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Abstract

The goal of this diploma thesis is to investigate the utilization of the continu-
ous adjoint method for optimizing problems involving Conjugate Heat Transfer
(CHT) in Computational Fluid Dynamics (CFD). The areas of focus in this con-
text encompass Shape Optimization (ShpO) and Topology Optimization (TopO),
where various cases are addressed and dealt with. Special emphasis is given
to the known problems of TopO occurring due to the absence of a clearly de-
fined Fluid-Solid Interface (FSI), which subsequently results in the inability to
impose Boundary Conditions (BCs) on it.

The applications examined exclusively pertain to laminar flows of incom-
pressible fluids that are governed by the steady-state Navier-Stokes (NS) equa-
tions. The relevant software used for the analysis and optimization has been de-
veloped by the PCOpt/NTUA based on the open-source CFD toolbox OpenFOAM®.

The first application deals with the analysis and optimization of the cooling
duct of a 2D turbine blade-like geometry. A serpentine-like duct is initially
designed and optimized through ShpO. The primal problem is then solved us-
ing the TopO code in order to identify differences in the results between this
solution approach and the conventional one using body-fitted meshes. Several
TopO cases are conducted and the geometries produced are evaluated.

The second application addresses the design of a 2D duct system. This
time, an initial design of the duct is produced by TopO. Body-fitted meshes for
both the fluid and solid regions are produced based on the computed optimal
porosity field. After the TopO results are compared with those produced on the
body-fitted mesh, several ShpO cases are performed on the geometry.
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MepiAnyn

O ot6x0g g napouvoag HMAPATIKIG epyaociag eival n digpeuvnon g XProng
NG ouvexoug ouduyoug nebodou oe mpoBAnpata oudeuypévng petapopdg Beppo-
mtag otnv Yrmodoylotuikt] Peuctoduvapiky (YPA). Ze auto 1o miaioto egetadoviat
npoBAnpata BeAtiotonoinong popdprg Kat Toroloyiag oe H1apopeg PapPHOVES.
[Siattepn éngaon diverat ota yveotd npoBAnpata tng BeAtiotornoinong torodo-
ylag mou mpokUmtouy Adye tng EAAEYPNGS 0adp®S OPIOHPEVOU 0PI0OU PETASU PEUCTROV-
OTEPEMV TIEPLOXWDV, YEYOVOG TT0U 00nyel otnv aduvapia ermBoAng oplak®v ouvon-
KQOV Og auTo.

Ot epappoyég mou egetalovial apopouv ATMMOKAEIOTIKA TIS OTPRTEG POEG AOUL-
MME0T®V PEVOTMV TTIOU S1EMoVIal aro tig Xpovikda povipeg Navier-Stokes s€lowoeig.
To oxeTKO AOY10H1KO TTOU Xpnotpornotr|fnKe yla availuon kat BeAtiotornoinon £xet
npoypappatiotet and v MITYP&B/EMII Baociopévo oto mepiBaAAov avoiytou
KO61ka OpenFOAM®.

H npotn epappoyn apopd v avaduorn Kat BeAtiotonoinon evog ayoyou Yu-
&ng 2A mtepuyiou otpoBllopnyxavrg. Apxikda oxediadetal évag KapImuAog ayeyos
o ortoiog BeAtiotortoteital epappodoviag Bedtiotomnoinon popdng. ‘Enetta, 1o nmpw-
Tevov npoBAnpa Auvetatl pe xXprjon Tou KOdika BeAT10TOIOIN0NG TOOAOYiag He
OKOITO TV 81epelivion TV S1apop®V OTa Arotedéopata Petaiy NG CUYKEKPTE-
VNG IPOOCEYY10NG EMMAUONG KAl AUTH) TG CUPBATIKEG HE XP101 OOUATOOETOV TTAEY-
patev. [Ipaypatornotovuvtat d1apopeg epappoyeg Bedtiotonoinong tortodoyiag kat
01 TIPOKUTTTOUOES YEWHETPiEG agloAoyouvtat.

H 6eutepn epappoyn apopd tov oXed1a0P0 £VOG 2A CUOTIHATOG AY®OYWV. AUTI)
) POopd, N APXIKN YEQUETIPIA TOV AYOYWV IIPOKUITIEL ATT0 BEATIOTOITO11)01) TOTIOAO-
viag. 'Enetta, yevovial oopatodeta mAéypata yia TG pEUOTEG KAl OTEPEES TIEPLO-
X€S Baoetl tou BeAtiotoronpévou nopwdoug rediou. APou Ta AroTeAéopatad ToU
MP®IeVoVtog IpoBAnparog g BeAtiotonoinong torodoyiag cuykptBouv pe autd
IOU TIPOKUITIOUV HE TNV OUPBATIKI] IPOCEYY1on eriAuong, MPAyHaATorolouvial
drapopa tpedipata BeAtiotonoinong HopPng g YEGHUETPIag.
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Chapter 1

Introduction

In the last decades, advancements in the design of gas turbines are directed
toward continuously improving output power and thermal efficiency. Both of
those objectives are dependent upon the increase of turbine entry temperature
which is limited by the melting point of the materials used. For this reason,
state-of-the-art gas turbines employ efficient coolant systems to allow turbine
blades to survive under excessive thermal loads. Blade cooling channels are
characterized by complex geometries the performant design of which, demands
numerous simulations and experiments to accomplish. Therefore, optimiza-
tion methods can be utilized as an effective way to achieve cooling structures
with higher overall performance.

1.1 Turbine Blade Cooling

Advanced gas turbines operate in temperatures that are far above the ones
permissible by the metal. To ensure safe operation and structural integrity,
cooling of the blades is necessary. In most cases, the coolant is air bled from
the high-pressure compressor, which bypasses the combustor and enters the
blades through their roots. This extraction of air incurs a severe penalty to the
thermal efficiency making it crucial to optimize the cooling technique. Several
methods are utilized that cool the blade both internally and externally.

Internal cooling is achieved by passing the coolant through several serpen-
tine passages lined with rib turbulators. Also, internal cooling is enhanced
through impingement and pin-fin cooling. Impingement cooling is used near
the leading edge of the blade where the thermal load is the greatest and also
the blade walls are thick enough to sustain the impact with the cooling jets.
Pin-fin cooling is used in the very narrow trailing edge of the blade due to man-
ufacturing restrictions. As the coolant flows past the pins, the flow separates
and wakes are shed reinforcing the extraction of heat from the outside of the
blade.

External cooling is also called film cooling. Coolant air is ejected from the
inside of the blade to the outside surface through discrete holes or slots, form-
ing a protective layer between the blade surface and the hot combustion gases.
The aforementioned cooling methods are described in great detail in [1-4].

For an effective cooling system design, it is critical to ensure that the maxi-
mum temperatures and temperature spatial gradients during operation do not

1



2 1. Introduction

exceed the maximum blade thermal stress. Additionally, the coolant mass flow
rate and total pressure drop in the cooling channels should be minimal, consid-
ering the impact that those have on the thermal efficiency of the gas turbine.

1.2 Gradient-Based Optimization

Optimization problems are generally characterized by the objective function J,
the design or optimization variables b,, and the constraints. The objective func-
tion is the quantity to be either maximized or minimized. Design variables are
controllable parameters of the system and constraints place limits to problem
quantities. The goal of the optimization is to find the set of design variables that
maximizes/minimizes the value of the objective function while the constraints
are satisfied.

Optimization methods are divided into stochastic [6-7] and deterministic or
gradient-based [8-11]. In the context of this thesis, only Gradient-Based Meth-
ods (GBMs) are studied and used. The gradient-based optimization algorithms
start with a given set of design variables and improve it based on information
related to the derivatives of the objective function with respect to (w.r.t.) the
design variables (also referred to as Sensitivity Derivativess (SDs)). Since the
direction along which the design variables should be updated is dictated by
the SDs, a GBM can be trapped into a local minimum/maximum where the
values of the SDs are zeroed. In such cases, an optimized solution is obtained
rather than the optimal one. It is possible to get another solution by starting
the optimization algorithm from a different set of design variables.

The efficiency of GBMs strongly depends on the method used to compute
the required SDs. Known methods for computing SDs are:

¢ Finite Differences (FDs)

* Complex Variable Method [[12]

Direct Differentiation (DD) [13]

Automatic Differentiation (AD) [14]

Adjoint Methods []15, [16]

While the FDs method is straightforward to implement, its cost scales lin-
early with the number of design variables, N, making it unsuitable for large-
scale optimization problems. Another disadvantage of the method is the selec-
tion of an appropriately small step size in the computation of the discretized
gradient formula in order to minimize the truncation error. While a small step
size is beneficial, it cannot be arbitrarily decreased or the round-off error can
become significant, [[17].

The error due to round-off can be circumvented by using the complex vari-
able method [12]. Nevertheless, the cost of the method is again linearly pro-
portional to the number of the design variables, IV, making it infeasible for the
problems studied in this thesis.

The DD method [13] is formulated by differentiating the system equations
and the objective function w.r.t. the design variables. A total of N new systems




1.2. Gradient-Based Optimization 3

of equations arise, which include the variations of the primal problem variables.
The SDs can be computed by solving the primal equations and the N newly
derived systems of equations. Therefore, the cost of DD is proportional to the
number of design variables.

The AD technique [14] provides accurate numerical approximations of deriva-
tives by applying the chain rule repeatedly to a sequence of elementary arith-
metic operators and functions. Even though AD (in reverse mode) can compute
derivatives for a cost independent of the number of design variables, it creates
codes with significant memory usage since it stores intermediate values dur-
ing the computation of derivatives, which can become a problem in large-scale
applications.

Among the aforementioned methods for the computation of SDs, the adjoint
method [15, 16] is the one used in this thesis. This is due to the fact that the
cost of computing the necessary derivatives with this method is practically
independent of the number of design variables. Moreover, it is applicable to a
wide range of problems while being more memory-efficient than AD.

Adjoint methods are classified into continuous and discrete. In continuous
adjoint [15, 18, [19], the objective function is augmented by the residuals of
the primal equations in their continuous form (prior to their discretization). By
the proper mathematical development of the augmented objective function, the
adjoint Partial Differential Equations (PDEs) and their BCs arise, which can be
numerically solved to produce the fields of the adjoint variables. In contrast,
in discrete adjoint [[16, 20, 21f], the objective function is augmented by the
discretized residuals of the primal equations. The adjoint system of equations
is then derived, already in discrete form, by differentiating and rearranging the
augmented objective function. The adjoint variables are finally computed by
numerically solving the system of discrete adjoint equations.

1.2.1 Shape Optimization

The goal of ShpO is to find a shape that minimizes or maximizes a certain per-
formance measure (objective function, .J) while satisfying the given constraints.
The shape of the geometric form under consideration is controlled by a number
of variables, for instance, the coefficients of the Bézier-Bernstein polynomials.
In such case, those act as the design variables of the optimization problem.
The mapping from the design variables to the geometry is called shape param-
eterization.

This thesis deals with the analysis of problems involving heat transfer be-
tween fluids and solids, known as CHT analysis. Such problems appear in
various applications including turbine cooling systems [22-24], cooling of elec-
tronics [25] and heat sinks [26]. ShpO has been utilized in CHT problems both
using stochastic methods [27] and GBMs [28, 29]. For the latter, an adjoint
method can be used for the computation of the SDs.

Adjoint methods have been developed for ShpO in CHT problems, [28, 30,
31]. In [31], the formulation of the adjoint equations governing both the fluid
and the solid domains along with the Adjoint Boundary Conditions (ABCs) in
the FSI was presented using the continuous adjoint method. Contrary to [31],
in [28] the continuous adjoint method for CHT ShpO was presented taking the




4 1. Introduction

effect of the turbulence model into account, in the computation of the SDs.

1.2.2 Topology Optimization

The concept of TopO was first introduced in the field of structural mechanics
by Bendsge and Kikuchi, [32]. There, the aim was to determine the optimal
distribution of material within a design space rather than just modifying the
shape of a structure to optimize it. Nodes of the discretized domain to be
assigned with unary material density values were sought, in areas of the struc-
ture where material should be added to improve its structural stiffness under
specific loads, while the rest were assigned with zero values indicating the ab-
sence of material.

A few years later, the same idea migrated to fluid dynamics for problems
governed by the Stokes equations, [33]. TopO in fluids was accomplished by
incorporating a porosity-dependent term into the flow equations. The flow en-
counters great resistance in areas of high porosity values meaning that its
velocity becomes practically zero. Hence, those areas correspond to the solid-
ified part of the domain while areas of zero porosity value belong to the flow
since there is no porosity-induced resistance. To minimize an objective func-
tion, TopO aims to determine the ideal porosity value at each cell. This means
that the number of design variables is equal to the number of mesh cells, and
therefore, the adjoint method is the most suitable approach to compute the
sensitivities of the objective function w.r.t. the porosity values. Finally, it gives
the ability to design unconventional shapes and is particularly useful in the
preliminary design of ducts or duct systems when only the inlet and outlet
of the duct are known. On the other hand, while the absence of parameteri-
zation is considered one of the advantages of TopO, the formed geometry, i.e.
the interface between the solidified and fluid parts of the domain, needs post-
processing to be extracted.

Following [33], the concept of TopO was extended to laminar flows by Gersborg-
Hansen et al., [34] and Olesen et al., [35]. Regarding turbulent flows, the ad-
joint equations and BCs were derived using the continuous adjoint method
in [36] with the omission though of the eddy viscosity variation. Later on, an
exact continuous adjoint formulation for TopO problems of 2D incompressible
turbulent flows was presented in [37] and was extended to 3D flows in [38§].

1.3 Thesis Outline

This thesis consists of six chapters, including the Introduction, which are sum-
marized below.

In Chapter @ the primal and adjoint equations for CHT ShpO problems
with laminar steady-state flows of incompressible fluids are presented. The
equations that govern the system are the steady-state NS equations, which
are combined with the energy equation for the fluid domain, as well as the
steady-state heat conduction equation for solids.

In Chapter , the primal and adjoint equations for CHT TopO problems are
presented.
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In Chapter @ CHT analysis is conducted on a 2D test case. This case studies
a cooling duct the geometry of which was inspired by the serpentine passages
found in internally cooled turbine blades. At first, the primal problem is solved
using the publicly available OpenFOAM®solver. Then, the ShpO of the duct is
performed using the solver developed by the PCOpt/NTUA, after comparing its
results with those from the previous solver.

In Chapter E the primal problem discussed in Chapter@@ is solved again
using a porosity-based approach this time. An OpenFOAM*utility is used to
initialize the porosity field so that the cells corresponding to the solid domain,
are given a porosity value of 1 while the others are 0. Then, a study is conducted
for the 3,,,, parameter and the effects of the omission of the BCs on the FSI are
quantified. Finally, several TopO runs are carried out for different weights in
the objective function. In section .3, a new fully-structured mesh is generated
consisting of cells of uniform size which is typical for TopO, since the geometry
is unknown. A mesh independence study is conducted to determine the ap-
propriate cell density of the mesh. Then, the TopO of the 2D internally cooled
turbine blade-like geometry is performed, starting from all-fluid domain, for
several weights in the objective function. The resulting geometries correspond
to a U-shaped duct like the ones formed in section 5.2. In section 5.4, a U-
shaped duct is designed, similar to the ones produced in sections .2 and p.3,
to evaluate the TopO results. Finally, ShpO of the U-shaped duct is carried
out for differently weighted objective functions.

In Chapter E the assumptions drawn in previous chapters are revisited on a
second test case regarding the design of a 2D duct system. At first, TopO cases
are run the results of which are discussed. Then, using a utility developed by
the PCOpt/NTUA, body-fitted meshes are generated for both the fluid and solid
regions based on the background mesh of TopO and the optimized porosity field.
Finally, the primal problem is solved on the body-fitted mesh to compare the
results with those of TopO and several ShpO cases are performed.




Chapter 2

Continuous Adjoint Method for
CHT ShpO

In this chapter, the flow and adjoint equations for CHT ShpO problems with
laminar flows of incompressible fluids are presented. The adjoint equations
are derived by applying the continuous adjoint method [18] to the steady-state
Navier-Stokes equations. The adjoint PDEs used in this thesis are the ones
proposed in [39].

2.1 The Primal Problem

In CHT problems, the computational domain is composed of the fluid domains
QF and the solid domains Q° separated by an interface S. Depending on
whether the interface is seen from the fluid or solid point of view, the latter

will be denoted by §F or §S respectively. For the fluid domains, the governing
equations are the steady-state Navier-Stokes for incompressible flows solved
along with the energy equation [40] while for the solid domains, the steady-
state heat conduction equation is solved.

2.1.1 State Equations

Every quantity pertaining to the fluid domain is marked with the superscript
F whereas the S superscript is used for the solid domain. The fluid flow PDEs
for the CHT problem are written as

ov;
RP=_——7 = (2.1a)
396]-
ov; 87’1-]- Op
7.’ = . v = ) = 1 2 2.1
Rz Uj al‘j 8a:j + 8332 07 7 ; 7(73) ( b)
F orr v:Ov: 0 orr
TF _ F, FjoV F _ 2.1
R P Vi Ox; e 20x; Oz (k ij) 0 (2.1c)

which correspond to the continuity, momentum and energy equations respec-
tively. In the energy equation, the viscous energy dissipation term is omitted.
Since the flow is incompressible, the energy equation does not give feedback

6



2.1. The Primal Problem 7

to the NS PDEs thus; thus, it can be solved after the latter have converged.
These equations are solved using the SIMPLE algorithm [41]. In the above
equations, p,v;, ;; are the static pressure divided by the constant fluid density,
velocity and stress components (7;; = v (gz + %) where v stands for the kine-

J 2

matic viscosity). In addition, p’ is the constant fluid density, ¢, is the specific
heat transfer coefficient under constant pressure and k! is the fluid thermal
conductivity, for which

F_ r. _ F. (Y
k" = p“c,a=pTe, (Pr) (2.2)

where Pr is the Prandtl number and « is the thermal diffusivity. The thermal
diffusivity « is defined as a = v/Pr.
On the other hand, heat conduction over solid region Q° is governed by,

S
RT® = _9 (ksai> =0 (2.3)
&Uj 8xj

where k° stands for the thermal conductivity of the solid region.

2.1.2 Boundary Conditions

The conditions imposed on each type boundary type are presented. The bound-
aries ST of O are decomposed as S¥ = SFuUSEuUSE U 5, indicating the inlet,
outlet, plain and FSI walls, respectively. The solid domain boundaries S° are

—s
decomposed as S = SP U Sz, US , where S2 and S2, have fixed temperature
and fixed heat-flux distributions (adiabatic or non-adiabatic), respectively.

Inlet Boundaries, S
At the inlet, a uniform velocity and temperature distribution is imposed. Addi-
tionally, zero Neumann conditions are imposed on pressure.

Outlet Boundaries, S}

At the outlet, zero Neumann conditions are imposed on velocity and tempera-
ture with the assumption that the flow has settled near the exit. On pressure,
zero Dirichlet condition is set and so the manometric pressure is calculated in
the domain.

Fluid Wall Boundaries, S},

All the velocity components take on zero value on the wall boundaries since
the flow under consideration is viscous. Additionally, dp/0n = 0. The walls
that belong to the Qf domain are considered adiabatic, so 9T /9n = 0.

Solid Wall Boundaries, (57, S%,)

Fixed temperature boundary conditions are imposed on S2. Along S%,, zero
Neumann conditions are imposed which means that all these boundaries are
considered adiabatic.




8 2. Continuous Adjoint Method for CHT ShpO

FSI Boundaries (§F, ?S)

_F
The conditions imposed on velocity and pressure at S are the same as the
ones used for the wall boundaries Sj;. The only difference is in the temperature
boundary conditions. The conditions imposed on temperature along each point

at the FSI boundary (?F,gs] are

T s =T"|4r (2.4)
S F
ksai — _kFaL (2.5)
on 55 on 5F

where n is the outward unit normal vector and, thus, n; §F=—ni\ﬁs. If the heat
flows from the solid region to the fluid, the left-hand side in eq. 2.5) is positive
because it follows the direction of the solid outward normal n; lgs. Observing the
heat flow from the fluid perspective, the opposite is true and thus, a negative
sign is added in eq. (2.9) to ensure heat-flux conservation. The first condition
eq. (2.4) is there to ensure temperature equality on the interface of the two
regions.

2.2 The Adjoint Problem

In gradient-based optimization, the gradient of the objective function w.r.t. the
design variables, also called SDs, should be computed in order to update their
value. The continuous adjoint is an efficient method for the computation of the
exact derivatives of objective functions.

2.2.1 Introduction of the Adjoint Variables

Starting point for the formulation of the adjoint problem is the introduction of
the augmented objective function, J,, ,, which is defined by adding the volume
integrals of the state equations (egs. (2.1)), multiplied by the adjoint variables,
to the objective function J, namely,

oy = + / gRPdQ + / wRYAQ + Y / TPRT” d) 2.6)
or or D=F,5 "

where ¢, u, are the adjoint to the pressure and velocity fields. Additionally, 7"
stands for the adjoint temperature with D = F for the fluid and D = S for
the solid domains. Since the residuals of the primal equations are zero, the
value of J,,, is identical to that of J. Differentiating J,,,, which is as if J is
differentiated, w.r.t. the design variables b,,, yields

ug’

5J, 5] 6 5 5 b

aug _ 7Y s D s RV o D pT

=5t R /QF qRPAS) + . /QF u; RYdS) + E . /QD TPRT”d0  (2.7)
D=F,S

Introducing additional degrees of freedom in eq. (2.6), in the form of the adjoint
variables, gives the ability to get rid of the terms multiplying the derivatives of
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the primal variables in §J,,,/db, which are computationally expensive. After
some lengthy mathematical development of eq. (2.7) shown in [38, 42] the field
adjoint equations as well as the ABCs arise by setting the aforementioned terms
to zero.

2.2.2 Objective Function Definition

Before proceeding with the presentation of the adjoint problem, the objective
function should be defined as it contributes to the field adjoint equations and
their BCs as well as to the SDs. In this thesis, the objective function used
combines two separate objectives; the first one is to maximize the surface-
averaged temperature at the outlet and the other is to minimize the volume-
averaged total pressure losses. The total objective function to be minimized is
written as,

Jtotal — _wjmeanT + (1 _ w)jpt (28)

where w € [0,1] is a weight used to control the contribution of each objective
in the total objective function. The negative sign in eq. (2.8) appears because
the maximization of J™**"T objective is sought. The hat symbol is used as an
indication that the two objectives are separately normalized. The normalization
is made by dividing each objective by its value computed as J = .J/ Jy, where
the denominator corresponds to the starting geometry.

The surface-averaged temperature objective is computed by

[, TFds
gueant — S0~ 7 _ 1 / TFds (2.9)
‘/,‘SO dS SO SO

while the volume-averaged total pressure losses objective function is written
as

1
= / (p+ 502 vinids (2.10)
S10

The contribution of each objective in the adjoint equations and BCs is deter-
mined by differentiating it w.r.t. the design variables b,,. For the mean outlet
temperature objective this yields

6jmeanT 1 1 / 5TF

= — ds (2.11)
meanT
ob,, J§ So Js, 0by,
and for the volume-averaged total pressure losses,
§.JPe 1 5p 1 1 S,

- n.—dS — VN — 2) ] LdS 2.12
5, Jé)t /SI ) v;n, 5, Jé)t /SI ) [UZUJTL] + (p + 2UJ n; 5, ( )

Based on the development in [42], the two objectives only contribute to the
ABCs and the SDs. Those contributions will be presented in detail later on.
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2.2.3 Field Adjoint Equations

The Field Adjoint Equations (FAE) for CHT ShpO problems are derived in [42]
for a general objective function. For the fluid domain Q¥, the adjoint PDEs are

ou;
Rq:_a i o (2.13a)
x.
J
ov.  ou, Orh  oq or” 0y
w_ i i ij F F FrpF k
R; Uj oz, 39 8xj + ox; Tt cpTa Oz, fo kaxi (2.13b)
F an =0 1,2 |
p vzvkax =Y =4 7(’3>
k
oTF 0 o1,y
Rl _ P o1y pF9ta ) 2.13
F 1Y Cp'UJ 8.%'3' o0x. < 8xj > ( C)
(2.13d)

where R, R} and RIZ“ are the adjoint continuity,momentum and energy PDEs.

The adjoint stress tensor 7/} is given by 7, = v (ggé + %). Equations (2.13a)-

J 2
(2.13q) are solved by the SIMPLE algorithm [41], i.e. the same algorithm used
to solve the primal PDEs, eqgs. (2.1a)-(2.1d).

The adjoint heat conduction PDE solved over the solid region Q7, is written
as
) ory
Rg* = K52 ) =0 2.14
S 856 ( Jz; ) ( )

Since eq. (2.13d) and eq. (2.14) do not involve any adjoint variable other than
TF and T?, they can be solved prior to solving the rest of the adjoint PDEs.

2.2.4 Adjoint Boundary Conditions
Inlet Boundaries, S

The ABCs are presented for the fluid region Q" at first. Along the inlet bound-
aries ST, the conditions imposed for a general objective function are, [42]

1
u;n; = uyy = (1— w)ﬁvini (2.15a)
u€t> =0 (2.15b)
ugt) =0 (2.15¢)

where t!, t are the components of the tangent to the surface unit vectors. Also,

1’ 7

9q/On =0 and T = 0.

Outlet Boundaries, S}

Along the outlet boundary S, the boundary conditions for u; and q are, [42]

ouy,, 1 1
q= u<n>v<n>+2vﬁ—(1—w) Jgt |:Ui?)k + (p + 5?}?) 5zk:| nkni+pFTfU<2n> =0 (2.16)
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Regarding the normal component of the adjoint velocity, the condition du,, /On =
0 is imposed and the tangential adjoint velocity components (I = I, IIin 3D; only
I =Tin 2D) are given by

oul ou 1 1
l (t) (n) 2 !
- — (1 —w)— |v,v, + + —v2 | 4. tt
Yin) Uie) V( on ot! ) ( w) Jéo‘ [Ulvk <p 2%) Zk] "t (2.17)

+ pFTfU<n>U€t> =0

The following BC is used for 77" along Sj

0 (2.18)

orr 1 1
F F F —
ple,Tivmn; +k 8; — ngmmT 5 n; =

Fluid Wall Boundaries, S/,

Along S&,, the BCs for the adjoint velocity components are the same as the
ones imposed on the inlet boundary S¥ eq. (2.15). The objective function used
in this thesis (section 2.2.2), is not defined on any wall boundary and thus, it
does not contribute to the ABCs imposed on Sf;,. Therefore, the adjoint velocity
on Sf, is given as, [42],

Uy = u€t> = u?w =0 (2.19)

Additionally, dq/0n = 0. Considering that on the fluid domain walls, zero Neu-
mann conditions are imposed on temperature, the condition imposed on the
adjoint temperature based on [42] reads

F
a;;‘; =0 (2.20)

Siv

Solid Wall Boundaries, (S35, S3))

Along the boundaries S? with fixed temperature value, the condition imposed
for the adjoint temperature T is

TS =0 (2.21)
whereas for the adiabatic boundaries S%,, the following condition is imposed

oT?

o =0 (2.22)

S
SF‘I

FSI Boundaries (§F, §s>

—F
The conditions imposed on u;, ¢ along the FSI boundary S , are identical with
the ones imposed on Sf,. The only difference is in the adjoint temperature
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—F _5§
TF BC. Conditions imposed along the FSI boundary (SF, S ) on the adjoint
temperature 7, are, [42],

—Tf — —Tf (2.23a)
5" 5°
TF TS
kFa_a — _ksa_a (2.23b)
on |-r on 5

where n is the outward unit normal vector and, thus, nz\ F=-N Z| s. The objec-
tive function used in this thesis is only defined on the 1nlet and outlet bound-
aries. Therefore, all the objective function contributions in eqs. (2.23) are equal
to zero.

2.2.5 Sensitivity Derivatives

After satisfying the FAE and their BC, the SDs are computed by the following
expression developed in [42]

6_‘]—/ —UU%—’LL@—TG@UZ‘{— 871J+ (9 CTF 8TF
5b - OF Z](()af}k j(?xk Z‘]axk 1(9 k qa k pma ]8 k

O, OTF OTF ) OTF\1 & (6
— PP T v T oot — R S T (kF 5 )} ( x’“) dQ (2.24)
a:k xT; Oxy Ty €L J n

Ty oT* ) oT°\1 0 (éx
S TS kS ) an
+/Qs{ 9z, Ozp “&ck< aa:j>]axj<5bn
Field Integrals are present in the expression of the SDs eq. (2.24), which is the

reason this adjoint formulation is abbreviated as the Field Integral (FI) adjoint.
More adjoint formulations regarding ShpO are developed and examined in [43].




Chapter 3

Continuous Adjoint Method for
CHT TopO

In porosity-based TopO, the value-field of design variables « ("porosity” field) is
used to solidify the part of the design domain that is counter-productive w.r.t.
the objective function J to be minimized. Parts of the computational domain
with zero porosity values, or practically a < ¢, where ¢ is a user-defined in-
finitesimally small positive number, correspond to the fluid part of the domain.
All the remaining areas where « # 0, or practically « > ¢, define the part of the
domain to be solidified. In fig. 3.1 the concept of TopO in fluid mechanics is
illustrated.

o,

Figure 3.1: Schematic representation of a porous media (£2) domain and its
boundaries. S; is the inlet (or inlets, if more than one), S,;, | = 1, L are the
outlets and Sy, are the solid wall boundaries along the domain, all predefined.
White areas correspond to the flow domain (« < €), while black color indicates
solidified areas (o > ¢). From [37].

Given that in TopO, the number of design variables is equal to the number
of mesh cells, the adjoint method is the perfect choice for computing the sen-
sitivity derivatives §.J /da since its cost is independent of the number of design
variables.

13



14 3. Continuous Adjoint Method for CHT TopO

A known problem in the porosity-based approach of TopO is that "grey”
areas usually emerge, that do not belong to either the fluid or solid domain and
thus, a user-defined criterion must be applied to track the boundary between
the two. To reduce the formation of ”grey” areas in the domain, projection
methods that drive the resulting porosity field towards a more binary state
are employed. An alternative approach for TopO dealing with this problem
is based on the level-set method in which the boundaries between the flow
and solidified areas are clearly marked. This diploma thesis deals only with
the porosity-based approach but level-set methods have also been attracting
attention during the last few years [44], 45].

3.1 The Primal problem

In all the TopO cases studied in this diploma thesis, the flow is governed by
the steady-state Navier-Stokes equations along with the energy equation. In
porosity-based TopO, to simulate the solidification of parts of the domain, the
flow equations are augmented with a-dependent source terms, whose role is
to deactivate the flow equations over the solid and apply solid wall conditions.

3.1.1 State Equations

The so-modified flow equations along with the energy equation for steady flows
of incompressible fluids read, [37],

ov;
R = === =0 (3.1a)
Ox;
v 3U,L- 87—7,] 8]? v o .
Ri - Uj@scj - aiUJ + (9.%‘1 + Bmaml (ﬁ)vz - 07 L= 1727 (7 3) (31b)
oT 0

RT = (1— B)p(I7(8))e, (I (5)) __<Mﬁw»22):0 5.10)

%9, o oz,

where g € [0,1] is a field that emerges from the porosity field « after the reg-
ularization and projection steps are performed. The Iv, I?, I°, I* functions,
are used to either drive the flow solution towards values corresponding to solid
walls (eq. (3.1b)) or to interpolate between the thermo-physical properties of
the fluid and solidified domains (egs. (8.1)). Also, p(I*(8)), ¢,(I%(B)), k(I*(3)),
denote the interpolated values of those quantities between the fluid and the
solid. In egs. (3.1), the convection term is multiplied with (1 — ) to cancel out
its contribution in areas where small leakage of fluid into the solid domain is
observed in TopO. For the porosity-related source terms of the form 3,,,, 1% (3)®,
a linear function is used defined as

I1*(B)=p (3.2)
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The interpolation of thermophysical properties is based on the following
scheme
o(f) = (1-I%(B))2" +I*(8)2” (3.3)
where the superscripts F' and S denote the value of the quantity ¢ in the fluid
and solid domain respectively. For the interpolation, the Solid Isotropic Mate-
rial Penalization (SIMP) function [32] is used namely

1%(8) = p° (3.4)

with constant value of b = 3 for all the cases studied in this diploma thesis.
The 5,,,. value is used to ensure that the v, values are practically zero in
the solidified domain. Its value can be computed based on the Darcy number,
quantifying the ratio between viscous and porous forces, [35],
14 14

where L is the characteristic length of the case under consideration, which
is either the inlet length or the inlet hydraulic diameter for 2D and 3D cases,
respectively. Based on [35], for Da = 10~° the solidified area obtained from the
TopO is practically impermeable.

Often, in TopO problems, especially those dealing with CHT, the design may

result in checkerboards. Checkerboards refer to designs with alternating solid
and fluid cells ordered in checkerboard-like patterns. This can be avoided by
using filtering schemes applied to the porosity field a. The regularization of «
is implemented based on a Helmholtz-type filter [46], transforming « to &,
P R \?o%@ _
R"(a,a) = (2\/§> &C?—i—a a=0 (3.6)
where & is the regulated porosity field and R can be seen as a smoothing radius,
usually computed as a function of the average mesh cell size. For the solution
of the Helmholtz PDE, zero Neumann BCs are imposed. The regularization
of the porosity field blurs changes between the fluid and solidified domains
and, thus, a projection step is required, to increase the contrast of the & field
producing the S field as,

Da =

(3.5)

_ tanh (nb) 4 tanh [b(@ — n)]

~ tanh (nb) + tanh [b(1 — )]

with n = 0.5 and b being a sharpening parameter (irrelevant to the one found in
eq. (3.4)). The value of b varies throughout the optimization and may differently
be defined for each optimization case.
The processing steps of the porosity field a are summarized in fig. 3.2.

(3.7)

- a - B
regularization projection

Figure 3.2: Porosity field processing steps.

Firstly, the regularization step is used to eliminate possible checkerboards
by transforming the « field to a smoother field & and, then, the projection step
transforms & to the § field which gives a more binary representation of the
interface between fluid and solid areas.
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3.1.2 Boundary Conditions

The conditions imposed on various quantities along the boundaries of the do-
main are identical to the ones presented in section 2.1.2,.

3.2 The Adjoint Problem

3.2.1 Augmented Objective Function

Again, the first step for the formulation of the adjoint problem with the con-
tinuous adjoint method is the definition of the augmented objective function
(Lagrangian) J,,,. This is defined for TopO problems as

Jaug = J + / gRPAQ + / u; RYdSY + / T,R"dS) (3.8)
Q Q Q

where RP, RY, RT are the residuals of egs. (3.1). When the primal equations
are converged, the residuals are practically zero meaning that J,,, = J. Ad-
ditionally, ¢, u,, T, are the adjoint to the pressure, velocity, and temperature
fields.

In porosity-based TopO, the objective function gradient w.r.t. the poros-
ity field should be computed. Since J,,, = J, the SDs can be computed by

differentiating the augmented objective instead of .J, which yields

5J,, ) SRP SRY SRT
g :_J+/qidg+/u. R, dQ+/TaidQ (3.9)
Q Q Q 0

da da da "da

m m m m m

The adjoint equations and BCs arise from eq. (3.9) after the terms multiplying
the derivatives of primal variables are set to zero. The development of eq. (3.9)
and the formulation of the adjoint problem is presented in detail in [37]. By
eliminating the aforementioned terms, an expression of the objective sensitivi-
ties independent of the derivatives of primal variables emerges. Therefore, the
cost of the SDs is independent of the number of design variables; only the
primal and the adjoint problem solutions are needed to compute them.

3.2.2 Field Adjoint Equations

Following the mathematical development outlined in [47], the continuous ad-
joint PDEs to egs. (3.1) can be derived and written as,

ou;
RI=__"7 — (3.10a)
oz
v ou; Ot  Oq oT
U — . J _ . t_ Y IP Icp 1 - T
R =g =gt = G g o) IO AT

+/8maxlv(ﬁ)ui :O7 1= 1727(73>

R = o (3)ey (I () 0= 1T - 5 (HIFED G ) =0 (8100
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The objective function used in this thesis (section 2.2.2), does not contribute
to the adjoint equations and only contributes to the ABCs, same as for ShpO.
The presence of the porosity-dependent term in eq. (3.10b) indicates that u;
will practically take on zero values in the solidified parts of the domain.

3.2.3 Adjoint Boundary Conditions

The ABCs of the TopO problem are identical to those presented in section 2.2.3,
for ShpO problems. The reason for this is that the primal equations of the TopO
problem differ from those used in ShpO only due to the presence of the addi-
tional porosity-dependent source terms. Since none of these terms contains a
differential operator, the Gauss divergence theorem is not employed on those
during the formulation of the adjoint, and thus, no additional surface integrals
that contribute to the ABCs are produced.

3.2.4 Sensitivity Derivatives

After solving the primal and adjoint PDEs, the SDs of the objective function J
w.r.t. the « field can be computed as

5T o
i = |, 07,00 o
where
_ or° 0T\ 9B | 0 (50T o1 Ok 95
@& - <5mazviuia_5 o pCpTan%j> % * [a_xj <Taa_x]) _Taa_x? %% (3.12)
oT Op dep\ 0B |
+(1- 5)Ta”j3_xj (CP% + p%) &

In eq. (8.12), 95/0a is computed analytically by differentiating the tanh function
eq. (3.7) which yields

a8 bsech’ [b(& — 1))
d& ~ tanh (nb) + tanh [b(1 — n)]

(3.13)

On the other hand, the computation of da/0«a is a costly process that can be
avoided through the solution of the adjoint equation. Consequently, a new
term is added to the augmented objective eq. (3.8) which reads

~ F ~
oJ —/@~a—adQ—/\D&MdQ (3.14)
Q Q

ba,, *0a,, da,,

where R (&, a) is the Helmholtz filtering PDE residual (eq. (8.6)) and ¥ is an
additional adjoint variable. After some mathematical development of eq. (3.14)
and by setting the terms multiplying 0&/dq,, equal to zero, the adjoint to the
Helmholtz filtering PDE arises in the following form

2
R 0%V,
RYs — [ — | ——2 ¢
(2\/§> 637? +

Oz =0 (3.15)

a  Ya
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and, finally, the SDs are

where Q™ is the volume

given by

0T _ gmgm (3.16)

da,,

of the m-th cell; repeated superscripts on the right

hand side (r.h.s.) of eq. (3.16) do not imply summation. In case regularization

is omitted, §J/d« is given directly by eq. (3.11)




Chapter 4

CHT Analysis on Body-Fitted
Meshes

In this chapter, the results of the of a cooling duct are presented. The duct
geometry is inspired by the serpentine passages found in internally cooled tur-
bine blades. Only the flow inside the blade is computed and, thus, the analysis
is monofluid. In section #.1, details regarding the general formulation of the
problem are discussed. At first, the problem is solved using the compress-
ible solver for steady fluid flow and solid heat conduction, with CHT between
regions, publicly available with OpenFOAM®[48]. The same problem is then
solved with the incompressible CHT solver developed by the PCOpt/NTUA since
this is the one to be used in the optimization i.e. the one for which the adjoint
method and software has been developed.

4.1 Problem Description

The geometry studied in this thesis corresponds to a simplified 2D turbine
blade with an internal cooling duct. The duct geometry used in this chapter is
arbitrarily designed to achieve effective transfer of heat from the solid domain
to the fluid, inspired by the flow path found in an internally cooled turbine
blade. The geometry and its dimensions are presented in fig. #.1. The domain
is composed of three regions, the fluid region (Qf) and two solid regions (£27),
referred to as Solid1 and Solid2.

19
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swm\«i 150.00 mm ————=f
i
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1
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Solid2

Figure 4.1: 2D geometry & dimensions of the serpentine-shaped duct used in
the analysis.

The mesh is presented in fig. 4.2 and is fitted to the body’s geometry. To
distinguish this mesh from the others that are used later, it will be referred to
as BFM1 (Body-Fitted Mesh).

Figure 4.2: Initial Body-fitted mesh used for the CHT analysis (BFM1).

In the Fluid region, the mesh generated is structured, consisting of ~ 32K
cells. For the solid regions, an unstructured mesh is used, with structured
layers along the FSI. For both the Solid1 and Solid2 regions, the mesh consists
of ~ 18K cells. The fluid flow is laminar with inlet velocity equal to 0.5 m/s and
Re = 417 based on the duct hydraulic diameter. Additionally, the fluid enters
the domain at a temperature of T = 373K. Along the non-FSI walls of Q°, a
Dirichlet temperature condition (1" = 873 K) is imposed except along the bottom
walls where a zero Neumann condition (adiabatic walls) is imposed.

The coolant is considered air with constant thermophysical properties. The
fluid density is taken p = 1.2kg/m?3, the kinematic viscosity v = 1.5 x 107> m?/s,
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the specific heat capacity under constant pressure ¢, = 1006J/(kg-K) and the
thermal conductivity k" = 0.026 W/(m-K). The thermal conductivity of the solid
regions is taken k% = 12.7W/(m-K) corresponding to ASTM 310 stainless steel.
The air inlet temperature as well as the solid temperature and material used
are taken similar to the ones reported in the experiment of Hylton et al. [@]
for a real internally cooled turbine blade.

4.2 Results of the compressible solver

In this section, the results of the analysis of the CHT problem described in sec-
tion @.1are presented. Results were produced using the standard OpenFOAM®solver
for CHT analysis of steady compressible flow problems called chtMultiRegion-
SimpleFoam. It solves the equations of mass, momentum and sensible en-
thalpy following a pressure-based segregated solution strategy. Despite that
the solver is capable of analyzing compressible flows, the fluid density is set
constant and the equation of state is omitted. This comes in accordance with
the physics of the problem since flows with low Mach numbers (normally less
than 0.3) can safely be studied as incompressible. In the context of this the-
sis, this solver will be referred to as PBF1 (Primal Body-Fitted) so as to ensure
that a clear distinction is made among the different solvers used for the primal
problem.

The computed temperature field as well as the total pressure field are pre-
sented in fig. #.3. As expected, the fluid enters the domain and its temperature
rises, and the Solid1 region is cooled down. The two areas of Solid2 where the
temperature is significantly lower, are the ones that are further away from the
external wall where the Dirichlet BC for temperature (7' = 873K) is set, and
there is less material coming in conta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>