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1 Introduction

Given a general Quantum Field Theory, a fundamental consistency check is that of
anomaly cancellation. In dimensions D = 4k + 2 one finds gravitational, gauge and
mixed anomalies, and the requirement that these cancel places severe constraints on
the space of available theories. In D = 10, anomaly-free theories only admit a handful
of gauge groups, as shown in [2]. Similarly in D = 6, anomaly cancellation provides a
strong constraint on the possible gauge groups and particle spectrum of a theory. In
fact, it was shown in [3], that if we additionally require that the gauge-kinetic terms are
positive and that the number of tensor multiplets is less than 9, there is only a finite
number of anomaly-free models. On a similar note, it was shown in [5] that anomaly
cancellation together with other conjectured Swampland constraints leaves again only
a finite number of possible models.

Knowing that there is a finite number of possible configurations of gauge groups
and matter representations (an estimate of under a billion was given in [4]), a logical
next step would be an attempt to enumerate these models. In [1], such an enumeration
was performed for a specific set of allowed gauge groups. In particular, and in order to
make the search feasible, the following restrictions were placed on the solution space:

1. The number of tensor multiplets was required to be T = 1.

2. The semisimple gauge group was required to be a product of up to two simple
groups.
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3. The rank of classical groups had to lie within specific ranges (e.g. for SO(N) it
was required that 10 ≤ N ≤ 64).

In this thesis we aim to expand upon that search by relaxing some of the above
conditions. Specifically:

1. We allow the semisimple gauge group to be a product of any number of simple
groups.

2. We only require a lower bound of D ≥ 10 for the considered representations, i.e.
the rank of the classical groups is not a priori bounded from above.

In order to achieve this, we will need to use more efficient searching algorithms as
well as theoretical bounds on the amount of hypermultiplets and vector multiplets of a
configuration when only part of it is fixed, which will be the main subject of this work.

2 Anomaly cancellation in six dimensions

We begin with a brief outline of the necessary material, namely the content of N = 1,
D = 6 supergravity and the cancellation of anomalies through the Green-Schwarz
mechanism.

2.1 Particle content

The massless representations of N = 1 supergravity in 6 dimensions are as follows:

• Supergravity multiplet: (gµν , B
+
µν , ψ

i−
µν)

• Tensor multiplet: (B−
µν , ϕ, χ

i+)

• Vector multiplet: (Aµ, λ
i−)

• Hypermultiplet: (4ϕ, 2ψ+)

We denote by T , V and H the number of tensor multiplets, vector multiplets and
hypermultiplets of the theory respectively. V is given by the sum of the dimensions of
the constituent simple gauge groups, while H is given by the sum of the dimensions
of the hypermultiplets multiplied by their multiplicities, plus the number of singlets
(which we will not be writing down explicitly). The combination of these with one
supergravity multiplet gives rise to a generic D = 6, N = 1 supergravity with spectrum

(gµν , B
+
µν , ψ

i−
µν) + T (B−

µν , ϕ, χ
i+) + V (Aµ, λ

i−) +H(4ϕ, 2ψ+) (1)

This spectrum may be contain local or global anomalies. In this thesis we will focus
only on the local anomalies. Next we describe the mechanism with which these are
cancelled.
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2.2 Cancellation of local anomalies

The anomaly polynomial includes contributions from gravity, gauge and mixed anoma-
lies. Its full form is

I8 =
H − V + 29T − 273

360
trR4 +

H − V − 7T + 51

288
(trR2)2

+
1

6
trR2

∑
i

Ai trF
2
i

−2

3

∑
i

Bi trF 4
i − 2

3

∑
i

Ci(trF 2
i )

2 + 4
∑
i<j

Aij trF 2
i trF

2
j

(2)

where

Ai = aiadj −
∑
r

ni
ra

i
r (3)

Bi = biadj −
∑
r

ni
rb

i
r (4)

Ci = ciadj −
∑
r

ni
rc

i
r (5)

Aij =
∑
r,s

nij
rsa

i
ra

j
s (6)

In the above, ni
r is the number of hypermultiplets transforming under the represen-

tation r and nij
rs is the number of hypermultiplets transforming simultaneously under

r and s.
This polynomial must factorize for the anomaly to cancel through the Green-

Schwarz mechanism. As a result we must have

H − V = 273− 29T (7)

and

Bi = 0 (8)

for groups with fourth-order invariants. The polynomial can then be written more
concisely as

I8 =
1

2
(trX4)

2 =
1

2
Ωaβ trX

α
4 trXβ

4 (9)

where

Xα
4 =

1

2
aα trR2 +

∑
i

bαi trF
2
i (10)
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By expanding (9) and matching the coefficients we arrive at the anomaly cancella-
tion conditions.

a · a = 9− T (11)

a · bi =
1

6
Ai (12)

bi · bi = −1

3
Ci (13)

bi · bj = Aij (14)

Bi = 0, for groups with fourth-order invariants (15)

In the above, a and bi are vectors in R1,T and x · y denotes the SO(1, T )-invariant
product Ωaβx

ayβ. air, b
i
r, c

i
r are group theoretic constants which can be found in [1].

When T = 1, the first three equations can be solved explicitly. We first take

Ωaβ =

(
0 1
1 0

)
(16)

By using the scaling invariance of the anomaly polynomial [3], we can fix a =
(−2,−2) and we also set bi =

1
2
(ai, ãi). This way, equations (12, 13) take the form

ai + ãi = −1

6
Ai (17)

aiãi = −2

3
Ci (18)

with solutions

ai, ãi =
−Ai ±

√
Di

12
(19)

where Di = (Ai)2+96Ci and the values can be assigned to the ai, ãi in both orders.
Equation (6) becomes

aiãj + ãiaj = 4Aij (20)

Using (19) this can be written more explicitly as

AiAj ∓
√
DiDj = 288Aij (21)

where the − corresponds to assigning the same sign to ai and aj in (19), while the
+ corresponds to assigning the same sign to ai and ãj.

As discussed in [4], the coefficients of the gauge kinetic terms, aie
ϕ + ãie

−ϕ, must
all be positive for some value of the dilaton ϕ:

aie
ϕ + ãie

−ϕ > 0, for all i (22)
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This prevents infinite families of models such as the SU(N):2N ⟨N⟩ from coupling
to each other. Condition (22) places some restrictions on the relative signs of the ai, ãi
and on the possible values of e2ϕ, as follows:

• If ai and ãi are both positive, (22) is always satisfied.

• ai and ãi cannot both be negative.

• If one of the ai, ãi is zero, the other one must be positive, in which case (22) is
always satisfied.

• If ai > 0 and ãi < 0, then e2ϕ > − ãi
ai
.

• If ai < 0 and ãi > 0, then e2ϕ < − ãi
ai
.

Note that in the last two cases, the quantity − ãi
ai

is positive.
To summarize, we can calculate ai, ãi using (19) and then check (20) for each pair of

groups. In addition, depending on the values ai, ãi, (22) might be impossible to satisfy,
it might always be satisfied or it might restrict the values of e2ϕ to a certain range.
If multiple groups fall into the latter category, all the inequalities must be satisfied
simultaneously, i.e. the allowed ranges must have a non-vanishing intersection.

Finally, the solution as a whole must satisfy

H − V ≤ 273− 29T (23)

3 Scanning the solution space

With the above in mind, we could in principle find all the solutions with the following
procedure:

1. We first find all the solutions that have H − V ≤ M , where M is a constant
the value of which will be specified in later sections. We can represent each such
solution as a node in a graph.

2. We then find which of these solutions can be combined according to (20). When
two solutions can be combined we draw an edge between the respective nodes in
the graph.

3. The solutions containing more than two factors will then be the subgraphs of
this graph that are fully connected, i.e. there exists an edge between each pair of
nodes. Such subgraphs are known as complete subgraphs or “cliques” in graph
theory. The cliques of a graph can easily be found programmatically.
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An example can be seen in figure 1 where we have drawn part of the graph for
T = 1.

Figure 1: Part of the graph for T = 1.

We constrain our search to T = 1, and consider all the exceptional groups except
for G2 and all the classical groups SU(N), SO(N), Sp(N), with rank N ≥ 10. Addi-
tionally for the classical groups, we will only consider the fundamental, the adjoint, the
symmetric and the antisymmetric representations, and not higher dimensional repre-
sentations such as the spinorial. The above restrictions are placed in order to facilitate
an exhaustive search, given that the number of possible nodes is significantly larger
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for representations with dimension D < 10 and especially for the groups SU(2), SU(3)
and G2. That being said, using the tools that we present here along with some im-
provements on the developed algorithms and with the use of better hardware, it might
be feasible to achieve a complete enumeration of all the possible models.

4 Bounding the contribution to H − V

4.1 General scheme

We will begin by establishing some notation. Let

M = G :
∑
r

nr ⟨Dr⟩ (24)

be a model containing nr hypermultiplets transforming under the representation
Dr of the simple gauge group G. For example, taking G = SU(N) we may write

M = SU(N) : (N − 8) ⟨N⟩+ ⟨N(N + 1)

2
⟩ (25)

We may combine two such models according to

M =M1 ⊕M2 = G1 ×G2 :
∑
r,s

nrs ⟨Dr, Ds⟩ (26)

where nrs is the number of hypermultiplets transforming under both Dr and Ds

(note that the sum includes the trivial representations, with Dr = 1 or Ds = 1). As
an example, we can take

M = SU(N)× SU(N) : 2 ⟨N,N⟩ (27)

In a similar manner, we can fix g models of the form (24), i.e. we can pick some
groups Gi and the multiplicities nr of their representations, and combine them accord-
ing to

M =

g⊕
i=1

Mi =

g∏
i=1

Gi :
∑

r1,...,rg

Nr1,...,rg ⟨Dr1 , . . . , Drg⟩ (28)

Note that, since we fixed the multiplicities nr of each constituent model, these must
be the same in the composite model. In other words, we must have

nr =
∑

r/∈r1,...,rk

Nr1...rkDr1 · · ·Drk , for every r (29)

The contribution of (28) to H − V is
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CM =
∑

r1,...,rg

Nr1,...,rgDr1 · · ·Drg −
g∑

i=1

Ai (30)

where Ai are the dimensions of the adjoint representations of the groups Gi.
Our first objective will be to find a way of defining an individual contribution

Cr1,...,rg to H − V for each term in (28), so that

CM =
∑

r1,...,rg

Cr1,...,rg (31)

Obviously, each term has a positive contribution Nr1,...,rgDr1 · · ·Drg . Note however,
that there may be multiple terms transforming under different representations of a
single group Gi with adjoint dimension Ai. This adjoint dimension will appear only
once in (31), so we need to define a way of distributing it to the corresponding terms.
To make this clearer, let’s take (25) as an example. This has

CM = (N − 8)N +
N(N + 1)

2
− (N2 − 1) (32)

We want to rewrite this in such a way so that the negative contribution −(N2 − 1)
is distributed to the first two terms, corresponding to the two involved groups. For
example, we may choose to distribute it equally as follows:

CM = [(N − 8)N − 1

2
(N2 − 1)] + [

N(N + 1)

2
− 1

2
(N2 − 1)] (33)

The distribution could become more “fair” if we assigned to each term a fraction of
the adjoint, proportional to the contribution of this term to the fourth-order Casimir
cancellation condition. More precisely, we assign to the term

Nr1,...,rg ⟨Dr1 , . . . , Drg⟩ (34)

with ri ∈ r1, . . . , rg, a fraction friAi of the negative contribution of Gi to Cr1,...,rg .
0 ≤ fri ≤ 1 is the relative contribution of ri to the left-hand side of the constraint∑

r nrBr = Bi, so that

fri =
nriBri

Bi

(35)

In this way, we assign to the term (34) a fraction of the adjoint Ai for each of the
involved representations. We finally have

Cr1,...,rg = Nr1,...,rg

g∏
i=1

Dri −
g∑

i=1

friAi (36)

This definition allows us to assign a fraction of the adjoint to one term even if we
don’t know what other terms involving Gi appear in the sum (31). Terms involving

8



a representation from an exceptional group will get the full negative contribution of
the adjoint representation. We will make a few more comments about the effect of the
choice of distribution in the following, after we have established our end goal.

Now let’s assume that λ + 1 out of the g representations of (34) are non-trivial,
i.e. their dimensions are not equal to 1. To simplify notation we will denote these
by D,Di, i = 1, . . . , λ. Similarly we denote by n, ni the multiplicities of the represen-
tations in the original constituent models and by A,Ai the dimensions of the adjoint
representations multiplied by the respective fractions as defined in (35). Finally, we
will denote the multiplicity of the hypermultiplet by Nr1,...,rg ≡ m and its total con-
tribution to H by Nr1,...,rgDr1 · · ·Drg = mDD1 · · ·Dλ ≡ S. With these definitions we
have

nD = n1D1 = . . . = nλDλ = S (37)

and we will also denote

C ≡ Cr1,...,rg = S − A−
∑
i

Ai (38)

The question that we want to answer is the following: if we are given the multiplicity
n and the dimension D of the first representation in the above term, how should we
choose λ other dimensions and their multiplicities so that the individual contribution
of the term to H − V , in the sense of (36), has its minimum possible value?

Before we try to answer this question, let’s recall that in order to talk about the
individual contribution of each term, we had to find a way of distributing the negative
contribution from the dimension of the adjoint to the various representations. As we
mentioned, there are many ways to do this and we chose one that would allow us to
examine each representation separately. Will this choice affect the minimum value that
we find for C in (38)? The answer is that it will affect the minimum that we arrive
at, but that will always be less than or equal to the actual value Cmin that exists for a
given pair n,D. This is because we could always arrive at that minimum by putting
together the different pieces (i.e. terms in (31)) of the actual configuration that has
the contribution Cmin. In other words, by allowing the pieces to be put together in any
possible configuration (potentially including ones that are not allowed), we will arrive
at a less conservative bound. Of course the choice of method for the distribution is still
important, since it could lead us to underestimate the minimum so much that it diverges
to −∞. This would happen, for example, if we assigned all of the negative contribution
to the fundamental representation, without taking into account its multiplicity.

Now let’s look for a way to bound C. We first rewrite (38) as

C = S − A− λAi (39)

where the overline denotes the average value. We also have
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S = mDD1 · · ·Dλ ⇒ D1 · · ·Dλ =
S

mD
=

n

m

⇒
∑
i

logDi = log
n

m
⇒ λlogDi = log

n

m

⇒ λ =
log n

m

logDi

(40)

Substituting this into (39) we get

C = S − A− log
n

m

Ai

logDi

(41)

Note that Di ≥ 2 for all i, so that all the logDi are positive, regardless of the base
of the logarithm. It is then straightforward to see that

Ai

logDi

=

∑
iAi∑

i logDi

≤ max
i

Ai

logDi

(42)

so that

C ≥ S − A− log
n

m
max

i

Ai

logDi

(43)

In other words, to minimize C, we should pick all the representations to be the ones
for which the quantity Ai

logDi
is maximized. If we denote these optimal dimensions by

D̃ and Ã, the number of groups involved becomes

λ = logD̃
n

m
(44)

so that we can rewrite (43) as

C ≥ nD − A− Ã logD̃
n

m
(45)

In addition, we must have

λ ≥ 1 ⇒ n

m
≥ D̃ (46)

It is obvious that the value of the minimum increases with the multiplicity m ≥ 1
of the term so from now on we fix m = 1. This way we get D̃ ≤ n, and from ñD̃ = nD
we also get D ≤ ñ.

To reiterate, let’s assume that we are given a representation of dimension D with
multiplicity n. We find the D̃ and Ã that correspond to the representation for which
the fraction Ã

log D̃
has the maximum value, subject to the constraints

ñD̃ = nD and D̃ ≤ n,D ≤ ñ (47)
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Then, the minimum individual contribution of a term involving the n ⟨D⟩ will be

Cn⟨D⟩ = nD − A− Ã logD̃ n (48)

We can follow a very similar approach to obtain the minimum contribution of a term
without being given the values n,D and A, but only the value the positive contribution

S = mD1 · · ·Dλ (49)

As before, we have

C ≥ S − log
S

m
max

i

Ai

logDi

(50)

with the equality being obtained when

D1 = . . . = Dλ = D̃ (51)

Taking again m = 1, the minimum can be written as

CS = D̃λ − λÃ (52)

where λ ≥ 1 is now a free parameter and

D̃ = S
1
λ (53)

Depending on the values of D̃ and Ã, the optimal value for λ could be either 1
or 2. For the purposes of the present analysis it will always be 1, since we are only
considering dimensions D ≥ 10.

In the following sections, we will go through each individual type of multiplet
ni ⟨Di⟩, subject to either (47) or (53), and obtain the minimum values.

4.2 Exceptional groups

We begin with the exceptional groups. For a given Ai we want to keep the dimension
Di as small as possible, so we will take Di to be the smallest dimension for each group.
To get a more general picture, let’s assume that Ai = aDi. For example, for F4 we
have a = 2. The fraction then takes the value

Ai

logDi

=
aDi

logDi

≤ an

log n
(54)

where we made use of (47). By looking at each of the exceptional groups we see
that a < 3 in all cases. Taking a = 3 for the sake of simplicity sake we arrive at

Ai

logDi

≤ 3n

log n
(55)

We can then use (48) to get
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Cn⟨D⟩ = n(D − 3)− A (56)

Similarly, we find

CS = Dλ − 3λD = S − 3λS
1
λ (57)

4.3 Finite rank classical groups

It is well known that for large values of the rank N , there are only a few possible con-
figurations containing representations of the classical groups SU(N), SO(N), Sp(N),
that satisfy the fourth-order Casimir cancellation condition. These belong to a set of
families, listed in table 1, which we will examine in the next subsection. Here we will
look into the configurations that don’t belong in this list, by keeping the rank bounded.
We can easily obtain the maximal rank for which we can have models other than the
infinite ones. For SU(N), we must have

n0 + 2Nn1 + (N + 8)n2 + (N − 8)n3 = 2N (58)

This equation has only the solutions of table 1, unless

2N

N − 8
≥ 3 ⇒ N ≤ 24 (59)

The groups SO(N) and Sp(N) can be viewed as special cases of SU(N) in the
context of the present analysis. In particular, we can view SO(N) as SU(N) with
n1 = 0, n2 = 1 and Sp(N) as SU(2N) with n1 = 0, n3 ≥ 1. For this reason we will
focus only on SU(N) in the following.

It is then straightforward to obtain the functions Cn⟨D⟩ and CS for each possible
configuration as we did for the case of the exceptional groups. These are plotted in
figures 2 and 3.

12



Figure 2: Cn⟨D⟩ for D = 10.

Figure 3: CS for λ = 1.

Figure 2 in particular has been plotted for n ≤ 2N2
0

D
where N0 = 24. For larger n,

we will need to break n ⟨D⟩ down to multiple terms, each of which will couple to one
finite group. We will see this in more detail in section 4.5.
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Looking at Cn⟨D⟩, we note that the symmetric representation is the one with the
smallest (and even negative) value for a range of values of n. Importantly, this repre-
sentation can appear only once in any configuration involving the representations that
we are considering. To see this, note that for N ≥ 8, equation (58) has either n2 = 0 or
n2 = 1. The solutions with n2 = 1 correspond to the families of table 1, which cannot
coexist in the same model.

Out of the rest of the curves, we can see that the optimal one is that of the funda-
mental for most values of n. For small values, the optimal curve is the one corresponding
to the exceptional groups.

4.4 Infinite rank classical groups

We finally move on to the infinite families. This case is distinct from the ones examined
so far, in that each model can include up to one of these configurations, given that
in most cases two of them cannot coexist in the same model [4]. Moreover, in this
case we will only need to calculate CS because the final result will not depend on the
dimension D but only on the total positive contribution S. The results for each family
are summarized in table 1.

Matter CS

2N ⟨N⟩ S
2
+ 1

⟨N(N+1)
2

⟩+ ⟨N(N−1)
2

⟩ S

(N + 8) ⟨N⟩+ ⟨N(N−1)
2

⟩ S
2
+ 7

2

√
S + 16− 14

(N − 8) ⟨N⟩+ ⟨N(N+1)
2

⟩ S
2
− 7

2

√
S + 16− 14

16 ⟨N⟩+ 2 ⟨N(N−1)
2

⟩ 15
16
S + 1

Table 1: Infinite families of SU(N) along with the contribution CS after the coupling
to n ⟨D⟩.

Note that these models can couple to multiple terms whose total contribution is S,
and the final contribution will always be that given in the second column, regardless
of the way in which the S is split. To see this, let’s denote by S(N), A(N), n(N) the
contributions of a family and the multiplicity of its fundamental respectively. Addi-
tionally, let’s assume that the i-th term, with positive contribution Si and individual
negative contribution Ai, couples to a fraction fi of the n(N). It is then obvious that
Si = fiS(N) and Ai = fiA(N), so that the contribution of the final configuration to
H − V is
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CS = S − A−
∑
i

Ai = S − A−
∑
i

fiA(N) = S − A− A(N) (60)

In addition, from table 1 we can see that the reduction of the total contribution as
a result of the coupling to an infinite family is increasing with the positive contribution
S. This means that the minimum contribution is obtained by coupling the infinite
model to every other term. Furthermore, the final contribution, i.e. the expression
in the second column, is also an increasing function of S, which means that we can’t
further decrease the contribution of our model by adding extra terms which are coupled
to the unbounded rank model.

As we mentioned earlier, in most cases, two models from table 1 cannot coexist. The
exception to this is the model of the last row, since two models of this type can coexist
in a composite model, though without being coupled to each other. This means that
they need to be involved in different terms of the sum (28). As a result, if we have k
such models each being involved in one term with contribution Si, i = 1, . . . , k, so that
S =

∑k
i=1 Si, the total contribution will be CS =

∑k
i=1(

15
16
Si +1) = 15

16
S + k ≥ 15

16
S +1.

In other words, the minimum value is obtained by coupling all the terms to a single
model, in a manner similar to what was described above (60).

4.5 Optimal configuration

Let’s summarize our results so far. We have calculated:

1. the minimal contribution of each individual term when we fix the representations
involved and their multiplicities,

2. the same contribution when we only know the total positive contribution S to
H − V ,

3. the effect of coupling a model containing any combination of the above terms, to
a model that belongs to one of the infinite families of table 1.

Now let’s assume that we fix one of the group factors and the multiplicities of its
representations, i.e. we fix

M0 = G0 :
∑
r

nr ⟨Dr⟩ (61)

What is the minimal possible contribution to H−V of a configuration that contains
(61)? Using the results we have so far we can answer this question, which will allow us
to specify the upper bound M that was mentioned around (23). More specifically, M
will be the maximal value of

∑
r nrDr for which the minimal contribution is at most

273− 29T .
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As we argued, we can only have one group factor of unbounded rank, and the
minimal contribution is obtained when the term with unbounded multiplicity is coupled
to all the other terms. This may contribute up to

− Aunbounded = −1

2

∑
r

nrDr −
7

2

√∑
r

nrDr + 16− 14 (62)

There can also be terms that are not coupled to (61). The total contribution of the
final model is decreased as a result of these terms, when their individual contributions
CS are negative. As we can see in figure 3, this is the case for a few models with
exceptional groups and for the antisymmetric representation. The exceptional group
models with negative contributions (blue line in figure 3) are the ones that have n0 ≤
⌊ A
D0

⌋, where ⟨D0⟩ is the representation with the smallest dimension, and ni = 0 for
i ̸= 0. It is easy to check that these cannot coexist, so that we can only pick one of them
for each model. The one with the minimal CS is obviously the model of E8 without
matter content, which has CS = −248. Coincidentally, none of these models can coexist
with the antisymmetric representation, as we can check explicitly. As a consequence,
if we pick the E8 contribution, we must also have −Aunbounded = −1

2

∑
r nrDr, which

corresponds to the first row of table 1, instead of (62). The total contribution of the
unbounded group factor and of the terms that are not coupled to (61), can be written
as

− Aunbounded − Anot coupled = −1

2

∑
r

nrDr −max{248, 7
2

√∑
r

nrDr + 16 + 14} (63)

Finally, we can have additional terms coupled to (61). These can either be terms
from exceptional groups or terms that transform in the fundamental of classical groups.
We thus get

− Acoupled = −
∑
r

max{Aexceptional, Afundamental} (64)

where

Aexceptional = 3nr (65)

and

Afundamental = logN0
nr · fr(N2

0 − 1) (66)

with fr =
nrDr

2N2
0
. For nrDr > 2N2

0 , it is obvious that one 2N0 ⟨N0⟩ is not enough to

fully couple to the term nr ⟨Dr⟩ and we need to divide the nr into parts, so that

nr = q
2N2

0

Dr

+ r (67)
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where q = ⌊nrDr

2N2
0
⌋ and r = nr− qDr

2N2
0
are respectively the quotient and the remainder

of the Euclidean division of nr by
2N2

0

Dr
. We then have

Afundamental = q logN0
(2N2

0 ) · (N2
0 − 1) + logN0

r · rDr

2N2
0

(N2
0 − 1) (68)

Putting everything together, we have

Cmin =
1

2

∑
r

nrDr−A−
∑
r

max{Aexceptional, Afundamental}−max{248, 7
2

√∑
r

nrDr + 16+14}

(69)
We can use the above methodology to calculate an upper bound for the rank of the

classical groups. As an example, for the family in the fourth row of table 1 we have

Cmin(N) = (N−8)N−N(N − 1)

2
+1−max{Aexceptional, Afundamental}|nr=N−8−248 (70)

Requiring that Cmin(N) ≤ 244, we find N < 50. In a similar manner, we can find
the maximal rank for the rest of the families.

5 Results

We present here some notable results. The scan took a few hours on a standard CPU,
with a total of 1295 models being found. The largest number of groups in a single
model was 4, realized by the following 5 models:

• SU(10)×SU(10)×SU(11)×SU(16) : 2 ⟨45, 1, 1, 1⟩+2 ⟨1, 45, 1, 1⟩+2 ⟨1, 1, 55, 1⟩+
⟨1, 1, 1, 16⟩+ ⟨10, 1, 1, 16⟩+ ⟨1, 10, 1, 16⟩+ ⟨1, 1, 11, 16⟩

• SU(10)×SU(10)×SU(10)×SU(16) : 2 ⟨45, 1, 1, 1⟩+2 ⟨1, 45, 1, 1⟩+2 ⟨1, 1, 45, 1⟩+
2 ⟨1, 1, 1, 16⟩+ ⟨10, 1, 1, 16⟩+ ⟨1, 10, 1, 16⟩+ ⟨1, 1, 10, 16⟩

• SU(10)×SU(10)×SU(12)×SU(16) : 2 ⟨45, 1, 1, 1⟩+2 ⟨1, 45, 1, 1⟩+2 ⟨1, 1, 66, 1⟩+
⟨10, 1, 1, 16⟩+ ⟨1, 10, 1, 16⟩+ ⟨1, 1, 12, 16⟩

• SU(10)× SU(10)× SU(10)× SU(15) : ⟨10, 1, 1, 1⟩+ 2 ⟨45, 1, 1, 1⟩+ ⟨1, 10, 1, 1⟩+
2 ⟨1, 45, 1, 1⟩+⟨1, 1, 10, 1⟩+2 ⟨1, 1, 45, 1⟩+⟨10, 1, 1, 15⟩+⟨1, 10, 1, 15⟩+⟨1, 1, 10, 15⟩

• SU(10)×SU(11)×SU(11)×SU(16) : 2 ⟨45, 1, 1, 1⟩+2 ⟨1, 55, 1, 1⟩+2 ⟨1, 1, 55, 1⟩+
⟨10, 1, 1, 16⟩+ ⟨1, 11, 1, 16⟩+ ⟨1, 1, 11, 16⟩
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268 models with 3 group factors were found. The maximum number of massless
modes found was 1504, realized by the model

SU(16)× SU(32) : 2 ⟨1, 496⟩+ ⟨16, 32⟩ (71)

Finally, the following models which contain no singlets were found:

• SU(18): 6 ⟨18⟩+ 3 ⟨153⟩

• E6 × F4: 10 ⟨27, 1⟩+ 4 ⟨1, 26⟩

• E6 × SU(15): 9 ⟨27, 1⟩+ ⟨78, 1⟩+ 7 ⟨1, 15⟩+ ⟨1, 120⟩

• E7 × SO(11): 3 ⟨133, 1⟩+ 3 ⟨1, 11⟩

• F4 × SU(11): 5 ⟨26, 1⟩+ 16 ⟨1, 11⟩+ 2 ⟨1, 55⟩

• SO(14)× SU(10): 6 ⟨14, 1⟩+ 8 ⟨1, 10⟩+ 6 ⟨1, 45⟩

• SO(14)× SU(20): 6 ⟨14, 1⟩+ 4 ⟨1, 20⟩+ 3 ⟨1, 190⟩

• SO(14)× Sp(11): 6 ⟨14, 1⟩+ 2 ⟨1, 22⟩+ 2 ⟨1, 230⟩

• SO(15)× SU(18): 7 ⟨15, 1⟩+ 6 ⟨1, 18⟩+ 3 ⟨1, 153⟩

• SU(14)× SU(16): 2 ⟨91, 1⟩+ 18 ⟨1, 16⟩+ ⟨14, 16⟩

• SU(14)× Sp(12): 6 ⟨14, 1⟩+ ⟨105, 1⟩+ 2 ⟨1, 275⟩

• SU(15)× SU(17): 9 ⟨15, 1⟩+ 3 ⟨105, 1⟩+ 9 ⟨1, 17⟩+ ⟨1, 153⟩

The full list of solutions is provided as an ancillary file.

6 Conclusions

In this thesis we performed an extended search for anomaly-free N = 1 supergravities
in D = 6 with one tensor multiplet, by leaving the number of group factors constituting
the semisimple gauge group as well as the rank of the classical groups unbounded. To
do so, we obtained lower bounds on the contribution of a given model to H−V , which
made the search space finite, and employed computational techniques to ensure the
feasibility of the scan.

It would be interesting to further extend these results by relaxing the lower bound
on the dimensions of the representations, as well as taking into account additional
representations such as the spinorial of SO(N). Although this would require gener-
alizing the results of section 4, it could be an important step towards the complete
enumeration of the 6D supergravity landscape.
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