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Iepiinyn

Ta tedevtaia ypdvia, £xovv avomTLyHel CLGTAUATA ACVPUATMV ETIKOVOVIAV TEUTTNG KO
endpevnc yevidg (5G/B5G) vy va vmootnpiovv tov ekBeTikd puOpd adénong g OIKTLaKNG
Kivnong kot v mukvhy Ol VVOEST] TOV YPNOTOV, TOL amottel adidiewtn npdsPacn 610
puéco. H avéavopevn ovaykn yioo vEovg TOTOVS QOPUOYDV (EQOPUOYES ALOIKTOOV TOV
[payudtov (10T), emavénuévn/ewkovikny mpaypotikoémra (AR/VR), un emovdpopéva
oynuata (UAVS)) £xel 0dNyNOEL G VEEG KOTNYOPIEG VIINPESIOV TOV EELINPETOVVTOL OO TOL
diktva 5G/B5G. 'Etol, 1 vrootpiEn a&lomiotg emkovmviag pe younAn kobvotépnon
(URLLC), n evioyopévn kivn evpulovikotnto (EMBB) kot 1 poalikn entkovovia unyovov
(mMMTC) oe mepifarrovto palikng mpoécPacne amoktodVv Kaiplo onuocio ota diktvo
5G/B5G. EmmAéov, to tedevtaio ypovio £xovv elcoyBel KovoTOUEG TEXVOLOYIEG PLGIKOD
EMITESOV Y10, TNV OVTIUETAOTIOT] TOV AVEAVOUEVOV TPOKANGEWDY GTOV TOUEN TOV OGVPLOTOV
EMKOWOVIOV, OTMG TO KEPOLOGLGTNUATO TOAALUTADV €1600®V-TOALUTA®Y €£0dmV (M-
MIMO), ot ythootopetpikég emkowvmvieg (mMmWave), or koppor avapetddoong (RNS),
KkaBdg kot  un opBoydvia toddamAn tpdsPacn (NOMA). Qo1660, o1 TPONYUEVES AVTEC
TEYVOLOYIEG QUOIKOL emmEdOL, OTav papuodlovial o€ &va KVWEA®TO TEPPUAAOV OV
yopoaktnpiletor amd vynAd enineda TapepPormv Kot duoyepeic cuvONKes dtadoong, LropoHv
v QENCOLV TO VTOAOYIGTIKO KOGTOG Y10 TNV VTOGTNPIEN TOV AVGTNPOV OTOLTICEDV TOV
APNOTOV.

Y& avtd 10 mAoiotlo, Tpoteivovtal alyopduotl punyavikng uabnong (Machine Learning -
ML), og £vog 0moTeAeoUATIKOG TPOTTOG AVTILETAOTICNG TMV TOPATAV® TPOPANUaTmV, e€ottiog
™G KOVOTNTASG TOVG VO YPTCLULOTOLOVV SEOOUEVE, TOV TTAPAYOVTaL amd TO 1010 TO HiKTLO Yo
™ Pertioon g amodotikdOtnTag TOoL dtkTvov. Ot adyopiBpuor ML ekmodgvovion
YPNOLOTOIDVTAG, £iTe dedopéva Tov Tapdyoviat and 1o 1610 To acVpuato diKTLO, £iTE AT
napopown diktva. Me avtdv tov TpdmOo, 01 TOAVTAOKOL VTOAOYIGHOT Yol ToL OEGOUEVO TOV
KOVOALOD EVOOUOTAOVOVTOL 0TO £Tined TV poviéAwv ML, yeyovdg mov odnyel otn peimon
TOV VTOAOYIGTIKOD KOGTOUG KOl TNG TOAVTAOKOTNTOS UETA OO TOAAATAOVS O1000yKOVS
yopovg (rounds) exmaidevonc. Opiopévor adydpiBuor ML (m.y. akyopipol evioyvTikng
nabnong (Reinforcement Learning - RL)) pumopovv va aAANAETISpOOV GUEGH GE TPAYUOTIKO
xPOVO e 1O TEPPAAAOV Kot Vo VTOSTNPILOLY TIG ATOUTAOELS Yo YaUnAn kabvotépnon oe
diktva SG/B5G.

Avtikeipevo g TapoHeag S1OaKTOPIKTG dtatpiPng etvar n pedétn ko ovamtuén pebodmv
ML «otr Babuig Mdabnong (Deep Learning — DL) yio tqv amotelecpotikny avébeon
padtomopwv (Radio Resource Management — RRM) ocg acvpuata SikTuo ETIKOWVOVIDV
5G/B5G. Xvykekpipéva, peretdvtor ML/DL adydpibpot yio didpopo RRM vrompopinuata,
ommc M katavour vroeepdvimv oe ypnoteg (User Equipments — UES), n emidoyn otabpov
Baong (Base Station - BS) 1 koppov avapetadoong (Relay Node —RN) ywo yprioteg mov
EI0EPYOVTOL OTNV KVWYEMKN TOTOAOYid, OAAGL Ko 1 TPOPAEYN UETPIKAOV SIKTVOV, OTMOS O
pvOude diékevong (throughput). Tevikd, ot avénpéveg amattioelg tov UES yio adidiett
nowotnta vanpeoiag (Quality of Service - Q0S), elayiotomomuévn kabvotépnon Kot pHeydan
TUKVOTNTO SLOUGVVOESEUEVMOV GLGKELMV, KOOIGTOOV avayKaio Tn YpNOUYLOToinNoT TEYVIKOV
ML/DL yia ta topordave RRM npofiquate. MaMota, 6tav oto 5G/B5G cvotiuata yivetot
EKTEVIG XPNOT TPONYUEVOV TEYVOLOYIDV PLGIKOV €MTESOL, Onwg ta massive MIMO (m-
MIMO) kepolocLGTHKATO, Ol YIAIOGTOUETIKEG UTAVTEC cuyvoTHT®V (MMmWaves) kot 1 un
opBoywvikr moAlamin tpdcsPacn daipeong cuyvotntag (non-orthogonal multiple access -
NOMA), t6te n moAvmriokdmta Tov RRM mpofinudtov kot ot amoutioslg kabiotodv
avaykaieg axoun mo eelypéveg ML teyvikés. o avtdv 10 Adyo, TéPAV TV KAUCTIKOV
teyvikov EmPrenouevng (Supervised) kar Mn-Emiienopevne (Unsupervised) pabnong, n
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TapoHGoo JIOUKTOPIKY ST HEAETA Kot ovomTuGGEl Kot texVikéG Babidg Evioyvtikng
Mabnong (Deep Reinforcement Learning — DRL), kon Deep Q-Learning olyopifuove. 1o
010 puMKkog kOpatog, peretmvral kot epapudlovral ota maparndve RRM vrorpofinquota kot
TeYVIKEG Katavepnuévng ML, 6nmg n Zuvepyotiky Mabnon (Federated Learning — FL), émov
ovvovalovtat to. 0@éAN g ML kot tov kivntod vroroyicpod (Mobile Edge Computing —
MEC).

Apywcd, ota TAaicto g S1aTpIPic, avaADETAL 1| VPIGTAUEVT] KATAGTOGT, OGOV 0POPA GTN
avartoén ML odyopiBuowv yio RRM mpoPAiuota vy diktva 5SG/B5SG, m oxetikn
Biproypapio katnyopromoteitanr pe Pdon to vwd perétn RRM mpdfinua, aAid Kot tnv
epapuolopevn teyvikn ML.

21 cvvérela, agov povieronomei podnuatikd 1o RRM npopinua og diktva SG/B5G,
toviCeton  onpoocio g TpoPAeyng Tov diktvokov petpikov (Key Performance Indicators -
KPIs) ywo v amodotikny enilvon RRM mpoPinudtov kot moAloi ML/DL aAdydpiOuot
OVOTTOCOOVTOL Kol aEl0A0YOVVTOL MG TPOG TNV amdO0cN TOVS 6TV TPOPAEYN ToLv PLOLOD
délevong oe diktva SG/B5G.

‘Eva axopa kaipro mpdfinua ce 5G/B5G diktva, 6mov ypnoipomorovvtar Kopfot
Avopetdooong, eivar m Pértion tomoBétnon Kol €mAOYN TOVG Yo KAOE ypnoTn mwov
g1o€pyeTaL TNV Kuyelkn totoroyia. Emopévag, apov poviehonomBodv podnpotikd kot to
Vo avtd mpoPAnuata (torobétmon kot emhoyr RN), peketdvion ML/DL teyvikég yuo tnv
amoteAecaTIK) tovg emidvon. o to mpoPAnua tomobétmong RN, mpoteivovtar 600
dwpopetikég DL mpooceyyicelg, ol omoieg ekmaudgvoviot kot a&loroyovvtal, Pacilopeveg o
oLVOAQ dedopEV@V TTov TtapdyOnkav and éva MATLAB mpocopoiwt| emmédov {evéng ko
ovotuatog vy SG/B5G diktva, 6mov yivetatl extevig xprion RN. Ot mopordve ML/DL
aAyOpOLOL EKTOOEVLOVTOL APYIKA GE Eva LOVo pnydvnua, aAld Tpoteivetol emiong kot Eval
oynua Xvvepyoatikng Mabnong yuoo v katavepmuévn ekmaidevorn tovc. To oynuo avtd
Baciletar otn cvvimapEn mOAADY dracvvoedepévav cvuokevmv oe diktva 5G/B5G, pe
ATOTEAEGLLOL TV AITOPLYN VITEPPOPT®AN TOL d1kTOoV. OG0V 0popd 6TO TPOPAN LA ETAOYNG
RN, mpoteivetar évog kovotopog akyopiuog Babidc Q-Learning pébnong, mov Pacileran
oTNV TOVTOYPOVT LEYIGTOTOINGT NG evepyelaknc amodotikdtntag (Energy Efficiency - EE)
Kot TG eoopatiknic amodotikdtrag (Spectral Efficiency - SE) yio kdbe ypnot g
KOYeMKNG Ttomoloyioc. EmumAéov, mpoteiveron £€vag GLVOMKOG HNYOVIGUOS Yol TN
peywotonoinon kot s EE kot e SE 1o0v cuvoAikod cuotipatos.

TéNog, o1 Tapamdvm TPOTEWVOUEVEG AVGELS AEIOAOYOVVTOL LEG® EKTEVMV TPOGOUOIDGEMV.
H a&oAdynon tovg meprthapfavet, emiong, v HeTa&h TOVG GUYKPLTIKT OTOTIUNOT], OAAG Kot
™ GUYKPLom TG 0mdO0oTG TOVG EvavTtt GAA®V Tpoceyyicemv TG Tpdspatng PiAtoypapios.
e k@0e mepintwon, ot ML mpoceyyioceig g mapodsag SaTpirg EXTLYYAVOLY GNUOVTIKE
k€PN, 660V apopd ota cuvorlkd enineda EE kot SE, ko otnv a&omoinon tov dtabéciov
(QAGLOTOG, EVA AAUPAVETOL DTTOYLY KOl 1] VTOAOYIGTIKN TOVS TOAVTAOKATNTO.

Aégerg Khewond: Aikrva 5™ I'evidg, Aiktva Endpevng T'evidg, Babid Mabnon, Mnyovikn
MdéOnon, AvdéBeon Padondpwv, Emkowwviec vmoPonbodueveg omnd  Koppovug
Avopetddoong, Q-Mdabnon, Evioyvtikn Mdabnon, Zvvepyatikn Mdabnon, Ilpocopoimoeig
Yvompotikod Emumédov, Kivntog Ymoloyiopdg oty Akpn tov AktHov.
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Abstract

Fifth-generation (5G) and beyond (B5G) wireless communications systems have been
established to support the exponential growth rate of mobile data traffic and dense user
connectivity, which requires uninterrupted and location-free access to the medium. The
emerging need for new application types (Internet of Things (loT) applications,
augmented/virtual reality (AR/VR), unmanned aerial vehicles (UAVS), etc.) has enabled
telecommunication service categories served by 5G/B5G networks. In this context, the
support of ultra-reliable low latency-communications (URLLC), enhanced mobile broadband
(eMBB) and massive machine type communications (MMTC) in mass access environments
is of utmost importance in 5G/B5G networks. Moreover, various novel physical layer
technologies have been introduced over the last years to cope with the increasing challenges
in the wireless communications domain, such as massive multi-input- multiple-output (m-
MIMO) configurations, millimeter Wave (mmWave) transmission, Relay Nodes (RNs) as
well as, non-orthogonal multiple access (NOMA). However, the aforementioned advanced
physical layer technologies, when applied in a cellular environment characterized by high
interference levels and complex channel approximations, can maximize the computational
cost to support strict users’ requirements.

Machine learning (ML) algorithms are proposed as an efficient way to tackle these
considerations, due to their ability to utilize data generated by the network itself in improving
network performance and efficiency. ML algorithms are trained using either data generated
by the wireless network under test or by similar ones. In this way, complex channel
calculations are encapsulated in ML models’ layers, leading to a computational cost and
complexity decrease, after multiple successful training rounds. Moreover, there are ML
algorithms (e.g., Reinforcement Learning (RL) ones), which can directly interact in real-time
and support low-latency requirements of modern era networks.

In the present thesis ML and Deep Learning (DL) methods are developed for efficient
RRM in 5G/B5G wireless communication networks. More specifically, ML/DL algorithms
are examined in various RRM subproblems, such as subcarrier allocation to active users (User
Equipments - UES), base station (BS) or RN placement and selection for users entering the
cellular topology, as well as prediction of network key performance indicators (KPIs), such
as throughput. The increased demands of the UEs for uninterrupted QoS, ultra-low latency
and high density of connected devices necessitate the use of ML/DL techniques for the
aforementioned RRM problems. Therefore, in addition to classical Supervised and
Unsupervised learning techniques, this thesis explores Deep Reinforcement Learning (DRL)
techniques, primarily Deep Q-Learning algorithms. Additionally, distributed ML techniques,
such as Federated Learning (FL), are proposed for the aforementioned RRM subproblems,
combining the benefits of ML and Mobile Edge Computing (MEC).

In the context of this thesis, a state-of-the-art analysis regarding ML-based RRM in
5G/B5G networks is firstly performed. The corresponding research works are categorized,
based on both the RRM sub-problem, and the employed ML technique.

Then, the RRM problem in 5G/B5G networks is formulating and the significance of KPI
prediction for RRM tasks is highlighted, while several ML/DL algorithms are developed
concerning their performance in throughput prediction for 5G/B5G networks.

An additional key problem in 5G/B5G orientations, where RNs are deployed to extend
each cell’s coverage area and increase network’s capacity, is the optimal RN placement and
selection for each user entering the cellular topology. After formulating both problems (RN
placement and selection) ML/DL frameworks are studied. Regarding the RN placement
problem, two different DL approaches are developed and evaluated based on datasets created
by a MATLAB RN-assisted 5G/B5G link and system level simulator. These ML algorithms
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are not only deployed in a centralized manner, but also an FL framework is proposed. The
coexistence of several interconnected devices in 5G/B5G networks, which can assist in
splitting the computational overload among them, to efficiently utilize network resources. As
far as the RN selection problem is concerned, a novel Deep Q-Learning scheme is proposed,
based on the joint Energy Efficiency (EE) and Spectral Efficiency (SE) maximization for each
user of the cellular topology. In addition, a specific mechanism is, also, implemented for the
total system’s EE and SE maximization.

Finally, all proposed solutions are thoroughly evaluated and tested via extended
simulations. Comparisons are made, both among them and against other up-to-date
approaches. In each case, significant performance gains are identified, leading to increased
systems’ EE and SE levels and important spectrum utilization, while the advantages of the
proposed frameworks are, also, mirrored in terms of computational costs.

Keywords: 5G, B5G, Deep Learning, Machine Learning, Radio Resource Management,
Relay Assisted Transmission, Reinforcement Learning, Q-Learning, Federated Learning,
System Level Simulations, Mobile Edge Computing
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Extetapévn Ilepidnyn

H avamtuén diktowv 5 yevidg (5G) enépepe OepeMmdOelc aALOyEC GTIV APYITEKTOVIKT,
TNV VTOJOUT| KOl TOL AEITOVPYIKA XOPOUKTNPIOTIKA TOV OGVPUATOV SIKTV®OV ENKOVOVIGOV. Ta
diktva 5G €rovv avamtuybel Yoo vo avietonicovy T Hallkn GLVOEGIUOTNTO KOl TIC
QLENUEVES OTTOLTIOELS TOV YPNOTAOV Y10 OOLIAETTEG KOl SLOPOVEIS EMKOVOVIEG YOUNANG
KaBvoTEPNONG, LLE TNV TAPAAANAN SLOTHPNOT TOV ETHVUNTOV ETUTESM®V TOWOTNTOG VITNPEGTOG
(Quality of Service — Qo0S) ka1 oot tag eumepiog (Quality of Experience — QoE). Qotdoo,
véeg  Kkoanyopiec eeoppoydv Ommg ol emkowwvieg oynudtov (Vehicle-to-Vehicle
communications), to dwadiktvo Twv mpaypdtev (Internet of Things — 10T), n emavEnuévn ko
ewovikn Tpaypotikoétta (AR/VR), o1 0hoypa@ikéc emtkovovieg Kot 1 TNAEIOTPIKY, OV
Kavel aobnt TV EUEAVION TOVG OMOLTMOVTOG EMIKOWVMVIES OKOUO LEYOADTEPOV ELPOVG
Covne, undevikng kabvotépnong Kot eyyonuévov emmédmv QoS, QOE pe oyeddv undevikn
pndAoto mbavotra amokomig (99,99999% mibavotnta eSvmnpémong). e avtovg Tovg
Aoyovg, ta diktva enduevng yeviag (Beyond 5G — B5G) Bpiokovtatl mpo TV TOAGV, E
gpeuvnTikég opadec tig 3GPP Mon va gpydlovion mAve GTNV TPOTLTOTOINGCY, TOLG LE
opilovtor v éxdoomn 19 (Release 19) twv 3GPP teyvik®v Tpodiaypapmy.

Y& oVTO TO TAAICIO VEEG TEYVOLOYIEG PVOIKOV EMTESOV KOAAOVVTAL VO EPOPUOGTOVV GE
5G/B5G diktva pe 6tox0 TV Kakdtepn €Eumnpiétnon TV HalIKOV ETmEd®MV SIKTLOKNG
Kivnong kol Tov EAEYYOL TNG TPOKOAOVUEVNG GLUPOpNoNG. TEtoleg Teyvoroyiec, e Kaiplo
onuaocio oe 5G/B5G diktva, ivor ta palikd KepoUOGLOTAUATE TOALUTAMDY €1GOOMV Kol
nolMamlov e£6dwv (Massive Multiple-Input-Multiple-Output), ot kopfot avapetddoong
(Relay Nodes), n un opfoydvio. moAramin pocPacn (Non Orthogonal Multiple Access —
NOMA) kot dAAeg.

e auto 10 TEPPAALOV, 1| oMHacic TOV KOOOPIGUOD OTOTEAEGUATIKMY TOMTIK®OV Y10 TNV
amodotikn avddeon tov dwbiocipumv padoropwv (Radio Resource Management — RRM)
etvar tepaotiog onpaciog. Ot meproptopévot TOpotl Tov dktvov Ba mpémet vo dwatiBevron pe
¢Eumvo tpomo Yo va eEmnPETOVY TOV 0VEAVOUEVO aPlOUO TOV TAVTOYPOVA SLUGVVOEIEUEVMV
GLGKELMV, TNV LENUEVT] TUKVOTNTO TOV GLVIECEMV QVTAV, PEATIGTOTOIDOVTOS TAVTOXPOVAL
™V ¥PNoT TOV S0BEGIUOV PAGHOTOG KOl T HEIMON TNG GUVOAIKNG KOTAVAAMONG EVEPYELOG
TOV GLOTNUATOG. Me GAAa Aoy, M EVEPYELOKT KOl 1 QUGHOTIKY omodotikotnta (Energy
Efficiency, Spectral Efficiency) avadsikviovtar ¢ o1 GNUOVTIKOTEPES TPOC UEYIGTOTOINGN
LETPIKEG DIKTVOV, GE GUYKPLON UE TPONYOVUEVES YEVIEG SIKTOMV OGVPUATOV ETKOVOVIDV
omov 1 a&loAoynon g anddoong twv RRM moltikdv mov epappolovray Adpfove veoyty
pévo 1t peyistomoinon tov pubuov diéhevong. Q6TdOGO0, o AKOUO ONUOVTIKY TOPAUETPOS
omov Oa wpémel va AapPdvetal vroyy kotd ) ddikacic tov RRM givol n vroAoyiotikn
nolvmlokotnto (Computational Complexity) tov npotevopevov RRM aiyopiBuwv. T v
akpipela ot diktva 5G/B5G 1 cvykekpiuévn mopapetpog omoktd Wdaitepn onuacio kabdg n
CLUVOTTOPEN TPONYUEVAOV TEYVIKOV PLGIKOD EMTEIOV KOl TUKVMV GLVOECEMV, TEIVEL va
av&avet ekBeTikd TOVG YPOHVOLG ATOPAOTG.

Q¢ ek tovTOL, gival KoTOVONTO OTL M €mitevén ™G WAVIKNG ovoloyiag HETOED TNg
Bedtiotomoinong tov petpikdv diktvov (EE, SE, pubudg d1édevong) kat TG VTOAOYIGTIKNG
TOALTAOKOTNTOG propel va emitevyBel povo péow evog amoterespatikod RRM pnyavicpov.
Méypt tpa, ot amopacelg RRM hapPavovtay Eeympiotd yia kdbe ypovobupida, pe faon Tig
TOTIKEG GLVONKEG TOL OKTOOL Kol TN CLUEOPNON TOV GLVIEGE®MV TPOog e&ummpétnon.
Qo10060, o1 avénuéveg amartnoelg Tov oktowv SG/B5G evioyvovv v avdykn yio éva
OTTOKEVIPOUEVO GVGTNIO TTOL Uopel va vrootnpi&etl evéhikteg amopdoelg RRM. Tlpog avt)
v Kotevbovvon, N alomoinon Tov SIKTLOKOV 0edopévey uéow g Mnyavikng Mdadnong
(Machine Learning — ML) kot 1 &€aymyn YopoaxtmploTiK®V HECH TMV OVIIGTOL(®V
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alyopiBumv, pumopobv va cvuPdiovv amotelecuatikd otnv PeAtiotomoinon tov RRM
TOATIK®OV OV eQappolovral.

AvTikeipevo g mopovcag SOOKTOPIKNG doTpPrg eivar 1 avdmtuén Kot EQopHOYn
uebodwv Mnyavikng (Machine Learning — ML) ka1 Babidg MdéOnong (Deep Learning — DL)
Yoo TV omotelecpatiky avadeon padomopwv (Radio Resource Management — RRM) ce
acvppoto diktvo emkovaviov SG/B5G. Zvykekpiuéva, peketdvror ML/DL alydpibuol o
RRM vronpofAnuata, 61mg 1 Kotovoun vroeepdviov oe ypriotes (User Equipments — UES),
n emAoyn otobuov Pdong (Base Station - BS) 1 koppov avapetadoong (Relay Node —RN)
Y10l XPNOTES TOV EIGEPYOVTOL GTNV TOTOAOYIN, OALA Kot 1) TPOPAEYN LETPIKDOV SIKTVOV, OTMOG
0 pvOudg diélevong (throughput). I'evikd, ot avénuéve amarthoelg tov UES yia adidiettn
nowotnta vanpeciog (Quality of Service - Qo0S), eldyiot kabvotépnon HETAOOONG Kot
HEYAAT TLKVOTNTO OLOCVVIEIEUEVOV GUOKEVMV, KOOIGTOUV avaykoio T ypNoYLoToinom
teyvikov ML/DL ywo ta moporndveo RRM mpofAiuata. Emmhéov, kabott oto 5G/B5G
OLOTNUOTO YIVETOL EKTEVIG YPNON TPONYUEVAOV TEXVOAOYIDV (LGIKOD EMTEOOV, OTMS TO.
massive MIMO (m-MIMO) kepalocuoTHUATA, Ol YIAOGTOUETPIKES UTAVTEG GUYVOTIHTOV
(mmWaves) kot n un opboyovikr moAlomhn mpocPacn dSwipeong ocvyvotntag (Non-
orthogonal multiple access - NOMA), Ady® g molvmiokotntog tov RRM mpofAinudtmv
KOl TOV OTOTHGE®V Yo GUEST OMOKPIOT|, OMOLTOVVTOL OKOUN O €EEMYUEVES TEXVIKEG
unyovikng padnong. H mapodoa dSdaxtopikn Swtpipn acyolreiton pe teyvikés Boabidg
Evioyvtikric Mdabnong (Deep Reinforcement Learning — DRL), kot kvpimg pe Deep Q-
Learning olyopiBuovg. Emmpocbitmg, peretdvron kot poppolovrarl ota napardve RRM
vrompoPANpaTo Kot TEXVIKEG Katavepnuévng ML, 6mwg  Tuvepyatiky Mabnon (Federated
Learning — FL), 6mov cuvdvalovral ta o@éAn e ML kot Tov kivntod vroroyicpod (Mobile
Edge Computing — MEC).

H duapBpmon g mapovoag S1d0KTOPIKNG SLaTPING TopovctaleTol TopaKkiTm.

210 Kepaiaio I mapovcsialetar 1 eEEMEN TOV ACLPUATOV SIKTOMOV EMKOWVOVIDV, Kot O
TOV KOYEAOTOV, pe Epupacn oto cvotiuata SG/BSG. e avtd 1o mhaiclo, mapovoidlovrol
Ol AN GELS amOdooNS TV dkTvwv SG/B5G, kabdg Kot ot texvoroyieg PLGIKOD EMUTEOOV
TOL VROGYOVTAL OKOUO HEYOADTEPO OQPEAN OTAV €QAPLOCTOVV oe Té€Town Oiktva. Ot
teyvoloyieg mov avaivovror meptiapfavoov to M-MIMO ocvomuato xepoudv, To
mmWaves, v NOMA, 1o RNS «ot T ovadlopope®Ociues £EVMVEC  EMPAVELEG
(Reconfigurable intelligent surfaces - RIS).

Y10 Kepdlaio 2 mapovcsialovtar ot Poacikég apyés kot teyvikée ML. Zvykexpuéva,
avaADOVTOL Ot d1aeopot VoL pudbnong pe Paon v VIapén 1| UnN ETIKETOV GTO. GOVOAM
dedopévov (EmPremopevn, Mn-EmPrenopevn, Evioyvtikn Mdabnon). £ ovvéyewo, T0
kepaiato eotialel otig DL teyvikég pe éupaon onv DRL kot otnv avdAivon tov aiyopifpov
Deep Q-Learning. Téhog, mapovoidletar kot to Oempntikd vrofabpo TG €QApPUOYNS
kataveunuévov ML teyvikdv, 6nmg n FL, e 5G/B5G diktva.

Y10 Kepdlaio 3 e€etdleton m avaykn ywo avdmtoén ML pebddwv yioo v emidvon
dwpdépov RRM  zmpoPfinudteov oe diktva S5G/B5G. Il  ovykekpyéva, opyikd,
povtedomoteitan To mpoPANUa TG avdbeong padondpwv BETOVTAG GLYKEKPILEVOVG GTOYOVGS
BeATIoTOTOINGONC KOl GUYKEKPIUEVO GUVOAD TEPLOPICUMDY. XTNV GLVEYELD, TOPOLGLALOVTOL
TeYVIKEG BelTioTomoinomg mov dev ypnotiponoovy ML, kot avaeépovton Ta PEOVEKTHUATA
T0VG 610 oVyypovo mepifdriov tov 5G/B5G dwktvwv. Emmpodcbeta, mapovoidletan
AVOALTIKY emiokOmon g PiAoypapiog oto medio e xpnong ML yio RRM mpofinpata
Kol EAyovTol cupmePAoaTo, OAAN Kot mlavd TpoPALaTO OTN O10OTKAGTO OVATTUENS Ko
viomoinong ML povtélmv yio RRM mpofinpara.

210 Kepdloio 4 emAdetain tpoPAreyn tov puOpov d1Ehevonc, oc Eva eVOEIKTIKO TPOPAN L
TPOPAEYNG LETPIKDV G ACVLPUATO HIKTLO VEAG YEVIAC. APYKd, avaADETOL 1] XPNCIUOTNTA TG
a priori mpoPAeyNc TETOIOV PETPIK®V Y. TN PeATioTonoinon tev otpatnyikdv RRM. T

14
loannis A. Bartsiokas



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks

ouvéyela, 1 amddoon deopmv ML teyvikdv cvykpivetor pe Paon ovykekpuéveg ML
uetpicéc (key performance indicators - KPIs), 6mwc avtd g opBotntag (accuracy), g
akpifelog (precision), g avakinong evaicOnoiog (recall) xar tov fl-score. Téhoc,
avaAvovTol S1e£0S1KE TOL GUUTEPACLOTO TG TAPATAVE® GLYKPITIKNG 0EIOAOYNOTG.

Y10 Kepdiaio 5 peletdvton avorlvtikd dvo kaipta RRM mpofinpata yio 5G/B5G diktva,
ta omoia Pacilovtal otn yprion RNS ywo v evioyvon g padtoKaALYNG. ZvyKeEKPUEVO,
ueketdton 1 Peltictomoinom 1060 g Tomobétnong 66o kat ¢ emhoyng RNs oe 5G/B5G
diktva. Apyikd, povteromoleiton podnuatikd to TpoPAnua g PEATIoTNC TotoBEtnone RNS
oe Kabe koyéln g 5G/B5G tomoloyiog. Tt cvvéyela, topovcstdlovial Kol cuyKpivovTot
dvo DL adydpiBuot yU' owtd 1o mpdPAnua, pe xpnon cuvormv dedopévav and Evav SG/B5G
TPOCOUOI®TY OIKTOOL TTOL avarTLYONKe ota TAaicto TS dwtpPng. Metd v a&loAdynon
TV 000 Tapomdve adyopiBuwy, avortocoeTon kot Evag kataveunuévog FL alyopifpog mov
emupépet axopa peyarvtepn akpipeta tomobEnong RNS. 1o dedtepo okéLog Tov KePaiaiov,
povtelomoteital pabnuotikd to TpdPfAnua g emaoyng RN yia kdbe ypnotn mov eicépyeton
otV tonoloyia. 1o mhaicto avtd, avarntiocetat Evac DRL (Deep Q Learning) olyopiBuog,
0 0T010G LEYIOTOTOIEL TOGO TNV EVEPYELNKT KOl pacpoTikn aodotikotnta (Energy Efficiency
— EE «on Spectral Efficiency — EE) ka0e meployng kdAvyng, 660 kat t cvvoikn EE ko SE
0V cvothuatos. Télog, mapovoidlovior Ta amoteAécpata and v epapuoyn tov DRL
alyopiBuov, pe Baon T HEYIGTONOINGT TOV TOPATAVED LETPIKMV, KOl 0VOADOVTOL TO, GYETUKA
cuumepAcUATA.

Téhog, oto Kepalaio 6, cuvoyiletorn cuvels@opd g dtatpipng, kot tpoteivovtat OEpata
KoL TEYVOLOYIES Yio LEALOVTIKT EpEVVOL.

2T TOPOKATO £VOTNTEG avaAVOVTOL TO. POCIKE OMOTEAEGUOTO KOl Ol TPOTAGELS TOL
Tapovclaloviol TOGO GTNV TaPOoVca JONKTOPIKT dTplPr], 0G0 Kol GTIG ONUOGIEVGELS GE
EMGTNLOVIKA TEPLOSIKA KOl T TPOKTIKA S1e6vadV cuvedpimv vd kpion.

1. Biphoypagikny Avackonnon teyvik@v Mnyavikig Mdabnong ywo AvéOeon
Padwontéopmv oe 5G/B5G diktoa

>10 Kepdldoio 3, Kol GUYKEKPEVA TNV TTapdypopo 3.1.2, mapovcstalovtol GNUOVTIKEG
pébodor Peitiotonoinong yio RRM mpoPAnuoata oe oiktva 5G/B5G, ot omoio dev
ypnoporoovv ML. Eotialovtog ot amoTeAEGHATO OQVTOV TOV EPELVNTIKAOV TPOCTUHELDV,
dmeTOVOVTOL OpkeTol meplopiopol, mov Kabiotovv kaipia v ypnon ML oe RRM
npofuarto og 5G/B5G diktva. Zvykekpipéva, otig tepiocotepeg nepurtwoelc LTE (Long
Term Evolution) kot tpoyev 5G diktowv 1 Béomion g moAtikng RRM Bacileton otny
YVOGY GLYKEKPIUEVOV TOPAUETP®V, OT®G 01 GLVONKES TOL Kavoilov Kot TG QOS yia kdabe
&vav amd TOLG EVEPYOVG YPNOTEG TOV GLGTNLATOG. 26TOCO, AVTO deV Eival TAvVTA dHLVOTO GE
5G/B5G diktva 0dnydvTog o€ vroPértiotec Aboels. Tao HEIOVEKTAATO TG XPTOLLOTOINONG
étowoVv teyvikov RRM og 5G/B5G diktoa givar ta e€0g:

o O mepiocdtepeg and T un ML teyvikég mapéyovv AHGELG oL dev eivar KaBoAués.
O mapeyopeveg Aoelg oyetilovion og peyaio Pabuod pe v Tomroioyio TOL SIKTVOV,
TIG OMOALTNGELS KO TO YOPAKTNPLOTIKA TV Xpnotov. Etol, to RRM, yevikd, stvon Eva
TpOPANLa Tov yapaktnpileTon omd pun cvpuPatikdTnTo.

o Ot mopeydpeveg Aoelg evoéyetal va unv givon otobéoieg oe mpayuatikd ypdvo. Ta
oVYYXPOVO, OIKTLOL OCLPUATOV  EMKOIVOVIOV €£YOLV VYNAAL ENIMEdD  YPOVIKNG
petafintomroc. Mo BéEATioTn Abom 6e pia xpovikn otiyun dev givol €€ opiorov
BéATIOT Yo TV EMOUEVT).

e To acHpuato koviit dtddoong oe diktva SG/B5G yapaxtnpiletar amd moAlomiég
napePPorEc, Kot Toyoion LOVTEAD KIVNTIKOTNTOG XPNOTOV. XE AVTE TA GEVAPLA, 1)
pafnpotikn Sttdmmon Tov TpoPAHatog elval eEPETIKG SVGKOAN.
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Mo 6hovg avtodg Tovg Adyoug, mo amotedecpatikés RRM teyvikég Oa mpémer va
epapuolovionr Aopupdvoviog vwoOYty TOGO TNV LIOAOYIGTIKN TOAVTAOKATNTO OGO KOl TNV
amodoTIKOTNTO TV JIKTH®V. X 0VTO TO TAiG10, Tpoteivovian ot PiAtoypapio TeXVIKEG
RRM mov Baciloviow otmqv ML, ©¢ évag omoTeEAESHATIKOC TPOTOC OVTIUETMOMIONG TOV
TPOAVAPEPHEVTOV TEPLOPIGUAOV.

Metd ) ovykpitiky] pehétn g Piproypagiog oe oxéon pe m ypnon ML teyvikov yia
RRM npofAnuota oe 5G/B5G diktva, ta axkdAovbo cvumepdopata propodv va eEaydodv:

o Ot tepvikég  EmPremdpevng MabOnong  (Supervised  Learning)
YPNOUOTOIOVVTOL KVPIMG Yio TpoPAuata TpoPAeyNg SIKTLOK®V UETPIKDOV, OT®G O
pLOUOG d1EAeVONG, 0 AOYOG CNUATOG TPOG TOPEUPOAT], Ol ATMOAELEG dadpOouNnG, K.o.. H
TPOPAEYN TETOLMV HETPIK®V KpiveTon Kaipla yio TV avantuén arotedecuatikov RRM
alyopiOumv.

o O1 pébodotr Babiag Mabnong (Deep Learning — DL), Adyo ¢ wkavotTdg
tou¢ va g&ophocovy Pabid dedopéva Kot KPLUUEVEG CGLGYETICELS ETIKETOV, UECW
TOAMOTADV GOVOETOV KPLPAOV ETMEOWMV, YPNOLOTOOVVTOL KLPIwg g TpoPAnuata
KOTOVOUNG VIoQepOvTov, emthoyng otabuod Pdaong (Base Station — BS) 1 RN,
KOTOVOUNG 1oxvog Ko mpoPreyng kovorlov. H  molvmoapopetpikn ¢@Oon tov
npofAnuatog RRM kot ot cVuvBetol cLGKETIGHOT YOPAKTNPIGTIKOV TOL KOVOALOD
kafiotovv TIg Tposeyyicels DL w¢ Tov mo amoteheGHaTIKO TPOTO AVTILETOTIONG TOV
ouvolko¥ pofinuatoc RRM.

o Amo Vv GAAN mhevpd, n Mn EmPrenopevn Madnon (Unsupervised Learning)
eotdlel, yevikd, og mpoPANUATO OpadoToinong, OT®MG 1 OHOSOTOINCT XPNOTAOV, 1|
emhoyn BS 1 RN kot n dapdppmon tov emmédov QoS, é6cov apopd oto RRM.

o To povtéha Evioyvtikng Mdébnong (Reinforcement Learning — RL) givou mio
OMOTEAECUOTIKO OTNV OVIWETOTIGN TOL cLVOAIKOV RRM mpofinuotog, Adym g
KOVOTNTAG TOVG VO AAANAOETIOPOVV LE TO TEPPAALOV S1A00TG Kol Vo, BEATIGTOTOOVV
napopétpovg onme 1 EE ko n SE, péow dadoyikdv yopmv ekmaidcvone. e ovtd 10
mAaiclo, RL teyvikég, omwe n Q-learning, mpoteivovtat amd epguvntég o€ mpofAnuata
KOTOVOUNG VTOPEPOVIMV KOl EAAYIOTOTOINONG KATAVAAMONG EVEPYELOG.

o Télog, ot pébodot Kivntod Yroroyiopod (Mobile Edge Computing — MEC)
Kot Xvvepyotikng Mabnong (FL), mpoteivoval yio vo avTiet®nicovy 10 dHGKOAO
o g eAaiotomoinomg tov xpovov ekmaidevong tov ML povtéhov kot g
Beltiotonoinomg g xpMons TV VITOAOYIGTIKOV TOPMV. e avTd TO TANIG10, 01 LEBOdOL
MEC kot FL cuvévalovton gite pe adyopidpovg DL 1§ RL yia dtdpopa mpofAnpota mov
oyetiCoviar pe 10 RRM, 6mtmg 1 kotavour ¥pnotdv, 1 KOTOVOUT DITOPEPOVIMV KO 1|
emhoyn BS 1 RN. EmimAéov, ot puébodot FL pmopodv va cuvévactohv amoTeAesuaTikd
KOl HE OVERTUYHEVEC TEYVIKEG QLOWOD emmédov, Ommwg n NOMA «or ot
Avadiapopeodvpeves ‘E&umveg Emodveieg (Reconfigurable Intelligent Surfaces — RIS)
MGTE VO EVIOYLOOVY TEPAUTEP® 01 SVVATOTNTES TOV VTLAPYOVIOV SIKTVOV, OAAL Kot VoL
00N YooV TNV PETAP Ao TPOG THY VAOTOINoT SIKTVMV 6™ yevidg (6G).

2. MpoPreyn Tov pvOpov diérevong oe SG/B5G dikTva

H #wpoPreyn odiwktvokdv petpikdv oe odiktva 5SG/B5G elvar onupoavtikny ywo v
OTOTEAECUOTIKY OlaXEIPLoN TV O100EGIU®V pad1OTOPMV Ko TN BEATIGTOTOINGT TOV dIKTHOV,
KaODG LES® TG €EOPLVENG YVOONG EVIGYVETOL GNUAVTIKA 1) S1001KOGTI0 AYNG OTOPAGEDY TOL
oyetilovron pe 1o RRM. Me v akpin TpoPAreyn 1@V SIKTVOKOV PETPIKOV, OTOS 0 puOude
diélevong, M kobvotépnon, m PadloKAALYN, M WOYVG TOV CNUATOG K.Ol., EMLTLYYOVETOL
BeAtiotonoinon TtV TOPOV TOL JIKTVOL Kol ovTieTOTIlovTol TPOANTTIKE Tihovd
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TpoPAUAT, EVEO TOVTOYPOVA PTopovV vo BerTiobodv ta Tpocpaipdpeva enineda QOS kot
QoE.

e avutd to TAaiclo, oto Kepalaio 4, peletndnke n tpoPreyn tov puBuov diéhevong oe
5G/B5G diktva. Xpnouonombnke 10 obvoro dedouéveov LumossbG [158] mov mepiéyet
TapopETPOVG VAOTOMUEVEDY S5G dikTHmV amd T Mivesota tov HITA. Ta yapaktnplotikd Tov
TOPATAVE® GVVOAOL OESOUEVOV TEPIAAUPEVOVY TaPaUETPOVS TOTOBEGTOG Kot KIvNTIKOTNTOG
YPNOTOV (YE@YPAPIKO HNKOC, YEOYPAPIKO TAGTOC, TovTnTa Kol kKotevbvvor, amdctaon
xpNot-BS kot avrtiotouyeg ywvieg), Kabmg Kot SIKTLAKEG TAPAUETPOVS, OTME KOTACTOOT
OKTVOV (CLVOEDEUEVO 1 1)), TOPAUETPOVS KAVOALOD Kol 16YVOG onpatog O HETPOVUEVOG
pLOUGS dtéLevoT G KatepyOuevnc (evEng Aettovpyel ®G N LETOPANTY] AmOKPIONC.

To mopomdve wpofinua (mpdPreyn tov pvOuod oSiékevong oe SG/B5G  diktva)
ueketbnke 10060 ¢ mWPOPAnua tafivounong (classification) 6co ko ¢ TPOPANUQ
TaAvopounong (regression). I'a avtd to Adyo didpopor ML arydpibuot ypnoiporomOnkay
Kot 1) omddoon Tovg a&lohoyninke pe Pdon ML petpikéc 6mmg n opBOTHTA (accuracy) Kot to
F1-Score yio 10 mpdPAnua g tagvopnong, kot to pEGo TETPayvVIKO cediuo (Mean
Squared Error - MSE) kot to péco amdivto opdiua (Mean Absolute Error — MAE). Ta
aroteAéopato NG mopomdve avdilvong ocvvoyiloviar otov Ilivoka 1 (v wpofAnua
to&wvounong 2 M 3 taéemv) ko otov Ilivaka 2 (ywo mpoPinua maAvopounong), kot
avaAvoviot d1e€odikd oto Kepalaio 4.

4 r

ML \ 2-TdEer Xpovoc Exraidcve

AdyépiBpog
FENN 0.81 0.67 0.88 0.88 960.41
0.87 0.77 0.90 0.90 111.79
0.76 0.53 0.82 0.82 150.03
0.81 0.81 0.85 0.84 129.43

Iivoxag 0-1: A&ioAdynon ML oldyopiBuwv yio thv mpofiewn tov pobuod diédevons wg mpofinuo tolvounons

ML Algorithm MAE RMSE Xpoévog Exmaidogvong ()

278 353 1.05
162 257 50.61
278 354 28.54
237 328 6.89
150 250 276.89

Iivoxag 0-2: Acioloynon ML alyopiBucwv yia v mpofreyn tov ppluod diédevons wg mpofinua malivopounons

Ot mapandve ML alydpiBpot cuykpivovior kot pe dAleg mpooeyyicelg Tig Biioypapiog,
OOV TPOKVTTEL OTL 1 OOO0GT| TOVG £lvar ida 1] Ko KAADTEPT ad TNV ATdO0CT AVTIGTOTY WV
HOVTEA®V.

3. TomoBétnon ko Emioyn Koppov Avaperdadoong oe 5G/B5G diktoa péom
Ba0wdc kon BaBuag Evieyvtuciic MaOnong

Y10 Kepdlaio 5 pehetdtor 1o mpoPAnuo tng torofétmong kot emaoyng RN og 5G/B5G
diktva pe avantuén texvikov ML, pe époacn ot Babid kot v Babid Evieyvtikn pabnon.
H yprion RN eivon pio kovotdpog texvikn euoikol emumédov ot omoia PBpickel dwaitepn
epapuoyn oe diktvo 5G/B5G, kabdg pmopel va avEHGeEL TV Y®PNTIKOTNTO THG KAOE KOWEANG
™G Tomoloyiog, avEAvovVToac T0 GUVOAIKO aplBUd TV amodeyfEVTIOV YPNOTOV GE OVTNV.
[Tépav avtov, 1 ypnoyomoinon RNS eivar kot évag pn koctofopog tpdmog avénong v
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TEPLOYNG KAAVYNG TS KAOBe KLWEANC, KaBDS pmopodv va eEumnpetnBovv amopakpuouévol
YPNOTES YWPIG TNV TOPAAANAN £YKATAGTACT] VEOV oTaOU®V BAong 1 YevikoTtepa eE0TMTIOD
JKTVOV padompocfacns. AdYw TV Tapamdve Tpotepnudtov Tov RNS, 1 xprion touvg éxet
KEVIPIOEL 1010HTEPO  EVOLOQEPOV Y10 €QAPUOYEC  PeEATIOTOMOINONG TNG TAPUYMYIKNG
dwadikaciog, o Wwtikd 5G/B5G diktva oA kot og apvvtikd 5G cuothpata.

e Kepdiaio 5, a@OTOL TOPOLGIOGTEL 1| TAPOVCA KATAGTACT 01N O1Ebvn BipAoypapia
o6con agopd 1 xpnon ML texvikdv yuo v Bedtiotonoinon g Tomobétnong Kot ETAoyg
RN o¢ ovotquota 5G/B5G, mapovoidloviar kowvotoépor ML odyopiBuor yioo v
OVTILETMTION TOV TOPUTAVED TPOPANUATOV.

Yuykekpipéva, Oempovrog o 5G/B5G tonoloyia (6mwe avth g Ewkovag 0-1), vdpyovv
2 tpodmot va, eEummpetn el £vag ypnotng o omoiog {ntd vanpecio. Avtoli ivat:

o To mpwtevov cvoTRUA, TOV OTOTELEITAL 0O TO GVVOAO TV BS, Tov amotelodv
TIC OVIOTNTEG OV TOPEXOVV TPOCPACT] GTOVG YPNOTES Kot dtoyepilovion Tovg
TOPOLS TOV SIKTHOV.

o To ponOntiké cvoertyua, mov omoteleiton omd 10 cvvoro twv RN. Av évog
xpNotng oev umopet va eEumnpemBel amd 10 TPOTELOV GVGTNUA YL AOYOLG
peydlwv armiewmv diadoong (pathloss) N yio Adyovg e&dviinong tov Topmv TV
BS, 101¢ evepyomoteitan avtd 1o cvotnua. Kabe RN dpa cuvepyatwcd pe tov BS
GTOV OTO10 «OVOPEPETALY.

Macro BS

UE 3 - MANET \ x RN UE 4

—> Direct communication
-------- » RN- assisted communication

--------- Non 5G/B5G networking
Ewxéva 0-1: 5GIB5G emixorvawviee pe ypiion RN

Oepdvtag Aomov 0Tt TL KuyweAmTd cvompa araptifetor and M ctabpovg faong (BSS),
R RNs and N opowdpop@a Kotaveunuévoug xpnotes, to mpoPfinua ™ PéATiomg
tonoBétnong tov RNS éykettat oty emiloyn TV Negy YEOYPOUPIKDV GUVIETOYUEVDV (X, Y, Z)
v v tomofétnomn avtdv tov RN pe faon éva minog mbavav cuvtetaypuéveov RN 4y, OTOL
RN qn > Ncgy- H emhoyn ovtov tov Negy RN yiveton pe Bdon v eloyiotonoinon tov
ATOAELDV O1AO00NG, TNV EAOYLOTOTOINGN TNG EKTEUTOUEVNS 10YXVOG Yo KAOE amodeyBévtal
YPNOTN OAAG KOL TNV HEYIGTOTOINGN TNG YOPNTIKOTNTAG KAOE KOWEANG.

Me 1t ypnon evog nu-ctatikod tpocopotmt SG/B5G emmédov {evéng ko GLGTHATOG,
ONUovpyoLVTOL GLVOETIKA GVUVOAN OEOOUEVMV Yia TNV ekmaidevon DL aAdyopiBuwv pe otdyo
TNV ETIALGN TOL TAPOTAVE® TPOPANLATOS.
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Avo drapopeticég DL pébodot mpoteivovtan yio tnv entivon tov mapoamdve tpofAnpotod,
EVO Ko 01 2- a&toloyobvtal ota okdAovOa Gevapia:
o JXevapio 1. Ov mAnpogopiec tov kavaiod Oewpovvtor a Priori yvootéc, Kot
GVLYKEKPLUEVO O TTivoKog omokpicemv Tov kKavaitov (channel coefficient matrix).
o Jevipio 2. Aegv vmlpyel omoldToO¢ kopio TAnpogopio Yoo TIG cLVONKES TOV
KOVOALOV.

To de0TEPO HEPOG OWTOV TOV KEPOANIOL OCYOAEITOL PE TO TPOPANUA TNG ETAOYNG TOV
katdAinAov RN (a6 1o Negy mov eykotactdnkov pe faon 1o mpdto vronpdfAnue) o
diktva 5G/B5G.

H pobnpatikn datdmwon tov mopamdve mpoPAnuatog Poaciletor oty Ymapén dvo
SpopeTIk®V {eVEe®V TOV OpoLV TAPAAANAL Y10 TV EELINPETNON TOV YPNOTOV LECH TOV
BonOntikov cvotiuatoc. H mpotn givar n Levén peta&y tov BS kot tov ekdotote RN, evo n
devtepn eivar vty tov RN pe tov mpog e&umnpétnon ypnotrn. ZVvenms, ol ToPAUETPOL
EVOLPEPOVTOG, ONANOT Ol TAPAUETPOL HE PACT TNV UEYIGTOMOINGN T®V OMOI®V YyiveTal 1)
emhoyn tov katdAiniov RN ywo kabe yprotn, vroroyilovioar péow g veépbeong tov
TapopETpOV TV 000 Tapamave avefapmtov (edéewv. Ov mopduetpol avtoi sivor m
gvepyelokn kot pacpotikn anodotikotrta (EE, SE).

Mo v enilvon tov TpofAnuartog g emthoyng RN mapovcialetar oto Kepalaio 5 éva
Kowvotopo oynuo Babidac Evieoyvtikng Mdébnong (DRL) mov Baociletar otov adydpibpo Q-
Learning. To mpotevopevo DRL oyfua avaideton d1e&odikd otny mapdypago 5.4.2 ©610660
10 BACIKA TOL YOPUKTNPLOTIKA glvan Ta akdAovOa:

e Xpnowonotel po ovtdotTo mov ovoudaletor mpdkTopag Aoyiopkov (Software
agent) yio v covveyn aAANAETIOpaon Ue TO KOYEAWTO TEPPAALOV.

e O olyopBuog dpa ava KuyWEAN Kot ova xpnoT.

¢ H apywn xatdotacn tov alyopiBuov givar n toyaio emtdoyn RN yia tov exdotote
xpfhoT.

o Y& kdBe emduevo Prpa o alyopiBuog egetdlel dapopetikd dobéoya RN yio v
e€ummpémon avuTod Tov YPNOTI, XPNOLLOTOLDOVTIOS TOV TIVOKN GUGYETICEDY TOV
Kavaiiov, €o¢ 6tov Bpedeil to RN 10 omoio Pedtiotonotel tnv EE kot v SE yia
TOV VIO PEAETN XPNOTN.

e H ocepd tov RN mov Ba eEetactobv emAéyetat e TN ¥PNOT| VELPOVIKOV SIKTOM®V,
SLUPOPETIKDV Y10 KAOE KLWEAN.

e 211 GUVEYELN, EVEPYOTOIEITOL O UNYOVIGHOG EAEYYOL TN cvvolkng EE kot SE tov
OLGTNWOTOG, O Omoiog &ivar vmevBLVOC Y TNV €miTELEN NG TAVTOYPOVNG
peytotonoinong tov enmédmv EE kot SE yia 1o 6hvoro tng kuyeMKng TomoAoyiog.

H oa&oloynon tmg amddoong tev mopamdve TPoTevOUeEVeV oAyopifumv yio v
tonoBétnon kor emioyn RN oe 5G/B5G diktvo mpoyuatonomdnke yioo £va KoyeAmto
cvoTuo 0v0 (2) mepipepetmv (tiers) kuyeddv -kat dpa dexagvvéa (19) kuyeddv- kat eiye ®¢
KOPLOL ATOTEAECLOTOL TOL TTOPAKATO:

e H mpotewvopeveg DL pébodotl yro v Bertiotomoinon g torobétnong twv RN
umopovyv va Bedtudcovv tn cvvoliky] EE kot ™ avtictoym SE tov cuvotipartog
¢w¢ kot 30%, oe chykpion pe Tpoceatovs aryopifuovg Bedtiotomoinong mov ogv
ypnooroovv ML.

e 270 TOPATAV® CVOTNUA, 0TV gvepyomotndel kot to povtédo Babidg Evioyvtikng
Mabnong yw v emhoyn RN, 161e 1 suvolikn EE tov cvotipotog Bertidoveton
¢m¢ ko 80% og oxéon pe TV €MIBO0T TOV GLGTHLATOG OV XPNCILOTOLEL LOVO TOV
alyopiBpuo yio v tomoféton tov RN. H avtictoym Bertioon ywo v SE puropet
va eTaoelg £mg Kot 1o 75%.
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¢ H ocvuvoAik] vTOAOYIGTIKY] TOAVTAOKOTNTA KOl O GUVOAMKOG YPOVOG EKTOIOEVONG
BeATidveTon AVTIGTOlY®G GE GYEOT LLE TPOGEYYITELS TTOL dev ypnoyomotovy ML.

4. Xopnepaopora kot [lpoektdaoeig

Yvvoyilovtog, otnv mopovoa SdaKTopiky dlatpiPn peiethdnke kot avoivdnke deEoducd
pio TAN0dpa BEPATOV KOTOVOUNG POOIOTOPMOV LE AVATTLEN OAYOPIOU®V Ny oviKng pabnong.
Evtonilovtog ta kevad otnv dtabéoyun Birprtoypagio kot a&lomoidviog chyypoveg TexVoroyieg
TNAETIKOWVOVIDV, Kol QLUGIKA TOALES dlapopetikés ML texvikéc, otnv tpéyovca epyacio
TPOTEIVOVE EVa TANPEG Kol TPOTOTOPLOKO TAAIGLO Yio TNV Stayeipion padlondpwv Kot TNV
Beltiotonoinomn thg 0mddoong v achpuotmyv diktiwv SG/B5G. Baoikéc katevbivoelc otny
eniAvon Tov Vo e€étacn TPOPANUATOV ATOTEAODV 1 EVEPYELOKT] ATOOOTIKOTNTA, 1| fEATi®OON
NG TOWOTNTOG VAINPEGING, KOl 1) av&nom TG KOvVomoinong ToV avoyKOV TV YpNoToV,
TpowbdvVTag €Tl €var dEdOUEVOKEVIPIKO cOOTUO Yoo TNV avdbeon Tov dwbiciuwmv
TEMEPUAGUEVOV TOP®V TV OKTO®V. [Tapdiinia, épeacn dlvetar oty ypnowonoinon RN,
®¢ pa Teyvoroyia ayung yio tnv avénom g meployns kaivyng o 5G/B5G diktva ympic
TOVTOYPOVN ENCN TOV KOGTOVC.

O av&avopevoc apOpuog ypnotov, n amaitnomn yio palikn Kot GUEST) GLVOEGILOTNTO, KOt
1 S14BE0T] TOALATADY VINPESLOV LLE VYNAES TPOSAYPOUPES MG TPOG TOV OYKO OEOOUEVAOV KOl
ol véeg katnyopieg epappoymdv mov Ba dadpapaticovv onuoviikd porlo oto B5G diktua,
avadekvoouy toug ML alyopiBuovg mov mapovoidloviar otnv mopovca SO0KTOPIKN
STpiPn] ©¢ pio TOAAG VTOGYOUEVT TPOGEYYIOT] TOCO Yo TNV dtayeipion Tov dbéoiuwmy
TOPWV TOL SKTVOV, 660 Kot Yo TNV avdoeltn tov RN og pa teyvoroyio aryung pe opifovia
TNV TPOTVTOTOINGT TV dIKTVWV 6G.

Emumiéov, ot mpocopoidoelg mov deéniydnoav pe v xpnon tov nui-otatikod MATLAB
npocopolmt 5G/B5G emmédov (evéNe Kot GVOTAUATOC OTOSEIKVOOVV TO, EUTPOKTO OPEAN
TOV TPOTAGEMV TG TOPOVGAS HOAKTOPIKNG OaTPPr|g G TPOG TNV SNUAVTIKY BEATiOON TV
YOPOKTNPIOTIKAOV TNG AEITOVPYIOG TOL  OIKTOOL (). EVEPYEWONKN KOU  (POGLOTIKN
amodoTKOTNTA, 0HENCT TV PLOUMV HETAdOONG Kot TV EEVTNPETOVUEVOV XPNOTMV), AAAG
KOl TNG VTOAOYIOTIKNG TOALTAOKOTNTAG, M omoio &ivor Kaiplog onpoaciag 660 ot
VTOAOYIOTIKEG dLadKacies Tetvouy va dtadpapatiCoviotl oTa GKpo ToOL SIKTVOV.

Ocov agopd oTIG UEAOVTIKEG TPOEKTACELS TNG TOPOVCHG OOUKTOPIKNG OoTpIPNg,
KptveTon TOAD onuovtikn 1 epappoyn avtictoywv ML adyopiBuwv yo tpofinuata RRM
o€ 6G dikTva OTOoL YiveTal ETIGNE ¥PNOT VEOV TEYVOAOYLOV PVCIKOV ETTESOL Y10 TNV KAALYN
TOV OVAYKOV TV VEOV KATNYOPLOV £Qoppoydv mpog eéummpémmon. To Kepdlaio 6
TaPOLGLALEL KO OVOAVEL GUVOTTIKG S1APOPES TEYVOLOYiES OV Bl Exovv Kaipto poro ota 6G
dikroa.

Téhog, N Ttapovoa ddaxtopikn dtatpPn dabétel OAa ekeliva TO YOPAKTPLOTIKA TO OTTOLN
EMTPENTOVY TNV TPOGUPLOYN TNG YO TNV EMIAVOT TPOPANUATOV dlaXelplomNg KOl KATOVOUNG
TOP®V GE OLUPOPETIKOVG TOUEIS, Ol ATOKAEIGTIKA EVIOC TOL KAAOOV TMV TNAETIKOWVOVIDV
oAMG kol oe GAAo medla oto omoio Ol YPNOTEG OAANAOETIOPOVV KOl OVIOUAAACCOVV
nAnpogopiec. Evoewktikd, kdmotol kAdool epappoymv 6mov o umopodcoe va yiver ypnon
TAPOUOI®Y -QLGIKE Tpocsappocuévav- ML mpoceyyicemv eivar ta diktva peTOQOPOV,
HETASOONC NAEKTPIKNG EVEPYELNG KOL 1) TUTPIKT] LNYOVIKN.
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Preface

Within the framework of the present thesis, the utilization of novel Machine Learning (ML)
algorithms has been studied as an effective tool to deal with various Radio Resource
Management (RRM) problems in 5" generation (5G) and Beyond Networks (B5G). The
proposed novel ML frameworks, spanned into different types of learning, are built and
evaluated to deal with different RRM-related sub-problems, such as subcarrier allocation,
Base Station (BS) or Relay Node (RN) placement and selection. A key observation is that
different types of learning are witnessing the best-performance when applied to different
RRM-related subproblems. As far as evaluation procedures, all the ML algorithms that have
been deployed as part of this thesis, are evaluated in two phases regarding Key Performance
Indicators (KPIs). These are:

e ML KPIs, where the maximization of metrics such as accuracy, fl-score,
precision, recall, etc., is investigated. In fact, when having a dataset, the first level of
evaluation of an implemented ML model considers, after splitting it on training and
test sets, the performance of the aforementioned metric and the comparison of them
with other recent approaches that can be found on the literature.

e Network KPIs, where metrics such as achieved throughput, total number of
accepted users, Signal-to-noise-plus-interference-ratio (SNIR), energy efficiency
(EE) and spectral efficiency (SE) are of interest. By evaluating the performance of the
overall 5G/B5G systems’, after the standalone evaluation of the ML KPIs, the
effectiveness or not of the implemented ML algorithms is identified. In fact, if a ML
method does not improves the performance of a 5G/B5G system, based on the
evaluation of one or more of the aforementioned KPIs, then this method is declared as
ineffective even though it’s performance in the ML KPIs evaluation is satisfactory.

Concerning all the above, this thesis acts towards the direction of implementing an end-to-
end data-driven ML framework so that different physical layer RRM tasks (e.g., KPI
prediction, subcarrier allocation, RN placement and selection) can be optimized with, also,
respect to the computational complexity degradation compared to existing non-ML
optimization techniques.

Firstly, a comprehensive literature review is performed to list all the recent research efforts
on the field of ML utilization for RRM-related problems in 5G/B5G networks. The analysis
of the review is performed based on the type of learning (e.g. Supervised, Unsupervised,
Reinforcement). By doing so, conclusions are reached as which ML types are suitable for the
different RRM sub-problems.

Afterward, different ML frameworks are proposed for three main RRM sub-problems.
These are the following:

e KPI prediction: In this case a comparative analysis of different ML models is
performed focusing on Supervised and Deep Learning (DL) ones. Throughput is
selected as the KPI of interest and evaluation is performed both concerning the
achieved accuracy and f1-score of the implemented models, and the training time for
each model. It is significant to note that the aforementioned models are evaluated not
only using public datasets, but also, with datasets generated from the lab’s MATLAB
5G/B5G networks’ link and system level simulator.

e RN placement: As relaying is a key enabling technology in 5G/B5G, the
optimal placement of RNs in each cell’s coverage area is of high interest. For this
purpose, using datasets generated from the lab’s 5G/B5G network simulator, two
different DL models have been designed and evaluated. The evaluation of this models
concerns the comparison with state-of-the-art non-ML RN placement approaches.
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However, due to the distributed nature of the 5G/B5G environment nowadays and the
requirements for ultra-low latency communications, a Federated Learning (FL)
framework for RN placement is, also, proposed and compared with the
aforementioned centralized approaches.

e RN selection: Additively to RN placement, a key RRM problem in 5G/B5G
networks is the selection of the best performing RN among the available ones to serve
each user that cannot be served be the relevant BS. This RRM problems is declared as
a really challenging one (categorized as NP-Hard problem), and, thus, traditional ML
techniques cannot achieve good performance. For this purposed, a Deep
Reinforcement Learning (RL) (Deep Q-learning) framework is proposed based on the
maximization of both EE and SE both for the user under test, but also, additively for
all the 5G/B5G system.

The rest of the thesis is organized as follows, as also depicted in Fig. 1:

1. Chapter 1 presents an overview on 5G/B5G cellular systems. The evolution of
cellular systems through the years are briefly discussed in order to highlight the reason
that led the research in 5G/B5 cellular system design. Moreover, the key performance
and user requirements, which are extended compared to previous cellular networks
generations, are presented according to 3GPP regulations. To finish with this chapter,
the enabling physical layer technologies for 5G/B5G networks, which are also
discussed and utilized throughout the whole thesis, are introduces. In this context,
massive Multiple-Input-Multiple-Output (m-MIMQ) antenna orientations, Non-
Orthogonal Multiple Access (NOMA), RNs and 5G Sidelink and Reconfigurable
Intelligent Surfaces are discussed. This chapter ends with the presentation of the 3GPP
standardization activities plan toward 6™ generation (6G) networks establishment.

2. In Chapter 2, ML and DL principles are introduced, as well as the different
types of ML. Afterwards, as the need for big datasets in different RRM tasks in
5G/B5G networks is growing, the focus is on DL. Moreover, distributed learning
frameworks as FL and Mobile Edge Computing (MEC) are, also, introduced as the
need for fast responses and ultra-low latency communications is critical in 5G/B5G
communications.

3. Chapter 3 focuses on the effective ways that ML and DL can be used for the
optimization of different RRM-related physical layer tasks in 5G/B5G networks. The
RRM problem is formulated and traditional optimization techniques are presented.
Afterwards, a detailed literature review of the state-of-the-art research works on the
field of ML-enabled RRM is performed. Key outcomes, such as the dataset
unavailability for these problems are, also, discussed. To tackle this challenges the last
part of this chapter focuses on the implemented MATLAB link and system level
5G/B5G network simulator, which is hosted in Intelligent Communications and
Broadband Networks Laboratory (ICBNet) premises at NTUA. This simulator is
extensively used in this thesis for both dataset generation and models evaluation based
on networks KPIs.

4. Chapter 4 focuses on the problem of KPI prediction in 5G/B5G network using
ML/DL models. This thesis focuses on throughput prediction as an indicative case,
due to the fact that this metric is one of the key ones when discussing performance of
a cellular network. In this framework, different ML/DL algorithms are putted under
test, and, thus, the results and the comparative analysis of the performance are
discussed. Finally, outcomes and guidelines are retrieved.

5. Chapter 5 proposes the development of ML/DL/RL algorithms of the key
RRM problems of RN placement and selection in 5G/B5G networks. Firstly, the
relevant literature on the field is presented. Afterwards, two novel DL algorithms for
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RN Placement are proposed and evaluated compared to existing non-ML approaches.
However, due to the requirement for a flexible decentralized network with lots of
different core network (CN) and Random Access Network (RAN) components in
5G/B5G, a decentralised FL framework is, also, proposed and evaluated for RN
placement. Finally, the problem of RN selection is formulated and a novel deep RL
(DLR), deep Q-learning, schemes is proposed and analysed, which focuse on the
continuous optimization of both EE and SE.

6. Chapter 6 summarizes the conclusions and the contributions of the thesis and
reflects on next steps and future research directions.

7. Appendix A presents the publications that are part of this thesis, as well as the
reached citations from third parties until now.

1. Overview of 5G and

B5G cellular networks

2. Machine and Deep
Learning Principles for 5G/
B5G Networks

3. ML-based Radio

Resource Management in
5G/B5G networks

4. KPI prediction with
Supervised and Deep
Learning Techniques

5. Relay Node Placement
and Selection in 5G/B5G

Networks

6. Conclusions and Future
Work

Appendix A

Figure 0-1: Thesis Overview
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Chapter 1: Overview of 5G and B5G cellular networks

In this chapter the progress in the domain of cellular networks is introduced, focusing on
5G/B5G systems. In this framework, the user and performance requirements of 5G/B5G
networks are discussed, as well as the enabling technologies that can support them. In
paragraph 1.1 the evolution of wireless communication’s networks starting from the early
wireless communication systems, till the forthcoming 6G ones. Paragraph 1.2 discusses the
5G/B5G network’s performance and user requirements. Paragraph 1.3 briefly introduces the
technologies that are the key enablers of the 5G/B5G network’s advantages to support the
aforementioned extended requirements. In this framework, m-MIMO antenna orientations,
NOMA schemes, RNs and 5G sidelink and Reconfigurable Intelligent Surfaces (RIS) are
discussed. Finally, paragraph 1.4 presents the 3GPP standardization activities towards the full
deployment of 6G networks.
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1.1 The Evolution of wireless communications networks (0G-6G)

The first globally used communication systems (excluding military systems, which are
estimated to have been released earlier without clear evidence) were employed by 252 police
departments in the United States and approximately 5,000 police vehicles in 1934 for public
safety purposes. These systems utilized amplitude modulation. From the following year and
the introduction of frequency modulation by Edwin Armstrong, all mobile communication
systems are based on that technique. The precursor to cellular communication systems is the
0G (Zero Generation) technology. Its initial name was Mobile Radio Telephone, and it first
appeared in 1946 in the United States as a collaboration between Motorola and Bell System.
BSs were installed in 25 cities in the US, each with a coverage area of 50 km. The evolution
of these networks included 0.5G networks and first-generation (1G) networks, which, despite
continuous improvements compared to their predecessors, maintained analog signal
processing in transceivers. A milestone for the development of cellular communication
systems is the year 1979 when the first cellular system in Japan operated by Nippon Telephone
and Telegraph. From that time onwards, there has been a vertical development in the
aforementioned technologies, with a new generation of cellular systems being established
approximately every 10 to 15 years. Thus, in 1988, the European Telecommunications
Standards Institute (ETSI) designed GSM, the most significant second-generation network,
which served 74% of the global mobile communication market until 2013. In the early 21st
century, we entered the packet switching era with third-generation (3G) networks, which had
been under research since 1980, and raised transmission rates to 2 Mbps, constituting 16% of
the global market to date. After the full implementation of 3G, research began for the fourth
generation (4G) of cellular systems. Its establishment began in March 2008 when the
International Telecommunication Union-Radiocommunication Sector (ITU-R) defined a set
of requirements for the 4G standards under the name IMT-Advanced. In contrast to previous
generations, while the transition from 2G to 3G was as simple as changing SIM cards, mobile
devices needed to be specifically designed to support 4G, as 4G does not support traditional
circuit-switched telephony but rather IP-based communication, such as IP telephony. The
pioneering technologies introduced by 4G are orthogonal frequency-division multiple access
(OFDMA), frequency-domain equalization, and MIMO techniques. The aforementioned
technologies, also, formed the basis of the fifth generation (5G) of (cellular) communication
networks. Therefore, 5G pertains to the most advanced wireless network technologies. It
utilizes millimeter-wave (mmWave) bands that offer performance of up to 20 gigabits per
second and m-MIMO, which provides throughput levels up to ten times faster than 4G. It is
of significant importance to note that in the aforementioned historical and conceptual
approach, the development and implementation of new generations of networks are not static,
and the new networks do not replace the old ones as isolated components. There is
compatibility and direct dependence on previous and subsequent technologies. Thus, the
terms evolution and compatibility are intertwined and form a unified whole for wireless
communications. However, some more emphasis should be given 5G and 6™ generation (6G)
networks and the technologies they employ, as they signify the domain of the present thesis.

In recent days, the ever increasing demands for increased data rates and the enormous
volume of data traffic have highlighted the need for a new generation of mobile
communication networks. This generation (5G), after several years of research and testing,
has been deployed in the majority of the countries around the world. With the rapid growth
of the Internet of Things (IoT), industry 4.0, augmented/virtual reality (AR/VR) applications,
massive data volume is generated by end-user devices. In fact, according to CISCO [1], the
monthly data demand will reach 100 exabytes with about 31.6 billion connected devices by
2023, thus doubling the current requirements. Moreover, I0T and connected car applications
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are expected to be the most growing application type. Fifth-generation networks (5G), which
have been recently deployed around the world, support a wide range of trending applications
by categorizing them in different usage scenarios. The ultimate goal is for 5G networks to
operate based on the IPv6 protocol, providing unrestricted access to information and the
ability to share data anywhere and by anyone with respect to Quality of Service (QoS), Quality
of Experience (QoE), EE and SE requirements. Thus, an end-to-end wireless world, which
supports the vision for a Worldwide Wireless Web (WWWW), can be fulfilled. Therefore,
the primary objectives of 5G are to provide immense capacity and connectivity, and to deliver
truly real-time multimedia applications instantly available across the globe. However, all of
the above should be accompanied by the highest possible protection and quality of service
(Q0S). The key attributes of 5G networks are the following [2]:

e Less traffic, low cost, bidirectional bandwidth
Global availability
Software Defined Networking
Connectivity up to 25Mbps
More than 1GB bandwidth
Supporting virtual private networking and Network Slicing
Remote diagnostics
Adaptive modulation techniques

e Artificial Intelligence (Al) and ML utilization

However, despite the numerous benefits of 5G networks, the large amount of generated
data and the need for real-time responses by the network itself have raised the discussion in
both industry and academia over a new generation of wireless networks, the 6G. The main
goal of 6G networks, as described in [3], is to provide the relevant technologies that can
transform the “connected things” world (as expressed by the 5G-related worldwide wireless
web (WWWW) and the service-based architecture (SBA) model) into the “connected
intelligence” world by implementing data-aided models for diverse tasks, applications, and
Open Systems Interconnection (OSI) levels.

Itis already visible that to achieve the aforementioned revolution, user requirements should
be even stricter than the current 5G ones. As depicted in both [3] and [4], these extended
requirements are expected to be the following:

e Increased data rates around 1 Thps.

e EE asthe primary KPI to support dense connections and mass connectivity for
energy/battery-saving 10T devices and Unmanned ground, air, surface or undersea
Vehicles (UxVs).

e Enhanced low latency which is translated in less than 1ms end-to-end latency.

e  Upper mmWave communication bands and Terahertz bands (e.g., 73GHz-
140GHz and 1THz-3THz).

e Increased coverage by minimizing the disconnection probability.

e End-to-end Al and ML capabilities.
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Figure 0-1: Wireless Communications Networks' evolution (1G-5G)

1.2 5G and 6G networks’ Performance Requirements

The development of 5G wireless broadband networks has significantly accelerated in
recent years and is globally in the stage of installation and network infrastructure deployment,
with many mobile service providers already offering devices (such as mobile phones, tablets,
chips, etc.) that support these specific networks. According to CISCO studies [2] (see Figure
1-2), monthly data demand is projected to reach 100 exabytes, with approximately 31.6 billion
active devices by 2023, doubling the current requirements. In this context, the need for
optimal solutions in network management and distribution of available radio resources
becomes evident.
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= Latin America (LATAM) (43% CAGR) = Central and Eastern Europe (CEE) (41% CAGR)
Western Europe (WE) (38% CAGR) = Middle East and Africa (MEA) (56% CAGR)
» North America (NA) (36% CAGR) = Asia Pacific (APAC) (49% CAGR)
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Figure 0-2: Data traffic prediction 2018-2023[2] (a) Overall, (b) per device type, (c) per location
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It is evident, therefore, that 5G ensures and enhances the availability of existing and new
demanding applications and services, such as vehicle-to-vehicle (V2V) communications,
device-to-device (D2D) communications, machine-to-machine (M2M) communications, and
the Internet of Things (10T). According to the International Telecommunications Union (ITU)
(see Figure 1-3), the performance requirements of 5G networks are categorized as follows:

e Enhanced Mobile Broadband (eMBB): High-speed wireless communication
for broadcast-like services (ITU MIT-2020 specification) Applications: HD videos,
AR/VR applications, 3D online gaming

e Ultra-Reliable Low-Latency Communications (URLLC): Extremely reliable
and low-latency communications Applications: Critical scenarios (telemedicine,
natural disasters), V2V, M2M, autonomous networks (robotics applications)

e Machine-to-Machine (M2M) communications Applications: Increased
connectivity of 10T devices and the development of corresponding networks and
applications

5G Usage Scenarios

Enhanced Mobile Broadband

Gigabits in a second
3D Video, UHD screens

Smart Home/Building Work and play in the cloud

Augmented Reality

Industry Automation

Voice

Mission critical application

Smart City
Self Driving Car
Massive Machine Type Ultra-reliable and Low Latency
Communications Communications

Figure 0-3: Performance Requirements and 5G usage scenarios, Source: ITU

Thus, 5G networks are required to adequately meet the aforementioned requirements,
which can be summarized in terms of network metrics as high throughput and connection
density in environments with high terminal device mobility, subject to the maintenance or
even improvement of the high levels of QoS and QoE for the served users (see also Table 1-
1).

Use cases Requirements Desired value(s)
Autonomous Latency/availability/reliability 5 ms/99.999%/99.999%
Vehicle Control

Emergency Availability/energy efficiency 99.999%/1 week battery
communication life

Factory Latency/reliability 1 ms/>10-9 packet loss
automation

High-speed Traffic DL 100Gbps/km2/50
train density/throughput/mobility/latency Mbps/and UL
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50Gbps/km2/100 Mbps/
500 kmph/10 ms

Large outdoor | Throughput/density/reliability 300 Mbps/4 devices/

event km2/Out. Prob. < 1%

Massive user Density/availability/energy efficiency 1M

terminals devices/km2/99.9%/10-
year battery life

Media on Throughput/latency/density/availability 15 Mbps/ 200 ms/4000

demand devices/ km2/95%
coverage

Remote Latency/reliability 1 ms/99.999%

surgery

Shopping mall | Throughput/availability/reliability 300Mbps (DL) 60Mbps
(UL)/95%/95%

Smart city Throughput/density 300Mbps (DL) 60Mbps
(UL)/200000 devices/km2

Stadium Throughput/density 0.3-20 Mbps/0.1-10
Mbps/km2

Smart grids Latency/reliability 8 ms/99.999%

Traffic jam Density/throughput/availability 480 Gbps/km2/100Mbps
(DL) 20Mbps (UL)/95%

AR/VR Latency/throughput <7 ms/4-8 Gbps

Broadband to | Density 4000 devices/km2 or

the home 80Gbps km2

Table 0-1: Detailed Description of 5G Requirements per Use Case, Source: Ericsson

However, 6G networks are set to extend eve more the aforementioned 5G requirements

due to the even more enhanced capabilities that they will bring to support the even extended
user requirements. It is significant to point out that 6G standardization is in its early phases
currently and the expected IMT-2030 regulation is to set all the 6G-relevant requirements and
use cases. However, the need for new service types beyond the 5G ones (eMBB, uRLLC,
mMTC) has been identified. As described in [3] and [4] these are:

e Computation Oriented Communications (COC), where distributed and in-
network computation enabled by federated learning and edge intelligence, will
provide the relevant service provisioning, and define the quality of service (QoS)
flows to maximize also computational accuracy.

e Contextually Agile eMBB Communications (CAeC), which extends 5G
eMBB to be more agile and adaptive to the network environment, the physical
environment, and the social environment.

e Event Defined uRLLC (EDuURLLC), where 5G uRLLC is extended to
support URLLC in extreme or emergency scenarios where user density, traffic
patterns, mobility models and spectrum availability is dynamically changing
(opposite to 5G, where uURLLC is performed in static environment conditions).

1.3 Enabling Physical Layer Technologies for 5G/B5G Networks

In this paragraph the key enabling PHY technologies that are of significant interest
concerning 5G/B5G networks are briefly introduced. In this framework sub-paragraph 1.3.1
focuses on m-MIMO orientations, sub-paragraph 1.3.2 introduced NOMA, sup-paragraph
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1.3.3 presents Relay Nodes and 5G sidelink communications, while sub-paragraph 1.3.4
introduces Reconfigurable Intelligent Surfaces (RIS).

1.3.1 Millimeter Wave transmission

As we have mentioned before, the 5G/B5G ecosystems are based on the latency, capacity
and throughput requirements that IMT-2020 has established. In order to meet these increased
demands in terms of the above metrics, 5G/B5G systems make extensive use of more
frequency bands than the previous generation systems (e.g., 4G).

Until now, modern era communication systems are operating in the UHF (Ultra Hugh
Frequency Band) band. This spectrum zone is called centimeter Waves (cmWaves) and
contain frequencies from 300 to 3,000 MHz (1-0.1 m). The mmWaves concern the EHF
(Extremely Hugh Frequency Band) that lies between 30 and 300 GHz (1-10 nm). Although
research interest in that areas, are expressed in lower bands (above 6 GHz) [5]. In Figure 3,
the operation bands of 5G are displayed.

oo

and Frequencies
1-2GHz
2—-3GHz

3 -4 GHz

4 -6 GHz

6 —8 GHz

8 —10 GHz
10-12,4 GHz
u 12,4 — 18 GHz
18 — 20 GHz
20 — 26,5 GHz
a 26,5 —40 GHz

Table 0-2: The mmWave spectrum

AAAARXXOO®OnIr

The high demand and scientific interest in that field comes from the criteria of low latency,
huge capacity and extremely throughput that the 5G (and Beyond) require.

One major issue for these bands is the existence of many physical (PHY) layer challenges.
These challenges concern about high propagation loss, directivity, sensitivity to blockage and
dynamics due to mobility of UE’s given the enhanced coverage area [6].

These challenges are not so visible in the satellite and P2P (point-to-point) backhaul
communications that have not such requirements of a lot of user coexistence in an area. In
these areas these frequency band have been used from years before. Although, these
challenges -during the past- made impractical the use mmWaves in cellural
telecommunication networks. Nowadays, the overcoming of these limitations came from the
antenna theory and RF design. High-gain, directional and spread spectrum antennas have been
developed. In that way, high level of throughput can be established, despite the simultaneous
presence of a variety of users in the coverage area’s macro or nano-cells [7], [8].

1.3.2 Massive Multiple-Input-Multiple Output Antenna Orientations
MIMO antenna orientations consist of antenna arrays with multiple elements both at the

transmitter and receiver ends. These systems belong to the broader category of smart or
adaptive antennas, where multiple antennas are combined with advanced signal processing
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and analysis techniques to increase the capacity of the wireless channels by exploiting the
phenomenon of multipath propagation that characterizes wireless communication links. It is
crucial to note that the term "input" refers to the transmitting antennas, i.e., the input to the
system via the transmitter, while the term "output™ refers to the receiving antennas - the
terminal equipment of the receiver. The significance and wide acceptance of MIMO systems
lie in the fact that they greatly increase the system's capacity by offering significant diversity
gains and/or multiplexing gains without increasing the utilized bandwidth or the transmission
power.

LTE technologies (especially the mmWaves) have established the need of using antenna
systems that allow to a large number of users to be served at the same time. The 4G-LTE
systems use MIMO antennas (with 2 or 4 elements) in order to achieve peak data rates of the
order of 1000 Mbps for the downlink and 500 Mbps for the uplink.

The need of combination between mmWaves and MIMO systems can be shown by the
application of Friis’ equation for free space losses, in GHz frequencies. By doing this we
observe that given an average steady distance between transmitter and receiver, the signal
power is 1000 times reduced compared with the current 4G-LTE signals [9]. The solution is
to use ultra-directional antennas with dimensions relevant to millimeters. In other words the
coexistence of beamforming techniques and MIMO antennas, which pack a huge number of
elements onto a small cell, compensate the high levels of attenuation give the above approach
[10].

According that framework, 5G New Radio, introduced the concept of massive MIMO (m-
MIMO), which - as the name implies - includes the application of MIMO technology on a
much larger scale for greater coverage and network capacity. m-MIMO uses many more
transmitting and receiving antennas to increase transmission gain and spectral capacity. In 5G
cellular networks, multi-user (MU) MIMO systems are used. There are also SU-MIMO
systems and baseband MIMO systems, which are used commonly in the backhaul of the
telecommunication networks. In Fig. 1-4 a typical multi-user (MU-MIMO) system can be
shown.

Although no specific minimum number of antennas is required to implement m-MIMO,
the generally accepted limit for a system is eight (or more) transmitting and eight (or more)
receiving antennas. The latest research attempts in the R&D field extended the antenna
elements to dozens or even hundreds of them.

We should also highlight some key characteristics of the (Massive) MIMO Systems:

e Aswe highlighted this technologies uses many more antennas than the number
of UEs in the cell. In that case the beam is much narrower, allowing the base station
to deliver RF power to the UE with greater accuracy and efficiency. The phase and
gain of the antenna are controlled separately, with the channel information remaining
at the base station, simplifying the UE without adding multiple receiver antennas.
Installing a large number of base station antennas will increase the signal-to-noise
ratio in the cell, leading to higher capacitance and cell position efficiency. Since the
huge MIMO 5G application is in mmWave frequencies, the required antennas are
small and easy to install and maintain [11].

e However, for RF engineers, MIMO and beamforming at mmWave spectrum
insert many new challenges. The 5G NR standards provide to the physical framework
framework structure, a new benchmark and new transmission modes to support 5G
enhanced (Embb) mobile data rates. Designers need to understand 3D beam patterns
and ensure that the beams can be connected to the base station and offer the desired
performance, reliability and user experience.

e To implement MIMO and configure the structure on 5G base stations,
designers must carefully select hardware and software tools to simulate, design, and
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test highly sophisticated systems containing dozens or even hundreds of antenna
components. Engineers will use active phase array antennas to implement MIMO and
beam configuration on base stations and devices. Not only are active antennas
necessary to overcome signal propagation issues, such as higher path loss at mmWave,
but they also provide dynamic configuration and beam guidance to specific users.
Active antennas offer more flexibility and improve the performance of 5G
communications.

e On the other hand, the development of active phase antennas in commercial
wireless communications represents a significant change from the passive antennas
used in previous generations. MIMO and beamforming technologies increase capacity
and coverage in a cell. For 5G devices and base stations, multi-antenna techniques
require support in many frequency bands - from sub-6 GHz to mmWave - and in many
scenarios, including huge 10T connections and extreme data performance.

e Radar and satellite communications for aerospace and defense have long used
active phase antennas, but these antenna arrays tend to be large and very expensive.
Applying this technology to commercial wireless - where antenna arrays should be
much smaller and less expensive - introduces many new challenges. There is a long
list of required 3GPP tests for base stations, including transmitter tests and radiation
receiver tests. Depending on the configuration of the base station, some FR1 tests
require radiation tests and all FR2 tests require radiation tests.

e Almost all 5G MIMO tests require over-the-air (OTA) testing. Early in
development, OTA test solutions should characterize 3D beam performance across
antenna bandwidth, including aspects such as antenna gain, sidelobe, and zero depth
for full bandwidth and 5G bandwidth.

........ > Uplink
~—> Downlink
UE 5
ey
'//‘.:‘ ‘Y\"y
V1 / 3\
o> x
- o)
UE2 -

Figure 0-4: MU-MIMO system

To conclude this section it is crucial o dive into the basic theory of MIMO systems. If we
assume a static channel in an N; x N, MIMO system as depicted in Fig. 1-5, where N, is the
number of transmitting antennas and N,. is the number or receiving ones, with ideal channel
conditions and constant response or flat-fading channel, the output can be described by the
equation:

y=HXs+ n(l)
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where s = [s;...sy,]" is the vector of N, transmit signals, y = [y;...yy, ]" is the vector
of N, receiving signals,andn = [n;...ny_]" is the noise vector consisting of N, independent
elements (corresponding to the receive antennas), which can be modeled as samples from a
Gaussian distribution. The matrix H = [hy] is an N, X N, matrix that contains the complex
channel coefficients for each possible combination of channel between the i-th transmitting
antenna and the j-th receiving one. In the case of a static channel, this matrix is given by:

hyy - hyy,
S )

hNtl o+ hyw,

H =

MIMO systems are divided into three main categories based on their primary functions:
Precoding and Beamforming systems, Spatial Diversity systems, and Spatial Multiplexing
systems. The latter two are widely used in current technology due to the multiple gains they
provide.

Based on the standards set by ITU, ETSI, and 5GPP (5G New Radio), the concept of m-
MIMO is introduced, which applies MIMO technology on a much larger scale to achieve
greater network coverage and capacity. m-MIMO utilizes a significantly larger number of
transmit and receive antennas to increase transmission gain and spectral efficiency. To
achieve substantial capacity gains in MIMO, multiple mobile terminals need to generate
simultaneous uplink traffic.
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Figure 0-5: Block diagram of a N; X N,, m-MIMO system

In 6G systems, where killer applications will be AR/VVR and holographic communications,
the need for large data transmission, results in a need for a very high-frequency band to
support the increasing service scenarios demands [12]. THz and sub-THz bands have been
proposed as a potential solution towards this direction. These bands are spread from 0.1 to 10
THz [13]. However, several challenges have been witnessed in these scenarios. First of all,
such a high-band transmission can serve really short-range coverage. Thus, ultra-massive
MIMO antenna systems in BSs should be used and BSs should be located near to each other.
Limitations can, also, be witnessed concerning hardware availability, transmission power, and
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increased pathloss [12]. The following enabling MIMO technologies are of interest in 6G
networks:

e Ultra-massive MIMO: Antenna arrays can contain over 10,000 very small
antenna elements, forming ultra-narrow band beams. In this way, pathloss
considerations can be mitigated. Moreover, by the formulation of hundreds of beams
the system capacity can be increased and a large number of users can be supported.
Furthermore, co-channel interference is also mitigated due to the narrow-band nature
of the links [5]. However, the necessity of deploying a lot of antennas over short
distances may lead to mutual correlations between each other.

e Cell-free (CF) mMIMO: A promising technique to mitigate interference
between neighboring cells, which are deployed close to each other in 6G orientations,
is CF mMIMO. In such case, Access Points (APs) are spread in the coverage area to
support UEs that demand service. A central processing unit (CPU) maps UEs to APs.
This technique has great influence when CSI changes, even in the order of
milliseconds in 6G, which means that certain system parameters become quickly
obsolete. In particular, CF mMIMO systems result in negligible effects of small-scale
fading by exploiting channel hardening [7]. Also, in the case of CF mMIMO, the
probability of coverage is higher. In this direction, given that as the number of users
increases, the total training time is significantly prolonged. Moreover, APs are
equipped with a smaller number of antennas resulting in less demanding power
requirements. However, a drawback that has been identified in some research efforts
[7] is that as network size increases, limitations can exist in the scalability of this
approach.

1.3.3 Non-Orthogonal Multiple Access (NOMA)

The objective and purpose of wireless communications networks (especially in 5G/B5G) is
to serve multiple users in a geographic area, according to their requirements for QoS and QoE.
Multiple access refers to the simultaneous access of multiple users to the same radio
resources. It is understood, therefore, that the term pertains to systems and users that have
both geographical relevance (i.e., they are located in the same geographic area) and frequency
relevance. Additionally, a fundamental goal of the multiple access process is for the user to
perceive the service at a continuous rate and with the required QoS and QoE. The system's
capacity essentially reflects the number of users that can be served by the respective system
with the required QoS threshold. The main types of multiple access are the following:

1. Frequency Division Multiple Access (FDMA): In FDMA, the available
frequency spectrum is divided into multiple non-overlapping frequency bands, and
each user is allocated a specific frequency band for communication.

2. Time Division Multiple Access (TDMA): In TDMA, users share the same
frequency band, but they are allocated different time slots. Each user occupies a
specific time slot to transmit their data.

3. Code Division Multiple Access (CDMA): In CDMA, users share the same
frequency band and the same time slots. However, each user is assigned a unique
spreading code that allows their signals to be separated and distinguished at the
receiver.

4. Orthogonal Frequency Division Multiple Access (OFDMA): OFDMA is an
extension of FDMA where the frequency band is further divided into multiple
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orthogonal subcarriers. Users can be allocated subsets of subcarriers to transmit their
data simultaneously.

These multiple access techniques enable efficient utilization of the available resources and
allow multiple users to share the network effectively while maintaining the required QoS
levels.

However, Orthogonal techniques (OFDMA) present relatively good results, but at the
expense of the SE levels, which contradicts the fundamental requirements of the new
generation of wireless networks (5G). For this reason, new enhanced technologies have been
developed in this direction, such as NOMA, which, unlike conventional OFDMA
technologies, is based on non-orthogonal resource allocation. This technique allows multiple
users to share the same time and frequency resources (see also Fig. 1-5) through power
domain multiplexing (Power Domain NOMA) or code domain multiplexing (Code Domain
NOMA). In the first case (PD-NOMA), different power levels are assigned to different users
based on their channel conditions to achieve high system capacity. In the second case (CD-
NOMA), multiplexing is achieved using sparse (or low correlation) spreading sequences for
the transmission of each user's data streams. Although CD-NOMA provides the potential for
significant SE improvement, it requires a wide transmission bandwidth and is not easily
applicable to current systems. On the other hand, the implementation of PD-NOMA is
relatively straightforward, as it does not require significant changes to existing networks and
infrastructures.
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Figure 0-6: Spatial Multiplexing, NOMA techniques (a) PD-NOMA, (b) CD-NOMA

1.3.4 Relay Nodes and 5G Sidelink

RNs are elements of the cellular network that can extend the radio coverage (cell range
extension) and belong to the broader category of heterogeneous networks (HetNets). Their
use in next-generation networks (5G/B5G) is crucial due to the simultaneous existence of
multiple users and their distribution even in areas without network coverage. RNs are not
simple repeaters, in which the signal is received and retransmitted along with the
accompanying noise, but rather a Layer 3 (L3) structure where the initial stages of
decoding/demodulation and re-encoding/remodulation take place, resulting in an
improvement of the received Signal-to-Noise Ratio (SNR). The communication between the
BS and the user equipment (UE) is achieved through at least one relay (at least 2-hop
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communication), transparently to the user (without their awareness), using the RN's own cell-
ID and synchronization signals, both in the uplink (UL) and downlink (DL). The UE's service
is provided using system resources, which are managed by the BS. A BS that is connected to
a UE through an RN is called a Donor BS. The architecture of a 5G/B5G system where RNs
are utilizes is depicted in Figure 1-7.

The three main advantages of RN-enabled wireless communication’s systems are the
following:

1. Itis a cost-effective way to extend the network’s radio coverage (cell edge or
dead zones) and support locally increasing capacity demands (hot zones) without the
need for wired backhaul connection to BS, avoiding additional installation costs and
high energy consumption. Due to their small size, RNs can be installed on streetlight
poles or tall buildings to ensure Line of Sight (LOS) with the BS.

2. RNs can be mobile, adding flexibility to the cellular network. They can be used
to cover emergency needs and increased capacity requirements, as well as to provide
high-speed services. RNs perform the necessary relays between BSs, while UEs
maintain the connection with the RN, allowing reduced control overhead in the
network and extended battery life for users.

3. RNscan be used in a multi-hop network configuration to support remote users,
not only through a single hop (2-hop) but also through multiple RNs.

5G network's coverage area

% UTe
(‘i”ﬂms

Figure 0-7: RN-enabled 5G/B5G topology

There are different types of relay nodes categorized based on the spectrum or protocols
used:
1. Spectrum-based categorization:

a) Inband RNs: They utilize the available radio frequency spectrum used
by the BSs in the cellular network, simply relaying the signals to the intended
users.

b) Outband RNs: They are assigned additional spectrum to serve users
not covered by existing BSs.

2. Protocol-based categorization:
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a) Amplify & Forward (A&F) RNs: RNs in this category amplify the
received signal and forward it to UTs without additional processing.
Amplification is a straightforward solution with the main advantage of
introducing minimal delay. However, there is no improvement in the signal-
to-interference-plus-noise ratio (SINR) as both noise and interference are also
amplified.

b) Decode & Forward (D&F) RNs: In this case, the signal from the base
zone originating from the BS is initially decoded, then encoded again before
being forwarded to UTs. The main drawback of the D&F protocol is the delay
in retransmitting the received signal, which is due to the
demodulation/modulation and signal processing operations. However, the
D&F strategy exhibits high performance compared to the A&F scheme.

Except RNs, another enabling technology in 5G that can ensure high reliability and
network KPIs improvements, is the direct D2D communication between devices, also referred
as 5G sidelink. D2D communications can act separately or in cooperation with RNs in order
to improving reliability, and enhancing capacity of 5G orientations. Moreover, in this way
metrics such as energy efficiency (EE) and spectral efficiency (SE) can be also improved by
the reduction of the overall systems’ transmit power and the efficient resource sharing.
Moreover, the number of connected mobile and/or 10T devices can be maximized. It is, also,
significant that the joint utilization of direct D2D communications and advance PHY layer
techniques such as mmWave transmission, mMIMO, advanced precoding and beamforming
and OFDMA, NOMA, can further improve the aforementioned metrics.

3GPP has been developing standards for sidelink as a tool for UE to UE direct
communication required in various use cases since LTE. The following significant interest
has been observed based on the several motivations for sidelink enhancements [13]:

1. Power saving enables UEs with battery constraint to perform sidelink operations in a

power efficient manner. This is in line with enhanced radio resource allocation. Rel-
16 NR sidelink is designed based on the assumption of “always-on” when UE operates
sidelink, e.g., only focusing on UEs installed in vehicles with sufficient battery
capacity. Solutions for power saving in Rel-17 are required for vulnerable road users
(VRUSs) in V2X use cases and for UEs in public safety and commercial use cases
where power consumption in the UES needs to be minimized.

2. Enhanced reliability and reduced latency allow the support of URLLC-type
sidelink use cases in wider operation scenarios. The solution should be able to operate
in-coverage, partial coverage, and out-of-coverage and to address consecutive packet
loss in all coverage scenarios. The system level reliability and latency performance of
sidelink is affected by the communication conditions such as the wireless channel
status and the offered load, and Rel-16 NR sidelink is expected to have limitation in
achieving high reliability and low latency in some conditions, e.g., when the channel
is relatively busy.

The objective of developing radio solutions necessary for NR sidelink enhancement is

primarily to support advanced V2X services, public safety services and other commercial use
cases related to NR sidelink.

1.3.5 Reconfigurable Intelligent Surfaces

RIS is proposed as an efficient solution to enhance connectivity in 6G networks, taking
into account the hardware and deployment costs. As depicted in Fig. 1-7, a RIS-assisted
wireless link, utilizes an intelligent surface, which is composed of several three-dimensional
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(3D) reflection units, between the BS and the UE. Thus, intelligent beamforming is achieved
by the relevant dynamic adjustment either in the amplitude or the phase of the incoming
signal. RISs have a relay role in end-to-end communication, and, as a sequence, they can
efficiently be used in blind network spots or to extend the coverage area of the network [14],
[15].

RIS

[=]=]s]= =]

Figure 0-8: RIS-aided 5G/B5G communications
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Chapter 2: Machine Learning and Deep Learning
Principles for 5G/B5G Networks

In this chapter the principles of ML are exposed. In this framework, a classification of ML
techniques is presented. Moreover, due to the data overload in today’s 5G networks, the
significance of DL techniques, which are based on large datasets containing big amount of
data is, also, highlighted. Finally, MEC and distributed ML techniques are, also, discussed
due to the arising need for distributed computation using different 5G/B5G networks’ entities
(BSs, UEs, servers, CN, etc.) with different computation characteristics. The goal of these
techniques is to reduce data traffic from the CN and share the computation task among
networks’ entities. In paragraph 2.1 an introduction to ML techniques is presented. Paragraph
2.2 discusses the classification of ML techniques, where supervised, Unsupervised and RL
principles are presented. Paragraph 2.3 focuses on DL and DRL techniques, while paragraph
2.4 describes how MEC and distributes ML techniques are utilized in 5G/B5G networks
using, also, the techniques that are presented in the previous paragraphs.
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2.1 Introduction to ML and basic principles

ML is a branch of artificial intelligence (Al) that focuses on the development of algorithms
and models that enable computers to learn and make predictions or take decisions without
being explicitly programmed. It involves the construction and study of models that can
automatically learn from the given datasets or even the training environment itself, and thus,
improve with experience. At its core, machine learning relies on statistical techniques and
mathematical models to analyze and interpret complex patterns and relationships in data. By
training on labeled or unlabeled data, machine learning algorithms can identify and generalize
patterns, enabling them to make predictions or take actions based on new, unseen data.

One of the first researchers that defined the term Machine Learning was Tom M. Mitchell,
who has been described as one of the major machine learning pioneers, in [16], [17].
According to that definition “Machine learning is the study of computer algorithms that allow
computer programs to automatically improve through experience”.

A basic characteristic of ML algorithms is that they learn by experience, similar to how
humans do. For example, after having seen multiple examples of an object, a compute-
employing machine learning algorithm can become able to recognize that object in new,
previously unseen scenarios.

However, nowadays ML has been extremely popular in every aspect of research and
enterprise activity. This happens because it constitutes a scalable way to solve complicated
real-world. The event that sparked the growth of ML has been the dramatic change in data
storage and computing processing power of the computer systems. We can assume that as
more people are increasingly becoming involved to ML activities, the expectations for ML-
based algorithms are to continue with this route and cause amazing progress in different fields.

A more systematic definition for ML, which will help us out to the classification or the
used ML algorithms is the following according to [18]:

“A machine learns the execution of a particular task T, with the goal of maintaining a
specific performance metric P, based on a particular experience E, where the system aims to
reliably improve its performance P while executing task T, again by exploiting its experience

According to their purpose and the policy that they adopt in term of the way to achieve the
above, the basic categories of ML algorithms are shown in Figure 2-1 and further analyzed in
the next paragraph.

Learning

Machine
Learning

Figure 0-1: Different Types of Learning
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2.2  Types of Learning

The purpose of the present thesis is to analyze the need for ML-based schemes for RRM
in 5G/B5G networks. Thus, in order to present, in the following chapters, that need and
discuss the existing literature concerning the use of ML in resource allocation in 5G/B5G
networks, this sub-paragraph first introduces the classification of ML algorithms, in terms of
the type of data they process (labeled or unlabeled), as well as in terms of the corresponding
mechanisms. Sub-pagraph 2.1.1 refers to Supervised Learning, sub-paragraph 2.1.1 to
Unsupervised Learning, while sub-paragraph 2.1.3 discusses RL.

2.2.1 Supervised Learning

Supervised learning is based on a dataset with values accompanied by their respective
labels. These labels can be produced either by humans or automatically by computation [19]
(see also Fig. 2-2). A common practice to deal with the dataset is to split it in a training and a
test set, where the first one is used for model training. In other words, a mapping between the
inputs and the labels is being produced. The most indicative use cases of supervised learning
are classification or regression problems. The latter term refers to the prediction of a target
numerical value, given a set of features/attributes, also called predictors, through an
estimation function. In linear regression the estimation function is linear, while in logistic
regression it is a common sigmoid. Classification refers to the prediction of a class label, by
using classified example data as input. The basic difference, compared to regression
techniques, is that the model displays the probability that a certain value belongs to a given
class [18]. The system is trained by multiple examples of a class, along with their labels, in
order to learn how to classify new instances. The ML techniques/algorithms, that are mostly
used in RRM-related problems, are briefly presented below and will be reported again in
section IV, where the corresponding literature is analyzed in detail.

A k-NN algorithm classifies instances by comparing its k nearest neighbor's labels. Then,
the item is classified to the most common of them [20], [21]. On the other hand, Support
Vector Machines (SVMs) are used for both classification and regression. Data are plotted as
a point in an n-dimensional space, where n is the number of features of the dataset, and
classified by finding the hyper-plan, which differentiates the problem's classes in an optimal
way [22]. Decision trees can be used, either for regression or classification purposes.
However, traditional decision trees approaches record high variance levels, due to their
sensitivity to training data. Aiming to prevent this problem, alternative approaches are
implemented. For instance, bagging trees classifiers use bootstrap simulations to generate
reliable results [23]. A major category of supervised learning techniques is the artificial neural
networks (ANNSs). These learning algorithms are inspired by brain, in order to simulate,
predict or store information. Their basic building units are neurons and the connections
between them, which formulate the model. ANNs are used both in regression and
classification problems.

Furthermore, overfitting/underfitting should be checked at each time a model is formed, in
order to prevent inserting errors, making it unable to depict properly all the attributes of the
tested dataset. Underfitting occurs when the model is not able to obtain a low error on the
training set [24]. This means that the model cannot describe all the characteristics in the
dataset. On the other hand, overfitting takes place, when a significant difference between the
errors in training and implementation (training set vis a vis test set) is detected [25]. This
means that the model describes more characteristics, than the actual ones.
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Figure 0-2:Supervised Learning

2.2.2 Unsupervised Learning

Unsupervised Learning differs from supervised learning (see Fig. 2-3), as the model itself
tries to identify the common characteristics of the dataset [18], [25]. Moreover, labels are not
included in the dataset, as the system tries to find them without external help. However, the
concept of training and test data remains the same. The key aspects of unsupervised learning
are summarized as follows [26], [27], [28]:

1.  Clustering: Clustering is a common task in unsupervised learning, where the
goal is to group similar data points together based on their inherent similarities or
patterns. Algorithms such as k-Means clustering, hierarchical clustering, and Gaussian
mixture models are used to identify clusters within the data.

2.  Dimensionality Reduction: Dimensionality reduction technigques aim to reduce
the number of features or variables in a dataset while preserving its essential
information. This helps in visualizing and analyzing high-dimensional data and can
also improve the performance of machine learning algorithms. Principal Component
Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding are popular
dimensionality reduction techniques.

3. Anomaly Detection: Anomaly detection involves identifying rare or unusual
instances in a dataset that differ significantly from the majority of the data.
Unsupervised learning algorithms can learn the normal patterns from unlabeled data
and flag any observations that deviate from the learned patterns as anomalies. This is
useful in various applications such as fraud detection, network intrusion detection, and
equipment failure prediction.

4.  Association Rule Learning: Association rule learning aims to discover
interesting relationships or associations between different items in a dataset. It is
commonly used in market basket analysis to identify frequently occurring item
combinations, such as "people who buy diapers are likely to buy baby wipes.” Apriori
algorithm and FP-growth algorithm are commonly used for association rule mining.

5. Generative Models: Unsupervised learning includes generative models that
learn the underlying probability distribution of the data. These models can then
generate new samples that resemble the original data distribution. Examples of
generative models include autoencoders, generative adversarial networks and
autoencoders.
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Figure 0-3: Unsupervised Learning

2.2.3 Reinforcement Learning

RL is an ML category which is based on the interaction and communication with the
learning environment to train and validate effective models (see also Fig. 2-4). This is
achieved by the utilization of a learning entity called software agent. The information
feedback that the agent returns to the model is called rewards (positive case) or penalty
(negative case). In that way, the agent creates a policy to set up its own learning scheme and
decide which actions to choose in a certain situation. The scope of an effective RL model is
to maximize the cumulative rewards over time [29]. There are several known RL schemes
such as state-action-reward-state-action [30], Q-learning [31], Deep Q-learning (DQL) [32],
deep deterministic policy gradient [33] and asynchronous advantage actor-critic algorithm
[34]. However, the most widely used RL algorithms are Q-Learning and deep Q-Learning,
which combines Q-learning and neural networks.

Output data

O it
= # > ecee

—> Agent

Input raw data Enviroment |€=

Figure 0-4: Reinforcement Learning

The Q-Learning algorithm has been proposed as an efficient way to deal with rapidly
changing and non-linear environments. For this purpose, Q-Learning fits perfectly in the
5G/B5G wireless network domain. The cellular environment is characterized by complex
propagation models, increased interference levels, dense connections and high user mobility,
making Q-Learning a promising approach to solve complex optimization problems which
have to do among others with resource allocation, power management and RN or BS
selection.
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A typical Q-Learning environment is depicted in Fig. 2-5. The agent (Q-function) collects
feedback from the environment and takes some action that will later affect the environment.
In other words, there is a set of potential states and a set of potential actions that can be
performed. The agent specifies the transitions between states, based on the actions, aiming to
maximize reward. Q-function is mathematically formulated as follows [33], [34]:

Q'(sp,ar) « Q(sp,at) + ax (1 + y X maxb(Q(Ser1,b) — Q(st,ar)), b € A (3)

where Q is the updated Q value, s, is the state at the current time interval and s, is the
state at the next time interval. Moreover, « is the learning rate and rt is the reward received
from the network when moving from the state s, to state s, and A is the Q-table that stores
all the actions. Moreover, v is the discount factor which determines the importance of future
rewards. In fact, 0 < y < 1, where a zero value means that only current rewards are
considered, while a discount factor close to one means that long-term high rewards are of

interest.
Environment |

state s(t)

reward r(t) action a(t)

Agent

Figure 0-5:Q-Learning

2.3 Deep Learning

Deep Learning (DL) is a subset of ML that focuses on training ANNs with multiple layers,
also known as deep neural networks (DNNs), to learn and represent complex patterns and
relationships in data. It is inspired by the structure and function of the human brain,
specifically the interconnected network of neurons.

One of the key advantages of deep learning is its ability to automatically learn hierarchical
representations of data. Each layer of a DNN learns progressively more abstract features,
allowing the network to capture intricate patterns and dependencies in the input data. This
hierarchical feature learning enables DL models to excel in tasks such as image and speech
recognition, natural language processing, and generative modeling [35].

Recent advancements in deep learning have been driven by the availability of large-scale
labeled datasets, significant improvements in computational power, and breakthroughs in NN
architectures and training algorithms. Some key categories of DNNs include convolutional
neural networks (CNNSs), recurrent neural networks (RNNSs), and generative adversarial
networks [36].

55
loannis A. Bartsiokas



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks

Moreover, DL has benefited from innovations in regularization techniques, optimization
algorithms, and the integration of domain knowledge into neural network architectures.
Transfer Learning (TL) and pretraining strategies, such as using pretrained models or
leveraging self-supervised learning, have also played a crucial role in improving the
performance of deep learning models, especially in scenarios with limited labeled data.

2.3.1 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a subfield of Al/ML that combines DL techniques
with RL ones. It involves training artificial agents to learn optimal decision-making policies
through interaction with an environment. DRL leverages DNNs to approximate complex
value functions or policies that map observed states to actions.

As presented in paragraph 2.1.4 in traditional RL schemes, agents learn from scalar
rewards provided by the environment. However, in DRL, DNNs are used to process high-
dimensional input, such as raw sensor data or images, enabling the agent to learn directly
from raw sensory inputs without handcrafted feature engineering.

Thus, in NP-Hard problems in 5G/B5G RRM domain (such as RN placement and
selection), when utilizing m-MIMO antenna configurations and advanced physical layer
techniques such as OFDMA or NOMA, advance precoding and beamforming, the Q-table
with the full set of potential actions, states and rewards can be large enough. This can
exponentially increase the optimization problem’s complexity, which comes against the major
5G/B5G requirement for low latency responses. In such cases, a NN can be trained to map
the set of states with the best-performing action or in other words to perform the Q-function
approximation. This RL technique is called DQL and is widely proposed due to its’ ability to
decrease the amount of the state-action duplets of the tabular-based Q-Learning algorithm,
and, thus, produce more generalized models in optimization tasks [37], [38].

Based on Equation (3), a DQL agent aims to gather all the related information from the
environment by minimizing the so-called temporal difference (TD) function [39], between
the next Q-value rt + y X maxb(Q(st + 1,b)),b € A and the current Q-value Q(st, at).
For this purpose, the DQL’s basic characteristic is to utilize two approximators (NNs). The
first one is used to estimate the current best action, while the latter is used to predict the next
action. A typical DQN structure is depicted in Fig. 2-6.

replay
memory

Environment

action network

state s(t)
reward r(t)
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(Q-function)

Figure 0-6: DQL methodology
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2.4  Distributed Learning and Mobile Edge Computing

An important bottleneck in 5G networks is data overload, in conjunction with the limited
storage and computational power of UEs and BSs. A recently proposed solution is to use
distributed structures for processing reasons (Fig. 2-7). In wireless networks, this is mostly
achieved via MEC architectures, where cloud, edge and mobile processing cooperate [40].
MEC and ML are inextricably related concepts. MEC, being a distributed approach, uses ML
tools in heterogenous topologies (such as 5G and 6G networks) to obtain channel state
information (CSI) till the network's edges, in order to define the resource allocation policy in
each case. The goal of MEC is to minimize the computation time, by allocating the traffic to
different processing units.

BS 1 MEC Server 1 BS 2 MEC Server 2 BS M MEC Server m

2 A 2
vEs ;56 /56 5G
v v v
Cell 1 Cell 2 CellM
o=o AAT o=o /A5 o=n AAT

Figure 0-7: MEC in 5G/B5G networks

MEC is primarily based on minimizing computational latency by distributing processing
tasks across different processing units. According to Figure 2-7, considering a UE n located
in a cell of a 5G/B5G system, a MEC server m installed at the BS which serves UE n, and a
computational task j that user n wants to execute with the assistance of m, the total system
delay is given by [41], [42]:

T D E
Tm,n,j = Tm,n,j + Tm,n,j + Tm,n,j (4)

Where Tm,n,jT is the time to transmit task j from UE n to serve m, Tm,n,jD is the

computational latency inserted form UEnand T, ,, jE IS the execution time of task j in server
m.
In this strategy, there are three different computational offloading types:
1. Local computation, where all computations are performed at the MEC server
installed at the BS, and the UE simply sends data there for task execution. In this case,
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T, jD = 0 as all processing is conducted at the MEC intermediary installed at the
BS. Therefore, Ty’ Tmn,;~ # O.

2. Partial offloading, where the execution of tasks requested by each UE is
shared between the MEC server and the UE to some extent. Thus, in this case

T D E

Tm,n,j rTm,n,j :Tm,n,j # 0.

3. Complete offloading, where the execution of tasks requested by each UE is
entirely performed on the UE. In this case, Tm,n,jE = 0 as all processing is carried out

on the UE. Thus, Tm,n,jT'Tm,nJD # 0.

2.4.1 Federated Learning

Traditional ML techniques (Supervised, Unsupervised, or even classic distributed learning
techniques), which rely on a centralized entity to produce the learning outcome (centralized
learning — CL), can phase difficulties in dealing with the computational complexity aspect.
For example, most ML models are trained in a central server with lots of processing unit
power to produce a global model that will be used by either the network or the end user. These
approaches may have a significant number of drawbacks when comes to the efficient use of
AI/ML techniques, such as not real-time responses, local data dependency, and security
threads (e.g., single point of failure). Thereby, decentralized and distributed ML strategies
should be taken into account.

A promising way to tackle these challenges is a specific type of distributed learning
technique, introduced in [43] denoted as Federated Learning (FL), which combines MEC and
ML. The key characteristic of FL is that edge devices contribute to a global ML model
construction, only by transmitting locally trained models’ parameters to a central entity, e.g.
a centralized server. This means that the training sets of each enrolled edge device are not
distributed to the server, maintaining a secure and robust learning framework [44]. FL can
also be performed without even sending parameters to the server. In these cases, neighboring
devices form a device cluster to exchange parameters for ML models’ construction [45]. As
it is visible, a significant advantage of FL schemes has to do with their ability to reduce
communication overhead and secure communication, as there are no datasets distributed. For
all these reasons, FL has gained increasing interest for compute vision tasks [46]

Recently, FL has been proposed as a promising solution in different PHY -related tasks in
5G and 6G networks. Traffic data are continuously generated by UEs, while parameters such
as CSI are also present in each UE —BS link. Thus, real-time decision-making can be FL-
driven to provide robustness in minimizing the time between data generation and data
utilization for these purposes. Thus, FL is useful for convex and non-convex problems in 6G
networks’, such as interference management, radio RRM, user profiling and grouping, BS -
or even relay node (RN)- selection and others.

Fig. 2-8 illustrates an FL framework in the context of new era wireless networks as
previously described. Counter to CL methods, where local data (from UEs in 5G/B5G
(Beyond 5G) networks) are uploaded to a centralized server, and also counter to classical
distributed approaches, where data is uniformly distributed among the edge devices, FL
schemes use local data to train a global model, through multiple training iterations across
interconnected edge devices (UEs), in order to achieve the desired global accuracy. Then,
local updates, generated by each interconnected device, are aggregated to a cloud or a MEC
server (in BSs).
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In such scenarios, FL targets ML KPIs (accuracy, Fl-score, root-mean-square-error
(RMSE)) maximization by the application of multiple communication rounds between the

server and the edge devices to train and/or update the model with local datasets.
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Figure 0-8: FL in 5G/B5G networks

When it comes to FL techniques, where multiple nodes should cooperate to construct a
global ML model, the following tree-type classification exists (as also depicted in Fig. 2-9):
e In CL, edge devices send their locally gathered data to a centralized entity for
training purposes (see Fig. 2-9a). Thus, the distributed computation is limited to the
transmission of the local datasets to the centralized server [47]. The key advantage of
CL methods is that a total dataset is formed, which helps towards the maximization of
ML KPIs, due to the increased amount of data that are existing [48]. On the other
hand, the need for whole datasets transmission to the centralized entity has two basic
drawbacks. The first one is related to the increased interference and overhead that is
introduced, which, also, affects the total response time, a vital aspect concerning the
real-time decision-making nature of 6G communications. The latter is the possible
security vulnerabilities and threads that can phase privacy data through transmission.
e In FL, edge devices gather their local data and form a local model, which
training is performed at the edges. However, the centralized entity’s role is to
aggregate the different model’s parameters, gathered from the edge devices, and, then,
distribute the aggregated parameters or the model updates back to the edge devices
(UEs). Itis visible that the role of the centralized entity is the flow management of the
whole process [48], [49] (Fig. 2-9b). The key advantage of FL, compared to CL, is
that the transmission overhead is minimized, due to the fact that only ML models’
parameters or updates are transmitted to the centralized entity. However, this comes
along with the drawback that ML KPIs performance may decrease because the amount
of data in each of the separate distributed models is significantly less [46],[49].
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e In hybrid schemes, CL and FL are combined, to produce a more dynamic
framework that can be used in practical scenarios. The need for such schemes
originates from the imbalanced computation capabilities of different UEs in wireless
networks. In fact, there are computationally powerful UEs, such as computer systems,
local networks or even servers, but there are, also, non-powerful UEs, such as cell
phones or UxVs. In such scenarios, computationally powerful UEs perform FL tasks
(active state), while the others not (inactive state) [48], [46], as also depicted in Fig.

Fig. 2-9c.
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Chapter 3: ML-based Radio Resource Management in 5G/B5G
Networks

In this chapter the RRM problem in 5G/B5G networks is discussed to highlight the need
for fast responses and quick decision-making mechanisms, which are based in ML/DL
techniques. To do so the RRM problem is mathematically formulated along with the relevant
constrains, based on which this problem should be considered in 5G/B5G networks.
Moreover, traditional (non-ML) optimization approaches are presented, while the limitations
of such approaches are identified. To overcome those limitations, several ML-enabled
schemes for effective RRM in 5G/B5G networks are proposed in next chapters. In this
chapter, the relevant literature regarding ML-approaches in 5G/B5G networks’ RRM is
analyzed. In paragraph 3.1 the emerging role of ML in 5G/B5G is presented. In Paragraph 3.2
the RRM problem is formulated in 5G/B5G networks along with the relevant constrains.
Moreover, the traditional optimization techniques that are used for those problems are
discussed. Finally, the limitations of the traditional non-ML approaches are derived,
witnessing the need for ML-enabled RRM solutions. Paragraph 3.3 presents a literature
review over the utilization of different (Supervised, Unsupervised, Reinforcement,
Distributed) ML techniques for effective RRM policies definition in 5G/B5G networks.
Finally, Paragraph 3.4 presents the outcomes over the state-of-the-art works in ML-based
RRM in such networks.
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3.1 The emerging role of ML in 5G/B5G

It is already visible from chapter 1 that 5G acts as an integrator for diverse applications
and services. To this end, 5G/B5G networks utilize vehicular communications [50], device-
to-device (D2D) communications [51], machine-to-machine (M2M) communications [52],
MEC [53], cloud computing [54] and internet of things (10T) [55], in order to meet the needs
foreMBB, mMTC and URLLC [56].

More specifically, the authors in [57], [58] summarize the key components and innovations
incorporated in 5G networks, as: a) Modern approaches in radio-link management such as
open radio access network (O-RAN) and virtual networks, in order to meet the strict criteria
of latency, capacity and data traffic in 5G transmission, b) Extended coverage, which includes
the installation of multi-nodes and multi-antennas in the network's coverage area, in order to

use multi-hop techniques for fast handovers through service cells and base stations (BSs),
c) Service-based network dimensioning, which utilizes the self-generated channel state
information (CSI), in order to meet the enhanced URLLC criteria. Cell and BS planning
should follow even stricter requirements to support new usage scenarios and applications
(smart cities, 10T, emergency alerts). Thus, heuristic approaches, based on data analysis and
ML, are proposed in network dimensioning [59] and d) Use of new frequency bands, which
includes the extended operating spectrum band and the new spectrum regimes [60].

In addition, 5G and B5G networks extend the deployment of technologies that were
introduced in 4G networks and also encapsulate new ones (see also Fig. 3-1). As also
presented in Chapter 1, these include massive m-MIMO configurations [61], mmWave
transmission [62], network slicing [63], RNs [64] and NOMA [65]. However, the coexistence
of these technologies can significantly increase network complexity, due to the insertion of
multiple computational levels and hardware needs, thus necessitating the importance of
optimal RRM strategies [66]. For example, accurate CSI is required for the effective
deployment of m-MIMO architectures and NOMA schemes. This, in turn, increases the
overall signaling burden, due to the increased number of pilot signals. Moreover, in typical
MIMO configurations, each antenna is connected to a separate radio frequency (RF) chain,
thus supporting a fully digital (FD) beamforming approach. However, in an m-MIMO case,
this would be prohibitive, as it would significantly increase hardware complexity. Hence,
suboptimal techniques are proposed in the literature, based on a hybrid analog-digital
beamforming approach [67].

It is, therefore, understood, that a tradeoff between optimal network goals and
computational complexity can only be achieved through an efficient RRM. Until now, the
allocation decisions were made continuously in each timeslot, based on local network
conditions and the data traffic load to be serviced. However, the aforementioned enhanced
requirements of 5G networks raise the need for, if not require, a decentralized and intelligent
data management system, that can support flexible RRM decisions. In this direction, the
utilization of data offered by ML and the features extracted by the corresponding algorithms
can effectively contribute to fast RRM responses [68], [69].

Research interest in incorporating ML techniques in 5G/B5G networks has focused mainly
on the CN in the past [70]-[72] (indicatively: traffic forecasting [73], [74], network slicing
[75], privacy and security [76], etc.). Lately, ML models are introduced in RAN and the
development of Al/ML-based RRM algorithms has attracted scientific interest, as well (e.g.
[77]-[80].
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3.2 Radio Resource Management in 5G/B5G System
3.2.1 Problem Formulation

Even though RRM problem's criticality originates from the first steps of wireless and
mobile communications, the significance of effectively managing the available radio
resources was empowered during the 4G era, when the increase of data rates was accompanied
by the high interference levels (especially co-channel). In the 4G, 5G and 6G era, RRM
considers not only the allocation of physical resource blocks (PRB's) or subcarriers (typical
subcarrier spacing is 600 kHz in frequency range 1 (FR1) of 5G and 2400 kHz in FR2) [60],
[81], but also power management, scheduling, traffic control and handover management.

In general, RRM considers two main objectives, that in case can be treated as joint. The
first one is power minimization, which is referred to as margin-adaptive (MA), while the latter
is network efficiency maximization. In this framework throughput (or rate) maximization
(rate adaptive - RA) is mainly considered. MA minimization considers overall and per user
minimization of power consumption. Respectively, RA maximization takes into account
overall and per user minimum throughput maximization [82]. Both approaches include a
plethora of parameters, at cases mutually exclusive, that can significantly increase the
complexity of RRM. In fact, in [81], the non-deterministic polynomial-time (NP)-hardness of
the resource allocation problem is proved. Consequently, sub-optimal solutions are proposed.

In the 4G-LTE era, when OFDMA techniques were introduced, RRM algorithms mostly
considered the maximization of users' throughput, based on QoS requirements, such as the
key implementation criterion. The main categorization was the stage at which RRM was
performed, considering sectors or BSs, with centralized or decentralized approaches.

An innovative solution was introduced by game theory, where the RRM problem was
treated as a game and each user as a player. Techniques such as Nash bargain (NBS),
Hungarian NBS and Raiffa bargain (RBS) were the most common ones [83].

In a typical 5G/B5G m-MIMO cellular orientation, the total bandwidth, denoted as W, is
divided into a predefined number of L subcarriers, which are allocated to users, according to
their demands and overall constraints [84]. The system serves as many users as possible, till
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all subcarriers are allocated (N users). BSs are equipped with Mt transmitting antennas, while
users are equipped with Mr receiving ones. The signal-to-noise-plus-interference-ratio
(SNIR) for the n' user (1 <n < N), associated with the I" subcarrier (1 < | < L) fora
specific channel realization and assuming independently transmitted streams among different
users, is defined as follows [85]:

SNIR,; = = Onnd (5)

Tn,lrn,llo +Zm=tn,lesm Gnm,l

where Gn,m,l = pn,ltrl-{l,lHg,sec(m),lrf:{,lrn,lHn,sec(m),ltm,l’ Hn,sec(m),l represents the Mr x
Mt channel matrix for the 1™ subcarrier of the n™ user relevant to its serving sector, t,,; is the
Mt x 1 transmission vector, assuming diversity combining transmission mode, r,,, is the
Maximal Ratio Combing multiplying vector and p,, ; denotes the transmission power allocated
to the I subcarrier of the n user. Moreover, the set S,, indicates the subcarriers allocated to
the n'" user and I, is the thermal noise level. Finally, A" denotes the conjugate transpose of
matrix A. Thus, the achievable data rate on the I" subcarrier is r,,; = W * log, (SNIR,, ;) [86],
and the corresponding aggregate rate for the n' user is R, = Zé"esn Tns- Then, the total
throughput is given by:

R = Zg=1Rn (6)

In most of the state-of-the-art RRM works, the target is to maximize EE, SE, Jain's fairness
index (J) and, at the same time, minimize blocking probability. EE and SE are given by:

R

EE = Zﬁﬂ Esesn Pns (7)
SE = (8)
N 2

] _ Cn=1 Zsesn Tn,s) (8)

- N
N*Zn:l ESESn r‘r%,s

Finally, blocking probability (BP) is defined as the ratio of rejected users to the total
number of used that tried to access the network.
The aforementioned optimization problem is subject to the following system constraints:
®  Yses,Pni < Dmax» WHEre py,q, denotes the maximum power limit per user.
e p,;=20,1<n<N,1<1<L,which demonstrates the non-negative power
constrain of the transmit power on each subchannel.
e SNIR,; < SNIR,, which sets the minimum SNIR threshold for acceptable
QoS.
N <Ny, 1<1<L1<t<T,whereN,, isthe number of users, grouped
in the I subcarrier over time slot t, and Ny, is its upper threshold, in the case of
NOMA transmission [87].

3.2.2 Traditional RRM approaches

As already mentioned, the RRM problem belongs to the category of NP-Hard problems,
making it extremely difficult to find the optimal solution using conventional approaches.
However, machine learning is proposed as a more efficient solution compared to existing
methods. Before delving into the reasons why ML approaches are considered suitable for
addressing the 5G/B5G RRM problem, this sub-paragraph presents a summary of significant
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up-to-date approaches, which tackle the RRM multi-objective problem and do not make use
of ML techniques (defined as “non-ML” throughout the rest of this thesis). The relevant
literature in this sub-section is representative with respect to various network metrics, such as
throughput, QoS, interference mitigation.

In [88], a resource allocation scheme is proposed, where target SNIR values are
accompanied by the minimization of power consumption. In the same context, in [89], the
available spectrum is shared between macro and micro cells to maximize the number of users
and achieve the SNIR requirements of each micro or macro cell user. In [90], a different
approach

is considered, where the distance-based resource allocation scheme is replaced by a model,
based on priority classes of the mobile devices in mobile type communications (MTC)
networks. This approach, apart from SNIR, considers latency, total induced delay and pending
number of MTC devices, as well, for priority classes construction.

A key aspect in resource management policies in 5G networks is the harmonization with
both QoS and QoE requirements. While QoS defines the user's satisfaction in a strict technical
way, QoE reflects the overall user's happiness or frustration. The relationship between QoS
and QoE is presented in Fig. 3-2. According to [91], there are two main (and one upcoming)
ways to achieve the optimal joint satisfaction of QoS and QoE. The first one refers to the
network'’s architecture and is the use of self-organized networks (SONS).

User centered \
Usage outcome \
/ QOE

User perception
QoS /
Technical /

centered

Figure 0-2: QoS and QoE

The other one refers to the efficient tradeoff between packet loss, latency, traffic data
(objective parameters) and mean opinion score (MOS), that should always exist. Last but not

least, the integration of ML techniques in RRM, specifically NNs, which use data-driven
(CSI-driven) techniques, in order to solve the optimization problem, can contribute in the
direction of joint QoS and QoE requirements' satisfaction.

In the existing literature, the significance of both QoS and QoE requirements' satisfaction
is highlighted. For example, the authors in [92] consider the resource allocation problem in
M2M 5G 3GPP cellular systems. An optimal radio resource allocation method in LTE and
beyond cellular networks is developed, based on adaptive selection of channel bandwidth,
depending on the QoS requirements and priority traffic aggregation. Furthermore, a novel
simulator is proposed, focusing on the joint impact ofM2Mand human-to-human (H2H)
traffic in 5G/B5G networks. In order to ensure the satisfaction of QoS requirements, the
proposed simulator automates RRM algorithms for both the M2M and H2H traffic. The
simulations and results indicate that the proposed framework improves the radio resource
management policies' application by 13%, concerning the LTE frame formation process.

65
loannis A. Bartsiokas



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks

Wang et al. [93] use QoE utility function for spectrum and power allocation in macro and
pico-cell HetNets. For the subcarrier allocation method, they construct a weighted bipartite
graph and revise Kuhn-Munkres algorithm to obtain perfect matching. For power allocation,
they use the first order derivative of the network utility function, achieving the nearly-optimal
levels of power minimization. However, increasing the cell size results in QOE deterioration.
In the same framework of using QoE utility function, the authors in [94] consider the joint
subcarrier, assignment and power allocation problem. The proposed approach is based on the

decomposition of the general problem into two sub-problems: the BS selection and
subcarrier allocation sub-problem and the power allocation sub-problem. A genetic algorithm
for the first problem and an artificial bee colony (ABC) algorithm for the second one are
proposed. The simulation results indicate that the proposed power allocation scheme reaches
optimal solution levels quickly, while MOS increases for increasing number of active UES or
available subcarriers.

In 5G HetNets, interference can have a critical impact on the selection of the appropriate
RRM strategy. There are three types of interference. The first one is cross-tier interference,
which occurs between users in different tiers, such as between macrocells and fempto-cells
(FCs). On the other hand, co-tier interference is experienced by users within the same network
tier [95]. Finally, inter-cell interference occurs mainly at the cell edges, where a user can
receive signals from multiple BSs/RNs. The authors in [96] consider a 3-tier HetNet and
propose a joint interference and resource allocation strategy. The examined use cases enhance
D2D communications in macro and small cells topology. The joint sub-band and resource
block (RB) allocation problem is solved, with respect to the QoS levels and D2D interference
minimization. The proposed scheme alleviates significantly co-tier and cross-tier interference,
compared to traditional techniques. On the other hand, the proposed algorithm introduces
delays that could cause difficulties in the deployment of the scheme in real-world scenarios.
In the same context, authors in [97] examine the influence of intercell interference in the
design of effective RRM strategies. More specifically, they formulated an EE maximization
RRM problem for a downlink OFDMA HetNet, and solved it via a two-step generic
algorithm. The firrst step concerned subcarrier allocation under SE requirements, while the
latter power management. Simulation results indicated that a tradeoff between EE and total
achieved throughput should exist, proposing small cell deployment as a way to
simultaneously improve both factors.

Xu et al. propose in [98] a resource allocation scheme to maximize the system throughput,
by considering cross-tier and co-tier interference for macrocell users, as well as the
transmission power in HetNets. The proposed scheme uses a nonlinear programming formula,
solved by distributed Lagrange dual methods. This method results in interference limitation
for the users spread in the topology. However, the adopted approach involves many iterations,
thus leading to increased overall delays.

In [99], a joint RRM problem is investigated and solved sequentially in an mmWave
environment. The first one is related to beam selection (beamforming), while the second one
to power allocation. These problems are formulated into mixed integer nonlinear
programming (MINLP) problems. The authors solve the first problem using cooperative
games theory. In this way, optimal beam allocation is achieved and served as input to the
second problem, where the power allocation scheme is determined, employing Lagrange
duality and an iterative water-filling algorithm. According to the presented results, there are
significant throughput improvements, compared to classic RRM schemes. On the other hand,

computational complexity is extremely increased, reaching almost prohibitive levels.

In [100], a similar joint routing and resource allocation problem is investigated,
considering multi-tier analysis approach for mmWave systems. Resource allocation concerns
the physical
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layer, while path selection concerns the network layer. A stochastic algorithm is used for
RRM and a linear programming one for the path selection. The EE and the overall system
throughput are significantly improved, compared to state-of-the-art algorithms. However, a
lot of delay factors are inserted, due to the adopted cross-layer approach. Therefore, this
scheme might be inappropriate, when dealing with URLLC demands in emergency situations.

Another significant metric that originates from throughput is SE, which is the “clear”
information that can be transmitted over a specific spectrum area in a wireless environment.

In this context, the authors in [101] propose a resource allocation system, based on SE
requirements. They make use of a hybrid-clustering game algorithm, that mitigates co-tier
and cross-tier interferences. The clustering problem is solved using graph theory, and more
specifically a maximum K-cut algorithm in the interference graph of the topology. Then,
inside each cluster, resources are allocated to users, implementing an auction game
mechanism algorithm. According to the presented results, there are significant improvements,

compared to state-of-the art approaches, in terms of SE and throughput. However, we
should mention that, by the above scheme, both macro and micro-cell users are treated as one
entity. In this case, the QoS and QoE metrics are not taken into consideration.

In ultra-dense modern era networks, power consumption becomes a key issue. Thus, the
metric of EE is used to measure the power consumption in the topology [102]. In this context,
a complex scheme is proposed in [103], that jointly maximizes EE and SE. There are three
different components in the proposed scheme. The first one is a system to balance the load
between the BS of service and other BSs in the topology, along with handover management.
The second one aims to manage inter and intra-cell interference and frequency reuse. Finally,
the third one applies a proportional fairness (PF) allocation policy to guarantee fairness among

users. A binary search algorithm implements the resource allocation, maximizing EE and
SE. Therefore, this approach is beneficiary for commercial use cases, due to the fast decision-
making mechanism, leading to optimal solutions. However, the fully centralized nature of the
algorithm might increase overhead, due to the increased round-trip time.

Another key issue in future networks is the limitation of usable resources to tackle the
spectrum scarcity problem. Dynamic spectrum sharing is proposed as a novel method for the
cooperation between 4G-LTE and 5G technologies, as different spectrum resources can be
allocated, based on users demands, establishing improved SE levels and spectrum utilization.
The authors in [104] proposed a dual bargaining game model to solve the spectrum sharing
problem guarantee effective real-time collaboration between LTE and 5G systems. Results
indicated that this scheme improves total throughput and service failure by 5-10% compared
to traditional approaches.

Furthermore, the increased number of traffic load from mobile devices, which causes the
densification of wireless networks, empowered the deployment of revolutionary centralized
alternatives of the classical cellular architectures, such as Cloud RAN (CRAN) and O-RAN.
In CRAN architectures the baseband processing unit (BBU) is moved from the BSs onto a
centralized cloud/edge BBU pool, while O-RAN indents to provide open air interfaces and
separate user and control plane functions. The authors in [105] proposed a two-stage
optimization algorithm for the joint secondary user selection, spectrum allocation and time
scheduling problem of downlink transmission in CRAN. Results indicated that improved data
rates, time scheduling and prioritization for big data transmissions can be achieved using the
above scheme.

Concerning O-RAN, the authors in [106] implemented a mixed-integer linear algorithm to
solve the joint distributed unit and subcarrier allocation problem, with respect to energy and
latency minimization for delay-sensitive communications. Results indicate that the proposed
approach consumes less energy under a larger network size, compared to a disjoined scheme.
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3.2.3 Limitations of non-ML approaches

In the previous paragraph, significant non-ML approaches, concerning RRM in 5G and
B5G networks, are presented, where various sub-optimal solutions are proposed, due to the
multiparameter nature of the problem. However, focusing on the outcomes and results of
those research efforts, several limitations can be witnessed. In most cases of LTE and early
5G networks [92], [94], [95], [99], the enactment of the RRM policy was based on perfect
knowledge of specific parameters, such as the instantaneous CSI and QoS requirements of the
active users. Thus, the optimal allocation problem, described in the above paragraphs, is
solved through optimization procedures. However, it is also apparent from the problem
formulation that, in practical wireless orientations, multiple difficulties may arise, thus
making resource allocation a multidimensional problem. More specifically:

e Most of the non-ML techniques provide solutions which are not universal.
Optimal solutions are highly correlated to the current circumstances in each network's
topology, user demands and qualifications. Thus, RRM, in general, is a problem
characterized by non-conventionality [106].

e The provided solutions may not be obtainable in real time. HetNets and loT
networks have high levels of time variability. An optimal solution in a time slot or
interval is not by default optimal for the next time unit [98], [99].

e The wireless channel in 5G and B5G networks is defined by an extremely high
propagation scheme, with users characterized by random or partially unknown
mobility patterns. In these scenarios, the mathematical formulation of the problem is
arduous and, in general, not easily defined [102].

According to these considerations, more efficient RRM solutions should be implemented
in both computational and performance perspective. In this framework, ML-based resource
allocation algorithms are proposed in the literature, as an efficient way to deal with the
abovementioned limitations. In the next paragraph, the state of research in the field of ML-
enabled RRM in 5G/B5G networks is presented.

3.3  Existing ML Literature Review

In this paragraph, the related research concerning the use of AI/ML in RRM is presented,
classified in terms of type of learning and architecture (centralized vs distributed). The
performance of the used models is also discussed, and conclusions are drawn upon them.

3.3.1 Supervised Learning in 5G/B5G RRM

The authors in [107] consider a SON topology. A 5G network simulator is proposed, along
with a pathloss model, using metrics, such as SNIR and throughput (LTE KPIs) in order to
deal with the problem of dynamic frequency and bandwidth allocation in these topologies.
The system is tested in several frequencies and bandwidths. In order to set the RRM policy
and predict the KPIs, several ML methods, such as bagging trees, boosted trees, SVMs and
linear regressors are evaluated. Bagging tree prediction witnesses the best overall
performance. The main feature of this method is that it uses bootstrap sampling in deep
decision trees, in order to reduce the variance of the model and classify data correctly to
predict the network's KPIs. According to the derived results, the decision tree learning-based
method reaches 95% of optimal network's performance. Finally, the authors highlight the
necessity for a joint consideration of networks' KPIs and ML performance metrics.

Working also on KPIs prediction, the authors in [108] designed a predictive model for the
overall users' demand. Then, they use an ML-based supervised classifier to allocate the
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network resources dynamically (Network Resource Allocator). The employed metrics are
bandwidth, latency, jitter times, QoS and QoE. The decision process for data traffic and
allocated subcarriers is defined by QoS and QoE. The learning procedure is based on
previously gathered experience from offline measurements. Thus, the proposed Network
Resource Allocator empowers an automated flexible and elastic network. The models are
employed in the network’s controller in order to change the network topology for better traffic
management by removing the unused parts of the network to release its unused resources (i.e.,
subcarriers, unused links, etc.).

In m-MIMO systems, hundreds of antennas are used for detection, resources' allocation
and channel estimation (via channel coefficient matrix). In [109], an SVM scheme is proposed
for the estimation of the Gaussian channel's noise level and pathloss prediction in urban
outdoor environments. The general form of the problem has t transmitting MIMO antennas
and r receiving ones. The model predicts the channel noise statistics, according to which the
allocation and multi-tier QoS scheme will act for each independent user or users' category.
Three kernel techniques are investigated (Polynomial, Gaussian and Laplacian) and compared
to the Okumura-Hatta pathloss model and an ML-based ANN one. Laplacian SVM witnesses
the best performance, in respect to both pathloss prediction and computational complexity.
The overall satisfactory performance of the SVM approach is due to the use of multi-
dimensional representations in feature extraction, leading, thus, to reduced training time and
increased capacity. ANNs' performance is similar to SVMs' approach, needing though longer
training times, as multiple initializations are requested.

Considering DL approaches, Liu propose in [110] an ANN algorithm for channel learning,
to mine undiscovered channel information data from a 5G network. They use location features
and CSI and they produce channel samples from 5G simulators, that are latter used as training
data for the model. The channel ANN estimation algorithm calculates unseen aspects of the
channel approximation and resource allocation scheme. The prediction accuracy improves,
compared to traditional k-NN classifiers. It remains, though, limited to a level of 75%, but
could be further increased by approximately 3%, if geographical information is used in the
dataset.

Zhang et al. [111] build a deep NN (DNN)-based framework for user, subchannel and
power control in NOMA mmWave networks. The solution of the user association problem is
given by the Lagrange dual decomposition. The subchannel and PRB allocation is given by a
semi-supervised learning algorithm, while the power allocation is given by a DNN model.
The use of the described joint ML-based component (for user, subcarrier and power control)
delimits the entire decision-making policy in terms of RRM. According to the presented
results, the EE of the system is significantly improved, while the resource allocation reaches
optimal levels (98% accuracy).

Guerra-Gomez et al. [112] propose a dynamic resource management scheme, based on the
prediction of the total system's capacity. They use three different ML algorithms: SVM, DNN,
and LSTM. According to the presented results, the scheme can perfectly reduce the
underutilized resources; however, QoS levels are not optimized. Therefore, the authors
propose two novel strategies. The first one considers data pre-filtering and results in an
additional 2% minimization of unallocated resources. The latter one considers error shifting

and leads to an additional 3% reduction in unallocated resources. However, the achieved
QoS levels form a barrier in this approach.

The authors in [113] consider the problem of optimal and automatic BS selection in LTE
and 5G environments. They propose two ML-based classification solutions to satisfy QoS
requirements; the _rst one uses SVMs and the second one Random Forest. Both approaches
are compared to a non-ML BS selection approach. The results indicate that the ML-based BS
selections can improve throughput and decrease outage probability and delay. Specifically for
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a 50-user topology, ML approaches achieve 23.21% higher throughput levels, 70% lower
packet loss ratio and 48% lower delays compared with a non-ML approach.

In the same framework, Butt et al. [114] investigate the UE positioning problem in 5G
networks. The authors compare a decision tree classi_er with two DNN solutions. The first
one uses training data from the service cell and overperforms in terms of accuracy, while the
second one uses transformed data from the cell and its neighboring ones. In general, the DNN
solutions witness an overall near-optimal performance, in terms of accurate positioning of
UEs. In fact, the 2-hidden layer DNN witnessed a positioning error in the range of 1-1.5 m,
after appropriate feature selection.

3.3.2 Unsupervised Learning in 5G/B5G RRM

Song et al. [115] produce a realistic 5G V2V networks' simulator, with the presence of
RNs.Ak-Means clustering algorithm is responsible for implementing BS or RN selection, user
allocation and serving policy. User positioning and RN distribution in the topology are
performed via ML, in a way that the serving device, BS or RN, is optimally selected.
However, the model calculates every 2D distance from the observation point (in that case UE)
to the borders of each cluster and not to the cluster center. Thus, the overall communication
environment parameters are not taken into consideration. Moreover, since the proposed k-NN
algorithm is a generic unsupervised ML method for clustering, its performance can be
affected, if UEs have a complex spatial distribution or clustering is performed in different
topologies. However, the authors intend to further improve and configure the algorithm, to
define a more efficient selection strategy.

The authors in [116] propose a data-based resource allocation scheme, where an ML
technique of affinity propagation is used. In general, this approach uses graph theory to
perform clustering. The basic advantage of the proposed algorithm is that it does not require
the number of the clusters as input. In this way, knowledge and behavior extraction can be
made even under complex scenarios. The authors conclude that the data-driven nature of the
RRM policy improvs both system's EE and throughput, although, in some cases, the QoS
levels are not the desired ones.

Wang et al. propose in [117] an asynchronous resource allocation scheme, based on
aggregation graph NNs (Agg-GNN). In this approach, every BS or RN aggregates information

from its active neighbors with a certain delay. Thus, both the underlying network structure
and the system's asynchrony are incorporated. According to the presented results, this
approach outperforms heuristic ones, in terms of the total system's capacity. The presented
simulations, though, used only a small number of active UEs in the topology. Probably, in
more complex environments, GNNSs' training time might increase, and, thus, performance
might deteriorate.

In [118], the authors propose an integrated scheme for resource management in NOMA
environments. The first stage of the algorithm refers to the users' grouping and subcarrier
allocation, while the latter one to the power control. UEs are grouped via the k-Means method,
while subcarrier allocation and cluster definition are calculated using the F-test method.
Power assignment is performed for the allocated subcarriers, by formulating a convex
optimization problem. The presented results indicate that the proposed approach reduces
electromagnetic exposure and increases the total served users. Although in this approach
single antenna configurations are used, both in the BSs and the UEs, the authors are aiming
to extend their work to MIMO systems.

3.3.3 Reinforcement Learning in 5G/B5G RRM
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Alnwaimi et al. used RL in [119] to increase spectrum accessibility in FCs. The proposed
scheme identities the available spectrum opportunities; then, it selects subchannels, so that
they operate avoiding intra/inter-tier interference and meet certain QoS requirements. A key
aspect of this approach is that the considered method reaches optimal levels, in terms of sub-
carrier allocation, even in tiny cell topologies. The basic contribution of this approach is the
reduced convergence time and the fast-decision-making procedure. However, these come at
the cost of reduced accuracy which is now limited to 75%.

In [120], an RL-based algorithm chooses the frequency channel and determines whether
to change its location in the presence of jamming and strong interference. A Q-learning
algorithm determines the above decision, while a deep CNN accelerates the channel feature
extraction. The scheme operates extremely well for huge channel numbers, in terms of
interference mitigation, and increases SNR levels compared to a simple Q-learning system
(without CNN).

The authors in [121] propose a deep RL framework for power control in 5G HetNets. The
problem is formulated aiming to minimize the difference between the mobile users' allocated
and requested throughput, by adjusting the transmitted power of the macro-BS or RN.
According to the presented results, the proposed approach reaches optimal levels of users'
satisfaction, based on achieved throughput compared to traditional water-filling [122] and
weighted minimum mean squared error ( WMMSE) approaches [123]. However, as expected,
the difference between user demands and allocated throughput is increased, as the user
requirements do so.

The authors in [124] propose a distributed multi-agent deep RL (MARL) framework for
joint user and power allocation, in a dense wireless network. The data are generated by real
measurements and backhaul delays. The results, via simulations in dense wireless networks,
indicate that the scheme achieves a tradeoff between sum-rate and 5th percentile rate, similar
to centralized scheduling algorithms. The authors intend to verify the performance of the RL
scheme in realworld scenarios in the future.

The authors in [32] use QoS as the basic metric in an ML-based resource allocation
scheme. An RL (Q-learning) algorithm is used for the radio access technology (RAT), while
the actual RRM is developed, employing the Montecarlo tree search (MCTS)-based Q-
learning algorithm. The authors prove that optimization is achieved after a reasonable number
of searches and that it outperforms other scheduling methods, with respect to the system
throughput and resource utilization. However, the computational complexity is increased, due
to the exhaustive use of the MCTS method. This could be a disadvantage in real case
scenarios.

Moreover, RL methods are utilized [125] in order to minimize the total transmission power
in HetNets, while jointly satisfying the bit rate requirements of different UEs. Every UE can
be connected to one of the available BSs or to another UE, which acts as an RN. The authors
use Q-learning in the decision-making procedure. The proposed algorithm reaches optimal
levels, in terms of the resource allocation. In addition, the decentralized nature of the
algorithm, constitutes a very promising approach with future extensions, as it uses specific
UEs as BS/RNE.

RL methods have been also used in 5G satellite communications to efficiently perform
RRM related tasks. More specifically, the authors in [126] propose an intelligent RL wireless
channel allocation algorithm for 5G m-MIMO High Amplitude Platform Station (HAPS)
networks, based on Q-learning and back-propagation NNs. The entire network is trained using
the Q-learning model, while CSI information is collected in the platform, through real-time
agent interaction with the environment, and thus, updating the Q-algorithm using a back-
propagation NN. Results indicated that, even if the number of agents is very high, the channel
allocation accuracy levels remain high (over 75%).
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3.3.4 Distributed technologies in 5G/B5G RRM

Focusing on MEC technologies in RRM, the authors in [42] present the state-of-the-art on
the employment of MEC networks, focusing on architecture, cashing, computation and use of
ML-based schemes. In general, caching refers to the temporary storage of content (CSI in
RRM-related tasks) in centralized or decentralized databases, for future access. The reasoning
behind those storages is that an instance (i.e., a D2D communication in RRM), that has
occurred once, is very likely to occur again in the future. In MEC systems, these techniques
are commonly used for decision making and allocation of available resources. For example,
the authors in [127] reach a 10 -11% lower latency and improvements in QoE, compared to
non-caching schemes. The authors in [128] propose an efficient content caching policy for
edge using dynamic ML predictions. The proposed Long-Short-term Memory approach
provided 30% higher caching ratio, than conventional approaches.

MEC and ML are combined in complex optimization problems, as well. In this context,
resource allocation, beamforming and caching issues can be jointly encountered. Related
works in this field use DL models, such as ANNSs, for accurate computations. Such efforts are
described in [129] and [130], considering decentralized hybrid beamforming in 5G next
generation node BSs (gNodeBs). The proposed novel techniques (CNN frameworks in both

[129] and [130]) outperformed state-of-the-art optimization-based and greedy-based
algorithms, both in terms of SE and computational complexity.

A key characteristic of RRM-related tasks is that active UEs or edge devices have different
processing power, antenna characteristics and mobility patterns, leading, thus, to
heterogeneity in local datasets. More specifically, the data generated in each UE contain
different labels and/or features and are not of the same volume. This is called non-independent
and identical distribution (non-11D) in the generated data [130]. Therefore, the need for the
distributed training of ML algorithms in different UE or network devices is a key technique
in 5G, but especially in B5G networks. Thus, the purpose of implementing FL schemes in
RRM (i.e., resource allocation, latency minimization) is, also, to address the aforementioned
heterogeneity and, in that way, improve the accuracy of the global model [131].

In 5G networks the main PHY layer (RRM) domains where FL schemes are employed
consider user allocation, subcarrier or Physical Resource Block (PRB) allocation, power
management, BS or RN placement, and selection. However, towards 6G networks
deployment FL is combined, also, with other newcoming technologies such as NOMA, CF
mMIMO and RIS. In the rest of this subchapter the recent approaches in literature are
presenting concerning the application of FL schemes in the aforementioned cases.

RRM

Authors in [131] propose a UE scheduling method in an FL-assisted wireless network,
based on the joint quality of channel and learning optimization. When wireless resources are
limited, this method improves the overall training time, compared to traditional ones.
However, the model's accuracy decreases in an environment with powerful resources, due to
data overload.

Authors in [132] consider the problem of joint power and resource allocation for vehicular
URLLC communications. The goal is the minimization of the overall system’s power
consumption subject to high reliability in terms of probabilistic queuing delays. First of all,
an extreme-value theory approach is introduced to define the threshold-based reliability
measure to detect extreme events to vehicles’ queue lengths. A novel FL-based approach is
proposed to detect these extreme events, assuming they are independently and identically
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distributed over different vehicular users. Afterwards, the communication delays detected in
the FL scheme over wireless links, are used to define the power management and subcarrier
allocation policies for each user. The performance evaluation, indicated that the proposed FL-
based model estimates the extreme events presence in vehicle users’ queues with the same
accuracy as a centralized scheme. Moreover, the data exchange amount is reduced by 79%,
while the vehicular users’ ques length is reduced by up to 60%. Overall system’s average
power consumption is, also, reduced compared to a centralized state-of-the-art approach.

On the same framework, authors in [133] proposed an FL-based decentralized joint
subcarrier allocation and power control scheme in vehicular networks to ensure string stability
in a platoon of autonomous vehicle users. The optimization problem of joint subcarrier
allocation and power management is studied subject to both string stability and link
availability between different vehicular users. Two schemes are proposed for this problem.
The first one considers a centralized BS-governed approach where BSs a priori know the
large-scale fading parameters of the vehicular links. The second one, considers an FL-based
Multi-Agent Reinforcement Learning (MARL) algorithm, where each vehicle incorporated a
distributed agent, which tries to define the optimal policy to maximize the expected reward
(power consumption minimization). The last step for its agent is to communicate with the
CPU in order to compare the local performance to the global one based on the total achievable
capacity. Performance evaluation indicated that both approaches outperformed a random
allocation scheme concerning the achieved data rate. However, the distributed MARL
outperforms the centralized one concerning the same KPI.

Authors in [134] consider the problem of user scheduling over resource-constrained 6G
channels. The authors are pointing out that the uplink scheduling of different devices where
FL processes are performed is a problem of interest. A novel approach is proposed for uplink
user scheduling based on EE and importance-awareness. In each devise unsupervised graph
representation learning tasks are performed. The key novelty of this approach is that an
importance bias is inserted in the scheduling process, which does not require the collection of
training feedback from client users, unlike state-of-the-art approaches. Performance
evaluation indicated that ML tasks’ accuracy can be improved by up to 10%. Moreover, EE
can be also improved by approximately 17 times compared to the state-of-the-art approach.

In [135] QoS is considered as the most significant KPI in 5G/6G communication networks.
However, QoS service requirements rely heavily on user mobility and networks density.
Considering vehicular communications, even stricter QoS requirements should be met in real-
time scenarios. To address the problem of non-convexity of existing optimization techniques,
the authors propose a data-aided federated DRL algorithm for resource allocation in 5G/6G
vehicle communication networks. Performance evaluation indicated that an FL DRL scheme
can optimize the probability to achieve the requested QoS for each vehicular user of the
topology. Moreover, EE and spectral efficiency (SE) levels can be also increased compared
to CL approaches.

Concerning device-to-device (D2D) communications, authors in [136] proposed a
framework for user device selection to take part in the learning process, as a lot of UEs don’t
have the computational power to perform FL tasks. Hence, the authors propose a FL
framework (based on the matching theory incentive mechanism) to select the devices that will
take part in the learning process, aiming to minimize convergence time and to maximize
reward. Moreover, parameters such as energy consumption are, also, taken into consideration.
In each device, an echo-state-network is running to forecast channel conditions in a reliable
manner. Performance evaluation indicated that the convergence time and energy consumption
of the proposed FL framework are far better than conventional approaches. In fact, energy
consumption can be improved by ~10 Joules, while global FL delay can be reduced by ~20
ms. Moreover, ML models’ accuracy is also improved (~96% compared to ~89%). Thus, such
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approaches are declared as applicable for potential usage in 6G networks. A similar approach
is presented in [44], concerning both user selection and resource allocation to minimize the
FL loss function. The numerical results indicated that identification accuracy can be improved
from ~1% to ~4% compared to a random RRM algorithm, a state-of-the-art FL one and an
optimization algorithm that minimizes the overall system’s error rate.

Finally, authors in [137] address the problem of energy consumption in FL-based 6G
orientations, as the resource-constrained nature of a variety of edge devices bring up a
limitation to efficient learning. In general, the data in wireless networks are characterized as
non-identically and independently distributed (non-11D), leading to the need for various global
updates rounds until decision-making. As a sequence, the authors propose a generic multi-
flow relay learning framework algorithm, FedRelay, where relay-assisted local updates are
performed in the training phase of the global model. There, a cooperative communication
decentralized relay selection protocol is also proposed. The global optimization is performed
subject to energy consumption minimization for both each local update and global model.
However, computation frequency is considered, also, to reduce training overhead.
Performance evaluation indicated that FL-assisted relay selection led to a 5-time reduction in
energy consumption compared to state-of-the-art federated learning approaches. Moreover,
global test set accuracy is similar to state-of-the-art ones.

NOMA

The aspects of FL and MEC orientations for NOMA-aided wireless communication are,
firstly introduced in [45]. Authors propose a framework for terrestrial networks, where
simultaneous computation offloading enhanced networks’ flexibility. In this way,
connectivity is highly reliable, while transmission latency and energy consumption are
significantly reduced. FL fundamentals are, also, presented along with several
implementation techniques to improve or maintain QoS levels. The authors declare that the
cooperation between FL and RL is of high interest for RRM-related tasks. Thus, motivations,
challenges, and representative results are presented, focusing on key technical challenges and
open research issues of the proposed frameworks.

Authors in [138] investigated the RRM problem in NOMA-based systems, focusing, also,
on the device clustering in these networks, based on the required service demands. Two
allocation schemes are proposed by the authors. In the first the BS allocates users/devices to
clusters based on current CSI and transmit power, to ensure interference mitigation in uplink
and downlink. The key characteristic of this approach is the low overall complexity and
communication overhead. In the second approach, an FL-based scheme is proposed based on
a traffic estimation model, aiming to improve the system’s capacity. Thus, BSs, taking into
account both traffic prediction and power demands to allocate devices to clusters. Finally, a
synchronization method is proposed to synchronize transmissions of the different devices.
Performance evaluation indicated that the system’s capacity can be increased by ~20 times
compared to on OFDMA scheme, while achieved throughput and packet losses are at similar
levels.

Concerning, also, RNs, authors in [139] proposed an FL-based RRM scheme for RN-
assisted 6G loT communication networks, where energy consumption reduction is of primary
interest. Moreover, the minimization of the total training and transmission time is, also, of
interest. Thus, a joint relay scheduling, transmit power allocation, and frequency allocation
optimization problem is formulated. A near-optimal performance and low computational
complexity are achieved using a graph-theory approach. Performance evaluation depicted that
the proposed scheme achieves 6, 4, and 2 times lower energy consumption, respectively,
compared to the considered fixed, computation adaptation, and power adaptation schemes.
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As far as total time is concerned, the proposed approach performance is slightly worse than
the fixed and computation only adaptation schemes.

CEmMIMO

Authors in [140] proposed a novel scheme for FL-aided CF mMIMO systems that can
support any FL framework. An optimization problem to minimize training accuracy, transmit
power, and users’ processing frequency is formulated as an indicative example, but the
authors declare that the proposed framework can have the same outcomes for every FL model.
Performance evaluation highlighted the reduced training times by ~55% compared to state-
of-the-art approaches. Moreover, the CF mMIMO approach is depicted as the best-performing
one compared to CF time-division multiple access massive MIMO and collocated massive
MIMO concerning total models’ training time. A similar approach, is also, presented by the
same authors in [141] to support multiple FL groups. A CF mMIMO to guarantee the stable
operation of multiple FL processes is proposed to allow multiple iterations by different FL
processes to be executed together. A novel asynchronous algorithm performs the scheduling
of the different flows, while a low-complexity RRM allocates the power and computation
resources subject to the minimization of each iteration’s execution time. Result evaluation
indicated that the per iteration execution time can be reduced by ~60% to ~80%. However, a
key problem of both of the aforementioned approaches has to do about the “struggler” UE
effect. A struggler UE is an edge device that slows down the FL training process and
communication between edge devices and centralized entity, due to bad link reasons. The
approach in [141] selects only a UE subset to take part in the FL process to minimize the
probabilities of the “struggler effect” to happen. In this case, performance evaluation
indicated that FL transmission times can be significantly reduced compared to the previously
presented approaches (~30% to ~60%). Finally, the approaches presented both in [142] and
[143] propose FL-based CF mMIMO approaches in 6G orientations to reduce the overall
execution time and communication overhead in the FL process. Performance evaluation in
both approaches confirms the reduced execution time and communication overhead over
approaches such as the presented ones in the previous paragraph. However, such effects are
more visible when the overall network density levels are low.

RIS

Authors in [15] highlight the advantages of FL approaches, as also, depicted in this chapter,
and proposed over-the-air computation as an efficient way to improve communication
efficiency and support numerous simultaneous local model uploading. However, in such
scenarios, the “straggler” effect is present. For this purpose, the authors propose a RIS-aided
learning framework for device selection to be used in FL tasks based on model aggregation
error and convergence time of the over-the-air FL. Then, a unified communication-learning
optimization problem is formulated to optimize device selection and RIS configuration.
Performance evaluation indicated that the aforementioned algorithm improves models’
accuracy by ~20% compared with the state-of-the-art approaches. These effects are detected
even when channel conditions are a lot different across UEs. Similar results are, also, depicted
by the same authors in [144]

On the same context, authors in [145] proposed a RIS-aided FL scheme as a
countermeasure to the obstacles that are inserted into the FL process by the randomness of
channel conditions, focusing on I0T topologies. The goal of this approach is to improve model
aggregation/distribution and decrease training times. The total latency minimization problem
is formulated, both concerning OFDMA and NOMA multiple access protocols, subject to
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energy and RIS constraints. Thus, the optimal RRM policies are depicted to efficiently
allocate available resources to the UE of the cell under test. Performance evaluation indicated
that the RIS-assisted FL scheme can achieve significant latency (~0.5 s) reduction as
compared with other benchmark methods. Moreover, the NOMA-based model achieves
slightly better training latency than the OFDMA-based one. Similarly, in [146] a RIS-assisted
NOMA scheme is proposed to increase the total system’s capacity and support UE selection,
focusing on total latency minimization. This is achieved by the per training round latency
reduction. Then, an auction-based IRS (Winner determination (WD) and payment methods
are used) RRM policy is proposed to optimize total latency in the context of multiple-BS
model parameters transmission. Performance evaluation indicated that proposed schemes
overperform existing ones both concerning training efficiency through device selection and
IRS-NOMA RRM optimization. In the field of RIS-aided NOMA 6G networks, Zhong et. al.
(2022) propose a framework for the sum rate maximization problem using FL and DRL
principles. Performance evaluation indicated that a mobile RIS scheme achieves about ~300%
sum rate improvement compared to a fixed RIS scheme. Moreover, the NOMA scheme
achieves a sum rate gain of ~42% compared to an OFDMA scheme. A similar scheme is
proposed in [148] leading, also, in similar results.

Open and Cloud RAN

Finally, concerning distributed computation and MEC employment in 5G/B5G networks,
the classical hierarchical structure of a cellular network is proposed to change in order to
become more flexible and decentralized. In this framework, O-RAN and CRAN architectures,
analyzed in Section 1l, are about to efficiently satisfy the joint requirements of increased
throughput levels with respect to QoS and QoE standards, and also to the concept of low-
energy green networks. With respect to the aforementioned considerations, the authors in
[149] proposed a deep Q-learning framework in CRAN to maximize EE subject to the
constraints analyzed in paragraph 3.1.1. As previously stated, the Q-learning method uses past
learning experience to predict future effects and make reward/penalty decisions. However,
sometimes action overestimation generates lower probability limits for the maximum Q-
value. With the use of a double Q-learning model, the target Q-value generation leaded to
bigger energy savings, whereas numerical evaluation indicated that the method reduces by
22% and also, improves EE at the same rate. Considering an O-RAN architecture, the authors
in [150] propose an RL based RRM solution and deployed it in the ecosystem. The O-RAN
Distributed Unit sends periodically reports to the O-RAN Interface and a dynamic per-flow
resource allocation strategy is employed to set the modulation and coding scheme, according

to KPI requirements.

3.4 Outcomes

Table 3-1 summarizes the usage of ML in 5G/B5G RRM problems, and groups
accordingly the research papers presented in previous paragraphs.

As already stated in chapter 2 and verified by Table 3-1, Supervised Learning techniques
are mainly used for prediction purposes. Indeed, various networks' KPIs (throughput, SNIR,
pathloss) can be effectively predicted, in order to empower allocation strategies [107]-[109].
DL methods, due to their ability to mine deep data and label associations through multiple
complex hidden layers (ANNs, DNNs, CNNSs), are mainly used in user, subcarrier, power
allocation and CSI prediction tasks [113], [114]. The multiparameter nature of the RRM
problem and the complex channel feature associations render DL approaches as the most
efficient way to deal with the total RRM problem [110]-[112].
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On the other hand, Unsupervised Learning focuses, in general, on clustering: the
corresponding models are efficient in user grouping, BS or RN selection and QoS levels
formulation, concerning RRM tasks [115]-[118].

RL models -as DL ones do- are more efficient dealing with the NP-Hard problem of the
overall resource allocation.

In this framework, RL approaches, such as Q-learning, are proposed by researchers in joint
user, subcarrier allocation and energy consumption minimization problems [119]-[126].

Finally, MEC and FL methods, which refer to the most recent evolution in the field, are
proposed to face the challenging issue of training time minimization, latency minimization
and computational resources optimization. In this framework, MEC and FL methods are
combined with either DL algorithms as CNNs, LSTMs, etc. or DRL frameworks -e.g., Deep
Q-Learning algorithm- for various RRM-related tasks, such as user allocation, subcarrier
allocatio, RN selection [132] — [137]. Moreover, FL methods are combined with other 5G/BG
enabling technologies, such as NOMA [45], [138], [139], CFMMIMO [140] - [143] and RIS
[15], [144] — [147] to further enhance networks’ capabilities and drive research towards 6G
implementation.

From the above analysis and Table 3-1, a categorization of the best performing ML
algorithms for each RRM-related sub-problem is visible. As presented in Section Il, the NP-
hardness of the joint subcarrier allocation and power control with respect to QoS, QoE
constraints has led recent research efforts to deploy more intelligent solutions, which have the
ability to communicate with the cellular environment, and change their predictions and
decisions (DL, RL, FL methods), based on the current conditions. However, the existence of
big data in transmission systems and wireless networks necessitates the utilization of classical
ML approaches, such as supervised ones, specifically in order to tackle problems where the
knowledge of a KPI and/or CSI is vital for low latency responses and fast decision making
(e.g. for coding and/or modulation scheme selection in each timeslot).

Type of Learning RRM Problem Proposed ML Related
approaches Work(s)
Supervised KPIs prediction (demands, | SVMs, decision trees, [107],
Learning SNIR, throughput, regressions [108]
capacity)
Supervised pathloss prediction SVMs [109]
Learning
Supervised user and subcarrier DNNs, CNNs, LSTM, | [110],
Learning and Deep | allocation, power control, | SVMs, Random Forest | [111],
Learning CSI prediction [112],
[113],
[114]
Unsupervised RN or BS selection unsupervised k-NN, k- | [115]
Learning Means clustering
variations
Unsupervised user grouping, clustering, | k-NN, k-Means, Agg- [116],
Learning handover management GNN, f-test [117],
[118],
[119]
Reinforcement subcarrier allocation, MDP, DRL, Water- [120].
Learning power control, frequency Filling, WMMSE [121],
selection [122],
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[123],
[124]
Reinforcement minimization of difference | Deep MARL [125]
Learning between requested and
active KPIs (throughput,
SNIR, CSI)
Reinforcement energy consumption Q-Learning [126],
Learning minimization and resource [127],
allocation [128],
[129]
Distributed caching CSlI information, | ANNs, DNNs, CNNs [130],
Learning and MEC | beamforming [131]
Federated Learning | power and subcarrier FL combined with [44],
allocation, user scheduling, | CNNs and Q-learning, | [132],
device selection, relay majorize, semidefinite | [133],
selection in 6G vehicular relaxation and [134],
networks Gaussian [135],
randomization [136],
[137]
Federated Learning | NOMA FL deployed DRL [45],
[138],
[139]
Federated Learning | CFmMIMO FL deployed CNNs, [140],
ANNs, DRL [141],
[142],
[143]
Federated Learning A RIS FL deployed CNNs, [15],
ANNs, DRL [144],
[145],
[146],
[147],
[148]
CRAN/O-RAN Resource allocation, EE CNNs, Q-learning [149],
minimization, modulation [150]

and cosind scheme
selection

Table 0-1: State-of-the-art wors on ML techniques in 5G/B5G RRM
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Chapter 4: KPI prediction with Supervised and Deep
Learning Techniques

In this chapter the problem of network KPI prediction in 5G/B5G network is discussed.
First, the significance of this problem in modern era network systems is highlighted, focusing
on the relevance of KPI prediction problem with efficiency RRM strategy formulation.
Afterwards, this chapter focuses on throughput prediction, as one of the key metrics regarding
the performance of 5G/B5G network to serve the desired QoS of the accepted UEs. For this
purpose, several ML/DL algorithms are comparatively examined using public datasets from
actual 5G network implementations. The performance evaluation is performed based on both
ML KPIs (accuracy, F1-score) and training time needed for each model. With that procedure,
the best-performing ML algorithms are identified. Finally, discussion and Open issues are,
also, highlighted. In paragraph 4.1 the KPIs of interest in RRM tasks are presented, along
with the need for ML-based KPI prediction in 5G/B5G networks. In Paragraph 4.2 the
problem of throughput prediction in 5G/B5G networks is examined, where several ML
algorithms are evaluated. Results and comparative analysis are, also, performed in this
paragraph. Finally, discussion over the results is performed.
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4.1 KPIs of interest for RRM tasks in 5G/B5G networks

KPI prediction in 5G/B5G networks is of significant importance for effective network
management and optimization. It involves forecasting various performance metrics to gain
insights into network performance and make informed decisions. By accurately predicting
KPIs such as throughput, latency, coverage, signal strength, and others, operators can
optimize network resources, proactively address potential issues, and deliver a better user
experience.

First of all, KPI prediction enables proactive resource allocation and optimization. By
accurately forecasting KPIs such as signal strength, interference, and capacity, the resource
requirements of different areas and user groups can be identified. This information supports
the dynamic allocation of the available radio resources, the coverage and capacity
optimization and the avoidance of congestion or service degradation [151].

Moreover, KPI prediction assists in interference management. In dense 5G/B5G networks,
interference can significantly impact network performance. By predicting KPIs related to
interference levels and patterns, interference hotspots can be identified, so that mitigation
measures, such as interference cancellation, beamforming, or power control techniques, can
be activated to enhance signal quality and minimize interference [152].

Additionally, KPI prediction helps in load balancing and traffic steering. By forecasting
KPIs such as user distribution, traffic demand, and mobility patterns, the load across different
cells or base stations can be balanced. This enables efficient utilization of radio resources,
prevents overloading of specific cells, and ensures a seamless user experience during high-
demand periods or in areas with varying traffic patterns [153], [154].

Furthermore, KPI prediction plays a crucial role in optimizing spectrum utilization. By
accurately predicting KPIs related to spectrum availability, utilization, and efficiency,
spectrum resources can be efficiently managed and allocated. This includes techniques like
spectrum sharing, cognitive radio, and dynamic spectrum access, which enable efficient
utilization of the available spectrum and support diverse services and applications [155].

KPI prediction, also, supports network planning and optimization. By analyzing historical
KPI data and using predictive models, future network demands can be determined, and, thus,
capacity expansions can be planned and network deployment strategies can be optimized.
This includes determining the optimal placement of base stations, adjusting antenna
configurations, and optimizing parameters to meet performance targets and ensure efficient
resource usage [156].

When considering throughout as the KPI to predict, there are some more RRM-related
field that the a priori prediction of the anticipated system or user throughout can be really
significant. In fact:

e QoE Optimization: Predicting throughput helps in optimizing the user
experience by ensuring sufficient bandwidth for demanding applications and services.
By forecasting throughput, the potential congestion or performance bottlenecks can
be identified and proactive measures can be taken to maintain a desired QoE level,
such as adjusting resource allocation, prioritizing traffic, or applying traffic shaping
techniques [157].

e Service Level Agreement (SLA) Compliance: Accurate throughput prediction
is essential for meeting SLA requirements and contractual obligations. By predicting
throughput and monitoring its performance against defined thresholds, operators can
ensure adherence to SLAs and deliver the promised performance to customers. This
enables proactive measures to maintain customer satisfaction, avoid penalties, and
manage service level expectations [158].
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4.2  Throughput prediction in 5G/B5G Networks

In this paragraph, the performance of various ML algorithms for KPI prediction is
presented. The investigated ML algorithms have been selected based on two criteria. The first
criterion is their ability to satisfactorily solve the KPI prediction problem. This means that we
have selected algorithms with performance scores over 75% in accuracy. The second criterion
is the usage of these algorithms in RRM-related KPI prediction tasks in 5G/B5G networks,
according to the presented literature in the previous chapters (basically in section 3.3 of
chapter, i.e., [25], [107], [108], [116]-[118]). More specifically, using the Lumos-5G dataset
[158], the problem of throughput prediction is investigated (Lumos5G features are, also,
summarized in Table 4.1).

4.2.1 Dataset and problem formulation

Lumos 5G dataset [158] contains 68,118 observations of 19 features, concerning UES'
location and mobility parameters, such as longitude, latitude, UE speed and direction, UE-BS
distance and corresponding angles, as well as network related ones, such as network status
(connected or not), CSI parameters (Received Signal Strength Indicator - RSSI, Reference
Signal Received Power - RSRP, Reference Signal Received Quality - RSRQ, SNIR), and
signal strength, derived by real-world experiments and statistical analysis. The measured
downlink throughput acts as the response variable. All these features are depicted, also, in
Table 4.1.

Feature Description

timestamp day, time logs

longitude, latitude Geographical coordinates for each UE

detected activity walking, still, driving

moving speed UE’s moving speed using Android API

compass direction horizontal direction of travel of each UE

radio type 5G or 4G

cell 1ID number of the BS that each UE is assigned to

signal strength KPIs RSSI, RSRP, RSRQ, SNIR

UE to BS distance distance between each UE to the server BS

positional angle angle between each UE and the corresponding BS

mobility angle distance between each UE’s trajectory route and the
corresponding BS

throughput downlink throughput using iPerf 3.7

Table 0-1: Lumos 5G dataset's features

Throughput prediction is formulated, either as a classification or as a regression problem.
On the one hand, classification refers to the prediction of the received throughput level by
each active UE, given the dataset features. The effective solution of this problem can be
valuable in a variety of RRM-related tasks, such as modulation levels definition.

Considering throughput prediction as a classification problem, two different approaches
are considered in our analysis. The first one concerns three preselected throughput levels (3
classes):

e Level O - low throughput: from 0 to 300 Mbps,
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e Level 1 - medium throughput: from 300 to 500 Mbps, and
e Level 2 - high throughput: above 500 Mbps.

However, due to the small amount of data in the second class of the previous approach, we

consider also an alternate approach, where two preselected throughput levels exist (2 classes):
e Level O - low throughput: from 0 to 300 Mbps,
e Level 1 - medium throughput: above 300 Mbps.

The above-presented level limit values -in both 2-class and 3-class approaches- have been
generated after performing extensive statistical analysis to the used dataset, concerning the
goal of including satisfactory samples in each investigated class.

On the other hand, regression refers to the prediction of the actual expected value of the
metric (throughput in our case). The information gathered by the regression task can be
valuable in RRM decision tasks, such as subcarrier and/or power allocation, via the prediction
of the values for next timeslots.

4.2.2 Implemented ML algorithms

4.2.2.1 Throughput prediction as a classification Problem

Considering throughput prediction problems as a classification one, the following four
distinct ML-based algorithms are examined:

o FFNN: A Feedforward NN with 100 hidden layers and rectified sigmoid
activation function (ReLU) and optimized hyperparameters,

o K-NN: A k-NN-based classifier using 2 neighbors and Chebyshev distance
criterion,

o SVMs: Two SVM models, one using polynomial and another using Gaussian
kernel and

o DNN: A Deep NN with a feature input layer -using the 19 features of the
dataset- and z-score normalization, a fully connected layer with 19 - 50 weight matrix
and a 50-element vector output, a 50-channel batch normalization layer, a ReLU layer
with a 50-element vector output, a second fully connected layer with 3 or 2 (3-class and
2-class problem respectively) neurons and 50 x 3 (3-class problem) or 50 x 2 (2-class
problem) weight matrix and a 3-element/2-element vector output and, finally, a soft-
maximization layer with a 3-element/2-element vector output. The overall DNN's
structure for the 3-class problem is shown in Fig. 4-1. DNN's structure for the 2-class
problem is similar and differs only in the size of the two last layers (fully connected layer
2, soft-max layer).

Hidden Layers

Feature Input Fully-connected Batch Soft maximazation

e Fully-connected

Layer layer 1 Normalization layer RelU layer layer
. layer 2

° ® °

[ ] [ [ ]

° L] ([ ]

o ° °

o [ °

o ° °

N=19 N =50 N =50 N =50 N=3 N=3

Figure 0-1: DNN's architecture
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4.2.2.2 Throughput prediction as a regression Problem

Considering throughput prediction as a regression problem, the following algorithms are
examined:

e Linear regression: A multi-linear regression model, using all 19 dataset
features except throughput, which is the response variable,

e Binary Decision tree: A Gaussian binary decision tree designed for regression
purposes, using auto-optimized hyperparameters,

e SVMs: Two SVM models, one using polynomial and another using Gaussian
kernel and,

e NN: A Feed Forward neural network with 100 hidden layers, a feature input
layer with the 22 features of the dataset and z-score normalization, a 50 50 fully
connected layer, a 50-channel batch-normalization layer, a ReLU layer, a soft-
maximization layer and a regression layer.

e LSTM: ALSTM neural network with a sequence input layer for the 22 features
of the dataset, an LSTM layer with 125 hidden units, a fully connected layer and a
regression layer.

4.2.3 Results and Comparative Analysis

In both of the abovementioned approaches (studying the KPI prediction problem in
5G/B5G networks either a classification or regression one), an 80%-20% training-test set split
has been used, as well as a 10-fold cross validation procedure.

4.2.3.1 Throughput prediction as a classification Problem

The performance of the abovementioned classifiers is evaluated, using the accuracy and
F1-score metrics. Accuracy is the percentage of the total number of the correct predictions
divided by the total number of observations. In other words, accuracy is given by the sum of
True Positive (TP) and True Negative (TN) predictions, divided by the number of the total
predictions (TP + TN + False Positive (FP) + False Negative (FN)), as depicted in the
following formula (see also the confusion matrix in Fig. 4.2):

TP+TN
TP+TN+FP+FN

Accuracy = 9)
Then, Fl-score is given by the formula (12), by utilizing formulas (10), (11), which

describe Precision and Recall metrics:

Precision = — (20)
TP+FP
Recall = (11)

TP+FN
PrecisionxRecall ( )

Flgeore =

Precision+Recall
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PREDICTED CLASS

a: TP (true positive)
Class=Yes |Class=No

Class=Yes a: TP b: FN

b: FN (false negative)

c: FP (false positive)

Class=No c: FP d: TN d: TN (true negative)

ACTUAL
CLASS

Figure 0-2: Confusion Matrix

Table 4-2 summarizes the performance of the above models in the classification task (with
two or three classes), based on classification accuracy and F1-score. The k-NN-based
approach overperforms all the other approaches, witnessing the best overall accuracy (0.87
and 0.90 with three and two classes, respectively). In general, supervised learning algorithms
(such as k-NN) are the most appropriate ones in networks' KPIs prediction, as drawn from the
existing literature, analyzed in subsection E of section Il1l. However, concerning F1-score,
DNN has the best performance (0.81) in the 3-class problem, while k-NN (0.90) in the 2-class
model.

ML Algorithm 3-classes 2-classes Training
FFENN 0.81 0.67 0.88 0.88 960.41

0.87 0.77 0.90 0.90 111.79
0.76 0.53 0.82 0.82 150.03
0.81 0.81 0.85 0.84 129.43

Table 0-2: ML Classification algorithms comparison

As, also, stated in paragraphs 3.4, DL algorithms, due to their multiple hidden layer
architecture, witness unseen aspects of the dataset, and, thus, their performance is satisfactory
in the classification task. In this case, the preselected classes are imbalanced. Therefore, F1
metric is more reliable, because it concerns both TP, TN and FP, FN, while accuracy takes
into account only TP, TN. It is also visible from Table 4-2, that, using only two classes, both
accuracy and F1-metrics are improved. Moreover, with respect to the training time of each
ML model we observe that k-NN overperforms the other approaches, while the DNN
approach reaches almost the same performance levels. Thus, these two ML methods are the
most appropriate for the investigated problem in both performance and training time
perspective. On the other hand, FFNN approach has significant delay in training time, even
though the performance accuracy almost coincides to the best-performing algorithm's one.

A second level of performance evaluation is to compare the best-performing algorithms
presented above (in terms of Accuracy and F1-score) with similar works presented in the
literature. In this direction, Figs. 4-3, 4-4 depict the comparison of selected state-of-the-art
throughput classification approaches [159]-[161] while the previously presented evaluation
analysis is included as well.

For each of the [159]-[161] works, we pick the best performing ML algorithm, and so we
do for our evaluation approach, as far as the 3-class throughput prediction problem is
concerned (i.e., k-NN algorithm, see Table 4-2). As it is apparent, our evaluation approach is
consistent with similar approaches in other recent works [159]-[161].
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Figure 0-4: Classification models comparison: F1-score

4.2.3.2 Throughput prediction as a regression Problem

The performance of the abovementioned ML models is evaluated using the mean absolute
error (MAE) and RMSE metrics. MAE is defined as the difference between the actual and the
predicted values of the response variable (throughput), while RMSE is defined as the square
root of the squared difference between the actual and predicted values, as depicted, also, in
the following formulas:

1 yi=Ji
MAE =237, |y—| -100% (13)

RMSE = VHSE = [LSIL, (v~ 907 (14)

Where, y; is the actual value of the i*" observation of the test dataset and #; is the
prediction for the it observation of the test dataset from a specific ML algorithm.
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Table 4-3 and Figs. 4-5, 4-6 summarize the performance of the above models in the
regression task, based on MAE and RMSE. The two best performing ML-based approaches
are Binary Tree regressor and LSTM regressor, witnessing the best overall MAE and RMSE
performance (162,257 and 150, 250 respectively). As in the previous case (classification
problem), supervised and Deep learning algorithms are the most appropriate ones in networks'
KPIs prediction as a regression problem. In fact, decision tree algorithms and linear regressors
are designed for regression purposes. However, NN model's performance is also highlighted,
as it is the second best in both metrics (237 and 328, respectively).

Fig. 4-7 depicts the comparison of the state-of-the-art throughput prediction approach in
[113] with our previously presented evaluation analysis for the regression problem. We pick
the best performing regression ML algorithm of [114], and so we do for our evaluation
approach.

(i.e., LSTM regressor, see Table 5). The comparison is conducted using RMSE as metric.

As it is apparent, our evaluation approach is consistent with the approaches in other recent
works [114].

ML Algorithm MAE RMSE  Training time (s)

278 353 1.05
162 257 50.61
278 354 28.54
237 328 6.89
150 250 276.89

Table 0-3: ML Regression algorithms comparison

To conclude, we observe that, in general, both our approaches and other recent works on
the KPI prediction problem for 5B/B5G networks propose Supervised or DL models as the
most appropriate tools for this type of problem either as a classification or a regression one.
On the one hand, supervised learning models (k-NN, SVMs, Random Forest) seem to have
the best performance concerning training time. But on the other hand, DL (DNNs, LSTM)
models overperform when it comes to performance metrics, such as accuracy and F1-score

for classification purposes or RMSE, MAE for regression ones.
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Figure 0-5: Regression models: MAE
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4.2.4 Discussion and Open Issues

As already presented in Chapter 3, the allocation of the available network resources is a
multi-objective problem, due to the diverse nature of users' requirements, hardware evolution
and demand for continuous connectivity. Despite the research progress presented in section
3, some open questions and practical challenges persist, requiring even more effort in the field
of ML-based RRM, to reach its full potential. These issues have been, also, identified
throughout the performance evaluation of the different ML algorithms regarding the
throughput prediction problem in 5G/B5G networks. The critical issues that should be taken
into consideration are highlighted below and summarized in Table 4-4.

First of all, 5G and B5G networks utilize ML-based algorithms to phase the growing
number of usage scenarios in access management. Therefore, ML performance metrics (such
as RMSE for regression problems, accuracy for classification ones, etc.) should be examined
along with the network metrics (i.e., total network throughput, QoE, etc.) [107], [115]. Some
approaches (e.g. [25], [112]) focus only on the ML metrics performance increase, without
also evaluating the networks' metrics.
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Throughout this thesis, the critical role that AlI/ML plays in wireless networks and in 0T
and heterogenous topologies has been highlighted. However, researchers should not overlook
some practical limitations that exist in the implementation process of ML-based RRM
strategies, i.e., when developing the corresponding ML model. More specifically:

e 5G datasets unavailability and/or poor quality: A key procedure for building
ML models is the validation and training stage. 5G full deployment throughout the
world was set for 2020, before the COVID-19 pandemic. Hence, 5G data from
implemented networks have only recently started to be produced. The Al/ML models,
that have been produced until now, are using synthetic or incomplete data from past
networks' generations [42]. Another aspect that also affects data quality is the fact that,
in general, wireless network data are characterized by noise and inaccuracy. In fact,
even well-established wireless network datasets -such as DeepMIMO [162]- witness
quality issues in a variety of RRM-related problems. We should also keep in mind
that, due to the highly interference environment, huge datasets, including numerous
features and observations, are, anyway, required. All the data-related limitations
presented in this paragraph, prevent ML models from reaching high levels of
accuracy; lack of input leads to suboptimal or non-optimal solutions. This
consideration reflects every ML-based model, regardless the type of learning. Both
supervised, unsupervised, reinforcement or deep learning approaches have
insufficient results when the quality of the input data is moderate.

e Learning difficulties due to channel complexity in multiuser environments: 5G
wireless networks are characterized by multipath propagation in a highly interferenced
environment. This, as stated previously, consists one of the reasons for the need for
an enormous variety of features and channel observations in ML datasets construction
for RRM (preferably Big Data). Hence, feature extraction for channel information
becomes a demanding task. Linear models and generic algorithms (such as simple-
tree models, regressions, etc.) are unable to provide optimal solutions, concerning
effective resource allocation. The approaches discussed in previous sections configure
ML-algorithms by alternating hyperparameters and evaluate accuracy in the RRM
sub-problems. In this context, performance and models' selection policies are vital in
ML-based approaches. Researchers should have deep knowledge of the ML models,
pre-trained or not, so that they become able to correctly evaluate them [163].
Concerning the complexity of the channel and the growing users' demand in 5G/B5G
networks, DL methods are proposed as the more efficient ones.

e Computational complexity: In terms of accuracy, the AI/ML models discussed
in previous sections have improved performance, when used to solve complex
problems based on networks' KPIs. Concerning the URLLC requirements and the
demand for mass access to the medium in 5G/B5G networks, RRM decision making
should be done with respect to computational complexity. However, the highly
interferenced environment and random mobility patterns of UEs act in the opposite
direction. Thus, ML techniques should succeed in proposing a trade-off between the
solution's accuracy and computation requirements [109], [117],[124]. Even though
DL solutions are proposed as the most efficient ones, they increase computational
complexity, by employing multiple hidden layers to yield accurate results. In this
respect, distributed approaches using MEC architectures and FL-based algorithms
should be considered. Taking also into account the requirement for energy efficient
networks, researchers should maintain the computational cost to tolerable levels [110],
[115].

Finally, Power consumption rapidly increases in 5G, and will further increase in B5G
networks, compared to previous generations, due to the users' growing demands for
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continuous access to enhanced services and applications. ML schemes, if effectively
implemented, contribute to power savings, as, hopefully, they lead eventually to fast and
more accurate RRM decision-making. For further energy consumption mitigation, we
should incorporate energy-efficient technologies during the models' training phase, where
additional computational resources are needed. In this direction, Green Al techniques and
distributed processing methods (such as MEC) should be further investigated, so that less
energy harvesting solutions become feasible [164].

Open Issues

Potential Solutions — Suggestions for

networks' KPIs and ML KPIs joint
evaluation [24], [113]

future Work
ML methods’ evaluation in terms of
network performance [25], [123]

5G datasets unavailability and poor quality
[42], [162]

research work in dataset generators, real-
world data availability [158], [159]

channel complexity [128]

DL approaches [159]

computational time and cost [108], [117],
[122]

distributed DL, use of MEC and FL [109],
[114]

energy consumption [165]

MEC, Green Al technologies [165]

Table 0-4: Open issues and potential solutions concerning ML employment in RRM

loannis A. Bartsiokas

89



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks

Chapter 5: Relay Node Placement and Selection in
5G/B5G Networks

In this chapter the problem of ML/DL-enabled RN placement and Selection in 5G/B5G
network is discussed. As presented in Chapter 1, RN utilization is one key enabling PHY
technology that can extend the coverage area of each cell in 5G/B5G networks, while capacity
and maximization of the accepted UEs to be served, can be, also, achieved. First, a state-of-
the-art review is performed regarding the ML-schemed used for RN placement and selection
in 5G/B5G systems. Afterwards, the RN placement problem is mathematically formulated. In
order to propose several ML-based solutions on that problem, the lab’s 5G/B5G system and
link level simulators is utilized in order for synthetic datasets to be produced. Thus, the dataset
generation flow is, also, discussed in this chapter. Afterwards, two DL-based schemes trained
either CL-based or FL-based are presented, while the corresponding performance evaluation
outcomes are analyzed. The second part of this Chapter discusses the problem of RN selection
in 5G/B5G networks. In this context, the problem is mathematically formulated subject to the
relevant PHY constraints. Afterwards, a DRL (Deep Q-Learning) scheme is proposed as a
solutions to the aforementioned problem. This scheme considers the joint maximization of
each UE’s EE and SE, and the maximization of the overall system’s EE and SE. Discussion
over the aforementioned approaches and the results after simulations are, also, considers.
Considering all the above, in paragraph 5.1 an introduction to ML/DL-based RN placement
and selection is performed. In paragraph 5.2 a literature review over the exiting ML/DL-based
schemes for RN placement and selection in 5G/B5G networks is performed. In Paragraph 5.3
the problem of RN placement is formulated and two DL models are proposed and evaluated
to optimally solve this problem. Moreover, both approaches are trained either in a CL or an
FL way. By that comparison, the training time gains of the FL approach are compared to the
ML KPIs (e.g., accuracy, Fl-score) maximization gains of the CL one. Paragraph 5.4
considers the problem of RN selection (over several candidate RNs) for each accepted UE in
the topology. In this framework, the problem is mathematically formulated, while a Deep Q-
Learning approach which maximizes EE and SE is proposed. This approach is evaluated via
numerous simulation rounds.
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51 Introduction

In recent years, 5G/B5G wireless communications systems have been established to
support the exponential growth rate of mobile data traffic [1]. Moreover, the rapid evolution
of wireless services, drove 5G/B5G standardization process to deal with different
telecommunication service categories, such as URLLC, eMBB and mMTC in mass access
environments [165], [166]. In this context, various novel physical layer technologies have
been introduced over the last years to cope with the increasing challenges in the wireless
communications domain, such as m-MIMO configurations, mmWave transmission, as well
as NOMA [167]. However, the aforementioned advanced PHY technologies, when applied in
a cellular environment characterized by high interference levels and complex channel
approximations, along with increased connection density and near-random user mobility
patterns, maximize the computational cost to support strict users’ requirements and demands.
ML algorithms are proposed as an efficient way to tackle these considerations, due to their
ability to utilize data generated by the network itself in improving network performance and
efficiency [168]. ML algorithms are trained using either data generated by the wireless
network under test or by similar ones. In this way, complex channel calculations are
encapsulated in ML models’ layers, which leads to the decrease of computational cost and
complexity after successful training rounds. Moreover, some ML algorithms (e.g., RL ones),
can directly interact in real-time and support low-latency requirements of modern era
networks.

The 5G/B5G network architecture is based on the heterogenous networks (HetNets) model
in order to meet the increased network capacity and ultra-density requirements. HetNets
involve the composition of a number of smaller, simpler, and lower-power BSs, with different
characteristics (transmission capacities, coverage areas, carrier frequencies, etc.) to improve
cell-edge coverage and enhance the network KPIs [169].

However, there are cases even in HetNet topologies, where the coverage area of each cell
should be extended for more users to be served by the network. Such scenarios are of
significant interest in Unmanned Vehicles (UxVs) scenarios or military/defense networks. In
this context, RNs have been proposed as a “retransmission technology”, that can relax
transmission burden from centralized BSs. Thus, by using RN-assisted RRM mechanisms,
total system’s performance can be upgraded by further improving data rates, mitigating
interference levels and extending network coverage [CONF-1]. An open research field
concerning the use of RNs in multicellular 5G/B5G networks is the optimal relay placement
within each cell’s area, to improve various network KPIs, such as total served users, achieved
throughput and SNIR, total transmitting power and blocking probability. Moreover, the
selection of the optimal RN, from the candidate ones, to serve each active UE in the topology
is, also, of the same interest. Compared to an established one-hop downlink communication
link between a BS (transmitter) and a UE (receiver), an n-hop relaying-assisted BS-UE link’s
complexity is increased due to the following reasons:

a)  The use of RNs was introduced in 3GPP release 16 [170], while the beginning
of standardization process can be found in release 17 (latest stable edition of 3GPP
documents) [171]. This means that there are no detailed channel, pathloss and mobility
models for RNS.

b)  The effectiveness of the RN-UE connection is based, also, on the quality and
stability of the BS-RN link.

¢)  Shared resource management should be performed, as RNs are a layer 3 (L3)
entity, which needs BSs’ assistance in performing advanced RRM tasks.

Recently, ML is proposed as an efficient approach to deal with the abovementioned
problems of optimal RN placement and optimal RN selection between candidate RNs [172].
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The key characteristic of ML-based approaches is that -using data generated by existing
systems-, they can accurately estimate the examined system’s behaviour, with the minimum
computational cost. In this way, complexity is reduced, and accurate predictions can be
performed leading to real-time responses. This chapter focuses on solving the joint problem
of RN placement and selection by utilizing different ML-based techniques, focusing on DL
and RL. These chapter’s contributions can be summarized as follows:

e The problem of RN placement to maximize the number of active users in each
cell of the cellular topology is mathematically formulated. Thus, given only the
number of the RNs per cell to be deployed and a set of potential geographical positions
(x-y coordinates of potential RNs), the k best-performing RNs are selected to serve
the active UEs in each cell. The aforementioned selection is performed subject to three
main constraints. The first one is the minimization of pathloss for each accepted UE,
the second refers to the minimization of the total transmitted power by each deployed
RN, while the latter is the maximization of the total accepted users in the topology.
Moreover, the proposed algorithm is tested in two different simulation scenarios. The
first one considers the presence of ideal CSI, while the latter considers no CSI at all.

e To tackle the aforementioned problem, two efficient offline RN placement
ML/DL algorithms are proposed. These algorithms focus on fast response times by
taking into consideration the constraints of the previous bullet. The fist DL algorithm
considers a Deep ANN orientation, while the latter considers a LSTM one.

e After the optimal placement of the RNs in each cell’s coverage area, the
problem of optimal RN selection for each accepted user in the topology is formulated.
In other words, for UEs not served directly by the BSs, either for pathloss or power
consumption reasons, the optimal RN (from the k eligible) should be selected to serve
them.

e Tosolve the aforementioned problem, an energy efficient RL-based algorithm
to select the optimal beam (RN) to serve each accepted user in the topology is
proposed. A DRL, (Deep Q-Learning) algorithm is utilized for this scope. In this
context, EE and SE are the KPIs that determine algorithm’s transitions.

e Finally, all presented approaches are evaluated by extensive system level
simulations in different usage scenarios. Performance evaluation indicates that the
joint DL based RN placement and selection scheme can overperform state-of-the-art
approaches in improving various network KPIs, such as EE and SE.

5.2  Existing Literature Review

Algorithms for RN placement and selection is an active area of research in wireless
communications, especially in 5G/B5G cellular communication networks. In fact, the
implementation of relaying-assisted communications is proposed in different usage scenarios
in modern era wireless systems, such as MANET/WANET networks, supply chain
management and manufacturing. Moreover, the joint utilization of RN-assisted
communication and modern multiple access schemes, e.g., NOMA, are also of high research
interest nowadays. In these cases, the NP-Hard optimization problem [172] of RN placement
and/or selection is solved through either distance-based techniques with the use of graph
theory or game theory [173], [174], or via extensive search algorithms (e.g., using ergodic
capacity analysis) [175]. Furthermore, moving RNs are, also, under research, due to the
growing interest in UAV communications [176].

In this framework, ML-based solutions are investigated as an efficient way to deal with the
NP-Hardness of the aforementioned problem. The current research activities on the field of
ML-assisted RN placement and selection are presented in this paragraph. The concept of ML-
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assisted RN placement is introduced in [177]. Authors presented an optimal RN positioning
method, aiming to improve system’s performance in uncertain and dynamic-changing
multicellular topologies. Consequently, channel quality prediction in both BS-RN and RN-
UE link is of primary concern in defining RN positioning. Authors proposed a learning-based
and a distance-based method for channel prediction based on mobility patterns of RN under
test. The achieved connectivity levels are used as the basic KPI during performance
evaluation. A heuristic optimization algorithm is used for optimal RN positioning,
outperforming a recently developed relay positioning algorithm.

In [172], an approach for deploying the minimum accepted number of RNSs -as a subset of
given potential locationsis considered with respect to QoS requirements in multihop wireless
systems. A hop count boundary is inserted to ensure a certain blocking probability in the BS-
RN link. To deal with the NP-Hardness of the RN placement problem, a polynomial time
approximation algorithm using shortest path trees and heuristically pruning the relay nodes
used until the hop count bound is violated, is proposed. Performance evaluation indicated that
this approach efficiently solves the abovementioned problem in various randomly generated
network scenarios. More specifically, optimal solutions are given in over 90% of the tested
scenarios. Afterwards, authors used random graph techniques to derive an upper bound on the
average case approximation ratio for the used algorithms based on the number of source
nodes, and the hop count bound. This average case analysis was the first one in RN placement
literature.

On the other hand, authors in [178] face RN placement problem as a clustering one. The
scenarios of interest consider Wireless Sensor Networks (WSNSs), where RNs are used as
mediators between users and applications’ servers by assisting messages transmission. A k-
means clustering ML approach is activated for link restoration whenever it is necessary based
on transmitting power, number of packets lost in a RN-BS link and BS-UE distance. Thus,
for each BS, the corresponding RN is deployed at the most frequently used route in the
network. Numerical evaluation indicated that the proposed method outperforms existing
distance-based methods on the basis of various KPIs such as residual energy, endto-end delay
and the number of hops required in the network from source to destination. Moreover, k-
means clustering algorithm implementation can reduce the total number of used RNSs.

Considering industrial WSNSs, authors in [179] studied the placement of RNs in a realistic
three-dimensional (3-D) factory space based on the satisfaction of various physical,
performance and energy-related KPIs. The study was performed using IEEE 802.15.4e low
latency deterministic network mode in order to achieve low latency and highly reliable
communications in harsh factory environments, which are suffering from noise, interference
and multipath fading. Hence, frequent packet losses are reported. The authors proposed the
joint incorporation of RN nodes and forward error correction (FEC) techniques leading to
enhanced communication reliability. More specifically, on the one hand an efficient and
pragmatic relay-placement strategy based on rainbow product ranking algorithm for a 3-D
factory space, and on the other hand an adaptive RL transmission scheme (using Q-learning
techniques), which incorporates cooperative diversity and Reed Solomon block codes, are
proposed. A real-world case study is performed in order to evaluate the correctness and
effectiveness of the presented solution. The proposed RN placement strategy has improved
performance in terms of cost reduction and total number of deployed RNs compared to other
state-of-the-art approaches. Moreover, the used Q-learning method efficiently utilized the
resources in terms of relays and BSs, making the transmission scheme more generic in terms
of, not only adopting to versatile factory environments but also accommodating the dynamic
behaviour per link in the factory space.

A more complex scheme considering not only RN localization but also power management
in 5G networks is presented in [180]. A mathematical analysis for defining expressions and
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minimum threshold for end-to-end average symbol error rate (SER) and outage probability
(OP) is performed for in amplify-and-forward (A&F) RNSs, introducing those KPIs as the
main ones for the problem definition. As a result, the high correlation between BS-RN and
RN-UE links, is described. Afterwards, the joint power allocation (PA) and RN placement
problem is considered. Results indicated that RN placement optimization is more efficient
than PA. Thus, an ML implementation of the proposed convex optimization problem is
investigated. The joint problem is translated to a regression ML problem and authors propose
a feed-forward neural network (FNN) approach (2 and 3 hidden layers are considered). ML-
models’ performance is controlled using the mean absolute percentage error (MAPE) metric
which reached over 90% score. The simulation results demonstrated a compromise between
MAPE and computation times for the FNN-based joint PA-RL optimization.

Authors in [181] proposed a combined RN selection and resource allocation (RA)
algorithm. A key drawback in existing approaches is the need for a large number of relays to
forward signals transmitted on multiple subcarriers. However, signal generation in multi-hop
scenarios increases the complexity of combined RN selection compared to that of per-
subcarrier relay selection, when the number of relays increases. In dense 5G networks, the
impact of that problem is even bigger. To deal with this drawback, authors proposed a
supervised ML method. The training phase is implemented off-line, leading to a considerable
reduction to the RN selection complexity and the processing latency. An ANN scheme is used
for the best couple of relays to be selected. In each epoch the least accuracy criterion is
checked to continue simulations. Accuracy and Mean Squared Error (MSE) are the two
considered KPIs for ANN’s performance. Numerical evaluation indicated that the proposed
supervised ML approach can provide near-optimal performance with lower computing
latency, which nearly reaches the optimal relay selection in a per-subcarrier manner. Over the
last years, RL-assisted RN selection and RA have attracted scientific research interest as well.

In this context, Geng et al. in [182] studied the joint outage probability minimization, RN
selection optimization and transmission power reduction problem in RN-assisted 5G
networks, where the existence of accurate CSI is extremely difficult. Thus, the authors
proposed an RL prioritized experience replay aided framework, acting in optimal solution
finding to the above-mentioned problem without any prior knowledge of CSI. The proposed
approach is compared to other RL-based solutions, and performance evaluation indicated that
communication success rate can be improved by about 5%.

On the same context, the authors in [183] proposed an RN selection algorithm to succeed
in providing guaranteed reliability, low latency, and power consumption levels in large scale
multi-hop 5G topologies. The proposed scheme uses Q-Learning RN selection based on SNIR
levels. Q-learning is an RL approach, which consists of an agent, the environment, agent’s
states, actions, as well as rewards or penalties. In learning stage, the agent learns the optimal
allocation policy to maximize the reward [184]. From network’s perspective, the BS knows
the optimal RN to select and transmit the signal. The used RNs are decode-and-forward
(D&F) ones, and the system uses orthogonal frequency division multiple access (OFDMA)
techniques. Finally, the proposed scheme tries to utilize optimal allocation policy based on
the learning outcomes of the previous stage, based on the SNIR. Performance evaluation
indicated that the proposed approach achieves the same bit error rate (BER) levels as
conventional RN selection schemes in the literature. The basic advantage of the proposed
approach is the selection of fewer RNs when the target BER is satisfied. Consequently,
system’s latency is improved.

The aforementioned research efforts describe some aspects of the utilization of Artificial
Intelligence (Al)/ML methods for the optimization of either the problem of RN placement or
RN selection -over a set of available RNs- in wireless systems. However, most of these works
evaluate the proposed algorithms in single-cell orientations, or by limiting the number of
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active UEs in the topology. Our motivation is to extend these works and present a global ML-
based framework to both train an offline ML model to place the RNs based on the
performance of simulated UEs in the topology, but also, propose an RL method to interact
with the cellular environment and select the best-performing RN for each accepted UE in the
topology. The motivation of this chapter is to extend these works and present a global ML-
based framework to both train an offline ML model to place the RNs based on the
performance of simulated UEs in the topology, but also, propose an RL method to interact
with the cellular environment and select the best-performing RN for each accepted UE in the
topology. The outcomes of the ML/DL/DRL frameworks that are proposed in this Chapters
have been, also, published in [J-2].

5.3 ML-assisted Relay Node Placement
5.3.1 Problem Formulation

The downlink of a cooperative wireless OFDMA 5G/B5G multicellular HetNet is
considered, as illustrated in Fig. 5-1. The studied system has two different levels of base
entities. The first one, Macro-BSs, forms the primary system where UEs can directly access
and request service. The latter one, RNs, form the secondary system, aiming to assist the
primary system in improving capacity and coverage area, by serving UEs that have been
initially rejected by the primary system.

Macro BS

UE 2

UE 1

((é» """""" D
UE 3 - MANET x‘-‘\:x RN UE 4

——> Direct communication
-------- » RN- assisted communication

--------- Non 5G/B5G networking
Figure 0-1: Two-hop 5G/B5G HetNet with A&F RNs

Thus, the cooperative system consists of M BSs, R RNs and N uniformly distributed UEs.
The set of BSs is denoted as S, = {b;,b,,..., by}, the set of RNs is denoted as S, =
{ry,1y,..., 7z}, while the set of UEs is denoted as S,, = {uy,uy,...,uy}, respectively. The
potencial link between a BS and a UE is denoted as L,, where b € S, and u € S, the
potential link between a BS and a RN is denoted as L, . where b € S, and r € S, , while
the potential link between a RN and a UE is denoted as L,.,, wherer € S, andu € S,. Note

that the Cartesian coordinate system is used to locate all enrolled entities both considering 2D
or 3D space.
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As previously stated, RNs are deployed to assist the primary communication’s system to
support UEs that are initially rejected due to high pathloss or other power allocation reasons.
The goal of this sub-problem is to select the N-gy positions (set of x-y-z coordinates) for the
best-performing RNs to be deployed in each cell’s coverage area. Best performing RNs are
selected to optimally meet user requirements and maximize each cell’s performance. Thus, a
predefined number of potential RNs are placed in different positions inside each cell’s
coverage area, declared as RN_,,. Fig. 5-2 provides an illustration of such a topology for a
single 5G/B5G cell where RN,,,, = 10 candidate RNs deployed.

Cand. RN 1 Cand. RN 3

Cand. RN 2
Cand. RN 6
@ @ @ o @
Cand. RN4 Cand. RN5 BS1 Cand. RN 7
Cand. RN 9

Cand. RN 8 Cand. RN 10
Figure 0-2: 5G/B5G system’s cell with candidate RNs

Thus, the Nggy Dbest-performing RNs are selected out of S,. where S,.=
{rcy,rcy, ..., repn,, ) 1S the set of candidate RNs is each cell, subject to the following
constraints:

(C1) min(PL,),Vn € N, where PL,, is the pathloss between each accepted
UE by the secondary system, and the RN that assigned to.

(C2) min(P,,),Vr € R, where P, is the total transmitted power by each
deployed RN.

(C3) max(AN,),Vr € R,where AN, denotes the total accepted UEs served
by RNs.

Two offline ML-enabled methods are proposed to solve the aforementioned problem
utilizing DL principles and techniques, as will be presented in paragraph 5.3.3. Moreover,
both methods are examined and their performance is evaluated in the following two scenarios:

e Scenario 1: The channel coefficient matrix sub-table is known for the link of
each UE and the corresponding BS. Moreover, the channel coefficient sub-tables are
known, also, for the RN-UE link.

e Scenario 2: There is no CSI information available both for the BS-RN and the
RN-UE link. Thus, dataset construction and algorithms are based only on
geographical, pathloss and topology parameters.
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5.3.2 Dataset generation

A key procedure for building ML models is the validation and training stage. For this
purpose, datasets used for learning objectives should be accurate, up-to-date and should
always be evaluated. A MATLAB relay-assisted 5G/B5G link and system level network
simulator is used to construct datasets after adequate Monte-Carlo (MC) simulation rounds.
This simulator is based on the work in [CONF-1], where both different Inband and Outband
A&F RN scenarios are considered (see also paragraph 1.3.3 for RN types). In fact the
following scenarios are configurated in the aforementioned simulator:

1) No-RN: No RNs deployed,

2) Sector Mid Edge Inband (SME-I): OnDemand-Inband RNs deployed in the
middle edge of each sector,

3) ANY-I: OnDemand Inband RNs deployed wherever deemed necessary,

4) All Cell Edges Inband (ACE-I): OnDemand Inband RNs deployed at the edges
of each cell and

5) Sector Mid Edge Outband (SME-O): Predefined Outband RNs deployed in the
middle edge of each sector.

A significant aspect of this simulator that should be pointed out is the resource allocation
(subcarrier allocation, user association to BS or RN) algorithm that is implemented. This
algorithm aims to combine the MIMO and OFDMA principles with the RRM and RN-
deployment processes, as a joint approach to improve EE and SE. All related parameters are
presented in Table I, while the description is analyzed in Fig. 1.

Parameter Variable

Number of SCs requested by the n" UE R,

Number of available SCs in each BS/Outband RN Neo/Npn_o

Set of SCs allocated to the n" UE S,

Available SCs of the b™ BS/ r'" outband RN/cluster | Sy, /S,.._,/S.1

Types — Classes of RNs (RNtype) No-RN, Inband, Outband
Set of served UEs by the b™" BS /r'" RN U, /U,

Total losses of the n'" UE from BS or RN TLyp/TLy
Channel Matrix for the I'" SC of the n" UE H, secn)

Power assigned to the I SC of the n'" UE o

Maximum Tx Power per SC/BS or RN Pi_sc max/ Pe—Bs max
Number of rejected UEs UEr.;

SNR threshold level SNRpy

Table 0-1: RRM algorithm’s parameters [CONF-1]

In Step 1, the available subcarriers per BS or RN are defined (i.e., S, denotes the set of
available subcarriers of the b BS). Moreover, if relay-assisted transmission has been
selected, the corresponding topology is formulated. In Step 2, BS selection for the n'" UE
takes place, according to pathloss minimization (PL,,, denotes the pathlosses of the n UE
with respect to the b™" BS). Channel modeling is performed according to the latest 3GPP
specifications [86], by integrating mobility parameters, existence of Line of Sight (LOS)
propagation and outage probability estimation. In the same step, the available SCs per BS-
UE link are defined as well. In our approach, RA is performed per cluster, i.e., per group of
adjacent sectors. This approach is based on the Adjacent Sectors - Maximum SNR technique
of [185]. To this end, each allocated SC is made unavailable for the other adjacent sectors. In
case of lack of available SCs, the UE can be served by outband RNs.
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Figure 0-3: RRM algorithm [CONF-1]

In this event, the set of available subcarriers is updated in Step 3. The potential UE is
rejected from the network, if it cannot be served by the outband RN due to lack of available
subcarriers. Otherwise, in Step 4, subcarrier allocation takes place, based on the maximization
of the impulse response of the channel. To this end, ||x]|| is the Frobenius norm of vector
matrix x, while x(4,,(A)) is the eigenvector corresponding to the maximum eigenvalue of
matrix A. In this step, the achieved channel gain (G,,;) for the I subcarrier of the n™ UE, as
well as the required transmission power (p,,;) for acceptable QoS, are calculated. In Step 5,
power management is tackled. If power outage occurs in the outband scenario, the potential
UE is rejected. Otherwise, if an inband RN scenario has been considered, then all parameters
of Step 4 are recalculated. In the event of power outage, the potential UE is rejected, as done
previously. In all cases, all relevant sets are updated. Finally, system’s KPIs are calculated in
Step 6.

The aforementioned simulator takes into consideration all physical layer aspects such as
small and large scale fading, interference management and cluster definition for each user of
interest, etc. However, the following improvements have been made for the dataset generation
task:

e The deployment of more RNs per cell has been included. In [CONF-1] all
scenarios (both Inband and Outband ones) consider the deployment of up to three RNs
per cell, mainly deployed in cell edges. In the updated version of the 5G simulator, an
increased number of RNs per cell is considered, so that the best performing RN can
be selected for each accepted user in an unbiased manner.

e Moreover, channel modelling has been updated according to the newest 3GPP
specifications (basically the latest version of 3GPP TS 138 211 regulation) by
integrating mobility parameters, existence of Line of Sight (LOS) propagation and
outage probability estimation [186].

e The Algorithm 1 (Fig. 5-3) is extended to select the best RN (out of the
deployed ones in each cell) based on both minimum pathloss and energy consumption.
Hence, this algorithm, which combines MIMO and OFDMA principles in two-hop
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5G/B5G cellular orientations, tries to maximize both the EE and SE for the overall
orientation under evaluation.

Such a topology is presented in Fig. 5-2 concerning 10 potential RNs. Thus, by performing
numerous MC simulations we store the performance of various UEs, both indoor and outdoor
ones, and both moving and static ones. Then, we are focusing only on the UEs that are served
by the secondary system. MC simulations are finalized only after adequate UEs’ performance
is simulated. For the NP-Hard RN placement problem simulating 10000 to 100000 UEs
defines an adequate number of UEs’ performance evaluation. The values that are stored for
each UE, which is accepted by the secondary system in the simulation round, concern both

location/localization parameters (X, y and z-axis position), serving BS, pathloss, total
losses and MIMO parameters (channel coefficient matrix). All related variables and metrics
of interest for each simulated UE are presented in Table 5-2, forming the dataset used for DL-
model training.

 Feature  Description

UE, x-axis position of the UE

UE, y-axis position of the UE

UE, z-axis position of the UE

BServe ID of the BS that serves the UE (related to the RN to be selected)

UE,,, Serving sector of the UE

UE-BSangle Angle between BS and UE

PLmat RNy, X 1 matrix with the Pathloss between the UE and all the
potential RNs

TLmat RN.q, X 1 matrix with the Pathloss between the UE and all the
potential RNs

Humatrix M, x M, channel matrix coefficient (used only in Scenario 1)

RNserve ID of the RN that serves the UE (response variable)

Table 0-2: Dataset Features

Thus, the whole dataset feature number is the following:

6 + 2 XRN.yp + M, X My, Scenario 1

6 + 2 X RNy, Scenario 2 (15)

Datasetsize = {

5.3.3 Deep Learning Algorithm for Relay Node Placement

Using the dataset that has been analyzed in paragraph 5.3.2, two DL models are proposed
to predict the best performing RN for the UEs of the secondary system. It should be noted
that for hyperparameter tuning and selection the Exhaustive Grid Search method has been
utilized in both models’ design [31]. According to that method multiple search rounds are
performed over all possible hyperparameter configurations in order for the best performing
ones to be selected based on the KPIs of interest (in this case accuracy and F1-score). The
next two subparagraphs depict the proposed DL models for the RN placement problem in
5G.B5G networks. The first model considers a DNN architecture, whereas the second model
considers a LSTM one,

5.3.3.1 Deep Neural Network
The structure of the proposed DNN is the following, as also depicted in Fig. 5-4:
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e  Feature input later with z-score normalization of the input, where Datasets;,,
features are inserted to the DNN.

e A fully connected layer with 50x1 output size, multiplies the input (feature
input layer) by the corresponding weight matrix and, also, adds the bias vector.

e  Abatch normalization layer, to normalize data across all observations for each
channel independently, making training of the NN faster through re-centering and
rescaling.

e A ReLU layer, using rectified activation function to force the input directly to
the output if it is positive, otherwise, to zero output.

e Another, fully connected layer similar to the previous one with output size
NUMcigsses X 1, where NUMcigsses = RNean-

e A soft maximization (sofmax) layer to predict the multinomial probability
distribution of the data. These layers are commonly used in multi-class classification
tasks, as the one that is examined in this work.

e The classification’s output layer, which produces the predicted best-
performing RN for each UE.

Feature Input >oft maximization

N = Dataset,;,, N =50 N =50 N =50 N= RN N= RN.an

Figure 0-4: Proposed DNN's structure for RN placement

5.3.3.2 Long-Short Memory Network

The second proposed DL algorithm considers a Recurrent NN (RNN), LSTM, with the
following structure (as also depicted in Fig. 5-5):

e Feature input layer with z-score normalization of the input, where Datasetg;,,
features are inserted to the DNN.

e An LSTM layer with 52 hidden units. This layer is categorized as an RNN
layer, which learns long-term dependencies between data features. Additive
interactions between features are used to improve gradient flow over long sequences
of data throughout training phase.

e Adropout layer with 0.2 probability to randomly set input elements to zero.

e Another LSTM layer with 40 hidden units.
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e Another dropout layer, as the previous one.

e Another LSTM layer with 15 hidden units.

e  Another dropout layer, as the previous ones.

e A fully connected layer like the previous one with numg;,sses X 1, Where
NUMgsses = RNcan.

e A soft maximization layer.

e The classification’s output layer, which produces as output the predicted best-
performing RN for each UE.

Hidden Layers

F I imizati
eature Input Dropout Fully-connected Soft maximization

layer

Layer LSTM layer 1 layer layer

2 LSTM layers and

: 2Dropout layers
® ( X X J
o
° N =40 and N=25
o hidden units
N = Dataset,, N = 52hidden units N =50

* N is the number of neurons in each layer
Figure 0-5: Proposed LSTM network’s structure for RN placement

5.3.3.3 Result Evaluation

The downlink of a wireless multicellular 5G orientation is considered, where extensive use
of RNs takes place. A 2-tier and 19 cell topology is of interest, where UEs are uniformly
distributed. Concerning the used MIMO antenna configurations, both BSs, RNs and UEs are
equipped with 2 antennas. Each BS’s antenna lays at 25 m, while each RN’s one lays at 12,5
m and each UE’s one at 1,5 m. The relevant antenna gains are 18/9/4 dB for BSs, RNs and
UEs respectively. Each accepted UE requests 6 subcarriers in each timeslot, while 132
subcarriers are available to be allocated to UEs from each BS. Subcarrier spacing is set to 60
kHz. A significant configuration parameter is the possibility of direct LOS connection
between BSs - UEs, BSs- RNs and RNs-UEs. The first two parameters are defined by [30],
while the RN-UE LOS existence, which is not regulated, is set to 10%.

The performance of a large number of UEs (50.000 indoor/outdoor -with 80/20%
probability- moving/static UEs) is simulated to construct the dataset used for training of our
DL models. Moreover, 10 candidate RNs are deployed in each cell’s coverage area, as shown
in Fig. 2. An adaptive modulation scheme is used based on each UE’s demands for QoS levels.
Three different modulation levels (QPSK,16-QAM and 64-QAM) are considered along with
their

respective threshold values. All simulation parameters are summarized in Table 2.
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Parameter Value/Assumption

Tiers/Number of 2/19

Carrier frequency 28 GHz

Simulated UEs 50.000

Number of antennas per BS/RN/UE 21212

Cell radius 500V 3=288.68 m

BS antenna height 25m

UE antenna height 1.5m

Indoor to Outdoor UE ratio 80%/20%

LOS BS-UE(RN-UE)/BS-RN Probability [86] Table 7.4.2-1/10%
cells Maximum allowed pathloss (dB) 320

Antenna gains BS/RN/UE in dB 18/9/4

Number of requested subcarriers per UE 6

Number of subcarriers per BS or Cluster 132

Subcarrier spacing 60 kHz

SNIR threshold levels QPSK/16-QAM/64-QAM | [86] 9.6/16.4/22.7 dB

Table 0-3: Dataset Simulation Parameters

Using the parameters presented in Table 5-3, the MATLAB 5G/B5G system and link level
simulator produces the dataset that is used as input to the two proposed DL models. During
the training phase of both DL-based approaches, an 80%-20% training-test set split has been
used, as well as a 10-fold cross validation procedure to split the dataset into training,
validation and test set. The problem of optimal RN placement is examined as a classification
one, by selecting the best performing RN out of the 10 potential RNs for each UE. The
performance of the abovementioned classifiers is evaluated, using the accuracy and F1-score
metrics.

Tables 5-4 and 5-5 summarize the performance of the two proposed DL models in the RN
placement based on test set classification accuracy, precision, recall and F1-score for both
Scenario 1 and Scenario 2.

DNN Scenario 1 Scenario 2
Accuracy 0.9260 0.9387
Precision 0.9251 0.9343
Recall 0.8951 0.9194
F1-score 0.9099 0.9268
Training time (s) | 4 min. 13s. | 3 min. 30s.

Table 0-4: DNN's performance

LSTM Scenariol  Scenario 2
Accuracy 0.9513 0.9660
Precision 0.9321 0.9618
Recall 0.9259 0.9502
F1-score 0.9290 0.9560
Training time (s) | 4 min. 53s. | 5min. 12s.

Table 0-5: RNN's (LSTM's) performance

As it can be observed from Tables 5-4 and 5-5 LSTM algorithm’s performance is better
that DNN’s performance (both accuracy, precision, recall and F1-score) when CSI is known
and is included in training set’s features. Similarly, LSTM algorithm’s performance is better
(both concerning accuracy, precision, recall and F1-score) when there is no CSI knowledge.
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However, when fast, low-latency responses are considered in 5G/B5G networks, it is vital to
examine the trade-off between ML metrics and training time required. In that perspective, it
is visible from both Tables 5-4 and 5-5 that LSTM networks need some more time to train
relative to DNNs. However, comparing training times of these two approaches (LSTM,
DNN), we can state that training times are similar in both Scenario 1 and Scenario 2. Thus, it
is fair to say, that the overall performance of the LSTM networks is better than DNN,
concerning ML/DL performance and metrics-training time trade off. The same conclusions
can be drawn from Fig. 5-6 as well, where the accuracy and loss versus training epochs are
displayed both for DNN and LSTM algorithms in the two examined scenarios.

After evaluating the two proposed DL models (ANN, RNN) based on the ML classification
KPIs, we use these two approaches to identify the k best performing RNs out of the 10
candidate active ones placed in each cell of the topology (see Fig. 5-2). This is achieved using
our lab’s MATLAB 5G/B5G link and system level network simulator, as follows:

e Simulate the performance of 100000 UEs in the cellular topology of Fig. 5-2,
configured with the parameters in Table 5-3.

e Select the best-performing RN for each UE using the two proposed ML/DL
models, both in Scenario 1 and Scenario 2.

e Find the k potential RNs serving the most UEs, and thus, assign them as
deployed ones. The proposed models are evaluated with k = 3 deployed RNs in each
cell of the

cellular topology.

Table 5-6 presents the k=3 best-performing RNs out of the 10 potential ones, that are
selected to be deployed in each cell of the cellular topology illustrated in Fig. 5-2, which is
also used in overall system’s performance evaluation.

Rank Scenario 1 Scenario 2
DNN |RNN |DNN | RNN
1 RN-10 | RN-10 | RN-10 | RN-10
2 RN-6 RN-6 RN-6 RN-6
3 RN-5 RN-5 RN-5 RN-4

Table 0-6: Deployed RNs after performance evaluation
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Figure 0-6: Accuracy and Loss per training iteration and epoch
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5.3.4 Distributed Learning for Relay Node Placement
5.3.4.1 Proposed Federated Learning scheme for Relay Node Placement

Due to the increasing needs of 5G/B5G/6G networks UEs for interrupted access to the
medium, low latency and QoS flows continuity, the need for splitting the computation
overload in these dense network environments arises. For this purpose a DL model (similar
with the one presented in paragraph 5.3.3.1) is trained and evaluated both by a CL-enabled
training algorithm and, also, by an FL-one.

For the RN selection task, the LSTM network which is used, has the following structure:

o Feature input layer with z-score normalization of the input, where the
different features are inserted into the DNN.

o An LSTM layer with 52 hidden units

o A dropout layer with 0.2 probability to randomly set input elements to
zero.

o Two sets of LSTM layers followed by a dropout layer. The first LSTM
layer has 40 hidden units, while the latter has 15 hidden units.

o A fully connected layer with an output size equal to the number of
candidate RNS.

o A soft maximization layer.

o The classification’s output layer, which produces as output the
predicted best-performing RN for each user. Thus a number from 1to N is the
output of the model, which signifies the selected RN for each user.

5.3.4.2 CL and FL model training

Aiming to demonstrate the advantages of the FL over CL approaches, we consider two
different training topologies for the problem of RN placement in B5G (6G) networks. These
are the following:

a)  CL-based approach: In the first approach all the training is performed
in the centralized entity. The centralized entity in this occasion is the cell’s BS,
which receives the data gathered in the wireless environment by the RNSs.
Afterwards, the global dataset is formed and the DL model is trained in a
centralized manner.

b)  FL-based approach: Inthis approach, the data gathered in the wireless
environment train local models located in each of the R RNs of the wireless
topology. Thus, local models are trained and parameters are transmitted in the
centralized entity (BSs) to be optimized according to the implemented federated
averaging function.

5.3.4.3 Result Evaluation

We consider the downlink of a wireless B5G (6G) orientation, where extensive use of
RNs takes place. The topology under test considers one BS and 10 RNs, where users are
uniformly distributed. We simulate the performance of a large number of total users (50.000
indoor/outdoor moving/static) to construct both the global dataset for the CL case and the
local datasets for the FL case. During the training phase of both approaches, an 80%-20%
training-test set split is performed, as well as a 10-fold cross-validation procedure to split
the dataset into training, validation, and test set. The 10-fold cross-validation splits the
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training set into ten parts where, in each case, nine of them are used for training and the
remaining one for validation.

The problem of optimal RN placement is examined as a classification one, by selecting
the best-performing RN out of the 10 potential RNs for each user. The performance of the
abovementioned approaches is evaluated both concerning ML KPIs (accuracy, precision,
recall, F1-score) and based on the total training latency.

Table 5-7 and Table 5-8 summarize the performance of the two approaches (CL, DL) in
the RN placement based on test set classification accuracy, precision, recall and F1-score for
both Scenario A and Scenario B, respectively.

enario A enario B
Accuracy 0.9513 0.9660
Precision 0.9521 0.9618
Recall 0.9259 0.9502
F1-score 0.9290 0.9560
Training time | 5min. 15sec. | 5 min. 50 sec.

Table 0-7: LSTM performance - CL scenario

LSTM Scenario A Scenario B
Accuracy 0.9107 0.9309
Precision 0.9259 0.9346

Recall 0.8929 0.9259
F1-score 0.9091 0.9302
Training time | 1 min. 35 sec. | 1 min. 58 sec.

Table 0-8: LSTM performance - FL scenario

As can be observed from Tables 5-7 and 5-8 LSTM’s performance is better (both accuracy,
precision, recall and F1-score) when CSI is known and is included in the training set’s
features. Moreover, it can be seen that training times are similar both for Scenario A and
Scenario B.

However, when fast, low-latency responses are considered in B5G (6G) networks, it is
vital to examine the trade-off between ML metrics and the training time required. In that
perspective, it is visible from the aforementioned tables (Tables 7 and 8) that the FL-based
approach worsens slightly all the ML-related networks KPIs (accuracy, precision, recall, F1-
score) by ~5% compared to the CL approach. However, this degradation can be characterized
as small enough relevant to the gain in the total training time of the FL approach compared to
the CL one. In fact, the gain in this metric (total training latency) is about ~70% to ~75%.

5.3.4.4 Outcomes — Discussion over CL vs FL

Concerning the aforementioned comparison between CL and FL implementation for the
RN placement problem in 5G/B5G network, but, also, concerning the literature presented in
Section 3, it is visible that FL is of primary interest in 5G, but especially in B5G (6G)
orientations, to enhance the potential PHY gains and, also, support the growing user
requirements. However, several challenges have to be addressed for the feasibility of such
approaches. These can be summarized as follows (see also Table 5-9):

e Distributed training and Models’ scalability: In B5G networks
interconnected devices number is growing, resulting in the densification of the
networks. However, the processing units and the computational power of these
devices may be limited. Thus, a key challenge that the proposed FL schemes
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have to consider is the training time required and the efficient allocation of the
total computational resources.

e Secure communication and device-to-centralized entity transmissions: By
definition FL secures local datasets, as only model parameters transmission is
performed to the centralized entity. However, challenges exist in the
transmission of models parameters, where information may be vulnerable to
eavesdropping capable of reconstruction.

e Non-11D data: As is already pointed out, the different users devices connected
to 6G networks, that perform FL training have different characteristics
concerning processing and computational power, battery life etc. This
heterogeneity, affects parameters such as convergence time, training latency,
and others.

e Computation and communication trade-off: The goal of an effective and
efficient FL mechanism is twofold. On the one hand, the communication links
and uninterrupted interconnection between the enrolled devices should be
present, while, on the other hand, computational complexity and total training
times should be minimized as possible.

Challenge Solutions presented at

Distributed learning computational and @ [136], [140], [141], [145]
scalability considerations
Security and Privacy concerns [188], [189], [190]
Non-11D data [137], [188]

Computation and communication trade-off | [132], [147], [137]

Table 0-9: Challenges in FL models construction in 5G/B5G wireless networks

5.4 RN Selection in 5G/B5G Networks
5.4.1 Problem Formulation

As depicted in Fig. 5-7, for each cell of the cellular topology, there is a M; antenna source
-which is located at the BS of each cell, N, UEs -where N, < N are the initially rejected
UEs from the primary system, that request RN assistance, equipped with M,. antennas, and
Ncry RNs in the two-hop wireless relay network. If a UE is initially rejected, the direct link
between source and destination does not exist due to high pathloss effect. Therefore, A&F
relays are used to process the received signal and support communication. Each UE is
connected only to one RN and orthogonal channels are used to achieve full set gain and
mitigate co-channel interference. This sub-problem’s goal is to optimally select the most
suitable RN out of the N-gycandidate ones for each UE neN,,, , with respect to the active
user maximization for each cell of the topology.

In a two-hop 5G/B5G wireless communications system, like the one depicted in Fig. 5-1,
the total bandwidth, BW, is divided into N, subcarriers to be allocated to the accepted UEs.
There are two classes of accepted UEs. On the one hand, the first class contains UEs that are
directly accepted by the primary system (BS-UE direct communication). The SNIR for the n®"
UE (1 < n < N) of this category, associated with the I'" subcarrier (1 < | < Nsc) for a
specific channel realization and assuming independent BS-UE links, is given by equation (5).

RN’

107
loannis A. Bartsiokas



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks

’

RN 1 ((A)) ((A)) RN 2

—— Isthop
------- » Candidate 2nd hop
Figure 0-7: Two-hop 5G/B5G Relay Selection

On the other hand, the second class contains UEs that are directly connected to the
secondary system (RN-UE connection). Thus, through relaying, BS-UE communication link
is established through multi-hop communication. In this two-hop connection between BSs
and UEs, RNs can be defined as UEs in the BS-RN link, and as BSs in the RN-UE link. In
this case, for the nth UE (1 < n < N) of this category equation (5) is modified as follows:

Gnn,1(RN-UE)

SNIRy, (RN) = — (16)

n‘lrn,lIO+IBSn,l+IRNn,l

Where Ips,, = ngi YimeUEp lesy, Gnmi aNd gy, = 2155’1“ ZjEUET,leS]- Gnj, are the
cumulative interference levels for the I subcarrier of n'™ UE served by the b™" BS or r'" RN.
Moreover, Ngg, Ngy are the total number of BSs and RNs in the topology, respectively, UE,
denotes the set of UEs served by the r'" RN, while the notation x-y indicates all possible link
connections.

In this occasion, the total system throughput is given by [191] for the whole two-hop
wireless communication 5G/B5G system:

R = Zyl=1 ZseSn Ths = sc{zgfi ZneUEb ZseSn 1082 (1 +
SNIRy,s(BS)) + Zn™ Bimeus, Eses, 1082 (1+ SNIRy s(RN) )} (17)

where |S,| indicates the length of the set S,,, 7;,  is the corresponding data rate for the s™
subcarrier and B is the bandwidth per subcarrier. EE and SE for the overall system are
defined be replacing (17) into (7) and (8) (see paragraph 3.1.1) accordingly.

A DQL scheme is proposed in the next paragraph to solve the aforementioned problem of
selecting the suitable RN for each accepted UE of the secondary system. DQL extends the
classic frameworks by utilizing ANNSs to help software agents to learn how to define actions
and rewards. In other words, a DQL framework optimizes underlying function approximation
by the use of one (or sometimes two) ANNS to map states and actions to the rewards they lead
to. Consequently, it is visible that such an approach can be quickly and dynamically adjustable
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based on the environment. In our case, the next paragraph proposes a dynamic DQL
framework to select the best performing RN -out of the available ones- for each UEs of the
secondary (RN-assisted) 5G/B5G system.

5.4.2 Deep Reinforcement Learning Framework for RN selection

5.4.2.1 Proposed DQL algorithm for RN selection

RL, as also analyzed in paragraph 2.2.3, is based on the interaction and communication
with the learning environment to train and validate effective models, using a learning entity
called software agent [J-1]. One of the most significant RL algorithms is the Q-Learning
algorithm, which has been proposed as an efficient way to deal with rapidly changing and
non-linear environments, as the one depicted in the RN selection problem formulation in the
previous paragraph. However, because of the increased complexity of the aforementioned
RRM problem due to the large set of potential actions, states and rewards needed in a Q-
Learning framework when considering dense 5G/B5G networks, a NN can be trained to map
the set of states with the best-performing action or in other words to perform the Q-function
approximation. This RL technique is called DQL and fits perfectly in multi-dimensional
problems, such as RN selection.

There are several DQL schemes, which are classified according to the algorithm’s
calculative iterations. The first category is the centralized DQL schemes, where a single
software agent is used to perform the information gathering and processing from different
sources placed in the environment.

In the wireless communications domain, such an agent can be placed to the core network
or on a server in a BS and collect information from different BSs and/or RNs. The other
category is the decentralized DQL schemes, where multiple software agents are utilized and
each one of them is responsible for communication and information gathering from a specific
subset of the overall environment. Such agents can be placed in different BSs and/or be
responsible for a subset of the total accepted users in the topology.

The proposed DQL framework of this thesis considers a semi-centralized DQL framework
is proposed to solve the RN selection problem subject to EE and SE maximization. The term
semi-supervised, refers to the presence of multiple similar agents, one in each BS/cell of the
topology.

The general state, action and reward of the proposed scheme are defined as follows:

State space: Assuming that there are E number of episodes for DQL agent training, the
system state is described as S = {S;,S,,...,Sg}. At any time step, assuming ¢, the state is
described by the following information about each UE, denoted as u, served by the secondary
system (RN-assisted communication): a) the ID of the BS which serves UE u, b) the cell
sector where UE u is positioned, c) the set of CSI information (channel coefficient matrices)
between each one of the active RNs in the cell where UE u is located, declared as H,, =
{Hyr, »Hyrys -, Hyr, 3, Where k is the total number of active RNs in the considered cell.

Action space: The taken actions in each one of the E algorithm’ s episodes are noted as
A = {A,A,,...,Ag}. At any time step, assuming t, and assuming that the kg, kg €
(1,2,...,k) RN is currently selected for a UE u, the software agent can select the next, the
previous or the same RN as the next action. In other words, the action that is taken at time t
is denoted as A; = [a1,y, ,20, -+-) Quuy, »-+-» An,n ], Where N denotes the total number of
UEs that are served by the secondary system, a,,,, . € {RNstep, —RNsiep, 0} is the selection
of the serving RN for UE m and RN, is the change of RN for each UE under test. Thus, the
serving RN update rule for each episode for UE m is calculated as follows:
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RNm,um t) = RNm,um(t -1+ Ay, (t)(18)

Reward: After taking an action, as described previously, the DQL system transits into a
new state thus leading to alternate RN selection for the UEs of the secondary system.
The feedback received at time t focuses on EE and SE levels maximization and is expressed

by:

e = {rtEE (St—liAt—l))rtSE(St—lﬁAt—l)}(lg)

Where,
EE;—EE;_4 )
———=x 100, if EE; > EE;_
rtEE (St—llAt—l) :{ EEt—y ‘ . 1 (20)
0, otherwise
SE;—SEp_4 )
———x 100, if SE; > SE,_
Ttep (St-1,A¢-1) :{ SEt-1 U SE et (21)
0, otherwise

Regarding the action selection strategy, the e-greedy method is used to balance the DQL
algorithm’s exploration and exploitation phases (with probabilities € and 1—e respectively).
Exploration refers to the DQL phase of improving knowledge about each action, whereas
exploitation refers to the phase of maximizing the reward function by exploiting the set’s
action-value estimation.

Fig. 5-8 depicts the proposed semi-centralized DQN algorithm, where one agent is
deployed per cell/BS. Each agent’s training is performed only for the coverage area of the cell
that is located into. This means that each agent is responsible only for a subject of the total
UEs of the network. Thus, this approach considers C (performance evaluation considers C =
19) DQL agents, equal to the total cells of the topology. Each DQL agent optimizes
performance in the coverage area assigned to the BS that is located. In order to ensure the
global (for all cells) optimization of EE and SE performance, a global reward is defined for
the whole cellular topology by the addition of all the single rewards of the C deployed agents.

Cellular topology Agent 1 ML models

>
.

Action 1
©) \2 =2 w
é Action 2
Cell 2 ‘maximazation
Agent C
() o 5 l W
é ; Action C
Cell C

Figure 0-8: Proposed DQL scheme
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To conclude with the DQL model, the global reward-based state transition is performed by
a set of similar NNs, where the input layer includes the space state’s triplet (serving BS ID,
sector and channel coefficient between each UE of each cell and active RNs in a cell) for each
of the C different agents (thus the corresponding BSs). The NN includes C x N, X 3
neurons, where N, is the number of active secondary system UEs in the cell ¢ € C. The
output layer is one of the three possible Q-value results for each UE (select the next RN, select
the previous RN or select the same RN) concerning system’s EE and SE maximization.
Afterwards, a global reward optimization step is performed in order to define if the total
system will change state or not. The NN structure is depicted in Fig. 5-9.

Hidden layers
NN 1 Q-values

ID,,Vn € C; ——»

sec,, Vn € (;—
H,vnel, ———

ID,,Vne Cym—0 —
secy, Vn € Cp———
Hn, Vn € CZ ——

uonezewndo piemal |eqo|o

Z o000

ID,,Vn € Cp—onuous
sec,, Vn € C———
Hn, Vn € CC —

Figure 0-9: Proposed NNs architecture

5.5 Performance evaluation Evaluation

In this paragraph, the performance of the proposed ML algorithms for RN placement and
selection is presented and evaluated concerning the downlink of a 2-tier wireless multicellular
5G/B5G orientation. In all cases, algorithms’ performance is compared to a state-of-the-art
non-ML approach, presented in [CONF-1], as well as to a reference system where no RNs are
deployed. The deployed RNs are layer 1 RNs (A&F) regarding the OSI level of deployment.
Both Inband and Outband RNs are considered. When Inband RNs are used both BS-RN and
RN-UE links share the same spectrum resources. On the other hand, when Outband RNs are
used, additional spectrum resources are -a priori- exclusively for RN usage [192].

All the simulation setups in this section were implemented in MATLAB (R2022b release
[193]) environment using among others the Communications Toolbox, the Statistics and
Machine Learning Toolbox and Deep Learning Toolbox.

This section is spitted in two subsections. The first refers to the performance evaluation of
the ML/DL-based RN placement algorithm in different RN implementation scenarios. The
second subsection, refers to the performance evaluation of the overall system, where both the
ML/DL-based RN placement scheme and the DQL RN selection algorithm are deployed.
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5.5.1 DL-based RN placement performance evaluation

In this subsection, the two proposed DL-schemes (DNN, LSTM), that have been presented
in paragraph 5.3.3.1 for the problem of RN placement are evaluated. A 2-tier (19 BSs, 54
sectors) cellular orientation is considered, with network and simulation parameters as depicted
in Table 5-3. UEs are uniformly distributed in the coverage area, while the number of
requested subcarriers varies to either 6, 8 or 11.

Regarding RN implementation, five scenarios are examined in our simulations (including
reference basis of no RN deployment), as follows: (1) No-RN: No RNs are deployed, (2) SME-
I: Inband RNs are deployed in the middle edge of each sector, (3) SME-O: Outband RNs are
deployed in the middle edge of each sector, (4) MLP-I: ML/DL-based Inband RN placement,
(5) MLP-O: ML/DL-based Outband RN placement. It should be noted that in the
aforementioned simulation environment Outband RN scenarios use an additional bandwidth
of ~55MHz to serve initially rejected UEs, leading to interference mitigation and increased
capacity gains over Inband ones [CONF-1]. It should be also noted that as LSTM’s
performance is slightly improved compared to DNN’s performance, as depicted in section IV,
we pick LSTM as the implemented ML/DL technique for RN placement for the simulations
of this section.

Extensive MC simulations were performed, where the extracted mean values are presented
for all considered KPIs. To this end, total system’s EE is presented in Fig. 5-10, while the
corresponding SE is presented in Fig. 5-11 for the aforementioned RN implementation
scenarios. It should be noted that the best-performing candidate RNs are the same for the two
scenarios that are discussed in section IV (CSI presence or not).

150 .
I No-RN
N SME-|
CCAMLPA
I SME-O
N MLP-O ]
100 -
: |
o
0
2=
50 -
0 - -
6 8 11

Allocated subcarriers per UE
Figure 0-10: Mean total EE for various RN implementations

As it can be observed from Fig. 5-10, the use of RNs can significantly improve network’s
metrics, such as EE. Moreover, EE is increasing for increasing number of subcarriers per UE.
In fact, for 6 subcarriers per UE, EE can reach up to 35.45/61.45 Mbps/W for the SME-
I/SME-O scenarios, respectively. The EE values for the DL-enabled scenarios are 42.54/79.89
Mbps/W for the MLP-I/MLP-O scenarios, respectively. In the reference No-RN scenario, EE
is limited to 23.45 Mbps/W. These numbers indicate that RN usage can improve total system’s
EE from ~50-240%. When considering 11 subcarriers per UE the corresponding values are
52.38/75.34/110.34/90.45/143.45 Mbps/W for the No-RN/SME-I/SME-O/MLP-I/MLP-O
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scenarios, respectively, which lead to a ~43-170% EE improvement. Similar conclusions can
be drawn for SE as well, as depicted in Fig. 5-11, leading to a ~20-200% SE improvement.

It can be witnessed, also, from Figs. 5-10, 5-11 that the use of the DL scheme for RN
placement further improves networks’ KPIs, such as EE and SE. In fact, comparing the non-
ML Inband scenario (SME-I) with the ML/DL-enabled Inband scenario (MLP-I), a ~20%
improvement in both EE and SE for both 6 and 11 subcarriers per UE is depicted. Similarly,
comparing the non-ML Outband scenario (SMEO) with the ML/DL-enabled Inband scenario
(MLP-0), a ~30% improvement in both EE and SE for both 6 and 11 subcarriers per UE is
achieved.

20 .
18| I No-RN
N SME-|
16 - CCMLP
I SME-O
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6 8 11
Allocated subcarriers per UE
Figure 0-11: Mean total SE for various RN implementations

5.5.2 Overall performance evaluation (RN placement and Selection framework)

For the overall system’s performance evaluation, the same 2-tier 5G/B5G network
orientation as described in the previous subsection is considered, with the parameters depicted
in Table 5-3. In this subsection the DQL scheme for RN selection, which is analyzed in
paragraph 5.4.2.1 is, also, enabled, acting additively to the RN placement DL scheme
presented in paragraph 5.3.3.1. The DQN parameters, that are used for the simulations of this
subsection, are depicted in Table 5-10.

Parameter Value Component
Number of hidden layers 4 DON
Activation function (input and hidden layers) | ReLU DON
Activation function (output layer) Linear DON
Memory size 10000 DON
Mini-batch size 128 DQON
Optimizer Adam DON
Loss function Huber DQN
Number of episodes 40000 DQL
Learning rate () 0.001 DQL
Discount factor (y) 0.8 DQL

Table 0-10: DQN/DQL parameters
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A key procedure that has to be performed when evaluating every ML-based scheme is
hyperparameter tuning, which refers to extensive simulations with different ML parameter
values. The scope of this procedure is the selection of the optimal set of parameters for the
proposed ML schemes. These parameters are selected based on the overall system’s
performance optimization, based on KPIs of interest. The hyperparameters that have been
selected after various simulations rounds are the following: a) number of episodes for the
DQL algorithm, which affects the total training time, b) learning rate («), which refers to the
contribution percentage between the current and the previous Q-values, ¢) the discount factor
(y), which is linked to the significance of the future rewards.

As far as RN implementation is considered, five scenarios are examined in our simulations
(including reference basis of no RN deployment), as follows: (1) No-RN: No RNs deployed,
(2) SME-I: Inband RNs are deployed in the middle edge of each sector, (3) SME-O: Outband
RNs are deployed in the middle edge of each sector, (4) MLP-I: ML/DL-based Inband RN
placement and DQL RN selection, (5) MLP-O: ML/DL-based Outband RN placement and
DQL RN selection.

To this end, total system’s EE is presented in Fig. 5-12, while the corresponding SE is
presented in Fig. 5-13 for the aforementioned RN implementation scenarios. As it can be
observed from Fig. 5-12, the use of DRL-based RN placement can significantly improve
network metrics, such as EE compared to the reference scenario where no RNs are deployed.
In fact, for 6 subcarriers per UE, EE can reach up to 35.45/61.45 Mbps/W for the SME-
I/SME-O scenarios, respectively. The EE values for the DQL scenarios are 76.95/139.79
Mbps/W for the MLP-I/MLP-O scenarios, respectively. In the reference No-RN scenario, EE
is limited to 23.45 Mbps/W. These numbers indicate that DQL RN selection utilization can
improve total EE from ~140-500%. When considering 11 subcarriers per UE the
corresponding values are 52.38/75.34/110.34/166.35/252.45 Mbps/W for the No-RN/SME-
I/SME-O/MLP-I/MLP-O scenarios, respectively, which lead to a ~200-500% EE
improvement. Similar conclusions can be drawn for SE as well, as depicted in Fig. 5-13,
leading to a ~145-505% SE improvement.
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Figure 0-12: Mean total EE for various RN implementations (with DQL RN

It can be witnessed, also, from Figs. 5-10, 5-11 that the use of the DQL RN selection
scheme further improves networks’ KPIs, such as EE and SE, compared to the case where
only the DL RN placement algorithm is enabled. In fact, comparing ML/DL Inband scenario
(SME-I) in these two occasions (only DL-based RN placement or DL-based RN placement
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and DQL RN selection), a ~75% improvement in both EE and SE is depicted for 6 subcarriers
per UE. For 11 subcarriers per UE the improvement is ~80%. Similarly, comparing ML/DL
Inband scenario (SME-I) in these two occasions, a ~79% improvement in both EE and SE is
depicted for 6 subcarriers per UE. For 11 subcarriers per UE the improvement is about ~83%.
Thus, it is visible that DQL-based RN selection can further improve overall system’s
performance.
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Figure 0-13: Mean total SE for various RN implementations (with DQL RN

5.6 Outcomes — Discussion

From the above presented analysis and, also, from Figs. 5-10, 5-11, 5-12, 5-13 the

following outcomes can be witnessed:

» The proposed joint RN placement and selection DL/DRL-based framework can
improve the performance of 5G/B5G networks, by the improvement of key network
metrics, such as EE and SE.

« Concerning comparison with other state-of-the-art approaches the proposed models are
evaluated in a two-level basis. More specifically:

o The first level concerns the comparison of the proposed DL-enabled RN
placement models with a 5G/B5G system where RNs are statically deployed
and non-ML optimization techniques are utilized. From the subsection A it is
visible that both EE and SE levels are improved by ~30% compared to such a
system (as described in [CONF-1]).

o The second level concerns the comparison of the joint RN placement and
selection framework with a 5G/B5G system where RNs are statically deployed
and non-ML optimization techniques are utilized. It is derived by the analysis
in subsection B that the DRL-based RN selection algorithm contributes even
more on the EE and SE improvement. In fact, these KPIs can be improved by
up to ~80% compared to [CONF-1].

o Moreover, our DL/DRL approach overperforms other state-of-the-art
approaches that are not utilizing ML/DL models for RN placement and/or
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selection. For example, the proposed scheme in [194] reaches up to ~50%
improvement in EE levels compared to a state-of-the-art-approach. Moreover,
our approach has similar or better performance compared to recently proposed
ML-based schemes. For example, the proposed scheme in [195] reaches about
~80% EE improvement compared to a non-ML state-of-the-art approach.

« Finally, it should be mentioned at this point that, in general, Outband RN orientations
overperform Inband ones in all scenarios under test. However, in Outband cases, extra
bandwidth has been pre-allocated to RNs. Thus, despite the aforementioned gain over
Inband ones, in real-world scenarios Outband RNs have extremely high deployment
costs, due to the external resources and necessary hardware needed.

Finally, a key aspect when designing Al/ML algorithms is the computational complexity
gain that is achieved compared to traditional optimization (non-ML) approaches. In the
aforementioned performance evaluation this is achieved in the following ways:

« As it is presented in Tables 5-4, 5-5 both DL models need~4 to 5 minutes for the
training phase. After this phase, the response to select the best performing RNs
deployment is instant. In this analysis we should add the time for dataset generation
which is ~2 hours. In the approach presented in [CONF-1], ~1 hour is needed for a
round of ~100 MC simulations.

» Finally, in the same context, as far as the DRL RN placement scheme is considered,
each one of the C cells needs some time (~1 to 2 minutes as the NNs there are
lightweight) for the models’ training, while dataset generation is performed online
and, thus, there is no need for extra time there. As is is visible, the aforementioned
computation time is extremely lower than the one of a full MC simulation.
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Chapter 6: Conclusions and Future Work

In this chapter, the main takeaways of this doctoral thesis are discussed, while, also, its key
contributions are summarized (Paragraph 6.1). Additionally, some indicative further research
directions stemming from this are briefly present (Paragraph 6.2).

117
loannis A. Bartsiokas



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks

6.1 Conclusions and key contributions of the PhD thesis

5G networks deployment delivered fundamental and disruptive changes in the architecture,
infrastructure, and operational attributes of the wireless networks. 5G networks have been
deployed to deal with the massive connectivity and the diversifying user requirements, which
formed a highly competitive and volatile communication environment. As the research works
and the relevant 3GPP standardization reports are reaching towards B5G and 6G networks,
the aforementioned user requirements are becoming even stricter, making the process of
designing wireless networks able to provide a seamless user experience with superior QoS
and QoE, even more demanding. Moreover, new application areas, such as 10T, AR/VR,
holographic communications, are rising in the dawn of B5G networks, raising the need for
new communication standards and newcoming physical layer techniques to serve massive
data traffic levels and congestion.

In this environment, the significance of efficient RRM policies definition is of massive
significance. The limited radio resources should be allocated in an intelligent manner to serve
an increasing number of simultaneously interconnected devices, located in dense network
orientations. Another vital aspect in designing effective RRM policies in 5G/B5G networks
is the effective utilization of all the available spectrum, and the reduction of overall system’s
power consumption. In this framework, the network metrics of EE and SE are identified as
the major ones to maximize, compared to previous networks generations where only capacity
of throughput were considered.

To address all the above factors, in this doctoral thesis ML -and especially DL- has been
deeply studied and utilized in order to solve several RRM-related problems, towards the
construction of an end-to-end data-aided RRM decision support system in 5G/B5G networks.
In fact the research efforts on the field of ML-based RRM have been tremendously increased,
and will continue to do so as B5G/6G networks are deployed, as the need for intelligent
support systems to perform real-time RRM decision making is visible. The ML utilization in
the aforementioned problems intends to maximize the user satisfaction and provide the
required QoS and QoE levels. In that sense, resource allocation in 5G/B5G networks becomes
a dynamic data-aided and environment-driven mechanism to support increased network
density, near-random mobility patterns, low-latency responses and massive connectivity,
even in a decentralized manner. In parallel, motivated by the need to transition into energy-
efficient and sustainable communications, this work focused on developing ML algorithms
that guarantee EE and SE maximization, which leads to reducing unnecessary over-utilization
of resources, hence accomplishing the optimal transfer of information with respect to both
data exchange and the corresponding transmission power requirements.

The structure of the thesis, as also depicted in Preface, with regards to the identified
problems and their respective solutions is summarized below:

Chapter 1 presents a brief overview of the 5G/B5G cellular networks, focusing on the
5G/B5G/6G user and performance requirements by a physical layer perspective. Moreover,
the physical layer technologies that are of primary interest in 5G/B5G orientations, and, are,
also, used in the proposed ML-based RRM algorithms throughout this thesis, are analysed.

Chapter 2 presents the ML techniques principles, which are the bases upon which our
ML/DL models are constructed. In this framework, this chapter focuses on the theoretical
background of advanced ML techniques, such as DQL or FL, which are of significant interest
in the wireless communications domain, due to their ability to deal with complex problems
and either provided environment-aider or distributed solutions.

Chapter 3 formulated the RRM problem in 5G/B5G orientations and, also, presents the
research state-of-the-art, which is the thesis motivation, regarding the ML utilization in
5G/B5G networks RRM. Moreover, a comparative analysis is performed in order for the best-
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performing ML algorithms or types to be highlighted for each RRM sub-problem. Thus,
guidelines, research directions and, also, open questions, that our algorithms try to answer,
are identified regarding ML-based RRM in 5G/B5G networks. The findings of this chapter
have been published in [J-1].

Chapter 4 considers the problem of KPI prediction in 5G/B5G networks. The significance
of this problem for the efficient and effective RRM policies definition in 5G/B5G networks
is analysed. Afterwards, several ML/DL techniques are compared regarding their
performance in the throughput prediction problem in 5G/B5G orientations. The findings of
this chapter have, also, been published in [J-1].

Chapter 5 focuses on the utilization of RN in the context of 5G/B5G networks. In fact,
relaying-assisted communications is of increasing interest in wireless systems, due to their
ability to increase network coverage and system’s capacity without the need for RAN
components stack to be deployed. Thus, RNs are a cost-efficient way to increase network’s
capabilities. RNs can support the new-coming 5G/B5G application scenarios such as sensor
networks, 10T devices communication, AR/VR, but can, also, be vital in personalized
(private) 5G deployments (e.g. 5G defense networks). Thus, the problem of the optimal
placement and selection of RNs inside each cell’s coverage area has gained research interest.

As far as the RN placement problem is concerned, this thesis proposes two DL-based
techniques, deployed either in a CL or FL manner. Moreover, these algorithms are tested
either knowing the relevant CSI parameters or not (which is really common in real-world
scenarios). The performance evaluation of the aforementioned algorithms regarding ML
KPIs, indicated that the proposed approaches overperform state-of-the-art ones.

As far as the RN placement problem is concerned, a novel environment-aided DQL
framework is proposed, which is based on the joint user EE and SE maximization. However,
an intelligent data-aided framework in attached to the aforementioned DWL solution, so that,
also, the EE and SE of the overall system is maximized. Performance evaluation indicated
that the joint RN placement and selection end-to-end ML scheme can maximized the achieved
levels of EE and SE compared both to a non-ML-aided system, but, also, with other literature
approaches. The findings of this Chapter have been published in [J-2] and [B-1]

Based on the previous overview, via this thesis a series of novelties and breakthrough
approaches have been introduced, aiming at leading to a rethinking of how resource allocation
can enhance network performance and lead to optimal outcomes of utilization, sustainability,
and superior user satisfaction. A brief summary of the contributions of this work are presented
as follows:

e First, an up-to-date state-of-the-art summary concerning ML-based RRM
approaches is presented. In this context, the interest is mainly focused on the
categorization of the ML-based RMM schemes proposed in the literature, in terms
of the type of learning, and, thus, on defining the optimal ML solution in various
RRM sub-problems (KPIs prediction, user, subcarrier and power allocation, etc.),
with respect to different network metrics (i.e., QoS, quality of experience (QOE),
throughput, etc.). In order to achieve this, the general RRM problem is formulated,
while significant non-ML approaches and their limitations highlighted, as well.
Then, the state-of-the-art concerning ML-based approaches in 5G/B5G RRM is
presented. As already mentioned, these approaches are categorized by the type of
ML models used by each one of them (Supervised, Unsupervised, Reinforcement).
Furthermore, the coexistence of MEC and distributed learning techniques is
analyzed, as it can tackle various challenges, especially concerning the training
time of ML models.

e Through the above procedure, representative conclusions are drawn, as far as which
ML models are appropriate in each RRM related sub-problem, based on the
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network orientation. Moreover, limitations in current research efforts, open issues
and discussion over the state-of-the art approaches are highlighted in an effort to
both present potential solutions in these considerations and motivate future work
on these fields. Thus, guidelines and research frameworks are proposed regarding
AI/ML utilization for efficient resource allocation in 5G/B5G networks.

e In order to highlight the significance of AI/ML implementation in RRM, the
problem of throughput prediction is investigated, as an indicative RRM task,
treated either as a classification or a regression problem. Various ML algorithms
are considered, results are presented, and performance is evaluated, based on
selected ML KPIs for each task.

e Through the above-described analysis, limitations and open issues concerning
AI/ML utilization in 5G/B5G networks are witnessed and potential solutions are
described.

e The problem of RN placement to maximize the number of active users in each cell
of the cellular topology is formulated. Thus, given only the number of the RNs per
cell to be deployed and a set of potential geographical positions (x-y coordinates
of potential RNs), the k best-performing RNs are selected to serve the active users
in each cell. The aforementioned selection is performed subject to three main
constraints. The first one is the minimization of pathloss for each accepted user, the
second refers to the minimization of the total transmitted power by each deployed
RN, while the latter is the maximization of the total accepted users in the topology.
Moreover, the proposed algorithm is tested in two different simulation scenarios.
The first one considers the presence of ideal CSI, while the latter considers no CSI
at all.

e To tackle the aforementioned problem, we propose two efficient offline RN
placement ML/DL algorithms which focus on fast response times taking into
consideration the constraints previously presented. The fist DL algorithm considers
an ANN orientation, while the latter considers a LSTM one.

e After the optimal placement of the RNs in each cell’s coverage area, we formulate
the problem of optimal RN selection for each accepted user in the topology. In
other words, for users not served directly by the BSs, either for pathloss or power
consumption reasons, the optimal RN (from the k eligible) should be selected to
serve them.

e To solve the aforementioned problem, we propose an energy efficient RL-based
algorithm to select the optimal beam (RN) to serve each accepted user in the
topology. A DQL/RL algorithm is utilized for this scope. In this context, EE and
SE are the KPIs that determine algorithm’s transitions.

e Finally, all presented approaches are evaluated by extensive system level
simulations in different usage scenarios. Performance evaluation indicates that the
joint DL-based RN placement and selection scheme can overperform state-of-the-
art approaches in improving various network KPIs, such as EE and SE.

e Tosum up, the utilization of DL/DRL schemes, both for efficient RN placement in
each cell of the cellular topology and for RN selection, which forms a full ML/DL-
assisted RRM framework focusing on both EE and SE, is the key novelty of this
thesis.

e Finally, concerning distributed ML approaches, a review of the most recent FL-
based approaches in PHY is performed focusing on different sub-problems (RRM,
channel estimation, beamforming, etc.). Afterwards, the FL schemes' advantages
over state-of-the-art CL schemes are, also, discussed. Finally, challenges in the

120
loannis A. Bartsiokas



Machine and Deep Learning Algorithms for Radio Resource Management in 5G and Beyond Networks

design and implementation of such approaches are identified, and, thus, relevant
future research directions are given.

e Moreover, an indicative comparative simulation scenario is performed to
display the potential gains of FL methods implementation in PHY. More
specifically, we develop, train and test several ML models for RN placement in 6G
networks. The ML models are deployed either in a CL or an FL manner. Thus,
performance evaluation discusses the FL advantages and disadvantages compared
to existing (CL) solutions. In this way, relevant conclusions are made.

6.2 Future Work

The work summarized in this thesis proposes a meaningful and general ML-based
framework, where the intelligent decision-making processes leveraging resource allocation
policies for enhancing EE, fairness, and provision of superior QoS and QoE delivery in
5G/B5G. Fellow researchers can derive interesting extensions stemming from this work in
RRM-related topics both in CL and FL network designs, where users’ characteristics play a
key role in system’s optimization, applicable in many aspects of the upcoming deployment
and research for B5G, and especially 6G, networks.

Some interesting directions for further research are identified as a continuation of this
work. The list provided below is by no means exhaustive, as ongoing technology
advancements and changing user requirements provide interesting opportunities to apply the
proposed ML approaches in other fields of wireless networking.

New Spectrum - Terahertz (THz) communications: In 6G systems, where killer
applications will be AR/VR and holographic communications, the need for large data
transmission, results in a need for a very high-frequency band to support the increasing service
scenarios demands [12]. THz and sub-THz bands have been proposed as a potential solution
towards this direction. These bands are spread from 0.1 to 10 THz. However, several
challenges have been witnessed in these scenarios. First of all, such a high-band transmission
can serve really short-range coverage. Thus, ultra-massive MIMO antenna systems in BSs
should be used and BSs should be located near to each other. Limitations can, also, be
witnessed concerning hardware availability, transmission power, and increased pathloss [12].

Beyond MIMO communications: Ultra-massive MIMO communications, where antenna
arrays can contain over 10,000 very small antenna elements, forming ultra-narrow band
beams, and CF mMIMO, Access Points (APs) are spread in the coverage area to support UEs
that demand service are of primary interest concerning RRM for B5G and 6G networks. These
approaches can lead to significant mitigation in interference levels, while system’s capacity
can be increased a lot. However, ML-based RRM tasks are becoming extremely difficult in
such orientations due to the significant data amount (large datasets) needed for ML models
training.

Beyond Relay Communications: RISs, as presented, also, in Chapter 1 are proposed as
an efficient solution to enhance connectivity in 6G networks, taking into account the hardware
and deployment costs. RISs have a relay role in end-to-end communication, and, as a
sequence, they can efficiently be used in blind network spots or to extend the coverage area
of the network. RIS placement and selection problems can be also (similarly to RNs) solved
effectively via ML/DK techniques.
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Distributed ML and FL: Some key aspects that will be of interest in the future regarding

distributed ML and FL are the following:

Scalability and user characteristics: Some of the key usage scenarios of 6G
networks is the holographic, AR/VR and UxV communications. In these
scenarios, user density and mobility are of vital interest. The research works
performed until now, assume either static UEs or established CSI conditions.
Thus, an escalation of the current approaches towards more complex evaluation
scenarios will be significant for the feasibility of the proposed FL solutions.
Privacy and security: As addressed in the previous subparagraph, FL by
definition provides a level of security in the inter-communication between the
different edge devices and the centralized entity. However, as addressed by
[188], traditional encryption and/or authentication solutions could be of interest.
On the same framework, modern-era physical layer security algorithms could,
also, be of interest, in order to handle massive connectivity 10T or vehicular
network scenarios.

Interoperability with other enabling technologies: 6G networks are expected to
both use and leverage current 5G technologies, but also utilize new-coming ones
to support the extended requirements presented in paragraph 1. In this
framework, the deployment of FL schemes in cooperation with satellite
communications [44], quantum communication [196] or even blockchain [197]
technologies.

Physical Layer Security: Physical layer security plays a crucial role in ensuring the

confidentiality and integrity of wireless communication in B5G. It involves exploiting the
characteristics of the physical channel to enhance the security of wireless transmissions. As
already presented, RRM in B5G networks is responsible for efficient allocation and utilization
of radio resources to meet the diverse requirements of different services. The integration of
physical layer security techniques into RRM algorithms can significantly enhance the overall
security and performance of B5G networks. By considering the security requirements during
resource allocation and scheduling decisions, RRM can mitigate eavesdropping and jamming
attacks, optimize transmit power allocation, and allocate suitable modulation and coding
schemes [198]. This integration of physical layer security and RRM in B5G networks ensures
secure and reliable communication, paving the way for the deployment of advanced
applications and services [199].
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