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AmoryopeleTOL 1) avILypaQt], AmrofNKeVoT Kol SLOVOUT TG TUPOVGAS EPYATiag, €& OAOKAN POV 1 TUN-
LOTOG QUTAG, Yot EUTOPIKO okomd. Emtpéneton n avartdnwon, amodnikevon kot dlovoun yio. okomd
L1 KEPOOGKOMIKO, EKTALOEVTIKNG 1 EPEVVITIKNG GVONGC, VIO TNV TPoUTOOEGN VO avapEPETaL 1) TNy
npoélevong kot va dratnpeiton to Tapdv pnvope. Epotipata mov apopoldv ) xpion e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VA, ameLBVVOVTAL TTPOG TOV GLYYPUPEQ.

O1 amOYELS KO TOL GUUTEPAG AT TTOV TEPIEXOVTOAL GE AVTO TO £YYPAPO EKPPALOVV TOV GUYYPUPEN Kol

dev mpémetl va eppnvevdet 6TL avtimpocwrevovy Ti enioneg B€oelg Tov EBvikod MetooPiov IToivte-
YVeiov.



IHepiinyn

O1 no-regret learners emd1OKOLV Vo EACYIOTOTOUGOLY TN S1UPOPA HETAED TG OMMAELNS TOV GLG-
COPELGOV UEGH TMV EVEPYELDV TTOV TTOloVV Kal TG ATOAEWNG TTOV Ba glyov CLGGMPEVLGEL LITOBETIKA
€dv glyav TPOMOTOMGEL GUVETMG TN GLUTEPLPOPA TOVG CUUPMOVO. LLE [0 GUVAPTNOT] UETACYNLOTL-
opo¥ otpatnykns. To péyeBoc Tov GLVOAOL TOV HETACYNUATICU®V oV AouBdvovtor vedym and
tov learner kaBopilel pia ook évvola opBoroyicpov (rationality). Kabodc to chvolo tov peta-
oYMNUOTICU®V oV KAOe learner AapPdvel VTOYN HEYOADVEL, Ol GTPUTNYIKES OV TTailovToL Ot TOVG
learners avakToUV OAO KOl O TEPIMAOKES TALYVIOOE®PNTIKEG 1GOPPOTIEC, CLUUTEPIAAUPAVOUEVDV
tov correlated equilibria og mayvidio Kovovikng popeng (normal-form games) kot extensive-form
correlated equilibria ce moyvidio ekteTopévng popeng (extensive-form games). v axkpaio mepi-
TTOGT, £VOg no-swap-regret olyopiOpog eivat antdg TOL EAAYIGTOTOLEL TNV LETAVOLX EVOVTL TOV GUVO-
A0V OAOV TV GLVOPTICEWDVY AT TO GUVOLO TV GTPATNYIKMV TPOG TO 1010 TO GUVOAO TV CTPATNYIKMOV.
Evé eivar yvootd 611 1 cuvOnKkm yuo To no-swap-regret pmopet vo emitevybel amodoTikd o pun oKo-
AovBokd (normal-form) mouyvidia, n Katovonon Tov oo gival 1 1oyvpoTEPN £vvola Tov rationality
7oV pmopel va emitevydel 0modoTIKA o1 YEPOTEPT| TEPINTMON OE akolovbiakd (extensive-form) mot-
yvidlo amoterel éva avemiAvto TpdPAnpa. e avtiv Vv epyacio TapEyovpe Eva BeTIKd amoTéAEG LA,
delyvovtag OtL gival SuvoTd, 6€ OTOLOINTOTE AKOAOVOLUKS TOLYVIdL, YPNOIUOTOIDOVIOS ETAVUAYELC
EMAVOANYELS TOAV®VLKOV XpOvov (o€ oyxéon pe To péyedog Tov 3EvEpov TOL oLy VIdLov) VoL ETLTV-
YOVLE VILOYPOLLUKT LETAVOLO MO TPOC OAOVG TOVE YPULLUIKOVS LETACYNUATIGHLOVS TOV YDPOV LUKTOV
OTPATNYIKAOV, Hio £€VVole, ToL ovopdleTotl no-linear-swap regret. Avti 1 £VVOl0 TOV €K TMV VOTEP®V
opBoloyiopov gival 160 1oL 660 TO no-swap-regret Ge U AKoAOVOLIKE ToLyVidia Kot 1IoYVPOTEPN
a6 TV évvola no-trigger-regret o€ axoAovOakd moryvidlo — amodekvoovtag £T61 TV VTopén evog
VTOGLVVOAOL amd ekteTatéva correlated equilibria avOeKTIKA 68 YPOUUIKES AmMOKAMOELS, TIG OTOlES
ovopalovpe linear-deviation correlated equilibria, Tov propovV va TPOGEYYIGTOVV ATOSOTIKA.

AEg1c KAEWOWO

dupeon padnom, aiyopiduiky Bewpio moryviov, Taiyvia extetopévng popeng, correlated equilibria,
swap regret, YPOUUKES ATOKAICELG






Abstract

No-regret learners seek to minimize the difference between the loss they cumulated through the ac-
tions they played, and the loss they would have cumulated in hindsight had they consistently modified
their behavior according to some strategy transformation function. The size of the set of transfor-
mations considered by the learner determines a natural notion of rationality. As the set of transfor-
mations each learner considers grows, the strategies played by the learners recover more complex
game-theoretic equilibria, including correlated equilibria in normal-form games and extensive-form
correlated equilibria in extensive-form games. At the extreme, a no-swap-regret agent is one that
minimizes regret against the set of all functions from the set of strategies to itself. While it is known
that the no-swap-regret condition can be attained efficiently in nonsequential (normal-form) games,
understanding what is the strongest notion of rationality that can be attained efficiently in the worst
case in sequential (extensive-form) games is a longstanding open problem. In this paper we provide a
positive result, by showing that it is possible, in any sequential game, to retain polynomial-time (in the
game tree size) iterations while achieving sublinear regret with respect to all linear transformations of
the mixed strategy space, a notion called no-linear-swap regret. This notion of hindsight rationality is
as strong as no-swap-regret in nonsequential games, and stronger than no-trigger-regret in sequential
games—thereby proving the existence of a subset of extensive-form correlated equilibria robust to
linear deviations, which we call linear-deviation correlated equilibria, that can be approached effi-
ciently.

Key words

online learning, algorithmic game theory, extensive form games, correlated equilibrium, swap regret,
linear swap regret
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Extetapévn EAlnvikn [epiinyn

H pébodog g elayiotomoinong tov regret mapéyet alyopiBpovg mov ot ToikTeg LTopovy va yp1-
GIULOTOLGOVY Y10 VO BEATIOGOVY GTASIOKA TIG OTPUTNYIKEG TOVG GE VA, EMAVUAUUBOVOLEVO TTaiyV1o,
EMTPENMOVTAG TNV EKUAONOT 10YLPADV GTPATNYIKAOV OKOUN KO OTOV OVTILETOTILOVY dyvOGTOVG OvTi-
aAovg. Mio amd TIC EAKVOTIKEG 1010TNTEG TV aAyopiBimy pnabnong no-regret givail 6tL givotl amo-
ovlevypévor, Tpayua Tov GNUAiveL 0Tt Kabe Taiktng PEATIOVEL T GTpATNYIKN TOV pE Bdomn Tn Stk
TOV GULVAPTNOT OTOTANPOUNG, KoL TIC OTPOTNYIKEG TOV GAA®Y TUKTOV, 0AAE O)l TIC GLVAPTHCELS
ATOTANPOUNG TOV AAA®V ToukTtdV. [Tap’ 6Aa avtd, Tapd v acHlevikt eUon Tovg Kol TNV £0Ti0CN
TOVG OTNV TOMIKY| BEXTIGTOTOIN O TG GEEAELNG KADE TOUKTN, €lval £val Ao TO O SLAGT IO OTTOTEAE-
oupata ot Bempio g pabnong o€ Taiyvia 0Tl 6€ TOAAEG TEPMTMOGELS, OTAV OAOL O1 TaiKTEG podaivouv
YPNCLOTOLDVTOS AVTOVG TOLG OAYOPIOLOVG, 1] EUTELPIKT TOPELN TOV TALYVIOU OVOKTH TIC KATAAANAES
€Vvoleg TG 160ppomiog — pa kaBoAikn évvola matyvioBewmpntikng Bektiototntag. Ot 6TpatnyIkég TOL
katookevdlovtal pécm adyopiBumv pabnong no-regret (] tpoceyyicewv avt®v) £xovv anoterécet fa-
GIKA GTOLYELN Y10l TV KATACKELT] AvOpOTIVOL EMTESOV Kot KON Kol VITEPAVOpmTmV Tpaktopwv TN
G€ 0L TTOIKIALDL AVTAY®VIGTIKGV Toyviov, cvumepthappavopévav tov tokep [Moravéik et al., 2017,
Brown and Sandholm, 2018, 2019], tov Stratego [Perolat et al., 2022] ka1 Tov Diplomacy [Bakhtin
et al., 2023].

21V eloy1oToToiN o TOL regret, KaOe eKTodeVOIEVOG TPAKTOPOS TPOCTUOEL VO EAAYIGTOTOINGEL
™ Sopopd petald g andieiag ( avtifeto g avTapoPnc) ToV GVCCHPEVGE UECH TOV EVEPYEIDY
7oV £nanée, Kal TG OTOAELNG OV B0 ElYE CLGGMPEVGEL EK TOV VOTEPMOV OV TPOTOTOLOVGE LIE CLVE-
TELOL TN GUUTEPIPOPA TOL GUUPOVA LE KATOL0 GLVAPTNON HLETACYNHOTIGHOV oTpatnykns. To péyebog
TOV GUVOAOV TOV GUVAPTHCEMV UETACYNLOATIOHOV oV €EETALEL O EKTAOELOUEVOC TTPAKTOPUG KOBO-
pilel pa puokn évvola tov opBoroyicprod Tov mpdktopa. ‘Hon 4Tov 01 TPAKTOPES EMOIMKOVY VA
HéBovv GTPATNYIKEG TOL CLGGMPELOVY YAUNAT HETAVOLN LOVO EVOVTL GTOOEPOV LETACYTLATICUOV
GTPATIYIKNG—H0 £VVOL0 TNG HeTAvolag Tov ovoudaletan external regret—to péco mai&ylo Tv TpaKTo-
poVv cuykAivel og o woppomios Nash oe maiyvia otabepov abpoicpatog dV0 TAIKTOV Kol 6€ Eva
coarse correlated equilibrium og maiyvie TOALOTAGV TOKTOV YeVIKOD abpoicpotos. Kabog ta ov-
VOAOL TV PETACYNUATICH®V OV eEeTdlel KdOe mpdictopag avidvovtal, Lropobv vo EmTevyfovv mo
oVVOETEG 160pPOTIES, CUUTEPIAAUPAVOUEVOV GUCYETICUEVOV IGOPPOTIOV OE TOIYVIO, KOVOVIKNG Lop-
¢oNG (Foster and Vohra [1997], Fudenberg and Levine [1995], Fudenberg and Levine [1995, 1999],
Hart and Mas-Colell [2000, 2001], BAéne emiong ™ povoypagio tov Fudenberg and Levine [1998])
KOl GUGYETIGUEVAOV IGOPPOTLADY EKTETOUEVNG LOPPNG G TTaiyvio, eKTeTaUéVNG popeng [Farina et al.,
2022b]. 210 dkpo, £vag LEYLOTA EK TOV DOTEPWV 0PHBOLOYIKOG TPAKTOPOG Elval EKEIVOG TTOL EAX(LOTO-
TOLEL TNV HETAVOLX £VOVTL TOV GUVOLOL OAMV TOV GUVOPTHCEDY OO TOV YDPO GTPATNYIKADV TPOG TOV
€avTo TV (YVOoTdC Kot g swap regret). Evad eival yvootd 6Tt 0 péylotog ek TV votépwv opBoio-
yiopog pumopet va emtevyfel anoterespatikd o pn dadoykd (kKavovikng popeng) maiyvia [Stoltz
and Lugosi, 2007, Blum and Mansour, 2007], arwoteiel peydio avoiktd mpoPAnpa va tpocsdlopiotel
av To 1510 1oyveL Kot Yo T S10doy ik (ONA. EKTETAUEVNG LOPPNG) TTaiyVid, Kol YEVIKOTEPO TTOld iva
N wyvPoTEPN £Vvola TG opBoroykdTnTag Tov Umopel vo emTevyOel OMOTEAEGLATIKA GTN XEPHTEPT
TEPINT®ON 6T0 TEAEVTOI0 TEPPAALOV.

2y mapovca epyocio, mapéyovpe Eva BeTikd amoTéEAEGO TPOG AT TNV KatevBuvor, deiyvo-
VTG OTL 0 €K T®V VOTEPOV 0pHOAOYIGUOG umopel vo. emitevyBel omoTELEGHATIKG G YEVIKA TTaiyvia
EKTETAUEVNG LOPOPNG LE 0TEAN TANPOPOPN G, OTOV KATO10¢ TEPLOPILETAL GTO GUVOAO OAWYV TV Ypou-
MKV UETOCYNUOTIOUDY TOV YOPOL TOV LKTOV GTPUTIYIKOV—LLL EVVOLo Tov ovopdleton linear-swap
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regret, KOl TOV GUUTINTEL e TO swap regret ota maiyvio kavovikng popens. Ilpokeyévov va texun-
PLOCOVUE TO OMOTEAEGLLA, EICAYOVUE SIAPOPU EVOLALETO OTOTEAEGLLOTO TTOL OYETILOVTOL LIE T YE®-
LETPilO TV OTPUTNYIKOV AKOAOVOLOKNG LOPPTG GE MOty VIK EKTETOUEVIG LOPONG. ZVYKEKPLUEVA, EVAL
Kkpioo amotéhespo divetor oto Oempnua 4.1.1, 10 omoio deiyvel 6TL TO GUVOAO TOV YPOLLUKDV G-
vaptioewv Mgo_,p amd T0 GOVOAO GTPOINYIKAOV akoAovBakng Lopeng Q evog maiktn og €va moi-
YVIO EKTETAPEVNG LOPPTNG GE Eva YeVIKO KupTtd moldtono P pumopel va anodobel ypnoiomoudvtog
LOVO TOAV®VOUIKE TOAAOVG YPOLLUIKOVG TEPLOPIGHOVS 6T0 péyedog Tov dEVTIPOV TOL Tayviov Kot
oToVv 0plOUd TV YpaupIK®V teplopiopav ov opifovv to P. Epappdloviag 10 amotélespo oty
e mepintwon P = Q, eioote og B€0m VoL GUUTEPAVOVLE OTL TO TOADTOTO TMV YPOUUIKDV LETOL
oMUATICHOV M o, 0 0T TO GUVOLO GTPOTINYIKOV 0KOAOLOLOKNG LOPPNG GTOV EAVTO TOV UTOPEL VL
KOTOYPOQPEL LE TOAVOVULUKE TOAAOVE YPOUUIKOVG TEPLOPICUOVE 0TO HEYEBOC TOL JEVTPOL TTaLyVimV
Kot 1 vopuo KaBe oTotyeiov gival ToA@VUIIKA @poypévi. O TOAV®VOLIKOS XOPOKTNPIGUOG Kol TO
epaypa yo. 10 Mg_, o xpnoponoteitol oe cuvdvacud pe o Wéa tov Gordon et al. [2008] yio T
KOTOOKEVT €vOG linear-swap regret ELo1GTOTOMTN Y10 TO GUVOAO GTPATNYIKOV Q EEKIVOVTUG OO
dvo apyéc: 1) £vav no-external-regret akyopiOpLo yio To GHVOAO TOV PHETAGYNHATIOUOV M o_s 0, Kot ii)
&vav oAyopOLo Yo TOV VTOAOYIGHO UI0G OTPATNYIKNG oTtafepol ornueiov Yo kaOe peTOoyNUOTIGUO
010 Mo, 0. Kot 6116 300 mepntdcels, N TOAVOVULLIKY avamapdotact tov Mo, o mTov kabiepmbnke
péow tov Oewpnpartog4.1.1 dwdpapatilel Oepehdon poro. Emtpénel, apevog, tnv ikavonoinon g
omoitnong il) yPNOUOTOLDOVTOS YPOLLIKO TPOYPOUUATIGHO. AQETEPOV, LOG ETITPEMEL VO KATUOKEVE-
covpe évav no-external regret aAyopiBpo mov mapdyel pETACKNUATIGHOVS 6T0 Mo, o LE ETOVOAN-
YELG TOADMVUUIKOD YpOVOL, 0EI0TOIMVTOS TIC YVMOTEG 1010TNTeS TOov online projected gradient descent,
0EL0TOLOVTOG TV OTOSOTIKOTNTA TNG TPOPOANG OE TOAVMVUUIKA OVOTUPIOTMUEVO TOADTOTA.

Téhog, oto televTaio TUNUO NG dTPIPNG GTPEPOVUE TV TPOGOYN HOG LOKPLE amd TNV €K TOV
VOTEPOV OPHBOAOYIKOTNTO KOl ETIKEVIPOVOUACTE GTIC WOOTNTEG T®V IGOPPOTLDY TOV AVAKTOVV Ol NO-
linear-swap regret SUVOLIKES oG OE Talyvia EKTETOUEVNG Lopeng. To péco mai&io Twv no-linear-
swap regret TolKT®V GUYKAIVEL G€ £V GOVOAO 1GOPPOTIDY TOL ovoudlovLLe linear-deviation correlated
equilibria (LCEs). Ot LCEs anotehodv £évo DTEPGUVOLO TMV GUGYETICUEVMV LGOPPOTIOV Kol VO, VITO-
GUVOAO TMV GUGYETICUEVMOV IGOPPOTIDY EKTETAUEVNG LOPPNG OE TTOLYVIO EKTETAUEVIG LOPONG. XTO
Kepdhato 6 delyvoupe 6Tt avtol ot eYKAEIGLOTL Elvat Yevikd ovoTnpol Kot TapEyov e TpoOcHETO amoTe-
AEGLLOTO GYETIKG LLE TNV TOALTAOKOTNTO TOL VTOAOYIGHOV vOg LCE mov peyiotomotel Ty Kovmvikn

gonuepio.

Yyetikég gpyacies  Onmg avapépbnke otny slooywyn, 1 vapén acvlevkTov no-regret SLVUUIKOV
7OV 091 YoUV o€ cuoyeTiopuévn 1eoppomia (CE) oe maiyvio kavovikig Hopeng Yo ToAAoVG TtoikTeg &i-
Vo éva TEPIPN O ATOTELEC LA, TOV YPOVOAOYELTAL TOVAG)IGTOV 0td TV epyacio Twv Foster and Vohra
[1997]. Avti N epyocia EVETVELGE TOVG EPEVVITEG VO. Ova(NTHGOLV d1001KaGieg 0oVEVKTNG HAbnomg
Kol o AAlo TepiPaiiovta. I'a Tapddetypa, ot Stoltz and Lugosi [2007] peketovv Tig Suvapukég pd-
Onong mov odnyovv ce CE og maiyvia pe anepo (0AAL copmayEc) cuvolo dpdcemv, evod ot Kakade
et al. [2003] eotialovv o€ ypagikd maiyvia. Ta mo mpdseata xpovia, pia avcavouevn tpoonddeio
&xet kataPAndei mpoc v katehBvvon NG KaTavonong TV oxécemv Petald Tng no-regret LabNong
KO TOV IGOPPOTLDV GE ALY VIO EKTETAUEVIG LOPPT|G LLE OTEAT TTANPOPOPN O, TO TEPPAAAOV GTO 0010
eotwafovpe. To malyvia exteTapévng LopeNg Tapovstalovy TpoOcheTe; TPOKANOELS GE GUYKPLOT LE TO
TOLYVIO. KOVOVIKIG LOPPNS, AOY® TNG aKOAOLOOKNG TOLG VoG KOl TNG TOPOVGing 0TeAoVg TANPO-
@opnonc. Evod eival yvootd anotelecpatikd duvapkd pabnong no-regret yio moiyvio EKTETOUEVNC
popong (cvumeptrapupavouévon tov dnpoeiiovg aryopifuov CFR [Zinkevich et al., 2008]), uéypt on-
pepa. dev yvapilovpe ToAAd yio To no-swap-regret Kot tnyv mtoAvmtAokdtnta e pdonong CE g maiyvia
EKTETAEVNG LOPPTG.

H minciéotepn évvola oty CE mov givar yvwoto 61t eivol amoteAespoticd vroloyicun o€ mai-
YV EKTETOUEVIG LOPONG etvan 1) extensive-form correlated equilibrium (EFCE), mov gionyfn and
tovg von Stengel and Forges [2008]. To epdtua katd 1660 10 suvoro twv EFCE 8o prnopovoe va
TPOCEYYIOTEL LECH U1 LLEVYUEVOV SUVOUIKOV no-regret e EMUVAANYELS TOAVMVUUIKOD ¥POVOL GTO
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péyebog Tov maryviov ekteTopévng popeng amavtiOnke Oeticd Tpdceata [Farina et al., 2022b, Celli
et al., 2020]. Zvykekpyéva, ot Farina et al. [2022b] deiyvouv 611t n EFCE mpokdntel and to péco
nai&po tov adyopiBuov no-trigger-regret, 0Tov 01 AmOKAICELS trigger eival éva GUYKEKPLLEVO VOG-
VOAO YPOUUIK®DV HETACYTLOTICUMV TOV TOAVTOTOV TMV GTPUTNYIKGOV akoAovOiakng popeng Q kabe
ToikTN. ASOUEVOL OTL T TAPOVCO EPYOCIH EXKEVIPAOVETOL GE SUVOHIKES LABNGNG TOV EYYLMVTOL VTTO-
YPOUUIKO regret 6 GYECT UE OTOI0VORTOTE YPOUUIKO UETAGYNUATIONS TOV Q, TPOKVTTEL AUECHOE OTL
ot dSuvapkég o mapovotldlovtot og avtn TV gpyacia avaktovv v EFCE og e1dwn nepintmon.

H évvola ¢ elayiotonoinong tov linear-swap-regret £xet e&etaotel 610 TapeAOOV 6TO TANIGLO
tov Mrebliavaov naryviov. Ot Mansour et al. [2022] peietodv €va mepiBdAiov dnov évog no-regret
learner avtayovileton og éva Mreb(ovo maiyvio 600 Touktdv e Evay opBoroyikd maximizer ®Qé-
Agtog, dnAadn Evay avotnpd 1oyvpoTEPO aviinaio and tov learnner. Yo avtd to TAOic0, Pmopel
va amodeybei 6TL og kGOe YOpo 0 PertioTomomTig ivat eyyomuévo 6Tt Bl ETTVYEL TOLAGYIGTOV TV
Mrebvliavn a&ila Stackelberg tov matyviov. Xt cuvéyeLd, TPoY®POHV 6TV amodeln OtTL 1 EAdyLoTO-
noinon tov linear-swap regret givol amopoitntm av 0Aovpe va teplopicovpe v amddoon tov PeA-
Tiotomoutn oty Tun Stackelberg, evd 1 elayiotomoinom Tov polytope-swap regret (Lo yevikevon
Tov swap regret yio. Bayesian mouyvidia, kot ovotnpd 1oyvpotepn ond to linear-swap) apkel yio va
TEPLOPIGOLLLE TNV AOS00T TOV BeATIoTOTOMTH. (26 €K TOVTOV, TA ATOTEAEGILATO, OVTH AVAOELKVOOLY
T onpacio g avantuéng aiyopiBpmv pdnong vo wyvpotepeg Evvoles opholoyiouod, OT®S ivar
0 OTOYOC oG GTNV TTapovoo STA®MUTIKY epyacia. EmmAéov, autd ta amoteléouato Topéyovy amo-
deilelc 0TL 1| Kataokevt| €vog no-linear-swap regret learner, 6mwg givol 0 6ToY0C Hog €0, UTOpEl va
EMPEPEL 0QEAN G cVYKPLoN pe dALOVG AryoTepo opBoloyucolg learners. Xe puo TapdAinAn epyacia,
o Fujii [2023] opilel v Evvora tov untruthful swap regret yio Mreb{lova maiyvia Kot amodetkvieL 0T,
v to MrebQuava maiyvia, givat icodvvaun pe to linear-swap regret Tov pag omacyoAei oty epyacio
oG,

To MrebQové maiyvia pmropodv va BempnBodv og 101k mepinT®on TV Toryviov EKTETAUEVTC
LOPOPTS, OOV EVOC KOUPBOG TOYXNG EMAEYEL apyIKA Evav amd Tovg Thavovg TOmovg O yia kabe moiktn.
'Etot, 0 adyopBuoc pog mov elayiotonotel To linear-swap regret oto molyvio EKTETOUEVIG LOPONG
ehaylotonolel emiong to linear-swap regret ota MnebQiavd matyvia. Qot660, TOpaTNPOVUE OTL 1) €K-
OPacT Hog Yo To regret EapTaTol TOAV®VLIIKA 0rtd Tov aptfpd Tov TOnoV |O] TV TokTdv KaddS
OTTOTEAOVV PEPOC TNG UVATOPAGTUCTG TOL dEVIPOL TOV Tayviov, evd o Fujii [2023] €yel emvonoet
évav olyopipo yio MrebQava aiyvia, Tov omoiov o regret e€aptdrar povo and to log |O).

Télog, avapépovpie emiong OTL Un YPOUUIKES AmOKAIoELS £xovv dlepevvnBel o€ Tatyvio EKTETOLE-
VNG HopONG, av kot dev yvopilovpe agloonueinta peydio ohvora yio To oroio pmopel va emtvondodv
no-regret SUVAIKEC GE TOAVMVUULKO XPOVO. ZVYKEKPLEVE, EMoTHaivove TNV epyacia Twv Morrill
etal. [2021], n onoia opilel TNV évvola TOV “CUUTEPLPOPIKOV OTOKAIGE®V” . AVTEG Ol UTOKAIGELS £ivan
L1 YPOLLLKEC GE GYECN LE TNV OVOTUPAGTACT TOV CTPATNYIKOV GE Talyvio EKTETOUEVNG Lopenc. Ot
GLYYPOQEIG KATNYOPLOTOLOVV SLAPOPOVG YVAOGTOVS 1] VEOLS TOTOVG TEPLOPIGUEVAOV GUUTEPLPOPIKMV
anokAicewv o éva Tomio AmokAicewv mov avadeikviet Tig petald toug oyéoelc. [lapodio mov 1660 ot
YPOUUIKES amokAicels, mov EeTdlove G VTN TNV €PYOGIN, OGO KOl Ol GUUTEPLPOPIKES ATOKAIGELS
eaivetal vo amotehovv Thovota PETpa 0pBOAOYIGHOV, Kapio 0o AVTES OV TEPLEYEL TNV GAAN Ko £TGT1,
oL ypappkéc amokAioelg dev touplalovv oto Tomio Anoxkhicewv tov Morrill et al. [2021] (BA. eniong
v [Hapatipnon 6.1.2).

Ewsayoywa

YmrevBopilovpe To TUMIKO LOVTEAD TV TOLYVIOV EKTETAUEVNC LOPPNG, KOOGS Kot TO TANIGL0 TNG
uéonong oto Taiyvio.
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Maiyvia exteTapévng popeng

Evo ta watyvia kavovikng popeng (NFGs) avtiotoyobv oe pun d10doykég aAANAETIOPAGELS, OTTMG
T0 TETPA-YAAIDI-XOPTI, OOV Ol TAIKTEG EMAEYOLV TOVTOHYPOVA [0, EVEPYELD KOL OTY] GLUVEYELD AapPd-
vouv o TAnpoun pe Béon to Tt enéhelav ol dArot, Ta Tatyvia extetapévng popens (EFG) povteho-
7olovV Taiyvio Tov wailovtal og éva dévtpo matyviov. [epthapfavouvy 1660 Tig 1000y 1IKEG OGO Kal TIG
TOVTOYPOVEG KIVIGELS, KOOMS KoL TV 101MTIKN TANPOQOPIo Ko ETOUEVAOC ATOTEAOVV VO TTOAD YEVIKO
KoL EKQPACTIKO LLOVTELO TTAYVIKV, TOV GOTVITMVEL TO OKAKL, T0 GO, TO TOKEP, TIC OLAUOOYIKEG ONLLO-
Tpooieg Kot ToAAES GALeg TeputTdoelc. Topa vrevBupilovpe Boctkéc 1010TNTES Kot GLUBOAGLOVG Yo
ta EFGs.

Aévpo maryviov  Xg évo mailyvio EKTETAUEVNG LOPPNG 1 TUKT®V, KAOE KOUPOg 6T0 d€vTpo TTat-
yviov aviiotoryileton pe akpBmg évav moikt and to ovvoro {1, ..., n}U{c}, 6mov o edkdg maikng
¢—Tov oVoUAleTal TOTKTNG TOYALOTHTOC—YPTCILOTOLEITAL Y10l TY] LOVTIEAOTOINGT TUXAi®V GTOXUOTL-
KOV amoteAecpdtov, 0mmg n piyn evog Loptod 1 To Tpdfnypa Kaptdv amd po tpdmovia. Ot akpég
OV EEHYOLV OO Evav KOUPO AVIITPOCHOTELOVV TIG EVEPYELEG OV UTOPEL VoL KAVEL £VOG TOIKTNG O€
ovtév Tov KOpPo. ['a ™ povieAomoinon 181 TIK®Y TANPOPOPLDYV, TO SEVIPO TOV TALYVIOU GUUTANP®-
VETOL € P10 KATATUNON TANPOPOPLOV, oL opileTal MG pio KATATUNoN TV KOUP®V 6€ cHVOAL TOV
ovopalovtor chvora mAnpopopidyv. Kébe kdpupog avikel akpifdg o€ £€vo GHVOALO TANPOPOPLOY Kot
KGO cVVOAD TANPOPOPLOY gival Eva LN KeVO chVOLo KOUPB®V TOV 6EVTPOUL Y Tov id10 maiktn 7. ' Eva
GUVOLO TANPOPOPIAV Y10 TOV TAIKTN ¢ VTOONADVEL 1o, GLAAOYT KOUPV peTa&d TV 0moiny 0 ok
1 0gv umopei va Kavel d1dkpion, pe faon 6ca £xel Tapatnpnoel LEXPL OTIYUNG. (ENUEDVOLLLE OTL OAOL
ot KOpPot og éva 1810 GUVOLO TANPOPOPLOY TPETEL VA £XOVV TO 1010 GOVOAO S100EGIUOV EVEPYEILDV,
OAMOG 0 ToikTng Ba diékpve Toug KOUPBoLS). To 6HVOAD OAWMV TV GLVOL®Y TANPOPOPLDY TOV TOUKTN
i oupuPoiiletar wg J;. Znv mapovoa epyacio, Bo eEetdoovpe povo Ta malyvia pe téleia avarinoy,
ONAad1| To malyvia 6T 0Toin T GOVOAL TANPOPOPLOV EIVAL SLOTETAYLEVO GCOUP®VO LE TO YEYOVOG OTL
Kavévag maiktng oev Eeyva TL yvopile vopitepa.

Yrpotnykég akoAovOloKng poppilg  Aegdopévou 6t ot KOpPot Tov aviKoVY G6TOo {610 GVVOAO
TANPOPOPIOV Y10 EVOV TAIKTN EIVOL SLGOIKPLTOL YO TOV TTAUKTI AVTO, O TTAIKTNG TTPEMEL VoL TaileL
v 010 oTpaTNYIKY 68 KAOE Evav amd TOVG KOUPOVG. LUVETMDC, LK GTPOTNYIKT Yo £V ToikTn elval
aKPIPOS L0 OTEKOVIOT OO £VO 6OVOLO TANPOPOPIOY GE PO KATAVO LT TAVO OTIG EVEPYELES. Me A
Adywo, glval to cOVOAL TANPOPOPILOV Kot Oyl o1 KOUPOL TOL dEVIPOV TALYVIWV OV ATOTVITMVOLY TO
onueio andeacmng Tov moikt. MmTopodue TOTE VO OVOTOPAGTIGOVLE 0L GTPOUTNYIKT] Y10 EVOV YEVIKO
TOUKTN ¢ ®G Eva O1AVLG O TOV de1kTodoTEITOL 0d KAOE EyKkvpo {e1YOG GUVOLOL TANPOPOPLOV-OPAOTG
(4, a). KdBe téoro éyxvpo Lebyog ovopdletat axolovdio Tov TaikTn- 10 GHVOAO OA®V TV akoA0LODY
ovpBolriletar og X; = {(j,a) : j € Ji,a € A;} U {@}, 6mov 10 £181k6 ctoryeio & ovoudleton
Kkevi] axolovdia. Aedopévov evog cuvorov TAnpoopidy j € J;, cvpforilovue pe p; Tnv akorovdio
yovéa tov j, 1 omoia opiletan wg to TeAevTaio (evyog (J,a) € X; TOVL CLUVOVTIAUE GTO HOVOTATL OO
™ pila mpog omorovdnmote kKOUPo v € j- av dev vrapyel T€Toro Levyog, vrobitovpe p; = . Télog,
ovpPorifovpe pe Cp to T TG axkorovbiag o € X;, mov opilovtar ©G To GHVOAN TANPOPOPiaG
J € J; yw ta omoia p; = 0. Ot axorovdieg o Yo 11¢ omoieg Cp eivan évo kevo chivoro ovopdlovrat
TEPUOTIKEG- TO GUVOAO OADV TOV TEPUATIKAOV 0KoAovOidV cupforiletar wg Ef

Example 0.0.1. Ocwpriore ti devopoeidn d1a01xacio AfYnS amopacemy mov ovVTUETOTI(EL 0 ToIKTHS 1
oto HiKpo woiyvio tov 2ynuotos 0.1 (apiotepd). H drodikaoio amopachs Exel T6ooepIc KOUPOVS amoQa.-
ons J1 = {A, B, C, D} kou evwéa axolovbicg, ovumepilopfovouévns e kevig oxotovbios &. Ia tov
xoupo amdpaons D, n yovikn axoiovBio eivor pp = A2, yia B kou C givou pg = A1, yia A givou n kev
oxolovlio py = @.
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}\ Sequence-form constraints:
1 2

x[o] =1,
/Pg ¢ z[A1] + z[A2] = z[2],
x[B3| + x[B4] = x[A1],
° ¢ ! AP z[C5] + z[C6] = [A1],
7
[D8] + x[D9] = x[A2]

3 4 5 6 789 89
A A A A z[D7] + 2[D8

O ] O ] O

Yympa 0.1: (Apiotepd) Aevopoetdng dtadtkacio AYng amoedcewy mov e£eTdleTOl GTO TAPASELYLLA.
Ot pavpot otpoyyviol kopuPot avikovy atov maikt 1, ot Agvkoi oTpoyyvrol koot oTov
waik 2. Ot tetpdywvor Aevkoi kopfot ivat teppatikoi KOpPotl 6To 6£VTpo Tov watyviov,
ol mAnpouég tapareimovtor. Ot ykpileg caKoOAEC VTOINADVOUY GOVOAL TAT|POPOPLADV.
(Ag&it) Ot mepropiopoi mov opifovv o aKoAoVOI0KNG LOPPTG TOAVTOTIO Q1 Y TOV 7o~
Kkt 1 (eKTOG amd TN 1N OpPVNTIKOTNTA).

"Evo usiwugvo mAavo kovovikng popens Yo, Tov ToUKTN ¢ OVOTOPLoTO L0 VIETEPULVIOTIKT OTPUTY)-
YU Yo TOV TodkT ¢ £va Stdvoopa x € {0, 1} 6mov 1 Tiun ToL avTIGTOtYEL 611 YeviKT okolovdio
x[ja] eivar ion pe 1 eav o maiktng noiler v evépyeia a 610 ovvoro TAnpogopldv j € J;. Ta chvora
TANPOPOPLOV TOV OEV UTOPOVV VO, TPOGEYYIGTOVV HE Pdom TN oTpatnyikn Ogv €Youv Kapio ETAEY-
pévn evépyeto. Mo kpiotn 1010tnTa TG avomapdoToonS LEIWUEVOV TAAVOY KOVOVIKNG LOPENG TOV
VIETEPUIVIOTIKDY GTPOINYIK®V £ival T YEYOVOg OTL 1] 0PEAELn KAOE TaikTn Elvol o TOAVYPOUIIKY
GLUVAPTNON OTO TPOPIA TOV UEIOUEVOV TAAVOV KOVOVIKNG Hopeng Tov mailovv ot maikteg. To ov-
VOAO OA®V TOV PEIOUEVOV TAAVOV KOVOVIKNG LOPPNG TOL TtaikTn ¢ cupPorileton pe 1o cvpforo 11;.
Yuvnbmg, n TAnbwdtnta Tov II; sivan exBetikn oto péyebog Tov dévipov Tov matyviov.

To kvpTd TEPIPAN O TOV GVLVOAOL TOV UELMUEVOV TAAVOV KOVOVIKNG LOPPTG TOV TAIKT ¢ OVOLLG-
Leton moAbromo axolovbiakic popeig Tov maiktn kot cvpPorileton pe o odpporo Q; = conv(1l;).
Avtimpoo®nevel T0 GOVOAO OAMV T®MV TLYOLOTOUEV®V GTPATNYIK®Y 6To Taiyvio. Eva onpoavtikod
arotélecpo Tov Romanovskii [1962], Koller et al. [1996], von Stengel [1996] deiyver 611 t0 Q; umo-
pel va KoTaypagel amd TOAV®VUUIKA TOALOVG TEPLOPIGHOVS 0T0 HEYEBOC TOV BEVTPOL TOL TaLYViov,
omwc vevhupifove 6N GLVEXELD.

Definition 0.0.2. 70 TOAVTOTO TOV GTPATNYIK®V LE LOPOT aKoAoLBioG Tov malkty & gival (oo e T0
KUPTO TOADTOTTO

0.1) z[g]=1

Q, =< x € RZ, : ) . .

@ 207 (02) Yeq wlial =2lp] Vied

INo mopadetypo, ot Teplopiooi Tov 0pilovv 10 TOAVTOTIO AKOAOVOIOKNAG LOPPTG VIO TOV TOIKTT
1 oto mouyvidt 0.1 (apiotepd) sppaviCovral oto 0.1 (5e&1ét). To TOAHTONO TOV GTPATYIKMV LE HOPPT|
axolovBiag Slabéter pia 1YVPN CLVOLACTIKY SOUN OV EMTPEMEL TNV EMTAYVVOT] TOAALDV KOOV
dtadkacidv Pedtiotonoinong kot Ba elvar kaiplog onuaciag yio Ty avanTuEr OTOTEAEGLATIKMY oA~
yopibumv cvykiiong o€ 1ooppomia.

OpBoroyiopog ek TOV VOTEPOV Ko pddnon o€ maiyvia

To matyvia givor pio amd T1g TOAAEG KATOOTAGELS OTIG OTOIEG £VAG AMATNG ATOPACEWDY TPETEL VOl
gvepynoel pe dpeco tpomo. ['a auTég TI KUTAGTAGELS, TO O EVPEMG XPTCULOTOLOVUEVO TPOTOKOALO
glvar avto ™ Apeong Mdabnong (m.y., PAéne Orabona [2022]). Zvykekpipéva, KAOe EKTAOELOUEVOC
gyel £V GUVOAO EVEPYEIDY 1| GUUTEPLPOPGOV OV pmopel vor ypnopomomiost X C RY (og maiyvia
EKTETAPEVNG HOPPTG, aLTO B NTOV TO GUVOAD T®V GTPATNYIKOV HEIWHEVNG KOVOVIKNG LOPONC). X
KG0g ypovikd Prina t 0 EKTAIOEVOUEVOG EMAEYEL TPDOTA, EVOEYOLEVMG TUYaiD, Eva ototyeio & X kot
611 GLVEKEWD AapPaver e cuvaptnon amdrewag (aveife g oeéretag) L) : X — R. Aedopévon
OTL OTMG TAPOTNPNOAUE Ol TAPUTAve w@éAelec ota EFGs givol ypopukés ota mAGvVo HEtdUEVNC
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KOVOVIKNG LOPOT|g KGOE TaikTr, 610 VwOAOO TG epyaciag Oa enkevipwbobie 6NV TEPITTO®OT TOV
1 ovvépmon andretog L1 givor ypapuuen, dniadh mg popeig L4 : & — (£ £ 1),

"Evag geupémg vioBetnpévog otoy0g Y10 TOV EKTULOEVOUEVO Eival awTdg TG e&ac@aiiong e&apavi-
fouevov pécov regret ne peydin mboavotnta. H petdvora opiletot ¢ 1 dtapopd petald g oandAetog
OV GUGGMPEVGE 0 LOONTNAG HECM TNG EMAOYNG TNG CLUTEPLPOPAG TOV KO TNG ATMAELNG TOL Oal iye
GLGCMPEVGEL EK TV VOTEPWV OV EIYE TPOTOMOGEL L€ GUVETELD TH GUUTEPLPOPE TOV GUUPDVO LE
KGO0 GLVAPTNGOT LUETACYNLOTIGHOD oTpatnykns. Ewduotepa, éotw P éva emBountd cvuvolro peto-
CYNUATICUOV oTPATNYIKNG ¢ : X — X mov o pafntig pmopel va B€AeL va, pdbet va pnv HeTavVIDVEL.
Tote, to P-regret Tov padn opiletar og n mocdTNTOL

T
Reo(D) -— ®) 2Oy _ p®) (t)
d-Reg™) := glgg; (€9, 20) — (69, ()

"Evag alyopiBpog no-®-regret (emiong yvwotog og ehayiotomointig P-regret) sivar Evag adyopio-
10G IOV, o€ K&e ypovuch otyun T', eyyvdron pe peyén mbavornta 6t d-Reg?) = o(T) ave&aptnro
oo TNV aKoAoVHio TOV OTOAEI®V TOV oToKoAVTTOVTOL 0t TO TEPIPariov. To péyebog Tov cuvorov
P TV HETAOYNUATIOU®V GTPATNYIKNG 0pilel £va UOIKO HETPO 0pBOAOYIGHOV (TOV LEPIKES POPES
ovoudletar opboloyiouds ex twv voTEP®Y) Y10 TOVG TOAKTEG, KOl S1APOPES EMAOYEG Eyouv oulnTn-
Ol ot Prproypaoio. Ipoeavmg, 660 10 P yivetar peyaivtepo, o pabntig yiveror mo opBoroyikdc.
Amd v GAAN TAELPd, N €E0COAMOT] VITOYPULLUIKOD regret 6e oy€omn HE OAOVG TOVG UETACYTMUOTL-
opovg Tov emheypévov ovvorlov P pmopel va givarl yevikd dOokoAn. Xto €va dKpo Tov PACLATOG,
omg N LikpOTEPN EVOlAPEPOLGH EMAOYT TOV P €lval To GVUVOAO OAOV TOV oTabep®V LETACYTLOTL-
opumv POt = {1 x> Thaex. Te oL TV TEpinTOGT, TO POSregret ovopdletol eniong Ko
external regret xou €xel peretn0el extevadg oto medio g online kvpthg Pertiotomoinone. 1o GAlo
GKpPO TOL PAGHOTOG, TO SWap regret OVTIGTOXEL 6TN TepinTon oty onoia @ gival To Guvoro dlwv
TV petocynuaticpov X — X. Kanwg evoldpeomn, Kot KEVIPIKNG ONUOCIOG OTNV TOPOVsH EPYAGIa,
glvan 1 évvola tov linear-swap regret, 1 0moio. AVTIGTOLYEL OTNV TEPINTMON GTNV OTOia

d={r— Az:Ac R with Az c¢ X Vzc X} (linear-swap deviations)

£ivol To GHVOLO OAOV TOV YPOUUIKOVY LETACYNUATICUOV omd X GTOV EaVT6 Tov. !

Mo onpavTikn Topatypnon gival 6t 0tov OAeg ot eEetalOpevec cuVaPTNOELS amdKAlong 6to ©
elvan ypappkés, vag adyoplfpog mov eyyvdtot vroypappikd P-regret yio to chvoro X pmopei va
KOTAOKELOOTEL AUESE amd VO VIETEPHIVIOTIKO no-P-regret akyopBpo y 1o X' = A(X) pe dety-
natoinyio X' > x and onowodnnote ' € X’ £101 dote va gyyvarton 6t E[x] = ’. Agdopévov 6t
ovtd akplPac elval To TAAIGL0 TOL PEAETANE GTNV TAPOVGO EPYACIO, ALTH 1 JUOESOUEVT] TOPUTY]-
pnon (BA. emiong Farina et al. [2022b]) pog emitpénet vo enkevipmBodpe 6to axdAovdo mTpdPAnuaL:
VRLAPYEL £VAG VIETEPUIVIOTIKOG aAYOp1Bog ympic P-regret yio To GHVOLO TOV GTPATNYIK®OV AKOAOL-
Olokng popeng X = Q; omoloLdNTOTE MAIKTN GE £va TOIYVIO EKTETOUEVNG LOPPNG, LUE EYYUNUEVO
vroypoppkd P-regret otn yepoTEPT TEPITTOOT; TNV TOPOVGO EPYACia amavTdpue OeTikd og aVTO TO

EPATLLOL.

A7 1o regret sty woopponia.  To mhaicio Tng Mdébnong ota [aiyvia avaeépetal 6TV KOTAGTAOT
oTNV 0Toie. OAOL 01 TAUKTEG XPTGLOTOOVV Evav aAyOplOpo puabnong, Aapupdvoviog g ammAEle TO
apVNTIKO TNG KMoNg NG SIKNG TOVG MOEAELNG TOV OMOTILATAL GTIG GTPOTNYIKEG TOL €EAYOVTOL OO
OA0VG TOVG GALOVG TtaikTeS. M1 GUVOPTOGTIKN TTUYN TG duVOIKTS Labnong ywpig $-regret etvon
OTL av KaOe TaikTNg €VOG TOyviov Ypnoomolel Evav alyoplBpo yopig P-regret, TOTE 1 EUNEPIKY| GL-
xvotnTa Toéitatog cuykAivel oyxedov olyovpa 6To GHVOAD TV P-100pPOTIDYV, 01 0TTOIEG Eival EVVOleg
GUGYETIGUEVOV 1GOPPOTIDYV, GTIC 0moieg 0 0pBoAoYIoHOG TV ToKT®V Tteplopiletal amd to péyebog
o0V ovvorov P. Tvmkd, Yo éva cuvoro @ amokAicewv otpatnyikng, po P-icoppomia opiletor mg
egng.

! Tl Tovg oKkomoig awTig ™G epyasiag, To emifeto linear avapépeton 6To Yeyovos 0T Kibe HETACYNUATIONOC UTOpsi var
EKQPUOTEL LE TN HOPON T —> Az Yo £vov KaTtdAANAo Tivoko A.
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Definition 0.0.3. [ia éva maiyvio n wouktdv extetouévns puopens G kor éva ovvolo ®; amoxlioewv
yia kabe moixty, o {P; }-100ppornio eivar pa ko kazavousy p € A(Ily x - -+ x II,,) téroia dote
o ke maiiry i kol kabe omoxiion ¢ € ®; va 1oyder on

Egrpui(x)] > Egepui(o(;), ;)]

Aniady, Kavévas moiktng 1 0ev Exel KIVIITPO VO, ATOKAIVEL LOVOUEPES OO TH GUVIGTOUEVY KOV
OTPATNYIKY X YPHOIUOTOIWVTAS OTOLOVONTOTE UETOTYNUATIONO ¢ € D;.

AvTO 10 YeVIKO TAOIGIO KOAVTTEL APKETES ONUOVTIKEC £VVOLEG 100PPOTIOG GE L0l TOIKIALOL TToiL-
yviofempntikdv povtédwy. [a mapdderypa, 1060 ota NFGs 660 kot ota EFGs, o1 no-external regret
duvapkéc ouykAivouv 6to cOvoAo TV coarse correlated equilibria. Zta NFGs, ot no-swap regret dv-
VOUIKEG GUYKAIVOUV 6T0 cUVoLo TV correlated equilibria [Blum and Mansour, 2007]. Zta EFGs, ot
Farina et al. [2022b] anédei&av mpdopata OTL £vo GUYKEKPIUEVO VITOGVUVOAO D YPOUUIKOV LETOGYN-
LOTIGU®V TOV ovopdleTol trigger deviations odnyei oto ovvoro tov EFCE.

Avayoyn tov $-regret o external regret Mia kopyn katackevn tov Gordon et al. [2008] emtpé-
TEL TNV KATOOKELT] aAyopiBpmy no-P-regret yia éva yevikd cvvoro X EeKvmvtog amd Evay aAyopiopo
no-external-regret yio To . YrevBopifovpe ev cuvropio o omotélecua.

Theorem 0.0.4 (Gordon et al. [2008]). Eotw R évag elayioromomntic external regret mov &xel wg
XOPO IPAoNS T0 abvoro Ty uetacynuotioudy © xai emitvyyaver vroypouuiko external regret Reg(T).
Emimhéov, vrobétovue ot1 yia 6da ta ¢ € P vrdpyer éva oralepo onueio p(x) = x € X. Tote, évog
edayiotomomtng P-regret Ro umopet vo. kotaokevootel w¢ eENG:
o Ta mpv é¢odo wac orpamyikic € oy emaviinyn t tov Re, Adfe wa ééodo ¢ e & tov
external regret hoyiotomomti R, kou enéotpeye éva omd to. otabepd onueio tov &) = ) (m(t ).
o [lia kébe ypoyuxij oovaptnon axdieiac LY mov AauPéaver o Re, katackebooe ) ypauuks oo-
véptnon LY - ¢ — (D (p(xD) ko mépacé my w¢ andieia oo R.
Eotw ®-Reg") 10 -regret tov Re. Zdupwve. ue tv mponyobusviy katackevd, 1oybel 0t

<I>—Reg(T) = Reg(T) VT =1,2,...

Ero1, av R eivor évog elayiotorointic external regret, tote 0 R eivou évag elayiotorointic P-
regret.

"Evog alyopiOpoc No-Linear-Swap Regret pe emavoiqyelg
TOAVOVUULKOV YPOVOV

Y& 00T TNV EVOTNTA, TEPLYPAPOVLE TOV no-linear-swap regret aAyoplOpd Hog Yo To GOVOAO TV
GTPATIYIKOV 0KOAOVOOKNG LOPENS Q EVOG YEVIKOD TTOIKTH O OTOIOONTOTE TAYVIO EKTETAUEVNG LOP-
ON¢ pe TéLea avakinon kal atedn TAnpoedpnon. O alydpiBrog akolovbel To YeVIKO TPOTLTO Y10 TV
Kotaokevn glaytotomomtmv P-regret mov diveton and v gpyacio Gordon et al. [2008] kot vevOv-
piCeton 6to Oecdpnpua 0.0.4. I'a o oxomd awTd Ypetaldpacte Vo oTotyeia:

) évov amodotikd ghayiotonowty| external regret ywa 1o chvoro Mo_, o OA®V TOV TVAKOV TOL
TPOKOAOVV YPOULIKODG LETOCYTLOTIGHOVG amtd O og O,

i) éva amodotikd vroAoyicio pavieio otafepod onueiov yu nivakeg A € Mo_, g, TOV EMOTPE-
ostx = Ax € Q.

H dmapén evog otabepod onpeiov, mov amotteitatl 61o ii), givor gdkodo va dlomioTtmBel e 1o Bedpnpo
o100gpov onueiov Tov Brouwer, d€301€EVOV OTL TO TOAVTOTO TOV GTPATIYIKOV 0KOAOVOIOKNAG LOPONS
glvan cupmayEc Ko KupTo, Kot 1 GUVEXNS oLVapTNoN & — Ax aneikovilelto Q 6Tov eavTd TV €€ 0pt-
opov. Emmiéov, 0mwc Ba pavel otn cuvéyeia tng evotntag, OAo ta otoyeic A € Mo_, o €xovv Tpég
10 [0, 1]%**. Enopévac, n amaitnon ii) umopel va ucavomomdei dueso, e v emiluon tov ypoppt-
KoV mpoypappatog epiktotnrag {find « : Az = x,x € Q} ypnowonoudviog onoVeNTOTE 0Id
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TOVG YVOGTOVS 0AYopifHovg TOAD@VLIIKOD ¥POVOL Y10 YPOUUIKO Tpoypappotiopd. H tkovomoinon
g amaitnong i) eivat  ovcio Tov BEUATOG Kot OTOTEAEL TO EMIKEVTPO LEYAAOV LLEPOVGS TNG EPYACING.
Ed®, divovpe tn dwicOnon yia Tig kOpieg 10éec Tov cupPdAiiovy otov akyoplpo. Oleg ot amodei&elg
TOPOTEUTOVTOL GTO TOUPAPTILLOL.

H dopn TV YPOPUIKOV RETUAGYNUUTICUAV TOV TOAVTOTOV GTPUTYIKOV
0KOLOVOLOKG popP1)g

To kpioyo Prpa TV KATOCKELT UG EvOl Vo, KOOIEPDGOVE L0 GEPE OTOTEAEGUATMOV TOV
pixvouv g otn Bepelddn yeopetpio Tov GuVOLOL M g_, o OAWY TOV YPOUUIKOV HETACYNHLATICUOV
oo €va ToAHTOTO 0KoAoLOLOKN G LopPT|g O GTOV E0VTO TOV. TNV TPUYUATIKOTITO, TO OTOTEAECUOTA
nog emekteivovtol mépo amd TG cvvaptnoelg and 10 Q 610 Q 6 Mo YEVIKEG GUVAPTNGOELS amd TO
Q ot éva yevikd ovumayéc moddtomo P = {x € R? : Px = p,x > 0} y10 avboipeta P xou
p. Ogpeldvoope 0 akd6Aovbo Bedpnia YopaKTNPICHOD, TO 0010 deiyvel OTL OTOV Ol GLVAPTHGELS
ekppalovtol og Lopen| Tivaka, To cUVOA0 Mo _,p Umopel va mpocdlopiotel amd Evav TOAVMVUUIKO
apOud mepopropdv. H amoddeitn avapdiieton yio to Kepdioto 5.

Theorem 0.0.5. Eotw Q évog yawpos otpatnyikmv axolovdiaxns popens kot éotw P omoiodnmote
ppayuévo molvromo e uopgiic P == {x € R : Pz = p,x > 0} C [0,7]% émov P € R**%, Tore,
yio kale ypoyyurn oovdptyon | Q — P, vmapyer évog mivakxas A ato moAdTomo

(03) PA(ja) = 0j Vya c ZJ‘
(0.4) Ay =0 Voex\xt
(05) Zvc b/—p
. _ dxy . 7'€Cx I
Mopi=JA=[A | ]ERD™: (0 Yiec, by =bj Vjaes\zt
(0.7) A € [0,7]? YoeXx
(0.8) b; € R” vVied

této10¢ wote f(x) = Ax yo dda to x € Q. Aviiotpoga, kibe A € Mo_p opiler wa ypouyurn
ovvaptnion x — Ax ord Q o P, dnladn oo wore Ax € P yia ddoto x € Q.

H amddeién Aertovpyel pe emoymyn o€ TOAMATAG PLOTO. ZTOV TUPNVO TG, EKUETAAAEVETAL TN
GLVOVOOTIKY GOUT TMV TOATOTOV GTPUTNYIKAOV 0KOAOLOIOKNAG LOPPNG, TO OO0, LITOPOVY VO, OVOL-
AVBOVV GE VTOTPOPANLATA YPIOUOTOIDOVTOG IO GEPE amd KOPTESIAVE YIVOUEVA KOl KUPTH TTEPt-
papata. oapatnpodue emiong 0Tt evd 0 Bedpnua amoitel to moAdTomo P va givor g HLOPPNGS
P ={x c RY: Pxr = p,x > 0}, ue AMyn Sovieid 10 omotédeopio. pmopet emiong vo, emektabel
10, v yewpileton dAdeg avamopaoctdoelg onag {x € RY : Px < p}. Em\éEaue t popen mov opile-
Tl 670 Bedpnpa, KaBmg 00Nyl o dupeco otV amoddelln kot Kabdg ol meplopicpoi mov opilovv To
TOAVTOTIO GTPATNYIKAOV akoAovOlakng popens (Optopdg 0.0.2) eivar 10N ot Hopen g EKPPACTG.

Yvykekpiéva, 0étoviag P = Q oto Osdpnpa 0.0.5 (o€ avth v TEPITTOOT, Ol SIUGTAGELS TOV
P Oo eivar k = | T |+ 1 ko d = |X]), cvumepaivovpie 0Tt T0 GHVOAO TOV YPUUIKDY GUVOPTHCEDY OO
70 Q GTOV EAVTO TOV £fval £val GLUTOYEG Kol KupTd moAvTomo Mg o C [0, 1]%**, mov opileton and
O(|2|?) ypappukoig eploptopode. Onmg cvTHONKE, OVTOS 0 TOAVMVULIKOS YUPOKTNPIGHOC TOV
Moo glvar 1 BgpeMmong SomicT®MON TOV EMTPENEL TV EAYLOTONOINGT] GE TOAVMVVLIKO Y¥POVO
tov linear-swap regret o€ YeVIKAQ Toiyvie EKTETAUEVNG LOPPTG.

O aryoprOpoc pog Yo no-linear-swap regret

AT6 €00 KO TEPQ, 1) KOTOGKELT] VOGS aAyopiBov no-external-regret yio 1o Mo, o glvon oyetid
OTTAN, (PNOLUOTOIDOVTOG TUTOTOMUEVE EpYaAEio amd TV Thovota Pifioypagia tng online pédnong.
INo mapaderypa, otov AlyopiBuo 1, tpoteivovpe o Adon mov ypnoyonotet online projected gradient
descent [Gordon, 1999, Zinkevich, 2003].
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Algorithm 1: ®-Regret minimizer for the set ® = Mg_, ¢

Data: A M g_, o and fixed point ) of A learning rates n®) > 0
1 fort=1,2,...do
2 | Output ®
3 Receive £1) and pay (£, ()
o | SetL® = g0 (z0)T
5 A+ — HMQ_,Q(A(” — n(t)L(t)) = argminyc v, o |A® — n®OL®) — Y|%
6 | Compute a fixed point 2(t+1) = AU+ (41D ¢ Q of matrix AC+1)

Yvvdvdalovtag avtdv Tov adyopBuo no-external-regret yio to ® pe v katackevn tov Gordon
et al. [2008], propovpe ot cuvéyeln va kabopicovpe ta akdOAovBa Opta linear-swap regret Kot ToAv-
TAOKOTNTAG ETAVAAN YT Yo Tov AdyopBpo 1.

Theorem 0.0.6 (Informal). Eotw X 10 gdvolo twv axolovbicv tov raikty mov uobaiver aro waiyvio
extetauévnc popenc, kai éotw n® =1 [\t yia6atat. Tote, yio omoradimote axolovbio Siovvoudtwv
amwieriv £ [0, 1%, 0 AlyépiQuoc 1 eyyvéaoa linear-swap regret O(|%|>v/T) ueté omé omorovdimore
ap1ué T emavaliipewv ko exteleitar oe ypévo O(poly(|Z|) log? t) yia ke exavidnym t.

H enionun exdoyn tov Bewpnipatog divetoan oto Oedpnua 4.2.1. A&iler va onueiwdei o6t 1 me-
prypoon tov Mo_, o oe molvwvopko péyedog eivar kpioun yo v Kedépwon Tov TOA@VLHIKOD
ypovoL ektédeong tov alyopifupov, Toco 6to Prpa mpoPoing (5) 660 kot 6To Pripo VITOAOYIGHOV
otabepov onueiov (6). Mapatnpovpe eniong 6ti n emthoyn tov online projected gradient descent oe
oLVOVAGHO U TN B0 EAAENYOEIBOVG Y1 TIC TPOPOAEG NTOV awBaipeTn Kot Ol YPNOIUES 1O1OTNTES
00 M g_, 0 S10TNPOVVTAL OTAV YPNCUYLOTOLEITAL LLE OTOLOVINTOTE 00d0TIKO regret minimizer.

Linear-Deviation Correlated Equilibrium

Onwg cuinNTtoaE GTa EICAYMYIKE, OTAV OXOL Ol TOIKTEG G€ £VOL TO{YVIO YPNGLUOTOI0VV aAYOopio-
povg pddnong no-®-regret, 10tE 1 EUTEPIKN CLYVOTNTA TOV TUEILATOG CLYKAIVEL GYEdOV Glyovpa
010 oUvoAo TV P-1coppomidv. Tlapopoimg, 6tav & = Mg, o1 maikteg gvepyodv pe Pdon dv-
vopukég no-linear-swap regret” kai cuykAivoov e pia évvola e P-tcoppomiog mov ovoudlovpe
linear-deviation correlated equilibrium (LCE). g avti v gvotnta mapovcidlovpe opiouéveg alo-
onpeioteg wW1OTTeg TG LCE. Xuykekpipéva, ocvlntdpe ) oxéon g pe diieg 101 kabiepmopéveg
LOOPPOTIES, KUOMG Kot TNV VITOAOYIOTIKY SuvoTdTNTa ETAOYNG BEATIOTNG 1IG0ppOTIOC.

Yyéon pe CE kor EFCE

To mAaicio eloyiotonoinong tov P-regret, mpooeépet Evav LOIKO TPOHTO YOl TV OLKOJOUNON
Qg epapyiog Tov avtictoyymv P-tcoppomtidv pe Baon ) oxéon tov ¢ cuvorlwv arokiicewy. Ei-
dkdTEPQ, €AV Yo Ta cOVoAd D1, Py 1oyvel 6Tt 1 C Py, T0TE T0 GVUVOLO TV Po-100pPOTIDY Elvar
VITOGVVOAO TOL GLVOAOL TV P1-160ppoTIdV. AedoUEVOD OTL 1] GLCYETICUEVT looppoTia opiletar ypn-
GLUOTOIMVTOG TO GUVOAO OAMV TV ATOKAIGE®MV avTaAAAYNG, cupmepaivovpe 6Tl kKabe P-1coppomia,
ovuneptiapfovopévne e LCE, sivon vrepotvoro g CE. Iowa givon téte 1 oxéon g LCE pe
ocvoyetiopévn woppomio ektetapuévng popeng (EFCE); Ot Farina et al. [2022b] £0e1&av 611 T0 GUVOLO
OFFCE 1101 08 yei v EFCE givat 1o svvolo dhov tov “trigger deviations™, ot omoieg pumopovv va. ek-
QPOCTOVV MG YPUUUKOL LETOGYNULATICULOL TOV GTPATNYIK®OV eKTETAUEVNS LopPT|S. Katd cvvéneta, to
otvoro PFFCE givar £vo vTOGHVORO OAMV TMV YPOUIIKAVY LETACYNHUOTICHOY Kol GUVETAG, 16XVEL OTL
CE C LCE C EFCE. Zta mapadeiypata 6.1.1 kon 6.1.3 tov mopaptipatog deiyvovpe 6Tt vadpyovv
ovykekpéva toiyvia oto onoia gite to CE # LCE, 1 LCE # EFCE. Enopévag, cvumepaivovpe 0tt
oL Tponyovpeveg eykieioels eivar avotnpés ko woyvet CE C LCE C EFCE.
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INa to Hapdaderypa 6.1.1 ypnoonotodpe Eva maiyvio onuatodotnong and tovg von Stengel and
Forges [2008] pe yvooti EFCE kat evtomifovpe £vay ypoppKd LETOCYNUATICUO TOV OV amodideTan
ano Tig trigger anokAicelg g EFCE. Xvykekpipéva, givar Suvotd vo eKTEAEGOVUE YPOUIIKODS e~
TAGYNLOTIGHOVG OTIG 0KoAoLOieg evAC VITOOEVTPOUL e Bdom TIC oTPATNYIKEG G€ GAAL VTTOGEVTPO. TOV
TFSDP. T' 1o [Mapdderypa 6.1.3 Pprikape Eva GUYKEKPYEVO TOLYVIO HECH VTOAOYICTIKNG avalTn-
ong mov &yel éva LCE, 10 omoio dev glval (o KOVOVIKNG LOPONG GLCYETICUEVT] 1ooppoTtia. ['ia va to
Kavoupe ovtd evtomifovpe Lo GLYKEKPIUEVT KOVOVIKNG LOPPNS OVTOAAYT] TTOV ELVOIL U1 YPOLLLLUKT.

Epneipucn) a&rordynon o vo kotadei&ovpe mepattépm Tov dtoymplond HeTaéy Twv no-linear-swap
regret SUVOUIK®OV KOl TOV no-trigger-regret Suvopk®v, mov ypnoyoroovvtat yio v EFCE, mopé-
YOVLE TEPOUOTIKEG amodeiEelg 0Tl 1 eElayioTomoinom tov linear-swap-regret EAoyloTOTOLEL £TTioMG TO
trigger-regret (Zynua 0.2, apiotepd), evad 1 glayiotomoinor Tov trigger-regret dev Ay IGTONOIEL TO
linear-swap regret. Xvykekpiéva, oto Zynuo 0.2 cvykpivovpe T Sk Hog SOLVALLKY Labnong no-
linear-swap-regret (mov diveror oton AkyopiBpo 1) pe tov adydpiBpo no-trigger-regret mov giomyon
amd toug Farina et al. [2022b]. [1epiocotepeg AETTOUEPELIEG GYETIKA LLE TNV DAOTOINGT) T®V 0AYopifumv
eivan Srabéoipeg oto Kepdiaio B. Zto apiotepd didypappa, petpdpe otov d&ova y 1o péco trigger
regret TOL TPOKVTTEL OTAY OAOL Ol TOUKTEG ¥PNOYOTOOVV TN pio 1 TNV GAAN dvvapukn. Aedopévov
ot ot trigger deviations €ival 101KEC TEPIMTMOGEIC TOV YPOULLUKDV ATOKAICE®DVY, OTMG AVALEVOTAVY, TT0-
paTNPOLLLE OTL KoL 01 dVO dLVOUIKES eivar g BEomn va gdaylotomolcovy 1o trigger regret. Avtifeta,
670 0g&10 d1dypappa Tov Zynuotog 0.2, o d&ovag y petpdet to linear-swap-regret. ITapatnpovue o1t
EVD Ol OLUVOUIKEG LLOG ETIKVPAOVOVV TIG ETOOGELG VTOYPAUUIKOD regret Tov amodelkvHovTal 6To Oem-
pnua 0.0.6, ot Suvapikég ywpig trigger-regret tov Farina et al. [2022b] napovsidlovv pia akavoviot
cupmepLpopd Tov duckora eival cuppatn e Eva eEUAEIPOUEVO HEGO Tegret. AVTO VTOINADVEL OTL TO
no-linear-swap-regret €ivol Tpdypatt pio, avstnpd 1oyvpOTEPT EVVOLN TNG EK TV VOTEPWOY 0PHOLOYL-
KOTNTOG,

Three-player Kuhn poker (13 ranks) Three-player Kuhn poker (13 ranks)
0.005 0.05
= No-linear-swap-regret dynamics 3 No-linear-swap-regret dynamics
§ 0.004 - No-trigger-regret dynamics Eﬁ 0.04 - No-trigger-regret dynamics
2 =
= S
5, 0.003 Z 0.03 1
2 5
=] o
g, 0.002 1 £ 0.02 1
5 3
Z 0001 ] 5 0014 \
<
0.000 T T T 0.00 T T T
5000 10000 15000 20000 5000 10000 15000 20000
Iteration Iteration

Typa 0.2: (Apiotepd) Méco trigger regret avd emaviinym ywo évav glayiotonomn linear-swap
regret kai évav g oytotonomty trigger regret. (Aggid) Méco linear-swap regret avd emao-
VAANY™ Yo Tovg 131006 dVO EANYICTOTOMTEG.

AVOKOALG, TG HEYIOTOTTOINGNG TG KOWVOVIKIS EVHEPiog

Y& TOMEG TEPMTMOGELG LG EVOLOPEPEL VO, YVvpilovpe av givorl duvatdv va emAéEovpe o 1eop-
poria pe péytotn Kowwvikn Evnuepia. ‘Eotoo MAXPAY-LCE to mpopAnua g edpeong pag LCE
oe EFGs mov peyiotonotet 1o d0poicpa (1] 0molovonmoTe YPoUUIKO GUVOVOCUO) TOV OQEALELDY OA®V
TV ToktdVv. [opakdtm, arodeikvoovpe 0Tt eV LtopovLe vo Acovpe amodotikd o MAXPAY-LCE,
€KtOG av P=NP, axoun kot yio 2 woikteg av EmTpEMOVTOL TUYOIES KIVIGELS, Kol aKOUN Ko Yo 3 oikTeg
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drapopetikd. AkorovBovpe tn doun g d1ag amddeEng duokoriog yio to Tpofinua MAXPAY-CE
g evpeong evog Pértiotov CE o EFGs. Zuykexpuéva, ot von Stengel and Forges [2008] ypnouyto-
TO0VV o avaymyn oo o SAT ya va amodegi&ovv 6t 1 amodpact yia to av 1o MAXPAY-CE propei
va emtoyet ) péytotn Tun givar NP-duokoAn axopn kot yia 2 woikteg. o va 1o kdvouv avtd, emt-
VOOUV £vav TPOTO Y10l VO, OVTIGTOLYicovV omtoladnmote nepintwor SAT o€ évo TOAOVULIKA PEYAAO
dévpo maryviwv oto omoio 1 pila eivor o mwaikTng TG TOYMNG, TO SEVTEPO EMIMEDO AVTICTOLXEL GE Evav
TOUKTN Kot TO TPiTo emMinedo avtioTolyel 6Tov AAAO maikTn. Ot @PELELES KOl Y10 TOVG dVO TOIKTEG iva
oK ot 101G, eEmopévac ot Taikteg o TPEMEL VO GLVTOVIGTOVV Y10l VOl LLEYIGTOTOMGOLY TNV ApON
ToVG aveEdpTnTa 0md TOV YPULULUKO GUVOVOCUO TOV MPEAEIDY TOV GTOYEVOVLE VO, LEYIGTOTO|GOVLLE.

Theorem 0.0.7. [ia waiyvio eKTETOUEVHS LOPPTHS ODO TOIKTWOV, TEAEIOS OVOKANONS LE TOXOIES KIVHOELS,
70 mpoPfAnuo MAXPAY-LCE Jev eivor emiAdoio oe moivwvouiko ypovo, ektog ov P=NP.

Remark 0.0.8. 7o mpofinuo dratnpei v dvorolio tov av apaipécovue tov Koufo toxns kot mpo-
oBéoovue évav tpito moikty. Onws omodeiyOnke omo tovg von Stengel and Forges [2008], oe avty
TNV TEPITTWON UTOPOVUE TTAVTA VO, KOTOGTKEDGOOVUE EVO, TOADWVOUIKOD UEYEAODS OEVTPO TTOUYVIQWY TOD
avayKalel ToV TPITO TaIKTH VO EVEPYET WS KOUSOS TOXHG.
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Chapter 1

Introduction

The framework of regret minimization provides algorithms that players can use to gradually improve
their strategies in a repeated game, enabling learning strong strategies even when facing unknown and
potentially adversarial opponents. One of the appealing properties of no-regret learning algorithms
is that they are uncoupled, meaning that each player refines their strategy based on their own payoff
function, and on other players’ strategies, but not on the payoff functions of other players. Nonethe-
less, despite their uncoupled nature and focus on /ocal optimization of each player’s utility, it is one
of the most celebrated results in the theory of learning in games that in many cases, when all players
are learning using these algorithms, the empirical play recovers appropriate notions of equilibrium—a
global notion of game-theoretic optimality. Strategies constructed via no-regret learning algorithms
(or approximations thereof) have been key components in constructing human-level and even super-
human Al agents in a variety of adversarial games, including Poker [Morav¢ik et al., 2017, Brown
and Sandholm, 2018, 2019], Stratego [Perolat et al., 2022], and Diplomacy [Bakhtin et al., 2023].

In regret minimization, each learning agent seeks to minimize the difference between the loss
(opposite of reward) they accumulated through the actions they played, and the loss they would have
accumulated in hindsight had they consistently modified their behavior according to some strategy
transformation function. The size of the set of transformation functions considered by the learning
agent determines a natural notion of rationality of the agent. Already when the agents seeks to learn
strategies that cumulate low regret against constant strategy transformations only—a notion of regret
called external regret—the average play of the agents converges to a Nash equilibrium in two-player
constant-sum games, and to a coarse correlated equilibrium in general-sum multiplayer games. As the
sets of transformations the each agent considers grows, more complex equilibria can be achieved, in-
cluding correlated equilibria in normal-form games (Foster and Vohra [1997], Fudenberg and Levine
[1995, 1999], Hart and Mas-Colell [2000, 2001]; see also the monograph by Fudenberg and Levine
[1998]) and extensive-form correlated equilibria in extensive-form games [Farina et al., 2022b]. At
the extreme, a maximally hindsight-rational agent is one that minimizes regret against the set of all
functions from the strategy space to itself (aka. swap regret). While it is known that maximum hind-
sight rationality can be attained efficiently in nonsequential (normal-form) games [Stoltz and Lugosi,
2007, Blum and Mansour, 2007], it is a major open problem to determine whether the same applies to
sequential (i.e., extensive-form) games, and more generally what is the strongest notion of rationality
that can be attained efficiently in the worst case in the latter setting.

In this work, we provide a positive result in that direction, by showing that hindsight rationality
can be achieved efficiently in general imperfect-information extensive-form games when one restricts
to the set of all linear transformations of the mixed strategy space—a notion called linear-swap regret,
and that coincides with swap regret in normal-form games. In order to establish the result, we introduce
several intermediate results related to the geometry of sequence-form strategies in extensive-form
games. In particular, a crucial result is given in Theorem 4.1.1, which shows that the set of linear
functions M g_,p from the sequence-form strategy set Q of a player in an extensive-form game to a
generic convex polytope P can be captured using only polynomially many linear constraints in the size
of the game tree and the number of linear constraints that define P. Applying the result to the special
case P = Q, we are then able to conclude that the the polytope of linear transformations Mg_, o
from the sequence-form strategy set to itself can be captured by polynomially many linear constraints
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in the size of the game tree, and the norm of any element is polynomially bounded. The polynomial
characterization and bound for M g_, ¢ is used in conjunction with an idea of Gordon et al. [2008] to
construct a no-linear-swap-regret minimizer for the set of strategies Q starting from two primitives: i)
a no-external-regret algorithm for the set of transformations M g_, o, and ii) an algorithm to compute
a fixed point strategy for any transformation in Mg_, . In both cases, the polynomial representation
of Mo, o established through Theorem 4.1.1 plays a fundamental role. It allows, on the one hand,
to satisfy requirement ii) using linear programming. On the other hand, it enables us to construct a
no-external-regret algorithm that outputs transformations in M o_, o with polynomial-time iterations,
by leveraging the known properties of online projected gradient descent, exploiting the tractability of
projecting onto polynomially-representable polytopes.

Finally, in the last section of the thesis we turn our attention away from hindsight rationality to
focus instead on the properties of the equilibria that our no-linear-swap-regret dynamics recover in
extensive-form games. The average play of no-linear-swap-regret players converges to a set of equi-
libria that we coin linear-deviation correlated equilibria (LCEs). LCEs form a superset of correlated
equilibria and a subset of extensive-form correlated equilibria in extensive-form games. In Chapter 6
we show that these inclusions are in general strict, and provide additional results about the complexity
of computing a welfare-maximizing LCE.

Related work As mentioned in the introduction, the existence of uncoupled no-regret dynamics
leading to correlated equilibrium (CE) in multiplayer normal-form games is a celebrated result dating
back to at least the work by Foster and Vohra [1997]. That work inspired researchers to seek un-
coupled learning procedures in other settings as well. For example, Stoltz and Lugosi [2007] studies
learning dynamics leading to CE in games with an infinite (but compact) action set, while Kakade et al.
[2003] focuses on graphical games. In more recent years, a growing effort has been spent towards
understanding the relationships between no-regret learning and equilibria in imperfect-information
extensive-form games, the settings on which we focus. Extensive-form games pose additional chal-
lenges when compared to normal-form games, due to their sequential nature and presence of imper-
fect information. While efficient no-external-regret learning dynamics for extensive-form games are
known (including the popular CFR algorithm [Zinkevich et al., 2008]), as of today not much is known
about no-swap-regret and the complexity of learning CE in extensive-form games.

The closest notion to CE that is known to be efficiently computable in extensive-form games is
extensive-form correlated equilibrium (EFCE), introduced by von Stengel and Forges [2008]. The
question of whether the set of EFCE could be approached via uncoupled no-regret dynamics with
polynomial-time iterations in the size of the extensive-form games was recently settled in the positive
[Farina et al., 2022b, Celli et al., 2020]. In particular, Farina et al. [2022b] show that EFCE arises
from the average play of no-trigger-regret algorithms, where trigger deviations are a particular subset
of linear transformations of the sequence-form strategy polytope Q of each player. Since this thesis
focuses on learning dynamics that guarantee sublinear regret with respect to any linear transformation
of Q, it follows immediately that the dynamics presented in this thesis recover EFCE as a special case.

The concept of linear-swap-regret minimization has been considered before in the context of
Bayesian games. Mansour et al. [2022] study a setting where a no-regret learner competes in a two-
player Bayesian game with a rational utility maximizer, that is a strictly more powerful opponent
than a learner. Under this setting, it can be shown that in every round the optimizer is guaranteed to
obtain at least the Bayesian Stackelberg value of the game. Then they proceed to prove that minimiz-
ing linear-swap regret is necessary if we want to cap the optimizer’s performance at the Stackelberg
value, while minimizing polytope-swap regret (a generalization of swap regret for Bayesian games,
and strictly stronger than linear-swap) is sufficient to cap the optimizer’s performance. Hence, these
results highlight the importance of developing learning algorithms under stronger notions of ratio-
nality, as is our aim in this thesis. Furthermore, these results provide evidence that constructing a
no-linear-swap regret learner, as is our goal here, can present benefits when compared to other less
rational learners. In a concurrent paper, Fujii [2023] defines the notion of untruthful swap regret for
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Bayesian games and proves that, for Bayesian games, it is equivalent to the linear-swap regret which
is of interest in our work.

Bayesian games can be considered as a special case of extensive-form games, where a chance node
initially selects one of the possible types © for each player. Thus, our algorithm minimizing linear-
swap regret in extensive-form games also minimizes linear-swap regret in Bayesian games. However,
we remark that our regret bound depends polynomially on the number of player types |O| as they are
part of the game tree representation, while Fujii [2023] has devised an algorithm for Bayesian games,
whose regret only depends on log |©].

Finally, we also mention that nonlinear deviations have been explored in extensive-form games,
though we are not aware of notable large sets for which polynomial-time no-regret dynamics can be
devised. Specifically, we point to the work by Morrill et al. [2021], which defines the notion of “be-
havioral deviations”. These deviations are nonlinear with respect to the sequence-form representation
of strategies in extensive-form games. The authors categorize several known or novel types of re-
stricted behavioral deviations into a Deviation Landscape that highlights the relations between them.
Even though both the linear deviations, we consider in this work, and the behavioral deviations seem
to constitute rich measures of rationality, none of them contains the other and thus, linear deviations
do not fit into the Deviation Landscape of Morrill et al. [2021] (see also Remark 6.1.2).
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Chapter 2

Game Theory Basics

Game theory studies settings involving strategic interactions of multiple rational agents (or “players”).
Game theory was initially established as a field of economics, and was mathematically developed
mainly by von Neumann and Morgenstern [1944] and Nash [1951]. However, game-theoretic models
have since been applied in a wide variety of disciplines such as political science, philosophy, evolution
and biology more general (eg. see Lewis [1969], Bicchieri [1989], Smith and Price [1973], Smith and
Harper [2003]). In this chapter we will present some of the basic game-theoretic concepts used in this
thesis. The focus of this thesis is on extensive-form games, but we begin our discussion with the more
widely studied normal-form games.

2.1 Normal-Form Games

One of the most widely studied descriptions of games is that of normal-form games (NFGs). Some-
times, NFGs are also called matrix games, because they can be represented using a payoff matrix.
More specifically, in an n-player normal-form game each player ¢ has a fixed set of actions (or pure
strategies) .S;. Players choose their actions simultaneously and receive a payoff that represents their
personal utility, or preference, which depends on the combination of chosen actions by all players.
Consider for example the following rock-paper-scissors game. In this game there exist two players,
one player choosing between rows and the other choosing columns. Depending on the outcome of the
game, the payoff matrix shows the gained utilities for each of the two players.

Example 2.1.1 (Rock-Paper-Scissors). In the popular game of Rock-Paper-Scissors there exist 2 play-
ers, each having 3 actions: rock (R), paper (P), and scissors (S). Players pick their actions and reveal
them simultaneously. The player with the stronger move wins the game, or if the moves are the same,
the outcome is a draw. The rules are: rock beats scissors, scissors beat paper, and paper beats rock.
The utility matrix for both players is shown below.

IZRPS

R 0,0 -1,1 1,-1
5,-1 0,0 -1 1
S -,1 1,-1 00

This is an example of a zero-sum game, because winning outcomes for one player correspond to
losing outcomes for the other, and vice versa. In other words, the sum of utilities at each entry of the
payoff matrix equals zero. This does not always have to be the case, as there might exist games with
situations that are mutually beneficial for all players. For example, consider the following “traffic
light” game.

Example 2.1.2 (traffic light game). Consider a situation where two cars are driving towards a cross-
ing. Each car has the option to either STOP or GO. If one car decides to GO and the other to STOP,
then the passing car gets a utility of 1 and the waiting a utility of 0. If both cars STOP then they both
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get a utility of 0 because they are wasting time waiting. However, if both cars decide to GO then an
accident will happen and the utility is extremely negative for both of them. The payoff matrix for this
game is given below.

/ 2 | STOP GO

STOP | 0,0 0,
GO 1,0 -100,-100

Now that we have become more familiar with some basic 2-player normal-form games, we are
ready to formally define the general mathematical model.

Definition 2.1.3 (normal-form game). The normal-form representation of a finite n-player game con-
tains for each player i:

e a set of actions (or pure strategies) S;
e and a utility (or payoff) function u; : S1 X --- X S, — R

A tuple (s1,...,8,) € S1 X -+ X S, containing actions for each of the n players is called an action
profile.

Each player of a game acts by picking a specific pure strategy s € S;. A more general kind of
behavior for a player is to play a mixed strategy. That is, the player selects a probability distribution
over all pure strategies and acts by randomly picking the played action based on this distribution. In
this case, players are rewarded with their expected payoff based on the selected mixed action profiles.

But what kinds of questions can one hope to answer in such settings? Game theorists are interested
in predicting the outcomes of games by understanding what strategies the players will adopt in a given
setting. The prototypical solution concept in games is an equilibrium, which describes an outcome in
which players do not have an incentive to unilaterally deviate from their chosen strategies. The most
popular such concept is the Nash Equilibrium introduced by John Forbes Nash Nash [1951], which
prescribes players’ behavior in a setting where no prior communication is allowed and players have
to take into account the individual strategic behavior of others.

First consider the case where each player can only choose to play a pure strategy. Then an action
profile is a Pure Nash Equilibrium if no player can increase their payoff by unilaterally deviating and
choosing a different pure strategy. However, the applicability of the Pure Nash Equilibrium is limited,
as there might exist games which do not have any such solution. Take for instance the Rock-Paper-
Scissors game of example 2.1.1. It is not hard to see that in this case there does not exist any pure
Nash equilibrium, since at least one of the two players will always be better off by deviating (eg. in
the state S-P, the column player can always change to S-R and receive payoff 1 instead of —1). This
motivates the definition of the Mixed Nash Equilibrium, in which players choose mixed strategies
and no one has an incentive to unilaterally deviate from following their chosen mixed strategy. In a
celebrated result Nash [1951], Nash proved that any finite n-player non-zero-sum game always has a
mixed Nash equilibrium.

To see this more concretely, for the Rock-Paper-Scissors game of Example 2.1.1 there exists a
unique mixed Nash equilibrium in which both players select between their actions with equal proba-
bility of 1/3 each. As a second example, in the traffic light game (Example 2.1.2) there exist 3 Nash
equilibria in total. These are shown in Figure 2.1. Notice that in every equilibrium, there exists at
least one player that receives 0 utility.
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1 2 | STOP GO 1 2 | STOP GO 1 2 | STOP GO

STOP 0 1 STOP 0 0 STOP | 98% <1%
GO 0 0 GO 1 0 GO | <1% 0.01%

Figure 2.1: Nash equilibria for the traffic light game

In spite of its great success as a solution concept, the Nash Equilibrium is often not enough to
capture realistic aspects of games such as coordination and furthermore, in a seminal result, Daskalakis
et al. [2009] proved that it is computationally intractable to compute a Nash equilibrium unless P
= PPAD. For these and other reasons, Game Theorists have turned to other generalized notions of
equilibrium over the years. The Correlated Equilibrium (CE), first defined by Aumann [1974], allows
players’ strategies to be correlated with each other.

Take for instance the traffic light game from example 2.1.2. As we saw, the Nash equilibrium
always forces at least one player to receive 0 utility in expectation. In reality, players are not restricted
to act independently and can make use of the traffic light signals. Thus, in the traffic light game players
correlate their strategies so that they do not perform the same action at the same time. The state reached
in this case is called a Correlated Equilibrium, which extends the notion of Nash equilibrium beyond
just product distributions of strategies. The traffic light acts as a “mediator”, meaning that it is the
coordination device that helps players achieve this Correlated Equilibrium.

Definition 2.1.4 (normal-form Correlated Equilibrium). /n a n-player normal-form game, a Corre-
lated Equilibrium is a joint distribution . € A(Sy X - -+ x Sy,) such that for each player i, and every
action s; € S; it holds that

Ewwu [uz(m)] > Ewwu[ui(5?7 m*’i) | ml]

An intuitive way to think of the correlated equilibrium is to assume that there exists an external
trusted mediator that draws an action profile  ~ p and then recommends each individual action x;
to player ¢. Furthermore, the joint distribution p is common knowledge to all players of the game.
Then, each player, after observing the recommended action, has the choice to either follow the recom-
mendation or to deviate an act with a different action s} € S;. In a correlated equilibrium, no player
has an incentive to deviate from the action that was recommended by the mediator. This can describe
behaviors where players infer the actions of others based only on their own private recommendation.
This is, for example, what happens in the case of the traffic light game, where players can always infer
what is the recommended action of the mediator (traffic light) to the other players.

Note that the set of correlated equilibria is a superset of the Nash equilibria, because Nash equilib-
ria are simply product distributions of strategies. Consequently, by the existence of Nash equilibria
it follows that every finite normal-form game always has a CE. Furthermore, it has been proven that,
contrary to the Nash equilibrium, the CE can be computed in polynomial time in normal-form games
[Foster and Vohra, 1997, Blum and Mansour, 2007, Papadimitriou and Roughgarden, 2008]. From
these, we will present the algorithm of Blum and Mansour [2007] using uncoupled no-regret learn-
ing dynamics in section 3.3. The fact that learning agents repeatedly playing the game can converge
to a correlated equilibrium is a fascinating aspect of this solution concept that further highlights its
fundamental nature.

Another interesting equilibrium concept involving correlation is the Coarse Correlated Equilib-
rium (CCE) defined below.

Definition 2.1.5 (normal-form Coarse Correlated Equilibrium). In a n-player normal-form game, a
Coarse Correlated Equilibrium is a joint distribution € A(Sq X - - - X Sy,) such that for each player i,
and every action s} € S; it holds that

Emwu [Uz (513)] > Ewwu[ui(sa w—z)]
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Coarse correlated equilibria (CCE) can be interpreted in a similar way to CEs, by assuming that
a trusted mediator recommends actions to players based on a commonly known joint distribution on
action profiles. The distinguishing difference between the two is that in the case of CCE it should not
be beneficial for players to deviate even before observing the recommended action. Of course, this
immediately implies that the set of CE is a subset of the set of all CCE which makes it even easier to
efficiently compute them.

2.2 Extensive-Form Games

While normal-form games (NFGs) correspond to nonsequential interactions, such as Rock-Paper-
Scissors, where players simultaneously pick one action and then receive a payoff based on what others
picked, extensive-form games (EFGs) model games that are played on a game tree. They capture both
sequential and simultaneous moves, as well as private information and are therefore a very general and
expressive model of games, capturing chess, go, poker, sequential auctions, and many other settings
as well. We now recall basic properties and notation for EFGs.

Game tree In ann-player extensive-form game, each node in the game tree is associated with ex-
actly one player from the set {1, ..., n}U{c}, where the special player c—called the chance player—is
used to model random stochastic outcomes, such as rolling a die or drawing cards from a deck. Edges
leaving from a node represent actions that a player can take at that node. To model private information,
the game tree is supplemented with an information partition, defined as a partition of nodes into sets
called information sets. Each node belongs to exactly one information set, and each information set is
anonempty set of tree nodes for the same Player 7. An information set for Player ¢ denotes a collection
of nodes that Player ¢ cannot distinguish among, given what she has observed so far. (We remark that
all nodes in a same information set must have the same set of available actions, or the player would
distinguish the nodes). The set of all information sets of Player 7 is denoted 7;. In this paper, we
will only consider perfect-recall games, that is, games in which the information sets are arranged in
accordance with the fact that no player forgets what the player knew earlier,.

Sequence-form strategies Since nodes belonging to the same information set for a player are
indistinguishable to that player, the player must play the same strategy at each of the nodes. Hence,
a strategy for a player is exactly a mapping from an information set to a distribution over actions. In
other words, it is the information sets, and not the game tree nodes, that capture the decision points of
the player. We can then represent a strategy for a generic player ¢ as a vector indexed by each valid
information set-action pair (7, a). Any such valid pair is called a sequence of the player; the set of
all sequences is denoted as 3; = {(j,a) : j € Ji,a € A;} U{D}, where the special element & is
called empty sequence. Given an information set j € J;, we denote by p; the parent sequence of j,
defined as the last pair (j,a) € ¥; encountered on the path from the root to any node v € j; if no
such pair exists we let p; = &. Finally, we denote by C,; the children of sequence o € ¥;, defined as
the information sets j € J; for which p; = 0. Sequences o for which C, is an empty set are called
terminal; the set of all terminal sequences is denoted EiL.

Example 2.2.1. Consider the tree-form decision process faced by Player I in the small game of Fig-
ure 2.2 (Left). The decision process has four decision nodes J1 = {A, B, C,D} and nine sequences
including the empty sequence &. For decision node D, the parent sequence is pp = A2, for B and C
it is pg = A1, for A it is the empty sequence py = 9.
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Sequence-form constraints:

N zle] = 1,
P Q z[A1] + x[A2] = z[2],
B c / o x[B3] + x[B4] = x[A1],
34 5 6 78% 78% x[C5| + x[C6| = x[A1]
y } ’
£ b d b dab L4 (D7) + x[D8] + x[D9] = x[A2).

Figure 2.2: (Left) Tree-form decision process considered in the example. Black round nodes belong
to Player 1; white round nodes to Player 2. Square white nodes are terminal nodes in
the game tree, payoffs are omitted. Gray bags denote information sets. (Right) The con-
straints that define the sequence-form polytope Q1 for Player 1 (besides nonnegativity).

A reduced-normal-form plan for Player i represents a deterministic strategy for the player as a
vector & € {0, 1}> where the entry corresponding to the generic sequence x[ja] is equal to 1 if the
player plays action a at (the nodes of) information set j € J;. Information sets that cannot be reached
based on the strategy do not have any action select. A crucial property of the reduced-normal-form
plan representation of deterministic strategies is the fact that the utility of any player is a multilinear
function in the profile of reduced-normal-form plans played by the players. The set of all reduced-
normal-form plans of Player ¢ is denoted with the symbol 1I;. Typically, the cardinality of II; is
exponential in the size of the game tree.

The convex hull of the set of reduced-normal-form plans of Player ¢ is called the sequence-form
polytope of the player, and denoted with the symbol Q; := conv(Il;). It represents the set of all
randomized strategies in the game. An important result by Romanovskii [1962], Koller et al. [1996],
von Stengel [1996] shows that Q; can be captured by polynomially many constraints in the size of the
game tree, as we recall next.

Definition 2.2.2. The polytope of sequence-form strategies of Player i is equal to the convex polytope
(2.1) z[]=1

(22) Yoen zlia =alp] Vi€

Q; = mERgoz

As an example, the constraints that define the sequence-form polytope for Player 1 in the game of
Figure 2.2 (Left) are shown in Figure 2.2 (Right). The polytope of sequence-form strategies possesses
a strong combinatorial structure that enables speeding up several common optimization procedures
and will be crucial in developing efficient algorithms to converge to equilibrium.

To further highlight the importance of the sequence-form representation we note that all EFGs
have an equivalent representation as normal-form games. Namely, the actions of each player ¢ are the
reduced normal-form plans II;. This means that all equilibrium concepts from normal-form games
transfer to extensive-form games as well. An EFG can have a normal-form Correlated Equilibrium,
or Nash Equilibrium. However, as explained earlier, the size of the equivalent normal-form game for
an EFG might be exponentially larger than the size of the game tree and, furthermore, the standard
normal-form equilibrium concepts might fail to exploit the sequential nature of these games to achieve
a goal such as maximizing the social welfare of the game.

The extensive-form correlated equilibrium (EFCE), first introduced by von Stengel and Forges
[2008], is a natural extension of the CE for extensive-form games. Like in the normal-form CE, the
mediator in an EFCE selects an action profile from a joint probability distribution. Unlike in the
CE, the recommendations are not fully revealed to the players since the beginning. That is, players
are not recommended a full reduced normal-form plan with a specified action at each information
set. Rather, the mediator sequentially reveals the recommended action at each individual information
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set only when the player reaches that information set. Furthermore, if the player decides to deviate
from the recommended action then they receive no further recommendations from the mediator. This
allows for a richer set of equilibria (a superset of the normal-form correlated equilibria), which include
solutions with higher social welfare than what is achievable by employing a normal-form view of the
game. The signaling game in Example 6.1.1 is a notable example in which an EFCE achieves a far
better outcome than a CE, similarly to how the CE achieved a better outcom than the Nash equilibrium
in the traffic light game (Example 2.1.2).

Another important aspect of the EFCE is that it is efficiently computable, both in a centralized
manner via a variation of the Ellipsoid Against Hope algorithm [Huang and von Stengel, 2008] and,
as was recently proved, in a decentralized manner using uncoupled no-regret dynamics [Farina et al.,
2022b]. This is currently an additional advantage of the EFCE over the normal-form CE, which is not
yet known whether it can be efficiently computed or learned in extensive-form games. Similarly to
normal-form games, there exist efficiently computable equilibrium concepts for extensive-form games
that are even coarser, such as the extensive-form coarse-correlated equilibrium [Farina et al., 2020].
However, it is a major challenge to understand what is the strongest notion of equilibrium in extensive-
form games that can be efficiently computed. Morrill et al. [2021] defined a Deviation Landscape with
their corresponding equilibria that aim to generalize the behavioral deviations prescribing the EFCE.
This thesis explores yet another way of generalizing the concept of EFCE by considering all linear
deviations, as we describe starting from Chapter 4.
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2.3 Additional Extensive-Form Game Notation

In the proofs, we will make use of the following symbols and notation.

Symbol  Description

Ji Set of all Player ¢’s infosets.

Aj Set of actions available at any node in the information set j.

pF Set of sequences for Player i, defined as ¥ = {(j,a) : j € J,a €
Aj}u{a},

o where the special element & is called the empty sequence.

E} Set of terminal sequences for Player :.

Dj Parent sequence of j, defined as the last pair (j, a) € 3; encountered on the

path from the root to any information set j.

Co Set of all “children” of sequence o, defined as the information sets j € J
having as parent p; = o.

Jj=yJ Information set j € 7 is an ancestor of ;' € 7, that is, there exists a path
in the game tree connecting a node h € j to some node 1’ € j'.

o<0 Sequence o precedes sequence o', where o, o’ belong to the same player.

o=j  Sequence o = (j',a’) is such that j" = j.

Y Sequences at j € J and all of its descendants, ¥ ; :== {0 € ¥ : 0 = j}.

Q; Sequence-form strategies of Player ¢ (Definition 2.2.2).

Qs Sequence-form strategies for the subtree rooted at j € J (Definition 2.3.1).

II; Reduced-normal-form plans (a.k.a. deterministic sequence-form strategies)
of Player i.
IT- ; Reduced-normal-form plans (a.k.a. deterministic sequence-form strategies)

for the subtree rooted at j € 7.

Table 2.1: Summary of game-theoretic notation used in this paper. Note that we might skip player-
specific subscripts when they can be inferred.

Furthermore, when the subscript referring to players can be inferred or is irrelevant (that is, the
quantities are referred to a generic player), then we might skip it.

As hinted by some of the rows in the above table, we will sometimes find it important to consider
partial strategies that only specify behavior at a decision node j and all of its descendants j' = j. We
make this formal through the following definition.

Definition 2.3.1. The set of sequence-form strategies for the subtree rooted at j, denoted Qs ;, is the

set of all vectors x € R>% 7 such that probability-mass-conservation constraints hold at decision node
j and all of its descendants j' - j, specifically

23) Seq wlia =1
Qs j = weRE%J: €A
(24) Yaea, zli'a] =zlpy] Vi~
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Finally, we define the symbol Zf to be the set of all terminal sequences for Player <. Thus, the set
i\ Ef would give us all the non-terminal sequences of that player.

Access to coordinates By definition, sequence-form strategies are vectors indexed by sequences.
To access the coordinate corresponding to sequence o, we will use the notation x[o]. Occasionally,
we will need to extract a subvector corresponding to all sequences that are successor of an information
set j, that is, all sequences o > j. For that, we use the notation x|~ j].

Remark on the structure of sequence-form strategies We further remark the following known
fact about the structure of sequence-form strategies. Intuitively, it crystallizes the idea that sequence-
form strategies encode product of probabilities of actions on the path from the root to any decision
point. The proof follows directly from the definitions.

Lemma 2.3.2. Let j € J; be an information set for a generic player. Then, given any sequence-form
strategy * € Qs j, action a € A;, and child information set j' € Cj,, there exists a sequence-form
strategy T € Qs j» such that

2l= j] = aljaas.
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Chapter 3

Hindsight Rationality and Learning in Games

3.1 The Online Learning framework

Games are one of many situations in which a decision-maker has to act in an online manner. For
these situations, the most widely used protocol is that of Online Learning (e.g., see Orabona [2022]).
Specifically, the learner has a set of actions or behavior they can employ X C R (in extensive-form
games, this would typically be the set of reduced-normal-form strategies). At each timestep ¢ the
learner first selects, possibly at random, an element € X, and then receives a loss (opposite of
utility) function /) : X — R from an adversary. Both the learner and the adversary observe the
history of all prior actions and losses chosen in the past. A widely adopted objective for the learner
is that of ensuring vanishing average regret with high probability. Regret is defined as the difference
between the loss the learner cumulated through their choice of behavior, and the loss they would have
cumulated had they chosen the best fixed action in hindsight. More formally, the realized regret is
defined as

Reg™ i( ®) (g (t)(a:)>

t=1

where T is the time horizon over which the learner acts. Note that, in general, this quantity might
be a random variable. Often, we are interested in the expected regret, which is the expected value
of the realized regret. Additionally, the time-averaged regret is just the regret Reg(") divided by T..
Thus, the objective of an online learner is to ensure that its regret is sublinear with respect to 1" or,
equivalently, that its time-averaged regret is o(1).

In this work we are interested in applying the online learning framework to players of extensive-
form games. Since as we observed the utilities in EFGs are linear in each player’s reduced-normal-
form plans, for the rest of the paper we focus on the case in which the loss function £(*) is linear, that
is, of the form /() : zz — () £(®)) Thus, we only care about the setting of so called Online Linear
Optimization. To construct our main algorithm in chapter 4, we use the results from this section.

Online Projected Gradient Descent. In the rest of this section we will present the Online Projected
Gradient Descent, one of the most widely used algorithms for online convex optimization, which is
an even more general setting than online linear optimization.

Algorithm 2: Online Projected Gradient Descent

Data: Non-empty and closed convex set V C R?, x(1) € V| learning rates (") > 0
1 fort=1,2,... T do
2 Output () € V
3 | Receive /® : V — R and pay (@) (z®)
4 Set g(t) = V¢®) (1))
s | o) =10y (2 — nWg®) = argmin, , |o®) — nMg®) — y]|
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We will use the following important Projection Lemma directly without proof. It states that the
Euclidean projections of a point € R? to a convex set V' C R? always decrease the distance from
all points of the set.

Lemma 3.1.1 (Proposition 2.11 from Orabona [2022]). Let x € R% and y € V, where V C R%is a
non-empty closed convex set and define 11y (x) := argmin,cy, ||& — 2z||2. Then, ||lly(x) — y|l2 <
[z —yll2.

Lemma 3.1.2. Let V C R? be a non-empty convex set and (V) : V — R be a convex function that is

differentiable in an open set containing V. Set g\t) = V() (a:(t)). Then, for all u € V, the following
inequality holds

®)2
WO @) — 0(w)) < 7O{g®, 20 ) < L —ulf — LD —uff + T g0

Proof. Recall [Rockafellar, 1970] that since ¢(*) are convex differentiable functions, it holds that
(D(y) > (@) + (VI (2),y — 2),Ve,y € V,

which immediately gives the first inequality. For the second inequality we have

2D — afly — 20— wl < 20 - 509 — wl — o - ul}

= —29/% (g, 20 ) + ()93

where we used Lemma 3.1.1 in the first line. Reordering, we get the second inequality and the proof
is complete. O

Theorem 3.1.3 (Theorem 2.13 from Orabona [2022]). Let V' C R? be a non-empty closed convex set
with diameter D. Let () : V' — R fort = 1,...,T be an arbitrary sequence of convex functions
that are differentiable in open sets containing V. Pick any V) € V and assume n"t1) < n® for all
1 <t <T. Then forallu € V, it holds

D2 T n®
S (@)~ 10w) < 5 S 1
t=1

t=1
Proof. To bound the regret, we begin by using the inequality of Lemma 3.1.2 for each iteration of the
algorithm

T

S (@) - i ~ ulld — 5 I — wl} i” g3
2 Qn(t) 2 o 9 2

t=1 t=1

We now subtract and add W Hw(t“) — |3 for each ¢ and compute the appearing telescoping sum
to get

1
277(1)

T
1 1 (1)

.2 (t+1) 2 T @))2

|2~ wlly - o 5 ™ urz+§j( o=y 2n(t))uw wl+ 32Tl

By applying the assumption about the diameter D it follows that this expression is at most

D2 1 d ﬁ(t) ()12
Z (277 1) 277(,5)) +ZT||Q 12
T
DD (o +ZL\\gt>|12
277(1) o™ >

2n 277

+Z Hg @3,
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If we additionally assume that we have an upper bound L on the L2 norm of all gradients, then by
setting

() ==y 1}
L

we achieve a regret bound of DL+/T, which is sublinear with respect to 7" as was our goal.

3.2 Learning in Games and ®-regret minimization

In this section we explore what happens if all agents in a repeated normal-form game independently
employ an online no-regret learning algorithm. Does this natural acting process converge to some
specific solution for the game? It turns out that, indeed, the empirical frequency of play arising from
these uncoupled regret dynamics converges almost surely to a Coarse Correlated Equilibrium. Actu-
ally, a more fine-grained result holds. If after T" steps, the time-averaged regret of all agents is at most
¢, then the empirical frequency of play converges to an e-approximate CCE, as shown below.

Theorem 3.2.1. Consider a normal-form game of n players with pure strategies S1, . . ., Sy. Assume
that players repeatedly play the game and each one is acting based on a no-regret algorithm. If after
T steps, the time-averaged regret is at most €, then the empirical frequency of play is an e-approximate
Coarse Correlated Equilibrium (1 € A(Sy X - -+ X Sy,). Specifically, for each player i, and every pure
strategy s* € S; it holds

Eaulus(@)] > Epului(s” 2_)] €.

That is, no player can gain more than € expected utility by unilaterally deviating.
Proof. The condition of the CCE for each player i and action s* € .S; can be equivalently written as
Ezmplui(s™,x—) —ui(x)] < e (3.1)
Now, in the interaction of the n no-regret learners, assume that a®) € 8 x --- x S, are the

action profiles played at each repetition of the game ¢ = 1,...,T. Then the distribution x will be the
empirical frequency of play after T steps

. > a®. (3.2)

If after 7" steps the time-averaged regret for each player ¢ is at most € then for all s* € S; we get
T
Regl Z (g(t ON Z,(-t)(s*)) <e
where Egt) (2) = —ui(z, a@). Consequently, we can write this regret expression as follows

T
1
ReggT) == Z (ui(s*, a(fz) — ui(a(t)))
= Egplui(s™, i) — ui()]

where the last equation follows from (3.1) and (3.2). Thus, we conclude that when RegST) <

€
the empirical frequency of play p is an e-approximate Coarse Correlated Equilibrium. O
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However, as we explained in the previous chapter, the Coarse Correlated Equilibrium is a rather
weak solution concept. Can we hope to construct online learning algorithms that converge to stronger
solution concepts, such as the Correlated Equilibrium in normal-form games? It seems unlikely that
the regret is a suitable objective to aim for stronger solution concepts. Instead, we will generalize
the notion of regret to that of ®-regret, which defines a spectrum of stronger objectives for the online
learner with respect to transformations of the previously played strategies. In particular, let ® be a
desired set of strategy transformations ¢ : X — X that the learner might want to learn not to regret.
Then, the learner’s ®-regret is defined as the quantity

T
®-Reg!”) := max ((E(t), xz®) — (® ¢(w(t))>>
Pcd® o)

A no-®-regret algorithm (also known as a ®-regret minimizer) is one that, at all times 7', guaran-
tees with high probability that ®-Reg(’) = o(T) no matter what is the sequence of losses revealed by
the environment. The size of the set ® of strategy transformations defines a natural measure of ratio-
nality (sometimes called hindsight rationality) for players, and several choices have been discussed
in the literature. Clearly, as ® gets larger, the learner becomes more rational. On the flip side, guar-
anteeing sublinear regret with respect to all transformations in the chosen set & might be intractable
in general. On one end of the spectrum, perhaps the smallest meaningful choice of ® is the set of all
constant transformations ™! = {¢ : & +— &} zcy. In this case, PO regret is also called exter-
nal regret and has been extensively studied in the field of online convex optimization. On the other
end of the spectrum, swap regret corresponds to the setting in which & is the set of all transformations
X — X. Somewhat intermediate, and of central importance in this paper, is the notion of /inear-swap
regret, which corresponds to the case in which

d={x—Ax:Ac R4 with Ax e X Ve e X } (linear-swap deviations)

is the set of all linear transformations from X’ to itself.!

An important observation is that when all considered deviation functions in & are linear, an al-
gorithm guaranteeing sublinear no-® regret for the set X can be constructed immediately from a
deterministic no-®-regret algorithm for X’ = A(X’) by sampling X > « from any ' € X"’ so as
to guarantee that E[z] = a’. Since this is exactly the setting we study in this paper, this folklore
observation (see also Farina et al. [2022b]) enables us to focus on the following problem: does a de-
terministic no-®-regret algorithm for the set of sequence-form strategies X = Q; of any player in an
extensive-form game, with guaranteed sublinear ®-regret in the worst case, exist? In this paper we
answer the question for the positive.

From regret to equilibrium The setting of Learning in Games refers to the situation in which all
players employ a learning algorithm, receiving as loss the negative of the gradient of their own utility
evaluated in the strategies output by all the other players. A fascinating aspect of no-®-regret learn-
ing dynamics is that if each player of a game employs a no-®-regret algorithm, then the empirical
frequency of play converges almost surely to the set of ®-equilibria, which are notions of correlated
equilibria, in which the rationality of players is bounded by the size of the set . Formally, for a set
® of strategy deviations, a ®-equilibrium is defined as follows.

Definition 3.2.2. For a n-player extensive-form game G and a set ®; of deviations for each player, a
{®; }-equilibrium is a joint distribution p € A(Il; x - - - x II,,) such that for each player i, and every
deviation ¢ € ®; it holds that

EmN,u, [uz<w)] > EENH[U”L(¢($l)7 w—l)]

That is, no player i has an incentive to unilaterally deviate from the recommended joint strategy
x using any transformation ¢; € ;.

! For the purposes of this paper, the adjective /inear refers to the fact that each transformation can be expressed in the
form « — Az for an appropriate matrix A.
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This general framework captures several important notions of equilibrium across a variety of game
theoretic models. For example, in both NFGs and EFGs, no-external regret dynamics converge to
the set of Coarse Correlated Equilibria. In NFGs, no-swap regret dynamics converge to the set of
Correlated Equilibria [Blum and Mansour, 2007]. In EFGs, Farina et al. [2022b] recently proved that
a specific subset ® of linear transformations called trigger deviations lead to the set of EFCE.

Reducing ®-regret to external regret An elegant construction by Gordon et al. [2008] enables
constructing no-®-regret algorithms for a generic set X starting from a no-external-regret algorithm
for ®. We briefly recall the result.

Theorem 3.2.3 (Gordon et al. [2008]). Let R be an external regret minimizer having the set of transfor-
mations ® as its action space, and achieving sublinear external regret Reg\"). Additionally, assume
that for all ¢ € ® there exists a fixed point ¢(x) = x € X. Then, a ®-regret minimizer Re can be
constructed as follows:
o To output a strategy * V) at iteration t of Re, obtain an output 3) € & of the external regret
minimizer R, and return one of its fixed points =) = ¢ (x®)),
e For every linear loss function {Y) received by R, construct the linear function LY : ¢
(D (p(xM)) and pass it as loss to R.
Let ®-Reg'") be the ®-regret of Re. Under the previous construction, it holds that

<I>-Reg(T) = Reg(T) vVI'=1,2,...

Thus, if R is an external regret minimizer then R is a ©-regret minimizer.

3.3 A No-Swap Regret Algorithm for Normal-Form Games

Theorem 3.3.1 (Theorem 2 from Blum and Mansour [2007]). In the online learning from K experts
problem, for any algorithm with sublinear external regret R(T), there exists an algorithm with sub-
linear swap regret at most K R(T).

Proof. To construct the no-swap regret algorithm, we create K copies Ry, ..., R of the no-external
regret algorithm. Conceptually, the i-th copy R; will be responsible for minimizing regret with respect
to all swaps of the form ¢ — j. Then, the algorithm is as follows.

Ateach timestept =1,2,...,T:

(a) Receive the output distributions qgt), ey q&? from the K algorithms Ry,..., Rk.
(b) Then combine these into a single final distribution p® for this step.
(c) Receive a loss vector £(1).

(d) Give to each algorithm R; the loss vector pgt)f(t).

We want to select a suitable construction of the distribution p(*) and guarantee that the final al-
gorithm has small swap regret. In other words, we want to bound the expected loss of the central
algorithm

o )
>3 el @

t=1 j=1

with the expected loss under a deviation function ¢ : [K] — [K], which is

Z Z p\ £ t (3.4)

t=1 j=1
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If we focus our attention to a single algorithm RR;, then by its regret guarantee and the losses it receives,
we get that for all actions j*

T K T

qu(t) (t)ﬁ(t) Z (t)ﬂ(t + R(T).

t=1 j=1 t=1

Now fix a specific deviation function ¢. Our aim is to construct the expression of (3.4). To
this end, we add up the previous inequalities for all algorithms R, ..., Rk and for each R; we set
J* = ¢(i). This gives

T K K T K
(t) ,(®) (t)
2>l e <375 pleg, + KR(T).
t=1 i=1 j=1 t=1 i=1
Finally, it remains to select suitable distributions p(*). To make the last expression match the
desired expression of swap regret, we would like its left-hand side to equal the expected loss of our

algorithm from (3.3). Thus, combining these foreacht =1,...,T andeachj =1,..., K we get

Zqz z :

(®)

We can observe that in this last equation, the matrix having g; ; as entries is a right-stochastic
matrix or, in other words, the transition matrix of a Markov chain. Then, the equation requires that
the distribution p(®) is a stationary distribution of this Markov chain. It is well-known that at least one
such distribution always exists, and can be computed efficiently as an eigenvector of the transition

matrix. This completes the proof and the construction of the no-swap regret algorithm. O

At this point it is worth noting the resemblance of this algorithm to the construction of Theo-
rem 3.2.3. This is not a coincidence, since the ®-regret minimization framework can be seen as a
generalization of the described algorithm. The set ® in this case is the set of all right-stochastic ma-
trices and the construction with the K regret minimizers is an algorithm that minimizes regret with
respect to these matrices.

We conclude this chapter by briefly mentioning a line of work that seeks to improve the rate
of convergence of no-regret learning algorithms. All algorithms that we presented in this chapter
achieve a rate of convergence of O(1/+/T) and guarantee robustness even against fully adversarial
environments. The same holds for the no-swap regret learning algorithm presented previously, as
it makes use of a no-external-regret algorithm. Furthermore, this convergence rate of O(1/+v/T) is
known to be tight in fully adversarial environments.

However, in games consisting entirely of competing no-regret learners, the utilities acquired by
players exhibit a more structured and predictable behavior as the environment is not fully adversarial.
Can we then take advantage of this structure to achieve faster convergence rates in environments in-
volving other online learners? This question was addressed by Daskalakis et al. [2011], Rakhlin and
Sridharan [2013a,b], who devised algorithms that achieve an O(log T'/T) rate of convergence in two-
player zero-sum games. Later, Syrgkanis et al. [2015] and Daskalakis et al. [2021] described ways to
construct predictive learning algorithms that, if followed by all players of a general-sum normal-form
game, guarantee convergence rates of O(T*?’/ 4) and O~(T*1) respectively. Subsequently, Farina
et al. [2022a] extended these results for general convex games. All these results improve the rates
of external-regret minimizers and, thus, converge to coarse correlated equilibria. However, as we
discussed earlier, this is a rather weak notion of equilibrium. Recently, Anagnostides et al. [2022a,c]
settled the problem of constructing no-swap regret minimizers achieving a rate of O~(T*1). Finally,
Anagnostides et al. [2022b] established the first no-regret learning dynamics that converge to the
extensive-form correlated equilibrium and the extensive-form coarse correlated equilibrium at an im-
proved rate of O(T~3/*) compared to the previous O(T~1/?).
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Chapter 4

A No-Linear-Swap Regret Algorithm with Polynomial-Time
Iterations

In this section, we describe our no-linear-swap-regret algorithm for the set of sequence-form strategies
O of a generic player in any perfect-recall imperfect-information extensive-form game. The algorithm
follows the general template for constructing ®-regret minimizers given by Gordon et al. [2008] and
recalled in Theorem 3.2.3. For this we need two components:
1) an efficient no-external regret minimizer for the set M g_, o of all matrices inducing linear trans-
formations from Q to Q,

ii) an efficiently computable fixed point oracle for matrices A € Mg_, o, returning * = Az € Q.
The existence of a fixed point, required in ii), is easy to establish by Brouwer’s fixed point theorem,
since the polytope of sequence-form strategies is compact and convex, and the continuous function
x — Ax maps Q to itself by definition. Furthermore, as it will become apparent later in the section,
all elements A € M g_, g have entries in [0, 1]***. Hence, requirement ii) can be satisfied directly by
solving the linear feasibility program {find « : Az = x, x € Q}. using any of the known polynomial-
time algorithms for linear programming. Establishing requirement i) is where the heart of the matter
is, and it is the focus of much of the paper. Here, we give intuition for the main insights that contribute
to the algorithm.

4.1 The Structure of Linear Transformations of Sequence-Form
Strategy Polytopes

The crucial step in our construction is to establish a series of results shedding light on the fundamental
geometry of the set M g_, o of all linear transformations from a sequence-form polytope Q to itself.
In fact, our results extend beyond functions from Q to Q to more general functions from Q to a generic
compact polytope P := {x € R? : Px = p, z > 0} for arbitrary P and p. We establish the following
characterization theorem, which shows that when the functions are expressed in matrix form, the set
M o_,p can be captured by a polynomial number of constraints. The proof is deferred to Chapter 5.

Theorem 4.1.1. Let Q be a sequence-form strategy space and let P be any bounded polytope of the
form P = {x € R : Pz = p,x > 0} C [0,7]% where P € RF*9. Then, for any linear function
f 1+ Q — P, there exists a matrix A in the polytope

(4.1) PAgja) = b; Vja € ot

(42) A(U):O VUEE\EJ-
Mop = A:[~--\A(0)’...]€Rdx2: (4.3) Zj’ecgbj’:p | )

(44) Zj/GCj,l b]/ = b‘7 Vja c by \ )

(45) A( € [0,7) Voeyx

(4.6) b; € R¥ vVieJd
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such that f(x) = Az for all x € Q. Conversely, any A € M g_,p defines a linear function x — Ax
from Q to P, that is, such that Ax € P for all x € Q.

The proof operates by induction in several steps. At its core, it exploits the combinatorial structure
of sequence-form strategy polytopes, which can be decomposed into sub-problems using a series of
Cartesian products and convex hulls. We also remark that while the theorem calls for the polytope P
to be in the form P = {x € R? : Px = p,x > 0}, with little work the result can also be extended
to handle other representations such as {x € R? : Pz < p}. We opted for the form specified in the
theorem since it most directly leads to the proof, and since the constraints that define the sequence-
form strategy polytope (Definition 2.2.2) are already in the form of the statement.

In particular, by setting P = Q in Theorem 4.1.1 (in this case, the dimensions of P will be
k=|J|+ 1,and d = |X|), we conclude that the set of linear functions from Q to itself is a compact
and convex polytope Mo _,o C [0,1]%*%, defined by O(|X|?) linear constraints. As discussed,
this polynomial characterization of M g_,¢ is the fundamental insight that enables polynomial-time
minimization of linear-swap regret in general extensive-form games.

4.2 Our No-Linear-Swap Regret Algorithm

From here, constructing a no-external-regret algorithm for M o_, ¢ is relatively straightforward, using
standard tools from the rich literature of online learning. For example, in Algorithm 3, we propose a
solution employing online projected gradient descent [Gordon, 1999, Zinkevich, 2003].

Algorithm 3: ®-Regret minimizer for the set ® = Mg_,¢o

Data: AW € M o_s0 and fixed point M of A, learning rates n(t) >0
fort=1,2,...do

Output x®

Receive £!) and pay (£(), 2(®)

Set L) = () (2(")T

A = Ty o (A® — 5 OLO) = argminyey,_ [A© —5OLO V|3
Compute a fixed point z(tt1) = AtV (1) ¢ O of matrix A

A N A W N -

Combining that no-external-regret algorithm for ® with the construction by Gordon et al. [2008],
we can then establish the following linear-swap regret and iteration complexity bounds for Algo-
rithm 3.

Theorem 4.2.1. Let 3. denote the set of sequences of the learning player in the extensive-form game,
andletn®™ = 1/+/t forall t. Then, for any sequence of loss vectors £ € [0,1]%, Algorithm 3 guaran-
tees linear-swap regret O(|S|>v/T) after any number T of iterations, and runs in O(|X]'° log(|3|) log? t)
time for each iteration t.

Proof of Theorem 4.2.1. First we focus on the linear-swap regret bound. Based on Gordon et al.
[2008] the ®-regret equals external regret over the set ® of transformations. In our case @ is the set
Mg_, o of all valid linear transformations and the losses for the external regret minimizer are func-
tions A — (£, Az(M) A — (£2) Az®?), ... Equivalently, we can write these as A — (L), A) .,
where (-, -)  is the component-wise inner product for matrices and L) = £() (2()) T which is a rank-
one matrix. Let D be an upper bound on the diameter of Mg_, o, and L be such that [|[L®)||p < L
for all t. Then, based on Orabona [2022] we can bound the external regret for this instance of Online
Linear Optimization by picking () = LL\/Z which gives a regret of O(DL+/T). Since A € [0, 1]**

we get D = |¥|, and since £), () € [0, 1] we get L = |X|. This results in the desired linear-swap
regret of O(|X|>V/T).
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However, in our previous analysis we assumed that it is possible to compute an exact solution
AD =Ty, (A — nLO) of the projection step, which is an instance of convex quadratic
programming, meaning that we can only get an approximate solution [ Vishnoi, 2021]. In the following
Lemma we prove that an e-approximate projection does not affect the regret for a single iteration of
the algorithm, if € is sufficiently small. The inequality we prove is similar to the one in Lemma 2.12
from Orabona [2022].

Lemma 4.2.2. Let Y* = HMQHQ(A“) — n®WLW®) and suppose that ATV € Mg_.q is such that
|ACHD —Y*|12, <€), then for any X € Mg, it holds

1 1 ®) D 1
® x - ABY . < ® _x12, — +) 2+ Loz, . 2 =
(L0, X = A0 < oA X~ A X+ T+ G
Proof. From Lemma 2.12 of Orabona [2022] we know that
1 1 ()
B X AV, <« = JJA® _x2, = 12 )2
L0, X = A < oA X~ V= X+ T L0
Additionally, it holds that
IACHD —X|[F = AT — Y 4 Y - X3
= [JACTY = YHF 4 Y = X5+ 20T - Y Y - X)p
< ||Y* B XH%‘ + 2<A(t+1) - Y*,A(H_l) _Y* +Y* B X>F
< 1Y = X[ 7 + 2 A — Y| A — X
< |IY* = X[ + 2De.
The Lemma follows by combining the previous two inequalities. O
If we set e() = 1/t5/2 then for our choice of n*) = LL\/Z’ the error term becomes L /t2. Summing

over T timesteps we thus get an additive error of O(L) = O(|X]|) in the regret, and our total linear-
swap regret bound remains O(|%|?V/T).

We now move to analyzing the per-iteration time complexity of Algorithm 3. The most com-
putationally heavy steps are (5) and (6). To compute the fixed point at step (6) we can use any
polynomial-time LP algorithm. We can also perform the projection step (5) in polynomial time using
the ellipsoid method [Vishnoi, 2021]. For this we reduce it to a suitable Semidefinite Program with
O(|%|?) variables and use the Cholesky factorization [Girtner and Matousek, 2014] as the separa-
tion oracle, thus responding to separation queries in O(|2|%) time. Note that it is possible to guaran-
tee [[ACTD) — Y*||2, < €(®) as the ellipsoid method can output a point A+ € Mg o such that
[A® —pOLE — ACD | L < |A® — pL® — Y*|| 1 + € and furthermore, the Frobenius norm is
a 2-strongly convex function.

To apply the ellipsoid method we further need bounds on the Frobenius norm of Y € Mg_, o and
the maximum projection distance. For the norm of Y, we pick an upper bound of R = D = |X|. For
the lower bound r we note that Yo € Q forall z € Q, which implies Y[@]x =1 = ||Y[@]]1 > L.
Thus we get r > ﬁ Similarly, we bound the projection distance between 0 and D. Based on
these bounds and on Theorem 13.1 from Vishnoi [2021] we conclude that the total per-iteration time
complexity of Algorithm 3 is O (|Z['* log(|2|) log*(2)). O

It is worth noting that the polynomial-sized description of Mg_,¢ is crucial in establishing the
polynomial running time of the algorithm, both in the projection step (5) and in the fixed point com-
putation step (6). We also remark that the choice of online projected gradient descent combined with
the ellipsoid method for projections were arbitrary and the useful properties of Mo_,¢ are retained
when using it with any efficient regret minimizer.

47






Chapter 5

Proof of the Characterization Theorem (Theorem 4.1.1)

In this section we prove the central result of this paper, the characterization given in Theorem 4.1.1 of
linear functions from the sequence-form strategy polytope Q to the generic polytope P := { € R? :
Pz = p,x > 0}, where P € R¥*4 and p € RF,

We will prove the characterization theorem by induction on the structure of the extensive-form
strategy polytope. To do so, it will be useful to introduce a few additional objects and notations. We
do so in the next subsection.

5.1 Additional Objects and Notation Used in the Proof

First, we introduce a parametric version of the polytope P, where the right-hand side vector is made
variable.

Definition 5.1.1. Given any b € R¥, we will denote with P (b) the polytope
P(b) = {x ¢ R*: Px = b,z > 0}.
In particular, P = P(p).

Furthermore, we introduce the equivalence relation = to indicate that two matrices induce the
same linear function when restricted to domain D.

Definition 5.1.2. Given two matrices A, B of the same dimension, we write A =p B if Ax = Bx for
all x € D. Similarly, given two sets U,V of matrices we write U =p V to mean that for any A € U
there exists B € V with A =p B, and vice versa.

Additionally, we introduce a symbol to denote the set of all matrices that induce linear functions
from a set U/ to a set V.

Definition 5.1.3. Given any sets U,V we denote with L,y the set of all matrices that induce linear
transformations from U to V), that is,

Ly—y ={A:Ax €V forallx € U}.

Finally, we remark that for a matrix A whose columns are indexed using sequences o € X, we
represent its columns as A(,). Furthermore, for sequence-form strategies * € Q, we use x[o] to
represent their entries, and «[¥, ;] to represent a vector consisting only of the entries corresponding
to sequences o € My ;.

5.2 A Key Tool: Linear Transformations of Cartesian Products

We are now ready to introduce the following Proposition, which will play an important role in the
proof of Theorem 4.1.1.
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Proposition 5.2.1. Let Uy, ..., U, be sets, with O ¢ affld; ! for all i = 1,... , m. Furthermore, for
anyi =1,...,m and any b; € R¥, let My, —P(b,;) be such that My, _,pw,) Zu; Lu;—pb;)- Then,
forallb € Rk,

(5.1) A; € Mb{i—>77(bi) Vie {1, R ,m}

E(L{1><~~-><Z/{m)—>7?(b) %(ulx.--xum) [Al ‘ e | Am] : (5.2) bi+---+b,=0b
(5.3) b, € R* Vie{l,...,m}
(5.4)
Proof. We prove the result by showing the two directions of the inclusion separately.

(D) First, we show that for any b € R¥, any matrix A = [A; | --- | A,,] that belongs to the set on
the right-hand side of (5.4) induces a linear transformation from Uy x - - - x U, to P(b) and
thus belongs to Ly, x...xu4,,)—P(b)- 10 that end, we note that for any & = (x1,...,®n) €
ul X oo X Z/[m’

(5.1
Ax = ZA x; > 0, and P(Ax) Z:PAZ 1(5—1)2 bi(siz)b,

=1

where in both cases we used the fact that A; maps any point in U; to a point in P(b;) = {y :
Py = b;,y > 0} by (5.1). Hence Az € P(b) forall x € U; X - - - X Uy, as we wanted to show.

(C) We now look at the converse, showing that for any b € R¥ and matrix B = [By | --- | By, €
L4 x - xt)—P(b)» there exists a matrix A = [Aq | --- | Ay,] that satisfies constraints (5.1)-
(5.3) and such that Bx = Ax forall x € U; x --- X U,,. As a first step, in the next lemma we
show that B is always equivalent to another matrix B' = [B} | --- | By, ] =, x...xus,,) B that
satisfies B;:I:i >0foralli =1,...,mand x; € Y.

Lemma 5.2.2. There exist B, ... B, such that B = »...q;,) B' = [B] | ... | B},], and

Sfurthermore, for all i = 1,...,m, Bla; > 0 for all x; € U,.

Proof of Lemma 5.2.2. Since 0 ¢ affif; for all i = 1,...,m by hypothesis, then there exist
vectors 7; such that TiTa:i = 1forall ¢; € U;. Forany k € {1,...,d}andi € {1,...,m— 1},
let
Bilk] = min (Biz)[k] Vke{l,....d}, B, =B, — Bi1;
xeU;
Furthermore, let 3,, = Z:’:ll ;and B) = B; + ,@m‘r;; . It is immediate to check that the
matrix B := [B}] | --- | B],] is such that B'x = Bx forall x € U; X -+ X Uy, that is,
B’ =, «...xtt,,) B. We now show that Bjz; > 0 foralli = 1,...,m and ; € U;. Expanding
the definition of B and 3;, foralli € {1,....,m — 1},x; € Uyand k € {1,...,d},
(Bia:)[k] = (Bizi)[k] — (B)[K] - (7, i) = (Bias)[K] — nin (B;;)[k] > 0.
Hence, it only remains to prove that the same holds for ¢ = m. To that end, fix any & €
{1,...,d} and ®,, € Uy, andletz; € argmin, o, (B;jz;)[k] foralli € {1,...,m—1}. Using
the fact that all vectors in P(b) are nonnegative, * := (x},..., &), 1, Tm) €Uy X -+ X Up,
must satisfy Be* > 0. Hence,

m—1 m—1
0 < (Bz™)[k] = (Bman)[k] + = (B [k] + Z Bilk] = (B, zm)[K],
z=1 i=1
thus concluding the proof of the lemma. O

! Instead of the condition O ¢ affU;, we could equivalently state that there exists 7; such that TiT x; = 1forall x; € U;
using the properties of affine sets.
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Since B’ =, x...xt4,,) B, and B maps to P(b), forall x = (x1,...,2) € U X - -+ X Up, We
must have

Since we can pick the x; for different indices ¢ independently, it follows that PB;x; must be a
constant function of @; € U;, that is, there must exist vectors by, ..., b,, € R¥ such that

b1_|_..._|_bm:b’ and PB;xi:bi YV, €U;.

Since in addition Bix; > 0 (by construction of the B;), this means that B} € Ly;,_,p(s,). Finally,
using the hypothesis that £y, ,p(b,) Zu; My, —p(b,)» there must exist A; € My, _,p(s,), with
A =y, Bg, forall2 = 1,...,m. This concludes the proof.

5.3 Characterization of Linear Functions of Subtrees

The following result can be understood as a version of Theorem 4.1.1 stated for each subtree, rooted
at some decision node, of the decision space.

Theorem 5.3.1. For any decision node j € J and vector b; € RE, let

(5.5) PA(ja) = by Vjd €Sy ;nst )
(56) Ay =0 Vja € By \ Bt
Mo, opy =3[ | AGay [ ]+ (57 Tjuec,, bir =by Vjd €Ly \ T
eRVFr (58) Ajiay=0 Vj'a € By
(5.9) by € RF Vil
(5.10)

Then, Mgtj_yp(bj) thj ‘CQtj—ﬂD(by’)'

Before continuing with the proof, we remark a subtle point: unlike (4.5), which constraints each
column to have entries in [0, ], (5.8) only specifies the lower bound at zero, but no upper bound.
Hence the tilde above the symbol of this Theorem. Consequently, the matrices in the set M Q. ;—P(b;)
need not have bounded entries. In that sense, Theorem 5.3.1 is slightly different from Theorem 4.1.1.
We will strengthen (5.8) to enforce a bound on each column when completing the proof of Theo-
rem 4.1.1 in the next subsection.

Proof. To aid us with the proof, we first express the definition of ./\;IQ> ;—P(b;) In @ way that better

captures the inductive structure we need. By direct inspection of the constraints, the set M Q. ;—P(by)
satisfies the inductive definition
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A=[-|Ajy | ] € R>¥=i such that:

ja
(5.11) PA(j,) =b; Vae Aj:jaeS Nyt
(5.12) Aoy =0 Vac Aj:jag¢g 2t

Mo j5Pb) =4 (5.13) Yce,, by = by Va€A;:jag ot

(5.14) [A)lorir € Mo, pp,) Va €A j €Cha

(5.15)

(5.16)

A(ja) >0 Vae .Aj

bj/ERk Va€¢4j,j,€cj‘a
(5.17)

We prove the result by structural induction on the tree-form decision process.

e Base case. We start by establishing the result for any terminal decision node j € 7, that is, one
for which all sequences {ja : a € A;} are terminal. In this case, the set Q- ; is the probability
simplex A({ja : a € A;}). Thus, for a matrix A to map all x € Q- ; to elements in the convex
polytope P(b;) it is both necessary and sufficient that all columns of A be elements of P (b;).
It is necessary because if Ax € P(b;) for all z € Q. ;, then for the indicator vector & with
x[ja] = 1 we get Az = A(jq) € P(b;). And, it is sufficient because any x € Q- ; represents
a convex combination of the columns A ;).

The set defined by these constraints matches exactly the set /\;lQ> ;—P(b;) defined in the state-
ment: since all sequences ja are terminal, in this case it reduces to

B (5.18) PA(‘a):b‘ VaeA;
Mo, sppy =13 [ [Agay | ---] € RPP=i e ’

(5.19) A(ja) >0 Va e .Aj

that is, the set of matrices whose columns are elements of P(b;). So, we have /\;lQ> —=P(by) =
Lo, ,—P(b;) With equality, which immediately implies the claim M Qs ;—P(b;) =5y EQt 1P (b;)-

e Inductive step. We now look at a general decision node j € J, assuming as inductive hypothe-
sis that the claim holds for any j' > j. Below we prove that Mo i=Pb;) Z0r Lo, —P(b;)
as well. - B -

(€) We start by showing that for any b; € RF, x € II- ; and A € .A;lQ>j_yp(bj), we have
Az € P(b;). From (5.8) it is immediate that A has nonnegative entries, and since any vector
x € II- ; also has nonnegative entries, it follows that Az > 0. Hence, it only remains to show
that P(Axz) = b;. Using Lemma 2.3.2, for any j' € Use4,Cjq there exists x,j € Qy j such
that £[¥, ] = x[ja] - ;. Hence, we have

P(AZB) = Z PA(ja)x[ja] + Z Z PAtj/(as[ja] . mtj’)

aG.Aj aGAj j'EC]'a
jagst
= > xlja] - PAGy + Y |zlja] Y PA-x.; (from (5.12))
a€A; a€A; 7'€Cja
jaext jagst
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= > afjal-b;+ > |axlja] > by (from (5.11) and (5.14))

a€A; a€A; J'€Cja
jaext jagst
= Y alja] b+ Y alja] b, (from (5.13))
jaext jagst
=b;- Z x[ja] = b;. (from Definition 2.2.2)
acA;

(2) Conversely, consider any B € £Q>j—>7>(bj)- We will show that there exists a matrix A €

Mo, P, such that B =¢_ A. First, we argue that there exists a matrix B’ %Q?j B_ with
the property that the column B’(ja) corresponding to any nonterminal sequence is identically
ZEero0.

Lemma 5.3.2. There exists B' =¢_ . B such that B’(ja) = 0 for all a € Aj such that ja €
Deg \ B

Proof. Fix any a € Aj; such that ja is nonterminal. Then, by definition there exists at least
one decision node j' whose parent sequence is ja. Consider now the matrix B” obtained from
“spreading” column By ;,) onto B4/ (a’ € Aj), that is, the matrix whose columns are defined
according to the following rules: (i) B’(/ja) = 0, (ii) B/(’j,a,) = B(jiar) + B(jq) foralla’ € Ay,
(iii) B’(’U) = B(,) everywhere else. The column B'(’ja) is identically zero by construction, and
all other columns B’(’ja,), a' € A; \ {a}, are the same as B. Most importantly, since from the
sequence-form constraints Definition 2.2.2 any sequence-form strategy € Q- ; satisfies the
equality x[ja] = Za,eAJ_, x[j'd’], the matrix B” satisfies B’x = Bz forall x € Q. j, i.e.,

B” =o_. B. Iterating the argument for all actions a € A; yields the statement. O

Consider now any a € .A; that leads to a terminal sequence ja € Xw; N Y. The vector
1, defined as having a 1 in the position corresponding to ja and 0 everywhere else is a valid
sequence-form strategy vector, that is, 1;, € Q- ;. Hence, since B’ maps Q- ; to P(b;), it is
necessary that B’( ja) € P(b;), that is, B’(ja) > 0and PB’(ja) = b;. In other words, we have just
proved the following.
: 1

Lemma 5.3.3. For any a € A; such that ja € ¥ ; N X, B’(ja) > 0 and PB’(ja) =b;.
Combined, Lemmas 5.3.2 and 5.3.3 show that B’ satisfies constraints (5.11), (5.12), and (5.15).
Consider now any action a € A; that defines a nonterminal sequence ja € 3y ;\ >1. For each
child decision point j' € Cjq, letxj € Q. j» be a choice of strategy for that decision point, and
denote B{ , the submatrix of B’ obtained by only considering the columns B’(U) corresponding
to sequences o = j'. The vector « defined according to x[ja] = 1, x[Xy j/] = @ for all
j' € Cjq, and 0 everywhere else is a valid sequence-form strategy « € Q. ;, and therefore
B'z € P(b;) since B' =g__ Band B € Lg_ _.p(p;) by hypothesis. Therefore, using the fact
that B’(ja) = 0 by Lemma 5.3.2, we conclude that

P(bj) > B'ac = Z B%j/mtj/.

j'GCja

Because the above holds for any choice of x;; € Q. j, it follows that the matrix [--- |
Bl [---] €Ly recs, @ yoPb): Hence, applying Proposition 5.2.1 (note that 0 ¢ aff Q. ;

J

since ) A x[j'a] = 1 forall x € Q. j by Definition 2.3.1) together with the inductive
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hypothesis, we conclude that for each j' € Cj, there exist a vector by, € R* and a matrix
Arjr € Mg, p(b,)» such that 3 _ ec;a b7 =bjand [--- | B, | -] = Jrecs, @ 1 [« ]
A.j | ---]. We can therefore replace all columns correspondmg to B j with those of Ay jr,

obtaining a new matrix =g, B’. Repeating the argument for each ja € ¥y ; \ X+ finally
yields a new matrix that is =y,_ ; B and satisfies all constraints given in (5.17), as we wanted to
show. O

5.4 Putting all the Pieces Together

Finally, we are ready to prove the main result of the paper.

Theorem 4.1.1. Let Q be a sequence-form strategy space and let P be any bounded polytope of the
form P = {x € R : Pz = p,x > 0} C [0,7]% where P € RF*9. Then, for any linear function
f 1+ Q — P, there exists a matrix A in the polytope

¢

(4.1) PA(j, =b; Vja € o+
(42) Ay =0 Voex\xt
Maomm JAZ [ | A |- ] € RO (43) Xjec, bj=p |
(44) Yjec, by =b; YjaeE\B+
(45) A, €[0,7]? Voey
(4.6) b; € R¥ VieJ )
such that f(x) = Az for all x € Q. Conversely, any A € M o_,p defines a linear function  — Ax

from Q to P, that is, such that Ax € P forall x € Q.

Proof of Theorem 4.1.1. We prove the result in two steps. First, we show that

(5.20) PA(jq) = b; Vja € ot
(521) A =0 Voen\ut
Losp=gMoup=SA=[|Ay| ] €eR>>: (522) Yjec, by =p |
(523) Yjec, by =b; VjaeX\Z*
(524) A@) =0 Voex
\ (5.25) b; € Rk Vied

where the difference between ./\;lg_m and M o_,p lies in constraint (5.24), which only sets a lower
bound (at zero) for each entry of the matrix, as opposed to a bound [0,] as in (4.5). Using the defi-
nition of Mg_ ._,p(s,) given in (5.10) (Theorem 5.3.1), the set Mg, can be equivalently written
as

(526) A

Mgiyp: A:[|A()|}€Rdxz (527) Z]ECgb =p
(5 28) [A(O’)]U>'] S MQ>.]H’P(b ) V] S C@
(5.29) b, e Rk VjeCy
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To show that /\;lgﬁp =g Lg-,p, we proceed exactly like in the inductive step of the proof of
Theorem 5.3.1. Specifically, let A € Mg_,p and x € Q be arbitrary. From Definition 2.2.2 it follows
that (% ;] € Q- ; forany j € Cy and therefore, denoting Ay j == [A ()]0,

e 26)2 PA, E>]](5 28)2 bj(Sé% 7 (5 26)2 Az[Ss ]

Jj€Cyx Jj€Cyx j€Cyx

(5.28)
>

which shows that Axz € P. Since A and x were arbitrary, it follows that /\;lQ—ﬂD C Lg_p. Con-
versely, let B € Lo_,p be arbitrary, and fix a root decision node j € Cz. Then, we can “spread out”
the column B4 by adding it to each B, : a € A; by constructing the matrix Lo,p > B =5 B
defined by (i) B’(g) =0, (ii) B’(ja) = B(jq) + B(g) forany a € Aj, and (iii) B’(g) = By, everywhere
else. Pick now any vectors {x; € Qs ; : j € Cz}, and consider the vector « defined as x[@] = 1,
and z[X ;] = x; forall j € Cy. The vector x is a valid sequence-form strategy, that is, € Q.
Let now B, := [B/(U)]at ;. From the fact that B'@ € P, together with the fact that by construction
B’( o) = 0, we conclude that

B'x = Z B’tjmtj e P.
j€Cyx

Since the inclusion above holds for any choice of {z; € Q. ; : j € Cz}, and since for all j € Cy
the vector 0 ¢ aff Q. ; (indeed, ZaEA xz[ja] = 1 for all x € X ; by Definition 2.3.1), from
Proposition 5.2.1 together with Theorem 5.3.1 we conclude that for each j € Cy there exists a vector
b; € R¥ and a matrix A,; € /\/lQ> —P(b))> such that 3, b; = pand A-; =g _, B_,. By
replacmg the submatrices BL ; with At] in B’ we then obtain an equivalent matrix that satisfies all
constraints that define ./\;lgﬁp. In summary, we have /\;lgﬁp = Losp.

To conclude the proof, we now show that ./\;lQ—ﬂD = Mo_,p. First, we make the straightforward
observation that any A € Mg_,p also belongs to Mgﬁp, as the constraint that define the latter
set are only looser. Hence, we only need to show that any B € MQ_>’P also satisfies constraint
(4.5). Since B € /\;lgép, all columns of B are nonnegative (constraint (5.24)). Furthermore, since
Mo_p =0 Lo_sp, clearly Bz € P forall € Q. Fix now any sequence o € 3, and consider any
strategy & € Q that puts proability mass 1 on all the actions on the path from the root to ¢ included,
that is, any @ € Q with x[o] = 1. Then, from the nonnegativity of the columns of B, it follows that

P >Bx > B(U).

Since by definition of ~ any point in P belongs to [0,~]¢, we then conclude that B € [0, 74,

implying that B € Mo_,p as we wanted to show. O

55






Chapter 6

Linear-Deviation Correlated Equilibrium

As we discussed in the preliminaries, when all players in a game employ no-®-regret learning algo-
rithms, then the empirical frequency of play converges to the set of ®-equilibria almost surely. Sim-
ilarly, when ® = Mg_,o the players act based on “no-linear-swap regret” dynamics and converge
to a notion of ®-equilibrium we call linear-deviation correlated equilibrium (LCE). In this section
we present some notable properties of the LCE. In particular, we discuss its relation to other already
established equilibria, as well as the computational tractability of optimal equilibrium selection.

6.1 Relation to CE and EFCE

The ®-regret minimization framework, offers a natural way to build a hierarchy of the corresponding
®-equilibria based on the relationship of the ® sets of deviations. In particular, if for the sets ®1, @5 it
holds that &; C ®4, then the set of $o-equilibria is a subset of the set of ®;-equilibria. Since the Corre-
lated Equilibrium is defined using the set of all swap deviations, we conclude that any ®-equilibrium,
including the LCE, is a superset of CE. What is the relationship then of LCE with the extensive-form
correlated equilibrium (EFCE)? Farina et al. [2022b] showed that the set ®F“F inducing EFCE is
the set of all “trigger deviations”, which can be expressed as linear transformations of extensive-form
strategies. Consequently, the set ®FFCE is a subset of all linear transformations and thus, it holds that
CE C LCE C EFCE. In examples 6.1.1 and 6.1.3 we show that there exist specific games in which
either CE # LCE, or LCE # EFCE. Hence, we conclude that the previous inclusions are strict and it
holds CE C LCE C EFCE.

For Example 6.1.1 we use a signaling game from von Stengel and Forges [2008] with a known
EFCE and we identify a linear transformation that is not captured by the trigger deviations of EFCE.
Specifically, it is possible to perform linear transformations on sequences of a subtree based on the
strategies on other subtrees of the TFSDP. For Example 6.1.3 we have found a specific game through
computational search that has a LCE, which is not a normal-form correlated equilibrium. To do that
we identify a particular normal-form swap that is non-linear.

Example 6.1.1 (EFCE # LCE). Consider the following 2-player signaling game presented by von
Stengel and Forges [2008]

e Player 1 O Terminal node

/ §,| OPlayer 2
G B Q] .
/\ Sy Information set
J

end

lX X lX X ly Ty ly Ty

R A
O ] O ] O ] O O
4 0 6 0 4 0 6 0
10 6 0 6 10 6 O 6
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Below are the normal-form payoff matrix of the signaling game (left) and the extensive-form cor-
related equilibrium (right) given by von Stengel and Forges [2008]:

1 2| Ixly xryrxlyrxry Ixly Ixry rxly rxry
XeXp | 5,5 55 0,6 0,6 XeXp | 0 1/4 0 0
XeYs | 5,5 2,8 3,3 0,6 XaYs 0 1/4 0 0
YeXB | 5,5 3,3 2,8 0,6 YeXp | 0 0 1/4 0
YoYs | 5,5 0,6 5,5 0,6 YoYs 0 0 1/4 0

However, we can observer that this EFCE is not a linear-deviation correlated equilibrium because,
for example, Player 1 can increase their payoff by a value of 3/2 using the following transformation:

XaXp— XaXp i.e., map the reduced-normal-form plan (1,0,1,0) — (1,0,1,0)
XoYg = XaXp i.e., map the reduced-normal-form plan (1,0,0,1) — (1,0,1,0)
YoXp = YoYp i.e., map the reduced-normal-form plan (0,1,1,0) — (0,1,0,1)

YoYg — YoYn i.e., map the reduced-normal-form plan (0,1,0,1) — (0,1,0,1)

(Above, we have implicitly assumed that the strategy vectors encode probability of actions in the
arbitrary order X, Ya, X, Yp). The above transformation is linear, since it can be represented via
the matrix

1000
0100
1000
0100

This would swap the pure strategy XqYp with XqXp and strategy Yo X g with YgYp. Crucially,
the strategy at the subtree of information set B is determined by the strategy at the subtree of informa-
tion set G. Thus, the transformed value for each sequence does not purely depend on the ancestors of
that sequence, but can also depend on strategies belonging to “sibling” subtrees. Hence, this example
proves that LCE # EFCE.

Remark 6.1.2. The linear transformation given in Example 6.1.1 also serves to show that the Be-
havioral Deviations defined in Morrill et al. [2021] are not a superset of all linear transformations.
Additionally, behavioral deviations are not a subset of linear transformations, as the latter act only
on reduced strategies. Thus the two sets of deviations are incomparable.

Example 6.1.3 (LCE # CE). This example was found through computational search. Consider the
2-player game with the following game tree:
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~| ®Player 1 O Terminal node
:c:c OPlayer 2

Information set

-310 0

w
{ VVZ Wr I/Vl WQ Wl Wr
O []/ ] []/ \D []/ ] []/ \[]
0 0 0 0 2 0 0 202 0
-315 0 0 2 0 0 4 0 0 0 0
Based on the previous game tree, the normal-form payoff matrix of the game is shown below.
] 2 QlVVl QIWT QT‘VVl QrWr
A1B1 | 50.5,0.0 505 025 -27.75 -78.75 -27.75,-78.5
A1 By 0.0, 0.0 0.5, 1.0 -0.75, 0.0 -0.25, 1.0
AoBy | 50.0,0.5 49.5,-0.75  -27.0,-78.25 -27.5,-79.5
AgBs -0.5, 0.5 -0.5, 0.0 0.0, 0.5 0.0, 0.0
We can now verify that the following is a linear-deviation correlated equilibrium for this game
Program.

The verifcation can be done computationally by expressing all constraints of Theorem 4.1.1 as a Linear

QW QW, QW Q. W,
ABy | 1/5 0 0 0
A1By 0 1/5 0 0
AaBy | 1/5 0 0 0
ABy | 0 0 1/5 1/5

However, the swap {A1Bs — A1 By, A2By — A1 B1} can increase player 1's payoff by 50.5
Furthermore, we can verify that this swap is not linear as follows. First assume that it was linear

and could be written as a matrix A € [0, 1]>**. Then the matrix has to be consistent with the following
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transformations:

A1B; — A1 B,
A1By — A1B;
AsBy — A1 By
A9 By — A3 By

For convenience of referring to matrix rows and columns we number the four sequences as:
A1:0, Ay:1, B1:2, By:3

If we focus on the second transformation, A1 By — A1 Bj, we conclude that A[:,0] + A[:, 3] =
(1,0,1,0) T which implies that A[1,0] = A[3,0] = A[1,3] = A[3,3] = 0. Now, if we subtract
the respective equations of the last two swaps we get A[:,2] — A[:,3] = (1,—1,1,—-1)T. Since
A € [0,1]%*%, the last equation implies A[1,3] = 1 which contradicts the previous constraint of
A[1,3] = 0. Thus, we have found a valid normal-form swap that cannot be expressed as a linear
transformation of sequence-form strategies. Hence, this example proves that LCE # CE.

Empirical evaluation To further illustrate the separation between no-linear-swap-regret dynamics
and no-trigger-regret dynamics, used for EFCE, we provide experimental evidence that minimizing
linear-swap-regret also minimizes trigger-regret (Figure 6.1, left), while minimizing trigger-regret
does not minimize linear-swap regret. Specifically, in Figure 6.1 we compare our no-linear-swap-
regret learning dynamics (given in Algorithm 3) to the no-trigger-regret algorithm introduced by Fa-
rina et al. [2022b]. More details about the implementation of the algorithms is available in Appendix B.
In the left plot, we measure on the y-axis the average trigger regret incurred when all players use one
or the other dynamics. Since trigger deviations are special cases of linear deviations, as expected,
we observe that both dynamics are able to minimize trigger regret. Conversely, in the right plot of
Figure 6.1, the y-axis measures linear-swap-regret. We observe that while our dynamics validate the
sublinear regret performance proven in Theorem 4.2.1, the no-trigger-regret dynamics of Farina et al.
[2022b] exhibit an erratic behavior that is hardly compatible with a vanishing average regret. This
suggests that no-linear-swap-regret is indeed a strictly stronger notion of hindsight rationality.

Three-player Kuhn poker (13 ranks) Three-player Kuhn poker (13 ranks)
0.005 0.05
== No-linear-swap-regret dynamics 3 No-linear-swap-regret dynamics
§ 0.004 4 No-trigger-regret dynamics E‘J 0.04 - No-trigger-regret dynamics
2 c
= <
8 0.003 Z 0.03 1
= g
= 15}
o) 0.002 + £ 0.02 1
g 3
Z 0001 1 5 0011 \
<
0.000 T T T 0.00 T T T
5000 10000 15000 20000 5000 10000 15000 20000
Iteration Iteration

Figure 6.1: (Left) Average trigger regret per iteration for both a linear-swap-regret minimizer and a
trigger-regret minimizer. (Right) Average linear-swap regret per iteration for the same
two minimizers.
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6.2 Hardness of Maximizing Social Welfare

In many cases we are interested in knowing whether it is possible to select an Equilibrium with maxi-
mum Social Welfare. Let MAXPAY-LCE be the problem of finding an LCE in EFGs that maximizes
the sum (or any linear combination) of all player’s utilities. Below, we prove that we cannot solve
MAXPAY-LCE, unless P=NP, even for 2 players if chance moves are allowed, and even for 3 players
otherwise. We follow the structure of the same hardness proof for the problem MAXPAY-CE of find-
ing an optimal CE in EFGs. Specifically, von Stengel and Forges [2008] use a reduction from SAT
to prove that deciding whether MAXPAY-CE can attain the maximum value is NP-hard even for 2
players. To do that, they devise a way to map any SAT instance into a polynomially large game tree
in which the root is the chance player, the second level corresponds to one player, and the third level
corresponds to the other player. The utilities for both players are exactly the same, thus the players
will have to coordinate to maximize their payoff irrespective of the linear combination of utilities we
aim to maximize.

Theorem 6.2.1. For two-player, perfect-recall extensive-form games with chance moves, the problem
MAXPAY-LCE is not solvable in polynomial time, unless P=NP.

Proof. We use the exact same argument employed in the paper by von Stengel and Forges [2008]
by reducing SAT to the MAXPAY-LCE problem. Specifically, for each instance of SAT having n
clauses and m variables we construct a two-player extensive-form game of size polynomial in n and
m. In the beginning, there is a chance move that picks one of n possible actions uniformly at random
— one for each SAT clause. Then is the turn of Player 2 who has n distinct singleton information
sets corresponding to the chance node actions, and respectively to the n clauses of the SAT instance.
Let L; be the set of literals (negated or non-negated variables) included in the i-th clause of the SAT
instance. In information set i of Player 2 there exist |L;| actions, one for each literal in L;. Finally,
each literal leads to a different decision node for Player 1 who has as many decision nodes as the
number of literals in the SAT instance, and in each node there exist exactly 2 possible actions: TRUE
and FALSE. However, Player 1 only has m information sets corresponding to the m SAT variables
with each information set = grouping together all nodes corresponding to literals of the variable x.
This way, Player 1 only chooses the truth value of a variable without knowing from which literal
Player 2 has picked this variable. The utilities for both players are equal to 1 if the truth value picked
by Player 1 satisfies the literal picked by Player 2, and both utilities are 0 otherwise.

In this game, there exists a pure strategy attaining payoff 1 for each player if and only if the SAT
instance is satisfiable — namely Player 1 always acts based on the satisfying assignment and Player 2
picks for every clause a literal that is known to be TRUE. Otherwise, the maximum payoff for each
pure strategy is at most 1 — 1/n. Given that a LCE describes a convex combination of pure strategies,
it follows that the maximum total expected payoff of the the sum of the two players’ utilities will
either be 2 when the SAT instance is satisfiable, or it will be at most 2(1 — 1/n) when the instance is
not satisfiable. Additionally, this holds not just for the sum but for any linear combination of player
utilities. Thus, the problem of deciding whether MAXPAY-LCE can attain a value of at least & is
NP-hard for any linear combination of utilities. O

Remark 6.2.2. The problem retains its hardness if we remove the chance node and add a third player
instead. As showed in von Stengel and Forges [2008], in that case we can always build a polynomially-
sized game tree that forces the third player to act as a chance node.
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Chapter 7

Conclusions and Future Work

In this paper we have shown the existence of uncoupled no-linear-swap regret dynamics with polynomial-
time iteration complexity in the game tree size in any extensive-form game. This significantly extends
prior results related to extensive-form correlated equilibria, and begets learning agents that learn not to
regret a significantly larger set of strategy transformations than what was known to be possible before.
A crucial technical contribution we made to establish our result, and which might be of independent
interest, is providing a polynomial characterization of the set of all linear transformations from a
sequence-form strategy polytope to itself. Specifically, we showed that such a set of transformations
can be expressed as a convex polytope with a polynomial number of linear constraints, by leverag-
ing the rich combinatorial structure of the sequence-form strategies. Moreover, these no-linear-swap
regret dynamics converge to linear-deviation correlated equilibria in extensive-form games, which
are a novel type of equilibria that lies strictly between normal-form and extensive-form correlated
equilibria.

These new results leave open a few interesting future research directions. Even though we know
that there exist polynomial-time uncoupled dynamics converging to linear-deviation correlated equi-
librium, we conjecture that it is also possible to obtain an efficient centralized algorithm similar to
the Ellipsoid Against Hope for computing EFCE in extensive-form games by Huang and von Stengel
[2008]. Furthermore, it would be interesting to further explore problems of equilibrium selection re-
lated to LCE, possibly by devising suitable Fixed-Parameter Algorithms in the spirit of Zhang et al.
[2022]. Finally, the problem of understanding what is the most hindsight rational type of deviations
based on which we can construct efficient regret minimizers in extensive-form games remains a major
open question.
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Appendix A

Corollaries of the Characterization Theorem

We mention two direct corollaries of Theorem 4.1.1 that slightly extend the scope of the characteriza-
tion. The first corollary asserts that the polytope M o_,p characterizes not only all /inear functions
from Q to P, but also all affine functions.

Corollary A.0.1 (From linear to affine functions). Let Q be a sequence-form strategy space and let
P be any polytope. Then, for any affine function g : Q — P, there exists a matrix A in the polytope
Mo_,p defined in Theorem 4.1.1 such that g(x) = Az for all x € Q. Conversely, any A € Mg_,p
induces an affine function from Q to P.

Proof. The second part of the statement is trivial since any linear function is also affine, and any
A € Mg_,p induces a linear function from Q to P. Let g(x) = f(x) + b be any affine function,
where f is an appropriate linear function from Q to P and b € R"™. Since g[@] = 1 forall g € O, the
function g coincides on Q with the function g : @ > « +— f(x)+b-x[2], which is a linear function of
@. Hence, from the first part of Theorem 4.1.1 there exists A € M o_,p such that Az = g(x) = g(x)
forall z € O. O

The second corollary of Theorem 4.1.1 extends the characterization to the alternative definition of
polytope as a bounded set of the form C := {y € R" : Cy < ¢}, by first introducing slack variables
and rewriting the polytope in the form handled by Theorem 4.1.1.

Corollary A.0.2 (Alternative polytope representations). Let (Q be a sequence-form strategy polytope,
and C = {y € R" : Cy < ¢} C [—v,7]|" be a bounded polytope, where C € R™*". Let k =
max{||C||oo, ||€|loc } and introduce the polytope

751: (Q,S)ERanm;[C) k‘TLI:| Y :C+’YC1, Y ZO g[0’2,}/]n+m,
S S

which is of the form handled by Theorem 4.1.1. For any affine function g : Q — C, there exists a
matrix A in the polytope

-/\;lQ—>C = [M(g)—’yl|’M(U)’} ER”XZ: 5 EMQ_ﬂs, MGRnXE, ZERmXE
Z

such that g(x) = Ax for all x € Q. Conversely, any A € /\;(Qﬁc induces an affine function from Q

to C.

Proof. We begin by proving that C C [—v,~]" implies P C [0,27]"*™. Consider any (¢, s) € P

and set y = g — 1. Then, this is a valid y € C C [—v,~]™ and, consequently, y € [0, 27]™. For the

slack variables s it holds that kns = ¢ — Cy, where y = y — 1 from before. By definition of k£ and

by y > —~v1, we conclude that ¢ — Cy < (k + nvyk)1l — s € [0,24]™.
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Now lgt g : @ — C be any affine function from Q to C. Then we can define an affine function
f @ — P such that

g(x) +71

S

flx) =

for all x € Q. By Corollary-A.0.1 we know that ./\/lQ P characterizes all affine functions from O to
P, including the previous function f. Thus, there exists an M € R™*> such that g(x) + 1 = Mz
forall z € Q. Since x[@] = 1 for all & € Q, we conclude that there exists A € Mg ¢ such that
g(x) = Az = Mx — 41 forall x € Q.

Conversely, consider any A € .A;lQ_Kj and define g(x) = Ax. That is, there exist suitable
M € R™> Z € R™*> that satisfy the constraints of polytope Mo_c. Then forall x € Q it holds
g(x) = Mx —~1, and (¢, s) € P where § = Mz and s = Zz. Thus, by construction of P, as we
also argued in the beginning of the proof, we conclude that g(x) =y —y1 =y € C. O
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Appendix B

Details on Empirical Evaluation

In this section we provide details about the implementation of our algorithm, as well as the compute
resources and game instances used.

Implementation of our no-linear-swap-regret dynamics We implemented our no-linear-swap-
regret algorithm (Algorithm 3) in the C++ programming language using the Gurobi commercial op-
timization solver [Gurobi Optimization, LLC, 2023], version 10. We use Gurobi for the following
purposes.

e To compute the projection needed on Algorithm 5 of Algorithm 3. We remark that while Gurobi
is typically recognized as a linear and integer linear programming solver, modern versions in-
clude tuned code for convex quadratic programming. In particular, we used the barrier algorithm
to compute the Euclidean projections onto the polytope M o_, o required at every iteration of
our algorithm.

e To compute the fixed points of the matrices A € Mg_, 0, that is, finding Q@ > * = Ax. As
discussed in Chapter 4 this is a polynomially-sized linear program.

o To measure the linear-swap regret incurred after any 7 iterations, which is plotted on the y-axes
of Figure 6.1. This corresponds to solving the linear optimization problem

T
1
' ®) 2® _ Ag®
Ae/r\n/(glﬁg{ g(ﬂ , T Az )}

t=1

We did very minimal tuning of the constant learning rate n used for online projected gradient de-
scent, trying values 7 € {0.05, 0.1, 0.5} (we remark that a constant value of 7 ~ 1/+/T is theoretically
sound). We found that = 0.1, which is used in the plots of Figure 6.1, performed best.

Implementation of no-trigger-regret dynamics We implemented the no-trigger-regret algorithm
of Farina et al. [2022b] in the C++ programming language. In this case, there is no need to use Gurobi,
since, as the original authors show, the polytope of trigger deviation functions admits a convenient
combinatorial characterization that enables us to sidestep linear programming. Rather, we imple-
mented the algorithm and the computation of the trigger regret directly leveraging the combinatorial
structure.

Computational resources used Minimal computational resources were used. All code ran on a
personal laptop for roughly 12 hours.

Game instance used We ran our code on the standard benchmark game of Kuhn poker Kuhn [1950].
We used a three-player variant of the game. Compared to the original game, which only considers a
simplified deck make of cards out of only three possible ranks (Jack, Queen, or Kind), we use a full
deck of 13 possible card ranks. The game has 156 information sets, 315 sequences, and 22308 terminal
states.
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Appendix C

Further Remarks on the Reduction from No-o-Regret to
External Regret

A no-®-regret algorithm is typically defined as outputting deterministic behavior from a finite set X
(for example, deterministic reduced-normal-form plans in extensive-form games, or actions in normal-
form games), which can be potentially sampled at random. This is the setting used by, for example,
Hart and Mas-Colell [2000] and Farina et al. [2022b]. However, we remark that when the transfor-
mations ¢ € ® are linear, any such device can be constructed starting from an algorithm that outputs
points ' € X’ := conv(X), and then sampling  unbiasedly in accordance with x’, that is, so that
E[x] = «’. The reason why this is useful is that constructing the latter object is usually simpler, as
X’ is a closed and convex set, and is therefore amenable to the wide array of online optimization
techniques that have been developed over the years.

More formally, let ® be a set of linear transformations that map X to itself. A no-®-regret algo-
rithm for X’ = conv(X’) guarantees that, no matter the sequence of loss vectors £(*),

T
BT = min SO 20 _ p(o/®
mip > o(z')

grows sublinearly. Consider now an algorithm that, after receiving ') € conv(X), samples z® ¢
X unbiasedly, that is, so that Ejx(®)] = 2’(®)_ Then, by linearity of the transformations and using the
Azuma-Hoeffind concentration inequality, we obtain that for any € > 0,

g@(leogi)] >1—e¢

where the big-theta notation hides constants that depend on the payoff range of the game and the
diameter of X' (a polynomial quantity in the game tree size). This shows that as long as the regret
of the no-®-algorithm that operates over X’ is sublinear, then so is that of an algorithm that outputs
points on X by sampling unbiasedly from XX'. We refer the interested reader to Section 4.2 (“From
Deterministic to Mixed Strategies”) of Farina et al. [2022b].

T

R —miny (¢® 2® — ¢(z®))
it

P
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