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0 Ilepiindmn

Ou duadixacieg mou yehetvTon o€ auTHY TNV epyacio ebvar cuveyelc oToyao TINES
HoEXOPBLAVES BLadxacieg GUVEYOUE YPOVOU Xl GUYXEXQUIEVYL BLAdAGEES OL OToleg
TEOXUTTOLY ¢ AUCEIC GTOYAOTIXWY Slaopix®y eflowoewy. o vo phfoet
xavelc Yoo TéToleg Budixaoieg TEénel mpwTa var YTloel éva xatdhhnio mdavo-
VEWPENTIXO YWEO XU AUTO XAVOUNE GTNV ELCUYWYT).

Avti va Sovkeouue o€ évay yoOpo THavVOTNTUC PE TOMAES OLUPORETINES OL-
adixacieg xdle @opd, autd ToU xdvoupEe elvan Vo YewEHoOUPE EVay PETEHOLIO
YO0 (§2, F) nan yiot otxoyéveto eTpriotdwy Tuyaieny LETOUBANTGOVY uéoo oe autdy
{Xi}i>0 étor dote oddlovtoc to pétpo miavétntog otov (§2, F), ouctaotixd
oAAdCoude TNV xatavour Tng Swdwaciog X. Enedr) Yo meploplotolue ydévo
oe ouveyelc d-OldoTateg SLaBIXAGIES, O BELYHATIXOC YWEOSC TOU Talpvouue €l
VoL 0 YOPOC TV GUVEYMY cLVapTHoEwy amd to [0,00) otov R? mou oupy-
Borilouue C[0,00)%.  Kotdmy, dewpolue xdde ypovixh otiyus Tnv guotxd
TpoBol T mou atéhvel xde ouveyr cuvdptnon w oto w(t). Opilovtag
Xi(w) = w(t) nodpvouye pio ouvey dradixactio { Xy }+ n onola ovoudleton xavov-
). XuuBoiilovpe o (X @ ¢t > 0) ) o-dhyefpa mou yevwiéton amd v X xou
{o(Xs s <t)}is0 TV puowy| Suinoy| tne. Oewpolue P éva pétpo mdavotn-
toc. Enedr) 9éhoupe Swadixooies dmwe to sup,<, f(Xs) 1 tuyalec yetofintéc
OTWS oL YPOVOL BlaxoTh g Vo eival UETEYOLIES %o emeldr) VENOUUE Vo GUUTER-
tAEBoule oToL UETEAOLIO EVOEYOUEVOL GUVOAIL TG LOPTS

A={weQ: X(w) éye 0e€id mopdywyo oto 0}

Yo Yewprooupe Tig e€Xg eExBOYES TWV QUOXGOY olyua OAYEBROY Tou TapdyeL 1
xorvovixr) dtodixaota.  Muyxexpyéva opiCovue Fy = ﬂe>0 Gire 6mOL G, clvan n
m\ewon e o(X, 1 r < s) og mpoc P xoaw F = \/,5oFi. H oupdnon {F}
Aéyetan TOTE OTL xavoTolel T ouv¥elg cuVITXES. -

O y®pog TV cLVEYWY CUVIETHOEWY UTtopel Var YIVEL TAYjeNG ot Bloywpelolog
€0V TOV EQPODLACOVUE UE XATAAANAN ueTeiny|. Mia té€tolo petpuxn elvon 1

D) = 32 L Stbrstza () — /(0]
| 27 T+ Sbyeyer [oF) — /(1)

n=1
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Auté onuaiver 61 thHpo uropolpe vo Bpole xou otov yopeo P(€) ulo petpxh
TOU VoL TOV XAveL TANEN xat DLy WEloWOo Xl UE AUTOV TOV TEOTO UTOPOUUE Vo
meptypdpouye Tar cuumayr) cOvoha wg axoloutioxd cuuroyr. O oxondg ebvou
var QTIEEOUPE plar ToTohoyio HOTE Vo UTOPEGOUNE Vol TEPLYPAPOUUE TNV olYX-
Mo pé€tenv TavoTnTag oTov Yweo Tou oplooue mapandve.  Mio axolou-
Vo pétpnv miavotntoc P, cuyxhiver actevae oe éva pétpo mavotnrog P
edv Ep, [f] - Ep[f] yio x&0e ouveyh xou gpoyuévn ouvdptnon f tou RY

H petpuer; Tou Prohorov egodidler tov yweo P () tov pétpwy mdavotntag
UE auTr TNV Tomohoyio xaL ToUTOYEOVA TOV XAVEL TATIEN xou dloyweloo. O
ToEATAVG 0ploUOS efval cuy Ve BUoyeENoToC Xou Vo YENCLOTONGOUUE, TOMES
PopEc, dhha xpLThplal HOTE VoL CUTERAVOUPE TNV acVevr olyxhiorn. To Auua
Portmanteau eivou o mtpwto Yewpnua mou divel loodivaueg cuviixeg wote plo
oxohoudio uETpwy mavoTnTag Vo cuyxhivel acievag.

To oupnoyry obvola otov (€2, D) yopaxtneilovion amd to Vewpnua Arzela-
Ascoli(Bourbaki) xou éva nopduoto dedpnuo otov (P(£2),dp) diver ixavéc xou
avoryxaieg ouviixeg dote éva utocivoho A C P() va eivou tight.

Optopog Mio owoyévewn pétpwv mdavotntag II otov (2, F) Aéyeton tight
edv, v xdie € > 0, undpyet ouunoyéc ovoro K dote infpeg P(K) > 1 — €.

To Baocixdtepo amotéheoya mou Yo YeNOYOTOIRCOUUE €80, Elvar To Yewpnua
Prohorov mou petagedlet to tightness plag owoyévelag pétpwy miovotntag
o€ oupTdyeln TG XAELOTAS TNG VrxnC.

Optopog Eva oivoro A oe évay Yetpixd yopo (X, d) Myeton oyetind ouunayég
edv to A elvan ouunayéc.

Ocdenua(Prohorov) Mio owoyévela Borel pyétpev miavotntag otov Q eivor
tight edv xou uévo edv ebvan oyetnd cupmayc.

To Yecdpnua Prohorov etvar oe 1oyl oe xdde mAren xan daywpelowo peteixd
Y©e0 xat Yol TO YENOHIOTO0COUUE WS Baotnd XELTHELO YId Vol GUUTEQEVOUUE T1|
olyxhon u€tpwy. T vo To xdvouye ot elvor apxeTd VoL BElEOUUE HOVABIXO TN T
TV utaxohovhaxndv oplwv( Ocdpnua 2.6 Billingshley).

YN ouvéyewa yiveton plor obvtoun avagopd ot aviicTolyo Yewphuata GToV
UEYOAUTEQO YOPO TwV BeELd GLVEY WY cUVIETAoEWY xat TN Shkorohod Tomoloylac.
Aqgol mapouctactel 1 Tomohoyixy| dour) Tou ywpeou, yivetal pia eloaywyY| oTa
Yewphuata oToyao TXAS avdAuong tou Yo yenowonotfoouue. Ta otoyacTxd
oLOXANPOUATA IOV ERGovViovTaL TUEOXAT EVAL OAOXANEMUATA (O TPOC CUVEYT



TETPUY WX OAOXANEOGLIo martingales xa yio vor €xouy vonuo TEETEL OL WG
TPEOC OAOXATIPWOT) BladLxacieg Vo TANEOLY TEPETAW LOLOTNTES UETENOWOTNTAS
1) ONOXANPWOWOTNTOC.

Optopog Mia dwdixaocta Y mou Let oe évav yopo miavotntoe (E,G,P),
ovopdletar progressive dv xde ypovixh otiyur ¢, n Tuyola uetaBAnTh Y; elvou
UeTEroWN we Tpog T o-dhyeBpo B([0,t]) x G;.

IMapatenor 110V YOPo TV GUVEYKOY GUVIRTHOEMY, 1) XUVOLXT dLodLxacio
elvon mdvtote progressive.

To Yedpnua Levy Aéer 6L 1 xivnon Brown elvon to povadxd cuveyéc mar-
tingale W pe tetparywvixh xOpavotn (W), = t, dnhadf W? — ¢ eivon enfong
martingale.

Kdle otoyaotind ohoxhrpwua fot Y. dWs, ye v mpobndieon 6Tl 1 mpocup-
uoopévn dtadacta Y ixavorolel T oyéon E[f(f Y2ds] < oo yi xdde t, etvou
éva ouveyég martingale. To avtioTpogo elvor To Vedpro AVATOEAC TACTS TWY
martingales.

To televtaio Yewpnua oto elooywywd Uépog, elvan o yetaoynuationoe Gir-
sanov mou ebvor to €€fg amotéheopa: Xe évav yweo miavomtag (2, F,P), 7
xhdon Ty cuvey oy martingales w¢ mpog pio diRdnoTn Tou xavoTotel Tig GUVK-
Ve ouVITXES, TUPAUEVEL avalholeTn uéoa and TNy ahlayr uétpou mavoTnTog
ue Vv Tpolnédeon 6Tl To véo uétpo eivar amdAuta cuveyéc ue To P. H anddeln
Tou emthéyoupe etvon auth Tou Cherny [2002] tou xdver yefomn Tou Yewphuotog
ouumdyetog tou Prohorov.

Mio d-Sidotatn otoyactixh) ddixacta X; = (Xt(l),...,Xt(d)) oe évay YOPo
mdavotntag (2, F,P) ebvor hoon otn otoyactiny| Swpopny| e€iowon (SDE)
dXt = b(Xt)dt + O'(Xt)th

omou W plo d-didototn xivnon Brown, edv ixavorolel tnv ohoxhnpwtiny| e&lowon

Xt:X0+/tb(Xs)ds+/ta(Xs)dWs (0.1)

edv emmiéov 1 X ebvan mpocopuoopévr ot duflnon mou moapdyet 1 xivnon
Brown W, téte n Aoon Acyeton toyue).

Aéue 6T hoon X etvor ovodixy, €dv Y etvan pio dhhn Sradixacio Tou xavomolel
v e&lowon (0.1) té1e oL dvo Bradixooiec X xan Y elvon un Sroxpvoueve,
onhodr) P(X; =Y, vVt >0)=1.



Opropdc Mia otoyaotiny dwdixaoctio X; Aéyetar ao¥evic Aoon otn SDE, edv
untdpyet xdmowa xivnorn Brown mou Lel otov Bo yweo mdavétnrac (Q, F,P),
étow HoTe, To Lebyog (X, W) va icavorolel Ty ohoxhnpwtixr e€iowon (0.1).

Optopog H hon ot SDE Aéyetar dt ebvan actevag povodr, dv (Y, B)
ebvon pior SR actevic hoon tne, tote 1 B eivan xivnon Brown xo n Y €yel
TNV (Lot OXOYEVELN XATAVOUWY TETEPAUOUEVNS OLdoTaong ue TNy X.

Kdrie 1oyvpry Mo oe pla otoyactixy| diagopiny| e€lowor eivar acevic Ao,
10 avtloTeopo Guwe dev oylel. ‘Eva mapdderyua SDE mou €yel acdevh Ao
ohhd Sev emdéyetan toyuet etvan ) e&lowon dX; = sgn(X,)dW, émou sgn elvou
1 oLUVETNOT TEOCTUOL.

[ Tic AUOEIC GTOYAG TIXWY BLaPEIXDY EELOMOEWY Loy VEL OTL 0L GUVIETELS TOUg
UE BUO Qopéc ouveyns Tapaywylotues cuvapthoelg elvar eniong Adoeg oTo-
YAOTIXDY LoV eELOWoEwY. Autd To amoTéAeopa eivon YVewoté w¢ TUTOG
Tou Ito xau SlrtunwveTon we e€ng

Fx) =10+ [ Z% X0 (X0) + D0 B2 (X)ds
+/ta(Xs)TVf(XS)dW
' (0.2)

Oewpolpe Tov ypauuxd dtopopixd teheoth L nou dpo téve ot C? cuvoptnoeLe
ou R? ¢ eihc

[\Dlr—\

Z )0 f(x) + 3 bi(2)0if ()

6mov a = oo’ ovoudlETAUL CUVTEAECTAC OLdyuone xon b CUVTEAECTAC TAoTC.
Tapo o TOnog Tou It madpver T popy

FX0) = F(Xo) + / LF(X,)ds + / oT(X)V F(X.)dW

To napoxdte napddervyua (Problem 5.4.4. Karatzas € Shreve [1991]) Siver tnv
10€a mlow and o TEéPANua martingale. Ocwpeelote 6T Wy elvon plar povodido-
Totn xivnon Brown. Tote n W eivon Moom otoyac g Swagopixc e€iowaong ue
TETPUMEVO TEOTO xat 0 TeEAesTAC L btav dpa mévw ot pia f € C*(R) ypdgpeton
avtioTolya ¢ e€1g

L)

JIOES



Ve 0 TUToC Ttou Ito Bivel

FOv) = $0) + [ e Wads+ [ pavyaw,

To otoyactind oholfpwua eivon Tenepaouévo oyedov Befaine agol 1 xivnon
Brown elvor cuvey1ig xou GUVETOE PEayUEVT oY edOV Befaiwe amd xdmolo cuunayeg
vrooUvoro A tou R oe ouunayy| Swuo thuata yedévou [0, t] xou étot xou 1 ouveyfic
[’ ebvon ppaypévn oto A. Autd onuaiver 6Tt 1 Srodixacia fot f(Ws)dWy givou
eva ouveyeg local martingale.

Avtiotpoga, edv uio otoyacTr| dadacio W €yel tnv idtdTnTa 6Tt Yo xdde

feC*R) q t
FOV) = %) =5 [ rrovs

elvan éva ouveyée local martingale téte €dv emhélet xavelc mpodta f(z) = x
xou xotoémy f(x) = x? BAémer 6TL oL dadcacteg W oxan W?2 —t ebvou ouveyeig
local martingales. Ané to Yedpnua tou Levy autd onuaivel 6t n W ebvan pia
x«tvnorn Brown.

To mpoPBinua martingale mou Yepcheidnxe and toug Stroock & Varadhan
Yevixelel autdv Tov martingale yopoxtneioud yia d-oudotateg dtaydoelg dSnhadn
Yoo acVevelc AIOEIC GTOYACTIXWY BAPOPXOY EELCWOEMY.

To mhalolo 670 onolo yehetdue o TEOBAnUo martingale etvar autd Tou opicTnxe
OTNV 0EYY), O YWPEOS TWV CUVEYWY CUVUPTACEWY PE TNV cLVAYN exdoyY| Tng
Borel dujinong mou napdyel 1 xovovixy dadixocto.

Opiopdc 'Eva pétpo mdavotnrac P eltvon Adorn oto mpdBinua martingale yia
Tov teheot) L ye apyw) cuviixn = € R €4y

xaw 1) SLodtxactio

F(X0) — F(Xo) - / LF(X.)ds

efvor martingale yio x&de f € C%(RY).

To epwtiato ToU dNUIoLEYOUVTAUL POl BWOEL XavelS aUTOV TOV oploUd El-
vou

1. Kétw anéd noéc ocuviixec (v oUVTEAEGTOY TOU TEAEGTH) TO TEOBANUOL
martingale €yel Aon;

2. II6te n Moom tou mpofSAfjuatog martingale efvon povoduxt);
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To mpdfBinua martingale yio tov teheoth) L Ue apyix) cuvirixn & mou cuy-
Bohiloupe we MP(L, 0,) Ayeton xahde tednuévo edv emdéyeton Aoorn 1 onola
elvo LovodLx).

Oa unopolooue Vo YewpHoouue we apyxr) cuvirixn €va oToLOOATOTE UETEO
otov (2, F). Avth elvau 1) mpdtoon 1.31. Xny npdtaon 1.32. BAénoupe ot i
Vo oUUTERSVEL XavElS povadoTnTa TG Adong oTo TedPBAnua martingale opxet
v Bel€el 6Tt 600 AIOEIC €YOUV XOLVEG OLXOYEVELEC XATAVOUWY Uiag Bido Taong,
ONAadY| OTL 1) xavovixt| dradixacior xde ypovixr) oTiyun HEow Twv 800 UETPLY
ANooewy €yel TNy (Bl xaTavou).

To tehevtalo amoTtéleoua 0TO EWCAYWYIXO XEQIAALO, elvon Eva XELTAPLO TWV
Stroock € Varadhan mou cuoyetiCel mpofAfuota martingale pe Tig oupmayelc
OXOYEVEIEC PETRPOVY TIIAVOTNTAC GTOV YOpo TwY uétpwy P(§2). Trdoyel eniong
EVOL AVAAOYO XELTHPLO YLaL BLOBIXAOLES BlaxELTo) YEOVOU Tou Yol YETNCLULOTOL-
OOUUE GTO XEPIANO 4 OTOY Vol AVTIXUTAC TACOVUE T1) XOVOVIXY| oG SLadtxacio
ue pla droxpironoinot| tne. Kdtw and tic unodéoeig

1. Tw x80e f € C5°(R?) un-apvrted, 1 ddicaotor f(Xe) + Apt elvon sub-
martingale yta xdmolo Vet otodepd Ay

2. Aolelong ploac tétolag cuvdptnone f, n otadepd Af etvon 1 (Bla yior Oheg Tig
uetadéoelg oTo medlo oplopol g f

Edwoay o extipnon tou ehdytotou ypdévou Y Tov onolov 1 otxoyévelr {X;}
modeL var ebvan Llooouvey g, dnhadr wla extipnon v to modulus of continuity
e X.

210 xEPdANO 2 UEAETAUE TN OYEOT TV AUEWY Tou TEoPAfuatoc martingale
UE aUTES TIC avTioTOLY NG OToYAoTXAC Opopixrc ellowong. Ev yévvel ue tov
TP6TO ToL oploTnxe, To MEOPBANua martingale eivar aclevéctepo and Tig ao-
Yevelc Moeig tng SDE, ouwe otny nparyyatixdtnta n otoyaotixn e€lowon etvor
xoh¢ TeEdNUéVN €dv xan uovo edv to TedPAnua martingale elvon xoAode tedn-
uévo. H amédeln yiveton oe d0o Pruata xou Poacileton amd v pla mhevpd
oTov T0mo Tou Ito xau and TV dAhn oo Vemprnua yopaxTnELouol TNe xivnorng
Brown tou Levy. Ynv apyr| malpvoude 1o anotéAeopa e Ty tpobndveor 6Tt
0 TEAEOTAC Efval OUOLOUOPQPU EAANTITIXOS XAl GTY) GUVEYELX YENOWOTOLWVTOS TO
Yewpnuo avarapdotaone Tewv martingale Yo dolue 0Tt axodua xou yioo degener-
ate cUVTEAEOTEG OIdyuong 1 looduvauia Loy UEL.



Opropdc O teheotric £ AéyeTon OUOOUORQU EAAELTTIXOS ECY

sup [[bs(2)|loo < 00

/ / / / 7
xou uTtdpyel Yetnde apriuog A tétolog wote

d
Alyl> < piag()y; < A7yl? yioxdde 2,y € RY

ij=1

To 611 1 Umopén acevolc Aong otn oToyacTixy| dlapopint| eélowon dX; =
b(Xy)dt + o(X,)dW, ouvendyer Umpaln Aoone oto mpdfBinua martingale yia
tov teheoth) L mou otéhver ploa f € C*(RY) otn ouvdptnon Lf pe timo
Lf(x) = %Zijzl(aaT)ij(x)aijf(x) + 38 bi(2)0sf () mpoxiTTEL TENL 6T
XL 0TO ToEddELypa e TNV 1-0wdotatn xivnon Brown, ané tov timo Tou Ito.
Avtiotpoga, edv utotécouue 6t P € MP(L,d,), tote emhéyovtoc f(z) = ;
xou xotomy f(x) = z;x; éneton Ot yior xde 7, 1 Sradicooior

t

MO = xP - x§ — / bi(X,)ds

0
elvor martingale Siaducaoier ue tetporyevixd xipavorn (XD, X0, = [*a,;(X,)ds.
Ye auté 1o onueto opllet xavelc pio véa draduacta we e€Xg

¢
W, = / o (X )dM™
0
Ep660 0 oupueteide mivoxag cuvapthoewmy a = oo’ elval ouotpop@o ENTT-
TIXOC o dpar VeTind oplopévoe, 1) o1 elvon xohde optopévn xou cLVETKS 1 W
elvor xahwg oplopévn. Emmiéov 1) dodixacio fot o N (X)d M eivoun éva cuveyéc
TETPAY WVIXA OAOXATNP®OoYo martingale agol

/0 Z (a_la)(XS)ds] =t< 00

n,m=1

E[Wt(iﬂ )

‘Opota 1) TeTporywvixt| xOuavor tpoxintel K [Wt(i) Wt(j)] = td;;. A6 T0 Yewpnua
Levy, n W elvon pio d-8idototn xivnon Brown xou cuvende to Ledyog (X, W)
etvar Aoon oty dX; = b(X,)dt + o(X,)dW,.

To mpofinuo oty yevixdtepn nepinTwon 6Tou 0 CUVIEAECTHC OLdyuong el

VoL GUUHETEWOG VETIXG NULOPIOUEVOS EVOL GTO OTL BEV UTOPOVUE VoL 0RIGOUUE
™ xtvnomn Brown émwe xdvope napandve yio Ty ool  martingale Siodicacto

9



X, —Xo— fo s)ds YEAUPETAL (S CTOYAC TIXO o)\ox)\npwpa Op(og ETEXTEVOV-
TAUC TOV YWEO ps xocrozk)\n)\o TpOTEO Yo umopolue va Bpolue pla véa anon
Brown W mou (el oe autdv tétola MoTE N ]\4z Vo umopel vo ypogel wg
fo o(Xs)dWs.

Ocwpnua 'Eotw P uia Aon oto npdBinua martingale yio Tov tehecty| Ue
PEAYHEVOUG UETPAOYIOUG OUVIEAECTEC a = oo’ wou b xou oy cuvDYxn
x. Tote undpyer pio d-tidotatn xivion Brown W mou (el oe pla enéxtaon
(E,G,Q) tou (Q,F,P) tétow, dote to Lebyoc (X, W) elvon aodevic Aoon
otn SDE ue cuvteheotéc b xou o mou Eexvdel amd To onpeio .

H 16éo tne amddelne etvon 1 e€rc. And tnv unddeon xar amd 1o Vedpnuo
avomopdotoong Twy martingales undpye enéxtaon (£, G, Q) tou (2, F,P) xou
enéxtaon {G 1 g {Fihe xodade xan plo G- mpocopuoopévn xivnon Brown B,
nou (el og autdv TéTol WoTE

t t
Mt = Xt — XO — / b(XS)dS = / fsst
0 0

Yoo xdmota G- mpocupuocpévn dladxactio § v Ty omnola E[f(f &2ds] < oo.

Apxel va 6eloupe oOTL
t t
| gas.= [ atxaw,
0 0

Yot xdmowa xtvnon Brown W otov (E, G, Q).
Ocwpolue Tov d X d mivoxa amexévion R tou oplleton mévw oTo cUvolo

D= {(570> {0 € MdXd<R>7££T = UOT}

ue tic Wiotntee 6t oR(§,0) = & xou R(§,0)RY(€,0) = Iyxq. Mia tétow
OTELXOVLOT] UTIGOYEL DLOTL oL Tivoxeg &, 0 €lvol CUPUETEXXOL X0l GUVETKS UT-
dpyouv opdoyivior ivaxee U,V tétoor dote 0 = UAUT xon & = VAV,
Téte o mivaxac R = U~V TAneel TI¢ Tapamdve WOTNTESC. XTo onuelo autd
nopatneolue 6Tt pio tétola ametxovion eivar Borel petprown (Remark 2.3.).
‘Etol edv oploouue

W, — / RY(€,.0(X.))dB,

€y oupe piot xaAoS optouévn G-progressive cuveyr| dladixaocta 1) onofo ebvon mar-
tingale ool

Eo|Wi"| =Eq

Z/ L Ra(€s, 0(X,))d ]:t<oo

k=1
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Twpo UmopoVUE Vo YENOWOTOOOUUE TOV YopaxTnewoud tou Levy yio tnv
xivnon Brown xat 6e¢ o1y TEPITTOOT TOU OUOLOUORQPI EAAELTTIXOL TEAECTY
eneton 6T dX; = b(Xy)dt + o(Xy)dW,

Y70 1pito xeQAAoLO 0o ONOUUAG TE UE TNV OTTAEE T XOl LOVUBIXOTNTA TV AICEWY
Tou TPOBAAUNTOC. XTO TEMTO Yewpenua BAETOLUE 6Tl 1) HovadixdTnTo oyetile-
Tou Pe Ty Umoapén Aoewy o€ éva dhho TtedBAnue - oto TedPBAnua Cauchy. Xtny
TepinTwor 6Tou To TEOBANUa martingale €yel ovadix Aoor), 1) Sladixaota etvar
toyved Mopxoflov. Xtn cuvéyela Yo ueheticoupe Ty UToeEn AOGEWY 01O
MP ¢ egapuoyr tng olyxhong pétpwy mavotntag pe Bdon to Yewoenuo 7.3.
Tou Billingshley # to xpitfipto Twv Stroock & Varadhan.

Ochpenuoa H axohoudia pétpwv miovétnrag {P"},, civor tight otov P(Q)
€4y xou UOVO EQV LoYDOUV TOL TOQOXATG

(i) v xdde € > 0 undpyer ¢ > 0 téroo wote P*(| Xy > () < € yio xdde
n > ng Yo XAmoto VETIXG ax€pato M.

(ii) yi xdde € > 0, woyler 6t limsolimsup, P*(w(d) > €) = 0 émou
w(d) = sup |X; — X
[t—s|<d

Mia ouvénela oty nepintwon 6mou to MP elvon xahd tednuévo etvon 6TL edy
UTOPECOUUE Vo TROGEYYICOUUE TOV TEAEOTH| UE XUTAAANAO TEOTO UTOPOUUE VOl
CUUTERAVOUNE TNV acVeVH cOYXALoT Sl OoEwY oTNV povadxr) Abor tou MP
(Theorem 11.1.4. Stroock €& Varadhan[1979]).

Ocdpenua Trodétouue ot 1o MP(L, d,) eivan xahd tednuévo, yia xdde x €
R? xou 611 0 teheothc L €YEl GUVEYEIC OUOLOUORPI PEAYHEVOUS GUVTEAEGTEG
Tdone b xou didyvong a ue a = ool Trovétoupe axdun 6Tt UTEEYOLY UXONOU-
Wec b, xau a,, TéToleC HOTE

sup sup ||an(z)[| + b ()] < 00

n |z|<R

X
hm/ sup (||an(z) — a(z)|| + |bn(x) — b(z)|)ds =0
|z|<R

v xdde T > 0 xav R > 0. Edv to MP(L,, d,,) éxel hoon pe L, vo elvon o
TENEOTHC HE OUVTEAECTEC @y XU by o T, — o TOTE P = P dmou P ebvan 1
uovadixy) Aon tou MP(L, 6,).

Anédeiln 1 Oa dei€ouye 6Tl 1 axoroudio P eivon oyetind oupmayhc xan OTL

x(&de umaxoroutaxd 6ptd e Q) etvan 1 wovadx Ao P oto npdBAnua martin-
gale M P(L,6,), uetd ané to dedpnuo 2.6 tou Billinshley éneton to {nroduevo.
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Ané 1o VYedpnua Prohorov opxel va dei€oupe 6TL 1 axohoudior P™ etvan tight.
Hapatneolue 6Tl toybouy oL cuvinxes Tou Yewphuatog 7.3 Tou Billingshley.

(i) P*(|Xo| > sup,, |z,| +1) =0

(ii) Bewpolue Ay, Ay vo elvon tor gpdryyata Twv a,b avtiotoyo. Eotw € >
2Ab(t — 8).

{ sup |[Xi—Xs|>e}C{ sup |X;—Xs— / Xy )dr| + Ap(t — s) > €}
s<t<s+4 s<t<s+4
ONAAON

{ sup | Xy —Xi| >e€} C{sup |M]|+ Ap(t —s) > €} C{sup | M| > €/2}

s<t<s+4 t<s+d t<s+4

6mov My = Xy — Xy — fst+s b (X, )dr. Emed n a elvon @payuévn éyoupe
6TL M TeTparywvixr xOpovon tne ddixactag MP, (M?), = fst a(X,)dr ppdoeto
and 10 A, (t — s). Xenowonowwvtog 1o oyoho 3.2. naipvouue 6Tt

P*( sup |X;— X4 =€) <P"(sup |M;]| >¢€/2) =

s<t<s+6 t<s+d

_e2
P*(sup |My| > €/2, (M), < Aot — 5)) < e509
t<s+d

6mou 1 otoepd ¢ Bev e€apTdTAL o6 TO n. LTEAVOUNE To § — 0 xou €youue

lim lim sup P"(w(d) > €) =0

0—0 n

yia x&e € > 0.

Auté mou pével va Geifoupe clvon OTL omolodrmoTe To LTaxoAouoxs 6pLo
AOver to mpdPAnua martingale MP(L,d,). Q(Xo = z) = 1 agol z,, — x
xou Epni [R(Xo)] = Eglh(Xo)] v xdde ouveyh xou gporyuévn h. T tnv
WOt martingale cpyd BelyVOUUE TNV WOLOTNTA YL PEUYUEVES CUVAPTIOELS
[ € C*(R?) pe gporypévec mpoteg xon dEUTEPES UEPIUEC TIOOY (YOS YENOl-
womolvtag To Afupa 3.5. Av 1 cuvdptnon f Oev eivon amapoltnTa QEarypévT
Yewpolpe f1 1 ouveyr| ouvdpTtnon tou cupgevel ue v f otn urdha B(0, R),
TOTE 1) oTapoTNUEVT test Bladwacio Yo elvon martingale and tnv mponyoluevn
nepintwon. Tehog otehvoupe to R — oo.

H mpdtn eqopuoyn authc e obyxhong etvar 1 Unapn Aicewv o TEoPAH-
vota martingale yio teheotéc L Ue GUVEYEIC GUVTEAEGTES APOU UTOROVUE Vol
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Beolue C? cuVaPTAGELC TTOU GUYXAVOUY OUOLOUOPYO. GTOL GUUTYT| UTOGUVOL
tou R? e autolc Toug ouveyelc ouvteleotéc Tou Teheotr. Ot avtioTolyeg
acVeveic hooeic SDE €youv Lipschitz cuveyelc ouvteheotec xou cuvemwe etvon
HOVOBIXES XOL 1) OXOYEVELN AUCEWY TEOXITTEL OYETIXE CUUTAY G OIS TUEa-
mve. To unaxoloudaxd dplo elvan autd Tou Advel To TEOBAnua martingale
v Tov L.

Yy tepintoorn émou o terectrc L elval opoldpop@a EAAEITTIXGG, TO TROBANUA
emdEyeTon Avon yia audalpetoug Borel petpriowoug gearyuévoug GUVTEAEG TES
a xou b. T vo To Beloude autd oy Wd Oelyvoupe OTL XdTw Am6 TN CUV-
V1en EMELTTIXOTNTOC UTOPOUKE VoL ATUAELPOUUE TAYPWS TOV GUVTEAECTH TAOTG
xou vou 0el€oupe t1oodUvapo 6Tl To TEOBAnUa martingale yia Tov véo tekeoTH
L = % ijzl a;;0;; €yeL Moom. Auto yivetou e Tov yetaoynuatiopd Girsanov.
Metd v anahoipr Tou b n Omapdn épyeton and v umaxoroutioxd 6pto AUoEWY
MP vy C? teheotéc. Apyxd UmopolUe Vo TpooeYYIoOUUE TO GUVENECTH
Sudyuone a amd ouveyels ouvaptroels (amd to Vewenua Lusin oty debtepn
Lop@T| xan o Vedpnua enéxtaorc tou Tietze) xou enedr) o C?(RY) etvon Tuxvée
otov C pnopolue va Bpolue pia oxoroudio {a,}, C C*(RY) mou cuyxiivel
oTNV a oYedoY TavToL. ‘Onmg ot 0TV TeoNnYoUUEVT EQUEUOYT|, To avTioToLyo
npoAiuata martingale M P(L,,, d;) etvon xohd tednuéva xar 1 oxohoudio Twv
ANooewv P, €yel unaxoloudia P mou cuyxhivel o xdnolo yétpo mbavotnrag
P e P(€2). Enedn ot cuvtehes tég elvon pporyUévol umopolue vo Yemphoouue wia
UTAXONOUDHAL TNG @y s Uy, 1) OTIOLL CUYAAIVEL TNV @ oTOV L, Yo xdmoto p > 1.
Apxel vo deifouye t6te bt limyy, Epre, [{ M) — MI}14] = Ep[{M] — M/ }1 4]
v xde A € F,. Oo yperootolue to mopaxdtw Yewenua (Erercise 7.5.2.
Stroock € Varadhan [1979]).

Ochpnua (Alexandrov’s estimate) o opgotopopga ENREITTINOVE TEAEOTES
xou vy x89e p > d, t > 0, R > 0 xou f € C5°(R?) ue gopéa evtoc e B(0, R)
urdpyel otadepd C' téTolo wote

Er { / t f()@)ds]

ue ™ otodepd C' va e€aptdton and To eAAEImTIXG ppdypo A xon o p,t, R.

< C[fl,

Me 7o {Blo emyeiponuo 6mwe mELY xon Toug (BLOUC YPOVOUC BLUXOTNG TR UEXEL
vo. Bel&oupe OTL

Ep, [ /0 Lo f(X,,)dr} 71@@{ /0 t .Cf(Xr)dr]

Y10t GUVORTNOELS f (PRUYUEVES UE PRAYHEVES TPWTEG X BEVTEPES TAUPAY Y OUS.
e auTé 10 oNUElD YENOWOTOWVUE TO TEOTYOUUEVO VEDETUAL.
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Mo evBLapeQOUCU EPURUOYT| (G CUVETELYL TNG LOVAOLXOTNTAS AVCEWY TOU TRO[3-
AMuotog martingale etvon 6Tt 1) aceviic Aoon 6T oToy Ao T Blapopixy| e&lowaor
ebvon 6pLto Mapxoflavey aducidwy. Xto xe@dhaio 4 6mou Yo yeheTACOLUE auTY
™ oUyxhior, Yo Yewpricoupe uio dtaxprtonolnot Tng xavovixig Hog dtadxactag
1 omolo xdtw amd éva pétpo miavotntog Yo etvar plor Mopxofiovi alucido mou
Eexwvdel and éva onueio T € R UE xdmota ouVdETNoY TAVOTHTWY UETABaoTNC.
Téte Yo dolue 6TL €dv To TEOBANUa martingale etvan xahd tednuévo xon und
TEOUTOVEGELS TV CUVTEAECTOVY X0l TNG oLVAETNoNG TavoTHTwY Yetdfouong,
Y1 xde apy xotdotaon @ € RY ou xatavopéc v Mapxofioavey ahuctdev
Yo ouyxhivouv aolevie otn povader Aan tou MP (Chpater 11.2 Stroock €
Varadhan [1979]).

H Suwprronoinon yiveta we e&fc: ‘Eotw h > 0, € R? xou II,(z, ) pio
ouvdptnon mavothtwy petdfuong. Oewpolue éva uétpo mavotnrag Py otov
C(0, 00]¢ ue Tic OLOTNTES ¢

(i) Bp(Xo = 2) = 1

(ii) Py (Xt = Dbt X+ SR Xy, kR <t < (B + 1)h) =1

(111) T xdde T’ € E(Rd), ]P)i(X(k—&-l)hel"lJrkh) = Hh(th, F)

H {Xkn }ren eivor ulor ahuoido 0TOV YWEO TV TEAUYHATIXGY X0 oLTLOY Xal
v xdle w € Q n tn Xpp(w) = w(kh) eivon o kh-6poc g axohoudiog
Wp. Me v tpltn widtnTa, oplooue 1 X, vo etvan MopxoPiovy| ahuctdo e
ouvdptnon mdavotitwy petdBoone I (x, ) we npog to pétpo mbavdtnrog Py,

Metd v Sraxpitonoinon tng dladixaciag yeetalOuacTe TOV 0pIoUO TOU TEOR-
Muoatog martingale otn dlaxpit teplntwon.

OpLopog 2XToV Y0po TV TEUYUUTIXGY axolouhny, eva uétpo miavotntog P
AOVEL To TpdfBAnua martingale yio tov tehecTh A, pe apywh ouvdixn @ € RY
edv P(Xo = =) = 1 xou n Srodixacio

FOG) ~ F(X0) ~ Y Auf(X)

elvar martingale dwaduacta yio xdie ouveyr| o peayuévn cuvdptnon [ Tou
RY. Edw o teheothic A, o f otov Cy(RY) Bpat e e€hc

Auf(x) = / {F() — f(@)} L (x. dy)

H npdtn npdraon (Ezercise 6.7.1. Stroock € Varadhan [1979]) etvon éva b1
oxELté avdhoyo Tou VEWwEHUATOC LooBUVIHIUS TOU XEQUANIOU 2. JDUYXEXQUIEVYL
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10 Otoxpttd TEdPAnua martingale M P(A,,, 0,) éxel povadixn hoor edv ot ubvo
edv 1 X, ebvon pla Mopxofiovi| ahuctda ye cuvdptnorn mdavothtwy puetdBaorng
I, (z,).

Trodéote 6t ot a @ RT — Mya(R) xou b : RT — R? elvar opordpoppa

peaypévee cuveyeic cuvapThoelc xan OTL 0 a civar YeTnd nuoplopévoc. T
xdde h > 0 xou € > 0 optlouye ouvapTtioeic ap by xan Aj,

an(x) = / )= ) )

bi(z) := /_ |<1(y¢ — x;) Iy (x, dy)

I, (x, B(x,€)°)
h

Aj () =

YT roVéoelg

(i) Ov ouvopthoelc aj, xou by, elvar opoLdpopEa PEoYUEVES.

(ii) an — a by, — b opordpoppa ota cuurtayR unocivora Tou R dtav h — 0.
(iii) limyp o sup,ega A (z) = 0 yio xéde € > 0.

Oecwpnpa Eotw 61l 10 mpoPinua martingale yw tov teAecty| L Ue ouv-
TeheoTéC a xou b ebvon xohd tednuévo. ‘Eotw axdun o6t 1oybouy ol Tapamdve
vrodéoec. Edv P eivon 1 povadxr) Aoon tou M P (L, d,,) xou edv Py° el-
vau 1) povoldixh hoom tou M P(Ay, 0,,) ue ouvdptnon miovotitwy petdfoong
I, (20, -), T61€ N owxoyéveio P}° ouyxhivel aotevie oto P* xadog h — 0.
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1 Martingale Problem

1.1 Introduction

We start by introducing the probability space and the processes we are go-
ing to study. We restrict our attention only to continuous stochastic pro-
cesses taking values in R? in continuous time. We define the sampling space
Q == C([0,00])? to be the space of continuous functions from [0, 00) to R<.
This space is Polish and can be equipped with a uniform convergence on
compacts topology. A metric that makes 2 complete and is compatible with
this topology is
Dty = S LStz o) = (1)
« 2" 1 + supg< <y |w(t) — w'(t)

Now consider the Borel o-algebra generated by the open sets of this topology.
We are going to deal with probability measures on (€2, B(£2)), we denote P(2)
the space of all such probability measures. P(€2) is Polish, since €2 is Polish.
We will define on P(£2) a weak topology, that is a topology generated by sets

(PeP): |/deP’—x\ <a
Q
Prohorov’s metric defined as
d(p,v) :==1inf{e > 0 : p(F) < v(F°) + € VE closed in Q}

where

Fe={weQ:Dw,F)<e}

equips P(2) with the weak topology and additionally make it complete. Now
convergence may be defined in sense of convergence of sequences and com-
pactness in sense of sequential compactness. For sets that are not necessarily
closed we use the notion of relatively compactness.

Definition 1.1. A sequence of probability measures P, in P() is said to
converge to a probability measure P in P(€2) and denote P,, = P, if

/deP’n—>/deP Ve Cy(RY
Q Q

The first lemma gives equivalent conditions for convergence of probability
measures (Theorem 2.1. Billingshley [1999]).
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Theorem 1.2. (Lemma Portmanteau) Let

The following are equivalent

i) P, =P

(ii) [ fdP, — [ fdP, for every f bounded uniformly continuous function of

(111) lim sup,, P, (F) < P(F), for every closed F' in 2
(iv) liminf, P,,(G) > P(G), for every open G in {2
(v) lim,, P,,(A) = P(A), for every Borel set A such that P(0A) =0

Proof: (ii) = (iii) Suppose [ f(z)P,(dz) — [ f(z)P(dz) for every bounded
uniformly continuous function f and let F closed set in Q and € > 0. We
consider the function f(x) = max{0,1 — d(mF } which is a function both
bounded and uniformly continuous and satlsﬁes the following inequality

ILF S f(l') S ]lFe

consequently
limsup P, (F) < limsup/f( n(dx) /f /ﬂFe]P’(dx) = P(F°)
now let ¢ — 0, then limsup, P,(F) < = P(F). The last equality is

due to the fact that F' is closed.

(ili) <= (iv) We have liminf, P, (F°) > P(F*) for every closed set F' in
Q.

(iv) = (v) Let A € B(Q) such that P(9A) = 0, then P(4) = P(A°) and
therefore

P(A) > limsupP,(A4) > limninf P, (A°) = P(A°) = P(A)

n

(v) = (i) Now consider a bounded continuous function f, then it is enough

to show F F
~—dP —dP
/ R / M

where M is a bound of f, thus we can assume that 0 < f < 1. We get

/f(x)]P’(dx):/OOOIP(f>t)dt:/OIIP(f>t)dt

and similarly 1
[ rapain) = [ 2> ar
0
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Because f is continuous we have 0{f > t} C {f =t} and P(f =¢t) > 0
only for at most countable many t’s, otherwise P(2) = oo which is untrue.
Therefore P(0{f > t}) = 0 except for at most countable many ¢’s. Using the
assumption in (v) we conclude by dominating convergence theorem

liin/OIIP’n(f>t)dt:/01[P’(f>t)dt
lim / fdP, — / fdp

Note 1.3. The same proof with implication (ii) = (#ii) gives also unique-
ness of weak convergence limits.

implying

Definition 1.4. Let (Y,p) is a metric space. A subset A C Y is called
relatively compact if every sequence of elements of A has convergent subse-
quence, its limit point may not lie in A.

Arzela - Ascoli gave necessary and sufficient conditions for relatively compact-
ness in C[0, 00)?, in section 3.3. we will see similar conditions for character-
ization of tightness in P(C[0,00)?) (Theorems 7.2-7.8 Billingshley[1999)).

Theorem 1.5. (Arzeld - Ascoli in C[0,00)?) A set A in C[0, 00)? is relatively
compact if and only if
sup |w(0)] < oo

weA
and
lim sup w,(6) =0
5*)0 weA
where

wy,(0) == sup |w(t) —w(s)]
[t—s|<d

is called the modulus of continuity of w.

Theorem 1.2. is a translation of Theorem X.5.2. N.Bourbaki [1966] for
real-valued continuous functions on [0, 00).

A theorem that gives description of relatively compact sets in P(Q2) is Pro-

horov’s Theorem, but first we need the definition of tightness.

Definition 1.6. A family probability measures IT on (C[0, 00)?], B(C|0, 00)?))
is called tight if for each € > 0, there exists a compact set K such that

inf P(K) >1—¢
PeIl

18



Remark 1.7. Every probability measure in P(C|0,00)%)) is tight.

Proof: Let P be a probability measure in P(€2) and let D be dense in (2.
We consider the collection C = {B(xy,+) : 2 € D,n,k € N}. Then, C
forms a base for the topology in 2 and therefore we can cover any open set
by countable union of elements of C, in particular Q = (J;~, Ur"; B(ax, ).
Let € > 0, choose m such that P(]", B(z,, <)) > 1 — 55 and define

-
A= U B, )

m=1n=1

then A is compact. In particular A is bounded by J"_, B(zy,,,2). Moreover

P(A) < B(A%) = 3" B Bla, 1)) < 3 o =

therefore P is tight.

Theorem 1.8. (Prohorov) Suppose II is a family of Borel probability mea-
sures in ). The following are equivalent.

(i) IT is relatively compact in P(€2).
(ii) IT is tight

Proof: (i) = (ii). By Remark 1.3. we know that every probability measure
in P(€2) is tight. This time we have to find suitable compact set that works
for all members of the family II.

Claim: Consider an open covering {U;}3°, of Q. Because II is relatively com-
pact, for each € > 0, there is a subcovering {U;}¥_, such that P(Ule U;) >
1—e

Proof (Claim): Suppose € > 0 such that Vk € N, there is P¥ € II such
that IP”“(UZ“:1 U;) < 1 —e. Since the family II is relatively compact, there
is a subsequence IP? converging weakly to a probability measure p € II. By
Portmanteau’s lemma we get
k k kj
,u(U U;) < liminf IP);"(U U;) < liminf IP’;"(U U)<1l—ce¢

i=1 J i=1 / =1

but since, @ = JI_, U; then it must u(U5_,) - w(2) = 1 which is untrue.
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So the claim is valid. Let € > 0. Suppose D is dense in €2, Vm > 1 consider
again () is covering by |J:2, B(z;, =) where z; € D. By claim we know that
there is k, such that P(U}™ B(z;, 2)) > 1 — 5%, for all P € II. Similarly

with Remark 1.3. the set A is compact satisfying P(A) > 1 — € for every
P eIl

(ii) = (i). Suppose II is tight. We want to show that for each sequence of
measure in II, there is a convergent subsequence. We will use two lemmas
from functional analysis.

Lemma 1. If (X,d) is compact metric space, then (P(X),dp) is compact
metric space (dp is the Prohorov metric related to d).

Lemma 2. If (X, d) is seperable metric space, it is homeomorphic to a com-
pact metric space.

First we see that if II is tight, then II is also tight. Indeed, let €e>0and K
compact such that P(K) > 1 — e for each P € II. For every P € II there is a
sequence P, € IT converging to P and thus P(K) > limsup, P, (K) > 1 —e.

Suppose P, is an arbitrary sequence of probability measures in II. Now
consider (by Lemma 2.) a compact metric space (Y, p) and a homeomor-
phism 7' : Q — Y mapping 2 onto T'(€2). For each B Borel subset in Y,
T-(B) is a Borel subset in Q. Define

vo(B) :=P,(T"Y(B)), VB eB(Y)

then v, is a probability measure on (Y,B(Y)) for each n. Now, by Lemma
1. we see that P(Y) is compact and hence there is a subsequence v, of v,
and a probability measure v € P(Y') such that v, converges weakly to v as
k — oo. Set Yy :=T'(2), then v is concentrated on Yj (i.e. there exists a set
E € B(Y) such that £ C Yy and v(E) = 1). Indeed, for each m € N take
K, compact sets in € such that P(K,,) > 1— L, VP € II. T(K,,) is compact

in Y, Vm € N, hence
1

v(T(Ky,)) > limksup Un, (T(Kp,)) > limksup P, (Ky) >1— -

Now set E = |J,-_, K, and observe that v(E) > v(K,,) for all m implying
v(E) =1.

Finally define 1v5(A) := v(AN E) for every A € B(Yy). This is a finite Borel
measure on Yy and vy(E) = 1. Define

P(A) = w(T(A), VAecB(Q)
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This is a Borel probability measure on §2. Suppose F' is a closed set in (2,
then T'(F) is closed in T(Q2) = Yp, hence

limksup P,, (F) = limksup v, (T(F)) <v(T(F)) =

V(T(F)NE)+v(T(F)NE®) =v(T(F)NE)=u1(T(F)) =P(F)
this says that P,, converges weakly to P and thus II is compact.

Note 1.9. Prohorov’s theorem is valid in every seperable and complete met-
ric space and in fact the reverse statement which is the most useful in what
follows does not require completeness.

Relatively compactness of a sequence is not sufficient for convergence and
what we are going to use further in many cases, is the uniqueness of the
subsequental limit point to conclude convergence of sequences. This relies
on Theorem 2.6 from Billingshley [1999] which is necessary and sufficient
condition for weak convergence of a sequence of probability measures that
we will use more than once.

Theorem 1.10. A sequence of probability measures P,, converges weakly to
a probability measure [P if and only if every subsequence P, contains further
convergent subsequence P, that converges to IP.

Proof: ( = ) If P, = P, then each subsequence converges to the unique
limit P.

( <= ) Suppose that P,, does not converges to P. Then there exists a
bounded and continuous function f such that

/ fdP,, - / FdP

this implies that there is an € > 0 and a subsequence P, such that

/ fdP,, — / fdP

but then, no further subsequence can converge to IP.

> € for all £

This set up is appropriate only for continuous processes. In order to in-
clude stochastic processes with jumps we have to consider a bigger sampling
space such as the space of right (or left) continuous functions with left (right)
limits. Call D the space of cadlag functions

D0, 00)% := {w : [0,00) — Rd/liglw(s) exists and liglw(s) =w(t)}
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Every element in D is a function with at most countably many discontinuities.
To see this, consider for each n € N, the set A,, ;== {t > 0: |w(t) —w(t7)| >
%} Fix n and assume that A, contains a limit point limy ¢;,. Then there is
an increasing subsequence t;, such that

1
wlth,) = (i) >, Ym

this contradicts with the fact that w has left limits, meaning that for each n,
A, has no limit points, therefore the set of all discontinuities of w, U, A4, is
at most countable.

In order to have similar definition for convergence of probability measures we
have to equip D with a metric that makes the space complete and seperable.
There is a topology which makes D Polish. This topology is called Skorohod
topology and is characterized by the following concept.

A sequence of cadlag functions in [0, 00), w,, will converge to a point w € D if
and only if there exists a sequence of strictly increasing continuous functions
A from [0, 00) onto [0, 00) with A(0) = 0 and lim; \,,(¢) = oo such that

sup [\, () —t| = 0
¢

and
sup |wp(t) — w(A ()] = 0
t<N

for every N > 1.

Skorohod topology is weaker than the uniform on compact sets topology.
If w, C D, n € N, converge to w € D uniformly on compact, then choosing
An(t) = t we get w, converge to w in Skorohod topology. For continuous
functions Skorohod topology coincide with uniform on compacts topology.

Remark 1.11. If w is a continuous function of [0, 00), then w, converges
to w in Skorohod topology if and only if w, converges to w uniformly on
compacts.

Proof: Suppose A, be a strictly increasing continuous process such that w,, —
w in Skorohod. Then

jwn(t) = w(B)] < Jwn(t) = wAn(®)] + [w(An () = w(?)]

since w is continuous, it is uniformly continuous on all compact subsets of
[0, 00) thus,

sup (A (1)) = w(t)] = 0
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moreover, by assumption sup;< y |wn () —w(An(t))| = 0 and so we get w, — w

uniformly on compacts.

In order to define a topology with the above property, first set

1, t<N
Kn(t)={ N+1—t, te(N,N+1)
0, t>N+1
and
[|A]|° := sup IHM
s<t t—s

For w,w’ € D, define
On(w,w') = WE{A" + [[Kn (ANw(A) = Knw'[lo}

then, the metric § defined as

f:iN 1A Oy (w,w’)

N=1

is called Skorohod metric and it can be shown that makes D Polish (Theorem
16.3 Billingshley [1999]).

Compact sets in D[0,00)? are characterized again through Arzeld-Ascoli,
but now we can not use Bourbaki’s Theorem X.5.2. since it is suitable only
for continuous functions. The following is Theorem 16.5. from Billingshley

/1999

Theorem 1.12. (Arzeld -Ascoli in D[0,00)?) A set A C D[0,00)? is rela-
tively compact if and only if, for each n € N

sup sup |w(t)| < oo

w€eA t<n
and

lim sup w/,(w,d) =0
where

w (w,d) = inf max su w(s) — w(t)| = inf max wy[ti_1,t;
n(@:0) {t}51<z<uste[tlplt)‘ (5) ®)] {ti}s 1<i<u [tim, i)

23



while {¢;}i, is a partition of [0,n) with the property ¢; —¢;_y > 0 for every
1<i<u—1.

Now, If we consider (P(D),dp), to be the set of probability measures on
(D,B(D)) endowed with the Prohorov metric then, Remark 1.4. and Pro-
horov’s Theorem remain valid.

For now on, unless it is stated otherwise, the sampling space will be C[0, 00)? =
Q) equipped with the uniform on compacts metric.

We next define the function X that maps every element of ) to itself,
then X;(w) denotes the composition of X with the natural projection m; :
C([0,0])® — R? m;(w) = w(t) meaning

X(w(t)) = w(t)

We call the process X the canonical process and the o-algebra generated by
this process, the canonical o-algebra, this is G := o(X;,t > 0). A filtration
{F:} on a measurable space is an increasing sequence of sub-o-algebras, and
a process Z is said to be adapted to the filtration if for each time t, the
random variable Z; is measurable with respect to F;. In our case the smallest
filtration under the canonical process X is adapted to; is the natural filtration
generated by the process itself i.e. the collection {G;}i>o := (X5, s < t)i0.
The o-algebra G is in fact the same as the Borel g-algebra B(C|0, 00)?) with
respect to the uniform on compacts topology.

Proposition 1.13. G = o(X;,t > 0) = B(C|0, c0)?)

Proof: That G C B(C[0,00)?) is because 7; is continuous and therefore
uniform continuous on compact sets. To prove the other direction we use the
seperability of C[0,00)? In particular the collection C = {B(w,, %) ck,n €
N} is a basis for the uniform on compact sets topology, where {w,} is a se-
quence of polynomials that form a countable dense subset of 2. Meaning, we
can write any open subset G with respect to uniform on compact topology
as a countable union of elements from the collection C i.e.

G — U{w €N: sup |w(t) —wu(t)] < %}

te[0,Tn]

By the continuity of w(t) we can take the supremum over the rationals of
[0,7,]. And then we can conclude that any open set G is a countable union
of F- measurable functions, hence F-measurable.
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Definition 1.14. Set G;" := N~0Gi4c, if G;7 = G, for all t, then the filtration
is right-continuous.

Although the process has continuous paths, the natural filtration is not right-
continuous. Consider for example, the event

A:={w e Q: X (w) is right differentiable at 0}
then A € GJ but not in Gy = {0, Q}.

Let P be a probability measure on (2,G), we complete the o-algebra G
w.r.t. P, i.e. we consider the g-algebra consisting from sets A U N, with
A€ Gyand N C M while P(M) = 0. A reason why we want to do this, is to
gain measurability properties for random variables such as the sup,., f(Xj)
or stopping times T := inf{t > 0 : X; € A}, for some Borel measurable
function f and some Borel subset A of R

Suppose P is a probability measure on (2, F) where F is the canonical o-
algebra and suppose F; is the right-continuous modification of the completion
of the natural filtration.

Definition 1.15. A stochastic process X on a probability space (£, F,P) is
called progressively measurable (progressive) if for each ¢ > 0 the random
variable X is B([0,¢]) x F; measurable. This means

{(s,w) €[0,t] x Q: X(s,w) € A} € B([0,t]) x F;

for every Borel subset A in RY.

The canonical process is { F; };— progressive. This is beacause it is adapted to
the filtration F; and has continuous paths. It would be enough to have only
right or only left continuous paths (Proposition 1.1.18 Karatzas € Shreve
[1991]) implying that the canonical process on D[0,00)? is also progressive.

Proposition 1.16. The canonical process X on D[0, c0)?

measurable with respect to F;

is progressively

Proof: Fix t > 0. Define for each n € N the process

kt k+ 1)t
X)) = Xiegn () for k=0.1,..,2" ~1 and o < < ELD

and set X['(w) = Xo(w). The function (s,w) — X™(w) is B([0,t]) ® Fi-
measurable, since

{(s,w) : X} (w) € A} = {(s,w) : X%(w) € A}
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is either [0,1] ® {w : X i1 (w) € A} or 0@ {w : X ger1e (w) € A} and in both
2m om

cases, (because X is adapted to F3), is an element of B([0,¢]) ® F;. Now by

the right continuity of the process we have

lian?(w) = Xs(w) for (s,w) € [0,t] x Q

therefore X is also B([0,t]) ® F;-measurable as a limit of B([0,t]) ® F;-
measurable functions.

Definition 1.17. A stochastic process X has the Markov property and is
called Markov process if

E[X,|F,] =E[X,|X,] Vt>s

Definition 1.18. A stochastic process X; has the strong Markov prop-
erty if
E[Xiir|Fr] = E[X| X7]

for every finite stopping time T

Definition 1.19. A stochastic process X; is a martingale with respect to
a filtration {F;} if

e X is integrable
e X is adapted to the filtration {F;}+>0
o E[X|Fs] = X, YVt > s

One-dimensional Brownian Motion is a martingale. This is a continuous
process W; starting at 0, with independent increments W; — Wy having nor-
mal distribution N(0,¢ — s) if s < t. The d-dimensional Brownian Motion is
the d-dimensional martingale process (Wt(l), s Wt(d)) with independent com-
ponents where each component is one-dimensional Brownian Motion.

The stochastic process X; is a local martingale if there exists an increas-
ing sequence of stopping times 7,, such that lim, 7,, = oo and the stopped
process Xr, A+ is a martingale for each n. If X; is a local martingale, the
quadratic variation of X is defined to be the unique adapted increasing con-
tinuous process (X ); such that the process X? — (X); is a local martingale.
In general, square integrable continuous martingales have finite quadratic
variation,unbounded first variation and zero higher variations and in case of
Borwnian motion the quadratic variation is (W), = t. If X; and Y; are F;-
local martingales then the cross variation of X and Y is defined to be the
unique adapted continuous process of bounded variation (X,Y’); such that
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the process X;Y; — (X,Y), is a continuous local martingale.

Suppose M, is an F; - local martingale and X, is a measurable adapted pro-
cess satisfying the condition ]P’(fot X2d(M), < oo) = 1 for every t > 0. The
stochastic integral of X w.r.t. M is defined to be the unique local martingale
process I, = fot X,dM, such that

t
(I, Ny, = / Xd(M, N)q
0
for every N continuous martingale adapted to the filtration F;.

A continuous semimartingale is a submartingale process that arise as the
summation of a continuous local martingale and of an adapted non decreas-
ing process of bounded variation. Every submartingale has a unique a.s.
semimartingale decomposition due to Doob and Mayer.

Ito’s formula says that the class of continuous semimartingales is closed
under composition with twice differentiable functions and the a.s. unique
decomposition of { f(X;)}; is the following

d t . 1 d ' ‘ |
f(Xe) = f(Xo) + 221/0 O, f(X,)dX D + 5”21/0 0, F(X)d(XD, X D),

Brownian Motion plays important role in stochastic analysis and has the
following characterization due to P.Levy [1948]. (Theorem II1.3.16. Karatzas
¢ Shreve [1991])

Theorem 1.20. (Levy’s characterization of Brownian Motion) If M is a con-
tinuous d-dimensional F; local martingale and (M), M), = §,;t, for every
1 <1,7 <d, then the process M is a d-dimensional Brownian Motion.

Proof: By definition, we have to prove that the increments M; — M, are
independent of F; and have d-dimensional normal distribution with 0 mean
and covariance matrix (¢t — s)I, for each 0 < s < ¢. In order to do this, it is
sufficient to show for every u € R? P-a.s.

E |:ei<u,z>

}—s] _ ]E|:€i<u,:v>i| _ o llulP—s)

Fix v € R? and consider f(z) = e<%*>. Then 0;f(zx) = iu;f(z) and
Ojrf () = —ujug f(x). We apply Ité’s formula to f.

d t t
. . . . 1 .
€z<u,Xt> _ €z<u,XS> + Z/ wjez<u,xr>er(g) . _} : uj261<“’X’">dr
- S 2 S
j=1
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Because M is continuous square integrable martingale and f is bounded by
1, fot F(X,)dMY is a continuous square integrable martingale and thus,

t
E / ei<u7XT>dM7Ej)

.7:5] =0 P — a.s.
Given A € F,, we multiply e!<“Xt> by e~"<®Xs>1 , we have

d t
i<u,X¢—Xs> _ o i<u, Xr— X > )
e ILA_]lA—l—]lAg /zu]e dM,
j=1"s

1 b
_§1AHUH2/ 6z<u,XT—X5>dr
S

we now take expectations and use Fubini’s theorem to exchange integrals,
: 1 L
E[61<Xt—XS>ILA] — IP(A) o 5HUHQ/ ]E[eZ<U7XT—Xs>I]_A]d,’,.
S

This is a deterministic equation (Volterra integral equation of second order)
explicitly solved
E[ei<u,Xt*Xs> ]lA] _ ]P)(A)e*%HUHQ(t*S)

which is what we wanted since u in R? and A in F, was chosen arbitrary.

Stochastic integrals of measurable adapted processes w.r.t. Brownian Motion
are local martingales if ]P’(fg Xsds < 00) = 1. The converse is the Martingale
representation theorem

Theorem 1.21. Suppose M is a martingale related to a filtration on a proba-
bility space (Q, F,P). There is an extended probability space (2, F,P) which
a d-dimensional Brownian Motion W independent of M and a progressively
measurable (d x d) matrix process £ live in such that

t
E{/ §§ds<oo
0
for every 0 <t < o0

and the martingale process M has the following representation

d t
MO =3 / £ gy
j=1"0
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The last result in the introductory chapter is Girsanov’s transformation
[1960]. The theorem states that in a probability space (€2, F,P) equipped
with a filtration which satisfies the usual conditions, the class of continuous
martingale processes lie in (€2, F,P), remain invariant under a change of mea-
sure Cameron & Martin formula [1944] given that the changed probability
measure is absolutely continuous with P.

Let M be a positive continuous martingale starting from 1. Fix T > 0, we
define on (€2, F) a new probability measure Qr by setting, foreach 0 <t < T,

M, to be the Radon - Nikodym derivative C?—PT on the events of F;. i.e.

Qr(A) = Ep[M1 4]

whenever A € F;. We now, define a probability measure @ on (2, F)
that restricted to any F;, agrees with ;. Such a probability measure does
not always exists. Since the family of measures @); is consitence, as a re-
sult of the martingale property, the existence of such a probability mea-
sure Q on (R B(R™™*")) is due to Kolmogorov consistency theorem
(Theorem I1.2.2. Karatzas & Shreve [1991]), but we will need this result
and Girsanov theorem for the space of continuous functions and the fol-
lowing existence/extension theorem is the desired result in spaces of right-
continuous functions ( Theorem, Families of Consistent Probability Measures.

A.S. Cherny [2002]).

Proposition 1.22. Suppose @), is a consistent family of probability mea-
sures on (2, F;). Then there exists a probability measure @) on (£2, F) such

that Qlz, = Qs

Proof: We start by proving the statement for the natural canonical filtration
G = 0(Xs, s <t), then we can replace G; with it’s right continuous modifi-
cation using the following argument. Suppose we find a probability measure
() that restricted to G; coincides with @)y, then

Q|-7:t - Q|gt+1|]:t - Qt-l-llﬂ = Qt

Let @, be a consistent sequence of probability measures defined on (2, G,,).
We define for each n € N, the probability measures p, such that pu,(A) =
Qn(X an € A). Now each p, is a measure on (£2,G) where G is the Borel
B(C0,00)4) (by Proposition 1.13.). By Remark 1.7. every singleton prob-
ability measure on (£2,G) is tight. Using Theorem 3.6. this is equivalent to
the following two conditions.

1. for each € > 0, there is a ¢ > 0 and a ng € N such that p,(|Xo| > () <,
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for every n > ny.
2. for each € > 0 and n > 0, there is a § > 0 and a positive integer ny such
that

pin(we(0) > 1) < €

for every n > ng. Where w,(9) is the modulus of continuity of the coordinate
process.

So each u, satisfies the above two conditions. Fix N € N, then there are
0 > 0,¢ > O0andn > 0 such that

pn(|Xol > () <e

and
uzv( sup | X; — X >77> <€

[t—s|<d
t,s<N

Now we use the consistency. Because (),, agree with ) on the events of Gy
and because N is arbitrary, we conclude that the two conditions in Theorem
3.6. hold for ny = N. This yields that the sequence pu, is tight. By Pro-
horov’s Theorem, ,, is relatively compact and thus it contains a convergent
subsequence fi,, . The subsequental limit point x, will be the desired proba-
bility measure.

Fix M > 0, and consider the map G : C[0,00)* — C[0, M]?, with G(w) =
w(t), t < M. Take k to be the minimal & such that ny > M and define
probability measures R and Ry, for k > k

R=poG™ and Ry, = fi, 0 G

Ifk> /;, Ry, = R;. Because G is continuous, R, converges weakly to R and
thus R; = R. So, on the event of G~'(B(C[0, M]%)) the measures ji,, an Q
coincide, but G=1(B(C[0, M]?)) = Gy, hence

Q|gM = :un,;|gM = :U’M|gM - QM

Theorem 1.23. (Girsanov) Suppose X, M are continuous square integrable
martingales and My = 0. Suppose also that the stochastic exponential

1
Nt = eXp(Mt — §<M>t)
is a true martingale under P and let () be the unique probability measure
such that the restriction % := N;. Then the stochastic process

X — (X, M)
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is a martingale process under () and has the same quadratic variation with
X under P.

Proof: Assume without loss of generality that X, = 0 and let A € F,.
Then
EQ[Xt]lA] - EP[NtXtﬂA]

using integration by parts formula for stochastic integrals this equals to

t t
Ep[ﬂA/ N,ner} 4 Es [11,4/ erNT} FEp[(X, N)i14]
0 0

the above two stochastic integrals are well defined proper martingales there-
fore

Eo[X,14] = Es [nA / NTdXT} 4 Ee [nA / erNT} +Ep[(X, N),1,4] =
0 0

Eq[X:1a] — Ep[(X, N)1a] + Ep[(X, N)¢14]

next we have

EQ[{<X> N>t - <X7 N)s}]lA} = E]P’[Nt{<X7 N>t - <X> N>s}]1A] =

EP[BA/tg(M)rﬂXaM)r} :EP[:H-A/td<X,M>Ti| =
Ep[{(X,N); — (X, N)} 1]

hence the process X — (X, M) is a martingale with quadratic variation same
under both measures.

1.2 Weak and Strong Solutions

Suppose (©, F,P) is a probability space and b : R — R? ¢ : RY — R4 x R?
are Borel measurable functions and W is a d-dimensional Brownian motion.
A stochastic process X who satisfies the integral equation

t t
Xt—XO:/ b(XS)ds+/ o(X,)dW,,  Vt>0
0 0

Xo==x P-a.s.

is a solution to the stochastic differential equation for b, o with initial con-
dition € RY. The above integral equation can be written in a differential
form without a differential meaning

dXt == b(Xt)dt + O'(Xt)th
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This solution is also called pathwise solution to the SDE and the functions b
and o are called drift and diffusion coefficients respectively.

A solution to SDE(b, o, z) is called pathwise unique if there exist a stochastic
process X that satisfies dX; = b(X;)dt + o(X;)dW,; and if Y is another solu-
tion to SDE(b, 0, ) then X =Y P—a.s. . There are other two definitions of
solutions to the stochastic differential equation

Definition 1.24. A pathwise solution X of the SDE for b, o, x, W is called a
strong solution if X is adapted to the filtration generated by the Brownian
motion W

Definition 1.25. The pair (X, W) is called weak solution to the SDE for
b,o,x if X, W are both live on (2, F,P), Xy = = P-a.s. and X satisfies the
integral equation

dXt = b(Xt)dt + O'(Xt)th P-a.s.

A weak solution (X, W) is said to be weakly unique, if (X', W’) is another
weak solution, then, under P, X’ has the same probability law with X and
W' is a Brownian Motion.

Note 1.26. If the SDE has a strong solution, then the SDE has a weak
solution.

The converse is not always true. One counterexample is due to Tanaka
(Example 5.3.5 Karatzas € Shreve [1991]). We consider the function sgn to

be
(z) -1, =<0
sgn(x) =
g 1, x>0

1
sgn(z)

then we get, for each z € R, sgn(z) =

Example 1.27. The one-dimensional equation dX; = sgn(X;)dW,; (%) ad-
mits a weak but not a strong solution.
Proof: Suppose B; is one-dimensional Brownian Motion on a probability
space (2, F,P). We define the process

t
W ::/ sgn(Bs)dB;
0

This is a stochastic integral of a progressively measurable process with respect
to Brownian Motion with ]E[fot sgn®(B,)ds] = t < oo, therefore W, is a
continuous square integrable martingale with quadratic variation same as
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Brownian Motion. By Lévy’s characterization theorem 1.5., W; is also one-
dimensional Brownian Motion. This and the fact that dB; = sgn(B;)dW,
imply that (B, W) is a weak solution to (x).

If (B’,W') is another weak solution, then, using the same argument, B’ is
again Brownian Motion, implying that the weak solution to (x) is weakly
unique. We see that if (X, W) is a weak solution to (x),then we have also

d(—X3) = sgn(—X;)dW;

So if the solution is pathwise unique then X = —X P—a.s. This contradicts
with the fact that X is Brwonian Motion and therefore spends zero time at
zero, meaning that pathwise uniqueness does not hold.

Finally suppose that a strong solution X exists for equation (%) i.e. X is
a pathwise solution to dX; = sgn(X;)dW, that is adapted to F}V; which is
the filtration generated by the Brownian Motion W. Call FX the filtration
generated by the process X itself. Then, since F;* is the smallest filtration
X is adapted to, we get F¥ C FV for every 0 < t < co. Next using the
Tanaka formula (Proposition 3.6.8. Karatzas & Shreve [1991])

t
1

W, = / sgn(Xs)dXs = | X3 — lim —A({s <t :|X| <¢€})
0 e—0 2¢

where ) is the Lebesque measure. By this we get that W is adapted to F;¥,
meaning F;X C F}V C ]-"t‘X| for each 0 < ¢ < oo which does not hold and
thus (%) does not admit a strong solution.

Suppose X is a pathwise solution to the SDE for b,o,z,W. Itd's formula
says that whenever f is an element of C*(R?) then

d

FOE) = £ = [ 537 (X0, (X.) + 2 h(X)0uf (X.)ds

i,j=1 i=1

+ /O (XD (XY,

where a is the symmetric matrix function oo’ .

The integrant quantity of the Riemann-Stieltjes integral is a linear second
order partial defferential operator £ acting on X,. Thus the process

X - 1) - | LF(X)ds

is a local martingale with respect to {F;};>o for every f € C?(R?).

33



1.3 Martingale Problem

We saw that if X is a solution to the stochastic differential equation for b, o,
and x then by [t6 formula the process

Fx) - 500 - | LF(X)ds

is a local martingale for every f € C?(RY). If in addition o is bounded then
the above process is a true martingale.

The idea of Stroock & Varadhan is to use this as a key element for charac-
terization of diffusions

Definition 1.28. Let E be seperable and let A : B(E) — B(E) be a linear
operator. A stochastic basis (2, F, F;, P) equipped with an {F;}-measurable
process X is a solution to the martingale problem for A with initial condition
pePE) it

F(X0) — F(Xo) — / AF(X.)ds

is a martingale with respect to the filtration {F;}, for every f in the domain
of A, P-a.s. and Po X; ! = p

In what follows we will use a definition suited to continuous processes that
also associates martingales and SDE’s. We doing that, first by taking (92, F)
to be the canonical measurable space while F and {F;} satisfy the usual
conditions and second by replacing the arbitrary linear operator with the
infinitesimal generator of a Markov semigroup and consider martingale prob-
lems that arise from this operator.

Suppose b : RY — R? and a : R? — R? x R? are measurable functions
and let £ be the differential operator acting on functions of C*(R?)
T d
Lf(@) =5 Y aydyf(x) + D bi(z)0if ()

ij=1 i=1

Definition 1.29. A probability measure P is a solution to the martingale
problem for the operator £ with initial condition x if

(X)) — f(Xo) — /Ot Lf(X,)ds

is a martingale for every f € C?(R?) and
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Definition 1.30. Uniqueness for the matingale problem for the operator £
with initial condition z is said to hold if whenever P and P’ are two solutions
to MP(L,d,) then P =P".

The martingale problem is well-posed if there exists a unique solution for
every r € RY.

Being restricted on C[0,00)? if the martingale problem for £ is well posed
for every initial condition z € R? then the martingale problem for £ with
initial condition some probability measure ;. of R? is well posed.

Proposition 1.31. If the martingale problem for the operator L is well posed
for every x € R? then the martingale problem for £ with initial condition
p € P(RY) is well posed.

Proof: We fix x € R%. Suppose that P is the unique solution of MP(L, d,).
We define on 2 a new probability measure P# mapping each cylindrical Borel
set A to [pa P*(A)p(dz). Then

BH(X, € A) = u(A)

we name M = f(X,) — f(Xo) — fot Lf(Xs)ds and we take B € Fg, then

EJP’“ [Mtf]lB] - /

Rd

Ep-[M]/15]u(dz) = / Ep: [MI15]p(dx) = Ep[MI15]

Rd

Suppose now that there are two probability measure Py, P, as solutions to
the martingale problem for £ with initial condition . For I' € F and s > 0
we define .

Py(I') := Ep, [Ep= [1r|F]]

and .
Py(T") := Ep, [Ep« [11|F;]]

For the new probability measures we have

Py (Xo = z) = Ep, [Ep= [1{x,=0} | Fs]] = 1

and ~
Pa(Xo = 7) = Ep, [Epe[1 {xp=a} [ Fs]] = 1

Forevery Be F,,t>u. lf s<u<t

Es, [M/15] = Ep, [Ep: [M/ 15| F,]] = Ep, [Eps [Ep: [M] 15| F)| F.]]
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= Ep, [Epe [Ep« [M] 15| F,)|F]] = Ep, [Epe [M] 15| F,]] = Ep, [M] 1]
fTu<s<t

Es, [M] 1] = Eg, [Ep[M] 15| F.]] = Ep, [1 e [M/| F,]]

= Ep, [1pM]] = Ep, [M]15] = Eg [M] 1]

Finally if u <t < s

Es, [M{ 1] = Ep, [Eps [M{ 15| F,]] = Ep, [M{ 1] = Ep, [M]1p] = Ep [M] 1]

meaning that the process Mtf is an F;-martingale under measure P;. In the
same way we see that the measure P, is also a solution to the martingale
problem MP(L,¢,) . By the uniqueness of the MP(L, d,) we get P, = P,.
Because s was arbitrary we get

Ep, [Ep< [1r|F]] = Ep, [Eps[1r|F]]

for every I' € F and for every s > 0 which implies IP1(I") = Py(I") for every
I'e F.

Next we see that uniqueness of the martingale problem for the differential op-
erator £ implies the Markov property (Theorem 4.4.2. Ethier & Kurtz[1986]).
Later we will see that also implies the Strong Markov property.

Proposition 1.32. Suppose that for every two solutions of the martingale
problem for £ with initial condition z € R? we have that the cannonical
process X has the same one-dimensional distribution both under the two
probability measures (i.e.)

P[X; € A] = P'[X, € 4] VAe F,Vt>0

then X has the same family of finite-dimensional distributions under both
measures meaning that MP(L,d,) is unique. Additionally X is a Markov
process under P?, for every z € R%.

Proof: Let P, [P’ be solutions of martingale problem as described. In order to
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show that the cannonical process X has the same family of finite dimensional
distributions under those measures it is sufficient to show that

for every bounded continuous functions g;, for every ¢; € [0,00), for every
n € N. By the uniqueness hypothesis for n = 1 (1) holds. Proceeding by
strong induction, we assume that (1) holds for every integer 1 < k < n.
Fixing 0 < t; < ... < t,, we define two new probability measures on the same
measurable space

E[P? - E]PV

Ep[laliagr,y [T 9:(X4)]
Ep[I T, 9:(X4,)]

Q(A) = + Ep[lalser, ]

and .
— Ep[Lalgagr,y [imy 9i(X,)]

Ep [[Ti=1 9:(Xt,)]
The new probability measures Q, Q" are solutions of martingale problem for
operator £ with initial condition z € R,

Q'(A) + Ep[Lalacr, ]

and
Q/(XO = .CIZ') = ]P/(XO = $) =1

Suppose B € F;
EP[MthLB]l{MfIlB¢ftn} Hzﬁzl gi(Xti)]
EIP’[H?Zl gi(Xti)]

In case s < t, <t we get

EQ [Mtf]lB] =

+ EP[Mth[B]l{MfﬂBGftn}]

Eq[M]15] = Ep[M]15] = Ep[M!15] = Eq[M/ 1]

Ift,<s<t
EQ[Mtf]lB]

Es[M{ 1511y, o7, o TTimy 9:(X5,)]
E]P’[H?zl gi(Xti)]

 Ee[Be[M{ 15T, 6:(Xe) I F)]
Ep([Ti= 9:(Xe)]
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. EP[EP[MSJCHB H?:l gi(Xti)]
EIP’[H?:1 gZ(th)]
=Eq[M/15]

Finally if s <t < t,
Eq[M]15] = Ep[M] 1] = Ep[M!15] = Eq[M/ 1]

Similarly calculation for Q' shows that Q, Q" € MP(L,d,). Furthermore for
k =n we get
Eq[h(Xy)] = Eq/[h(X¢)]

for every bounded continuous function h, ¢ > 0. We choose t,,1 > t,, the
above relation implies

n n

Eelh(Xe,.) [ [ 9:(X0)) = Ew [1(X00) [ [ 06(X0)]

i=1 =1

This means that (1) holds for £ = n + 1 and the solution to the martingale
problem MP(L,J,) is a unique probability measure P?.
For the Markov property we need to show

Epz [f(Xigs) | Fs] = Epe [f(Xigs) o (X))

for every f bounded and continuous function.
We fix r > 0 and choose an element of F,, I’ with P*(F) > 0. We define
probability measures as follow

_ ]EI[DZ [HF]E]}DZ [1A|‘FTH

and
_ Epe [1 pEpz [1 4] X, ]]

P(F)
As before, Xy = x under both P; and Py and for B € F;

Py(A)

Ep:[1pEpe [Mg]lBU'—rH

Ep, [M/15] =
r, [M{ 1] P (F)
If s < r, because BN F € F,, we get
w1 f1 o1 <M1
Ep, M/ 1] = Ep:[1p M 1p] _ Epe[1pEp[M{1p| 5] Ep, [M/ 15

P (F) P (F)
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and if s > r, using tower property of conditional expectation we get

Epe [1 pEpe [Epe [M7 1 5| F| F,
EPl[Mtf]lB] = d [ e [Hfgch)t B| H H :Epl[MsfﬂB]

Similarly for P,. Meaning again that the measures P;,P; are solutions to
MP(L,é,). By the uniqueness of the martingale problem, we conclude that
Py = Py = P*. This implies that

Eps [1pEp: [f(X1)|Fr]] = Epe [1pEps[f (X)X ]]

for every non-null F,.-measurable set F', for every bounded and continuous f.
Because r > 0 was fixed arbitrary we have the Markov property.

Now that we have the main definition, we will study a compactness criterion
involving martingale problems. The next theorem (Theorem 1.4.6. Stroock
& Varadhan [1979]) gives necessary and sufficient conditions for tightness
of a family of probability measures on space of continuous functions. The
relation with tightness comes from Arzela - Ascoli and again Prohorov’s The-
orem translates the tightness of the family to compactness of it’s closure.

Fix n > 0. For n € N, define exit times
To=inf{t > 7y | X, — X, | > Z}

and
T0 — O

Fix T'> 0. Define N :=inf{n € N: 7,,,1 > T} and §(n) := Hii]l\l[{Tn — Tn-1}

Under the following conditions Stroock & Varadhan obtained an estimate
for the modulus of continuity of the canonical process.

(1). For all non-negative functions f € C§°(R?), there is a constant A; > 0
such that the process f(X;)+ Ayt is a non-negative submartingale.

(2). Given a function f € C§°(R?), the choice of A can be made so it works
for all translates of f

Lemma 1.33. Let (E,G,P) be a probability space and {&,},en be a non-
decreasing sequence of random variables taking values on [0, 00]. Suppose
that £ is adapted to a filtration G, and additionally suppose there exists a
A < 1, such that

Eyp [e—(snﬂ—sn)

G| <
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then if 77> 0 and N =inf{n > 0:§,,1 > T}, then N < oo and
P(N > k) <el)\*
Proof:
P(N > k) =P(& < T) = Ep[Lig,<rye e < e"Eple™]
also by the assumptions

Ep[eifk+1|gk] = e Tk Ep [e*(£k+1*€k)

gki| < etk

and thus, by induction
Eple ] < A*

Lemma 1.34. Under conditions (1) and (2) and for any n > 0, on the event
{7, < 0} P—as.
P(1hi1 — 7 < 6|F;,) < And

Proof: Set € := 2. Consider a C§°(R?) function 0 < f < 1 such that f(0) =1
and f(x) = 0, if |x| > e. By hypothesis, the process G(t) := f(X;) + At
is a submartingale under P w.r.t. F;. Now, given s < ¢, take A € F, and
B € F,,. Then

Ep[Ep|G(t)1a|Fr, | 1nir<st] = Ep[G(t) L anBn{r.<s}] =

EP[G(S>1AHBQ{Tn§s}] = EP[EP[G(S)ILA’}_T”]ﬂBm{rngs}]

this implies
Ep[G(t)1a|Fr] > Ep[G(s)1a|Fr] P—as. on {7, <s}
Take w’' € FeN {1, < s}, where P(F') = 0 such that
Equ[G(t)1a] := Ep[G(t)14] 7, ](w) 2 Bp[G()1alF7, J(w') := Egur [G(s5)14]
then
Equ |G 1alr,<] 2 Equ [G(1)1alir, <] = Egu [G(s)1alir, <5)]

meaning { f(X;) + At} 1, <, is a submartingale process under Q“" for each
W e Fe.

Next, define f*'(X;) := f(X; — X, () (W) on {7, (w) < oo} and f(X;) =1,
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otherwise. We also have the submartingale property for the stopped process
and the stopping time 7,1, on {7,(w') < co}. In particular,

Equ [F* (Xnanm(w)+s) + Actu(w) + 0)] 2 Equ [f* (Xr,w)) + Aeta(w)]

because f(0) = 1, this is

EQ“/ [fw/ <X7n+1/\7'n(w’)+5> + AG(S] > 1

for any w’ € F°. This is

]EQ“’/ U‘ - fW/<XTn+1/\Tn(w/)+(5>] S AE(S

Finally, on the event {7,.; — 7,(&') < ¢} inside {7,(w') < oo}, by the
definitions of the exit times and f

1- fw (an+1/\fn(w’)+5) =1- f(XTn+1 - Xm(UJ’)(‘*/))l —-0=1
This says, that on {7,(w') < co} for any w’ in F'® while P(F) =0
Eqor [Lrs—ra(w)<sy] < Acd
which is the same with

Ep[l,, ., — T < d|F,,] < Ad P—as. on{r, < oo}

Tn+1

Theorem 1.35. Let II be a family of probability measures on (€2, F) such
that

lim sup P(| Xo| > ¢) =0

¢—00 Pell
Additionally, assume that every probability measure P in II, satisfies the
conditions (1) and (2) and that the choice of the constant A; can be made
independent of P. Then II is relatively compact.

Proof: By Theorem 7.3. Billingshley, it is sufficient to show, for all n > 0 for
all ' > 0

limsupP| sup | X, — X|>n] =0
6—0 pelr [t—s|<6&

t,s<T

First, note that {0(n) > 6} C ¢ sup |X; — Xs| < np. To see this, consider
[t—s|<d

an w such that d,,(n) > § and take t, s < T such that [t —s| < § < d,(n). The
sub-intervals [7,_1(w), 7,(w)) have length greater than d,(n) except possibly
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[Tn, T'], since 6,(n) defined to be the minimum such length. Therefore ¢, s
are in the same sub-interval or in adjacent sub-intervals. Therefore, in case
t, s lie in the same sub-interval [1,,_1, 7,,)

[ Xe(w) = Xs()] < [Xelw) = Xy ()] + [Xs(w) = Koy (W)] <

N3

and in any case,
’Xt - Xsl S 77

implying the inclusion

sup [ Xy(w) — Xs(w)| <7

|t—s|<6 <80 (1) N

Instead, it is sufficient to show

lim supIP’<(5(77) < 5) =0

0—0 pe11

We use the conditions (1) and (2) through Lemma 1.34.

P(o(n) <0) < P(%lé}cl{Tn —Tn1}) +P(N > k) <

k
Z]P’(Tn —Tpo1 <O0)+P(N > k) <
n=1

k6As +P(N > k)

thus, we need to show
lim supP(N > k) =0

k—o00 per1
This holds again by Lemma 1.34.

E]P |:e_(7—n+1_7—n)

Frn] < P(Tn-i-l —Tp < to"FTn) + e_to]P)(Tn-i-l —Tn > t0|‘FTn)

= e "4+ (1 — e )P(Ths1 — T < tol Fr,) < €704 (1 - eitO)A%tO

Call A := 7"+ (1—e7") Anto and choose #, such that A < 1, then by Lemma
1.33.

supP(N > k) < e\ — 0
Pell k—o00
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2 Equivalence between Well Posedness for Mar-
tingale Problem and Well Posedness for SDE

Suppose the stochastic differential equation with coefficients b and ¢ has a
weak solution which is unique in the sense of probability law, then we say that
the SDE is well posed. This unique solution induces on (C[0, 00)?, B(C[0, 00)4]))
a measure which solves the local martingale problem for the associated op-
erator. The converse is also true and in fact on C[0,00)¢ there is a complete
equivalence between weak solution for SDE and solutions for the assiciated
(local) martingale problem (Theorem 4.5.2. Stroock & Varadhan[1979]).
The coefficients a;;, b;, 0 are supposed to be measurable functions. First we
consider the case where the operator £ is uniformly elliptic (Theorem V.1.1.
R.Bass[1997]) i.e.

sup |[bil|ec < B

d
Alyl? < Z aij(x)yy; < A7yl

ij=1

for A,B some positive real numbers and for every z,y € R?

Theorem 2.1. Let a = ool and L is uniformly elliptic. The stochastic

differential equation for b,0c and starting point x has a weak solution which
is weakly unique if and only if the associated (local)martingale problem has
a unique solution.

Proof: Existence

( = ) Suppose the SDE for b, ¢ and x has a weak solution. This means
that

t t
Xy = Xo+ / b(Xs)ds +/ o(Xs)dWs
0 0

for some d-dimensional Brownian motion W. We apply Ito formula

d t
0, (X)d(X®, X0y,
3 / X)X D, X0

ij=1

d t . 1
X0 = 100+ 3 [ Xaxs +

Calculating the variation of every coordinate of X and the covariation be-
tween the coordinates we get

d
X0~ B8+ 3 (X))

j=1
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d(X® X0y, Z Z Tin(X) 0 jun (X1 ) d(W W ()Y,

n=1 m=1

The d-dimensional Brownian motion is a vector of d independent one-

dimensional Brownian motions meaning d(W ™ W (™)), = 0 whenever n # m.
S0

d
d(XD, XD, = Z Oin(Xe)ojn(Xy)dt = a;;(X,)dt
n=1

So we get

Ly (X0, £(X,)ds

P = 10X+ [ MX)OSK) + 5

/Zaf o (X )dw

2,7=1

f(X0) = f(Xo) //Jf ds+/Zaf )0 (X )dW )

7,7=1

If the functions b, o are supposed to be bounded and f has compact support
the stochastic integral becomes true martingale. So the distribution P of the
process X is a solution to the martingale problem for £ with initial condition
X.

(<=) Suppose now that P is a solution to (local)MP(L, d,.). The test process
M/ is a local martingale for every f € C%(R?). We choose f(z) = x; for
every x € R% Then the i-th component of the process M/ is continuous a
(local) martingale

Next for f(z) = z;x;
M = xPxP - xPx§ — / {aij + bi(X) XD +b;(X,) X Y ds
0

is also by assumptlon a continuous local martingale. Therefore we can write
the process M( M(] fo a;;(Xs)ds in the form

MO MOXP-MP X+ [ (X=X (Xdst [ (X=X )by (X)ds
0 0
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N /0 b(X.)ds /O (X, ds

which equals to

] ] ¢ ; 7 ¢ i 7
M(U) M(Z)X( 7) Mt(J)XéZ)—l-/ (Ms(z)_Mt( ))bj(Xs)dS+/ (Ms(z)_Mt( ))bj(Xs)dS
0 0

_/Otbj(xs) /stbi(Xr)drds—/otbi(Xs)/stb (X, )drds+/otb (X, )ds/otbi(Xs)dS

because the process M."” is a martingale we have that fg |b;(Xs)|ds < o0

P—a.s. By Fubini we get that

MOMO _ / a5 (X ,)ds = M — MO x O _ y0) x 0
0

+ / (M — M™Yb,(X,)ds + / (M — MYb,;(X,)ds
0 0

We can write the term fOt(Ms(Z) — Mt(i))bj (X;)ds as follows

t , t pt '
/O (M — M™Yb,(X,)ds = — /O / dMDb;(X,)ds

We then use stochastic Fubini and write

/ / 5)dsd ML / / X,)dud M

This means that the integrals [ ( (M —MD)b;(X,)ds and N (M =MD (X,)ds
are both martingales. Because these are Riemann Stieltjes integrals this im-
plies that are both zero. Finally we get that

MOMO _ / 0 (X )ds = M — MO x 0 _ y0) x 0
0

is a sum of martingales, therefore a martingale.

Because the operator is uniformly elliptic the d x d matrix a is symmetric
strictly positive definite and so it’s square root is an invertible matrix, thus
we can define the process

t
W, = / o (X, )M
0
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The process o' is also M - integrable because

— E: /0 Za;,;(xs)aim(xs)ds] :]E[ /0 t @'dijds} = idyt

That means, the process W is a continuous martingale with d(W® W), =
d;;t under the probability measure P.
By Levy characterisation theorem for Brownian motion, W is a d-dimensional
Brownian motion. We now recal that the process M4 = Xt—XO—fOt b(Xs)ds.
Then we have

dW, = o (X;)d M

th = U_l(Xt) (dXt - b(Xt)dt)
dXt = b(Xt)dt + O'(Xt)th

Namely, the pair (X, W) is a solution to SDE for b, ¢ and x under P.
Uniqueness ( = ) Suppose the solution to the stochastic differential equa-
tion is weakly unique. Let P; and P, are two solutions to the associated
martingale problem MP(L,d,). By the first assertion of the theorem, there
exist a d-dimensional Brownian motion Wj such that

dX; = b(Xy)dt + o(X;)dWy, P;-a.s.
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and similarly, a d-dimensional Brownian motion such that
dXt = b(Xt)dt + O'(Xt>dW2t PQ-&.S.

By the weak uniqueness assumption, this implies that P; X! = P, X! and
we have uniqueness for the martingale problem.

(«<=) Conversely, suppose now that the martingale problem MP(L,J,) has
a unique solution and let (X', Wy), (X2 Ws) be two weak solutions of the
associated SDE under a probability measure P on a filtered probability space
(E,G). The d-dimensional process X' is continuous and maps E onto Q. We
define the probability measure Py on (€2, F) to be the measure

P(Z € A) =P(X' € A)
for every A cylindrical set. Similarly we define
Py(Z € A) =P(X? € A)

The cannonical process will be Z such that Z(X!') = X'. Then, Py(Z, =
) =P(X'y =12) =1 and Py(Zy = z) = P(X?; = z) = 1. Also the process
M/ is a local martingale under both measures P; and P,. By the uniqueness
of martingale problem P; = Py. This means that

P(X'c A)=P(X%c A)

for every A cylindrical set, meaning that every two solutions to SDE have
the same finite dimensional distributions i.e. the solution to SDE is weakly
unique.

This equivalence is still valid if we consider operators not necessarily uni-
formly elliptic. In the above proof we use uniform ellipticity in order to
define the driving Brownian motion for the stochastic differential equation
dM? = o(X;)dW;. We now see that this can be done without the assump-
tion that o' exists (Proposition 4.6 [p.316-317], Karatzas € Shreve[1991]).

Theorem 2.2. Suppose a = oo’. Let P is a solution to the martingale
problem for £ with initial condition x, then there exists a d-dimensional
Brownian motion W on an extension probability space (E, G, Q) of (2, F,P)
such that the process (X, W) is a weak solution to SDE for b, and x.

Proof: The process M4 = (Mt(l), ...,Mt(d)) where Mt(i) = Xt(i) - X(()i) -

fg b;(X)ds is a continuous d-dimensional F;- martingale. The cross covari-
ance between components (M@ M), is the absolutely continuous function
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over t for almost all w, f(f a;;(Xs)ds . We use the martingale representation
theorem to establish the existence of a d-dimensional Brownian motion B on
an extention probability space (£,G,Q) adapted to a filtration {G;}; and a
d x d matrix of measurable adapted processes {£,}; such that

t
E@[/ 5”3(15} < 00 for all t € [0, 00), for all 4,5 € {i,...,d}
0
and .
M4 = / £&dB,  Q-as.
0

Next we need to construct an d-dimensional Brownian motion W such that

t t
/ o(Xs)dWs = / &,dB, Q-a.s.
0 0
We consider the d x d matrix function R({, o) defined on the set
D={(&0):£0€ Myq(R) and &5 =o0"}

such that R = ¢ and RRT = I (Problem 5.4.7. Karatzas & Shreve [1991]).
Such function R exists because the matrices oo? and ££T are symmetric
therefore can be diagonalized with decompositions UA,UT and VA VT where

U,V are orthogonal . Consequently we can write 0 = VooTU and £ =
VEETV . Next we define R(£,0) to be U™V and check that R satisfy the

above conditions
oUWV =VooTV = \JETV = ¢
vtviotvy =utvwlu =1

Finally we define the d-dimensional Brownian motion to be the process
t
W, = / R (&, 0(X,))dB,s
0

The process RT (&, 0(X,)) is Gi-progressive as composition of the Borel mea-
surable RT and the G;-progressive (¢, 0(X)). This is implies that W a con-
tinuous {G;}—martingale w.r.t. Q since

Eq [W}”Q] — o / t i R Rads| = t < oo
0 jk=1

especially
<W(i), W(j)>t = 5t

By Levy’s characterization, W is a Brownian motion and therefore

t t
/ o (X,)dW, = / ¢,dB,
0 0
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Remark 2.3. The d x d function R(&, o) is Borel measurable.

Proof: We consider the characteristic polynomial of a = oo’

Xa(A) = A+ cu X7+ L+

The coefficients of x, are linear combinations of elements a;;, 0 < ¢,5 < d,
meaning ¢, 0 < k < d — 1 are Borel measurable functions. The roots
of the polynomial are continuous functions of the coefficients, therefore the
eigenvalues of a are Borel measurable functions.

We next use Theorem 1, Edward A. Azoff [197]] : If E is a o-compact, closed
set in X x Y, where X, Y are complete seperable metric spaces, then 7mx (F)
is Borel and there exists a Borel measurable function ¢ : 7x(E) — Y whose
graph is contained in E. Like Corollary 5, EFdward A. Azoff now define

E={(a,U,A) € Mygyq(R) X Mynq(R)x Mgy q(R) : U 'aU = A, Ais diagonal

U is orthonormal}

The projection mar, ,myxmy, &) = Maxa(R), since every symmetric posi-
tive semi definite matrix admits diagonalization. Consider Borel measurable
function ¢ : Myyq(R) X Myxq(R) = Myxq(R) of Theorem 1 of Azoof and set

U(z) = d(a(z), A(x)), when is is defined
a 0, elsewhere

Using the same process, the matrix ¢7 will have a Borel diagonalization
VAVT and therefore the matrix function R(E, o) defined above as U~V is
Borel measurable.
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3 Uniqueness of Martingale Problem Solu-
tion and Convergence of Probability mea-
sures

In this section at first we present a sufficient condition in order to have
uniqueness of MP, relating existence of another problem; the Cauchy problem
(Stroock €& Varadhan [1969]). Then, if we assume uniqueness we see that we
get as a result a Strong Markov diffusion process. After that, we study
convergence of solutions of martingale problems. The basic result is that if
the MP for continuous bounded operator £ is well posed with unique solution
a probability measure P and we can appropriately approximate this operator
with a sequence £,, for which the MP admits solution P", Vn, then we have
convergence of measures P to P under the weak topology. Later we will use
this fact to prove two existence results: The first is existence of solutions
of MP for continuous coefficients. The second which is a stronger result, is
existence of solutions of MP for measurable coefficients but stays valid only
in the elliptic case. In order to prove the last result we will first use the
Girsanov theorem to eliminate the neccesity of the drift coefficient.

3.1 Conditions for Uniqueness

Suppose that f is a continuous function with compact support. A bounded
continuous function u of [0, 00) x R? which is continuously differentiable in
t and C? with bounded first and second derivatives in x, is a solution to
Cauchy problem if

%zﬁu(tw) >0,z €R?
u(0,2) = f(z) ,z € R?

Theorem 3.1. (Stroock € Varadhan [1969]) Suppose that for any f €
C5°(R?) the Cauchy problem has a solution u; € C([0, 00) xRY)NC2((0, 00) x
R?) which is bounded on each strip [0, T] x R?, then if the martingale prob-
lem for £ with initial condition 2 € R? admits a solution, it is unique.
Proof: Let P{ and P§ are two solutions of the martingale problem MP(L, d,,)
and f € C°(R?). For fixed T we define the function g(t,z) = us (T — t,z).
g is an element of C([0,7] x RY) N CY2((0,T) x R?) and satispfies

2002) L pot ) =0 te(0,T),x€R?
g(T,l’):f(:E) ,ZL’ERd
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For each P, ¢ = 1,2, we consider the probability measure QQ; on the corre-
sponding extended probability space under which the cannonical process X
is a solution to SDE for b, o and x. We use Ito’s formula for ¢(t, z).

9t X)) — 9(0, Xo) = / 00 X) | gg(s, X )as

/Z(?th X)W

i,j=1

meaning

9(t, X,) — 9(0, Xo) = / Z ath X,)dW?

3,7=1

This means that g(t, X;) is a local martingale under Q;, for i = 1, 2. Because g
is bounded and continuous, by dominating convergence theorem we conclude
that g(¢, X;) is a true martingale. Therefore

]E@1 [f(XT)] = EQl [Q(Ta XT)]
= Eq,[9(0, Xo)] = (T, x)
= ]E@2 [9(07 XO)] = EQ2 [f(XT)]

The function f was chosen arbitrary in Cg°(R?) which is a class that deter-
mines probability measures, so Q; o X' = Q, 0 X' By proposition 1.11,
Py =Py,

We used the fact that the class Cg°(RY) determines probability measures (problem
5.4.25 Karatzas €& Shreve [1991]).

Definition 3.2. A class of real functions C is called (measure)determining
class, if any two measures puq,us coincide if

/ F(a)un(dr) = / f@(dr)  Vfec

Remark 3.3. The class C5°(R?) is measure determining class.

Proof: Suppose (R?, B(R?)) is the Borel measurable space of R?. Suppose F
is a closed set and let € > 0. We denote by F = {x € R? : d(z, F) < €} and
choose

d(z, F)

f(z) = max{0,1 — }
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This function is bounded, uniformly continuous and absolutely integrable in
R?. We next choose a function ¢ in C§°(R?) such that [ ¢(x)dz =1 and let

oOn(z) = % We now consider the convolution f, := f * ¢,.

First we notice that f,, is an element of C5°(R?). Because ¢, has compact
support, there is a compact set K such that ¢,(z) = 0, Vo € R?/K. This
implies that the closed support of f, is a subset of K, therefore bounded. By
definition, the closed support of a function is a closed set, meaning f, has
compact support.

Fix 7o € R Because ¢, is continuously differentiable we get

" (o) / f(20 — 9)é,(y)dy = f * ¢, (o)
taking |z — xo| < 0, we get
f(x) xor</|fx— F (o — )11, (v) dy

< [ Arm, <% [ 1ehwlay

oM

€

<

The second inequality is due to |f(z) — f(y)| < @ and the last is by the
continuity of ¢/, on compact. This means f, is continuously differentiable
and using the same argument and induction we conclude f, € C§°.

Next we want to use the fact that f, — f.

) = 1) = | [ (@ =) = 1)) onlu)dy
< [ 15 =) - F@loty/myniay < [ =2

Letting n — oo we get || f, — f|| — 0.
Suppose now that for two measures pu and v the following identity holds

/h(x),u(dx) = /h(m)y(dx) Vh € C°(RY)

Choosing h to be the convolution f * ¢, we get by dominating convergence

theorem
[ t@ntds) = [

f is an approximation of the indicator function of F, satisfying

—dy

d(y,0) M’

nd

1p < f < 1p
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taking integrals

WP < [ f@utds) = [ flatds) < v(F)

the above relation holds for every e¢ > 0, choosing ¢, = ¢/n and taking
n — oo we get u(F) < v(F). By symmetry we conclude u(F') = v(F), for
every closed set on R%. Closed sets generates a Dynkin class equals to the
Borel sets, implying u = v.

Solutions to the Martingale Problem conditioning that the process has con-
tinuous trajectories, are diffusion processes. We now study what properties
will have such process if the MP has unique solution.

3.2 Strong Markov Property

Suppose that the SDE for b, o is well posed. For each z € R? we let P*
to denote the unique probability law of this unique solution. The canonical
process X equipped with {P*} is a Strong Markov process(Proposition 1.5.1,
R.Bass[1997]).

Proposition 3.4. Suppose the martingale problem for £ is well posed and
P? is the solution of the martingale problem for £ with initial condition =z,
for each z € R Then the process (X;,P¥) is a Strong Markov process for
every x € RY.

Proof: Fix € R?. If the operator £ is uniformly elliptic, then by Theorem
2.1 the unique probability measure P* that solves the martingale problem
for £ and initial condition x, is the unique probability law of the weak solu-
tion to SDE for b,0 and x. By proposition 1.5.1(R.Bass[1997]), the process
(X, P?) is a Strong Markov process.

In case £ can degenerate, we consider the unique solution P* of the martin-
gale problem to be the probability measure induced by the process X from the
extended probability space (F,G,Q) where the solution to SDE exists, i.e.
P* = Q o X~ !. By the uniqueness assumption, every two solutions to SDE,
X1 X? on (E,G,Q), will induce the same measure on (£2, ). This implies
that X! and X2 have the same family of finite dimensional distributions and
weak uniqueness holds and thus the process (X;, P*) forms a Strong Markov
process.
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3.3 Convergence results

Lemma 3.5. Suppose for every n € N, P" is a probability measure on ).
Let X,, be a sequence of continuous progressively measurable processes such
that
sup sup | X, (t,w)| < oo
n tw

and each process X, is a martingale under P”. Assume that there is a process
X jointly continuous in t and w progressively measurable, and a probability
measure P on {2 such that P" converges weakly to P and X,, converges uni-
formly on compact subsets of §2 x [0, 00) in X. Then X is a local martingale
under P.

Proof: Let 0 < s < t and f be a bounded continuous JF,- measurable
random variable. Then X,f is F,- measurable and X,f is J;- measur-
able r.v. Both P — a.s. are continuous. We consider the stopping time
T = inf{t > 0 : |X;| > M}, because X is continuous 7y — oo and the
random variables Xsar,, f Xiar, f are both bounded. Therefore by the as-
sumption of weak convergence

Ep [Xt/\TM f] = hgn Epn [Xt/\TM f]
Moreover

‘EP”[XMTMH - EP”[ ;\T]y{f” < ||f||EP" UXt/\TM - th/\TM|]
Because X™ — X uniformly on compacts, we have

lim sup |X” — Xs/\TM| =0
<t

SATM
noog<

and X" is uniformly bounded on compacts meaning also

n
SATNM

Epn[supsup | X[, |] < o0

n s<t

For every ¢ the sequence | X7, . | is dominated by sup, sup;, , | X7, (w)| < o0
implying that the sequence Xy, is uniformly integrable on compacts. By
Vitali’s theorem this means E[[ X7, ~— Xinr,|] = 0 as n — oo.
Thus,

EP[XU\TM f] = hfln E]P’" [Xn f] = hTan EPn [X;LATM f] = ]E]P’[XS/\TM]

tATM
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Since X is a continuous process, the stopping time 7y — 0o a.s. as M — oo
and therefore X is a local martingale under P.

We again consider the d-dimensional canonical process in its usual proba-
bility space and the usual second order linear differential operator £ with
diffusion and drift coefficients a and b respectively. A consequence of well
posedness of the martingale problem for £ is that under conditions of the
coefficients if we have convergence of operators £, to L, there is stability of
the solutions of the associated martingale problems (Theorem 11.1.4. Stroock
¢ Varadhan [1979]). We will need theorem 7.3 from Billingsley [1999).

Theorem 3.6. The sequence of probability measure {P"}, is tight if and
only if the following conditions hold
(i) for all n > 0, there exist a positive number ¢ and an ny € N, such that

P'(|Xol = Q) <, YnZmg

(ii) for all € > 0,

lim lim sup P"(w,(6) > €) =0

0—0 n
Proof : ( = ) Suppose {P"}, is tight. Given n > 0, by definition we can
choose a compact set K such that P"(K) > 1—n for all n. By Arzeld - Ascoli
theorem the set K is a subset of {w : [Xo(w)| < ¢} for some ¢ and is also
a subset of the event {w : sup;_y<s|Xi(w) — Xs(w)| < €} for some §. This
implies that

P(1Xol > O) <1

and
P (w,(d) >¢€) <n

for all n.

( <= ) We assume now, that the sequence of probability measures sat-
isfy conditions (i) and (ii). Every probability measure on C[0,00)? is tight,
therefore if we take finitely many probability measures {P"}°, for every
n > 0,e > 0 we can find (, and 9, 1 < n < m such that, Vn

P (| Xo| > Gn) <1

and

P"(w,(0,) > €) <n
then taking ( = max {¢.} and 6 = 1211121 {6, } we have conditions (i) and
(ii) for finitely n’s. Therefore it is sufficient to prove that conditions (i)-(ii)
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implying tightness assuming ng = 1.
Given 7 > 0 and € > 0, choose ( > 0 and ¢ such that

P*"(|Xo| >¢)<n  Vn

and 0

P (w,(0x) > €) < 5 Vn
we call B := {w : [Xo(w)| < a} and By := {w : wy(w)(6r) < £} and we have
P*(B) > 1 —n and P"(By) > 1 — 5. Finally we define the event

A:BﬂﬂBk
k

and get
P"(A) >1-2n  Vn

The set A satisfies the conditions of Azarld- Ascoli meaning it is relatively
compact. This implies that A is compact, meaning the sequence P" is tight.

Theorem 3.7. Suppose that a and b are continuous uniformly bounded and
a is positive semi definite d x d function matrix. Suppose the martingale
problem for £ is well posed and P* is the unique solution for MP(L,d,),
for each x € R% Next assume that there are sequences {a,} and {b,} of
measurable functions such that a, is positive semi definite for each n > 1
and that for all 7> 0 and R > 0 the following hold

sup sup ||an(z)[| + [ba(2)] < 00

n |al<R

and

hm/ sup (||an(z) — a(z)|| + |bu(z) — b(z)|)ds =0

|z|<R

If P" be a solution to the MP(L,,, ., ) and z,, — x, then P" = P

Proof:

First we show that the sequence P" is relatively compact, i.e. that there
is a convergent subsequence P". FEach P" is a probability measure on
C[0,00)%. We are going to use the Arzeld-Ascoli type theorem(7.3) from
Billingsley([1999]) to establish tightness, then by Prohorov’s theorem we will
conclude that the sequence is relatively compact. The first condition holds
for ( = sup,, |z,| + 1. For the second condition we need to estimate the
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modulus of continuity of the paths of the cannonical process. Fix 0 < s <1
and let A be the bound of b, if € > 2A(t — s), from remark 3.8. we get

IP’”( sup | Xy — X| > e) < IP’”( sup |M;| > 5/2) < 26—8%

s<t<s+9 t<s+4

This bound does not depend on n, therefore we conclude for every ¢ > 0

- n S ) —
(I;I_I}(l) hmnsupIED (wy(0) > €) =0

Now we have that the family P™ is sequentially relatively compact, so there
is a subsequence P converges to a measure in (C[0,00)?, B(C[0,00)%)) un-
der the weak topology. We consider ) to be a limit point of a convergent
subsequence P of P". We are going to show that () is a solution to the local
martingale problem for £ with initial condition x.

By hypothesis P is a solution to MP(L,,,d,, ), Xo is a continuous and
bounded random variable under P** and x,, — x, so we get

and
Epni [(X0)] — Eq[h(Xo)]

for every bounded continuous function h hence, Q(X, = x) = 1.
Next we have to establish the martingale property. We consider a bounded
function f in C*(R?) with bounded first and second partial derivatives and
the exit time 75 = inf{t > 0: |X;| > R}. From our limit assumption we get
that fOT L, f(X,)dr converges uniformly on compacts to fOT Lf(X,)dr. We
define .
M= (X0~ £O%) ~ [ £up(X)ar

0

and

t
My = F(X) ~ £X0) ~ [ £7(X)ar
0
So we have that M converges uniformly on compacts to Mis., and that

Nk
supsup |ME | < oo
k tw

By Lemma 3.5 we get that the process M-, is a martingale under (). By the
well-posedness of the martingale problem for £ we conclude that ) equals
P? on F,,, for every R > 0. If f is a function in C*(R?) but not necessarily

TR
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bounded we consider a bounded function fr with bounded first and second
partial derivatives that equals f on the ball B(0, R). Then the process

MI™ = fa(X0) = fr(Xo) — / Lfn(X,)dr
0

is a martingale under ), which implies that for arbitrary f € C%(RY), the
process Min-, is a martingale under Q.

We have till now, that every subsequental limit of P" coincides with P* on
the events of F,,, for every R > 0. Finally we consider g to be a bounded

TR
and continuous function, then

[Ez,, [9(X0)] — Eelg(X0)]| <

|Es,, [9(Xe)Lrast] — Epe [9(Xe) Lrp<e] 4+ Epor [9(Xe) Lrpne] — Epe [9(Xe)Lrpsi]]
< |lglP™ (rr < ) + [|gl[B* (TR < T) + [Epne [g(X0) Lrgse] — Ere [9(X0) Lo |
letting k — oo, because the event {7z <t} is closed in 2 we get
[Eqlg(X1)] — Ep=[g(X0)]| < 2[|g]|P* (7 < 1)
letting R — oo, we get P*(1g < t) — 0, implying

Eqlg(Xe)] = lim Epni [9(X,)] = Ep= [g(X0)]

for every bounded and continuous function g. This means that any conver-
gent subsequence has limit point equal to P* and this means that the whole
sequence converges to P* (Theorem 2.6. Billingsley[1999]).

The next remark is ezercise 1.8.13 from Bass [1995], we imitate the proof of
Proposition 1.4.8 (Bass[1995]), which is the result in the case of Brownian
motion.

Remark 3.8. If M is a continuous martingale with My = 0, then

P(sup |M,| > n, (M), < ) < 2e” %0

s<t

Proof: Let v > 0 and let Ny := exp (yM, — $7*(M),), then if Ele2tM)] < oo
for every t, N is a continuous martingale and by Doob’s inequality

P(sup My > n, (M), < 0) = P(sup N, > 6777’%729) < e’””*éyzeE[Nt]

s<t s<t
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We choose v = §, and get
2
P(sup M, > n, (M); < 0) < e %

s<t

We repeat the argument for —M and get

[N

P(sup(—M;) >n, (M), < f) <e 2

s<t

we then, add the two inequalities.

A consequence of convergence of probability measures is the following ex-
istence result which is the Skorohod theorem [1965].

Theorem 3.9. Suppose a and b are uniformly bounded continuous functions
and a is positive semi definite. Then for each x € R?, the MP(L, §,) admits
a solution.

Proof: We consider the associated stochastic differential equation SDE(b, o, )
where a = go?. We choose sequences of C?(R?) uniformly bounded func-
tions o7; and b} that converge uniformly on compacts to o;; and b; respectively
(this approximation can be done due to Weierstrass approximation theorem).
Next consider

dX{ =b"(X)dt + o"(X]")dW,

Because the coefficients are Lipschitz continuous, the SDE(b", 0™, ) has a
unique weak solution. By theorem 2.1. there is a unique probability measure
P" solving MP(L,,, d,).

As in theorem 3.7. the sequence {P"}, is relatively compact, therefore has
a convergent subsequence P". Let P be this limit point. This probability
measure will be the solution to MP(L, d,,). Every diffusion X" starts from x
and lim, P™ =P, so

P(Xg=2)=1

Let f € C?*(R?Y) and fr € C?(R?) a bounded continuous function with
bounded partial first and second derivatives such that fr = f on B(0, R).
Because

sup sup | M, ()| < o0
where 7 = inf{t > 0: |X;| > R} and by Lemma 3.5. the stopped process
MthTR is a martingale under P. Because 7 — 0o as R — 0o we conclude
that Mtf is a local martingale under P.
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In case of uniform ellipticity we can eliminate the conditions for the drift
coefficient in order to prove existence and uniqueness of the martingale prob-
lem(Theorem 6.4.3. Stroock € Varadhan [1979], Theorem VI.3.1. Bass
[1997]).

Theorem 3.10. Suppose L is uniformly elliptic with bounded measurable
coefficients a and b. Define

d
Z 2)0; f («

If the martingale problem for £’ is well posed, then the martingale problem
for £ is well posed. In case of well posedness, if the family of solutions of MP
for £ is measurable, then the family of solutions of MP for £ is measurable.

m)l»—l

Proof : Suppose that the MP(L,d,) has a unique solution. Let P; and P,
are two solutions to MP(L,d,). The test process M/ is a martingale under
P;, © = 1,2. We define two new probability measures (); and ()5 such that
on the events of F;, the density functions dQ1 and dQ2 are both

t 1 t
Ny := exp < — / ba N (X,)dX, — 5/ ba_le(Xr)dr)
0 0

The process N, is the stochastic exponential of a martingale process therefore
an JF;- martingale under P; and Ps.

From Theorem 2.1. we know that X, is a weak solution to

for some Brownian motion W;. This means that d(X ); = a(X;)dt and so by
Ito’s formula
df (X¢) = Lf(Xp)dt + V f(Xy)o (Xe)dW,

_—
implying t
M :Vf(Xt)d<Xt—/ b(Xr)dr>
0
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therefore

</ bail(Xr)er,M,f> = /t ba Y (X, )V f(X,)d(X),

0 t 0

_ /O 3 (ba ), (X)0,f (X,)d(XT, X7),

1,j=1

= [ S wxasxar

By Girsanov’s theorem, the process

M, { - / b (X)X, M) = F(X) = f(Xo) - / aar:

is a martingale under ); and )3 with the same quadratic variation as under
P;, 1 = 1,2. Because

Qi Xo=2)=P(Xg=2)=1 i=1,2

by the uniqueness of the martingale problem for £, Q1 = Q3. This means
Pi(A) = Eq, [Nila] = Eq,[Ni1a] = P2(A)

for every A € F; and for each t.

Finally suppose that the mapping x — Q*(F’) is measurable for every F' € F.
If A e F, then

P?(A) = Eg- [exp (/Ot(ba—l(Xr)er + /Ot(ba—lb)(Xr)dr> ILA}

Suppose xr, — x and F is a closed set of 2. We define A := F — z and
A, := F — x,. By Fatou’s lemma we get

1 1
lim sup P*"(F') = limsup Ego [—ILAJ < Ego [lim sup —]lAn] =P*(F)
Ny N

and thus P?(F) is upper semi continuous and therefore measurable, for every
closed set F'. This is a Dynkin class that generates the Borel and so we have
the desired property for F which is a sub-o algebra of the Borel.

As a matter of fact, in case of uniformly elliptic operators, existence for
the associated martingale problem holds under weaker conditions of both co-
efficients, specifically we can eliminate any smoothness assumption (Theorem

VI.1.3. Bass [1997]).
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Theorem 3.11. Suppose £ is uniformly elliptic where a : R — S¢ and
b: RY — R? are bounded measurable functions. Then for each z € R?, there
exists a solution to MP (L, é,).

Proof: By theorem 3.10, it is sufficient to prove that the MP(L',¢,) has

a solution, where
d
=5 2 w0l

We consider sequences a;; for every 4,7 = 1,...,d such that af; are elements
of C%*(R?) and aU — aw almost everywhere. Then the corresponding to
a” operator £/ is uniformly elliptic and the associated martingale problems
admit a unique solution when starting from = € R?. Let P* € MP(L/,,d,),
similarly with previous results we will prove that {P"} has a limit point and
that this is a solution to MP (L', ).

As in Theorem 3.7 the sequence {P"} is relatively compact. If P™ is a a
convergent subsequence of P", we consider a further subsequence P™m such
that a™m — a in IL,. We need to show, for every A € F; and for f € C?*(R?)

l\DI»—

lim Bpr,, [{M] = MI}14] = Ee[{M] — M{}1,4]

Let g be bounded and continuous function on R?, using the same localization
argument as in theorem 3.7. equivalently we need to show.

e [000) [ £, 50X0r] = Bfox) [ £500)0]

for every bounded function f in C?(R?) with bounded first and second deriva-
tives.
Let mg in N.

Eprr, [g(X)/tE’ F(X, )dr] ]Ep[g(Xs)/tﬁ’f(XT)drH <

S

Eprin [g / c — L), [(X)dr] ]+

‘Epnkm / £, f(X. dr . / Lf(X dr

e o) [ £, 70X - £, fomdr}

+ (@)
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o o) [ £, s0000] ~Ba[ox) [ 21, s8]+ )

s

o) [ £, 5000 - €500 i

quantity (i) tends to zero bythe weak convergence of P"m . For (i) and (ii7)
we use Alexandrov’s estimate

B [g(X / Ll FOX0) = L7, )dr]

1€, = £,
and
t
B [90X.) [ €1, 10X) - £, SN < Cal, | = £,

while C; and C5 depend only on the elliptic bound of a and p, s,¢. Finally

/ / ! n l/p
1€, = L1k, < M( [ a7 (@) - ale)] )

and

/ ! N Nk, p l/p
120, = Lol < ([ Nl (@) = a0 o) P
while M depends only on the bounds of the second partial derivatives of f.

Let m — oo and my — oo, by the IL, convergence of a™* to a, we have the
result.
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4 Application

An interesting application of uniqueness of martingale problems is conver-
gence of Markov chains to a diffusion. In this section, we will consider a
discretization of our cannonical process, which under a probability measure
will be a time-homogenous Markov chain starting from z in R? with some
transition function. Then we’ll see that if the martingale problem for £ is
well posed, under conditions of the coefficients and of the transition func-
tion, for each initial condition x, the probability laws of the Markov chains
will converge weakly to the unique solution of MP (Chapter 11.2[p.266-272],
Stroock € Varadhan [1997]).

Let h > 0, x € R? and II;,(z, -) a transition probability function. We consider
a probability measure P} on (2, with the following properties

(1)

(ii) for every k >0
kE+1)h—t t—kh

(iii) for every I' € B(R?)
Py (Xkr1yn € T Fpn) = (X, )

The stochastic process { X, }72, is a process on the space of real sequences.
For each k € Ny, the random variable X}, sends each w to it’s kh"* coor-
dinate. The third property says that the discrete time process { Xy}, is
Markov chain with transition function Il (z, -) starting from x. We will need
the definition of the discrete parameter martingale problem.

Let temporarily €2 be the space or real sequences and X be the canonical
process on (2, F) where F and the F,, are the usual o- algebra and the usual
filtration. Suppose II,(z, ) is a sequence of transition probability functions
for X under some probability measure, we consider an operator A,, who acts
on continuous and bounded functions of R? in the following way

A,f(z) = / (/) — f(@)} Lz, dy)

Definition 4.1. A probability measure P is a solution to the discrete mar-
tingale problem for A, with initial condition x if
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and »
F(X) = f(Xo) = > Aif(X
i=0
is a martingale with respect to F,, V.f € Cy(RY).

If the process X, is a Markov chain with transition functions IT,,(z, -), under
a probability measure P, then the test process M/ is always a martingale
under this probability measure (Ezercise 6.7.1 Stroock € Varadhan [1979]).

Proposition 4.2. The stochastic process X, is a Markov chain with transi-
tion probability function II,(z,-) if and only if M/ is a martingale for every

f € Cy(RY), where
n—1
- Af(X
i=0

Proof : ( = ) Because A, f(X,) = E[f(X,+1)|X,] — f(X,) and by the
Markov property, we got

E[M,l,; — MJ|Fa] = E[f (Xni1) = f(Xn) = Anf (X0)|F]

- E[f(XnH)l]:n} - E[f(Xn+1)|Xn] =0

( <= ) Suppose M/ is a martingale process under a probability measure P
for each f € Cy(RY). We have by definition

/ {F(y) = f(@)} L, (z, dy)
and
/ () — FO (X, dy) = Enp ool (Xs) [ X0] — F(X0)

by the martingale property

Ep[f (Xnt1)[Fn] = Ep[En, [f (Xna) [ Xn]|Fn] = B, [f (X)) | X

the above equality means
P(X,11 € AlF,) =11,(X,, A)

which says that X is a Markov chain with transition function II.

Given that the chain starts from a point z € R%, there is a unique probabil-
ity measure P under which X, is a Markov chain with transition probability
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function II,,(x,-). Instead of saying that X is Markov with transition func-
tion II is equivalent to say that the martingale problem for A is well posed.

We are again in the space of continuous functions = C[0,00)?. Suppose
a and b are continuous uniformly bounded functions and a is positive semi
definite. Let h > 0 and II,(-,-) be a Markov kernel. Define functions af’;, b}
and A§ () as follows

@)= [ ) =) )

bf(x) = /I— \<1(yi — ;)11 (2, dy)

Aj (z) = %Hh(m‘, B(z,€)9), for €>0

Assume that (i) a" and b" are uniformly bounded such that (ii) a" — a and
b"* — b uniformly on compacts as h — 0 and that (iii)

lim sup Aj(z) =0, for e>0
h—0 z€R4

Theorem 4.3. Suppose the martingale problem for £ is well posed where
the diffusion and drift coefficients are continuous uniformly bounded func-
tions and a is positive semi definite. Suppose the above conditions (i)-(iii)
hold. If P*° is the unique solution of MP(L, d,,) and if P;° is the probability
measure corresponding to the Markov chain with transition function IIj(z, -)
starting from zo € RY, then P{° = P*_ as h — 0.

Proof : As in previous convergence result, we have to show that the family
{P}°}1>0 of probability measures is relatively compact, then we’ll see that
any subsequental limit point solves the MP(L, d,,) and by this and the well
posedness of MP we will conclude the convergence of measures.

In order to prove compactness it is sufficient for {Xy,}ren to satisfy the
following conditions (Theorem 1.4.11 Stroock € Varadhan [1979])

1. For every f € C§°(R?), there is a constant C; which does not depend on
h such that f(Xy) + Crkh is a submartingale under P}°.

2. For every € > 0 and for every 7' > 0

Y PR Xsn — Xl <€) = 0

h—0
0<jh<T
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Let f € C5°(RY).

‘%Ahf(x” =
1
5 @ e+ [ () - @) )| <
d
=1 1195
|Vf(37)’ |y—!£|Hh($,dy) + M |y—fE|2Hh(:U,dy)
he Sy oh el
+2[| fll Ak ()
implying

1 Vf(x > 105 f1]
sup | - Auf (z) siugnbhn—‘ u o+ sup =
> >

N [la"[| + 2] f|| sup Aj (2)
h>0 h>0

implying that there exists a constant C; depending only on the function f
such that

up |+ Auf (@) < €

h>0

therefore
Epo [f (X(k+1)n) = f(Xkn) + Cph|Fin] 2 Epeo (M, — M| Fia] = 0

and this means that f(Xj;,) + Crkh is a submartingale under P}°.
Let € >0and T > 0.

Pi0(|X(/€+1)h — th‘ Z 6) = E[P;io [E]P;zo ]]-{X(k+1)GB(th,E)C} fkh“
= Epio [Hh(th, B(th, E)C)] < sup hA;(.Z’) — 0
zER4 h—0
therefore
> PR(XGen — Xinl =€) = Y Pr(| X — Xi| > ¢)
1<jh<T i<T/h

T+1
il sup hAj(z) — 0

<

The two condition are fulfilled and the family {IP}°}),~0 is relatively compact.

In this point suppose that

Anf
O E
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uniformly on compact sets of R, for every f € C$°(R?).

Let {h,}» be a non increasing sequence such that h,, — 0, then the sequence
of probability measures IP}° has a convergent subsequence. Suppose P is the
subsequental limit point, then P is a solution to the martingale problem for
L with initial condition z( . First as in theorem 3.7 we have P(Xy = ) = 1.
Next, let g be a bounded and continuous function and s < t. We have that
P30 is the solution to the discrete parameter martingale problem for Ay,
starting from xj. Set

kn:[h—n]+1 and ln:[h—n]+1
then
ln—1
Epﬂ;g {F(Xinn) = f(Xiunn) — Z A, f(Xjn,) (X)) =0
J=kn

using the fact that % — L f uniformly on compacts we have

(ln=1)hn

My =M= F(Xin,) = F(Xn) — Y An

r=knhn

t
100~ £00) = [ L7 = 0] - 0]
uniformly on compacts. Because Mtf — M/ is bounded and continuous
Epfbgl[{MzZ b = M (X)) — Ee {Mf MI}g(X
meaning
Ee[{Mf — M }g(X.)] = 0
meaning Mtf is a martingale under P for arbitrary f € C5°(RY).
All that remains is to prove % — Lf uniformly on compacts for every

f € C(R?) and then using well posedness of MP we can conclude the
result. Again let f € C5°(R?) and set

d d

H(r,p) = 3 (0~ w0 (1) + 5 (e — 2y — )0, ()

i=1 ij=1

by Taylor
fly) = f(x) + H(z,y) + Rs(y)
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where

Ry(y) = & 30— 1) (3 — ) (0 — 70004 €)

SO

1f(y) = f(2) = H(z,y)| < Cly — |’
Define £}, to be the second order differential operator with a" and b" the
diffusion and drift coefficients respectively. Then

d

L@ =g 3 [ )= )0 ) )

3,j=1

1
Ez/y x|<1< i = 21)0i f(2)(z, dy)
1
h

/ . dy)

therefore

54 @) — £0f ()] =

‘h /{f x) HIy(z, dy) — %/y_xKlH(x,y)Hh(x,dy)‘ <

i/ x|<1{f<y>—f<x>—ﬂ<x7y)}nm,dy)M% /

ly—z|>1

{F(y)—F (@)} Ia(w, dy)|

<[ weePdy g [ 1) - f@)dy

ly—z[<1 ly—z[>1

C Ce’
< - |y — =TI (x, dy) +—/ | Iy, dy) + 2|/ fl| A (2) <
y—z|<e

e<ly—az|<1 h
CA; () + CE(1 = Aj () + 2| f1] A, ()

for all 0 < e < 1.
Because of condition (iii), we get

Anf (@) = Luf(@)| " 0
and by conditions (i) and (ii) we have

Lnf — Lf
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uniformly on compacts.
Therefore

uniformly on compacts.

We have that the MP for £ is well posed. {P}°}n>0 is a relatively compact
family of probability measures, that is that every sequence P of elements of
{P}°} has a convergent subsequence. Every limit point of such subsequence
is the unique solution P to the MP(L, J,,). This means that every sequence
of elements of {IP;°};, converges weakly to P and this means P};° = P.
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