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Iepitnyn

AOY®D TOV TPOGPAT®V YEYOVOT®V GTOV VOUTIMOKO TOUEa, 1 Topakolovnon e anddoong
TV TAolov gival mo onuavtikn and toté. H cwot) aloldynon g Katdotaong Tov TAoiov
EMTPEMEL OTIC VOVTIAKESG £Tanpeieg va alohoynoovy v vTofaducT g amrdd0onS Kot Vo
amoevyovv anpdPrenteg dandves. H anddoon tov mhoiov eEaptdtan amd tov xpovo Adym g
oxéong tov pe  Baidooia pdmaveon. Emopévag, ta dedopéva mov Kotoypdoovtal omd to
CLOTAHOTA TOPAKOAOVONGNG TOL 7AooV HUmOoPOLV va AElOAOYNGOLY TNV KATAGTOCY| TNG
amdO00NG TOL Kol va, KaBopiocovv edv 10 TAOI0 TPEMEL VO VTOCTEL GUVINPNTIKES EVEPYELEC.

EmimAéov, 1 ocvvdvacuévn ypnomn vrapyoviov KoToyEYPOUUEVOV JEOOUEVOV UE TEYVIKEG
UNYOVIKNG palnong oiver ) dvvatdTNTo GTOVS EOPElC Vo mapakoiovBodv Gyt pnévo v
TPEXOVGA ATOSOTIKOTNTA TG OO0 S VOGS TAO10V, AALG Kot Vo TPOBAETOVV TIC OIOKVUAVOELG
™G KE TNV Thpodo Tov ¥pdvov. H mapovoa pehétn meptypdeet to omontodpeva Bripota yio tnmyv
avamTuén evoc mpoyveooTtikov poviédov Teyvntod Nevpovikod Awrtdov (Artificial Neural
Network - ANN) kot ta ototryeio mov mepthapfavel. Emmiéov, a&lodoyel ) onuacio kdbe
VIEPTAPAUETPOL GYETILOUEVT LE TNV axpifela ToL HOVTELOL.

Mo mv avantuén tov poviédov ANN, eneEepydotnkay ded0UEVA VYNANG CLYVOTNTOS A0 VL
Panamax @optny6 mAoio yia pia mepiodo 16 unvav, pe EReacn oty ETIGKELN TOV TPOTEAS.
Anuovpyndnkoav 600 Eexmplotd povtéda: Eva XPCILOTOLDVTOS 0EG0UEVO EKTOIOEVGNC TOV
KOTAypaenKoy Kotd v mpotn eEaunvn mepiodo Kot &va dEVLTEPO YPNOLLOTOLDOVTIOS TO
vmorowma. (10 pnqveg). T v  mpoenelepyocic. TOV  KOTOYEYPAUUEVOV  OESOUEVQV,
EQUPUOSTNKAY OTATIOTIKEG HEB0dOL pali pe Toug Pactkcodg vOpovg g euotkng. H pnyovin
TOV LETOPANTOV €16000V TepAdpPove TNV epaproy TeXVIK®OV Pabidg pddnong pe m xpnon
™g Pprodnkng Random Forest tng Python.

IMa ™ PBertictonoinon g amd0oNS TOV HOVTEAOL, EPUPUOGTNKE 1| LEBOOOC dOKIUNG Kol
o@aipatog (Trial-Error) ywo kB vreprapdpetpo. 'E1o1, KataokevAGTNKE TO O OTOJOTIKO
HOVTELO duvaTd, AaUBAvVOVTOG LITOYN TO KATOYEYPAUUEVE dEGOUEVA, e TOCOGTA aKPiPeLag
97,5% kot 99,3% vy 11 TPoPAEYELS GE GVYKPION LLE TIG LETPNUEVES TILEG TPV KoL PETE TNV
EMGKELT TOV TPOTEAQ avTiotorya. TEhog, e Bdon avtd ta povtéda, 1 LeAétn aEloAdYNGE TV
emidopaon g mepParloviikng poéAvveng otnv voBadion g 1oxHog ToV TPOTELD, GE GYEOT
HE TIg NMUEPES OV TOPNABOY OO TNV ETICKELY] TOV, TPOKEUEVOL Vo amoderyOel n ypovikn
e&apmon g Barkdociog polvvong.
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Abstract

Due to recent events in the shipping industry, vessel performance monitoring has become more
important than ever. Correctly evaluating the vessel’s condition enables shipping companies to
assess performance deterioration which can save them from unpredicted expenses. Ship
performance is time-dependent due to its correlation with marine fouling. Hence, data recorded
from vessel’s monitoring systems can evaluate its state of performance and whether the vessel
should go through maintenance actions.

Furthermore, combining existing recorded data with machine learning techniques give
operators the opportunity not only to monitor the current performance efficiency of a vessel,
but also to project its fluctuation over time. This study outlines the necessary steps needed to
develop an Artificial Neural Network predictive model and what it consists of. Additionally, it
evaluates the importance of each hyperparameter while relating them to the model’s accuracy.
Thereby, processing high-frequency data of a Panamax bulk carrier, over a 16-month period,
consisting of a propeller repair, led this study to develop one ANN model used to predict the
propeller’s shaft power for each one of the propeller’s conditions. Hence, one model is
developed through training data recorded over the first 6-month period while the second one
used the remaining data, accounting for 10 months.

For the preprocessing of recorded data, statistical methods along with fundamental principles
of physics were applied while for the feature engineering deep learning techniques were
implemented using Python’s Random Forest libraries. Moreover, in order to tune the model’s
hyperparameters the Trial-Error procedure was implemented for each one resulting in building
the best-performing model possible given the recorded data achieving 97.5% and 99.3%
accuracy percentages between predicted and measured values on the models before and after
the propeller repair respectively.

Finally, in respect to these models this study assessed the effect of fouling on the vessel’s
propeller’s shaft power deterioration, comparing the time elapsed since the propeller’s repair.
This analysis aimed to illustrate the time dependency of marine fouling and its impact on the
vessel’s performance.

Abstract 4
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1 Introduction

The history of the shipping industry goes back to ancient times when global trade was based
on sailing boats powered by wind. These vessels were used to transport goods to people across
the world and played a vital role in the development of global trade and economy. Due to the
industrialization and globalization of the world, shipping developed to be the leading industry
which provides for almost 90% of global trade. This is mainly because shipping achieves a low
energy consumption and, thus, a low cost per unit of carried cargo, making it possible to reach
the economies of scale.

1.1 Ship Performance Development

Naturally, as the need for the transportation of goods evolved, so did the need for bigger and
faster ships for the shipping companies to be able to comply with the rapidly growing demand.
Hence, shipping companies emphasized investing in the development of their vessel’s
technology to increase the capacity, speed, and traveling radius. Additionally, a great amount
of research was put in the vessel performance monitoring systems. This became very popular
since the performance of the ship was closely connected to the vessel’s voyage expenses, such
as fuel consumption, etc. Fuel consumption is the main expense of each voyage; thus, it has
become a critical issue for shipowners as they try to maximize their profits.

Due to recent events, such as new MARPOL and IMO regulations, fuel has grown into an even
bigger percentage of the vessel’s operational expenses. Not only did the MARPOL conventions
oblige shipowners to use fuels with less Sulphur content (e.g., LSFO, MGO, MDO, etc.), which
are naturally more expensive than traditional heavy fuel oil (HFO) in order to reduce
greenhouse gas emissions, but also the fuel prices have increased rapidly due to the embargo
of the Russian fuel and other commaodities.

1.1.1 Vessel marine fouling

The amount of fuel used must be considered when calculating a vessel's operating costs.
Particularly for larger ships that use a lot of fuel during their journeys, fuel expenditures can
make up a sizeable part of a vessel's operating costs. The size, speed, and age of the vessel, as
well as the kind of engine and fuel utilized, are all factors that have an impact on fuel
consumption. The amount of fuel used depends on several additional elements, including the
weather, the state of the water, and the weight carried by the vessel.

The cost of operating a vessel can be significantly reduced by reducing fuel usage. One option
to do this is to increase the ship's fuel economy, for instance by upgrading the engines or
optimizing the design. Using more fuel-efficient operating procedures, such as lowering speed
or optimizing the vessel's path to reducing fuel use, is another option to cut back on fuel use.
Reducing fuel use can save money while also helping the environment by lowering greenhouse
gas emissions and other pollutants. Overall, because it can significantly affect the vessel's
operating costs and profitability, fuel consumption is a crucial aspect that vessel operators must
take into account while planning and carrying out voyages.

Ship’s consumption, according to (Yusim & Utama, 2017), is heavily related to the ship’s drag

forces which are affected by the vessel’s hull fouling - biofouling. Marine fouling is generated
by the buildup of micro - and macro-organisms onto the ship’s hull, physically increasing the
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displacement of the vessel and disturbing the ship’s flow through water. Marine fouling
generates surface roughness which increases the drag resistance of a ship moving through
water. Studies have shown that intense biofouling growth on a ship's underwater hull can
reduce speed by up to 20% and increase fuel consumption by around 50% over the course of a
year of operations.

Following (Arndt et al., 2021) research on the generation of biofouling on ships’ hulls is
influenced by several different factors, such as:

1. Design and construction of the vessel: This is a major factor that influences the
hydrodynamic performance of the vessel. Additionally, vessels may be equipped with
various technologies such as sea chests, bow thrusters, hull appendages and protrusions,
etc.

2. Operating conditions: This factor includes operational parameters like the vessel’s
operational speed as well as the ratio of time underway compared with time alongside,
moored or at anchor.

3. Trading routes: The characteristics of seawater vary from ocean to ocean. The
temperature, the salinity, and the richness of fouling organisms depend on the route of
the vessel and are critical factors for the generation of marine fouling.

4. Maintenance history: The maintenance of the vessel is one of the most important, if
not the most, factors influencing the vessel’s marine fouling concentration. It includes
the age and condition of any anti-fouling coating as well as the vessel’s hull cleaning
frequency. There are two primary methods for cleaning a vessel's hull: Dry-Dock
cleaning and Underwater cleaning. Although Underwater cleaning is easier, cheaper,
and faster, it does not yield the best results. In contrast, Dry-Dock cleaning produces
the most effective outcome, but it is a much costlier and time-intensive option.
Consequently, it is crucial to discern when it is appropriate to pursue Underwater
cleaning versus Dry-Dock cleaning based on the vessel's performance status.

1.1.2 Hull Cleaning

Based on IACS’ publication “Classification Societies-What, Why and How?”, typically, hull
cleaning procedures tend to occur in accordance with the intermediate and special surveys of
the vessel which are mandatory for the vessel’s seaworthiness. Intermediate inspections include
either an out-of-water Drydocking or an Under-Water inspection in Lieu of Drydocking
(UNWILD) and are to be completed in the second to third year of each five-year special survey
cycle. Additionally, special surveys, or five-year Inspections, are to be completed within five
years after the date of build or 5 years after the crediting date of the previous Special Survey —
Hull.

Although, regardless of these mandatory cleanings, some operators may issue additional ones
according to their vessel’s hull and propeller condition. According to (Adland et al., 2018),
vessels that sail in high-temperature waters, tend to generate marine fouling faster than others
and may be better to perform an additional underwater cleaning which, depending on the degree
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of marine fouling, vessel size, vessel segment, operation profile and trading areas, could result
to a reduction in the range of 1% to 5% on main engine fuel consumption. Hence, the cost of
the underwater cleaning which varies from $5.000 to $50.000 could eventually be less than the
amount saved on fuel. All these scenarios are not easy to be examined and require close
attention to the vessel’s performance status.

1.1.3 Vessel Performance Monitoring Systems (VPM)

To make sure that no unpredicted problems and additional costs come up, marine engineers
and vessel operators have introduced new methods for monitoring the vessel’s performance
and operational status. These Vessel Performance Monitoring systems (VPM), achieve several
significant goals.

Enhancing ship efficiency: VPM enables continuous monitoring of important performance
metrics like fuel usage, speed, and engine characteristics. With the help of this data, the vessel's
performance can be improved to cut costs and the influence it has on the environment.

Enhancing maintenance: VPM can assist in determining maintenance requirements and
avoiding equipment failures, lowering the risk of downtime and related expenses.

Increasing safety: Monitoring a vessel's performance can also serve to increase safety by seeing
possible problems like engine overheating or hull damage before they get out of hand.

Ensuring compliance: VPM can be used to track adherence to rules governing emissions, fuel
use, and other performance parameters, lowering the possibility of fines and legal
repercussions.

Overall, as (Valchev et al., 2022) state, VPM gives vessel owners and operators insightful
information about their ship's performance, empowering them to make wise choices and take
preventative action to increase effectiveness, safety, and compliance. Hence, it is the
shipowner’s best interest to invest in technologies, such as vessel performance monitoring
systems that would consecutively make their vessels perform as best as possible and
consecutively reduce their fuel consumption. Vessel performance monitoring (VPM) is based
on the extensive analysis of the vessel’s gathered data. This analysis can be done by developing
different numerical models, which according to the literature, the three main families of
numerical models that have been developed and used in the literature are Physical Models
(models relying on mechanistic knowledge of the phenomena), Data-Driven Models (models
relying on historical data about the phenomena combined with Artificial Intelligence), and
Hybrid Models (i.e., a hybridization between Physical and Data-Driven Models).
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1.2 Artificial Intelligence & Shipping

Artificial Intelligence and Machine Learning have developed significantly over the last years.
The use of Al is growing across various industries, although its capabilities differ. Al has
started to affect the logistics sector, by removing monotonous and repetitive jobs, succeeding
in having a great potential to speed up and enhance the maritime industry. Specifically,
machine learning technology combined with big data analysis have the ability to influence a
business’ capacity for prediction and improve the effectiveness of its operations. Real-time
analytics, better scheduling, automated procedures, and other implementations are some
examples.

Combining all the years of research along with the assistance of advanced computing power
and wider data availability, prediction models have evolved from basic statistical models to
deep learning models, which achieve high accuracy prediction percentage. Classical statistical
models, such as linear regression and logistic regression base their predictive abilities on
assumptions about data distribution as well as the variables correlation. Through the extensive
use and examination of these statistical predictive models, machine learning science developed
machine learning prediction models, which in contrast with the statistical models, they relied
less on presumptions about the distribution of the data and the relationships between the
variables. The purpose of these models, which include decision trees, support vector machines,
and random forests, is to find patterns in data and generate predictions based on those patterns.
Lastly, deep learning models came along with the development of deep learning algorithms,
such as neural networks. These models are used for bigger data sets since they have the
capability to acquire knowledge from vast volumes of data and recognize intricate patterns that
were once challenging or unfeasible to discern.

The use of machine learning and predictive models have revolutionized many industries along
with shipping. Using these models, shipping operations can be optimized. Specifically,
according to (Farag & Olger, 2020) study, regarding the development of ship performance
models based on ANN and regression methods, Al offers the ability to shipping companies to
reduce costs in various ways. Firstly, it gives the ability to predict when a vessel might need
maintenance, by analyzing existing data. Additionally, route optimization is an important
aspect of machine learning use in the shipping industry, since shipping companies can decrease
fuel consumption, cut costs, and enhance delivery times by scrutinizing data on factors that
impact shipping durations such as weather conditions, traffic, and other variables, and
subsequently determining the most efficient routes.
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1.3 Literature Review

Kim et al., (2021) study, present certain models that can predict fuel consumption. Data from
a container ship were used to develop these models, and for their implementation, Artificial
Neural Networks (ANN) and Multiple Linear Regression (MLR) were used. Additionally, for
the development of this specific model, unlike other studies that use fuel consumption per hour
as the dependent variable, fuel consumption per distance traveled was used. This way, it takes
into account the conditions under which the ship is sailing, such as the loading condition and
the weather. Then, for the selection of the dependent variables to be used for the model
development, the "Domain Knowledge" and "Statistical method based on Lasso
Regularization” methods were examined. Thus, for the evaluation of the methods, results were
obtained for experiments with all possible combinations of variable selection and model
training methods, and the mean absolute error of each combination was calculated. Applying
the above, it was found that the optimal combinations were the use of Artificial Neural
Networks in combination with either the "Domain Knowledge" method or the "Lasso
Regularization” method. Therefore, the parameters selected with the "Domain Knowledge"
method are SOG, RWS, RWD, DFT, TRM, and DBS, while with "Lasso Regularization” they
are RPM, SOG, STW, RWS, RUD, and DBS. Finally, a sensitivity analysis of the model was
performed regarding the ship's draft. For this analysis, the combination of ANN - Domain
Knowledge was used, which has the draft of the ship as a variable with which the optimal draft
of the ship was calculated concerning the ship's consumption.

Furthermore, Lang et al., (2022) made a comparison of various artificial intelligence and
statistical methods used for predicting the necessary propulsion power of a ship to achieve
operational speed. Specifically, the algorithms compared include XGBoost, ANN, Support
Vector Regression, and statistical methods such as Linear and Polynomial Regression and
Generalized Additive Model. The parameters used as input variables in these models for
comparison are ship speed through water, mean draft, trim, heading, significant wave height,
mean wave period, mean wave heading, and wind speed. These variables are used as input
variables in computational models that generate the propulsion power as a result. The root
means square error and the complexity degree of the method are used to compare these
methods. After collecting and processing data from a tanker and a RoRo vessel, it was initially
found that artificial intelligence algorithms offer greater reliability and accuracy compared to
statistical methods. However, the text notes that statistical methods are superior in the time
required for "training”. Finally, it turns out that the optimal algorithm regarding the above
parameters is XGBoost, for which a sensitivity analysis of the model is also performed
regarding the time intervals in which we group our data, and it was concluded that 30 minutes
is the best choice.

In Laurie et al., (2021) paper various models of artificial intelligence are being examined,
aimed at predicting propulsive power and analyzing pollution in relation to efficiency
reduction. Specifically, the following models are being compared: Multiple Linear Regression,
Decision Tree (AdaBoost), K-Nearest Neighbors, ANN, and Random Forest. To develop this
specific model, data was collected from a container transport ship operating between Europe
and South America, an area where the waters have higher temperatures and therefore pollution
development is more intense. Additionally, the ETR (Extra Trees Regression) model was used
to select the optimal combination of variables, leading to the following variables: behavior,
draft, Froude number (Fn), wind speed ratio, significant wave height, water temperature, and
days since the last tank cleaning (DSC). Root Mean Square Percentage (RMSPE) and Mean
Absolute Percentage Error (MAPE) values were calculated to compare the computational
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models. Using these values, it was found that the Random Forest model performs the best,
although the KNN and ANN models were equally good. Therefore, it appears that non-linear
relationships between inputs and outputs work better than linear relationships.

Additionally, a study by Uyanik et al., (2020) is based on determining the fuel consumption of
a container using various artificial intelligence algorithms. Specifically, different predictive
models such as Multiple Linear Regression, Ridge and LASSO Regression, Support Vector
Regression, Tree-Based Algorithms, and Boosting Algorithms were examined using noon
reports and data from engine log books. For the validation of the predictive models, the K-fold
cross-validation method was used. For the analysis of the relationship between each variable
correlation analysis is used, calculating the correlation of all possible variable pairs.
Additionally, for the evaluation of each method regarding its accuracy, a root mean square error
analysis was used, reporting that it is more advantageous for larger datasets. After gathering all
the information, it was concluded that the best-performing, and most accurate predictive model
is considered to be the Gradient Boosting Regression.

Karagiannidis, (2019), extensively examined the impact of data pre-processing while creating
data-driven models for ship propulsion. In order to train models that forecast the required shaft
power or main engine fuel consumption for a container ship sailing under random conditions,
he employed a sizable, autonomously acquired data set with a high sampling frequency. Two
strategies were proposed with the aim of highlighting the statistical evaluation and preparation
of the data. Additionally, state-of-the-art training and optimization methodologies for Feed-
Forward Neural Networks (FNNs) were applied. His findings suggest that the accuracy of the
model can be significantly increased by a diligent filtering and preparation stage. In addition
to that, Karagiannidis & Themelis, (2021), conducted an article regarding the effect of data
pre-processing on the prediction of ship fuel consumption and speed loss and ultimately
concluded that with the appropriate pre-processing and filtering of data, it is promising to
achieve an increased model accuracy.

Lastly, Anastasiou, (2022) through his diploma thesis, made a comprehensive analysis on the
development of ship performance models using Artificial Neural Networks and operational
data. Specifically, he developed an artificial neural network as well as a multiple linear
regression model which were used to predict the fuel oil consumption of a vessel. In his study
he examined multiple error detection methods, as well as regularization techniques to overcome
overfitting. He mentions that due to the lack of use of engine-related parameters in the designed
model, it was not easy to achieve a low error index. Additionally, he highlighted the fact that
deep learning models are very likely to come across overfitting problems, due to the large
amount of data that are being processed. Lastly, he concluded that a deep neural network using
proper parameters, can outperform a multiple linear regression model in many cases and
specifically in the prediction of various ship propulsion characteristics.
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1.4 Thesis Objective & Structure

As mentioned in this study’s introduction, vessel’s main engine shaft power monitoring has
been of major importance for shipping companies not only for the ship’s performance but also
for the minimalization of operational expenses and ship’s emissions. Its accurate forecasting
has been one of the most popular topics in marine engineering and machine learning since an
accurate Artificial Neural Network prediction model could be a huge asset for a shipping
company since it could eventually cut down their expenses significantly while organizing their
vessel’s maintenance actions in such a way that the vessel will never end up in a situation where
it has broken down entirely. Hence, the objective of this study revolves around developing an
Artificial Neural Network model that can effectively forecast a vessel’s Shaft Power with high
accuracy across different loading and weather conditions. Firstly, to do that it was required to
accumulate data from a vessel for a specific period since these models are mainly data-driven
(Chapter 2. Data acquisition). Secondly, to create a model capable of producing accurate
predictions it is essential to process the given data in order to remain with a filtered Dataset
(Chapter 3. Data pre-processing). In the next chapter, Chapter 4. Feature Engineering, the pre-
processed dataset’s features will be examined while also there will new ones generated. This
step is really crucial for the predictive model architecture since the remaining features will
serve as the model’s input variables. Subsequently, after creating the input dataset along with
its final input variables, in Chapter 5. Artificial Neural Networks, the tuning of the ANN
model’s hyperparameters will be examined and the most suitable model will be created.
Finally, after evaluating and selecting the most accurate model, the fouling state of the vessel
will be assessed, and the consequences that it has on the vessel’s performance efficiency as
well as its Operational Expenses. Hence, this study will take a deeper look into the optimization
of the hyperparameters tuning of a Neural Network as well as the Features Engineering by
using programming optimization tools, such as Random Forest Regression Classifier, which is
provided by Python’s Libraries. Additionally, it will introduce a method to evaluate and assess
the vessel’s fouling status along with the additional fuel expenses that are associated with it by
correlating the additional Propeller Shaft Power to the Days that have passed by since a specific
time. This will indicate a positive correlation between the Days Since the last Repair to the
Propeller’s Shaft Power.
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2 Data acquisition

For the development of the prediction model, data were collected from the operation of a Bulk
Carrier Vessel (MV Kastor) during the period of January-2021 to April-2022. For the collection
of the data, a continuous monitoring system was used with a frequency of 1 minute. These data
describe several parameters and were captured through various sensors. The total number of
data points was 698400. Additionally, during that period the vessel has gone through propeller
maintenance which is expected to affect the vessel’s performance efficiency indicators.

Vessel’s Main Characteristics
Type Bulk Carrier
Length (BP) 225.5 [m]
Length (OA) 229 [m]
Beam 32.3 [m]
Draft 14.45 [m]
Depth 20.05 [m]
Deadweight 81600 [tn]
Engine MAN B&W 6S60ME-C8

9930 kW /90 RPM

Service Speed 14 [knots]

Figure 2: Main characteristics of reference vessel.

Data acquisition plays a vital role in vessel monitoring and is essential for creating both
statistical and Al predictive models. As (Skamagkas, 2022) states, there are two main methods
for the collection of operational data:

Noon reports:

The crew of a ship normally submits noon reports each day, informing the shipping company
of the vessel's location, speed, heading, and other operational information. All these data,
collected from noon reports, can be gathered in a vessel monitoring system in several ways:

Electronic submission: The crew submits the report to the monitoring center electronically
using a computer or mobile device. The report will then be automatically processed and saved
in the system.

Fax or email: The crew sends a fax or email to the monitoring center or the company
responsible for the vessel’s operation, which can then manually enter the data into the system.

Manual entry: The data can be manually entered into the system by the monitoring center,
either from a paper copy of the report or from an electronic copy that was obtained from the
crew.

Continuous monitoring systems

These systems collect data with a higher frequency than the noon reports, such as a few
seconds. For data collection, these monitoring systems use several sensors and communication
systems installed on the vessel.

Data acquisition 17



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.

Data logger/
Source system

=

Data relay
component

C 31

|  cyber secure
Vessel server | gateveay

Figure 3: Continuous data monitoring for vessel performance.

Data guality and

security manasgement

(Digitalization in the Maritime Industry - DNV, n.d.)

Regardless of the method of collection, both methods can provide us with valuable information
about the vessel’s operational status. Although, due to the higher frequency that continuous
monitoring systems have, they provide us with a more detailed and more accurate view of the

vessel’s operations compared to noon reports.

Parameter Sensor Units
Speed Over Ground (SOG) GPS knots
Speed Through Water (STW) Speed Log knots
Propeller Shaft Power (PSP) kW
ME Revolutions per Minute Shaft Torque Meter | RPM
ME Loading percent %
Fuel Index Position Mass Flow Meter N/A
ME Fuel Oil Consumption mt/day
Vessel Heading GPS deg
Relative Wind Direction Anemometer deg
Relative Wind Speed m/sec
DTN AIR TEMPERATURE 10M ACTUAL Thermometer °C
DTN AIR PRESSURE MEAN SEA LEVEL ACTUAL mbar
Draft Pressure Sensor m
Vessel Trim m
DTN SEA TEMPERATURE OM ACTUAL Thermometer °C
Fuel Oil Temperature (ME return) °C
Fuel Oil Temperature (ME supply) °C
Shaft Torque Shaft Torque Meter | kNm
Shaft Thrust KN
M/E Shaft Revolutions RPM
Significant Wave Height m
Mean Wave Direction deg
Water Depth Relative to the Transducer Echo sounder m
Ballast-Condition N/A
Cargo Carried tn
Fuel-LCV kd’kg

Table 1: Parameters captured through various sensors.

Data acquisition

18



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.

Speed Logs

Speed logs are used to calculate the vessel’s speed through water. To that extent, the following
sensors are mostly used:

Doppler Logs

Doppler speed logs utilize the Doppler phenomenon to measure speed by detecting the shift in
wavelengths of moving objects relative to the observer. This shift is converted into speed by
emitting high-power acoustic energy into the water and receiving the echo reflected from the
seafloor. The Doppler shift from the returning echo is used to determine the speed of the water
passing the sensor, as well as the distance traveled and depth of the water. The sensor is placed
on the vessel's longitudinal axis, about 1/3 of the length forward, with the boundary layer of
water (whose speed is measured) typically located 2-7m below it. Although, doppler speed
logs can malfunction through shallow waters due to the water’s acceleration along with the
change of direction of the vessel.

Electromagnetic Logs

The electromagnetic log operates by creating an electromagnetic field in the surrounding water
through the generation of a small alternating current in a transducer. As the vessel travels
through the water, a voltage corresponding to the speed is produced perpendicular to the
direction of travel. This voltage is detected by probes and sent to the main electronic unit where
it is amplified and processed digitally before being transmitted to the speed and distance
displays.

Acoustic correlation Logs

A less common alternative to the aforementioned speed logs. Acoustic correlation logs are
based on the correlation of the reflected pulses (sound-energy) in the water at a given distance.
The time delay of two similar pulses is measured, and the speed of the ship is calculated.

Echo sounder

An echo sounder, commonly referred to as a depth sounder or sonar, uses sound waves to
measure the depth of the water beneath a vessel. It operates by sending out a sound wave that
passes through the water and bounces against the seafloor. The length of time it takes for a
sound wave to reach the ocean floor and return is measured, and the depth of the water is
determined using this length of time. The make-up of the seafloor and the presence of
submerged items are two additional pieces of information that contemporary echo sounders
may offer.

Shaft Torque Meters

As their name suggests, Shaft torque meters are used to measure the shaft power of the vessel’s
engine. The two most common ways are the following:
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Shaft rotation angle

To measure the torque, the shaft’s rotation angle is used, which is calculated through the
angular difference between two rings that are placed at a certain distance on the axis. Thus, the
angle of rotation is obtained.

Strain Gauges

Strain gauges measure an object's deformation or strain at a 45-degree angle. They are made
up of a thin, flexible wire or film attached on a surface that adjusts its resistance in response to
pressure or strain. The amount of deformation is inversely correlated with the change in
resistance, which can be measured and used to determine the object’s strain.

Shaft Torque Meters

As their name suggests, Shaft torque meters are used to measure the shaft power of the vessel’s
engine. The two most common ways are the following:

Shaft rotation angle

To measure the torque, the shaft’s rotation angle is used, which is calculated through the
angular difference between two rings that are placed at a certain distance on the axis. Thus, the
angle of rotation is obtained.

Strain Gauges

Strain gauges measure an object's deformation or strain at a 45-degree angle. They are made
up of a thin, flexible wire or film attached on a surface that adjusts its resistance in response to
pressure or strain. The amount of deformation is inversely correlated with the change in
resistance, which can be measured and used to determine the object's strain.

GPS (Global Positioning System)

GPS is a system used to track the position of an object. Hence, it retrieves information about
the position of the ship in global coordinates (longitude, latitude), and therefore, by numerically
extracting the position of the ship, the calculation of the ship's speed over ground (SOG) is
achieved. In order for the GPS to work properly it requires to be continuously connected to a
satellite system that will transport the ship's location. Specifically, The GPS system consists of
more than 30 orbiting navigational satellites. Because they are continually sending out signals,
we know where they are. The vessel’s GPS receiver watches for these signals. The receiver can
determine the vessel’s location after calculating its distance from four or more GPS satellites.
The accuracy is great but can be affected by currents.

Pressure Sensor
Pressure sensors are installed in vessels for the calculation of their trim and drafts. The draft is
calculated by measuring the hydrostatic pressure at the surface of the vessel's hull using sensors

placed on the external surface. The draft is then calculated at the location where the sensors are
installed. To account for the impact of dynamic changes on drafts, such as the effect of waves,
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a sensor or measurement of the vessel's movements, such as an inertial measuring unit sensor,
is used. Additionally, the trim can be calculated by measuring the draft at two different
longitudinal positions of the ship.

Mass Flow Meters
Coriolis Mass Flow Meters

To measure the fuel consumption of an engine, mass flow meters are used. Specifically,
Coriolis mass flow meters are known to provide the most accurate results due to the fact that
they don’t rely on fuel density estimations since they measure the mass flow directly. They
operate on the idea of Coriolis acceleration, which happens whenever a fluid is rotated. A U-
shaped tube that vibrates at a resonant frequency makes up the meter. The Coriolis force that
the fluid experiences as it passes through the tube causes it to bend and twist. The fluid's mass
flow rate directly relates to the degree of deflection. Additionally, the mass flow rate is
determined by measuring the time delay between the signals produced by sensors at the tube's
input and outlet ends, which detect deflection. The mass flow rate and fluid density can both
be determined using Coriolis mass flow meters.

Anemometer
The wind anemometer is a tool that shows the wind's relative direction and speed in relation to
the ship's orientation. It is made up of a vane and a helicoid propeller that measure the direction

and speed of the wind, respectively. The helicoid propeller's rotating speed and the vane's
angular displacement both aid in estimating the relative direction and speed of the wind.
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3 Data pre-processing

This chapter emphasizes on the preparation of the raw data to prepare it for the main data
processing procedure. Data pre-processing is one of the most important steps for the creation
of a machine learning model. Real-world data is unorganized and frequently produced,
processed, and saved by a range of people, business operations, and software programs.
Because of this, a data set can be incomplete, have manual input errors, have duplicate data, or
use several names to refer to the same object. In the data that they use for their line of work,
humans can frequently spot and fix these issues, but data used to train machine learning or deep
learning algorithms needs to be automatically pre-processed. For that reason, the vessel’s raw
data were processed according to the following steps:

1) Data profiling: Examining, evaluating, and reviewing data in order to compile statistics
regarding its quality. Hence, it is important to visualize the data by creating plots and histograms
which will give us a better understanding of our collected data.

2) Data filtering: The purpose here is to determine the easiest solution to remedy quality issues,
such as deleting bad data, filling in missing data or otherwise ensuring the raw data is adequate
for feature engineering.

3.1 Data Profiling

All the collected data from the vessel are time-dependent, hence it is important to have each
variable plotted over time to check that they were recorded without any flaws and to detect any
sensor failures that may arise. However, given the fact that inside the recorded data there are
29 parameters stored over a period of 22 months, we chose to plot only the most important
ones. Ship performance is influenced by three main categories of parameters regarding the
vessel’s operation, the vessel’s loading condition, and the environmental conditions. Hence, in
order to demonstrate all of them, representatives for each one were selected. Therefore,
Longitudinal Speed Through Water (STW) with ME Fuel-Oil Consumption, Mean Draft with
Vessel’s Trim, and Wind Speed with Significant Wave Height, were chosen to represent the
operational, the loading as well as the environmental parameters accordingly and are presented
in Figure 4, Figure 5, and Figure 6 respectively.
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Figure 4: Basic operational parameters over a 22-month period.
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Figure 5: Basic loading parameters (Drafts, Trim) over a 22-month period.
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Figure 6: Basic environmental parameters (Relative Wind Speed, Significant Wave Height) over a 22-month period.

From the above-plotted parameters, presented in Figure 4, Figure 5, and Figure 6 the following
can be observed:

The Mass Flow meter sensor malfunctioned through the recorded period, as the
collected data showed negative Fuel Oil consumption which is not right. Hence, the
ME Fuel-Oil consumption parameter cannot be used for the development of the
predictive model.

In the range of 350000 and 700000 minutes the vessel’s pressure sensor did not work
properly, since the data that were recorded are not continuous. Therefore, the
parameters of the mean draft and the trim of the vessel cannot be used through the entire
recorded period.

It is necessary, through the data visualization, to evaluate the existence of noise and
outliers as well as the necessity for filtering or smoothing the data. Since this study aims
to develop a predictive model for the vessel’s shaft power, it is important to clear useless
data that could eventually sabotage our model.

Data pre-processing 25



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.

Another important step for the pre-processing of data is the identification of missing values
and illogical measurements. The following table (Table 2) shows the missing values for each
parameter in the entire data set.

Parameter Missing

values

TIME 0
Speed-Over-Ground (knots) 10056
Speed-Through-Water (knots) 8712
Propeller-Shaft-Power (kW) 10476
ME RPM_AMS (rpm) 8245
ME-Loading-percent (%) 14011
Fuel-Index-Position (n/a) 7597
ME-FO-Cons (mt/day) 14737
Vessel-Heading (deg) 10064
Rel-Wind-Direction (deg) 10546
Rel-Wind-Speed (m/sec) 10099
DTN_AIR_TEMPERATURE_10M_ACTUAL (oC) 656569
DTN_AIR_PRESSURE_MEAN_SEA_LEVEL_ACTUAL (mbar) 656569
Draft-Aft (m) 8841
Draft—-Fwd (m) 8891
Draft-Mean (m) 9714
Vessel-Trim (m) 9714
DTN_SEA_TEMPERATURE_@OM_ACTUAL (oC) 663293
Fuel 0il Temperature (ME return)_TRQM (C) 7228
Fuel 0il Temperature (ME supply)_TRQM (C) 7188
Shaft Torque_TRQM (kNm) 7169
Shaft Thrust_TRQM (kN) 7170
M/E Shaft RPM_TRQM (rpm) 7167
DTN_SIGNIFICANT_WAVE_HEIGHT (m) 663001
DTN_MEAN_WAVE_DIRECTION (deg) 663001
Water Depth Relative to the Transducer_BRG_ECHO (m) 124335
Ballast-Condition (-) 11154
Cargo-Carried (tn) 8458
Fuel-LCV (kJ/kg) 14632

Table 2: Missing values of the raw data

From Table 2: Missing values of the raw data, it can easily be observed that some parameters
have too many missing values and therefore it would be wise not to use them. Hence, the
following parameters will be deleted from the data set:

1) DTN AIR TEMPERATURE 10M ACTUAL (°C)

2) DTN AIR PRESSURE MEAN SEA LEVEL ACTUAL (mbar)
3) DTN SEA TEMPERATURE OM ACTUAL (°C)

4) DTN SIGNIFICANT WAVE HEIGHT (m)

5) DTN MEAN WAVE DIRECTION (deg)

Apart from the above parameters, the ME Fuel Oil consumption parameter was deleted since
we saw that the mass flow meter sensor malfunctioned. After this procedure, we are now left
with the parameters that will help us build our model. Additionally, the Water Depth parameter
should not be included in the model creation since it is used only in shallow waters.
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With a better understanding of the dataset, we can now identify the relationships between its
parameters and choose the appropriate processing steps for each. Due to our understanding of
the mechanics behind the problem, we already know the relationship, or at the very least the
overall trend, for some of them (such as PSP-RPM), which will be useful in reducing outliers.

In order to evaluate each parameter and get a clearer view of their variance, the following

histograms were created. These histograms show the relative frequency of different values of
each parameter.
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Figure 7: Histograms of relative frequency of raw data parameters

It is noticeable that all parameters have more null values than expected. Also, due to the amount
of collected data through the 22-month period, it is difficult to make assumptions for the
parameter relationships. Therefore, it would be better if the filtering of the data was initiated at
first.

Finally, due to sensor malfunctions, it was deemed necessary to use the data from the noon
reports as well. Hence, a new dataset was created which contained both data from noon reports
and telemetry data. The merged dataset can be obtained in the following plots:
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Figure 8: Time series plots representing the merged dataset's basic parameters.
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Figure 9: Histograms representing the basic parameters of the merged Dataset.

To complete the profiling of the final merged data set, it is crucial to present the parameters
that were created due to deleting several parameters as well as the merge of the two data sets.
Hence, the following table was created:

Parameters
Speed Over Ground (SOG) [knots]
Speed Through Water (STW) [knots]
Propeller Shaft Power (PSP) [kW]
ME Revolutions per Minute [rpm]
ME Loading percent [%]

Fuel Index Position [n/a]
Vessel Heading [deg]
Relative Wind Direction [deg]
Relative Wind Speed [m/sec]
Fuel Qil Temperature (ME return) [°C]
Fuel Oil Temperature (ME supply) [°C]
Shaft Torque [KNm]

Shaft Thrust [KN]

M/E Shaft Revolutions [rpm]
Ballast Condition
Cargo Carried [tn]
Fuel-LCV [kJ/kg]

Fore Draft [m]

Mid Draft [m]

Aft Draft [m]

Heading
Air Temperature
Sea Temperature
Sea Height
Swell
Swell Height
Wind Force
Trim
Table 3: Parameters of the merged data set.
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3.2 Data Filtering

3.2.1 Threshold Values
3.2.1.1 Speed

One of the most important operating parameters, if not the most important, is the ship's speed
which is described by the Speed through water (STW) and Speed over ground (SOG)
parameters. Its monitoring is essential to the shipowner as it is highly correlated with the ship’s
fuel consumption. Additionally, speed is tracked through sensors that compute the absolute
values of the aforementioned parameters, hence both parameters should have only positive
values. Lastly, low water speed readings are also related to a ship's approach to, operation
within, or departure from a port. Some situations are not covered by this study since there is
either no fuel oil usage or very little. Therefore, the following threshold values were applied to
exclude points associated with sensor failure as well as port operation:

o STW > 9 (kn)

3.2.1.2 ME Revolutions per Minute (ME RPM)

The ME revolutions are highly correlated to the Propeller Shaft Power parameter since both of
them are connected to the engine. Similarly, to the Vessel’s Speed Through Water parameter,
low ME revolutions as well as Shaft Power values, reflect the vessel’s operation inside port
terminals. Hence, in order to exclude points associated with the port operation the following
threshold values were applied:

e MERPM > 50 (rpm)
e PSP > 3000 (kW)

The following plots (Figure 10) reflect the application of the abovementioned filters (Speed,
ME RPM & PSP):

Threshold values filtering
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Figure 10: Plots reflecting the application of the threshold values.
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3.3 Data Cleaning

3.3.1 Null Values

As mentioned before the given data set has many values that need to be excluded from the
model development. At this phase, any discrepancies, mistakes, or missing numbers are
cleaned up and processed out of the data. This calls for addressing outliers, coping with missing
data, and getting rid of duplicates. From Table 2 it was observed that some sensors were not
working as they should, therefore it was concluded that values coming from these sensors
should be eliminated. Hence, DTN AIR TEMPERATURE 10M ACTUAL (°C), DTN AIR
PRESSURE MEAN SEA LEVEL ACTUAL (mbar), DTN SEA TEMPERATURE OM ACTUAL
(°C), DTN SIGNIFICANT WAVE HEIGHT (m), DTN MEAN WAVE DIRECTION (deg) and
ME Fuel Oil Consumption (mt/day), Water Depth Relative to the Transducer BRG_ECHO (m)
parameters were excluded from the data set. Lastly, after the filtering of the values the

remaining null values were the following:

Parameter Missing Values
TIME 0
Speed Over Ground (knots) 22
Speed Through Water (knots) 0
Propeller Shaft Power (kW) 0
ME Revolutions per Minute (rpm) 0
ME Loading (%) 1492
Fuel Index Position 54
Vessel Heading (deg) 9
Relative Wind Direction (deg) 12
Relative Wind Speed (m/sec) 16
FO Temperature at ME Return (C°) 4
FO Temperature at ME Supply (C°) 4
Shaft Torque (KNm) 4
Shaft Thrust (kN) 1
Ballast Condition 337
Cargo carried (tons) 19
Fuel LCV (kJ/kg) 1649
Fwd Draft (m) 0
Mid Draft (m) 0
Aft Draft (m) 0
Heading 0
Air Temperature 0
Sea Temperature 0
Sea Height 0
Swell 0
Swell Height 0
Wind Force 0
Trim 0

Table 4: Null values of filtered data.

At this phase, it is needed to drop the zero values from our data set since they are likely to cause
problems in the development of the predictive model. After this step we are left with the

following data set:
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3.4 Parameters correlation

3.4.1 Pearson Correlation Coefficient

Before detecting outliers, through a statistical outlier detection method, it is necessary to
investigate the correlation between the dataset’s parameters. There are several ways to do that,
although in data analysis the most popular is the Pearson Correlation Coefficient method.

. 2(xi—0)yi— ) [3-1]
VE(x; — %)% X(y; — ¥)?

Where,

r = correlation coef ficient
x; = values of the x — variable in a sample
X = mean of the values of the x — variable
y; = values of the y — variable in a sample
Yy = mean of the values of the y — variable

The status, direction, and strength of the association between the two variables are all
determined using correlation analysis, a statistical technique that aids in explaining the
relationship between variables. The determination of the Pearson Correlation Coefficient (r) is
crucial for the analysis because the Pearson method is employed in correlation analysis. The
range of the r coefficient is from -1 to +1. Positive correlation and negative correlation are
denoted by plus and minus signs in front of the coefficient, respectively. One of the critical
factors to consider is the measure of the connection between Propeller Shaft Power (PSP) and
other inputs. This is because the correlation coefficient can help determine the relative
significance or weight of various factors that affect the predicted PSP. The Error! Reference
source not found. reveals that the vessel speed and shaft parameter indicators are strongly
correlated with the propeller shaft power indicator. These inputs can be prioritized based on
their correlation values.
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Figure 12: Pearson Correlation heatmap.

3.4.2 Parametric Plots

Despite the parameter correlation calculated by the Pearson Correlation Coefficient method,
having an initial estimation of the anticipated correlation between these parameters is crucial,
drawing from the governing principles of the phenomena in which they are implicated. These
laws of physics are described through the following mathematical equations:

e Regarding the engine's operation:
Pop = Q- 21 " Ngyy [3'2]

Where, Pen is the engine’s power outcome (Break horsepower / BHP), Q is the
crankshaft’s torque and nen are the revolutions per second of the engine.

e The empirical Propeller Law:
Pyrop =€ V3 [3-3]

The empirical propeller law is a relationship that describes the power consumed by a
ship's propeller. It is an empirical equation derived from observations and experimental
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data. The propeller law states that the power consumed by the propeller, denoted as
Pprop, IS proportional to the cube of the ship's speed, V.

Alternatively, the propeller law can also be written in terms of the propeller revolutions,
denoted as n, which are often proportional to the engine's revolutions. In this form, the
equation becomes:

Pprop =cr n3 [3-4]

The constant ¢ in both equations represents the efficiency and characteristics of the
propeller system under specific operating conditions.

The empirical propeller law provides valuable insights into the power requirements and
performance characteristics of ship propellers. By understanding this relationship, ship
designers and operators can make informed decisions regarding propeller selection,
optimization, and overall vessel performance.

The Calm Water Resistance Coefficient:

R
CT=

1
7PSV? [3-5]

Here, R represents the measured resistance force, p represents the density of the fluid,
and S represents the wetted surface area. The water resistance refers to the force that
must be overcome by the propeller's thrust in calm sea conditions to achieve the desired
speed V. This is achieved when the propeller's effective power (Peff) is equal to V-R.

To compare the laws of physics with the data captured, the following plots were created. In

genera

I, it is observed that they comply with the basic parametric plots provided by the

aforementioned mathematical equations.
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Figure 13: Engine's Operation Equation visualization.
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Empirical Propeller Law (Version 1)
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Figure 14: Empirical Propeller Law (STW Version)

Empirical Propeller Law (Version 2)

@ Filtered Data

8000

7000

Power_kW_

6000

Propeller_Shaft

5000

200000 300000 400000 500000 600000
n3

Figure 15: Empirical Propeller Law (RPM Version)

After observing the empirical propeller law parametric plot (Figure 15: Empirical Propeller
Law (RPM Version)), it became apparent that the merged dataset consisted of two distinct
clusters. This distinction was expected as the vessel underwent maintenance during the
recorded period. In particular, on 19/07/2021, a propeller repair was conducted, which
significantly impacted all fundamental propulsion parameters. In order to visually analyse the
variation in vessel performance efficiency, it became essential to partition the dataset into two
portions: one representing data before the maintenance and the other after.
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Empirical Law parametric plot

@ After Propeller Repair .
® Before Propeller Repair

8000

17000

W,

@
3
3
S

Propeller_Shaft_Power_k

200000 300000 400000 500000 600000

@ After Propeller Repair
1000 @ Before Propeller Repair

3 2 8
g g 3

shaftTorque_TROM_kNm

o

=1

S
]

500

MERPM_AMS_rpm_

Figure 16: Visual observation of propeller repair effect on propulsion efficiency.

Ultimately, Figure 16: Visual observation of propeller repair effect on propulsion efficiency.
confirms our hypothesis of the cluster existence and show the effect of the propeller repair on
the efficiency of the vessel’s performance. It is clear that after the repair the performance

.. . . PSP TRQM .
efficiency level has risen since both — and 22 ratios have decreased.

n
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3.5 Outlier Detection

Outlier detection is a critical step in data analysis as it serves multiple purposes. By identifying
and handling outliers, we ensure the quality and integrity of the data, preventing errors that can
arise from data collection or recording. Accurate analysis is achieved by mitigating the
influence of outliers on statistical calculations and models, ensuring reliable and meaningful
results. Outlier detection also enhances the robustness of algorithms and models by mitigating
the disproportionate impact of extreme values. Additionally, outliers can offer valuable insights
and patterns, contributing to a deeper understanding of the data and potential discoveries.
Ultimately, outlier detection facilitates informed decision-making processes, enabling actions
based on reliable and accurate information.

Additionally, Outlier detection is connected to, yet separate from, noise removal and noise
accommodation. While all three concepts address undesired noise in data, they have distinct
objectives. Noise refers to irrelevant elements in the data that hinder analysis. Noise removal
focuses on eliminating these unwanted components prior to analysis. On the other hand, noise
accommodation aims to protect statistical model estimation from anomalous observations,
effectively shielding the model from their influence. (Singh & Upadhyaya, 2012)

To detect the outlying and noisy data, an alternative method was used which is mostly based
on the Chauvenet’s criterion, a statistical method that identifies outliers through the following
steps:

Calculation of the mean value of the samples: u = %Z{V d; [3-6]
Calculate the standardized deviation: delta; = |(d; — p)| [3-7]
3. Calculation of the standard deviation of the samples: o = /%Z{V delta; [3-8]
4. Calculation of the probability for the occurrence of any value di: P(d;) = erf c(dzif;") [3-9]
5. Asample is considered an outlier if the following inequality is fulfilled: P(d;) - N < 0.5 [3-10]

(Rochim, 2016)

Frequency
distribution

Prob = 1-1/(2N)

e

(Statistical Rejection of “Bad” Data-Chauvenet’s Criterion, n.d.)
Figure 17: Chauvenet's criterion

Combining Chauvenet’s criterion along with the study of (P. Karagiannidis, 2019), the filtering
procedure developed for the detection of outliers is described in the following steps:
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1. Select a primary parameter X whose values are to be filtered.

Split the primary parameter X in groups of values with range v.

3. Select a secondary parameter Y which is highly correlated with the primary parameter
X.

4. For each group Gi of X, normalize Y with z-score normalization.

Select an outlier threshold k, where k € [2, 3.5].

6. For every respective value of Y in the Gi group, Yij , test if the following inequality is
fulfilled:

N

o

IYij| < k [3-11]

7. If the inequality is not fulfilled, reject the data point.

For the purpose of this study, the primary parameters X were selected to be the ME revolutions
(ME RPM) which was split into groups of values with a range of 1 rpm, and SOG which was
split into groups of values with a range of 0.5 knots, while the secondary parameters were
chosen, according to Figure 12: Pearson Correlation heatmap., to be the Propeller Shaft Torque,
the Propeller Shaft Power (PSP), and the Speed Through Water (STW). Finally, the threshold
for all three parameters was set to k=2.5. To observe the outcome of the outlier filtering process,
the following plots were created:

3.5.1 Filter 1: Shaft Torque — RPM

Primary Parameter RPM
Secondary Parameter Shaft Torque
k 2.5
v (rpm) 1
data points removed (%) 1.63 %

Table 5: Filter 1 details

Filter 1: RPM vs Shaft Torque

@ Outliers
1000 @ Filtered Data before repair

MERPM_AMS_rpm_
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Filter 1: RPM vs Shaft Torque
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Figure 18: Plot visualization of statistical outliers of the propeller's shaft torque & ME revolutions.

3.5.2 Filter 2: PSP — RPM

Primary Parameter RPM
Secondary Parameter PSP
k 25
v (rpm) 1
data points removed (%) 0.65 %

Table 6: Filter 2 details.

Filter 2: RPM vs PSP

e Outliers
@ Filtered Data before repair

MERPM_AMS_rpm_

Filter 2: RPM vs PSP

e Outliers
@ Filtered Data after repair

s5 60 65 70 75 80 85
MERPM_AMS_rpm_

Figure 19: Plot visualization of statistical outliers of the ME revolutions & PSP.
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3.5.3 Filter 3: STW — RPM

Primary Parameter RPM
Secondary Parameter STW
k 2.5
v (rpm) 1
data points removed (%) 2.04 %

Table 7: Filter 3 details.

Filter 3: RPM vs STW

® Outliers
@ Filtered Data before repair
* .
.
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Figure 20: Plot visualization of statistical outliers of the ME revolutions & Speed Through Water.

3.5.4 Filter 4: STW — SOG

Primary Parameter SOG
Secondary Parameter STW
k 2.5
v (kn) 0.5
data points removed (%) 2.16 %

Table 8: Filter 4 details.
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Filter 4: SOG vs STW
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Figure 21: Plot visualization of statistical outliers of the Speed Over Ground & Speed Through Water.

3.6 Data Smoothing

Data smoothing is a methodology used in data analysis to reduce noise and detect underlying
trends or patterns in data. The purpose of this technique is to create a more refined version of
the original data set, by applying a mathematical algorithm or function. Some of the techniques
employed in data smoothing include moving averages, exponential smoothing, and kernel
smoothing. Moving averages utilize the computation of the average of neighboring data points,
whereas exponential smoothing gives more weight to recent data points. In kernel smoothing,
a specified kernel function is used to fit a curve to the data. Data smoothing can be useful in
revealing trends and patterns that may not be immediately noticeable from the raw data.
Furthermore, it can aid in eliminating noise or anomalies from a data set, thus simplifying
analysis and interpretation. Nonetheless, applying data smoothing techniques should be made
with extreme caution since they can sometimes obscure crucial data details or introduce
artifacts or biases.

In this study, a simple moving average smoothing method was used. A simple moving average
(SMA\) is an arithmetic moving average calculated by adding all the previous n values and then
dividing that figure by the number of time periods in the calculation average. Since the data
were recorded with a frequency of 1 minute, the period number of the values will define the
time window that will be used. For the purpose of this study a 15-minute window was selected.

Al +A2+"'+An

SMA =
n [3-12]
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A,: The arithmetic value of the variable at the period n

n: The number of total periods

To evaluate the effect of smoothing, the Speed-Through-Water parameter was plotted over a

2000-sample period.
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Figure 22: Smoothed — Non-Smoothed data curve comparison (before repair Dataset)
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Figure 23:Smoothed — Non-Smoothed data curve comparison (after repair Dataset)

698500

From the above graphs, it is recognizable that the smoothed data curve, in both datasets, is far

more stable.
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3.7 Data Quality Check

In data science, data quality checks are of utmost importance for reliable analysis, valid
conclusions, and optimal model performance. The type of insights derived from predictive
models along with their accuracy, heavily rely on high-quality data. By identifying and
addressing issues such as missing values, outliers, inconsistencies, and inaccuracies through
data quality checks, they ensure that the data used for analysis is reliable and trustworthy.
Hence, it is essential to dedicate a chapter to the evaluation of the pre-processing procedure of
the data.

Dataset 1: Raw data containing both noon and telemetry data.
Dataset 2: Dataset 1 without the threshold values.
Dataset 3: Dataset 2 without null values.

Dataset 4: Dataset 3 without statistical outliers.

Dataset 5: Final Dataset | Smoothed Dataset 4.

Lengths of each Dataset
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[ ] L]
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0
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Figure 24: Total points of each dataset.

The quality of data is of major importance to data scientists since it impacts both the validity
and the performance of machine learning predictive models and data science projects. To
ensure that our data is of high-quality and reflect the physics and mathematical laws of ship
propulsion, data quality checks were implemented by measuring statistical parameters and
comparing the following plots.
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Figure 25: Difference in Mean value between Datasetl and Dataset5

From Figure 25 it is easy to notice that the mean values of the raw dataset have changed
significantly due to the data filtering. Although, it would be wiser to evaluate this change for
every dataset and compare the influence of each pre-processing method.
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Figure 26: Effect of threshold filtering in the parameter's mean values.
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Figure 28: Effect of outlier’s detection on the parameter's mean values.
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Figure 29: Effect of data smoothing on the parameter's mean values.

The difference between the raw and final dataset’s mean values arises mainly from the
threshold values filtering procedure, while the next steps do not affect the dataset's values as
much, but they succeed in maintaining a stable Dataset.

Furthermore, poor-quality data can introduce biases, noise, or skewed representations, resulting
in suboptimal model performance and inaccurate predictions. Data quality checks help identify
and address these issues, improving the accuracy and robustness of the models. By ensuring
that the data used to train and test the models is of high quality, data scientists can enhance the
performance and reliability of their machine learning models. The following plots examine the
differences between each dataset in time giving us the ability to evaluate the Final Dataset.
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Figure 30: Plots in time visualizing the difference between the values of each dataset.

In summary, data quality checks are vital for data scientists as they enable reliable analysis,
ensure valid conclusions, and enhance model performance. By addressing issues such as
missing values, outliers, inconsistencies, and inaccuracies, data scientists can work with
reliable data, have confidence in their findings, and build accurate and robust models.
Ultimately, data quality checks contribute to the overall success and effectiveness of data
science projects.
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3.8 Final Dataset

After evaluating the quality of the data we’ve managed to create, it is essential to present the
final Dataset which will lead us to accurate predictions and valid accusations. Hence, this
chapter is to appraise the final dataset and observe its statistical characteristics.

Speed_Over_Ground_knots_ Speed_Through_Water_knots_ Propeller_Shaft_Power_kW_ MERPM_AMS_rpm_ MidDraft Trim_noon ME_Loading_percent___

count 122364.000000 122364.000000 122364.000000 122364.000000 12 1 122364.000000 122364.000000
12.368038 5813.28227 69.227106 E y -1.052820 58.540438

1.654435 6.085015 3.274407 1165401 10.369137

9.067820 . 6.100000 -4.710000 30.109427

11.080493 64.3466 8.070000 -2.220000 48.630002

12.3831 9. 70.140000 14.080000 -0.300000 61.030933

13.066667 13.738565 786.9 333 14.300000 -0.060000 68.348300

16.026667 15.798253 77.160000 14.540000 0.000000 73.538780

Table 9: Descriptive statistics for Final Dataset — before repair.

Speed_Over_Ground_knots_ Speed_Through_Water_knots_ Propeller_Shaft_Power_kW_ MERPM_AMS_rpm_ MidDraft Trim_noon ME_Loading_percent___

count 155634.000000 155634.000000 155634.000000 155634.000000 155634.000000 155634.000000 155634.000000
13.015700 13.604561 6005.658851 426471 10.634575 -0.981172 60.476002

1188177 1180046 1163.019327 5.222399 2.843533 1.096862 11712186

8.21 3 9 5 3047573333 59.420000 6.050000 -3.240000 30.629340

12.393333 6 71.860000 8.080000 -1.840000 48.608073

13.026667 13.608333 2. 33: 80.120000 11.260000 -0.350000 66.242880

13.700000 14.401166 . 81.480000 00000 000 70.303340

16.846667 6.004120 7 .24 14.430000 0.000000 77487480
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Figure 31: Main features of the final data set — before repair.
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Figure 33:Histograms & Time series plots for Final Dataset's important parameters.
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Figufe 34:Parametric plots of the Final Dataset (Before & After repair).

Finally, based on the visualization of the final datasets plot and the statistical characteristics, it
is observed that the propeller repair which happened during the captured period, had a
significant influence on the vessel’s operation since after comparing Table 9 and Table 10 it
was noticeable that the vessel achieved higher values of Speed through water while delivering
approximately the same amount of shaft power.
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4 Feature Engineering

The action of choosing, modifying, and converting unprocessed data into features that can be
applied in supervised learning is known as feature engineering. Feature engineering through
the years has evolved to be a fundamental part of machine learning science, since it showed its
ability to create and train better features to improve machine learning efficiency and expand
into a wider variety of assignments.

The accuracy and generalization performance of a machine learning model can be significantly
influenced by the quality and relevance of the features used for training. Feature engineering
is a technique utilized in machine learning that uses data to generate new variables that are not
originally included in the training set. This approach can create fresh features for both
supervised and unsupervised learning, aiming to revolutionize and accelerate data processing
while improving the model’s accuracy.

The process of feature engineering includes creating, transforming, extracting, and selecting
variables, also known as features, aiming to build an accurate machine-learning algorithm. The
following are the main processes involved in feature engineering:

Feature Creation: The procedure of discovering the variables that are most important for the
predictive model. It's a subjective procedure that depends on the developer’s creativity and
expertise. To create new, more powerful derived features, existing features are joined using
addition, subtraction, multiplication, and division.

Transformations: To enhance the performance of a model, transformations require changing
the predictor variables. Ensuring the model can handle a range of data, scaling variables to the
same range to make the model easier to understand, increasing accuracy, and preventing
computational errors by making sure all features are within the model's acceptable range are
all examples of transformations made to improve the model’s performance.

Feature Extraction: Extraction of features from raw data entails automatically creating new
variables. Automatically condensing the volume of data into a more manageable collection for
modeling is the purpose of this stage. Techniques for feature extraction include principal
component analysis, edge detection algorithms, text analytics, and cluster analysis.

Feature Selection: Feature selection algorithms examine, rank, and assess different features to

determine which ones are necessary for the model and should be prioritized, which ones are
redundant and should be removed, and which ones are unimportant and should be eliminated.
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4.1 Feature Creation

From the data set provided to perform this study, the values measured through various sensors,
mentioned above, are used as the first group of features. Although, through the data
preprocessing these parameters were evaluated and some of them were eliminated. Therefore,
the group of features created by the final data set consists of the following parameters:

Parameters
Time
Speed Over Ground (knots)
Speed Through Water (knots)
Propeller Shaft Power (kW)
ME RPM (rpm)

ME Loading percentage (%)
Fuel Index Position
Vessel Heading (deg)
Relative Wind Direction (deg)
Relative Wind Speed (m/sec)
Fuel Oil Temperature ME Return TRQM
Fuel Qil Temperature ME Supply TRQM
Shaft Torque TRQM (kNm)
Shaft Thrust (KN)

ME Shaft RPM TRQM (rpm)
Ballast Condition
Cargo Carried (tons)

Fuel LCV (kJ/kg)

Fore Draft (m)

Mid Draft (m)

Aft Draft (m)
Heading
Air Temperature
Sea Temperature
Sea Height
Swell
Swell Height
Wind Force
Trim

Table 11: Available parameters of final dataset after preprocessing.
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4.2 Feature Extraction

4.2.1 Wind Effect

To be able to extract information about the wind effect on the vessel, it is required to transform
the relative wind direction units from degrees to radians. After transforming the units of wind
direction, the next step is to extract a wind effect feature through the Relative Wind Direction
(rad) and Relative Wind Speed (m/sec) parameters. Hence, the following steps were followed:

1. Apply the cosine function to the Relative Wind Direction (rad) feature, in order to
normalize the data and constrain it from -1 to 1.

2. Multiply the cosine of the Relative Wind Direction feature with the Relative Wind
Speed (m/sec) to get the new feature that resembles the effect of wind forces on the
vessel. (“Wind Effect”).

Wind Effect = cos(Rel.Wind Dir.) * [Rel. Wind Speed] [4-1]

4.2.2 Currents

Water currents refer to the movement of water in a particular direction. They can have a
significant impact on the vessel’s performance since they can influence its speed and fuel
consumption. Hence, it was deemed important to create a feature that describes the current
speed of water. To do that, the Speed Through Water was subtracted from the Speed Over
Ground.

Currents (m/sec) = SOG — STW [4-2]

4.2.3 Power Output

To generate the parametric plots (Figure 34) the following parameters were generated which
resemble the power output of the vessel’s engine.

e (@ *n = Shaft Thrust (kN) * ME RPM (rpm) * 60 [4-3]
o V3 =(Speed Through Water (m/sec))3 [4-4]
e n%=(MERPM (rpm))3 [4-5]

4.2.4 Days Since Repair (DSR)

This feature was created as an indication of the propeller maintenance importance as well as
an indicator of fouling. From the dataset before the repair, we can observe how as the days
gone by the performance of the vessel decreases, while from the dataset after the repair it is
possible to observe the effect of the maintenance. Hence the following feature was created:
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DSR = Date — Repair Date [4-6]
Where Repair Date was set to be equal to 19/07/2021.

4.2.5 Mean Draft

The mean draft feature is created to replace the Fore and Aft Drafts and represent them as a
unique value.

__ AftDraft + Fore Draft
Mean Draft = 5 [4-7]

4.3 Feature Selection

The performance of the prediction model depends on the selection of the features. Therefore,
a broad search domain for selecting distinct features is used in this study to ensure that there is
no overfitting problem while enhancing prediction performance. While the official group of
parameters consists of 32 variables, the algorithms investigated in this study are easy to overfit
due to their dimensionality, therefore it is necessary to remove intercorrelated and unnecessary
variables which would not have any contribution to the improvement of the model’s
performance. In order to determine which features are to be selected, Correlation analysis
(Pearson coefficient) and Random Forest Regression model were used.

4.3.1 Correlation Analysis

To determine the correlation between the input variables and the output (PSP) a Pearson
correlation matrix heatmap was created.
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Correlation Heatmap
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Figure 35: Pearson Correlation Coefficients values between input and output variables.

Hence, for the reasons described in Feature Selection paragraph, the following variables were
excluded from the input variables selection process.

Highly Correlated Parameters
ME Loading Percentage (%)
Q*n
Shaft Torque (kNm)
Fuel Index Position
ME RPM (rpm)
n3
Table 12: Highly correlated features, excluded from the input variables.
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4.3.2 Random Forest regression classifier

The Random Forest Regression is based on the decision tree regression method which is used
on numerical data. Decision trees are constructed by multiple decision and leaf nodes according
to the inputs and the outputs and are used in operations research, specifically in decision
analysis, to help identify a strategy most likely to reach a goal.
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(Uyanik et al., 2020)
Figure 36: Decision Tree Regression

To achieve higher accuracy and stability in prediction, the random forest algorithm generates
numerous decision trees and aggregates them, as illustrated in Figure 37. Since the decision is
based on multiple trees, the results are discrete. The bagging technique is employed to create
the random forest for this regression model. In this technique, new trees are constructed by
repeatedly sampling from the dataset, and the random forest is generated from these trees.
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Random Forest Prediction (Uyanik et al., 2020)

Figure 37: Random Forest Regression
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Additionally, since Currents describe the difference between the SOG and STW features we
will select two out of the tree variables, as goes the same for the Drafts and the Trim. The
importance of each feature was validated through the Random Forest Regression model, giving
the following results:

ala Parameters’ Importance — Before repair Parameter’s Importance — After Repair
1 Wind Effect Wind Effect

2 Mean Draft Mean Draft

3 Trim Trim

4 Sea Height Sea Height

5 Speed Through Water (knots) Speed Through Water (knots)
6 Currents Currents

7 Heading Heading

8 Swell Height Swell Height

9 DSR DSR

10 Fuel Oil Temp. (ME Supply) Fuel Oil Temp. (ME Supply)
11 Fuel Qil Temp. (ME Return) Fuel Qil Temp. (ME Return)

Table 13: Variable's importance enumeration for before & after repair datasets.

Additionally, through the Random Forest Regression Classifier, the Mean Squared Error
(MSE) and R-squared values were calculated in regards to the number of inputs used to predict
the PSP variable. To visualize the difference of these values compared with the number of
inputs the following plots were created:

MSE and R-squared vs. Number of Parameters
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Figure 38: MSE & R-Squared values compared with the number of inputs used for the predictive model. (before repair)
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MSE and R-squared vs. Number of Parameters
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Figure 39:MSE & R-Squared values compared with the number of inputs used for the predictive model. (after repair)

It is clear that for both datasets the most efficient number of variables used as inputs is 9, since
the MSE drops significantly but after that it remains stable and doesn’t fluctuate. Hence, taking
into account the importance calculated above (Table 13: Variable's importance enumeration
for before & after repair datasets.), the final 9 variables used as inputs for the predictive models
should be the following:

ala Parameters’ Importance — Before repair Parameter’s Importance — After Repair
1 Wind Effect Wind Effect

2 Mean Draft Mean Draft

3 Trim Trim

4 Sea Height Sea Height

5 Speed Through Water (knots) Speed Through Water (knots)

6 Currents Currents

7 Heading Heading

8 Swell Height Swell Height

9 DSR DSR

Table 14: Final parameters that will be used as inputs in the predictive models.
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Feature Engineering
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Figure 40: Model's input histograms (Final data) - before & after
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5 Artificial Neural Networks

Deep learning methods are based on neural networks, also referred to as artificial neural
networks (ANNSs) or simulated neural networks (SNNs), which are a subset of machine
learning. As Grossi & Buscema, (2008) mentioned, their generation was inspired by the
structure and operation of the biological nervous system which consists of more than 10 billion
neurons that interact with each other with more than 60 trillion connections. This structure
provides the brain with the ability to process stimuli and shape rules through "experience".
Hence as with the brain, all these layers of interconnected nodes (neurons) make up ANNSs,
which process information and are able to make decisions based on input data.

Artificial neural networks (ANNS) consist of interconnected nodes that form layers. A basic
structure of an ANN consists of an input layer, one or more hidden layers, and an output layer.
These nodes, or artificial neurons, are enabled through their own thresholds and associated
weights. Specifically, if the output of a neuron is higher than the threshold value, it will activate
and send data to the next layer of the network. Conversely, if the output is lower than the
threshold value, no data will be transmitted.

Additionally, Grossi & Buscema, (2008) state that as the basic building block of ANNs is the
artificial neuron, receiving multiple inputs but generating a single output. To activate the
artificial neuron, each input is multiplied by its corresponding synaptic weight, and the sum of
the products is then passed through the neuron's activation function to determine the output.
As mentioned previously, ANNs contain many interconnected artificial neurons, which are
organized into layers. One of the most important, or the most important, layer is the first layer
also known as the input layer, due to the fact that is comprised by the selected input variables
or features of the model. The second layer is the first hidden layer, whose neurons receive
inputs from the first layer and output to the next layer. This process is repeated for each
subsequent hidden layer until the last layer, whose output is the final output of the network.
Although ANNSs require training data to improve their accuracy, once the optimization of the
learning algorithms is set, they can be powerful tools for classifying and clustering data at high
speeds in computer science and artificial intelligence.

Input layer Multiple hidden layers Output layer

LY

Q)
Q7

Figure 41: Basic Structure of ANNs  (IBM, n.d.)
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5.1 Basic hyperparameters of an ANN model

Hyperparameters are of major importance when designing an ANN model. The appropriate
selection of the model’s hyperparameters influence the performance of an artificial neural
network (ANN), since they affect the settings that determine how the model learns from the
input data. Moreover, the correct selection of hyperparameters could improve the model’s
accuracy, training convergence, and robustness as well as prevent the model’s overfitting.
Hence, it is important to select the best hyperparameters, to achieve the best possible
performance. Some of the most important hyperparameters will be analyzed in the following
paragraphs.

5.1.1 Input Layers

The initial layer of an artificial neural network (ANN) is called the input layer, and it serves to
take in the input data. The dimensionality of the input data determines the number of neurons
in the input layer. Each neuron in the input layer represents a specific feature of the input data,
with the values of these neurons being determined by the corresponding features in the input
data. For example, in the case of image data, each neuron in the input layer corresponds to a
single pixel in the image. While the input layer doesn't perform any computations or
manipulations on the input data, it plays a crucial role in transmitting the input data to the next
layer of the network, which is typically a hidden layer. Finally, for the scope of this study, the
input layers are set to be the features of the final data set, after the processing of the raw data.

5.1.2 Hidden Layers

The depth and complexity of an artificial neural network (ANN) model, as stated by (Dastres
& Soori, 2021), is largely determined by the number of hidden layers, which is a
hyperparameter. However, the optimal number of hidden layers can vary depending on the
complexity of the input data and the problem being solved. For simple problems, a single
hidden layer may suffice, while more complex problems may require multiple hidden layers.
However, increasing the number of hidden layers does not always guarantee better
performance, and in some cases, it can lead to overfitting.

The best number of hidden layers and neurons in each layer is typically determined through
experimentation and fine-tuning. A common approach is to start with a small number of hidden
layers and gradually increase their number until the desired level of performance is achieved.
Balancing the complexity of the model with its generalization capabilities is essential to avoid
overfitting and ensure that the model can perform well on new and unseen data.

5.1.3 Output Layer

The output layer is the last layer of an artificial neural network (ANN) model that produces the
model's output. The number of neurons in this layer is determined by the nature of the problem
being solved, such as binary classification, multi-class classification, or regression. To make
the output values interpretable and usable, an activation function is typically applied to the
output of the output layer. This function can vary depending on the type of problem being
solved, and some commonly used activation functions include sigmoid, softmax, and linear
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functions. In summary, the output layer is a crucial component of an ANN model that produces
the final output. The number of neurons in this layer is chosen based on the problem being
solved, and an activation function is applied to normalize the output values.

5.1.4 Activation Functions

Activation functions play a vital role in artificial neural networks (ANNSs) as they introduce
non-linearity in the output of individual neurons or nodes. Non-linearity is essential for ANNs
to model complex relationships between inputs and outputs. According to (Sharmaetal., 2020),
there are various activation functions that can be employed in ANNs, with some of the most
widely used being the sigmoid, ReLU, tanh, and softmax functions.

The sigmoid function maps input values to a range between 0 and 1 and is typically utilized
in binary classification problems to interpret the output as a probability. In artificial neural
networks (ANNS), a neuron's activation is determined by the output of a sigmoid function,
which can then be used to make decisions or passed on to the next layer of neurons. The
sigmoid function's non-linear properties allow ANNSs to model intricate relationships between
input and output variables. However, the sigmoid function's output can become saturated,
leading to insensitivity to input changes for very large or small inputs. This limitation can result
in vanishing gradients, making it challenging to train deep neural networks. To address this
issue, alternative activation functions, such as ReLU and its variations, have been developed.
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Deriv. Sigmoid
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Figure 42: Simgoid activation function presentation. (Xiang et al., 2022)

The Rectified Linear Unit (ReLU) function is an activation function utilized in artificial
neural networks (ANNS) to introduce non-linearity into the model. Its popularity stems from
its simplicity, computational efficiency, and efficacy in deep neural networks. The ReLU
function returns the input if it is positive, and O if it is negative. This enables faster and more
efficient training of deep neural networks by reducing the vanishing gradient problem that can
arise with other activation functions like the sigmoid function. The non-linear nature of the
ReLU function allows ANNs to model complex relationships between input and output
variables. However, the ReLU function is susceptible to the "dying ReLU" problem, which
occurs when the input is negative, resulting in an output of 0 and a gradient of 0, thereby
causing the neuron to no longer contribute to the learning process. This problem can be resolved
by using variations of the ReLU function, such as the Leaky ReLU or the ELU, which have
different approaches to handle negative inputs.

Artificial Neural Networks 66



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.

RelLU

R(z) =max(0, 2)

0 = 0 B 10
RelLU Leaky RelLU ELU

Figure 43: ReLU activation function variations presentations. (Lebn et al., 2020)

The tanh function maps input values to a range between -1 and 1 and is similar to the sigmoid
function but centered at 0. By using this activation function, negative inputs are strongly

mapped as negative, and zero inputs are mapped close to zero, which is an advantage.
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Figure 44: Sigmoid vs. tanh activation functions graphs.  (Mukesh Chaudhary, 2020)

The softmax function is commonly used as the final activation function in ANNSs that address
multi-class classification problems as it maps each neuron's output to a probability distribution
over possible output classes. The softmax formula is the following:

[5-1]
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Where:
e Z:The input vector to the softmax function
o 7;:The elements of the input vectors
e K:The number of classes in the multi — class classifier

Other activation functions, such as the Gaussian, linear, and exponential functions, are less
widely used but have some applications. The selection of an activation function depends on the
specific problem and network architecture. In general, it is crucial to choose an activation
function that is computationally efficient, produces desirable outcomes, and avoids issues like
vanishing gradients or exploding gradients.

5.1.5 Loss Functions

The loss function in an Artificial Neural Network (ANN) model is responsible for evaluating
the discrepancy between the predicted output and the actual output for a given input. The
primary objective of the ANN is to minimize this loss function by modifying the network's
weights and biases during the training process. The loss function, as stated by (Vishal Yathish,
2022) plays a crucial role in the training of the ANN model as it determines the performance
and the rate at which the model can reach a solution. To be effective, a suitable loss function
should be capable of detecting slight changes in the predicted output, easy to optimize, and
appropriate for the particular problem being addressed. The most common Loss Functions are
considered to be the following:

Mean Squared Error (MSE)

The Mean Squared Error (MSE) is a widely used loss function in an Artificial Neural
Network (ANN) for regression tasks involving a continuous output variable. It calculates the
mean of the squared difference between the predicted output and the actual output for a given
input. The MSE formula is expressed as:

MSE = (%) * 2y — 90)° [5-2]

Where:
e n:isthe number of samples in the dataset.
e y;:is the actual output for the i — th sample.
o {;:is the predicted output for the i — th sample.

During the training phase of the ANN, the network's weights and biases are modified to
minimize the MSE loss function. Lower MSE values indicate improved performance of the
ANN as it signifies a closer match between the predicted and actual outputs. However, One
drawback of this loss function is that it can be highly affected by outliers, meaning that data
points with extreme values can have a disproportionate impact on the value of the loss function.
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Root Mean Squared Error (RMSE)

The RMSE is a widely used loss function in Artificial Neural Networks (ANN) for regression
tasks, similar to the MSE. However, the primary distinction between RMSE and MSE is that
RMSE involves taking the square root of the mean of the squared differences between the
predicted and actual outputs, resulting in an interpretable metric in the same units as the target
variable. The RMSE formula is expressed as:

RMSE = J((%) x Z(y; — yi)2> [5-3]

Where:
e n:isthe number of samples in the dataset.
e y;:is the actual output for the i — th sample.
e ¥,;:is the predicted output for the i — th sample.

Mean Absolute Error (MAE)

Similar to MSE and RMSE, the Mean Absolute Error (MAE) is a loss function used to quantify
the difference between the predicted output and the actual output for a given input in an
Acrtificial Neural Network (ANN). However, unlike MSE and RMSE, which use the squared
differences between the predicted and actual outputs, MAE uses the absolute difference. To
calculate the MAE, we take the average of the absolute differences between the predicted and
actual outputs for all samples in the dataset. The formula for MAE is as follows:

1 :
MAE = (=) = Zly: - 34 5-4]

Lastly, the MAE is less sensitive to outliers than MSE, as it does not involve squaring the
differences between the predicted and actual outputs. Additionally, it is more interpretable than
MSE and RMSE since it is expressed in the same units as the target variable.

5.1.6 Model Regularization Methods

Regularization in Neural Networks is a set of techniques which are made to prevent the model
from overfitting and improve the generalization of the model. Overfitting is a phenomenon that
follows when the training procedure makes the model to learn the training data too well and
lacks the ability to perform well on the unseen data. Regularization helps the model tackle this
problem by setting additional constraints to the model during the training procedure. The most
common regularization methods, according to (Nusrat & Jang, 2018) are described below:

L1 & L2 Regularization (L1/L2): These methods are also known as Weight Decay and they
are entitled to adding penalty terms to the loss function of the model. This results into
discouraging the generation of large weights in the network. Specifically, L1 regularization or
Lasso Regularization sets the penalty to the sum of the absolute values of weights multiplied
by the tuning parameter, which represents the regularization strength. Additionally, L2
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regularization or Ridge Regularization sets the penalty equal to the sum of the squared values
of weights multiplied by the tuning parameter.

Dropout Regularization: This method can randomly deactivate a merit of the input values
during each training step. Hence, it prevents the network from depending entirely on a specific
input variable and promotes learning from a all the features.

5.2 Model Design

Keeping in mind all the available options for hyperparameters explained in the previous section
(5.1Basic hyperparameters of an ANN model) the next step is to decide which of them will be
used for building the best possible ANN prediction model with the given dataset and inputs.

5.2.1 Data Normalization

In order to be able to make the most out of the final given data it is important to normalize the
data. This procedure will ensure that all input features are equally evaluated. This will prevent
the domination of input values on the model’s learning process, and at the same time avoid bias
towards features with larger values. Additionally, data normalization supports the stabilization
of the model’s learning procedure by avoiding large fluctuations in the model’s weights and
biases, known as backpropagation. Finally, the data normalization serves as a generalization of
data which, in addition to the aforementioned advantages, the model will improve its
performance giving better results. For the normalization of data, the min-max method was used,
in every input.

X _ X — Xmin
normalized —
Xmax - Xmin

[5-5]

Where,
Xmin : The minimum value of X.
Xmax : The maximum value of X.

5.2.2 Data Shuffling

Shuffling the data is critical to prevent from results that came through biased train and test sets,
which correspond to a specific time frame of the vessel’s operation that do not represent the
overall data distribution. Additionally, through shuffling we accomplish the elimination of
patterns or trends, allowing a more efficient way of the model’s generalization and learning
procedures. In general data shuffling ensures that the model will learn and make predictions
based on a more representative sample of data, enhancing its performance and accomplishing
more reliable results.

5.2.3 Data Split

In order for a Neural Network to be able to provide predictions about its variables, the dataset
must be divided into separate subsets for training, validation, and testing purposes. The most
popular split is between a training set and a test set. For the purpose of this study, we divided
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the dataset into a subset for training and another for testing, following a split ratio of 64%
training, 16% validation, and 20% testing.

Data Split

H Training Set M Testing Set Validation Set

Figure 45: Data split between Training & Test sets.

5.2.4 Tuning the models hyperparameters

To decide which parameters should be used in the predictive model required a many tries and
a lot of work. Each parameter was selected by experimenting with the model while changing
the parameters and observing the impact that they had on the model’s accuracy. That accuracy
was calculated through the loss function which was set to be the MSE loss function (5.1.5 Loss
Functions). Hence, the basic method followed was the following:

Participant .
Trial :
+ > Idea/Tactics > ?clt:on > Evaluating
Researcher axing
N T
Error ‘L

Solution

Figure 46: Trial-Error procedure diagram.

Being inspired by the Trial-Error procedure strategy many trials were executed to find the
hyperparameters’ consistency of the prediction model. Specifically, hidden layers were added
to the model one by one, until the loss function (MSE) was seeing no improvement. Similarly,
units were added to each layer until the error stabilized. The reason behind that strategy was to
make sure that the predictive model would have the best accuracy possible while being as little
as possible complicated.

Regarding the batch size and the number of epochs, they were found to be of major importance

to the model’s accuracy. The number of epochs defines the number of times that the training
set will run through the model in order to get the information needed for the model to be best
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trained. Hence, increasing the number of epochs could eventually increase the model’s
accuracy, since it would be better trained. On the other hand, adding many epochs in the model
could result in overfitting, where the model becomes too specialized to the training data and
performs poorly to the unseen data.

As far as the batch size is concerned, it describes the number of samples that a predictive model
processes before the model’s parameters are updated through each training repetition and
impacts the model’s convergence and generalization. Having a larger batch size can provide
more stable and smoother updates on the parameters of the model. Although, using larger batch
sizes takes up more memory which may result in slower training processes, while also they
could result in the model converging to a suboptimal solution.

Furthermore, regarding the activation functions, following the same plan as before all of the
available functions, as mentioned in 5.1.4 Activation Functions, were examined and the most
promising one was selected.

To implement all these trials and to visualize their influence on the model’s performance, a
loss function plot was created, where each parameter was set to different values while the others
remained the same. Hence, it was easier to understand how each hyperparameter performs, in
terms of decreasing the loss function’s values, as well as the duration of the training procedure.
These Trial-Error procedures were applied on a Neural Network that receives the Dataset
before the propeller repair as an input. Although, due to the similar nature of both Datasets,
both Neural Networks will have the same hyperparameters which will be determined in the
following paragraphs.

5.2.4.1 Before-Repair Model

Activation Function

In order to select the most suitable activation function for the model, it is important to look into
the input dataset values. As presented in Figure 40: Model's input histograms (Final data) -
before & after, the given Dataset which will function as the input values of the prediction
model, doesn’t contain negative values and this will be a decisive parameter for the selection
of the activation function. As per Activation Functions paragraph, the most common
activation function in machine learning is the ReLU function. Additionally, it was mentioned
that it is prone to the “’Dying ReLU’’ problem when the input dataset contains negative values.
Although, since our Dataset has been normalized into positive values, this shouldn’t influence
our decision and hence we will use “ReLU” activation function. Finally, a basic model will be
introduced in Table 15 which will be used as a basis to determine the other hyperparameters:

Basic Model
Activation Function RelLU
Hidden Layers 2
Units per Hidden Layer 64
Weights Initializer Random
Optimizer Adam
Epochs 50
Error Function MSE

Table 15: Basic Model's Hyperparameters for the activation function selection.
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Hidden Layers

According to the Trial-Error procedure, 7 models were created with each one of them having
the same characteristics except for the number of hidden layers. Hence, through the learning
curves of each model, we will be able to find the most suitable number of hidden layers for the
ANN. The structure of the main model’s hyperparameters is presented in the following table:

Basic Model
Activation Function RelLU
Units per Hidden Layer 64
Weights Initializer Random
Optimizer Adam
Epochs 50
Error Function MSE
Table 16: Basic model's hyperparameters for the number of hidden layers selection.
Models No. of Hidden Layers
Model 1 2
Model 2 3
Model 3 4
Model 4 5
Model 5 6
Model 6 7
Model 7 8

MSE and R-squared vs. Number of Hidden Layers
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Figure 47: MSE & R2 values fluctuation in correspondence to the number of hidden layers of given model.

Through the observation of the MSE & R-squared curves shown in Figure 47, we can notice
that by increasing the number of hidden layers we manage to decrease the MSE error function
values. Although, after Model 5 the decrease of the MSE values are insignificant and hence in
order to keep our ANN model as simple as possible it seems better to choose the Model’s 5
number of hidden layers which is 6.
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Number of Epochs & Batch size

Keeping the hyperparameters as selected above, there are several models created with different
numbers of epochs and batch sizes to find the best combination for the final ANN prediction
model. Hence, the following models were examined through their learning curves.

Basic Model
Hidden Layers 6
Units per Hidden Layer 64
Activation Function RelL U
Weights Initializer Random
Optimizer Adam
Error Function MSE

Effect of Epochs and Batch Size on MSE Score
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Figure 48: Effect of Epochs and Batch Size on models' MSE scores.

Based on the heatmaps above, the best-performing model seems to be the one with the 110 and
64 numbers of epochs and batch sizing respectively.

Number of units per hidden layer

In addition to the epochs and batch size numbers, the number of units inside each layer of the
Network plays an important role in the model’s performance and accuracy. To find the most
suitable number of units per hidden layer, the Trial-Error procedure was followed for models
whose number of units differed. Although, every model used the abovementioned
hyperparameters as a basis. Hence, the following models were tested:

Model 1 Model 2 Model 3 Model 4
Hidden Layers 6 6 6 6
Units per Hidden Layer | 32 64 128 256
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Epochs 110 110 110 110
Batch Size 64 64 64 64
Activation Function RelLU RelLU RelLU RelL.U
Weights Initializer Random Random Random Random
Optimizer Adam Adam Adam Adam
Error Function MSE MSE MSE MSE

Effect of Units per Hidden Layer on MSE Score
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0.006
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Units per Hidden Layer

Figure 49: Effect of Units per Hidden Layer on models' MSE Score.

It is clear that based on Figure 49 the most efficient model is the one with 128 units per hidden
layer. Although, after validating the model it was concluded that using that many units made
the model to be unstable, hence the selected number was 64.

Model Normalization

To prevent the model from overfitting, selecting a method to normalize the weights and biases
of the Neural Network is crucial. In order to select the most suitable method for the model, the
Trial-Error procedure will be used once more. The following models are to be compared:

Model 1 Model 2
Hidden Layers 6 6
Units per Hidden Layer | 64 64
Epochs 110 110
Batch Size 64 64
Activation Function ReLU RelLU
Weights Initializer Random Random
Optimizer Adam Adam
Error Function MSE MSE
Regularization L1 (0.001) L2 (0.001)
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Figure 50: Learning curves of L1 & L2 regularized models.

Figure 50 illustrates the model’s learning curves. The blue and orange curves represent the
training and validation losses respectively during the training procedure of the model,
calculated at the end of each epoch. Even though the L1 regularization method provides a more
stable learning curve, the L2 method achieves better performance with a lower MSE score.
Hence, since the model does not overfit, the L2 regularization method seems better for this
study’s model.

5.2.4.2 After-Repair Model
By following the same strategy of parameter evaluation, to the dataset after repair, the tuning

of its hyperparameters was established. Hence, the final model used to predict the PSP feature
of the dataset after the propeller repair is the following:

Final Model — After Repair
Hidden Layers 5
Units per Hidden Layer 64
Epochs 110
Batch Size 64
Activation Function RelLU
Weights Initializer Random
Optimizer Adam
Error Function MSE
Regularization L2 (0.001)

5.2.5 Model Training & Validation

5.2.5.1 Before-Repair Model

Artificial Neural Networks
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After the evaluation of each hyperparameter of the predictive model, the final model that will
provide us with the wanted predicted values of the Propeller’s Shaft Power is the following:

Final Model — Before Repair
Hidden Layers 6
Units per Hidden Layer 64
Epochs 110
Batch Size 64
Activation Function RelLU
Weights Initializer Random
Optimizer Adam
Error Function MSE
Regularization L2 (0.001)

Table 17: Final Model's hyperparameters.
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Figure 51: Final ANN model's learning curve.

.0094

As stated in Model Normalization chapter, and specifically in Figure 51, the final model’s
learning curve indicates a nearly linear behavior which decreases by the increase of epochs and
eventually stops at MSE = 0.0094. Furthermore, the learning curve gives information about the
model’s fitting and shows that training loss is slightly less than the validation which proves
that is a good fit. These features are a clear indication of the performance of the final ANN
model which seems to be more than satisfactory.

5.2.5.2 After-Repair Model

Final Model — After Repair
Hidden Layers 5
Units per Hidden Layer 64
Epochs 110
Batch Size 64
Activation Function RelLU

Artificial Neural Networks
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Weights Initializer Random
Optimizer Adam
Error Function MSE
Regularization L2 (0.001)

Learning Curve - Final Model
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L
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Although the model seems a bit unstable, it manages to reach a low MSE value, equal to 0.0082,
which will result in better model performance. The low stability of the model should be
encountered by better data quality which would be possible if all continuous monitor sensors
of the vessel worked properly.

5.2.6 Model Testing & Evaluation

After the tuning and the training of the model, using the Testing and Validation Datasets, it is
important to test and evaluate the model’s performance on a completely new and unknown
dataset. This procedure will assess the trained model’s performance and generalization
capability along with its ability to handle unfamiliar data. Hence, this paragraph is determined
to provide insights into the strengths and weaknesses of each model by presenting some
statistical values along with the trajectories and the fitting of the model.

5.2.6.1 Dataset Before-Repair

MSE RMSE R?
(kw)? (kW)
Testing Dataset - Before 10152.4 100.8 0.979

Table 18: Statistical values of Model Before Repair.
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Figure 52: ANN Model Before-Repair: Measured vs. Predicted values.

Trajectories of Measured and Predicted Values
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Figure 53: Trajectories of measured and predicted PSP values (Model Before Repair).
5.2.6.2 Dataset After-Repair
MSE RMSE R?
(kw)? (kW)
Testing Dataset - After 11125.8 105.5 0.989

Artificial Neural Networks

Table 19: Statistical values of Model After Repair.

79



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.
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Figure 54: ANN Model After-Repair: Measured vs. Predicted values.
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Figure 55: Trajectories of Measured and Predicted PSP values (Model After Repair).

Both models have reached the highest accuracy scores possible given the fact that the provided
data did not have the best quality. However, from Figure 52Figure 53,Figure 54, andFigure 55
it is observed that in spite of 0.979 and 0.989 R? scores, both models react surprisingly well to
unknown data, providing good performance.
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6 Fouling Analysis

Marine fouling has become important to shipping companies since it affects the performance
of the vessel significantly. As stated in 1.1.1 Vessel marine fouling there are several factors
affecting it but one that does not depend neither on the vessel’s characteristics or performance
nor on the sea’s and weather conditions is the number of days that have passed since the last
cleaning. Hence, taking advantage of the ANN predictive models that were created in Chapter
5 in collaboration with the input feature of Days since Repair (DSR), it was possible to measure
the impact of fouling in the performance deterioration of the vessel chronologically.

To do that, predictions based on synthetic test sets were made given in Table 20 & Table 21
with increasing DSR. All parameters were held constant, and they corresponded to the scantling
draught condition which as per Figure 40: Model's input histograms (Final data) - before &
after was the most common condition. Furthermore, predictions were made for a range of
speeds through water between 9 to 16.5 knots to create power-speed curves which would assist
us in comparing the performance of the vessel for different fouling conditions. To produce the
power-speed curves, a cubic fit was applied to the predicted points since these curves would
represent both the resulting predicted values trend as well as the empirical propeller law. The
chosen model was the one created with data after the propeller repair which achieved better
performance and accuracy scores. Such fouling analysis was applied for several weather and
loading conditions and will be analyzed in the following subchapters.
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6.1 Fouling analysis results

6.1.1 Scantling Loading Condition datasets

Prediction Set — Fouling Analysis
Speed Through Water (knots) 9<I <165
Draft (m) 14.43
Trim (m) -0.02
Currents 0
Sea Height 1.2
Wind Effect 2
Heading 200
Swell Height 1

Table 20: Synthetic dataset for fouling analysis prediction at scantling condition with calm weather.

PSP vs Vs - Scantling Condition (T=14.43m & Trim=-0.02)
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Figure 56: Speed-power curves for 30 and 150 DSR (Scantling condition with calm weather).
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Prediction Set — Fouling Analysis
Speed Through Water (knots) 9<VI <165
Draft (m) 14.43
Trim (m) -0.02
Currents 0
Sea Height 2.5
Wind Effect 10
Heading 200
Swell Height 1

Table 21: Synthetic dataset for fouling analysis prediction at scantling condition with rough weather.

PSP vs Vs - Scantling Condition (T=14.43m & Trim=-0.02)
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Figure 57: Speed-power curves for 30 and 150 DSR (Scantling condition with rough weather).
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6.1.2 Design Loading Condition datasets

Prediction Set — Fouling Analysis

Speed Through Water (knots) 9<VK <165
Draft (m) 115
Trim (m) -0.8
Currents 0

Sea Height 1.2
Wind Effect 2
Heading 200
Swell Height 1

Table 22: Synthetic dataset for fouling analysis prediction at design condition with calm weather.

PSP vs Vs - Design Condition (T=11.5m & Trim=-0.8)
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Figure 58: Speed-power curves for 30 and 150 DSR (Design condition with calm weather).
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Prediction Set — Fouling Analysis

Speed Through Water (knots) 9<VI <165
Draft (m) 115
Trim (m) -0.8
Currents 0

Sea Height 2.5
Wind Effect 10
Heading 200
Swell Height 1

Table 23: Synthetic dataset for fouling analysis prediction at design condition with rough weather.

PSP vs Vs - Design Condition (T=11.5m & Trim=-0.8)
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Figure 59: Speed-power curves for 30 and 150 DSR (Design condition with rough weather).
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6.1.3 Ballast Loading Condition datasets

Prediction Set — Fouling Analysis

Speed Through Water (knots) 9<V <165
Draft (m) 8

Trim (m) -2.2
Currents 0

Sea Height 1.2
Wind Effect 2
Heading 200
Swell Height 1

Table 24: Synthetic dataset for fouling analysis prediction at ballast condition with calm weather.
PSP vs Vs - Ballast Condition (T=8m & Trim=-2.2)
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Figure 60: Speed-power curves for 30 and 150 DSR (Ballast condition with calm weather).

Fouling Analysis 86



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.

Prediction Set — Fouling Analysis

Speed Through Water (knots) 9<I <165
Draft (m) 8

Trim (m) -2.2
Currents 0

Sea Height 2.5
Wind Effect 10
Heading 200
Swell Height 1

Table 25: Synthetic dataset for fouling analysis prediction at ballast condition with rough weather.

PSP vs Vs - Ballast Condition (T=8m & Trim=-2.2)
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Figure 61: Speed-power curves for 30 and 150 DSR (Ballast condition with rough weather).
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In every condition, it is noticed that the dataset which corresponds to 30 days since the repair
has predicted lower PSP values for a specific range of speeds than the one corresponding to
150 days since the repair. This indicates the effect of marine biofouling on the vessel’s hull and
propeller’s performance. In addition to that, according to the power-speed curves, the model
seems to adjust correctly to the weather conditions differentiations since it predicts higher PSP
values for rough weather than calm weather in every loading condition. To be more precise the
following table represents the performance deviation between the power-speed curves of the
two datasets in each condition.

Loading Condition Weather Condition  Mean PSP [kW] Offset [kW] Offset (%0)

30DSR: 5439.55
Calm 364.3 6.7 %
150DSR: 5803.82

Scantling
30DSR: 5681.5
Rough 307.5 5.4 %
150DSR: 5988.5
30DSR: 5258.81
Calm 251.6 4.8 %
150DSR: 5510.36
Design
30DSR: 5620.24
Rough 194.5 35%
150DSR: 5814.72
30DSR: 4711.22
Calm 204.1 4.3 %
150DSR: 4915.31
Ballast

30DSR: 5167.39
Rough 167.9 32%
150DSR: 5335.25

Table 26: Performance deviation between 30DSR and 150DSR datasets for each loading and weather condition.

Calculating the performance deterioration in each condition lets the shipping companies
evaluate the importance of the marine fouling effect on the vessel’s performance and make
decisions on whether a vessel needs to undertake cleaning procedures. Thereby, through the
calculation of the extra power needed for the vessel to reach its working speed, shipping
companies are able to monitor the additional fuel costs that correspond to that additional power.
Hence, they are given the opportunity to forecast the most financially efficient time to clean
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their vessels which could eventually reduce their operational and fuel expenses and increase
their profit.

In order to calculate the additional fuel costs (AFC) per hour that a shipping company would
be entitled to, the following formula was applied:

AFC($/day) = F.C.x SFOC * Of fset [6-1]
Where:

e F.C.=1595(%/ton): Average Fuel Cost at the moment.

e SFOC (g/kwWh): Fuel Oil Consumption corresponding to the mean ME Loading values of each
condition presented in Table 26, based on the Main Engine’s official shop tests results shown
in Figure 62.

e Offset (kW): Shaft power deviation between the 2 working conditions (30DSR vs 150DSR),
presented in Table 26 ,and Figure 56, Figure 57, Figure 58, Figure 59, Figure 60, Figure 61 in
regards to the loading condition.

SFOC (g/kWh)
180
178
176
174

172

SFOC (g/kWh)

170
168

166
0 20 40 60 80 100 120

ME LOADING (%)

Figure 62: SFOC of vessel based on the ME Shop-Tests results.
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Hence, the additional fuel cost for each weather and loading condition is presented below:

Loading Weather ME Loading (%) SFOC Offset AFC ($/day)
Condition  Condition  [Mean STW] [Mean STW] [kwW] [Mean STW]
Calm 55% 168.1 364.3 874 $/day
Scantling
Rough 60% 168.4 307.5 739 $/day
Calm 53% 167.9 251.6 603 $/day
Design
Rough 58% 168.3 1945 467 $/day
Calm 48% 167.6 204.1 488 $/day
Ballast
Rough 53% 167.9 167.9 402 $/day
Table 27: Additional Fuel Cost between 30DSR and 150DSR datasets for each loading and weather condition on a mean
STW.
Loading Weather ME Loading (%) SFOC Offset AFC ($/day)
Condition  Condition [12kn] [12kn] [kW] [12kn]
Calm 50% 167.7 372.3 891 $/day
Scantling
Rough 50% 167.7 457.5 1,094 $/day
Calm 50% 167.7 302.6 723 $/day
Design
Rough 50% 167.7 232.5 556 $/day
Calm 40% 167 102.1 243 $/day
Ballast
Rough 45% 167.4 35.9 84 $/day

Table 28: Additional Fuel Cost between 30DSR and 150DSR datasets for each loading and weather condition at

STW=12knots.
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Loading Weather ME Loading (%) SFOC Offset  AFC($/day)

Condition  Condition  [15kn] [15kn] [kW] [15kn]
Calm 70% 169.1 401.3 968 $/day
Scantling
Rough 70% 169.1 154.5 372 $/day
Calm 69% 169.1 274.6 662 $/day
Design
Rough 70% 169.1 145.5 350 $/day
Calm 69% 169.1 214.1 511 $/day
Ballast
Rough 70% 169.1 137.9 331 $/day

Table 29: Additional Fuel Cost between 30DSR and 150DSR datasets for each loading and weather condition at
STW=15knots.

According to Table 27, Table 28, Table 29 it is noticed that the additional cost due to marine
fouling development is something that shipping companies should consider since the amounts
are significant. Hence, it would be wise for vessel operators to calculate these values to be able
to find the most efficient period to conduct maintenance and hull cleaning operations and to
minimize these additional fuel costs.
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7 Conclusion & Future Suggestions

The objective of this study was to employ machine learning methods in order to build a
predictive model about the vessel’s propeller shaft power and the affiliation of fouling and
repairs with the vessel’s performance differentiation throughout the recorded period. This
process was developed by utilizing a substantial dataset of operational data to highlight the
importance of marine fouling both in the vessel’s performance but also the shipping company’s
operational expenses. The given dataset was split into two subsets since the vessel had gone
through a propeller repair during the recorded period. After a deep analysis of the data’s pre-
processing procedures as well as the features’ engineering, a set of different neural networks
were evaluated to find the best possible combination of hyperparameters that would ensure
accurate outcomes. Throughout the pre-processing of the continuous monitoring system data,
it was noticed that several sensors malfunctioned which led us to use a new dataset that
consisted of both high and low-frequency data originating from the continuous monitoring
systems and the noon reports respectively. This situation left us with no choice but to put all
our effort to optimize both the pre-processing procedures, such as outlier detection, and the
features engineering as well as the hyperparameters tuning of the model in order to be able to
achieve the desired outcomes. For this reason, we developed methods to evaluate all the
available methods of selecting both the input features and the model’s hyperparameters using
a combination of a python-programmed Trial-Error method alternative, and Python’s built-in
deep learning Random-Forest model. Thereby, despite the data anomalies that were presented
the final models achieved high R? scores of 0.978 and 0.989 which is a clear indication of the
pre-processing, features engineering, and hyperparameters optimization importance. The
accuracy score difference between the two models can be explained by the difference in the
amount of data that each model used to develop its predictive ability.

Finally, we put into use the model with the higher accuracy score and examined the effect of
marine fouling on a vessel’s performance. This analysis was made by creating a time-
dependent variable that connects the time elapsed since the propeller repair, named DSR (Days
Since Repair). Furthermore, new datasets were created with different input values
corresponding to different DSR, weather, and loading conditions and were applied to the
selected model. The generated outputs indicated the conclusion that no matter the condition
that a vessel sails, marine fouling will always increase its demanded propeller shaft power as
time goes by. Hence, it is in the shipping company's best interests to monitor the vessel’s
performance by using predictive models to calculate the most financially efficient period for
its vessel to undergo maintenance and cleaning, preventing unexpected malfunctions and
exorbitant amounts of fuel costs.

Future studies could use these conclusions and try to develop a model which would predict the
most efficient timing for hull cleaning and maintenance operations considering the freight rates
and the fuel cost as well as the average drydock or underwater hull and propeller cleaning costs
at the time being. Thereby, shipping companies would be able to determine whether saving the
additional fuel costs by performing premature maintenance actions would benefit them or not.

Conclusion & Future Suggestions 92



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.

8 Bibliography

Adland, R., Cariou, P., Jia, H., & Wolff, F.-C. (2018). The energy efficiency effects of periodic
ship hull cleaning. https://doi.org/10.1016/].jclepro.2017.12.247

Anastasiou, T., & Thesis, D. (2022). Development of Ship Performance models based on
Artificial Neural Networks and Operational Data. March.

Arndt, E., Robinson, A., Hester, S., Woodham, B., Wilkinson, P., Gorgula, S., & Brooks, B.
(2021). Factors that influence vessel biofouling and its prevention and management Final
report for CEBRA Project 190803.

Classification societies-what, why and how? (n.d.).

Dastres, R., & Soori, M. (2021). Artificial Neural Network Systems. International Journal of
Imaging and Robotics, 21, 13-25.

Digitalization in the maritime industry - DNV. (n.d.). Retrieved May 22, 2023, from
https://www.dnv.com/maritime/insights/topics/digitalization-in-the-maritime-
industry/data-usage.html

Farag, Y.B. A., & Olcer, A. I. (2020). The development of a ship performance model in varying
operating conditions based on ANN and regression techniques. Ocean Engineering, 198,
106972. https://doi.org/10.1016/J.OCEANENG.2020.106972

Grossi, E., & Buscema, M. (2008). Introduction to artificial neural networks. European Journal
of Gastroenterology & Hepatology, 19, 1046-1054.
https://doi.org/10.1097/MEG.0b013e3282f198a0

IBM. (n.d.). What are Neural Networks? | IBM. https://www.ibm.com/topics/neural-networks

Karagiannidis, P. (2019). Data-driven Ship Propulsion modeling with applications in the
Performance Analysis and Fuel Consumption prediction. July. Diploma Thesis, NTUA.

Karagiannidis, P., & Themelis, N. (2021). Data-driven modelling of ship propulsion and the
effect of data pre-processing on the prediction of ship fuel consumption and speed loss.
https://doi.org/10.1016/j.0ceaneng.2021.108616

Kim, Y. R., Jung, M., & Park, J. B. (2021). Development of a fuel consumption prediction
model based on machine learning using ship in-service data. Journal of Marine Science
and Engineering, 9(2), 1-25. https://doi.org/10.3390/jmse9020137

Lang, X., Wu, D., & Mao, W. (2022). Comparison of supervised machine learning methods to
predict ship propulsion power at sea. Ocean Engineering, 245(December 2021).
https://doi.org/10.1016/j.0ceaneng.2021.110387

Laurie, A., Anderlini, E., Dietz, J., & Thomas, G. (2021). Machine learning for shaft power
prediction and analysis of fouling related performance deterioration. Ocean Engineering,
234(February), 108886. https://doi.org/10.1016/j.0oceaneng.2021.108886

Bibliography 93


https://doi.org/10.1016/j.jclepro.2017.12.247
https://www.dnv.com/maritime/insights/topics/digitalization-in-the-maritime-industry/data-usage.html
https://www.dnv.com/maritime/insights/topics/digitalization-in-the-maritime-industry/data-usage.html
https://doi.org/10.1016/J.OCEANENG.2020.106972
https://doi.org/10.1097/MEG.0b013e3282f198a0
https://www.ibm.com/topics/neural-networks
https://doi.org/10.1016/j.oceaneng.2021.108616
https://doi.org/10.3390/jmse9020137
https://doi.org/10.1016/j.oceaneng.2021.110387
https://doi.org/10.1016/j.oceaneng.2021.108886

Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel.

Ledn, J., Escobar, J. J., Ortiz, A., Ortega, J., Gonzélez, J., Martin-Smith, P., Gan, J. Q., &
Damas, M. (2020). Deep learning for EEG-based motor imagery classification: Accuracy-
cost trade-off. PLoS ONE, 15(6). https://doi.org/10.1371/JOURNAL.PONE.0234178

Mukesh Chaudhary. (2020, August 28). Activation Functions: Sigmoid, Tanh, ReLU, Leaky
RelLU, Softmax | by Mukesh Chaudhary | Medium.
https://medium.com/@cmukesh8688/activation-functions-sigmoid-tanh-relu-leaky-relu-
softmax-50d3778dcea5

Nusrat, I., & Jang, S. B. (2018). A comparison of regularization techniques in deep neural
networks. Symmetry, 10(11). https://doi.org/10.3390/sym10110648

Rochim, A. F. (2016). Chauvenet’s and Peirce’s Criterion (literature review) IT-Governance
View project IT Governance View project.
https://www.researchgate.net/publication/299829851

Sharma, S., Sharma, S., & Athaiya, A. (2020). ACTIVATION FUNCTIONS IN NEURAL
NETWORKS. International Journal of Engineering Applied Sciences and Technology, 4,
310-316. http://www.ijeast.com

Singh, K., & Upadhyaya, S. (2012). Outlier Detection: Applications And Techniques.
www.IJCSI.org

Skamagkas, A. (2022). UNIVERSITY OF PIRAEUS DEPARTMENT OF MARITIME STUDIES
MSc in SHIPPING MANAGEMENT “AN APPLICATION OF DELPHI METHOD ON
VESSEL PERFORMANCE MONITORING & OPTIMISATION.”

Statistical Rejection of “Bad” Data-Chauvenet’s Criterion. (n.d.).
Uyanik, T., Karatug, C., & Arslanoglu, Y. (2020). Machine learning approach to ship fuel

consumption: A case of container vessel. Transportation Research Part D: Transport and
Environment, 84(May). https://doi.org/10.1016/j.trd.2020.102389

Valchev, 1., Coraddu, A., Kalikatzarakis, M., Geertsma, R., & Oneto, L. (2022). Numerical
methods for monitoring and evaluating the biofouling state and effects on vessels’ hull
and propeller performance: A review. In Ocean Engineering (Vol. 251). Elsevier Ltd.
https://doi.org/10.1016/j.0ceaneng.2022.110883

Vishal Yathish. (2022). Loss Functions and Their Use In Neural Networks | by Vishal Yathish
| Towards Data Science. https://towardsdatascience.com/loss-functions-and-their-use-in-
neural-networks-a470e703f1e9

Xiang, C., Wang, D., Pan, Y., Chen, A., Zhou, X., & Zhang, Y. (2022). Accelerated topology
optimization design of 3D structures based on deep learning. Structural and
Multidisciplinary Optimization, 65(3). https://doi.org/10.1007/s00158-022-03194-0

Yusim, A. K., & Utama, I. K. A. P. (2017). An Investigation Into The Drag Increase on
Roughen Surface due to Marine Fouling Growth. In The Journal for Technology and
Science (Vol. 28, Issue 3).

Bibliography 94


https://doi.org/10.1371/JOURNAL.PONE.0234178
https://medium.com/@cmukesh8688/activation-functions-sigmoid-tanh-relu-leaky-relu-softmax-50d3778dcea5
https://medium.com/@cmukesh8688/activation-functions-sigmoid-tanh-relu-leaky-relu-softmax-50d3778dcea5
https://doi.org/10.3390/sym10110648
https://www.researchgate.net/publication/299829851
http://www.ijeast.com/
http://www.ijcsi.org/
https://doi.org/10.1016/j.trd.2020.102389
https://doi.org/10.1016/j.oceaneng.2022.110883
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://doi.org/10.1007/s00158-022-03194-0

	Acknowledgments
	Περίληψη
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Ship Performance Development
	1.1.1 Vessel marine fouling
	1.1.2 Hull Cleaning
	1.1.3 Vessel Performance Monitoring Systems (VPM)

	1.2 Artificial Intelligence & Shipping
	1.3 Literature Review
	1.4 Thesis Objective & Structure

	2 Data acquisition
	3 Data pre-processing
	3.1 Data Profiling
	3.2 Data Filtering
	3.2.1 Threshold Values
	3.2.1.1 Speed
	3.2.1.2 ME Revolutions per Minute (ME RPM)


	3.3 Data Cleaning
	3.3.1 Null Values

	3.4 Parameters correlation
	3.4.1 Pearson Correlation Coefficient
	3.4.2 Parametric Plots

	3.5 Outlier Detection
	3.5.1 Filter 1: Shaft Torque – RPM
	3.5.2 Filter 2: PSP – RPM
	3.5.3 Filter 3: STW – RPM
	3.5.4 Filter 4: STW – SOG

	3.6 Data Smoothing
	3.7 Data Quality Check
	3.8 Final Dataset

	4 Feature Engineering
	4.1 Feature Creation
	4.2 Feature Extraction
	4.2.1 Wind Effect
	4.2.2 Currents
	4.2.3 Power Output
	4.2.4 Days Since Repair (DSR)
	4.2.5 Mean Draft

	4.3 Feature Selection
	4.3.1 Correlation Analysis
	4.3.2 Random Forest regression classifier


	5 Artificial Neural Networks
	5.1 Basic hyperparameters of an ANN model
	5.1.1 Input Layers
	5.1.2 Hidden Layers
	5.1.3 Output Layer
	5.1.4 Activation Functions
	5.1.5 Loss Functions
	5.1.6 Model Regularization Methods

	5.2 Model Design
	5.2.1 Data Normalization
	5.2.2 Data Shuffling
	5.2.3 Data Split
	5.2.4 Tuning the models hyperparameters
	5.2.4.1 Before-Repair Model
	Activation Function
	Number of Epochs & Batch size
	Number of units per hidden layer
	Model Normalization

	5.2.4.2 After-Repair Model

	5.2.5 Model Training & Validation
	5.2.5.1 Before-Repair Model
	5.2.5.2 After-Repair Model

	5.2.6 Model Testing & Evaluation
	5.2.6.1 Dataset Before-Repair
	5.2.6.2 Dataset After-Repair



	6 Fouling Analysis
	6.1 Fouling analysis results
	6.1.1 Scantling Loading Condition datasets
	6.1.2 Design Loading Condition datasets
	6.1.3 Ballast Loading Condition datasets


	7 Conclusion & Future Suggestions
	8 Bibliography

