

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF MECHANICAL ENGINEERING

DEPARTMENT OF M.D. & C.S.

Control Systems Laboratory

Postgraduate Thesis

Multicamera Visual SLAM For Mobile Robots

Christos Vasileios Kokas

Supervisor: E.G. Papadopoulos

ATHENS, 2023

Περίληψη

Η παρούσα μεταπτυχιακή εργασία παρουσιάζει την ανάπτυξη και εφαρμογή μιας visual

Simultaneous Localization and Mapping (SLAM) μεθόδου για τη χαρτογράφηση του

περιβάλλοντος και του εντοπισμού της θέσης του ρομπότ μέσα σε αυτό. Αυτή η υλοποίηση

έχει σχεδιαστεί για να λειτουργεί τόσο στο rover όσο και στο ARGOS, που δημιουργήθηκαν

στην ομάδα Legged Robots του Εργαστηρίου Αυτομάτου Ελέγχου στο ΕΜΠ. Αυτός ο

αλγόριθμος είναι το πρώτο βήμα για τον διάσχιση δύσκολων περιβαλλόντων. Στόχος του

αλγορίθμου είναι να παρέχει σε κάθε ρομπότ πληροφορίες για την θέση του ρομπότ, για το

περιβάλλον και, σε συνδυασμό με έναν σχεδιαστή διαδρομής (path planner), να διασχίζει το

χαρτογραφημένο περιβάλλον.

Στο πρώτο κεφάλαιο εξετάζονται εκτενώς σε διάφορα κινούμενα ρομπότ που θα

μπορούσαν ενδεχομένως να χρησιμοποιήσουν τον αναπτυγμένο αλγόριθμο, και

παρουσιάζονται οι τρόποι που χρησιμοποιούνται για τον εντοπισμό της θέσης τους. Επιπλέον,

παρουσιάζονται αλγόριθμοι SLAM που έχουν ήδη αναπτυχθεί μαζί με τα πλεονεκτήματα και

τα μειονεκτήματά τους. Το κεφάλαιο ολοκληρώνεται με τη δομή αυτής της εργασίας.

Στο δεύτερο κεφάλαιο, παρουσιάζονται τα κύρια στοιχεία ενός αλγόριθμο vSLAM. Το κάθε

στοιχείο αναλύεται και παρουσιάζονται οι περιορισμοί τους.

Το τρίτο κεφάλαιο αυτής της εργασίας παρουσιάζει τις λεπτομέρειες υλοποίησης του

αναπτυγμένου αλγόριθμου SLAM. Οι μέθοδοι που χρησιμοποιούνται παρουσιάζονται και

αναλύονται, με έμφαση στην εφαρμογή τους. Ενώ υπάρχουν ήδη πολλοί αλγόριθμοι SLAM,

αυτή η εργασία εισάγει μια νέα προσέγγιση με στόχο τη βελτίωση της ακρίβειας και της

ευρωστίας της χαρτογράφησης του περιβάλλοντος και του εντοπισμού της θέσης του ρομπότ.

Στο τέταρτο κεφάλαιο παρουσιάζονται τα αποτελέσματα του αλγορίθμου που

αναπτύχθηκε. Ο αλγόριθμος χωρίζεται σε δύο διαφορετικές λειτουργίες. Η πρώτη λειτουργία

σχεδιάστηκε για να δοκιμαστεί σε γνωστά datasets εικόνων και η δεύτερη λειτουργία

περιλαμβάνει τον πλήρη αλγόριθμο, ο οποίος δοκιμάστηκε σε datasets που δημιουργήθηκαν

στο CSL, τόσο σε περιβάλλοντα προσομοίωσης όσο και στο φυσικό περιβάλλον. Επιπλέον,

παρουσιάζεται ο χρόνος επεξεργασίας κάθε στοιχείου του αλγορίθμου, για να διασφαλιστεί η

καταλληλόλητά του για εφαρμογές σε πραγματικό χρόνο.

Το πέμπτο και τελευταίο κεφάλαιο αυτής της εργασίας παρουσιάζει αρκετούς

μελλοντικούς ερευνητικούς τομείς που θα μπορούσαν να βελτιώσουν περαιτέρω τον

αλγόριθμο SLAM που παρουσιάζεται σε αυτή τη μελέτη. Αυτοί οι τομείς έρευνας

παρουσιάζονται λεπτομερώς, μαζί με τα πιθανά οφέλη και τους λόγους για τους οποίους

μπορεί να βελτιώσουν την απόδοση του αλγορίθμου που εφαρμόζεται.

3/92

Abstract

The present thesis presents the development and implementation of a visual Simultaneous

Localization and Mapping (SLAM) application for the mapping of the environment and

localization of mobile robots. This implementation has been designed to operate in both the

rover, and ARGOS, created at the Legged Robots Team of the Control Systems Lab at NTUA.

This algorithm is the first step in localization and traversing challenging environments. Its aim

is to provide each robot with information about its position, the environment and, in

combination with a path planner and to allow it to traverse the mapped environment.

In the first chapter, an extensive study is conducted on various mobile robots that can

potentially employ the developed algorithm, and their localization methods are presented.

Additionally, different visual SLAM algorithms already developed are presented along with

their advantages and disadvantages. The chapter concludes by presenting the structure of

this thesis.

In the second chapter, the main components in a visual SLAM algorithm are presented.

Each component is analyzed and their limitations are presented.

The third chapter of this thesis presents the implementation details of the developed visual

SLAM algorithm. The methods used are discussed and analyzed, with a focus on their

implementation. While there are many visual SLAM algorithms already developed, this thesis

introduces a novel approach to improve the accuracy and robustness of environment mapping

and robot localization.

In the fourth chapter the results of the developed algorithm are presented. The algorithm

is separated into two different operations. The first operation was designed to be tested on

well-known image datasets, and the second operation was the complete algorithm, which was

tested on custom datasets, both in simulation and real-world environments. Additionally, the

processing time of each component of the algorithm is presented, to ensure its suitability for

real-time applications.

The fifth and final chapter of this thesis presents several future research areas that could

further enhance the visual SLAM algorithm presented in this study. These areas of research

are discussed in detail, along with their potential benefits and reasons why they may improve

the performance of the implemented algorithm.

4/92

Acknowledgements

I would like to express my deepest gratitude to my thesis supervisor Professor E.

Papadopoulos for his guidance and support throughout my research. His valuable feedback

and insights helped me in successfully completing this thesis. I feel truly fortunate to have had

the opportunity to work under his guidance.

I would also like to express my sincere gratitude to the three Ph.D. candidates and friends,

Athanasios Mastrogeorgiou, Konstantinos Machairas and Konstantinos Koutsoukis, for their

assistance and support. In particular, I would like to extend a special thanks to Athanasios

Mastrogeorgiou for his exceptional support and guidance throughout the project. Without his

help, this thesis would not have been possible.

Moreover, I would like to thank Alexandros Kokas and Christianna Geni for their profound

support and help. Last but not least, I would like to thank my family and friends for their love

and encouragement.

5/92

Dedicated to my Family and Friends

6/92

Table of Contents

Περίληψη .. 2

Abstract .. 3

Acknowledgements ... 4

Table of Contents ... 6

List of Figures .. 9

List of Tables .. 12

List of Abbreviations ... 13

Notation .. 14

1 Introduction .. 15

1.1 Motivation .. 15

1.2 Literature Review: Mobile Robots ... 15

1.2.1 MIT Cheetah 3 .. 15

1.2.2 Boston Dynamics Spot.. 16

1.2.3 Anymal X .. 16

1.2.4 Husky Rover ... 17

1.2.5 DJI Mavic 3 ... 18

1.3 Literature Review: vSLAM Algorithms ... 18

1.3.1 ORB-SLAM3 ... 18

1.3.2 VINS-Fusion ... 19

1.3.3 PTAM .. 19

1.3.4 Kimera VIO ... 20

1.3.5 SVO .. 21

1.3.6 SVO 2.0 .. 22

1.3.7 SLAM for Arbitrary Multi-Camera Systems ... 22

1.4 Thesis Structure .. 23

2 Fundamentals of a Visual SLAM Algorithm 24

2.1 Stereo Camera .. 24

2.1.1 Image Distortion .. 24

2.1.2 Camera Calibration ... 25

2.1.3 Image Rectification ... 26

2.1.4 Epipolar Geometry .. 26

2.1.5 Disparity .. 27

2.2 Features .. 28

2.2.1 Feature Extraction .. 28

2.2.2 Matching ... 34

2.3 Camera Pose Estimation ... 37

7/92

2.4 Bundle Adjustment (BA) .. 38

2.4.1 Motion Only BA ... 39

2.4.2 Keyframes .. 39

2.4.3 Local BA ... 40

2.4.4 Global BA ... 41

2.5 Loop Closure ... 41

2.6 AprilTags ... 43

3 Implementation of the Visual SLAM Algorithm 45

3.1 Visual SLAM Pipeline .. 45

3.2 Application on mobile robots using ROS... 47

3.3 Initialization .. 47

3.3.1 Stereo Matching .. 48

3.3.2 Feature Extraction Process ... 52

3.3.3 Mappoints ... 53

3.3.4 Calculation of the Mappoint Descriptor ... 54

3.4 Tracking Thread .. 54

3.4.1 Mappoints Position Prediction ... 55

3.4.2 Match by Projection .. 56

3.4.3 Camera Pose Estimation Using Motion-Only BA .. 56

3.4.4 Re-Estimation of Camera Pose... 59

3.4.5 Deciding on the keyframe selection .. 59

3.5 Local Mapping Thread ... 60

3.5.1 Matching Between Keyframes .. 60

3.5.2 Local BA ... 61

3.5.3 Pose Update ... 62

3.6 Loop Closure Thread ... 63

3.6.1 First AprilTag Detection .. 63

3.6.2 Second Apriltag Detection .. 64

3.6.3 Loop Closure Optimization .. 64

3.7 Visual Thread .. 65

4 Results .. 67

4.1 Experimental Setup in Simulation ... 67

4.2 Experimental Setup at CSL ... 68

4.2.1 Realistic Grapevine Canopy ... 68

4.2.2 CSL’s Rover.. 69

4.3 KITTI Dataset .. 69

4.4 EuRoC Dataset.. 73

4.5 Gazebo Realistic Vineyard Canopy .. 77

4.6 Gazebo Realistic Vineyard .. 79

4.7 CSL Experiment .. 81

4.8 Timings .. 83

8/92

5 Conclusion And Future Work ... 85

5.1 Conclusion ... 85

5.2 Future Work ... 86

6 References ... 87

Appendix A. .. 91

9/92

List of Figures
Figure 1-1. The MIT Cheetah 3. .. 15

Figure 1-2. The Boston Dynamics Spot. ... 16

Figure 1-3. The ANYmal X Legged Robot. .. 17

Figure 1-4. The Husky Rover. ... 17

Figure 1-5. The DJI Mavic 3 Drone. .. 18

Figure 1-6. ORB-SLAM3. .. 19

Figure 1-7. Vins-Fusion. .. 19

Figure 1-8. PTAM Tracked Features. .. 20

Figure 1-9. Kimera VIO. (a) denotes the visual intertial state estimator, (b) denotes the
fast mesh reconstruction of the scene and (c), (d) is the globally
semantically annotated 3D mesh (c) in comparison with the ground truth
model(d). .. 21

Figure 1-10. SVO Tracking and Map. .. 21

Figure 1-11. SVO 2.0 with Multiple Cameras. ... 22

Figure 1-12. SLAM for Multi-Camera Systems. ... 22

Figure 2-1. A ZED Stereo Camera [18]. .. 24

Figure 2-2. Image Distortion [21]. .. 25

Figure 2-3. Image used for Camera Calibration [22]. .. 25

Figure 2-4. Image Rectification [27]. ... 26

Figure 2-5. Epipolar Geometry [28]. .. 27

Figure 2-6. Disparity Map [31]. .. 27

Figure 2-7. Different types of features [32], [33], [34]. ... 28

Figure 2-8. Harris Corner Detector Selection Method [35]. ... 29

Figure 2-9. FAST Corner Detector [40]. .. 30

Figure 2-10. Multiscale Image Pyramid [44]. ... 31

Figure 2-11. Vector used to calculate the orientation of the patch [45]. 32

Figure 2-12. Processing Time Comparison of Feature Extraction Methods [46]. 33

Figure 2-13. The Different Feature Extraction Methods [47]. .. 34

Figure 2-14. BF Matcher [49]. ... 34

Figure 2-15. FLANN Based Matcher [51]. ... 35

Figure 2-16. Stereo Matching Parameters [52]. .. 36

Figure 2-17. Reprojection Error [54]. ... 37

Figure 2-18. Camera Pose Estimation [55]. .. 38

Figure 2-19. Bundle Adjustment Example [59]. ... 39

Figure 2-20. Keyframe Selection [61]. ... 40

Figure 2-21. Identified Keyframes and 3D Points for Local BA [62]. 41

Figure 2-22. Bag-of-Words Representation of Image Features [63]. 42

10/92

Figure 2-23. Loop Closure Optimization, Ground Truth (Red), (a)ORB-SLAM (Blue) With
No Loop Closure Optimization, (b) ORB-SLAM (Blue) With Loop Closure
Optimization.[8] ... 42

Figure 2-24. Different Apriltags [68]. ... 43

Figure 2-25. Tag Size Representation [69]. .. 44

Figure 2-26. Multiple Apriltags Detected [70]. ... 44

Figure 3-1. CSL Rover. ... 45

Figure 3-2. The Developed visual SLAM Pipeline. .. 46

Figure 3-3. Publish/Subscribe Communication Model [75]. ... 47

Figure 3-4 (a) Axes of image patches (b) Patch Around Left Feature. The red circle
represents the feature, while the red square represents the 5x5 patch
around the feature. ... 49

Figure 3-5. Right image patches. .. 49

Figure 3-6. Parabola Fitting. .. 50

Figure 3-7. Difference of Correct Matches with the Match Filtering techniques. Green
circles represent the features extracted from the right image while the blue
circles represent the features extracted from the left image. 51

Figure 3-8. Feature Distribution with Different Methods. ... 53

Figure 3-9. Valid Depth of 3D point. .. 57

Figure 3-11. Comparison With and Without Local BA. .. 63

Figure 3-12. First and Second AprilTag Detection on a Trajectory. After the Second
Detection Global BA is performed. .. 65

Figure 3-13. Visual Environment created using Pangolin. White points are inactive
mappoints, green points are active mappoints. Blue squares are the
keyframes created (connected with a red line), while the yellow squares are
the current front and back camera. ... 66

Figure 4-1. Gazebo environment that resembles the CSL synthetic vineyard setup. 67

Figure 4-2. Simulated Vineyard. .. 67

Figure 4-3. Vineyard experimental setup at CSL. The grapevine canopy consists of two
leaf types with different color, i.e., green & green-yellow leaves. 68

Figure 4-4. The rover in the synthetic vineyard developed at CSL, NTUA. 68

Figure 4-5. The Robotic Platform (RP). ... 69

Figure 4-6. KITTI Dataset Sensors [88]. .. 70

Figure 4-7. KITTI Dataset Setup [88]. ... 70

Figure 4-8. DC-VSLAM (blue) with Ground Truth (red) trajectories in the KITTI Dataset.
 ... 72

Figure 4-9. EuRoC Dataset MAV [90]. .. 73

Figure 4-10. Challenging Light Conditions in Sequence MH_04 [90]. 74

Figure 4-11. DC-VSLAM (blue) with Ground Truth (red) trajectories (MH_01, MH_03,
MH_05) in the EuRoC Dataset with their values on each axis. 75

Figure 4-12. DC-VSLAM (blue) with Ground Truth (red) trajectories (V1_01, V1_03,
V2_02) in the EuRoC Dataset with their values on each axis. 76

Figure 4-13. The first simulation experiment in Gazebo. Dual Cam LC denotes our
approach with loop closure, while Dual Cam NLC denotes our approach

11/92

without loop closure. ORB-SLAM3 resets since there are very few features
available to track. Our approach continues thanks to the features available
from the rear camera. ... 78

Figure 4-14. The second simulation experiment in Gazebo. The developed visual SLAM
algorithm achieves cm-level accuracy. ... 78

Figure 4-15. Followed Path through the simulated Vineyard. .. 79

Figure 4-16. ORB-SLAM3 incorrectly detects two loop closures resulting in inaccurate
pose tracking, while our approach tracks the path accurately and performs
loop closure optimization only when the registered AprilTag is detected at
the end of the trajectory. ... 79

Figure 4-17. ORB-SLAM3 Created Map. .. 80

Figure 4-18. DC-VSLAM Created Map. ... 80

Figure 4-19. Feature tracking, (a) When the front camera is covered by a featureless
object the algorithm continues tracking the available features from the
second camera, (b) ORB-SLAM3 resets when a featureless object covers
most of the camera's FoV. .. 82

Figure 4-20. Experiment at the synthetic vineyard at CSL. ORB-SLAM3 resets since
there are very few features available to track. The developed algorithm
continues thanks to the features available from the rear camera. 82

12/92

List of Tables
Table 2-1 RMSE Comparison of Estimated Trajectory With and Without Loop Closure

Optimization [8]. .. 43

Table 3-1 Normal Values for each ORB parameter... 48

Table 4-1. The KITTI Dataset Stereo Parameters. ... 70

Table 4-2. ORB Parameters used in KITTI Dataset. .. 71

Table 4-3. Results of the Developed Visual SLAM Algorithm on the KITTI Dataset in
comparison to ORB-SLAM3. ... 71

Table 4-4. The EuRoC Dataset Stereo Parameters. .. 73

Table 4-5. ORB Parameters used in EuRoC Dataset. ... 73

Table 4-6. Results of the Developed Visual SLAM Algorithm on the EuRoC Dataset in
comparison to ORB-SLAM3. ... 74

Table 4-7. Simulated Stereo Camera Parameters. .. 77

Table 4-8. ORB Parameters used in the Simulation Environments. 77

Table 4-9. Results of the Developed Visual SLAM Algorithm on the Simulation
Experiments. ... 81

Table 4-10. Front ZED2 Stereo Camera Parameters. .. 81

Table 4-11. Back ZED2 Stereo Camera Parameters. .. 81

Table 4-12. ORB Parameters used in the CSL Experiment. .. 81

Table 4-13. Processing Times of the Developed Algorithm in Different Datasets. 83

Table 4-14. Processing Times of ORB-SLAM3 in the EuRoC Dataset [7]. 84

13/92

List of Abbreviations
Abbreviations Definitions

AR Augmented Reality
BA Bundle Adjustment
BF Brute-Force

BOVW Bag Of Visual Words
BRIEF Binary Robust Independent Elementary Feature
CSL Control Systems Lab

DBoW Dorian Bag of Words
DoG Difference of Gaussian
DJI Da-Jiang Innovations

FAST Features From Accelerated Segment Test
FoV Field of View
GPS Global Positioning System
IMU Inertial-Measurement Unit

KITTI Karlsruhe Institute of Technology and Toyota Technological
Institute

LiDAR Light Detection and Ranging
LoG Laplacian of Gaussian
MAV Micro Aerial Vehicle
MIT Massachusetts Institute of Technology
ORB Oriented FAST and Rotated BRIEF

PTAM Parallel Tracking and Mapping
RGB-D Red Green Blue-Depth
RMSE Root Mean Square Error

RTK-GPS Real Time Kinematics Global Positioning System
SATA State of The Art
SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping
SSC Suppression via Square Covering

SURF Speeded Up Robust Features
SVO Semi-direct Visual Odometry
VINS Visual-Inertial System
VIO Visual-Inertial Odometry
VO Visual Odometry

14/92

Notation
Notation Definitions

b Back Stereo Camera
f Front Stereo Camera
cl Left Camera
cr Right Camera
clb Back Left Camera
crb Back Right Camera
C Either Front or Back Camera
𝒑 4-by-1 Homogeneous Coordinates

𝒑𝒄 4-by-1 Homogeneous Coordinates in the Camera Coordinate
Frame

𝒑𝒘 4-by-1 Homogeneous Coordinates in the World Coordinate Frame

𝑻𝑨𝑩 4-by-4 Transformation from A Coordinate Frame to B Coordinate
Frame

V Either Right or Left Camera

Introduction

15/92

1 Introduction

1.1 Motivation

With the growing demand for autonomous robots, a reliable localization system, which allows

robots to determine their position and orientation accurately within their environment, is

becoming vital. Although there are many GPS-based solutions, such as RTK GPS, these

solutions fail to provide accurate results in GPS-denied environments where the view of the

GPS satellites is obstructed or severely limited. This limitation poses a significant challenge in

various scenarios, including underground tunnels, dense urban environments with tall

buildings, dense forests, and indoor settings. Therefore, there is an increasing demand for a

localization system that can operate reliably in such environments.

The objective of this thesis is the creation of a vision-based localization system for mobile

robots, that does not rely on GPS for localization, but rather, on images captured from

cameras. By using images, the robot can simultaneously localize itself, and map the

environment (SLAM). Visual SLAM systems are becoming increasingly popular due to their

advantages over GPS-solutions and their lower cost. A thorough literature review of different

robots with their localization systems, and of visual SLAM systems, is of utmost importance to

in order to identify the most suitable localization solution. This will assist in the development

of a robust visual SLAM system that builds upon the strengths of pre-existing solutions and

addresses their limitations.

Mobile robots that are designed for tasks in GPS-denied environments and the State of

the Art (SOTA) SLAM systems are presented in the next sections.

1.2 Literature Review: Mobile Robots

1.2.1 MIT Cheetah 3

The MIT Cheetah 3 [1] (Figure 1-1) is a four-legged robot that uses a variety of sensors to

localize itself.

Figure 1-1. The MIT Cheetah 3.

These sensors are [2] :

Introduction

16/92

• LIDAR (Light Detection and Ranging): uses light to create a 3D map of the

environment.

• Inertial Measurement Unit (IMU): measures the robot’s acceleration and angular

velocity.

• Cameras: provide visual information about the environment.

• Encoders: measure the rotation of each or the robot’s joints.

These sensors provide an accurate and reliable estimation of the robot’s position and

orientation in the environment enabling it to navigate complex environments.

1.2.2 Boston Dynamics Spot

Spot [3] (Figure 1-2) is a highly advanced and versatile robotic platform developed by Boston

Dynamics. As a quadruped robot, Spot is designed to navigate and operate in various terrains

and environments, making it well-suited for a wide range of applications, including inspection,

mapping, surveillance, and research.

Spot's perception capabilities are a key aspect of its functionality. Equipped with a suite

of sensors, including cameras, depth sensors, and inertial measurement units (IMUs), Spot

can perceive and understand its surroundings. The cameras enable visual perception,

allowing the robot to detect objects, identify landmarks, and navigate through complex

environments. The depth sensors enhance spatial awareness, aiding in obstacle avoidance

and mapping. The IMUs contribute to estimating the robot's pose and motion.

Figure 1-2. The Boston Dynamics Spot.

1.2.3 Anymal X

Anymal X [4] (Figure 1-3) is the world’s first Ex-Proof legged robot developed by ANYbotics.

It is specifically designed and certified for safe usage in hazardous and potentially explosive

environments. It is equipped with a 3D LIDAR for obstacle avoidance and localization to

navigate even on GPS-denied environments.

Introduction

17/92

Figure 1-3. The ANYmal X Legged Robot.

1.2.4 Husky Rover

Husky [5] (Figure 1-4) is an four-wheeled ground vehicle that was designed for research and

development purposes. It was developed by ClearPath Robotics, and its specifications enable

it to traverse a wide range of environments. Its accessories for localization include an IMU, a

3D LIDAR and a GPS.

Figure 1-4. The Husky Rover.

Introduction

18/92

1.2.5 DJI Mavic 3

DJI Mavic 3 [6] (Figure 1-5) is the latest flagship camera drone developed by DJI technology.

For self-localization purposes, it is equipped with a GPS and multiple wide-angle vision

sensors that work seamlessly with a high-performance vision computing engine to sense

obstacles in all directions precisely and plan a safe flight route that avoids them.

Figure 1-5. The DJI Mavic 3 Drone.

1.3 Literature Review: vSLAM Algorithms

1.3.1 ORB-SLAM3

ORB-SLAM3 [7] (Figure 1-6) is a real-time SLAM library able to perform Visual, Visual-Inertial

and Multi-Map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye

lens models. ORB-SLAM3 is based on ORB-SLAM [8], a monocular visual SLAM algorithm,

and ORB-SLAM2 [9], a complete SLAM system for monocular, stereo and RGB-D cameras,

including map reuse, loop closing and relocalization capabilities.

Loop Closure is a crucial process in SLAM systems, that assists in error correction and

the creation of a more accurate map. ORB-SLAM3 detects loop closures using image

similarity, with the use of DBoW2 [10], a library for indexing and converting images into a bag-

of-word representation. Loop closure is detected when a new image’s bag-of-word

representation is similar enough to a previous image’s representation.

ORB-SLAM3 has been evaluated in many well-known image datasets, e.g., KITTI,

EuRoC, etc., and has demonstrated high accuracy and robustness. As a result, ORB-SLAM3

has become a popular choice in various applications such as robotics and autonomous

vehicles, among others.

Introduction

19/92

Figure 1-6. ORB-SLAM3.

1.3.2 VINS-Fusion

VINS-Fusion [11] (Figure 1-7) is a visual inertial SLAM system that combines information

from visual and inertial sensors to estimate accurately the camera pose in real time. VINS-

Fusion is an extension of VINS-Mono [12], a monocular visual inertial SLAM system. VINS-

Fusion leverages a tightly coupled optimization-based approach, which allows for efficient and

accurate state estimation. Additionally, it includes loop closure detection using DBoW2,

similarly with ORB-SLAM3 (Described in Chapter 1.2.6). VINS-Fusion has been tested in a

range of challenging environments, in well-known image datasets, displaying accuracy and

robustness.

Figure 1-7. Vins-Fusion.

1.3.3 PTAM

PTAM (Parallel Tracking and Mapping) [13] is a monocular visual SLAM system introduced

by Kein and Murray in 2011. PTAM was the first algorithm to introduce the use of keyframes

for mapping. Keyframes are frames with significant importance, such as the addition of new

3D points, or a significant change in camera motion, that are used in the optimization process

to reduce computational complexity. This allows for real-time operation, and as a result many

visual SLAM systems have adopted a keyframe-based approach. Additionally, PTAM can

Introduction

20/92

handle fast camera motions due to the lightweight feature-based tracking process. However,

many feature-based approaches lose accuracy in low textured environments due to the

reduced number of features available for tracking. This can lead to wrong camera pose

estimation, and as a result, an inaccurate map. Figure 1-8 presents the tracked features of the

PTAM algorithm, where it can be observed that less-textured objects, such as the table, have

no available features for tracking.

Figure 1-8. PTAM Tracked Features.

1.3.4 Kimera VIO

Kimera-VIO [14] is a Visual Inertial Odometry pipeline for accurate State Estimation from

Stereo & IMU data. It can optionally use Mono & IMU data instead of stereo cameras. Kimera

extends on pre-existing visual and visual-inertial SLAM systems (e.g., ORB-SLAM, VINS-

Mono, OKVIS, ROVIO), by enabling mesh reconstruction (technique for creating a 3D

representation of an object from point cloud data) and semantic labelling in 3D (the process

of assigning semantic meaning to elements of a 3D model). Kimera is designed with

modularity in mind and has four key components: a visual-inertial odometry (VIO) module for

fast and accurate state estimation, a robust pose graph optimizer for global trajectory

estimation, a lightweight 3D mesher module for fast mesh reconstruction, and a dense 3D

metric-semantic reconstruction module. The meshes created provide the ability for fast

obstacle avoidance. Additionally, Kimera VIO has loop closure detection capabilities, using

DBoW2, similarly with VINS-Fusion and ORB-SLAM3. Figure 1-9 presents Kimera VIO, with

the constructed meshes of the environment, in comparison to the ground truth model.

Introduction

21/92

Figure 1-9. Kimera VIO. (a) denotes the visual intertial state estimator, (b) denotes the fast
mesh reconstruction of the scene and (c), (d) is the globally semantically

annotated 3D mesh (c) in comparison with the ground truth model(d).

1.3.5 SVO

SVO [15] (Figure 1-10) is semi-direct monocular visual odometry system developed by

Forster, Pizzoli and Scaramuzza in 2014. It can operate on both pinhole and fisheye cameras.

The semi-direct method uses feature-correspondence rather than feature extraction and

matching, thus eliminating the need of costly feature extraction and robust matching

techniques for motion estimation. Feature extraction is only required when a new keyframe is

inserted, to initialize new 3D points. SVO operates directly on pixel intensities, which results

in subpixel precision at high framerates and fast camera pose estimation. SVO lacks a loop

closure optimization process, resulting in no error reduction, and consequently, it is essential

to maintain high frame rates to minimize error accumulation, compared to other state of the

art vSLAM systems.

Figure 1-10. SVO Tracking and Map.

Introduction

22/92

1.3.6 SVO 2.0

SVO 2.0 [16] is the extension of SVO to multicamera systems. The system operates with

multiple monocular cameras (Figure 1-11), both pinhole and fisheye, providing more accurate

camera pose estimation results, and a more detailed map of the environment. SVO 2.0,

although an extension of SVO, still lacks a loop closure optimization process, resulting in less

accurate camera pose estimation and mapping on longer paths due to error accumulation.

Figure 1-11. SVO 2.0 with Multiple Cameras.

1.3.7 SLAM for Arbitrary Multi-Camera Systems

A SLAM system for multiple cameras was proposed in 2020 [17]. The system can operate

with up to six cameras without the need for sensor-specific modifications or tuning. In a setup

with multiple cameras, when a camera’s field of view is blocked, the additional cameras can

help estimate the camera pose. However, the proposed system is missing a loop closure

optimization process, resulting in error accumulation over time. Figure 1-12 presents the

system operating with three fisheye cameras in a real-world environment.

Figure 1-12. SLAM for Multi-Camera Systems.

Introduction

23/92

1.4 Thesis Structure

The present thesis is structured as follows: Chapter 2 provides an overview of the main

components of a SLAM system, including key components that are utilized in the developed

SLAM system. In Chapter 3, the developed SLAM system is described in detail, analyzing the

different parts of the system. Chapter 4 presents the results of the developed SLAM system,

on well-known image datasets, in a Gazebo simulation and at the CSL lab environment.

Finally, Chapter 5 summarizes the work and discusses potential future research directions

and improvements for the system.

Fundamentals of a Visual SLAM Algorithm

24/92

2 Fundamentals of a Visual SLAM Algorithm

This chapter provides a detailed overview of the fundamental components of a visual SLAM

algorithm. Firstly, a thorough description of the stereo camera and its properties is provided.

Following that, various feature extraction methods and matching techniques are explained.

Additionally, different Bundle Adjustment algorithms are described that aim to reduce any error

accumulation and improve the accuracy of visual SLAM algorithm. Lastly, a detailed

explanation of Loop Closure and its significance in visual SLAM algorithms is provided.

2.1 Stereo Camera

A stereo camera [18] (Figure 2-1) is a camera type with two lenses, each with a separate

image sensor. By capturing two slightly different perspectives of a scene, a stereo camera can

mimic human binocular vision, enabling the creation of three-dimensional images. In robotics,

stereo cameras are widely used because they offer the through triangulation. Stereo cameras

come in different models:

• Pinhole: A pinhole camera is a simple camera without a lens but with a tiny aperture

(the so-called pinhole). Light from a scene passes through the aperture and projects

an inverted image on the opposite side of the box [19].

• Fisheye: A fisheye lens is an ultra wide-angle one that produces strong visual distortion

intended to create a wide panoramic or hemispherical image. Fisheye lenses achieve

extremely wide angles of view, typically exceeding 180 degrees [20].

This section examines the pinhole camera model.

Figure 2-1. A ZED Stereo Camera [18].

2.1.1 Image Distortion

Image distortion, presented in Figure 2-2 [21], is when the straight lines of an image appear

to be deformed or curved unnaturally. More specifically, the pinhole camera model is subject

to distortion, which is primarily observed at the edges of the image. To accurately calculate

depth, it is necessary to minimize distortion as much as possible. This ensures that the

calculations closely approximate the true values. Techniques such as lens calibration and

image correction algorithms can be employed to reduce distortion and improve the accuracy

of depth measurements.

Fundamentals of a Visual SLAM Algorithm

25/92

Figure 2-2. Image Distortion [21].

2.1.2 Camera Calibration

Camera calibration is the process of estimating the parameters of a camera lens and image

sensor. The calibration algorithm estimates the extrinsic and intrinsic parameters of a

camera’s lens. The extrinsic parameters represent the location and the orientation of the

camera in the 3D scene, while the intrinsic parameters include the focal length, the optical

center, and the skew coefficient.

The calibration process includes a set of images, usually 15-20 images, (Figure 2-3 [22])

that include a calibration object with known dimensions, typically a chessboard. The images

are then analyzed to estimate the camera’s intrinsic and extrinsic parameters, using a

calibration algorithm, e.g., Zhang Algorithm [23], Jean-Yves Bouguet [24], etc. The intrinsic

parameters in combination with the extrinsic parameters form the projection matrix, that can

map 3D points in the world to their corresponding 2D locations in the image plane.

Figure 2-3. Image used for Camera Calibration [22].

The intrinsic parameters are represented in an intrinsics matrix K defined as:

𝛫 = [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] (2.1)

Fundamentals of a Visual SLAM Algorithm

26/92

Where 𝑓𝑥, 𝑓𝑦 is the focal length in pixels and 𝑐𝑥, 𝑐𝑦 is the optical center in pixels. The extrinsic

parameters are the location and orientation of the camera with respect to the world coordinate

system and consist of a rotation matrix R and a translation displacement t. R is a 3-by-3 matrix,

while t is a 3-by-1 matrix. The camera projection matrix 𝑃 is a 3-by-4 matrix that maps the 3-

D world scene into the image plane [25] and it is calculated using Equation (2.2).

𝑃 = 𝐾[𝑅 𝑡] (2.2)

2.1.3 Image Rectification

Image rectification [26] is a transformation process used to project images onto a common

image plane. In the context of stereo cameras, image rectification is utilized to enable the use

of epipolar geometry (Described in Chapter 2.1.4). Specifically, image rectification remaps the

pixels of each image such that the epipolar lines are horizontal, which means that each pixel

on the left image has the same y-value (assuming a horizontal stereo camera) as the

corresponding pixel on the right image, as presented in Figure 2-4 [27]. After the remapping

process, the images are cropped to the same size as the original ones. That results in loss of

information, but the benefits far outweigh the downsides.

Figure 2-4. Image Rectification [27].

2.1.4 Epipolar Geometry

Epipolar geometry [28] is the geometry of stereo vision. When two cameras view a 3D scene

from two distinct positions, there are geometric relations between the 3D points and their

projections onto the 2D images that lead to constraints between the image points. These

relations are derived based on the assumption that the cameras can be approximated by the

pinhole camera model. Since the optical centers of the cameras lenses are distinct, each

center projects onto a distinct point into the other camera's image plane. These two image

points, denoted by 𝑒𝐿 and 𝑒𝑅 in Figure 2-5, are called epipoles or epipolar points. Both

epipoles 𝑒𝐿 and 𝑒𝑅 in their respective image planes and both optical centers 𝑂𝐿 and 𝑂𝑅 lie on

a single 3D line. The line 𝑂𝐿 − 𝑋 is seen by the left camera as a point because it is directly in

line with that camera's lens optical center. However, the right camera sees this line as a line

in its image plane. That line (𝑒𝑅 − 𝑥𝑅) in the right camera is called an epipolar line. [28]. By

Fundamentals of a Visual SLAM Algorithm

27/92

using epipolar geometry (presented in Figure 2-5 [28]) on a rectified image each pixel on the

left image has the same y value as each corresponding pixel on the right image (if the stereo

camera is horizontal). As a result, if the transformation matrix between the two cameras is

known, through triangulation the depth of each pixel, seen on both images, can be calculated.

Figure 2-5. Epipolar Geometry [28].

2.1.5 Disparity

With the use of rectified images on a horizontal stereo camera setup, each pixel on the left

camera, that is visible in the right camera, corresponds to a pixel on the right camera with the

same y value, but with a different x value. The difference in the x values of the corresponding

pixels is called disparity.

The disparity of each pixel can be calculated using an algorithm, such as Semi-Global

Block Matching [29], that scans both the left and right images for matching pixels. A common

approach to this problem is to form a small image patch around every pixel in the left image.

These image patches are compared to all possible disparities in the right image by comparing

their corresponding image patches. For example, for a disparity of 1, the patch in the left image

would be compared to a similar-sized patch in the right, shifted to the left by one pixel.

By finding the disparity between the two images, the depth (the distance from the camera

in meters) can be calculated from Equation (2.3) [30], where Baseline is the distance between

the two camera lenses.

𝐷𝑒𝑝𝑡ℎ =
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ 𝐹𝑜𝑐𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
(2.3)

An image with its disparity map is presented in Figure 2-6 [31].

Figure 2-6. Disparity Map [31].

Fundamentals of a Visual SLAM Algorithm

28/92

2.2 Features

A feature is typically defined as a measurable and distinctive attribute or characteristic part of

an image, shape etc. For example, a square has 4 corners and 4 edges, they can be called

features of the square, and they help identify it’s a square. Features are used as a starting

point for many computer vision algorithms, e.g., object recognition etc. Some common types

of features in an image include:

• Edges: Edges are abrupt changes in the intensity or color of an image, which can

indicate the boundaries of objects or regions.

• Blobs: Blobs are regions of an image that have a similar intensity or color. They

can be used to identify objects or regions of interest.

• Corners: Corners are points in an image where the intensity changes in multiple

directions. Corners can be used to identify key points in an image.

The different types of features are presented in Figure 2-7 [32], [33], [34].

For visual SLAM applications, grayscale images are commonly used, and the features

that are typically selected for these images are corners.

To differentiate features, a method of describing them is required, which is where

descriptors become useful. Descriptors provide a unique representation of a feature, allowing

them to be distinguished from one another.

Figure 2-7. Different types of features [32], [33], [34].

2.2.1 Feature Extraction

There are several feature extraction methods. In this paragraph, the most used ones, are

presented.

Harris Corner Detector

Harris Corner Detector is a method for selecting features in an image by choosing one patch

of the image and comparing it with equal sized patches around it. The comparison is

performed by adding up the differences in intensity of each pixel on the first patch with the

Fundamentals of a Visual SLAM Algorithm

29/92

pixel on the same position on the other patches. If a patch generates a significant difference,

more than a threshold, then it is considered a feature.

In Figure 2-8 [35] two examples are presented. In Figure 2-8(a), where a selected patch

(red) is being compared with different patches (black), the comparison does not show a

significant difference. In Figure 2-8(b), where the selected patch (red) yields a significant

difference when compared with a patch that has been shifted to the right, the presence of a

distinctive feature in that region is suggested.

Figure 2-8. Harris Corner Detector Selection Method [35].

Scale-Invariant Feature Transform (SIFT) [36]

The SIFT algorithm has several steps for selecting features in an image.

• The first step is the selection of features that have scale and rotation invariance.

Features with scale invariance are selected using a difference-of-Gaussian (DoG)

filter to detect local extrema in the scale space of the image.

• Once the features have been detected, their locations are refined by fitting a model

to the DoG response function. This assists in eliminating features that are poorly

localized.

• To achieve rotation invariance, each feature is assigned an orientation, which is

computed using a histogram of gradient directions in the local region around the

feature.

• Lastly, a descriptor needs to be calculated for each feature, so that the features

are unique and easily distinguishable. The descriptor is calculated by computing

the gradient magnitude and orientation of the image in a region around the feature

and then constructing a histogram of oriented gradients.

Although the SIFT algorithm extracts features with rotation and scale invariance, the

process is time consuming, and it is generally not fit for real time applications.

Speeded-Up Robust Features (SURF) [37]

SURF approximates LoG with Box Filter, in contrast with SIFT, that approximates LoG with

Difference of Gaussian. To detect features, SURF uses an integer approximation of the

determinant of Hessian blob detector, which can be computed with 3 integer operations using

a precomputed integral image.

Its feature descriptor is based on the sum of the Haar wavelet response around the point

of interest. It is partly inspired by the SIFT descriptor. The standard version of SURF is several

times faster than SIFT and claimed by its authors to be more robust against different image

Fundamentals of a Visual SLAM Algorithm

30/92

transformations than SIFT. Although SURF is faster than SIFT, its processing time is still

inadequate for real time applications. The SURF algorithm is described in depth in OpenCV

docs [38].

Features from Accelerated Segment Test (FAST)

Features from accelerated segment test (FAST) is a corner detection method, which is used

to extract features and later used to track and map objects. The most promising advantage of

the FAST corner detector is its computational efficiency. Referring to its name, it is indeed

faster than many other well-known feature extraction methods, such as DoG used by the SIFT

and SURF. The FAST corner detector is very suitable for real-time video processing

applications because of its computational efficiency.

FAST corner detector uses a circle of 16 pixels (a circle of radius 3 pixels created using

the midpoint circle algorithm [39] to classify whether a candidate point p is a feature. Each

pixel in the circle is labeled clockwise with an integer number from 1 to 16. If a set of N

contiguous pixels in the circle are all brighter than the intensity (denoted by 𝐼𝑝) of candidate

pixel p (named fast threshold) or all darker than the intensity of candidate pixel p minus

threshold value t, then p is classified as feature. The conditions can be written as:

• Condition 1: A set of N contiguous pixels S, ∀ 𝑥 ∈ 𝑆, the intensity of 𝑥 > 𝐼𝑝 + 𝑡.

• Condition 2: A set of N contiguous pixels S, ∀ 𝑥 𝜖 𝑆, 𝐼𝑥 < 𝐼𝑝 − 𝑡.

When either of the two conditions is met, candidate p is classified as a feature. There is a

tradeoff of choosing N (usually chosen as 12), the number of contiguous pixels and the

threshold value t. On one hand the number of detected corner points should not be too many,

on the other hand, the high performance should not be achieved by sacrificing computational

efficiency. This process is presented in Figure 2-9 [40].

Figure 2-9. FAST Corner Detector [40].

The FAST corner detector extracts features rapidly [41] making them suitable for real time

applications. However, the detected features lack rotation and scale invariance, which are

crucial properties for achieving accuracy and robustness in a visual SLAM system.

Binary Robust Independent Elementary Feature (BRIEF)

BRIEF takes all features and converts them into a binary feature vector so that together they

can represent an object. Binary feature vector also known as binary feature descriptor is a

feature vector that only contains 1 and 0. In brief, each keypoint is described by a feature

vector which is 128–512 bits string. Because BRIEF uses binary strings, it provides a fast

method [42] for feature description and matching.

Fundamentals of a Visual SLAM Algorithm

31/92

Oriented FAST and Rotated BRIEF (ORB) [43]

The ORB (Oriented FAST and Rotated BRIEF) algorithm is an improvement over the FAST

corner detector and the BRIEF (Binary robust independent elementary feature) descriptor.

The ORB algorithm builds on the strengths of both FAST and BRIEF to extract features that

are both robust and computationally efficient.

ORB’s main contributions are as follows:

• The addition of scale invariance to FAST features.

• The addition of an accurate orientation component to the features.

• Analysis of variance and correlation of oriented BRIEF features.

• A learning method for decorrelating BRIEF features under rotational invariance,

leading to better performance in nearest-neighbor applications.

ORB uses the FAST algorithm for feature extraction. However, to extract FAST features

that are scale invariant it uses a multiscale image pyramid (presented in Figure 2-10). An

image pyramid is a multiscale representation of a single image, that consists of sequences of

images all of which are versions of the image at different resolutions. Each level in the pyramid

contains a down sampled version, depending on the scale selected, of the image than the

previous level. For example, in Figure 2-10 [44] the scale selected is 2 so the images in each

pyramid level are 2 times smaller (on each axis) than the image on the previous level. Once

ORB has created a pyramid, it uses the FAST algorithm to detect features in the images. By

detecting features at each level ORB is effectively locating features at a different scale. In this

way, ORB produces features that are scale invariant.

Figure 2-10. Multiscale Image Pyramid [44].

To create rotation invariant features, ORB calculates an orientation for each of the

detected features depending on how the levels of intensity change around each feature. In

more detail, to calculate the orientation of each feature, the ORB algorithm uses the intensity

centroid. The intensity centroid assumes that the patch around the feature has higher intensity

in a direction offset from its center, and this direction is used as the orientation.

Fundamentals of a Visual SLAM Algorithm

32/92

To compute the orientation of each feature, the moments of the patch around each feature

are calculated using Equation (2.4). The moment of a patch is defined as the average values

from the single pixels` intensities of a patch.

𝑚𝑝𝑞 = ∑𝑥𝑝

𝑥,𝑦

𝑦𝑞𝐼(𝑥, 𝑦) (2.4)

Where 𝑚𝑝𝑞 is the moment of the patch around each feature, 𝑝, 𝑞 denote the order (𝑝 + 𝑞) of

the moment and 𝐼(𝑥, 𝑦) is the intensity of the pixel with coordinates 𝑥, 𝑦. To calculate the

centroid of the patch, also known as “center of mass”, 𝑝, 𝑞 take values of either 0 𝑜𝑟 1 as

presented in Equation (2.5) where 𝐶 denotes the coordinates of the centroid.

𝐶 = (
𝑚10

𝑚00
,
𝑚01

𝑚00
) (2.5)

Finally, the orientation of each feature can be calculated by constructing a vector from the

center of the feature to the coordinates of the centroid 𝐶 presented in Equation (2.6), where 𝜃

is the orientation of the feature.

𝜃 = 𝑎𝑡𝑎𝑛2(𝑚01, 𝑚10) (2.6)

The vector used to calculate the orientation of the patch is presented in Figure 2-11.

Figure 2-11. Vector used to calculate the orientation of the patch [45].

The ORB feature detection algorithm has several parameters that can be adjusted to

control its behavior:

• nfeatures: The maximum number of features to detect.

• scaleFactor: The scale factor between pyramid levels.

• nlevels: The number of pyramid levels. Maximum number of pyramid levels

depending on the resolution of the image and the scaleFactor selected.

• edgeThreshold: The size of the border where features are not detected.

• firstLevel: The level of pyramid to start detection.

• WTA_K: The number of points that produce each element of the descriptor.

• scoreType: What type of scoring to use for each feature. Score indicates the

likelihood each feature is actually a feature.

• patchSize: The size of the patch used to compute the descriptor.

• fastThreshold: The threshold used by the FAST algorithm.

ORB features extract FAST features, that are computationally efficient [41] and improve

them with scale and rotation invariance properties, making them robust and suitable for real

Fundamentals of a Visual SLAM Algorithm

33/92

time applications. These properties make ORB features a popular choice for various computer

vision applications such as object recognition and visual SLAM.

Each feature stores information for:

• pt: coordinates of the feature in the image plane (𝑥, 𝑦).

• Angle: computed orientation of the keypoint (-1 if not applicable); it's in [0,360)

degrees and measured relative to image coordinate system, i.e., clockwise.

• octave: octave (pyramid layer) from which the keypoint has been extracted.

• Size of the feature. This is used for the calculation of the feature descriptor. The

size of the feature depends on the pyramid level from which it was extracted, the

smaller the image, the bigger the size.

• Response: the response by which the strongest feature has been selected. Can

be used for further sorting or subsampling.

Comparison of the Different Feature Extraction Methods

Figure 2-12 [46] presents a comparison in the processing time among various feature

extraction methods. As shown, the FAST algorithm is the fastest, while SIFT and SURF are

the slowest. Despite being slower than FAST, the ORB algorithm is still suitable for real time

applications; and its ability to extract scale and rotation invariant features make it suitable for

visual SLAM applications.

Figure 2-12. Processing Time Comparison of Feature Extraction Methods [46].

Figure 2-13 [47] presents the features of the different feature extraction methods on the same

image.

Fundamentals of a Visual SLAM Algorithm

34/92

Figure 2-13. The Different Feature Extraction Methods [47].

For visual SLAM applications, feature extraction is a critical step that has an impact on the

accuracy and robustness of the algorithm. The features have to be extracted efficiently, while

maintaining rotation and scale invariance.

2.2.2 Matching

Brute-Force (BF) Matcher [48]

The Brute-Force (BF) matcher is a simple algorithm used in computer vision and image

processing for feature matching. It takes the descriptor of each feature on one set and

compares it with the descriptor of each feature on the second set, using a distance calculation,

e.g., L1 norm, L2 norm, Hamming Distance, etc. The closest one is selected as a match.

Although the BF matcher is a simple and effective (as the closest match for each feature

is selected) algorithm, it can be slow and computationally expensive due to the need to

compare each feature with all others resulting in a 𝑂(𝑛 ∗ 𝑚) time complexity. Figure 2-14 [49]

presents the matched features using BF Matcher.

Figure 2-14. BF Matcher [49].

Fundamentals of a Visual SLAM Algorithm

35/92

Fast Library for Approximate Nearest Neighbors (FLANN) Based Matcher [50].

The FLANN (Fast Library for Approximate Nearest Neighbors) algorithm is a method for

efficiently searching high-dimensional spaces for nearest neighbors. The main steps of the

FLANN algorithm are:

• Build an index: The first step is to construct an index structure using the FLANN

library. The type of index depends on the application and the data being searched.

FLANN supports various types of index structures, such as k-d trees, randomized

trees, and hierarchical clustering. The index is constructed based on the feature

descriptors of the image features.

• Query the index: Given a query feature descriptor from one image, the algorithm

uses the FLANN index to efficiently search for the nearest neighbors in the other

image. The algorithm performs a hierarchical search, starting with a coarse search

and progressively refining the search until the desired level of accuracy is

achieved.

• Evaluate the search results: The algorithm returns a set of nearest neighbors,

along with their distances to the query point or feature. Depending on the

application, additional filtering or post-processing may be applied to the results to

remove false matches or outliers.

The FLANN algorithm is designed to work with high-dimensional data, which can be

challenging for traditional nearest neighbor search algorithms such as the BF matcher. By

using an index structure, FLANN can efficiently search large datasets and return approximate

nearest neighbors with a high degree of accuracy. Figure 2-15 [51] presents the matches

found using the FLANN based matcher.

Figure 2-15. FLANN Based Matcher [51].

Match Filtering

BF and FLANN matchers may produce incorrect matches due to image noise, but there are

various techniques available to filter out false matches.

One of the most common techniques is called the ratio test. In the ratio test, for each

feature, two of the closest matches are calculated. Then the ratio of the distance between the

two closest matches is calculated. If the ratio is below a certain threshold, the match is

considered valid. However, if the ratio is above the threshold, the match is considered

ambiguous or false, and it is discarded. A lower threshold will result in fewer false matches

Fundamentals of a Visual SLAM Algorithm

36/92

being accepted but could discard some valid matches. The threshold value can vary

depending on the application, but generally, it is set around 0.75.

Another common technique is a threshold on the distance between the matches. If the

distance of a match is higher than the threshold, even if it is the closest one, it is discarded.

Stereo Matching

A special case of matching is stereo matching which is the process of matching features of

the left camera with the right camera. With stereo matching, the depth can be calculated for

every match as described in Section 2.1.5. Figure 2-16 [52] presents the parameters used in

stereo matching.

Figure 2-16. Stereo Matching Parameters [52].

Using Equations (2.7)–(2.9) a 3D point 𝒑(𝑋𝑝, 𝑌𝑝, 𝑍𝑝) = [

𝑋𝑝

𝑌𝑝

𝑍𝑝

] can be created as a function of

its position in the image.

𝑍𝑝 = 𝐷𝑒𝑝𝑡ℎ (2.7)

𝑋𝑝 = (𝑝𝑙𝑥 − 𝑐𝑙𝑥) ∗
𝑍𝑝

𝑓𝑥
(2.8)

𝑌𝑝 = (𝑝𝑙𝑦 − 𝑐𝑙𝑦) ∗
𝑍𝑝

𝑓𝑦
(2.9)

The position of a feature in the left camera is denoted by 𝒑𝒍(𝑥, 𝑦) = [
𝑝𝑙𝑥

𝑝𝑙𝑦
] and the optical center

of the left camera is represented by 𝑐𝑙(𝑥, 𝑦), while 𝑓𝑥 and 𝑓𝑦 are the intrinsic parameters of the

left camera. Using these parameters, the 3D point is computed with the world origin 0,0 being
the optical center of the left camera. The 3D point can also be calculated using the parameters
from the right camera, resulting in a 3D point with the world origin 0,0 at the optical center of
the right camera. In visual SLAM systems, the 3D points computed using stereo matching are
used for the mapping process.

Fundamentals of a Visual SLAM Algorithm

37/92

2.3 Camera Pose Estimation

To estimate the camera pose using a stereo camera configuration, 3D points with their

matching 2D image features are used. The 3D points are represented in world coordinates,

and the camera pose is estimated with respect to the world coordinate system. The camera

pose is estimated by minimizing the reprojection error [53].

The reprojection error is the difference between the observed 2D image points and the

2D image points that are reprojected from the estimated 3D points using the estimated camera

pose. The reprojection error is calculated with Equation (2.10).

𝑟𝑒𝑝𝑟𝑜𝑗 = √(𝑥𝑝𝑟𝑜 − 𝑥𝑝𝑜𝑖𝑛𝑡)
2
+ (𝑦𝑝𝑟𝑜 − 𝑦𝑝𝑜𝑖𝑛𝑡)

2
(2.10)

where 𝑥𝑝𝑟𝑜 , 𝑦𝑝𝑟𝑜 are the 𝑥, 𝑦 coordinates of the projection of the 3D point, the 𝑥𝑝𝑜𝑖𝑛𝑡 , 𝑦𝑝𝑜𝑖𝑛𝑡 are

the coordinates of the observed 2D image point and the 𝑟𝑒𝑝𝑟𝑜𝑗 is the calculated reprojection

error.

The reprojection error is presented in Figure 2-17 [54]. The process involves the following

steps:

• Find stereo matches between left and right images.

• Triangulate the 3D points from the stereo matches.

• On the next frame, find features and match with the previously computed 3D

points.

• Estimate the camera pose by minimizing the reprojection error.

Figure 2-18 [55] presents visually the process.

Figure 2-17. Reprojection Error [54].

Fundamentals of a Visual SLAM Algorithm

38/92

Figure 2-18. Camera Pose Estimation [55].

One of the most used methods to estimate the camera pose with the 3D point and 2D image

correspondence is by using the SolvePnP function provided by OpenCV. The process is

described in detail in the OpenCV docs [55].

2.4 Bundle Adjustment (BA)

In visual SLAM applications, estimating the camera pose for each new frame for an extended

period can lead to error accumulation due to various factors such as image noise or bad

matches that were considered valid. This can result in a significant drift in the estimated

trajectory over time. To reduce this error and correct the estimated camera poses, a technique

called bundle adjustment was introduced [56].

Bundle adjustment is a method that simultaneously optimizes the camera poses and the

3D points of the observed features to minimize the overall reprojection error of all the observed

features over the entire sequence of images. In other words, it refines the initial estimates of

the camera poses and locations of the 3D points by finding the optimal solution that best fits

all 3D points observed from each camera pose.

Bundle adjustment is an iterative process. It is initialized using the estimation of the

camera poses and locations of the 3D points. Then, the reprojection error is computed for all

the observed features, and the camera poses and locations of the 3D points are refined using

a non-linear optimization algorithm, e.g., the Levenberg-Marquardt algorithm [57] or Schur

complement method [58]. This process is repeated until the reprojection error converges to a

minimum.

The Bundle adjustment is computationally expensive, as it involves optimizing many

parameters. However, it can significantly improve the accuracy of the estimated camera poses

and the locations of the 3D points and reduce the accumulated error over time. Figure 2-19

Fundamentals of a Visual SLAM Algorithm

39/92

[59] presents an example where bundle adjustment could be used. The 3D model is assumed

to be stationary.

Figure 2-19. Bundle Adjustment Example [59].

The objective of Bundle Adjustment is to improve the accuracy of initial camera pose and

locations of 3D points estimates, by refining them in a simultaneous optimization process, in

order to find the optimal set of parameters that best predict the locations of 3D points in a set

of images. Let there be 𝑛 3D points visible in 𝑚 views, with 𝒙𝒊𝒋 representing the projection

(coordinates in the image plane) of the 3D point 𝑖 on image 𝑗 . The 𝑣𝑖𝑗 denotes a binary

variable that is equal to 1 if point 𝑖 is visible in image 𝑗, and 0 otherwise. Each camera pose 𝑗

is represented by a vector 𝒂𝒋, and each 3D point 𝑖 by a vector 𝒃𝒊. Bundle Adjustment aims to

minimize the total reprojection error by optimizing all locations of the 3D points and camera

poses as presented in Equation (2.11).

𝑚𝑖𝑛𝒂𝒋,𝒃𝒊
∑∑𝑢𝑖𝑗𝑑(𝑄(𝒂𝒋, 𝒃𝒊), 𝒙𝒊𝒋)

2
𝑚

𝑗=1

𝑛

𝑖=1

(2.11)

where 𝑄(𝒂𝒋, 𝒃𝒊) is the predicted projection of point 𝑖 on image 𝑗 and 𝑑(𝑄(𝑎𝑗 , 𝑏𝑖), 𝑥𝑖𝑗) denotes

the Euclidean distance between the image points represented by vectors 𝑄(𝑎𝑗 , 𝑏𝑖) and 𝑥𝑖𝑗

[60].

2.4.1 Motion Only BA

To estimate the current pose of the camera, a specific case of bundle adjustment can be used

known as Motion Only bundle adjustment. This involves optimizing the camera poses while

the locations of the 3D points are assumed to be known and fixed in the 3D scene. By doing

so, Motion Only BA has reduced computational cost compared to bundle adjustment, since

the number of parameters to be optimized are significantly reduced. This makes it possible to

perform the optimization in real-time, which is especially useful in applications where fast and

accurate camera pose estimation is required, such as in visual SLAM applications.

2.4.2 Keyframes

Due to the high computational cost of BA, performing it for every new camera pose (with each

new image) would be impractical. As a result, it is performed only on specific frames (images),

i.e., keyframes. Keyframes (Figure 2-20 [61]) were first introduced by Klein and Murray in 2011

Fundamentals of a Visual SLAM Algorithm

40/92

in their Parallel Tracking and Mapping for Small Augmented Reality (AR) Workspaces [13]

and they are significant frames in a camera trajectory, that are selected based on certain

criteria,

• Fast camera movement: To optimize the camera poses at that particular point.

• Number of features currently tracked: To add new features to track.

• Elapsed time from the last keyframe insertion: To maintain a balance between

computational efficiency and capturing important changes in the environment.

Figure 2-20. Keyframe Selection [61].

Keyframes are an essential component for visual SLAM systems because they can be

used to perform BA and reduce the error accumulation over time, while reducing

computational cost as BA is only performed when a new keyframe is inserted. To estimate

camera poses that are not refined by BA, a reference pose is required, and keyframes are

used as that reference. The unoptimized camera poses are then calculated relative to the

reference pose of the corresponding keyframe.

Overall, keyframes play a crucial role in visual SLAM systems by enabling the reduction

of the computational cost of BA and by providing a compact representation of the camera

trajectory.

2.4.3 Local BA

To maintain local consistency in the map of visual SLAM systems, The Local Bundle

Adjustment (BA) is often employed. The Local BA is a variant of the classic BA algorithm that

focuses on optimizing a subset of camera poses and 3D point locations, as opposed to

optimizing all of them. This approach allows Local BA to be used more frequently and with

less computational power (as only a subset of camera poses is optimized) compared to the

original BA, while still preserving a reasonable level of accuracy.

The process typically starts by identifying the keyframes that have visibility of, or share,

3D points that the newly added keyframe can observe. Keyframes that share 3D points with

the new keyframe are considered local, or active, and their poses can be optimized.

Keyframes that share 3D points with the local keyframes but not with a new one, are not

Fundamentals of a Visual SLAM Algorithm

41/92

considered local, and therefore their poses are fixed. A similar process is repeated for the 3D

points. If the 3D points are visible from the new or the local keyframes, their locations are

optimized, while if the 3D points are visible only from the fixed keyframes, their locations are

fixed and are not optimized.

Local BA is often used in real-time applications where quick and accurate estimation of

camera pose is crucial. By limiting the number of parameters used in the optimization process,

Local BA can still operate in real-time, while still achieving reasonable accuracy. Figure 2-21

[62] presents visually the identified keyframes and 3D points in a Local BA problem.

Figure 2-21. Identified Keyframes and 3D Points for Local BA [62].

2.4.4 Global BA

Global Bundle Adjustment involves optimizing all the keyframe poses and 3D point locations

in the map. This process is typically performed to reduce error accumulation over a long period

of time in a camera trajectory. However, due to the large number of parameters that require

optimization, global BA is not performed frequently, but rather only when new information is

discovered, such as when the camera revisits a previously seen location or when new sensor

data becomes available. In other words, global BA is initiated by an external event, rather than

from the feature tracking process itself. To ensure a fixed map during global BA optimization,

the first keyframe - usually the first frame of a camera trajectory - is fixed and cannot be

optimized.

2.5 Loop Closure

In the context of visual SLAM, loop closure is the process of recognizing that the camera has

returned to a previously visited location and then, using this information, correct accumulated

errors in the camera trajectory and the estimated map of the environment.

When the camera revisits a location, it captures new images of the scene, which can be

compared with the images captured during the previous visit. If the camera has returned to

the same location, these images will have similar features and descriptors, and the camera

Fundamentals of a Visual SLAM Algorithm

42/92

poses estimated using these images will be close to each other. The process of recognizing

that the camera has revisited a previous location is called loop closure detection.

The most common loop closure detection method is the bag-of-visual-words approach

(BOVW) which represents features, such as ORB or SURF, as a histogram of visual words.

Each visual word corresponds to a cluster of similar features (Figure 2-22 [63]). This

representation is then used to compare with all the previous images (already represented in

a bag-of-visual-words) and determine if they are from the same location. The most commonly

used package for a bag-of-words representation is DBoW2 [10] used by many well-known

visual SLAM algorithms, e.g., ORB-SLAM3 [7], VINS-Fusion [11] and Kimera-VIO [14] to

name a few.

Figure 2-22. Bag-of-Words Representation of Image Features [63].

Once a loop closure is detected, global BA can be performed on the estimated camera

poses and 3D point locations to correct any errors that accumulated due to noise or drift during

the camera trajectory estimation. Figure 2-23(a) presents the trajectory of ORB-SLAM (blue)

compared to the ground truth (red) trajectory with no loop closure optimization and Figure

2-23(b) presents the trajectory of ORB-SLAM (blue) with loop closure optimization compared

to the same ground truth trajectory. From Table 2-1 it is evident that the trajectory has

improved in accuracy due to the optimization process.

Figure 2-23. Loop Closure Optimization, Ground Truth (Red), (a)ORB-SLAM (Blue) With No
Loop Closure Optimization, (b) ORB-SLAM (Blue) With Loop Closure

Optimization.[8]

Fundamentals of a Visual SLAM Algorithm

43/92

Table 2-1 RMSE Comparison of Estimated Trajectory With and Without Loop Closure
Optimization [8].

 RMSE

ORBSLAM No Loop Closure 7.62

ORBSLAM With Loop Closure 6.62

Loop closure is a crucial part of visual SLAM systems, as it helps mitigate the effects of

error accumulation and aids in the creation of an accurate.

2.6 AprilTags

Apriltags were firstly developed by Wang and Olson at the University of Michigan in 2011 [64]

[65] [66]. They are a type of visual marker designed to be easily detected and recognized by

computer vision systems and are commonly used in robotics, augmented reality, and other

computer vision applications where precise localization and tracking of objects or devices is

required. They are similar in concept to QR codes, as they are a type of two-dimensional bar

code. However, they are specifically engineered to encode smaller data payloads (ranging

from 4 to 12 bits) to enable more reliable and longer-range detection. The unique pattern of

each Apriltag allows for its accurate and robust detection, even in challenging lighting

conditions. They are typically detected and tracked using specialized software libraries, such

as the AprilTag library [67] and when detected, provide the following information:

• The identity of the tag: A unique ID number encoded within its pattern, which can

be used to identify the specific tag being detected.

• The position of the tag: Its precise 3D position relative to the camera that detected

it.

• The orientation of the tag: Its orientation relative to the camera that detected it.

In Figure 2-24 [68], a set of various sized Apriltags is presented.

Figure 2-24. Different Apriltags [68].

Fundamentals of a Visual SLAM Algorithm

44/92

To accurately compute the 3D position and orientation of the tag, the intrinsic parameters

of the camera and the size of the tag need to be available. Tags are separated in classes and

the tag size is represented differently in different classes. Figure 2-25 [69] presents 2 different

tags with different size representations.

Figure 2-25. Tag Size Representation [69].

Furthermore, the camera pose can be estimated relative to the Apriltag, and if the tag’s

world pose is known, then the world pose of the camera can be estimated with high accuracy.

Moreover, Apriltags can be used in combination, allowing for the tracking of multiple tags

simultaneously. This enables even greater accuracy in camera pose estimation, as presented

in Figure 2-26 [70], where the position and orientation of multiple tags are detected. This

makes Apriltags a valuable tool for many applications in robotics, augmented reality, and

computer vision, where precise camera localization is essential.

Figure 2-26. Multiple Apriltags Detected [70].

Implementation of the Visual SLAM Algorithm

45/92

3 Implementation of the Visual SLAM Algorithm

This chapter provides a detailed overview of the visual SLAM algorithm developed for this

thesis. To overcome challenges posed by environmental factors such as obstructions in the

camera’s field of view (FoV), a dual stereo camera setup was used. Stereos cameras were

placed at the back front and the front of rover as presented in Figure 3-1, increasing the overall

FoV while at the same time addressing issues such as featureless objects covering most of

the FoV of one of the stereo cameras.

Additionally, Apriltag detection was chosen for loop detection, to address situations where

the environment is homogeneous, such as in vineyards, where algorithms using bag-of-words

approaches, e.g., ORB-SLAM3, Kimera-VIO, etc. could potentially result in incorrect loop

detection.

Figure 3-1. CSL Rover.

3.1 Visual SLAM Pipeline

The system is separated into five different threads,

1. Tracking: Tracks features in images and estimates the current camera pose.

2. Local mapping: Inserts new 3D points and performs local BA optimization.

3. Loop closing: Performs Global BA optimization when a loop is detected.

4. AprilTag detection: Detects Apriltags and initiates the loop closure thread.

5. Visualization: Visualizes the 3D points and keyframes.

Initialization is performed once during the system startup in the tracking thread. The map is

initialized by extracting features from both stereo cameras (front and back) and by creating

3D points using stereo matching. Next, the tracking thread extracts features from each new

camera frame and matches them with the 3D points. In turn, the camera pose is estimated by

minimizing the reprojection error of the matches with Motion-Only BA using the Ceres Solver

[71]. When a keyframe is inserted, the local mapping thread searches for new 3D points

between the newly added keyframe and its connected keyframes and launches the process

of the local BA. Local BA is applied to achieve local consistency of the camera poses and

refine the estimation of the 3D point positions. Lastly, AprilTag detection aids in identifying any

loops, and if one is detected, the loop closing thread is initialized. The loop closing thread

performs a global BA when an AprilTag is detected for the second time (meaning that the

Implementation of the Visual SLAM Algorithm

46/92

rover passed from this AprilTag in the past). The visualization thread visualizes the trajectory

of the camera, with its keyframes, along with all the 3D points mapped. The flowchart of the

developed visual SLAM pipeline is presented in Figure 3-2. The diagram was developed using

[72].

Figure 3-2. The Developed visual SLAM Pipeline.

Implementation of the Visual SLAM Algorithm

47/92

3.2 Application on mobile robots using ROS

The developed visual SLAM software package can operate in two modes. In the first mode,

images from a folder are loaded one by one for testing in well-known datasets, such as KITTI

or EuRoC. The second mode is a real time operation, that while a camera is moving in real

time, its trajectory is estimated. This real-time operation is performed using the

Publish/Subscribe Communication Model that ROS [73] offers.

The Robot Operating System (ROS) is an open-source framework that helps researchers

and developers build and reuse code between robotics applications. A Publisher publishes

messages of some standard Message Type to a particular topic. The Subscriber on the other

hand subscribes to the topic so that it receives the messages whenever any message is

published to the topic [74, p. 3]. This communication model is presented in Figure 3-3 [75].

Figure 3-3. Publish/Subscribe Communication Model [75].

By using ROS, this communication model can be utilized, that allows image messages to

be shared between different processes. This way, any process that needs the image

information can subscribe to a certain topic and receive the image published in that topic.

ROS also provides the rosbag package [76], which is a set of tools for recording and

playing back ROS topics. It is a high-performance experiment replay tool that avoids

deserialization and reserialization of the messages. A certain camera trajectory can be

recorded in a rosbag file. That rosbag can be replayed so that the same recorder experiment

can be used for testing and evaluation against other visual SLAM algorithms.

3.3 Initialization

The visual SLAM system is initialized by starting all the required threads. A configuration file

is loaded providing the following information:

• Rectified: If the images are rectified.

• Distortion Parameters: If the images are not rectified, the distortion parameters

are needed to rectify the images.

• Stereo Camera Parameters: The camera parameters for each stereo camera,

e.g., baseline.

• Intrinsic Parameters: The intrinsic parameters for each camera.

• ORB Parameters: The ORB parameters chosen for each test dataset.

Implementation of the Visual SLAM Algorithm

48/92

The normal values for each ORB parameter are presented in Table 3-1.

Table 3-1 Normal Values for each ORB parameter.

Parameter Value

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 500

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 31

𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 20

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31

The first step is the initialization of the map, which involves adding the first 3D points. The

world origin of the map was chosen as the first pose of the camera. One advantage of using

stereo cameras is that the system can be initialized with just one frame, as stereo cameras

provide depth information. The tracking thread rectifies all images, if needed, extracts features

from both stereo cameras, and performs stereo matching.

3.3.1 Stereo Matching

Despite OpenCV providing functions for feature matching, as described in Section 2.2.2, a

custom stereo matching function was developed from scratch to allow each feature to be

compared with fewer features1, reducing the computational power needed.

Epipolar Constraint

The stereo matching process begins after features from all frames have been extracted and

assigned to a grid. As described in Section 2.1.3, each pixel on the left image has the same

y-value as the corresponding pixel on the right image, called Epipolar Constraint. For this

reason, the features from the right camera lenses are grouped based on their y-coordinate for

quicker matching with their corresponding feature from the left camera. This means that each

left feature is only compared to a subset of features in the right frame. To further optimize the

matching process, the left features are compared only with the features from the right frame

that have been extracted from similar (either the same pyramid level or one pyramid level

difference) image pyramid levels, and that have a lower x-coordinate. The descriptor of the

left feature is then compared to the descriptors of the right feature, and the two lowest

distances are recorded. These two distances are used for the ratio test, discussed in Section

2.2.2, where the threshold chosen was 0.75, which is a commonly used threshold value [49].

Sliding Window Search with Parabola Fitting

Once the correct feature has been identified, a sliding window search is performed to achieve

sub-pixel accuracy for each match. A 5x5 patch is centered around the left feature and

compared with a 5x5 patch around the right feature. The patch around the right feature is

moved from -5 to +5 of the x value of the feature, recording the distances between the patches.

1 Reduce the number of potential correct matches by eliminating features that are definitely incorrect
matches.

Implementation of the Visual SLAM Algorithm

49/92

These distances are then used for parabola fitting to calculate the subpixel accuracy of each

stereo match.

Specifically, parabola fitting begins with Equation (3.1).

𝑦(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (3.1)

Where 𝑦 is the distance calculated from the sliding window search, and 𝑥 denotes the position

of the window. Parabola fitting aims to find to lowest y value, the lowest distance between the

two patches, for an 𝑥 value (𝑥𝑚𝑖𝑛), which is the subpixel accurate match of the left feature. As

the x value of the window is shifting by one pixel each time, the lowest distance (𝑑0) is selected

representing the best pixel accurate x value (𝑥0) for the right feature. Parabola fitting is

performed using the distances around the best value of x (𝑥0), namely -1, 0, and +1, where 0

represents the best value of x. Figure 3-4 presents the patch around the left feature that is

compared with patches on the right image. Figure 3-5 shows the different patches around the

right feature. 𝑥0 is used as the starting point (𝑥0 = 0) as it is the closest one to the sub pixel

accurate match. 𝑥−1 is the patch 1 pixel to the left and 𝑥1 is the patch 1 pixel to the right.

Figure 3-4 (a) Axes of image patches (b) Patch Around Left Feature. The red circle
represents the feature, while the red square represents the 5x5 patch around the

feature.

Figure 3-5. Right image patches.

Figure 3-6 presents the parabola fitting. Distance 𝑑0 is the lowest distance found, and 𝑑−1, 𝑑1

are the distances found 1 pixel to the left and one pixel to the right respectively. The distances

Implementation of the Visual SLAM Algorithm

50/92

are calculated comparing Figure 3-4 with Figure 3-5(a) for 𝑑1, Figure 3-5(b) for 𝑑0 and Figure

3-5(c) for 𝑑1. With parabola fitting the 𝑥𝑚𝑖𝑛 (subpixel accurate x value) can be calculated.

Figure 3-6. Parabola Fitting.

Equations (3.2)-(3.4) present the calculation of the subpixel accurate x value of the right

feature.

𝑦(−1) = 𝑑−1 = 𝑎 − 𝑏 + 𝑐 (3.2)

𝑦(0) = 𝑑0 = 𝑐 (3.3)

𝑦(1) = 𝑑1 = 𝑎 + 𝑏 + 𝑐 (3.4)

The values 𝑑−1, 𝑑0, 𝑑1 are the distances that were previously calculated from the sliding

window search. With the distances known the variables 𝑎, 𝑏, 𝑐 can be calculated using

Equations (3.5)-(3.7).

𝑎 =
𝑑−1 + 𝑑1 − 2 ∗ 𝑑2

2
(3.5)

𝑏 =
𝑑1 − 𝑑−1

2
(3.6)

𝑐 = 𝑑0 (3.7)

With the variables 𝑎, 𝑏, 𝑐 known, the minimum can be found for the Equation 3.1 using the

derivative, which is presented in Equation (3.8).

𝑥 = 𝑏𝑒𝑠𝑡 = −
𝑏

2 ∗ 𝑎
(3.8)

Equation (3.8) with the use of Equations (3.5)-(3.7) can calculate the subpixel accurate x

coordinate of the stereo match, shown in Equation (3.9).

𝑦(𝑏𝑒𝑠𝑡) =
𝑑−1 − 𝑑1

2 ∗ (𝑑−1 + 𝑑1 − 2 ∗ 𝑑0)
(3.9)

With Equations (3.1)-(3.9), subpixel accuracy on the x coordinate can be calculated for each

left feature as presented in Equation (3.10).

𝑥𝑠𝑢𝑏𝑝𝑖𝑥𝑒𝑙 = 𝑥𝑏𝑒𝑠𝑡 + 𝑦(𝑏𝑒𝑠𝑡) (3.10)

Implementation of the Visual SLAM Algorithm

51/92

where 𝑥𝑏𝑒𝑠𝑡 is the best x coordinate (so 𝑥0 = 𝑥𝑏𝑒𝑠𝑡) found from the sliding window search and

𝑥𝑠𝑢𝑏𝑝𝑖𝑥𝑒𝑙 denotes the subpixel accurate x coordinate of the matched right feature. After each

stereo match is identified, the depth for each match is calculated and stored, as previously

described in Section 2.1.5 using Equation (2.3).

Match Filtering

To ensure the selection of correct matches, match filtering is carried out by storing all best

distances obtained from the sliding window search and calculating their median value. Stereo

matches with distances exceeding twice the median of the distances are considered invalid

and are removed from the final set of matches. This filtering method eliminates matches with

unusually high distances compared to the rest of the matches, thus improving the overall

accuracy of the matches.

After many iterations of the stereo matching process, many stereo matches with the

lowest depth value were found to be incorrect, so a final filtering step was applied to the stereo

matches by removing the closest 1% of matches. Figure 3-7(a)-(b) presents a comparison of

the stereo matches with and without applying these filtering methods. In Figure 3-7, the green

circles represent the features from the right image, the blue circles represent the features from

the left image, and the line connecting each one represents the match between them. The

longer the red line the closer the point is to the camera lenses. For example, the car in Figure

3-7 is closer than the trees, and consequently, the red lines connecting the points on the car

are longer. In Figure 3-7(a), it can be observed that a number of close matches are incorrect,

as indicated by the long red lines connecting improperly matched features. On the other hand,

Figure 3-7(b) has eliminated these incorrect matches while retaining most of the correct ones.

In SLAM systems with large numbers of stereo matches, it is preferable to remove incorrect

matches, even if it means some correct matches are also removed.

Figure 3-7. Difference of Correct Matches with the Match Filtering techniques. Green circles
represent the features extracted from the right image while the blue circles

represent the features extracted from the left image.

Implementation of the Visual SLAM Algorithm

52/92

3.3.2 Feature Extraction Process

Feature extraction for visual SLAM applications is an important step towards providing

accurate and robust localization and mapping. In this thesis, ORB Features [43] were selected,

due to (a) their scale and rotation invariance properties, and (b) the fact that their extraction

requires low processing power and as a result they are suitable for real-time SLAM

applications. The optimal ORB parameters were chosen for each tested dataset. Although

OpenCV offers a function to extract ORB features [77], the extraction algorithm was

implemented from scratch to ensure a homogenous distribution of the features by separating

each image into grids and then proceed to the features process on each grid separately.

As described in Section 2.2.1, to extract ORB features, FAST features are extracted on

each image in an image pyramid, to provide scale invariance, and then an orientation

component is calculated for each feature, to provide rotation invariance. Specifically, the

image pyramid was created by down sampling each image a certain number of times based

on the number of pyramid levels chosen (ORB parameter: nlevel), using the image scale

specified by the scale factor (ORB parameter: scaleFactor). For a homogeneous distribution

of features across the entire camera frame, each image in the image pyramid was separated

into grids, and FAST features were extracted on each grid separately, using the FAST

algorithm provided by OpenCV [78]. Each image in the image pyramid was separated into a

different number of grids. The number of grids per image is adjusted according to the frame

resolution. Additionally, to extract features even on less-textured image grids, adaptive FAST

thresholding was used. Specifically, the value of the fastThreshold parameter was decreased

one time, if no features were detected in a grid of the image, making the feature detection

more robust. Lastly, suppression via Square Covering (SSC) [79] ensured the selection of the

strongest (The strongest features are selected based on the response parameter, which

demonstrates the level of certainty that the selected feature is indeed a feature) features, while

maintaining homogeneity. SSC requires input features to be sorted in decreasing order of

strength. Then the features are processed in that order and any feature located within a

predefined range, referred to as the suppression range, of a stronger feature is removed. The

process is repeated for all the features, and if the resulting number of features significantly

deviates from the desired number, the suppression range is adjusted, and the process is

repeated.

Figure 3-8 (a) illustrates the feature distribution when grids and SSC is not used, while

Figure 3-8 (b) and Figure 3-8 (c) illustrate the variation when grids are applied and when grids

& SSC are applied, respectively. Both Figure 3-8 (b) and Figure 3-8 (c) demonstrate an

increase in feature distribution across the entire image, indicating the importance of these

techniques.

After the best features are selected, the orientation is calculated. The moments of a patch

around each feature need to be calculated. A circular patch is created around the 𝑥, 𝑦 position

of each feature. The first and second moments of the image intensity are calculated in the

circular patch. The first moment provides information about the distribution of pixel intensities

along the vertical axis of the patch, while the second moment provides the same information

along the horizontal axis of the patch. This information is calculated by the intensity of each

pixel along the rows and columns of the patch. After the moments have been calculated, the

orientation is computed using the arctangent function using Equation (2.6).

Implementation of the Visual SLAM Algorithm

53/92

Figure 3-8. Feature Distribution with Different Methods.

After the calculation of the orientation of each extracted feature, it is assigned to a grid for

accelerated matching. Lastly, the rotated BRIEF descriptor is calculated using the OpenCV

function for ORB feature extraction.

With features extracted from both stereo cameras and their corresponding descriptors

calculated, stereo matching is initialized.

3.3.3 Mappoints

In the initialization step, after the stereo matches have been identified, all the 3D calculated

points are added to the map, creating mappoints. The 3D points created from stereo matches

using Equations (2.7)-(2.9), have the left camera optical center as their world origin (they are

created with the left camera optical center as their 0,0,0, and as a result the 3D points are not

defined in their world coordinates). To calculate their world coordinates a transformation is

Implementation of the Visual SLAM Algorithm

54/92

calculated from the pose of the camera that observes them, front or back, to the map’s origin

(the map’s center 0,0,0) as presented in Equations (3.11)-(3.12).

𝒑𝒘 = 𝑻𝒘𝒄 ∗ 𝒑𝒄 (3.11)

𝒑𝒘 = 𝑻𝒘𝒄𝒃 ∗ 𝒑𝒄 (3.12)

𝑷𝒘 is a 4-by-1 matrix that denotes the world position in homogeneous coordinates, 𝑷𝒄 is the

position of the mappoint with the left camera optical center as their world origin. 𝑻𝒘𝒄𝑻𝒘𝒄𝒃 are
4-by-4 matrices that denote the transformations from the map’s origin to the front camera or
the back camera, respectively.

In the developed algorithm, Mappoints were chosen to store the following information for

faster access:

• World Position: the world position of the mappoint.

• Pyramid level: the latest image pyramid level on which each mappoint was

detected.

• Matched Keyframes and Features: A list of all the keyframes and matching

features with which each mappoint is matched. This is used for bundle adjustment.

• In frame: Indicates whether the mappoint is present in the current frame or not. If

the mappoint is present in the current frame, it is considered active.

• Predicted position: an estimation of where the mappoint is likely to be visible in

the next frame.

• Predicted position in right camera lens: an estimation of where the mappoint is
likely to be visible in the next frame on the right camera lens.

• Predicted level: at which pyramid level each mappoint is predicted to be found in

the next frame.

• Descriptor: the descriptor of each mappoint for matching.

• Reference Camera: Which camera can view the mappoint, front or back.

• Outlier: if each mappoint is an outlier and should not be taken into consideration

in the camera pose estimation.

3.3.4 Calculation of the Mappoint Descriptor

To accurately match newly extracted features with the mappoints, a more robust descriptor is

calculated for each mappoint. As explained in Section 3.2.2, mappoints store information

regarding all the features with which they have been matched with. Using this information, the

descriptors of all the matched features are compared to each other. A distance between each

descriptor is calculated and the one with the least distance to all others is selected as the

descriptor of the mappoint. This way, the mappoint is described by the closest descriptor to

all the features. When the mappoint is updated, either by adding a new keyframe to the list of

matches with the mappoint, or removing a keyframe from the list, the descriptor is recalculated.

This creates a more robust description of the mappoint resulting in a more accurate matching

process.

3.4 Tracking Thread

The tracking thread starts the camera pose estimation process after the initialization of the

map. For each new frame, features are extracted and stereo matched. Subsequently, a new

matching process is created, named matching by projection, which estimates the next position

of the active mappoints (the mappoints that can be observed in the image) and projects them

Implementation of the Visual SLAM Algorithm

55/92

onto the current image plane. The projected mappoints are then matched with the current

features.

3.4.1 Mappoints Position Prediction

The prediction of the position of the mappoint in the current pose is calculated using the

constant velocity model (assumption that the camera has a constant velocity, and its pose is

predicted using that velocity). The acceleration or rotation is taken in account the second time

the camera pose is estimated described in Section 3.4.4. All poses are represented in a 4𝑥4

transformation matrix in the 𝑆𝐸(3) Euclidean group [80], and all mappoint positions are in

homogeneous coordinates. The next camera world pose 𝑇𝑝𝑟𝑒𝑑𝑤𝑐𝑙
, which denotes the

transformation from world origin 𝑤 to the left camera frame𝑐𝑙, can be estimated as presented

in Equation (3.18).

𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 = 𝑻𝒘𝒄𝒍 ∗ 𝑻𝒑𝒓𝒆𝒗𝒄𝒍𝒘 ∗ 𝑻𝒘𝒄𝒍 (3.18)

where 𝑻𝒘𝒄𝒍 is the transformation from world 𝑤 to left camera frame 𝑐𝑙, 𝑻𝒑𝒓𝒆𝒗𝒄𝒍𝒘 denotes the

inverse of the previous camera world pose, and 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 is the predicted camera world pose

assuming the camera maintains a constant velocity in the next frame. With the information of

the world position of the mappoint, it can be moved to its predicted position in front of the

camera using the inverse of 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍, denoted as 𝑻𝒑𝒓𝒆𝒅𝒄𝒍𝒘, to transform the mappoint from

world to camera coordinates. For example, suppose a mappoint is located at (0,0,100) and

the camera is predicted to be at (0,0,40). In the camera coordinate system, the mappoint is at

(0,0,60). However, the only known parameter is the mappoint’s world position (0,0,100).

Consequently, the mappoint needs to be transformed by the inverse of the camera’s position,

so the mappoint needs to be moved by (0,0,−40). This transformation ensures that the

camera observes the mappoint at the correct position. This transformation is given by:

𝒑𝒄𝒍 = 𝑻𝒑𝒓𝒆𝒅𝒄𝒍𝒘 ∗ 𝒑𝒘 (3.19)

where 𝒑𝒄 is the position of the mappoint in the camera coordinates and 𝒑𝒘 is the position of

the mappoint in the world coordinates.

To predict the position of the mappoint in the right camera lens, a similar approach is

followed. The predicted right camera world pose is calculated using the already predicted left

camera world pose as:

𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒓 = 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓 (3.20)

where 𝑻𝒄𝒍𝒄𝒓 is the transformation from the left camera coordinate frame to the right camera

coordinate frame and 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 denotes the predicted world pose of the right camera. To

transform the mappoint from world to the right camera coordinate frame Equation (3.21) is

used.

𝒑𝒄𝒓 = 𝑻𝒑𝒓𝒆𝒅𝒄𝒓𝒘 ∗ 𝒑𝒘 (3.21)

Concerning the mappoints created from the back stereo camera data, the predicted

camera poses for that camera are similarly calculated as :

𝑻𝒑𝒓𝒆𝒅𝑩𝒘𝒄𝒍 = 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒍𝒃 (3.22)

𝑻𝒑𝒓𝒆𝒅𝑩𝒘𝒄𝒓 = 𝑻𝒑𝒓𝒆𝒅𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓𝒃 (3.23)

Implementation of the Visual SLAM Algorithm

56/92

where 𝐵 denotes the back camera, and 𝑻𝒄𝒍𝒄𝒍𝒃, 𝑻𝒄𝒍𝒄𝒓𝒃, denote the transformations from the front

left camera frame to the back left and back right camera frames respectively. The mappoint’s

predicted position is calculated using the respective transformation via Equation (3.19).

3.4.2 Match by Projection

The matching by projection process starts after predicting all mappoint positions. The

predicted coordinates of each mappoint are projected onto the image frame using:

𝑢 =
𝑓𝑥 ∗ 𝑝𝑐𝑥

𝑝𝑐𝑧
+ 𝑐𝑥 (3.24)

𝑣 =
𝑓𝑦 ∗ 𝑝𝑐𝑦

𝑝𝑐𝑧
+ 𝑐𝑦 (3.25)

where 𝑢 and 𝑣 represent the new pixel coordinates of the projected mappoint in the image

frame, and 𝑝𝑐𝑥, 𝑝𝑐𝑦 , 𝑝𝑐𝑧, denote the X, Y and Z coordinates, respectively, of the predicted

position of the mappoint in camera coordinates. 𝑓𝑥, 𝑓𝑦 is the focal length in pixels and 𝑐𝑥, 𝑐𝑦 is

the optical center in pixels as described in Section 2.1.2.

For each projection, a list of candidate features is created based on a radius around the

projected positions of the left and right camera frame. For example, if the projection of the

mappoint is at (250,270), then all current features that are within a radius around the point

(250,270) are considered candidates.

All features from the left and the right camera frames, located inside that radius, and

having a similar image pyramid level, are added to the list of candidates. The radius is

determined based on a predefined constant variable and the predicted image pyramid level of

each mappoint, i.e.:

𝑟𝑚𝑎𝑝 = 𝑟𝑐𝑜𝑛𝑠𝑡 ∗ 𝑝𝑟𝑒𝑑𝑖𝑚𝑝𝑦𝑟 (3.26)

where 𝑟𝑚𝑎𝑝 is the calculated radius, 𝑟𝑐𝑜𝑛𝑠𝑡 is the predefined constant variable, and 𝑝𝑟𝑒𝑑𝑖𝑚𝑝𝑦𝑟

is the predicted image pyramid level of each mappoint. In turn, similarly to the stereo matching

process, each mappoint’s descriptor is compared with all the candidate features in the list and

the two lowest distances are stored. With the two lowest distances, a ratio test is performed

comparing the ratio of these distances to 0.75, which is the most common value for the ratio

test. The ratio test is described in detail in Section 2.2.2. The matches that are valid are

considered correct and stored for the camera pose estimation process.

During the initialization step, a fixed value of 120 pixels (empirically chosen) is used as

the predefined radius (denoted as 𝑟𝑐𝑜𝑛𝑠𝑡) since the camera has not moved yet and a constant

velocity model cannot be used. After the first camera pose estimation, the radius 𝑟𝑐𝑜𝑛𝑠𝑡 is set

to 10 pixels. In case there are less than 50 correct matches (50 were found to produce the

best results), resulting from a rapid camera movement, the radius is increased, and the

matching process is repeated.

3.4.3 Camera Pose Estimation Using Motion-Only BA

After more than 50 matches have been identified, the camera pose estimation process starts.

As described in Section 2.4.1, for the world pose estimation of the camera Motion Only BA is

performed. Matches from all camera lenses, front and back, left and right, are used to estimate

the front left camera pose, and for that reason, mappoints that were observed from the front-

Implementation of the Visual SLAM Algorithm

57/92

right or back (left/right) lenses, require a transformation to the front-left lens to be factored in

the calculations.

Mappoints that have been matched with stereo matches from either front or back camera

features, are used to provide scale information, which assists in the translation estimation of

the camera. As described in [81], the depth value of a stereo match is considered valid, if its

estimation is less than 40 times the stereo baseline2 (namely close stereo matches), otherwise

it is considered not accurate and is only used for rotation estimation (namely far stereo

matches).

For example, in Figure 3-9 let’s assume that the stereo baseline (𝑂 − 𝑂′) is 0.10m. That

means that the depth of a stereo match is considered valid when depth<4.0m. If the depth is

considered valid, Motion Only BA will use both the left and the right feature in the calculations.

This way, the same 3D point is seen from two different angles, the left camera lens and the

right camera lens, at the same time, providing scale information. If the depth is not valid, the

3D point is calculated as seen only from one angle (the left camera lens), providing no

information on the translation of the camera pose.

Figure 3-9. Valid Depth of 3D point.

For stereo matches with valid depth (less than 40 times the stereo baseline), to provide

scale information (displacement information of the camera pose), both the left and the right

feature are used in the estimation of the camera world pose, while for stereo matches with

inaccurate depth only one of the features is used.

To formulate the optimization problem, the world coordinates of all mappoints are stored

along with their matched features. Depending on the matched feature, a transformation is

used to transform the mappoint to the front-left camera coordinate frame. If the feature is from

the front-left camera frame, then this transformation is the inverse of the current world pose

𝑻𝒘𝒄𝒍. For all the other features, depending on which camera lens observes this feature, a

transformation is used as presented in Equation (3.27)-(3.29).

𝑻𝒄𝒓𝒘 = (𝑻𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓)
−𝟏 (3.27)

2 The distance between the two lenses (left and right).

Implementation of the Visual SLAM Algorithm

58/92

𝑻𝒄𝒍𝒃𝒘 = (𝑻𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒍𝒃)
−𝟏 (3.28)

𝑻𝒄𝒓𝒃𝒘 = (𝑻𝒘𝒄𝒍 ∗ 𝑻𝒄𝒍𝒄𝒓𝒃)
−𝟏 (3.28)

Where 𝑏 denotes the back camera, and 𝑙, 𝑟 denote the left and right camera lenses,

respectively. After the transformation to the camera coordinate frame, using Equation (3.12),

the mappoints are projected in the image frame using Equations (3.17)-(3.18), where the

corresponding 𝑓𝑥 , 𝑓𝑦 , 𝑐𝑥 , 𝑐𝑦 are used depending on the front or back camera parameters. The

residuals used by Ceres Solver are calculated using Equations (3.30)-(3.31).

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑥 = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑜𝑏𝑠𝑒𝑟𝑣𝑥 − 𝑝𝑟𝑜𝑗𝑥) (3.30)

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑦 = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑜𝑏𝑠𝑒𝑟𝑣𝑦 − 𝑝𝑟𝑜𝑗𝑦) (3.31)

Where 𝑜𝑏𝑠𝑒𝑟𝑣 denotes the matched feature position, 𝑝𝑟𝑜𝑗 denotes the projection of the

mappoint on the current frame, and 𝑤𝑒𝑖𝑔ℎ𝑡 is a weight depending on the image pyramid level

of the matched feature. Ceres Solver minimizes all the residuals (the reprojection error) in

Equations (3.30)-(3.31), by estimating a rotation matrix and a translation displacement for the

front-left camera frame.

To further understand the minimization of the reprojection error, Figure 2-17 is used. In

Figure 2-17 suppose that the red model (named Model reprojection) was observed on the

previous image. In the next image, the same model is observed at a different position

(observation). The difference between the model reprojection and the observation is the

reprojection error.

To minimize this error, Ceres Solver translates and rotates the camera iteratively, in

different directions. In Figure 2-17 the camera would need to, for example, translate to the

right so that the observed model is aligned with the red model (Model reprojection). This

particular example may have multiple solutions. However, when a substantial number of 3D

points are observed in different positions, the camera pose can be accurately estimated as

only one correct solution exists. To estimate as accurately as possible the camera pose, it is

essential to establish correct matches between the observations and the 3D points.

The Motion Only BA algorithm minimizes Equation (3.32) by finding the optimal rotation

matrix (𝑹) and translation displacement (𝒕) of the front-left lens:

𝑹, 𝒕 ∶ 𝑚𝑖𝑛
𝑹,𝒕

∑𝜌𝑤𝑖𝒅(𝒙𝒊, 𝒖(𝑭𝒊))
𝟐

𝑀

𝑖=1

(3.32)

𝑭𝒊 = 𝑲𝑐(𝑹𝐶𝑉(𝑹𝒑𝒘𝑖 + 𝒕) + 𝒕𝐶𝑉) (3.33)

𝒖(𝑭𝒊) =

[

𝑭𝒊(𝟎)

𝑭𝒊(𝟐)

𝑭𝒊(𝟏)

𝑭𝒊(𝟐)]

(3.34)

where 𝐶 denotes the front or rear camera observing the mappoint, and 𝑉 denotes the left or

right lens. 𝑹𝐶𝑉 , 𝒕𝐶𝑉 is the rotation matrix and translation displacement representing the

transformation from the camera observing the mappoint, to the front-left lens and 𝑲𝐶 is the

intrinsics matrix for either the front or the rear camera. 𝑭𝑖 is a 3-by-1 matrix, 𝜌 denotes the

robust Huber [82] loss function, and 𝑤𝑖 is a weight based on the image pyramid level of each

feature. 𝑀 represents the total number of mappoints to be optimized, 𝒑𝒘𝑖 is the world

coordinates of the current mappoint, and 𝑥𝑖 is the matched feature on the image plane. 𝒅(𝒙, 𝒚)

Implementation of the Visual SLAM Algorithm

59/92

is the Euclidean distance between vectors 𝑥 and 𝑦 and they represent the residuals in

Equations (3.30)-(3.31).

Once the front-left camera pose has been estimated, an outlier rejection step is

performed. Each mappoint is projected onto the image frame, and the reprojection error with

its matched feature is computed. If the reprojection error exceeds a certain threshold, the

match is considered an outlier, and it is removed from consideration. Once all matches have

been checked, the camera pose is re-estimated. After a more accurate estimation of the

camera world pose has been obtained, the matches are checked once more to see if they are

outliers, and if they are, they are removed.

3.4.4 Re-Estimation of Camera Pose

To estimate as accurately as possible each camera pose, the unmatched mappoints from the

match by projection process are reconsidered for matching. Their position is predicted again,

using the newly estimated camera pose, which is more accurate compared to the constant

velocity model. This time, the predefined radius 𝑟𝑐𝑜𝑛𝑠𝑡 is reduced further to a value of 4 pixels,

as the camera pose is more accurately estimated (previously, the camera pose was estimated

with the constant velocity model, this time the camera pose has already been estimated one

time, providing a more accurate estimation). This matching process is only used once to

increase the number of matches and is not repeated compared to the pose estimation, as 50

correct matches have been found from the previous pose estimation. Once the matching

process finishes, the camera pose is estimated once again and all the matches are checked

for rejection with the reprojection error, similarly to Section 3.3.3. This time, in contrast to the

initial pose estimation, if the reprojection error exceeds the threshold, the mappoint is

considered an outlier and is removed from the map.

3.4.5 Deciding on the keyframe selection

Once the camera pose estimation is complete, the next step is to determine whether to insert

a new keyframe into the map. The conditions that decide whether a new keyframe is required

are:

1. Number of mappoints tracked: If the number of currently tracked mappoints falls
below a certain threshold which is determined based on the number of mappoints
that were tracked by the last keyframe. After trial and error, this threshold was
chosen as 90% of the number of mappoints tracked.

2. Frames passed: if more than 5 frames (empirically selected) have passed from

the lastly added keyframe.

3. Low number of stereo matches: If the number of stereo matches providing scale

information3 to the camera estimation drops below 80 (empirically chosen).

To insert a keyframe, Condition 1 and either Condition 2 or Condition 3 have to be

satisfied. Condition 1 checks whether there has been a significant decrease in the number of

tracked mappoints, and if so, aims to increase them by inserting a new keyframe. Condition 2

or 3 ensures that keyframes are not inserted too frequently, which could occur in cases where

the environment lacks texture, where tracking a large number of features is challenging.

After a new keyframe is inserted, the algorithm stores all features from the current frame

and calculates their connections with the keyframe. Mappoints that were inserted from

3 Stereo matches with valid depth (less than 40 times the stereo baseline) to provide scale information
(displacement information of the camera pose),

Implementation of the Visual SLAM Algorithm

60/92

previous keyframes and are now tracked in the new keyframe, are considered shared and

added to the connections. Two keyframes are considered connected if they share more than

15 mappoints. In addition, the tracked mappoints are updated, the new keyframe is added to

the list of matched keyframes, and the mappoint descriptors are recalculated. If Condition 3 is

met, which indicates a low number of stereo matches providing scale information, the 100

closest stereo matches are added to the map.

Keyframes hold the following information:

• World Pose: The world pose of the current keyframe.

• Features: All features of the frame, including both matched and unmatched

features.

• Previous Keyframe: the previous keyframe.

• Reference Pose: A reference pose that together with the pose of the previous

keyframe the world pose of the current keyframe can be computed. The reference

pose is used when an optimization process changes poses of previous keyframes.

Reference Poses are calculated using:

𝑻𝒓𝒆𝒇 = 𝑻𝒑𝒓𝒆𝒗𝑲𝑭
−𝟏 ∗ 𝑻𝑲𝑭 (3.35)

where 𝑻𝒓𝒆𝒇 is the reference pose, 𝑻𝒑𝒓𝒆𝒗𝑲𝑭
−𝟏 is the inverse pose of the previous keyframe and

𝑻𝐾𝐹 is the pose of the current keyframe.

If a keyframe is not needed, the tracking process continues with the next frame. On the

other hand, if a new keyframe is required, after the keyframe insertion, the local mapping

process initializes in a different thread, while the tracking process continues.

3.5 Local Mapping Thread

When a new keyframe is added to the map, the local mapping thread is initiated. All keyframes

that are connected with the newly added keyframe with more than 15 mappoints are

considered as local keyframes and stored. The first task of the local mapping thread is to add

new mappoints to the map that are connected with at least 3 keyframes.

3.5.1 Matching Between Keyframes

To add new mappoints to the map, a matching process is carried out between the local

keyframes. This allows stereo matches with inaccurate depth values, which can be observed

from previous keyframes, to be included in the map as their position can be triangulated

accurately from multiple views.

Firstly, all stereo matches from the newly added keyframe, close and far, that are not

matched with a mappoint, are stored. These stereo matches are converted to 3D points with

Equations (2.7)-(2.9), and their world position is calculated using Equations (3.11)-(3.12). The

stereo matches’ position and pyramid level from each camera, front or back, are the, predicted

on each local keyframe for both the left and the right camera lenses of the corresponding

camera. The predicted position is projected on the image plane and matched with unmatched

features of each local keyframe as described in Section 3.3.2. The matches for each stereo

match with each keyframe are stored in a list, along with the corresponding features. With the

matches for each stereo match, Ceres Solver is used to optimally triangulate the 3D position

of the stereo match. This provides an accurate depth estimation for the stereo match, even if

it is further than 40 times the stereo baseline.

Implementation of the Visual SLAM Algorithm

61/92

Ceres Solver is used to minimize the reprojection error of the 3D points by finding the

optimal position of the 3D point while keeping the camera poses constant. The estimated world

position is transformed depending on the pose of each keyframe and compared to the

matched feature according to:

𝒑𝑲𝑭 = 𝑻𝑲𝑭𝑾 ∗ 𝒑𝒘 (3.36)

𝒑𝒓𝒐𝒋 = 𝑲𝑲𝑭 ∗ 𝒑𝑲𝑭 (3.37)

Where 𝒑𝐾𝐹 is the 3D point transformed depending on the pose of each keyframe, 𝑲𝐾𝐹 is the

intrinsics matrix of the keyframe and 𝒑𝒓𝒐𝒋 is the projection of the 3D point on the image plane.

The residuals used are the same as Equations (3.30)-(3.31).

After the estimation of each 3D point’s position, the reprojection error is calculated for

each match and compared to a threshold to ensure that the estimation is valid, and the

matches are correct. If the 3D points that are matched correctly with at least 3 separate

keyframes are considered valid they are added to the map as mappoints. The threshold of 3

keyframes ensures that the mappoint is robust and visible from more than a single keyframe.

To ensure that the map is as clear as possible, for each mappoint that is observed by any

local keyframe and is not active (not observable in the current frame), if it is not matched with

at least 3 other keyframes, it is removed from the map. This helps eliminate mappoints that

may be inaccurate and ensures that the map remains robust and clear of incorrect mappoints.

3.5.2 Local BA

Local BA is performed with every new keyframe, after new mappoints have been added to the

map. Local BA aims at the improvement of the map, while also maintaining local consistency

of the camera trajectory.

In more detail, Local BA optimizes the poses of all local keyframes and all mappoints that

are observed by these keyframes. The first step is to gather all the mappoints to be optimized.

Using the matched keyframes list of each mappoint, all keyframes are stored and separated

to local keyframes and fixed keyframes.

The optimization process involves minimizing the reprojection error of all mappoints

observed by the local keyframes and refining the local keyframe poses themselves, while

keeping the poses of the fixed keyframes fixed. This is accomplished by formulating a

nonlinear least squares problem, which is then solved using Ceres Solver. The local BA

minimizes Equation (3.38) by finding the optimal rotation matrices (𝑹𝒌) and translation

displacements (𝒕𝒌) for each keyframe, where 𝑘 denotes the keyframe and 𝛫 the total number

of keyframes:

𝑹𝒌, 𝒕𝒌 ∶ 𝑚𝑖𝑛
𝑹𝒌,𝒕𝒌

∑ ∑ 𝜌𝑤𝑖𝒅(𝒙𝒊, 𝒖(𝑭𝒊,𝒌))
2

𝐾

𝑘=1

𝑀

𝑖=1

(3.38)

𝑭𝒊,𝒌 = 𝑲𝐶(𝑹𝐶𝑉(𝑹𝑘𝒑𝒘𝑖 + 𝒕𝑘) + 𝒕𝐶𝑉) (3.39)

Together with Equation (3.34) form the local BA optimization problem.

This optimization process is performed twice. The first time, the Huber loss function is

used, to reduce the impact of outliers on the optimization. After the first optimization is

completed, the reprojection errors of all the mappoints with their matches are compared with

a threshold to find any outliers. After the reprojection error check, the optimization process

Implementation of the Visual SLAM Algorithm

62/92

begins again with no loss function and without factoring into the calculations any matches that

are deemed as outliers, to acquire the best possible result.

After the optimization process is completed for the second time, the reprojection errors

are recalculated, and any matches that were previously deemed invalid are rechecked. If this

time the matches are valid, they are not removed from the map. Otherwise, they are

considered as outliers and removed from the map. In turn, the local keyframe poses are

updated, along with the world positions of the mappoints and the recalculation of their

descriptors. When the process finishes, the local mapping thread communicates to the

tracking thread that the optimization has finished in order to update the current camera poses

and mappoints.

3.5.3 Pose Update

After an optimization process, the tracking thread needs to update any new keyframe poses

that have been added to the map and their mappoints according to the optimized keyframes.

The local mapping thread updates the poses of the previous keyframes, but if a new keyframe

has been added while the local mapping thread is still running, the new keyframe is not

updated, as it is not included yet in the current optimization process. To update the poses

Equation (3.35) is used along with :

𝑻𝒏𝒆𝒘 = 𝑻𝒑𝒓𝒆𝒗𝑲𝑭 ∗ 𝑻𝒓𝒆𝒇 (3.38)

All the new keyframe poses not yet optimized are updated to the new pose 𝑻𝒏𝒆𝒘 according to

their previous keyframe. Each keyframe that had created new mappoints (adding the 100

closest stereo matches described in Section 3.3.2) updates the position of the mappoints with:

𝒑𝒏𝒆𝒘 = 𝑻𝒏𝒆𝒘 ∗ 𝑻𝒑𝒓𝒆𝒗
−𝟏 ∗ 𝒑𝒐𝒍𝒅 (3.39)

where 𝑻𝒑𝒓𝒆𝒗
−𝟏 is the previous keyframe pose, 𝒑𝒐𝒍𝒅 is the previous world position of the

mappoint, while 𝒑𝒏𝒆𝒘 is the new one.

The current camera pose is also updated along with its predicted next pose (using the

constant velocity model). With each new frame, along with the predicted pose, a reference

pose for the predicted pose is calculated.

𝑻𝒑𝒓𝒆𝒅𝒓𝒆𝒇 = 𝑻𝒑𝒓𝒆𝒗𝑪𝒂𝒎 ∗ 𝑻𝒏𝒆𝒘𝑪𝒂𝒎 (3.40)

where 𝑻𝒑𝒓𝒆𝒗𝑪𝒂𝒎 is the previous camera pose, 𝑻𝒏𝒆𝒘𝑪𝒂𝒎 is the newly estimated camera pose

and 𝑻𝒑𝒓𝒆𝒅𝑟𝑒𝑓 is the reference pose for the predicted pose.

With Equation (3.40), the new camera pose with its predicted next pose can be calculated

using Equations (3.41)-(3.42).

𝑻𝒖𝒑𝑪𝒂𝒎 = 𝑻𝒍𝒂𝒕𝒆𝒔𝒕𝑲𝑭 ∗ 𝑻𝒓𝒆𝒇𝑪𝒂𝒎 (3.41)

𝑻𝒑𝒓𝒆𝒅𝑪𝒂𝒎 = 𝑻𝒖𝒑𝑪𝒂𝒎 ∗ 𝑻𝒑𝒓𝒆𝒅𝒓𝒆𝒇 (3.42)

where 𝑻𝒍𝒂𝒕𝒆𝒔𝒕𝑲𝑭 denotes the pose of the latest keyframe (already updated), 𝑻𝒓𝒆𝒇𝑪𝒂𝒎 is the

reference pose of the current camera pose, 𝑻𝒖𝒑𝑪𝒂𝒎 denotes the updated current camera pose

and 𝑻𝒑𝒓𝒆𝒅𝑪𝒂𝒎 is the updated predicted pose for the camera using the constant velocity model.

Figure 3-10 illustrates the difference between a straight-line trajectory with the use of Local

Bundle Adjustment (BA) and without. The figure clearly demonstrates that local BA

optimization maintains the local consistency and reduces estimation errors of camera poses

in each frame.

Implementation of the Visual SLAM Algorithm

63/92

Figure 3-10. Comparison With and Without Local BA.

3.6 Loop Closure Thread

A separate thread is dedicated to the loop closure process to avoid overloading the tracking

or local mapping threads. This thread is used to optimize the camera trajectory and the map

when a loop is detected.

As discussed in Section 2.5, the bag-of-words representation is a widely used method for

detecting loops in visual SLAM systems. It involves comparing the visual features of each

frame with those of new frames, and when a similar enough image is detected, the SLAM

system begins optimizing the camera poses and the map. While this approach is effective in

most environments, it may incorrectly detect loop closures in homogeneous or repetitive

environments, leading to incorrect optimizations that make the map and camera trajectory

worse or unusable.

In this thesis, the main purpose of the VO software developed was to enable a mobile

robot to traverse and map a vineyard, i.e.: a highly repetitive and homogeneous environment,

rendering the use of a bag-of-words approach for loop closure inadequate. Therefore, a novel

approach was introduced that relied on Apriltags for loop closure detection. The robustness

of the Apriltag detection algorithms allows for accurate loop closure detection in all types of

environments. Additionally, Apriltags can be easily placed in the environment and provide a

reliable reference point for the system.

3.6.1 First AprilTag Detection

A third camera was added on the right side of the rover for the Apriltag detection process. The

Apriltag detection was performed on a separate thread using the apriltag_ros package [69].

The apriltag_ros package takes as input the image and its parameters, as well as a settings

file that contains the size and the identity of the Apriltag. When an Apriltag is detected, the

pose of the Apriltag relative to the camera pose that detected it is returned.

The tracking and local mapping thread estimate and optimize camera poses, while the

Apriltag thread searches for Apriltags using the right camera. Upon detection of the first

Implementation of the Visual SLAM Algorithm

64/92

Apriltag, its world pose is calculated relative to the front left camera, which is the camera

estimated from the tracking thread. In order for the detection of the Apriltag to be considered

valid, the Apriltag has to be detected 10 times consecutively. If the detection is valid, the world

pose is calculated using :

𝑻𝒕𝒂𝒈 = 𝑻𝒘𝒄 ∗ 𝑻𝒄𝒄𝒓 ∗ 𝑻𝒄𝒓𝑨𝑻 (3.43)

where 𝑻𝒘𝒄 is the estimated world pose of the front left camera, obtained from the tracking

thread, 𝑻𝒄𝒄𝒓 denotes the transformation from the front left camera to the right camera used for

detecting the Apriltag, and 𝑻𝒄𝒓𝑨𝑻 represents the transformation from the right camera to the

Apriltag, which is the output of the apriltag_ros package. Once the world pose of the tag is

calculated, the Apriltag detection process requires that the tag be absent for a certain number

of frames before it can be detected again for loop closure.

3.6.2 Second Apriltag Detection

With the world pose of the tag, the next time the same Apriltag is detected, means that a loop

has been performed. With the world pose of the tag already known, the front left camera pose

can be calculated using :

𝑻𝒘𝒄 = 𝑻𝒕𝒂𝒈 ∗ 𝑻𝒄𝒓𝑨𝑻
−𝟏 ∗ 𝑻𝒄𝒄𝒓

−𝟏 (3.44)

This calculated front left camera pose is considered more accurate than the estimated

camera pose obtained from the tracking process, as there is no error accumulation from

Apriltag detection. After a front left camera pose has been calculated from the Apriltag

Detection, the loop closure optimization is initiated.

3.6.3 Loop Closure Optimization

The loop closure optimization is performed when an Apriltag has been detected for the second

time. With a more accurate world pose for the front left camera, a Global BA problem is formed,

where the keyframe poses that detected the Apriltag are fixed, while all other poses (except

for the starting pose) can be optimized. To maintain consistency across all optimization

processes, the local BA optimization is temporarily paused while the loop closure optimization

begins. The global BA optimization is then performed, and once it has been completed, the

local BA optimization can continue. This ensures that the mappoints used by the global BA

remain unchanged and that the reprojection errors for all mappoints remain consistent

throughout the optimization process.

The equations utilized by the Global BA optimization are identical to those used by the

Local BA optimization, which include Equations (3.34), (3.37)-(3.38). However, in this case,

the optimization is performed on all the mappoints and keyframes. As this process is time-

consuming, it is performed on a separate thread. After the optimization is completed, the

reprojection errors for all mappoints with their connected keyframes are compared with a

threshold, and any error larger than the threshold indicates a wrong match, and it is removed

from the connections. Any mappoint that ends up with less than 3 connected keyframes is

removed from the map.

Once the global optimization is complete, the tracking thread is notified that the camera

poses and map have been updated, and updates the poses of the keyframes that were not

optimized according to Section 3.4.3. The global BA optimization removes any accumulated

error during the camera movement, resulting in a more accurate camera trajectory and map

Implementation of the Visual SLAM Algorithm

65/92

of the environment. Figure 3-11 presents the two different AprilTag Detection along a camera

trajectory. After the second detection global BA is performed to remove any accumulated error

during the camera trajectory.

Figure 3-11. First and Second AprilTag Detection on a Trajectory. After the Second Detection
Global BA is performed.

3.7 Visual Thread

The visual thread is only used for the visualization process, and it is not required for the system

to operate. This thread visualizes all mappoints, keyframes and current camera pose

estimation, providing a visual representation of the environment. This representation can also

be used to detect any errors or inaccuracies in the system.

For visualization purposes, the Pangolin libraries [83] are used. Pangolin is a set of

lightweight and portable utility libraries for prototyping 3D, numeric or video-based programs

and algorithms. The system visualizes mappoints from both front and back stereo cameras

along with all keyframes, but only mappoints that are connected to at least 3 keyframes are

shown. Active mappoints are represented in green, while inactive ones are in white.

Keyframes are represented in blue, and the current camera pose estimation is represented in

yellow. Figure 3-12 shows the visual environment created by the dual stereo camera setup

using the Pangolin.

Implementation of the Visual SLAM Algorithm

66/92

Figure 3-12. Visual Environment created using Pangolin. White points are inactive mappoints,
green points are active mappoints. Blue squares are the keyframes created

(connected with a red line), while the yellow squares are the current front and
back camera.

Results

67/92

4 Results

In this Chapter, the developed visual SLAM algorithm is evaluated employing commonly used

image datasets by researchers worldwide as well as camera trajectories in a simulated

environment and in a realistic vineyard setup at CSL. Although this visual SLAM algorithm

was designed for two stereo cameras, single camera operation is also available and is tested

with datasets that provide single stereo camera images. In this Chapter, the setups developed

for experiments in simulation and at the CSL lab are presented. In turn, results of the single

stereo camera operation are presented, tested with the KITTI and EuRoC datasets. Finally,

the results of the simulation and the experiment at the CSL are presented, where the dual

stereo camera variant of the developed software is used.

4.1 Experimental Setup in Simulation

To test the performance of the visual SLAM algorithm under controlled conditions, a simulation

setup was implemented using Gazebo [84], which includes an accurate model of the RP as

well as sensor plugins to simulate multiple stereo cameras and STL CAD models of

grapevines acquired from [85], see Figure 4-1, Figure 4-2.

Figure 4-1. Gazebo environment that resembles the CSL synthetic vineyard setup.

Figure 4-2. Simulated Vineyard.

Results

68/92

Gazebo combined with rosbags provided the ability to assess the performance of the
developed visual SLAM algorithm against other state-of-the-art visual SLAM systems. Two
simulated environments were created; the first accurately resembles the synthetic vineyard
created at CSL, NTUA and the second resembles an actual much bigger vineyard.

4.2 Experimental Setup at CSL

4.2.1 Realistic Grapevine Canopy

To perform experiments easily with varying and controlled light conditions, a vineyard with

artificial grapes and leaves was built at CSL (Figure 4-3). Each row consists of multiple plants

on a trellis system so that the canopy form resembles a natural canopy. The basic vineyard

row parameters, such as the distance between plants (~1𝑚) and grapes’ minimum height

(0.60𝑚) is based on common viticulture practices in Greece. The artificial grapes’ grid features

varying density, grape size, creating different visibility conditions since some grapes are partly

covered with leaves, whereas others lie on the front plane.

Figure 4-3. Vineyard experimental setup at CSL. The grapevine canopy consists of two leaf
types with different color, i.e., green & green-yellow leaves.

To acquire the ground truth position of the rover, a camera was fixed to the ceiling of the room

and an Apriltag was placed on the top cover of the rover. With this setup the camera located

at the ceiling tracked the rover Apriltag and published its pose in a ROS topic. The vineyard

consists of three 4-meter-long rows on even terrain as presented in Figure 4-3 & Figure 4-4.

Figure 4-4. The rover in the synthetic vineyard developed at CSL, NTUA.

Results

69/92

4.2.2 CSL’s Rover

A wheeled robotic platform (RP) was used to validate the concept (Figure 4-5). The RP is

designed and constructed for research purposes, comprising custom-built in-house parts as

well as off-the-shelf parts (e.g., aluminum profiles, bearing units etc.). Its motion system

features four mecanum wheels [86] to provide the robot with omnidirectional motion

capabilities. The wheels are powered by four Maxon DC motors (RE 35) combined with

planetary gearboxes (GP 42) and incremental encoders (HEDL 5540), providing 5 Nm of

continuous torque per wheel. GT2 timing belts and pulleys are used to protect actuator shafts

from increased robot payloads and to transmit power to the wheels. Two RoboClaw [87] 2x30A

motor controllers are used to drive the actuators, since each controller can drive two DC

brushed motors. The two motor controllers are connected via USB to the rover’s master

computer, which is a Raspberry Pi 2 model B (RPi) running the Raspbian OS. The operator

can connect to the RPi using WiFi and Secure Shell (SSH) Network Protocol to run a Python

script that establishes two serial connections with the motor controllers and sends the desired

commands. The system is powered by two LiPo batteries for the RoboClaw controllers and a

powerbank for the Raspberry Pi.

Figure 4-5. The Robotic Platform (RP).

4.3 KITTI Dataset

The KITTI dataset [88] is one of the standard computer vision datasets. The dataset was

recorded using a station wagon car equipped with two high-resolution color and grayscale

video cameras. Accurate ground truth was recorded using a Velodyne laser scanner and a

GPS localization system. The sensors at the KITTI dataset are shown in Figure 4-6.

Results

70/92

Figure 4-6. KITTI Dataset Sensors [88].

The dataset consists of various paths in Karlsruhe, in rural areas and on highways. All

data are provided in raw and rectified images. For each one of KITTI’s benchmarks, an

evaluation metric is provided where visual SLAM algorithms test their performance.

To test the developed visual SLAM algorithm for the single stereo camera operation, the

grayscale rectified stereo datasets were used. The stereo dataset consists of a stereo camera

producing images 1241𝑥376 pixels at 10𝑓𝑝𝑠. The stereo sensor has a ~0.54𝑚 baseline. The

stereo cameras parameters are summarized in Table 4-1.

Table 4-1. The KITTI Dataset Stereo Parameters.

Parameter Value

𝑓𝑥 718.8560
𝑓𝑦 718.8560

𝑐𝑥 607.1928
𝑐𝑦 185.2157

The KITTI dataset consists of 22 different stereo camera sequences, but ground truth camera

poses are provided only for the first 11 of them. Figure 4-7 presents the setup for the recording

of the KITTI dataset where distances from the sensors utilized are given.

Figure 4-7. KITTI Dataset Setup [88].

Results

71/92

The developed visual SLAM algorithm was tested on the first 11 sequences where ground

truth was provided. The ORB parameters used for this dataset are presented in Table 4-2.

2000 features were chosen considering the high resolution of each image in the dataset.

Table 4-2. ORB Parameters used in KITTI Dataset.

Parameter Value

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 2000

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8
𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19
𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31

The sequences of the KITTI dataset consist of camera trajectories that include loop

closures, so visual SLAM algorithms that use the bag-of-words approach for loop detection

can detect loops and reduce the error accumulation. The developed single stereo camera

operation could have better results in this dataset if the bag-of-words approach for loop closure

was implemented instead of the AprilTag loop closure detection. However, incorrect loop

closures due to the similarity of the environment could be detected as mentioned in previous

chapters. To evaluate the performance of the developed algorithm in the dataset the average

relative translation error 𝑡𝑟𝑒𝑙 and rotation error 𝑟𝑟𝑒𝑙 are used, proposed in [89]. Table 4-3

presents the results of the developed visual SLAM algorithm DC-VSLAM in comparison to

ORB-SLAM3.

Table 4-3. Results of the Developed Visual SLAM Algorithm on the KITTI Dataset in
comparison to ORB-SLAM3.

 DC-VSLAM ORB-SLAM3

Sequence 𝐭𝐫𝐞𝐥(%)
𝒓𝒓𝒆𝒍(𝒅𝒆𝒈

/𝟏𝟎𝟎𝒎)
𝐭𝐫𝐞𝐥(%)

𝒓𝒓𝒆𝒍(𝒅𝒆𝒈

/𝟏𝟎𝟎𝒎)
Loop

00 0.7775 0.52 0.6858 0.45 Yes

01 1.4734 0.20 1.7811 0.58 No

02 0.8069 0.46 0.7571 0.42 Yes

03 0.9025 0.37 0.9334 0.27 No

04 0.6281 0.40 0.4693 0.13 No

05 0.7010 0.41 0.6117 0.59 Yes

06 0.9835 0.49 0.5814 0.32 Yes

07 0.8677 0.87 0.4310 0.48 Yes

08 1.0599 0.55 1.0351 0.53 No

09 0.9378 0.46 1.0356 0.55 Yes

10 0.7190 0.68 0.6686 0.57 No

The results presented in Table 4-3 demonstrate that the performance of the algorithm

using a single stereo camera is impressive, with the majority of the results showing a

translation error less than 1% and a rotation error less than 1 𝑑𝑒𝑔/100𝑚 across all the tested

sequences. Sequences 00, 02, 05, 06, 07 and 09 contain loops as indicated in the last row of

the table. It is apparent that the developed SLAM algorithm produces comparable results to

Results

72/92

ORB-SLAM3 while achieving better results in 4 out of 10 sequences, mainly in the ones that

don’t contain loops since in our approach loop closure recognition was based on AprilTag

detection. In Sequence 09, despite the presence of a loop that ORB-SLAM3 successfully

detects, DC-VSLAM still achieves superior results. We have to note that in all sequences, the

single camera variant of our software was tested since there is no dataset available for dual

camera VSLAM algorithms.

Figure 4-8 presents different sequences off the KITTI dataset with the resulting trajectory

of the visual SLAM algorithm. Six sequences in the dataset have loops that can significantly

reduce the impact of error accumulation. If these loops are detected correctly, the results could

be further improved.

Figure 4-8. DC-VSLAM (blue) with Ground Truth (red) trajectories in the KITTI Dataset.

Results

73/92

4.4 EuRoC Dataset

For further testing of the single stereo camera operation of the developed algorithm, the

EuRoC Dataset [90] was utilized. The EuRoC Dataset consists of 11 stereo sequences

recorded from a micro aerial vehicle (MAV) flying around a large industrial environment and

two different rooms. The stereo sensor provides images of size 752𝑥480 pixels at 20𝑓𝑝𝑠. It

has a baseline of ~0.11𝑚 and the images it provides are unrectified so image rectification is

needed. The sequences are separated into easy, medium, and difficult, depending on the

motion of the MAV, and the lighting conditions. Figure 4-9 presents the MAV with its sensors.

Figure 4-9. EuRoC Dataset MAV [90].

For the ground truth pose estimation of the MAV 2 drone, the following sensors were used:

• Leica MS50 laser tracker and scanner.

• Vicon 6D motion capture system.

The MAV stereo camera parameters are presented in Table 4-4.

Table 4-4. The EuRoC Dataset Stereo Parameters.

Parameter Value

𝑓𝑥 435.2046
𝑓𝑦 435.2046

𝑐𝑥 367.4517
𝑐𝑦 252.2008

The ORB parameters used for this dataset are presented in Table 4-5.

Table 4-5. ORB Parameters used in EuRoC Dataset.

Parameter Value

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 1000

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19

𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31

Results

74/92

The EuRoC dataset revisits several times a previous position, that could potentially

reduce any error accumulation if the loop is correctly detected. To evaluate the results of the

algorithm, the absolute translation RMSE was calculated for each resulting trajectory. The

results are summarized and compared to ORB-SLAM3 in Table 4-6.

Table 4-6. Results of the Developed Visual SLAM Algorithm on the EuRoC Dataset in
comparison to ORB-SLAM3.

 DC-VSLAM ORB-SLAM3

Sequence RMSE RMSE

MH_01_easy 0.035167 0.029

MH_02_easy 0.077663 0.019

MH_03_medium 0.158545 0.024

MH_04_difficult 0.234725 0.085

MH_05_difficult 0.186501 0.052

V1_01_easy 0.056128 0.035

V1_02_medium 0.073557 0.025

V1_03_difficult 0.262493 0.061

V2_01_easy 0.063262 0.041

V2_02_medium 0.125586 0.028

V2_03_difficult 1.933980 0.521

In both datasets (KITTI and EuRoC) our single stereo camera VSLAM software achieves

impressive results. The RMSE in most cases are below 0.3, even in sequences, such as

MH_04, MH_05, where the camera has very few features to track as presented in Figure 4-10.

The presence of loops in each sequence improves the performance of ORB-SLAM3 compared

to the developed algorithm which implemented a different method for loop closure detection,

i.e.: AprilTags.

Figure 4-10. Challenging Light Conditions in Sequence MH_04 [90].

Results

75/92

In the 𝑉2_03 sequence, the MAV performs abrupt maneuvers resulting in motion blur,

making feature tracking significantly more difficult compared to other sequences. Incorrect

matches lead to an increase in error during camera pose estimation resulting in a high RMSE.

Trajectories from some of the sequences in the EuRoC dataset, along with their values on

each axis are presented in Figure 4-11 and Figure 4-12.

Figure 4-11. DC-VSLAM (blue) with Ground Truth (red) trajectories (MH_01, MH_03, MH_05) in
the EuRoC Dataset with their values on each axis.

Results

76/92

Figure 4-12. DC-VSLAM (blue) with Ground Truth (red) trajectories (V1_01, V1_03, V2_02) in
the EuRoC Dataset with their values on each axis.

Results

77/92

4.5 Gazebo Realistic Vineyard Canopy

The RP used in Gazebo is described in Section 4.2.2. It is equipped with two stereo cameras,

one in the front and one in the back, that are used for camera pose estimation in the visual

SLAM algorithm, operating at 752𝑥480𝑝𝑥 resolution, and one single RGB camera located at

the right side of the rover used for AprilTag detection, operating at 1920𝑥1080𝑝𝑥 resolution.

The HD resolution for the RGB camera was selected to increase the accuracy of the AprilTag

detection. The two stereo cameras have 12𝑐𝑚 baseline (identical to the ZED2 [91] stereo

camera) and operate at 15𝑓𝑝𝑠. Two environments were created; one simulates the realistic

environment built at CSL, and the second simulates a typical vineyard with many rows of

grapevines. The simulated camera parameters are presented in Table 4-7.

Table 4-7. Simulated Stereo Camera Parameters.

Parameter Value

𝑓𝑥 263.2786

𝑓𝑦 263.2786

𝑐𝑥 376.5000

𝑐𝑦 240.5000

The ORB parameters used for all the simulation environments are presented in Table 4-8.

Table 4-8. ORB Parameters used in the Simulation Environments.

Parameter Value

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 1000

𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19

𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31

Two experiments were performed with the first simulation environment. The first consisted

of the rover inspecting the vineyard where a brown carton box was added close to the path

that the RP should follow. The box has very few features available to track since its surface is

homogeneous and monochromatic. The goal was to evaluate the algorithms when a

featureless object covers a large part of the FoV of the front camera.

The ORB-SLAM3 failed to estimate the trajectory of the camera in this environment and

ultimately the tracking process was reset as presented in Figure 4-13. In contrast, the

developed algorithm outperformed ORB-SLAM3 and displayed robustness. It continued the

camera pose estimation thanks to the features available through the rear camera. Eventually,

it performed loop closure optimization when the AprilTag was detected at the end of the

inspection process. Loop closure detection further improved the estimation of all previous

poses since at this point the algorithm had the maximum confidence that the same point in the

vineyard was visited in the past.

Results

78/92

Figure 4-13. The first simulation experiment in Gazebo. Dual Cam LC denotes our approach
with loop closure, while Dual Cam NLC denotes our approach without loop

closure. ORB-SLAM3 resets since there are very few features available to track.
Our approach continues thanks to the features available from the rear camera.

During the second experiment, the RP was instructed to follow a longer path, map the

entire vineyard, and arrive at its starting point. The purpose was to test the error accumulation

over time and its effect on the overall accuracy of the developed algorithm. The developed

algorithm achieved cm-level accuracy in this scenario by detecting the AprilTag at the end of

the path and performing loop closure optimization, as presented in Figure 4-14.

Figure 4-14. The second simulation experiment in Gazebo. The developed visual SLAM
algorithm achieves cm-level accuracy.

Results

79/92

4.6 Gazebo Realistic Vineyard

The second simulation environment was created to test the loop detection accuracy of the

bag-of-words approach, on images with high similarity. The robot had to follow a long path in

the vineyard as presented in Figure 4-15 and return to its home position.

Figure 4-15. Followed Path through the simulated Vineyard.

Intentionally, loops were avoided except while returning to the home position where one loop

is completed. In this experiment ORB-SLAM3 detected 3 loop closures, two of them being

incorrect, due to the similarities in the environment, resulting in a highly inaccurate pose

tracking. In contrast, the developed algorithm tracked the path with an impressive cm-level

accuracy and correctly detected the loop closure at the end of the path, where the AprilTag is

located, ultimately resulting in excellent tracking performance. See Figure 4-16.

Figure 4-16. ORB-SLAM3 incorrectly detects two loop closures resulting in inaccurate pose
tracking, while our approach tracks the path accurately and performs loop

closure optimization only when the registered AprilTag is detected at the end of
the trajectory.

Results

80/92

Figure 4-17 and Figure 4-18 present the maps generated by ORB-SLAM3 and DC-

VSLAM. The map generated by ORB-SLAM3 is inaccurate due to incorrect loop detection,

due to the homogeneity of the environment. On the other hand, the map generated by DC-

VSLAM is accurate.

Figure 4-17. ORB-SLAM3 Created Map.

Figure 4-18. DC-VSLAM Created Map.

Results

81/92

Table 4-9 presents the absolute translation RMSE of the developed Visual SLAM Algorithm

on the Simulation Experiments. The results demonstrate the developed algorithm’s

exceptional accuracy.

Table 4-9. Results of the Developed Visual SLAM Algorithm on the Simulation Experiments.

DC-VSLAM

Sequence RMSE

First Simulation Experiment 0.006930

Second Simulation Experiment 0.015403

Vineyard Experiment 0.053063

4.7 CSL Experiment

Additional experiments were conducted on the developed synthetic vineyard at CSL. The RP

presented in Section 4.4.2 was utilized for this set of experiments. It was equipped with (a)

two ZED2 cameras (front and rear) with ~12𝑐𝑚 baseline operating at 640𝑥360@15𝑓𝑝𝑠

resolution and (b) a Creative Webcam [92] operating at 1920𝑥1080 resolution attached at the

right side of the rover used for AprilTag detection. To acquire the ground truth position of the

rover a camera was fixed to the ceiling of the room and an AprilTag was placed on the top

cover of the rover. With this setup the camera located at the ceiling tracked the top AprilTag

and published its pose in a ROS topic. Again, a brown carton box was placed in the middle of

the row to evaluate the algorithms when a featureless object covers a large part of the FoV of

the front camera. The stereo camera parameters for the front and rear cameras are presented

in Table 4-10 & Table 4-11, respectively.

Table 4-10. Front ZED2 Stereo Camera Parameters.

Parameter Value

𝑓𝑥 261.7559
𝑓𝑦 261.7559

𝑐𝑥 323.5115
𝑐𝑦 180.4974

Table 4-11. Back ZED2 Stereo Camera Parameters.

Parameter Value

𝑓𝑥 262.9667
𝑓𝑦 262.9667

𝑐𝑥 322.1598
𝑐𝑦 186.5257

The ORB parameters used for the CSL experiment are presented in Table 4-12.

Table 4-12. ORB Parameters used in the CSL Experiment.

Parameter Value

𝑛𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 1000
𝑛𝐿𝑒𝑣𝑒𝑙𝑠 8

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 1.2

𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 19

𝑚𝑎𝑥𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 20

𝑚𝑖𝑛𝐹𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ 7

𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 31

Results

82/92

As presented in Figure 4-19, ORB-SLAM3 fails to find and track features and resets, whereas

the developed algorithm demonstrates robustness and estimates correctly the camera pose

thanks to the features available through the rear camera.

Figure 4-19. Feature tracking, (a) When the front camera is covered by a featureless object the
algorithm continues tracking the available features from the second camera, (b)
ORB-SLAM3 resets when a featureless object covers most of the camera's FoV.

 In Figure 4-20, the trajectory estimation of the developed algorithm and the resetting point

of ORB-SLAM3 are presented. The grapevines are not shown because they are located at

𝑥 = −1, 𝑥 = 1 and the rover moves in the middle. The developed visual SLAM algorithm

continues the camera pose estimation without losing accuracy and performs global BA when

the Apriltag is detected for the second time for further optimization of the camera trajectory.

Figure 4-20. Experiment at the synthetic vineyard at CSL. ORB-SLAM3 resets since there are
very few features available to track. The developed algorithm continues thanks to

the features available from the rear camera.

Results

83/92

4.8 Timings

The execution time of each process is an important part to ensure that the developed algorithm

is suitable for a real time application. The processing times for each operation were calculated

as an average of five runs and are presented in Table 4-13. While the Single stereo camera

operation extracts features only from the left and right images, the processing time required

for feature extraction is comparable to that of the dual stereo camera operation. This is

because the feature extraction process for each stereo camera is separated into different

threads. The processing times for the dual camera setup are improved by separating every

process for each camera into different threads (the processes that can be completed

separately).

Table 4-13. Processing Times of the Developed Algorithm in Different Datasets.

 Single Camera

Operation

Single Camera

Operation

Dual Camera Operation

Dataset EuRoC KITTI CSL Experiment

Resolution 752𝑥480 1226𝑥370 640𝑥360

Camera FPS 20𝐻𝑧 10𝐻𝑧 15𝐻𝑧

Features 1000 2000 1000

Tracking Thread

Feature Extraction 16.6344𝑚𝑠 22.4063𝑚𝑠 27.5005𝑚𝑠

Stereo Matching 4.43852𝑚𝑠 8.67086𝑚𝑠 1.18557𝑚𝑠

Predict Position 0.1087474𝑚𝑠 0.1577892𝑚𝑠 1.0875𝑚𝑠

Match Features 0.238904𝑚𝑠 0.49884𝑚𝑠 0.776784𝑚𝑠

Estimate Pose 3.30832𝑚𝑠 5.3741𝑚𝑠 6.12086𝑚𝑠

Insert Keyframe 0.29586𝑚𝑠 0.655361𝑚𝑠 0.0675693𝑚𝑠

Remove Outliers 0.0179947𝑚𝑠 0.0318811𝑚𝑠 0.0117192𝑚𝑠

Total 𝟐𝟓. 𝟏𝟑𝟔𝟑𝟐𝟐𝟔𝒎𝒔 𝟑𝟕, 𝟕𝟗𝟓𝟏𝟑𝟏𝟑𝒎𝒔 𝟑𝟔. 𝟕𝟓𝟎𝟓𝟎𝟐𝟓𝒎𝒔

Local Mapping Thread

New Mappoints 8.24918𝑚𝑠 10.6435𝑚𝑠 9.58088𝑚𝑠

Local BA 103.721𝑚𝑠 165.579𝑚𝑠 321.473𝑚𝑠

Total 𝟏𝟏𝟏, 𝟗𝟕𝟎𝟏𝟖𝒎𝒔 𝟏𝟕𝟔, 𝟐𝟐𝟐𝟓𝒎𝒔 𝟑𝟑𝟏, 𝟎𝟓𝟑𝟖𝟖𝒎𝒔

Loop Closing Thread

Global BA - - 1138.63𝑚𝑠

In the ORB-SLAM3 paper [7] the only processing times provided are for the EuRoC dataset

and they are presented in Table 4-14.

Results

84/92

Table 4-14. Processing Times of ORB-SLAM3 in the EuRoC Dataset [7].

Dataset EuRoC

Resolution 752𝑥480

Camera FPS 20𝐻𝑧

Features 1200

Tracking Thread

Feature Extraction 15.68𝑚𝑠

Stereo Matching 3.35𝑚𝑠

Predict Position 2.69𝑚𝑠

Match Features + Estimate Pose 6.31𝑚𝑠

Insert Keyframe 0.12𝑚𝑠

Total 𝟐𝟓. 𝟏𝟑𝟔𝟑𝟐𝟐𝟔𝒎𝒔

Local Mapping Thread

Insert KF 8.03𝑚𝑠

Remove Mappoints 0.32𝑚𝑠

Add new Mappoints 18.23𝑚𝑠

Local BA 134.60𝑚𝑠

Remove KF 5.49𝑚𝑠

Total 𝟏𝟓𝟖. 𝟖𝟒𝒎𝒔

Global BA -

As is evident, the developed algorithm demonstrates comparable performance to the ORB-

SLAM3 in terms of processing times in the EuRoC Dataset. The average processing time per

frame is lower than the camera’s FPS, ensuring real time operation capabilities. Even during

dual camera operation, while there is a slight increase in processing time, it remains below

the camera's FPS, maintaining real-time functionality.

Conclusion And Future Work

85/92

5 Conclusion And Future Work

5.1 Conclusion

Visual Simultaneous Localization and Mapping (SLAM) is a well-researched field in robotics

and computer vision that involves the mapping of an unknown environment while

simultaneously localizing the robot within it using visual sensors. Over the years, various

approaches have been developed to address this challenge and provide an accurate way of

navigating and mapping an unknown environment. However, many of these approaches suffer

from limitations such as featureless objects covering the field of view of the cameras, or

incorrect loop detections, due to the homogeneity of the environment. This thesis aims to

address these limitations by utilizing a dual stereo camera setup and a new and robust way

of detecting loop closures. The setup and tuning of the algorithm are focused on vineyard rows

that allow loop detection with apriltags, other environments may have different requirements.

The developed algorithm achieves impressive results on well-known datasets as well as on

simulated and real-world environments.

With a dual camera setup, the camera pose can be estimated by utilizing the features

from both stereo cameras, continuing the correct pose estimation where the single stereo

camera setup may fail. Additionally, the second stereo camera assists in the mapping of the

environment, providing a more detailed and accurate map, as it provides an additional

perspective.

Another key aspect of the developed algorithm is the loop closure detection. Loop

closures are crucial for reducing the error accumulation in the visual SLAM algorithm over

time, and for producing consistent and accurate maps. In this thesis, a new and robust way of

detecting loop closures using Apriltags was developed. By utilizing Apriltags for loop closure

detection, the developed algorithm can detect loop closures accurately and efficiently, even in

homogeneous environments where other state-of-the-art approaches may fail.

To evaluate the performance of the developed single stereo camera algorithm, the KITTI

and EuRoC datasets were used, which are widely used in the visual SLAM community. The

results show that the developed single stereo camera algorithm achieves impressive

accuracy, even when tested on challenging datasets that contain images with rapid camera

movement and difficult lighting conditions.

To test the algorithm’s performance, on the dual stereo camera setup with the Apriltag

loop closure detection, custom datasets were created, in simulation and in real-world

scenarios. The results show that the developed algorithm shows impressive accuracy in all

experiments and outperforms ORB-SLAM3 in some scenarios, i.e.: when the cameras field of

view is partially obscured or when the bag-of-words approaches incorrectly detect loops due

to the similarities in the environment. The developed algorithm is also tested and can be used

on-line at 15 FPS with resolution 640𝑥360 on the dual camera setup.

In conclusion, the developed algorithm addresses core limitations of visual SLAM and

shows robustness in a variety of challenging environments. However, there is always room

for further research and development. Future work can focus on several directions to improve

the accuracy, robustness, and efficiency of the developed algorithm.

Conclusion And Future Work

86/92

5.2 Future Work

The first possible extension of this thesis is the integration of additional sensors such as an

inertial measurement unit (IMU). IMUs operate at a higher frequency than visual sensors and

can provide pose information faster, and therefore, improve the estimation. IMUs can

additionally be employed for a better prediction of the next camera pose, making feature

tracking more accurate.

To improve camera pose estimation and mapping of the environment, another potential

area of future research could be scaling the dual camera setup to include more stereo

cameras. With an increased number of stereo cameras, the FoV is increased, providing more

features to track and as a result the pose estimation accuracy and the mapping of the

environment could be greatly improved. However, this will come at the cost of increased

computational complexity, requiring more processing power and the need for better computer

hardware.

To optimize this visual SLAM algorithm for its primary use case, which is the inspection

of vineyards, the loop closure detection method can be improved further. One possible

enhancement is to increase the number of Apriltags being detected. For instance, an Apriltag

can be placed at the start of each row of grapevines. As the robot traverses each row, it can

perform a loop closure at the end, leading to a more accurate map and camera pose

estimation. Additionally, a grape inspection method can be developed and integrated to the

visual SLAM algorithm. While the robot traverses the vineyard, the grape inspection algorithm

can help monitor the condition of the grapes with precision and prevent diseases from

spreading, if one has been detected. This improvement would make the algorithm more

suitable for vineyard inspection and similar applications.

Another potential enhancement is the integration of a path planner to operate at the same

time with the visual SLAM algorithm. This path planner can receive information about the

environment, such as the presence of obstacles or the terrain of the vineyard, from the visual

SLAM algorithm and plan the path of the robot according to the current task being performed.

Furthermore, integrating a GPS sensor can provide additional location. By combining the

GPS data with the visual SLAM algorithm's estimates, the robot's pose can be estimated more

accurately, improving the robot's ability to navigate through the environment.

Last but not least, the processing times should be profiled and optimized to ensure that

the visual SLAM algorithm can operate optimally. This would enable the algorithm to perform

efficiently on hardware with reduced capabilities compared to the ones tested and expand the

potential applications of the algorithm to various platforms.

As I conclude my thesis, I am excited about the endless possibilities for the future of visual

SLAM and autonomous robotics. While there are many unknowns, I hope that the work I have

done will contribute to the advancement of the field, and I will look with great interest to see

what the future holds.

References

87/92

6 References
[1] G. Bledt, M. Powell, B. Katz, J. Carlo, P. Wensing, and S. Kim, “MIT Cheetah 3: Design and Control

of a Robust, Dynamic Quadruped Robot,” Oct. 2018. doi: 10.1109/IROS.2018.8593885.
[2] H.-W. Park, P. M. Wensing, and S. Kim, “Jumping over obstacles with MIT Cheetah 2,” Robot.

Auton. Syst., vol. 136, p. 103703, Feb. 2021, doi: 10.1016/j.robot.2020.103703.
[3] “Spot® - The Agile Mobile Robot,” Boston Dynamics.

https://www.bostondynamics.com/products/spot (accessed Apr. 05, 2023).
[4] “ANYmal X: Ex-Proof Inspection Robot,” ANYbotics. https://www.anybotics.com/anymal-ex-proof-

inspection-robot/ (accessed Apr. 07, 2023).
[5] “Husky UGV - Outdoor Field Research Robot by Clearpath,” Clearpath Robotics.

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/ (accessed Apr. 07, 2023).
[6] “DJI Mavic 3 - Imaging Above Everything,” DJI. https://www.dji.com/gr/photo (accessed Apr. 07,

2023).
[7] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM3: An

Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM,” IEEE Trans.
Robot., vol. 37, no. 6, pp. 1874–1890, Dec. 2021, doi: 10.1109/TRO.2021.3075644.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Versatile and Accurate Monocular
SLAM System,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1147–1163, Oct. 2015, doi:
10.1109/TRO.2015.2463671.

[9] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an Open-Source SLAM System for Monocular,
Stereo and RGB-D Cameras,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1255–1262, Oct. 2017, doi:
10.1109/TRO.2017.2705103.

[10] D. Galvez-López and J. D. Tardos, “Bags of Binary Words for Fast Place Recognition in Image
Sequences,” IEEE Trans. Robot., vol. 28, no. 5, pp. 1188–1197, Oct. 2012, doi:
10.1109/TRO.2012.2197158.

[11] T. Qin and S. Shen, “Online Temporal Calibration for Monocular Visual-Inertial Systems,” arXiv.org,
Aug. 02, 2018. https://arxiv.org/abs/1808.00692v1 (accessed Apr. 08, 2023).

[12] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State
Estimator,” IEEE Trans. Robot., vol. 34, no. 4, pp. 1004–1020, Aug. 2018, doi:
10.1109/TRO.2018.2853729.

[13] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,” in 2007 6th
IEEE and ACM International Symposium on Mixed and Augmented Reality, Nov. 2007, pp. 225–
234. doi: 10.1109/ISMAR.2007.4538852.

[14] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an Open-Source Library for Real-Time
Metric-Semantic Localization and Mapping.” arXiv, Mar. 03, 2020. doi: 10.48550/arXiv.1910.02490.

[15] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry,” in
2014 IEEE International Conference on Robotics and Automation (ICRA), May 2014, pp. 15–22.
doi: 10.1109/ICRA.2014.6906584.

[16] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO: Semidirect Visual
Odometry for Monocular and Multicamera Systems,” IEEE Trans. Robot., vol. 33, no. 2, pp. 249–
265, Apr. 2017, doi: 10.1109/TRO.2016.2623335.

[17] J. Kuo, M. Muglikar, Z. Zhang, and D. Scaramuzza, “Redesigning SLAM for Arbitrary Multi-Camera
Systems,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), May 2020,
pp. 2116–2122. doi: 10.1109/ICRA40945.2020.9197553.

[18] “Stereo camera,” Wikipedia. Mar. 23, 2023. Accessed: Apr. 05, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Stereo_camera&oldid=1146154963

[19] “Pinhole camera,” Wikipedia. May 16, 2023. Accessed: May 17, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Pinhole_camera&oldid=1155128872

[20] “Fisheye lens,” Wikipedia. Apr. 08, 2023. Accessed: May 17, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Fisheye_lens&oldid=1148832126

[21] “Image Undistortion - MATLAB & Simulink.” https://www.mathworks.com/help/visionhdl/ug/image-
undistort.html (accessed Jun. 06, 2023).

[22] “OpenCV: Camera Calibration.” https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
(accessed Jun. 06, 2023).

[23] W. Burger, Zhang’s Camera Calibration Algorithm: In-Depth Tutorial and Implementation. 2016.
doi: 10.13140/RG.2.1.1166.1688/1.

[24] “Camera Calibration Toolbox for Matlab.” http://robots.stanford.edu/cs223b04/JeanYvesCalib/
(accessed May 17, 2023).

References

88/92

[25] “What Is Camera Calibration? - MATLAB & Simulink.”
https://www.mathworks.com/help/vision/ug/camera-calibration.html (accessed Jul. 23, 2023).

[26] “Image rectification,” Wikipedia. Mar. 10, 2023. Accessed: Apr. 11, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Image_rectification&oldid=1143835516

[27] “Lab: Stereo.” https://cs.brown.edu/courses/cs129/labs/lab_stereolab/ (accessed Jun. 06, 2023).
[28] “Epipolar geometry,” Wikipedia. Dec. 04, 2022. Accessed: Apr. 11, 2023. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Epipolar_geometry&oldid=1125486185
[29] H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching and mutual

information,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), Jun. 2005, pp. 807–814 vol. 2. doi: 10.1109/CVPR.2005.56.

[30] A. Garg, “Stereo Vision: Depth Estimation between object and camera,” Analytics Vidhya, Feb. 25,
2022. https://medium.com/analytics-vidhya/distance-estimation-cf2f2fd709d8 (accessed Jul. 23,
2023).

[31] “OpenCV: Depth Map from Stereo Images.”
https://docs.opencv.org/4.x/dd/d53/tutorial_py_depthmap.html (accessed Jun. 06, 2023).

[32] Ashish, “Understanding Edge Detection (Sobel Operator),” Medium, Sep. 26, 2018.
https://medium.datadriveninvestor.com/understanding-edge-detection-sobel-operator-
2aada303b900 (accessed Jun. 06, 2023).

[33] T. R. Society, “Blob Detection,” COMPUTER VISION & ROBOTICS, Oct. 15, 2019.
https://medium.com/image-processing-in-robotics/blob-detection-309226a3ea5b (accessed Jun.
06, 2023).

[34] “How to accomplish corner detection in C#,” Ozeki Camera SDK. https://camera-sdk.com/p_6756-
how-to-accomplish-corner-detection-in-c-sharp.html (accessed Jun. 06, 2023).

[35] D. Tyagi, “Introduction to Harris Corner Detector,” Data Breach, Apr. 07, 2020.
https://medium.com/data-breach/introduction-to-harris-corner-detector-32a88850b3f6 (accessed
Jun. 06, 2023).

[36] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh
IEEE International Conference on Computer Vision, Sep. 1999, pp. 1150–1157 vol.2. doi:
10.1109/ICCV.1999.790410.

[37] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in Computer Vision
– ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds., in Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2006, pp. 404–417. doi: 10.1007/11744023_32.

[38] “OpenCV: Introduction to SURF (Speeded-Up Robust Features).”
https://docs.opencv.org/3.4/df/dd2/tutorial_py_surf_intro.html (accessed Apr. 13, 2023).

[39] “Midpoint circle algorithm,” Wikipedia. Apr. 23, 2023. Accessed: Jun. 17, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Midpoint_circle_algorithm&oldid=1151318349

[40] “Features from accelerated segment test,” Wikipedia. Nov. 12, 2022. Accessed: Jun. 06, 2023.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Features_from_accelerated_segment_test&oldid=1121
443700

[41] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner Detection,” in Computer
Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds., in Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2006, pp. 430–443. doi: 10.1007/11744023_34.

[42] “OpenCV: BRIEF (Binary Robust Independent Elementary Features).”
https://docs.opencv.org/3.4/dc/d7d/tutorial_py_brief.html (accessed May 29, 2023).

[43] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or
SURF,” in 2011 International Conference on Computer Vision, Nov. 2011, pp. 2564–2571. doi:
10.1109/ICCV.2011.6126544.

[44] R. Pillay <ruven@users.sourceforge.io>, “IIPImage » Images,” IIPImage.
https://iipimage.sourceforge.io/documentation/images (accessed Jun. 06, 2023).

[45] D. Tyagi, “Introduction to ORB (Oriented FAST and Rotated BRIEF),” Data Breach, Apr. 07, 2020.
https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf
(accessed Jul. 23, 2023).

[46] A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, J. Ascenso, and R. Cilla, “Evaluation of low-
complexity visual feature detectors and descriptors,” presented at the 2013 18th International
Conference on Digital Signal Processing, DSP 2013, Jul. 2013, pp. 1–7. doi:
10.1109/ICDSP.2013.6622757.

[47] “Detect SURF features - MATLAB detectSURFFeatures.”
https://www.mathworks.com/help/vision/ref/detectsurffeatures.html (accessed Jun. 06, 2023).

References

89/92

[48] “OpenCV: cv::BFMatcher Class Reference.”
https://docs.opencv.org/4.x/d3/da1/classcv_1_1BFMatcher.html (accessed Apr. 13, 2023).

[49] “OpenCV: Feature Matching.” https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
(accessed Jun. 06, 2023).

[50] “OpenCV: cv::FlannBasedMatcher Class Reference.”
https://docs.opencv.org/3.4/dc/de2/classcv_1_1FlannBasedMatcher.html (accessed Apr. 13,
2023).

[51] “OpenCV: Feature Matching with FLANN.”
https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_flann_matcher.html (accessed Jun. 06, 2023).

[52] “COMPSCI773S1T: Vision Guided Control.”
https://www.cs.auckland.ac.nz/courses/compsci773s1t/lectures/773-GG/topCS773.htm (accessed
Jun. 06, 2023).

[53] “Reprojection error,” Wikipedia. Mar. 28, 2023. Accessed: Jun. 06, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Reprojection_error&oldid=1146983350

[54] “The Reprojection Error?,” camcalib, Apr. 11, 2022. https://www.camcalib.io/post/what-is-the-
reprojection-error (accessed Jun. 06, 2023).

[55] “OpenCV: Perspective-n-Point (PnP) pose computation.”
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html (accessed Apr. 14, 2023).

[56] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle Adjustment — A Modern
Synthesis,” in Vision Algorithms: Theory and Practice, B. Triggs, A. Zisserman, and R. Szeliski,
Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, pp. 298–372. doi:
10.1007/3-540-44480-7_21.

[57] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and theory,” in Numerical
Analysis, G. A. Watson, Ed., in Lecture Notes in Mathematics. Berlin, Heidelberg: Springer, 1978,
pp. 105–116. doi: 10.1007/BFb0067700.

[58] F. Zhang, Ed., The Schur Complement and Its Applications, vol. 4. in Numerical Methods and
Algorithms, vol. 4. New York: Springer-Verlag, 2005. doi: 10.1007/b105056.

[59] R. Azzam, T. Taha, S. Huang, and Y. Zweiri, “Feature-based visual simultaneous localization and
mapping: a survey,” SN Appl. Sci., vol. 2, Feb. 2020, doi: 10.1007/s42452-020-2001-3.

[60] “Bundle adjustment,” Wikipedia. Apr. 17, 2023. Accessed: Jun. 17, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Bundle_adjustment&oldid=1150309618

[61] L. Sheng, D. Xu, W. Ouyang, and X. Wang, “Unsupervised Collaborative Learning of Keyframe
Detection and Visual Odometry Towards Monocular Deep SLAM,” Oct. 2019, pp. 4301–4310. doi:
10.1109/ICCV.2019.00440.

[62] V. Behret and F. Palme, “Examination of Real World Bias on the Localization Accuracy of Indirect
SLAM,” 2019. doi: 10.13140/RG.2.2.13828.27528.

[63] “Simple bag-of-words loop closure for visual SLAM.” https://nicolovaligi.com/articles/bag-of-words-
loop-closure-visual-slam/ (accessed Jun. 06, 2023).

[64] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE International
Conference on Robotics and Automation, May 2011, pp. 3400–3407. doi:
10.1109/ICRA.2011.5979561.

[65] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 4193–4198.
doi: 10.1109/IROS.2016.7759617.

[66] M. Krogius, A. Haggenmiller, and E. Olson, “Flexible Layouts for Fiducial Tags,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Nov. 2019, pp. 1898–1903.
doi: 10.1109/IROS40897.2019.8967787.

[67] “AprilTag 3.” AprilRobotics, May 29, 2023. Accessed: May 29, 2023. [Online]. Available:
https://github.com/AprilRobotics/apriltag

[68] “AprilTag.” https://april.eecs.umich.edu/software/apriltag (accessed Jun. 06, 2023).
[69] “apriltag_ros.” AprilRobotics, Apr. 18, 2023. Accessed: Apr. 20, 2023. [Online]. Available:

https://github.com/AprilRobotics/apriltag_ros
[70] fspindle, “AprilTag integration – ViSP.” https://visp.inria.fr/apriltag-integration/ (accessed Jun. 06,

2023).
[71] S. Agarwal, K. Mierle, and The Ceres Solver Team, “Ceres Solver.” Mar. 2022. Accessed: Apr. 16,

2023. [Online]. Available: https://github.com/ceres-solver/ceres-solver
[72] “vSLAM.drawio - draw.io.” https://app.diagrams.net/ (accessed Jun. 19, 2023).
[73] “ROS: Home.” https://www.ros.org/ (accessed Apr. 20, 2023).

References

90/92

[74] A. Anwar, “Part 3: Create Your First ROS Publisher and Subscriber Nodes,” The Startup, Feb. 15,
2021. https://medium.com/swlh/part-3-create-your-first-ros-publisher-and-subscriber-nodes-
2e833dea7598 (accessed Jun. 17, 2023).

[75] cetus, “Event Publishing and Subscribing with ActiveMQ and M2MQTT,” Ketek, Jan. 13, 2015.
https://www.ketek.ro/2015/01/13/event-publishing-and-subscribing-with-activemq-m2mqtt/
(accessed Jun. 06, 2023).

[76] “rosbag - ROS Wiki.” http://wiki.ros.org/rosbag (accessed Apr. 20, 2023).
[77] “OpenCV: cv::ORB Class Reference.” https://docs.opencv.org/3.4/db/d95/classcv_1_1ORB.html

(accessed Apr. 16, 2023).
[78] “OpenCV: cv::FastFeatureDetector Class Reference.”

https://docs.opencv.org/3.4/df/d74/classcv_1_1FastFeatureDetector.html (accessed Apr. 16,
2023).

[79] O. Bailo, F. Rameau, K. Joo, J. Park, O. Bogdan, and I. S. Kweon, “Efficient adaptive non-maximal
suppression algorithms for homogeneous spatial keypoint distribution,” Pattern Recognit. Lett., vol.
106, pp. 53–60, Apr. 2018, doi: 10.1016/j.patrec.2018.02.020.

[80] “Euclidean group,” Wikipedia. Sep. 21, 2022. Accessed: Apr. 19, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Euclidean_group&oldid=1111504010

[81] L. M. Paz, P. PiniÉs, J. D. TardÓs, and J. Neira, “Large-Scale 6-DOF SLAM With Stereo-in-Hand,”
IEEE Trans. Robot., vol. 24, no. 5, pp. 946–957, Oct. 2008, doi: 10.1109/TRO.2008.2004637.

[82] P. J. Huber, “Robust Estimation of a Location Parameter,” Ann. Math. Stat., vol. 35, no. 1, pp. 73–
101, Mar. 1964, doi: 10.1214/aoms/1177703732.

[83] S. Lovegrove, “What is Pangolin.” Apr. 20, 2023. Accessed: Apr. 20, 2023. [Online]. Available:
https://github.com/stevenlovegrove/Pangolin

[84] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-robot
simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), Sep. 2004, pp. 2149–2154 vol.3. doi: 10.1109/IROS.2004.1389727.

[85] “Vineyard 3D Models for Download | TurboSquid.” https://www.turbosquid.com/3d-model/vineyard
(accessed Apr. 22, 2023).

[86] “4 in. HD Mecanum Wheels,” Feb. 18, 2022. https://www.andymark.com/products/4-in-hd-
mecanum-wheel-set-options (accessed Apr. 21, 2023).

[87] “Pololu - RoboClaw 2x30A Motor Controller (V5E).” https://www.pololu.com/product/3286
(accessed Apr. 21, 2023).

[88] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 3061–3070. doi:
10.1109/CVPR.2015.7298925.

[89] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: the KITTI dataset,” Int. J.
Robot. Res., vol. 32, pp. 1231–1237, Sep. 2013, doi: 10.1177/0278364913491297.

[90] M. Burri et al., “The EuRoC micro aerial vehicle datasets,” Int. J. Robot. Res., vol. 35, Jan. 2016,
doi: 10.1177/0278364915620033.

[91] “ZED 2 - AI Stereo Camera.” https://www.stereolabs.com/zed-2/ (accessed Apr. 22, 2023).
[92] “Creative Live! Cam Sync 1080p,” Creative Store - Greece.

https://gr.creative.com/p/peripherals/creative-live-cam-sync-1080p (accessed Apr. 22, 2023).

Appendix A.

91/92

Appendix A.
DC-VSLAM is a multicamera visual SLAM designed for vineyard inspection. To address the
challenge of homogeneous environments, loop closures are detected using AprilTags.
DC-VSLAM has been tested with OpenCV 4.2.0, Eigen 3.3.7 on Ubuntu 20.04 with ROS
Noetic.

Installation

DC-VSLAM has many dependencies, and all can be downloaded using a script provided in

this repo. ROS Noetic is needed for the installation.

We recommend the users to create an empty workspace. Clone the package on the catkin

workspace and run the build script. Python 3 has to be set as default for Pangolin installation.

cd ${WORKSPACE_PATH}/src

git clone https://ChristosKokas@bitbucket.org/csl_legged/dc-vslam-

case2023.git

cd dc-vslam-case2023

chmod +x build.sh

./build.sh

Quick Start

Several launch files are provided. The RT denotes real-time and the AT denotes the use of

AprilTag Loop Closure. Change the launch files to match the config file name and the topic of

the image msgs for AprilTag detection.

DC-VSLAM can run both with images and with rosbags. Images need to be provided as

presented below (the bullets are folders):

• Dc-vslam-case2023

• Images

o Dataset_name

o Left

▪ 000000.jpg(.png)

▪ 000001.jpg(.png)

▪ …

o Right

▪ 000000.jpg(.png)

▪ 000001.jpg(.png)

▪ …

o leftBack

▪ 000000.jpg(.png)

▪ 000001.jpg(.png)

▪ …

o rightBack

▪ 000000.jpg(.png)

▪ 000001.jpg(.png)

▪ …

And the full path to the dataset folder has to be provided in the config file.

Appendix A.

92/92

Replaying Recorded Experiments

Rosbags for each experiment can be downloaded from https://centralntuagr-

my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-

IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63

Version 1 of this developed algorithm can be found at the CSL team bitbucket repository

at https://bitbucket.org/csl_legged/dc-vslam-case2023/commits/ with version v1.0.

https://centralntuagr-my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63
https://centralntuagr-my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63
https://centralntuagr-my.sharepoint.com/:f:/g/personal/amast_central_ntua_gr/Ehrrt-IUFB5DsIH4nJnh6tUBfJvtzW-FmX1IaixmhvRuSg?e=G41m63
https://bitbucket.org/csl_legged/dc-vslam-case2023/commits/

	Περίληψη
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Notation
	1 Introduction
	1.1 Motivation
	1.2 Literature Review: Mobile Robots
	1.2.1 MIT Cheetah 3
	1.2.2 Boston Dynamics Spot
	1.2.3 Anymal X
	1.2.4 Husky Rover
	1.2.5 DJI Mavic 3

	1.3 Literature Review: vSLAM Algorithms
	1.3.1 ORB-SLAM3
	1.3.2 VINS-Fusion
	1.3.3 PTAM
	1.3.4 Kimera VIO
	1.3.5 SVO
	1.3.6 SVO 2.0
	1.3.7 SLAM for Arbitrary Multi-Camera Systems

	1.4 Thesis Structure

	2 Fundamentals of a Visual SLAM Algorithm
	2.1 Stereo Camera
	2.1.1 Image Distortion
	2.1.2 Camera Calibration
	2.1.3 Image Rectification
	2.1.4 Epipolar Geometry
	2.1.5 Disparity

	2.2 Features
	2.2.1 Feature Extraction
	Harris Corner Detector
	Scale-Invariant Feature Transform (SIFT) [36]
	Speeded-Up Robust Features (SURF) [37]
	Features from Accelerated Segment Test (FAST)
	Binary Robust Independent Elementary Feature (BRIEF)
	Oriented FAST and Rotated BRIEF (ORB) [43]
	Comparison of the Different Feature Extraction Methods

	2.2.2 Matching
	Brute-Force (BF) Matcher [48]
	Fast Library for Approximate Nearest Neighbors (FLANN) Based Matcher [50].
	Match Filtering
	Stereo Matching

	2.3 Camera Pose Estimation
	2.4 Bundle Adjustment (BA)
	2.4.1 Motion Only BA
	2.4.2 Keyframes
	2.4.3 Local BA
	2.4.4 Global BA

	2.5 Loop Closure
	2.6 AprilTags

	3 Implementation of the Visual SLAM Algorithm
	3.1 Visual SLAM Pipeline
	3.2 Application on mobile robots using ROS
	3.3 Initialization
	3.3.1 Stereo Matching
	Epipolar Constraint
	Sliding Window Search with Parabola Fitting
	Match Filtering

	3.3.2 Feature Extraction Process
	3.3.3 Mappoints
	3.3.4 Calculation of the Mappoint Descriptor

	3.4 Tracking Thread
	3.4.1 Mappoints Position Prediction
	3.4.2 Match by Projection
	3.4.3 Camera Pose Estimation Using Motion-Only BA
	3.4.4 Re-Estimation of Camera Pose
	3.4.5 Deciding on the keyframe selection

	3.5 Local Mapping Thread
	3.5.1 Matching Between Keyframes
	3.5.2 Local BA
	3.5.3 Pose Update

	3.6 Loop Closure Thread
	3.6.1 First AprilTag Detection
	3.6.2 Second Apriltag Detection
	3.6.3 Loop Closure Optimization

	3.7 Visual Thread

	4 Results
	4.1 Experimental Setup in Simulation
	4.2 Experimental Setup at CSL
	4.2.1 Realistic Grapevine Canopy
	4.2.2 CSL’s Rover

	4.3 KITTI Dataset
	4.4 EuRoC Dataset
	4.5 Gazebo Realistic Vineyard Canopy
	4.6 Gazebo Realistic Vineyard
	4.7 CSL Experiment
	4.8 Timings

	5 Conclusion And Future Work
	5.1 Conclusion
	5.2 Future Work

	6 References
	Appendix A.
	Installation
	Quick Start
	Replaying Recorded Experiments

