4
2]
Y
&

5

HOEV S
El

npoMm
Il
Avp$PoPpo

N

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
D1vISION OF SIGNALS, CONTROL AND ROBOTICS

Pre-training for Video Action Recognition with
Automatically Generated Datasets

Diploma Thesis
by
Davyd Svyezhentsev

Supervisor: Petros Maragos
Professor NTUA

Co-supervisor George Retsinas
Postdoctoral Researcher NTUA

COMPUTER VISION, SPEECH COMMUNICATION AND SIGNAL PROCESSING GROUP

Athens, July 2023






4
2]
Y
&

5

HOEV S
El

npoMm
Il
Avp$PoPpo

N

EoNIKO METZOBIO [IOATTEXNEIO
Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON Y IIOAOTISTON
TOMEAY, XHMATON, EAETXOT KAI POMIIOTIKHY

IToo-exnatldsuon yia Avayweiorn Apdong o Bivteo
ne 2uvietixd 2 0VoAo AsSOUEVLY

Armhopotixt Eoyooto

Nrofivt Epélevtoep

EnArénwy: ITétpoc Moparyxdc
Kodnynthc E.M.II

YuvemPBArenwy Twpyog Petowde
Mertadidoxtopog Egeuvntric E.MLII

EPrAsTHPIO OPASHY TIIOAOTISTON, EMIKOINONIAY, AOTOT KAI ENEZEPTASIAY YHMATON

Adrva, ToOhog 2023






A
™
HOEVS .
Bl

VP PoPpos

NnpomMm
Il
]

U

EoNIKO METZOBIO TTOAYTEXNEIO
Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON Y TIIOAOTISTON
TOMEAY, XHMATON, EAETXOT KAI POMIIOTIKHY

IToo-exnaldevon vy Avayweion Apdong o Bivteo
ue 2ZuvieTixd 2 0VoAd AsOOUEVLY

Awmiopatixn Epyaoto
TOL
Nrofivt EBélevtoe

EnArenwy: [Tétpoc Maparyxoc
Kodnynthc E.M.II

YuvenPiénwyv  Twpeyoc Petowdc
Mertadidaxtopog Epeuvntric E.MLII

Evyxplinxe and tnv xdtwit tpwwehn emtpony| tny 127 Touiiou 2023.

ITetpoc Moaparyxog Adavdctoc Povroyidvvng ['epdoruoc Hotouidvog
Kodnynmic EM.IT - Avaminewtic Kadnynmic ELMIL Avaminpotic Kodnyntrc Hov/uo Oecooliog

EPrAxTHPIO OPASHY TIIOAOTISTON, EIMIKOINONIAY, AOTOT KAI ENEZEPTASIAY, Y HMATON

Adrva, ToOhog 2023



NzofBivt YpBelevtoef
Awmiwpatolyog Hiextpordyog Mnyoavindg xar Mnyovixog Troroyiotev E.M.IL

IIveupater woxtnota @Nwﬁivr Ypélevtoe, 2023. Me empOialn TavTog SXOLOUTOS.

Amaryopeleton 1 avTiypopy), amo¥rixeuo xat Slavour| Tng Tapoloas epyasctag, €€ ohoxAripou
1) TUARATOS AUTAS, YLt EUTopnd oxomod. Emitpéneton 1 avotinmor, amolixeuoT) xal Slavour
YL OXOTO U1 XEEOOOXOTUXO, EXTOUOELTIXAC 1| EQEUVNTIXNG PUOEWS LUTG TNV Tpolndveo
VO OVOUPERETOL 1) TUNYY| TEOEAEUOTC Xou Var Oatneelton To Tapdy ufvupe.  EpwntAuoata mou
apoEoUV TN YPNON NS ERYAOLUC Yo XEPOOOXOTIXG OXOTO TEENEL Vo ameLivovTo TEOg ToV

CLYYQUPE.

Ou amdelc xon Tor CUUTEPACUATO TOU TEPLEYOVTAL GE AUTO TO EYYEAUPO EXPEALOLY TOV CUY-
Yeapéa xon Oev TeENEL var gpunveudel 6Tl avTimpoconnelouy Ti¢ entlonueg Véoel Tou Edvixol
Metoéfou Iloauteyveiou.

Copyright (©Davyd Svyezhentsev, 2023. All rights reserved.

It is prohibited to copy, store and distribute this work, in whole or in part, for commercial
purposes. Reproduction, storage and distribution for a non-profit, educational or research
nature are permitted, provided the source of origin is indicated and the present message
maintained. Questions about the use of the work for profit should be directed to the
author.

The views and conclusions contained in this document are those of the author and should
not be construed as representing the official positions of the National Technical University
of Athens.



Abstract

In recent years, the computer vision community has exhibited growing interest in syn-
thetic data. For the image modality, existing work has proposed learning visual represen-
tations by pre-training with synthetic samples produced by various generative processes
instead of real data. Such an approach is advantageous as it resolves issues associated
with real data: collection and labeling costs, copyright, privacy and human bias. Desir-
able properties of synthetic images have been carefully investigated and as a result the
gap in performance between real and synthetic images has been alleviated significantly.

The present work extends the aforementioned approach to the domain of video and
applies it to the task of action recognition. Due to the addition of the temporal dimen-
sion, this modality is notably more complex than images. As such, employing fractal
geometry and other generative processes, we present methods to automatically produce
large-scale datasets of short synthetic video clips. This approach is applicable for both
supervised and self-supervised learning. To narrow the domain gap, we manually observe
real video samples and identify their key properties such as periodic motion, random back-
ground, camera displacement etc. These properties are then carefully emulated during
pre-training. Through thorough ablations, we determine the properties that strengthen
downstream results and offer general guidelines for pre-training with synthetic videos.
The proposed approach is evaluated on small-scale action recognition datasets HMDB51
and UCF101 as well as four other video benchmarks. Compared to standard Kinetics pre-
training, our reported results come close and are even superior on a portion of benchmarks.

Keywords - Computer Vision, Deep Learning, Convolutional Neural Networks, Ac-
tion Recognition, Synthetic Data, Domain Adaptation, Fractal Geometry

i



il



ITepiAndn

To teheutaior YedVLa, 1 XOWVOTNTA TNG OPUOTS UTOROYIGTMY EYEL EXONADOEL ALEAVOUEVO
evolapépov yior Tor cuvieTind dedopéva. ' eixdve, uTdpyouces epyaoiec TEOTEVAY TNV EX-
UEINoT 0TIV OVATUEUC TACEWY OYL UE TEOYUOTIX OEBOUEVA UAAS UECE TEO-EXTIOUBEVOTC
ue ouvleTind Oelypato Tou TapdyovTon amd Odpopeg YEVETIXEG dtaduaoteg. Mo TéTolx
Tpocéyyion elvan emw@elric xodwe emhlel {nthuata mou oyetilovion UE TEaYHoTIXd Oe-
OOMEVA: XOOTOG GUANOYHC YO ETUOTUOVONG, TVEUUOTIXG OLXOLOUTO, WOLWTIXOTNTO XOL OV-
Yowmvn tpoxatdindn. O emiuuntég WOTNTES TV CLVIETIXOY EXOVKY EYouy diepeuvniet
TEOGEXTIXE X0 WE ATOTEAEGUO TO YAGUA OTNV ATOBOCT) UETOED TEAYHOTIXWY Xl CUVIETIXMY
dedopévwY €yl uetwiel onuovTixd.

H napoloa epyaoia enexteiver tnv mpoavagepieica npocéyyion o opyeio Bivieo xou
™V €Qappolel 0To TEOBANU TNG avayvwplong dpdone. Adyw tng emmpécietng yeovixhc
oldoTaong, autd Tar apyeta elvon capng mo mepithoxa o oyéon e ewodves. g ex ToU-
TOU, YPNOHLOTOLOVTAC YEWUETEIO PEAXTAUA ot GAAEC YEVETIXES OLadixaoies, Topouctdlouue
UEVOBOUC YLl AUTOUTT TR WYT) CUVOAWY BESOUEVMVY UEYAANG XA amd chvTouo GUY-
Vetind Bivieo xhun. H pédodog auth| elvon epopudotun 1600 yia EMBAETOUEVY 6O Xt Lo
auTo-emBAETOPEVY pdinom. T vor yegupoouue To ydouo YETAE) TEOYUATIXWY Xol CUV-
YeTixdy dedopévwy, mpocdioptlouue yeoxivnta Tic Bacxés WBIOTNTES TEoyuaTiX®y Bivieo
OTWE TEPLOOIXY| xivnom), Tuyalo PEVTO, PETATOTLON HAUEPUC XTA. AUTEC OL LOLOTNTEC TPOCO-
HOLOVOVTOL TEOCEXTIXS XAUTE T1) OLAEXELYL TNG TEO-EXTAUOEVOTC UECE ATAWY UETACY NUATIOUDY.
Méoo and dielodind melpduota, TEoodlopllOUUE TIC WBIOTNTEC TOU EVIOYVOUV OTOTEAECUATO
o€ mparypotixd Bivteo xou mpotelvoupe YeEVIXEG 00TYieg Yo Tpo-exTtaldeuoT) U cuVIETING Oe-
douéva. H mpooéyyior| pag atohoyeiton oe oOvoha BESOUEVLV avary Vplong 8pdomg Uixenc
xhipoxac HMDB51 xon UCEF101 xodedxs xou o téooepelc dhheg Bdoeig Bivieo. Ta anoteréo-
Hota o TANoLaCouv apxeTd TNy xodiepwuévn tpo-exnaidevorn ue Kinetics xon pdhiota tnv
UTERTEPOVY OE €val P€POS TWV ECETACTEWY BAoEwY.

Keywords - ‘Opaorn Tnohoyiotwv, Mnyavixr Mddnorn, Xuvehntind Nevpwvind Aix-
Tua, Avayvoplon Apdong, Yuvietind Aedopéva, Domain Adaptation, I'ewpetplo ®odoctan

v






Acknowledgements

I would like to thank Professor Petros Maragos, Postdoctoral Researcher George Retsinas,
my family and my friends.

vi



vil



Euyoeiotieg

Oa fdeha va euyopiotiow Tov xadnynty| x. 1IETpo Mapoyxd, Tov YeTadLdoxTOpInd EQEUVNTY
% T'iwpyo Petowvd, tnv owxoyéveia pou xon Toug @iloug pou.

viii



X



Table of Contents

Abstract

List of Figures
List of Tables

List of Algorithms
Acronyms

1 Extetopévn Ilepiindn ota EAANvIxd

1.1 Ewdveg Ppdetah . . . . oo
L1I1 Ewoywyh . . .
1.1.2 Khlaoowd Iterated Function Systems . . . . . .. .. ... ...
1.1.3  TMogdpetpot IFS . . . . o oo oo
1.1.4 Fractal Flame . . . . . . . .. ... oo

1.2 Yuwlenxd Bivteo . . . . .o
1.2.1  Amaf Hoapeyfory . o o o oo oo
1.2.2  Hoapayovrtonomnuévn HogepBord . . . . . . ... ... o000 L.
1.2.3  Xdopo Metogd Xuvietxov xou Hpoypotixov Bivieo . . . . . L.

1.3 IMewpopotix AZLOROYNON . . . . o o oo
1.3.1 E&etaotéo XOvoho AeBopévewy . . . . ..o oo

1.3.2  Apytextovd) tou Axctbou ..o

1.3.3  Ielpopo 1 - Xdopo Metald Hpoypotixwy xou Luvdetiney Bivteo

1.3.4 Ilepoutépw Ilewpduotor . . o o oo oo oo
L4 Xovoldn ..o
1.5 MeMovuxéc Ilpoextdoeic . . . . . . . ..o oL

ii

xiv

xXviii

XX

. XXXIX



TABLE OF CONTENTS

2 Introduction 1
2.1 Motivation . . . . . . .o 1

2.2 Contributions . . . . . . . .. 2
2.3 Thesis Structure. . . . . . ... 2

3 Background 5
3.1 Machine Learning . . . . . . . . ... )
3.1.1 Types of Machine Learning . . . . . .. ... ... ... ...... 5

3.2 Deep Learning . . . . . . . . .. 7
3.2.1 Introduction . . . . . .. ..o 7

3.22 Concepts . . . . . . 7

3.3 Deep Learning Models . . . . . .. .. oo 11
3.3.1 Feedforward Neural Networks . . . . .. ... ... ... .. .... 11

3.3.2 Recurrent Neural Networks . . . .. .. .. ... .. ... ..... 13

3.3.3 2D Convolutional Neural Networks . . . . . ... .. ... ... .. 16

3.3.4 3D Convolutional Neural Networks . . . . . ... ... ... .... 17

3.4 Transfer Learning . . . . . . . . . . .. 17
3.5 Self-Supervised Learning Frameworks . . . . . . . .. ... ... ... .. 17
3.5.1 SImCLR . . . .. .. 18

3.5.2 MoCoV2 . . . . . 19

3.5.3 BYOL . . . . 19

3.6 Mathematical Background for Iterated Function Systems . . . . . . .. .. 20

4 Related work 23
4.1 Pre-training with Synthetic Data . . . . . .. .. ... ... ... ... 23
4.2 Spatiotemporal Models . . . . . ... ... 24
4.3 Action Recognition Datasets . . . . . . . . . ... ... ... .. 25

5 Fractal Images 28
5.1 Introduction . . . . . . .. L 28

5.2 Classic Iterated Function Systems . . . . . . . . . .. ... .. ... .. .. 29
5.3 IFS Parameters . . . . . . . . . . 31
54 Fractal Flame . . . . . . . . .o 34

x1



TABLE OF CONTENTS

5.5 Other Fractal Families . . . . . .. .. .. .. ... .. 37
55,1 3DIFS . . . . . 37
5.5.2 Julia Fractals . . . . . . . ... 38

Synthetic Videos 42

6.1 Naive IFS Interpolation . . . . .. .. .. .. ... ... 42

6.2 Decomposed IFS Interpolation . . . . . . . . .. ... ... .. 44

6.3 Domain Gap . . . . . . . . . L 49
6.3.1 Non-linear Motion . . . . . . . . ... ... 49
6.3.2 Diversity . . . . . ..o 51
6.3.3 Static Background . . . .. ... ..o oL 52
6.3.4 Dynamic Background . . . . . .. .. .o oo 54
6.3.5 Foreground Scaling . . . . . . . ... .. oo %)
6.3.6 Group Activity . . . . . ... 55
6.3.7 Perspective . . . . ... 56
6.3.8 Displacement . . . . .. ... 56
6.3.9 Camera Zoom . . . . . . ... 57
6.3.10 Camera Shake . . . . . . . . . ... o 57

6.4 Automatic Construction of Categories . . . . . . . . . .. .. .. ... ... 58

6.5 Alternative Synthetic Data . . . . . . . . . ... ... ... ... ..... 59
6.5.1 Perlin Noise . . . . . . . . . . . 60
6.5.2 Octopus . . . . . . . e 61
6.5.3 Dead Leaves . . . . . . . . . . . 62

Experiments 64

7.1 Proposed Framework . . . . . . . . . ... ... .. 64
7.1.1 Downstream Tasks . . . . . .. .. ... ... L. 64
7.1.2  Model Architecture . . . . . . . ... 67
7.1.3 Implementation Details . . . . . . . .. .. ... ... ... 67

7.2 Experimental Results . . . . . . .. ... oo 69
7.2.1 Experiment 1 - Domain Adaptation . . . . . . ... ... ... ... 69
7.2.2  Experiment 2 - Alternative Synthetic Data . . . . . . . ... .. .. 71

xil



TABLE OF CONTENTS

7.2.3 Experiment 3 - Training Objective . . . . . . . .. ... ... ... 73

7.2.4  Experiment 4 - Importance of Motion . . . . . ... ... ... ... 75

7.2.5 Experiment 5-Scale . . . .. ... ... ... 76

7.2.6 Experiment 6 - Higher Resolution . . . . . . ... ... ... .... 7

7.3 Manual Error Analysis . . . . . . . ... 79
7.4 Conclusions . . . . . . . . e 80

8 Summary and Future Work 84
8.1 Summary . . . ... 84
8.2 Future Work . . . . . . .. 85
References 88

xiil



List of Figures

1.1
1.2

1.3

1.4

1.5
1.6

1.7

1.8

3.1

3.2
3.3
3.4
3.5

HMapadetypota emovey IFS @odoctok. . . . . . .00 000

Hoapadetypora un yeouuxwy ekxuotov. To eugoviloueva oy ot Tapouctd-
Couv BlapopeTd LoTiPo o GUYXELOTN UE To YIS YRUUUIXE PEdxTok. AuTtd
OVOUEVETOL VOl EVICYUOEL OTUAVTIXG T1) CUVOAXT| Totahoyopgio. . . . . . . . .

Hoapadetypoata avemdbiuntne ouuncplpopds.  Kdde yoouur amewoviler pa
axohoudio exdvwy IFS. H amhy| yeouunr nopeuforry tov nopauétewy IFS
TeoxaAel avemdiunTn opardTNTH oTaL EVOLdUEsa xapé. Mo Tétolo cuumep-
Lpopd BEV ElvVoL IXOVOTIOLNTIXY| Yol UEYAANG XAUOXAS TEO-EXTUUOEUCT) VELE-
OVIXOV OCTUMV. © o v v v v e e e e e e e e e e

Hopadelypota topayoviononuévne napeuBohnc. Kdie yoauur| oamewovilel pa
axohoudio exdvewy IFS. To (htnuo Tng apondTnTag emADETOL XAl OL EAXUOTEG
HETOBIANOVTOL GTO YEOVO YWEIC VO GUOPLXVAOVOVTOL. . o o v v v o v o o

[TpoTelvouevn Teplodiny| XaUmOAN TaPEUBOAAS. . . . . . . . .

TnocOvoho and TIC TEOTEWOUEVES TEYVIXES Yol TN YEQPUEMOT] YEOUATOC UETAUED
TEUYUOTIXGY XoL CUVDETIX®Y Bivteo. . . . . . . . ..o

Tuyota delyyato amd xopé TEAXWY GUVOAWY dedopEvwy. Me e€aipeon Tic 0o
TEWTES, OAES OL BACELS BEDOUEVKY TOROUGLALOUY ONUAVTIXES OLaopég UETAULD

Training and test errors behave differently. At the left end of the figure,
both errors are high. This is underfitting. Making the model more com-
plex, training error decreases, but so does the gap between training and
generalization error. The state are the right end of the figure is overfitting.
Figure reproduced from [98]. . . . . . . . ... Lo

The sigmoid activation function. Figure reproduced from [99]. . . . . . ..
The ReLU activation function. Figure reproduced from [100].. . . . . . . .

The tanh activation function. Figure reproduced from [95]. . . . . . . . ..

An MLP with n = 2,d;,, = 3,dy = 4, dps = 2. Figure reproduced from [108].

Xiv

XXXVil

XXXViil

12
13



LIST OF FIGURES

3.6
3.7
3.8
3.9

4.1

4.2

5.1

5.2

5.3

5.4
5.5

5.6

5.7

Recurrence mechanism used in RNNs. Figure reproduced from [109]. . . . 14
Mlustration of an LSTM cell. Figure reproduced from [16]. . . . .. . . .. 15
A simple CNN architecture. Figure reproduced from [96]. . . . . . . . . .. 16

Example of 2 x 2 max pooling downsampling on a 4 x 4 matrix. Figure
reproduced from [97]. . . . . . ..o Lo 17

Overview of the framework proposed in [49]. Construction of a dataset is
achieved without human labeling and image downloading. Such images can
be employed to pre-train a convolutional network which will be assigned to
conduct transfer learning for other datasets. . . . . . .. .. .. ... ... 23

Overview of the architecture proposed in [88]. The spatial stream ConvNet
operates on individual video frames, effectively performing action recogni-
tion from still images. On the other hand, thee input to the Temporal
stream ConvNet is formed by stacking optical flow displacement fields be-
tween several consecutive frames. Such input explicitly describes the mo-
tion between video frames, which makes the recognition easier. . . . . . . . 25

Chaos game algorithm in action. The order of frames is from left to right
and them from top to bottom. As the number of iterations increases, a
distinct shape is formed inside the canvas. . . . . . . ... ... ... ... 30

Examples of sparse attractors. Only a small percentage of pixels is filled.
Such images are of no interest for the present work. . . . . . . ... .. .. 32

Examples of divergent attractors. Almost the entirety of the canvas is filled
and no interesting shapes are displayed. Such images are also undesirable. 32

Examples of attractors with satisfactory structure. . . . . . . . ... .. .. 33

Examples of fractal flame images. Picture adapted from [23]. Although
such images are much more aesthetically pleasing than simple gray scale
fractals, they are also computationally more demanding. As such, the their
only property of interest are nonlinearities that boost the diversity of the
observed shapes. . . . . . . . . . .. 35

Examples of nonlinear attractors. The displayed shapes exhibit different
patterns compared to original linear fractals. This is expected to signifi-
cantly boost the overall diversity. . . . . . . . .. ... ... ... ... .. 36

3D IFS point clouds. Each of the 4 subfigures displays 4 different views of
the three dimensional attractor. The above images have been hand-picked
due to their aesthetic qualities and lack of artifacts. On the contrary, the
majority of produced samples exhibit heavy aliasing. . . . ... ... ... 38

XV



LIST OF FIGURES

5.8

6.1

6.2

6.3

6.4
6.5

6.6

6.7

6.8

7.1

Julia fractals produced with different instances of the function f. Note the
symmetry in the resultant images. These specific images have been hand-
picked and therefore do not contain degeneracies while exhibiting diversity.
On the contrary, randomly sampling parameters leads to significantly infe-
rior results. . . ... L 39

Examples of degenerate behavior. Each row illustrates a sequence of IFS
images. Naive linear interpolation of IFS parameters causes undesired
sparseness in the intermediate frames. Such behavior is unacceptable for
large-scale pre-training of neural networks and must be addressed. . . . . . 43

Examples of decomposed interpolation. Each row illustrates a sequence
of TFS images. The issue of sparseness is resolved and attractors change
appearance without shrinking. . . . . . ... ... 00000 46

Proposed interpolation curves. The objective is to mimic motion observed
in real videos and to narrow the existent domain gap. . . . . . . .. .. .. 50

Proposed augmentations in action. . . . . . .. ... .. Lo 53

Example of the proposed mutation mechanism. Each row displays frames
from a different video. Although all videos belong to the same class, dif-
ferences between them are obvious. . . . . . .. . ... ... ... 59

Examples of perlin noise images with variable spatial frequencies. A higher
rate of change indicates higher frequency in the corresponding direction.
The lowest and highest frequencies are displayed in the the top left and the
bottom right images respectively. . . . . . . .. .. ... 0oL 60

Examples of the octopus model. Each row displays a different video. Note
the colorization, the removed interior as well as the geometrical shapes
embedded within. Such imaged are similar to fractals as both possess
distinct contours. . . . . . ... 61

Examples of the dead leaves model. Each row displays a different video.
Each shape moves independently by traversing a randomly sampled 2D
curve. Some shapes are overlapped by others. . . . . . ... ... ... .. 63

Frames randomly sampled from downstream datasets. With the exception
of the first two, all datasets are evidently different. . . . . . .. .. .. .. 66

XVl



LIST OF FIGURES

7.2

7.3

Mlustrations adapted from [63]. Temporal Shift Module (TSM) effi-
ciently executes temporal modeling by moving the feature map along the
temporal axis. Despite being computationally free on top of a 2D con-
volution, it possesses strong temporal modeling ability. TSM is capable
of both offline and online video recognition. Bi-directional TSM mixes
both past and future frames with the current frame, which is suitable for
high-throughput offline video recognition. Uni-directional TSM mixes only
the past frame with the current frame, which is appropriate for low-latency

online video recognition. . . . . . . ... L L oL Lo

Frames from misclassified videos. Green color indicates ground truth,
whereas red color indicates the model’s incorrect prediction. In such videos
the label is often determined by subtle details that cover a small percent-
age of the overall pixels. As such, the model fails to differentiate between

similar categories. . . . . . . ...

xXvii



List of Tables

1.1 Ytatiouxd otolyeion TEAX®Y cuVOrwY Bedouévwy. ‘Olec ol Bdoeic etvor
NG XAIOXOG XKoL UAXOUG. .+« o o o xxxviii

1.2 Ilefpopo 1: Tehuehy axpifelo emxdpmong. Bold ypaupotooeipd unodetnviet
Ta xohOTEpa amoTeréouata ot ouyxexpyévn Bdorn. H othin Awrtrenon
xadopllet €dv 1 avtioTolyn teononolnon Yo dwtnenvel yioa dha Tar UTOAOLTYL
TEWQOMATOL  « v v v o e e e xl

4.1 Classification accuracies after fine-tuning as reported in [49]. The last two
rows display the results of pre-training with synthetic images. Bold and underlined
values show the best scores, and bold values indicate the second best scores. 24

4.2 Statistics for some human action recognition datasets. ‘Actions’, specifies
the number of action classes; ‘Clips’, the number of clips per class; ‘Total’,
is the total number of clips; and ‘Videos’, the total number of videos from
which these clips are extracted. Table adapted from [50]. . . . . . ... .. 26

7.1 Statistics of downstream datasets. All benchmarks are of small scale &
short length. . . . . . . . .. 65

7.2  Experiment 1: Downstream validation accuracy after domain adaptation.
Bold font indicates best results on the specific benchmark. Column Kept
specifies if the respective modification will be retained for all remaining
experiments. . . . . ... L e 70

7.3 Experiment 3: Downstream validation accuracy for different pre-training
datasets. Bold font indicates best results on the specific benchmark. The
proposed fractal dataset outperforms all alternatives. . . . . .. .. .. .. 72

7.4 Experiment 3 - Downstream validation accuracy for different pre-training
objectives. Bold font indicates best results on the specific benchmark. The
supervised objective is superior. The results for self-supervised frameworks
are in complete contrast with ImageNet pre-training where the order is
reversed. . . .. .. e 74

xviil



LIST OF TABLES

7.5

7.6

7.7

7.8
7.9

Experiment 4 - Downstream validation accuracy for the motion ablation.
Bold font indicates best results on the specific benchmark. It is evident
that fixed motion leads to better results. However, the drop in accuracy is
minor and therefore it can be assumed that motion is not significant. . . . 75

Experiment 5 - Stage 1 - Downstream validation accuracy for different
numbers of instances per class. Bold font indicates best results on the
specific benchmark. . . . .. ... oo 76

Experiment 5 - Stage 2 - Downstream validation accuracy for different num-
bers of classes. Bold font indicates best results on the specific benchmark. 77

Hyperparameters used for fine-tuning the Kinetics checkpoint. . . . . . . . 78

Experiment 6: Downstream validation accuracy for different values of spa-
tial resolution. Bold font indicates best results on the specific benchmark.

Xix



List of Algorithms

chaos-game(F, K1, Kg, H,W): Ahybprduoc anexdvione yio IFS @pdoctah.
sample-video-naive (N, T): Iopdyet axohoudio IFS péow ypouuxrc topey-

BOMC TOUPOUETRMY. . v v v v v o ot

chaos-game(F, K, Kg, H,W): Algorithm that renders IFS fractal images.
sample-video-naive(N,T): Creates an IFS sequence by simply interpo-

lating parameters. . . . . . . ...
sample-rotation(/N,T): Sample interpolated rotation matrix. . . . . ..
sample-delta(/N): Sample delta matrix. . . . . . . .. ... ... ... ..
sample-sigma(/N,T): Sample interpolated sigma matrix. . . . . . . . ...
sample-bias(N,T): Sample interpolated bias. . . . . .. ... ... ...

sample-video-decomposed(/N,T): Sample IFS parameters for an anima-

tion by interpolating each sub-matrix separately. . . . . . . . ... ... ..
sample-interpolant (7, N): Sample interpolants for IFS parameters. . . .
sample-back-frames(7): Sample frame indices for dynamic background. .

XX

. XXVl

XXVIiil

30



LIST OF ALGORITHMS

xXx1



Acronyms

BYOL Bootstrap Your Own Latent

CE Cross Entropy

CNN Convolutional Neural Network

GAN Generative Adversarial Network

GD Gradient Descent

IFS Iterated Function System
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory

MAE Mean Absolute Error
MLP Multilayer Perceptron

MoCov2 Momentum Contrast Version 2

MSE Mean Squared Error

ReLU Rectified Linear Unit
RNN Recurrent Neural Network

SGD Stochastic Gradient Descent
SSL Semi-Supervised Learning
SVM Support Vector Machine

TSM Temporal Shift Module

xxii



Chapter 1

Extetopevn IleplAndn ota EAAN VX

1.1 Ewdveg Ppdxctar

1.1.1 Ewcayowyn

Av xau enixevipo g mapoloog epyaciag etvar To apyeio Bivteo, elvan amopaitnto TemTa
vo yehetniel 1 Baoixdtepn Evvola ng exovag. Eletdlovtog oyetind BiBhoypapio, uropet
navelc vor avoxahOeEL opXeTEC YEVETIXEC DLUOWAGIEC TOU ToEdyYouV CUVIETIXES ELXOVEC.
(61600, uévo pla emheyetan g Bdon tng Tapoloug epyactag: PEAXTUA EOVES TOU ToEd-
yovton péow g teyvixic Iterated Function Systems (IFS). Auth n emhoy?| Bev eivon ow-
Vabpetn 0AAd otnpileton o€ xplooug TapdyovTEC:

o To IFS gpdxtal ocuyvd avomopdyouy potiBa TopOVTA GE QUOKES ELXOVES.  AuTY
1 WLOTNTA OVAUEVETOL VO TEPLOPIOEL TO ydoua YETUE) CUVUETIXMY XL TEOYUOTIXGOY
EUOVOV.

o O alyodpriuoc mou mapdyel auTéC TIC ExOVeS vl eUxolog GTNY uhoTtolnoT).

o Me tuyata derypotohndlo mapopétomy, elvor SuVITH 1) TaEAY WY1 OYEBOY ATAETNE TOCOTY-
Tog ewdvwy. Qot600, Omwe Vo goavel apydTEPR, OPLoUEVOL TEPLOPLOUOL TRETEL Vol
evowpatwdolyv ot dladixacta APng SeryudTemv Teoxeévou v arno@euydoly eAdT-
TWUATIXG ATOTEAECUATOL.

o Autéc oL emdveg €youv 1o yenoworoiniel ue emituyla otov Topéa tng Pothdic udinong
49, 76, 2]. Q¢ ex ToUTOU, OvopévovTal VETIXE ATOTEAEGUOTO XOlL VLol TO ETUXEVTPO TG
TopoVoug BtmAwUaTxng epyaotog, Ta apyeia Bivteo.

1.1.2 KAiacowd Iterated Function Systems

‘Eva dioddotato Iterated Function System (IFS) umopel va opotel we éva abvoro n
ouvopthoewy F; : R? i R Kéde IFS cuvdéeton pe évav ehxuoth, éva olvoho S € R? (xau

xx1il



1.1. EIK'ONEY ®PAKTAA

©¢ €X TOUTOU L EXOVAL) Tou elvon 1) Aoom Tou cucThuaTtog. S elvan To oToepd onuelo TNg
avadpouixrc e&iowone tou Hutchinson [41]:

Lopgwva ue Tov Barnsley [5], ot TeooVUPEQUEICES CUVUPTACELS ELvalL YEUUUIXO! UETAUOY T
uotiopol mou optlovtan and mivaxo A; € R2%2 you ddvuoya b; € R2:

a; bz C;

7

Yt ouvéyelr autol Tou eyyedgou, ol Tapdueteol IFS Yo avagpépovtar we W; € RY 4
W e RVx6,

O elxuotig evog dedopevou IFS umopel var ameovio tel Tpocey Yo T YENoUOTOLWVTIG
NV dladxacio chaos game, 1 onola teptypdpeton 6Tov Ahyodpriuo 1. Q¢ mpwto Briua, autde
0 alyopriuog yepilel Ty exdva e£680U UE UNdeVIXd ot ETAEYEL TUY oo opyxd onucio oTov
OLo0LAC TUTO YWEO. XE xde emavdAndn emAéyeTtar pa Tuyaba cuvdptnor amd to IFS 1 omola
oTn ouvéyela e@apuoletar oto mpoavagepléy onueto. H derypoatohndia dev ebvar opold-
Hopgn oAAd Bactletar OTIC XAVOVIXOTOINUEVES AmOAUTES 0piOUCES TV TVAXWY e Bden.
O ouvteTtaypéveg tou onuelou 6Tt cLVEYELX xPavTonolobvtol ot eixovootolyeio. H
Tou eovooTolyeiou auddvetar xatd éva. To mpornyoluevo Bruc dev mporyuatonoteiton yio
Tic Tewteg Kg emavarriders, xadde ot TpoxdnTouceES GUVTETAYUEVES UTOREL VoL UNY oy xouv
otov ehxuoth. Metd v ohoxdfpwon twv K enavorfleny, n ewdva, 1 onola oc autod
To onuelo elvar Eval BLOBLEGTAUTO O TOYPAUUUY, XUVOVIXOTIOIELTAL MOTE Vo tapay Vel anodInTind
wavoronTxd anoteheoua. Hapadetypata emdvwy IFS @pdxtal gaivovtor oto My fua 1.1.

1.1.3 TIlogdpezpor IFS

Axohovd®vTac To €pyo TwV [2], évac OLUPOPETINOG POQUUALOHOS VIOl TLC TUQUUETEOUS TWV
pedtal umopet vor tpox el ue avdAuoT Tivoxa oe WIELoUcES TYEC:

A=UxvT

o U,V € R**? giva 0pUOYOVIOL TUVAXES XU ETOUEVKS UTOPOUV VoL avamopaoTadoly »e
Tivaxeg mepioTpognc ue mioavy| avtavdxiaon. H optlovca uropet va eivor £1. Eotw
U = Ry, Dy xu VT = Ry, D, é1ou R, elvon miivaxac TEPLOTEOPNC TORUUETOOTOLNUEVOC
and ywvio x xou D; Storydviog mivaxac pe dtarywvia otoryeio di, dy € {—1,1}.

XX1V



1.1. EIK'ONEY ®PAKTAA

Figure 1.1: Ioapadetyuota eovev IFS @odactol.

XXV



1.1. EIK'ONEY ®PAKTAA

Algorithm 1 chaos-game(F, K, Kg, H,W): A\yéprduoc aneixovione yio IFS gpdoctan.
Input 1: N functions F; : R? — R?
Input 2: Number of iterations and skipped iterations K, Kg
Input 3: Image dimensions H, W
Output: Grayscale Image O € [0, 1]7*W

1: Initialize: O < zeros(H, W)

2: P % > Compute a probability for each W;
3: Sample]x ~U(-1,1) > Initialize random starting point = € R?
4: for step =1 to K; do

5: Sample F* ~ P > Sample random transformation
6: x <+ F*(z) > Apply transformation
7: if step > Kg then > Ignore the first Kg steps
8: hy, wy < quantize(x, H, W)

9: Olhg, wy] < Olhg, wy] + 1

10: end if

11: end for

12: O < 1log(O +1)

13: O «+ O/max(0) > Normalize the image inside [0, 1]
14: return O

o X € R¥? glvon Braydviog mivaxag mou mepéyel Tic Widlovoeg Tywéc 01,02 € RY ue
o1 > O9.

Yuvenwe, o mivoxag A pnopel va exppacTel we:

A = R91 D12R92D2

Mo Tuyaior Serypatodndio Tou mivaxa A, eivor amapaltnTn 1 xotdhhnhn Sevyuatorndio
Twv Topauétewy {01,062, 01,00, d7,d7,dy, d3}. Emmiéov, oL evdiduecol mivaxec mpémel vo
TOMATAACLAGTOUY PETOEY TOUG OTWEC VoY PAPETAL OTIC TRONYOUUEVES EELOWOELS.

1.1.4 Fractal Flame

O ahybpriuoc Fractal Flame [23] eivon pior enéxtaon tou Paoixo IFS, oyedioouévn edixd
yioo vou dnuoupyior exodvewy mou ebvon o atoUnTind evydpoteg.  Tétoleg exdveg yernot-
HOTOLOVVTAL GLYVE W TATETOUP(EC XAl Screensavers yla Tpoowmxolc UTOAOYIOTES. Av xal
To Fractal Flame eiodyel apxetéc tpomonotfoels, oL TeplocOTERES €Y 0Ly xordupd acUNTIXT
oo (my ypoua) xou we anotéreoua dev Yo allonotndolyv ota mhoioto auThS TNE pyooiog.
H povaduer| tpononoinom mou pag evdlageper ebvar 1 un yeouuxotnta.  Ilpdxetton yio un
Yeouuxeg cuvaptrioelg G : R? — R? mou UTOPOUY VoL EQUPUOCTOUY GE OLOOWIC TATEG GUV-
TETOYUEVES PETOEY TV Ypouuoy 6 xou 7 tou Alyoplduou 1. Yto épyo twv [23] autéc ot

XXVi



1.1. EIK'ONEY ®PAKTAA

CLVAPTAHCELS avapépovTa w¢ “variations”. Mepd ToQUBEYUATA AUTOY TWY CUVIPTACEWY
elvou:

Figure 1.2: Iopodelypota un yeouuuix®y eAxuotaov. Ta eugaviloueva oy AUt Topouotd-
Couv BapopeTixd YotiBa oe cUyXEIoT UE Ta oEY X YRoUULXS PEdxTok. AUTO avouéVETOL Vo
EVIOYUOEL ONUAVTIXG T GUVOAXT TOLXUAOUORGIAL.

o Gi(x,y) = (sinz, siny)
o Gg(x,y) =r(sin(0+r),cos(d —r))

L GlG(xvy) = 7j__1(y7x)

Y1ig mopondve ellodoelg,  xar § elvon moAéc ouvietaypéves: 1 = /22 +y? xou
0 = arctan(z/y).

Hopadetyuota Un yeuuuxmy eEAXucT®yY gaivovtoar oto Lyfua 1.2. Elvar mpogavég 6Tt
Ol TUEAYOUEVES EXOVES Blapépouy onuavtixd and Tta Baowd IFS. T otiyus| tng odvtadng
aUTOU TOU EYYEAPOU, oo dAAN epyacio dev €yel diepeuvioet fractal flames oo mAalolo
e Podhide uddnong. Onwg Vo govel oto emoueva xEQIAo, 1) ELOAYWYY| U1 YEUUUXDY
CUVAPTHCEWY EVICYUEL TNV TOLXAOUOPPIO TOV TUEUYOUEVRY DELYUATOV.

XXVvil



1.2, ¥TNOETIKA BINTEO

1.2 Yuvidetixd BivTeo

1.2.1  ArniA IopespBoAr

Y1oyY0¢ Yog elval 1) ETEXTACT) TV QEEXTUA O YEOVIXT| DIUCTACT| oL 1) TUEAYWY T oy Elwy
Bivteo. H Bdon yio Tnv mopaywyr| gedxtal Bivieo mopeéyeton amd To axdiouto Yewmpnuos

Theorem 1 [5] Eotw {W;}Y, éva IFS tov omoiov o1 cuvaptices napapetpornotovvral
amné pia povadikn gpayuévn petaPAneyt € R. Tote, n ovvdptnon S(t) mov avuiotoryile
Ty mapdpetpo t otov eAkvoty tov IFS e mapapétpous t elvar ouvveyrg.

To nopamdve Vedpnua Unopel evarhaxTixd va epunveudel o e€ig: ouveyeic adayég oTic
TopopéTeoug Tou IFS €youv ¢ anotéheoua cuveyeic adlayéc oty Taporyduevn eodva. Eivar
dLVATOVY Vo ey V00OV OUUAES HIVOUUEVES ELXOVES UETABAAAOVTOC ENAPEOS TIG TUPUUETEOUS
Tou IFS ot xdie Sadoyind xoupé.

Q¢ ex To0T0U, pla amAr uédodog xataoxeurc Bivteo umopel vo emiteuydel ue mpodTo Briua
T Oerypatohndlor TopuUETEWY Yiot 5U0 SLUPOPETXES EIXOVES QEdxTah. AUuTéC ol eixdveg Va
AELITOLEYHOOUY WG TO TEMTO xal To TEAsuTalo xupe Tou Pivico aviictowya. O pdvog mepLop-
LloUOG efvar 6TL 0 apriuog TWV cLVAPTACEWY IV TEETEL Vo lvor XOLVOS Xal YLoL TIG 0V0 EXOVEG.
Yy mpdén to N emiéyetan tuyada and to U({3,...,8}). T tnv mapoywyn xivnong, ol
TOPAUETEOL TWVY 000 EOVLY Topeufdihovial Yeouuxd. Ileplocdtepec hentouépetes eupovi-
Covton otov Ahyopriuo 2. To anotéleoua elvon pa emimpociet BldoTaoT, 1 618G TooT TOU
xpovou. Omnwg ebvar emuuntd, auth 1 tpocéyylon tupdyet ua cuvey Y| axoroudio IFS. Kde
IFS umopel va amewcovio el Leywplotd xan Topdhhnia péow tou Akyopiduou 2. Autd €yet
0¢ amoTEAeoua i oxohoudior xapé xan emouévmg éva Bivteo.

Algorithm 2 sample-video-naive(N,T): Iopdyer axohovdia IFS péow ypoppxic
TOEEUBOAG TUPUUETEWY.
Input 1: Number of transformations N
Input 2: Number of frames T’
Output: Sequence of parameters: W &€

RTXNXG

. Sample Wyiare, Wena € RYV*6 > Parameters for the first & last frame
. Initialize: W < zeros(T, N, 6)

cfort=0toT —1do

Wt] + TTfIt Witart + 755 Wena > Linear interpolation
. end for

: return W

L N N

Avotuywg, yewpoxivtn e€étaon Twy Bivieo mou tapdyovton Ye auTh Tn HEYod0 amoxoAUTTEL
€vol BUOUEVEC Pavouevo. Av xou 1) apy | xat To TEAOC TOL TEoXUTTOVTOC BiVTED Elvall IXAVOTOL-
NTxd, oL evoLduecoL ehxuoTég Oev ebvar. Tao evdidueca xapé tetvouv va etvon e€anpeTind apand,
agrivovtog TNy TActodngio Tou yoeou xevr. Tétoia delyuarto aneixoviCovian oto Xyfua 1.3.

XXViil



1.2. ¥TNOETIK'A BINTEO

Trovetouye 6Tt TE€TOL BiviED Bev elvon XATIAANAAL Yior TEO-EXTIUUOEUGT) VEURWVIXWY DIXTOWY.
To oy Tou EAXUCTY TEENEL VoL TOROPELVEL Un TETEWUEVD OE OAT| TN Otdpxeta Tou Pivtco.
Enopévwe, n amhy| yeouuin| TtagepBoly| tTwv mapopétewy IFS dev elvon amodexty| pédodog
Topoywyhc Bivteo

‘r .

Figure 1.3: Tlopadelypato avemdiuntng ouvunepipopds. Kdde ypouur ameixoviler o
axohovdio edvey IFS. H amhr yeouuuxr tagepBolr twv napauétewy IFS npoxahel avemt-
YOunT apondTnTo oTor EVOLdUESH Xapé. Mo TETola GUUTERLPOEE BEV Elvol XavOTIOLNTLXY Yot
MEYSANG XA{UoXaC TEO-EXTIUBEVGT| VEUPWVIXMY OXTUMV.

1.2.2 Tlapayovronmownuévn Ilagepufoin

H avemdountn apadtnto 1oV evdidueowy mtioolowy uropel vo emAvdel pye avdAuor ot 1oid-
Couoeg Téc. ‘Onwe eényeiton oty evéotnta 1.1.3, o nivaxac IFS propel v exgppactel o
A = Ry, D1X Ry, Dy. Katd cuvéneia, avti vo topepdhhovial dueca oL TapdueTeol Tou, autd
T0 éyypago mpoteivel TNV mapeBohy) xdie umo-mivaxa LeywploTd. Etot, éva tuyaio Bivieo
umopel v dnurovpyndel pe to axdhovda BripoTa:

1. Aevypatorndla twv Dy xan Dy Avutol ou mivaxeg mopauévouy otadepol yia OAn
OLdpxetor Tou Bivieo, BEBOUEVOU OTL TEQIEYOLY UXEQPUUES TWES Xou TUPEUBONY eV Umopel
vo eopuootel. H xotaoxeur) autdv tov mvixeny uropet va emiteuyVel ye delypotoh-
nior Ty and {—1,1}.

2. Aerypotohndlo tov yowoy 659 05 and U(0,27), ropepBolf Toug ot ddoTtaon
TOU YPOVOUL X0l XUTUOXEUT Tvaxa TERLoTEOPNG Ry, yia xdde ypoviny| otiyur|. H (B
otaduaoto Loy Vet yio Ry, .

XXIX



1.2, ¥TNOETIKA BINTEO

3. Aerypororndlo mvdxwv T 34 o tapeufolf| Toug oTn BldoTaon Tou Ypdvou
YL TNV XATAOXELY) Tou Tiivaxar 2. AUTEC oL UNTEES EIVAL 1) O GTUOVTIXT| CUVIGTWO
TWV TUPUUETEWY X0 OXUTIAANAES TWES UTOPOUY VoL OONYACOUV GE U1 LXAVOTONTIXG
amoteréopata. ¢ ex ToUTOL, 1) BeryUoToOANlor YiveTan UTO CUYXEXPWEVOUC TEQLOPLO-
wolc. llepioodtepeg Aemtopépeieg epgaviCovtar oto Hapdptnua A tou [2].

4. Yovieon nivoxa TUpUUETEMY HECE TOAATAACLUCUOY TGV TEONYOVUEVKY UTO-TIVEXWY:

A = Ry, D1X Ry, Ds.

5. Aerypotohndlo teov Suvuoudtmy ¥ b you tapepBold Touc otn ypovixd| didotaor).
Auté T0 Brijda elvor TUVOUOLOTUTIO UE TNV TIEOTYOUUEVT) OTAT) TEOCEYYLOT) Yo BEV amanTel
Tepoutépw Tpomonotfoelc.  Téhog, o mpoximtwy mivoxag eveveTal pe TOV GUVIETO
mivaxa A amd to mporyoluevo Bua Ye anotéheoua Tig TeAég Topauéteoug IFS.

H npoavogepieioon ddixaota elvor tpocopuoouévn and 1o épyo twv [10]. To delypota
TIOU TPOXUTTOUY DEV UTIOPEQOUY TAEOV OO OQOULOTNTO ALY TIOEAUEVOUY LXAVOTIONTIXG GE OAT|
™ Odpxela Tou Bivteo. Tétown delypoata goaivovtar oto Nyfue 1.4. Auth 1 npocéyyion Vu
amoTeEAETEL TO VEUEALO YIo TTUPAY WY T) CUVIETIXDY GUVORWY BEBOUEVGY UEYAIANG XAipoxag Yo
TRO-EXTALDEUCT] VELPWVIXMY DX TUMV.

1.2.3 Xdopa Metal Yuvietinwy xou Ipoayuatixodv Bivteo

[o ouvietineg emdveg, TEONYOUUEVEG ONUOGLENCELS [4] ovunepaivouy 611 1 omodoon o
TEOYUOTLXS DEBOUEVA BEATIOVETOL HTAUY Ol TEWTEG CUUTEQLAAUPBAVOUY CUYXEXPUIEVES BOULXES
WOTNTEG TV TeEAsuTainy.  Ouolwg, ueréteg peydhng xhipoxag yla TNV TEo-exmaldeuo
[17, 53, 94] e€dyouv TS 1) ATOTEAECUATIXOTINTOL UINYAVIOUWY TEO-EXTUOEUOTC EMLOEVOVETAL
ONUOVTIXE OE TEQIMTWOT YAOUATOC UETALY TV EYIXWY X TEALXWY OEBOUEVKY EXTIUUOEUCTC.
Qd¢ ex ToUTOUL, Elvan amapaitnTo Vo YeQuEwEl To ydoua YeTald ouvieTny Bivieo @edxtah
xa OELYUGTWY amd TRaryUoTixég BAoELS avary vaplomg dpdomng.

[o T0 oxomd autd, 1 mopoLoa EVOTNTA TUPUIETEL YUPUXTNELO TG TEOYUOTIXGY [Biv-
T€0 omd BACELS AvoryVORLOTS BpdoTg [89, 56, 39] nou €youv mopatneniel yepoxivnta. o
x(&de yopoxtnelo Tixd Tpotelvovton uédodol Tpocouolnong oTa TAALCLY TNG TEO-EXTAULDEUOTG.
O o16y0¢ TN TPocouoiwoTg BV Elvol 0 AmOAUTOS PEANOUOS, GAAS amhy| xou Btoano¥nTiny
mpooéyyion. H mielovotnta 1oV mpotevduevmy uedddny Teocouoiwons Eyel oyedlc Tel
0¢ Aol YETACY NUATIOUO! TOL UToEoVY Vo LAOTIOLNUOUY amOTEAEOUATIXG (¢ augmentation.
‘Eva utoovolo TV TROTEWOUEVWY TEYVIXWY amewovileton oTto Lyruo 1.6.

Mn I'eoppixy; Kivnon

H uédodoc olvieone Bivico mou meptypdgnxe Teonyouuévne Topdyel amhy| eudela xivnon.
Qotooo, 1 mpaypatry aviemmivn xivnon efvon onuoavtixd mo tohdmioxn. T var petwiel
QUTO TO YAoua, avTi Yo amAr) Ypopx | TapeUBOAY| HETAEY TOU TEMTOU Xal TOU TEAEUTAOU
XOPE, UTOPOVUE VA YENOWOTOGOUUE TLo Tepimhoxes cuvapThoets (EyrAuo 1.5):

XXX



1.2. YTNOETIKA BINTEO

Figure 1.4: Ilopadeiyuata nopayovtonomuévng napeuBorrc. Kdie ypouun ameixoviler wa
axoroudio exévwy IFS. To (htrua e apotdtnTog EMAVETOL XAl Ol EAXVUOTES UETAUSHAAOVTAL
OTO YPOVO YWElC Vo CUREIXVHOVOVTAL.

Xxx1



1.2, ¥TNOETIKA BINTEO

1.0 A .
—— Linear

Periodic

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

oto 2t5 sfo 7t5 10'.0 12'.5 15'.0 17'.5
Figure 1.5: IIpoteivouevn meplodint| xaumOAn TapeUSorrc.

e Huttovoedrc ITapeufoln: Eva onuavtind uépoc tne avipendmivng dpac Tnotdtn-
Ta¢ amoTeEAEiTon amd TEPLOOIXY| 1| oYEBOV TEplodwr) xivnor. o v mpocouoiwon Té-
Totag xlvnorng, wa YopuBndng NUITovoedric cuvdptnon urtopel va yenoulomoindel wg
ToEEUSOAY).

o Andtopn IHapepBoly: [loAld Bivieo yopaxtnpillovtar amd yeryoen xaw Eapvixn
xivnon.  Auth n xivnon mpooeyylleton amd pior Yooy TOREUBONT) UE OMUOVTIXG
ueYoAOTERO XAloT).

o Tuyaia IMTapepBoly: Emnpdoieteg Spaotnoidtntes ywelc cagr potiBa unopoly
VoL TPOGOUOWW Y00V amd Uil Tuyoda XUPATOUOREN.

M emnAgov mtuyh e avlpomivng xivnong etvon 1 cuvieTindTnTd TG TEpimhoxeg xvy-
oelg amotehoVTAL amd TOMAATAEG amAéc xwvhioels. o mopddelyua, To Teédylo anoteheital
amod Lo TEPLOBT| xivnoT TV TodLOY xadde xoL amd Uia BLapOpETIXY TepLodLXT X{vnon Twv
YepLv. Auty| 1 wioTNTA PTopel Vo Tpocopolmel amodidovTag SlapORETIXT XUUTOAN TUOEY-
Bohrc og xde ouvdpTnor tou IFS.

ITowcthopoppia

Iponyolueveg dNUOCLEOCELS OYETIXG UE EXOVES [4] ovunepaivouv dTu 1 TowtAopoppla TV
CLVIETIXOVY OEBOUEVKVY ELVOL ol GTOLYELOONG WOLOTNTA Yol TNV EXUEUNOT LOYUPOY OTTIXMY
AVATUEUOTAGEWY. {2C €x TOUTOU, UE GTOYO TNV TOVWOT] TNG TOLXAOUORPIC TV TAUPAY OUEVWY
Bivteo, un yeouuxd gedxtol (Bh. Evotnta 1.1.4) nepthapBdvovton eniong 0To TpoTeEvouevo
OYEDLO TRO-EXTIUOEVCTG.

XxXxil



1.2, ¥TNOETIKA BINTEO

(a) Apywd Bivteo

-

=
(f) Zratnd Pévto + Tpinpuvorn IMpooxnviou + Tulhoyxr Apactnpldtnta

Figure 1.6: TnooUvolo amd TIg TROTEWVOUEVES TEYVIXES YL TN YEQUEWOT YAOUATOG PETUED
TEOYUOTIXWY X cuvleTixwy BivTeo.

XxXxi11



1.2, ¥TNOETIKA BINTEO

‘Avipwnol Tou eugavilovton oe Bivieo avoryvoplong dpdong €youv Eexdiapo oy xou
Teplypopua. BUVETOG ETAEYOUUE CUVIPTACELS TOU ETLONG IXUVOTIOLOOV AUTEG TLC WOLOTNTEC.
Hpdxerton yio variations 0,4, 6,13, 14, 15, 16, 20, 27 xou 29 and to nopdptnuo twy [23]. Ent-
mAéov, ofilel vo avagpepdel 6TL oL Tpoavapepleioes Un YOoUUXES CUVORTHOELS AUEEVOUY TIC
UTOAOYLO TIXES ATOUTHOELS Yol ETBadlvVouY TNV TopaywYr cuvieTixay Bivieo. ()¢ ex TodTou,
T N YEOoMXS pedtakg Yo amoteholy uévo to 50 % twv mapaySUEVLY SEBOUEVLV.

Tuyaio Statixd Povro

Yxnvéc ot mporyatixd Biveo avory viplong dpdong arotelolvton and Evo Tpoox Vo (8Touo
ToU EXTEAEL Xdmola evépyeLa) xat €va povTo (TeptBdAhoy ylpw and to dtouo). To teleutaio
Yo umopoloe, yio ToEddeLryUa, Vo elvon éval YATESO yxohg 1| wa mobva. Xty mo omhA
TEPIMTWOT, TO POHVTO elvon EVIEANS OTATIXG Xou 1) WOV xivnon oto Bivieo mpoépyeton and
TO TPOOXTVLO.

Méypr otiyufic, auth 1 wdTNTo anovodlel and Ta cuvietind Uag Bivieo T omola
amewoviCouv povo €va xivoUUevo oyfua ywele tepBdiiov. H wbidtnta unopel vo mpoco-
uotwlel wg €vag duecog petaoynuatiopog Kotd tn ddpxeia tng exnaldevong, yia xdde
oclypo o; evtog evog batch, éva otatind xopé houBdveton amd €va dlaopeTind PBivico x;
X0l oVOLY VOETOL UE xGUE %apé Tou T; Uécw otaduiouévou adpoiouatoc:

Zi = (1 = a)z; + ax;([f]

E86, x;, x; elvon Vo Brapopetind Bivieo and to dro batch, f ~ U({0,..., Nprames — 1}
xo @ ~ U(tmin, Gmaz). TNV TEAEN, YENOWOTOLOVUE Apmin, = 0.25 X0 Gppay = 0.55.

Yuixpuvon Ilpooxnviou

Yra ouvieTind pog Bivieo, oyRuata Twv QedxTak xahdTTouY Eva HEYdAo pépog Ttng 0dovng
xou ouviidog Tomodetolvton YOpw and To %Evipo Tou. Avtiétwe, oe mporyuatixd [Biv-
TEO vy Vwplong dpdong, 1 Véom xou To péyedog tou mpooxnviou dev eivar otodepd oAAd
Tuyodo. Auth N avtipaon TEEmel Vo avTETLToTEL 6TO TAlolo Tpo-exnafdevone. Egpbdcov
Ta pEdToA xahOTTOUY TNV TAEoNpla g ovovng, dev eqapudleton cropping. Avt’ ou-
T0U, Ta Bivieo umopolv vor LTOBELYPATOANPHOUY OTIC BLO YWEXES DLACTACE UE XA{UoxES
Shy Sw ~ U(Smins Smaz) 010U 0 < Spin < Smaz < 1 xou tonodetodvion oe wior tuyaio Héon
eVO¢ ddelov oploywviou. XNy TEdln, VETOVUE Spin = 0.3 XA Syee = 1.0. Auty| 1) SLodixacio
TuyuoTolel TOc0 To PEyedoc 660 xau TN V€T TOL XVOUUEVOU GYHUTOC.

YA oy ApacTneloTnTa

‘Eva peydho pépog tov Bivieo dev aneixovilel povo éva dTouo ahhd piar ouddo Tou eXTEAEL
TOLVOUOLOTUTN 1) OYEBOY TavopotoTuTr dpaotnetotnTa. apadelypata etvar opadind adhAuato

XXX1V



1.2, ¥TNOETIKA BINTEO

OTS TO BOAEL xou To TOBOGPEO. AUTO UTOpEl Vo TPOGEYYLIOTEL UE Lol TPOTIOTOINGT TNE TEO-
NYOUUEVGE TEOTEWVOUEVNC OUixpuVoTNE TEooXNVIOU. Luyxexpluéva, UETd To Brua TapeuBoing,
70 oLVIETNO Bivieo avTypdPetat Neone PORECS, HE xdUe avTiypapo va AauBdver SlopopeTind
chapey augmentation. Ye yetoryevEéotepa TEWAUATA, TO Neone 0ptleton oe 2. To augmen-
tations meprhoufdvouy Tuyoia TEPIOTEOPY, OPILOVTI AVACTEOPT X0k YEOVIXY UETUTOTLON.
H tehevtala xohotd tor avtiypago achyypova. ‘Onwe xan meonyouuéves, xde avtlypapo
ToU TEOXUTTEL ToToVeTelton 6T CLVEYELX o Wi Tuyado V€on evog ddetou oploywviou. e
avtideon pe mewy, VETOUUE Smin = 0.2 XA Syee = 0.5, xadd¢ ToAamAG avtiypopo ueydhwy
oyNudTeY etvor o mhavd Vo ETXUAOTTOVTOL.

Metatonion

H avipdmivn Spactnotdtnta o To @6vTo O0ev elval Tar Hovadixd duvaixd oTolyeia mou
epgaviCovton ota mparydatd Bivieo. Meydho mocootd twv Bivico mepléyel emnpdoiet
xivnon petatémong. Mnopolv va doprioly Tela dtapopeTind eldn yetatémong:

e Metatonioyn tou Ilpooxnviou: Autd ocupfaiver 6tav dvipwrol extehoby uia
EVEQYELN EVE TAUTOYPOVA TEETATOUY 1) TEEYOLY XAWS 1) XAUEEA TUPUUEVEL CTATIXT).
Q¢ ex ToUTOUL, oTO fivico Tou xataypdgeTar, N Véon Tou mpooxnviou petatomileTon
EVK TO POVTO TUPUUEVEL AVETNEENCTO.

e Metatonion Povrou: ‘Onng xou mponyoudévng, auth n xivnon eivat eniong anotéheoua
NG METATOTIONG Tou avipwmivou otoyou. (dotdco, Toea 1 xduspa axoloudel To
mpooxivio. (¢ anotéheoud, 1 VEoT TOU TEOGKNVIOU TUPUUEVEL OUCLUC TIXE GTATIX),
OAAG TO POVTO ATOXTA TNV (Olo PETATOTLOT OAAS pe e avtidetn xatediuvon. ‘Eva ag-
loonueiwTo TopddelyUa etvan o xduepa Tou oxohovldel adAnTéc o Evay ayva otiBou.

e Metatonion Kdpepag: Xty nepintwon auth, n améiutn ¥éon tou avipommivou
TOPOUEVEL AUETABANTY, 0AAL 0 oTdYOoC Tng xduepac petotonileton. ()¢ anotéAeoya,
600 TO TPOGXNVIO OGO XAl TO POVTO UeTatonilovTon TPog xatevuvor Tou ebvon avti-

Vetn pe TNV xduepa.

E€owelwon pe tétoleg xivioelg umopel v evioyulel e amholc petacynuatiopovs. o
TN UETUTOTION @OvTOou, apyd PeYED0vETOL €Val OTATIXO XOPE (QPOVTOU XOU GTY) CUVEYELX
onuovpyelton plar axoroutia crops e dlactdoelg tou apyxol Bivieo. Kabdog ta xEvtpu
TV crops eivon dadoyixd onueio og pLor SLodLdc Tty evdela, To atoTéAEoUa Elvon UETATOTILOT
Tpo¢ W otodept| xatevduvor. o T petatomion g xduepag, 1 draduacta etvan 1 Topd-
uoLoL Ue TN Otapopd 6TL xde crop houBdveton oe dlapopeTind xapé. ot Tn yetatémon Tou
Tpooxnviou, 1 Slaopd elvon 6Tt To Bivieo apyxd uewwvetar o Yéyetog xou 0T CUVEYELX
xde xopé Tomodeteiton oe BapopeTind V€on evog xevol oploywviou.

ITepoutépw Mryavicuol

Emmiéov, mpoteivoupe teyvinéc mou agopoly Auvouixd Tuyalo @évto, Ontueh 'wvia, Zolu
Kduepag xow Teéuouro Kduepac. Ilepioodtepeg Aemtopépeteg undpyouy otnyv Evotnta 6.3.

XXXV



1.3. IIEIPAMATIK'H AZIOAN'OI'HXH

1.3 Ileipopatixry ASiohdynon

1.3.1 E&etactéa XUvVoAa AcdoueEvwy

To mpotewvouevo oyEdlo Tpo-exnaideucne afloloyelton HECK TEMXAC EXTABEUONC TOU UOV-
Téhou ot 6 mpaypatinég Bdoelc and cuvtoua Bivieo xAum. ‘Olo tor GUvoha BEBOUEVLY €Y OUV
oyedotel i To TEOBANU Tng xatrnyoptonoinone. H xAlyaxa twv cuvérwy dedouévwy
elvol xer) A0y UTOAOYLOTIXWY TEQLOPLOHMY, EVG TO UAxo¢ Teptoplleton woTe var Tanptdlel
UE Ta 0TATIO TG TV cuvieTixwy Bivieo. Ta 6 chvoha dedoUEVKV ToEOUCLELOLY CTUOVTIXES
OLapOPEC UETAE) TOUC Xoit ETAEYUNXHOY YLOL VOL UEYLO TOTIOLACOLY T1) GUVOALXT] TOLXLAOUOP®IAL.
Aentopepy| otatiotnd gaitvovtar otov Ilivaxa 1.1. Aclyporta and tuyala xopé anewxoviCovTal
o070 Myfuo 1.7.

e HMDB51 [56]: Kobepwuévn Bdon dedopyévmv yio avaryvodplon dpdone.  To i
ouvilwe amewovi{ouy €va dTouo vo eXTEAEL pla LY XEXQEVT evépyetla. Emmiéoy, ta
XM GLY VA TEELEYOLY AVETLHUUNTA PUUVOUEVOL OTIWE XIVNOY TNG XGUERAS (UETATOTLON,
TEEUOLAO) XadOC X0t AMOTOUES OAAUYES OXNVAC.

e UCF101 [89]: Iopduoto Béon ue to HMDB51, odhd peyoldtepns xhipoxos. g
UTOTENEOUA O OVUUEVOUEVOS YPOVOS Yid eXTaldELDT) Elvol GoPng UEYANITEROCS.

e DIVINGA48 [61]: Mioe suhhoyt omd Bivieo omd emoryyEAUATIXOUS BIoty VLGOS XOTOBVGEWY.
H Suoxohio etvor udmin, xaddg 6Aa ta Bivieo topouctdlouvy Yeydhn opoldTnTo ot TOA)
Aentég Oapopéc. Eva untooivoro twv Bivieo anecixovilel ouyyeoviouévn xatdduoT ue
TOANG dTopaL.

e EGTEA GAZE+ [62]: Anoteheiton ané Bivieo o€ npihto Tpdomto Ue SpaoTnetdTnTeS
woryetptc oe BrapopeTind meptBdhhovta xoulivae. To Bivieo cuyvd mepléyouy uxpd
avTIXElPEVYL, OTIC EpYAhEld Xl GUCTATING LAY ELRIXYC.

e VOLLEYBALL [42]: Kaicpwuévn Bdon otov Topéa TS avory vidpetons GUAOYIXAC
opdone. Kdlde »hn amewoviler dVo avtimaheg ouddeg BOAel 6mou 1 pla mopauével
aVEVERYT) EVEO 1) GAAN EXTEAEL Utol oUYXEXPIEVT opodixh Bpaotnetdtnta (oeT, ondux,
mdoa, vixn). Auté éyel we anotéheoya 8 tdlelc cuvohxd. To urxoc xdie Bivteo elvan
oaxpBng 41 xapé. O moapeyouevn emoruavorn Eyel anodety el 6Tl TEQLEYEL CPIAUNTA
[119].

e YUP++ [27]: Hepieyel Bivteo duvouxwy oxnvov. Iopadetyuato etvon daoineg mupx-
aYLES, xuTAUPEEOVTA XTlplol Xou opUNTIXd ot Me xde xatnyopla, Ta wod Bivieo
TPOEPYOVTOL ATO OTUTIXY| XGUEQO EVE T UTOAOLTIOL ULOS OOXTMVTOL UE o XWVOUUEVT
xdpepa. H didpxeior Tou xdie Bivteo elvon 5 deutepdienta.

XXXVI



1.3. IIEIPAMATIK'H AZIOAN'OI'HXH

Figure 1.7: Tuyofo delypota amd xapé TEAXGY oUVOLLY dedopévey. Me elaipeon tig 600
TEMOTES, OAEC 0oL BACELS BEDOYEVKY TaPOLGLAlOUY CNUAVTIXES Dlopopéc UETAE) TOUC.

XXXVii



1.3. IIEIPAMATIK'H AZIOAN'OI'HXH

T gw o
Channel C |£ c ‘ <—truncate Channel C
&~ =0
3 5
= = t=2
5] Rt
- 2 4 t=3
= : N
1] ',-|pad Zero b

(a) O apywdc  mhvoxoe  ywple  (b) Offline ypovixd| petatdmon Sk (¢) Online ypovix petatodnion (evioda
UETUTOTLOT). xatevduvor). xatevYuvon).

Figure 1.8: TSM: Xyfuota npocappocuéva and [63].

Y0voho Aedouévev \ # Bivteo v Emahidevon \ # Bivteo v Aliohdynon \ # Katnyoplec

HMDB51 3570 1530 o1
UCF101 9537 3783 101
DIVINGA48 15943 2096 48
EGTEA GAZE+ 8299 2022 106
VOLLEYBALL 2152 1341 8
YUP++ 120 1080 20

Table 1.1: Ytoatiotind ototyelor TEAX®Y GUVOAWY Bedopévwy. Oheg ol Bc&ostq elvon uixpnc
xhipoag o Uxoug.

[oe xadeva amd to mpoavapep¥évia oOvola BEBOUEVLY, TUPEYETAUL EVOG ETIOTUOG OL-
ayweloloe exnafdeuonc-enoifdevong. o v alloAdYNom TwY TEO-EXTUOEVUEVKDY UOV-
TENWY, T EXTUOEVOUNE GTO GUVORO EXTIAULDEUGTC X0 OTT) CUVEYELXL AVUPEROLUE TNV axpifela
070 GUYOAO ETUPWOT.

1.3.2 Apyitextovixr, Tou Auxtbou

H apyitextovinr) Temporal Shift Module (TSM) [63] yenotuonoteita yior Ohow Tar TeLpdporto
oty mopovon epyacta. To ResNet - 50 [38] ypnowomnoteiton we¢ Bdon touv TSM. To TSM
ebvon o amodotiny| apyttextovixy Nevpwvixold Axtiou 500 BlacTIoEMY ToU €YEL OYEDL-
a0 TeL yiot To TREOBANUA avaryvoplong dpdong. Emituyydver aviadiay TANeo@oploy petald
YELTOVIXGY X0p€ PETOTOTICOVTAG TUAUOTA TWV XUVAALDY XUTA UAXOG TNG YPOVIXNE OIdC TUoTG.
Ieplocdtepeg teyvinég Aemtouépeleg tapovotdlovton 6To Lyrua 1.8.

To TSM emhéyinxe o Pacind Yag HOVTIENO AOYW TNG UTOAOYIC TIXAC TOU UmOd0TIXOTY-
Tag. BEvtunwotoxd anotedéopata umopodv vo emiteuyYoly wohg pe 8 xapé tou Bivieo wg

XXX VIil



1.3. IIEIPAMATIK'H AZIOAN'OI'HXH

eloodo. Toco olvtouo urfxog avoxouilel OTUAVTIXG TS UTOAOYIOTIXEC OMOUTHOES TOCO
¢ CPU 600 xa tng GPU. H mpc)Ttn amodeinvieTon and UELWUEVT] POpTWOT| BECOUEVLY,
EVK 1) 0E0TEPN AMO UEWWUEVY TOGOTNTA UTONOYIOHOU EVTOS TOU VELPWWIXOUD OxtUou. Ex-
TO¢ av opileTan DLUPOPETIXG, 1) TEO-EXTAULOEUCT| YOS TEOYUATOTIOLE(TOL ol TO UNOEY %o BEV
xenoulomolel Etowua 3o amd dAkeg TnYES.

1.3.3 Ileslpopa 1 - Xdoua Metald Ilpayupatixody xou 3uv-
Yetixdv Bivteo

Ytoyoc¢

Iponyolueveg dMuUocteboELS OYETXE UE GUVIETIXES ELXOVES 4] CUUTEEAEVOUY OTL, OTAY TEOXELTAL
Y10 TEO-EXTAOEVOT), UIUNOT IOOTATOY TWV TEUYUATIXOY OEBOUEVWY 00MYEL OF Loy LEOTERES
OTTIXEC AVATORUC TAOELS Xat xohOTepa amotehéopata. d¢ ex To0TOU, 0 0TOYOC oWTOY TOU
TEWpdpaTog etvar var emakniedooude av auTh 1 0HAKGON Loy Vel xou Yl Bivieo. Luyxexpiuéva,
YPTOWOTOLOUUE TROCEY YO TIXES TEYVIXES TTou TpoTdUnxay oty evotnta 1.2.3. Tlapatneolue
TIC emOpdoElC TNG xdde TEYVIXNC O0Ta TEAXA amoTeEAéoUATA Xot TEOGOLOPILOVUE TTOLEC amd
auTeS ebvan EVEPYETIXEC.

Aentopépeieg

o H npo-exmaldeuon emTuY Y EVETAUL ATOXAELGTIXG UEGK TOU OYEDIOU AUTO-ETUPBAETOUEVTS
udinonc MoCoV2 [14]. To MoCoV2 emhéydnxe xadodc mpocpépet Evar GUVOLUGUO
LXAVOTIOUNTIXY ATOTEAECUATWY X0l UTOAOYLOTIXAG OTOOOTIXOTNTAS.

o To mepduoto Sieldyovton Bradoyixd. Xe xdle Briuc, e@opuoleTon ULl CUYXEXPUIEVN
Tpomonoinorn ot dladwacta tpo-exnaideuone. I'a tig Tponomotfoeg Kivnon xau Howx-
thopopia, xotaoxcudleton Eva VEO GUVIETING GUVOAD BEBOUEVKDY. Ol UTONOLTES TPOTOTOLY-
o€l LAOTIOLOUVTAL W¢ ETLTEOCUETO augmentation xoL CUVETMS ETAVAYPNOWOTOLOUY TO
TEONYOUUEVO GUVONO BEDOUEVGY.

e To olvoho dedopevny po-exnatdeuong anoteleiton and 100K un emonuaocuevae Bivieo
pedoctak (BA. evotnTa 1.2.2) xou xotaoxeudotxe ue Tuyado derypotorndio mopauétomy.

o To tehind ohvola BeBoPEVeY TaEOoLGLALOLY CNUAVTIXES DLAPORES UETAE) TOUC. MUVETWC,
elvor Tdovo Lol CUYXEXELIEVT, TpoToTolnoT Vo odnyfoel oc abénon tng oxpelfBelog
Yoo €val UTocUVoAO TV Bdoewy xou oe peiwon yia ta utdroima.  {2¢ ex TolToU, T
Tponoroinoy Yo dutneniel yioa dho Tor uTdroina TELRdUTA €8V 0dnYel ot Beltiwon
yio Tig Bdoeig avaryvoplong dpdong HMDB51 xoaw UCF101. Autég emhéydnxay w¢ to
enixevtpo g Toapovoag epyasiog. AtapopeTind, 1 Tpononoinon Yo aropeipiel xal dev
Yo evowuatwiel o endueva TEpouaTXd BridaTo.

e To apyx6 Thdvo mpo-exnaideuorng anoterelton and Bivieo @pdutak pe yeauuxr| xivnon
xan dev mepthapBdvouy pedodoug Ye@ipwong YdouaToc.

XXXIX



1.3. IIEIPAMATIK'H AZIOAN'OI'HXH

o H oxpiBeta emxdpmong petd tnv tehinn exnaidevor Beloxeton otov Iivaxo 1.2.

Méodog | Awrthenon | HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP
Tirota - 31.5 70.3 4.7 50.5 61.1 43.7
Apyn - 41.4 72.7 24.3 49.8 80.6 52.3
dbHvto Nou 47.4 74.2 23.0 47.1 77.6 56.4
Kivnon Nou 47.3 75.7 21.7 48.6 79.2 59.5
Iowaropoppia Now 50.4 77.8 24.9 49.8 80.8 63.1
Yulxpuvon + Teéuouro Nou 52.8 78.0 26.0 50.7 80.8 61.9
Metatomon Nou 54.5 79.6 29.5 50.8 80.9 65.1
Zouy Nou 54.3 80.2 30.8 52.0 81.4 65.2
Omntied) T'ovia Oy 53.3 78.7 25.0 50.0 80.7 62.6
Opdida Oy 53.3 79.7 30.3 51.9 81.9 66.0

Table 1.2: Ilefpopa 1: Telwr axplBela emxdpnonc. Bold ypaupotooeipd umodeixviet to
xohOtepa amotehéopata oTr ouyxexpwévn Bdon. H othkn Awrthenon xadopilel edv n av-
tlo oy tpomonoinon Ya dratnendel yior Gha Tar uTOAOLTAL TELRAUATOL.

pINLINIC

e H mpogavic mapatripnon eivar 6Tl 1 e€opoiwon Wioag WioTnTac €yel Yetinn enidpoon
0T GUVOAAL BEBOPEVWY TOU TEPLAOBAVOLY TNV EV AOYw WLOTNTA Xou elTe opvnTxd| elte
xaio enidpoot ot GUVOA BEGOUEVKDY o eV TNV TepthapBdvouy. o napdderyua:

— H tuyawornoinomn tou gdvtou audvel Ty oxplfBeta oTic Bdoel avoryvaptong dpdong
HMDB51 xar UCF101, oAAd tn pewdver ota DIVING48 xou VOLLEYBALL.
Auté dev anotehel éxmingn. Ia to mpwTo, unopel va utotedel 6TL To POVTO Elvon
OLopoEETXO Yo xde BivTeo xan yevid doyeTo 600V aopd TNV 6KOTH XUTNYopld.
o to Bedtepo, elvon Aoyixd va Yewpricouye 6TL To QOVTO Elvon epimou xotvo
yior Ohar ToL DElypoaTar xou OTL 1) a3 oyéom UeTal pévTou xon Tpooxviou eivor
ONUOVTIXT| YO TOV TPOGOLOPLOUO TNG OWOTAS XUTNYORLaC.

— H tpornonoinom tng cuhhoyixng dpdorng elvon emwperrc Yiot T0 GOVOAO BEBOUEVWY
VOLLEYBALL, 6mou 1o yovtého mpénel vo udier vo mapatneetl ToAAS dtopa
Tawtoyeova. Tautdypova, elvon duouevrc yio To HMDBS1 émou 1 mActovotnta
TWV OELYUATWY amexoviCel UOALS €va dToyo.

o Oplopéva anoteréopata dev elvan ouvent|. o mopddetypa, to DIVING48 mepiéyet

OLYYEOVIOUEVA BIVTED XaTABVCEWY UE TOMAG dTOoua, GAAS 1) TPOTOTOMGT TNS OUAdIS
eTOELV@VEL Tal amoTeEAEoUaTa. 26T600, 1) TTwoT TNg axpifeiag dev elvon onuovT.

xl



1.4. ¥TNOVH

e H uévn tpononoinorn nou odnyel oe un tetpuuevn Pehtiwon o dheg Tig Pdoelg elvon 1
evioyvon tng monalopoppiag. Autd eivar GOUPEWYO UE TEONYOUUEVES EQYGIEC OYETIXG
UE TNV QUTO-ETBAETOUEVT) TPO-EXTIUOELUOT) e CUVIETIXES EVEC [4], oL oTtoleC xaTahn-
Youv 6T0 cuuTEpacua OTL 1) TowtAopop®la anoTelel actxy| WBIOTNTA YLoL TNV EXPAINON
LOY VROV AVUTHRAOC TACEMV.

o H mpo-exnaideuon elvon ToAL avaroteheopatiny yio To cOvoho dedopévewy EGTEA. H
xoANUTERN TROGEYYIOT Hog (Zouy) Beltudvel Ty axpiBelo uovo xotd 2% oe olyxplon
UE TNV eEXTaldELCT amd TO UNOEV.

1.3.4 lIlepautépw Ileipdpota

H Evétnta 7.2 nepiéyet emmAéov Telpduota OG0V apopd:

o Evahhaxtixéc yetddoug mapaoxeuric ouvietixwy Bivteo.

o Evolhoxtinolg unyoviouols exnaidevong.

o YUyxplon UETAE) ONUOVTIXOTNTOG OYAUATOS Xat xivnong oTta cuvileTind Biveo.
o Awpopetind TAHUN Seryudtewy otn cuvietiny| Bdon.

o AwpopeTiny| SLACTACT| EXOVOY ELGOBOU.

1.4 >dOvodn

Y1oyoc Tng Tapoloug BIMAWUATIXAC epyaciag HTay 1 enéxtact) Tou Yeuelmdous €pyou Tou
[49] xar 1 awTOUATH AAUTAOKELY GUVIETIXWY GUVOL®Y BEBOUEVLY YLar ovory veeLom dpdong.
Autd ta olvola SeBoUEVELY UTopoLY va yenoylomolndoly yio tpo-exnaidcuon 3D CNNs avti
Yo Ty xadiepwpévn npooéyyion Kinetics [11, 50]. Auth n npooéyyion unopel va yetpLdoet
OPLOUEVA ENATTOHATE TRUYUUTIXDY OEDOPEVGY, OTWE TO XOGTOC GUANOYAS Xl ETLCTUAVONS,
TOL TIVEUUOTIXG, BIXAOUATA, 1) BTG TNTA X0 xo 1) avIp®Tve TeoxatdAndn.

ZEXVHOUUE [UE TNV ETLOXOTNON TROTYOUUEVWY EQYACLWY OYETIXG UE EOVES pedxTal IFS.
[Swiitepn éugpaon 660nxe 0T oo TN detyuatornhio TUPUUETEWY TEOXEWEVOU VoL EAXYLO TOTIOL-
nooly avemdiunTa Qavoueva oTIC TEOXUTTOUCES exoves.  Ilewpouotiothxoue pe dhheg
OWXOYEVELEG EMOVWY PEOXTUA, ARG CUUTEPAVOUE OTL OEV EVOL XATUAANAES YLol QUTOUOTY
AAUTAOAEVT] GUVOAWY DEDOUEVWV.

211 oLVEYEL, dnuLoLEYHoUUE cUVTOUY BiviEo TPocUETOVTAC YPOVIXT DIUC TUCT) OTIC TROAVUPER-
Veloeg etdveg ppdtah. ATAY| yoouuixy| TUpeUBoAY T6V TURUUETEWY PEAXTUA 00NYEl ot Un
avoToNTXd anoTeAéopata. §26T600, 1) TUPEUBOAT EVOIGUEC®Y TUVEXWY ETAVEL QUTHY TNV
atéheto.  Auty) 1 Tpooéyyion xataoxeudlel amhd Bivieo ue ypauu xivnon. H onuov-
TIXOTEPN CUPPBOAY| TNE TOPOUCUS DIMAWUATIXNG EQYAOlAS EfVOL Ol TPOTEWVOUEVES TEYVIXES TTIPO-
OOUOIWONS TEAYHUTIXOY Bivieo. Avayvwplooue yeipoxivnta TIC WLOTNTES TWV TEOYUOTIXOV

xli



1.5. MEAAONTIK'EY [IPOEKTAYEIY

Bivteo xou mpotelvope puedddoug evonudtwong Toug ota cUVIETIX Blvieo xatd T dSLdpxela
¢ mpo-exmaidevong. Tétoleg widtNTEG ebvan 1 pn yeouuxr xivnor, to tuyalo @oévTo, 1|
UETATOTLON TNS XAUEQAS Xatk dAAN. ETdLdx0ovTag Vo EVIOTIGOUUE YopoxTNELo Td GUVIETIXMY
OEDOUEVLY TOU BEATIOVOUY ToL ATOTEAEGUATO OE TEAYHATIXY BIVTED, XATUGHEVACHUE ETUTAEOV
EVOANOXTIXE GUVORN DEBOUEVMY TOU BLUPEPOLUY CTUAVTIXG AT TO PEOXTUA.

Metd tn Sie€orywy ) TOAMATAGY TELRAUATEOV, UTOPOVUE Vo EE0YAYOUUE UEXETE CUUTEQRHO-
HOUTOL OYETIXGL UE TNV TRo-EXTaldEUOT) Ue cuvieTixd dedouéva. TlpcTov, evtonicaue moAamhég
ued6d0uc Bertiwone Tne anddoong oe TpayuaTxé Bdoeic. Autd umopel vo emitevy el ye TV
evioyvom g ToLUAOUOEPIUG TKV CUVIETIXWY DEDOUEVKY, UE TNV TEOCOUOIWOY YoEuXTNELo-
TIXWV TRUYUATIXGY DEBOUEVRY 0TS TUY A0 POVTO, TEPLOOLXA xivnom xou oyeTiny| xivnomn tng
rdpepag. Emmiéov, ocuunepalvouue OTL 1) ETOTTEVOUEVT EXTIUBEUOT) EIVOL L0l OLXOVOUXOTERT)
AOGT o€ GUYXELON UE EVOANIXTIXES AUTO-ETOTTEVOUEVES TpooeYYioelc. Emmiéoy, avoxanin-
TOUUE OTL TO Oy A TV cUVIETIXGY Bivteo elvar To onuavTnd and Ty xivnor touc. Térog,
TOQUTNEOVUUE OTL TOL TRO-EXTAUDEVUEVA HOVTEN CUVEY KOS UTOAELTOURYOLY e BlviEo Tou Tep-
i€y ouv Aentopépeteg. Ipoteivouue mioaveg MOoELS Yiot aUTO TO EAATTWUA, OL OTIOlES APTvOVTL
yioo pehhovtiny| epyooio.

1.5 MeArhovTtixég [lpoextdoeig

To npotewvouevo mhaiclo TapoucLdlEl OPIGUEVOUC TIEPLOPLOUOUE XOl UTOREL GUVETAC VoL ETEX-
Tadel mpog dudpopeg xaTteVHiVOELS. BUYHEXQWIEVA:

o Muxpég Aentopgpeleg: 'Eyel napatneniel nwg to mpotevdueva oyédla Teo-exnaideuong

001N YOUV GE LOVTEAN TTIOU GUY VL ATOTUY Y EVOUY VoL avLy VEOGOUY UIXEEC AETTOUEQRELES TTOU
umdpyouy ota Bivteo. Tapadelypota autol Tou ehatt®uatog eivon epyaheio, avipdmiva
docpar xadodg xan exgpdoelg Tou mpoowmou. H outlo autAg Tng cuumeppopds eivon To
o0OVOLO BEBOUEVWY TPO-EXTIALBEUOTG OTIOU OL ETUIXETES ECUPTAOVTAL ATOXAEIO TIXG ATt6 TO
GLVOALXO BIVTED o Oyt omd UEUOVWUEVES AeTTOUEpELeS. )¢ X ToUTOU, 1) AmOBOOT) OE
TporyHoTixd dedouéva umopel var evioyudel €dv xatd Tr didpxeia TG TEo-exTaldEVOTS
T0 povtéro extidetan ot Bivieo Twv onolwv ol eTéteg xadopiCovton amd Eva Uixpod
T0C0GTO TNG EUPavilouevng xivnorng.

o Evoalhoxtind cuvietixd dedopéva: H mpo-exmaldevon pe tpiodidotota IFS
pedctol Vo umopoVoe Vo eVioyUoEL TNV Ywewxr) avTiAndn Tou TeoxiTTovTog HovTEAoU.
Emuniéov, n npocirxn Julia @pdxtol oto cuviletind clvolo dedouévey Ya uropoloe
VOLEVIOYUOEL TNV TOWUMAOUOR(IA X GUVETIKOS TNV am6dooT. 2oTOC0, 1) TEMOTY dLadtxacio
umo@épel amo aliasing, v 1 6eltepn dev unopel vo avtouatonotniel yia T clvieon
OLVOAWY OEBOUEVLY. ()¢ ex TOUTOU, amontelton TEOCVETY UEANOVTIXY EpELVAL

o Yuvpppalopeva: ‘Oha ta cuvietind Bivieo mou mapdyovtouw oe autd T0 €pYO El-
vai Uixpo0 pfxoug xat ametxoviCouy uia povo xivnon. Ta mpaypoatind Bivieo ebvor mo
oOVUETA X UTOPOVY VoL ATOTEAOUVTAL antd TOAAS GTOLyEld oL BLory weilovTon 0T Sudo-
Taon Tou Yeovou. To xhewl yioa Ty xotavénon autov tev Bivieo eivar 1 ixavoTnTa

xlii



1.5. MEAAONTIK'EY [IPOEKTAYEIY

wovtehomnolnong tng oyéong Yetalld daxpivov yeyovotwy. H mpocouolwon authc tng
TONUTIAOXOTNTAG EVTOS TV CUVUETIXMY OEOOUEVGY AVOUEVETOL VO EVIGYUCEL TNV oTto-
0007 ToU OXTUOU.

GAN: To ydouo eTag) Tory Loty xon GUVIETIXGY BIvTeo YeupdInXE ue Yetpoxiv-
NTO EVIOTUOUO TV YUPUXTNEIOTIXMY TWV TEAYHATx®y Bivieo xou Ty mpocouoiwon
Toug ota ouvieTd Bivteo. Evohhaxtind, autd to €pyo Yo umopoloe vo avortevel
oe generative adversarial networks (GAN) [33, 44]. Qotéoo, extéc and Tic AvE-
avoueveg amouthoelg utohoylouol, ta GANs cuyvd odnyoly oe TeyVixés TEOXAHOELS
ot dadixacio exmaldevorg.

Motion Capture: e auto to éyypago, 1 xivnor dnuroueyinxe e delypoutd tuyaiomv
xaunmuAov. Iho peaiiotind| xivnon Ja unopoloe va emteuyVel YENOIOTOLOVTUS UT-
doyovta civoha Bedouévwy xataypaphc xivione [54, 72]. H éyyuvon yvoong tng
avlpomvng xivnuoatixic oe cuvleTixd Bivieo Yo unopoloe vo cufdier 6T YEQOpwON
Tou ydopotos. 201600, xdTL T€Tolo Vo €¥eTe To {TNUo TveudoTixy WloxTnoloc.

xliii



Chapter 2

Introduction

This is the first chapter of the present work. It serves as a more detailed version of the
abstract. Section 2.1 discusses the background behind the thesis as well as states its
objectives. Next, Section 2.2 lists major contributions of this thesis. Lastly, Section 2.3
presents the thesis structure.

2.1 Motivation

Contemporary computer vision systems employ complex neural networks that require
enormous amounts of data for training. Beginning with the ImageNet dataset [85], that
consists of 1.4 million labeled images, the scale of vision datasets has been rapidly in-
creasing. Since then, vision models have been trained using datasets whose size varies
from tens of millions to a billion of samples [34, 112, 30].

Multiple issues arise regarding such datasets. First, the task of creating (collecting and
optionally labeling) and managing (hosting and distributing) such datasets is seriously
arduous. Second, it has been noted that vision datasets may inherit human biases [91, 9,
110, 117] and contain inappropriate content [7]. Third, the depiction of humans in these
datasets poses questions of privacy [3]. Lastly, ownership concerns limit many datasets
to noncommercial usage only.

As a result, there has recently been growing interest in synthetic datasets that mitigate
these shortcomings. Amongst them, noteworthy is the seminal work of [49] who proposed
to pre-train 2D CNNs on automatically generated images of fractals [5]. Since then,
multiple other works have either improved their approach [4, 2, 48] or extended it to
other domains [113].

As such datasets can be easily created automatically, the issue of ownership is solved.
Additionally, these works do not depict human beings and therefore, there are no questions
about biases, inappropriate content, and privacy. However, although this pre-training
approach easily surpasses training from scratch, there is still a large gap compared to
pre-training on real data.



2.2. CONTRIBUTIONS

The objective of this work is extend the aforementioned approach to the task of action
recognition. Automatic action recognition with neural networks is of paramount impor-
tance as it enables accurate detection and interpretation of human actions from video or
sensor data. This technology has broad applications across various domains, including
surveillance, healthcare, robotics, sports analysis, and human-computer interaction. The
significance of action recognition is additionally outlined by the sheer amount of videos
available on the internet. With over 500 hours of video uploaded to YouTube every minute,
there is an immediate need for robust algorithms that can help organize, summarize and
retrieve this massive amount of data.

2.2 Contributions

As mentioned previously, this thesis seeks to extend the ideas of [49] to the field of video
and apply them to the task of action recognition. Specifically, the main contributions of
this thesis are the following:

e Using fractal geometry [5] as well as other generative processes, we propose a
methodology to automatically construct large-scale datasets of short synthetic video
clips. Such datasets could be employed for pre-training 3D CNNs instead of Kinetics
[11, 50]. Both supervised and self-supervised learning is applicable.

e Additionally, we narrow the domain gap between synthetic and real videos, signif-
icantly improving downstream results. To achieve this, we manually observe real
video samples and identify their key properties such a periodic motion, random back-
ground, camera displacement etc. These properties are carefully emulated during
pre-training via simple transformations. Through rigorous ablations we determine
the properties of synthetic data that strengthen downstream results.

e Our proposed pre-training framework is evaluated by fine-tuning on small-scale ac-
tion recognition datasets HMDB51 [56] and UCF101 [89] as well as four other video
benchmarks. Compared to standard Kinetics pre-training, our reported results come
close and are even superior on a portion of benchmarks.

e Lastly, we conduct a thorough error analysis of the pre-trained models’ predictions.
We deduce that on downstream datasets, models systematically misclassify samples
which share specific characteristics. To mitigate this inadequacy, we propose tailored
modifications that can be applied to synthetic datasets. These modifications are left
for future work and are expected to lead to stronger visual representations as well
as better downstream results.

2.3 Thesis Structure

The rest of this work is organized as follows:



2.3. THESIS STRUCTURE

Chapter 3 provides a brief overview of theoretical concepts that are necessary for
understanding the present work: machine learning, deep learning and fractal geom-
etry.

Chapter 4 summarizes previously published works on relevant domains: pre-training
with synthetic data, spatiotemporal models and action recognition datasets.

Chapter 5 discusses the concept of fractal images, providing rendering algorithms
as well as heuristics that minimize degenerate behavior in rendering.

Chapter 6 presents a methodology to automatically produce short video clips using
fractal geometry. Additionally, it proposes several techniques for domain adaptation.

Chapter 7 describes the proposed experimental frameworks as well as lists quantifi-
able results on downstream tasks.

Chapter 8 summarizes the contributions of this work, presents its conclusions and
proposes future directions.



2.3. THESIS STRUCTURE




Chapter 3

Background

This chapter provides a brief overview of theoretical concepts that will serve as building
blocks for the present work. Specifically, Section 3.1 establishes the field of Machine
Learning as well as defines its categories. Next, Section 3.2 discusses the domain of
Deep Learning while, Section 3.3 presents relevant models and techniques in more detail.
Section 3.4 overviews the notion of Transfer Learning which is of great importance for the
present work. Furthermore, Section 3.5 introduces the concept of Self-Supervised Learning
as well as several recently introduced algorithms. Last, Section 3.6 lists mathematical
concepts that are necessary for the understanding of fractals.

3.1 Machine Learning

Machine learning is a branch of Artificial Intelligence that uses data and algorithms to
imitate the way that humans learn, gradually improving its accuracy.

Such algorithms are used in a wide variety of applications, including but not limited
to computer vision, speech recognition and natural language processing. In the past few
decades, this field has enjoyed massive growth and is now amongst the most important
sectors of computer science.

3.1.1 Types of Machine Learning

Machine learning techniques are divided into three main categories, based on the input
signal:

e Supervised learning
e Unsupervised learning

e Reinforcement learning



3.1. MACHINE LEARNING

Supervised learning

The term supervised learning refers to algorithms that work on data that contains both the
inputs and the desired outputs. In other words, the dataset is labeled. Mathematically,
such algorithms aim to create a mapping y = f(x), where z is the input and y is the
output of the given dataset.

Additionally, supervised learning can be divided into two types of problems: classifica-
tion and regression. Classification algorithms assign data into specific discrete categories.
A real world example is the classification of a tumor as benign or malicious. On the other
hand, regression techniques, given a data point, predict numerical values. An instance of
regression is an algorithm that predicts stock prices.

Some examples of supervised learning techniques are:

e Linear regression

Naive Bayes

K-nearest neighbors (KNN)

Support Vector Machines (SVM)

Decision trees

Unsupervised Learning

The field of unsupervised learning studies algorithms that work on data that contains
only inputs and lacks labels. Instead of responding to feedback, such algorithms detect
patterns and structures in data without human intervention.

Unsupervised learning techniques can be further divided into three categories major
categories: clustering, dimensionality reduction and association.

e Clustering is the process of dividing data points based on their similarities or dif-
ferences.

e Dimensionality reduction is the transformation of an initial dataset into a different
one where the number of samples remains the same, but the size of each sample is
reduced.

e Association is the detection of relationships between different variables in a dataset.

Reinforcement Learning

Reinforcement learning revolves around the concept of a virtual agent that performs a
specific task in a given environment. The goal of such an algorithm is for the agent to
learn to perform its task correctly. In order to ensure this, the agent is awarded with
positive or negative rewards based on its actions and the state of the environment.



3.2. DEEP LEARNING

3.2 Deep Learning

3.2.1 Introduction

Deep learning is a subset of machine learning, which is centered around models called
neural networks. Such models are usually constructed by stacking smaller standardized
sub-modules. This results in large and computationally heavy neural architectures. Deep
learning eliminates some of data pre-processing and feature extraction that is typically
involved with machine learning. It is noteworthy that in many applications, deep learning
models surpass human performance.

3.2.2 Concepts
Loss Function

The goal of any Deep Learning algorithm is to return a mapping f() that accurately
matches input samples to their corresponding labels. Therefore, it is necessary to measure
the error (loss) of such a model, i.e. a distance between the true label y and the model
prediction . This is done using a loss function L(g,y) whose output is a numeric. Such
a function must have an infimum, which means that the lower the error value, the better
the prediction.

Given a train set (21,,%1,), a cost function L per sample and a model f(x;6), the
total loss is defined as the average loss on all training data:

1 N
:NZ ZL'“

The goal of the training process is to find the optimal parameters 6 that minimize the
total error:

0 = argmin, £ (0)

Some widely used loss functions are the following:

Mean Squared Error (MSE):

Mean Absolute Error (MAE):



3.2. DEEP LEARNING

Cross Entropy (CE):

L(p,q) = = > _ prlog(qs)
k

In this case, p and q are the true and the predicted probability distributions, respec-
tively.

Gradient Descent

Gradient descent (GD) is the dominant algorithm for training neural networks. A gradient
(at a point) is the slope of the tangent to the function at that point and it points to the
direction of the most significant increase of the function. Gradient descent computes
the gradient of the loss function £(f) with respect to the parameters 6 for the entire
training set. A hyperparameter n (learning rate) controls the extent to which the model
parameters are adjusted concerning the loss gradient. GD is formulated as:

0 =0—nVeL(0)

Stochastic Gradient Descent (SGD) is a variation of GD that performs a parameter
update for each training example x; and label y;:

0=0-— erﬁ(e; 5%%‘)

SGD is computationally more efficient than GD, as the latter performs redundant
computations for large datasets. SGD does away with this redundancy by performing one
update at a time. Therefore, SGD is more suitable for online learning.

Underfitting, Overfitting Regularization & Dropout

A key challenge in the field of machine learning is for the model to perform well on new
inputs samples that were not seen during training. This property is called generalization.
In order to evaluate the generalization of a machine learning model the following steps are
executed. First, the model is trained on a training set. After completion, a separate set of
samples called test set is fed into the model. Using the model’s outputs, numeric values are



3.2. DEEP LEARNING

i I
Error Under- I Over-
fitting | fitting Validation
: set

|
I
|
|
|
|
|
|
|
]
1
|
|
I
I
I
I
1

T : Training

SWEEL 5po

1

Number of

iterations

Figure 3.1: Training and test errors behave differently. At the left end of the figure, both
errors are high. This is underfitting. Making the model more complex, training error
decreases, but so does the gap between training and generalization error. The state are
the right end of the figure is overfitting. Figure reproduced from [98].

called metrics are calculated. These metrics measure the model’s generalization ability.
Examples are accuracy for classification and mean Intersection-Over-Union (mIOU) for
semantic segmentation.

Based on the performance of the model on the training set and the test set, the
following phenomena can be distinguished:

e Underfitting occurs when the model cannot achieve sufficient results on the train-
ing set.

e Overfitting occurs when the model achieves strong results on the training set but
fails to do so on the test set, creating a gap in performance. Both behaviors are
demonstrated in Figure 3.1.



3.2. DEEP LEARNING

Several methods exist that combat overfitting and aid in generalization. The two most
common ones are Regularization and Dropout.

Regularization, otherwise known as weight decay, imposes restrictions to the learning
objective that force the model’s parameters to have numerically smaller absolute values.
Mathematically, this can be expressed by adding a penalty R(6) to the learning objective,
multiplied by a chosen hyperparameter A as follows:

The two most common regularization variants are L1 and L2. L1 regularization pe-
nalizes the L1 norm of the model’s weights punishing uniformly low and high values. L2
regularization, on the other hand takes the form of the standard L2 norm (Euclidean) of
the parameters, trying to keep the sum of the squares of the parameter values low.

Ry, (W) =W} =Y W,
1,j

R, (W) =[[Wll3 =) (W)’

i3

Dropout [90] is another method that combats overfitting in neural network training.
Specifically, dropout is parameterized by a single probability p. During training, matrices
that are computed in intermediate (hidden) layers of the neural network have their values
randomly replaced with zero with probability p. Additionally, the entire matrix is mul-
tiplied by 1%;; so that the distribution of the output remains the same. During testing,
dropout is disabled. This method forces the network not to rely on specific weights and
thus ameliorates overfitting.

Activation Functions

To model complex non-linear phenomena that occur in the real world, neural networks
apply a variety of functions to intermediate representations. Such functions can also help
normalize computations and stabilize the training process. Some of the most popular
functions are presented next:

Sigmoid Function:

B 1
C l4e®

()

This formula constrains the output between 0 and 1 and thus can be employed to
model a probability. It is plotted in Figure 3.2.

10



3.3. DEEP LEARNING MODELS

)
Cn

| fa | I
L

-6 -4 -2 0 2 4 6

Figure 3.2: The sigmoid activation function. Figure reproduced from [99].

Rectified Linear Unit (ReLU)

f(z) = max(z,0)

ReLU [75] is the most widely used activation function chiefly due to its fast computa-
tion. It is plotted in Figure 3.3.

Hyperbolic Tangent (tanh)

et —e "

tanh(x) = pr—
i

tanh restricts its outputs in the range between -1 and 1. It is illustrated in Figure 3.4

3.3 Deep Learning Models

3.3.1 Feedforward Neural Networks
Feedforward Neural Networks, otherwise known as Multilayer Perceptrons (MLPs), are

the foundation of deep learning models. Although, initially proposed as a model of the
human brain, MLPs have a simple structure. An MLP f: R%» — Rfut consists of n

11



3.3. DEEP LEARNING MODELS

— 10 -5

Figure 3.3: The ReLU activation function. Figure reproduced from [100].

1.0

05|

_1.0}

Figure 3.4: The tanh activation function. Figure reproduced from [95].

12



3.3. DEEP LEARNING MODELS

feedforward layers stacked on top of each other: f(z) = (f(”) ofrDo...0 f(l)) (x).
Each layer f®: R%-1 — R% has the form:

fOz) =0 (Wzx +b)
where 2 € R%-1 is the output of the previous layer, o is an activation function and

W € R%-1%di b ¢ R% are learnable parameters. An example of an MLP is shown in
Figure 3.5.

Hidden

Figure 3.5: An MLP with n = 2,d;, = 3,d; = 4, dy = 2. Figure reproduced from [108].

3.3.2 Recurrent Neural Networks

In the field of computer science, various modalities can be represented as sequences with
variable length. Examples are text, audio, music notes, DNA sequences etc. Feedforward
neural networks assume that inputs have fixed size and are independent and are therefore

not suitable for such data.

13



3.3. DEEP LEARNING MODELS

Recurrent Neural Networks produce their output taking into consideration accumu-
lated contextual information from previous instances (i.e. memory) [32]. Specifically,
information flows from one timestep to the next through a feedback loop as depicted in
Figure 3.6

Unfold

Figure 3.6: Recurrence mechanism used in RNNs. Figure reproduced from [109].

The most simple variant of the RNN is the Elman RNN [25]. Given an input sequence
T1,To,...,Tr, at time t, this model computes the hidden state h; and the output o; as
follows:

ht = Op (U.I’t + Vht_l + bh)
Oy = Oy (W:ct + by)

where o4, 0, are activation functions, U, V,W are weight matrices and by, b;, are bias
vectors. The total number of learnable parameters is independent of the sequence length,
as the same parameters are used for each time-step.

As the length of the input sequence increases, the Elman RNN becomes more difficult
to optimize [6]. Specifically, large input length can result in either the “exploding” or
“vanishing” gradients phenomenon. One method that can combat the issue of “exploding”
gradients is to constrain the gradients if they exceed a certain threshold. This technique
is called gradient clipping [78]. As alternative solution, different RNN architectures have
been designed to avoid the aforementioned problem.

Long Short-Term Memory (LSTM) [40] is a subcategory of RNN that was intro-
duced to cope with “vanishing” gradients during the training process, allowing learning
long-term dependencies that are not feasible for Elman RNN. The building block of LSTM

14



3.3. DEEP LEARNING MODELS

A A T
N N D
—> ————- > >
E@nb>
A b A
(] [0
- > >
J AN J

Figure 3.7: Ilustration of an LSTM cell. Figure reproduced from [16].

networks, otherwise known as LSTM cell is illustrated in Figure 3.7 and consists of three
gating units and two states that control the flow of information.

The forget gate (f;) decides what information should be thrown away or kept
based on previous hidden state h;_; and the current input z;. The output range
is between 0 and 1. When the output is close to 0, information is forgotten, while
close to 1 means to it is being retained.

The input gate (i;) determines what input values will be propagated to the new
cell state.

The output gate (o;) controls the exposure of the cell state to the hidden state
based on the current input and the previous hidden state.

The cell state (¢;) contains internal information and is updated based on past
information filtered via the forget gate and on current information filtered via the
input gate.

the hidden state (h;) encodes the input sequence until time-step t.

The aforementioned gates and states are computed as follows:

fi=0Wyszy 4+ Ushi_y + by)

iy =0 (Wixy + Uihy—q + b;)

or =0 (Wozy + Ushy—1 + b,)

up = tanh (Wyxy + Uyhi—1 + by,)
a=fOa 1+ Ouw

hi = 0t © op(cy)

15



3.3. DEEP LEARNING MODELS

3.3.3 2D Convolutional Neural Networks

A Convolutional Neural Network (ConvNet/CNN) [29, 58] is a different variant of neural
networks that has gained much popularity in the field of Computer Vision [55]. The
cornerstone of CNNs is the operation of convolution, which is defined as follows:

(I K)(i,5)=>_ Y I(i+m,j+n)K(m,n)

where [ is an input 2D matrix and K is a weighting 2D filter whose dimensions are
much smaller than the input 1. Intuitively, K can be seen as a detector that finds patterns
at different parts of the input and in the context of CNNSs, is usually a learnable parameter.

After the convolution operation, the resulting outputs are passed to an activation
function such as ReLU [75]. On top of that, CNNs usually incorporate pooling layers that
gradually decrease the spatial extent of the output. Max pooling and average pooling
return the maximum and the average value respectively from the section of the image
covered by the filter. A simple CNN architecture is shown in Figure 3.8. A demonstration
of the aforementioned max pooling operation is displayed in Figure 3.9.

Conv + Conv + Conv + Conv +
Maxpool Maxpool Maxpool Maxpool

FC FC  Output

Figure 3.8: A simple CNN architecture. Figure reproduced from [96].

One key feature of CNNs is parameter sharing. This is based on the assumption that
a pattern should be detectable irrespective of its position. To enforce this, the filter K is
applied in a sliding window and therefore reused for different spatial positions. As a result,
the number of parameters is greatly reduced and so is the computational cost. Another
important property is equivariance. In other words, translation of the input results in
translation of the output feature map. This allows filters to detect patterns across the
input.

16



3.4. TRANSFER LEARNING

12 {20 | 30 | O

BN 2 [ 0 | 2x2Max-Pool [ 30
34 |70 [ 37| 4 112 37

1121100 | 25 | 12

Figure 3.9: Example of 2 x 2 max pooling downsampling on a 4 x 4 matrix. Figure
reproduced from [97].

3.3.4 3D Convolutional Neural Networks

The main domain of 2D CNNs is 2D images. 3D CNNs [45], on the other hand are designed
for video. Specifically, whereas 2D CNNs extract the spatial features from a single image,
3D CNNs take in to account the temporal dimension and extract spatiotemporal features
from a sequence of images.

In order to extract such features, 3D CNNs rely on the operation of 3D convolution.
To be precise, this operation uses 3D filters that slide in 3 dimensions.

3.4 Transfer Learning

Large neural networks demand vast amounts of labeled data for training. In many cases
such data may be unavailable and as a result, the performance of neural networks drop.
This can be mitigated by leveraging knowledge from a source task with ample amounts
of data and transferring it to a different target task where data is not sufficient. This
procedure is called transfer learning.

3.5 Self-Supervised Learning Frameworks

Supervised learning requires labeled datasets. However, labeled examples are often ex-
pensive, difficult and time-consuming to obtain as they demand the efforts of experienced
human annotators. Additionally, supervised learning methods suffer from spurious corre-
lations and generalization errors, while also being vulnerable to adversarial attacks. As

17



3.5. SELF-SUPERVISED LEARNING FRAMEWORKS

such, the machine learning community has recently shown strong interest in alternative
pre-training strategies.

Semi-supervised (SSL) learning has been proposed as a solution to the aforementioned
limitations of supervised learning and has recently significantly risen in popularity. SSL
is regarded as a subset of unsupervised learning. SSL algorithms are capable of producing
strong representations from a large number of unlabeled instances without any human
annotation. During SSL pre-training, a pretext task is designed for a deep learning
algorithm to solve and pseudolabels for the pretext task are automatically constructed
based on certain attributes of the input data. After the SSL pre-training, the learned
model can be further transferred to downstream tasks.

The following subsections describe a few contemporary SSL frameworks, namely Sim-
CLR [13], MoCoV2 [14] and BYOL [35]. These frameworks will be employed in experi-
ments in later chapters.

3.5.1 SimCLR

SimCLR [13] randomly samples a batch of N samples and defines a contrastive prediction
task on pairs of augmented instances from the batch. This results in 2N input samples.
For each positive pair, SImCLR treats the other 2(N — 1) augmented instances in the
batch as negative instances. Cosine similarity between two instances u and v is calculated
as:

ulv

(Hfeel] - ffol])

sim(u,v) =

For a positive pair of instances (i, j), the loss function is calculated as:

exp(sim(z;, z;)/T)
Z%g? exp(sim(z;, zx)/T)

li,j = —lOg

where T' is the temperature hyperparameter.

The final loss is computed for all positive pairs, including both (7, 5) and (j,4). For
the domain of images, the employed augmentations techniques usually include cropping,
resizing, and color distortion. Compared to the standard supervised classification task,
SimCLR is computationally heavier as it requires two forward and two backward passes
per training step. Additionally, increasing the batch size N increases the number of
negative samples. This renders the task more difficult and therefore has been shown to
lead to better downstream results. As such, SimCLR optimally requires a batch size in
the order of thousands and is consequentially computationally heavy.

18



3.5. SELF-SUPERVISED LEARNING FRAMEWORKS

3.5.2 MoCoV2

MoCoV2 [14] similarly employs a contrastive approach and can be considered as an ex-
tension of SImCLR. Specifically, a dictionary lookup task is utilized. Consider an encoded
query ¢ and several previously encoded examples {ko, k1, ka2, - - - }, which are the keys of
a dictionary. Assume that a single key (denoted as k) in the dictionary matches q. A
contrastive loss is a function whose value is low if ¢ is similar to its positive key k£, and
dissimilar to all other keys, which are called negative. The loss function in MoCoV2
measures similarity via dot product and is calculated as:

exp(q-ky/T)
Zfio exp(q - ki/T

where T' stands for the temperature hyperparameter. The sum is calculated over one
positive example and K negative examples.

L = —log

MoCoV?2 utilizes two neural networks. The first one computes the queries ¢ and is
fully differentiable. It requires both a forward and a backward pass. The second one
computes the keys k and is not differentiable. It requires only a forward pass. As such, its
parameters are updated as an exponential moving average of the first model’s, The keys
are stored in a circular queue and are updated at each training step. Before training, the
queue is randomly initialized and at each step the outputs of the second model are added
to it, replacing the oldest entries.

Computationally, MoCoV2 requires two forward steps and one backward step. Hence
it is more lightweight that SimCLR but still heavier than the supervised classification ob-
jective. In addition, SiImCLR’s requirement for large batch size is not present in MoCoV?2.
The number of negative examples and therefore the difficulty depends on the size of the
circular queue and not the batch size. As a result, for ImageNet pre-training, MoCoV2
achieves stronger downstream results compared to SimCLR. This is especially evident for
smaller batch sizes.

3.5.3 BYOL

Bootstrap your own latent (BYOL) [35] differs from the previously described frameworks
as it does not use negative pairs. Similarly to MoCoV2, BYOL employs two neural
networks: the online network which is fully differentiable and the target network which is
not differentiable. As previously, BYOL updates the target network with a slow-moving
average of the online network.

Like in all previous frameworks, the first step constructs two different views ¢, k of
each input sample by applying different augmentations. Afterwards, both views are fed
through both encoders resulting in four output representations in total:

19



3.6. MATHEMATICAL BACKGROUND FOR ITERATED FUNCTION SYSTEMS

g, = encoder_online(q

(9)
q: = encoder_target(q)
k, = encoder_online(k)

(k)

k; = encoder_target(k

BYOL’s training objective is to simply maximize the cosine similarity between all
matching representations:

L =2 —2x (sim(qo, k) + sim(ko, q1))

Computationally, each training step requires four forward passes and two backward
passes. As such, BYOL is significantly more intensive than all other objectives deployed
in the present work. This is however justified with improved downstream results. BYOL
surpasses both SIimCLR and MoCoV2 for ImageNet pre-training and is expected to do
so in experiments in later chapters as well. Moreover, negative samples are not employed
within this framework and therefore, unlike SimCLR, large batch sizes are not required.

3.6 Mathematical Background for Iterated Function
Systems

Aside from machine learning and deep learning, a key element of the present work is the
notion of fractals. As such, it is necessary to first establish some relevant mathematical
concepts .

Definition 1 (Metric Space). A metric space is the pairing of a space X, with a function
which measures distance d : X x X +— R. d must satisfy the following requirements:

L. d(z,z) =0 Ve e X
2. d(xz,y) >0 Ve,ye X,x #y
3. d(z,y) =d(y,x) Ve,ye X
4. d(z,z) <d(xz,y) + d(y, 2) Ve, y,z € X

Definition 2 (Sequence of Bounded Variation). Let {x,}5°, be a sequence in a metric
space (X,d). It is called a sequence of bounded variation if the following property holds:

o
Z d(xps1,x,) < 00
n=1

20



3.6. MATHEMATICAL BACKGROUND FOR ITERATED FUNCTION SYSTEMS

Definition 3 (Cauchy Sequence). Let {x,}32, be a sequence in a metric space (X, d).
It is called a Cauchy sequence if for any ¢ > 0, AN, € N such that if m,n € N and
m,n > N, then d(x,, x,) < €.

Definition 4 (Complete Metric Space). If (X,d) is a metric space, then the following
statements are equivalent:

e (X,d) is a complete metric space.
o Fvery Cauchy sequence in X converges to a point in X.

o Fuvery sequence of bounded variation in X converges to a point in X.

Definition 5 (Contractive Function). A function f : X — X is called contractive on a
given metric space (X,d) if Ic € [0,1) such that d(f(x), f(y)) < c-d(z,y),Ve,y € X. In
this case, f is called a contraction mapping, and c its contraction factor.

Definition 6 (Fized Point). Let (X,d) be a metric space, and f : X — X. T € X is a
fized point of f if f(Z) = .

Definition 7 (Open Cover and Subcover). Let S be a subset of a metric space (X, d) and
{Ui}ier be a collection of open sets which could be finite, or infinite. Then if S C U;e U,
then {U;}ier is called an open cover. Furthermore, if {U;}ics, where J C I is an open
cover for S, then {U;}icy is called a subcover for S.

Definition 8 (Compact Set). Let S be a subset of a metric space (X,d). S is called
compact if every open cover of S has a finite subcover, which a subcover containing a
collection of a finite number of open sets.

Theorem 2 (Banach’s Fized Point Theorem). Let (X,d) be a complete metric space.
Then if f : X — X is a contraction mapping, it possesses a unique, globally attractive
fixed point.

Having established the necessary mathematical tools, we can begin examining the
concept of iterated function systems (IFS) images. IFS will be introduced in later chapters
and will be employed to automatically produce synthetic images and video throughout this
work. Aside from the image modality, it is worth mentioning that the aforementioned
concepts have been heavily employed in signal analysis [69, 52, 20] as well as speech
recognition [70, 82, 120]. However, this aspect will not be investigated in the present
work.

21



3.6. MATHEMATICAL BACKGROUND FOR ITERATED FUNCTION SYSTEMS

22



Chapter 4

Related work

4.1 Pre-training with Synthetic Data

The seminal work of [49] employed fractal geometry to automatically generate large-
scale labeled image datasets. To construct labels, they propose to randomly sample
parameters for each category from U(—1,1) and add variation via random noise. These
images were used to train image models instead of the standard ImageNet pre-training
[85]. An overview of their approach can be seen in Figure 4.1. Their results can be seen
in Table 4.1. Although the reported metrics are inferior to ImageNet pre-training [85],
they evidently surpass training from scratch.

Fractal Parameters {8, }5_; Fractal Images for Category ¢;
Fractal Original  Patch

O, —» §

Fractal

Database v

O, = § —»

L :

Pre-Training J
—p Fractal Generationby IFS  ==p Image Generation
Fine-Tuning for Evaluation J == Intra-class Parameter Variation

Figure 4.1: Overview of the framework proposed in [49]. Construction of a dataset is
achieved without human labeling and image downloading. Such images can be employed
to pre-train a convolutional network which will be assigned to conduct transfer learning
for other datasets.

Since then, [2] proposed improvements such as a more intuitive augmentation policy,
whereas [76] demonstrated that the framework is compatible with different neural archi-
tectures. As an orthogonal approach, [4] evaluated a multitude of different generative

23



4.2. SPATIOTEMPORAL MODELS

Table 4.1: Classification accuracies after fine-tuning as reported in [49]. The last two rows
display the results of pre-training with synthetic images. Bold and underlined values
show the best scores, and bold values indicate the second best scores.

Pre-training Dataset Type \ C10 C100 IN1k P365 VOC12 OG
Scratch - 87.6 627 76.1 499 58.9 1.1

DC-10k Self-supervision 89.9 669 66.2 51.5 67.5 15.2
Places-30 Supervision 90.1 67.8 69.1 - 69.5 6.4

Places-365 Supervision 94.2 769 714 - 78.6 10.5
ImageNet-100 Supervision 91.3 70.6 - 49.7 72.0 12.3
ImageNet-1k Supervision 96.8 84.6 - 50.3 85.8 17.5
FractalDB-1k Formula-supervision | 93.4  75.7 70.3  49.5 58.9 20.9
FractalDB-10k Formula-supervision | 94.1 77.3 71.5 50.8 73.6 29.2

image processes and determined that performance is boosted if synthetic data is diverse
and shares specific properties with real data. More recently, [47] carefully designed a data
synthesis method which results in representations that exceed ImageNet pre-training.

Synthetic data has also been utilized in other domains. [113] extend the fractal ap-
proach to three dimensions and produce synthetic point clouds. For the field of action
recognition, [46] pre-train neural models with three dimensional perlin noise [80, 81].
This work is the most relevant to the present one. Additionally, [118] construct synthetic
images of palm prints with the help of Bezier curves [26].

An alternative approach involves computer graphics instead of noise processes. [36]
propose to render a large-scele dataset of action clips using the photorealistic video game
GTA V. They additionally design a contrastive pre-training framework tailored for the said
dataset. A very similar work is that of [51], who combine existing synthetic datasets of 3D
rendered video clips and utilize the resultant dataset for pre-training of 3D Convolutional
Neural Networks. To bridge the domain gap and improve downstream performance, [115,
114, 111] propose to combine the Fourier Spectrum of synthetic and real images. Synthetic
data again originates from the video game GTA V, whereas the downstream task is
Semantic Segmentation. [87] employ Generative Adversarial Networks (GANs) to enhance
the realism of simulated images of human eyes.

4.2 Spatiotemporal Models

Early work on video recognition focused on keypoint detection. Both sparse [57, 71| and
dense [103, 104] method have been employed as spatiotemporal feature representations.
With the surge in popularity of convolutional neural networks, two branches of video
recognition research appeared: 2D (e.g., [88, 107]) and 3D CNNs (e.g., [12, 37, 101]).
The 2D architecture of [88] is visualized in Figure 4.2. More recently, the computer vision

24



4.3. ACTION RECOGNITION DATASETS

community has shown growing interest in 3D CNNs as pre-training them with the Kinetics
datasets [11, 50] enables successful transfer learning for a multitude of video recognition
tasks.

Spatial stream ConvNet

convl [| conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 || 5x5x256 ||3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2

Temporal stream ConvNet

convl || conv2 || conv3 || conv4 || conv5 fullé full7 [|softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

n norm. || pool 2x2 pool 2x2
multi-frame pool 2x2

optical flow

Figure 4.2: Overview of the architecture proposed in [88]. The spatial stream ConvNet
operates on individual video frames, effectively performing action recognition from still
images. On the other hand, thee input to the Temporal stream ConvNet is formed by
stacking optical flow displacement fields between several consecutive frames. Such input
explicitly describes the motion between video frames, which makes the recognition easier.

4.3 Action Recognition Datasets
Action Recognition datasets have undergone significant changes over time:

e Initial public benchmarks such as Weizmann [8] and KTH [86] were of small-scale
and contained only a few thousands of samples.

e These were followed by medium-scale benchmarks such as UCF101 [89], ActivityNet
[39] and HMDB51 [56].

e More recent datasets have significantly grown in size and consist of hundreds of
thousands or even millions of annotated videos. Examples are Kinetics [11, 50], the
Moments in Time dataset [74], as well as YouTube 8M [1].

Statistics for a subset of the aforementioned datasets can be seen in Table 4.2.

For the last case, a model pre-trained on such large-scale datasets can achieve sig-
nificantly better results on smaller downstream tasks compared to a model trained from
scratch [89, 39, 56].

However, the challenges of curating and defining label taxonomies for massive-scale
datasets have shifted the focus towards pre-training on unlabeled videos or datasets with

25



4.3. ACTION RECOGNITION DATASETS

Dataset Year | Actions Clips | Total | Videos
HMDB51 [56] 2011 51 | min 102 6,766 3,312
UCF101 [89] 2012 101 | min 101 | 13,320 2,500

ActivityNet200 [39] | 2015 200 | avg 141 | 28,108 | 19,994
Kinetics [50] 2017 400 | min 400 | 306,245 | 306,245

Table 4.2: Statistics for some human action recognition datasets. ‘Actions’, specifies the
number of action classes; ‘Clips’, the number of clips per class; ‘Total’, is the total number
of clips; and ‘Videos’, the total number of videos from which these clips are extracted.
Table adapted from [50].

weak supervision. As a result, the present work proposes a method to automatically
construct large-scale synthetic datasets for pre-training. Such an approach addresses
issues related to privacy, bias, ethics, and copyright.

26



4.3. ACTION RECOGNITION DATASETS

27



Chapter 5

Fractal Images

Although, the main interest of the present work is the video modality, it is necessary to first
examine key concepts from the simpler domain of images. Thus, this chapter provides an
overview of fractals in two dimensions. First, Section 5.1 explains why this specific family
of synthetic images was chosen as the backbone of this work. Next, Section 5.2 introduces
the concept of iterated function systems and describes an algorithm that can render
fractal images. Afterwards, Section 5.3 discusses parameter sampling strategies that yield
fractal mages with desirable qualities. Lastly, Section 5.4 presents a modification that
can enhance the diversity of the generated samples.

5.1 Introduction

By examining related literature, one can find numerous generative processes that can
produce synthetic images. However, only one is chosen as the foundation of the present
work: fractal images generated via the iterated function systems (IFS) technique. This
choice is not arbitrary but relies on several significant factors:

e [F'S fractals often reproduce patterns found in natural images. This is expected to
narrow the domain gap between synthetic and real data.
e The algorithm that renders them is easy to implement.

e By randomly sampling parameters, it is possible to produce a near-limitless supply
of diverse images. However, as will be seen later, the sampling process needs to
constrained in order to avoid degenerate results.

e Such images have already been successfully utilized in the field of deep learning
[49, 76, 2]. Therefore, positive results are also expected for the domain of this
thesis, which is video.

28



5.2. CLASSIC ITERATED FUNCTION SYSTEMS

It is worth mentioning that there exist other families of fractal images. These are
briefly described in Section 5.5 along with explanations as to why they are discarded from
the present work.

5.2 Classic Iterated Function Systems

A two-dimensional Iterated Function System (IFS) can be defined as a set of n functions
F; : R? — R?. Every IFS is associated with an attractor, a set S € R? (and hence an
image) which is the solution of the system. S is the fixed point of Hutchinson’s recursive
set equation [41]:

Following Barnsley [5], the aforementioned functions are linear transformations defined
by a matrix A; € R?*? and a vector b; € R%:

a; bz C;

In the rest of this document, the IFS parameters will be referred to as W; € R® or
W e RVx6,

An approximation of the attractor of a given IFS can be rendered using the chaos
game algorithm, which is described in Algorithm 3. At first, this algorithm initializes the
output image as zeros and samples an initial point in two-dimensional space. At each
iteration a function is sampled from the IFS and applied to the said point. Sampling is
not uniform but based on the normalized absolute determinant of the weight matrices.
The coordinates of the point are next quantized to pixels and the value of the resulting
pixels is incremented by one. The previous step is discarded for the initial Kg steps as the
resulting coordinates may not belong to the attractor. After completing K iterations,
the image, which at this point is a two-dimensional histogram, is normalized to produce
aesthetically pleasing visuals. Figure 5.1 displays the output image for various numbers
of iterations K.

The result of such an approach is an image containing a random shape. Some examples
can be seen in Figure 5.4. It is desirable for the shape to cover the entirety of the canvas.
Shapes that constitute only a small portion of the canvas or are too large to be contained
within it are not acceptable. To achieve this, Algorithm 3 is executed twice. Specifically,
this algorithm produces real 2D coordinates. These coordinates are translated into pixel
positions as follows:

29



5.2. CLASSIC ITERATED FUNCTION SYSTEMS

Algorithm 3 chaos-game(F, K;, Kg, H,W): Algorithm that renders IFS fractal images.
Input 1: N functions F; : R? s R?
Input 2: Number of iterations and skipped iterations Ky, Kg
Input 3: Image dimensions H, W
Output: Grayscale Image O € [0, 1]7*W

1: Initialize: O < zeros(H, W)

2: p; % > Compute a probability for each W;
3: Sample z ~ U(—1,1) > Initialize random starting point x € R?
4: for step =1 to K; do

5: Sample F* ~ P > Sample random transformation
6: r < F*(z) > Apply transformation
7: if step > Kg then > Ignore the first Kg steps
8: hq, wy < quantize(x, H,W)

9: Olhg, wy| < Olhy, wy| + 1

10: end if

11: end for

12: O+ log(O + 1)

13: O < O/maz(0O) > Normalize the image inside [0, 1]

14: return O

Figure 5.1: Chaos game algorithm in action. The order of frames is from left to right
and them from top to bottom. As the number of iterations increases, a distinct shape is
formed inside the canvas.

30



5.3. IFS PARAMETERS

H—

h’q B2 Bl (h Bh)
W -1
Wy = gy —pr(@ = B,)

Here, (h,w) are the original real coordinates, (h,,w,) their quantized pixel indices,
(H,W) the resolution of the image which is provided by the user and (B}, BZ, BL B?)
the real coordinates of a bounding box that should contain the fractal shape. Points
that are outside of the bounding box are not rendered. The bounding box defines the
position and shape of the canvas and is different for each fractal image. If the bounding
box it too large, the resultant shape will cover only a small fragment of the canvas.
If it is too small, only a portion of the shape will be displayed. To calculate a tight
bounding box, we first render the fractal with an a default loose bounding box. We
employ (B}, B?, Bl B2) = (5,5, —5,5). Afterwards, we detect a tighter bounding box
within the canvas and repeat Algorithm 3. To reduce the amount of required computation,
the first execution is performed with significantly lower resolution and less iteration steps.

Fractal IF'S images are of particular interest for production of synthetic data. This
is chiefly due to the fact that they have been shown to capture geometric properties of
elements found in nature [68].

5.3 IFS Parameters

An IFS is defined by the number of functions N as well as the 6/NV function parameters.
As the goal is to automatically generate large scale datasets of images, it is necessary to
carefully investigate the relationship between these values and the quality of the generated
samples.

In their seminal work, [49] propose to train visual classifiers not with real data (e.g.
ImageNet [85]), but with a large automatically generated dataset of fractal images. As
such, they sample N from U(2,3,...,8) ! and the function parameters independently
from U(—1,1). Having manually observed generated images, three types of behavior can
be distinguished:

e Category 1 (Figure 5.2): Sparse attractors consisting of mostly blank space.
e Category 2 (Figure 5.3): Divergent attractors without structure.

e Category 3 (Figure 5.4): Neither sparse nor divergent attractors. Images with
complex and varied structure. Often aesthetically pleasing.

31



5.3. IFS PARAMETERS

Figure 5.2: Examples of sparse attractors. Only a small percentage of pixels is filled.
Such images are of no interest for the present work.

Figure 5.3: Examples of divergent attractors. Almost the entirety of the canvas is filled
and no interesting shapes are displayed. Such images are also undesirable.

32



Figure 5.4: Examples of attractors with satisfactory structure.

It is desirable to minimize the number of samples belonging to the degenerate cate-
gories 1 & 2 as well as to maximize that of category 3. This can be achieved by applying
stricter restrictions to the parameter space. To this end, [2] employ Singular Value De-
composition and rewrite the parameter matrix as:

!Throughout this thesis, U(a,b) refers to the continuous uniform distribution whereas U({-}) refers
to discrete uniform distribution.

33



5.4. FRACTAL FLAME

A=UxVT

o U,V € R**? are orthogonal matrices and therefore can be represented as rotation
matrices (with possible reflection, i.e. the determinant can be £1). Let U = Ry, D,
and VT = Ry, Dy where R, is a rotation matrix parameterized by angle z and D; a
diagonal matrix with diagonal elements d;,dy € {—1,1}.

e ¥ ¢ R?*? is a diagonal matrix that contains the singular values 0,0, € RT with

o1 > 09.

Hence, A can be expressed as:

A = Ry, D1X Ry, Dy

To sample A one has to appropriately sample the parameters {0y, 0y, 01, 09, d}, d?, d3, d3},
construct the intermediate matrices and multiply them as above.

After manual observation, the authors of [2] determine that the quality of the generated
images is strongly correlated with the weighted sum of a system’s singular values:

N

a = Z<O_i’1 + 20'2',2)

=1

They further discover that the sampled images exhibit the desired qualities when the
following constraint holds:

1 1
al:§(5+N)§a§au:§(6+N)

5.4 Fractal Flame

The Fractal Flame Algorithm [23] is an extension to the ordinary IFS, designed specifi-
cally to generate more aesthetically pleasing images. Such images are often employed as
wallpapers and screensavers for personal computers [22]. Examples can be seen in Figure
5.5. Accordingly, fractal flames are distinguished by multiple innovations including:

e Non-linear functions

e Structural coloring

34



5.4. FRACTAL FLAME

Figure 5.5: Examples of fractal flame images. Picture adapted from [23]. Although such
images are much more aesthetically pleasing than simple gray scale fractals, they are
also computationally more demanding. As such, the their only property of interest are
nonlinearities that boost the diversity of the observed shapes.

e Combination of multiple IF'S

Although all of the above features could be helpful, only a subset will be taken into

35



5.4. FRACTAL FLAME

account within the proposed framework. Color is discarded because, although it greatly
contributes to the aesthetics of the resultant image, it has no impact on the generated
shape, which is deemed more important for the objective of this thesis. Likewise, combi-
nations of different IF'S are discarded due to computational constraints.

As for the modifications that are not discarded, a simple alteration can be applied to
Algorithm 3. A non-linear function G : R? — R2, which is referred to as variation can
be applied to the coordinates between the lines 6 and 7 of the algorithm. The authors of
23] provide 49 such variations. A few examples are:

Figure 5.6: Examples of nonlinear attractors. The displayed shapes exhibit different
patterns compared to original linear fractals. This is expected to significantly boost the
overall diversity.

e Gi(z,y) = (sinx, siny)
o Gg(z,y) =r(sin(6 +1r),cos(0 —1))
o Gig(z,y) = %(y,x)

In the above equations, r and 6 are the polar coordinates: r = /22 + 42 and 6 =
arctan(z/y).

Examples of non-linear fractal attractors can be seen in Figure 5.6. It is evident that
the generated images differ significantly from the ordinary IFS. At the time of writing

36



5.5. OTHER FRACTAL FAMILIES

this document, no other work has explored fractal flames in the context of deep learning.
As shown in later chapters, including non-linear functions boosts the diversity of the
generated samples.

5.5 Other Fractal Families

In this section some alternative generative processes of fractal nature are briefly described.
However, this is done solely for inclusiveness. None of these methods will be a subject
of later experiments. Of course, this dismissal is not arbitrary and proper justification is
provided for each process.

5.5.1 3D IFS

By modifying the chaos game algorithm 3, it is possible to extend the IFS methodology
from two dimensions to three. As such, the attractor is defined by 12N parameters instead
of 6N and unlike previously is now a three dimensional point cloud. The attractor can
be visualized as an image via a 3D rendering algorithm. Examples can be seen in Figure
5.7.

As the resulting images display three dimensional shapes, it is reasonable to assume
that pre-training neural networks with such data will strongly enhance the model’s spatial
perception. Nonetheless, such an approach is still discarded for the following reasons:

e The current objective is to produce synthetic data for the task of video action recog-
nition. It is true that in real videos the target can be captured from any angle in
three dimensions. However, in the majority of cases, the observed motion is approx-
imately two dimensional. Therefore, 3D fractals are not expected to significantly
improve performance compared to 2D ones.

e It is possible to efficiently render such attractors in a pixel-wise manner [77]. How-
ever, this approach results in heavy aliasing which significantly obstructs the gen-
erated shapes.

e More advanced 3D rendering algorithms can alleviate the aliasing issue. Unfortu-
nately, they will also significantly increase the time necessary to construct a dataset.
As a single dataset can consist of hundreds of thousands videos and therefore mil-
lions of frames, such an approach is impractical.

As such, 3D IFS fractals will not be employed in the present document and are instead
left for future work.

37



5.5. OTHER FRACTAL FAMILIES

Figure 5.7: 3D IFS point clouds. Each of the 4 subfigures displays 4 different views of
the three dimensional attractor. The above images have been hand-picked due to their
aesthetic qualities and lack of artifacts. On the contrary, the majority of produced samples
exhibit heavy aliasing.

5.5.2 Julia Fractals

In their simplest form, julia fractals are dependant on a complex function f : C — C.
Common choices for f are simple polynomials f(z) = 2™ + ¢, where n € R and ¢ € C. To

38



5.5. OTHER FRACTAL FAMILIES

v o S

Figure 5.8: Julia fractals produced with different instances of the function f. Note the
symmetry in the resultant images. These specific images have been hand-picked and
therefore do not contain degeneracies while exhibiting diversity. On the contrary, ran-
domly sampling parameters leads to significantly inferior results.

render a julia fractal, the following procedure is executed:

e For each pixel, the complex number z is initialized as the scaled coordinates of the
pixel.

39



5.5. OTHER FRACTAL FAMILIES

e Then, the function f is sequentially applied to z: zpy1 = f(2k).

e This step is repeated until either the magnitude of z surpasses a given threshold (z
escapes) or the maximum number of allowed iterations is achieved. In the former
case, the number of iteration necessary to escape is referred to as escape time.

e The result is a grayscale image where the pixels’ values are their respective escape
time.

As can be seen in Figure 5.8, julia fractals contain interesting spatial patterns and
often stand out for their aesthetic qualities.

The aim of the present work is to automatically construct large datasets. Therefore,
for a generative process to be acceptable, it must be able to produce a great variety of
images by randomly sampling parameters. However, by sampling different functions f,
two adverse phenomena were observed in large quantities:

e Duplicate images

e Degenerate empty images

The authors of the present work could not resolve these issues and conclude that the
parameters of julia fractals must be chosen manually. This obstructs automatic generation

of datasets and therefore this generative process will not be employed in later experiments.
As such, Julia Fractals are also left for future work to explore.

40



5.5. OTHER FRACTAL FAMILIES

41



Chapter 6

Synthetic Videos

The following chapter is the most important part of the present work and contains the
majority of its contributions. Having previously reviewed the concept of fractal images,
the objective of this chapter is to add a time dimension and produce elaborate video
animations containing a variety of spatio-temporal patterns. As such, Section 6.1 describes
a straightforward animation method for fractals which leads to unsatisfactory results.
Hence, Section 6.2 proposes a more intricate solution that resolves the previous issue.
Afterwards, with the objective of reducing the domain gap, 6.3 lists manually observed
properties of real videos and suggests methods of incorporating them in the synthetic ones.
Section 6.4 further suggests techniques to automatically split videos into fixed categories,
something that is necessary for supervised learning. Lastly, Section 6.5 presents additional
generative video processes that will be compared against fractals in later experiments.

6.1 Naive IFS Interpolation

The current objective is to extend fractal images in the time dimension and produce
animations. The basis for producing fractal animations is provided by the following
theorem:

Theorem 3 [5] Let {W;} Y| be an IFS whose maps are parameterized by a single bounded
variable t € R. Then, the function S(t) that maps the parameter t into the attractor of
the IFS parameterized by t is continuous.

The above theorem can be alternatively interpreted as follows: continuous changes to
parameters of the IF'S result in continuous changes in the rendered image. It is possible
to produce smooth animations by slightly altering the IF'S parameters of each consecutive
frame.

As such, a very simple animation method can be achieved by first sampling parameters
for two different fractal images. These images will serve as the first and last frames of

42



6.1. NAIVE IFS INTERPOLATION

the video respectively. The only constraint is that number of functions N must be shared
by both images. In practise N is sampled from U({3,...,8}). To produce motion, the
parameters of the two images are linearly interpolated. More details can be seen in
Algorithm 4). The result is an additional dimension, the time dimension. As requested,
this approach produces a continuous sequence of iterated function systems. Each IFS
can be rendered separately and in parallel via Algorithm 3. This results in a sequence of
frames and therefore a video.

Algorithm 4 sample-video-naive(N,T): Creates an IFS sequence by simply interpo-
lating parameters.
Input 1: Number of transformations N
Input 2: Number of frames T’
Output: Sequence of parameters: W €

RTxNxﬁ

Sample Wiiart, Wena € RV*6 > Parameters for the first & last frame
Initialize: W < zeros(7, N, 6)
fort=0toT —1do

Wt] + TT_iItVVSmTt + %Wend > Linear interpolation
end for
return W

> &

. \w

r '

Figure 6.1: Examples of degenerate behavior. Each row illustrates a sequence of IFS
images. Naive linear interpolation of IFS parameters causes undesired sparseness in the
intermediate frames. Such behavior is unacceptable for large-scale pre-training of neural
networks and must be addressed.

It is desirable for the resultant shapes to cover the entirety of the canvas. For the
modality of images, a solution was proposed in Section 5.2. Fractal images require a

43



6.2. DECOMPOSED IFS INTERPOLATION

bounding box (B}, B, BL, B2) and a tight one can be identified by rendering the image
twice. To compute an appropriate bounding box for a video, we first render the first
and last frames with a loose bounding box. Their tight bounding boxes are denoted as
(B B,%’S, B, ., B ) and (B}, B, B, ., B ) respectively. The bounding box for the

full video is computed by identifying the maximal thresholds in all four directions:

By, = min (B, ,, By,
B} = max (Bhszhe)
Bi] = min( ws B )
Bi:maa:( w.s B )

The resultant bounding box is applied to all frames of the video. Only the first and
last framed have to be rendered twice. Intermediate frames are rendered only once.

Unfortunately, thorough manual examination of videos produced by this method re-
veals an adverse phenomenon present in a large portion of the generated samples. Al-
though the beginning and end of the resultant animation are satisfactory, the intermediate
attractors are not. Intermediate frames tend to be extremely sparse, leaving the majority
of the frames blank. Such samples are visualized in Figure 6.1. We hypothesize that such
videos are not appropriate for pre-training neural networks. The shape of the attractor
is required to remain nontrivial throughout the entirety of the video. Therefore, present
behavior is undesirable. Naive linear interpolation of IFS parameters is not an acceptable
animation method. The following section will present an alternative animation technique
that will mitigate this shortcoming.

6.2 Decomposed IFS Interpolation

Undesired sparseness of intermediate frames can be alleviated using Singular Value De-
composition. As explained in Section 5.3, the IFS matrix can be expressed as A =
Ry, D1X Ry, Dsy. Accordingly, instead of directly interpolating IF'S parameters, this docu-
ment proposes to interpolate each sub-matrix separately. To sample a random animation,
the following steps should be followed:

1. Sample D; and Dy which will remain constant for each timestep. These matrices
are shared by all frames since they contain integer values and interpolation cannot
be applied to them. Construction of these matrices can be achieved by sampling
values from {—1, 1} and is described in detail in Algorithm 6.

2. Sample the angles 65! g<nd from U (0, 27), interpolate them in the time dimension
and construct the rotation matrix Ry, for each timestep. The same process applies
to Ry,. More details can be seen in Algorithm 5.

44



6.2. DECOMPOSED IFS INTERPOLATION

3. Sample st y¢nd and interpolate in the time dimension to produce ¥. These
matrices are the most important parameter component and incorrect values may
lead to unsatisfactory results. As such, sampling is done under specific constraints.
More details can be seen in Algorithm 7, Section 5.3 as well as Appendix A of [2].

4. Compose the parameter matrix by multiplying the resultant sub-matirces: A =
Ry, D1¥ Ry, Ds.

5. Sample bias parameters b5t "¢ and interpolate them in the time dimension. This
step is identical to the previous naive approach and no intricate modifications are
necessary. More details can be seen in Algorithm 8. Lastly, the resultant bias is
concatenated to the composed matrix A to form the final IF'S parameters.

This procedure is adapted from [10] and described in detail in Algorithm 9. The
resultant samples no longer suffer from sparseness and exhibit adequate shape throughout
the entirety of the animation. Such samples can be seen in Figure 6.2. This approach will
serve as a backbone for producing large-scale synthetic datasets for pre-training neural
networks. However, as will be made clear in later sections, the proposed approach is
still too straightforward and not yet complete. Although the sparseness issue has been
mitigated, many possible enhancements can still be applied to narrow the domain gap
between real and synthetic videos.

Algorithm 5 sample-rotation(/NN,T): Sample interpolated rotation matrix.
Input 1: Number of transformations N
Input 2: Number of frames T’
Output: Rotation matrices Ry €

RTXNXQXQ

1: Initialize: Ry < zeros(T, N, 2,2)

2: Sample g1t gend ¢ RN ~ (0, 27)

3: 0 « interp(ftet gend T) € RT*N

4: fort=0toT —1do

5: forn=0to N —1do

6: Rplt,n] + rot matrix(0[t,n]) € R**?
7 end for

8: end for

9: return Ry

45



6.2. DECOMPOSED IFS INTERPOLATION

UL

Al

-
-
-
=
L~
-

Figure 6.2: Examples of decomposed interpolation. Each row illustrates a sequence of
IFS images. The issue of sparseness is resolved and attractors change appearance without
shrinking.



6.2. DECOMPOSED IFS INTERPOLATION

Algorithm 6 sample-delta(/V): Sample delta matrix.
Input 1: Number of transformations N
Output: Delta matrices D € RV*2x2
Initialize: D < zeros(N,?2,2)
Sample D € {—1,1}V*2
forn=0to N —1do
Din] «+ diag(D[n]) € R**?
end for
return D

Algorithm 7 sample-sigma(/V,7): Sample interpolated sigma matrix.

Input 1: Number of transformations N

Input 2: Number of frames T’

Output: Sigma matrices ¥ € RT*V*2x2

Initialize: ¥ < zeros(T, N, 2,2)

Sample a*"* " € R ~ U(3(5+ N), 5(6 + N))

Ygtart <+ sample-svs(N, ) € RV*?2 > Appendix A from [2]

Yend < sample-svs(N,a®?) € RNV*2

Y« interp(Satart, Yena, T') € RTXN*2
fort=0toT —1do
forn=0to N —1do
Y[t,n] < rot_matrix(XL[t,n]) € R?*?
end for
end for
: return X

—_ =
— O

Algorithm 8 sample-bias(/N,7): Sample interpolated bias.
Input 1: Number of transformations N

Input 2: Number of frames T’

Output: Bias vectors b € RT*Nx2

Initialize: Ry < zeros(T, N, 2,2)

Sample btart pend ¢ RV*2 ~ [U(—1,1)

b «— interp(bSt‘”’t, bend, T) c RT*Nx2

return b

47



6.2. DECOMPOSED IFS INTERPOLATION

Algorithm 9 sample-video-decomposed(N,T): Sample IFS parameters for an anima-
tion by interpolating each sub-matrix separately.

Input 1: Number of transformations N
Input 2: Number of frames T'

Output: Sequence of parameters: W € RT*Nx6

Ry, + sample-rotation(N,T) € RT*Nx2x2
Ry, + sample-rotation(N,T) € RT*Nx2x2
D, < sample-delta(N) € RVx2x2

D, < sample-delta(N) € RNV*2x2

Y « sample-sigma(N,T) € RTXNx2x2
A« R91D12R92D2 € RTXNx2x2

> Compose A

b < sample-bias(N,T) € RT*Nx2
W < reshape(concat(A, expand(b))) € RT*N*6
return W

48



6.3. DOMAIN GAP

6.3 Domain Gap

The previous section described a method to automatically generate videos containing
interesting spatiotemporal patterns. The objective now is to utilize the aforementioned
framework to pre-train strong visual representations suitable for the task of video action
recognition.

For synthetic images, previous work [4] concludes that performance on real data is
improved when the former captures structural properties of the latter. Likewise, large-
scale studies on pre-training [17, 53, 94] deduce that the effectiveness of many pre-training
frameworks significantly deteriorates when the source and target domains are different.
As such, it is necessary to narrow the domain gap between synthetic fractal videos and
samples from real action recognition benchmarks.

To do so, this section lists manually observed characteristics of real action recognition
data [89, 56, 39] as well as methods to emulate them within the pre-training framework.
The objective of the emulation is not absolute realism, but simple and intuitive approxi-
mation. The majority of the proposed emulation methods are designed as uncomplicated
transformations that can be efficiently implemented as online augmentations under com-
putational constraints.

6.3.1 Non-linear Motion

The previously described video synthesis method produces simple “forward” motion from
state A to state B. This is not enough to approximate real human motion, which is
significantly more complex. To narrow this gap, instead of applying straightforward linear
interpolation between the first and last frame, more intricate interpolation functions are
employed (Figure 6.3):

e Sinusoidal Interpolation: A significant portion of human activity consists of pe-
riodic or quasi-periodic motion. Common examples are walking and any type of
repetitive exercise. To simulate such motion, a noisy sine function can be used
as interpolant. It is noteworthy that a similar approach [60, 24] has been previ-
ously employed for the task of periodicity detection and repetition counting. Such
approaches construct large unlabeled video collections by sampling short clips of
varying lengths and repeating them with different periods and counts.

e Sharp Interpolation: A different category of activity is characterized by quick,
sharp and sudden motion. Instances of such behavior are punches in boxing as well
as penalty kicks in football. This motion is approximated by a linear interpolant
with a significantly larger slope magnitude. The linear interpolant is placed in
random timestep while the beginning and end of the produced curve is padded with
zeros and ones respectively.

49



6.3. DOMAIN GAP

01 —— Linear
Periodic
0.8
0.6 1
0.4
0.2 4 /
0.0 1
0?0 2?5 510 7T5 16.0 12‘.5 15‘.0 17‘.5
(a) Periodic interpolant
1.0 1 .
—— Linear
Sharp
0.81
0.6
0.4
0.2 1 /
0.0
0?0 2?5 510 7T5 16.0 12‘.5 15‘.0 17'.5
(b) Sharp interpolant
1.0 /
0.8
0.6
0.4
0.24
—— Linear
Random
0.0
0?0 2?5 510 7T5 16.0 12‘.5 15‘.0 17'.5

(¢) Random interpolant

Figure 6.3: Proposed interpolation curves. The objective is to mimic motion observed in
real videos and to narrow the existent domain gap.

50



6.3. DOMAIN GAP

e Random Interpolation: Other miscellaneous activity without clear patterns can
be simulated by a random waveform. To produce such a function, a sequence of
real numbers is initially randomly sampled from U(0,1). Further, the the sequence
is made smooth via one dimensional quadratic interpolation !. The result is a
random curve. Admittedly, such curves bear similarities to the previously proposed
sinusoidal approach and sometimes cannot be differentiated from them.

A different aspect of human motion which has not been addressed yet is its composi-
tionality, i.e. intricate motions are made up of multiple simple ones. For instance, running
consists of a periodic movement of the legs as well as a different periodic movement of
the arms.

An IFS can also be considered composite as it is comprised of multiple linear functions.
As each function is responsible for a different facet of the resultant shape, composite
motion can be replicated. By assigning each IF'S function a different interpolant, multiple
motion patterns can be observed in the video. However, doing so without any constraints
often results in a incoherent oscillation that lacks the structure and rhythm observed in
real human motion.

To mitigate this issue, the following procedure is followed. First, the set of chosen
interpolants is initialized as either one or two random samples from the three newly
introduced functions. Next, the linear interpolant is added to the set. Lastly, a single
interpolant is randomly chosen from the set and applied to every IFS function or each IFS
function receives a separate random sample from the set. The result is a video containing
between one and three different interpolation curves. As such, this method produces
composite and coherent motion. The process in described in detail in Algorithm 10.

It is obvious that the aforementioned approach cannot be implemented as an online
augmentation. It is executed offline during the construction of the synthetic dataset.

6.3.2 Diversity

Previous work on images [4] suggests that a key property for learning good representa-
tions is diversity of the synthetic data. As such, in order to increase the variance of the
produced animations, nonlinear fractals (see Section 5.4) are also included in the proposed
framework.

People displayed in action recognition videos possess unambiguous shape and contours.
On the other hand, multiple nonlinear functions from the fractal flame algorithm [23]
result in attractors that either possess nebulous shape or are too sparse. Assuming that
the the former property is beneficial for learning stronger visual representations, only
functions leading to dense attractors with distinct shape and contours were selected.
These are variations 0,4, 6, 13, 14, 15, 16, 20, 27 and 29, with 0 being the identity function
that does not affect the output. More details can be seen in the appendix of [23].

!The authors employ scipy.interpolate.interpld

51



6.3. DOMAIN GAP

Algorithm 10 sample-interpolant (7, N): Sample interpolants for IFS parameters.
Input 1: Number of frames in clip T’
Input 2: Number of functions in IFS N
Output: Interpolants for each function O € R¥*T

Initialize: O «+ zeros(N,T)
all < {interp-sin, interp-sharp, interp-random}
single < rand() < probsingie
Sample Ny, ~ U({1,2})
chosen <— random-sample(all, N¢,) > List of functions
chosen <— chosen U {interp-linear}
for i = 0 to Ny, do
chosenli] < chosenli](T) > List of arrays
end for
for:=0to N —1do
if single then
Oli] < chosen|0]
else
Oli] < chosen[randint(0, Ny,)]
end if
: end for
: return O

e e e e e e e T
NG s Wy 2o

As before, nonlinearities are not an online augmentation, but a fragment of the offline
rendering procedure. It is worth mentioning that the aforementioned nonlinear functions
increase the amount of required computation and therefore significantly slow down the
rendering process for synthetic videos. This is of paramount importance as later experi-
ments will require hundreds of thousands of such samples. Hence, nonlinear fractals will
constitute only 50% of the produced datasets, with the reaming 50% being simple linear
fractals. The previously proposed motion curves are unaffected by nonlinearities and will
be applied to both types of fractals.

6.3.3 Static Background

Scenes in action recognition benchmark samples consist of a foreground (person perform-
ing some action) and a background (animate or inanimate environment around the per-
son). The latter could, for instance, be a golf course or swimming pool. In the most simple
case, the background is completely static and the only motion in the video originates from
the foreground.

Hitherto, the generated synthetic videos lack this property as they only display a single
moving shape without any surroundings. This can be implemented straightforwardly as
an online augmentation. During training, for each sample z; within a batch, a static
frame is sampled from a different video z; and mixed with every frame of z; via weighted

92



6.3. DOMAIN GAP

(f) Static background + Foreground scale + Group activity

Figure 6.4: Proposed augmentations in action.

53



6.3. DOMAIN GAP

sui:

z; = (1 — a)x; + az;[f]

Here, z;,x; are two samples from the same batch, f ~ U({0,..., Nframes — 1} and
a ~ U(@min, @maz). In practise, we use @y, = 0.25 and apq, = 0.55.

In real videos background usually covers the entirety of the screen. On the other hand,
produced fractals are usually concentrated in the middle with sides and corners of the
screen remaining empty. To mitigate this inconsistency, two additional steps are taken
before mixing static background frames with videos. First, instead of sampling a single
frame for each video, Ny, = 2 are sampled. They are next aggregated into a single frame
with the max operation. Second, a random rectangle is cropped from the resultant image
and is interpolated to input dimensions. After these modifications, the background shape
should be distributed uniformly around the canvas and not in its center.

This procedure is reminiscent of a widely used augmentation technique in the image
domain called Mixup [116], However, Mixup also applies a similar operation to the as-
sociated labels. This does not occur in the proposed operation, where the labels remain
unaltered and only the input is modified.

A similar approach has been adopted by [106, 21] to combat an adverse phenomenon
known as background bias. In short, backward bias is the tendency of 3D convolutional
neural networks to rely on static background as a shortcut as well as their failure to
capture the motion information. Therefore, this augmentation is expected to enhance the
model’s ability to distinguish between foreground and background when trained with real
data. However, for datasets where background is shared amongst all samples, the effect
of this modification is unknown and will be examined in later experiments.

6.3.4 Dynamic Background

The previous approach takes for granted that the background remains motionless through-
out the entire video. This is often not true as the video may depict dynamic background:
bystanders or a moving environment such as water waves or trees swaying in the wind.
So far, such behavior has not been incorporated in the proposed pre-training framework
and it is expected that the model will fail to differentiate between dynamic background
and foreground.

To approximate such phenomena, the previous approach is modified. The given video
is mixed not with a static frame but with a sequence of frames sampled from a differ-
ent video. In such a sequence, at each timestep, the frame index is incremented by one,
remains unchanged, or is decremented by one. Additionally, assuming the foreground
motion has greater magnitude than the background motion, the difference between the
maximum and minimum frame indices is constrained. The process of sampling back-
ground frame indices is described in detail in Algorithm 11. As previously, the label is

o4



6.3. DOMAIN GAP

unaffected. This augmentation is expected to boost the model’s resilience against miscel-
laneous background motion.

The number of the proposed domain adaptation techniques is quite large and our
computational resources are limited. To correctly evaluate the value of all techniques, a
separate ablation experiment will need to be conducted for each one of them. As such, in
later experiments static background and dynamic background will be merged into a single
online augmentation and will not be evaluated separately. For each video in a batch, we
sample p ~ U(0,1). If p < paynamic = 0.2, dynamic background is employed. Static
background is employed otherwise.

Algorithm 11 sample-back-frames(7): Sample frame indices for dynamic background.

Input 1: Total number of frames in clip T’
Output: Frame indices idxs € Z”

diff max < [0.25 % T

Sample offset € Z ~ U({0,...,T — diff max})
Sample diff € ZT ~ U({-1,0,1})

diff[0] < 0

idxs < cumsum(diff)

idxs <— clamp(idxs,0,diff max — 1)

idxs < idxs + offset

return idxs

6.3.5 Foreground Scaling

In our synthetic videos, fractal shapes cover a large portion of the canvas and are usually
positioned around its center. On the contrary, in real action recognition videos, position
and size of the foreground are not fixed but random. This contradiction must be addressed
within the pre-training framework. The solution is a simple augmentation that is applied
online during training and not offline during rendering.

As synthetic videos are rendered with the fractal covering the majority of the screen,
no cropping is applied. Instead, videos can be downsampled in the two spatial dimensions
with scales sp, Sw ~ U(Smin, Smaz) Where 0 < Spin < Spmar < 1 and placed in a random
position of an empty canvas. In practise, we set s,,;, = 0.3 and S,,4, = 1.0. This procedure
randomizes both the size and the position of the moving shape. Decreasing the size of the
moving shape is expected to to strengthen the model’s ability to detect details. This is
of high importance as the observed benchmarks contain fine-grained classes such as facial
expressions and small objects.

6.3.6 Group Activity

A large portion of videos do not display a single person but a group performing identi-
cal or almost identical activities. Common examples are team sports such as volleyball

55



6.3. DOMAIN GAP

and football. This can be approximated with a modification to the previously proposed
foreground scaling. Specifically, after the interpolation step, the synthetic video is copied
Naone times with each copy receiving a different mild augmentation. In later experiments,
Neone s set to 2. Augmentations include random rotation, horizontal flipping and tem-
poral offset. The last one renders the copies asynchronous. As before, each resultant copy
is then placed in a random location of an empty canvas. Unlike before, we set s,,;, = 0.2
and S, = 0.5, since multiple copies of large shapes are more likely to overlap.

6.3.7 Perspective

In real videos the foreground can be captured by a camera from any angle in three
dimensions. On the other hand, synthetic videos are rendered in two dimensions and
therefore lack this variance. As a compromise, minor angle variance can be induced
using the RandomPerspective transformation from the torchvision package [79]. This
augmentation can be applied online to synthetic videos during training. Although this
augmentation does not achieve the realism of action recognition benchmarks, it is still
expected to amplify the model’s spatial perception and further bridge the domain gap.

This transformation serves as an efficient alternative for three dimensional IF'S fractals,
that were introduced and described in detail in Section 5.5. The decision not to employ
3D fractals in the upcoming experiments was made due to their computational demand
as well as undesired artifacts such as aliasing. 3D fractals are left for future work.

6.3.8 Displacement

Human activity and background is not the only dynamic element present in real videos.
Aside from human action, a multitude of videos contain additional displacement motion.
Observing such samples, three distinct types of displacement can be distinguished:

e Foreground displacement: This occurs when individuals perform an action while
simultaneously walking or running and the camera remains static. As such, in
the captured video, the position of the foreground is shifted while the background
remains unaffected.

e Background displacement: As previously, this motion is also the result of the
displacement of the human target. However, now the camera follows the foreground.
As a result, the position of the foreground remains virtually static, but the back-
ground obtains the same displacement motion but with opposite direction. A no-
table example is a camera following athletes in a sprint race.

e Camera displacement: In this case, the absolute position of the human target
remains unchanged but the focus of the camera is being shifted. As a result, both
the foreground and the background are relatively displaced in the opposite direction
of the camera.

56



6.3. DOMAIN GAP

Invariance to such movements can be boosted with simple transformations. For back-
ground displacement, a static background frame is initially enlarged and then a sequence
of crops with dimensions of the original video is created. As the centers of the crops are
consecutive points on a two-dimensional line, the result is displacement towards a fixed
direction. For camera displacement, the process is the same with the exception that each
crop is taken at a different frame. For foreground displacement, the difference is that the
video is initially reduced in size and then each frame is placed at a different location of
blank canvas. Such operations are parameterized by temporal duration, temporal offset,
speed and direction angle.

As in the case of the background domain adaptation, the above three transformations
are merged into a single augmentation and not evaluated separately. This augmentation
is applied online during pre-training and not offline during rendering.

6.3.9 Camera Zoom

Another extraneous motion involving the camera is zoom. To emulate this motion, an
approach resembling displacement is taken. At first, the video is interpolated to larger
spatial dimensions. Next, central cropping is applied to each frame with variable scale.
Lastly, each cropped frame is interpolated to the original spatial dimensions of the video.
Increasing the scale results in zooming out, whereas decreasing it leads to zooming in.
Similarly to displacement, this operation is parameterized by temporal duration, temporal
offset, and speed. As before, this operation is implemented as an online augmentation.

6.3.10 Camera Shake

A large portion of the observed videos were captured by hand-held cameras and therefore
contain unwanted shaking. To synthesize such motion, the method proposed by [83] is
adapted. Specifically, the displacement in each of the two spatial dimensions is modelled
as:

pe= Y wisin2ufit + )+t =12....T
i=1

Here, T is the duration of the video in frames, w; is the weight of each sine function
and set to 1/i, f; is the different frequency components, which is a random value within
a range, ¢; denotes the phase and is decided by a same random value for all ¢, and 7 is
the noise component. In later experiments these parameters are sampled as follows:

57



6.4. AUTOMATIC CONSTRUCTION OF CATEGORIES

U({2,...5}4)
~ U(O 1,1. 2)
U(0,2n)
U(—0.3,0.3)

To apply the shaking effect to an existing video, two displacement sequences are first
sampled, one for each spatial dimension. Afterwards, the video is enlarged and each
frame is cropped. The position of the crop is determined by the vertical and horizontal
displacement values. Camera shaking can be considered as a special case of camera
displacement, a phenomenon that was explained in detail in the previous subsection.
Camera shaking is implemented as an online augmentation during pre-training.

6.4 Automatic Construction of Categories

In later chapters, pre-training of 3D CNNs will be conducted both with self-supervised
and supervised objectives. For self-supervised learning, labels are unnecessary and it
is sufficient to construct a dataset by randomly sampling parameters for each video.
However, for supervised learning, synthetic videos must be strictly divided into categories.
To automatically construct categories, we adapt the approach originally proposed in [49].

Specifically, given the number of desired categories C, the first step is to sample
parameters for C different fractal videos following the procedure described in Section 6.2.
As such, each category c is represented by a parameter matrix w, € RTe*Nex6 a5 well as
the index of the variation function var.. For each category, the interpolation curves and
variation are fixed. The former can be either linear or nonlinear and composite following
Subsection 6.3.1. The latter is selected from the values presented in Subsection 6.3.2. The
importance of these parameters will be thoroughly evaluated in upcoming experiments.

To produce a new sample belonging to category ¢, we mutate its respective parameter
matrix w.. First, we sample a new matrix mg. € R7*!*6 wwhich consists of 6 random
curves produced with the procedure proposed in Subsection 6.3.1. The magnitude of
these curves is small and is bound between €{° = —0.35 and €5° = 0.35. We consider this
mutation analogous to the AC component of electrical signals, as it changes its magnitude
continuously with time. Afterwards we sample an additional noise matrix mg, € R*Nex6
from U(ed, ed¢), where €4¢ = —0.2 and €4° = 0.2. This mutation is analogous to the DC
component of electrical 81gnals, as it constant with time with time. The parameter matrix
of the new sample is calculated as follows:

wc = Mge © We + Mye

58



6.5. ALTERNATIVE SYNTHETIC DATA

Here, ® denotes elementwise product. By mutating the parameter matrix, we achieve
variance within samples belonging to the same class. This is necessary for increasing the
difficulty of the pre-training task and thus achieving stronger visual representations. A
result of the proposed mutation scheme can be seen in Figure 6.5, which displays four
samples belonging to the same category.

Figure 6.5: Example of the proposed mutation mechanism. Each row displays frames
from a different video. Although all videos belong to the same class, differences between
them are obvious.

6.5 Alternative Synthetic Data

The previous sections focus on the synthesis of fractal animations. However, it is not
clear that this type of video possesses the necessary properties required for training strong
visual representations. As such, this section presents alternative methods to automatically
generate video clips. These videos will be compared against fractals in experiments in
later chapters. As each type of video possesses different characteristics, the objective is
to determine which attributes are favorable for downstream results and which are not.

Unfortunately, a subset of the proposed domain adaptation methods cannot be applied
to all datasets: Diversity (6.3.2) can only be applied to fractals and Motion (6.3.1) can be
applied everywhere except Perlin Noise which does not require an interpolation curve. The

59



6.5. ALTERNATIVE SYNTHETIC DATA

rest of the proposed methods are applicable everywhere. Additionally, each generative
process requires a different approach for the construction of categories.

6.5.1 Perlin Noise

As far as this document is concerned, the most relevant work is that of [46]. The authors
of that work design a synthetic dataset of generated motion patterns based on perlin
noise [80, 81], which is a type of random texture. They propose to initially pre-train 3D
CNNs with this dataset, then train on Kinetics [11, 50] and finally train on small-scale
downstream datasets UCF101 [89], ActivityNet [39] and HMDB51 [56]. Their method
leads to improved results, compared to the standard approach of pre-training on Kinetics
followed by downstream fine-tuning. However, due to computational constraints, in the
present work, synthetic pre-training will be followed directly by downstream fine-tuning
and the Kinetics datasets will not be employed.

Figure 6.6: Examples of perlin noise images with variable spatial frequencies. A higher
rate of change indicates higher frequency in the corresponding direction. The lowest
and highest frequencies are displayed in the the top left and the bottom right images
respectively.

Each video sample is defined by three frequencies, one for each spatial dimension
as well as one for the temporal. These parameters determine the rate of change in their
respective dimensions. They additionally define the label of the video. Examples of perlin
noise images with various parameters can be seen in Figure 6.6.

Unlike fractals, these videos lack distinct shape and contours. Additionally, the pro-
posed motion interpolation schemes cannot be applied here. Therefore, by comparing
perlin noise against fractals in later experiments, it can be determined if solid shape
and non-linear motions are necessary properties for synthetic data. In truth, [46] show
that pre-training with perlin noise without Kinetcs does not yield significantly better
downstream results that training from scratch. As such, perlin noise is expected to un-
derperform compared to fractals.

60



6.5. ALTERNATIVE SYNTHETIC DATA

6.5.2 Octopus

A different type of animation can be produced with random curves. Specifically, as
described in the IFS parameter interpolation section (6.3.2), it is possible to produce
a waveform by sampling random values and quadratically interpolating the sequence.
By repeating this process twice, (one for each spatial dimension), one can construct a
random two dimensional curve. To create an animation, two such curves can be sampled
and their coordinates interpolated following the same approach used for IFS. To boost
complexity, the aforementioned process can be repeated N times. The N resulting curves
are conjoined at a fixed point.

Figure 6.7: Examples of the octopus model. Each row displays a different video. Note
the colorization, the removed interior as well as the geometrical shapes embedded within.
Such imaged are similar to fractals as both possess distinct contours.

So far, these videos contain thin curves and lack the density and contours present in
real videos. As a solution, gaussian blur is applied followed by the morphological operation
of closing [102]. The outcome is a shape reminiscent of an octopus with the curves serving
the role of tentacles. As such, in the rest of this document, these synthetic videos will be
referred to as “octopus”.

61



6.5. ALTERNATIVE SYNTHETIC DATA

Each frame of these animations is a binary image. For embellishment, a few additional
operations are employed (see Figure 6.7):

e Colorization
e Interior removal via the the morphological operation of gradient [102].

e Addition of random geometrical shapes

Compared to fractals, octopus videos are very similar, since both maintain distinct
shape and contours. Furthermore, each limb can execute a different movement and there-
fore the octopus model is compatible with the composite motion scheme. In addition, all
of the proposed foreground, background and camera augmentations are applicable here
as well.

The only major difference between fractals and octopus videos is the variety of the
generated shapes, where the former significantly surpass the latter. Hence, later experi-
ments will give valuable insight as to the importance of the diversity of synthetic videos.
For the domain of images, it has already been shown that diversity is a key property
for learning stronger representation [4]. Hence, fractals are expected to lead to superior
downstream performance.

6.5.3 Dead Leaves

Dead leaves [84, 59] is a simple image model designed to emulate statistics of natural
images, such as having a 1/|f|* power spectrum. Like fractals, it has recently been em-
ployed in the domain of deep learning to evaluate representations trained on synthetic data
[4, 66]. Such images can be constructed by filling an image canvas with geometric shapes
(circles or polygons) which are positioned uniformly at random. [4] demonstrated that
better results are obtained when the said shapes differ (polygons with different number
of edges). This advice is taken into account within the present work.

Dead leaves images can be easily extended to the domain of video. To do so, for each
geometric shape, a two dimensional curve is sampled in the same manner as the limbs in
in the octopus model. Then, throughout the video, the said shape traverses this curve.
As a result, some shapes are often overlapped by others. The produced animations are
reminiscent of Brownian motion, which is the random motion of particles suspended in a
medium. Examples of dead leaves videos can be seen in Figure 6.8.

62



6.5. ALTERNATIVE SYNTHETIC DATA

Figure 6.8: Examples of the dead leaves model. Each row displays a different video. Each
shape moves independently by traversing a randomly sampled 2D curve. Some shapes are
overlapped by others.

63



Chapter 7

Experiments

The objective of this chapter is to utilize all previously proposed concepts and conduct
thorough experiments. Section 7.1 describes the details of the upcoming experiments
including downstream tasks, model architectures and selected hyperparameters. After-
wards, Section 7.2 presents numerical results of the conducted experiments as well as
commentary on the said results. Section 7.3 analyzes misclassified samples and detects
shortcomings of the proposed framework.

7.1 Proposed Framework

7.1.1 Downstream Tasks

The proposed pre-training framework is evaluated by fine-tuning the model on 6 down-
stream small-scale datasets of short video clips. All datasets are designed for the task
of classification. The scale of the datasets is limited due to computational constraints,
whereas the length is limited to match the statistics of pre-training datasets. Downstream
datasets exhibit significant differences amongst each other and were chosen to maximize
overall diversity. Detailed statistics can be seen in Table 7.1. Frames randomly sampled
from downstream datasets are displayed in Figure 7.1.

e HMDBS51 [56]: An established action recognition benchmark. Clips usually de-
pict a single person performing a specific action. Additionally, clips often contain
unwanted artifacts such as camera motion (shift, shake) as well as scene changes.

e UCF101 [89]: Similar to HMDB51, but of larger scale and with higher expected
accuracy as a result.

e DIVINGA48 [61]: A collection of diving competition videos. Considered as a fine-
grained dataset, because all videos share a similar background and object features.
A subset of clips contains synchronized diving with multiple individuals.

64



7.1. PROPOSED FRAMEWORK

e EGTEA GAZE+ [62]: Consists of first person videos of cooking activities in
different kitchen environments. Videos often contain small objects such as cooking
tools and ingredients.

e VOLLEYBALL [42]: Established benchmark in the field of group action recogni-
tion. Each clip depicts two opposing volleyball teams where one remains inactive
while the other performs a specific group activity (set, spike, pass, winpoint). This
results in 8 classes in total. The length of each video is exactly 41 frames. The
provided annotation has been shown to contain errors [119].

e YUP++ [27]: Contains videos of dynamic scenes. Examples are forest fires, col-
lapsing buildings and rushing rivers. Half of the videos within each class are acquired
with a static camera and half are acquired with a moving camera. Duration for each
video is 5 seconds.

Dataset ‘ # Training Videos ‘ # Validation Videos ‘ # Classes
HMDB51 3570 1530 51
UCF101 9537 3783 101
DIVINGA48 15943 2096 48
EGTEA GAZE+ 8299 2022 106
VOLLEYBALL 2152 1341 8
YUP++ 120 1080 20

Table 7.1: Statistics of downstream datasets. All benchmarks are of small scale & short
length.

For each downstream dataset, an official train-validation split is provided. To evaluate
the pre-trained models, we fine-tune them on the training set and then report the top-1
accuracy on the validation set.

Additionally, it is noteworthy that some of the aforementioned datasets have been
subjects of thorough research. As a result, specialized neural architectures have been
developed for the said datasets (e.g. [119]). Such architectures are focused on innate
properties of the datasets and therefore can achieve accuracies significantly higher than
those reported in the present work. However, the objective of this document is to develop
a general pre-training framework without specialization in any specific benchmarks. As
such, we instead will utilize a more regular model which is described in the next section.

65



7.1. PROPOSED FRAMEWORK

(f) YUP++

Figure 7.1: Frames randomly sampled from downstream datasets. With the exception of
the first two, all datasets are evidently different.

66



Temporal T

7.1. PROPOSED FRAMEWORK

7.1.2 Model Architecture

THW o
Channel C |£ ¢ . <—truncate Channel C
[ ] /
t=0
-
= t=2
S
é. 4 =3
3 ',:|padzer0 i

(a) The original tensor without shift. ~ (b) Offline temporal shift (bi- (¢) Online temporal shift

direction). direction).

Figure 7.2: Illustrations adapted from [63]. Temporal Shift Module (TSM) efficiently
executes temporal modeling by moving the feature map along the temporal axis. Despite
being computationally free on top of a 2D convolution, it possesses strong temporal mod-
eling ability. TSM is capable of both offline and online video recognition. Bi-directional
TSM mixes both past and future frames with the current frame, which is suitable for high-
throughput offline video recognition. Uni-directional TSM mixes only the past frame with
the current frame, which is appropriate for low-latency online video recognition.

Temporal Shift Module (T'SM) [63] is employed for all experiments in the present
chapter. ResNet-50 [38] is utilized as backbone. TSM is an efficient 2-Dimensional Con-
volution Neural Network architecture designed for action recognition tasks. It achieves
information exchange among neighboring frames by shifting parts of the channels along
the temporal dimension. More technical details are presented in Figure 7.2.

TSM was chosen as our baseline model due to its computational efficiency: solid results
can be delivered with only 8 input frames. Such short length significantly alleviates both
the CPU and GPU bottlenecks. The former is evidenced by reduced dataloading whereas
the latter by a reduced amount of computation within the neural network. Unless specified
otherwise, pre-training does not utilize any off the shelf checkpoints and is done from
scratch.

7.1.3 Implementation Details

We now list hyperparameters as well as other technical details chosen for the experiments.

Datasets

All synthetic videos aside from perlin noise are rendered with spatial resolution of 256 x
256 pixels and temporal length which is sampled from U({18, ..., 20}). Perlin noise is

67

(uni-



7.1. PROPOSED FRAMEWORK

rendered with resolution of 240 x 240 and length of 30 frames. For fractals, 50% of videos
employ nonlinearities. To alleviate the data loading bottleneck, for standard experiments
video files from datasets DIVING48, VOLLEYBALL and EGTEA are resized to 256 pixels
(short side). For higher resolution experiments, VOLLEYBALL is resized to 512 pixels
(short side) while all other datasets are unaltered.

Training

Only RGB frames are employed throughout this work. Unless specified otherwise, the
model input is a clip of 8 strided frames with spatial resolution of 112 x 112 pixels. The
stride is 2 for pre-training, 4 for fine-tuning VOLLEYBALL and 6 for fine-tuning all
other datasets. During training, one such clip is randomly sampled from a video. During
validation, 10 such clips are uniformly selected from a single video and separately fed into
the model with the final output being the average of softmax scores. The number of total
training epochs is 25 and 100 for pre-training and fine-tuning respectively. The number
of warmup epochs for the scheduler is 3 and 10 respectively.

The networks are optimized using Adamw [65] with 8; = 0.9 and S = 0.999 and
cosine scheduling [64] is employed. The true learning rate is scaled according to the batch
size: Tepge = bsi’jse Ir, where the batch size and base batch size are set to 32 and 32
respectively. The default learning rate is initialized at 1-107%, increases to 8-10~% during
warmup and eventually falls to 1-107° at the end of training. The default weight decay
is set to 1-1072. Exceptions are the VOLLEYBALL dataset where the learning rates are
2.5-107%,2.5-107% and 2.5-107° and weight decay is set to 1-107! as well as DIVING48

where the learning rates are 1.5-107% 1.5-107% and 1.5- 107>,

Augmentation

For fine-tuning, the augmentation scheme consists of random cropping with bicubic in-
terpolation, horizontal flip, Randaugment [19] and Gaussian blur. For cropping, the scale
is sampled from U(0.2,1.0), and the ratio from U(0.75,1.33). The augmentations are
applied in the same order as they are listed. As an exception, for VOLLEYBALL we use
area interpolation and omit horizontal flip and Gaussian blur.

For pre-training, domain adaptation techniques (see Section 6.3) are additionally ap-
plied between horizontal flip and Randaugment. Additionally, We employ a curriculum
and linearly increase the intensity of domain augmentations for the first 5 epochs. All
domain augmentations are applied with a probability of 0.3 with the exception of Back-
ground Randomization, Scale, Perspective and Group whose probabilities are 1.0, 1.0, 0.8
and 0.15 respectively. To accelerate training, each augmentation is applied in parallel
and identically to all of its selected samples inside a batch. Background Randomization,
Scale and Group are exceptions where a different transformation is applied to each sample
inside a batch.

68



7.2. EXPERIMENTAL RESULTS

Libraries

Synthetic data is produced with with NumPy' and Numba? and transformed into video
files with ffmpeg®. Decord?® is used for reading video files during training. PyTorch® is
employed for models, training as well as custom augmentations. PyTorchVideo® is used
for the Randaugment augmentation [19].

The setup sections of upcoming experiments contain additional hyperparameters as
well as technical details or overwrite existing ones.

7.2 Experimental Results
Each experiment is comprised of the following segments:

e Objective segment, which describes the motivation behind the experiment and
states its goals.

e Setup segment, which lists the implementation details as well as any other relevant
information that is necessary for understanding of the experiment.

e Result table, which contains the validation accuracy on downstream datasets for
every step of the conducted experiment.

e Comments segment, which provides conclusions that can be derived from numer-
ical results as well as in-depth explanations regarding observed behavior.

7.2.1 Experiment 1 - Domain Adaptation
Objective

Previous work on synthetic images [4] suggests that when it comes to pre-training, emu-
lation of various structural properties of real data leads to stronger visual representations
and better downstream results. As such, the objective of this section is to verify if this
statement holds for the modality of video. Specifically, we utilize domain adaptation
techniques that were proposed in Section 6.3. We observe the effects of each technique on
downstream results and determine the beneficial ones.

https://numpy.org/
2https://numba.pydata.org/
Shttps://ffmpeg.org/
4https://github.com/dmlc/decord
Shttps://pytorch.org/
Shttps://pytorchvideo.org/

69


https://numpy.org/
https://numba.pydata.org/
https://ffmpeg.org/
https://github.com/dmlc/decord
https://pytorch.org/
https://pytorchvideo.org/

7.2. EXPERIMENTAL RESULTS

Setup

All pre-training is done with the MoCoV2 [14] self-supervised framework, which is
described in detail in Section 3.5. MoCoV2 was chosen as it offers a combination of
solid downstream results as well as computational efficiency.

Experiments are carried out in a sequential fashion. At each step, a specific modifi-
cation is applied to the pre-training process. For Motion & Diversity modifications,
a new synthetic dataset is constructed. The rest of modifications are implemented
as additional online augmentations and therefore reuse the previous dataset.

The pre-training dataset consists of 100K unlabeled fractal videos (see Section 6.2)
and was constructed by randomly sampling parameters.

Downstream datasets are different. Therefore, it is possible that a specific modi-
fication will result in accuracy increase for a subset of datasets and a decrease for
the rest. As such, the modification will be retained in all remaining experiments
if it leads to improvement for action recognition benchmarks HMDB51 & UCF101.
These have been chosen as the focus of the present work. Otherwise, the modifica-
tion will be discarded and not incorporated in later experimental steps.

The initial pre-training framework consists of fractal videos with linear motion and
no domain adaptation methods are involved.

Validation accuracy after fine-tuning can be seen in Table 7.2.

Method | Kept | HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP
Scratch - 31.5 70.3 4.7 50.5 61.1 43.7
Initial - 41.4 2.7 24.3 49.8 80.6 52.3
Background Yes 474 74.2 23.0 47.1 77.6 56.4
Motion Yes 47.3 75.7 21.7 48.6 79.2 59.5
Diversity Yes 50.4 77.8 24.9 49.8 80.8 63.1
Scale + Shake | Yes 52.8 78.0 26.0 50.7 80.8 61.9
Shift Yes 54.5 79.6 29.5 50.8 80.9 65.1
Zoom Yes 54.3 80.2 30.8 52.0 81.4 65.2
Perspective No 53.3 78.7 25.0 50.0 80.7 62.6
Group No 53.3 79.7 30.3 51.9 81.9 66.0

Table 7.2: Experiment 1: Downstream validation accuracy after domain adaptation.
Bold font indicates best results on the specific benchmark. Column Kept specifies if
the respective modification will be retained for all remaining experiments.

70



7.2. EXPERIMENTAL RESULTS

Comments

e The obvious observation is that emulation of a property has positive effect on
datasets that include the said property and either negative or no effect on datasets
that do not include it. For instance:

— Background randomization increases accuracy on action recognition bench-
marks HMDB51 and UCF101, but decreases it on DIVING48 and VOLLEY-
BALL. This is not surprising. For the former, it can be assumed that back-
ground is different for each video and generally irrelevant regarding ground
truth. For the latter, it is reasonable to believe that background is approxi-
mately shared by all samples and that the exact relation between background
and foreground is important for determining the correct category.

— The group modification is beneficial for the VOLLEYBALL dataset where the
model must learn to observe multiple individuals at once. Simultaneously, it
is adverse for HMDB51 where the majority of samples depict a single person.

e Some results are inconsistent. For example, DIVING48 contains synchronized diving
videos with multiple individuals, but the Group modification deteriorates results.
However, the accuracy drop is not major.

e The only modification that results in non-trivial improvement across all benchmarks
is amplified diversity through the inclusion of non-linear fractals. This is in line
with previous work on self-supervised pre-training with synthetic images [4], which
concludes that diversity is a key property to learn good representations.

e The only modification that results in non-trivial deterioration across all benchmarks
is the random perspective transformation. We do not know why this occurs.

e Pre-training is very ineffective for the EGTEA dataset. Our best approach (Zoom)
only improves accuracy by 2% compared to training from scratch.

7.2.2 Experiment 2 - Alternative Synthetic Data
Objective

In the previous experiment, pre-training was conducted exclusively with fractal videos,
which were introduced in Sections 6.2 and 6.3. This experiment investigates alternative
synthetic data, that can be seen in more detail in Section 6.5. Compared to fractals,
each alternative dataset exhibits key differences. For instance, the Octopus dataset is less
diverse and Perlin Noise lacks discrete contours. As such, both the current and previous
experiments have a shared objective: to determine characteristics of synthetic data that
are beneficial for downstream results.

71



7.2. EXPERIMENTAL RESULTS

Setup

e For all datasets, we employ the pre-training conditions and domain adaptation meth-
ods with the best results from the previous experiment: Zoom modification. This
entails that the specific row will be repeated in the next result table.

e A subset of domain adaptation methods cannot be applied to all datasets: Diversity
can only be applied to fractals and Motion can be applied everywhere except Perlin
Noise which does not require an interpolation curve.

e Validation accuracy after fine-tuning can be seen in Table 7.3.

Dataset \ HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP
Fractal 54.3 80.2 30.8 52.0 81.4 65.2
Octopus 50.9 76.5 25.5 49.1 80.7 58.3
Dead Leaves 39.9 70.2 15.8 47.3 75.7 50.2
Perlin Noise 42.4 72.5 21.4 50.1 76.4 58.2

Table 7.3: Experiment 3: Downstream validation accuracy for different pre-training
datasets. Bold font indicates best results on the specific benchmark. The proposed
fractal dataset outperforms all alternatives.

Comments

e Pre-training with fractal videos leads to significantly better results than with alter-
natives. Therefore, it is reasonable to assume that fractals possess properties that
are more favorable for downstream tasks.

e The Octopus dataset is the second-best approach. Such videos have similar ap-
pearance to fractals as both are random shapes with distinct contours. However,
fractals exhibit greater diversity in the spatial domain with significantly wider range
of produced shapes. Furthermore, small changes in the interpolation curve can re-
sult in unexpected distortion in the rendered fractals. Consequently, fractals are
more diverse in the temporal dimension as well. As such, we deduce that diver-
sity in synthetic datasets leads to better downstream results. This conclusion is in
complete agreement with both previous work [4] as well as the previous experiment.

e Domain gap is an additional explanation for the difference in performance between
synthetic datasets. Large scale studies have shown that downstream performance
of self-supervised learning frameworks deteriorates as the domain shift between the
pre-training and downstream datasets becomes larger [17, 53, 94]. It is true that
all of the proposed synthetic datasets are significantly different compared to real
videos. However, it is reasonable to assume that the domain gap is especially large

72



7.2. EXPERIMENTAL RESULTS

for datasets without distinct contours: Dead Leaves and Perlin Noise. The former
is a set of overlapped geometric shapes and the latter consists of dynamic nebulous
textures. The enlarged domain gap due to a lack of contours justifies why these
datasets result in worse downstream performance compared to Fractals and Octopus.

7.2.3 Experiment 3 - Training Objective
Objective

Earlier experiments have exclusively employed the MoCoV2 [14] self-supervised framework
for pre-training. It was chosen over others due to its computational efficiency. Thus, this
section explores alternative training objectives aiming to maximize downstream perfor-
mance.

Setup

e Detailed description of each pre-training framework can be found in Section 3.5.
The explored self-supervised frameworks require different amounts of computation
per training step:

— MoCoV2 [14]: 1 forward step with gradients, 1 forward step without gradi-
ents.

— SimCLR [13]: 2 forward steps with gradients.

— BYOL [35]: 2 forward steps with gradients, 2 forward steps without gradients.

e All three self-supervised frameworks utilize the unlabeled synthetic dataset from
previous experiments.

e For the supervised objective, a new dataset is constructed that consists of 500 classes
and 200 samples per class (100K videos in total). Each sample was rendered by
mutating fixed class parameters as described. More details can be found in Section
6.4.

e Validation accuracy after fine-tuning can be seen in Table 7.4.

Comments

e The supervised objective confidently leads to best downstream results. This is
surprising as the classes are sampled randomly and possess no meaningful semantic
information.

73



7.2. EXPERIMENTAL RESULTS

Objective \HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

MoCoV2 54.3 80.2 30.8 52.0 81.4 65.2
SimCLR 57.5 81.3 34.3 04.7 83.2 70.2
BYOL 52.0 78.1 26.1 52.0 80.4 66.0
Supervised 61.5 84.9 38.5 54.8 82.7 73.6

Table 7.4: Experiment 3 - Downstream validation accuracy for different pre-training ob-
jectives. Bold font indicates best results on the specific benchmark. The supervised
objective is superior. The results for self-supervised frameworks are in complete contrast
with ImageNet pre-training where the order is reversed.

e A possible explanation is again related to the domain gap between the pre-training
and downstream datasets. As mentioned previously, previous work has determined
that self-supervised frameworks are especially vulnerable to this domain shift [17,
53, 94]. On the other hand, it is reasonable to assume that supervised pre-training
is more resilient to the domain gap, consequently leading to better downstream
results.

e Computational resources are an additional factor. For instance, given an input
batch, SimCLR [13] applies augmentations twice and feeds each resulting batch
into the model leading to two separate output representations. The objective is
to maximize the similarity between the representations of matching samples for
the two batches and minimize it for the rest. As such, increasing the batch size
also increases the task difficulty and consequently improves downstream results.
SimCLR functions well when the batch size is in the order of thousands [13]. On
the other hand, the present experiments were conducted with a batch size of 16,
which does not lead to optimal results. As a comparison, the difficulty in supervised
learning does not depend on the batch size, as the number of classification categories
remains fixed.

e Furthermore, self-supervised frameworks benefit from increasing the number of
training epochs, requiring up to 800 for ImageNet pre-training [15]. On the con-
trary, present experiments are conducted with only 25 epochs. Hence, it can be
assumed the self-supervised models are probably undertrained and more training
time is required.

e As such, it is reasonable to assume that downstream performance of self-supervised
pre-training can be improved further, but that would require both additional com-
putational resources and time. Therefore, we deduce that supervised pre-training is
a more cost-effective solution when it comes to pre-training with synthetic datasets.

e SimCLR outperforms MoCoV2, which in turn outperforms BYOL. This is in com-
plete contrast with ImageNet pre-training, where the order is reversed [35]. We
cannot explain this phenomenon.

74



7.2. EXPERIMENTAL RESULTS

7.2.4 Experiment 4 - Importance of Motion
Objective

The previous experiment demonstrated the superiority of supervised pre-training com-
pared to alternative approaches. As proposed in Section 6.4, each automatically gener-
ated category can be divided into two components: shape and motion. The objective of
the current experiment is to perform ablation studies and measure the importance of each
component for downstream results.

Setup

e Each randomly generated class is defined by the fractal parameters of the first and
last frames as well as the interpolation curves. The former determines the shape of
rendered the rendered animation, whereas the latter is responsible for its motion.

e To measure the importance of motion, a new labeled dataset is constructed. To
produce a sample belonging to a given class, the parameters of the first and last
frames are kept unaltered. On the contrary, the interpolation curves are sampled
randomly. In other words, samples from a specific category will exhibit similar shape
but their motion will be arbitrary.

e Validation accuracy after fine-tuning can be seen in Table 7.5.

Motion \HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

Fixed 61.5 4.9 38.5 54.8 82.7 73.6
Random 59.1 85.2 37.4 54.1 82.6 72.6

Table 7.5: Experiment 4 - Downstream validation accuracy for the motion ablation. Bold
font indicates best results on the specific benchmark. It is evident that fixed motion leads
to better results. However, the drop in accuracy is minor and therefore it can be assumed
that motion is not significant.

Comments

e On average, randomizing motion results in a minor accuracy drop across all evalu-
ated benchmarks.

e [t is reasonable to assume that the overall contribution of the motion component is
not significant. Motion is only a small fragment of the proposed framework. Other
components such as shape and various domain adaptation techniques are of more
consequence for the model’s downstream performance.

75



7.2. EXPERIMENTAL RESULTS

7.2.5 Experiment 5 - Scale

Objective

In earlier experiments, statistics of the labeled dataset (# classes & # instances per
class) were chosen arbitrarily. As such, this section explores the relationship between the
aforementioned statistics and the transferability of the model to downstream tasks. Addi-
tionally, we would like to determine if downstream results can be benefited by increasing
the dataset size.

Setup

The previously used dataset consists of 500 classes and 200 instances per class,
meaning 100K samples in total.

The experiment has two stages.

In the first stage, the number of classes is fixed to 500 as previously, while the
number of instances per class is varied: 100, 200, 400.

In the second stage, the number of instances is fixed to the number with the best
results from the first stage. On the other hand, the number of classes is varied: 250,
500, 1000.

Each stage contains three pre-training datasets of various sizes. To ensure fairness,
amongst them, each dataset is a superset for all smaller ones.

For larger datasets, we additionally evaluate the Perspective transform (see Section
6.3), which led to disappointing results in Experiment 1.

For the first stage, Validation accuracy after fine-tuning can be seen in Table 7.6,
while for the second one in Table 7.7.

#Instance/# Total ‘ HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP
100/50K 96.5 81.8 35.8 52.6 82.6 69.3
200/100K 61.5 84.9 38.5 54.8 82.7 73.6
400/200K 61.5 86.0 40.8 53.8 83.0 75.1
400/200K + Perspective 63.2 86.1 38.4 55.2 84.0 75.7

Table 7.6: Experiment 5 - Stage 1 - Downstream validation accuracy for different numbers

of instances per class. Bold font indicates best results on the specific benchmark.

76



7.2. EXPERIMENTAL RESULTS

#Classes/# Total HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP
250/100K 60.3 85.3 38.1 53.5 84.1 75.6
500/200K 61.5 86.0 40.8 53.8 83.0 75.1
1000/400K 62.4 87.3 41.2 56.1 84.0 76.0
1000/400K + Perspective 65.4 87.6 40.3 56.0 83.1 72.7

Table 7.7: Experiment 5 - Stage 2 - Downstream validation accuracy for different numbers
of classes. Bold font indicates best results on the specific benchmark.

Comments

On average, an increase in the number of instances per class improves the model’s
transferability across downstream benchmarks.

Likewise, a similar improvement in downstream results is observed after increasing
the number of classes.

As such, it is reasonable to assume that an additional boost in downstream accuracy
can be achieved by further increasing the number of synthetic videos. However, due
to computational constraints, the pre-training dataset will not be expanded any
further and later experiments will not exceed 400K samples.

The Perspective augmentation strengthens results on action recognition datasets
HMDB51 and UCF101. This is in contrast with Experiment 1 where the said aug-
mentation was detrimental. The main difference between Experiment 1 and the
current one is the training objective. The former employs self-supervised learning
whereas the latter supervised learning. As such, it can be assumed that the exact
effect of the proposed augmentations varies for each training objective. Additional
experiments are necessary to determine the effects of domain adaptation for super-
vised objectives. However, these are left for future work.

7.2.6 Experiment 6 - Higher Resolution

Objective

All previous experiments were conducted with a low spatial resolution of 112 x 112 pixels.
In this experiment we increase this parameter to 224 x 224 and observe the model’s

performance. Additionally, this is expected to be our strongest model.

As such, we

compare its results to Kinetics [11, 50|, which utilizes real data and is the standard pre-

training approach for action recognition.

7



7.2. EXPERIMENTAL RESULTS

Setup

Due to computational constraints, we do not conduct Kinetics pre-training. Instead,
we employ a checkpoint generously shared by the authors of [63]. The checkpoint
was pre-trained with a resolution of 224 x 224 and is therefore compatible with the
current experiment.

Pre-training protocols for Kinetics and fractals are different. Kinetics and fractal
datasets consist of approximately 250K and 400K training samples respectively,
meaning the latter is larger. However, the authors of [63] employ 100 epochs for
Kinetics pre-training, whereas our fractals require only 25 epochs for convergence.
Additionally, Kinetics consists of significantly heavier videos, both in terms of resolu-
tion and length. potentially causing a data loading bottleneck. As such, pre-training
with fractals is sufficiently faster than with Kinetics.

Again due to computational constraints, all training is performed with a reduced
batch size of 11.

For fine-tuning the Kinetics checkpoint, we employ hyperparameters that are de-
picted in Table 7.8.

For fractal pre-training we employ the best setup from the previous experiment:
1000/400K + Perspective.

Validation accuracy after fine-tuning can be seen in Table 7.9.

Hyperparameter ‘ HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

Weight Decay 1-1071  1-100% 4-107! 4-107Y  4-100Y  4-107!
LR-Init 1-1008  1-10°% 2-1007 25-1008 5-10% 5-10°%
LR-Peak 1-100® 1-10°° 2-100* 25-100° 5-10° 5-107°
LR-Final 1-1007  1-1077 2-100 25-1007 5-1007 5-107°

Table 7.8: Hyperparameters used for fine-tuning the Kinetics checkpoint.

Comments

For fractal pre-training, increasing resolution leads to nontrivial improvement in
downstream results across all benchmarks. This is understandable as a large portion
of videos contains tiny details such as small tools that cannot be displayed properly
with lower resolutions.

On most benchmarks, our synthetic approach lags behind Kinetics pre-training.
However, as previously explained in the setup, these pre-training approaches are

78



7.3. MANUAL ERROR ANALYSIS

Pre-training | Res | HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

Scratch 112 31.5 70.3 4.7 50.5 61.1 43.7
Fractal 112 65.4 87.6 40.3 56.0 83.1 2.7
Scratch 224 35.1 76.9 10.6 53.4 55.7 48.3
Fractal 224 66.5 90.8 41.2 59.9 87.6 78.2
Kinetics 224 70.1 95.3 40.9 64.4 84.8 86.9
Table 7.9: Experiment 6: Downstream validation accuracy for different values of spatial

resolution.

Bold font indicates best results on the specific benchmark.

not comparable, with fractals requiring significantly less time. The required time
can be equalized by increasing the number of synthetic videos and according to the

previ
such,

ous experiment this would likely result in better downstream performance. As
the gap between real and synthetic data can be narrowed further.

e On the benchmarks DIVING48 and VOLLEYBALL, synthetic pre-training already
surpasses Kinetics despite requiring less resources.

7.3 Manual Error Analysis

To better understand the strengths and weaknesses of the proposed synthetic framework,
we manually observed video samples that are misclaissified after fine-tuning. Surprisingly
enough, a large portion of such videos share a common characteristic: their label is defined
not by a global view of the video but by small details. To be precise, models struggle in
the following instances:

e Interaction with objects: Downstream datasets contain multiple videos where
humans manipulate inanimate objects and tools. In a large portion of such videos,
the object of interest is of small scale and covers only a few pixels. The pre-trained
models exhibit low accuracy on such samples and it can be assumed that they fail
to detect such objects. Some examples of this degenerate behavior are:

HMDB51 & UCF101 contain classes such as “Throw”, “Pick Up” “Swing Base-
ball”, “Brush Teeth” & “Hammering”. Accuracy on these classes is low.

The majority of EGTEA videos display cooking ingredients and tools. Failure
to detect these objects justifies the extremely poor performance. Large scale
pre-training improves accuracy only by 6% compared to training from scratch.
This is the smallest improvement amongst all benchmarks.

e Limb Movement: Another subset of downstream videos where models underper-

form

involves gestures and other miscellaneous limb motion. As before, in such

79



7.4. CONCLUSIONS

samples the label is determined by only a small percentage of the overall motion
displayed in the video. Notable examples are:

— HMDB51 includes classes such as “Clap”, “Wave”, “Punch” and “Kick”. Pre-
trained models cannot differentiate between them as well as the object classes
which were described earlier.

— The EGTEA benchmark revolves around cooking. Therefore, most of its videos
display hand motion.

e Facial Movement: Additionally, pre-trained models struggle with videos that
display faces. In such samples the model must learn to differentiate between fine-
grained movements of the mouth or recognize subtle facial expressions. Specific
instances are the following:

— HMDB51 incorporates categories that depend on motion of the mouth: “Smoke”,
“Eat” & “Drink”.

— HMDB51 also contains classes inlolving facial expressions: “Smile” & “Laugh”.

As such, it can be deduced that pre-trained models underperform on videos where a
very small percentage of the displayed motion determines the correct label. This is not
a surprise, as the proposed pre-training framework does not prepare the model for such
instances. Indeed, in the proposed synthetic datasets the label depends on the overall
fractal formation that is displayed in the video. Cases that depend on local details are
nonexistent.

This deficiency should be addressed in future work. We conclude that superior results
can be achieved on action recognition benchmarks, if synthetic datasets emulate the de-
scribed conditions. For a subset synthetic data, the label should be conditioned on a small
percentage of pixels, as occurs in real data. This could be achieved either offline with a
different generative process that produces videos or online with specialized augmentation
modules.

7.4 Conclusions

The present work constructs synthetic datasets used for pre-training neural networks for
the task of action recognition. Throughout this chapter, various ablation studies were
conducted on multiple downstream datasets. The overall objective was to determine
properties of synthetic data as well as general guidelines whose incorporation into pre-
training improves downstream performance. Observing experimental results, the following
conclusions can be reached:

e Diversity of synthetic pre-training data is a key factor for obtaining stronger visual
representations. Diversity can boost results regardless of the characteristics of the
downstream dataset.

80



7.4. CONCLUSIONS

(b) Punch - Hug

(d)

(g) Play Violin - Play Flute (h) Yoyo - Juggle Balls (i) Brush Teeth - Shave Beard

Figure 7.3: Frames from misclassified videos. GGreen color indicates ground truth, whereas
red color indicates the model’s incorrect prediction. In such videos the label is often
determined by subtle details that cover a small percentage of the overall pixels. As such,
the model fails to differentiate between similar categories.

81



7.4. CONCLUSIONS

Downstream results can be additionally strengthened by customizing the pre-training
task. This can be achieved by identifying structural properties of downstream
datasets and emulating them during pre-training. A few examples are background
randomization, periodic motion and camera shaking.

In case of computational constraints, supervised pre-training is a more cost-effective
solution compared to self-supervised counterparts.

The shape component of synthetic animations is of more consequence for down-
stream tasks than the component of motion.

For supervised pre-training, increasing the dataset size consistently improves trans-
ferability. The same statement holds for spatial resolution.

Models pre-trained with synthetic data underperform in the detection of tiny details.
This is especially evident for videos whose label is determined by a a small percentage
of displayed pixels. Such videos include interactions with tools as well as facial
expressions. Future work should mitigate this deficiency by constructing categories
that are conditioned on a local cues, as occurs in real data.

82



7.4. CONCLUSIONS

83



Chapter 8

Summary and Future Work

This is the final chapter of the present work. Section 8.1 briefly summarizes its major
contributions and conclusions. Next, Section 8.2 presents ideas that could potentially
enhance the proposed framework as well as future directions regarding synthetic data for
different modalities.

8.1 Summary

The objective of this thesis was to extend the seminal work of [49] and automatically
construct synthetic datasets for the task of action recognition, one of the fundamental
topics of computer vision. Such datasets can be used for pre-training 3D CNNs instead
of Kinetics [11, 50]. This approach can mitigate certain shortcomings of real data such as
collection and labeling costs, copyright, privacy as well as human bias.

We commenced by overviewing previous work on IFS fractal images, a generative
process that can produce diverse spatial patterns. Particular emphasis was placed on
correctly sampling parameters in order to minimize degeneracies in rendered images. We
experimented with other families of fractal images, but deduced that they are not suitable
for automatic dataset construction.

Afterwards, we produced short video animations by adding a time dimension to the
aforementioned fractal images. Naive linear interpolation of fractal parameters leads to
unsatisfactory results. However, interpolation of intermediate decomposed matrices mit-
igates this shortcoming. This approach constructs simple videos containing “forward”
motion. The most prominent contribution of this thesis are the proposed domain adapta-
tion techniques. We manually identified properties of real videos and suggested methods
of incorporating them in the synthetic animations during pre-training. Such properties
are non-linear motion, random background, camera displacement and others. Seeking to
identify characteristics of synthetic data that improve downstream results, we additionally
constructed alternative datasets that significantly differ from fractals.

84



8.2. FUTURE WORK

After conducting various experimental ablations, we can draw several conclusions re-
garding pre-training with synthetic data. First, we identify multiple methods of improv-
ing downstream performance. This can be achieved by boosting the diversity of synthetic
data, by reproducing characteristics of real data such as random background, periodic
motion and camera shaking as well as by simply increasing the number of training sam-
ples or the spatial resolution. Moreover, we deduce that supervised training objectives
are a more cost-effective solution compared to self-supervised alternatives. Furthermore,
we discover that the shape of synthetic animations is more significant than their motion.
Lastly, we observe that pre-trained models consistently underperform on videos contain-
ing subtle details. We propose possible solutions for this shortcoming that are left for
future work.

8.2 Future Work

The proposed framework suffers from certain limitations and therefore can be extended
in several directions. Specifically:

e Small Details: As described in previous chapters, manual observation revealed
that the proposed pre-training frameworks results in models that often fail to de-
tect small details present in videos. Examples of this degeneracy are tools, human
limbs as well as facial expressions. The cause of this behavior is the pre-training
dataset where labels depend exclusively on global context. Therefore, downstream
performance can be boosted if during pre-training the model is exposed to videos
whose labels are determined by a small percentage of of the displayed motion. This
can be implemented via a different noise process that can render videos or specialized
augmentation modules.

e Alternative Generative Processes : Pre-training with 3D IFS fractals could
enhance the resultant model’s spatial perception. Additionally, adding julia fractals
to the synthetic dataset could boost diversity and therefore performance. However,
the former generative process suffers from artifacts such as aliasing, whereas the
latter cannot be automated for dataset synthesis. Therefore, additional future work
is required.

e Video Context: All synthetic videos produced in this work are of short length
and depict a single motion. Real videos, however, may display multiple tempo-
rally separated elements. The key to understanding such videos is the ability to
model contextual relation between distant frames. Emulating this intricacy within
synthetic data is expected to boost the network’s performance.

e GAN: The domain gap between real and synthetic videos was alleviated by man-
ually observing characteristics of the former and replicating them in the latter via
handcrafted transformations. Alternatively, this task could be entrusted to gen-
erative adversarial networks (GAN) [33, 44]. However, in addition to increasing

85



8.2. FUTURE WORK

computation requirements, GANs often lead to technical challenges involving the
training process.

e Motion Capture: In this document, motion was generated by sampling random
curves. More realistic motion could be achieved by utilizing existing motion capture
corpora [54, 72|. Injecting knowledge of human kinematics from such data into
synthetic videos could contribute to bridging the domain gap. However, doing so
would raise the issue of copyright of the said corpora. Additionally, the construction
of synthetic datasets would no longer be completely automatic as it would rely on
manually collected data.

e Other Modalities: Until now, the only modality employed in training neural
networks was raw RGB frames. It is possible to use other modalities such as optical
flow [28] to significantly improve results. However, doing so will increase the required
computation.

Additionally, as an orthogonal approach, it would be interesting to employ fractals as
well as other generative processes to construct synthetic datasets for different domains
and tasks:

e Point Clouds: By extending the chaos game algorithm to three dimensions, one
can create a sequence of moving point clouds. Such synthetic data could be valuable
for autonomous driving and robotic manipulation, where similar data formats are
employed [105].

e Biomedicine: Fractals have been successfully utilized as models of intricate bio-
logical structures [18, 43]. With such models, synthetic biomedical datasets could
be constructed. This is of great significance as both collection and annotation of
real biomedical data is expensive and requires great effort.

e Other Vision Tasks: As fractal images produce a great variety of shapes, it is
reasonable to employ them for other computer vision tasks such as segmentation
[73] and edge detection [92].

e Music: It is noteworthy that by using iterated function systems it is possible to
generate music scores and produce MIDI files [31]. Neural networks trained on such
data would have no issues regarding copyright and ownership of music and could
therefore be deployed in commercial applications.

86



8.2. FUTURE WORK

87



References

[1]

[10]

ABU-EL-HADA, S., KoTHARI, N., LEg, J., Narsev, P., TobDErici, G.,
VARADARAJAN, B., AND VIJAYANARASIMHAN, S. Youtube-8m: A large-scale
video classification benchmark. In arXiv preprint arXiv:1609.08675 (2016).

ANDERSON, C., AND FARRELL, R. Improving fractal pre-training. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
(2022).

ASANO, Y., RUPPRECHT, C., ZISSERMAN, A., AND VEDALDI, A. Pass: An ima-
genet replacement for self-supervised pretraining without humans. In Proceedings of
the International Conference on Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks Track (2021).

BARADAD JURJO, M., WULFF, J., WANG, T., ISOLA, P., AND TORRALBA, A.
Learning to see by looking at noise. In Proceedings of the International Conference
on Neural Information Processing Systems (NeurIPS) (2021).

BARNSLEY, M. F. Fractals Everywhere. Morgan Kaufmann, 1993.

BENGIO, Y., SIMARD, P., AND FRASCONI, P. Learning long-term dependencies
with gradient descent is difficult. In IEEE Transactions on Neural Networks (1994),
vol. 5, no. 2, pp. 157-166.

BIRHANE, A., AND PRABHU, V. U. Large image datasets: A pyrrhic win for com-
puter vision? In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV) (2021).

BrEGONZIO, M., GONG, S., AND XIANG, T. Recognising action as clouds of

space-time interest points. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2009).

BuorLamwint, J., AND GEBRU, T. Gender shades: Intersectional accuracy dis-
parities in commercial gender classification. In Proceedings of the Conference on
Fairness, Accountability and Transparency (2018).

BurcH, B., AND HART, J. C. Linear fractal shape interpolation. In Proceedings
of the Graphics Interface Conference (1997).

88



REFERENCES

[11]

[12]

[13]

[14]

[15]

[22]

23]

CARREIRA, J., NOLAND, E., HILLIER, C., AND ZISSERMAN, A. A short note on
the kinetics-700 human action dataset. In arXiv preprint arXiv:1907.06987 (2019).

CARREIRA, J., AND ZISSERMAN, A. Quo vadis, action recognition? a new model
and the kinetics dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017).

CHEN, T., KORNBLITH, S., NOrROUZI, M., AND HINTON, G. A simple framework

for contrastive learning of visual representations. In Proceedings of the International
Conference on Machine Learning (ICML) (2020).

CHEN, X., FaN, H., GIrsHICK, R., AND HE, K. Improved baselines with mo-
mentum contrastive learning. In arXiv preprint arXiv:2003.04297 (2020).

CHEN, X., XIE, S., AND HE, K. An empirical study of training self-supervised
vision transformers. In Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV) (2021).

COLAH’S BLOG. Understanding Istm networks. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed: 02-09-2022.

CoLE, E., YANG, X., WILBER, K., MAC AoODHA, O., AND BELONGIE, S. When
does contrastive visual representation learning work? In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2022).

CosTABAL, F., HURTADO, D., AND KUHL, E. Generating purkinje networks in
the human heart. In Journal of Biomechanics (2015), vol. 49, pp. 2455-2465.

CuBuk, E. D., ZopH, B., SHLENS, J., AND LE, Q. Randaugment: Practi-
cal automated data augmentation with a reduced search space. In Proceedings of

the International Conference on Neural Information Processing Systems (NeurIPS)
(2020).

DIMAKIS, A., AND MARAGOS, P. Phase-modulated resonances modeled as self-
similar processes with application to turbulent sounds. In IEEE Transactions on
Signal Processing (2005), vol. 53, no. 11, pp. 4261-4272.

Ding, S., L1, M., Yang, T., Qian, R., Xu, H., CHEN, Q., WANG, J., AND
XI10NG, H. Motion-aware contrastive video representation learning via foreground-
background merging. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2022).

DRrAVES, S. The electric sheep screen-saver: A case study in aesthetic evolution. In
Proceedings of the European conference on Applications of Fvolutionary Computing

(2005).

DRAVES, S., AND RECKASE, E. The fractal flame algorithm. (2008).

89


https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

REFERENCES

[24]

[25]

[26]

DwiBEDI, D., AYTAR, Y., TOMPSON, J., SERMANET, P., AND ZISSERMAN,
A. Counting out time: Class agnostic video repetition counting in the wild. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2020).

ELMAN, J. L. Finding structure in time. In Cognitive Science (1990), vol. 14, no.
2, pp. 179-211.

FARIN, G. Curves and Surfaces for Computer Aided Geometric Design: A Practical
Guide. Academic Press Professional, Inc., 1988.

FEICHTENHOFER, C., PiNz, A., AND WILDES, R. P. Temporal residual networks

for dynamic scene recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017).

FLEeT, D. J., AND WEISS, Y. Optical flow estimation. In Handbook of Mathe-
matical Models in Computer Vision. Springer, 2006, ch. 15, pp. 237-257.

FukusHiMA, K. Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position. In Biological Cybernetics
(2004), vol. 36, pp. 193-202.

GHADIYARAM, D., TRAN, D., AND MAHAJAN, D. Large-scale weakly-supervised

pre-training for video action recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2019).

GocINs, M. Iterated functions systems music. In Computer Music Journal (1991),
vol. 15, no. 1, pp. 40-48.

GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. Deep learning. MIT Press
Cambridge, 2016.

GOODFELLOW, ., POUGET-ABADIE, J., MIrzA, M., XU, B., WARDE-FARLEY,
D., OzAIR, S., COURVILLE, A., AND BENGIO, Y. Generative adversarial nets.

In Proceedings of the International Conference on Neural Information Processing
Systems (NeurIPS) (2014).

GovyAaL, P., CaronN, M., LerAUDEUX, B., Xu, M., WanG, P., Pai, V.,
SINGH, M., LIPTCHINSKY, V., MISRA, I., JOULIN, A., AND BOJANOWSKI,

P. Self-supervised pretraining of visual features in the wild. In arXiv preprint
arXiw:2103.01988 (2021).

GriLL, J.-B., STrUB, F., ArrcHE, F., TALLECc, C., RICHEMOND, P.,
BucHATSKAYA, E., DoOEerscH, C., AviLA PIRES, B., Guo, Z., GHESH-
LAGHI AzAr, M., Pior, B., KAVUKCUOGLU, K., MUNOS, R., AND VALKO,
M. Bootstrap your own latent - a new approach to self-supervised learning. In Pro-
ceedings of the International Conference on Neural Information Processing Systems

(NeurIPS) (2020).

90



REFERENCES

[36]

[43]

[44]

Guo, X., Wu, W., WaANG, D., Su, J., Su, H., GaAN, W., HUuANG, J., AND
YANG, Q. Learning video representations of human motion from synthetic data. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2022).

HArA, K., KATAOKA, H., AND SATOH, Y. Can spatiotemporal 3d cnns retrace
the history of 2d cnns and imagenet? In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2018).

HEe, K., Zuang, X., REN, S., AND SUN, J. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR) (2016).

HemwBroON, F. C., Escorcia, V., GHANEM, B., AND NIEBLES, J. C. Ac-
tivitynet: A large-scale video benchmark for human activity understanding. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015).

HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. In Neural
Computation (1997), vol. 9, no. 8, pp. 1735-1780.

HUTCHINSON, J. E. Fractals and self similarity. In Indiana University Mathe-
matics Journal (1981), vol. 30, no. 5, pp. 713-747.

IBRAHIM, M. S., MURALIDHARAN, S., DENG, Z., VAHDAT, A., AND MORI, G.

A hierarchical deep temporal model for group activity recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

Ionescu, C., OustaLoup, A., LEVRON, F., MELCHIOR, P., SABATIER, J., AND
DE KEYSER, R. A model of the lungs based on fractal geometrical and structural
properties. In ITFAC Proceedings Volumes (2009), vol. 42, no. 10, pp. 994-999.

IsoraA, P., Zuu, J.-Y., ZHou, T., AND EFROS, A. A. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017).

Ji, S., Xu, W., YANG, M., AND YU, K. 3d convolutional neural networks for

human action recognition. In IEEFE Transactions on Pattern Analysis and Machine
Intelligence (2013), vol. 35, no. 1, pp. 221-231.

Kataoka, H., HArRA, K., HAavAsHI, R., YAMAGATA, E., AND INOUE, N. Spa-
tiotemporal initialization for 3d cnns with generated motion patterns. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACYV)
(2022).

Kataoka, H., Havyamizu, R., YAMADA, R., NAKASHIMA, K., TAKASHIMA,
S., ZHANG, X., MARTINEZ-NORIEGA, E. J., INOUE, N., AND YoOkoTA, R.

91



REFERENCES

[48]

[49]

[50]

[52]

[53]

[54]

[55]

[56]

[57]

Replacing labeled real-image datasets with auto-generated contours. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2022).

KATAOKA, H., MATSUMOTO, A., YAMADA, R., SATOH, Y., YAMAGATA, E.,
AND INOUE, N. Formula-driven supervised learning with recursive tiling patterns.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV)
Workshops (2021).

Kataoka, H., OkAvyasu, K., MATSUMOTO, A., YAMAGATA, E., YAMADA, R.,
INOUE, N., NAKAMURA, A., AND SATOH, Y. Pre-training without natural images.
In Proceedings of the Asian Conference on Computer Vision (ACCV) (2020).

KAy, W., CARREIRA, J., SIMONYAN, K., ZHANG, B., HILLIER, C., VIJAYA-
NARASIMHAN, S., ViorA, F., GREEN, T., BAcCK, T., NATSEV, P., SULEYMAN,
M., AND ZISSERMAN, A. The kinetics human action video dataset. In arXiv
preprint arXiv:1705.06950 (2017).

KM, Y.-w., MisHRrA, S., JIN, S., PANDA, R., KUEHNE, H., KARLINSKY, L.,
SALIGRAMA, V., SAENKO, K., Oriva, A., AND FERIS, R. How transferable
are video representations based on synthetic data? In Proceedings of the Interna-

tional Conference on Neural Information Processing Systems (NeurIPS) Datasets
and Benchmarks Track (2022).

KokkiNos, I., AND MARAGOS, P. Nonlinear speech analysis using models for
chaotic systems. In IEEE Transactions on Speech and Audio Processing (2005),
vol. 13, no. 6, pp. 1098-1109.

KotARr, K., ILHARCO, G., ScHMIDT, L., EHSANI, K., AND MOTTAGHI, R. Con-
trasting contrastive self-supervised representation learning pipelines. In Proceedings

of the IEEE International Conference on Computer Vision (ICCV) (2021).

KovaAr, L., GLEICHER, M., AND PIGHIN, F. Motion graphs. In ACM Transac-
tions on Graphics (2002), vol. 21, no. 3, pp. 473-482.

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification
with deep convolutional neural networks. In Proceedings of the International Con-
ference on Neural Information Processing Systems (NeurIPS) (2012).

KuenNE, H., JHuaANG, H., GARROTE, E., Poccio, T., AND SERRE, T. Hmdb:
A large video database for human motion recognition. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV) (2011).

LapTEV, 1., AND LINDEBERG, T. Space-time interest points. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV) (2003).

92



REFERENCES

[58]

[59]

LECUN, Y., HAFFNER, P., AND BENGIO, Y. Object recognition with gradient-
based learning. In Shape, Contour and Grouping in Computer Vision. Springer,
2000, ch. 19, pp. 319-345.

LEE, A. B., MUMFORD, D., AND HUANG, J. Occlusion models for natural images:
A statistical study of a scale-invariant dead leaves model. In International Journal

of Computer Vision (IJCV) (2004), vol. 41, pp. 35-59.

LEvy, O., AND WoLF, L. Live repetition counting. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV) (2015).

L1, Y., L1, Y., AND VASCONCELOS, N. Resound: Towards action recognition with-
out representation bias. In Proceedings of the European Conference on Computer

Vision (ECCV) (2018).

L1, Y., Liu, M., AND REHG, J. M. In the eye of beholder: Joint learning of gaze
and actions in first person video. In Proceedings of the Furopean Conference on

Computer Vision (ECCV) (2018).

Lin, J., GAN, C., AND HAN, S. Tsm: Temporal shift module for efficient video
understanding. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV) (2019).

LosHcHILOV, 1., AND HUTTER, F. SGDR: Stochastic gradient descent with warm
restarts. In Proceedings of the International Conference on Learning Representations

(ICLR) (2017).

LosucHiLov, I., AND HUTTER, F. Decoupled weight decay regularization. In

Proceedings of the International Conference on Learning Representations (ICLR)
(2019).

MADHUSUDANA, P. C.; LEE, S.-J., AND SHEIKH, H. R. Revisiting dead leaves
model: Training with synthetic data. In IEEE Signal Processing Letters (2022),
vol. 29, pp. 209-213.

MANDELBROT, B. Les objets fractals : forme, hasard et dimension. Flammarion,
1975.

MANDELBROT, B. The fractal geometry of nature. Freeman, 1982.

MARAGOS, P. Fractal signal analysis using mathematical morphology. In Advances
in Electronics and Electron Physics (1994), vol. 88, pp. 199-246.

MARAGOS, P., AND POTAMIANOS, A. Fractal dimensions of speech sounds: Com-

putation and application to automatic speech recognition. In The Journal of the
Acoustical Society of America (1999), vol. 105, pp. 1925-32.

93



REFERENCES

[71]

[72]

[74]

[30]

[81]

MARSZALEK, M., LAPTEV, 1., AND SCHMID, C. Actions in context. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2009).

MiN, J., AND CHAIL, J. Motion graphs+-+: A compact generative model for se-

mantic motion analysis and synthesis. In ACM Transactions on Graphics (2012),
vol. 31, no. 6, pp. 1-12.

MINAEE, S., Boykov, Y., POrikLI, F., PLAzA, A., KEHTARNAVAZ, N., AND
TERzZOPOULOS, D. Image segmentation using deep learning: A survey. In I[FEE
Transactions on Pattern Analysis and Machine Intelligence (2022), vol. 44, no. 7,
pp- 3523-3542.

MONFORT, M., ANDONIAN, A., ZHOU, B., RAMAKRISHNAN, K., BARGAL,
S. A., YaN, T., BRowN, L., FaN, Q., GUTFREUND, D., VONDRICK, C., AND
OLIvA, A. Moments in time dataset: One million videos for event understanding.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (2020), vol. 42,
pp. 502-508.

NAIR, V., AND HINTON, G. E. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the International Conference on Machine Learning

(ICML) (2010).

NAkAsHIMA, K., KATAOKA, H., MATSUMOTO, A., IwWATA, K., INOUE, N., AND

SATOH, Y. Can vision transformers learn without natural images? In Proceedings
of the AAAI Conference on Artificial Intelligence (2022).

NORTON, A. Generation and display of geometric fractals in 3-d. In Proceed-

ings of the Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH) (1982).

Pascanu, R., MikoLov, T., AND BENGIO, Y. On the difficulty of training recur-

rent neural networks. In Proceedings of the International Conference on Machine
Learning (ICML) (2013).

PaszkEe, A., GrRosS, S., MassA, F., LERER, A., BRADBURY, J., CHANAN, G.,
KiLLeen, T., LIN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF,
A., YanGg, E., DEVITO, Z., RAISON, M., TEJANI, A., CHILAMKURTHY, S.,
STEINER, B., FANG, L., BAI, J., AND CHINTALA, S. Pytorch: An imperative
style, high-performance deep learning library. In Proceedings of the International
Conference on Neural Information Processing Systems (NeurIPS) (2019).

PERLIN, K. An image synthesizer. In Proceedings of the Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH) (1985).

PERLIN, K. Improving noise. In Proceedings of the Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH) (2002).

94



REFERENCES

[82]

[33]

[89]

[90]

[91]

[92]

PiTsikaLIs, V., AND MARAGOS, P. Analysis and classification of speech signals

by generalized fractal dimension features. In Speech Communication (2009), vol. 51,
no. 12, pp. 1206-1223.

Qu, H., SongG, L., AND XUE, G. Shaking video synthesis for video stabilization

performance assessment. In Proceedings of the Visual Communications and Image
Processing (VCIP) (2013).

RUDERMAN, D. L. Origins of scaling in natural images. In Vision Research (1997),
vol. 37, no. 23, pp. 3385-3398.

Russakovsky, O., DENG, J., Su, H., KRAUSE, J., SATHEESH, S., MaA, S.,
HuaNG, Z., KARPATHY, A., KHOSLA, A., BERNSTEIN, M., BERG, A. C., AND

FeIl-FEI, L. Imagenet large scale visual recognition challenge. In International
Journal of Computer Vision (IJCV) (2015), vol. 115, no. 3, pp. 1573-1405.

ScuuLpT, C., LAPTEV, I., AND CAPUTO, B. Recognizing human actions: a

local svm approach. In Proceedings of the International Conference on Pattern
Recognition (ICPR) (2004).

SHRIVASTAVA, A., PFISTER, T., TuzeEL, O., SUSSKIND, J., WANG, W., AND
WEBB, R. Learning from simulated and unsupervised images through adversarial
training. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2017).

SIMONYAN, K., AND ZISSERMAN, A. Two-stream convolutional networks for action
recognition in videos. In Proceedings of the International Conference on Neural
Information Processing Systems (NeurIPS) (2014).

SooMRro, K., ZaMmir, A. R., AND SHAH, M. Ucfl01: A dataset of 101 human
actions classes from videos in the wild. In arXiv preprint arXiv:1212.0402 (2012).

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., AND
SALAKHUTDINOV, R. Dropout: A simple way to prevent neural networks from over-
fitting. In Journal of Machine Learning Research (2014), vol. 15, no. 56, pp. 1929—
1958.

STEED, R., AND CALISKAN, A. Image representations learned with unsupervised
pre-training contain human-like biases. In Proceedings of the ACM Conference on
Fairness, Accountability, and Transparency (2021).

Sun, R., Ler, T., CHEN, Q., WANG, Z., Du, X., ZHAO, W., AND NANDI, A.
Survey of image edge detection. In Frontiers in Signal Processing (2022), vol. 2,
pp. 420-432.

95



REFERENCES

[93] SzeGEDY, C., Liu, W., JiA, Y., SERMANET, P., REED, S., ANGUELOV, D.,
ERHAN, D., VANHOUCKE, V., AND RABINOVICH, A. Going deeper with convo-
lutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2015).

[94] THOKER, F. M., DoucHTY, H., BAcAD, P., AND SNOEK, C. G. M. How
severe is benchmark-sensitivity in video self-supervised learning? In Proceedings of
the European Conference on Computer Vision (ECCV) (2022).

[95] TOWARDSDATASCIENCE. Activation functions in ar-
tificial neural networks. https://medium.com/swlh/
activation-functions-in-artificial-neural-networks—-8aa6ab5ddf832.

Accessed: 02-09-2022.

[96] TOWARDSDATASCIENCE. Applied deep learning - part 4: Con-
volutional neural networks. https://towardsdatascience.com/
applied-deep-learning-part-4-convolutional-neural-networks-584bc134cle2.

Accessed: 02-09-2022.

[97] TOWARDSDATASCIENCE. Know your neural network architecture more
by understanding these terms. https://medium. com/@shroffmegha6695/
know-your-neural-network-architecture-more-by-understanding-these-terms-67faf4eal
Accessed: 02-09-2022.

[98] TOWARDSDATASCIENCE. Overcoming overfitting a model
in machine learning. https://medium.com/@jwbtmf/
overcoming-overfitting-a-model-in-machine-learning-7dd6324d15bf.

Accessed: 02-09-2022.

[99] TOWARDSDATASCIENCE. Understanding activation functions in neu-
ral networks. https://medium. com/the-theory-of-everything/
understanding-activation-functions-in-neural-networks-9491262884¢0.
Accessed: 02-09-2022.

[100] TOWARDSDATASCIENCE. ~ Why relu?  tips for using relu. comparison be-
tween relu, leaky relu, and relu-6. https://medium.com/@chinesh4/
why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-96935¢
Accessed: 02-09-2022.

[101] TrAN, D., BOURDEV, L., FERGUS, R., TORRESANI, L., AND PALURI, M. Learn-
ing spatiotemporal features with 3d convolutional networks. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV) (2015).

[102] VINCENT, L. Morphological transformations of binary images with arbitrary struc-
turing elements. In Signal Processing (1991), vol. 22, no. 1, pp. 3-23.

96


https://medium.com/swlh/activation-functions-in-artificial-neural-networks-8aa6a5ddf832
https://medium.com/swlh/activation-functions-in-artificial-neural-networks-8aa6a5ddf832
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://medium.com/@shroffmegha6695/know-your-neural-network-architecture-more-by-understanding-these-terms-67faf4ea0efb
https://medium.com/@shroffmegha6695/know-your-neural-network-architecture-more-by-understanding-these-terms-67faf4ea0efb
https://medium.com/@jwbtmf/overcoming-overfitting-a-model-in-machine-learning-7dd6324d15bf
https://medium.com/@jwbtmf/overcoming-overfitting-a-model-in-machine-learning-7dd6324d15bf
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310
https://medium.com/@chinesh4/why-relu-tips-for-using-relu-comparison-between-relu-leaky-relu-and-relu-6-969359e48310

REFERENCES

103]

104]

[105]

[106]

107]

[108]

109

[110]

[111]

[112]

[113]

[114]

WanNG, H., KLASER, A., ScaMmiD, C., AND Liu, C.-L. Action recognition by

dense trajectories. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2011).

WaNG, H., AND ScHMID, C. Action recognition with improved trajectories. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(2013).

WaNG, H., AND TIAN, Y. Sequential point clouds: A survey. In arXiv preprint
arXiw:2204.09337 (2022).

Wang, J., Gao, Y., L1, K., LiN, Y., MA, A. J., CHENG, H., PENG, P.,
Huang, F., J1, R., AND SuN, X. Removing the background by adding the back-
ground: Towards background robust self-supervised video representation learning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2021).

Wang, L., Xionag, Y., WANG, Z., Qiao, Y., LiN, D., TanG, X., AND
VAN GooLr, L. Temporal segment networks: Towards good practices for deep
action recognition. In Proceedings of the European Conference on Computer Vision

(ECCV) (2016).

WIKIPEDIA.  Artificial neural network. https://en.wikipedia.org/wiki/
Artificial_neural network. Accessed: 02-09-2022.

WIKIPEDIA.  Recurrent neural network. https://en.wikipedia.org/wiki/
Recurrent_neural_network. Accessed: 02-09-2022.

WIiLsoN, B., HOFFMAN, J., AND MORGENSTERN, J. Predictive inequity in object
detection. In arXiv preprint arXiv:1902.11097 (2019).

XU, Q., ZHANG, R., ZHANG, Y., WANG, Y., AND TiAN, Q. A fourier-based

framework for domain generalization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2021).

YarLniz, I. Z., JEcou, H., CHEN, K., PALURI, M., AND MAHAJAN, D.

Billion-scale semi-supervised learning for image classification. In arXiv preprint
arXiv:1905.00546 (2019).

YAMADA, R., KAaTAOKA, H., CHIBA, N., DOMAE, Y., AND OGATA, T. Point

cloud pre-training with natural 3d structures. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2022).

YANG, Y., LAO, D., SUNDARAMOORTHI, GG., AND SOATTO, S. Phase consistent

ecological domain adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2020).

97


https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network

REFERENCES

[115]

[116]

[117)

[118]

[119]

[120]

YANG, Y., AND SOATTO, S. Fda: Fourier domain adaptation for semantic segmen-
tation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2020).

ZHANG, H., Cisse, M., DAUPHIN, Y. N., AND LOPEZ-PAzZ, D. mixup: Beyond
empirical risk minimization. In Proceedings of the International Conference on

Learning Representations (ICLR) (2018).

ZHAO, J., WANG, T., YATSKAR, M., ORDONEZ, V., AND CHANG, K.-W.
Men also like shopping: Reducing gender bias amplification using corpus-level con-
straints. In Proceedings of the Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP) (2017).

Zuao, K., SHEN, L., ZHANG, Y., ZHOoU, C., WANG, T., ZHANG, R., DING, S.,
JIA, W., AND SHEN, W. Bézierpalm: A free lunch for palmprint recognition. In
Proceedings of the European Conference on Computer Vision (ECCV) (2022).

Zuou, H., KApAv, A., SHAMSIAN, A., GENG, S., LA1, F., ZHao, L., Liu, T,
Kaprapia, M., aAND GRAF, H. P. Composer: Compositional reasoning of group

activity in videos with keypoint-only modality. In Proceedings of the FEuropean
Conference on Computer Vision (ECCV) (2022).

ZLATINTSI, N., AND MARAGOS, P. Multiscale fractal analysis of musical instru-

ment signals with application to recognition. In Audio, Speech, and Language Pro-
cessing, IEEE Transactions on (2013), vol. 21, pp. 737-748.

98



	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	ÎŁÎºÏ—ÎµÏ—Î±Î¼Î�Î½Î· Î€ÎµÏ†Î¯Î»Î·Ï‹Î· Ï…Ï—Î± ÎŁÎ»Î»Î·Î½Î¹ÎºÎ¬
	ÎŁÎ¹ÎºÏ„Î½ÎµÏ‡ Î¦Ï†Î¬ÎºÏ—Î±Î»
	ÎŁÎ¹Ï…Î±Î³Ï›Î³Î®
	ÎıÎ»Î±Ï…Ï…Î¹ÎºÎ¬ Iterated Function Systems
	Î€Î±Ï†Î¬Î¼ÎµÏ—Ï†Î¿Î¹ IFS
	Fractal Flame

	Î£Ï–Î½Î¸ÎµÏ—Î¹ÎºÎ¬ Î™Î¯Î½Ï—ÎµÎ¿
	Î‚Ï•Î»Î® Î€Î±Ï†ÎµÎ¼Î²Î¿Î»Î®
	Î€Î±Ï†Î±Î³Î¿Î½Ï—Î¿Ï•Î¿Î¹Î·Î¼Î�Î½Î· Î€Î±Ï†ÎµÎ¼Î²Î¿Î»Î®
	Î§Î¬Ï…Î¼Î± ÎœÎµÏ—Î±Î¾Ï“ Î£Ï–Î½Î¸ÎµÏ—Î¹ÎºÏ”Î½ ÎºÎ±Î¹ Î€Ï†Î±Î³Î¼Î±Ï—Î¹ÎºÏ”Î½ Î™Î¯Î½Ï—ÎµÎ¿

	Î€ÎµÎ¹Ï†Î±Î¼Î±Ï—Î¹ÎºÎ® Î‚Î¾Î¹Î¿Î»Ï„Î³Î·Ï…Î·
	ÎŁÎ¾ÎµÏ—Î±Ï…Ï—Î�Î± Î£Ï“Î½Î¿Î»Î± ÎﬂÎµÎ´Î¿Î¼Î�Î½Ï›Î½
	Î‚Ï†Ï⁄Î¹Ï—ÎµÎºÏ—Î¿Î½Î¹ÎºÎ® Ï—Î¿Ï– ÎﬂÎ¹ÎºÏ—Ï“Î¿Ï–
	Î€ÎµÎ¯Ï†Î±Î¼Î± 1 - Î§Î¬Ï…Î¼Î± ÎœÎµÏ—Î±Î¾Ï“ Î€Ï†Î±Î³Î¼Î±Ï—Î¹ÎºÏ”Î½ ÎºÎ±Î¹ Î£Ï–Î½Î¸ÎµÏ—Î¹ÎºÏ”Î½ Î™Î¯Î½Ï—ÎµÎ¿
	Î€ÎµÏ†Î±Î¹Ï—Î�Ï†Ï› Î€ÎµÎ¹Ï†Î¬Î¼Î±Ï—Î±

	Î£Ï“Î½Î¿Ï‹Î·
	ÎœÎµÎ»Î»Î¿Î½Ï—Î¹ÎºÎ�Ï‡ Î€Ï†Î¿ÎµÎºÏ—Î¬Ï…ÎµÎ¹Ï‡

	Introduction
	Motivation
	Contributions
	Thesis Structure

	Background
	Machine Learning
	Types of Machine Learning

	Deep Learning
	Introduction
	Concepts

	Deep Learning Models
	Feedforward Neural Networks
	Recurrent Neural Networks
	2D Convolutional Neural Networks
	3D Convolutional Neural Networks

	Transfer Learning
	Self-Supervised Learning Frameworks
	SimCLR
	MoCoV2
	BYOL

	Mathematical Background for Iterated Function Systems

	Related work
	Pre-training with Synthetic Data
	Spatiotemporal Models
	Action Recognition Datasets

	Fractal Images
	Introduction
	Classic Iterated Function Systems
	IFS Parameters
	Fractal Flame
	Other Fractal Families
	3D IFS
	Julia Fractals


	Synthetic Videos
	Naive IFS Interpolation
	Decomposed IFS Interpolation
	Domain Gap
	Non-linear Motion
	Diversity
	Static Background
	Dynamic Background
	Foreground Scaling
	Group Activity
	Perspective
	Displacement
	Camera Zoom
	Camera Shake

	Automatic Construction of Categories
	Alternative Synthetic Data
	Perlin Noise
	Octopus
	Dead Leaves


	Experiments
	Proposed Framework
	Downstream Tasks
	Model Architecture
	Implementation Details

	Experimental Results
	Experiment 1 - Domain Adaptation
	Experiment 2 - Alternative Synthetic Data
	Experiment 3 - Training Objective
	Experiment 4 - Importance of Motion
	Experiment 5 - Scale
	Experiment 6 - Higher Resolution

	Manual Error Analysis
	Conclusions

	Summary and Future Work
	Summary
	Future Work

	References

