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Περίληψη 
 

Λόγω των πρόσφατων γεγονότων στον ναυτιλιακό τομέα, η παρακολούθηση της απόδοσης 

των πλοίων είναι πιο σημαντική από ποτέ. Η σωστή αξιολόγηση της κατάστασης του πλοίου 

επιτρέπει στις ναυτιλιακές εταιρείες να αξιολογήσουν την υποβάθμιση της απόδοσης και να 

αποφύγουν απρόβλεπτες δαπάνες. Η απόδοση του πλοίου εξαρτάται από τον χρόνο λόγω της 

σχέσης του με τη θαλάσσια ρύπανση. Επομένως, τα δεδομένα που καταγράφονται από τα 

συστήματα παρακολούθησης του πλοίου μπορούν να αξιολογήσουν την κατάσταση της 

απόδοσής του και να καθορίσουν εάν το πλοίο πρέπει να υποστεί συντηρητικές ενέργειες. 

 

Επιπλέον, η συνδυασμένη χρήση υπάρχοντων καταγεγραμμένων δεδομένων με τεχνικές 

μηχανικής μάθησης δίνει τη δυνατότητα στους φορείς να παρακολουθούν όχι μόνο την 

τρέχουσα αποδοτικότητα της απόδοσης ενός πλοίου, αλλά και να προβλέπουν τις διακυμάνσεις 

της με την πάροδο του χρόνου. Η παρούσα μελέτη περιγράφει τα απαιτούμενα βήματα για την 

ανάπτυξη ενός προγνωστικού μοντέλου Τεχνητού Νευρωνικού Δικτύου (Artificial Neural 

Network - ANN) και τα στοιχεία που περιλαμβάνει. Επιπλέον, αξιολογεί τη σημασία κάθε 

υπερπαραμέτρου σχετιζόμενη με την ακρίβεια του μοντέλου. 

 

Για την ανάπτυξη του μοντέλου ANN, επεξεργάστηκαν δεδομένα υψηλής συχνότητας από ένα 

Panamax φορτηγό πλοίο για μια περίοδο 16 μηνών, με έμφαση στην επισκευή του προπέλας. 

Δημιουργήθηκαν δύο ξεχωριστά μοντέλα: ένα χρησιμοποιώντας δεδομένα εκπαίδευσης που 

καταγράφηκαν κατά την πρώτη εξάμηνη περίοδο και ένα δεύτερο χρησιμοποιώντας τα 

υπόλοιπα (10 μήνες). Για την προεπεξεργασία των καταγεγραμμένων δεδομένων, 

εφαρμόστηκαν στατιστικές μέθοδοι μαζί με τους βασικούς νόμους της φυσικής. Η μηχανική 

των μεταβλητών εισόδου περιλάμβανε την εφαρμογή τεχνικών βαθιάς μάθησης με τη χρήση 

της βιβλιοθήκης Random Forest της Python. 

 

Για τη βελτιστοποίηση της απόδοσης του μοντέλου, εφαρμόστηκε η μέθοδος δοκιμής και 

σφάλματος (Trial-Error) για κάθε υπερπαράμετρο. Έτσι, κατασκευάστηκε το πιο αποδοτικό 

μοντέλο δυνατό, λαμβάνοντας υπόψη τα καταγεγραμμένα δεδομένα, με ποσοστά ακρίβειας 

97,5% και 99,3% για τις προβλέψεις σε σύγκριση με τις μετρημένες τιμές πριν και μετά την 

επισκευή του προπέλα αντίστοιχα. Τέλος, με βάση αυτά τα μοντέλα, η μελέτη αξιολόγησε την 

επίδραση της περιβαλλοντικής μόλυνσης στην υποβάθμιση της ισχύος του προπέλα, σε σχέση 

με τις ημέρες που παρήλθαν από την επισκευή του, προκειμένου να αποδειχθεί η χρονική 

εξάρτηση της θαλάσσιας μόλυνσης. 
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Abstract 
 

Due to recent events in the shipping industry, vessel performance monitoring has become more 

important than ever. Correctly evaluating the vessel’s condition enables shipping companies to 

assess performance deterioration which can save them from unpredicted expenses. Ship 

performance is time-dependent due to its correlation with marine fouling. Hence, data recorded 

from vessel’s monitoring systems can evaluate its state of performance and whether the vessel 

should go through maintenance actions.   

 

Furthermore, combining existing recorded data with machine learning techniques give 

operators the opportunity not only to monitor the current performance efficiency of a vessel, 

but also to project its fluctuation over time. This study outlines the necessary steps needed to 

develop an Artificial Neural Network predictive model and what it consists of. Additionally, it 

evaluates the importance of each hyperparameter while relating them to the model’s accuracy. 

Thereby, processing high-frequency data of a Panamax bulk carrier, over a 16-month period, 

consisting of a propeller repair, led this study to develop one ANN model used to predict the 

propeller’s shaft power for each one of the propeller’s conditions. Hence, one model is 

developed through training data recorded over the first 6-month period while the second one 

used the remaining data, accounting for 10 months.  

 

For the preprocessing of recorded data, statistical methods along with fundamental principles 

of physics were applied while for the feature engineering deep learning techniques were 

implemented using Python’s Random Forest libraries. Moreover, in order to tune the model’s 

hyperparameters the Trial-Error procedure was implemented for each one resulting in building 

the best-performing model possible given the recorded data achieving 97.5% and 99.3% 

accuracy percentages between predicted and measured values on the models before and after 

the propeller repair respectively.  

 

Finally, in respect to these models this study assessed the effect of fouling on the vessel’s 

propeller’s shaft power deterioration, comparing the time elapsed since the propeller’s repair. 

This analysis aimed to illustrate the time dependency of marine fouling and its impact on the 

vessel’s performance.  
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1 Introduction 
 

The history of the shipping industry goes back to ancient times when global trade was based 

on sailing boats powered by wind. These vessels were used to transport goods to people across 

the world and played a vital role in the development of global trade and economy. Due to the 

industrialization and globalization of the world, shipping developed to be the leading industry 

which provides for almost 90% of global trade. This is mainly because shipping achieves a low 

energy consumption and, thus, a low cost per unit of carried cargo, making it possible to reach 

the economies of scale. 

 

1.1 Ship Performance Development 
 

Naturally, as the need for the transportation of goods evolved, so did the need for bigger and 

faster ships for the shipping companies to be able to comply with the rapidly growing demand. 

Hence, shipping companies emphasized investing in the development of their vessel’s 

technology to increase the capacity, speed, and traveling radius. Additionally, a great amount 

of research was put in the vessel performance monitoring systems. This became very popular 

since the performance of the ship was closely connected to the vessel’s voyage expenses, such 

as fuel consumption, etc. Fuel consumption is the main expense of each voyage; thus, it has 

become a critical issue for shipowners as they try to maximize their profits.  

 

Due to recent events, such as new MARPOL and IMO regulations, fuel has grown into an even 

bigger percentage of the vessel’s operational expenses. Not only did the MARPOL conventions 

oblige shipowners to use fuels with less Sulphur content (e.g., LSFO, MGO, MDO, etc.), which 

are naturally more expensive than traditional heavy fuel oil (HFO) in order to reduce 

greenhouse gas emissions, but also the fuel prices have increased rapidly due to the embargo 

of the Russian fuel and other commodities.  

 

1.1.1 Vessel marine fouling 
 

The amount of fuel used must be considered when calculating a vessel's operating costs. 

Particularly for larger ships that use a lot of fuel during their journeys, fuel expenditures can 

make up a sizeable part of a vessel's operating costs. The size, speed, and age of the vessel, as 

well as the kind of engine and fuel utilized, are all factors that have an impact on fuel 

consumption. The amount of fuel used depends on several additional elements, including the 

weather, the state of the water, and the weight carried by the vessel.  

 

The cost of operating a vessel can be significantly reduced by reducing fuel usage. One option 

to do this is to increase the ship's fuel economy, for instance by upgrading the engines or 

optimizing the design. Using more fuel-efficient operating procedures, such as lowering speed 

or optimizing the vessel's path to reducing fuel use, is another option to cut back on fuel use. 

Reducing fuel use can save money while also helping the environment by lowering greenhouse 

gas emissions and other pollutants. Overall, because it can significantly affect the vessel's 

operating costs and profitability, fuel consumption is a crucial aspect that vessel operators must 

take into account while planning and carrying out voyages. 

 

Ship’s consumption, according to (Yusim & Utama, 2017), is heavily related to the ship’s drag 

forces which are affected by the vessel’s hull fouling - biofouling. Marine fouling is generated 

by the buildup of micro - and macro-organisms onto the ship’s hull, physically increasing the 
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displacement of the vessel and disturbing the ship’s flow through water. Marine fouling 

generates surface roughness which increases the drag resistance of a ship moving through 

water. Studies have shown that intense biofouling growth on a ship's underwater hull can 

reduce speed by up to 20% and increase fuel consumption by around 50% over the course of a 

year of operations.  

 

Following (Arndt et al., 2021) research on the generation of biofouling on ships’ hulls is 

influenced by several different factors, such as: 

 

1. Design and construction of the vessel: This is a major factor that influences the 

hydrodynamic performance of the vessel. Additionally, vessels may be equipped with 

various technologies such as sea chests, bow thrusters, hull appendages and protrusions, 

etc. 

 

2. Operating conditions: This factor includes operational parameters like the vessel’s 

operational speed as well as the ratio of time underway compared with time alongside, 

moored or at anchor. 

 

3. Trading routes: The characteristics of seawater vary from ocean to ocean. The 

temperature, the salinity, and the richness of fouling organisms depend on the route of 

the vessel and are critical factors for the generation of marine fouling.  

 

4. Maintenance history: The maintenance of the vessel is one of the most important, if 

not the most, factors influencing the vessel’s marine fouling concentration. It includes 

the age and condition of any anti-fouling coating as well as the vessel’s hull cleaning 

frequency. There are two primary methods for cleaning a vessel's hull: Dry-Dock 

cleaning and Underwater cleaning. Although Underwater cleaning is easier, cheaper, 

and faster, it does not yield the best results. In contrast, Dry-Dock cleaning produces 

the most effective outcome, but it is a much costlier and time-intensive option. 

Consequently, it is crucial to discern when it is appropriate to pursue Underwater 

cleaning versus Dry-Dock cleaning based on the vessel's performance status. 

 

1.1.2 Hull Cleaning 
 

Based on IACS’ publication “Classification Societies-What, Why and How?”, typically, hull 

cleaning procedures tend to occur in accordance with the intermediate and special surveys of 

the vessel which are mandatory for the vessel’s seaworthiness. Intermediate inspections include 

either an out-of-water Drydocking or an Under-Water inspection in Lieu of Drydocking 

(UNWILD) and are to be completed in the second to third year of each five-year special survey 

cycle. Additionally, special surveys, or five-year Inspections, are to be completed within five 

years after the date of build or 5 years after the crediting date of the previous Special Survey – 

Hull. 

 

Although, regardless of these mandatory cleanings, some operators may issue additional ones 

according to their vessel’s hull and propeller condition. According to (Adland et al., 2018), 

vessels that sail in high-temperature waters, tend to generate marine fouling faster than others 

and may be better to perform an additional underwater cleaning which, depending on the degree 
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of marine fouling, vessel size, vessel segment, operation profile and trading areas, could result 

to a reduction in the range of 1% to 5% on main engine fuel consumption. Hence, the cost of 

the underwater cleaning which varies from $5.000 to $50.000 could eventually be less than the 

amount saved on fuel. All these scenarios are not easy to be examined and require close 

attention to the vessel’s performance status.  

 

1.1.3 Vessel Performance Monitoring Systems (VPM) 
 

To make sure that no unpredicted problems and additional costs come up, marine engineers 

and vessel operators have introduced new methods for monitoring the vessel’s performance 

and operational status. These Vessel Performance Monitoring systems (VPM), achieve several 

significant goals.  

 

Enhancing ship efficiency: VPM enables continuous monitoring of important performance 

metrics like fuel usage, speed, and engine characteristics. With the help of this data, the vessel's 

performance can be improved to cut costs and the influence it has on the environment. 

 

Enhancing maintenance: VPM can assist in determining maintenance requirements and 

avoiding equipment failures, lowering the risk of downtime and related expenses. 

 

Increasing safety: Monitoring a vessel's performance can also serve to increase safety by seeing 

possible problems like engine overheating or hull damage before they get out of hand. 

 

Ensuring compliance: VPM can be used to track adherence to rules governing emissions, fuel 

use, and other performance parameters, lowering the possibility of fines and legal 

repercussions. 

 

Overall, as (Valchev et al., 2022) state, VPM gives vessel owners and operators insightful 

information about their ship's performance, empowering them to make wise choices and take 

preventative action to increase effectiveness, safety, and compliance. Hence, it is the 

shipowner’s best interest to invest in technologies, such as vessel performance monitoring 

systems that would consecutively make their vessels perform as best as possible and 

consecutively reduce their fuel consumption. Vessel performance monitoring (VPM) is based 

on the extensive analysis of the vessel’s gathered data. This analysis can be done by developing 

different numerical models, which according to the literature, the three main families of 

numerical models that have been developed and used in the literature are Physical Models 

(models relying on mechanistic knowledge of the phenomena), Data-Driven Models (models 

relying on historical data about the phenomena combined with Artificial Intelligence), and 

Hybrid Models (i.e., a hybridization between Physical and Data-Driven Models).      
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1.2 Artificial Intelligence & Shipping 
 

Artificial Intelligence and Machine Learning have developed significantly over the last years. 

The use of AI is growing across various industries, although its capabilities differ. AI has 

started to affect the logistics sector, by removing monotonous and repetitive jobs, succeeding 

in having a great potential to speed up and enhance the maritime industry. Specifically, 

machine learning technology combined with big data analysis have the ability to influence a 

business’ capacity for prediction and improve the effectiveness of its operations. Real-time 

analytics, better scheduling, automated procedures, and other implementations are some 

examples.  

 

Combining all the years of research along with the assistance of advanced computing power 

and wider data availability, prediction models have evolved from basic statistical models to 

deep learning models, which achieve high accuracy prediction percentage. Classical statistical 

models, such as linear regression and logistic regression base their predictive abilities on 

assumptions about data distribution as well as the variables correlation. Through the extensive 

use and examination of these statistical predictive models, machine learning science developed 

machine learning prediction models, which in contrast with the statistical models, they relied 

less on presumptions about the distribution of the data and the relationships between the 

variables. The purpose of these models, which include decision trees, support vector machines, 

and random forests, is to find patterns in data and generate predictions based on those patterns. 

Lastly, deep learning models came along with the development of deep learning algorithms, 

such as neural networks. These models are used for bigger data sets since they have the 

capability to acquire knowledge from vast volumes of data and recognize intricate patterns that 

were once challenging or unfeasible to discern. 

 

The use of machine learning and predictive models have revolutionized many industries along 

with shipping. Using these models, shipping operations can be optimized. Specifically, 

according to (Farag & Ölçer, 2020) study, regarding the development of ship performance 

models based on ANN and regression methods, AI offers the ability to shipping companies to 

reduce costs in various ways. Firstly, it gives the ability to predict when a vessel might need 

maintenance, by analyzing existing data. Additionally, route optimization is an important 

aspect of machine learning use in the shipping industry, since shipping companies can decrease 

fuel consumption, cut costs, and enhance delivery times by scrutinizing data on factors that 

impact shipping durations such as weather conditions, traffic, and other variables, and 

subsequently determining the most efficient routes.  
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1.3 Literature Review 
 

Kim et al., (2021) study, present certain models that can predict fuel consumption. Data from 

a container ship were used to develop these models, and for their implementation, Artificial 

Neural Networks (ANN) and Multiple Linear Regression (MLR) were used. Additionally, for 

the development of this specific model, unlike other studies that use fuel consumption per hour 

as the dependent variable, fuel consumption per distance traveled was used. This way, it takes 

into account the conditions under which the ship is sailing, such as the loading condition and 

the weather. Then, for the selection of the dependent variables to be used for the model 

development, the "Domain Knowledge" and "Statistical method based on Lasso 

Regularization" methods were examined. Thus, for the evaluation of the methods, results were 

obtained for experiments with all possible combinations of variable selection and model 

training methods, and the mean absolute error of each combination was calculated. Applying 

the above, it was found that the optimal combinations were the use of Artificial Neural 

Networks in combination with either the "Domain Knowledge" method or the "Lasso 

Regularization" method. Therefore, the parameters selected with the "Domain Knowledge" 

method are SOG, RWS, RWD, DFT, TRM, and DBS, while with "Lasso Regularization" they 

are RPM, SOG, STW, RWS, RUD, and DBS. Finally, a sensitivity analysis of the model was 

performed regarding the ship's draft. For this analysis, the combination of ANN - Domain 

Knowledge was used, which has the draft of the ship as a variable with which the optimal draft 

of the ship was calculated concerning the ship's consumption.  

 

Furthermore, Lang et al., (2022) made a comparison of various artificial intelligence and 

statistical methods used for predicting the necessary propulsion power of a ship to achieve 

operational speed. Specifically, the algorithms compared include XGBoost, ANN, Support 

Vector Regression, and statistical methods such as Linear and Polynomial Regression and 

Generalized Additive Model. The parameters used as input variables in these models for 

comparison are ship speed through water, mean draft, trim, heading, significant wave height, 

mean wave period, mean wave heading, and wind speed. These variables are used as input 

variables in computational models that generate the propulsion power as a result. The root 

means square error and the complexity degree of the method are used to compare these 

methods. After collecting and processing data from a tanker and a RoRo vessel, it was initially 

found that artificial intelligence algorithms offer greater reliability and accuracy compared to 

statistical methods. However, the text notes that statistical methods are superior in the time 

required for "training". Finally, it turns out that the optimal algorithm regarding the above 

parameters is XGBoost, for which a sensitivity analysis of the model is also performed 

regarding the time intervals in which we group our data, and it was concluded that 30 minutes 

is the best choice. 

 

In Laurie et al., (2021) paper various models of artificial intelligence are being examined, 

aimed at predicting propulsive power and analyzing pollution in relation to efficiency 

reduction. Specifically, the following models are being compared: Multiple Linear Regression, 

Decision Tree (AdaBoost), K-Nearest Neighbors, ANN, and Random Forest. To develop this 

specific model, data was collected from a container transport ship operating between Europe 

and South America, an area where the waters have higher temperatures and therefore pollution 

development is more intense. Additionally, the ETR (Extra Trees Regression) model was used 

to select the optimal combination of variables, leading to the following variables: behavior, 

draft, Froude number (Fn), wind speed ratio, significant wave height, water temperature, and 

days since the last tank cleaning (DSC). Root Mean Square Percentage (RMSPE) and Mean 

Absolute Percentage Error (MAPE) values were calculated to compare the computational 
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models. Using these values, it was found that the Random Forest model performs the best, 

although the KNN and ANN models were equally good. Therefore, it appears that non-linear 

relationships between inputs and outputs work better than linear relationships. 

 

Additionally, a study by Uyanık et al., (2020) is based on determining the fuel consumption of 

a container using various artificial intelligence algorithms. Specifically, different predictive 

models such as Multiple Linear Regression, Ridge and LASSO Regression, Support Vector 

Regression, Tree-Based Algorithms, and Boosting Algorithms were examined using noon 

reports and data from engine log books. For the validation of the predictive models, the K-fold 

cross-validation method was used. For the analysis of the relationship between each variable 

correlation analysis is used, calculating the correlation of all possible variable pairs. 

Additionally, for the evaluation of each method regarding its accuracy, a root mean square error 

analysis was used, reporting that it is more advantageous for larger datasets. After gathering all 

the information, it was concluded that the best-performing, and most accurate predictive model 

is considered to be the Gradient Boosting Regression. 

 

Karagiannidis, (2019), extensively examined the impact of data pre-processing while creating 

data-driven models for ship propulsion. In order to train models that forecast the required shaft 

power or main engine fuel consumption for a container ship sailing under random conditions, 

he employed a sizable, autonomously acquired data set with a high sampling frequency. Two 

strategies were proposed with the aim of highlighting the statistical evaluation and preparation 

of the data. Additionally, state-of-the-art training and optimization methodologies for Feed-

Forward Neural Networks (FNNs) were applied. His findings suggest that the accuracy of the 

model can be significantly increased by a diligent filtering and preparation stage. In addition 

to that, Karagiannidis & Themelis, (2021), conducted an article regarding the effect of data 

pre-processing on the prediction of ship fuel consumption and speed loss and ultimately 

concluded that with the appropriate pre-processing and filtering of data, it is promising to 

achieve an increased model accuracy. 

 

Lastly, Anastasiou, (2022) through his diploma thesis, made a comprehensive analysis on the 

development of ship performance models using Artificial Neural Networks and operational 

data. Specifically, he developed an artificial neural network as well as a multiple linear 

regression model which were used to predict the fuel oil consumption of a vessel. In his study 

he examined multiple error detection methods, as well as regularization techniques to overcome 

overfitting. He mentions that due to the lack of use of engine-related parameters in the designed 

model, it was not easy to achieve a low error index. Additionally, he highlighted the fact that 

deep learning models are very likely to come across overfitting problems, due to the large 

amount of data that are being processed. Lastly, he concluded that a deep neural network using 

proper parameters, can outperform a multiple linear regression model in many cases and 

specifically in the prediction of various ship propulsion characteristics.  
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1.4 Thesis Objective & Structure 
 

As mentioned in this study’s introduction, vessel’s main engine shaft power monitoring has 

been of major importance for shipping companies not only for the ship’s performance but also 

for the minimalization of operational expenses and ship’s emissions. Its accurate forecasting 

has been one of the most popular topics in marine engineering and machine learning since an 

accurate Artificial Neural Network prediction model could be a huge asset for a shipping 

company since it could eventually cut down their expenses significantly while organizing their 

vessel’s maintenance actions in such a way that the vessel will never end up in a situation where 

it has broken down entirely. Hence, the objective of this study revolves around developing an 

Artificial Neural Network model that can effectively forecast a vessel’s Shaft Power with high 

accuracy across different loading and weather conditions. Firstly, to do that it was required to 

accumulate data from a vessel for a specific period since these models are mainly data-driven 

(Chapter 2. Data acquisition). Secondly, to create a model capable of producing accurate 

predictions it is essential to process the given data in order to remain with a filtered Dataset 

(Chapter 3. Data pre-processing). In the next chapter, Chapter 4. Feature Engineering, the pre-

processed dataset’s features will be examined while also there will new ones generated. This 

step is really crucial for the predictive model architecture since the remaining features will 

serve as the model’s input variables. Subsequently, after creating the input dataset along with 

its final input variables, in Chapter 5. Artificial Neural Networks, the tuning of the ANN 

model’s hyperparameters will be examined and the most suitable model will be created. 

Finally, after evaluating and selecting the most accurate model, the fouling state of the vessel 

will be assessed, and the consequences that it has on the vessel’s performance efficiency as 

well as its Operational Expenses. Hence, this study will take a deeper look into the optimization 

of the hyperparameters tuning of a Neural Network as well as the Features Engineering by 

using programming optimization tools, such as Random Forest Regression Classifier, which is 

provided by Python’s Libraries. Additionally, it will introduce a method to evaluate and assess 

the vessel’s fouling status along with the additional fuel expenses that are associated with it by 

correlating the additional Propeller Shaft Power to the Days that have passed by since a specific 

time. This will indicate a positive correlation between the Days Since the last Repair to the 

Propeller’s Shaft Power. 

 

 
Figure 1: Thesis Structure Flow Graph 
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2 Data acquisition 
 

For the development of the prediction model, data were collected from the operation of a Bulk 

Carrier Vessel (MV Kastor) during the period of January-2021 to April-2022. For the collection 

of the data, a continuous monitoring system was used with a frequency of 1 minute. These data 

describe several parameters and were captured through various sensors. The total number of 

data points was 698400. Additionally, during that period the vessel has gone through propeller 

maintenance which is expected to affect the vessel’s performance efficiency indicators. 

 
Vessel’s Main Characteristics 

Type Bulk Carrier 

Length (BP) 225.5 [m] 

Length (OA) 229 [m] 

Beam 32.3 [m] 

Draft 14.45 [m] 

Depth 20.05 [m] 

Deadweight 81600 [tn] 

Engine MAN B&W 6S60ME-C8 

9930 kW / 90 RPM 

Service Speed 14 [knots] 
Figure 2: Main characteristics of reference vessel. 

 

Data acquisition plays a vital role in vessel monitoring and is essential for creating both 

statistical and AI predictive models. As (Skamagkas, 2022) states, there are two main methods 

for the collection of operational data: 

 

Noon reports: 

 

The crew of a ship normally submits noon reports each day, informing the shipping company 

of the vessel's location, speed, heading, and other operational information. All these data, 

collected from noon reports, can be gathered in a vessel monitoring system in several ways: 

 

Electronic submission: The crew submits the report to the monitoring center electronically 

using a computer or mobile device. The report will then be automatically processed and saved 

in the system. 

 

Fax or email: The crew sends a fax or email to the monitoring center or the company 

responsible for the vessel’s operation, which can then manually enter the data into the system. 

 

Manual entry: The data can be manually entered into the system by the monitoring center, 

either from a paper copy of the report or from an electronic copy that was obtained from the 

crew. 

 

Continuous monitoring systems 

 

These systems collect data with a higher frequency than the noon reports, such as a few 

seconds. For data collection, these monitoring systems use several sensors and communication 

systems installed on the vessel.       
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Figure 3: Continuous data monitoring for vessel performance. 

(Digitalization in the Maritime Industry - DNV, n.d.) 

 

Regardless of the method of collection, both methods can provide us with valuable information 

about the vessel’s operational status. Although, due to the higher frequency that continuous 

monitoring systems have, they provide us with a more detailed and more accurate view of the 

vessel’s operations compared to noon reports. 

 
Parameter Sensor Units 

Speed Over Ground (SOG) GPS knots 

Speed Through Water (STW) Speed Log knots 

Propeller Shaft Power (PSP)  

Shaft Torque Meter 

kW 

ME Revolutions per Minute RPM 

ME Loading percent % 

Fuel Index Position  Mass Flow Meter N/A 

ME Fuel Oil Consumption mt/day 

Vessel Heading GPS deg 

Relative Wind Direction Anemometer deg 

Relative Wind Speed m/sec 

DTN AIR TEMPERATURE 10M ACTUAL Thermometer ℃ 

DTN AIR PRESSURE MEAN SEA LEVEL ACTUAL  

Pressure Sensor 

mbar 

Draft m 

Vessel Trim m 

DTN SEA TEMPERATURE 0M ACTUAL Thermometer ℃ 

Fuel Oil Temperature (ME return)  
 

Shaft Torque Meter 

 

℃ 

Fuel Oil Temperature (ME supply) ℃ 

Shaft Torque kNm 

Shaft Thrust kN 

M/E Shaft Revolutions RPM 

Significant Wave Height  m 

Mean Wave Direction  deg 

Water Depth Relative to the Transducer Echo sounder m 

Ballast-Condition  N/A 

Cargo Carried  tn 

Fuel-LCV  kJ/kg 
Table 1: Parameters captured through various sensors. 
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Speed Logs 

 

Speed logs are used to calculate the vessel’s speed through water. To that extent, the following 

sensors are mostly used: 

 

Doppler Logs 

 

Doppler speed logs utilize the Doppler phenomenon to measure speed by detecting the shift in 

wavelengths of moving objects relative to the observer. This shift is converted into speed by 

emitting high-power acoustic energy into the water and receiving the echo reflected from the 

seafloor. The Doppler shift from the returning echo is used to determine the speed of the water 

passing the sensor, as well as the distance traveled and depth of the water. The sensor is placed 

on the vessel's longitudinal axis, about 1/3 of the length forward, with the boundary layer of 

water (whose speed is measured) typically located 2-7m below it.  Although, doppler speed 

logs can malfunction through shallow waters due to the water’s acceleration along with the 

change of direction of the vessel.  

 

Electromagnetic Logs 

 

The electromagnetic log operates by creating an electromagnetic field in the surrounding water 

through the generation of a small alternating current in a transducer. As the vessel travels 

through the water, a voltage corresponding to the speed is produced perpendicular to the 

direction of travel. This voltage is detected by probes and sent to the main electronic unit where 

it is amplified and processed digitally before being transmitted to the speed and distance 

displays. 

 

Acoustic correlation Logs 

 

A less common alternative to the aforementioned speed logs. Acoustic correlation logs are 

based on the correlation of the reflected pulses (sound-energy) in the water at a given distance. 

The time delay of two similar pulses is measured, and the speed of the ship is calculated. 

 

Echo sounder 

 

An echo sounder, commonly referred to as a depth sounder or sonar, uses sound waves to 

measure the depth of the water beneath a vessel. It operates by sending out a sound wave that 

passes through the water and bounces against the seafloor. The length of time it takes for a 

sound wave to reach the ocean floor and return is measured, and the depth of the water is 

determined using this length of time. The make-up of the seafloor and the presence of 

submerged items are two additional pieces of information that contemporary echo sounders 

may offer. 

 

Shaft Torque Meters 

 

As their name suggests, Shaft torque meters are used to measure the shaft power of the vessel’s 

engine. The two most common ways are the following: 
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Shaft rotation angle 

 

To measure the torque, the shaft’s rotation angle is used, which is calculated through the 

angular difference between two rings that are placed at a certain distance on the axis. Thus, the 

angle of rotation is obtained. 

 

Strain Gauges 

 

Strain gauges measure an object's deformation or strain at a 45-degree angle. They are made 

up of a thin, flexible wire or film attached on a surface that adjusts its resistance in response to 

pressure or strain. The amount of deformation is inversely correlated with the change in 

resistance, which can be measured and used to determine the object's strain.  

 

Shaft Torque Meters 

 

As their name suggests, Shaft torque meters are used to measure the shaft power of the vessel’s 

engine. The two most common ways are the following: 

 

Shaft rotation angle 

 

To measure the torque, the shaft’s rotation angle is used, which is calculated through the 

angular difference between two rings that are placed at a certain distance on the axis. Thus, the 

angle of rotation is obtained. 

 

Strain Gauges 

 

Strain gauges measure an object's deformation or strain at a 45-degree angle. They are made 

up of a thin, flexible wire or film attached on a surface that adjusts its resistance in response to 

pressure or strain. The amount of deformation is inversely correlated with the change in 

resistance, which can be measured and used to determine the object's strain.  

 

GPS (Global Positioning System) 

 

GPS is a system used to track the position of an object. Hence, it retrieves information about 

the position of the ship in global coordinates (longitude, latitude), and therefore, by numerically 

extracting the position of the ship, the calculation of the ship's speed over ground (SOG) is 

achieved. In order for the GPS to work properly it requires to be continuously connected to a 

satellite system that will transport the ship's location. Specifically, The GPS system consists of 

more than 30 orbiting navigational satellites. Because they are continually sending out signals, 

we know where they are. The vessel’s GPS receiver watches for these signals. The receiver can 

determine the vessel’s location after calculating its distance from four or more GPS satellites. 

The accuracy is great but can be affected by currents. 

 

Pressure Sensor 

 

Pressure sensors are installed in vessels for the calculation of their trim and drafts. The draft is 

calculated by measuring the hydrostatic pressure at the surface of the vessel's hull using sensors 

placed on the external surface. The draft is then calculated at the location where the sensors are 

installed. To account for the impact of dynamic changes on drafts, such as the effect of waves, 
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a sensor or measurement of the vessel's movements, such as an inertial measuring unit sensor, 

is used. Additionally, the trim can be calculated by measuring the draft at two different 

longitudinal positions of the ship. 

 

Mass Flow Meters 

 

Coriolis Mass Flow Meters 

 

To measure the fuel consumption of an engine, mass flow meters are used. Specifically, 

Coriolis mass flow meters are known to provide the most accurate results due to the fact that 

they don’t rely on fuel density estimations since they measure the mass flow directly. They 

operate on the idea of Coriolis acceleration, which happens whenever a fluid is rotated. A U-

shaped tube that vibrates at a resonant frequency makes up the meter. The Coriolis force that 

the fluid experiences as it passes through the tube causes it to bend and twist. The fluid's mass 

flow rate directly relates to the degree of deflection. Additionally, the mass flow rate is 

determined by measuring the time delay between the signals produced by sensors at the tube's 

input and outlet ends, which detect deflection. The mass flow rate and fluid density can both 

be determined using Coriolis mass flow meters. 

 

Anemometer 

 

The wind anemometer is a tool that shows the wind's relative direction and speed in relation to 

the ship's orientation. It is made up of a vane and a helicoid propeller that measure the direction 

and speed of the wind, respectively. The helicoid propeller's rotating speed and the vane's 

angular displacement both aid in estimating the relative direction and speed of the wind. 
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3 Data pre-processing 
 

This chapter emphasizes on the preparation of the raw data to prepare it for the main data 

processing procedure. Data pre-processing is one of the most important steps for the creation 

of a machine learning model. Real-world data is unorganized and frequently produced, 

processed, and saved by a range of people, business operations, and software programs. 

Because of this, a data set can be incomplete, have manual input errors, have duplicate data, or 

use several names to refer to the same object. In the data that they use for their line of work, 

humans can frequently spot and fix these issues, but data used to train machine learning or deep 

learning algorithms needs to be automatically pre-processed. For that reason, the vessel’s raw 

data were processed according to the following steps: 

 
1) Data profiling: Examining, evaluating, and reviewing data in order to compile statistics 

regarding its quality. Hence, it is important to visualize the data by creating plots and histograms 

which will give us a better understanding of our collected data.  

 
2) Data filtering: The purpose here is to determine the easiest solution to remedy quality issues, 

such as deleting bad data, filling in missing data or otherwise ensuring the raw data is adequate 

for feature engineering. 

3.1 Data Profiling 
 

All the collected data from the vessel are time-dependent, hence it is important to have each 

variable plotted over time to check that they were recorded without any flaws and to detect any 

sensor failures that may arise. However, given the fact that inside the recorded data there are 

29 parameters stored over a period of 22 months, we chose to plot only the most important 

ones. Ship performance is influenced by three main categories of parameters regarding the 

vessel’s operation, the vessel’s loading condition, and the environmental conditions. Hence, in 

order to demonstrate all of them, representatives for each one were selected. Therefore, 

Longitudinal Speed Through Water (STW) with ME Fuel-Oil Consumption, Mean Draft with 

Vessel’s Trim, and Wind Speed with Significant Wave Height, were chosen to represent the 

operational, the loading as well as the environmental parameters accordingly and are presented 

in Figure 4, Figure 5, and Figure 6 respectively. 

 

 
 



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel. 

Data pre-processing 

 

23 
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Figure 4: Basic operational parameters over a 22-month period. 

Figure 5: Basic loading parameters (Drafts, Trim) over a 22-month period. 
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From the above-plotted parameters, presented in Figure 4, Figure 5, and Figure 6 the following 

can be observed: 

 

• The Mass Flow meter sensor malfunctioned through the recorded period, as the 

collected data showed negative Fuel Oil consumption which is not right. Hence, the 

ME Fuel-Oil consumption parameter cannot be used for the development of the 

predictive model. 

 

• In the range of 350000 and 700000 minutes the vessel’s pressure sensor did not work 

properly, since the data that were recorded are not continuous. Therefore, the 

parameters of the mean draft and the trim of the vessel cannot be used through the entire 

recorded period.  

 

• It is necessary, through the data visualization, to evaluate the existence of noise and 

outliers as well as the necessity for filtering or smoothing the data. Since this study aims 

to develop a predictive model for the vessel’s shaft power, it is important to clear useless 

data that could eventually sabotage our model.  

 

Figure 6: Basic environmental parameters (Relative Wind Speed, Significant Wave Height) over a 22-month period. 
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Another important step for the pre-processing of data is the identification of missing values 

and illogical measurements. The following table (Table 2) shows the missing values for each 

parameter in the entire data set. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 2: Missing values of the raw data, it can easily be observed that some parameters 

have too many missing values and therefore it would be wise not to use them. Hence, the 

following parameters will be deleted from the data set: 

 
1) DTN AIR TEMPERATURE 10M ACTUAL (oC) 

2) DTN AIR PRESSURE MEAN SEA LEVEL ACTUAL (mbar) 

3) DTN SEA TEMPERATURE 0M ACTUAL (oC) 

4) DTN SIGNIFICANT WAVE HEIGHT (m) 

5) DTN MEAN WAVE DIRECTION (deg) 

Apart from the above parameters, the ME Fuel Oil consumption parameter was deleted since 

we saw that the mass flow meter sensor malfunctioned. After this procedure, we are now left 

with the parameters that will help us build our model. Additionally, the Water Depth parameter 

should not be included in the model creation since it is used only in shallow waters. 

Parameter Missing 

values 
 

 

 

 
 

 
Table 2: Missing values of the raw data 
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With a better understanding of the dataset, we can now identify the relationships between its 

parameters and choose the appropriate processing steps for each. Due to our understanding of 

the mechanics behind the problem, we already know the relationship, or at the very least the 

overall trend, for some of them (such as PSP-RPM), which will be useful in reducing outliers. 

 

In order to evaluate each parameter and get a clearer view of their variance, the following 

histograms were created. These histograms show the relative frequency of different values of 

each parameter. 
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Figure 7: Histograms of relative frequency of raw data parameters 

It is noticeable that all parameters have more null values than expected. Also, due to the amount 

of collected data through the 22-month period, it is difficult to make assumptions for the 

parameter relationships. Therefore, it would be better if the filtering of the data was initiated at 

first. 

 

Finally, due to sensor malfunctions, it was deemed necessary to use the data from the noon 

reports as well. Hence, a new dataset was created which contained both data from noon reports 

and telemetry data. The merged dataset can be obtained in the following plots: 
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Figure 8: Time series plots representing the merged dataset's basic parameters. 
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Figure 9: Histograms representing the basic parameters of the merged Dataset. 

 

To complete the profiling of the final merged data set, it is crucial to present the parameters 

that were created due to deleting several parameters as well as the merge of the two data sets. 

Hence, the following table was created: 

 
Parameters 

Speed Over Ground (SOG) [knots] 

Speed Through Water (STW) [knots] 

Propeller Shaft Power (PSP) [kW] 

ME Revolutions per Minute [rpm] 

ME Loading percent [%] 

Fuel Index Position [n/a] 

Vessel Heading [deg] 

Relative Wind Direction [deg] 

Relative Wind Speed [m/sec] 

Fuel Oil Temperature (ME return) [oC] 

Fuel Oil Temperature (ME supply) [oC] 

Shaft Torque [kNm] 

Shaft Thrust [kN] 

M/E Shaft Revolutions [rpm] 

Ballast Condition 

Cargo Carried [tn] 
Fuel-LCV [kJ/kg] 

Fore Draft [m] 

Mid Draft [m] 

Aft Draft [m] 

Heading 

Air Temperature 

Sea Temperature 

Sea Height 

Swell 

Swell Height 

Wind Force 

Trim 
Table 3: Parameters of the merged data set. 
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3.2 Data Filtering 
 

3.2.1 Threshold Values 

3.2.1.1 Speed 

 

One of the most important operating parameters, if not the most important, is the ship's speed 

which is described by the Speed through water (STW) and Speed over ground (SOG) 

parameters. Its monitoring is essential to the shipowner as it is highly correlated with the ship’s 

fuel consumption. Additionally, speed is tracked through sensors that compute the absolute 

values of the aforementioned parameters, hence both parameters should have only positive 

values. Lastly, low water speed readings are also related to a ship's approach to, operation 

within, or departure from a port. Some situations are not covered by this study since there is 

either no fuel oil usage or very little. Therefore, the following threshold values were applied to 

exclude points associated with sensor failure as well as port operation: 

 
• 𝑺𝑻𝑾 >  𝟗 (𝒌𝒏) 

 

3.2.1.2 ME Revolutions per Minute (ME RPM) 

 

The ME revolutions are highly correlated to the Propeller Shaft Power parameter since both of 

them are connected to the engine. Similarly, to the Vessel’s Speed Through Water parameter, 

low ME revolutions as well as Shaft Power values, reflect the vessel’s operation inside port 

terminals. Hence, in order to exclude points associated with the port operation the following 

threshold values were applied: 

 

• 𝑴𝑬 𝑹𝑷𝑴 >  𝟓𝟎 (𝒓𝒑𝒎) 

• 𝑷𝑺𝑷 > 𝟑𝟎𝟎𝟎 (𝒌𝑾) 

The following plots (Figure 10) reflect the application of the abovementioned filters (Speed, 

ME RPM & PSP): 
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Figure 10: Plots reflecting the application of the threshold values. 
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3.3 Data Cleaning 

 

3.3.1 Null Values 
 

As mentioned before the given data set has many values that need to be excluded from the 

model development. At this phase, any discrepancies, mistakes, or missing numbers are 

cleaned up and processed out of the data. This calls for addressing outliers, coping with missing 

data, and getting rid of duplicates. From Table 2 it was observed that some sensors were not 

working as they should, therefore it was concluded that values coming from these sensors 

should be eliminated. Hence, DTN AIR TEMPERATURE 10M ACTUAL (oC), DTN AIR 

PRESSURE MEAN SEA LEVEL ACTUAL (mbar), DTN SEA TEMPERATURE 0M ACTUAL 

(oC), DTN SIGNIFICANT WAVE HEIGHT (m), DTN MEAN WAVE DIRECTION (deg) and 

ME Fuel Oil Consumption (mt/day), Water Depth Relative to the Transducer_BRG_ECHO (m) 

parameters were excluded from the data set. Lastly, after the filtering of the values the 

remaining null values were the following: 

 

 

 

At this phase, it is needed to drop the zero values from our data set since they are likely to cause 

problems in the development of the predictive model. After this step we are left with the 

following data set: 

Table 4: Null values of filtered data. 

Parameter Missing Values 

TIME 0 

Speed Over Ground (knots) 22 

Speed Through Water (knots) 0 

Propeller Shaft Power (kW) 0 

ME Revolutions per Minute (rpm) 0 

ME Loading (%) 1492 

Fuel Index Position 54 

Vessel Heading (deg) 9 

Relative Wind Direction (deg) 12 

Relative Wind Speed (m/sec) 16 

FO Temperature at ME Return (Co) 4 

FO Temperature at ME Supply (Co) 4 

Shaft Torque (kNm) 4 

Shaft Thrust (kN) 1 

Ballast Condition 337 

Cargo carried (tons) 19 

Fuel LCV (kJ/kg) 1649 

Fwd Draft (m) 0 

Mid Draft (m) 0 

Aft Draft (m) 0 

Heading 0 

Air Temperature 0 

Sea Temperature 0 

Sea Height 0 

Swell 0 

Swell Height 0 

Wind Force 0 

Trim 0 
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Figure 11: Plots of filtered data without null values. 
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3.4 Parameters correlation 
 

3.4.1 Pearson Correlation Coefficient 
 

Before detecting outliers, through a statistical outlier detection method, it is necessary to 

investigate the correlation between the dataset’s parameters. There are several ways to do that, 

although in data analysis the most popular is the Pearson Correlation Coefficient method. 

 
 

𝑟 =
∑( 𝑥𝑖 − �̅�)(𝑦𝑖 − 𝑦)

√∑( 𝑥𝑖 − �̅�)2 ∗ ∑(𝑦𝑖 − 𝑦)2
 

[3-1] 

 

 

Where, 
 

𝑟 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝑥𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 
�̅� = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 
𝑦𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 
�̅� = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

 
The status, direction, and strength of the association between the two variables are all 

determined using correlation analysis, a statistical technique that aids in explaining the 

relationship between variables. The determination of the Pearson Correlation Coefficient (r) is 

crucial for the analysis because the Pearson method is employed in correlation analysis. The 

range of the r coefficient is from -1 to +1. Positive correlation and negative correlation are 

denoted by plus and minus signs in front of the coefficient, respectively. One of the critical 

factors to consider is the measure of the connection between Propeller Shaft Power (PSP) and 

other inputs. This is because the correlation coefficient can help determine the relative 

significance or weight of various factors that affect the predicted PSP. The Error! Reference 

source not found. reveals that the vessel speed and shaft parameter indicators are strongly 

correlated with the propeller shaft power indicator. These inputs can be prioritized based on 

their correlation values.  
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Figure 12: Pearson Correlation heatmap. 

3.4.2 Parametric Plots 
 

Despite the parameter correlation calculated by the Pearson Correlation Coefficient method, 

having an initial estimation of the anticipated correlation between these parameters is crucial, 

drawing from the governing principles of the phenomena in which they are implicated. These 

laws of physics are described through the following mathematical equations: 

 

• Regarding the engine's operation: 

 

 𝑃𝑒𝑛 = 𝑄 ∙ 2𝜋 ∙ 𝑛𝑒𝑛 [3-2] 

 

Where, Pen is the engine’s power outcome (Break horsepower / BHP), Q is the 

crankshaft’s torque and nen are the revolutions per second of the engine. 

 

• The empirical Propeller Law:  

 

 𝑃𝑝𝑟𝑜𝑝 = 𝑐 ∙ 𝑉3 [3-3] 

 

The empirical propeller law is a relationship that describes the power consumed by a 

ship's propeller. It is an empirical equation derived from observations and experimental 
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data. The propeller law states that the power consumed by the propeller, denoted as 

Pprop, is proportional to the cube of the ship's speed, V. 

 

Alternatively, the propeller law can also be written in terms of the propeller revolutions, 

denoted as n, which are often proportional to the engine's revolutions. In this form, the 

equation becomes: 

 
 𝑃𝑝𝑟𝑜𝑝 = 𝑐 ∙ 𝑛3 [3-4] 

 

The constant c in both equations represents the efficiency and characteristics of the 

propeller system under specific operating conditions. 

 

The empirical propeller law provides valuable insights into the power requirements and 

performance characteristics of ship propellers. By understanding this relationship, ship 

designers and operators can make informed decisions regarding propeller selection, 

optimization, and overall vessel performance. 

 

• The Calm Water Resistance Coefficient: 

 

 
𝐶𝑇 =

𝑅

1
2 𝜌𝑆𝑉2

 

 

 

[3-5] 

 

Here, R represents the measured resistance force, ρ represents the density of the fluid, 

and S represents the wetted surface area. The water resistance refers to the force that 

must be overcome by the propeller's thrust in calm sea conditions to achieve the desired 

speed V. This is achieved when the propeller's effective power (Peff) is equal to V·R. 

 

To compare the laws of physics with the data captured, the following plots were created. In 

general, it is observed that they comply with the basic parametric plots provided by the 

aforementioned mathematical equations.  

 

 
Figure 13: Engine's Operation Equation visualization. 
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Figure 14: Empirical Propeller Law (STW Version) 

 
Figure 15: Empirical Propeller Law (RPM Version) 

After observing the empirical propeller law parametric plot (Figure 15: Empirical Propeller 

Law (RPM Version)), it became apparent that the merged dataset consisted of two distinct 

clusters. This distinction was expected as the vessel underwent maintenance during the 

recorded period. In particular, on 19/07/2021, a propeller repair was conducted, which 

significantly impacted all fundamental propulsion parameters. In order to visually analyse the 

variation in vessel performance efficiency, it became essential to partition the dataset into two 

portions: one representing data before the maintenance and the other after. 
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Figure 16: Visual observation of propeller repair effect on propulsion efficiency. 

Ultimately, Figure 16: Visual observation of propeller repair effect on propulsion efficiency. 

confirms our hypothesis of the cluster existence and show the effect of the propeller repair on 

the efficiency of the vessel’s performance. It is clear that after the repair the performance 

efficiency level has risen since both 
𝑃𝑆𝑃

𝑛3  and 
𝑇𝑅𝑄𝑀

𝑛
 ratios have decreased. 
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3.5 Outlier Detection 
 

Outlier detection is a critical step in data analysis as it serves multiple purposes. By identifying 

and handling outliers, we ensure the quality and integrity of the data, preventing errors that can 

arise from data collection or recording. Accurate analysis is achieved by mitigating the 

influence of outliers on statistical calculations and models, ensuring reliable and meaningful 

results. Outlier detection also enhances the robustness of algorithms and models by mitigating 

the disproportionate impact of extreme values. Additionally, outliers can offer valuable insights 

and patterns, contributing to a deeper understanding of the data and potential discoveries. 

Ultimately, outlier detection facilitates informed decision-making processes, enabling actions 

based on reliable and accurate information. 

 

Additionally, Outlier detection is connected to, yet separate from, noise removal and noise 

accommodation. While all three concepts address undesired noise in data, they have distinct 

objectives. Noise refers to irrelevant elements in the data that hinder analysis. Noise removal 

focuses on eliminating these unwanted components prior to analysis. On the other hand, noise 

accommodation aims to protect statistical model estimation from anomalous observations, 

effectively shielding the model from their influence. (Singh & Upadhyaya, 2012) 

 

To detect the outlying and noisy data, an alternative method was used which is mostly based 

on the Chauvenet’s criterion, a statistical method that identifies outliers through the following 

steps: 

 

1. Calculation of the mean value of the samples: 𝜇 =
1

𝛮
∑ 𝑑𝑖

𝑁
𝑖                [3-6] 

2. Calculate the standardized deviation: 𝑑𝑒𝑙𝑡𝑎𝑖 = |(𝑑𝑖 − 𝜇)|               [3-7] 

3. Calculation of the standard deviation of the samples: 𝜎 =  √
1

𝛮
∑ 𝑑𝑒𝑙𝑡𝑎𝑖

𝛮
𝑖               [3-8] 

4. Calculation of the probability for the occurrence of any value di: 𝑃(𝑑𝑖) = 𝑒𝑟𝑓𝑐(
𝑑𝑒𝑙𝑡𝑎𝑖

𝜎√2
)     [3-9] 

5. A sample is considered an outlier if the following inequality is fulfilled: 𝑃(𝑑𝑖) ∙ 𝑁 < 0.5 [3-10] 

(Rochim, 2016) 

 

 
(Statistical Rejection of “Bad” Data-Chauvenet’s Criterion, n.d.) 

Figure 17: Chauvenet's criterion 

Combining Chauvenet’s criterion along with the study of (P. Karagiannidis, 2019), the filtering 

procedure developed for the detection of outliers is described in the following steps: 
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1. Select a primary parameter X whose values are to be filtered. 

2. Split the primary parameter X in groups of values with range v. 

3. Select a secondary parameter Y which is highly correlated with the primary parameter 

X. 

4. For each group Gi of X, normalize Y with z-score normalization. 

5. Select an outlier threshold k, where k ∈ [2, 3.5]. 

6. For every respective value of Y in the Gi group, Yij , test if the following inequality is 

fulfilled: 

 |𝑌𝑖𝑗 |  ≤  𝑘  [3-11] 

 

7. If the inequality is not fulfilled, reject the data point. 

For the purpose of this study, the primary parameters X were selected to be the ME revolutions 

(ME RPM) which was split into groups of values with a range of 1 rpm, and SOG which was 

split into groups of values with a range of 0.5 knots, while the secondary parameters were 

chosen, according to Figure 12: Pearson Correlation heatmap., to be the Propeller Shaft Torque, 

the Propeller Shaft Power (PSP), and the Speed Through Water (STW). Finally, the threshold 

for all three parameters was set to k=2.5. To observe the outcome of the outlier filtering process, 

the following plots were created: 

 

3.5.1 Filter 1: Shaft Torque – RPM 
 

Primary Parameter RPM 

Secondary Parameter Shaft Torque 

k 2.5 

v (rpm) 

data points removed (%) 

1 

1.63 % 

 
Table 5: Filter 1 details 
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Figure 18: Plot visualization of statistical outliers of the propeller's shaft torque & ME revolutions. 

 

 

3.5.2 Filter 2: PSP – RPM 
 

Primary Parameter RPM 

Secondary Parameter PSP 

k 2.5 

v (rpm) 

data points removed (%) 

1 

0.65 % 

 
Table 6: Filter 2 details. 

 

 
 

Figure 19: Plot visualization of statistical outliers of the ME revolutions & PSP. 
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3.5.3 Filter 3: STW – RPM 
 

Primary Parameter RPM 

Secondary Parameter STW 

k 2.5 

v (rpm) 

data points removed (%) 

1 

2.04 % 

 
Table 7: Filter 3 details. 

 

 
 

Figure 20: Plot visualization of statistical outliers of the ME revolutions & Speed Through Water. 

3.5.4 Filter 4: STW – SOG 

 
Primary Parameter SOG 

Secondary Parameter STW 

k 2.5 

v (kn) 

data points removed (%) 

 

0.5 

2.16 % 

 
Table 8: Filter 4 details. 
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Figure 21: Plot visualization of statistical outliers of the Speed Over Ground & Speed Through Water. 

 

3.6 Data Smoothing 
 

Data smoothing is a methodology used in data analysis to reduce noise and detect underlying 

trends or patterns in data. The purpose of this technique is to create a more refined version of 

the original data set, by applying a mathematical algorithm or function. Some of the techniques 

employed in data smoothing include moving averages, exponential smoothing, and kernel 

smoothing. Moving averages utilize the computation of the average of neighboring data points, 

whereas exponential smoothing gives more weight to recent data points. In kernel smoothing, 

a specified kernel function is used to fit a curve to the data. Data smoothing can be useful in 

revealing trends and patterns that may not be immediately noticeable from the raw data. 

Furthermore, it can aid in eliminating noise or anomalies from a data set, thus simplifying 

analysis and interpretation. Nonetheless, applying data smoothing techniques should be made 

with extreme caution since they can sometimes obscure crucial data details or introduce 

artifacts or biases. 

 

In this study, a simple moving average smoothing method was used. A simple moving average 

(SMA) is an arithmetic moving average calculated by adding all the previous n values and then 

dividing that figure by the number of time periods in the calculation average. Since the data 

were recorded with a frequency of 1 minute, the period number of the values will define the 

time window that will be used. For the purpose of this study a 15-minute window was selected. 
 

 
𝑆𝑀𝐴 =

𝐴1 + 𝐴2 + ⋯ + 𝐴𝑛

𝑛
 

 

 

[3-12] 
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𝐴𝑛: 𝑇ℎ𝑒 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑛 

 

𝑛: 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 

 

To evaluate the effect of smoothing, the Speed-Through-Water parameter was plotted over a 

2000-sample period.  

 

 
Figure 22: Smoothed – Non-Smoothed data curve comparison (before repair Dataset) 

 
Figure 23:Smoothed – Non-Smoothed data curve comparison (after repair Dataset) 

From the above graphs, it is recognizable that the smoothed data curve, in both datasets, is far 

more stable.  
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3.7 Data Quality Check 
 

In data science, data quality checks are of utmost importance for reliable analysis, valid 

conclusions, and optimal model performance. The type of insights derived from predictive 

models along with their accuracy, heavily rely on high-quality data. By identifying and 

addressing issues such as missing values, outliers, inconsistencies, and inaccuracies through 

data quality checks, they ensure that the data used for analysis is reliable and trustworthy. 

Hence, it is essential to dedicate a chapter to the evaluation of the pre-processing procedure of 

the data. 

 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 1: 𝑅𝑎𝑤 𝑑𝑎𝑡𝑎 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑛𝑜𝑜𝑛 𝑎𝑛𝑑 𝑡𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦 𝑑𝑎𝑡𝑎. 
 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 2: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 1 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒𝑠. 
 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 2 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑛𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠. 
 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 4: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 3 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠. 
 

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 5: 𝐹𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 | 𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 4.  
 

 
Figure 24: Total points of each dataset. 

 

The quality of data is of major importance to data scientists since it impacts both the validity 

and the performance of machine learning predictive models and data science projects. To 

ensure that our data is of high-quality and reflect the physics and mathematical laws of ship 

propulsion, data quality checks were implemented by measuring statistical parameters and 

comparing the following plots. 
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Figure 25: Difference in Mean value between Dataset1 and Dataset5 

From Figure 25 it is easy to notice that the mean values of the raw dataset have changed 

significantly due to the data filtering. Although, it would be wiser to evaluate this change for 

every dataset and compare the influence of each pre-processing method. 

 

 
Figure 26: Effect of threshold filtering in the parameter's mean values. 

 
Figure 27: Effect of null values dropping in the parameter's mean values. 
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Figure 28: Effect of outlier’s detection on the parameter's mean values. 

 
Figure 29: Effect of data smoothing on the parameter's mean values. 

The difference between the raw and final dataset’s mean values arises mainly from the 

threshold values filtering procedure, while the next steps do not affect the dataset's values as 

much, but they succeed in maintaining a stable Dataset.  

 

Furthermore, poor-quality data can introduce biases, noise, or skewed representations, resulting 

in suboptimal model performance and inaccurate predictions. Data quality checks help identify 

and address these issues, improving the accuracy and robustness of the models. By ensuring 

that the data used to train and test the models is of high quality, data scientists can enhance the 

performance and reliability of their machine learning models. The following plots examine the 

differences between each dataset in time giving us the ability to evaluate the Final Dataset. 
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Figure 30: Plots in time visualizing the difference between the values of each dataset. 

In summary, data quality checks are vital for data scientists as they enable reliable analysis, 

ensure valid conclusions, and enhance model performance. By addressing issues such as 

missing values, outliers, inconsistencies, and inaccuracies, data scientists can work with 

reliable data, have confidence in their findings, and build accurate and robust models. 

Ultimately, data quality checks contribute to the overall success and effectiveness of data 

science projects. 



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel. 

Data pre-processing 

 

51 

3.8 Final Dataset 
 

After evaluating the quality of the data we’ve managed to create, it is essential to present the 

final Dataset which will lead us to accurate predictions and valid accusations. Hence, this 

chapter is to appraise the final dataset and observe its statistical characteristics.  

 

 
Table 9: Descriptive statistics for Final Dataset – before repair. 

 
Table 10:  Descriptive statistics for Final Dataset – after repair. 

 
Figure 31: Main features of the final data set – before repair. 
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Figure 32: Main features of the final data set – after repair. 
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Figure 33:Histograms & Time series plots for Final Dataset's important parameters. 
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Figure 34:Parametric plots of the Final Dataset (Before & After repair). 

Finally, based on the visualization of the final datasets plot and the statistical characteristics, it 

is observed that the propeller repair which happened during the captured period, had a 

significant influence on the vessel’s operation since after comparing Table 9 and Table 10 it 

was noticeable that the vessel achieved higher values of Speed through water while delivering 

approximately the same amount of shaft power. 
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4 Feature Engineering 
 

The action of choosing, modifying, and converting unprocessed data into features that can be 

applied in supervised learning is known as feature engineering. Feature engineering through 

the years has evolved to be a fundamental part of machine learning science, since it showed its 

ability to create and train better features to improve machine learning efficiency and expand 

into a wider variety of assignments.  

 

The accuracy and generalization performance of a machine learning model can be significantly 

influenced by the quality and relevance of the features used for training. Feature engineering 

is a technique utilized in machine learning that uses data to generate new variables that are not 

originally included in the training set. This approach can create fresh features for both 

supervised and unsupervised learning, aiming to revolutionize and accelerate data processing 

while improving the model’s accuracy. 

 

The process of feature engineering includes creating, transforming, extracting, and selecting 

variables, also known as features, aiming to build an accurate machine-learning algorithm. The 

following are the main processes involved in feature engineering: 

 

Feature Creation: The procedure of discovering the variables that are most important for the 

predictive model. It's a subjective procedure that depends on the developer’s creativity and 

expertise. To create new, more powerful derived features, existing features are joined using 

addition, subtraction, multiplication, and division. 

 

Transformations: To enhance the performance of a model, transformations require changing 

the predictor variables. Ensuring the model can handle a range of data, scaling variables to the 

same range to make the model easier to understand, increasing accuracy, and preventing 

computational errors by making sure all features are within the model's acceptable range are 

all examples of transformations made to improve the model’s performance. 

 

Feature Extraction: Extraction of features from raw data entails automatically creating new 

variables. Automatically condensing the volume of data into a more manageable collection for 

modeling is the purpose of this stage. Techniques for feature extraction include principal 

component analysis, edge detection algorithms, text analytics, and cluster analysis. 

 

Feature Selection: Feature selection algorithms examine, rank, and assess different features to 

determine which ones are necessary for the model and should be prioritized, which ones are 

redundant and should be removed, and which ones are unimportant and should be eliminated. 
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4.1 Feature Creation 
 

From the data set provided to perform this study, the values measured through various sensors, 

mentioned above, are used as the first group of features. Although, through the data 

preprocessing these parameters were evaluated and some of them were eliminated. Therefore, 

the group of features created by the final data set consists of the following parameters: 

 
Parameters 

Time 

Speed Over Ground (knots) 

Speed Through Water (knots) 

Propeller Shaft Power (kW) 

ME RPM (rpm) 

ME Loading percentage (%) 

Fuel Index Position 

Vessel Heading (deg) 

Relative Wind Direction (deg) 

Relative Wind Speed (m/sec) 

Fuel Oil Temperature ME Return TRQM 

Fuel Oil Temperature ME Supply TRQM 

Shaft Torque TRQM (kNm) 

Shaft Thrust (kN) 

ME Shaft RPM TRQM (rpm) 

Ballast Condition 

Cargo Carried (tons) 

Fuel LCV (kJ/kg) 

Fore Draft (m) 

Mid Draft (m) 

Aft Draft (m) 

Heading 

Air Temperature 

Sea Temperature 

Sea Height 

Swell 

Swell Height 

Wind Force 

Trim 

Table 11: Available parameters of final dataset after preprocessing. 
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4.2 Feature Extraction 
 

4.2.1 Wind Effect 
 

To be able to extract information about the wind effect on the vessel, it is required to transform 

the relative wind direction units from degrees to radians. After transforming the units of wind 

direction, the next step is to extract a wind effect feature through the Relative Wind Direction 

(rad) and Relative Wind Speed (m/sec) parameters. Hence, the following steps were followed: 

 

1. Apply the cosine function to the Relative Wind Direction (rad) feature, in order to 

normalize the data and constrain it from -1 to 1. 

2. Multiply the cosine of the Relative Wind Direction feature with the Relative Wind 

Speed (m/sec) to get the new feature that resembles the effect of wind forces on the 

vessel. (“Wind Effect”). 

 

 𝑊𝑖𝑛𝑑 𝐸𝑓𝑓𝑒𝑐𝑡 = cos(𝑅𝑒𝑙. 𝑊𝑖𝑛𝑑 𝐷𝑖𝑟. ) ∗ [𝑅𝑒𝑙. 𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑] [4-1] 

 

 

4.2.2 Currents 
 

Water currents refer to the movement of water in a particular direction. They can have a 

significant impact on the vessel’s performance since they can influence its speed and fuel 

consumption. Hence, it was deemed important to create a feature that describes the current 

speed of water. To do that, the Speed Through Water was subtracted from the Speed Over 

Ground.  
 

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑠 (𝑚 𝑠𝑒𝑐⁄ ) = 𝑆𝑂𝐺 − 𝑆𝑇𝑊 [4-2] 

 

4.2.3 Power Output 
 

To generate the parametric plots (Figure 34) the following parameters were generated which 

resemble the power output of the vessel’s engine. 

 
• 𝑄 ∗ 𝑛 =  Shaft Thrust (kN) ∗ ME RPM (rpm) ∗ 60      [4-3] 

• 𝑉3 = (𝑆𝑝𝑒𝑒𝑑 𝑇ℎ𝑟𝑜𝑢𝑔ℎ 𝑊𝑎𝑡𝑒𝑟 (𝑚 𝑠𝑒𝑐⁄ ))
3
      [4-4] 

• 𝑛3 = (𝑀𝐸 𝑅𝑃𝑀 (𝑟𝑝𝑚))
3
       [4-5] 

 

4.2.4 Days Since Repair (DSR) 
 

This feature was created as an indication of the propeller maintenance importance as well as 

an indicator of fouling. From the dataset before the repair, we can observe how as the days 

gone by the performance of the vessel decreases, while from the dataset after the repair it is 

possible to observe the effect of the maintenance. Hence the following feature was created: 
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 𝐷𝑆𝑅 = Date – Repair Date [4-6] 

Where Repair Date was set to be equal to 19/07/2021. 

 

4.2.5 Mean Draft 
 

The mean draft feature is created to replace the Fore and Aft Drafts and represent them as a 

unique value. 

 
 

𝑀𝑒𝑎𝑛 𝐷𝑟𝑎𝑓𝑡 =
𝐴𝑓𝑡 𝐷𝑟𝑎𝑓𝑡 + 𝐹𝑜𝑟𝑒 𝐷𝑟𝑎𝑓𝑡

2
 

 

 

[4-7] 

 

4.3 Feature Selection 
 

The performance of the prediction model depends on the selection of the features. Therefore, 

a broad search domain for selecting distinct features is used in this study to ensure that there is 

no overfitting problem while enhancing prediction performance. While the official group of 

parameters consists of 32 variables, the algorithms investigated in this study are easy to overfit 

due to their dimensionality, therefore it is necessary to remove intercorrelated and unnecessary 

variables which would not have any contribution to the improvement of the model’s 

performance. In order to determine which features are to be selected, Correlation analysis 

(Pearson coefficient) and Random Forest Regression model were used.  

 

4.3.1 Correlation Analysis 
 

To determine the correlation between the input variables and the output (PSP) a Pearson 

correlation matrix heatmap was created.  
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Figure 35: Pearson Correlation Coefficients values between input and output variables. 

Hence, for the reasons described in Feature Selection paragraph, the following variables were 

excluded from the input variables selection process.  

 

 
Highly Correlated Parameters 

ME Loading Percentage (%) 

Q*n 

Shaft Torque (kNm) 

Fuel Index Position 

ME RPM (rpm) 

n3 

Table 12: Highly correlated features, excluded from the input variables. 
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4.3.2 Random Forest regression classifier 
 

The Random Forest Regression is based on the decision tree regression method which is used 

on numerical data. Decision trees are constructed by multiple decision and leaf nodes according 

to the inputs and the outputs and are used in operations research, specifically in decision 

analysis, to help identify a strategy most likely to reach a goal.  

 

(Uyanık et al., 2020) 
Figure 36: Decision Tree Regression 

To achieve higher accuracy and stability in prediction, the random forest algorithm generates 

numerous decision trees and aggregates them, as illustrated in Figure 37. Since the decision is 

based on multiple trees, the results are discrete. The bagging technique is employed to create 

the random forest for this regression model. In this technique, new trees are constructed by 

repeatedly sampling from the dataset, and the random forest is generated from these trees. 

 

(Uyanık et al., 2020) 
 

Figure 37: Random Forest Regression 
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Additionally, since Currents describe the difference between the SOG and STW features we 

will select two out of the tree variables, as goes the same for the Drafts and the Trim. The 

importance of each feature was validated through the Random Forest Regression model, giving 

the following results: 

 
a/a Parameters’ Importance – Before repair Parameter’s Importance – After Repair 

1 Wind Effect Wind Effect 

2 Mean Draft Mean Draft 

3 Trim Trim 

4 Sea Height Sea Height 

5 Speed Through Water (knots) Speed Through Water (knots) 

6 Currents Currents 

7 Heading Heading 

8 Swell Height 

 

Swell Height 

 

9 DSR 

 

DSR 

 

10 

 

11 

Fuel Oil Temp. (ME Supply) 

 

Fuel Oil Temp. (ME Return) 

Fuel Oil Temp. (ME Supply) 

 

Fuel Oil Temp. (ME Return) 

 
Table 13: Variable's importance enumeration for before & after repair datasets. 

Additionally, through the Random Forest Regression Classifier, the Mean Squared Error 

(MSE) and R-squared values were calculated in regards to the number of inputs used to predict 

the PSP variable. To visualize the difference of these values compared with the number of 

inputs the following plots were created: 

 

 
Figure 38: MSE & R-Squared values compared with the number of inputs used for the predictive model. (before repair) 
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Figure 39:MSE & R-Squared values compared with the number of inputs used for the predictive model. (after repair) 

 

It is clear that for both datasets the most efficient number of variables used as inputs is 9, since 

the MSE drops significantly but after that it remains stable and doesn’t fluctuate. Hence, taking 

into account the importance calculated above (Table 13: Variable's importance enumeration 

for before & after repair datasets.), the final 9 variables used as inputs for the predictive models 

should be the following: 

 
a/a Parameters’ Importance – Before repair Parameter’s Importance – After Repair 

1 Wind Effect Wind Effect 

2 Mean Draft Mean Draft 

3 Trim Trim 

4 Sea Height Sea Height 

5 Speed Through Water (knots) Speed Through Water (knots) 

6 Currents Currents 

7 Heading Heading 

8 

 

9 

Swell Height 

 

DSR 

Swell Height 

 

DSR 

 
Table 14: Final parameters that will be used as inputs in the predictive models. 



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel. 

Feature Engineering 

 

63 

  
Figure 40: Model's input histograms (Final data) - before & after 
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5 Artificial Neural Networks 
 

Deep learning methods are based on neural networks, also referred to as artificial neural 

networks (ANNs) or simulated neural networks (SNNs), which are a subset of machine 

learning. As Grossi & Buscema, (2008) mentioned, their generation was inspired by the 

structure and operation of the biological nervous system which consists of more than 10 billion 

neurons that interact with each other with more than 60 trillion connections. This structure 

provides the brain with the ability to process stimuli and shape rules through "experience". 

Hence as with the brain, all these layers of interconnected nodes (neurons) make up ANNs, 

which process information and are able to make decisions based on input data.  

 

Artificial neural networks (ANNs) consist of interconnected nodes that form layers.  A basic 

structure of an ANN consists of an input layer, one or more hidden layers, and an output layer. 

These nodes, or artificial neurons, are enabled through their own thresholds and associated 

weights. Specifically, if the output of a neuron is higher than the threshold value, it will activate 

and send data to the next layer of the network. Conversely, if the output is lower than the 

threshold value, no data will be transmitted. 

 

Additionally, Grossi & Buscema, (2008) state that as the basic building block of ANNs is the 

artificial neuron, receiving multiple inputs but generating a single output. To activate the 

artificial neuron, each input is multiplied by its corresponding synaptic weight, and the sum of 

the products is then passed through the neuron's activation function to determine the output. 

As mentioned previously, ANNs contain many interconnected artificial neurons, which are 

organized into layers. One of the most important, or the most important, layer is the first layer 

also known as the input layer, due to the fact that is comprised by the selected input variables 

or features of the model. The second layer is the first hidden layer, whose neurons receive 

inputs from the first layer and output to the next layer. This process is repeated for each 

subsequent hidden layer until the last layer, whose output is the final output of the network. 

Although ANNs require training data to improve their accuracy, once the optimization of the 

learning algorithms is set, they can be powerful tools for classifying and clustering data at high 

speeds in computer science and artificial intelligence. 

 

 
 

Figure 41: Basic Structure of ANNs (IBM, n.d.) 
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5.1 Basic hyperparameters of an ANN model 
 

Hyperparameters are of major importance when designing an ANN model. The appropriate 

selection of the model’s hyperparameters influence the performance of an artificial neural 

network (ANN), since they affect the settings that determine how the model learns from the 

input data. Moreover, the correct selection of hyperparameters could improve the model’s 

accuracy, training convergence, and robustness as well as prevent the model’s overfitting. 

Hence, it is important to select the best hyperparameters, to achieve the best possible 

performance. Some of the most important hyperparameters will be analyzed in the following 

paragraphs. 

 

5.1.1 Input Layers 
 

The initial layer of an artificial neural network (ANN) is called the input layer, and it serves to 

take in the input data. The dimensionality of the input data determines the number of neurons 

in the input layer. Each neuron in the input layer represents a specific feature of the input data, 

with the values of these neurons being determined by the corresponding features in the input 

data. For example, in the case of image data, each neuron in the input layer corresponds to a 

single pixel in the image. While the input layer doesn't perform any computations or 

manipulations on the input data, it plays a crucial role in transmitting the input data to the next 

layer of the network, which is typically a hidden layer. Finally, for the scope of this study, the 

input layers are set to be the features of the final data set, after the processing of the raw data. 

 

5.1.2 Hidden Layers 
 

The depth and complexity of an artificial neural network (ANN) model, as stated by (Dastres 

& Soori, 2021), is largely determined by the number of hidden layers, which is a 

hyperparameter. However, the optimal number of hidden layers can vary depending on the 

complexity of the input data and the problem being solved. For simple problems, a single 

hidden layer may suffice, while more complex problems may require multiple hidden layers. 

However, increasing the number of hidden layers does not always guarantee better 

performance, and in some cases, it can lead to overfitting. 

 

The best number of hidden layers and neurons in each layer is typically determined through 

experimentation and fine-tuning. A common approach is to start with a small number of hidden 

layers and gradually increase their number until the desired level of performance is achieved. 

Balancing the complexity of the model with its generalization capabilities is essential to avoid 

overfitting and ensure that the model can perform well on new and unseen data. 

 

5.1.3 Output Layer 
 

The output layer is the last layer of an artificial neural network (ANN) model that produces the 

model's output. The number of neurons in this layer is determined by the nature of the problem 

being solved, such as binary classification, multi-class classification, or regression. To make 

the output values interpretable and usable, an activation function is typically applied to the 

output of the output layer. This function can vary depending on the type of problem being 

solved, and some commonly used activation functions include sigmoid, softmax, and linear 
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functions. In summary, the output layer is a crucial component of an ANN model that produces 

the final output. The number of neurons in this layer is chosen based on the problem being 

solved, and an activation function is applied to normalize the output values. 

 

5.1.4 Activation Functions 
 

Activation functions play a vital role in artificial neural networks (ANNs) as they introduce 

non-linearity in the output of individual neurons or nodes. Non-linearity is essential for ANNs 

to model complex relationships between inputs and outputs. According to (Sharma et al., 2020), 

there are various activation functions that can be employed in ANNs, with some of the most 

widely used being the sigmoid, ReLU, tanh, and softmax functions.  

 

The sigmoid function maps input values to a range between 0 and 1 and is typically utilized 

in binary classification problems to interpret the output as a probability. In artificial neural 

networks (ANNs), a neuron's activation is determined by the output of a sigmoid function, 

which can then be used to make decisions or passed on to the next layer of neurons. The 

sigmoid function's non-linear properties allow ANNs to model intricate relationships between 

input and output variables. However, the sigmoid function's output can become saturated, 

leading to insensitivity to input changes for very large or small inputs. This limitation can result 

in vanishing gradients, making it challenging to train deep neural networks. To address this 

issue, alternative activation functions, such as ReLU and its variations, have been developed. 

 

 
Figure 42: Simgoid activation function presentation. (Xiang et al., 2022) 

 

The Rectified Linear Unit (ReLU) function is an activation function utilized in artificial 

neural networks (ANNs) to introduce non-linearity into the model. Its popularity stems from 

its simplicity, computational efficiency, and efficacy in deep neural networks. The ReLU 

function returns the input if it is positive, and 0 if it is negative. This enables faster and more 

efficient training of deep neural networks by reducing the vanishing gradient problem that can 

arise with other activation functions like the sigmoid function. The non-linear nature of the 

ReLU function allows ANNs to model complex relationships between input and output 

variables. However, the ReLU function is susceptible to the "dying ReLU" problem, which 

occurs when the input is negative, resulting in an output of 0 and a gradient of 0, thereby 

causing the neuron to no longer contribute to the learning process. This problem can be resolved 

by using variations of the ReLU function, such as the Leaky ReLU or the ELU, which have 

different approaches to handle negative inputs. 
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Figure 43: ReLU activation function variations presentations. (León et al., 2020) 

 

The tanh function maps input values to a range between -1 and 1 and is similar to the sigmoid 

function but centered at 0. By using this activation function, negative inputs are strongly 

mapped as negative, and zero inputs are mapped close to zero, which is an advantage.  

 
Figure 44: Sigmoid vs. tanh activation functions graphs. (Mukesh Chaudhary, 2020) 

 

The softmax function is commonly used as the final activation function in ANNs that address 

multi-class classification problems as it maps each neuron's output to a probability distribution 

over possible output classes. The softmax formula is the following: 

 
 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝐾
𝑗=1

 
 

[5-1] 
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Where: 
• 𝑧: 𝑇ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

• 𝑧𝑖: 𝑇ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

• 𝐾: 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖 − 𝑐𝑙𝑎𝑠𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 

 

Other activation functions, such as the Gaussian, linear, and exponential functions, are less 

widely used but have some applications. The selection of an activation function depends on the 

specific problem and network architecture. In general, it is crucial to choose an activation 

function that is computationally efficient, produces desirable outcomes, and avoids issues like 

vanishing gradients or exploding gradients. 

 

5.1.5 Loss Functions 
 

The loss function in an Artificial Neural Network (ANN) model is responsible for evaluating 

the discrepancy between the predicted output and the actual output for a given input. The 

primary objective of the ANN is to minimize this loss function by modifying the network's 

weights and biases during the training process. The loss function, as stated by (Vishal Yathish, 

2022) plays a crucial role in the training of the ANN model as it determines the performance 

and the rate at which the model can reach a solution. To be effective, a suitable loss function 

should be capable of detecting slight changes in the predicted output, easy to optimize, and 

appropriate for the particular problem being addressed. The most common Loss Functions are 

considered to be the following: 

 

Mean Squared Error (MSE) 

 

The Mean Squared Error (MSE) is a widely used loss function in an Artificial Neural 

Network (ANN) for regression tasks involving a continuous output variable. It calculates the 

mean of the squared difference between the predicted output and the actual output for a given 

input. The MSE formula is expressed as: 

 
 

𝑀𝑆𝐸 =  (
1

𝑛
)  ∗  𝛴(𝑦𝑖  −  ŷ𝑖)² 

 

 

[5-2] 

 

Where: 

• 𝑛: 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 

• 𝑦𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 

• ŷ𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 

 

During the training phase of the ANN, the network's weights and biases are modified to 

minimize the MSE loss function. Lower MSE values indicate improved performance of the 

ANN as it signifies a closer match between the predicted and actual outputs. However, One 

drawback of this loss function is that it can be highly affected by outliers, meaning that data 

points with extreme values can have a disproportionate impact on the value of the loss function. 
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Root Mean Squared Error (RMSE) 

 

The RMSE is a widely used loss function in Artificial Neural Networks (ANN) for regression 

tasks, similar to the MSE. However, the primary distinction between RMSE and MSE is that 

RMSE involves taking the square root of the mean of the squared differences between the 

predicted and actual outputs, resulting in an interpretable metric in the same units as the target 

variable. The RMSE formula is expressed as: 

 
 

𝑅𝑀𝑆𝐸 =  √((
1

𝑛
)  ∗  𝛴(𝑦𝑖  −  ŷ𝑖)2) 

 

 

[5-3] 

 

Where: 

• 𝑛: 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 

• 𝑦𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 

• ŷ𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒. 

 

Mean Absolute Error (MAE) 

 

Similar to MSE and RMSE, the Mean Absolute Error (MAE) is a loss function used to quantify 

the difference between the predicted output and the actual output for a given input in an 

Artificial Neural Network (ANN). However, unlike MSE and RMSE, which use the squared 

differences between the predicted and actual outputs, MAE uses the absolute difference. To 

calculate the MAE, we take the average of the absolute differences between the predicted and 

actual outputs for all samples in the dataset. The formula for MAE is as follows: 

 
 

𝑀𝐴𝐸 =  (
1

𝑛
) ∗  𝛴|𝑦𝑖  −  ŷ𝑖| 

 

 

[5-4] 

 

Lastly, the MAE is less sensitive to outliers than MSE, as it does not involve squaring the 

differences between the predicted and actual outputs. Additionally, it is more interpretable than 

MSE and RMSE since it is expressed in the same units as the target variable.  

 

5.1.6 Model Regularization Methods 
 

Regularization in Neural Networks is a set of techniques which are made to prevent the model 

from overfitting and improve the generalization of the model. Overfitting is a phenomenon that 

follows when the training procedure makes the model to learn the training data too well and 

lacks the ability to perform well on the unseen data. Regularization helps the model tackle this 

problem by setting additional constraints to the model during the training procedure. The most 

common regularization methods, according to (Nusrat & Jang, 2018) are described below: 

 

L1 & L2 Regularization (L1/L2): These methods are also known as Weight Decay and they 

are entitled to adding penalty terms to the loss function of the model. This results into 

discouraging the generation of large weights in the network. Specifically, L1 regularization or 

Lasso Regularization sets the penalty to the sum of the absolute values of weights multiplied 

by the tuning parameter, which represents the regularization strength. Additionally, L2 
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regularization or Ridge Regularization sets the penalty equal to the sum of the squared values 

of weights multiplied by the tuning parameter. 

 

Dropout Regularization: This method can randomly deactivate a merit of the input values 

during each training step. Hence, it prevents the network from depending entirely on a specific 

input variable and promotes learning from a all the features. 

 

5.2 Model Design 
 

Keeping in mind all the available options for hyperparameters explained in the previous section 

(5.1Basic hyperparameters of an ANN model) the next step is to decide which of them will be 

used for building the best possible ANN prediction model with the given dataset and inputs.  

 

5.2.1 Data Normalization 
 

In order to be able to make the most out of the final given data it is important to normalize the 

data. This procedure will ensure that all input features are equally evaluated. This will prevent 

the domination of input values on the model’s learning process, and at the same time avoid bias 

towards features with larger values. Additionally, data normalization supports the stabilization 

of the model’s learning procedure by avoiding large fluctuations in the model’s weights and 

biases, known as backpropagation. Finally, the data normalization serves as a generalization of 

data which, in addition to the aforementioned advantages, the model will improve its 

performance giving better results. For the normalization of data, the min-max method was used, 

in every input. 

 
 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋 − 𝑋min  

𝑋max  − 𝑋min  
 

 

 

[5-5] 

 

Where,  

𝑋min  : 𝑇ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋. 
𝑋max  : 𝑇ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋. 

 

5.2.2 Data Shuffling 
 

Shuffling the data is critical to prevent from results that came through biased train and test sets, 

which correspond to a specific time frame of the vessel’s operation that do not represent the 

overall data distribution. Additionally, through shuffling we accomplish the elimination of 

patterns or trends, allowing a more efficient way of the model’s generalization and learning 

procedures. In general data shuffling ensures that the model will learn and make predictions 

based on a more representative sample of data, enhancing its performance and accomplishing 

more reliable results. 

 

5.2.3 Data Split 
 

In order for a Neural Network to be able to provide predictions about its variables, the dataset 

must be divided into separate subsets for training, validation, and testing purposes. The most 

popular split is between a training set and a test set. For the purpose of this study, we divided 
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the dataset into a subset for training and another for testing, following a split ratio of 64% 

training, 16% validation, and 20% testing.  

 

 
Figure 45: Data split between Training & Test sets. 

5.2.4 Tuning the models hyperparameters 
 

To decide which parameters should be used in the predictive model required a many tries and 

a lot of work. Each parameter was selected by experimenting with the model while changing 

the parameters and observing the impact that they had on the model’s accuracy. That accuracy 

was calculated through the loss function which was set to be the MSE loss function (5.1.5 Loss 

Functions). Hence, the basic method followed was the following: 

 

 

 
Figure 46: Trial-Error procedure diagram. 

 

Being inspired by the Trial-Error procedure strategy many trials were executed to find the 

hyperparameters’ consistency of the prediction model. Specifically, hidden layers were added 

to the model one by one, until the loss function (MSE) was seeing no improvement. Similarly, 

units were added to each layer until the error stabilized. The reason behind that strategy was to 

make sure that the predictive model would have the best accuracy possible while being as little 

as possible complicated.  

 

Regarding the batch size and the number of epochs, they were found to be of major importance 

to the model’s accuracy. The number of epochs defines the number of times that the training 

set will run through the model in order to get the information needed for the model to be best 

Data Split

Training Set Testing Set Validation Set
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trained. Hence, increasing the number of epochs could eventually increase the model’s 

accuracy, since it would be better trained. On the other hand, adding many epochs in the model 

could result in overfitting, where the model becomes too specialized to the training data and 

performs poorly to the unseen data.  

 

As far as the batch size is concerned, it describes the number of samples that a predictive model 

processes before the model’s parameters are updated through each training repetition and 

impacts the model’s convergence and generalization. Having a larger batch size can provide 

more stable and smoother updates on the parameters of the model. Although, using larger batch 

sizes takes up more memory which may result in slower training processes, while also they 

could result in the model converging to a suboptimal solution.  

 

Furthermore, regarding the activation functions, following the same plan as before all of the 

available functions, as mentioned in 5.1.4 Activation Functions, were examined and the most 

promising one was selected.  

 

To implement all these trials and to visualize their influence on the model’s performance, a 

loss function plot was created, where each parameter was set to different values while the others 

remained the same. Hence, it was easier to understand how each hyperparameter performs, in 

terms of decreasing the loss function’s values, as well as the duration of the training procedure. 

These Trial-Error procedures were applied on a Neural Network that receives the Dataset 

before the propeller repair as an input. Although, due to the similar nature of both Datasets, 

both Neural Networks will have the same hyperparameters which will be determined in the 

following paragraphs. 

 

5.2.4.1 Before-Repair Model 

 

Activation Function 

 

In order to select the most suitable activation function for the model, it is important to look into 

the input dataset values. As presented in Figure 40: Model's input histograms (Final data) - 

before & after, the given Dataset which will function as the input values of the prediction 

model, doesn’t contain negative values and this will be a decisive parameter for the selection 

of the activation function. As per Activation Functions paragraph, the most common 

activation function in machine learning is the ReLU function. Additionally, it was mentioned 

that it is prone to the ‘’Dying ReLU’’ problem when the input dataset contains negative values. 

Although, since our Dataset has been normalized into positive values, this shouldn’t influence 

our decision and hence we will use “ReLU” activation function. Finally, a basic model will be 

introduced in Table 15 which will be used as a basis to determine the other hyperparameters: 

 
Basic Model 

Activation Function ReLU 

Hidden Layers 2 

Units per Hidden Layer 64 

Weights Initializer Random 

Optimizer Adam 

Epochs 50 

Error Function MSE 
Table 15: Basic Model's Hyperparameters for the activation function selection. 
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Hidden Layers 

 

According to the Trial-Error procedure, 7 models were created with each one of them having 

the same characteristics except for the number of hidden layers. Hence, through the learning 

curves of each model, we will be able to find the most suitable number of hidden layers for the 

ANN. The structure of the main model’s hyperparameters is presented in the following table: 

 
Basic Model 

Activation Function ReLU 

Units per Hidden Layer 64 

Weights Initializer Random 

Optimizer Adam 

Epochs 50 

Error Function MSE 
Table 16: Basic model's hyperparameters for the number of hidden layers selection. 

Models No. of Hidden Layers 

Model 1 2 

Model 2 3 

Model 3 4 

Model 4 5 

Model 5 6 

Model 6 7 

Model 7 8 

 

 
Figure 47: MSE & R2 values fluctuation in correspondence to the number of hidden layers of given model. 

Through the observation of the MSE & R-squared curves shown in Figure 47, we can notice 

that by increasing the number of hidden layers we manage to decrease the MSE error function 

values. Although, after Model 5 the decrease of the MSE values are insignificant and hence in 

order to keep our ANN model as simple as possible it seems better to choose the Model’s 5 

number of hidden layers which is 6. 
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Number of Epochs & Batch size 

 

Keeping the hyperparameters as selected above, there are several models created with different 

numbers of epochs and batch sizes to find the best combination for the final ANN prediction 

model. Hence, the following models were examined through their learning curves. 

 
Basic Model 

Hidden Layers 6 

Units per Hidden Layer 64 

Activation Function ReLU 

Weights Initializer Random 

Optimizer Adam 

Error Function MSE 

 

 
Figure 48: Effect of Epochs and Batch Size on models' MSE scores. 

Based on the heatmaps above, the best-performing model seems to be the one with the 110 and 

64 numbers of epochs and batch sizing respectively.  

 

Number of units per hidden layer 

 

In addition to the epochs and batch size numbers, the number of units inside each layer of the 

Network plays an important role in the model’s performance and accuracy. To find the most 

suitable number of units per hidden layer, the Trial-Error procedure was followed for models 

whose number of units differed. Although, every model used the abovementioned 

hyperparameters as a basis. Hence, the following models were tested: 

 
 Model 1 Model 2 Model 3 Model 4 

Hidden Layers 6 6 6 6 

Units per Hidden Layer 32 64 128 256 
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Epochs 110 110 110 110 

Batch Size 64 64 64 64 

Activation Function ReLU ReLU ReLU ReLU 

Weights Initializer Random Random Random Random 

Optimizer Adam Adam Adam Adam 

Error Function MSE MSE MSE MSE 

 

 
Figure 49: Effect of Units per Hidden Layer on models' MSE Score. 

It is clear that based on Figure 49 the most efficient model is the one with 128 units per hidden 

layer. Although, after validating the model it was concluded that using that many units made 

the model to be unstable, hence the selected number was 64. 

 

Model Normalization 

 

To prevent the model from overfitting, selecting a method to normalize the weights and biases 

of the Neural Network is crucial. In order to select the most suitable method for the model, the 

Trial-Error procedure will be used once more. The following models are to be compared: 

 
 Model 1 Model 2 

Hidden Layers 6 6 

Units per Hidden Layer 64 64 

Epochs 110 110 

Batch Size 64 64 

Activation Function ReLU ReLU 

Weights Initializer Random Random 

Optimizer Adam Adam 

Error Function MSE MSE 

Regularization L1 (0.001) L2 (0.001) 
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Figure 50: Learning curves of L1 & L2 regularized models. 

 

Figure 50 illustrates the model’s learning curves. The blue and orange curves represent the 

training and validation losses respectively during the training procedure of the model, 

calculated at the end of each epoch. Even though the L1 regularization method provides a more 

stable learning curve, the L2 method achieves better performance with a lower MSE score. 

Hence, since the model does not overfit, the L2 regularization method seems better for this 

study’s model. 

 

5.2.4.2 After-Repair Model 

 

By following the same strategy of parameter evaluation, to the dataset after repair, the tuning 

of its hyperparameters was established. Hence, the final model used to predict the PSP feature 

of the dataset after the propeller repair is the following: 

 
 Final Model – After Repair 

Hidden Layers 5 

Units per Hidden Layer 64 

Epochs 110 

Batch Size 64 

Activation Function ReLU 

Weights Initializer Random 

Optimizer Adam 

Error Function MSE 

Regularization L2 (0.001) 

 

 

 

 

 

 

 

 

 

5.2.5 Model Training & Validation 
 

5.2.5.1 Before-Repair Model 
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After the evaluation of each hyperparameter of the predictive model, the final model that will 

provide us with the wanted predicted values of the Propeller’s Shaft Power is the following: 

 
 Final Model – Before Repair 

Hidden Layers 6 

Units per Hidden Layer 64 

Epochs 110 

Batch Size 64 

Activation Function ReLU 

Weights Initializer Random 

Optimizer Adam 

Error Function MSE 

Regularization L2 (0.001) 
Table 17: Final Model's hyperparameters. 

 
Figure 51: Final ANN model's learning curve. 

As stated in Model Normalization chapter, and specifically in Figure 51, the final model’s 

learning curve indicates a nearly linear behavior which decreases by the increase of epochs and 

eventually stops at MSE = 0.0094. Furthermore, the learning curve gives information about the 

model’s fitting and shows that training loss is slightly less than the validation which proves 

that is a good fit. These features are a clear indication of the performance of the final ANN 

model which seems to be more than satisfactory.  

 

 

 

5.2.5.2 After-Repair Model 

 
 Final Model – After Repair 

Hidden Layers 5 

Units per Hidden Layer 64 

Epochs 110 

Batch Size 64 

Activation Function ReLU 
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Weights Initializer Random 

Optimizer Adam 

Error Function MSE 

Regularization L2 (0.001) 

 

 
Although the model seems a bit unstable, it manages to reach a low MSE value, equal to 0.0082, 

which will result in better model performance. The low stability of the model should be 

encountered by better data quality which would be possible if all continuous monitor sensors 

of the vessel worked properly. 

 

5.2.6 Model Testing & Evaluation 
 

After the tuning and the training of the model, using the Testing and Validation Datasets, it is 

important to test and evaluate the model’s performance on a completely new and unknown 

dataset. This procedure will assess the trained model’s performance and generalization 

capability along with its ability to handle unfamiliar data. Hence, this paragraph is determined 

to provide insights into the strengths and weaknesses of each model by presenting some 

statistical values along with the trajectories and the fitting of the model. 

 

 

 

5.2.6.1 Dataset Before-Repair 

 
 MSE 

(kW)2 

RMSE 

(kW) 

R2 

 

Testing Dataset - Before 

 

10152.4 

 

100.8 

 

 

0.979 

Table 18: Statistical values of Model Before Repair. 
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Figure 52: ANN Model Before-Repair: Measured vs. Predicted values. 

 

 
Figure 53: Trajectories of measured and predicted PSP values (Model Before Repair). 

 

 

 

5.2.6.2 Dataset After-Repair 

 
 MSE 

(kW)2 

RMSE 

(kW) 

R2 

 

Testing Dataset - After 

 

11125.8 

 

105.5 

 

 

0.989 

Table 19: Statistical values of Model After Repair. 
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Figure 54: ANN Model After-Repair: Measured vs. Predicted values. 

 
Figure 55: Trajectories of Measured and Predicted PSP values (Model After Repair). 

Both models have reached the highest accuracy scores possible given the fact that the provided 

data did not have the best quality. However, from Figure 52Figure 53,Figure 54, andFigure 55 

it is observed that in spite of 0.979 and 0.989 R2 scores, both models react surprisingly well to 

unknown data, providing good performance. 
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6 Fouling Analysis 
 

Marine fouling has become important to shipping companies since it affects the performance 

of the vessel significantly. As stated in 1.1.1 Vessel marine fouling there are several factors 

affecting it but one that does not depend neither on the vessel’s characteristics or performance 

nor on the sea’s and weather conditions is the number of days that have passed since the last 

cleaning. Hence, taking advantage of the ANN predictive models that were created in Chapter 

5 in collaboration with the input feature of Days since Repair (DSR), it was possible to measure 

the impact of fouling in the performance deterioration of the vessel chronologically.  

 

To do that, predictions based on synthetic test sets were made given in Table 20 & Table 21 

with increasing DSR. All parameters were held constant, and they corresponded to the scantling 

draught condition which as per Figure 40: Model's input histograms (Final data) - before & 

after was the most common condition. Furthermore, predictions were made for a range of 

speeds through water between 9 to 16.5 knots to create power-speed curves which would assist 

us in comparing the performance of the vessel for different fouling conditions. To produce the 

power-speed curves, a cubic fit was applied to the predicted points since these curves would 

represent both the resulting predicted values trend as well as the empirical propeller law. The 

chosen model was the one created with data after the propeller repair which achieved better 

performance and accuracy scores. Such fouling analysis was applied for several weather and 

loading conditions and will be analyzed in the following subchapters. 
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6.1 Fouling analysis results 
 

6.1.1 Scantling Loading Condition datasets 
 

Prediction Set – Fouling Analysis 

Speed Through Water (knots) 9 ≤ 𝑉𝑠 ≤ 16.5 

Draft (m) 14.43 

Trim (m) -0.02 

Currents 0 

Sea Height 1.2 

Wind Effect 2 

Heading 200 

Swell Height 1 
Table 20: Synthetic dataset for fouling analysis prediction at scantling condition with calm weather. 

 

 
Figure 56: Speed-power curves for 30 and 150 DSR (Scantling condition with calm weather). 
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Prediction Set – Fouling Analysis 

Speed Through Water (knots) 9 ≤ 𝑉𝑠 ≤ 16.5 

Draft (m) 14.43 

Trim (m) -0.02 

Currents 0 

Sea Height 2.5 

Wind Effect 10 

Heading 200 

Swell Height 1 
Table 21: Synthetic dataset for fouling analysis prediction at scantling condition with rough weather. 

 
Figure 57: Speed-power curves for 30 and 150 DSR (Scantling condition with rough weather). 
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6.1.2 Design Loading Condition datasets 
 

Prediction Set – Fouling Analysis 

Speed Through Water (knots) 9 ≤ 𝑉𝑠 ≤ 16.5 

Draft (m) 11.5 

Trim (m) -0.8 

Currents 0 

Sea Height 1.2 

Wind Effect 2 

Heading 200 

Swell Height 1 
Table 22: Synthetic dataset for fouling analysis prediction at design condition with calm weather. 

 

 
Figure 58: Speed-power curves for 30 and 150 DSR (Design condition with calm weather). 
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Prediction Set – Fouling Analysis 

Speed Through Water (knots) 9 ≤ 𝑉𝑠 ≤ 16.5 

Draft (m) 11.5 

Trim (m) -0.8 

Currents 0 

Sea Height 2.5 

Wind Effect 10 

Heading 200 

Swell Height 1 
Table 23: Synthetic dataset for fouling analysis prediction at design condition with rough weather. 

 

 
Figure 59: Speed-power curves for 30 and 150 DSR (Design condition with rough weather). 
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6.1.3 Ballast Loading Condition datasets 
 

Prediction Set – Fouling Analysis 

Speed Through Water (knots) 9 ≤ 𝑉𝑠 ≤ 16.5 

Draft (m) 8 

Trim (m) -2.2 

Currents 0 

Sea Height 1.2 

Wind Effect 2 

Heading 200 

Swell Height 1 
Table 24: Synthetic dataset for fouling analysis prediction at ballast condition with calm weather. 

 

 
Figure 60: Speed-power curves for 30 and 150 DSR (Ballast condition with calm weather). 

  

2500

3500

4500

5500

6500

7500

8500

9500

6 8 10 12 14 16 18

P
SP

 (
kW

)

Vs (knots)

PSP vs Vs - Ballast Condition (T=8m & Trim=-2.2)

30DSR 150DSR



Development of data-driven ANN model for the Propeller shaft power prediction & fouling analysis of vessel. 

Fouling Analysis 

 

87 

Prediction Set – Fouling Analysis 

Speed Through Water (knots) 9 ≤ 𝑉𝑠 ≤ 16.5 

Draft (m) 8 

Trim (m) -2.2 

Currents 0 

Sea Height 2.5 

Wind Effect 10 

Heading 200 

Swell Height 1 
Table 25: Synthetic dataset for fouling analysis prediction at ballast condition with rough weather. 

 

 
Figure 61: Speed-power curves for 30 and 150 DSR (Ballast condition with rough weather). 
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In every condition, it is noticed that the dataset which corresponds to 30 days since the repair 

has predicted lower PSP values for a specific range of speeds than the one corresponding to 

150 days since the repair. This indicates the effect of marine biofouling on the vessel’s hull and 

propeller’s performance. In addition to that, according to the power-speed curves, the model 

seems to adjust correctly to the weather conditions differentiations since it predicts higher PSP 

values for rough weather than calm weather in every loading condition. To be more precise the 

following table represents the performance deviation between the power-speed curves of the 

two datasets in each condition. 

 
 

Loading Condition 

 

 

Weather Condition 

 

Mean PSP [kW] 

 

Offset [kW] 

 

Offset (%) 

 

 

 

 

Scantling  

 

 

 

Calm  

 

30DSR: 5439.55 

 

150DSR: 5803.82 

 

 

 

364.3 

 

 

6.7 % 

 

 

Rough 

 

 

30DSR: 5681.5 

 

150DSR: 5988.5 

 

 

 

307.5 

 

 

5.4 % 

 

 

 

 

Design  

 

 

 

Calm 

 

 

30DSR: 5258.81 

 

150DSR: 5510.36 

 

 

 

251.6 

 

 

4.8 % 

 

 

Rough 

 

 

30DSR: 5620.24 

 

150DSR: 5814.72 

 

 

 

194.5 

 

 

3.5 % 

 

 

 

 

Ballast  

 

 

 

Calm 

 

30DSR: 4711.22 

 

150DSR: 4915.31 

 

 

 

204.1 

 

 

4.3 % 

 

 

Rough 

 

 

30DSR: 5167.39 

 

150DSR: 5335.25 

 

 

 

167.9 

 

 

3.2 % 

 

Table 26: Performance deviation between 30DSR and 150DSR datasets for each loading and weather condition. 

Calculating the performance deterioration in each condition lets the shipping companies 

evaluate the importance of the marine fouling effect on the vessel’s performance and make 

decisions on whether a vessel needs to undertake cleaning procedures. Thereby, through the 

calculation of the extra power needed for the vessel to reach its working speed, shipping 

companies are able to monitor the additional fuel costs that correspond to that additional power. 

Hence, they are given the opportunity to forecast the most financially efficient time to clean 
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their vessels which could eventually reduce their operational and fuel expenses and increase 

their profit. 

 

In order to calculate the additional fuel costs (AFC) per hour that a shipping company would 

be entitled to, the following formula was applied: 

 
 𝑨𝑭𝑪($/𝒅𝒂𝒚) = 𝑭. 𝑪.∗ 𝑺𝑭𝑶𝑪 ∗ 𝑶𝒇𝒇𝒔𝒆𝒕 

 

[6-1] 

Where: 

 
• F.C. = 595($/ton): Average Fuel Cost at the moment. 

• SFOC (g/kWh): Fuel Oil Consumption corresponding to the mean ME Loading values of each 

condition presented in Table 26, based on the Main Engine’s official shop tests results shown 

in Figure 62. 

• Offset (kW): Shaft power deviation between the 2 working conditions (30DSR vs 150DSR), 

presented in Table 26 ,and Figure 56, Figure 57, Figure 58, Figure 59, Figure 60, Figure 61 in 

regards to the loading condition. 

 

 
Figure 62: SFOC of vessel based on the ME Shop-Tests results. 
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Hence, the additional fuel cost for each weather and loading condition is presented below: 

 
 

Loading 

Condition 

 

 

Weather 

Condition 

 

ME Loading (%) 

[Mean STW] 

 

SFOC 

[Mean STW] 

 

Offset  

[kW] 

 

AFC ($/day) 

[Mean STW] 

 

 

 

Scantling  

 

 

Calm  

 

 

55% 

 

168.1 

 

364.3 

 

874 $/day 

 

Rough 

 

 

60% 

 

168.4 

 

307.5 

 

739 $/day 

 

 

Design  

 

 

Calm 

 

 

53% 

 

167.9 

 

251.6 

 

603 $/day 

 

Rough 

 

 

58% 

 

168.3 

 

194.5 

 

467 $/day 

 

 

Ballast  

 

 

Calm 

 

48% 

 

167.6 

 

204.1 

 

488 $/day 

 

Rough 

 

 

53% 

 

167.9 

 

167.9 

 

402 $/day 

Table 27: Additional Fuel Cost between 30DSR and 150DSR datasets for each loading and weather condition on a mean 

STW. 

 

 
 

Loading 

Condition 

 

 

Weather 

Condition 

 

ME Loading (%) 

[12kn] 

 

SFOC 

[12kn] 

 

Offset  

[kW] 

 

AFC ($/day) 

[12kn] 

 

 

Scantling  

 

 

Calm  

 

 

50% 

 

167.7 

 

372.3 

 

891 $/day 

 

Rough 

 

 

50% 

 

167.7 

 

457.5 

 

1,094 $/day 

 
 

Design  

 

 
Calm 

 

 
50% 

 
167.7 

 
302.6 

 
723 $/day 

 

Rough 

 

 

50% 

 

167.7 

 

232.5 

 

556 $/day 

 

 

Ballast  

 

 

Calm 

 

40% 

 

167 

 

102.1 

 

243 $/day 

 

Rough 

 

 

45% 

 

167.4 

 

35.9 

 

84 $/day 

Table 28: Additional Fuel Cost between 30DSR and 150DSR datasets for each loading and weather condition at 

STW=12knots. 
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Loading 

Condition 

 

 

Weather 

Condition 

 

ME Loading (%) 

[15kn] 

 

SFOC 

[15kn] 

 

Offset  

[kW] 

 

AFC($/day) 

[15kn] 

 

 

Scantling  

 

 

Calm  

 

 

70% 

 

169.1 

 

401.3 

 

968 $/day 

 

Rough 

 

 

70% 

 

169.1 

 

154.5 

 

372 $/day 

 

 

Design  

 

 

Calm 

 

 

69% 

 

169.1 

 

274.6 

 

662 $/day 

 

Rough 

 

 

70% 

 

169.1 

 

145.5 

 

350 $/day 

 

 

Ballast  

 

 

Calm 

 

69% 

 

169.1 

 

214.1 

 

511 $/day 

 

Rough 

 

 

70% 

 

169.1 

 

137.9 

 

331 $/day 

Table 29: Additional Fuel Cost between 30DSR and 150DSR datasets for each loading and weather condition at 

STW=15knots. 

According to Table 27, Table 28, Table 29 it is noticed that the additional cost due to marine 

fouling development is something that shipping companies should consider since the amounts 

are significant. Hence, it would be wise for vessel operators to calculate these values to be able 

to find the most efficient period to conduct maintenance and hull cleaning operations and to 

minimize these additional fuel costs. 
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7 Conclusion & Future Suggestions  
 

The objective of this study was to employ machine learning methods in order to build a 

predictive model about the vessel’s propeller shaft power and the affiliation of fouling and 

repairs with the vessel’s performance differentiation throughout the recorded period. This 

process was developed by utilizing a substantial dataset of operational data to highlight the 

importance of marine fouling both in the vessel’s performance but also the shipping company’s 

operational expenses. The given dataset was split into two subsets since the vessel had gone 

through a propeller repair during the recorded period. After a deep analysis of the data’s pre-

processing procedures as well as the features’ engineering, a set of different neural networks 

were evaluated to find the best possible combination of hyperparameters that would ensure 

accurate outcomes. Throughout the pre-processing of the continuous monitoring system data, 

it was noticed that several sensors malfunctioned which led us to use a new dataset that 

consisted of both high and low-frequency data originating from the continuous monitoring 

systems and the noon reports respectively. This situation left us with no choice but to put all 

our effort to optimize both the pre-processing procedures, such as outlier detection, and the 

features engineering as well as the hyperparameters tuning of the model in order to be able to 

achieve the desired outcomes. For this reason, we developed methods to evaluate all the 

available methods of selecting both the input features and the model’s hyperparameters using 

a combination of a python-programmed Trial-Error method alternative, and Python’s built-in 

deep learning Random-Forest model. Thereby, despite the data anomalies that were presented 

the final models achieved high R2 scores of 0.978 and 0.989 which is a clear indication of the 

pre-processing, features engineering, and hyperparameters optimization importance. The 

accuracy score difference between the two models can be explained by the difference in the 

amount of data that each model used to develop its predictive ability.  

 

Finally, we put into use the model with the higher accuracy score and examined the effect of 

marine fouling on a vessel’s performance. This analysis was made by creating a time-

dependent variable that connects the time elapsed since the propeller repair, named DSR (Days 

Since Repair). Furthermore, new datasets were created with different input values 

corresponding to different DSR, weather, and loading conditions and were applied to the 

selected model. The generated outputs indicated the conclusion that no matter the condition 

that a vessel sails, marine fouling will always increase its demanded propeller shaft power as 

time goes by. Hence, it is in the shipping company's best interests to monitor the vessel’s 

performance by using predictive models to calculate the most financially efficient period for 

its vessel to undergo maintenance and cleaning, preventing unexpected malfunctions and 

exorbitant amounts of fuel costs. 

 

Future studies could use these conclusions and try to develop a model which would predict the 

most efficient timing for hull cleaning and maintenance operations considering the freight rates 

and the fuel cost as well as the average drydock or underwater hull and propeller cleaning costs 

at the time being. Thereby, shipping companies would be able to determine whether saving the 

additional fuel costs by performing premature maintenance actions would benefit them or not. 
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