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Abstract

The present thesis aims to apply the fundamental principles of Descriptive Set Theory to the discipline
of Game Theory. The discipline of Descriptive Set Theory is an active research area of modern Set
Theory and specializes in the study of the structure of definable sets and functions in Polish spaces. It
dates back to the work of Borel, Baire, and Lebesgue at the beginning of the 20th century.

In the first chapter, we begin by setting out the preliminaries of Set Theory and Theory of Metric and
Topological Spaces, intending to introduce the concept of Polish space in the next chapter. The Polish
spaces are essentially separable completely metrizable spaces. The most fundamental Polish spaces
that have been studied are the Baire space and the Cantor space. Several times in this thesis, these
spaces will be an important tool invoked to extract our results.

In the third chapter of the paper, we define some of the fundamental set operators on subsets of Polish
spaces. We also consider the notion of the pointclass and we list a special category of pointclasses,
the Borel pointclasses of finite order in Polish spaces. We introduce the Hierarchy of Borel sets of
finite order and we refer to their closure properties. We proceed with the study of the more complex
Projective pointclasses of finite order and we describe their hierarchy.

In chapter four, we incorporate the concept of a tree into our study. We will define the space of trees
and we will prove that it is a compact Polish space. In addition, we will refer to a property that many
subsets of Polish spaces have, the “Perfect Set Property”. We will confirm the validity of this property,
both for close and for analytic subsets of Polish spaces, proving the Cantor-Bendixson and Perfect Set
Theorems, respectively. For the proof of the Perfect Set Theorem, we will need to define a new cate-
gory of trees, the trees of pairs.

In the following chapter, we will consider some primary concepts of Measure Theory that are impor-
tant preliminaries for our study. We will begin by mentioning the measure function, its Uniqueness
and Completion. In addition, we will define Borel sets, the Borel measure, and Borel measurables
functions. In turn, we will prove the “Schroder-Bernstein Theorem for good Borel monomorphisms”.
Our goal is, having the Theorem above as a starting point, to prove the “Borel Isomorphism Theorem”
and finally to conclude with the proof that two uncountable Polish spaces are Borel isomorphic.

In chapter six, we will carry out an extensive study in Game Theory, utilizing knowledge from the
previous chapters. The games we will engage in are called “Gale-Stewart”. These are infinite games
of perfect information between two players - player I and player II. We will thoroughly describe
the rules of the games, the strategies that the players follow, as well as the way in which the winner is
determined. Next, we will introduce the term “Determinacy” of a game. We will study some properties
related to Determinacy and prove that the closed, 9 and IIY subsets of X are determined. Then,
we describe the G*-Games, which are a special category of topological games. We will focus on
G*-Games that unfold on subsets of Baire and Cantor spaces, to assume the determinacy of games
within sets belonging to the pointclasses X1, with n > 1, to show that these sets have a non-empty
perfect subset. Ultimately, we study the Covering Games G*(A, ) associated with a subset of the
Cantor space and a o-finite Borel measure p on it. A concluding remark for our work on the games
mentioned above is the fact that assuming the determinacy of a game evolving in a set belonging to the
pointclasses X1, with n > 1, this set is measurable in terms of the measure p with which the game is
associated.

Keywords. Polish space, Baire space, Cantor space, Borel pointclasses, Projective pointclasses, tree,
perfect set, infinite game, Gale-Stewart, strategy, winning strategy, Determinacy, G*-Game, Covering
Game, o-finite Borel measure



Iepiinyn

H rapodoa petantoytokn epyacio anockonei otny epappoyn OepeMmdov apydv tng Ieprypapikig
Bewpiag ZovdAnV oTov emoTNHOVIKO KAGDO TNng Oewping [Tonyviov. H Ieprypagikn Oempio Zovo-
AV amoTeLEL eVEPYT EpELINTIKT TEPLOYT TNG GOYYPOVNG Bempiog ZoVvOAWY, e AVTIKEIPNEVO HEAETNG
TN Sopi opicipwr curdAMY kKot covapticemy oe [lodwvikodg ydpovg. Ot pileg Tng avdyovtal 6to
¢pyo tov Borel, Baire kot Lebesgue, otic apyég tov 2000 atmva.

Ztnv epyacia avti Eekvdpe TapaBETOVTAS OTO TPATO KEPAANLO KATOIX PACIKE TPOXTAITOVPEVX
¢ Oewpiog Zovdrov, adld kot TS Oewpiog MeTpikdv kKot ToroAoyIKOV yhpwV, GKOTEDOVTOS VX
e1oay&yovpe 6to debTEPO KePAAo TNV évvola Tov [loAwrikod ydpov. Or [Todwvikoi ymdpor eivon
TOTOAOYIKOL YDPO1, TAHPELS KOt S1Y®PIGIHLOL WG TPOG TN HETPIKT TOL EXEYEL TNV TOTOAOYiX TOVG.
Ao and Tovg onpovtikdtepovs IloAmikovg ydpovg mov £xyovv peretnei eivan o ydpog tov Baire
Kot 0 Y®dpog tov Cantor. ApKeETES POPES TNV EPYAGIN Ol YDPOL ALTOI B ATOTEAECOVY CNUAVTIKO
epyaieio ko Ba ToOLG EMKAAEGTOOE Y10 VO EEAYXYOVHE TA ATOTEAEGHATA LOC.

2o Tpito kePAAO TNG epyaciag, Oa opicovpe pepikods and Toug Oepelddels TEAEGTES GOVOLWOY,
o1 omoiol €yovv wg medio epappoyns vrocvroia [orwvikar yopov. Oo avapepbodpe eniong
oTNY €vvola TG KAGGNS cuvdAmY Ko B topabécovpe pio e101ki katnyopia KAAGEDOY GOVOAWOY,
71§ kAGoeis Borel cuvdhmv nenepacpévng Tdéng oe [lodarikods ydpovg. o TopoLGIXCOVLE THY
Iepapyia tov Borel covorov tenepacpévng Taéng kot Oa avapeplovpe 671G 1010TNTES KAEIGTOTNTAS
TovG. Zvveyilovtag, Bo TpoywPNHGOLLE 0T PHEAETN IO cVOVBeTOY KAACEWY od avtés Tov Borel
covolwv, T1g IIpofolkés kKAAoEIS CLVOA®Y TETEPACHEVNG TAENS Kot B TEPTY pAyOLLE TNV 1EPpOP)int
TOLG.

2T0 TETAPTO KEPAANIO, EVTAGGOLLE GTH HEAETN PG TNV €VVolx TOL JEVdpov. BOa opicovpe Tov
Xmpo Ttov dévdpwv kol Bo deifovpe O0T1 anotelel évav copmayi] [odwvikd ywpo. Emmiéov, Ba
avapepBoipe oe pia 1910TNTA TOL £€Y0LV TOAAG LTOGVOVOAN TV [ToAwvikdy yhpov, Ty “IdtdoTnTa
Tov TéAlelov Zovorov”. Ba emiPePaidoovpe Ty 16Y1 TNG WOLOTNTAG AVTHG, TOGO YO TX KAEIOTA,
000 Kol Y10t TO VAL TIKE VTocuvoAa [ToAwvikmy ydpwv, amodetkrvbovtag To Ocwpiipata “Cantor-
Bendixson” ko “TéAeion Zovorov”, avtiototya. o Ty anddeién tov Oewpripatog Tov Téleon
Zovolov Ba ypelaotei va opicovpe pio véa kaTnyopia dévdpov, To dévdpo Levyhv.

[Tpoywpmdvtag 6T0 eXdOHEVO KEPAAXLO, B GOUTEPIAAPODIE GTNY EPYAGIN VT HEPIKES TPOTAPYIKES
évvoteg g Oewpiog METPOL TOL ATOTEAOLY 1GYVPO TPOATAITOOHEVO YA TN HEAETN HOG. Oa
EEKIVNGOVE KAVOVTOS AVAPOPXR GTT GOVAPTNGT TOV PETPOL, 6T Movadikdtnta kot otny [IApwot|
Tov. EmnmAéov, Ba opicovpe ta covola Borel, To pétpo Borel, ahld ko tig Borel petpioipeg
ocovapTHoElS. TN ovvéyeln, B arodeifovpe To “Oedpnpa Schroder-Bernstein yio kaAoOg Borel
HOVOHOPPIoHO0S”. ZTdY0G HOG eivan £yovtag MG €POd10 TO Bedpnpa TOV HOAG AVAPEPALLE VX
anodeifovpe to “Gedpnuo Tov Borel 10opop@iopod” kot teAKd PACIGHEVOL OTR TAPUTAV®, VO
KataAnEovpe 0To cLUTEPAGHA 6TL dVO vRepapBpfcipot IloAwvikoi ydpot eivon Borel icopop@ikoi.

270 £KTO KEPAAL0, Bo Tpary LarToTo|covpE pio ekTevi) pehétn otn Oewpia [oyviov, alotoidrtag
TIG YVOOELS amd T KeP&Aaia Tov mponyfiOnkav. Ta maiyrio tov Ba pog amacyorfcoor karodyTon
“Gale-Stewart”. Ilpoxerton yio drelpo maiyvion TéAEIG TANPOPOPNONG PETAED dVO TAMKTAOV - TOD
naiktn I xon tng naiktpag 1. Oa weprypdyovpe tovg kowoveg dieEaymyng Tov Toyviov, Tig
OTPATNYIKES TOL aAkOAOVOOVY 01 TiKTEGS, KAOMS Kot TOV TPOTO e Tov onoio kaBopileton o viKnNTHC.
Ztn oovéyeia, Oo ercorydyovpe Tov 6po g “IlpocdiopiototnTac” evds nonyviov. Oa peleticovpe
kdmoleg 1910t TES MOL Gyetilovtan pe TNy [IposdiopicToTnTa Ko Bor amodeiovpe 6T T KAEIGTA,
T Zlg Kol T 1:[8 vmocstroia Tov XN eivon mpocdiopiopéva. TIpoympdrtag, Oa Teptypdyodpe Tal
G*-Tlaiyna, ta onoio awotehobY pic €181KH KATNYOPIX TOTOAOYIKGDY Toryvimy. Oa EGTIAOVHE TO
evdlpépov pag oe G*-Ilaiyria Tov eKTLAIGGOVTAL GE DTOCVLVOAX TV YOPOV TOV Baire ko Can-
tor, pe oto)0 vrobétovtag Tny IlpocdiopiototTnTa TOV TOYViOY pECA GE GOVOAX TOL AVKOLY
OTIC KAAOEIS GOVOA®Y Z}L, pe n = 1, va deiovpe 0TI T GOVOAX QLT EXOVV Eval PN KEVO TEAELO
vrocvroro. Televtaia apfivoope va peletnBovv ta aiyria Kdhoyng GH(A, €). Ta naiyvia avtd



oyetilovtat e éva LTOGHYOAO TOL Y®pov Tov Cantor kKot Eva o-tenepacpévo Borel pétpo p péca
OTOV YHPO AVTO. ZOUTEPACHA TNG EVACYOANGCTG HOG HE TX TPOAVAPEPOEVTH TAiYVIX ATOTEAEL TO
yeyovdg 6t1 vrobétovtag Ty IlpocdiopiotdTnTa ev6G Tayviov Tov eEeMoGeTAl G GOVOAO TOV
avfkel 671G kKAGoelg covdrov XL, pe n > 1, 1o 6OVoA0 qVTO eivan PETPAGILO MG TPOG TO PETPO [i
pe To omoio oyetileTon To maiyv1o.

Aé€erg Khetdra. TTolwuikog ywpog, yopog tov Baire, ydpog tov Cantor, kAdoeig Borel covdrwv,
[Tpopoiikég khdoelg covOAWY, dEVOPO, TéENEIO GOVOAO, drtelpo Ttaiyvio, Gale-Stewart, oTpaTnyiki,
viknThpio otpatnyiki, Iposdiopistdtnta, G*-Tlaiyvio, Iaiyvio Kdhoyng, o-rerepacuévo Borel
pHéTpO
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CHAPTER 1

Introduction

1.1. Basic Notions

Let N, Z, Q and R be the sets of natural, integer, explicit, and real numbers respectively, where N
includes 0 so that N = {0, 1,2, ... }. The main focus of Descriptive Set Theory is the study of N, R
and their subsets, with particular emphasis on the definable sets of integers and reals.

Given two non-empty sets X and Y, we set Y~ as the set of all functions from X to Y. If (X )icr
is a family of non-empty sets, we set | [..; X; as the family of all functions

fFr-Jx
iel
with f(i) € X, for each i € I. In the case X; = X for eachi € I, then the set [ [,;
X', We will be particularly interested in sets of the form XN,

el

X is obviously

Definition 1.1.1. One-to-one functions are called monomorphisms, while onto functions are
called surjections and we denote them, respectively, as follows:

f: X —Y < fisamonomorphism
f: X —>»Y <= fisasurjection.
Definition 1.1.2. By isomorphism or correspondence we mean a one-to-one function and onto
(bijection). We also denote
f:X—»Y <= fisanisomorphism.

Definition 1.1.3. If f € YX, A € X and B < Y we denote by f[ A] the image of A under f
and by f~![ B] the inverse image of B under f, i.e.

flA] ={yeY 3z e X f(z)=y}
fYUB] ={zeX: f(z) e B).
Definition 1.1.4. The restriction of a function f : X — Y on the set A € X is denoted by f|A.

In functions f : X — Y we include cases where X, and Y are the empty sets. If X = JorY = &
then we will say that f : X — Y is the empty function.

Remark 1.1.5. We assume that the empty function is always a monomorphism and that f : & —
& is an isomorphism.

[T

Definition 1.1.6. We define the logical operators of disjunction “\”, conjunction “&”, negation
, and logical implication “—”, as follows:

P(X) v QY
POO & QU
P(X

P(X) — QY

“_»

) <= x has the property P or y has the property

) <= x has the property P and y has the property @

) <= x does not have the property P

) <= if x has the property P then y has the property Q.

1.2. Preliminaries of Set Theory

Two sets A, B are called equinumerous if there is a one-to-one and onto functionf : A>» B. In
this case, we write A =. B. We realize the relation “=,” as a mathematical expression of the intuitive
notion “A has the same number of elements as B”. Our notion that the empty function f : & — & is
one-to-one and onto expresses the basic principle that the empty set has the same number of elements
as itself, namely no elements at all.



We will say that the set A has a cardinality less than or equal to B, and we will write A <. B if
there exists a one-to-one function f : A — B. We take “<.” to be a mathematical expression of
the intuition “A has a smaller or equal number of elements than B”. Our assumption that the empty
function f : @ — B is always one-to-one expresses the basic principle that the empty set has always
fewer elements than any non-empty set.

The above definitions would not be so important if they did not verify the following fundamental
requirement:

If A has a smaller or equal number of elements than B, and
B has a smaller or equal number of elements than A, then

A and B have the same number of elements.

This is satisfied for the above definitions by the following result.

Theorem 1.2.1 ((Schréder-Bernstein),[7]). For all sets A and B, if A <. B and B <. A, then
A=, B.

Continuum Hypothesis (CH).
For every infinite A < {0, 1}V, either A =, Nor A =, {0, 1}",

Cantor believed the Continuum Hypothesis to be true and he had been trying to prove it for many
years, but to no avail. Kurt Godel proved in 1940 that the negation of the Continuum Hypothesis, i.e.,
the existence of a set with intermediate cardinality, could not be proved in standard set theory. The
second half of the independence of the Continuum Hypothesis, i.e., unprovability of the nonexistence
of an intermediate-sized set, was proved in 1963 by Paul Cohen. The Continuum Hypothesis is in-
dependent of the usual axioms of mathematics. That is, it can neither be proved nor disproved with
the tools of the usual axioms we accept in mathematics. On the other hand, it quickly became known
that every closed subset of R satisfies the Continuum Hypothesis. We conclude that the addition of a
topological condition answers the problem positively.

Axiom of Choice (AC).
For any set A, B, P with P € A x B, if for each x € A there exists y € B, with

(z,y) e P
then there exists a function f : A — B, with
(z, f(x)) e P, forallx € A.

The above function f is called choice function. The Axiom of choice is the last of Zermelo’s axioms.
It is an axiom of set theory equivalent to the statement that a “Cartesian product of a collection of
non-empty sets is non-empty”. Informally put, the Axiom of choice says that given any collection of
sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing
one element from each set, even if the collection is infinite.

1.3. Metric and Topological Spaces

Definition 1.3.1. Metric in a non-empty set X is a function d : X x X — R with the following
properties

d(z,y) >0 and d(z,y) =0 < z =y
d(x,y) = d(y,x)
d(z,y) < d(z,2) + d(2,7)
where x,y € X. The pair (X, d) is called metric space.
Definition 1.3.2. The discrete metric d on X is defined by
1, ifz #y,
0, ifz=y,

2



forany z,y € X.

In the following definitions, we assume that we are given a metric space (X, d). For each non-
empty Y € X we can take the restriction dy of the metric d on the set Y, i.e.

dy (z,y) = d(z,y) forevery z,y € Y.
We will call (Y, dy ) subspace of (X, d).
Definition 1.3.3. If z € X and r > 0 we call open ball of centre = and radius 7 on (X, d) the set
BX(z,r) = By(x,7) = B(z,7) = {y € X : d(z,y) <r}.

The point  is an interior point of A € X if there is r > 0 with BS (z,7) S A. The set A is open if
every x € A is an interior point of A.

Definition 1.3.4. The interior A° of A is the set of all interior points of A, equivalently
A° = U{V c X:Visopenand V < X}
Definition 1.3.5. A sequence (z,,)nen in X converges at x € X with respect to the metric d if

nli_r)rc}o (Tn,z) — 0.

. d .
We write x,, — x or more simply x,, — z, to state that (z,,),en converges at z. We say that the
sequence (x,, )nen Of elements of A € X is convergent at A, if there exists x € A with z,, — z.

Definition 1.3.6. We call z € X a boundary point of A € X if there is a sequence (x,,)pen in
A with z,, — x with respect to d. We allow z,, = x for every n € N such that every element of A is
also a boundary point of A. Also, we call  a limit point of A if there exists a sequence (z,, )nen in A
with x,, — z and z,, # x for every n € N.

Definition 1.3.7. The point x € A is an isolated point of A = X if there exists r > 0 with
B(z,r) n A= {x}.
Remark 1.3.8. The boundary points of A are just the isolated points along with its limit points.

Definition 1.3.9. The set A is closed if it contains all of its boundary points (equivalently it
contains all their limit points) while A is perfect if it is closed and has no isolated points.

Definition 1.3.10. The closure A of A is the set of all its boundary points, equivalently
A= ﬂ{F € X : Fisclosedand F 2 A}

Remark 1.3.11. Obviously, A° = A = A, Ais open if and only if A = A°, and A is closed if
and only if A = A. As is already known, A is open if and only if its complement is closed.

Definition 1.3.12. A set D < X is dense in (X, d) if for every x € X and every r > 0 holds
Bi(z,r) ﬂD # .
If D is a dense subset of (X, d) then every element of X is the limit of a sequence of D.
Definition 1.3.13. We call a metric space (X, d) separable if it has a countable dense subset.

Definition 1.3.14. A set K < X is compact if for every family of (V;);c; open subsets of X with
K< v
iel
there are i1, . .., 1, with
K c Vi,

=1
i.e. for every open cover of K, there is a finite subcover.

n

3



Definition 1.3.15. A function f : (X, d) — (Y, p), where (X, d) and (Y, p) are metric spaces, is
continuous at the point « € X if for every r > 0 there exists § > 0 such that
f[Ba(z,0)] < By(f(x),7),
equivalently, for every V' < Y that is p-open there exists W < X that is d-open such that f[TV] € Y.

Remark 1.3.16. According to the Transfer Principle, f is continuous in x if and only if for any
sequence (X, )nen in X with x,, 9, 2 holds fzn) 2 f(2).
Definition 1.3.17. A function f is continuous if it is continuous on every x € X or equivalently

for every open V' C Y the inverse image f~![V] is an open subset of X. Finally, we will say that f
is a topological isomorphism.

Definition 1.3.18. Two metrics d; and ds on the set X are equivalent, symbolically d; ~ ds,
if they produce the same topology, i.e. for any V' < X, V is dj-open if and only if V' is dz-open.
Equivalently, d; ~ ds if and only if the identity function

id: (X,d1)— (X, d2)
is a topological isomorphism, equivalently, for any sequence (x,)nen in X and each x € X holds

d1 d2
Tp —> T < Ty — T.

Remark 1.3.19. For each metric space (X, d;) the functions
dq
1+d;

are metrics equivalent to dy. Note that ds, d3 < 1, so it is common to assume that the metric takes
values less than or equal to unity.

d2 = l'nin{dl7 1} and d3 =

Definition 1.3.20. A family 7 of subsets of X is called a topology on X if it satisfies the following
properties:
i) 9, XeT,
ii) V (A;)icr € T we have that | J,.; Aie T,
iii) VAi,...,A, € T wehavethat (),_; Ay eT
Otherwise, the family of open sets of a metric space (X, d) is a topology. This family will be called
the topology of (X, d).

Definition 1.3.21. A pair (X,7) is called a topological space if 7 is a topology on X. The
elements of 7 are called open sets of the topological space. The closed subsets of a topological space
are the complements of open ones. A topological space (X,7) is metrizable or, more simply, 7
is metrizable if there exists a metric d on X such that 7 is the topology of (X, d), i.e. the family of
d-open subsets of X .

Definition 1.3.22. A family V of subsets of a topological space (X, 7) is the basis of topology
of X or, more simply, a basis of X if V < T and each U € T is equal to a union (finite or infinite) of
elements of V, i.e. there exists a family of (B;);es elements of V with U = UZ-e ; B;. In metric spaces,
this means that each element of V is an open set and each open set is written as a union of elements
of V.

Definition 1.3.23. A sequence (x,,)nen in (X, d) is called Cauchy or basic if for every r > 0
there exists ng € N such that for each n, m > ng holds d(zy, x,,,) < r. The metric space (X, d) is
complete if every Cauchy sequence is convergent in (X, d).

Definition 1.3.24. If we have a topological space (X, 7") and G is a non-empty subset of X then
we can consider GG as a topological space with the relevant topology of X, i.e., the topology T¢
defined as follows

Te={VnG:VeT}
The pair (G, 7¢) is called the subspace of (X, 7). In the case where (X, 7") is metricated by d then
(G, T¢) is metricated by the constraint d|(G x G) of d in G.

4



Definition 1.3.25. The direct sum of two metric spaces (X, dx) and (Y, dy ) is the metric space
(Z,d) with
Z=({0yxX) {1y xv)
and metric
d((i,2), (3, 9)) = | dyv(z,y), if i=j=1,
1, if 7 # j.
In other words, we consider two foreign copies of X and Y and place them at a positive distance

from each other. We will denote the direct sum of (X, dx) and (Y, dy ) by X ®Y and we will always
denote it by the above metric d.

Definition 1.3.26. The Cartesian product of the spaces (X, dx) and (Y, dy) is the set X x Y
with the metric

d((‘rla y1)7 (112, yQ)) = dx(l'l, yl) + dY(.’E% y2)
We will consider X x Y with the above metric dSimilarlyway we define the finite Cartesian product
X1 x -+ x X, of metric spaces. In particular, in R™ we will consider the metric

n
d(Z,5) = 3 |or — i,
k=1
where ¥ = (z1,...,2,), 7 = (y1,...,Yn) € R™.

Product Space and Product Topology.

If we have a sequence of metric spaces ((Xp, dr,))nen then consider the product space [ [, Xn,
with the metric

d(z,y) = Y 27" min{dy(z(n), y(n)), 1},
n=0

where = (2(n))neny and y = (y(n))nen € [ [,eny Xn-
If V, is a basis for the topology of X,,, n € N, then a basis for the topology of | |
family V of all sets of the form

X, is the

neN

Vo x - x Vi x Xpq1 X Xy X ooy
where V; € V; foreacht =0,...,nand n € N.

Remark 1.3.27. (Convergence in Product Space). If (x;);cn is a sequence of elements of | [, .y X»
with z; = (2;(n))nen, i € N, and z = (2(n))n € | [,,cpy Xn, then

x; — x in HX” «— foreachn, z;(n) —= z(n) in X,.

neN
The previous constructions of metric spaces respect completeness and separability. That is, the
direct sum, finitely and infinitely countable product of complete and separable metric spaces is a com-
plete and separable metric space. Also, the previous constructions extend to topological spaces in a
way that respects metrizability.

Definition 1.3.28. The infinite product is defined as described above. If we have topological
spaces (X, Tn), n € N, then we define V,, as the family of all sets of the form

(1.1) Vo x o xVyxXpp1 X XpyoX..o,

where V; € T; foreach i = 0,...,n and n € N. Consider the family 7, of all unions of elements of
V. Then T is a topology on the set [ [,y Xn, also known as product topology, with the family
Vo as its basis. If X,,, n € N, are metrizable then (] [,,cxy Xn, 7o) is metrizable with the metric that
we mentioned above.






CHAPTER 2

Polish Spaces

2.1. Definition of Polish Spaces

In the present chapter, we will introduce the notion of Polish spaces in our study. Polish spaces are
named Polish because they were first extensively studied by Polish topologists and logicians. Some
of them were W. Sierpiriski, K. Kuratowski and A. Tarski. However, Polish spaces are mostly studied
today because they are the primary setting for Descriptive Set Theory. Common examples of Polish
spaces are the real line, the Cantor space, and the Baire space. The last two will be discussed in more
detail below.

Definition 2.1.1. A topological space (X, T) is completely metrizable if it admits a compatible
metric d such that (X, d) is complete. A separable completely metrizable space is called Polish space.
A metric d as above will be called a compatible or suitable metric for X .

Remark 2.1.2. We will usually denote Polish spaces by &X', )V, and Z. Some simple examples of
Polish spaces are R and C and their closed subsets, all with the standard topology. A trivial but useful
example of a Polish space is the set of natural numbers N with the standard metric, which is equivalent
to discrete, and every subset of N is open.

Proposition 2.1.3. Given a Polish space X and a topological space Y. If X, 'Y are topologically
isomorphic, then'Y is also a Polish space.

Proof. We consider a compatible metric d for X and a topological isomorphism f : Y — (X, d).
We define the function p: ¥ x Y — R with

p(y1,y2) = d(f(z1), f(22)).

The function p is metric on Y. By definition

f(Y,p)— (X, d)
is isometry (preserves the distances, and therefore the completeness, by essentially transferring the
Cauchy sequences) and onto. It follows that (Y, p) is a complete and separable metric space. Finally,
we show that p generates the topology of Y. For every A € Y that is open in the topology of Y the
set (f~1)7[ A] = f[ 4] is d-open because

fto(x,d)—-Y
is continuous. Therefore, the set A = f~1[ f[ A]] is p-open because f : (Y, p) —» (X, d) is continu-
ous.
Conversely, we assume that B € Y is p-open. Because f : (X,d)— (Y, p) is continuous the set
(f~H7Y[B] = f[ B] is d-open and since f : Y —» (X, d) is continuous B = f~1[ f[ B]] is open in
the topology of Y. O

2.2. F, and G Subsets of Polish Spaces

Definition 2.2.1. Let X be a topological space and A < X. The set A is an F,, subset of X, if
there exists a sequence (F,)nen Of closed subsets of X, with

A:UFn.

neN

Definition 2.2.2. Let X be a topological space and A < X. The set A is a G5 subset of X, if
there exists a sequence (Up, )nen of open subsets of X, with

A:ﬂUn.

neN
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It is clear that a set A € X is F,, exactly when its complement X\ A is G5. Moreover, it is clear
that every closed set I is F, as we can get F,, = F, n € N. Equivalently, every open set is Gs.
Finally, we note that the countable union of F,, sets is also F}, set, because if A,, = | J,.y F}., where
n € N and each F! is closed, then A = {F} | i,n € N} is a countable family of closed sets and

4. =JA

neN
It follows that the countable intersection of G sets is also G5 set.

Definition 2.2.3. Given a metric space (X, d) and a non-empty A < X, we define the function
of the distance from the set A,

(2.1) f: X —>R: f(x)=d(z,A) =inf{d(z,2) : z€ A} = 0.
As is well known, f is a continuous function, for precision we have
|d($>A) - d(ya A)‘ < d(ﬂ?,y), T,y € A.

Proposition 2.2.4. If X is a metrizable topological space then every closed set of X, except Fy,
is also Gs. Equivalently, every open subset of X is G5 and F.

Proof. Consider a closed F' < X, a metric d that generates the topology of X, and the distance
function f = (x — d(z, F)) from F, as defined in (2.1) above. (We assume that F' # & otherwise
the conclusion is obvious.) For any n € N we define

U,={zreX:dxz,F)<2"}.

Then U, = f~![(—1,27")] and since f is continuous, the set U, is an open subset of X for every
n € N. Since d(z, F') = 0 for every z € F it is clear that F' € nyenU,. Assume that z € U, for
every n € N. Then there exists a sequence (2, )nen through F with

d(z,z,) <27", Vn.

Therefore x,, 4, x and since I’ is closed we have x € F'. We conclude that F' = n,enU,, and hence
FisaGg set. 0

2.3. Finite Sequences

Consider a non-empty set X. By the term finite sequence in X we describe a function u : {i €
N: i < n} — X for some n € N. We symbolize such a u with («(0),...,u(n — 1)). In the finite
sequences, we also include the empty sequence, which we symbolize with A. This follows from the
previous definition for n = 0 where the domain {i € N : i < 0} of u is the empty set. We symbolize
with X <N the set of all finite sequences in X. The preceding n in the definition of a finite sequence
is unique.

Definition 2.3.1. The length of a finite sequence v : {i € N : i < n} — X is exactly that unique
n and is symbolized with |u|. Thus we have

|luf =0 <= uw=A and
w= (u(0),...,u(lu] — 1)), forallu e X<V,
Definition 2.3.2. The concatenation of € X <Y with v € X <N is the sequence
uxv=(u(0),...,u(n—1),v(0),...,v(jv] — 1)).
Remark 2.3.3. Clearly, u * A = A * u = u for every u € X <N,
Definition 2.3.4. We define the binary relation = on the set X <N a5 follows,
uCv < |u| <|v| and Vi < |u|: (u(i) = v(7)).
Remark 2.3.5. It holds A = u for all u € X <N, C satisfies the three properties of the order:
u E u,
(uCv & VEU) — u="0,
(v & VE W) — u=w,
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for each u, v, w € X<N,

Definition 2.3.6. The strict part of = is the relation & with
U v <= uCT v & u#w.

It is clear that u & v if and only if u = v and |u| < |v|. We will say that u € X <N is an initial part
of v € X <N or that v is an extension of u if u = v. We will also say that v is a strict initial part of v
or that v is a strict extension of u if u = v. Also,v is a direct extension of u if v = u * (z) for some
x € X. Two finite sequences u, v are said to be compatible, symbolically u|jv if u & v or v E w.

Definition 2.3.7. We define the coding function
(NN S Nw= (u(0),...,u(n—1)) — u0),...,u(n—1))

as follows:
u(n—1)+1

u(0)+1 .
) p e Pp , ifn>1,
u(0),...,u(n—1)) =
(u(0) ( % { 1, if n=0.

Definition 2.3.8. We symbolize with Seq the set of all values of { - ),
Seq={seN:3Jue NN s="Cu0),...,un—1))}.
If s = (u(0),...,u(n — 1)) we say that s is a code for u.

Definition 2.3.9. We define the natural enumeration () <y of N< in terms of the coding (- )
as follows:

. — (ko, ..., kn—1), if s =<{u(0),...,u(n—1))€ Seq,
c A, if otherwise.

Remark 2.3.10. We mention that we will consider the set N<N with the topology generated by
the discrete metric, where each subset of N< is open. Since N< is a countable set it follows that it
is a Polish space.

2.4. Baire Space and Cantor Space
The Baire Space

Definition 2.4.1. (Baire’s space). Consider the set NN of all functions from N to N (infinite
sequences). We denote the elements of NN with o, 3, v, ... and the set NN with V. For o, B € N
with a # [ we set

n(a, f) = the least n € N with a(n) # S(n).
We define the function dyr : N x NV — R,
—n(a, .
dN(a,B)Z{Q (@B)if o # 8,

0, if a=p,
Then the function ds is metric in . The metric space (N, d) is called Baire space.

Definition 2.4.2. For each u € N<N we define the basic region of Baire’s space,
Ny ={aeN:uEa}

(2.2) = {u(0)} x - x{u(ju] =1} x NxNx...

Remark 2.4.3. Note that for any » > 0 if n is the minimal natural with 27" < r then for each

a,BeN
dy(a, B) <r < Vi<n a(i) = B(i).
Hence the ds-open ball of center o € A/ and radius r > 0 is the set of all 3 € N that agree with o up
ton —1,i.e.
ij\/’ (a, T) - Na|n
={a(0)} x {a(1)} x -+ x{a(n—1)} x Nx Nx ...

In the case where n = 0 then NV g = Ny = N.

2.3)



We observe that every open ball in (N, dy) is a set of the form N, with v € N<N, and reverse,
every set of the form ,, is an open ball, namely By, (u * (0,0,0,...), 2*(|“‘*1)).

The following Proposition is a direct consequence of (2.3).

Proposition 2.4.4. For every sequence («;)icn in N and every o € N we have

a; Wy o == Yn lim a;(n) = a(n)
1—00

(2.4)
— VYnJi, Vi =i, a;(n) = a(n).

Hence, the convergence in product topology is the pointwise convergence.

Proof. Note that the last equivalence holds because «;(n), a(n) are natural numbers. Therefore,
we will show the first equivalence.
For the straight direction we consider a; N, o and we get n € N. From Remark 2.4.3 for r = 27"

the ball By, (c,27") is equal to the set N|(,11). Since the sequence («;)icn converges at a(n) we
have

a; € By, (a,27") = Nyj(nt1), forall large 7.
In particular, a;(n) = a(n) for all large 1.
Conversely, we assume that for every n € N we have

Zli)rgj ai(n) = a(n).

We consider » > 0 and N the minimal natural with 2=~ < r. By Remark 2.4.3 we have
By (a,r) = Na‘N.

For every n < N we have
lim o;(n) = a(n)
1—00

and as we mentioned there exists i, € N such that for every i > i, it holds that «;(n) = a(n). We
set

ip = max{iy : n < N},
then for every i > iy and every n < N we have «;(n) = «(n). Therefore for each i > iy we have
ajln = «a|N, ie.

o; € Na|N = By, (a,r).

Proposition 2.4.5. The topology of (N, dx) is the product topology on NV,

Proof. Since the open balls in a metric space are the basis for the metric space’s topology, it
follows from Remark 2.4.3 that the sets N,,, with u € N<N, are d A -open and furthermore are the basis
for the topology of (N, dy).

Moreover, since the singletons in N are the basis for the topology of N, we have from 1.1, that \V,,
are the basis for the product topology on NV,

Hence, the topology of (N, dys) and the product topology of NN have a common basis and are,
subsequently, equal. O

Proposition 2.4.6. The space (N, dy) is a complete and separable metric space. Hence, the
Baire space N is a Polish space.

Proof. The final null sequences
ay =ux(0,0,0,...) = (u(0),...,u(jul — 1),0,0,0,...), ue NN

are a countable and dense set of (A, dxr), because o, € N, for each u € N<N. Therefore, the space
(N, dy) is separable.
To prove the completeness, we consider a d-Cauchy sequence («; )en.
We stabilize an n € N. Then there exists an i, € N such that for every ¢, 7 > ,, we have
dy (o, o) <27
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It follows that
(2.5) a;(k) = aj(k), forevery k =0,...,nand each i, j > iy,

In particular, the sequence of natural numbers (c;(n));en is finally constant and equal to the number
«;, (n). Therefore, we define

a:N—>N:an)=lim q;(n) =a;, (n)
1—00

where i,, is as above. It is clear from (2.5) that
ai(k) = a, (k) = a(k)

for every 7,5 > 1, and every k = 0,...,n. From (2.4) it follows that o W, q, Hence, the space
(N, dyr) is complete and so it is a Polish space. O

Theorem 2.4.7 ([2]). For each Polish space X there is a continuous surjection @ : N — X.

Proof. Consider a suitable metric d on X and a set
D ={r,:neN}

which is a countable and dense subset of X'. Each z € X is the limit of a sequence (7, )nen Of
(71 )nen- The idea is to take o = (K )ney € NV and then we will have

r= lim r .
n—00 o(n)

The last limit will be the value of 7 in o. A problem that arises is that the sequence (74(y) )nen may not
converge for every a € N. To fix this, we will replace the sequence (74,(,))nen With another sequence,
let us denote it by (z%),en, Which converges for every « and the function

a— lim x|
n—ao0

is continuous. Moreover, for a sufficiently large collection of « € N, the (z),en is not substantially
different from (ra(n) )nen and therefore each = € X" will be taken as the limit of a sequence of the form
() nen, i.e. we will have a surjection.

We now proceed to the construction of 7. We first define a family (2y,),en<m (4} Of elements of
X with induction on the length |u| of u € N<N\{A}.

For |u| = 1 with u = (ko), we define z, = x(;,) = k,. We assume that for some n > 1 have been
defined z,, for each w € N<N, with 1 < |w| < n.

Consider u € N<N with |u| = n. We temporarily set w = (u(0), ..., u(n—2))and k = u(|u|—1)
such that u = w * (k). Obviously, |w| = n — 1 and, by the Inductive Hypothesis, z,, is defined. We
define

{ ri, if d(zw, ) <277,
Loy = .
Ty, Otherwise.
Thus the family (zy),en<m (a}- It is clear from the above definition that d(zy,7) < 2~ 14l where
u = w * u(|u| — 1). It follows that for any w = u with u = w * (ko, ..., kn),
(T, Tu) < d(Tu, xw*(ko)) +ooet d(xw*(k’o,...,km_l)amu)
< 2= (wl+1) oL 4 9= lul

[0 8]
< Z 9—(lwl+k) _ o—lw|
k=1
Therefore for each o € A/ and each 1 < n < m we have
(2.6) A(Tajns Tagm) < 27"

Hence for every o € A the sequence (l’a|n)neN is d-Cauchy. Since (X, d) is complete, we can define
the function
TN - X:n(a) = lim x4,
n—0o0
Taking limit m — o0 in (2.6) we have
d(Tap, () <27", Vae N, ¥VneN.
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Therefore, if 3 € ./\/a‘n, i.e. if 8|n = a|n, then
d(ﬂ(a),ﬂ'(ﬁ)) < d(ﬂ(a)wxa\n) + d(xa|n77r(5)) < 2—n+17

for each o, 3 € N and each n € N. It is straightforward that 7 is continuous (and indeed uniformly
continuous). Finally, we show that 7 is an epimorphism. If x € X, we define a : N — N as follows:

2.7 a(n) = the least k € N with d(ry,, z) < 27+3),
(For every n € N there exists such a k because the set D = {ry : k € N} is dense.) Then,
(n+3)

d(Ta(n),:L’) <2

and ‘
d(/]«a(n)’ TO&(TLJr].)) < d(/r-a(n)7x) + d(x7 ra(n+l)) < 2_(n+3) + 2_(TL+4) < 2_(71"(‘2)7
for each n € N. It follows by induction that
To|(n+1) = Ta(n), foreveryn € N.
(That is, for this « the first case of the definition of x|, always occurs.) Therefore,
7T(Oé) - nll_)n’glo Laln = nh—I}ch La|(n+1) = nh—%c 7“0[(77,) =z

and 7 is a surjection. U

Remark 2.4.8. The function 7 : N — X of the previous Theorem admits an inverse function.
That is, there exists a monomorphism 7 : X — N with

7((7(x)) =z, forevery x € X and 7(7(a)) = «, for everya € 7[ X].

If we set « = 7(x) then as we have shown 7(«) = z, i.e. 7(7(z)) = z, for every z € X. From this it
follows that 7 is a monomorphism,

T(xl) = 7'(.1‘2) > 7T(7'<.1‘1)) = 7T(T($2>) - 1 = I2.
Moreover, for each a« = 7() we have
T(r(a)) = 7(n(7(2))) = 7(x) = a.

Corollary 2.4.9. Every Polish space has a cardinal number less than or equal to the cardinality
of the continuum.

Proof. For every Polish space X', by Remark 2.4.8 there exists a monomorphism f : X — N.
Hence, X <. N =, R. O

The Cantor Space

Definition 2.4.10. The set of all binary (infinite) sequences is the {0, 1}" which is also symbolized
with 2N, This is a subset of A/ and we consider on it the metric

don = dp| (2N x 2M).
The metric space (2V, dyy) is called Cantor’s space.
Remark 2.4.11. A basis for Cantor topology consists of all sets of the form A, U 2V, where
u € NN, precisely because N, u € N<N form the basis for topology of A/. Obviously, Ny, U2 = @
when there exists i < |u| with u(i) > 1, hence we can restrict to u € {0,1}<N. We, therefore,
conclude that a basis for the topology of Cantor space consists of all sets of the form
NEN ={aeN:uca}, ue {01}V

The topology of Cantor space is the relative topology of the Baire space, which is the product
topology product on NV, It follows that the topology of Cantor space is the product topology on the
set {0, 1}<N,

Remark 2.4.12. The convergence of sequences on 2" is characterized as in the case of the Baire
space NV. That is, for each sequence (c;);en in 2N and every a € 2N we have

dyn

a; — a < Yn lim a;(n) = a(n)
1—00

(2.8)

— VYn i, Vi =i, a;(n) = a(n).
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Proposition 2.4.13. The space (2, dyv) is a compact metric space, and therefore the correspond-
ing topological space is a Polish space.

Proof. If we show that (2, dyv) is a compact metric space, equivalently that 2" is a compact
subset of A/, we will also have that 2V is closed in A/. Therefore, we will have that 2" is a Polish
space. To prove the compactness, we observe that

2V = {0,1}" = ] [{0,1}.
neN

We know that the Cartesian product of compact sets is a compact set (for a random product of topolog-
ical spaces we need the Tychonoff Theorem but here we have only a countable product). Since {0, 1} is
a compact subset of N we have that [ [, {0, 1} is a compact subset of NN with the product topology.
By Proposition 2.4.5, this is the topology of the Baire space, so 2 is a compact subset of A/. Hence,
2N is a Polish space. U

Theorem 2.4.14 ([2]). For every perfect Polish space X there exists a continuous monomorphism
AR
Proof. We set I = {0, 1}<N and fix a compatible metric d to X'. We recursively construct a family
(Vi)uer from d-open balls of X' with the following properties:
radius(V,) < 2_‘“‘,
2.9) _ V) <27,
Vis(iy € Vu, 1 =0,1 and Vo) N Viye(1) = @, foreachu € I.

In the basic step we choose an xy € X and obtain Vjy = By(xo,1). We assume that for some n > 1
we have defined V,, as above for all w € I with 1 < |w| < n.

We define V,,.(;), 7 = 0, 1, for all w € I with |w| = n — 1. Consider such a w. The ball V,, cannot
contain only its center, otherwise this would be a single point of X'. Therefore there are elements

xy,xy of Vi, with zg # 7.
Since V,, is an open set, there are open balls By and B}’ with centres at xfy’, 21’ respectively, with
radii less than or equal to 277, also satisfying
BYnBY=@ and BYcV,<cV,, i=0,1.

So we define Vi,.(;y = B;", for i = 0,1. It s clear that the properties of (2.9) are satisfied. This
completes the construction.

For each o € 2V, (@)nEN is a decreasing sequence of non-empty closed sets whose diameter
converges to 0. Since (X', d) is complete, from the Cantor’s Intersection Theorem, the intersection

[ Ve

neN

is a singleton. We define
72N S X {r(a)} = ﬂ Van-

neN

If o # 3 are elements of 2" and n is the least k with a/(k) # B(k) then
aln=p|n and «(n) # B(n).
Without loss of generality, we assume «(n) = 0 and 5(n) = 1. We also set w = a|n = S|n. Then
7() € Vi (nt1)s T(B) € Vaj(n+1), and
Val(nt1) 0 Valmt1) = Vaow(o) 0 Viow(1) = 2.

Therefore 7(a) # 7(5).
Finally, we will show that 7 is continuous. We set

x,, = the center of the open ball V,,.
Let o € 2. Then for every n we have 7(a) € Vajn and therefore
d(1(), 7)) < radius(V,,) < 27"
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Therefore, if 5 € Ny, i.e. if B|n =
d(7(a),7(8)) < d(7(a), zaln) + d(zaln, T(8)) <2-27" = 27"

It follows from the above that 7 is continuous. O

n, then

Proposition 2.4.15. Every non-empty perfect subset of a Polish space has the cardinality of the
continuum.

Proof. If X is a Polish space and P is its non-empty perfect subset, then P with the relevant
topology is a perfect Polish space. By Theorem 2.4.14, there exists a continuous monomorphism
7: 2V »— P and in particular 2V <. P. Hence,

R=.{0,1}N=2"< . P<.R

where in the last relation <. we have used the Corollary 2.4.9. By Theorem 1.2.1 (Schroder-Bernstein),
we conclude that P =, R. O

)
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CHAPTER 3

Pointclasses

3.1. Fundamental Operators

In this chapter, we will study several set operators, restricting the scope of these operators to
subsets of Polish spaces. Then, we will define the notion of pointclass and we will focus on some
closure properties. In the last two sections of the chapter, we will present the definitions of the Borel
Pointclasses and the Projective Pointclasses of Finite Order.

Definition 3.1.1. Using the term set operator we mean any operation between sets. The operators
we will study are the following:

i) The operator of the disjunction v.
If we have P, Q < X we define the set of the disjunction P v (Q < & by

rePv(Q < zeP or ze€qQ.

Here we are slightly abusing symbolism. As we have mentioned, we will use the symbol v to denote
the operator of the disjunction within logical sentences. At this point, we use the same symbol to
symbolize an operation between sets. The obvious relation holds

rePvQ < xeP v ze.

ii) The operator of the conjunction &.
If we have P, Q < X we define the set of coupling P & Q < & by

reP&Q < xeP and z€ Q.

Note that P & (@ is the set-theoretic intersection P n (), so we will also call the conjunction P & @)
the intersection of P, (). Similar observations hold with those of the operator of the disjunction.

iii) The complement operator c.
If P < X we define the complement cy P of P with respect to X" as the set X'\ P. Clearly,

recyP < —(xeP).

iv) The operator of the infinite countable disjunction or union \/j.
If we have a sequence of sets P, € X , n € N, we define the infinite disjunction \/(Py)nen as
follows,

z € \/N(Pn)nen < IneNuzeP,.

In other words, the infinite disjunction \/ (P, )nen is the union |
space. As before, we will call the infinite disjunction a union.

nen P of subsets of the same Polish

v) The operator of the infinite numerical conjunction or intersection /\y.
If we have a sequence of sets P, € X' , n € N, we define the infinite conjunction /\N(Pn)neN as
follows,

z € Ay(Pn)nen <= YneNuze P,.

The infinite conjunction /\(Py)nen is the intersection [
and we will call it an intersection.

neN Pn of subsets of the same Polish space,

vi) The operator of the existential quantifier 3% P over ).
If we have a P € X x ) we define the set

PP ={xeXx: 3y (z,y) e P}
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Then, 3¥ P is exactly the projection of P over Y. In other words
3P = pr[ P], where
pr:X xY — X :pr(z,y) =z
vii) The operator of the universal quantifier V>’ P over ).
If we have a P € X x ) we define the set
VWP ={zxeX:Vy (z,y) € P}

It is evident that
VP = cx (3 (c(xrxy)P))-

viii) The operator of the bounded existential quantifier <.
Given P € X x N we define the set ISP < X x N as follows

(x,n) € ISP «— Im<n (x,m)e P

Note that the set 3< P remains a subset of X x N.

ix) The operator of the bounded universal quantifier V<.
Given P € X x N we define the set VSP € X x N as follows

(r,n) eVSP <= Ym <n (x,m)e P

Note that the set VS P remains a subset of X x N,

x) The operator of the finite union \/_.
Given finite P, ..., P, € X, we define the set

\/g(PQ,..‘,Pn):P()U'--UPn.

In other words, \/_(F, ..., P,) is the finite union of the sets Fy, ..., P,. We clarify that n is a
random natural number. That is, the field of the operator \/ < 1s all the non-empty finite sequences of
subsets of the same space.

xi) The operator of the finite intersection /\ _.

Given finite Py, ..., P, € X, we define the set
/\é(PQ,...,Pn) :P()ﬂ”-ﬂpn.
That s, /\ <(Po, ..., P,) is the finite intersection of the sets Fy, . .., P,. We clarify that n is a random

natural number. That is, the field of the operator /\ < 18 all the non-empty finite sequences of subsets
of the same space.

3.2. Closure of Pointclasses

Definition 3.2.1. We define as pointclass the collection of all sets in metric spaces characterized
by a particular property. For example, we will refer to the class of open sets. The pointlasses will
usually be denoted by I'. Unless otherwise stated the classes of sets will refer to subsets of Polish
spaces.

Remark 3.2.2. For each Polish space X and each pointclass I' we set
I'(X) ={A < X : Abelongs to the pointclass I'}
We will say that an A < X is a I-subset of X if A € I'(X).

Remark 3.2.3. If ® is one of the operators defined earlier, we denote by ®1I" the class resulting
from all sets of the form ® P where P belongs to I" and falls within the scope of .

Definition 3.2.4. We will say that the class I is closed under the operator @ if the result of the
action of @ to the sets of I' falling within its scope is a set belonging to I', equivalently

o' c I
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We will also refer to a class of functions. This term means a collection of functions among metric
spaces (usually Polish spaces) characterized by a certain property. For example, we have the class of
continuous functions.

Definition 3.2.5. A class I' is closed under continuous substitution if for every continuous
function

f: XY
and every Q € I'()) we have f~1[Q] € I'(X), equivalently the set P € X defined as follows
reP <= f(x)eqQ
belongs to I'.

Definition 3.2.6. More precisely, if we have a class of functions IV we will say that I is closed
under I"-substitution if for every

f: XY
belonging to I and for every @ € T'())) we have f ~1[ Q] € I'(X). Hence, the closure under continuous
substitution is closure under I"/-substitution, where I'" is the class of all continuous functions.

3.3. The Borel Pointclasses of Finite Order

Definition 3.3.1. We define the Borel pointclasses of finite order (for subsets of Polish spaces)
by recursion for n > 1 as follows:

Y = the pointclass of all open sets,
II) = c={ = the pointclass of all closed sets,
and

»0 1 = \/ 1:[2 = the countable unions of sets of 1:[91,
N

l:[?LH = cggﬂ = the complements of sets of ggﬂ.

Finally, we set
AL =3 0 IO

The pointclasses 39 are the Borel pointclasses of finite order, while II? and A are the dual and
ambiguous Borel pointclasses of finite order, respectively. The collection of the aforementioned
pointclasses is called the Borel Hierarchy of sets of finite order and visualized in the Diagram 3.1,
below.

21(X) 25(X) Z0(X)
Z N 2 Q 2 Q
AR(X) A3(X) AL (%)
e Z Qe Z N Z
1T} (X) IT5(X) 15, ()

Diagram 3.1. The Borel Hierarchy of subsets of X" of finite order.

Remark 3.3.2. The pointclass 39 consists exactly of the F}, sets and therefore ITJ consists exactly
of the G sets.

Proposition 3.3.3. For every Polish space X and every n = 1 we have
(X)) € A (X) andalso TIL(X) < AL (X).
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Proof. We show by induction on n > 1 that
(3.1 Eo(X) € (X)) and ZH(X) < TG, (X).

Obviously from the above we obtain the inclusions £ (X) = A? 41(&). For n = 1, by Proposition
2.2.4 every open subset of X’ is F}, and G, so that by Remark 3.3.2 we have

29X) c =(X) and T(X) < TY(X).
We assume that for some n > 1, (3.1) holds and we will prove this, respectively, for n + 1. Let A €
39 ,(X). Then by definition there is a sequence (B;);ery of IL subsets of X with A = Ujen(B;).
We have
X\B; € Z)(X) < =) ,1(X)
where in the last inclusion we used the Inductive Hypothesis. So,
BeI.  (X), VieN

and
A= UzEN \/ HnJrl - Zn+2( )

Moreover, if we take A; = A for each i € N we have that A = n;en(A4;) and 4; € ZJ?L+1(X) for
each 7 € N. Therefore

X\A = UieN X\A \/ Hn+1 - 2n+2(‘)()
and therefore A € I1Y 42(X). Thus we have shown (3.1) for n + 1. It is also clear that the inclusions
0 (x) < AY(X) are direct from those of (3.1) by taking the complements. O

Remark 3.3.4. For any natural number n > 1, any Polish space X and each A € 22(2( x X)
the sets A; < X, 7 € N, defined as follows

r€A = (x,i)eA
also belong to the pointclass X 0.

Lemma 3.3.5. Consider a natural number n > 1, a Polish space X, and a sequence of sets
(B:)ien belonging to the family £9 (X). Then the set B < X x N defined as follows

(x,i)e B < z€ B,
belongs to the pointclass 291
The above also holds if we replace the class X9 with IT9.
Proposition 3.3.6. (Equivalent Definition of EO Pointclasses) For each n = 1 we have
»0, =31" andhence W, =V X0

Proof. We temporarily define the classes

¥% = the pointclass of all open sets = X
IIT = the pointclass of all closed sets = 1:1(1]
and
s, =3
Iy, =cXr,,.

We will show by induction on n > 1 that
To(X) =25(X) and II(X) = I (X).

~n

The latter equality is derived from the former equality by taking the complements. For n = 1 the
requirement is straightforward by definition. We assume that for some n > 1 we have the requirement
and show the same for n + 1.
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Let P € X in X% ;. Then there exists A € II*(X x N) with P = 3VA. By the Inductive
Hypothesis, we have that A € II%(X x N). We apply Remark 3.3.4 for the pointclass II? and we
have that for each 7 € N the set
A ={x: (z,i) € A}
belongs to I1. Moreover
reP < Ji (z,i)e A

= Ji x € A,

P:U&.

ieN
It follows that P belongs to 9, (X'). Conversely, considera P = X belonging to £2  ; and (B;)en
a sequence of elements of II9 (X') such that

P:U&.

€N

therefore

By Lemma 3.3.5 the set
B ={(z,i): x € B;}
also belongs to IT9. By the Inductive Hypothesis, B € I (X x N). Moreover
r€e€P < i xe B
— i (z,i) € B,
and therefore P = 3B € X% (X). O

Theorem 3.3.7 ([6], [8]). (The Fundamental Closure Properties of Borel classes of finite order).
The pointclasses £, T19 and A% where n > 1, are closed under continuous substitution as well as
under the operators v, &, 35, V<, \/g, /\é.

e The classes 22 are additionally closed under the operators \/, N and more generally 37,
where Y is a countable Polish space.

e The classes 1:[2 are additionally closed under the operators [\, VN and more generally VY,
where Y is a countable Polish space.

e The classes 42 are additionally closed under the complement operator c.

3.4. The Projective Pointclasses of Finite Order

Definition 3.4.1. We define the Projective pointclasses of finite order (for subsets of Polish
spaces) by recursion for n = 1 as follows:

2 =3V
= the projections of closed sets F' € X x A over X', where X is a Polish space,
I} = %)

= the complements of sets of X 1

and
=3V,

= the projections of I:I}L sets ' < X x N over X, where X is a Polish space,
H111+1 = CZ:%L—H

= the complements of sets of Zj,ll 11
Remark 3.4.2. It is quite convenient to set 1Y =TI} and ¥} = XY so that

»l=3¥m! | and I} =vV2! | foreachn > 1.

Finally, we set

A =3, n I,

I =
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It follows that a P = X belongs to Al if and only if the sets P and X'\ P belong to £1. The
pointclasses X} are called projective or otherwise pointclasses of Lusin while the IT} and Al
are the dual and ambiguous projective pointclasses, respectively. The collection of the precedlng
pointclasses is called the Hierarchy of projective sets and is visualized in the Diagram 3.2, below.
The sets of pointclass X1 are called analytic and those of the pointclass II] are called coanalytic.
Also, the sets of the pointclass A1 are called bi-analytic.

Diagram 3.2. The Hierarchy of projective subsets of X’ of finite order.

Proposition 3.4.3. For every Polish space X and every n = 1 we have
2,(X) € A (X) andalso T (X) S Ag i (X).

Proof. The second inclusion follows from the first by taking the complement of the set. For the
first inclusion, we will show that for each Polish space X" every closed subset F' of X is é% We
first show the inclusion X1 (X) < H}LH( ). Consider P < X belongingto X1 and Q € & x N/
belonging to IT! |, such that P = FNQ. We set R = Q x N and we claim that R is also Il set.
For each (z,a, 8) € X x N’ x N we have

(z,a,B) € R <= (v,0)€Q
and R belongs to IT! ; due to the closure under continuous substitution. Moreover, for each z € X
we have
reP < Ja (r,a)eQ
<« VB 3a (x,a,p) € R.

Thus P belongs to the pointclass VVINIIL | = vVE! =TI} .

We then show that each closed set is 1:[% subset of the same space. Let X' be a polynomial space
and F' € X closed. The set F, as closed, is also a G therefore there is a sequence (V},),en of open
subsets of X with

F={)Va

neN
Consider the set
V= {(ZL‘,O&) eEX XN :xe Va(O)}
It is easy to see that V' is an open subset of X' x N. Moreover for every x € X,
reEF < VnzxzeVl,
— Va xe Va(())

— Va (z,a)eV.

Therefore F is a vV 2(1) = H Then we show by induction on n > 1 that for every Polish space X
we have
(X)) € By (X).

For n = 1, consider a Polish space X and P < X belonging to 1. Then there exists a closed set
F € X x N, such that P = 3V F. We have shown that F as a closed set, is a IT} subset of X x N.
Therefore P is an FVII} = X4 subset of X'. Assume that for some 7 > 1 and every Polish space X
we have

SLX) € Bl (X), equivalently IIh(X)C I (X).
Let X be a Polish space and a set P = X € £! ;. We will show that P is X, , , subset of X. By
definition, there exists a I:I}L setQ € X x N with P = NV Q.
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By the Inductive Hypothesis applied to the space X x N, the set Q is a IT}, , ;. Therefore, P is a
NI, = %], subsetof X. O

Theorem 3.4.4 ([11], [8]). (The Fundamental Closure Properties of Lusin’s Classes). The point-
classes E}L IZI}L and 4711 where n = 1, are closed under continuous substitution and the operators
v, & 35, VS, Vo A 3N Y Ve Ane

e The pointclasses 21 are further closed under the operator 3¥, where Y is a Polish space.

e The pointclasses H { are additionally closed under the operator VY , where Y is a Polish space.

e The pointclasses A 1 are additionally closed under the complement operator c.

Corollary 3.4.5. (Equivalent Definition of XL Pointclasses). For eachn > 1 the pointclass X}
consists exactly of the continuous images of l:Inf1 sets.

Proof. Each ¥} set is a projection (and therefore a continuous image) of a II. _; set, so we need
to show the converse. Let
f: XY
continuous and Q < X, whichisa I} ;. We need to show that the image f[ Q] is a £} set. Indeed,
for each y € ) we have

ye flQ] — Iz (zeQ & f(x) =1y)
< Jz (x €@ & (x,y) € Graph(f)).

The graph of f is a closed set and therefore by Proposition 3.4.3 (and its proof) is a II. | set. By
Theorem 3.4.4, the pointclass H »—1 18 closed under the operator &. In case n = 1, the previous holds
from the closure properties of closed sets. Based on the last of the above equivalences we conclude
that

flQl =3"R,
where R isa Il ;| subset of J x X. Therefore, f[Q] isa X subset of ). O

Corollary 3.4.6. The continuous image X setis a ¥\, set.

Proof. By Corollary 3.4.5 we know that the given ZJ}L set is a continuous image of a l:I}h1 set.
Since the composition of continuous functions is a continuous function, it follows that the continuous
image of the given 2711 set is a continuous image l:[}hl set, and again by Corollary 3.4.5 is a ZJ}L
set. g
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CHAPTER 4

Trees and The Perfect Set Theorem

In Descriptive Set Theory, a tree is a way of thinking about sets and collections of sets. Each set
is like a tree, with the main “trunk” being the starting set. Then, each branch of the trunk leads to
more sets, which branch off into even more sets. This tree of sets can get very big, and it can help us
understand how different sets relate to each other. Overall, a tree is a way of organizing sets into a
structure that shows how they are all related to each other. In the present chapter, we will describe the
notions of trees and trees of pairs and we will provide relevant terminology. In addition, we will refer
to two important theorems, the “Cantor-Bendixon Theorem™ and the “Perfect Set Theorem”.

4.1. Trees

For our purposes, a tree on a (non-empty) set X is a set T of finite sequences of members of X,
such that if v € T" and w is an initial segment of u, then w € T'.

Definition 4.1.1. Let X be a non-empty set. AT < X <N is a tree in X if it is non-empty and
closed downwards concerning the order CE, i.e.

if wEwand ueT, then weT.

For example the sets X <N and {A} are trees in X. Another example is

T = {A7 (a)7 (CL, b)? (a7c)7 (d)}7

for some a,b,c,d € X.

Remark 4.1.2. Note that the empty sequence A belongs to every tree because A = u for every
u e T # . Also, we often call the members of T" nodes or finite paths.

In the following definitions, consider that we have a tree 7":

Definition 4.1.3. The elements of T" are called nodes or leaves of 7. The empty sequence A is a
node of every non-empty tree, so we call A root of 7.

Definition 4.1.4. A node u of T is called terminal if it has no strict extension w within T, i.e.
forevery w € T' with u = w, we have u = w.

A tree 7' is called pruned if it has no terminal nodes.

Definition 4.1.5. We call an infinite branch of 7" a function f : N — X with the property
(f(0),...,f(n)) €T, foreveryn € N.

The set of all infinite branches of 7" is called body of 7" and denoted by [T]. A tree T is called a
well-founded if [7] = @ and ill-founded if [T] # &.

Definition 4.1.6. A tree S in X is called a subtree of 7' if S < T'. For every u € X <N we define
the subtree T, of the sequences that are compatible with v, as follows

T,={weT : u|w}.
In other words w € T, if and only if w € T" and

either w T v or u = w.

The above definition is more interesting when u € T', otherwise, T}, consists only of the strict
initial parts of u belonging to 7', so we may have T,, = {A}.

23



Trees and Topology.

It is clear that the body of a tree 7' in X is a subset of X", If we consider in X the discrete
topology then X! is a metric space. As with Baire space a basis for the topology of X is the family
of all sets of the form

{xo} x - x{zp_1} x X x X x ...

where xg,...,x,_1 € X.

Remark 4.1.7. A sequence (f;);cy in X" converges to f € X" if and only if for every n € N the
sequence (f;(n));en converges to f(n) in X. Equivalently, for every n € N we have f;(n) = f(n),
for all large 7. The bodies of trees in a set X characterize the closed sets of X

Proposition 4.1.8. Let X be a non-empty set with the discrete metric and F < XN. Then F is
closed under the product topology of XV, if and only if, there is a tree T in X with F = [T].

Proof. For the straight direction, we assume that F is a closed subset of X, If F' is the empty
set, then we choose for 7" any finite branching tree with an empty body, e.g. A. Therefore, we assume
that F # @. If u e XN and f € XN, we write

u E f, when f(k) = u(k) for every k < |u|.
We define 7' < XN as follows:
ueT < IfeF : ucf.

Since F' # @ we have A € T and therefore T # @. It is straightforward by definition that 7" is a tree.
We show that F' = [T]. Let g € F and n € N. It is obvious that there exists f € F' with
(9(0),...,g9(n)) & f, in particular we can get f = g. So (g(0),...,g(n)) € T for every n € N and
ge[T].
Conversely, if g € [T'] then for each n € N we have (¢(0),...,g(n)) € T" and hence there exists

fn € F with (g(0),...,9(n)) € fn.
The sequence (fy,)nen converges to the element g. Indeed, for every k € N, we get ng = k and

for every n = ng we have f,, (k) = g(k) because (¢(0),...,g(n)) = f,. Hence, f,(k) = g(k) for

N
each k € N and therefore f, X, g. Since f,, € F for each n and F is closed it follows that g € F.
Therefore F' = [T and we have proved the straight direction.

For the reverse direction we consider a sequence of ( f;);en elements of [7'] which converges to
f e XN, We will show that f € T'. For every n, there exists i such that for each i > iy andeachk < n
we have f;(k) = f(k). In particular, (f(0),..., f(n)) E fi,. By definition, (f(0),..., f(n)) € T.
It follows that f € [T]]. 0

Definition 4.1.9. Let X be a non-empty set and 7" a tree in X. T is finite branching if for every
u € T there are up to finite w € 7" which are direct extensions of u, i.e. for each u € T there are
g, - ..,Tn—1 € X such that

Ve (ux(x)eT < x€{xg,...,Tn_1}).

The preceding n can take any large values. We can even have n = 0, in which case the above equiva-
lence means that the node w € T is terminal.

Remark 4.1.10. A classical example of a finite branching tree is the set {0,1}<N of all finite
binary sequences. Obviously the body of {0, 1} < is the Cantor space 2".

Trees and Continuous Functions.

Continuous functions between bodies can be approximated by functions between the correspond-
ing tree bodies.

Definition 4.1.11. Given two trees .S and 7" on a non-empty set X and a function ¢ : S — T
The function ¢ is called monotone if for every u, v € S with u = v we have ¢(u) E ¢(v).
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We say that ¢ is proper if for every f € [S] the lengths of ¢(f|n) acquire any length, i.e. for
every M € N there is n € N with

[o(fIn)| = M.

Clearly, if we have a proper monotone function ¢ : S — T, then for every f € [ S| we have

o((f(0) € ¢((f(0), F(1))) E -~ = 6((f(0), f(1).... f(R)) & ...

and that the union of all these branches produces an infinite branch of 7. Therefore, we define the
function
¢*:[S] = [T] = ¢*(f) = | o(fIn).
neN
In other words, ¢™* satisfies

¢*(f)(m) =z < In(|(fln)] >m & (fn)(m) = x),
forevery f € [T],me N, and z € X.

Proposition 4.1.12. Consider a non-empty set X with the discrete topology and two trees S and
T on X, with S pruned. Then a function ® : [S] — [T is continuous if and only if there exists a
proper monotone ¢ : S — T with & = ¢*.

Proof. In the proof we denote V,, = {g € X" : v C g}, where u € X<N. These V,,, u € XN,
are the basis for X

We first show the reverse direction. Consider a proper monotone ¢ : S — 1" and we show that
¢* : [S] — [T is continuous. For each u € X <N and each f € [S] we have

" (f) eV, = uwC ¢*(f) = Inuc ¢(f|n).

Therefore,

WVW@=(UAJmWL

neN
where
An={fe X" 1 uc ¢(fn)}
foreveryn e N. If f € A,, and h € X" with hjn = f|n, then h € A, hence A,, is an open subset of
XN for every n € N. Hence (¢*)~![V;,] is an open set in [ S] and ¢* is a continuous function. (Note

that we did not assume that .S is pruned.)
Conversely, consider a continuous function ® : [.S] — [T]. The idea is to define ¢ such that we have

[V 0 [ S]] E Vigu), forevery u e S.
First, observe that for each u € S and wy, wy € T if
OV N [S]] S Vi, N Vi,

then wy || wa. This is the case because S is pruned and hence for each u € S we have V,, n [ S] # &,
hence V,,, n Vi, # &, which only happens when w; || we. Moreover, for each u € T there is w € S
with ®[V,, n [ S]] € Vi, in particular w = A. Hence for every u € S and every N € N there exists
the “largest” sequence w € S with length < N and ®[V,, n [S]] € V,,, i.e. w satisfies the last two
properties, and for each w’ € S satisfying the last two properties, w’ = w.

We define

¢:S —T:¢(u) = the longest sequence w € S with |w| < |u| and @[V, n [S]] € V.

If u; © ug € S, then \wl\ < \ull < |u2
D[V, N [S]] € @[Viy, 0 [S]] E Viguy)-

Therefore, ¢(uy) € T is a w’ satisfying |w'| < |ug| and ®[V4, N [ S]] € Vi. By the definition of
®(uz) we have that ¢(u1) = ¢(u2).

To show the remaining properties for ¢ we consider an f € [ S] and m € N. Since ® is continuous
on f there exists n € N with

, moreover

CI)[Vﬂn N [SH - ch>(f)|m~
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We can assume that n > M and therefore
[2(f)Im| = m < n = |fln].

Therefore, by definition of ¢(f|n) it holds that ®(f)|m = ¢(f|n). In particular, ¢(f|n) has length at
least |®(f)|m| = m.

The above shows that ¢ is suitable and furthermore that ¢* = ®. To grasp the latter, note that for
every m there is n as above, i.e. n = m and ®(f)|m = ¢(f|n). Since ¢(f|n) S ¢*(f) it follows
that ®(f)|m = ¢*(f) for each m and hence ®(f) = ¢*(f).

O
The Space of Trees.

From now on, we will deal with trees in natural numbers, and we will be interested in the special
case where X = N.

Definition 4.1.13. (The Space of Trees Tr). Consider the set Tr of all trees in N, as follows

Tr = {T < NV : T'is a tree in N}.

We also consider an enumeration of NV, for example the natural enumeration (us ) sen, which we have
stabilized in Definition 2.3.9.
Then to each tree 7" in N corresponds ar € 2" with

ar(s)=1 < ugeT.

The function
F:Tr—2V: F(T)=ar
is a monomorphism. We consider Tr with the topology obtained from F', i.e. an open V < Tr if and

only if there exists an open W < 2" with V = F~![W/]. This is the minimum topology in Tr under
which F'is continuous.

A compatible metric on Tr is
d(T,S) = dyx(F(T), F(S)) = dn(ar, as).
The set Tr with the previous topology is the Space of Trees in N.
Proposition 4.1.14. The Space of Trees Tr is a compact Polish space.
Proof. Consider the representation
F = (T eTr— are2)

and show that the set F'[ Tr] is a closed subset of 2. Since 2 is compact, it follows that that F'[ Tt] is
a compact set, equivalently F'[ Tr] with the relevant topology is compact topological space. The space
2N is topologically isomorphic to Tr via F, hence Tr is compact. We then show that the complement
of F[Tr] is an open subset of 2. Let e € 2N with

a¢{ar: T eTr}
and sg € N with us, = A. If a(sg) = 0, then for any 5 € T" with
B(s0) = a(s0)
we have
B¢ {ar:T e Tr}.
(Otherwise 8 = «r and the empty sequence would not belong to 7'.) Therefore we assume that

a(sg) = 1. If for every s with a(s) = 1 and every ¢ with u; = wu, it holds that a(¢) = 1, then
o = ap, where T is the tree defined as follows:

T={ueN"N:3s5(u=us & a(s) =1)}.
But this is a contradiction because we have assumed that
a ¢ {ap:T e Tr}.
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Therefore, there exist s and ¢ with o(s) = 1, us = u, and a(t) = 0. Then for every 3 € 2" with

B(i) = (i)

for each i < max{t, s} we have

B¢ {ar:T e Tr}.
In each case the complement

M\ {ap : T e Tr}
is an open subset of 2%, O

Definition 4.1.15. We define the sets
WF={TeTr:[T] =g}

and
IF={TeTr:[T] # &}
of the well-founded and ill-founded trees, respectively, in N.

We note that the sets WF and IF are the most fundamental I:I% (i.e. coanalytic) and ENI% (i.e.
analytic) subsets of Tr, respectively.

4.2. The Cantor-Bendixson Theorem

Proposition 4.2.1. If (X, d) is a metric space and P < X is perfect, then for every open V the
set V N P is perfect (possibly empty).

Proof. It is obvious that the set V' n P is closed. We will show that it has no individual points.
Lety € V n Pandr > 0. We will find an element 3y’ of V n P with 3y € B(y,r) and ¢y # y. Since
y €V n P we have

Bi(y,r) n (V.n P) = (Baly,r) nV)n P # @.
Therefore, there exists z € P with z € U = By(y,r) n V. Since P is perfect and U is open, there is
w € U P withw # z. Then one of w, z is different from y. The required ' is one of w, z depending
on which one is different from y. O

It is known that a subset of a Polish space has the “Perfect Set Property” if it is countable or if
it has a nonempty perfect subset. The following Theorem, known as “Cantor-Bendixson Theorem”
proves this property for the closed subsets of a Polish space. Also, this Theorem gives the relationship
between closed and perfect subsets of the Polish space. (We note that having the perfect set property
is not the same as being a perfect set.)

Theorem 4.2.2. (Cantor-Bendixson). For every closed subset C of a Polish space X, there are
two sets P,.S < C, with P perfect (possibly empty), S countable, P NS = @and C = P U S.
Indeed, the above decomposition is unique, i.e. if P', S" are two disjoint subsets of C with P’ perfect,
S’ countable and P' U S" = C then P = P and S’ = S.

Proof. We consider the closed set C' € X" and a countable basis (V},),en for the topology of X.
We define
P ={z e C:Vnwithx €V, the set V,, n C'is uncountable}

and
S =C\P.
Itisclearthat Pn S=@and C = P U S.

e We will show that .S is a countable set. For each x € S we have = ¢ P and hence there exists
n € N such that x € V,, and the set V,, n C' is countable.
We define n(z) to be the least such n and

I={n(zr)eN:xzeS}.
Then I is countable, as a subset of N. Also

SclJvuno)

nel
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because x € V;,(,), forevery z € S < C. Since V;, n C'is countable for every n € I, we have that the
set .S is contained in a countable union of countable sets. Therefore, .S is countable.

e We then show that P is perfect, i.e. it is a closed set and it has no individual points.

Firstly, we will prove that P is a closed set. Let (z;);en be a sequence in P that converges to
x € X. Since P < C and C is closed we have that x € C. Moreover, for every n € N with x € V,,
there exists 7 € N with x; € V,,. Since x; € P, the set V,, n C is uncountable. Hence, x € P and P is
closed.

Then, we will prove that it has no individual points. Consider x € P and n € N with z € V,,. The
set

VonC=V,nP)u(VpnS)

is uncountable while V,, n S is countable as a subset of S. Therefore, V,, n P is uncountable and in
particular there is y € V,, n P with y # x. Hence, x is not an isolated point of P.

e Finally, we will show the uniqueness. We consider a perfect set P’ and a countable S’ with

P'nS =@and
PuS=PuS.
We consider x € P/, since P’ € P u S = C we have that z € C. If we have x € V,, then, using
a suitably small open ball of X', we can find m such that z € V,,, < Vi, € V. Then V,, n P’ is a
non-empty closed subset of
Vinn P <V, nC.

On the other hand, by 4.2.1, V,,, n P’ has no isolated points, so it is a non-empty perfect set. More
specifically, it is uncountable (by Corollary 2.4.15,) and hence the superset V;, n C is uncountable.
Therefore, z € P and P’ < P.

If z € S’ then x ¢ P’ and since the last set is closed there is an n withz € V,, and V,,, n P/ = @.
Therefore,

VinnC =V, nS c8

and the set V,,, n C'is countable. It follows that = € S and therefore S’ < S. Equivalently, P < P’.

We conclude that P = P’ and S = 5. O

Definition 4.2.3. Let X be a Polish space and C < & closed. We consider the sets P, .S as in the
Cantor-Bendixson Theorem. That is, P is perfect, S is countable,

PnS=gad PuS=C.
The unique P is the perfect kernel of C' and the unique S is the scattered part of C.

Corollary 4.2.4. For every uncountable Polish space X there exists a continuous monomorphism
2N X

Proof. By the Cantor-Bendixson Theorem, the closed set X is decomposed into its perfect kernel
P and its scattered part S. If we had P = &, then & = S would be a countable set, which is a
contradiction. So, P # &. Since P is closed, it follows that it is a perfect Polish space. By Theorem
2.4.14, there is a continuous monomorphism

2N Pc A,
So, 7 is the required function. U
4.3. Trees of Pairs

Definition 4.3.1. Given a non-empty set X anda T < (X x X)<N. We call T a tree of pairs in
Xifitisatreein X x X.

Let us present some notations below. There is an obvious identification between the elements
we (X x X)N and (u,v) € XN x XN with |u| = [v].
In particular, each w € T has the form
((uo,v0), .-, (Un—1,vn—1)), Where u;,v; € X, for each i < n,
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soif set u = (ug, ..., up—1) and v = (v, ..., v,—1) we can identify w with (u, v).
Conversely, any pair (u,v) with u = (ug,...,up—1) and v = (vp,...,v,—1) can be identified
with the finite sequence w = ((ug,vo), . .., (Up—1,Vn—1)).

Notation 1. We will denote the elements of a tree of pairs T by (u,v) where u,v € X <N with
|u| = |v|. The empty sequence A is identified with the pair (A, A).

The previous identification extends to infinite sequences. There is an obvious topological isomor-
phism between (X x X)<Nand X <N x X <N, namely

(£.9) € XN % XN s ((£(0),(0))s -, ((f(n), g(n)),...) € X"
So we can identify every infinite branch h € (X x X )<Y with a pair of infinite sequences of X namely
(h1, ha), where
h= ((11(0), h2(0), .., (s (n), ha(n)). .. ).
Notation 2. We denote the infinite branches of a pair tree by pairs (f, g).

The obvious relation holds:

(f,9) € [T] <= vn((f(0),...,f(n)),(9(0),...,9(n)))) €T,

for each tree of pairs T in X, where f,g € X™.
Finally, we observe that this particular identification respects the relation of the initial part, i.e. for
each
w = ((up,v0), .-, (Un—1,9n-1)) = (u,v)
and each
w/ = ((UG,U(I)), te (u;z—l’vfn—l)) = (ulavl)
we have that
wEw = v Cu&vCo.
Notation 3. The pair trees in X are identified with the non-empty sets R € X <N x X <N satisfying
(u,v)eR & W Eu & vV Ev = (V,v)€R,

for each u, v, v/, v € X <N,
We will be concerned with the case where X = N. If T is a tree of pairs in N, the elements of the
body [T] are of the form («, 3), where a, 3 € N.

Lemma4.3.2. An F © N x N is closed if and only if there is a tree of pairs T inNwith F = [T],
where the body of a pair tree is understood by the above identification.

Proof. We consider the set
F:{WG(NXN)N : (y1,72) € F}
where

Y= (('71(0)"72(0))7 SRR (’71(”)7’72(”))’ s )

The sets F and F are topological isomorphic, therefore ' is closed if and only if F is closed.
We apply Proposition 4.1.8 for X = N x N and obtain that F' is closed if and only if there exists
a tree of pairs 7" in N with
yeF < VYn AneT.

Therefore,
(@.8) € F = ((a(0),8(0)), ..., (a(n), B(n)),...) € F
> Vn ((a(0),5(0)),...,(a(n),B(n))) €T
<= Vn (a|n,B|n) € T (with the previous matching)
— (a,p) € [T].
Thus, we have proved the claim. O
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Proposition 4.3.3. For each P = N the following is equivalent:

i) P is an analytic set, i.e. ZJ%
ii) There exists a tree of pairs T with P = pr[[T]].

By pr we mean the function of the projection in the first coordinate («, 3) € N x N +— a € N.
Proof. i) = ii) There exists a closed F < N x A with P = 3V F. By Lemma 4.3.2 there
exists a tree of pairs 7' in N with F' = [T']. Therefore, for each o« € N we have
a€P < 3P(a,B)eF
< 3p(a, B) € [T]
> acepr[[T]].

ii) = i) Itis obvious, as [7] is a closed subset of N’ x A/ by Lemma 4.3.2 and P = pr[[T1]]
NP

o

4.4. The Perfect Set Theorem

Recall that a set P < A& is analytic if itis 3 1 i.e there exists a closed set ' < X’ x A/ such that
forevery x € X,
reP < Ja(r,a)€F.

Lemma 4.4.1. For each Polish space X there is a continuous surjection m : N — X and a G
set P = N such that w| P] = X and the restriction 7| P is one-to-one.
Therefore, every Polish space is the continuous one-to-one image of a G subset of Baire space.

Theorem 4.4.2. (The Perfect Set Theorem). For each Polish space X and every uncountable
analytic (i.e. £1) A C X there exists a continuous monomorphism f : 2N ~— X with f[2V] € A.

Proof. The idea is to find a kind of “perfect kernel” for A as in the proof of the Cantor-Bendixson
Theorem. The (V},)nen basis of X, as used in the proof of the latter result, is not sufficient for our
purposes, as A is not necessarily closed. Instead, we will use the analytic set representation of A based
on trees of pairs (Proposition 4.3.3).

To do this, however, we need to know that X = A/. We will explain why we can assume this:
Suppose that we have proved the result for all uncountable analytic subsets of A/ and consider an
arbitrary Polish space X. Then, by Lemma 4.4.1, there exists a continuous surjection 7 : N' — X
and and a G set B © N such that 7[ B] = X and the restriction 7| B is one-to-one.

If we have an uncountable analytic set A = X then by the closure of the class 31 under continuous
substitution and since B is Borel, B n 7 1[ A] is also an analytic set. Since 7[ B] = X and 7 is a
surjection, we have that

(B 7' [A]] = x[B] A [z [A]]

=7[B] nA

=XnA

= A,
soif B n 7w~ 1[ A] was countable, then A would also be countable as an image of a countable set via
a function (we don’t even need that 71| B is one-to-one). But this is a contradiction. So B n 7~ 1[ A]
is an uncountable analytic subset of A/ and by our hypothesis there is continuous monomorphism
f 2N X with

f[2Y] € B n 771 A].
Then the composition
g=mof:2" > X:g(y)=7(f(7))
is continuous, one-to-one since f takes values in B and 7| B is one-to-one, and furthermore
gl2"]] = alf[2"]]] € 7B n 771 [A]] = A,

So g is a continuous monomorphism from 2" to X, with f[2V] < A. Therefore, we can then assume

that ¥ = .
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By Proposition 4.3.3, there exists a tree of pairs 7" in N with

@.1) aeAd < 38(a,B8) e [T].

For each (u,v) € T' we define the sets

4.2) W ={aeN:uEa & IB(vE B&(a,p)e[T])}.
Note that

Wy={aeN:38(a,B)e[T]}=A
and that
Weww) = Uus(iy,ox(g))er Wius(i) ox(3)), Where (u,v) € T.
In particular, we have W, .,y S A for each (u,v) € T'. (These W/, ,) are used in place of the elements

V,, of the basis of X as presented in the proof of the Cantor-Bendixson Theorem.)
In correspondence with the perfect kernel and the scattered part of a closed set, we define

P={aeA : V(u,v)eT (ifae Wy, then W, ) is uncountable) }
and
S={aeA: I(u,v)eT (o€ Wy, and W(,,) is countable)}
= A\P.
If we set I = {(u,v) € T': W, is countable}, then by the definition of S we have
S =Uwwer Wuw)-

The latter union is a countable union of countable sets, hence S is countable. Since A = P u S and
A is uncountable, we conclude that P is an uncountable set.

We then define the set G < T as follows:
(u,v) € G = P Wy, # 9, with (u,v) e T.
Note that the empty sequence (which we identify with the pair (A, A)) belongs to G because
PAnWa=PnA=P=+#2.

In order to proceed, we say that two finite sequences (u1,v1), (uz2,v2) are incompatible in the first
variable if u;, uy are incompatible. The next claim is the key point in the proof.

Claim. For every (u,v) € G there exist (u1,v1), (u2,v2) belonging to T, extend (u, v), are incom-
patible in the first variable and belong to G. (It follows that these extensions are strict, otherwise they
would be compatible.)

Proof of the Claim. Since (u,v) € G there exists a € P n W(, ). Therefore, the set W, is
uncountable. Since W, ,,) S A and A = P U S we have that

W(u’v) = (W(uﬂ,) M P) U (W(um) M S).

Since S and hence W, ,,) N S'is a countable set, while W, ,,) is uncountable, we have from the above
equality that W, ,y n P is an uncountable set. In particular, there exist

1,09 € W(u’v) N P, with a1 # ao.
We obtain the least n with o (n) # ae(n) and set
u; = (;(0),...,a;(n)), fori =1,2,

so that u1, ug are incompatible.
Furthermore, we have u = a1, ag 80 a1 and «vp agree at i < |u|, therefore

u E ailn = wy, fori =1,2.

That is, w1, ug are extensions of u. Since oy, a2 € Wi, there exist 51, B2 with v = ; such that
(i, i) € [T],i=1,2. Weset

v; = (8i(0),...,Bi(n)), fori =1,2.

31



Since
v E B, v; = Fil(n+1) and |v| =
we have v E v;, for ¢ = 1, 2. Moreover

(ui, vi) = (((0), ..., a;(n)), (Bi(0),...,Bi(n))) €T
because (o, ;) € [T], fori =1,2.
Therefore, (u1,v1), (u2,v2) belong to T, are extensions of (u,v) and are incompatible in the first
variable.
It remains to show that they belong to G. For each ¢ = 1, 2, by the definition of (u;,v;) we have
u; oy, v; = B, and since (o, 5;) € [T] we have from (4.2) that «; € Wy, v;)- Moreover, a; € P
hence P n Wy, +,) # @. From the definition of G we have (u;, v;) € G. This proves the claim.

u| < n,

_|
Back to the proof, one defines by recursion a function
¢:{0,1}=N - G < T, with $(A) = A = (A, A)

and ¢(w = (0)), ¢(w = (1)) are extensions of ¢(w) that are incompatible in the first variable. (Because
T is a countable set, we do not need the Axiom of Choice in the definition of ¢, we just select each
time the appropriate extensions incompatible in the first variable that has the least index based on an
enumeration of 7T'.)

As mentioned above, ¢(w = (0)), ¢(w * (1)) are extensions of ¢(w) hence ¢ is a proper monotone
by Definition 4.1.11 Therefore we define the function

¢* [0, 3] =2V — [T] = ¢*(7) = [ ¢y 1),

which by Proposition 4.1.12 is continuous. (The continuity of ¢* is established from the proof of the
last proposition. The basic open subsets of [ 7] have the form

By =1{(a,8) e [T] :ut a & vC j},

where (u,v) € T. One can easily see that for any v € 2 we have ¢*(v) € By if and only if there
exists n with (u,v) = ¢(y|n). It follows that (¢*) [ B(,,,)] is an open set.)

Finally, we consider the composition

fo2 = N f(7) = (pry 0 ¢) (7).
where pr; is the projection on the first coordinate («, 3) +— «. The function f is continuous, as a
composition of continuous functions. Note that f takes values in A because if we take v € 2 then
»*(v) = (a, B) € [T], for some v, B € N.

Hence, f(y) = « and from (4.2) we have that « = f () belongs to A.

It remains to show that f is a monomorphism. This is due to the incompatibility given by ¢ in
the first coordinate. In particular, if we have v, € 2 with y|n = +/|n and v(n) # +/(n) then the
sequences of pairs ¢(y|(n + 1), ¢(7'|(n + 1) are extensions of ¢(y|n) that are incompatible in the
first coordinate, say that they differ in ¢t € N. By the definition of ¢* we have

¢(7|(n +1)) € ¢*(7) and ¢(v'[(n+1)) = ¢*(7"),
therefore

(pry 0 ¢*)(7)(t) = pri(o(7|(n +1)))(#) # pri(o(7'|(n +1)))(#) = (pry © ¢*)(7')(¢)
and therefore
(pry 0 ¢%)(7)(¢) # (pry © ¢")(7v)(D),
i.e. f(7) # f(+/). This completes the proof. O

Proving the above Theorem leads us to the following definition:

Definition 4.4.3. A pointclass I" has the “Perfect Set Property” if every uncountable subset A
that belongs in I' contains a non-empty perfect subset.
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CHAPTER 5

Measure Theory

In this chapter, we will introduce specific notions of measure theory (based on [3], [S] and [10])
emphasizing the Lebesgue measure and the Borel sets and Borel measurable functions. These data
will constitute necessary tools in the last chapter of this thesis, and in particular in the games associated
with a measure.

5.1. Measures

Definition 5.1.1. Consider a nonempty set X and a family A of subsets of X. We call A a o-
algebra on X if it satisfies the following properties:
i), XeAd
ii) If Ae A, then X\A € A.

iii) If A, € A, Vne N, then |, A4n€ A

neN

Remark 5.1.2. Some trivial examples of o-algebras on X are the power set P (X ) and the (&, X).
As is known if we have a non-empty set F of o-algebras on the same set X then the intersection

(F={AcX:VAeF Ac A}

is also a o-algebra on X.

Definition 5.1.3. Let X be a set and A a o-algebra on X. A function y : A — [0, 0] is called
measure if

i) u(2) =0and

ii) p is countably additive (or o-additive), i.e. if (A, )nen is a sequence of disjoint sets in two’s
in A, then

H ( U An) = Z M(An)
n=1 n=1

Remark 5.1.4. By the latter property, such a measure is often referred to as a countably additive
(or o-additive) measure. Also, the pair (X, .A) is called a measurable space, the triad (X, A, p) is
called measure space and we say that y is a measure on (X, .A) or simply on X. The elements of .4
are also called .A-measurable sets.

Definition 5.1.5. Let X be a set and A a o-algebra on X. A function i : A — [0, 0] is called a
finitely additive measure if
i) (o) =0and
i) pis finitely additive, i.e. if (A;)7_, is a finite sequence of disjoint sets in two’s in A, then

n n

p ( U Aj) = > u(4y).
j=1 j=1

Every measure is also a finitely additive measure.

Proposition 5.1.6. Ler (X, A, i) be a measure space. The following holds:

i) The measure u is monotone, i.e. if for A, B € A it holds that A = B, then u(A) < u(B).
i) Moreover, if 1(A) < o, then u(B\A) = pu(B) — u(A).

Proof. We write
B=Au (B\A)
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and note that A and B\ A are disjoint sets. Thus, by the additivity of measure p, it follows

w(B) = w(A) + n(B\A).
Hence, 1(B) > p(A) and if in addition u(A) < oo, we have

w(B\A) = u(B) — p(A).
O

Proposition 5.1.7. Ler (X, A, 1) be a measure space. The measure i is countably subadditive
(or o-subadditive), i.e. if (Ay)nen is a random sequence of elements of A, then

2 ( U An) < Z (1(An).

Proof. We put

n—1

anAn\UAj, n=12,...

7j=1
Then every B, € A, B, are disjoint sets in two’s, B,, & A, holds and indeed

0 o0
U B.= ] An
n=1 n=1

Consequently,
a0 0 a0 e @]
N(UAn>:N<UBn>:Z/~L(Bn)<2M(An)
n=1 n=1 n=1 n=1
due to the finitely additive of 1 and monotony. U

Proposition 5.1.8. Let (X, A, ) be a measure space. The measure i is “continuous” in the
following two senses:

i) If (An)nen is an increasing sequence of elements of A, then

n
p ( UlAj> = lim pu(A,).
‘7:
ii) If (An)nen is a decreasing sequence of elements of A and furthermore (A1) < 0, then
n
H < ﬂ Aj) = Ji_l};oﬂ(An)'
j=1
Proof. i) We consider the sets
Bn = An\An—la n = 1,2, e

(where we have set Ag = @) which are disjoint in two’s and observe that for each n we have

Therefore,

%@%):%@m):i u(B,)

n=1 n=1 n=1
n n
= lim > u(B)) = lim p < U Ba)
j=1 j=1
n
= Jim, ( ,UlAa) = Jim, 1 4n)
]:

ii) Consider the sets
Cn=A1\A4,, for n=1,2,...
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Then, (Cy,)nen is an increasing sequence of A with

o] 0]
L Cn =41\ () 4n.
n=1 n=1

By i), it follows that

O 0
: (Ul Cn) = Jim 1(Ca), Lo (Al\ N An> = Jim p(A\Ay).

Thus, by Proposition 5.1.6, we have

~ 8

“(Al) —H ( An) = M(Al) - nh—>rrolo /’L(An)

n=1

and since p(A;1) < 0o, we have what is required. O

Definition 5.1.9. Let (X, A, ;1) be a measure space. The measure p is called:
i) finite, if ;(X) < oo,
ii) probability measure, if ;1(X) = 1 and
iii) o-finite, if there exists a sequence ( Ay, )nen Of elements of A with

o0
X = L:JlAn

and
w(Ay,) < oo, foreachn =1,2,...

Remark 5.1.10. Respectively, we say that the measure space (X, A, u) is finite, a probability
space or an o-finite measure space.

5.2. Uniqueness and Completion

Two measures p and v in a countable space (X, .A) are equal if for any set A € A, it holds that
1(A) = v(A).

Therefore, this condition is, in general, difficult to check. So it is natural to wonder, if p and v are
identical in a “large” subfamily of .4, whether we can infer that they are identical everywhere. The
answer to this, by quite good measures, is given by the following proposition:

Proposition 5.2.1. (Uniqueness Theorem). Let (X, A) be a countable space and A is a family of
subsets of X closed under finite intersections, for which c(A) = A. If u and v are two measures on
(X, A) such that

w(A) =v(A), forevery D e A
and one of the following conditions holds, then p = v:

i) The measures p and v are finite and (X ) = v(X).
i) The measures i and v are o-finite and in particular there is an increasing sequence (Dy,)nen

in A such that
o0
X = U D,
n=1

and
w(Dy) = v(Dy) < o, foreachn.

Suppose now that in a measure space (X, .A, ;1) we have fixed an A € A with pu(A) = 0. If N is
any subset of A it is not certain that V € A. This depends on the choice of o-algebra. Nevertheless,
if it holds N € A then surely p(N) = 0. Then this question arises:

“Can we extend the o-algebra A to contain all these negligible sets?”

We will show in the following that the answer is affirmative.
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Definition 5.2.2. Let (X, A, 1) be a measure space and N € X. The set N is called p-null if
there exists an A € A with N € A and u(A) = 0. The (X, A, p) is called complete space (and the
1 complete measure) if every p-null set NV belongs to A.

Definition 5.2.3. Let (X, A, ;1) be a measure space. We define
i) The family
A, ={A < X : thereexist E, F e A, with EC Ac F and p(F\F) = 0}.

(Note that it will be u(E) = u(F).)
ii) The function 7 : A, — [0, 0] defined by 1i(A) = p(E), where E as above. (Note that for
B e Awith B < Aitis u(B) < pu(F) = p(E) and hence

fi(A) = u(E) = sup{u(B) : Be A, B A}.
Thus, p is a well-defined function, i.e. independent of the choice of E.)

The family A, is called completion of A, the function 7 is called completion of y, and the triad
(X, Ay, ) is a completion of (X, A, ).

Definition 5.2.4. We define the symmetric difference A of two sets X and Y as
XAY=XY)uY\X)=(XUY)\XnnY).
Definition 5.2.5. An A € X is called y-measurable, if there are B € 4 and N p-null, with
A=BA N = (B\N)u (N\B).
So, the family .A,, can be written as
Ay, ={BAN: BeAand N isap-null set}.

Remark 5.2.6. The elements of .4, are called -measurable sets. It is a direct consequence of the
above definition that every p-null set is also p-measurable. Intuitively, the elements of .4, are those
subsets of X that are “u-negligible distance” (i.e., one u-null set away) from the elements of A.

Remark 5.2.7. The relation (B A N) = p(B), holds and is well defined. That is because if we
have
BAN=B AN,
with B, B" € A and N, N’ are y-null sets, then p(B) = u(B').
5.3. Lebesgue Measure

We will now define the Lebesgue outer measure A* in R.

Definition 5.3.1. The Lebesgue outer measure \* : P(R) — [0, 0] inR is defined as follows:

a0 00]
M (A) = inf{ D (bn—an) i an,byeR, and Ac | | (an,bn)} ,

n=1 n=1

for each A < R.

Definition 5.3.2. The Lebesgue outer measure \* : P(RF) — [0,00] in R¥ is defined as
follows:

0¢] o0
Ai(A) = inf{ Z v(I,) : I, € R* open bounded interval, and A < U In} ,
n=1 n=1
for each A < R*. By definition, an open bounded interval I of R is a set of the following form:
k
I'= H(ajabj) = (a1,01) x (az,b2) x -+ x (ak, by),
j=1

with a; < b; € R, and
v(I) = (by —a1)(by —a2)...(bx — ag),
where the quantity v(I) is the volume of the interval /.
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Remark 5.3.3. It is clear from the definition that A} = A*. Sometimes, for simplicity, we write
Af =A%

Definition 5.3.4. Let ¢ : P(X) — [0, o0] be an outer measure on the set X. A B < X is called
¢-measurable if

¢(A) = ¢(A n B) + ¢(A\B),
for every A < X. We denote by M, the family of all p-measurable subsets of X.

Theorem 5.3.5. (Caratheodori). Let ¢ : P(X) — [0,00] be an outer measure on the set X.
Then M is a o-algebra on X and the restriction ¢|,, & of ¢ on My is a complete measure.

Definition 5.3.6. The elements of the o-algebra M+ are called Lebesgue countable sets.

Definition 5.3.7. The restriction of the Lebesgue outer measure A} on the o-algebra My« is called
the Lebesgue measure and is denoted by A; or simply .

Remark 5.3.8. According to the above, ) is a complete measure. Sometimes, and the restriction
of \¥ on B(R¥) will be called a Lebesgue measure.

Definition 5.3.9. Let (X, d) be a metric space, A a o-algebra on X such that A 2 B(X) and p
is a measure in the measurable space (X, .A). The measure y is called regular measure if

i) u(K) < oo, for every K < X compact.
ii) u satisfies the Outer Regularity Condition, i.e.

w(A) = inf{u(G) : Gopenin X and G 2 A}, forevery A € A.
iii) p satisfies the Inner Regularity Condition, i.e.

w(G) = sup{u(K) : K compact and K 2 G}, for every G < X open.

5.4. Borel Sets, Measures and Measurable Functions

Definition 5.4.1. Consider a metric space X and the set F of all o-algebras on X containing the
open subsets of X, i.e.

F ={A: Aisaoc-algebraon X and V open V < X it holds V € A}

We observe that P(X) € F and therefore 7 # &. The Borel o-algebra B(X) of the subsets of X
is the family

B(X)=()F.
A subset of X is called Borel if it belongs to the o-algebra B(X).
Proposition 5.4.2. Every Borel subset of R* is also Lebesgue countable, i.e. B(RF) € Myx.

Remark 5.4.3. It is clear that the family B(X) has the following properties:

i) The B(X) is a o-algebra and every open subset of X is contained in B(X), i.e. B(X) is an
element of the above F.
ii) If A is the o-algebra on X containing all open subsets of X, then B(X) < A.

In other words, B(X) is the minimal o-algebra on X that contains the open sets. We denote by
B the class of all Borel sets in metric spaces. Some examples of Borel sets are all open sets and their
complements, i.e. the closed sets. The F}, sets are Borel as countable unions of Borel sets and also G
are Borel as complements of F}; sets.

Proposition 5.4.4. For every Polish space X and every n = 1 holds that
20(X) € B(X),
i.e. every subset of X is also a Borel subset of X .
Lemma 5.4.5. The pointclass of Borel sets is closed under continuous substitution.
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Proof. We consider metric spaces X, Y, and a continuous function f : X — Y. We will show
that for any Borel A € Y the set f~![ A] is a Borel subset of X. We consider the family
A={ACY: f A €B(X)}

and we will show that it is a o-algebra containing all open subsets of Y. Since 5(X) is the minimal
o-algebra containing the open subsets of Y, it follows that B(X) < A which is what is required.
Consider an open V' < Y. Since f is a continuous function, the inverse image f~![V] is an open
subset of X and, therefore, is a Borel set. Hence, V' € A and A contains all open subsets of X.
Continuing, we observe that &, Y € A because the sets @ and Y are open. If A € A, then

FHY\A] = X\f71[4] e B(X),

where we used that f~1[ A] € B(X) and that the family of Borel subsets of X is closed under com-
plementation in X . O

Theorem 5.4.6. (The Fundamental Closure Properties of the Pointclass of Borel Sets.) The point-
class B of Borel sets is closed under

i) continuous substitution
ii) the operators v, &, 35, VS, \/g, /\g, cx, where X is a metric space, and
iii) the operators \/N, /\N, N YN Y Y swhere Y is a countable Polish space.
Remark 5.4.7. By the equivalent definition of the analytic sets, it is known that every analytic

(i.e. $1) subset of a Polish space is a continuous image of a Borel set. Therefore, as a consequence
of Theorem 4.4.2, the following effect occurs:

“Every uncountable Borel set has a non-empty perfect subset.”
Definition 5.4.8. Let X be a topological space and (X, A, ;1) be a measure space. The measure
1 1s called a Borel measure on X if
B(X) < A,
i.e. if all Borel sets in X are in A.

Definition 5.4.9. Let X be a topological space and ;. a Borel measure on X. Then p is called
regular if the following are true for every Borel set £ in X:

i) u(E) =inf{u(U) : U open 2 E},
i) p(F) = sup{u(K) : K compact < E}.

Definition 5.4.10. Suppose p is a o-finite Borel measure on X, i.e., a countably additive function
on the Borel subsets of X with values real numbers > 0 or oo and such that we can write

0
xX=J4
n=1
with 4,, € B(X), u(A,) < oo for each n.

Let Z,, be the collection of null sets or sets of measure 0 (in the completed measure), i.e.,
A€ Z, < there exists a Borel set 13 such that A = B and u(B) = 0.

Again it is clear that Z, is a o-ideal.

Definition 5.4.11. Let X', ) be two metric spaces. A function f : X — Y is Borel-measurable,
if it inverts the open subsets of Y to Borel (equivalently, open or closed) subsets of X, i.e. for every
open A € Y we have

FHA] € B(X).
In other words, the inverse image of a Borel set is a Borel set, too.

Remark 5.4.12. Obviously, every continuous function f : X — Y is Borel-measurable because
for for every open A C Y the set f~1[U] is open and therefore Borel.

Definition 5.4.13. We will say that a pointclass I is closed under Borel substitution if for every
Borel-measurable function f : X — ), where X, Y are Polish spaces, and for each A € I'()) the set
f~1[ A] belongs to I'(X).
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Definition 5.4.14. An isomorphism f : X —» Y is a Borel isomorphism if the functions
f:X—>Y and f71:Y > X

are Borel-measurable. The metric spaces X and Y are Borel isomorphic if there is a Borel isomor-
phism f: X — Y.

Proposition 5.4.15. Consider two metric spaces X, Y and a function f : X — Y. The following
are equivalent:
i) The function f inverts open subsets of Y to Borel subsets of X, i.e., f is Borel-measurable.
ii) The function f inverts Borel subsets of Y to Borel subsets of X, i.e. for every Borel set B <
Y, the set f~1[ B) is a Borel set. (Sometimes the definition of Borel-measurable functions is
given by this condition.)

Proof. The direction ii) = i) is direct because every open subset of Y is a Borel subset of X.
For direction i) = ii), we consider the family

A={AcCY: f A eB(X)}.

By hypothesis, every open subset of Y belongs to .4. We will show that A is a o-algebra on X . Indeed
we have

o=fYo] and X = f7[Y]
such that &, Y € A. Moreover, we have

FHUNAl = X\fTHA] and [T UnenAn] = UnenS [ An],

for any sequence of (A, )nen subsets of Y and any A < Y. Since B(X) is o-algebra on X, it follows
from the previous two equations that A4 is closed under the complement to Y and under the countable
union of subsets of Y. We conclude that A is a o-algebra. Since A is a o-algebra on Y, which contains
the open subsets of Y, we have that B(Y") < A, which is exactly what is required. (]

Definition 5.4.16. Consider two Polish spaces &X', J and a monomorphism f : X »— ). The
function f is called a good Borel monomorphism if
i) it is Borel-measurable,
ii) the image f[X] is a Borel subset of ), and
iii) the inverse function f~!: f[X] — X is Borel measurable. (We consider f[ X] as a metric
subspace of ).)

Remark 5.4.17. For every good Borel monomorphism f : X ~— ) and every Borel set B < X
the set f| B] is a Borel subset of ).

Remark 5.4.18. The composition of good Borel monomorphisms is a Borel monomorphism.

Lemma 5.4.19. For every uncountable Polish space X there is a good Borel monomorphism
AR 4

Proof. By Corollary 4.2.4 there exists a continuous monomorphism
AR 4

We will show that 7 is also a good Borel monomorphism. Since 7 is continuous, it is also a Borel-
measurable function. Moreover, the set 7[2Y] is compact (as a continuous image of a compact set)
and hence it is a closed subset of X. In particular, 7[2"] is a Borel subset of X. Finally, the inverse
function

o2 - o
is continuous and hence Borel-measurable. 0

Lemma 5.4.20. There is a continuous monomorphism p : N' ~— 2N such that the function p=" :

p[ N — 2N is continuous and the set p[ N'] is a T19 subset of 2V.

Lemma 5.4.21. For every uncountable Polish space X there is a good Borel monomorphism

f:N— X
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Proof. Consider the function p : A/ ~— 2N, as in Lemma 5.4.20. Because every continuous
function is Borel-measurable and II9 sets are Borel, it follows that p is a good Borel monomorphism.
By Lemma 5.4.20 there is a good Borel monomorphism 7 : 2% »— X" and because the composition of
good Borel monomorphisms is also a good Borel monomorphism, we have

f=10p: N—X
is a good Borel monomorphism. O
Lemma 5.4.22. For every Polish space X there is a good Borel monomorphism v : X — N.

Proof. We consider a suitable metric d on X" and a countable D = {r,, : n € N} and a dense
subset of X'. We consider the function
ue NNW{A} — z,eX
defined as follows:
P, if d(rg, z,) < 27 (WD),
T(p) =Tk and Tux(k) = { Ty, if d(rg,z) = o—(Jul+1)

As we have seen in the proof of Theorem 2.4.7 as well as in the Remark 2.4.8 the function
TN —->X W(a):nli_r)roloxa‘n
is a continuous surjection and the function
7: X — N :7(z)(n) = the least k with d(ry,, z) < 2~ ("+2)
is a monomorphism satisfying
m(r(z)) =z, xe X and 7(7(a)) =, aeT[X].
We will show that 7 is a good Borel monomorphism. Firstly, we consider

X - X

1

and we observe that for each o = 7() € 7[X], we have 771 (a) = 2 = 7(a),ie. 77! = 7|7[X].

Since 7 is continuous it follows that 7! is continuous.
We then show that 7 inverts the open sets of A to £9. Since the X sets are Borel sets it follows
that 7 is Borel-measurable. For each u € N<N, we have
T(x) e Ny < uC 7(x)
> Vn < |u] u(n) =71(z)(n)
— Vn < |u| u(n) = the least k with d(rg, z) < 2~ ("2
= Vn < |u] (d(rym),z) < 22 & i < u(n) d(r, ) = 2-"+2),
It follows that the set 771[A,] is a A and a X9 subset of X. Since every open subset of A is a
union of sets V,,, for some u € N<N, we have from the closure of A9 under the operator of countable
union that 7 inverts open sets to AY.
Finally, we identify the set 7| X']. As we saw above, 7(«) is the unique x € X with a = 7(x),
for every a € 7[ X] . Therefore,

aeT[X] = a=r71(n(a))
< Vn a(n) = 7(r(a))(n)
— Vn a(n) = the least k with d(ry, 7(a)) < 272
— Vn (d(7(q),Ta(m)) < 2~ +2) & Vit < a(n) d(x(a),r) = 2~ "F2),
Therefore, 7[ X] is II9 subset of V. -

Theorem 5.4.23. (Schroder-Bernstein for good Borel monomorphisms). For each two Polish
spaces X and ), if there are good Borel monomorphisms

f:X—)Y and g: Y — X
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then there exists a Borel isomorphism
h:X—).

Proof. By Remark 5.4.18, the composition
¢:Y— flX] : 9(y) = f(g(y))
is a good Borel monomorphism. We define the sequence (C), ),y of subsets of ) as follows:
Co = I\f[X], Cni1= f[Cn].

Since the functions f and ¢ are good Borel monomorphisms, by applying the Remark 5.4.17, it follows
inductively that every C), is a Borel subset of ). We also define

D:UCn.

neN

Then D is a countable union of Borel sets and therefore it is a Borel subset of ). We further note that

U =elcl =] cneb.

neN neN n=1

¢[D] = ¢

Finally, we define
, ifye D,
T:yﬁy:T(y):{(ﬁ(y) ity
v, if y¢ D.

The function 7 is Borel-measurable.

e We will show that 7 takes values in f[ X’]. Consider that y € Y. If y € D theny ¢ Cy = Y\ f[ X]
soy € f[X]. Moreover, since y ¢ D we have 7(y) =y € f[X]. If y € D, then there exists n € N
with y € C,, and

T(y) = d(y) € ¢[Cn] < f1A],

where in the last inclusion we used that ¢ takes values in f[ X].

e Continuing, we will show that 7 is onto f[X]. Consider y € f[X]. If y ¢ D, then 7(y) = v.
If y € D then there exists n € N with y € C), and since y € f[X], n = 0 cannot be true. So
n>landy € C,, = f[Cy_1]. Therefore, there is y' € C,,_1 with y = ¢(y'). Then we have
7(y') = ¢(y') = y, where in the first equality we used that y’ € C,,_1 < D. In each case there is
y' e Ywithr(y') = y.

e We will then prove that 7 is a monomorphism. Consider y;,ys € Y with 7(y1) = 7(y2). If one of
Y1, y2 belongs to D (let us suppose y1) and y, does not belong to D then 7(y1) € ¢[ D] < D while
T(y2) = y2 ¢ D. Therefore, we have 7(y1) # 7(y2) and this is a contradiction. So, either y1,y2 ¢ D,
in which case

v1=71(y) = 7(y2) = ¥2,
or y1,¥y2 € D. In the second case,
o(y1) = 7(y1) = 7(y2) = o(y2)

and since ¢ is a monomorphism we have y; = yo.

1

e Additionally, we wiil prove that the inverse 7~ : f[X] — X is Borel-measurable. According

to the preceding, 7! is given by
- Y, if y¢ D,
T Hy) = { .

'(y), if yeD.

Because ¢ : YV — f[X] is a good Borel monomorphism, the inverse function ¢! : f[X] — Vs
Borel-measurable. Hence, 7! is Borel-measurable.

It follows that 7 is a good Borel monomorphism. Finally, we define
h:Y— X hy) =" (7()
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The function h is well-defined because 7 takes values in f[ X] and is Borel-measurable as a composi-
tion of Borel-measurable functions. Moreover, it is a monomorphism as a composition of monomor-
phisms and a surjection because f~! : f[X] — X isonto X and 7 is onto f[ X]. Finally, the inverse
function h~! = 77! o f is Borel-measurable as a composition Borel-measurable functions. O

Theorem 5.4.24. (Borel Isomorphism Theorem). Every uncountable Polish space is Borel iso-
morphic to Baire space.

Proof. We consider an uncountable Polish space X'. By Lemma 5.4.21 and Lemma 5.4.22 there
exist good Borel monomorphisms f : N »— X and 7 : X — N/, respectively. Therefore, by Theorem
5.4.23 there exists a Borel isomorphism h : N »— X, O

Continuing, we will present a fact that we shall need in proving the Corollary that follows. We
consider the following to be known:
“The composition of two Borel isomorphisms is a Borel isomorphism.”

Corollary 5.4.25. If X, Y are two uncountable Polish spaces, there is f : X — ) that is a Borel
isomorphism.

Proof. If X', Y are two uncountable Polish spaces then by Theorem 5.4.24 there exist Borel iso-
morphisms
f: X—>»N and g: N —>)Y
By using the composition h = g o f : X »» ) and having regard to the above fact, we conclude that
h is a Borel isomorphism, too. O

42






CHAPTER 6
Playing Games

In this chapter, having analyzed all the necessary tools in the previous chapters, we deal with the
actual games. In our study, a run of the game is an infinite sequence of elements, created by the moves
chosen to be made by two people, the players of the game. These elements vary depending on the
space in which the game is played. Both players can follow certain rules as the game progresses.
In 1953, D. Gale and J. D. Stewart introduced the notion of an infinite two-player game of perfect
information and began a systematic study of these games. The games that we describe fall into this
category. We will start by giving some important definitions of games and then we will deal with the
concept of determinacy. In addition, we study extensively some topological games, as well as games
associated with measures.

6.1. Gale-Stewart Games

Here we describe how a Gale-Stewart game is played. Let X be a fixed non-empty setand A < XN
be a set of infinite sequences from X. For two players, I (we refer to him as “He”) and II (we refer
to her as “She”), with each set A we associate a two-person game G = Gx(A) as follows. Players
I and II alternatively choose members of X ad infinitum. The game can be visualized through the
Diagram 6.1, moving from left to right, with the moves of player I above and the moves of player II
below (player I always starts the game by playing first).

1 ag as a4

N / N / NN

I aj as

Diagram 6.1. Playing the game Gx (A).

The play continues without ending so that a single play of the game determines an infinite sequence

f = (ap,a1,a2,as,...) e xN.

Player I winsif f € A, otherwise, if f ¢ A player Il wins. Player I is allowed to see all ag, a1, ..., an—1
which have preceded before he chooses a,, for n even. Similarly, player II is allowed to see all
ap, ai, ..., an_1 for n odd. Thus, we call this the Game of Perfect Information.

This way, we have described a run (or play) f of the game G = Gx (A). The set A is the payoff
(or else winning) set for Gx (A), but we will often identify A with G x(A) and when talking about
the game A. Let us now explain what a strategy and a winning strategy mean through the following
definitions.

Definition 6.1.1. A strategy for player I is any function ¢ with the domain being all finite se-
quences from X of even length (including the empty sequence A) and values in X, i.e.

o:{ue XN : |u|iseven} —» X.
We say that player I follows (or plays) o in arun f = (ag, a1, az,as, ... ) of the game Gx (A), if
ag = O’(A),

ag = O’(ag, al),

an, = o(ag,a1,...,an—1), formn even.
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Definition 6.1.2. A strategy for player II is any function 7 with the domain being all finite
sequences from X of odd length and values in X, i.e.

r:{ue XN : |u|is odd} — X.

Remark 6.1.3. If players I and II play with strategies o and 7 respectively, then exactly one run
is produced, which we denote by o * 7. The run o * 7 is shown in the Diagram 6.2.

I o(A) o(ap,ar) o(ag,a1,az,as)

N / N / N /

II T(ao) T(CL(),CLl,(lQ)

Diagram 6.2. When player I plays o against player II’s 7.
It is obvious that o * 7 = (ap, a1, as, ... ) and that the player I plays a,, = o(ag, - ,an—1), for
n even, on his n™ move, and player II plays a,, = 7(aq, . .., a,_1), for n odd, on her n'" move.

Definition 6.1.4. We call o a winning strategy for player I, if for every II’s strategy 7,
o*TE€E A,
i.e. whatever Il is playing, player I always wins when he plays o.
Definition 6.1.5. We call 7 a winning strategy for player 11, if for every I’s strategy o,
oxT¢ A
6.2. Determinacy

Definition 6.2.1. We say that the game G = G x (A) is determined if either player I or player I
has a winning strategy, i.e. one of them wins the game G, as we will say from now on.

Remark 6.2.2. Since we have already identified the game G = Gx(A) with A, we will call the
set A determined, too. It is important to note that there are games that are undetermined.

Remark 6.2.3. For an intuitive understanding, note that determinacy can be rendered as an infi-
nite sequence of alternating quantifiers. For example, for games of infinite length, we have:

e Player I having a winning strategy in G x (A) (i.e. I wins G'x (A)) is equivalent to

6.1) Jay Yag Jaz Yaq Jas Yag ... Jap Yap1 ... (a € A)
e Player II having a winning strategy in Gx (A) (i.e. Il wins Gx (A)) is equivalent to
(6.2) Va1 E|a2 Vag 3a4 Va5 3&6 N Van Elan_H e (a ¢ A)

where a,,, for n odd are I's moves and a,,, for n even are II’s moves.
The game G x (A) is determined, meaning intuitively that the negation of the expression (6.1) is
the expression (6.2).

Definition 6.2.4. If A € XY and u = (ao, ..., a,_1) is a sequence of even length, the subgame
of A atwu is

Au) = {f e XN : (ag,a1,...,an_1, f(0), f(1),...) € A}.

Lemma 6.2.5 ((AC), [8]). Let A € XN and suppose v = (ag, a1, ..., a,_1) is a finite sequence
from X of even length. If player 11 does not win the game A(u), then there is some a such that for all
b, player 11 does not win A(u * (a,b)).

Proof. Towards a contradiction, suppose player II does not win the game A(u), but that for each
a, there is some b and a strategy 7 which is winning for Il in A(u * (a,b)). By using the Axiom of
Choice, there is a function of choice
a— (b*,7%)
sending each a to some b* and 7% with these properties. From this function we conclude that if the
player I starts by playing ag, then the player II can answer by playing b*° and then following 7%° as if
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she were playing in the game A(u * (ag, b)).
To visualize the game we are describing, we present the Diagrams 6.3 and 6.4 - we set II’s move %°
as ai.

I ug u2 ag

N / N / N / N

1I U1 Up—1 ap = b*

Diagram 6.3. Playing the game A(u * (ag, b™)) (the subgame A(u) appears in bold).

I Uug cee ag as

N / N / N / N /

I cee Un—1 a; = beo as
Diagram 6.4. Playing the game A(u = (a,b)) (the subgame A(u) appears in bold).

We will now define player II’s winning strategy as follows:

7(ag) = b
T(ag,...,an) =7%(ag,...,a,), n>1, mneven.
By using strategy 7, we notice that for player II's moves a1, as, as, . . ., applies

a1 =71(ap) = 0", a3 =71"(a2), as=71"(az,as,as),

So the game we described takes the following form, in Diagram 6.5.

1 ug eoe ao as

N /! N /! N /! N /!
II .. Up—_1 bao T (ag)

Diagram 6.5. Playing the game A(u * (a,b)) when 7 is II’s winning strategy.

The sequence
(ao,al,ag, as, ... ) = (a(), bao,az,TaU(ag), .. )
produces a run of the game A(u). Denoting this run by f, we have
f(O) = ap, f(l) =ai, ..., f(’I’L) = ap, -..
Suppose that I plays f = (f(0), f(1),..., f(n),...) in A(u) while II responds by 7, then
(f(2),f(3),..., f(n),...) ¢ A(u = (ag,b?)) < (az,as3,...,an,...) ¢ A(u* (ap,a1))

since II has been following 7%° after the first two moves. Hence,

(a07a17"'>an7"') ¢A(U) A (f(0)7f(1)77f(n)>) ¢A(U)
Therefore, player II has won this run of A(u) and this is a contradiction to our hypothesis. g

Theorem 6.2.6 ((AC), [1]). (Gale-Stewart) For each X # J, every closed subset of XN s
determined.
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Proof. We use the product topology on X" (with X discrete). Suppose that A = X and player
IT does not have a winning strategy in A. We will describe how I can play to win:

By Lemma 6.2.5, there is some ag such that for every b, she cannot win the subgame A(ag, b) of
A. Let player I start the game by playing some ag with this property and let II answer by some a;.
Now player II cannot win A(ag, a).

Applying again Lemma 6.2.5, this time in subgame A(ag, a1). Since II does not win in A(ag, a1),
there is some ao such that for every b, II cannot win the subgame A(ag, a1, as,b).

Let player I play one such a9 and continue in the same way. At the end of this run of the game,
we have a play:

f = (ao,al,ag, . )
For every even n, II cannot win A(ag, a1, as, . ..,a,_1). This implies that there is some f, € XV
with
fn(O)ZQOa flzala'-w fn(n_l):an—la and anA
Otherwise, player II could win A(ag, a1, as, ..., a,—1) by making random movements. We note that
lim f, = f
n—0o0
and because A is a closed subset of XY, it follows that

feA

(A < XNis closed if and only if every convergent sequence in X completely contained in A has its
limit in A). Therefore, player I wins A. (|

Theorem 6.2.7 (AC), Wolfe [12]). For each X # (J, every 28 subset of X" is determined.

Proof. Let A < XM and A € 9. Because of A € Ejg, for £ = 2, it can be written as follows:
A=|JF,
1eN

for suitable Fy, Fy, ... where each Fj is in ITY, therefore is closed.

We also choose trees 7% on X such that
(6.3) Fi=[T = {f e X" : Yk (f(0), f(1),..., f(k—=1)) € T"}.

To prove that A € X9 is determined, we will prove that either player I or player II wins in A.

e For player I, we will define a set of “Sure Winning Positions” in A, i.e. a set W such that it is
I’s turn to play and
ue W = Iwins A(u).
e For player II, we will show that if A ¢ W, then she wins in A. In this way, we will have established
the determinacy of A.
First of all, let us put

ue W «— 3i[player I wins F*(u)],

ie. if u € WY, then I wins A(u) trivially, by playing to get into a specific closed set F;. So, the
positions in W have a simple strategy: just choose an i and play to get into Fj. (Furthermore, all
even finite segments are in W°.)

Suppose now that W has been defined for each < £ and for 7 € N put

feHY «— Yevenk | (f(0),....,f(k—=1)e| W uT’
n<¢
Let f, € H*', n € Nand f, — f. We show that f € HS?, Let k € N be even. Then for all large
n € N, we have f,,|k = f|k. Let one such n € N. Since f,, € H%, we have
fulk € U wno T,
n<§
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therefore
flk e [ JwroT',
n<¢
So for all even k,
flk e JwroT!
n<§
and hence f € HS". Therefore, H¢" is a closed set. Let

uwe W& < 3Ji[player I wins the game H**(u)]

WzUWf,
3

where ¢ is an ordinal. These W¢ are finite partial plays (i.e. the sets of “Positions” to which we have
already touched upon) in which player I is next to play and has a winning strategy, so these are sets of
Sure Winning for I. Therefore, as we can see from the last two equations if I has a strategy to get into
one of the HS, then he can win overall.

and

We will prove by Transfinite Induction on £ that
(6.4) ue W& = player I wins A(u),

for all u of even length.

Inductive hypothesis: Suppose that (6.4) is true for all ordinals 7 < &.

Zero case: We will prove that (6.4) is true for £ = 0.

Case £ > 0: Let u € W¢. Player I wins A(u) as follows:

Choose i so that I wins H%(u) (u of even length) and let o be I's winning strategy in H5%(u).
Ifue T thenag = o(A) and player I keeps on playing the winning strategy o.

If u * (ap,a1) € T, then I keeps on playing o.

If u % (ag, a1, az,az) € T, then I keeps on playing o.

Continuing in the same way, the run f = (ag, a1, ..., an,...) is produced, with
w * (ag, . ..,ax_1) € T', for all even k.

The Diagram 6.6 below, shows the illustration of the game we are describing.

I up ces apg = U(A) ag = a(ao,al)

N / N / N / N

II Up—1 a

Diagram 6.6. Playing the game H(u) (the subgame A(u), u € W¢, appears in bold).

Thus,
usfe[T] =F'c A — usxfeA — fe A(u).

So, player I wins A(u). If now, as the run progresses, u * (ag, . .., ax_1) € T* doesn’t happen, for all
even k, then there is even k&, so that

w* (ag, ..., ap_1) ¢ T°
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We choose the least such even k. We continue the run by letting II play a fixed x( and I following o.
This produces a run
u*(ag,...,a5-1) * g.
Since I wins H%%, we have
u# (ag,...,ax—1) € U W o T

n<€

But, ‘

U * (ao, e ,ak_l) ¢ Tl,
SO

QL*(QOP..,ak_l)E LJ w,
n<€

He then chooses 7 < &, such that

u * (ao, . ,ak,1> e W,
Therefore, by inductive hypothesis, I wins A(u * (ag, ..., ax_1)).

Let o/ be a winning strategy for player I, and I continues with o’. Therefore, the following run is
produced:

(agy ... ap-1,9(0),...,g9(n),...),
where ¢(0),...,g(n),... are the movements resulting from following ¢’. Then
(9(0),...,g(n),..) € Alux (ap, .., ar_1)).
or equivalently
(ao, ..., ak—1) * g € A(u).
This shows how I wins A(u). In particular, (6.4) implies that
A e W = player I wins A.
We will prove that
A ¢ W = player Il wins A.
We notice that V7, it holds
n<¢ = H™c HY.
This is true only because the underlying set involves a union of more sets, i.e. in particular
U WAUT < UW/\uTi,
A<n A<€
for all n < £. Hence,
n<é — W< Wt
Since they can’t keep growing forever, there is some ordinal « such that
Wﬁ+1 =Wr =W.

Suppose now that A ¢ W*T1, We will describe how player II can play to win A:
By the definition of W**! and the determinacy of each closed game H"*1¢, player II can actually
win every H™', since
ue W < 3i[lwinsin H*'(u)].

So,

u¢ W — Vi[Il wins in H™(u)] .
Let her start by playing to win H"**, fori = 0. After a while (k-moves), a finite sequence (cg, . . ., Cx_1)
has been played and

(cos. - rcn—1) ¢ W™ & (co,...,cp—1) ¢ TO.
No matter how the game continues, we know at this stage that the final play will not be in F°:
ue W® < 3i[Iwinsin F'(u)]

and

Aw) = Fi(w).

ieN
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Therefore, player I wins A(u) by playing to get into a certain closed set F* (specifically, F, fori = 0).
Thus, since IT wins A, the final game will not be on F°. Let kg be the first k in which this happens and
using W = W**t1 let Il switch to a strategy so she can win H*"11(cg, ... ck,—1). Again, some
k > kg is reached so that

(Co, ceey Chg—1y - - - ,Ckfl) ¢ Wr & (Co, cee 7Ck,1> ¢ Tl.

At this point we have ensured that the final play will not be in F''. Player II can continue to play in
this way and ensure that the final play will not be in any of the sets F°, F'', F2, ... thereby winning
A. O

Remark 6.2.8. From now on we will refer to the determinacy of a set A in pointclass I", through
the following equivalence. If T is a collection of sets, put
Detx(I') < foreveryset A< X" inT, the game G x (A) is determined.
We will be particularly interested in the hypotheses Dety(I') and Dety(I"), where 2 = {0, 1}, with T’
being one of the pointclasses to which we have referred.

Theorem 6.2.9 ([8]). Suppose I is a collection of subsets of some X" which is closed under
continuous substitution. Then
Detx (') < Detx(—T).

Proof. Given A < XN in =T, let
B ={(z, f(0), f(1),...):z e X, f ¢ A}.

It is enough to show that
Dety (I') = Dety(—T),

since we can then replace I' by —I' (which is closed under continuous substitution) and get
Detx(—'r) — DetX(—'—'F) = DetX(F).

Assume Detx (I') and A € X be in —I'. Then the preceding B is in I" and hence it is determined.
We show that

(6.5) Iwins Gx(B) = Il wins Gx(A)
and also
(6.6) M wins Gx(B) = Iwins Gx(A).

If we show (6.5) and (6.6) we have that G x (B) is determined.

For (6.5) suppose that I wins G x (B) and let o be a winning strategy for I in Gx (B). We describe
how II can win X™\ A. Let 29 = o(A). Let I play ag in Gx (A). Player II copies ag in Gx (B) and
registers the answer of I in G x (B) according to o, i.e

ay = o(xg, ap).
This a; is the answer of Il in G x (A). Diagrams 6.7 and 6.8 below show games Gx (A) and Gx (B),
respectively (the copies of player I’s moves in G x (A) from player Il in G x (B) appears in bold).

I ag as

N / N / N

II al as

Diagram 6.7. Playing the game G x (A).

I z9=0(A) a1 = o(xo, ap) az = o(xo, ap, ar,az)

N / N / N

1I ag as

Diagram 6.8. Playing the game G'x (B), where o is I's winning strategy.
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In a similar fashion, if I plays ag in Gx (A), we take
az = o(zo, ao, a1, az)
and IT plays a3 in Gx (A). If

(a07 ai,az,as, ... )
is arunin Gx (A) where II has played as above, since o is a winning strategy for I in G x (B), we have
(w0, a0,a1,a2,as,...)€B
hence
(ap,a1,az,as,...) ¢ A.

So II wins the run (ag, a1, az, as,...) in Gx(A).
The implication (6.6) is proved similarly. (|

Thus far we have shown Detx (X9), for every X. The determinacy of the dual class II9 follows
from the previous Theorem.

Corollary 6.2.10. For each X, every I19 subset of X" is determined, i.e. Detx (II9).

Proof. From the definition of Borel pointclasses of finite order, we know that II§ = ¢X9. There-
fore, if A € XY, then cA € II9. From Theorem (6.2.7) we know that A is determined. By applying
the previous Theorem, it transpires that

Detx(X9) = Detx(cZ9) = Detx (II19).
So cA e IIY is determined. O
Proposition 6.2.11. If T is a pointclass closed under continuous substitution, then
Dety(I') = Dety(I).
Proof. Given A < 2Vin T, define g : N' — 2N by

)0, ifan)=0
9(a)(n) = { 1, if a(n) > 0,
and let
(6.7) a€ B < g(a) e A.

Firstly, we will show that the set B is in I'. We have that g : N’ — 2N and B < MV, so since A is in
T, the pointclass I' is closed under continuous substitution and (6.7) holds, it follows that B is in I,
too. We will prove that the player who wins Gn(B) also wins G2(A). Diagrams 6.9 and 6.10 show
the illustrations of the games G (B) and G2(A), respectively.

Diagram 6.10. Playing the game Go(A) < 2V,

Suppose that the game Gy(B) is determined. If player I wins B, let a run «, where I has followed
his strategy

ae€B = g(a)e A = Iwins A.
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In the case player II wins B, let a run «, where II has followed her strategy

a¢ B = g(a)¢ A = Il wins A.

So we have shown that if Gy(B) is determined, the game G3(A) is determined, too. Therefore, the
implication is proved. 0

6.3. The G*-Games

Here we introduce in our study a special category of games of special topological significance.
These games will be denoted by G%. Given A € X, the game G% (A) is played as follows:

In this game, player I chooses a finite (non-empty) sequence from X, then player II chooses a
single member from X, then I chooses a finite (non-empty) sequence from X, etc. ad infinitum. So,
player I is favored since he is allowed to play more than one point from X if he wishes. Diagram 6.11
shows the illustration of the game G% (A). Player I wins G% (A) if the play f = (ap,a1,...) isin
A, ie., f € A. Otherwise, player II wins. In particular, if I wins G'x (A), he obviously wins G% (A)
too. Strategies and winning strategies for these games are defined in an obvious way. In addition, the
following equivalence applies

Det’ (I') <= foreach A < X" inT, either I or Il wins the game G% (A).

I Qag, - - -5 Aky—1 ARg+1s5- -+ ARy —1 Ak 15+ -+ Qy—1
N / N\ / N

II Ak ag,

Diagram 6.11. Playing the game G (A).

Proposition 6.3.1. If T is a pointclass closed under continuous substitution, containing the closed
sets, then
Detn(I') = Detj(I') = Det;(T").
Proof. For the first implication, we define
f . N N N<N . f(S) — ((8)07 R (S)Ih(s)71)7 lf S € Seq
A, if s¢ Seq,
where s = {(8)o, - - -, (8)in(s)—1)- Also, we define the continuous function g : N' — N, with
g(a) = f(a(0)) * (1) * fa(2)) * a(3) = ...
and
Seq® = Seq \ {A}.
So,
Seq* = {s€Seq | s> 1}.
Given A € NN = A in I, we will show that G (A) is determined. Let us define the set
B=g A n{a | Vn a(2n) e Seq*},

where we identify «/(2n) with the finite sequence it codes (e.g. a/(0) = {ug,u, ..., Uk,—1), ko = 1)
and let
(6.8) a€B < gla)e A & Vn a(2n) € Seq®.

We notice that B is in T because g~ '[ A] € I' (because A isin I" and I' is closed under continuous
substitution) and {« | Vn a(2n) € Seq*} € I' (because it is a closed set), thus their intersection is in
pointclass I'.

e To prove the first implication, we will show that the player who wins Gx(B) also wins G (A).
Firstly, let us suppose that player I wins in Gx(B). We will show that player I wins in Gj(A), too.
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We fix a winning strategy o for player I in Gy(B), therefore, the moves of player I are described as
follows

ag = o(A), ag = o(ag,ny), ag = o(ag,no,n1), ...
The games Gy(B) and G (A) are visualized in Diagrams 6.12 and 6.13 below, respectively.

I o(A) o(ao, no) o(ap,no,n1)

N / N\ / N

II ng = ay ny = as

Diagram 6.12. Playing the run a of G(B), when player I has a winning strategy o.

I f(ao) f(az) f(as)
N / N / N

II a1 =ug, €N a3 = ug, €N

Diagram 6.13. Playing the run g(«) of the game G}(A).

In the game G};(A), the moves of player I code some finite sequences in the following way:
flao) = f(lug,ut,. .. ugg—1)), flaz) = f({Uupgsty- s Uky—1))s ---
So, if player I wins in G(B), we have
a€ B = o(A) xng = o(ag,ng) * ny * o(ag,ng,n1) *... € B.
Then, by (6.8) it follows that
a€B = g(la)e A & Vn «a(2n) € Seq™.

Therefore, player I also wins in G(A).

In the same way, we now assume that player I wins in G (B). We will show that player IT wins in
G (A), too. Let us fix a winning strategy 7 for player Il in G(B), therefore, her moves are described
as follows

no = T(<U0, s 7ulh(u0)71>)7 ny = T(TLO, <U]_, R ulh(u1)71>)a s
The moves of player I in G(B) are codes of finite sequences:
ag = <UO, ey ulh(uU)_1>, ag = <u1, ce vulh(ul)—1>v e
Additionally, for player I's moves in G;(A) we have
f(a()) = f(<U(),U1, ey uk0—1>)7 f((lg) = f(<uk‘0+17 cee 7uk1—l>)a cee
The games G'y(B) and G (A) are visualised in Diagrams 6.14 and 6.15 below, respectively.

I ag a2

N / N / N

II T(<U‘07 s aulh(uo)—1>) T(n()v <U1, s >ulh(u1)—1>)

Diagram 6.14. Playing the run ag of Gn(B), when player II has a winning strategy 7.

I f(<U0,U1,...,Uk0_1>) f(<uk()+17""uk1—l>)
N / N\ /

I a1 = ug, €N

Diagram 6.15. Playing the run g(«) of the game G}(A).
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If player II wins in Gy(B), we have
a¢ B = {uo,. - Un(ug)—1) * N0 * UL, - -+, Up(uy)—1) * N1 * ... ¢ B.
Then, by (6.8) we have
a¢B = gla)¢ A v In a(2n) ¢ Seq*

and since the case In «(2n) ¢ Seq* doesn’t occur from the definition of «, player IT wins G;(A),
too.
¢ For the second implication, we will apply the method of Proposition 6.2.11:

Given D < 2V in T, define h : N — 2N by

)0, ifa(n)=0
he)(n) = { 1, if a(n) > 0,
and let
(6.9) gla)e C & Vn a(2n) € Seq* < h(g(a)) € D,

where C' < N. Equivalently,

h(gla)) € D <= h(g(a)) = h(f(a(0))) * h(a(1)) * h(f((2))) * h(a(3)) * ...
We will prove that the player who wins the game G;(C'), also wins the G5 (D). We fix a winning
strategy o’ for player I in G(C'), so, his moves are described as follows

o' (A) = f(luo,u1, .. uke—1)), o' (flao,a1)) = f({urgrny -k —1)s -,
while, his moves in G5 (D) are described, respectively, as follows

h(f(ao)) = h(f((uo,u, .- urg-1))), h(f(az2)) = h(f((urgtr, - - Uk -1))),s -
Diagrams 6.16 and 6.17 show the illustrations of the games G};(C) and G5 (D), respectively.

1 U,(A) U/(f(ao,éh))
N\ / N\ / N\

1I a1 = Uk, asz = Ug,

Diagram 6.16. Playing the run g(«) of Gj;(C),when player I has a winning strategy o’

1 h(f(ag)) h(f(az2)) a
N / N / N
I h(ar) = h(ug,) h(az) = h(ug,)

Diagram 6.17. Playing the run h(g(«)) of the game G5 (D).

So if player I wins G;(C) we have
g(a)e C & ¥n a(2n) € Seq*

and thus by (6.9), we have that h(g(«)) € D. So player I wins the game G’ (D), too.

In the same way, we now assume that player IT wins in G;(C') and we will show that player II also
wins in G5 (D). Let us fix a winning strategy 7’ for player II in G{(C), so her moves are described
as follows

T/<f(a0)) = ai, T/(ala f(a2)> =4as, ...,
in fact, player I's moves in G5 (D) are described in the same way as before. The games G;(C') and
GY;(D) are visualised in Diagrams 6.18 and 6.19 below, respectively.
If player IT wins in G§(C'), we have

gla)¢ A v In a(2n) ¢ Seq*
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I f(a()) f(ag) R
N / N / N
1 7'(f(ao)) = a1 (a1, f(az)) = a3

/

Diagram 6.18. Playing the run g(«) of G;(C'), when player II has a winning strategy 7.

I h(f(ao) h(f(a2) =
N\ / N\ / N\
I h(a1) = h(ug,) h(as) = h(ug,)

Diagram 6.19. Playing the run h(g(«)) of the game G (D).

and so by (6.9), it follows that h(g(«)) ¢ D. Therefore, player Il wins G5 (D), too. Thus, the game
G3(D) is determined and we have proved the implication. O

Proposition 6.3.2. Player I has a winning strategy in G35 (A) if and only if A < 2" has a non-
empty, perfect subset.

Proof. Let us suppose that A 2 and o is a winning strategy for player I. Consider the set
B = {a € 2V : a/is the play in some run of G (A), where I plays by o}.

If we assume that player I plays based on the winning strategy of o, and in the play « player Il responds
to every move of I by playing some 5(k), k € N, the set B can be written in the following equivalent
form:

B = {0 % /3 : is the run where I follows o and II plays 3 € 2},

Hence, player I's moves following o have the following form

o(A) =uf, o(uy,B0) =uf, ..., o(uf,B(0),...,ul,B(n)) =ul,, ...

In the Diagram 6.20 below we can see how the play evolves within the set B.

I uy “£+1
N / N / N / N\ /
II £(0) B(1) B(n+1)

Diagram 6.20. Playing some run « of G’ (A), within the set B (where I follows the
winning strategy o).

Then we have
a=o0xf
— o (A) % B(0) = o(uf, B(0)) % B(1) ... xa(ub, B(0),...,ul, B(n)) * Bln+1) % ...
= up « B0) xuf « B(1) ¢ .. owul  xBn+1) % ...
Consider now a convergent sequence («;)eny S B, with a;; — «, where «; = o * [3;, we have
ug = o(A) = (@;(0), ..., ai(ng)) = ug
and since
ai(no +1) = Bi(0) — a(no +1)
it follows that
Jip Vi = ig such that a(ng+ 1) = 5;(0).
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If we set by = a(ng + 1), we have

uf' = o((ai(0), ..., ai(no)), ei(no + 1))
= o(ug', Bi(0))
= o(ug', a(ng + 1))
:U(u()? 0)

and since
ai(ni +1) = Bi(1) — a(ng + 1),
where
ny = lh(uo) + lh(ul) + 1,
it follows that
Ji1 Vi = 41 such that a(n; + 1) = 5;(1).
Continuing the same way, we see that (3;);en converges to some 3 € 2. Hence,
a=0%Pi —0xf3

and
a=ocx* € B.
Therefore, B is closed. Also, it is easy to see that B has no isolated points and thus it is a perfect set.
Conversely, let C' be a perfect subset of A (i.e. C'is closed and it has no isolated points) and choose
a pruned tree 7' on 2" such that

C=[T] ={a:Yn(a(0),...,a(n—1)) e T}.
First, we remark that for all v € T there is a proper extension v of u, such that
v#(0)eT and v=(1)eT.
To see this let u € T since T is pruned, we have that [T,,] # @. Soleta € [T,], i.e.,
a€[T] and uC a.

We have that « is not an isolated point of C' = [T, so there is § € N, with 8 # «. Let n be the
least such that

Bn) # a(n).
So, Bln = a|n and u = «, B. Put v = a|n = S|n. Then v extends u properly. Since a(n), B(n) €
{0,1} and a(n) # S(n), one of them is 0 and the other is 1. So,

{v+(0),v= ()} =A{al(n+1) = Bl(n+1)}
and oof(n + 1), 8|(n+ 1) € T because o, § € [T,]. Hence, v % (0),v * (1) € T
Next, we describe how I can play to win G5(A). Player I starts with a non-empty sequence
(ag, .. .,an—1) such that
(ao, N ,an_l,i) € 117 for 7 = 07 1.
This is possible from the remark above taking v = A € T'. Suppose that II plays a,, € {0,1}. From
the choice of (ay, . .., a,—1) we have that

u=(ag,...,an—1) €T.
We apply the preceding remark to this u € T" and get a proper extension v of u,
V=140, ,0n-1,An, Ant1,---,0k_1),

such that v = (¢) € T, ¢ = {0,1}. Then, I plays the non-empty sequence (Gp4t1,-..,ak_1). We
continue similarly. For every run

((a0, - -, an-1), an, (ant1, - ag-1),...),
where I has played as above, has the property
(agy ... Gp—1,0n,Qpt1,...,05—1,...)E[T] =C < A
and so I wins this run.
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Therefore, we have described a winning strategy for I in G5(A). O
Proposition 6.3.3. Player 11 has a winning strategy in G (A) if and only if A is countable.

Proof. Let us start the proof from the converse direction. If A is countable, then II has a winning
strategy: she simply plays in her n™ turn to make the play different from o, where A = {ag, a1, ... }.
For the forward direction, suppose now that player II wins by playing 7 and let « be a fixed binary
sequence. We define the sequence

50, kO) S1, kl, <oy Sl-1, kl—l'
We call this sequence good for 7 and «, if the following hold:
i) each s; is a non-empty, finite binary sequence,

ii) each k;isOor 1,

iii) the sequence z = sg * kg * s1 * k1 = --- % 5;_1 * k;_1 is an initial segment of « (i.e. 2z E «),

iv) and s, ko, s1, k1, - .., Si—1, ki—1 is the beginning of a run of G%(A) played according to 7,

ie., forj <,
k‘j = T(So, ko, .. .,Sj).
In particular, k; is player II's answer to player I's moves, by the time he’s made his s; move. More
specifically, we have that
k() = T(So), kl = T(So, k‘o, 81), ]{72 = 7'(80, ]{70, S1, kl, 32), .

The game G5 (A) is illustrated in the Diagram 6.21, below.

1 S0 S1 59

N / N / N /

I 7(50) 7(50, ko, 51) 7(s0, ko, 1, k1, 52)

Diagram 6.21. Playing the game G5 (A), where 7 is II’s winning strategy.

The empty sequence (for [ = 0) is automatically good. If every good sequence has a good proper
extension, then « is the play in a run of G (A) where player II has followed the winning strategy T,
and hence o ¢ A.

Therefore, if o € A, player II has stopped following her winning strategy 7. So there must exist
some

S0, ko, S1, ]{71, ey S1—1, klfl
(possibly the empty sequence) which is good for 7 and « and has no proper good extension.
We have
So#koxsyxky w51 xk_1=(a(0),a(l),...,a(n—1)).

We show that « is uniquely determined by so, ko, . .., S;—1, kj—1 and a(n).
More specifically, if
so* ko * %851 % k1 *a(n) E B,
then o = . To see this we claim that for all i > n, we have
(6.10) a(i) =1—7(so, ko, .., S1-1,ki—1, (@(n),...,a(i —n))).
If we show (6.10), then by a simple induction on 7 > n we induct have that for all 5 with
so# ko * - %851 % k1 *a(n) E B,
it holds a = 3. To show (6.10), let i > n and consider in G5 (A) that
50, ko, -+ -5 S1—1, ki1
have been played. Let I play next (a(n),...,a(i —n)). Since sg * kg * - - - * s5;_1 * k;_1 has no good
extension, then II must have played against her strategy 7, so
a(i) =1—7(so, ko, ..., 81-1,ki—1, (a(n),...,a(i —n)))

and (6.10) is proved.
To visualize the progress of a run in game G5 (A), we present Diagrams 6.22 and 6.23.
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I so=(a(0),...,a(ty)) S1—1
N / N\ / N\
II T(s0) = afto + 1) e ki1

Diagram 6.22. During a run in G (A), where II follows her winning strategy 7, until
her (I — 1)-move (that appears in bold).

r - si=(a(n),...,a(i—1))
N / N /
II a(z) :1—7(80,...,kl,1,$l)

Diagram 6.23. During a run in G(A), where II starts playing against 7, for i > n
(that appears in bold).

Thus, « is completely determined by the value «(n) and the maximal good sequence
s0, ko, 51, k1, 811, ki1

We define
C={a : 3l Iso,ko,...,S1-1,ki—1, 3j € {0, 1}, for which

Sso#kox---xs 1xk_1%(j) Ea

is good for 7 and « and has no proper good extension}.

C:Uq
l

where [ is fixed. The sets (] are finite and hence C' is countable, as the countable union of finite
sets (for fixed [, there are only finitely many sg, ko, ..., S;—1, k-1, 7). Therefore, A < C, so A is
countable. O

Theorem 6.3.4. Let I" be any of the pointclasses 2711, 1:[71I and 4#, forn = 1. Then

Det;(I') <= every uncountable set in T has a non-empty perfect subset.

The set C' can be written

and hence

Det{(I') = every uncountable set in T has a non-empty perfect subset.

Proof. e Let us start by proving the implication:
Det;(I') = every uncountable set in " has a non-empty perfect subset.

We assume that Det} (T') is true, where I is one of the pointclasses 1, IIL, AL, forn > 1. We have
to prove that if X" is a Polish space, every uncountable set A = X in I has a non-empty perfect subset.
Let A € X be uncountable in I". Then, X’ must be uncountable, too. By Theorem 5.4.25, there is
a Borel isomorphism
X — 2N
Continuing, we consider B = 7[A] < 2. The set B is uncountable because A is also uncountable
and 7 is a Borel isomorphism (so, 7 is a bijection). It is true that B = (7~1)~![A]. Indeed,

a€B < JxeA: a=r(x)
— 7 la)e A
— fla)e A, f=7""
— ae flA]
— ae (7 )AL

Since, 71 is a Borel measurable and T is closed under Borel substitution, we have that B isin T. By
hypothesis, Det3 (B) it is true. Thus, the game G5 (B) is determined, so one of the two players wins.
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We assume that player II has a winning strategy in G (B). Then, by Proposition 6.3.3, it follows
that B is countable, but this is a contradiction. Therefore, player I has a winning strategy in G (B),
and by Proposition 6.3.2, we have that B < 2" has a non-empty perfect subset. Let us call this
non-empty perfect subset P. Then,

P < B=n[A].
Knowing that  is a Borel measurable function and P is a closed set, it follows that 7~ [P] is a Borel
subset of X. Additionally, P is uncountable and the sets P and 7—![P] have the same cardinality,
so m~![P] is an uncountable Borel set. Therefore, by Remark 5.4.7 there is Q < 7~ ![P], that is
non-empty and perfect. Finally, we have that

Q < P« YB] =« r[A]] = A.
¢ Proceeding, we will prove the following implication:
every uncountable set in I" has a non-empty perfect subset = Det5(T").

Let A € X in T and let us suppose that X = 2N, If A is countable, then from hypothesis, by Propo-
sition 6.3.3, player IT wins G35 (A). If A is uncountable, then from hypothesis, there is C' # & perfect
subset of A. By Proposition 6.3.2, player I wins G5 (A). Therefore, the game G5(A) is determined
and thus Det3(I") is true.

e Last, we will prove the implication:
Detyn(I') = every uncountable set in I" has a non-empty perfect subset.
By Proposition 6.3.1, we have that
Dety(I') = Det(I') = Det5(I),
and we also proved that
Det;(I') = every uncountable set in I" has a non-empty perfect subset.

Consequently, we have reached our goal. O

6.4. The Covering Games G*( A, ¢)

In this section, we will describe the covering game G (A, ), for e > 0, associated with the usual
o-finite Borel measure 1 on the space 2" and each set A < 2N, This is a game on N, invented by L.
Harrington ([4]). To describe the game G* (A, £) we will use the base of 2:

Ny, ue {0,1}<N, base of 2V,
Ni, ke N, base of 2V and t = (ko, ..., kpm_1), m > 1.

So, player I plays integers sg, S1, S2,..., with each s; = 0 or s; = 1. In the end, he determines a
binary sequence o € 2V,
Player II plays integers tg,t1,t2,... where

to=C<kQ, ..o k1) t1 = kg ki 1)y to =G, K, 1) -
where m,, > 0, n € N (so the sequences coded by g, %1, 2, ... are non-empty).

Each t,, codes a finite union of basic open sets GG,, such that

e

e

e
#Gn) = p(Nig v o UNgr ) S o

To visualize the game we present the Diagram 6.24.
e Provided that the rules are followed, player I wins the run

(505 -+ Smy v )y (s sty ) = (a0 t),
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I sg S1 52
N / N / N /
I ks k1) (koo ki, 1)

Diagram 6.24. Playing the game G* (A, ¢).

if and only if,
ae A\G,
where
G=|]JGn
neN
and

Gn=Ngp v ... UNgn

mnfl.

Otherwise, player II wins the run

((80y -y 8nye-)y (toy.enstn,...)) = (ayt),
if and only if,
a¢ A\G.
¢ By adapting the rules to the payoff set, player I wins the run
((S0y -y Sny--v)y (toy-enstn,...)) = (a,t),
where s, = 0, 1 for all n, and if

either dn such that ¢,, does not code a finite non-empty sequence,

or
Vo t, =<ky, ...k, 1), mn =1, and
9
dn /L(ng (O Nk?nn—l) > W,
or
Vn t, =<ky, ...k, 1), mp =1, and
9
Vn M(ng U o... U Nk%nfl) < W, and

ae A\G.

Player II wins the run («, t), if and only if player I does not win the run («, ¢). This implies that

Ji i) > 1,
or
Yoty = kg, ok, 1), M =1, and
g
Vn M(ng U o UNk'ZLnfl) < W, and

a¢ A\G.

Theorem 6.4.1 ([8], 2H.8). For every Polish space X and every o-finite Borel measure p in X,
it holds that every X %-subset of X is u-measurable.

Proposition 6.4.2. Suppose 1 is a o-finite Borel measure on 2%, A < 2N has no Borel subsets of
w-measure > 0 and for each € > 0 the game G"(A, ¢) is determined. Then, A is p-null.

Proof. Let us suppose by contradiction that player I, for some £ > 0, wins G#(A, €) by playing
with a strategy o and let

B = {o * 7 : 7is a strategy for player II}.

Since I wins G*( A, ¢), it follows that o = 7 € A, for all 7 which is a strategy for II, so B < A. As
we know, 7 is a function with domain all finite sequences from N of odd length and values in N, i.e.
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7 : N°dd _ N. By enumerating N°¥ we can view 7 as a member of the Baire space \, so we can
think of “3 77 as “3N. Therefore, B is a 3] subset of A. By Theorem 6.4.1, B is u-measurable.

By hypothesis, A has no Borel subsets of pi-measure > 0, so x(B) = 0. Now we can find a set G
which consists of all finite unions of basic neighborhoods G, (as previously described), i.e.,

G:UGm

neN

where

Gn=Nip v ... U Nkﬁmfl’ tn =<kgs ook, 1), M >0,
and

w(Gn) = p(Nigg © ... UNgn ) < ﬁ, forall n e N,
and

BcG=|]Gn.
neN

This gives a strategy 7 for player II. Let « = o % 7. Since o is a winning strategy for I, we have
a € A\G. But a € B < G is a contradiction. Therefore, for all ¢ > 0, player I cannot win G* (A, ¢)
and since the latter game is determined wins G*(A, ¢) for all € > 0.

Fix ¢ > 0, we show that p(A) < e. Let 7 be a winning strategy for Il in G#(A, ¢). So, if we let

(S0, - - -, Sn) be the finite binary sequence of player I's moves and G(so, . . ., sy, ) be the finite union of
basic neighborhoods coded by player II’s move ¢,, (playing by 7) when player I plays sg, . .., S,, we
can set

G= UG(SO,...,Sn).

Since G is a finite union of basic neighborhoods, we conclude that it is an open set. We have that
u(G) < Z{M(G(so, ...y8n)) : (S0,...,Sn) is a binary sequence}
= ZE{ILL(G(S(), ...ySn)) : (S0, ..., Sn) abinary sequence of length n + 1}
n

< Z ( Z 225 +2> (by the rules of the game)

n O<t<g2ntl

2ntle
= Ziggtz T &
n

So for all ¢ > 0 there is an open G such that
AcC G and p(G) <e.
This proves that A is p-null. O

Remark 6.4.3 ([8], 2H.7). Let X be a Polish space and p : B(X') — [0, 0] is a o-finite measure
on X. Then for each A € X there is a Borel set B, with A € B, and for each C' < B\A, with
C € B(X), it holds that

n(C) = 0.

Theorem 6.4.4 ([9]). Suppose I is any of the pointclasses 2711, I1! and AL, forn > 1 and let
be a o-finite Borel measure on some Polish space X. It holds that

Dety(I') = every A < X in T is pu-measurable.

Proof. Suppose first X = 2%, and let A € X in I". By Remark 6.4.3, there is a Borel set B such
that A B and B\A contains no Borel set of y-measure > 0. We have that B\A = B n (2¥\A) is
in —I', since I' contains the Borel sets and is closed under the operator &. Further from the closure
properties of T, for all £ > 0, the payoff set of the game G*(B\A4, ¢) is in —I".

From our hypothesis, we have Dety(I") equivalently Dety(—I"). Hence, foralle > 0, GH#(B\A, ¢)
is determined. So Proposition 6.4.2 is applicable to B\ A. From the latter, we conclude that B\ A is
p-null. Therefore, A differs from the Borel set B by a u-null set. This shows that A is y-measurable.
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By Corollary 5.4.25, every uncountable space X is Borel isomorphic with 2% and we can establish
the result for X by carrying to 2V any given measure on X'

We have that for every o-finite Borel measure 1 : B(2Y) — [0, 0] on 2N, every A < 2V in I'is
p-measurable (under Dety(I")).

We want to show the same for an uncountable Polish space X instead of 2. Let X be uncountable
Polish space and py : B(X) — [0, 0] be a o-finite Borel measure on X'. Let B < X in I', too. We
need to show that B is py-measurable.

Let f : 2V — X that is a Borel isomorphism. Then for every A < 2, it holds that

AeB2Y) — f[A] e B(xX).
Define p : B(2Y) — [0, 0], so
1(A) = px(f[A]).

Then p is a o-finite Borel measure. The set A = f~[ B] is in I, because I is closed under Borel
substitution. So, from the preceding (X = 2N under Dety(I')), A is p-measurable. Hence, there is
Ap € B(2Y), such that the set

N=AAA,
is p-null. Let No € B(2Y), with N € Np and p(Ng) = 0. Put By = f[ Ao]. Then By is Borel and
we have

M = BABO and MQ = f[No] € B(X)
We have that N < N, so
fIN] € f[No] =My X
and
fIN] = f[AAL Aol = f[A] & f[Ao] = B A By.

Hence,

B A By < M.
Furthermore, we have that

prae(Mo) = px (f[ No]) = px(Mo) = 0.
Consequently, the set B is py-null. O
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