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Abstract

The present thesis aims to apply the fundamental principles of Descriptive Set Theory to the discipline
of Game Theory. The discipline of Descriptive Set Theory is an active research area of modern Set
Theory and specializes in the study of the structure of definable sets and functions in Polish spaces. It
dates back to the work of Borel, Baire, and Lebesgue at the beginning of the 20th century.

In the first chapter, we begin by setting out the preliminaries of Set Theory and Theory of Metric and
Topological Spaces, intending to introduce the concept of Polish space in the next chapter. The Polish
spaces are essentially separable completely metrizable spaces. The most fundamental Polish spaces
that have been studied are the Baire space and the Cantor space. Several times in this thesis, these
spaces will be an important tool invoked to extract our results.

In the third chapter of the paper, we define some of the fundamental set operators on subsets of Polish
spaces. We also consider the notion of the pointclass and we list a special category of pointclasses,
the Borel pointclasses of finite order in Polish spaces. We introduce the Hierarchy of Borel sets of
finite order and we refer to their closure properties. We proceed with the study of the more complex
Projective pointclasses of finite order and we describe their hierarchy.

In chapter four, we incorporate the concept of a tree into our study. We will define the space of trees
and we will prove that it is a compact Polish space. In addition, we will refer to a property that many
subsets of Polish spaces have, the “Perfect Set Property”. We will confirm the validity of this property,
both for close and for analytic subsets of Polish spaces, proving the Cantor-Bendixson and Perfect Set
Theorems, respectively. For the proof of the Perfect Set Theorem, we will need to define a new cate-
gory of trees, the trees of pairs.

In the following chapter, we will consider some primary concepts of Measure Theory that are impor-
tant preliminaries for our study. We will begin by mentioning the measure function, its Uniqueness
and Completion. In addition, we will define Borel sets, the Borel measure, and Borel measurables
functions. In turn, we will prove the “Schröder-Bernstein Theorem for good Borel monomorphisms”.
Our goal is, having the Theorem above as a starting point, to prove the “Borel Isomorphism Theorem”
and finally to conclude with the proof that two uncountable Polish spaces are Borel isomorphic.

In chapter six, we will carry out an extensive study in Game Theory, utilizing knowledge from the
previous chapters. The games we will engage in are called “Gale-Stewart”. These are infinite games
of perfect information between two players - player I and player II. We will thoroughly describe
the rules of the games, the strategies that the players follow, as well as the way in which the winner is
determined. Next, we will introduce the term “Determinacy” of a game. We will study some properties
related to Determinacy and prove that the closed, Σ

r

0
2 and Π

r

0
2 subsets of XN are determined. Then,

we describe the G˚-Games, which are a special category of topological games. We will focus on
G˚-Games that unfold on subsets of Baire and Cantor spaces, to assume the determinacy of games
within sets belonging to the pointclasses Σ

r

1
n, with n ě 1, to show that these sets have a non-empty

perfect subset. Ultimately, we study the Covering Games Gµ(A, ε) associated with a subset of the
Cantor space and a σ-finite Borel measure µ on it. A concluding remark for our work on the games
mentioned above is the fact that assuming the determinacy of a game evolving in a set belonging to the
pointclasses Σ

r

1
n, with n ě 1, this set is measurable in terms of the measure µ with which the game is

associated.

Keywords. Polish space, Baire space, Cantor space, Borel pointclasses, Projective pointclasses, tree,
perfect set, infinite game, Gale-Stewart, strategy, winning strategy, Determinacy, G˚-Game, Covering
Game, σ-finite Borel measure



Περίληψη

Η παρούσα μεταπτυχιακή εργασία αποσκοπεί στην εφαρμογή θεμελιωδών αρχών της Περιγραφικής
Θεωρίας Συνόλων στον επιστημονικό κλάδο της Θεωρίας Παιγνίων. Η Περιγραφική Θεωρία Συνό-
λων αποτελεί ενεργή ερευνητική περιοχή της σύγχρονης Θεωρίας Συνόλων, με αντικείμενο μελέτης
τη δομή ορίσιμων συνόλων και συναρτήσεων σε Πολωνικούς χώρους. Οι ρίζες της ανάγονται στο
έργο των Borel, Baire και Lebesgue, στις αρχές του 20ου αιώνα.

Στην εργασία αυτή ξεκινάμε παραθέτοντας στο πρώτο κεφάλαιο κάποια βασικά προαπαιτούμενα
της Θεωρίας Συνόλων, αλλά και της Θεωρίας Μετρικών και Τοπολογικών χώρων, σκοπεύοντας να
εισαγάγουμε στο δεύτερο κεφάλαιο την έννοια του Πολωνικού χώρου. Οι Πολωνικοί χώροι είναι
τοπολογικοί χώροι, πλήρεις και διαχωρίσιμοι ως προς τη μετρική που επάγει την τοπολογία τους.
Δύο από τους σημαντικότερους Πολωνικούς χώρους που έχουν μελετηθεί είναι ο χώρος του Baire
και ο χώρος του Cantor. Αρκετές φορές στην εργασία οι χώροι αυτοί θα αποτελέσουν σημαντικό
εργαλείο και θα τους επικαλεστούμε για να εξαγάγουμε τα αποτελέσματά μας.

Στο τρίτο κεφάλαιο της εργασίας, θα ορίσουμε μερικούς από τους θεμελιώδεις τελεστές συνόλων,
οι οποίοι έχουν ως πεδίο εφαρμογής υποσύνολα Πολωνικών χώρων. Θα αναφερθούμε επίσης
στην έννοια της κλάσης συνόλων και θα παραθέσουμε μία ειδική κατηγορία κλάσεων συνόλων,
τις κλάσεις Borel συνόλων πεπερασμένης τάξης σε Πολωνικούς χώρους. Θα παρουσιάσουμε την
Ιεραρχία των Borel συνόλων πεπερασμένης τάξης και θα αναφερθούμε στις ιδιότητες κλειστότητάς
τους. Συνεχίζοντας, θα προχωρήσουμε στη μελέτη πιο σύνθετων κλάσεων από αυτές των Borel
συνόλων, τις Προβολικές κλάσεις συνόλων πεπερασμένης τάξης και θα περιγράψουμε την ιεραρχία
τους.

Στο τέταρτο κεφάλαιο, εντάσσουμε στη μελέτη μας την έννοια του δένδρου. Θα ορίσουμε τον
Χώρο των δένδρων και θα δείξουμε ότι αποτελεί έναν συμπαγή Πολωνικό χώρο. Επιπλέον, θα
αναφερθούμε σε μία ιδιότητα που έχουν πολλά υποσύνολα των Πολωνικών χώρων, την “Ιδιότητα
του Τέλειου Συνόλου”. Θα επιβεβαιώσουμε την ισχύ της ιδιότητας αυτής, τόσο για τα κλειστά,
όσο και για τα αναλυτικά υποσύνολα Πολωνικών χώρων, αποδεικνύοντας τα Θεωρήματα “Cantor-
Bendixson” και “Τέλειου Συνόλου”, αντίστοιχα. Για την απόδειξη του Θεωρήματος του Τέλειου
Συνόλου θα χρειαστεί να ορίσουμε μία νέα κατηγορία δένδρου, το δένδρο ζευγών.

Προχωρώντας στο επόμενο κεφάλαιο, θα συμπεριλάβουμε στην εργασία αυτή μερικές πρωταρχικές
έννοιες της Θεωρίας Μέτρου που αποτελούν ισχυρό προαπαιτούμενο για τη μελέτη μας. Θα
ξεκινήσουμε κάνοντας αναφορά στη συνάρτηση του μέτρου, στη Μοναδικότητα και στην Πλήρωσή
του. Επιπλέον, θα ορίσουμε τα σύνολα Borel, το μέτρο Borel, αλλά και τις Borel μετρήσιμες
συναρτήσεις. Στη συνέχεια, θα αποδείξουμε το “Θεώρημα Schröder-Bernstein για καλούς Borel
μονομορφισμούς”. Στόχος μας είναι έχοντας ως εφόδιο το Θεώρημα που μόλις αναφέραμε να
αποδείξουμε το “Θεώρημα του Borel ισομορφισμού” και τελικά βασισμένοι στα παραπάνω, να
καταλήξουμε στο συμπέρασμα ότι δύο υπεραριθμήσιμοι Πολωνικοί χώροι είναι Borel ισομορφικοί.

Στο έκτο κεφάλαιο, θα πραγματοποιήσουμε μία εκτενή μελέτη στη Θεωρία Παιγνίων, αξιοποιώντας
τις γνώσεις από τα κεφάλαια που προηγήθηκαν. Τα παίγνια που θα μας απασχολήσουν καλούνται
“Gale-Stewart”. Πρόκειται για άπειρα παίγνια τέλειας πληροφόρησης μεταξύ δύο παικτών - του
παίκτη I και της παίκτριας II. Θα περιγράψουμε τους κανόνες διεξαγωγής των παιγνίων, τις
στρατηγικές που ακολουθούν οι παίκτες, καθώς και τον τρόπο με τον οποίο καθορίζεται ο νικητής.
Στη συνέχεια, θα εισαγάγουμε τον όρο της “Προσδιοριστότητας” ενός παιγνίου. Θα μελετήσουμε
κάποιες ιδιότητες που σχετίζονται με την Προσδιοριστότητα και θα αποδείξουμε ότι τα κλειστά,
τα Σ

r

0
2 και τα Π

r

0
2 υποσύνολα του XN είναι προσδιορισμένα. Προχωρώντας, θα περιγράψουμε τα

G˚-Παίγνια, τα οποία αποτελούν μία ειδική κατηγορία τοπολογικών παιγνίων. Θα εστιάουμε το
ενδιαφέρον μας σε G˚-Παίγνια που εκτυλίσσονται σε υποσύνολα των χώρων των Baire και Can-
tor, με στόχο υποθέτοντας την Προσδιοριστότητα των παιγνίων μέσα σε σύνολα που ανήκουν
στις κλάσεις συνόλων Σ

r

1
n, με n ě 1, να δείξουμε ότι τα σύνολα αυτά έχουν ένα μη κενό τέλειο

υποσύνολο. Τελευταία αφήνουμε να μελετηθούν τα Παίγνια Κάλυψης Gµ(A, ε). Τα παίγνια αυτά



σχετίζονται με ένα υποσύνολο του χώρου του Cantor και ένα σ-πεπερασμένο Borel μέτρο µ μέσα
στον χώρο αυτό. Συμπέρασμα της ενασχόλησής μας με τα προαναφερθέντα παίγνια αποτελεί το
γεγονός ότι υποθέτοντας την Προσδιοριστότητα ενός παιγνίου που εξελίσσεται σε σύνολο που
ανήκει στις κλάσεις συνόλων Σ

r

1
n, με n ě 1, το σύνολο αυτό είναι μετρήσιμο ως προς το μέτρο µ

με το οποίο σχετίζεται το παίγνιο.

Λέξεις Κλειδιά. Πολωνικός χώρος, χώρος του Baire, χώρος του Cantor, κλάσεις Borel συνόλων,
Προβολικές κλάσεις συνόλων, δένδρο, τέλειο σύνολο, άπειρο παίγνιο, Gale-Stewart, στρατηγική,
νικητήρια στρατηγική, Προσδιοριστότητα, G˚-Παίγνιο, Παίγνιο Κάλυψης, σ-πεπερασμένο Borel
μέτρο
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CHAPTER 1

Introduction

1.1. Basic Notions

Let N, Z, Q and R be the sets of natural, integer, explicit, and real numbers respectively, where N
includes 0 so that N = t0, 1, 2, . . . u. The main focus of Descriptive Set Theory is the study of N, R
and their subsets, with particular emphasis on the definable sets of integers and reals.

Given two non-empty sets X and Y , we set Y X as the set of all functions from X to Y . If (Xi)iPI
is a family of non-empty sets, we set

ś

iPI Xi as the family of all functions

f : I Ñ
ď

iPI

Xi

with f(i) P Xi, for each i P I . In the case Xi = X for each i P I , then the set
ś

iPI Xi is obviously
XI . We will be particularly interested in sets of the form XN.

Definition 1.1.1. One-to-one functions are called monomorphisms, while onto functions are
called surjections and we denote them, respectively, as follows:

f : X ↣ Y ðñ f is a monomorphism
f : X ↠ Y ðñ f is a surjection.

Definition 1.1.2. By isomorphism or correspondence we mean a one-to-one function and onto
(bijection). We also denote

f : X↣ÑY ðñ f is an isomorphism.

Definition 1.1.3. If f P Y X , A Ď X and B Ď Y we denote by f [A] the image of A under f
and by f´1[B] the inverse image of B under f , i.e.

f [A] = ty P Y : Dx P X f(x) = yu

f´1[B] = tx P X : f(x) P Bu.

Definition 1.1.4. The restriction of a function f : X Ñ Y on the set A Ď X is denoted by f |A.
In functions f : X Ñ Y we include cases where X , and Y are the empty sets. If X = ∅ or Y = ∅
then we will say that f : X Ñ Y is the empty function.

Remark 1.1.5. We assume that the empty function is always a monomorphism and that f : ∅Ñ
∅ is an isomorphism.

Definition 1.1.6. We define the logical operators of disjunction “_”, conjunction “&”, negation
“␣”, and logical implication “ÝÑ”, as follows:

P (X) _ Q(Y ) ðñ x has the property P or y has the property Q

P (X) & Q(Y ) ðñ x has the property P and y has the property Q

␣ P (X) ðñ x does not have the property P

P (X) ÝÑ Q(Y ) ðñ if x has the property P then y has the property Q.

1.2. Preliminaries of Set Theory

Two sets A, B are called equinumerous if there is a one-to-one and onto functionf : A↣ÑB. In
this case, we write A =c B. We realize the relation “=c” as a mathematical expression of the intuitive
notion “A has the same number of elements as B”. Our notion that the empty function f : ∅ Ñ ∅ is
one-to-one and onto expresses the basic principle that the empty set has the same number of elements
as itself, namely no elements at all.

1



We will say that the set A has a cardinality less than or equal to B, and we will write A ďc B if
there exists a one-to-one function f : A ↣ B. We take “ďc” to be a mathematical expression of
the intuition “A has a smaller or equal number of elements than B”. Our assumption that the empty
function f : ∅Ñ B is always one-to-one expresses the basic principle that the empty set has always
fewer elements than any non-empty set.
The above definitions would not be so important if they did not verify the following fundamental
requirement:

If A has a smaller or equal number of elements than B, and
B has a smaller or equal number of elements than A, then
A and B have the same number of elements.

This is satisfied for the above definitions by the following result.

Theorem 1.2.1 ((Schröder-Bernstein),[7]). For all sets A and B, if A ďc B and B ďc A, then
A =c B.

Continuum Hypothesis (CH).
For every infinite A Ď t0, 1uN, either A =c N or A =c t0, 1u

N.

Cantor believed the Continuum Hypothesis to be true and he had been trying to prove it for many
years, but to no avail. Kurt Gödel proved in 1940 that the negation of the Continuum Hypothesis, i.e.,
the existence of a set with intermediate cardinality, could not be proved in standard set theory. The
second half of the independence of the Continuum Hypothesis, i.e., unprovability of the nonexistence
of an intermediate-sized set, was proved in 1963 by Paul Cohen. The Continuum Hypothesis is in-
dependent of the usual axioms of mathematics. That is, it can neither be proved nor disproved with
the tools of the usual axioms we accept in mathematics. On the other hand, it quickly became known
that every closed subset of R satisfies the Continuum Hypothesis. We conclude that the addition of a
topological condition answers the problem positively.

Axiom of Choice (AC).
For any set A,B, P with P Ď AˆB, if for each x P A there exists y P B, with

(x, y) P P

then there exists a function f : AÑ B, with

(x, f(x)) P P, for all x P A.

The above function f is called choice function. The Axiom of choice is the last of Zermelo’s axioms.
It is an axiom of set theory equivalent to the statement that a “Cartesian product of a collection of
non-empty sets is non-empty”. Informally put, the Axiom of choice says that given any collection of
sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing
one element from each set, even if the collection is infinite.

1.3. Metric and Topological Spaces

Definition 1.3.1. Metric in a non-empty set X is a function d : X ˆX Ñ R with the following
properties

d(x, y) ě 0 and d(x, y) = 0 ðñ x = y

d(x, y) = d(y, x)

d(x, y) ď d(x, z) + d(z, x)

where x, y P X . The pair (X, d) is called metric space.

Definition 1.3.2. The discrete metric d on X is defined by

d(x, y) =

#

1, if x ‰ y,

0, if x = y,

2



for any x, y P X .

In the following definitions, we assume that we are given a metric space (X, d). For each non-
empty Y Ď X we can take the restriction dY of the metric d on the set Y , i.e.

dY (x, y) = d(x, y) for every x, y P Y.

We will call (Y, dY ) subspace of (X, d).

Definition 1.3.3. If x P X and r ą 0 we call open ball of centre x and radius r on (X, d) the set

BX
d (x, r) ” Bd(x, r) ” B(x, r) = ty P X : d(x, y) ă ru.

The point x is an interior point of A Ď X if there is r ą 0 with BX
d (x, r) Ď A. The set A is open if

every x P A is an interior point of A.

Definition 1.3.4. The interior A˝ of A is the set of all interior points of A, equivalently

A˝ =
ď

tV Ď X : V is open and V Ď Xu

Definition 1.3.5. A sequence (xn)nPN in X converges at x P X with respect to the metric d if

lim
nÑ8

d(xn, x)Ñ 0.

We write xn
d
ÝÑ x or more simply xn Ñ x, to state that (xn)nPN converges at x. We say that the

sequence (xn)nPN of elements of A Ď X is convergent at A, if there exists x P A with xn Ñ x.

Definition 1.3.6. We call x P X a boundary point of A Ď X if there is a sequence (xn)nPN in
A with xn Ñ x with respect to d. We allow xn = x for every n P N such that every element of A is
also a boundary point of A. Also, we call x a limit point of A if there exists a sequence (xn)nPN in A
with xn Ñ x and xn ‰ x for every n P N.

Definition 1.3.7. The point x P A is an isolated point of A Ď X if there exists r ą 0 with

B(x, r)XA = txu.

Remark 1.3.8. The boundary points of A are just the isolated points along with its limit points.

Definition 1.3.9. The set A is closed if it contains all of its boundary points (equivalently it
contains all their limit points) while A is perfect if it is closed and has no isolated points.

Definition 1.3.10. The closure A of A is the set of all its boundary points, equivalently

A =
č

tF Ď X : F is closed and F Ě Au

Remark 1.3.11. Obviously, A˝ Ď A Ď A, A is open if and only if A = A˝, and A is closed if
and only if A = A. As is already known, A is open if and only if its complement is closed.

Definition 1.3.12. A set D Ď X is dense in (X, d) if for every x P X and every r ą 0 holds

Bd(x, r)
č

D ‰ ∅.

If D is a dense subset of (X, d) then every element of X is the limit of a sequence of D.

Definition 1.3.13. We call a metric space (X, d) separable if it has a countable dense subset.

Definition 1.3.14. A set K Ď X is compact if for every family of (Vi)iPI open subsets of X with

K Ď
ď

iPI

Vi

there are i1, . . . , in with

K Ď

n
ď

t=1

Vit ,

i.e. for every open cover of K, there is a finite subcover.

3



Definition 1.3.15. A function f : (X, d)Ñ (Y, ρ), where (X, d) and (Y, ρ) are metric spaces, is
continuous at the point x P X if for every r ą 0 there exists δ ą 0 such that

f [Bd(x, δ)] Ď Bρ(f(x), r),

equivalently, for every V Ď Y that is ρ-open there exists W Ď X that is d-open such that f [W ] Ď Y .

Remark 1.3.16. According to the Transfer Principle, f is continuous in x if and only if for any
sequence (xn)nPN in X with xn

d
ÝÑ x holds f(xn)

ρ
ÝÑ f(x).

Definition 1.3.17. A function f is continuous if it is continuous on every x P X or equivalently
for every open V Ď Y the inverse image f´1[V ] is an open subset of X . Finally, we will say that f
is a topological isomorphism.

Definition 1.3.18. Two metrics d1 and d2 on the set X are equivalent, symbolically d1 „ d2,
if they produce the same topology, i.e. for any V Ď X , V is d1-open if and only if V is d2-open.
Equivalently, d1 „ d2 if and only if the identity function

id : (X, d1)↣Ñ (X, d2)

is a topological isomorphism, equivalently, for any sequence (xn)nPN in X and each x P X holds

xn
d1
ÝÑ x ðñ xn

d2
ÝÑ x.

Remark 1.3.19. For each metric space (X, d1) the functions

d2 = mintd1, 1u and d3 =
d1

1 + d1

are metrics equivalent to d1. Note that d2, d3 ď 1, so it is common to assume that the metric takes
values less than or equal to unity.

Definition 1.3.20. A family T of subsets ofX is called a topology onX if it satisfies the following
properties:

i) ∅, X P T ,
ii) @ (Ai)iPI P T we have that

Ť

iPI Ai P T ,
iii) @A1, . . . , An P T we have that

Şn
k=1Ak P T

Otherwise, the family of open sets of a metric space (X, d) is a topology. This family will be called
the topology of (X, d).

Definition 1.3.21. A pair (X, T ) is called a topological space if T is a topology on X . The
elements of T are called open sets of the topological space. The closed subsets of a topological space
are the complements of open ones. A topological space (X, T ) is metrizable or, more simply, T
is metrizable if there exists a metric d on X such that T is the topology of (X, d), i.e. the family of
d-open subsets of X .

Definition 1.3.22. A family V of subsets of a topological space (X, T ) is the basis of topology
of X or, more simply, a basis of X if V Ď T and each U P T is equal to a union (finite or infinite) of
elements of V , i.e. there exists a family of (Bi)iPI elements of V with U =

Ť

iPI Bi. In metric spaces,
this means that each element of V is an open set and each open set is written as a union of elements
of V .

Definition 1.3.23. A sequence (xn)nPN in (X, d) is called Cauchy or basic if for every r ą 0
there exists n0 P N such that for each n,m ě n0 holds d(xn, xm) ă r. The metric space (X, d) is
complete if every Cauchy sequence is convergent in (X, d).

Definition 1.3.24. If we have a topological space (X, T ) and G is a non-empty subset of X then
we can consider G as a topological space with the relevant topology of X , i.e., the topology TG
defined as follows

TG = tV XG : V P T u.
The pair (G, TG) is called the subspace of (X, T ). In the case where (X, T ) is metricated by d then
(G, TG) is metricated by the constraint d|(GˆG) of d in G.
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Definition 1.3.25. The direct sum of two metric spaces (X, dX) and (Y, dY ) is the metric space
(Z, d) with

Z = (t0u ˆX)
ď

(t1u ˆ Y )

and metric

d((i, x), (j, y)) =

$

’

&

’

%

dX(x, y), if i = j = 0,

dY (x, y), if i = j = 1,

1, if i ‰ j.

In other words, we consider two foreign copies of X and Y and place them at a positive distance
from each other. We will denote the direct sum of (X, dX) and (Y, dY ) by X ‘Y and we will always
denote it by the above metric d.

Definition 1.3.26. The Cartesian product of the spaces (X, dX) and (Y, dY ) is the set X ˆ Y
with the metric

d((x1, y1), (x2, y2)) = dX(x1, y1) + dY (x2, y2).

We will consider XˆY with the above metric dSimilarlyway we define the finite Cartesian product
X1 ˆ ¨ ¨ ¨ ˆXn of metric spaces. In particular, in Rn we will consider the metric

d(x⃗, y⃗) =
n

ÿ

k=1

|xk ´ yk|,

where x⃗ = (x1, . . . , xn), y⃗ = (y1, . . . , yn) P Rn.

Product Space and Product Topology.
If we have a sequence of metric spaces ((Xn, dn))nPN then consider the product space

ś

nPNXn

with the metric

d(x, y) =
8
ÿ

n=0

2´n mintdn(x(n), y(n)), 1u,

where x = (x(n))nPN and y = (y(n))nPN P
ś

nPNXn.
If Vn is a basis for the topology of Xn, n P N, then a basis for the topology of

ś

nPNXn is the
family V of all sets of the form

V0 ˆ ¨ ¨ ¨ ˆ Vn ˆXn+1 ˆXn+2 ˆ . . . ,

where Vi P Vi for each i = 0, . . . , n and n P N.

Remark 1.3.27. (Convergence in Product Space). If (xi)iPN is a sequence of elements of
ś

nPNXn

with xi = (xi(n))nPN, i P N, and x = (x(n))n P
ś

nPNXn, then

xi Ñ x in
ź

nPN
Xn ðñ for each n, xi(n)

iÑ8
ÝÝÝÑ x(n) in Xn.

The previous constructions of metric spaces respect completeness and separability. That is, the
direct sum, finitely and infinitely countable product of complete and separable metric spaces is a com-
plete and separable metric space. Also, the previous constructions extend to topological spaces in a
way that respects metrizability.

Definition 1.3.28. The infinite product is defined as described above. If we have topological
spaces (Xn, Tn), n P N, then we define V8 as the family of all sets of the form
(1.1) V0 ˆ ¨ ¨ ¨ ˆ Vn ˆXn+1 ˆXn+2 ˆ . . . ,

where Vi P Ti for each i = 0, . . . , n and n P N. Consider the family T8 of all unions of elements of
V8. Then T8 is a topology on the set

ś

nPNXn, also known as product topology, with the family
V8 as its basis. If Xn, n P N, are metrizable then (

ś

nPNXn, T8) is metrizable with the metric that
we mentioned above.
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CHAPTER 2

Polish Spaces

2.1. Definition of Polish Spaces

In the present chapter, we will introduce the notion of Polish spaces in our study. Polish spaces are
named Polish because they were first extensively studied by Polish topologists and logicians. Some
of them were W. Sierpiński, K. Kuratowski and A. Tarski. However, Polish spaces are mostly studied
today because they are the primary setting for Descriptive Set Theory. Common examples of Polish
spaces are the real line, the Cantor space, and the Baire space. The last two will be discussed in more
detail below.

Definition 2.1.1. A topological space (X, T ) is completely metrizable if it admits a compatible
metric d such that (X, d) is complete. A separable completely metrizable space is called Polish space.
A metric d as above will be called a compatible or suitable metric for X .

Remark 2.1.2. We will usually denote Polish spaces by X , Y , and Z . Some simple examples of
Polish spaces are R and C and their closed subsets, all with the standard topology. A trivial but useful
example of a Polish space is the set of natural numbers N with the standard metric, which is equivalent
to discrete, and every subset of N is open.

Proposition 2.1.3. Given a Polish space X and a topological space Y . If X , Y are topologically
isomorphic, then Y is also a Polish space.

Proof. We consider a compatible metric d for X and a topological isomorphism f : Y ↣Ñ (X , d).
We define the function ρ : Y ˆ Y Ñ R with

ρ(y1, y2) = d(f(x1), f(x2)).

The function ρ is metric on Y . By definition
f : (Y, ρ)↣Ñ (X , d)

is isometry (preserves the distances, and therefore the completeness, by essentially transferring the
Cauchy sequences) and onto. It follows that (Y, ρ) is a complete and separable metric space. Finally,
we show that ρ generates the topology of Y . For every A Ď Y that is open in the topology of Y the
set (f´1)´1[A] = f [A] is d-open because

f´1 : (X , d)↣ÑY

is continuous. Therefore, the set A = f´1[ f [A] ] is ρ-open because f : (Y, ρ)↣Ñ (X , d) is continu-
ous.
Conversely, we assume that B Ď Y is ρ-open. Because f : (X , d)↣Ñ (Y, ρ) is continuous the set
(f´1)´1[B] = f [B] is d-open and since f : Y ↣Ñ (X , d) is continuous B = f´1[ f [B] ] is open in
the topology of Y . □

2.2. Fσ and Gδ Subsets of Polish Spaces

Definition 2.2.1. Let X be a topological space and A Ď X . The set A is an Fσ subset of X , if
there exists a sequence (Fn)nPN of closed subsets of X , with

A =
ď

nPN
Fn.

Definition 2.2.2. Let X be a topological space and A Ď X . The set A is a Gδ subset of X , if
there exists a sequence (Un)nPN of open subsets of X , with

A =
č

nPN
Un.
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It is clear that a set A Ď X is Fσ exactly when its complement XzA is Gδ. Moreover, it is clear
that every closed set F is Fσ as we can get Fn = F , n P N. Equivalently, every open set is Gδ.
Finally, we note that the countable union of Fσ sets is also Fσ set, because if An =

Ť

iPN F i
n, where

n P N and each F i
n is closed, then A = tF i

n | i, n P Nu is a countable family of closed sets and
ď

nPN
An =

ď

A.

It follows that the countable intersection of Gδ sets is also Gδ set.

Definition 2.2.3. Given a metric space (X, d) and a non-empty A Ď X , we define the function
of the distance from the set A,
(2.1) f : X Ñ R : f(x) = d(x,A) = inf td(x, z) : z P Au ě 0.

As is well known, f is a continuous function, for precision we have
|d(x,A)´ d(y,A)| ď d(x, y), x, y P A.

Proposition 2.2.4. If X is a metrizable topological space then every closed set of X , except Fσ,
is also Gδ. Equivalently, every open subset of X is Gδ and Fσ.

Proof. Consider a closed F Ď X , a metric d that generates the topology of X , and the distance
function f = (x ÞÑ d(x, F )) from F , as defined in (2.1) above. (We assume that F ‰ ∅ otherwise
the conclusion is obvious.) For any n P N we define

Un = tx P X : d(x, F ) ă 2´nu.

Then Un = f´1[ (´1, 2´n)] and since f is continuous, the set Un is an open subset of X for every
n P N. Since d(x, F ) = 0 for every x P F it is clear that F Ă XnPNUn. Assume that x P Un for
every n P N. Then there exists a sequence (xn)nPN through F with

d(x, xn) ă 2´n, @n.

Therefore xn
d
ÝÑ x and since F is closed we have x P F . We conclude that F = XnPNUn and hence

F is a Gδ set. □

2.3. Finite Sequences

Consider a non-empty set X . By the term finite sequence in X we describe a function u : ti P
N : i ă nu Ñ X for some n P N. We symbolize such a u with (u(0), . . . , u(n ´ 1)). In the finite
sequences, we also include the empty sequence, which we symbolize with Λ. This follows from the
previous definition for n = 0 where the domain ti P N : i ă 0u of u is the empty set. We symbolize
with XăN the set of all finite sequences in X . The preceding n in the definition of a finite sequence
is unique.

Definition 2.3.1. The length of a finite sequence u : ti P N : i ă nu Ñ X is exactly that unique
n and is symbolized with |u|. Thus we have

|u| = 0 ðñ u = Λ and

u = (u(0), . . . , u(|u| ´ 1)), for all u P XăN.

Definition 2.3.2. The concatenation of u P XăN with v P XăN is the sequence
u ˚ v = (u(0), . . . , u(n´ 1), v(0), . . . , v(|v| ´ 1)).

Remark 2.3.3. Clearly, u ˚ Λ = Λ ˚ u = u for every u P XăN.

Definition 2.3.4. We define the binary relation Ď on the set XăN as follows,
u Ď v ðñ |u| ď |v| and @i ă |u| : (u(i) = v(i)).

Remark 2.3.5. It holds Λ Ď u for all u P XăN. Ď satisfies the three properties of the order:
u Ď u,

(u Ď v & v Ď u) ÝÑ u = v,

(u Ď v & v Ď w) ÝÑ u = w,
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for each u, v, w P XăN.

Definition 2.3.6. The strict part of Ď is the relation Ł with
u Ĺ v ðñ u Ď v & u ‰ v.

It is clear that u Ł v if and only if u Ď v and |u| ă |v|. We will say that u P XăN is an initial part
of v P XăN or that v is an extension of u if u Ď v. We will also say that u is a strict initial part of v
or that v is a strict extension of u if u Ĺ v. Also,v is a direct extension of u if v = u ˚ (x) for some
x P X . Two finite sequences u, v are said to be compatible, symbolically u}v if u Ď v or v Ď u.

Definition 2.3.7. We define the coding function
x ¨ y : NăN Ñ N : u = (u(0), . . . , u(n´ 1)) ÞÑ xu(0), . . . , u(n´ 1)y

as follows:

xu(0), . . . , u(n´ 1)y =

#

p
u(0)+1
0 . . . p

u(n´1)+1
n´1 , if n ě 1,

1, if n = 0.

Definition 2.3.8. We symbolize with Seq the set of all values of x ¨ y,

Seq = ts P N : Du P NăN s = xu(0), . . . , u(n´ 1)yu.

If s = xu(0), . . . , u(n´ 1)y we say that s is a code for u.

Definition 2.3.9. We define the natural enumeration (us)sPN of NăN in terms of the coding x ¨ y
as follows:

us =

#

(k0, . . . , kn´1), if s = xu(0), . . . , u(n´ 1)y P Seq,
Λ, if otherwise.

Remark 2.3.10. We mention that we will consider the set NăN with the topology generated by
the discrete metric, where each subset of NăN is open. Since NăN is a countable set it follows that it
is a Polish space.

2.4. Baire Space and Cantor Space

The Baire Space

Definition 2.4.1. (Baire’s space). Consider the set NN of all functions from N to N (infinite
sequences). We denote the elements of NN with α, β, γ, . . . and the set NN with N . For α, β P N
with α ‰ β we set

n(α, β) = the least n P N with α(n) ‰ β(n).

We define the function dN : N ˆN Ñ R,

dN (α, β) =

#

2´n(α,β), if α ‰ β,

0, if α = β,
.

Then the function dN is metric in N . The metric space (N , dN ) is called Baire space.

Definition 2.4.2. For each u P NăN we define the basic region of Baire’s space,
Nu = tα P N : u Ď αu

= tu(0)u ˆ ¨ ¨ ¨ ˆ tu(|u| ´ 1)u ˆ Nˆ Nˆ . . .
(2.2)

Remark 2.4.3. Note that for any r ą 0 if n is the minimal natural with 2´n ă r then for each
α, β P N

dN (α, β) ă r ðñ @i ă n α(i) = β(i).

Hence the dN -open ball of center α P N and radius r ą 0 is the set of all β P N that agree with α up
to n´ 1, i.e.

BdN (α, r) = Nα|n

= tα(0)u ˆ tα(1)u ˆ ¨ ¨ ¨ ˆ tα(n´ 1)u ˆ Nˆ Nˆ . . .
(2.3)

In the case where n = 0 then Nα|0 = NΛ = N .
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We observe that every open ball in (N , dN ) is a set of the form Nu with u P NăN, and reverse,
every set of the form Nu is an open ball, namely BdN (u ˚ (0, 0, 0, . . . ), 2´(|u|´1)).

The following Proposition is a direct consequence of (2.3).

Proposition 2.4.4. For every sequence (αi)iPN in N and every α P N we have

αi
dN
ÝÝÑ α ðñ @n lim

iÑ8
αi(n) = α(n)

ðñ @n Din @i ě in αi(n) = α(n).
(2.4)

Hence, the convergence in product topology is the pointwise convergence.

Proof. Note that the last equivalence holds because αi(n), α(n) are natural numbers. Therefore,
we will show the first equivalence.
For the straight direction we consider αi

dN
ÝÝÑ α and we get n P N. From Remark 2.4.3 for r = 2´n

the ball BdN (α, 2´n) is equal to the set Nα|(n+1). Since the sequence (αi)iPN converges at α(n) we
have

αi P BdN (α, 2´n) = Nα|(n+1), for all large i.
In particular, αi(n) = α(n) for all large i.
Conversely, we assume that for every n P N we have

lim
iÑ8

αi(n) = α(n).

We consider r ą 0 and N the minimal natural with 2´N ă r. By Remark 2.4.3 we have

BdN (α, r) = Nα|N .

For every n ď N we have
lim
iÑ8

αi(n) = α(n)

and as we mentioned there exists in P N such that for every i ě in, it holds that αi(n) = α(n). We
set

i0 = maxtin : n ď Nu,

then for every i ě i0 and every n ă N we have αi(n) = α(n). Therefore for each i ě i0 we have
αi|n = α|N , i.e.

αi P Nα|N = BdN (α, r).

□
Proposition 2.4.5. The topology of (N , dN ) is the product topology on NN.

Proof. Since the open balls in a metric space are the basis for the metric space’s topology, it
follows from Remark 2.4.3 that the sets Nu, with u P NăN, are dN -open and furthermore are the basis
for the topology of (N , dN ).

Moreover, since the singletons in N are the basis for the topology of N, we have from 1.1, that Nu

are the basis for the product topology on NN.
Hence, the topology of (N , dN ) and the product topology of NN have a common basis and are,

subsequently, equal. □
Proposition 2.4.6. The space (N , dN ) is a complete and separable metric space. Hence, the

Baire space N is a Polish space.

Proof. The final null sequences

αu = u ˚ (0, 0, 0, . . . ) = (u(0), . . . , u(|u| ´ 1), 0, 0, 0, . . . ), u P NăN

are a countable and dense set of (N , dN ), because αu P Nu for each u P NăN. Therefore, the space
(N , dN ) is separable.
To prove the completeness, we consider a dN -Cauchy sequence (αi)iPN.
We stabilize an n P N. Then there exists an in P N such that for every i, j ě in we have

dN (αi, αj) ă 2´n.
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It follows that
(2.5) αi(k) = αj(k), for every k = 0, . . . , n and each i, j ě in.

In particular, the sequence of natural numbers (αi(n))iPN is finally constant and equal to the number
αin(n). Therefore, we define

α : NÑ N : α(n) = lim
iÑ8

αi(n) = αin(n)

where in is as above. It is clear from (2.5) that
αi(k) = αin(k) = α(k)

for every i, j ě in and every k = 0, . . . , n. From (2.4) it follows that αi
dN
ÝÝÑ α. Hence, the space

(N , dN ) is complete and so it is a Polish space. □
Theorem 2.4.7 ([2]). For each Polish space X there is a continuous surjection π : N ↠ X .

Proof. Consider a suitable metric d on X and a set
D = trn : n P Nu

which is a countable and dense subset of X . Each x P X is the limit of a sequence (rkn)nPN of
(rn)nPN. The idea is to take α = (kn)nPN P NN and then we will have

x = lim
nÑ8

rα(n).

The last limit will be the value of π in α. A problem that arises is that the sequence (rα(n))nPN may not
converge for every α P N. To fix this, we will replace the sequence (rα(n))nPN with another sequence,
let us denote it by (xαn)nPN, which converges for every α and the function

a ÞÑ lim
nÑ8

xαn

is continuous. Moreover, for a sufficiently large collection of α P N, the (xαn)nPN is not substantially
different from (rα(n))nPN and therefore each x P X will be taken as the limit of a sequence of the form
(xαn)nPN, i.e. we will have a surjection.

We now proceed to the construction of π. We first define a family (xu)uPNăNztΛu of elements of
X with induction on the length |u| of u P NăNztΛu.
For |u| = 1 with u = (k0), we define xu = x(k0) = rk0 . We assume that for some n ą 1 have been
defined xw for each w P NăN, with 1 ď |w| ă n.

Consider u P NăN with |u| = n. We temporarily setw = (u(0), . . . , u(n´2)) and k = u(|u|´1)
such that u = w ˚ (k). Obviously, |w| = n´ 1 and, by the Inductive Hypothesis, xw is defined. We
define

xu =

#

rk, if d(xw, rk) ă 2´n,

xw, otherwise.

Thus the family (xu)uPNăNztΛu. It is clear from the above definition that d(xw, rk) ă 2´|u| where
u = w ˚ u(|u| ´ 1). It follows that for any w Ĺ u with u = w ˚ (k0, . . . , km),

d(xw, xu) ď d(xw, xw˚(k0)) + ¨ ¨ ¨+ d(xw˚(k0,...,km´1), xu)

ă 2´(|w|+1) + ¨ ¨ ¨+ 2´|u|

ă

8
ÿ

k=1

2´(|w|+k) = 2´|w|.

Therefore for each α P N and each 1 ď n ď m we have
(2.6) d(xα|n, xα|m) ă 2´n.

Hence for every α P N the sequence (xα|n)nPN is d-Cauchy. Since (X , d) is complete, we can define
the function

π : N Ñ X : π(α) = lim
nÑ8

xα|n.

Taking limit mÑ8 in (2.6) we have
d(xα|n, π(α)) ď 2´n, @ α P N , @ n P N.
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Therefore, if β P Nα|n, i.e. if β|n = α|n, then

d(π(α), π(β)) ď d(π(α), xα|n) + d(xα|n, π(β)) ď 2´n+1,

for each α, β P N and each n P N. It is straightforward that π is continuous (and indeed uniformly
continuous). Finally, we show that π is an epimorphism. If x P X , we define α : NÑ N as follows:

(2.7) α(n) = the least k P N with d(rk, x) ă 2´(n+3).

(For every n P N there exists such a k because the set D = trk : k P Nu is dense.) Then,

d(rα(n), x) ă 2´(n+3)

and
d(rα(n), rα(n+1)) ď d(rα(n), x) + d(x, rα(n+1)) ă 2´(n+3) + 2´(n+4) ă 2´(n+2),

for each n P N. It follows by induction that
xα|(n+1) = rα(n), for every n P N.

(That is, for this α the first case of the definition of xα|n always occurs.) Therefore,
π(α) = lim

nÑ8
xα|n = lim

nÑ8
xα|(n+1) = lim

nÑ8
rα(n) = x

and π is a surjection. □
Remark 2.4.8. The function π : N ↠ X of the previous Theorem admits an inverse function.

That is, there exists a monomorphism τ : X ↣ N with
π((τ(x)) = x, for every x P X and τ(π(α)) = α, for everyα P τ [X ] .

If we set α = τ(x) then as we have shown π(α) = x, i.e. π(τ(x)) = x, for every x P X . From this it
follows that τ is a monomorphism,

τ(x1) = τ(x2) ùñ π(τ(x1)) = π(τ(x2)) ùñ x1 = x2.

Moreover, for each α = τ(x) we have
τ(π(α)) = τ(π(τ(x))) = τ(x) = α.

Corollary 2.4.9. Every Polish space has a cardinal number less than or equal to the cardinality
of the continuum.

Proof. For every Polish space X , by Remark 2.4.8 there exists a monomorphism f : X ↣ N .
Hence, X ďc N =c R. □

The Cantor Space

Definition 2.4.10. The set of all binary (infinite) sequences is the t0, 1uN which is also symbolized
with 2N. This is a subset of N and we consider on it the metric

d2N = dN |(2
N ˆ 2N).

The metric space (2N, d2N) is called Cantor’s space.

Remark 2.4.11. A basis for Cantor topology consists of all sets of the form Nu Y 2N, where
u P NăN, precisely because Nu, u P NăN form the basis for topology of N . Obviously, NuY2N = ∅
when there exists i ă |u| with u(i) ą 1, hence we can restrict to u P t0, 1uăN. We, therefore,
conclude that a basis for the topology of Cantor space consists of all sets of the form

N 2N
u = tα P 2N : u Ď αu, u P t0, 1uăN.

The topology of Cantor space is the relative topology of the Baire space, which is the product
topology product on NN. It follows that the topology of Cantor space is the product topology on the
set t0, 1uăN.

Remark 2.4.12. The convergence of sequences on 2N is characterized as in the case of the Baire
space N . That is, for each sequence (αi)iPN in 2N and every α P 2N we have

αi
d
2N
ÝÝÑ α ðñ @n lim

iÑ8
αi(n) = α(n)

ðñ @n Din @i ě in αi(n) = α(n).
(2.8)
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Proposition 2.4.13. The space (2N, d2N) is a compact metric space, and therefore the correspond-
ing topological space is a Polish space.

Proof. If we show that (2N, d2N) is a compact metric space, equivalently that 2N is a compact
subset of N , we will also have that 2N is closed in N . Therefore, we will have that 2N is a Polish
space. To prove the compactness, we observe that

2N = t0, 1uN =
ź

nPN
t0, 1u.

We know that the Cartesian product of compact sets is a compact set (for a random product of topolog-
ical spaces we need the Tychonoff Theorem but here we have only a countable product). Since t0, 1u is
a compact subset of N we have that

ś

nPNt0, 1u is a compact subset of NN with the product topology.
By Proposition 2.4.5, this is the topology of the Baire space, so 2N is a compact subset of N . Hence,
2N is a Polish space. □

Theorem 2.4.14 ([2]). For every perfect Polish space X there exists a continuous monomorphism
τ : 2N ↣ X .

Proof. We set I = t0, 1uăN and fix a compatible metric d to X . We recursively construct a family
(Vu)uPI from d-open balls of X with the following properties:

radius(Vu) ď 2´|u|,

Vu˚(i) Ď Vu, i = 0, 1 and Vu˚(0) X Vu˚(1) = ∅, for each u P I.
(2.9)

In the basic step we choose an x0 P X and obtain VΛ = Bd(x0, 1). We assume that for some n ě 1
we have defined Vu as above for all w P I with 1 ď |w| ă n.

We define Vu˚(i), i = 0, 1, for all w P I with |w| = n´1. Consider such a w. The ball Vw cannot
contain only its center, otherwise this would be a single point of X . Therefore there are elements

xw0 , x
w
1 of Vw, with xw0 ‰ xw1 .

Since Vw is an open set, there are open balls Bw
0 and Bw

1 with centres at xw0 , xw1 respectively, with
radii less than or equal to 2´n, also satisfying

Bw
0 XBw

1 = ∅ and Bw
i Ď Vw Ď Vw, i = 0, 1.

So we define Vw˚(i) = Bw
i , for i = 0, 1. It is clear that the properties of (2.9) are satisfied. This

completes the construction.
For each α P 2N, (Vα|n)nPN is a decreasing sequence of non-empty closed sets whose diameter

converges to 0. Since (X , d) is complete, from the Cantor’s Intersection Theorem, the intersection
č

nPN
Vα|n

is a singleton. We define
τ : 2N Ñ X : tτ(α)u =

č

nPN
Vα|n.

If α ‰ β are elements of 2N and n is the least k with α(k) ‰ β(k) then

α|n = β|n and α(n) ‰ β(n).

Without loss of generality, we assume α(n) = 0 and β(n) = 1. We also set w = α|n = β|n. Then
τ(α) P Vα|(n+1), τ(β) P Vβ|(n+1), and

Vα|(n+1) X Vβ|(n+1) = Vw˚(0) X Vw˚(1) = ∅.

Therefore τ(α) ‰ τ(β).
Finally, we will show that τ is continuous. We set

xu = the center of the open ball Vu.

Let α P 2N. Then for every n we have τ(α) P Vα|n and therefore

d(τ(α), xα|n) ď radius(Vα|n) ď 2´n.
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Therefore, if β P Nα|n, i.e. if β|n = α|n, then

d(τ(α), τ(β)) ď d(τ(α), xα|n) + d(xα|n, τ(β)) ď 2 ¨ 2´n = 2´n+1.

It follows from the above that τ is continuous. □
Proposition 2.4.15. Every non-empty perfect subset of a Polish space has the cardinality of the

continuum.

Proof. If X is a Polish space and P is its non-empty perfect subset, then P with the relevant
topology is a perfect Polish space. By Theorem 2.4.14, there exists a continuous monomorphism
τ : 2N ↣ P and in particular 2N ďc P . Hence,

R =c t0, 1u
N = 2N ďc P ďc R,

where in the last relationďc we have used the Corollary 2.4.9. By Theorem 1.2.1 (Schröder-Bernstein),
we conclude that P =c R. □
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CHAPTER 3

Pointclasses

3.1. Fundamental Οperators

In this chapter, we will study several set operators, restricting the scope of these operators to
subsets of Polish spaces. Τhen, we will define the notion of pointclass and we will focus on some
closure properties. In the last two sections of the chapter, we will present the definitions of the Borel
Pointclasses and the Projective Pointclasses of Finite Order.

Definition 3.1.1. Using the term set operator we mean any operation between sets. The operators
we will study are the following:

i) The operator of the disjunction _.
If we have P,Q Ď X we define the set of the disjunction P _Q Ď X by

x P P _Q ðñ x P P or x P Q.

Here we are slightly abusing symbolism. As we have mentioned, we will use the symbol _ to denote
the operator of the disjunction within logical sentences. At this point, we use the same symbol to
symbolize an operation between sets. The obvious relation holds

x P P _Q ðñ x P P _ x P Q.

ii) The operator of the conjunction &.
If we have P,Q Ď X we define the set of coupling P & Q Ď X by

x P P & Q ðñ x P P and x P Q.

Note that P & Q is the set-theoretic intersection P X Q, so we will also call the conjunction P & Q
the intersection of P,Q. Similar observations hold with those of the operator of the disjunction.

iii) The complement operator c.
If P Ď X we define the complement cXP of P with respect to X as the set X zP . Clearly,

x P cXP ðñ ␣(x P P ).

iv) The operator of the infinite countable disjunction or union
Ž

N.
If we have a sequence of sets Pn P X , n P N, we define the infinite disjunction

Ž

N(Pn)nPN as
follows,

x P
Ž

N(Pn)nPN ðñ Dn P N x P Pn.

In other words, the infinite disjunction
Ž

N(Pn)nPN is the union
Ť

nPN Pn of subsets of the same Polish
space. As before, we will call the infinite disjunction a union.

v) The operator of the infinite numerical conjunction or intersection
Ź

N.
If we have a sequence of sets Pn P X , n P N, we define the infinite conjunction

Ź

N(Pn)nPN as
follows,

x P
Ź

N(Pn)nPN ðñ @n P N x P Pn.

The infinite conjunction
Ź

N(Pn)nPN is the intersection
Ş

nPN Pn of subsets of the same Polish space,
and we will call it an intersection.

vi) The operator of the existential quantifier DYP over Y .
If we have a P Ď X ˆ Y we define the set

DYP = tx P X : Dy (x, y) P P u.
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Then, DYP is exactly the projection of P over Y . In other words
DYP = pr[P ] , where

pr : X ˆ Y Ñ X : pr(x, y) = x.

vii) The operator of the universal quantifier @YP over Y .
If we have a P Ď X ˆ Y we define the set

@YP = tx P X : @y (x, y) P P u.

It is evident that
@YP = cX (DY(c(XˆY)P )).

viii) The operator of the bounded existential quantifier Dď.
Given P Ď X ˆ N we define the set DďP Ď X ˆ N as follows

(x, n) P DďP ðñ Dm ď n (x,m) P P

Note that the set DďP remains a subset of X ˆ N.

ix) The operator of the bounded universal quantifier @ď.
Given P Ď X ˆ N we define the set @ďP Ď X ˆ N as follows

(x, n) P @ďP ðñ @m ď n (x,m) P P

Note that the set @ďP remains a subset of X ˆ N.

x) The operator of the finite union
Ž

ď.
Given finite P0, . . . , Pn Ď X , we define the set

Ž

ď(P0, . . . , Pn) = P0 Y ¨ ¨ ¨ Y Pn.

In other words,
Ž

ď(P0, . . . , Pn) is the finite union of the sets P0, . . . , Pn. We clarify that n is a
random natural number. That is, the field of the operator

Ž

ď is all the non-empty finite sequences of
subsets of the same space.

xi) The operator of the finite intersection
Ź

ď.
Given finite P0, . . . , Pn Ď X , we define the set

Ź

ď(P0, . . . , Pn) = P0 X ¨ ¨ ¨ X Pn.

That is,
Ź

ď(P0, . . . , Pn) is the finite intersection of the sets P0, . . . , Pn. We clarify that n is a random
natural number. That is, the field of the operator

Ź

ď is all the non-empty finite sequences of subsets
of the same space.

3.2. Closure of Pointclasses

Definition 3.2.1. We define as pointclass the collection of all sets in metric spaces characterized
by a particular property. For example, we will refer to the class of open sets. The pointlasses will
usually be denoted by Γ. Unless otherwise stated the classes of sets will refer to subsets of Polish
spaces.

Remark 3.2.2. For each Polish space X and each pointclass Γ we set
Γ(X ) = tA Ď X : A belongs to the pointclass Γu

We will say that an A Ď X is a Γ-subset of X if A P Γ(X ).

Remark 3.2.3. If Φ is one of the operators defined earlier, we denote by ΦΓ the class resulting
from all sets of the form ΦP where P belongs to Γ and falls within the scope of Φ.

Definition 3.2.4. We will say that the class Γ is closed under the operator Φ if the result of the
action of Φ to the sets of Γ falling within its scope is a set belonging to Γ, equivalently

ΦΓ Ď Γ.
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We will also refer to a class of functions. This term means a collection of functions among metric
spaces (usually Polish spaces) characterized by a certain property. For example, we have the class of
continuous functions.

Definition 3.2.5. A class Γ is closed under continuous substitution if for every continuous
function

f : X Ñ Y
and every Q P Γ(Y) we have f´1[Q] P Γ(X ), equivalently the set P Ď X defined as follows

x P P ðñ f(x) P Q

belongs to Γ.

Definition 3.2.6. More precisely, if we have a class of functions Γ1 we will say that Γ is closed
under Γ1-substitution if for every

f : X Ñ Y
belonging toΓ1 and for everyQ P Γ(Y)we havef´1[Q] P Γ(X ). Hence, the closure under continuous
substitution is closure under Γ1-substitution, where Γ1 is the class of all continuous functions.

3.3. The Borel Pointclasses of Finite Order

Definition 3.3.1. We define the Borel pointclasses of finite order (for subsets of Polish spaces)
by recursion for n ě 1 as follows:

Σ
r

0
1 = the pointclass of all open sets,

Π
r

0
1 = cΣ

r

0
1 = the pointclass of all closed sets,

and

Σ
r

0
n+1 =

ł

N
Π
r

0
n = the countable unions of sets of Π

r

0
n,

Π
r

0
n+1 = cΣ

r

0
n+1 = the complements of sets of Σ

r

0
n+1.

Finally, we set
∆
r

0
n = Σ

r

0
n X Π

r

0
n.

The pointclasses Σ
r

0
n are the Borel pointclasses of finite order, while Π

r

0
n and ∆

r

0
n are the dual and

ambiguous Borel pointclasses of finite order, respectively. The collection of the aforementioned
pointclasses is called the Borel Hierarchy of sets of finite order and visualized in the Diagram 3.1,
below.

Σ
r

0
1(X ) Σ

r

0
2(X )

Ď Ď  Ď Ď  
∆
r

0
1(X ) ∆

r

0
2(X ) ¨ ¨ ¨

Ď  Ď Ď  Ď 
Π
r

0
1(X ) Π

r

0
2(X )

Σ
r

0
n(X )

Ď Ď  
∆
r

0
n(X ) ¨ ¨ ¨

Ď  Ď 
Π
r

0
n(X )

Diagram 3.1. The Borel Hierarchy of subsets of X of finite order.

Remark 3.3.2. The pointclassΣ
r

0
2 consists exactly of theFσ sets and thereforeΠ

r

0
2 consists exactly

of the Gδ sets.

Proposition 3.3.3. For every Polish space X and every n ě 1 we have

Σ
r

0
n(X ) Ď ∆

r

0
n+1(X ) and also Π

r

0
n(X ) Ď ∆

r

0
n+1(X ).
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Proof. We show by induction on n ě 1 that

Σ
r

0
n(X ) Ď Σ

r

0
n+1(X ) and Σ

r

0
n(X ) Ď Π

r

0
n+1(X ).(3.1)

Obviously from the above we obtain the inclusions Σ
r

0
n(X ) Ď ∆

r

0
n+1(X ). For n = 1, by Proposition

2.2.4 every open subset of X is Fσ and Gδ, so that by Remark 3.3.2 we have

Σ
r

0
1(X ) Ď Σ

r

0
2(X ) and Π

r

0
1(X ) Ď Π

r

0
2(X ).

We assume that for some n ě 1, (3.1) holds and we will prove this, respectively, for n + 1. Let A P
Σ
r

0
n+1(X ). Then by definition there is a sequence (Bi)iPN of Π

r

0
1 subsets of X with A = YiPN(Bi).

We have
XzBi P Σ

r

0
n(X ) Ď Σ

r

0
n+1(X )

where in the last inclusion we used the Inductive Hypothesis. So,

B P Π
r

0
n+1(X ), @i P N

and
A = YiPN(Bi) P

ł

N
Π
r

0
n+1(X ) = Σ

r

0
n+2(X ).

Moreover, if we take Ai = A for each i P N we have that A = XiPN(Ai) and Ai P Σ
r

0
n+1(X ) for

each i P N. Therefore

X zA = YiPN(X zAi) P
ł

N
Π
r

0
n+1(X ) = Σ

r

0
n+2(X )

and therefore A P Π
r

0
n+2(X ). Thus we have shown (3.1) for n+ 1. It is also clear that the inclusions

Π
r

0
n(X ) Ď ∆

r

0
1(X ) are direct from those of (3.1) by taking the complements. □

Remark 3.3.4. For any natural number n ě 1, any Polish space X and each A P Σ
r

0
n(X ˆ X )

the sets Ai Ď X , i P N, defined as follows

x P Ai ðñ (x, i) P A

also belong to the pointclass Σ
r

0
n.

Lemma 3.3.5. Consider a natural number n ě 1, a Polish space X , and a sequence of sets
(Bi)iPN belonging to the family Σ

r

0
n(X ). Then the set B Ď X ˆ N defined as follows

(x, i) P B ðñ x P Bi

belongs to the pointclass Σ
r

0
n.

The above also holds if we replace the class Σ
r

0
n with Π

r

0
n.

Proposition 3.3.6. (Equivalent Definition of Σ
r

0
n Pointclasses) For each n ě 1 we have

Σ
r

0
n+1 = D

N Π
r

0
n and hence Π

r

0
n+1 = @

N Σ
r

0
n.

Proof. We temporarily define the classes

Σ
r

˚
1 = the pointclass of all open sets = Σ

r

0
1

Π
r

˚
1 = the pointclass of all closed sets = Π

r

0
1

and
Σ
r

˚
n+1 = DN Π

r

˚
n

Π
r

˚
n+1 = cΣ

r

˚
n+1.

We will show by induction on n ě 1 that

Σ
r

0
n(X ) = Σ

r

˚
n(X ) and Π

r

0
n(X ) = Π

r

˚
n(X ).

The latter equality is derived from the former equality by taking the complements. For n = 1 the
requirement is straightforward by definition. We assume that for some n ě 1 we have the requirement
and show the same for n+ 1.
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Let P Ď X in Σ
r

˚
n+1. Then there exists A P Π

r

˚
n(X ˆ N) with P = DNA. By the Inductive

Hypothesis, we have that A P Π
r

0
n(X ˆ N). We apply Remark 3.3.4 for the pointclass Π

r

0
n and we

have that for each i P N the set
Ai = tx : (x, i) P Au

belongs to Π
r

0
n. Moreover

x P P ðñ Di (x, i) P A

ðñ Di x P Ai,

therefore
P =

ď

iPN
Ai.

It follows that P belongs to Σ
r

0
n+1(X ). Conversely, consider a P Ď X belonging to Σ

r

0
n+1 and (Bi)iPN

a sequence of elements of Π
r

0
n(X ) such that

P =
ď

iPN
Bi.

By Lemma 3.3.5 the set
B = t(x, i) : x P Biu

also belongs to Π
r

0
n. By the Inductive Hypothesis, B P Π

r

˚
n(X ˆ N). Moreover

x P P ðñ Di x P Bi

ðñ Di (x, i) P B,

and therefore P = DNB P Σ
r

˚
n+1(X ). □

Theorem 3.3.7 ([6], [8]). (The Fundamental Closure Properties of Borel classes of finite order).
The pointclasses Σ

r

0
n, Π

r

0
n and ∆

r

0
n where n ě 1, are closed under continuous substitution as well as

under the operators _, &, Dď, @ď,
Ž

ď,
Ź

ď.
‚ The classes Σ

r

0
n are additionally closed under the operators

Ž

N, DN and more generally DY ,
where Y is a countable Polish space.

‚ The classes Π
r

0
n are additionally closed under the operators

Ź

N, @N and more generally @Y ,
where Y is a countable Polish space.

‚ The classes ∆
r

0
n are additionally closed under the complement operator c.

3.4. The Projective Pointclasses of Finite Order

Definition 3.4.1. We define the Projective pointclasses of finite order (for subsets of Polish
spaces) by recursion for n ě 1 as follows:

Σ
r

1
1 = DN Π

r

0
1

= the projections of closed sets F Ď X ˆN over X ,where X is a Polish space,

Π
r

1
1 = cΣ

r

1
1

= the complements of sets of Σ
r

1
1,

and
Σ
r

1
n+1 = DN Π

r

1
n

= the projections of Π
r

1
n sets F Ď X ˆN over X ,where X is a Polish space,

Π
r

1
n+1 = cΣ

r

1
n+1

= the complements of sets of Σ
r

1
n+1.

Remark 3.4.2. It is quite convenient to set Π
r

0
1 = Π

r

1
0 and Σ

r

1
0 = Σ

r

0
1 so that

Σ
r

1
n = DN Π

r

1
n´1 and Π

r

1
n = @N Σ

r

1
n´1, for each n ě 1.

Finally, we set
∆
r

1
n = Σ

r

1
n X Π

r

1
n.
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It follows that a P Ď X belongs to ∆
r

1
n if and only if the sets P and X zP belong to Σ

r

1
n. The

pointclasses Σ
r

1
n are called projective or otherwise pointclasses of Lusin while the Π

r

1
n and ∆

r

1
n

are the dual and ambiguous projective pointclasses, respectively. The collection of the preceding
pointclasses is called the Hierarchy of projective sets and is visualized in the Diagram 3.2, below.
The sets of pointclass Σ

r

1
1 are called analytic and those of the pointclass Π

r

1
1 are called coanalytic.

Also, the sets of the pointclass ∆
r

1
1 are called bi-analytic.

Σ
r

1
1(X ) Σ

r

1
2(X )

Ď Ď  Ď Ď  
∆
r

1
1(X ) ∆

r

1
2(X ) ¨ ¨ ¨

Ď  Ď Ď  Ď 
Π
r

1
1(X ) Π

r

1
2(X )

Σ
r

1
n(X )

Ď Ď  
∆
r

1
n(X ) ¨ ¨ ¨

Ď  Ď 
Π
r

1
n(X )

Diagram 3.2. The Hierarchy of projective subsets of X of finite order.

Proposition 3.4.3. For every Polish space X and every n ě 1 we have

Σ
r

1
n(X ) Ď ∆

r

1
n+1(X ) and also Π

r

1
n(X ) Ď ∆

r

1
n+1(X ).

Proof. The second inclusion follows from the first by taking the complement of the set. For the
first inclusion, we will show that for each Polish space X every closed subset F of X is ∆

r

1
1. We

first show the inclusion Σ
r

1
n(X ) Ď Π

r

1
n+1(X ). Consider P Ď X belonging to Σ

r

1
n and Q Ď X ˆN

belonging to Π
r

1
n´1, such that P = DNQ. We set R = QˆN and we claim that R is also Π

r

1
n´1 set.

For each (x, α, β) P X ˆN ˆN we have
(x, α, β) P R ðñ (x, α) P Q

and R belongs to Π
r

1
n´1 due to the closure under continuous substitution. Moreover, for each x P X

we have
x P P ðñ Dα (x, α) P Q

ðñ @β Dα (x, α, β) P R.

Thus P belongs to the pointclass @N DNΠ
r

1
n´1 = @

NΣ
r

1
n = Π

r

1
n+1.

We then show that each closed set is Π
r

1
1 subset of the same space. Let X be a polynomial space

and F Ď X closed. The set F , as closed, is also a Gδ therefore there is a sequence (Vn)nPN of open
subsets of X with

F =
č

nPN
Vn.

Consider the set
V = t(x, α) P X ˆN : x P Vα(0)u

It is easy to see that V is an open subset of X ˆN . Moreover for every x P X ,
x P F ðñ @n x P Vn

ðñ @α x P Vα(0)

ðñ @α (x, α) P V.

Therefore F is a @NΣ
r

0
1 = Π

r

1
1. Then we show by induction on n ě 1 that for every Polish space X

we have
Σ
r

1
n(X ) Ď Σ

r

1
n+1(X ).

For n = 1, consider a Polish space X and P Ď X belonging to Σ
r

1
1. Then there exists a closed set

F Ď X ˆN , such that P = DNF . We have shown that F as a closed set, is a Π
r

1
1 subset of X ˆN .

Therefore P is an DNΠ
r

1
1 = Σ

r

1
2 subset of X . Assume that for some n ě 1 and every Polish space X

we have
Σ
r

1
n(X ) Ď Σ

r

1
n+1(X ), equivalently Π

r

1
n(X ) Ď Π

r

1
n+1(X ).

Let X be a Polish space and a set P Ď X P Σ
r

1
n+1. We will show that P is Σ

r

1
n+2 subset of X . By

definition, there exists a Π
r

1
n set Q Ď X ˆN with P = DNQ.
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By the Inductive Hypothesis applied to the space X ˆN , the set Q is a Π
r

1
n+1. Therefore, P is a

DNΠ
r

1
n+1 = Σ

r

1
n+2 subset of X . □

Theorem 3.4.4 ([11], [8]). (The Fundamental Closure Properties of Lusin’s Classes). The point-
classes Σ

r

1
n, Π

r

1
n and ∆

r

1
n, where n ě 1, are closed under continuous substitution and the operators

_, &, Dď, @ď,
Ž

ď,
Ź

ď, DN, @N,
Ž

N,
Ź

N.
‚ The pointclasses Σ

r

1
n are further closed under the operator DY , where Y is a Polish space.

‚ The pointclasses Π
r

1
n are additionally closed under the operator @Y , where Y is a Polish space.

‚ The pointclasses ∆
r

1
n are additionally closed under the complement operator c.

Corollary 3.4.5. (Equivalent Definition of Σ
r

1
n Pointclasses). For each n ě 1 the pointclass Σ

r

1
n

consists exactly of the continuous images of Π
r

1
n´1 sets.

Proof. Each Σ
r

1
n set is a projection (and therefore a continuous image) of a Π

r

1
n´1 set, so we need

to show the converse. Let
f : X Ñ Y

continuous and Q Ď X , which is a Π
r

1
n´1. We need to show that the image f [Q] is a Σ

r

1
n set. Indeed,

for each y P Y we have
y P f [Q] ðñ Dx (x P Q & f(x) = y)

ðñ Dx (x P Q & (x, y) P Graph(f)).

The graph of f is a closed set and therefore by Proposition 3.4.3 (and its proof) is a Π
r

1
n´1 set. By

Theorem 3.4.4, the pointclass Π
r

1
n´1 is closed under the operator &. In case n = 1, the previous holds

from the closure properties of closed sets. Based on the last of the above equivalences we conclude
that

f [Q] = DXR,

where R is a Π
r

1
n´1 subset of Y ˆ X . Therefore, f [Q] is a Σ

r

1
n subset of Y . □

Corollary 3.4.6. The continuous image Σ
r

1
n set is a Σ

r

1
n set.

Proof. By Corollary 3.4.5 we know that the given Σ
r

1
n set is a continuous image of a Π

r

1
n´1 set.

Since the composition of continuous functions is a continuous function, it follows that the continuous
image of the given Σ

r

1
n set is a continuous image Π

r

1
n´1 set, and again by Corollary 3.4.5 is a Σ

r

1
n

set. □
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CHAPTER 4

Trees and The Perfect Set Theorem

In Descriptive Set Theory, a tree is a way of thinking about sets and collections of sets. Each set
is like a tree, with the main “trunk” being the starting set. Then, each branch of the trunk leads to
more sets, which branch off into even more sets. This tree of sets can get very big, and it can help us
understand how different sets relate to each other. Overall, a tree is a way of organizing sets into a
structure that shows how they are all related to each other. In the present chapter, we will describe the
notions of trees and trees of pairs and we will provide relevant terminology. In addition, we will refer
to two important theorems, the “Cantor-Bendixon Τheorem” and the “Perfect Set Theorem”.

4.1. Trees

For our purposes, a tree on a (non-empty) set X is a set T of finite sequences of members of X ,
such that if u P T and w is an initial segment of u, then w P T .

Definition 4.1.1. Let X be a non-empty set. A T Ď XăN is a tree in X if it is non-empty and
closed downwards concerning the order Ď, i.e.

if w Ď u and u P T, then w P T.

For example the sets XăN and tΛu are trees in X . Another example is
T = tΛ, (a), (a, b), (a, c), (d)u,

for some a, b, c, d P X .

Remark 4.1.2. Note that the empty sequence Λ belongs to every tree because Λ Ď u for every
u P T ‰ ∅. Also, we often call the members of T nodes or finite paths.

In the following definitions, consider that we have a tree T :

Definition 4.1.3. The elements of T are called nodes or leaves of T .The empty sequence Λ is a
node of every non-empty tree, so we call Λ root of T .

Definition 4.1.4. A node u of T is called terminal if it has no strict extension w within T , i.e.
for every w P T with u Ď w, we have u = w.

A tree T is called pruned if it has no terminal nodes.

Definition 4.1.5. We call an infinite branch of T a function f : NÑ X with the property
(f(0), . . . , f(n)) P T, for every n P N.

The set of all infinite branches of T is called body of T and denoted by [T ] . A tree T is called a
well-founded if [T ] = ∅ and ill-founded if [T ] ‰ ∅.

Definition 4.1.6. A tree S in X is called a subtree of T if S Ď T . For every u P XăN we define
the subtree Tu of the sequences that are compatible with u, as follows

Tu = tw P T : u}wu.

In other words w P Tu if and only if w P T and
either w Ď u or u Ď w.

The above definition is more interesting when u P T , otherwise, Tu consists only of the strict
initial parts of u belonging to T , so we may have Tu = tΛu.
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Trees and Topology.
It is clear that the body of a tree T in X is a subset of XN. If we consider in X the discrete

topology then XN is a metric space. As with Baire space a basis for the topology of XN is the family
of all sets of the form

tx0u ˆ ¨ ¨ ¨ ˆ txn´1u ˆX ˆX ˆ . . .

where x0, . . . , xn´1 P X .

Remark 4.1.7. A sequence (fi)iPN in XN converges to f P XN if and only if for every n P N the
sequence (fi(n))iPN converges to f(n) in X . Equivalently, for every n P N we have fi(n) = f(n),
for all large i. The bodies of trees in a set X characterize the closed sets of XN.

Proposition 4.1.8. Let X be a non-empty set with the discrete metric and F Ď XN. Then F is
closed under the product topology of XN, if and only if, there is a tree T in X with F = [T ] .

Proof. For the straight direction, we assume that F is a closed subset of XN. If F is the empty
set, then we choose for T any finite branching tree with an empty body, e.g. Λ. Therefore, we assume
that F ‰ ∅. If u P XN and f P XN, we write

u Ď f, when f(k) = u(k) for every k ă |u|.

We define T Ď XN as follows:

u P T ðñ Df P F : u Ď f.

Since F ‰ ∅ we have Λ P T and therefore T ‰ ∅. It is straightforward by definition that T is a tree.
We show that F = [T ] . Let g P F and n P N. It is obvious that there exists f P F with

(g(0), . . . , g(n)) Ď f , in particular we can get f = g. So (g(0), . . . , g(n)) P T for every n P N and
g P [T ] .

Conversely, if g P [T ] then for each n P N we have (g(0), . . . , g(n)) P T and hence there exists
fn P F with (g(0), . . . , g(n)) P fn.

The sequence (fn)nPN converges to the element g. Indeed, for every k P N, we get n0 = k and
for every n ě n0 we have fn(k) = g(k) because (g(0), . . . , g(n)) Ď fn. Hence, fn(k)

X
ÝÑ g(k) for

each k P N and therefore fn
XN
ÝÝÑ g. Since fn P F for each n and F is closed it follows that g P F .

Therefore F = [T ] and we have proved the straight direction.

For the reverse direction we consider a sequence of (fi)iPN elements of [T ] which converges to
f P XN. We will show that f P T . For every n, there exists i0 such that for each i ě i0 and each k ď n
we have fi(k) = f(k). In particular, (f(0), . . . , f(n)) Ď fi0 . By definition, (f(0), . . . , f(n)) P T .
It follows that f P [T ] . □

Definition 4.1.9. Let X be a non-empty set and T a tree in X . T is finite branching if for every
u P T there are up to finite w P T which are direct extensions of u, i.e. for each u P T there are
x0, . . . , xn´1 P X such that

@x (u ˚ (x) P T ðñ x P tx0, . . . , xn´1u).

The preceding n can take any large values. We can even have n = 0, in which case the above equiva-
lence means that the node u P T is terminal.

Remark 4.1.10. A classical example of a finite branching tree is the set t0, 1uăN of all finite
binary sequences. Obviously the body of t0, 1uăN is the Cantor space 2N.

Trees and Continuous Functions.
Continuous functions between bodies can be approximated by functions between the correspond-

ing tree bodies.

Definition 4.1.11. Given two trees S and T on a non-empty set X and a function ϕ : S Ñ T .
The function ϕ is called monotone if for every u, v P S with u Ď v we have ϕ(u) Ď ϕ(v).
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We say that ϕ is proper if for every f P [S] the lengths of ϕ(f |n) acquire any length, i.e. for
every M P N there is n P N with

|ϕ(f |n)| ěM.

Clearly, if we have a proper monotone function ϕ : S Ñ T , then for every f P [S] we have

ϕ((f(0))) Ď ϕ((f(0), f(1))) Ď ¨ ¨ ¨ Ď ϕ((f(0), f(1) . . . , f(n)))) Ď . . .

and that the union of all these branches produces an infinite branch of T . Therefore, we define the
function

ϕ˚ : [S] Ñ [T ] : ϕ˚(f) =
ď

nPN
ϕ(f |n).

In other words, ϕ˚ satisfies

ϕ˚(f)(m) = x ðñ Dn (|(f |n)| ą m & (f |n)(m) = x),

for every f P [T ] , m P N, and x P X .

Proposition 4.1.12. Consider a non-empty set X with the discrete topology and two trees S and
T on X , with S pruned. Then a function Φ : [S] Ñ [T ] is continuous if and only if there exists a
proper monotone ϕ : S Ñ T with Φ = ϕ˚.

Proof. In the proof we denote Vu = tg P XN : u Ď gu, where u P XăN. These Vu, u P XăN,
are the basis for XN.

We first show the reverse direction. Consider a proper monotone ϕ : S Ñ T and we show that
ϕ˚ : [S] Ñ [T ] is continuous. For each u P XăN and each f P [S] we have

ϕ˚(f) P Vu ðñ u Ď ϕ˚(f) ðñ Dn u Ď ϕ(f |n).

Therefore,

(ϕ˚)´1[Vu] =

(
ď

nPN
An

)
X [S] ,

where
An = tf P XN : u Ď ϕ(f |n)u

for every n P N. If f P An and h P XN with h|n = f |n, then h P An, hence An is an open subset of
XN for every n P N. Hence (ϕ˚)´1[Vu] is an open set in [S] and ϕ˚ is a continuous function. (Note
that we did not assume that S is pruned.)
Conversely, consider a continuous function Φ : [S] Ñ [T ] . The idea is to define ϕ such that we have

ϕ[Vu X [S] ] Ď Vϕ(u), for every u P S.

First, observe that for each u P S and w1, w2 P T if

Φ[Vu X [S] ] Ď Vw1 X Vw2 ,

then w1 ∥ w2. This is the case because S is pruned and hence for each u P S we have VuX [S] ‰ ∅,
hence Vw1 X Vw2 ‰ ∅, which only happens when w1 ∥ w2. Moreover, for each u P T there is w P S
with Φ[Vu X [S] ] Ď Vw, in particular w = Λ. Hence for every u P S and every N P N there exists
the “largest” sequence w P S with length ď N and Φ[Vu X [S] ] Ď Vw, i.e. w satisfies the last two
properties, and for each w1 P S satisfying the last two properties, w1 Ď w.

We define

ϕ : S Ñ T : ϕ(u) = the longest sequence w P S with |w| ď |u| and Φ[Vu X [S] ] Ď Vw.

If u1 Ď u2 P S, then |w1| ď |u1| ď |u2|, moreover

Φ[Vu2 X [S] ] Ď Φ[Vu1 X [S] ] Ď Vϕ(u1).

Therefore, ϕ(u1) P T is a w1 satisfying |w1| ď |u2| and Φ[Vu2 X [S] ] Ď Vw1 . By the definition of
ϕ(u2) we have that ϕ(u1) Ď ϕ(u2).

To show the remaining properties for ϕ we consider an f P [S] and m P N. Since Φ is continuous
on f there exists n P N with

Φ[Vf |n X [S] ] Ď VΦ(f)|m.
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We can assume that n ěM and therefore

|Φ(f)|m| = m ď n = |f |n|.

Therefore, by definition of ϕ(f |n) it holds that Φ(f)|m Ď ϕ(f |n). In particular, ϕ(f |n) has length at
least |Φ(f)|m| = m.

The above shows that ϕ is suitable and furthermore that ϕ˚ = Φ. To grasp the latter, note that for
every m there is n as above, i.e. n ě m and Φ(f)|m Ď ϕ(f |n). Since ϕ(f |n) Ď ϕ˚(f) it follows
that Φ(f)|m Ď ϕ˚(f) for each m and hence Φ(f) = ϕ˚(f).

□

The Space of Trees.
From now on, we will deal with trees in natural numbers, and we will be interested in the special

case where X = N.

Definition 4.1.13. (The Space of Trees Tr). Consider the set Tr of all trees in N, as follows

Tr = tT Ď NN : T is a tree in Nu.

We also consider an enumeration of NN, for example the natural enumeration (us)sPN, which we have
stabilized in Definition 2.3.9.

Then to each tree T in N corresponds αT P 2
N with

αT (s) = 1 ðñ us P T.

The function
F : Tr Ñ 2N : F (T ) = αT

is a monomorphism. We consider Tr with the topology obtained from F , i.e. an open V Ď Tr if and
only if there exists an open W Ď 2N with V = F´1[W ] . This is the minimum topology in Tr under
which F is continuous.

A compatible metric on Tr is

d(T, S) = dN (F (T ), F (S)) = dN (αT , αS).

The set Tr with the previous topology is the Space of Trees in N.

Proposition 4.1.14. The Space of Trees Tr is a compact Polish space.

Proof. Consider the representation

F = (T P Tr ÞÑ αT P 2
N)

and show that the set F [Tr] is a closed subset of 2N. Since 2N is compact, it follows that that F [Tr] is
a compact set, equivalently F [Tr] with the relevant topology is compact topological space. The space
2N is topologically isomorphic to Tr via F , hence Tr is compact. We then show that the complement
of F [Tr] is an open subset of 2N. Let α P 2N with

α R tαT : T P Tru

and s0 P N with us0 = Λ. If α(s0) = 0, then for any β P T with

β(s0) = α(s0)

we have
β R tαT : T P Tru.

(Otherwise β = αT and the empty sequence would not belong to T .) Therefore we assume that
α(s0) = 1. If for every s with α(s) = 1 and every t with ut Ď us it holds that α(t) = 1, then
α = αT , where T is the tree defined as follows:

T = tu P NăN : Ds (u = us & α(s) = 1)u.

But this is a contradiction because we have assumed that

α R tαT : T P Tru.
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Therefore, there exist s and t with α(s) = 1, ut Ď us and α(t) = 0. Then for every β P 2N with
β(i) = α(i)

for each i ď maxtt, su we have
β R tαT : T P Tru.

In each case the complement
2N z tαT : T P Tru

is an open subset of 2N. □
Definition 4.1.15. We define the sets

WF = tT P Tr : [T ] = ∅u
and

IF = tT P Tr : [T ] ‰ ∅u
of the well-founded and ill-founded trees, respectively, in N.

We note that the sets WF and IF are the most fundamental Π
r

1
1 (i.e. coanalytic) and Σ

r

1
1 (i.e.

analytic) subsets of Tr, respectively.

4.2. The Cantor-Bendixson Theorem

Proposition 4.2.1. If (X, d) is a metric space and P Ď X is perfect, then for every open V the
set V X P is perfect (possibly empty).

Proof. It is obvious that the set V X P is closed. We will show that it has no individual points.
Let y P V X P and r ą 0. We will find an element y1 of V X P with y1 P B(y, r) and y1 ‰ y. Since
y P V X P we have

Bd(y, r)X (V X P ) = (Bd(y, r)X V )X P ‰ ∅.

Therefore, there exists z P P with z P U = Bd(y, r)X V . Since P is perfect and U is open, there is
w P UXP with w ‰ z. Then one of w, z is different from y. The required y1 is one of w, z depending
on which one is different from y. □

It is known that a subset of a Polish space has the “Perfect Set Property” if it is countable or if
it has a nonempty perfect subset. The following Theorem, known as “Cantor-Bendixson Theorem”
proves this property for the closed subsets of a Polish space. Also, this Theorem gives the relationship
between closed and perfect subsets of the Polish space. (We note that having the perfect set property
is not the same as being a perfect set.)

Theorem 4.2.2. (Cantor-Bendixson). For every closed subset C of a Polish space X , there are
two sets P, S Ď C, with P perfect (possibly empty), S countable, P X S = ∅ and C = P Y S.
Indeed, the above decomposition is unique, i.e. if P 1, S1 are two disjoint subsets of C with P 1 perfect,
S1 countable and P 1 Y S1 = C then P 1 = P and S1 = S.

Proof. We consider the closed set C Ď X and a countable basis (Vn)nPN for the topology of X .
We define

P = tx P C : @n with x P Vn the set Vn X C is uncountableu
and

S = CzP.

It is clear that P X S = ∅ and C = P Y S.

‚ We will show that S is a countable set. For each x P S we have x R P and hence there exists
n P N such that x P Vn and the set Vn X C is countable.

We define n(x) to be the least such n and
I = tn(x) P N : x P Su.

Then I is countable, as a subset of N. Also

S Ď
ď

nPI

(Vn X C)
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because x P Vn(x), for every x P S Ď C. Since Vn XC is countable for every n P I , we have that the
set S is contained in a countable union of countable sets. Therefore, S is countable.

‚We then show that P is perfect, i.e. it is a closed set and it has no individual points.
Firstly, we will prove that P is a closed set. Let (xi)iPN be a sequence in P that converges to

x P X . Since P Ď C and C is closed we have that x P C. Moreover, for every n P N with x P Vn

there exists i P N with xi P Vn. Since xi P P , the set Vn X C is uncountable. Hence, x P P and P is
closed.

Then, we will prove that it has no individual points. Consider x P P and n P N with x P Vn. The
set

Vn X C = (Vn X P )Y (Vn X S)

is uncountable while Vn X S is countable as a subset of S. Therefore, Vn X P is uncountable and in
particular there is y P Vn X P with y ‰ x. Hence, x is not an isolated point of P .

‚ Finally, we will show the uniqueness. We consider a perfect set P 1 and a countable S1 with
P 1 X S1 = ∅ and

P 1 Y S1 = P Y S.

We consider x P P 1, since P 1 Ď P Y S = C we have that x P C. If we have x P Vn then, using
a suitably small open ball of X , we can find m such that x P Vm Ď Vm Ď Vn. Then Vm X P 1 is a
non-empty closed subset of

Vm X P 1 Ď Vn X C.

On the other hand, by 4.2.1, Vm X P 1 has no isolated points, so it is a non-empty perfect set. More
specifically, it is uncountable (by Corollary 2.4.15,) and hence the superset Vn X C is uncountable.
Therefore, x P P and P 1 Ď P .

If x P S1 then x R P 1 and since the last set is closed there is an n with x P Vn and Vm X P 1 = ∅.
Therefore,

Vm X C = Vm X S1 Ď S1

and the set Vm X C is countable. It follows that x P S and therefore S1 Ď S. Equivalently, P Ď P 1.
We conclude that P = P 1 and S = S1. □
Definition 4.2.3. Let X be a Polish space and C Ď X closed. We consider the sets P , S as in the

Cantor-Bendixson Theorem. That is, P is perfect, S is countable,
P X S = ∅ and P Y S = C.

The unique P is the perfect kernel of C and the unique S is the scattered part of C.

Corollary 4.2.4. For every uncountable Polish space X there exists a continuous monomorphism
τ : 2N ↣ X .

Proof. By the Cantor-Bendixson Theorem, the closed set X is decomposed into its perfect kernel
P and its scattered part S. If we had P = ∅, then X = S would be a countable set, which is a
contradiction. So, P ‰ ∅. Since P is closed, it follows that it is a perfect Polish space. By Theorem
2.4.14, there is a continuous monomorphism

τ : 2N ↣ P Ď X .

So, τ is the required function. □

4.3. Trees of Pairs

Definition 4.3.1. Given a non-empty set X and a T Ď (X ˆX)ăN. We call T a tree of pairs in
X if it is a tree in X ˆX .

Let us present some notations below. There is an obvious identification between the elements

w P (X ˆX)ăN and (u, v) P XăN ˆXăN, with |u| = |v|.
In particular, each w P T has the form

((u0, v0), . . . , (un´1, vn´1)), where ui, vi P X, for each i ă n,
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so if set u = (u0, . . . , un´1) and v = (v0, . . . , vn´1) we can identify w with (u, v).
Conversely, any pair (u, v) with u = (u0, . . . , un´1) and v = (v0, . . . , vn´1) can be identified

with the finite sequence w = ((u0, v0), . . . , (un´1, vn´1)).

Notation 1. We will denote the elements of a tree of pairs T by (u, v) where u, v P XăN with
|u| = |v|. The empty sequence Λ is identified with the pair (Λ,Λ).

The previous identification extends to infinite sequences. There is an obvious topological isomor-
phism between (X ˆX)ăN and XăN ˆXăN, namely

(f, g) P XăN ˆXăN ÞÑ ((f(0), g(0)), . . . , ((f(n), g(n)), . . . ) P XNˆN.

So we can identify every infinite branch h P (XˆX)ăN with a pair of infinite sequences of X namely
(h1, h2), where

h = ((h1(0), h2(0)), . . . , (h1(n), h2(n)), . . . ).

Notation 2. We denote the infinite branches of a pair tree by pairs (f, g).

The obvious relation holds:
(f, g) P [T ] ðñ @n ((f(0), . . . , f(n)), (g(0), . . . , g(n)))) P T,

for each tree of pairs T in X , where f, g P XN.
Finally, we observe that this particular identification respects the relation of the initial part, i.e. for
each

w = ((u0, v0), . . . , (un´1, vn´1)) ” (u, v)

and each
w1 = ((u1

0, v
1
0), . . . , (u

1
n´1, v

1
n´1)) ” (u1, v1)

we have that
w1 Ď w ðñ u1 Ď u & v1 Ď v.

Notation 3. The pair trees inX are identified with the non-empty setsR Ď XăNˆXăN satisfying
(u, v) P R & u1 Ď u & v1 Ď v ùñ (u1, v1) P R,

for each u, v, u1, v1 P XăN.
We will be concerned with the case where X = N. If T is a tree of pairs in N, the elements of the

body [T ] are of the form (α, β), where α, β P N .

Lemma 4.3.2. An F Ď NˆN is closed if and only if there is a tree of pairs T in N with F = [T ] ,
where the body of a pair tree is understood by the above identification.

Proof. We consider the set
F̃ = tγ P (Nˆ N)N : (γ1, γ2) P F u

where
γ = ((γ1(0), γ2(0)), . . . , (γ1(n), γ2(n)), . . . ).

The sets F and F̃ are topological isomorphic, therefore F is closed if and only if F̃ is closed.
We apply Proposition 4.1.8 for X = Nˆ N and obtain that F is closed if and only if there exists

a tree of pairs T in N with
γ P F̃ ðñ @n γ|n P T.

Therefore,
(α, β) P F ðñ ((α(0), β(0)), . . . , (α(n), β(n)), . . . ) P F̃

ðñ @n ((α(0), β(0)), . . . , (α(n), β(n))) P T

ðñ @n (α|n, β|n) P T (with the previous matching)
ðñ (α, β) P [T ] .

Thus, we have proved the claim. □
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Proposition 4.3.3. For each P Ď N the following is equivalent:
i) P is an analytic set, i.e. Σ

r

1
1

ii) There exists a tree of pairs T with P = pr[ [T ] ] .
By pr we mean the function of the projection in the first coordinate (α, β) P N ˆN ÞÑ α P N .

Proof. i) ùñ ii) There exists a closed F Ď N ˆ N with P = DNF . By Lemma 4.3.2 there
exists a tree of pairs T in N with F = [T ] . Therefore, for each α P N we have

α P P ðñ Dβ(α, β) P F

ðñ Dβ(α, β) P [T ]

ðñ α P pr[ [T ] ] .

ii) ùñ i) It is obvious, as [T ] is a closed subset of N ˆ N by Lemma 4.3.2 and P = pr[ [T ] ] =
DNP . □

4.4. The Perfect Set Theorem

Recall that a set P Ď X is analytic if it is Σ
r

1
1, i.e there exists a closed set F Ď X ˆN such that

for every x P X ,
x P P ðñ Dα (x, α) P F.

Lemma 4.4.1. For each Polish space X there is a continuous surjection π : N ↠ X and a Gδ

set P Ď N such that π[P ] = X and the restriction π|P is one-to-one.
Therefore, every Polish space is the continuous one-to-one image of a Gδ subset of Baire space.

Theorem 4.4.2. (The Perfect Set Theorem). For each Polish space X and every uncountable
analytic (i.e. Σ

r

1
1) A Ď X there exists a continuous monomorphism f : 2N ↣ X with f [ 2N] Ď A.

Proof. The idea is to find a kind of “perfect kernel” for A as in the proof of the Cantor-Bendixson
Theorem. The (Vn)nPN basis of X , as used in the proof of the latter result, is not sufficient for our
purposes, as A is not necessarily closed. Instead, we will use the analytic set representation of A based
on trees of pairs (Proposition 4.3.3).

To do this, however, we need to know that X = N . We will explain why we can assume this:
Suppose that we have proved the result for all uncountable analytic subsets of N and consider an
arbitrary Polish space X . Then, by Lemma 4.4.1, there exists a continuous surjection π : N ↠ X
and and a Gδ set B Ď N such that π[B] = X and the restriction π|B is one-to-one.

If we have an uncountable analytic setA Ď X then by the closure of the classΣ
r

1
1 under continuous

substitution and since B is Borel, B X π´1[A] is also an analytic set. Since π[B] = X and π is a
surjection, we have that

π[B X π´1[A] ] = π[B] X π[π´1[A] ]]

= π[B] XA

= X XA

= A,

so if B X π´1[A] was countable, then A would also be countable as an image of a countable set via
a function (we don’t even need that π|B is one-to-one). But this is a contradiction. So B X π´1[A]
is an uncountable analytic subset of N and by our hypothesis there is continuous monomorphism
f : 2N ↣ X with

f [ 2N] Ď B X π´1[A] .

Then the composition
g = π ˝ f : 2N Ñ X : g(γ) = π(f(γ))

is continuous, one-to-one since f takes values in B and π|B is one-to-one, and furthermore

g[ 2N] ] = π[ f [ 2N] ] ] Ď π[B X π´1[A] ] = A.

So g is a continuous monomorphism from 2N to X , with f [ 2N] Ď A. Therefore, we can then assume
that X = N .

30



By Proposition 4.3.3, there exists a tree of pairs T in N with
(4.1) α P A ðñ Dβ (α, β) P [T ] .

For each (u, v) P T we define the sets
(4.2) W(u,v) = tα P N : u Ď α & Dβ (v Ď β & (α, β) P [T ] )u.

Note that
WΛ = tα P N : Dβ (α, β) P [T ] u = A

and that
W(u,v) =

Ť

(u˚(i),v˚(j))PT W(u˚(i),v˚(j)), where (u, v) P T.

In particular, we have W(u,v) Ď A for each (u, v) P T . (These W(u,v) are used in place of the elements
Vn of the basis of X as presented in the proof of the Cantor-Bendixson Theorem.)

In correspondence with the perfect kernel and the scattered part of a closed set, we define
P = tα P A : @(u, v) P T (if α PW(u,v) then W(u,v) is uncountable)u

and
S = tα P A : D(u, v) P T (α PW(u,v) and W(u,v) is countable)u
= AzP.

If we set I = t(u, v) P T : W(u,v) is countableu, then by the definition of S we have

S =
Ť

(u,v)PI W(u,v).

The latter union is a countable union of countable sets, hence S is countable. Since A = P Y S and
A is uncountable, we conclude that P is an uncountable set.

We then define the set G Ď T as follows:
(u, v) P G ðñ P XW(u,v) ‰ ∅, with (u, v) P T.

Note that the empty sequence (which we identify with the pair (Λ,Λ)) belongs to G because
P XWΛ = P XA = P ‰ ∅.

In order to proceed, we say that two finite sequences (u1, v1), (u2, v2) are incompatible in the first
variable if u1, u2 are incompatible. The next claim is the key point in the proof.

Claim. For every (u, v) P G there exist (u1, v1), (u2, v2) belonging to T , extend (u, v), are incom-
patible in the first variable and belong to G. (It follows that these extensions are strict, otherwise they
would be compatible.)

Proof of the Claim. Since (u, v) P G there exists α P P X W(u,v). Therefore, the set W(u,v) is
uncountable. Since W(u,v) Ď A and A = P Y S we have that

W(u,v) = (W(u,v) X P )Y (W(u,v) X S).

Since S and hence W(u,v)XS is a countable set, while W(u,v) is uncountable, we have from the above
equality that W(u,v) X P is an uncountable set. In particular, there exist

α1, α2 PW(u,v) X P, with α1 ‰ α2.

We obtain the least n with α1(n) ‰ α2(n) and set
ui = (αi(0), . . . , αi(n)), for i = 1, 2,

so that u1, u2 are incompatible.
Furthermore, we have u Ď α1, α2 so α1 and α2 agree at i ă |u|, therefore

u Ď αi|n = ui, for i = 1, 2.

That is, u1, u2 are extensions of u. Since α1, α2 P W(u,v) there exist β1, β2 with v Ď βi such that
(αi, βi) P [T ] , i = 1, 2. We set

vi = (βi(0), . . . , βi(n)), for i = 1, 2.
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Since
v Ď βi, vi = βi|(n+ 1) and |v| = |u| ď n,

we have v Ď vi, for i = 1, 2. Moreover
(ui, vi) = ((αi(0), . . . , αi(n)), (βi(0), . . . , βi(n))) P T

because (αi, βi) P [T ] , for i = 1, 2.
Therefore, (u1, v1), (u2, v2) belong to T , are extensions of (u, v) and are incompatible in the first

variable.
It remains to show that they belong to G. For each i = 1, 2, by the definition of (ui, vi) we have

ui Ď αi, vi Ď βi, and since (αi, βi) P [T ] we have from (4.2) that αi P W(ui,vi). Moreover, αi P P
hence P XW(ui,vi) ‰ ∅. From the definition of G we have (ui, vi) P G. This proves the claim.

%

Back to the proof, one defines by recursion a function
ϕ : t0, 1uăN Ñ G Ď T, with ϕ(Λ) = Λ ” (Λ,Λ)

and ϕ(w ˚ (0)), ϕ(w ˚ (1)) are extensions of ϕ(w) that are incompatible in the first variable. (Because
T is a countable set, we do not need the Axiom of Choice in the definition of ϕ, we just select each
time the appropriate extensions incompatible in the first variable that has the least index based on an
enumeration of T .)

As mentioned above, ϕ(w ˚ (0)), ϕ(w ˚ (1)) are extensions of ϕ(w) hence ϕ is a proper monotone
by Definition 4.1.11 Therefore we define the function

ϕ˚ : [ t0, 1uăN] = 2N Ñ [T ] : ϕ˚(γ) =
ď

n

ϕ(γ|n),

which by Proposition 4.1.12 is continuous. (The continuity of ϕ˚ is established from the proof of the
last proposition. The basic open subsets of [T ] have the form

B(u,v) = t(α, β) P [T ] : u Ď α & v Ď βu,

where (u, v) P T . One can easily see that for any γ P 2N we have ϕ˚(γ) P B(u,v) if and only if there
exists n with (u, v) Ď ϕ(γ|n). It follows that (ϕ˚)´1[B(u,v)] is an open set.)

Finally, we consider the composition
f : 2N Ñ N : f(γ) = (pr1 ˝ ϕ

˚)(γ).

where pr1 is the projection on the first coordinate (α, β) ÞÑ α. The function f is continuous, as a
composition of continuous functions. Note that f takes values in A because if we take γ P 2N then

ϕ˚(γ) = (α, β) P [T ] , for some α, β P N .

Hence, f(γ) = α and from (4.2) we have that α = f(γ) belongs to A.
It remains to show that f is a monomorphism. This is due to the incompatibility given by ϕ in

the first coordinate. In particular, if we have γ, γ1 P 2N with γ|n = γ1|n and γ(n) ‰ γ1(n) then the
sequences of pairs ϕ(γ|(n + 1), ϕ(γ1|(n + 1) are extensions of ϕ(γ|n) that are incompatible in the
first coordinate, say that they differ in t P N. By the definition of ϕ˚ we have

ϕ(γ|(n+ 1)) Ď ϕ˚(γ) and ϕ(γ1|(n+ 1)) Ď ϕ˚(γ1),

therefore
(pr1 ˝ ϕ

˚)(γ)(t) = pr1(ϕ(γ|(n+ 1)))(t) ‰ pr1(ϕ(γ
1|(n+ 1)))(t) = (pr1 ˝ ϕ

˚)(γ1)(t)

and therefore
(pr1 ˝ ϕ

˚)(γ)(t) ‰ (pr1 ˝ ϕ
˚)(γ1)(t),

i.e. f(γ) ‰ f(γ1). This completes the proof. □
Proving the above Theorem leads us to the following definition:

Definition 4.4.3. A pointclass Γ has the “Perfect Set Property” if every uncountable subset A
that belongs in Γ contains a non-empty perfect subset.
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CHAPTER 5

Measure Theory

In this chapter, we will introduce specific notions of measure theory (based on [3], [5] and [10])
emphasizing the Lebesgue measure and the Borel sets and Borel measurable functions. These data
will constitute necessary tools in the last chapter of this thesis, and in particular in the games associated
with a measure.

5.1. Measures

Definition 5.1.1. Consider a nonempty set X and a family A of subsets of X . We call A a σ-
algebra on X if it satisfies the following properties:

i) ∅, X P A
ii) If A P A, then XzA P A.

iii) If An P A, @n P N, then
Ť

nPNAn P A.

Remark 5.1.2. Some trivial examples of σ-algebras onX are the power setP(X) and the (∅, X).
As is known if we have a non-empty set F of σ-algebras on the same set X then the intersection

č

F = tA Ď X : @A P F A P Au

is also a σ-algebra on X .

Definition 5.1.3. Let X be a set and A a σ-algebra on X . A function µ : A Ñ [ 0,8] is called
measure if

i) µ(∅) = 0 and
ii) µ is countably additive (or σ-additive), i.e. if (An)nPN is a sequence of disjoint sets in two’s

in A, then

µ

(
8
ď

n=1

An

)
=

8
ÿ

n=1

µ(An).

Remark 5.1.4. By the latter property, such a measure is often referred to as a countably additive
(or σ-additive) measure. Also, the pair (X,A) is called a measurable space, the triad (X,A, µ) is
called measure space and we say that µ is a measure on (X,A) or simply on X . The elements of A
are also called A-measurable sets.

Definition 5.1.5. Let X be a set and A a σ-algebra on X . A function µ : AÑ [ 0,8] is called a
finitely additive measure if

i) µ(∅) = 0 and
ii) µ is finitely additive, i.e. if (Aj)

n
j=1 is a finite sequence of disjoint sets in two’s in A, then

µ

(
n

ď

j=1

Aj

)
=

n
ÿ

j=1

µ(Aj).

Every measure is also a finitely additive measure.

Proposition 5.1.6. Let (X,A, µ) be a measure space. The following holds:
i) The measure µ is monotone, i.e. if for A,B P A it holds that A Ď B, then µ(A) ď µ(B).

ii) Moreover, if µ(A) ă 8, then µ(BzA) = µ(B)´ µ(A).

Proof. We write
B = AY (BzA)
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and note that A and BzA are disjoint sets. Thus, by the additivity of measure µ, it follows
µ(B) = µ(A) + µ(BzA).

Hence, µ(B) ě µ(A) and if in addition µ(A) ă 8, we have
µ(BzA) = µ(B)´ µ(A).

□
Proposition 5.1.7. Let (X,A, µ) be a measure space. The measure µ is countably subadditive

(or σ-subadditive), i.e. if (An)nPN is a random sequence of elements of A, then

µ

(
8
ď

n=1

An

)
ď

8
ÿ

n=1

µ(An).

Proof. We put

Bn = Anz

n´1
ď

j=1

Aj , n = 1, 2, . . .

Then every Bn P A, Bn are disjoint sets in two’s, Bn Ď An holds and indeed
8
ď

n=1

Bn =
8
ď

n=1

An.

Consequently,

µ

(
8
ď

n=1

An

)
= µ

(
8
ď

n=1

Bn

)
=

8
ÿ

n=1

µ(Bn) ď
8
ÿ

n=1

µ(An)

due to the finitely additive of µ and monotony. □
Proposition 5.1.8. Let (X,A, µ) be a measure space. The measure µ is “continuous” in the

following two senses:
i) If (An)nPN is an increasing sequence of elements of A, then

µ

(
n

ď

j=1

Aj

)
= lim

nÑ8
µ(An).

ii) If (An)nPN is a decreasing sequence of elements of A and furthermore µ(A1) ă 8, then

µ

(
n

č

j=1

Aj

)
= lim

nÑ8
µ(An).

Proof. i) We consider the sets
Bn = AnzAn´1, n = 1, 2, . . .

(where we have set A0 = ∅) which are disjoint in two’s and observe that for each n we have

An =
n

č

j=1

Aj =
n

č

j=1

Bj .

Therefore,

µ

(
8
ď

n=1

An

)
= µ

(
8
ď

n=1

Bn

)
=

8
ÿ

n=1

µ(Bn)

= lim
nÑ8

n
ÿ

j=1

µ(Bj) = lim
nÑ8

µ

(
n

ď

j=1

Bj

)

= lim
nÑ8

µ

(
n

ď

j=1

Aj

)
= lim

nÑ8
µ(An).

ii) Consider the sets
Cn = A1zAn, for n = 1, 2, . . .
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Then, (Cn)nPN is an increasing sequence of A with
8
ď

n=1

Cn = A1z

8
č

n=1

An.

By i), it follows that

µ

(
8
ď

n=1

Cn

)
= lim

nÑ8
µ(Cn), i.e. µ

(
A1z

8
č

n=1

An

)
= lim

nÑ8
µ(A1zAn).

Thus, by Proposition 5.1.6, we have

µ(A1)´ µ

(
8
č

n=1

An

)
= µ(A1)´ lim

nÑ8
µ(An)

and since µ(A1) ă 8, we have what is required. □

Definition 5.1.9. Let (X,A, µ) be a measure space. The measure µ is called:
i) finite, if µ(X) ă 8,

ii) probability measure, if µ(X) = 1 and
iii) σ-finite, if there exists a sequence (An)nPN of elements of A with

X =
8
ď

n=1

An

and
µ(An) ă 8, for each n = 1, 2, . . .

Remark 5.1.10. Respectively, we say that the measure space (X,A, µ) is finite, a probability
space or an σ-finite measure space.

5.2. Uniqueness and Completion

Two measures µ and ν in a countable space (X,A) are equal if for any set A P A, it holds that

µ(A) = ν(A).

Therefore, this condition is, in general, difficult to check. So it is natural to wonder, if µ and ν are
identical in a “large” subfamily of A, whether we can infer that they are identical everywhere. The
answer to this, by quite good measures, is given by the following proposition:

Proposition 5.2.1. (Uniqueness Theorem). Let (X,A) be a countable space and ∆ is a family of
subsets of X closed under finite intersections, for which σ(∆) = A. If µ and ν are two measures on
(X,A) such that

µ(∆) = ν(∆), for every D P ∆

and one of the following conditions holds, then µ = ν:
i) The measures µ and ν are finite and µ(X) = ν(X).

ii) The measures µ and ν are σ-finite and in particular there is an increasing sequence (Dn)nPN
in ∆ such that

X =
8
ď

n=1

Dn

and
µ(Dn) = ν(Dn) ă 8, for each n.

Suppose now that in a measure space (X,A, µ) we have fixed an A P A with µ(A) = 0. If N is
any subset of A it is not certain that N P A. This depends on the choice of σ-algebra. Nevertheless,
if it holds N P A then surely µ(N) = 0. Then this question arises:

“Can we extend the σ-algebra A to contain all these negligible sets?”
We will show in the following that the answer is affirmative.

35



Definition 5.2.2. Let (X,A, µ) be a measure space and N Ď X . The set N is called µ-null if
there exists an A P A with N Ď A and µ(A) = 0. The (X,A, µ) is called complete space (and the
µ complete measure) if every µ-null set N belongs to A.

Definition 5.2.3. Let (X,A, µ) be a measure space. We define
i) The family

Aµ = tA Ď X : there exist E,F P A, with E Ď A Ď F and µ(F zE) = 0u.

(Note that it will be µ(E) = µ(F ).)
ii) The function µ : Aµ Ñ [ 0,8] defined by µ(A) = µ(E), where E as above. (Note that for

B P A with B Ď A it is µ(B) ď µ(F ) = µ(E) and hence
µ(A) = µ(E) = suptµ(B) : B P A, B Ď Au.

Thus, µ is a well-defined function, i.e. independent of the choice of E.)
The family Aµ is called completion of A, the function µ is called completion of µ, and the triad
(X,Aµ, µ) is a completion of (X,A, µ).

Definition 5.2.4. We define the symmetric difference △ of two sets X and Y as
X △ Y = (XzY )Y (Y zX) = (X Y Y )z(X X Y ).

Definition 5.2.5. An A Ď X is called µ-measurable, if there are B P A and N µ-null, with
A = B △N = (BzN)Y (NzB).

So, the family Aµ can be written as
Aµ = tB △N : B P A and N is a µ-null setu.

Remark 5.2.6. The elements of Aµ are called µ-measurable sets. It is a direct consequence of the
above definition that every µ-null set is also µ-measurable. Intuitively, the elements of Aµ are those
subsets of X that are “µ-negligible distance” (i.e., one µ-null set away) from the elements of A.

Remark 5.2.7. The relation µ(B△N) = µ(B), holds and is well defined. That is because if we
have

B △N = B1 △N 1,

with B,B1 P A and N,N 1 are µ-null sets, then µ(B) = µ(B1).

5.3. Lebesgue Measure

We will now define the Lebesgue outer measure λ˚ in R.

Definition 5.3.1. The Lebesgue outer measure λ˚ : P(R)Ñ [ 0,8] in RRR is defined as follows:

λ˚(A) = inf

#

8
ÿ

n=1

(bn ´ an) : an, bn P R, and A Ď
8
ď

n=1

(an, bn)

+

,

for each A Ď R.

Definition 5.3.2. The Lebesgue outer measure λ˚
k : P(Rk) Ñ [ 0,8] in RkRkRk is defined as

follows:

λ˚
k(A) = inf

#

8
ÿ

n=1

ν(In) : In Ď Rk open bounded interval, and A Ď
8
ď

n=1

In

+

,

for each A Ď Rk. Βy definition, an open bounded interval I of Rk is a set of the following form:

I =
k

ź

j=1

(aj , bj) = (a1, b1)ˆ (a2, b2)ˆ ¨ ¨ ¨ ˆ (ak, bk),

with ai ă bi P R, and
ν(I) = (b1 ´ a1)(b2 ´ a2) . . . (bk ´ ak),

where the quantity ν(I) is the volume of the interval I .
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Remark 5.3.3. It is clear from the definition that λ˚
1 = λ˚. Sometimes, for simplicity, we write

λ˚
k = λ˚.

Definition 5.3.4. Let ϕ : P(X)Ñ [ 0,8] be an outer measure on the set X . A B Ď X is called
ϕ-measurable if

ϕ(A) = ϕ(AXB) + ϕ(AzB),

for every A Ď X . We denote by Mϕ the family of all ϕ-measurable subsets of X .

Theorem 5.3.5. (Caratheodori). Let ϕ : P(X) Ñ [ 0,8] be an outer measure on the set X .
Then Mϕ is a σ-algebra on X and the restriction ϕ|Mϕ of ϕ on Mϕ is a complete measure.

Definition 5.3.6. The elements of the σ-algebra Mλ˚ are called Lebesgue countable sets.

Definition 5.3.7. The restriction of the Lebesgue outer measure λ˚
k on the σ-algebraMλ˚ is called

the Lebesgue measure and is denoted by λk or simply λ.

Remark 5.3.8. According to the above, λ is a complete measure. Sometimes, and the restriction
of λ˚

k on B(Rk) will be called a Lebesgue measure.

Definition 5.3.9. Let (X, d) be a metric space, A a σ-algebra on X such that A Ě B(X) and µ
is a measure in the measurable space (X,A). The measure µ is called regular measure if

i) µ(K) ă 8, for every K Ď X compact.
ii) µ satisfies the Outer Regularity Condition, i.e.

µ(A) = inftµ(G) : G open in X and G Ě Au, for every A P A.

iii) µ satisfies the Inner Regularity Condition, i.e.

µ(G) = suptµ(K) : K compact and K Ě Gu, for every G Ď X open.

5.4. Borel Sets, Measures and Measurable Functions

Definition 5.4.1. Consider a metric space X and the set F of all σ-algebras on X containing the
open subsets of X , i.e.

F = tA : A is a σ-algebra on X and @ open V Ď X it holds V P Au

We observe that P(X) P F and therefore F ‰ ∅. The Borel σ-algebra B(X) of the subsets of X
is the family

B(X) =
č

F .

A subset of X is called Borel if it belongs to the σ-algebra B(X).

Proposition 5.4.2. Every Borel subset of Rk is also Lebesgue countable, i.e. B(Rk) ĎMλ˚ .

Remark 5.4.3. It is clear that the family B(X) has the following properties:
i) The B(X) is a σ-algebra and every open subset of X is contained in B(X), i.e. B(X) is an

element of the above F .
ii) If A is the σ-algebra on X containing all open subsets of X , then B(X) Ď A.

In other words, B(X) is the minimal σ-algebra on X that contains the open sets. We denote by
B the class of all Borel sets in metric spaces. Some examples of Borel sets are all open sets and their
complements, i.e. the closed sets. The Fσ sets are Borel as countable unions of Borel sets and also Gδ

are Borel as complements of Fσ sets.

Proposition 5.4.4. For every Polish space X and every n ě 1 holds that

Σ
r

0
n(X ) Ď B(X ),

i.e. every subset of X is also a Borel subset of X .

Lemma 5.4.5. The pointclass of Borel sets is closed under continuous substitution.
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Proof. We consider metric spaces X , Y , and a continuous function f : X Ñ Y . We will show
that for any Borel A Ď Y the set f´1[A] is a Borel subset of X . We consider the family

A = tA Ď Y : f´1[A] P B(X)u

and we will show that it is a σ-algebra containing all open subsets of Y . Since B(X) is the minimal
σ-algebra containing the open subsets of Y , it follows that B(X) Ď A which is what is required.
Consider an open V Ď Y . Since f is a continuous function, the inverse image f´1[V ] is an open
subset of X and, therefore, is a Borel set. Hence, V P A and A contains all open subsets of X .

Continuing, we observe that ∅, Y P A because the sets ∅ and Y are open. If A P A, then
f´1[Y zA] = Xzf´1[A] P B(X),

where we used that f´1[A] P B(X) and that the family of Borel subsets of X is closed under com-
plementation in X . □

Theorem 5.4.6. (The Fundamental Closure Properties of the Pointclass of Borel Sets.) The point-
class B of Borel sets is closed under

i) continuous substitution
ii) the operators _, &, Dď, @ď,

Ž

ď,
Ź

ď, cX , where X is a metric space, and
iii) the operators

Ž

N,
Ź

N, DN, @N, DY , @Y , where Y is a countable Polish space.

Remark 5.4.7. By the equivalent definition of the analytic sets, it is known that every analytic
(i.e. Σ

r

1
1) subset of a Polish space is a continuous image of a Borel set. Τherefore, as a consequence

of Theorem 4.4.2, the following effect occurs:
“Every uncountable Borel set has a non-empty perfect subset.”

Definition 5.4.8. Let X be a topological space and (X,A, µ) be a measure space. The measure
µ is called a Borel measure on X if

B(X) Ď A,

i.e. if all Borel sets in X are in A.

Definition 5.4.9. Let X be a topological space and µ a Borel measure on X . Then µ is called
regular if the following are true for every Borel set E in X:

i) µ(E) = inftµ(U) : U open Ě Eu,
ii) µ(E) = suptµ(K) : K compact Ď Eu.

Definition 5.4.10. Suppose µ is a σ-finite Borel measure onX , i.e., a countably additive function
on the Borel subsets of X with values real numbers ě 0 or8 and such that we can write

X =
8
ď

n=1

An

with An P B(X), µ(An) ă 8 for each n.

Let Zµ be the collection of null sets or sets of measure 0 (in the completed measure), i.e.,
A P Zµ ðñ there exists a Borel set B such that A Ď B and µ(B) = 0.

Again it is clear that Zµ is a σ-ideal.

Definition 5.4.11. Let X ,Y be two metric spaces. A function f : X Ñ Y is Borel-measurable,
if it inverts the open subsets of Y to Borel (equivalently, open or closed) subsets of X , i.e. for every
open A Ď Y we have

f´1[A] P B(X).

In other words, the inverse image of a Borel set is a Borel set, too.

Remark 5.4.12. Obviously, every continuous function f : X Ñ Y is Borel-measurable because
for for every open A Ď Y the set f´1[U ] is open and therefore Borel.

Definition 5.4.13. We will say that a pointclass Γ is closed under Borel substitution if for every
Borel-measurable function f : X Ñ Y , where X , Y are Polish spaces, and for each A P Γ(Y) the set
f´1[A] belongs to Γ(X ).
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Definition 5.4.14. An isomorphism f : X↣ÑY is a Borel isomorphism if the functions

f : X Ñ Y and f´1 : Y Ñ X

are Borel-measurable. The metric spaces X and Y are Borel isomorphic if there is a Borel isomor-
phism f : X↣ÑY .

Proposition 5.4.15. Consider two metric spaces X , Y and a function f : X Ñ Y . The following
are equivalent:

i) The function f inverts open subsets of Y to Borel subsets of X , i.e., f is Borel-measurable.
ii) The function f inverts Borel subsets of Y to Borel subsets of X , i.e. for every Borel set B Ď

Y , the set f´1[B] is a Borel set. (Sometimes the definition of Borel-measurable functions is
given by this condition.)

Proof. The direction ii) ùñ i) is direct because every open subset of Y is a Borel subset of X .
For direction i) ùñ ii), we consider the family

A = tA Ď Y : f´1[A] P B(X)u.

By hypothesis, every open subset of Y belongs to A. We will show that A is a σ-algebra on X . Indeed
we have

∅ = f´1[∅] and X = f´1[Y ]

such that ∅, Y P A. Moreover, we have

f´1[Y zA] = Xzf´1[A] and f´1[YnPNAn] = YnPNf
´1[An] ,

for any sequence of (An)nPN subsets of Y and any A Ď Y . Since B(X) is σ-algebra on X , it follows
from the previous two equations that A is closed under the complement to Y and under the countable
union of subsets of Y . We conclude that A is a σ-algebra. Since A is a σ-algebra on Y , which contains
the open subsets of Y , we have that B(Y ) Ď A, which is exactly what is required. □

Definition 5.4.16. Consider two Polish spaces X , Y and a monomorphism f : X ↣ Y . The
function f is called a good Borel monomorphism if

i) it is Borel-measurable,
ii) the image f [X ] is a Borel subset of Y , and

iii) the inverse function f´1 : f [X ] Ñ X is Borel measurable. (We consider f [X ] as a metric
subspace of Y .)

Remark 5.4.17. For every good Borel monomorphism f : X ↣ Y and every Borel set B Ď X
the set f [B] is a Borel subset of Y .

Remark 5.4.18. The composition of good Borel monomorphisms is a Borel monomorphism.

Lemma 5.4.19. For every uncountable Polish space X there is a good Borel monomorphism
τ : 2N ↣ X .

Proof. By Corollary 4.2.4 there exists a continuous monomorphism

τ : 2N ↣ X .

We will show that τ is also a good Borel monomorphism. Since τ is continuous, it is also a Borel-
measurable function. Moreover, the set τ [ 2N] is compact (as a continuous image of a compact set)
and hence it is a closed subset of X . In particular, τ [ 2N] is a Borel subset of X . Finally, the inverse
function

τ´1 : τ [ 2N] Ñ 2N

is continuous and hence Borel-measurable. □

Lemma 5.4.20. There is a continuous monomorphism ρ : N ↣ 2N such that the function ρ´1 :
ρ[N ] ↣ 2N is continuous and the set ρ[N ] is a Π

r

0
2 subset of 2N.

Lemma 5.4.21. For every uncountable Polish space X there is a good Borel monomorphism
f : N ↣ X .
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Proof. Consider the function ρ : N ↣ 2N, as in Lemma 5.4.20. Because every continuous
function is Borel-measurable and Π

r

0
2 sets are Borel, it follows that ρ is a good Borel monomorphism.

By Lemma 5.4.20 there is a good Borel monomorphism τ : 2N ↣ X and because the composition of
good Borel monomorphisms is also a good Borel monomorphism, we have

f = τ ˝ ρ : N ↣ X
is a good Borel monomorphism. □

Lemma 5.4.22. For every Polish space X there is a good Borel monomorphism τ : X ↣ N .

Proof. We consider a suitable metric d on X and a countable D = trn : n P Nu and a dense
subset of X . We consider the function

u P NăNztΛu ÞÑ xu P X
defined as follows:

x(k) = rk and xu˚(k) =

#

rk, if d(rk, xu) ă 2´(|u|+1),

xu, if d(rk, xu) ě 2´(|u|+1).

As we have seen in the proof of Theorem 2.4.7 as well as in the Remark 2.4.8 the function

π : N Ñ X : π(α) = lim
nÑ8

xα|n

is a continuous surjection and the function

τ : X Ñ N : τ(x)(n) = the least k with d(rk, x) ă 2´(n+2)

is a monomorphism satisfying

π(τ(x)) = x, x P X and τ(π(α)) = α, α P τ [X ] .

We will show that τ is a good Borel monomorphism. Firstly, we consider

τ´1 : τ [X ] Ñ X
and we observe that for each α = τ(x) P τ [X ] , we have τ´1(α) = x = π(α), i.e. τ´1 = π|τ [X ] .
Since π is continuous it follows that τ´1 is continuous.

We then show that τ inverts the open sets of N to Σ
r

0
2. Since the Σ

r

0
2 sets are Borel sets it follows

that τ is Borel-measurable. For each u P NăN, we have
τ(x) P Nu ðñ u Ď τ(x)

ðñ @n ă |u| u(n) = τ(x)(n)

ðñ @n ă |u| u(n) = the least k with d(rk, x) ă 2´(n+2)

ðñ @n ă |u| (d(ru(n), x) ă 2´(n+2) & @t ă u(n) d(rt, x) ě 2´(n+2)).

It follows that the set τ´1[Nu] is a ∆
r

0
2 and a Σ

r

0
2 subset of X . Since every open subset of N is a

union of sets Nu, for some u P NăN, we have from the closure of ∆
r

0
2 under the operator of countable

union that τ inverts open sets to ∆
r

0
2.

Finally, we identify the set τ [X ] . As we saw above, π(α) is the unique x P X with α = τ(x),
for every α P τ [X ] . Therefore,

α P τ [X ] ðñ α = τ(π(α))

ðñ @n α(n) = τ(π(α))(n)

ðñ @n α(n) = the least k with d(rk, π(α)) ă 2´(n+2)

ðñ @n (d(π(α), rα(n)) ă 2´(n+2) & @t ă α(n) d(π(α), rt) ě 2´(n+2)).

Therefore, τ [X ] is Π
r

0
2 subset of N . □

Theorem 5.4.23. (Schröder-Bernstein for good Borel monomorphisms). For each two Polish
spaces X and Y , if there are good Borel monomorphisms

f : X ↣ Y and g : Y ↣ X
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then there exists a Borel isomorphism
h : X ↣ÑY.

Proof. By Remark 5.4.18, the composition
ϕ : Y ↣ f [X ] : ϕ(y) = f(g(y))

is a good Borel monomorphism. We define the sequence (Cn)nPN of subsets of Y as follows:
C0 = Yzf [X ] , Cn+1 = f [Cn] .

Since the functions f and ϕ are good Borel monomorphisms, by applying the Remark 5.4.17, it follows
inductively that every Cn is a Borel subset of Y . We also define

D =
ď

nPN
Cn.

Then D is a countable union of Borel sets and therefore it is a Borel subset of Y . We further note that

ϕ[D] = ϕ

[
ď

nPN
Cn

]
=

ď

nPN
ϕ [Cn] =

ď

ně1

Cn Ď D.

Finally, we define

τ : Y Ñ Y : τ(y) =

#

ϕ(y), if y P D,

y, if y R D.

The function τ is Borel-measurable.

‚ We will show that τ takes values in f [X ] . Consider that y P Y . If y P D then y R C0 = Yzf [X ]
so y P f [X ] . Moreover, since y R D we have τ(y) = y P f [X ] . If y P D, then there exists n P N
with y P Cn and

τ(y) = ϕ(y) P ϕ [Cn] Ď f [X ] ,

where in the last inclusion we used that ϕ takes values in f [X ] .

‚ Continuing, we will show that τ is onto f [X ] . Consider y P f [X ] . If y R D, then τ(y) = y.
If y P D then there exists n P N with y P Cn and since y P f [X ] , n = 0 cannot be true. So
n ě 1 and y P Cn = f [Cn´1] . Therefore, there is y1 P Cn´1 with y = ϕ(y1). Then we have
τ(y1) = ϕ(y1) = y, where in the first equality we used that y1 P Cn´1 Ď D. In each case there is
y1 P Y with τ(y1) = y.

‚ We will then prove that τ is a monomorphism. Consider y1, y2 P Y with τ(y1) = τ(y2). If one of
y1, y2 belongs to D (let us suppose y1) and y2 does not belong to D then τ(y1) P ϕ[D] Ď D while
τ(y2) = y2 R D. Therefore, we have τ(y1) ‰ τ(y2) and this is a contradiction. So, either y1, y2 R D,
in which case

y1 = τ(y1) = τ(y2) = y2,

or y1, y2 P D. In the second case,
ϕ(y1) = τ(y1) = τ(y2) = ϕ(y2)

and since ϕ is a monomorphism we have y1 = y2.

‚ Additionally, we wiil prove that the inverse τ´1 : f [X ] Ñ X is Borel-measurable. According
to the preceding, τ´1 is given by

τ´1(y) =

#

y, if y R D,

ϕ´1(y), if y P D.

Because ϕ : Y ↣ f [X ] is a good Borel monomorphism, the inverse function ϕ´1 : f [X ] Ñ Y is
Borel-measurable. Hence, τ´1 is Borel-measurable.

It follows that τ is a good Borel monomorphism. Finally, we define
h : Y Ñ X : h(y) = f´1(τ(y)).
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The function h is well-defined because τ takes values in f [X ] and is Borel-measurable as a composi-
tion of Borel-measurable functions. Moreover, it is a monomorphism as a composition of monomor-
phisms and a surjection because f´1 : f [X ] Ñ X is onto X and τ is onto f [X ] . Finally, the inverse
function h´1 = τ´1 ˝ f is Borel-measurable as a composition Borel-measurable functions. □

Theorem 5.4.24. (Borel Isomorphism Theorem). Every uncountable Polish space is Borel iso-
morphic to Baire space.

Proof. We consider an uncountable Polish space X . By Lemma 5.4.21 and Lemma 5.4.22 there
exist good Borel monomorphisms f : N ↣ X and τ : X ↣ N , respectively. Therefore, by Theorem
5.4.23 there exists a Borel isomorphism h : N ↣ÑX . □

Continuing, we will present a fact that we shall need in proving the Corollary that follows. We
consider the following to be known:

“The composition of two Borel isomorphisms is a Borel isomorphism.”

Corollary 5.4.25. If X ,Y are two uncountable Polish spaces, there is f : X Ñ Y that is a Borel
isomorphism.

Proof. If X ,Y are two uncountable Polish spaces then by Theorem 5.4.24 there exist Borel iso-
morphisms

f : X ↣ÑN and g : N ↣ÑY
By using the composition h = g ˝ f : X ↣ÑY and having regard to the above fact, we conclude that
h is a Borel isomorphism, too. □
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CHAPTER 6

Playing Games

In this chapter, having analyzed all the necessary tools in the previous chapters, we deal with the
actual games. In our study, a run of the game is an infinite sequence of elements, created by the moves
chosen to be made by two people, the players of the game. These elements vary depending on the
space in which the game is played. Both players can follow certain rules as the game progresses.
In 1953, D. Gale and J. D. Stewart introduced the notion of an infinite two-player game of perfect
information and began a systematic study of these games. The games that we describe fall into this
category. We will start by giving some important definitions of games and then we will deal with the
concept of determinacy. In addition, we study extensively some topological games, as well as games
associated with measures.

6.1. Gale-Stewart Games

Here we describe how a Gale-Stewart game is played. LetX be a fixed non-empty set andA Ď XN

be a set of infinite sequences from X . For two players, I (we refer to him as “He”) and II (we refer
to her as “She”), with each set A we associate a two-person game G = GX(A) as follows. Players
I and II alternatively choose members of X ad infinitum. The game can be visualized through the
Diagram 6.1, moving from left to right, with the moves of player I above and the moves of player II
below (player I always starts the game by playing first).

I a0 a2
Œ Õ Œ Õ

II a1 a3

a4 ¨

Œ Õ Œ

. . . .

Diagram 6.1. Playing the game GX(A).

The play continues without ending so that a single play of the game determines an infinite sequence

f = (a0, a1, a2, a3, . . . ) P X
N.

Player I wins if f P A, otherwise, if f R A player II wins. Player I is allowed to see all a0, a1, . . . , an´1

which have preceded before he chooses an, for n even. Similarly, player II is allowed to see all
a0, a1, . . . , an´1 for n odd. Thus, we call this the Game of Perfect Information.

This way, we have described a run (or play) f of the game G = GX(A). The set A is the payoff
(or else winning) set for GX(A), but we will often identify A with GX(A) and when talking about
the game A. Let us now explain what a strategy and a winning strategy mean through the following
definitions.

Definition 6.1.1. A strategy for player I is any function σ with the domain being all finite se-
quences from X of even length (including the empty sequence Λ) and values in X , i.e.

σ : tu P XăN : |u| is evenu Ñ X.

We say that player I follows (or plays) σ in a run f = (a0, a1, a2, a3, . . . ) of the game GX(A), if
a0 = σ(Λ),

a2 = σ(a0, a1),

...
an = σ(a0, a1, . . . , an´1), for n even.
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Definition 6.1.2. A strategy for player II is any function τ with the domain being all finite
sequences from X of odd length and values in X , i.e.

τ : tu P XăN : |u| is oddu Ñ X.

Remark 6.1.3. If players I and II play with strategies σ and τ respectively, then exactly one run
is produced, which we denote by σ ˚ τ . The run σ ˚ τ is shown in the Diagram 6.2.

I σ(Λ) σ(a0, a1)
Œ Õ Œ Õ

II τ(a0) τ(a0, a1, a2)

σ(a0, a1, a2, a3) ¨ ¨ ¨

Œ Õ

. . .

Diagram 6.2. When player I plays σ against player II’s τ .

Ιt is obvious that σ ˚ τ = (a0, a1, a2, . . . ) and that the player I plays an = σ(a0, ¨ ¨ ¨ , an´1), for
n even, on his nth move, and player II plays an = τ(a0, . . . , an´1), for n odd, on her nth move.

Definition 6.1.4. We call σ a winning strategy for player I, if for every II’s strategy τ ,
σ ˚ τ P A,

i.e. whatever II is playing, player I always wins when he plays σ.

Definition 6.1.5. We call τ a winning strategy for player II, if for every I’s strategy σ,
σ ˚ τ R A.

6.2. Determinacy

Definition 6.2.1. We say that the game G = GX(A) is determined if either player I or player II
has a winning strategy, i.e. one of them wins the game G, as we will say from now on.

Remark 6.2.2. Since we have already identified the game G = GX(A) with A, we will call the
set A determined, too. Ιt is important to note that there are games that are undetermined.

Remark 6.2.3. For an intuitive understanding, note that determinacy can be rendered as an infi-
nite sequence of alternating quantifiers. For example, for games of infinite length, we have:

‚ Player I having a winning strategy in GX(A) (i.e. I wins GX(A)) is equivalent to
(6.1) Da1 @a2 Da3 @a4 Da5 @a6 . . . Dan @an+1 . . . (α P A)

‚ Player II having a winning strategy in GX(A) (i.e. II wins GX(A)) is equivalent to
(6.2) @a1 Da2 @a3 Da4 @a5 Da6 . . . @an Dan+1 . . . (α R A)

where an, for n odd are I’s moves and an, for n even are II’s moves.
The game GX(A) is determined, meaning intuitively that the negation of the expression (6.1) is

the expression (6.2).

Definition 6.2.4. If A Ď XN and u = (a0, . . . , an´1) is a sequence of even length, the subgame
of A at u is

A(u) = tf P XN : (a0, a1, . . . , an´1, f(0), f(1), . . . ) P Au.

Lemma 6.2.5 ((AC), [8]). Let A Ď XN and suppose u = (a0, a1, . . . , an´1) is a finite sequence
from X of even length. If player II does not win the game A(u), then there is some a such that for all
b, player II does not win A(u ˚ (a, b)).

Proof. Towards a contradiction, suppose player II does not win the game A(u), but that for each
a, there is some b and a strategy τ which is winning for II in A(u ˚ (a, b)). By using the Axiom of
Choice, there is a function of choice

a ÞÑ (ba, τa)

sending each a to some ba and τa with these properties. From this function we conclude that if the
player I starts by playing a0, then the player II can answer by playing ba0 and then following τa0 as if
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she were playing in the game A(u ˚ (a0, b
a0)).

To visualize the game we are describing, we present the Diagrams 6.3 and 6.4 - we set II’s move ba0

as a1.

I u0u0u0 u2u2u2
Œ Õ Œ Õ

II u1u1u1 …

… a0
Œ Õ Œ

un´1un´1un´1 a1 = ba0

Diagram 6.3. Playing the game A(u ˚ (a0, b
a0)) (the subgame A(u) appears in bold).

I u0u0u0 …
Œ Õ Œ Õ

II … un´1un´1un´1

a0 a2 . . .
Œ Õ Œ Õ

a1 = ba0 a3

Diagram 6.4. Playing the game A(u ˚ (a, b)) (the subgame A(u) appears in bold).

We will now define player II’s winning strategy as follows:

τ(a0) = ba0

τ(a0, . . . , an) = τa0(a2, . . . , an), n ą 1, n even.

By using strategy τ , we notice that for player II’s moves a1, a3, a5, . . . , applies

a1 = τ(a0) = ba0 , a3 = τa0(a2), a5 = τa0(a2, a3, a4), . . .

So the game we described takes the following form, in Diagram 6.5.

I u0u0u0 …
Œ Õ Œ Õ

II … un´1un´1un´1

a0 a2
Œ Õ Œ Õ

ba0 τa0(a2)

¨ ¨ ¨

Diagram 6.5. Playing the game A(u ˚ (a, b)) when τ is II’s winning strategy.

The sequence
(a0, a1, a2, a3, . . . ) = (a0, b

a0 , a2, τ
a0(a2), . . . )

produces a run of the game A(u). Denoting this run by f , we have

f(0) = a0, f(1) = a1, . . . , f(n) = an, . . .

Suppose that I plays f = (f(0), f(1), . . . , f(n), . . . ) in A(u) while II responds by τ , then

(f(2), f(3), . . . , f(n), . . . ) R A(u ˚ (a0, b
a0)) ðñ (a2, a3, . . . , an, . . . ) R A(u ˚ (a0, a1))

since II has been following τa0 after the first two moves. Hence,

(a0, a1, . . . , an, . . . ) R A(u) ðñ (f(0), f(1), . . . , f(n), . . . ) R A(u)

ðñ f R A(u).

Therefore, player II has won this run of A(u) and this is a contradiction to our hypothesis. □

Theorem 6.2.6 ((AC), [1]). (Gale-Stewart) For each X ‰ H, every closed subset of XN is
determined.
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Proof. We use the product topology on XN (with X discrete). Suppose that A Ď XN and player
II does not have a winning strategy in A. We will describe how I can play to win:

By Lemma 6.2.5, there is some a0 such that for every b, she cannot win the subgame A(a0, b) of
A. Let player I start the game by playing some a0 with this property and let II answer by some a1.
Now player II cannot win A(a0, a1).

Applying again Lemma 6.2.5, this time in subgame A(a0, a1). Since II does not win in A(a0, a1),
there is some a2 such that for every b, II cannot win the subgame A(a0, a1, a2, b).

Let player I play one such a2 and continue in the same way. At the end of this run of the game,
we have a play:

f = (a0, a1, a2, . . . ).

For every even n, II cannot win A(a0, a1, a2, . . . , an´1). This implies that there is some fn P XN

with
fn(0) = a0, f1 = a1, . . . , fn(n´ 1) = an´1, and fn P A.

Otherwise, player II could win A(a0, a1, a2, . . . , an´1) by making random movements. We note that

lim
nÑ8

fn = f

and because A is a closed subset of XN, it follows that

f P A

(A Ď XN is closed if and only if every convergent sequence in XN completely contained in A has its
limit in A). Therefore, player I wins A. □

Theorem 6.2.7 ((AC), Wolfe [12]). For each X ‰ H, every Σ
r

0
2 subset of XN is determined.

Proof. Let A Ď XN and A P Σ
r

0
2. Because of A P Σ

r

0
ξ , for ξ = 2, it can be written as follows:

A =
ď

iPN
Fi,

for suitable F0, F1, . . . where each Fi is in Π
r

0
1, therefore is closed.

We also choose trees T i on X such that

(6.3) Fi = [T i] = tf P XN : @k ( f(0), f(1), . . . , f(k ´ 1)) P T i u.

To prove that A P Σ
r

0
2 is determined, we will prove that either player I or player II wins in A.

‚ For player I, we will define a set of “Sure Winning Positions” in A, i.e. a set W such that it is
I’s turn to play and

u PW ùñ I wins A(u).

‚ For player II, we will show that if Λ RW , then she wins in A. In this way, we will have established
the determinacy of A.

First of all, let us put
u PW 0 ðñ Di [ player I wins F i(u)] ,

i.e. if u P W 0, then I wins A(u) trivially, by playing to get into a specific closed set Fi. So, the
positions in W 0 have a simple strategy: just choose an i and play to get into Fi. (Furthermore, all
even finite segments are in W 0.)

Suppose now that W η has been defined for each η ă ξ and for i P N put

f P Hξ,i ðñ @ even k

 (f(0), . . . , f(k ´ 1)) P
ď

ηăξ

W η Y T i

 .

Let fn P Hξ,i, n P N and fn ÝÑ f . We show that f P Hξ,i. Let k P N be even. Then for all large
n P N, we have fn|k = f |k. Let one such n P N. Since fn P H

ξ,i, we have

fn|k P
ď

ηăξ

W η Y T i,
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therefore
f |k P

ď

ηăξ

W η Y T i.

So for all even k,
f |k P

ď

ηăξ

W η Y T i

and hence f P Hξ,i. Therefore, Hξ,i is a closed set. Let

u PW ξ ðñ Di [ player I wins the game Hξ,i(u)]

and
W =

ď

ξ

W ξ,

where ξ is an ordinal. These W ξ are finite partial plays (i.e. the sets of “Positions” to which we have
already touched upon) in which player I is next to play and has a winning strategy, so these are sets of
Sure Winning for I. Therefore, as we can see from the last two equations if I has a strategy to get into
one of the Hξ,i, then he can win overall.

We will prove by Transfinite Induction on ξ that

(6.4) u PW ξ ùñ player I wins A(u),

for all u of even length.

Inductive hypothesis: Suppose that (6.4) is true for all ordinals η ă ξ.

Zero case: We will prove that (6.4) is true for ξ = 0.

Case ξ ą 0ξ ą 0ξ ą 0: Let u PW ξ. Player I wins A(u) as follows:

Choose i so that I wins Hξ,i(u) (u of even length) and let σ be I’s winning strategy in Hξ,i(u).

If u P T i, then a0 = σ(Λ) and player I keeps on playing the winning strategy σ.

If u ˚ (a0, a1) P T i, then I keeps on playing σ.

If u ˚ (a0, a1, a2, a3) P T i, then I keeps on playing σ.

...

Continuing in the same way, the run f = (a0, a1, . . . , an, . . . ) is produced, with

u ˚ (a0, . . . , ak´1) P T
i, for all even k.

The Diagram 6.6 below, shows the illustration of the game we are describing.

I u0u0u0 …
Œ Õ Œ Õ

II … un´1un´1un´1

a0 = σ(Λ) a2 = σ(a0, a1)
Œ Õ Œ

a1 . . .

Diagram 6.6. Playing the game Hξ,i(u) (the subgame A(u), u PW ξ, appears in bold).

Thus,

u ˚ f P [T i] = F i Ď A ùñ u ˚ f P A ùñ f P A(u).

So, player I wins A(u). If now, as the run progresses, u ˚ (a0, . . . , ak´1) P T
i doesn’t happen, for all

even k, then there is even k, so that

u ˚ (a0, . . . , ak´1) R T
i.
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We choose the least such even k. We continue the run by letting II play a fixed x0 and I following σ.
This produces a run

u ˚ (a0, . . . , ak´1) ˚ g.

Since I wins Hξ,i, we have
u ˚ (a0, . . . , ak´1) P

ď

ηăξ

W η Y T i.

But,
u ˚ (a0, . . . , ak´1) R T

i,

so
u ˚ (a0, . . . , ak´1) P

ď

ηăξ

W η.

He then chooses η ă ξ, such that
u ˚ (a0, . . . , ak´1) PW

η.

Τherefore, by inductive hypothesis, I wins A(u ˚ (a0, . . . , ak´1)).
Let σ1 be a winning strategy for player I, and I continues with σ1. Therefore, the following run is
produced:

(a0, . . . , ak´1, g(0), . . . , g(n), . . . ),

where g(0), . . . , g(n), . . . are the movements resulting from following σ1. Then
(g(0), . . . , g(n), . . . ) P A(u ˚ (a0, . . . , ak´1)),

or equivalently
(a0, . . . , ak´1) ˚ g P A(u).

This shows how I wins A(u). In particular, (6.4) implies that
Λ PW ùñ player I wins A.

We will prove that
Λ RW ùñ player II wins A.

We notice that @i, it holds
η ď ξ ùñ Hη,i Ď Hξ,i.

This is true only because the underlying set involves a union of more sets, i.e. in particular
ď

λăη

W λ Y T i Ď
ď

λăξ

W λ Y T i,

for all η ă ξ. Hence,
η ď ξ ùñ W η ĎW ξ.

Since they can’t keep growing forever, there is some ordinal κ such that
W κ+1 = W κ = W.

Suppose now that Λ RW κ+1. We will describe how player II can play to win A:
By the definition of W κ+1 and the determinacy of each closed game Hκ+1,i, player II can actually
win every Hκ,i, since

u PW κ ðñ Di [ I wins in Hκ,i(u)] .

So,
u RW κ ðñ @i [ II wins in Hκ,i(u)] .

Let her start by playing to winHκ,0, for i = 0. After a while (k-moves), a finite sequence (c0, . . . , ck´1)
has been played and

(c0, . . . , ck´1) RW
κ & (c0, . . . , ck´1) R T

0.

No matter how the game continues, we know at this stage that the final play will not be in F 0:

u PW 0 ðñ Di [ I wins in F i(u)]

and
A(u) =

ď

iPN
F i(u).
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Therefore, player I wins A(u) by playing to get into a certain closed set F i (specifically, F 0, for i = 0).
Thus, since II wins A, the final game will not be on F 0. Let k0 be the first k in which this happens and
using W κ = W κ+1, let II switch to a strategy so she can win Hκ+1,1(c0, . . . , ck0´1). Again, some
k ą k0 is reached so that

(c0, . . . , ck0´1, . . . , ck´1) RW
κ & (c0, . . . , ck´1) R T

1.

At this point we have ensured that the final play will not be in F 1. Player II can continue to play in
this way and ensure that the final play will not be in any of the sets F 0, F 1, F 2, . . . thereby winning
A. □

Remark 6.2.8. From now on we will refer to the determinacy of a set A in pointclass Γ, through
the following equivalence. If Γ is a collection of sets, put

DetX(Γ) ðñ for every set A Ď XN in Γ, the game GX(A) is determined.
We will be particularly interested in the hypotheses DetN(Γ) and Det2(Γ), where 2 = t0, 1u, with Γ
being one of the pointclasses to which we have referred.

Theorem 6.2.9 ([8]). Suppose Γ is a collection of subsets of some XN which is closed under
continuous substitution. Τhen

DetX(Γ) ðñ DetX(␣Γ).

Proof. Given A Ď XN in ␣Γ, let
B = t(x, f(0), f(1), . . . ) : x P X, f R Au.

It is enough to show that
DetX(Γ) ùñ DetX(␣Γ),

since we can then replace Γ by ␣Γ (which is closed under continuous substitution) and get
DetX(␣Γ) ùñ DetX(␣␣Γ) ” DetX(Γ).

Assume DetX(Γ) and A Ď XN be in ␣Γ. Then the preceding B is in Γ and hence it is determined.
We show that
(6.5) I wins GX(B) ùñ II wins GX(A)

and also
(6.6) II wins GX(B) ùñ I wins GX(A).

If we show (6.5) and (6.6) we have that GX(B) is determined.
For (6.5) suppose that I wins GX(B) and let σ be a winning strategy for I in GX(B). We describe

how II can win XNzA. Let x0 = σ(Λ). Let I play a0 in GX(A). Player II copies a0 in GX(B) and
registers the answer of I in GX(B) according to σ, i.e

a1 = σ(x0, a0).

This a1 is the answer of II in GX(A). Diagrams 6.7 and 6.8 below show games GX(A) and GX(B),
respectively (the copies of player I’s moves in GX(A) from player II in GX(B) appears in bold).

I a0a0a0 a2a2a2
Œ Õ Œ Õ

II a1 a3

¨ ¨ ¨

Œ

. . .

Diagram 6.7. Playing the game GX(A).

I x0 = σ(Λ) a1 = σ(x0, a0)
Œ Õ Œ Õ

II a0a0a0 a2a2a2

a3 = σ(x0, a0, a1, a2)
Œ

. . .

Diagram 6.8. Playing the game GX(B), where σ is I’s winning strategy.
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In a similar fashion, if I plays a2 in GX(A), we take
a3 = σ(x0, a0, a1, a2)

and II plays a3 in GX(A). If
(a0, a1, a2, a3, . . . )

is a run in GX(A) where II has played as above, since σ is a winning strategy for I in GX(B), we have
(x0, a0, a1, a2, a3, . . . ) P B

hence
(a0, a1, a2, a3, . . . ) R A.

So II wins the run (a0, a1, a2, a3, . . . ) in GX(A).
The implication (6.6) is proved similarly. □

Thus far we have shown DetX(Σ
r

0
2), for every X . The determinacy of the dual class Π

r

0
2 follows

from the previous Theorem.

Corollary 6.2.10. For each X , every Π
r

0
2 subset of XN is determined, i.e. DetX(Π

r

0
2).

Proof. From the definition of Borel pointclasses of finite order, we know that Π
r

0
2 = cΣ

r

0
2. There-

fore, if A P Σ
r

0
2, then cA P Π

r

0
2. From Theorem (6.2.7) we know that A is determined. By applying

the previous Theorem, it transpires that
DetX(Σ

r

0
2) ùñ DetX(cΣ

r

0
2) = DetX(Π

r

0
2).

So cA P Π
r

0
2 is determined. □

Proposition 6.2.11. If Γ is a pointclass closed under continuous substitution, then
DetN(Γ) ùñ Det2(Γ).

Proof. Given A Ď 2N in Γ, define g : N Ñ 2N by

g(α)(n) =

#

0, if α(n) = 0

1, if α(n) ą 0,

and let
(6.7) α P B ðñ g(α) P A.

Firstly, we will show that the set B is in Γ. We have that g : N Ñ 2N and B Ď N , so since A is in
Γ, the pointclass Γ is closed under continuous substitution and (6.7) holds, it follows that B is in Γ,
too. We will prove that the player who wins GN(B) also wins G2(A). Diagrams 6.9 and 6.10 show
the illustrations of the games GN(B) and G2(A), respectively.

I a0(n = 0) a2(n = 2)
Œ Õ Œ Õ

II a1(n = 1) . . .

¨ ¨ ¨

Diagram 6.9. Playing the game GN(B) Ď N .

I g(α)(0)(n = 0) g(α)(2)(n = 2)
Œ Õ Œ Õ

II g(α)(1)(n = 1) . . .

¨ ¨ ¨

Diagram 6.10. Playing the game G2(A) Ď 2N.

Suppose that the game GN(B) is determined. If player I wins B, let a run α, where I has followed
his strategy

α P B ùñ g(α) P A ùñ I wins A.
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In the case player II wins B, let a run α, where II has followed her strategy

α R B ùñ g(α) R A ùñ II wins A.

So we have shown that if GN(B) is determined, the game G2(A) is determined, too. Therefore, the
implication is proved. □

6.3. The G˚-Games

Here we introduce in our study a special category of games of special topological significance.
Τhese games will be denoted by G˚

X . Given A Ď XN, the game G˚
X(A) is played as follows:

In this game, player I chooses a finite (non-empty) sequence from X , then player II chooses a
single member from X , then I chooses a finite (non-empty) sequence from X , etc. ad infinitum. So,
player I is favored since he is allowed to play more than one point from X if he wishes. Diagram 6.11
shows the illustration of the game G˚

X(A). Player I wins G˚
X(A) if the play f = (a0, a1, . . . ) is in

A, i.e., f P A. Otherwise, player II wins. In particular, if I wins GX(A), he obviously wins G˚
X(A)

too. Strategies and winning strategies for these games are defined in an obvious way. Ιn addition, the
following equivalence applies

Det˚X(Γ) ðñ for each A Ď XN in Γ, either I or II wins the game G˚
X(A).

I a0, . . . , ak0´1 ak0+1, . . . , ak1´1

Œ Õ Œ Õ

II ak0 ak1

ak1+1, . . . , ak2´1

Œ

. . .

Diagram 6.11. Playing the game G˚
X(A).

Proposition 6.3.1. If Γ is a pointclass closed under continuous substitution, containing the closed
sets, then

DetN(Γ) ùñ Det˚N(Γ) ùñ Det˚2(Γ).

Proof. For the first implication, we define

f : NÑ NăN : f(s) =

#

((s)0, . . . , (s)lh(s)´1), if s P Seq
Λ, if s R Seq,

where s = x(s)0, . . . , (s)lh(s)´1y. Also, we define the continuous function g : N Ñ N , with

g(α) = f(α(0)) ˚ α(1) ˚ f(α(2)) ˚ α(3) ˚ . . .

and
Seq˚ = Seq z tΛu.

So,
Seq˚ = ts P Seq | s ą 1u.

Given A Ď NN = N in Γ, we will show that G˚
N(A) is determined. Let us define the set

B = g´1[A] X tα | @n α(2n) P Seq˚u,

where we identify α(2n) with the finite sequence it codes (e.g. α(0) = xu0, u1, . . . , uk0´1y, k0 ě 1)
and let

(6.8) α P B ðñ g(α) P A & @n α(2n) P Seq˚.

We notice that B is in Γ because g´1[A] P Γ (because A is in Γ and Γ is closed under continuous
substitution) and tα | @n α(2n) P Seq˚u P Γ (because it is a closed set), thus their intersection is in
pointclass Γ.

‚ To prove the first implication, we will show that the player who wins GN(B) also wins G˚
N(A).

Firstly, let us suppose that player I wins in GN(B). We will show that player I wins in G˚
N(A), too.
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We fix a winning strategy σ for player I in GN(B), therefore, the moves of player I are described as
follows

a0 = σ(Λ), a2 = σ(a0, n0), a4 = σ(a0, n0, n1), . . .

The games GN(B) and G˚
N(A) are visualized in Diagrams 6.12 and 6.13 below, respectively.

I σ(Λ) σ(a0, n0)
Œ Õ Œ Õ

II n0 = a1 n1 = a3

σ(a0, n0, n1)
Œ

. . .

Diagram 6.12. Playing the run α of GN(B), when player I has a winning strategy σ.

I f(a0) f(a2)
Œ Õ Œ Õ

II a1 = uk0 P N a3 = uk1 P N

f(a4)
Œ

. . .

Diagram 6.13. Playing the run g(α) of the game G˚
N(A).

Ιn the game G˚
N(A), the moves of player I code some finite sequences in the following way:

f(a0) = f(xu0, u1, . . . , uk0´1y), f(a2) = f(xuk0+1, . . . , uk1´1y), . . .

So, if player I wins in GN(B), we have
α P B ùñ σ(Λ) ˚ n0 ˚ σ(a0, n0) ˚ n1 ˚ σ(a0, n0, n1) ˚ . . . P B.

Then, by (6.8) it follows that
α P B ùñ g(α) P A & @n α(2n) P Seq˚.

Therefore, player I also wins in G˚
N(A).

In the same way, we now assume that player IΙ wins in GN(B). We will show that player IΙ wins in
G˚

N(A), too. Let us fix a winning strategy τ for player II in GN(B), therefore, her moves are described
as follows

n0 = τ(xu0, . . . , ulh(u0)´1y), n1 = τ(n0, xu1, . . . , ulh(u1)´1y), . . .

The moves of player Ι in GN(B) are codes of finite sequences:
a0 = xu0, . . . , ulh(u0)´1y, a2 = xu1, . . . , ulh(u1)´1y, . . .

Αdditionally, for player I’s moves in G˚
N(A) we have

f(a0) = f(xu0, u1, . . . , uk0´1y), f(a2) = f(xuk0+1, . . . , uk1´1y), . . .

The games GN(B) and G˚
N(A) are visualised in Diagrams 6.14 and 6.15 below, respectively.

I a0 a2
Œ Õ Œ Õ

II τ(xu0, . . . , ulh(u0)´1y) τ(n0, xu1, . . . , ulh(u1)´1y)

¨ ¨ ¨

Œ

. . .

Diagram 6.14. Playing the run α0 of GN(B), when player II has a winning strategy τ .

I f(xu0, u1, . . . , uk0´1y) f(xuk0+1, . . . , uk1´1y)
Œ Õ Œ Õ

II a1 = uk0 P N . . .

¨ ¨ ¨

Diagram 6.15. Playing the run g(α) of the game G˚
N(A).
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If player II wins in GN(B), we have

α R B ùñ xu0, . . . , ulh(u0)´1y ˚ n0 ˚ xu1, . . . , ulh(u1)´1y ˚ n1 ˚ . . . R B.

Then, by (6.8) we have

α R B ùñ g(α) R A _ Dn α(2n) R Seq˚

and since the case Dn α(2n) R Seq˚ doesn’t occur from the definition of α, player II wins G˚
N(A),

too.
‚ For the second implication, we will apply the method of Proposition 6.2.11:

Given D Ď 2N in Γ, define h : N Ñ 2N by

h(α)(n) =

#

0, if α(n) = 0

1, if α(n) ą 0,

and let

(6.9) g(α) P C & @n α(2n) P Seq˚ ðñ h(g(α)) P D,

where C Ď N . Equivalently,

h(g(α)) P D ðñ h(g(α)) = h(f(α(0))) ˚ h(α(1)) ˚ h(f(α(2))) ˚ h(α(3)) ˚ . . .

We will prove that the player who wins the game G˚
N(C), also wins the G˚

2(D). We fix a winning
strategy σ1 for player I in G˚

N(C), so, his moves are described as follows

σ1(Λ) = f(xu0, u1, . . . , uk0´1y), σ1(f(a0, a1)) = f(xuk0+1, . . . , uk1´1y), . . . ,

while, his moves in G˚
2(D) are described, respectively, as follows

h(f(a0)) = h(f(xu0, u1, . . . , uk0´1y)), h(f(a2)) = h(f(xuk0+1, . . . , uk1´1y)), . . .

Diagrams 6.16 and 6.17 show the illustrations of the games G˚
N(C) and G˚

2(D), respectively.

I σ1(Λ) σ1(f(a0, a1))
Œ Õ Œ Õ

II a1 = uk0 a3 = uk1

¨ ¨ ¨

Œ

. . .

Diagram 6.16. Playing the run g(α) of G˚
N(C),when player I has a winning strategy σ1.

I h(f(a0)) h(f(a2))
Œ Õ Œ Õ

II h(a1) = h(uk0) h(a3) = h(uk1)

¨ ¨ ¨

Œ

. . .

Diagram 6.17. Playing the run h(g(α)) of the game G˚
2(D).

So if player I wins G˚
N(C) we have

g(α) P C & @n α(2n) P Seq˚

and thus by (6.9), we have that h(g(α)) P D. So player I wins the game G˚
2(D), too.

In the same way, we now assume that player IΙ wins in G˚
N(C) and we will show that player IΙ also

wins in G˚
2(D). Let us fix a winning strategy τ 1 for player II in G˚

N(C), so her moves are described
as follows

τ 1(f(a0)) = a1, τ 1(a1, f(a2)) = a3, . . . ,

in fact, player I’s moves in G˚
2(D) are described in the same way as before. The games G˚

N(C) and
G˚

N(D) are visualised in Diagrams 6.18 and 6.19 below, respectively.
If player II wins in G˚

N(C), we have

g(α) R A _ Dn α(2n) R Seq˚
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I f(a0) f(a2)
Œ Õ Œ Õ

II τ 1(f(a0)) = a1 τ 1(a1, f(a2)) = α3

¨ ¨ ¨

Œ

. . .

Diagram 6.18. Playing the run g(α) of G˚
N(C), when player II has a winning strategy τ 1.

I h(f(a0)) h(f(a2))
Œ Õ Œ Õ

II h(a1) = h(uk0) h(a3) = h(uk1)

¨ ¨ ¨

Œ

. . .

Diagram 6.19. Playing the run h(g(α)) of the game G˚
2(D).

and so by (6.9), it follows that h(g(α)) R D. Therefore, player II wins G˚
2(D), too. Thus, the game

G˚
2(D) is determined and we have proved the implication. □

Proposition 6.3.2. Player I has a winning strategy in G˚
2(A) if and only if A Ď 2N has a non-

empty, perfect subset.

Proof. Let us suppose that A Ď 2N and σ is a winning strategy for player I. Consider the set

B = tα P 2N : α is the play in some run of G˚
2(A),where I plays by σu.

Ιf we assume that player I plays based on the winning strategy of σ, and in the play α player II responds
to every move of I by playing some β(k), k P N, the set B can be written in the following equivalent
form:

B = tσ ˚ β : is the run where I follows σ and II plays β P 2Nu.

Hence, player I’s moves following σ have the following form

σ(Λ) = uβ0 , σ(uβ0 , β(0)) = uβ1 , . . . , σ(uβ0 , β(0), . . . , u
β
n, β(n)) = uβn+1 . . .

In the Diagram 6.20 below we can see how the play evolves within the set B.

I uβ0 uβ1
Œ Õ Œ Õ

II β(0) β(1)

¨ ¨ ¨ uβn+1 ¨ ¨ ¨

Œ Õ Œ Õ

. . . β(n+ 1)

Diagram 6.20. Playing some run α of G˚
2(A), within the set B (where I follows the

winning strategy σ).

Then we have
α = σ ˚ β

= σ(Λ) ˚ β(0) ˚ σ(uβ0 , β(0)) ˚ β(1) ˚ . . . ˚ σ(uβ0 , β(0), . . . , u
β
n, β(n)) ˚ β(n+ 1) ˚ . . .

= uβ0 ˚ β(0) ˚ u
β
1 ˚ β(1) ˚ . . . ˚ uβn+1 ˚ β(n+ 1) ˚ . . .

Consider now a convergent sequence (αi)iPN Ď B, with αi Ñ α, where αi = σ ˚ βi, we have

uβi
0 = σ(Λ) = (αi(0), . . . , αi(n0)) = u0

and since
αi(n0 + 1) = βi(0) ÝÑ α(n0 + 1)

it follows that
Di0 @i ě i0 such that α(n0 + 1) = βi(0).

54



If we set b0 = α(n0 + 1), we have

uβi
1 = σ((αi(0), . . . , αi(n0)), αi(n0 + 1))

= σ(uβi
0 , βi(0))

= σ(uβi
0 , α(n0 + 1))

= σ(uβi
0 , b0)

= u1.

and since
αi(n1 + 1) = βi(1) ÝÑ α(n1 + 1),

where
n1 = lh(u0) + lh(u1) + 1,

it follows that
Di1 @i ě i1 such that α(n1 + 1) = βi(1).

Continuing the same way, we see that (βi)iPN converges to some β P 2N. Hence,
αi = σ ˚ βi ÝÑ σ ˚ β

and
α = σ ˚ β P B.

Therefore, B is closed. Also, it is easy to see that B has no isolated points and thus it is a perfect set.
Conversely, let C be a perfect subset of A (i.e. C is closed and it has no isolated points) and choose

a pruned tree T on 2N such that
C = [T ] = tα : @n (a(0), . . . , a(n´ 1)) P T u.

First, we remark that for all u P T there is a proper extension v of u, such that
v ˚ (0) P T and v ˚ (1) P T.

To see this let u P T since T is pruned, we have that [Tu] ‰ ∅. So let α P [Tu] , i.e.,
α P [T ] and u Ď α.

We have that α is not an isolated point of C = [T ] , so there is β P Nu, with β ‰ α. Let n be the
least such that

β(n) ‰ α(n).

So, β|n = α|n and u Ď α, β. Put v = α|n = β|n. Then v extends u properly. Since α(n), β(n) P
t0, 1u and α(n) ‰ β(n), one of them is 0 and the other is 1. So,

tv ˚ (0), v ˚ (1)u = tα|(n+ 1) = β|(n+ 1)u

and α|(n+ 1), β|(n+ 1) P T because α, β P [Tu] . Hence, v ˚ (0), v ˚ (1) P T .
Next, we describe how I can play to win G˚

2(A). Player I starts with a non-empty sequence
(a0, . . . , an´1) such that

(a0, . . . , an´1, i) P T, for i = 0, 1.

This is possible from the remark above taking u = Λ P T . Suppose that II plays an P t0, 1u. From
the choice of (a0, . . . , an´1) we have that

u = (a0, . . . , an´1) P T.

We apply the preceding remark to this u P T and get a proper extension v of u,
v = (a0, . . . , an´1, an, an+1, . . . , ak´1),

such that v ˚ (i) P T , i = t0, 1u. Then, I plays the non-empty sequence (an+1, . . . , ak´1). We
continue similarly. For every run

((a0, . . . , an´1), an, (an+1, . . . , ak´1), . . . ),

where I has played as above, has the property
(a0, . . . , an´1, an, an+1, . . . , ak´1, . . . ) P [T ] = C Ď A

and so I wins this run.
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Therefore, we have described a winning strategy for I in G˚
2(A). □

Proposition 6.3.3. Player II has a winning strategy in G˚
2(A) if and only if A is countable.

Proof. Let us start the proof from the converse direction. If A is countable, then II has a winning
strategy: she simply plays in her nth turn to make the play different from αn, where A = tα0, α1, . . . u.
For the forward direction, suppose now that player II wins by playing τ and let α be a fixed binary
sequence. We define the sequence

s0, k0, s1, k1, . . . , sl´1, kl´1.

We call this sequence good for τ and α, if the following hold:
i) each si is a non-empty, finite binary sequence,

ii) each ki is 0 or 1,
iii) the sequence z = s0 ˚ k0 ˚ s1 ˚ k1 ˚ ¨ ¨ ¨ ˚ sl´1 ˚ kl´1 is an initial segment of α (i.e. z Ď α),
iv) and s0, k0, s1, k1, . . . , sl´1, kl´1 is the beginning of a run of G˚

2(A) played according to τ ,
i.e., for j ă l,

kj = τ(s0, k0, . . . , sj).

In particular, kj is player II’s answer to player I’s moves, by the time he’s made his sj move. More
specifically, we have that

k0 = τ(s0), k1 = τ(s0, k0, s1), k2 = τ(s0, k0, s1, k1, s2), . . .

The game G˚
2(A) is illustrated in the Diagram 6.21, below.

I s0 s1
Œ Õ Œ Õ

II τ(s0) τ(s0, k0, s1)

s2 ¨ ¨ ¨

Œ Õ

τ(s0, k0, s1, k1, s2)

Diagram 6.21. Playing the game G˚
2(A), where τ is II’s winning strategy.

The empty sequence (for l = 0) is automatically good. If every good sequence has a good proper
extension, then α is the play in a run of G˚

2(A) where player II has followed the winning strategy τ ,
and hence α R A.

Therefore, if α P A, player II has stopped following her winning strategy τ . So there must exist
some

s0, k0, s1, k1, . . . , sl´1, kl´1

(possibly the empty sequence) which is good for τ and α and has no proper good extension.
We have

s0 ˚ k0 ˚ s1 ˚ k1 ˚ ¨ ¨ ¨ ˚ sl´1 ˚ kl´1 = (α(0), α(1), . . . , α(n´ 1)).

We show that α is uniquely determined by s0, k0, . . . , sl´1, kl´1 and α(n).
More specifically, if

s0 ˚ k0 ˚ ¨ ¨ ¨ ˚ sl´1 ˚ kl´1 ˚ α(n) Ď β,

then α = β. To see this we claim that for all i ą n, we have
(6.10) α(i) = 1´ τ(s0, k0, . . . , sl´1, kl´1, (α(n), . . . , α(i´ n))).

If we show (6.10), then by a simple induction on i ą n we induct have that for all β with
s0 ˚ k0 ˚ ¨ ¨ ¨ ˚ sl´1 ˚ kl´1 ˚ α(n) Ď β,

it holds α = β. To show (6.10), let i ą n and consider in G˚
2(A) that

s0, k0, . . . , sl´1, kl´1

have been played. Let I play next (α(n), . . . , α(i´ n)). Since s0 ˚ k0 ˚ ¨ ¨ ¨ ˚ sl´1 ˚ kl´1 has no good
extension, then II must have played against her strategy τ , so

α(i) = 1´ τ(s0, k0, . . . , sl´1, kl´1, (α(n), . . . , α(i´ n)))

and (6.10) is proved.
To visualize the progress of a run in game G˚

2(A), we present Diagrams 6.22 and 6.23.
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I s0 = (α(0), . . . , α(t0)) . . .
Œ Õ Œ Õ

II τ(s0) = α(t0 + 1) . . .

sl´1

Œ

kl´1

Diagram 6.22. During a run in G˚
2(A), where II follows her winning strategy τ , until

her (l ´ 1)-move (that appears in bold).

I ¨ ¨ ¨ sl = (α(n), . . . , α(i´ 1))
Œ Õ Œ Õ

II . . . α(i) = 1´ τ(s0, . . . , kl´1, sl)

¨ ¨ ¨

Diagram 6.23. During a run in G˚
2(A), where II starts playing against τ , for i ą n

(that appears in bold).

Thus, α is completely determined by the value α(n) and the maximal good sequence
s0, k0, s1, k1, . . . , sl´1, kl´1.

We define
C = tα : Dl D s0, k0, . . . , sl´1, kl´1, Dj P t0, 1u, for which

s0 ˚ k0 ˚ ¨ ¨ ¨ ˚ sl´1 ˚ kl´1 ˚ (j) Ď α

is good for τ and α and has no proper good extensionu.

The set C can be written
C =

ď

l

Cl,

where l is fixed. The sets Cl are finite and hence C is countable, as the countable union of finite
sets (for fixed l, there are only finitely many s0, k0, . . . , sl´1, kl´1, j). Therefore, A Ď C, so A is
countable. □

Theorem 6.3.4. Let Γ be any of the pointclasses Σ
r

1
n, Π

r

1
n and ∆

r

1
n, for n ě 1. Then

Det˚2(Γ) ðñ every uncountable set in Γ has a non-empty perfect subset.

and hence

Det˚N(Γ) ùñ every uncountable set in Γ has a non-empty perfect subset.

Proof. ‚ Let us start by proving the implication:
Det˚2(Γ) ùñ every uncountable set in Γ has a non-empty perfect subset.

We assume that Det˚2(Γ) is true, where Γ is one of the pointclasses Σ
r

1
n, Π

r

1
n, ∆

r

1
n, for n ě 1. We have

to prove that if X is a Polish space, every uncountable set A Ď X in Γ has a non-empty perfect subset.
Let A Ď X be uncountable in Γ. Then, X must be uncountable, too. By Theorem 5.4.25, there is

a Borel isomorphism
π : X Ñ 2N.

Continuing, we consider B = π[A] Ď 2N. The set B is uncountable because A is also uncountable
and π is a Borel isomorphism (so, π is a bijection). It is true that B = (π´1)´1[A]. Indeed,

a P B ðñ Dx P A : a = π(x)

ðñ π´1(a) P A

ðñ f(a) P A, f = π´1

ðñ a P f´1[A]

ðñ a P (π´1)´1[A].

Since, π´1 is a Borel measurable and Γ is closed under Borel substitution, we have that B is in Γ. By
hypothesis, Det˚2(B) it is true. Thus, the game G˚

2(B) is determined, so one of the two players wins.
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We assume that player II has a winning strategy in G˚
2(B). Then, by Proposition 6.3.3, it follows

that B is countable, but this is a contradiction. Therefore, player I has a winning strategy in G˚
2(B),

and by Proposition 6.3.2, we have that B Ď 2N has a non-empty perfect subset. Let us call this
non-empty perfect subset P . Then,

P Ď B = π[A].

Knowing that π is a Borel measurable function and P is a closed set, it follows that π´1[P ] is a Borel
subset of X . Additionally, P is uncountable and the sets P and π´1[P ] have the same cardinality,
so π´1[P ] is an uncountable Borel set. Therefore, by Remark 5.4.7 there is Q Ď π´1[P ], that is
non-empty and perfect. Finally, we have that

Q Ď π´1[P ] Ď π´1[B] = π´1[π[A]] = A.

‚ Proceeding, we will prove the following implication:
every uncountable set in Γ has a non-empty perfect subset ùñ Det˚2(Γ).

Let A Ď X in Γ and let us suppose that X = 2N. If A is countable, then from hypothesis, by Propo-
sition 6.3.3, player II wins G˚

2(A). If A is uncountable, then from hypothesis, there is C ‰ ∅ perfect
subset of A. By Proposition 6.3.2, player I wins G˚

2(A). Therefore, the game G˚
2(A) is determined

and thus Det˚2(Γ) is true.

‚ Last, we will prove the implication:
DetN(Γ) ùñ every uncountable set in Γ has a non-empty perfect subset.

By Proposition 6.3.1, we have that
DetN(Γ) ùñ Det˚N(Γ) ùñ Det˚2(Γ),

and we also proved that
Det˚2(Γ) ùñ every uncountable set in Γ has a non-empty perfect subset.

Consequently, we have reached our goal. □

6.4. The Covering Games Gµ(A, ε)

In this section, we will describe the covering game Gµ(A, ε), for ε ą 0, associated with the usual
σ-finite Borel measure µ on the space 2N and each set A Ď 2N. This is a game on N, invented by L.
Harrington ([4]). To describe the game Gµ(A, ε) we will use the base of 2N:

Nu, u P t0, 1u
ăN, base of 2N,

Nk, k P N, base of 2N and t = xk0, . . . , km´1y, m ě 1.

So, player I plays integers s0, s1, s2, . . . , with each si = 0 or si = 1. In the end, he determines a
binary sequence α P 2N.
Player II plays integers t0, t1, t2, . . . where

t0 = xk
0
0, . . . , k

0
m0´1y, t1 = xk

1
0, . . . , k

1
m1´1y, t2 = xk

2
0, . . . , k

2
m2´1y, . . .

where mn ą 0, n P N (so the sequences coded by t0, t1, t2, . . . are non-empty).

Each tn codes a finite union of basic open sets Gn, such that

µ(G0) = µ(Nk00
Y . . . YNk0m0´1

) ď
ε

22¨0+2

µ(G1) = µ(Nk10
Y . . . YNk1m1´1

) ď
ε

22¨1+2

...

µ(Gn) = µ(Nkn0
Y . . . YNknmn´1

) ď
ε

22¨n+2
.

To visualize the game we present the Diagram 6.24.
‚ Provided that the rules are followed, player I wins the run

((s0, . . . , sn, . . . ), (t0, . . . , tn, . . . )) = (α, t),
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I s0 s1
Œ Õ Œ Õ

II xk00, . . . , k
0
m0´1y xk10, . . . , k

1
m1´1y

s2 ¨ ¨ ¨

Œ Õ

. . .

Diagram 6.24. Playing the game Gµ(A, ε).

if and only if,
α P AzG,

where
G =

ď

nPN
Gn

and
Gn = Nkn0

Y . . . YNknmn´1
.

Otherwise, player II wins the run
((s0, . . . , sn, . . . ), (t0, . . . , tn, . . . )) = (α, t),

if and only if,
α R AzG.

‚ By adapting the rules to the payoff set, player I wins the run
((s0, . . . , sn, . . . ), (t0, . . . , tn, . . . )) = (α, t),

where sn = 0, 1 for all n, and if
either Dn such that tn does not code a finite non-empty sequence,

or
@n tn = xkn0 , . . . , k

n
mn´1y, mn ě 1, and

Dn µ(Nkn0
Y . . . YNknmn´1

) ą
ε

22¨n+2
,

or
@n tn = xkn0 , . . . , k

n
mn´1y, mn ě 1, and

@n µ(Nkn0
Y . . . YNknmn´1

) ď
ε

22¨n+2
, and

α P AzG.

Player II wins the run (α, t), if and only if player I does not win the run (α, t). This implies that

Di α(i) ą 1,

or
@n tn = xkn0 , . . . , k

n
mn´1y, mn ě 1, and

@n µ(Nkn0
Y . . . YNknmn´1

) ď
ε

22¨n+2
, and

α R AzG.

Theorem 6.4.1 ([8], 2H.8). For every Polish space X and every σ-finite Borel measure µ in X ,
it holds that every Σ

r

1
1-subset of X is µ-measurable.

Proposition 6.4.2. Suppose µ is a σ-finite Borel measure on 2N, A Ď 2N has no Borel subsets of
µ-measure ą 0 and for each ε ą 0 the game Gµ(A, ε) is determined. Then, A is µ-null.

Proof. Let us suppose by contradiction that player I, for some ε ą 0, wins Gµ(A, ε) by playing
with a strategy σ and let

B = tσ ˚ τ : τ is a strategy for player IIu.
Since I wins Gµ(A, ε), it follows that σ ˚ τ P A, for all τ which is a strategy for II, so B Ď A. As
we know, τ is a function with domain all finite sequences from N of odd length and values in N, i.e.
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τ : Nodd Ñ N. By enumerating Nodd we can view τ as a member of the Baire space N , so we can
think of “D τ” as “DN ”. Therefore, B is a Σ

r

1
1 subset of A. By Theorem 6.4.1, B is µ-measurable.

By hypothesis, A has no Borel subsets of µ-measure ą 0, so µ(B) = 0. Now we can find a set G
which consists of all finite unions of basic neighborhoods Gn (as previously described), i.e.,

G =
ď

nPN
Gn,

where
Gn = Nkn0

Y . . . YNknmn´1
, tn = xkn0 , . . . , k

n
mn´1y, mn ą 0,

and
µ(Gn) = µ(Nkn0

Y . . . YNknmn´1
) ď

ε

22¨n+2
, for all n P N,

and
B Ď G =

ď

nPN
Gn.

This gives a strategy τ for player II. Let α = σ ˚ τ . Since σ is a winning strategy for I, we have
α P AzG. But α P B Ď G is a contradiction. Therefore, for all ε ą 0, player I cannot win Gµ(A, ε)
and since the latter game is determined wins Gµ(A, ε) for all ε ą 0.

Fix ε ą 0, we show that µ(A) ď ε. Let τ be a winning strategy for II in Gµ(A, ε). So, if we let
(s0, . . . , sn) be the finite binary sequence of player I’s moves and G(s0, . . . , sn) be the finite union of
basic neighborhoods coded by player II’s move tn (playing by τ ) when player I plays s0, . . . , sn, we
can set

G =
ď

G(s0, . . . , sn).

Since G is a finite union of basic neighborhoods, we conclude that it is an open set. We have that

µ(G) ď
ÿ

tµ(G(s0, . . . , sn)) : (s0, . . . , sn) is a binary sequenceu

=
ÿ

n

ÿ

tµ(G(s0, . . . , sn)) : (s0, . . . , sn) a binary sequence of length n+ 1u

ď
ÿ

n

(
ÿ

0ătď2n+1

ε

22n+2

)
(by the rules of the game)

=
ÿ

n

2n+1ε

22n+2
= ε.

So for all ε ą 0 there is an open G such that

A Ď G and µ(G) ă ε.

This proves that A is µ-null. □
Remark 6.4.3 ([8], 2H.7). Let X be a Polish space and µ : B(X )Ñ [ 0,8] is a σ-finite measure

on X . Then for each A Ď X there is a Borel set B, with A Ď B, and for each C Ď BzA, with
C P B(X ), it holds that

µ(C) = 0.

Theorem 6.4.4 ([9]). Suppose Γ is any of the pointclasses Σ
r

1
n, Π

r

1
n and ∆

r

1
n, for n ě 1 and let µ

be a σ-finite Borel measure on some Polish space X . It holds that

DetN(Γ) ùñ every A Ď X in Γ is µ-measurable.

Proof. Suppose first X = 2N, and let A Ď X in Γ. By Remark 6.4.3, there is a Borel set B such
that A Ď B and BzA contains no Borel set of µ-measure ą 0. We have that BzA = B X (2NzA) is
in ␣Γ, since Γ contains the Borel sets and is closed under the operator &. Further from the closure
properties of Γ, for all ε ą 0, the payoff set of the game Gµ(BzA, ε) is in ␣Γ.

From our hypothesis, we have DetN(Γ) equivalently DetN(␣Γ). Hence, for all ε ą 0, Gµ(BzA, ε)
is determined. So Proposition 6.4.2 is applicable to BzA. From the latter, we conclude that BzA is
µ-null. Therefore, A differs from the Borel set B by a µ-null set. This shows that A is µ-measurable.
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By Corollary 5.4.25, every uncountable space X is Borel isomorphic with 2N and we can establish
the result for X by carrying to 2N any given measure on X .

We have that for every σ-finite Borel measure µ : B(2N) Ñ [ 0,8] on 2N, every A Ď 2N in Γ is
µ-measurable (under DetN(Γ)).

We want to show the same for an uncountable Polish space X instead of 2N. Let X be uncountable
Polish space and µX : B(X ) Ñ [ 0,8] be a σ-finite Borel measure on X . Let B Ď X in Γ, too. We
need to show that B is µX -measurable.

Let f : 2N↣ÑX that is a Borel isomorphism. Then for every A Ď 2N, it holds that
A P B(2N) ðñ f [A] P B(X ).

Define µ : B(2N)Ñ [ 0,8] , so
µ(A) = µX (f [A] ).

Then µ is a σ-finite Borel measure. The set A = f´1[B] is in Γ, because Γ is closed under Borel
substitution. So, from the preceding (X = 2N, under DetN(Γ)), A is µ-measurable. Hence, there is
A0 P B(2N), such that the set

N = A△A0

is µ-null. Let N0 P B(2N), with N Ď N0 and µ(N0) = 0. Put B0 = f [A0] . Then B0 is Borel and
we have

M = B △B0 and M0 = f [N0] P B(X ).

We have that N Ď N0, so
f [N ] Ď f [N0] = M0 Ď X

and
f [N ] = f [A△A0] = f [A] △ f [A0] = B △B0.

Hence,
B △B0 ĎM0.

Furthermore, we have that
µX (M0) = µX (f [N0]) = µX (M0) = 0.

Consequently, the set B is µX -null. □
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