EKE®E «-AHMOKPITOZXL»

EONIKO METZOBIO _
o\"“;:gr%"@, MOAYTEXNEIO INSTITOYTO NANOEMIETHMHE  [4E
3% R at KAI NANOTEXNOAOI'IAX L824
SNZERilIi| IXOAH EQAPMOXMENON Tod /M
35 CXiZ/ MAOHMATIKON INETITOYTO ITYPHNIKHE KAI
Yo,22 3/  KAI ®YEIKQN ENIZTHMON LOMATIAIAKHE ®YEIKHE

EXOAH MHXANOAOTON
MHXANIKQN

AIATMHMATIKO IIPOrPAMMA METAIITYXIAKOQON XIIOYAQN
< PYIIKH KAI TEXNOAOTIKEY E#APMOTEY >

Mass measurements of J/V and Z
at ATLAS Experiment

METAIITTXIAKH AIITAQMATIKH EPI'AYIA
™e
Muyaghag Apopunatln

EmBAenwy:
Oebdwpoc AleZoTouhoc
Kodnyntic E.M.IL

AOGHNA
IoOvioc 2023






iii

EKE®E «-AHMOKPITOZX»

EONIKO METXOBIO _

MMOAYTEXNEIO INETITOYTO NANOEINIETHMHE %‘i -3
KAI NANOTEXNOAOTIAX W2

£XOAH E®APMOEMENQN Tog 2"

MAGOHMATIKOQN INETITOYTO IYPHNIKHE KAI

KAI ®YEIKON ENMIETHMON YOMATIAIAKHE OYEIKHE

£XOAH MHXANOAOT'ON

MHXANIKQN

Mass measurements of J/V and Z
at ATLAS Experiment

METAIITTXTAKH AIITAQMATIKH EPT'AXTA

e
Muiyaghag Apopnatln

EmBAenwy: Ocodwpoc Aheldmouloc
Kadnyntic E.M.IL

Evyxpldnxe and tnv tpwueir| eetactind emtpont| otic 30 Touviou 2023.

©. AleCdTovhoc E. F'alhc 3. Maoatéloc
Kodnyntric E.M.IL Op. KodnyntAc E.M.IL. Op. KodnyntAc E.M.IL

Adrva, Tobviog 2023



iv

Muiyagha Apopnatln

© (2023) E9vixé MetodPro Iohuteyveio. All rights reserved.

Anayopeleton 1 avtiypapr, arodfxeuor xat diavour) T tapoloos epyastas, €€ 0AoxAEoU 1) TUAUATOS AUTHS
Yo eumopxd oxomnd. Emtpénetar 1 avatdnwor), anoUhxeucn xou Bloavouy| Yol OXOTO UN XEEOOOXOTUXO, EX-
TOUOEUTIXG 1) EPELYNTXNSC PUOEWS, LTS TNV TEoUTOVEoT Vo avapépeTal 1) YY) TROEAEUCTC XaL Vo BlaTreeiton
1 ToEoLoa ONUEIWOT). ZNTAUNTA TOL apopoVY TNV EXTIUNGCT TNG ERYACIAS Ylo XEEOOOXOTUIXO OXOTO TEETEL Vo
amevdivovton Teog Tov ouyypaéa. Ot amdelc xaL Tol CUUTERIOUNTO TOU TEQIEYOVTAL OE oUTH TN ORAWoN
expedlouy Tov ouyypapéa xou deV TEETEL Vo Vewpniel 0Tl avTimpoonnevouy Ti¢ enlonueg Véoelg Tou Edvixo
Metoéfou Iloauteyveiou.



IleplAndn

H nopoidoo dimhwuate epyascia exnoviinxe 6To TAaloLo TS 0OAOXANEWONE TV UETATTUYLOXGDY UOU CTIOUBMY
XOL OmOTEAEL L0l ELCAY WY OTNY AVAAUGT| BEBOPEVLY UE OTOYO TNV PEAETN TNng wdlag Tou unoloviou Z xou
ToUL Uecoviov J /1.

Yta mpwTa TECOoEPA XEPIAALY, YivETo Wl VEENTIXY ElooywYY) XATOWmY Baoxmy EVVOLDY xaddg Xou
war wxpn) meprypapry tou mewpduoatog ATLAS, amapaitnTor yiee TV xotavénon tng avdAucng Tou Teoy-

potomoinxe oTny tapolca epyacioL.

YV ouvéyela, N avdhuor ywelletar oe 600 Yéen. XTO TRHOTO UEEOS, ONAAdH GTO XEQAAoLO 5, UEAETH-
Tou 1) xoTavour| Tne udlag tou uroloviou Z, péow tng dwdonoaone Z — whp, ue oxomd vo. Beedolv ot
CLVOPTACELS TOU TNV TEptypdpouy. Apyxd, yenowonowivtor Ta Monte Carlo 8edopéva yior TV xotaoxeun
ToU Lo ToYEduUaToC Udlag Tou Z, uéow tou onoiou Beélnxe OTL TO OY|Ua TEQLYPAPETOL IXAVOTONTIXG AT
woe Crystal Ball xou omd po Gauss xatovouy| eved yio to unofBodpo(background) yenowonoteiton évo
rtohuwvupo Chebyshev deutépou Poduold. Edv xou ontind 1 cuvdptnom mpocopuoyns @aiveton vor Tanp-
Wler pe v xatavour udloc, ta goodness-of-fit tests, dnhadf to x?/ndf, p-value xou pull distribution,
pavep®vouy To avtiieto. ['vopllovtag ouwe 6Tl 0 aviyVeUTAC OV €yel TNV (Blar BLOPLITIXY LXaVOTNTOL OF
Ohot Tar épn TOU %ot VEWEWVTAS OTL UE TOV DL WELOUO TWV OEDOPEVLY avdhoyo Ue TNV (heudowxiTnTd
Toug(pseudorapidity), n, Ya undpiel Bedtiwon tng Sodixacioc tou fit, yweilouvue tov aviyveuth oe 11
1-TEQLOYEC HETAED TWV [-1.1,1.1]. Enopévwe, eneldr] To xoe pudvio amd to 600 umopel vor vty veudel ot uia
ond Tic 11-n teptoyée, dnuoveyoivtar 11 x 11 wotoypdupato udoc dea xou cuvaptioels npocappoyic (fit).
H oxédn autrh emPefoudinue xadog agol YLVe 0 1) Sy WELOUOS TWY LUOVIKY Ol GUVIPTHOELS TROGUPUOYHG
Behtidnray onuavTind yio GA0UC TOUSC GUVBLICUOUE TWY N-TERLOY WY TOU UTOEOVUY VAL 0VLY VEUTOUV Tol BUO
TOEAY OUEVAL LUOVLAL, ONAadT yior 6Aa T 11 X 11 o toypeduuata. To enduevo Brjua fitav va e€etaciel €dv o ot
oY WELOHOS TV BeBOPEVWY ot 11 n-Teployéc enneedlel Tn G TUTIO TIXY| THS AvaALoTC, ATl Tou EmBeBouinxe.
Kotohnntd, yehethinxe n oyéon twv nopauétewmy tou Beédnxay and Tig SLdpopeS GUVIRTYOELS TROCUQ-
HOYAC UE TIC 1) TEQLOYEC OTOU VLY VEUOVTOL TOL BUO YUGVIAL omd TNy OldomacT tou unoloviou Z, n omnola
PavEPWOE CUOTNUATXG OQdAUa. Aol €yive OAN 1 avdhuor ota MC Sedopéva, epapuolouue To (Blo yov-
Tého xan TNV (Bl uedodoroyla oo dedouéva €0l WoTE Vo cLYxELIolY T anotehéouata PETaED TOug. X
XATOLoL AMOTEAECUATA UTdEYOLY Blaopéc ol omtoleg Aoyixd umodninvouy 6Tt ta MC yeetdlovtar xdmoteg

v



oahAayEC.

210 0e0TEPO PEPOC TN avdhuong, ONAadY) 6T0 60 XEPIAO, GTOYO EYOUUE Vo GUUBAANOUUE GTNV TEOCTS:-
Vet axpBoic uétpnong tng pélag tou pmoloviou Z, péow tng dwdonaong Z — ptp . H emdiondn wog
axplBoUc YETenong €yel odNYNoEL TIC HEAETES VoL E0TIdcoUY 0TY Beltiwon tne Paduovounong tng evépyelog
TV Juoviey. Xto mhalolo autd, mpoteiveton par véa uedodoroyia Baduovounong, n omoio Poucileton ota
otypduuata Armenteros-Podolanski. To didypoppa Armenteros-Podolanski etvon pior avomopdo taon tne
eYAdpotag opuNG oG BIEOTAOTS OUBETEPWY CWHATIOIWY GE Buo cwUATBW W TEOS TNV aoupPETEla TNg
Olounxoug opuic TWV TEoloviwy Tne odonaone. H pédodoc otnpileton otov mpocdloptoud Twv palov
TWV OWUATOILY TNG TEMXAS XaTdoTaAoNS Xak YL'owTd ToV AdYo TpoTelveTon we Yedodog xatng Yewmpettar ot
ETUTEETEL ULl ONUAVTXE axEB3EaTeERT orduovounoT NG OpUc omd T Y101 HOVO TGV UNTEIXMY CWUATIOIMY,
€POGOV Ol HALES TV TEMXWDY COUATOIWY Eivol YVWOTES Ue UEYUADTERT axpifela amd OTL AUTES TWV UNTEXOY
OWUATIOY. Apyxd, amodewvOETOL 1) HordnuaTixny| €xpeoon Ty Swrypoupdtwy Armenteros-Podolanski xou
énetto eCeTALETOL 1) CUUTEQLPOPS TNG YOl UXPES %o PEYBAES UALES, YPNOULOTOLOVTOS OEDOUEVA J/1 xou Z
avtiotoya. Agol éyel xatavonel n cuunepLpopd TNe e€lonaong, QapUOLoUPE BUO BOXIACIES GToL BloryEd-
uota. Armenteros-Podolanski, yio vo e€etacVel edv Tor Slorypduotar avTomoxeivoton ETITUYMS G aUTEC,
x4t To omolo emtuyydveTton. Emouévwe, ouunepaiveton 6Tt Tar Blarypdupata Armenteros-Podolanski Yo
UTOPOVONY, EMELTA XL ATO ETUTAEOV EQEUVA, VO ATOTEAECOULY Wi UEV0OO 1) OTolo VoL YeNoLLoTOLELTaL Yior TNV

Borduovounon Tou aviy VEUTY ETITEETOVTIC UAAOTA Ui OTuavTixd axpdéctepn Poduovounor.



Abstract

The present thesis was written in the context of my master’s studies and is an introduction to data

analysis in order to study the mass of the boson Z and the J/¢) meson.

In the first four chapters, a theoretical introduction of some basic concepts and a brief description of
the ATLAS experiment is given, necessary for the understanding of the analysis carried out in this thesis.

Then, the analysis is divided into two parts. In the first part, i.e. chapter 5, the mass distribution
of the boson Z, through the decay Z — ptpu~, is studied in order to find the functions describing it.
Firstly, Monte Carlo data are used to make the Z mass histogram, through which it is found that the
signal is satisfactorily described by a Crystal Ball and a Gaussian distribution, while a second-degree
Chebyshev polynomial is used for the background. Although visually the fit seems to correspond to
the mass distribution, the goodness-of-fit tests, i.e. x?/ndf, p-value and pull distribution, reveal the
opposite. However, knowing that the detector does not have the same resolution in all its parts and
expecting that separating the data according to their pseudorapidity, n, will improve the fit procedure,
we divide the detector into 11 n-regions between [-1.1,1.1]. So, because each of the two muons can be
detected in any of the 11-n-regions, 11 x 11 mass histograms and their corresponding fit are produced.
This idea was confirmed as after performing the n separation of the muons, the fit procedure improved
significantly for all combinations of n-regions, where the two produced muons can be detected, i.e. for all
11 x 11 histograms. The next step was to examine whether the separation of the data into 11 n-regions
affects the statistics of the analysis, which was confirmed. Last, we studied the relationship between
the fitted parameters and the n regions where the two muons from the Z boson decay are detected,
which revealed a systematic error. After carrying out all the analysis on the MC data, we apply the
same model and the same methodology to the data in order to compare the results with MC’s ones.

In some results there are differences which logically indicate that the MC data need some improvements.

In the second part of the analysis, i.e. chapter 6, the objective is to contribute to the attempt to
measure precisely the mass of the boson Z, through the decay Z — p*p~. The pursuit of a precise mea-
surement has led studies to focus on improving the calibration of muon energy. In this context, a new

calibration method is suggested, based on the Armenteros-Podolanski plots. The Armenteros-Podolanski

Vil
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plot is a representation of the transverse momentum of a two-body decay versus the asymmetry of the
longitudinal momentum of the decay products. The method is based on the determination of the masses
of the final state particles and for this reason it is proposed as a method because it is believed that
it allows a significantly more accurate calibration of the momentum than using only the parent parti-
cles, since the masses of the final particles are known more precisely than those of the parent particles.
Firstly, the mathematical expression of the Armenteros-Podolanski plots is demonstrated and then its
behaviour for small and large masses is examined, using J/¢ and Z data respectively. Once the behavior
of the equation has been understood, we apply two tests to the Armenteros-Podolanski plots to check
whether the plots successfully respond to them, which is achieved. Therefore, it is inferred that the
Armenteros-Podolanski plots could, after further research, be a method to be used for the calibration
of the detector and even provide a significantly more accurate calibration.



BEuyoplotieg

Oa fideha va evyoptoTHow WLntépne Tov Kodnynth you x. Aleldmoulo Oeddwpo, o onolog Ue UTouovi,
Yetinr| diddeon xon TohdTiun xododrynon ue Borinoe vo xotavoriow xon va e£oelml Ue TIg EVVOLES TNG
PUONAC LVYNAWY EVERYELDY X0 TNV avEAUGCT| BEBOPEVKY XodME Xou TNV Euxtplal TOU LoU EBWOE VoL Gy Oh-

N Ye To ouyxexpyévo Véua.

‘Eva peydho evyaplote ogethw otov Egeuvnts x. Avdpéa Wokhida oto Ivotitovto Iupnvixdc xou Xewpo-
Totoxric Puowric oto EKEPE < Anudxpitocs>, yia tnv toAbtn Bondeld Tou otnv avdiuor BeBopEvev
XoUL YLoL Tig TOAD wpakeg GUINTACELS HOC ETEVE OTNY PUOIXY| GTOLYELWOWY COUATIOWWY.

Oa Hleha, eniong, va evyaploThow Tov utodrgo Ap. x. Awviclo Paxolon yio T Bordeio Tou pou
TPOGEPEPE HATA TNV OLIOXEL TNG EXTOVNONG TNG OLTAWUOTIXAS LOL EpYstag xod®dE XAl TOV UETATTUYLUXO
poltnTh %x. MtENo XpnoTvdxrn Yo Ti¢ TOAITYWES GUUPBOUAEC TOU GTO TROYEUUUOTIONS ohAd xou Yl TLg
oUINTACELS YIS OTIC WPES OLOPBAOHATOC Yo TNV OAOXAHOWOT) TV HETATTUYLOXMY UUC GTOVOWY.

Evyapiote moAd tig @ikeg xon Toug @ihoug wou mou YToy mévTo dimhor pou Ao Tor EXTIOUOELTIXG YEOVLX

xou xVpleg aLTH TNV TEPlOBO TNG EXTOVNONE TNG OITAWUATIXAS LMoL Epyaciog.

Téhog, €va HEYEAO EUYOEITT® TNV OLXOYEVELL Wou, Toug YoVvelc wou INdpyo xou Kotepiva xan tnyv adehen
wou AfunTea, Yot TNV aUéELoTn aydmn xan oTHEEY TOUG.
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Chapter

The Standard Model

Particle physics is at the heart of understanding the laws of nature. It deals with the funda-
mental components of the Universe, the elementary particles and the interactions between
them, i.e. the forces. Our present understanding is integrated in the Standard Model of parti-
cle physics, which provides a unified picture where the forces between particles are described
by the exchange of particles. The theory of the Standard Model can provide predictions for
the vast majority of observed data up to the energy regime of the LHC. [1],[2],[3]

1.1 Particles

Particles are divided according to their spin into two categories, fermions and bosons.
Fermions are the particles of matter and they are spin particles, so they follow Fermi-Dirac
statistics. Fermions are further divided into two classes, leptons and quarks. Leptons inter-
act with the electromagnetic and weak forces and they consist of three generations. Each
generation consists of two particles, one negatively electrically charged which interacts with
both the electromagnetic and weak forces (electron, muon and tau lepton) and the other is
the corresponding neutrino which interacts only with the weak force as it has zero electric
charge. The above together with their antiparticles form the lepton part of the Standard
Model. On the other hand, quarks interact through the strong, weak and electromagnetic
forces. Quarks, like fermions, consist of three generations. Each generation of quarks con-
sists of two particles, an upper type quark which has a positive electric charge equal to +§
and a lower type quark which has a negative electric charge equal to —%.

1
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Standard Model of Elementary Particles
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Figure 1.1: Particles of the Standard Model

1.2 Interactions

In the modern particle physics, each force is described by a Quantum Field Theory, according
to which, as mentioned earlier, the interaction between particles takes place through a force,
carried by bosons. So far, four forces are known to exist in nature: the gravitational, the
electromagnetic, the strong and the weak forces. However, the quantum theory is able to
describe three of these four forces because the boson which is carried by the gravitational
force, known as the graviton, has not been discovered experimentally. For this reason, the
gravitational force has not been included in the Standard Model. The three interactions are
described by the following respective theories: the Quantum Chromodynamics theory (QCD)
for the strong force, the Quantum Electrodynamics theory (QED) for the electromagnetic
force and the Electro - weak Theory (EW) for the electroweak force, which unifies the
electromagnetic and the weak forces. QED introduces the massless photon as the propagator
of the electromagnetic force. The strong force is applied to particles that have a colour
charge and is described by the Quantum Chromodynamics theory (QCD), which introduces
8 massless gluons as its propagators. Finally, the weak force is the force with which all
fermions interact and its propagators are the charged bosons W+ and the neutral Z°.

1.3 Boson Z

The main topic of this thesis is the Z boson of which a description will be given below.
A consequence of the electroweak model is the prediction of a weak neutral current carried
by the neutral Z bosons. The Z boson, like W+, carries the weak force. It was predicted the-
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oretically in the 1960s, and discovered in 1983 by physicists at the Super Proton Synchrotron
(SPS).

As the Z boson is a neutral elementary particle, the total charge of the particles into
which it decays should be zero due to the conservation of electric charge in nature. Therefore,
Z bosons decay into fermion pairs of the same family, i.e. a particle-antiparticle pair. For

example, some illustrative decays of the Z boson are the following:

pt

(a) Decay of a Z particle into an electron-positron pair (b) Decay of a Z particle into a muon-anti-muon pair

Figure 1.2: Examples of boson Z decay

In the unified electroweak model, the photon and Z boson are written as linear combi-
nations of the B, and neutral WISS) of the weak interaction:

A, = +B, cos by + WIES) sin Oy

Z, = —DB,sinby + ng?’) cos Oy

where 0y is the weak mixing angle.

As for boson B, it corresponds to a new symmetry, the U(1), Hypercharge. This new
symmetry is analogous to the symmetry of the electromagnetic interaction. The boson B
couples to a new kind of charge called weak hypercharge Y, which is a linear combination of
the electromagnetic charge () and the third component of the weak isospin 1,

Thus, the Z boson couples to both right-handed (RH) and left-handed (LH) chiral states,
in contrast to bosons W= which interact only with left-handed particles and right-handed
antiparticles, but not equally because it is associated with different constants depending on
the state, and specifically:

cp = I — Qpsin® by
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Cr = —Qf Sin2 HW
The description of the Z boson coupling can also be achieved in vector and axial-vector terms
as follows:

cy =c¢r +cp= II(,‘?}) —2Q;¢ sin? Oy
CR:CL“‘CR:[]E[?;)

In terms of these vector and axial-vector couplings, the Feynman rule associated with the

Z-boson interaction vertex is:

1
—15927“ [ev — can’]

The Z boson couples to all fermions so it can decay to all leptons and all flavours of
quarks except of the top quark because its mass, m; = 175 GeV, is bigger than the mass of
Z (my>mg).

The partial decay rate to a particular fermion flavour can be calculated from the equation:

2
— g m
I'(Z— ff) = ZBWZ (2 +cA)

using the appropriate vector and axial-vector couplings:

fermion cy, Cr cy cq
e Vi Ve 1 0 1 1
vV Vﬂ V. +E +2 + E
e, u - | =027 | +0,23 | —0,04 1
*3

u,c,t +035 | —-015 | +0,19 1
2
d,s,b -042 | +0,08 | —0,35 1
*3

Figure 1.3: The values of the constants cy,, cgr, ¢y, ca of the fundamental fermions for finding their couplings with Z assuming
2
sin“ O,

Knowing that the total decay width I'; is occured by the sum of the partial decay widths
Tz=> T(Z— ff)
f

and also that the Z-boson couplings, as shown in Fig.1.3, are the same for all three genera-
tions, it arises that:

Uz =30(Z = vet) + 31(Z = eTe) + 3 x 2I(Z — un) + 3 x 30(Z — dd)
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and thus it is calculated to be I'; = 2.5 GeV and the branching ratios of the Z boson, given
by Br(Z — ff) =T(Z — ff)/Ty, are:

Br(Z — ver,) = Br(Z — v,w,) = Br(Z — v,v;) = 6.9%
Br(Z —ete”)=Br(Z = utp™)=Br(Z — vt77) ~ 3.5%
Br(Z — uu) = Br(Z — uu) = 12%
Br(Z — dd) = Br(Z — s5) = Br(Z — bb) ~ 15%
Grouping together the decays to neutrinos, charged leptons, and quarks gives

Br(Z — vv) ~ 21%, Br(Z — 1717) ~ 10%, Br(Z — hadrons) ~ 69%

and so almost 70% of Z decays have as final states jets. [1]

From data taken up to the end of 1990 by the four LEP collaborations ALEPH, DEL-
PHI, L3 and OPAL, a combined value of mz had been obtained in 1993, which is my; =
91.1876 4+ 0.0021 GeV.
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|Chapter 2

The Large Hadron Collider and
the ATLAS detector

2.1 CERN

CERN (Conseil Européen pour la Recherche Nucléaire) [4] is an intergovernmental particle
physics research organization composed of 23 member states. The original convention es-
tablishing CERN was signed in 1953 by the first 12 founding members (Belgium, Denmark,
France, the Federal Republic of Germany, Greece, Italy, the Netherlands, Norway, Sweden,
Switzerland, the United Kingdom and Yugoslavia) and entered into force on 29 September
1954.The headquarters of the organization is located in Geneva, although its facilities are
shared on both sides of the Franco-Swiss border. The organization has as its mission the
international cooperation in the field of high-energy research or particle physics and to this
end, it builds and puts into operation particle accelerators together with suitable experimen-
tal detector facilities for the detection of the products of either beam collisions with a fixed

target or bonds between them.
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Figure 2.1: The Convention establishing CERN

Today CERN has 23 Member States: Austria, Belgium, Bulgaria, Czech Republic,
Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway,
Poland, Portugal, Romania, Serbia, Slovak Republic, Spain, Sweden, Switzerland and United
Kingdom.

2.2 Accelerator complex

The accelerator complex at CERN is a succession of machines that accelerate particles to
increasingly higher energies. Each machine boosts the energy of a beam of particles before
injecting it into the next machine in the sequence.

SPS

ey

Gran Sasso

™o

" T

L]
\/V =

1598 (162 m)

East Area

Figure 2.2: The CERN accelerator complex
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The most recent addition is the Large Hadron Collider (LHC). The existing accelerator
chain ( Linac — Booster — PS — SPS) will be used to inject protons into the LHC as
shown in the Fig.2.2. Protons will be produced and accelerated to 50 MeV by the Linear
Accelerator (Linac) before being injected into the Booster giving them an energy of 1.4 GeV.
The Proton Synchrotron (Proton Synchrotron or PS) will then accelerate the protons to 26
GeV and finally the SPS (Super Proton Synchrotron) will provide protons with an energy
of 450 GeV which will be injected into the LHC.

2.3 The LHC

The Large Hadron Collider (LHC) is the largest and most powerful particle accelerator in
the world. It first started up on 10 September 2008, and remains the latest addition to
the CERN’s accelerator complex. The LHC is a circular collider with a circumference of
27 kilometres located about 100 metres below the Earth’s surface. The LHC is capable of
accelerating two counter-rotating beams of protons (and Pb (lead) ions) with energies of up
to an energy of 7 TeV per beam.

2.3.1 Luminosity

One of the most important parameters of an accelerator is its luminosity which is measuring
the number of collisions per unit time. What makes luminosity important in particle accel-
erator experiments is relation (2.1) which connects the number of events per second created

in such an experiment with luminosity and the cross-section ¢ of the particle reaction under

study. Particularly, the rate of interaction %, i.e. the number of interactions N per sec is
given by:

dN

—=0Y 2.1

in which o is the cross-section of the process of interest, describing the probability of the
interaction and .# is the instantaneous luminosity. The instantaneous luminosity is measured
in units em 2571,

However, the particles in an accelerator are not distributed evenly throughout the accel-
erator, but they are grouped into bunches. So, the instantaneous luminosity of the machine
can be expressed in terms of the numbers of particles in the colliding bunches, n; and ns,
the frequency at which the bunches collide, and the root-mean-square(rms) horizontal and

vertical beam sizes o, and oy:
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ning

dro,oy
The integrated luminosity is obtained, by integrating the instantaneous luminosity over the
accelerator active time, and it associates the total number of produced events N, to the pp

cross-section:

Ntot:O'/gdt

and its unit is barn=t. [1]

2.3.2 The LHC experiments

In the largest part of the LHC ring the two beams travel in two separate vacuum tubes,
except for four points where they collide. These points are where take place the main LHC
experiments, known by their acronyms ALICE, ATLAS, CMS and LHCb [5].

4 ;
ATLAS Experiment

TN

ALICE Experim s /

Figure 2.3: The LHC experiments

The four main experiments have different scientific goals and are briefly presented below:

e ALICE (A Large Ion Collider Experiment): a general-purpose detector for heavy-
ion physics, which is designed to study the physics of strongly interacting matter and
the quark-gluon plasma at extreme values of energy density and temperature.

e ATLAS(A Torroidal LHC ApparatuS): a general-purpose experiment with a broad
physics research program, from the Higgs boson to extra dimensions and particles
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that could make up dark matter. More detailed discription of ATLAS is given to the
next chapter.

e CMS(Compact Muon Solenoid): a general-purpose experiment with the same scien-
tific goals as the ATLAS but which differs completely from the latter in the design

principle.

e LHCDb: an experiment focused to b-physics studies, precision measurements of CP viola-
tion and B-meson decays.

There are other smaller experiments on the LHC, which are TOTEM, LHCf, MoEDAL-
MAPP, FASER and SNDQLHC. In particular, TOTEM and LHCf focus on “forward par-
ticles” - protons or heavy ions that pass each other rather than meeting head on when the
beams collide. TOTEM uses detectors which are on both sides of the CMS, while LHCf is
located at 140 metres either side of ATLAS. MoEDAL-MAPP uses detectors which are near
LHCD in order to search for a hypothetical particle called the magnetic monopole. FASER
and SNDQLHC, the two newest LHC experiments, are situated close to ATLAS to search
for light new particles and to study neutrinos.

2.4 The ATLAS detector

ATLAS [6], [7] is one of the four big experiments of LHC. Geometrically, ATLAS has a
cylindrical shape with 47 coverage and dimensions of 46 m lenght, 25 m high and 25 m
wide while it weighs 7000 tonnes. It is located in a cavern 100 m under the ground near the
main CERN site, close to the village of Meyrin in Switzerland. ATLAS is a general purpose
experiment and as such is designed to take full advantage of LHC’s potential. Its design aims
to detect the particles which are produced in proton-proton (p-p) collisions at the LHC.
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Figure 2.4: Cut-away view of the ATLAS detector - Also the different detector sub-systems are illustrated

2.5 Structure

The main parts of the ATLAS detector are the sub-detectors and the magnet system.

2.5.1 Sub-detectors

The ATLAS detector consists of four different sub-detectors that are arranged in different
planes around the z-axis, where the collisions take place. The main ones from the inside out

are the following:
1. Inner Detector
2. Electromagnetic Calorimeter
3. Hadronic Calorimeter

4. Muon Spectrometer

Specifically, the Imnner Detector is the innermost part of the ATLAS detector. It has a
length of 6.2 m, a radius of 1.2 and it is immersed inside the 2 T magnetic field formed by
the central solenoid, which will be described further below. This magnetic field causes the
curvature of the trajectories of the charged particles. The Inner Detector measures, from the
direction and degree of curvature, the direction, momentum and charge of the electrically
charged particles that are produced in each proton collision. Thus, its main function is to
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detect charged particles and their interaction with matter; by this way information on the
momentum and type of particles is obtained. It is divided in three systems which, in order of
radial distance from the collision point, are: the Pixel Detector, the Semiconductor Tracker
(SCT) and the Transition Radiation Tracker (TRT). Continuing, and moving towards the
outer levels of the detector, the calorimeters are dispayed. The ATLAS Calorimetric System
is located between the Inner Detector and the Muon Spectrometer and is divided into two
main categories, the electromagnetic and the hadronic calorimeter. The objective of the
ATLAS Calorimetric System is to measure as precise as possible the energy of electrons,
photons and jets and to provide information on the missing transverse energy (Er,... ).
Firstly, the electromagnetic calorimeter is found which measures the energy of electrons
and photons as they interact with matter and secondly the hadronic calorimeter which
measures the energy of hadrons as they interact with atomic nuclei. Calorimeters can stop
most known particles except muons and neutrinos. Also, it is important to note that because
of the use of calorimeters, which is the absorption of the particle’s energy, the calorimeters
are located outside the inner detector so that the charged particle’s trajectory is recorded
before being absorbed by the calorimeter. Further on, the calorimeters are surrounded
by the Muon Spectrometer. The ATLAS muon detector system is designed to provide
independent measurement of the energy and trajectory of the muons with high accuracy.
This is because muons are particles that normally pass through the inner detector and the
calorimetric system without being detected. It consists of two types of detection systems,
the triggering system and the high-precision tracking system. The description of the detector
structure which was presented earlier, is portrayed in the image shown below:

Figure 2.5: Sub-detector system of ATLAS
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2.5.2 The Magnet System

ATLAS experiment uses an impressive magnet system [8] in order to bend the trajectories of
charged particles and, by measuring their deflection, to define their momentum. It consists
of one superconducting central solenoid placed around the Inner Detector cavity and three
superconducting toroids, one in the barrel and two in the end-cap regions. Thus, the main
sections of the magnet system are:

e the Central Solenoid
e the Barrel Toroid

e two air-core Endcap Toroids

end-cap
toroids

Figure 2.6: View of the complete ATLAS Magnet System

The Central Solenoid encloses the Inner Detector and is enclosed by the calorimetric system.
It is of 5.3 m length and operates at a nominal current of 7.73 kA. The result is an axial
magnetic field of 2 T in the z direction, bending the trajectories of charged particles in the
¢ direction.

Figure 2.7: The Central Solenoid magnet
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Continuing, the toroidal magnet is divided into the barrel section and the end-caps sec-
tion. Both are located outside the calorimeters but inside the muon spectrometer, they are
used to provide a magnetic field to the muons and thus bend their trajectories. The barrel
section consists of 8 coils arranged symmetrically around the beam axis and the two side

magnets also contain 8 coils each.

(a) Barrel Toroid (b) End-cap Toroid

Figure 2.8: Toroid Magnet

2.5.3 Coordinate System

The ATLAS reference system is a cartesian right-handed coordinate system. The reference
point is the nominal interaction point (IP) in the centre of the detector. The z-axis is defined
by the beam direction, the positive x-axis points from the IP to the centre of the LHC ring
and the y-axis points upwards and thus the xy plane is perpendicular to the beam axis.
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Figure 2.9: The cartesian coordinate system of the ATLAS detector

Because of the detector geometrical design, cartesian coordinates are not practical and
thus polar coordinates are used. Specifically, R is the distance from the reference point (IP),
6 [0,7) is the polar angle from the z axis and ¢ [—m, 7] the azimuthal angle which runs

around z axis.

Detector

Collision
Point : )
7 Fa F O ) Beam

—

X (Center of LHC)

Figure 2.10: The polar coordinates of the ATLAS detector

Due to the fact that the colliding partons have unknown momentum in each collision, the
total momentum along the z axis is not known. Consequently, the momentum conservation
between the initial and final states can not be applied along the z axis, it can only be applied
to the transverse plane, defined as the projection on the xy plane. For this reason, important

quantities like momentum and energy are usually given in the transverse plane xy:

pr = Psinf (2.2a)
Er = Esind (2.2b)
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Another important quantity that is widely used in particle physics experiments is the rapidity

y which is defined by:
1 E+p,
y——ln( —i—p) (2.3)

2 E— Y2
where F is the energy of the particle and p, is its momentum component in the z-direction.
However, when we study particles with negligible mass, the relation (2.3) is simplified, so we

can use the pseudorapidity 7, which is defined by:

n=—1In (tang) (2.4)

n=20
u4 n = 0.55

/ n=0.88
# = 90°

6 = 60° n=1.32
=45 7
# = 30°
n=2.44
#=10°

g=0°— 1 =00
K4

Figure 2.11: Pseudorapidity

Once the pseudorapidity n and the azimuthal angle ¢ have been defined, the angular
distance R between two particles in space n — ¢, can be defined by:

AR = /A2 + Ag? (2.5)
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Chapter

Blind Analysis

We give the “Clever Hans” [9] example below to illustrate the significance of bias in an ex-
periment. Hans von Osten, who lived at the beginning of the 20th century, had math skills.
Given a pair of single-digit numbers written on a blackboard, Hans could add them together
correctly almost all the time. The extraordinary thing about this fact is that Hans was a
horse. So, in front of those who had come up with the dilemma, Hans would show off his

prowess by pounding the ground with his hoof until he reached the sum of the two numbers.

Critics of Hans’ skills were trying to determine if his trainer was providing the answer with
signals, but they could find none. Finally, they asked the trainer to leave the room, but
Hans was still able to add the numbers most of the time. The mystery of Hans’ ability was
not solved until 1907, when the psychologist Oskar Pfungst proposed a test in which no one
in the room but Hans knew the given two numbers. With all the observers unaware of the
solution, Hans was unable to give the right answer. The conclusion was that Hans was surely
clever since he had exploited subtle non-verbal cues from those in the room — cues that his
observers were not even aware that they were giving — to choose when to stop treading on

the ground.

The phenomenon of “Clever Hans” left its imprint on modern science, particularly medicine.
Most large-scale clinical trials for new drugs require that not only the participants be unaware
of whether they are taking a placebo or not, but also that those dispensing the medication

remain unaware of which individuals make up the control group, so the trials are double-
blind.

Blind analysis is a method that hides some aspect of the data or outcome to counteract

19
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the experiment’s bias. No single blind analysis method exists, nor is every technique suit-
able for all measurements. The experiment and the blind analysis method, on the other
hand, must be well matched, both to prevent the experimenter’s bias and to allow the mea-
surement to be carried out unobstructed by the method. There are various blind analysis
methods, each of which is suitable for a particular type of measurement. These methods can

be categorized according to precisely what is hidden in the measurement:

1. The signal events, when the signal occurs in a well-defined region of the experiment’s
phase space.

2. The result, when the numerical answer can be separated from all other aspects of the
analysis.

3. The number of events in the data set, when the answer relies directly upon their count.

4. A fraction of the entire data set.

However, only the first method will be analyzed, known as the Hidden Signal Box methodol-
ogy, as it is perhaps the most straightforward blind analysis method and the one used most
frequently in CERN experiments’ analyses. Furthermore, the analysis developed below for
studying the muon momentum calibration in the mass regions of J/1 is based on the logic
of this method.

3.1 Hidden Signal Box

In this technique, a subset of the data containing the potential signal is kept hidden until
all aspects of the analysis are completed. In CERN experiments, research is conducted to
search for new particles by looking for signals within a background of known physics. If the
data start to indicate something more interesting than the simple background - for example,
more decay events than expected in a specific region - it is important to ensure that the ob-
servation is statistically significant by collecting and analyzing more data. However, we do
not want to predetermine our analyses by optimizing them based on what has already been
observed. To avoid such bias in the analysis of new data, physicists design “blinds” over the
region where an excess of decay events is expected. This region is “unblinded” only when
they are satisfied with their procedures. This ensures objectivity when searching for the
coveted signs of new physics and instills confidence in the final result. Thus, blind analysis
avoids the possibility for experimenters to direct their results towards their own preconceived
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ideas, preventing them from knowing the answer until the analysis is completed.

This is also the reason why the analysis, which aims to precisely measure the mass of Z
boson - therefore the object of study -, uses blinding in the signal region, and the analysis

methodology is tested in regions far away from it, specifically in the mass regions of J/W.
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Chapter

Momentum Calibration

One of the most necessary stages of the analysis is the momentum calibration. A common
technique is to make use of the known mass of some particles, for example J/v¢ or Z. The
momentum scale of the reconstructed tracks is calibrated or corrected so that the peak
position of the invariant mass distribution reconstructed from two tracks becomes the world
average value of J/v or Z, i.e. by the particle data group (PDG). In this thesis we will
perform the energy/momentum calibration on the J/¢ and for this reason some details
about the J/¥ meson will be given.

4.1 The J/¥ meson

The J/1 meson [10] is the first discovered bound state of a charm quark and a charm
antiquark c¢ (charmonium) in November 1974, in the so-called “November Revolution” of
particle physics, simultaneously at Brookhaven National Laboratory and Stanford Linear
Accelerator Centre (SLAC). J/1 is special because it established the quark model as a
credible description of nature. The quark model was proposed to solve certain problems of
the parton model. In any way, a common feature of both models is the composite nature
of hadrons. In their initial proposal, Zweig and Gell-Mann required three quarks, the up
(u), down (d), and strange (s) quarks, which, despite extensive efforts to locate them in
the laboratory, were not observed. The next step, therefore, was to make the appropriate
combinations between the three quarks and anti-quarks to form the known hadrons and later
to establish the identification of the particles from the initial experimental data with the
quarks of the newer theoretical investigations, which revealed some fundamental problems.
These problems were resolved by introducing an additional quantum number, called color.
However, the problem of the lack of symmetry between hadrons and leptons remained - three
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quarks (u, d, s) and four leptons (€™, ve, 1, v,). Wanting to maintain the symmetry between
hadrons and leptons, Glashow and Bjorken in 1964 proposed the existence of a fourth quark,
which they called charm. The introduction, however, of the fourth quark was imposed in
1970 when Glashow, Iliopoulos and Maiani proposed a mechanism named after them (G.I.M.
mechanism), which fully explains the physical phenomena if we accept the existence of the
fourth quark, c. Certainly, there were many questions about these particles and, therefore,
until 1974 few believers accepted charm. J/i was the key. In November 1974, the great
discovery took place. In the first experiment, carried out at Brookhaven National Laboratory
(B.N.L.), Professor Ting’s team from M.L.T. studied ete™ pairs, with a pair spectrograph,
produced during the reaction:
pt —wet +e + X

where X is anything, and in the ete™ system an unusual fine resonance at an energy of
3.1 GeV was observed. This resonance showed the production of a new particle, which they
named J, and which subsequently decayed into et and e~. The same particle was detected at
the Stanford Linear Collider, in the collision of positron electrons, in a collaboration between
SLAC and LBL (Lawrence Berkeley Laboratory). This particle was named 1. So its official
name today is J/1. The resonance maximum, which was too large, was better measured in
the second experiment. It was detected at an energy at the center of mass of 3.095 GeV by
measuring the cross sections:

_l’_

o(eT, e — anything)

olet,e” — et e)

o(ete” = put u)

However, its amplitude could not be measured directly because it was smaller than the
experimental resolution of 2MeV, but it could be examined indirectly from the experimental
data, where it was found to be:

Ftot = 69 £+ 15keV

The fact that the range is very narrow shows us that, despite its large mass, J/v is rela-
tively long-lived. That is, it has extraordinary stability. The existence of J/v¢ was therefore
attributed to the existence of a new quantum number, the charm. This, in turn, led to the
discovery of the charm quark, for which the pioneers of the experiments were awarded the
Physics Nobel prize in 1976.

An interesting story regarding the J/1) meson is how it got its name. Due to being dis-
covered almost simultaneously by two different experiments, it is the only particle that has a
name consisting of two letters. Richter named it “SP”, after the SPEAR accelerator used at
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SLAC. However, none of his coworkers liked that name. After consulting with Greek-born
Leo Resvanis to see which Greek letters were still available, and rejecting “iota” because its
name implies insignificance, Richter chose “psi” — a name which contains the original name
“SP”, but in reverse order. Ting assigned the name “J” to it, which is one letter away from
“K”, the name of the already-known strange meson. Another reason is that “j” is the sym-
bol for electromagnetic current. Possibly by coincidence, “J” strongly resembles the Chinese
character for Ting’s name and also is the first letter of Ting’s eldest daughter’s name, Jeanne.

The world average value for the mass of the J/v meson is 3096.9 £+ 0.006 MeV with a
very narrow decay width 92.6 + 1.7 keV.

In proton—proton collisions at the LHC, the J/¢) mesons can be produced through two
mechanisms: the prompt production where the J/¢ meson is produced directly in the pri-
mary interaction and the non-prompt production where the J/1 is produced in the decays
from the b hadrons. The dominant J/¢ decay channel is into hadrons, while the branching
ratio for lepton decays into electron—positron or muon—anti-muon pair is 5.97%.

Since electron and muon decays can be reconstructed with high purity, the J/v is used for
calibration purposes to directly study the detector effects.
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Chapter

7/, boson mass Fit

5.1 General knowledge about the fit proce-
dure

Fitting is the process which is used to estimate parameters of a hypothetical distribution
from the observed data distribution. The most widely used method of fitting parametric
models to experimental data is the method of least squares. Given a set of measurements

{zi,y: £ e;} and a model y = f(x;6), we have the statistic x>

)=y (y@- - ,Zi(va:W))

Practically, the fit is done by minimizing the least-square or likelihood function.

Many difficulties in different fields of research can arise in finding the smallest value taken
on by a function of one or more variable parameters. However, the classic example which
occurs so often in scientific research, as in our case, is the estimation of unknown param-
eters in a theory by minimizing the difference, x2, between theory and experimental data.
A direct solution exists only in the case of linear fitting, such as fitting polynomials, which
is found automatically. Otherwise an iterative algorithm is used and specifically Minuit is
the minimization algorithm used by default. Methods like Minuit are based on gradient and
for this reason they can get easily stuck in local minima. So, it is quite common for fits
to converge to a wrong solution, precisely because it is the case of a local minimum and
not a global one. This is usually solved with better initial parameter values.The RooFit li-
brary of ROOT is used for the fit procedure, in which methods like Minuit are used. [11], [12]
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Frequently when one wants to give a measure of how well a given null hypothesis H, is
suitable with the observed data without specific reference to any alternative hypothesis, the
goodness-of-fit tests are used. The goodness-of-fit tests which were applied in this thesis are
[13],[14],[15]:

* ndf

It is known that if the errors of y follow a gaussian distribution then the statistic
test x? follows the y? distribution with the number of degrees of freedom, ndf, as a
parameter. Moreover, it is calculated that the expectation value of a random vari-
able x from the 2 distribution is equal to the number of degrees of freedom, i.e.
E|[z] = ndof. For this reason, the x? divided by the number of degrees of freedom,
which is the number of bins minus the number of independent parameters, is a mea-
sure of goodness-of-fit. If it is near to one, then all is as expected. If it is much less
than one, then the fit is better than expected given the size of measurement errors.
This is not bad in the sense of providing evidence against the hypothesis, but it is usu-
ally a reason to check if the errors have not been overestimated or are not correlated.

If it is much larger than one, there is some reason to doubt the hypothesis.

2. Pearson’s y? test

If the errors of y follow a gaussian distribution then the statistic test x? follows

the y? distribution with the number of degrees of freedom, ndf, as a parameter:

¥

ndf _q X
2 e 2

2 1 2
f(X 7ndf) = ondf /2T (ndf/?) (X )

with the gamma function, I'(z), being defined as follows:

Having found the value x2 , through the method of least square, the p-value can be

found as follows:
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Figure 5.1: Definition of p-value

If the fitting function is compatible with the data, the p-value should be approximately
0.5. If the p-value is close to 0, i.e. very small, the fit is not good.

3. Pull distribution or distribution of residuals, which is given by the equation:

Data — Model
error

In a good fit the residuals follow a normal distribution N(0,1).

5.2 The fit procedure to the Monte Carlo data

We use the MC data to construct the histogram of the boson mass Z with the criterion
81 < myz < 100. By observing the shape of the distribution and doing various tests and
combinations of functions, we conclude that the option which gives the best description of
the signal is the combination of a Crystal Ball and a Gaussian distribution while for the
background it is a second degree Chebyshev polynomial[16]. Thus we obtain the following

result:
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Figure 5.2: Fit to the Z boson mass without any 7 restriction, using MC data

We notice that although visually the fit appears good, the goodness-of-fit tests indicate
the opposite. So, it indicates an improvement. Knowing that the detector does not have the
same resolution in all its parts, it was decided to divide the detector into 11 7 regions for
the range [—1.1,1.1].
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0.1 03 05 0.7 09 45,

Figure 5.3: Separation of the detector into n-regions

Hence, because each of the two muons can be detected in one of these 1 regions, 11 x 11
mass histograms and the corresponding fits are created. The improvement is obvious, not

only visually but also from the goodnes-of-fit tests. An indicatory example is given as follows:
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Figure 5.4: Fit of Z boson mass for n regions (-0.5,-0.3)(0.9,1.1)

It is observed that there are events in all possible combinations of 7 regions of the two

muons, which means that the muons from the decay of the Z boson can be produced at a

large angle to each other. Going a little deeper, we want to examine the dependence of the

number of events as a function of the n regions of the two muons. Thus we have the following

graph:
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Figure 5.5: Entries per specific 7 regions of two muons from Z decay. Practically we select a reference 7 region each time and
we make all possible combinations with all the 7 regions. Indicatively, we draw some of these combinations so that the graph
is distinct and can be analyzed. Each reference region is drawn in a different colour, while the n regions are marked in black
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From the graph, Fig.5.5, by studying each curve separately, we arrive at some common
observations. Firstly, the fewest entries, which can be used for statistical analysis, are
observed when the two muons are produced in the same 7 region. When the muons are in
adjacent 7 regions, most events are observed and when the angle between them is increased,
there is a gradual small decrease in the number of entries. Looking now at the graph as a
whole, some curves are more elevated than others. For this reason, if we want to explore
a little more the relevance of the entries to the n region, we create an histogram of muons’
pseudorapidity 7.
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Figure 5.6: Histogram of n

As we expect, the Fig.5.6 confirms that our detector is not perfect. In some 7 regions it
has better resolution while in others it has worse, which may be due to various reasons such
as dead zones. If we compare the histograms Fig.5.5 and Fig.5.6, we observe that the curves
that are more elevated, namely the blue and magenta ones, correspond to the regions with
the most events, i.e., the regions (0.7,0.9) and (-0.3,-0.1) respectively. Furthermore, with a
more general look at the histogram Fig.5.6, we have a higher statistic in the central regions
of the barrel compared to its outer regions.

After, we draw two graphs with the mass and standard deviation (o) fitted found parameters.
Practically, in order to examine the values of the mass parameter in relation to the n regions
where the muons are detected, each time we assume that one of the two muons is found
in a 7 region and the other one scans all 1 regions so that all possible combinations are
made. The same procedure is repeated for all n regions. To make this methodology easier
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to understand, a schema is provided as follows:

43—

/
s

Figure 5.7: Schematically the followed methodology of analysis

Thus, the following graphs are obtained:
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Fit_Parameter: sigma - n
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Figure 5.9: Fitted parameter of standard deviation, o. The 7 regions colored in magenta refer to pu1

At first glance, we notice that there is a variation in the fitted parameter, both in the
mass and in the standard deviation (o) parameter. However, it is more intense for o. As far
as Fig.5.8 is concerned, we observe a variation of the fitted parameter of mass. Focusing on
the first part, i.e. the case when both muons are produced in the same 7 region, we observe
that in the central regions of the barrel we obtain better values. As to the second part of the
graph, i.e. when the muons are produced in different 1 regions there is a variation which is
more visible in the central regions of the detector; i.e. we observe a better measurement of
the mass parameter. If we examine the causes of this variation we should reject the scenario
of a sole statistical error because comparing the histogram of the pseudorapidity distribution
n, Fig.5.6, with the graph Fig.5.8, we should have better results in other 7 regions such as
(0.5,0.7). Moreover, as it was proved before, the muons from the decay of Z, between the
region [-1.1,1.1], can be produced with big angles between them, and as shown in Fig.5.5,
this does not affect the statistics significantly. Therefore, this variation reveals a systematic
error which could be due to a bad reconstruction when muons are produced in the edges of
the barrel, i.e. when they are produced at bigger angles.

5.3 The fit procedure to the Data

After we have found that the model 1 Crystal Ball + 1 Gauss + 1 Chebysev describes the
boson Z mass in the MC data satisfactorily, we apply it to the data to examine if similar
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results are obtained. Therefore, we follow exactly the same procedure with the MC data,

starting with the fit to the data without any 7 restriction.
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Figure 5.10: Fit to the Z boson mass without any n restriction

As expected from the fit procedure to the MC data, the fit is not successful. So we

separate the data into n regions, where we obtain 11 x 11 fits. Indicatively, the following fit

is provided as an example:
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Figure 5.11: Fit to the Z boson mass for n: (0.1,0.3)(0.3,0.5)

It is obvious that the fit to the data, after separating the detector into n regions, presents

a significative improvement.

If we examine now the dependence of the entries per combination of 1 regions of the two

muons, we have the following graph:
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Figure 5.12: Entries per specific 7 regions of two muons. Practically we select a reference n region each time and make all
possible combinations with all the n regions. Indicatively, we draw some of these combinations so that the graph is distinct and
can be analyzed. Each reference region is drawn in a different colour, while the 7 regions are marked in black

We observe that we have the same image as to the MC data, i.e. in each curve there
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is a minimum, the point in black, which characterizes the case in which the two muons are
detected in the same 7 region. Thus, in this case we have the fewest events. In the case
where the two muons are detected in adjacent 1 regions most of the events are recorded,
while as the 7 distance of the muons increases, the events gradually decrease. In total, there
is again this elevation of some curves due to the fact that the detector is not detecting with

the same resolution in all places, as shown in the histogram below:
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Figure 5.13: Histogram of muons’ n for —1.1 <n < 1.1

After, we make the two graphs with the fitted parameters, i.e. mass and sigma:
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In a general view, we observe that in the data there is also a variation in the parameters
depending on the 7 region, in which each muon is produced, with the most significant
variation being that of the 0. However, the illustration of Fig.5.14 is not the same as that
of the MC data, Fig. 5.8, because although a slight elevation of the values in the central
regions of the barrel is observed, it is not as significant as that of the MC data, where a
systematic error is clearly revealed. This logically suggests that some corrections need to be
made to the MC.
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Chapter

Precision measurement of boson
7/, MAass

One of the many goals of the ATLAS experiment is to measure with precision the mass of
the boson Z. This need comes from the fact that most of the energy /momentum calibrations
in ATLAS rely on the mass of Z, for example my,/mz and mg/mz. The value of the Z
mass, which is still used today, was measured by LEP in 1993 to be Mz = (91.187 4+ 0.0021)
GeV. Therefore, it is necessary to measure it again by the LHC as better statistics has been
achieved and its detectors have been improved structurally. Recently the CDF II experiment
provided a new measurement of the Z mass, which is mz = 91.192+6.4 stat. +4.0 sys. MeV
[17].

ALEPH —£— 91.1893+0.0031
DELPHI —5—| 91.1863+0.0028
L3 —c—  91.189430.0030
OPAL 91.1853+0.0029
LEP ‘. 91.1875+0.0021
CDFII - common: 0.0017
ATLAS ? | ¥*/DoF = 2.2/3
91.18 91.19 91.2
m,, [GeV]

Figure 6.1: Measurements of the boson Z mass value

In regard to the LEP experiment, its largest source of uncertainty is the energy cal-
ibration of the beam. For this reason special attention will be given to the energy/mo-

41
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mentum calibration. In particular, for a precise measurement of the boson mass Z, i.e.
dmyz = 107", we need to perform the energy/momentum calibration on the J/v in order to
achieve dm j,;, = 1075,

6.1 Armenteros-Podolanski plot

A new method for calibrating the momentum scale in a particle physics detector will be now
described. The Armenteros-Podolanski plot is a representation of the transverse momentum
of a two-body decay versus the asymmetry of the longitudinal momentum, «, of the decay

products

Pu — Pa

a="—7F— (6.1)
In this space, two-body decays appear as semi-ellipses, whose parameters provide information
on the masses of the parent and the child particles. The method relies on the determination
of the masses of the final state particles in two-body decays of neutral particles, which can
then be used to obtain corrections in the momentum scale. By fitting the ellipses, one can
retrieve the masses of the parent and the child particles. Deviations from known values then
give useful information about detector and reconstruction effects.
At present, the calibration of the momentum scale of LHC detectors uses the fit of the invari-
ant mass of known resonances, such as J/1¢ — putpu~ decays. The precision of this method
is ultimately limited by the knowledge of such masses. Our objective is to demonstrate that
the Armenteros-Podolanski plot allows a significantly more precise momentum scale calibra-
tion than using only parent particles, as long as child particle masses are better known that
parent ones. The key advantage of our proposed method is that it uses the precisely known
masses of the final state particles of the decay (e.g, pions, protons, muons...) to calibrate
the momentum scale of the detector, instead of the less precisely measured masses of the
heavier parent particles.

This representation was proposed in 1954 by R. Armenteros and J. Podolanski as a method
of analysis of the dynamics of neutral particles decaying to two bodies (V° particles). The
need for such a method was felt after the inhomogeneity of neutral V-particles had been
discovered by the Pic du Midi group. [18],[19]
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6.2 Equations

Figure 6.2: Kinematics of a two-body decay in the laboratory (LAB)

Analysing the Fig. 6.2, the following equations are obtained [20]:

- = —
P=P,+ P (62)
S
Py= Py + Py (6.3)

From the conservation of momentum, we have that the total momentum in the transverse
_>
plane is AP, = 0 and so:
— —
Plt:_PZt_>P1t:P2t:Pt (64)

We, also, have that:
= = (6.2),6. — = = = (. — =
?:Pl‘{'PQ%?:P11+P1t+P21+P2t<E——4)>?:P11+P21 (65)

and
P =P+ Py (6.6)
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Using the relation (6.6) we obtain that:

PQlIP—Pll (67)
and thus, the equation (6.1) becomes:
PIZ_P+P1Z 2P11—P 1—|—a
= sa=—— P = P 6.8
¢ P ¢ P A (6:8)
Inserting (6.8) into (6.7), we have:
1 1-—
Py—P—-"pep,——_%p (6.9)
Continuing,
68) (1+a \° (1+a)?
Pl =P+ P& P = ( 5 P) + P e Pl = P (6.10)
and respectively for particle 2:
) 1—a)?
Propl L g 4“) P*+ P! (6.11)

——
Now, we want to calculate the quantity P Ps:

S = e o S ey ey = (64) vy =, =
PPy = (P + Pi)(Po + Pot) = Py Py + PyPoy + Py Py + P Py (e Py Py + Pyy(—Py) <

1 11— 1 1-— 1—a?
ﬁig_( +CL>( a)P2_Pt2<:>(+a)( a)P2—Pt2<:>ﬁ1.FQ>: 4&

P2 - Pt2
(6.12)

2 2 4

— — —
The four-vectors that describe particles with momenta P; and P, are P}' = (E;, P;) and
_>
Pl = (Ey, P), where E? = /P2 +m? and Fi = /P2 + m2.
A quantity which is conserved in the systerg of tge decay of the particle M into two particles
my and my is P* = Pl'+ Py = (Ey + Ey, Py + P,), for which:
- =
|P*]> = P*B, = (By + E»)* — (P + P))? = B> + P* = M? (6.13)
So, from the equation (6.13) we have that:
- =
M? = (Ey + Ey)* — (P + P)*M? &

——
& M = m} +m} + 2,/ P2+ m\ [P} + m3 — 2P P, &

-
&2/ P2+ mi\/PE+mi =M —m} —m}+ 2P P, & (6.14)
——
& 4(P} +mi) (P +m3) = (M? —mi —mj + PLP)* &

——\ 2
& 4 (P2P2 + P2m2 +m3P} + m2m3) = <M2 —mi —mj + 2P1P2)
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Analytically some terms of the equation (6.14):

) ) 1 2 1 — 2 op. 1— 2\2 2 1
[>Fl>2]32>2 (6104611) (( _Za) P2—|—Pt2> (( 4@) P2+PtQ> é( CL) P4+a;_ P2]Dt+Pt4

16
(6.15a)
: 1 2
D@ﬁQP@L%1w+@ﬁ (6.15D)
: 1—a)?
> m2 P (LD m%(Ta)PQ +miP? (6.15¢)
Hence, inserting (6.12), (6.15) into (6.14) and setting that:
1— 2
§' = M? —mi —mj + 2a P?
(operations are facilitated), we obtain:
’ 1—(12 P4 P2 m2 1+a2 2+m2 1—a 2
PQZ%_( 16) I el 51 )4 1( )]_m%m%
' m3 +m3 + T 4 oy
and setting again that 62 = % the above equation can be written:
52 _ (mad)Pt  PYmd(ta)+mi-)’)] oo
P — 16 12 (6.16)

4
m%_{_m%_‘_ P2(12+a2) +26

If we assume that N and D are the numerator and denominator of the above expression(6.16),
then we have for the denominator:

P?(1 + a?
D:m%—l—mg—%%—l—%
) ) & D =M+ P? (6.17)
5 ) 1<]\/[2 9 2+1—ap2)
=—== —mi—m
2 2 b 2
while for the numerator N ,using the fact that:
s (1—a2)2P* _
16

1—a® , 1—ad® ,
(0-255m) (54155 -

M2 —m2 —m2 M2—m2—m2 1-—a2
miy — My my — My 4 a p2
2 2 2

it can be written as:

(OF —md —m3P  P1-aM?)  Pmd-o)+mii+a) ., ,
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Thus, the equation (6.16) due to (6.17),(6.18) takes the form:

_ 9. 9
1 1 2 mymm;

P2 4+ M?

(M2—m2-—m2)? + P2(1—a2)M? P2[m?(1—a)+m3(1+a))
e = (6.19)

Note that for big momentum, P >> M, the p; is independent of the momentum P of the

incident particle of mass M and thus:

pt:\/(1—4@2)MZ_m%(l—a)—;—m%(l—i—a) (6.20)




47 6.3. Conception

6.3 Conception

Initially, an attempt will be made to understand the equation (6.20). For this reason, the
first task we need to do is to create the Armenteros-Podolanski plots for both J/v¢ and Z, as
we want to examine the behavior of the relation (6.20) at small and large masses. Therefore,

6.0927398707

we have:
Armenteros-Podolanski plot Armenteros-Podolanski plot_—zmmer
= = Run2_DATA 2018 =
) 8
= T =

Run2_DATA 2018

| |
- ‘—08‘ ‘ ‘—06‘ ‘ ‘—04‘ ‘ I—Oé ‘ 0 0.2 0.4 0.6

-0.8 -06 -04 -0.2 0 0.2 0.4 0.6
(a) JPsi (b) Z

Figure 6.3: Armenteros-Podolanski plot

0.8

It is observed that the semi-ellipse fully satisfies the J/W¥ data but not the Z data, mainly
at the extreme values of a,(a — 1). This result was expected as the relation (6.20) is used

for P >> M, which is not the case of Z since, as it can be seen from the Fig.6.7, the

most data have momentum close to the mass value of Z. So, the next question that arises is

whether there are momenta of Z for which the equation (6.20) is satisfied, i.e. its transverse

momentum is independent of its total momentum. To answer this question, the Wolfram

Mathematica program is used, where the relation (7.1) is drawn for several momenta which

are multiples of Z mass:
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Figure 6.4: Armenteros-Podolanski plots for P multiples of Z mass using Mathematica

At a first glance at the Fig.6.4, it can be observed that for P > 6M, the semi-ellipses
remain almost the same. To confirm this observation, the percentage change in transverse
momentum is also calculated through the Mathematica, as shown in the Figure below:

a=-1 a=-0.75 a=-0.5 a=-0.25 a=0 a=0.25 a=0.5 a=0.75 a=1
M |-41.4217| -17.9537 | -6.90454 -1.60011 1.55855x10 14 -1.60011 -6.90454 | -17.9537 |-41.4217
21 (-58.1325| -14.3212 | -4.58417 -0.982383 |-1.55855x10°%| -0.982383 | -4.58417 | -14.3212 |-58.1325
3M [-41.4357| -5.54455 | -1.60067 -0.330697 0. -0.330697 | -1.60067 | -5.54455 |-41.4357
414 |-30.3951| -2.43217 | -0.671045 -0.13667 |-1.55855x10°*| -0.13667 |-0.671045|-2.43217 [-30.3951
S5M|[-23.6788| -1.24 -0.334613 | -0.0676974 0. -0.0676974 | -0.334613 -1.24 |-23.6788
611 |-19.3013(-0.708093| -0.18875 | -0.0380503 | 1.55855x10°% | -0.0380503 | -0.18875 |-0.708093|-19.3013
T [-16.2558(-0.439572( -0.116307 | -0.023396 0. -0.023396 | -0.116307 |-0.439572|-16.2558
811 |-14.0256|-0.,290607(-0,0765222| -0.0153718 0. -0.0153718 |-0.0765222|-0.290607|-14.0256
9M |-12.3264|-0,201725(-0.0529432| -0.0106253 0. -0.0106253 |-0.0529432(-0.201725|-12.3264
10 M|-10.9907|-0.145559|-0.0381125|-0.00764377 0. -0.00764377(-0.0381125|-0.145559|-10,9907

Figure 6.5: Calculations of the rate of change of transverse momentum, pr, for different values of &« and momentum P

Indeed, as shown by the calculations in Fig.6.5, for momenta P, > 6M  the transverse
momentum has a minimal, almost zero variation for all values of a except for &« = +1 for
which there is a slight modification. However, we assume that, in total, for momenta six
times bigger than the mass of Z the change in transverse momentum is negligible.

All the above that have been researched, will be applied to the data. Initially, we start
by examining if there are data with momentum bigger than six times their mass. For this

reason, a 2D mass - momentum histogram and a histogram of momentum are made:
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Figure 6.6: 2D Histogram M — P Figure 6.7: Momentum of Z

It is observed that for P > 6 M , most of the Z data are cut off.

2D Histogram Mass-Momentum
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Figure 6.8: 2D Histogram M-P with criteria P > 6 M

However, some of them remain, as shown in the Fig.6.8, which will be used to construct
the Armenteros-Podolanski plot:
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Figure 6.9: Armenteros-Podolanski plot for Z with P > 6 M

Having applied the momentum criterion, the semi-ellipse now satisfies our Z data.
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Following the same procedure for J/v, with the aid of Mathematica we have:

pT pT pT pT pT
p=2M p=3Mm p=4m p=5M
/—i-? . ] ) :
1.0 1 52701 1.52459 s 1.0 [1.52302 B 1.0} |1.5236 s 1.0{| 152344
05 0.5 05 0.5
a a a
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pT pT
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< < q
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Figure 6.10: Armenteros-Podolanski plots for P multiples of J/1 mass using Mathematica

and also:

a=-1 a=-0.75 a=-0.5 a=-0.25 a=0 a=0.25 a=0.5 a=0.75 a=1
M |-41.7537| -18.0618 | -6.94028 -1.60778 0. -1.60778 -6.94028 | -18.0618 |-41.7537
21| -59.242 | -14.4308 | -4.60877 -0.98684 1.43775x10% -0.98684 -4.60877 | -14.4308 | -59.242
31 |-43.1399| -5.59404 | -1.60971 -0.332218 0. -0.332218 | -1.60971 | -5.59404 |-43.1399
41 |-32.6T47| -2.45542 | -0.674928 | -0.137305 0. -0.137305 | -0.674928 | -2.45542 |-32.6747
5M|-26.5876| -1.25226 [ -0.336574 | -0.0680141 0. -0.0680141 | -0.336574 | -1.25226 |-26.5876
6M|-22.934 |-0.715225( -0.189864 | -0.038229 0. -0.038229 | -0.189864 |-0.715225( -22.934

71 [-20.7541| -0.44405 | -0.116996 | -0.0235062 |-1.43775x10"*| -0.0235062 | -0.116996 | -0.44405 |-20.7541
811 |-19.6014| -0.29359 [-0.0769773| -0.0154444 | 1.43775x10°% | ~0.0154444 (-0.0769773| -0.29359 |-19.6014
91 |-19.3071|-0.203807(-0.0532587| -0.0106755 0. -0.0106755 |-0.0532587|-0.203807|-19.3071
101|-19.9136(-0.147067| -0.83834 |-0.00767994 0. -0.60767994| -0.03834 |-0.147067(-19.9136

Figure 6.11: Calculations of the rate of change of transverse momentum, pr, for different values of @ and momentum P for
J/¥

It is evident that for momenta bigger than six times the mass of J/1, the curve remains
almost the same, which is confirmed by calculating the percentage change in transverse
momentum for different momenta of the J/1¢ particle. Constructing the histogram of the
momentum of J/¥ (Fig. 6.12), it is observed that almost all J/¥ data satisfy the condition
P> 6M.
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Figure 6.12: Momentum of J/¥

For this reason, without applying any momentum criterion to the J/¢ data, the relation
(6.20) is satisfied, i.e. the Armenteros-Podolanski plots, as shown in Fig.6.3a.

Another curious point is in the Fig.6.4 and Fig.6.10 because as it can be noticed, for a = 0,
as the momentum of Z and .J/v increases, the transverse momentum does not change but

remains constant, unlike for the extreme values of . Using the equation (7.1)

4 4 2
P2+ M?

\/ (omizmd)? | PA-a)M?_ PAmiQ-altmi(ee)] o2
pr =

fora=0and ml=m2=m

_ (MLEW)2 + 5 — pPm? — oo pp = MEAMEREHAIS - P2(AF —m?) —m!
pr = P2 1 )2 Pr = P2z 4+ M2

MY prem? 4 p2(M2 o2 M2(M2 _ 2y 4 p2(M2 2
o CF —m) | MECE ) PO )

4
})2 + jV{2 })2 + ]k[2

(M2 — m2) (P2 + M?) 1 m?
= - ]\42 - T 5
& pr \/ P I &< pr (4 MQ)

but M >> m so the term A’Z—z — 0. Thus,

(6.21)

M
pT:7
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Therefore, we can conclude that when the two muons are produced with the same longitudinal
momentum (a = 0), then their transverse momentum depends only on the mass of the parent

particle, as for example J/W or Z, and in particular its value is constant and equal to:

M
Py, =P, = ?

which can be seen in the boxes of the Fig.6.4 and Fig.6.10. Specifically, in the Fig.6.4, which
is refered to boson Z, we have that pr,,. = 2 ~ 45.6 and respectively in the Fig.6.10, which
is refered to J/WU, we have that pp, . =

6.4 Fitting Test

The first and identifying test of this calibration method is to examine the value of the mass
parameter (M ;/y) that is found by fitting the Armenteros-Podolanski plot, using the function
(6.20) and knowing from the Particle Data Group that M; /¢ = 3096.900 & 0.006 MeV. At
this point, it is important to note that the Armenteros-Podolanski plots are 2D histograms
which are not suitable for fitting. For this reason, the TProfile class of ROOT [21] is used
as the profile histograms are characterized in many cases as an elegant replacement of two-
dimensional histograms. Profile histograms are used to display the mean value of Y and its
error for each bin in X. The displayed error is by default the standard error on the mean,
i.e. the standard deviation divided by the v/N. Using this method, the direct elimination
of the third dimension is achieved, which presents the entries and enters of course in the
profile histogram in a different way. What practically happens, using our 2D histogram as
an example, a-pT, is that the resulting profile histogram retains the values of a on the x-axis,
while the average values of the transverse momentum pr of each bin are presented on the
y-axis. Therefore, the information of the entries enters both in the calculation of the average

N
Y DT . .
% as well as in the error of the average value, as we mentioned

Zf\;l (pTi 71?) ’
N

value of pr because pr =

before, given by the equation o,, =

All MC are used initially without any restriction on pseudorapidity 7, resulting in:
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Figure 6.13: Profile of Armenteros-Podolanski plot without any 7 restriction

The mass parameter, which is returned by the ROOT, is not precise and neither the
goodness-of-fit tests are successful. Knowing that the detector does not have the same
resolution in all its parts, we create the following 7 regions from [—1.1,1.1] and separate our

data according to the n region in which they are located:

~ | T T T T rrrrr T
-1.1 09 -0 7 -0.5 -0.3 -0.1 01 03 05 07 0.9 +1.1
- o t _____ T l _____ I]:- +CO
/ \
7/ N\

Figure 6.14: Separation of the detector into n-regions

Therefore, 11 x 11 plots are obtained. As an instance, one of the most successful fit is
given:
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Figure 6.15: Profile of Armenteros-Podolanski plot for n : (—0.7,—0.5)(—0.9, —0.7)

With a general overview, it is observed that after the separation of the data into the n
regions, the value of the J/1) mass parameter, which is found from the fit, is more accurate
than the total Armenteros-Podolanski plot, while in some regions it is almost exact. In
addition, another result is that the muons from the J/v¢ decay are produced close to each

other, which is shown in the histogram below, Fig.6.16:

N,
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2 - Entries 3478074
E - Mean 0.005358
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80—
60—
40—
20—
D B | 1 1 ‘ 1 1 1 | | 1 1 ‘ 1 1 |
-1 -0.8 0.6 0.8 1
T]u. T]u

Figure 6.16: Difference between the pseudorapidity of the two muons: Nyt — My
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In order to comprehend these two observations, the inverse graphs are made. Initially,
a graph is created to illustrate the number of muons produced per specific n-regions, which

have been defined above.
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Figure 6.17: Entries per specific 7 regions of two muons from the J/v decay. Practically what we do is to select a reference n
region each time and make all possible combinations with all the n regions. Indicatively, we draw some of these combinations
so that the graph is distinct and can be analyzed. Each reference region is drawn in a different colour, while the 7 regions are
marked in black

Observing the graph and studying each curve separately, we arrive at some common
features. Firstly, the fewest entries, which can be used for statistical analysis, are observed
when the two muons are produced in the same 7 region. For muons which are produced
in the most distant 71 regions, the events are almost negligible, therefore they cannot be
utilized in any statistical analysis. Moreover, from the graph it is obvious that most events
occur when the muons are produced in adjacent regions, where we have the best statistics.
Looking now at the graph as a whole, some curves are more elevated than others. For this
reason, wanting to explore a little more the relevance of the entries to the 7 region, we create

a histogram of muons’ pseudorapidity 7.
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Pseudorapidity n of muons
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Figure 6.18: Histogram of muons’ pseudorapidity n

The above histogram, Fig.(6.18), confirms what we already know, that our detector is
not perfect. In some 7 regions it has better resolution while in others worse, which may
be due to various reasons such as dead zones. Comparing the histograms Fig.(6.21) and
Fig.(6.18), we observe that the curves which are more elevated, namely the blue and ma-
genta ones, correspond to the regions with the most events, i.e., the regions (0.3,0.5) and
(-0.7,-0.5) respectively. Furthermore, with a more general look at the histogram Fig.(6.18),
we have a higher statistic in the central regions of the barrel compared to its outer regions.

Continuing with the other observation that was mentioned earlier regarding the fitted mass
parameter, a graph with all the values of the fitted M/, parameter is created. These values
which are obtained from the various fits in the Armenteros-Podolanski plots for the different
71 regions. The same method of analysis is followed as in chapter 5, i.e. each time we assume
that one of the two muons is found in a 7 region and the other one scans all n regions so
that all possible combinations are made. The same procedure is repeated for all 1 regions.

Schematically the methodology is:
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Figure 6.19: Schematically the followed methodology of analysis

It should be mentioned here that we do not use combinations that we have met before,
as we are not interested in which of the two muons is detected in the n reference region, but

only in the fact that one of the two muons is detected in it. Therefore, the combinations of
n regions ut: (n1,m2) p: (n3,ma) and pt: (n3,ma) p: (N1, m2) are the same.
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Figure 6.20: Fitted parameters of mass

At a first sight, a variation is observed in the mass values. In order to understand the
reason for this variation we make two graphs with the number of events for each point in
Fig.6.20.
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Figure 6.21: Entries per 7 regions

The left graph, Fig.6.21a, shows the number of events for the first 12 points of Fig.6.20
which refer to the case in which the two muons are in the same 7 region. This variation
in the values of the mass parameter is due to a statistical error as variation in the number
of events occurs, which is also revealed by Fig.6.18. Comparing now the two plots Fig.6.20
and Fig.6.21b with regard to the second part (points 12-30), i.e. for the case where the two
muons are detected in different n regions, we observe a similar form, i.e. an up and down
value shift. Therefore, this up and down of the mass values is justified by the fluctuation of
the entries in Fig.6.21b. More events more accurate value, fewer events worse mass value.
However this is not consistent with the histogram of pseudorapidity, Fig.6.18. For example,
point 17 representing the 7 regions (-0.7,-0.5)(-0.3,-0.1) should be a point with good statistics
which contradicts Fig.6.21b. The reason is that this variation in the mass values is not only
due to statistical error but physics enters into it. Muons from J/v decay, as we have shown
in Fig.6.16, are produced at short n distances. Moreover, from Fig.6.21 we had shown that
higher statistics are observed when the two muons are produced in adjacent regions. This
fact is the cause of the variation; for example, point 16, representing 1 regions (-0.7,-0.5)(-
0.5,-0.3), has higher statistics as they are adjacent regions, while point 17, representing 7
regions (-0.7,-0.5)(-0.3,-0.1), which are close 1 regions but not adjacent, has lower statistics.
Finally, by fitting the data with a first degree polynomial, where the constant term indicates
the mass of J/W, the mass parameter is found to be My = 3.0967 & 0.0001, which is an

accurate measurement.
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6.5 Calibration Test
6.5.1 Methodology

The muon momentum scale and resolution obtained from the reconstruction of MC simulated
events need to be corrected to reproduce with precision the characteristics of the muon
momentum reconstructed in real data. The mass of a reconstructed X — Il (X being Z or

J/{ for example) is computed as:

my = \/2E1Ey (1 — cos(013)) (6.22)

where E; and F5 are the energies of the two leptons measured by the detector and 65 is the
opening angle between two leptons. Due to imperfect detector modeling is parametrised in
the following way for a given region:

pre® =pr (1 + a;) (6.23)

where p°*® is the measured lepton transverse momentum, pi©® is the reconstructed trans-

verse momentum of the perfectly calibrated muons, and «; represents the “departure” from a
perfect calibration, in a given phase space region, for example pseudorapidity range, labelled
1. Based on these relationships, the fisrt step is to perform different bins in 7 for both muons
1 and g~ . Residual mis-calibration, due to imperfect detector modeling is parametrised in

the following way for a given region:

Eie = BN (1+ a;) (6.24)

where the a; is the calibration constant in the bin i. Therefore, the invariant mass of the
muons for a category (i,j) is given by:

mirue — \/QE;WE;W@ (1= cos(6;)) (6.25)

1] -

Neglecting second-order terms and assuming that the opening angle between the two leptons

is perfectly measured, the effect on the di-lepton invariant mass is:
a; +
mZ“e ~mi (1 + - 5 ]> (6.26)

Thus, we have:

v L) 2

mz?'r"ue = mrece (]_ + &)
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with 8ij = oy + a;.

Therefore, we will use this methodology to test whether the Armenteros-Podolanski plot
is an effective calibration method. Practically, MC data are used and we modify them by a

factor 1 + a; according to the 7; region where they are detected, as follows:
pjrlzeas _ prTeco (1 + ai) N pcjlftered — pgfiginal (1 + ai) (627)

Then, by fitting the Armenteros-Podolanski plots of both original and altered MC data,

the ratio Aj\fo—il; is calculated and thus, according to the relation (6.26), it can be examined

whether the experimental and theoretical values of 1 + 22% are consistent.

6.5.2 Same calibration constant «; for the whole detec-
tor

The first identifying and simplest test for this methodology is to consider that the detector
detects with the same ability in all its parts.
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a=0.005
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Figure 6.22: First calibration test, i.e. same calibration constant «; for the whole detector

Thus, we generate pseudodata by changing the transverse momentum of the MC data
by a factor of 1+ 0.005, i.e.

Pyt = p7™ (14 0.005) (6.28)

What we ideally expect, after finding the J/¥ mass parameter from the fit to the Armenteros-
Podolanski plots of both the original MC data and the pseudodata (altered MC), using the
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relation (6.26), is:

) ) ) a—a;=a Mia'lt. 2
M;}”:Miojmg. 1+% <=J>Tiig_:1+7a<:>
M (6.29)
Malt.

W:1+a:1+0005

Observing all the graphs, the results are very satisfactory. Indicatively, the following is

provided:
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Figure 6.23: Armenteros-Podolanski plot of the original and altered MC data in 7 regions (0.3,0.5)(0.7,0.9)

To obtain an overall picture we create a graph with all the results and so:
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Figure 6.24: The factor 1 + a from all 7 regions

However, we cannot overlook the fact that essentially the same events are used in both
Armenteros-Podolanski plots as the altered MC data (pseudodata) have been generated by
a change in the transverse momentum of the original MC data by a factor of 1 4 0.005.

altered/
original pseudodata
data 1 Ll data 1'
data 2 SLLILLLL LI data 2'

pT' = (1+a)pT

Figure 6.25: The method of generating pseudodata

Therefore, wanting to obtain the randomness of the events we split the events in both
cases in half and use the different halves of the MC data to create the corresponding
Armenteros-Podolanski plots, as shown in the figure below (fig.6.26):
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Figure 6.26: The method of generating pseudodata and the selection made to increase the randomness

and following the same procedure we get the results below:
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Figure 6.27: The factor 1 4+ « from all 7 regions, using half entries

In this case too, it is observed that the results are consistent with the theoretical value
14+ a=1+0.005.

6.5.3 Different calibration constant «o; in each 7, region

The previous test gave encouraging results but we should be aware that this test refers to
an idealized and simplified scenario, as the detector does not detect with the same efficiency
in all its parts. Therefore, the next step is to take into account the real conditions, i.e. each
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n; region is characterized by a different calibration constant, a;. Thus, we define arbitrary

calibration constants, «; for each region, which are shown in the figure below:
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Figure 6.28: The calibration constants «; for each 7n; region

Having defined the calibration constants, the pseudodata are produced by changing their
transverse momentum as previously:

alt. orig.

pro=pr 7 (1 + ay)

where «; is the calibration constant characterizing the 7; region in which each muon is
detected.

To obtain an overall view of the results, we create a graph of the difference between the
value that is found and the corresponding theoretical value of the quantity 1+ 52—3 =1+ “Ta]
as a function of the n region and so we have:
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Figure 6.29: The factor 1 + a from all n regions

It is obvious from the graph that the difference is very small. Moreover, for some specific
values the difference is zero, as for example in point 16 where it refers to the ranges (0.7,-
0.5)(-0.5,-0.3). Continuing with exactly the same procedure which is followed in the previous
test, to increase randomness we split the data in half and use half of them as the original
events and the other half to create the pseudodata (Fig.6.26). Thus:
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Figure 6.30: The factor 1 + a from all n regions, using half entries

The results in this case are also very encouraging because through the Armenteros-
Podolanski plot the experimental value of the quantity 1 + ﬂz% is calculated quite close
to its theoretical value and for this reason their difference is close to zero for almost all 7

regions, as shown in Fig. (6.30).



Chapter

Conclusions

The thesis focused on the study of the mass of the boson Z and the meson J/¢. The first
part of the analysis, which was elaborated in chapter 5, aimed at examining the mass dis-
tribution of Z in order to find the functions that describe it. Initially, Monte Carlo (MC)
data was used to create the mass histogram and after several attempts and combinations of
functions it was found that a Crystal Ball and a Gaussian function satisfactorily described
the signal while a second degree Chebyshev polynomial was used for the background. Al-
though the fit was visually compatible with the mass distribution, the goodness-of-fit tests
revealed the opposite, i.e. a bad fit. Therefore, the fit procedure needed improvement. So,
the idea based on the fact that the detector does not have the same resolution in all its parts
was applied, to use an additional criterion in our data, the criterion of the pseudorapidity
(7). We therefore divide the detector into 11 7-regions between the limits [-1. 1,1.1] and
because each of the two produced muons can be detected in one of these regions, 11 x 11
mass histograms were made satisfying all possible combinations of 7-regions between the
two muons. This idea was successful because by making this separation, the fit procedure
was significantly improved in all histograms. Examining the results a little further, it was
observed that this separation affects the statistics. In particular, it was found that the least
data for analysis are recorded when both muons are produced in the same 7 region, while
the most ones when they are detected in adjacent n regions. As the two muons become more
distant from each other, i.e., as the angle between them increases, there is a gradual small
decrease in the number of events. Moreover, studying the values of the fitted parameters,
mass and o, it is observed that there is a variation with a more intense one in the parameter
0. Analyzing the fitted mass parameters further, we conclude that this variation reveals a
systematic error. In particular, more accurate mass values were found in the central regions

of the detector compared to the more outer regions of the barrel, which is probably due to a
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bad reconstruction when muons are produced in the edges of the barrel, i.e. when they are
produced at bigger angles. After having completed the analysis on the MC, is applied the
same model and the same methodology to the data in order to compare the results between
them. We therefore conclude first that the same significant improvement in the fit procedure
occurs when the data are divided into the same n regions, and second that this separation
has the same effect on the statistics. However, when we proceed to analyse the impact of
the separation of the 7 regions on the fitted parameters, although there is again an intense
variation in the fitted parameter o, the image for the mass parameter does not reveal similar
behaviour. In particular, the graph with all the fitted mass values using the data is different
from that of MC because the variation in this case is unobservable. Therefore, there is no
systematic error indicated in the data. This difference in the results of the mass parameter
indicates that the MC probably need some corrections. Finally, a general impression on the
programming part is that the fit procedure is a complex process as mentioned in chapter 5
because the fit is done by minimizing the least-square or likelihood function, which creates
many difficulties. Therefore, in order to succeed the fit procedure on many histograms, such
as in our case where 11 x 11 mass histograms were created on both data and MC, it is nec-
essary to initialize the fitted parameters appropriately and at the same time to set suitable

limits on them.

In the second part of the analysis a new calibration method is proposed based on the
Armenteros-Podolanski plots. The motivation for this study comes from the attempt to
precisely measure the mass of the Z boson. The pursuit of an accurate measurement has
led the studies to focus on improving the calibration of muon momentum. Due to the fact
that our object of study is the Z boson, the calibration will be performed on J/v. The
Armenteros-Podolanski plot, as it was mentioned previously, is a representation of the trans-
verse momentum of a two-body decay versus the asymmetry of the longitudinal momentum
of the decay products. In this space two-body decays appear as semi-ellipses, whose param-
eters provide information on the masses of the parent and the child particles. In order to
examine whether the Armenteros-Podolanski plots can be used to calibrate the detector, we
applied to them three tests from which we had very satisfactory and encouraging results for
further study of this methodology as a new way of calibration. These tests are based on the fit
procedure to the ellipses observed in the J/1¢ data as in this way the masses of the muons and
J/1 can be retrieved. The first test is simply the fit procedure to the Armenteros-Podolanski
plots using the MC data of J/¢. However, using all the data both the fitted parameter of
mass and the goodness-of-fit tests are not satisfactory. For this reason, proceeding with
the similar idea that regulates the whole previous analysis, the data are divided according
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to their pseudorapidity 7. By dividing the detector into 11 regions between the 7 limits
[-1.1,1.1], 11 x 11 Armenteros-Podolanski plots and their corresponding fits are generated.
The fit procedure had significant improvement for all plots. Some remarkable results came
out of this process. First, the muons from the decay of /1 are produced close to each other,
i.e. with a small angle between them. In particular, when the two muons are produced in the
same region we have the least number of events for analysis, while the highest statistics is
obtained when the two muons are located in adjacent regions. For larger distances between
the muons the events are almost zero. This separation also revealed a statistical error as it is
already known that the detector is not perfect and therefore it does not detect with the same
resolution in all parts. Thus, in some 7 regions the statistics is higher. For this reason, the
fitted parameters of mass obtained from the fit procedure when the muons are detected in
the same 7 region are quite accurate for the n regions with high statistics. Next, examining
all the fitted parameters of the mass for muons that are not produced in the same 7 regions,
there is an up and down shift of values that reveals a statistical error. The causes of the
error are physics itself. When the muons are produced in adjacent n regions, most events are
observed and therefore the measurements are quite good, while if the n distance is increased
a little more, the events decrease significantly and the measurements are moved away from
the reference value of PDG. Finally, by fitting the data with a first degree polynomial, where
the constant term indicates the mass of J/1), the mass fitted parameter is found to be M;/y,
= 3.0967 4+ 0.0001 GeV, which is an accurate measurement. The second and third tests, also
known as the calibration tests, are based on the imperfect detector modelling. Using this
model, we generate from the MC original data the pseudodata as follows:

p%ltered _ p%rzgznal (1 + @i) (71)

where «; is the calibration constant.
Then, by fitting the Armenteros—POdolanski plots of both original and altered (pseudodata)
MC data, the ratio MO—NQ, a +O‘7

can be examined whether the experimental and theoretical Values of 1+ % are consistent.

which equals to the quantity 1 + , is calculated and thus it
Specifically, the second test, which is the most simplified because it assumes that the detector
has the same resolution in all its parts, i.e. o; = a; = «, was an identification test. After
we have obtained satisfactory results, we proceeded to the 3rd test, which describes the real
condition, i.e. that the detector does not detect with the same ability in all its parts. So
the same procedure was repeated but this time with different calibration constants for each
71 region. The results in this case are also very satisfactory. Therefore, through this analysis
we have encouraging indications for further research and this allows us to believe that it can
be used as a new calibration method. A general impression regarding the programming of



70

the fit procedure for the Armenteros-Podolanski plots is that it was a much more simplified
procedure than the classical process of fitting to the mass distribution of every single particle
- in our case the boson Z - as it did not require much effort in initializing the parameters
nor a complex code to achieve the fit to 11 x 11 histograms.
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