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Περίληψη 

Η παρούσα μεταπτυχιακή εργασία παρουσιάζει την ανάπτυξη και εφαρμογή μιας visual 

Simultaneous Localization and Mapping (SLAM) μεθόδου για τη χαρτογράφηση του 

περιβάλλοντος και του εντοπισμού της θέσης του ρομπότ μέσα σε αυτό. Αυτή η υλοποίηση 

έχει σχεδιαστεί για να λειτουργεί τόσο στο rover όσο και στο ARGOS, που δημιουργήθηκαν 

στην ομάδα Legged Robots του Εργαστηρίου Αυτομάτου Ελέγχου στο ΕΜΠ. Αυτός ο 

αλγόριθμος είναι το πρώτο βήμα για τον διάσχιση δύσκολων περιβαλλόντων. Στόχος του 

αλγορίθμου είναι να παρέχει σε κάθε ρομπότ πληροφορίες για την θέση του ρομπότ, για το 

περιβάλλον και, σε συνδυασμό με έναν σχεδιαστή διαδρομής (path planner), να διασχίζει το 

χαρτογραφημένο περιβάλλον. 

Στο πρώτο κεφάλαιο εξετάζονται εκτενώς σε διάφορα κινούμενα ρομπότ που θα 

μπορούσαν ενδεχομένως να χρησιμοποιήσουν τον αναπτυγμένο αλγόριθμο, και 

παρουσιάζονται οι τρόποι που χρησιμοποιούνται για τον εντοπισμό της θέσης τους. Επιπλέον, 

παρουσιάζονται αλγόριθμοι SLAM που έχουν ήδη αναπτυχθεί μαζί με τα πλεονεκτήματα και 

τα μειονεκτήματά τους. Το κεφάλαιο ολοκληρώνεται με τη δομή αυτής της εργασίας. 

Στο δεύτερο κεφάλαιο, παρουσιάζονται τα κύρια στοιχεία ενός αλγόριθμο vSLAM. Το κάθε 

στοιχείο αναλύεται και παρουσιάζονται οι περιορισμοί τους.  

Το τρίτο κεφάλαιο αυτής της εργασίας παρουσιάζει τις λεπτομέρειες υλοποίησης του 

αναπτυγμένου αλγόριθμου SLAM. Οι μέθοδοι που χρησιμοποιούνται παρουσιάζονται και 

αναλύονται, με έμφαση στην εφαρμογή τους. Ενώ υπάρχουν ήδη πολλοί αλγόριθμοι SLAM, 

αυτή η εργασία εισάγει μια νέα προσέγγιση με στόχο τη βελτίωση της ακρίβειας και της 

ευρωστίας της χαρτογράφησης του περιβάλλοντος και του εντοπισμού της θέσης του ρομπότ. 

Στο τέταρτο κεφάλαιο παρουσιάζονται τα αποτελέσματα του αλγορίθμου που 

αναπτύχθηκε. Ο αλγόριθμος χωρίζεται σε δύο διαφορετικές λειτουργίες. Η πρώτη λειτουργία 

σχεδιάστηκε για να δοκιμαστεί σε γνωστά datasets εικόνων και η δεύτερη λειτουργία 

περιλαμβάνει τον πλήρη αλγόριθμο, ο οποίος δοκιμάστηκε σε datasets που δημιουργήθηκαν 

στο CSL, τόσο σε περιβάλλοντα προσομοίωσης όσο και στο φυσικό περιβάλλον. Επιπλέον, 

παρουσιάζεται ο χρόνος επεξεργασίας κάθε στοιχείου του αλγορίθμου, για να διασφαλιστεί η 

καταλληλόλητά του για εφαρμογές σε πραγματικό χρόνο. 

Το πέμπτο και τελευταίο κεφάλαιο αυτής της εργασίας παρουσιάζει αρκετούς 

μελλοντικούς ερευνητικούς τομείς που θα μπορούσαν να βελτιώσουν περαιτέρω τον 

αλγόριθμο SLAM που παρουσιάζεται σε αυτή τη μελέτη. Αυτοί οι τομείς έρευνας 

παρουσιάζονται λεπτομερώς, μαζί με τα πιθανά οφέλη και τους λόγους για τους οποίους 

μπορεί να βελτιώσουν την απόδοση του αλγορίθμου που εφαρμόζεται. 
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Abstract 

The present thesis presents the development and implementation of a visual Simultaneous 

Localization and Mapping (SLAM) application for the mapping of the environment and 

localization of mobile robots. This implementation has been designed to operate in both the 

rover, and ARGOS, created at the Legged Robots Team of the Control Systems Lab at NTUA. 

This algorithm is the first step in localization and traversing challenging environments. Its aim 

is to provide each robot with information about its position, the environment and, in 

combination with a path planner and to allow it to traverse the mapped environment.  

In the first chapter, an extensive study is conducted on various mobile robots that can 

potentially employ the developed algorithm, and their localization methods are presented. 

Additionally, different visual SLAM algorithms already developed are presented along with 

their advantages and disadvantages. The chapter concludes by presenting the structure of 

this thesis. 

In the second chapter, the main components in a visual SLAM algorithm are presented. 

Each component is analyzed and their limitations are presented. 

The third chapter of this thesis presents the implementation details of the developed visual 

SLAM algorithm. The methods used are discussed and analyzed, with a focus on their 

implementation. While there are many visual SLAM algorithms already developed, this thesis 

introduces a novel approach to improve the accuracy and robustness of environment mapping 

and robot localization. 

In the fourth chapter the results of the developed algorithm are presented. The algorithm 

is separated into two different operations. The first operation was designed to be tested on 

well-known image datasets, and the second operation was the complete algorithm, which was 

tested on custom datasets, both in simulation and real-world environments. Additionally, the 

processing time of each component of the algorithm is presented, to ensure its suitability for 

real-time applications. 

The fifth and final chapter of this thesis presents several future research areas that could 

further enhance the visual SLAM algorithm presented in this study. These areas of research 

are discussed in detail, along with their potential benefits and reasons why they may improve 

the performance of the implemented algorithm. 
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1 Introduction 

1.1 Motivation 

With the growing demand for autonomous robots, a reliable localization system, which allows 

robots to determine their position and orientation accurately within their environment, is 

becoming vital. Although there are many GPS-based solutions, such as RTK GPS, these 

solutions fail to provide accurate results in GPS-denied environments where the view of the 

GPS satellites is obstructed or severely limited. This limitation poses a significant challenge in 

various scenarios, including underground tunnels, dense urban environments with tall 

buildings, dense forests, and indoor settings. Therefore, there is an increasing demand for a 

localization system that can operate reliably in such environments. 

The objective of this thesis is the creation of a vision-based localization system for mobile 

robots, that does not rely on GPS for localization, but rather, on images captured from 

cameras. By using images, the robot can simultaneously localize itself, and map the 

environment (SLAM). Visual SLAM systems are becoming increasingly popular due to their 

advantages over GPS-solutions and their lower cost. A thorough literature review of different 

robots with their localization systems, and of visual SLAM systems, is of utmost importance to 

in order to identify the most suitable localization solution. This will assist in the development 

of a robust visual SLAM system that builds upon the strengths of pre-existing solutions and 

addresses their limitations. 

Mobile robots that are designed for tasks in GPS-denied environments and the State of 

the Art (SOTA) SLAM systems are presented in the next sections. 

1.2 Literature Review: Mobile Robots 

1.2.1 MIT Cheetah 3 

The MIT Cheetah 3 [1] (Figure 1-1) is a four-legged robot that uses a variety of sensors to 

localize itself.  

 

Figure 1-1. The MIT Cheetah 3. 

These sensors are [2] :  
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• LIDAR (Light Detection and Ranging): uses light to create a 3D map of the 

environment. 

• Inertial Measurement Unit (IMU): measures the robot’s acceleration and angular 

velocity. 

• Cameras: provide visual information about the environment. 

• Encoders: measure the rotation of each or the robot’s joints. 

These sensors provide an accurate and reliable estimation of the robot’s position and 

orientation in the environment enabling it to navigate complex environments.  

1.2.2 Boston Dynamics Spot 

Spot [3] ( Figure 1-2 ) is a highly advanced and versatile robotic platform developed by Boston 

Dynamics. As a quadruped robot, Spot is designed to navigate and operate in various terrains 

and environments, making it well-suited for a wide range of applications, including inspection, 

mapping, surveillance, and research.  

Spot's perception capabilities are a key aspect of its functionality. Equipped with a suite 

of sensors, including cameras, depth sensors, and inertial measurement units (IMUs), Spot 

can perceive and understand its surroundings. The cameras enable visual perception, 

allowing the robot to detect objects, identify landmarks, and navigate through complex 

environments. The depth sensors enhance spatial awareness, aiding in obstacle avoidance 

and mapping. The IMUs contribute to estimating the robot's pose and motion.  

 

Figure 1-2. The Boston Dynamics Spot. 

 

1.2.3 Anymal X 

Anymal X [4] ( Figure 1-3 ) is the world’s first Ex-Proof legged robot developed by ANYbotics. 

It is specifically designed and certified for safe usage in hazardous and potentially explosive 

environments. It is equipped with a 3D LIDAR for obstacle avoidance and localization to 

navigate even on GPS-denied environments. 
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Figure 1-3. The ANYmal X Legged Robot. 

1.2.4 Husky Rover 

Husky [5] (Figure 1-4) is an four-wheeled ground vehicle that was designed for research and 

development purposes. It was developed by ClearPath Robotics, and its specifications enable 

it to traverse a wide range of environments. Its accessories for localization include an IMU, a 

3D LIDAR and a GPS. 

 

Figure 1-4. The Husky Rover. 
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1.2.5 DJI Mavic 3 

DJI Mavic 3 [6] ( Figure 1-5 ) is the latest flagship camera drone developed by DJI technology. 

For self-localization purposes, it is equipped with a GPS and multiple wide-angle vision 

sensors that work seamlessly with a high-performance vision computing engine to sense 

obstacles in all directions precisely and plan a safe flight route that avoids them. 

 

Figure 1-5. The DJI Mavic 3 Drone. 

1.3 Literature Review: vSLAM Algorithms 

1.3.1 ORB-SLAM3 

ORB-SLAM3 [7] ( Figure 1-6 ) is a real-time SLAM library able to perform Visual, Visual-Inertial 

and Multi-Map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye 

lens models. ORB-SLAM3 is based on ORB-SLAM [8], a monocular visual SLAM algorithm, 

and ORB-SLAM2 [9], a complete SLAM system for monocular, stereo and RGB-D cameras, 

including map reuse, loop closing and relocalization capabilities. 

Loop Closure is a crucial process in SLAM systems, that assists in error correction and 

the creation of a more accurate map. ORB-SLAM3 detects loop closures using image 

similarity, with the use of DBoW2 [10], a library for indexing and converting images into a bag-

of-word representation. Loop closure is detected when a new image’s bag-of-word 

representation is similar enough to a previous image’s representation. 

ORB-SLAM3 has been evaluated in many well-known image datasets, e.g., KITTI, 

EuRoC, etc., and has demonstrated high accuracy and robustness. As a result, ORB-SLAM3 

has become a popular choice in various applications such as robotics and autonomous 

vehicles, among others. 
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Figure 1-6. ORB-SLAM3. 

1.3.2 VINS-Fusion 

VINS-Fusion [11] ( Figure 1-7 ) is a visual inertial SLAM system that combines information 

from visual and inertial sensors to estimate accurately the camera pose in real time. VINS-

Fusion is an extension of VINS-Mono [12], a monocular visual inertial SLAM system. VINS-

Fusion leverages a tightly coupled optimization-based approach, which allows for efficient and 

accurate state estimation. Additionally, it includes loop closure detection using DBoW2, 

similarly with ORB-SLAM3 (Described in Chapter 1.2.6). VINS-Fusion has been tested in a 

range of challenging environments, in well-known image datasets, displaying accuracy and 

robustness. 

 

Figure 1-7. Vins-Fusion. 

1.3.3 PTAM 

PTAM ( Parallel Tracking and Mapping ) [13] is a monocular visual SLAM system introduced 

by Kein and Murray in 2011. PTAM was the first algorithm to introduce the use of keyframes 

for mapping. Keyframes are frames with significant importance, such as the addition of new 

3D points, or a significant change in camera motion, that are used in the optimization process 

to reduce computational complexity. This allows for real-time operation, and as a result many 

visual SLAM systems have adopted a keyframe-based approach. Additionally, PTAM can 
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handle fast camera motions due to the lightweight feature-based tracking process. However, 

many feature-based approaches lose accuracy in low textured environments due to the 

reduced number of features available for tracking. This can lead to wrong camera pose 

estimation, and as a result, an inaccurate map. Figure 1-8 presents the tracked features of the 

PTAM algorithm, where it can be observed that less-textured objects, such as the table, have 

no available features for tracking. 

 

Figure 1-8. PTAM Tracked Features. 

1.3.4 Kimera VIO 

Kimera-VIO [14] is a Visual Inertial Odometry pipeline for accurate State Estimation from 

Stereo & IMU data. It can optionally use Mono & IMU data instead of stereo cameras. Kimera 

extends on pre-existing visual and visual-inertial SLAM systems (e.g., ORB-SLAM, VINS- 

Mono, OKVIS, ROVIO), by enabling mesh reconstruction (technique for creating a 3D 

representation of an object from point cloud data) and semantic labelling in 3D (the process 

of assigning semantic meaning to elements of a 3D model). Kimera is designed with 

modularity in mind and has four key components: a visual-inertial odometry (VIO) module for 

fast and accurate state estimation, a robust pose graph optimizer for global trajectory 

estimation, a lightweight 3D mesher module for fast mesh reconstruction, and a dense 3D 

metric-semantic reconstruction module. The meshes created provide the ability for fast 

obstacle avoidance. Additionally, Kimera VIO has loop closure detection capabilities, using 

DBoW2, similarly with VINS-Fusion and ORB-SLAM3. Figure 1-9 presents Kimera VIO, with 

the constructed meshes of the environment, in comparison to the ground truth model. 
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Figure 1-9. Kimera VIO. (a) denotes the visual intertial state estimator, (b) denotes the fast 
mesh reconstruction of the scene and (c), (d) is the globally semantically 

annotated 3D mesh (c) in comparison with the ground truth model(d). 

1.3.5 SVO 

SVO [15] (Figure 1-10) is semi-direct monocular visual odometry system developed by 

Forster, Pizzoli and Scaramuzza in 2014. It can operate on both pinhole and fisheye cameras. 

The semi-direct method uses feature-correspondence rather than feature extraction and 

matching, thus eliminating the need of costly feature extraction and robust matching 

techniques for motion estimation. Feature extraction is only required when a new keyframe is 

inserted, to initialize new 3D points. SVO operates directly on pixel intensities, which results 

in subpixel precision at high framerates and fast camera pose estimation. SVO lacks a loop 

closure optimization process, resulting in no error reduction, and consequently, it is essential 

to maintain high frame rates to minimize error accumulation, compared to other state of the 

art vSLAM systems.  

 

Figure 1-10. SVO Tracking and Map. 
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1.3.6 SVO 2.0 

SVO 2.0 [16] is the extension of SVO to multicamera systems. The system operates with 

multiple monocular cameras (Figure 1-11), both pinhole and fisheye, providing more accurate 

camera pose estimation results, and a more detailed map of the environment. SVO 2.0, 

although an extension of SVO, still lacks a loop closure optimization process, resulting in less 

accurate camera pose estimation and mapping on longer paths due to error accumulation. 

 

Figure 1-11. SVO 2.0 with Multiple Cameras. 

1.3.7 SLAM for Arbitrary Multi-Camera Systems 

A SLAM system for multiple cameras was proposed in 2020 [17]. The system can operate 

with up to six cameras without the need for sensor-specific modifications or tuning. In a setup 

with multiple cameras, when a camera’s field of view is blocked, the additional cameras can 

help estimate the camera pose. However, the proposed system is missing a loop closure 

optimization process, resulting in error accumulation over time. Figure 1-12 presents the 

system operating with three fisheye cameras in a real-world environment. 

 

Figure 1-12. SLAM for Multi-Camera Systems. 
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1.4 Thesis Structure 

The present thesis is structured as follows: Chapter 2 provides an overview of the main 

components of a SLAM system, including key components that are utilized in the developed 

SLAM system. In Chapter 3, the developed SLAM system is described in detail, analyzing the 

different parts of the system. Chapter 4 presents the results of the developed SLAM system, 

on well-known image datasets, in a Gazebo simulation and at the CSL lab environment. 

Finally, Chapter 5 summarizes the work and discusses potential future research directions 

and improvements for the system.  
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2 Fundamentals of a Visual SLAM Algorithm 

This chapter provides a detailed overview of the fundamental components of a visual SLAM 

algorithm. Firstly, a thorough description of the stereo camera and its properties is provided. 

Following that, various feature extraction methods and matching techniques are explained. 

Additionally, different Bundle Adjustment algorithms are described that aim to reduce any error 

accumulation and improve the accuracy of visual SLAM algorithm. Lastly, a detailed 

explanation of Loop Closure and its significance in visual SLAM algorithms is provided. 

2.1 Stereo Camera 

A stereo camera [18] (Figure 2-1) is a camera type with two lenses, each with a separate 

image sensor. By capturing two slightly different perspectives of a scene, a stereo camera can 

mimic human binocular vision, enabling the creation of three-dimensional images. In robotics, 

stereo cameras are widely used because they offer the through triangulation. Stereo cameras 

come in different models: 

• Pinhole: A pinhole camera is a simple camera without a lens but with a tiny aperture 

(the so-called pinhole). Light from a scene passes through the aperture and projects 

an inverted image on the opposite side of the box [19]. 

• Fisheye: A fisheye lens is an ultra wide-angle one that produces strong visual distortion 

intended to create a wide panoramic or hemispherical image. Fisheye lenses achieve 

extremely wide angles of view, typically exceeding 180 degrees [20]. 

This section examines the pinhole camera model. 

 

Figure 2-1. A ZED Stereo Camera [18]. 

2.1.1 Image Distortion 

Image distortion, presented in Figure 2-2 [21], is when the straight lines of an image appear 

to be deformed or curved unnaturally. More specifically, the pinhole camera model is subject 

to distortion, which is primarily observed at the edges of the image. To accurately calculate 

depth, it is necessary to minimize distortion as much as possible. This ensures that the 

calculations closely approximate the true values. Techniques such as lens calibration and 

image correction algorithms can be employed to reduce distortion and improve the accuracy 

of depth measurements. 
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Figure 2-2. Image Distortion [21]. 

2.1.2 Camera Calibration 

Camera calibration is the process of estimating the parameters of a camera lens and image 

sensor. The calibration algorithm estimates the extrinsic and intrinsic parameters of a 

camera’s lens. The extrinsic parameters represent the location and the orientation of the 

camera in the 3D scene, while the intrinsic parameters include the focal length, the optical 

center, and the skew coefficient. 

The calibration process includes a set of images, usually 15-20 images, (Figure 2-3 [22]) 

that include a calibration object with known dimensions, typically a chessboard. The images 

are then analyzed to estimate the camera’s intrinsic and extrinsic parameters, using a 

calibration algorithm, e.g., Zhang Algorithm [23], Jean-Yves Bouguet [24], etc. The intrinsic 

parameters in combination with the extrinsic parameters form the projection matrix, that can 

map 3D points in the world to their corresponding 2D locations in the image plane. 

 

Figure 2-3. Image used for Camera Calibration [22]. 

The intrinsic parameters are represented in an intrinsics matrix K defined as: 

𝛫 = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] (2.1) 
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Where 𝑓𝑥, 𝑓𝑦 is the focal length in pixels and 𝑐𝑥, 𝑐𝑦 is the optical center in pixels. The extrinsic 

parameters are the location and orientation of the camera with respect to the world coordinate 

system and consist of a rotation matrix R and a translation displacement t. R is a 3-by-3 matrix, 

while t is a 3-by-1 matrix. The camera projection matrix 𝑃 is a 3-by-4 matrix that maps the 3-

D world scene into the image plane [25] and it is calculated using Equation (2.2). 

𝑃 = 𝐾[𝑅 𝑡] (2.2) 

2.1.3 Image Rectification 

Image rectification [26] is a transformation process used to project images onto a common 

image plane. In the context of stereo cameras, image rectification is utilized to enable the use 

of epipolar geometry (Described in Chapter 2.1.4). Specifically, image rectification remaps the 

pixels of each image such that the epipolar lines are horizontal, which means that each pixel 

on the left image has the same y-value (assuming a horizontal stereo camera) as the 

corresponding pixel on the right image, as presented in Figure 2-4 [27]. After the remapping 

process, the images are cropped to the same size as the original ones. That results in loss of 

information, but the benefits far outweigh the downsides. 

 

Figure 2-4. Image Rectification [27]. 

2.1.4 Epipolar Geometry 

Epipolar geometry [28] is the geometry of stereo vision. When two cameras view a 3D scene 

from two distinct positions, there are geometric relations between the 3D points and their 

projections onto the 2D images that lead to constraints between the image points. These 

relations are derived based on the assumption that the cameras can be approximated by the 

pinhole camera model. Since the optical centers of the cameras lenses are distinct, each 

center projects onto a distinct point into the other camera's image plane. These two image 

points, denoted by 𝑒𝐿  and 𝑒𝑅  in Figure 2-5, are called epipoles or epipolar points. Both 

epipoles 𝑒𝐿 and 𝑒𝑅 in their respective image planes and both optical centers 𝑂𝐿 and 𝑂𝑅 lie on 

a single 3D line. The line 𝑂𝐿 − 𝑋 is seen by the left camera as a point because it is directly in 

line with that camera's lens optical center. However, the right camera sees this line as a line 

in its image plane. That line (𝑒𝑅 − 𝑥𝑅) in the right camera is called an epipolar line. [28]. By 
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using epipolar geometry (presented in Figure 2-5 [28]) on a rectified image each pixel on the 

left image has the same y value as each corresponding pixel on the right image (if the stereo 

camera is horizontal). As a result, if the transformation matrix between the two cameras is 

known, through triangulation the depth of each pixel, seen on both images, can be calculated. 

 

Figure 2-5. Epipolar Geometry [28]. 

2.1.5 Disparity 

With the use of rectified images on a horizontal stereo camera setup, each pixel on the left 

camera, that is visible in the right camera, corresponds to a pixel on the right camera with the 

same y value, but with a different x value. The difference in the x values of the corresponding 

pixels is called disparity. 

The disparity of each pixel can be calculated using an algorithm, such as Semi-Global 

Block Matching [29], that scans both the left and right images for matching pixels. A common 

approach to this problem is to form a small image patch around every pixel in the left image. 

These image patches are compared to all possible disparities in the right image by comparing 

their corresponding image patches. For example, for a disparity of 1, the patch in the left image 

would be compared to a similar-sized patch in the right, shifted to the left by one pixel. 

By finding the disparity between the two images, the depth (the distance from the camera 

in meters) can be calculated from Equation (2.3) [30], where Baseline is the distance between 

the two camera lenses. 

𝐷𝑒𝑝𝑡ℎ =
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗  𝐹𝑜𝑐𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
(2.3) 

An image with its disparity map is presented in Figure 2-6 [31]. 

 

Figure 2-6. Disparity Map [31]. 
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2.2 Features 

A feature is typically defined as a measurable and distinctive attribute or characteristic part of 

an image, shape etc. For example, a square has 4 corners and 4 edges, they can be called 

features of the square, and they help identify it’s a square. Features are used as a starting 

point for many computer vision algorithms, e.g., object recognition etc. Some common types 

of features in an image include:  

• Edges: Edges are abrupt changes in the intensity or color of an image, which can 

indicate the boundaries of objects or regions. 

• Blobs: Blobs are regions of an image that have a similar intensity or color. They 

can be used to identify objects or regions of interest. 

• Corners: Corners are points in an image where the intensity changes in multiple 

directions. Corners can be used to identify key points in an image. 

The different types of features are presented in Figure 2-7 [32], [33], [34]. 

For visual SLAM applications, grayscale images are commonly used, and the features 

that are typically selected for these images are corners.  

To differentiate features, a method of describing them is required, which is where 

descriptors become useful. Descriptors provide a unique representation of a feature, allowing 

them to be distinguished from one another. 

 

Figure 2-7. Different types of features [32], [33], [34]. 

2.2.1 Feature Extraction 

There are several feature extraction methods. In this paragraph, the most used ones, are 

presented. 

Harris Corner Detector 

Harris Corner Detector is a method for selecting features in an image by choosing one patch 

of the image and comparing it with equal sized patches around it. The comparison is 

performed by adding up the differences in intensity of each pixel on the first patch with the 
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pixel on the same position on the other patches. If a patch generates a significant difference, 

more than a threshold, then it is considered a feature.  

In Figure 2-8 [35] two examples are presented. In Figure 2-8(a), where a selected patch 

(red) is being compared with different patches (black), the comparison does not show a 

significant difference. In Figure 2-8(b), where the selected patch (red) yields a significant 

difference when compared with a patch that has been shifted to the right, the presence of a 

distinctive feature in that region is suggested. 

 

Figure 2-8. Harris Corner Detector Selection Method [35]. 

Scale-Invariant Feature Transform (SIFT) [36] 

The SIFT algorithm has several steps for selecting features in an image. 

• The first step is the selection of features that have scale and rotation invariance. 

Features with scale invariance are selected using a difference-of-Gaussian (DoG) 

filter to detect local extrema in the scale space of the image. 

• Once the features have been detected, their locations are refined by fitting a model 

to the DoG response function. This assists in eliminating features that are poorly 

localized. 

• To achieve rotation invariance, each feature is assigned an orientation, which is 

computed using a histogram of gradient directions in the local region around the 

feature. 

• Lastly, a descriptor needs to be calculated for each feature, so that the features 

are unique and easily distinguishable. The descriptor is calculated by computing 

the gradient magnitude and orientation of the image in a region around the feature 

and then constructing a histogram of oriented gradients. 

Although the SIFT algorithm extracts features with rotation and scale invariance, the 

process is time consuming, and it is generally not fit for real time applications.  

Speeded-Up Robust Features (SURF) [37] 

SURF approximates LoG with Box Filter, in contrast with SIFT, that approximates LoG with 

Difference of Gaussian. To detect features, SURF uses an integer approximation of the 

determinant of Hessian blob detector, which can be computed with 3 integer operations using 

a precomputed integral image.  

Its feature descriptor is based on the sum of the Haar wavelet response around the point 

of interest. It is partly inspired by the SIFT descriptor. The standard version of SURF is several 

times faster than SIFT and claimed by its authors to be more robust against different image 
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transformations than SIFT. Although SURF is faster than SIFT, its processing time is still 

inadequate for real time applications. The SURF algorithm is described in depth in OpenCV 

docs [38]. 

Features from Accelerated Segment Test (FAST) 

Features from accelerated segment test (FAST) is a corner detection method, which is used 

to extract features and later used to track and map objects. The most promising advantage of 

the FAST corner detector is its computational efficiency. Referring to its name, it is indeed 

faster than many other well-known feature extraction methods, such as DoG used by the SIFT 

and SURF. The FAST corner detector is very suitable for real-time video processing 

applications because of its computational efficiency. 

FAST corner detector uses a circle of 16 pixels (a circle of radius 3 pixels created using 

the midpoint circle algorithm [39] to classify whether a candidate point p is a feature. Each 

pixel in the circle is labeled clockwise with an integer number from 1 to 16. If a set of N 

contiguous pixels in the circle are all brighter than the intensity (denoted by 𝐼𝑝) of candidate 

pixel p  (named fast threshold) or all darker than the intensity of candidate pixel p minus 

threshold value t, then p is classified as feature. The conditions can be written as: 

• Condition 1: A set of N contiguous pixels S, ∀ 𝑥 ∈  𝑆, the intensity of 𝑥 > 𝐼𝑝  +  𝑡. 

• Condition 2: A set of N contiguous pixels S, ∀ 𝑥 𝜖 𝑆, 𝐼𝑥 < 𝐼𝑝 −  𝑡. 

When either of the two conditions is met, candidate p is classified as a feature. There is a 

tradeoff of choosing N (usually chosen as 12), the number of contiguous pixels and the 

threshold value t. On one hand the number of detected corner points should not be too many, 

on the other hand, the high performance should not be achieved by sacrificing computational 

efficiency. This process is presented in Figure 2-9 [40]. 

 

Figure 2-9. FAST Corner Detector [40]. 

The FAST corner detector extracts features rapidly [41] making them suitable for real time 

applications. However, the detected features lack rotation and scale invariance, which are 

crucial properties for achieving accuracy and robustness in a visual SLAM system. 

Binary Robust Independent Elementary Feature (BRIEF) 

BRIEF takes all features and converts them into a binary feature vector so that together they 

can represent an object. Binary feature vector also known as binary feature descriptor is a 

feature vector that only contains 1 and 0. In brief, each keypoint is described by a feature 

vector which is 128–512 bits string. Because BRIEF uses binary strings, it provides a fast 

method [42] for feature description and matching. 
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Oriented FAST and Rotated BRIEF (ORB) [43] 

The ORB (Oriented FAST and Rotated BRIEF) algorithm is an improvement over the FAST 

corner detector and the BRIEF (Binary robust independent elementary feature) descriptor. 

The ORB algorithm builds on the strengths of both FAST and BRIEF to extract features that 

are both robust and computationally efficient. 

ORB’s main contributions are as follows: 

• The addition of scale invariance to FAST features. 

• The addition of an accurate orientation component to the features. 

• Analysis of variance and correlation of oriented BRIEF features. 

• A learning method for decorrelating BRIEF features under rotational invariance, 

leading to better performance in nearest-neighbor applications. 

ORB uses the FAST algorithm for feature extraction. However, to extract FAST features 

that are scale invariant it uses a multiscale image pyramid (presented in Figure 2-10). An 

image pyramid is a multiscale representation of a single image, that consists of sequences of 

images all of which are versions of the image at different resolutions. Each level in the pyramid 

contains a down sampled version, depending on the scale selected, of the image than the 

previous level. For example, in Figure 2-10 [44] the scale selected is 2 so the images in each 

pyramid level are 2 times smaller (on each axis) than the image on the previous level. Once 

ORB has created a pyramid, it uses the FAST algorithm to detect features in the images. By 

detecting features at each level ORB is effectively locating features at a different scale. In this 

way, ORB produces features that are scale invariant. 

 

Figure 2-10. Multiscale Image Pyramid [44]. 

To create rotation invariant features, ORB calculates an orientation for each of the 

detected features depending on how the levels of intensity change around each feature. In 

more detail, to calculate the orientation of each feature, the ORB algorithm uses the intensity 

centroid. The intensity centroid assumes that the patch around the feature has higher intensity 

in a direction offset from its center, and this direction is used as the orientation. 
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To compute the orientation of each feature, the moments of the patch around each feature 

are calculated using Equation (2.4). The moment of a patch is defined as the average values 

from the single pixels` intensities of a patch. 

𝑚𝑝𝑞 = ∑𝑥𝑝

𝑥,𝑦

𝑦𝑞𝐼(𝑥, 𝑦) (2.4) 

Where 𝑚𝑝𝑞 is the moment of the patch around each feature, 𝑝, 𝑞 denote the order (𝑝 + 𝑞) of 

the moment and 𝐼(𝑥, 𝑦) is the intensity of the pixel with coordinates 𝑥, 𝑦. To calculate the 

centroid of the patch, also known as “center of mass”, 𝑝, 𝑞 take values of either 0 𝑜𝑟 1 as 

presented in Equation (2.5) where 𝐶 denotes the coordinates of the centroid. 

𝐶 = (
𝑚10

𝑚00
,
𝑚01

𝑚00
) (2.5) 

Finally, the orientation of each feature can be calculated by constructing a vector from the 

center of the feature to the coordinates of the centroid 𝐶 presented in Equation (2.6), where 𝜃 

is the orientation of the feature. 

𝜃 = 𝑎𝑡𝑎𝑛2(𝑚01, 𝑚10) (2.6) 

The vector used to calculate the orientation of the patch is presented in Figure 2-11. 

 

Figure 2-11. Vector used to calculate the orientation of the patch [45]. 

The ORB feature detection algorithm has several parameters that can be adjusted to 

control its behavior: 

• nfeatures: The maximum number of features to detect. 

• scaleFactor: The scale factor between pyramid levels. 

• nlevels: The number of pyramid levels. Maximum number of pyramid levels 

depending on the resolution of the image and the scaleFactor selected. 

• edgeThreshold: The size of the border where features are not detected. 

• firstLevel: The level of pyramid to start detection. 

• WTA_K: The number of points that produce each element of the descriptor. 

• scoreType: What type of scoring to use for each feature. Score indicates the 

likelihood each feature is actually a feature. 

• patchSize: The size of the patch used to compute the descriptor. 

• fastThreshold: The threshold used by the FAST algorithm. 

ORB features extract FAST features, that are computationally efficient [41] and improve 

them with scale and rotation invariance properties, making them robust and suitable for real 



Fundamentals of a Visual SLAM Algorithm 

 
33/92 

time applications. These properties make ORB features a popular choice for various computer 

vision applications such as object recognition and visual SLAM. 

Each feature stores information for: 

• pt: coordinates of the feature in the image plane (𝑥, 𝑦). 

• Angle: computed orientation of the keypoint (-1 if not applicable); it's in [0,360) 

degrees and measured relative to image coordinate system, i.e., clockwise. 

• octave: octave (pyramid layer) from which the keypoint has been extracted. 

• Size of the feature. This is used for the calculation of the feature descriptor. The 

size of the feature depends on the pyramid level from which it was extracted, the 

smaller the image, the bigger the size.  

• Response: the response by which the strongest feature has been selected. Can 

be used for further sorting or subsampling. 

Comparison of the Different Feature Extraction Methods 

Figure 2-12 [46] presents a comparison in the processing time among various feature 

extraction methods. As shown, the FAST algorithm is the fastest, while SIFT and SURF are 

the slowest. Despite being slower than FAST, the ORB algorithm is still suitable for real time 

applications; and its ability to extract scale and rotation invariant features make it suitable for 

visual SLAM applications.  

 

Figure 2-12. Processing Time Comparison of Feature Extraction Methods [46]. 

Figure 2-13 [47] presents the features of the different feature extraction methods on the same 

image. 
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Figure 2-13. The Different Feature Extraction Methods [47]. 

For visual SLAM applications, feature extraction is a critical step that has an impact on the 

accuracy and robustness of the algorithm. The features have to be extracted efficiently, while 

maintaining rotation and scale invariance.  

2.2.2 Matching 

Brute-Force (BF) Matcher [48] 

The Brute-Force (BF) matcher is a simple algorithm used in computer vision and image 

processing for feature matching. It takes the descriptor of each feature on one set and 

compares it with the descriptor of each feature on the second set, using a distance calculation, 

e.g., L1 norm, L2 norm, Hamming Distance, etc. The closest one is selected as a match.  

Although the BF matcher is a simple and effective (as the closest match for each feature 

is selected) algorithm, it can be slow and computationally expensive due to the need to 

compare each feature with all others resulting in a 𝑂(𝑛 ∗ 𝑚) time complexity. Figure 2-14 [49] 

presents the matched features using BF Matcher. 

 

Figure 2-14. BF Matcher [49]. 
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Fast Library for Approximate Nearest Neighbors (FLANN) Based Matcher [50]. 

The FLANN (Fast Library for Approximate Nearest Neighbors) algorithm is a method for 

efficiently searching high-dimensional spaces for nearest neighbors. The main steps of the 

FLANN algorithm are: 

• Build an index: The first step is to construct an index structure using the FLANN 

library. The type of index depends on the application and the data being searched. 

FLANN supports various types of index structures, such as k-d trees, randomized 

trees, and hierarchical clustering. The index is constructed based on the feature 

descriptors of the image features. 

• Query the index: Given a query feature descriptor from one image, the algorithm 

uses the FLANN index to efficiently search for the nearest neighbors in the other 

image. The algorithm performs a hierarchical search, starting with a coarse search 

and progressively refining the search until the desired level of accuracy is 

achieved. 

• Evaluate the search results: The algorithm returns a set of nearest neighbors, 

along with their distances to the query point or feature. Depending on the 

application, additional filtering or post-processing may be applied to the results to 

remove false matches or outliers. 

The FLANN algorithm is designed to work with high-dimensional data, which can be 

challenging for traditional nearest neighbor search algorithms such as the BF matcher. By 

using an index structure, FLANN can efficiently search large datasets and return approximate 

nearest neighbors with a high degree of accuracy. Figure 2-15 [51] presents the matches 

found using the FLANN based matcher. 

 

Figure 2-15. FLANN Based Matcher [51]. 

Match Filtering 

BF and FLANN matchers may produce incorrect matches due to image noise, but there are 

various techniques available to filter out false matches.  

One of the most common techniques is called the ratio test. In the ratio test, for each 

feature, two of the closest matches are calculated. Then the ratio of the distance between the 

two closest matches is calculated. If the ratio is below a certain threshold, the match is 

considered valid. However, if the ratio is above the threshold, the match is considered 

ambiguous or false, and it is discarded. A lower threshold will result in fewer false matches 
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being accepted but could discard some valid matches. The threshold value can vary 

depending on the application, but generally, it is set around 0.75.  

Another common technique is a threshold on the distance between the matches. If the 

distance of a match is higher than the threshold, even if it is the closest one, it is discarded.  

Stereo Matching 

A special case of matching is stereo matching which is the process of matching features of 

the left camera with the right camera. With stereo matching, the depth can be calculated for 

every match as described in Section 2.1.5. Figure 2-16 [52] presents the parameters used in 

stereo matching.  

 

Figure 2-16. Stereo Matching Parameters [52]. 

Using Equations (2.7)–(2.9) a 3D point 𝒑(𝑋𝑝, 𝑌𝑝, 𝑍𝑝) = [

𝑋𝑝

𝑌𝑝

𝑍𝑝

] can be created as a function of 

its position in the image. 

𝑍𝑝 = 𝐷𝑒𝑝𝑡ℎ (2.7) 

𝑋𝑝 = (𝑝𝑙𝑥 − 𝑐𝑙𝑥) ∗
𝑍𝑝

𝑓𝑥
(2.8) 

𝑌𝑝 = (𝑝𝑙𝑦 − 𝑐𝑙𝑦) ∗
𝑍𝑝

𝑓𝑦
(2.9) 

The position of a feature in the left camera is denoted by 𝒑𝒍(𝑥, 𝑦) = [
𝑝𝑙𝑥

𝑝𝑙𝑦
] and the optical center 

of the left camera is represented by 𝑐𝑙(𝑥, 𝑦), while 𝑓𝑥 and 𝑓𝑦 are the intrinsic parameters of the 

left camera. Using these parameters, the 3D point is computed with the world origin 0,0 being 
the optical center of the left camera. The 3D point can also be calculated using the parameters 
from the right camera, resulting in a 3D point with the world origin 0,0 at the optical center of 
the right camera. In visual SLAM systems, the 3D points computed using stereo matching are 
used for the mapping process. 
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2.3 Camera Pose Estimation 

To estimate the camera pose using a stereo camera configuration, 3D points with their 

matching 2D image features are used. The 3D points are represented in world coordinates, 

and the camera pose is estimated with respect to the world coordinate system. The camera 

pose is estimated by minimizing the reprojection error [53].  

The reprojection error is the difference between the observed 2D image points and the 

2D image points that are reprojected from the estimated 3D points using the estimated camera 

pose. The reprojection error is calculated with Equation (2.10). 

𝑟𝑒𝑝𝑟𝑜𝑗 = √(𝑥𝑝𝑟𝑜 − 𝑥𝑝𝑜𝑖𝑛𝑡)
2
+ (𝑦𝑝𝑟𝑜 − 𝑦𝑝𝑜𝑖𝑛𝑡)

2
(2.10) 

where 𝑥𝑝𝑟𝑜 , 𝑦𝑝𝑟𝑜 are the 𝑥, 𝑦 coordinates of the projection of the 3D point, the 𝑥𝑝𝑜𝑖𝑛𝑡 , 𝑦𝑝𝑜𝑖𝑛𝑡 are 

the coordinates of the observed 2D image point and the 𝑟𝑒𝑝𝑟𝑜𝑗 is the calculated reprojection 

error. 

The reprojection error is presented in Figure 2-17 [54]. The process involves the following 

steps: 

• Find stereo matches between left and right images. 

• Triangulate the 3D points from the stereo matches. 

• On the next frame, find features and match with the previously computed 3D 

points. 

• Estimate the camera pose by minimizing the reprojection error. 

Figure 2-18 [55] presents visually the process. 

 

Figure 2-17. Reprojection Error [54]. 
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Figure 2-18. Camera Pose Estimation [55]. 

One of the most used methods to estimate the camera pose with the 3D point and 2D image 

correspondence is by using the SolvePnP function provided by OpenCV. The process is 

described in detail in the OpenCV docs [55].  

2.4 Bundle Adjustment (BA) 

In visual SLAM applications, estimating the camera pose for each new frame for an extended 

period can lead to error accumulation due to various factors such as image noise or bad 

matches that were considered valid. This can result in a significant drift in the estimated 

trajectory over time. To reduce this error and correct the estimated camera poses, a technique 

called bundle adjustment was introduced [56]. 

Bundle adjustment is a method that simultaneously optimizes the camera poses and the 

3D points of the observed features to minimize the overall reprojection error of all the observed 

features over the entire sequence of images. In other words, it refines the initial estimates of 

the camera poses and locations of the 3D points by finding the optimal solution that best fits 

all 3D points observed from each camera pose. 

Bundle adjustment is an iterative process. It is initialized using the estimation of the 

camera poses and locations of the 3D points. Then, the reprojection error is computed for all 

the observed features, and the camera poses and locations of the 3D points are refined using 

a non-linear optimization algorithm, e.g., the Levenberg-Marquardt algorithm [57] or Schur 

complement method [58]. This process is repeated until the reprojection error converges to a 

minimum. 

The Bundle adjustment is computationally expensive, as it involves optimizing many 

parameters. However, it can significantly improve the accuracy of the estimated camera poses 

and the locations of the 3D points and reduce the accumulated error over time. Figure 2-19 
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[59] presents an example where bundle adjustment could be used. The 3D model is assumed 

to be stationary. 

 

Figure 2-19. Bundle Adjustment Example [59]. 

The objective of Bundle Adjustment is to improve the accuracy of initial camera pose and 

locations of 3D points estimates, by refining them in a simultaneous optimization process, in 

order to find the optimal set of parameters that best predict the locations of 3D points in a set 

of images. Let there be 𝑛 3D points visible in 𝑚 views, with 𝒙𝒊𝒋 representing the projection 

(coordinates in the image plane) of the 3D point 𝑖  on image 𝑗 . The 𝑣𝑖𝑗  denotes a binary 

variable that is equal to 1 if point 𝑖 is visible in image 𝑗, and 0 otherwise. Each camera pose 𝑗 

is represented by a vector 𝒂𝒋, and each 3D point 𝑖 by a vector 𝒃𝒊. Bundle Adjustment aims to 

minimize the total reprojection error by optimizing all locations of the 3D points and camera 

poses as presented in Equation (2.11). 

𝑚𝑖𝑛𝒂𝒋,𝒃𝒊
∑∑𝑢𝑖𝑗𝑑(𝑄(𝒂𝒋, 𝒃𝒊), 𝒙𝒊𝒋)

2
𝑚

𝑗=1

𝑛

𝑖=1

(2.11) 

where 𝑄(𝒂𝒋, 𝒃𝒊) is the predicted projection of point 𝑖 on image 𝑗 and 𝑑(𝑄(𝑎𝑗 , 𝑏𝑖), 𝑥𝑖𝑗) denotes 

the Euclidean distance between the image points represented by vectors 𝑄(𝑎𝑗 , 𝑏𝑖) and 𝑥𝑖𝑗 

[60]. 

2.4.1 Motion Only BA 

To estimate the current pose of the camera, a specific case of bundle adjustment can be used 

known as Motion Only bundle adjustment. This involves optimizing the camera poses while 

the locations of the 3D points are assumed to be known and fixed in the 3D scene. By doing 

so, Motion Only BA has reduced computational cost compared to bundle adjustment, since 

the number of parameters to be optimized are significantly reduced. This makes it possible to 

perform the optimization in real-time, which is especially useful in applications where fast and 

accurate camera pose estimation is required, such as in visual SLAM applications. 

2.4.2 Keyframes 

Due to the high computational cost of BA, performing it for every new camera pose (with each 

new image) would be impractical. As a result, it is performed only on specific frames (images), 

i.e., keyframes. Keyframes (Figure 2-20 [61]) were first introduced by Klein and Murray in 2011 
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in their Parallel Tracking and Mapping for Small Augmented Reality (AR) Workspaces [13] 

and they are significant frames in a camera trajectory, that are selected based on certain 

criteria, 

• Fast camera movement: To optimize the camera poses at that particular point. 

• Number of features currently tracked: To add new features to track. 

• Elapsed time from the last keyframe insertion: To maintain a balance between 

computational efficiency and capturing important changes in the environment. 

 

Figure 2-20. Keyframe Selection [61]. 

Keyframes are an essential component for visual SLAM systems because they can be 

used to perform BA and reduce the error accumulation over time, while reducing 

computational cost as BA is only performed when a new keyframe is inserted. To estimate 

camera poses that are not refined by BA, a reference pose is required, and keyframes are 

used as that reference. The unoptimized camera poses are then calculated relative to the 

reference pose of the corresponding keyframe. 

Overall, keyframes play a crucial role in visual SLAM systems by enabling the reduction 

of the computational cost of BA and by providing a compact representation of the camera 

trajectory. 

2.4.3 Local BA 

To maintain local consistency in the map of visual SLAM systems, The Local Bundle 

Adjustment (BA) is often employed. The Local BA is a variant of the classic BA algorithm that 

focuses on optimizing a subset of camera poses and 3D point locations, as opposed to 

optimizing all of them. This approach allows Local BA to be used more frequently and with 

less computational power (as only a subset of camera poses is optimized) compared to the 

original BA, while still preserving a reasonable level of accuracy. 

The process typically starts by identifying the keyframes that have visibility of, or share, 

3D points that the newly added keyframe can observe. Keyframes that share 3D points with 

the new keyframe are considered local, or active, and their poses can be optimized. 

Keyframes that share 3D points with the local keyframes but not with a new one, are not 
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considered local, and therefore their poses are fixed. A similar process is repeated for the 3D 

points. If the 3D points are visible from the new or the local keyframes, their locations are 

optimized, while if the 3D points are visible only from the fixed keyframes, their locations are 

fixed and are not optimized. 

Local BA is often used in real-time applications where quick and accurate estimation of 

camera pose is crucial. By limiting the number of parameters used in the optimization process, 

Local BA can still operate in real-time, while still achieving reasonable accuracy. Figure 2-21 

[62] presents visually the identified keyframes and 3D points in a Local BA problem. 

 

Figure 2-21. Identified Keyframes and 3D Points for Local BA [62]. 

2.4.4 Global BA 

Global Bundle Adjustment involves optimizing all the keyframe poses and 3D point locations 

in the map. This process is typically performed to reduce error accumulation over a long period 

of time in a camera trajectory. However, due to the large number of parameters that require 

optimization, global BA is not performed frequently, but rather only when new information is 

discovered, such as when the camera revisits a previously seen location or when new sensor 

data becomes available. In other words, global BA is initiated by an external event, rather than 

from the feature tracking process itself. To ensure a fixed map during global BA optimization, 

the first keyframe - usually the first frame of a camera trajectory - is fixed and cannot be 

optimized. 

2.5 Loop Closure 

In the context of visual SLAM, loop closure is the process of recognizing that the camera has 

returned to a previously visited location and then, using this information, correct accumulated 

errors in the camera trajectory and the estimated map of the environment. 

When the camera revisits a location, it captures new images of the scene, which can be 

compared with the images captured during the previous visit. If the camera has returned to 

the same location, these images will have similar features and descriptors, and the camera 
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poses estimated using these images will be close to each other. The process of recognizing 

that the camera has revisited a previous location is called loop closure detection.  

The most common loop closure detection method is the bag-of-visual-words approach 

(BOVW) which represents features, such as ORB or SURF, as a histogram of visual words. 

Each visual word corresponds to a cluster of similar features (Figure 2-22 [63]). This 

representation is then used to compare with all the previous images (already represented in 

a bag-of-visual-words) and determine if they are from the same location. The most commonly 

used package for a bag-of-words representation is DBoW2 [10] used by many well-known 

visual SLAM algorithms, e.g., ORB-SLAM3 [7], VINS-Fusion [11] and Kimera-VIO [14] to 

name a few.  

 

Figure 2-22. Bag-of-Words Representation of Image Features [63]. 

Once a loop closure is detected, global BA can be performed on the estimated camera 

poses and 3D point locations to correct any errors that accumulated due to noise or drift during 

the camera trajectory estimation. Figure 2-23(a) presents the trajectory of ORB-SLAM (blue) 

compared to the ground truth (red) trajectory with no loop closure optimization and Figure 

2-23(b) presents the trajectory of ORB-SLAM (blue) with loop closure optimization compared 

to the same ground truth trajectory. From Table 2-1 it is evident that the trajectory has 

improved in accuracy due to the optimization process.  

 

Figure 2-23. Loop Closure Optimization, Ground Truth (Red), (a)ORB-SLAM (Blue) With No 
Loop Closure Optimization, (b) ORB-SLAM (Blue) With Loop Closure 

Optimization.[8] 



Fundamentals of a Visual SLAM Algorithm 

 
43/92 

Table 2-1 RMSE Comparison of Estimated Trajectory With and Without Loop Closure 
Optimization [8]. 

 

 RMSE 

ORBSLAM No Loop Closure 7.62 

ORBSLAM With Loop Closure 6.62 

 

Loop closure is a crucial part of visual SLAM systems, as it helps mitigate the effects of 

error accumulation and aids in the creation of an accurate. 

2.6 AprilTags 

Apriltags were firstly developed by Wang and Olson at the University of Michigan in 2011 [64] 

[65] [66]. They are a type of visual marker designed to be easily detected and recognized by 

computer vision systems and are commonly used in robotics, augmented reality, and other 

computer vision applications where precise localization and tracking of objects or devices is 

required. They are similar in concept to QR codes, as they are a type of two-dimensional bar 

code. However, they are specifically engineered to encode smaller data payloads (ranging 

from 4 to 12 bits) to enable more reliable and longer-range detection. The unique pattern of 

each Apriltag allows for its accurate and robust detection, even in challenging lighting 

conditions. They are typically detected and tracked using specialized software libraries, such 

as the AprilTag library [67] and when detected, provide the following information: 

• The identity of the tag: A unique ID number encoded within its pattern, which can 

be used to identify the specific tag being detected. 

• The position of the tag: Its precise 3D position relative to the camera that detected 

it. 

• The orientation of the tag: Its orientation relative to the camera that detected it. 

In Figure 2-24 [68], a set of various sized Apriltags is presented. 

 

Figure 2-24. Different Apriltags [68]. 
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To accurately compute the 3D position and orientation of the tag, the intrinsic parameters 

of the camera and the size of the tag need to be available. Tags are separated in classes and 

the tag size is represented differently in different classes. Figure 2-25 [69] presents 2 different 

tags with different size representations. 

 

Figure 2-25. Tag Size Representation [69]. 

Furthermore, the camera pose can be estimated relative to the Apriltag, and if the tag’s 

world pose is known, then the world pose of the camera can be estimated with high accuracy. 

Moreover, Apriltags can be used in combination, allowing for the tracking of multiple tags 

simultaneously. This enables even greater accuracy in camera pose estimation, as presented 

in Figure 2-26 [70], where the position and orientation of multiple tags are detected. This 

makes Apriltags a valuable tool for many applications in robotics, augmented reality, and 

computer vision, where precise camera localization is essential. 

 

Figure 2-26. Multiple Apriltags Detected [70]. 
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3 Implementation of the Visual SLAM Algorithm 

This chapter provides a detailed overview of the visual SLAM algorithm developed for this 

thesis. To overcome challenges posed by environmental factors such as obstructions in the 

camera’s field of view (FoV), a dual stereo camera setup was used. Stereos cameras were 

placed at the back front and the front of rover as presented in Figure 3-1, increasing the overall 

FoV while at the same time addressing issues such as featureless objects covering most of 

the FoV of one of the stereo cameras.   

Additionally, Apriltag detection was chosen for loop detection, to address situations where 

the environment is homogeneous, such as in vineyards, where algorithms using bag-of-words 

approaches, e.g., ORB-SLAM3, Kimera-VIO, etc. could potentially result in incorrect loop 

detection. 

 

Figure 3-1. CSL Rover. 

3.1 Visual SLAM Pipeline 

The system is separated into five different threads,  

1. Tracking: Tracks features in images and estimates the current camera pose. 

2. Local mapping: Inserts new 3D points and performs local BA optimization.  

3. Loop closing: Performs Global BA optimization when a loop is detected.  

4. AprilTag detection: Detects Apriltags and initiates the loop closure thread.  

5. Visualization: Visualizes the 3D points and keyframes.  

Initialization is performed once during the system startup in the tracking thread. The map is 

initialized by extracting features from both stereo cameras (front and back) and by creating 

3D points using stereo matching. Next, the tracking thread extracts features from each new 

camera frame and matches them with the 3D points. In turn, the camera pose is estimated by 

minimizing the reprojection error of the matches with Motion-Only BA using the Ceres Solver 

[71]. When a keyframe is inserted, the local mapping thread searches for new 3D points 

between the newly added keyframe and its connected keyframes and launches the process 

of the local BA. Local BA is applied to achieve local consistency of the camera poses and 

refine the estimation of the 3D point positions. Lastly, AprilTag detection aids in identifying any 

loops, and if one is detected, the loop closing thread is initialized. The loop closing thread 

performs a global BA when an AprilTag is detected for the second time (meaning that the 
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rover passed from this AprilTag in the past). The visualization thread visualizes the trajectory 

of the camera, with its keyframes, along with all the 3D points mapped. The flowchart of the 

developed visual SLAM pipeline is presented in Figure 3-2. The diagram was developed using 

[72]. 

 

Figure 3-2. The Developed visual SLAM Pipeline. 
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3.2 Application on mobile robots using ROS 

The developed visual SLAM software package can operate in two modes. In the first mode, 

images from a folder are loaded one by one for testing in well-known datasets, such as KITTI 

or EuRoC. The second mode is a real time operation, that while a camera is moving in real 

time, its trajectory is estimated. This real-time operation is performed using the 

Publish/Subscribe Communication Model that ROS [73] offers. 

The Robot Operating System (ROS) is an open-source framework that helps researchers 

and developers build and reuse code between robotics applications. A Publisher publishes 

messages of some standard Message Type to a particular topic. The Subscriber on the other 

hand subscribes to the topic so that it receives the messages whenever any message is 

published to the topic [74, p. 3]. This communication model is presented in Figure 3-3 [75]. 

 

Figure 3-3. Publish/Subscribe Communication Model [75]. 

By using ROS, this communication model can be utilized, that allows image messages to 

be shared between different processes. This way, any process that needs the image 

information can subscribe to a certain topic and receive the image published in that topic. 

ROS also provides the rosbag package [76], which is a set of tools for recording and 

playing back ROS topics. It is a high-performance experiment replay tool that avoids 

deserialization and reserialization of the messages. A certain camera trajectory can be 

recorded in a rosbag file. That rosbag can be replayed so that the same recorder experiment 

can be used for testing and evaluation against other visual SLAM algorithms.  

3.3 Initialization 

The visual SLAM system is initialized by starting all the required threads. A configuration file 

is loaded providing the following information: 

• Rectified: If the images are rectified. 

• Distortion Parameters: If the images are not rectified, the distortion parameters 

are needed to rectify the images. 

• Stereo Camera Parameters: The camera parameters for each stereo camera, 

e.g., baseline. 

• Intrinsic Parameters: The intrinsic parameters for each camera. 

• ORB Parameters: The ORB parameters chosen for each test dataset.  
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The normal values for each ORB parameter are presented in Table 3-1. 

Table 3-1 Normal Values for each ORB parameter. 

 

Parameter Value 

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 500 

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8 

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2 

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 31 

𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 20 

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31 

 

The first step is the initialization of the map, which involves adding the first 3D points. The 

world origin of the map was chosen as the first pose of the camera. One advantage of using 

stereo cameras is that the system can be initialized with just one frame, as stereo cameras 

provide depth information. The tracking thread rectifies all images, if needed, extracts features 

from both stereo cameras, and performs stereo matching.  

3.3.1 Stereo Matching 

Despite OpenCV providing functions for feature matching, as described in Section 2.2.2, a 

custom stereo matching function was developed from scratch to allow each feature to be 

compared with fewer features1, reducing the computational power needed. 

Epipolar Constraint 

The stereo matching process begins after features from all frames have been extracted and 

assigned to a grid. As described in Section 2.1.3, each pixel on the left image has the same 

y-value as the corresponding pixel on the right image, called Epipolar Constraint. For this 

reason, the features from the right camera lenses are grouped based on their y-coordinate for 

quicker matching with their corresponding feature from the left camera. This means that each 

left feature is only compared to a subset of features in the right frame. To further optimize the 

matching process, the left features are compared only with the features from the right frame 

that have been extracted from similar (either the same pyramid level or one pyramid level 

difference) image pyramid levels, and that have a lower x-coordinate. The descriptor of the 

left feature is then compared to the descriptors of the right feature, and the two lowest 

distances are recorded. These two distances are used for the ratio test, discussed in Section 

2.2.2, where the threshold chosen was 0.75, which is a commonly used threshold value [49].  

Sliding Window Search with Parabola Fitting 

Once the correct feature has been identified, a sliding window search is performed to achieve 

sub-pixel accuracy for each match. A 5x5 patch is centered around the left feature and 

compared with a 5x5 patch around the right feature. The patch around the right feature is 

moved from -5 to +5 of the x value of the feature, recording the distances between the patches. 

 
1 Reduce the number of potential correct matches by eliminating features that are definitely incorrect 
matches. 



Implementation of the Visual SLAM Algorithm 

 
49/92 

These distances are then used for parabola fitting to calculate the subpixel accuracy of each 

stereo match.  

Specifically, parabola fitting begins with Equation (3.1). 

𝑦(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (3.1) 

Where 𝑦 is the distance calculated from the sliding window search, and 𝑥 denotes the position 

of the window. Parabola fitting aims to find to lowest y value, the lowest distance between the 

two patches, for an 𝑥 value (𝑥𝑚𝑖𝑛), which is the subpixel accurate match of the left feature. As 

the x value of the window is shifting by one pixel each time, the lowest distance (𝑑0) is selected 

representing the best pixel accurate x value (𝑥0) for the right feature. Parabola fitting is 

performed using the distances around the best value of x (𝑥0), namely -1, 0, and +1, where 0 

represents the best value of x. Figure 3-4 presents the patch around the left feature that is 

compared with patches on the right image. Figure 3-5 shows the different patches around the 

right feature. 𝑥0 is used as the starting point (𝑥0  =  0) as it is the closest one to the sub pixel 

accurate match. 𝑥−1 is the patch 1 pixel to the left and 𝑥1 is the patch 1 pixel to the right. 

 

Figure 3-4 (a) Axes of image patches (b) Patch Around Left Feature. The red circle 
represents the feature, while the red square represents the 5x5 patch around the 

feature. 

 

Figure 3-5. Right image patches. 

Figure 3-6 presents the parabola fitting. Distance 𝑑0 is the lowest distance found, and 𝑑−1, 𝑑1 

are the distances found 1 pixel to the left and one pixel to the right respectively. The distances 
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are calculated comparing Figure 3-4 with Figure 3-5(a) for 𝑑1, Figure 3-5(b) for 𝑑0 and Figure 

3-5(c) for 𝑑1. With parabola fitting the 𝑥𝑚𝑖𝑛 (subpixel accurate x value) can be calculated. 

 

Figure 3-6. Parabola Fitting. 

Equations (3.2)-(3.4) present the calculation of the subpixel accurate x value of the right 

feature. 

𝑦(−1) = 𝑑−1 = 𝑎 − 𝑏 + 𝑐 (3.2) 

𝑦(0) = 𝑑0 = 𝑐 (3.3) 

𝑦(1) = 𝑑1 = 𝑎 + 𝑏 + 𝑐 (3.4) 

The values 𝑑−1, 𝑑0, 𝑑1 are the distances that were previously calculated from the sliding 

window search. With the distances known the variables 𝑎, 𝑏, 𝑐  can be calculated using 

Equations (3.5)-(3.7). 

𝑎 =
𝑑−1 + 𝑑1 − 2 ∗ 𝑑2

2
(3.5) 

𝑏 =
𝑑1 − 𝑑−1

2
(3.6) 

𝑐 = 𝑑0 (3.7) 

With the variables 𝑎, 𝑏, 𝑐 known, the minimum can be found for the Equation 3.1 using the 

derivative, which is presented in Equation (3.8). 

𝑥 = 𝑏𝑒𝑠𝑡 = −
𝑏

2 ∗ 𝑎
(3.8) 

Equation (3.8) with the use of Equations (3.5)-(3.7) can calculate the subpixel accurate x 

coordinate of the stereo match, shown in Equation (3.9).  

𝑦(𝑏𝑒𝑠𝑡) =
𝑑−1 − 𝑑1

2 ∗ (𝑑−1 + 𝑑1 − 2 ∗ 𝑑0)
(3.9) 

With Equations (3.1)-(3.9), subpixel accuracy on the x coordinate can be calculated for each 

left feature as presented in Equation (3.10). 

𝑥𝑠𝑢𝑏𝑝𝑖𝑥𝑒𝑙 = 𝑥𝑏𝑒𝑠𝑡 + 𝑦(𝑏𝑒𝑠𝑡) (3.10) 
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where 𝑥𝑏𝑒𝑠𝑡 is the best x coordinate (so 𝑥0 = 𝑥𝑏𝑒𝑠𝑡) found from the sliding window search and 

𝑥𝑠𝑢𝑏𝑝𝑖𝑥𝑒𝑙 denotes the subpixel accurate x coordinate of the matched right feature. After each 

stereo match is identified, the depth for each match is calculated and stored, as previously 

described in Section 2.1.5 using Equation (2.3). 

Match Filtering 

To ensure the selection of correct matches, match filtering is carried out by storing all best 

distances obtained from the sliding window search and calculating their median value. Stereo 

matches with distances exceeding twice the median of the distances are considered invalid 

and are removed from the final set of matches. This filtering method eliminates matches with 

unusually high distances compared to the rest of the matches, thus improving the overall 

accuracy of the matches.  

After many iterations of the stereo matching process, many stereo matches with the 

lowest depth value were found to be incorrect, so a final filtering step was applied to the stereo 

matches by removing the closest 1% of matches. Figure 3-7(a)-(b) presents a comparison of 

the stereo matches with and without applying these filtering methods. In Figure 3-7, the green 

circles represent the features from the right image, the blue circles represent the features from 

the left image, and the line connecting each one represents the match between them. The 

longer the red line the closer the point is to the camera lenses. For example, the car in Figure 

3-7 is closer than the trees, and consequently, the red lines connecting the points on the car 

are longer. In Figure 3-7(a), it can be observed that a number of close matches are incorrect, 

as indicated by the long red lines connecting improperly matched features. On the other hand, 

Figure 3-7(b) has eliminated these incorrect matches while retaining most of the correct ones. 

In SLAM systems with large numbers of stereo matches, it is preferable to remove incorrect 

matches, even if it means some correct matches are also removed. 

 

Figure 3-7. Difference of Correct Matches with the Match Filtering techniques. Green circles 
represent the features extracted from the right image while the blue circles 

represent the features extracted from the left image. 
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3.3.2 Feature Extraction Process 

Feature extraction for visual SLAM applications is an important step towards providing 

accurate and robust localization and mapping. In this thesis, ORB Features [43] were selected, 

due to (a) their scale and rotation invariance properties, and (b) the fact that their extraction 

requires low processing power and as a result they are suitable for real-time SLAM 

applications. The optimal ORB parameters were chosen for each tested dataset. Although 

OpenCV offers a function to extract ORB features [77], the extraction algorithm was 

implemented from scratch to ensure a homogenous distribution of the features by separating 

each image into grids and then proceed to the features process on each grid separately.  

As described in Section 2.2.1, to extract ORB features, FAST features are extracted on 

each image in an image pyramid, to provide scale invariance, and then an orientation 

component is calculated for each feature, to provide rotation invariance. Specifically, the 

image pyramid was created by down sampling each image a certain number of times based 

on the number of pyramid levels chosen (ORB parameter: nlevel), using the image scale 

specified by the scale factor (ORB parameter: scaleFactor). For a homogeneous distribution 

of features across the entire camera frame, each image in the image pyramid was separated 

into grids, and FAST features were extracted on each grid separately, using the FAST 

algorithm provided by OpenCV [78]. Each image in the image pyramid was separated into a 

different number of grids. The number of grids per image is adjusted according to the frame 

resolution. Additionally, to extract features even on less-textured image grids, adaptive FAST 

thresholding was used. Specifically, the value of the fastThreshold parameter was decreased 

one time, if no features were detected in a grid of the image, making the feature detection 

more robust. Lastly, suppression via Square Covering (SSC) [79] ensured the selection of the 

strongest (The strongest features are selected based on the response parameter, which 

demonstrates the level of certainty that the selected feature is indeed a feature) features, while 

maintaining homogeneity. SSC requires input features to be sorted in decreasing order of 

strength. Then the features are processed in that order and any feature located within a 

predefined range, referred to as the suppression range, of a stronger feature is removed. The 

process is repeated for all the features, and if the resulting number of features significantly 

deviates from the desired number, the suppression range is adjusted, and the process is 

repeated.  

Figure 3-8 (a) illustrates the feature distribution when grids and SSC is not used, while 

Figure 3-8 (b) and Figure 3-8 (c) illustrate the variation when grids are applied and when grids 

& SSC are applied, respectively. Both Figure 3-8 (b) and Figure 3-8 (c) demonstrate an 

increase in feature distribution across the entire image, indicating the importance of these 

techniques. 

After the best features are selected, the orientation is calculated. The moments of a patch 

around each feature need to be calculated. A circular patch is created around the 𝑥, 𝑦 position 

of each feature. The first and second moments of the image intensity are calculated in the 

circular patch. The first moment provides information about the distribution of pixel intensities 

along the vertical axis of the patch, while the second moment provides the same information 

along the horizontal axis of the patch. This information is calculated by the intensity of each 

pixel along the rows and columns of the patch. After the moments have been calculated, the 

orientation is computed using the arctangent function using Equation (2.6).  
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Figure 3-8. Feature Distribution with Different Methods. 

After the calculation of the orientation of each extracted feature, it is assigned to a grid for 

accelerated matching. Lastly, the rotated BRIEF descriptor is calculated using the OpenCV 

function for ORB feature extraction. 

With features extracted from both stereo cameras and their corresponding descriptors 

calculated, stereo matching is initialized. 

3.3.3 Mappoints 

In the initialization step, after the stereo matches have been identified, all the 3D calculated 

points are added to the map, creating mappoints. The 3D points created from stereo matches 

using Equations (2.7)-(2.9), have the left camera optical center as their world origin (they are 

created with the left camera optical center as their 0,0,0, and as a result the 3D points are not 

defined in their world coordinates). To calculate their world coordinates a transformation is 
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calculated from the pose of the camera that observes them, front or back, to the map’s origin 

(the map’s center 0,0,0) as presented in Equations (3.11)-(3.12). 

𝒑𝒘 = 𝑻𝒘𝒄 ∗ 𝒑𝒄 (3.11) 

𝒑𝒘 = 𝑻𝒘𝒄𝒃 ∗ 𝒑𝒄 (3.12) 

𝑷𝒘 is a 4-by-1 matrix that denotes the world position in homogeneous coordinates, 𝑷𝒄 is the 

position of the mappoint with the left camera optical center as their world origin. 𝑻𝒘𝒄𝑻𝒘𝒄𝒃 are 
4-by-4 matrices that denote the transformations from the map’s origin to the front camera or 
the back camera, respectively. 

In the developed algorithm, Mappoints were chosen to store the following information for 

faster access: 

• World Position: the world position of the mappoint. 

• Pyramid level: the latest image pyramid level on which each mappoint was 

detected. 

• Matched Keyframes and Features: A list of all the keyframes and matching 

features with which each mappoint is matched. This is used for bundle adjustment. 

• In frame: Indicates whether the mappoint is present in the current frame or not. If 

the mappoint is present in the current frame, it is considered active. 

• Predicted position: an estimation of where the mappoint is likely to be visible in 

the next frame. 

• Predicted position in right camera lens: an estimation of where the mappoint is 
likely to be visible in the next frame on the right camera lens. 

• Predicted level: at which pyramid level each mappoint is predicted to be found in 

the next frame. 

• Descriptor: the descriptor of each mappoint for matching. 

• Reference Camera: Which camera can view the mappoint, front or back. 

• Outlier: if each mappoint is an outlier and should not be taken into consideration 

in the camera pose estimation. 

3.3.4 Calculation of the Mappoint Descriptor 

To accurately match newly extracted features with the mappoints, a more robust descriptor is 

calculated for each mappoint. As explained in Section 3.2.2, mappoints store information 

regarding all the features with which they have been matched with. Using this information, the 

descriptors of all the matched features are compared to each other. A distance between each 

descriptor is calculated and the one with the least distance to all others is selected as the 

descriptor of the mappoint. This way, the mappoint is described by the closest descriptor to 

all the features. When the mappoint is updated, either by adding a new keyframe to the list of 

matches with the mappoint, or removing a keyframe from the list, the descriptor is recalculated. 

This creates a more robust description of the mappoint resulting in a more accurate matching 

process. 

3.4 Tracking Thread 

The tracking thread starts the camera pose estimation process after the initialization of the 

map. For each new frame, features are extracted and stereo matched. Subsequently, a new 

matching process is created, named matching by projection, which estimates the next position 

of the active mappoints (the mappoints that can be observed in the image) and projects them 



Implementation of the Visual SLAM Algorithm 

 
55/92 

onto the current image plane. The projected mappoints are then matched with the current 

features. 

3.4.1 Mappoints Position Prediction 

The prediction of the position of the mappoint in the current pose is calculated using the 

constant velocity model (assumption that the camera has a constant velocity, and its pose is 

predicted using that velocity). The acceleration or rotation is taken in account the second time 

the camera pose is estimated described in Section 3.4.4. All poses are represented in a 4𝑥4 

transformation matrix in the 𝑆𝐸(3) Euclidean group [80], and all mappoint positions are in 

homogeneous coordinates. The next camera world pose 𝑇𝑝𝑟𝑒𝑑𝑤𝑐𝑙
, which denotes the 

transformation from world origin 𝑤 to the left camera frame𝑐𝑙, can be estimated as presented 

in Equation (3.18). 

𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 = 𝑻𝒘𝒄𝒍 ∗ 𝑻𝒑𝒓𝒆𝒗𝒄𝒍𝒘 ∗ 𝑻𝒘𝒄𝒍 (3.18) 

where 𝑻𝒘𝒄𝒍 is the transformation from world 𝑤 to left camera frame 𝑐𝑙, 𝑻𝒑𝒓𝒆𝒗𝒄𝒍𝒘 denotes the 

inverse of the previous camera world pose, and 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 is the predicted camera world pose 

assuming the camera maintains a constant velocity in the next frame. With the information of 

the world position of the mappoint, it can be moved to its predicted position in front of the 

camera using the inverse of 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍, denoted as 𝑻𝒑𝒓𝒆𝒅𝒄𝒍𝒘, to transform the mappoint from 

world to camera coordinates. For example, suppose a mappoint is located at (0,0,100) and 

the camera is predicted to be at (0,0,40). In the camera coordinate system, the mappoint is at 

(0,0,60). However, the only known parameter is the mappoint’s world position (0,0,100). 

Consequently, the mappoint needs to be transformed by the inverse of the camera’s position, 

so the mappoint needs to be moved by (0,0,−40). This transformation ensures that the 

camera observes the mappoint at the correct position. This transformation is given by: 

𝒑𝒄𝒍 = 𝑻𝒑𝒓𝒆𝒅𝒄𝒍𝒘 ∗ 𝒑𝒘 (3.19) 

where 𝒑𝒄 is the position of the mappoint in the camera coordinates and 𝒑𝒘 is the position of 

the mappoint in the world coordinates.  

To predict the position of the mappoint in the right camera lens, a similar approach is 

followed. The predicted right camera world pose is calculated using the already predicted left 

camera world pose as: 

𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒓 = 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓 (3.20) 

where 𝑻𝒄𝒍𝒄𝒓 is the transformation from the left camera coordinate frame to the right camera 

coordinate frame and 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 denotes the predicted world pose of the right camera. To 

transform the mappoint from world to the right camera coordinate frame Equation (3.21) is 

used. 

𝒑𝒄𝒓 = 𝑻𝒑𝒓𝒆𝒅𝒄𝒓𝒘 ∗ 𝒑𝒘 (3.21) 

Concerning the mappoints created from the back stereo camera data, the predicted 

camera poses for that camera are similarly calculated as : 

𝑻𝒑𝒓𝒆𝒅𝑩𝒘𝒄𝒍 = 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒍𝒃 (3.22) 

𝑻𝒑𝒓𝒆𝒅𝑩𝒘𝒄𝒓 = 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓𝒃 (3.23) 
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where 𝐵 denotes the back camera, and 𝑻𝒄𝒍𝒄𝒍𝒃, 𝑻𝒄𝒍𝒄𝒓𝒃, denote the transformations from the front 

left camera frame to the back left and back right camera frames respectively. The mappoint’s 

predicted position is calculated using the respective transformation via Equation (3.19). 

3.4.2 Match by Projection 

The matching by projection process starts after predicting all mappoint positions. The 

predicted coordinates of each mappoint are projected onto the image frame using: 

𝑢 =
𝑓𝑥 ∗ 𝑝𝑐𝑥

𝑝𝑐𝑧
+ 𝑐𝑥 (3.24) 

𝑣 =
𝑓𝑦 ∗ 𝑝𝑐𝑦

𝑝𝑐𝑧
+ 𝑐𝑦 (3.25) 

where 𝑢 and 𝑣 represent the new pixel coordinates of the projected mappoint in the image 

frame, and 𝑝𝑐𝑥, 𝑝𝑐𝑦 , 𝑝𝑐𝑧, denote the X, Y and Z coordinates, respectively, of the predicted 

position of the mappoint in camera coordinates. 𝑓𝑥, 𝑓𝑦 is the focal length in pixels and 𝑐𝑥, 𝑐𝑦 is 

the optical center in pixels as described in Section 2.1.2. 

For each projection, a list of candidate features is created based on a radius around the 

projected positions of the left and right camera frame. For example, if the projection of the 

mappoint is at (250,270), then all current features that are within a radius around the point 

(250,270) are considered candidates.  

All features from the left and the right camera frames, located inside that radius, and 

having a similar image pyramid level, are added to the list of candidates. The radius is 

determined based on a predefined constant variable and the predicted image pyramid level of 

each mappoint, i.e.: 

𝑟𝑚𝑎𝑝 = 𝑟𝑐𝑜𝑛𝑠𝑡 ∗ 𝑝𝑟𝑒𝑑𝑖𝑚𝑝𝑦𝑟 (3.26) 

where 𝑟𝑚𝑎𝑝 is the calculated radius, 𝑟𝑐𝑜𝑛𝑠𝑡 is the predefined constant variable, and 𝑝𝑟𝑒𝑑𝑖𝑚𝑝𝑦𝑟 

is the predicted image pyramid level of each mappoint. In turn, similarly to the stereo matching 

process, each mappoint’s descriptor is compared with all the candidate features in the list and 

the two lowest distances are stored. With the two lowest distances, a ratio test is performed 

comparing the ratio of these distances to 0.75, which is the most common value for the ratio 

test. The ratio test is described in detail in Section 2.2.2. The matches that are valid are 

considered correct and stored for the camera pose estimation process.  

During the initialization step, a fixed value of 120 pixels (empirically chosen) is used as 

the predefined radius (denoted as 𝑟𝑐𝑜𝑛𝑠𝑡) since the camera has not moved yet and a constant 

velocity model cannot be used. After the first camera pose estimation, the radius 𝑟𝑐𝑜𝑛𝑠𝑡 is set 

to 10 pixels. In case there are less than 50 correct matches (50 were found to produce the 

best results), resulting from a rapid camera movement, the radius is increased, and the 

matching process is repeated. 

3.4.3 Camera Pose Estimation Using Motion-Only BA 

After more than 50 matches have been identified, the camera pose estimation process starts. 

As described in Section 2.4.1, for the world pose estimation of the camera Motion Only BA is 

performed. Matches from all camera lenses, front and back, left and right, are used to estimate 

the front left camera pose, and for that reason, mappoints that were observed from the front-
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right or back (left/right) lenses, require a transformation to the front-left lens to be factored in 

the calculations.  

Mappoints that have been matched with stereo matches from either front or back camera 

features, are used to provide scale information, which assists in the translation estimation of 

the camera. As described in [81], the depth value of a stereo match is considered valid, if its 

estimation is less than 40 times the stereo baseline2 (namely close stereo matches), otherwise 

it is considered not accurate and is only used for rotation estimation (namely far stereo 

matches).  

For example, in Figure 3-9 let’s assume that the stereo baseline (𝑂 − 𝑂′) is 0.10m. That 

means that the depth of a stereo match is considered valid when depth<4.0m. If the depth is 

considered valid, Motion Only BA will use both the left and the right feature in the calculations. 

This way, the same 3D point is seen from two different angles, the left camera lens and the 

right camera lens, at the same time, providing scale information. If the depth is not valid, the 

3D point is calculated as seen only from one angle (the left camera lens), providing no 

information on the translation of the camera pose. 

 

Figure 3-9. Valid Depth of 3D point. 

For stereo matches with valid depth (less than 40 times the stereo baseline), to provide 

scale information (displacement information of the camera pose), both the left and the right 

feature are used in the estimation of the camera world pose, while for stereo matches with 

inaccurate depth only one of the features is used. 

To formulate the optimization problem, the world coordinates of all mappoints are stored 

along with their matched features. Depending on the matched feature, a transformation is 

used to transform the mappoint to the front-left camera coordinate frame. If the feature is from 

the front-left camera frame, then this transformation is the inverse of the current world pose 

𝑻𝒘𝒄𝒍. For all the other features, depending on which camera lens observes this feature, a 

transformation is used as presented in Equation (3.27)-(3.29). 

𝑻𝒄𝒓𝒘 = (𝑻𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓)
−𝟏 (3.27) 

 
2 The distance between the two lenses (left and right). 
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𝑻𝒄𝒍𝒃𝒘 = (𝑻𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒍𝒃)
−𝟏 (3.28) 

𝑻𝒄𝒓𝒃𝒘 = (𝑻𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓𝒃)
−𝟏 (3.28) 

Where 𝑏  denotes the back camera, and 𝑙, 𝑟  denote the left and right camera lenses, 

respectively. After the transformation to the camera coordinate frame, using Equation (3.12), 

the mappoints are projected in the image frame using Equations (3.17)-(3.18), where the 

corresponding 𝑓𝑥 , 𝑓𝑦 , 𝑐𝑥 , 𝑐𝑦 are used depending on the front or back camera parameters. The 

residuals used by Ceres Solver are calculated using Equations (3.30)-(3.31). 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑥 = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑜𝑏𝑠𝑒𝑟𝑣𝑥 − 𝑝𝑟𝑜𝑗𝑥) (3.30) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑦 = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑜𝑏𝑠𝑒𝑟𝑣𝑦 − 𝑝𝑟𝑜𝑗𝑦) (3.31) 

Where 𝑜𝑏𝑠𝑒𝑟𝑣  denotes the matched feature position, 𝑝𝑟𝑜𝑗  denotes the projection of the 

mappoint on the current frame, and 𝑤𝑒𝑖𝑔ℎ𝑡 is a weight depending on the image pyramid level 

of the matched feature. Ceres Solver minimizes all the residuals (the reprojection error) in 

Equations (3.30)-(3.31), by estimating a rotation matrix and a translation displacement for the 

front-left camera frame. 

To further understand the minimization of the reprojection error, Figure 2-17 is used. In 

Figure 2-17 suppose that the red model (named Model reprojection) was observed on the 

previous image. In the next image, the same model is observed at a different position 

(observation). The difference between the model reprojection and the observation is the 

reprojection error.  

To minimize this error, Ceres Solver translates and rotates the camera iteratively, in 

different directions. In Figure 2-17 the camera would need to, for example, translate to the 

right so that the observed model is aligned with the red model (Model reprojection). This 

particular example may have multiple solutions. However, when a substantial number of 3D 

points are observed in different positions, the camera pose can be accurately estimated as 

only one correct solution exists. To estimate as accurately as possible the camera pose, it is 

essential to establish correct matches between the observations and the 3D points. 

The Motion Only BA algorithm minimizes Equation (3.32) by finding the optimal rotation 

matrix ( 𝑹 ) and translation displacement ( 𝒕 ) of the front-left lens: 

𝑹, 𝒕 ∶ 𝑚𝑖𝑛
𝑹,𝒕

∑𝜌𝑤𝑖𝒅(𝒙𝒊, 𝒖(𝑭𝒊))
𝟐

𝑀

𝑖=1

(3.32) 

𝑭𝒊 = 𝑲𝑐(𝑹𝐶𝑉(𝑹𝒑𝒘𝑖 + 𝒕) + 𝒕𝐶𝑉) (3.33) 

𝒖(𝑭𝒊) =

[
 
 
 
 
𝑭𝒊(𝟎)

𝑭𝒊(𝟐)

𝑭𝒊(𝟏)

𝑭𝒊(𝟐)]
 
 
 
 

(3.34) 

where 𝐶 denotes the front or rear camera observing the mappoint, and 𝑉 denotes the left or 

right lens. 𝑹𝐶𝑉 , 𝒕𝐶𝑉  is the rotation matrix and translation displacement representing the 

transformation from the camera observing the mappoint, to the front-left lens and 𝑲𝐶 is the 

intrinsics matrix for either the front or the rear camera. 𝑭𝑖 is a 3-by-1 matrix, 𝜌 denotes the 

robust Huber [82] loss function, and 𝑤𝑖 is a weight based on the image pyramid level of each 

feature. 𝑀  represents the total number of mappoints to be optimized, 𝒑𝒘𝑖  is the world 

coordinates of the current mappoint, and 𝑥𝑖 is the matched feature on the image plane. 𝒅(𝒙, 𝒚) 
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is the Euclidean distance between vectors 𝑥  and 𝑦  and they represent the residuals in 

Equations (3.30)-(3.31). 

Once the front-left camera pose has been estimated, an outlier rejection step is 

performed. Each mappoint is projected onto the image frame, and the reprojection error with 

its matched feature is computed. If the reprojection error exceeds a certain threshold, the 

match is considered an outlier, and it is removed from consideration. Once all matches have 

been checked, the camera pose is re-estimated. After a more accurate estimation of the 

camera world pose has been obtained, the matches are checked once more to see if they are 

outliers, and if they are, they are removed. 

3.4.4 Re-Estimation of Camera Pose 

To estimate as accurately as possible each camera pose, the unmatched mappoints from the 

match by projection process are reconsidered for matching. Their position is predicted again, 

using the newly estimated camera pose, which is more accurate compared to the constant 

velocity model. This time, the predefined radius 𝑟𝑐𝑜𝑛𝑠𝑡 is reduced further to a value of 4 pixels, 

as the camera pose is more accurately estimated (previously, the camera pose was estimated 

with the constant velocity model, this time the camera pose has already been estimated one 

time, providing a more accurate estimation). This matching process is only used once to 

increase the number of matches and is not repeated compared to the pose estimation, as 50 

correct matches have been found from the previous pose estimation. Once the matching 

process finishes, the camera pose is estimated once again and all the matches are checked 

for rejection with the reprojection error, similarly to Section 3.3.3. This time, in contrast to the 

initial pose estimation, if the reprojection error exceeds the threshold, the mappoint is 

considered an outlier and is removed from the map. 

3.4.5 Deciding on the keyframe selection 

Once the camera pose estimation is complete, the next step is to determine whether to insert 

a new keyframe into the map. The conditions that decide whether a new keyframe is required 

are: 

1. Number of mappoints tracked: If the number of currently tracked mappoints falls 
below a certain threshold which is determined based on the number of mappoints 
that were tracked by the last keyframe. After trial and error, this threshold was 
chosen as 90% of the number of mappoints tracked. 

2. Frames passed: if more than 5 frames (empirically selected) have passed from 

the lastly added keyframe. 

3. Low number of stereo matches: If the number of stereo matches providing scale 

information3 to the camera estimation drops below 80 (empirically chosen). 

To insert a keyframe, Condition 1 and either Condition 2 or Condition 3 have to be 

satisfied. Condition 1 checks whether there has been a significant decrease in the number of 

tracked mappoints, and if so, aims to increase them by inserting a new keyframe. Condition 2 

or 3 ensures that keyframes are not inserted too frequently, which could occur in cases where 

the environment lacks texture, where tracking a large number of features is challenging. 

After a new keyframe is inserted, the algorithm stores all features from the current frame 

and calculates their connections with the keyframe. Mappoints that were inserted from 

 
3 Stereo matches with valid depth (less than 40 times the stereo baseline) to provide scale information 
(displacement information of the camera pose), 
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previous keyframes and are now tracked in the new keyframe, are considered shared and 

added to the connections. Two keyframes are considered connected if they share more than 

15 mappoints. In addition, the tracked mappoints are updated, the new keyframe is added to 

the list of matched keyframes, and the mappoint descriptors are recalculated. If Condition 3 is 

met, which indicates a low number of stereo matches providing scale information, the 100 

closest stereo matches are added to the map.  

Keyframes hold the following information: 

• World Pose: The world pose of the current keyframe. 

• Features: All features of the frame, including both matched and unmatched 

features. 

• Previous Keyframe: the previous keyframe. 

• Reference Pose: A reference pose that together with the pose of the previous 

keyframe the world pose of the current keyframe can be computed. The reference 

pose is used when an optimization process changes poses of previous keyframes.  

Reference Poses are calculated using: 

𝑻𝒓𝒆𝒇 = 𝑻𝒑𝒓𝒆𝒗𝑲𝑭
−𝟏 ∗ 𝑻𝑲𝑭 (3.35) 

where 𝑻𝒓𝒆𝒇 is the reference pose, 𝑻𝒑𝒓𝒆𝒗𝑲𝑭
−𝟏  is the inverse pose of the previous keyframe and 

𝑻𝐾𝐹 is the pose of the current keyframe. 

If a keyframe is not needed, the tracking process continues with the next frame. On the 

other hand, if a new keyframe is required, after the keyframe insertion, the local mapping 

process initializes in a different thread, while the tracking process continues. 

3.5 Local Mapping Thread 

When a new keyframe is added to the map, the local mapping thread is initiated. All keyframes 

that are connected with the newly added keyframe with more than 15 mappoints are 

considered as local keyframes and stored. The first task of the local mapping thread is to add 

new mappoints to the map that are connected with at least 3 keyframes. 

3.5.1 Matching Between Keyframes 

To add new mappoints to the map, a matching process is carried out between the local 

keyframes. This allows stereo matches with inaccurate depth values, which can be observed 

from previous keyframes, to be included in the map as their position can be triangulated 

accurately from multiple views. 

Firstly, all stereo matches from the newly added keyframe, close and far, that are not 

matched with a mappoint, are stored. These stereo matches are converted to 3D points with 

Equations (2.7)-(2.9), and their world position is calculated using Equations (3.11)-(3.12). The 

stereo matches’ position and pyramid level from each camera, front or back, are the, predicted 

on each local keyframe for both the left and the right camera lenses of the corresponding 

camera. The predicted position is projected on the image plane and matched with unmatched 

features of each local keyframe as described in Section 3.3.2. The matches for each stereo 

match with each keyframe are stored in a list, along with the corresponding features. With the 

matches for each stereo match, Ceres Solver is used to optimally triangulate the 3D position 

of the stereo match. This provides an accurate depth estimation for the stereo match, even if 

it is further than 40 times the stereo baseline. 
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Ceres Solver is used to minimize the reprojection error of the 3D points by finding the 

optimal position of the 3D point while keeping the camera poses constant. The estimated world 

position is transformed depending on the pose of each keyframe and compared to the 

matched feature according to: 

𝒑𝑲𝑭 = 𝑻𝑲𝑭𝑾 ∗ 𝒑𝒘 (3.36) 

𝒑𝒓𝒐𝒋 = 𝑲𝑲𝑭 ∗ 𝒑𝑲𝑭 (3.37) 

Where 𝒑𝐾𝐹 is the 3D point transformed depending on the pose of each keyframe, 𝑲𝐾𝐹 is the 

intrinsics matrix of the keyframe and 𝒑𝒓𝒐𝒋 is the projection of the 3D point on the image plane. 

The residuals used are the same as Equations (3.30)-(3.31).  

After the estimation of each 3D point’s position, the reprojection error is calculated for 

each match and compared to a threshold to ensure that the estimation is valid, and the 

matches are correct. If the 3D points that are matched correctly with at least 3 separate 

keyframes are considered valid they are added to the map as mappoints. The threshold of 3 

keyframes ensures that the mappoint is robust and visible from more than a single keyframe.  

To ensure that the map is as clear as possible, for each mappoint that is observed by any 

local keyframe and is not active (not observable in the current frame), if it is not matched with 

at least 3 other keyframes, it is removed from the map. This helps eliminate mappoints that 

may be inaccurate and ensures that the map remains robust and clear of incorrect mappoints. 

3.5.2 Local BA 

Local BA is performed with every new keyframe, after new mappoints have been added to the 

map. Local BA aims at the improvement of the map, while also maintaining local consistency 

of the camera trajectory. 

In more detail, Local BA optimizes the poses of all local keyframes and all mappoints that 

are observed by these keyframes. The first step is to gather all the mappoints to be optimized. 

Using the matched keyframes list of each mappoint, all keyframes are stored and separated 

to local keyframes and fixed keyframes.  

The optimization process involves minimizing the reprojection error of all mappoints 

observed by the local keyframes and refining the local keyframe poses themselves, while 

keeping the poses of the fixed keyframes fixed. This is accomplished by formulating a 

nonlinear least squares problem, which is then solved using Ceres Solver. The local BA 

minimizes Equation (3.38) by finding the optimal rotation matrices ( 𝑹𝒌  ) and translation 

displacements ( 𝒕𝒌 ) for each keyframe, where 𝑘 denotes the keyframe and 𝛫 the total number 

of keyframes: 

𝑹𝒌, 𝒕𝒌 ∶ 𝑚𝑖𝑛
𝑹𝒌,𝒕𝒌

∑ ∑ 𝜌𝑤𝑖𝒅(𝒙𝒊, 𝒖(𝑭𝒊,𝒌))
2

𝐾

𝑘=1

𝑀

𝑖=1

(3.38) 

𝑭𝒊,𝒌 = 𝑲𝐶(𝑹𝐶𝑉(𝑹𝑘𝒑𝒘𝑖 + 𝒕𝑘) + 𝒕𝐶𝑉) (3.39) 

Together with Equation (3.34) form the local BA optimization problem. 

This optimization process is performed twice. The first time, the Huber loss function is 

used, to reduce the impact of outliers on the optimization. After the first optimization is 

completed, the reprojection errors of all the mappoints with their matches are compared with 

a threshold to find any outliers. After the reprojection error check, the optimization process 
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begins again with no loss function and without factoring into the calculations any matches that 

are deemed as outliers, to acquire the best possible result. 

After the optimization process is completed for the second time, the reprojection errors 

are recalculated, and any matches that were previously deemed invalid are rechecked. If this 

time the matches are valid, they are not removed from the map. Otherwise, they are 

considered as outliers and removed from the map. In turn, the local keyframe poses are 

updated, along with the world positions of the mappoints and the recalculation of their 

descriptors. When the process finishes, the local mapping thread communicates to the 

tracking thread that the optimization has finished in order to update the current camera poses 

and mappoints. 

3.5.3 Pose Update 

After an optimization process, the tracking thread needs to update any new keyframe poses 

that have been added to the map and their mappoints according to the optimized keyframes. 

The local mapping thread updates the poses of the previous keyframes, but if a new keyframe 

has been added while the local mapping thread is still running, the new keyframe is not 

updated, as it is not included yet in the current optimization process. To update the poses 

Equation (3.35) is used along with : 

𝑻𝒏𝒆𝒘 = 𝑻𝒑𝒓𝒆𝒗𝑲𝑭 ∗ 𝑻𝒓𝒆𝒇 (3.38) 

All the new keyframe poses not yet optimized are updated to the new pose 𝑻𝒏𝒆𝒘 according to 

their previous keyframe. Each keyframe that had created new mappoints (adding the 100 

closest stereo matches described in Section 3.3.2) updates the position of the mappoints with: 

𝒑𝒏𝒆𝒘 = 𝑻𝒏𝒆𝒘 ∗ 𝑻𝒑𝒓𝒆𝒗
−𝟏 ∗ 𝒑𝒐𝒍𝒅 (3.39) 

where 𝑻𝒑𝒓𝒆𝒗
−𝟏  is the previous keyframe pose, 𝒑𝒐𝒍𝒅  is the previous world position of the 

mappoint, while 𝒑𝒏𝒆𝒘 is the new one.  

The current camera pose is also updated along with its predicted next pose (using the 

constant velocity model). With each new frame, along with the predicted pose, a reference 

pose for the predicted pose is calculated. 

𝑻𝒑𝒓𝒆𝒅𝒓𝒆𝒇 = 𝑻𝒑𝒓𝒆𝒗𝑪𝒂𝒎 ∗ 𝑻𝒏𝒆𝒘𝑪𝒂𝒎 (3.40) 

where 𝑻𝒑𝒓𝒆𝒗𝑪𝒂𝒎 is the previous camera pose, 𝑻𝒏𝒆𝒘𝑪𝒂𝒎 is the newly estimated camera pose 

and 𝑻𝒑𝒓𝒆𝒅𝑟𝑒𝑓 is the reference pose for the predicted pose. 

With Equation (3.40), the new camera pose with its predicted next pose can be calculated 

using Equations (3.41)-(3.42). 

𝑻𝒖𝒑𝑪𝒂𝒎 = 𝑻𝒍𝒂𝒕𝒆𝒔𝒕𝑲𝑭 ∗ 𝑻𝒓𝒆𝒇𝑪𝒂𝒎 (3.41) 

𝑻𝒑𝒓𝒆𝒅𝑪𝒂𝒎 = 𝑻𝒖𝒑𝑪𝒂𝒎 ∗ 𝑻𝒑𝒓𝒆𝒅𝒓𝒆𝒇 (3.42) 

where 𝑻𝒍𝒂𝒕𝒆𝒔𝒕𝑲𝑭 denotes the pose of the latest keyframe (already updated), 𝑻𝒓𝒆𝒇𝑪𝒂𝒎 is the 

reference pose of the current camera pose, 𝑻𝒖𝒑𝑪𝒂𝒎 denotes the updated current camera pose 

and 𝑻𝒑𝒓𝒆𝒅𝑪𝒂𝒎 is the updated predicted pose for the camera using the constant velocity model. 

Figure 3-10 illustrates the difference between a straight-line trajectory with the use of Local 

Bundle Adjustment (BA) and without. The figure clearly demonstrates that local BA 

optimization maintains the local consistency and reduces estimation errors of camera poses 

in each frame. 
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Figure 3-10. Comparison With and Without Local BA. 

3.6 Loop Closure Thread 

A separate thread is dedicated to the loop closure process to avoid overloading the tracking 

or local mapping threads. This thread is used to optimize the camera trajectory and the map 

when a loop is detected. 

As discussed in Section 2.5, the bag-of-words representation is a widely used method for 

detecting loops in visual SLAM systems. It involves comparing the visual features of each 

frame with those of new frames, and when a similar enough image is detected, the SLAM 

system begins optimizing the camera poses and the map. While this approach is effective in 

most environments, it may incorrectly detect loop closures in homogeneous or repetitive 

environments, leading to incorrect optimizations that make the map and camera trajectory 

worse or unusable.  

In this thesis, the main purpose of the VO software developed was to enable a mobile 

robot to traverse and map a vineyard, i.e.: a highly repetitive and homogeneous environment, 

rendering the use of a bag-of-words approach for loop closure inadequate. Therefore, a novel 

approach was introduced that relied on Apriltags for loop closure detection. The robustness 

of the Apriltag detection algorithms allows for accurate loop closure detection in all types of 

environments. Additionally, Apriltags can be easily placed in the environment and provide a 

reliable reference point for the system. 

3.6.1 First AprilTag Detection 

A third camera was added on the right side of the rover for the Apriltag detection process. The 

Apriltag detection was performed on a separate thread using the apriltag_ros package [69]. 

The apriltag_ros package takes as input the image and its parameters, as well as a settings 

file that contains the size and the identity of the Apriltag. When an Apriltag is detected, the 

pose of the Apriltag relative to the camera pose that detected it is returned.  

The tracking and local mapping thread estimate and optimize camera poses, while the 

Apriltag thread searches for Apriltags using the right camera. Upon detection of the first 
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Apriltag, its world pose is calculated relative to the front left camera, which is the camera 

estimated from the tracking thread. In order for the detection of the Apriltag to be considered 

valid, the Apriltag has to be detected 10 times consecutively. If the detection is valid, the world 

pose is calculated using : 

𝑻𝒕𝒂𝒈 = 𝑻𝒘𝒄 ∗ 𝑻𝒄𝒄𝒓 ∗ 𝑻𝒄𝒓𝑨𝑻 (3.43) 

where 𝑻𝒘𝒄 is the estimated world pose of the front left camera, obtained from the tracking 

thread, 𝑻𝒄𝒄𝒓 denotes the transformation from the front left camera to the right camera used for 

detecting the Apriltag, and 𝑻𝒄𝒓𝑨𝑻 represents the transformation from the right camera to the 

Apriltag, which is the output of the apriltag_ros package. Once the world pose of the tag is 

calculated, the Apriltag detection process requires that the tag be absent for a certain number 

of frames before it can be detected again for loop closure. 

3.6.2 Second Apriltag Detection 

With the world pose of the tag, the next time the same Apriltag is detected, means that a loop 

has been performed. With the world pose of the tag already known, the front left camera pose 

can be calculated using : 

𝑻𝒘𝒄 = 𝑻𝒕𝒂𝒈 ∗ 𝑻𝒄𝒓𝑨𝑻
−𝟏 ∗ 𝑻𝒄𝒄𝒓

−𝟏 (3.44) 

This calculated front left camera pose is considered more accurate than the estimated 

camera pose obtained from the tracking process, as there is no error accumulation from 

Apriltag detection. After a front left camera pose has been calculated from the Apriltag 

Detection, the loop closure optimization is initiated.  

3.6.3 Loop Closure Optimization 

The loop closure optimization is performed when an Apriltag has been detected for the second 

time. With a more accurate world pose for the front left camera, a Global BA problem is formed, 

where the keyframe poses that detected the Apriltag are fixed, while all other poses (except 

for the starting pose) can be optimized. To maintain consistency across all optimization 

processes, the local BA optimization is temporarily paused while the loop closure optimization 

begins. The global BA optimization is then performed, and once it has been completed, the 

local BA optimization can continue. This ensures that the mappoints used by the global BA 

remain unchanged and that the reprojection errors for all mappoints remain consistent 

throughout the optimization process. 

The equations utilized by the Global BA optimization are identical to those used by the 

Local BA optimization, which include Equations (3.34), (3.37)-(3.38). However, in this case, 

the optimization is performed on all the mappoints and keyframes. As this process is time-

consuming, it is performed on a separate thread. After the optimization is completed, the 

reprojection errors for all mappoints with their connected keyframes are compared with a 

threshold, and any error larger than the threshold indicates a wrong match, and it is removed 

from the connections. Any mappoint that ends up with less than 3 connected keyframes is 

removed from the map. 

Once the global optimization is complete, the tracking thread is notified that the camera 

poses and map have been updated, and updates the poses of the keyframes that were not 

optimized according to Section 3.4.3. The global BA optimization removes any accumulated 

error during the camera movement, resulting in a more accurate camera trajectory and map 
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of the environment. Figure 3-11 presents the two different AprilTag Detection along a camera 

trajectory. After the second detection global BA is performed to remove any accumulated error 

during the camera trajectory. 

 

Figure 3-11. First and Second AprilTag Detection on a Trajectory. After the Second Detection 
Global BA is performed. 

3.7 Visual Thread 

The visual thread is only used for the visualization process, and it is not required for the system 

to operate. This thread visualizes all mappoints, keyframes and current camera pose 

estimation, providing a visual representation of the environment. This representation can also 

be used to detect any errors or inaccuracies in the system. 

For visualization purposes, the Pangolin libraries [83] are used. Pangolin is a set of 

lightweight and portable utility libraries for prototyping 3D, numeric or video-based programs 

and algorithms. The system visualizes mappoints from both front and back stereo cameras 

along with all keyframes, but only mappoints that are connected to at least 3 keyframes are 

shown. Active mappoints are represented in green, while inactive ones are in white. 

Keyframes are represented in blue, and the current camera pose estimation is represented in 

yellow. Figure 3-12 shows the visual environment created by the dual stereo camera setup 

using the Pangolin. 
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Figure 3-12. Visual Environment created using Pangolin. White points are inactive mappoints, 
green points are active mappoints. Blue squares are the keyframes created 

(connected with a red line), while the yellow squares are the current front and 
back camera. 
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4 Results 

In this Chapter, the developed visual SLAM algorithm is evaluated employing commonly used 

image datasets by researchers worldwide as well as camera trajectories in a simulated 

environment and in a realistic vineyard setup at CSL. Although this visual SLAM algorithm 

was designed for two stereo cameras, single camera operation is also available and is tested 

with datasets that provide single stereo camera images. In this Chapter, the setups developed 

for experiments in simulation and at the CSL lab are presented. In turn, results of the single 

stereo camera operation are presented, tested with the KITTI and EuRoC datasets. Finally, 

the results of the simulation and the experiment at the CSL are presented, where the dual 

stereo camera variant of the developed software is used. 

4.1 Experimental Setup in Simulation 

To test the performance of the visual SLAM algorithm under controlled conditions, a simulation 

setup was implemented using Gazebo [84], which includes an accurate model of the RP as 

well as sensor plugins to simulate multiple stereo cameras and STL CAD models of 

grapevines acquired from [85], see Figure 4-1, Figure 4-2.  

 

Figure 4-1. Gazebo environment that resembles the CSL synthetic vineyard setup. 

 

Figure 4-2. Simulated Vineyard. 
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Gazebo combined with rosbags provided the ability to assess the performance of the 
developed visual SLAM algorithm against other state-of-the-art visual SLAM systems. Two 
simulated environments were created; the first accurately resembles the synthetic vineyard 
created at CSL, NTUA and the second resembles an actual much bigger vineyard. 

4.2 Experimental Setup at CSL 

4.2.1 Realistic Grapevine Canopy 

To perform experiments easily with varying and controlled light conditions, a vineyard with 

artificial grapes and leaves was built at CSL (Figure 4-3). Each row consists of multiple plants 

on a trellis system so that the canopy form resembles a natural canopy. The basic vineyard 

row parameters, such as the distance between plants (~1𝑚) and grapes’ minimum height 

(0.60𝑚) is based on common viticulture practices in Greece. The artificial grapes’ grid features 

varying density, grape size, creating different visibility conditions since some grapes are partly 

covered with leaves, whereas others lie on the front plane.  

 

Figure 4-3. Vineyard experimental setup at CSL. The grapevine canopy consists of two leaf 
types with different color, i.e., green & green-yellow leaves. 

To acquire the ground truth position of the rover, a camera was fixed to the ceiling of the room 

and an Apriltag was placed on the top cover of the rover. With this setup the camera located 

at the ceiling tracked the rover Apriltag and published its pose in a ROS topic. The vineyard 

consists of three 4-meter-long rows on even terrain as presented in Figure 4-3 & Figure 4-4. 

 

Figure 4-4. The rover in the synthetic vineyard developed at CSL, NTUA. 



Results 

 
69/92 

4.2.2 CSL’s Rover 

A wheeled robotic platform (RP) was used to validate the concept (Figure 4-5). The RP is 

designed and constructed for research purposes, comprising custom-built in-house parts as 

well as off-the-shelf parts (e.g., aluminum profiles, bearing units etc.). Its motion system 

features four mecanum wheels [86] to provide the robot with omnidirectional motion 

capabilities. The wheels are powered by four Maxon DC motors (RE 35) combined with 

planetary gearboxes (GP 42) and incremental encoders (HEDL 5540), providing 5 Nm of 

continuous torque per wheel. GT2 timing belts and pulleys are used to protect actuator shafts 

from increased robot payloads and to transmit power to the wheels. Two RoboClaw [87] 2x30A 

motor controllers are used to drive the actuators, since each controller can drive two DC 

brushed motors. The two motor controllers are connected via USB to the rover’s master 

computer, which is a Raspberry Pi 2 model B (RPi) running the Raspbian OS. The operator 

can connect to the RPi using WiFi and Secure Shell (SSH) Network Protocol to run a Python 

script that establishes two serial connections with the motor controllers and sends the desired 

commands. The system is powered by two LiPo batteries for the RoboClaw controllers and a 

powerbank for the Raspberry Pi. 

 

Figure 4-5. The Robotic Platform (RP). 

4.3 KITTI Dataset 

The KITTI dataset [88] is one of the standard computer vision datasets. The dataset was 

recorded using a station wagon car equipped with two high-resolution color and grayscale 

video cameras. Accurate ground truth was recorded using a Velodyne laser scanner and a 

GPS localization system. The sensors at the KITTI dataset are shown in Figure 4-6. 
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Figure 4-6. KITTI Dataset Sensors [88]. 

The dataset consists of various paths in Karlsruhe, in rural areas and on highways. All 

data are provided in raw and rectified images. For each one of KITTI’s benchmarks, an 

evaluation metric is provided where visual SLAM algorithms test their performance. 

To test the developed visual SLAM algorithm for the single stereo camera operation, the 

grayscale rectified stereo datasets were used. The stereo dataset consists of a stereo camera 

producing images 1241𝑥376 pixels at 10𝑓𝑝𝑠. The stereo sensor has a ~0.54𝑚 baseline. The 

stereo cameras parameters are summarized in Table 4-1. 

Table 4-1. The KITTI Dataset Stereo Parameters. 

Parameter Value 

𝑓𝑥 718.8560 
𝑓𝑦 718.8560 

𝑐𝑥 607.1928 
𝑐𝑦 185.2157 

 

The KITTI dataset consists of 22 different stereo camera sequences, but ground truth camera 

poses are provided only for the first 11 of them. Figure 4-7 presents the setup for the recording 

of the KITTI dataset where distances from the sensors utilized are given. 

 

Figure 4-7. KITTI Dataset Setup [88]. 
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The developed visual SLAM algorithm was tested on the first 11 sequences where ground 

truth was provided. The ORB parameters used for this dataset are presented in Table 4-2. 

2000 features were chosen considering the high resolution of each image in the dataset. 

Table 4-2. ORB Parameters used in KITTI Dataset. 

Parameter Value 

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 2000 

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8 
𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2 

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19 
𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20 

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7 

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31 

 

The sequences of the KITTI dataset consist of camera trajectories that include loop 

closures, so visual SLAM algorithms that use the bag-of-words approach for loop detection 

can detect loops and reduce the error accumulation. The developed single stereo camera 

operation could have better results in this dataset if the bag-of-words approach for loop closure 

was implemented instead of the AprilTag loop closure detection. However, incorrect loop 

closures due to the similarity of the environment could be detected as mentioned in previous 

chapters. To evaluate the performance of the developed algorithm in the dataset the average 

relative translation error 𝑡𝑟𝑒𝑙  and rotation error 𝑟𝑟𝑒𝑙  are used, proposed in [89]. Table 4-3 

presents the results of the developed visual SLAM algorithm DC-VSLAM in comparison to 

ORB-SLAM3. 

Table 4-3. Results of the Developed Visual SLAM Algorithm on the KITTI Dataset in 
comparison to ORB-SLAM3. 

 DC-VSLAM ORB-SLAM3  

Sequence 𝐭𝐫𝐞𝐥(%) 
𝒓𝒓𝒆𝒍(𝒅𝒆𝒈

/𝟏𝟎𝟎𝒎) 
𝐭𝐫𝐞𝐥(%) 

𝒓𝒓𝒆𝒍(𝒅𝒆𝒈

/𝟏𝟎𝟎𝒎) 
Loop 

00 0.7775 0.52 0.6858 0.45 Yes 

01 1.4734 0.20 1.7811 0.58 No 

02 0.8069 0.46 0.7571 0.42 Yes 

03 0.9025 0.37 0.9334 0.27 No 

04 0.6281 0.40 0.4693 0.13 No 

05 0.7010 0.41 0.6117 0.59 Yes 

06 0.9835 0.49 0.5814 0.32 Yes 

07 0.8677 0.87 0.4310 0.48 Yes 

08 1.0599 0.55 1.0351 0.53 No 

09 0.9378 0.46 1.0356 0.55 Yes 

10 0.7190 0.68 0.6686 0.57 No 

 

The results presented in Table 4-3 demonstrate that the performance of the algorithm 

using a single stereo camera is impressive, with the majority of the results showing a 

translation error less than 1% and a rotation error less than 1 𝑑𝑒𝑔/100𝑚 across all the tested 

sequences. Sequences 00, 02, 05, 06, 07 and 09 contain loops as indicated in the last row of 

the table. It is apparent that the developed SLAM algorithm produces comparable results to 
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ORB-SLAM3 while achieving better results in 4 out of 10 sequences, mainly in the ones that 

don’t contain loops since in our approach loop closure recognition was based on AprilTag 

detection. In Sequence 09, despite the presence of a loop that ORB-SLAM3 successfully 

detects, DC-VSLAM still achieves superior results. We have to note that in all sequences, the 

single camera variant of our software was tested since there is no dataset available for dual 

camera VSLAM algorithms. 

Figure 4-8 presents different sequences off the KITTI dataset with the resulting trajectory 

of the visual SLAM algorithm. Six sequences in the dataset have loops that can significantly 

reduce the impact of error accumulation. If these loops are detected correctly, the results could 

be further improved. 

 

Figure 4-8. DC-VSLAM (blue) with Ground Truth (red) trajectories in the KITTI Dataset. 
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4.4 EuRoC Dataset 

For further testing of the single stereo camera operation of the developed algorithm, the 

EuRoC Dataset [90] was utilized. The EuRoC Dataset consists of 11 stereo sequences 

recorded from a micro aerial vehicle (MAV) flying around a large industrial environment and 

two different rooms. The stereo sensor provides images of size 752𝑥480 pixels at 20𝑓𝑝𝑠. It 

has a baseline of ~0.11𝑚 and the images it provides are unrectified so image rectification is 

needed. The sequences are separated into easy, medium, and difficult, depending on the 

motion of the MAV, and the lighting conditions. Figure 4-9 presents the MAV with its sensors.  

 

Figure 4-9. EuRoC Dataset MAV [90]. 

For the ground truth pose estimation of the MAV 2 drone, the following sensors were used: 

• Leica MS50 laser tracker and scanner. 

• Vicon 6D motion capture system. 

The MAV stereo camera parameters are presented in Table 4-4. 

Table 4-4. The EuRoC Dataset Stereo Parameters. 

Parameter Value 

𝑓𝑥 435.2046 
𝑓𝑦 435.2046 

𝑐𝑥 367.4517 
𝑐𝑦 252.2008 

 
The ORB parameters used for this dataset are presented in Table 4-5.  

Table 4-5. ORB Parameters used in EuRoC Dataset. 

Parameter Value 

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 1000 

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8 

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2 

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19 

𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20 

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7 

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31 
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The EuRoC dataset revisits several times a previous position, that could potentially 

reduce any error accumulation if the loop is correctly detected. To evaluate the results of the 

algorithm, the absolute translation RMSE was calculated for each resulting trajectory. The 

results are summarized and compared to ORB-SLAM3 in Table 4-6.  

Table 4-6. Results of the Developed Visual SLAM Algorithm on the EuRoC Dataset in 
comparison to ORB-SLAM3. 

 DC-VSLAM ORB-SLAM3 

Sequence RMSE RMSE 

MH_01_easy 0.035167 0.029 

MH_02_easy 0.077663 0.019 

MH_03_medium 0.158545 0.024 

MH_04_difficult 0.234725 0.085 

MH_05_difficult 0.186501 0.052 

V1_01_easy 0.056128 0.035 

V1_02_medium 0.073557 0.025 

V1_03_difficult 0.262493 0.061 

V2_01_easy 0.063262 0.041 

V2_02_medium 0.125586 0.028 

V2_03_difficult 1.933980 0.521 

 

In both datasets (KITTI and EuRoC) our single stereo camera VSLAM software achieves 

impressive results. The RMSE in most cases are below 0.3, even in sequences, such as 

MH_04, MH_05, where the camera has very few features to track as presented in Figure 4-10. 

The presence of loops in each sequence improves the performance of ORB-SLAM3 compared 

to the developed algorithm which implemented a different method for loop closure detection, 

i.e.: AprilTags. 

 

Figure 4-10. Challenging Light Conditions in Sequence MH_04 [90]. 
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In the 𝑉2_03 sequence, the MAV performs abrupt maneuvers resulting in motion blur, 

making feature tracking significantly more difficult compared to other sequences. Incorrect 

matches lead to an increase in error during camera pose estimation resulting in a high RMSE. 

Trajectories from some of the sequences in the EuRoC dataset, along with their values on 

each axis are presented in Figure 4-11 and Figure 4-12. 

 

Figure 4-11. DC-VSLAM (blue) with Ground Truth (red) trajectories (MH_01, MH_03, MH_05) in 
the EuRoC Dataset with their values on each axis. 
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Figure 4-12. DC-VSLAM (blue) with Ground Truth (red) trajectories (V1_01, V1_03, V2_02) in 
the EuRoC Dataset with their values on each axis. 



Results 

 
77/92 

4.5 Gazebo Realistic Vineyard Canopy 

The RP used in Gazebo is described in Section 4.2.2. It is equipped with two stereo cameras, 

one in the front and one in the back, that are used for camera pose estimation in the visual 

SLAM algorithm, operating at 752𝑥480𝑝𝑥 resolution, and one single RGB camera located at 

the right side of the rover used for AprilTag detection, operating at 1920𝑥1080𝑝𝑥 resolution. 

The HD resolution for the RGB camera was selected to increase the accuracy of the AprilTag 

detection. The two stereo cameras have 12𝑐𝑚 baseline (identical to the ZED2 [91] stereo 

camera) and operate at 15𝑓𝑝𝑠. Two environments were created; one simulates the realistic 

environment built at CSL, and the second simulates a typical vineyard with many rows of 

grapevines. The simulated camera parameters are presented in Table 4-7. 

Table 4-7. Simulated Stereo Camera Parameters. 

Parameter Value 

𝑓𝑥 263.2786 

𝑓𝑦 263.2786 

𝑐𝑥 376.5000 

𝑐𝑦 240.5000 

 
The ORB parameters used for all the simulation environments are presented in Table 4-8.  

Table 4-8. ORB Parameters used in the Simulation Environments. 

Parameter Value 

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 1000 

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8 

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2 

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19 

𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20 

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7 

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31 

 

Two experiments were performed with the first simulation environment. The first consisted 

of the rover inspecting the vineyard where a brown carton box was added close to the path 

that the RP should follow. The box has very few features available to track since its surface is 

homogeneous and monochromatic. The goal was to evaluate the algorithms when a 

featureless object covers a large part of the FoV of the front camera.  

The ORB-SLAM3 failed to estimate the trajectory of the camera in this environment and 

ultimately the tracking process was reset as presented in Figure 4-13. In contrast, the 

developed algorithm outperformed ORB-SLAM3 and displayed robustness. It continued the 

camera pose estimation thanks to the features available through the rear camera. Eventually, 

it performed loop closure optimization when the AprilTag was detected at the end of the 

inspection process. Loop closure detection further improved the estimation of all previous 

poses since at this point the algorithm had the maximum confidence that the same point in the 

vineyard was visited in the past. 
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Figure 4-13. The first simulation experiment in Gazebo. Dual Cam LC denotes our approach 
with loop closure, while Dual Cam NLC denotes our approach without loop 

closure. ORB-SLAM3 resets since there are very few features available to track. 
Our approach continues thanks to the features available from the rear camera. 

During the second experiment, the RP was instructed to follow a longer path, map the 

entire vineyard, and arrive at its starting point. The purpose was to test the error accumulation 

over time and its effect on the overall accuracy of the developed algorithm. The developed 

algorithm achieved cm-level accuracy in this scenario by detecting the AprilTag at the end of 

the path and performing loop closure optimization, as presented in Figure 4-14. 

 

Figure 4-14. The second simulation experiment in Gazebo. The developed visual SLAM 
algorithm achieves cm-level accuracy. 
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4.6 Gazebo Realistic Vineyard 

The second simulation environment was created to test the loop detection accuracy of the 

bag-of-words approach, on images with high similarity. The robot had to follow a long path in 

the vineyard as presented in Figure 4-15 and return to its home position.  

 

Figure 4-15. Followed Path through the simulated Vineyard. 

Intentionally, loops were avoided except while returning to the home position where one loop 

is completed. In this experiment ORB-SLAM3 detected 3 loop closures, two of them being 

incorrect, due to the similarities in the environment, resulting in a highly inaccurate pose 

tracking. In contrast, the developed algorithm tracked the path with an impressive cm-level 

accuracy and correctly detected the loop closure at the end of the path, where the AprilTag is 

located, ultimately resulting in excellent tracking performance. See Figure 4-16. 

 

Figure 4-16. ORB-SLAM3 incorrectly detects two loop closures resulting in inaccurate pose 
tracking, while our approach tracks the path accurately and performs loop 

closure optimization only when the registered AprilTag is detected at the end of 
the trajectory. 
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Figure 4-17 and Figure 4-18 present the maps generated by ORB-SLAM3 and DC-

VSLAM. The map generated by ORB-SLAM3 is inaccurate due to incorrect loop detection, 

due to the homogeneity of the environment. On the other hand, the map generated by DC-

VSLAM is accurate. 

 

Figure 4-17. ORB-SLAM3 Created Map. 

 

Figure 4-18. DC-VSLAM Created Map. 
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Table 4-9 presents the absolute translation RMSE of the developed Visual SLAM Algorithm 

on the Simulation Experiments. The results demonstrate the developed algorithm’s 

exceptional accuracy. 

Table 4-9. Results of the Developed Visual SLAM Algorithm on the Simulation Experiments. 

DC-VSLAM 

Sequence RMSE 

First Simulation Experiment 0.006930 

Second Simulation Experiment 0.015403 

Vineyard Experiment 0.053063 

4.7 CSL Experiment 

Additional experiments were conducted on the developed synthetic vineyard at CSL. The RP 

presented in Section 4.4.2 was utilized for this set of experiments. It was equipped with (a) 

two ZED2 cameras (front and rear) with ~12𝑐𝑚  baseline operating at 640𝑥360@15𝑓𝑝𝑠 

resolution and (b) a Creative Webcam [92] operating at 1920𝑥1080 resolution attached at the 

right side of the rover used for AprilTag detection. To acquire the ground truth position of the 

rover a camera was fixed to the ceiling of the room and an AprilTag was placed on the top 

cover of the rover. With this setup the camera located at the ceiling tracked the top AprilTag 

and published its pose in a ROS topic. Again, a brown carton box was placed in the middle of 

the row to evaluate the algorithms when a featureless object covers a large part of the FoV of 

the front camera. The stereo camera parameters for the front and rear cameras are presented 

in Table 4-10 & Table 4-11, respectively. 

Table 4-10. Front ZED2 Stereo Camera Parameters. 

Parameter Value 

𝑓𝑥 261.7559 
𝑓𝑦 261.7559 

𝑐𝑥 323.5115 
𝑐𝑦 180.4974 

Table 4-11. Back ZED2 Stereo Camera Parameters. 

Parameter Value 

𝑓𝑥 262.9667 
𝑓𝑦 262.9667 

𝑐𝑥 322.1598 
𝑐𝑦 186.5257 

 

The ORB parameters used for the CSL experiment are presented in Table 4-12. 

Table 4-12. ORB Parameters used in the CSL Experiment. 

Parameter Value 

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 1000 
𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8 

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2 

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19 

𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20 

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7 

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31 
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As presented in Figure 4-19, ORB-SLAM3 fails to find and track features and resets, whereas 

the developed algorithm demonstrates robustness and estimates correctly the camera pose 

thanks to the features available through the rear camera.  

 

Figure 4-19. Feature tracking, (a) When the front camera is covered by a featureless object the 
algorithm continues tracking the available features from the second camera, (b) 
ORB-SLAM3 resets when a featureless object covers most of the camera's FoV. 

 In Figure 4-20, the trajectory estimation of the developed algorithm and the resetting point 

of ORB-SLAM3 are presented. The grapevines are not shown because they are located at 

𝑥 = −1, 𝑥 = 1 and the rover moves in the middle. The developed visual SLAM algorithm 

continues the camera pose estimation without losing accuracy and performs global BA when 

the Apriltag is detected for the second time for further optimization of the camera trajectory. 

 

Figure 4-20. Experiment at the synthetic vineyard at CSL. ORB-SLAM3 resets since there are 
very few features available to track. The developed algorithm continues thanks to 

the features available from the rear camera. 
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4.8 Timings 

The execution time of each process is an important part to ensure that the developed algorithm 

is suitable for a real time application. The processing times for each operation were calculated 

as an average of five runs and are presented in Table 4-13. While the Single stereo camera 

operation extracts features only from the left and right images, the processing time required 

for feature extraction is comparable to that of the dual stereo camera operation. This is 

because the feature extraction process for each stereo camera is separated into different 

threads. The processing times for the dual camera setup are improved by separating every 

process for each camera into different threads (the processes that can be completed 

separately). 

Table 4-13. Processing Times of the Developed Algorithm in Different Datasets. 

 Single Camera 

Operation 

Single Camera 

Operation 

Dual Camera Operation 

Dataset EuRoC KITTI CSL Experiment 

Resolution 752𝑥480 1226𝑥370 640𝑥360 

Camera FPS 20𝐻𝑧 10𝐻𝑧 15𝐻𝑧 

Features 1000 2000 1000 

Tracking Thread 

Feature Extraction 16.6344𝑚𝑠 22.4063𝑚𝑠 27.5005𝑚𝑠 

Stereo Matching 4.43852𝑚𝑠 8.67086𝑚𝑠 1.18557𝑚𝑠 

Predict Position 0.1087474𝑚𝑠 0.1577892𝑚𝑠 1.0875𝑚𝑠 

Match Features 0.238904𝑚𝑠 0.49884𝑚𝑠 0.776784𝑚𝑠 

Estimate Pose 3.30832𝑚𝑠 5.3741𝑚𝑠 6.12086𝑚𝑠 

Insert Keyframe 0.29586𝑚𝑠 0.655361𝑚𝑠 0.0675693𝑚𝑠 

Remove Outliers 0.0179947𝑚𝑠 0.0318811𝑚𝑠 0.0117192𝑚𝑠 

Total 𝟐𝟓. 𝟏𝟑𝟔𝟑𝟐𝟐𝟔𝒎𝒔 𝟑𝟕, 𝟕𝟗𝟓𝟏𝟑𝟏𝟑𝒎𝒔 𝟑𝟔. 𝟕𝟓𝟎𝟓𝟎𝟐𝟓𝒎𝒔 

Local Mapping Thread 

New Mappoints 8.24918𝑚𝑠 10.6435𝑚𝑠 9.58088𝑚𝑠 

Local BA 103.721𝑚𝑠 165.579𝑚𝑠 321.473𝑚𝑠 

Total 𝟏𝟏𝟏, 𝟗𝟕𝟎𝟏𝟖𝒎𝒔 𝟏𝟕𝟔, 𝟐𝟐𝟐𝟓𝒎𝒔 𝟑𝟑𝟏, 𝟎𝟓𝟑𝟖𝟖𝒎𝒔 

Loop Closing Thread 

Global BA - - 1138.63𝑚𝑠 

 

In the ORB-SLAM3 paper [7] the only processing times provided are for the EuRoC dataset 

and they are presented in Table 4-14. 
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Table 4-14. Processing Times of ORB-SLAM3 in the EuRoC Dataset [7]. 

Dataset EuRoC 

Resolution 752𝑥480 

Camera FPS 20𝐻𝑧 

Features 1200 

Tracking Thread 

Feature Extraction 15.68𝑚𝑠 

Stereo Matching 3.35𝑚𝑠 

Predict Position 2.69𝑚𝑠 

Match Features + Estimate Pose 6.31𝑚𝑠 

Insert Keyframe 0.12𝑚𝑠 

Total 𝟐𝟓. 𝟏𝟑𝟔𝟑𝟐𝟐𝟔𝒎𝒔 

Local Mapping Thread 

Insert KF 8.03𝑚𝑠 

Remove Mappoints 0.32𝑚𝑠 

Add new Mappoints 18.23𝑚𝑠 

Local BA 134.60𝑚𝑠 

Remove KF 5.49𝑚𝑠 

Total 𝟏𝟓𝟖. 𝟖𝟒𝒎𝒔 

Global BA - 

 

As is evident, the developed algorithm demonstrates comparable performance to the ORB-

SLAM3 in terms of processing times in the EuRoC Dataset. The average processing time per 

frame is lower than the camera’s FPS, ensuring real time operation capabilities. Even during 

dual camera operation, while there is a slight increase in processing time, it remains below 

the camera's FPS, maintaining real-time functionality. 
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5 Conclusion And Future Work 

5.1 Conclusion 

Visual Simultaneous Localization and Mapping (SLAM) is a well-researched field in robotics 

and computer vision that involves the mapping of an unknown environment while 

simultaneously localizing the robot within it using visual sensors. Over the years, various 

approaches have been developed to address this challenge and provide an accurate way of 

navigating and mapping an unknown environment. However, many of these approaches suffer 

from limitations such as featureless objects covering the field of view of the cameras, or 

incorrect loop detections, due to the homogeneity of the environment. This thesis aims to 

address these limitations by utilizing a dual stereo camera setup and a new and robust way 

of detecting loop closures. The setup and tuning of the algorithm are focused on vineyard rows 

that allow loop detection with apriltags, other environments may have different requirements. 

The developed algorithm achieves impressive results on well-known datasets as well as on 

simulated and real-world environments.  

With a dual camera setup, the camera pose can be estimated by utilizing the features 

from both stereo cameras, continuing the correct pose estimation where the single stereo 

camera setup may fail. Additionally, the second stereo camera assists in the mapping of the 

environment, providing a more detailed and accurate map, as it provides an additional 

perspective.  

Another key aspect of the developed algorithm is the loop closure detection. Loop 

closures are crucial for reducing the error accumulation in the visual SLAM algorithm over 

time, and for producing consistent and accurate maps. In this thesis, a new and robust way of 

detecting loop closures using Apriltags was developed. By utilizing Apriltags for loop closure 

detection, the developed algorithm can detect loop closures accurately and efficiently, even in 

homogeneous environments where other state-of-the-art approaches may fail.  

To evaluate the performance of the developed single stereo camera algorithm, the KITTI 

and EuRoC datasets were used, which are widely used in the visual SLAM community. The 

results show that the developed single stereo camera algorithm achieves impressive 

accuracy, even when tested on challenging datasets that contain images with rapid camera  

movement and difficult lighting conditions. 

To test the algorithm’s performance, on the dual stereo camera setup with the Apriltag 

loop closure detection, custom datasets were created, in simulation and in real-world 

scenarios. The results show that the developed algorithm shows impressive accuracy in all 

experiments and outperforms ORB-SLAM3 in some scenarios, i.e.: when the cameras field of 

view is partially obscured or when the bag-of-words approaches incorrectly detect loops due 

to the similarities in the environment. The developed algorithm is also tested and can be used 

on-line at 15 FPS with resolution 640𝑥360 on the dual camera setup. 

In conclusion, the developed algorithm addresses core limitations of visual SLAM and 

shows robustness in a variety of challenging environments. However, there is always room 

for further research and development. Future work can focus on several directions to improve 

the accuracy, robustness, and efficiency of the developed algorithm. 
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5.2 Future Work 

The first possible extension of this thesis is the integration of additional sensors such as an 

inertial measurement unit (IMU). IMUs operate at a higher frequency than visual sensors and 

can provide pose information faster, and therefore, improve the estimation. IMUs can 

additionally be employed for a better prediction of the next camera pose, making feature 

tracking more accurate. 

To improve camera pose estimation and mapping of the environment, another potential 

area of future research could be scaling the dual camera setup to include more stereo 

cameras. With an increased number of stereo cameras, the FoV is increased, providing more 

features to track and as a result the pose estimation accuracy and the mapping of the 

environment could be greatly improved. However, this will come at the cost of increased 

computational complexity, requiring more processing power and the need for better computer 

hardware. 

To optimize this visual SLAM algorithm for its primary use case, which is the inspection 

of vineyards, the loop closure detection method can be improved further. One possible 

enhancement is to increase the number of Apriltags being detected. For instance, an Apriltag 

can be placed at the start of each row of grapevines. As the robot traverses each row, it can 

perform a loop closure at the end, leading to a more accurate map and camera pose 

estimation. Additionally, a grape inspection method can be developed and integrated to the 

visual SLAM algorithm. While the robot traverses the vineyard, the grape inspection algorithm 

can help monitor the condition of the grapes with precision and prevent diseases from 

spreading, if one has been detected. This improvement would make the algorithm more 

suitable for vineyard inspection and similar applications. 

Another potential enhancement is the integration of a path planner to operate at the same 

time with the visual SLAM algorithm. This path planner can receive information about the 

environment, such as the presence of obstacles or the terrain of the vineyard, from the visual 

SLAM algorithm and plan the path of the robot according to the current task being performed.  

Furthermore, integrating a GPS sensor can provide additional location. By combining the 

GPS data with the visual SLAM algorithm's estimates, the robot's pose can be estimated more 

accurately, improving the robot's ability to navigate through the environment.  

Last but not least, the processing times should be profiled and optimized to ensure that 

the visual SLAM algorithm can operate optimally. This would enable the algorithm to perform 

efficiently on hardware with reduced capabilities compared to the ones tested and expand the 

potential applications of the algorithm to various platforms. 

As I conclude my thesis, I am excited about the endless possibilities for the future of visual 

SLAM and autonomous robotics. While there are many unknowns, I hope that the work I have 

done will contribute to the advancement of the field, and I will look with great interest to see 

what the future holds. 
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Appendix A. 
DC-VSLAM is a multicamera visual SLAM designed for vineyard inspection. To address the 
challenge of homogeneous environments, loop closures are detected using AprilTags.  
DC-VSLAM has been tested with OpenCV 4.2.0, Eigen 3.3.7 on Ubuntu 20.04 with ROS 
Noetic. 

Installation 

DC-VSLAM has many dependencies, and all can be downloaded using a script provided in 

this repo. ROS Noetic is needed for the installation. 

We recommend the users to create an empty workspace. Clone the package on the catkin 

workspace and run the build script. Python 3 has to be set as default for Pangolin installation. 

cd ${WORKSPACE_PATH}/src 

git clone https://ChristosKokas@bitbucket.org/csl_legged/dc-vslam-

case2023.git 

cd dc-vslam-case2023 

chmod +x build.sh 

./build.sh  

Quick Start 

Several launch files are provided. The RT denotes real-time and the AT denotes the use of 

AprilTag Loop Closure. Change the launch files to match the config file name and the topic of 

the image msgs for AprilTag detection. 

 

DC-VSLAM can run both with images and with rosbags. Images need to be provided as 

presented below ( the bullets are folders ): 

• Dc-vslam-case2023 

• Images 

o Dataset_name 

o Left 

▪ 000000.jpg(.png) 

▪ 000001.jpg(.png) 

▪ … 

o Right 

▪ 000000.jpg(.png) 

▪ 000001.jpg(.png) 

▪ … 

o leftBack 

▪ 000000.jpg(.png) 

▪ 000001.jpg(.png) 

▪ … 

o rightBack 

▪ 000000.jpg(.png) 

▪ 000001.jpg(.png) 

▪ … 

And the full path to the dataset folder has to be provided in the config file. 
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Replaying Recorded Experiments 

Rosbags for each experiment can be downloaded from https://centralntuagr-

my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-

IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63 

 

Version 1 of this developed algorithm can be found at the CSL team bitbucket repository 

at https://bitbucket.org/csl_legged/dc-vslam-case2023/commits/ with version v1.0. 

https://centralntuagr-my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63
https://centralntuagr-my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63
https://centralntuagr-my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63
https://bitbucket.org/csl_legged/dc-vslam-case2023/commits/
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