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Abstract

The goal of this diploma thesis is to investigate the utilization of the continu-
ous adjoint method for optimizing problems involving Conjugate Heat Transfer
(CHT) in Computational Fluid Dynamics (CFD). The areas of focus in this con-
text encompass Shape Optimization (ShpO) and Topology Optimization (TopO),
where various cases are addressed and dealt with. Special emphasis is given
to the known problems of TopO occurring due to the absence of a clearly de-
fined Fluid-Solid Interface (FSI), which subsequently results in the inability to
impose Boundary Conditions (BCs) on it.

The applications examined exclusively pertain to laminar flows of incom-
pressible fluids that are governed by the steady-state Navier-Stokes (NS) equa-
tions. The relevant software used for the analysis and optimization has been de-
veloped by the PCOpt/NTUA based on the open-source CFD toolbox OpenFOAM©.

The first application deals with the analysis and optimization of the cooling
duct of a 2D turbine blade-like geometry. A serpentine-like duct is initially
designed and optimized through ShpO. The primal problem is then solved us-
ing the TopO code in order to identify differences in the results between this
solution approach and the conventional one using body-fitted meshes. Several
TopO cases are conducted and the geometries produced are evaluated.

The second application addresses the design of a 2D duct system. This
time, an initial design of the duct is produced by TopO. Body-fitted meshes for
both the fluid and solid regions are produced based on the computed optimal
porosity field. After the TopO results are compared with those produced on the
body-fitted mesh, several ShpO cases are performed on the geometry.
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Περίληψη

Ο στόχος της παρούσας διπλωματικής εργασίας είναι η διερεύνηση της χρήσης
της συνεχούς συζυγούς μεθόδου σε προβλήματα συζευγμένης μεταφοράς θερμό-
τητας στην Υπολογιστική Ρευστοδυναμική (ΥΡΔ). Σε αυτό το πλαίσιο εξετάζονται
προβλήματα βελτιστοποίησης μορφής και τοπολογίας σε διάφορες εφαρμογές.
Ιδιαίτερη έμφαση δίνεται στα γνωστά προβλήματα της βελτιστοποίησης τοπολο-
γίας που προκύπτουν λόγω της έλλειψης σαφώς ορισμένου ορίου μεταξύ ρευστών-
στερεών περιοχών, γεγονός που οδηγεί στην αδυναμία επιβολής οριακών συνθη-
κών σε αυτό.

Οι εφαρμογές που εξετάζονται αφορούν αποκλειστικά τις στρωτές ροές ασυμ-
πίεστων ρευστών που διέπονται από τις χρονικά μόνιμες Navier-Stokes εξισώσεις.
Το σχετικό λογισμικό που χρησιμοποιήθηκε για ανάλυση και βελτιστοποίηση έχει
προγραμματιστεί από την ΜΠΥΡ&Β/ΕΜΠ βασισμένο στο περιβάλλον ανοιχτού
κώδικα OpenFOAM©.

Η πρώτη εφαρμογή αφορά την ανάλυση και βελτιστοποίηση ενός αγωγού ψύ-
ξης 2Δ πτερυγίου στροβιλομηχανής. Αρχικά σχεδιάζεται ένας καμπύλος αγωγός
ο οποίος βελτιστοποιείται εφαρμόζοντας βελτιστοποίηση μορφής. Έπειτα, το πρω-
τεύον πρόβλημα λύνεται με χρήση του κώδικα βελτιστοποίησης τοπολογίας με
σκοπό την διερεύνηση των διαφορών στα αποτελέσματα μεταξύ της συγκεκριμέ-
νης προσέγγισης επίλυσης και αυτή της συμβατικής με χρήση σωματόδετων πλεγ-
μάτων. Πραγματοποιούνται διάφορες εφαρμογές βελτιστοποίησης τοπολογίας και
οι προκύπτουσες γεωμετρίες αξιολογούνται.

Η δεύτερη εφαρμογή αφορά τον σχεδιασμό ενός 2Δ συστήματος αγωγών. Αυτή
τη φορά, η αρχική γεωμετρία των αγωγών προκύπτει από βελτιστοποίηση τοπολο-
γίας. Έπειτα, γενώνται σωματόδετα πλέγματα για τις ρευστές και στερεές περιο-
χές βάσει του βελτιστοποιημένου πορώδους πεδίου. Αφού τα αποτελέσματα του
πρωτεύοντος προβλήματος της βελτιστοποίησης τοπολογίας συγκριθούν με αυτά
που προκύπτουν με την συμβατική προσέγγιση επίλυσης, πραγματοποιούνται
διάφορα τρεξίματα βελτιστοποίησης μορφής της γεωμετρίας.
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Chapter 1

Introduction

In the last decades, advancements in the design of gas turbines are directed
toward continuously improving output power and thermal efficiency. Both of
those objectives are dependent upon the increase of turbine entry temperature
which is limited by the melting point of the materials used. For this reason,
state-of-the-art gas turbines employ efficient coolant systems to allow turbine
blades to survive under excessive thermal loads. Blade cooling channels are
characterized by complex geometries the performant design of which, demands
numerous simulations and experiments to accomplish. Therefore, optimiza-
tion methods can be utilized as an effective way to achieve cooling structures
with higher overall performance.

1.1 Turbine Blade Cooling

Advanced gas turbines operate in temperatures that are far above the ones
permissible by the metal. To ensure safe operation and structural integrity,
cooling of the blades is necessary. In most cases, the coolant is air bled from
the high-pressure compressor, which bypasses the combustor and enters the
blades through their roots. This extraction of air incurs a severe penalty to the
thermal efficiency making it crucial to optimize the cooling technique. Several
methods are utilized that cool the blade both internally and externally.

Internal cooling is achieved by passing the coolant through several serpen-
tine passages lined with rib turbulators. Also, internal cooling is enhanced
through impingement and pin-fin cooling. Impingement cooling is used near
the leading edge of the blade where the thermal load is the greatest and also
the blade walls are thick enough to sustain the impact with the cooling jets.
Pin-fin cooling is used in the very narrow trailing edge of the blade due to man-
ufacturing restrictions. As the coolant flows past the pins, the flow separates
and wakes are shed reinforcing the extraction of heat from the outside of the
blade.

External cooling is also called film cooling. Coolant air is ejected from the
inside of the blade to the outside surface through discrete holes or slots, form-
ing a protective layer between the blade surface and the hot combustion gases.
The aforementioned cooling methods are described in great detail in [1–4].

For an effective cooling system design, it is critical to ensure that the maxi-
mum temperatures and temperature spatial gradients during operation do not
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2 1. Introduction

exceed the maximum blade thermal stress. Additionally, the coolant mass flow
rate and total pressure drop in the cooling channels should be minimal, consid-
ering the impact that those have on the thermal efficiency of the gas turbine.

1.2 Gradient-Based Optimization

Optimization problems are generally characterized by the objective function 𝐽 ,
the design or optimization variables 𝑏𝑛 and the constraints. The objective func-
tion is the quantity to be either maximized or minimized. Design variables are
controllable parameters of the system and constraints place limits to problem
quantities. The goal of the optimization is to find the set of design variables that
maximizes/minimizes the value of the objective function while the constraints
are satisfied.

Optimization methods are divided into stochastic [5–7] and deterministic or
gradient-based [8–11]. In the context of this thesis, only Gradient-Based Meth-
ods (GBMs) are studied and used. The gradient-based optimization algorithms
start with a given set of design variables and improve it based on information
related to the derivatives of the objective function with respect to (w.r.t.) the
design variables (also referred to as Sensitivity Derivativess (SDs)). Since the
direction along which the design variables should be updated is dictated by
the SDs, a GBM can be trapped into a local minimum/maximum where the
values of the SDs are zeroed. In such cases, an optimized solution is obtained
rather than the optimal one. It is possible to get another solution by starting
the optimization algorithm from a different set of design variables.

The efficiency of GBMs strongly depends on the method used to compute
the required SDs. Known methods for computing SDs are:

• Finite Differences (FDs)

• Complex Variable Method [12]

• Direct Differentiation (DD) [13]

• Automatic Differentiation (AD) [14]

• Adjoint Methods [15, 16]

While the FDs method is straightforward to implement, its cost scales lin-
early with the number of design variables, 𝑁 , making it unsuitable for large-
scale optimization problems. Another disadvantage of the method is the selec-
tion of an appropriately small step size in the computation of the discretized
gradient formula in order to minimize the truncation error. While a small step
size is beneficial, it cannot be arbitrarily decreased or the round-off error can
become significant, [17].

The error due to round-off can be circumvented by using the complex vari-
able method [12]. Nevertheless, the cost of the method is again linearly pro-
portional to the number of the design variables, 𝑁 , making it infeasible for the
problems studied in this thesis.

The DD method [13] is formulated by differentiating the system equations
and the objective function w.r.t. the design variables. A total of 𝑁 new systems
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of equations arise, which include the variations of the primal problem variables.
The SDs can be computed by solving the primal equations and the 𝑁 newly
derived systems of equations. Therefore, the cost of DD is proportional to the
number of design variables.

The AD technique [14] provides accurate numerical approximations of deriva-
tives by applying the chain rule repeatedly to a sequence of elementary arith-
metic operators and functions. Even though AD (in reverse mode) can compute
derivatives for a cost independent of the number of design variables, it creates
codes with significant memory usage since it stores intermediate values dur-
ing the computation of derivatives, which can become a problem in large-scale
applications.

Among the aforementioned methods for the computation of SDs, the adjoint
method [15, 16] is the one used in this thesis. This is due to the fact that the
cost of computing the necessary derivatives with this method is practically
independent of the number of design variables. Moreover, it is applicable to a
wide range of problems while being more memory-efficient than AD.

Adjoint methods are classified into continuous and discrete. In continuous
adjoint [15, 18, 19], the objective function is augmented by the residuals of
the primal equations in their continuous form (prior to their discretization). By
the proper mathematical development of the augmented objective function, the
adjoint Partial Differential Equations (PDEs) and their BCs arise, which can be
numerically solved to produce the fields of the adjoint variables. In contrast,
in discrete adjoint [16, 20, 21], the objective function is augmented by the
discretized residuals of the primal equations. The adjoint system of equations
is then derived, already in discrete form, by differentiating and rearranging the
augmented objective function. The adjoint variables are finally computed by
numerically solving the system of discrete adjoint equations.

1.2.1 Shape Optimization

The goal of ShpO is to find a shape that minimizes or maximizes a certain per-
formance measure (objective function, 𝐽 ) while satisfying the given constraints.
The shape of the geometric form under consideration is controlled by a number
of variables, for instance, the coefficients of the Bézier-Bernstein polynomials.
In such case, those act as the design variables of the optimization problem.
The mapping from the design variables to the geometry is called shape param-
eterization.

This thesis deals with the analysis of problems involving heat transfer be-
tween fluids and solids, known as CHT analysis. Such problems appear in
various applications including turbine cooling systems [22–24], cooling of elec-
tronics [25] and heat sinks [26]. ShpO has been utilized in CHT problems both
using stochastic methods [27] and GBMs [28, 29]. For the latter, an adjoint
method can be used for the computation of the SDs.

Adjoint methods have been developed for ShpO in CHT problems, [28, 30,
31]. In [31], the formulation of the adjoint equations governing both the fluid
and the solid domains along with the Adjoint Boundary Conditions (ABCs) in
the FSI was presented using the continuous adjoint method. Contrary to [31],
in [28] the continuous adjoint method for CHT ShpO was presented taking the
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effect of the turbulence model into account, in the computation of the SDs.

1.2.2 Topology Optimization

The concept of TopO was first introduced in the field of structural mechanics
by Bendsøe and Kikuchi, [32]. There, the aim was to determine the optimal
distribution of material within a design space rather than just modifying the
shape of a structure to optimize it. Nodes of the discretized domain to be
assigned with unary material density values were sought, in areas of the struc-
ture where material should be added to improve its structural stiffness under
specific loads, while the rest were assigned with zero values indicating the ab-
sence of material.

A few years later, the same idea migrated to fluid dynamics for problems
governed by the Stokes equations, [33]. TopO in fluids was accomplished by
incorporating a porosity-dependent term into the flow equations. The flow en-
counters great resistance in areas of high porosity values meaning that its
velocity becomes practically zero. Hence, those areas correspond to the solid-
ified part of the domain while areas of zero porosity value belong to the flow
since there is no porosity-induced resistance. To minimize an objective func-
tion, TopO aims to determine the ideal porosity value at each cell. This means
that the number of design variables is equal to the number of mesh cells, and
therefore, the adjoint method is the most suitable approach to compute the
sensitivities of the objective function w.r.t. the porosity values. Finally, it gives
the ability to design unconventional shapes and is particularly useful in the
preliminary design of ducts or duct systems when only the inlet and outlet
of the duct are known. On the other hand, while the absence of parameteri-
zation is considered one of the advantages of TopO, the formed geometry, i.e.
the interface between the solidified and fluid parts of the domain, needs post-
processing to be extracted.

Following [33], the concept of TopO was extended to laminar flows by Gersborg-
Hansen et al., [34] and Olesen et al., [35]. Regarding turbulent flows, the ad-
joint equations and BCs were derived using the continuous adjoint method
in [36] with the omission though of the eddy viscosity variation. Later on, an
exact continuous adjoint formulation for TopO problems of 2D incompressible
turbulent flows was presented in [37] and was extended to 3D flows in [38].

1.3 Thesis Outline

This thesis consists of six chapters, including the Introduction, which are sum-
marized below.

In Chapter 2, the primal and adjoint equations for CHT ShpO problems
with laminar steady-state flows of incompressible fluids are presented. The
equations that govern the system are the steady-state NS equations, which
are combined with the energy equation for the fluid domain, as well as the
steady-state heat conduction equation for solids.

In Chapter 3, the primal and adjoint equations for CHT TopO problems are
presented.
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In Chapter 4, CHT analysis is conducted on a 2D test case. This case studies
a cooling duct the geometry of which was inspired by the serpentine passages
found in internally cooled turbine blades. At first, the primal problem is solved
using the publicly available OpenFOAM©solver. Then, the ShpO of the duct is
performed using the solver developed by the PCOpt/NTUA, after comparing its
results with those from the previous solver.

In Chapter 5, the primal problem discussed in Chapter 4 is solved again
using a porosity-based approach this time. An OpenFOAM©utility is used to
initialize the porosity field so that the cells corresponding to the solid domain,
are given a porosity value of 1 while the others are 0. Then, a study is conducted
for the 𝛽𝑚𝑎𝑥 parameter and the effects of the omission of the BCs on the FSI are
quantified. Finally, several TopO runs are carried out for different weights in
the objective function. In section 5.3, a new fully-structured mesh is generated
consisting of cells of uniform size which is typical for TopO, since the geometry
is unknown. A mesh independence study is conducted to determine the ap-
propriate cell density of the mesh. Then, the TopO of the 2D internally cooled
turbine blade-like geometry is performed, starting from all-fluid domain, for
several weights in the objective function. The resulting geometries correspond
to a U-shaped duct like the ones formed in section 5.2. In section 5.4, a U-
shaped duct is designed, similar to the ones produced in sections 5.2 and 5.3,
to evaluate the TopO results. Finally, ShpO of the U-shaped duct is carried
out for differently weighted objective functions.

In Chapter 6, the assumptions drawn in previous chapters are revisited on a
second test case regarding the design of a 2D duct system. At first, TopO cases
are run the results of which are discussed. Then, using a utility developed by
the PCOpt/NTUA, body-fitted meshes are generated for both the fluid and solid
regions based on the background mesh of TopO and the optimized porosity field.
Finally, the primal problem is solved on the body-fitted mesh to compare the
results with those of TopO and several ShpO cases are performed.



Chapter 2

Continuous Adjoint Method for
CHT ShpO

In this chapter, the flow and adjoint equations for CHT ShpO problems with
laminar flows of incompressible fluids are presented. The adjoint equations
are derived by applying the continuous adjoint method [18] to the steady-state
Navier-Stokes equations. The adjoint PDEs used in this thesis are the ones
proposed in [39].

2.1 The Primal Problem

In CHT problems, the computational domain is composed of the fluid domains
Ω𝐹 and the solid domains Ω𝑆 separated by an interface 𝑆. Depending on
whether the interface is seen from the fluid or solid point of view, the latter
will be denoted by 𝑆𝐹 or 𝑆𝑆 respectively. For the fluid domains, the governing
equations are the steady-state Navier-Stokes for incompressible flows solved
along with the energy equation [40] while for the solid domains, the steady-
state heat conduction equation is solved.

2.1.1 State Equations

Every quantity pertaining to the fluid domain is marked with the superscript
𝐹 whereas the 𝑆 superscript is used for the solid domain. The fluid flow PDEs
for the CHT problem are written as

𝑅𝑝 = − 𝜕𝑣𝑗
𝜕𝑥𝑗

= 0 (2.1a)

𝑅𝑣
𝑖 = 𝑣𝑗

𝜕𝑣𝑖
𝜕𝑥𝑗

− 𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜕𝑝
𝜕𝑥𝑖

= 0, 𝑖 = 1, 2, (, 3) (2.1b)

𝑅𝑇 𝐹 = 𝜌𝐹 𝑣𝑗𝑐𝑝
𝜕𝑇 𝐹

𝜕𝑥𝑗
+ 𝜌𝐹 𝑣𝑗

2
𝜕𝑣2

𝑘
𝜕𝑥𝑗

− 𝜕
𝜕𝑥𝑗

(𝑘𝐹 𝜕𝑇 𝐹

𝜕𝑥𝑗
) = 0 (2.1c)

which correspond to the continuity, momentum and energy equations respec-
tively. In the energy equation, the viscous energy dissipation term is omitted.
Since the flow is incompressible, the energy equation does not give feedback

6



2.1. The Primal Problem 7

to the NS PDEs thus; thus, it can be solved after the latter have converged.
These equations are solved using the SIMPLE algorithm [41]. In the above
equations, 𝑝, 𝑣𝑖, 𝜏𝑖𝑗 are the static pressure divided by the constant fluid density,
velocity and stress components (𝜏𝑖𝑗 = 𝜈 ( 𝜕𝑣𝑖

𝜕𝑥𝑗
+ 𝜕𝑣𝑗

𝜕𝑥𝑖
) where 𝜈 stands for the kine-

matic viscosity). In addition, 𝜌𝐹 is the constant fluid density, 𝑐𝑝 is the specific
heat transfer coefficient under constant pressure and 𝑘𝐹 is the fluid thermal
conductivity, for which

𝑘𝐹 = 𝜌𝐹 𝑐𝑝𝛼 = 𝜌𝐹 𝑐𝑝 ( 𝜈
Pr

) (2.2)
where Pr is the Prandtl number and 𝛼 is the thermal diffusivity. The thermal
diffusivity 𝛼 is defined as 𝛼 = 𝜈/Pr.

On the other hand, heat conduction over solid region Ω𝑆 is governed by,

𝑅𝑇 𝑆 = − 𝜕
𝜕𝑥𝑗

(𝑘𝑆 𝜕𝑇 𝑆

𝜕𝑥𝑗
) = 0 (2.3)

where 𝑘𝑆 stands for the thermal conductivity of the solid region.

2.1.2 Boundary Conditions

The conditions imposed on each type boundary type are presented. The bound-
aries 𝑆𝐹 of Ω𝐹 are decomposed as 𝑆𝐹 = 𝑆𝐹

𝐼 ∪ 𝑆𝐹
𝑂 ∪ 𝑆𝐹

𝑊 ∪ 𝑆𝐹 , indicating the inlet,
outlet, plain and FSI walls, respectively. The solid domain boundaries 𝑆𝑆 are
decomposed as 𝑆𝑆 = 𝑆𝑆

𝐷 ∪ 𝑆𝑆
𝐹𝑙 ∪ 𝑆𝑆, where 𝑆𝑆

𝐷 and 𝑆𝑆
𝐹𝑙 have fixed temperature

and fixed heat-flux distributions (adiabatic or non-adiabatic), respectively.

Inlet Boundaries, 𝑆𝐹
𝐼

At the inlet, a uniform velocity and temperature distribution is imposed. Addi-
tionally, zero Neumann conditions are imposed on pressure.

Outlet Boundaries, 𝑆𝐹
𝑂

At the outlet, zero Neumann conditions are imposed on velocity and tempera-
ture with the assumption that the flow has settled near the exit. On pressure,
zero Dirichlet condition is set and so the manometric pressure is calculated in
the domain.

Fluid Wall Boundaries, 𝑆𝐹
𝑊

All the velocity components take on zero value on the wall boundaries since
the flow under consideration is viscous. Additionally, 𝜕𝑝/𝜕𝑛 = 0. The walls
that belong to the Ω𝐹 domain are considered adiabatic, so 𝜕𝑇 /𝜕𝑛 = 0.

Solid Wall Boundaries, (𝑆𝑆
𝐷, 𝑆𝑆

𝐹𝑙)
Fixed temperature boundary conditions are imposed on 𝑆𝑆

𝐷. Along 𝑆𝑆
𝐹𝑙, zero

Neumann conditions are imposed which means that all these boundaries are
considered adiabatic.
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FSI Boundaries (𝑆𝐹 , 𝑆𝑆)

The conditions imposed on velocity and pressure at 𝑆𝐹 are the same as the
ones used for the wall boundaries 𝑆𝐹

𝑊 . The only difference is in the temperature
boundary conditions. The conditions imposed on temperature along each point
at the FSI boundary (𝑆𝐹 , 𝑆𝑆) are

𝑇 𝑆∣𝑆𝑆 = 𝑇 𝐹 ∣𝑆𝐹 (2.4)

𝑘𝑆 𝜕𝑇 𝑆

𝜕𝑛 ∣
𝑆𝑆

= −𝑘𝐹 𝜕𝑇 𝐹

𝜕𝑛 ∣
𝑆𝐹

(2.5)

where 𝑛𝑛𝑛 is the outward unit normal vector and, thus, 𝑛𝑖|𝑆𝐹 =-𝑛𝑖|𝑆𝑆. If the heat
flows from the solid region to the fluid, the left-hand side in eq. (2.5) is positive
because it follows the direction of the solid outward normal 𝑛𝑖|𝑆𝑆. Observing the
heat flow from the fluid perspective, the opposite is true and thus, a negative
sign is added in eq. (2.5) to ensure heat-flux conservation. The first condition
eq. (2.4) is there to ensure temperature equality on the interface of the two
regions.

2.2 The Adjoint Problem

In gradient-based optimization, the gradient of the objective function w.r.t. the
design variables, also called SDs, should be computed in order to update their
value. The continuous adjoint is an efficient method for the computation of the
exact derivatives of objective functions.

2.2.1 Introduction of the Adjoint Variables

Starting point for the formulation of the adjoint problem is the introduction of
the augmented objective function, 𝐽𝑎𝑢𝑔, which is defined by adding the volume
integrals of the state equations (eqs. (2.1)), multiplied by the adjoint variables,
to the objective function 𝐽 , namely,

𝐽𝑎𝑢𝑔 = 𝐽 + ∫
Ω𝐹

𝑞𝑅𝑝𝑑Ω + ∫
Ω𝐹

𝑢𝑖𝑅𝑣
𝑖 𝑑Ω + ∑

𝐷=𝐹,𝑆
∫

Ω𝐷
𝑇 𝐷

𝑎 𝑅𝑇 𝐷𝑑Ω (2.6)

where 𝑞, 𝑢𝑖 are the adjoint to the pressure and velocity fields. Additionally, 𝑇 𝐷
𝑎

stands for the adjoint temperature with 𝐷 = 𝐹 for the fluid and 𝐷 = 𝑆 for
the solid domains. Since the residuals of the primal equations are zero, the
value of 𝐽𝑎𝑢𝑔 is identical to that of 𝐽 . Differentiating 𝐽𝑎𝑢𝑔, which is as if 𝐽 is
differentiated, w.r.t. the design variables 𝑏𝑛, yields

𝛿𝐽𝑎𝑢𝑔
𝛿𝑏𝑛

= 𝛿𝐽
𝛿𝑏𝑛

+ 𝛿
𝛿𝑏𝑛

∫
Ω𝐹

𝑞𝑅𝑝𝑑Ω + 𝛿
𝛿𝑏𝑛

∫
Ω𝐹

𝑢𝑖𝑅𝑣
𝑖 𝑑Ω + ∑

𝐷=𝐹,𝑆

𝛿
𝛿𝑏𝑛

∫
Ω𝐷

𝑇 𝐷
𝑎 𝑅𝑇 𝐷𝑑Ω (2.7)

Introducing additional degrees of freedom in eq. (2.6), in the form of the adjoint
variables, gives the ability to get rid of the terms multiplying the derivatives of



2.2. The Adjoint Problem 9

the primal variables in 𝛿𝐽𝑎𝑢𝑔/𝛿𝑏𝑛 which are computationally expensive. After
some lengthy mathematical development of eq. (2.7) shown in [38, 42] the field
adjoint equations as well as the ABCs arise by setting the aforementioned terms
to zero.

2.2.2 Objective Function Definition

Before proceeding with the presentation of the adjoint problem, the objective
function should be defined as it contributes to the field adjoint equations and
their BCs as well as to the SDs. In this thesis, the objective function used
combines two separate objectives; the first one is to maximize the surface-
averaged temperature at the outlet and the other is to minimize the volume-
averaged total pressure losses. The total objective function to be minimized is
written as,

𝐽 𝑡𝑜𝑡𝑎𝑙 = −𝑤 ̂𝐽𝑚𝑒𝑎𝑛𝑇 + (1 − 𝑤) ̂𝐽𝑝𝑡 (2.8)

where 𝑤 ∈ [0, 1] is a weight used to control the contribution of each objective
in the total objective function. The negative sign in eq. (2.8) appears because
the maximization of 𝐽𝑚𝑒𝑎𝑛𝑇 objective is sought. The hat symbol is used as an
indication that the two objectives are separately normalized. The normalization
is made by dividing each objective by its value computed as ̂𝐽 = 𝐽/𝐽0 where
the denominator corresponds to the starting geometry.

The surface-averaged temperature objective is computed by

𝐽𝑚𝑒𝑎𝑛𝑇 =
∫𝑆𝑂

𝑇 𝐹 𝑑𝑆
∫𝑆𝑂

𝑑𝑆 = 1
𝑆𝑂

∫
𝑆𝑂

𝑇 𝐹 𝑑𝑆 (2.9)

while the volume-averaged total pressure losses objective function is written
as

𝐽𝑝𝑡 = − ∫
𝑆𝐼,𝑂

(𝑝 + 1
2𝑣2

𝑘) 𝑣𝑖𝑛𝑖𝑑𝑆 (2.10)

The contribution of each objective in the adjoint equations and BCs is deter-
mined by differentiating it w.r.t. the design variables 𝑏𝑛. For the mean outlet
temperature objective this yields

𝛿 ̂𝐽𝑚𝑒𝑎𝑛𝑇

𝛿𝑏𝑛
= 1

𝐽𝑚𝑒𝑎𝑛𝑇
0

1
𝑆𝑂

∫
𝑆𝑂

𝛿𝑇 𝐹

𝛿𝑏𝑛
𝑑𝑆 (2.11)

and for the volume-averaged total pressure losses,

𝛿 ̂𝐽𝑝𝑡

𝛿𝑏𝑛
= − 1

𝐽𝑝𝑡
0

∫
𝑆𝐼,𝑂

𝑣𝑖𝑛𝑖
𝛿𝑝
𝛿𝑏𝑛

𝑑𝑆 − 1
𝐽𝑝𝑡

0
∫

𝑆𝐼,𝑂

[𝑣𝑖𝑣𝑗𝑛𝑗 + (𝑝 + 1
2𝑣2

𝑗 ) 𝑛𝑖]
𝛿𝑣𝑖
𝛿𝑏𝑛

𝑑𝑆 (2.12)

Based on the development in [42], the two objectives only contribute to the
ABCs and the SDs. Those contributions will be presented in detail later on.
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2.2.3 Field Adjoint Equations

The Field Adjoint Equations (FAE) for CHT ShpO problems are derived in [42]
for a general objective function. For the fluid domain Ω𝐹 , the adjoint PDEs are

𝑅𝑞 = −𝜕𝑢𝑗
𝜕𝑥𝑗

= 0 (2.13a)

𝑅𝑢
𝑖 = 𝑢𝑗

𝜕𝑣𝑗
𝜕𝑥𝑖

− 𝑣𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝜏𝑎
𝑖𝑗

𝜕𝑥𝑗
+ 𝜕𝑞

𝜕𝑥𝑖
+ 𝜌𝐹 𝑐𝑝𝑇 𝐹

𝑎
𝜕𝑇 𝐹

𝜕𝑥𝑖
+ 𝜌𝐹 𝑇 𝐹

𝑎 𝑣𝑘
𝜕𝑣𝑘
𝜕𝑥𝑖

− 𝜌𝐹 𝑣𝑖𝑣𝑘
𝜕𝑇 𝐹

𝑎
𝜕𝑥𝑘

= 0, 𝑖 = 1, 2, (, 3)
(2.13b)

𝑅𝑇𝑎
𝐹 = −𝜌𝐹 𝑐𝑝𝑣𝑗

𝜕𝑇 𝐹
𝑎

𝜕𝑥𝑗
− 𝜕

𝜕𝑥𝑗
(𝑘𝐹 𝜕𝑇 𝐹

𝑎
𝜕𝑥𝑗

) = 0 (2.13c)

(2.13d)

where 𝑅𝑞,𝑅𝑢
𝑖 and 𝑅𝑇𝑎

𝐹 are the adjoint continuity,momentum and energy PDEs.
The adjoint stress tensor 𝜏𝑎

𝑖𝑗 is given by 𝜏𝑎
𝑖𝑗 = 𝜈 (𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜕𝑢𝑗

𝜕𝑥𝑖
). Equations (2.13a)–

(2.13c) are solved by the SIMPLE algorithm [41], i.e. the same algorithm used
to solve the primal PDEs, eqs. (2.1a)–(2.1c).

The adjoint heat conduction PDE solved over the solid region Ω𝑆, is written
as

𝑅𝑇𝑎
𝑆 = − 𝜕

𝜕𝑥𝑗
(𝑘𝑆 𝜕𝑇 𝑆

𝑎
𝜕𝑥𝑗

) = 0 (2.14)

Since eq. (2.13c) and eq. (2.14) do not involve any adjoint variable other than
𝑇 𝐹

𝑎 and 𝑇 𝑆
𝑎 , they can be solved prior to solving the rest of the adjoint PDEs.

2.2.4 Adjoint Boundary Conditions

Inlet Boundaries, 𝑆𝐹
𝐼

The ABCs are presented for the fluid region Ω𝐹 at first. Along the inlet bound-
aries 𝑆𝐹

𝐼 , the conditions imposed for a general objective function are, [42]

𝑢𝑗𝑛𝑗 = 𝑢⟨𝑛⟩ = (1 − 𝑤) 1
𝐽𝑝𝑡

0
𝑣𝑖𝑛𝑖 (2.15a)

𝑢I
⟨𝑡⟩ = 0 (2.15b)

𝑢II
⟨𝑡⟩ = 0 (2.15c)

where 𝑡I
𝑖, 𝑡II

𝑖 are the components of the tangent to the surface unit vectors. Also,
𝜕𝑞/𝜕𝑛 = 0 and 𝑇 𝐹

𝑎 = 0.

Outlet Boundaries, 𝑆𝐹
𝑂

Along the outlet boundary 𝑆𝐹
𝑂, the boundary conditions for 𝑢𝑖 and 𝑞 are, [42]

𝑞 = 𝑢⟨𝑛⟩𝑣⟨𝑛⟩ +2𝜈
𝜕𝑢⟨𝑛⟩
𝜕𝑛 −(1−𝑤) 1

𝐽𝑝𝑡
0

[𝑣𝑖𝑣𝑘 + (𝑝 + 1
2𝑣2

𝑗 ) 𝛿𝑖𝑘] 𝑛𝑘𝑛𝑖 +𝜌𝐹 𝑇 𝐹
𝑎 𝑣2

⟨𝑛⟩ = 0 (2.16)
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Regarding the normal component of the adjoint velocity, the condition 𝜕𝑢⟨𝑛⟩/𝜕𝑛 =
0 is imposed and the tangential adjoint velocity components (𝑙 = I, II in 3D; only
𝑙 = I in 2D) are given by

𝑣⟨𝑛⟩𝑢𝑙
⟨𝑡⟩ + 𝜈 (

𝜕𝑢𝑙
⟨𝑡⟩

𝜕𝑛 +
𝜕𝑢⟨𝑛⟩
𝜕𝑡𝑙 ) − (1 − 𝑤) 1

𝐽𝑝𝑡
0

[𝑣𝑖𝑣𝑘 + (𝑝 + 1
2𝑣2

𝑗 ) 𝛿𝑖𝑘] 𝑛𝑘𝑡𝑙
𝑖

+ 𝜌𝐹 𝑇 𝐹
𝑎 𝑣⟨𝑛⟩𝑣𝑙

⟨𝑡⟩ = 0
(2.17)

The following BC is used for 𝑇 𝐹
𝑎 along 𝑆𝐹

𝑂

𝜌𝐹 𝑐𝑝𝑇 𝐹
𝑎 𝑣𝑗𝑛𝑗 + 𝑘𝐹 𝜕𝑇 𝐹

𝑎
𝜕𝑛 − 𝑤 1

𝐽𝑚𝑒𝑎𝑛𝑇
0

1
𝑆𝑂

𝑛𝑖 = 0 (2.18)

Fluid Wall Boundaries, 𝑆𝐹
𝑊

Along 𝑆𝐹
𝑊 , the BCs for the adjoint velocity components are the same as the

ones imposed on the inlet boundary 𝑆𝐹
𝐼 eq. (2.15). The objective function used

in this thesis (section 2.2.2), is not defined on any wall boundary and thus, it
does not contribute to the ABCs imposed on 𝑆𝐹

𝑊 . Therefore, the adjoint velocity
on 𝑆𝐹

𝑊 is given as, [42],
𝑢⟨𝑛⟩ = 𝑢I

⟨𝑡⟩ = 𝑢II
⟨𝑡⟩ = 0 (2.19)

Additionally, 𝜕𝑞/𝜕𝑛 = 0. Considering that on the fluid domain walls, zero Neu-
mann conditions are imposed on temperature, the condition imposed on the
adjoint temperature based on [42] reads

𝜕𝑇 𝐹
𝑎

𝜕𝑛 ∣
𝑆𝐹

𝑊

= 0 (2.20)

Solid Wall Boundaries, (𝑆𝑆
𝐷, 𝑆𝑆

𝐹𝑙)

Along the boundaries 𝑆𝑆
𝐷 with fixed temperature value, the condition imposed

for the adjoint temperature 𝑇 𝑆
𝑎 is

𝑇 𝑆
𝑎 = 0 (2.21)

whereas for the adiabatic boundaries 𝑆𝑆
𝐹𝑙, the following condition is imposed

𝜕𝑇 𝑆
𝑎

𝜕𝑛 ∣
𝑆𝑆

𝐹𝑙

= 0 (2.22)

FSI Boundaries (𝑆𝐹 , 𝑆𝑆)

The conditions imposed on 𝑢𝑖, 𝑞 along the FSI boundary 𝑆𝐹 , are identical with
the ones imposed on 𝑆𝐹

𝑊 . The only difference is in the adjoint temperature
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𝑇 𝐹
𝑎 BC. Conditions imposed along the FSI boundary (𝑆𝐹 , 𝑆𝑆) on the adjoint

temperature 𝑇𝑎 are, [42],

−𝑇 𝐹
𝑎 ∣

𝑆𝐹
= −𝑇 𝑆

𝑎 ∣
𝑆𝑆

(2.23a)

𝑘𝐹 𝜕𝑇 𝐹
𝑎

𝜕𝑛 ∣
𝑆𝐹

= −𝑘𝑆 𝜕𝑇 𝑆
𝑎

𝜕𝑛 ∣
𝑆𝑆

(2.23b)

where 𝑛𝑛𝑛 is the outward unit normal vector and, thus, 𝑛𝑖|𝑆𝐹 =-𝑛𝑖|𝑆𝑆. The objec-
tive function used in this thesis is only defined on the inlet and outlet bound-
aries. Therefore, all the objective function contributions in eqs. (2.23) are equal
to zero.

2.2.5 Sensitivity Derivatives

After satisfying the FAE and their BC, the SDs are computed by the following
expression developed in [42]

𝛿𝐽
𝛿𝑏𝑛

= ∫
Ω𝐹

[−𝑢𝑖𝑣𝑗
𝜕𝑣𝑖
𝜕𝑥𝑘

− 𝑢𝑗
𝜕𝑝
𝜕𝑥𝑘

− 𝜏𝑎
𝑖𝑗

𝜕𝑣𝑖
𝜕𝑥𝑘

+ 𝑢𝑖
𝜕𝜏𝑖𝑗
𝜕𝑥𝑘

+ 𝑞 𝜕𝑣𝑗
𝜕𝑥𝑘

− 𝜌𝐹 𝑐𝑝𝑇 𝐹
𝑎 𝑣𝑗

𝜕𝑇 𝐹

𝜕𝑥𝑘

− 𝜌𝐹 𝑇 𝐹
𝑎 𝑣𝑖𝑣𝑗𝑇 𝐹

𝑎
𝜕𝑣𝑖
𝜕𝑥𝑘

− 𝑘𝐹 𝜕𝑇 𝐹
𝑎

𝜕𝑥𝑗

𝜕𝑇 𝐹

𝜕𝑥𝑘
+ 𝑇 𝐹

𝑎
𝜕

𝜕𝑥𝑘
(𝑘𝐹 𝜕𝑇 𝐹

𝜕𝑥𝑗
)] 𝜕

𝜕𝑥𝑗
(𝛿𝑥𝑘

𝛿𝑏𝑛
) 𝑑Ω

+ ∫
Ω𝑆

[−𝑘𝑆 𝜕𝑇 𝑆
𝑎

𝜕𝑥𝑗

𝜕𝑇 𝑆

𝜕𝑥𝑘
+ 𝑇 𝑆

𝑎
𝜕

𝜕𝑥𝑘
(𝑘𝑆 𝜕𝑇 𝑆

𝜕𝑥𝑗
)] 𝜕

𝜕𝑥𝑗
(𝛿𝑥𝑘

𝛿𝑏𝑛
) 𝑑Ω

(2.24)

Field Integrals are present in the expression of the SDs eq. (2.24), which is the
reason this adjoint formulation is abbreviated as the Field Integral (FI) adjoint.
More adjoint formulations regarding ShpO are developed and examined in [43].



Chapter 3

Continuous Adjoint Method for
CHT TopO

In porosity-based TopO, the value-field of design variables 𝛼 (”porosity” field) is
used to solidify the part of the design domain that is counter-productive w.r.t.
the objective function 𝐽 to be minimized. Parts of the computational domain
with zero porosity values, or practically 𝛼 ≤ 𝜖, where 𝜖 is a user-defined in-
finitesimally small positive number, correspond to the fluid part of the domain.
All the remaining areas where 𝛼 ≠ 0, or practically 𝛼 > 𝜖, define the part of the
domain to be solidified. In fig. 3.1 the concept of TopO in fluid mechanics is
illustrated.

Figure 3.1: Schematic representation of a porous media (Ω) domain and its
boundaries. 𝑆𝐼 is the inlet (or inlets, if more than one), 𝑆𝑂𝑙, 𝑙 = 1, 𝐿 are the
outlets and 𝑆𝑊 are the solid wall boundaries along the domain, all predefined.
White areas correspond to the flow domain (𝛼 ≤ 𝜖), while black color indicates
solidified areas (𝛼 > 𝜖). From [37].

Given that in TopO, the number of design variables is equal to the number
of mesh cells, the adjoint method is the perfect choice for computing the sen-
sitivity derivatives 𝛿𝐽/𝛿𝛼 since its cost is independent of the number of design
variables.

13
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A known problem in the porosity-based approach of TopO is that ”grey”
areas usually emerge, that do not belong to either the fluid or solid domain and
thus, a user-defined criterion must be applied to track the boundary between
the two. To reduce the formation of ”grey” areas in the domain, projection
methods that drive the resulting porosity field towards a more binary state
are employed. An alternative approach for TopO dealing with this problem
is based on the level-set method in which the boundaries between the flow
and solidified areas are clearly marked. This diploma thesis deals only with
the porosity-based approach but level-set methods have also been attracting
attention during the last few years [44, 45].

3.1 The Primal problem

In all the TopO cases studied in this diploma thesis, the flow is governed by
the steady-state Navier-Stokes equations along with the energy equation. In
porosity-based TopO, to simulate the solidification of parts of the domain, the
flow equations are augmented with 𝛼-dependent source terms, whose role is
to deactivate the flow equations over the solid and apply solid wall conditions.

3.1.1 State Equations

The so-modified flow equations along with the energy equation for steady flows
of incompressible fluids read, [37],

𝑅𝑝 = − 𝜕𝑣𝑗
𝜕𝑥𝑗

= 0 (3.1a)

𝑅𝑣
𝑖 = 𝑣𝑗

𝜕𝑣𝑖
𝜕𝑥𝑗

− 𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜕𝑝
𝜕𝑥𝑖

+ 𝛽𝑚𝑎𝑥𝐼𝑣(𝛽)𝑣𝑖 = 0, 𝑖 = 1, 2, (, 3) (3.1b)

𝑅𝑇 = (1 − 𝛽)𝜌(𝐼𝜌(𝛽))𝑐𝑝(𝐼𝑐𝑝(𝛽))𝑣𝑗
𝜕𝑇
𝜕𝑥𝑗

− 𝜕
𝜕𝑥𝑗

(𝑘(𝐼𝑘(𝛽)) 𝜕𝑇
𝜕𝑥𝑗

) = 0 (3.1c)

where 𝛽 ∈ [0, 1] is a field that emerges from the porosity field 𝛼 after the reg-
ularization and projection steps are performed. The 𝐼𝑣, 𝐼𝜌, 𝐼𝑐𝑝, 𝐼𝑘 functions,
are used to either drive the flow solution towards values corresponding to solid
walls (eq. (3.1b)) or to interpolate between the thermo-physical properties of
the fluid and solidified domains (eqs. (3.1)). Also, 𝜌(𝐼𝜌(𝛽)), 𝑐𝑝(𝐼𝑐𝑝(𝛽)), 𝑘(𝐼𝑘(𝛽)),
denote the interpolated values of those quantities between the fluid and the
solid. In eqs. (3.1), the convection term is multiplied with (1 − 𝛽) to cancel out
its contribution in areas where small leakage of fluid into the solid domain is
observed in TopO. For the porosity-related source terms of the form 𝛽𝑚𝑎𝑥𝐼Φ(𝛽)Φ,
a linear function is used defined as

𝐼Φ(𝛽) = 𝛽 (3.2)
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The interpolation of thermophysical properties is based on the following
scheme

Φ(𝛽) = (1 − 𝐼Φ(𝛽))Φ𝐹 + 𝐼Φ(𝛽)Φ𝑆 (3.3)
where the superscripts 𝐹 and 𝑆 denote the value of the quantity Φ in the fluid
and solid domain respectively. For the interpolation, the Solid Isotropic Mate-
rial Penalization (SIMP) function [32] is used namely

𝐼Φ(𝛽) = 𝛽𝑏 (3.4)
with constant value of 𝑏 = 3 for all the cases studied in this diploma thesis.

The 𝛽𝑚𝑎𝑥 value is used to ensure that the 𝑣𝑖 values are practically zero in
the solidified domain. Its value can be computed based on the Darcy number,
quantifying the ratio between viscous and porous forces, [35],

Da = 𝜈
𝛽𝑚𝑎𝑥𝐿2 ⇒ 𝛽𝑚𝑎𝑥 = 𝜈

Da𝐿2 (3.5)

where 𝐿 is the characteristic length of the case under consideration, which
is either the inlet length or the inlet hydraulic diameter for 2D and 3D cases,
respectively. Based on [35], for Da = 10−5 the solidified area obtained from the
TopO is practically impermeable.

Often, in TopO problems, especially those dealing with CHT, the design may
result in checkerboards. Checkerboards refer to designs with alternating solid
and fluid cells ordered in checkerboard-like patterns. This can be avoided by
using filtering schemes applied to the porosity field 𝛼. The regularization of 𝛼
is implemented based on a Helmholtz-type filter [46], transforming 𝛼 to ̃𝛼,

𝑅𝐹 ( ̃𝛼, 𝛼) = − ( 𝑅
2
√

3)
2 𝜕2 ̃𝛼

𝜕𝑥2
𝑗

+ ̃𝛼 − 𝛼 = 0 (3.6)

where ̃𝛼 is the regulated porosity field and 𝑅 can be seen as a smoothing radius,
usually computed as a function of the average mesh cell size. For the solution
of the Helmholtz PDE, zero Neumann BCs are imposed. The regularization
of the porosity field blurs changes between the fluid and solidified domains
and, thus, a projection step is required, to increase the contrast of the ̃𝛼 field
producing the 𝛽 field as,

𝛽 = tanh (𝜂𝑏) + tanh [𝑏( ̃𝛼 − 𝜂)]
tanh (𝜂𝑏) + tanh [𝑏(1 − 𝜂)] (3.7)

with 𝜂 = 0.5 and 𝑏 being a sharpening parameter (irrelevant to the one found in
eq. (3.4)). The value of 𝑏 varies throughout the optimization and may differently
be defined for each optimization case.

The processing steps of the porosity field 𝛼 are summarized in fig. 3.2.

Figure 3.2: Porosity field processing steps.

Firstly, the regularization step is used to eliminate possible checkerboards
by transforming the 𝛼 field to a smoother field ̃𝛼 and, then, the projection step
transforms ̃𝛼 to the 𝛽 field which gives a more binary representation of the
interface between fluid and solid areas.
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3.1.2 Boundary Conditions

The conditions imposed on various quantities along the boundaries of the do-
main are identical to the ones presented in section 2.1.2.

3.2 The Adjoint Problem

3.2.1 Augmented Objective Function

Again, the first step for the formulation of the adjoint problem with the con-
tinuous adjoint method is the definition of the augmented objective function
(Lagrangian) 𝐽𝑎𝑢𝑔. This is defined for TopO problems as

𝐽𝑎𝑢𝑔 = 𝐽 + ∫
Ω

𝑞𝑅𝑝𝑑Ω + ∫
Ω

𝑢𝑖𝑅𝑣
𝑖 𝑑Ω + ∫

Ω
𝑇𝑎𝑅𝑇 𝑑Ω (3.8)

where 𝑅𝑝, 𝑅𝑣
𝑖 , 𝑅𝑇 are the residuals of eqs. (3.1). When the primal equations

are converged, the residuals are practically zero meaning that 𝐽𝑎𝑢𝑔 = 𝐽 . Ad-
ditionally, 𝑞, 𝑢𝑖, 𝑇𝑎 are the adjoint to the pressure, velocity, and temperature
fields.

In porosity-based TopO, the objective function gradient w.r.t. the poros-
ity field should be computed. Since 𝐽𝑎𝑢𝑔 = 𝐽 , the SDs can be computed by
differentiating the augmented objective instead of 𝐽 , which yields

𝛿𝐽𝑎𝑢𝑔
𝛿𝑎𝑚

= 𝛿𝐽
𝛿𝑎𝑚

+ ∫
Ω

𝑞 𝛿𝑅𝑝

𝛿𝑎𝑚
𝑑Ω + ∫

Ω
𝑢𝑖

𝛿𝑅𝑣
𝑖

𝛿𝑎𝑚
𝑑Ω + ∫

Ω
𝑇𝑎

𝛿𝑅𝑇

𝛿𝑎𝑚
𝑑Ω (3.9)

The adjoint equations and BCs arise from eq. (3.9) after the terms multiplying
the derivatives of primal variables are set to zero. The development of eq. (3.9)
and the formulation of the adjoint problem is presented in detail in [37]. By
eliminating the aforementioned terms, an expression of the objective sensitivi-
ties independent of the derivatives of primal variables emerges. Therefore, the
cost of the SDs is independent of the number of design variables; only the
primal and the adjoint problem solutions are needed to compute them.

3.2.2 Field Adjoint Equations

Following the mathematical development outlined in [47], the continuous ad-
joint PDEs to eqs. (3.1) can be derived and written as,

𝑅𝑞 = −𝜕𝑢𝑗
𝜕𝑥𝑗

= 0 (3.10a)

𝑅𝑢
𝑖 = 𝑢𝑗

𝜕𝑣𝑗
𝜕𝑥𝑖

− 𝑣𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝜏𝑎
𝑖𝑗

𝜕𝑥𝑗
+ 𝜕𝑞

𝜕𝑥𝑖
+ 𝜌(𝐼𝜌(𝛽))𝑐𝑝(𝐼𝑐𝑝(𝛽))(1 − 𝛽)𝑇𝑎

𝜕𝑇
𝜕𝑥𝑖

+ 𝛽𝑚𝑎𝑥𝐼𝑣(𝛽)𝑢𝑖 = 0, 𝑖 = 1, 2, (, 3)
(3.10b)

𝑅𝑇𝑎 = −𝜌(𝐼𝜌(𝛽))𝑐𝑝(𝐼𝑐𝑝(𝛽))𝑣𝑗
𝜕

𝜕𝑥𝑗
[(1 − 𝛽)𝑇𝑎] − 𝜕

𝜕𝑥𝑗
(𝑘(𝐼𝑘(𝛽))𝜕𝑇𝑎

𝜕𝑥𝑗
) = 0 (3.10c)
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The objective function used in this thesis (section 2.2.2), does not contribute
to the adjoint equations and only contributes to the ABCs, same as for ShpO.
The presence of the porosity-dependent term in eq. (3.10b) indicates that 𝑢𝑖
will practically take on zero values in the solidified parts of the domain.

3.2.3 Adjoint Boundary Conditions

The ABCs of the TopO problem are identical to those presented in section 2.2.3,
for ShpO problems. The reason for this is that the primal equations of the TopO
problem differ from those used in ShpO only due to the presence of the addi-
tional porosity-dependent source terms. Since none of these terms contains a
differential operator, the Gauss divergence theorem is not employed on those
during the formulation of the adjoint, and thus, no additional surface integrals
that contribute to the ABCs are produced.

3.2.4 Sensitivity Derivatives

After solving the primal and adjoint PDEs, the SDs of the objective function 𝐽
w.r.t. the 𝛼 field can be computed as

𝛿𝐽
𝛿𝑎𝑚

= ∫
Ω

Θ𝛼̃
𝜕 ̃𝛼

𝜕𝑎𝑚
𝑑Ω (3.11)

where

Θ𝛼̃ = (𝛽𝑚𝑎𝑥𝑣𝑖𝑢𝑖
𝜕𝐼𝑣

𝜕𝛽 − 𝜌𝑐𝑝𝑇𝑎𝑣𝑗
𝜕𝑇
𝜕𝑥𝑗

) 𝜕𝛽
𝜕 ̃𝛼 + [ 𝜕

𝜕𝑥𝑗
(𝑇𝑎

𝜕𝑇
𝜕𝑥𝑗

) − 𝑇𝑎
𝜕2𝑇
𝜕𝑥2

𝑗
] 𝜕𝑘

𝜕𝛽
𝜕𝛽
𝜕 ̃𝛼

+ (1 − 𝛽)𝑇𝑎𝑣𝑗
𝜕𝑇
𝜕𝑥𝑗

(𝑐𝑝
𝜕𝜌
𝜕𝛽 + 𝜌𝜕𝑐𝑝

𝜕𝛽 ) 𝜕𝛽
𝜕 ̃𝛼

(3.12)

In eq. (3.12), 𝜕𝛽/𝜕 ̃𝛼 is computed analytically by differentiating the tanh function
eq. (3.7) which yields

𝜕𝛽
𝜕 ̃𝛼 = 𝑏 sech2 [𝑏( ̃𝛼 − 𝜂)]

tanh (𝜂𝑏) + tanh [𝑏(1 − 𝜂)] (3.13)

On the other hand, the computation of 𝜕 ̃𝛼/𝜕𝛼 is a costly process that can be
avoided through the solution of the adjoint equation. Consequently, a new
term is added to the augmented objective eq. (3.8) which reads

𝛿𝐽
𝛿𝑎𝑚

= ∫
Ω

Θ𝛼̃
𝜕 ̃𝛼

𝜕𝑎𝑚
𝑑Ω − ∫

Ω
Ψ𝛼̃

𝜕𝑅𝐹 ( ̃𝛼, 𝛼)
𝜕𝑎𝑚

𝑑Ω (3.14)

where 𝑅𝐹 ( ̃𝛼, 𝛼) is the Helmholtz filtering PDE residual (eq. (3.6)) and Ψ𝛼̃ is an
additional adjoint variable. After some mathematical development of eq. (3.14)
and by setting the terms multiplying 𝜕 ̃𝛼/𝜕𝑎𝑚 equal to zero, the adjoint to the
Helmholtz filtering PDE arises in the following form

𝑅Ψ𝛼̃ = − ( 𝑅
2
√

3)
2 𝜕2Ψ𝛼̃

𝜕𝑥2
𝑗

+ Ψ𝛼̃ − Θ𝛼̃ = 0 (3.15)
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and, finally, the SDs are given by

𝛿𝐽
𝛿𝛼𝑚

= Ψ𝑚
𝛼̃ Ω𝑚 (3.16)

where Ω𝑚 is the volume of the 𝑚-th cell; repeated superscripts on the right
hand side (r.h.s.) of eq. (3.16) do not imply summation. In case regularization
is omitted, 𝛿𝐽/𝛿𝛼 is given directly by eq. (3.11)



Chapter 4

CHT Analysis on Body-Fitted
Meshes

In this chapter, the results of the of a cooling duct are presented. The duct
geometry is inspired by the serpentine passages found in internally cooled tur-
bine blades. Only the flow inside the blade is computed and, thus, the analysis
is monofluid. In section 4.1, details regarding the general formulation of the
problem are discussed. At first, the problem is solved using the compress-
ible solver for steady fluid flow and solid heat conduction, with CHT between
regions, publicly available with OpenFOAM©[48]. The same problem is then
solved with the incompressible CHT solver developed by the PCOpt/NTUA since
this is the one to be used in the optimization i.e. the one for which the adjoint
method and software has been developed.

4.1 Problem Description

The geometry studied in this thesis corresponds to a simplified 2D turbine
blade with an internal cooling duct. The duct geometry used in this chapter is
arbitrarily designed to achieve effective transfer of heat from the solid domain
to the fluid, inspired by the flow path found in an internally cooled turbine
blade. The geometry and its dimensions are presented in fig. 4.1. The domain
is composed of three regions, the fluid region (Ω𝐹 ) and two solid regions (Ω𝑆),
referred to as Solid1 and Solid2.

19
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Figure 4.1: 2D geometry & dimensions of the serpentine-shaped duct used in
the analysis.

The mesh is presented in fig. 4.2 and is fitted to the body’s geometry. To
distinguish this mesh from the others that are used later, it will be referred to
as BFM1 (Body-Fitted Mesh).

Figure 4.2: Initial Body-fitted mesh used for the CHT analysis (BFM1).

In the Fluid region, the mesh generated is structured, consisting of ∼ 32𝐾
cells. For the solid regions, an unstructured mesh is used, with structured
layers along the FSI. For both the Solid1 and Solid2 regions, the mesh consists
of ∼ 18𝐾 cells. The fluid flow is laminar with inlet velocity equal to 0.5 m/s and
𝑅𝑒 = 417 based on the duct hydraulic diameter. Additionally, the fluid enters
the domain at a temperature of 𝑇 = 373 K. Along the non-FSI walls of Ω𝑆, a
Dirichlet temperature condition (𝑇 = 873 K) is imposed except along the bottom
walls where a zero Neumann condition (adiabatic walls) is imposed.

The coolant is considered air with constant thermophysical properties. The
fluid density is taken 𝜌𝐹 = 1.2 kg/m3, the kinematic viscosity 𝜈 = 1.5×10−5 m2/s,



4.2. Results of the compressible solver 21

the specific heat capacity under constant pressure 𝑐𝐹
𝑝 = 1006 J/(kg⋅K) and the

thermal conductivity 𝑘𝐹 = 0.026 W/(m⋅K). The thermal conductivity of the solid
regions is taken 𝑘𝑆 = 12.7 W/(m⋅K) corresponding to ASTM 310 stainless steel.
The air inlet temperature as well as the solid temperature and material used
are taken similar to the ones reported in the experiment of Hylton et al. [49]
for a real internally cooled turbine blade.

4.2 Results of the compressible solver

In this section, the results of the analysis of the CHT problem described in sec-
tion 4.1 are presented. Results were produced using the standard OpenFOAM©solver
for CHT analysis of steady compressible flow problems called chtMultiRegion-
SimpleFoam. It solves the equations of mass, momentum and sensible en-
thalpy following a pressure-based segregated solution strategy. Despite that
the solver is capable of analyzing compressible flows, the fluid density is set
constant and the equation of state is omitted. This comes in accordance with
the physics of the problem since flows with low Mach numbers (normally less
than 0.3) can safely be studied as incompressible. In the context of this the-
sis, this solver will be referred to as PBF1 (Primal Body-Fitted) so as to ensure
that a clear distinction is made among the different solvers used for the primal
problem.

The computed temperature field as well as the total pressure field are pre-
sented in fig. 4.3. As expected, the fluid enters the domain and its temperature
rises, and the Solid1 region is cooled down. The two areas of Solid2 where the
temperature is significantly lower, are the ones that are further away from the
external wall where the Dirichlet BC for temperature (𝑇 = 873 K) is set, and
there is less material coming in contact with the fluid. The temperature of
Solid2 is rising towards the outlet, as the coolant is heated up.

Figure 4.3: Temperature (left) and total pressure (right) field computed using
PBF1.

Additionally, concerning the pressure field, there are distinct total pressure
drops at certain regions of the duct. This is due to flow separation in those
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areas, as the flow cannot follow the steep curvature of the duct. This is better
visualized by the velocity field and the streamlines shown in fig. 4.4.

Figure 4.4: Velocity magnitude field (left) and streamlines at the separation
area in the middle curve of the duct (right).

Investigating the heat balance in the domain, given that the analysis is
steady over time, the heat entering from the external wall of the Solid1 region
must be equal to the heat leaving the domain with the fluid at the outlet, minus
the heat entering at the inlet. The rest of the boundaries are adiabatic, so they
do not contribute to the heat balance. This is written as,

𝑄𝑆|𝑤𝑎𝑙𝑙 = 𝑄𝐹 |𝑜𝑢𝑡𝑙𝑒𝑡 − 𝑄𝐹 |𝑖𝑛𝑙𝑒𝑡 (4.1)
The transfer of heat over a surface 𝑆 of the solid region is due to conduction
and is computed as,

𝑄𝑆 = − ∫
𝑆

𝑘𝑆 𝜕𝑇
𝜕𝑥𝑗

𝑛𝑗𝑑𝑆 (4.2)

Heat transferred by the flow is carried out in two ways, both by conduction and
convection. Hence, the total heat of a fluid flowing through a surface 𝑆 can be
expressed mathematically as,

𝑄𝐹 = 𝑄𝐹
𝑐𝑜𝑛𝑑 + 𝑄𝐹

𝑐𝑜𝑛𝑣 = − ∫
𝑆

𝑘𝐹
𝑒𝑓𝑓

𝜕𝑇
𝜕𝑥𝑗

𝑛𝑗𝑑𝑆 + ∫
𝑆

𝜌𝐹 𝑐𝐹
𝑝 𝑇 𝑣𝑖𝑛𝑖𝑑𝑆 (4.3)

The resulting heat transferred through the boundaries of the domain is pre-
sented in table 4.1. The sum of the total conductive and convective heat trans-
fer over the domain is very close to zero denoting adequate convergence of the
energy equation as well as an adequately conservative solver. The negative
sign corresponds to heat leaving the domain while the positive sign is the heat
entering the domain.

Additionally, the mean fluid temperature at the outlet and the total pressure
losses are computed. The surface-averaged temperature of the fluid at the
outlet computed through eq. (2.9) is 𝑇𝑜𝑢𝑡 = 629.6 K while the total pressure
losses are

Δ𝑝𝑡 = 𝑝𝑡|𝑖𝑛𝑙𝑒𝑡 − 𝑝𝑡|𝑜𝑢𝑡𝑙𝑒𝑡 = 1.396 Pa (4.4)
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Patch 𝑄𝑐𝑜𝑛𝑑[W] 𝑄𝑐𝑜𝑛𝑣[W]
External Solid Walls 18.705 —
Fluid outlet 0 -46.798
Fluid inlet -0.049 28.143
∑ 18.656 -18.655

Table 4.1: Conductive and convective heat transfer over the domain bound-
aries.

where the surface-averaged total pressure at the inlet and outlet is

𝑝𝑡 =
∫𝑆 (𝑝 + 1

2𝜌𝐹 𝑣2
𝑘) 𝑑𝑆

∫𝑆 𝑑𝑆 (4.5)

4.3 Results produced by the solver developed by
the PCOpt/NTUA

In this section, the results produced by the solver developed by the PCOp-
t/NTUA (adjointOptimisationFoam; only its primal solver) are showcased and
the differences between the two solvers are assessed. This solver uses an in-
compressible fluid model. It solves the NS equations along with the energy
equation in a segregated manner, with CHT between solid and fluid regions.
Moreover, it solves the adjoint NS and adjoint energy equations and can be
used for gradient-based optimization. The results only corresponding to the
primal problem are discussed in this section, and the solver is referred to as
the PBF2 to discern it from the previous one.

The temperature field is shown in fig. 4.5. Next to it is the field resulting
from the subtraction of the two temperature fields computed by the two differ-
ent solvers.

Figure 4.5: Temperature field computed by the PBF2 solver (left), field of dif-
ferences in the temperature between PBF2 and PBF1 (right).
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The temperature fields computed by the two solvers are almost identical.
While there are very small temperature differences, the results differ mostly in
the fluid region, right at the separation zone.

To better understand the difference in the temperature fields, the velocity
field computed by the PBF2 as well as the differences in the velocity magnitudes
computed by the two solvers, are depicted in fig. 4.6.

Figure 4.6: Velocity field computed by the PBF2 solver (left), field of differences
in the velocity magnitude between PBF2 and PBF1 (right).

The velocity fields are very close with very small differences in the velocity
magnitudes. Again, the results differ mostly at the flow separation area where
changes in flow quantities are more intense. The PBF1 solver predicts slightly
more extended recirculation zones. These zones act as an obstacle in the flow,
forcing the mass flux to pass through a narrower passage in the duct which
in turn, explains the higher velocity magnitudes computed by PBF1 at the
cells near the separation zone. Additionally, recirculation zones assist in the
transfer of heat between the regions which explains the temperature differences
shown on the right side of fig. 4.5. At the lower curved parts of the duct where
the separation zone occurs at the interface between the Fluid and the Solid1
region, the temperature predicted by the PBF1 is higher, as the heat transfer
from the Solid1 region to the fluid is reinforced by the greater recirculation
of the flow. The same thing happens at the upper curved parts of the duct,
where the recirculation zone occurs at the interface between the fluid and the
Solid2 region and, thus, heat is transferred more effectively from the fluid to
the Solid2 region.

Finally, the temperature of the fluid at the outlet and the total pressure
losses are computed by equations eqs. (2.9) and (4.4). The results produced by
both solvers are presented in table 4.2. The difference in both the outlet tem-
perature and total pressure losses computed by the two solvers is negligible.
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PBF1 PBF2

𝑇𝑜𝑢𝑡[K] 629.6 630.1
Δ𝑝𝑡[Pa] 1.396 1.395

Table 4.2: Outlet temperature and total pressure losses computed by both
solvers.

4.4 The ShpO Problem

In ShpO, a mesh displacement model is used so that the geometry and mesh
are updated in each optimization cycle. In this thesis, a Volumetric B-Splines
(VBS) Morpher [50] is used for the displacement of the mesh, and, therefore, the
design variables are the 𝑥 and 𝑦 coordinates of the Control Points (CPs). Details
about the use of VBS for surface parameterization and mesh displacement can
be found in appendix A.

The parameterization box is shown in fig. 4.7 and consists of 11 × 21 control
points, controlling the FSI. All boundary CPs are kept fixed.

Figure 4.7: A 11 × 21 VBS box parameterizing the geometry. CPs in blue are
kept fixed and red ones are allowed to move.

In ShpO, sometimes the simulation fails to continue due to overlapping cells
in the mesh. To tackle this problem, bound constraints are imposed on the de-
sign variables. These constraints, ensure that there is no overlap between the
CPs and therefore potentially prevent the cells of the mesh from overlapping.
The Implicit SQP (SQP) update method [51] is applied and the quadratic sub-
problem is solved using an interior point method with the ability to handle the
inequality constraints. More details about this optimization method can be
found in appendix B.1.
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4.5 Results of ShpO

Four ShpO runs for four different weights in the objective function eq. (2.8) are
performed. The selected weights are:

1. 𝑤 = 0.9

2. 𝑤 = 0.8

3. 𝑤 = 0.5

4. 𝑤 = 0.2

For values of 𝑤 > 0.5, the maximization of the temperature objective is of higher
significance than the minimization of total pressure losses. The optimal geom-
etry produced for the current parameterization and optimizations using com-
binations of weights is shown in fig. 4.8.

Figure 4.8: Optimized geometry for the four different weights used.

The duct geometry certainly becomes less wavy as the value of 𝑤 is lowered.
Wavy surfaces assist the transfer of heat between the regions, firstly because
the FSI becomes longer and secondly it causes wider recirculation zones to
appear. This comes in contrast with the second objective of minimizing the
total pressure losses, which is achieved with less wavy geometries.
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The two geometries that resulted from the optimization with the lowest and
largest values of 𝑤, 𝑤 = 0.2 and 𝑤 = 0.9 respectively, are depicted in fig. 4.9 on
top of the original geometry to visualize the change in the geometry produced
by the ShpO.

Figure 4.9: The red line corresponds to the geometry resulted for 𝑤 = 0.9, the
blue for 𝑤 = 0.2 and in black is the original geometry.

The computed temperature fields for the cases with 𝑤 = 0.9 and 𝑤 = 0.2 are
presented in fig. 4.10.

Figure 4.10: Resulting temperature fields for 𝑤 = 0.9 (left) and 𝑤 = 0.2 (right).

The main difference in the temperature fields appears in the Solid2 region.
As the value of 𝑤 is lowered and the total pressure losses objective becomes
more important, the resulting temperature of the Solid2 region drops. Con-
sidering that the lower boundaries of the domain are adiabatic, this means
that for 𝑤 = 0.9 greater amount of heat is absorbed from the Solid1 region and
transferred to Solid2 through the fluid, meaning that the cooling is done more
effectively.

The velocity magnitude field for the two previous cases is presented in
fig. 4.11.
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Figure 4.11: Resulting velocity magnitude fields for 𝑤 = 0.9 (left) and 𝑤 = 0.2
(right).

There is an obvious drop in velocity magnitude as the 𝑤 value is decreased.
Bigger velocity magnitudes contribute to higher total pressure losses. Viewing
the velocity fields from left to right, the recirculation zones become smaller
which enables the mass flow to take advantage of a bigger part of the duct
cross-section, resulting in smaller velocity magnitudes and lower total pressure
losses.

Finally, in table 4.3, the mean fluid temperature at the outlet and the total
pressure losses calculated by eqs. (2.9) and (4.4) respectively are presented
with an additional weight value. For the case with 𝑤 = 0.95, the optimization
converged until the fourth cycle where the mesh displacement caused overlap-
ping cells and so the simulation was terminated. The results are also depicted
in fig. 4.12 with the left vertical axis representing the mean outlet temperature
and the right axis the total pressure losses. At the x-axis, the value of 𝑤 weight
used in the objective function is measured.

𝑤 𝑇𝑜𝑢𝑡[K] Temperature
increase

Δ𝑝𝑡[Pa] Losses decrease

0.95 645.4 2.43 % 1.517 −8.69 %
0.9 635.3 0.82 % 1.250 10.42 %
0.8 630.5 0.07 % 1.178 15.46 %
0.5 627.2 −0.45 % 1.165 16.49 %
0.2 622.9 −1.13 % 1.149 17.67 %

Table 4.3: Outlet temperature and total pressure losses for different weights
in the objective function.
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Figure 4.12: Results presented in table 4.3. The left axis represents the mean
outlet fluid temperature, the right axis shows total pressure losses. Five differ-
ent weights are presented.

The convergence of the primal and adjoint equations in the first optimization
cycle is shown in fig. 4.13. Specifically, in fig. 4.13a, the normalized residuals
of the primal and adjoint NS equations are presented, while also mentioning
the relaxation factors used for each flow quantity in the setup of the SIMPLE
algorithm. Additionally, in fig. 4.13b, the residuals of the primal and adjoint
energy equations are presented as well as the relaxation factors, for all domain
regions. The superscripts 𝑆1 and 𝑆2 found in the legend in fig. 4.13b denote the
residuals of the heat conduction equations solved in Solid1 and Solid2 regions
respectively.
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Figure 4.13: Convergence of the primal and adjoint equation residuals on the
first optimization cycle.

A notable observation is that the energy equations require more iterations to
converge compared to the NS equations. This is because, the fluid energy PDE
and the solid heat conduction equations are solved in a segregated manner,
meaning that the boundary conditions for temperature at the FSI boundary
are updated in each iteration of the solver. Moreover, the residual of the energy
equation should decrease at an order of 10−10 for it to be considered adequately
converged.

The normalized total objective function in each optimization cycle for the
four weight combinations is plotted in fig. 4.14a. For all the cases, a signifi-
cant drop in the value of the objective function is observed in the first three
optimization cycles and is, then, dropping at a much slower rate.
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Figure 4.14: Convergence of the normalized total objective function as well as
of each objective comprising it.

Additionally, the drop in the objective function is bigger as the total pressure
losses objective becomes more significant. The values in each optimization
cycle of the mean outlet temperature as well as the total pressure losses are
presented in fig. 4.14b and fig. 4.14c respectively.
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4.6 Conclusions

In this chapter, a CHT analysis was conducted on a test case inspired by an
internally cooled turbine blade. At first, the analysis was performed using the
publicly available OpenFOAM©solver the results of which were compared with
the ones produced by the solver developed by the PCOpt/NTUA. Both solvers
gave similar results summarized in table 4.2. After that, the solver developed
by the PCOpt/NTUA was used to optimize the shape of the serpentine-like duct.
The geometry was optimized with the objectives being the maximization of the
mean fluid temperature at the outlet and the minimization of total pressure
losses. Multiple weights in the objective function were tested and the results
as well as their percent change from the original geometry were outlined in
table 4.3. The outlet temperature objective was multiplied by 𝑤 while the total
pressure losses objective was multiplied by (1 − 𝑤). According to fig. 4.8, for
greater 𝑤 values the duct becomes wavy which assists the transfer of heat
between regions because the FSI becomes longer and recirculation zones in
the flow appear. Also, the duct comes closer to the heated external wall of
the domain near the outlet which further increases the flow temperature. On
the other hand, when the 𝑤 value is reduced, the resulting duct is wider and
so the velocity magnitudes in the flow are smaller which contributes to the
minimization of total pressure losses.



Chapter 5

Analysis with the Porosity-Based
solver

In this chapter, the TopO of the cooling duct of the test problem studied in
chapter 4 is presented. In section 5.1, the primal CHT problem is solved using
the porosity-based solution approach. An analysis is conducted to investigate
how certain parameters affect the convergence and the results of the problem.
Additionally, TopO is performed for different setups and the results are dis-
cussed.

5.1 Primal solution using the porosity-based solver

The primal CHT problem described in section 4.1 is solved using a porosity-
based solver where the fluid and solid domains are represented by a porosity
field 𝛼. In particular, this solver differs from the PBF1 (section 4.2) and PBF2
(section 4.3) as it solves a single system of equations (eqs. (3.1)) in both the
fluid and solid domains. To distinguish this solver from the aforementioned
ones, it will be called PPB (Primal Porosity-Based).

In the porosity-based approach, the FSIs are not defined as features of the
mesh. A consequence of this is that there are no BCs imposed along the in-
terfaces of the solid and fluid domains and their omission may introduce sig-
nificant inaccuracy in the results. The purpose of this section is to quantify
those inaccuracies derived from the porosity-based approach, as the same so-
lution method will later on be used to optimize the topology of the turbine blade
cooling duct.

For this case, the BFM1 mesh is used (fig. 4.2). The porosity field is set
to represent the initially designed duct geometry (fig. 4.1). The mesh and the
initial conditions for the porosity field 𝛼 are shown in fig. 5.1.

33
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Figure 5.1: BFM1 mesh (left), porosity field (right)

For the value of 𝛼 = 1, the region corresponds to solid, while for 𝛼 = 0
the region corresponds to fluid. The values of the porosity field are set using
an OpenFOAM©utility so that the separate mesh regions correspond to the
ones shown in section 4.1. The primal equations are solved using the topology
primal solver and the accuracy of the computations is evaluated based on the
results produced by the PBF2 code in section 4.3.

The value of 𝛽𝑚𝑎𝑥 is critical for the convergence of the equations. Examining
the additional source term in the momentum equation eq. (3.1b), if 𝛼 = 1 and
therefore the region studied is solid, the bigger the value of 𝛽𝑚𝑎𝑥, the more the
computed velocity approaches zero. This means that a bigger value of 𝛽𝑚𝑎𝑥
results in a sharper distinction of regions and greatly affects the accuracy of
the computations. Nonetheless, very large 𝛽𝑚𝑎𝑥 values can significantly change
flow behavior, especially in optimization cases where the porosity field is not
strictly binary and there is a user-defined upper bound in porosity values for
which a cell is included in the fluid domain.

A parametric analysis based on 𝛽𝑚𝑎𝑥 is conducted and the results are pre-
sented in table 5.1. The solver converges for values of approximately 𝛽𝑚𝑎𝑥 =
2 × 104 [1/s] or higher. Then, several runs were performed, doubling its value
each time till the outlet temperature and total pressure losses computed by
eqs. (2.9) and (4.4) do not exhibit significant changes.
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𝛽𝑚𝑎𝑥[1/s] 𝑇𝑜𝑢𝑡[K] 𝑇𝑜𝑢𝑡 error Δ𝑝𝑡[Pa] Δ𝑝𝑡 error
2.00 × 104 628.03 0.323 % 1.407 −0.791 %
4.00 × 104 629.24 0.132 % 1.398 −0.203 %
8.00 × 104 629.82 0.039 % 1.395 0.014 %
1.60 × 105 630.10 −0.005 % 1.394 0.089 %
3.20 × 105 630.23 −0.026 % 1.394 0.111 %
6.40 × 105 630.29 −0.035 % 1.394 0.114 %
1.28 × 106 630.32 −0.039 % 1.394 0.112 %

Table 5.1: Outlet total temperature and pressure losses computed by PPB for
different values of 𝛽𝑚𝑎𝑥.

The percentage errors are computed as

𝜂 = 100% × 𝐽 − 𝐽 ′

𝐽

with 𝐽 being the objective value produced by the PBF2 solver presented in
table 4.2 and 𝐽 ′ being the values computed by the PPB solver. The results
show that the solution of the PPB solver is very close to the ones computed
by the PBF1 and PBF2 solvers in sections 4.2 and 4.3 respectively, regardless
of the absence of BCs along the FSI. This is mostly because the porosity field
is strictly binary and the region interfaces are well-defined. If ”grey” areas
were present in the porous media domain, there would probably be significant
divergence in the results.

Observing table 5.1, the results are dependent on the 𝛽𝑚𝑎𝑥 value even though
the corresponding Darcy number in each case is lower than Da = 10−5. It
can therefore be concluded, that the solid is not completely impermeable for
Da = 10−5. As the value of 𝛽𝑚𝑎𝑥 increases, the results converge to certain values
corresponding to the solution for a completely impermeable solid.

The results produced by the three solvers are summarized in table 5.2 where
the results of the case with 𝛽𝑚𝑎𝑥 = 1.28 × 106 are used. It can be seen that
the values computed by PPB are close to the ones computed by the other two
solvers. To investigate this matter, the fields computed by the PPB solver are
examined and compared to the ones computed by the PBF2 solver.

PBF1 PBF2 PPB

𝑇𝑜𝑢𝑡[K] 629.6 630.1 630.3
Δ𝑝𝑡[Pa] 1.396 1.395 1.394

Table 5.2: Outlet temperature and total pressure losses computed by the three
solvers.

In fig. 5.2, on the left, there is the velocity magnitude field while the field
on the right corresponds to the difference in the velocity magnitude fields com-
puted by the PPB and PBF2 solvers.
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Figure 5.2: Velocity magnitude field for 𝛽𝑚𝑎𝑥 = 1.28 × 106 [1/s] (left), field of
differences in the velocity magnitude between PPB and PBF2 (right).

Observing the velocity magnitude differences field, deviations exist mostly
at the region interfaces. Specifically, the differences are bigger near the inlet
and at the curved part where the flow velocity magnitude is bigger. The PBF2
solver computes smaller velocity magnitudes at those areas which is due to
the imposition of the no-slip condition. On the other hand, the topology solver
tries to capture this flow behavior through the additional source term in the
momentum equation. The results show that, at the region interfaces near the
inlet, where the flow has not settled, and in areas of high velocity gradient, the
PPB solver is more prone to errors.

The temperature field as well as the differences between the two solvers are
presented in fig. 5.3.

Figure 5.3: Temperature field for 𝛽𝑚𝑎𝑥 = 1.28 × 106 [1/s](left), field of differences
in temperature between PPB and PBF2 (right).

It does not show any significant difference comparing it with the previous
ones. Similarly to the previous results, the main divergence between the tem-
perature fields is located right at the inlet.
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In fig. 5.4, temperature differences along the width of the inlet are plotted,
to better visualize the differences in the results.
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Figure 5.4: Temperature differences along the inlet

The zero distance in the horizontal axis of the figure corresponds to the
interface between the fluid and the Solid1 at the inlet. The magnitude of the
differences there is the highest computed and it extends near the inlet and
specifically close to the walls. This is caused due to the absence of a Dirichlet
temperature condition at the FSIs that guarantees temperature equality and
heat-flux conservation. Soon after the inlet that the flow settles, those differ-
ences in the temperature fields become smaller.

5.2 TopO on the BFM1

In this section, TopO is conducted on the BFM1 (fig. 4.2). The dynamic TopO
method is used which means that the porosity field is not updated simultane-
ously at all cells, but only in automatically selected ones called “active”. In each
subsequent optimization cycle, the set of ”active” cells is enriched with cells
neighboring to the current ones, before updating the porosity field. Dynamic
TopO can potentially produce better results than the classic TopO approach.
In classic TopO, the optimization algorithm is often stuck to a local minimum
in the first few cycles which in dynamic TopO is tackled by gradually increasing
the number of design variables. The downside is that dynamic TopO usually
increases the computational cost of the optimization.

Four cases were run with the same weights as the ones tested in section 4.5.
The optimization starts with an all-fluid state meaning that the initial field
of the porosity has zero value at all cells. For the interpolation of thermal
conductivity 𝑘, the SIMP function is used as described by eq. (3.4), where 𝑏
is a parameter controlling the steepness of the interpolation function. This
parameter is chosen constant and equal to 𝑏 = 3.

For the projection of the regularized porosity field ̃𝛼, the tanh function is
used, described by eq. (3.7), with 𝑏 again being a sharpening parameter. For



38 5. Analysis with the Porosity-Based solver

the first 50 optimization cycles, a constant value of 𝑏 = 3 is used. Addition-
ally, a marching step that adds 40 new cell rows in the design space in each
optimization cycle is used, starting from the bottom of the domain and moving
vertically upward. After the tenth cycle, the whole design space belongs to the
set of ”active” cells. Then, another 50 cycles are run with the classic TopO ap-
proach. This time, the sharpening parameter 𝑏 starts at 𝑏 = 2 and increments
by two, every ten optimization cycles.

The 𝛽𝑚𝑎𝑥 value is computed based on the Darcy number, through eq. (3.5)
where 𝐿 = 1.25 × 10−2 is the inlet length and 𝐷𝑎 = 1 × 10−5 is the value chosen
for the Darcy number based on [35]. The resulting value for 𝛽𝑚𝑎𝑥 is 9600. The
Method of Moving Asymptotes (MMA) [52] is used to update the values of the
porosity since it is designed to efficiently handle multiple bound constraints
which is critical for TopO considering that the design variables are bound in
the set [0, 1]. More about this method can be found in appendix B.2.

The objective function is the same as the one used for the previous cases
(eq. (2.8)) which combines two objectives, the maximization of the fluid temper-
ature at the outlet and the minimization of the total pressure losses. Finally,
there is an inequality constraint imposed so as to control the volume occupied
by the fluid in the domain. This is written as,

𝐽 =
∫Ω(1 − 𝛽)𝑑Ω

∫Ω 𝑑Ω − 𝜋𝑡𝑎𝑟 ≤ 0 (5.1)

where 𝜋𝑡𝑎𝑟 is the maximum value of the percentage of fluid volume to the total
volume of the domain. This value is set to 𝜋𝑡𝑎𝑟 = 0.426 which corresponds to
the percentage of fluid in the domain used in previous cases (fig. 4.1).

The resulting porosity fields are shown in fig. 5.5. Although the mesh is
fitted to the geometry of the original serpentine fig. 4.1, no similarities are ob-
served. Instead, a porosity field closer to a U-shaped duct design was derived.

Figure 5.5: Resulting porosity fields for different weights in the objective func-
tion, 𝑤 = 0.9 (left), 𝑤 = 0.2 (right). The flow area is in blue and the rest of the
domain is considered solid.

If maximizing the mean outlet temperature is of higher significance, the
TopO tends to block the outlet and the designed duct reaches for the heated
boundaries of the domain. On the other hand, when the minimization of the
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total pressure losses is more important, the length of the duct becomes smaller
and its width increases.

The temperature and velocity fields are shown for the two cases in figs. 5.6
and 5.7 respectively. The temperature of the Solid2 region for the case with
𝑤 = 0.9 is higher while the velocity magnitude is smaller for 𝑤 = 0.2.

Figure 5.6: Resulting temperature fields for different weights in the objective
function, 𝑤 = 0.9 (left), 𝑤 = 0.2 (right).

Figure 5.7: Resulting velocity fields for different weights in the objective func-
tion, 𝑤 = 0.9 (left), 𝑤 = 0.2 (right).

The mean fluid temperature at the outlet, total pressure losses and FSI
length computed in each case, are presented in table 5.3 for the two weights.

𝑤 𝑇𝑜𝑢𝑡[K] Δ𝑝𝑡[Pa] FSI length[m]
0.9 747.7 0.679 0.950
0.2 517.5 0.071 0.501

Table 5.3: Outlet temperature, total pressure losses and FSI length for different
weights in the objective function.

Finally, the normalized total objective function convergence is plotted in
fig. 5.8a. Moreover, the values in each optimization cycle of the mean outlet
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temperature as well as the total pressure losses are presented in fig. 5.8b and
fig. 5.8c, respectively.
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Figure 5.8: Convergence of the normalized total objective function as well as
of each objective comprising it.

5.3 TopO on a Structured Mesh

A new fully-structured mesh is generated for TopO, called PM1 (Porosity Mesh),
named after the porosity techniques used in the optimization. It is typical
for fully-structured meshes to be used in TopO since the geometry is initially
unknown and formed during the optimization process.

5.3.1 Mesh Independence Study

The PM1 mesh is presented in fig. 5.9. A notable difference in the geometry
is that there are straight extensions added to the inlet and the outlet of the
domain. Those straight extensions are added so that the flow develops before
entering the design space.

A mesh independence study is conducted to examine the appropriate mesh
density. A coarse mesh with ∼ 30𝐾 cells, a medium-density mesh with ∼ 60𝐾
cells and a fine one with ∼ 120𝐾 cells, are tested. The porosity field is initialized
to approximate the original geometry of the serpentine-shaped duct used in the
original test case (fig. 4.1). In detail, an OpenFOAM©utility was used to ”paint”
in red (unitary porosity value) cells that are outside of the fluid domain while
the rest were painted in blue (zero porosity value) as shown in fig. 5.9. Since the
PM1 is not fitted to the serpentine-shaped duct geometry, the representation
of the geometry through the porosity field is not exact.
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Figure 5.9: PM1 with ∼ 30𝐾 cells (left), porosity field approximating the original
geometry (right)

The geometry representation through the porosity field will be more accurate
as the number of cells in the mesh increases. Only the primal problem is
solved using the PPB solver and the computed mean outlet temperature, total
pressure losses and FSI length for the different mesh densities are presented
in table 5.4. It is worth noting that the exact FSI length of the geometry is
2.043 m.

Mesh size ∼ 30𝐾 ∼ 60𝐾 ∼ 120𝐾
𝑇𝑜𝑢𝑡[K] 684.7 663.4 651.3
Δ𝑝𝑡[Pa] 1.303 1.281 1.278
FSI length[m] 2.150 2.150 2.150

Table 5.4: Outlet temperature and pressure losses for different mesh densities.

The value of mean fluid temperature at the outlet decreases as the mesh
density rises. With the decrease in cell density of the mesh, the FSI walls
become more jagged causing more and wider recirculation areas in the flow,
which assist the exchange of heat between the regions. On the other hand,
jagged FSI walls contribute to larger total pressure losses.

To sum up, based on the mesh independence study, the PM1 consisting
of ∼ 120𝐾 cells will be used for the optimization as it gives satisfactory re-
sults compared to the ones produced by the previous solvers summarized in
table 5.2. Further refinement of the mesh will give even better results, but the
computational cost of the optimization is a limiting aspect.
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5.3.2 TopO on the PM1 mesh

TopO runs for three different weights in the objective function (eq. (2.8)). The
weights used are:

1. 𝑤 = 0.95

2. 𝑤 = 0.9

3. 𝑤 = 0.8

The value of the sharpening parameter 𝑏 is given as a stepped ramp function
which starts at 𝑏 = 1 and increases every 5 optimization cycles by 1. The
objective function is the same as the one used for the previous cases (eq. (2.8)).
The constraint imposed on the volume of fluid in the domain described by
eq. (5.1) has the value 𝜋𝑡𝑎𝑟 = 0.437 after including the straight extensions so
that the percentage of fluid in the domain is the same as in fig. 4.1.

The porosity fields produced by the TopO after 50 optimization cycles are
shown in fig. 5.10.

Figure 5.10: Resulting porosity fields for different weight combinations 𝑤 = 0.95
(left), 𝑤 = 0.9 (middle), 𝑤 = 0.8 (right)

Viewing the figure from left to right, the first two fields do not seem to have
many differences except that the duct in the middle is smoother and more
well-defined than that on the left side. In both cases, the duct comes close
to the heated boundaries of the domain so that the fluid exits at the highest
temperature possible. On the other hand, the duct on the right side is further
away from the top and left boundary of the domain and so its length is smaller
than the other two. This greatly decreases the total pressure losses which are
of greater importance when 𝑤 = 0.8, in contrast to the other two cases.

The temperature fields corresponding to the above-mentioned porosity fields
are presented in fig. 5.11.
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Figure 5.11: Resulting temperature fields for different weight combinations
𝑤 = 0.95 (left), 𝑤 = 0.9 (middle), 𝑤 = 0.8 (right)

It is obvious that for 𝑤 = 0.95 the temperature rise in the domain is signif-
icantly larger than in the other two cases. This is achieved due to the duct
being closer to the left domain boundary near the inlet and because there is
a solid island interrupting the flow near the outlet, further heating the fluid
before exiting the domain. By slightly decreasing the value of 𝑤, the island
near the outlet disappears as its presence increases the total pressure losses
significantly, but also the outlet fluid temperature falls.

The velocity magnitude fields for the three cases are shown in fig. 5.12.

Figure 5.12: Resulting velocity magnitude fields for different weight combina-
tions 𝑤 = 0.95 (left), 𝑤 = 0.9 (middle), 𝑤 = 0.8 (right)

With the decrease of 𝑤, the width of the duct seems to become larger. This al-
lows for smaller velocity magnitudes which in turn contributes to the decrease
in total pressure losses. These conclusions are confirmed by the results of
fig. 5.12.

The outlet fluid temperature computed through eq. (2.9), as well as the
total pressure losses computed through eq. (4.4) are presented in table 5.5.
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Comparing the TopO results to the ones produced by the primal solvers (PBF1,

𝑤 𝑇𝑜𝑢𝑡[K] Δ𝑝𝑡[Pa]
0.95 764.9 1.291
0.9 698.2 0.709
0.8 605.6 0.274

Table 5.5: Outlet temperature and total pressure losses for different weights
in the objective function. Results produced by TopO on PM1 mesh.

PBF2, PPB), it is obvious that the mean outlet temperature is overestimated
by the topology and the opposite for the total pressure losses.

In fig. 5.13a, the 𝐽 𝑡𝑜𝑡𝑎𝑙 convergence is shown for the three cases. In the
first few cycles, the value of the objective function is not dropping constantly.
This is because, at the beginning of the optimization, the equations are not
well-converged due to the domain being all-fluid. As the solid areas are formed
in the domain, the equations display better convergence and so the computed
sensitivities are more accurate driving the optimization to constantly lower ob-
jective function values. Additionally, in the beginning, the volume constraint
described by eq. (5.1) is not satisfied meaning that the MMA updates the design
variables so that a feasible solution to the problem be reached, without paying
”so much attention” to the reduction of the objective function. In figs. 5.13b
and 5.13c the mean outlet temperature and the volume-averaged total pres-
sure losses objective (eq. (2.10)) respectively are plotted.
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Figure 5.13: Convergence of the normalized total objective function as well as
of each objective comprising it.

5.3.3 Optimization on the PM1 using dynamic TopO

In this section, TopO is conducted on the PM1 comprised of ∼ 120𝐾 cells using
the dynamic TopO method discussed briefly in section 5.2. Four cases are run
for different weights in the objective function eq. (2.8), starting from an all-fluid
porosity field. The weights used are the same as the ones in section 4.5.

For the first 50 optimization cycles, a constant value of 𝑏 = 3 is set in the
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tanh function for the projection step. Additionally, a marching step is used,
starting from the bottom of the domain and moving upward, which adds 40 new
cell rows in the design space in each optimization cycle. After the tenth cycle,
the whole design space becomes available for optimization. Then, another 50
cycles are run with the whole design space available and with a scaling value
of the sharpening parameter, 𝑏, of the projection. Its value starts at 𝑏 = 2 and
with an increment of two for every ten optimization cycles, it ends at 𝑏 = 10.

The resulting porosity fields of the optimization are displayed in fig. 5.14.

Figure 5.14: Resulting porosity fields for different weights in the objective func-
tion, 𝑤 = 0.9 (top left), 𝑤 = 0.8 (top right), 𝑤 = 0.5 (bottom left) and 𝑤 = 0.2
(bottom right).

It can be observed that for the case with 𝑤 = 0.9 parts of the domain are
solidified near the outlet. This greatly contributes to the increase in the mean
outlet temperature objective but also leads to an increase in the total pressure
losses.
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The mean outlet temperature, total pressure losses and FSI length are com-
puted and shown in table 5.6.

𝑤 𝑇𝑜𝑢𝑡[K] Δ𝑝𝑡[Pa] FSI length[m]
0.9 731.1 0.964 0.946
0.8 593.2 0.283 1.250
0.5 450.5 0.086 0.687
0.2 415.3 0.074 1.316

Table 5.6: Outlet temperature, total pressure losses and FSI length for different
weights in the objective function.

It should be noted that the increase in total pressure losses due to the
extensions added at the inlet and outlet of the domain, is not incorporated in
the results shown in table 5.6 and that the area-averaging of temperature is
performed right before the outlet extension.

The temperature and velocity fields are also presented for the cases with
the largest and the smallest 𝑤 values. The temperature fields are shown in
fig. 5.15 while the velocity fields are in fig. 5.16.

Figure 5.15: Resulting temperature fields for the cases with 𝑤 = 0.9 (left) and
𝑤 = 0.2 (right).
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Figure 5.16: Resulting velocity fields for the cases with 𝑤 = 0.9 (left) and 𝑤 = 0.2
(right).

The 𝐽 𝑡𝑜𝑡𝑎𝑙 values in each optimization cycle for the four cases are plotted
in fig. 5.17a. The values at every tenth optimization cycle of the mean outlet
temperature as well as the total pressure losses are presented in fig. 5.17b and
fig. 5.17c respectively.
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Figure 5.17: Convergence of the normalized total objective function as well as
the values of mean outlet temperature and total pressure losses at every tenth
optimization cycle.

5.4 Evaluation of the design produced with TopO

In sections 5.2 and 5.3.2, the geometries resulting from the TopO correspond
to a U-shaped duct that approaches the heated walls as the value of 𝑤 in the
objective function increases. To evaluate the solution of the optimization, a
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rough approximation of the geometry is designed and analyzed. At first, in
section 5.4.1, the primal problem is solved using the PBF2 solver. The same
problem is, then, solved using the PPB solver and the results are compared
with previous cases. Finally, in section 5.5 ShpO is performed on the design.

5.4.1 Primal solution on the U-shaped duct

The geometry used for the analysis is shown in fig. 5.18. The geometry is not
an exact copy of the ones produced by TopO as it was arbitrarily designed and
so an inconsistency in the results is to be expected.

Figure 5.18: U-shaped duct geometry.

Additionally, the strange shape of the U-shaped duct is so that the percent-
age of fluid volume to the total volume of the domain is close to the upper
bound set in the TopO (section 5.2). In the case of TopO, the volume percent-
age constraint is expressed by eq. (5.1) from which can be deduced that ”grey”
porosity areas contribute to the flow volume. Therefore, the newly designed
duct is of larger width comparing it to the TopO results, nonetheless, there
is consistency in the percentage of the volume occupied by the fluid in the
domain.

The computational mesh used for the analysis is shown in fig. 5.19. This
mesh is called BFM2 and is comprised of ∼ 16𝐾 cells in the fluid domain,
∼ 7.5𝐾 cells in the outer solid and 16𝐾 cells in the inner solid.
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Figure 5.19: U-shaped duct mesh (BFM2).

The temperature and velocity field resulting from the CHT analysis of the
U-shaped duct, are depicted in fig. 5.20.

Figure 5.20: Temperature (left) and velocity magnitude (right) field computed
using PBF2.

The computed mean outlet temperature is 𝑇𝑜𝑢𝑡 = 515.2 K while the total
pressure losses are Δ𝑝𝑡 = 0.119 Pa. Additionally, the FSI length computed is
0.934 m. There is a great deviation in the results between this case and the
ones presented in section 5.2 (𝑇𝑜𝑢𝑡 = 747.7 K, Δ𝑝𝑡 = 0.679 Pa) and section 5.3.2
(𝑇𝑜𝑢𝑡 = 698.2 K, Δ𝑝𝑡 = 0.709 Pa). A possible explanation is that this is caused
due to solving the problems with different solvers. To examine this possibility,
the same problem should be solved with the PPB solver.

5.4.2 Primal Problem solution using the PPB solver

In this section, the primal CHT problem is solved on the BFM2 mesh fig. 5.19
with the PPB solver in order to examine whether the porosity-based solver ap-
proach is the reason for the deviation of the results presented in the previous
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section. The porosity field is set so that the cells that belong to the solid do-
main in the original problem (section 5.4.1) have a value of 𝛼 = 1 while the
others have zero value. The porosity field is depicted in fig. 5.21.

Figure 5.21: Porosity field representing the U-shaped duct geometry.

The resulting temperature and velocity fields are shown in fig. 5.22.

Figure 5.22: Temperature (left) and velocity magnitude (right) field computed
using the PPB solver.

The computed mean outlet temperature is 𝑇𝑜𝑢𝑡 = 524.5 K while the total
pressure losses are Δ𝑝𝑡 = 0.132 Pa. Although the results do not differ noticeably
between this analysis and the one of the previous section (section 5.4.1) this is
not the case in comparison with the other two in sections 5.2 and 5.3.2. The
computed outlet temperature in this case is much lower and as are the total
pressure losses.

In both the previous cases, TopO tends to block the outlet by solidifying
some of the cells. Considering that the conductivity of the solid is greater than
the fluid’s, the temperature value in those cells is higher than in the fluid cells.
The averaging of temperature includes cells of any type irrespective of whether
they are solid or fluid meaning that the mean outlet temperature is greatly
increased by the blocking of the outlet. Since this geometry detail is not taken
into account when designing the U-shaped duct geometry (fig. 5.18), mostly
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because it negatively affects the second objective linked to the total pressure
losses, the mean fluid outlet temperature of this geometry results to a much
lower value.

Finally, in this section, the primal problem is solved on a strictly binary
porosity field in which the FSI boundary is clearly defined. This is not the
case in sections 5.2 and 5.3.2 where ”grey” areas form on the FSI and thus the
accuracy of the computations is compromised.

5.5 Shape optimization of the U-shaped duct

Four optimization cases are run with the weights used in section 4.5. Every
case is run for 10 optimization cycles. The optimized geometries for the two
extreme cases with 𝑤 = 0.9 and 𝑤 = 0.2 are shown in fig. 5.23 on top of the
initial geometry.

Figure 5.23: The red line corresponds to the geometry produced for 𝑤 = 0.9,
the blue for 𝑤 = 0.2 and in black is the original U-shaped duct geometry.

The mean fluid temperature at the outlet, total pressure losses and FSI
length computed in each case are presented in table 5.7 for all the weights
studied.

𝑤 𝑇𝑜𝑢𝑡[K] Temperature
increase

Δ𝑝𝑡[Pa] Losses decrease FSI length[m]

0.9 512.9 −0.44 % 0.109 8.81 % 0.926
0.8 507.6 −1.46 % 0.100 16.13 % 0.923
0.5 506.7 −1.65 % 0.099 16.76 % 0.924
0.2 506.4 −1.70 % 0.099 16.80 % 0.924

Table 5.7: Outlet temperature, total pressure losses and FSI length for different
weights in the objective function.

The normalized total objective function convergence is plotted in fig. 5.24a.
Moreover, the values in each optimization cycle of the mean outlet temperature
as well as the total pressure losses are presented in figs. 5.24b and 5.24c,
respectively.
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For 𝑤 = 0.9, almost no drop in the value of the objective function is observed,
while for 𝑤 = 0.2 decrease is higher. This is due to the optimization being able
to lower the total pressure losses, the contribution of which is more significant
in the objective function for the case with 𝑤 = 0.2. The optimization is unable to
increase the fluid outlet temperature for the current parameterization. Finally,
it can be deduced that the initial design was already close to optimal and thus,
the optimization converged in two to three cycles.

5.6 Conclusions

In this chapter, the test case introduced in chapter 4 was studied using a
porosity-based solution approach. The results showed that despite the omis-
sion of boundary conditions on the FSI, the flow behavior can be adequately
captured by the additional porosity-dependent source terms in the flow equa-
tions for TopO (eqs. (3.1)). The results and the convergence of the problem,
are dependent on the 𝛽𝑚𝑎𝑥 value which controls the permeability of the solidi-
fied areas. A higher 𝛽𝑚𝑎𝑥 value increases the accuracy of the results since the
FSI boundary conditions are more ”strictly” imposed (e.g. flow velocity better
approaches zero on the FSI).

As indicated by figs. 5.3 and 5.4, the absence of boundary conditions mostly
affects the results for temperature near the inlet. In the typical solution ap-
proach used for ShpO (section 2.1) a Dirichlet condition is imposed on tem-
perature that enforces temperature equality and heat-flux conservation at the
FSI. On the other hand, in the porosity-based approach, only the heat-flux
conservation condition is imposed through eqs. (3.1), whereas the tempera-
ture equality is not. Nonetheless, with the settling of the flow, the differences
in the temperature field become smaller.

TopO was run on the BFM1 mesh for different weights in the objective func-
tion. The resulting geometries are shown in fig. 5.5 and correspond to a U-
shaped duct. When the maximization of the outlet temperature is of greater
importance, the resulting duct goes up to the heated domain walls. Moreover,
a solid area is formed near the outlet which additionally helps with the flow
temperature rise. On the other hand, when the prevailing objective is the min-
imization of total pressure losses, a U-shaped duct of smaller length is formed.
Also, its width is bigger leading to smaller velocity magnitudes which, in turn,
causes lower total pressure losses.

Moreover, a structured mesh was generated (fig. 5.9-left) as typically used
in TopO cases. Straight extensions were added to the inlet and outlet of the do-
main so that the flow velocity profile is developed before it enters and exits the
domain. At first, a mesh independence study was conducted that concluded to
the adequate mesh resolution. After that, several TopO cases were run for dif-
ferent weights in the objective function. All the designs resulted in a U-shaped
duct geometry. The mean outlet temperature and total pressure losses of the
designs are summarized in table 5.5. To obtain a more intricate design from
the TopO, the dynamic TopO method was used (explained in section 5.2). The
resulting geometries can be seen in fig. 5.14.

In section 5.4, the design produced by TopO in sections 5.2 and 5.3.2 was
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evaluated. An approximate design of the U-shaped duct was created which
resembles, but is not the same as, the ones produced with TopO. Solving the
primal problem with the PBF2 solver, a great divergence in the results was
observed. To examine whether this was caused due to the difference in the
solver, the same problem was solved using the porosity-based approach. Again,
the difference in the results was significant which is attributed to two reasons.
The first one is errors in the approximate design of the U-shaped duct which
differs from the ones created by TopO. The second and most important reason
is accredited to the well-known disadvantage of the porosity-based TopO which
is the absence of FSI. The porosity field used in section 5.4.2 is strictly binary
meaning that there is a well-defined boundary separating the flow from the
solid. On the contrary, in sections 5.2 and 5.3.2 many ”grey” areas are formed
in the porosity fields which causes large inaccuracies in the results since there
are no proper conditions imposed between the region interfaces.



Chapter 6

Revisiting Previous Conclusions
on a 2D Duct System

In this chapter, some of the assumptions drawn in previous chapters are revis-
ited on a second test case regarding the design of a 2D duct system. At first,
several TopO cases are run for different settings of the code. Then, a utility
created by the PCOpt/NTUA based on the OpenFOAM©framework is used to
create body-fitted mesh for both the fluid and solid regions based on the back-
ground mesh of TopO and the optimal porosity field produced by TopO. Finally,
ShpO is run on the body-fitted mesh and the results for different weights in
the objective function are discussed.

6.1 Problem Description

The geometry created as test case 2 is shown in section 6.1. The boundaries
𝑆𝐼1

, 𝑆𝐼2
are the two inlets while the 𝑆𝑂 boundary is the outlet.

SI1

SI2

SO

Figure 6.1: Geometry for test case 2. Red color is used to indicate hot walls
and blue for adiabatic walls.

58
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The fluid enters the domain with a velocity magnitude of |𝑣| = 0.01 m/s
and with temperature 𝑇 = 293 K. The fluid is water with kinematic viscosity
𝜈 = 1 × 10−6 m2/s, density 𝜌𝐹 = 998.2 kg/m3, specific heat capacity at constant
pressure 𝑐𝐹

𝑝 = 4180 J/(kgK) and thermal conductivity 𝑘𝐹 = 0.598 W/(mK). All its
thermophysical properties are considered constant. The flow is laminar with
Re = 100. The heated walls of the domain are kept at 𝑇 = 353 K. Finally, the
solid thermal conductivity is set as previously to 𝑘𝑆 = 12.7 W/(mK).

The mesh created for this case is structured and is composed of ∼ 25𝐾 cells.
It can be seen in fig. 6.2 and will be called PM2.

Figure 6.2: Computational mesh for test case 2 (PM2).

Again, straight extensions are added at the outlet and both inlets of the
domain, so that the flow profile has been developed before the fluid enters the
design space and the boundary conditions at the outlet are properly imposed.
It should be noted that the extensions do not participate in the optimization
and the porosity field has constantly zero value in those areas of the mesh.

6.2 TopO of the 2D duct system

The objective function used in the optimization is comprised of two objectives.
The first objective is the minimization of the mean temperature in the domain
while the other one is the minimization of the volume-averaged total pressure
losses. The objective function is expressed as,

𝐽 𝑡𝑜𝑡𝑎𝑙 = 𝑤 ̂𝐽𝑚𝑒𝑎𝑛𝑇 + (1 − 𝑤) ̂𝐽𝑝𝑡 (6.1)

where 𝑤 ∈ [0, 1] is a weight used to control the contribution of each objective
in the total objective function. The hat symbol is used to indicate that the two
objectives are normalized. Each objective is normalized with its value at the
start of the optimization.

The volume-averaged temperature objective is computed by

𝐽𝑚𝑒𝑎𝑛𝑇 =
∫Ω 𝑇 𝑑Ω
∫Ω 𝑑Ω (6.2)
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while the total pressure losses objective is given by eq. (2.10). Additionally, a
constraint for the percentage of fluid volume in the domain as in eq. (5.1) is
set. The fluid volume is kept lower than 0.4 of the total volume of the domain.

The 𝛽𝑚𝑎𝑥 value used throughout the optimization is given by eq. (3.5) for
Da = 10−5 specifically, 𝛽𝑚𝑎𝑥 = 1000. For the interpolation of thermophysical
properties between the fluid and solid regions based on the scheme described
by eq. (3.3), the SIMP function is used eq. (3.4) with 𝑏 = 3. The Helmholtz
PDE (eq. (3.6)) is employed for the regularization of the porosity field with 𝑅 ≈
0.0033 m and eq. (3.7) is used for the projection. In particular, the parameter 𝑏
controlling the steepness of the projection starts at 𝑏 = 3 and is increased by 3
every 10 optimization cycles. The optimization is run for a total of 50 cycles.

TopO is run for four different weights in the objective, the same as those in
section 4.5. The domain is all-fluid at the beginning of the optimization. The
geometries designed by TopO are shown in fig. 6.3.

Figure 6.3: Resulting porosity fields for 𝑤 = 0.9 (top-left), 𝑤 = 0.8 (top-right),
𝑤 = 0.5 (bottom-left), 𝑤 = 0.2 (bottom-right).

The most obvious difference in the designs is the volume of the cavity of fluid,
formed near the bottom wall. Specifically, as the value of 𝑤 drops and so the
significance of the temperature objective is lowered, the volume of the cavity
decreases. This is because the cavity acts as thermal insulation preventing the
heat from transferring further inside the domain. The thermal conductivity of
water is far less than the solid’s which means that the presence of stagnant
flow along the width of the heated wall, reduces the diffusion of heat inside the
domain. Conversely, for lower values of 𝑤 the cavity volume is smaller but the
width of the duct is larger allowing for lower total pressure losses.



6.2. TopO of the 2D duct system 61

In fig. 6.4, the temperature fields are shown for the cases with 𝑤 = 0.9 and
𝑤 = 0.2.

Figure 6.4: Resulting temperature fields for 𝑤 = 0.9 (left) and 𝑤 = 0.2 (right).

The velocity magnitude fields for the same cases are shown in fig. 6.5.

Figure 6.5: Resulting velocity magnitude fields for 𝑤 = 0.9 (left) and 𝑤 = 0.2
(right).

It is obvious from the temperature field in fig. 6.4-left, that the cavity man-
ages to thermally isolate the hot bottom wall from the rest of the domain and
therefore decrease its mean temperature contrary to fig. 6.4-right where the
cavity is smaller. On the other hand, the wider duct that resulted for 𝑤 = 0.2
presents smaller velocity magnitudes in the flow as shown in fig. 6.5-right
which, in turn, decreases the total pressure losses.
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In fig. 6.6 the normalized total objective function, the volume-averaged tem-
perature and the total pressure losses coefficient are plotted respectively.
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Figure 6.6: Convergence of the normalized objective function as well as of each
objective constituent of it.

The total pressure losses coefficient is defined as the total pressure losses
divided by the dynamic pressure at the inlet, namely,

ΩΔ𝑝𝑡 = Δ𝑝𝑡
1/2𝜌𝑣2 (6.3)

It can be observed that the objectives begin to decrease after the fifth cycle.
This is because the optimization starts with an all-fluid domain, which is an
infeasible solution to the problem based on the volume constraint that has been
set. Once a feasible solution has been reached, the value of the objectives starts
to decrease. A great drop in the 𝐽 𝑡𝑜𝑡𝑎𝑙 value is achieved after the fifth cycle. The
value of the volume constraint during the optimization is shown in fig. 6.7.
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Finally, in table 6.1, the volume-averaged temperature in the domain and
the total pressure coefficient for the resulting geometries are presented.

𝑤 𝑇 [K] ΩΔ𝑝𝑡

0.9 306.1 17.3
0.8 304.8 15.7
0.5 309.3 14.5
0.2 312.4 14.1

Table 6.1: Volume-averaged temperature and total pressure losses coefficient
for different weights in the objective function.

6.3 TopO to ShpO Transition

In this section, a utility created by the PCOpt/NTUA is used to create body-
fitted meshes for both the solid and fluid regions of the TopO case presented
in the previous section for 𝑤 = 0.5.The body-fitted meshes are generated based
on the optimal porosity field shown in fig. 6.3-(bottom-left) and the PM2 mesh
fig. 6.2 and are demonstrated in fig. 6.8.

Figure 6.8: Body-fitted meshes created from PM2 based on the optimal porosity
field for 𝑤 = 0.5. Body-fitted mesh for the fluid region (left) and the solid region
(right).

Solving the primal problem with the PBF2 solver on the body-fitted mesh,
the resulting mean temperature in the domain is 𝑇 = 309.1 K (instead of 𝑇 =
309.3 K) and the total pressure losses coefficient ΩΔ𝑝𝑡 = 14.3 (instead of ΩΔ𝑝𝑡 =
14.5) which are almost identical to the results produced by TopO for 𝑤 = 0.5.

For the ShpO of the geometry, the first objective is slightly different than the
one used in TopO, as it expresses the minimization of the mean temperature
in the solid region rather than the entire domain. Nonetheless, the results are
processed so that the mean temperature in the entire domain is computed and
there can be a comparison with the results from the previous section.

Again, the FSI boundary is parameterized using a VBS morpher. The control
box is composed of 11 × 11 control points shown in fig. 6.9.
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Figure 6.9: A 11 × 11 VBS box parameterizing the FSI. CPs in blue remain fixed
and red ones are allowed to move.

The geometries formed by ShpO after 10 optimization cycles for the four
weights are almost identical. In fig. 6.10, the geometries are shown on top of
the initial design.

Figure 6.10: The geometry produced by the four different ShpO cases is in blue,
while in black is the original geometry.

The optimized duct is narrower than the original and the volume of the cav-
ity has slightly increased. The values in each optimization cycle of the volume-
averaged temperature in the domain as well as the total pressure losses coeffi-
cient are plotted in figs. 6.11a and 6.11b respectively.
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Figure 6.11: Convergence of the objective for different weighs.

The convergence of the objective for all the cases is almost the same. A
slight increase in the total pressure losses objective caused by the narrowing
of the duct and a small decrease in the average temperature caused by the
enlargement of the cavity is observed. The similarity in the results for different
weights and the fact that ShpO is unable to further decrease the total pressure
losses indicates that the design produced by TopO is already close to optimal,
meaning that the optimization is already close to a local minimum.
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In table 6.2, the results for the original and the optimized geometries are
presented.

𝑇 [K] ΩΔ𝑝𝑡

original 309.1 14.3
optimized 308.7 14.6

Table 6.2: Volume-averaged temperature and total pressure losses coefficient
for the original and optimized geometries.

6.4 Conclusions

In this chapter, TopO is run on a second test case where the fluid (water) enters
the domain from the left and top side and exits from the right. The objective
is to minimize the volume-averaged temperature in the domain as well as the
total pressure losses. Starting for an all-fluid domain, the geometries produced
by TopO are presented in fig. 6.3 for different weights in the objective function.
The formation of a cavity near the hot bottom wall, which acts as thermal
insulation preventing heat transfer to the rest of the domain, can be seen. With
the increase in 𝑤 and hence the significance of the mean temperature objective,
the cavity becomes larger and the duct’s width becomes smaller. Since there is
a constraint imposed on the percentage of fluid inside the domain, the increase
in the cavity volume is compensated by the narrowing of the duct.

A utility created by the PCOpt/NTUA is used to create a body-fitted mesh
for the fluid and the solid based on the background mesh of TopO and the
optimal porosity field produced for 𝑤 = 0.5 shown in fig. 6.8. The geometry is
reevaluated using the PBF2 solver and the results are very close to the ones
produced by TopO namely, the computed mean temperature in the domain is
𝑇 = 309.1 K (instead of 𝑇 = 309.3 K) and the total pressure losses coefficient is
ΩΔ𝑝𝑡 = 14.3 (instead of ΩΔ𝑝𝑡 = 14.5).

Finally, ShpO is run on the body-fitted mesh for different weights and the re-
sults are almost the same in each case. The optimization managed to slightly
decrease the mean temperature while on the other hand, the total pressure
losses were slightly increased. The small impact of ShpO on the design indi-
cates that the geometry was near-optimal from the start and the TopO result
was already close to a local minimum.



Chapter 7

Closure-Conclusions

The purpose of this thesis was the study of the continuous adjoint method
for CFD-based optimization of problems including CHT. Steady-state laminar
flows of incompressible fluids were studied and both ShpO and TopO were
conducted on 2D cases. The relevant software has been programmed by the
PCOpt/NTUA based on the open-source CFD toolbox OpenFOAM©. In the next
paragraphs, the conclusions drawn from each chapter are summarized.

• In Chapter 4, a CHT analysis was conducted on a test case inspired by
an internally cooled turbine blade. A comparison was made between the
results computed by the publicly available OpenFOAM©solver for com-
pressible flows and the ones by the incompressible solver developed by the
PCOpt/NTUA. Both solvers gave similar results summarized in table 4.2.
After that, the incompressible solver was used to optimize the shape of
the serpentine-like duct. The ShpO objectives were the maximization of
the fluid mean outlet temperature (multiplied by 𝑤) and the minimization
of total pressure losses (multiplied by (1 − 𝑤)). Runs were performed for
several weight values in the objective function and the results showed a
2.43% increase in the outlet fluid temperature for the case with 𝑤 = 0.95
and a 17.67% decrease of total pressure losses for the case with 𝑤 = 0.2.
The duct geometries produced by ShpO became wavy for larger values of
𝑤, reinforcing the transfer of heat from the solid to the fluid region through
extended separation areas and longer FSI. The opposite was observed for
lower 𝑤 values.

• In Chapter 5, the serpentine-like duct was studied using the primal solver
of the TopO. At first, a study was conducted for the independence of the
results on the value of the 𝛽𝑚𝑎𝑥 parameter controlling the permeability of
solids. Then, a comparison was made between the results of this solver
and the PBF2 which showed that despite the absence of BCs on the FSI,
the flow behavior can be adequately captured by the porosity-dependent
source terms in the flow equations. A slight difference in the results of
the two solvers was observed near the FSI and mainly close to the inlet.
In section 5.2, TopO was run on the BFM1 mesh, resulting in a U-shaped
duct geometry. With the increase in the 𝑤 value, the duct comes closer
to the hot walls of the domain while for smaller values, the duct length
decreases and its width becomes larger. Also, TopO solidifies parts of the
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domain near the outlet in order to increase the fluid outlet temperature.
A fully-structured mesh (PM1) is created as used typically in TopO since
the geometry is unknown. TopO runs on PM1 also resulted in a U-shaped
duct geometry and thus, a rough approximation of the geometry was de-
signed and evaluated. The study showed significant deviation from the
previous TopO cases, which is contributed primarily to the known dis-
advantage of TopO namely, the formation of ”grey” areas in the porosity
field.

• In Chapter 6, a second test case was studied regarding the design of a
2D duct system. The objective of the TopO was to minimize the volume-
averaged temperature in the domain and the total pressure losses. Sev-
eral runs were made for different weights in the objective function and
the optimization formed a cavity near the hot bottom wall which acted as
thermal insulation preventing the heat from transferring to the rest of the
domain. With the increase in 𝑤 and hence the significance of the mean
temperature objective, the cavity became larger and the duct’s width be-
came smaller compensating for the constraint imposed on the percentage
of fluid in the domain. Then a utility developed by the PCOpt/NTUA was
used to generate a body-fitted mesh for the fluid and the solid based on
the background mesh of TopO and the optimal porosity field produced
for 𝑤 = 0.5. The analysis showed that the results of the primal solver
PBF2 were very close to the ones computed by the TopO. Finally, ShpO
was run on the body-fitted mesh, which resulted in approximately the
same geometries for all the weights used. The optimization managed to
decrease the mean temperature by 0.13% from the TopO design while the
total pressure losses were slightly increased by 2.1%. The small impact of
ShpO on the design indicates that the geometry was near-optimal from
the start and the TopO result was already close to a local minimum.

As a general overview, ShpO is a widely used design method in CFD-based
optimization and its effectiveness is demonstrated here in problems involving
CHT. Many of the TopO cases conducted in this thesis resulted in geometries
with blockages and broken flow paths as well as other non-physical artifacts
especially when the thermal objective function was more prioritized. Addition-
ally, it was observed that TopO encounters numerical difficulties towards con-
vergence specifically in high Reynolds number laminar flows where steep gra-
dients and small-scale phenomena appear, for example, flow separation. For
instance, the numerical verification of topology-optimized geometries in the
first application with Re = 417 revealed differences in the objective values re-
ported by the body-fitted solver. Conversely, a similar study conducted for the
second application with Re = 100 demonstrated excellent convergence of the
results. Despite the aforementioned problems of TopO, the formed geometries
exhibited characteristics attributable to the diverse physics at play. Moreover,
certain designs leverage complex features that can be perceived as an innova-
tive foundation for constructing an engineering solution to address the tackled
problem.

To sum up, the primary focus of this thesis was to apply topology optimiza-
tion in order to investigate novel and unconventional optimal designs for ther-
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mal systems. In this undertaking, an assortment of code configurations was
subjected to rigorous testing, yielding useful insights applicable to individuals
employing similar codebases. The cases setup also involved the generation
of meshes, employing the Pointwise software for body-fitted meshes and the
blockMesh utility for TopO meshes which is provided with OpenFOAM©. A
large part of the post-processing was made using the ParaView software and
some using functions already available with OpenFOAM©. Finally, some util-
ities were programmed based on the OpenFOAM©framework for the computa-
tion of the FSI length and the heat-flux through a boundary patch.



Appendix A

VBS as a Parameterization and
Mesh Displacement Tool

The VBS mesh displacement method uses a mesh of CPs enclosing (part of)
the domain. Let 𝑏𝑖𝑗𝑘

𝑚 , 𝑚 ∈ [1, 3], 𝑖 ∈ [0, 𝐼], 𝑗 ∈ [0, 𝐽], 𝑘 ∈ [0, 𝐾] be the Cartesian
coordinates of the 𝑖, 𝑗 and 𝑘-th CP of the 3𝐷 structured control mesh and 𝐼 + 1,
𝐽 + 1, 𝐾 + 1 are the number of CPs per control mesh direction. The Cartesian
coordinates 𝐱 = (𝑥1, 𝑥2, 𝑥3)𝑇 = (𝑥, 𝑦, 𝑧)𝑇 of a CFD mesh point residing within the
boundaries defined by the control mesh are given by

𝑥𝑚(𝑢, 𝑣, 𝑤) =
𝐼

∑
𝑖=0

𝐽
∑
𝑗=0

𝐾
∑
𝑘=0

𝑈𝑖,𝑝𝑢(𝑢)𝑉𝑗,𝑝𝑣(𝑣)𝑊𝑘,𝑝𝑤(𝑤)𝑏𝑖𝑗𝑘
𝑚 (A.1)

where 𝑢, 𝑣, 𝑤 are the parametric coordinates of the mesh nodes, 𝑈 , 𝑉 , 𝑊 are
the VBS basis functions and 𝑝𝑢, 𝑝𝑣, 𝑝𝑤 are their corresponding degrees.

The 𝑖-th B-spline basis function of 𝑝-degree, denoted by 𝑈𝑖,𝑝(𝑢), is defined
by the following recursive formula [53]

𝑈𝑖,0(𝑢) = {1 if 𝑡𝑖 ≤ 𝑢 < 𝑡𝑖+1
0 otherwise

𝑈𝑖,𝑝(𝑢) = 𝑢 − 𝑡𝑖
𝑡𝑖+𝑝 − 𝑡𝑖

𝑈𝑖,𝑝−1(𝑢) + 𝑡𝑖+𝑝+1 − 𝑢
𝑡𝑖+𝑝+1 − 𝑡𝑖+𝑝

𝑈𝑖+1,𝑝−1(𝑢)
(A.2)

where 𝑡𝑖 are knots. The uniform b-splines basis functions are obtained by
choosing a uniform knot vector 𝐓 as

𝐓 = [0, ⋯ , 0⏟
𝑝+1

, 1
𝑁 , ⋯ , 𝑁 − 1

𝑁 , 1 ⋯ , 1⏟
𝑝+1

] (A.3)

where 𝑁 = 𝑁𝑢 − 𝑝 with 𝑁𝑢 being the number of CPs along the parametric
coordinate 𝑢. The curve is (𝑝 − 𝑘) times continuously differentiable at a knot of
multiplicity 𝑘(≤ 𝑝) and thus has 𝐶(𝑝−𝑘) continuity. Repeating the knots at the
end 𝑝+1 times indicates 𝐶−1 continuity and will force the endpoints to coincide
with the control polygon. Thus the first and the last CPs of a curve with a knot
vector described by eq. (A.3) coincide with the endpoints of the curve.

71



72 A. VBS as a Parameterization and Mesh Displacement Tool

Given the control points’ position, the knot vectors and the basis functions
degrees, the parametric coordinates (𝑢, 𝑣, 𝑤) of a point with Cartesian coordi-
nates 𝐫 = (𝑥𝑟, 𝑦𝑟, 𝑧𝑟)𝑇 can be computed by solving the following system of equa-
tions

𝐑(𝑢, 𝑣, 𝑤) = ⎡⎢
⎣

𝑥(𝑢, 𝑣, 𝑤) − 𝑥𝑟 = 0
𝑦(𝑢, 𝑣, 𝑤) − 𝑦𝑟 = 0
𝑧(𝑢, 𝑣, 𝑤) − 𝑧𝑟 = 0

⎤⎥
⎦

(A.4)

where 𝑥𝑚(𝑢, 𝑣, 𝑤) are computed through eq. (A.1) after the computation of the
basis functions eq. (A.2). The 3×3 system of equations described by eqs. (A.4), is
non-linear and can be solved independently for each parameterized mesh point
using the Newton-Raphson method. The so-computed parametric coordinates
as well as the knot vectors remain fixed during the optimization.

After the parametric coordinates of any parameterized mesh point are known,
the computation of its Cartesian coordinates comes at a very low computational
cost through eq. (A.1). Consequently, since the mapping from ℝ3(𝑥, 𝑦, 𝑧) →
ℝ3(𝑢, 𝑣, 𝑤) has been made, every control point displacement can easily be trans-
lated into a displacement of the computational mesh. This makes volumetric
B-Splines a powerful mesh displacement tool.

Finally, in this thesis, the FI-adjoint formulation is used because of its in-
creased computational accuracy regarding the shape optimization sensitivities,
compared to the other formulations [43]. In this formulation, Field Integrals
involving all variations in geometric quantities appear in the sensitivity deriva-
tives this requires the computation of the mesh sensitivities w.r.t. the coordi-
nates of the CPs. Differentiating eq. (A.1) w.r.t. 𝑏𝑛, the mesh sensitivities are
computed as

𝛿𝑥𝑚
𝛿𝑏𝑛

= 𝛿𝑥𝑚
𝛿𝑏𝑎𝑏𝑐𝑛

(𝑢, 𝑣, 𝑤) =
𝐼

∑
𝑖=0

𝐽
∑
𝑗=0

𝐾
∑
𝑘=0

𝑈𝑖,𝑝𝑢(𝑢)𝑉𝑗,𝑝𝑣(𝑣)𝑊𝑘,𝑝𝑤(𝑤) 𝛿𝑏𝑖𝑗𝑘
𝑚

𝛿𝑏𝑎𝑏𝑐𝑛
=

= 𝑈𝑎,𝑝𝑢(𝑢)𝑉𝑏,𝑝𝑣(𝑣)𝑊𝑐,𝑝𝑤(𝑤)𝛿𝑛𝑚

(A.5)

where 𝛿𝑛𝑚 is the Kronecker delta.



Appendix B

Optimization Methods

In this appendix, the theory behind the optimization methods used in this the-
sis is explained. Those methods are used to update the values of the design
variables given that the sensitivities of the objective function and constraints
are known. A general constrained nonlinear minimization problem can be writ-
ten in the following general form:

minimize 𝑓(𝑥)

subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, ⋯ , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, ⋯ , 𝑛

(B.1)

where 𝑥 = (𝑥1, … , 𝑥𝑛)𝑇 ∈ ℝ𝑛 is the vector of design variables, 𝑓(𝑥) is the objective
function, 𝑔1, … , 𝑔𝑚 are functions representing the 𝑚 inequality constraints and
ℎ1, … , ℎ𝑛 represent the 𝑛 equality constraints.

In the context of this diploma thesis, ShpO problems are solved using the
ISQP method [11] presented in appendix B.1. It is one of the most effective
methods for nonlinearly constrained optimization in terms of the number of
function calls needed to get to the optimum and can handle many design vari-
ables and constraints.

On the other hand, TopO problems are solved using the MMA [52] presented
in appendix B.2. MMA is known for its efficiency in solving large-scale optimiza-
tion problems with many design variables and bound constraints. This makes
it a great choice for TopO problems where the number of constraints is larger
than or equal to the number of design variables since the porosity values are
bounded.

B.1 ISQP

Sequential Quadratic Programming (SQP) [11] as well as its implicit variant
(ISQP) [51] used in this thesis, is an iterative method for solving constrained
nonlinear optimization problems described by eq. (B.1). SQP methods solve a
sequence of optimization subproblems, each of which minimizes a quadratic
approximation to the objective function subject to a linearization of the con-
straints.
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Introducing an iteration index 𝑘 and using Taylor’s expansion, the problem
described by eq. (B.1), at an iterate (𝑥𝑘, 𝜆𝑘, 𝜎𝑘), is modeled using the following
quadratic program

minimize 𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)𝑇 𝑝 + 1
2𝑝𝑇 ∇2

𝑥𝑥L(𝑥𝑘, 𝜎𝑘, 𝜆𝑘)𝑝

subject to 𝑔𝑖(𝑥𝑘) + ∇𝑔𝑖(𝑥𝑘)𝑇 𝑝 ≤ 0, 𝑖 = 1, ⋯ , 𝑚

ℎ𝑗(𝑥𝑘) + ∇ℎ𝑗(𝑥𝑘)𝑇 𝑝 = 0, 𝑗 = 1, ⋯ , 𝑛

(B.2)

where ∇2
𝑥𝑥L(𝑥𝑘, 𝜎𝑘, 𝜆𝑘) is the Hessian of the Lagrangian function. The Lagrangian

function is defined as

L(𝑥, 𝜎, 𝜆) = 𝑓(𝑥) +
𝑚

∑
𝑖=1

𝜎𝑖𝑔𝑖(𝑥) +
𝑛

∑
𝑗=1

𝜆𝑗ℎ𝑗(𝑥) (B.3)

where 𝜎 = (𝜎1, ⋯ , 𝜎𝑚)𝑇 is the vector of Karush-Kuhn-Tucker (KKT) multipliers
and 𝜆 = (𝜆1, ⋯ , 𝜆𝑛)𝑇 is the vector of Lagrangian multipliers.

Under certain conditions described in [11], the quadratic problem in eq. (B.2)
can be solved leading to the solution 𝑝𝑘 and updated Lagrangian multipliers.
For each SQP iteration, 𝑝𝑘 is used to obtain the new iterate 𝑥𝑘+1 = 𝑥𝑘 + 𝜂𝑝𝑘,
where 𝜂 is determined by an appropriate line search method.

Many SQP methods approximate the Hessian of the Lagrangian through a
quasi-Newton approach, the most commonly used being the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm [11]. The ISQP method overcomes one
of the major drawbacks of the traditional SQP method which is computing
and storing the entire Hessian of the Lagrangian. In ISQP, only a few vectors
that represent the Hessian approximation implicitly according to the limited-
memory BFGS algorithm proposed in [54] are stored.

Finally, any bounds constraints in the original problem are handled as in-
equality constraints. Then, the quadratic subproblem can be solved iteratively
by active set strategies or interior point methods where each iteration requires
the solution of an equality constrained quadratic programming problem.

B.2 MMA

The MMA, developed by Svanberg [52], represents a family of convex approxi-
mation methods suitable for efficiently solving inequality-constrained optimiza-
tion problems with bounded design variables traditionally used in TopO prob-
lems. An inequality-constrained minimization problem can be described in the
following general form:

minimize 𝑓(𝑥)

subject to 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, ⋯ , 𝑚

𝑥𝑚𝑖𝑛
𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑚𝑎𝑥

𝑗 , 𝑗 = 1, ⋯ , 𝑛

(B.4)
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Convex approximation methods generate and solve a sequence of explicit ap-
proximate convex problems until the solution to the original problem is reached.
The general approach used by those methods is represented by the following
iterative scheme:

Step 0. Choose a starting point 𝑥(0), and let the iteration index 𝑘 = 0.

Step 1. Given an iteration point 𝑥(𝑘), calculate 𝑓𝑖(𝑥(𝑘)) and the gradients ∇𝑓𝑖(𝑥(𝑘))
for 𝑖 = 0, 1, ⋯ , 𝑚.

Step 2. Generate a subproblem 𝑃 (𝑘) by replacing, in 𝑃 , the (usually implicit)
functions 𝑓𝑖 by approximating explicit functions 𝑓 (𝑘)

𝑖 , based on the calcu-
lations from step 1.

Step 3. Solve 𝑃 (𝑘) and let the optimal solution of this subproblem be the next
iteration point 𝑥(𝑘+1). Let 𝑘 = 𝑘 + 1 and go to step 1.

The process is interrupted when some convergence criteria are fulfilled, or
when the user is satisfied with the current solution 𝑥(𝑘).

Given the iteration point 𝑥(𝑘), values of the parameters 𝐿(𝑘)
𝑗 and 𝑈 (𝑘)

𝑗 are
chosen, for 𝑗 = 1, ⋯ , 𝑛 such that

𝐿(𝑘)
𝑗 ≤ 𝑥(𝑘)

𝑗 ≤ 𝑈 (𝑘)
𝑗 (B.5)

Then, for each 𝑖 = 0, 1, ⋯ , 𝑚, the approximating functions 𝑓 (𝑘)
𝑖 in the subproblem

of the MMA algorithm, are defined by

𝑓 (𝑘)
𝑖 = 𝑟(𝑘)

𝑖 +
𝑛

∑
𝑗=1

(
𝑝(𝑘)

𝑖𝑗

𝑈 (𝑘)
𝑗 − 𝑥𝑗

+
𝑞(𝑘)

𝑖𝑗

𝑥𝑗 − 𝐿(𝑘)
𝑗

) (B.6)

where

𝑝(𝑘)
𝑖𝑗 = {(𝑈 (𝑘)

𝑗 − 𝑥(𝑘)
𝑗 )2𝜕𝑓𝑖/𝜕𝑥𝑗, if 𝜕𝑓𝑖/𝜕𝑥𝑗 > 0

0, if 𝜕𝑓𝑖/𝜕𝑥𝑗 ≤ 0 (B.7)

𝑞(𝑘)
𝑖𝑗 = {0, if 𝜕𝑓𝑖/𝜕𝑥𝑗 ≥ 0

−(𝑥(𝑘)
𝑗 − 𝐿(𝑘)

𝑗 )2𝜕𝑓𝑖/𝜕𝑥𝑗, if 𝜕𝑓𝑖/𝜕𝑥𝑗 < 0 (B.8)

𝑟(𝑘)
𝑖 = 𝑓𝑖(𝑥(𝑘)) −

𝑛
∑
𝑗=1

(
𝑝(𝑘)

𝑖𝑗

𝑈 (𝑘)
𝑗 − 𝑥𝑗

+
𝑞(𝑘)

𝑖𝑗

𝑥𝑗 − 𝐿(𝑘)
𝑗

) (B.9)

where all derivatives 𝜕𝑓𝑖/𝜕𝑥𝑗 are evaluated at 𝑥 = 𝑥(𝑘).
Then, as is easily checked, 𝑓 (𝑘)

𝑖 is a first order approximation of 𝑓𝑖 at 𝑥(𝑘),
because

𝑓 (𝑘)
𝑖 = 𝑓𝑖(𝑥(𝑘)) and 𝜕𝑓 (𝑘)

𝑖 /𝜕𝑥𝑗 = 𝜕𝑓𝑖/𝜕𝑥𝑗 at 𝑥 = 𝑥(𝑘)

for 𝑖 = 0, 1, ⋯ , 𝑚 and 𝑗 = 1, ⋯ , 𝑛.
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Furthermore, the second derivatives of 𝑓 (𝑘)
𝑖 at any point 𝑥 such that 𝐿(𝑘)

𝑗 <
𝑥𝑗 < 𝑈 (𝑘)

𝑗 for all 𝑗, are given by

𝜕2𝑓 (𝑘)
𝑖

𝜕𝑥2
𝑗

=
2𝑝(𝑘)

𝑖𝑗

(𝑈 (𝑘)
𝑗 − 𝑥𝑗)3

+
2𝑞(𝑘)

𝑖𝑗

(𝑥(𝑘)
𝑗 − 𝐿𝑗)3

(B.10)

and
𝜕2𝑓 (𝑘)

𝑖
𝜕𝑥𝑗𝜕𝑥𝑙

= 0 if 𝑗 ≠ 𝑙

Thus, since 𝑝(𝑘)
𝑖𝑗 ≥ 0 and 𝑞(𝑘)

𝑖𝑗 ≥ 0, 𝑓 (𝑘)
𝑖 is a convex function. The moving asymp-

totes 𝐿(𝑘)
𝑗 and 𝑈 (𝑘)

𝑗 for the design variable 𝑥𝑗 can adjust the curvature of the
approximating functions 𝑓 (𝑘)

𝑖 . If asymptotes are selected to provide tight or
loose bounds on the variables, the method becomes conservative and slow or
aggressive and possibly oscillatory, respectively.

A general rule for how to change the values of 𝐿(𝑘)
𝑗 and 𝑈 (𝑘)

𝑗 , [55], is presented
as follows.

In the first two iterations, when 𝑘 = 1 and 𝑘 = 2,
𝐿(𝑘)

𝑗 = 𝑥(𝑘)
𝑗 − 0.5(𝑥𝑚𝑎𝑥

𝑗 − 𝑥𝑚𝑖𝑛
𝑗 ) (B.11)

𝑈 (𝑘)
𝑗 = 𝑥(𝑘)

𝑗 + 0.5(𝑥𝑚𝑎𝑥
𝑗 − 𝑥𝑚𝑖𝑛

𝑗 ) (B.12)
while in later iterations, when 𝑘 ≥ 3,

𝐿(𝑘)
𝑗 = 𝑥(𝑘)

𝑗 − 𝛾(𝑘)
𝑗 (𝑥(𝑘−1)

𝑗 − 𝐿(𝑘−1)
𝑗 ) (B.13)

𝑈 (𝑘)
𝑗 = 𝑥(𝑘)

𝑗 + 𝛾(𝑘)
𝑗 (𝑈 (𝑘−1)

𝑗 − 𝑥(𝑘−1)
𝑗 ) (B.14)

where

𝛾(𝑘)
𝑗 =

⎧{
⎨{⎩

0.7, if (𝑥(𝑘)
𝑗 − 𝑥(𝑘−1)

𝑗 )(𝑥(𝑘−1)
𝑗 − 𝑥(𝑘−2)

𝑗 ) < 0,
1, if (𝑥(𝑘)

𝑗 − 𝑥(𝑘−1)
𝑗 )(𝑥(𝑘−1)

𝑗 − 𝑥(𝑘−2)
𝑗 ) = 0,

1.2, if (𝑥(𝑘)
𝑗 − 𝑥(𝑘−1)

𝑗 )(𝑥(𝑘−1)
𝑗 − 𝑥(𝑘−2)

𝑗 ) > 0
(B.15)

Observing the 𝛾(𝑘)
𝑗 variable, if the signs of (𝑥(𝑘)

𝑗 − 𝑥(𝑘−1)
𝑗 ) and (𝑥(𝑘−1)

𝑗 − 𝑥(𝑘−2)
𝑗 )

are opposite indicating an oscillation in the variable 𝑥𝑗, the asymptotes are
selected to provide tight bounds and when the signs are equal indicating that
the asymptotes are slowing down the convergence, asymptotes are selected to
provide loose bounds.

Now, with the approximating functions defined by eq. (B.6), the formulation
of the subproblem solved in each iteration of the MMA called 𝑃 (𝑘) is presented.
Omitting the iteration index (𝑘) notation for simplicity, the subproblem is writ-
ten as:

minimize 𝑓0(𝑥) +
𝑚

∑
𝑖=1

(𝑐𝑖𝑦𝑖 + 1
2𝑦2

𝑖 )

subject to 𝑓𝑖(𝑥) − 𝑦𝑖 ≤ 0, 𝑖 = 1, ⋯ , 𝑚,

𝑥𝑚𝑖𝑛
𝑗 ≤ 𝑥𝑗 ≤ 𝑥𝑚𝑎𝑥

𝑗 , 𝑗 = 1, ⋯ , 𝑛,

𝑦𝑖 ≥ 0, 𝑖 = 1, ⋯ , 𝑚.

(B.16)
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where each 𝑐𝑖 should be a ”relatively large” fixed real number and 𝑦 = (𝑦1, ⋯ , 𝑦𝑚)𝑇 ∈
ℝ𝑚 are ”artificial” variables. 𝑃 (𝑘) is a separable problem since both the objective
and the constraints are a sum of functions of the individual variables 𝑥𝑗, 𝑦𝑖.

The introduction of the 𝑦𝑖 variables guarantees that a feasible solution of
the subproblem eq. (B.16) exists as, for any 𝑥 it is possible to choose 𝑦 such
that the constraints become satisfied. Moreover, there is at least one optimal
solution of eq. (B.16) and each of them always satisfies the KKT conditions.

If the coefficients 𝑐𝑖 are chosen as sufficiently large numbers, then typically
̂𝑦 = 0 in any optimal solution ( ̂𝑥, ̂𝑦) of eq. (B.16), and then the corresponding ̂𝑥

is an optimal solution of eq. (B.4).
The MMA subproblem, obtains properties such as convexity and separa-

bility making it an ideal candidate for many numerical solution schemes. Of
these solution strategies, a dual method is suggested and described in [52].
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1 Εισαγωγή

Η ολοένα και αυξανόμενη υπολογιστική ισχύς και η αξιοπιστία των υπολο-
γιστικών μεθόδων, έθεσαν τη βάση για την εκτεταμένη χρήση της Υπολογιστικής
Ρευστοδυναμικής (ΥΡΔ) σε πληθώρα πρακτικών προβλημάτων όπως είναι η προσο-
μοίωση ροών σε περίπλοκα συστήματα αγωγών, καθώς και γύρω από γεωμετρίες
αεροπλάνων και αυτοκινήτων. Η εισαγωγή της βελτιστοποίησης σε αυτόν τον το-
μέα, έχει οδηγήσει στην ανάπτυξη µεθόδων για τον αυτοµατοποιηµένο σχεδιασµό
αερο/υδροδυναµικών µορφών.

Σε ένα πρόβλημα βελτιστοποίησης, σκοπός είναι η ελαχιστοποίηση/μεγιστο-
ποίηση κάποιας ποσότητας γνωστής ως συνάρτηση-στόχος μέσω εύρεσης της κα-
τάλληλης τιμής ενός σετ παραμέτρων που ονομάζονται μεταβλητές σχεδιασμού. Η
τιµή της συνάρτησης-στόχου εξαρτάται τόσο από τις τιµές των µεταβλητών σχεδια-
σµού όσο και από τις τιµές των µεταβλητών της ϱοής, οι οποίες υπολογίζονται από
την επίλυση των εξισώσεων ϱοής στην υπόψη γεωµετρία.

Οι μέθοδοι βελτιστοποίησης με χρήση ΥΡΔ διακρίνονται σε στοχαστικές [1] και
αιτιοκρατικές [2]. Οι αιτιοκρατικές μέθοδοι, εκκινούν από μία δεδομένη λύση την
οποία βελτιώνουν βασιζόμενες στις παραγώγους της συνάρτησης-στόχου ως προς
τις μεταβλητές σχεδιασμού που αναφέρονται ως παράγωγοι ευαισθησίας.

Η απόδοση των αιτιοκρατικών μεθόδων είναι άρρηκτα συνδεδεμένη με το κό-
στος υπολογισμού των παραγώγων ευαισθησίας. Μεταξύ των διαφόρων μεθόδων
υπολογισμού παραγώγων ευαισθησίας, η συζυγής μέθοδος [3, 4] διακρίνεται για
την ανεξαρτησία του κόστους υπολογισμού των παραγώγων από το πλήθος των
μεταβλητών σχεδιασμού. Οι συζυγείς μέθοδοι κατηγοριοποιούνται, ανάλογα με
τη σειρά διαφόρισης και διακριτοποίησης, στη συνεχή [3] και τη διακριτή [4]. Η
παρούσα εργασία ασχολείται αποκλειστικά με τη συνεχή συζυγή μέθοδο.

1.1 Βελτιστοποίηση Μορφής

Στην βελτιστοποίηση μορφής, σκοπός είναι η εύρεση του σχήματος της γε-
ωμετρίας που ελαχιστοποιεί/μεγιστοποιεί ένα συγκεκριμένο κριτήριο απόδοσης
ενώ παράλληλα ικανοποιεί τους περιορισμούς που έχουν τεθεί. Η υπό εξέταση
γεωμετρία, ελέγχεται από έναν αριθμό παραμέτρων, όπως για παράδειγμα, τις
συντεταγμένες των σημείων ελέγχου ενός πολυωνύμου Bézier-Bernstein οι οποίες
αποτελούν μεταβλητές σχεδιασμού του προβλήματος βελτιστοποίησης. Η αντιστοί-
χηση από τις μεταβλητές σχεδιασμού στη γεωμετρία, ονομάζεται παραμετροποί-
ηση γεωμετρίας. Στην παρούσα εργασία, η μέθοδος παραμετροποίησης που χρη-
σιμοποιείται είναι οι ογκομετρικές B-Splines [5] οι οποίες πέραν της γεωμετρίας
μετακινούν και το υπολογιστικό πλέγμα εξαλείφοντας έτσι την ανάγκη επαναπλεγ-
ματοποίησης.

1.2 Βελτιστοποίηση Τοπολογίας

Σκοπός της βελτιστοποίησης τοπολογίας είναι ο προσδιορισμός της βέλτιστης
κατανομής υλικού στον χώρο και όχι απλώς η τροποποίηση του σχήματος μιας
κατασκευής για τη βελτιστοποίησή της. Στα ρευστά, εφαρμόζεται με την εισαγωγή
όρων πηγής στις εξισώσεις ροής που εξαρτώνται από ένα πεδίο πορώδους. Η ροή
συναντά μεγάλη αντίσταση στις περιοχές με υψηλές τιμές πορώδους που σημαίνει
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ότι η ταχύτητά της μηδενίζεται. Έτσι, αυτές οι περιοχές αντιστοιχούν στο στερε-
οποιημένο μέρος του χώρου ενώ περιοχές με μηδενική τιμή πορώδους ανήκουν
στη ροή αφού εκεί δεν εμφανίζεται αντίσταση επαγόμενη από το πορώδες. Για
μια δεδομένη συνάρτηση-στόχο, η βελτιστοποίηση τοπολογίας επιχειρεί να καθο-
ρίσει τις ιδανικές τιμές πορώδους σε κάθε κελί του πλέγματος με σκοπό να την
ελαχιστοποιήσει/μεγιστοποιήσει. Αυτό σημαίνει ότι ο αριθμός των μεταβλητών
σχεδιασμού ισούται με τον αριθμό των κελιών και, συνεπώς, η συζυγής μέθοδος
είναι η πιο κατάλληλη για τον υπολογισμό των παραγώγων ευαισθησίας.

2 Η Συνεχής Συζυγής Μέθοδος για προβλήματα βελ-
τιστοποίησης μορφής

Στα προβλήματα με συζευγμένη μεταφορά θερμότητας, το υπολογιστικό χωρίο
αποτελείται από τα ρευστά τμήματα Ω𝐹 και τα στερεά τμήματα Ω𝑆 διαχωριζόμενα
από μία διεπιφάνεια 𝑆. Για τα τμήματα του ρευστού, οι εξισώσεις που επιλύονται
είναι οι RANS για χρονικά μόνιμες και ασυμπίεστες ροές μαζί με την ενεργειακή
εξίσωση, ενώ για τα στερεά επιλύεται η εξίσωση χρονικά μόνιμης μεταφοράς θερ-
μότητας.

Πρώτο βήμα για τη διαμόρφωση των συζυγών εξισώσεων με την συνεχή συζυγή
μέθοδο [6] είναι η θεώρηση της επαυξημένης συνάρτησης-στόχου, 𝐽𝑎𝑢𝑔, η οποία
ορίζεται προσθέτοντας τα ογκικά ολοκληρώματα των υπολοίπων των εξισώσεων κα-
τάστασης πολλαπλασιασμένα με τις συζυγείς μεταβλητές στην συνάρτηση στόχο
𝐽 . Διαφορίζοντας την επαυξημένη ως προς τις μεταβλητές σχεδιασμού, προκύ-
πτουν όροι που πολλαπλασιάζουν τις παραγώγους των μεταβλητών ροής ως προς
τις μεταβλητές σχεδιασμού ο υπολογισμός των οποίων έχει σημαντικό υπολογι-
στικό κόστος. Έτσι, μετά από εκτενή μαθηματική επεξεργασία, [7], οι συζυγείς
εξισώσεις όπως και οι οριακές συνθήκες προκύπτουν με τον μηδενισμό των προ-
αναφερθέντων όρων. Οι εξισώσεις και οι οριακές συνθήκες για το πρωτεύον και
το συζυγές πρόβλημα στη βελτιστοποίηση μορφής παρουσιάζονται αναλυτικά στο
Κεφάλαιο 2. Για την επίλυση των εξισώσεων αυτών γίνεται χρήση του αλγορίθμου
SIMPLE [8].

3 Η Συνεχής Συζυγής Μέθοδος για προβλήματα βελ-
τιστοποίησης τοπολογίας

Το πρωτεύον πρόβλημα στη βελτιστοποίηση τοπολογίας περιγράφεται από τις
εξισώσεις Navier-Stokes (NS) μαζί με την ενεργειακή εξίσωση. Για την προσομοί-
ωση της στερεοποίησης τμημάτων του υπολογιστικού χωρίου, οι εξισώσεις ροής
επαυξάνονται με όρους πηγής που εξαρτώνται από το πεδίο του πορώδους 𝛼. Το
πεδίο του πορώδους παίρνει τιμές από 0 έως 1. Τα κελιά του πλέγματος με τιμή
πορώδους περίπου 0 ανήκουν στη ροή, ενώ τα αυτά με τιμή 1 ανήκουν στο στερεό.
Οι θερμοφυσικές ιδιότητες των κελιών που ανήκουν στην ”γκρι” ζώνη, δηλαδή
έχουν τιμή πορώδους ανάμεσα στο 0 και το 1, προκύπτουν από παρεμβολή των
ιδιοτήτων του ρευστού και του στερεού.

Για την αποφυγή αποτελεσμάτων τύπου ”σκακιέρας”, δηλαδή με διαδοχική
εναλλαγή κελιών που παριστούν στερεό και ρευστό, εφαρμόζεται κανονικοποί-
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ηση (regularization) του πεδίου του πορώδους με ένα φίλτρο Helmholtz. Έτσι
παράγεται ένα νέο πεδίο που ονομάζεται ̃𝛼. Καθώς η κανονικοποίηση του πεδίου
του πορώδους θολώνει τη γραμμή μεταξύ ρευστών και στερεών τμημάτων, γίνε-
ται ένα βήμα προβολής (projection) το οποίο αυξάνει την αντίθεση του πεδίου ̃𝛼
παράγoντας το πεδίο 𝛽. Τα βήματα επεξεργασίας του πορώδους φαίνονται στo σχ.
1.

Σχήμα 1: Βήματα επεξεργασίας του πεδίου του πορώδους.

Εφαρμόζοντας την συνεχή συζυγή μέθοδο προκύπτουν οι συζυγείς εξισώσεις
και οριακές συνθήκες. Για την αποφυγή υπολογισμού των όρων 𝜕 ̃𝛼/𝜕𝛼, ένας επι-
πλέον όρος προστίθεται στην επαυξημένη με το ογκικό ολοκλήρωμα του υπολοί-
που της εξίσωσης κανονικοποίησης. Έτσι, παράγεται μία ακόμα συζυγής εξίσωση
που αποτελεί την συζυγή του φίλτρου Helmholtz. Οι εξισώσεις που επιλύονται για
τη βελτιστοποίηση τοπολογίας παρουσιάζονται αναλυτικά στο Κεφάλαιο 3.

4 Ανάλυση Συζευγμένης Μεταφοράς Θερμότητας
σε σωματόδετα πλέγματα

Η πρώτη εφαρμογή αφορά την επίλυση του πρωτεύοντος προβλήματος της
ροής με συζευγμένη μεταφορά θερμότητας στη 2Δ γεωμετρία που φαίνεται στο
σχ. 2. Η γεωμετρία αυτή σχεδιάστηκε με έναυσμα την πορεία που ακολουθεί η
ροή σε ένα εσωτερικά ψυχόμενο πτερύγιο στροβιλομηχανής.

Σχήμα 2: Γεωμετρία και διαστάσεις καμπύλου αγωγού που χρησιμοποιείται
στην ανάλυση. Διακρίνονται τρεις διαφορετικές περιοχές, μια περιοχή καλούμενη
Fluid που ανήκει στη ροή και δύο περιοχές στερεού Solid1 και Solid2.

Η ροή εισέρχεται από την αριστερή πλευρά της περιοχής Fluid με ταχύτητα
μέτρου |𝑣| = 0.5 m/s και θερμοκρασία 𝑇 𝐹 = 373 K. Το στερεό Solid1 έχει θερμο-
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κρασία 𝑇 = 873 K στο πάνω και τα πλευρικά τοιχώματα, ενώ τα τοιχώματα στην
βάση των δύο στερεών περιοχών είναι αδιαβατικά.

Το υπολογιστικό πλέγμα που χρησιμοποιείται για την ανάλυση φαίνεται στο
σχ. 3. Για την εύκολη διάκρισή του από τα πλέγματα που χρησιμοποιούνται στη
συνέχεια, αυτό ονομάζεται BFM1 (Body-Fitted Mesh).

Σχήμα 3: Σωματόδετο πλέγμα καμπύλου αγωγού (BFM1).

Το πλέγμα στην περιοχή Fluid είναι δομημένο και αποτελείται από ∼ 32𝐾
κελιά ενώ το πλέγμα των στερεών περιοχών αποτελείται από ∼ 18𝐾 κελιά στην
καθεμιά. Η ροή είναι στρωτή με αριθμό Re = 417. Το ρευστό θεωρείται αέρας
με σταθερή πυκνότητα 𝜌𝐹 = 1.2 kg/m3, κινηματική συνεκτικότητα 𝜈𝐹 = 1.5 ×
10−5 m2/s, ειδική θερμοχωρητικότητα υπό σταθερή πίεση 𝑐𝐹

𝑝 = 1006 J/(kgK) και
θερμική αγωγιμότητα 𝑘𝐹 = 0.026 W/(mK). Η θερμική αγωγιμότητα των στερεών
λαμβάνεται ως 𝑘𝑆 = 12.7 W/(mK) που αντιστοιχεί σε ανοξείδωτο χάλυβα ASTM
310.

Για την ανάλυση χρησιμοποιούνται δύο κώδικες. Ο πρώτος αποτελεί τμήμα
της βασικής έκδοσης του OpenFOAM© για την επίλυση μόνιμων συμπιεστών ροών
με συζευγμένη μεταφορά θερμότητας ενώ ο δεύτερος έχει δημιουργηθεί από τη
ΜΠΥΡ&Β/ΕΜΠ βασισμένος στον κώδικα του OpenFOAM© και επιλύει ασυμπίε-
στες ροές. Για την διάκρισή τους, ο πρώτος καλείται PBF1 (Primal Body-Fitted)
ενώ ο δεύτερος PBF2. Σκοπός αυτής της σύγκρισης, είναι η επικύρωση των απο-
τελεσμάτων του PBF2 καθώς αργότερα χρησιμοποιείται για τη βελτιστοποίηση.

Μετά τον υπολογισμό των πεδίων ταχύτητας, πίεσης και θερμοκρασίας από
τους δύο κώδικες, υπολογίζονται η μέση θερμοκρασία του ρευστού στην έξοδο
και οι απώλειες ολικής πίεσης. Τα αποτελέσματα παρουσιάζονται στον πίνακα 1.

PBF1 PBF2

𝑇𝑜𝑢𝑡[K] 629.6 630.1
Δ𝑝𝑡[Pa] 1.396 1.395

Πίνακας 1: Τιμές μέσης θερμοκρασίας εξόδου και απωλειών ολικής πίεσης που
υπολογίστηκαν από τους δύο κώδικες.
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Παρατηρείται ικανοποιητική ταύτιση μεταξύ των αποτελεσμάτων και συνεπώς,
η αξιολόγηση των γεωμετριών που θα προκύψουν από τη βελτιστοποίηση μπορεί
να πραγματοποιηθεί με τον κώδικα PBF2.

4.1 Βελτιστοποίηση μορφής

Η συνάρτηση-στόχος προς ελαχιστοποίηση, αποτελείται από δύο επιμέρους
στόχους. Ο πρώτος αφορά την μεγιστοποίηση της μέσης θερμοκρασίας εξόδου
του ρευστού ενώ ο δεύτερος, την ελαχιστοποίηση των απωλειών ολικής πίεσης. Η
συνάρτηση-στόχος εκφράζεται ως

𝐽 𝑡𝑜𝑡𝑎𝑙 = −𝑤 ̂𝐽𝑚𝑒𝑎𝑛𝑇 + (1 − 𝑤) ̂𝐽𝑝𝑡 (1)

όπου 𝑤 ∈ [0, 1] είναι συντελεστής βαρύτητας. Το σύμβολο (∧) υποδηλώνει την κα-
νονικοποίηση των δύο στόχων, η οποία γίνεται με διαίρεσή της τιμής τους με αυτή
που λαμβάνουν στον μηδενικό κύκλο βελτιστοποίησης.

Οι ογκομετρικές B-Splines παραμετροποιούν τη διεπαφή μεταξύ των ρευστών
και στερεών περιοχών που φαίνονται στο σχ. 2. Τα σημεία ελέγχου των ογκομε-
τρικών B-Splines φαίνονται στο σχ. 4.

Σχήμα 4: Κουτί ογκομετρικών B-Splines 11 × 21 που παραμετροποιεί τη γεωμε-
τρία. Τα σημεία ελέγχου με μπλε χρώμα παραμένουν σταθερά, ενώ τα κόκκινα
μπορούν να κινηθούν.

Γίνονται τρεξίματα για 4 διαφορετικά βάρη (𝑤 = {0.9, 0.8, 0.5, 0.2}). Οι διάφορες
γεωμετρίες που προκύπτουν με τη βελτιστοποίηση μορφής φαίνονται στο σχ. 5.
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Σχήμα 5: Βέλτιστες γεωμετρίες που προκύπτουν για τα 4 βάρη που χρησιμοποι-
ήθηκαν στη συνάρτηση-στόχο.

Με τη μείωση της τιμής του βάρους 𝑤, παρατηρούνται λιγότεροι κυματισμοί
στην γεωμετρία του αγωγού. Οι κυματισμοί ενισχύουν την μεταφορά θερμότη-
τας από το στερεό στο ρευστό καθώς δημιουργούνται ανακυκλοφορίες στην ροή
και αυξάνεται η επιφάνεια εναλλαγής θερμότητας. Παράλληλα ωστόσο, αυτή η
αλλαγή στη γεωμετρία έχει ως αποτέλεσμα την αύξηση των απωλειών ολικής πί-
εσης. Στον πίνακα 2 παρουσιάζονται η μέση θερμοκρασία της ροής στην έξοδο
και οι απώλειες ολικής πίεσης για τις βελτιστοποιημένες γεωμετρίες καθώς και η
ποσοστιαία μεταβολή τους από την αρχική.

𝑤 𝑇𝑜𝑢𝑡[K] Temperature
increase

Δ𝑝𝑡[Pa] Losses decrease

0.95 645.4 2.43 % 1.517 −8.69 %
0.9 635.3 0.82 % 1.250 10.42 %
0.8 630.5 0.07 % 1.178 15.46 %
0.5 627.2 −0.45 % 1.165 16.49 %
0.2 622.9 −1.13 % 1.149 17.67 %

Πίνακας 2: Μέση θερμοκρασία στην έξοδο και απώλειες ολικής πίεσης για τις
βελτιστοποιημένες γεωμετρίες.

5 Ανάλυση με τον επιλύτη της Βελτιστοποίησης
Τοπολογίας.

Για αρχή, το πρωτεύον πρόβλημα που μελετήθηκε στο τμήμα 4 αναλύεται εδώ
με τη χρήση του επιλύτη του πρωτεύοντος προβλήματος της βελτιστοποίησης το-
πολογίας καλούμενος PPB (Primal Porosity-Based). Η βασική διαφορά είναι ότι ο
επιλύτης αυτός δεν επιβάλλει οριακές συνθήκες στη διεπαφή μεταξύ των περιοχών
του πλέγματος αλλά, αυτές εφαρμόζονται έμμεσα με τη χρήση των όρων πηγής
στις εξισώσεις. Έτσι, χρησιμοποιώντας ένα βοηθητικό λογισμικό του OpenFOAM©

, παράγεται ένα πεδίο πορώδους με τιμή μονάδα στα κελιά που ανήκουν στις πε-
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ριοχές Solid1, Solid2 και μηδενική τιμή στα κελιά που ανήκουν στην περιοχή
Fluid.

Μια παράμετρος η οποία αποδείχθηκε ότι έχει μεγάλη επίδραση στα αποτελέ-
σματα του επιλύτη PPB είναι το 𝛽𝑚𝑎𝑥. Η παράμετρος αυτή συναντάται στους όρους
πηγής των εξισώσεων και επιβάλλει τον μηδενισμό της ταχύτητας στις στερεοποι-
ημένες περιοχές του πεδίου. Με την αύξηση της τιμής του 𝛽𝑚𝑎𝑥 η διαπερατότητα
του πορώδους μειώνεται και έτσι προσεγγίζεται η συμπεριφορά του απολύτως στε-
ρεού. Αφού λοιπόν έγινε μία μελέτη ανεξαρτησίας των αποτελεσμάτων του επιλύτη
PPB από την αύξηση του 𝛽𝑚𝑎𝑥, ακολούθησε η σύγκριση με τον PBF2.

Η σύγκριση των δύο επιλυτών έδειξε ότι οι μεγαλύτερες διαφορές στα αποτε-
λέσματα εμφανίζονται κοντά στη διεπαφή ρευστού-στερεού με μέγιστη απόκλιση
κοντά στην είσοδο. Αυτό φαίνεται στο σχ. 6 όπου απεικονίζεται η διαφορά της
κατανομής της θερμοκρασίας στην είσοδο μεταξύ των δύο επιλυτών.
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Σχήμα 6: Διαφορές θερμοκρασίας κατά μήκος της εισόδου μεταξύ των επιλυτών
PBF2 και PPB.

Η διαφορά αυτή των αποτελεσμάτων, οφείλεται στην απουσία Dirichlet ορια-
κών συνθηκών για τη θερμοκρασία στη διεπαφή στερεού-ρευστού. Αν και η δια-
φορά στην είσοδο είναι μεγάλη, παρατηρήθηκε ότι οι αποκλίσεις μειώνονται όσο
η ροή διασχίζει τον αγωγό.

Η μέση θερμοκρασία που υπολογίστηκε από τον επιλύτη PPB στην έξοδο κα-
θώς και οι απώλειες ολικής πίεσης, παρουσιάζονται στον πίνακα 3, μαζί με τα
αποτελέσματα των PBF1 και PBF2.

PBF1 PBF2 PPB

𝑇𝑜𝑢𝑡[K] 629.6 630.1 630.3
Δ𝑝𝑡[Pa] 1.396 1.395 1.394

Πίνακας 3: Μέση θερμοκρασία ρευστού στην έξοδο και απώλειες ολικής πίεσης
για το πρωτεύον πρόβλημα από τους τρεις επιλύτες.
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5.1 Βελτιστοποίηση Τοπολογίας

Για τη βελτιστοποίηση τοπολογίας, δημιουργείται ένα νέο πλέγμα το οποίο
είναι δομημένο. Αυτό γίνεται διότι το σύνηθες στη βελτιστοποίηση τοπολογίας
είναι να χρησιμοποιείται δομημένο πλέγμα καθώς η γεωμετρία είναι άγνωστη. Το
πλέγμα φαίνεται στο σχ. 7 και θα καλείται PM1 (Porosity Mesh).

Σχήμα 7: Δομημένο πλέγμα για τη βελτιστοποίηση τοπολογίας (PM1).

Παρατηρείται ότι έχουν προστεθεί στο υπολογιστικό χωρίο εξοχές στην είσοδο
και την έξοδο, οι οποίες ωστόσο δεν συμμετέχουν στη βελτιστοποίηση. Αυτό γίνεται
ώστε η κατανομή της ταχύτητας να έχει σχηματιστεί προτού η ροή εισέλθει στον
χώρο σχεδιασμού, όπου δεν υφίστανται οριακές συνθήκες στη διεπαφή ρευστού-
στερεού.

Η συνάρτηση-στόχος παραμένει η ίδια με αυτήν που χρησιμοποιήθηκε για τη
βελτιστοποίηση μορφής, η οποία περιγράφεται από την εξ. 1. Έχει προστεθεί ένας
περιορισμός για τον λόγο του όγκου του ρευστού προς τον συνολικό ο οποίος ισο-
δυναμεί με αυτόν της αρχικής γεωμετρίας με τον καμπύλο αγωγό (σχ. 2). Γίνεται
βελτιστοποίηση για τρία διαφορετικά βάρη 𝑤 = {0.95, 0.9, 0.8}. Οι γεωμετρίες που
προκύπτουν φαίνονται στο σχ. 8.

Σχήμα 8: Βέλτιστη γεωμετρία για 𝑤 = 0.95 (αριστερά), 𝑤 = 0.9 (μέση), 𝑤 = 0.8
(δεξιά).

Παρατηρώντας το παραπάνω σχήμα, φαίνεται πως όσο μειώνεται η τιμή του 𝑤
η γεωμετρία γίνεται πιο ομαλή. Στις περιπτώσεις 𝑤 = 0.95 και 𝑤 = 0.8, ο αγωγός
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πλησιάζει τα θερμά τοιχώματα με αποτέλεσμα την αύξηση της θερμοκρασίας στην
έξοδο. Αντιθέτως, στην τρίτη περίπτωση για 𝑤 = 0.8 ο αγωγός έχει μικρότερο μή-
κος αλλά μεγαλύτερο πλάτος, το οποίο έχει ως αποτέλεσμα μικρότερες ταχύτητες
ροής σε σχέση με τις άλλες δύο περιπτώσεις και άρα μικρότερες απώλειες ολικής
πίεσης. Παράλληλα, στην περίπτωση όπου 𝑤 = 0.95, παρατηρείται μπλοκάρισμα
της εξόδου από στερεό, το οποίο παρότι αυξάνει τις απώλειες ολικής πίεσης, αυ-
ξάνει επίσης τη θερμοκρασία εξόδου της ροής.

Η μέση θερμοκρασία εξόδου της ροής και οι απώλειες ολικής πίεσης για τις πα-
ραπάνω γεωμετρίες, παρουσιάζονται στον πίνακα 4. Τα παραπάνω αποτελέσματα,

𝑤 𝑇𝑜𝑢𝑡[K] Δ𝑝𝑡[Pa]
0.95 764.9 1.291
0.9 698.2 0.709
0.8 605.6 0.274

Πίνακας 4: Μέση θερμοκρασία εξόδου της ροής και απώλειες ολικής πίεσης για
τις γεωμετρίες που προέκυψαν από βελτιστοποίηση τοπολογίας.

φαίνεται να απέχουν αρκετά από αυτά των προηγούμενων κεφαλαίων. Ένας ση-
μαντικός παράγοντας που δημιουργεί ανακρίβεια στα αποτελέσματα της βελτιστο-
ποίησης τοπολογίας είναι η ύπαρξη ”γκρίζων” ζωνών. Το γεγονός ότι το πεδίο του
πορώδους δεν είναι δυαδικό, οδηγεί σε αρκετά προβλήματα όπως είναι η διαρροή
ρευστού μέσα στο στερεό και η αλλοίωση των χαρακτηριστικών τις ροής από τους
όρους πηγής στις περιοχές που το πορώδες δεν έχει ακριβώς τιμή μηδέν. Αυτά
είναι αποδεκτά προβλήματα της βελτιστοποίησης τοπολογίας στην ΥΡΔ παρόλα
αυτά, αποτελεί ένα πολύ χρήσιμο εργαλείο για την παραγωγή σχεδίων σε πρώτο
στάδιο, τα οποία όμως πρέπει να αξιολογηθούν εκ νέου με μεγαλύτερη ακρίβεια.

5.2 Αξιολόγηση των αποτελεσμάτων βελτιστοποίησης τοπο-
λογίας

Για την αξιολόγηση των αποτελεσμάτων, σχεδιάζεται προσεγγιστικά ένας αγω-
γός σχήματος U όμοιος αλλά όχι ίδιος με αυτόν που προέκυψε από τη βελτιστο-
ποίηση τοπολογίας (σχ. 8-μέση). Η γεωμετρία του αγωγού φαίνεται στο σχ. 9.

Σχήμα 9: Διαστάσεις (αριστερά) και πλέγμα (δεξιά) αγωγού σχήματος U.
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Το πλέγμα αποτελείται από ∼ 16𝐾 κελιά στην περιοχή Fluid, ∼ 7.5𝐾 κελιά
στην περιοχή Solid1 και ∼ 16𝐾 κελιά στην περιοχή Solid2. Η μέση θερμοκρασία
της ροής στην έξοδο υπολογίζεται 𝑇𝑜𝑢𝑡 = 515.2 K (έναντι του 𝑇𝑜𝑢𝑡 = 698.2 K) και οι
απώλειες ολικής πίεσης Δ𝑝𝑡 = 0.119 Pa (έναντι του Δ𝑝𝑡 = 0.709 Pa).

Όπως ήταν αναμενόμενο, οι αποκλίσεις στα αποτελέσματα είναι σημαντικές
και οφείλονται σε έναν συνδυασμό αιτιών. Αρχικά, η γεωμετρία πάνω στην οποία
γίνεται η αξιολόγηση, διαφέρει από αυτήν που προέκυψε από τη βελτιστοποίηση.
Σημαντική ίσως είναι η παράλειψη του στερεοποιημένου τμήματος της εξόδου
που σχηματίζεται από τη βελτιστοποίηση. Δεύτερος λόγος είναι η έλλειψη επι-
βολής οριακών συνθηκών στη διεπαφή ρευστού-στερεού, η επίδραση της οποίας
συζητήθηκε σε προηγούμενο κεφάλαιο. Τέλος, ο σημαντικότερος λόγος είναι η
ύπαρξη ”γκρίζων” ζωνών στο πεδίο του πορώδους το οποίο είναι και η βασικότερη
πηγή σφαλμάτων στη βελτιστοποίηση τοπολογίας.

6 Επανεξέταση Προηγούμενων Συμπερασμάτων σε
ένα 2Δ Σύστημα Αγωγών

Για την επανεξέταση των συμπερασμάτων που έχουν εξαχθεί από προηγούμε-
νες μελέτες, γίνεται μία δεύτερη μελέτη που αφορά τον σχεδιασμό ενός 2Δ συστή-
ματος αγωγών. Η γεωμετρία που μελετάται καθώς και το υπολογιστικό πλέγμα
που καλείται PM2, φαίνονται στο σχ. 10.

Σχήμα 10: Γεωμετρία (αριστερά) & πλέγμα PM2 (δεξιά) χωρίου 2Δ συστήματος
αγωγών. Με κόκκινο σημειώνονται τα θερμά τοιχώματα του χωρίου ενώ με μπλε
είναι τα αδιαβατικά.

Το πλέγμα αποτελείται από ∼ 25𝐾 κελιά. Η διάταξη έχει δύο εισόδους της ροής
την 𝑆𝐼1

και 𝑆𝐼2
και έξοδο την 𝑆𝑂 όπως φαίνονται στο σχήμα. Η ροή εισέρχεται με τα-

χύτητα μέτρου |𝑣| = 0.01 m/s και θερμοκρασία 𝑇 = 293 K. Το ρευστό είναι νερό με
κινηματική συνεκτικότητα 𝜈 = 1 × 10−6 m2/s, πυκνότητα 𝜌𝐹 = 998.2 k/m3, ειδική
θερμοχωρητικότητα υπό σταθερή πίεση 𝑐𝐹

𝑝 = 4180 J/(kgK) και θερμική αγωγιμό-
τητα 𝑘𝐹 = 0.598 W/(mK). Όλες οι θερμοφυσικές ιδιότητες του ρευστού θεωρούνται
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σταθερές. Η ροή είναι στρωτή με Re = 100. Τα θερμά τοιχώματα έχουν θερμοκρα-
σία 𝑇 = 353 K και η θερμική αγωγιμότητα του στερεού είναι 𝑘𝑆 = 12.7 W/(mK)
όπως στις προηγούμενες μελέτες.

6.1 Βελτιστοποίηση Τοπολογίας 2Δ Συστήματος Αγωγών

Η συνάρτηση-στόχος ως προς την οποία γίνεται η βελτιστοποίηση τοπολογίας
του 2Δ συστήματος αγωγών αποτελείται από δύο επιμέρους στόχους. Πρώτος στό-
χος είναι η ελαχιστοποίηση της μέσης κατ’ όγκο θερμοκρασίας του χωρίου ενώ ο
δεύτερος είναι η ελαχιστοποίηση των απωλειών ολικής πίεσης. Αυτό εκφράζεται
ως

𝐽 𝑡𝑜𝑡𝑎𝑙 = 𝑤 ̂𝐽𝑚𝑒𝑎𝑛𝑇 + (1 − 𝑤) ̂𝐽𝑝𝑡 (2)
όπου 𝑤 ∈ [0, 1] είναι συντελεστής βαρύτητας μεταξύ των δύο στόχων. Το σύμβολο
() υποδηλώνει την κανονικοποίηση της τιμής του κάθε στόχου με την τιμή που
αυτός λαμβάνει στον μηδενικό κύκλο βελτιστοποίησης. Γίνονται τρεξίματα για 4
διαφορετικά βάρη 𝑤 = {0.9, 0.8, 0.5, 0.2} και οι γεωμετρίες που προκύπτουν μετά
από 50 κύκλους βελτιστοποίησης φαίνονται στο σχ. 11.

Σχήμα 11: Βέλτιστο πεδίο πορώδους για 𝑤 = 0.9 (πάνω-αριστερά), για 𝑤 = 0.8
(πάνω-δεξιά), για 𝑤 = 0.5 (κάτω-αριστερά), για 𝑤 = 0.2 (κάτω-δεξιά).

Παρατηρείται ο σχηματισμός μίας κοιλότητας ακίνητου ρευστού κοντά στο
θερμό τοίχωμα της βάσης του χωρίου. Δεδομένου ότι η θερμική αγωγιμότητα του
νερού είναι πολύ μικρότερη από αυτή του στερεού, η κοιλότητα δυσχεραίνει την
μεταφορά θερμότητας από το θερμό τοίχωμα στο υπόλοιπο χωρίο, λειτουργώντας
έτσι ως θερμική μόνωση. Αυτό έχει ως αποτέλεσμα τη μείωση της τιμής του στό-
χου 𝐽𝑚𝑒𝑎𝑛𝑇 . Συνεπώς, με τη μείωση του 𝑤 ο όγκος της κοιλότητας μικραίνει ενώ
παράλληλα οι αγωγοί αποκτούν μεγαλύτερο πάχος το οποίο συμβάλλει ενεργά
στην ελαχιστοποίηση των απωλειών ολικής πίεσης.
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Ορίζοντας τον συντελεστή απωλειών ολικής πίεσης, ο οποίος εκφράζεται ως

ΩΔ𝑝𝑡 = Δ𝑝𝑡
1/2𝜌𝑣2 (3)

οι τιμές των στόχων για την κάθε γεωμετρία παρουσιάζονται στον πίνακα 5.

𝑤 𝑇 [K] ΩΔ𝑝𝑡

0.9 306.1 17.3
0.8 304.8 15.7
0.5 309.3 14.5
0.2 312.4 14.1

Πίνακας 5: Μέση κατ’ όγκο όγκο θερμοκρασία του χωρίου και συντελεστής απω-
λειών ολικής πίεσης για τις βέλτιστες γεωμετρίες.

6.2 Μετάβαση από Βελτιστοποίηση Τοπολογίας σε Βελτιστο-
ποίηση Μορφής

Για την μετάβαση από βελτιστοποίηση τοπολογίας σε βελτιστοποίηση μορφής
χρησιμοποιείται ένα βοηθητικό λογισμικό που αναπτύχθηκε από την ΜΠΥΡ&Β/ΕΜΠ
το οποίο δημιουργεί σωματόδετα πλέγματα για τις περιοχές των ρευστών και των
στερεών, βάσει του πλέγματος της βελτιστοποίησης τοπολογίας και του βέλτιστου
πεδίου πορώδους που προέκυψε. Με χρήση του λοιπόν στο βέλτιστο πεδίο πορώ-
δους που προέκυψε για 𝑤 = 0.5 (σχ. 11-(κάτω-αριστερά)), το σωματόδετο πλέγμα
που προκύπτει για το ρευστό και το στερεό φαίνεται στο σχ. 12.

Σχήμα 12: Σωματόδετα πλέγματα κατασκευασμένα βάσει του PM2 και του βέλ-
τιστου πεδίου πορώδους για 𝑤 = 0.5. Πλέγμα για την περιοχή του ρευστού (αρι-
στερά) και την περιοχή του στερεού (δεξιά).

Με επίλυση του πρωτεύοντος προβλήματος στο παραπάνω πλέγμα με τον κώ-
δικα PBF2, προκύπτουν μέση θερμοκρασία του χωρίου 𝑇 = 309.1 K (αντί για
𝑇 = 309.3 K) και απώλειες ολικής πίεσης ΩΔ𝑝𝑡 = 14.3 (αντί για ΩΔ𝑝𝑡 = 14.5) που
είναι πολύ κοντά στα αποτελέσματα που προέκυψαν από τη βελτιστοποίηση τοπο-
λογίας.

Για τη βελτιστοποίηση μορφής, η διεπιφάνεια ρευστού-στερεού παραμετρο-
ποιείται με ογκομετρικές B-Splines. Τα σημεία ελέγχου φαίνονται στο σχ. 13.
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Σχήμα 13: Κουτί ογκομετρικών B-Splines 11 × 11 που παραμετροποιεί τη γεωμε-
τρία. Τα σημεία ελέγχου με μπλε χρώμα παραμένουν σταθερά, ενώ τα κόκκινα
μπορούν να κινηθούν.

Οι γεωμετρίες που προέκυψαν μετά από 10 κύκλους βελτιστοποίησης για τα 4
διαφορετικά βάρη σχεδόν ταυτίζονται και φαίνονται στο σχ. 14 μαζί με την αρχική.

Σχήμα 14: Γεωμετρίες που προέκυψαν από τη βελτιστοποίηση μορφής για 4 βάρη
στη συνάρτηση-στόχο. Με μαύρο χρώμα είναι η αρχική γεωμετρία.

Στις βέλτιστες γεωμετρίες, παρατηρείται αύξηση του όγκου της κοιλότητας στά-
σιμου ρευστού ενώ παράλληλα το πάχος των αγωγών μειώνεται. Τα αποτελέσματα
για τις παραπάνω γεωμετρίες καθώς και για την αρχική, φαίνονται στον πίνακα
6.

Γεωμετρία 𝑇 [K] ΩΔ𝑝𝑡

Αρχική 309.1 14.3
Βέλτιστη 308.7 14.6

Πίνακας 6: Μέση κατ’όγκο θερμοκρασία χωρίου και συντελεστής απωλειών ολικής
πίεσης για την αρχική και τις βέλτιστες γεωμετρίες.

Παρατηρείται ότι ενώ επιτεύχθηκε κάποια μείωση της μέσης θερμοκρασίας,
οι απώλειες ολικής πίεσης ελαφρώς αυξήθηκαν. Η ελάχιστη διαφορά μεταξύ των



14

αποτελεσμάτων για τα διαφορετικά βάρη καθώς και η μικρή επίδραση της βελτι-
στοποίησης στην γεωμετρία, καταδεικνύουν ότι η βελτιστοποίηση τοπολογίας είχε
βρει ήδη λύση πολύ κοντά σε τοπικό ελάχιστο της συνάρτησης-στόχου.
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