
National Technical University of Athens
Department of Electrical and Computer

Engineering

Implementing Machine Learning Models and

Distributed Data Processing on Cloud Computing

Infrastructures

Master Thesis

Author: Christos Zacharioudakis (Student ID: 03400132)
Supervisor: Professor Nectarios Koziris

Thesis Committee:

• Professor Nectarios Koziris

• Assistant Professor Ioannis Konstantinou

• Associate Professor Georgios Goumas

May 13, 2023

Περίληψη

Στις μέρες μας, δεδομένα υπάρχουν σε αφθονία, αυξάνονται συνεχώς και βρίσκ-
ουν πολλές χρήσεις. Μια πιο πρόσφατη χρήση είναι η εκπαίδευση μοντέλων Μηχανικής
Μάθησης, λογισμικού που είναι ικανό να λαμβάνει τις δικές του αποφάσεις. Σε αυτή
τη διατριβή, θα εκπαιδεύσουμε και θα αναπτύξουμε τέτοια μοντέλα, με τη μορφή
ροών εργασιών Μηχανικής Μάθησης. Μια ροή εργασίας Μηχανικής Μάθησης
αποτελείται από έναν πεπερασμένο αριθμό βημάτων, τα οποία εκτελούνται σε κάποιο
υπολογιστικό σύστημα.

Ωστόσο, η εκπαίδευση τέτοιων μοντέλων απαιτεί περισσότερα από δεδομένα.
Απαιτεί τεράστιους υπολογιστικούς πόρους, τους οποίους το μέσο υπολογιστικό
σύστημα δεν διαθέτει. Το υπολογιστικό νέφος καλείται να λύσει αυτή τη δύσκολη
θέση. Ο συνδυασμός των πόρων που προσφέρει το νέφος, μαζί με το Kuber-
netes, έναν ενορχηστρωτή container (πακέτρων), διευκολύνει την εκτέλεση ροών
εργασιών Μηχανικής Μάθησης. Για αυτόν τον σκοπό, θα χρησιμοποιήσουμε το
Kubeflow, το οποίο υλοποιείται ειδικά για το Kubernetes και είναι αφιερωμένο στην
ανάπτυξη των ροών εργασιών Μηχανικής Μάθησης και τις καθιστά απλές, φορητές
και επεκτάσιμες.

Εκτός από το Kubernetes και το Kubeflow, τα πλαίσια ανάλυσης Μεγάλων
Δεδομένων, όπως το Apache Hadoop και το Apache Spark, αξιοποιούνται για τη
φιλοξενία και την προεπεξεργασία των δεδομένων, τα οποία θα χρησιμοποιηθούν
για την εκπαίδευση των μοντέλων Μηχανικής Μάθησης.

Λέξεις Κλειδιά:Υπολογιστικό Νέφος,Μεγάλα Δεδομένα,Μηχανική Μάθηση,
Kubernetes, Kubeflow, Apache Hadoop, Apache Spark

Abstract

In our days, data exists in abundance, it is ever increasing and it finds numer-
ous uses. A most recent use is the training of Machine Learning models, software
capable of making their own decisions. In this thesis, we will train and deploy
such models, in the form of Machine Learning workflows. A Machine Learning
workflow consists of a finite number of steps, which are executed on some com-
puting system.

However, training such models requires more than data. It requires vast com-
putational resources, that the average computing system does not possess. Cloud
computing is called upon to solve this predicament. Combining the resources
offered by the cloud, alongside Kubernetes, a container orchestrator, facilitates
the execution of Machine Learning workflows. For that purpose, we will utilize
the Kubeflow project, which is implemented especially for Kubernetes and is ded-
icated to making deployments of Machine Learning workflows simple, portable
and scalable.

In addition to Kubernetes and Kubeflow, Big Data analytics frameworks, such
as Apache Hadoop and Apache Spark, are exploited to host and pre-process the
data, that will be used to train our Machine Leaning models.

Keywords: Cloud Computing, Big Data, Machine Learning, Kubernetes,
Kubeflow, Apache Hadoop, Apache Spark

Acknowledgments

After two years of arduous and yet productive and interesting studies, the
time has finally come to present my thesis, which has benefited greatly from the
support of many people, some of whom I would sincerely like to thank here.

To begin with, I would like to thank Professor Ioannis Konstantinou for point-
ing me towards exciting and modern topics and for finding the time to guide me
and answer my questions.

Finally, I wish to thank my family for their financial and moral support
throughout my studies. I owe my deepest gratitude to my mother for her con-
stant and unconditional support, patience and encouragement, even in my most
pessimistic moments. Last but not least, I would like to thank my uncle Andreas
for bringing me in contact with computers when I was quite young, thus igniting
my interest in them and inspiring me to pursue this field of study.

CONTENTS

Contents

1 Introduction 1
1.1 Data and its usefulness . 1
1.2 Our task . 2
1.3 Thesis Organization . 3

2 Τheoretical background 4
2.1 Containers . 4

2.1.1 Overview . 4
2.1.2 Container Engines . 6

2.2 Kubernetes . 8
2.2.1 Overview . 8
2.2.2 Kubernetes and Container Engines 9
2.2.3 The cluster . 10
2.2.4 Pods . 13
2.2.5 Deployment Manifests . 15
2.2.6 Storage . 16
2.2.7 Grafana & Prometheus . 17
2.2.8 Kubespray . 17

2.3 Machine Learning . 18
2.3.1 Introduction . 18
2.3.2 Machine Learning Tasks 19
2.3.3 Training data and test data 20
2.3.4 Introduction to Neural Networks 21
2.3.5 Deep Learning . 24
2.3.6 Learning Process - Minimizing the cost function 24
2.3.7 Forward propagation . 25
2.3.8 Gradient Descent . 28
2.3.9 Backpropagation . 30

2.4 Kubeflow . 38
2.4.1 Overview . 38
2.4.2 Kubeflow Pipelines . 38
2.4.3 Machine Learning workflow 39
2.4.4 Tensorflow Operator (TFJob) 41
2.4.5 TensorBoard . 42

2.5 Apache Hadoop . 42
2.5.1 Overview . 42
2.5.2 Hadoop Distributed File System 42

2.6 Apache Spark . 44

I

CONTENTS

2.6.1 Overview . 44
2.6.2 Architecture . 44
2.6.3 Spark-on-k8s-operator . 45

3 System Implementation 47
3.1 System components . 47
3.2 Installation . 48

3.2.1 Kubernetes cluster . 48
3.2.2 Kubeflow . 50
3.2.3 Hadoop Distributed File System 53
3.2.4 Spark-on-k8s-operator . 55

4 Experiments 56
4.1 Machine Learning workflows with Kubeflow 56

4.1.1 MNIST Classification Pipeline 56
4.1.2 CIFAR-10 Classification Pipeline 59

4.2 TensorFlow Jobs . 62
4.2.1 Train a model using a TensorFlow Job 62

4.3 Working on a more complicated dataset 68
4.3.1 The Common Crawl dataset 68
4.3.2 Spark Applications . 69

5 Conclusion 81
5.1 Recap . 81
5.2 Future Work . 81
References82section.6

II

1 INTRODUCTION

1 Introduction

1.1 Data and its usefulness

In computing, data is information that has been translated into a form that
is efficient for movement or processing. Relative to today’s computers and trans-
mission media, data is information converted into binary digital form. Raw data
is a term used to describe data in its most basic digital format. The concept of
data in the context of computing has its roots in the work of Claude Shannon, an
American mathematician known as the father of information theory. He ushered
in binary digital concepts based on applying two-value Boolean logic to electronic
circuits. Binary digit formats underlie the CPUs, semiconductor memories and
disk drives, as well as many of the peripheral devices common in computing to-
day, such as hard and solid-state drives.

The era spanning from the beginning of the 20th century to today is known as
the Information Age. This is largely due to the fact that the world’s technological
capacity to store information has grown from 2.6 exabytes in 1986 to 5 zettabytes
in 2014. Also, due to the extended use of the Internet (Social Media, Cloud Stor-
age e.t.c.) and with the growth of the Internet of Things (IoT),1 2.5 exabytes (2.5
million terabytes) of data is created every day and the pace is ever increasing.
In fact, it was estimated in 2013 that 90% of the data in the world was gener-
ated in 2011 and 2012. It is also estimated that the volume of the available data
is doubled every three years and by 2020, data is expected to double every 73 days.

Early on, the importance of data in business computing became apparent by
the popularity of the terms "data processing" and "electronic data processing,"
which, for a time, came to encompass the full spectrum of what is now known as
information technology. Over the history of corporate computing, specialization
occurred, and a distinct data profession emerged along with growth of corporate
data processing. Data processing refers to the process of collecting and manipu-
lating raw data to yield useful information. In technical terms it is the process
of converting raw data to machine-readable form and its subsequent processing
such as updating, rearranging, or printing by a computer.

1The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and
digital machines, objects, animals or people that are provided with unique identifiers (UIDs)
and the ability to transfer data over a network without requiring human-to-human or human-
to-computer interaction. In other words, IoT is composed of connected “smart” devices that
interact with each other and us while collecting all kinds of data. The number of these devices
is estimated from 2 billion devices in 2006 to a projected 200 billion by 2020.

1

1 INTRODUCTION

Data processing has numerous applications in many sectors, such as health-
care, customer oriented service (Netflix, Amazon, e.t.c), telecommunication, mar-
keting, commerce, security and many others. As a result, data is considered ex-
tremely valuable and nowadays is one of the most important assets a company
has. With the rise of the data economy, companies find enormous value in collect-
ing, sharing and using data. Companies such as Google, Facebook, and Amazon
have all built empires atop the data economy.

In the current thesis, we will be concerned about the usage of data in the
science of Data analytics and Machine Learning. The two fields are highly corre-
lated.

Data analytics is the process of analyzing raw data in order to draw out mean-
ingful, actionable insights, which are then used to inform and drive smart business
decisions. A data analyst will extract raw data, organize it, and then analyze it,
transforming it from incomprehensible numbers into coherent, intelligible infor-
mation. Having interpreted the data, the data analyst will then pass on their
findings in the form of suggestions or recommendations about what a company’s
next steps should be.

Machine learning is a branch of artificial intelligence (AI) and computer sci-
ence which focuses on the use of data and algorithms to imitate the way that
humans learn, gradually improving its accuracy. Through the use of statistical
methods, algorithms are trained to make classifications or predictions, and to
uncover key insights in data mining projects. These insights subsequently drive
decision making within applications and businesses, ideally impacting key growth
metrics.

1.2 Our task

Analyzing vast volumes of data or training large Machine Learning models
are examples of tasks that require vast computational resources, that the aver-
age person do not have at their disposal. The best and most common way to
overcome this obstacle is to use the Cloud. Cloud computing is the on-demand
delivery of IT resources over the Internet with pay-as-you-go pricing. Instead
of buying, owning, and maintaining physical data centers and servers, you can
access technology services, such as computing power, storage, and databases, on
an as-needed basis from a cloud provider. The most popular cloud providers
are Amazon Web Services (AWS), Google Cloud Platform (GCP) and Microsoft

2

1 INTRODUCTION

Azure.

The processes that we will execute during this thesis, will take the form of
containerized applications. Therefore, we are in need of a container orchestrator.
In our case, we will use Kubernetes [1], also known as K8s. To execute our
Machine Learning workflow, we will install Kubeflow [2], a Machine Learning
framework, specifically built for Kubernetes. These workflows take the form of
Directed Acyclic Graphs. Therefore, they are easy to understand and to debug.
Last but not least, we will deploy an independent Apache Hadoop [3] cluster to
store our data, and will use Apache Spark [4] to process them.

1.3 Thesis Organization

In this section we jointly outline the organization of this thesis:

• Chapter 2: We place the theoretical foundations required for a reader to
fully comprehend the subjects mentioned in this thesis.

• Chapter 3: We describe in detail the steps we followed in order to install
the required software and configure the cluster.

• Chapter 4: We analyze the various experiments we performed on our
system.

• Chapter 5: The conclusion to this thesis and some ideas on how our work
could be expanded.

3

2 ΤHEORETICAL BACKGROUND

2 Τheoretical background

2.1 Containers

2.1.1 Overview

A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing en-
vironment to another. This application is known as a containerized application.
Before we had containers, applications ran on physical servers or in virtual ma-
chines. Containers are just the next iteration of how we package and run apps.
As such, they’re faster, more lightweight, and more suited to modern business
requirements than servers and virtual machines.

A container image is a lightweight, standalone, executable package of software
that includes everything needed to run an application: code, run-time, system
tools, system libraries and settings. Containers isolate software from its environ-
ment and ensure that it works uniformly despite differences for instance between
development and staging. Using application containerization is used to deploy
and run distributed applications without launching an entire virtual machine for
each app. Multiple isolated applications or services run on a single host and ac-
cess the same OS kernel. Containers work on bare-metal systems, cloud instances
and virtual machines, across Linux and select Windows and Mac OS operating
systems.

Figure 1: Containers and Virtual Machines

It is important to understand the difference between containers and Virtual
Machines and the reason why enterprises are rapidly adopting containerization

4

2 ΤHEORETICAL BACKGROUND

as a superior approach to application development and management. As we can
see in Figure 1, a virtual machine includes an entire operating system as well as
the application. A physical server running three virtual machines would have a
hypervisor and three separate operating systems running on top of it. By contrast
a server running three containerized applications runs a single operating system,
and each container shares the operating system kernel with the other containers.
Shared parts of the operating system are read-only, while each container has its
own mount for writing. That means the containers are much more lightweight
and use far fewer resources than virtual machines.

The advantages that the containers offer can be summarized in the following
points:

• Portability: A container creates an executable package of software that
is abstracted away from the host operating system, and hence, is portable
and able to run uniformly and consistently across any platform or cloud.
Therefore the containers are a solution to the problem of how to get software
to run reliably when moved from one computing environment to another.
This could be from a developer’s laptop to a test environment, from a
staging environment into production, and perhaps from a physical machine
in a data center to a virtual machine in a private or public cloud.

• Speed: We already mentioned that containers are more “lightweight,” in
comparison to Virtual Machines. This occurs because they share the ma-
chine’s operating system (OS) kernel and are not bogged down with this
extra overhead. Not only does this drive higher server efficiencies, it also
reduces server and licensing costs while speeding up start-times as there is
no operating system to boot.

• Fault isolation: Much like Virtual Machines, each containerized applica-
tion is isolated and operates independently of others. The failure of one
container does not affect the continued operation of any other containers.
Development teams can identify and correct any technical issues within one
container without any downtime in other containers.

• Efficiency: Software running in containerized environments shares the ma-
chine’s OS kernel, and application layers within a container can be shared
across containers. Thus, containers are inherently smaller in capacity than
a VM and require less start-up time, allowing far more containers to run
on the same compute capacity as a single VM. This allows for higher server
efficiencies, reducing server and licensing costs.

5

2 ΤHEORETICAL BACKGROUND

• Ease of management : A container orchestration platform automates
the installation, scaling, and management of containerized workloads and
services. Container orchestration platforms can ease management tasks
such as scaling containerized apps, rolling out new versions of apps, and
providing monitoring, logging and debugging, among other functions.

• Security : The isolation of applications as containers inherently prevents
the invasion of malicious code from affecting other containers or the host
system. Additionally, security permissions can be defined to automatically
block unwanted components from entering containers or limit communica-
tions with unnecessary resources.

Due to the aforementioned benefits, containers have become the de facto com-
pute units of modern cloud-native applications.

2.1.2 Container Engines

The rapid growth in interest and usage of container-based solutions has led to
the need for standards around container technology and the approach to pack-
aging software code. The Open Container Initiative (OCI), established in June
2015 by Docker and other industry leaders, is promoting common, minimal, open
standards and specifications around container technology. Because of this, the
OCI is helping to broaden the choices for open source engines. Users will not be
locked into a particular vendor’s technology, but rather they will be able to take
advantage of OCI-certified technologies that allow them to build containerized
applications using a diverse set of DevOps tools and run these consistently on the
infrastructure(s) of their choosing. Adopting and leveraging OCI specifications
as these evolve will ensure that solutions are vendor-neutral, certified to run on
multiple operating systems and usable in multiple environments.

6

2 ΤHEORETICAL BACKGROUND

Figure 2: Containers and Virtual Machines

Today, Docker [6] is one of the most well-known and highly used container en-
gine technologies. Docker is basically an operating system for containers. There
are other container engines, but Docker is usually preferable, since it offers nu-
merous benefits, in comparison to its rivals:

• Improved and seamless container portability: Docker containers run
without modification across any desktop, data center and cloud environ-
ment.

• Lightweight and granular updates: Multiple processes can be combined
within a single container. This makes it possible to build an application that
can continue running while one of its parts is taken down for an update or
repair.

• Automated container creation: Docker can automatically build a con-
tainer based on application source code.

• Container versioning: Docker can track versions of a container image,
roll back to previous versions, and trace who built a version and how. It
can even upload only the deltas between an existing version and a new one.

• Container reuse: Existing containers can be used as base images—essentially
like templates for building new containers.

• Shared container libraries: Developers can access an open-source reg-
istry containing thousands of user-contributed containers.

Finally, we will describe some of the tools, terms and technologies developers
encounter when using Docker:

7

2 ΤHEORETICAL BACKGROUND

• Docker images: Docker images contain executable application source code
as well as all the tools, libraries, and dependencies that the application code
needs to run as a container. When you run the Docker image, it becomes
one instance (or multiple instances) of the container. An instance describes
the state that a container should be in, when it is initialized. An instance
contains:

– A complete image of the file system inside the container.

– The processes that will be executed inside the container, once it is
initialized, the directory it will be executed from, various environment
variables and more.

• DockerFile: Every Docker container starts with a file containing instruc-
tions for how to build the Docker container image. The DockerFile au-
tomates the process of Docker image creation. It’s essentially a list of
command-line interface (CLI) instructions that Docker Engine will run in
order to assemble the image. It’s possible to build a Docker image from
scratch, but most developers pull them down from common repositories,
such as Docker Hub [7]. Multiple Docker images can be created from a sin-
gle base image, and they’ll share the commonalities of their stack. Docker
images are made up of layers, and each layer corresponds to a version of
the image. Whenever a developer makes changes to the image, a new top
layer is created, and this top layer replaces the previous top layer as the
current version of the image. Previous layers are saved for rollbacks or to
be re-used in other projects.

• Docker containers: Docker containers are the live, running instances of
Docker images. While Docker images are read-only files, containers are live,
ephemeral, executable content. Users can interact with them, and admin-
istrators can adjust their settings and conditions using Docker commands.

2.2 Kubernetes

2.2.1 Overview

In order to execute these applications on a cluster of multiple machines such
as a cloud infrastructure, we need Kubernetes. Kubernetes is an application
orchestrator. For the most part, it orchestrates containerized cloud-native apps.
An orchestrator is a system that deploys and manages applications. It can deploy
applications and dynamically respond to changes. For example, Kubernetes can:

• Deploy an application

8

2 ΤHEORETICAL BACKGROUND

• Scale it up and down dynamically based on demand

• Self-heal it when things break

• Perform zero-downtime rolling updates and rollbacks

Figure 3: Kubernetes architecture

A cloud-native application is one that’s designed to meet cloud-like demands
of auto-scaling, self-healing, rolling updates, rollbacks and more. It’s important
to be clear that cloud-native apps are not applications that will only run in the
public cloud. Yes, they absolutely can run on public clouds, but they can also
run anywhere that you have Kubernetes, even an on-premises data center. So,
cloud-native is about the way applications behave and react to events. In many
ways, Kubernetes is like an operating system (OS) for the cloud.

2.2.2 Kubernetes and Container Engines

Kubernetes and a container engine like Docker are complementary technolo-
gies. Docker has tools that build and package applications as container images.
It can also run containers. Kubernetes can’t do either of those things. Instead,
Kubernetes operates at a higher level providing orchestration services such as
self-healing, scaling and updates.

It’s common practice to use Docker for build-time tasks such as packaging
apps as containers, but then use a combination of Kubernetes and Docker to run
them. In this model, Kubernetes performs high-level orchestration tasks such as
self-healing, scaling and rolling updates, but it needs a tool like Docker to perform
low-level tasks such as starting and stopping containers.

9

2 ΤHEORETICAL BACKGROUND

Assume you have a Kubernetes cluster with 10 nodes to run your production
applications. Behind the scenes, each cluster node is running Docker as its con-
tainer run-time. This means Docker is the low-level technology that starts and
stops the containerised applications. Kubernetes is the higher-level technology
that looks after the bigger picture, such as deciding which nodes to run containers
on, deciding when to scale up or down, and executing updates.

2.2.3 The cluster

A Kubernetes cluster is like any other cluster – a number of machines to host
applications. We call these machines “nodes”, and they can be physical servers,
virtual machines, cloud instances, Raspberry Pis, and more. A Kubernetes cluster
is made of a control plane and worker nodes :

Figure 4: Structure of a control plane node

• Control Plane: A Kubernetes control plane node is a server running col-
lection of system services that make up the control plane of the cluster.
It is frequently called Master or Head node. The simplest setups run a
single control plane node. However, this is only suitable for labs and test
environments. For production environments, multiple control plane nodes
configured for high availability (HA) is vital. Generally speaking, 3 or 5 is
recommended for HA. It’s also considered a good practice not to run user
applications on control plane nodes. This frees them up to concentrate en-
tirely on managing the cluster. The control plane is comprised of certain
services:

10

2 ΤHEORETICAL BACKGROUND

– The API server (kube-apiserver): All communication, between all
components, must go through the API server. Much like the Docker-
files that we use to define container images, there are YAML files, also
known as manifests, that describe the desired state of an application.
This desired state includes things like which container image to use,
which ports to expose, and how many replicas to run. All requests to
the API server are subject to authentication and authorization checks.
Once these are done, the config in the YAML file is validated, persisted
to the cluster store, and work is scheduled to the cluster.

– Cluster store (etcd): The cluster store persistently stores the entire
configuration and state of the cluster. As such, it’s a vital compo-
nent of every Kubernetes cluster. The cluster store is currently based
on etcd, a popular distributed database. Considering its importance,
you should run between 3-5 etcd replicas for high-availability, and you
should provide adequate ways to recover when things go wrong. A
default installation of Kubernetes installs a replica of the cluster store
on every control plane node and automatically configures HA.

– Controller manager (kube-controller-manager): The controller
manager implements all the background controllers that monitor clus-
ter components and respond to events. Its purpose is to ensure the
observed state of the cluster matches the desired state. Each controller
fullfils an specific purpose.

– Scheduler (kube-scheduler): The scheduler watches the API server
for new work tasks and assigns them to appropriate healthy worker
nodes. Its task is to identify whether a node is capable of executing a
task. When identifying nodes capable of running a task, the scheduler
performs various predicate checks. Any node incapable of running the
task is ignored, and those remaining are ranked according to param-
eters, such as its free resources and its current workload. After this
evaluation, the most suitable node is selected to run the task. If the
scheduler does not find a suitable node, the task is not scheduled and
gets marked as Pending. The scheduler is not responsible for running
tasks, just picking the nodes to run them. Running the tasks is the
work of Pods, of which we will talk about in depth later on.

11

2 ΤHEORETICAL BACKGROUND

Figure 5: Structure of a worker node

• Worker Nodes: These nodes are servers that are the workers of a Kuber-
netes cluster. They have three main tasks :

1. Watch the API server for new work assignments

2. Execute them

3. Report back to the control plane (via the API server)

The worker node is comprised of three major components:

– Kubelet: The kubelet is main Kubernetes agent and runs on every
cluster node. When you join a node to a cluster, the process installs
the kubelet, which is then responsible for registering it with the cluster.
This process registers the node’s CPU, memory, and storage into the
wider cluster pool. One of the main jobs of the kubelet is to watch the
API server for new work tasks. Any time it sees one, it executes the
task and maintains a reporting channel back to the control plane. If a
kubelet is incapable of running a task, it reports back to the control
plane and lets the control plane decide what actions to take.

– Container engine: The kubelet needs a container run-time to per-
form container-related tasks – things like pulling images and starting
and stopping containers. In the early days, Kubernetes had native sup-
port for Docker. However, it is worth mentioning that Kubernetes 1.20
deprecated Docker as a engine. Container images created by Docker
will continue to work as normal, and this won’t change. But a fu-
ture release of Kubernetes will end support of Docker as a engine. To

12

2 ΤHEORETICAL BACKGROUND

streamline the deprecation process, many Kubernetes clusters already
ship with containerd as the default engine. Containerd is effectively a
stripped-down version of Docker with just the components that Ku-
bernetes needs.

– Kube-proxy: Kube-proxy runs on every node and is responsible for
local cluster networking. It ensures each node gets its own unique
IP address, and it implements local iptables or IPVS rules to handle
routing and load-balancing of traffic on the Pod network.

Figure 6: A containerized application inside a Pod

2.2.4 Pods

For an application to be deployed on a Kubernetes cluster, it must pass through
certain stages:

1. You program the application in a coding language of your choice.

2. Secondly, you build it into a container image and store it in a registry. At
this point, the application service is containerized.

3. Next, this container must be placed in a Pod

4. Finally, the application will be deployed on the cluster, by submitting a
declarative manifest file (YAML) to the API Server.

Kubernetes demands that every container runs inside a Pod. In simple
terms, a Pod is just a wrapper that allows a container to run on a Kubernetes
cluster. The simplest model is to run a single container in every Pod. This is why
we often use the terms “Pod” and “container” interchangeably. However, there

13

2 ΤHEORETICAL BACKGROUND

are advanced use-cases that run multiple containers in a single Pod. Once you’ve
defined the Pod, you’re ready to deploy the app to Kubernetes.

At the highest-level, a Pod is an environment to run containers. Pods them-
selves don’t actually run applications – applications always run in containers.
Pods ring-fence an area of the host OS, build a network stack, create a number
of kernel namespaces, and run one or more containers. If you’re running multiple
containers in a Pod, they all share the same Pod environment. This includes the
network stack, volumes, IPC namespace, shared memory, and more. As an ex-
ample, this means all containers in the same Pod will share the same IP address
(the Pod’s IP). There is also a localhost interface, that allows containers in the
same Pods, to communicate directly with each other.

Figure 7: The anatomy of a Pod

Pods are the minimum unit of scheduling in Kubernetes. If you need to scale
an app, you add or remove Pods. You do not scale by adding more containers to
existing Pods. Multi-container Pods are only for situations where two different,
but complimentary, containers need to share resources.

Lastly, we need to mention two important characteristics of a Pod :

• Pods are ephemeral: In other words, they’re created, they perform cer-
tain tasks, and once finished, they are destroyed. If they are destroyed
unexpectedly, Kubernetes starts a new one in its place. However, even
though the new Pod looks nearly identical to the old one, it has a different
ID and IP address.

• Pods are immutable: Once a Pod is running, you never change its con-

14

2 ΤHEORETICAL BACKGROUND

figuration. If you need to change or update it, you replace it with new one
running the new configuration, by deleting the old one and deploying the
new one.

2.2.5 Deployment Manifests

A Kubernetes deployment manifest is a YAML or JSON file that defines how
to deploy a set of replicas of a particular application to a Kubernetes cluster. Here
are some of the key components that can be specified in a Kubernetes deployment
manifest:

• apiVersion: The version of the Kubernetes API to use.

• kind: The kind of resource being defined in the manifest. In the case of a
deployment, this would be Deployment.

• metadata: Information about the deployment, including its name and any
labels or annotations that should be applied to it.

• spec: The desired state of the deployment, including the number of replicas
to run, the container image to use, and the resources to allocate to the
replicas.

• replicas: The number of replicas of the application to run.

• selector: A label query used to identify the pods that belong to the de-
ployment.

• template: A description of the pods that the deployment should create.
This includes the container image to use, the ports to expose, and any
environment variables or volumes to set.

Other components that may be included in a deployment manifest include
liveness and readiness probes, resource limits and requests, and rolling update
policies. Here is an example of a Kubernetes deployment manifest in YAML
format:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: my-app
5 spec:
6 replicas: 3
7 selector:
8 matchLabels:

15

2 ΤHEORETICAL BACKGROUND

9 app: my-app
10 template:
11 metadata:
12 labels:
13 app: my-app
14 spec:
15 containers:
16 - name: my -app
17 image: my-app:latest
18 ports:
19 - containerPort: 80

This deployment manifest creates a deployment named "my-app" that runs
three replicas of a container based on the image "my-app:latest", exposed on port
80. The replicas are identified by the label "app: my-app", which is applied to the
replicas and used in the deployment’s selector to determine which pods belong to
the deployment.

2.2.6 Storage

In Kubernetes, persistent storage is provided through the use of persistent vol-
umes (PVs) and persistent volume claims (PVCs). PVs are resources that provide
raw block storage that can be mounted as a filesystem on a pod. They are typi-
cally backed by a physical storage device, such as a disk or a networked storage
system. PVCs are requests for a specific amount of storage from a PV. When a
PVC is created, the Kubernetes control plane looks for a PV with sufficient ca-
pacity and the right access modes and binds the PVC to it. Pods can then mount
the PVC as a volume, providing persistent storage for the pod’s containers.

There are several types of persistent volumes that can be used in Kubernetes,
including:

• HostPath/Local: A PV that uses a local directory on the node as the
backing store.

• NFS: A PV that uses an NFS server as the backing store.

• iSCSI: A PV that uses an iSCSI target as the backing store.

• Ceph RBD: A PV that uses a Ceph Rados block device as the backing
store.

• GCEPersistentDisk: A PV that uses a Google Compute Engine persis-
tent disk as the backing store.

16

2 ΤHEORETICAL BACKGROUND

In the current thesis, we will use the first. In addition to PVs and PVCs,
Kubernetes also provides support for dynamic provisioning of persistent storage.
This allows storage to be automatically provisioned and attached to a cluster
when a PVC is created, without the need to pre-create PVs. This can be useful
in situations where storage needs are unpredictable or vary over time.

2.2.7 Grafana & Prometheus

Monitoring a Kubernetes Cluster is the need of the hour for any application
following a microservices architecture. There are many solutions that one can
implement to monitor their Kubernetes workload. The one we will deploy is
Prometheus [8] and Grafana [9].

Kubernetes is a complex system with many moving parts. Effective monitor-
ing of such a dynamic system requires tools with advanced capabilities. Prometheus
is one such application. Prometheus is an open-source monitoring solution that
can collect metrics from a number of target systems. It collects and stores the
metrics as time-series data. It also features an excellent alerting mechanism that
can integrate with popular team collaboration and incident management tools.

Grafana is an open-source visualization tool used to monitor infrastructure
in real-time. The visualization of data through graphs helps in log analysis and
troubleshooting real-time infra issues. In our case, the data source of Grafana
will be the metrics collected by Prometheus.

Figure 8: A Grafana Dashboard

2.2.8 Kubespray

Kubespray is an open-source tool for deploying and managing Kubernetes

17

2 ΤHEORETICAL BACKGROUND

clusters. It uses Ansible [10] to automate the deployment and configuration of
Kubernetes clusters on multiple cloud platforms or on-premises. Ansible is an
open-source software platform for automating and configuring computer systems.
It can be used for a wide range of tasks, such as provisioning and maintaining
servers, deploying applications, and orchestrating complex workflows. Ansible is
written in Python and can be used to manage infrastructure on-premises and in
the cloud, and it can be used to manage systems running Linux, Windows, and
other operating systems.

One of the main benefits of using Kubespray is that it allows users to deploy
and manage Kubernetes clusters in a consistent, repeatable way and it supports
multiple Linux distributions, including Ubuntu, CentOS, and Debian. It provides
a set of Ansible playbooks that can be used to deploy and configure a cluster, and
it also includes a number of tools and scripts for tasks such as upgrading clusters,
scaling clusters, and rolling back failed updates. An Ansible playbook is a file
that specifies a series of tasks to be executed by Ansible. Playbooks are written
in YAML and are a way to define the infrastructure and configuration of a system.

In addition to its core functionality, Kubespray also includes a number of op-
tional add-ons and integrations that can be used to extend the capabilities of the
deployed cluster. These include support for monitoring tools like Prometheus and
Grafana, logging tools like ELK, and tools for managing secrets and certificates
like Hashicorp Vault.

2.3 Machine Learning

2.3.1 Introduction

Our imagination has long been captivated by visions of machines that can
learn and imitate human intelligence. Nowadays, software programs that can
acquire new knowledge and skills through experience are becoming increasingly
common. We use such machine learning programs to discover new music that we
enjoy, and to quickly find the exact shoes we want to purchase online. Machine
learning programs allow us to dictate commands to our smartphones and allow
our thermostats to set their own temperatures. Machine learning programs can
decipher sloppily-written mailing addresses better than humans and guard credit
cards from fraud more vigilantly. From investigating new medicines to estimating
the page views for versions of a headline, machine learning software is becoming
central to many industries. Machine learning has even encroached on activities
that have long been considered uniquely human, such as writing columns in a

18

2 ΤHEORETICAL BACKGROUND

newspaper.

When most people hear “Machine Learning,” they picture some kind of highly-
advanced robot. But Machine Learning is not just a futuristic fantasy, it’s already
here. In fact, it has been around for decades in some specialized applications,
such as Optical Character Recognition (OCR). But the first ML application that
really became mainstream, improving the lives of hundreds of millions of people,
took over the world back in the 1990s: it was the spam filter. By observing
thousands of emails that have been previously labeled as either spam or ham,
spam filters learn to classify new messages. It was followed by hundreds of ML
applications that now quietly power hundreds of products and features that you
use regularly, from better recommendations to voice search. Machine learning is
the design and study of software artifacts that use past experience to make future
decisions; it is the study of programs that learn from data. The fundamental goal
of machine learning is to generalize, or to induce an unknown rule from examples
of the rule’s application.

2.3.2 Machine Learning Tasks

Machine learning tasks can be split into two major categories, supervised and
unsupervised learning.

The majority of practical machine learning uses supervised learning. Super-
vised learning is where you have input variables (x) and an output variable (Y)
and you use an algorithm to learn the mapping function from the input to the
output (Y = f(x)). The goal is to approximate the mapping function so well that
when you have new input data (x) that you can predict the output variables (Y)
for that data. It is called supervised learning because the process of an algorithm
learning from the training dataset can be thought of as a teacher supervising the
learning process. We know the correct answers, the algorithm iteratively makes
predictions on the training data and is corrected by the teacher. Learning stops
when the algorithm achieves an acceptable level of performance. In Supervised
learning, you train the machine using data which is well "labeled." It means some
data is already tagged with the correct answer. A supervised learning algorithm
learns from labeled training data, helps you to predict outcomes for unforeseen
data. Supervised learning can be split into two main subcategories:

• Classification: A classification problem is when the output variable is a
category, such as “red” or “blue” or “disease” and “no disease”.

19

2 ΤHEORETICAL BACKGROUND

• Regression: A regression problem is when the output variable is a real value,
such as “dollars” or “weight”.

Unsupervised learning is where you only have input data (X) and no corre-
sponding output variables. The goal for unsupervised learning is to model the
underlying structure or distribution in the data in order to learn more about the
data. These are called unsupervised learning because unlike supervised learn-
ing there are no correct answers and there is no teacher. Algorithms are left to
their own devices to discover and present the underlying structure in the data.
Unsupervised learning can be split into two main subcategories:

• Clustering: It mainly deals with finding a structure or pattern in a collection
of uncategorized data. Clustering algorithms will process your data and find
natural clusters(groups) if they exist in the data. You can also modify how
many clusters your algorithms should identify. It allows you to adjust the
granularity of these groups.

• Association: This unsupervised technique is about discovering interesting
relationships between variables in large databases. For example, people
that buy a new home most likely to buy new furniture.

For this study, we are interested in classification problems.

2.3.3 Training data and test data

The observations in the training set comprise the experience that the algo-
rithm uses to learn. In supervised learning problems, each observation consists of
an observed response variable and one or more observed explanatory variables.

The test set is a similar collection of observations that is used to evaluate the
performance of the model using some performance metric. It is important that no
observations from the training set are included in the test set. If the test set does
contain examples from the training set, it will be difficult to assess whether the
algorithm has learned to generalize from the training set or has simply memorized
it. A program that generalizes well will be able to effectively perform a task with
new data. In contrast, a program that memorizes the training data by learning
an overly complex model could predict the values of the response variable for the
training set accurately, but will fail to predict the value of the response variable
for new examples.

Memorizing the training set is called overfitting. A program that memorizes
its observations may not perform its task well, as it could memorize relations and

20

2 ΤHEORETICAL BACKGROUND

structures that are noise or coincidence. Balancing memorization and general-
ization, or over-fitting and under-fitting, is a problem common to many machine
learning algorithms.

In addition to the training and test data, a third set of observations, called
a validation or hold-out set, is sometimes required. The validation set is used
to tune variables called hyperparameters (learning rate, batch size e.t.c.), which
control how the model is learned. The program is still evaluated on the test
set to provide an estimate of its performance in the real world; its performance
on the validation set should not be used as an estimate of the model’s real-world
performance since the program has been tuned specifically to the validation data.
It is common to partition a single set of supervised observations into training,
validation, and test sets. There are no requirements for the sizes of the partitions,
and they may vary according to the amount of data available. It is common to
allocate 50% or more of the data to the training set, 25% to the test set, and the
remainder to the validation set.

2.3.4 Introduction to Neural Networks

The most successful model in the context of pattern recognition is the feed-
forward neural network. The term ‘neural network’ has its origins in attempts to
find mathematical representations of information processing in biological systems
(McCulloch and Pitts, 1943; Widrow and Hoff, 1960; Rosenblatt, 1962; Rumel-
hart et al., 1986). Indeed, it has been used very broadly to cover a wide range
of different models, many of which have been the subject of exaggerated claims
regarding their biological plausibility. From the perspective of practical appli-
cations of pattern recognition, however, biological realism would impose entirely
unnecessary constraints.

Birds inspired us to fly, burdock plants inspired velcro, and nature has inspired
many other inventions. It seems only logical, then, to look at the brain’s architec-
ture for inspiration on how to build an intelligent machine. This is the key idea
that inspired artificial neural networks (ANNs). However, although planes were
inspired by birds, they don’t have to flap their wings. Similarly, ANNs have grad-
ually become quite different from their biological counterparts. Some researchers
even argue that we should drop the biological analogy altogether (e.g., by saying
“units” rather than “neurons”), lest we restrict our creativity to biologically plau-
sible systems

ANNs are at the very core of Deep Learning. They are versatile, powerful and

21

2 ΤHEORETICAL BACKGROUND

scalable, making them ideal to tackle large and highly complex Machine Learning
tasks, such as classifying billions of images (e.g. Google Images), powering speech
recognition services (e.g. Apple’s Siri) or recommending the best videos to watch
to hundreds of millions of users every day (e.g. YouTube).

The artificial neural networks, that will concern us, are powerful non linear
models for classification and regression that use a different strategy to overcome
the perceptron’s limitations. Artificial neural networks are described by three
components. The first is the model’s architecture, or topology, which describes
the layers of neurons and structure of the connections between them. The second
component is the activation function used by the artificial neurons. The third
component is the learning algorithm that finds the optimal values of the weights.

There are two main types of artificial neural networks:

• Feed-forward neural networks are the most common type of neural net,
and are defined by their directed acyclic graphs. Signals only travel in
one direction—towards the output layer—in feed-forward neural networks.
Feed-forward neural networks are commonly used to learn a function to
map an input to an output.

• Feed-back neural networks, or recurrent neural networks, do contain cycles.
The feed-back cycles can represent an internal state for the network that
can cause the network’s behavior to change over time based on its input.
The temporal behavior of feed-back neural networks makes them suitable
for processing sequences of inputs.

The multi-layer perceptron (MLP) is the one of the most commonly used ar-
tificial neural networks. The name is a slight misnomer; a multi-layer perceptron
is not a single perceptron with multiple layers, but rather multiple layers of arti-
ficial neurons that can be perceptrons. The layers of the MLP form a directed,
acyclic graph. Generally, each layer is fully connected to the subsequent layer;
the output of each artificial neuron in a layer is an input to every artificial neuron
in the next layer towards the output. MLPs have three or more layers of artificial
neurons.The input layer consists of simple input neurons. The input neurons are
connected to at least one hidden layer of artificial neurons. The hidden layer rep-
resents latent variables; the input and output of this layer cannot be observed in
the training data. Finally, the last hidden layer is connected to an output layer.

22

2 ΤHEORETICAL BACKGROUND

Figure 9: A simple neural network with two inputs, two outputs and one hidden
layer with three neurons

The artificial neurons, or units, in the hidden layer commonly use non lin-
ear activation functions such as the hyperbolic tangent function and the logistic
function, which are given by the following equations respectively:

Figure 10: The most common activation functions

As with other supervised models, our goal is to find the values of the weights
that minimize the value of a cost function. The mean squared error cost func-
tion is commonly used with multi-layer perceptrons. It is given by the following
equation, where m is the number of training instances:

Figure 11: The most common loss function

Obviously, there are many other activation and loss functions, each suited to
specific applications. The reason we wish to minimize the aforementioned loss

23

2 ΤHEORETICAL BACKGROUND

function is because we want the difference between the label yi (or target) of the
sample and the response f(xi) of the network (or prediction) about the sample
to be a small as possible. In other words, we want for yi to be equal to f(xi),
so that the network classifies the samples correctly at (almost) all times. In the
next section, we will discuss the process with which we accomplish this.

2.3.5 Deep Learning

Deep neural networks, which are remarkably effective for many machine learn-
ing tasks, define parameterized functions from inputs to outputs as compositions
of many layers of basic building blocks, such as affine transformations and simple
non linear functions. Commonly used examples of the latter are sigmoids and
rectified linear units (ReLUs). By varying parameters of these blocks, we can
"train" such a parameterized function with the goal of fitting any given finite set
of input/output examples.

Deep learning aims to extract complex features from high-dimensional data
and use them to build a model that relates inputs to outputs (e.g., classes).
Deep learning architectures are usually constructed as multi-layer networks so
that more abstract features are computed as non linear functions of lower-level
features. We mainly focus on supervised learning, where the training inputs are
labeled with correct classes, but in principle our approach can also be used for
unsupervised, privacy-preserving learning, too. Multi-layer neural networks (2
hidden layers or more) are the most common form of deep learning architectures.

In general, the values computed in higher layers represent more abstract fea-
tures of the data. The first layer is composed of the raw features extracted from
the data, e.g., the intensity of colors in each pixel in an image or the frequency
of each word in a document. The outputs of the last layer correspond to the
abstract answers produced by the model. If the neural network is used for clas-
sification, these abstract features also represent the relation between input and
output. The non linear function f and the weight matrices determine the features
that are extracted at each layer. The main challenge in deep learning is to auto-
matically learn from training data the values of the parameters (weight matrices)
that maximize the objective of the neural network (e.g., classification accuracy).

2.3.6 Learning Process - Minimizing the cost function

Learning the parameters of a neural network is a non linear optimization prob-
lem. In supervised learning, the objective function is the output of the neural

24

2 ΤHEORETICAL BACKGROUND

network. The algorithms that are used to solve this problem are typically variants
of gradient descent. Simply put, gradient descent starts at a random point (set
of parameters for the neural network), then, at each step, computes the gradient
of the non linear function being optimized and updates the parameters so as to
decrease the gradient. This process continues until the algorithm converges to a
local optimum.

In a neural network, the gradient of each weight parameter is computed
through feed-forward and back-propagation procedures. Feed-forward sequen-
tially computes the output of the network given the input data and then cal-
culates the error, i.e., the difference between this output and the true value of
the function. Back-propagation propagates this error back through the network
and computes the contribution of each neuron to the total error. The gradients
of individual parameters are computed from the neurons’ activation values and
their contribution to the error.

2.3.7 Forward propagation

During the forward propagation stage, the features are input to the network and
fed through the subsequent layers to produce the output activations. First, we
compute the activation for the unit Hidden1. We find the weighted sum of input
to Hidden1, and then process the sum with the activation function. Note that
Hidden1 receives a constant input from a bias unit that is not depicted in the
diagram in addition to the inputs from the input units. In the following diagram,
g(x) is the activation function:

Next, we compute the activation for the second hidden unit. Like the first
hidden unit, it receives weighted inputs from both of the input units and a con-

25

2 ΤHEORETICAL BACKGROUND

stant input from a bias unit. We then process the weighted sum of the inputs, or
preactivation, with the activation function as shown in the following figure:

We then compute the activation for Hidden3 in the same manner:

Having computed the activations of all of the hidden units in the first layer,
we proceed to the second hidden layer. In this network, the first hidden layer is
fully connected to the second hidden layer. Similar to the units in the first hidden
layer, the units in the second hidden layer receive a constant input from bias units
that are not depicted in the diagram. We proceed to compute the activation of
Hidden4:

26

2 ΤHEORETICAL BACKGROUND

We next compute the activations of Hidden5 and Hidden6. Having computed
the activations of all of the hidden units in the second hidden layer, we proceed to
the output layer in the following figure. The activation of Output1 is the weighted
sum of the second hidden layer’s activations processed through an activation
function. Similar to the hidden units, the output units both receive a constant
input from a bias unit:

We calculate the activation of Output2 in the same manner:

27

2 ΤHEORETICAL BACKGROUND

We computed the activations of all of the units in the network, and we have
now completed forward propagation. The network is not likely to approximate
the true function well using the initial random values of the weights. We must
now update the values of the weights so that the network can better approximate
our function. We will do so using the algorithm of backpropagation.

2.3.8 Gradient Descent

In this section, we will discuss a method to efficiently estimate the optimal
values of the model’s parameters called gradient descent. Note that our defini-
tion of a good fit has not changed; we will still use gradient descent to estimate
the values of the model’s parameters that minimize the value of the cost function.

Gradient descent is sometimes described by the analogy of a blindfolded man
who is trying to find his way from somewhere on a mountainside to the lowest
point of the valley. He cannot see the topography, so he takes a step in the
direction with the steepest decline. He then takes another step, again in the
direction with the steepest decline. The sizes of his steps are proportional to
the steepness of the terrain at his current position. He takes big steps when the
terrain is steep, as he is confident that he is still near the peak and that he will not
overshoot the valley’s lowest point. The man takes smaller steps as the terrain
becomes less steep. If he were to continue taking large steps, he may accidentally
step over the valley’s lowest point. He would then need to change direction and
step toward the lowest point of the valley again. By taking decreasingly large
steps, he can avoid stepping back and forth over the valley’s lowest point. The
blindfolded man continues to walk until he cannot take a step that will decrease
his altitude; at this point, he has found the bottom of the valley.

28

2 ΤHEORETICAL BACKGROUND

Figure 12: Finding the local optimum of an one-dimensional convex function
using GD

Formally, gradient descent is an optimization algorithm that can be used to
estimate the local minimum of a function. We can use gradient descent to find
the values of the model’s parameters that minimize the value of the cost func-
tion. Gradient descent iteratively updates the values of the model’s parameters
by calculating the partial derivative of the cost function at each step. It is im-
portant to note that gradient descent estimates the local minimum of a function.
A three-dimensional plot of the values of a convex cost function for all possible
values of the parameters looks like a bowl. The bottom of the bowl is the sole
local minimum. Non-convex cost functions can have many local minima, that is,
the plots of the values of their cost functions can have many peaks and valleys.
Gradient descent is only guaranteed to find the local minimum; it will find a
valley, but will not necessarily find the lowest valley. Fortunately, the residual
sum of the squares cost function is convex.

An important hyperparameter of gradient descent is the learning rate, which
controls the size of the blindfolded man’s steps. If the learning rate is small
enough, the cost function will decrease with each iteration until gradient descent
has converged on the optimal parameters. As the learning rate decreases, how-
ever, the time required for gradient descent to converge increases; the blindfolded
man will take longer to reach the valley if he takes small steps than if he takes
large steps. If the learning rate is too large, the man may repeatedly overstep the
bottom of the valley, that is, gradient descent could oscillate around the optimal
values of the parameters.

29

2 ΤHEORETICAL BACKGROUND

There are two varieties of gradient descent that are distinguished by the num-
ber of training instances that are used to update the model parameters in each
training iteration. The gradients of the parameters can be averaged over all
available data. This algorithm, known as batch gradient descent, is not efficient,
especially if learning on a large dataset. Stochastic gradient descent (SGD) is a
drastic simplification which computes the gradient over an extremely small subset
(mini-batch) of the whole dataset. In the simplest case, corresponding to max-
imum stochasticity, one data sample is selected at random in each optimization
step.

Let w be the flattened vector of all parameters in a neural network, composed
of Wk for every k. Let E be the error function, i.e., the difference between the
true value of the objective function and the computed output of the network. The
back-propagation algorithm computes the partial derivative of E with respect to
each parameter in w and updates the parameter so as to reduce its gradient. The
update rule of stochastic gradient descent for a parameter wj is:

where α is the learning rate and Ei is computed over the mini-batch i. We
refer to one full iteration over all available input data as an epoch. Note that each
parameter in vector w is updated independently from other parameters. Some
techniques set the learning rate adaptively, but still preserve this independence.

2.3.9 Backpropagation

The backpropagation algorithm is commonly used in conjunction with an op-
timization algorithm such as gradient descent to minimize the value of the cost
function. The algorithm takes its name from a portmanteau of backward propa-
gation, and refers to the direction in which errors flow through the layers of the
network. Backpropagation can theoretically be used to train a feed-forward net-
work with any number of hidden units arranged in any number of layers, though
computational power constrains this capability.

Backpropagation is similar to gradient descent in that it uses the gradient of
the cost function to update the values of the model parameters. Unlike the linear
models we have previously seen, neural nets contain hidden units that represent
latent variables; we can’t tell what the hidden units should do from the training
data. If we do not know what the hidden units should do, we cannot calculate

30

2 ΤHEORETICAL BACKGROUND

their errors and we cannot calculate the gradient of cost function with respect
to their weights. A naive solution to overcome this is to randomly perturb the
weights for the hidden units. If a random change to one of the weights decreases
the value of the cost function, we save the change and randomly change the value
of another weight. An obvious problem with this solution is its prohibitive com-
putational cost. Backpropagation provides a more efficient solution.

We can calculate the error of the network only at the output units. The
hidden units represent latent variables; we cannot observe their true values in
the training data and thus, we have nothing to compute their error against. In
order to update their weights, we must propagate the network’s errors backwards
through its layers. We will begin with Output1. Its error is equal to the difference
between the true and predicted outputs, multiplied by the partial derivative of
the unit’s activation:

We then calculate the error of the second output unit:

We computed the errors of the output layer. We can now propagate these
errors backwards to the second hidden layer. First, we will compute the error of
hidden unit Hidden4. We multiply the error of Output1 by the value of the weight

31

2 ΤHEORETICAL BACKGROUND

connecting Hidden4 and Output1. We similarly weigh the error of Output2. We
then add these errors and calculate the product of their sum and the partial
derivative of Hidden4:

We similarly compute the errors of Hidden5:

We then compute the Hidden6 error in the following figure:

32

2 ΤHEORETICAL BACKGROUND

We calculated the error of the second hidden layer with respect to the output
layer. Next, we will continue to propagate the errors backwards towards the input
layer. The error of the hidden unit Hidden1 is the product of its partial derivative
and the weighted sums of the errors in the second hidden layer:

We similarly compute the error for hidden unit Hidden2:

33

2 ΤHEORETICAL BACKGROUND

We similarly compute the error for Hidden3:

We computed the errors of the first hidden layer. We can now use these er-
rors to update the values of the weights. We will first update the weights for
the edges connecting the input units to Hidden1 as well as the weight for the
edge connecting the bias unit to Hidden1. We will increment the value of the
weight connecting Input1 and Hidden1 by the product of the learning rate, error
of Hidden1, and the value of Input1.

We will similarly increment the value of Weight2 by the product of the learning
rate, error of Hidden1, and the value of Input2. Finally, we will increment the
value of the weight connecting the bias unit to Hidden1 by the product of the
learning rate, error of Hidden1, and one.

34

2 ΤHEORETICAL BACKGROUND

We will then update the values of the weights connecting hidden unit Hidden2
to the input units and the bias unit using the same method:

Next, we will update the values of the weights connecting the input layer to
Hidden3:

35

2 ΤHEORETICAL BACKGROUND

Since the values of the weights connecting the input layer to the first hidden
layer is updated, we can continue to the weights connecting the first hidden layer
to the second hidden layer. We will increment the value of Weight7 by the product
of the learning rate, error of Hidden4, and the output of Hidden1. We continue
to similarly update the values of weights Weight8 to Weight15:

The weights for Hidden5 and Hidden6 are updated in the same way. We
updated the values of the weights connecting the two hidden layers. We can
now update the values of the weights connecting the second hidden layer and the
output layer. We increment the values of weights W16 through W21 using the
same method that we used for the weights in the previous layers:

36

2 ΤHEORETICAL BACKGROUND

After incrementing the value of Weight21 by the product of the learning rate,
error of Output2, and the activation of Hidden6, we have finished updating the
values of the weights for the network. We can now perform another forward
pass using the new values of the weights; the value of the cost function produced
using the updated weights should be smaller. We will repeat this process until
the model converges or another stopping criterion is satisfied. Unlike the linear
models we have discussed, backpropagation does not optimize a convex function.
It is possible that backpropagation will converge on parameter values that specify
a local, rather than global, minimum. In practice, local optima are frequently
adequate for many applications.

37

2 ΤHEORETICAL BACKGROUND

2.4 Kubeflow

2.4.1 Overview

Kubeflow is an open-source platform for developing, deploying, and running
machine learning (ML) pipelines on top of Kubernetes. It aims to make it easy
to build, deploy, and manage ML workflows on Kubernetes, by providing a set of
tools, libraries, and APIs that can be used to build and deploy ML models.

Some of the key features of Kubeflow include:

• A user interface for managing and monitoring ML pipelines.

• A set of APIs and libraries for building and deploying ML models in a
consistent, reproducible way.

• Support for popular ML frameworks such as TensorFlow, PyTorch, and
XGBoost.

• Integration with other tools and services commonly used in ML workflows,
such as Jupyter notebooks, Argo, and Seldon.

Kubeflow can be used to develop and deploy ML models in a variety of con-
texts, including on-premises data centers, cloud platforms, and edge devices. It
is designed to be scalable, flexible, and easy to use, making it a popular choice
for organizations looking to build and deploy ML applications at scale.

2.4.2 Kubeflow Pipelines

The part of Kubeflow that will concern us for our first experiments is Kubeflow
Pipelines.

Kubeflow Pipelines is an open-source platform for building and deploying
machine learning pipelines on Kubernetes. It allows users to build, deploy, and
manage end-to-end machine learning workflows on cloud infrastructure, including
on-premises and hybrid cloud environments.

Kubeflow Pipelines consists of several components, including the following:

• A user interface for designing and managing pipelines.

• A pipeline orchestration engine for executing pipelines.

• A set of pre-packaged, customizable pipeline components for common ma-
chine learning tasks such as data preprocessing, training, and evaluation.

38

2 ΤHEORETICAL BACKGROUND

• Integration with popular machine learning libraries and frameworks such as
TensorFlow, PyTorch, and scikit-learn.

To deploy a Kubeflow pipeline, you will need to follow these steps:

• Build your pipeline: You can use the Kubeflow Pipelines user interface or
the Kubeflow Pipelines Python SDK to build your pipeline. The SDK can
connect directly to the Kubeflow API and deploy the pipeline or generate a
YAML file that describes the pipeline. In the second case, we must upload
the file to Kubeflow through the user interface. The pipeline should define
the workflow of your machine learning tasks and the dependencies between
them.

• Deploy the pipeline: You can use the kfp command-line tool or the
Kubeflow Pipelines user interface to deploy your pipeline to the Kubeflow
deployment.

• Execute the pipeline: You can use the Kubeflow Pipelines user inter-
face or the kfp command-line tool to execute your pipeline and monitor its
progress.

Kubeflow Pipelines also provides a number of features to help you manage
and deploy your pipelines, such as pipeline versioning, resource management,
and integration with popular machine learning frameworks.

2.4.3 Machine Learning workflow

Figure 13: The structure of a Machine Learning Workflow

We have mentioned the term "Machine Learning workflow" many times until
this point, but we have neglected to go into further detail. A Machine Learning
workflow or pipeline is a set of steps that are followed to build and deploy a
machine learning model. Here are some common steps that may be included in
a machine learning pipeline:

39

2 ΤHEORETICAL BACKGROUND

1. Data collection and preparation: This step involves collecting and
preparing the data that will be used to train and evaluate the machine
learning model. This may involve tasks such as data cleaning, normaliza-
tion, and feature selection.

2. Data pre-processing: This step involves transforming the raw data into
a format that is suitable for model training. This may involve tasks such
as feature scaling, one-hot encoding, and dimensionality reduction.

3. Feature engineering: This step involves designing and creating new fea-
tures from the raw data that may be more useful for model training. This
may involve tasks such as feature selection, feature transformation, and
feature extraction.

4. Model training: This step involves using the pre-processed and engi-
neered data to train a machine learning model. This may involve tasks
such as selecting a model type, tuning hyperparameters, and evaluating
model performance.

5. Model evaluation: This step involves evaluating the trained model on
a holdout dataset to assess its performance. This may involve tasks such
as calculating evaluation metrics, comparing the model to baseline bench-
marks, and identifying any areas for improvement.

6. Model deployment: This step involves deploying the trained model to
a production environment where it can be used to make predictions or
take other actions. This may involve tasks such as setting up an API or
integrating the model into an existing application.

These are just a few examples of steps that may be included in a machine
learning pipeline. The specific steps and tasks will depend on the specific ma-
chine learning problem being solved and the tools and frameworks being used.

The purpose of a machine learning pipeline is to automate and streamline the
process of building and deploying machine learning models. By using a pipeline,
data scientists and machine learning engineers can focus on developing the indi-
vidual components of the pipeline, rather than worrying about the overall work-
flow and orchestration of the process.

A machine learning pipeline can be implemented using a variety of tools and
frameworks. For this thesis, we will use Kubeflow Pipelines [11] to build and

40

2 ΤHEORETICAL BACKGROUND

deploy a machine learning pipeline on Kubernetes. There are also other ways
such as Apache Airflow.

2.4.4 Tensorflow Operator (TFJob)

TensorFlow [12] is one of the most commonly used machine learning frame-
works, and Kubeflow provides a number of tools and resources for running Ten-
sorFlow workloads on Kubernetes. In Kubeflow, TensorFlow is executed as a
Kubernetes operator. An operator is a Kubernetes custom resource that defines
a set of APIs and controllers that automate the deployment and management of
an application or service. The TensorFlow operator in Kubeflow is responsible
for managing TensorFlow workloads in a Kubernetes cluster.

The TensorFlow operator in Kubeflow provides a number of features that make
it easier to run TensorFlow workloads on Kubernetes. These features include:

• Custom Resource Definitions (CRDs): The TensorFlow operator de-
fines a set of custom resource definitions (CRDs) that allow users to create
and manage TensorFlow jobs as Kubernetes resources. The CRDs define
the specification for a TensorFlow job (TFJob), including the number of
replicas, the image to use, and the command to run.

• Automatic scaling: The TensorFlow operator in Kubeflow can automat-
ically scale the number of replicas of a TensorFlow job based on resource
usage. This helps to ensure that the workload is evenly distributed across
the cluster and that the resources are used efficiently.

• Resource allocation: The TensorFlow operator in Kubeflow can allocate
resources to TensorFlow jobs based on the requirements specified in the job
specification. This helps to ensure that the jobs have the resources they
need to run efficiently.

• Fault tolerance: The TensorFlow operator in Kubeflow can automati-
cally recover from failures by restarting failed replicas of a TensorFlow job.
This helps to ensure that the workload is not interrupted and that the job
completes successfully.

• Monitoring and logging: The TensorFlow operator in Kubeflow provides
built-in monitoring and logging capabilities that allow users to track the
progress of their TensorFlow jobs and debug any issues that arise.

41

2 ΤHEORETICAL BACKGROUND

Overall, the TensorFlow operator in Kubeflow provides a powerful set of tools
and resources for running TensorFlow workloads on Kubernetes. With its au-
tomatic scaling, resource allocation, fault tolerance, and monitoring capabilities,
the TensorFlow operator makes it easier for users to manage their TensorFlow
workloads and achieve optimal performance.

2.4.5 TensorBoard

TensorBoard[13] is a visualization toolkit provided by TensorFlow, which is
used to visualize the graph and other tools to understand, debug, and optimize
the model. It provides various functionalities to plot/display various aspects of
a machine learning pipeline. TensorBoard provides the visualization and tooling
needed for machine learning experimentation such as tracking and visualizing
metrics such as loss and accuracy, visualizing the model graph (ops and layers)
and viewing histograms of weights, biases, or other tensors as they change over
time.

2.5 Apache Hadoop

2.5.1 Overview

Apache Hadoop is an open-source software framework for distributed storage
and distributed processing of large datasets on computer clusters. Hadoop was
designed to scale up from single servers to thousands of machines, each offering
local computation and storage.

Hadoop consists of two main components: the Hadoop Distributed File Sys-
tem (HDFS) and the MapReduce programming model. HDFS is a distributed
file system that allows you to store large amounts of data across multiple servers.
MapReduce is a programming model that allows you to process large datasets in
parallel across a cluster of computers.

Hadoop is often used for big data workloads such as analyzing web logs,
running machine learning algorithms, and performing data extract, transform,
load (ETL) operations. It is a popular choice for data-intensive applications
because it can handle large volumes of data efficiently and can be easily scaled
out as the data size grows.

2.5.2 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is the distributed storage com-

42

2 ΤHEORETICAL BACKGROUND

ponent of the Apache Hadoop platform. It is designed to store very large datasets
(in the petabyte range) across a large number of commodity servers, providing
very high aggregate bandwidth across the cluster.

The HDFS architecture consists of two types of nodes:

• NameNode: The NameNode is the master node that manages the file
system namespace and controls access to files by clients. It maintains the
file system tree and the metadata for all the files and directories in the tree.
The NameNode does not store actual data blocks of the files; it stores only
the metadata about the files, such as the file size, replication factor, and
block location.

• DataNode: DataNodes are the slave nodes that store the actual data
blocks of the files. Each DataNode stores a subset of the blocks in the file
system, and it communicates with the NameNode to receive instructions
and to report on the blocks that it stores.

Figure 14: HDFS architecture

In a typical HDFS deployment, there is a single NameNode and a large num-
ber of DataNodes, often running on separate machines. The NameNode manages
the file system namespace and the mapping of blocks to DataNodes, while the
DataNodes store and serve the actual data blocks to clients.

When a client wants to read a file from HDFS, it sends a request to the
NameNode, which responds with the locations of the blocks that make up the
file. The client then retrieves the blocks directly from the appropriate DataNodes.

43

2 ΤHEORETICAL BACKGROUND

When a client wants to write a file to HDFS, it sends the data blocks to the
DataNodes, which store them and report the successful storage to the NameNode.

2.6 Apache Spark

2.6.1 Overview

Apache Spark is an open-source, distributed computing system that provides
a unified platform for data processing, machine learning, and analytics. It was
designed to be fast and general-purpose, with the ability to handle a wide variety
of data processing tasks.

Spark is built on top of the Hadoop ecosystem and can run on a variety of
cluster managers, such as Hadoop YARN and Apache Mesos, as well as on cloud
platforms such as Amazon EC2. It is implemented in Scala, but provides APIs
in other languages such as Java, Python, and R, making it easy to use for a wide
range of users.

One of the key features of Spark is its in-memory data processing engine,
which allows it to perform faster than Hadoop MapReduce for many types of
data processing tasks. Spark also includes a number of libraries for tasks such as
stream processing, machine learning, and graph processing, making it a versatile
platform for a wide range of data processing and analytics workloads.

In addition to its core data processing engine, Spark also provides a number
of tools and libraries for interacting with data stored in external storage systems
such as HDFS, Apache Cassandra, and Amazon S3. It also includes a number of
libraries for working with structured data, such as Spark SQL, which allows you
to use SQL to query data stored in Spark.

2.6.2 Architecture

The Apache Spark architecture consists of the following main components:

• Spark Driver: The Spark Driver is the central coordinator of a Spark
application. It is responsible for maintaining the SparkContext and coor-
dinating the execution of tasks on the worker nodes. The driver also com-
municates with the cluster manager to request resources for the application
and to launch executors on the worker nodes.

• Spark Executor: Spark Executors are worker processes that run on the
cluster nodes and execute tasks assigned to them by the Spark Driver.

44

2 ΤHEORETICAL BACKGROUND

Each executor is responsible for running one or more tasks in parallel, and
it communicates with the driver to report the status of the tasks and to
request additional tasks as needed.

• Spark Worker: A Spark Worker is a process that runs on a cluster node
and manages the execution of tasks on that node. It launches the executors
that run on the node and communicates with the driver to request resources
and receive instructions.

• Cluster Manager: A Cluster Manager is a system that manages the re-
sources of a cluster of machines and allocates them to Spark applications as
needed. Spark can run on a variety of cluster managers, including Hadoop
YARN, Apache Mesos, and Kubernetes.

• Spark Storage: Spark uses a variety of storage systems to store data,
including HDFS, Apache Cassandra, and Amazon S3. Data can be stored
in a distributed fashion across the worker nodes in the cluster, allowing it
to be processed in parallel by the executors.

• Spark SQL: Spark SQL is a module of Spark that provides support for
structured data processing, including the ability to query data using SQL.
It includes a Dataframe API for working with structured data and a SQL
API for querying data stored in Spark using SQL.

Figure 15: Spark architecture

These are the main components of the Apache Spark architecture. Spark
applications are composed of a driver program and a set of executors that run
on the cluster, and they are managed by a cluster manager and store data in a
distributed storage system.

2.6.3 Spark-on-k8s-operator

45

2 ΤHEORETICAL BACKGROUND

Figure 16: Spark on Kubernetes

In the current thesis, we will utilize Apache Spark on Kubernetes through
the Spark-on-k8s-operator. Spark-on-k8s-operator is a Kubernetes operator for
running Apache Spark applications on Kubernetes. It is designed to make it
easier to deploy and manage Spark applications on Kubernetes by providing a
declarative API for defining Spark applications and a controller that manages the
lifecycle of Spark applications.

With spark-on-k8s-operator, you can define a Spark application as a Kuber-
netes resource, and the operator will take care of deploying and managing the
Spark drivers and executors for you. You can use the operator to submit Spark
jobs, scale the number of executors up or down, and monitor the status of Spark
applications.

Spark-on-k8s-operator is built on top of the Kubernetes API and integrates
with the Kubernetes ecosystem, making it easy to use with other Kubernetes-
based tools and services. It is an open-source project that is developed and
maintained by the Apache Spark community.

46

3 SYSTEM IMPLEMENTATION

3 System Implementation

3.1 System components

The system that we will experiment on is an Open Source Cloud Comput-
ing Infrastructure (OpenStack [14]), which is comprised of 4 Virtual Machines
(nodes). The system is provided by the Computing Systems Laboratory of the
Electrical and Computer Engineering department and each Virtual Machine has
the following specifications:

• Operating System: Ubuntu 20.04 64-bit

• CPU: 4 Cores

• RAM: 8GB

• Hard Drive: 64 GB

Our local workstation is a Windows 11 64-bit PC, with Windows Subsystem
for Linux (WSL) with Ubuntu 22.04 64-bit installed. We connect to the remote
system through SSH.

Our system will be comprised of the following components (Figure 17):

• Kubernetes: The Kubernetes cluster is the main part of our system and
we need it to execute Kubeflow. There will be one control node (Master)
and the other three will be worker nodes. The version that we will use is
Kubernetes 1.22.5. We chose this version, so that it would be compatible
with the latest version of Kubeflow.

• Prometheus and Grafana: We will install these two tools on Kubernetes
to monitor the performance of our cluster. The version of Grafana we
installed is 9.3.1 and the version of Prometheus is 2.37.2.

• Kubeflow: Kubeflow will be installed on the Kubernetes cluster and will
be used to execute our Machine Learning algorithms. The TensorFlow
operator and TensorBoard are included in the full version of Kubeflow.
The version that we will use is Kubeflow 1.6, the latest at this time of
writing.

• HDFS: HDFS is independent of the Kubernetes cluster and is composed of
one Name Node and 3 Data Nodes. The Name Node of the HDFS is one of
the worker nodes of the cluster, so as to avoid overloading the Kubernetes
control node. It is used by Kubeflow to load and store data. The version
that we will use is Apache Hadoop 3.3.1.

47

3 SYSTEM IMPLEMENTATION

• Spark-on-k8s-operator: We will use it to deploy Apache Spark Jobs
on Kubernetes. The version that we will use is Spark-on-k8s-operator
1.1.26.

Figure 17: System Architecture

3.2 Installation

3.2.1 Kubernetes cluster

For our system, we use Kubespray 2.18.1, which installs Kubernetes 1.22.5 to
our cluster of Virtual Machines. Here is a high-level overview of the steps involved
in installing Kubespray:

1. Prerequisites: Before we could use Kubespray, we needed to install and
configure the following components to install Python 3.8 to our workstation
(WSL). We also updated the nodes using the sudo apt update and sudo apt
upgrade commands.

2. Clone the Kubespray repository: Using the git clone command, we
downloaded the Kubespray files from its repository on GitHub [15] to our
workstation.

48

3 SYSTEM IMPLEMENTATION

3. Install required Python modules: The Kubespray files contain a re-
quirements.txt file, that includes the Python modules needed to run Kube-
spray. The main module included is Ansible, which we mentioned earlier.

4. Customize the configuration: Kubespray uses a configuration file (in-
ventory/mycluster/inventory.ini) to specify the servers that you want to use
for your cluster. We edited this file to include the IP addresses of the cluster
nodes and assigned them their roles (Master and workers).

5. Enable addons: We edited certain lines in the addons file (inventory/my-
cluster/group_vars/k8s_cluster/addons.yml), in order to enable the Ku-
bernetes Dashboard (a Graphical User Inteface that allows us to overview
and manage our cluster) and the Local Path Storage Provisioner (A Local
Persistent Volume).

6. Run the installation playbook: Once you have edited the configuration
file, you can use Ansible to run the installation playbook and install Kuber-
netes on your servers. To do this, we executed the ansible-playbook -i in-
ventory/mycluster/hosts.yml –become –become-user=root cluster.yml com-
mand from the root of the Kubespray repository. The playbook is comprised
of centain tasks:

• Installing and configuring the Kubernetes control plane components
(e.g. kube-apiserver, kube-controller-manager, kube-scheduler)

• Installing and configuring the necessary packages and dependencies on
all of the hosts in the cluster

• Installs the container engine on all nodes. The default container engine
is containerd.

• Installs and configures etcd, the distributed key-value store used by
Kubernetes

• Installing and configuring the Kubernetes node components (e.g. kubelet,
kube-proxy)

• Configuring network settings for the cluster (e.g. using flannel, calico,
or Weave Net)

• Generating SSL certificates for the cluster

• Configuring firewall rules

• Deploying additional Kubernetes components (e.g. the Kubernetes
dashboard)

49

3 SYSTEM IMPLEMENTATION

7. Verify the installation: Once the installation was complete, you had to
verify that everything is working by checking the status of the nodes and
pods in your cluster. In order to do so, we installed kubectl to our work-
station, the Kubernetes Command Line management tool. We connected
kubectl to the cluster, by copying the kubeconfig file from the /root/.kube
of the master node to the $HOME/.kube of the local workstation. The
kubeconfig file contains the IP of the cluster as well as the admin certificate
required to access the Kubernetes resources. Then we used the command
kubectl cluster-info to make sure the Kubernetes cluster is running and the
kubectl get nodes command, to make sure all nodes are functional and con-
nected to the cluster.

Figure 18: Kubernetes Cluster nodes

Figure 19: Kubernetes Running Pods

3.2.2 Kubeflow

There are many methods to install Kubeflow and after much experimenta-
tion, we choose to use the Charmed Kubeflow [16] deployment that is offered by
Canonical. The steps required are the following:

1. Install the Juju client: To install Charmed Kubeflow, we needed to have
a Juju[17] client installed on your local workstation. Juju is easily installed
using the command sudo snap install juju –classic.

50

3 SYSTEM IMPLEMENTATION

2. Connect Juju to the Kubernetes cluster: Juju is connected to our
Kubernetes cluster, using the kubeconfig file in the $HOME/.kube directory
and by using the command juju add-k8s myk8s. One may also specify a
specific type of storage for Juju to use, but we used the default Local Path
storage, we created earlier. Juju recognizes our cluster as an object known
as a Cloud.

3. Create a controller: To operate workloads on our Kubernetes cluster,
Juju uses controllers. In the Juju ecosystem, a controller is a central man-
agement entity that is responsible for coordinating the deployment and
operation of applications in a cloud environment. The controller is respon-
sible for creating and managing the model(s) that represent the deployable
units in Juju, and it communicates with the cloud environment to deploy
and manage the applications and their associated resources, such as storage,
networking, and compute resources. Each Juju model is associated with a
single controller, and the controller is responsible for managing the lifecy-
cle of the model and its associated applications. We created a controller
and connected it to the Cloud using the command juju bootstrap myk8s
my-controller.

4. Create a Juju model: A Juju model represents a deployable unit in Juju.
You will need to create a new model in which to deploy Charmed Kubeflow.
We did so with the command juju add-model kubeflow. It is required by
Charmed Kubeflow, that its model has the name kubeflow, because the
same name will be used for the namespace that the Kubeflow Pods will be
assigned to. By default, a namespace called admin is also created, where
our pipelines (their Pods) will be assigned to.

5. Deploy Charmed Kubeflow: To deploy Charmed Kubeflow, we need to
use the Juju client to add a charm to the kubeflow model. A charm is a
package that contains the configuration and instructions needed to deploy
and manage a specific application or service. To add the Charmed Kubeflow
charm to our model, we used the juju deploy kubeflow –trust command.

6. Check if Kubeflow is operational: We execute the watch -c juju status
–color command and we wait until all Kubeflow services are in the active
state. This takes about 10-20 minutes.

7. Access the Kubeflow dashboard: Once Charmed Kubeflow has been
deployed, we needed to access the Kubeflow dashboard to begin using Kube-
flow and manage our machine learning workloads. To access the Kubeflow

51

3 SYSTEM IMPLEMENTATION

dashboard, we needed to find the URL for the dashboard and use it to
connect to the dashboard in our web browser. To that end, we used the
command kubectl -n kubeflow get svc istio-ingressgateway-workload -o json-
path=’.status.loadBalancer.ingress[0].ip’. Once we had the URL, we used
the following commands to enable access to the dashboard and set the cre-
dentials:

1 juju config dex -auth public -url=[URL]
2 juju config oidc -gatekeeper public -url=[URL]
3 juju config dex -auth static -username =[USERNAME]
4 juju config dex -auth static -password =[PASSWORD]

Finally, we had to set a localhost:9999 SOCKS proxy to our browser and
connect to the node where Kubeflow dashboard was installed using the
command ssh -D 9999 USER_NAME@<machine_ip>. Then we simply
entered the URL in the browser and logged with the credentials we set
earlier.

Figure 20: Kubeflow Services

52

3 SYSTEM IMPLEMENTATION

Figure 21: The Kubeflow Dashboard

3.2.3 Hadoop Distributed File System

Next, we needed to install Apache Hadoop to our cluster, to be able to use
HDFS to store and load our data. The steps we followed are:

1. Install Java: Hadoop requires a Java runtime environment (JRE) to be
installed on our cluster. Therefore, we had to install the Java JRE in all
the nodes.

2. Download Hadoop: We downloaded Hadoop 3.3.1 from the official Hadoop
website on the local workstation. Then we extracted it to a directory on
our machine.

3. Configure Hadoop: Hadoop uses a number of configuration files to control
its behavior. We edited these files to set up Hadoop for our environment.
The most important configuration files are:

• etc/hadoop/hadoop-env.sh: This file sets up the environment vari-
ables required by Hadoop. We had to set the JAVA_HOME variable
to the location of your Java installation.

• etc/hadoop/core-site.xml: This file contains configuration options
for Hadoop’s core services. We had to set the fs.defaultFS property to
the URI of your default file system (e.g., hdfs://namenode:9000).

• etc/hadoop/hdfs-site.xml: This file contains configuration options
for the Hadoop Distributed File System (HDFS). We had to set the
dfs.replication property to the desired replication factor for HDFS
blocks.

53

3 SYSTEM IMPLEMENTATION

We also created a masters and a workers file, inside the Hadoop directory,
which contain the IP addresses of the name node and the data nodes respec-
tively. Once we completed the configurations, we copied the Hadoop direc-
tory from the workstation to the $HOME/hadoop directory of all nodes.

4. Start the Hadoop services: Hadoop consists of several daemons that run
on your machine and provide the various Hadoop services. We connected
to the name node, formatted the HDFS cluster with the hdfs namenode
-format command and we used the start-dfs.sh script to start all of the
processes required for the HDFS.

5. Test the Hadoop installation: We tested our installation following these
steps:

(a) By running the jps command on the name node and the data nodes
to ensure the required processes were running.

(b) By accessing the Hadoop dashboard (http://NAMENODE_IP:9870)
and checking that all nodes are in the ready state

(c) By creating a directory in HDFS (hdfs dfs -mkdir FOLDER) and up-
loading a file in it (hdfs dfs -put FILE FOLDER/). We confirmed it
was uploaded with the hdfs dfs -ls FOLDER command.

Figure 22: The Hadoop Dashboard showing the data nodes

54

3 SYSTEM IMPLEMENTATION

3.2.4 Spark-on-k8s-operator

Finally we installed the Spark-on-k8s-operator on our cluster, using a Helm
Chart [18]. A Helm chart is a package of pre-configured Kubernetes resources
that can be deployed to a Kubernetes cluster. Helm charts are used to deploy
applications, databases, and other services to a Kubernetes cluster. They provide
a standard, reusable, and easy-to-use way to deploy applications and services to
Kubernetes. A Helm chart consists of a collection of YAML files that define the
Kubernetes resources that make up the application or service. These YAML files
include resource definitions for pods, services, deployments, and other resources.
The Helm chart also includes a values.yaml file that allows you to customize the
configuration of the resources defined in the chart.

We installed Helm and then using it, we installed spark-on-k8s-operator with
the helm install spark spark-operator/spark-operator –namespace spark-operator
–create-namespace command. Finally, we tested that it was correctly installed
by deploying the Spark Pi example to our cluster, using the YAML file from
the spark-on-k8s-operator Github repository (kubectl apply -f examples/spark-
pi.yaml). The Pi example calculates pi by “throwing darts” at a circle — it
generates points in the unit square ((0,0) to (1,1)) and counts how many points
fall within the unit circle within the square. The result approximates pi. The
example was completed successfully.

55

4 EXPERIMENTS

4 Experiments

4.1 Machine Learning workflows with Kubeflow

4.1.1 MNIST Classification Pipeline

Using a Machine Learning pipeline on Kubeflow, we attempted to perform
classification on the MNIST dataset [19]. MNIST is a large database of small,
square 28x28 pixel grayscale images of handwritten single digits between 0 and
9. It consists of a total of 70,000 handwritten images of digits, with the training
set having 60,000 images and the test set having 10,000. All images are labeled
with the respective digit that they represent. There are a total of 10 classes of
digits (from 0 to 9).

The pipeline receives the following inputs (hyperparameters) and values:

• Learning Rate: 0.001, 0.01

• Epochs: 10, 25, 50

• Batch Size: 32, 64

• Optimizer: Adam, SGD

Our pipeline is comprised of the following steps:

1. Load Data: This step involves loading the MNIST dataset and then the
dataset is split into training and testing sets and then further split into data
and labels.

2. Preprocess Data: In this step, we normalize the images by dividing the
pixel values with 255, the maximum value an RGB image pixel can receive.
By doing so, the image values range from 0 to 1.

3. Define Model: Here we construct the model that we will use to perform
the classification on our data. Based on the existing bibliography, we have
chosen to utilize a Convolutional Neural Network with the following struc-
ture:

(a) A 2D Convolutional layer with a kernel of size 5x5, 24 filters and ReLU
as the activation function. A convolutional layer applies a set of filters
to the input data, where each filter is designed to detect a specific
feature or pattern in the input. The output of a convolutional layer is
a set of feature maps, which are used as input to the next layer in the
network

56

4 EXPERIMENTS

(b) A 2D Max Pooling layer with a kernel of size 2x2. Max pooling is a
technique used in convolutional neural networks to down-sample the
spatial dimensions of the feature maps. It works by applying a max
filter to non-overlapping subregions of the feature map, resulting in a
new feature map with smaller spatial dimensions.

(c) A 2D Convolutional layer with a kernel of size 5x5, 48 filters and ReLU
as the activation function.

(d) A 2D Max Pooling layer with a kernel of size 2x2.

(e) A 2D Convolutional layer with a kernel of size 5x5, 64 filters and ReLU
as the activation function.

(f) A 2D Max Pooling layer with a kernel of size 2x2.

(g) A Flatten layer. As its name suggests, this layer flattens the input to
a vector output.

(h) A Dense layer with an 1x256 vector as the output. A dense layer in
a neural network is a type of fully connected layer, where each neuron
in the layer is connected to every neuron in the previous layer. This
means that the output of each neuron in the layer is the weighted
sum of the inputs, passed through an activation function. In our case,
the layer is comprised of 256 neurons. ReLU is used as the activation
function.

(i) A Dense layer with an 1x10 vector as the output. This layer is the
output layer of the network, therefore we need it to have the same
number of outputs as the number of classes. Softmax is the activation
function, so as to produce a probability distribution over the 10 classes.

4. Train: The most important step of our pipeline is to train the model we
defined earlier. We train the model using the Sparse Categorical Cross
entropy loss function. The class with the highest probability output is
considered the correct one for the corresponding sample.

5. Evaluate: Having trained the model, we test its performance on samples
unknown to it, the test set. We judge its performance based on the accuracy
metric. Accuracy is defined as

Accuracy =
Number of correct predictions

Total number of predictions

We evaluated our pipeline for various values of the hyperparamenters. The
results with the highest accuracy are:

57

4 EXPERIMENTS

Epochs Learning Rate Optimizer Batch size Accuracy
10 0.001 Adam 32 99.94%
25 0.001 Adam 32 99.47%
50 0.001 Adam 64 99.46%
10 0.01 SGD 32 99.47%

Based on these results, we make the following observations:

• We observe that 10 epochs seem to suffice for the training of this model.
Therefore, we will consider it the optimal value, as a larger number of
epochs would likely cause overfitting and decrease the overall performance.
Overfitting is a common problem in machine learning, particularly in deep
learning, where a model is trained to fit the training data too closely and
as a result, generalizes poorly to new, unseen data. It occurs when a model
is trained with too many parameters relative to the amount of data, and
it starts to learn the noise in the training data instead of the underlying
pattern. This can lead to a model with a high training accuracy but poor
performance on unseen data.

• The Adam optimizer seems to produce the highest accuracy in most cases.

• Learning rate = 0.001 seems to be the optimal value for this model.

Figure 23: MNIST Pipeline (Successful Execution)

58

4 EXPERIMENTS

4.1.2 CIFAR-10 Classification Pipeline

We attempted to do the same on the CIFAR-10 dataset [20]. The CIFAR-10
dataset is a collection of images that are commonly used to train machine learning
and computer vision algorithms. It is one of the most widely used datasets for
machine learning research. The CIFAR-10 dataset contains 60,000 32x32 color
images in 10 different classes. The 10 different classes represent airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. There are 6,000 images
of each class.

The pipeline receives the following inputs (hyperparameters) and values:

• Learning Rate: 0.001, 0.01

• Epochs: 25, 50, 100, 200

• Batch Size: 32, 64

• Optimizer: Adam, SGD

Our pipeline is comprised of the following steps:

1. Load Data: This step involves loading the CIFAR-10 dataset using the
Keras Dataset module. Then the dataset is split into training and testing
sets and then further split into data and labels.

2. Preprocess Data: In this step, we normalize the images like we did with
the MNIST dataset. However, since our labels are strings here and not
integers like in MNIST, we one-hot encode our labels to convert them to
numeric values.

3. Define Model: Here we construct the model that we will use to perform
the classification on our data. Based on the existing bibliography, we have
chosen to utilize a Convolutional Neural Network with the following struc-
ture:

(a) A 2D Convolutional layer with a kernel of size 3x3, 32 filters and a
ReLU activation function.

(b) A Batch Normalization layer. Batch normalization applies a trans-
formation that maintains the mean output close to 0 and the output
standard deviation close to 1.

(c) A 2D Convolutional layer with a kernel of size 3x3, 32 filters and a
ReLU activation function.

59

4 EXPERIMENTS

(d) A Batch Normalization layer.

(e) A 2D Max Pooling layer with a kernel of size 2x2.

(f) A 2D Convolutional layer with a kernel of size 3x3, 64 filters and a
ReLU activation function.

(g) A Batch Normalization layer.

(h) A 2D Convolutional layer with a kernel of size 3x3, 64 filters and a
ReLU activation function.

(i) A Batch Normalization layer.

(j) A 2D Max Pooling layer with a kernel of size 2x2.

(k) A 2D Convolutional layer with a kernel of size 3x3, 128 filters and a
ReLU activation function.

(l) A Batch Normalization layer.

(m) A 2D Convolutional layer with a kernel of size 3x3, 128 filters and a
ReLU activation function.

(n) A Batch Normalization layer.

(o) A 2D Max Pooling layer with a kernel of size 2x2.

(p) A Flatten layer.

(q) A Dropout layer with a rate equal to 0.2. The Dropout layer randomly
sets input units to 0 with a frequency of rate at each step during
training time, which helps prevent overfitting

(r) A Dense layer with an 1x1024 vector as the output and ReLU as the
activation function.

(s) A Dropout layer with a rate equal to 0.2.

(t) A Dense layer with an 1x10 vector as the output. This layer is the
output layer of the network, therefore we need it to have the same
number of outputs as the number of classes. Softmax is used as the
activation function.

4. Train: This step is identical to that of the MNIST pipeline.

5. Evaluate: Having trained the model, we test its performance on samples
unknown to it, the test set. We judge its performance based on the accuracy
metric.

We evaluated our pipeline for various values of the hyperparamenters. The
results with the highest accuracy are:

60

4 EXPERIMENTS

Epochs Learning Rate Optimizer Batch size Accuracy
200 0.001 SGD 32 85.03 %
200 0.001 Adam 64 85.03 %
100 0.001 Adam 64 84.67 %
100 0.001 Adam 32 84.24 %

Based on these results, we make the following observations:

• The CIFAR-10 is more complicated than the MNIST dataset. The CIFAR-
10 dataset images have color instead of being black and white and they
depict real-world objects instead of handwritten digits. As a result, we
receive slightly lower accuracy values.

• Increasing the number of epochs seems to increase the accuracy.

• Adam optimizer seems to be the optimal one

• Learning rate = 0.001 seems to be the optimal value.

Figure 24: CIFAR-10 Pipeline (Successful Execution)

61

4 EXPERIMENTS

4.2 TensorFlow Jobs

4.2.1 Train a model using a TensorFlow Job

In the previous section, we trained two models on the MNIST and CIFAR-
10 datasets respectively using Machine Learning Pipelines. These pipelines were
constructed using Functional Components, Python functions that were converted
into pipeline steps. While these components allow us to construct a pipeline
easily, they do not enable us to utilize the resources of our cluster fully. For
example, they do not provide us with the ability to train a model in parallel.
That may not be a problem with simple datasets but for more complicated ones,
distributed training is requirement for the process to be completed in acceptable
time. Therefore, in this section we will train two Machine Learning models for
MNIST and CIFAR-10 again, but we will use a TensorFlow Job in order to im-
plement distributed training.

The strategy we will use to the train our model is known as Multi-Worker Mir-
rored Strategy. Multi-Worker Mirrored Strategy is a distributed training strategy
in TensorFlow that allows training a deep learning model on multiple workers in a
distributed environment, where each worker has access to one or more machines.
It is used to scale up the training process and reduce the training time of deep
learning models.

In Multi-Worker Mirrored Strategy, the training is done by synchronizing the
model’s parameters across multiple devices on multiple machines. Each worker
receives a copy of the model and the training data, and the updates made to the
parameters on one worker are shared with the other workers to keep the model
synchronized. This way, all workers train on different batches of data at the same
time, and the collective gradient is computed and applied to the model’s param-
eters.

The main advantage of using Multi-Worker Mirrored Strategy is that it can
speed up the training process of deep learning models significantly. By distribut-
ing the training process across multiple workers, each worker can train on a subset
of the data, and the entire training process can be completed in less time than it
would take on a single machine.

For Kubeflow to execute a TensorFlow Job, an appropriate YAML file must
be applied to the cluster. An example of a YAML file for a TensorFlow Job is
the following:

62

4 EXPERIMENTS

1 apiVersion: Kubeflow.org/v1
2 kind: TFJob
3 metadata:
4 name: mnist
5 namespace: Kubeflow
6 spec:
7 tfReplicaSpecs:
8 Worker:
9 replicas: 4

10 restartPolicy: Never
11 template:
12 metadata:
13 annotations:
14 sidecar.istio.io/inject: "false"
15 spec:
16 containers:
17 - name: TensorFlow
18 image: TF_IMAGE
19 imagePullPolicy: Always
20 args:
21 - --epochs =5
22 - --per_worker_batch =128
23 - --optimizer=1,
24 - --learning_rate =0.001 ,
25 - --momentum =0.9

The most important properties of the YAML file are the following:

• apiVersion: This field specifies which version of the TFJob custom re-
source you are using. The corresponding version (in this case v1) needs to
be installed in your Kubeflow cluster.

• kind This field identifies the type of the custom resource—in this case a
TFJob.

• metadata: This field is common to all Kubernetes objects and is used to
uniquely identify the object in the cluster — you can add fields like name
and namespace here.

• tfReplicaSpecs: This field is the most important part of the schema. This
is the actual description of your TensorFlow training cluster and its desired
state. This field is comprised of :

– Worker.replicas : We have 4 Workers that will be working in parallel.

– Worker.spec.containers.image : Here we name the docker image
that the containers will use. The image was built and pushed to Dock-
erHub beforehand.

63

4 EXPERIMENTS

– Worker.spec.containers.args : The arguments that the Python
script contained with the image will require. Here we include argu-
ments for the number of epochhs, the size of the batch, the type of
the optimizer (0 for SGD and 1 for Adam), the learning rate and the
momentum.

MNIST

At the evaluation of the model, similar accuracy results to the ones in the
previous section are yielded. As we expected, increasing the number of workers,
decreased the time required for the training to complete. The time required for
each training process depending on its number of workers is shown in Figure 25.

Figure 25: MNIST TFJob Latency

In Figures 26 and 27 , we observe the toll that our TensorFlow Application
takes on our cluster in terms of CPU, memory and storage resources. These
graphs as well as similar graphs for our next experiments were extracted from
Grafana, which uses Prometheus as a data source.

64

4 EXPERIMENTS

(a) CPU

(b) Memory

Figure 26: Resources required by the MNIST TensorFlow Application (1)

(a) Storage - IOPS

(b) Storage - Throughput

Figure 27: Resources required by the MNIST TensorFlow Application (2)

Finally, using TensorΒoard, we display certain Figures (28) concerning the
training process of our model. The model was trained for 60 epochs. As we
anticipated, the accuracy tends to become 1 and the loss 0 as the epochs progress.

65

4 EXPERIMENTS

(a) Accuracy per epoch

(b) Loss per epoch

Figure 28: Observing the training process using the accuracy and loss metrics

CIFAR-10

At the evaluation of the model, similar accuracy results to the ones in the
previous section are yielded. Again, increasing the number of replicas decreases
the time required like we expected. The time required for each training process
depending on its number of workers is shown in Figure 29.

Figure 29: CIFAR-10 TFJob Latency

In Figures 30 and 31, we observe the toll that our TensorFlow Application
takes on our cluster in terms of CPU, memory and storage resources.

66

4 EXPERIMENTS

(a) CPU

(b) Memory

Figure 30: Resources required by the CIFAR-10 TensorFlow Application (1)

(a) Storage - IOPS

(b) Storage - Throughput

Figure 31: Resources required by the CIFAR-10 TensorFlow Application (2)

Finally, using TensorΒoard, we display certain Figures (32) concerning the
training process of our model. The model was trained for 60 epochs. As we
anticipated, the accuracy tends to become 1 and the loss 0 as the epochs progress.

67

4 EXPERIMENTS

(a) Accuracy per epoch

(b) Loss per epoch

Figure 32: Observing the training process using the accuracy and loss metrics

4.3 Working on a more complicated dataset

4.3.1 The Common Crawl dataset

In this section, we will perform some experiments on the Common Crawl dataset
[21], the dataset that the artificial intelligence chatbot ChatGPT by OpenAI [22]
was trained on. The Common Crawl dataset is a massive corpus of web crawl
data that is freely available to the public. It is designed to provide a comprehen-
sive snapshot of the internet, with data collected from billions of web pages.

Here are some key details about the Common Crawl dataset:

• Size: The Common Crawl dataset is one of the largest publicly available
web crawl datasets. As of 2021, it contains over 150 petabytes of data, with
billions of web pages included.

• Frequency: The dataset is updated on a regular basis, with new crawls
being added on a monthly basis.

• Format: The data is provided in several formats, including WARC, WAT,
and WET. These formats are designed to make it easy to work with the
data and extract information from it. The WARC files which store the
raw crawl data, the WAT files which store computed metadata for the data
stored in the WARC and the WET files which store extracted plain text
from the data stored in the WARC.

68

4 EXPERIMENTS

• Coverage: The Common Crawl dataset covers a wide range of languages,
with data collected from websites in over 200 countries.

• Access: The dataset is freely available to the public, with no restrictions
on usage. This makes it a valuable resource for researchers, developers, and
anyone else who wants to analyze or work with web data.

Overall, the Common Crawl dataset is an incredibly valuable resource for
anyone interested in web data and analysis. Its massive size and frequent updates
make it an ideal tool for studying trends in web content, tracking changes over
time, and much more. Due to the limitations on resources, we will experiment
on a sample dataset, which contains website data from March 2017.

4.3.2 Spark Applications

In this section, we will attempt to extract information from the datasets using
the spark-on-k8s operator of Kubeflow, to run Spark Applications on the data.
The data were extracted and uploaded to HDFS, from where they will be loaded
by the Spark Applications. The Spark Applications will also write their output
to HDFS, so that we have easy access to it.

Word Count

For our first experiment, we will count the frequency of each word in the
scraped websites and we will sort them in descending order. We will use the the
WET file for this purpose. The YAML file of the Spark Application that we used
is the following:

1 apiVersion: sparkoperator.k8s.io/v1beta2
2 kind: SparkApplication
3 metadata:
4 name: wordcount
5 namespace: default
6 spec:
7 type: Python
8 pythonVersion: ’3’
9 mode: cluster

10 image: docker.io/chrz95/spark -py:commonCrawl
11 imagePullPolicy: Always
12 mainApplicationFile: hdfs ://10.0.1.66:9000/ scripts/wordCount.py
13 sparkVersion: 3.1.1
14 hadoopConf:
15 fs.defaultFS: hdfs ://10.0.1.66:9000
16 restartPolicy:

69

4 EXPERIMENTS

17 type: OnFailure
18 onFailureRetries: 1
19 onFailureRetryInterval: 10
20 onSubmissionFailureRetries: 5
21 onSubmissionFailureRetryInterval: 20
22 driver:
23 cores: 1
24 coreLimit: 1200m
25 memory: 512m
26 labels:
27 version: 3.1.1
28 serviceAccount: spark
29 executor:
30 cores: 1
31 instances: 1
32 memory: 512m
33 labels:
34 version: 3.1.1

The most important properties of the YAML file are the following:

• apiVersion: This field specifies which version of the SparkApplication
custom resource you are using. The corresponding version (in this case
v1beta2) needs to be installed in your Kubeflow cluster.

• kind This field identifies the type of the custom resource — in this case a
SparkApplication.

• metadata: This field is common to all Kubernetes objects and is used to
uniquely identify the object in the cluster — you can add fields like name
and namespace here.

• spec.image : Here we name the docker image that the containers will use.
The image was built and pushed to DockerHub beforehand.

• spec.mainApplicationFile : The location of the Python file that will be
executed. In this case, we utilize PySpark and we store the file in HDFS.

• driver/executor : The resources (CPU and Memory) that the driver and
executor workers will utilize to perform their tasks. The instances param-
eters indicates how many executors will be created to perform this task in
parallel.

The stages of the Spark Application are shown in Figure 33. The first stage
includes reading the dataset, mapping the words to pairs ((word,1)) and then
performing a reduce operation to get the appearance frequency of each word.

70

4 EXPERIMENTS

The second stages sorts the frequencies in descending order. The other Spark
Applications are comprised of similar stages.

Figure 33: The stages of the Word Count Application

The results we received (the first six words) are the following:

Word Count
the 600720
and 450283
to 448739
of 395002
a 371072
in 298380

The results come as no surprise, since these words are some of the mostly used
in the English language.

In Figure 34, we can see the execution time decreases while the number of
executors increase, which is to be expected. However, when the number of ex-
ecutors becomes greater than 3, the executor time remains stable. That is due
to the synchronization overhead of the distributed execution and the limitations
on the resources or our cluster.

71

4 EXPERIMENTS

Figure 34: Execution Time per number of Εxecutors - Word Count

In Figures 35 and 36, we observe the toll that our Spark Application takes on
our cluster in terms of CPU, memory and storage resources.

(a) CPU

(b) Memory

Figure 35: Resources required by the Word Count Application (1)

72

4 EXPERIMENTS

(a) Storage - IOPS

(b) Storage - Throughput

Figure 36: Resources required by the Word Count Application (2)

Count HTML Tags

For our next experiment, we will count the HTML Tags used in the scraped
websites. We will use the the WARC file for this purpose. The YAML file we
used here is very similar to the one in the previous experiment, but it uses a
different mainApplicationFile.

The stages of the Spark Application are shown in Figure 37. They are similar
to the previous application.

Figure 37: The stages of the Count HTML Tags Application

73

4 EXPERIMENTS

The results we received (the first six HTML tags) are the following:

HTML Tag Count
a 8667841

div 7451445
li 5191723

span 4306088
img 1466498
td 1283063

Again the results are to be expected, especially from someone used to HTML
code, such as a Web Developer, since these tags are very frequently used in all
websites.

In Figure 38, we can see the execution time decreases while the number of
executors increase, which is to be expected. However, when the number of ex-
ecutors becomes greater than 5, the executor time remains stable. That is due
to the synchronization overhead of the distributed execution and the limitations
on the resources or our cluster.

Figure 38: Execution Time per number of Εxecutors - Count HTML Tags

In Figures 39 and 40, we observe the toll that our Spark Application takes on
our cluster in terms of CPU, memory and storage resources.

74

4 EXPERIMENTS

(a) CPU

(b) Memory

Figure 39: Resources required by the Count HTML Tags Application (1)

(a) Storage - IOPS

(b) Storage - Throughput

Figure 40: Resources required by the Count HTML Tags Application (2)

75

4 EXPERIMENTS

Count Web Server Names

For our next experiment, we will count the Web Server name that were used
to host the scraped websites. We will use the the WARC file for this purpose. The
YAML file we used here is very similar to the ones in the previous experiments,
but it uses a different mainApplicationFile.

The stages of the Spark Application are shown in Figure 41. They are similar
to the previous application.

Figure 41: The stages of the Count Webservers Application

The results we received (the first six servers) are the following:

Server Count
Apache 9084
nginx 7543

cloudflare-nginx 3538
GSE 2562

Microsoft-IIS/7.5 1802
Microsoft-IIS/8.5 1412

In Figure 42, we can see the execution time decreases while the number of
executors increase, which is to be expected. However, when the number of ex-
ecutors becomes greater than 5, the executor time remains stable. That is due
to the synchronization overhead of the distributed execution and the limitations
on the resources of our cluster.

76

4 EXPERIMENTS

Figure 42: Execution Time per number of Εxecutors - Count Webservers

In Figures 43 and 44, we observe the toll that our Spark Application takes on
our cluster in terms of CPU, memory and storage resources.

(a) CPU

(b) Memory

Figure 43: Resources required by the Count Web Servers Application (1)

77

4 EXPERIMENTS

(a) Storage - IOPS

(b) Storage - Throughput

Figure 44: Resources required by the Count Web Servers Application (2)

List of hostnames and IP addresses

For our next experiment, we will count the IP Addresses and corresponding
hostnames that were used from the scraped websites. We will use the the WARC
file for this purpose. The YAML file we used here is very similar to the ones in
the previous experiments, but it uses a different mainApplicationFile.

The stages of the Spark Application are shown in Figure 45. They are similar
to the previous application.

Figure 45: The stages of the Count IP Addresses Application

The results we received (the first five IP Addresses) are the following:

78

4 EXPERIMENTS

IP Address Count
172.217.7.129 403
172.217.5.225 235
172.217.3.33 230
172.217.7.161 226
172.217.7.225 221

All these IP addresses belong to Google servers. More specifically, the first
IP address corresponds to the Google server in Salt Lake City of the United States.

In Figure 46, we can see the execution time decreases while the number of
executors increase, which is to be expected. However, when the number of ex-
ecutors becomes greater than 5, the executor time remains stable. That is due
to the synchronization overhead of the distributed execution and the limitations
on the resources or our cluster.

Figure 46: Execution Time per number of Εxecutors - Count IP Addresses

In Figure 47 and 48, we observe the toll that our Spark Application takes on
our cluster in terms of CPU, memory and storage resources.

79

4 EXPERIMENTS

(a) CPU

(b) Memory

Figure 47: Resources required by the Count IP Addresses Application (1)

(a) Storage - IOPS

(b) Storage - Throughput

Figure 48: Resources required by the Count IP Addresses Application (2)

80

5 CONCLUSION

5 Conclusion

5.1 Recap

During the implementation of this thesis, we :

• We learned about the usefulness of containerized applications and container
engines such as Docker and how to use them to deploy our own applications.

• In order to execute such applications on a cloud infrastructure, we created
a Kubernetes cluster using Virtual Machines to simulate such an infrastruc-
ture.

• We learned the fundamentals of certain Machine Learning and Data Science
techniques and applied them on public datasets such as MNIST, CIFAR10
and Common Crawl using Kubeflow, a program specifically created to ex-
ecute Machine Learning applications on Kubernetes.

• In order to store the data and the results of our experiments, we installed
the Apache Hadoop framework and the corresponding Hadoop Distributed
File System (HDFS) on our cluster of Virtual Machines.

• Finally, in order to monitor our experiments and their impact on the clus-
ter, we installed and utilized tools such as Prometheus, Grafana and Ten-
sorBoard.

5.2 Future Work

Our work may be expanded upon in a number of ways. Some of which we rec-
ommend are:

• Use the same techniques on many different datasets and observe the results.

• During this thesis, we mainly used (Convolutional) Neural Networks to
perform classification experiments. However, the TensorFlow library offers
many more capabilities and models, such as LSTM Neural Networks and
Transformers, which can yield very interesting results.

• The Common Crawl dataset on which we performed some simple experi-
ments, contains the information of the entirety of the Internet and it is the
dataset on which the famous chatbot ChatGPT was trained on. This fact
alone attests to the limitless potential that this data contains.

81

REFERENCES

References

[1] Kubernetes - Production-Grade Container Orchestration -
https://kubernetes.io/

[2] Kubeflow - The Machine Learning Toolkit for Kubernetes -
https://www.kubeflow.org/

[3] Apache Hadoop - Open-source software for reliable, scalable, distributed com-
puting - https://hadoop.apache.org/

[4] Apache Spark - Unified engine for large-scale data analytics -
https://spark.apache.org/

[5] The Kubernetes Book - Nigel Poulton

[6] The official Docker web page - https://www.docker.com/

[7] DockerHub - Container Image Library - https://hub.docker.com/

[8] Prometheus - Kubernetes Metrics Collection Tool - https://prometheus.io/

[9] Grafana - Analytics monitoring solution - https://grafana.com/

[10] Ansible Github repository - https://github.com/ansible/ansible

[11] KubeFlow Pipelines - Machine Learning Workflows Framework -
https://www.kubeflow.org/docs/components/pipelines/v1/introduction/

[12] TensorFlow - Machine Learning Framework - https://www.tensorflow.org/

[13] TensorBoard - TensorFlow Monitoring Tool -
https://www.tensorflow.org/tensorboard

[14] OpenStack - Open Source Cloud Computing Infrastructure -
https://www.openstack.org/

[15] KubeSpray GitHub Repo - Kuberneres Deployment Tool -
https://github.com/kubernetes-sigs/kubespray

[16] Charmed Kubeflow - https://charmed-kubeflow.io/

[17] Juju - Charmed Operator Framework - https://juju.is/

[18] Helm - https://helm.sh/

[19] MNIST - Digits Recognition Dataset -
https://www.tensorflow.org/datasets/catalog/mnist

[20] Cifar10 - Objects Recognition Dataset -
https://www.tensorflow.org/datasets/catalog/cifar10

[21] Common Crawl - https://commoncrawl.org/

[22] ChatGPT - https://chat.openai.com/chat

82

	Introduction
	Data and its usefulness
	Our task
	Thesis Organization

	Τheoretical background
	Containers
	Overview
	Container Engines

	Kubernetes
	Overview
	Kubernetes and Container Engines
	The cluster
	Pods
	Deployment Manifests
	Storage
	Grafana & Prometheus
	Kubespray

	Machine Learning
	Introduction
	Machine Learning Tasks
	Training data and test data
	Introduction to Neural Networks
	Deep Learning
	Learning Process - Minimizing the cost function
	Forward propagation
	Gradient Descent
	Backpropagation

	Kubeflow
	Overview
	Kubeflow Pipelines
	Machine Learning workflow
	Tensorflow Operator (TFJob)
	TensorBoard

	Apache Hadoop
	Overview
	Hadoop Distributed File System

	Apache Spark
	Overview
	Architecture
	Spark-on-k8s-operator

	System Implementation
	System components
	Installation
	Kubernetes cluster
	Kubeflow
	Hadoop Distributed File System
	Spark-on-k8s-operator

	Experiments
	Machine Learning workflows with Kubeflow
	MNIST Classification Pipeline
	CIFAR-10 Classification Pipeline

	TensorFlow Jobs
	Train a model using a TensorFlow Job

	Working on a more complicated dataset
	The Common Crawl dataset
	Spark Applications

	Conclusion
	Recap
	Future Work

	References

