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Preface

Applied mathematics have played a highly significant role in the develop-
ment of the science. One part of the applied mathematics that are of a high
interest is transfer of energy. Over the years many scientists have tried to un-
lock the mysteries of the energy of a specific system. In this thesis, we shall see
how energy transfers through a certain type of ”energy carrier”, called discrete
breather.

In Chapter 1, we present the general idea of solitons and their behavior. We
study three important equations that have solitons as solutions. We also, study
some special solitonic structures, which are called breathers. The importance
of the breathers is going to be shown in chapter 2 and 4.

In Chapter 2, we show how solitons have a direct connection with nonlinear
lattices and how moving breathers make their appearance in nonlinear lattices.
The first part is will be shown through the FPU problem and how the lattice
they were studying has a deep connection with the KdV equation. The second
part will be shown numerically.

In Chapter 3, we present the complexification averaging method. This is
done by first presenting the multiple scale method through an example. After
that, by using a simple example again we show how passing to complex variables
is useful to solving the problem.

Finally, in Chapter 4, we study how energy transfers in a nonlinear lattice
through travelling breathers. In particular, we study numerically what condi-
tions have to be satisfied in order to achieve irreversible energy transfer.

Special thanks to my teacher Vasileios Rothos and my family for all their
help and guidance through this last year...
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1 Solitons

1.1 An Introduction to Solitons and the KdV Equation

In 1834, John Scott Russell (1808–1882) while conducting some experiments
in the Union Canal in Scotland, he discovered a phenomenon that he described
as the wave of translation. A solitary wave is a localized wave of translation
that arises from a balance between nonlinear and dispersive effects. In most
types of solitary waves, the pulse width depends on the amplitude. A soliton is
a solitary wave that behaves like a ”particle”, in the sense that it satisfies the
conditions given in the definition below. The term soliton was given by Norman
Zabusky (1929-2018) and Martin David Kruskal (1925-2006) in 1965.

Definition 1.1.1. A soliton is a solution to a nonlinear P.D.E. which:

1.) is localised

2.) moves with constant shape and velocity in isolation

3.) is preserved under collisions with other solitons

Figure 1.1.1: A soliton which moves in one direction, invariantly.

Figure 1.1.2: Two solitons interacting with each other and then emerging from the collision

with the same shapes and velocities.
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Remark 1.1.2. As we saw in Definition 1.1.1., a soliton emerges unchanged
from a collision with another soliton. However, its only characteristic that can
possibly change is its phase (phase shift). With the term phase shift, we mean
where the soliton would have been if the other soliton had not been there.

Figure 1.1.3: A space-time diagram of the collision of two solitons. Space is on the

horizontal axis and time is on the vertical axis. Observe the phase shift that occurs when the

two solitons collide.

One of the most known and classic P.D.E. which has solitons as solutions is
the Korteweg-de Vries equation (KdV). This is one of the equations that we are
going to study in order to understand what exactly is a soliton and how it be-
haves. The dutch mathematicians Diederik Johannes Korteweg (1848-1941) and
Gustav de Vries (1866-1934), continuing the work of the french mathematician
Joseph Valentin Boussinesq (1842-1929), derived a nonlinear equation governing
long one dimensional, small amplitude, surface gravity waves propagating in a
shallow channel of water[2]

∂η

∂τ
=

3

2

√
g

h
· ∂
∂ξ

(
1

2
η2 +

2

3
αη +

1

3
σ · ∂

2η

∂ξ2

)
, σ =

1

3
h3 − Th

ρg
(1.1.1)

where

η : the surface elevation of the wave above the equilibrium level h
a : a small arbitrary constant related to the uniform motion of the liquid
g : the gravitational constant
T : the surface tension
ρ : the density

The terms ”long” and ”small” are meant in comparison to the depth of the
channel. Now, by making the following transformations in equation (1.1.1)
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t =
1

2

√
g

hσ
· τ , x = −σ− 1

2 ξ, u =
1

2
η +

1

3
a

we obtain the most common form of the KdV equation

∂u(x, t)

∂t
+ 6 · u(x, t) · ∂u(x, t)

∂x
+
∂3u(x, t)

∂x3

or

ut + 6uux + uxxx = 0 (1.1.2)

where now

u = u(x, t) : height of the wave at position x and time t

The presence of the term uxxx in the relation (1.1.2) is the one responsible
for the dispersive phenomena and the term u · ux describes the nonlinearity of
the propagating mean. The coexistence of these two terms in balance, leads to
the emergence of a stable, solitary pulse which is the soliton.

In order to understand better the nature of the soliton we examine what
happens if we remove certain terms from the KdV equation. We examine two
distinct cases. First, we remove the nonlinear term and we have

ut + uxxx = 0

The result is dispersion i.e. waves spread and energy disperses.

Figure 1.1.4: The initial localised wave disperses. In particular it spreads out so there are

these waves which move towards x equals minus infinity.

The next option is to remove the dispersive term leaving only the nonlinear
term and then obtain

ut + 6uux = 0

Now, the result is breaking i.e. waves energy concentrates until it becomes
singular
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Figure 1.1.5: The wave remains localised. However, it piles up towards the right and after

some finite time it breaks down.

The reason we presented these two cases and the graphs above, is to show
the importance of the balance of the dispersive term and the nonlinear term in
the KdV equation. Even if these two terms exist in the relation (1.1.2) at the
same time, if they do not coexist in balance the appearance of a soliton shall
not happen.

The following step is to solve the KdV equation, explicitly, which is given
again below

ut + 6uux + uxxx = 0 (1.1.3)

We know that the soliton is a propagating wave so we consider the trial
solution

u(x, t) = v(x− ct)

where now v is the unknown function and c is the velocity of the wave. Now,
we consider the variable ξ as

ξ = x− ct

and we have the relation

u(x, t) = v(x− ct) ≡ v(ξ) (1.1.4)

Furthermore, we have the relations

∂u

∂t
=
dv

dξ
· ∂ξ
∂t

= −cvξ = −cv′ (1.1.5)

and

∂u

∂x
=
dv

dξ
· ∂ξ
∂x

= vξ = v′,
∂3u

∂x3
= v′′′ (1.1.6)

We substitute the relations (1.1.4), (1.1.5), (1.1.6) in the equation (1.1.3)
and we obtain the ordinary differential equation
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−cv′ + 6vv′ + v′′′ = 0

By integrating we get

−cv + 3v2 + v′′ = A, A ∈ R (1.1.7)

We multiply by v′ and we have

−cvv′ + 3v2v′ + v′v′′ = Av′

We integrate again and we have

− c
2
v2 + v3 +

1

2
(v′)2 = Av +B, A,B ∈ R (1.1.8)

According to the definition of the soliton as a localised wave which moves in
isolation, we get the boundary conditions for the equation (1.1.8)

as ξ → ±∞ then v, v′, v′′ → 0

By combining the previous BCs and the equations (1.1.8) and (1.1.7) we
have that A = B = 0. Hence, the relation (1.1.8) becomes

− c
2
v2 + v3 +

1

2
(v′)2 = 0 =⇒

−cv2 + 2v3 + (v′)2 = 0 =⇒

(v′)2 = cv2 − 2v3 = (c− 2v) · v2 =⇒

v′ = ±v ·
√
c− 2v =⇒

dv

dξ
= ±v ·

√
c− 2v =⇒

± dv

v ·
√
c− 2v

= dξ

We integrate and we obtain

±

∫
v

dy

y ·
√
c− 2y

= ξ − x0 (1.1.9)

In order to compute the integral of the left-hand side of the above equation,
we are going to need the following identities for the hyperbolic functions

tanhx =
sinhx

coshx
, sechx =

1

coshx
, sech2 x = 1− tanh2 x

d

dx
sechx = − tanhx · sechx, sech(−x) = sechx
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Now, we are solving the integral of the equation (1.1.9). Initially, we apply
the transformation[3]

y =
1

2
c · sech2 z (1.1.10)

Moreover, we get the following relations

c− 2y = c− 1

2
· 2c · sech2 z =

c− c · sech2 z =

c(1− sech2z) =⇒

c− 2y = c · tanh2 z (1.1.11)

and

dy

dz
=

1

2
c · 2 sech z · (sech z)′ =

c · sech z · (− tanh z · sech z) =

−c · tanh z · sech2 z =

−c · sinh z
cosh z

· 1

cosh z
=

−c · sinh z

cosh3 z
=⇒

dy = −c · sinh z

cosh3 z
dz (1.1.12)

Also, the upper integration limit of the integral in (1.1.9) becomes

v =
1

2
c · sech2 z =⇒

2v

c
= sech2 z =⇒

z = sech−1

√
2v

c
:= w (1.1.13)

We substitute the relations (1.1.10), (1.1.11), (1.1.12), (1.1.13) in the equa-
tion (1.1.9) and we derive

ξ − x0 = ±

∫
w

−c · sinh z
cosh3 z

1
2c · sech

2 z ·
√
c · tanh2 z

dz =
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± 2√
c

∫
w

sinh z

sech2 z · tanh z · cosh3 z
dz =

± 2√
c

∫
w

sinh z · cosh2 z · cosh z
sinh z

· 1

cosh3 z
dz =

± 2√
c

∫
w

dz

Therefore, we have that

ξ − x0 = ± 2√
c
· w (1.1.13)

=⇒

ξ − x0 = ± 2√
c
· sech−1

√
2v

c
=⇒

sech

[√
c

2
(ξ − x0)

]
=

√
2v

c
=⇒

2v

c
= sech2

[√
c

2
(ξ − x0)

]
=⇒

v(ξ) =
c

2
· sech2

[√
c

2
(ξ − x0)

]
ξ=x−ct
=⇒

u(x, t) =
c

2
· sech2

[√
c

2
(x− ct− x0)

]
Now, we are presenting two graphs of the solution above.

Figure 1.1.6: The soliton of the KdV equation at different times which moves in one direction

and it remains unchanged (same shape and same velocity).
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Figure 1.1.7: The soliton of the KdV equation on the three dimensions.

Let us now construct a KdV solution with two soliton components. The first
such solution, published by Zabusky in 1968, has the form[4]

u(x, t) = 12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

[3 cosh(x− 28t) + cosh(3x− 36t)]2

This is an exact solution of the equation (1.1.3), describing the collision of
two solitons near the origin of the (x, t)-plane.

Figure 1.1.8: Two solitons of the KdV equation interacting with each other.
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Figure 1.1.9: A different angle of the previous graph. After their interaction, the two solitons

continue their motion with the same shape and velocity. There is only a slightly change in

their phase.
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1.2 The sine-Gordon Equation, Kinks-Antikinks and Breathers

The sine-Gordon equation is a partial differential equation which appears
in differential geometry and relativistic field theory. Its name is a wordplay on
its similar form to the Klein-Gordon equation. The equation, as well as several
solution techniques, were known in the 19th century, but the equation grew
greatly in importance when it was realized that it led to solutions (”kink” and
”antikink”) with the collisional properties of solitons. The sine-Gordon equation
also appears in a number of other physical applications including the propaga-
tion of fluxons in Josephson junctions (a junction between two superconductors),
the motion of rigid pendula attached to a stretched wire, and dislocations in
crystals.[11]

The sine-Gordon equation which is a real-valued, hyperbolic, nonlinear wave
equation is the following

∂2u(x, t)

∂x2
− ∂2u(x, t)

∂t2
= sin

(
u(x, t)

)
or

uxx − utt = sinu (1.2.1)

We try to find soliton solutions for the SG equation. As we did with the
KdV equation, we consider the trial solution

u(x, t) = v(x− ct)

We, also, consider the variable ξ as

ξ = x− ct

and then we have

u(x, t) = v(x− ct) ≡ v(ξ) (1.2.2)

Additionally, we get the following relations

∂u

∂x
=
dv

dξ
· ∂ξ
∂x

= vξ = v′,
∂2u

∂x2
= v′′ (1.2.3)

and

∂u

∂t
=
dv

dt
· ∂ξ
∂t

= −cvξ = −cv′, ∂2u

∂t2
= c2v′′ (1.2.4)

By substituting the relations (1.2.2), (1.2.3) and (1.2.4) in the equation
(1.2.1) we obtain

v′′ − c2v′′ = sin v =⇒

(1− c2)v′′ = sin v
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We multiply by v′

(1− c2)v′v′′ = v′ sin v

and we integrate with respect to ξ∫
(1− c2)v′v′′ dξ =

∫
v′ sin v dξ =⇒

1− c2

2
(v′)2 +A = − cos v, A ∈ R (1.2.5)

We consider the BCs of the soliton

as ξ → ±∞ then v, v′ → 0

and from the previous equation we get

A = − cos 0 =⇒ A = −1

So, the relation (1.2.5) becomes

(1− c2)

2
(v′)2 = 1− cos v =⇒

v′ = ±
√
2 ·
√

1− cos v

1− c2
=⇒

1√
1− cos v

dv = ±
√
2

1√
1− c2

dξ

We integrate and we obtain

I :=

∫ v
1√

1− cos y
dy = ±

√
2

1√
1− c2

(ξ − x0)

Now, we are solving the integral of the left hand side of the above equation.
By using trigonometric identities we derive

I =

∫ v
1√

2 sin(y2 )
dy

We make the substitution z =
y

2
and thus we get

I =

∫ v
2

√
2

sin z
dz =

√
2

∫ v
2 1

sin z
dz =

13



√
2

∫ v
2

csc z dz =

√
2 · ln

(
csc

v

2
− cot

v

2

)
By using the trigonometric identity tan

(x
2

)
= cscx− cotx we obtain

I =
√
2 · ln

[
tan

(v
4

)]
Therefore,

√
2 · ln

[
tan

(v
4

)]
= ±

√
2

1√
1− c2

(ξ − x0) =⇒

ln
[
tan

(v
4

)]
= ± 1√

1− c2
(ξ − x0) =⇒

tan
v

4
= exp

[
± 1√

1− c2
(ξ − x0)

]
=⇒

v(ξ) = 4 arctan

[
exp

(
± ξ − x0√

1− c2

)]
ξ=x−ct
=⇒

u(x, t) = 4 arctan

[
exp

(
±x− ct− x0√

1− c2

)]
The solution above describes a soliton moving with velocity 0 ≤ c < 1 and

changing phase from 0 to 2π (kink, the case of + sign) or from 2π to 0 (anti-kink,
the case of − sign). Next, we present some graphs of kinks and anti-kinks.

Figure 1.2.1: A kink of the sine-Gordon equation at different times.
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Figure 1.2.2: A kink of the sine-Gordon equation on the three dimensions.

Figure 1.2.3: An anti-kink of the sine-Gordon equation at different times.
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Figure 1.2.4: An anti-kink of the sine-Gordon equation on the three dimensions.

Remark 1.2.1. The sine-Gordon equation does not express a ”classic” pulse
which moves to one specific direction. Here, a pulse is considered to be the
change of the value of u from 0 to 2π, or vice versa, as ξ goes from −∞ to +∞.
Thus, if for some time t̃ a fixed area of the propagating mean has value u = 0,
then after the pulse travels through this area, the area will have value u = 2π.

As we saw in the example of the KdV equation, we can construct a solution
of the sine-Gordon equation consisting of two solitons. One such solution which
describes a kink of velocity c, colliding with a kink of velocity −c is given below[1]

u(x, t) = arctan

c · sinh
(

x√
1−c2

)
cosh

(
ct√
1−c2

)
 (1.2.6)

In the same way, the interaction of a kink with an anti-kink is given by the
following relation[1]

u(x, t) = arctan

 sinh
(

ct√
1−c2

)
c · cosh

(
x√
1−c2

)
 (1.2.7)

Now, we present two graphs of the above solutions.
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Figure 1.2.5: Two kinks with opposite directions and same velocities, interacting with each

other according to the relation (1.2.6).

Figure 1.2.6: A kink and an anti-kink colliding with each other at the origin according to

the relation (1.2.7).
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Except the solutions presented previously, some other solutions of the sine-
Gordon equation which have particular interest are these called breathers.

Definition 1.2.2. A breather is a localized periodic solution of either continuous
media equations or discrete lattice equations. Breathers are solitonic structures
and there are two types of breathers: standing or traveling ones.

In order to find such solutions that verify the sine-Gordon equation, the
inverse scattering transformation has to be used. A breather oscillates, changing
its amplitude between its two extreme values. That is, the value of the amplitude
of a breather goes from u = 0 to u = umax to u = 0 to u = umin to u = 0 etc.
The following equation[1]

u(x, t) = arctan

[
β · sin(ωt)

ω · cosh
(
β(x− x0)

)] (1.2.8)

describes a standing breather, where ω < 1 is the period of the breather’s
oscillation and β is a coefficient with the property β2 + ω2 = 1.

Figure 1.2.7: A stationary breather which is described by equation (1.2.8).
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Next, we construct an equation[1] which describes a moving breather of fre-
quency ω and velocity c

u(x, t) = 4 arctan

(√
1− ω2

ω
sin

[
ω(t− cx)√

1− c2

]
sech

[√
1− ω2(x− ct)√

1− c2

])
(1.2.9)

Figure 1.2.8: A moving breather which is described by equation (1.2.9). As the breather

travels through the propagating media, it oscillates, at the same time, between its maximum

and minimum amplitude.
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1.3 The Nonlinear Schrödinger Equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger (NLS)
equation is a nonlinear variation of the Schrödinger equation. It is a classical
field equation whose principal applications are to the propagation of light in non-
linear optical fibers and planar waveguides and to Bose–Einstein condensates
confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Ad-
ditionally, the equation appears in the studies of small-amplitude gravity waves
on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in
hot plasmas; the propagation of plane-diffracted wave beams in the focusing
regions of the ionosphere; the propagation of Davydov’s alpha-helix solitons,
which are responsible for energy transport along molecular chains; and many
others.[14][15][16][17]

When we study nonlinear wave packets, it is often convenient to write the
solution of a linear wave problem in the form[4]

u(x, t) =
1

2π

∫ +∞

−∞
F(k) · ei(kx−ωt) dk (1.3.1)

where F(k) is the Fourier transform of u(x, 0) and ω is a function of k i.e.
ω = ω(k). In case that ω ̸= k, then each component in equation (1.3.1) travels

at a different speed
ω

k
and the wave disperses. Therefore, the relation ω = ω(k)

is called dispersion relation.

A wave packet is a special form of the equation (1.3.1) with the Fourier
components lying close to some propagation number k0 and its corresponding
frequency ω0. That is, F(k) achieves its maximum value at k = k0, falling
rapidly as |k− k0| increases. This phenomenon, allows us to expand the disper-
sion relation as a power series around k0 and to obtain

ω = ω0 + b1(k − k0) + b2(k − k0)
2 + ... (1.3.2)

Now, using relation (1.3.2) up until the second order term, the equation
(1.3.1) becomes

u(x, t) =
1

2π

∫ +∞

−∞
F(k) · ei[kx−{ω0+b1(k−k0)+b2(k−k0)2}·t] dk =

1

2π

∫ +∞

−∞
F(k) · ei[kx−ω0t−b1(k−k0)t−b2(k−k0)2t] dk =

20



1

2π

∫ +∞

−∞
F(k) · ei[kx+k0x−k0x−ω0t−b1(k−k0)t−b2(k−k0)2t] dk =

1

2π

∫ +∞

−∞
F(k) · ei(k0x−ω0t) · ei[(k−k0)x−b1(k−k0)t−b2(k−k0)

2t] dk =⇒

u(x, t) = ei(k0x−ω0t)
1

2π

∫ +∞

−∞
F(k) · ei[(k−k0)x−b1(k−k0)t−b2(k−k0)

2t] dk

where the factor ei(k0x−ω0t) is a carrier wave with velocity uc =
ω0

k0
and

riding over the carrier is an envelope wave

ϕ(x, t) =
1

2π

∫ +∞

−∞
F(k) · ei[(k−k0)x−b1(k−k0)t−b2(k−k0)

2t] dk (1.3.3)

Now, by changing the variable of integration from k to κ ≡ k − k0, relation
(1.3.3) takes the form

ϕ(x, t) =
1

2π

∫ +∞

−∞
F(κ+ k0) · ei[κx−b1κt−b2κ

2t] dκ

First, we take the partial derivative of ϕ(x, t) with respect to t and we derive

∂ϕ

∂t
=

1

2π

∫ +∞

−∞
i(−b1κ− b2κ

2) · F(κ+ k0) · ei[κx−b1κt−b2κ
2t] dκ =

−b1 ·
1

2π

∫ +∞

−∞
iκ · F(κ+ k0) · ei[κx−b1κt−b2κ

2t] dκ +

+ ib2 ·
1

2π

∫ +∞

−∞
−κ2 · F(κ+ k0) · ei[κx−b1κt−b2κ

2t] dκ

Subsequently, we take the partial derivative of ϕ(x, t) with respect to x and
we obtain the following equations

∂ϕ

∂x
=

1

2π

∫ +∞

−∞
iκ · F(κ+ k0) · ei[κx−b1κt−b2κ

2t] dκ

∂2ϕ

∂x2
=

1

2π

∫ +∞

−∞
−κ2 · F(κ+ k0) · ei[κx−b1κt−b2κ

2t] dκ
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Now, by combing the three previous equations we can obtain the following
P.D.E. which governs time evolution of the envelope

∂ϕ

∂t
= −b1

∂ϕ

∂x
+ ib2

∂2ϕ

∂x2
=⇒

∂ϕ

∂t
+ b1

∂ϕ

∂x
− ib2

∂2ϕ

∂x2
= 0 =⇒

i

(
∂ϕ

∂t
+ b1

∂ϕ

∂x

)
+ b2

∂2ϕ

∂x2
= 0 (1.3.4)

Now, we shall consider how a small amount of nonlinearity will affect rela-
tion (1.3.4) If a is the local amplitude of the wave envelope, the lowest order
contribution to the dispersion relation will be proportional to a2. Also, the
equation a2 = |ϕ|2 holds. From equation (1.3.4) the dispersion relation of the
envelope is

ω = b1κ+ b2κ
2

If the equation (1.3.4) is converted to the nonlinear P.D.E.

i

(
∂ϕ

∂t
+ b1

∂ϕ

∂x

)
+ b2

∂2ϕ

∂x2
+ λ|ϕ|2ϕ = 0, λ ∈ R (1.3.5)

then the nonlinear dispersion relation becomes

ω = b1κ+ b2κ
2 − λa2

Equation (1.3.5) is the nonlinear Schrödinger equation, which has the three
following properties:

1. NLS equation describes the propagation of an envelope wave, riding over
a carrier.

2. If the envelope varies sufficiently slowly with x and is of small enough
amplitude, then the last two terms on the left-hand side of NLS equation can
be neglected and the modulation travels with velocity b1.

3. The term b2
∂2ϕ

∂x2
introduces wave dispersion at the lowest level of ap-

proximation. On the other hand, the term λ|ϕ|2ϕ introduces nonlinearity at
the lowest level of approximation. Hence, the NLS equation is generic, aris-
ing whenever one wishes to consider the lowest order effects of dispersion and
nonlinearity on a wave packet.
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By making a proper transformation of the variables, one can obtain the
normalised form of the NLS equation

i
∂u

∂t
+
∂2u

∂x2
+ 2|u|2u = 0 (1.3.6)

on the infinite domain −∞ < x < +∞ and −∞ < t < +∞. Now we shall try
to solve the NLS equation (1.3.6). However, we can not use the same technique
as we did with KdV and sine-Gordon equations. We can not consider the trial
solution

u(x, t) = v(x− ct)

because we would require the velocity to be imaginary. Therefore, we should
consider solutions of the more general form

u(x, t) = ϕ(x, t) · eiθ(x,t) (1.3.7)

where ϕ and θ are real valued functions. First, we take the derivative of u
with respect to t and we have that

∂u

∂t
=
∂ϕ

∂t
· eiθ + iϕ · ∂θ

∂t
· eiθ (1.3.8)

Next, we take the derivative of u with respect to x and we obtain the relations

∂u

∂x
=
∂ϕ

∂x
· eiθ + iϕ · ∂θ

∂x
· eiθ

∂2u

∂x2
=
∂2ϕ

∂x2
· eiθ + i · ∂ϕ

∂x
· ∂θ
∂x

· eiθ + i · ∂ϕ
∂x

· ∂θ
∂x

· eiθ +

+ iϕ · ∂
2θ

∂x2
· eiθ − ϕ · ∂θ

∂x
· ∂θ
∂x

· eiθ =⇒

∂2u

∂x2
=
∂2ϕ

∂x2
· eiθ + i · ∂ϕ

∂x
· ∂θ
∂x

· eiθ + i · ∂ϕ
∂x

· ∂θ
∂x

· eiθ +

+ iϕ · ∂
2θ

∂x2
· eiθ − ϕ ·

(
∂θ

∂x

)2

· eiθ (1.3.9)

Now, using relations (1.3.7), (1.3.8) and (1.3.9), equation (1.3.6) becomes

i · ∂ϕ
∂t

· eiθ − ϕ · ∂θ
∂t

· eiθ + ∂2ϕ

∂x2
· eiθ + i · ∂ϕ

∂x
· ∂θ
∂x

· eiθ + i · ∂ϕ
∂x

· ∂θ
∂x

· eiθ +

+ iϕ · ∂
2θ

∂x2
· eiθ − ϕ ·

(
∂θ

∂x

)2

· eiθ + 2ϕ2 ·
∣∣eiθ∣∣2 · ϕ · eiθ = 0

eiθ ̸=0
=⇒

23



i · ∂ϕ
∂t

−ϕ · ∂θ
∂t

+
∂2ϕ

∂x2
+i · ∂ϕ

∂x
· ∂θ
∂x

+i · ∂ϕ
∂x

· ∂θ
∂x

+iϕ · ∂
2θ

∂x2
−ϕ ·

(
∂θ

∂x

)2

+2ϕ3 = 0 =⇒

−ϕ · ∂θ
∂t

+
∂2ϕ

∂x2
− ϕ ·

(
∂θ

∂x

)2

+ 2ϕ3 + i

(
∂ϕ

∂t
+ 2 · ∂ϕ

∂x
· ∂θ
∂x

+ ϕ · ∂
2θ

∂x2

)
= 0

Now, by equating real and imaginary parts we get the system
−ϕ · ∂θ

∂t
+
∂2ϕ

∂x2
− ϕ ·

(
∂θ

∂x

)2

+ 2ϕ3 = 0

∂ϕ

∂t
+ 2 · ∂ϕ

∂x
· ∂θ
∂x

+ ϕ · ∂
2θ

∂x2
= 0

or with a more simply notation−ϕθt + ϕxx − ϕθ2x + 2ϕ3 = 0

ϕt + 2ϕxθx + ϕθxx = 0

Now, we can try the usual wave solutions for the above system, therefore we
can write

θ(x, t) = θ̃(x− cθt) ≡ θ̃(ξθ)

ϕ(x, t) = ϕ̃(x− cϕt) ≡ ϕ̃(ξϕ)

So, our system becomescθ · ϕ̃ · θ̃ξθ + ϕ̃ξϕξϕ − ϕ̃ · θ̃2ξθ + 2ϕ̃3 = 0

−cϕ · ϕ̃ξϕ + 2 · ϕ̃ξϕ · θ̃ξθ + ϕ̃ · θ̃ξθξθ = 0

(1.3.10)

We multiply the second equation by 2ϕ̃ and we get

−2cϕ · ϕ̃ · ϕ̃ξϕ + 4 · ϕ̃ · ϕ̃ξϕ · θ̃ξθ + 2 · ϕ̃2 · θ̃ξθξθ = 0 =⇒

4 · ϕ̃ · ϕ̃ξϕ · θ̃ξθ + 2 · ϕ̃2 · θ̃ξθξθ = 2cϕ · ϕ̃ · ϕ̃ξϕ =⇒

∂

∂x

(
2 · ϕ̃2 · θ̃ξθ

)
= cϕ ·

∂

∂x

(
ϕ̃2
)

We integrate with respect to x and we have

2 · ϕ̃2 · θ̃ξθ = ϕ̃2 +A, A ∈ R =⇒

ϕ̃2
(
2 · θ̃ξθ − cϕ

)
= A, A ∈ R
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Without loss of generality, A can be assumed to be equal to zero and so we
obtain

ϕ̃2
(
2 · θ̃ξθ − cϕ

)
= 0 =⇒

2 · θ̃ξθ − cϕ = 0 =⇒

θ̃ξθ =
cϕ
2

We substitute this expression in the first equation of system (1.3.10) and we
get

cθ · ϕ̃ · cϕ
2

+ ϕ̃ξϕξϕ − ϕ̃ ·
c2ϕ
4

+ 2ϕ̃3 = 0 =⇒

d2ϕ̃

dξ2ϕ
=
c2ϕ − 2cϕcθ

4
· ϕ̃− 2ϕ̃3 =⇒

1
c2ϕ−2cϕcθ

4 · ϕ̃− 2ϕ̃3
d2ϕ̃ = dξ2ϕ =⇒∫∫

1
c2ϕ−2cϕcθ

4 · ϕ̃− 2ϕ̃3
d2ϕ̃ =

∫
dξ2ϕ =⇒

∫∫
1√

c2ϕ−2cϕcθ

4 · ϕ̃− 2ϕ̃3
d2ϕ̃ = ±ξϕ

ξϕ=x−cϕt
=⇒

∫ ϕ̃
dy√
P (y)

= ±(x− cϕt) (1.3.11)

where

P (y) = B +
c2ϕ − 2cϕcθ

4
· y2 − y4

In general, if B ̸= 0 then the integral of the left-hand side of equation (1.3.11)
is an elliptic integral and it can be calculated using elliptic functions. However,
if B = 0, then we get the solution

ϕ̃ = a sech
[
a(x− cϕt)

]
(1.3.12)

where a is the wave amplitude and satisfies the following relation

a2 =
c2ϕ − 2cϕcθ

4
(1.3.13)
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Now, we solve

θ̃ξθ =
cϕ
2

=⇒

θ̃ =
cϕ
2
ξθ =

cϕ
2
(x− cθt) =⇒

θ̃ =
cϕ
2
x− cϕcθ

2
t
(1.3.13)
=⇒

θ̃ =
cϕ
2
x+

(
a2 −

c2ϕ
4

)
t (1.3.14)

Finally, using relations (1.2.12) and (1.3.14) we obtain an exact solution for
the NLS equation and relation (1.3.7) becomes

u(x, t) = a sech
[
a(x− cϕt− x0)

]
· exp

[
i
cϕ
2
x+ i

(
a2 −

c2ϕ
4

)
t

]
(1.3.15)

Now, if we set cϕ = 0, we obtain the stationary breather which is localised
around the point x = x0, oscillates at a frequency of a2 and is given by the
following equation

u(x, t) = a sech
[
a(x− x0)

]
· eia

2t (1.3.16)

Next, we present a graph of the above solution.

Figure 1.2.7: A stationary breather of the NLS equation which is described by relation

(1.3.16).
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Now, we can choose the constant B in equation (1.3.11) to be negative and
then we can write P (y) as

P (y) = (a2 − y2)(y2 − b2)

and it holds that P (y) ∈ R for b ≤ y ≤ a. So, the equation∫ ϕ̃
dy√
P (y)

= ±(x− cϕt)

gives that

ϕ̃ = a · dn [a(x− cϕt); k]

where k2 =
1− b2

a2
and dn is one of the Jacobi elliptic functions. The

quantity ϕ̃ oscillates between a maximum value of a and a minimum value of

b with period of T =
2

a
· K(k) where 4(a2 + b2) = c2ϕ − 2cϕcθ. Therefore, the

solution of the NLS equation takes the form

u(x, t) = dn[a(x− cϕt− x0); k] · a exp

[
i
cϕ
2
x+ i

(
a2 + b2 −

c2ϕ
4

)
t

]

Figure 1.2.7: A moving breather of the NLS equation which is described by the previous

relation.
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2 Nonlinear Lattices

2.1 Nonlinear Normal Modes

Before we introduce the concept of nonlinear lattices, we shall make a brief
presentation of nonlinear normal modes (NNMs). We will focus on NNMs in
discrete systems. For nonlinear systems, NNMs can be regarded as generaliza-
tions of the linear normal modes of classical vibration theory. While NNMs lack
many of the useful mathematical properties of linear normal modes, such as
superposition and invariance, they do provide a valuable tool for understanding
nonlinear systems. The concept of a NNMs was first introduced by Rosenberg
in the 1960s and it was defined as the following.[27]

Definition 2.1.1. A nonlinear normal mode is any vibration-in-unison of a
conservative nonlinear system—i.e. where the coordinates of the system pass
through the equilibrium and reach their extrema simultaneously.

Remark 2.1.2. The motion of all coordinates is periodic and of the same pe-
riod. Furthermore, at any given time, oscillations of all coordinates can be
parameterized by any one coordinate i.e. the coordinates are related by func-
tional relations of the form

xi = x̂i(xm), i = 1, ..., n and m is fixed, m ≤ n

where n is the number of the coordinates of the system.

When a discrete system vibrates in a NNM, the corresponding oscillation is
represented by a line in its configuration space, which is termed modal line. A
modal line represents the synchronous oscillation of the system in the configu-
ration space during a NNM motion. Linear systems possess straight modal lines
since their coordinates are related linearly during a normal mode oscillation. In
nonlinear systems, the modal lines can be either straight or curved. The later
cases are generic in nonlinear discrete systems, since straight nonlinear modal
lines reflect symmetries of the system.[26]

Now, we are going to make a schematic demonstration of how a 2-degree
of freedom system with cubic stiffness behaves and we will compare it with its
corresponding linear system. Let us consider our system (S1) which is governed
by the equations of motion{

mẍ1 = −2kx1 + kx2 −Kx31
mẍ2 = −2kx2 + kx1

where m is the mass of the two oscillators, k is the spring constant, K is a
cubic stiffness coefficient and x1 and x2 are the displacements of the oscillators.

28



As we mentioned, its corresponding linear system (S2) is the one given by
the equations below {

mẍ1 = −2kx1 + kx2

mẍ2 = −2kx2 + kx1

We shall present two schemes of the oscillations of the linear system (S2)
where they move in-phase and out-of-phase. The reason we present the corre-
sponding linear edition of the system (S1) is to become easier to visualize the
normal mode motion.

Figure 2.1.1: The in-phase motion of the two coupled oscillators. At the first scheme they

are at equilibrium position. Then, they move to the right with the same initial velocity v0.

This is the in-phase normal mode.

Figure 2.1.2: The out-of-phase motion of the two coupled oscillators. At the first scheme

they are at equilibrium position. Then, the first oscillator moves to the left with a negative

velocity v0 and the second oscillator moves to the right with a positive velocity v1, where

|v0| = |v1|. This is the out-of-phase normal mode.
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The in-phase and out-of-phase normal mode motions of the linear system
(S2) and then of the nonlinear system (S1) are depicted in the following graphs.

Figure 2.1.3: The in-phase LNM (left) and the out-of-phase LNM (right). Observe that the

two oscillators reach their maximum amplitude at the same time.

Figure 2.1.4: The in-phase NNM (left) and the out-of-phase NNM (right).
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2.2 The Fermi-Pasta-Ulam Problem

In the early 1950s MANIAC-I had just been completed and the time had
come for scientists to tackle some very important problems. Physicist and No-
bel prize winner Enrico Fermi, computer expert and physicist John Pasta and
mathematician Stan Ulam saw the chance and decided to grasp it. But the
question was, which problem was of great interest? Fermi suggested to study
(numerically) the one-dimensional analogue of atoms in a crystal: a long chain
of particles linked by springs that obey Hooke’s law (a linear interaction), but
with a weak nonlinear correction. The aim of this numerical experiment was to
investigate the statistical properties of the chain, and in particular the question
how fast a many particle system reaches thermal equilibrium. Fermi, Pasta and
Ulam thought that, due to the nonlinear correction, the energy introduced into
the lowest frequency mode k=1 should have slowly drifted to the other modes,
until the equipartition of energy, a consequence of ergodicity, would have been
reached. The beginning of the calculation indeed suggested that this was the
case. Modes k=2, k=3,. . . , were successively excited, reaching a state close to
equipartition, as shown in figure 2.2.1 below. However, by accident, one day,
they let the program run longer. When they realized their oversight and came
back to the computer room, they noticed that the system, after remaining in
the near equipartition state for a while, had then departed from it. To their
great surprise, after 157 periods of the mode k=1, almost all the energy was
back to this mode. [32][33]

Figure 2.2.1: The plot shows the time evolution of the energy of each of the three lowest

normal modes, related to the displacements. Initially, only mode k=1 (blue) is excited. After

flowing to other modes, k=2 (green), k=3 (red), etc., the energy almost fully returns to mode

k=1! [33]
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Now, as we described above, let us consider a one-dimensional lattice of
particles with nearest neighbor interaction. Let m denote the mass of every
particle, l the length of the string and N the total number of particles. The N
oscillators have equilibrium positions

pi = ih, i = 0, ..., N − 1

where h =
l

N − 1
is the lattice spacing i.e. the space between two neighbor

particles. Their positions at time t are

Xi(t) = pi + xi(t)

where xi denotes the displacement of the oscillators from equilibrium. Now,
the force attracting any oscillator to one of its neighbors is taken as

F = k(δ + aδ2)

where δ is the deviation of the distance separating these two oscillators from
their equilibrium position h. The force acting on the i−th oscillator because of
its right neighbor is

Fi(x)
+ = k

[
(xi+1 − xi) + a(xi+1 − xi)

2
]

while the force acting on the i−th oscillator because of its left neighbor is

Fi(x)
− = k

[
(xi−1 − xi)− a(xi−1 − xi)

2
]

Therefore, the total force on the i−th particle is given by

Fi(x) = Fi(x)
+ + Fi(x)

− =

k
[
(xi+1 − xi) + a(xi+1 − xi)

2
]
+ k
[
(xi−1 − xi)− a(xi−1 − xi)

2
]
=

k(xi+1 − xi) + ka(xi+1 − xi)
2 + k(xi−1 − xi)− ka(xi−1 − xi)

2 =

k(xi+1 − 2xi + xi−1) + ka(x2i+1 − 2xixi+1 + x2i − x2i−1 + 2xixi−1 − x2i ) =

k(xi+1 − 2xi + xi−1) + ka(x2i+1 − 2xixi+1 − x2i−1 + 2xixi−1) =

k(xi+1−2xi+xi−1)+ka(x
2
i+1−2xixi+1+xi+1xi−1−x2i−1+2xixi−1−xi+1xi−1) =

k(xi+1 − 2xi+ xi−1) + ka
[
xi+1(xi+1 − 2xi+ xi−1)− xi−1(xi−1 − 2xi+ xi+1)

]
=

k(xi+1 − 2xi + xi−1) + ka(xi+1 − 2xi + xi−1)(xi+1 − xi−1) =

k(xi+1 − 2xi + xi−1)
[
1 + a(xi+1 − xi−1)

]
Thus, by Newton’s equation of motion we derive

mẍi = k(xi+1 − 2xi + xi−1)
[
1 + a(xi+1 − xi−1)

]
(2.2.1)
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The BCs are x0(t) = xN−1(t) = 0, since the first and the last particle of the
lattice can not move. Furthermore, the lattice starts its motion from rest so we
have the initial conditions ẋi(0) = 0, for i = 0, ..., N − 1.

Now we shall rewrite equation (2.2.1) in a more convenient way. If we denote
ρ the density of the string, then m = ρh. Also, if κ denotes the spring constant

for a piece of unit length, then k =
κ

h
will be the spring constant for a piece of

length h. Now, let us define c =

√
κ

ρ
. So equation (2.2.1) becomes

mẍi = k(xi+1 − 2xi + xi−1)
[
1 + a(xi+1 − xi−1)

]
=⇒

ẍi =
k

m
(xi+1 − 2xi + xi−1)

[
1 + a(xi+1 − xi−1)

]
=⇒

ẍi =
κ

h
· 1

ρh
(xi+1 − 2xi + xi−1)

[
1 + a(xi+1 − xi−1)

]
=⇒

ẍi =
κ

ρ
· 1

h2
(xi+1 − 2xi + xi−1)

[
1 + a(xi+1 − xi−1)

]
=⇒

ẍi = c2
(
xi+1 − 2xi + xi−1

h2

)[
1 + a(xi+1 − xi−1)

]
(2.2.2)

Now, we shall try to find a good continuum limit for the nonlinear FPU
lattice. Let us denote u(x, t) the function which describes the displacement of
the particle of string with equilibrium position x, at a given time t. Thus, if
x = pi, then xi(t) = u(x, t), xi+1(t) = u(x+ h, t) and xi−1(t) = u(x− h, t) and
finally ẍi(t) = utt(x, t). So, equation (2.2.2) takes the form

utt(x, t) = c2
(
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2

)[
1 + a

(
u(x+ h, t)− u(x− h, t)

)]
(2.2.3)

Now, according to Taylor’s theorem we can derive that

u(x+ h, t) =

u(x, t) + hux(x, t) +
h2

2!
uxx(x, t) +

h3

3!
uxxx(x, t) +

h4

4!
uxxxx(x, t) +O(h5)

and

u(x− h, t) =

u(x, t)− hux(x, t) +
h2

2!
uxx(x, t)−

h3

3!
uxxx(x, t) +

h4

4!
uxxxx(x, t) +O(h5)
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By adding the two previous equations we get that

u(x+ h, t) + u(x− h, t) = 2u(x, t) + h4uxx(x, t) +
h2

12
uxxxx(x, t) +O(h6) =⇒

u(x+ h, t) + u(x− h, t)− 2u(x, t) = h2uxx(x, t) +
h4

12
uxxxx(x, t) +O(h6) =⇒

u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2
= uxx(x, t) +

h2

12
uxxxx(x, t) +O(h4)

Now, by subtracting the two previous equations we get that

u(x+ h, t)− u(x− h, t) = 2hux(x, t) +
h3

3
uxxx(x, t) +O(h5) =⇒

a
(
u(x+ h, t)− u(x− h, t)

)
= 2ahux(x, t) +

ah3

3
uxxx(x, t) +O(h5)

So, after the replacements, equation (2.2.3) becomes

1

c2
· utt =

(
uxx +

h2

12
uxxxx +O(h4)

)
·
(
1 + 2ahux +

ah3

3
uxxx +O(h5)

)
=

uxx+
h2

12
uxxxx+O(h4)+

(
uxx+

h2

12
uxxxx+O(h4)

)
·
(
2ahux+

ah3

3
uxxx+O(h5)

)
=

uxx +
h2

12
uxxxx + 2ahuxuxx +O(h4) =⇒

1

c2
· utt − uxx =

h2

12
uxxxx + 2ahuxuxx +O(h4)

Now, we can remove the term O(h4) as negligible and the above equation
takes the form

1

c2
· utt − uxx =

h2

12
uxxxx + 2ahuxuxx (2.2.4)

Now, if we differentiate this equation with respect to x and make the sub-
stitution v = ux, we see that the equation takes the more familiar form

1

c2
· vtt = vxx +

h2

12
vxxxx + ah

∂(v2)

∂x2

which is known as Boussinesq equation.
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Since, h ̸= 0 equation (2.2.4) cannot be considered a true continuum limit of
the FPU lattice. It should rather be regarded as an asymptotic approximation
to the lattice model that works for small lattice spacing h (and hence large N).
If a and h are small enough, solutions of (2.2.4) should behave qualitatively like
solutions of the linear wave equation utt = c2uxx. The general solution of the
linear wave equation is u(x, t) = f(x+ct)+g(x−ct), i.e., the sum of an arbitrary
left moving traveling wave and an arbitrary right moving traveling wave, both
moving with speed c.

Now, suppose that y(ξ, τ) is a smooth function of two real variables such
that the map

τ → y(·, τ)

is uniformly continuous from R into the bounded functions on R with the
sup norm. That is, for given ε > 0, there is a δ > 0 such that

|τ − τ0| < δ =⇒ |y(ξ, τ)− y(ξ, τ0)| < ε

Then for |τ − τ0| < T =
δ

ahc
we have

|ahct− ahct0| < δ

so

|y(x− ct, ahct)− y(x− ct, ahct0)| < ε

In other words, the function u(x, t) = y(x − ct, ahct) is uniformly approxi-
mated by the traveling wave u0(x, t) = y(x−ct, ahct0) on the interval |t−t0| < T
(and of course T → ∞ as a and h go to 0). If y(ξ, τ) is periodic or almost peri-
odic in τ , the gradually changing shape of the approximate traveling wave will
also be periodic or almost periodic.

Now, we define the new variables ξ = x − ct and τ = (ah)ct. Then, by the
chain rule we obtain

∂k

∂xk
=

∂k

∂xk

∂

∂t
= −c

(
∂

∂ξ
− ah

∂

∂τ

)
∂2

∂t2
= c2

(
∂2

∂ξ2
− 2ah

∂2

∂τ∂ξ
+ (ah)2

∂2

∂τ2

)
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Therefore, in these new coordinates we have that

1

c2
∂2

∂t2
− ∂2

∂x2
= −2ah

∂2

∂ξ∂τ
+ (ah)2

∂2

∂τ2

By doing the substitution u(x, t) = y(ξ, τ), equation (2.2.4) becomes

yξτ −
ah

2
yττ = −yξyξξ −

h

24a
yξξξξ

and now, we can pass to the continuum limit. We assume that a and h tend

to zero at the same rate, i.e., that as h tends to zero,
h

a
tends to a positive limit,

and we define

δ = lim
h→0

√
h

24a

Then, ah = O(h2), so letting h→ 0 we get that yξτ + yξyξξ + δ2yξξξξ = 0.
If we set v = yξ then we have that

vτ + vvξ + δ2vξξξ = 0

Now, to summarize the relationship between the FPU lattice and the KdV
equation. Given a solution xi(t) of the FPU lattice we get a function u(x, t)
by interpolation, that is, u(ih, t) = xi(t), i = 0, ..., N . For small lattice spac-
ing h and nonlinearity parameter a there will be solutions xi(t) so that the
corresponding u(x, t) will be an approximate right moving traveling wave with
slowly varying shape, i.e., it will be of the form u(x, t) = y(x−ct, ahct) for some
smooth function y(ξ, τ), and the function v(ξ, τ) = yξ(ξ, τ) will satisfy the KdV

equation vτ + vvξ + δ2vξξξ = 0, where δ =
h

24a
. Having found this relationship

between the FPU lattice and the KdV equation, Kruskal and Zabusky made
some numerical experiments, solving the KdV initial value problem for various
initial data.[35]
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3 Complexification Averaging Method

3.1 The Method of Multiple Scales

The method of multiple scales comprises techniques used to construct uni-
formly valid approximations to the solutions of perturbation problems in which
the solutions depend simultaneously on widely different scales. This is done by
introducing fast-scale and slow-scale variables for an independent variable, and
subsequently treating these variables, fast and slow, as if they are independent.
Let, us consider the linear damped mass-spring system with no external forces.
The equation for the displacement y(τ) is

mÿ + cẏ + ky = 0 (3.1.1)

If initially the mass is released from a positive displacement yi with no initial
velocity, we have the following initial conditions

y(0) = yi, ẏ(0) = 0 (3.1.2)

We assume that c ≪ m, k. Choosing yi and

√
m

k
as the characteristic dis-

tance and characteristic time respectively, we define the following dimensionless
variables

x =
y

yi
, t =

τ√
m
k

(3.1.3)

By substituting equations (3.1.3) in the equation (3.1.1) and (3.1.2) we get
that

ẍ+ 2εẋ+ x = 0 (3.1.4)

x(0) = 1, ẋ(0) = 0 (3.1.5)

where

ε =
c

2
√
mk

≪ 1

is a dimensionless parameter. This equation corresponds to a linear oscillator
with weak damping, where the time variable has been scaled by the period of
the undamped system. The analytical solution of (3.1.4)-(3.1.5) is the following

x(t) = e−εt
(
cos(

√
1− ε2 · t) + ε√

1− ε2
sin(

√
1− ε2 · t)

)
(3.1.6)

Observe, that if the oscillation is undamped, i.e. if ε = 0, then the exact
solution is

x(t) = cos t

where both amplitude and phase of the oscillation remain constant. However,
with the presence of damping, (3.1.6) shows that both amplitude and phase
change with time. In fact, the amplitude changes on the time scale ε−1, while
the phase changes on the longer time scale ε−2.
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If we look at the relation (3.1.6) we see that

x(t) = cos t+O(ε), for t = O(1) (3.1.7)

is uniformly true, but is not uniformly valid for t = O
(
1
ε

)
. If we are interested

in times which are O
(
1
ε

)
then the combination εt must be preserved in the

exponential function. Then it is uniformly valid to state that

x(t) = e−εt cos t+O(ε), for t = O

(
1

ε

)
(3.1.8)

If we are interested in values of t which are O( 1
ε2 ) then (3.1.8) is no longer

valid. In this case terms of the form ε2t must be preserved in the cosine function
appearing in (3.1.6). Using binomial expansion, we have

√
1− ε2 = 1− ε2

2
− ε4

8
− ε6

16
− ...

So,

x(t) = e−εt cos

(
1− ε2

2

)
t+O(ε), for t = O

(
1

ε2

)
(3.1.9)

That is (3.1.9) is uniformly valid for t = O( 1
ε2 ).

Now, let us see how multiple scales method is applied. Any asymptotic
expansion of (3.1.6) must simultaneously depict both the decaying and oscilla-
tory behaviors of the solution in order to be uniformly valid in t = O( 1

εk
). The

method of multiple scales is a more general approach that involve two key tricks.
The first is the idea of introducing scaled space and time coordinates to capture
the slow modulation of the pattern, and treating these as separate variables in
addition to the original variables that must be retained to describe the pattern
state itself. This is essentially the idea of multiple scales. The second is the use
of what are known as solvability conditions in the formal derivation. We note
from analytical solution (3.1.6) that the functional dependence of x on t and
ε is not disjoint because x depends on the combination of εt as well as on the
individual t and ε. Hence, in place of x = x(t; ε), we write x = x̂(t, εt; ε). The
oscillator has three processes acting on their own time scales. Fist, there is the
basic oscillation on the time scale of 1 from the inertia causing the restoring
force to overshoot the equilibrium position. Then there is a small drift in the
amplitude on the time scale of ε−1 and finally a very small drift in the phase
on the time scale of ε−2 due to the small friction. We introduce three time
variables.

T0 = t, the fast time of the oscillation

T1 = εt, the slow time of the amplitude change

T2 = ε2t, the slower time of the phase change
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So, now we look for a solution in the form of

x(t; ε) = x(T0, T1, T2; ε)

Generally, if we choose n time scales for the expansion we look for a solution
of the form

x(t; ε) = x(T0, T1, T2, ..., Tn; ε)

where

T0 = t

T1 = εt

...

Tn = εnt

Therefore, instead of determining x as a function of t, we determine x as a
function of T0, T1, ..., Tn. Note that as real time t increases, the fast time T0
increases at the same rate, while the slower time Tj , 1 ≤ j ≤ n, increases slowly.
Using the chain rule we have

d

dt
=

∂

∂T0

∂T0
∂t

+
∂

∂T1

∂T1
∂t

+
∂

∂T2

∂T2
∂t

+ ... =

=
∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ ... (3.1.10)

d2

dt2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ ε2

(
∂2

∂T0∂T2
+

∂2

∂T 2
1

)
+ ... (3.1.11)

So, (3.1.4)-(3.1.5) become

∂2x

∂T 2
0

+ 2ε
∂2x

∂T0∂T1
+ ε2

(
∂2x

∂T0∂T2
+
∂2x

∂T 2
1

)
+ 2ε

(
∂x

∂T0
+ ε

∂x

∂T1
+ ε2

∂x

∂T2

)
+ x+ ... = 0 (3.1.12)

x(0) = 1,
∂x(0)

∂T0
+ ε

∂x(0)

∂T1
+ ε2

∂x(0)

∂T2
+ ... = 0, for T0 = T1 = ... = Tn = 0 (3.1.13)

We note that when t = 0, all T0, T1, ..., Tn are zero. We now search an
asymptotic approximation for x of the form

x(t) ≡ x(T0, T1, ..., Tn; ε) ∼ x0(T0, T1, ..., Tn) + εx1(T0, T1, ..., Tn) + ε2x2(T0, T1, ..., Tn) + ... (3.1.14)

Here, we must realize that there are only two independent variables, t and
ε in relation (3.1.14) - Tj , 0 ≤ j ≤ n are functions of these two and so they are
not independent. The basic steps are to find coefficients xn as though T0, ..., Tn
and ε were independent variables. Now, we will assume that there are only two
time scales involved in our problem. The scales are defined as

T0 = t and T1 = εt
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So, instead of determining x as a function of t, we determine x as a function
of T0 and T1. Therefore, the differential equation and initial conditions given in
(3.1.12)-(3.1.13) become

∂2x

∂T 2
0

+ 2ε
∂2x

∂T0∂T1
+ ε2

∂2x

∂T 2
1

+ 2ε

(
∂x

∂T0
+ ε

∂x

∂T1

)
+ x+ ... = 0 (3.1.15)

x(0) = 1,
∂x(0)

∂T0
+ ε

∂x(0)

∂T1
= 0, for T0 = T1 = 0 (3.1.16)

We seek an asymptotic approximation for x of the form

x(t) ≡ x(T0, T1; ε) ∼ x0(T0, T1) + εx1(T0, T1) (3.1.17)

Substituting (3.1.17) into (3.1.15) we derive

∂2x0
∂T 2

0

+ ε
∂2x1
∂T 2

0

+ 2ε
∂2x0
∂T0∂T1

+ 2ε
∂x0
∂T0

+ x0 + εx1 + ... = 0 =⇒

∂2x0
∂T 2

0

+ x0 + ε

(
∂2x1
∂T 2

0

+ 2
∂2x0
∂T0∂T1

+ 2
∂x0
∂T0

+ x1

)
= 0

Equating coefficients of like powers of ε to 0, gives the following sequence of
linear partial differential equations

O(1) :
∂2x0
∂T 2

0

+ x0 = 0 (3.1.18)

O(ε) :
∂2x1
∂T 2

0

+ x1 = −2
∂2x0
∂T0∂T1

− 2
∂x0
∂T0

(3.1.19)

The respective initial conditions for (3.1.18) and (3.1.19) are given by

x0 = 1,
∂x0
∂T0

= 0, for T0 = T1 = 0 (3.1.20)

x1 = 0,
∂x1
∂T0

= −∂x0
∂T1

, for T0 = T1 = 0 (3.1.21)

Since T0 and T1 are being treated as independent (for now), the differential
equation (3.1.18) is actually a partial differential equation for a function x0 of
two variables T0 and T1. However, since no derivatives with respect to T1 appear
in (3.1.18), it may be regarded instead as an ordinary differential equation for
a function of T0 regarding T1 as merely an auxiliary parameter. Therefore
the general solution of (3.1.18) may be obtained from the general solution of
the corresponding ordinary differential equation just by letting the arbitrary
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constants become arbitrary functions of T1. Thus the general solution of (3.1.18)
can be given in the form

x0 = A0(T1) cosT0 +B0(T1) sinT0 (3.1.22)

in whichA0 andB0 are constant as far as the fast T0 variations are concerned,
but are allowed to vary over the slow T1 time. The initial conditions are

A0(0) = 1 and B0(0) = 0 (3.1.23)

Now, in order to compute the functions A0 and B0, we must consider the
next order of approximation, i.e. O(ε). From (3.1.22) we have that

∂x0
∂T0

= −A0(T1) sinT0 +B0(T1) cosT0

∂2

∂T1∂T0
=

∂

∂T1

(
∂x0
∂T0

)
= − sinT0

∂A0

∂T1
+ cosT0

∂B0

∂T1

By combining, equations (3.1.21) and (3.1.22) we get

∂2x1
∂T 2

0

+ x1 = 2

(
∂A0

∂T1
+A0

)
sinT0 − 2

(
∂B0

∂T1
+B0

)
cosT0 (3.1.24)

Since both the right-hand side of (3.1.24) and the complementary function
of this equation contain terms proportional to sinT0 and cosT0, the particular
solution of x1 will have secular terms in it. Thus, to obtain a uniform expansion,
each of the coefficients of sinT0 and cosT0 must independently vanish. The
vanishing of these coefficients yields the condition for the determination of A0

and B0. So

∂A0

∂T1
+A0 = 0 =⇒ A0 = a0e

−T1 (3.1.25)

∂B0

∂T1
+B0 = 0 =⇒ B0 = b0e

−T1 (3.1.26)

where a0 and b0 are constants of integration. We substitute (3.1.25) and
(3.1.26) in (3.1.22) and we obtain

x0 = a0e
−T1 cosT0 + b0e

−T1 sinT0 (3.1.27)

Now, using the initial conditions (3.1.21) we conclude that

a0 = 1 and b0 = 0

therefore, the solution is
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x0 = e−T1 cosT0

We ensure that secular terms are avoided so that we may write

x0 = e−T1 cosT0 +O(ε)

In terms of the original variables, x becomes

x = e−εt cos t+O(ε)

which is uniformly valid for t = O( 1ε ) and in agreement with exact solution
(3.1.6) to O(ε).
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3.2 Complex Equations of Motion and Solution by the
Multiple Scales Method

The main purpose of this chapter is the introduction of the asymptotic
approach based on the complex representation of equations of motion. Let us
consider a nonlinear single-degree-of-freedom system described by the equation

ẍ(t) + x = εf(x, ẋ) (3.2.1)

where, ε is as small parameter, all the derivatives are with respect to time t
and f is a piecewise-differentiable function. Let us write the equation of motion
(3.2.1) as a system of two first order equations

ẏ + x = εf(x, y)

ẋ = y
(3.2.2)

Now, we introduce the complex variables

ψ = y + ix

ψ = y − ix

where ψ is the complex conjugate of the complex number ψ. By utilizing
the two previous equations one can derive

y =
1

2
(ψ + ψ)

x =
1

2i
(ψ − ψ)

(3.2.3)

Multiplying the second equation (3.2.2) by imaginary unit i and adding it
to the first one of (3.2.2) we obtain

d

dt
ψ − iψ = εf

[
1

2i
(ψ − ψ),

1

2
(ψ + ψ)

]
(3.2.4)

Thus instead of the second order equation (3.2.1) we deal with the first or-
der complex equation (3.2.4). The solution of this equation will be obtained by
the multiple scale method as we presented in the previous paragraph. Let us
introduce times of various scales τn = εnt, n = 0, 1, ... and consider the required
complex function as a function of variables τ0(= t), τ1, .... Using the differentia-
tion rule for compound functions one can obtain the operator of differentiation
by t in the form of expansion

d

dt
= D0 + εD1 + ε2D2 + ... (3.2.5)

where Dk =
∂

∂τk
.
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Then, the function ψ(t) is expanded in the asymptotic series by the small
parameter ε as it follows

ψ(t) = ψ0(t) + εψ1(t) + ε2ψ2(t) + ... (3.2.6)

In order the functions ψk(t) to be uniquely defined, some additional condi-
tions should be imposed on them, similarly to those for the averaging method
in real variables. These are the orthogonality conditions∫ 2π

0

ψ0(t) · ψ1(t) dt = 0∫ 2π

0

ψ0(t) · ψ2(t) dt = 0∫ 2π

0

ψ1(t) · ψ2(t) dt = 0

Furthermore, initial conditions are applied on the function ψ0(t). All the
other functions ψk(t), k = 1, 2, 3, ... satisfy the initial conditions ψk(0) = 0, k =
1, 2, .... Now, if we substitute relations (3.2.5) and (3.2.6) on the equation (3.2.4)
we derive

D0(ψ0 + εψ1 + ε2ψ2 + ...) + εD1(ψ0 + εψ1 + ε2ψ2 + ...)+

ε2D2(ψ0 + εψ1 + ε2ψ2 + ...) + i(ψ0 + εψ1 + ε2ψ2 + ...) =

εF (ψ0 + εψ1 + ε2ψ2 + ..., ψ0 + εψ0 + ε2ψ0 + ...)

where

F (ψ,ψ) ≡ f
[
1
2i (ψ − ψ), 12 (ψ + ψ)

]
Then we expand function F in series in parameter ε

F (ψ0 + εψ1 + ε2ψ2 + ..., ψ0 + εψ0 + ε2ψ0 + ...) =

F (ψ0, ψ0) + ε
[
Fψ(ψ0, ψ0)ψ1 + Fψ(ψ0, ψ0)ψ1

]
+ ...

where Fψ denotes the derivative of F with respect to ψ. Equating coefficients
at increasing powers of ε to zero, one can obtain the following relations

D0ψ0 − iψ0 = 0 (3.2.7)

D0ψ1 − iψ1 = −D1ψ0 + F (ψ0, ψ0) (3.2.8)

D0ψ2 − iψ2 = −D1ψ1 −D2ψ0 + Fψ(ψ0, ψ0)ψ1 + Fψ(ψ0, ψ0)ψ1 (3.2.9)

Now, it follows from equation (3.2.7) that

ψ0 = Aeit (3.2.10)
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where A depends on the slow time i.e. A = A(τ1, τ2, ...). Now, the obtained
expansion (3.2.6) is a uniformly suitable first order solution, if we retain only
the first term in the form (3.2.10) with A being determined from a procedure
which is not being analyzed in this thesis. By working with this method we can
have second, third,... uniformly suitable solutions in case we add more terms.
This method is full analytically described in [41]. The steps described above
will be used in a similar way in the next chapter.
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4 Energy Transfer in Nonlinear Lattices

4.1 Irreversible Energy Transfer and Localization in the
Lattice Network

A semi-infinite network of two coupled semi-infinite nonlinear lattices is
studied. In particular, we are going to study passive irreversible energy transfer
(redirection) from an “excited lattice” (forced by an impulse) to an “absorbing
lattice” (that is not directly forced). As we presented at the previous chapter,
in certain one-dimensional nonlinear lattices – e.g, Klein–Gordon nonlinear lat-
tices, we can observe the existence of traveling discrete breathers. What we
shall study in this chapter is how energy transfers through these breathers in a
specific lattice network. To be more precise, we study if it is possible to achieve
irreversible energy transfer in such coupled lattices. First, we make an approach
at the symmetric lattice network whose scheme is presented below. [39]

Figure 4.1.1: Scheme of the symmetric lattice network. [39]

In Figure 4.1.1 we present the semi-infinite lattice network, composed of
two identical 1D lattices of linearly grounded, undamped oscillators coupled
to their next neighbors through essentially nonlinear cubic stiffness. The two
lattices are weakly coupled through linear stiffness connecting the corresponding
oscillators of each lattice. An impulsive excitation is applied at t0 = 0 to the
leading oscillator of one of the lattices, i.e. the “excited lattice”, while the other,
“absorbing lattice”, is not directly forced. This is equivalent to an initial velocity
of the excited oscillator at t0 = 0 with all other oscillations assumed at rest.
We are interested only in primary wave transmission, and not be concerned by
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reflections at the boundaries. The equations of motion of the symmetric lattice
network are the following

mẍ1 = −kgx1 − kc(x1 − x2)
3 − ke(x1 − y1)

mÿ1 = −kgy1 − kc(y1 − y2)
3 − ke(y1 − x1)

mẍ2 = −kgx2 − kc
[
(x2 − x1)

3 + (x2 − x3)
3
]
− ke(x2 − y2)

mÿ2 = −kgy2 − kc
[
(y2 − y1)

3 + (y2 − y3)
3
]
− ke(y2 − x2)

...

mẍn = −kgxn − kc
[
(xn − xn−1)

3 + (xn − xn+1)
3
]
− ke(xn − yn), n ≥ 2

mÿn = −kgyn − kc
[
(yn − yn−1)

3 + (yn − yn+1)
3
]
− ke(yn − xn), n ≥ 2

(4.1.1)

In the above equations, xn and yn are the displacements of the nth oscil-
lators of the excited and absorbing lattices, respectively, m and kg their mass
and grounding stiffness, kc the coefficient of the cubic coupling stiffness and
ke<<kgA

2 the coefficient of the weak linear coupling stiffness, with A being a
characteristic displacement.

Now, the initial conditions of the system above - let us denote it (S1) - are
ẋ1(0) = v0 and zero otherwise. Each lattice is composed of 50 oscillators and
the system parameters are listed below with v0 = 0.06ms .

m(kg) kg(
N
m ) kc(

N
m3 ) ke(

N
m )

0.022 1467.27 2.48E9 92.21

In the next figure, we show the spatio-temporal evolution of the normalized
(with respect to the impulsive energy) energies of the two lattices. As we see,
at time t0 = 0 the total energy of the system i.e. the impulsive energy, is at the
oscillator number one. After some time, the energy is transferred to the oscilla-
tor number two of the absorbing lattice. And as the time goes on, we observe a
recurrent energy exchange between the two lattices in the form of propagating
breathers. This can be understood by the contour lines of the following figure.
So there is this periodic state of how the oscillators are moving. Each breather
is an oscillatory wavepacket with a “fast frequency” that is modulated by a
“slow-varying” localized envelope. The recurrent energy exchanges are due to
the symmetry and weak coupling of the lattice network.
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Figure 4.1.2: Spatio-temporal evolution of the normalized energy of the lattices of the

symmetric network showing recurrent energy exchanges between lattices (v0 = 0.06m
s
). [39]

Now, we follow a different path. We will break the symmetry of the lattice
network while retaining weak coupling. And as we will see, the results vary
from the previous situation. The asymmetric lattice network (ALN) is identical
to the network of Figure 4.1.1 but for a symmetry-breaking spatial variation of
the linear grounding stiffness of the oscillators of the excited lattice, i.e., except
for the leading oscillator all the other oscillators of that lattice have uniform
softer grounding stiffness.
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Figure 4.1.3: Scheme of the asymmetric lattice network. [39]

The equations of motion of (ALN) are

mẍ1 = −kg1x1 − kc(x1 − x2)
3 − ke(x1 − y1)

mÿ1 = −kg1y1 − kc(y1 − y2)
3 − ke(y1 − x1)

mẍ2 = −kg2x2 − kc
[
(x2 − x1)

3 + (x2 − x3)
3
]
− ke(x2 − y2)

mÿ2 = −kg1y2 − kc
[
(y2 − y1)

3 + (y2 − y3)
3
]
− ke(y2 − x2)

...

mẍn = −kg2xn − kc
[
(xn − xn−1)

3 + (xn − xn+1)
3
]
− ke(xn − yn), n ≥ 2

mÿn = −kg1yn − kc
[
(yn − yn−1)

3 + (yn − yn+1)
3
]
− ke(yn − xn), n ≥ 2

(4.1.2)

The parameters of the (ALN) are given in the table below. They are the
same as the previous ones, except the new parameter kg2 , and the initial velocity
is again v0 = 0.06ms .

m(kg) kg1(
N
m ) kg2(

N
m ) kc(

N
m3 ) ke(

N
m )

0.022 1467.27 687.53 2.48E9 92.21

As we depict in the next graph, almost immediately, the (total) energy (i.e.
the energy due to the initial velocity) of the oscillator number one of the excited
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lattice is transferred to the oscillator number one of the absorbing lattice. And
what we observe after that, is that the energy continues to being transferred
only in the absorbing lattice in the form of travelling, discrete breathers. So, by
breaking the symmetry of the lattice network, we see that no energy remains on
the excited lattice after some time t1 where t1 is exceptionally close to zero. On
the other hand, in the absorbing lattice we notice that the propagating breathers
progress periodically and now all the oscillators of the absorbing lattice will move
as time goes on (while in the symmetric lattice only oscillators two, four, six,...
were having energy).

Figure 4.1.4: Spatio-temporal evolution of the energy of the lattices of the asymmetric

network showing irreversible energy transfer between lattices (v0 = 0.06m
s
). [39]

Furthermore, since the (ALN) is a strongly nonlinear system, its acoustics
depend strongly on the input energy. This is presented in the next graph where
the (ALN) is studied for various initial velocities. We depict the contour plots of
the maximum instantaneous normalized energy (with respect to input energy)
over a certain time period for each of the leading 10 oscillators at a given velocity
v0. The nonlinear acoustics are categorized into four Regions, labeled as I–IV.
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Region I corresponds to low intensity impulses with the energy being localized
in the leading oscillators of the excited and absorbing lattices. For intermediate
impulses Region II is realized irreversible energy redirection from the excited to
the absorbing lattice, and breather propagation in the absorbing lattice (as we
saw on the previous pages for the initial velocity v0 = 0.06ms ). By increasing
further the intensity of the impulse Region III is realized with energy localized
in the leading oscillator of the excited lattice. For very high intensity impulses
as we see in the Region IV, there is still no energy transfer from the excited
to the absorbing lattice, but there exist propagating breathers in the excited
lattice.

Figure 4.1.5: Normalized energy in the excited and absorbing lattices of the (ALN) for

different impulse intensity. [39]
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4.2 Irreversible Energy Transfer in the ALN in Region II

From the ALN in Figure (4.1.3) we denote γ as the the reduction ratio of
the grounding stiffness

0 ≤ γ ≡ kg1 − kg2
kg1

< 1

When γ = 0 energy is reversibly exchanged between the two lattices in
the form of propagating breathers. However, when γ > 0, irreversible energy
transfer from the excited to the absorbing lattice is possible. Now, let us consider
the new normalized time τ ,

τ =

(
kg1 + ke

m

) 1
2

t

In order to have all the derivatives with respect to time τ we will have to
apply the chain rule. So, for the oscillator x1 of the (ALN)

d

dt
x1 =

dx1
dτ

· dτ
dt

=

(
kg1 + ke

m

) 1
2

ẋ1(τ)

Also,

d2

dt2
x1 =

d

dt

[(
kg1 + ke

m

) 1
2

ẋ1(τ)

]
=

(
kg1 + ke

m

) 1
2

ẋ1(τ) ·
dτ

dt
=

(
kg1 + ke

m

) 1
2

ẍ1(τ) ·
(
kg1 + ke

m

) 1
2

=⇒

ẍ1(t) =
kg1 + ke

m
· ẍ1(τ)

So, the equation of x1 of the system (4.1.2) with respect to the normalized
time τ , becomes

m · kg1 + ke
m

· ẍ1(τ) = −kg1x1(τ)− kc
(
x1(τ)− x2(τ)

)3 − ke
(
x1(τ)− y1(τ)

)
=⇒

(kg1 + ke)ẍ1 + kg1x1 + kex1 = −kc(x1 − x2)
3 + key1 =⇒

(kg1 + ke)ẍ1 + (kg1 + ke)x1 = −kc(x1 − x2)
3 + key1 =⇒

ẍ1 + x1 =
−kc

kg1 + ke
(x1 − x2)

3 +
ke

kg1 + ke
y1 =⇒

ẍ1 + x1 = −εa(x1 − x2)
3 + 2εβy1

where 0 < ε ≪ 1 is a small scaling parameter denoting the smallness of the

aforementioned parameters, εa ≡ kc
kg1

is the normalized cubic stiffness coefficient

and εβ ≡ ke
2(kg1 + ke)

is the normalized coupling stiffness coefficient.
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Following the same reasoning, the equation of y1 of the system (4.1.2) with
respect to the normalized time τ , becomes

ÿ1 + y1 = −εa(y1 − y2)
3 + 2εβx1

Now, we are going to see how equations of x2 and y2 are transformed. We
have

m · kg1 + ke
m

· ẍ2 = −kg2x2 − kc
[
(x2 − x1)

3 + (x2 − x3)
3
]
− ke(x2 − y2) =⇒

(kg1 + ke)ẍ2 + kg2x2 + kex2 = −kc
[
(x2 − x1)

3 + (x2 − x3)
3
]
+ key2 =⇒

(kg1 + ke)ẍ2 + (kg2 + ke)x2 = −kc
[
(x2 − x1)

3 + (x2 − x3)
3
]
+ key2 =⇒

ẍ2 +
kg2 + ke
kg1 + ke

x2 =
−kc

kg1 + ke

[
(x2 − x1)

3 + (x2 − x3)
3
]
+

ke
kg1 + ke

y2 =⇒

ẍ2 + (1− εγ)x2 = −εa
[
(x2 − x1)

3 + (x2 − x3)
3
]
+ 2εβy2

where

kg2 + ke
kg1 + ke

=
kg1 + ke − kg1 + kg2

kg1 + ke
= 1− kg1 − kg2

kg1 + ke
= 1− εγ

Similarly, we can derive

(kg1 + ke)ÿ2 + kg1y2 + key2 = −kc
[
(y2 − y1)

3 + (y2 − y3)
3
]
+ kex2 =⇒

(kg1 + ke)ÿ2 + (kg1 + ke)y2 = −kc
[
(y2 − y1)

3 + (y2 − y3)
3
]
+ kex2 =⇒

ÿ2 + y2 =
−kc

kg1 + ke

[
(y2 − y1)

3 + (y2 − y3)
3
]
+

ke
kg1 + ke

x2 =⇒

ÿ2 + y2 = −εa
[
(y2 − y1)

3 + (y2 − y3)
3
]
+ 2εβx2

Therefore, the complete transformed system with respect to the new nor-
malized time τ becomes

ẍ1 + x1 = −εa(x1 − x2)
3 + 2εβy1

ÿ1 + y1 = −εa(y1 − y2)
3 + 2εβx1

ẍn + (1− εγ)xn = −εa
[
(xn − xn−1)

3 + (xn − xn+1)
3
]
+ 2εβyn, n ≥ 2

ÿn + yn = −εa
[
(yn − yn−1)

3 + (yn − yn+1)
3
]
+ 2εβxn, n ≥ 2

(4.2.3)
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Applying the condition of 1:1 resonance, we follow the complexification-
averaging method (CX-A) approach[44],[45], and introduce the complex variables
(with i =

√
−1)

ψxn = ẋn + ixn and ψyn = ẏn + iyn, n ≥ 1 (4.2.4)

with all oscillators possessing a normalized fast frequency equal to unity.
Denoting the complex conjugation by ψ, for xn of the system (4.2.3) we have
that

ψxn = ẋn + ixn, ψ
x

n = ẋn − ixn (4.2.5)

ẋn =
1

2
(ψxn + ψ

x

n), xn =
1

2i
(ψxn − ψ

x

n) (4.2.6)

for n ≥ 1. Similarly, for yn of the system (4.1.3) we write

ψyn = ẏn + iyn, ψ
y

n = ẏn − iyn (4.2.7)

ẏn =
1

2
(ψyn + ψ

y

n), yn =
1

2i
(ψyn − ψ

y

n) (4.2.8)

for n ≥ 1. Now, by using equations (4.2.5)-(4.2.8), the equation of x1 of the
system (4.2.3) becomes

ẍ1 + x1 = −εa(x1 − x2)
3 + 2εβy1 =⇒

ẍ1 + iẋ1 − iẋ1 + x1 = −εa(x1 − x2)
3 + 2εβy1 =⇒

d

dτ
(ẋ1 + ix1)− i(ẋ1 − ix1) = −εa(x1 − x2)

3 + 2εβy1 =⇒

d

dτ
ψx1 − iψx1 = −εa

[
ψx1 − ψ

x

1

2i
− ψx2 − ψ

x

2

2i

]3
− iεβ(ψy1 − ψ

y

1) (4.2.9)

Likewise, the equation of y1 of the system (4.1.3) becomes

d

dτ
ψy1 − iψy1 = −εa

[
ψy1 − ψ

y

1

2i
− ψy2 − ψ

y

2

2i

]3
− iεβ(ψx1 − ψ

x

1) (4.2.10)

Now, let us see how the equation of xn, n ≥ 2 of the system (4.2.3) becomes.
We have

ẍn + (1− εγ)xn = −εa
[
(xn − xn−1)

3 + (xn − xn+1)
3
]
+ 2εβyn =⇒

ẍn + iẋn − iẋn + (1− εγ)xn = −εa
[
(xn − xn−1)

3 + (xn − xn+1)
3
]
+2εβyn =⇒
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d

dτ
ψxn − iψxn =

−εa

{[
ψxn − ψ

x

n

2i
−
ψxn−1 − ψ

x

n−1

2i

]3
+

[
ψxn − ψ

x

n

2i
−
ψxn+1 − ψ

x

n+1

2i

]3}
−iεβ(ψyn − ψ

y

n)−
iγ

2
ε(ψxn − ψ

x

n), n ≥ 2 (4.2.11)

In a similar way, one can obtain

d

dτ
ψyn − iψyn =

−εa

{[
ψyn − ψ

y

n

2i
−
ψyn−1 − ψ

y

n−1

2i

]3
+

[
ψyn − ψ

y

n

2i
−
ψyn+1 − ψ

y

n+1

2i

]3}
−iεβ(ψxn − ψ

x

n), n ≥ 2 (4.2.12)

Anticipating slow and fast time scales in the solution, we asymptotically
approximate the irreversible energy transfer employing the method of multiple
scales, introducing the fast time scale τ0 = τ and the slow time scale τ1 = ϵτ ,
and expressing the solutions in the series forms

ψxn = ψxn0
+ ϵψxn1

+O(ϵ2), ψyn = ψyn0
+ ϵψyn1

+O(ϵ2), n ≥ 1 (4.2.13)

Substituting (4.2.13) into (4.2.9)-(4.2.12), expressing the time derivatives
in terms of the new time scales, and separating terms of different orders of the
small parameter we obtain a group of linear subproblems. The O(1) subproblem
reads (for n ≥ 1),

∂

∂τ0
ψxn0

− iψxn0
= 0 =⇒ ψxn0

= ϕxn0
(τ1) · eit0 (4.2.14)

∂

∂τ0
ψyn0

− iψyn0
= 0 =⇒ ψyn0

= ϕyn0
(τ1) · eit0 (4.2.15)

indicating that, to leading order, the responses of the asymmetric lattice
network can be expressed in terms of fast oscillations that are modulated by
the slow-varying complex envelopes ϕx,yn0

(τ1). These are approximated by elim-
inating the secular terms from the O(ϵ) subproblems, yielding the following
modulation equations or slow flow[39]

∂

∂τ1
ϕx10 =

3

8
ai|δx1 |2δx1 − iβϕy10

∂

∂τ1
ϕy10 =

3

8
ai|δy1 |2δ

y
1 − iβϕx10

∂

∂τ1
ϕxn0

=
3

8
a

[
− i|δxn−1|2δxn−1 − (−i)|δxn|2δxn

]
− iγ

2
ϕxn0 − iβϕyn0, n ≥ 2

∂

∂τ1
ϕyn0

=
3

8
a

[
− i|δyn−1|2δ

y
n−1 − (−i)|δyn|2δyn

]
− iβϕxn0, n ≥ 2

(4.2.16)
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where δx,yn ≡ ϕx,yn0
−ϕx,y(n+1)0 are the differences between the complex envelopes

of neighboring oscillators in the two lattices.

In the following scheme, we can see that the slow flow predicts irreversible
energy transfer from the excited to the absorbing lattice. We observe that
rapid and complete energy transfer is initiated immediately after the impulse
is applied, through 1:1 resonance interaction between the leading oscillators of
the two lattices. We note that 1:1 resonance causes the initial intense energy
transfer from the leading oscillator of the excited lattice to the leading oscillator
of the absorbing lattice, but once this initial energy transfer is completed, the
1:1 resonance is “broken” so that the energy cannot transfer back to the excited
lattice.

Figure 4.2.1: Comparison between the exact time series of the four leading oscillators of

each lattice obtained by numerical integration of system (4.2.3), and the envelopes predicted

by the slow flow (4.2.16) (red solid lines). [39]

We now develop a reduced-order model (ROM) to better understand the
nonlinear mechanism governing irreversible energy transfer in the asymmetric
lattice network under condition of 1:1 resonance. We assume that energy prop-
agates along the two lattices in the form of breathers with constant speed under
condition of 1:1 resonance, so that the energy is localized at one oscillator at a
given time. Therefore the excited and absorbing lattices can be replaced by two
oscillators. As the absorbing lattice has spatially uniform grounding stiffness,
the grounding stiffness of the “absorbing oscillator” is constant (time-invariant);
however, since the grounding stiffness of the excited lattice varies as the breather
propagates, the “excited oscillator” possesses time-varying grounding stiffness.
To construct the ROM we introduce the new variables,
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u =

+∞∑
n=1

xn, v =

+∞∑
n=1

yn (4.2.17)

Adding the x1 and xn equations of (4.2.3) we get

ẍ1 + x1 + ẍn + xn − εγxn = 2εβy1 + εβyn =⇒

ẍ1 + x1 + ẍn + xn − εγxn − εγx1 + εγx1 = 2εβy1 + 2εβyn =⇒

ẍ1 + ẍn + x1 + xn − εγ(x1 + xn) + εγx1 = 2εβy1 + 2εβyn =⇒

ü+ (1− εγ)u+ εγx1 = 2εβv

Doing the same process, adding the y1 and yn equations of (4.2.3) we get

v̈ + v = 2εβu

So, we obtain the system of equations

ü+ (1− εγ)u+ εγx1 = 2εβv

v̈ + v = 2εβu
(4.2.18)

where the nonlinear terms have canceled by the summation. Equations of
system (4.2.18) are exact up to this point, but to derive the (ROM) in its final
form it is necessary to express x1(τ) in terms of the variables (4.2.17). This can
only be accomplished approximately, e.g., by introducing the relationship

x1(τ) = ξ(τ)u(τ)

Then, assuming that the impulsive energy is irreversibly transferred com-
pletely from the excited to the absorbing oscillator, the function ξ(τ) can be
approximated following a three-stage approach. First, the energy is assumed
to be localized entirely in the leading oscillators of the excited and absorbing
lattices so that all other oscillators have zero response and

u(τ) ≈ x1(τ) =⇒ ξ(τ) ≈ 1

Following that, there is initiation of the propagating breather in the absorb-
ing lattice, i.e., of nearly complete energy transfer from the leading oscillator
of that lattice to its neighboring oscillator, so ξ(τ) can be assumed to linearly
decrease in the range

0 ≤ ξ(τ) ≤ 1

Finally, after the propagating breather has been initiated, energy propagates
in the absorbing lattice, and ξ(τ) ≈ 0. Hence, we arrive to the final form of the
(ROM), in the form of the linear, time-varying system

ü+ (1− εγ)u+ εγξu = 2εβv

v̈ + v = 2εβu
(4.2.19)
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where ξ(τ) is the O(1) piecewise linear function

ξ(τ) =


1, τ ≤ c1

c1 + c2 − τ

c2
, c1 < τ ≤ c1 + c2

0, c1 + c2 < τ

(4.2.20)

In (4.2.19) the u-oscillator is the excited oscillator and the v-oscillator is the
absorbing one. In (4.2.20) c1 is the time required for the energy to completely
transfer from the leading oscillator of the excited lattice to the leading oscillator
of the absorbing one and c2 is the time required for the energy to be completely
transferred from the leading oscillator of the absorbing lattice to its neighboring
oscillator in the same lattice. The analytical study of the ROM is carried out
similarly to the original network (4.2.3) by the (CX-A) method. We introduce
the complex variables

ψu = u̇+ iu and ψv = v̇ + iv

under condition of 1:1 resonance between the two oscillators of the (ROM).
As before we introduce the fast and slow time scales, τ0 and τ1, respectively,
and expand the complex variables as

ψu = ψu0
+ εψu1

+O(ε2) and ψv = ψv0 + εψv1 +O(ε2)

Then, the leading order approximation of the solution is expressed as

ψu = ϕu0(τ1)e
iτ0 +O(ε)

ψv = ϕv0(τ1)e
iτ0 +O(ε)

(4.2.21)

where the slowly varying complex envelopes are governed by the following
reduced slow flow

2i
∂

∂τ1
ϕu0

= 2βϕv0 + γη(τ1)ϕu0

i
∂

∂τ1
ϕv0 = βϕu0

(4.2.22)

and the parametric, slowly varying term is expressed as

η(τ1) = 1− ξ(τ1 − εc1) =


0, τ1 ≤ εc1

τ1
εc2

, εc1 ≤ τ1 ≤ εc2

1, τ1 > εc2

(4.2.23)

58



We see that the (ROM) system (4.2.21)-(4.2.22) describes the system after
the energy has been transferred from the leading oscillator of the excited lattice
to the leading oscillator of the absorbing lattice in the time interval τ1 ≤ εc1.
During the time interval [0, εc1] the energy is completely transferred from the
excited oscillator to the absorbing one, under condition of 1:1 resonance. At
time τ1 = εc1 energy transfer has been completed to the leading oscillator of
the absorbing lattice, so the initial conditions for (4.2.22) are

ϕu0 = 0 and ϕv0 = 1

In the time interval [εc1, εc2] energy gets transferred from the leading oscilla-
tor to the other oscillators of the absorbing lattice and for τ1 > εc2 the breather
in the absorbing lattice has been initiated. The (ROM) (4.2.21)-(4.2.22) can
be explicitly solved by defining the ratio a = γ

εc2
and combing the complex

equations (4.2.22) into a linear complex equation in terms of the response of the
absorbing oscillator

d2

dτ21
ϕv0 + i

τ1a

2
· d

dτ1
ϕv0 + β2ϕv0 = 0 (4.2.24)

with initial conditions ϕv0(0) = 1 and d
dτ1
ϕv0(0) = 0. Through the transfor-

mations,

Φ = ϕv0(τ1)e
ia

τ2
1
8 , z = τ1

(a
2

) 1
2

e−iπ4 , ν = 2i
β2

a

equation (4.2.24) becomes

d2

dz2
Φ+

(
ν +

1

2
− z2

4

)
Φ = 0 (4.2.25)

with initial conditions Φ(0) = 1 and Φ′(0) = 0. Equation (4.2.25) is the nor-
mal form of Weber’s equation[39] which admits an explicit asymptotic solution
in terms of tabulated functions. As it is a linear, homogeneous, second-order
differential equation, its general solution is expressed as a linear combination of
two fundamental solutions

Φ(z) = C1D−ν−1(iz) + C2D−ν−1(−iz) (4.2.26)

whereD−ν−1(±iz) are Weber’s functions with well-defined asymptotic behaviors[39]

as z → ∞

lim
z→∞

D−ν−1(iz) = 0

lim
z→∞

D−ν−1(−iz) =

√
2π

G(ν + 1)
e

πνi
4 e

i|z|2
4 |z|ν

(4.2.27)

Imposing the previous initial conditions, we may evaluate the two unknown
constants C1 and C2 as follows
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C1 =
2

ν
2

√
2π

πΓ(−ν2 )
cos

π(ν + 1)

2
− Γ(−ν)Γ(ν + 1) sin

π(ν + 1)

2
sinπ

(
ν +

1

2

)

C2 =
2

ν
2

√
2π

πΓ(−ν2 )
Γ(−ν)Γ(ν + 1) sin

π(ν + 1)

2

(4.2.28)

Relations (4.2.26)-(4.2.28) are an exact analytic expression for the leading-
order response of the absorbing oscillator ϕv0(τ1) and through the first of re-
lations (4.2.22), also of the corresponding response of the excited oscillator,
ϕu0

(τ1). Now, we consider the leading-order approximations of the energies of
the two oscillators of the (ROM) as τ1 → +∞. These are analytically evaluated
by the squares of ϕv0 and ϕu0 , yielding the following asymptotic expression of
the energy that is irreversibly transferred to the absorbing oscillator

lim
τ1→∞

|ϕv0(τ1)|2 = lim
τ1→∞

|Φ(z)|2 =
1 + e−

2πβ2

a

2
=

1 + e−
2πβ2εc2

γ

2
(4.2.29)

where εc2 is the time required for the generation of the propagating breather
in the absorbing lattice, i.e., the time required for energy to be completely
transferred from the leading oscillator of the absorbing lattice to its neighboring
oscillator in the same lattice. According to [39] let us consider

εaTA2 =
0.7975

3
8

where A is the amplitude of the breather, T the peak-to-peak time delay and
a the normalized coefficient of the cubic nonlinearity. Substituting into (4.2.29)
we obtain the final expression

lim
τ1→∞

|ϕv0(τ1)|2 =
1 + e

− 2πβ2·2.13
γaA2

2
(4.2.30)

In (4.2.30), the normalized coefficient denoting the strength of the cubic
nonlinearity, aA2, and the normalized coupling stiffness coefficient, β, must be
of the same order, or the energy will localize in the leading oscillators of the two
lattices. If, in addition, the stiffness reduction ratio γ is sufficiently larger than
the normalized coupling coefficient β, i.e. γ ≫ β, then

lim
τ1→∞

|ϕv0(τ1)|2 ≈ 1

and nearly all of the impulsive energy becomes irreversibly localized to the
absorbing oscillator. Otherwise, if γ ≪ β, then

lim
τ1→∞

|ϕv0(τ1)|2 ≈ 1

2
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and the energy is reversibly and recursively exchanged between the two os-
cillators in a nonlinear beat phenomenon. As a final step we wish to validate the
approximate (ROM) (4.2.19)-(4.2.20) based on numerical simulations of the ex-
act (ALN). In the exact network the grounding stiffness of the excited lattice is
spatially varying, whereas in the (ROM) the grounding stiffness of the excited
oscillator is time varying. So, we compute the weighted-averaged grounding
stiffness over

kg(t) =

∑n
j=1 kgjEj(t)

E
(4.2.31)

where, E is the total energy provided by the impulse, Ej(t) the instantaneous
energy of the j-th oscillator pair of the excited and absorbing lattices and kgj
the grounding stiffness of the j-th oscillator of the excited lattice. Now, we
compare the result with the analytical approximation (4.2.20). According to
the following scheme we note that the difference between the approximate and
numerical results is small, validating the (ROM).

Figure 4.2.2: The (ROM) (4.2.19), (4.2.20) compared to the (ALN) (3). (a) Weighted-

averaged grounded stiffness (4.2.31) – blue line, versus the approximation (4.2.20) – red line;

(b) instantaneous energies of the excited and absorbing lattices – solid lines, versus the ana-

lytical (ROM) predictions for the excited and absorbing oscillators – dashed lines.[39]

Finally, in Figure (4.2.2) we validate the analytical prediction of the (ROM)
regarding irreversible energy transfer by comparing to the results of direct nu-
merical simulations. We note good agreement, especially in the critical, early
regime of the response during which irreversible energy transfer from the leading
oscillator of the excited lattice to the corresponding oscillator of the absorbing
lattice. The small oscillations in the energy values at later times are due to
the simplifying assumptions of the (ROM), and its inability to more accurately
capture the time-varying stiffness of the excited oscillator.
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5 Appendix

5.1 An Introduction to Reduced Order Model Theory

In many fields of mathematics and physics, we come across hard problems
that are describable by a differential equation and many times by systems of
differential equations. The study of the behavior of these systems is, often, a
tough task. One way to deal with such problems is the Reduced Order Model
(ROM) theory. How does ROM work? Basically, it substitutes the original
large scale system with a much smaller one, but the new ROM has the same
qualitative behavior as the original, to a very high accuracy. Thus, by simulating
only the ROM, one can study the original system doing much easier work. Let
us present a simple example to demonstrate how ROM works. We consider the
following system

ẋ = Ax+ b · f(t) (5.1.1)

y = cTx (5.1.2)

where x = x(t) is an N-dimensional vector, A is an NxN constant matrix
and b, c are N-dimensional constant vectors. For each function f(t) we plug
at (5.1.1), a new function y(t) is generated by equation (5.1.2). Therefore,
let us denote function f(t) as the input-function (IF) and function y(t) as the
output-function (OF). So, ROM theory asks the question: can we find another
system

ż = A1z+ b1 · f(t) (5.1.3)

y1 = cT1 z (5.1.4)

where z = z(t) is an n-dimensional vector, A1 is an nxn constant matrix,
b1, c1 are n-dimensional constant vectors and n is much smaller than N? For
instance, N could be thousands and n less than 10. And the ROM system has
similar behavior with the original system i.e. for any (IF) f(t) the ROM system
(5.1.3) - (5.1.4) shall generate an (OF) y1(t) such that y1(t) is very close to y(t).
Therefore, once we have the ROM, we can study the behavior of the original
system to a good precision by studying and simulating the ROM instead.
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