EOGNIKO METXOBIO EKE®E «<AHMOKPITOX»
HOAYTEXNEIO

INZTITOYTO NANOEMIZTHMHE ﬁ\ﬂ %‘
YXOAH E®APMOEZMENON KAI NANOTEXNOAOTIAX wpl |
MAOHMATIKON Tod 3
KAI ®YZIKOQN EMIETHMON INETITOYTO ITYPHNIKHE KAI

XOMATIAIAKHY ®YXZIKHX
XXOAH MHXANOAOT QN
MHXANIKOQN

Awrpnpotiko [poypoppo MeTamtoloK®OV XTovd®V

«@vowkn kot Teyvoroyikég EQappoyécy

Ocopnuata Movotoviag otny Pon
Opaoog Eravakavovikomoiong

Monotonicity Theorems on
Renormalization Group flow

METAIITYXIAKH AIMTAQMATIKH EPT'AXIA

Tov Ac®Vido AvaGTAGLOV
Kapaysopyov

Emprénov: Nikog Hpyeg

AOnva, Iovviog, 2023



P,

Bl

\ S\ e2H)
camis?
3 =
w?ﬂf"‘@(v’ .
\]
jgla\u/?oovoi

F.

NATIONAL AND TECHNICAL UNIVERSITY OF
ATHENS

SCHOOL OF APPLIED MATHEMATICS AND PHYSICAL
SCIENCES, PHYSICS DEPARTMENT

Monotonicity Theorems on
Renormalization Group flow

Author Supervisor
Karageorgos Leonidas Anastasios Irges Nikos

June 18, 2023






Abstract

In Chapter 1, a comprehensive introduction to conformal symmetry is presented, starting
with an overview of d-dimensional space-time conformal transformations and the structure
of the conformal group. The extension of conformal symmetry to classical field theory is
then discussed, including the proof of the traceless energy-momentum tensor for conformal
invariant theories. The constraints imposed by conformal invariance on quantum field
theories are also examined.

Chapter 2 focuses on fundamental concepts of renormalization and the renormalization
group (RG) flow, employing the Wilsonian approach. The renormalization process of
pseudoscalar Yukawa theory is presented as an illustrative example.

Chapter 3 provides a detailed analysis of the emergence of the trace anomaly in conformal
field theories within curved space.

Chapter 4 centers around the reproduction of Zomolochikov’s C-theorem, which estab-
lishes the irreversibility of the RG flow for two-dimensional renormalizable field theo-
ries. Additionally, the application of this theorem to the massive Thiring Model is dis-
cussed.

Finally, Chapter 5 demonstrates that Zomolochikov’s approach is not applicable to theo-
ries in dimensions other than two (d # 2). By incorporating Cardy’s conjecture regarding
the one-point function of the trace, the proof of the a-theorem is reconstructed by con-
sidering the RG flow as a manifestation of spontaneously broken conformal symmetry as
Komargodski and Schwimmer originally did.
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Auté amotehel To Mo dUoxoho xe@dhato . Aev UTdEYOLY dEXETEC MEEELS Yiar VoL Yeddw Yo
600UC YoL oTAUMXY o)’ OAT TNV BLIEXELL AUTOU TOU UETUTTUYLXOD.

Zexvovtog and toug xadnynTtég wou, Yo Rleha TemTo amd GAa VoL EUY UL THOW TOV AXodNUoix S
(xou Oyt u6évo) emPBrénwy pou, Nixo Hpyec mou pou €8woe Ty euxanplor Vo XATATLOO T UE
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avlpwmou Tou ayand Ty Puowxr|, ahhd xou TOUC YOLTNTES TOU.
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Tou TplTOL 0pbdYou, Toug YVWoToUg xat w¢ "3rd Floor United". Ildvo, Nixo, ©avdon,
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OXOTAOW PKS o Tou cLveYIlel v xdvel o ouopen T (wh pou. Eivow 1 xoméha pou
Povy|, Tou mapdro Tou Bev xatahaBaivel 00Te AEEN amd To xeluevo TN SiTAwuaTIXS Tou Yo
oax0AoUUTCEL, OTEXETAL O{TA WOU X BElyVEL EUTLOTOCUVY] OTIG IXAVOTNTES UOU.

Educh avapopd mpénel v xdvey oty Xpetotiva, Tou H€oo 6 aUTOY TOV YpOVO ElYE ONUAVTIXT
OLVELGQOPE GTO Vo BEATIWOW Tar AyyAxd pou, wote va Yeddw auth Ty dimhouatxr. To
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Chapter 1

Conformal symmetry

In this chapter, our focus will be on the examination of conformal symmetry at a clas-
sical level. Initially, we will introduce the concept of conformal transformations within
D-dimensional spacetime. Subsequently, we will proceed to explore the generalization of
conformal symmetry for classical fields, necessitating the application of classical field the-
ory in curved space. Moreover, we will demonstrate that conformally invariant theories
possess the characteristic of a traceless energy-momentum tensor. Additionally, we will
provide a brief introduction to specific aspects of two-dimensional conformal theories. Fi-
nally, we will elucidate the constraints that arise from the presence of conformal symmetry
in quantum theories.

1.1 Conformal Transformations in D-dimensional space-
time

A conformal transformation is a transformation that changes the scale locally. This
transformation can be expressed, for the metric, in this way:

95, (2") = Q) g (2) (1.1)

Where Q(x) is a positive function and g, is the metric of a d-dimensional manifold.

The laws of physics are diffeomorphism invariant. So they do not change under a trans-
formation:

zt — o' =t + ' (x) (1.2)

For simplicity the metric g, is considered flat (Euclidean or Minkowski). By applying an
infinitesimal transformation (|e(z)| « 1), we get:

, oxP ox°
S = 90 3

= Gu — (aueu + azxﬁu) (13)



From eq. 1.1 it is easy to convince someone that the second term of the last equation is
proportional to the metric. So we can write down the above differential equation ;

(Oues + Oven) = f(T)gpu (1.4)

The f(x) is not any arbitrary function. There are some constraints that should be satisfied.
By multiplying the last equation with ¢g"” from both sides:

0-€= §f(x) (1.5)

By acting with ¢” to the 1.4, while the metric is flat (0,g,, = 0), it gives:
9 d
Ou(0-€)+ 0%, = 0, f(x), 6-e=§f(x)
2—d
e = 20,1 (1.6)

Acting once again with ¢* to the last expression, it gives:

200 =20 1w

(1—d)*f(z) =0 (1.7)
This result gives a constraint for f(z), which is that this function is at most linear in x

for all the dimensions d > 1.

By acting with d, to 1.6 gives:

2—d

(92(9V€H = Tauayf(ill) =

G (1) = & (0p6) = 2{§l%auayf(x)::>

gw,82f(x) — %Zau@,f(x) = %Zﬁu&,f(x) =
(2= d)0,0,f(z) = gud*f(z) (1.8)

As we can see, the additional condition for d > 2 is that

0,0, f(z) =0 (1.9)

From the derived condition, we can conclude that the third derivatives of € vanish. So
conformal Killing vectors are at most quadratic to . Going back to function f(x) the
general solution that satisfies the previous conditions is:



flx)=A+2b-z (1.10)

Now we have everything needed to solve the Conformal Killing equation 1.4, which is a
non-homogeneous partial differential equation. So we can separate the solution into two

parts, a homogeneous one and a non-homogeneous one, € = e,(?) + e,(tn), where:

0, + 0,6 =0 (1.11)
The general solution of this equation is:

eg)) = a!' + wha” (1.12)

Where w,, is an anti-symmetric tensor and a* is constant. This solution generates the
Poincare Group (Space-time translations + Lorentz transformations), which as we will see
is a subgroup of the Conformal Group. Here it should be noted that the Poincare Group
is the fundamental symmetry of space-time underlying all QFTs. So we can suppose that
Conformal symmetry brings a "more symmetric QFT".

Coming back to the general solution of 1.4, the corresponding value of € is:

e =€) + Az +2(b- 2)at — b (1.13)

Now there have been added two extra types of infinitesimal transformations. The first
one is called dilation (scale symmetry):

= (1+ \)a* (1.14)

Dilatation seems not to be a good symmetry of physical systems, as there does not exist
a fundamental energy scale on which all observers must agree.

The second one is called special conformal transformation:

" =gt + 2(b- x)at — 2P (1.15)

All these infinitesimal transformations do not commute each other, but they form a group,
which is called the "conformal group". The generators of this group are:

pr = jov (1.16)
M* =g (xhd” — ") (1.17)
D = ia"d, (1.18)
K" =i (2s"3"0, — 2*0") (1.19)



Where P* stands for translations, M* for Lorentz transformations, D for scale transfor-
mations and K* for special conformal transformations. The algebra of this group is given
above:

[M™ MP7] = —i (g"° MY — g"" MY — g"? MP + g"° M) (1.20)
[M*™ PP = —i(g"° P” — ¢"° PH) (1.21)
[M™, KP] = —i (¢" K" — g"? K™) (1.22)

[D, P"] = —iP" (1.23)
(D, K"] = iK" (1.24)
[P", K] = 2i (¢"' D — M™) (1.25)
[M™ D] = [P", P"] = [K*,K"] = 0 (1.26)

The conformal algebra is isomorphic to SO(D+1,1) [1]. We consider a (D+2)-dimensional
Minkowski space, with coordinates X', X2, .. XP*+2 where the XP*2 is the timelike di-

rection. Working on the light cone coordinates then we have:

D
ds? = " (dX7)* — dX+dX~ (1.27)

i=1

And the conformal generators will be identified as:

Juw = M, (1.28)
‘]MJr = PM? (1'29)
Joo = K, (1.30)
J+_ = D, (131)

And the algebra of these generators obeys the SO(D + 1, 1) algebra.

Now we can count down the number of generators. From Lorentz transformations, we
get @ since M" is a d x d antisymmetric matrix, one from scale transformation, d
from translations and d from special conformal transformations. So the total number of

generators in a conformally symmetric d-dimensional spacetime is:

(d+1)(d+2)

Number of generators = 5

L d>2 (1.32)

The case where d = 2 is a special one. There are infinitely many more conformal transfor-
mations in d = 2. As we will see later, there is no remarkable difference between Euclidean
and Minkowski conformal transformations in d = 2, as the transformation acts essentially
on the two light-cone(for the Minkowski) /holomorphic (for the Eucledean) coordinates
independently.



1.2 Conformal Field Theory for classical fields

By now we have seen how conformal transformations act on coordinates. Now we have to
consider conformally symmetric field theories. Conformal symmetry plays an important
role in classical field theory. It is a type of symmetry that allows for the transformation
of a field into a new field that is conformally related to the original field. This allows for
the study of a field under different conditions without necessarily changing the form of
the equations that govern it.

In classical field theory, conformal symmetry is a special case of the more general notion
of invariance under a group of transformations. A conformal transformation is one that
preserves angles and magnitudes of distances. This means that the same field equation
can be used to describe the same field under a different set of conditions.

Conformal symmetry is particularly important in quantum field theory, where it is used
to describe the behavior of particles and forces at very small distances. We postpone this
discussion to the next section.

In classical field theory, conformal symmetry is related to the notion of scale invariance.
A scale-invariant system is one in which the equations of motion do not change when the
system is scaled up or down. This is an essential property in a number of physical sys-
tems. Conformal symmetry is a generalization of scale invariance and allows for studying
a field under a wider range of transformations. Finally, it is important to note that these
transformations are associated with the shape of spacetime and can be used to describe
the behavior of physical systems in the presence of gravity.

1.2.1 Classical Field Theory in curved space

A conformal transformation changes the geometry of spacetime, something that has an
impact on the dynamics of the field. So in order to study conformal symmetry for classical
fields, first of all, we should introduce the classical field theory in curved space.

We begin with the action that describes the system. The general form of a generally
covariant action in curved spacetime is:

S = Jddx«/—gﬁ(gw,@i,@@i, ) (1.33)

There are some requirements for the action [2]:
1. The action should be real-valued
2. The action is a local functional of fields and their derivatives
3. The equations of motion of the fields contain at most second-order derivatives

4. For a flat background spacetime the action should be Poincare invariant, something
that means that there is not an explicit dependence on x and ¢



5. For an arbitrarily curved spacetime the action has a general covariant form

6. If the system has internal symmetries (e.g. gauge symmetries), the action should
be invariant under these transformations.

For non-trivial geometries (existence of gravity), the field that describes gravity is the
metric tensor, so due to the term ,/—g, there is a coupling between the other types of
fields and gravity. The simplest type of field theories in curved space are those, known as
minimal coupled. The action (for a scalar field) is given by:

S = Jdd:p\ﬁg [—%gﬂ"(aucb)(aycb) — V(cb)] (1.34)

The equations of motion for the scalar field in curve space are given by:

AV (®)

0y (V=99"0u®) = V=g—5= =0 (1.35)

So we see that curved background impacts the equations of motion for the scalar field.
The last equation can be written in a covariant form:

dv(®)
H [ S A
VIV ,® 5 =0 (1.36)

Simple example of Field Theories in FRW Universe

We are going to discuss a simple example of field theories with dynamical geometries.
This one will be the scalar field in an expanding flat Universe. This example is very
interesting for Cosmology.

First we consider the FRW(0) spacetime:

ds® = —dt* + a*(t)dx> (1.37)

This metric is conformally flat, so we can define the conformal time 7(¢):

) = | g (1.38)

o al(t)

So the line element is given as:

ds®> = a*(n) [—dn* + dx*]| = o (n)ndz*dz” (1.39)



For this metric we have that /=g = a*(n), g = a*(n)nw and ¢" = a*(n)n,,. The
simplest model that we can study is the free massive scalar field, where we substitute
V(®) = $m*®. Tt is a straightforward calculation to find the equations of motion, which
are ;

" (n,x) + 2(;/877)) ®'(n,x) — Vi + a*(n)m*® = 0 (1.40)

Now we can define an auxiliary field x(x) = a(n)®(x). Under straightforward calculation,
the equations of motion in terms of the auxiliary field are:

"

X' — V2 + <m2a2 - —> x=0 (1.41)
a

We can identify the last equation as the Klein-Gordon equation for the field x with time-
dependent mass, mZ; () = m*a® — %” and the equations of motion are:

X' = VPx+mix =0 (1.42)

In analogy the action in y-field terms is written as:

o Pd3fd7]a4 [%a_Q (¢/2 _ (V¢)2) _ %mgbzl

r ~ 1 1 2XX/al X2a/2
= | &Zdn l§ (X = (Vx)?) - gmtfx2 - + -

(.1 1 /2%’
= d3$dn§ lX’Q — (VX)? —mZp i + 3 < - > ]

[

The last term is a total time derivative, so after an integration vanishes. We conclude,
the action in terms of the auxiliary field is:

1,
fdgwd@ [X* = (Vx)? = mgp ] (1.43)

Which is the action for the free massive! scalar field in flat spacetime. The dynamics of
the scalar field ® in FRW spacetime are mathematically equivalent to the dynamics of
the auxiliary field y in Minkowski spacetime, with time-dependent mass.

1'With time-dependent mass



Dynamics of the metric- Gravity

By now we have introduced the metric as the field of gravity, but we were considering
this field as a background field. Now we are going to study its dynamics. The simplest
scalar that we can construct by the curvature tensor is the Ricci scalar. The action of
pure gravity (without matter) is:

Scr = fddx\/ng (1.44)

The variation with respect to the metric, gives the equations of motion for gravity, the
well-known Einstein equations

1
R,uy - §guuR =0 (145)

Now we can take a further step, and study the field equations of gravity interacting with
matter. The action of this system is:

SGR + SMatter (146)

S TG

So the equations of motion now will take the well-known form:

1
R, — §g#,,R = 81GT,, (1.47)

Where T),, is the energy momentum tensor and is given by:

T — 2 6SMatter (148)

1224 \/jg (Sg,LLV

1.2.2 Conformally coupled fields with gravity

From now on we will think of the metric tensor as a field and assume that conformal
transformation is a transformation of fields. This way of thinking requires studying the
theory in curved space. So the action that describes the free massless scalar field is

[3]:

S = Jddm\/jg {—% 00! D + aRp? (1.49)

Where R is the Ricci scalar, and « is a dimensionless constant. There is a specific value of
« for which the previous action is invariant under infinitesimal conformal transformations.



The equations of motion of this action are:

(V*V, —2aR)p = 0 (1.50)

So now we have to define the transformation of fields as a scale transformation of the
scalar field combined with a Weyl transformation of the metric. So we get:

Ogu = —w () g — 09" = w(x)g"” (1.51)

d—2

0 = TW($)¢ (1.52)

By doing the variation of the previous action we get:

55 = [ | 3500000 — =30 0,00,060) | — a5,
+ fddx [ad(v/=gR)¢*] — 05,
+ fdda: [2000/—gR¢p6¢] — 653 (1.53)

So now we have to do straightforward calculations.

1 d
0(V=9) = =5V =99u0(g") = —5wv/—g (1.54)
d—2
0(v/=99") = ——5—wv/ 99" (1.55)
d—2 1
§(Ruw) = VA(OTy,) — V,(0T3,,) = —5 VaViw + 5viAvw (1.56)
SR = 8(¢")Runu + §"0Ry = WR + (d — 1)V V,w (1.57)

Now we have all the tools needed to continue the calculation of the specific value of
a.

d—2_,
o 00,l0)] (1.59)

A _
851 = | dx/—g l%w&,ﬁﬁa‘% -

. B _
68y = | da\/—ga leTdR + (d — 1)VAVAw] ¢* = Jddm/—gaw lQTdR +(d— 1)V Vy | ¢
(1.59)

i -2
053 = dd:v\/—gawdTquz (1.60)

J

We see that the first term of 055 cancels with 6.55. For the second term of 6.5, we get

Y



VAV ¢* = VA (20Vr¢) = 20,000 + 20V V¢
. 655+ 65, — f dy/=g200(d — 1)(2,00"6 + SV Vr6) (1.61)

By integrating by parts the second term of 4.5; we get:

55, — f ddx\/fg%w(amaw - OV 0) (1.62)
= 05 = Jddx\/jgw [(dlli + 2a(d — 1)) (0,00" 0 + ¢V V10)
1 d—2
R TTrEy (1.63)

For this value, conformal transformations are the symmetry of the system. We see again
that d = 2 is a special case, where a = 0.

An important fact about classical conformal field theories is the tracelessness of the energy-
momentum tensor. Under an arbitrary coordinate transformation, the change of the action
is:

08 = fddacT‘”’@“eV

The energy-momentum tensor is assumed to be symmetric. So we can write:

1
0S = 5 Jdde“”((?ueV + 0v€u)

recalling (1.4) we get:

1
08 = 5 Jdd:cT[ja e=TH =0 (1.64)

So we conclude that the tracelessness of the stress-energy tensor implies the invariance
of the system under conformal transformation. It is important to note that this is valid
even if the equations of motion are unsatisfied. The converse is not true, since € is not
arbitrary

10



1.3 Two-dimensional Conformal Field Theory

We are going to study the special case of d = 2, where we suppose a Euclidean metric
Gy = O, In this case the eq.(1.4) gives as a result:

8161 = (9262 s 6162 = —(9261 (165)

We can identify these two equations as the Cauchy-Riemann equations, so it is useful to
turn on the complex plane with z, Z = 2! + 22, where we can define the holomorphic and
anti-holomorphic functions f(z) = € + ie; and f(2) = €; — ieo.

The metric of the complex plane becomes:

0 2 0 2
gy=< 2) ,ng( ) (1.66)
" 1o 2 0

So the conformal coordinate transformations in the complex plane are:

z— z+ f(z2) (1.67)
zZ—z+ f(2) (1.68)

Since functions f, f are holomorphic and anti-holomorphic, we can expand them as :

f(z) =D ez (1.69)
f(z) =) @z (1.70)

n

So we can conclude that there exists an infinite number of generators for the infinitesimal
conformal transformations, which are:

l, = —2"*10 (1.71)

l, =—2""10 (1.72)

The algebra of these generators is known as Witt algebra:

Ly ln] = (M — n)lppin (1.73)
[l 1n] = (m =)l (1.74)
[lm, 1] =0 (1.75)

11



This algebra is satisfied only for the classical conformal field theories. For a quantum the-
ory symmetry transformations act projectively on states. Projective representations of
an algebra are equivalent to representations of a centrally extended algebra. The central
extension of Witt algebra is also known as Virasoro algebra.

Here occurs a tricky question about two-dimensional conformal symmetry. From the anal-
ysis for a d-dimensional CFT we get that the number of generators of the symmetry is

w, so there should be 6 generators, instead of an infinite number.

In order to give an answer to this paradox, we consider the vector that generates the
conformal transformations:

v(z) = Zanln (1.76)

This vector field should be regular throughout the whole Riemann sphere (C' u {o0}).
Looking at the vicinity of 0 we get that a,, # 0 for n > —1. By using the transformation
z = % we can study the behavior in a neighborhood of the point infinity:

o(z) = ;an (%)H 20 (1.77)

Under the requirement that the vector field is regular at infinity, we have that a,, # 0 for
n < 1. So we can conclude that conformal transformations in two dimensions globally
defined on the Riemann sphere correspond to n = 0, +1. The same result can be obtained
for an anti-analytic vector field. However, the number of parameters does not double since
the generators of the two algebras that preserve the real section of C? are expressed by
the linear combinations. So in two dimensions, we must distinguish between the global
and the local conformal transformations. This distinction exists only in two-dimensional
CFTs. The global conformal transformations are those that are uniquely invertible and
well-defined on all of the complex plane plus infinity. So strictly speaking, the only con-
formal group in two dimensions is the global conformal group.

By choosing to work on complex coordinates we get some interesting properties of the
stress-energy tensor of a conformally symmetric classical theory. Firstly from the trace-
lessness property, we get:

Tuyg,u,y = Tzzgzi + TEZQZZ =T*=0 (178)

From conservation law we get ;
0, 1% = 0,T%° + 0;T%8

0.T% = 0,T% + 0.T% = 0,T% = 0 (1.79)
0uT% = 0,T7 + 0;T% = ;T =

12



By lowering the indices we get that:

oT=0,T="T,. (1.80)
oT=0,T =T, (1.81)

so T and T are analytic and anti-analytic functions respectively.

1.4 Constraints of conformal invariance for a quantum
theory

All the information of a quantum system can be encoded in the N-point functions. In

order to have a theory with conformal invariance the above properties should be satis-
fied|[4]:

e There is a set of fields-operators {f;}, which in general is infinite and contains the
derivatives of all the fields f;

e There exists a subset of fields {¢;} with dimension A;, called "quasi-primary", that
under global conformal transformations transform :

ox! [~/
/
¢i(z) — . i(z') (1.82)
where |2Z| = \% = Q79?2 is the jacobian of the transformation. The N-point
g

correlation functions are covariant under this transformation, in the sense that :

n

(@1(21)-nlza)) = [ |

i=1

Ag/d

(01(21)...¢n(z7,)) (1.83)

T=x;

ox'

ox

e All the other fields can be written as linear combinations of the quasi-primary fields
and their derivatives.

e There is a vacuum state |0), which is invariant under the global conformal group.
This vacuum state is included in a Hilbert space. In order to define this Hilbert
space, space-time is foliated into surfaces of equal time, and to each time slice
we associate a Hilbert space of quantum states. For example for a scale-invariant
vacuum state we have:

D|0Y =0

From these properties, we can obtain severe restrictions about the 2- and 3- point functions
of quasi-primary fields. For simplicity, we consider spinless fields.
We will study the case of 2-point functions. We can perform the same analysis for the

13



3-point correlation functions. From translation and rotation invariance it is required that
the 2-point function is a function of |x; — z4|

(P1(1)P2(22)) = f(|71 — 229])

From scale invariance we get:

(1(21)P2(22)) = AB1HA (1 (A1) a(Ar2))

the last two symmetry restrictions give a result:

C112

(¢1(z1)Pa(72)) = (21 — 2o A1 A (1.84)
By demanding special-conformal invariance we get:
C C (A1+A2)/2
12 12 (7172) (1.85)

+ A A =+
|x1_x2|A1 AQ ,}/1 1722 ‘l’l—l‘2|A1 AQ
with v; = 1 — 2bx; + b?c?
7 7 7

This constraint is satisfied only if Ay = A,y. So for the quasi-primary fields, we get that
the 2-point function is:

(¢1 (1) P2 (22)) = { e (1.86)

0 Ay # Ay

We can follow the same procedure in order to define the three-point function. A recent
work about the derivation of the correlators of N operators is presented at [5]

1.4.1 Ward Identities

At the quantum level, the main objects of study are the correlation functions. As we
saw before symmetry leads to constraints relating to different correlation functions. The
consequences of symmetry can be expressed via the Ward identities. Considering an
infinitesimal transformation, generated by a set of generators {G,}, we can write [6]:

D'(z) = (1 — ie,G,)P(x) (1.87)

where {e,} is a collection of infinitesimal parameters.

Under local infinitesimal transformations, the action is not invariant and its variation is
given by:

14



0S = Jddmé’ujaea( ) (1.88)

where j# is the current associated with the infinitesimal transformation. We set X =
O (x1)P(xg)...P(x,,), we can write:

(X) = J [dD] (X + §X e S1@1-Td duiica() (1.89)

By expanding to first order in e,(x) we get that:

(6X) = [ dad, GEX) (o) (1.90)

The variation 0 .X is given explicitly:

Z - Go® (). D (x,)) (1.91)

It is straightforward to show that for any infinitesimal e,(z) we can write the following
identity, also known as Ward Identity:

On U ()@ (21)... Z r = i) (®(1)..Ga® (). ®(20)) (1.92)

By integrating the last identity, and supposing that the points x; are included in the
region, then we get:

N

szu (' X) = —ieq ) (B(21)...Ga®(27)... () (1.93)

=1

The r.h.s. of the last equation is the variation of the correlation function J. (X). Looking
at the L.Lh.s. we can assume that the integral vanishes since on the hypersurface of the
region the (j#X) goes to zero, by hypothesis. So we conclude that the variation of the
N-point correlation function vanishes under infinitesimal transformations.
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Ward ldentities for Conformal invariance

Now we are going to find the Ward identities implied by conformal invariance. First, we
begin with translations. The conserved current of translation symmetry is the energy-
momentum tensor and the generator is P* = —id*. So the first Ward Identity is:

0, (T, X) 253:—331 L (X) (1.94)

For the Lorentz symmetry, the generator is M* = i (z10” — x¥d*)+S*” and the associated
current is j*? =T xP — THPxH. So the Ward identity takes the form:

0 (T2 = T7a) X) = Y0 — ) (@0 = 20") (X) =S/ ()] (1.95)

Taking into account that the derivative acts both on the stress-energy tensor and on the
coordinates, and by using the Ward identity for the translation symmetry we reduce the
above to

(T" —T"M) X) = —zz 5(x — ;)" (X) (1.96)

Finally, the current associated with the scale symmetry is j5 = x, 7" and the generator
is —i ("0, + A). So the Ward identity reduces to:

(T",X) Za T — ;)\ (1.97)

These identities will be useful in order to prove the monotonicity theorem for two-
dimensional field theories ( the C-theorem)
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Chapter 2

Aspects on Renormalization and
Renormalization Group Flow

In this chapter, the quantization of field theories, will not be introduced. Both canonical
and path integral quantization procedures are very well introduced in several introductory
textbooks for QFT as|7],[8], but it will not be discussed in this thesis. The path integral
formulation will not be presented, but it is very well introduced by the "father" of this
formulation R.P. Feynman in his textbook [9]. The Wilsonian approach will be displayed
and we will see how the renormalization group occurs. Moreover, in this chapter, the
Callan-Symanzik equation will be presented and we will define the well-known S and ~
functions, which encode all the information about the flow in the space of coupling con-
stants. At the end of this chapter, the example of Yukawa pseudoscalar theory will be
displayed, in order to show how actually the flow in the space of coupling constants works.
Two different versions of the Renormalization Group (RG) are used in QFT, the contin-
uum RG, and the Wilsonian approach. [7| This discussion will be focused on the Wilsonian

RG.

2.1 Wilsonian approach to Renormalization Group

Wilson’s analysis states that every quantum field theory fundamentally has a cutoff A.
This fundamental scale has a physical significance, for example, in fundamental particle
theories, the cutoff should be proportional to scales that there is no need for a quantum
theory of gravity. With this assumption, then all the loops are finite and the theory
is well-defined. By using the functional integral formulation, it can be proven that by
changing the cutoff, the physical system is described by an effective Lagrangian, where
the coupling constants have been transformed. The set of transformations of coupling
constants is called the Renormalization Group. This idea is based on the fact that the
description of a physical system at energy scales smaller than p should be done by the
appropriate set of variables that are defined on this scale. So the underlying principle
of this picture is that all the parameters of a field theory can usefully be thought of as
scale-dependent entities.

It is known that all the information about a physical system is encoded into the partition
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function Z[J], which is given by:

Z[J] _ JD¢€iSdnx(£+J¢) (21)
For simplicity, only scalar fields are considered in the theory

With respect to Wilson’s analysis, there is a sharp UV cutoff to the theory. To control
the large values of momenta we should apply a Wick rotation and impose the UV cutoff
in Euclidean space (where there are no null directions, where the components of k are
extremely large, but k? is still zero). As a result, the momenta values in the Fourier
expansion, are restricted |k| < A, where k is Euclidean. So the partition Function is more
appropriate to be written as:

210) = [[DayeSemeter s 2.2)

The next step is to find a way to integrate the high momentum degrees of freedom. By
introducing a parameter b < 1, we are trying to write the partition function as:

2] = [[Dolne 229 (23)

To achieve this, we can schematically separate the momentum space into two regions:

$—d+0 (2.4)

2 A d'k = ikx

6= Gratthle (25)
bA d"k - ik

6= o (26)

So we can rewrite the partition function as follows:

7 = JD¢D$65[¢+4’] (2.7)

The action S[¢ + ngﬁ] reproduces the initial action but with a smaller cutoff bA. So it is
not false to write:

7 f (D@]e—17) J Dépe—Sinil64] (2.8)

So by calculating the second path integral, the terms with interactions of the ¢ field will
add some extra terms to the action, so, as a result, there will be an effective action that
describes the system:

18



Z = J[Dgzs]bAe—Seff[qﬂ (2.9)

The previous conversation gives the general idea behind Wilson’s approach. Now, a
more convenient way will be introduced. The underlying principle of the Renormalization
Group is that physics at energy scales £ « A is independent of the precise value of A,
so the region of interest is the "low energy" limit. ! For simplicity, we will rescale the
scalar ¢* theory. With the term "rescale" we mean that we change the energies and the
distances that we study.

kK — k/b (2.10)
' — bx (2.11)
where b < 1

This rescale will have an impact on the term of the action.

Serf = Jd"r E(l +AZ)(0,0)* + %(m2 + Am2>¢2}l(x + AN G + AC(0,0)* + AD¢® + ] -

b 1 1
_ Jd”x’b" lE(l + AZ)(0,0)° + §(m2 + Amz)qﬁz()\ + AN)¢! + ACH!(0,,¢)" + AD¢® + ]
We set the ¢’ = [(1 + AZ)bZ*”]% ¢. So now we can rewrite the action ;

Sepf = Jd"x' B(&;¢')2 - %m’dﬁxw +C'(0,¢) + D¢ + ... (2.12)

The new coupling constants of the Lagrangian, are connected with the initials with the
above set of transformations:

m? = (m* + Am?)(1 + AZ) b2 (
N =A+AN1+62)p (2.14
C'=AC(1+AZ) %" (

D' = AD(1 + AZ)*p* " (

This set of transformations is called the Renormalization Group. Continuing this proce-
dure we can integrate over another shell of momentum space and transform the Lagrangian
further. By taking b close to 1 (but still smaller than 1), the shells become infinitesimally

! Actually we do not consider the low energy physics limit (ex. non-relativistic), but the energies are
very small relative to the cutoff
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thin, so the transformation becomes a continuous one.

As far as b < 1 the operators that are multiplied with positive powers of b after applying
several times the RG transformations tend to vanish. On the other hand, multiplied op-
erators with negative powers of b tend to be more and more important. These operators
have to do with the renormalizability of the theory. As we can see, the non-renormalizable
terms tend to vanish and the "super-renormalizable" ones become more important. Fi-
nally, there are the renormalizable terms (that have zero mass dimension), that have a
zero coefficient, something which means that the constant stays unchanged in the first
order. The operators can be classified as:

e Relevant operators are the operators that diverge throw the RG flow to the IR and
are analogous to the super-renormalizable theories

e Irrelevant operators are the operators that tend to vanish throw the RG flow to the
IR and are analogous to the non-renormalizable theories

e Marginals are the operators that are multiplied by b°. These operators are analogous
to renormalizable theories.

Following Wilson’s approach we can think of the renormalization as a trajectory or flow
in the space of all possible Lagrangians. This picture gives us a deep understanding of
why Nature should be describable in terms of renormalizable QFTs.

It is essential to note that, by integrating out degrees of freedom from UV to IR, it seems
that the trajectory in the space of coupling constants, the RG flow, is irreversible, by the
mean that through this flow, the information about the UV degrees of freedom gets lost.
We will prove later this for two-dimensional field theories, as Zomolodchikov originally
did.[10]

2.2 The Callan-Symanzik Equation

Another way to obtain information on the RG flows is from the renormalized Green’s
functions. But now, we do not have to think about the cutoff of the theory, since it has
been sent to infinity. The parameters of a renormalizable theory, are defined by a set of
renormalization conditions, which are applied to a momentum scale, known as the renor-
malization scale. This momentum scale M is arbitrary, so it is possible to define the same
theory at a different scale. As a result, the bare Green’s function G(()n) (21, T2, ... %0} Gi(0), )
should be the same, where g;), ¢ € N , are the bare coupling constants. The renormal-
ized Green’s function is equal to the bare, up to the rescaling powers of the field strength
renormalization:

G(")(atl, T, .. Ty Gis M) = Z_"/QGén)(xl, T2, ...Tn; Gi(0), A) (2.17)

If we shift the renormalization scale by d M there should be a corresponding shift in the
coupling constants, in order to keep fixed the bare Green’s function.
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M — M+6M
gi — gi +9g;
¢ — (1+0m)¢

Since Green’s function is the time-order product of n fields G = (0| Té(z1)p(x2)...¢(x1) |0,
then it is simply shifted by a term ndn

G™ — (1 + non)G™
= dG™ = nonG™ (2.18)

As we said before, G™ is computed on a certain renormalization scale, for a specific
coupling constant g;. So we can think of G as a function of M and g;. So the shift of
Greens’s function can be written as;

oG (™) oG (™)
dg™ = oM
G =Mt =,

From the last two equations we obtain the differential equation:

0

Mo+ B0+ () | G () M, ) = 0 (2.20)

0gi

Where we have defined the dimensionless functions § and ~ as;

M
= —90¢; 2.21
M

These two functions are universal, by the mean that they are the same for every n. Also
G™ is renormalized, so 8 and 7 cannot depend on the cutoff. From dimensional analysis,
these functions cannot depend on M. So they are functions only of the coupling constant g;

Now we are going to take a closer look at these two functions In theories with dimensionless
coupling constants the dependence of the Green’s function to the renormalization scale
M, comes from the counterterms. As a result, the § and ~ functions can be computed
directly from the counterterms. For simplicity, we consider massless scalar field theory
and we begin with the two-point function, which in a general theory has the form:
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. . A2 . .
GP(p) = 4 %(Aln — + loop finite terms) + %(z’pQ(SZ)% + (higher order loops)
—-p p p

P> p
(2.23)

The dependence to the renormalization scale M comes from the term 4. By applying
the Callan-Symanzik equation and neglecting the term which is proportional to 8 we get
that :

v=—A (2.24)

Now we will follow the same procedure, for the n-point function. In analogy with the two-
point function we have, the n-point function for a theory with a dimensionless coupling
constant g is:

A? A?
G" ~ —ig —iBln — — i, —ig )| <Aj In—; — 6zj> (2.25)

Again the dependence from the renormalization scale comes from d, and dz,. So by
applying the Callan-Symanzik equation, we get:

0 1
Blg) = Ma_M <—5g + 5;5@)

Blg) = —2B — gZAj (2.26)

2.3 Renormalization of pseudoscalar Yukawa theory and
beta-functions

The Lagrangian of the renormalized pseudoscalar Yukawa theory is :

1 - - A
L= (000 = Sm2g? + B (10 - me) v — igirPvo — Dot

z 2 o (2.27)
+ 306 (0u0)" = 50m, 0"+ (1627 — 0, ) W — iV — 10"

In figure 2.1 we see the renormalization conditions that we are going to use.

We begin with the computation of the pseudo-scalar self-energy diagrams to the one-loop
order, keeping only the divergent pieces.
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Figure 2.1: Renormalization conditions for the Yukawa theory

k

O

—iM3(p?)

B T T e

P Iy P P

- - ---h-—--®-----‘

P Iy

Figure 2.2: Pseudo-scalar self-energy one loop diagrams

y . ; 5 (1 Y 6
—iM* (p?) = — %f (d’§ ;mqﬁ_g?J (;iﬂl;d Ty [7(2(1(.;» :p;;tn;z)z(vk?@f;z; )] i — b
__%(473) (F :d/2_49f Jddk g2_x12—_96A)1)92—m + (p°0g — Omy)
2\;7;}2 B 92(4;) 2f0 da:( <1_5U)p)+49 <4;)2§L1 dx (m§+x(1—x)p2)
+1i (p*0g — Ons)
- i\gjrq; 49_7:2§< 2m +2p +ép +m>+l(p5¢ Sons)
~i (G 2 T L5, 0

So from renormalization conditions, we get

5 B )\mi meg 1
e\ 1672 212 ) €
2

g 1
S.—_ (9 _\zZ
¢ (471‘2> €

(2.28)

(2.29)

(2.30)

We follow the same procedure for the self-energy of the fermion.

23



—q — 2 d'k 5 i (k+me) 5 i _
S(p) gJ [ —F =) 2 —m2)" +i (PO — O, ) ,

ddk F—m.
2798 (7 i) ((p = FP — i) (P02 Ome).

(2m
sl

_ f f ddﬁ W—me i (52— 6ma) (231)
L2 [ gz +z(¢62 i)

= (1612 987T2 > ;i =i,

Therefore, by applying the renormalization conditions we find:

S = — (QQme) ! (2.32)

12 ) €
g* 1
0y = — - 2.33
2 1672 € ( )

For the computation of the J,, there are five contributing diagrams given above. The first
three are the standard of the single scalar ¢* theory and they contribute with the value
136’\; 5 % A detailed introduction to the computation of loop diagrams and vertices can be
found at [11] and the calculation for the one loop contribution of the ¢*-theory is given
explicitly at [8]

- ~ - ~
N ’ . - e - ~. - e e
N A e ~_- o s
! * ! “\ Tl - g
I i
+ + --m + @'
P \ ""\ N ,
M e / - \ - ~ e ~
- L ) s . g ‘ -’ -
- ~ ~
' % - - s ) # - - ~

Figure 2.3: Contributing diagrams for the ¢* counterterms in Yukawa pseudoscalar theory

So all the job remaining is up to the fourth diagram. It should be noted that there exists
a symmetry factor of six. Also, we consider the momenta inside the loop to be much
bigger than the momenta of the external legs. So we get :

iM ~ z3—)\21 _ 694[ A’k Tr [V kY ky k] N
1672 € 2m)d (k2 —m2)?!
3N 1, %k 4k 5
l6re J(%)d (B w2 (2.34)
_2.3_A21_ L0 al(d+2)r(2_g)_,(S
“'er2e Y amdrT 4 Az OV
321 3¢%1
“ e e



From the renormalization conditions, we get the result :

3X2 1 3¢*1
0y = -— = 2.35
AT 16r2e w2 e (2.35)
Finally, the last counterterm 9, is given by the above diagrams:
P
| k+q
ﬂ-"l"'"’(q=(l)= p—k : ;—-{-} + ====
g~
v
Figure 2.4
ddk? 5 . 5 + M, 5
(5F5(q=0)=—i92J y Y (2%"‘77;)72(% 27’)1);}/ : +5175
2m)* ((p — k)? = m3) (k* — m2) (k* — m?)
[ dk +me) (K — me
=Z'92’Y5J _ (¥ 2””)(% me) + 6
(277 ((p = k)2 = m3) (k? — m2) (k? — m?)
! di 02 + (22 — 1) m?
— ig*y° dzJ ¢ 467 (2.36)
g JO (27T)d (62 o A)3 17
rl d2
=ig*y° | dz(1 — bas 617°
i) z( ){W)Q% + 01y
2
_ s 0L s
EETr oy
So we conclude that:
2
g1
0 = ——5-— 2.37
82 (2:37)

Now the next step is to find the g functions for the coupling constants. For simplicity we

will think the case of the massless Yukawa pseudoscalar theory. By substituting in the
(2.35) we get:

3

59

By = T6m2 (2.38)
32 4 8\g? — 484"

By = I (2.39)

1672

Now we can find the flow of the coupling constants. By definition, the g function is the
rate of change of the renormalized coupling constant.
dg 59°

7 B =2 2.40
dlogp/M B 1672 (240)
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Solving this first-order equation we get:

872
5logp/M + Cy

9°(p) = (2.41)

Where Cy is a constant fixed by the value of g at the renormalization scale. We see that

there exists a Landau pole at the scale p = M exp{—%}. The expression for the running

A is given by:

2

A= % (1+\/145

2./145/5
Grty ) (2.42)

Cy — 92« /145/5

Where C)) is a constant fixed by the value of A at the renormalization scale. From this
expression occur different Landau poles, that restrict the energy scales through which the
theory is reliable.
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Chapter 3

Quantum Field Theory in Curved
Space and Conformal Anomaly

Now we are going to study the effects of curvature on quantum systems. There are two
approaches. The first one is the canonical quantization process, where we promote fields
to operators and built a Hilbert space of quantum states. In this approach, one should be
careful about how the vacuum states are defined. The second approach is based on the
path integral formulation and we are going to analyze it in this chapter.

3.1 The impact of a classical external force on quantum
states

Actually, the path integral formulation is based on the action and proves that all the
possible trajectories, not only those that minimize the action, contribute to the amplitude
of a system. We will begin our study from the driven harmonic oscillator in order to
understand the concept of the background field. Then this formulation will be extended
to fields and the metric will take the role of the background field.

3.1.1 Driven Harmonic Oscillator
Classic Driven Harmonic Oscillator

The Lagrangian that describes the driven harmonic oscillator from an external force J(t)
s :

1
L= 2+ J(t)g (3.1)
2 2
and the equations of motion are :
G=—wq+J (3.2)

we introduce two new dynamical variables, a and af as:
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From the Hamiltonian equations of motion, we get the time evolution of these two vari-
ables

c'H—c'LT:iw(aT—a)

a—a' =—iw(a+al)+ \/%J(t)

So the equation of time evolution for a is a first-order non-homogeneous differential equa-
tion

and the solution is:

—twt

a(t) = ape drJ (x)e== (3.3)

i t

+ _
V2w Jo
For the solution, we assumed that before the external force is "turned on" through the
time window t > 0, and as we can see this external force has an impact printed on the

new dynamical variables, something that will have consequences on the vacuum state at
the quantum level.

Quantization

As far as we have solved the classical system, we can quantize it with the standard
procedure. We promote the dynamic variables to operators. The equal time commutation
relations are :

[a,a'] =1

The Hamiltonian of the system is given by:
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H = w(ata+ =) —

We assume that the time window when the external force is turned on is 0 < ¢t < T.
So there are two different "free" regions, the "in" region and the "out" region. The
annihilation operators are defined as

dzn(t) = G_thCALm

&out (t) = e_thaout

By using the classical solution for a,,; we get :

~ ~ i WL ~
Uout () = Qin(t) + f drJ(x)e™" = a;,(t) + Jo

The Hamiltonian is written as:

At oA
~ L +1/2) 1<

0
f= {8
wW(@pout +1/2) , t =T

It is easy to imagine, that since the annihilation operators are different in each region,
then the vacuum states will also be different. So we have to define two different vacuum
states:

&OUt |0>out =0

It is remarkable to notice that the |0), are coherent states of the "out region.

dOUt |O>m = JO |O>zn #0

Since |0),, are coherent states, then we can find a relation between these two vacuum
states :

Dl < T8 | Jo|? .
|0>m =exXp|— 2 2 W |n>out = €xXp _T + JOaOUt |O>out

n=0

From this analysis, we can see that the classical external force has left its signature on
the vacuum state of the system, although it has been turned off.
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3.1.2 Path integral and background fields
Path integral as a partition function

As we know the propagator of a quantum mechanical system is given by the path integral
over all the possible trajectories between the final and the initial point. So we can write

K(Qf, qis tf7 tz) = JquiS[q:§tf7ti] = eiFL

In the path integral the classic solution can be thought as a fixed number so it is convenient
to write

D(] = D(Cj + qu) = DQN
The action of the driven oscillator is:

Slq] = Jdt Bcf - ng - Jq]

By preforming a Wick rotation (¢ — i7) then the path integral becomes:

J D qefsE [4]
and the Euclidean action is:

~ 1 - . 1
Se [qa + 4] = 3 JdT(qQ + W) — 3 JdTchl

For the form of the Euclidean action we have used the equations of motion of ¢ in Euclidean
space :

d2 qel
dr?

- wQQCl =J

Now we can evaluate the path integral

= Nexp B JdTJqu:| =

— N exp demy(r)GE(r, £)J<€)]
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where Gg(7, £) is the Green’s function in the Euclidean space. Going back to the Lorentzian
framework the action is of the form

S = S[q] + %Jdtng(t)GF(t,f)J(E)

The path integral as its own cal play the role of the partition function, with

21 = f Dy exp [@5[61] ti J dtJ(t)q(t)]

and the correlation functions as :

1 1 9§ 1 4
Ta.. = — =
O w0000 = o 5767 570

3.2 Quantum fields and background field

By now we have studied the path integrals in quantum mechanics. Now we are going to
extend this formalism to quantum fields. Now the integration of the path integral takes
place over all the possible values of the field.

Jw exp [1S[6, g ] = expliTs]

The background field will replace the role of the external force. In a relativistic situation,
the background field has its own dynamics which is described by an action Sg[J]

We will think of the example of the scalar field, coupled with gravity, where the metric
g, takes the role of the background field. The action of this system is:

S =Sg,, 1+ S, g,,] (3.5)

The equations of motion are given by

05 ory

6.9,“/ + 59“” =0 (36)
But we have to note that :
SDCDTM S
T, = .
< 1% (l‘)> SD@@ZS
2 o'y




So we conclude with the above relation:

1
By = 51 = 87G (T, (3.8)

The last expression is known as the semi-classical Einstein Equation. The vacuum expec-
tation value of the energy-momentum tensor gets modified by the classical background
field. This modification is known as vacuum polarization. On the other hand from the
measure of the VEV we can find the backreaction of the quantum fields on the metric.
This equation is applicable only to weak gravitational fields (weakly curved space) since
a strong curvature requires a quantum theory for gravity.

3.2.1 Path integral in curved space

The main thing someone has to do in QFT in curved space is to calculate the vacuum
expectation value of the fields and find out the difference between the values that we get
in Minkowski spacetime. The main tool in order to calculate expectation values is the
path integral formalism, but we have to be careful about how the measure D® is defined.
Generally, ®(z) depends on coordinates, so the measure can not be defined as in the case
of the harmonic oscillator.

We think the action of the field :

S[P, 9] = %Jd%’x«/—g [—g‘“’(?”q)&,,q) — V(q;)q)2] =

-5 | #av=sle@ - vpel (3.9

It is useful to work on Euclidean space (where the Euclidean metric is v, ), so we have
to wick rotate the action by ¢ — —i7. The Euclidean action is given by :

Se|®, v, = fd%:E% [@(—O0) + V() @] (3.10)

in order to well define the path integral we will follow a tricky path. First, we consider
the eigenvalue problem:

(=) + V(2))n = A (3.11)

Where {¢;} consist an orthonormal basis

thx\/%@u%f = O (3.12)
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We can expand the field on this basis:

O =" coipn() (3.13)

So the action, by the use of the orthogonality between the eigenfunctions, can be written

1
Sp[® Y] = 5D A, (3.14)

n

It is easy to see that {c,} are independent of the spacetime coordinates, so the path
integral measure can be defined through these quantities.

Do =[] den (3.15)

So the effective action in Euclidean space is given :

dc 1 i
exp{-Tg} = JH\/_Q%eXp{_ﬁzciA"} = ln)\n] (3.16)

n

Iy — %m det(—[T, + V() (3.17)

Now the problem goes back to the calculation of the functional determinant. In order
to achieve this we have to reformulate the problem in terms of a linear operator in an
auxiliary Hilbert space H. We define a Hermitian operation M which acts on the basis
vectors {|1,»} and has eigenvalues {)\,}, that are the same as the eigenvalues of the
differential operator.

M W}n> =\ ‘wn> (3'18>

We postulate a non-countable orthonormal basis {|z)} running all over the 2w-dimensional
space.

(@ |xy =6(z" — x) (3.19)
1= sz“’x |z (x| (3.20)
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So as in the standard quantum mechanical procedure, we can expand the |¢) states on
the uncountable basis

0 = [ 0 (e o) | wiz) = Galw) 321
@il = [ @ vi(a)un(o) 322

We see that the inner product has a non-covariant integration, so we suggest a one-to-one
correspondence between the fields ®(z) and the states |¢).

(z) = (al) = v/'0(z) (3.23)

In this mapping, we have a correspondence between the linear operator M and the dif-
ferential operator

M|y 2 (~00, + V) () (3.24)
= (x| M [y = yY4(=00, + V) V4(z) (3.25)

3.2.2 Zeta functions, Heat Kernels and Quantum Action

Now we are going to introduce a method that can be used to calculate the renormalized
determinants of operators. We begin with the function (y/(s) of the operator M

Culs) =), (Ain) (3.26)

It is straightforward that the derivative (-function with respect to s gin=ve the natural
logarithm of the determinant of the operator M

dCur(s)

IndetM = —
n ae dS

|s=0 (3.27)

This definition requires that we know all the eigenvalues of the operator M and this makes
the calculation almost impossible. It is more convenient to compute the (-function using
another mathematical construction which is called heat kernel. The heat Kernel is divided
as :

K(r) = Y exp{=Au7} [thn) (thn| (3.28)
= Tr{f((T)} = Z exp{—A,7} (3.29)

n
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By using the Euler’s I'-function, we can redefine the (-function as :

o]

Curls) = %8) L ar [1e{Kyi(r)}] 7 (3.30)

So now the problem goes onto the calculation of the trace of the heat kernel. It seems
that we still need to know the eigenvalues, but it can be noted that:

Wulr) _ e o)
dr
= K(r) = exp{—MT} (3.31)

Recalling that M = ~Y4(—[1,+V)y~"4, and that the exponential of an operator is written
as:

eXp{—MT} - i H‘Z_j)” (3.32)

n=0

the trace of heat kernel can be calculated as:

Tr{KM(T)} = fd%x (x| exp{—MT} |z) (3.33)

For the general metric and external force it is difficult to calculate the heat kernel. The
assumptions that we can make, in order to be able to proceed with the calculations is to
think of the case of weakly curved space and a very small external force |V| « 1. Since the
space is weakly curved the metric can be written as a perturbation of the flat metric

Yuv = 5uu + hp,u (334)

Since the external force is also considered to be small enough, we can perturbatively
expand the heat kernel, around the flat space kernel Ky(7)

~

Kun(7) = Ko(7) + Ky (7) + ... (3.35)

flat

We begin with the flat space Kernel, where M = . -
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flat\"
d2wk - (TD(m)> eik(m—m’) _

(2m)e — n!

_ 1weXp{—M} (3.36)

(4mT) 4t

(x| Ko(7) |2y = eXp{TD{st} 5z — o) = J

We continue the procedure up to first order. The linear operator can be written as:

—M = 4 5 [h,,, V] (3.37)

We have the Ky = Ko + K, and taking into account that we work up to first order, the
terms SK; can be neglected. So we get :

dK . N,
d—Tl — /K, + 5K, , Ki(0) =0 (3.38)

We let K1 (1) = Ko(7)C(7). So we get:

Ko = 5Ko(7) (3.39)

We recall that Ky (1) = Ko(—7) and Ko(7)Ko(—7') = Ko(r — 7'), the first correction is
given by :

Ki(7) = L ' dr' Ko(r — 7)3K(7") (3.40)

The next step is to find the expression for the operator §. Combining the (3.24) with the
metric v, = 0, + hy,, after some painful algebra we get:

(x| M |2') =
— |t + oo, + &,h‘“’au] 5z — ')

1 1
[0, - Zv“”auhaﬁauhaﬁ] 5w — ')

1 1
_ _Z,yaﬁayhuuauhaﬁ . 1_67uy7a67pgauha56uhpa N V] (S(ZU N :E/) (3‘41)

From the last expression, we can identify the operator § = h+T+P
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(x| h|2"y = h*0,0,6(x — ) (3.42)
(x| T2’y = 6,h"0,0(x — ') (3.43)
(x| P|z"y = P(z)0(z — 2') (3.44)

P(z) is given by the last two lines of the previous equality. The first correction can be
expanded as

~

Ki(1) = K}(7) + K{ () + K{'(7)

Now we can calculate the trace of the first order correction. It is easier to do it term by
term, where we begin with K.

(| KP |z = j dr' (o) Ko(r — 7)PRo(r') )

_ j a7’ f dy (| Ko(r — 7)) Gl Ko() | P(y)

Now we use a mathematical trick in order to calculate this trace. We perform a Fourier
expansion to the function P(y) and then there exists a Gaussian integral with respect to
y. After this procedure, we get:

(| RP |2y = (47T17)w f dr’ J (C;j)’i exp{—uk2+il§-f}ﬁ(k)
- (4737)“ fo " exp{um{gt}mx) (3.45)

This result will be used in order to calculate the remaining terms. For the next steps,
first, we will consider the non-diagonal terms and then we will take the limit y — z in
which we find the trace.

GIRE I = [ [ Gl Ralr = 1) 2010 () Gl Rale) o)
d " a* ol —7') |2 () (2| Ko(7! =
= oo | [ 5 Gl Rt =) ) () G Rl )

0 5 p
= — 5—yu<$| Ky ly) (3.46)

P(z)=0,h+v

so the trace is given by:

37



(x| K7 |z) = — lim —<96|

=0, huv
d*k T'(r—1 i~ ~
= — lim —— K+ -k (77 — 1)y P(k
y—a oyu 47rT J J exp{ T * T (T@+(r T)y} (k)
1 (T_T flat ( 7’
—=—14d _— —/3hW 3.47
e [ o] -0l T e (3.47)

Following the same steps we can find that (z| Kl |2) = lim,_,, % (x| KT |y) | Py ha
which after some straightforward algebra gives:

. 1 , (=7 _ . O h?” r—7\2 .
(x| KI'|x) = () de eXp{—(fD{i)t} ( N2T + ( . ) 00y h* >
(3.48)

By substituting and doing the summation between the last three results we get:

(x| K (7) |z) =

1 1 -
rp {P(az)f — SO () = Z00h ()
Dflatp 125HV|:I£lathmj($) o ;—_Oauauljhwj(x) + DQ( . )}
(3.49)

The orders [J?(...) comes from the exponential expansion. For the P(x) we select the
terms that are of first order with respect to h*”

Plz) — ;1 L V() + O(h?) (3.50)

We see that the value of the trace of the heat kernel depends on geometrical objects. We
recall that the metric is 7,, = 0,, + h, and by using the identities for the determinant
of the metric and the curvature scalar [12] we get that:

~

TrK = ﬁ fdmﬁ [1 + (%R - V) T+ O(hQ)] (3.51)

The last expression provides the first two terms as an expansion of the heat kernel in
the curvature. Another type of expression of the heat kernel in powers of 7 is the known
Seeley-DeWitt expansion.

(x| K(7)|z) = (4;?)‘0 [1+ ai(z)T + as(z)7* + O (77)] (3.52)
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This expansion is derived without the assumption that the space is weakly curved [2].
The coefficients a; are scalar functions of the external force and the curvature. It should
be noted that this expansion can not be used in order to calculate the (y/(s) since it is
not valid for large values of 7. This means that this kind of expansion cannot describe
the IR region of the system. The second-order terms were calculated in the paper [13] of
Barvinsky and Vilkovisky.

i) = [ G {er[§ -]

+ %2 lv — E] A=V + 1V (- R (3.53)

+72Rfs (—10) R + TRy fu (—10) R + O (R®, V3, )} (3.54)

where the auxiliary functions are defined as:

fi(z) = dee-wl V. pay = - H@ _Hl@) =

0 6 2x
_aw)-1+¢ fllz)  h@) -1 L)
fule) = " () = - 1

2 32 8x

(3.55)

The Seeley-DeWitt coefficients can be reproduced by expanding these terms in 7 up to
total derivative terms which vanish under the integration over all x. Neglecting the higher
order terms|2| :

Tr K (1) =Jﬁj7\)/j {1 +7 [g — v]

1 1
2 Zy2 _ — 2 v 3 3 3
T l2v VRt —1203 +—R R ]+O(7,R,V,...)} (3.56)

With this result, we can calculate the quantum action. We have just to recall that:

_1dd(s)

FE [7/“/] = 2 dS

(3.57)

s=0

We will think of the simple case where V' = 0 and w = 2. The last expression is not
valid for big values of 7, since we have expanded in powers of 7. In order to cure this
problem we set an IR cut off 7 (big values of 7 respond to small values of energy, since
7 has dimensions z%). Moreover, from the eq.(3.30), one can find out some UV (7 = 0)
divergent terms in the limit s — 0. In order to understand the type of divergence we set
also a UV cut-off 7,. So the form of (-function will be:

) =y | 4o | [t B [ s

T1
<EOR2 + @R R“”) L) Ts_ldT] + (finite terms)

(3.58)
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Using the expansion of ﬁ around s = o we get that:

dz [ 1 1 1 1 y .
Tg[yw] = —J 29,2 [2—7_02 + 6_7-0R + (@R2 + @RWR” ) IIn7o| + (finite terms)]
(3.59)

This action is regularized and can be used in order to renormalize the coupling constants,
by adding terms that absorb infinities. An example is the classical GR with quadratic
curvature terms. It should be noted that in the general case of 2w dimensional space,there
would be w + 1 divergent terms 7, ... |In 7|

3.3 Conformal anomaly

The formulation of heat kernels can be used in order to calculate the vacuum expectation
values of several operators. Recalling the result of Chapter 2 conformal symmetry implies
that the trace of the stress-energy tensor vanishes for classic field theories. This result
can be expanded to the quantum theory, under the assumption that the space is flat.
If the space is curved, then the trace is polarized, by the mean that it gets a non-zero
vacuum expectation value. This property is crucial for the proof of the four-dimensional
a-theorem. Actually, this is the intuitive idea behind the monotonicity theorems in even
dimensions. We will see that the two-dimensional c-theorem can also be proved with
the use of the one-point function of the trace in curved space, although gravity in two
dimensions is trivial.

The vacuum expectation value of the trace for a conformal symmetry g,, — Q*(2)g,, can
be calculated with the use of the quantum action.

ory,

5,71 = fd%ycwég’“’ = fd%w«ﬁ—g (T 69)(x) (3.60)

where I';, is given straightforwardly with analytic continuations of the Euclidean quantum
action.

Mgz, = Q7 NLQ™ = AL, — (80N, + M) + O(502?)

= Gy (5) = To M 4 25T [5QM,;S] (3.61)

The quantum action in Euclidean space is given :

LdCn . N
FE["Y + (5’)/] = —§E . = FE[’V;W] — ££% Tr |:5QM'Y ]
5,T = —lim Tr [mM;S] (3.62)
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The trace for general 2w-dimensional space is given by :

Tr [mM,;s] - f 250 (x) x| VI |y =

= Jd%x‘m(fc)lm\gs) LJFOO drré1= [1 + ay(2)7T + az(z)m* + O (7'3)]
(3.63)

where we have used the Seeley-DeWitt expansion. Again there exists a problem with the
big values of 7 since the Seeley-DeWitt expansion is not valid for them. Although this
expansion does not provide all the information, most of the contribution comes from small
values of 7, so it is enough in order to take a result.

An alternative way to decline the "fault" contributions from large valued 7 is to diminish
them in a smooth way by multiplying the integrand with the e=¢7 (¢ > 0) and after
computing the limit s — 0 then take the limit & — 0. It is notable that with this
"mathematical trick" the divergences at 7 = 0 are also cured. Following this procedure,
the above integrals will appear:

1 @ I 1
_J dTe—iTTS _ g—s—lﬂ

I'(s) Jo I'(s)
1 o0
—J dre $Tri17w = 75T (5 — W)
L(s) Jo (3.64)
JOO dTengTsfw _ £fs+wflr(s —w+t 1)
0 I'(s)
1 JOO _ _ e o l(s—w+2)
dre §T7_s+1 w :§ stw—2
I'(s) Jo I'(s)
For w = 1 the only non-vanishing term, after taking the limits, is proportional to

ap(x)

lim ( lim {z ‘M’S

a—+0 \ s—+0

x>) ! vay(z) = ﬁR (3.65)
(3.66)

So for two-dimensional scalar field theories, after performing analytic continuation, the
trace of energy-momentum tensor is given by :

1
Ty = —— | ey=g60
ory Y d*x+/—goQ(x)R(x)

(scalar) R
Bidea = oam (3.67)

In the case of generic field theories, the trace in two dimensions is proportional to the
charge of the Virasoro algebra
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cR

(T =~ (3.8

For w = 2 the only non-vanishing term, after taking the limits, is proportional to ay(x)
and the trace for generic theories (not only scalar fields) is given by :

nvpo

(11, = By — W, (3.69)

where E, is the Euler density and W, is the Weyl tensor [14] :

E,= R, —AR., + R (3.70)
1
2 2 2 2
Wips = Roupe = 25, + SR (3.71)

The values of the constants o and ¢ for generic theories are calculated in [15]
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Chapter 4

Monotonicity theorem for 2D Field
theories

4.1 Zomolochikov’s C-theorem

Now we are going to reproduce the proof of the irreversibility of RG flow in two dimensions.
The main idea is to prove that in two dimensions there exists a function that depends on
the coupling constants of the theory and has the following properties [10]:

e Is a monotonically decreasing function with respect to scale.
¢ = fdc(g) <0 (4.1)

where [ is the well known S-function. The equality of the last expression stands for
the fixed point ¢ = g* where the S-function vanishes.

e At fixed points where we have §(g) = 0, it implies that d;c = 0. At these points, we
have conformal symmetry.

e In its fixed point the function ¢(g*) = ¢, is equal with the central charge encountered
in CFT.

4.1.1 Correlators and Differential equations for charges

As we described before, in 2d Euclidean space it is convenient to work on the complex
plane. So we describe the components of the energy-momentum tensor:

T=T., (4.2)
T - ng (44)

Moreover, we will use the connection between the tracelessness of the stress-energy tensor
and the renormalizability of the theory. We can expand © as:

0 = B'd; (4.5)
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where 3" is the S-function of the coupling constant g; € {g} (which vanishes at fixed points
and there we have a CFT) and ®; is a scalar field operator with mass dimension two that
comes from the decomposition of the action density ®; = ¢;L, with ¢0; = 6‘31 and £ = ¢'®;.
As it is known the RG flow is the flow in the space of all the possible theor1es starting
from a UV theory and ending to an IR. The scaling is defined as z = e'a, with «a the
UV cut-off and ¢ > 0 some constant that we use to rescale. For ¢t = In (22Z) we define the
correlators:

2272

From the conservation of energy-momentum tensor the Ward Identity becomes:

(T X) = 0= 0, (To,X) + 05 (T, X) = 0 (4.9)

From the last equation, we can find the differential equations of the invariant under
rotations amplitudes (or charges). Plugging in (4.9) X = T7'(0) and v = z we get:

0. (O( + 05 ( Yy =0
[ 1 [ 1=
3H(t) ce ot _
24z (92 224 0%
%C+3H—H=O (4.10)

The derivative with respect to the rescaling parameter can be expanded on the base
of coupling constants, C = (°0;C. Thanks to (4.5) we can also expand the invariant
amplitude H (t) at the same base as H(t) = 8'H; So the last equation is written as:

B'0,C = 280,(8"H;) — 68"H; (4.11)

We repeat the same process for X = ©(0) and v = z

0: (0(2)0(0)) — 0= (T'(x)O(0

@[]H

B850, (B H) — B H; = 840, (818/Gyy) — 288G (4.12)
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Where G; is the metric in the space of fields. From unitarity, G;; is positively defined
since it can be thought of as the norm of the state. Choosing an appropriate basis, the
metric G;; is diagonal

4.1.2 Zomolochickov’s c-function

In order to define the c-function, we should make some crucial notes. First of all, as
far as c is associated with the charge of the theory, it should be a linear combination of
the invariant charges, which we have already defined. So the general form of c-function
is:

c(g) = AC(g) + B*H,, + T B3G5 (4.13)

From the assertion that this function is equal to the central charge of the Virassoro algebra
in its fixed point, we get that A = 1. This comes from the fact that 3(¢g*) = 0, plus the
OPE of the energy-momentum [6] which leads to:

(T'(x)T(0)) (4.14)

T2

From the assertion that c is monotonically decreasing we can evaluate the two other
constants B,T". We have that 5'd;c(g) <0

Bioic(g) = B'0:;C + BB o,(B Hy) + T 0;,( 585G 1) =
= (B+2)B3'0;(8"Hy) — 68" Hy, + T 28"/ Gy + B'0:;(B*Hy) — B Hy,| =
= (B+2+71)p'a(8*Hy) — (T + 6) B*Hy, + 2T B* 3Gy, (4.15)
Since [-function and the values of its derivatives can be positive, negative, or zero, the

last expression’s first two terms should vanish. The last term is always positive or zero,
so the constrain about the value of coeflicient ' is I' < 0. So we conclude that:

(B+2+1) =0:> B =4 (4.16)
(' +6) =0 ' =-6

So the c-function is:
c(g) = C(g) + 48" H), — 63" 3/ Gy (4.17)

with ¢ = —12ﬁzﬁ]Gw < 0.
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Finally, it is a straightforward calculation to prove that in fixed point d;c(g*) = 0

81-0 = —125JGZ] s ﬁj|g* =0=
diclge = 0 (4.18)

4.1.3 An application to C-theorem

We are going to apply the C-theorem to the massive Thirring Model. There is a special
aspect to 2-d fermionic models. In two dimensions a fermionic model can be described in
terms of a bosonic one. This procedure is called bosonization. There is a duality between
the Thirring model and the Sine-Gordon scalar theory. This aspect will not be analyzed
in this thesis, but there exists a pretty good introduction to the bosonization at [16].

The Lagrangian of the massive Thirring model is:

Seali. 0] = | e [didw — i~ 2 (br,0) (5"0)] (4.19)

where m is the mass and ¢ the dimensionless coupling constant. The beta functions of
this model in perturbation theory are given [17][18]:

dg m? dm  —2 (g + g) 25673 3

= -2 = —64r—, By = p— = — 4.20
& 'udu WAQ’ﬁ 'ud,u g+ " (g+7r)2A2m (4.:20)

The massless Thiring model is a Conformal Field Theory, so we can think of the massless
theory as a UV fixed point that gets perturbed by the mass terms and then the RG flow
begins.

For this model, the two-point function of the trace is given by [16]:

(©(0)0(r)) = (m*/(2m))* [ K7 (mr) — Kq(Mr)] (4.21)

Taking the result from the C-theorem, we have to solve a first-order differential equa-
tion.

¢ = —12G(1)
= cyy — CIR = 12Jdt (©(0)0(r)) (22)* , t = In(22)

0

cuv — CIg = 24J0 drr® (0(0)0(r)) = % >0 (4.22)
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Chapter 5

Monotonicity Theorem for 4D Field
Theories

5.1 Zomolochikov’s approach for c-theorem in d # 2

After proving the monotonicity theorem of the RG flow for two-dimensional quantum
field theories, we can think about the generalization of this theorem, for four-dimensional
theories. The first step is to follow the same path as in two dimensions. The difference
here is that we can not use a 4-dimensional complex plane analogy, something that makes
this process more difficult.

We begin the study of the two-point functions for the energy-momentum tensor. With
respect to rotation invariance and parity fix, the two-point function must have the form

[19]:

(T (1) Txo(0)) = (A/r*T ) ryryrary
+ (B/r*™2) (rur,x0 + 12700
+ (C/r*2) (rurabue + rurabue + TuleOun + Ture0,)
+ (D/Tzd) OpwOre + (E/TM) (073000 + 0ur0,0) (5.1)

Considering the conservation of energy-momentum tensor we will take various relations
for the invariant amplitudes A, B, C, D, E. As an analogy, to the 2-dimensional case, we
must find a linear combination proportional to the correlation function (0©). According
to John L. Cardy, the best result that can be taken is:

‘- —4%@@ —9(d—2)B (5.2)
where
_ 4 1, ., 1
é=——-— A+§(d +d+2)B+(d+3)0+§d(d+1)D+(d+ E (5.3)
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The eq.(5.2) implies that in a conformally invariant point, the derivative of the c-function
does not vanish for general d # 2. This means that this version of the C-theorem can be
proved only for two-dimensional field theories.

5.2 The four-dimensional a-theorem

5.2.1 Cardy’s conjecture for another c-function

The main proposal for the generalization of the irreversibility of RG flow to 4D- field
theories, is based on Cardy’s conjecture, that the monotonical function is proportional
to the one-point function of the trace of the energy-momentum tensor. As we proved
in Chapter 3 when the theory is placed in a curved space, then the vacuum expectation
value of the stress-energy tensor is proportional to terms that depend on the geometry of
space. First, the two-dimensional case will be checked, and we know that the RG flow is
irreversible. The candidate function is the trace integrated over the 2-sphere.

C=A L2 (1) (5.4)

with A, a normalization constant. The curvature scalar of a two-dimensional sphere is
R = r% Plugging in eq.(3.68) we get:

a4, S 26in2 92 _
C= A2247rfd¢9dg0r sin 67’2

- —Agg (5.5)

By choosing A, = —6 we get that C' = ¢. This function satisfies the third property of
Zomolochikov’s c-function. This is an indication that this proposal can be extended to
4-dimensional field theories.

5.2.2 RG flow as a spontaneously broken conformal symmetry

Conformal field theories are the theories that do not have a cut-off by the mean that the
theory is described by a fixed point in the parametric space of coupling constants. As
a result, the theory stays unchanged under varying the cut-off, something which means
that there is no RG flow. However, consider a UV fixed point, described by a CFTyy,
which is perturbed by a set of relevant (or marginal) operators { M*~2(O}. This breaks the
conformal symmetry and triggers an RG flow to some IR physics, which may be described
by a non-trivial CFT;p, as shown in figure 5.1
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Figure 5.1: Starting from some CF'T at high energies, we add a relevant operator O and
flow to a new CFT in the deep infrared.

The theory of dilaton

With respect to the Nambu-Goldstone theorem, due to the spontaneous symmetry brak-
ing, there exists a massless particle, the dilaton. The new action is an effective action
and will have both invariant and anomalous terms. We begin with the invariant term,
where we demand the action to be invariant under diff x Weyl transformations. The Weyl
transformation acts as:

G — 6209W , T—>T+0 (56)

where 7 is the dilaton field. The most general action up to two derivatives is given by:
1

1
Skinetic = f2 Jd4x _QER (57)

where g, = ¢ 27g,, and R= gWRW[g]. The term f? is the decay constant of the bro-
ken conformal symmetry. There is no cosmological constant term since the cosmological
constant in vacua that break the conformal symmetry spontaneously is zero.

For general d-dimensions the curvature scalar is written as [20]:

A

R=§g"R,, = (R+2(d— 1) — (d—1)(d — 2)0,70"7) (5.8)

Working on 4-dimensional conformally flat spacetime (g, = 7,,) we get that :

IFor this proof the signature used for the metric is the mostly minus N = (+,—,— —)
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R =6’ [Or — (07)?] (5.9)

We can evaluate the kinetic term, by using integration by parts and recalling that for the
conformally flat case /—§ = ™" :

Skinetic = f2 JB_QT [DT - (67->2] =

- £ e [2en? - or?] = £ e ey (5.10)

and the equations of motion are given by:

Cr = (07)° (5.11)

The most general effective action with four derivative terms, under the appropriate pa-

rameterization 2.

fd4x\/?§ (5@2 + 6B+ €3W3W> (5.12)

The term which is proportional to & vanishes at the flat space limit, with the use of
equations of motion of 7.

Jd‘*m«/ —GR?

= 36Jd4x (Or - ((77)2)2 “=h (5.13)

Guv=Nuv

For the second term, we have that is a total derivative that can be neglected since:
\/=§Es = \/—gEy +4y—gV" (RO, — 2R!,0,7 — V. (6,70"7) + 20,700 — 20,70"70,7))
IS o1 (0, (0,70 T) + 20, 0T — 20,70"T0,T) (5.14)

Finally, the third term is Weyl invariant and so will not give any contribution as far as
the dilaton interactions are concerned in flat space.

The next step is to evaluate the anomalous functional. Combining eq.(3.69) with the
definition of the energy-momentum tensor, we come up with:

2The ordinary way to write the action with four derivatives is Sd4z« /—q <n1]§2 + Hgﬁfw + /<53}A‘22 ),

nvpo

but this parametrization "hides" the conformally symmetric terms.
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5Sanoml 4
Ty = Jd x\/—gT(cWiypg — aky) (5.15)

The most general anomalous variation requires an extra term proportional to b'c[JR. We
neglect this term since has to do only with ¢ and not with tau. This is a consequence of
the fact that d, { R* ~ {o[JR. As a result, if we reintroduce this term to the variation
of the anomalous functional, we have just to add a term proportional to \/—gR?. The
solution to this problem is well discussed in [21]|. The final expression for the anomalous
functional is given by [14]:

Sanomaly = — @ f d*z\/—g (TE4 +4G" 0,70, — 4(07) T + 2(6’7‘)4)
(5.16)
+c J d*z/—gTW}, .

where G* is the well know Einstein tensor. As we see, we have not added any term
proportional to c- anomaly, since Weyl tensor squared is invariant on its own. A very
important fact about this functional is that when the theory is projected to flat metric
9y = N, the self-interactions of dilaton, still survive. Thanks to this survival at the
flat space limit we get a four derivative contribution to a-anomaly. On the other hand,
c-anomaly is trivial at the flat limit. Using the leading order equations of motion of the
dilaton (5.13) the anomalous functional, projected to flat space is :

gftat 204fd4x(87')4 (5.17)

anomaly

This four-derivative scattering will give all the information needed in order to define the
monotonically decreasing a-function.

5.2.3 Proof of the a-theorem

The proof of the irreversibility of RG flow for 4D field theories is based on the idea that
the flow comes from the spontaneous conformal symmetry break as shown in Fig. 5.1.
The flow comes from a matter theory, which is described by an action (coupled with a
background metric):

Smatter = Omatter [(I)’m Mi7 g,LLI/] (518>

Thanks to the conservation of the stress-energy tensor the partition function is guaranteed
to be diff-invariant. The violation of conformal symmetry of the partition function comes
from two kinds of anomalies. The first kinds of anomalies that violate the Weyl invariance
are the very well-discussed o and ¢ anomalies. The second kind, known as operatorial
anomaly, is due to the explicit mass parameters. Both of these kinds give a non-zero
vacuum expectation value to the trace. The operatorial anomalies have to be distinguished
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from « and ¢ anomalies which do not appear in flat space. So in a flat space, the operation
equation for the previous theory is:

(Th) #0 (5.19)

This is the reason why we can not match straightforwardly the anomalies of the UV
fixed point (agyy,cyy) with the anomalies of the IR fixed point (ajg,crg). In order to
remove the operatorial anomaly we use the dilaton as a conformal compensator. We set
) = 77 and the coupling with the matter theory, comes by replacing every mass scale as
M; — M;). Recalling that the kinetic term of the dilaton is multiplied by a dimensionful
coefficient f2, we can conclude that the physical dilaton fluctuations couple to the matter
fields by f~!. This is very important for the study of the RG flow and the matching
between the anomalies. After adding the kinetic term the theory becomes:

S = Smatter[q)ia MZQ] + f2 Jd4x(8ﬂ)2 (520)

This theory is anomaly-free and the below ward identity is satisfied :

(1) =0 (5.21)

We can take the weakly coupled limit M; « f. When the conformal compensator takes
the vacuum expectation value (€2) = 1 then the original matter theory is restored and the
flow begins. This flow is the flow shown in Fig.5.1 perturbed only by the weak coupling
to the dilaton field. As a result, the deep IR theory consists of a Conformal Field Theory
sector plus the decoupled dilaton field.

We can also state that the UV theory consists of CFTyy plus a decoupled dilaton. We
can introduce a cutoff Ay » M; and all momenta are restricted by p* « A%,,. At high
energies M? « p? « A%,y the theory consists of CFTyy weakly coupled with dilaton.
Recalling the limit that we are working on M; « f the marginal operators that describe
the physical interaction of the dilaton with operators, are suppressed by a factor M;/f.
Should there exist not exactly marginal operators, plays no role in leading order since
there are logarithms that are higher order in M;/f. So it is consistent to think of the
UV theory as CFTyy plus a decoupled dilaton|[14]. The flow between the high energies
and the deep IR stays unperturbed by the dilaton. The Ward identity (5.21) allows us to
match the UV and IR anomalies.

Since we assume M; « f we are only interested in the leading terms in 1/f. To leading
order in this expansion, it is sufficient to integrate out the matter fields while the dilaton
sits on external lines. The type of diagram someone has to compute, in order to find the
coupling of dilaton in low energies is given below:
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Figure 5.2: Leading order diagrams

The most general effective action for the IR theory, up to four derivatives acting on dilaton
is:

1 ~ K g =
Sir 9] = CFT IR [9uw] + éfQ Jd‘lx\/ —gR + 36 Jd‘lx\/ —gR* + H’Jd‘lx«/ — W3,
1
— (agy —argr) | d*a/—g [ TE,+4 | R — =¢™ R ) 0,70,7 — 4(07)* 01 + 2(o71)*
2 1%
+ (cuv — ¢IR) fdllx\/—gTWiypg

(5.22)

The difference between the a-anomalies is isolated by the 2 — 2 scattering and the leading
contribution to the amplitude is:

A(s,t,u) = W(s2 + t2 + u?) + (higher order terms) (5.23)

We consider the scattering of four dilatons such that they are all on-shell (p? = 0, since
dilaton is massless). Working on the limit ¢ = 0 and using the usual relation s +¢+u = 0,
the above amplitude becomes:

As) = Howv = arm) 5 | O(s%) (5.24)

As a next step, we consider the amplitude A/s? and by the use of dispersion relation® in

3We give more details in Appendix A
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order to calculate the difference (ayy — arr) we get that :

f4

ayy — QIR = —J ds’
T Js>0

Im{A(s")}

8/3

(5.25)

where Im{A(s")} is the imaginary part of the amplitude. From the unitarity of the S-
matrix, we can prove that Im{A(s)} = so(s). This makes the r.h.s. of the last expression
to be positively defined and thus ayy > ayr. We can construct a monotonically decreasing
function by defining a scale dependent a-anomaly.

alp) = ayy — f? J/ ds’a(jl> (5.26)

S

This is the proof of the a-theorem.
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Appendix A

(tr + 7 — 7+ 7) Scattering and
Positivity Bound

This appendix is based on [22].

We consider the amplitude probabilities for the transition between two particles states:

Sus = (U0

where ‘\I/iﬁn(om)> is the state defined in the far past (future) t — —oo(+00). We also think

of an complete and orthonormal basis:

da

<\Da|\yﬁ>:Na5(O‘_5)i = N,

[Wa) (Wa

! Tt is more convenient to work with the free particles’ states |®):

[:[0 |Po) = Fo Do) <¢a’q)ﬁ> = Nod(a — f3)

with N,, the normalization constant, and §(« — ) stands for products of delta functions
and Kronecker deltas . The interacting states can be written as :

(W, () = Q) [, , Qt) = eHteiHot

Then the amplitude can be written in terms of the free particles’ states :

Sap = (Ba| AN (=0)Q(+0) |P5) = (Da| 5 D)

"The sum over all the states is {da =Y, . .. §d®p1d®py---
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Recalling that for the free theory S = 1, we can define a scattering amplitude operator

M

S

1+ (27 45 (sz) 1M

The S-matrix has to be unitary :

STs=55"=1

we define the 7 matrix such that :

S=1+iT

The unitarity of the S-matrix has as a consequence the relation used for the proof of a-
theorem, between the imaginary part of the amplitude and the total cross-section. Using
the definition of 7 matrix we get:

(T =T)=T'T

By calculating the matrix elements of both r.h.s. and Lh.s using that (®,|7 |®5) =
(27)*6*(pp — pa)Mas and concerning that we have an elastic scattering ( as in the case
of two dilaton scattering) we conclude the relation:

d
2Tm M., — N’V (27)46* (po — py) | Moo |?

From the above relation, we get that Im M,, = 0, with the equality to be valid for the
case of the free theory. The r.h.s. of the expression above is analogous with the total
cross-section in the center of mass frame:

1 dry

(2 — anythlng ) ZLE—‘I)‘ N ( 7T)454 (pa — p’y) ‘M’WXF

where we conclude that :

2
Im MQ—’Q(S) |elastic forward = \/(S - m% - m%) - 4m1m% O-;O—E anything (S)
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this is also known as the optical theorem. In the case of dilaton scattering, for the proof
of the a-theorem we have that the masses are m; = ms =0

Im M;rrr(s) = s0(5)

Going back to the IR action (5.22) the Lagrangian of the system has the form below:

The scattering amplitude for the four-dilaton interaction is :

M(s) = wy + O(s%) (A1)

This amplitude violates the unitarity of S-matrix at the UV region s » f2, so the theory
needs to be UV completed. So we can consider the previous theory as an effective theory
of a linear sigma model:

L=0"010,0 — ) (o] - 0?)”

Giving an vacuum expectation value ® = (v + h)e’s The Lagrangian now is written
as:

2
L= <1 + %) (07)2 + (0h)* — m%h® + - -

Using the equations of motions for the Higgs’ field in order to integrate out the h. As a

result we take an interacting term ﬁ(é’ﬂ‘l. Thanks to the Higgs field’s mass we have two
h

poles for the amplitude.? at s = £m?, due to the symmetry between the s and u channel.

In order to calculate the coefficient (v — ayr) we will use the integral below:

53

I 3EE/\/I(S)
211
5

The modified amplitude for the scattering is:

2We recall that we are working limit ¢ = 0 and so u = —s
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M(s) =

Quy — QIR 1
14 s—mi s+m3

Taking into account that for |s| — oo the amplitude M(s) < |s|* the integral I has to
vanish.

Im

“m2 |0 +m2, " Re

Figure A.1: Countor path with the three poles in the s-plane, with r = |s|

With respect to the Residues theorem, we have that:

S T

g3

Using the symmetry M(s) = M(—s), we conclude:

53 53

Res [M(S)L_O + 2Res lM—(S)]_m —0

We can see that for the low energy limit s — 0 we neglect the poles coming from the
Higgs and though:
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M(s) _, uv — arrl
3 f4 s

_ Res [M(ﬂ _ Quv — g
s=0

53 f4

For the other two poles, we have to use the UV theory amplitude.

M(s)] _ Res[M(s)]i—mz,
s=m2, (m2,)°

We have to evaluate the numerator.

Res[M(s)]s=mz, = lim lim (s —mj + ie) M(s) =

e—0 s—mﬁ_{

Res| M(s)|s—m2 —m2i
M (s — i) = SO eonsy s 2 e ), =
§— My + 1€ (s—m%,) 4 €2 H
— ‘ 5 Res[M(s)]s—mz,-

(s —m%)" + €

Im M (s — m3;)

Using the definition of delta function as 7d(z) = lim. . 57 we get:

ImM (s — mj;) = —w(s — mj;) Res[M(s)] 2

S=77LH

So now we have to use this expression in order to find the initial Residue:

2 Res [M@] = [asmots - 2 REIME] _ 2 stlmws)

53 53 T

Recalling the optical theorem Im M (s) = so(s) we get that :

auy — QIR leSU(S)
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