-

Learning αλγορίθμους. Επιπροσθέτως, μελετώνται και εφαρμόζονται στα παραπάνω RRM 

υποπροβλήματα και τεχνικές κατανεμημένης ML, όπως η Συνεργατική Μάθηση (Federated 

Learning – FL), όπου συνδυάζονται τα οφέλη της ML και του κινητού υπολογισμού (Mobile 

Edge Computing – MEC). 

Η διάρθρωση της παρούσας διδακτορικής διατριβής παρουσιάζεται παρακάτω. 

Στο Κεφάλαιο 1 παρουσιάζεται η εξέλιξη των ασυρμάτων δικτύων επικοινωνιών, και δη 

των κυψελωτών, με έμφαση στα συστήματα 5G/B5G. Σε αυτό το πλαίσιο, παρουσιάζονται 

οι απαιτήσεις απόδοσης των δικτύων 5G/B5G, καθώς και οι τεχνολογίες φυσικού επιπέδου 

που υπόσχονται ακόμα μεγαλύτερα οφέλη όταν εφαρμοστούν σε τέτοια δίκτυα. Οι 

τεχνολογίες που αναλύονται περιλαμβάνουν τα m-MIMO συστήματα κεραιών, τα 

mmWaves, την ΝΟΜΑ, τα RNs και τις αναδιαμορφώσιμες έξυπνες επιφάνειες 

(Reconfigurable intelligent surfaces - RIS). 

Στο Κεφάλαιο 2 παρουσιάζονται οι βασικές αρχές και τεχνικές ML. Συγκεκριμένα, 

αναλύονται οι διάφοροι τύποι μάθησης με βάση την ύπαρξη ή μη ετικετών στα σύνολα 

δεδομένων (Επιβλεπόμενη, Μη-Επιβλεπόμενη, Ενισχυτική Μάθηση). Στη συνέχεια, το 

κεφάλαιο εστιάζει στις DL τεχνικές με έμφαση στην DRL και στην ανάλυση του αλγορίθμου 

Deep Q-Learning. Τέλος, παρουσιάζεται και το θεωρητικό υπόβαθρο της εφαρμογής 

κατανεμημένων ML τεχνικών, όπως η FL, σε 5G/B5G δίκτυα.  

Στο Κεφάλαιο 3 εξετάζεται η ανάγκη για ανάπτυξη ML μεθόδων για την επίλυση 

διαφόρων RRM προβλημάτων σε δίκτυα 5G/B5G. Πιο συγκεκριμένα, αρχικά, 

μοντελοποιείται το πρόβλημα της ανάθεσης ραδιοπόρων θέτοντας συγκεκριμένους στόχους 

βελτιστοποίησης και συγκεκριμένο σύνολο περιορισμών. Στην συνέχεια, παρουσιάζονται  

τεχνικές βελτιστοποίησης που δεν χρησιμοποιούν ML, και αναφέρονται τα μειονεκτήματά 

τους στο σύγχρονο περιβάλλον των 5G/B5G δικτύων. Επιπρόσθετα, παρουσιάζεται 

αναλυτική επισκόπηση της βιβλιογραφίας στο πεδίο της χρήσης ML για RRM προβλήματα 

και εξάγονται συμπεράσματα, αλλά και πιθανά προβλήματα στη διαδικασία ανάπτυξης και 

υλοποίησης ML μοντέλων για RRM προβλήματα. 

Στο Κεφάλαιο 4 επιλύεται η πρόβλεψη του ρυθμού διέλευσης, ως ένα ενδεικτικό πρόβλημα 

πρόβλεψης μετρικών σε ασύρματα δίκτυα νέας γενιάς. Αρχικά, αναλύεται η χρησιμότητα της 

a priori πρόβλεψης τέτοιων μετρικών για τη βελτιστοποίηση των στρατηγικών RRM. Στη 
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συνέχεια, η απόδοση διαφόρων ML τεχνικών συγκρίνεται με βάση συγκεκριμένες ML 

μετρικές (key performance indicators - KPIs), όπως αυτά της ορθότητας (accuracy), της 

ακρίβειας (precision), της ανάκλησης ευαισθησίας (recall) και του f1-score. Τέλος, 

αναλύονται διεξοδικά τα συμπεράσματα της παραπάνω συγκριτικής αξιολόγησης. 

Στο Κεφάλαιο 5 μελετώνται αναλυτικά δυο καίρια RRM προβλήματα για 5G/B5G δίκτυα, 

τα οποία βασίζονται στη χρήση RNs για την ενίσχυση της ραδιοκάλυψης. Συγκεκριμένα, 

μελετάται η βελτιστοποίηση τόσο της τοποθέτησης όσο και της επιλογής RNs σε 5G/B5G 

δίκτυα. Αρχικά, μοντελοποιείται μαθηματικά το πρόβλημα της βέλτιστης τοποθέτησης RNs 

σε κάθε κυψέλη της 5G/B5G τοπολογίας. Στη συνέχεια, παρουσιάζονται και συγκρίνονται 

δυο DL αλγόριθμοι γι’ αυτό το πρόβλημα, με χρήση συνόλων δεδομένων από έναν 5G/B5G 

προσομοιωτή δικτύου που αναπτύχθηκε στα πλαίσια της διατριβής. Μετά την αξιολόγηση 

των δύο παραπάνω αλγορίθμων, αναπτύσσεται και ένας κατανεμημένος FL αλγόριθμος που 

επιφέρει ακόμα μεγαλύτερη ακρίβεια τοποθέτησης RNs. Στο δεύτερο σκέλος του κεφαλαίου, 

μοντελοποιείται μαθηματικά το πρόβλημα της επιλογής RN για κάθε χρήστη που εισέρχεται 

στην τοπολογία. Στο πλαίσιο αυτό, αναπτύσσεται ένας DRL (Deep Q Learning) αλγόριθμος, 

ο οποίος μεγιστοποιεί τόσο την ενεργειακή και φασματική αποδοτικότητα (Energy Efficiency 

– EE και Spectral Efficiency – EE) κάθε περιοχής κάλυψης, όσο και τη συνολική EE και SE 

του συστήματος. Τέλος, παρουσιάζονται τα αποτελέσματα από την εφαρμογή του DRL 

αλγορίθμου, με βάση τη μεγιστοποίηση των παραπάνω μετρικών, και αναλύονται τα σχετικά 

συμπεράσματα. 

Τέλος, στο Κεφάλαιο 6, συνοψίζεται η συνεισφορά της διατριβής, και προτείνονται θέματα  

και τεχνολογίες για μελλοντική έρευνα. 

Στις παρακάτω ενότητες αναλύονται τα βασικά αποτελέσματα και οι προτάσεις που 

παρουσιάζονται τόσο στην παρούσα διδακτορική διατριβή, όσο και στις δημοσιεύσεις σε 

επιστημονικά περιοδικά και στα πρακτικά διεθνών συνεδρίων υπό κρίση. 

 

1. Βιβλιογραφική Ανασκόπηση τεχνικών Μηχανικής Μάθησης για Ανάθεση 

Ραδιοπόρων  σε 5G/B5G δίκτυα 
 

Στο Κεφάλαιο 3, και συγκεκριμένα στην παράγραφο 3.1.2, παρουσιάζονται σημαντικές 

μέθοδοι βελτιστοποίησης για RRM προβλήματα σε δίκτυα 5G/B5G, οι οποίο δεν 

χρησιμοποιούν ML. Εστιάζοντας στα αποτελέσματα αυτών των ερευνητικών προσπαθειών, 

διαπιστώνονται αρκετοί περιορισμοί, που καθιστούν καίρια την χρήση ML σε RRM 

προβλήματα σε 5G/B5G δίκτυα. Συγκεκριμένα, στις περισσότερες περιπτώσεις LTE (Long 

Term Evolution) και πρώιμων 5G δικτύων η θέσπιση της πολιτικής RRM βασίζεται στην 

γνώση συγκεκριμένων παραμέτρων, όπως οι συνθήκες του καναλιού και της QoS για κάθε 

έναν από τους ενεργούς χρήστες του συστήματος. Ωστόσο, αυτό δεν είναι πάντα δυνατό σε 

5G/B5G δίκτυα οδηγώντας σε υποβέλτιστες λύσεις. Τα μειονεκτήματα της χρησιμοποίησης 

τέτοιων τεχνικών RRM σε 5G/B5G δίκτυα είναι τα εξής: 

• Οι περισσότερες από τις μη ML τεχνικές παρέχουν λύσεις που δεν είναι καθολικές. 

Οι παρεχόμενες λύσεις σχετίζονται σε μεγάλο βαθμό με την τοπολογία του δικτύου, 

τις απαιτήσεις και τα χαρακτηριστικά των χρηστών. Έτσι, το RRM, γενικά, είναι ένα 

πρόβλημα που χαρακτηρίζεται από μη συμβατικότητα. 

• Οι παρεχόμενες λύσεις ενδέχεται να μην είναι διαθέσιμες σε πραγματικό χρόνο. Τα 

σύγχρονα δίκτυα ασυρμάτων επικοινωνιών έχουν υψηλά επίπεδα χρονικής 

μεταβλητότητας. Μια βέλτιστη λύση σε μια χρονική στιγμή δεν είναι εξ ορισμού 

βέλτιστη για την επόμενη. 

• Το ασύρματο κανάλι διάδοσης σε δίκτυα 5G/B5G χαρακτηρίζεται από πολλαπλές 

παρεμβολές, και τυχαία μοντέλα κινητικότητας χρηστών. Σε αυτά τα σενάρια, η 

μαθηματική διατύπωση του προβλήματος είναι εξαιρετικά δύσκολη. 
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Για όλους αυτούς τους λόγους, πιο αποτελεσματικές RRM τεχνικές θα πρέπει να 

εφαρμόζονται λαμβάνοντας υπόψιν τόσο την υπολογιστική πολυπλοκότητα όσο και την 

αποδοτικότητα των δικτύων. Σε αυτό το πλαίσιο, προτείνονται στη βιβλιογραφία τεχνικές 

RRM που βασίζονται στην ML, ως ένας αποτελεσματικός τρόπος αντιμετώπισης των 

προαναφερθέντων περιορισμών. 

Μετά τη συγκριτική μελέτη της βιβλιογραφίας σε σχέση με τη χρήση ML τεχνικών για 

RRM προβλήματα σε 5G/B5G δίκτυα, τα ακόλουθα συμπεράσματα μπορούν να εξαχθούν: 

• Οι τεχνικές Επιβλεπόμενης Μάθησης (Supervised Learning) 

χρησιμοποιούνται κυρίως για προβλήματα πρόβλεψης δικτυακών μετρικών, όπως o 

ρυθμός διέλευσης, ο λόγος σήματος προς παρεμβολή, οι απώλειες διαδρομής, κ.α.. Η 

πρόβλεψη τέτοιων μετρικών κρίνεται καίρια για την ανάπτυξη αποτελεσματικών RRM 

αλγορίθμων.  

• Οι μέθοδοι Βαθιάς Μάθησης (Deep Learning – DL), λόγω της ικανότητάς 

τους να εξορύσσουν βαθιά δεδομένα και κρυμμένες συσχετίσεις ετικετών, μέσω 

πολλαπλών σύνθετων κρυφών επιπέδων, χρησιμοποιούνται κυρίως σε προβλήματα 

κατανομής υποφερόντων, επιλογής σταθμού βάσης (Base Station – BS) ή RN, 

κατανομής ισχύος και πρόβλεψης καναλιού. Η πολυπαραμετρική φύση του 

προβλήματος RRM και οι σύνθετοι συσχετισμοί χαρακτηριστικών του καναλιού 

καθιστούν τις προσεγγίσεις DL ως τον πιο αποτελεσματικό τρόπο αντιμετώπισης του 

συνολικού προβλήματος RRM. 

• Από την άλλη πλευρά, η Μη Επιβλεπόμενη Μάθηση (Unsupervised Learning) 

εστιάζει, γενικά, σε προβλήματα ομαδοποίησης, όπως η ομαδοποίηση χρηστών, η 

επιλογή BS ή RN και η διαμόρφωση των επιπέδων QoS, όσον αφορά στο RRM. 

• Τα μοντέλα Ενισχυτικής Μάθησης (Reinforcement Learning – RL) είναι πιο 

αποτελεσματικά στην αντιμετώπιση του συνολικού RRM προβλήματος, λόγω της 

ικανότητάς τους να αλληλοεπιδρούν με το περιβάλλον διάδοσης και να βελτιστοποιούν 

παραμέτρους όπως η EE και η SE, μέσω διαδοχικών γύρων εκπαίδευσης. Σε αυτό το 

πλαίσιο, RL τεχνικές, όπως η Q-learning, προτείνονται από ερευνητές σε προβλήματα 

κατανομής υποφερόντων και ελαχιστοποίησης κατανάλωσης ενέργειας. 

• Τέλος, οι μέθοδοι Κινητού Υπολογισμού (Mobile Edge Computing – MEC) 

και Συνεργατικής Μάθησης (FL), προτείνονται για να αντιμετωπίσουν το δύσκολο 

ζήτημα της ελαχιστοποίησης του χρόνου εκπαίδευσης των ML μοντέλων και της 

βελτιστοποίησης της χρήσης των υπολογιστικών πόρων. Σε αυτό το πλαίσιο, οι μέθοδοι 

MEC και FL συνδυάζονται είτε με αλγόριθμους DL ή RL για διάφορα προβλήματα που 

σχετίζονται με το RRM, όπως η κατανομή χρηστών, η κατανομή υποφερόντων και η 

επιλογή BS ή RN. Επιπλέον, οι μέθοδοι FL μπορούν να συνδυαστούν αποτελεσματικά 

και με ανεπτυγμένες τεχνικές φυσικού επιπέδου, όπως η NOMA και οι 

Αναδιαμορφούμενες Έξυπνες Επιφάνειες (Reconfigurable Intelligent Surfaces – RIS) 

ώστε να ενισχυθούν περαιτέρω οι δυνατότητες των υπαρχόντων δικτύων, αλλά και να 

οδηγήσουν την μετάβαση προς την υλοποίηση δικτύων 6ης γενιάς (6G). 

 

2. Πρόβλεψη του ρυθμού διέλευσης σε 5G/B5G δίκτυα 
 

Η πρόβλεψη δικτυακών μετρικών σε δίκτυα 5G/B5G είναι σημαντική για την 

αποτελεσματική διαχείριση των διαθέσιμων ραδιοπόρων και τη βελτιστοποίηση του δικτύου, 

καθώς μέσω της εξόρυξης γνώσης ενισχύεται σημαντικά η διαδικασία λήψης αποφάσεων που 

σχετίζονται με το RRM. Με την ακριβή πρόβλεψη των δικτυακών μετρικών, όπως ο ρυθμός 

διέλευσης, η καθυστέρηση, η ραδιοκάλυψη, η ισχύς του σήματος κ.α., επιτυγχάνεται 

βελτιστοποίηση των πόρων του δικτύου και αντιμετωπίζονται προληπτικά πιθανά 
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προβλήματα, ενώ ταυτόχρονα μπορούν να βελτιωθούν τα προσφαιρόμενα επίπεδα QoS και 

QoE. 

Σε αυτό το πλαίσιο, στο Κεφάλαιο 4, μελετήθηκε η πρόβλεψη του ρυθμού διέλευσης σε 

5G/B5G δίκτυα. Χρησιμοποιήθηκε το σύνολο δεδομένων Lumos5G [158] που περιέχει 

παραμέτρους υλοποιημένων 5G δικτύων από τη Μινεσότα των ΗΠΑ. Τα χαρακτηριστικά του 

παραπάνω συνόλου δεδομένων περιλαμβάνουν παραμέτρους τοποθεσίας και κινητικότητας 

χρηστών (γεωγραφικό μήκος, γεωγραφικό πλάτος, ταχύτητα και κατεύθυνση, απόσταση 

χρήστη-BS και αντίστοιχες γωνίες), καθώς και δικτυακές παραμέτρους, όπως κατάσταση 

δικτύου (συνδεδεμένο ή μη), παραμέτρους καναλιού και ισχύος σήματος Ο μετρούμενος 

ρυθμός διέλευσης κατερχόμενης ζεύξης λειτουργεί ως η μεταβλητή απόκρισης. 

Το παραπάνω πρόβλημα (πρόβλεψη του ρυθμού διέλευσης σε 5G/B5G δίκτυα) 

μελετήθηκε τόσο ως πρόβλημα ταξινόμησης (classification) όσο και ως πρόβλημα 

παλινδρόμησης (regression). Για αυτό το λόγο διάφοροι ML αλγόριθμοι χρησιμοποιήθηκαν 

και η απόδοσή τους αξιολογήθηκε με βάση ML μετρικές όπως η ορθότητα (accuracy) και το 

F1-Score για το πρόβλημα της ταξινόμησης, και το μέσο τετραγωνικό σφάλμα (Mean 

Squared Error - MSE) και το μέσο απόλυτο σφάλμα (Mean Absolute Error – MAE). Τα 

αποτελέσματα της παραπάνω ανάλυσης συνοψίζονται στον Πίνακα 1 (για πρόβλημα 

ταξινόμησης 2 ή 3 τάξεων) και στον Πίνακα 2 (για πρόβλημα παλινδρόμησης), και 

αναλύονται διεξοδικά στο Κεφάλαιο 4. 

 

ML 

Αλγόριθμος 

3-τάξεις 2-τάξεις  Χρόνος Εκπαίδευσης 

Accuracy F1-score Accuracy F1-score (s) 

FFNN 0.81 0.67 0.88 0.88 960.41 

k-NN 0.87 0.77 0.90 0.90 111.79 

SVMs 0.76 0.53 0.82 0.82 150.03 

DNN 0.81 0.81 0.85 0.84 129.43 
Πίνακας 0-1: Αξιολόγηση ML αλγορίθμων για την πρόβλεψη του ρυθμού διέλευσης ως πρόβλημα ταξινόμησης 

 

ML Algorithm MAE RMSE Χρόνος Εκπαίδευσης (s) 

Linear Regression 278 353 1.05 

Binary Decision Tree 162 257 50.61 

SVMs 278 354 28.54 

NN 237 328 6.89 

LSTM 150 250 276.89 
Πίνακας 0-2: Αξιολόγηση ML αλγορίθμων για την πρόβλεψη του ρυθμού διέλευσης ως πρόβλημα παλινδρόμησης 

Οι παραπάνω ML αλγόριθμοι συγκρίνονται και με άλλες προσεγγίσεις τις βιβλιογραφίας, 

όπου προκύπτει ότι η απόδοσή τους είναι ίδια ή και καλύτερη από την απόδοση αντίστοιχων 

μοντέλων. 

 

3. Τοποθέτηση και Επιλογή Κόμβων Αναμετάδοσης σε 5G/B5G δίκτυα μέσω 

Βαθιάς και Βαθιάς Ενισχυτικής Μάθησης 
 

Στο Κεφάλαιο 5 μελετάται το πρόβλημα της τοποθέτησης και επιλογής RN σε 5G/B5G 

δίκτυα με ανάπτυξη τεχνικών ML, με έμφαση στη Βαθιά και την Βαθιά Ενισχυτική μάθηση. 

Η χρήση RN είναι μία καινοτόμος τεχνική φυσικού επιπέδου οι οποία βρίσκει ιδιαίτερη 

εφαρμογή σε δίκτυα 5G/B5G, καθώς μπορεί να αυξήσει την χωρητικότητα της κάθε κυψέλης 

της τοπολογίας, αυξάνοντας το συνολικό αριθμό των αποδεχθέντων χρηστών σε αυτήν. 

Πέραν αυτού, η χρησιμοποίηση RNs είναι και ένας μη κοστοβόρος τρόπος αύξησης την 
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περιοχής κάλυψης της κάθε κυψέλης, καθώς μπορούν να εξυπηρετηθούν απομακρυσμένοι 

χρήστες χωρίς την παράλληλη εγκατάσταση νέων σταθμών βάσης ή γενικότερα εξοπλισμού 

δικτύου ραδιοπρόσβασης. Λόγω των παραπάνω προτερημάτων των RNs, ή χρήση τους έχει 

κεντρίσει ιδιαίτερο ενδιαφέρον για εφαρμογές βελτιστοποίησης της παραγωγικής 

διαδικασίας, σε ιδιωτικά 5G/B5G δίκτυα αλλά και σε αμυντικά 5G συστήματα. 

Σε Κεφάλαιο 5, αφότου παρουσιαστεί η παρούσα κατάσταση στη διεθνή βιβλιογραφία 

όσοn αφορά τη χρήση ML τεχνικών για την βελτιστοποίηση της τοποθέτησης και επιλογής 

RN σε συστήματα 5G/B5G, παρουσιάζονται καινοτόμοι ML αλγόριθμοι για την 

αντιμετώπιση των παραπάνω προβλημάτων. 

Συγκεκριμένα, θεωρώντας μια 5G/B5G τοπολογία (όπως αυτή της Εικόνας 0-1), υπάρχουν 

2 τρόποι να εξυπηρετηθεί ένας χρήστης ο οποίος ζητά υπηρεσία. Αυτοί είναι: 

• Το πρωτεύον σύστημα, που αποτελείται από το σύνολο των BS, που αποτελούν 

τις οντότητες που παρέχουν πρόσβαση στους χρήστες και διαχειρίζονται τους 

πόρους του δικτύου.  

• Το βοηθητικό σύστημα, που αποτελείται από το σύνολο των RN. Αν ένας 

χρήστης δεν μπορεί να εξυπηρετηθεί από το πρωτεύον σύστημα για λόγους 

μεγάλων απωλειών διάδοσης (pathloss) ή για λόγους εξάντλησης των πόρων των 

BS, τότε ενεργοποιείται αυτό το σύστημα. Κάθε RN δρα συνεργατικά με τον BS 

στον οποίο «αναφέρεται». 

 

 
Εικόνα 0-1: 5G/B5G επικοινωνίες με χρήση RN 

Θεωρώντας λοιπόν ότι τι κυψελωτό σύστημα απαρτίζεται από 𝑀 σταθμούς βάσης (BSs), 

𝑅 RNs and 𝑁 ομοιόμορφα κατανεμημένους χρήστες, το πρόβλημα της βέλτιστης 

τοποθέτησης των RNs έγκειται στην επιλογή των 𝑁𝐶𝑅𝑁 γεωγραφικών συντεταγμένων (𝑥, 𝑦, 𝑧) 

για την τοποθέτηση αυτών των RN με βάση ένα πλήθος πιθανών συντεταγμένων 𝑅𝑁𝑐𝑎𝑛, όπου 

𝑅𝑁𝑐𝑎𝑛 > 𝑁𝐶𝑅𝑁. Η επιλογή αυτών των 𝑁𝐶𝑅𝑁 RN γίνεται με βάση την ελαχιστοποίηση των 

απωλειών διάδοσης, την ελαχιστοποίηση της εκπεμπόμενης ισχύος για κάθε αποδεχθέντα 

χρήστη αλλά και την μεγιστοποίηση της χωρητικότητας κάθε κυψέλης. 

Με τη χρήση ενός ημι-στατικού προσομοιωτή 5G/B5G επιπέδου ζεύξης και συστήματος, 

δημιουργούνται συνθετικά σύνολα δεδομένων για την εκπαίδευση DL αλγορίθμων με στόχο 

την επίλυση του παραπάνω προβλήματος.  
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Δύο διαφορετικές DL μέθοδοι προτείνονται για την επίλυση του παραπάνω προβλήματος, 

ενώ -και οι 2- αξιολογούνται στα ακόλουθα σενάρια: 

• Σενάριο 1: Οι πληροφορίες του καναλιού θεωρούνται a priori γνωστές, και 

συγκεκριμένα ο πίνακας αποκρίσεων του καναλιού (channel coefficient matrix). 

• Σενάριο 2: Δεν υπάρχει απολύτως καμία πληροφορία για τις συνθήκες του 

καναλιού. 

 

Το δεύτερο μέρος αυτού του κεφαλαίου ασχολείται με το πρόβλημα της επιλογής του 

κατάλληλου RN (από τα 𝑁𝐶𝑅𝑁 που εγκαταστάθηκαν με βάση το πρώτο υποπρόβλημα) σε 

δίκτυα 5G/B5G.  

Η μαθηματική διατύπωση του παραπάνω προβλήματος βασίζεται στην ύπαρξη δύο 

διαφορετικών ζεύξεων που δρουν παράλληλα για την εξυπηρέτηση των χρηστών μέσω του 

βοηθητικού συστήματος. Η πρώτη είναι η ζεύξη μεταξύ του BS και του εκάστοτε RN, ενώ η 

δεύτερη είναι αυτή του RN με τον προς εξυπηρέτηση χρήστη. Συνεπώς, οι παράμετροι 

ενδιαφέροντος, δηλαδή οι παράμετροι με βάση την μεγιστοποίηση των οποίων γίνεται η 

επιλογή του κατάλληλου RN για κάθε χρήστη, υπολογίζονται μέσω της υπέρθεσης των 

παραμέτρων των δύο παραπάνω ανεξάρτητων ζεύξεων. Οι παράμετροι αυτοί είναι η 

ενεργειακή και φασματική αποδοτικότητα (ΕΕ, SE). 

Για την επίλυση του προβλήματος της επιλογής RN παρουσιάζεται στο Κεφάλαιο 5 ένα 

καινοτόμο σχήμα Βαθιάς Ενισχυτικής Μάθησης (DRL) που βασίζεται στον αλγόριθμο Q-

Learning. Το προτεινόμενο DRL σχήμα αναλύεται διεξοδικά στην παράγραφο 5.4.2 ωστόσο 

τα βασικά του χαρακτηριστικά είναι τα ακόλουθα: 

• Χρησιμοποιεί μια οντότητα που ονομάζεται πράκτορας λογισμικού (software 

agent) για την συνεχή αλληλεπίδραση με το κυψελωτό περιβάλλον. 

• Ο αλγόριθμος δρα ανά κυψέλη και ανά χρήστη. 

• Η αρχική κατάσταση του αλγορίθμου είναι η τυχαία επιλογή RN για τον εκάστοτε 

χρήστη. 

• Σε κάθε επόμενο βήμα ο αλγόριθμος εξετάζει διαφορετικά διαθέσιμα RN για την 

εξυπηρέτηση αυτού του χρήστη, χρησιμοποιώντας των πίνακα συσχετίσεων του 

καναλιού, έως ότου βρεθεί το RN το οποίο βελτιστοποιεί την EE και την SE για 

τον υπό μελέτη χρήστη. 

• Η σειρά των RN που θα εξεταστούν επιλέγεται με τη χρήση νευρωνικών δικτύων, 

διαφορετικών για κάθε κυψέλη. 

• Στη συνέχεια, ενεργοποιείται ο μηχανισμός ελέγχου τη συνολικής EE και SE του 

συστήματος, ο οποίος είναι υπεύθυνος για την επίτευξη της ταυτόχρονης 

μεγιστοποίησης των επιπέδων ΕΕ και SE για το σύνολο της κυψελικής τοπολογίας. 

Η αξιολόγηση της απόδοσης των παραπάνω προτεινόμενων αλγορίθμων για την 

τοποθέτηση και επιλογή RN σε 5G/B5G δίκτυα πραγματοποιήθηκε για ένα κυψελωτό 

σύστημα δύο (2) περιφερειών (tiers) κυψελών -και άρα δεκαεννέα (19) κυψελών- και είχε ως 

κύρια αποτελέσματα τα παρακάτω: 

• Η προτεινόμενες DL μέθοδοι για την βελτιστοποίηση της τοποθέτησης των RN 

μπορούν να βελτιώσουν τη συνολική EE και τη αντίστοιχη SE του συστήματος 

έως και 30%, σε σύγκριση με πρόσφατους αλγορίθμους βελτιστοποίησης που δεν 

χρησιμοποιούν ML. 

• Στο παραπάνω σύστημα, όταν ενεργοποιηθεί και το μοντέλο Βαθιάς Ενισχυτικής 

Μάθησης για την επιλογή RN, τότε η συνολική EE του συστήματος βελτιώνεται 

έως και 80% σε σχέση με την επίδοση του συστήματος που χρησιμοποιεί μόνο τον 

αλγόριθμο για την τοποθέτηση των RN. Η αντίστοιχη βελτίωση για την SE μπορεί 

να φτάσεις έως και το 75%. 
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• Η συνολική υπολογιστική πολυπλοκότητα και ο συνολικός χρόνος εκπαίδευσης 

βελτιώνεται αντιστοίχως σε σχέση με προσεγγίσεις που δεν χρησιμοποιούν ML. 

 

 

 

4. Συμπεράσματα και Προεκτάσεις 
 

Συνοψίζοντας, στην παρούσα διδακτορική διατριβή μελετήθηκε και αναλύθηκε διεξοδικά 

μία πληθώρα θεμάτων κατανομής ραδιοπόρων με ανάπτυξη αλγορίθμων μηχανικής μάθησης. 

Εντοπίζοντας τα κενά στην διαθέσιμη βιβλιογραφία και αξιοποιώντας σύγχρονες τεχνολογίες 

τηλεπικοινωνιών, και φυσικά πολλές διαφορετικές ML τεχνικές, στην τρέχουσα εργασία 

προτείνουμε ένα πλήρες και πρωτοποριακό πλαίσιο για την διαχείριση ραδιοπόρων και την 

βελτιστοποίηση της απόδοσης των ασύρματων δικτύων 5G/B5G. Βασικές κατευθύνσεις στην 

επίλυση των υπό εξέταση προβλημάτων αποτελούν η ενεργειακή αποδοτικότητα, η βελτίωση 

της ποιότητας υπηρεσίας, και η αύξηση της ικανοποίησης των αναγκών των χρηστών, 

προωθώντας έτσι ένα δεδομενοκεντρικό σύστημα για την ανάθεση των διαθέσιμων 

πεπερασμένων πόρων των δικτύων. Παράλληλα, έμφαση δίνεται στην χρησιμοποίηση RN, 

ως μια τεχνολογία αιχμής για την αύξηση της περιοχής κάλυψης σε 5G/B5G δίκτυα χωρίς 

ταυτόχρονη αύξηση του κόστους.  

Ο αυξανόμενος αριθμός χρηστών, η απαίτηση για μαζική και άμεση συνδεσιμότητα, και 

η διάθεση πολλαπλών υπηρεσιών με υψηλές προδιαγραφές ως προς τον όγκο δεδομένων και 

οι νέες κατηγορίες εφαρμογών που θα διαδραματίσουν σημαντικό ρόλο στα B5G δίκτυα, 

αναδεικνύουν τους ML αλγορίθμους που παρουσιάζονται στην παρούσα διδακτορική 

διατριβή ως μία πολλά υποσχόμενη προσέγγιση τόσο για την διαχείριση των διαθέσιμων 

πόρων του δικτύου, όσο και για την ανάδειξη των RN ως μια τεχνολογία αιχμής με ορίζοντα 

την προτυποποίηση των δικτύων 6G.  

Επιπλέον, οι προσομοιώσεις που διεξήχθησαν με την χρήση του ημι-στατικού MATLAB 

προσομοιωτή 5G/B5G επιπέδου ζεύξης και συστήματος αποδεικνύουν τα έμπρακτα οφέλη 

των προτάσεων της παρούσας διδακτορικής διατριβής ως προς την σημαντική βελτίωση των 

χαρακτηριστικών της λειτουργίας του δικτύου (πχ. ενεργειακή και φασματική 

αποδοτικότητα, αύξηση των ρυθμών μετάδοσης και των εξυπηρετούμενων χρηστών), αλλά 

και της υπολογιστικής πολυπλοκότητας, η οποία είναι καίριας σημασίας όσο οι 

υπολογιστικές διαδικασίες τείνουν να διαδραματίζονται στα άκρα του δικτύου.  

Όσον αφορά στις μελλοντικές προεκτάσεις της παρούσας διδακτορικής διατριβής, 

κρίνεται πολύ σημαντική η εφαρμογή αντίστοιχων ML αλγορίθμων για προβλήματα RRM 

σε 6G δίκτυα όπου γίνεται επίσης χρήση νέων τεχνολογιών φυσικού επιπέδου για την κάλυψη 

των αναγκών των νέων κατηγοριών εφαρμογών προς εξυπηρέτηση. Το Κεφάλαιο 6 

παρουσιάζει και αναλύει συνοπτικά διάφορες τεχνολογίες που θα έχουν καίριο ρόλο στα 6G 

δίκτυα. 

Τέλος, η παρούσα διδακτορική διατριβή διαθέτει όλα εκείνα τα χαρακτηριστικά τα οποία 

επιτρέπουν την προσαρμογή της για την επίλυση προβλημάτων διαχείρισης και κατανομής 

πόρων σε διαφορετικούς τομείς, όχι αποκλειστικά εντός του κλάδου των τηλεπικοινωνιών 

αλλά και σε άλλα πεδία στα οποία οι χρήστες αλληλοεπιδρούν και ανταλλάσσουν 

πληροφορίες. Ενδεικτικά, κάποιοι κλάδοι εφαρμογών όπου θα μπορούσε να γίνει χρήση 

παρόμοιων -φυσικά προσαρμοσμένων- ML προσεγγίσεων είναι τα δίκτυα μεταφορών, 

μετάδοσης ηλεκτρικής ενέργειας και η ιατρική μηχανική. 
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Glossary of Technical Terms – Γλωσσάρι Τεχνικών Όρων 
 

5G Wireless Networks Ασύρματα Δίκτυα 5ης Γενιάς 

6G Wireless Networks Ασύρματα Δίκτυα 6ης Γενιάς 

Accuracy Ορθότητα 

Augmented Reality Επαυξημένη Πραγματικότητα 

B5G Wireless Networks Ασύρματα Δίκτυα Επόμενης Γενιάς 

Base Station Σταθμός Βάσης 

Classification Ταξινόμηση 

Computational Complexity Υπολογιστική Πολυπλοκότητα 

Dataset Σύνολο Δεδομένων 

Deep Learning Βαθιά Μάθηση 

Device-to-Device Συσκευή-προς-Συσκευή 

Downlink Κατερχόμενη Ζεύξη 

Energy Efficiency Ενεργειακή Αποδοτικότητα 

Federated Learning Συνεργατική Μάθηση 

Internet of Things Διαδίκτυο των Πραγμάτων 

Machine Learning Μηχανική Μάθηση 

Machine-to-machine Μηχανή προς μηχανή 

Mean Absolute Error Μέσο Απόλυτο Σφάλμα 

Mean Squared Error Μέσο Τετραγωνικό Σφάλμα 

Multiple-Input-Multiple-Output Πολλαπλές-Είσοδοι-Πολλαπλές-Έξοδοι 

Neural Network Νευρωνικό Δίκτυο 

Non Orthogonal Multiple Access Μη-ορθογώνια τεχνική πολλαπλής πρόσβασης 

Orthogonal Frequency Division 

Multiple Access 

Ορθογώνια Διαίρεση Συχνότητας Πολλαπλής 

Πρόσβασης 

Pathloss Απώλειες Διάδοσης 

Physical Layer Φυσικό Επίπεδο 

Quality of Experience Ποιότητα Εμπειρίας 

Quality of Service Ποιότητα Υπηρεσίας 

Radio Resource Management Ανάθεση Ραδιοπόρων 

Reconfigurable Intelligent Surfaces Αναδιαμορφούμενες Έξυπνες Επιφάνειες 

Regression Παλινδρόμηση 

Reinforcement Learning Ενισχυτική Μάθηση 

Relay Node  Κόμβος Αναμετάδοσης 

Software Agent Πράκτορας Λογισμικού 

Spectral Efficiency Φασματική Αποδοτικότητα 

Supervised Learning Επιβλεπόμενη Μάθηση 

Test Set Σύνολο Επαλήθευσης 

Tiers Περιφέρειες Κυψελών 

Training Set Σύνολο Εκπαίδευσης 

Unsupervised Learning Μη Επιβλεπόμενη Μάθηση 

Uplink Άνω ζεύξη 

Vehicle-to-Vehicle Communications Eπικοινωνίες Oχημάτων 

Virtual Reality Εικονική Πραγματικότητα 
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Preface 
 

Within the framework of the present thesis, the utilization of novel Machine Learning (ML) 

algorithms has been studied as an effective tool to deal with various Radio Resource 

Management (RRM) problems in 5th generation (5G) and Beyond Networks (B5G). The 

proposed novel ML frameworks, spanned into different types of learning, are built and 

evaluated to deal with different RRM-related sub-problems, such as subcarrier allocation, 

Base Station (BS) or Relay Node (RN) placement and selection. A key observation is that 

different types of learning are witnessing the best-performance when applied to different 

RRM-related subproblems. As far as evaluation procedures, all the ML algorithms that have 

been deployed as part of this thesis, are evaluated in two phases regarding Key Performance 

Indicators (KPIs). These are: 

• ML KPIs, where the maximization of metrics such as accuracy, f1-score, 

precision, recall, etc., is investigated. In fact, when having a dataset, the first level of 

evaluation of an implemented ML model considers, after splitting it on training and 

test sets, the performance of the aforementioned metric and the comparison of them 

with other recent approaches that can be found on the literature. 

• Network KPIs, where metrics such as achieved throughput, total number of 

accepted users, Signal-to-noise-plus-interference-ratio (SNIR), energy efficiency 

(EE) and spectral efficiency (SE) are of interest. By evaluating the performance of the 

overall 5G/B5G systems’, after the standalone evaluation of the ML KPIs, the 

effectiveness or not of the implemented ML algorithms is identified. In fact, if a ML 

method does not improves the performance of a 5G/B5G system, based on the 

evaluation of one or more of the aforementioned KPIs, then this method is declared as 

ineffective even though it’s performance in the ML KPIs evaluation is satisfactory. 

Concerning all the above, this thesis acts towards the direction of implementing an end-to-

end data-driven ML framework so that different physical layer RRM tasks (e.g., KPI 

prediction, subcarrier allocation, RN placement and selection) can be optimized with, also, 

respect to the computational complexity degradation compared to existing non-ML 

optimization techniques. 

Firstly, a comprehensive literature review is performed to list all the recent research efforts 

on the field of ML utilization for RRM-related problems in 5G/B5G networks. The analysis 

of the review is performed based on the type of learning (e.g. Supervised, Unsupervised, 

Reinforcement). By doing so, conclusions are reached as which ML types are suitable for the 

different RRM sub-problems. 

Afterward, different ML frameworks are proposed for three main RRM sub-problems. 

These are the following: 

• KPI prediction: In this case a comparative analysis of different ML models is 

performed focusing on Supervised and Deep Learning (DL) ones. Throughput is 

selected as the KPI of interest and evaluation is performed both concerning the 

achieved accuracy and f1-score of the implemented models, and the training time for 

each model. It is significant to note that the aforementioned models are evaluated not 

only using public datasets, but also, with datasets generated from the lab’s MATLAB 

5G/B5G networks’ link and system level simulator. 

• RN placement: As relaying is a key enabling technology in 5G/B5G, the 

optimal placement of RNs in each cell’s coverage area is of high interest. For this 

purpose, using datasets generated from the lab’s 5G/B5G network simulator, two 

different DL models have been designed and evaluated. The evaluation of this models 

concerns the comparison with state-of-the-art non-ML RN placement approaches. 
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However, due to the distributed nature of the 5G/B5G environment nowadays and the 

requirements for ultra-low latency communications, a Federated Learning (FL) 

framework for RN placement is, also, proposed and compared with the 

aforementioned centralized approaches. 

• RN selection: Additively to RN placement, a key RRM problem in 5G/B5G 

networks is the selection of the best performing RN among the available ones to serve 

each user that cannot be served be the relevant BS. This RRM problems is declared as 

a really challenging one (categorized as NP-Hard problem), and, thus, traditional ML 

techniques cannot achieve good performance. For this purposed, a Deep 

Reinforcement Learning (RL) (Deep Q-learning) framework is proposed based on the 

maximization of both EE and SE both for the user under test, but also, additively for 

all the 5G/B5G system. 

The rest of the thesis is organized as follows, as also depicted in Fig. 1: 

1. Chapter 1 presents an overview on 5G/B5G cellular systems. The evolution of 

cellular systems through the years are briefly discussed in order to highlight the reason 

that led the research in 5G/B5 cellular system design. Moreover, the key performance 

and user requirements, which are extended compared to previous cellular networks 

generations, are presented according to 3GPP regulations. To finish with this chapter, 

the enabling physical layer technologies for 5G/B5G networks, which are also 

discussed and utilized throughout the whole thesis, are introduces. In this context, 

massive Multiple-Input-Multiple-Output (m-MIMO) antenna orientations, Non-

Orthogonal Multiple Access (NOMA), RNs and 5G Sidelink and Reconfigurable 

Intelligent Surfaces are discussed. This chapter ends with the presentation of the 3GPP 

standardization activities plan toward 6th generation (6G) networks establishment. 

2. In Chapter 2, ML and DL principles are introduced, as well as the different 

types of ML. Afterwards, as the need for big datasets in different RRM tasks in 

5G/B5G networks is growing, the focus is on DL. Moreover, distributed learning 

frameworks as FL and Mobile Edge Computing (MEC) are, also, introduced as the 

need for fast responses and ultra-low latency communications is critical in 5G/B5G 

communications. 

3. Chapter 3 focuses on the effective ways that ML and DL can be used for the 

optimization of different RRM-related physical layer tasks in 5G/B5G networks. The 

RRM problem is formulated and traditional optimization techniques are presented. 

Afterwards, a detailed literature review of the state-of-the-art research works on the 

field of ML-enabled RRM is performed. Key outcomes, such as the dataset 

unavailability for these problems are, also, discussed. To tackle this challenges the last 

part of this chapter focuses on the implemented MATLAB link and system level 

5G/B5G network simulator, which is hosted in Intelligent Communications and 

Broadband Networks Laboratory (ICBNet) premises at NTUA. This simulator is 

extensively used in this thesis for both dataset generation and models evaluation based 

on networks KPIs. 

4. Chapter 4 focuses on the problem of KPI prediction in 5G/B5G network using 

ML/DL models. This thesis focuses on throughput prediction as an indicative case, 

due to the fact that this metric is one of the key ones when discussing performance of 

a cellular network. In this framework, different ML/DL algorithms are putted under 

test, and, thus, the results and the comparative analysis of the performance are 

discussed. Finally, outcomes and guidelines are retrieved.  

5. Chapter 5 proposes the development of ML/DL/RL algorithms of the key 

RRM problems of RN placement and selection in 5G/B5G networks. Firstly, the 

relevant literature on the field is presented. Afterwards, two novel DL algorithms for 
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RN Placement are proposed and evaluated compared to existing non-ML approaches. 

However, due to the requirement for a flexible decentralized network with lots of 

different core network (CN) and Random Access Network (RAN) components in 

5G/B5G, a decentralised FL framework is, also, proposed and evaluated for RN 

placement. Finally, the problem of RN selection is formulated and a novel deep RL 

(DLR), deep Q-learning, schemes is proposed and analysed, which focuse on the 

continuous optimization of both EE and SE. 

6. Chapter 6 summarizes the conclusions and the contributions of the thesis and 

reflects on next steps and future research directions. 

7. Appendix A presents the publications that are part of this thesis, as well as the 

reached citations from third parties until now. 

 

 
Figure 0-1: Thesis Overview 
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Chapter 1: Overview of 5G and B5G cellular networks 
 

In this chapter the progress in the domain of cellular networks is introduced, focusing on 

5G/B5G systems. In this framework, the user and performance requirements of 5G/B5G 

networks are discussed, as well as the enabling technologies that can support them. In 

paragraph 1.1 the evolution of wireless communication’s networks starting from the early 

wireless communication systems, till the forthcoming 6G ones. Paragraph 1.2 discusses the 

5G/B5G network’s performance and user requirements. Paragraph 1.3 briefly introduces the 

technologies that are the key enablers of the 5G/B5G network’s advantages to support the 

aforementioned extended requirements. In this framework, m-MIMO antenna orientations, 

NOMA schemes, RNs and 5G sidelink and Reconfigurable Intelligent Surfaces (RIS) are 

discussed. Finally, paragraph 1.4 presents the 3GPP standardization activities towards the full 

deployment of 6G networks. 
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1.1 The Evolution of wireless communications networks (0G-6G) 
 

The first globally used communication systems (excluding military systems, which are 

estimated to have been released earlier without clear evidence) were employed by 252 police 

departments in the United States and approximately 5,000 police vehicles in 1934 for public 

safety purposes. These systems utilized amplitude modulation. From the following year and 

the introduction of frequency modulation by Edwin Armstrong, all mobile communication 

systems are based on that technique. The precursor to cellular communication systems is the 

0G (Zero Generation) technology. Its initial name was Mobile Radio Telephone, and it first 

appeared in 1946 in the United States as a collaboration between Motorola and Bell System. 

BSs were installed in 25 cities in the US, each with a coverage area of 50 km. The evolution 

of these networks included 0.5G networks and first-generation (1G) networks, which, despite 

continuous improvements compared to their predecessors, maintained analog signal 

processing in transceivers. A milestone for the development of cellular communication 

systems is the year 1979 when the first cellular system in Japan operated by Nippon Telephone 

and Telegraph. From that time onwards, there has been a vertical development in the 

aforementioned technologies, with a new generation of cellular systems being established 

approximately every 10 to 15 years. Thus, in 1988, the European Telecommunications 

Standards Institute (ETSI) designed GSM, the most significant second-generation network, 

which served 74% of the global mobile communication market until 2013. In the early 21st 

century, we entered the packet switching era with third-generation (3G) networks, which had 

been under research since 1980, and raised transmission rates to 2 Mbps, constituting 16% of 

the global market to date. After the full implementation of 3G, research began for the fourth 

generation (4G) of cellular systems. Its establishment began in March 2008 when the 

International Telecommunication Union-Radiocommunication Sector (ITU-R) defined a set 

of requirements for the 4G standards under the name IMT-Advanced. In contrast to previous 

generations, while the transition from 2G to 3G was as simple as changing SIM cards, mobile 

devices needed to be specifically designed to support 4G, as 4G does not support traditional 

circuit-switched telephony but rather IP-based communication, such as IP telephony. The 

pioneering technologies introduced by 4G are orthogonal frequency-division multiple access 

(OFDMA), frequency-domain equalization, and MIMO techniques. The aforementioned 

technologies, also, formed the basis of the fifth generation (5G) of (cellular) communication 

networks. Therefore, 5G pertains to the most advanced wireless network technologies. It 

utilizes millimeter-wave (mmWave) bands that offer performance of up to 20 gigabits per 

second and m-MIMO, which provides throughput levels up to ten times faster than 4G. It is 

of significant importance to note that in the aforementioned historical and conceptual 

approach, the development and implementation of new generations of networks are not static, 

and the new networks do not replace the old ones as isolated components. There is 

compatibility and direct dependence on previous and subsequent technologies. Thus, the 

terms evolution and compatibility are intertwined and form a unified whole for wireless 

communications. However, some more emphasis should be given 5G and 6th generation (6G) 

networks and the technologies they employ, as they signify the domain of the present thesis. 

In recent days, the ever increasing demands for increased data rates and the enormous 

volume of data traffic have highlighted the need for a new generation of mobile 

communication networks. This generation (5G), after several years of research and testing, 

has been deployed in the majority of the countries around the world. With the rapid growth 

of the Internet of Things (IoT), industry 4.0, augmented/virtual reality (AR/VR) applications, 

massive data volume is generated by end-user devices. In fact, according to CISCO [1], the 

monthly data demand will reach 100 exabytes with about 31.6 billion connected devices by 

2023, thus doubling the current requirements. Moreover, IoT and connected car applications 



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks 
_______________________________________________________________________________________________________________ 

37 
Ioannis A. Bartsiokas 

are expected to be the most growing application type.  Fifth-generation networks (5G), which 

have been recently deployed around the world, support a wide range of trending applications 

by categorizing them in different usage scenarios. The ultimate goal is for 5G networks to 

operate based on the IPv6 protocol, providing unrestricted access to information and the 

ability to share data anywhere and by anyone with respect to Quality of Service (QoS), Quality 

of Experience (QoE), EE and SE requirements. Thus, an end-to-end wireless world, which 

supports the vision for a Worldwide Wireless Web (WWWW), can be fulfilled. Therefore, 

the primary objectives of 5G are to provide immense capacity and connectivity, and to deliver 

truly real-time multimedia applications instantly available across the globe. However, all of 

the above should be accompanied by the highest possible protection and quality of service 

(QoS). The key attributes of 5G networks are the following [2]: 

• Less traffic, low cost, bidirectional bandwidth 

• Global availability 

• Software Defined Networking 

• Connectivity up to 25Mbps 

• More than 1GB bandwidth 

• Supporting virtual private networking and Network Slicing 

• Remote diagnostics 

• Adaptive modulation techniques 

• Artificial Intelligence (AI) and ML utilization 

However, despite the numerous benefits of 5G networks, the large amount of generated 

data and the need for real-time responses by the network itself have raised the discussion in 

both industry and academia over a new generation of wireless networks, the 6G. The main 

goal of 6G networks, as described in [3], is to provide the relevant technologies that can 

transform the “connected things” world (as expressed by the 5G-related worldwide wireless 

web (WWWW) and the service-based architecture (SBA) model) into the “connected 

intelligence” world by implementing data-aided models for diverse tasks, applications, and 

Open Systems Interconnection (OSI) levels.  

It is already visible that to achieve the aforementioned revolution, user requirements should 

be even stricter than the current 5G ones. As depicted in both [3] and [4], these extended 

requirements are expected to be the following: 

• Increased data rates around 1 Tbps. 

• EE as the primary KPI to support dense connections and mass connectivity for 

energy/battery-saving IoT devices and Unmanned ground, air, surface or undersea 

Vehicles (UxVs). 

• Enhanced low latency which is translated in less than 1ms end-to-end latency. 

• Upper mmWave communication bands and Terahertz bands (e.g., 73GHz-

140GHz and 1THz-3THz). 

• Increased coverage by minimizing the disconnection probability. 

• End-to-end AI and ML capabilities. 
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Figure 0-1: Wireless Communications Networks' evolution (1G-5G) 

 

1.2 5G and 6G networks’ Performance Requirements 
 

The development of 5G wireless broadband networks has significantly accelerated in 

recent years and is globally in the stage of installation and network infrastructure deployment, 

with many mobile service providers already offering devices (such as mobile phones, tablets, 

chips, etc.) that support these specific networks. According to CISCO studies [2] (see Figure 

1-2), monthly data demand is projected to reach 100 exabytes, with approximately 31.6 billion 

active devices by 2023, doubling the current requirements. In this context, the need for 

optimal solutions in network management and distribution of available radio resources 

becomes evident. 

 

 
(a)                                                           (b) 

 
(c) 

Figure 0-2: Data traffic prediction 2018-2023[2] (a) Overall, (b) per device type, (c) per location 
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It is evident, therefore, that 5G ensures and enhances the availability of existing and new 

demanding applications and services, such as vehicle-to-vehicle (V2V) communications, 

device-to-device (D2D) communications, machine-to-machine (M2M) communications, and 

the Internet of Things (IoT). According to the International Telecommunications Union (ITU) 

(see Figure 1-3), the performance requirements of 5G networks are categorized as follows: 

• Enhanced Mobile Broadband (eMBB): High-speed wireless communication 

for broadcast-like services (ITU MIT-2020 specification) Applications: HD videos, 

AR/VR applications, 3D online gaming 

• Ultra-Reliable Low-Latency Communications (URLLC): Extremely reliable 

and low-latency communications Applications: Critical scenarios (telemedicine, 

natural disasters), V2V, M2M, autonomous networks (robotics applications) 

• Machine-to-Machine (M2M) communications Applications: Increased 

connectivity of IoT devices and the development of corresponding networks and 

applications 

 
Figure 0-3: Performance Requirements and 5G usage scenarios, Source: ITU 

Thus, 5G networks are required to adequately meet the aforementioned requirements, 

which can be summarized in terms of network metrics as high throughput and connection 

density in environments with high terminal device mobility, subject to the maintenance or 

even improvement of the high levels of QoS and QoE for the served users (see also Table 1-

1). 

 

Use cases Requirements Desired value(s) 

Autonomous 

Vehicle Control 

Latency/availability/reliability 5 ms/99.999%/99.999% 

Emergency 

communication 

Availability/energy efficiency 99.999%/1 week battery 

life 

Factory 

automation 

Latency/reliability 1 ms/>10-9 packet loss 

High-speed 

train 

Traffic 

density/throughput/mobility/latency 

DL 100Gbps/km2/50 

Mbps/and UL 
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50Gbps/km2/100 Mbps/ 

500 kmph/10 ms 

Large outdoor 

event 

Throughput/density/reliability 300 Mbps/4 devices/ 

km2/Out. Prob. < 1% 

Massive user 

terminals 

Density/availability/energy efficiency 1M 

devices/km2/99.9%/10-

year battery life 

Media on 

demand 

Throughput/latency/density/availability 15 Mbps/ 200 ms/4000 

devices/ km2/95% 

coverage 

Remote 

surgery 

Latency/reliability 1 ms/99.999% 

Shopping mall Throughput/availability/reliability 300Mbps (DL) 60Mbps 

(UL)/95%/95% 

Smart city Throughput/density 300Mbps (DL) 60Mbps 

(UL)/200000 devices/km2 

Stadium Throughput/density 0.3-20 Mbps/0.1-10 

Mbps/km2 

Smart grids Latency/reliability 8 ms/99.999% 

Traffic jam Density/throughput/availability 480 Gbps/km2/100Mbps 

(DL) 20Mbps (UL)/95% 

AR/VR Latency/throughput <7 ms/4-8 Gbps 

Broadband to 

the home 

Density 4000 devices/km2 or 

80Gbps km2 
Table 0-1: Detailed Description of 5G Requirements per Use Case, Source: Ericsson 

However, 6G networks are set to extend eve more the aforementioned 5G requirements 

due to the even more enhanced capabilities that they will bring to support the even extended 

user requirements. It is significant to point out that 6G standardization is in its early phases 

currently and the expected IMT-2030 regulation is to set all the 6G-relevant requirements and 

use cases. However, the need for new service types beyond the 5G ones (eMBB, uRLLC, 

mMTC) has been identified. As described in [3] and [4] these are: 

• Computation Oriented Communications (COC), where distributed and in-

network computation enabled by federated learning and edge intelligence, will 

provide the relevant service provisioning, and define the quality of service (QoS) 

flows to maximize also computational accuracy. 

• Contextually Agile eMBB Communications (CAeC), which extends 5G 

eMBB to be more agile and adaptive to the network environment, the physical 

environment, and the social environment.  

• Event Defined uRLLC (EDuRLLC), where 5G uRLLC is extended to 

support uRLLC in extreme or emergency scenarios where user density, traffic 

patterns, mobility models and spectrum availability is dynamically changing 

(opposite to 5G, where uRLLC is performed in static environment conditions). 

 

1.3 Enabling Physical Layer Technologies for 5G/B5G Networks 
 

In this paragraph the key enabling PHY technologies that are of significant interest 

concerning 5G/B5G networks are briefly introduced. In this framework sub-paragraph 1.3.1 

focuses on m-MIMO orientations, sub-paragraph 1.3.2 introduced NOMA, sup-paragraph 



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks 
_______________________________________________________________________________________________________________ 

41 
Ioannis A. Bartsiokas 

1.3.3 presents Relay Nodes and 5G sidelink communications, while sub-paragraph 1.3.4 

introduces Reconfigurable Intelligent Surfaces (RIS). 

 

1.3.1 Millimeter Wave transmission 

 

As we have mentioned before, the 5G/B5G ecosystems are based on the latency, capacity 

and throughput requirements that IMT-2020 has established. In order to meet these increased 

demands in terms of the above metrics, 5G/B5G systems make extensive use of more 

frequency bands than the previous generation systems (e.g., 4G). 

Until now, modern era communication systems are operating in the UHF (Ultra Hugh 

Frequency Band) band. This spectrum zone is called centimeter Waves (cmWaves) and 

contain frequencies from 300 to 3,000 MHz (1–0.1 m). The mmWaves concern the EHF 

(Extremely Hugh Frequency Band) that lies between 30 and 300 GHz (1-10 nm). Although 

research interest in that areas, are expressed in lower bands (above 6 GHz) [5]. In Figure 3, 

the operation bands of 5G are displayed. 

 

Band Frequencies 

L 1 – 2 GHz 

S 2 – 3 GHz 

S 3 – 4 GHz 

C 4 – 6 GHz 

C 6 – 8 GHz 

X 8 – 10 GHz 

X 10 – 12,4 GHz 

Ku 12,4 – 18 GHz 

K 18 – 20 GHz 

K 20 – 26,5 GHz 

Ka 26,5 – 40 GHz 
Table 0-2: The mmWave spectrum 

The high demand and scientific interest in that field comes from the criteria of low latency, 

huge capacity and extremely throughput that the 5G (and Beyond) require. 

One major issue for these bands is the existence of many physical (PHY) layer challenges. 

These challenges concern about high propagation loss, directivity, sensitivity to blockage and 

dynamics due to mobility of UE’s given the enhanced coverage area [6]. 

These challenges are not so visible in the satellite and P2P (point-to-point) backhaul 

communications that have not such requirements of a lot of user coexistence in an area. In 

these areas these frequency band have been used from years before. Although, these 

challenges -during the past- made impractical the use mmWaves in cellural 

telecommunication networks. Nowadays, the overcoming of these limitations came from the 

antenna theory and RF design. High-gain, directional and spread spectrum antennas have been 

developed. In that way, high level of throughput can be established, despite the simultaneous 

presence of a variety of users in the coverage area’s macro or nano-cells [7], [8]. 

 

 

1.3.2 Massive Multiple-Input-Multiple Output Antenna Orientations 

 

MIMO antenna orientations consist of antenna arrays with multiple elements both at the 

transmitter and receiver ends. These systems belong to the broader category of smart or 

adaptive antennas, where multiple antennas are combined with advanced signal processing 
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and analysis techniques to increase the capacity of the wireless channels by exploiting the 

phenomenon of multipath propagation that characterizes wireless communication links. It is 

crucial to note that the term "input" refers to the transmitting antennas, i.e., the input to the 

system via the transmitter, while the term "output" refers to the receiving antennas - the 

terminal equipment of the receiver. The significance and wide acceptance of MIMO systems 

lie in the fact that they greatly increase the system's capacity by offering significant diversity 

gains and/or multiplexing gains without increasing the utilized bandwidth or the transmission 

power. 

LTE technologies (especially the mmWaves) have established the need of using antenna 

systems that allow to a large number of users to be served at the same time. The 4G-LTE 

systems use MIMO antennas (with 2 or 4 elements) in order to achieve peak data rates of the 

order of 1000 Mbps for the downlink and 500 Mbps for the uplink. 

The need of combination between mmWaves and MIMO systems can be shown by the 

application of Friis’ equation for free space losses, in GHz frequencies. By doing this we 

observe that given an average steady distance between transmitter and receiver, the signal 

power is 1000 times reduced compared with the current 4G-LTE signals [9]. The solution is 

to use ultra-directional antennas with dimensions relevant το millimeters. In other words the 

coexistence of beamforming techniques and MIMO antennas, which pack a huge number of 

elements onto a small cell, compensate the high levels of attenuation give the above approach 

[10]. 

According that framework, 5G New Radio, introduced the concept of massive MIMO (m-

MIMO), which - as the name implies - includes the application of MIMO technology on a 

much larger scale for greater coverage and network capacity. m-MIMO uses many more 

transmitting and receiving antennas to increase transmission gain and spectral capacity. In 5G 

cellular networks, multi-user (MU) MIMO systems are used. There are also SU-MIMO 

systems and baseband MIMO systems, which are used commonly in the backhaul of the 

telecommunication networks. In Fig. 1-4 a typical multi-user (MU-MIMO) system can be 

shown. 

Although no specific minimum number of antennas is required to implement m-MIMO, 

the generally accepted limit for a system is eight (or more) transmitting and eight (or more) 

receiving antennas. The latest research attempts in the R&D field extended the antenna 

elements to dozens or even hundreds of them. 

We should also highlight some key characteristics of the (Massive) MIMO Systems: 

• As we highlighted this technologies uses many more antennas than the number 

of UEs in the cell. In that case the beam is much narrower, allowing the base station 

to deliver RF power to the UE with greater accuracy and efficiency. The phase and 

gain of the antenna are controlled separately, with the channel information remaining 

at the base station, simplifying the UE without adding multiple receiver antennas. 

Installing a large number of base station antennas will increase the signal-to-noise 

ratio in the cell, leading to higher capacitance and cell position efficiency. Since the 

huge MIMO 5G application is in mmWave frequencies, the required antennas are 

small and easy to install and maintain [11]. 

• However, for RF engineers, MIMO and beamforming at mmWave spectrum 

insert many new challenges. The 5G NR standards provide to the physical framework 

framework structure, a new benchmark and new transmission modes to support 5G 

enhanced (Embb) mobile data rates. Designers need to understand 3D beam patterns 

and ensure that the beams can be connected to the base station and offer the desired 

performance, reliability and user experience.  

• To implement MIMO and configure the structure on 5G base stations, 

designers must carefully select hardware and software tools to simulate, design, and 
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test highly sophisticated systems containing dozens or even hundreds of antenna 

components. Engineers will use active phase array antennas to implement MIMO and 

beam configuration on base stations and devices. Not only are active antennas 

necessary to overcome signal propagation issues, such as higher path loss at mmWave, 

but they also provide dynamic configuration and beam guidance to specific users. 

Active antennas offer more flexibility and improve the performance of 5G 

communications. 

• On the other hand, the development of active phase antennas in commercial 

wireless communications represents a significant change from the passive antennas 

used in previous generations. MIMO and beamforming technologies increase capacity 

and coverage in a cell. For 5G devices and base stations, multi-antenna techniques 

require support in many frequency bands - from sub-6 GHz to mmWave - and in many 

scenarios, including huge IoT connections and extreme data performance. 

• Radar and satellite communications for aerospace and defense have long used 

active phase antennas, but these antenna arrays tend to be large and very expensive. 

Applying this technology to commercial wireless - where antenna arrays should be 

much smaller and less expensive - introduces many new challenges. There is a long 

list of required 3GPP tests for base stations, including transmitter tests and radiation 

receiver tests. Depending on the configuration of the base station, some FR1 tests 

require radiation tests and all FR2 tests require radiation tests. 

• Almost all 5G MIMO tests require over-the-air (OTA) testing. Early in 

development, OTA test solutions should characterize 3D beam performance across 

antenna bandwidth, including aspects such as antenna gain, sidelobe, and zero depth 

for full bandwidth and 5G bandwidth. 

 
Figure 0-4: MU-MIMO system 

To conclude this section it is crucial το dive into the basic theory of MIMO systems. If we 

assume a static channel in an 𝑁𝑡 × 𝑁𝑟 MIMO system as depicted in Fig. 1-5, where 𝑁𝑡 is the 

number of transmitting antennas and 𝑁𝑟 is the number or receiving ones, with ideal channel 

conditions and constant response or flat-fading channel, the output can be described by the 

equation: 

 

𝑦 = 𝐻 × 𝑠 +  𝑛 (1) 
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where 𝑠 =  [𝑠₁. . . 𝑠𝑁𝑡
]ᵀ is the vector of 𝑁𝑡 transmit signals, 𝑦 =  [𝑦₁. . . 𝑦𝑁𝑟

]ᵀ is the vector 

of 𝑁𝑟 receiving signals, and 𝑛 =  [𝑛₁. . . 𝑛𝑁𝑟
]ᵀ is the noise vector consisting of 𝑁𝑟 independent 

elements (corresponding to the receive antennas), which can be modeled as samples from a 

Gaussian distribution. The matrix 𝐻 =  [ℎᵢⱼ] is an 𝑁𝑡 × 𝑁𝑟 matrix that contains the complex 

channel coefficients for each possible combination of channel between the 𝑖-th transmitting 

antenna and the 𝑗-th receiving one. In the case of a static channel, this matrix is given by: 

 

𝐻 = [

ℎ11 ⋯ ℎ1𝑁𝑟

⋮ ⋱ ⋮
ℎ𝑁𝑡1

⋯ ℎ𝑁𝑡𝑁𝑟

] (2) 

MIMO systems are divided into three main categories based on their primary functions: 

Precoding and Beamforming systems, Spatial Diversity systems, and Spatial Multiplexing 

systems. The latter two are widely used in current technology due to the multiple gains they 

provide. 

Based on the standards set by ITU, ETSI, and 5GPP (5G New Radio), the concept of m-

MIMO is introduced, which applies MIMO technology on a much larger scale to achieve 

greater network coverage and capacity. m-MIMO utilizes a significantly larger number of 

transmit and receive antennas to increase transmission gain and spectral efficiency. To 

achieve substantial capacity gains in MIMO, multiple mobile terminals need to generate 

simultaneous uplink traffic. 

 

 
Figure 0-5: Block diagram of a 𝑁𝑡 × 𝑁𝑟 m-MIMO system 

In 6G systems, where killer applications will be AR/VR and holographic communications, 

the need for large data transmission, results in a need for a very high-frequency band to 

support the increasing service scenarios demands [12]. THz and sub-THz bands have been 

proposed as a potential solution towards this direction. These bands are spread from 0.1 to 10 

THz [13]. However, several challenges have been witnessed in these scenarios. First of all, 

such a high-band transmission can serve really short-range coverage. Thus, ultra-massive 

MIMO antenna systems in BSs should be used and BSs should be located near to each other. 

Limitations can, also, be witnessed concerning hardware availability, transmission power, and 
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increased pathloss [12]. The following enabling MIMO technologies are of interest in 6G 

networks: 

• Ultra-massive MIMO: Antenna arrays can contain over 10,000 very small 

antenna elements, forming ultra-narrow band beams. In this way, pathloss 

considerations can be mitigated. Moreover, by the formulation of hundreds of beams 

the system capacity can be increased and a large number of users can be supported. 

Furthermore, co-channel interference is also mitigated due to the narrow-band nature 

of the links [5]. However, the necessity of deploying a lot of antennas over short 

distances may lead to mutual correlations between each other. 

• Cell-free (CF) mMIMO: A promising technique to mitigate interference 

between neighboring cells, which are deployed close to each other in 6G orientations, 

is CF mMIMO. In such case, Access Points (APs) are spread in the coverage area to 

support UEs that demand service. A central processing unit (CPU) maps UEs to APs. 

This technique has great influence when CSI changes, even in the order of 

milliseconds in 6G, which means that certain system parameters become quickly 

obsolete. In particular, CF mMIMO systems result in negligible effects of small-scale 

fading by exploiting channel hardening [7]. Also, in the case of CF mMIMO, the 

probability of coverage is higher. In this direction, given that as the number of users 

increases, the total training time is significantly prolonged. Moreover, APs are 

equipped with a smaller number of antennas resulting in less demanding power 

requirements. However, a drawback that has been identified in some research efforts 

[7] is that as network size increases, limitations can exist in the scalability of this 

approach. 

 

 

1.3.3 Non-Orthogonal Multiple Access (NOMA) 

 

 

The objective and purpose of wireless communications networks (especially in 5G/B5G) is 

to serve multiple users in a geographic area, according to their requirements for QoS and QoE. 

Multiple access refers to the simultaneous access of multiple users to the same radio 

resources. It is understood, therefore, that the term pertains to systems and users that have 

both geographical relevance (i.e., they are located in the same geographic area) and frequency 

relevance. Additionally, a fundamental goal of the multiple access process is for the user to 

perceive the service at a continuous rate and with the required QoS and QoE. The system's 

capacity essentially reflects the number of users that can be served by the respective system 

with the required QoS threshold. The main types of multiple access are the following: 

1. Frequency Division Multiple Access (FDMA): In FDMA, the available 

frequency spectrum is divided into multiple non-overlapping frequency bands, and 

each user is allocated a specific frequency band for communication. 

2. Time Division Multiple Access (TDMA): In TDMA, users share the same 

frequency band, but they are allocated different time slots. Each user occupies a 

specific time slot to transmit their data. 

3. Code Division Multiple Access (CDMA): In CDMA, users share the same 

frequency band and the same time slots. However, each user is assigned a unique 

spreading code that allows their signals to be separated and distinguished at the 

receiver. 

4. Orthogonal Frequency Division Multiple Access (OFDMA): OFDMA is an 

extension of FDMA where the frequency band is further divided into multiple 
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orthogonal subcarriers. Users can be allocated subsets of subcarriers to transmit their 

data simultaneously. 

These multiple access techniques enable efficient utilization of the available resources and 

allow multiple users to share the network effectively while maintaining the required QoS 

levels. 

However, Orthogonal techniques (OFDMA) present relatively good results, but at the 

expense of the SE levels, which contradicts the fundamental requirements of the new 

generation of wireless networks (5G). For this reason, new enhanced technologies have been 

developed in this direction, such as NOMA, which, unlike conventional OFDMA 

technologies, is based on non-orthogonal resource allocation. This technique allows multiple 

users to share the same time and frequency resources (see also Fig. 1-5) through power 

domain multiplexing (Power Domain NOMA) or code domain multiplexing (Code Domain 

NOMA). In the first case (PD-NOMA), different power levels are assigned to different users 

based on their channel conditions to achieve high system capacity. In the second case (CD-

NOMA), multiplexing is achieved using sparse (or low correlation) spreading sequences for 

the transmission of each user's data streams. Although CD-NOMA provides the potential for 

significant SE improvement, it requires a wide transmission bandwidth and is not easily 

applicable to current systems. On the other hand, the implementation of PD-NOMA is 

relatively straightforward, as it does not require significant changes to existing networks and 

infrastructures. 

 

 
Figure 0-6: Spatial Multiplexing, NOMA techniques (a) PD-NOMA, (b) CD-NOMA 

 

1.3.4 Relay Nodes and 5G Sidelink 

 

RNs are elements of the cellular network that can extend the radio coverage (cell range 

extension) and belong to the broader category of heterogeneous networks (HetNets). Their 

use in next-generation networks (5G/B5G) is crucial due to the simultaneous existence of 

multiple users and their distribution even in areas without network coverage. RNs are not 

simple repeaters, in which the signal is received and retransmitted along with the 

accompanying noise, but rather a Layer 3 (L3) structure where the initial stages of 

decoding/demodulation and re-encoding/remodulation take place, resulting in an 

improvement of the received Signal-to-Noise Ratio (SNR). The communication between the 

BS and the user equipment (UE) is achieved through at least one relay (at least 2-hop 
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communication), transparently to the user (without their awareness), using the RN's own cell-

ID and synchronization signals, both in the uplink (UL) and downlink (DL). The UE's service 

is provided using system resources, which are managed by the BS. A BS that is connected to 

a UE through an RN is called a Donor BS. The architecture of a 5G/B5G system where RNs 

are utilizes is depicted in Figure 1-7. 

The three main advantages of RN-enabled wireless communication’s systems are the 

following: 

1. It is a cost-effective way to extend the network's radio coverage (cell edge or 

dead zones) and support locally increasing capacity demands (hot zones) without the 

need for wired backhaul connection to BS, avoiding additional installation costs and 

high energy consumption. Due to their small size, RNs can be installed on streetlight 

poles or tall buildings to ensure Line of Sight (LOS) with the BS. 

2. RNs can be mobile, adding flexibility to the cellular network. They can be used 

to cover emergency needs and increased capacity requirements, as well as to provide 

high-speed services. RNs perform the necessary relays between BSs, while UEs 

maintain the connection with the RN, allowing reduced control overhead in the 

network and extended battery life for users. 

3. RNs can be used in a multi-hop network configuration to support remote users, 

not only through a single hop (2-hop) but also through multiple RNs. 

 

 
Figure 0-7: RN-enabled 5G/B5G topology 

There are different types of relay nodes categorized based on the spectrum or protocols 

used: 

1. Spectrum-based categorization: 

a) Inband RNs: They utilize the available radio frequency spectrum used 

by the BSs in the cellular network, simply relaying the signals to the intended 

users. 

b) Outband RNs: They are assigned additional spectrum to serve users 

not covered by existing BSs. 

2. Protocol-based categorization:  
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a) Amplify & Forward (A&F) RNs: RNs in this category amplify the 

received signal and forward it to UTs without additional processing. 

Amplification is a straightforward solution with the main advantage of 

introducing minimal delay. However, there is no improvement in the signal-

to-interference-plus-noise ratio (SINR) as both noise and interference are also 

amplified. 

b) Decode & Forward (D&F) RNs: In this case, the signal from the base 

zone originating from the BS is initially decoded, then encoded again before 

being forwarded to UTs. The main drawback of the D&F protocol is the delay 

in retransmitting the received signal, which is due to the 

demodulation/modulation and signal processing operations. However, the 

D&F strategy exhibits high performance compared to the A&F scheme. 

 

Except RNs, another enabling technology in 5G that can ensure high reliability and 

network KPIs improvements, is the direct D2D communication between devices, also referred 

as 5G sidelink. D2D communications can act separately or in cooperation with RNs in order 

to improving reliability, and enhancing capacity of 5G orientations. Moreover, in this way 

metrics such as energy efficiency (EE) and spectral efficiency (SE) can be also improved by 

the reduction of the overall systems’ transmit power and the efficient resource sharing. 

Moreover, the number of connected mobile and/or IoT devices can be maximized. It is, also, 

significant that the joint utilization of direct D2D communications and advance PHY layer 

techniques such as mmWave transmission, mMIMO, advanced precoding and beamforming 

and OFDMA, NOMA, can further improve the aforementioned metrics. 

3GPP has been developing standards for sidelink as a tool for UE to UE direct 

communication required in various use cases since LTE. The following significant interest 

has been observed based on the several motivations for sidelink enhancements [13]: 

1. Power saving enables UEs with battery constraint to perform sidelink operations in a 

power efficient manner. This is in line with enhanced radio resource allocation. Rel-

16 NR sidelink is designed based on the assumption of “always-on” when UE operates 

sidelink, e.g., only focusing on UEs installed in vehicles with sufficient battery 

capacity. Solutions for power saving in Rel-17 are required for vulnerable road users 

(VRUs) in V2X use cases and for UEs in public safety and commercial use cases 

where power consumption in the UEs needs to be minimized. 

2. Enhanced reliability and reduced latency allow the support of URLLC-type 

sidelink use cases in wider operation scenarios. The solution should be able to operate 

in-coverage, partial coverage, and out-of-coverage and to address consecutive packet 

loss in all coverage scenarios. The system level reliability and latency performance of 

sidelink is affected by the communication conditions such as the wireless channel 

status and the offered load, and Rel-16 NR sidelink is expected to have limitation in 

achieving high reliability and low latency in some conditions, e.g., when the channel 

is relatively busy.  

The objective of developing radio solutions necessary for NR sidelink enhancement is 

primarily to support advanced V2X services, public safety services and other commercial use 

cases related to NR sidelink. 

 

1.3.5 Reconfigurable Intelligent Surfaces 

 

RIS is proposed as an efficient solution to enhance connectivity in 6G networks, taking 

into account the hardware and deployment costs. As depicted in Fig. 1-7, a RIS-assisted 

wireless link, utilizes an intelligent surface, which is composed of several three-dimensional 
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(3D) reflection units, between the BS and the UE. Thus, intelligent beamforming is achieved 

by the relevant dynamic adjustment either in the amplitude or the phase of the incoming 

signal. RISs have a relay role in end-to-end communication, and, as a sequence, they can 

efficiently be used in blind network spots or to extend the coverage area of the network [14], 

[15]. 

 

 
Figure 0-8: RIS-aided 5G/B5G communications 
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Chapter 2: Machine Learning and Deep Learning 

Principles for 5G/B5G Networks 
 

In this chapter the principles of ML are exposed. In this framework, a classification of ML 

techniques is presented. Moreover, due to the data overload in today’s 5G networks, the 

significance of DL techniques, which are based on large datasets containing big amount of 

data is, also, highlighted. Finally, MEC and distributed ML techniques are, also, discussed 

due to the arising need for distributed computation using different 5G/B5G networks’ entities 

(BSs, UEs, servers, CN, etc.) with different computation characteristics. The goal of these 

techniques is to reduce data traffic from the CN and share the computation task among 

networks’ entities. In paragraph 2.1 an introduction to ML techniques is presented. Paragraph 

2.2 discusses the classification of ML techniques, where supervised, Unsupervised and RL 

principles are presented. Paragraph 2.3 focuses on DL and DRL techniques, while paragraph 

2.4 describes how MEC and distributes ML techniques are utilized in 5G/B5G networks 

using, also, the techniques that are presented in the previous paragraphs. 
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2.1 Introduction to ML and basic principles 
 

ML is a branch of artificial intelligence (AI) that focuses on the development of algorithms 

and models that enable computers to learn and make predictions or take decisions without 

being explicitly programmed. It involves the construction and study of models that can 

automatically learn from the given datasets or even the training environment itself, and thus, 

improve with experience. At its core, machine learning relies on statistical techniques and 

mathematical models to analyze and interpret complex patterns and relationships in data. By 

training on labeled or unlabeled data, machine learning algorithms can identify and generalize 

patterns, enabling them to make predictions or take actions based on new, unseen data. 

One of the first researchers that defined the term Machine Learning was Tom M. Mitchell, 

who has been described as one of the major machine learning pioneers, in [16], [17]. 

According to that definition “Machine learning is the study of computer algorithms that allow 

computer programs to automatically improve through experience”. 

A basic characteristic of ML algorithms is that they learn by experience, similar to how 

humans do. For example, after having seen multiple examples of an object, a compute-

employing machine learning algorithm can become able to recognize that object in new, 

previously unseen scenarios. 

However, nowadays ML has been extremely popular in every aspect of research and 

enterprise activity. This happens because it constitutes a scalable way to solve complicated 

real-world. The event that sparked the growth of ML has been the dramatic change in data 

storage and computing processing power of the computer systems. We can assume that as 

more people are increasingly becoming involved to ML activities, the expectations for ML-

based algorithms are to continue with this route and cause amazing progress in different fields. 

A more systematic definition for ML, which will help us out to the classification or the 

used ML algorithms is the following according to [18]: 

“A machine learns the execution of a particular task T, with the goal of maintaining a 

specific performance metric P, based on a particular experience E, where the system aims to 

reliably improve its performance P while executing task T, again by exploiting its experience 

E”.  

According to their purpose and the policy that they adopt in term of the way to achieve the 

above, the basic categories of ML algorithms are shown in Figure 2-1 and further analyzed in 

the next paragraph. 

 

 
Figure 0-1: Different Types of Learning 
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2.2 Types of Learning 
 

The purpose of the present thesis is to analyze the need for ML-based schemes for RRM 

in 5G/B5G networks. Thus, in order to present, in the following chapters, that need and 

discuss the existing literature concerning the use of ML in resource allocation in 5G/B5G 

networks, this sub-paragraph first introduces the classification of ML algorithms, in terms of 

the type of data they process (labeled or unlabeled), as well as in terms of the corresponding 

mechanisms. Sub-pagraph 2.1.1 refers to Supervised Learning, sub-paragraph 2.1.1 to 

Unsupervised Learning, while sub-paragraph 2.1.3 discusses RL. 

 

2.2.1 Supervised Learning 

 

Supervised learning is based on a dataset with values accompanied by their respective 

labels. These labels can be produced either by humans or automatically by computation [19] 

(see also Fig. 2-2). A common practice to deal with the dataset is to split it in a training and a 

test set, where the first one is used for model training. In other words, a mapping between the 

inputs and the labels is being produced. The most indicative use cases of supervised learning 

are classification or regression problems. The latter term refers to the prediction of a target 

numerical value, given a set of features/attributes, also called predictors, through an 

estimation function. In linear regression the estimation function is linear, while in logistic 

regression it is a common sigmoid. Classification refers to the prediction of a class label, by 

using classified example data as input. The basic difference, compared to regression 

techniques, is that the model displays the probability that a certain value belongs to a given 

class [18]. The system is trained by multiple examples of a class, along with their labels, in 

order to learn how to classify new instances. The ML techniques/algorithms, that are mostly 

used in RRM-related problems, are briefly presented below and will be reported again in 

section IV, where the corresponding literature is analyzed in detail. 

A k-NN algorithm classifies instances by comparing its k nearest neighbor's labels. Then, 

the item is classified to the most common of them [20], [21]. On the other hand, Support 

Vector Machines (SVMs) are used for both classification and regression. Data are plotted as 

a point in an n-dimensional space, where n is the number of features of the dataset, and 

classified by finding the hyper-plan, which differentiates the problem's classes in an optimal 

way [22]. Decision trees can be used, either for regression or classification purposes. 

However, traditional decision trees approaches record high variance levels, due to their 

sensitivity to training data. Aiming to prevent this problem, alternative approaches are 

implemented. For instance, bagging trees classifiers use bootstrap simulations to generate 

reliable results [23]. A major category of supervised learning techniques is the artificial neural 

networks (ANNs). These learning algorithms are inspired by brain, in order to simulate, 

predict or store information. Their basic building units are neurons and the connections 

between them, which formulate the model. ANNs are used both in regression and 

classification problems. 

Furthermore, overfitting/underfitting should be checked at each time a model is formed, in 

order to prevent inserting errors, making it unable to depict properly all the attributes of the 

tested dataset. Underfitting occurs when the model is not able to obtain a low error on the 

training set [24]. This means that the model cannot describe all the characteristics in the 

dataset. On the other hand, overfitting takes place, when a significant difference between the 

errors in training and implementation (training set vis a vis test set) is detected [25]. This 

means that the model describes more characteristics, than the actual ones. 
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Figure 0-2:Supervised Learning 

2.2.2 Unsupervised Learning 

 

Unsupervised Learning differs from supervised learning (see Fig. 2-3), as the model itself 

tries to identify the common characteristics of the dataset [18], [25]. Moreover, labels are not 

included in the dataset, as the system tries to find them without external help. However, the 

concept of training and test data remains the same. The key aspects of unsupervised learning 

are summarized as follows [26], [27], [28]: 

1. Clustering: Clustering is a common task in unsupervised learning, where the 

goal is to group similar data points together based on their inherent similarities or 

patterns. Algorithms such as k-Means clustering, hierarchical clustering, and Gaussian 

mixture models are used to identify clusters within the data. 

2. Dimensionality Reduction: Dimensionality reduction techniques aim to reduce 

the number of features or variables in a dataset while preserving its essential 

information. This helps in visualizing and analyzing high-dimensional data and can 

also improve the performance of machine learning algorithms. Principal Component 

Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding are popular 

dimensionality reduction techniques. 

3. Anomaly Detection: Anomaly detection involves identifying rare or unusual 

instances in a dataset that differ significantly from the majority of the data. 

Unsupervised learning algorithms can learn the normal patterns from unlabeled data 

and flag any observations that deviate from the learned patterns as anomalies. This is 

useful in various applications such as fraud detection, network intrusion detection, and 

equipment failure prediction. 

4. Association Rule Learning: Association rule learning aims to discover 

interesting relationships or associations between different items in a dataset. It is 

commonly used in market basket analysis to identify frequently occurring item 

combinations, such as "people who buy diapers are likely to buy baby wipes." Apriori 

algorithm and FP-growth algorithm are commonly used for association rule mining. 

5. Generative Models: Unsupervised learning includes generative models that 

learn the underlying probability distribution of the data. These models can then 

generate new samples that resemble the original data distribution. Examples of 

generative models include autoencoders, generative adversarial networks and 

autoencoders. 
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Figure 0-3: Unsupervised Learning 

2.2.3 Reinforcement Learning 

 

RL is an ML category which is based on the interaction and communication with the 

learning environment to train and validate effective models (see also Fig. 2-4). This is 

achieved by the utilization of a learning entity called software agent. The information 

feedback that the agent returns to the model is called rewards (positive case) or penalty 

(negative case). In that way, the agent creates a policy to set up its own learning scheme and 

decide which actions to choose in a certain situation. The scope of an effective RL model is 

to maximize the cumulative rewards over time [29]. There are several known RL schemes 

such as state-action-reward-state-action [30], Q-learning [31], Deep Q-learning (DQL) [32], 

deep deterministic policy gradient [33] and asynchronous advantage actor-critic algorithm 

[34]. However, the most widely used RL algorithms are Q-Learning and deep Q-Learning, 

which combines Q-learning and neural networks. 

 
Figure 0-4: Reinforcement Learning 

The Q-Learning algorithm has been proposed as an efficient way to deal with rapidly 

changing and non-linear environments. For this purpose, Q-Learning fits perfectly in the 

5G/B5G wireless network domain. The cellular environment is characterized by complex 

propagation models, increased interference levels, dense connections and high user mobility, 

making Q-Learning a promising approach to solve complex optimization problems which 

have to do among others with resource allocation, power management and RN or BS 

selection. 
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A typical Q-Learning environment is depicted in Fig. 2-5. The agent (Q-function) collects 

feedback from the environment and takes some action that will later affect the environment. 

In other words, there is a set of potential states and a set of potential actions that can be 

performed. The agent specifies the transitions between states, based on the actions, aiming to 

maximize reward. Q-function is mathematically formulated as follows [33], [34]: 

 

𝑄′(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) +  𝑎 × (𝑟𝑡  +  𝛾 × 𝑚𝑎𝑥𝑏(𝑄(𝑠𝑡+1, 𝑏) −  𝑄(𝑠𝑡, 𝑎𝑡)), 𝑏 ∈ 𝐴 (3) 

 

where 𝑄′ is the updated 𝑄 value, 𝑠𝑡 is the state at the current time interval and 𝑠𝑡+1 is the 

state at the next time interval. Moreover, 𝛼 is the learning rate and 𝑟𝑡 is the reward received 

from the network when moving from the state 𝑠𝑡 to state 𝑠𝑡+1 and 𝐴 is the Q-table that stores 

all the actions. Moreover, γ is the discount factor which determines the importance of future 

rewards. In fact, 0 ≤  𝛾 ≤  1, where a zero value means that only current rewards are 

considered, while a discount factor close to one means that long-term high rewards are of 

interest. 

 

 
Figure 0-5:Q-Learning 

2.3 Deep Learning 
 

Deep Learning (DL) is a subset of ML that focuses on training ANNs with multiple layers, 

also known as deep neural networks (DNNs), to learn and represent complex patterns and 

relationships in data. It is inspired by the structure and function of the human brain, 

specifically the interconnected network of neurons. 

One of the key advantages of deep learning is its ability to automatically learn hierarchical 

representations of data. Each layer of a DNN learns progressively more abstract features, 

allowing the network to capture intricate patterns and dependencies in the input data. This 

hierarchical feature learning enables DL models to excel in tasks such as image and speech 

recognition, natural language processing, and generative modeling [35]. 

Recent advancements in deep learning have been driven by the availability of large-scale 

labeled datasets, significant improvements in computational power, and breakthroughs in NN 

architectures and training algorithms. Some key categories of DNNs include convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial 

networks [36]. 
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Moreover, DL has benefited from innovations in regularization techniques, optimization 

algorithms, and the integration of domain knowledge into neural network architectures. 

Transfer Learning (TL) and pretraining strategies, such as using pretrained models or 

leveraging self-supervised learning, have also played a crucial role in improving the 

performance of deep learning models, especially in scenarios with limited labeled data. 

 

2.3.1 Deep Reinforcement Learning 

 

Deep reinforcement learning (DRL) is a subfield of AI/ML that combines DL techniques 

with RL ones. It involves training artificial agents to learn optimal decision-making policies 

through interaction with an environment. DRL leverages DNNs to approximate complex 

value functions or policies that map observed states to actions. 

As presented in paragraph 2.1.4 in traditional RL schemes, agents learn from scalar 

rewards provided by the environment. However, in DRL, DNNs are used to process high-

dimensional input, such as raw sensor data or images, enabling the agent to learn directly 

from raw sensory inputs without handcrafted feature engineering. 

Thus, in NP-Hard problems in 5G/B5G RRM domain (such as RN placement and 

selection), when utilizing m-MIMO antenna configurations and advanced physical layer 

techniques such as OFDMA or NOMA, advance precoding and beamforming, the Q-table 

with the full set of potential actions, states and rewards can be large enough. This can 

exponentially increase the optimization problem’s complexity, which comes against the major 

5G/B5G requirement for low latency responses. In such cases, a NN can be trained to map 

the set of states with the best-performing action or in other words to perform the Q-function 

approximation. This RL technique is called DQL and is widely proposed due to its’ ability to 

decrease the amount of the state-action duplets of the tabular-based Q-Learning algorithm, 

and, thus, produce more generalized models in optimization tasks [37], [38]. 

Based on Equation (3), a DQL agent aims to gather all the related information from the 

environment by minimizing the so-called temporal difference (TD) function [39], between 

the next Q-value 𝑟𝑡 +  𝛾 ×  𝑚𝑎𝑥𝑏(𝑄(𝑠𝑡 + 1, 𝑏)), 𝑏 ∈  𝐴 and the current Q-value 𝑄(𝑠𝑡, 𝑎𝑡). 

For this purpose, the DQL’s basic characteristic is to utilize two approximators (NNs). The 

first one is used to estimate the current best action, while the latter is used to predict the next 

action. A typical DQN structure is depicted in Fig. 2-6. 

 

 
Figure 0-6: DQL methodology 
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2.4 Distributed Learning and Mobile Edge Computing 
 

An important bottleneck in 5G networks is data overload, in conjunction with the limited 

storage and computational power of UEs and BSs. A recently proposed solution is to use 

distributed structures for processing reasons (Fig. 2-7). In wireless networks, this is mostly 

achieved via MEC architectures, where cloud, edge and mobile processing cooperate [40]. 

MEC and ML are inextricably related concepts. MEC, being a distributed approach, uses ML 

tools in heterogenous topologies (such as 5G and 6G networks) to obtain channel state 

information (CSI) till the network's edges, in order to define the resource allocation policy in 

each case. The goal of MEC is to minimize the computation time, by allocating the traffic to 

different processing units. 

 

 
Figure 0-7: MEC in 5G/B5G networks 

MEC is primarily based on minimizing computational latency by distributing processing 

tasks across different processing units. According to Figure 2-7, considering a UE 𝑛 located 

in a cell of a 5G/Β5G system, a MEC server 𝑚 installed at the BS which serves UE 𝑛, and a 

computational task 𝑗 that user 𝑛 wants to execute with the assistance of 𝑚, the total system 

delay is given by [41], [42]: 

 

𝑇𝑚,𝑛,𝑗 = 𝑇𝑚,𝑛,𝑗
𝑇 + 𝑇𝑚,𝑛,𝑗

𝐷 + 𝑇𝑚,𝑛,𝑗
𝐸 (4) 

 

Where 𝑇𝑚,𝑛,𝑗
𝑇 is the time to transmit task 𝑗 from UE 𝑛 to serve 𝑚, 𝑇𝑚,𝑛,𝑗

𝐷 is the 

computational latency inserted form UE 𝑛 and  𝑇𝑚,𝑛,𝑗
𝐸 is the execution time of task 𝑗 in server 

𝑚. 

In this strategy, there are three different computational offloading types: 

1. Local computation, where all computations are performed at the MEC server 

installed at the BS, and the UE simply sends data there for task execution. In this case, 
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𝑇𝑚,𝑛,𝑗
𝐷 = 0 as all processing is conducted at the MEC intermediary installed at the 

BS. Therefore, 𝑇𝑚,𝑛,𝑗
𝑇 , 𝑇𝑚,𝑛,𝑗

𝐸 ≠ 0. 

2. Partial offloading, where the execution of tasks requested by each UE is 

shared between the MEC server and the UE to some extent. Thus, in this case 

𝑇𝑚,𝑛,𝑗
𝑇 , 𝑇𝑚,𝑛,𝑗

𝐷 , 𝑇𝑚,𝑛,𝑗
𝐸 ≠ 0. 

3. Complete offloading, where the execution of tasks requested by each UE is 

entirely performed on the UE. In this case, 𝑇𝑚,𝑛,𝑗
𝐸 = 0 as all processing is carried out 

on the UE. Thus, 𝑇𝑚,𝑛,𝑗
𝑇 , 𝑇𝑚,𝑛,𝑗

𝐷 ≠ 0. 

 

2.4.1 Federated Learning 

 

Traditional ML techniques (Supervised, Unsupervised, or even classic distributed learning 

techniques), which rely on a centralized entity to produce the learning outcome (centralized 

learning – CL), can phase difficulties in dealing with the computational complexity aspect. 

For example, most ML models are trained in a central server with lots of processing unit 

power to produce a global model that will be used by either the network or the end user. These 

approaches may have a significant number of drawbacks when comes to the efficient use of 

AI/ML techniques, such as not real-time responses, local data dependency, and security 

threads (e.g., single point of failure). Thereby, decentralized and distributed ML strategies 

should be taken into account.  

A promising way to tackle these challenges is a specific type of distributed learning 

technique, introduced in [43] denoted as Federated Learning (FL), which combines MEC and 

ML. The key characteristic of FL is that edge devices contribute to a global ML model 

construction, only by transmitting locally trained models’ parameters to a central entity, e.g. 

a centralized server. This means that the training sets of each enrolled edge device are not 

distributed to the server, maintaining a secure and robust learning framework [44]. FL can 

also be performed without even sending parameters to the server. In these cases, neighboring 

devices form a device cluster to exchange parameters for ML models’ construction [45]. As 

it is visible, a significant advantage of FL schemes has to do with their ability to reduce 

communication overhead and secure communication, as there are no datasets distributed. For 

all these reasons, FL has gained increasing interest for compute vision tasks [46] 

Recently, FL has been proposed as a promising solution in different PHY-related tasks in 

5G and 6G networks. Traffic data are continuously generated by UEs, while parameters such 

as CSI are also present in each UE –BS link. Thus, real-time decision-making can be FL-

driven to provide robustness in minimizing the time between data generation and data 

utilization for these purposes. Thus, FL is useful for convex and non-convex problems in 6G 

networks’, such as interference management, radio RRM, user profiling and grouping, BS -

or even relay node (RN)- selection and others. 

Fig. 2-8 illustrates an FL framework in the context of new era wireless networks as 

previously described. Counter to CL methods, where local data (from UEs in 5G/B5G 

(Beyond 5G) networks) are uploaded to a centralized server, and also counter to classical 

distributed approaches, where data is uniformly distributed among the edge devices, FL 

schemes use local data to train a global model, through multiple training iterations across 

interconnected edge devices (UEs), in order to achieve the desired global accuracy. Then, 

local updates, generated by each interconnected device, are aggregated to a cloud or a MEC 

server (in BSs).  
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In such scenarios, FL targets ML KPIs (accuracy, F1-score, root-mean-square-error 

(RMSE)) maximization by the application of multiple communication rounds between the 

server and the edge devices to train and/or update the model with local datasets. 

 
Figure 0-8: FL in 5G/B5G networks 

When it comes to FL techniques, where multiple nodes should cooperate to construct a 

global ML model, the following tree-type classification exists (as also depicted in Fig. 2-9): 

• In CL, edge devices send their locally gathered data to a centralized entity for 

training purposes (see Fig. 2-9a). Thus, the distributed computation is limited to the 

transmission of the local datasets to the centralized server [47]. The key advantage of 

CL methods is that a total dataset is formed, which helps towards the maximization of 

ML KPIs, due to the increased amount of data that are existing [48]. On the other 

hand, the need for whole datasets transmission to the centralized entity has two basic 

drawbacks. The first one is related to the increased interference and overhead that is 

introduced, which, also, affects the total response time, a vital aspect concerning the 

real-time decision-making nature of 6G communications. The latter is the possible 

security vulnerabilities and threads that can phase privacy data through transmission. 

• In FL, edge devices gather their local data and form a local model, which 

training is performed at the edges. However, the centralized entity’s role is to 

aggregate the different model’s parameters, gathered from the edge devices, and, then, 

distribute the aggregated parameters or the model updates back to the edge devices 

(UEs). It is visible that the role of the centralized entity is the flow management of the 

whole process [48], [49] (Fig. 2-9b). The key advantage of FL, compared to CL, is 

that the transmission overhead is minimized, due to the fact that only ML models’ 

parameters or updates are transmitted to the centralized entity. However, this comes 

along with the drawback that ML KPIs performance may decrease because the amount 

of data in each of the separate distributed models is significantly less [46],[49]. 
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• In hybrid schemes, CL and FL are combined, to produce a more dynamic 

framework that can be used in practical scenarios. The need for such schemes 

originates from the imbalanced computation capabilities of different UEs in wireless 

networks. In fact, there are computationally powerful UEs, such as computer systems, 

local networks or even servers, but there are, also, non-powerful UEs, such as cell 

phones or UxVs. In such scenarios, computationally powerful UEs perform FL tasks 

(active state), while the others not (inactive state) [48], [46], as also depicted in Fig. 

Fig. 2-9c. 

 

 

                          (a)                                                                 (b) 

  

(c) 

Figure 0-9: (a) CL, (b) FL, (c) Hybrid architectures 
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Chapter 3: ML-based Radio Resource Management in 5G/B5G 

Networks 
 

In this chapter the RRM problem in 5G/B5G networks is discussed to highlight the need 

for fast responses and quick decision-making mechanisms, which are based in ML/DL 

techniques. To do so the RRM problem is mathematically formulated along with the relevant 

constrains, based on which this problem should be considered in 5G/B5G networks. 

Moreover, traditional (non-ML) optimization approaches are presented, while the limitations 

of such approaches are identified. To overcome those limitations, several ML-enabled 

schemes for effective RRM in 5G/B5G networks are proposed in next chapters. In this 

chapter, the relevant literature regarding ML-approaches in 5G/B5G networks’ RRM is 

analyzed. In paragraph 3.1 the emerging role of ML in 5G/B5G is presented. In Paragraph 3.2 

the RRM problem is formulated in 5G/B5G networks along with the relevant constrains. 

Moreover, the traditional optimization techniques that are used for those problems are 

discussed. Finally, the limitations of the traditional non-ML approaches are derived, 

witnessing the need for ML-enabled RRM solutions. Paragraph 3.3 presents a literature 

review over the utilization of different (Supervised, Unsupervised, Reinforcement, 

Distributed) ML techniques for effective RRM policies definition in 5G/B5G networks. 

Finally, Paragraph 3.4 presents the outcomes over the state-of-the-art works in ML-based 

RRM in such networks. 
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3.1 The emerging role of ML in 5G/B5G  
 

It is already visible from chapter 1 that 5G acts as an integrator for diverse applications 

and services. To this end, 5G/B5G networks utilize vehicular communications [50], device-

to-device (D2D) communications [51], machine-to-machine (M2M) communications [52], 

MEC [53], cloud computing [54] and internet of things (IoT) [55], in order to meet the needs 

for eMBB, mMTC and URLLC [56]. 

More specifically, the authors in [57], [58] summarize the key components and innovations 

incorporated in 5G networks, as: a) Modern approaches in radio-link management such as 

open radio access network (O-RAN) and virtual networks, in order to meet the strict criteria 

of latency, capacity and data traffic in 5G transmission, b) Extended coverage, which includes 

the installation of multi-nodes and multi-antennas in the network's coverage area, in order to 

use multi-hop techniques for fast handovers through service cells and base stations (BSs), 

c) Service-based network dimensioning, which utilizes the self-generated channel state 

information (CSI), in order to meet the enhanced URLLC criteria. Cell and BS planning 

should follow even stricter requirements to support new usage scenarios and applications 

(smart cities, IoT, emergency alerts). Thus, heuristic approaches, based on data analysis and 

ML, are proposed in network dimensioning [59] and d) Use of new frequency bands, which 

includes the extended operating spectrum band and the new spectrum regimes [60]. 

In addition, 5G and B5G networks extend the deployment of technologies that were 

introduced in 4G networks and also encapsulate new ones (see also Fig. 3-1). As also 

presented in Chapter 1, these include massive m-MIMO configurations [61], mmWave 

transmission [62], network slicing [63], RNs [64] and NOMA [65]. However, the coexistence 

of these technologies can significantly increase network complexity, due to the insertion of 

multiple computational levels and hardware needs, thus necessitating the importance of 

optimal RRM strategies [66]. For example, accurate CSI is required for the effective 

deployment of m-MIMO architectures and NOMA schemes. This, in turn, increases the 

overall signaling burden, due to the increased number of pilot signals. Moreover, in typical 

MIMO configurations, each antenna is connected to a separate radio frequency (RF) chain, 

thus supporting a fully digital (FD) beamforming approach. However, in an m-MIMO case, 

this would be prohibitive, as it would significantly increase hardware complexity. Hence, 

suboptimal techniques are proposed in the literature, based on a hybrid analog-digital 

beamforming approach [67]. 

It is, therefore, understood, that a tradeoff between optimal network goals and 

computational complexity can only be achieved through an efficient RRM. Until now, the 

allocation decisions were made continuously in each timeslot, based on local network 

conditions and the data traffic load to be serviced. However, the aforementioned enhanced 

requirements of 5G networks raise the need for, if not require, a decentralized and intelligent 

data management system, that can support flexible RRM decisions. In this direction, the 

utilization of data offered by ML and the features extracted by the corresponding algorithms 

can effectively contribute to fast RRM responses [68], [69]. 

Research interest in incorporating ML techniques in 5G/B5G networks has focused mainly 

on the CN in the past [70]-[72] (indicatively: traffic forecasting [73], [74], network slicing 

[75], privacy and security [76], etc.). Lately, ML models are introduced in RAN and the 

development of AI/ML-based RRM algorithms has attracted scientific interest, as well (e.g. 

[77]-[80]. 
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Figure 0-1: 5G/B5G networks enablers 

 

3.2 Radio Resource Management in 5G/B5G System 

3.2.1 Problem Formulation 

 

Even though RRM problem's criticality originates from the first steps of wireless and 

mobile communications, the significance of effectively managing the available radio 

resources was empowered during the 4G era, when the increase of data rates was accompanied 

by the high interference levels (especially co-channel). In the 4G, 5G and 6G era, RRM 

considers not only the allocation of physical resource blocks (PRB's) or subcarriers (typical 

subcarrier spacing is 600 kHz in frequency range 1 (FR1) of 5G and 2400 kHz in FR2) [60], 

[81], but also power management, scheduling, traffic control and handover management. 

In general, RRM considers two main objectives, that in case can be treated as joint. The 

first one is power minimization, which is referred to as margin-adaptive (MA), while the latter 

is network efficiency maximization. In this framework throughput (or rate) maximization 

(rate adaptive - RA) is mainly considered. MA minimization considers overall and per user 

minimization of power consumption. Respectively, RA maximization takes into account 

overall and per user minimum throughput maximization [82]. Both approaches include a 

plethora of parameters, at cases mutually exclusive, that can significantly increase the 

complexity of RRM. In fact, in [81], the non-deterministic polynomial-time (NP)-hardness of 

the resource allocation problem is proved. Consequently, sub-optimal solutions are proposed. 

In the 4G-LTE era, when OFDMA techniques were introduced, RRM algorithms mostly 

considered the maximization of users' throughput, based on QoS requirements, such as the 

key implementation criterion. The main categorization was the stage at which RRM was 

performed, considering sectors or BSs, with centralized or decentralized approaches. 

An innovative solution was introduced by game theory, where the RRM problem was 

treated as a game and each user as a player. Techniques such as Nash bargain (NBS), 

Hungarian NBS and Raiffa bargain (RBS) were the most common ones [83]. 

In a typical 5G/B5G m-MIMO cellular orientation, the total bandwidth, denoted as 𝑊, is 

divided into a predefined number of 𝐿 subcarriers, which are allocated to users, according to 

their demands and overall constraints [84]. The system serves as many users as possible, till 
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all subcarriers are allocated (𝑁 users). BSs are equipped with 𝑀𝑡 transmitting antennas, while 

users are equipped with 𝑀𝑟 receiving ones. The signal-to-noise-plus-interference-ratio 

(SNIR) for the nth user (1 ≤ 𝑛 ≤ 𝑁), associated with the lth subcarrier (1 ≤  𝑙 ≤  𝐿) for a 

specific channel realization and assuming independently transmitted streams among different 

users, is defined as follows [85]: 

 

𝑆𝑁𝐼𝑅𝑛,𝑙 =
𝐺𝑛,𝑛,𝑙

𝒓𝑛,𝑙
𝐻 𝒓𝑛,𝑙𝐼0+∑ 𝐺𝑛,𝑚,𝑙𝑚≠𝑛,𝑙𝜖𝑆𝑚

 (5) 

 

where 𝐺𝑛,𝑚,𝑙 = 𝑝𝑛,𝑙𝒕𝑚,𝑙
𝐻 𝑯𝑛,sec(𝑚),𝑙

𝐻 𝒓𝑛,𝑙
𝐻 𝒓𝑛,𝑙𝑯𝑛,sec(𝑚),𝑙𝒕𝑚,𝑙, 𝑯𝑛,sec(𝑚),𝑙 represents the 𝑀𝑟 ×

𝑀𝑡 channel matrix for the lth subcarrier of the nth user relevant to its serving sector, 𝒕𝑛,𝑙 is the 

𝑀𝑡 × 1 transmission vector, assuming diversity combining transmission mode, 𝒓𝑛,𝑙 is the 

Maximal Ratio Combing multiplying vector and 𝑝𝑛,𝑙 denotes the transmission power allocated 

to the lth subcarrier of the nth user. Moreover, the set 𝑆𝑛 indicates the subcarriers allocated to 

the nth user and 𝐼0 is the thermal noise level. Finally, 𝑨𝐻 denotes the conjugate transpose of 

matrix A. Thus, the achievable data rate on the lth subcarrier is 𝑟𝑛,𝑙 = 𝑊 ∗ log2(𝑆𝑁𝐼𝑅𝑛,𝑙) [86], 

and the corresponding aggregate rate for the nth user is 𝑅𝑛 = ∑ 𝑟𝑛,𝑠
𝑁
𝑠∈𝑆𝑛

. Then, the total 

throughput is given by: 

 

𝑅 = ∑ 𝑅𝑛
𝑁
𝑛=1  (6) 

 

In most of the state-of-the-art RRM works, the target is to maximize EE, SE, Jain's fairness 

index (J) and, at the same time, minimize blocking probability. EE and SE are given by: 

 

𝐸𝐸 =
𝑅

∑ ∑ 𝑝𝑛,𝑠𝑠∈𝑆𝑛
𝑁
𝑛=1

 (7) 

𝑆𝐸 =
𝑅

𝑊
 (8) 

𝐽 =
(∑ ∑ 𝑟𝑛,𝑠𝑠∈𝑆𝑛

𝑁
𝑛=1 )2

𝑁∗∑ ∑ 𝑟𝑛,𝑠
2

𝑠∈𝑆𝑛
𝑁
𝑛=1

 (8) 

 

Finally, blocking probability (BP) is defined as the ratio of rejected users to the total 

number of used that tried to access the network. 

The aforementioned optimization problem is subject to the following system constraints: 

• ∑ 𝑝𝑛,𝑙 ≤ 𝑝𝑚𝑎𝑥𝑠∈𝑆𝑛
, where 𝑝𝑚𝑎𝑥 denotes the maximum power limit per user. 

• 𝑝𝑛,𝑙 ≥ 0, 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑙 ≤ 𝐿, which demonstrates the non-negative power 

constrain of the transmit power on each subchannel. 

• 𝑆𝑁𝐼𝑅𝑛,𝑙 ≤ 𝑆𝑁𝐼𝑅𝑡ℎ𝑟, which sets the minimum SNIR threshold for acceptable 

QoS. 

• 𝑁𝑙,𝑡 ≤ 𝑁𝑡ℎ𝑟 , 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑡 ≤ 𝑇, where 𝑁𝑙,𝑡 is the number of users, grouped 

in the lthr subcarrier over time slot 𝑡, and 𝑁𝑡ℎ𝑟 is its upper threshold, in the case of 

NOMA transmission [87]. 

 

3.2.2 Traditional RRM approaches 

 

As already mentioned, the RRM problem belongs to the category of NP-Hard problems, 

making it extremely difficult to find the optimal solution using conventional approaches. 

However, machine learning is proposed as a more efficient solution compared to existing 

methods. Before delving into the reasons why ML approaches are considered suitable for 

addressing the 5G/B5G RRM problem, this sub-paragraph presents a summary of significant 
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up-to-date approaches, which tackle the RRM multi-objective problem and do not make use 

of ML techniques (defined as “non-ML” throughout the rest of this thesis). The relevant 

literature in this sub-section is representative with respect to various network metrics, such as 

throughput, QoS, interference mitigation. 

In [88], a resource allocation scheme is proposed, where target SNIR values are 

accompanied by the minimization of power consumption. In the same context, in [89], the 

available spectrum is shared between macro and micro cells to maximize the number of users 

and achieve the SNIR requirements of each micro or macro cell user. In [90], a different 

approach 

is considered, where the distance-based resource allocation scheme is replaced by a model, 

based on priority classes of the mobile devices in mobile type communications (MTC) 

networks. This approach, apart from SNIR, considers latency, total induced delay and pending 

number of MTC devices, as well, for priority classes construction. 

A key aspect in resource management policies in 5G networks is the harmonization with 

both QoS and QoE requirements. While QoS defines the user's satisfaction in a strict technical 

way, QoE reflects the overall user's happiness or frustration. The relationship between QoS 

and QoE is presented in Fig. 3-2. According to [91], there are two main (and one upcoming) 

ways to achieve the optimal joint satisfaction of QoS and QoE. The first one refers to the 

network's architecture and is the use of self-organized networks (SONs). 

 
Figure 0-2: QoS and QoE 

The other one refers to the efficient tradeoff between packet loss, latency, traffic data 

(objective parameters) and mean opinion score (MOS), that should always exist. Last but not 

least, the integration of ML techniques in RRM, specifically NNs, which use data-driven 

(CSI-driven) techniques, in order to solve the optimization problem, can contribute in the 

direction of joint QoS and QoE requirements' satisfaction. 

In the existing literature, the significance of both QoS and QoE requirements' satisfaction 

is highlighted. For example, the authors in [92] consider the resource allocation problem in 

M2M 5G 3GPP cellular systems. An optimal radio resource allocation method in LTE and 

beyond cellular networks is developed, based on adaptive selection of channel bandwidth, 

depending on the QoS requirements and priority traffic aggregation. Furthermore, a novel 

simulator is proposed, focusing on the joint impact ofM2Mand human-to-human (H2H) 

traffic in 5G/B5G networks. In order to ensure the satisfaction of QoS requirements, the 

proposed simulator automates RRM algorithms for both the M2M and H2H traffic. The 

simulations and results indicate that the proposed framework improves the radio resource 

management policies' application by 13%, concerning the LTE frame formation process. 
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Wang et al. [93] use QoE utility function for spectrum and power allocation in macro and 

pico-cell HetNets. For the subcarrier allocation method, they construct a weighted bipartite 

graph and revise Kuhn-Munkres algorithm to obtain perfect matching. For power allocation, 

they use the first order derivative of the network utility function, achieving the nearly-optimal 

levels of power minimization. However, increasing the cell size results in QoE deterioration. 

In the same framework of using QoE utility function, the authors in [94] consider the joint 

subcarrier, assignment and power allocation problem. The proposed approach is based on the 

decomposition of the general problem into two sub-problems: the BS selection and 

subcarrier allocation sub-problem and the power allocation sub-problem. A genetic algorithm 

for the first problem and an artificial bee colony (ABC) algorithm for the second one are 

proposed. The simulation results indicate that the proposed power allocation scheme reaches 

optimal solution levels quickly, while MOS increases for increasing number of active UEs or 

available subcarriers. 

In 5G HetNets, interference can have a critical impact on the selection of the appropriate 

RRM strategy. There are three types of interference. The first one is cross-tier interference, 

which occurs between users in different tiers, such as between macrocells and fempto-cells 

(FCs). On the other hand, co-tier interference is experienced by users within the same network 

tier [95]. Finally, inter-cell interference occurs mainly at the cell edges, where a user can 

receive signals from multiple BSs/RNs. The authors in [96] consider a 3-tier HetNet and 

propose a joint interference and resource allocation strategy. The examined use cases enhance 

D2D communications in macro and small cells topology. The joint sub-band and resource 

block (RB) allocation problem is solved, with respect to the QoS levels and D2D interference 

minimization. The proposed scheme alleviates significantly co-tier and cross-tier interference, 

compared to traditional techniques. On the other hand, the proposed algorithm introduces 

delays that could cause difficulties in the deployment of the scheme in real-world scenarios. 

In the same context, authors in [97] examine the influence of intercell interference in the 

design of effective RRM strategies. More specifically, they formulated an EE maximization 

RRM problem for a downlink OFDMA HetNet, and solved it via a two-step generic 

algorithm. The firrst step concerned subcarrier allocation under SE requirements, while the 

latter power management. Simulation results indicated that a tradeoff between EE and total 

achieved throughput should exist, proposing small cell deployment as a way to 

simultaneously improve both factors. 

Xu et al. propose in [98] a resource allocation scheme to maximize the system throughput, 

by considering cross-tier and co-tier interference for macrocell users, as well as the 

transmission power in HetNets. The proposed scheme uses a nonlinear programming formula, 

solved by distributed Lagrange dual methods. This method results in interference limitation 

for the users spread in the topology. However, the adopted approach involves many iterations, 

thus leading to increased overall delays. 

In [99], a joint RRM problem is investigated and solved sequentially in an mmWave 

environment. The first one is related to beam selection (beamforming), while the second one 

to power allocation. These problems are formulated into mixed integer nonlinear 

programming (MINLP) problems. The authors solve the first problem using cooperative 

games theory. In this way, optimal beam allocation is achieved and served as input to the 

second problem, where the power allocation scheme is determined, employing Lagrange 

duality and an iterative water-filling algorithm. According to the presented results, there are 

significant throughput improvements, compared to classic RRM schemes. On the other hand, 

computational complexity is extremely increased, reaching almost prohibitive levels. 

In [100], a similar joint routing and resource allocation problem is investigated, 

considering multi-tier analysis approach for mmWave systems. Resource allocation concerns 

the physical 
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layer, while path selection concerns the network layer. A stochastic algorithm is used for 

RRM and a linear programming one for the path selection. The EE and the overall system 

throughput are significantly improved, compared to state-of-the-art algorithms. However, a 

lot of delay factors are inserted, due to the adopted cross-layer approach. Therefore, this 

scheme might be inappropriate, when dealing with URLLC demands in emergency situations. 

Another significant metric that originates from throughput is SE, which is the “clear'” 

information that can be transmitted over a specific spectrum area in a wireless environment. 

In this context, the authors in [101] propose a resource allocation system, based on SE 

requirements. They make use of a hybrid-clustering game algorithm, that mitigates co-tier 

and cross-tier interferences. The clustering problem is solved using graph theory, and more 

specifically a maximum K-cut algorithm in the interference graph of the topology. Then, 

inside each cluster, resources are allocated to users, implementing an auction game 

mechanism algorithm. According to the presented results, there are significant improvements, 

compared to state-of-the art approaches, in terms of SE and throughput. However, we 

should mention that, by the above scheme, both macro and micro-cell users are treated as one 

entity. In this case, the QoS and QoE metrics are not taken into consideration. 

In ultra-dense modern era networks, power consumption becomes a key issue. Thus, the 

metric of EE is used to measure the power consumption in the topology [102]. In this context, 

a complex scheme is proposed in [103], that jointly maximizes EE and SE. There are three 

different components in the proposed scheme. The first one is a system to balance the load 

between the BS of service and other BSs in the topology, along with handover management. 

The second one aims to manage inter and intra-cell interference and frequency reuse. Finally, 

the third one applies a proportional fairness (PF) allocation policy to guarantee fairness among 

users. A binary search algorithm implements the resource allocation, maximizing EE and 

SE. Therefore, this approach is beneficiary for commercial use cases, due to the fast decision-

making mechanism, leading to optimal solutions. However, the fully centralized nature of the 

algorithm might increase overhead, due to the increased round-trip time. 

Another key issue in future networks is the limitation of usable resources to tackle the 

spectrum scarcity problem. Dynamic spectrum sharing is proposed as a novel method for the 

cooperation between 4G-LTE and 5G technologies, as different spectrum resources can be 

allocated, based on users demands, establishing improved SE levels and spectrum utilization. 

The authors in [104] proposed a dual bargaining game model to solve the spectrum sharing 

problem guarantee effective real-time collaboration between LTE and 5G systems. Results 

indicated that this scheme improves total throughput and service failure by 5-10% compared 

to traditional approaches. 

Furthermore, the increased number of traffic load from mobile devices, which causes the 

densification of wireless networks, empowered the deployment of revolutionary centralized 

alternatives of the classical cellular architectures, such as Cloud RAN (CRAN) and O-RAN. 

In CRAN architectures the baseband processing unit (BBU) is moved from the BSs onto a 

centralized cloud/edge BBU pool, while O-RAN indents to provide open air interfaces and 

separate user and control plane functions. The authors in [105] proposed a two-stage 

optimization algorithm for the joint secondary user selection, spectrum allocation and time 

scheduling problem of downlink transmission in CRAN. Results indicated that improved data 

rates, time scheduling and prioritization for big data transmissions can be achieved using the 

above scheme. 

Concerning O-RAN, the authors in [106] implemented a mixed-integer linear algorithm to 

solve the joint distributed unit and subcarrier allocation problem, with respect to energy and 

latency minimization for delay-sensitive communications. Results indicate that the proposed 

approach consumes less energy under a larger network size, compared to a disjoined scheme. 
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3.2.3 Limitations of non-ML approaches 

 

In the previous paragraph, significant non-ML approaches, concerning RRM in 5G and 

B5G networks, are presented, where various sub-optimal solutions are proposed, due to the 

multiparameter nature of the problem. However, focusing on the outcomes and results of 

those research efforts, several limitations can be witnessed. In most cases of LTE and early 

5G networks [92], [94], [95], [99], the enactment of the RRM policy was based on perfect 

knowledge of specific parameters, such as the instantaneous CSI and QoS requirements of the 

active users. Thus, the optimal allocation problem, described in the above paragraphs, is 

solved through optimization procedures. However, it is also apparent from the problem 

formulation that, in practical wireless orientations, multiple difficulties may arise, thus 

making resource allocation a multidimensional problem. More specifically: 

• Most of the non-ML techniques provide solutions which are not universal. 

Optimal solutions are highly correlated to the current circumstances in each network's 

topology, user demands and qualifications. Thus, RRM, in general, is a problem 

characterized by non-conventionality [106]. 

• The provided solutions may not be obtainable in real time. HetNets and IoT 

networks have high levels of time variability. An optimal solution in a time slot or 

interval is not by default optimal for the next time unit [98], [99]. 

• The wireless channel in 5G and B5G networks is defined by an extremely high 

propagation scheme, with users characterized by random or partially unknown 

mobility patterns. In these scenarios, the mathematical formulation of the problem is 

arduous and, in general, not easily defined [102]. 

According to these considerations, more efficient RRM solutions should be implemented 

in both computational and performance perspective. In this framework, ML-based resource 

allocation algorithms are proposed in the literature, as an efficient way to deal with the 

abovementioned limitations. In the next paragraph, the state of research in the field of ML-

enabled RRM in 5G/B5G networks is presented. 

 

3.3 Existing ML Literature Review 
 

In this paragraph, the related research concerning the use of AI/ML in RRM is presented, 

classified in terms of type of learning and architecture (centralized vs distributed). The 

performance of the used models is also discussed, and conclusions are drawn upon them. 

 

3.3.1 Supervised Learning in 5G/B5G RRM 

 

The authors in [107] consider a SON topology. A 5G network simulator is proposed, along 

with a pathloss model, using metrics, such as SNIR and throughput (LTE KPIs) in order to 

deal with the problem of dynamic frequency and bandwidth allocation in these topologies. 

The system is tested in several frequencies and bandwidths. In order to set the RRM policy 

and predict the KPIs, several ML methods, such as bagging trees, boosted trees, SVMs and 

linear regressors are evaluated. Bagging tree prediction witnesses the best overall 

performance. The main feature of this method is that it uses bootstrap sampling in deep 

decision trees, in order to reduce the variance of the model and classify data correctly to 

predict the network's KPIs. According to the derived results, the decision tree learning-based 

method reaches 95% of optimal network's performance. Finally, the authors highlight the 

necessity for a joint consideration of networks' KPIs and ML performance metrics. 

Working also on KPIs prediction, the authors in [108] designed a predictive model for the 

overall users' demand. Then, they use an ML-based supervised classifier to allocate the 
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network resources dynamically (Network Resource Allocator). The employed metrics are 

bandwidth, latency, jitter times, QoS and QoE. The decision process for data traffic and 

allocated subcarriers is defined by QoS and QoE. The learning procedure is based on 

previously gathered experience from offline measurements. Thus, the proposed Network 

Resource Allocator empowers an automated flexible and elastic network. The models are 

employed in the network's controller in order to change the network topology for better traffic 

management by removing the unused parts of the network to release its unused resources (i.e., 

subcarriers, unused links, etc.). 

In m-MIMO systems, hundreds of antennas are used for detection, resources' allocation 

and channel estimation (via channel coefficient matrix). In [109], an SVM scheme is proposed 

for the estimation of the Gaussian channel's noise level and pathloss prediction in urban 

outdoor environments. The general form of the problem has t transmitting MIMO antennas 

and r receiving ones. The model predicts the channel noise statistics, according to which the 

allocation and multi-tier QoS scheme will act for each independent user or users' category. 

Three kernel techniques are investigated (Polynomial, Gaussian and Laplacian) and compared 

to the Okumura-Hatta pathloss model and an ML-based ANN one. Laplacian SVM witnesses 

the best performance, in respect to both pathloss prediction and computational complexity. 

The overall satisfactory performance of the SVM approach is due to the use of multi-

dimensional representations in feature extraction, leading, thus, to reduced training time and 

increased capacity. ANNs' performance is similar to SVMs' approach, needing though longer 

training times, as multiple initializations are requested. 

Considering DL approaches, Liu propose in [110] an ANN algorithm for channel learning, 

to mine undiscovered channel information data from a 5G network. They use location features 

and CSI and they produce channel samples from 5G simulators, that are latter used as training 

data for the model. The channel ANN estimation algorithm calculates unseen aspects of the 

channel approximation and resource allocation scheme. The prediction accuracy improves, 

compared to traditional k-NN classifiers. It remains, though, limited to a level of 75%, but 

could be further increased by approximately 3%, if geographical information is used in the 

dataset. 

Zhang et al. [111] build a deep NN (DNN)-based framework for user, subchannel and 

power control in NOMA mmWave networks. The solution of the user association problem is 

given by the Lagrange dual decomposition. The subchannel and PRB allocation is given by a 

semi-supervised learning algorithm, while the power allocation is given by a DNN model. 

The use of the described joint ML-based component (for user, subcarrier and power control) 

delimits the entire decision-making policy in terms of RRM. According to the presented 

results, the EE of the system is significantly improved, while the resource allocation reaches 

optimal levels (98% accuracy). 

Guerra-Gómez et al. [112] propose a dynamic resource management scheme, based on the 

prediction of the total system's capacity. They use three different ML algorithms: SVM, DNN, 

and LSTM. According to the presented results, the scheme can perfectly reduce the 

underutilized resources; however, QoS levels are not optimized. Therefore, the authors 

propose two novel strategies. The first one considers data pre-filtering and results in an 

additional 2% minimization of unallocated resources. The latter one considers error shifting 

and leads to an additional 3% reduction in unallocated resources. However, the achieved 

QoS levels form a barrier in this approach. 

The authors in [113] consider the problem of optimal and automatic BS selection in LTE 

and 5G environments. They propose two ML-based classification solutions to satisfy QoS 

requirements; the _rst one uses SVMs and the second one Random Forest. Both approaches 

are compared to a non-ML BS selection approach. The results indicate that the ML-based BS 

selections can improve throughput and decrease outage probability and delay. Specifically for 
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a 50-user topology, ML approaches achieve 23.21% higher throughput levels, 70% lower 

packet loss ratio and 48% lower delays compared with a non-ML approach. 

In the same framework, Butt et al. [114] investigate the UE positioning problem in 5G 

networks. The authors compare a decision tree classi_er with two DNN solutions. The first 

one uses training data from the service cell and overperforms in terms of accuracy, while the 

second one uses transformed data from the cell and its neighboring ones. In general, the DNN 

solutions witness an overall near-optimal performance, in terms of accurate positioning of 

UEs. In fact, the 2-hidden layer DNN witnessed a positioning error in the range of 1-1.5 m, 

after appropriate feature selection. 

 

3.3.2 Unsupervised Learning in 5G/B5G RRM 

 

Song et al. [115] produce a realistic 5G V2V networks' simulator, with the presence of 

RNs.Ak-Means clustering algorithm is responsible for implementing BS or RN selection, user 

allocation and serving policy. User positioning and RN distribution in the topology are 

performed via ML, in a way that the serving device, BS or RN, is optimally selected. 

However, the model calculates every 2D distance from the observation point (in that case UE) 

to the borders of each cluster and not to the cluster center. Thus, the overall communication 

environment parameters are not taken into consideration. Moreover, since the proposed k-NN 

algorithm is a generic unsupervised ML method for clustering, its performance can be 

affected, if UEs have a complex spatial distribution or clustering is performed in different 

topologies. However, the authors intend to further improve and configure the algorithm, to 

define a more efficient selection strategy. 

The authors in [116] propose a data-based resource allocation scheme, where an ML 

technique of affinity propagation is used. In general, this approach uses graph theory to 

perform clustering. The basic advantage of the proposed algorithm is that it does not require 

the number of the clusters as input. In this way, knowledge and behavior extraction can be 

made even under complex scenarios. The authors conclude that the data-driven nature of the 

RRM policy improvs both system's EE and throughput, although, in some cases, the QoS 

levels are not the desired ones. 

Wang et al. propose in [117] an asynchronous resource allocation scheme, based on 

aggregation graph NNs (Agg-GNN). In this approach, every BS or RN aggregates information 

from its active neighbors with a certain delay. Thus, both the underlying network structure 

and the system's asynchrony are incorporated. According to the presented results, this 

approach outperforms heuristic ones, in terms of the total system's capacity. The presented 

simulations, though, used only a small number of active UEs in the topology. Probably, in 

more complex environments, GNNs' training time might increase, and, thus, performance 

might deteriorate. 

In [118], the authors propose an integrated scheme for resource management in NOMA 

environments. The first stage of the algorithm refers to the users' grouping and subcarrier 

allocation, while the latter one to the power control. UEs are grouped via the k-Means method, 

while subcarrier allocation and cluster definition are calculated using the F-test method. 

Power assignment is performed for the allocated subcarriers, by formulating a convex 

optimization problem. The presented results indicate that the proposed approach reduces 

electromagnetic exposure and increases the total served users. Although in this approach 

single antenna configurations are used, both in the BSs and the UEs, the authors are aiming 

to extend their work to MIMO systems. 

 

3.3.3 Reinforcement Learning in 5G/B5G RRM 
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Alnwaimi et al. used RL in [119] to increase spectrum accessibility in FCs. The proposed 

scheme identities the available spectrum opportunities; then, it selects subchannels, so that 

they operate avoiding intra/inter-tier interference and meet certain QoS requirements. A key 

aspect of this approach is that the considered method reaches optimal levels, in terms of sub-

carrier allocation, even in tiny cell topologies. The basic contribution of this approach is the 

reduced convergence time and the fast-decision-making procedure. However, these come at 

the cost of reduced accuracy which is now limited to 75%. 

In [120], an RL-based algorithm chooses the frequency channel and determines whether 

to change its location in the presence of jamming and strong interference. A Q-learning 

algorithm determines the above decision, while a deep CNN accelerates the channel feature 

extraction. The scheme operates extremely well for huge channel numbers, in terms of 

interference mitigation, and increases SNR levels compared to a simple Q-learning system 

(without CNN). 

The authors in [121] propose a deep RL framework for power control in 5G HetNets. The 

problem is formulated aiming to minimize the difference between the mobile users' allocated 

and requested throughput, by adjusting the transmitted power of the macro-BS or RN. 

According to the presented results, the proposed approach reaches optimal levels of users' 

satisfaction, based on achieved throughput compared to traditional water-filling [122] and 

weighted minimum mean squared error (WMMSE) approaches [123]. However, as expected, 

the difference between user demands and allocated throughput is increased, as the user 

requirements do so. 

The authors in [124] propose a distributed multi-agent deep RL (MARL) framework for 

joint user and power allocation, in a dense wireless network. The data are generated by real 

measurements and backhaul delays. The results, via simulations in dense wireless networks, 

indicate that the scheme achieves a tradeoff between sum-rate and 5th percentile rate, similar 

to centralized scheduling algorithms. The authors intend to verify the performance of the RL 

scheme in realworld scenarios in the future. 

The authors in [32] use QoS as the basic metric in an ML-based resource allocation 

scheme. An RL (Q-learning) algorithm is used for the radio access technology (RAT), while 

the actual RRM is developed, employing the Montecarlo tree search (MCTS)-based Q-

learning algorithm. The authors prove that optimization is achieved after a reasonable number 

of searches and that it outperforms other scheduling methods, with respect to the system 

throughput and resource utilization. However, the computational complexity is increased, due 

to the exhaustive use of the MCTS method. This could be a disadvantage in real case 

scenarios. 

Moreover, RL methods are utilized [125] in order to minimize the total transmission power 

in HetNets, while jointly satisfying the bit rate requirements of different UEs. Every UE can 

be connected to one of the available BSs or to another UE, which acts as an RN. The authors 

use Q-learning in the decision-making procedure. The proposed algorithm reaches optimal 

levels, in terms of the resource allocation. In addition, the decentralized nature of the 

algorithm, constitutes a very promising approach with future extensions, as it uses specific 

UEs as BS/RNs. 

RL methods have been also used in 5G satellite communications to efficiently perform 

RRM related tasks. More specifically, the authors in [126] propose an intelligent RL wireless 

channel allocation algorithm for 5G m-MIMO High Amplitude Platform Station (HAPS) 

networks, based on Q-learning and back-propagation NNs. The entire network is trained using 

the Q-learning model, while CSI information is collected in the platform, through real-time 

agent interaction with the environment, and thus, updating the Q-algorithm using a back-

propagation NN. Results indicated that, even if the number of agents is very high, the channel 

allocation accuracy levels remain high (over 75%). 



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks 
_______________________________________________________________________________________________________________ 

72 
Ioannis A. Bartsiokas 

 

3.3.4 Distributed technologies in 5G/B5G RRM 

 

Focusing on MEC technologies in RRM, the authors in [42] present the state-of-the-art on 

the employment of MEC networks, focusing on architecture, cashing, computation and use of 

ML-based schemes. In general, caching refers to the temporary storage of content (CSI in 

RRM-related tasks) in centralized or decentralized databases, for future access. The reasoning 

behind those storages is that an instance (i.e., a D2D communication in RRM), that has 

occurred once, is very likely to occur again in the future. In MEC systems, these techniques 

are commonly used for decision making and allocation of available resources. For example, 

the authors in [127] reach a 10 -11% lower latency and improvements in QoE, compared to 

non-caching schemes. The authors in [128] propose an efficient content caching policy for 

edge using dynamic ML predictions. The proposed Long-Short-term Memory approach 

provided 30% higher caching ratio, than conventional approaches.  

MEC and ML are combined in complex optimization problems, as well. In this context, 

resource allocation, beamforming and caching issues can be jointly encountered. Related 

works in this field use DL models, such as ANNs, for accurate computations. Such efforts are 

described in [129] and [130], considering decentralized hybrid beamforming in 5G next 

generation node BSs (gNodeBs). The proposed novel techniques (CNN frameworks in both 

[129] and [130]) outperformed state-of-the-art optimization-based and greedy-based 

algorithms, both in terms of SE and computational complexity. 

A key characteristic of RRM-related tasks is that active UEs or edge devices have different 

processing power, antenna characteristics and mobility patterns, leading, thus, to 

heterogeneity in local datasets. More specifically, the data generated in each UE contain 

different labels and/or features and are not of the same volume. This is called non-independent 

and identical distribution (non-IID) in the generated data [130]. Therefore, the need for the 

distributed training of ML algorithms in different UE or network devices is a key technique 

in 5G, but especially in B5G networks. Thus, the purpose of implementing FL schemes in 

RRM (i.e., resource allocation, latency minimization) is, also, to address the aforementioned 

heterogeneity and, in that way, improve the accuracy of the global model [131]. 

In 5G networks the main PHY layer (RRM) domains where FL schemes are employed 

consider user allocation, subcarrier or Physical Resource Block (PRB) allocation, power 

management, BS or RN placement, and selection. However, towards 6G networks 

deployment FL is combined, also, with other newcoming technologies such as NOMA, CF 

mMIMO and RIS. In the rest of this subchapter the recent approaches in literature are 

presenting concerning the application of FL schemes in the aforementioned cases. 

 

RRM 

 

Authors in [131] propose a UE scheduling method in an FL-assisted wireless network, 

based on the joint quality of channel and learning optimization. When wireless resources are 

limited, this method improves the overall training time, compared to traditional ones. 

However, the model's accuracy decreases in an environment with powerful resources, due to 

data overload. 

Authors in [132] consider the problem of joint power and resource allocation for vehicular 

URLLC communications. The goal is the minimization of the overall system’s power 

consumption subject to high reliability in terms of probabilistic queuing delays. First of all, 

an extreme-value theory approach is introduced to define the threshold-based reliability 

measure to detect extreme events to vehicles’ queue lengths. A novel FL-based approach is 

proposed to detect these extreme events, assuming they are independently and identically 
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distributed over different vehicular users. Afterwards, the communication delays detected in 

the FL scheme over wireless links, are used to define the power management and subcarrier 

allocation policies for each user. The performance evaluation, indicated that the proposed FL-

based model estimates the extreme events presence in vehicle users’ queues with the same 

accuracy as a centralized scheme. Moreover, the data exchange amount is reduced by 79%, 

while the vehicular users’ ques length is reduced by up to 60%. Overall system’s average 

power consumption is, also, reduced compared to a centralized state-of-the-art approach. 

On the same framework, authors in [133] proposed an FL-based decentralized joint 

subcarrier allocation and power control scheme in vehicular networks to ensure string stability 

in a platoon of autonomous vehicle users. The optimization problem of joint subcarrier 

allocation and power management is studied subject to both string stability and link 

availability between different vehicular users. Two schemes are proposed for this problem. 

The first one considers a centralized BS-governed approach where BSs a priori know the 

large-scale fading parameters of the vehicular links. The second one, considers an FL-based 

Multi-Agent Reinforcement Learning (MARL) algorithm, where each vehicle incorporated a 

distributed agent, which tries to define the optimal policy to maximize the expected reward 

(power consumption minimization). The last step for its agent is to communicate with the 

CPU in order to compare the local performance to the global one based on the total achievable 

capacity. Performance evaluation indicated that both approaches outperformed a random 

allocation scheme concerning the achieved data rate. However, the distributed MARL 

outperforms the centralized one concerning the same KPI. 

Authors in [134] consider the problem of user scheduling over resource-constrained 6G 

channels. The authors are pointing out that the uplink scheduling of different devices where 

FL processes are performed is a problem of interest. A novel approach is proposed for uplink 

user scheduling based on EE and importance-awareness. In each devise unsupervised graph 

representation learning tasks are performed. The key novelty of this approach is that an 

importance bias is inserted in the scheduling process, which does not require the collection of 

training feedback from client users, unlike state-of-the-art approaches. Performance 

evaluation indicated that ML tasks’ accuracy can be improved by up to 10%. Moreover, EE 

can be also improved by approximately 17 times compared to the state-of-the-art approach. 

In [135] QoS is considered as the most significant KPI in 5G/6G communication networks. 

However, QoS service requirements rely heavily on user mobility and networks density. 

Considering vehicular communications, even stricter QoS requirements should be met in real-

time scenarios. To address the problem of non-convexity of existing optimization techniques, 

the authors propose a data-aided federated DRL algorithm for resource allocation in 5G/6G 

vehicle communication networks. Performance evaluation indicated that an FL DRL scheme 

can optimize the probability to achieve the requested QoS for each vehicular user of the 

topology. Moreover, EE and spectral efficiency (SE) levels can be also increased compared 

to CL approaches. 

Concerning device-to-device (D2D) communications, authors in [136] proposed a 

framework for user device selection to take part in the learning process, as a lot of UEs don’t 

have the computational power to perform FL tasks. Hence, the authors propose a FL 

framework (based on the matching theory incentive mechanism) to select the devices that will 

take part in the learning process, aiming to minimize convergence time and to maximize 

reward. Moreover, parameters such as energy consumption are, also, taken into consideration. 

In each device, an echo-state-network is running to forecast channel conditions in a reliable 

manner. Performance evaluation indicated that the convergence time and energy consumption 

of the proposed FL framework are far better than conventional approaches. In fact, energy 

consumption can be improved by ~10 Joules, while global FL delay can be reduced by ~20 

ms. Moreover, ML models’ accuracy is also improved (~96% compared to ~89%). Thus, such 
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approaches are declared as applicable for potential usage in 6G networks. A similar approach 

is presented in [44], concerning both user selection and resource allocation to minimize the 

FL loss function. The numerical results indicated that identification accuracy can be improved 

from ~1% to ~4% compared to a random RRM algorithm, a state-of-the-art FL one and an 

optimization algorithm that minimizes the overall system’s error rate. 

Finally, authors in [137] address the problem of energy consumption in FL-based 6G 

orientations, as the resource-constrained nature of a variety of edge devices bring up a 

limitation to efficient learning. In general, the data in wireless networks are characterized as 

non-identically and independently distributed (non-IID), leading to the need for various global 

updates rounds until decision-making. As a sequence, the authors propose a generic multi-

flow relay learning framework algorithm, FedRelay, where relay-assisted local updates are 

performed in the training phase of the global model. There, a cooperative communication 

decentralized relay selection protocol is also proposed. The global optimization is performed 

subject to energy consumption minimization for both each local update and global model. 

However, computation frequency is considered, also, to reduce training overhead. 

Performance evaluation indicated that FL-assisted relay selection led to a 5-time reduction in 

energy consumption compared to state-of-the-art federated learning approaches. Moreover, 

global test set accuracy is similar to state-of-the-art ones. 

 

NOMA 

 

The aspects of FL and MEC orientations for NOMA-aided wireless communication are, 

firstly introduced in [45]. Authors propose a framework for terrestrial networks, where 

simultaneous computation offloading enhanced networks’ flexibility. In this way, 

connectivity is highly reliable, while transmission latency and energy consumption are 

significantly reduced. FL fundamentals are, also, presented along with several 

implementation techniques to improve or maintain QoS levels. The authors declare that the 

cooperation between FL and RL is of high interest for RRM-related tasks. Thus, motivations, 

challenges, and representative results are presented, focusing on key technical challenges and 

open research issues of the proposed frameworks. 

Authors in [138] investigated the RRM problem in NOMA-based systems, focusing, also, 

on the device clustering in these networks, based on the required service demands. Two 

allocation schemes are proposed by the authors. In the first the BS allocates users/devices to 

clusters based on current CSI and transmit power, to ensure interference mitigation in uplink 

and downlink. The key characteristic of this approach is the low overall complexity and 

communication overhead. In the second approach, an FL-based scheme is proposed based on 

a traffic estimation model, aiming to improve the system’s capacity. Thus, BSs, taking into 

account both traffic prediction and power demands to allocate devices to clusters. Finally, a 

synchronization method is proposed to synchronize transmissions of the different devices. 

Performance evaluation indicated that the system’s capacity can be increased by ~20 times 

compared to on OFDMA scheme, while achieved throughput and packet losses are at similar 

levels. 

Concerning, also, RNs, authors in [139] proposed an FL-based RRM scheme for RN-

assisted 6G IoT communication networks, where energy consumption reduction is of primary 

interest. Moreover, the minimization of the total training and transmission time is, also, of 

interest. Thus, a joint relay scheduling, transmit power allocation, and frequency allocation 

optimization problem is formulated. A near-optimal performance and low computational 

complexity are achieved using a graph-theory approach. Performance evaluation depicted that 

the proposed scheme achieves 6, 4, and 2 times lower energy consumption, respectively, 

compared to the considered fixed, computation adaptation, and power adaptation schemes. 
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As far as total time is concerned, the proposed approach performance is slightly worse than 

the fixed and computation only adaptation schemes. 

 

CFmMIMO 

 

Authors in [140] proposed a novel scheme for FL-aided CF mMIMO systems that can 

support any FL framework. An optimization problem to minimize training accuracy, transmit 

power, and users’ processing frequency is formulated as an indicative example, but the 

authors declare that the proposed framework can have the same outcomes for every FL model. 

Performance evaluation highlighted the reduced training times by ~55% compared to state-

of-the-art approaches. Moreover, the CF mMIMO approach is depicted as the best-performing 

one compared to CF time-division multiple access massive MIMO and collocated massive 

MIMO concerning total models’ training time. A similar approach, is also, presented by the 

same authors in [141] to support multiple FL groups. A CF mMIMO to guarantee the stable 

operation of multiple FL processes is proposed to allow multiple iterations by different FL 

processes to be executed together. A novel asynchronous algorithm performs the scheduling 

of the different flows, while a low-complexity RRM allocates the power and computation 

resources subject to the minimization of each iteration’s execution time. Result evaluation 

indicated that the per iteration execution time can be reduced by ~60% to ~80%. However, a 

key problem of both of the aforementioned approaches has to do about the “struggler” UE 

effect. A struggler UE is an edge device that slows down the FL training process and 

communication between edge devices and centralized entity, due to bad link reasons. The 

approach in [141] selects only a UE subset to take part in the FL process to minimize the 

probabilities of the “struggler effect” to happen. In this case, performance evaluation 

indicated that FL transmission times can be significantly reduced compared to the previously 

presented approaches (~30% to ~60%).  Finally, the approaches presented both in [142] and 

[143] propose FL-based CF mMIMO approaches in 6G orientations to reduce the overall 

execution time and communication overhead in the FL process. Performance evaluation in 

both approaches confirms the reduced execution time and communication overhead over 

approaches such as the presented ones in the previous paragraph. However, such effects are 

more visible when the overall network density levels are low. 

 

RIS 

 

Authors in [15] highlight the advantages of FL approaches, as also, depicted in this chapter, 

and proposed over-the-air computation as an efficient way to improve communication 

efficiency and support numerous simultaneous local model uploading. However, in such 

scenarios, the “straggler” effect is present. For this purpose, the authors propose a RIS-aided 

learning framework for device selection to be used in FL tasks based on model aggregation 

error and convergence time of the over-the-air FL. Then, a unified communication-learning 

optimization problem is formulated to optimize device selection and RIS configuration. 

Performance evaluation indicated that the aforementioned algorithm improves models’ 

accuracy by ~20% compared with the state-of-the-art approaches. These effects are detected 

even when channel conditions are a lot different across UEs. Similar results are, also, depicted 

by the same authors in [144] 

On the same context, authors in [145] proposed a RIS-aided FL scheme as a 

countermeasure to the obstacles that are inserted into the FL process by the randomness of 

channel conditions, focusing on IoT topologies. The goal of this approach is to improve model 

aggregation/distribution and decrease training times. The total latency minimization problem 

is formulated, both concerning OFDMA and NOMA multiple access protocols, subject to 
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energy and RIS constraints. Thus, the optimal RRM policies are depicted to efficiently 

allocate available resources to the UE of the cell under test. Performance evaluation indicated 

that the RIS-assisted FL scheme can achieve significant latency (~0.5 s) reduction as 

compared with other benchmark methods. Moreover, the NOMA-based model achieves 

slightly better training latency than the OFDMA-based one. Similarly, in [146] a RIS-assisted 

NOMA scheme is proposed to increase the total system’s capacity and support UE selection, 

focusing on total latency minimization. This is achieved by the per training round latency 

reduction. Then, an auction-based IRS (Winner determination (WD) and payment methods 

are used) RRM policy is proposed to optimize total latency in the context of multiple-BS 

model parameters transmission. Performance evaluation indicated that proposed schemes 

overperform existing ones both concerning training efficiency through device selection and 

IRS-NOMA RRM optimization. In the field of RIS-aided NOMA 6G networks, Zhong et. al. 

(2022) propose a framework for the sum rate maximization problem using FL and DRL 

principles. Performance evaluation indicated that a mobile RIS scheme achieves about ~300% 

sum rate improvement compared to a fixed RIS scheme. Moreover, the NOMA scheme 

achieves a sum rate gain of ~42% compared to an OFDMA scheme. A similar scheme is 

proposed in [148] leading, also, in similar results. 

 

Open and Cloud RAN 

 

Finally, concerning distributed computation and MEC employment in 5G/B5G networks, 

the classical hierarchical structure of a cellular network is proposed to change in order to 

become more flexible and decentralized. In this framework, O-RAN and CRAN architectures, 

analyzed in Section II, are about to efficiently satisfy the joint requirements of increased 

throughput levels with respect to QoS and QoE standards, and also to the concept of low-

energy green networks. With respect to the aforementioned considerations, the authors in 

[149] proposed a deep Q-learning framework in CRAN to maximize EE subject to the 

constraints analyzed in paragraph 3.1.1. As previously stated, the Q-learning method uses past 

learning experience to predict future effects and make reward/penalty decisions. However, 

sometimes action overestimation generates lower probability limits for the maximum Q-

value. With the use of a double Q-learning model, the target Q-value generation leaded to 

bigger energy savings, whereas numerical evaluation indicated that the method reduces by 

22% and also, improves EE at the same rate. Considering an O-RAN architecture, the authors 

in [150] propose an RL based RRM solution and deployed it in the ecosystem. The O-RAN 

Distributed Unit sends periodically reports to the O-RAN Interface and a dynamic per-flow 

resource allocation strategy is employed to set the modulation and coding scheme, according 

to KPI requirements. 

 

3.4 Outcomes 
 

Table 3-1 summarizes the usage of ML in 5G/B5G RRM problems, and groups 

accordingly the research papers presented in previous paragraphs. 

As already stated in chapter 2 and verified by Table 3-1, Supervised Learning techniques 

are mainly used for prediction purposes. Indeed, various networks' KPIs (throughput, SNIR, 

pathloss) can be effectively predicted, in order to empower allocation strategies [107]-[109]. 

DL methods, due to their ability to mine deep data and label associations through multiple 

complex hidden layers (ANNs, DNNs, CNNs), are mainly used in user, subcarrier, power 

allocation and CSI prediction tasks [113], [114]. The multiparameter nature of the RRM 

problem and the complex channel feature associations render DL approaches as the most 

efficient way to deal with the total RRM problem [110]-[112]. 
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On the other hand, Unsupervised Learning focuses, in general, on clustering: the 

corresponding models are efficient in user grouping, BS or RN selection and QoS levels 

formulation, concerning RRM tasks [115]-[118]. 

RL models -as DL ones do- are more efficient dealing with the NP-Hard problem of the 

overall resource allocation. 

In this framework, RL approaches, such as Q-learning, are proposed by researchers in joint 

user, subcarrier allocation and energy consumption minimization problems [119]-[126]. 

Finally, MEC and FL methods, which refer to the most recent evolution in the field, are 

proposed to face the challenging issue of training time minimization, latency minimization 

and computational resources optimization. In this framework, MEC and FL methods are 

combined with either DL algorithms as CNNs, LSTMs, etc. or DRL frameworks -e.g., Deep 

Q-Learning algorithm- for various RRM-related tasks, such as user allocation, subcarrier 

allocatio, RN selection [132] – [137]. Moreover, FL methods are combined with other 5G/BG 

enabling technologies, such as NOMA [45], [138], [139], CFmMIMO [140] – [143] and RIS 

[15], [144] – [147] to further enhance networks’ capabilities and drive research towards 6G 

implementation. 

From the above analysis and Table 3-1, a categorization of the best performing ML 

algorithms for each RRM-related sub-problem is visible. As presented in Section II, the NP-

hardness of the joint subcarrier allocation and power control with respect to QoS, QoE 

constraints has led recent research efforts to deploy more intelligent solutions, which have the 

ability to communicate with the cellular environment, and change their predictions and 

decisions (DL, RL, FL methods), based on the current conditions. However, the existence of 

big data in transmission systems and wireless networks necessitates the utilization of classical 

ML approaches, such as supervised ones, specifically in order to tackle problems where the 

knowledge of a KPI and/or CSI is vital for low latency responses and fast decision making 

(e.g. for coding and/or modulation scheme selection in each timeslot). 

 

Type of Learning RRM Problem Proposed ML 

approaches 

Related 

Work(s) 

Supervised 

Learning 

KPIs prediction (demands, 

SNIR, throughput, 

capacity) 

SVMs, decision trees, 

regressions 

[107], 

[108] 

Supervised 

Learning 

pathloss prediction SVMs [109] 

Supervised 

Learning and Deep 

Learning 

user and subcarrier 

allocation, power control, 

CSI prediction 

DNNs, CNNs, LSTM, 

SVMs, Random Forest 

[110], 

[111], 

[112], 

[113], 

[114] 

Unsupervised 

Learning 

RN or BS selection unsupervised k-NN, k-

Means clustering 

variations 

[115] 

Unsupervised 

Learning 

user grouping, clustering, 

handover management 

k-NN, k-Means, Agg-

GNN, f-test 

[116], 

[117], 

[118], 

[119] 

Reinforcement 

Learning 

subcarrier allocation, 

power control, frequency 

selection 

MDP, DRL, Water-

Filling, WMMSE 

[120]. 

[121], 

[122], 
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[123], 

[124] 

Reinforcement 

Learning 

minimization of difference 

between requested and 

active KPIs (throughput, 

SNIR, CSI) 

Deep MARL [125] 

Reinforcement 

Learning 

energy consumption 

minimization and resource 

allocation 

Q-Learning [126], 

[127], 

[128], 

[129] 

Distributed 

Learning and MEC 

caching CSI information, 

beamforming 

ANNs, DNNs, CNNs [130], 

[131] 

Federated Learning power and subcarrier 

allocation, user scheduling, 

device selection, relay 

selection in 6G vehicular 

networks 

FL combined with 

CNNs and Q-learning, 

majorize, semidefinite 

relaxation and 

Gaussian 

randomization 

[44], 

[132], 

[133], 

[134], 

[135], 

[136], 

[137] 

Federated Learning NOMA FL deployed DRL [45], 

[138], 

[139] 

Federated Learning CFmMIMO FL deployed CNNs, 

ANNs, DRL 

[140], 

[141], 

[142], 

[143] 

Federated Learning RIS FL deployed CNNs, 

ANNs, DRL 

[15], 

[144], 

[145], 

[146], 

[147], 

[148] 

CRAN/O-RAN Resource allocation, EE 

minimization, modulation 

and cosind scheme 

selection 

CNNs, Q-learning [149], 

[150] 

Table 0-1: State-of-the-art wors on ML techniques in 5G/B5G RRM 
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Chapter 4: KPI prediction with Supervised and Deep 

Learning Techniques 
 

In this chapter the problem of network KPI prediction in 5G/B5G network is discussed. 

First, the significance of this problem in modern era network systems is highlighted, focusing 

on the relevance of KPI prediction problem with efficiency RRM strategy formulation. 

Afterwards, this chapter focuses on throughput prediction, as one of the key metrics regarding 

the performance of 5G/B5G network to serve the desired QoS of the accepted UEs. For this 

purpose, several ML/DL algorithms are comparatively examined using public datasets from 

actual 5G network implementations. The performance evaluation is performed based on both 

ML KPIs (accuracy, F1-score) and training time needed for each model. With that procedure, 

the best-performing ML algorithms are identified. Finally, discussion and Open issues are, 

also, highlighted. In paragraph 4.1 the KPIs of interest in RRM tasks are presented, along 

with the need for ML-based KPI prediction in 5G/B5G networks. In Paragraph 4.2 the 

problem of throughput prediction in 5G/B5G networks is examined, where several ML 

algorithms are evaluated. Results and comparative analysis are, also, performed in this 

paragraph. Finally, discussion over the results is performed. 
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4.1 KPIs of interest for RRM tasks in 5G/B5G networks 
 

 

KPI prediction in 5G/B5G networks is of significant importance for effective network 

management and optimization. It involves forecasting various performance metrics to gain 

insights into network performance and make informed decisions. By accurately predicting 

KPIs such as throughput, latency, coverage, signal strength, and others, operators can 

optimize network resources, proactively address potential issues, and deliver a better user 

experience. 

First of all, KPI prediction enables proactive resource allocation and optimization. By 

accurately forecasting KPIs such as signal strength, interference, and capacity, the resource 

requirements of different areas and user groups can be identified. This information supports 

the dynamic allocation of the available radio resources, the coverage and capacity 

optimization and the avoidance of congestion or service degradation [151]. 

Moreover, KPI prediction assists in interference management. In dense 5G/B5G networks, 

interference can significantly impact network performance. By predicting KPIs related to 

interference levels and patterns, interference hotspots can be identified, so that mitigation 

measures, such as interference cancellation, beamforming, or power control techniques, can 

be activated to enhance signal quality and minimize interference [152]. 

Additionally, KPI prediction helps in load balancing and traffic steering. By forecasting 

KPIs such as user distribution, traffic demand, and mobility patterns, the load across different 

cells or base stations can be balanced. This enables efficient utilization of radio resources, 

prevents overloading of specific cells, and ensures a seamless user experience during high-

demand periods or in areas with varying traffic patterns [153], [154]. 

Furthermore, KPI prediction plays a crucial role in optimizing spectrum utilization. By 

accurately predicting KPIs related to spectrum availability, utilization, and efficiency, 

spectrum resources can be efficiently managed and allocated. This includes techniques like 

spectrum sharing, cognitive radio, and dynamic spectrum access, which enable efficient 

utilization of the available spectrum and support diverse services and applications [155]. 

KPI prediction, also, supports network planning and optimization. By analyzing historical 

KPI data and using predictive models, future network demands can be determined, and, thus, 

capacity expansions can be planned and network deployment strategies can be optimized. 

This includes determining the optimal placement of base stations, adjusting antenna 

configurations, and optimizing parameters to meet performance targets and ensure efficient 

resource usage [156]. 

When considering throughout as the KPI to predict, there are some more RRM-related 

field that the a priori prediction of the anticipated system or user throughout can be really 

significant. In fact: 

• QoE Optimization: Predicting throughput helps in optimizing the user 

experience by ensuring sufficient bandwidth for demanding applications and services. 

By forecasting throughput, the potential congestion or performance bottlenecks can 

be identified and proactive measures can be taken to maintain a desired QoE level, 

such as adjusting resource allocation, prioritizing traffic, or applying traffic shaping 

techniques [157]. 

• Service Level Agreement (SLA) Compliance: Accurate throughput prediction 

is essential for meeting SLA requirements and contractual obligations. By predicting 

throughput and monitoring its performance against defined thresholds, operators can 

ensure adherence to SLAs and deliver the promised performance to customers. This 

enables proactive measures to maintain customer satisfaction, avoid penalties, and 

manage service level expectations [158]. 
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4.2 Throughput prediction in 5G/B5G Networks 
 

In this paragraph, the performance of various ML algorithms for KPI prediction is 

presented. The investigated ML algorithms have been selected based on two criteria. The first 

criterion is their ability to satisfactorily solve the KPI prediction problem. This means that we 

have selected algorithms with performance scores over 75% in accuracy. The second criterion 

is the usage of these algorithms in RRM-related KPI prediction tasks in 5G/B5G networks, 

according to the presented literature in the previous chapters (basically in section 3.3 of 

chapter, i.e., [25], [107], [108], [116]-[118]). More specifically, using the Lumos-5G dataset 

[158], the problem of throughput prediction is investigated (Lumos5G features are, also, 

summarized in Table 4.1).  

 

4.2.1 Dataset and problem formulation 

 

Lumos 5G dataset [158] contains 68,118 observations of 19 features, concerning UEs' 

location and mobility parameters, such as longitude, latitude, UE speed and direction, UE-BS 

distance and corresponding angles, as well as network related ones, such as network status 

(connected or not), CSI parameters (Received Signal Strength Indicator - RSSI, Reference 

Signal Received Power - RSRP, Reference Signal Received Quality - RSRQ, SNIR), and 

signal strength, derived by real-world experiments and statistical analysis. The measured 

downlink throughput acts as the response variable. All these features are depicted, also, in 

Table 4.1. 

 

Feature Description 

timestamp day, time logs 

longitude, latitude Geographical coordinates for each UE 

detected activity walking, still, driving 

moving speed UE’s moving speed using Android API 

compass direction horizontal direction of travel of each UE 

radio type 5G or 4G 

cell IID number of the BS that each UE is assigned to 

signal strength KPIs RSSI, RSRP, RSRQ, SNIR 

UE to BS distance distance between each UE to the server BS 

positional angle angle between each UE and the corresponding BS 

mobility angle distance between each UE’s trajectory route and the 

corresponding BS 

throughput downlink throughput using iPerf 3.7 
Table 0-1: Lumos 5G dataset's features 

 

Throughput prediction is formulated, either as a classification or as a regression problem. 

On the one hand, classification refers to the prediction of the received throughput level by 

each active UE, given the dataset features. The effective solution of this problem can be 

valuable in a variety of RRM-related tasks, such as modulation levels definition.  

Considering throughput prediction as a classification problem, two different approaches 

are considered in our analysis. The first one concerns three preselected throughput levels (3 

classes): 

• Level 0 - low throughput: from 0 to 300 Mbps, 
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• Level 1 - medium throughput: from 300 to 500 Mbps, and 

• Level 2 - high throughput: above 500 Mbps. 

However, due to the small amount of data in the second class of the previous approach, we 

consider also an alternate approach, where two preselected throughput levels exist (2 classes): 

• Level 0 - low throughput: from 0 to 300 Mbps, 

• Level 1 - medium throughput: above 300 Mbps. 

The above-presented level limit values -in both 2-class and 3-class approaches- have been 

generated after performing extensive statistical analysis to the used dataset, concerning the 

goal of including satisfactory samples in each investigated class. 

On the other hand, regression refers to the prediction of the actual expected value of the 

metric (throughput in our case). The information gathered by the regression task can be 

valuable in RRM decision tasks, such as subcarrier and/or power allocation, via the prediction 

of the values for next timeslots. 

 

4.2.2 Implemented ML algorithms 

 

4.2.2.1 Throughput prediction as a classification Problem 

 

Considering throughput prediction problems as a classification one, the following four 

distinct ML-based algorithms are examined: 

• FFNN: A Feedforward NN with 100 hidden layers and rectified sigmoid 

activation function (ReLU) and optimized hyperparameters, 

• k-NN: A k-NN-based classifier using 2 neighbors and Chebyshev distance 

criterion, 

• SVMs: Two SVM models, one using polynomial and another using Gaussian 

kernel and 

• DNN: A Deep NN with a feature input layer -using the 19 features of the 

dataset- and z-score normalization, a fully connected layer with 19 - 50 weight matrix 

and a 50-element vector output, a 50-channel batch normalization layer, a ReLU layer 

with a 50-element vector output, a second fully connected layer with 3 or 2 (3-class and 

2-class problem respectively) neurons and 50 × 3 (3-class problem) or 50 × 2 (2-class 

problem) weight matrix and a 3-element/2-element vector output and, finally, a soft-

maximization layer with a 3-element/2-element vector output. The overall DNN's 

structure for the 3-class problem is shown in Fig. 4-1. DNN's structure for the 2-class 

problem is similar and differs only in the size of the two last layers (fully connected layer 

2, soft-max layer). 

 

 
Figure 0-1: DNN's architecture 
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4.2.2.2 Throughput prediction as a regression Problem 

 

Considering throughput prediction as a regression problem, the following algorithms are 

examined: 

• Linear regression: A multi-linear regression model, using all 19 dataset 

features except throughput, which is the response variable, 

• Binary Decision tree: A Gaussian binary decision tree designed for regression 

purposes, using auto-optimized hyperparameters, 

• SVMs: Two SVM models, one using polynomial and another using Gaussian 

kernel and, 

• NN: A Feed Forward neural network with 100 hidden layers, a feature input 

layer with the 22 features of the dataset and z-score normalization, a 50_50 fully 

connected layer, a 50-channel batch-normalization layer, a ReLU layer, a soft-

maximization layer and a regression layer. 

• LSTM: A LSTM neural network with a sequence input layer for the 22 features 

of the dataset, an LSTM layer with 125 hidden units, a fully connected layer and a 

regression layer. 

 

4.2.3 Results and Comparative Analysis 

 

In both of the abovementioned approaches (studying the KPI prediction problem in 

5G/B5G networks either a classification or regression one), an 80%-20% training-test set split 

has been used, as well as a 10-fold cross validation procedure. 

 

4.2.3.1 Throughput prediction as a classification Problem 

 

The performance of the abovementioned classifiers is evaluated, using the accuracy and 

F1-score metrics. Accuracy is the percentage of the total number of the correct predictions 

divided by the total number of observations. In other words, accuracy is given by the sum of 

True Positive (TP) and True Negative (TN) predictions, divided by the number of the total 

predictions (TP + TN + False Positive (FP) + False Negative (FN)), as depicted in the 

following formula (see also the confusion matrix in Fig. 4.2): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9) 

 

Then, F1-score is given by the formula (12), by utilizing formulas (10), (11), which 

describe Precision and Recall metrics: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 
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Figure 0-2: Confusion Matrix 

Table 4-2 summarizes the performance of the above models in the classification task (with 

two or three classes), based on classification accuracy and F1-score. The k-NN-based 

approach overperforms all the other approaches, witnessing the best overall accuracy (0.87 

and 0.90 with three and two classes, respectively). In general, supervised learning algorithms 

(such as k-NN) are the most appropriate ones in networks' KPIs prediction, as drawn from the 

existing literature, analyzed in subsection E of section III. However, concerning F1-score, 

DNN has the best performance (0.81) in the 3-class problem, while k-NN (0.90) in the 2-class 

model. 

 

ML Algorithm 3-classes 2-classes  Training time 

Accuracy F1-score Accuracy F1-score (s) 

FFNN 0.81 0.67 0.88 0.88 960.41 

k-NN 0.87 0.77 0.90 0.90 111.79 

SVMs 0.76 0.53 0.82 0.82 150.03 

DNN 0.81 0.81 0.85 0.84 129.43 
Table 0-2: ML Classification algorithms comparison 

As, also, stated in paragraphs 3.4, DL algorithms, due to their multiple hidden layer 

architecture, witness unseen aspects of the dataset, and, thus, their performance is satisfactory 

in the classification task. In this case, the preselected classes are imbalanced. Therefore, F1 

metric is more reliable, because it concerns both TP, TN and FP, FN, while accuracy takes 

into account only TP, TN. It is also visible from Table 4-2, that, using only two classes, both 

accuracy and F1-metrics are improved. Moreover, with respect to the training time of each 

ML model we observe that k-NN overperforms the other approaches, while the DNN 

approach reaches almost the same performance levels. Thus, these two ML methods are the 

most appropriate for the investigated problem in both performance and training time 

perspective. On the other hand, FFNN approach has significant delay in training time, even 

though the performance accuracy almost coincides to the best-performing algorithm's one. 

A second level of performance evaluation is to compare the best-performing algorithms 

presented above (in terms of Accuracy and F1-score) with similar works presented in the 

literature. In this direction, Figs. 4-3, 4-4 depict the comparison of selected state-of-the-art 

throughput classification approaches [159]-[161] while the previously presented evaluation 

analysis is included as well. 

For each of the [159]-[161] works, we pick the best performing ML algorithm, and so we 

do for our evaluation approach, as far as the 3-class throughput prediction problem is 

concerned (i.e., k-NN algorithm, see Table 4-2). As it is apparent, our evaluation approach is 

consistent with similar approaches in other recent works [159]-[161]. 
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Figure 0-3: Classification models comparison: accuracy 

 

 
Figure 0-4: Classification models comparison: F1-score 

 

4.2.3.2 Throughput prediction as a regression Problem 

 

The performance of the abovementioned ML models is evaluated using the mean absolute 

error (MAE) and RMSE metrics. MAE is defined as the difference between the actual and the 

predicted values of the response variable (throughput), while RMSE is defined as the square 

root of the squared difference between the actual and predicted values, as depicted, also, in 

the following formulas: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1 ∙ 100% (13) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1  (14) 

 

Where, 𝑦𝑖 is the actual value of the 𝑖𝑡ℎ observation of the test dataset and  𝑦̂𝑖 is the 

prediction for the 𝑖𝑡ℎ observation of the test dataset from a specific ML algorithm. 
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Table 4-3 and Figs. 4-5, 4-6 summarize the performance of the above models in the 

regression task, based on MAE and RMSE. The two best performing ML-based approaches 

are Binary Tree regressor and LSTM regressor, witnessing the best overall MAE and RMSE 

performance (162,257 and 150, 250 respectively). As in the previous case (classification 

problem), supervised and Deep learning algorithms are the most appropriate ones in networks' 

KPIs prediction as a regression problem. In fact, decision tree algorithms and linear regressors 

are designed for regression purposes. However, NN model's performance is also highlighted, 

as it is the second best in both metrics (237 and 328, respectively). 

Fig. 4-7 depicts the comparison of the state-of-the-art throughput prediction approach in 

[113] with our previously presented evaluation analysis for the regression problem. We pick 

the best performing regression ML algorithm of [114], and so we do for our evaluation 

approach. 

(i.e., LSTM regressor, see Table 5). The comparison is conducted using RMSE as metric. 

As it is apparent, our evaluation approach is consistent with the approaches in other recent 

works [114]. 

 

ML Algorithm MAE RMSE Training time (s) 

Linear Regression 278 353 1.05 

Binary Decision Tree 162 257 50.61 

SVMs 278 354 28.54 

NN 237 328 6.89 

LSTM 150 250 276.89 
Table 0-3: ML Regression algorithms comparison 

 

To conclude, we observe that, in general, both our approaches and other recent works on 

the KPI prediction problem for 5B/B5G networks propose Supervised or DL models as the 

most appropriate tools for this type of problem either as a classification or a regression one. 

On the one hand, supervised learning models (k-NN, SVMs, Random Forest) seem to have 

the best performance concerning training time. But on the other hand, DL (DNNs, LSTM) 

models overperform when it comes to performance metrics, such as accuracy and F1-score 

for classification purposes or RMSE, MAE for regression ones. 

 
Figure 0-5: Regression models: MAE 
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Figure 0-6: Regression models: RMSE 

 
Figure 0-7: Regression models comparison: RMSE 

 

4.2.4 Discussion and Open Issues 

 

As already presented in Chapter 3, the allocation of the available network resources is a 

multi-objective problem, due to the diverse nature of users' requirements, hardware evolution 

and demand for continuous connectivity. Despite the research progress presented in section 

3, some open questions and practical challenges persist, requiring even more effort in the field 

of ML-based RRM, to reach its full potential. These issues have been, also, identified 

throughout the performance evaluation of the different ML algorithms regarding the 

throughput prediction problem in 5G/B5G networks. The critical issues that should be taken 

into consideration are highlighted below and summarized in Table 4-4. 

First of all, 5G and B5G networks utilize ML-based algorithms to phase the growing 

number of usage scenarios in access management. Therefore, ML performance metrics (such 

as RMSE for regression problems, accuracy for classification ones, etc.) should be examined 

along with the network metrics (i.e., total network throughput, QoE, etc.) [107], [115]. Some 

approaches (e.g. [25], [112]) focus only on the ML metrics performance increase, without 

also evaluating the networks' metrics. 
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Throughout this thesis, the critical role that AI/ML plays in wireless networks and in IoT 

and heterogenous topologies has been highlighted. However, researchers should not overlook 

some practical limitations that exist in the implementation process of ML-based RRM 

strategies, i.e., when developing the corresponding ML model. More specifically: 

• 5G datasets unavailability and/or poor quality: A key procedure for building 

ML models is the validation and training stage. 5G full deployment throughout the 

world was set for 2020, before the COVID-19 pandemic. Hence, 5G data from 

implemented networks have only recently started to be produced. The AI/ML models, 

that have been produced until now, are using synthetic or incomplete data from past 

networks' generations [42]. Another aspect that also affects data quality is the fact that, 

in general, wireless network data are characterized by noise and inaccuracy. In fact, 

even well-established wireless network datasets -such as DeepMIMO [162]- witness 

quality issues in a variety of RRM-related problems. We should also keep in mind 

that, due to the highly interference environment, huge datasets, including numerous 

features and observations, are, anyway, required. All the data-related limitations 

presented in this paragraph, prevent ML models from reaching high levels of 

accuracy; lack of input leads to suboptimal or non-optimal solutions. This 

consideration reflects every ML-based model, regardless the type of learning. Both 

supervised, unsupervised, reinforcement or deep learning approaches have 

insufficient results when the quality of the input data is moderate. 

• Learning difficulties due to channel complexity in multiuser environments: 5G 

wireless networks are characterized by multipath propagation in a highly interferenced 

environment. This, as stated previously, consists one of the reasons for the need for 

an enormous variety of features and channel observations in ML datasets construction 

for RRM (preferably Big Data). Hence, feature extraction for channel information 

becomes a demanding task. Linear models and generic algorithms (such as simple-

tree models, regressions, etc.) are unable to provide optimal solutions, concerning 

effective resource allocation. The approaches discussed in previous sections configure 

ML-algorithms by alternating hyperparameters and evaluate accuracy in the RRM 

sub-problems. In this context, performance and models' selection policies are vital in 

ML-based approaches. Researchers should have deep knowledge of the ML models, 

pre-trained or not, so that they become able to correctly evaluate them [163]. 

Concerning the complexity of the channel and the growing users' demand in 5G/B5G 

networks, DL methods are proposed as the more efficient ones. 

• Computational complexity: In terms of accuracy, the AI/ML models discussed 

in previous sections have improved performance, when used to solve complex 

problems based on networks' KPIs. Concerning the URLLC requirements and the 

demand for mass access to the medium in 5G/B5G networks, RRM decision making 

should be done with respect to computational complexity. However, the highly 

interferenced environment and random mobility patterns of UEs act in the opposite 

direction. Thus, ML techniques should succeed in proposing a trade-off between the 

solution's accuracy and computation requirements [109], [117],[124]. Even though 

DL solutions are proposed as the most efficient ones, they increase computational 

complexity, by employing multiple hidden layers to yield accurate results. In this 

respect, distributed approaches using MEC architectures and FL-based algorithms 

should be considered. Taking also into account the requirement for energy efficient 

networks, researchers should maintain the computational cost to tolerable levels [110], 

[115]. 

Finally, Power consumption rapidly increases in 5G, and will further increase in B5G 

networks, compared to previous generations, due to the users' growing demands for 
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continuous access to enhanced services and applications. ML schemes, if effectively 

implemented, contribute to power savings, as, hopefully, they lead eventually to fast and 

more accurate RRM decision-making. For further energy consumption mitigation, we 

should incorporate energy-efficient technologies during the models' training phase, where 

additional computational resources are needed. In this direction, Green AI techniques and 

distributed processing methods (such as MEC) should be further investigated, so that less 

energy harvesting solutions become feasible [164]. 

 

Open Issues Potential Solutions – Suggestions for 

future Work 

networks' KPIs and ML KPIs joint 

evaluation [24], [113] 

ML methods’ evaluation in terms of 

network performance [25], [123] 

5G datasets unavailability and poor quality 

[42], [162] 

research work in dataset generators, real-

world data availability [158], [159] 

channel complexity [128] DL approaches [159] 

computational time and cost [108], [117], 

[122] 

distributed DL, use of MEC and FL [109], 

[114] 

energy consumption [165] MEC, Green AI technologies [165] 
Table 0-4: Open issues and potential solutions concerning ML employment in RRM 
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Chapter 5: Relay Node Placement and Selection in 

5G/B5G Networks 
 

In this chapter the problem of ML/DL-enabled RN placement and Selection in 5G/B5G 

network is discussed. As presented in Chapter 1, RN utilization is one key enabling PHY 

technology that can extend the coverage area of each cell in 5G/B5G networks, while capacity 

and maximization of the accepted UEs to be served, can be, also, achieved. First, a state-of-

the-art review is performed regarding the ML-schemed used for RN placement and selection 

in 5G/B5G systems. Afterwards, the RN placement problem is mathematically formulated. In 

order to propose several ML-based solutions on that problem, the lab’s 5G/B5G system and 

link level simulators is utilized in order for synthetic datasets to be produced. Thus, the dataset 

generation flow is, also, discussed in this chapter. Afterwards, two DL-based schemes trained 

either CL-based or FL-based are presented, while the corresponding performance evaluation 

outcomes are analyzed. The second part of this Chapter discusses the problem of RN selection 

in 5G/B5G networks. In this context, the problem is mathematically formulated subject to the 

relevant PHY constraints. Afterwards, a DRL (Deep Q-Learning) scheme is proposed as a 

solutions to the aforementioned problem. This scheme considers the joint maximization of 

each UE’s EE and SE, and the maximization of the overall system’s EE and SE. Discussion 

over the aforementioned approaches and the results after simulations are, also, considers. 

Considering all the above, in paragraph 5.1 an introduction to ML/DL-based RN placement 

and selection is performed. In paragraph 5.2 a literature review over the exiting ML/DL-based 

schemes for RN placement and selection in 5G/B5G networks is performed. In Paragraph 5.3 

the problem of RN placement is formulated and two DL models are proposed and evaluated 

to optimally solve this problem. Moreover, both approaches are trained either in a CL or an 

FL way. By that comparison, the training time gains of the FL approach are compared to the 

ML KPIs (e.g., accuracy, F1-score) maximization gains of the CL one. Paragraph 5.4 

considers the problem of RN selection (over several candidate RNs) for each accepted UE in 

the topology. In this framework, the problem is mathematically formulated, while a Deep Q-

Learning approach which maximizes EE and SE is proposed. This approach is evaluated via 

numerous simulation rounds. 
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5.1 Introduction 
 

In recent years, 5G/B5G wireless communications systems have been established to 

support the exponential growth rate of mobile data traffic [1]. Moreover, the rapid evolution 

of wireless services, drove 5G/B5G standardization process to deal with different 

telecommunication service categories, such as URLLC, eMBB and mMTC in mass access 

environments [165], [166]. In this context, various novel physical layer technologies have 

been introduced over the last years to cope with the increasing challenges in the wireless 

communications domain, such as m-MIMO configurations, mmWave transmission, as well 

as NOMA [167]. However, the aforementioned advanced PHY technologies, when applied in 

a cellular environment characterized by high interference levels and complex channel 

approximations, along with increased connection density and near-random user mobility 

patterns, maximize the computational cost to support strict users’ requirements and demands. 

ML algorithms are proposed as an efficient way to tackle these considerations, due to their 

ability to utilize data generated by the network itself in improving network performance and 

efficiency [168]. ML algorithms are trained using either data generated by the wireless 

network under test or by similar ones. In this way, complex channel calculations are 

encapsulated in ML models’ layers, which leads to the decrease of computational cost and 

complexity after successful training rounds. Moreover, some ML algorithms (e.g., RL ones), 

can directly interact in real-time and support low-latency requirements of modern era 

networks.  

The 5G/B5G network architecture is based on the heterogenous networks (HetNets) model 

in order to meet the increased network capacity and ultra-density requirements. HetNets 

involve the composition of a number of smaller, simpler, and lower-power BSs, with different 

characteristics (transmission capacities, coverage areas, carrier frequencies, etc.) to improve 

cell-edge coverage and enhance the network KPIs [169]. 

However, there are cases even in HetNet topologies, where the coverage area of each cell 

should be extended for more users to be served by the network. Such scenarios are of 

significant interest in Unmanned Vehicles (UxVs) scenarios or military/defense networks. In 

this context, RNs have been proposed as a “retransmission technology”, that can relax 

transmission burden from centralized BSs. Thus, by using RN-assisted RRM mechanisms, 

total system’s performance can be upgraded by further improving data rates, mitigating 

interference levels and extending network coverage [CONF-1]. An open research field 

concerning the use of RNs in multicellular 5G/B5G networks is the optimal relay placement 

within each cell’s area, to improve various network KPIs, such as total served users, achieved 

throughput and SNIR, total transmitting power and blocking probability. Moreover, the 

selection of the optimal RN, from the candidate ones, to serve each active UE in the topology 

is, also, of the same interest. Compared to an established one-hop downlink communication 

link between a BS (transmitter) and a UE (receiver), an n-hop relaying-assisted BS-UE link’s 

complexity is increased due to the following reasons:  

a) The use of RNs was introduced in 3GPP release 16 [170], while the beginning 

of standardization process can be found in release 17 (latest stable edition of 3GPP 

documents) [171]. This means that there are no detailed channel, pathloss and mobility 

models for RNs. 

b) The effectiveness of the RN-UE connection is based, also, on the quality and 

stability of the BS-RN link. 

c) Shared resource management should be performed, as RNs are a layer 3 (L3) 

entity, which needs BSs’ assistance in performing advanced RRM tasks.  

Recently, ML is proposed as an efficient approach to deal with the abovementioned 

problems of optimal RN placement and optimal RN selection between candidate RNs [172]. 
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The key characteristic of ML-based approaches is that -using data generated by existing 

systems-, they can accurately estimate the examined system’s behaviour, with the minimum 

computational cost. In this way, complexity is reduced, and accurate predictions can be 

performed leading to real-time responses. This chapter focuses on solving the joint problem 

of RN placement and selection by utilizing different ML-based techniques, focusing on DL 

and RL. These chapter’s contributions can be summarized as follows: 

• The problem of RN placement to maximize the number of active users in each 

cell of the cellular topology is mathematically formulated. Thus, given only the 

number of the RNs per cell to be deployed and a set of potential geographical positions 

(x-y coordinates of potential RNs), the k best-performing RNs are selected to serve 

the active UEs in each cell. The aforementioned selection is performed subject to three 

main constraints. The first one is the minimization of pathloss for each accepted UE, 

the second refers to the minimization of the total transmitted power by each deployed 

RN, while the latter is the maximization of the total accepted users in the topology. 

Moreover, the proposed algorithm is tested in two different simulation scenarios. The 

first one considers the presence of ideal CSI, while the latter considers no CSI at all. 

• To tackle the aforementioned problem, two efficient offline RN placement 

ML/DL algorithms are proposed. These algorithms focus on fast response times by 

taking into consideration the constraints of the previous bullet. The fist DL algorithm 

considers a Deep ANN orientation, while the latter considers a LSTM one. 

• After the optimal placement of the RNs in each cell’s coverage area, the 

problem of optimal RN selection for each accepted user in the topology is formulated. 

In other words, for UEs not served directly by the BSs, either for pathloss or power 

consumption reasons, the optimal RN (from the k eligible) should be selected to serve 

them. 

• To solve the aforementioned problem, an energy efficient RL-based algorithm 

to select the optimal beam (RN) to serve each accepted user in the topology is 

proposed. A DRL, (Deep Q-Learning) algorithm is utilized for this scope. In this 

context, EE and SE are the KPIs that determine algorithm’s transitions. 

• Finally, all presented approaches are evaluated by extensive system level 

simulations in different usage scenarios. Performance evaluation indicates that the 

joint DL based RN placement and selection scheme can overperform state-of-the-art 

approaches in improving various network KPIs, such as EE and SE. 

 

5.2 Existing Literature Review 
 

Algorithms for RN placement and selection is an active area of research in wireless 

communications, especially in 5G/B5G cellular communication networks. In fact, the 

implementation of relaying-assisted communications is proposed in different usage scenarios 

in modern era wireless systems, such as MANET/WANET networks, supply chain 

management and manufacturing. Moreover, the joint utilization of RN-assisted 

communication and modern multiple access schemes, e.g., NOMA, are also of high research 

interest nowadays. In these cases, the NP-Hard optimization problem [172] of RN placement 

and/or selection is solved through either distance-based techniques with the use of graph 

theory or game theory [173], [174], or via extensive search algorithms (e.g., using ergodic 

capacity analysis) [175]. Furthermore, moving RNs are, also, under research, due to the 

growing interest in UAV communications [176].  

In this framework, ML-based solutions are investigated as an efficient way to deal with the 

NP-Hardness of the aforementioned problem. The current research activities on the field of 

ML-assisted RN placement and selection are presented in this paragraph. The concept of ML-
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assisted RN placement is introduced in [177]. Authors presented an optimal RN positioning 

method, aiming to improve system’s performance in uncertain and dynamic-changing 

multicellular topologies. Consequently, channel quality prediction in both BS-RN and RN-

UE link is of primary concern in defining RN positioning. Authors proposed a learning-based 

and a distance-based method for channel prediction based on mobility patterns of RN under 

test. The achieved connectivity levels are used as the basic KPI during performance 

evaluation. A heuristic optimization algorithm is used for optimal RN positioning, 

outperforming a recently developed relay positioning algorithm. 

In [172], an approach for deploying the minimum accepted number of RNs -as a subset of 

given potential locationsis considered with respect to QoS requirements in multihop wireless 

systems. A hop count boundary is inserted to ensure a certain blocking probability in the BS-

RN link. To deal with the NP-Hardness of the RN placement problem, a polynomial time 

approximation algorithm using shortest path trees and heuristically pruning the relay nodes 

used until the hop count bound is violated, is proposed. Performance evaluation indicated that 

this approach efficiently solves the abovementioned problem in various randomly generated 

network scenarios. More specifically, optimal solutions are given in over 90% of the tested 

scenarios. Afterwards, authors used random graph techniques to derive an upper bound on the 

average case approximation ratio for the used algorithms based on the number of source 

nodes, and the hop count bound. This average case analysis was the first one in RN placement 

literature. 

On the other hand, authors in [178] face RN placement problem as a clustering one. The 

scenarios of interest consider Wireless Sensor Networks (WSNs), where RNs are used as 

mediators between users and applications’ servers by assisting messages transmission. A k-

means clustering ML approach is activated for link restoration whenever it is necessary based 

on transmitting power, number of packets lost in a RN-BS link and BS-UE distance. Thus, 

for each BS, the corresponding RN is deployed at the most frequently used route in the 

network. Numerical evaluation indicated that the proposed method outperforms existing 

distance-based methods on the basis of various KPIs such as residual energy, endto-end delay 

and the number of hops required in the network from source to destination. Moreover, k-

means clustering algorithm implementation can reduce the total number of used RNs. 

Considering industrial WSNs, authors in [179] studied the placement of RNs in a realistic 

three-dimensional (3-D) factory space based on the satisfaction of various physical, 

performance and energy-related KPIs. The study was performed using IEEE 802.15.4e low 

latency deterministic network mode in order to achieve low latency and highly reliable 

communications in harsh factory environments, which are suffering from noise, interference 

and multipath fading. Hence, frequent packet losses are reported. The authors proposed the 

joint incorporation of RN nodes and forward error correction (FEC) techniques leading to 

enhanced communication reliability. More specifically, on the one hand an efficient and 

pragmatic relay-placement strategy based on rainbow product ranking algorithm for a 3-D 

factory space, and on the other hand an adaptive RL transmission scheme (using Q-learning 

techniques), which incorporates cooperative diversity and Reed Solomon block codes, are 

proposed. A real-world case study is performed in order to evaluate the correctness and 

effectiveness of the presented solution. The proposed RN placement strategy has improved 

performance in terms of cost reduction and total number of deployed RNs compared to other 

state-of-the-art approaches. Moreover, the used Q-learning method efficiently utilized the 

resources in terms of relays and BSs, making the transmission scheme more generic in terms 

of, not only adopting to versatile factory environments but also accommodating the dynamic 

behaviour per link in the factory space. 

A more complex scheme considering not only RN localization but also power management 

in 5G networks is presented in [180]. A mathematical analysis for defining expressions and 
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minimum threshold for end-to-end average symbol error rate (SER) and outage probability 

(OP) is performed for in amplify-and-forward (A&F) RNs, introducing those KPIs as the 

main ones for the problem definition. As a result, the high correlation between BS-RN and 

RN-UE links, is described. Afterwards, the joint power allocation (PA) and RN placement 

problem is considered. Results indicated that RN placement optimization is more efficient 

than PA. Thus, an ML implementation of the proposed convex optimization problem is 

investigated. The joint problem is translated to a regression ML problem and authors propose 

a feed-forward neural network (FNN) approach (2 and 3 hidden layers are considered). ML-

models’ performance is controlled using the mean absolute percentage error (MAPE) metric 

which reached over 90% score. The simulation results demonstrated a compromise between 

MAPE and computation times for the FNN-based joint PA-RL optimization. 

Authors in [181] proposed a combined RN selection and resource allocation (RA) 

algorithm. A key drawback in existing approaches is the need for a large number of relays to 

forward signals transmitted on multiple subcarriers. However, signal generation in multi-hop 

scenarios increases the complexity of combined RN selection compared to that of per-

subcarrier relay selection, when the number of relays increases. In dense 5G networks, the 

impact of that problem is even bigger. To deal with this drawback, authors proposed a 

supervised ML method. The training phase is implemented off-line, leading to a considerable 

reduction to the RN selection complexity and the processing latency. An ANN scheme is used 

for the best couple of relays to be selected. In each epoch the least accuracy criterion is 

checked to continue simulations. Accuracy and Mean Squared Error (MSE) are the two 

considered KPIs for ANN’s performance. Numerical evaluation indicated that the proposed 

supervised ML approach can provide near-optimal performance with lower computing 

latency, which nearly reaches the optimal relay selection in a per-subcarrier manner. Over the 

last years, RL-assisted RN selection and RA have attracted scientific research interest as well. 

In this context, Geng et al. in [182] studied the joint outage probability minimization, RN 

selection optimization and transmission power reduction problem in RN-assisted 5G 

networks, where the existence of accurate CSI is extremely difficult. Thus, the authors 

proposed an RL prioritized experience replay aided framework, acting in optimal solution 

finding to the above-mentioned problem without any prior knowledge of CSI. The proposed 

approach is compared to other RL-based solutions, and performance evaluation indicated that 

communication success rate can be improved by about 5%. 

On the same context, the authors in [183] proposed an RN selection algorithm to succeed 

in providing guaranteed reliability, low latency, and power consumption levels in large scale 

multi-hop 5G topologies. The proposed scheme uses Q-Learning RN selection based on SNIR 

levels. Q-learning is an RL approach, which consists of an agent, the environment, agent’s 

states, actions, as well as rewards or penalties. In learning stage, the agent learns the optimal 

allocation policy to maximize the reward [184]. From network’s perspective, the BS knows 

the optimal RN to select and transmit the signal. The used RNs are decode-and-forward 

(D&F) ones, and the system uses orthogonal frequency division multiple access (OFDMA) 

techniques. Finally, the proposed scheme tries to utilize optimal allocation policy based on 

the learning outcomes of the previous stage, based on the SNIR. Performance evaluation 

indicated that the proposed approach achieves the same bit error rate (BER) levels as 

conventional RN selection schemes in the literature. The basic advantage of the proposed 

approach is the selection of fewer RNs when the target BER is satisfied. Consequently, 

system’s latency is improved. 

The aforementioned research efforts describe some aspects of the utilization of Artificial 

Intelligence (AI)/ML methods for the optimization of either the problem of RN placement or 

RN selection -over a set of available RNs- in wireless systems. However, most of these works 

evaluate the proposed algorithms in single-cell orientations, or by limiting the number of 
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active UEs in the topology. Our motivation is to extend these works and present a global ML-

based framework to both train an offline ML model to place the RNs based on the 

performance of simulated UEs in the topology, but also, propose an RL method to interact 

with the cellular environment and select the best-performing RN for each accepted UE in the 

topology. The motivation of this chapter is to extend these works and present a global ML-

based framework to both train an offline ML model to place the RNs based on the 

performance of simulated UEs in the topology, but also, propose an RL method to interact 

with the cellular environment and select the best-performing RN for each accepted UE in the 

topology. The outcomes of the ML/DL/DRL frameworks that are proposed in this Chapters 

have been, also, published in [J-2].  

 

5.3 ML-assisted Relay Node Placement 

5.3.1 Problem Formulation 

 

The downlink of a cooperative wireless OFDMA 5G/B5G multicellular HetNet is 

considered, as illustrated in Fig. 5-1. The studied system has two different levels of base 

entities. The first one, Macro-BSs, forms the primary system where UEs can directly access 

and request service. The latter one, RNs, form the secondary system, aiming to assist the 

primary system in improving capacity and coverage area, by serving UEs that have been 

initially rejected by the primary system.  

 

 
Figure 0-1: Two-hop 5G/B5G HetNet with A&F RNs 

 

Thus, the cooperative system consists of 𝑀 BSs, 𝑅 RNs and 𝑁 uniformly distributed UEs. 

The set of BSs is denoted as 𝑆𝑏 =  {𝑏1, 𝑏2, . . . , 𝑏𝑀}, the set of RNs is denoted as 𝑆𝑟  =
 {𝑟1, 𝑟2, . . . , 𝑟𝑅}, while the set of UEs is denoted as 𝑆𝑢  =  {𝑢1, 𝑢2, . . . , 𝑢𝑁}, respectively. The 

potencial link between a BS and a UE is denoted as 𝐿𝑏,𝑢 where 𝑏 ∈  𝑆𝑏 and 𝑢 ∈  𝑆𝑢, the 

potential link between a BS and a RN is denoted as 𝐿𝑏,𝑟 where 𝑏 ∈  𝑆𝑏 and 𝑟 ∈  𝑆𝑟 , while 

the potential link between a RN and a UE is denoted as 𝐿𝑟,𝑢 where 𝑟 ∈  𝑆𝑟 and 𝑢 ∈  𝑆𝑢. Note 

that the Cartesian coordinate system is used to locate all enrolled entities both considering 2D 

or 3D space. 



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks 
_______________________________________________________________________________________________________________ 

96 
Ioannis A. Bartsiokas 

As previously stated, RNs are deployed to assist the primary communication’s system to 

support UEs that are initially rejected due to high pathloss or other power allocation reasons. 

The goal of this sub-problem is to select the 𝑁𝐶𝑅𝑁 positions (set of x-y-z coordinates) for the 

best-performing RNs to be deployed in each cell’s coverage area. Best performing RNs are 

selected to optimally meet user requirements and maximize each cell’s performance. Thus, a 

predefined number of potential RNs are placed in different positions inside each cell’s 

coverage area, declared as 𝑅𝑁𝑐𝑎𝑛. Fig. 5-2 provides an illustration of such a topology for a 

single 5G/B5G cell where 𝑅𝑁𝑐𝑎𝑛 = 10 candidate RNs deployed. 

 

 
Figure 0-2: 5G/B5G system’s cell with candidate RNs 

 

Thus, the 𝑁𝐶𝑅𝑁 best-performing RNs are selected out of 𝑆𝑟𝑐, where 𝑆𝑟𝑐 =
 {rc1, rc2, . . . , rcRNcan

} is the set of candidate RNs is each cell, subject to the following 

constraints: 

(C1) min(𝑃𝐿𝑛) , ∀𝑛 ∈ ℕ, where 𝑃𝐿𝑛 is the pathloss between each accepted 

UE by the secondary system, and the RN that assigned to. 

(C2) 𝑚𝑖𝑛(𝑃𝑡,𝑟), ∀𝑟 ∈ ℝ, where 𝑃𝑡,𝑟 is the total transmitted power by each 

deployed RN. 

(C3) 𝑚𝑎𝑥(𝐴𝑁𝑟), ∀𝑟 ∈ ℝ, where 𝐴𝑁𝑟 denotes the total accepted UEs served 

by RNs. 

Two offline ML-enabled methods are proposed to solve the aforementioned problem 

utilizing DL principles and techniques, as will be presented in paragraph 5.3.3. Moreover, 

both methods are examined and their performance is evaluated in the following two scenarios: 

• Scenario 1: The channel coefficient matrix sub-table is known for the link of 

each UE and the corresponding BS. Moreover, the channel coefficient sub-tables are 

known, also, for the RN-UE link. 

• Scenario 2: There is no CSI information available both for the BS-RN and the 

RN-UE link. Thus, dataset construction and algorithms are based only on 

geographical, pathloss and topology parameters. 
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5.3.2 Dataset generation 

 

A key procedure for building ML models is the validation and training stage. For this 

purpose, datasets used for learning objectives should be accurate, up-to-date and should 

always be evaluated. A MATLAB relay-assisted 5G/B5G link and system level network 

simulator is used to construct datasets after adequate Monte-Carlo (MC) simulation rounds. 

This simulator is based on the work in [CONF-1], where both different Inband and Outband 

A&F RN scenarios are considered (see also paragraph 1.3.3 for RN types). In fact the 

following scenarios are configurated in the aforementioned simulator: 

1) No-RN: No RNs deployed, 

2) Sector Mid Edge Inband (SME-I): OnDemand–Inband RNs deployed in the 

middle edge of each sector, 

3) ANY-I: OnDemand Inband RNs deployed wherever deemed necessary, 

4) All Cell Edges Inband (ACE-I): OnDemand Inband RNs deployed at the edges 

of each cell and 

5) Sector Mid Edge Outband (SME-O): Predefined Outband RNs deployed in the 

middle edge of each sector. 

 

A significant aspect of this simulator that should be pointed out is the resource allocation 

(subcarrier allocation, user association to BS or RN) algorithm that is implemented. This 

algorithm aims to combine the MIMO and OFDMA principles with the RRM and RN-

deployment processes, as a joint approach to improve EE and SE. All related parameters are 

presented in Table I, while the description is analyzed in Fig. 1. 

 

Parameter  Variable 

Number of SCs requested by the nth UE  𝑅𝑛 

Number of available SCs in each BS/Outband RN 𝑁𝑠𝑐/𝑁𝑟𝑛−𝑜 

Set of SCs allocated to the nth UE 𝑆𝑛 

Available SCs of the bth BS/ rth outband RN/cluster 𝑆𝑏/𝑆𝑟𝑛−𝑜/𝑆𝑐𝑙 

Types – Classes of RNs (RNtype) No-RN, Inband, Outband 

Set of served UEs by the bth BS /rth RN 𝑈𝑏/𝑈𝑟 

Total losses of the nth UE from BS or RN 𝑇𝐿𝑛,𝑏/𝑇𝐿𝑛,𝑟 

Channel Matrix for the lth SC of the nth UE 𝑯𝑛,sec(𝑛),𝑙 

Power assigned to the lth SC of the nth UE 𝑝𝑛,𝑙 

Maximum Tx Power per SC/BS or RN 𝑃𝑡−𝑠𝑐,𝑚𝑎𝑥/𝑃𝑡−𝐵𝑆,𝑚𝑎𝑥 

Number of rejected UEs 𝑈𝐸𝑟𝑒𝑗 

SNR threshold level 𝑆𝑁𝑅𝑡ℎ𝑟 
Table 0-1: RRM algorithm’s parameters [CONF-1] 

In Step 1, the available subcarriers per BS or RN are defined (i.e., 𝑆𝑏 denotes the set of 

available subcarriers of the bth BS). Moreover, if relay-assisted transmission has been 

selected, the corresponding topology is formulated. In Step 2, BS selection for the nth UE 

takes place, according to pathloss minimization (𝑃𝐿𝑛,𝑏 denotes the pathlosses of the nth UE 

with respect to the bth BS). Channel modeling is performed according to the latest 3GPP 

specifications [86], by integrating mobility parameters, existence of Line of Sight (LOS) 

propagation and outage probability estimation.  In the same step, the available SCs per BS-

UE link are defined as well. In our approach, RA is performed per cluster, i.e., per group of 

adjacent sectors. This approach is based on the Adjacent Sectors - Maximum SNR technique 

of [185]. To this end, each allocated SC is made unavailable for the other adjacent sectors. In 

case of lack of available SCs, the UE can be served by outband RNs. 
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Figure 0-3: RRM algorithm [CONF-1] 

In this event, the set of available subcarriers is updated in Step 3. The potential UE is 

rejected from the network, if it cannot be served by the outband RN due to lack of available 

subcarriers. Otherwise, in Step 4, subcarrier allocation takes place, based on the maximization 

of the impulse response of the channel. To this end, ‖𝑥‖𝐹 is the Frobenius norm of vector 

matrix 𝑥, while 𝑥(𝜆𝑚(𝑨)) is the eigenvector corresponding to the maximum eigenvalue of 

matrix 𝑨. In this step, the achieved channel gain (𝐺𝑛,𝑙) for the lth subcarrier of the nth UE, as 

well as the required transmission power (𝑝𝑛,𝑙) for acceptable QoS, are calculated. In Step 5, 

power management is tackled. If power outage occurs in the outband scenario, the potential 

UE is rejected. Otherwise, if an inband RN scenario has been considered, then all parameters 

of Step 4 are recalculated. In the event of power outage, the potential UE is rejected, as done 

previously. In all cases, all relevant sets are updated. Finally, system’s KPIs are calculated in 

Step 6. 

The aforementioned simulator takes into consideration all physical layer aspects such as 

small and large scale fading, interference management and cluster definition for each user of 

interest, etc. However, the following improvements have been made for the dataset generation 

task: 

• The deployment of more RNs per cell has been included. In [CONF-1] all 

scenarios (both Inband and Outband ones) consider the deployment of up to three RNs 

per cell, mainly deployed in cell edges. In the updated version of the 5G simulator, an 

increased number of RNs per cell is considered, so that the best performing RN can 

be selected for each accepted user in an unbiased manner. 

• Moreover, channel modelling has been updated according to the newest 3GPP 

specifications (basically the latest version of 3GPP TS 138 211 regulation) by 

integrating mobility parameters, existence of Line of Sight (LOS) propagation and 

outage probability estimation [186]. 

• The Algorithm 1 (Fig. 5-3) is extended to select the best RN (out of the 

deployed ones in each cell) based on both minimum pathloss and energy consumption. 

Hence, this algorithm, which combines MIMO and OFDMA principles in two-hop 
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5G/B5G cellular orientations, tries to maximize both the EE and SE for the overall 

orientation under evaluation. 

 

Such a topology is presented in Fig. 5-2 concerning 10 potential RNs. Thus, by performing 

numerous MC simulations we store the performance of various UEs, both indoor and outdoor 

ones, and both moving and static ones. Then, we are focusing only on the UEs that are served 

by the secondary system. MC simulations are finalized only after adequate UEs’ performance 

is simulated. For the NP-Hard RN placement problem simulating 10000 to 100000 UEs 

defines an adequate number of UEs’ performance evaluation. The values that are stored for 

each UE, which is accepted by the secondary system in the simulation round, concern both  

location/localization parameters (x, y and z-axis position), serving BS, pathloss, total 

losses and MIMO parameters (channel coefficient matrix). All related variables and metrics 

of interest for each simulated UE are presented in Table 5-2, forming the dataset used for DL-

model training.  

 

Feature  Description 

𝑼𝑬𝒙 x-axis position of the UE 

𝑼𝑬𝒚 y-axis position of the UE 

𝑼𝑬𝒛 z-axis position of the UE 

𝑩𝑺𝒔𝒆𝒓𝒗𝒆 ID of the BS that serves the UE (related to the RN to be selected) 

𝑼𝑬𝒔𝒆𝒄 Serving sector of the UE 

UE-BSangle Angle between BS and UE 

PLmat 𝑅𝑁𝑐𝑎𝑛  ×  1 matrix with the Pathloss between the UE and all the 

potential RNs 

TLmat 𝑅𝑁𝑐𝑎𝑛  ×  1 matrix with the Pathloss between the UE and all the 

potential RNs 

Hmatrix 𝑀𝑟  ×  𝑀𝑡 channel matrix coefficient (used only in Scenario 1) 

RNserve ID of the RN that serves the UE (response variable) 
Table 0-2: Dataset Features 

Thus, the whole dataset feature number is the following: 

 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠𝑖𝑧𝑒 =  {
6 + 2 × 𝑅𝑁𝑐𝑎𝑛 + 𝑀𝑟 × 𝑀𝑡, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1

6 + 2 × 𝑅𝑁𝑐𝑎𝑛, 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 2
(15) 

 

5.3.3 Deep Learning Algorithm for Relay Node Placement 

 

Using the dataset that has been analyzed in paragraph 5.3.2, two DL models are proposed 

to predict the best performing RN for the UEs of the secondary system. It should be noted 

that for hyperparameter tuning and selection the Exhaustive Grid Search method has been 

utilized in both models’ design [31]. According to that method multiple search rounds are 

performed over all possible hyperparameter configurations in order for the best performing 

ones to be selected based on the KPIs of interest (in this case accuracy and F1-score). The 

next two subparagraphs depict the proposed DL models for the RN placement problem in 

5G.B5G networks. The first model considers a DNN architecture, whereas the second model 

considers a LSTM one, 

 

5.3.3.1 Deep Neural Network 

 

The structure of the proposed DNN is the following, as also depicted in Fig. 5-4: 
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• Feature input later with z-score normalization of the input, where 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠𝑖𝑧𝑒 

features are inserted to the DNN. 

• A fully connected layer with 50×1 output size, multiplies the input (feature 

input layer) by the corresponding weight matrix and, also, adds the bias vector. 

• A batch normalization layer, to normalize data across all observations for each 

channel independently, making training of the NN faster through re-centering and 

rescaling. 

• A ReLU layer, using rectified activation function to force the input directly to 

the output if it is positive, otherwise, to zero output. 

• Another, fully connected layer similar to the previous one with output size 

𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠 × 1, where 𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠  = 𝑅𝑁𝑐𝑎𝑛. 

• A soft maximization (sofmax) layer to predict the multinomial probability 

distribution of the data. These layers are commonly used in multi-class classification 

tasks, as the one that is examined in this work. 

• The classification’s output layer, which produces the predicted best-

performing RN for each UE. 

 

 
Figure 0-4: Proposed DNN’s structure for RN placement 

 

5.3.3.2 Long-Short Memory Network 

 

The second proposed DL algorithm considers a Recurrent NN (RNN), LSTM, with the 

following structure (as also depicted in Fig. 5-5): 

• Feature input layer with z-score normalization of the input, where 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠𝑖𝑧𝑒 

features are inserted to the DNN. 

• An LSTM layer with 52 hidden units. This layer is categorized as an RNN 

layer, which learns long-term dependencies between data features. Additive 

interactions between features are used to improve gradient flow over long sequences 

of data throughout training phase. 

• A dropout layer with 0.2 probability to randomly set input elements to zero. 

• Another LSTM layer with 40 hidden units. 
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• Another dropout layer, as the previous one. 

• Another LSTM layer with 15 hidden units. 

• Another dropout layer, as the previous ones. 

• A fully connected layer like the previous one with 𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠  ×  1, where 

𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠  =  𝑅𝑁𝑐𝑎𝑛. 

• A soft maximization layer. 

• The classification’s output layer, which produces as output the predicted best-

performing RN for each UE. 

 

 
Figure 0-5: Proposed LSTM network’s structure for RN placement 

 

5.3.3.3 Result Evaluation 

 

The downlink of a wireless multicellular 5G orientation is considered, where extensive use 

of RNs takes place. A 2-tier and 19 cell topology is of interest, where UEs are uniformly 

distributed. Concerning the used MIMO antenna configurations, both BSs, RNs and UEs are 

equipped with 2 antennas. Each BS’s antenna lays at 25 m, while each RN’s one lays at 12,5 

m and each UE’s one at 1,5 m. The relevant antenna gains are 18/9/4 dB for BSs, RNs and 

UEs respectively. Each accepted UE requests 6 subcarriers in each timeslot, while 132 

subcarriers are available to be allocated to UEs from each BS. Subcarrier spacing is set to 60 

kHz. A significant configuration parameter is the possibility of direct LOS connection 

between BSs - UEs, BSs- RNs and RNs-UEs. The first two parameters are defined by [30], 

while the RN-UE LOS existence, which is not regulated, is set to 10%. 

The performance of a large number of UEs (50.000 indoor/outdoor -with 80/20% 

probability- moving/static UEs) is simulated to construct the dataset used for training of our 

DL models. Moreover, 10 candidate RNs are deployed in each cell’s coverage area, as shown 

in Fig. 2. An adaptive modulation scheme is used based on each UE’s demands for QoS levels. 

Three different modulation levels (QPSK,16-QAM and 64-QAM) are considered along with 

their 

respective threshold values. All simulation parameters are summarized in Table 2. 
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Parameter  Value/Assumption 

Tiers/Number of  2/19 

Carrier frequency 28 GHz 

Simulated UEs 50.000 

Number of antennas per BS/RN/UE 2/2/2 

Cell radius 500√ 3=288.68 m 

BS antenna height 25 m 

UE antenna height 1.5 m 

Indoor to Outdoor UE ratio 80%/20% 

LOS BS-UE(RN-UE)/BS-RN Probability [86] Table 7.4.2-1/10% 

cells   Maximum allowed pathloss (dB) 320 

Antenna gains BS/RN/UE in dB 18/9/4 

Number of requested subcarriers per UE 6 

Number of subcarriers per BS or Cluster 132 

Subcarrier spacing 60 kHz 

SNIR threshold levels QPSK/16-QAM/64-QAM [86] 9.6/16.4/22.7 dB 
Table 0-3: Dataset Simulation Parameters 

Using the parameters presented in Table 5-3, the MATLAB 5G/B5G system and link level 

simulator produces the dataset that is used as input to the two proposed DL models. During 

the training phase of both DL-based approaches, an 80%-20% training-test set split has been 

used, as well as a 10-fold cross validation procedure to split the dataset into training, 

validation and test set. The problem of optimal RN placement is examined as a classification 

one, by selecting the best performing RN out of the 10 potential RNs for each UE. The 

performance of the abovementioned classifiers is evaluated, using the accuracy and F1-score 

metrics. 

Tables 5-4 and 5-5 summarize the performance of the two proposed DL models in the RN 

placement based on test set classification accuracy, precision, recall and F1-score for both 

Scenario 1 and Scenario 2. 

 

DNN Scenario 1 Scenario 2 

Accuracy 0.9260 0.9387 

Precision 0.9251 0.9343 

Recall 0.8951 0.9194 

F1-score 0.9099 0.9268 

Training time (s) 4 min. 13 s. 3 min. 30 s. 
Table 0-4: DNN's performance 

LSTM Scenario 1 Scenario 2 

Accuracy 0.9513 0.9660 

Precision 0.9321 0.9618 

Recall 0.9259 0.9502 

F1-score 0.9290 0.9560 

Training time (s) 4 min. 53 s. 5 min. 12 s. 
Table 0-5: RNN's (LSTM's) performance 

 

As it can be observed from Tables 5-4 and 5-5 LSTM algorithm’s performance is better 

that DNN’s performance (both accuracy, precision, recall and F1-score) when CSI is known 

and is included in training set’s features. Similarly, LSTM algorithm’s performance is better 

(both concerning accuracy, precision, recall and F1-score) when there is no CSI knowledge. 
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However, when fast, low-latency responses are considered in 5G/B5G networks, it is vital to 

examine the trade-off between ML metrics and training time required. In that perspective, it 

is visible from both Tables 5-4 and 5-5 that LSTM networks need some more time to train 

relative to DNNs. However, comparing training times of these two approaches (LSTM, 

DNN), we can state that training times are similar in both Scenario 1 and Scenario 2. Thus, it 

is fair to say, that the overall performance of the LSTM networks is better than DNN, 

concerning ML/DL performance and metrics-training time trade off. The same conclusions 

can be drawn from Fig. 5-6 as well, where the accuracy and loss versus training epochs are 

displayed both for DNN and LSTM algorithms in the two examined scenarios. 

After evaluating the two proposed DL models (ANN, RNN) based on the ML classification 

KPIs, we use these two approaches to identify the k best performing RNs out of the 10 

candidate active ones placed in each cell of the topology (see Fig. 5-2). This is achieved using 

our lab’s MATLAB 5G/B5G link and system level network simulator, as follows: 

• Simulate the performance of 100000 UEs in the cellular topology of Fig. 5-2, 

configured with the parameters in Table 5-3. 

• Select the best-performing RN for each UE using the two proposed ML/DL 

models, both in Scenario 1 and Scenario 2. 

• Find the k potential RNs serving the most UEs, and thus, assign them as 

deployed ones. The proposed models are evaluated with 𝑘 = 3 deployed RNs in each 

cell of the 

cellular topology. 

Table 5-6 presents the k=3 best-performing RNs out of the 10 potential ones, that are 

selected to be deployed in each cell of the cellular topology illustrated in Fig. 5-2, which is 

also used in overall system’s performance evaluation. 

 

Rank Scenario 1 Scenario 2 

DNN RNN DNN RNN 

1 RN-10 RN-10 RN-10 RN-10 

2 RN-6 RN-6 RN-6 RN-6 

3 RN-5 RN-5 RN-5 RN-4 
Table 0-6: Deployed RNs after performance evaluation 

 

 
(a) DNN-Scenario 1 
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(b) DNN – Scenario 2 

 
(c) RNN – Scenario 1 

 
(c) RNN – Scenario 2 

Figure 0-6: Accuracy and Loss per training iteration and epoch 
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5.3.4 Distributed Learning for Relay Node Placement 

5.3.4.1 Proposed Federated Learning scheme for Relay Node Placement 

 

Due to the increasing needs of 5G/B5G/6G networks UEs for interrupted access to the 

medium, low latency and QoS flows continuity, the need for splitting the computation 

overload in these dense network environments arises. For this purpose a DL model (similar 

with the one presented in paragraph 5.3.3.1) is trained and evaluated both by a CL-enabled 

training algorithm and, also, by an FL-one. 

For the RN selection task, the LSTM network which is used, has the following structure: 

• Feature input layer with z-score normalization of the input, where the 

different features are inserted into the DNN. 

• An LSTM layer with 52 hidden units 

• A dropout layer with 0.2 probability to randomly set input elements to 

zero. 

• Two sets of LSTM layers followed by a dropout layer. The first LSTM 

layer has 40 hidden units, while the latter has 15 hidden units. 

• A fully connected layer with an output size equal to the number of 

candidate RNs. 

• A soft maximization layer. 

• The classification’s output layer, which produces as output the 

predicted best-performing RN for each user. Thus a number from 1 to 𝑁  is the 

output of the model, which signifies the selected RN for each user. 

 

5.3.4.2 CL and FL model training 

 

Aiming to demonstrate the advantages of the FL over CL approaches, we consider two 

different training topologies for the problem of RN placement in B5G (6G) networks. These 

are the following: 

a) CL-based approach: In the first approach all the training is performed 

in the centralized entity. The centralized entity in this occasion is the cell’s BS, 

which receives the data gathered in the wireless environment by the RNs. 

Afterwards, the global dataset is formed and the DL model is trained in a 

centralized manner. 

b) FL-based approach: In this approach, the data gathered in the wireless 

environment train local models located in each of the 𝑅 RNs of the wireless 

topology. Thus, local models are trained and parameters are transmitted in the 

centralized entity (BSs) to be optimized according to the implemented federated 

averaging function.  

 

5.3.4.3 Result Evaluation 

 

We consider the downlink of a wireless B5G (6G) orientation, where extensive use of 

RNs takes place. The topology under test considers one BS and 10 RNs, where users are 

uniformly distributed. We simulate the performance of a large number of total users (50.000 

indoor/outdoor moving/static) to construct both the global dataset for the CL case and the 

local datasets for the FL case. During the training phase of both approaches, an 80%-20% 

training-test set split is performed, as well as a 10-fold cross-validation procedure to split 

the dataset into training, validation, and test set. The 10-fold cross-validation splits the 
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training set into ten parts where, in each case, nine of them are used for training and the 

remaining one for validation. 

The problem of optimal RN placement is examined as a classification one, by selecting 

the best-performing RN out of the 10 potential RNs for each user. The performance of the 

abovementioned approaches is evaluated both concerning ML KPIs (accuracy, precision, 

recall, F1-score) and based on the total training latency.  

Table 5-7 and Table 5-8 summarize the performance of the two approaches (CL, DL) in 

the RN placement based on test set classification accuracy, precision, recall and F1-score for 

both Scenario A and Scenario B, respectively. 

 

LSTM Scenario A Scenario B 

Accuracy 0.9513 0.9660 

Precision 0.9521 0.9618 

Recall 0.9259 0.9502 

F1-score 0.9290 0.9560 

Training time 5 min. 15 sec. 5 min. 50 sec. 
Table 0-7: LSTM performance - CL scenario 

 

LSTM Scenario A Scenario B 

Accuracy 0.9107 0.9309 

Precision 0.9259 0.9346 

Recall 0.8929 0.9259 

F1-score 0.9091 0.9302 

Training time 1 min. 35 sec. 1 min. 58 sec. 
Table 0-8: LSTM performance - FL scenario 

As can be observed from Tables 5-7 and 5-8 LSTM’s performance is better (both accuracy, 

precision, recall and F1-score) when CSI is known and is included in the training set’s 

features. Moreover, it can be seen that training times are similar both for Scenario A and 

Scenario B.  

However, when fast, low-latency responses are considered in B5G (6G) networks, it is 

vital to examine the trade-off between ML metrics and the training time required. In that 

perspective, it is visible from the aforementioned tables (Tables 7 and 8) that the FL-based 

approach worsens slightly all the ML-related networks KPIs (accuracy, precision, recall, F1-

score) by ~5% compared to the CL approach. However, this degradation can be characterized 

as small enough relevant to the gain in the total training time of the FL approach compared to 

the CL one. In fact, the gain in this metric (total training latency) is about ~70% to ~75%. 

 

5.3.4.4 Outcomes – Discussion over CL vs FL 

 

Concerning the aforementioned comparison between CL and FL implementation for the 

RN placement problem in 5G/B5G network, but, also, concerning the literature presented in 

Section 3, it is visible that FL is of primary interest in 5G, but especially in B5G (6G) 

orientations, to enhance the potential PHY gains and, also, support the growing user 

requirements. However, several challenges have to be addressed for the feasibility of such 

approaches. These can be summarized as follows (see also Table 5-9): 

• Distributed training and Models’ scalability: In B5G networks 

interconnected devices number is growing, resulting in the densification of the 

networks. However, the processing units and the computational power of these 

devices may be limited. Thus, a key challenge that the proposed FL schemes 
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have to consider is the training time required and the efficient allocation of the 

total computational resources. 

• Secure communication and device-to-centralized entity transmissions: By 

definition FL secures local datasets, as only model parameters transmission is 

performed to the centralized entity. However, challenges exist in the 

transmission of models parameters, where information may be vulnerable to 

eavesdropping capable of reconstruction. 

• Non-IID data: As is already pointed out, the different users devices connected 

to 6G networks, that perform FL training have different characteristics 

concerning processing and computational power, battery life etc. This 

heterogeneity, affects parameters such as convergence time, training latency, 

and others. 

• Computation and communication trade-off: The goal of an effective and 

efficient FL mechanism is twofold. On the one hand, the communication links 

and uninterrupted interconnection between the enrolled devices should be 

present, while, on the other hand, computational complexity and total training 

times should be minimized as possible. 

 

 

Challenge Solutions presented at 

Distributed learning computational and 

scalability considerations 

[136], [140], [141], [145] 

Security and Privacy concerns [188], [189], [190]  

Non-IID data [137], [188] 

Computation and communication trade-off [132], [147], [137] 
Table 0-9: Challenges in FL models construction in 5G/B5G wireless networks 

 

5.4 RN Selection in 5G/B5G Networks 

5.4.1 Problem Formulation 

 

As depicted in Fig. 5-7, for each cell of the cellular topology, there is a 𝑀𝑡 antenna source 

-which is located at the BS of each cell, 𝑁𝑢𝑅𝑁
 UEs -where 𝑁𝑢𝑅𝑁

≤ 𝑁 are the initially rejected 

UEs from the primary system, that request RN assistance, equipped with 𝑀𝑟 antennas, and 

𝑁𝐶𝑅𝑁 RNs in the two-hop wireless relay network. If a UE is initially rejected, the direct link 

between source and destination does not exist due to high pathloss effect. Therefore, A&F 

relays are used to process the received signal and support communication. Each UE is 

connected only to one RN and orthogonal channels are used to achieve full set gain and 

mitigate co-channel interference. This sub-problem’s goal is to optimally select the most 

suitable RN out of the 𝑁𝐶𝑅𝑁candidate ones for each UE 𝑛𝜖𝑁𝑢𝑅𝑁
, with respect to the active 

user maximization for each cell of the topology. 

In a two-hop 5G/B5G wireless communications system, like the one depicted in Fig. 5-1, 

the total bandwidth, 𝐵𝑊, is divided into 𝑁𝑠𝑐 subcarriers to be allocated to the accepted UEs. 

There are two classes of accepted UEs. On the one hand, the first class contains UEs that are 

directly accepted by the primary system (BS-UE direct communication). The SNIR for the nth 

UE (1 ≤  𝑛 ≤ 𝑁) of this category, associated with the lth subcarrier (1 ≤  𝑙 ≤  𝑁𝑠𝑐) for a 

specific channel realization and assuming independent BS-UE links, is given by equation (5). 
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Figure 0-7: Two-hop 5G/B5G Relay Selection 

On the other hand, the second class contains UEs that are directly connected to the 

secondary system (RN-UE connection). Thus, through relaying, BS-UE communication link 

is established through multi-hop communication. In this two-hop connection between BSs 

and UEs, RNs can be defined as UEs in the BS-RN link, and as BSs in the RN-UE link. In 

this case, for the nth UE (1 ≤  𝑛 ≤ 𝑁) of this category equation (5) is modified as follows: 

 

𝑆𝑁𝐼𝑅𝑛,𝑙(𝑅𝑁) =
𝐺𝑛,𝑛,𝑙(𝑅𝑁−𝑈𝐸)

𝒓𝑛,𝑙
𝐻 𝒓𝑛,𝑙𝐼0+𝐼𝐵𝑆𝑛,𝑙

+𝐼𝑅𝑁𝑛,𝑙

 (16) 

 

Where 𝐼𝐵𝑆𝑛,𝑙
= ∑ ∑ 𝐺𝑛,𝑚,𝑙𝑚𝜖𝑈𝐸𝑏,𝑙𝜖𝑆𝑚

𝑁𝐵𝑆
𝑏=1  and 𝐼𝑅𝑁𝑛,𝑙

= ∑ ∑ 𝐺𝑛,𝑗,𝑙𝑗𝜖𝑈𝐸𝑟,𝑙𝜖𝑆𝑗

𝑁𝑅𝑁
𝑏=1  are the 

cumulative interference levels for the lth subcarrier of nth UE served by the bth BS or rth RN. 

Moreover, 𝑁𝐵𝑆, 𝑁𝑅𝑁 are the total number of BSs and RNs in the topology, respectively, 𝑈𝐸𝑟 

denotes the set of UEs served by the rth RN, while the notation x-y indicates all possible link 

connections. 

In this occasion, the total system throughput is given by [191] for the whole two-hop 

wireless communication 5G/B5G system: 

 

𝑅 = ∑ ∑ 𝑟𝑛,𝑠 = 𝐵𝑠𝑐{∑ ∑ ∑ log2 (1 +𝑠𝜖𝑆𝑛𝑛𝜖𝑈𝐸𝑏

𝑁𝐵𝑆
𝑏=1𝑠𝜖𝑆𝑛

𝑁
𝑛=1

𝑆𝑁𝐼𝑅𝑛,𝑠(𝐵𝑆)) + ∑ ∑ ∑ log2 (1 + 𝑆𝑁𝐼𝑅𝑚,𝑠(𝑅𝑁))}𝑠𝜖𝑆𝑚𝑚𝜖𝑈𝐸𝑟

𝑁𝑅𝑁
𝑏=1  (17) 

 

where |𝑆𝑛| indicates the length of the set 𝑆𝑛, 𝑟𝑛,𝑠 is the corresponding data rate for the sth 

subcarrier and 𝐵𝑆𝐶 is the bandwidth per subcarrier. EE and SE for the overall system are 

defined be replacing (17) into (7) and (8) (see paragraph 3.1.1) accordingly. 

A DQL scheme is proposed in the next paragraph to solve the aforementioned problem of 

selecting the suitable RN for each accepted UE of the secondary system. DQL extends the 

classic frameworks by utilizing ANNs to help software agents to learn how to define actions 

and rewards. In other words, a DQL framework optimizes underlying function approximation 

by the use of one (or sometimes two) ANNs to map states and actions to the rewards they lead 

to. Consequently, it is visible that such an approach can be quickly and dynamically adjustable 
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based on the environment. In our case, the next paragraph proposes a dynamic DQL 

framework to select the best performing RN -out of the available ones- for each UEs of the 

secondary (RN-assisted) 5G/B5G system. 

 

5.4.2 Deep Reinforcement Learning Framework for RN selection 

 

5.4.2.1 Proposed DQL algorithm for RN selection  

 

RL, as also analyzed in paragraph 2.2.3, is based on the interaction and communication 

with the learning environment to train and validate effective models, using a learning entity 

called software agent [J-1]. One of the most significant RL algorithms is the Q-Learning 

algorithm, which has been proposed as an efficient way to deal with rapidly changing and 

non-linear environments, as the one depicted in the RN selection problem formulation in the 

previous paragraph. However, because of the increased complexity of the aforementioned 

RRM problem due to the large set of potential actions, states and rewards needed in a Q-

Learning framework when considering dense 5G/B5G networks, a NN can be trained to map 

the set of states with the best-performing action or in other words to perform the Q-function 

approximation. This RL technique is called DQL and fits perfectly in multi-dimensional 

problems, such as RN selection.  

There are several DQL schemes, which are classified according to the algorithm’s 

calculative iterations. The first category is the centralized DQL schemes, where a single 

software agent is used to perform the information gathering and processing from different 

sources placed in the environment. 

In the wireless communications domain, such an agent can be placed to the core network 

or on a server in a BS and collect information from different BSs and/or RNs. The other 

category is the decentralized DQL schemes, where multiple software agents are utilized and 

each one of them is responsible for communication and information gathering from a specific 

subset of the overall environment. Such agents can be placed in different BSs and/or be 

responsible for a subset of the total accepted users in the topology. 

The proposed DQL framework of this thesis considers a semi-centralized DQL framework 

is proposed to solve the RN selection problem subject to EE and SE maximization. The term 

semi-supervised, refers to the presence of multiple similar agents, one in each BS/cell of the 

topology. 

The general state, action and reward of the proposed scheme are defined as follows: 

State space: Assuming that there are 𝐸 number of episodes for DQL agent training, the 

system state is described as 𝑆 =  {𝑆1, 𝑆2, . . . , 𝑆𝐸}. At any time step, assuming 𝑡, the state is 

described by the following information about each UE, denoted as 𝑢, served by the secondary 

system (RN-assisted communication): a) the ID of the BS which serves UE 𝑢, b) the cell 

sector where UE 𝑢 is positioned, c) the set of CSI information (channel coefficient matrices) 

between each one of the active RNs in the cell where UE 𝑢 is located, declared as 𝐻𝑢  =
 {𝐻𝑢,𝑟1

 , 𝐻𝑢,𝑟2
, . . . , 𝐻𝑢,𝑟𝑘

}, where 𝑘 is the total number of active RNs in the considered cell. 

Action space: The taken actions in each one of the 𝐸 algorithm’s episodes are noted as 

𝐴 =  {𝐴1, 𝐴2, . . . , 𝐴𝐸}. At any time step, assuming 𝑡, and assuming that the 𝑘𝑠, 𝑘𝑠 ∈
 (1, 2, . . . , 𝑘) RN is currently selected for a UE 𝑢, the software agent can select the next, the 

previous or the same RN as the next action. In other words, the action that is taken at time 𝑡 

is denoted as 𝐴𝑡  =  [𝑎1,𝑢1
 , 𝑎2,𝑢2

 , . . . , 𝑎𝑢,𝑢𝑢
 , . . . , 𝑎𝑁,𝑁], where 𝑁 denotes the total number of 

UEs that are served by the secondary system, 𝑎𝑚,𝑢𝑚
∈  {𝑅𝑁𝑠𝑡𝑒𝑝, −𝑅𝑁𝑠𝑡𝑒𝑝, 0} is the selection 

of the serving RN for UE 𝑚 and 𝑅𝑁𝑠𝑡𝑒𝑝is the change of RN for each UE under test. Thus, the 

serving RN update rule for each episode for UE m is calculated as follows: 
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𝑅𝑁𝑚,𝑢𝑚
 (𝑡)  =  𝑅𝑁𝑚,𝑢𝑚

(𝑡 −  1)  +  𝑎𝑚,𝑢𝑚
 (𝑡)(18) 

 

Reward: After taking an action, as described previously, the DQL system transits into a 

new state thus leading to alternate RN selection for the UEs of the secondary system. 

The feedback received at time t focuses on EE and SE levels maximization and is expressed 

by: 

 

𝑟𝑡  =  {𝑟𝑡𝐸𝐸
 (𝑆𝑡−1, 𝐴𝑡−1), 𝑟𝑡𝑆𝐸

(𝑆𝑡−1, 𝐴𝑡−1)}(19) 

 

Where,  

 

𝑟𝑡𝐸𝐸
 (𝑆𝑡−1, 𝐴𝑡−1)  = {

𝐸𝐸𝑡−𝐸𝐸𝑡−1

𝐸𝐸𝑡−1
× 100, 𝑖𝑓 𝐸𝐸𝑡 > 𝐸𝐸𝑡−1 

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20) 

𝑟𝑡𝑠𝐸
 (𝑆𝑡−1, 𝐴𝑡−1)  = {

𝑆𝐸𝑡−𝑆𝐸𝑡−1

𝑆𝐸𝑡−1
× 100, 𝑖𝑓 𝑆𝐸𝑡 > 𝑆𝐸𝑡−1 

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21) 

 

Regarding the action selection strategy, the ϵ-greedy method is used to balance the DQL 

algorithm’s exploration and exploitation phases (with probabilities ϵ and 1−ϵ respectively). 

Exploration refers to the DQL phase of improving knowledge about each action, whereas 

exploitation refers to the phase of maximizing the reward function by exploiting the set’s 

action-value estimation. 

Fig. 5-8 depicts the proposed semi-centralized DQN algorithm, where one agent is 

deployed per cell/BS. Each agent’s training is performed only for the coverage area of the cell 

that is located into. This means that each agent is responsible only for a subject of the total 

UEs of the network. Thus, this approach considers 𝐶 (performance evaluation considers 𝐶 =
 19) DQL agents, equal to the total cells of the topology. Each DQL agent optimizes 

performance in the coverage area assigned to the BS that is located. In order to ensure the 

global (for all cells) optimization of EE and SE performance, a global reward is defined for 

the whole cellular topology by the addition of all the single rewards of the C deployed agents. 

 

 
Figure 0-8: Proposed DQL scheme 
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To conclude with the DQL model, the global reward-based state transition is performed by 

a set of similar NNs, where the input layer includes the space state’s triplet (serving BS ID, 

sector and channel coefficient between each UE of each cell and active RNs in a cell) for each 

of the 𝐶 different agents (thus the corresponding BSs). The NN includes 𝐶 ×  𝑁𝑐  ×  3 

neurons, where 𝑁𝑐 is the number of active secondary system UEs in the cell 𝑐 ∈  𝐶. The 

output layer is one of the three possible Q-value results for each UE (select the next RN, select 

the previous RN or select the same RN) concerning system’s EE and SE maximization. 

Afterwards, a global reward optimization step is performed in order to define if the total 

system will change state or not. The NN structure is depicted in Fig. 5-9. 

 

 
Figure 0-9: Proposed NNs architecture 

 

5.5 Performance evaluation Evaluation 
 

In this paragraph, the performance of the proposed ML algorithms for RN placement and 

selection is presented and evaluated concerning the downlink of a 2-tier wireless multicellular 

5G/B5G orientation. In all cases, algorithms’ performance is compared to a state-of-the-art 

non-ML approach, presented in [CONF-1], as well as to a reference system where no RNs are 

deployed. The deployed RNs are layer 1 RNs (A&F) regarding the OSI level of deployment. 

Both Inband and Outband RNs are considered. When Inband RNs are used both BS-RN and 

RN-UE links share the same spectrum resources. On the other hand, when Outband RNs are 

used, additional spectrum resources are -a priori- exclusively for RN usage [192].  

All the simulation setups in this section were implemented in MATLAB (R2022b release 

[193]) environment using among others the Communications Toolbox, the Statistics and 

Machine Learning Toolbox and Deep Learning Toolbox. 

This section is spitted in two subsections. The first refers to the performance evaluation of 

the ML/DL-based RN placement algorithm in different RN implementation scenarios. The 

second subsection, refers to the performance evaluation of the overall system, where both the 

ML/DL-based RN placement scheme and the DQL RN selection algorithm are deployed. 
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5.5.1 DL-based RN placement performance evaluation 

 

In this subsection, the two proposed DL-schemes (DNN, LSTM), that have been presented 

in paragraph 5.3.3.1 for the problem of RN placement are evaluated. A 2-tier (19 BSs, 54 

sectors) cellular orientation is considered, with network and simulation parameters as depicted 

in Table 5-3. UEs are uniformly distributed in the coverage area, while the number of 

requested subcarriers varies to either 6, 8 or 11. 

Regarding RN implementation, five scenarios are examined in our simulations (including 

reference basis of no RN deployment), as follows: (1) No-RN: No RNs are deployed, (2) SME-

I: Inband RNs are deployed in the middle edge of each sector, (3) SME-O: Outband RNs are 

deployed in the middle edge of each sector, (4) MLP-I: ML/DL-based Inband RN placement, 

(5) MLP-O: ML/DL-based Outband RN placement. It should be noted that in the 

aforementioned simulation environment Outband RN scenarios use an additional bandwidth 

of ∼55MHz to serve initially rejected UEs, leading to interference mitigation and increased 

capacity gains over Inband ones [CONF-1]. It should be also noted that as LSTM’s 

performance is slightly improved compared to DNN’s performance, as depicted in section IV, 

we pick LSTM as the implemented ML/DL technique for RN placement for the simulations 

of this section. 

Extensive MC simulations were performed, where the extracted mean values are presented 

for all considered KPIs. To this end, total system’s EE is presented in Fig. 5-10, while the 

corresponding SE is presented in Fig. 5-11 for the aforementioned RN implementation 

scenarios. It should be noted that the best-performing candidate RNs are the same for the two 

scenarios that are discussed in section IV (CSI presence or not). 

 

 
Figure 0-10: Mean total EE for various RN implementations 

As it can be observed from Fig. 5-10, the use of RNs can significantly improve network’s 

metrics, such as EE. Moreover, EE is increasing for increasing number of subcarriers per UE. 

In fact, for 6 subcarriers per UE, EE can reach up to 35.45/61.45 Mbps/W for the SME-

I/SME-O scenarios, respectively. The EE values for the DL-enabled scenarios are 42.54/79.89 

Mbps/W for the MLP-I/MLP-O scenarios, respectively. In the reference No-RN scenario, EE 

is limited to 23.45 Mbps/W. These numbers indicate that RN usage can improve total system’s 

EE from ∼50-240%. When considering 11 subcarriers per UE the corresponding values are 

52.38/75.34/110.34/90.45/143.45 Mbps/W for the No-RN/SME-I/SME-O/MLP-I/MLP-O 
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scenarios, respectively, which lead to a ∼43-170% EE improvement. Similar conclusions can 

be drawn for SE as well, as depicted in Fig. 5-11, leading to a ∼20-200% SE improvement. 

It can be witnessed, also, from Figs. 5-10, 5-11 that the use of the DL scheme for RN 

placement further improves networks’ KPIs, such as EE and SE. In fact, comparing the non-

ML Inband scenario (SME-I) with the ML/DL-enabled Inband scenario (MLP-I), a ∼20% 

improvement in both EE and SE for both 6 and 11 subcarriers per UE is depicted. Similarly, 

comparing the non-ML Outband scenario (SMEO) with the ML/DL-enabled Inband scenario 

(MLP-O), a ∼30% improvement in both EE and SE for both 6 and 11 subcarriers per UE is 

achieved. 

 
Figure 0-11: Mean total SE for various RN implementations 

 

5.5.2 Overall performance evaluation (RN placement and Selection framework) 

 

For the overall system’s performance evaluation, the same 2-tier 5G/B5G network 

orientation as described in the previous subsection is considered, with the parameters depicted 

in Table 5-3. In this subsection the DQL scheme for RN selection, which is analyzed in 

paragraph 5.4.2.1 is, also, enabled, acting additively to the RN placement DL scheme 

presented in paragraph 5.3.3.1. The DQN parameters, that are used for the simulations of this 

subsection, are depicted in Table 5-10. 

 

Parameter Value Component 

Number of hidden layers 4 DQN 

Activation function (input and hidden layers) ReLU DQN 

Activation function (output layer) Linear  DQN 

Memory size 10000 DQN 

Mini-batch size 128 DQN 

Optimizer Adam DQN 

Loss function Huber DQN 

Number of episodes 40000 DQL 

Learning rate (𝜶) 0.001 DQL 

Discount factor (𝜸) 0.8 DQL 
Table 0-10: DQN/DQL parameters 
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A key procedure that has to be performed when evaluating every ML-based scheme is 

hyperparameter tuning, which refers to extensive simulations with different ML parameter 

values. The scope of this procedure is the selection of the optimal set of parameters for the 

proposed ML schemes. These parameters are selected based on the overall system’s 

performance optimization, based on KPIs of interest. The hyperparameters that have been 

selected after various simulations rounds are the following: a) number of episodes for the 

DQL algorithm, which affects the total training time, b) learning rate (𝛼), which refers to the 

contribution percentage between the current and the previous Q-values, c) the discount factor 

(𝛾), which is linked to the significance of the future rewards. 

As far as RN implementation is considered, five scenarios are examined in our simulations 

(including reference basis of no RN deployment), as follows: (1) No-RN: No RNs deployed, 

(2) SME-I: Inband RNs are deployed in the middle edge of each sector, (3) SME-O: Outband 

RNs are deployed in the middle edge of each sector, (4) MLP-I: ML/DL-based Inband RN 

placement and DQL RN selection, (5) MLP-O: ML/DL-based Outband RN placement and 

DQL RN selection. 

To this end, total system’s EE is presented in Fig. 5-12, while the corresponding SE is 

presented in Fig. 5-13 for the aforementioned RN implementation scenarios. As it can be 

observed from Fig. 5-12, the use of DRL-based RN placement can significantly improve 

network metrics, such as EE compared to the reference scenario where no RNs are deployed. 

In fact, for 6 subcarriers per UE, EE can reach up to 35.45/61.45 Mbps/W for the SME-

I/SME-O scenarios, respectively. The EE values for the DQL scenarios are 76.95/139.79 

Mbps/W for the MLP-I/MLP-O scenarios, respectively. In the reference No-RN scenario, EE 

is limited to 23.45 Mbps/W. These numbers indicate that DQL RN selection utilization can 

improve total EE from ∼140-500%. When considering 11 subcarriers per UE the 

corresponding values are 52.38/75.34/110.34/166.35/252.45 Mbps/W for the No-RN/SME-

I/SME-O/MLP-I/MLP-O scenarios, respectively, which lead to a ∼200-500% EE 

improvement. Similar conclusions can be drawn for SE as well, as depicted in Fig. 5-13, 

leading to a ∼145-505% SE improvement. 

 

 
Figure 0-12: Mean total EE for various RN implementations (with DQL RN 

It can be witnessed, also, from Figs. 5-10, 5-11 that the use of the DQL RN selection 

scheme further improves networks’ KPIs, such as EE and SE, compared to the case where 

only the DL RN placement algorithm is enabled. In fact, comparing ML/DL Inband scenario 

(SME-I) in these two occasions (only DL-based RN placement or DL-based RN placement 
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and DQL RN selection), a ∼75% improvement in both EE and SE is depicted for 6 subcarriers 

per UE. For 11 subcarriers per UE the improvement is ∼80%. Similarly, comparing ML/DL 

Inband scenario (SME-I) in these two occasions, a ∼79% improvement in both EE and SE is 

depicted for 6 subcarriers per UE. For 11 subcarriers per UE the improvement is about ∼83%. 

Thus, it is visible that DQL-based RN selection can further improve overall system’s 

performance. 

 

 
Figure 0-13: Mean total SE for various RN implementations (with DQL RN 

 

5.6 Outcomes – Discussion 
 

From the above presented analysis and, also, from Figs. 5-10, 5-11, 5-12, 5-13 the 

following outcomes can be witnessed: 

• The proposed joint RN placement and selection DL/DRL-based framework can 

improve the performance of 5G/B5G networks, by the improvement of key network 

metrics, such as EE and SE. 

• Concerning comparison with other state-of-the-art approaches the proposed models are 

evaluated in a two-level basis. More specifically: 

o The first level concerns the comparison of the proposed DL-enabled RN 

placement models with a 5G/B5G system where RNs are statically deployed 

and non-ML optimization techniques are utilized. From the subsection A it is 

visible that both EE and SE levels are improved by ∼30% compared to such a 

system (as described in [CONF-1]). 

o The second level concerns the comparison of the joint RN placement and  

selection framework with a 5G/B5G system where RNs are statically deployed 

and non-ML optimization techniques are utilized. It is derived by the analysis 

in subsection B that the DRL-based RN selection algorithm contributes even 

more on the EE and SE improvement. In fact, these KPIs can be improved by 

up to ∼80% compared to [CONF-1]. 

o Moreover, our DL/DRL approach overperforms other state-of-the-art 

approaches that are not utilizing ML/DL models for RN placement and/or 
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selection. For example, the proposed scheme in [194] reaches up to ∼50% 

improvement in EE levels compared to a state-of-the-art-approach. Moreover, 

our approach has similar or better performance compared to recently proposed 

ML-based schemes. For example, the proposed scheme in [195] reaches about 

∼80% EE improvement compared to a non-ML state-of-the-art approach. 

• Finally, it should be mentioned at this point that, in general, Outband RN orientations 

overperform Inband ones in all scenarios under test. However, in Outband cases, extra 

bandwidth has been pre-allocated to RNs. Thus, despite the aforementioned gain over 

Inband ones, in real-world scenarios Outband RNs have extremely high deployment 

costs, due to the external resources and necessary hardware needed. 

Finally, a key aspect when designing AI/ML algorithms is the computational complexity 

gain that is achieved compared to traditional optimization (non-ML) approaches. In the 

aforementioned performance evaluation this is achieved in the following ways: 

• As it is presented in Tables 5-4, 5-5 both DL models need∼4 to 5 minutes for the 

training phase. After this phase, the response to select the best performing RNs 

deployment is instant. In this analysis we should add the time for dataset generation 

which is ∼2 hours. In the approach presented in [CONF-1], ∼1 hour is needed for a 

round of ∼100 MC simulations. 

• Finally, in the same context, as far as the DRL RN placement scheme is considered, 

each one of the C cells needs some time (∼1 to 2 minutes as the NNs there are 

lightweight) for the models’ training, while dataset generation is performed online 

and, thus, there is no need for extra time there. As is is visible, the aforementioned 

computation time is extremely lower than the one of a full MC simulation. 
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Chapter 6: Conclusions and Future Work 
 

In this chapter, the main takeaways of this doctoral thesis are discussed, while, also, its key 

contributions are summarized (Paragraph 6.1). Additionally, some indicative further research 

directions stemming from this are briefly present (Paragraph 6.2).  
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6.1 Conclusions and key contributions of the PhD thesis 
 

5G networks deployment delivered fundamental and disruptive changes in the architecture, 

infrastructure, and operational attributes of the wireless networks. 5G networks have been 

deployed to deal with the massive connectivity and the diversifying user requirements, which 

formed a highly competitive and volatile communication environment. As the research works 

and the relevant 3GPP standardization reports are reaching towards B5G and 6G networks, 

the aforementioned user requirements are becoming even stricter, making the process of 

designing wireless networks able to provide a seamless user experience with superior QoS 

and QoE, even more demanding. Moreover, new application areas, such as IoT, AR/VR, 

holographic communications, are rising in the dawn of B5G networks, raising the need for 

new communication standards and newcoming physical layer techniques to serve massive 

data traffic levels and congestion.  

In this environment, the significance of efficient RRM policies definition is of massive 

significance. The limited radio resources should be allocated in an intelligent manner to serve 

an increasing number of simultaneously interconnected devices, located in dense network 

orientations. Another vital aspect in designing effective RRM policies in 5G/B5G networks 

is the effective utilization of all the available spectrum, and the reduction of overall system’s 

power consumption. In this framework, the network metrics of EE and SE are identified as 

the major ones to maximize, compared to previous networks generations where only capacity 

of throughput were considered.  

To address all the above factors, in this doctoral thesis ML -and especially DL- has been 

deeply studied and utilized in order to solve several RRM-related problems, towards the 

construction of an end-to-end data-aided RRM decision support system in 5G/B5G networks. 

In fact the research efforts on the field of ML-based RRM have been tremendously increased, 

and will continue to do so as B5G/6G networks are deployed, as the need for intelligent 

support systems to perform real-time RRM decision making is visible. The ML utilization in 

the aforementioned problems intends to maximize the user satisfaction and provide the 

required QoS and QoE levels. In that sense, resource allocation in 5G/B5G networks becomes 

a dynamic data-aided and environment-driven mechanism to support increased network 

density, near-random mobility patterns, low-latency responses and massive connectivity, 

even in a decentralized manner. In parallel, motivated by the need to transition into energy-

efficient and sustainable communications, this work focused on developing ML algorithms 

that guarantee EE and SE maximization, which leads to reducing unnecessary over-utilization 

of resources, hence accomplishing the optimal transfer of information with respect to both 

data exchange and the corresponding transmission power requirements.  

The structure of the thesis, as also depicted in Preface, with regards to the identified 

problems and their respective solutions is summarized below: 

Chapter 1 presents a brief overview of the 5G/B5G cellular networks, focusing on the 

5G/B5G/6G user and performance requirements by a physical layer perspective. Moreover, 

the physical layer technologies that are of primary interest in 5G/B5G orientations, and, are, 

also, used in the proposed ML-based RRM algorithms throughout this thesis, are analysed. 

Chapter 2 presents the ML techniques principles, which are the bases upon which our 

ML/DL models are constructed. In this framework, this chapter focuses on the theoretical 

background of advanced ML techniques, such as DQL or FL, which are of significant interest 

in the wireless communications domain, due to their ability to deal with complex problems 

and either provided environment-aider or distributed solutions. 

Chapter 3 formulated the RRM problem in 5G/B5G orientations and, also, presents the 

research state-of-the-art, which is the thesis motivation, regarding the ML utilization in 

5G/B5G networks RRM. Moreover, a comparative analysis is performed in order for the best-
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performing ML algorithms or types to be highlighted for each RRM sub-problem. Thus, 

guidelines, research directions and, also, open questions, that our algorithms try to answer, 

are identified regarding ML-based RRM in 5G/B5G networks. The findings of this chapter 

have been published in [J-1]. 

Chapter 4 considers the problem of KPI prediction in 5G/B5G networks. The significance 

of this problem for the efficient and effective RRM policies definition in 5G/B5G networks 

is analysed. Afterwards, several ML/DL techniques are compared regarding their 

performance in the throughput prediction problem in 5G/B5G orientations. The findings of 

this chapter have, also, been published in [J-1]. 

Chapter 5 focuses on the utilization of RN in the context of 5G/B5G networks. In fact, 

relaying-assisted communications is of increasing interest in wireless systems, due to their 

ability to increase network coverage and system’s capacity without the need for RAN 

components stack to be deployed. Thus, RNs are a cost-efficient way to increase network’s 

capabilities. RNs can support the new-coming 5G/B5G application scenarios such as sensor 

networks, IoT devices communication, AR/VR, but can, also, be vital in personalized 

(private) 5G deployments (e.g. 5G defense networks). Thus, the problem of the optimal 

placement and selection of RNs inside each cell’s coverage area has gained research interest. 

As far as the RN placement problem is concerned, this thesis proposes two DL-based 

techniques, deployed either in a CL or FL manner. Moreover, these algorithms are tested 

either knowing the relevant CSI parameters or not (which is really common in real-world 

scenarios). The performance evaluation of the aforementioned algorithms regarding ML 

KPIs, indicated that the proposed approaches overperform state-of-the-art ones. 

As far as the RN placement problem is concerned, a novel environment-aided DQL 

framework is proposed, which is based on the joint user EE and SE maximization. However, 

an intelligent data-aided framework in attached to the aforementioned DWL solution, so that, 

also, the EE and SE of the overall system is maximized. Performance evaluation indicated 

that the joint RN placement and selection end-to-end ML scheme can maximized the achieved 

levels of EE and SE compared both to a non-ML-aided system, but, also, with other literature 

approaches. The findings of this Chapter have been published in [J-2] and [B-1] 

Based on the previous overview, via this thesis a series of novelties and breakthrough 

approaches have been introduced, aiming at leading to a rethinking of how resource allocation 

can enhance network performance and lead to optimal outcomes of utilization, sustainability, 

and superior user satisfaction. A brief summary of the contributions of this work are presented 

as follows: 

• First, an up-to-date state-of-the-art summary concerning ML-based RRM 

approaches is presented. In this context, the interest is mainly focused on the 

categorization of the ML-based RMM schemes proposed in the literature, in terms 

of the type of learning, and, thus, on defining the optimal ML solution in various 

RRM sub-problems (KPIs prediction, user, subcarrier and power allocation, etc.), 

with respect to different network metrics (i.e., QoS, quality of experience (QoE), 

throughput, etc.). In order to achieve this, the general RRM problem is formulated, 

while significant non-ML approaches and their limitations highlighted, as well. 

Then, the state-of-the-art concerning ML-based approaches in 5G/B5G RRM is 

presented. As already mentioned, these approaches are categorized by the type of 

ML models used by each one of them (Supervised, Unsupervised, Reinforcement). 

Furthermore, the coexistence of MEC and distributed learning techniques is 

analyzed, as it can tackle various challenges, especially concerning the training 

time of ML models. 

• Through the above procedure, representative conclusions are drawn, as far as which 

ML models are appropriate in each RRM related sub-problem, based on the 
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network orientation. Moreover, limitations in current research efforts, open issues 

and discussion over the state-of-the art approaches are highlighted in an effort to 

both present potential solutions in these considerations and motivate future work 

on these fields. Thus, guidelines and research frameworks are proposed regarding 

AI/ML utilization for efficient resource allocation in 5G/B5G networks. 

• In order to highlight the significance of AI/ML implementation in RRM, the 

problem of throughput prediction is investigated, as an indicative RRM task, 

treated either as a classification or a regression problem. Various ML algorithms 

are considered, results are presented, and performance is evaluated, based on 

selected ML KPIs for each task. 

• Through the above-described analysis, limitations and open issues concerning 

AI/ML utilization in 5G/B5G networks are witnessed and potential solutions are 

described. 

• The problem of RN placement to maximize the number of active users in each cell 

of the cellular topology is formulated. Thus, given only the number of the RNs per 

cell to be deployed and a set of potential geographical positions (x-y coordinates 

of potential RNs), the k best-performing RNs are selected to serve the active users 

in each cell. The aforementioned selection is performed subject to three main 

constraints. The first one is the minimization of pathloss for each accepted user, the 

second refers to the minimization of the total transmitted power by each deployed 

RN, while the latter is the maximization of the total accepted users in the topology. 

Moreover, the proposed algorithm is tested in two different simulation scenarios. 

The first one considers the presence of ideal CSI, while the latter considers no CSI 

at all. 

• To tackle the aforementioned problem, we propose two efficient offline RN 

placement ML/DL algorithms which focus on fast response times taking into 

consideration the constraints previously presented. The fist DL algorithm considers 

an ANN orientation, while the latter considers a LSTM one. 

• After the optimal placement of the RNs in each cell’s coverage area, we formulate 

the problem of optimal RN selection for each accepted user in the topology. In 

other words, for users not served directly by the BSs, either for pathloss or power 

consumption reasons, the optimal RN (from the k eligible) should be selected to 

serve them. 

• To solve the aforementioned problem, we propose an energy efficient RL-based 

algorithm to select the optimal beam (RN) to serve each accepted user in the 

topology. A DQL/RL algorithm is utilized for this scope. In this context, EE and 

SE are the KPIs that determine algorithm’s transitions. 

• Finally, all presented approaches are evaluated by extensive system level 

simulations in different usage scenarios. Performance evaluation indicates that the 

joint DL-based RN placement and selection scheme can overperform state-of-the-

art approaches in improving various network KPIs, such as EE and SE. 

• To sum up, the utilization of DL/DRL schemes, both for efficient RN placement in 

each cell of the cellular topology and for RN selection, which forms a full ML/DL-

assisted RRM framework focusing on both EE and SE, is the key novelty of this 

thesis. 

• Finally, concerning distributed ML approaches, a review of the most recent FL-

based approaches in PHY is performed focusing on different sub-problems (RRM, 

channel estimation, beamforming, etc.). Afterwards, the FL schemes' advantages 

over state-of-the-art CL schemes are, also, discussed. Finally, challenges in the 
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design and implementation of such approaches are identified, and, thus, relevant 

future research directions are given. 

• Moreover, an indicative comparative simulation scenario is performed to 

display the potential gains of FL methods implementation in PHY. More 

specifically, we develop, train and test several ML models for RN placement in 6G 

networks. The ML models are deployed either in a CL or an FL manner. Thus, 

performance evaluation discusses the FL advantages and disadvantages compared 

to existing (CL) solutions. In this way, relevant conclusions are made. 

 

6.2 Future Work 
 

The work summarized in this thesis proposes a meaningful and general ML-based 

framework, where the intelligent decision-making processes leveraging resource allocation 

policies for enhancing EE, fairness, and provision of superior QoS and QoE delivery in 

5G/B5G. Fellow researchers can derive interesting extensions stemming from this work in 

RRM-related topics both in CL and FL network designs, where users’ characteristics play a 

key role in system’s optimization, applicable in many aspects of the upcoming deployment 

and research for B5G, and especially 6G, networks. 

Some interesting directions for further research are identified as a continuation of this 

work. The list provided below is by no means exhaustive, as ongoing technology 

advancements and changing user requirements provide interesting opportunities to apply the 

proposed ML approaches in other fields of wireless networking.  

 

New Spectrum - Terahertz (THz) communications: In 6G systems, where killer 

applications will be AR/VR and holographic communications, the need for large data 

transmission, results in a need for a very high-frequency band to support the increasing service 

scenarios demands [12]. THz and sub-THz bands have been proposed as a potential solution 

towards this direction. These bands are spread from 0.1 to 10 THz. However, several 

challenges have been witnessed in these scenarios. First of all, such a high-band transmission 

can serve really short-range coverage. Thus, ultra-massive MIMO antenna systems in BSs 

should be used and BSs should be located near to each other. Limitations can, also, be 

witnessed concerning hardware availability, transmission power, and increased pathloss [12]. 

 

Beyond MIMO communications: Ultra-massive MIMO communications, where antenna 

arrays can contain over 10,000 very small antenna elements, forming ultra-narrow band 

beams, and CF mMIMO, Access Points (APs) are spread in the coverage area to support UEs 

that demand service are of primary interest concerning RRM for B5G and 6G networks. These 

approaches can lead to significant mitigation in interference levels, while system’s capacity 

can be increased a lot. However, ML-based RRM tasks are becoming extremely difficult in 

such orientations due to the significant data amount (large datasets) needed for ML models 

training. 

 

Beyond Relay Communications:  RISs, as presented, also, in Chapter 1 are proposed as 

an efficient solution to enhance connectivity in 6G networks, taking into account the hardware 

and deployment costs. RISs have a relay role in end-to-end communication, and, as a 

sequence, they can efficiently be used in blind network spots or to extend the coverage area 

of the network. RIS placement and selection problems can be also (similarly to RNs) solved 

effectively via ML/DK techniques. 
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Distributed ML and FL: Some key aspects that will be of interest in the future regarding 

distributed ML and FL are the following: 

• Scalability and user characteristics: Some of the key usage scenarios of 6G 

networks is the holographic, AR/VR and UxV communications. In these 

scenarios, user density and mobility are of vital interest. The research works 

performed until now, assume either static UEs or established CSI conditions. 

Thus, an escalation of the current approaches towards more complex evaluation 

scenarios will be significant for the feasibility of the proposed FL solutions. 

• Privacy and security: As addressed in the previous subparagraph, FL by 

definition provides a level of security in the inter-communication between the 

different edge devices and the centralized entity. However, as addressed by 

[188], traditional encryption and/or authentication solutions could be of interest. 

On the same framework, modern-era physical layer security algorithms could, 

also, be of interest, in order to handle massive connectivity IoT or vehicular 

network scenarios. 

• Interoperability with other enabling technologies: 6G networks are expected to 

both use and leverage current 5G technologies, but also utilize new-coming ones 

to support the extended requirements presented in paragraph I. In this 

framework, the deployment of FL schemes in cooperation with satellite 

communications [44], quantum communication [196] or even blockchain [197] 

technologies. 

 

Physical Layer Security: Physical layer security plays a crucial role in ensuring the 

confidentiality and integrity of wireless communication in B5G. It involves exploiting the 

characteristics of the physical channel to enhance the security of wireless transmissions. As 

already presented, RRM in B5G networks is responsible for efficient allocation and utilization 

of radio resources to meet the diverse requirements of different services. The integration of 

physical layer security techniques into RRM algorithms can significantly enhance the overall 

security and performance of B5G networks. By considering the security requirements during 

resource allocation and scheduling decisions, RRM can mitigate eavesdropping and jamming 

attacks, optimize transmit power allocation, and allocate suitable modulation and coding 

schemes [198]. This integration of physical layer security and RRM in B5G networks ensures 

secure and reliable communication, paving the way for the deployment of advanced 

applications and services [199]. 
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