

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΙΒΛΕΠΟΝΤΕΣ: Ν. ΓΕΡΟΛΥΜΟΣ, ΛΕΚΤΩΡ Β. ΤΣΑΜΗΣ, ΕΠ. ΣΥΝΕΡΓΑΤΗΣ

ΘΕΜΕΛΙΩΣΗ ΕΥΚΑΜΠΤΗΣ ΔΕΞΑΜΕΝΗΣ ΚΑΙ SILO ΠΡΟΣΩΡΙΝΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Κ. ΖΑΡΑΚΙΩΤΗΣ, Α.ΚΟΥΤΣΙΑ

ΑΘΗΝΑ, ΝΟΕΜΒΡΙΟΣ 2010

Ευχαριστούμε τον επιστημονικό συνεργάτη κ. Βασίλειο Τσάμη για την αμέριστη συμπαράσταση και βοήθειά του στην ολοκλήρωση της παρούσας διπλωματικής εργασίας.

<u>ΘΕΜΕΛΙΩΣΗ ΕΥΚΑΜΠΤΗΣ ΔΕΞΑΜΕΝΗΣ ΚΑΙ SILO</u> <u>ΠΡΟΣΩΡΙΝΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ</u>

ΚΕΦΑΛΑΙΟ 1 : <u>ΕΙΣΑΓΩΓΗ</u>								
ΚΕΦΑΛΑΙΟ 2:	<u>ΕΔΑΦ</u>	DTEXNIKH EPEYNA	4					
ΚΕΦΑΛΑΙΟ 3:	<u>ΠΕΡΙΓΡ</u>	ΑΦΗ ΕΔΑΦΙΚΗΣ ΣΤΡΩΜΑΤΟΓΡΑΦΙΑΣ	6					
κεφαλαίο 4:	<u>ΣΥΝΟΓ</u> ΠΟΥ Μ	ΙΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ-ΕΝΑΛΛΑΚΤΙΚΩΝ ΛΥΣ ΕΛΕΤΗΘΗΚΑΝ	<u>ΈΩΝ</u> 10					
4.1	ΑΠΕΥΘ	ΕΙΑΣ ΕΔΡΑΣΗ ΕΥΚΑΜΠΤΗΣ ΚΥΚΛΙΚΗΣ ΔΕΞΑΜΕΝΗΣ	10					
4.2	ΒΕΛΤΙΩ ΣΤΡΑΓΓ	ΣΗ ΕΠΙΦΑΝΕΙΑΚΉΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ ΠΡΟΦΟΡΤΙΣΗ ΙΣΤΗΡΙΑ	<i>KAI</i> 11					
4.3	ΕΔΡΑΣΗ	Η ΕΥΚΑΜΠΤΗΣ ΚΥΚΛΙΚΗΣ ΔΕΞΑΜΕΝΗΣ ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ	12					
4.4	ΕΚΣΚΑς	ΦΗ ΤΑΦΡΟΥ ΚΑΙ ΠΡΟΣΩΡΙΝΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ	13					
4.5	ΘΕΜΕΛ	ΙΩΣΗ SILO	15					
	4.5.1	ΑΠΕΥΘΕΙΑΣ ΕΔΡΑΣΗ	15					
	4.5.2	ΒΑΘΕΙΑ ΘΕΜΕΛΙΩΣΗ ΜΕ ΠΑΣΣΑΛΟΥΣ	15					
	4.5.3	ΕΔΡΑΣΗ ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ	17					
ΚΕΦΑΛΑΙΟ 5:	<u>ΣΥΜΠΕ</u>	ΡΑΣΜΑΤΑ	19					
ΒΙΒΛΙΟΓΡΑΦΙ	A		20					

ΠΑΡΑΡΤΗΜΑ Α: <u>ΘΕΩΡΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΜΕΛΕΤΗΣ</u>

ΚΕΦΑΛΑΙΟ 1:	<u>ΕΚΤΙΜΗΣΗ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ</u>	22
1.1	ΣΗΜΑΣΙΑ ΤΩΝ ΕΠΙ ΤΟΠΟΥ ΔΟΚΙΜΩΝ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΕΔΑΦ ΠΑΡΑΜΕΤΡΩΝ	<i>ικΩΝ</i> 22
1.2	ΤΥΠΟΠΟΙΗΜΕΝΗ ΔΟΚΙΜΗ ΔΙΕΙΣΔΥΣΗΣ (SPT)	23
1.3	ΕΠΙ ΤΟΠΟΥ ΔΟΚΙΜΗ ΠΤΕΡΥΓΙΟΥ (FVT)	28
1.4	ΕΜΠΕΙΡΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ ΣΥΣΧΕΤΙΣΗΣ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ	32
ΚΕΦΑΛΑΙΟ 2:	<u>ΚΑΘΙΖΗΣΕΙΣ ΕΥΚΑΜΠΤΩΝ ΚΥΚΛΙΚΩΝ ΕΠΙΦΑΝΕΙΩΝ</u>	34
2.1	Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΙΖΗΣΗΣ	34
2.2	ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΕΥΚΑΜΠΤΩΝ ΚΥΚΛΙΚΩΝ ΕΠΙΦΑΝΕΙΩΝ ΣΕ ΣΥΝΕΙ ΥΛΙΚΑ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΣΥΜΠΙΕΣΟΜΕΤΡΟΥ ΚΑΤΑ TERZAGHI	<i>ктіка</i> 34
2.3	ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΕΥΚΑΜΠΤΩΝ ΚΥΚΛΙΚΩΝ ΕΠΙΦΑΝΕΙΩΝ ΣΕ ΣΥΝΕΚΤΙΚΑ ΥΛΙΚΑ ΜΕ ΤΥΠΟΥΣ ΕΛΑΣΤΙΚΗΣ ΜΟΡΦΗΣ	<i>МН</i> 37
	2.3.1 ΜΕΘΟΔΟΣ ΜΙLOVIC	37
	2.3.2 ΜΕΘΟΔΟΣ ΑΗLVIN & ULERY	38

ΚΕΦΑΛΑΙΟ 3:	ΕΛΕΓΧΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ	42
3.1	Η ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΑΚΟΥ ΦΟΡΤΙΟΥ (ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ) ΑΒΑΘ ΘΕΜΕΛΙΩΝ	9ΩN 42
3.2	ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ Υ ΚΕΝΤΡΙΚΗ ΚΑΙ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΚΑΤΑ DIN 4017 (ΦΥΛΛΟ 1)	<i>ҮПО</i> 44
3.3	ΕΚΚΕΝΤΡΟΤΗΤΑ ΚΑΙ ΚΛΙΣΗ ΣΤΗ ΦΟΡΤΙΣΗ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ	46
3.4	ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ Υ ΕΚΚΕΝΤΡΗ ΚΑΙ ΛΟΞΗ ΦΟΡΤΙΣΗ ΚΑΤΑ DIN 4017 (ΦΥΛΛΟ 2)	<i>үПО</i> 49
3.5	ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ ΕΚΚΕΝΤΡΗ ΚΑΙ ΛΟΞΗ ΦΟΡΤΙΣΗ ΚΑΤΑ ΜΕΥΕRHOF	<i>ҮПО</i> 51
3.6	ΕΠΙΡΡΟΗ ΤΗΣ ΣΤΑΘΜΗΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΥΔΑΤΩΝ	54
3.7	ΣΥΝΤΕΛΕΣΤΕΣ ΑΣΦΑΛΕΙΑΣ ΕΝΑΝΤΙ ΘΡΑΥΣΗΣ	55
ΚΕΦΑΛΑΙΟ 4:	ΚΑΘΙΖΗΣΕΙΣ ΑΚΑΜΠΤΩΝ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ	57
4.1	Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΙΖΗΣΗΣ	57
4.2	ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΑΚΑΜΠΤΩΝ ΘΕΜΕΛΙΩΝ ΣΕ ΣΥΝΕΚΤΙΚΑ ΥΛΙΚΑ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΣΥΜΠΙΕΣΟΜΕΤΡΟΥ ΚΑΤΑ TERZAGHI	<i>МЕ</i> 57
4.3	ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΑΚΑΜΠΤΩΝ ΘΕΜΕΛΙΩΝ ΣΕ ΜΗ ΣΥΝΕΚΤΙΚΑ ΥΛ ΜΕ ΤΗ ΜΕΘΟΔΟ DIN 4019 ΚΑΤΑ ΚΑΝΥ	1 <i>IKA</i> 50
4.4	ΚΡΙΤΗΡΙΑ ΕΠΙΤΡΕΠΟΜΕΝΩΝ ΚΑΘΙΖΗΣΕΩΝ ΚΑΤΑ SKEMPTON – McDONALD	52
ΚΕΦΑΛΑΙΟ 5	: <u>ΒΕΛΤΙΩΣΗ – ΕΝΙΣΧΥΣΗ ΣΥΝΘΗΚΩΝ ΘΕΜΕΛΙΩΣΗΣ ΜΕ ΣΥΝΔΙΑΣΙ</u> <u>ΠΡΟΦΟΡΤΙΣΗΣ ΚΑΙ ΣΤΡΑΓΓΙΣΤΗΡΙΩΝ Ή ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ</u>	<u>MO</u> 54
5.1	ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΒΕΛΤΙΩΣΗ – ΕΝΙΣΧΥΣΗ ΤΩΝ ΣΥΝΘΗΚΩΝ ΘΕΜΕΛΙΩΣΗΣ	54
5.2	ΜΕΘΟΔΟΙ ΒΕΛΤΙΩΣΗΣ – ΕΝΙΧΥΣΗΣ ΤΩΝ ΣΥΝΘΗΚΩΝ ΘΕΜΕΛΙΩΣΗΣ	54
	5.2.1 ΜΕΘΟΔΟΙ ΜΕΙΩΣΗΣ ΤΟΥ ΠΡΟΣΘΕΤΟΥ ΦΟΡΤΙΟΥ ΠΟΥ ΕΠΙΒΑΛΛΕ ΣΤΟ ΕΔΑΦΟΣ	<i>ETAI</i> 65
	5.2.2 ΜΕΘΟΔΟΙ ΒΕΛΤΙΩΣΗΣ ΤΟΥ ΕΔΑΦΟΥΣ ΧΩΡΙΣ ΧΡΗΣΗ ΞΕΝΩΝ ΥΛΙΚΩΝ Θ	65
	5.2.3 ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ ΤΟΥ ΕΔΑΦΟΥΣ ΜΕ ΧΡΗΣΗ ΞΕΝΩΝ ΥΛΙΚΩΝ	65
	5.2.4 ΑΝΑΒΑΘΜΙΣΗ ΣΥΝΕΚΤΙΚΩΝ ΕΔΑΦΩΝ	56
5.3	ΠΡΟΦΟΡΤΙΣΗ	56
	5.3.1 ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΟΦΟΡΤΙΣΗΣ	57
	5.3.2 ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΦΟΡΤΙΣΗΣ	58
	5.3.3 ΕΚΤΙΜΗΣΗ ΑΥΞΗΜΕΝΗΣ ΑΣΤΡΑΓΓΙΣΤΗΣ ΔΙΑΤΜΗΤΙΚΗΣ ΑΝΤΟ. ΑΡΓΙΛΟΥ ΛΟΓΩ ΠΡΟΦΟΡΤΙΣΗΣ	<i>ΧΗΣ</i> 59
5.4	ΣΤΕΡΕΟΠΟΙΗΣΗ ΛΟΓΩ ΠΡΟΦΟΡΤΙΣΗΣ	71
5.5	ΣΤΡΑΓΓΙΣΤΗΡΙΑ	73
5.6	ΓΕΝΙΚΑ ΓΙΑ ΤΟΥΣ ΧΑΛΙΚΟΠΑΣΣΑΛΟΥΣ	77
	5.6.1 ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ	77

	5.6.2	ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΑ – ΜΗΧΑΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΚΤΥΟΥ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ 78
	5.6.3	ΕΚΤΙΜΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΒΕΛΤΙΩΣΗΣ - ΕΝΙΣΧΥΣΗΣ Β=1/γ ΚΑΤΑ PRIEBE 84
5.7	EKTIMI	ΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΑΝΤΟΧΗΣ ΜΕΙΚΤΟΥ ΙΣΟΔΥΝΑΜΟΥ ΕΔΑΦΟΥΣ 86
	5.7.1	ΑΜΕΣΩΣ ΜΕΤΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΤΩΝ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ 86
	5.7.2	ΜΕΤΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΗΣ ΣΤΕΡΕΟΠΟΙΗΣΗΣ ΚΑΙ ΤΗΝ ΑΝΑΚΑΤΑΝΟΜΗ ΤΩΝ ΤΑΣΕΩΝ ΚΑΤΑ ΤΟ ΠΡΟΣΟΜΟΙΩΜΑ ΣΥΝΟΧΗΣ – ΤΡΙΒΗΣ 86
5.8	ΕΛΕΓΧΟ	υς εναντι αστοχίας – εκτιμήση καθιζήσεων χαλικοπάσσαλογ 89
	5.8.1	ΕΛΕΓΧΟΣ ΕΝΑΝΤΙ ΑΣΤΟΧΙΑΣ ΜΕ ΠΡΟΣΟΜΟΙΩΜΑ ΠΑΣΣΑΛΟΥ 89
	5.8.2	ελεγχος εναντί αστοχίας με προσομοιωμα τριαξονικού Δοκιμίου 90
	5.8.3	ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΜΕ ΠΡΟΣΟΜΟΙΩΜΑ ΠΑΣΣΑΛΟΥ 92
	5.8.4	εκτιμήση καθιζήσεων με προσομοιώμα τριαξονικού Δοκιμίου 93
ΚΕΦΑΛΑΙΟ 6:	<u>ΕΛΕΓΧΟ</u>	<u>ΟΣ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΦΟΡΤΙΣΗΣ ΜΕ ΚΥΚΛΟΥΣ ΟΛΙΣΘΗΣΗΣ</u> 94
6.1	ΓΕΝΙΚΑ	ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΕΥΣΤΑΘΕΙΑΣ ΜΕ ΚΥΚΛΟΥΣ ΟΛΙΣΘΗΣΗΣ 94
6.2	ΕΛΕΓΧΟ	ΟΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕ ΚΥΚΛΟΥΣ ΟΛΙΣΘΗΣΗΣ ΚΑΤΑ BISHOP 95
ΚΕΦΑΛΑΙΟ 7:	<u>ΒΑΘΕΙΑ</u>	<u>Α ΘΕΜΕΛΙΩΣΗ ΜΕ ΠΑΣΣΑΛΟΥΣ</u> 100
7.1	ΥΠΟΛΟ ΚΑΤΑΚ	ΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΟΡΥΦΗ ΦΟΡΤΙΣΗ ΜΕ ΣΤΑΤΙΚΟΥΣ ΤΥΠΟΥΣ 100
	7.1.1	ΜΟΝΑΔΙΑΙΑ ΑΝΤΟΧΗ ΑΙΧΜΗΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΚΑΤΑ TERZAGHI 101
	7.1.2	ΜΟΝΑΔΙΑΙΑ ΟΡΙΑΚΗ ΑΝΤΟΧΗ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΓΙΑ ΚΑΘΑΡΑ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ 103
	7.1.3	ΜΟΝΑΔΙΑΙΑ ΟΡΙΑΚΗ ΑΝΤΟΧΗ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΓΙΑ ΜΗ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ 105
	7.1.4	ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΤΡΕΠΟΜΕΝΟΥ ΦΟΡΤΙΟΥ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ 106
7.2	ΥΠΟΛΟ ΚΑΤΑΚ	ΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΟΡΥΦΗ ΦΟΡΤΙΣΗ ΚΑΤΑ DIN4014 107
	7.2.1	ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΟΝΑΔΙΑΙΑΣ ΟΡΙΑΚΗΣ ΑΝΤΟΧΗΣ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ τ _{mf} ΓΙΑ ΜΗ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ (ΠΙΝΑΚΑΣ 7.3) 108
	7.2.2	ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΟΝΑΔΙΑΙΑΣ ΟΡΙΑΚΗΣ ΑΝΤΟΧΗΣ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ $τ_{mf}$ ΓΙΑ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ (ΠΙΝΑΚΑΣ 7.4) 108
	7.2.3	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
	7.2.4	ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΟΝΑΔΙΑΙΑΣ ΑΝΤΟΧΗΣ ΑΙΧΜΗΣ $σ_g$ ΓΙΑ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ (ΠΙΝΑΚΑΣ 7.6) 109

	7.2.5	ΚΑΤΑΣΚΕΥΗ ΚΑΜΠΥΛΗΣ ΦΟΡΤΙΟΥ - ΚΑΘΙΖΗΣΕΩΝ ΠΑΣΣΑΛΟΥ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ	<i>үПО</i> 109
	7.2.6	ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΤΡΕΠΟΜΕΝΟΥ ΦΟΡΤΙΟΥ ΠΑΣΣΑΛΟΥ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ	<i>үПО</i> 111
7.3	ΥΠΟΛΟ ΚΑΤΑΚ	ΟΓΙΣΜΟΣ ΦΟΡΤΊΟΥ ΛΕΙΤΟΥΡΓΙΑΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟ ΟΡΥΦΗ ΦΟΡΤΙΣΗ	<i>NIKH</i> 112
7.4	ΠΡΟΣΔΙ	ΟΡΙΣΜΟΣ ΑΠΑΙΤΟΥΜΕΝΟΥ ΑΡΙΘΜΟΥ ΠΑΣΣΑΛΩΝ ΠΑΣΣΑΛΟΜΑΔΑΣ	112
ΚΕΦΑΛΑΙΟ 8:	<u>ΠΡΟΣΩ</u>	ΡΙΝΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ	114
8.1	ΛΕΙΤΟΥ	ΈΓΙΑ ΑΥΤΟΦΕΡΟΜΕΝΟΥ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ	114
	8.1.1	ΑΥΤΟΦΕΡΟΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΜΜΟ	115
	8.1.2	ΑΥΤΟΦΕΡΟΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΡΓΙΛΟ	117
8.2	ΛΕΙΤΟΥ	ΎΓΓΙΑ ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟΥ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ	120
	8.2.1	ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΜΜΟ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ ΠΟΔΑ (FREE EARTH SUPPORT)	<i>D ME</i> 121
	8.2.2	ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΡΓΙΛΟ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ ΠΟΔΑ (FREE EARTH SUPPORT)	2 <i>ME</i> 123
	8.2.3	ΜΕΙΩΣΗ ΜΕΓΙΣΤΗΣ ΡΟΠΗΣ ΚΑΜΨΗΣ Μ _{max} ΑΠΛΩΣ ΑΓΚΥΡΩΜΙ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΜΕ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ Γ (FREE EARTH SUPPORT) KATA ROWE	ENOY 10∆A 124
	8.2.4	ΕΚΤΙΜΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΜΕΙΩΣΗΣ ΜΕΓΙΣΤΗΣ ΡΟΠΗΣ ΚΑΜ Μ/Μ _{max} ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟΥ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩ ΑΜΜΟ ΜΕ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ ΠΟΔΑ (FREE EARTH SUPP KATA ROWE	1ΨΗΣ 2N ΣΕ PORT) 126
	8.2.5	ΔΙΑΜΕΤΡΟΣ ΑΓΚΥΡΙΟΥ - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΚΑΙ ΘΕΣΗ ΣΩΜΛ ΑΓΚΥΡΩΣΗΣ	4 <i>ΤΟΣ</i> 128
8.3	ANTHP	ΙΔΩΤΗ ΑΝΤΙΣΤΗΡΙΞΗ	130
8.4	ΕΥΣΤΑΘ	ΘΕΙΑ ΠΡΑΝΟΥΣ ΚΑΤΑ ΤΑΥLOR	132
ПА	PAPTI	Η ΜΑ Β: <u>ΑΝΑΛΥΤΙΚΟΙ ΥΠΟ</u> ΛΟΓΙΣΜΟΙ ΜΕΛΕΤΗΣ	

ΚΕΦΑΛΑΙΟ 1: <u>ΤΟΠΟΓΡΑΦΙΚΟ ΔΙΑΓΡΑΜΜΑ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ</u>	136
ΚΕΦΑΛΑΙΟ 2 : <u>ΕΔΑΦΟΤΕΧΝΙΚΕΣ ΤΟΜΕΣ ΓΕΩΤΡΗΣΕΩΝ</u>	137
ΚΕΦΑΛΑΙΟ 3 : <u>ΚΑΜΠΥΛΗ ΔΟΚΙΜΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ ΑΡΓΙΛΟΥ CUPP</u>	139
ΚΕΦΑΛΑΙΟ 4 : <u>ΚΑΜΠΥΛΗ ΔΟΚΙΜΗΣ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΣΥΜΠΙΕΣΗΣ ΑΡΓΙΛΟΥ</u>	140
ΚΕΦΑΛΑΙΟ 5 : <u>ΕΚΤΙΜΗΣΗ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ</u>	141
ΚΕΦΑΛΑΙΟ 6: <u>ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΕΥΚΑΜΠΤΗΣ ΚΥΚΛΙΚΗΣ ΔΕΞΑΜΕΝΗΣ</u>	150
ΚΕΦΑΛΑΙΟ 7: <u>ΜΕΛΕΤΗ ΠΡΟΣΩΡΙΝΗΣ ΑΝΤΙΣΤΗΡΙΞΗΣ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ</u>	168
ΚΕΦΑΛΑΙΟ 8 : <u>ΜΕΛΕΤΗ ΘΕΜΕΛΙΩΣΗΣ SILO</u>	209

ΘΕΜΕΛΙΩΣΗ ΕΥΚΑΜΠΤΗΣ ΔΕΞΑΜΕΝΗΣ ΚΑΙ SILO ΠΡΟΣΩΡΙΝΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ

1. ΕΙΣΑΓΩΓΗ

ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΔΙΑΡΘΡΩΣΗ ΤΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Στην παρούσα διπλωματική εργασία μελετήθηκαν οι καθιζήσεις που προκαλεί εύκαμπτη κυκλική δεξαμενή σε συγκεκριμένη εδαφική στρωματογραφία - η οποία προέκυψε από 2 γεωτρήσεις που πραγματοποιήθηκαν στην περιοχή μελέτης -, πιθανοί τρόποι προσωρινής αντιστήριξης των παρειών εκσκαφής για την τοποθέτηση υπόγειου αγωγού σε βάθος 3,5 μέτρων από την επιφάνεια του εδάφους και εναλλακτικοί τρόποι θεμελίωσης συγκεκριμένης διάταξης silo.

Η κυκλική δεξαμενή διαμέτρου 30 μέτρων ασκεί στο έδαφος ομοιόμορφη πίεση 100 kPa. Για τη δημιουργία του προφίλ των καθιζήσεών της - τόσο χωρίς όσο και με την παρουσία προφόρτισης ομοιόμορφης πίεσης 100 kPa - χρησιμοποιήθηκαν οι μέθοδοι Milovic και Ahlvin & Ulery για άμεσες καθιζήσεις. Όσον αφορά την προσωρινή αντιστήριξη των παρειών της εκσκαφής υπολογίσθηκαν η διατομή κατάλληλου πετάσματος πασσαλοσανίδων και το μήκος έμπηξης του στο έδαφος – καθώς και όλα τα υπόλοιπα απαιτούμενα μεγέθη - για την περίπτωση αυτοφερόμενου και αγκυρωμένου πετάσματος. Επίσης εξετάσθηκε η προσωρινή αντιστήριξη με αντηρίδες καθώς και η απλή εσκαφή με κεκλιμένο πρανές στην περίπτωση βελτιωμένου εδάφους. Για το silo με πλάκα έδρασης διαστάσεων 16×16 μελετήθηκαν λύσεις θεμελίωσής του τόσο στο αρχικό έδαφος όσο και στο βελτιωμένο. Αφού απορρίφθηκε η απευθείας αβαθής θεμελίωση του silo στην απροφόρτιστη άργιλο πραγματοποιήθηκε μελέτη βαθειάς θεμελίωσής του με ομάδα 16 πασσάλων. Τέλος εξετάσθηκε η λύση της έδρασης του silo σε βελτιωμένο έδαφος με προφόρτιση πίεσης 100 kPa που πραγματοποιείται σε 2 φάσεις, παρουσίας χαλικοπασσάλων.

Στα κεφάλαια 2 και 3 παρουσιάζονται στοιχεία της εδαφοτεχνικής έρευνας, ενώ στο κεφάλαιο 4 συνοπτικά τα αποτελέσματα όλων των εναλλακτικών λύσεων που μελετήθηκαν και στο κεφάλαιο 5 τα συμπεράσματα στα οποία καταλήξαμε.

Στο παράρτημα Α γίνεται αναφορά στα θεωρητικά στοιχεία που χρησιμοποιήθηκαν, ενώ στο παράρτημα Β απεικονίζονται αναλυτικά όλοι οι υπολογισμοί που πραγματοποιήθηκαν για την εξαγωγή των συμπερασμάτων.

2. ΕΔΑΦΟΤΕΧΝΙΚΗ ΕΡΕΥΝΑ

Η εδαφοτεχνική έρευνα περιλάμβανε την εκτέλεση δύο γεωτρήσεων με παράλληλη εκτέλεση επί τόπου και εργαστηριακών δοκιμών.

<u>ΓΕΩΤΡΗΣΕΙΣ</u>

Στον παρακάτω πίνακα παρουσιάζονται για κάθε γεώτρηση το βάθος της, καθώς και το υψόμετρο κεφαλής της.

ΓΕΩΤΡΗΣΗ	ΒΑΘΟΣ ΓΕΩΤΡΗΣΗΣ	ΥΨΟΜΕΤΡΟ ΚΕΦΑΛΗΣ
Γ ₁	19.00 m	39.60 m
Γ2	20.45 m	39.90 m

Κατά τη διάρκεια των γεωτρήσεων έγινε συνεχής δειγματοληψία και ελήφθησαν τα παρακάτω είδη δειγμάτων:

- Αδιατάρακτα δείγματα με δειγματολήπτη λεπτού τοιχώματος και εσωτερικό πλαστικό σωλήνα,
- Αντιπροσωπευτικά, ημιδιαταραγμένα με δειγματολήπτη απλού τοιχώματος
 και προχώρηση της γεωτρήσεως «εν ξηρώ» (δείγματα «με φραγμό») και
- Αντιπροσωπευτικά, ημιδιαταραγμένα κατά την εκτέλεση της Τυποποιημένης
 Δοκιμής Διεισδύσεως (SPT) με τον διαιρετό δειγματολήπτη TERZAGHI.

<u>ΕΠΙ ΤΟΠΟΥ ΔΟΚΙΜΕΣ</u>

Κατά τη διάρκεια των γεωτρήσεων έγιναν επίσημες Τυποποιημένες Δοκιμές Διεισδύσης (Standard Penetration Tests), για την εκτίμηση της επί τόπου πυκνότητας ή συνεκτικότητας των εδαφικών στρώσεων.

Επίσης σε μια θέση της μαλακής αργιλικής στρώσης έγινε επί τόπου δοκιμή πτερυγίου (Field Vane Test).

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΔΟΚΙΜΕΣ

Όλα τα δείγματα των γεωτρήσεων μεταφέρθηκαν στο εργαστήριο, όπου έγινε μακροσκοπική εξέταση τους και προταξινόμηση και στη συνέχεια υποβλήθηκαν στις παρακάτω εργαστηριακές δοκιμές.

- ΔΟΚΙΜΕΣ ΚΑΤΑΤΑΞΗΣ:
 - Κοκκομετρικές αναλύσεις με κόσκινα,
 - Κοκκομετρικές αναλύσεις με υδρόμετρο (αραιότερο) και
 - ο Προσδιορισμός ορίων ATTERBERG (LL και PL).
- ΔΟΚΙΜΕΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΦΥΣΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ:
 - Προσδιορισμός φυσικής υγρασίας w,
 - ο Προσδιορισμός υγρού και ξηρού φαινομένου βάρους γ και
 - Προσδιορισμός ειδικού βάρους γ_{s.}
- ΔΟΚΙΜΕΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΠΑΡΑΜΕΤΡΩΝ ΔΙΑΤΜΗΤΙΚΗΣ ΑΝΤΟΧΗΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΙΜΟΤΗΤΑΣ:
 - Δοκιμές ανεμπόδιστης θλίψης για τον προσδιορισμό της αντοχής σε ανεμπόδιστη θλίψη (q_u) και έμμεσα της αστράγγιστης διατμητικής αντοχής c_u,
 - Δοκιμές στερεοποίησης για τον προσδιορισμό των παραμέτρων συμπιεστότητας (μέτρο συμπίεσης E_s , δείκτης συμπιεστότητας c_c , καθώς και του συντελεστή μονοδιάστατης στερεοποίησης c_v),
 - Τριαξονική δοκιμή χωρίς αρχική στερεοποίηση χωρίς στράγγιση για τον προσδιορισμό της αστράγγιστης διατμητικής αντοχής και
 - Τριαξονική δοκιμή με αρχική στερεοποίηση χωρίς στράγγιση με παράλληλη μέτρηση πίεσης πόρων (CUPP) για τον προσδιορισμό των παραμέτρων αντοχής σε αναφορά ενεργών τάσεων c', φ'.

Τα συγκεντρωτικά αποτελέσματα των εργαστηριακών δοκιμών εμφανίζονται στα φύλλα των εδαφοτεχνικών τομών και γεωτρήσεων στο παράρτημα, μαζί με τα αποτελέσματα ορισμένων εργαστηριακών δοκιμών προσδιορισμού μηχανικών χαρακτηριστικών.

3. ΠΕΡΙΓΡΑΦΗ ΕΔΑΦΙΚΗΣ ΣΤΡΩΜΑΤΟΓΡΑΦΙΑΣ

Με βάση τα παραπάνω αποτελέσματα της εδαφοτεχνικής έρευνας που πραγματοποιήθηκε, το έδαφος την περιοχή της δεξαμενής του silo και του υπόγειου αγωγού, εμφανίζει την παρακάτω στρωματογραφία.

 Στρώση μαλακής, καστανής αργίλου (0 – 7m). Κατά το ενοποιημένο σύστημα η στρώση χαρακτηρίζεται από CH – OH. Στον εδαφικών παραμέτρων επόμενο πίνακα παρουσιάζεται η διακύμανση των κυριότερων παραμέτρων της στρώσεως.

	ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΡΩΣΗΣ Ι ΚΑΣΤΑΝΗΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ q _c =0,50 MPa													
ΛΗ Σ Σ ΔΥΣΗΣ		KOKKON	іетрікн ам	ΝΑΛΥΣΗ		OF ATTEF	PIA RBERG	EIAΣ	ΣIAΣ		0Σ	οΣ		
TYIIOTOIHMENH AOKIN AIEIZAYZHZ SPT APIΘMC KPOYZEΩN FIA 30 cm AIEIZ	XAAIKIΩN ΣYFKPATOYMENO ΣTO KOΣKINO N° 4) AMMOY ΣΥΓΚΡΑΤΟΥΜΕΝΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	202TO ΑΡΓΙΛΟΥ - ΙΛΥΟΣ ΕΝΟ ΑΠΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	ΣΤΟ ΙΛΥΟΣ ΔΙΕΡΧΟΜΕΝΟ Ο ΤΟ ΚΟΣΚΙΝΟ Ν° 200	TO APLIAOY AIEPXOMENO O KOZKINO N° 200 < 0005	ΟΡΙΟ ΠΛΑΣΤΙΚΟΤΗΤΑΣ	ΟΡΙΟ ΥΔΑΡΟΤΗΤΑΣ	ΠΟΣΟΣΤΟ ΦΥΣΙΚΗΣ ΥΓΡΑΣ	ΠΟΣΟΣΤΟ ΣΧΕΤΙΚΗΣ ΥΓΡΑ	ΕΙΔΙΚΟ ΒΑΡΟΣ	EHPO ØAINOMENO BAF	YIPO ØAINOMENO BAP	ΔΕΙΚΤΗΣ ΠΟΡΩΝ	
7	οΣΤΟ	02T0				0202 TOLT	-	<u>–</u>	2	_	۲s	٩d	γ υγρ.	cρ
_	ZOΠ	ЮЦ	AIEP)			Δ.		-	_	tn/m³	tn/m³	tn/m³		
				Г	εωτρήσι	11								
1		11	89	56	33	25	40	36	73	2,58	1,36	1,85	90	
2		8	92	56	36	28	39	37	82	2,56	1,33	1,83	92	
3		7	93	56	37	27	39	37	83	2,57	1,35	1,84	91	
		11	89	59	30	28	38	36	80	2,58	1,34	1,83	92	
		12	88	60	28	26	37	36	91	2,57	1,35	1,84	90	
				Г	ΕΩΤΡΗΣΗ	12	1	1	1	1	1			
1		8	92	54	38	24	41	37	76	2,58	1,34	1,84	92	
2		10	90	58	32	23	41	38	83	2,59	1,36	1,85	90	
2		7	93	58	35	21	41	36	75	2,59	1,36	1,86	91	
		11	89	60	29	22	40	37	83	2,56	1,34	1,84	91	
		10	90	20	70	22	40	37	83					
				1	ΛΕΣΗ ΤΙΝ	1H								
1,833		9,5	90,5	53,7	36,8	24,6	39,6	36,7	80,9	2,58	1,35	1,84	91,0	
			Δ	ΕΙΚΤΗΣ ΠΛ	ΑΣΤΙΜΟΊ	ΉΤΑΣ Ι	기 = 15	-	-			-		

 Στρώση τέφρης ιλυώδους χονρόκοκκης έως μεσολεπτόκοκκης άμμου μέσης πυκνότητας (7 – 9.45m). Κατά το ενοποιημένο σύστημα η στρώση χαρακτηρίζεται από SM. Στον επόμενο πίνακα παρουσιάζεται η διακύμανση των κυριότερων εδαφικών παραμέτρων.

ХАРА	ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΡΩΣΗΣ ΙΙ ΤΕΦΡΗΣ ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΜΕΣΟΛΕΠΤΟΚΟΚΚΗΣ ΙΛΥΩΔΟΥΣ ΑΜΜΟΥ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΜΕ q _c =8,50 MPa												
ΛΗ ΣΟ ΔΥΣΗΣ		KOKKON	ИЕТРІКН А	ΝΑΛΥΣΗ		OF ATTEF	PIA RBERG	ΞΙΑΣ	ΣΙΑΣ		OΣ	02	
TYNONOIHMENH AOKII AIEI2AY2H2 SPT API©Mi KPOY2EΩN ΓIA 30 cm ΔIEI2	ΧΑΛΙΚΙΩΝ ΣΥΓΚΡΑΤΟΥΜΕΝΟ ΣΤΟ ΚΟΣΚΙΝΟ Ν° 4) ΑΜΜΟΥ ΣΥΓΚΡΑΤΟΥΜΕΝΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	οΣΤΟ ΑΡΓΙΛΟΥ - ΙΛΥΟΣ ΝΟ ΑΠΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	ΣΤΟ ΙΛΥΟΣ ΔΙΕΡΧΟΜΕΝΟ Ο ΤΟ ΚΟΣΚΙΝΟ Ν° 200	TO APΓΙΛΟΥ ΔΙΕΡΧΟΜΕΝΟ Ο ΚΟΣΚΙΝΟ Ν° 200 < 0005	ΟΡΙΟ ΠΛΑΣΤΙΚΟΤΗΤΑΣ	ΟΡΙΟ ΥΔΑΡΟΤΗΤΑΣ	ΥΑΤΡΟΣΟΣΤΟ ΦΥΣΙΚΗΣ ΥΓΡΑ.	ΠΟΣΟΣΤΟ ΣΧΕΤΙΚΗΣ ΥΓΡΑ	ειδικο βαροΣ	EHPO ¢AINOMENO BAF	YFPO ØAINOMENO BAP	νσηοη ζητης πορων
z	ΠΟΣΟΣΤΟ	ΠΟΣΟΣΤΟ Σ	ΔΙΕΡΧΟΜΕ	ПО <u>2</u> ОП АП	ΠΟΣΟΣ ⁻ ΑΠΟ Τι	ΡL	Ц	M	۱۲	tn/m^3 γ_s	tn/m ³ γ _d	$tn/m^3 \gamma_{\nu\gamma\rho}$.	е
				ΓΕΩ	ΩΤΡΗΣΗ 1								
16		75	25	25		19	24	23	80	2,65	1,52	1,85	74
18		78	22	22				28					
				ΓΕΩ	ΩΤΡΗΣΗ 2	2	1	-			1	1	
17		74	26	26									
18		77	23	23									
47.250		76.0	24.0	ME	:ΣΗ ΤΙΜΗ	10.0	24.0	25.5	00.0	2.65	4 5 2	4.05	74.0
17,250		76,0	24,0	24,0		19,0	24,0	25,5	80,0	2,65	1,52	1,85	74,0

 Στρώση τέφρης λεπτόκοκκης άμμου πυκνής με λίγη ιλύ. Η στρώση χαρακτηρίζεται κατά το ενοποιημένο σύστημα SM. Στον επόμενο πίνακα παρουσιάζεται η διακύμανση των κυριότερων εδαφικών παραμέτρων της στρώσης.

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΡΩΣΗΣ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΗ ΙΛΥ ΜΕ q _c =14,00 MPa													
ΛΗ ΣC ΔΥΣΗΣ		KOKKON	ИЕТРІКН А	ΝΑΛΥΣΗ		OF ATTER	PIA BERG	ΞΙΑΣ	ΣΙΑΣ		ΩΣ	02	
TYNONOIHMENH AOKIN AIEIZAYZHZ SPT APIOM(KPOYZEΩN FIA 30 cm AIEIZ	XAAIKIΩN ΣYFKPATOYMENO ΣTO KOΣKINO N° 4) AMMOY ZYFKPATOYMENO TO KOZKINO N° 200	ΟΣΤΟ ΑΡΓΙΛΟΥ - ΙΛΥΟΣ ΕΝΟ ΑΠΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	ΣΤΟ ΙΛΥΟΣ ΔΙΕΡΧΟΜΕΝΟ Ο ΤΟ ΚΟΣΚΙΝΟ Ν° 200	TO APFIAOY AIEPXOMENO O KOZKINO N° 200 < 0005	ΟΡΙΟ ΠΛΑΣΤΙΚΟΤΗΤΑΣ	ΟΡΙΟ ΥΔΑΡΟΤΗΤΑΣ	ΠΟΣΟΣΤΟ ΦΥΣΙΚΗΣ ΥΓΡΑΣ	ΠΟΣΟΣΤΟ ΣΧΕΤΙΚΗΣ ΥΓΡΑ.	ειδικο βαρος	EHPO ¢AINOMENO BAP	YFPO ØAINOMENO BAP	ΔΕΙΚΤΗΣ ΠΟΡΩΝ
z	ΠΟΣΟΣΤΟ	ΠΟΣΟΣΤG Σ	лох Дерхоме	ПО <u>2</u> ОП АП	ПОΣОΣ АПО Т	Ы	٦٦	M	ΙΓ	tn/m^3 γ_s	tn/m ³ γd	$tn/m^3 \gamma_{u\gamma\rho}$.	e
				Г	ΕΩΤΡΗΣΗ	1							
30		92	8	8				25		2,70	1,64	2,05	65
32		91	9	9									
38		94	6	6									
40		94	6	6									
42		91	9	9									
45		93	7	7									
		92	8	8									
				Г	ΕΩΤΡΗΣΗ	2	1			1			
33		91	9	9				21		2,72	1,62	2,04	68
32		92	8	8				26					
34		94	ь С	6									
34		94	6	6									
55		91	9 10	9									
		90	010	01									
		92	0	0		L							
35,727		92,2	7,8	7,8		ľ		24,0		2,71	1,63	2,05	66,5
<u> </u>		,	,	,		4				<u> </u>			<u> </u>

Από την αξιολόγηση των αποτελεσμάτων των επί τόπου και εργαστηριακών δοκιμών προκύπτει η παρακάτω υπολογιστική στρωματογραφία.

± 0,00

Σ.Y.O. -2,00 ΣΤΡΩΣΗ Ι ΚΑΣΤΑΝΗΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ q_c=0,50 MPa $\gamma_{\kappa o \rho}$ =18,40 kN/m³ c_u=0,93z + 7,45 (kPa) φ'=32[°] E₁₁=9635 kPa -7,00 ΣΤΡΩΣΗ ΙΙ ΤΕΦΡΗΣ ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΜΕΣΟΛΕΠΤΟΚΟΚΚΗΣ ΙΛΥΩΔΟΥΣ <u>ΑΜΜΟΥ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΜΕ q_c=8,50 MPa</u> $\gamma_{\kappa o \rho}$ =19,50 kN/m³ φ=33[°] E_s=13575 kPa -9,45 ΣΤΡΩΣΗ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΗ ΙΛΥ ΜΕ <u>q_c=14,00 MPa</u> $\gamma_{\kappa o \rho}$ = 20,50 kN/m³ φ=35[°] E_s=26024 kPa -20,45

4. ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ - ΕΝΑΛΛΑΚΤΙΚΩΝ ΛΥΣΕΩΝ ΠΟΥ ΜΕΛΕΤΗΘΗΚΑΝ

4.1 ΑΠΕΥΘΕΙΑΣ ΕΔΡΑΣΗ ΕΥΚΑΜΠΤΗΣ ΚΥΚΛΙΚΗΣ ΔΕΞΑΜΕΝΗΣ

Στον παρακάτω πίνακα παρουσιάζονται οι συνολικές καθιζήσεις της εύκαμπτης κυκλικής δεξαμενής, αθροιστικά για την άργιλο και τις δύο άμμους της στρωματογραφίας, σε ενδεικτικά σημεία κάτω από την επιφάνεια της δεξαμενής όσο και έξω από αυτή, όπως αυτές υπολογίστηκαν με χρήση των μεθόδων Milovic και Ahlvin&Ulery, χωρίς τη διαδικασία προφορτίσεως.

Δεξαμενή διαμέτρου D				Σημεί	ία (r/R)			
που ασκεί ομοιόμορφη πίεση p=100 kPa	0	0,2	0,4	0,6	0,8	1	2	3
Άμεσες καθιζήσεις κατά Milovic	0,094 8	0,0938	0,0903	0,0838	0,0717	0,0417		
Άμεσες καθιζήσεις κατά Ahlvin&Ulery	0,074 0	0,0736	0,0725	0,0688	0,0597	0,0337	-0,0012	-0,0008
Μακροχρόνιες καθιζήσεις	0,439 6	0,4390	0,4369	0,4304	0,4088	0,2790	0,0014	0,0001
Συνολικές καθιζήσεις κατά Milovic	0,534 4	0,5328	0,5278	0,5142	0,4805	0,3207		
Συνολικές καθιζήσεις κατά Ahlvin&Ulery	0,513 6	0,5126	0,5094	0,4992	0,4685	0,3127	0,0002	-0,0007

ΠΙΝΑΚΑΣ 4.1 Συνολικές καθιζήσεις χωρίς προφόρτιση

Παρατηρείται ότι οι δύο μέθοδοι δίνουν παρεμφερή αποτελέσματα τα οποία δεν είναι απαγορευτικά για την έδραση της δεξαμενής στην απροφόρτιστη μαλακή άργιλο καθώς πρόκειται για δεξαμενή ομοιόμορφης πίεσης και δεν υπάρχει περιορισμός των καθιζήσεων της.

4.2 ΒΕΛΤΙΩΣΗ ΕΠΙΦΑΝΕΙΑΚΉΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ ΠΡΟΦΟΡΤΙΣΗ ΚΑΙ ΣΤΡΑΓΓΙΣΤΗΡΙΑ

Στον παρακάτω πίνακα εμφανίζονται τα χαρακτηριστικά της προφόρτισης, οι συντελεστές ασφαλείας σε έλεγχο ευστάθειας με κύκλους ολίσθησης καθώς και η γεωμετρία και ι παραδοχές των στραγγιστηρίων.

Φάση/γεωμετρία προφόρτισης	Εδαφικές παράμετροι	F _{min} με έλεγχο κύκλων ολίσθησης	Γεωμετρία/παραδοχές στραγγιστηρίων
Α ΦΑΣΗ	cu ^{Ιαρχ} =10,71 kPa	Δεξιά F = 1,62 Αριστερά F = 2,57	Πλαστικά στραγγιστήρια σε τετραγωνικό κάνναβο με s = 0.9 m και παραδοχές : K _r /K _v =2,
Β ΦΑΣΗ	$c_u^{I(\alpha)} = 21,60 \text{ kPa}$ $c_u^{II(\alpha)} = 16,16 \text{ kPa}$ $c_u^{III(\alpha)} = 10,71 \text{ kPa}$	Δεξιά F = 1,27 Αριστερά F = 1,70	K _{r-s} /K _v =1.5 και R _s /r _d =2 Χρόνος στερεοποίησης t=3 μήνες με βαθμό στερεοποίησης U = 94%

ΠΙΝΑΚΑΣ 4.2 Βελτίωση επιφανειακής μαλακής αργίλου με προφόρτιση

Επισημαίνεται ότι στους υπολογισμούς ελήφθη υπ' όψιν γεωύφασμα ονομαστικής αντοχής 300 και 600 kN/m.

Α ΦΑΣΗ ΠΡΟΦΟΡΤΙΣΗΣ

4.3 ΕΔΡΑΣΗ ΕΥΚΑΜΠΤΗΣ ΚΥΚΛΙΚΗΣ ΔΕΞΑΜΕΝΗΣ ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

Σε αντιστοιχία με τον ΠΙΝΑΚΑ 4.1 παρουσιάζονται στον ΠΙΝΑΚΑ 4.3 οι άμεσες, μακροχρόνιες και συνολικές καθιζήσεις των σημείων της δεξαμενής μετά τη βελτίωση του εδάφους με προφόρτιση πίεσης 100 kPa.

Δεξαμενή			Σημεία (r/R)							
οιαμετρού D που ασκεί ομοιόμορφη πίεση p=100 kPa	0	0,2	0,4	0,6	0,8	1	2	3		
Άμεσες καθιζήσεις κατά Milovic	0,0694	0,0686	0,0661	0,0613	0,0525	0,0307				
Άμεσες καθιζήσεις κατά Ahlvin&Ulery	0,055	0,0547	0,0538	0,0508	0,0438	0,0251	-0,0008	-0,0006		
Μακροχρόνιες καθιζήσεις	0,0706	0,0705	0,0701	0,0691	0,0656	0,0448	0,0002	0,000		
Συνολικές καθιζήσεις κατά Milovic	0,14	0,1391	0,1362	0,1304	0,1181	0,0755				
Συνολικές καθιζήσεις κατά Ahlvin&Ulery	0,1256	0,1252	0,1239	0,1199	0,1094	0,0699	-0,0006	-0,006		

Παρατηρείται σε αυτό το σημείο ότι οι συνολικές καθιζήσεις της δεξαμενής είναι της τάξεως των 14 cm στο κέντρο της, που είναι και το δυσμενέστερο σημείο της. Οι καθιζήσεις αυτές είναι οπωσδήποτε δεκτές καθώς είναι πολύ μικρές ενώ παρατηρείται αισθητή μείωση τους μετά την προφόρτιση του εδάφους και τη βελτίωση της αργιλικής στρώσης.

4.4 ΕΚΣΚΑΦΗ ΤΑΦΡΟΥ ΚΑΙ ΠΡΟΣΩΡΙΝΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ

Στον ακόλουθο πίνακα φαίνονται συνοπτικά τα αποτελέσματα της προσωρινής αντιστήριξης των πρανών εκσκαφής όπως αυτά υπολογίστηκαν χωρίς προφόρτιση . Συγκεκριμένα εμφανίζονται τα απαιτούμενα μήκη εμπήξεως για αυτοφερόμενο και αγκυρωμένο πέτασμα πασσαλοσανίδων (στην τελευταία περίπτωση και η δύναμη αγκυρώσεως),οι στάθμες των σημείων μηδενισμού των τεμνουσών δυνάμεων και οι αντίστοιχες μέγιστες ροπές κάμψεως. Επίσης παρουσιάζονται οι απαιτούμενες ροπές αντιστάσεως και οι επιλεγόμενες διατομές των πασσαλοσανίδων. Στην περίπτωση του αγκυρωμένου πετάσματος το ύψος του σώματος αγκυρώσεως, η απόστασή του από το κυρίως πέτασμα και η διατομή του ελκυστήρα. Τέλος στην περίπτωση αντηριδωτής αντιστήριξης παρατίθενται η περιβάλλουσα ωθήσεων οι δυνάμεις καθώς και οι διατομές των αντηρίδων.

	Τύπος αντιστήριξης				
Χαρακτηριστικά αντιστήριξης	Αυτοφερόμενο πέτασμα	Αγκυρωμένο πέτασμα			
Μήκος πετάσματος	12,28 m	7,65 m			
Μήκος έμπηξης	8,78 m	4,15 m			
Δύναμη αγκυρώσεως		60,9 kN/m			
Στάθμη σημείου μηδενισμού τεμνουσών	-8,31 m	-3,75 m			
Μέγιστη ροπή Μ _{max}	ροπή Μ _{max} 425,8 kNm 105,2				
Διατομή Larssen X32 (b=600 mm, h=450 mm)					
$M_{max}/\sigma_{\epsilon\pi}$	3406 cm ³ < 5500 cm ³	842 cm ³ < 5500 cm ³			

ΠΙΝΑΚΑΣ 4.4.1 Υπολογισμός πετάσματος χωρίς προφόρτιση

Στην περίπτωση του αγκυρωμένου πετάσματος χρησιμοποιείται διατομή αγκυρίου Cold Worked High Alloy Steel με d=25 mm και F_{max}=170 kN, ενώ το σώμα αγκύρωσης έχει βάθος z = 2,2 m και βρίσκεται σε απόσταση L_{min} = 5,7 m από το κυρίως πέτασμα.

Επίσης μελετήθηκε η περίπτωση αντηριδωτής αντιστήριξης της οποίας η περιβάλλουσα ωθήσεων, οι δυνάμεις καθώς και οι διατομές των αντηρίδων, παρατίθενται στον ΠΙΝΑΚΑ 4.4.2

Τύπος αντιστήριξης/Αντηρίδες	Δύναμη αγκύρωσης	Διατομή αντηρίδας
F1	F ₁ = 42,37 kN/m	150 × 150 με F _{max} = 115 kN
F2 F3	F ₂ = 39,88 kN/m	150 × 150 με F _{max} = 115 kN
	F ₃ = 69,79 kN/m	200 × 200 με F _{max} = 216 kN

ΠΙΝΑΚΑΣ 4.4.2 Αντηριδωτή αντιστήριξη

Ακολούθως στον ΠΙΝΑΚΑ 4.4.3 εμφανίζονται τα αποτελέσματα των εναλλακτικών λύσεων εκσκαφής – αντιστήριξης των παρειών εκσκαφής της τάφρου μετά την αφαίρεση του επιχώματος της προφόρτισης η οποία θα έχει επιβληθεί σε 2 φάσεις όπως φαίνεται στον ΠΙΝΑΚΑ 4.4.2 και θα παραμείνει συνολικά 6 μήνες.

	Τύπος αντιστήριξης				
Χαρακτηριστικά αντιστήριξης	Αυτοφερόμενο πέτασμα	Αγκυρωμένο πέτασμα			
Μήκος πετάσματος	3,67 m				
Μήκος έμπηξης	0,17 m				
Δύναμη αγκυρώσεως		Δεν υφίσταται			
Στάθμη σημείου μηδενισμού τεμνουσών	-3,54 m				
Μέγιστη ροπή M _{max}	0,3 kNm				
Δ	m, h=450 mm)				
M _{max} /σ _{επ}	2 cm ³ < 5500 cm ³				

ΠΙΝΑΚΑΣ 4.4.3 Υπολογισμός πετάσματος μετά την προφόρτιση

Σε αυτή την περίπτωση παρατηρήθηκε ότι το μήκος έμπηξης του αυτοφερόμενου πετάσματος είναι πάρα πολύ μικρό (17 cm). Η λύση λοιπόν του αυτοφερόμενο πετάσματος δεν ενδείκνυται για τόσο μικρό μήκος έμπηξης άρα δεν υφίσταται και η λύση αγκυρωμένου πετάματος. Έτσι προχωρήσαμε στην εκσκαφή χωρίς αντιστήριξη με ελεύθερο πρανές υπό γωνία 80⁰ με την οριζόντιο.

Για φ = 0 έχουμε
$$N_s = 0,235$$
 άρα $F = \frac{C_u}{N_s \times \gamma_{\kappa o \rho} \times H} = 1,9 > 1,5$

Άρα υπάρχει ευστάθεια του πρανούς.

4.5 ΘΕΜΕΛΙΩΣΗ SILO

4.5.1 ΑΠΕΥΘΕΙΑΣ ΕΔΡΑΣΗ

Εξετάσθηκε η απευθείας έδραση silo συνολικού βάρους ΣV=28869 kN με διαστάσεις πλάκας έδρασης $B \times L = 16 \times 16$ (p = 113kPa) στη στρώση μαλακής αργίλου με $C_u = 10,71kPa$. Στη συγκεκριμένη περίπτωση χρησιμοποιήθηκε το πρόγραμμα Larix για έλεγχο ευστάθειας του εδάφους με κύκλους ολίσθησης. Από τα αποτελέσματα του προγράμματος προέκυψε κύκλος ολίσθησης με συντελεστή ασφαλείας σε ευστάθεια F = 0.92 ο οποίος είναι πολύ μικρότερος από τον επιθυμητό συντελεστή με τιμή 2. Καταλήγουμε λοιπόν στο συμπέρασμα ότι η λύση αβαθούς θεμελίωσης του silo στην στρώση αργίλου απορρίπτεται. (Τα αναλυτικά αποτελέσματα του προγράμματος Larix παρατίθενται στο παράρτημα B)

4.5.2 ΒΑΘΕΙΑ ΘΕΜΕΛΙΩΣΗ ΜΕ ΠΑΣΣΑΛΟΥΣ

Μετά την απόρριψη της λύσης απευθείας έδρασης silo στην άργιλο εξετάσθηκαν λύσεις βαθειάς θεμελιώσεως με πασσάλους. Υπολογίσθηκαν τα οριακά φορτία θραύσεως και τα αντίστοιχα επιτρεπόμενα αξονικά καθώς και ο απαιτούμενος αριθμός πασσάλων για τη θεμελίωση του έργου. Το οριακό φορτίο εμπηγνυόμενου πασσάλου Φ50 προέκυψε με εφαρμογή στατικών τύπων ενώ των πασσάλων εκσκαφής και αφαίρεσης Φ80,Φ100,Φ120 προέκυψε κατά DIN 4014.

Διάμετρος/τρόπος κατασκευής	Στάθμη έδρασης	Οριακό φορτίο P _{ult} (kN)		Αξονικό επιτρεπόμενο φορτίο Ρ _{επ} (kN)	Απαιτ. αριθμός πασσ.(n)
		Στατ. τύποι	DIN 4014		
Φ50/Εμπηγνυόμενος		1463,78		671,15	46
Φ80/Εκσκαφής και αφαίρεσης	-13,5		3123,76	1561,88	19
Φ100/Εκσκαφής και αφαίρεσης	-14,5		4696,37	2348,19	13
Φ120/Εκσκαφής και αφαίρεσης	-15,5		6585,66	3013,26	10

ΠΙΝΑΚΑΣ 4.5.1 Οριακά , επιτρεπόμενα φορτία, αριθμός πασσάλων

Τελικά επιλέγεται η λύση των 16 πασσάλων Φ120 καθώς με μικρότερο αριθμό πασσάλων δεν ικανοποιούνται τα κριτήρια έκκεντρης φόρτισης πασσαλομάδας. Τα αποτελέσματα της έκκεντρης φόρτισης πασσαλομάδας για τους 16 πασσάλους Φ120 επισυνάπτονται στον ΠΙΝΑΚΑ 4.5.2.

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΠΑΣΣΑΛΟΜΑΔΑΣ ΥΠΟ ΣΤΑΤΙΚΗ ΚΑΙ ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ											
Σ١	N	28869	kN				F _{σεισμική}	4619,04	kN		
W _{πλάκας}	; έδρασης	9600	kN	α	0,16	g	F _{σεισμική πλάκας έδρασης}	1536,00	kN	d _{σεισμική πλάκας έδρασης}	0,25 m
Ws	ilo	19269	kN				F _{σεισμική silo}	3083,04	kN	d _{σεισμική silo}	16,25 m
N N	h_1	12,00	m	σ_{W1}	1,00	kPa	W ₁	115,92	kN	d_1	10,00 m
ΝΕΝ ΙΕΣΕ	h ₂	15,00	m	σ_{W2}	1,25	kPa	W ₂	181,13	kN	d ₂	23,50 m
₽⊔	h_3	0,50	m	σ_{W3}	1,50	kPa	W ₃	7,25	kN	d ₃	31,25 m
ΣΤΑΤΙΚΑ ΓΙΑ ΣΗ=ΠΛΗΡΗΣ ΑΝΕΜΟΠΙΕΣΗ ΚΑΙ				ΣΕΙΣΜΙΚΑ ΓΙΑ ΣΗ=	ΜΙΣΗ ΑΝ	EMO	ΠΙΕΣΗ ΚΑΙ ΠΛΗΡΕΣ	ΣΙΛΟ ΚΑΙ			
ΣV=ΠΛΗΡΕΣ ΣΙΛΟ				ΣV=ΠΛΗΡΕΣ ΣΙΛΟ							
ΣI	Η	304,29	kN				ΣΗ	4771,19	kN	ΕΛΕΓΧΟΣ ΠΑΣΣΑΛΟΙ	ΜΑΔΑΣ ΓΙΑ
Σ	V	28869	kN				ΣV	28869	kN	ΤΟΝ ΔΥΣΜΕΝΕΣ	ΣΤΕΡΟ
Μστα	ατική	5642,04	kNm				Μ _{σεισμική}	53304,42	kN	ΣΥΝΔΥΑΣΜΟ	
T(ΟΠΟΘΕ	TOYNTA	ΣΕ ΤΕΤ	τραγΩ	NIKO KAN	INAB	Ο 16Φ120 ΠΑΣΣΑΛΟ	I ME AEO	NIKH	ΑΠΟΣΤΑΣΗ s=4,60 n	n KAI
	АП	ΟΣΤΑΣΗ Α	ПО ТС) akpc	Ο ΤΗΣ ΠΛΑ	κας	s ₁ =0,50 m ГІА ТНN А	ΝΑΛΗΨΗ	τΩΝ	ΣΗ, ΣV ΚΑΙ Μ _{σεισμική}	
n		16	P ₁ (P _{min})	935,22	kN			1		
S	4,60	m	P	2	1514,61	kN	Ρ _{min} >υ (ΕΦΕΛΚΥΣΙΝΌΣ ΣΕ ΚΑΝΕΝΑΝ ΠΑΣΣΑΛΟ))	
s/2	2,30	m	P	3	2094,01	kN	- P _{max} <p<sub>επ.Φ120=3013,26 kN</p<sub>				
3s/2	6,90	m	P ₄ (P _{max})	2673,41	kN					

ΠΙΝΑΚΑΣ 4.5.2 Έκκεντρη φόρτιση πασσαλομάδας

Ο τελικός έλεγχος για την ομάδα 16 πασσάλων Φ120 έγινε με τη βοήθεια του προγράμματος Η/Υ PFAHL το οποίο τροφοδοτείται με τις συντεταγμένες των

κέντρων των πασσάλων, τα εντατικά μεγέθη υπό στατική και σεισμική φόρτιση, και την κατανομή του δείκτη εδάφους K_h.

Στον ΠΙΝΑΚΑ 4.5.3 παρουσιάζεται το ελάχιστο και το μέγιστο φορτίο πασσάλου, η μέγιστη ροπή κάμψης καθώς και η πλευρική μετατόπιση κεφαλής πασσάλου τόσο για στατική όσο και για σεισμική φόρτιση.

	Στατική φόρτιση		Σεισμική φόρτιση		
Μέγιστο φορτίο πασσάλου (P _{max}) (kN)	Μέγιστη ροπή κάμψεως M _{max} (kNm)	Πλευρική μετατόπιση κεφαλής πασσάλου y₀ (mm)	Μέγιστο φορτίο πασσάλου (P _{max}) (kN)	Μέγιστη ροπή κάμψεως Μ _{max} (kNm)	Πλευρική μετατόπιση κεφαλής πασσάλου y₀ (mm)
1873,3	88,5 <m<sub>yield=3118,9</m<sub>	0,0009	2316,3	1369,2 <m<sub>yield=3118,9</m<sub>	0,0085

ΠΙΝΑΚΑΣ 4.5.3 Έλεγχος θραύσης πασσάλων

4.5.3. ΈΔΡΑΣΗ ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

Στον πίνακα 4.5.4 παρουσιάζονται ο έλεγχος γενικής ευστάθειας με κύκλους ολίσθησης της αβαθούς θεμελίωσης του silo στο προφορτισμένο έδαφος καθώς και οι καθιζήσεις που αυτό προκαλεί.

	Έλεγχος γενικής ευστάθειας με κύκλους ολίσθησης. Συντελεστής ασφαλείας F _{min}				
	Πλευρά μικρού	Πλευρά μεγάλου			
	αντισταθμιστικού	αντισταθμιστικού			
Έδραση σε ενισχυμένο με χαλικοπασσάλους έδαφος μετά την αφαίρεση της προφόρτισης	4,71>>2	4,55>>2			

Πίνακας 4.5.4 Έδραση silo σε ενισχυμένο έδαφος

Τέλος στο παρακάτω σχήμα παρουσιάζεται η γεωμετρία του επιχώματος προφόρτισης ενώ στον πίνακα 4.5.5 οι έλεγχοι ευστάθειας του ενισχυμένου με χαλικοπασσάλους εδάφους στην περιοχή του silo, καθώς και τα χαρακτηριστικά του δικτύου χαλικοπασσάλων.

Συντελεστής ασφαλείας έναντι ολίσθησης F = 1,62

Στοιχεία δικτύου χαλικοπασσάλων:

 $d_{x\alpha\lambda}$ = 0.80 m σε τετραγωνικό κάνναβο με πλευρά s = 2.3 m

παραδοχές:

 $K_r/K_v=3$, $K_{r-s}/K_v=1.25$ kai $R_s/R_d=1,25$

Χρόνος στερεοποίησης t=3 μήνες με βαθμό στερεοποίησης U = 93%

Συντελεστής ασφαλείας έναντι θραύσης χαλικοπασσάλων $F = \frac{\sigma_{vo\rho.\chi a\lambda}}{\sigma_{\chi a\lambda}} = 2, 1 > 2$

Εξασφαλίζεται ασφάλεια έναντι θραύσης για ομοιόμορφη πίεση σ₀=113 kPa

5. ΣΥΜΠΕΡΑΣΜΑΤΑ

Εξ' όσων αναφέρθηκαν παραπάνω προτείνονται δύο εναλλακτικές λύσεις για την έδραση της δεξαμενής την θεμελίωση του silo και την προσωρινή αντιστήριξη παρειών εκσκαφής.

Ι. Λύση χωρίς προφόρτιση

- Απευθείας έδραση της κυκλικής δεξαμενής στην απροφόρτιστη μαλακή άργιλο
- Βαθειά θεμελίωση του silo με πασσαλομάδα 16 πασσάλων εκσκαφής και αφαίρεσης Φ120 μεταξύ στάθμης -1,5 m και -15,5 m με αξονική απόσταση κέντρων s = 4,60 m και κεφαλόδεσμο διαστάσεων 16×16×1,5.
- Προσωρινή αντιστήριξη παρειών εκσκαφής για την τοποθέτηση υπόγειου αγωγού με αγκυρωμένο πέτασμα διατομής Larssen LX32
- Ή προσωρινή αντιστήριξη των παρειών εκσκαφής με αντηρίδες διατομής 150×150 και 200×200.

II. Λύση ενίσχυσης – βελτίωσης επιφανειακής αργίλου με συνδυασμό προφόρτισης χαλικοπασσάλων.

- Απευθείας έδραση της κυκλικής δεξαμενής στην βελτιωμένη στρώση αργίλου με πολύ μικρές καθιζήσεις.
- Κατασκευή χαλικοπασσάλων στην περιοχή έδρασης του silo διαμέτρου 80 cm σε τετραγωνικό κάνναβο πλευράς S = 2.30 m μεταξύ στάθμης -1,50 έως 7.00 m σε συνδυασμό με χρησιμοποίηση γεωυφάσματος αντοχής 300 kPa.
- Κατασκευή επιχώματος προφόρτισης ύψους 5 m με πλάτος b = 70 m
 και κλίση πρανών 1:2 σε 2 φάσεις και παραμονή του για χρονικό διάστημα 3 μηνών.
- Αφαίρεση προφορτίσεως και απευθείας έδραση silo σε στάθμη
 -1,5 m με πλάκα θεμελιώσεως 16×16 m.
- Εκσκαφή χωρίς αντιστήριξη με ελεύθερο πρανές υπό γωνία 80⁰ με την οριζόντιο για την τοποθέτηση του υπόγειου αγωγού σε βάθος 3,5 m.

ΒΙΒΛΙΟΓΡΑΦΙΑ

ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ Α.Γ. , ΠΑΠΑΔΟΠΟΥΛΟΣ Β.Π .(1990)« Επιφανειακές θεμελιώσεις», Εκδόσεις ΣΥΜΕΩΝ, Αθήνα

ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ Α.Γ. (1990) «Θεμελιώσεις με πασσάλους», Εκδόσεις ΣΥΜΕΩΝ, Αθήνα

ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ Α.Γ ., ΧΡΙΣΤΟΥΛΑΣ Σ. , ΠΑΠΑΔΟΠΟΥΛΟΣ Β.Π.«Διαστασιολόγηση θεμελιώσεων με πασσάλους», Εκδόσεις ΣΥΜΕΩΝ, Αθήνα

BALAAM N.P. , POULOS H.G. (1983) "The behavior of foundations supported by clay stabilized by stone columns" The University of Sydney Research No R424, Sydney, Australia

BOWLES J.E. (1996) "Foundation analysis and design", 5th Edition, Mc Graw – Hill, New York.

BRAND E.W. , BRENNER R.P. (1981)"Soft Clay Engineering", Developments in Geotechnical Engineering No 20, Elsevier, Amsterdam.

ΓΚΑΖΕΤΑΣ Γ. (1995)«Σημειώσεις εδαφομηχανικής» Τομέας Γεωτεχνικής Ε.Μ.Π. 2^η Έκδοση.

CRAIG R.F. (1978)"Soil mechanics", Van Nostrnd Reinhold, 2nd Edition, New York.

DAS BRAJA M. (1999)"Principles of foundation engineering" 4th Edition, PWS Publishing, ITP Company, Sacramento, California.

HANSBO S. (1981)"Consolidation of fine grained solids by prefabricated drains", X.I.C.S.M.F.E. Stockholm.

HOLTZ P.D., KOVACS W.D. (1981)"An introduction to geotechnical engineering" Prentice – Hall Inc, Englewood Cliffs, New Jersey. ΚΑΒΒΑΔΑΣ Μ. (1988)«Στοιχεία εδαφομηχανικής»

ΜΠΟΥΚΟΒΑΛΑΣ Γ.Δ. (2003)«Σημειώσεις σε ειδικά θέματα θεμελιώσεως», Ε.Μ.Π. Τομέας Γεωτεχνικής.

ΠΑΠΑΧΑΡΙΣΗΣ Ν., ΜΑΝΟΥ – ΑΝΔΡΕΑΔΗ Ν., ΓΡΑΜΜΑΤΙΚΟΠΟΥΛΟΣ Ι.«Γεωτεχνική Μηχανική Έρευνα – γεωτρήσεις – εργαστήριο», Αφοί Κυριακίδη, Θεσσαλονίκη.

POULOS H.G., DAVIS E.H. (1974)"Pile foundation analysis and design", John Wiley and sons, New York.

TOMILSON M.J.(1977)"Pile design and construction practice", Viewpoint Publications, London.

ΧΡΙΣΤΟΥΛΑΣ Σ. (1990)«Επιλογές εφαρμοσμένης Γεωτεχνικής Μηχανικής», Εκδόσεις Συμεών, Αθήνα.

ΠΑΡΑΡΤΗΜΑ Α ΘΕΩΡΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΜΕΛΕΤΗΣ

1. ΕΚΤΙΜΗΣΗ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ

1.1 ΣΗΜΑΣΙΑ ΤΩΝ ΕΠΙ ΤΟΠΟΥ ΔΟΚΙΜΩΝ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ

Στα αργιλικά εδάφη είναι δυνατή η λήψη πρακτικά αδιατάρακτων δειγμάτων στα οποία δεν έχει υποστεί σημαντική αλλοίωση η εδαφική δομή λόγω π.χ. περιστροφής κατά τη δειγματοληψία ή κατά τη διείσδυση του δειγματολήπτη με σύνηθες πάχος τοιχώματος. Τα δείγματα αυτά λαμβάνονται με τη βοήθεια ειδικών δειγματοληπτών λεπτών τοιχωμάτων με κατάλληλη διαμόρφωση της αιχμής, οι οποίοι απλώς εισπιέζονται στην εδαφική στρώση ανασυρόμενοι στη συνέχεια με το εδαφικό υλικό με το οποίο έχουν πληρωθεί. Τέτοιοι δειγματολήπτες είναι οι δειγματολήπτες τύπου SHELBY (με εσωτερικό αναβαθμό και πλαστικό σωλήνα), τύπου DENISON, ο εμβολοφόρος δειγματολήπτης κ.ά. Επομένως στα αργιλικά και αργιλοϊλυώδη - ακόμη και αμμοϊλυώδη με υψηλά ποσοστά ιλύος - εδάφη οι παράμετροι αντοχής και συμπιεστότητας προσδιορίζονται κυρίως από εργαστηριακές δοκιμές σε πρακτικά αδιατάρακτα δείγματα και έπειτα από εμπειρικές συσχετίσεις με τα αποτελέσματα επί τόπου δοκιμών όπως:

- Την αντίσταση αιχμής q_c του κώνου της Δοκιμής Στατικής Πενετρομέτρησης (CPT) και
- Τον αριθμό κρούσεων Ν της δοκιμής Τυποποιημένης Δοκιμής Διείσδυσης (SPT) - με χαμηλό όμως βαθμό αξιοπιστίας.

Εξαίρεση αποτελεί για μαλακές και μέσης συνεκτικότητας αργίλους (c_u <75 kPa) η εξαιρετικά αξιόπιστη Δοκιμή Πτερυγίου (FVT) μέσω της οποίας προσδιορίζεται η επί τόπου αστράγγιστη διατμητική αντοχή c_u και μάλιστα χωρίς να μεσολαβήσει ο κύκλος αποφόρτισης – επαναφόρτισης που αντιπροσωπεύει η διαδικασία δειγματοληψίας – επαναφόρτισης στην εργαστηριακή συσκευή του δείγματος στις αρχικές τάσεις.

Στα αμμώδη εδάφη αντίθετα δεν είναι δυνατή η λήψη πρακτικά αδιατάρακτων δειγμάτων (κυρίως λόγω απώλειας κατά την ανάσυρση) και επομένως τόσο η παράμετρος αντοχής φ (γωνία εσωτερικής τριβής) όσο και η παράμετρος συμπιεστότητας E_s (μέτρο μονοδιάστατης συμπίεσης) προσδιορίζονται έμμεσα από εμπειρικές συσχετίσεις τους με τον αριθμό κρούσεων N της Τυποποιημένης Δοκιμής Διείσδυσης (SPT) ή την αντίσταση αιχμής q_c του κώνου της Δοκιμής Στατικής Πενετρομέτρησης (CPT).

1.2 ΤΥΠΟΠΟΙΗΜΕΝΗ ΔΟΚΙΜΗ ΔΙΕΙΣΔΥΣΗΣ (SPT)

Η δοκιμή εκτελείται κατά την προχώρηση της γεώτρησης και συνιστά στην προώθηση μέσα στο έδαφος στην επιθυμητή κάθε φορά στάθμη ενός διαπερατού δειγματολήπτη συνολικού μήκους 80 cm έτσι ώστε τα κατώτερα 45 cm να πληρωθούν με εδαφικό υλικό όπως φαίνεται στο **ΣΧΗΜΑ 1.1**.

ΣΧΗΜΑ 1.1 Διάταξη Τυποποιημένης Δοκιμής Διείσδυσης (SPT)

Στο επιθυμητό βάθος ανασύρεται ολόκληρη η διατρητική στήλη, καθαρίζεται ο πυθμένας της γεώτρησης μέχρι τη στάθμη που φτάνει η σωλήνωση και στη συνέχεια αφαιρείται ο κλασικός δειγματολήπτης με την κεφαλή και το κοπτικό άκρο και αντικαθίσταται από διαιρετό δειγματολήπτη Terzaghi εξωτερικής διαμέτρου 50 mm και εσωτερικής 34,5 mm όπως φαίνεται στο **ΣΧΗΜΑ1.2**, ο οποίος με τη βοήθεια της επιμηκυνόμενης διατρητικής στήλης καταβιβάζεται στη στάθμη εκτέλεσης της δοκιμής. Στο τελευταίο στέλεχος της στήλης σημειώνονται τρία διαστήματα καθένα μήκους 15 cm και στη συνέχεια προσαρμόζεται σε αυτό η διάταξη που περιέχει τον κριό βάρους 63,5 kg που διανύει σταθερό ύψος πτώσεων 76,0 cm. Κατά σειρά γίνεται μέτρηση του αριθμού κρούσεων για τη διείσδυση στο έδαφος του ακραίου τμήματος 15 cm του δειγματολήπτη - δηλαδή του κατώτερου διαστήματος του τελευταίου στελέχους - ο οποίος τελικά δε λαμβάνεται υπ όψιν λόγω της διατάραξης που θεωρείται ότι έχει υποστεί το αμέσως κάτω από τον πυθμένα της γεώτρησης τμήμα της εδαφικής στρώσης και του συνολικού αριθμού κρούσεων που απαιτούνται για την διείσδυση των υπόλοιπων δύο τμημάτων του δειγματολήπτη συνολικού μήκους 30 cm που αποτελεί τον αριθμό κρούσεων της δοκιμής στην αντίστοιχη στάθμη εκτέλεσης της δοκιμής.

ΣΧΗΜΑ 1.2 Διαιρετός δειγματολείπτης Terzaghi

Στην περίπτωση πολύ μαλακού εδάφους οπότε η διείσδυση γίνεται με το ίδιο βάρος δειγματολήπτη και διατρητικής στήλης θεωρείται N=O, ενώ όταν ο αριθμός κρούσεων φτάσει την τιμή N=50 και το αντίστοιχο τμήμα του δειγματολήπτη δεν έχει διεισδύσει πλήρως στο έδαφος (γίνεται μέτρηση του διαστήματος που περισσεύει στο στέλεχος και με αφαίρεση προκύπτει το μήκος του διεισδύσαντος τμήματος μικρότερο από 15 cm) θεωρείται ότι στη συγκεκριμένη στάθμη το έδαφος εμφανίζει άρνηση διείσδυσης με N>50 και στους υπολογισμούς τίθεται συντηρητικά N=50.

Προκειμένου να εκτιμηθεί η γωνία εσωτερικής τριβής αμμωδών εδαφών μέσω της Τυποποιημένης Δοκιμής Διείσδυσης (SPT) ο μέσος αριθμός κρούσεων διορθώνεται ως εξής:

 Λόγω Στάθμης Υδροφόρου Ορίζοντα: Η διόρθωση αυτή γίνεται μόνο εφόσον συντρέχουν ταυτόχρονα οι παρακάτω προϋποθέσεις:

- Εδαφικό όριο από άποψης διαπερατότητας με ποσοστό διερχομένου υλικού από το κόσκινο N° 40 (d=0.42 mm) μεγαλύτερο του 50% (λεπτή άμμος ή ιλυώδης άμμος),
- Μετρούμενη τιμή N>15 και
- Η δοκιμή γίνεται κάτω από τη Σ.Υ.Ο.

Η σχέση που παρέχει τη διορθωμένη τιμή είναι $N' = 15 + \frac{1}{2}(N - 15)$ όπου Ν' η διορθωμένη τιμή λόγω Σ.Υ.Ο. και Ν η μετρούμενη.

Λόγω Πίεσης Υπερκείμενων Γαιών: Η διόρθωση αυτή γίνεται με σκοπό να εξαλειφθεί η ανομοιούμενη επιρροή της τιμής της πίεσης υπερκείμενων γαιών στην τιμή του αριθμού κρούσεων και αυτή να εξαρτάται αποκλειστικά από την σχετική πυκνότητα D_r της αμμώδους στρώσης. Η σχέση που παρέχει τη διορθωμένη τιμή είναι N_c = C_N × N[′] όπου N_c η διορθωμένη τιμή λόγω πίεσης υπερκείμενων γαιών, C_N ο διορθωτικός συντελεστής κατά Peck, Hanson και Thornburn συναρτήσει της πίεσης των υπερκείμενων γαιών στη στάθμη της δοκιμής όπως φαίνεται στο <u>ΣΧΗΜΑ 1.3</u> και N' η διορθωμένη τιμή λόγω Σ.Υ.Ο. Από τον μέσο όρο των διορθωμένων τιμών N_c προκύπτει όπως φαίνεται στο <u>ΣΧΗΜΑ 1.4</u> η εσωτερική γωνία τριβής φ κατά Peck-Hanson-Thornburn.

ΣΧΗΜΑ 1.3 Διορθωτικός συντελεστής κατά Peck, Hanson και Thornburn

ΣΧΗΜΑ 1.4 Εσωτερική γωνία τριβής κατά Peck, Hanson και Thornburn

Για τον προσδιορισμό της εσωτερικής γωνίας τριβής φ συναρτήσει της μέσης τιμής Ν_c εφαρμόζονται και οι παρακάτω εμπειρικές σχέσεις:

- Κατά ΟSAKI: $φ = \sqrt{20N_c} + 15$ και
- Κατά DUNHAM: $φ = \sqrt{12N_c} + 25$ (άνω οριακή τιμή).

Το μέτρο ελαστικότητας E_s των αμμωδών εδαφών και έμμεσα το μέτρο μονοδιάστατης συμπίεσης $E_s = D = \frac{E_s(1-v)}{(1+v)(1-2v)}$ (όπου v ο λόγος του Poisson) λόγω της γνωστής αδυναμίας λήψης πρακτικά αδιατάρακτου δείγματος συσχετίζεται με τον αριθμό κρούσεων N.

Κατά Παπαδόπουλο και Αναγνωστόπουλο $E_s = C_1 + C_2 \times N(\Pi INAKAS 1.1)$.

τγπος εδαφογς	C ₁	C ₂
Άμμος	7500	800
Ιλυώδης άμμος	2600	690
Αμμώδης ιλύς	3200	490

ΠΙΝΑΚΑΣ 1.1 Εκτίμηση συντελεστών C1 και C2 κατά Παπαδόπουλο και Αναγνωστόπουλο

Κατά Τάσσιο και Αναγνωστόπουλο $E_s = \alpha + C \times N$ με α=4000 για N>15 και α=0 για N<15(ΠΙΝΑΚΑΣ 1.2).

ΤΥΠΟΣ ΕΔΑΦΟΥΣ	С
Ιλύς με άμμο	300
Λεπτή άμμος	350
Μέση άμμος	450
Χονδρή άμμος	700
Άμμος με χαλίκια	1000
Χαλίκια με άμμο	1200

ΠΙΝΑΚΑΣ 1.2 Εκτίμηση συντελεστή C κατά Τάσσιο και Αναγνωστόπουλο

Kατά Webb $E_s = 5 \times (N + 15)$ (tn/ft2).

Για το C₂ έχουν προταθεί τιμές 6 και 15 (και μικρότερες για ιλυώδης άμμους), ενώ για το C₁ οι προτεινόμενες τιμές υπερβαίνουν το 250. Σωστότερη αντιμετώπιση θα ήταν η επί τόπου εκτίμηση των συντελεστών C₁, C₂ για τον υπόψη εδαφικό σχηματισμό. Η αυξημένη τιμή E_s μιας προφορτισμένης άμμου προκύπτει συνήθως με πολλαπλασιασμό της αντίστοιχης τιμής της απροφόρτιστης άμμου επί OCR.

Θα πρέπει τέλος να αναφερθούν τα εξής σε σχέση με τις εμπειρικά προσδιοριζόμενες τιμές Es συναρτήσει του αριθμού κρούσεων Nspt.

- Το μέτρο ελαστικότητας σε προφορτισμένες άμμους είναι αισθητά μεγαλύτερο από το αντίστοιχο της απροφόρτιστης άμμου αλλά η διαφορά είναι πολύ μεγαλύτερη στο μέτρο ελαστικότητας κατά την οριζόντια διεύθυνση (E_h), (το οποίο προκύπτει από συσχέτιση με αποτελέσματα επί τόπου δοκιμών σε γεωτρήσεις) από όση είναι στο μέτρο ελαστικότητας κατά την κατακόρυφη διεύθυνση (E_v), το οποίο υπεισέρχεται στους υπολογισμούς καθιζήσεων.
- Σε περίπτωση εκσκαφής προστερεοποιημένης άμμου η αποτόνωση λόγω αφαιρέσεως υπερκείμενων γαιών έχει σαν συνέπεια χαλαρότερη διάταξη του κοκκώδους σχηματισμού, άρα μικρότερο E_s.
- Ενώ είναι σχετικά δύσκολη η πιστοποίηση του λόγου προφορτίσεως (OCR) αμμώδους σχηματισμού, η διαπίστωση της συγκόλλησης των κόκκων είναι αρκετά ευκολότερη (και η συγκόλληση συνεπάγεται επίσης αύξηση του E_s) κυρίως αν στα δείγματα ανασύρονται φακοί (συσσωματώματα) άμμου.

1.3 ΕΠΙ ΤΟΠΟΥ ΔΟΚΙΜΗ ΠΤΕΡΥΓΙΟΥ (FVT)

Πλάτος πτερυγίου D

ΣΧΗΜΑ 1.5 Διάταξη Δοκιμής Πτεργυγίου

Η επί τόπου δοκιμή πτερυγίου εκτελείται και αυτή (όπως και η δοκιμή SPT) στο εσωτερικό των γεωτρήσεων και αποσκοπεί στον προσδιορισμό της αστράγγιστης διατμητικής αντοχής κυρίως μαλακών αργιλικών στρώσεων χωρίς να παρεμβληθεί δειγματοληψία. Το πτερύγιο αποτελείται από δύο κάθετα διασταυρούμενες ορθογωνικές λεπίδες με λόγο ύψους προς πλάτος H/B = 2. Στην κορυφή του το σύστημα φέρει στέλεχος επιμηκυνόμενο μέχρι την κεφαλή της γεώτρησης, έτσι ώστε να μπορεί να γίνει η δοκιμή σε οποιοδήποτε βάθος. Στην κορυφή του στελέχους προσαρμόζεται κατάλληλη διάταξη μέσω της οποίας επιβάλλεται στρεπτική ροπή μετά τη βύθιση των λεπίδων στην αργιλική στρώση και στο επιθυμητό βάθος. Η επιβαλλόμενη ροπή αυξάνεται σταδιακά μέχρις ότου η άργιλος αστοχεί υπό αστράγγιστες συνθήκες σε διάτμηση, οπότε η ροπή λαμβάνει τη μέγιστη τιμή της. Η εξάντληση της αστράγγιστης διατμητικής αντοχής επέρχεται κοι διαμορφούμενου δια της περιστροφής κυλίνδρου όσο και στις βάσεις του.

Η επί τόπου αστράγγιστη διατμητική αντοχή c_u υπολογίζεται με τις παρακάτω παραδοχές:
- Ταχύτητα περιστροφική (6° έως 12° / λεπτό) αρκετά μεγάλη ώστε να μην προλαβαίνει να συντελεστεί στράγγιση.
- Ομογενές και ισότροπο έδαφος
- Ομοιόμορφη κατανομή διατμητικών τάσεων στις δύο βάσεις της διαμορφούμενης με την περιστροφική επιφάνεια.
- Κυλινδρική παράπλευρη επιφάνεια διαμέτρου D ίσης με το πλάτος των λεπίδων B
- Όχι προοδευτική αστοχία.

Όπως φαίνεται στο **ΣΧΗΜΑ 1.5** έχουμε:

Μέγιστη ροπή:

$$T = \frac{\pi D^2 H C_u}{2} + 2 \int_0^{D/2} 2\pi r \delta_{rr} r C_u = \frac{\pi D^2 H C_u}{2} + \left[\frac{4\pi r^3}{3} C_u\right]_0^{D/2} = \frac{\pi D^2 H}{2} \left[1 + \frac{1}{3} \frac{D}{H}\right] C_u = k C_u$$

Όπου

$$k=\pi\left[\frac{D^2H}{2}+\frac{D^3}{6}\right]$$

Επειδή ισχύει πάντοτε H=2D έχουμε

$$k = \pi \left[D^3 + \frac{D^3}{6} \right] = 3,665D^3$$

$$C_u = \frac{N \times C}{k}$$

Στον ΠΙΝΑΚΑ 1.3 παρουσιάζονται οι γεωμετρικές διαστάσεις των συνήθων πτερυγίων καθώς και το φάσμα αντοχών C_u των αργίλων, στις οποίες προσιδιάζει η εφαρμογή κάθε τύπου πτερυγίου.

ΑΣΤΡΑΓΓΙΣΤΗ ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΑΡΓΙΛΟΥ (kPa)	ΔΙΑΣΤΑΣΕΙΣ ΠΤΕΡΥΓΙΟΥ		
	Ύψος (mm)	Πλάτος (mm)	
<50	150	75	
50÷75	100	50	
>75	Η δοκιμή πτερυγίου ακατάλληλη		
	ΠΙΝΔΚΔΣ 1 3		

Πρακτικά η μέγιστη ροπή Μ προσδιορίζεται από τον αριθμό των υποδιαιρέσεων του οργάνου N κατά την ανάπτυξη της μέγιστης ροπής και τη ροπή C που αντιστοιχεί σε κάθε υποδιαίρεση σύμφωνα με τη βαθμονόμηση του οργάνου (T= M_{max} =C×N). Επομένως, η επί τόπου αστράγγιστη αντοχή προσδιορίζεται τελικά από τη σχέση c_u= $\frac{N \times C}{K}$ στην οποία ο λόγος C/K σύμφωνα με τη βαθμονόμηση του κάθε πτερυγίου προκύπτει από τον ΠΙΝΑΚΑ 1.4:

ΠΤΕΡΥΓΙΟ	ΣΤΑΘΕΡΑ C/K
50×100	$11,646 \times 10^{-4} \text{ kg/cm}^{2}$
75×150	$3,463 \times 10^{-4} \text{ kg/cm}^2$
100×200	1,457×10 ⁻⁴ kg/cm ²

<u>ΠΙΝΑΚΑΣ 1.4</u>

Εναλλακτικά η αστράγγιστη αντοχή C_u προσδιορίζεται με βάση τη μέγιστη ροπή Τ (=M_{max}) απευθείας από τη σχέση:

$$C_u^{(KPa)} = \frac{T(N \times m)}{K^8}$$

όπου:

 $K^8 = \pi/10^6 \times (D^2 H/2) \times (1+D/3H)$ με διαστάσεις πτερυγίου D, H σε cm.

Επειδή Η = 20 έπεται ότι Κ*= 366×10⁻⁸ (D σε cm)

Οι κυριότερες μορφές σφαλμάτων στην εκτίμηση της C_u είναι η κακή βαθμονόμηση του οργάνου κατά τον προσδιορισμό του αριθμού υποδιαιρέσεων Ν που αντιστοιχεί στη μέγιστη στρεπτική ροπή M_{max}, η διαφορετική από την προκαθορισμένη ταχύτητα περιστροφής και τα ελαττωματικά πτερύγια. Εξάλλου, η παρουσία αμμοϊλυωδων ενστρώσεων στην άργιλο λόγω του φαινομένου της διασταλτικότητας έχει σαν συνέπεια εξαιρετικά αυξημένες τιμές της μέγιστης στρεπτικής ροπής (μη αντιπροσωπευτικές της τιμής C_u) και πιθανή στρέβλωση του πτερυγίου.

Αντίθετα, η δοκιμή είναι ιδανική για την περίπτωση "ευαίσθητων " (sensitive) αργίλων στις οποίες η αναζυμωμένη (remolded) αστράγγιστη αντοχή Cu^{rem} είναι αισθητά μικρότερη από την τιμή Cu της αργίλου με την κανονική δομή.

Για τον προσδιορισμό της αναζυμωμένης αστράγγιστης αντοχής C_u^{rem}, μετά την πρώτη αστοχία (στην τιμή T = M_{max}) το πτερύγιο περιστρέφεται κατά ορισμένους πλήρεις κύκλους με αποτέλεσμα να αναζυμωθεί πλήρως το αργιλικό έδαφος και από τις παραπάνω σχέσεις η αναζυμωμένη αστράγγιστη αντοχή C_u^{rem} της αργίλου. Θα πρέπει να σημειωθεί ότι οι τιμές C_u αρχικής αστοχίας που προέκυψαν από εκτέλεση δοκιμών FVT συγκρίθηκαν με αποτελέσματα 'αντίστροφων αναλύσεων' (back analyses) πραγματικών αστοχιών σε μαλακές αργίλους της Σκανδιναβίας φορτιζόμενες με επιχώματα (όπου η πραγματική C_u αρχικής αστοχίας προέκυψε από τη γνωστή μεθοδολογία των κύκλων ολίσθησης με παραδοχή F=1, άρα ΣM_{ανα} = ΣM_{ευστ}) και προέκυψαν αποκλίσεις, οι οποίες ήταν τόσο εντονότερες όσο περισσότερο πλάσιμη ήταν η άργιλος (δηλαδή μεγαλύτερες τιμές LL, PL). Έτσι ο Bjerrum εισηγήθηκε την εισαγωγή διορθωτικού συντελεστή λ ώστε να προσαρμοσθεί η μετρούμενη τιμή C_u(FVT) στην πραγματικά αναμενόμενη τιμή C_u της αρχικής αστοχίας κατά τη σχέση:

$$C_{u}^{\delta\iota
ho
ho heta} = \lambda imes C_{u(FVT)}^{\muarepsilon au
ho}$$

Στο **ΣΧΗΜΑ 1.6** εμφανίζεται η καμπύλη συσχέτισης του διορθωτικού συντελεστή λ με τον δείκτη πλασιμότητας PI κατά Bjerrum.

ΣΧΗΜΑ 1.6 Διορθωτικός συντελεστής αστράγγιστης διατμητικής αντοχής κατά Bjerrum

1.4 ΕΜΠΕΙΡΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ ΣΥΣΧΕΤΙΣΗΣ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ

ΣΧΗΜΑ 1.7 Γωνία εσωτερικής τριβής κανονικά στερεοποιημένων αργίλων συναρτήσει του δείκτη πλαστιμότητας κατά Kenney

ΣΧΗΜΑ 1.8 Γωνία εσωτερικής τριβής αργίλου συναρτήσει του δείκτη πλαστιμότητας κατά Bjerrum και Simmons

2. ΚΑΘΙΖΗΣΕΙΣ ΕΥΚΑΜΠΤΩΝ ΚΥΚΛΙΚΩΝ ΕΠΙΦΑΝΕΙΩΝ

2.1. Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΙΖΗΣΗΣ

Με τον όρο καθίζηση εννοούμε την κατακόρυφη παραμόρφωση που πραγματοποιείται σε ένα εδαφικό στρώμα λόγω της επιβολής μιας φορτίσεως. Έτσι το πρόβλημα των καθιζήσεων αφορά στην εκτίμηση των κατακόρυφων παραμορφώσεων από τις προβλεπόμενες φορτίσεις και σχετίζεται άμεσα με την συμπιεστότητα του υπεδάφους.

2.2. ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΕΥΚΑΜΠΤΩΝ ΚΥΚΛΙΚΩΝ ΕΠΙΦΑΝΕΙΩΝ ΣΕ ΣΥΝΕΚΤΙΚΑ ΥΛΙΚΑ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΣΥΜΠΙΕΣΟΜΕΤΡΟΥ ΚΑΤΑ TERZAGHI

Η μέθοδος αυτή αρχικά προτάθηκε για την εκτίμηση της καθίζησης ενός λεπτού στρώματος κορεσμένης αργίλου. Χρησιμοποιείται όμως και για περιπτώσεις αργιλικών στρωμάτων μεγάλου πάχους, τα οποία όμως χωρίζουμε σε περισσότερα λεπτά στρώματα μικρότερου πάχους.

Κατά Terzaghi η καθίζηση με παραμέτρους που λήφθηκαν υπό συνθήκες της δοκιμής συμπιεσομέτρου θεωρείται ίση με την ολική καθίζηση.

ΣΧΗΜΑ 2.1 Δείκτες συμπιεστότητας c_c , c_r

Για τις κανονικά φορτισμένες αργίλους NC η καθίζηση S_{odi} λόγω στερεοποίησης που οφείλεται στην επιβολή του μόνιμου εξωτερικού φορτίου δίνεται από τη σχέση:

$$S_{odi} = c_c \times h_i / (1 + e_{oi}) \times log \left(\frac{\sigma'_{voi} + \Delta \sigma_{zi}}{\sigma'_{voi}}\right)$$

Όπου:

- c_c :Δείκτης συμπιεστότητας της αργίλου που προκύπτει από δοκιμές στερεοποίησης και εκφράζει την κλίση της καμπύλης φόρτισης της δοκιμής συμπιεσομέτρου όπως φαίνεται στο <u>ΣΧΗΜΑ 2.1</u>,
- h_i :Το πάχος της στρώσεως i της αργίλου,
- e_{oi} :Αρχικός δείκτης πόρων της στρώσεως i της αργίλου,
- σ'_{voi} :Ενεργός γεωστατική τάση στο μέσο της στρώσεως i της αργίλου και
- Δσ_{zi} :Πρόσθετη κατακόρυφα κατανεμημένη τάση λόγω εξωτερικού φορτίου στο μέσο της στρώσεως i της αργίλου, η οποία υπολογίζεται είτε από το νομογράφημα του Fadum (<u>ΣΧΗΜΑ 2.2</u>) για ομοιόμορφα φορτισμένη ορθογωνική επιφάνεια είτε από το νομογράφημα του Osterberg (<u>ΣΧΗΜΑ</u> <u>2.3</u>) για απειρομήκη λωριδωτή τραπεζοειδή φόρτιση.

Για τις προφορτισμένες αργίλους OC η καθίζηση S_{odi} λόγω στερεοποίησης που οφείλεται στην επιβολή του μόνιμου εξωτερικού φορτίου δίνεται από τις σχέσεις:

$$S_{odi} = c_r \times \frac{h_i}{1 + e_{oi}} \times log \left(\frac{\sigma'_{voi} + \Delta \sigma_{zi}}{\sigma'_{voi}}\right) (για \Delta \sigma_{zi} < \Delta \sigma'_{pi}) και$$
$$S_{odi} = c_r \times \frac{h_i}{1 + e_{oi}} \times log \left(\frac{\sigma'_{voi} + \Delta \sigma'_{pi}}{\sigma'_{voi}}\right) + c_c \times \frac{h_i}{1 + e_{oi}} \times log \left(\frac{\sigma'_{voi} + \Delta \sigma_{zi}}{\sigma'_{voi} + \Delta \sigma'_{pi}}\right) (για \Delta \sigma_{zi} > \Delta \sigma'_{pi})$$

Όπου:

- c_r :Δείκτης συμπιεστότητας της αργίλου που προκύπτει από δοκιμές στερεοποίησης και εκφράζει την κλίση της καμπύλης επαναφόρτισης της δοκιμής συμπιεσομέτρου όπως φαίνεται στο <u>ΣΧΗΜΑ 2.1</u>,
- h_i :Το πάχος της στρώσεως i της αργίλου,
- e_{oi} :Αρχικός δείκτης πόρων της στρώσεως i της αργίλου,
- σ΄_{voi} :Ενεργός γεωστατική τάση στο μέσο της στρώσεως i της αργίλου,
- Δσ_{zi} :Πρόσθετη κατακόρυφα κατανεμημένη τάση λόγω εξωτερικού φορτίου στο μέσο της στρώσεως i της αργίλου, η οποία υπολογίζεται είτε από το νομογράφημα του Fadum (<u>ΣΧΗΜΑ 2.2</u>) για ομοιόμορφα φορτισμένη ορθογωνική επιφάνεια είτε από το νομογράφημα του Osterberg (<u>ΣΧΗΜΑ</u> <u>2.3</u>) για απειρομήκη λωριδωτή τραπεζοειδή φόρτιση και

Δσ'_{pi} :Πρόσθετη κατακόρυφα κατανεμημένη τάση λόγω προφόρτισης στο μέσο της στρώσης i της αργίλου.

Τιμές του λόγου η = Μῆκος/Βάθος = L/Z

ΣΧΗΜΑ 2.2 Νομογράφημα του Fadum για τον προσδιορισμό της πρόσθετης τάσης κάτω από γωνιακό σημείο ομοιόμορφα φορτισμένης ορθογωνικής επιφάνειας

ΣΧΗΜΑ 2.3 Νομογράφημα του Osterberg για τον προσδιορισμό της πρόσθετης τάσης κάτω από σημεία επιχώματος τραπεζοειδούς διατομής

2.3. ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΕΥΚΑΜΠΤΩΝ ΚΥΚΛΙΚΩΝ ΕΠΙΦΑΝΕΙΩΝ ΣΕ ΜΗ ΣΥΝΕΚΤΙΚΑ ΥΛΙΚΑ ΜΕ ΤΥΠΟΥΣ ΕΛΑΣΤΙΚΗΣ ΜΟΡΦΗΣ

2.3.1 ΜΕΘΟΔΟΣ MILOVIC

Ο Milovic προτείνει τον υπολογισμό της καθίζησης κάτω από διάφορα σημεία της επιφάνειας φόρτισης συναρτήσει της απόστασης αυτών r από το κέντρο της. Η καθίζηση αυτή ρ για κυκλική επιφάνεια ακτίνας R υπολογίζεται από τη σχέση:

$$\rho = \Delta q \times \frac{2}{E} \times R \times I_{\rho}$$

Όπου:

- Δq :Ομοιόμορφα κατανεμημένη τάση μετά την επιβολή του μόνιμου εξωτερικού φορτίου,
- E :Μέτρο ελαστικότητας της εδαφικής στρώσης,
- Ι_ρ :Συντελεστής που εξαρτάται από τις τιμές των λόγων r/R και H/R και τον λόγο του Poisson v του εδάφους και προσδιορίζεται σύμφωνα με τον <u>ΠΙΝΑΚΑ 2.1</u> και

		r/R							
v	H/R	0	0,2	0,4	0,6	0,8	1,0		
	1	0,464	0,458	0,441	0,408	0,348	0,208		
0,15	2	0,684	0,674	0,645	0,593	0,509	0,348		
	4	0,811	0,800	0,768	0,710	0,619	0,463		
	6	0,839	0,827	0,794	0,736	0,646	0,501		
	1	0,397	0,392	0,379	0,351	0,301	0,173		
0,30	2	0,613	0,604	0,578	0,531	0,456	0,305		
	4	0,740	0,732	0,703	0,651	0,568	0,420		
	6	0,770	0,762	0,733	0,681	0,597	0,458		
	1	0,278	0,276	0,267	0,250	0,213	0,109		
0,45	2	0,489	0,482	0,461	0,422	0,361	0,229		
	4	0,612	0,608	0,585	0,541	0,472	0,340		
	6	0,637	0,635	0,612	0,568	0,499	0,374		

Η :Το πάχος της εδαφικής στρώσης.

<u>ΠΙΝΑΚΑΣ 2.1</u> Συντελεστής Ι_ρ

Κατά τα προηγούμενα υπολογίζεται η καθίζηση μη συνεκτικής εδαφικής στρώσης στην οποία εδράζεται η κυκλική επιφάνεια. Στην περίπτωση όμως που η μη συνεκτική εδαφική στρώση βρίσκεται κάτω από αυτήν στην οποία εδράζεται η κυκλική επιφάνεια τότε εφαρμόζεται η αρχή της επαλληλίας.

2.3.2 ΜΕΘΟΔΟΣ AHLVIN & ULERY

Οι Ahlvin και Ulery προτείνουν τον υπολογισμό της καθίζησης κάτω από διάφορα σημεία της επιφάνειας φόρτισης συναρτήσει της απόστασης αυτών r από το κέντρο της και του βάθους τους z από την ελεύθερη επιφάνεια. Η καθίζηση αυτή ρ για

κυκλική επιφάνεια ακτίνας α και στρώμα απείρου βάθους υπολογίζεται από τη σχέση:

$$\rho = p \times \frac{1+\nu}{E} \times \alpha \times \left[\frac{z}{a} \times A + (1-\nu) \times H\right]$$

Όπου:

- v :Λόγος του Poisson της εδαφικής στρώσης,
- Ε :Μέτρο ελαστικότητας της εδαφικής στρώσης,
- Α :Συντελεστής που εξαρτάται από τις τιμές των λόγων r/α και z/α και προσδιορίζεται σύμφωνα με τον ΠΙΝΑΚΑ 2.2 και
- Η :Συντελεστής που εξαρτάται από τις τιμές των λόγων r/α και z/α και προσδιορίζεται σύμφωνα με τον ΠΙΝΑΚΑ 2.3.

Κατά τα προηγούμενα υπολογίζεται η καθίζηση μη συνεκτικής εδαφικής στρώσης στην οποία εδράζεται η κυκλική επιφάνεια. Στην περίπτωση όμως που η μη συνεκτική εδαφική στρώση βρίσκεται κάτω από αυτήν στην οποία εδράζεται η κυκλική επιφάνεια τότε εφαρμόζεται η αρχή της επαλληλίας.

-	-		<u></u>				1.10			
	14	o	60000.		.00018	.00036	.00043	.00055	00091	96000.
	12	0	.00014		.00029	.00043	.00068	66000.	00130	.00133
	10		.00025		.00050	.00073	.00115	.00160	00193	.00184
	8	00020	.00053		.00097	.00141	.00214	.00282	.00291	.00241
	9	.00048	.00118		.00226.	.00325	.00463	.00536	.00445	.00326
	ம	.00083	.00209		.00393	.00548	.00732	00768	.00548	.00352
	4	, 00084 .00167	.00250		.00761	.01013	.01221	.00109.00049	.00554	.00397
	æ	00211	.01013		.01742	.02142	.02143	.01592 .01249	.00784	.00438
	2	0.00856	.03118 .03118 .03701	.04558	.05185	.05116	.03787	.02193 .01573	00894	.00465
τ/α	1.5	0.02787	.08593 .08593 .09499	.10228 .10236 .10094	.09849	.08048	.04880	.02490		.00477
	1.2	0.09645	.17954 .18709 .18556	.17124 .16206 .15253	.14329	.10296	.05555	.02651		
	н	.5 .43015 .38269	.343/5 .31048 .28156 .25588	.21727 .21297 .19488	.17868	.08269	.05974	.02749 .01835 01307	.00976	
	0.8	1.0 .78797 .63014	.44329 .44329 .33676	.29833 .26581 .23832	.21468.	.09011	04707	.02832		
1	0.6	1.0 .86126 .73483	.53767 .53767 .46448	.35428 .31243 .27707	.24697	.09647	.04886	.02802		
	0.4	1.0 .88679 .77884	.59241 .51622 .45078	.39491 .34729 .30669	.27005	.15877	.04886	1.0620.		
	0,2	1.0 .89748 .79824 70518	.62015 .54403 .47691	.41874 .36832 .32492	.28763	.16552	.05101	9/670.	.1	
	O	1.0 .90050 . .80388	.62861 .55279 .48550	42654 37531 33104	.29289	.16795	.05132	.01942 .01942 .01361	00772	77202
- / - -	\$/\$	0.1	0.5	0.9		- CV C	n v m v	4° U VO	1~ 00 07)g

<u>ΠΙΝΑΚΑΣ 2.2</u> Συντελεστής Α

	14	.07123 .07104 .07104 .07064 .06897 .06897 .068377 .068377 .065372 .065776 .05976
	17	.08295 .08295 .08270 .08270 .08115 .07864 .07864 .07864 .07864 .07863 .07452 .07452 .07452 .07452
	P	.09952 .09952 .099792 .09700 .09700 .09700 .09700 .09700 .09700 .09700 .09700 .09700 .07800 .07800 .07800
	80	.12512 .12512 .12493 .12493 .12394 .12350 .12350 .12351 .11172 .11172 .11172 .11172 .09387 .09387 .09387 .09387 .09387 .09387 .07710
	9	.16668 .16668 .16668 .16516 .16369 .16516 .16369 .16369 .16369 .16369 .16369 .16369 .16369 .16369 .16369 .16369 .16369 .16369 .163787 .1037877 .1037877 .1037877777777777777777777777777777777777
	S	20081 20081 20081 20081 20081 19673 19673 19673 19688 117154 117154 117154 1171596 1171596 1171596 1171596 1171596 1171596 117792 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 117772 1177772 117772 117772 117772 117772 11777772 1177772 11777772 11777772 1177777777
	4	.25184 .25184 .25184 .25184 .25184 .25184 .24996 .24996 .24996 .23495 .23495 .23495 .23495 .19977 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117640 .1117661 .117
	3	.33794 .33794 .33726 .33526 .33677 .31877 .31877 .31877 .31877 .33293 .33293 .25555 .25555 .255556 .178688 .178688 .178688 .178688 .178688 .178688 .178688 .178688 .178688 .1786888 .1786888 .1786888 .1786888 .1786888 .1786888 .178688888 .178688888888888888888888888888888888888
-	2	.516/1 .516/1 .51827 .50966 .50412 .49728 .49728 .49728 .39872 .39872 .39872 .39872 .39872 .39872 .39872 .157500 .1575000 .1575000 .1575000 .1575000 .1575000 .1575000 .15750000 .157500000000000000000000000000000000000
r/c	1.5	71185 70088 70088 6823 68238 65429 65429 65429 65364 51552 55364 51552 51552 51552 51552 51552 51552 51552 51552 51564 233698 23369 233698 23369 23569 2369 2369 2369 2369 2369 2369 2369 23
-	1.2	.93676 .92670 .92670 .86726 .86726 .75653 .75653 .75653 .75653 .57329 .557329 .557329 .57329
1. 100 C	F	1.27319 1.18107 1.02749 1.02749 90298 84917 75571 755771 755771 755771 7557771 75577777777
1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	0.8	1.62553 1.62553 1.192614 1.192614 1.192615 1.01312 87742 87742 77255 1.01312 77255 1.01312 77255 1.25555 1.25555 1.25555 1.25555 1.25555 1.24168 1.24168 1.24168
	9.0	1.80575 1.61961 1.461961 1.20822 1.120822 1.02154 1.02154 1.02154 1.02154 1.02154 1.20823 1.25556 1.67937 .57633 1.57634 1.57633 1.57633 1.57633 1.57633 1.57633 1.57633 1.57633 1.57633 1.57633 1.57633 1.57634 1.57634 1.57634 1.57634 1.57644 1.57644 1.57654 1.57644 1.576554 1.576554 1.576554 1.576554 1.576554 1.576554 1.576554 1.576554 1.576555 1.576556556 1.576556556 1.5765556556 1.5765556 1.5765556 1.57655556
	-0.4	1.91751 1.72886 1.72886 1.28963 1.1728963 1.17894 1.08350 .9794 .97346 .97346 .97346 .97346 .321844 .321844 .321844 .321844 .321844 .321844 .321844 .321844
	0.2	1.97978 1.79018 1.79018 1.47044 1.33802 1.22176 1.03037 1.03025 1.03025 1.0307 1.03025 1.0307 1.03025 1.0307 1.0
	0	2.0 1.63961 1.53561 1.35407 1.35407 1.23607 1.23607 1.13238 1.04131 1.35407 1.23607 1.23655 1.04131 1.23655 1.04131 1.23655 1.04131 1.23655 1.14217 1.12448 1.12448 1.12448 1.12448 1.12448
	z/a	00000000000000000000000000000000000000

ΠΙΝΑΚΑΣ 2.3 Συντελεστής Η

3. ΕΛΕΓΧΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ

3.1 Η ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΑΚΟΥ ΦΟΡΤΙΟΥ (ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ) ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ

Όταν η ένταση της φόρτισης που επιβάλλεται στο έδαφος μέσω ενός θεμελίου είναι σημαντική κάτω από το φορτίο αναπτύσσεται μια ζώνη τοπικής αστοχίας, η οποία βαθμιαία επεκτείνεται και τελικά όταν διευρυνθεί πολύ το έδαφος οδηγείται σε γενικευμένη αστοχία με μεγάλες παραμορφώσεις. Στο **ΣΧΗΜΑ 3.1** φαίνεται παραστατικά η παραμόρφωση του εδάφους για μια σταδιακά αυξανόμενη κεντρική φόρτιση πάνω σε μεμονωμένο θεμέλιο έως την θραύση του εδάφους.

ΣΧΗΜΑ 3.1 Φάσεις καθίζησης θεμελίου

Η παραμόρφωση κατά τη θραύση είναι αθροιστικό αποτέλεσμα δύο αιτίων:

- Της καθίζησης λόγω της συμπιεστότητας του εδάφους και
- Της μετατόπισης του εδάφους (πλευρικά κυρίως) κάτω από το θεμέλιο.

Είναι γνωστό από τη συμπεριφορά των θεμελίων στην πράξη ότι η θραύση τους λαμβάνει χώρα ως διατμητική θραύση με τρεις βασικές μορφές κατά Vesic, οι οποίες ορίζονται σύμφωνα με το **ΣΧΗΜΑ 3.2** ως εξής:

- Γενική ϑραύση: Χαρακτηρίζεται από εκτεταμένη διόγκωση του εδάφους γύρω από το θεμέλιο (π.χ. φόρτιση σε πυκνή άμμο ή στιφρή άργιλο).
- Τοπική θραύση: Χαρακτηρίζεται από μικρή διόγκωση του εδάφους μόνο δίπλα από το θεμέλιο (π.χ. φόρτιση σε κανονικά φορτισμένη άργιλο NC).
- Διείσδυση: Χαρακτηρίζεται από διατμητική θραύση μόνο στην περίμετρο του θεμελίου και καθόλου διόγκωση του περιβάλλοντος εδάφους (π.χ. φόρτιση σε πολύ μαλακή άργιλο ή χαλαρή άμμο).

ΣΧΗΜΑ 3.2 Μορφές θραύσης κατά Vesic

Το μέγιστο φορτίο που μπορεί να αναλάβει ένα θεμέλιο πριν αστοχήσει ονομάζεται *φορτίο αστοχίας ή οριακό φορτίο – φέρουσα ικανότητα Q_u* και η αντίστοιχη πίεση στη βάση του θεμελίου ονομάζεται *πίεση αστοχίας ή οριακή πίεση q_u*. Ως οριακό φορτίο ορίζεται το φορτίο για το οποίο το έδαφος κάτω από τα άκρα του θεμελίου αρχίζει να πλαστικοποιείται, δηλαδή αρχίζει η εμφάνιση των πλαστικών ζωνών σύμφωνα με το **ΣΧΗΜΑ 3.3**. Σ' αυτή την κατάσταση το έδαφος μέσα στις πλαστικές ζώνες βρίσκεται σε κατάσταση οριακής πλαστικής ισορροπίας και δεν είναι ικανό να προσφέρει καμία αντίσταση στην αύξηση των διατμητικών τάσεων, δηλαδή το έδαφος συμπεριφέρεται ως ένα ιξώδες υλικό.

ΣΧΗΜΑ 3.3 Πλαστικές ζώνες κάτω από φορτιζόμενο θεμέλιο

Οι βασικές θεωρήσεις του προβλήματος υπολογισμού του οριακού φορτίου αβαθούς θεμελίου είναι:

- Ορθογωνικό θεμέλιο διαστάσεων B×L (όπου L≥B), το οποίο εδράζεται σε βάθος D_f μέσα στο έδαφος και θεωρείται αβαθές για D_f≤B.
- Εδαφική στρωματογραφία ως ομοιογενής ημίχωρος απείρου βάθους με φαινόμενο βάρος γ και χαρακτηριστικά διατμητικής αντοχής c και φ, τα οποία προσδιορίστηκαν από ευθύγραμμη περιβάλλουσα Mohr - Coulomb.
- Διάγραμμα τάσεων παραμορφώσεων του υλικού, το οποίο είναι αυτό των καθαρά πλαστικών υλικών.

Για την λύση του προβλήματος γίνονται οι ακόλουθες απλοποιητικές παραδοχές:

- Η διατμητική αντοχή του υπερκείμενου της βάσης του θεμελίου εδάφους θεωρείται αμελητέα.
- Τριβές μεταξύ υπερκείμενου εδάφους και θεμελίου θεωρούνται αμελητέες.
- Το θεμέλιο θεωρείται απείρου μήκους (πρακτικά L>>B).

3.2 ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ ΥΠΟ ΚΕΝΤΡΙΚΗ ΚΑΙ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΚΑΤΑ DIN4017 (ΦΥΛΛΟ 1)

Η μέθοδος υπολογισμού της τάσης θραύσης υπό κεντρική και κατακόρυφη φόρτιση των θεμελίων κατά τους Γερμανικούς Κανονισμούς DIN 4017 (Φύλλο 1) είναι από τις πλέον διαδεδομένες στην πράξη.

Κατά τον κανονισμό DIN 4017 (Φύλλο 1) στην ειδική περίπτωση κεντρικής και κατακόρυφης φόρτισης ορθογωνικού θεμελίου διαστάσεων a×b (όπου b≤a) η

επιφάνεια ολίσθησης με τις κατά την θραύση εφαρμοζόμενες δυνάμεις φαίνεται στο **ΣΧΗΜΑ 3.4**, ενώ η μέση τάση κατά την θραύση q_u δίνεται από τη σχέση:

$$q_u = c \times N_c \times \nu_c + \gamma_1 \times d \times N_d \times \nu_d + \gamma_2 \times b \times N_b \times \nu_b$$

Όπου:

- c :Η συνοχή του εδάφους κάτω από τη στάθμη θεμελίωσης,
- N_c, N_d, N_b :Συντελεστές φέρουσας ικανότητας εξαρτώμενοι από τη γωνία εσωτερικής τριβής φ του εδάφους κάτω τη στάθμη θεμελίωσης σύμφωνα με τον ΠΙΝΑΚΑ 3.1,
- ν_c, ν_d, ν_b :Συντελεστές εξαρτώμενοι από τη μορφή του θεμελίου σύμφωνα με τον ΠΙΝΑΚΑ 3.2,
- γ1 :Το ειδικό βάρος του εδάφους πάνω από τη στάθμη θεμελίωσης,
- γ2 :Το ειδικό βάρος του εδάφους κάτω από τη στάθμη θεμελίωσης και
- d :Το βάθος θεμελίωσης.

ΣΧΗΜΑ 3.4 Μηχανισμός θραύσης κατά DIN4017, (Φύλλο 1)

φ	N _c	N _d	N _b
0 [°]	5	1	0
5°	6,5	1,5	0
10 [°]	8,5	2,5	0,5
15 [°]	11	4	1
20 [°]	15	6,5	2
22,5°	17,5	8	3
25°	20,5	10,5	4,5
27,5°	25	14	7
30 [°]	30	18	10
32,5°	37	25	15
35°	46	33	23
37,5°	58	46	34
40 [°]	75	64	53

ΠΙΝΑΚΑΣ 3.1 Συντελεστές φέρουσας ικανότητας κατά DIN 4017 (Φύλλο 1)

ΜΟΡΦΗ ΘΕΜΕΛΙΟΥ	v _c (φ≠0)	v _c (φ=0)	Vd	Vb
Λωρίδα	1	1	1	1
Ορθογώνιο	$\frac{\nu_d \times N_d - 1}{N_d - 1}$	$1 + 0.2 \frac{b}{a}$	$1 + \frac{b}{a} \times sin\varphi$	$1 - 0,3\frac{b}{a}$
Τετράγωνο ή κύκλος	$\frac{\nu_d \times N_d - 1}{N_d - 1}$	1,2	$1 + sin \varphi$	0,7

ΠΙΝΑΚΑΣ 3.2 Συντελεστές μορφής κατά DIN 4017 (Φύλλο 1)

3.3 ΕΚΚΕΝΤΡΟΤΗΤΑ ΚΑΙ ΚΛΙΣΗ ΣΤΗ ΦΟΡΤΙΣΗ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ

Ανάλογα με το είδος των φορτίων που μεταφέρονται από την ανωδομή στη βάση ενός θεμελίου η φόρτιση αυτού χαρακτηρίζεται σύμφωνα με τον ΠΙΝΑΚΑ 3.3:

ΦΟΡΤΙΣΗ	V	Н	М
Ορθή	V≠0	H=0	M=0
Λοξή	V≠0	H≠0	M=0
Έκκεντρη	V≠0	H=0	M≠0
Έκκεντρη και λοξή	V≠0	H≠0	M≠0

ΠΙΝΑΚΑΣ 3.3 Είδη φόρτισης θεμελίου

Στην περίπτωση έκκεντρης φόρτισης σύμφωνα με το **ΣΧΗΜΑ 3.5** η εκκεντρότητα e υπολογίζεται από τη σχέση:

$$e = M/V$$

Όπου:

- M: Η συνισταμένη ροπή στη στάθμη της βάσης του θεμελίου και
- V: Η συνισταμένη κατακόρυφη δύναμη στη βάση του θεμελίου.

ΣΧΗΜΑ 3.5 Ισοδύναμες δράσεις στη βάση ενός θεμελίου

Για την κατανομή των τάσεων στη βάση ενός ορθογωνικού θεμελίου διαστάσεων Β×L υπό έκκεντρη φόρτιση ισχύουν τα ακόλουθα:

• Η μέση τάση στη βάση του είναι:

$$\sigma = V/_{B} \times L$$

• Με την παραδοχή γραμμικής κατανομής των τάσεων και για μικρή εκκεντρότητα (δηλαδή $0 \le e \le \frac{B}{6}$) οι τάσεις στη βάση του έχουν τραπεζοειδή μορφή σύμφωνα με το **ΣΧΗΜΑ 3.6** με ακραίες τιμές:

$$\sigma_{max} = \sigma \times (1 + 6 \times e/B),$$
 $\sigma_{min} = \sigma \times (1 - 6 \times e/B) \ge 0.$

ΣΧΗΜΑ 3.6 Έκκεντρη φόρτιση θεμελίου με μικρή εκκεντρότητα

• Με την παραδοχή γραμμικής κατανομής των τάσεων και για μεγάλη εκκεντρότητα (δηλαδή $B/_6 \le e \le B/_2$) οι τάσεις στη βάση του έχουν τριγωνική μορφή σύμφωνα με το **ΣΧΗΜΑ 3.7** με ακραία τιμή:

$$\sigma_{max} = 2 \times \sigma \times {}^{B}/{}_{B'}$$

Όπου B'<B το μήκος στο οποίο εκτείνεται το τριγωνικό διάγραμμα και υπολογίζεται από τη σχέση:

$$B'=3\times (B/2-e).$$

ΣΧΗΜΑ 3.7 Έκκεντρη φόρτιση θεμελίου με μεγάλη εκκεντρότητα

3.4 ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ ΥΠΟ ΕΚΚΕΝΤΡΗ ΚΑΙ ΛΟΞΗ ΦΟΡΤΙΣΗ ΚΑΤΑ DIN4017 (ΦΥΛΛΟ 2)

ΣΧΗΜΑ 3.8 Μηχανισμός θραύσης και βασικές παραδοχές κατά DIN4017 (Φύλλο 2) για έκκεντρο και λοξό φορτίο προς τη μικρότερη πλευρά b

Παραδοχή: Το έδαφος θεμελίωσης είναι ομοιογενές.

Κατά DIN 4017 (Φύλλο 2) η κατακόρυφη συνιστώσα V_b του έκκεντρου και υπό κλίση φορτίου θραύσης του εδάφους θεμελίωσης ορθογωνικού θεμελίου διαστάσεων α×b (όπου α≤b) δίνονται από τις σχέσεις:

$$V_b = \sigma_{of} \times (a' \times b'),$$

 $\sigma_{of} = q_{u} = c \times N_{c} \times k_{c} \times v'_{c} + \gamma_{1} \times d \times N_{d} \times k_{d} \times v'_{d} + \gamma_{2} \times b \times N_{b} \times k_{b} \times v'_{b}$

Όπου:

- σ_{of} :Μέση οριακή κατακόρυφη τάση θραύσης επί της ενεργής επιφάνειας του θεμελίου $A' = \alpha' \times b'$,
- α', b' :Μειωμένες λόγω εκκεντρότητας διαστάσεις της διατομής του θεμελίου όπου $\alpha' = \alpha - 2 \times e_a$, $b' = b - 2 \times e_b$ και b'≤α',
- e_α, e_b :Εκκεντρότητα της συνισταμένης φόρτισης κατά τη διεύθυνση των πλευρών α και b αντίστοιχα,
- c :Η συνοχή του εδάφους κάτω από τη στάθμη θεμελίωσης,
- N_c, N_d, N_b :Συντελεστές φέρουσας ικανότητας εξαρτώμενοι από τη γωνία εσωτερικής τριβής φ του εδάφους κάτω από τη στάθμη θεμελίωσης,
- k_c , k_d , k_b : Συντελεστές εξαρτώμενοι από την κλίση δ_s της τελικής συνιστάμενης R ως προς την κατακόρυφο και από τη φύση του υπεδάφους. Υπολογίζονται ανάλογα με τη διεύθυνση του οριζόντιου φορτίου ως εξής:
 - Οριζόντιο φορτίο παράλληλο προς τη μικρότερη πλευρά b':
 - Καθαρά μη συνεκτικά εδάφη (φ≠0, c=0):
 $k_d = (1 0.7 \times tan\delta_s)^3, k_b = (1 tan\delta_s)^3,$
 - Καθαρά συνεκτικά εδάφη (φ_u=0, c_u≠0):

$$k_c = 0.5 + 0.5 \times \sqrt{1 - \frac{H_b}{A' \times c_u}}, k_d = k_b = 1,$$

(Η επιφάνεια Α' θα πρέπει να επιλεγεί έτσι ώστε $\frac{H_b}{A' \times C_u} \leq 1.$)

Εδάφη με φ≠0 και c≠0:

$$k_c = k_d - \frac{1 - k_d}{N_d - 1}, k_d = \left(1 - 0.7 \times \frac{H_b}{v'_b + A' \times \frac{c}{tan\varphi}}\right)^3,$$

$$k_b = \left(1 - \frac{H_b}{v'_b + A' \times \frac{c}{tan\varphi}}\right)^3,$$

Οριζόντιο φορτίο παράλληλο προς τη μεγαλύτερη πλευρά α': Γενικά ισχύει ότι και στην προηγούμενη περίπτωση με μόνη διαφορά ότι για φ≠0
 $k_d = k_b = 1 - \frac{H_b}{v'_b + A' \times \frac{c}{tan\varphi}}$.

- ν'_c, ν'_d, ν'_b :Συντελεστές εξαρτώμενοι από τη μορφή της ενεργής επιφάνειας του θεμελίου,
- γ1 :Το ειδικό βάρος του εδάφους πάνω από τη στάθμη θεμελίωσης,
- γ2 :Το ειδικό βάρος του εδάφους κάτω από τη στάθμη θεμελίωσης και
- d :Το βάθος θεμελίωσης.

Επίσης ορίζονται:

- Η, V :Συνιστώσες της τελικής συνισταμένης R που ασκείται έκκεντρα και υπό κλίση επί του θεμελίου,
- n:Συντελεστής ασφαλείας έναντι θραύσεως (καταρχήν άγνωστος αλλά τελικά προσδιορίσιμος) και
- $H_{b,}V_{b}$:Συνιστώσες της δύναμης θραύσεως όπου $H_{b} = n \times H$ και $V_{b} = n \times V$.

3.5 ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ ΥΠΟ ΕΚΚΕΝΤΡΗ ΚΑΙ ΛΟΞΗ ΦΟΡΤΙΣΗ ΚΑΤΑ ΜΕΥΕRHOF

ΣΧΗΜΑ 3.9 Μηχανισμός θραύσης για έκκεντρο κεκλιμένο φορτίο κατά Meyerhof

Τα παρακάτω ισχύουν για έκκεντρη και λοξή φόρτιση κατά τη διεύθυνση της πλευράς Β. Για έκκεντρη και λοξή φόρτιση κατά τη διεύθυνση της πλευράς L τίθεται στον τρίτο όρο L', ενώ για διπλή εκκεντρότητα απαιτούνται έλεγχοι και κατά τις δύο διευθύνσεις. Ο γενικός τύπος υπολογισμού της φέρουσας ικανότητας αβαθούς ορθογωνικού θεμελίου διαστάσεων B×L (όπου B≤L) σε ομοιογενές έδαφος υπό έκκεντρη και λοξή φόρτιση κατά Meyerhof είναι:

$$q_u = S_c \times d_c \times i_c \times c \times N_c + S_q \times d_q \times i_q \times \gamma_1 \times D \times N_q + 0, 5 \times S_\gamma \times d_\gamma \times i_\gamma \times \gamma_2 \times B' \times N_\gamma$$

Όπου:

• S_c, S_q, S_y :Συντελεστές μορφής που δίνονται από τις σχέσεις:

$$S_c = 1 + 0, 2 \times N_{\varphi} \times B/_L$$
,
 $S_q = S_{\gamma} = 1$ (για φ=0) και
 $S_q = S_{\gamma} = 1 + 0, 1 \times N_{\varphi} \times B/_L$ (για φ>10°),

d_c, d_q, d_y :Συντελεστές βάθους που δίνονται από τις σχέσεις:

$$d_c = 1 + 0, 2 \times \sqrt{N_{\varphi}} \times D/B,$$

 $d_q = d_{\gamma} = 1$ (για φ=0°) και
 $d_q = d_{\gamma} = 1 + 0, 1 \times \sqrt{N_{\varphi}} \times D/B$ (για φ>10° και $N_{\varphi} = tan^2(45^o + {\varphi}/2)),$

• i_c , i_q , $i_γ$:Συντελεστές λοξότητας φορτίου που δίνονται από τις σχέσεις:

$$m{i}_c=m{i}_q=(1-rac{lpha}{90^o})^2$$
 και $m{i}_\gamma=(1-lpha/arphi)^2$,

- c :Η συνοχή της εδαφικής στρώσης κάτω από τη στάθμη θεμελίωσης,
- N_c, N_q, N_γ :Συντελεστές φέρουσας ικανότητας εξαρτώμενοι από τη γωνία εσωτερικής τριβής φ του εδάφους κάτω από τη στάθμη θεμελίωσης σύμφωνα με το <u>ΣΧΗΜΑ 3.10</u> ή τον ΠΙΝΑΚΑ 3.3,

- γ1 :Το ειδικό βάρος του εδάφους πάνω από τη στάθμη θεμελίωσης,
- γ₂ :Το ειδικό βάρος του εδάφους κάτω από τη στάθμη θεμελίωσης,
- D :Το βάθος θεμελίωσης και
- Β' :Μειωμένο πλάτος θεμελίωσης κατά τη διεύθυνση της εκκεντρότητας κατά Β σύμφωνα με τη σχέση $B' = B - 2 \times e_B$ για $e_B = M_B/V$. (Κατά τη διεύθυνση της εκκεντρότητας κατά L μειωμένο πλάτος θεμελίωσης σύμφωνα με τη σχέση $L' = L - 2 \times e_L$ για $e_L = M_L/V$.)

ΣΧΗΜΑ 3.10 Συντελεστές φέρουσας ικανότητας κατά Meyerhof

φ	N _c	Nq	Nγ	φ	N _c	Nq	Nγ
0°	5,10	1,00	0,00	26 [°]	22,25	11,85	8,00
2°	5,63	1,20	0,01	28 [°]	25,80	14,72	11,19
4 [°]	6,19	1,43	0,04	30 [°]	30,14	18,40	15,67
6°	6,81	1,72	0,11	32 [°]	35,49	23,18	22,02
8°	7,53	2,06	0,21	34 [°]	42,16	29,44	31,15
10 [°]	8,34	2,47	0,37	36 [°]	50,59	37,75	44,43
12 [°]	9,28	2,97	0,60	38°	61,35	48,93	64,08
14 [°]	10,37	3 <i>,</i> 59	0,92	40 [°]	75,32	64,20	93,69
16 [°]	11,63	4,34	1,37	42 [°]	93,71	85,38	139,32
18 [°]	13,10	5 <i>,</i> 26	2,00	44 ⁰	118,37	115,31	211,41
20 [°]	14,83	6,40	2,87	46 [°]	152,10	158,51	329,74
22°	16,88	7,82	4,07	48 [°]	199,27	222,31	526,47
24°	19,32	9,60	5,72	50°	266,89	319,07	873,89

ΠΙΝΑΚΑΣ 3.3 Συντελεστές φέρουσας ικανότητας κατά Meyerhof για λωριδωτό πέδιλο

3.6 ΕΠΙΡΡΟΗ ΤΗΣ ΣΤΑΘΜΗΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΥΔΑΤΩΝ

Η στάθμη των υπογείων υδάτων επηρεάζει αφενός μεν άμεσα την ενεργό πίεση από γαίες, αφετέρου δε μπορεί να επηρεάσει και τις παραμέτρους αντοχής του υπεδάφους. Γι' αυτό στα προβλήματα φέρουσας ικανότητας θα πρέπει να λαμβάνεται υπόψη η πιθανή ανώτατη στάθμη των υπογείων υδάτων.

Το ενεργό φαινόμενο βάρος των γαιών κάτω από τη στάθμη της θεμελίωσης είναι άμεσα συνδεδεμένο με την τιμή του τρίτου όρου της σχέσης που εκφράζει τη φέρουσα ικανότητα των αβαθών θεμελίων.

ΣΧΗΜΑ 3.11 Επιρροή της παρουσίας υπογείων υδάτων

Για διάφορες περιπτώσεις στάθμης υπογείων υδάτων σε σχέση με τη στάθμη θεμελίωσης η τιμή του γ₂ θα πρέπει να λαμβάνεται κατά τον Meyerhof:

- Για Σ.Υ.Ο. μεταξύ στάθμης φυσικού εδάφους και στάθμης θεμελίωσης, δηλαδή για z_w≤0, γ₂=γ'.
- Για Σ.Υ.Ο. μεταξύ στάθμης θεμελίωσης και βάθος D_f+B, δηλαδή για 0<z_w<B, $\gamma_2 = \gamma' + (z_w/B) \times (\gamma_u - \gamma').$
- Για Σ.Υ.Ο. σε βάθος μεγαλύτερο του βάθους D_f+B , δηλαδή για $z_w \ge B \gamma_2 = \gamma_u$.

Όπου:

- γ2 :Το ειδικό βάρος του εδάφους κάτω από τη στάθμη θεμελίωσης,
- γ' :Το ειδικό βάρος υπό άνωση -ενεργό- του εδάφους κάτω από τη στάθμη θεμελίωσης,
- γ_u :Το ειδικό βάρος του εδάφους κάτω από τη στάθμη θεμελίωσης για την ελάχιστη πιθανή τιμή της φυσικής υγρασίας w,
- Β :Το πλάτος του θεμελίου και
- D_f :Το βάθος θεμελίωσης.

3.7 ΣΥΝΤΕΛΕΣΤΕΣ ΑΣΦΑΛΕΙΑΣ ΕΝΑΝΤΙ ΘΡΑΥΣΗΣ

Για λόγους ασφαλείας επιθυμούμε πάντοτε να υπάρχει κάποιο περιθώριο μεταξύ των τάσεων που επιβάλλονται κατά τη φόρτιση του εδάφους μέσω μιας θεμελίωσης και της οριακής αντοχής του εδάφους. Έτσι ορίζεται η έννοια του συντελεστή ασφαλείας.

Οι τάσεις που προκαλούνται στο έδαφος από συγκεκριμένη φόρτιση q δεν πρέπει να υπερβαίνουν την επιτρεπόμενη φόρτιση q_{επ} του εδαφικού υλικού, η οποία υπολογίζεται διαιρώντας την οριακή φόρτιση q_u που προκύπτει για το συγκεκριμένο θεμέλιο και σύστημα φορτίσεως με κάποιο συντελεστή ασφαλείας F_s, δηλαδή:

$$q \leq q_{arepsilon\pi.} = \frac{q_u}{F},$$

 $V \leq V_{arepsilon\pi.} = \frac{V_u}{F}$

Όπου:

- V :Κατακόρυφο φορτίο λειτουργίας από την ανωδομή και
- V_u :Κατακόρυφη συνιστώσα της φέρουσας ικανότητας.

Κατά την επιλογή συντελεστή ασφαλείας έναντι θραύσεως συνεκτιμάται εκτός του εδαφικού υλικού η ευαισθησία και σημασία της ανωδομής, καθώς επίσης και οι συνέπειες τυχόν αστοχίας του συστήματος έδαφος – ανωδομή.

Συνήθεις τιμές συντελεστή ασφαλείας επιφανειακών θεμελιώσεων κατά Vesic δίνονται σύμφωνα με τον ΠΙΝΑΚΑ 3.4.

ΕΙΔΟΣ	ΓΝΩΣΗ ΓΕΩΤΕΧΝΙΚΩΝ ΣΥΝΘΗΚΩΝ				
ΕΡΓΟΥ	Καλή	Περιορισμένη			
Δομικά έργα*	2	3			
Οδικές γέφυρες*	2,5	3,5			
Σιδηροδρομικές γέφυρες*	3	4			
Τοίχοι αντιστηρίξεως	1,3	1,5			
Επιχώματα	1,5	2			
*Για προσωρινά έργα οι τιμές μπορούν να απομειωθούν κατά 25% με ελάχιστο όμως συντελεστή ασφαλείας ίσο με 2.					

ΠΙΝΑΚΑΣ 3.4 Συντελεστές ασφαλείας έναντι θραύσης κατά Vesic

4. ΚΑΘΙΖΗΣΕΙΣ ΑΚΑΜΠΤΩΝ ΑΒΑΘΩΝ ΘΕΜΕΛΙΩΝ

4.1. Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΙΖΗΣΗΣ

Με τον όρο καθίζηση εννοούμε την κατακόρυφη παραμόρφωση που πραγματοποιείται σε ένα εδαφικό στρώμα λόγω της επιβολής μιας φορτίσεως. Έτσι το πρόβλημα των καθιζήσεων αφορά στην εκτίμηση των κατακόρυφων παραμορφώσεων από τις προβλεπόμενες φορτίσεις και σχετίζεται άμεσα με την συμπιεστότητα του υπεδάφους.

4.2. ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΑΚΑΜΠΤΩΝ ΘΕΜΕΛΙΩΝ ΣΕ ΣΥΝΤΕΚΤΙΚΑ ΥΛΙΚΑ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΣΥΜΠΙΕΣΟΜΕΤΡΟΥ ΚΑΤΑ TERZAGHI

Η μέθοδος αυτή αρχικά προτάθηκε για την εκτίμηση της καθίζησης ενός λεπτού στρώματος κορεσμένης αργίλου. Χρησιμοποιείται όμως και για περιπτώσεις αργιλικών στρωμάτων μεγάλου πάχους, τα οποία όμως χωρίζουμε σε περισσότερα λεπτά στρώματα μικρότερου πάχους.

Κατά Terzaghi η καθίζηση με παραμέτρους που λήφθηκαν υπό συνθήκες της δοκιμής συμπιεσομέτρου θεωρείται ίση με την ολική καθίζηση.

ΣΧΗΜΑ 4.1 Δείκτες συμπιεστότητας c_c, c_r

Για τις κανονικά φορτισμένες αργίλους NC η καθίζηση S_{odi} λόγω στερεοποίησης που οφείλεται στην επιβολή του μόνιμου εξωτερικού φορτίου δίνεται από τη σχέση:

$$S_{odi} = c_c \times h_i / (1 + e_{oi}) \times log \left(\frac{\sigma'_{voi} + \Delta \sigma_{zi}}{\sigma'_{voi}}\right)$$

Όπου:

- c_c :Δείκτης συμπιεστότητας της αργίλου που προκύπτει από δοκιμές στερεοποίησης και εκφράζει την κλίση της καμπύλης φόρτισης της δοκιμής συμπιεσομέτρου όπως φαίνεται στο <u>ΣΧΗΜΑ 4.1</u>,
- h_i :Το πάχος της στρώσεως i της αργίλου,
- e_{oi} :Αρχικός δείκτης πόρων της στρώσεως i της αργίλου,
- σ'_{voi} :Ενεργός γεωστατική τάση στο μέσο της στρώσεως i της αργίλου και
- Δσ_{zi} :Πρόσθετη κατακόρυφα κατανεμημένη τάση λόγω εξωτερικού φορτίου στο μέσο της στρώσεως i της αργίλου, η οποία υπολογίζεται είτε από το νομογράφημα του Fadum (<u>ΣΧΗΜΑ 4.2</u>) για ομοιόμορφα φορτισμένη ορθογωνική επιφάνεια είτε από το νομογράφημα του Osterberg (<u>ΣΧΗΜΑ</u> <u>4.3</u>) για απειρομήκη λωριδωτή τραπεζοειδή φόρτιση.

Για τις προφορτισμένες αργίλους OC η καθίζηση S_{odi} λόγω στερεοποίησης που οφείλεται στην επιβολή του μόνιμου εξωτερικού φορτίου δίνεται από τις σχέσεις:

$$S_{odi} = c_r \times \frac{h_i}{1 + e_{oi}} \times log \left(\frac{\sigma'_{voi} + \Delta \sigma_{zi}}{\sigma'_{voi}}\right) (για \Delta \sigma_{zi} < \Delta \sigma'_{pi}) και$$
$$S_{odi} = c_r \times \frac{h_i}{1 + e_{oi}} \times log \left(\frac{\sigma'_{voi} + \Delta \sigma'_{pi}}{\sigma'_{voi}}\right) + c_c \times \frac{h_i}{1 + e_{oi}} \times log \left(\frac{\sigma'_{voi} + \Delta \sigma_{zi}}{\sigma'_{voi} + \Delta \sigma'_{pi}}\right) (για \Delta \sigma_{zi} > \Delta \sigma'_{pi})$$

Όπου:

- c_r :Δείκτης συμπιεστότητας της αργίλου που προκύπτει από δοκιμές στερεοποίησης και εκφράζει την κλίση της καμπύλης επαναφόρτισης της δοκιμής συμπιεσομέτρου όπως φαίνεται στο <u>ΣΧΗΜΑ 4.1</u>,
- h_i :Το πάχος της στρώσεως i της αργίλου,
- e_{oi} :Αρχικός δείκτης πόρων της στρώσεως i της αργίλου,
- σ'_{voi} :Ενεργός γεωστατική τάση στο μέσο της στρώσεως i της αργίλου,
- Δσ_{zi} :Πρόσθετη κατακόρυφα κατανεμημένη τάση λόγω εξωτερικού φορτίου στο μέσο της στρώσεως i της αργίλου, η οποία υπολογίζεται είτε από το νομογράφημα του Fadum (<u>ΣΧΗΜΑ 4.2</u>) για ομοιόμορφα φορτισμένη ορθογωνική επιφάνεια είτε από το νομογράφημα του Osterberg (<u>ΣΧΗΜΑ</u> <u>4.3</u>) για απειρομήκη λωριδωτή τραπεζοειδή φόρτιση και

Δσ'_{pi} :Πρόσθετη κατακόρυφα κατανεμημένη τάση λόγω προφόρτισης στο μέσο της στρώσης i της αργίλου.

Τιμές του λόγου $\mathbf{n} = M$ ήκος/Βάθος = L/Z

ΣΧΗΜΑ 4.2 Νομογράφημα του Fadum για τον προσδιορισμό της πρόσθετης τάσης κάτω από γωνιακό σημείο ομοιόμορφα φορτισμένης ορθογωνικής επιφάνειας

ΣΧΗΜΑ 4.3 Νομογράφημα του Osterberg για τον προσδιορισμό της πρόσθετης τάσης κάτω από σημεία επιχώματος τραπεζοειδούς διατομής

4.3. ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΑΚΑΜΠΤΩΝ ΘΕΜΕΛΙΩΝ ΣΕ ΜΗ ΣΥΝΕΚΤΙΚΑ ΥΛΙΚΑ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ DIN4019 ΚΑΤΑ ΚΑΝΥ

Οι Γερμανικοί Κανονισμοί προτείνουν τον υπολογισμό της καθίζησης κάτω από χαρακτηριστικό σημείο της επιφάνειας φόρτισης την οποία και τελικά θεωρούν ως μέση καθίζηση όλου του άκαμπτου θεμελίου. Η καθίζηση αυτή S για ορθογωνικό θεμέλιο διαστάσεων BXL (όπου B≤L)υπολογίζεται από τη σχέση:

$$S = (\frac{q \times B}{E_s}) \times f_{(s,0)}$$

Όπου:

- q :Πρόσθετη κατανεμημένη τάση στη στάθμη θεμελίωσης μετά την επιβολή του μόνιμου εξωτερικού φορτίου, για την οποία $q = p \gamma \times t$,
- Β :Το πλάτος του θεμελίου,
- E_s :Μέτρο ελαστικότητας της εδαφικής στρώσης που για την περίπτωση με προφόρτιση λαμβάνεται προσαυξημένη κατά 20-40%,
- f_(s,0) :Συντελεστής που εξαρτάται από τις διαστάσεις του θεμελίου και το βάθος κάτω από τη στάθμη θεμελίωσης στο οποίο εκτείνεται τα αμμώδες στρώμα και προσδιορίζεται από νομογράφημα σύμφωνα με το <u>ΣΧΗΜΑ 4.4</u>.

ΣΧΗΜΑ 4.4. Νομογράφημα κατά DIN 4019 (Kany) για τον υπολογισμό της καθίζησης κάτω από χαρακτηριστικό σημείο της επιφάνειας φόρτισης

Επίσης ορίζονται:

- p :Κατανεμημένη τάση στη στάθμη θεμελίωσης λόγω μόνιμου εξωτερικού φορτίου και
- (γ×t) :Ενεργός γεωστατική τάση στη στάθμη θεμελίωσης.

Κατά τα προηγούμενα υπολογίζεται η καθίζηση μη συνεκτικής εδαφικής στρώσης μέσα στην οποία εδράζεται το θεμέλιο. Στην περίπτωση όμως που η μη συνεκτική εδαφική στρώση βρίσκεται κάτω από αυτήν στην οποία εδράζεται το θεμέλιο, όπως φαίνεται στο **ΣΧΗΜΑ 4.5**, τότε εφαρμόζεται η αρχή της επαλληλίας.

ΣΧΗΜΑ 4.5 Υπολογισμός καθιζήσεων υποκείμενης στρώσης 2 σύμφωνα με την αρχή της επαλληλίας

Έτσι για την παραπάνω υποκείμενη στρώση 2 είναι $S_2 = \left(\frac{q \times B}{E_{s2}}\right) \times (f_{s2} - f_{s1})$, όπου οι συντελεστές f_{s1} και f_{s2} προέκυψαν αντίστοιχα συναρτήσει των (B,L,z₁) και (B,L,z₂).

4.4. ΚΡΙΤΗΡΙΑ ΕΠΙΤΡΕΠΟΜΕΝΩΝ ΚΑΘΙΖΗΣΕΩΝ ΚΑΤΑ SKEMPTON – McDONALD

Γενικά με τον όρο επιτρεπόμενη καθίζηση ενός έργου χαρακτηρίζουμε την καθίζηση που μπορεί να πραγματοποιηθεί χωρίς να επηρεασθεί δυσμενώς η στατική λειτουργία και η εν γένει λειτουργικότητα του έργου. Είναι γενική διαπίστωση από παρατηρήσεις καθιζήσεων ότι οι κατασκευές υποφέρουν περισσότερο από τι διαφορικές καθιζήσεις και στροφές παρά από σχετικά υψηλές ομοιόμορφες καθιζήσεις. Επίσης έχει παρατηρηθεί ότι όσο πιο αργά εξελίσσεται η καθίζηση τόσο μεγαλύτερο μέγεθος μπορεί να αναλάβει μια κατασκευή χωρίς βλάβη λόγω του ερπυσμού που λαμβάνει χώρα. Γι΄ αυτό και τα κριτήρια στις άμμους, όπου η καθίζηση επιτελείται πρακτικά άμεσα, είναι πιο αυστηρά από αυτά για αργίλους.

Από παρατηρήσεις καθιζήσεων σε κτίρια στα οποία δεν παρατηρήθηκε αλλοίωση της στατικής τους λειτουργίας οι Skempton και McDonald συσχέτισαν τη γωνιακή στροφή του με τη μέγιστη, καθώς και τη διαφορική του καθίζηση. Έτσι, έδωσαν τις ανεκτές καθιζήσε για διάφορα κτιριακά έργα όπως φαίνεται στον ΠΙΝΑΚΑ 4.1.

	ΜΕΜΟΝΩΜΕΝΑ ΘΕΜΕΛΙΑ	ΓΕΝΙΚΕΣ ΚΟΙΤΩΣΤΡΩΣΕΙΣ
Γωνιακή στροφή*	1/300	1/300
1. ΜΕΓΙΣΤΗ ΚΑΘΙΖΗΣΗ		
Άργιλοι	3 in	3 – 5 in
Άμμοι	2 in	2 – 3 in
2. ΜΕΓΙΣΤΗ ΔΙΑΦΟΡΙΚΗ ΚΑΘΙΖΗΣΗ		
Άργιλοι	1,75 in	
Άμμοι	1,25 in	

*Τα παραπάνω όρια εξασφαλίζουν κυρίως την ασφάλεια του φέροντος οργανισμού. Εφόσον όμως είναι επιθυμητή η αποφυγή κάθε μικρορηγματώσεως σε τοίχους πληρώσεως τότε η γωνιακή στροφή θα πρέπει να είναι μικρότερη από 1/500. Τέλος παρατηρείται ότι οι προτάσεις των Skempton και McDonald είναι αξιόπιστες κυρίως για πλαισιωτές κατασκευές και όχι τόσο για κατασκευές από άοπλη τοιχοποιΐα.

ΠΙΝΑΚΑΣ 4.1 Κριτήρια επιτρεπόμενων καθιζήσεων κατά Skempton - McDonald

5. ΒΕΛΤΙΩΣΗ - ΕΝΙΣΧΥΣΗ ΣΥΝΘΗΚΩΝ ΘΕΜΕΛΙΩΣΗΣ ΜΕ ΣΥΝΔΥΑΣΜΟ ΠΡΟΦΟΡΤΙΣΗΣ ΚΑΙ ΣΤΡΑΓΓΙΣΤΗΡΙΩΝ 'Η ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ

5.1 ΓΕΝΙΚΑ ΓΙΑ ΤΗ ΒΕΛΤΙΩΣΗ - ΕΝΙΣΧΥΣΗ ΤΩΝ ΣΥΝΘΗΚΩΝ ΘΕΜΕΛΙΩΣΗΣ

Η λήψη ειδικών μέτρων για την αναβάθμιση των συνθηκών θεμελίωσης είναι αναγκαία όταν συντρέχουν οι παρακάτω λόγοι:

- Οι επιφανειακές θεμελιώσεις και τα επιχώματα αντιμετωπίζουν προβλήματα φέρουσας ικανότητας και καθιζήσεων και
- Η χρήση πασσάλων αντί για επιφανειακής θεμελίωσης δεν είναι δυνατή ή είναι αντιοικονομική.

Οι λόγοι αυτοί συντρέχουν συνήθως όταν στο έδαφος θεμελίωσης συναντώνται στρώσεις ικανού πάχους από τα εξής εδαφικά υλικά:

- Χαλαρές άμμοι ή αμμοϊλύες με D_r <40% και N_{SPT} <10 και
- Απροφόρτιστες ή υποστερεοποιημένες άργιλοι και αργιλοϊλύες με W≈W_L, c_u <40 KPa και N_{SPT}<10.

Τα εδάφη αυτά αποκαλούνται συνήθως μαλακά ή χαλαρά αν και οι όροι αυτοί δεν αποδίδουν με ακρίβεια ούτε τον τύπο του εδάφους (συνεκτικό ή μη συνεκτικό) ούτε τη μηχανική του συμπεριφορά (ενδοσιμότητα ή διατμητική αντοχή).

5.2 ΜΕΘΟΔΟΙ ΒΕΛΤΙΩΣΗΣ - ΕΝΙΣΧΥΣΗΣ ΤΩΝ ΣΥΝΘΗΚΩΝ ΘΕΜΕΛΙΩΣΗΣ

Οι μέθοδοι αναβάθμισης των συνθηκών θεμελίωσης που εφαρμόζονται σήμερα είναι πολλές και διαχωρίζονται ανάλογα με τον βασικό μηχανισμό που εφαρμόζεται ως εξής:

- Μέθοδοι μείωσης του πρόσθετου φορτίου που επιβάλλεται στο έδαφος,
- Μέθοδοι βελτίωσης του εδάφους χωρίς χρήση ξένων υλικών και συγκεκριμένα της αντοχής και της ενδοσιμότητάς του και
- Μέθοδοι ενίσχυσης του εδάφους με χρήση ξένων υλικών.

Ο παραπάνω διαχωρισμός δεν είναι απόλυτος μια και υπάρχουν μέθοδοι με σύνθετη δράση. Ως παράδειγμα αναφέρονται οι χαλικοπάσσαλοι οι οποίοι συνδυάζουν την ενίσχυση του εδάφους, τη βελτίωσή του, καθώς και τη μείωση του πρόσθετου επιβεβλημένου σε αυτό φορτίου.
5.2.1 ΜΕΘΟΔΟΙ ΜΕΙΩΣΗΣ ΤΟΥ ΠΡΟΣΘΕΤΟΥ ΦΟΡΤΙΟΥ ΠΟΥ ΕΠΙΒΑΛΛΕΤΑΙ ΣΤΟ ΕΔΑΦΟΣ

Οι κυριότερες μέθοδοι αυτής της κατηγορίας είναι οι εξής:

- Μείωση του ύψους του επιχώματος και αύξηση της κλίσης των πρανών του,
- Χρήση ελαφρών υλικών επιχώσεως,
- Τοποθέτηση σωλήνων εντός του επιχώματος και
- Αύξηση του βάθους θεμελίωσης, η οποία ονομάζεται και επιπλέουσα θεμελίωση.

5.2.2 ΜΕΘΟΔΟΙ ΒΕΛΤΙΩΣΗΣ ΤΟΥ ΕΔΑΦΟΥΣ ΧΩΡΙΣ ΧΡΗΣΗ ΞΕΝΩΝ ΥΛΙΚΩΝ

Οι κυριότερες μέθοδοι αυτής της κατηγορίας είναι οι εξής:

- Προφόρτιση,
- Επιφανειακή συμπύκνωση: Εφαρμόζεται κυρίως σε μη συνεκτικές εδαφικές στρώσεις σε μικρά βάθη από την ελεύθερη επιφάνεια (3 έως 12 m) και
- Βαθειά δονητική συμπύκνωση: Εφαρμόζεται σε μη συνεκτικές εδαφικές στρώσεις ανεξαρτήτως βάθους. Οι συνηθέστερα χρησιμοποιούμενες τεχνικές είναι αποτελεσματικές για άμμους με ποσοστό ιλύος μικρότερο από 10 – 15% και είναι οι εξής:
 - Vibroflotation: Επιβολή οριζόντιας ταλάντωσης στο έδαφος λόγω έκκεντρης περιστροφής ειδικής τορπίλης και
 - Vibrocompaction: Επιβολή κατακόρυφης ταλάντωσης στο έδαφος λόγω δόνησης κυλινδρικού στελέχους με πτερύγια.

5.2.3 ΜΕΘΟΔΟΙ ΕΝΙΣΧΥΣΗΣ ΤΟΥ ΕΔΑΦΟΥΣ ΜΕ ΧΡΗΣΗ ΞΕΝΩΝ ΥΛΙΚΩΝ

Οι κυριότερες μέθοδοι αυτής της κατηγορίας είναι οι εξής:

- Αντικατάσταση μαλακού εδάφους: Είναι δυνατόν να επιτευχθεί με πολλούς τρόπους - συμβατικούς και μη – μερικοί από τους οποίους είναι οι εξής:
 - ο Εκσκαφή και επίχωση,
 - Εκτόπιση του μαλακού εδάφους υπό το βάρος της εξυγίανσης και
 - Εκτόπιση του μαλακού εδάφους με τη βοήθεια εκρηκτικών,
- Τοποθέτηση χαλικοπασσάλων: Οι χαλικοπάσσαλοι κατασκευάζονται από υλικό αδρομερές, ανομοιόμορφο και μη συνεκτικό (π.χ. χάλικες, κροκκάλες ή θραυστό λατομείου), έτσι ώστε να επιτυγχάνεται μικρή γενικά ενδοσιμότητα και μεγάλη διατμητική αντοχή ακόμη και με μικρή συμπύκνωση. Η δράση τους είναι σύνθετη:

- Αυξάνουν τη μέση διατμητική αντοχή του μικτού εδάφους
 θεμελίωσης δηλαδή του συστήματος φυσικό έδαφος χαλικοπάσσαλοι,
- Συμπυκνώνουν τοπικά το έδαφος κατά την εγκατάστασή τους και
 επιταχύνουν τη στράγγιση τυχόν υδατικών υπερπιέσεων λόγω
 εξωτερικής φόρτισης ή σεισμού και
- Μειώνουν το πρόσθετο εξωτερικό φορτίο που μπορεί να αναλάβει το φυσικό έδαφος,
- Τοποθέτηση οπλισμού ή οπλισμένης γης: Η αρχή λειτουργίας της μεθόδου στηρίζεται στο γεγονός ότι η συνοχή της οπλισμένης γης είναι μεγαλύτερη από τη συνοχή του φυσικού εδάφους λόγω κυρίως της ικανότητας του οπλισμού να αναλαμβάνει εφελκυστικά φορτία και
- Στραγγιστήρια.

5.2.4 ΑΝΑΒΑΘΜΙΣΗ ΣΥΝΕΚΤΙΚΩΝ ΕΔΑΦΩΝ

Σε περιπτώσεις συνεκτικών εδαφών οι διάφορες μέθοδοι εφαρμόζονται σε συνδυασμό η μία με την άλλη όπως για παράδειγμα η προφόρτιση με την τοποθέτηση στραγγιστηρίων προκειμένου να μειωθεί ο χρόνος που απαιτείται για την ολοκλήρωση των καθιζήσεων λόγω της στερεοποίησης που προκαλεί αυτή.

5.3 ΠΡΟΦΟΡΤΙΣΗ

Όπως φαίνεται στο **ΣΧΗΜΑ 5.1** όταν η απευθείας επιβολή του φορτίου στο έδαφος (πορεία $\alpha \rightarrow \delta$) προκαλεί μεγάλες καθιζήσεις ή και θραύση η μηχανική συμπεριφορά αυτού μπορεί να βελτιωθεί με προφόρτιση (πορεία $\alpha \rightarrow \beta \rightarrow \gamma \rightarrow \delta$).

5.3.1 ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΟΦΟΡΤΙΣΗΣ

Με βάση το διάγραμμα φόρτισης – αποφόρτισης – επαναφόρτισης που φαίνεται στο **ΣΧΗΜΑ 5.2** ενός εδαφικού στοιχείου αποδεικνύεται ότι:

• Κατά την απευθείας επιβολή του φορτίου (πορεία $\alpha \rightarrow \beta$) ισχύουν τα εξής:

$$\Delta e^{I} = e_{a} - e_{\beta},$$

$$OCR = \frac{\sigma'_{vo}}{\sigma'_{vo}} = 1.00,$$

$$c_{u}^{I} \approx (0.15 \div 0.30) \times \sigma'_{vo},$$

 Κατά την επιβολή του φορτίου μετά την προφόρτιση (πορεία γ→δ) ισχύουν τα εξής:

$$\Delta e^{II} = e_{\gamma} - e_{\delta} \approx e_{\gamma} - e_{\beta} (<<\Delta e^{I}),$$
$$OCR = \frac{(\sigma'_{\nu o} + \Delta \sigma'_{\nu})}{\sigma'_{\nu o}} (>> 1.00).$$

$$c_{u}^{II} \approx (0.15 \div 0.30) \times (\sigma'_{\nu o} + \Delta \sigma'_{\nu}) \approx c_{u}^{I} + (0.15 \div 0.30) \times \Delta \sigma'_{\nu} (>> c_{u}^{\mid})$$

ΣΧΗΜΑ 5.2 Διάγραμμα φόρτισης – παραμόρφωσης εδαφικού στοιχείου

Δηλαδή η προφόρτιση έχει διπλή επίδραση στη μηχανική συμπεριφορά του εδάφους, αφού μειώνει την ενδοσιμότητά του (Δe^{II}<<Δe^I) και παράλληλα αυξάνει τη διατμητική του αντοχή (c_u^{II}>>c_u^I). Έτσι τα κυριότερα αποτελέσματα της προφόρτισης στην κατασκευή ενός έργου είναι:

- Η μείωση των καθιζήσεων που θα προκληθούν από την κατασκευή λόγω μείωσης της συμπιεστότητας του εδάφους και
- Η αύξηση της φέρουσας ικανότητας της θεμελίωσης λόγω αύξησης της διατμητικής αντοχής του εδάφους.

Δευτερευόντως για κορεσμένους αργίλους μειώνεται δραστικά και ο χρόνος που απαιτείται για την ολοκλήρωση των καθιζήσεων που οφείλονται στο έργο αλλά όχι στην προφόρτιση, αφού ο συντελεστής στερεοποίησης για αποφόρτιση - επαναφόρτιση c_{v,U-R} είναι σημαντικά μεγαλύτερος από τον συντελεστή στερεοποίησης για αρχική φόρτιση c_{v,L}.

5.3.2 ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΦΟΡΤΙΣΗΣ

Κατά τον σχεδιασμό της προφόρτισης η τάση p που θα επιβληθεί επιλέγεται έτσι ώστε να ικανοποιούνται οι εξής προϋποθέσεις:

- Οι συνολικές καθιζήσεις του έργου μετά την αφαίρεση της προφόρτισης να μην υπερβαίνουν τις μέγιστες επιτρεπόμενες και
- Η διατμητική αντοχή σε διάφορες στάθμες του εδάφους να είναι μεγαλύτερη ή ίση προς την ελάχιστη επιθυμητή προκειμένου να αποφευχθούν φαινόμενα αστοχίας του.

Τα δύο ανωτέρω κριτήρια σχεδιασμού οδηγούν σε ανεξάρτητες εκτιμήσεις της επιθυμητής τάσης προφόρτισης p, από τις οποίες διαλέγουμε φυσικά τη μεγαλύτερη.

Επιπλέον, στην περίπτωση πολύ μαλακών κορεσμένων αργίλων είναι πιθανόν η απευθείας επιβολή της συνολικής προφόρτισης να προκαλέσει η ίδια θραύση του εδάφους. Τότε επιβάλουμε σταδιακή προφόρτιση αφήνοντας ικανό χρονικό διάστημα μεταξύ των διαδοχικών σταδίων για μηδενισμό των πιέσεων πόρων και αύξηση της αστράγγιστης διατμητικής αντοχής του εδάφους.

5.3.3 ΕΚΤΙΜΗΣΗ ΑΥΞΗΜΕΝΗΣ ΑΣΤΡΑΓΓΙΣΤΗΣ ΔΙΑΤΜΗΤΙΚΗΣ ΑΝΤΟΧΗΣ ΑΡΓΙΛΟΥ ΛΟΓΩ ΠΡΟΦΟΡΤΙΣΗΣ

Ο υπολογισμός της αυξημένης αστράγγιστης διατμητικής αντοχής της αργίλου λόγω προφόρτισης με τη μορφή επιχώματος τραπεζοειδούς διατομής γίνεται ως εξής:

- Χωρίζεται η στρώση της αργίλου σε υποστρώσεις μικρότερου πάχους και υπολογίζεται για κάθε μία από αυτές χωριστά η αυξημένη αστράγγιστη διατμητική αντοχή στο μέσο για τις εξής διακριτές ζώνες:
 - ο Κάτω από το κεντρικό τμήμα (στέψη) του τραπεζοειδούς επιχώματος,
 - ο Κάτω από την κεκλιμένη περιοχή (παρειά) του επιχώματος και
 - Έξω από τα όρια του επιχώματος, όπου θεωρείται ότι δεν επέρχεται καμία μεταβολή στην αστράγγιστη διατμητική αντοχή και
- Ο υπολογισμός της μέσης αυξημένης αστράγγιστης διατμητικής αντοχής για κάθε ζώνη γίνεται ως η μέση τιμή των τιμών των σημείων που βρίσκονται στα άκρα της ζώνης αυτής.

Για κάθε σημείο Α_i της αργιλικής στρώσης η πρόσθετη τάση λόγω της επιβολής του τραπεζοειδούς επιχώματος δίνεται από τη σχέση:

$$\Delta \sigma_z = (I_{\alpha \rho \iota \sigma \tau \varepsilon \rho \dot{\alpha}} + I_{\delta \varepsilon \xi \iota \dot{\alpha}}) \times \gamma_{\varepsilon \pi} \times h_{\varepsilon \pi}.$$

Η αυξημένη τιμή της αστράγγιστης διατμητικής αντοχής στο σημείο αυτό δίνεται από τη σχέση:

$$c_{u(\tau \varepsilon \lambda)}^{A_i} = c_u + ({}^{\mathcal{C}_u} / \sigma'_v) \times \Delta \sigma_z$$

Η αυξημένη τιμή της αστράγγιστης διατμητικής αντοχής στη ζώνη i μεταξύ δύο σημείων π.χ. Α1 και Α2 δίνεται από τη σχέση:

$$c_{u(\tau \varepsilon \lambda.)}^{i} = \left[c_{u(\tau \varepsilon \lambda.)}^{A1} + c_{u(\tau \varepsilon \lambda.)}^{A2}\right]/2$$

Όπου:

z :Το βάθος του σημείου A_i,

- Ι :Συντελεστής που εξαρτάται από το βάθος z του σημείου A_i και προσδιορίζεται από το νομογράφημα του Osterberg (ΣΧΗΜΑ 5.3),
- γ_{επ.} :Το ειδικό βάρος του επιχώματος,
- h_{επ.} :Το ύψος του επιχώματος,
- c_u :Η αστράγγιστη διατμητική αντοχή της απροφόρτιστης αργίλου στη στάθμη του σημείου A_i και
- σ΄_ν :Η κατακόρυφη ενεργός τάση στη στάθμη του σημείου A_i.

ΣΧΗΜΑ 5.3 Νομογράφημα του Osterberg για τον προσδιορισμό της πρόσθετης τάσης κάτω από σημεία επιχώματος τραπεζοειδούς διατομής

Μετά το τέλος της προφόρτισης και την απομάκρυνση του επιχώματος η παραμένουσα αυξημένη αστράγγιστη διατμητική αντοχή στο σημείο A_i δίνεται από τη σχέση:

$$c_{u(\tau \varepsilon \lambda)}^{A_i} = {\binom{c_u}{\sigma'_{\nu}}} \times \sigma'_{\nu} \times OCR^{0.80} = c_u \times OCR^{0.80}$$

Όπου $OCR = (\sigma'_{\nu} + \Delta \sigma_z) / \sigma'_{\nu}$.

Μετά το τέλος της προφόρτισης και την απομάκρυνση του επιχώματος η παραμένουσα αυξημένη αστράγγιστη διατμητική αντοχή στη ζώνη i μεταξύ των σημείων Α₁ και Α₂ δίνεται από τη σχέση:

$$c_{u(\tau \epsilon \lambda.)}^{i} = {\binom{c_{u}}{\sigma'_{v}}} \times \sigma'_{v} \times OCR_{i}^{0.80} = c_{u} \times OCR_{i}^{0.80}$$

Όπου $OCR_i = [\sigma'_{\nu} + (\Delta \sigma_z^{A1} + \Delta \sigma_z^{A2})/2]/\sigma'_{\nu}.$

5.4 ΣΤΕΡΕΟΠΟΙΗΣΗ ΛΟΓΩ ΠΡΟΦΟΡΤΙΣΗΣ

Κατά τη μονοδιάστατη συμπίεση των εδαφικών υλικών με το πέρασμα του χρόνου λαμβάνει χώρα το σύνθετο φαινόμενο της δημιουργίας υδατικής ροής διαμέσου των πόρων, η οποία προκαλεί μεταβολή του όγκου αυτών δηλαδή ογκομετρικές παραμορφώσεις του εδάφους και συνεπώς μεταβολές των ενεργών τάσεων αυτού. Το φαινόμενο αυτό ονομάζεται στερεοποίηση.

Ως βαθμό στερεοποίησης U ορίζουμε το μέγεθος:

$$U = \delta(t) / \delta(\infty)$$

Όπου:

- δ(t) : Υποχώρηση της επιφάνειας της αργίλου σε χρόνο t και
- δ(∞) : Τελική υποχώρηση της επιφάνειας της αργίλου στο τέλος της στερεοποίησης.

Ο συντελεστής T_v, ο οποίος εκφράζει το χρόνο με αδιάστατη μορφή ονομάζεται *χρονικός παράγοντας*, καθορίζει τη χρονική κλίμακα εξέλιξης του φαινομένου της στερεοποίησης και δίνεται από τη σχέση:

$$T_v = \frac{c_v \times t}{H^2}$$

Όπου:

- c_v :Συντελεστής στερεοποίησης,
- t :Χρονική διάρκεια της στερεοποίησης και
- Η :Το μήκος στράγγισης της αργίλου, το οποίο προσδιορίζεται ανάλογα με την περίπτωση ως εξής:
 - Διπλή στράγγιση: Στην περίπτωση που και τα δύο όρια της συμπιεστής στρώσης επιτρέπουν ελεύθερη στράγγιση λαμβάνεται ίσο με το μισό του πάχους αυτής και
 - Απλή στράγγιση: Στην περίπτωση που το ένα όριο επιτρέπει
 ελεύθερη στράγγιση, αλλά το άλλο όριο είναι αδιαπέρατο
 λαμβάνεται ίσο με ολόκληρο το πάχος αυτής.

Ο χρονικός παράγοντας Τ_ν της στερεοποίησης συσχετίζεται με το βαθμό στερεοποίησης U_v σύμφωνα με το **ΣΧΗΜΑ 5.4** ή τον **ΠΙΝΑΚΑ 5.1**.

ΣΧΗΜΑ 5.4 Διάγραμμα βαθμού κατακόρυφης στερεοποίησης σε σχέση με τον αντίστοιχο χρονικό παράγοντα

U _v	T _v	U _v	T _v
0	0	0,6	0,287
0,1	0,01	0,7	0,403
0,2	0,031	0,8	0,567
0,3	0,071	0,9	0,848
0,4	0,126	0,93	1
0,5	0,197	1	8

ΠΙΝΑΚΑΣ 5.1 Χαρακτηριστικές τιμές βαθμού κατακόρυφης στερεοποίησης σε σχέση με τον αντίστοιχο χρονικό παράγοντα Η στερεοποίηση θεωρείται ότι έχει ολοκληρωθεί όταν U_ν≈93% οπότε T≈1. Έτσι ο απαιτούμενος για την ολοκλήρωση της στερεοποίησης χρόνος υπολογίζεται από τη σχέση:

$$t=H^2/c_v$$

Γενικά για εδάφη με μεγάλη διαπερατότητα όπως τα αμμώδη και με μεγάλο μέτρο συμπίεσης – πυκνή δομή το φαινόμενο της στερεοποίησης εξελίσσεται ραγδαία και η εκτόνωση των υπερπιέσεων πόρων συντελείται σε πολύ μικρό χρονικό διάστημα. Αντίθετα σε εδάφη με μικρή διαπερατότητα όπως οι μαλακές άργιλοι και μικρό μέτρο συμπίεσης η στερεοποίηση διαρκεί μεγάλο χρονικό διάστημα.

5.5 ΣΤΡΑΓΓΙΣΤΗΡΙΑ

Για την επιτάχυνση της στερεοποίησης πριν την επιβολή της προφόρτισης εμπηγνύονται πλαστικά στραγγιστήρια στην άργιλο (**ΣΧΗΜΑ 5.5**) σε καννάβους διαφόρων σχημάτων. Έτσι δημιουργούνται κατακόρυφες επιφάνειες στράγγισης με αποτέλεσμα πέραν της κατακόρυφης απλής ή διπλής στράγγισης να αναπτύσσεται λόγω διαφοράς υδραυλικού φορτίου και οριζόντια - ακτινική στράγγιση, η οποία εξελίσσεται τόσο ταχύτερα όσο μικρότερη είναι η πλευρά του καννάβου, δηλαδή όσο περισσότερο αυξάνει η υδραυλική κλίση που προκαλεί την πλευρική ροή.

ΣΧΗΜΑ 5.5 Διάταξη πλαστικών στραγγιστηρίων σε άργιλο κάτω από επίχωμα προφόρτισης

Για συνδυασμένη οριζόντια και κατακόρυφη στράγγιση ο βαθμός στερεοποίησης υπολογίζεται από τη σχέση:

$$\mathbf{1} - \boldsymbol{U} = (\mathbf{1} - \boldsymbol{U}_{v}) \times (\mathbf{1} - \boldsymbol{U}_{r})$$

Όπου:

- U_v :Βαθμός στερεοποίησης για κατακόρυφη στράγγιση και
- U_r : Βαθμός στερεοποίησης για οριζόντια στράγγιση.

Για τον προσδιορισμό ενός δικτύου στραγγιστηρίων θα πρέπει να προσδιοριστούν οι εξής παράμετροι όπως φαίνονται και στο **ΣΧΗΜΑ 5.6**:

- Η ακτίνα του στραγγιστηρίου R_d και
- Η αξονική απόσταση μεταξύ των στραγγιστηρίων S.

Ο υπολογισμός των δύο αυτών παραμέτρων γίνεται επαναληπτικά με δοκιμές έχοντας ως δεδομένα τον απαιτούμενο χρόνο ολοκλήρωσης της στερεοποίησης, το πάχος του συμπιεστού στρώματος και τους συντελεστές στερεοποίησης c_v και c_r.

ΣΧΗΜΑ 5.6 Απεικόνιση κυκλικής επιφάνειας επιρροής στραγγιστηρίου για διάφορα είδη καννάβων

Σύμφωνα με τη θεωρία Barron της οριζόντιας στερεοποίησης κάθε στραγγιστήριο εξυπηρετεί μια κυκλική επιφάνεια διαμέτρου D_e με εμβαδόν ίσο με το εμβαδόν της επιφάνειας που πραγματικά αυτό εξυπηρετεί. Συνεπώς η ακτίνα επιρροής του στραγγιστηρίου R_e εξαρτάται από το είδος του χρησιμοποιούμενου καννάβου. Συγκεκριμένα:

- Για ισόπλευρο τριγωνικό κάνναβο πλευράς S είναι $D_e = 2 \times R_e = 1,05 \times S$ και
- Για τετραγωνικό κάνναβο πλευράς S είναι $D_e = 2 \times R_e = 1,13 \times S$.

Επίσης ισχύει:

$$c_r \cong ({}^{K_r}/_{K_v}) \times c_v$$

όπου:

- c_v :Συντελεστής κατακόρυφης στερεοποίησης,
- cr :Συντελεστής οριζόντιας στερεοποίησης,
- Κ_ν :Συντελεστής κατακόρυφης διαπερατότητας και
- K_r :Συντελεστής οριζόντιας διαπερατότητας.

Ο λόγος $K_r/_{K_v}$ εξαρτάται από την επιτόπου ανισοτροπία του εδάφους όπως φαίνεται στον ΠΙΝΑΚΑ 5.2:

ΤΥΠΟΣ ΑΡΓΙΛΟΥ	$K_{r/K_{v}}$
Ομοιογενείς αποθέσεις	1,0÷1,5
Προσχωσιγενείς αργιλικές αποθέσεις με διακοπτόμενες	2,0÷4,0
ενστρώσεις και φακούς μεγαλύτερης διαπερατότητας	
Στρωσιγενείς άργιλοι και άλλες αποθέσεις με ενδιάμεσες	3,0÷15,0
(πρακτικά συνεχείς) στρώσεις διαπερατού υλικού	

ΠΙΝΑΚΑΣ 5.2 Συνήθεις τιμές του λόγου K_r/K_r

Κατά την κατασκευή – τοποθέτηση των στραγγιστηρίων προκαλείται αναμόχλευση και επαναστερεοποίηση του εδάφους περιμετρικά του στραγγιστηρίου σε ακτίνα διπλάσια έως τριπλάσια της ακτίνας του. Η περιοχή αυτή ονομάζεται ζώνη αναμόχλευσης (Smear zone) είναι πρακτικά ομοιογενής και γι αυτήν ισχύουν τα εξής:

$$K_{r,s}/K_v = 1, 0 \div 1, 5,$$

 $c_{r,s}/c_v = 1, 0 \div 1, 5$

Όπου:

- c_{r,s} :Συντελεστής οριζόντιας στερεοποίησης στη ζώνη αναμόχλευσης και
- $K_{r,s}$:Συντελεστής οριζόντιας διαπερατότητας στη ζώνη αναμόχλευσης.

Φυσικά η τοπική αυτή μείωση του c_r σε c_{r,s} σε σχέση με το περιβάλλον φυσικό έδαφος αυξάνει αντίστοιχα τον χρόνο που απαιτείται για την ολοκλήρωση της οριζόντιας στερεοποίησης. Λαμβάνοντας λοιπόν υπόψη την ύπαρξη της ζώνης αναμόχλευσης ο μέσος βαθμός οριζόντιας στερεοποίησης U_r υπολογίζεται ως εξής:

$$U_r = 1 - e^{-8 \times T_r/A}$$

Όπου:

 Τ_r :Χρονικός παράγοντας για οριζόντια στράγγιση που υπολογίζεται από τη σχέση:

$$T_r = c_r \times t / D_{\rho}^{2\prime}$$

Α :Παράμετρος που υπολογίζεται από τη σχέση:

$$A = ln \binom{R_e}{R_d} - \frac{3}{4} + \frac{K_r}{K_{r,s}} - 1 \times ln \, \binom{R_s}{R_d},$$

• R_s :Η ακτίνα της ζώνης αναμόχλευσης για την οποία ${R_s}/{R_d} = 2 \div 3$.

Εάν δεν λάβουμε υπόψη την επίδραση της ύπαρξης ζώνης αναμόχλευσης ο υπολογισμός του μέσου βαθμού οριζόντιας ακτινικής στερεοποίησης U_r γίνεται σύμφωνα με το **ΣΧΗΜΑ 5.7** συναρτήσει του χρονικού παράγοντα T_r της στερεοποίησης και του συντελεστή $n = \frac{R_e}{R_d}$.

ΣΧΗΜΑ 5.7 Διάγραμμα βαθμού οριζόντιας στερεοποίησης σε σχέση με τον αντίστοιχο χρονικό παράγοντα

5.6 ΓΕΝΙΚΑ ΓΙΑ ΤΟΥΣ ΧΑΛΙΚΟΠΑΣΣΑΛΟΥΣ

5.6.1 ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ

Με την κατασκευή χαλικοπασσάλων σε μαλακής έως μέσης συνεκτικότητας άργιλο πριν τη φόρτιση του εδάφους επιτυγχάνονται τα εξής:

- Και μόνο με την κατασκευή και χωρίς αυτοί να φορτιστούν επέρχεται βελτίωση της διατμητικής αντοχής του εδάφους διότι από καθαρώς συνεκτική στρώση με c_u≠0 και φ_u=0 μετατρέπεται σε μικτό ισοδύναμο έδαφος με c*≠0 και φ*≠0,
- Μετά την ολοκλήρωση της στερεοποίησης και λόγω του ομοιόμορφα επιβεβλημένου επιφανειακού φορτίου σ₀ της κατασκευής επέρχεται ανακατανομή φορτίου, ώστε ο χαλικοπάσσαλος να αναλαμβάνει πίεση κεφαλής σ_{χαλ.}>σ_o, ενώ το περιβάλλον έδαφος σ_{εδ.} = σ_{χαλ.}/n < σ_o. Αυτό οφείλεται αφενός στη διαφορά των μέτρων ελαστικότητας E_c, E_s του χαλικοπασσάλου και της αργίλου αντίστοιχα και αφετέρου στο συμβιβαστό των παραμορφώσεων των δύο υλικών. Σαν αποτέλεσμα:
 - ο Αυξάνεται η αστράγγιστη διατμητική αντοχή της κανονικά στερεοποιημένης αργίλου NC κατά $\Delta c_u = {\sigma'}_{\varepsilon\delta.} \times (\frac{c_u}{p})_{NC}$, όπου ο λόγος $(\frac{c_u}{p})_{NC}$ κυμαίνεται μεταξύ 0,20 και 0,25 και μπορεί να εκτιμηθεί συναρτήσει του μέσου δείκτη πλαστιμότητας PI της αργίλου με διάφορους τρόπους, όπως από την εμπειρική σχέση του Skempton $(\frac{c_u}{p})_{NC} = 0,11 + 0,0037 \times (PI)\%$ και

- Λόγω μεγάλης αύξησης της αναλαμβανόμενης κατακόρυφης ορθής τάσης σε μία διατομή του χαλικοπασσάλου αυξάνεται σημαντικά και η αντοχή τριβής σε οριζόντιο επίπεδο. Έτσι, η συνολική αντίσταση τριβής οριζόντιας επιφάνειας σε βάθος z αυξάνεται εξίσου όπως και οι ισοδύναμες παράμετροι αντοχής c_{ισοδ.}, φ_{ισοδ.} του μικτού ισοδύναμου εδάφους που δημιουργείται. Τελικά οι συνθήκες των ελέγχων φέρουσας ικανότητας με κύκλους ολίσθησης βελτιώνονται αισθητά,
- Λόγω αυτής της ανακατανομής του φορτίου και του συμβιβαστού των παραμορφώσεων στο μικτό ισοδύναμο έδαφος η τελική καθίζησή του είναι μειωμένη σε σχέση με εκείνη του μη ενισχυμένου, η οποία οφείλεται σε ομοιόμορφη πίεση σ₀ με συντελεστή γ =
 ^Pενισχ. P^Δμη ενισχ. =
 ^σεδ. σ₀
- Λόγω της πολύ μεγάλης διαπερατότητας του χαλικοπάσσαλου σε σχέση με εκείνη του μη ενισχυμένου εδάφους ο χαλικοπάσσαλος λειτουργεί ως στραγγιστήριο μεγάλης διαμέτρου δημιουργώντας γύρω του και συνθήκες οριζόντιας στερεοποίησης πέραν της κατακόρυφης και επιταχύνοντας τη διαδικασία της στερεοποίησης και των καθιζήσεων.

5.6.2 ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΑ – ΜΗΧΑΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΚΤΥΟΥ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ

Ανάλογα με την κοκκομετρική διαβάθμιση του υλικού του περιβάλλοντος εδάφους όπως φαίνεται στο **ΣΧΗΜΑ 5.10** οι χαλικοπάσσαλοι κατασκευάζονται με δύο μεθόδους:

Βαθειά δονητική αντικατάσταση (Vibroreplacement): Εφαρμόζεται κυρίως σε υλικά λεπτόκοκκα όπως οι ιλείς (σε ποσοστό μεγαλύτερο του 20% για αμμοϊλείς) ή οι άργιλοι όπως φαίνεται στο ΣΧΗΜΑ 5.8 και

ΣΧΗΜΑ 5.8 Διαδικασία μεθόδου βαθειάς δονητικής αντικατάστασης

Βαθειά δονητική συμπύκνωση (Vibrocompaction): Εφαρμόζεται κυρίως σε υλικά περισσότερο χονδρόκοκκα όπως οι άμμοι, οι αμμοϊλείς (σε ποσοστό μικρότερο του 20%) ή οι χάλικες όπως φαίνεται στο ΣΧΗΜΑ 5.9.α, β,γ.

ΣΧΗΜΑ 5.9.α Διαδικασία μεθόδου βαθειάς δονητικής συμπύκνωσης

rearranged to a denser state of compaction. The vibrator is raised

incrementally as compaction is achieved.

and form an annular gap around the

vibrator.

ΣΧΗΜΑ 5.9.β Διάταξη μεθόδου βαθειάς δονητικής συμπύκνωσης

ΣΧΗΜΑ 5.9.ν Κεφαλή διάταξης μεθόδου βαθειάς δονητικής συμπύκνωσης

ΣΧΗΜΑ 5.10 Μέθοδοι κατασκευής χαλικοπασσάλων ανάλογα με την κοκκομετρική διαβάθμιση του εδαφικού υλικού

Τα δίκτυα χαλικοπασσάλων κατασκευάζονται είτε σε τετραγωνικό κάνναβο πλευράς S είτε σε κάνναβο ισόπλευρων τριγώνων πλευράς S όπως φαίνεται στο **ΣΧΗΜΑ 5.11** ως εξής:

- Στην πρώτη περίπτωση η εξυπηρετούμενη από κάθε χαλικοπάσσαλο τετραγωνική επιφάνεια $A = S^2$ εξισώνεται με ισοδύναμη κυκλική διαμέτρου $D_e = 2 \times R_e = \frac{2 \times S}{\sqrt{\pi}} = 1,13 \times S$ και
- Στη δεύτερη περίπτωση η εξυπηρετούμενη από κάθε χαλικοπάσσαλο επιφάνεια είναι κανονικό εξάγωνο με ύψος τριγώνου $0.5 \times S$ και βάση $2 \times \left(\frac{s}{2} \times tan30^{\circ}\right) = 0.577 \times S$, οπότε $A_{ε\xi} = 6 \times 0.5 \times 0.5 \times 0.577 \times S^{2} =$

0,8655 × S². Αυτή εξισώνεται με ισοδύναμη κυκλική επιφάνεια διαμέτρου $D_e = 2 \times R_e = \sqrt{\frac{0,8655 \times 4}{\pi}} \times S = 1,05 \times S.$

ΣΧΗΜΑ 5.11 Τετραγωνική και τριγωνική διάταξη καννάβου χαλικοπασσάλων

Από τα παραπάνω και όπως φαίνεται στο **ΣΧΗΜΑ 5.12** ορίζεται ο συντελεστής αντικατάστασης η τιμή του οποίου κυμαίνεται από 0 έως 1 και δίνεται από τη σχέση:

$$a_s = \frac{A_{\chi\alpha\lambda}}{A_e} = 4 \times \frac{A_{\chi\alpha\lambda}}{\pi \times D_e^2}$$

Όπου:

- Για τετραγωνικό κάνναβο $a_s = 0,78 \times (\frac{D_{\chi \alpha \lambda}}{s})^2$ και
- Για τριγωνικό κάνναβο $a_s = 0.91 \times (\frac{D_{\chi \alpha \lambda}}{s})^2$.

Επίσης ορίζεται ο συντελεστής συγκέντρωσης τάσεων η τιμή του οποίου δίνεται από τη σχέση:

$$n = \frac{\sigma_{\chi\alpha\lambda}}{\sigma_{\varepsilon\delta}} = \frac{\frac{1}{\gamma} - (1 - a_s)}{\alpha_s}$$

Όπου:

•
$$\begin{cases} \rho = \frac{\sigma_{\varepsilon\delta.}}{E_{\varepsilon\delta.}} \times H, \\ \rho_o = \frac{\sigma_o}{E_{\varepsilon\delta.}} \times H, \\ \frac{\sigma_{\varepsilon\delta.}}{\sigma_o} = \frac{1}{n \times \alpha_s + (1 - \alpha_s)}, \\ \gamma = \frac{\rho}{\rho_o} = \frac{1}{n \times \alpha_s + (1 - \alpha_s)} \end{cases}$$
 Kau

 γ: Συντελεστής μείωσης των καθιζήσεων του ενισχυμένου εδάφους σχετικά με του μη ενισχυμένου όπως ορίσθηκε παραπάνω.

ΣΧΗΜΑ 5.12 Διαστασιολόγηση καννάβου χαλικοπασσάλων

Μια άνω οριακή τιμή του παραπάνω συντελεστή είναι η $n = \frac{E_{\chi \alpha \lambda}}{E_{\varepsilon \delta}}$ και προκύπτει από τη θεώρηση μηδενικής πλευρικής παραμόρφωσης τόσο για τον χαλικοπάσσαλο όσο και για το περιβάλλον έδαφος. Στην περίπτωση αυτή οι τιμές των καθιζήσεων χαλικοπασσάλου και εδάφους, καθώς και του συμβιβαστού των παραμορφώσεων οδηγούν στις εξής σχέσεις:

$$\frac{\sigma_{0}}{E_{s\varepsilon\delta.}} \times H = \rho_{\varepsilon\delta.} = \rho_{\chi\alpha\lambda.} = \frac{\sigma_{\chi\alpha\lambda.}}{E_{s\chi\alpha\lambda.}} \times H,$$

$$n = \frac{\sigma_{\chi\alpha\lambda.}}{\sigma_{\varepsilon\delta.}} = \frac{E_{s\chi\alpha\lambda.}}{E_{s\varepsilon\delta.}} = \frac{1,35 \times E_{\chi\alpha\lambda.}}{1,35 \times E_{\varepsilon\delta.}} = \frac{E_{\chi\alpha\lambda.}}{E_{\varepsilon\delta.}}$$

Η θεώρηση αυτή οδηγεί συνήθως σε μεγάλες τιμές σ_{χαλ.} αλλά και σε μικρές καθιζήσεις. Επειδή όμως επιβαρύνεται τόσο η κεφαλή του χαλικοπασσάλου ώστε να προκύπτει ανεπαρκής συντελεστής ασφαλείας έναντι θραύσης κρίνεται σκόπιμο να εφαρμόζεται μόνο στην περίπτωση άκαμπτης πλάκας έδρασης και χαλικοπασσάλων εδραζόμενων στο υποκείμενο της αργίλου - αρκετά ανθεκτικότερο - στρώμα.

Όσον αφορά τις τιμές των τελικών τάσεων σ_{χαλ.} και σ_{εδ.} μετά τη στερεοποίηση και την ανακατανομή των τάσεων αυτές προκύπτουν συναρτήσει της αρχικής ομοιόμορφης τάσης, του λόγου αντικατάστασης και του λόγου συγκέντρωσης τάσεων ως εξής:

$$\sigma_{o} \times \frac{\pi \times D_{e}^{2}}{4} = \sigma_{\chi\alpha\lambda.} \times \frac{\pi \times D_{\chi\alpha\lambda.}^{2}}{4} + \sigma_{\varepsilon\delta.} \times \frac{\pi \times (D_{e}^{2} - D_{\chi\alpha\lambda.}^{2})}{4} \Rightarrow$$
$$\sigma_{o} = \sigma_{\chi\alpha\lambda.} \times (\frac{D_{\chi\alpha\lambda.}}{D_{e}})^{2} + \sigma_{\varepsilon\delta.} \times [1 - (\frac{D_{\chi\alpha\lambda.}}{D_{e}})^{2}] \Rightarrow$$
$$\overline{\sigma_{o} = \sigma_{\chi\alpha\lambda.} \times \alpha_{s} + \sigma_{\varepsilon\delta.} \times (1 - \alpha_{s})}$$

Λαμβάνοντας επιπλέον υπόψη ότι $\sigma_{\chi \alpha \lambda} = n \times \sigma_{\epsilon \delta}$ τελικά προκύπτουν τα εξής:

$$\sigma_{\varepsilon\delta.} = \frac{1}{n \times a_s + (1 - a_s)} \times \sigma_o,$$
$$\sigma_{\chi\alpha\lambda.} = \frac{n}{n \times a_s + (1 - a_s)} \times \sigma_o$$

5.6.3 EKTIMHEH TOY EYNTEREETH BERTIMENT – ENIEXYEHE β =1/ γ kata priebe

Ο Priebe υποθέτοντας αρχικά ότι το υλικό του χαλικοπάσσαλου διατέμνεται, ενώ το περιβάλλον έδαφος παραμορφώνεται ελαστικά, καθώς και ότι η διαδικασία κατασκευής των χαλικοπασσάλων παραμόρφωσε το έδαφος σε τέτοιο βαθμό ώστε η αντίσταση του να προσομοιάζει εκείνη του ρευστού (συντελεστής πλευρικών πιέσεων K=1) και υιοθετώντας τη συνήθη τιμή (για αργίλους μετά τη στερεοποίηση και για άμμους εξ αρχής) του λόγου Poisson v=1/3 έδωσε το νομογράφημα που φαίνεται στο <u>ΣΧΗΜΑ 5.13</u> βάσει του οποίου προκύπτει ο συντελεστής βελτίωσης – ενίσχυσης β=1/γ του εδάφους συναρτήσει του αντίστροφου του λόγου αντικατάστασης $\frac{1}{\alpha_s} = \frac{A}{A_{\chi\alpha\lambda}}$ και της γωνίας τριβής του υλικού του χαλικοπασσάλου $φ_{\chi\alpha\lambda}$.

ΣΧΗΜΑ 5.13 Συντελεστής βελτίωσης – ενίσχυσης του εδάφους β=1/γ κατά Priebe

Θα πρέπει να σημειωθεί ότι στο νομογράφημα δε λαμβάνεται υπόψη η συμπιεστότητα του ίδιου του υλικού του χαλικοπασσάλου δηλαδή θα έπρεπε σε περίπτωση ολοκληρωτικής αντικατάστασης του εδάφους από αυτό το υλικό $(\alpha_s = \frac{A}{A_{\chi\alpha\lambda}} = 1)$ ο συντελεστής β να απειριζόταν ανεξάρτητα της τιμής της φ_{χαλ}. Για να ληφθεί υπόψη και η συμπιεστότητα του ίδιου του υλικού του χαλικοπασσάλου επαυξάνεται ο λόγος $\frac{A}{A_{\chi\alpha\lambda}}$ κατά μία τιμή $\Delta(\frac{A}{A_{\chi\alpha\lambda}})$ και μετά εφαρμόζεται το νομογράφημα για την τελική τιμή $(\frac{A}{A_{\chi\alpha\lambda}})_{\tau \in \lambda} = (\frac{A}{A_{\chi\alpha\lambda}})_o + \Delta(\frac{A}{A_{\chi\alpha\lambda}})$. Η πρόσθετη τιμή $\Delta(\frac{A}{A_{\chi\alpha\lambda}})$ παρέχεται και αυτή κατά Priebe από νομογράφημα όπως φαίνεται στο **ΣΧΗΜΑ 5.14** συναρτήσει του λόγου των μέτρων μονοδιάστατης συμπίεσης χαλικοπάσσαλου - εδάφους $\frac{D_{\chi\alpha\lambda}}{D_{\varepsilon\delta}}$ (άρα και των αντίστοιχων μέτρων Young) και της γωνίας τριβής του υλικού του χαλικοπασσάλου φ_{χαλ}.

ΣΧΗΜΑ 5.14 Διόρθωση λόγου $A/_{A_{\gamma \alpha \lambda}}$ χαλικοπασσάλου κατά Priebe

5.7 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΑΝΤΟΧΗΣ ΜΙΚΤΟΥ ΙΣΟΔΥΝΑΜΟΥ ΕΔΑΦΟΥΣ

5.7.1 ΑΜΕΣΩΣ ΜΕΤΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΤΩΝ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ

Για την περίπτωση του τέλους της κατασκευής των χαλικοπασσάλων οι τιμές c* και φ* του μικτού ισοδύναμου εδάφους προκύπτουν κατά Di Maggio συναρτήσει του συντελεστή αντικατάστασης και της γωνίας διατμητικής αντοχής του υλικού του χαλικοπασσάλου σύμφωνα με τις εξής σχέσεις:

$$c^* = (1 - a_s) \times c_w$$

 $tan \varphi^* = a_s \times tan \varphi_{\chi \alpha \lambda}$,
 $\gamma^* = \alpha_s \times \gamma_{\chi \alpha \lambda} + (1 - \alpha_s) \times \gamma_{\varepsilon \delta}$.

5.7.2 ΜΕΤΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΗΣ ΣΤΕΡΕΟΠΟΙΗΣΗΣ ΚΑΙ ΤΗΝ ΑΝΑΚΑΤΑΝΟΜΗ ΤΩΝ ΤΑΣΕΩΝ ΚΑΤΑ ΤΟ ΠΡΟΣΟΜΟΙΩΜΑ ΣΥΝΟΧΗΣ – ΤΡΙΒΗΣ

Σύμφωνα με το ΣΧΗΜΑ 5.15 ορίζονται τα εξής μεγέθη:

- σ₀: Μέση πρόσθετη πίεση στην κεφαλή των χαλικοπασσάλων,
- σ_{χαλ..}:Πίεση από ανακατανομή στο χαλικοπάσσαλο,

- σ_{εδ.}: Πίεση από ανακατανομή στο έδαφος,
- γ_{χαλ}: Το φαινόμενο βάρος του χαλικοπασσάλου και
- γ_{εδ.}: Το φαινόμενο βάρος του εδάφους.

ΣΧΗΜΑ 5.15 Διαστασιολόγηση χαλικοπασσάλου

Για μια τυχαία στάθμη σε βάθος z από την κεφαλή των χαλικοπασσάλων ισχύουν τα εξής:

- Πριν την επιβολή της πρόσθετης πίεσης:
 - ο Αρχική μέση ενεργός τάση $\gamma'_m \times z$,
 - \circ Αρχική μέση ενεργός τάση στο χαλικοπάσσαλο $\gamma'_{\gamma \alpha \lambda} imes z$ και
 - ο Αρχική μέση ενεργός τάση στο έδαφος $\gamma'_{\epsilon\delta} \times z$,
- Λόγω της επιβολής της πρόσθετης πίεσης:
 - Πρόσθετη μέση πίεση σ_o,
 - Πρόσθετη μέση πίεση στο χαλικοπάσσαλο σ_{χαλ.,z} και
 - Πρόσθετη μέση πίεση στο έδαφος σ_{εδ.,z},
- Μετά την επιβολή της πρόσθετης πίεσης τελική πίεση:
 - \circ Τελική μέση πίεση $\gamma'_m \times z + \sigma_o$,
 - ο Τελική μέση πίεση στο χαλικοπάσσαλο $\gamma'_{\chi \alpha \lambda.} imes z + \sigma_{\chi \alpha \lambda., z}$ και
 - \circ Τελική μέση πίεση στο έδαφος $\gamma'_{\varepsilon\delta} \times z + \sigma_{\varepsilon\delta,z}$.

Από την εξίσωση ισορροπίας είναι $\sigma_o \times A = \sigma_{\chi \alpha \lambda.} \times A_{\chi \alpha \lambda.} + \sigma_{\varepsilon \delta.} \times (A - A_{\chi \alpha \lambda.})$ και από την εξίσωση συμβιβαστού των παραμορφώσεων με παραδοχή μηδενικών πλευρικών παραμορφώσεων $\frac{\sigma_{\chi \alpha \lambda.}}{E_{\chi \alpha \lambda.}} = \frac{\sigma_{\varepsilon \delta.}}{E_{\varepsilon \delta.}} \Rightarrow n = \frac{\sigma_{\chi \alpha \lambda.}}{\sigma_{\varepsilon \delta.}} = \frac{E_{\chi \alpha \lambda.}}{E_{\varepsilon \delta.}}$, οπότε τελικά ισχύει:

$$\sigma_{o} = \frac{A_{\chi\alpha\lambda}}{A} \times (n \times \sigma_{\varepsilon\delta}) + \left(1 - \frac{A_{\chi\alpha\lambda}}{A}\right) \times \sigma_{\varepsilon\delta} \Rightarrow$$
$$\sigma_{o} = \alpha_{s} \times n \times \sigma_{\varepsilon\delta} + (1 - \alpha_{s}) \times \sigma_{\varepsilon\delta} \Rightarrow$$
$$\sigma_{\varepsilon\delta} = \frac{\sigma_{o}}{\alpha_{s} \times n + (1 - \alpha_{s})} \Rightarrow$$
$$\sigma_{\varepsilon\delta} = \frac{4 \times a \times b \times \sigma_{o}}{n \times \pi \times D_{\chi\alpha\lambda}^{2} + 4 \times a \times b - \pi \times D_{\chi\alpha\lambda}^{2}}$$

Η συνολική αντοχή του μικτού ισοδύναμου εδάφους είναι:

- Πριν τη φόρτιση $T = c_{u,z} \times A$ και
- Metá th dóption $T = T_c + T_{\varphi} = c_{u,z} \times (1 a_s) \times A + (\gamma'_{\chi\alpha\lambda} \times z + \sigma_{\chi\alpha\lambda,z}) \times (a_s A) \times tan\varphi_{\chi\alpha\lambda}.$

Μετά τη φόρτιση όμως ισχύει $T = c_{\iota \sigma o \delta} \times A + [(\gamma'_m \times z + \sigma_o) \times A] \times tan \varphi_{\iota \sigma o \delta}.$

Έτσι προκύπτουν οι ισοδύναμες παράμετροι αντοχής από τις εξής σχέσεις:

$$c_{\iota\sigma o\delta} = c_{u,z} \times (1-a_s),$$

$$\varphi_{\iota\sigma o\delta.} = tan^{-1} \left[\frac{a_s \times \left(\gamma'_{\chi\alpha\lambda.} \times z + \sigma_{\chi\alpha\lambda.,z} \right)}{\left(\gamma'_m \times z + \sigma_o \right)} \times tan\varphi_{\chi\alpha\lambda.} \right]$$

Μετά τη στερεοποίηση συντελούνται μεταβολές της αστράγγιστης διατμητικής αντοχής και της συνοχής του μικτού ισοδύναμου εδάφους ανάλογα με το είδος της αργίλου σύμφωνα με τα εξής:

Για κανονικά στερεοποιημένες αργίλους NC με γνωστό λόγο ^{c_u}/_p ισχύουν οι εξής σχέσεις:

$$\Delta c_{u,z} = \left(\frac{c_u}{p}\right) \times \sigma_{\varepsilon\delta.},$$
$$c_{u,z}^{\tau\varepsilon\lambda.} = c_{u,z}^{\alpha\rho\chi.} + \Delta c_{u,z} = c_{u,z}^{\alpha\rho\chi.} + \left(\frac{c_u}{p}\right) \times \sigma_{\varepsilon\delta.},$$

$$c_{\iota\sigma o\delta.}^{\tau \epsilon \lambda.} = (1 - \alpha_s) \times c_{u,z}^{\tau \epsilon \lambda.} = (1 - \alpha_s) \times c_{u,z}^{\alpha \rho \chi.} + (1 - \alpha_s) \times + (\frac{c_u}{p}) \times \sigma_{\epsilon \delta.}$$

Για προστερεοποιημένες αργίλους ΟC με γνωστό OCR_{αρχ.} ισχύουν οι εξής σχέσεις:

$$\begin{aligned} OCR_{\tau\varepsilon\lambda.} &= \frac{OCR_{\alpha\rho\chi.} \times (\gamma'_{m} \times z)}{(\gamma'_{m} \times z) + \sigma_{\varepsilon\delta.}}, \\ c_{u,z}^{\tau\varepsilon\lambda.} &= \left[\left(\gamma'_{m} \times z \right) + \sigma_{\varepsilon\delta.} \right] \times OCR_{\tau\varepsilon\lambda.}^{0,8} \times \left(\frac{c_{u}}{p} \right)_{NC} \Rightarrow \\ \overline{c_{u,z}^{\tau\varepsilon\lambda.} = \left[\left(\gamma'_{m} \times z \right) + \sigma_{\varepsilon\delta.} \right] \times \left(\frac{OCR_{\alpha\rho\chi.} \times (\gamma'_{m} \times z)}{(\gamma'_{m} \times z) + \sigma_{\varepsilon\delta.}} \right)^{0,8} \times \left(\frac{c_{u}}{p} \right)_{NC}} \right] > \\ c_{\iota\sigma\delta.}^{\tau\varepsilon\lambda.} &= (1 - \alpha_{s}) \times c_{u,z}^{\tau\varepsilon\lambda.} = (1 - \alpha_{s}) \times \left[(\gamma'_{m} \times z) + \sigma_{\varepsilon\delta.} \right] \times \left(\frac{OCR_{\alpha\rho\chi.} \times (\gamma'_{m} \times z)}{(\gamma'_{m} \times z) + \sigma_{\varepsilon\delta.}} \right] \times \left(\frac{OCR_{\alpha\rho\chi.} \times (\gamma'_{m} \times z)}{(\gamma'_{m} \times z) + \sigma_{\varepsilon\delta.}} \right)^{0,8} \times \left(\frac{c_{u}}{p} \right)_{NC} \end{aligned}$$

5.8 ΕΛΕΓΧΟΣ ΕΝΑΝΤΙ ΑΣΤΟΧΙΑΣ – ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΧΑΛΙΚΟΠΑΣΣΑΛΟΥ

Η μορφή αστοχίας του μεμονωμένου χαλικοπασσάλου εξαρτάται από πολλούς παράγοντες μερικοί από τους οποίους είναι οι εξής:

- Γεωμετρία,
- Υλικό κατασκευής και
- Μηχανικά χαρακτηριστικά του εδάφους.

Σαν αποτέλεσμα δεν είναι εκ των προτέρων γνωστή. Στην πραγματικότητα όμως η αστοχία που επέρχεται έχει τη μορφή της αστοχίας η οποία εκδηλώνεται πρώτη κατά τη σταδιακή επιβολή του φορτίου. Για το λόγο αυτό πρέπει να εξετάζονται όλες οι πιθανές μορφές αστοχίας του χαλικοπασσάλου και να επιλέγεται εκείνη που οδηγεί τελικά στο μικρότερο φορτίο αστοχίας.

Πρέπει, λοιπόν, να ελεγχθεί κατά πόσο η τελική τάση στην κεφαλή του χαλικοπασσάλου σ_{χαλ.} υπερβαίνει ή όχι τη μέγιστη επιτρεπόμενη τιμή σ_{επ.} = $\frac{\sigma_{vop.}}{F_s}$, όπου σ_{vop.} η οριακή πίεση κεφαλής χαλικοπασσάλου για την οποία επέρχεται αστοχία και F_s ο επιθυμητός συντελεστής ασφαλείας (συνήθως μεταξύ των τιμών 1,3 και 2,5). Για την εκτίμηση της σ_{vop.} επιλέγεται το κατάλληλο από τα επόμενα προσομοίωμα με κριτήριο τον τρόπο αστοχίας του.

5.8.1 ΕΛΕΓΧΟΣ ΕΝΑΝΤΙ ΑΣΤΟΧΙΑΣ ΜΕ ΠΡΟΣΟΜΟΙΩΜΑ ΠΑΣΣΑΛΟΥ

Σύμφωνα με το προσομοίωμα αυτό ο χαλικοπάσσαλος αστοχεί και το οριακό φορτίο κεφαλής του προκύπτει όπως φαίνεται στο **ΣΧΗΜΑ 5.16** με υπέρβαση της

αντοχής αιχμής και της συνολικής αντοχής πλευρικής τριβής του σύμφωνα με τις εξής σχέσεις:

$$Q_{u} = \left(\frac{\pi \times D_{\chi \alpha \lambda}^{2}}{4}\right) \times q_{u} = \left(\pi \times D_{\chi \alpha \lambda} \times L \times f_{s}\right) + \left(\frac{\pi \times D_{\chi \alpha \lambda}^{2}}{4}\right) \times q_{bu}$$
$$\sigma_{\nu o \rho.} = \frac{Q_{u}}{\left(\frac{\pi \times D_{\chi \alpha \lambda}^{2}}{4}\right)} = \frac{\pi \times D_{\chi \alpha \lambda} \times L}{\left(\frac{\pi \times D_{\chi \alpha \lambda}^{2}}{4}\right)} \times f_{s} + q_{bu} = \frac{4 \times L}{D_{\chi \alpha \lambda}} \times \left(a \times c_{u,L/2}\right) + 9 \times c_{u,L}$$

Όπου α: Συντελεστής συνάφειας.

ΣΧΗΜΑ 5.16 Προσομοίωμα πασσάλου για έλεγχο έναντι αστοχίας

5.8.2 ΕΛΕΓΧΟΣ ΕΝΑΝΤΙ ΑΣΤΟΧΙΑΣ ΜΕ ΠΡΟΣΟΜΟΙΩΜΑ ΤΡΙΑΞΟΝΙΚΟΥ ΔΟΚΙΜΙΟΥ

Σύμφωνα με το προσομοίωμα αυτό λόγω πλευρικής εξάπλωσης - πέραν του οριακού ελαστικού φορτίου σ_{ελ.} - σε βάθος διπλάσιο έως τριπλάσιο της διαμέτρου του χαλικοπασσάλου κάτω από την κεφαλή του αυτός αστοχεί με τρόπο ανάλογο του τριαξονικού δοκιμίου όπως φαίνεται στο **ΣΧΗΜΑ 5.17**, αλλά με αυξανόμενη - και όχι σταθερή όπως στο τριαξονικό δοκίμιο - μέση πλευρική πίεση σ'_{h,1,5Dχαλ.} από μία αρχική τιμή ίση με την αρχική ενεργό πίεση σ'_{ho,1,5Dχαλ.} = $K_o \times \sigma'_{vo,1,5D\chia\lambda}$. έως μία τελική τιμή ίση με την παθητική πίεση του εδάφους σε βάθος κάτω από την κεφαλή αυτού ίσο με μιάμιση φορά τη διάμετρό του. Έτσι, η μέγιστη τιμή σ'_{vop.} κατά την αστοχία του δίνεται από τη σχέση:

$$\sigma'_{vo\rho} = K_{p\chi\alpha\lambda} \times \sigma'_{hmax,1,5D\chi\alpha\lambda} = tan^2(45 + \frac{\varphi_{\chi\alpha\lambda}}{2}) \times \sigma'_{hp,1,5D\chi\alpha\lambda}$$

Προφανώς το προσομοίωμα του τριαξονικού δοκιμίου οδηγεί σε δυσμενέστερη τιμή σ'_{νορ.} τόσο στους χαλικοπασσάλους αιχμής (τους εδραζόμενους σε ανθεκτικότερο σχηματισμό για τον οποίο ισχύει $q_{bu} \gg 9 \times c_{u,L}$), όσο και στους αιωρούμενους χαλικοπασσάλους σχετικώς μεγάλου μήκους.

ΣΧΗΜΑ 5.17 Προσομοίωμα τριαξονικού δοκιμίου για έλεγχο έναντι αστοχίας

Όσον αφορά την τιμή της παθητικής ώθησης στην ίδια στάθμη κάτω από την κεφαλή του χαλικοπάσσαλου υπάρχουν οι εξής θεωρήσεις:

- Θεώρηση απειρομήκους πετάσματος κατά Greenwood σύμφωνα με την οποία είναι συντηρητικά $\sigma'_{hp,1,5D\chi\alpha\lambda} = \sigma'_{vo,1,5D\chi\alpha\lambda} + 2 \times c_{u,1,5D\chi\alpha\lambda}$ και
- Θεώρηση διευρυνόμενης κοιλότητας δοκιμής πρεσσιομέτρου κατά Hughes – Withers σύμφωνα με την οποία $\sigma'_{hp,1,5D\chi\alpha\lambda} = \sigma'_{ho,1,5D\chi\alpha\lambda} + 4 \times c_{u,1,5D\chi\alpha\lambda} \Rightarrow$ $\sigma'_{hp,1,5D\chi\alpha\lambda} = K_o \times \sigma'_{vo,1,5D\chi\alpha\lambda} + 4 \times c_{u,1,5D\chi\alpha\lambda}.$

Αποτελέσματα ερευνητών παρουσιάζονται με αδιαστατοποιημένους συντελεστές στο διάγραμμα της γωνίας τριβής του χαλικοπασσάλου συναρτήσει του λόγου $\frac{\sigma'_{vo\rho.}}{c_u}$ όπως φαίνεται στο **ΣΧΗΜΑ 5.18**.

γωνία τριβής φχαλ.

ΣΧΗΜΑ 5.18 Διάγραμμα γωνίας τριβής χαλικοπασσάλου συναρτήσει του λόγου $\frac{\sigma'_{vop.}}{c_u}$

5.8.3 ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΜΕ ΠΡΟΣΟΜΟΙΩΜΑ ΠΑΣΣΑΛΟΥ

Από τις σχέσεις της θεωρίας ελαστικότητας προκύπτουν:

$$p = \frac{Q_{\kappa \varepsilon \varphi.}}{E_{\varepsilon \delta.} \times L} \times I_{p},$$
$$Q_{\kappa \varepsilon \varphi.} \leq Q_{\varepsilon \pi.} = \frac{P_{ull}}{F}$$

Όπου I_p: Συντελεστής που εξαρτάται από το λόγο $\frac{L}{D_{\chi \alpha \lambda.}}$ και από την ακαμψία $K = \frac{E_{\chi \alpha \lambda.}}{E_{\epsilon \delta.}}$ του μικτού ισοδύναμου εδάφους και δίνεται από διάγραμμα όπως φαίνεται στο **ΣΧΗΜΑ 5.19**.

ΣΧΗΜΑ 5.19 Διάγραμμα συντελεστή I_p συναρτήσει του λόγου $\frac{L}{D_{\chi \alpha \lambda.}}$ και της ακαμψίας $K = \frac{E_{\chi \alpha \lambda.}}{E_{\epsilon \delta.}}$ του μικτού ισοδύναμου εδάφους

5.8.4 ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΜΕ ΠΡΟΣΟΜΟΙΩΜΑ ΤΡΙΑΞΟΝΙΚΟΥ ΔΟΚΙΜΙΟΥ

Από τις σχέσεις της θεωρίας ελαστικότητας προκύπτουν:

$$p = \frac{Q_{\kappa\varepsilon\varphi.} - 2 \times v_{\chi\alpha\lambda.} \times \Delta \sigma'_h}{E_{\chi\alpha\lambda.}} \times [(2 \div 3)D_{\chi\alpha\lambda.}],$$
$$Q_{\kappa\varepsilon\varphi.} \leq Q_{\varepsilon\pi.} = \frac{\sigma_{\nu o \rho.}}{F}$$

Συνήθως για μικρές πιέσεις $Q_{\kappa\epsilon\phi}$ κάτω από το οριακό ελαστικό φορτίο $\sigma_{\epsilon\lambda}$ η εικόνα από πλευράς πλευρικών παραμορφώσεων δεν απέχει πολύ από την ουδέτερη κατάσταση οπότε μπορεί να θεωρηθεί ότι ισχύει $\Delta\sigma'_h = \sigma'_{h_0} - \sigma'_{h_0} \cong 0$ και $p = \frac{Q_{\kappa\epsilon\phi}}{E_{\chi\alpha\lambda}} \times [(2 \div 3)D_{\chi\alpha\lambda}].$

6. ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΦΟΡΤΙΣΗΣ ΜΕ ΚΥΚΛΟΥΣ ΟΛΙΣΘΗΣΗΣ

6.1 ΓΕΝΙΚΑ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΕΥΣΤΑΘΕΙΑΣ ΜΕ ΚΥΚΛΟΥΣ ΟΛΙΣΘΗΣΗΣ

Ο έλεγχος ευστάθειας με κύκλους ολίσθησης γίνεται αποκλειστικά με τη μέθοδο διαίρεσης της ολισθαίνουσας μάζας σε λωρίδες - όπως θεμελιώθηκε αρχικά από τον Petterson - με παραδοχή όμως κυκλικής επιφάνειας ολίσθησης για τις εξής ειδικές περιπτώσεις εδαφών:

- Για εδάφη με c'≠0 και φ'≠0 των οποίων η αντοχή του μεταβάλλεται με το βάθος,
- Για μη ομογενή εδάφη που αποτελούνται από διαφορετικές στρώσεις,
- Για μεταβλητές υδραυλικές συνθήκες (πίεση πόρων) εντός του εδάφους και
- Για μη ομαλή γεωμετρική διαμόρφωση της επιφάνειας του πρανούς.

Σύμφωνα με τη μέθοδο αυτή το έδαφος χωρίζεται με κατακόρυφες γραμμές σε λωρίδες πλάτους $b_i = 0, 1 \times R$ ή και μικρότερου για μεγαλύτερη ακρίβεια και η ευστάθεια του πρανούς προκύπτει ως άθροισμα των ευσταθειών των επιμέρους λωρίδων του. Στη γενική περίπτωση πρανούς με υδατική ροή μια τυχαία λωρίδα i από αυτές (n στο σύνολό τους) ισορροπεί όπως φαίνεται στο **ΣΧΗΜΑ 6.1** υπό την επίδραση των εξής δυνάμεων:

- Του βάρους της G,
- Της ορθής δύναμης Ν' που ασκείται σε αυτήν από το έδαφος κατά μήκος του τόξου της (i', i'+1),
- Της δύναμης συνοχής C που ασκείται σε αυτήν λόγω της τριβής F κατά μήκος του τόξου της (i', i'+1),
- Των οριζόντιων και κατακόρυφων δυνάμεων αντίστοιχα Ε_i, Ε_{i+1}, Χ_i και Χ_{i+1}
 που ασκούνται σε αυτήν από τις παρακείμενές της λωρίδες στις κατακόρυφες παρειές της και
- Των ορθών δυνάμεων U, U_i και U_{i'+1} που ασκούνται σε αυτήν λόγω των πιέσεων πόρων u κατά μήκος του τόξου της (i', i'+1) και στις κατακόρυφες παρειές της αντίστοιχα. Οι δυνάμεις αυτές θεωρούνται γνωστές κατά μέτρο, ενώ η διεύθυνσή τους είναι κάθετη στις επιφάνειες όπου αυτές ασκούνται στο γνωστό σημείο εφαρμογής τους.

Για κάθε τυχαία λωρίδα αλλά και για όλες τις λωρίδες μαζί άγνωστα θεωρούνται τα εξής μεγέθη:

- Η ορθή δύναμη Ν' (η στο σύνολό τους),
- Η απόσταση x_N του σημείου εφαρμογής της ορθής δύναμης N' από τις κατακόρυφες παρειές της λωρίδας (n στο σύνολό τους),

- Οι οριζόντιες δυνάμεις Ε (η στο σύνολό τους),
- Οι σχέσεις μεταξύ των οριζόντιων και κατακόρυφων δυνάμεων αντίστοιχα Ε και Χ δηλαδή οι κατακόρυφες δυνάμεις Χ (n στο σύνολό τους),
- Οι αποστάσεις z_E των σημείων εφαρμογής των οριζόντιων δυνάμεων E_i από την επιφάνεια ολίσθησης της λωρίδας (n στο σύνολό τους) και
- Ο συντελεστής ασφάλειας έναντι ολίσθησης ν του πρανούς που συσχετίζει τη συνολική ορθή δύναμη Ν' με τη συνολική τριβή F που ασκούνται σε αυτό κατά μήκος της επιφάνειας ολίσθησής του.

Έτσι, για τον έλεγχο ευστάθειας του πρανούς ο συνολικός αριθμός των αγνώστων είναι τελικά $A = 5 \times n - 3 + 1 = 5 \times n - 2$, ενώ οι διατιθέμενες εξισώσεις ισορροπίας είναι $E = 3 \times n$ κατά τα γνωστά. Άρα, το σύστημα που μελετάμε είναι $A - E = 5 \times n - 2 - 3 \times n = 2 \times n - 2$ φορές υπερστατικό.

ΣΧΗΜΑ 6.1 Γενική περίπτωση ισορροπίας τυχαίας λωρίδας πρανούς με υδατική ροή

6.2 ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΜΕ ΚΥΚΛΟΥΣ ΟΛΙΣΘΗΣΗΣ ΚΑΤΑ BISHOP

Κατά Bishop το σύστημα που μελετάμε διαφοροποιείται από την προηγούμενη μέθοδο μόνο ως προς τον τρόπο άρσης της στατικής αοριστίας του. Αντί να αγνοείται τελείως η επιρροή των οριζόντιων και κατακόρυφων δυνάμεων αντίστοιχα E_i, E_{i+1}, X_i και X_{i+1} που ασκούνται σε μια τυχαία λωρίδα του πρανούς από τις παρακείμενες στις κατακόρυφες παρειές της, εξετάζεται η ισορροπία της κατά την κατακόρυφο μόνο οπότε και διαγράφονται τελείως οι E_i, E_{i+1}. Έτσι, για τα αντίστοιχα με την προηγούμενη μέθοδο μεγέθη όπως φαίνεται στο **ΣΧΗΜΑ 6.2** προκύπτουν τα εξής:

$$\begin{aligned} G_{i} + (X_{i} - X_{i+1}) - N_{i} \times cosa_{i} - S_{i} \times sina_{i} = \mathbf{0} \Rightarrow \\ \hline G_{i} + (X_{i} - X_{i+1}) = N_{i} \times cosa_{i} + S_{i} \times sina_{i} \end{bmatrix} (1), \\ S_{i} = \frac{T_{i}}{v} \times I_{i} (2), \\ T_{i} = c'_{i} + (\sigma_{i} - u_{i}) \times tan\varphi'_{i} (3) (kará Coulomb), \\ (1), (2), (3) \Rightarrow \\ N_{i} \times cosa_{i} + \frac{c'_{i+}(N_{i} - U_{i}) \times tan\varphi'_{i}}{v} \times I_{i} \times sina_{i} = G_{i} + (X_{i} - X_{i+1}) \Rightarrow \\ N_{i} \times cosa_{i} + \frac{c'_{i+}(x_{i} \times sina_{i})}{v} = G_{i} + (X_{i} - X_{i+1}) \Rightarrow \\ N_{i} \times cosa_{i} + \frac{c'_{i+}(X_{i} - U_{i}) \times tan\varphi'_{i} \times sina_{i}}{v} = G_{i} + (X_{i} - X_{i+1}) \Rightarrow \\ N_{i} \times (cosa_{i} + \frac{tan\varphi'_{i} \times sina_{i}}{v}) = G_{i} + (X_{i} - X_{i+1}) - \frac{c'_{i} \times I_{i} \times sina_{i}}{v} = G_{i} + (X_{i} - X_{i+1}) \Rightarrow \\ \hline N_{i} \times \left(cosa_{i} + \frac{tan\varphi'_{i} \times sina_{i}}{v} \right) = G_{i} + (X_{i} - X_{i+1}) - \frac{c'_{i} \times I_{i} \times sina_{i}}{v} + \frac{U_{i} \times tan\varphi'_{i} \times I_{i} \times sina_{i}}{v} \Rightarrow \\ \hline N_{i} = \frac{G_{i} + (X_{i} - X_{i+1}) - \frac{c'_{i} \times I_{i} \times sina_{i}}{v} + \frac{U_{i} \times tan\varphi'_{i} \times I_{i} \times sina_{i}}{v} + \frac{U_{i} \times tan\varphi'_{i} \times I_{i} \times sina_{i}}{v} = G_{i} + (X_{i} - X_{i+1}) \Rightarrow \\ \hline N'_{i} = \frac{G_{i} + (X_{i} - X_{i+1}) - \frac{c'_{i} \times I_{i} \times sina_{i}}{v} = U_{i} \times I_{i} \times Sina_{i}} = P'_{i} \end{bmatrix} (5), \\ C_{i} = \frac{C_{i} + (X_{i} - X_{i+1}) - \frac{c'_{i} \times I_{i} \times sina_{i}}{v}}{v} = F'_{i} \end{bmatrix} (5), \\ C_{i} = \frac{C_{i} + (X_{i} - X_{i+1}) - \frac{c'_{i} \times I_{i} \times sina_{i}}{v}}{v} = F'_{i} \end{bmatrix} (5), \\ C_{i} = \frac{C_{i} + (X_{i} - X_{i+1}) - \frac{c'_{i} \times I_{i} \times sina_{i}}{v}}{v} = F'_{i} \end{bmatrix} (5), \\ C_{i} = \frac{C_{i} \times X_{i}}{cosa_{i}} = D_{i} \times seca_{i}} (7), \\ (5), (6), (7) \Rightarrow \\ v = \frac{\rho ont \xi_{i} \varepsilon vord d\theta \varepsilon tag_{i}}{\rho ont \xi a vart \rho ont f_{i}} \Rightarrow \\ v = \frac{\sum [c'_{i} \times I_{i} + (P_{i} - U_{i} \times I_{i}) \times tan\varphi'_{i}]}{\sum (G_{i} \times sina_{i})} \Rightarrow \\ v = \frac{\sum [c'_{i} \times I_{i} + P'_{i} \times tan\varphi'_{i})}{\sum (G_{i} \times sina_{i})} \Rightarrow \end{cases}$$

$$\nu = \frac{1}{\sum (G_i \times sina_i)} \times \sum \left[c'_i \times I_i + \frac{G_i + (X_i - X_{i+1}) - I_i \times (\frac{c'_i \times sina_i}{\nu} + U_i \times cosa_i)}{cosa_i + tan\varphi'_i \times \frac{I_i}{\nu} \times sina_i} \times tan\varphi'_i\right] \Rightarrow$$

$$\nu = \frac{1}{\sum (G_i \times sin\alpha_i)} \times \sum [c'_i \times b_i \times sec\alpha_i + \frac{G_i - U_i \times b_i + (X_i - X_{i+1}) - \frac{c'_i \times I_i \times sin\alpha_i}{v}}{cos\alpha_i \times (I_i + tan\varphi'_i \times \frac{I_i}{v} \times tan\alpha_i)} \times tan\varphi'_i] \Rightarrow$$

$$\nu = \frac{1}{\sum (G_i \times sina_i)} \times \sum [c'_i \times b_i + \frac{G_i - U_i \times b_i + (X_i - X_{i+1}) - \frac{c'_i \times I_i \times sina_i}{\nu}}{cosa_i \times (I_i + tan\varphi'_i \times \frac{I_i}{\nu} \times tan\alpha_i)} \times tan\varphi'_i] + seca_i \Rightarrow$$

$$\nu = \frac{1}{\sum (G_i \times sina_i)} \times \sum [c'_i \times b_i + [G_i - U_i \times b_i + (X_i - X_{i+1})] \times tan\varphi'_i] \times \frac{seca_i}{1 + \frac{tan\varphi'_i \times tan\alpha_i}{\nu}}$$

ΣΧΗΜΑ 6.2 Ισορροπία τυχαίας λωρίδας πρανούς κατά Bishop

Στα παραπάνω γωνία α_i είναι αυτή που σχηματίζεται από τη χορδή της επιφάνειας ολίσθησης της λωρίδας και την οριζόντιο, ενώ η προσήμανσή της γίνεται όπως φαίνεται στο **ΣΧΗΜΑ 6.3**.

ΣΧΗΜΑ 6.3 Προσήμανση γωνίας α_i κατά Bishop

Τα παραπάνω αποτελούν τον έλεγχο ευστάθειας του πρανούς με την ακριβή μέθοδο Bishop, η οποία επιλύεται με διαδοχικές προσεγγίσεις - μια διαδικασία αρκετά χρονοβόρα που παρουσιάζεται μόνο λόγω ερευνητικού ενδιαφέροντος. Με την παραδοχή ότι ο συντελεστής ασφαλείας έναντι ολίσθησης ν του πρανούς

επηρεάζεται ελάχιστα από τις κατακόρυφες δυνάμεις X_i και X_{i+1} που ασκούνται σε μια τυχαία λωρίδα του πρανούς από τις παρακείμενές της λωρίδες στις κατακόρυφες παρειές της η διαφορά X_i-X_{i+1} μπορεί να θεωρηθεί μηδενική κι έτσι προκύπτει η *απλοποιημένη μέθοδος Bishop* για την οποία ισχύουν τα εξής:

$$\nu = \frac{I}{\sum (G_i \times sina_i)} \times \sum [c'_i \times b_i + (G_i - U_i \times b_i) \times tan\varphi'_i] \times \frac{seca_i}{1 + \frac{tan\varphi'_i \times tan\alpha_i}{\nu}}$$

Επειδή η σχέση αυτή είναι πεπλεγμένη ως προς τον συντελεστή ασφαλείας έναντι ολίσθησης ν του πρανούς υποτίθεται αρχικά για αυτόν μία τιμή ν₁ από την οποία προκύπτει μία δεύτερη τιμή του ν₂. Εάν αυτή διαφέρει σημαντικά από την πρώτη η διαδικασία επαναλαμβάνεται εκ νέου μέχρι να επέλθει σύγκλιση όπως φαίνεται στον <u>ΠΙΝΑΚΑ 6.1</u>. Συνήθως αρκούν δύο μόνο επαναλήψεις της διαδικασίας αυτής, η οποία συγκλίνει σχετικά γρήγορα.

ibucs Jupitos i	a.	ż	w,	ť		Wi = 141 = (6)	· • • • • • • • • • • • • • • • • • • •	'n	W, - #, b. 0) = (4) (2) = (9)	W 4, b.) × ces;	(11)+(1)+(1)+(1)	· 1640,	"D-\$-3	1 + 5945, 5 5941		(cl) x (čl)- (ol)	
۹۲. (I)	(2)	(1)	{ 4)	(5)	(6)	(7)	(6)	9	(10)	(1))		037	(14)	. "ı {15a)	*, (158)	¥1 (1640)	ν ₂ (26\$1
						5(7)										<u>17</u> 217 - YJ	2141 - Y

ΠΙΝΑΚΑΣ 6.1 Διαδικασία σύγκλισης συντελεστή ασφαλείας έναντι ολίσθησης ν πρανούς κατά Bishop

Στην παραπάνω διαδικασία η παράσταση $m_a = cosa_i \times \left[1 + \frac{tan\varphi'_i \times tan\alpha_i}{\nu}\right]$ που εμφανίζεται στην στήλη 15 δίνεται από νομογράφημα όπως φαίνεται στο **ΣΧΗΜΑ** 6.4.

ΣΧΗΜΑ 6.4 Νομογράφημα παράστασης m_α κατά Bishop

Κατά την αναζήτηση με το πρόγραμμα Larix του δυσμενέστερου κύκλου ολίσθησης του πρανούς στον οποίο αντιστοιχεί ο ελάχιστος συντελεστής ασφαλείας του ορίζεται αρχικά ο κάνναβος των κέντρων τους και το βήμα αύξησης των ακτινών τους. Τα κέντρα για τα οποία ο συντελεστής ασφαλείας έχει σχετικά μικρές τιμές ορίζουν μία κλειστή καμπύλη στην οποία εγκλωβίζεται αυτό του δυσμενέστερου κύκλου.

7. ΒΑΘΕΙΑ ΘΕΜΕΛΙΩΣΗ ΜΕ ΠΑΣΣΑΛΟΥΣ

7.1 ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΜΕ ΣΤΑΤΙΚΟΥΣ ΤΥΠΟΥΣ

Ο υπολογισμός της *φέρουσας ικανότητας* ενός μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση δίνεται από τη γενική σχέση:

$$Q_p = Q_b + \sum Q_s$$

Όπου:

- Q_p :Η φέρουσα ικανότητα του πασσάλου,
- Q_b :Η αντοχή αιχμής του πασσάλου και
- $\sum Q_s$:Η οριακή αντοχή λόγω πλευρικών τριβών του πασσάλου.

Αναλυτικά η παραπάνω σχέση γράφεται:

$$Q_p = f_b \times A_b + \sum f_s \times A_s$$

Όπου:

- f_b :Η ανά μονάδα επιφάνειας αντοχή αιχμής του πασσάλου,
- A_b :Η επιφάνεια της αιχμής του πασσάλου,
- f_s :Η ανά μονάδα επιφάνειας οριακή αντοχή λόγω πλευρικών τριβών του πασσάλου και
- A_s :Η παράπλευρη επιφάνεια του πασσάλου.

Οι πλέον διαδεδομένες μέθοδοι υπολογισμού της φέρουσας ικανότητας ενός μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση είναι οι εξής:

- Μέθοδοι βασιζόμενες σε μετρηθείσες ιδιότητες του εδάφους με χρήση στατικών τύπων για τη φέρουσας ικανότητά του,
- Εμπειρικές μέθοδοι βασιζόμενες σε αποτελέσματα επί τόπου δοκιμών (SPT, CPT, πρεσιομετρήσεις κ.λ.π.),
- Μέθοδοι βασιζόμενες σε παρατηρήσεις κατά τη διείσδυσή του με κρούση με χρήση δυναμικών τύπων,
- Μέθοδοι βασιζόμενες στην εξίσωση μετάδοσης κύματος κατά τη διείσδυσή του με κρούση και
- Εκτέλεση δοκιμαστικής φόρτισης πασσάλου.

7.1.1 ΜΟΝΑΔΙΑΙΑ ΑΝΤΟΧΉ ΑΙΧΜΗΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΚΑΤΑ TERZAGHI

Η ανά μονάδα επιφάνειας αντοχή αιχμής ενός μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση κατά Terzaghi όπως φαίνεται και στο **ΣΧΗΜΑ 7.1** υπολογίζεται από τις σχέσεις:

Για πάσσαλους κυκλικής διατομής διαμέτρου Β:

$$f_b = 1, 3 \times c \times N_c + \gamma_1 \times z \times N_q + 0, 3 \times \gamma_2 \times B \times N_\gamma$$

• Για πασσάλους τετραγωνικής διατομής πλευράς Β:

$$f_b = 1, 3 \times c \times N_c + \gamma_1 \times z \times N_q + 0, 4 \times \gamma_2 \times B \times N_\gamma$$

Όπου N_c, N_q, N_γ: Συντελεστές φέρουσας ικανότητας εξαρτώμενοι από τη γωνία εσωτερικής τριβής φ του εδάφους σύμφωνα με το **ΣΧΗΜΑ 7.2**.

ΣΧΗΜΑ 7.1 Διαστασιολόγηση πασσάλου υπό αξονική κατακόρυφη φόρτιση κατά Terzaghi

ΣΧΗΜΑ 7.2 Συντελεστές φέρουσας ικανότητας κατά Terzaghi

Είναι προφανές ότι ο τρίτος όρος των προηγούμενων σχέσεων που αναφέρεται στο πλάτος του ίδιου του πασσάλου είναι πρακτικά αμελητέος.

Στην περίπτωση καθαρά συνεκτικών εδαφών με $φ_u=0$ οι αντίστοιχες τιμές των συντελεστών φέρουσας ικανότητας είναι $N_c=5,7$, $N_q=1$ και $N_{\gamma}=0$. Ο Skempton όπως και ο Meyerhof όμως συνηγορούν ότι $N_c=9$ σε αυτή την περίπτωση. Έτσι, για καθαρά συνεκτικά εδάφη η ανά μονάδα επιφάνειας αντοχή αιχμής ενός μεμονωμένου πασσάλου (τόσο εμπηγνυόμενου όσο και έγχυτου) υπό αξονική κατακόρυφη φόρτιση κατά Terzaghi υπολογίζεται από τη σχέση:

$$f_b = 9 \times c_u + \gamma \times D$$

Η θεωρία αυτή λόγω των πολλών αβεβαιοτήτων κατά την εφαρμογή της θεωρείται προσεγγιστική, είναι κατάλληλη μόνο για μια αρχική διαστασιολόγηση του πασσάλου και δίνει τιμές φέρουσας ικανότητας που λειτουργούν υπέρ της ασφαλείας.

7.1.2 ΜΟΝΑΔΙΑΙΑ ΟΡΙΑΚΗ ΑΝΤΟΧΗ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΓΙΑ ΚΑΘΑΡΑ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ

Οι βασικοί τρόποι ανάλυσης που χρησιμοποιούνται για την εκτίμηση της αντοχής ενός μεμονωμένου πασσάλου λόγω πλευρικών τριβών είναι οι εξής:

- Ανάλυση σε αναφορά ολικών τάσεων και
- Ανάλυση σε αναφορά ενεργών τάσεων.

Η ανάλυση με αναφορά ολικών τάσεων έχει εφαρμογή μόνο για την περίπτωση βραχυχρόνιας ταχείας φόρτισης πασσάλου εντός κορεσμένου αργιλικού εδάφους και βασίζεται σε συσχέτιση της ανά μονάδα επιφάνειας οριακής αντοχής λόγω πλευρικών τριβών με την αστράγγιστη διατμητική αντοχή του εδάφους που εκφράζεται από τη σχέση:

$$f_s = a \times c_u$$

Όπου α: Συντελεστής συνάφειας μεταξύ πασσάλου και εδάφους οι τιμές του οποίου προκύπτουν εμπειρικά από αποτελέσματα δοκιμαστικών φορτίσεων πασσάλων και αδιατάρακτα δείγματα του περιβάλλοντος εδάφους ως προς την αστράγγιστη διατμητική αντοχή του και εξαρτάται από τους εξής παράγοντες:

• Τον τύπο του περιβάλλοντος εδάφους (NC ή OC),

- Το υλικό και τον τρόπο κατασκευής του πασσάλου και
- Τη γεωμετρία του πασσάλου.

Κατά την εκτίμηση του συντελεστή α είναι απαραίτητο να λαμβάνεται υπόψη ο τρόπος με τον οποίο προσδιορίστηκε η αστράγγιστη διατμητική αντοχή του εδάφους. Σύμφωνα με τον Burland μπορούν να γίνουν δεκτές περισσότερες εμπειρικές συσχετίσεις μεταξύ α και c_u αν αυτή προκύπτει από δοκιμές τριαξονικής θλίψης U–U σε δοκίμια διαμέτρου d=38 mm, από δοκιμές ανεμπόδιστης θλίψης, καθώς και από επιτόπου δοκιμές πτερυγίου για μαλακές αργίλους. Τότε ο συντελεστής α μειώνεται καθώς η αστράγγιστη διατμητική αντοχή c_u αυξάνεται όπως φαίνεται στο **ΣΧΗΜΑ 7.3**.

ΣΧΗΜΑ 7.3 Συσχέτιση συντελεστή α και αστράγγιστης διατμητικής αντοχής cu

Η ανάλυση με αναφορά ενεργών τάσεων έχει εφαρμογή μόνο για την περίπτωση μακροχρόνιας βραδείας φόρτισης πασσάλου οπότε και η ανά μονάδα επιφάνειας οριακή αντοχή λόγω πλευρικών τριβών εκφράζεται με τις σχέσεις:

$$f_{s} = \sigma'_{hs} \times tan\delta' + c'_{s},$$
$$f_{s} = \beta \times \sigma'_{v} \times \gamma$$

Όπου:

- $\sigma'_{hs} = K_s \times \sigma'_v \times \gamma$,
- K_s :Συντελεστής πλευρικών ωθήσεων,
- c[']_s :Η συνάφεια της διεπιφάνειας πασσάλου εδάφους που συνήθως λαμβάνεται ίση με μηδέν και
- β :Συντελεστής ενεργού πλευρικής τριβής κατά Burland που δίνεται από τη σχέση $\beta = K_s \times tan\delta'$ για κανονικά στερεοποιημένες αργίλους NC. Για εμπηγνυόμενους πασσάλους κυμαίνεται μεταξύ 0,25 και 0,30, ενώ για έγχυτους προσδιορίστηκε από δοκιμαστικές φορτίσεις της προστερεοποιημένης αργίλου του Λονδίνου κοντά στην τιμή 0,8. Σε περίπτωση προστερεοποιημένης αργίλου OC ο συντελεστής β συσχετίζεται με τον αντίστοιχο της κανονικά στερεοποιημένης NC με τη σχέση $\beta_{oc} = \beta_{NC} \times \sqrt{OCR}$.

Η σχέση $\beta = \frac{f_s}{\sigma' \times \gamma}$ ισχύει για όλο το μήκος του πασσάλου και είναι ανάλογης μορφής με την $\alpha = \frac{f_s}{C_r}$.

7.1.3 ΜΟΝΑΔΙΑΙΑ ΟΡΙΑΚΗ ΑΝΤΟΧΗ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΓΙΑ ΜΗ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ

Η αντοχή λόγω πλευρικών τριβών ενός μεμονωμένου πασσάλου εξαρτάται κυρίως από τη διατμητική αντοχή του εδάφους και από την τεχνολογία κατασκευής του. Με την επιβολή της φόρτισης η κινητοποίηση της αντοχής λόγω πλευρικών τριβών γίνεται αρχικά στο ανώτερο τμήμα του πασσάλου και παράλληλα με την αύξησή της καθ' όλο το ύψος του. Η πλήρης ανάπτυξη της αντοχής λόγω πλευρικών τριβών σε μη συνεκτικό έδαφος απαιτεί μια καθίζηση της τάξεως του 1 - 1.5 cm. Τότε η ανά μονάδα επιφάνειας οριακή αντοχή λόγω πλευρικών τριβών εκφράζεται με τη σχέση:

$$f_s = K \times \sigma'_{\nu o} \times tan\delta$$

Όπου:

 Κ :Συντελεστής πλευρικών ωθήσεων που για εμπηγνυόμενους πασσάλους δίνεται κατά Bromms σύμφωνα με τον ΠΙΝΑΚΑ 7.1,

ΕΙΔΟΣ ΠΑΣΣΑΛΟΥ	MIKPH I _D	ΜΕΓΑΛΗ Ι _D
Μικρής εκτοπίσεως πάσσαλοι	0,5	1,0
Κωνικοί πάσσαλοι	1,5	4,0
Μεγάλης εκτοπίσεως πάσσαλοι	1,0	2,0

ΠΙΝΑΚΑΣ 7.1 Συντελεστής πλευρικών ωθήσεων εμπηγνυόμενου πασσάλου κατά Bromms

δ : Η γωνία τριβής μεταξύ πασσάλου και εδάφους που για εμπηγνυόμενους πασσάλους δίνεται συναρτήσει της γωνίας τριβής του εδάφους σύμφωνα με τον ΠΙΝΑΚΑ 7.2.

ΥΛΙΚΟ ΠΑΣΣΑΛΟΥ	δ
Μεταλλικοί Πάσσαλοι	20 [°]
Πάσσαλοι Σκυροδέματος	0,5×ф
Ξύλινοι πάσσαλοι	0,7×ф

ΠΙΝΑΚΑΣ 7.2 Γωνία τριβής πασσάλου - εδάφους

Η εκτίμηση των πλευρικών τριβών στην περίπτωση έγχυτων πασσάλων είναι περίπλοκο πρόβλημα λόγω της χαλάρωσης που προκύπτει στο έδαφος κατά την διεργασία κατασκευής τους. Για διάμετρο μεγαλύτερη από Φ600 οι Touma - Reese συνιστούν K=0,7 και δ=φ βάσει αποτελεσμάτων από σχετικές δοκιμαστικές φορτίσεις πασσάλων.

7.1.4 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΤΡΕΠΟΜΕΝΟΥ ΦΟΡΤΙΟΥ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ

Το επιτρεπόμενο φορτίο ενός μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση εκφράζεται με τη σχέση:

$$P_{\varepsilon\pi.} = min \begin{cases} \frac{Q_b + \sum Q_S}{F}, \\ \frac{Q_b}{F_b} + \frac{\sum Q_S}{F_S}, \\ \sigma_{b\varepsilon\pi.} \times A_b \end{cases}$$

Όπου:

- Οι τιμές των συντελεστών ασφαλείας τόσο του συνολικού όσο και των επιμέρους – για άργιλο συνίστανται κατά Tomlinson να είναι ανάλογα με το είδος του πασσάλου οι εξής:
 - ο Για εμπηγνυόμενο πάσσαλο F=2,5, F_b =3 και F_s =1,5 και
 - ο Για έγχυτο πάσσαλο F=2, F_b =3 και F_s =1 και
- σ_{beπ}.: Η μέγιστη επιτρεπόμενη θλιπτική τάση για το σκυρόδεμα από το οποίο αποτελείται ο πάσσαλος ίση με 6000 kPa.

Επειδή όμως συνήθως οι πάσσαλοι δεν είναι μεμονωμένοι η αλληλεμπλοκή μεταξύ των βολβών των πλευρικών τριβών τους στη διάταξη της πασσαλομάδας (για συνήθεις μικρές αξονικές αποστάσεις μεταξύ τους) πρέπει να υπεισέρχεται ως παράγοντας στην παραπάνω σχέση, η οποία τώρα γράφεται:

$$P_{\varepsilon\pi.} = min \begin{cases} \frac{Q_b + E_f \times \sum Q_s}{F}, \\ \frac{Q_b}{F_b} + \frac{E_f \times \sum Q_s}{F_s}, \\ \sigma_{b\varepsilon\pi.} \times A_b \end{cases}$$

Όπου E_f: Η αποδοτικότητα της πασσαλομάδας δηλαδή ο λόγος της φέρουσας ικανότητας ανά πάσσαλό της προς αυτήν του ίδιου του μεμονωμένου πασσάλου. Για τη συνήθη αξονική απόσταση μεταξύ των πασσάλων της πασσαλομάδας κυμαίνεται μεταξύ των τιμών 0,7 και 0,8.

7.2 ΥΠΟΛΟΓΙΣΜΟΣ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ ΚΑΤΑ DIN4014

Η μέθοδος κατά DIN 4014 παρουσιάζει το πλεονέκτημα της κατά προσέγγιση κατασκευής ολόκληρης της καμπύλης φορτίου - καθιζήσεων για έναν μεμονωμένο πάσσαλο μεγάλης διαμέτρου (όπως για παράδειγμα ενός φρεατοπασσάλου διαμέτρου 0.60 m<D<3 m) με ελάχιστο μήκος διείσδυσης στο έδαφος $l_{min} = max(5 m, 5 \times D)$. Αν ο πάσσαλος διασχίζει πολλά στρώματα διείσδυσης μέχρι το φέρον όπου και εδράζεται τότε απαιτείται ελάχιστο μήκος διείσδυσης σε αυτό ίσο με 2,5 m και ελάχιστο πάχος αυτού κάτω από την αιχμή του πασσάλου ίσο με 3XB ή 1,5 m, ενώ αυτό είναι αμμώδες πρέπει επίσης να ισχύει q_c≥10 MPa.

7.2.1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΟΝΑΔΙΑΙΑΣ ΟΡΙΑΚΗΣ ΑΝΤΟΧΗΣ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ τ_{mf} ΓΙΑ ΜΗ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ (<u>ΠΙΝΑΚΑΣ 7.3</u>)

ΑΝΤΟΧΗ ΑΙΧΜΗΣ ΚΩΝΟΥ g _c (MPa)	ΜΟΝΑΔΙΑΙΑ ΟΡΙΑΚΗ ΑΝΤΟΧΗ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ	
	τ _{mf} (MPa)	
0	0	
5	0,04	
10	0,08	
≥15	0,12	

<u>ΠΙΝΑΚΑΣ 7.3</u>

7.2.2 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΟΝΑΔΙΑΙΑΣ ΟΡΙΑΚΗΣ ΑΝΤΟΧΗΣ ΛΟΓΩ ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ τ_{mf} ΓΙΑ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ (ΠΙΝΑΚΑΣ 7.4)

ΑΣΤΡΑΓΓΙΣΤΗ ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ	ΜΟΝΑΔΙΑΙΑ ΟΡΙΑΚΗ ΑΝΤΟΧΗ ΛΟΓΩ
c _u (MPa)	ΠΛΕΥΡΙΚΩΝ ΤΡΙΒΩΝ
	τ _{mf} (MPa)
0,025	0,025
0,1	0,04
≥0,2	0,06

<u>ΠΙΝΑΚΑΣ 7.4</u>

7.2.3 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΟΝΑΔΙΑΙΑΣ ΑΝΤΟΧΗΣ ΑΙΧΜΗΣ σ_g ΓΙΑ ΜΗ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ (ΠΙΝΑΚΑΣ 7.5)

ΑΝΗΓΜΕΝΗ	MONAΔΙΑΙΑ ΑΝΤΟΧΗ ΑΙΧΜΗΣ σ_g (MPa)			
ΚΑΘΙΖΗΣΗ	ΑΝΤΟΧΗ ΑΙΧΜΗΣ ΚΩΝΟΥ q _c (MPa)			
s/Β ή s/B _f	10	15	20	25
0,02	0,7	1,05	1,4	1,75
0,03	0,9	1,35	1,8	2,25
0,10(=s _g /B)	2	3	3,5	4

<u>ΠΙΝΑΚΑΣ 7.5</u>

7.2.4 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΟΝΑΔΙΑΙΑΣ ΑΝΤΟΧΗΣ ΑΙΧΜΗΣ σ_g ΓΙΑ ΣΥΝΕΚΤΙΚΑ ΕΔΑΦΗ (ΠΙΝΑΚΑΣ 7.6)

ΑΝΗΓΜΕΝΗ	ΜΟΝΑΔΙΑΙΑ ΑΝΤΟΧΗ ΑΙΧΜΗΣ σ _g (MPa)			
ΚΑΘΙΖΗΣΗ	ΑΣΤΡΑΓΓΙΣΤΗ ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ c _u (MPa)			
s/Β ή s/B _f	0,1	0,2		
0,02	0,35	0,9		
0,03	0,45	1,1		
0,10(=sg/B)	0,8	1,5		
*Για τα παραπάνω θεωρείται μια άνω τιμή στο όριο υδαρότητας του φέροντος στρώματος LL<80%.				
ΠΙΝΑΚΑΣ 7.6				

7.2.5 ΚΑΤΑΣΚΕΥΗ ΚΑΜΠΥΛΗΣ ΦΟΡΤΙΟΥ - ΚΑΘΙΖΗΣΕΩΝ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ

Η οριακή αντοχή λόγω πλευρικών τριβών μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση εκφράζεται με τη σχέση:

$$Q_{rs} = \sum A_{mi} \times \tau_{mfis}$$

Όπου:

- Α_{mi} :Η παράπλευρη επιφάνεια του πασσάλου που αντιστοιχεί στην στρώση i και
- τ_{mfis} :Η μοναδιαία οριακή αντοχή λόγω πλευρικών τριβών του πασσάλου που αντιστοιχεί στη στρώση i.

Η οριακή αντοχή λόγω πλευρικών τριβών λαμβάνει τη μέγιστη τιμή της $Q_{rg} = \sum A_{mi} \times \tau_{mfi}$ για τιμή καθίζησης που δίνεται από τη σχέση $s_{rg} = 0.5 \times Q_{rg}^{(MN)} + 0.5 \leq 3 \ cm$.

Είναι, λοιπόν, δυνατό πλέον να κατασκευαστεί η καμπύλη $Q_r - s$ του πασσάλου για την οποία ισχύουν τα εξής:

- Για τιμές καθίζησεις από 0 έως s_{rg} το φορτίο αυξάνεται γραμμικά από Q_{rs} =0 έως Q_{rg} και
- Για τιμές καθίζησεις μεγαλύτερες της s_{rg} το φορτίο παραμένει σταθερό στην τιμή $Q_{rg}.$

Η αντοχή αιχμής μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση εκφράζεται με τη σχέση:

$$Q_{gs} = A_p \times \sigma_{gs}$$

Όπου:

- Α_p: Η επιφάνεια της αιχμής του πασσάλου και
- σ_{gs}: Η μοναδιαία αντοχή αιχμής του πασσάλου.

Είναι, λοιπόν, δυνατό πλέον να κατασκευαστεί η καμπύλη Q_g – s του πασσάλου η οποία προκύπτει από την ένωση των εξής σημείων:

- $s=0\Rightarrow Q_g=0$
- s=s_{rg} \Rightarrow Q_{g,srg} (με γραμμική παρεμβολή)
- s=0,02×B⇒Q_{g,0,02×B}
- s=0,03×B⇒Q_{g,0,03×B}
- s=0,10×B \Rightarrow Q_{g,0,10×B}=Q_g

Είναι, λοιπόν, δυνατό πλέον να κατασκευαστεί και η καμπύλη Q_s – s του πασσάλου η οποία προκύπτει από την πρόσθεση των δύο προηγούμενων καμπυλών όπως φαίνεται στο **ΣΧΗΜΑ 7.4**, ενώ τελικά η *φέρουσα ικανότητά* του προκύπτει από τη σχέση:

$$\boldsymbol{Q} = \boldsymbol{Q}_{rg} + \boldsymbol{Q}_{g}$$

ΣΧΗΜΑ 7.4 Καμπύλη φορτίου – καθιζήσεων πασσάλου υπό αξονική κατακόρυφη φόρτιση

7.2.6 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΤΡΕΠΟΜΕΝΟΥ ΦΟΡΤΙΟΥ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ

Το επιτρεπόμενο φορτίο ενός μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση εκφράζεται με τη σχέση:

$$P_{\varepsilon\pi.} = \min\left(P_1 = \frac{Q}{F}, P_2 = P_{smax}\right)$$

Όπου:

- Q :Το φορτίο που εξασφαλίζει τον ελάχιστο επιθυμητό συντελεστή ασφαλείας F έναντι φέρουσας ικανότητας και
- P_{smax} :Το φορτίο που προκαλεί τη μέγιστη επιτρεπόμενη καθίζηση s_{max} του πασσάλου.

Στην εκτίμηση αυτή εφαρμόζονται οι εξής παραδοχές:

- Η διάμετρος του πασσάλου κυμαίνεται από 0,80 έως 2,20 m,
- Το ίδιο βάρος του πασσάλου αγνοείται και

- Ο συντελεστής ασφαλείας έναντι φέρουσας ικανότητας λαμβάνει ανάλογα με την περίπτωση τις εξής τιμές:
 - F=2 για κατάσταση φόρτισης 1 θλιβόμενοι πάσσαλοι, όπου λαμβάνονται υπόψη μόνιμα φορτία και κανονικά κινητά συμπεριλαμβανόμενου του ανέμου,
 - F=1,75 για κατάσταση φόρτισης 2, όπου λαμβάνονται υπόψη εκτός των φορτίων της κατάστασης φόρτισης 1 μη κανονικά κινητά φορτία και φορτία που επιβάλλονται κατά τη διάρκεια της κατασκευής και
 - F=1,5 για κατάσταση φόρτισης 3, όπου λαμβάνονται υπόψη τα φορτία της κατάστασης φόρτισης 2 και κάποιες εξαιρετικές και απρόβλεπτες φορτίσεις.

7.3 ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΊΟΥ ΛΕΙΤΟΥΡΓΙΑΣ ΠΑΣΣΑΛΟΥ ΥΠΟ ΑΞΟΝΙΚΗ ΚΑΤΑΚΟΡΥΦΗ ΦΟΡΤΙΣΗ

Το *φορτίο λειτουργίας* ενός μεμονωμένου πασσάλου υπό αξονική κατακόρυφη φόρτιση εκφράζεται με τη σχέση:

$$P_{\lambda\varepsilon\iota\tau.}=P_{\varepsilon\pi.}-W_p$$

Όπου W_p: Το ίδιο βάρος του πασσάλου (για ανάλυση με αναφορά ενεργών τάσεων είναι το υπό άνωση βάρος του).

7.4 ΑΠΑΙΤΟΥΜΕΝΟΣ ΑΡΙΘΜΟΣ ΠΑΣΣΑΛΩΝ ΠΑΣΣΑΛΟΜΑΔΑΣ

Ο απαιτούμενος αριθμός πασσάλων μιας πασσαλομάδας - όπως αυτοί ήδη διαστασιολογήθηκαν – για την ανάληψη του φορτίου από την ανωδομή εκφράζεται με τη σχέση:

$$n = \frac{(1, 1 \div 1, 3) \times P_{\alpha \nu}}{P_{\lambda \varepsilon \iota \tau}}$$

Όπου ο συντελεστής 1,1 ÷ 1,3 προσαυξάνει το φορτίο από την ανωδομή λόγω των άγνωστων αρχικά διαστάσεων του κεφαλόδεσμου της πασσαλομάδας.

κατηγορία άντοχής αποροφέματος	En 150	Bn 250	Bn 350	Sn 450	Bn 550
BR [kp/cm ²]	105	175	230	270	300
Bs /BR	40,0	24,0	16,3	15,6	14,0

ΣΧΗΜΑ 7.5 Νομογράφημα ροπής θραύσης πασσάλου Μ_{yield}

8. ΠΡΟΣΩΡΙΝΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ

8.1 ΛΕΙΤΟΥΡΓΙΑ ΑΥΤΟΦΕΡΟΜΕΝΟΥ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ

Η μελέτη ενός αυτοφερόμενου πετάσματος πασσαλοσανίδων περιλαμβάνει τον προσδιορισμό των εξής χαρακτηριστικών του:

- Του ύψους του ή πιο συγκεκριμένα του απαραίτητου βάθους έμπηξής του κάτω από τον πυθμένα της εκσκαφής το οποίο εξασφαλίζει την ευστάθειά του και
- Της κατάλληλης διατομής του προς ανάληψη της μέγιστης εμφανιζόμενης σε αυτό ροπής κάμψεως M_{max} βάσει της απαιτούμενης γι αυτό ροπής αντίστασης W_{απ}.

Σε ένα αυτοφερόμενο πέτασμα πασσαλοσανίδων η μορφή της ελαστικής γραμμής καθώς και τα διαγράμματα ωθήσεων γαιών διαμορφώνονται όπως φαίνεται στο **<u>ΣΧΗΜΑ 8.1</u>**.

ΣΧΗΜΑ 8.1 Ελαστική γραμμή – διαγράμματα ωθήσεων γαιών αυτοφερόμενου πετάσματος πασσαλοσανίδων

Το πέτασμα λόγω της παραμόρφωσης του εδάφους όπως φαίνεται στο **ΣΧΗΜΑ 8.2** υπόκειται σε περιστροφή γύρω από σημείο Γ του πακτωμένου τμήματός του. Έτσι, μεταξύ των σημείων Α και Γ ασκούνται ενεργητικές ωθήσεις (1) και παθητικές ωθήσεις (2) για το τμήμα του πετάσματος κάτω από τον πυθμένα της εκσκαφής, ενώ μεταξύ των σημείων Γ και Δ ασκούνται παθητικές ωθήσεις (3) και ενεργητικές ωθήσεις (4).

ΣΧΗΜΑ 8.2 Παραμόρφωση εδάφους - ελαστική γραμμή αυτοφερόμενου πετάσματος πασσαλοσανίδων

Για ελεύθερα πακτωμένο πέτασμα δε λαμβάνεται υπ όψιν πλήρης πάκτωση αλλά επαρκής, ώστε να προκύπτει οικονομικότερη λύση.

8.1.1 ΑΥΤΟΦΕΡΟΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΜΜΟ

Στην περίπτωση αυτή και σε κατάσταση οριακής ισορροπίας τα διαγράμματα ωθήσεων γαιών υπολογίζονται με χρήση απλουστευτικών παραδοχών όπως φαίνεται στο **ΣΧΗΜΑ 8.3**.

ΣΧΗΜΑ 8.3 Διαγράμματα ωθήσεων γαιών αυτοφερόμενου πετάσματος πασσαλοσανίδων σε άμμο σε οριακή κατάσταση ισορροπίας

Οι τάσεις αντώθησης κάτω από το σημείο περιστροφής Ν του πετάσματος μπορούν να αντικατασταθούν με τη συνισταμένη τους C με εφαρμογή αυτής στο σημείο αυτό στο οποίο απλουστευτικά η ροπή κάμψεως μηδενίζεται. Το σημείο N βρίσκεται από τον πόδα του πετάσματος σε απόσταση ίση με το 20% του μήκους του f_o. Για να προσδιοριστεί το άγνωστο αυτό μήκος καταστρώνεται η εξίσωση ισορροπίας ροπών κάμψεως του πετάσματος ως προς το σημείο N, ενώ για να βρεθεί η συνισταμένη C των τάσεων αντώθησής του καταστρώνεται η εξίσωση ισορροπίας των οριζόντιων δυνάμεων που ασκούνται σε αυτό. Έτσι επειδή το εμβαδόν του τριγώνου ΑΓΕ ισούται με αυτό του ΕΔ'Q γραφικά η τέμνουσα του πετάσματος στο σημείο Q μηδενίζεται, ενώ η ροπή κάμψεώς του εκεί μεγιστοποιείται.

Στην πράξη - ειδικά για αμμώδη εδάφη όπου οι μετατοπίσεις για πλήρη ανάπτυξη των τάσεων αντώθησης είναι σχετικά μεγάλες - λαμβάνεται υπ όψιν αντίστοιχος συντελεστής ασφαλείας F_p=1,5 ÷ 2 με ταυτόχρονη αύξηση του βάθους έμπηξης του πετάσματος προς αποφυγή τέτοιων μετατοπίσεων και επίτευξη της τελικής ισορροπίας.

Η μέγιστη ροπή κάμψεως και οι παραμορφώσεις του πετάσματος σε βάθος z_i συνδέονται με τη σχέση:

$$M_{(zi)} = EI \times \left(\frac{d_y^2}{d_x^2}\right)$$

Αν z η απόσταση από το σημείο Ε μηδενισμού των ωθήσεων γαιών του πετάσματος - σε βάθος $t = \frac{P_B}{(\frac{K_p}{F_p} - K_a) \times \gamma}$ κάτω από τον πυθμένα της εκσκαφής που είναι το σημείο Β –μέχρι το σημείο Q ισχύουν τα εξής:

$$\frac{1}{2} \times \left(\frac{K_p}{F_p} - K_\alpha\right) \times \gamma \times z^2 = \frac{1}{2} \times P_B \times (H+t) \Rightarrow$$

$$\boxed{z = \sqrt{\frac{P_B \times (H+t)}{(\frac{K_p}{F_p} - K_\alpha) \times \gamma'}}}$$

$$M_{max} = M_Q = \frac{1}{2} \times P_B \times H \times \left(\frac{H}{3} + t + z\right) + \frac{1}{2} \times P_B \times t \times \left(\frac{2}{3} \times t + z\right) - \frac{1}{6} \times \left(\frac{K_p}{F_p} - K_\alpha\right) \times \gamma \times z^2$$

 z^3

Έτσι, από την μέγιστη εμφανιζόμενη ροπή κάμψεως M_{max} στο πέτασμα και την επιτρεπόμενη τάση εφελκυσμού του χάλυβα $\sigma_{\varepsilon \pi.} = 125 \ N/_{mm^2}$ προκύπτει η απαιτούμενη ροπή αντίστασης γι αυτό $W_{\alpha \pi.} = \frac{M_{max}}{\sigma_{\varepsilon \pi.}}$ και με βάση αυτήν επιλέγεται η διατομή της χρησιμοποιούμενης πασσαλοσανίδας από τους πίνακες των αντίστοιχων κατασκευαστικών εταιρειών, ώστε W≥W_{απ}.

8.1.2 ΑΥΤΟΦΕΡΟΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΡΓΙΛΟ

Στην περίπτωση αυτή και σε κατάσταση οριακής ισορροπίας τα διαγράμματα ωθήσεων γαιών υπολογίζονται όπως φαίνεται στο **ΣΧΗΜΑ 8.4**.

ΣΧΗΜΑ 8.4 Διαγράμματα ωθήσεων γαιών αυτοφερόμενου πετάσματος πασσαλοσανίδων σε άργιλο σε οριακή κατάσταση ισορροπίας

Ειδικά για κορεσμένα αργιλικά εδάφη οι συνθήκες ταχείας φόρτισης ($c_u \neq 0$, $\phi_u = 0$) δίνουν δυσμενέστερα αποτελέσματα κατά την επίλυση του πετάσματος δεδομένου ότι αμέσως μετά την εκσκαφή και την αντιστήριξη των παρειών της οι επικρατούμενες συνθήκες φόρτισης του εδάφους είναι αστράγγιστες. Η διαστασιολόγηση του πετάσματος γίνεται, λοιπόν, για $c_u = q_u/2$ και $\phi = 0$, όπου q_u η αντοχή του εδάφους σε ανεμπόδιστη θλίψη.

Όπως φαίνεται στο ΣΧΗΜΑ 8.5 δεξιά του τμήματος ΕΟ και αριστερά του τμήματος ΟΓ αναπτύσσονται ενεργητικές ωθήσεις, ενώ αριστερά του τμήματος ΒΟ και δεξιά του τμήματος ΟΓ παθητικές. (Οι ενεργητικές ωθήσεις που αναπτύσσονται αριστερά

του τμήματος ΑΕ είναι αρνητικές και αμελούνται.) Τελικά όπως φαίνεται στο **ΣΧΗΜΑ 8.6** ισχύουν τα εξής:

ΣΧΗΜΑ 8.5 Αναλυτικά διαγράμματα ωθήσεων γαιών αυτοφερόμενου πετάσματος πασσσαλοσανίδων σε άργιλο σε οριακή κατάσταση ισορροπίας

ΣΧΗΜΑ 8.6 Συνισταμένα διαγράμματα ωθήσεων γαιών αυτοφερόμενου πετάσματος πασσσαλοσανίδων σε άργιλο σε οριακή κατάσταση ισορροπίας

Οι τάσεις ώθησης κάτω από το σημείο περιστροφής Ο του πετάσματος μπορούν να αντικατασταθούν με τη συνισταμένη τους C με εφαρμογή αυτής στο σημείο αυτό στο οποίο απλουστευτικά η ροπή κάμψεως μηδενίζεται. Για να προσδιοριστεί το μήκος d καταστρώνεται η εξίσωση ισορροπίας ροπών κάμψεως του πετάσματος ως προς το σημείο Ο (αυτό τελικά προσαυξάνεται κατά 20% για να προκύψει το βάθος έμπηξης D του πετάσματος), ενώ για να βρεθεί η συνισταμένη C των τάσεων ώθησής του καταστρώνεται η εξίσωση ισορροπίας των οριζόντιων δυνάμεων που ασκούνται σε αυτό. Στην εφαρμογή των παραπάνω παρατηρούνται τα εξής:

- Επειδή στα ταχέως φορτιζόμενα κορεσμένα αργιλικά εδάφη υπολογίζονται τόσο για τις ενεργητικές όσο και για στις παθητικές ωθήσεις οι ολικές κατακόρυφες τάσεις σ_{vo} - οι οποίες περιέχουν και τις υδροστατικές πιέσεις – στις εξισώσεις ισορροπίας λαμβάνονται υπ όψιν μόνο οι εκτός αργιλικής στρώσης υδροστατικές πιέσεις,
- Αν $\Delta P_p = 4 \times C_u (\sigma_{\nu B}^{\delta \varepsilon \xi.} \sigma_{\nu B}^{\alpha \rho.}) < 0$ το πέτασμα δεν μπορεί να τερματίζεται στο κορεσμένο αργιλικό έδαφος γιατί επιβαρύνεται με επιπλέον ενεργητικές ωθήσεις αντί να ισορροπεί λόγω παθητικών συνεπώς ο πόδας του πρέπει να εδράζεται σε υποκείμενη στρώση και
- Στα ταχέως φορτιζόμενα κορεσμένα αργιλικά εδάφη δεν λαμβάνεται υπ όψιν συντελεστής ασφαλείας στις παθητικές ωθήσεις (F_p=1) γιατί οι μετατοπίσεις για πλήρη ανάπτυξη των παθητικών ωθήσεων είναι ίσες με αυτές των ενεργητικών.

Av z η απόσταση από το σημείο B που βρίσκεται στον πυθμένα της εκσκαφής μέχρι το σημείο Q μηδενισμού των τεμνουσών ισχύουν τα εξής:

$$\frac{1}{2} \times \left(\gamma_{\kappa o \rho.} \times H - 2 \times c_{u}\right) \times \left(H - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho.}}\right) = \frac{1}{2} \times \gamma_{w} \times z_{w}^{2} + \left[4 \times c_{u} - \left(\gamma_{\kappa o \rho.} \times H - \gamma_{w} \times z_{w}\right)\right] \times z \Rightarrow$$

$$\left[z = \frac{\frac{1}{2} \times \left(\gamma_{\kappa o \rho.} \times H - 2 \times c_{u}\right) \times \left(H - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho.}}\right) - \frac{1}{2} \times \gamma_{w} \times z_{w}^{2}}{4 \times c_{u} - \gamma_{\kappa o \rho.} \times H + \gamma_{w} \times z_{w}}\right]$$

$$M_{max} = M_{Q} = \frac{1}{2} \times \left(\gamma_{\kappa o \rho.} \times H - 2 \times c_{u}\right) \times \left(H - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho.}}\right) \times \left[\frac{H - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho.}}}{3} + Z\right]$$

$$-\frac{1}{2} \times \gamma_{w} \times z_{w}^{2} \times \left(\frac{t_{w}}{3} + d\right) - \left(4 \times c_{u} - \gamma_{\kappa o \rho.} \times H + \gamma_{w} \times z_{w}\right) \times \frac{z^{2}}{2}$$

Έτσι, από την μέγιστη εμφανιζόμενη ροπή κάμψεως M_{max} στο πέτασμα και την επιτρεπόμενη τάση εφελκυσμού του χάλυβα $\sigma_{\varepsilon \pi.} = 125 \ N/_{mm^2}$ προκύπτει η απαιτούμενη ροπή αντίστασης γι αυτό $W_{\alpha \pi.} = \frac{M_{max}}{\sigma_{\varepsilon \pi.}}$ και με βάση αυτήν επιλέγεται η διατομή της χρησιμοποιούμενης πασσαλοσανίδας από τους πίνακες των αντίστοιχων κατασκευαστικών εταιρειών, ώστε W≥W_{απ.}.

8.2 ΛΕΙΤΟΥΡΓΙΑ ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟΥ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ

Η μελέτη ενός απλώς αγκυρωμένου πετάσματος πασσαλοσανίδων περιλαμβάνει τον προσδιορισμό των εξής χαρακτηριστικών του:

- Του ύψους του,
- Της κατάλληλης διατομής του προς ανάληψη της μέγιστης εμφανιζόμενης σε αυτό ροπής κάμψεως M_{max} βάσει της απαιτούμενης γι αυτό ροπής αντίστασης W_{απ.}
- Της απαιτούμενης δύναμης αγκύρωσής του σε kN/m και
- Του ύψους, της διατομής και της ελάχιστης απαιτούμενης απόστασης από αυτό του σώματος παθητικής αγκύρωσης.

Σε ένα απλώς αγκυρωμένο πέτασμα πασσαλοσανίδων η μορφή της ελαστικής γραμμής καθώς και τα διαγράμματα ωθήσεων γαιών και ροπών κάμψεως διαμορφώνονται ανάλογα με το βάθος έμπηξής του όπως φαίνεται στο ΣΧΗΜΑ 8.7. Στην περίπτωση (α) το βάθος έμπηξης υπεραρκεί για την πλήρη πάκτωση, στην περίπτωση (β) απλώς αρκεί με το κάτω άκρο του πετάσματος να παραμένει αμετακίνητο, στην περίπτωση (γ) να μετατοπίζεται ελαφρώς αλλά και πάλι να θεωρείται επαρκής η πάκτωση (FIXED EARTH SUPPORT) και στην περίπτωση (δ) το βάθος έμπηξης είναι αρκετά μικρό για πλήρη πάκτωση, αφού δεν υπάρχει αντιστροφή ενεργητικών και παθητικών ωθήσεων (οι μετατοπίσεις του πετάσματος αυξάνονται και απαιτείται μεγαλύτερη δύναμη αγκύρωσης). Σύμφωνα με αυτήν την περίπτωση γίνεται ο απλοποιητικός υπολογισμός του πετάσματος με απλή στήριξη στον πόδα (FREE EARTH SUPPORT). Τέλος στην περίπτωση (ε) το βάθος έμπηξης δεν αρκεί για πλήρη πάκτωση είτε γιατί εξαντλείται η παθητική ώθηση με ανάλογη μετατόπιση του κάτω άκρου - αλλά και συνολικά του πετάσματος - και σημαντική επιβάρυνση του αγκυρίου είτε γιατί και η πλήρης ανάπτυξη των παθητικών ωθήσεων δεν εξασφαλίζει ισορροπία οπότε όλα τα στοιχεία επιβαρύνονται σημαντικά και η διαστασιολόγηση αυτή δεν παρέχει την απαιτούμενη ασφάλεια.

ΣΧΗΜΑ 8.7 Επιρροή του βάθους έμπηξης απλώς αγκυρωμένου πετάσματος πασσαλοσανίδων στην ελαστική γραμμή και τα διαγράμματα ωθήσεων γαιών και ροπών κάμψης

8.2.1 ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΜΜΟ ΜΕ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ ΠΟΔΑ (FREE EARTH SUPPORT)

Στην περίπτωση αυτή και σε κατάσταση οριακής ισορροπίας τα διαγράμματα ωθήσεων γαιών υπολογίζονται με την παραδοχή ότι η κατανομή τους είναι τριγωνική όπως φαίνεται στο **ΣΧΗΜΑ 8.8**.

ΣΧΗΜΑ 8.8 Διαγράμματα ωθήσεων γαιών απλώς αγκυρωμένου πετάσματος πασσαλοσανίδων σε άμμο με απλή στήριξη στον πόδα (FREE EARTH SUPPORT) σε οριακή κατάσταση ισορροπίας

Στην πράξη - ειδικά για αμμώδη εδάφη όπου οι μετατοπίσεις για πλήρη ανάπτυξη των τάσεων αντώθησης είναι σχετικά μεγάλες - λαμβάνεται υπ όψιν αντίστοιχος συντελεστής ασφαλείας F_p=1,5 ÷ 2 με ταυτόχρονη αύξηση του βάθους έμπηξης του πετάσματος προς αποφυγή τέτοιων μετατοπίσεων και επίτευξη της τελικής ισορροπίας. Το πέτασμα θεωρείται άκαμπτο και περιστρεφόμενο χωρίς όμως να μετακινείται πλευρικά στο σημείο Ο, όπου και αγκυρώνεται.

Το σημείο Δ μηδενισμού των ωθήσεων γαιών του πετάσματος βρίσκεται σε βάθος $t = \frac{P_B}{(\frac{K_p}{F_p} - K_a) \times \gamma}$ κάτω από τον πυθμένα της εκσκαφής που είναι το σημείο Β και για το

βάθος έμπηξης D = t + f του πετάσματος ισχύουν τα εξής:

$$P_{a1} \times (z-d) + P_{a2} \times (H-d-s) + P_{a3} \times \left(H-d+\frac{t}{3}\right) - P_p \times \left(\frac{2}{3} \times f + t + H - d\right) = 0,$$
$$M_{max} = M_Q = P_{a1} \times \left(z_Q - \frac{2}{3} \times z\right) + P_{a2} \times s - F_a \times (z_Q - d)$$

Όπου:

•
$$\begin{cases} P_{a1} = \frac{1}{2} \times P_E \times z \\ P_{a2} = \frac{P_E + P_B}{2} \times (H - z) \\ P_{a3} = \frac{1}{2} \times P_B \times t \\ P_p = \frac{1}{2} \times (\frac{K_p}{F_p} - K_a) \times \gamma \times f^2 \end{cases}$$
 Kau

 s: Η απόσταση του κέντρου βάρους του τραπεζίου ΕΖΗQ από την μεγάλη βάση του.

Από την εξίσωση ισορροπίας των οριζόντιων δυνάμεων $P_{a1} + P_{a2} + P_{a3} - P_p - F_a = 0$ προκύπτει η απαιτούμενη δύναμη αγκύρωσης του πετάσματος F_{α} , ενώ η απόσταση $z_{\rm Q}$ <Η του σημείου Q μηδενισμού των τεμνουσών και μεγιστοποίησης της ροπής του πετάσματος από το σημείο A που βρίσκεται στην στέψη της εκσκαφής δίνεται από τη σχέση $P_{\alpha 1} + P_{\alpha 2} = F_{\alpha} \Rightarrow P_{a1} + εμβαδό (EZHQ) = F_{\alpha}$.

Έτσι, από την μέγιστη εμφανιζόμενη ροπή κάμψεως M_{max} στο πέτασμα και την επιτρεπόμενη τάση εφελκυσμού του χάλυβα $\sigma_{\varepsilon \pi.} = 125 \ N/_{mm^2}$ προκύπτει η απαιτούμενη ροπή αντίστασης γι αυτό $W_{\alpha \pi.} = \frac{M_{max}}{\sigma_{\varepsilon \pi.}}$ και με βάση αυτήν επιλέγεται η διατομή της χρησιμοποιούμενης πασσαλοσανίδας από τους πίνακες των αντίστοιχων κατασκευαστικών εταιρειών, ώστε W≥W_{απ.}.

8.2.2 ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΡΓΙΛΟ ΜΕ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ ΠΟΔΑ (FREE EARTH SUPPORT)

Στην περίπτωση αυτή και σε κατάσταση οριακής ισορροπίας τα διαγράμματα ωθήσεων γαιών υπολογίζονται όπως φαίνεται στο **ΣΧΗΜΑ 8.9**.

ΣΧΗΜΑ 8.9 Διαγράμματα ωθήσεων γαιών απλώς αγκυρωμένου πετάσματος πασσαλοσανίδων σε άργιλο με απλή στήριξη στον πόδα (FREE EARTH SUPPORT) σε οριακή κατάσταση ισορροπίας

Όπως και στην περίπτωση του αυτοφερόμενου πετάσματος για τις εξισώσεις ισορροπίας $\sum M_O = 0$ και $\sum X = 0$ ισχύουν τα εξής:

$$P_{a} \times \left(H - d - \frac{H - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho}}}{3}\right) - P_{p} \times \left(\frac{f}{2} + h - d\right) = 0,$$

$$M_{max} = M_{Q} = P_{a} \times \frac{1}{3} \times \left(z_{Q} - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho}}\right) - F_{a} \times (z_{Q} - d),$$

$$P_{p} + F_{a} - P_{a} = 0 \Rightarrow$$

$$F_{a} = P_{a} - P_{p} \Rightarrow$$

$$F_{a} = \frac{1}{2} \times \left(\gamma_{\kappa o \rho} \times H - 2 \times c_{u}\right) \times \left(H - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho}}\right) - (4 \times c_{u} - \gamma_{\kappa o \rho} \times H) \times f,$$

$$F_{a} = \varepsilon \mu \beta \alpha \delta \circ (\Delta EQ) \Rightarrow$$

$$F_{a} = \frac{1}{2} \times \left(z_{Q} - \frac{2 \times c_{u}}{\gamma_{\kappa o \rho}} \right) \times \left(\gamma_{\kappa o \rho} \times z_{Q} - 2 \times c_{u} \right)$$

Όπου
$$\begin{cases} P_a = \frac{1}{2} \times \left(\gamma_{\kappa o \rho} \times H - 2 \times c_u \right) \times \left(H - \frac{2 \times c_u}{\gamma_{\kappa o \rho}} \right) \\ P_p = \left(4 \times c_u - \gamma_{\kappa o \rho} \times H \right) \times f \end{cases}.$$

Έτσι, από την μέγιστη εμφανιζόμενη ροπή κάμψεως M_{max} στο πέτασμα και την επιτρεπόμενη τάση εφελκυσμού του χάλυβα $\sigma_{\varepsilon \pi.} = 125 \ N/_{mm^2}$ προκύπτει η απαιτούμενη ροπή αντίστασης γι αυτό $W_{\alpha \pi.} = \frac{M_{max}}{\sigma_{\varepsilon \pi.}}$ και με βάση αυτήν επιλέγεται η διατομή της χρησιμοποιούμενης πασσαλοσανίδας από τους πίνακες των αντίστοιχων κατασκευαστικών εταιρειών, ώστε W≥W_{απ.}.

8.2.3 ΜΕΙΩΣΗ ΜΕΓΙΣΤΗΣ ΡΟΠΗΣ ΚΑΜΨΗΣ Μ_{max} ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟΥ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΜΕ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ ΠΟΔΑ (FREE EARTH SUPPORT) KATA ROWE

Η μέγιστη ροπή κάμψης ενός απλώς αγκυρωμένου πετάσματος στο σημείο μηδενισμού των τεμνουσών του με παραδοχή τριγωνικής κατανομής ενεργητικών και παθητικών ωθήσεων αποδείχτηκε - από σειρά πειραμάτων για απλή στήριξη στον πόδα του (FREE EARTH SUPPORT) - ότι είναι υπερεκτιμημένη και χρειάζεται μείωσή της προκειμένου να επιτευχθεί οικονομικότερος σχεδιασμός. Ο Rowe μελετώντας το πρόβλημα αυτό εκτενώς απέδωσε την ανάγκη μείωσης αυτής στις παρακάτω αιτίες:

Στην ανάπτυξη τοξωτής λειτουργίας μεταξύ του σχετικά αμετακίνητου σημείου αγκύρωσης Ο του πετάσματος και του σημείου Β που βρίσκεται στον πυθμένα της εκσκαφής σύμφωνα με το <u>ΣΧΗΜΑ 8.10</u> με αποτέλεσμα τη συγκέντρωση τάσεων στις περιοχές γύρω από αυτά με παράλληλη όμως μείωση τους σχετικά με την υπό κανονικές συνθήκες τριγωνική κατανομή στο μέσο της απόστασης τους και

ΣΧΗΜΑ 8.10 Τριγωνική κατανομή ενεργητικών και παθητικών ωθήσεων - ανάπτυξη τοξωτής λειτουργίας απλώς αγκυρωμένου πετάσματος πασσαλοσανίδων με απλή στήριξη στον πόδα (FREE EARTH SUPPORT)

 Στην ανάπτυξη παθητικών ωθήσεων πάνω από το σημείο Ο που οφείλονται στη μορφή της ελαστικής γραμμής του πετάσματος λόγω ανάπτυξης τοξωτής λειτουργίας με τον τρόπο που ήδη αναφέρθηκε.

Αντίθετα με τις αρχικές θεωρήσεις ο Rowe απέδειξε ότι οι δύο παραπάνω αιτίες δεν είναι καθοριστικής σημασίας για την απαιτούμενη μείωση της μέγιστης ροπής κάμψης του πετάσματος διότι εξίσου σημαντική είναι αυτή ακόμα και σε περιπτώσεις έντονης πλευρικά μετατόπισης του σημείου Ο οπότε και μηδενίζεται πρακτικά η τοξωτή λειτουργία του και οι παθητικές ωθήσεις πάνω από αυτό. Έτσι, όπως φαίνεται και στο **ΣΧΗΜΑ 8.11** κατέληξε στα εξής συμπεράσματα:

 Λόγω της ευκαμψίας της όλης κατασκευής η ελαστική γραμμή της λόγω ανάπτυξης τοξωτής λειτουργίας κάτω από τον πυθμένα της με τον τρόπο που ήδη αναφέρθηκε αποκλίνει σημαντικά από την περιστροφή της ως άκαμπτου επιπέδου γύρω από τον πόδα της (περίπτωση (γ)) στην οποία και μόνο αντιστοιχεί η παραδοχή τριγωνικής κατανομής παθητικών ωθήσεων (περίπτωση (α)),

• Η μέγιστη ροπή κάμψης του πετάσματος με παραδοχή τριγωνικής κατανομής παθητικών ωθήσεων προσομοιάζει αυτή μιας μονοπροέχουσας δοκού μήκους L με πρόβολο μήκους D/3 (περίπτωση (β)), ενώ με παραδοχή παραβολικής κατανομής - η συνισταμένη των παθητικών ωθήσεων εφαρμόζεται τώρα σε ύψος D/2 αντί για D/3 πάνω από τον πυθμένα της εκσκαφής - το μήκος της μονοπροέχουσας δοκού μειώνεται σε L' = L - (D/2 - D/3) (περίπτωση (δ)). Έτσι, με θεώρηση της μέγιστης ροπής κάμψης του πετάσματος ως συνάρτηση του τετραγώνου του μήκους της αντίστοιχης μονοπροέχουσας δοκού προκύπτει $M_{max}^{πραγμ.} = f(L')^2 < M_{max}^{θεωρ.} = f(L)^2$ εφόσον L'<L και Τέλος το σημείο εφαρμογής της συνισταμένης των παθητικών ωθήσεων βρίσκεται πιο κοντά στο σημείο Β για πυκνή άμμο - στην οποία η ελαστική γραμμή του πετάσματος παρουσιάζει σημείο καμπής όπου η ροπή κάμψης του μηδενίζεται - από ότι για χαλαρή άμμο.

ΣΧΗΜΑ 8.11 Διαγράμματα ωθήσεων γαιών προσομοιώματος και πραγματικού απλώς αγκυρωμένου πετάσματος πασσαλοσανίδων με απλή στήριξη στον πόδα (FREE EARTH SUPPORT) κατά Rowe

8.2.4 ΕΚΤΙΜΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΜΕΙΩΣΗΣ ΜΕΓΙΣΤΗΣ ΡΟΠΗΣ ΚΑΜΨΗΣ Μ/M_{max} ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟΥ ΠΕΤΑΣΜΑΤΟΣ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ ΣΕ ΑΜΜΟ ΜΕ ΑΠΛΗ ΣΤΗΡΙΞΗ ΣΤΟΝ ΠΟΔΑ (FREE EARTH SUPPORT) ΚΑΤΑ ROWE

Από σειρά πειραμάτων για απλώς αγκυρωμένα πετάσματα πασσαλοσανίδων ύψους 50-90 cm σε άμμο με απλή στήριξη στον πόδα (FREE EARTH SUPPORT) ο Rowe απέδειξε ότι η παράσταση $\rho = \frac{H^4}{E \times I}$ (όπου Η είναι το συνολικό ύψος του πετάσματος και ΕΙ η ακαμψία του) είναι ίδια τόσο για το προσομοίωμα όσο και για το πραγματικό πέτασμα οπότε η μείωση της μέγιστης ροπής κάμψης αυτού δίνεται συναρτήσει της από νομογράφημα όπως φαίνεται στο **ΣΧΗΜΑ 8.12**, όπου α είναι ο λόγος του αντιστηριζόμενου ύψους της εκσκαφής προς το συνολικό του πετάσματος.

ΣΧΗΜΑ 8.12 Νομογράφημα μείωσης μέγιστης ροπής κάμψης απλώς αγκυρωμένου πετάσματος πασσαλοσανίδων σε άμμο με απλή στήριξη στον πόδα (FREE EARTH SUPPORT) κατά Rowe

Ανάλογα με τη γεωμετρία του πετάσματος επιλέγεται μεταξύ των έξι καμπυλών του νομογραφήματος με τιμές α=0,6, 0,7 και 0,8 (τρεις για πυκνή άμμο και τρεις για χαλαρή) η κατάλληλη και σχεδιάζεται έτσι η καμπύλη logp – $M = \frac{M}{M_{max}} \times M_{max}$ (περίπτωση (γ)) όπως φαίνεται στο **ΣΧΗΜΑ 8.13**. Για διάφορες τυπικές διατομές του πετάσματος υπολογίζεται έπειτα η $M_{max}^{\delta \iota \alpha \tau.} = \frac{f \times I}{y} = \sigma_{\varepsilon n.}^{\chi \alpha \lambda.} \times W$ (όπου $f = \sigma_{\varepsilon n.}^{\chi \alpha \lambda.} = 125 \frac{N}{mm^2}$, Ι είναι η ροπή αδράνειας της διατομής, γ η απόσταση από τον ουδέτερο άξονά της μέχρι το πέλμα της και W η ροπή αντίστασής της) και σχεδιάζεται έτσι η καμπύλη ρ - M_{max} (περίπτωση (β)) για όλα τα ζεύγη τιμών. Οικονομικότερη από τις διατομές που εξετάστηκαν είναι εκείνη που αντιστοιχεί στο σημείο τομής των δύο καμπυλών (β) και (γ), ενώ αν δεν αυτή δεν είναι πραγματική επιλέγεται ως οικονομικότερη αυτή που αντιστοιχεί στο αμέσως επόμενό του σημείο της καμπύλης (β).

ΣΧΗΜΑ 8.13 Διάγραμμα επιλογής τυπικής διατομής πασσαλοσανίδας κατά Rowe

Ο Skempton λαμβάνοντας υπ όψιν ότι οι θεωρήσεις του Rowe βασίζονται σε πειραματικά αποτελέσματα πρότεινε ανάλογα με το είδος του αντιστηριζόμενου εδάφους σε άμμους να χρησιμοποιείται το ½ της μείωσης αυτής, σε ιλύες το ¼, ενώ σε αργίλους να μη γίνεται καθόλου μείωση της μέγιστης ροπής κάμψης του πετάσματος.

8.2.5 ΔΙΑΜΕΤΡΟΣ ΑΓΚΥΡΙΟΥ - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΚΑΙ ΘΕΣΗ ΣΩΜΑΤΟΣ ΑΓΚΥΡΩΣΗΣ

Επειδή τα αγκύρια τοποθετούνται σε απόσταση s κατά την κάτοψη του πετάσματος καθένα φέρει φορτίο $P_{\alpha\gamma\kappa.} = F_{\alpha} \times s$, ενώ από κατάλληλους πίνακες συναρτήσει της επιτρεπόμενης τάσης εφελκυσμού του χάλυβα $\sigma_{\varepsilon\pi.} = 125 \frac{N}{mm^2}$ προσδιορίζεται η διάμετρός τους από τη σχέση:

$$d_{lpha\gamma\kappa.}=2 imes\sqrt{rac{P_{lpha\gamma\kappa.}}{\sigma_{arepsilon\pi.} imes\pi}}$$

Η αγκύρωση του πετάσματος γίνεται στην προκειμένη περίπτωση με σώμα αγκύρωσης σε αρκετή απόσταση από αυτό. Η ελάχιστη απόστασή του L_{min} από το αυτό προσδιορίζεται, λοιπόν, σύμφωνα με το **ΣΧΗΜΑ 8.14** με βάση τις εξής παραδοχές:

 Να μη συμβαίνει αλληλοεμπλοκή του τριγώνου ΓΑΔ της ενεργητικής ώθησης του πετάσματος με το τρίγωνο ΕΖΔ της παθητικής ώθησης του σώματος αγκύρωσης από τη σχέση:

$$L_{min}^{(1)} = (A\Delta) + (\Delta Z) = (H + D) \times tan\left(45^{o} - \frac{\varphi}{2}\right) + z \times tan(45^{o} + \frac{\varphi}{2}),$$

 Να μην υπάρχει τμήμα του σώματος αγκύρωσης πάνω από την κλίση φυσικού πρανούς που διέρχεται από το σημείο Β που βρίσκεται στον πυθμένα της εκσκαφής και κλίνει υπό γωνία φως προς την οριζόντιο από τη σχέση:

$$L_{min}^{(2)} = (AH) = \frac{H}{tan\varphi}$$
$$L_{min} = max \begin{cases} L_{min}^{(1)} \\ L_{min}^{(2)} \end{cases}$$

Συνήθως το σώμα αγκύρωσης είναι μια δεύτερη πασσαλοσανίδα μικρότερου ύψους στην οποία προσαρμόζονται τα αγκύρια που παράλληλα με τη μετατόπιση του πετάσματος μετατοπίζεται προς την ίδια κατεύθυνση με αποτέλεσμα την ανάπτυξη σε αυτό ωθήσεων γαιών. Το ύψος z του σώματος αγκύρωσης υπολογίζεται κατά τα γνωστά από την εξίσωση ισορροπίας των οριζόντιων δυνάμεων που ασκούνται σε αυτό από τη σχέση:

$$F_{a} + \frac{1}{2} \times K_{a} \times \gamma \times z^{2} = \frac{1}{2} \times \frac{K_{p}}{F_{p}} \times \gamma \times z^{2} \Rightarrow$$
$$z = \sqrt{\frac{2 \times F_{a}}{\left(\frac{K_{p}}{F_{p}} - K_{a}\right) \times \gamma}}$$

ΣΧΗΜΑ 8.14 Διαστασιολόγηση και θέση σώματος αγκύρωσης

8.3 ΑΝΤΗΡΙΔΩΤΗ ΑΝΤΙΣΤΗΡΙΞΗ

Σε περιπτώσεις εκσκαφών με κατακόρυφες παρειές τα πετάσματα που αντιστηρίζουν προσωρινά το έδαφος ενισχύονται με αντηρίδες, οι οποίες συχνά παίρνουν τη μορφή εγκάρσιων διαδοκίδων. Ένα τέτοιο σύστημα διαμορφώνεται όπως φαίνεται στο **ΣΧΗΜΑ 8.15**.

ΣΧΗΜΑ 8.15 Προσωρινή αντηριδωτή αντιστήριξη παρειών εκσκαφής

Ο σχεδιασμός μιας αντηριδωτής αντιστήριξης προϋποθέτει την εκτίμηση τόσο της συνισταμένης δύναμης όσο και της κατανομής των ωθήσεων γαιών που επιβάλλονται σε αυτήν. Οι αντηρίδες πρέπει να είναι σε θέση να αναλάβουν όλες μαζί με ασφάλεια τη συνισταμένη δύναμη και κάθε μία χωριστά τη μέγιστη που της αντιστοιχεί χωρίς κίνδυνο λυγισμού. Ενώ η αναπτυσσόμενη στο πέτασμα συνολική ώθηση διαφέρει ελάχιστα της ενεργητικής κατά Coulomb ή Rankine, η κατανομή της διαφέρει σημαντικά από το γνωστό τριγωνικό ή τραπεζοειδές διάγραμμα. Η μείωση της μάλιστα στο κάτω μέρος του πετάσματος οφείλεται στην ανάπτυξη τοξωτής λειτουργίας με τον τρόπο που ήδη αναφέρθηκε. Αιτία είναι οι περιορισμοί που επιβάλλουν οι αντηρίδες στην κινητικότητα του όλου συστήματος. Επειδή η αναλυτική πρόβλεψη της κατανομής αυτής είναι δυσχερής και διαφέρει ανάλογα με τον αριθμό, τη θέση και τη χρονική σειρά κατασκευής των αντηρίδων, τον τύπο του εδάφους, τον τρόπο εκσκαφής του και τον τρόπο κατασκευής της αντιστήριξης ο πρακτικός σχεδιασμός γίνεται με βάση συμβατικά διαγράμματα περιβαλλουσών ωθήσεων τα πιο γνωστά από τα οποία τόσο για μη συνεκτικά όσο και για συνεκτικά εδάφη έχουν κατασκευαστεί από τον Peck και διαμορφώνονται όπως φαίνεται στο ΣΧΗΜΑ 8.16.

ΣΧΗΜΑ 8.16 Συμβατικά διαγράμματα περιβαλλουσών ωθήσεων προσωρινής αντηριδωτής αντιστήριξης παρειών εκσκαφής

Όπου:

•
$$K_{\alpha} = tan^2 (45^o - \frac{\varphi}{2})$$
 και

• $\sigma_{z=H} = \gamma \times z$ για ομοιογενές έδαφος.

Η περίπτωση (β) εφαρμόζεται όταν $\frac{\gamma \times H}{c_u} > 6$ με m=0,4 για μαλακή άργιλο με πολύ μεγάλο βάθος και m=1 για μαλακή άργιλο με στρώση στιφρής αργίλου πλησίον του πυθμένα της εκσκαφής, ενώ η περίπτωση (γ) όταν $\frac{\gamma \times H}{c_u} < 4$. Για ενδιάμεσες καταστάσεις δηλαδή όταν $6 > \frac{\gamma \times H}{s_u} > 4$ ισχύει το δυσμενέστερο των δύο προηγούμενων περιπτώσεων.

Η μέγιστη δύναμη που αντιστοιχεί σε κάθε αντηρίδα υπολογίζεται με την παραδοχή ισοκατανομής σε αυτές των περιβαλλουσών ωθήσεων όπως φαίνεται στο **ΣΧΗΜΑ 8.17**.

ΣΧΗΜΑ 8.17 Παραδοχή ισοκατανομής περιβαλλουσών ωθήσεων στις αντηρίδες προσωρινής αντιριδωτής αντιστήριξης παρειών εκσκαφής

Όσο όμως και να επικρατεί η εντύπωση ότι είναι συντηρητικές τέτοιου είδους συμβατικές μέθοδοι η εφαρμογή τους ενδέχεται να οδηγήσει σε εσφαλμένες ανασφαλείς λύσεις (υπέρβαση του μέγιστου αξονικού φορτίου και ψαθυρή θραύση των αντηρίδων) όταν αυτές εφαρμόζονται χωρίς πλήρη κατανόηση της μηχανικής του προβλήματος, αφού ασυνήθιστες κατασκευαστικές διαδικασίες ενδέχεται να προκαλέσουν τελείως διαφορετική συμπεριφορά του γεωτεχνικού συστήματος από ότι θα αναμενόταν βάσει των συνηθισμένων διαστασιολογήσεων.

8.4 ΕΥΣΤΑΘΕΙΑ ΠΡΑΝΟΥΣ ΚΑΤΑ ΤΑΥLOR

Η ευστάθεια πρανών με απλή γεωμετρία σε ομοιογενή εδάφη όπως φαίνεται στο **<u>ΣΧΗΜΑ 8.18</u>** απλουστεύεται σημαντικά με χρήση νομογραφημάτων τα οποία προσδιορίζουν τον συντελεστή ασφαλείας τους ως συνάρτηση των παραμέτρων διατμητικής αντοχής του εδάφους (συνοχή και γωνία τριβής) και της γεωμετρίας τους (κλίση και ύψος).

ΣΧΗΜΑ 8.18 Πρανές με απλή γεωμετρία σε ομοιογενές έδαφος

Κατά Taylor ο συντελεστής ασφαλείας του πρανούς δίνεται συναρτήσει του συντελεστή ευστάθειάς του N_s, ο οποίος υπολογίζεται από νομογράφημα όπως φαίνεται στο **ΣΧΗΜΑ 8.19**, από τη σχέση:

$$F = \frac{c}{N_s \times \gamma \times H}$$

ΣΧΗΜΑ 8.19 Συντελεστής ευστάθειας πρανούς κατά Taylor

ΠΑΡΑΡΤΗΜΑ Β ΑΝΑΛΥΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕΛΕΤΗΣ

1. ΤΟΠΟΓΡΑΦΙΚΟ ΔΙΑΓΡΑΜΜΑ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ

2. ΕΔΑΦΟΤΕΧΝΙΚΕΣ ΤΟΜΕΣ ΓΕΩΤΡΗΣΕΩΝ

	ΥΨΟΜΕΤΡΟ ΚΕΦ	ΦΑΛΗΣ			•				Σ	ΥΓΚΕΙ		атік/		ΕΔΑΦ	ΦΟΤΕ	EXNII 1ATA	СН ТО ЕРГА	ΟΜΗ ΓΕΩΤΡΗ ΔΣΤΗΡΙΑΚΩΝ	ΙΣΗΣ 1 Ι ΚΑΙ ΕΠ	ітопо	γ ΔΟΚΙ	ΜΩΝ		·					Δ	окім	Η ΣΥΙΛ	ΙΠΙΕΣΟ	OMET	ΡΟΥ
	_			1H Σ ΥΣΗΣ	КС	окком	ЕТРІКН Л	ΑΝΑΛΥΣ	ΣH									S.	δΩ	MENO	NENO	PDN	εΣΜΟΥ	ΣTH ΣTH	ν ΩΣΗ Σ	10	ζHΣ Σ		ΗΤΑΣ	M	έτρο η Σύμι	ΜΟΝΟ ΊΙΕΣΗΣ	ΔΙΑΣΤ E _s (kf	ATHΣ Pa)
306	ΡΩΣΕΩΝ	ΛΑΓΗΣ ΗΨΙΑΣ	ΛΑΤΟΣ	H dokin Apigmc m dieiza		ME KO	οΣκινα		ME METPO			OPI	A ATT	TERB	ERG			A.U.S.C.	VIKO BAF	ΦAINOI BAPOΣ	ΦAINO BAPOΣ	стнΣ по	юх корі		ΑΜΟΡΦ ΑΜΟΡΦ ΑΣΤΟΧΙΑ	APAMETI	ATMHTIH ANTOXH		ΔΕΙΚΤΗΣ ΠΙΕΣΤΟΤ	ΣΥΝΤ	ΈΛΕΣΤ C	ΗΣ ΣΤΕ _v (m ² /	EPEOI year)	ΊΟΙΗΣΗΣ
BA	ΑΦΗ ΣΤ	MH AN MATOA	ος Δειγ	0IHMEN EHΣ SPT ΓΙΑ 30 c	AIKIA			:λVI - 30	1 VAPO			ФҮ	ΣΙΚΗ	ΥΓΡΑ	δΙΑ			ен ката	EIZ	ЕНРО	YFPO	ΔEIŀ	BAGN	A NA	LAF	È	ΔI,		ΣΥΜ		<u> </u>	ΠΙΕΣ	н	
	ПЕРІГР	ΣΤΑ6 ΔΕΙΓ	түпо	ΓΥΠΟΠΟ ΔΙΕΙΣΔΥ; ΥΣΕΩΝ	XA		AN	APFIA0	ΓΙΛΟΣ 0005						-	1	T	(ATATAE	۲s	٩d	γ υγρ.	a	Sr	đ	۲/۲º	/ΠΟΣ KIMHΣ	с - ф	с' - ф	c/Cr	0 - 25	25 - 50	50 - 100	200 - 2	400 400 - 800
				KPO	4	10	40	200	AP <	10	20	30	40	n 09	70	80		Ť	tn/m ³	tn/m ³	tn/m ³			kg/cm ²	4	L O∆	kg/cm ²	kg/cm ²	0	kРа	kPa	kPa	kPa	kPa kPa
		1,40	Φ									25	36 4	0	[0,7	3]		CL-OL	2,58	1,36	1,85	0,90												
2,00	Σ.Υ.Ο.	1,85	SPT	N=1																														
		2,50	Φ			100	94	89	33																	F _{VT (-2,20 m)}	0,09							
		3,30	А				100	92	36			28	37 3	9	[0,8	2]		CH-OH	2,56	1,33	1,83	0,92		0,15		UU	0,10/0°							
		3,75	SPT	N=2																														
	ΣΤΡΩΣΗ ΚΑΣΤΑΝΗΣ ΜΑΛΔΚΗΣ ΑΡΓΙΛΩΥ ΜΕ	4,50	Φ																															
	q _c =0,50 MPa	5,00	Α				100	93	37			27	37 3	9	[0,8	3]		CH-OH	2,57	1,35	1,84	0,91				UU	0,11/0°							
		6,00	Φ			100	96	89	30			28	36 3	8	[0,8	0]		CH-OH	2,58	1,34	1,83	0,92		0,28										
		6,45	SPT	N=3																														
7,00		7,00	Φ			100	95	88	28			26	36 3	7	[0,9	1]		CH-OH	2,57	1,35	1,84	0,90												
	ΣΤΡΩΣΗ ΤΕΦΡΗΣ	7,80	Φ		100	63	47	25			19	23	24		[0,8	0]															$ \longrightarrow $			
	ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΛΕΠΤΟΚΟΚΚΗΣ ΙΛΥΩΔΟΥΣ	8,25	SPT	N=16																														
	ΑΜΜΟΥ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ	9,00	Φ		100	67	43	22				28	N.	.Р.				SM	2,65	1,52	1,85	0,74												
9,45	ME q _c =8,50 MPa	9,45	SPT	N=18																														
		10,00	Φ			100	90	8				25						SM	2,70	1,64	2,05	0,65												
		10,45	SPT	N=30											_																			
		11,55	Φ			100	99	9						_	_	_																		
		12,00	SPT	N=32		100	97	6						_	_	_																		
	ΣΤΡΩΣΗ ΤΕΦΡΗΣ ΠΥΚΝΗΣ	13,00	Φ			100	97	6						_	_	_																		
	ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ	13,45	SPT	N=38							_			_	_	_								-										_
	ΛΙΓΗ ΙΛΥ ΜΕ q _c =14,00 MPa	14,50	Φ CDT	N 40		100	95	9			_	N	N.P.		_	-		SM																-
		14,85	SPI	N=40										_	_	_																		
		16.05	Ψ	N=42			<u> </u>			┝─┤	-	+		+	_	+								+	ł						\rightarrow	\rightarrow		
		18.00	۵۳۱ ش	IN=42		100	96	7		┝─┤	-	+		+	+	+								+							-+	-+		
		18.45	Ψ SPT	N-45		100	90	,				+		+	-	-	\vdash							-							\rightarrow	-+		
19.00	ΠΥΘΜΕΝΑΣ ΓΕΩΤΡΗΣΗΣ	19,00	511	11-45		100	95	8		\vdash		+		+	+	+								+							\rightarrow	-+		

	ΥΨΟΜΕΤΡΟ ΚΕΦ	ΦΑΛΗΣ					-			ΣΥΓ	KENTP	ΩΤΙΚ	(A A	ΕΔ ΠΟΤ	ΑΦΟ ΈΛΕΣ	TEXI	NIKH TA EP	ΤΟΜΗ ΓΕΩΤΡ ΓΑΣΤΗΡΙΑΚΩ	ΗΣΗΣ 2 Ν ΚΑΙ Ε	2 ENITON	ΟΥ ΔΟΙ								ΔΟΚ	амн	ΣΥΜΠ	ΙΕΣΟΡ	ЛЕТРО	Y
BAGOI	ΦΗ ΣΤΡΩΣΕΩΝ	ΛΗ ΑΛΛΑΓΗΣ ΑΤΟΛΗΨΙΑΣ	ΔΕΙΓΜΑΤΟΣ	HMENH ΔΟΚΙΜΗ ΙΣ SPT APIΘΜΟΣ A 30 cm ΔΙΕΙΣΔΥΣΗΣ	KIA KI			ANAΛΥ:	ΜΕ Ξ			ΟΡΙΑ ΦΥΣ	a atti IKH	ERB	BERG ΑΣΙΑ			I KATA A. U.S.C.S.	ΕΙΔΙΚΟ ΒΑΡΟΣ	ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΥΓΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΔΕΙΚΤΗΣ ΠΟΡΩΝ	ΒΑΘΜΟΣ ΚΟΡΕΣΜΟΥ	ANTOXH 2E ANEMIDOLIZTH			ΠΑΡΑΜΕΤΡΟΙ ΔΙΑΤΜΗΤΙΚΗΣ ΑΝΤΟΧΗΣ		ΔΕΙΚΤΗΣ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ	Μ ΣΥΝΤ	ΕΤΡΟ ΣΥΜΓ ΈΛΕΣΤ C	ΜΟΝΟ 1ΙΕΣΗΣ ΓΗΣ ΣΤ ² ν (m ² / ΠΙΕ:	DΔIAΣ E E _s (k EPEO /year) EH	-ΆΤΗΣ Pa) ΠΟΙΗΣΗΣ
	ПЕРІГРА	ΣTAΘN ΔEIΓN	ζΟΠΥΤ	ΥΠΟΠΟΙΙ ΔΙΕΙΣΔΥΣΗ ΥΣΕΩΝ ΠΙ	XAAI		AMA	APLIAO2	11Λ0Σ 0005									ATATAEH	γs	γd	Yuyp.	a	sr	٩'n	r/Lo	10Σ ΚΙΜΗΣ	с - ф	c' - ф'	«/Cr	0 - 25	25 - 50	50 - 100	- 100 - 200	400 400 - 800
				T 7 KPO	4	10	40	200	API < (10	20	05	1 1 1	n g	20	80		×	tn/m ³	tn/m ³	tn/m ³			kg/cm²	Δ	ΔΟΙ	kg/cm²	kg/cm²	С	kPa	kРа	kPa	kPa	kPa kPa
		1,00	Φ				100	92	38		2	4 3	74	1	[0,7	6]		CH-OH	2,58	1,34	1,84	0,92												
2.00	Σ.Υ.Ο.	2,00	Φ			100	95	90	32		2	3 3	8 4	1	[0,8	3]		CH-OH						0,22		F _{VT (-1,80 m)}	0,09							
		2,50																																
		2,95	SPT	N=1																														
		3,50	Φ																															
	ΣΤΡΩΣΗ ΚΑΣΤΑΝΗΣ	4,20	Α				100	93	35		2	1 3	6 4	1	[0,7	5]		CH-OH	2,59	1,36	1,85	0,90				CUPP	0,10/31°	0/35°	0,243/0,039					
	q _c =0,50 MPa	4,65	SPT	N=2																														
		5,50	Φ			100	95	89	29		2	2 3	74	0	[0,8	3]		CH-OH	2,59	1,36	1,86	0,91		0,25										
		5,95	SPT	N=2																														
7,00		7,00	Φ				100	90	70		2	2 3	7 4	0	[0,8	3]		CH-OH	2,56	1,34	1,84	0,91												
	ΣΤΡΩΣΗ ΤΕΦΡΗΣ	7,70	Φ		100	65	44	26																										
	ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΜΕΣΟΛΕΠΤΟΚΟΚΚΗΣ	8,15	SPT	N=17																														
	ΙΛΥΩΔΟΥΣ ΑΜΜΟΥ ΜΕΣΗΣ	9,00	Φ		100	61	45	23				N.	Ρ.	_				SM																
9,45	ΠΥΚΝΟΤΗΤΑΣ ΜΕ q _c =8,50 MPa	9,45	SPT	N=18																												┝──┥		
		10,45	Φ								2	21		_																		,		
		10,90	SPT	N=33		100	99	9		_				_	_		_		0.70	1.62		0.00			-									
		12,00	Φ			100	98	8			2	26	_	_	_	_	-	SM	2,72	1,62	2,04	0,68										┌──┼		
		12,45	SPI	N=32		100	97	6				_	_	_	_		_															ł		
	ΣΤΡΩΣΗ ΤΕΦΡΗΣ ΠΥΚΝΗΣ	12.05	Ψ SDT	N-24		100	97	0				_		_	-																			
	ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ	15,95	ወ	IN-54		100	95	٩		-		_		_	-	_																		
	ΛΙΓΗ ΙΛΥ ΜΕ q _c =14,00 MPa	15,90	SPT	N=34		100	55																											
		17,00	Φ	-		100	96	7																										
		18,30	Φ													1																		
		18,75	SPT	N=33		100	94	10								L																		
		20,00	Φ			100	95	8																										
20,45	ΠΥΘΜΕΝΑΣ ΓΕΩΤΡΗΣΗΣ	20,45	SPT	N=35																														

3. ΚΑΜΠΥΛΗ ΔΟΚΙΜΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ ΑΡΓΙΛΟΥ CUPP

ΔΟΚΙΜΗ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΕΩΣ TRIAXIAL COMPRESSION TEST

4. ΚΑΜΠΥΛΗ ΔΟΚΙΜΗΣ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΣΥΜΠΙΕΣΗΣ ΑΡΓΙΛΟΥ

ACKIMH SYMPLESTOTHTAS

Cc: 0,243

C_r: 0,039 (Ισχύει από 0 έως 7.00m)

5. ΕΚΤΙΜΗΣΗ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ

5.1 ΣΤΡΩΣΗ Ι ΚΑΣΤΑΝΗΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ q_c=0,50 MPa

5.1.1 ΤΥΠΟΠΟΙΗΜΕΝΗ ΔΟΚΙΜΗ ΔΙΕΙΣΔΥΣΗΣ SPT - ΚΟΚΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ – ΟΡΙΑ ATTERBERG – ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

ΔΕΙΚΤΗΣ ΠΟΡΩΝ
ں ا
5 90
3 92
4 91
3 92
4 90
4 92
5 90
5 91
4 91
1 01 0
+ 91,0
8 8 8 8 8 8 8 9 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>

5.1.2 ΑΣΤΡΑΓΓΙΣΤΗ ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ

Η αστράγγιστη διατμητική αντοχή c_u προκύπτει από τις εξής δοκιμές:

- Δοκιμή ταχείας τριαξονικής φόρτισης χωρίς στερεοποίηση και αποστράγγιση UU από την οποία $c_u=c$ για $\phi=0$,
- Δοκιμή ανεμπόδιστης θλίψης από την οποία $c_u = \frac{q_u}{2}$ και

• Επί τόπου δοκιμή πτερυγίου FVT από την οποία $c_u = \lambda \times c_{uFVT}$ με λ=1,02 για PI=15 από το αντίστοιχο διάγραμμα (πιο αξιόπιστη και από τις τρεις).

ΑΣ	ΤΡΑΓΓΙΣΤΗ ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟ	ΣΧΗ ΣΤ	ΡΩΣΗΣ	ΞΙΚΑΣ	ΕΤΑΝΗΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ Γ	MEq _c =	0,50
	ΓΕΩΤΡΗΣΗ 1				ΓΕΩΤΡΗΣΗ 2		
BAΘOΣ	τύπος δοκιμής	ANTIΣTOIXO MEΓE@ΟΣ	Сu	βAΘOΣ	τύπος δοκιμής	ANTIΣTOIXO MEΓEΘOΣ	Cu
		kg/cm²	kg/cm²			kg/cm²	kg/cm²
2,20	ΠΤΕΡΥΓΙΟΥ (c _u)	0,09	0,09	1,50	ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (q _u)	0,22	0,11
2,90	ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (q _u)	0,15	0,08	1,80	ΠΤΕΡΥΓΙΟΥ (c _u)	0,09	0,09
2,90	UU (c)	0,10	0,10	5,08	ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (q _u)	0,25	0,13
4,75	UU (c)	0,11	0,11				
5,50	ΑΝΕΜΠΟΔΙΣΤΗΣ ΘΛΙΨΗΣ (q _u)	0,28	0,14				

Οι τιμές της σχεδιάζονται σε διάγραμμα συναρτήσει του βάθους και με τη μέθοδο των ελάχιστων τετραγώνων προκύπτει μια γραμμική προσέγγιση της αύξησής της.

Μετά από προφόρτιση με επίχωμα ύψους 5 m, μήκους 40 m (το μήκος της στέψης του επιχώματος είναι 20 m και κάθε παρειάς του που κατέρχεται με κλίση ½ 10 m), υγρού φαινόμενου βάρους γ_{υγρ.=}20 kN/m³ και γωνίας τριβής φ=33° που ασκεί στο

έδαφος ομοιόμορφη πίεση q=100 kPa η αστράγγιστη διατμητική αντοχή c_u προκύπτει από την εξής διαδικασία:

- Χωρίζεται η στρώση της αργίλου σε τρεις υποστρώσεις (υπόστρωση Ι με πάχος 2 m, υπόστρωση ΙΙ με πάχος 2 m και υπόστρωση ΙΙΙ με πάχος 4 m),
- Χωρίζεται το επίχωμα σε δύο περιοχές (περιοχή κάτω από τη στέψη του και περιοχή κάτω από κάθε παρειά του),

 Για το μέσο κάθε υπόστρωσης και για χαρακτηριστικά σημεία κάθε περιοχής (σημεία 1 κάτω από το μέσο του επιχώματος, σημεία 2 κάτω από την αρχή κάθε παρειάς του και σημεία 3 κάτω από το τέλος κάθε παρειάς του) υπολογίζεται από το νομογράφημα του Osterberg η πρόσθετη πίεση Δσ_z = (I_{αριστερά} + I_{δεξιά}) × γ_{υγρ.} × h και η νέα αστράγγιστη διατμητική αντοχή c_{uπροφ.} = c_{uαρχ.} + (c_{uαρχ.}/σ'_{vo}) × Δσ_z και

ΣΤΡΩΣΗ	MEZH AØMH	Сυαρχ.	σ' _{vo}
λПΟ	ΣT	kPa	kPa
I	1,00	8,38	18,40
II	3,00	10,24	45,20
	5,50	12,57	66,20

• Για κάθε περιοχή υπολογίζεται ο λόγος προστερεοποίησης $OCR = [\sigma'_{vo} + (\Delta \sigma_z^i + \Delta \sigma_z^j)/2]/\sigma'_{vo}$ και η παραμένουσα αστράγγιστη διατμητική αντοχή μετά την αφαίρεση του επιχώματος $c_{u\tau \varepsilon \lambda} = (c_{u\alpha\rho\chi}/\sigma'_{vo}) \times \sigma'_{vo} \times OCR^{0.80} = c_{u\alpha\rho\chi} \times OCR^{0.80}$.

ΑΣΤΡΑΙ	ΓΙΣΤΗ ΔΙΑ	тмнтікн	ANTOXH	ΣΤΡΩΣΗΣ	ΚΑΣΤΑΝΗ	ΙΣ ΜΑΛΑΚ	ΗΣ ΑΡΓΙΛΟ	DY ME q _c =	=0,50 MPa	META TH	ΙΝ ΠΡΟΦ	ΟΡΤΙΣΗ
ΣΗΜΕΙΑ	I ₁	I	2	I ₃	$ _1$	II	2	II_3	$ _1$	II	l ₂	III ₃
						ΑΡΙΣΤΕΡΑ						
а	10	1	.0		10	1	0		10	1	0	
b	10	()		10	()		10	()	
z	1,00	1,	00		3,00	3,	00		5,50	5,	50	
a/z	10,000	10,	000		3,333	3,3	33		1,818	1,8	18	
b/z	10,000	0,0	000		3,333	0,0	00		1,818	0,0	00	
I	0,50	0,	47		0,50	0,4	41		0,49	0,	34	
						ΔΕΞΙΑ						
а	10	1	0		10	1	0		10	1	0	
b	10	2	0		10	2	0		10	2	0	
z	1,00	1,	00		3,00	3,	00		5,50	5,	50	
a/z	10,000	10,	000		3,333	3,3	33		1,818	1,8	18	
b/z	10,000	20,	000		3,333	6,6	67		1,818	3,6	36	
I	0,50	0,	50		0,50	0,	50		0,49	0,	50	
$\Delta \sigma_z$	100	0	7	0	100	0	1	0	00	0	4	0
kPa	100	9	/	0	100	9	T	0	98	8	4	0
C _{uπρoφ.}	53,92	52	,56	8,38	32,89	30,	.86	10,24	31,17	28,	51	12,57
kPa	53,	24	30	,47	31	,88	20,	55	29	,84	20	,54
OCR	6,3	35	3,	64	3,	11	2,0)1	2,	37	1,	63
c _{uτελ.} kPa	36,	78	23	,54	25	,40	17,	88	25	,10	18	,61

Οι τιμές της σχεδιάζονται σε διάγραμμα συναρτήσει του βάθους και με τη μέθοδο των ελάχιστων τετραγώνων προκύπτει μια γραμμική προσέγγισή της.

Παρατηρείται ότι μετά την προφόρτιση η αστράγγιστη διατμητική αντοχή c_u μειώνεται με το βάθος σε αντίθεση με πριν γεγονός που οφείλεται στην εξασθένιση της επιρροής της προφόρτισης λόγω μείωσης της πρόσθετης πίεσης με το βάθος. Προσεγγιστικά θεωρείται c_u=28,27 kPa=σταθερό.

5.1.3 ΓΩΝΙΑ ΤΡΙΒΗΣ ΚΑΙ ΜΕΤΡΟ ΕΛΑΣΤΙΚΟΤΗΤΑΣ

- sinφ'=0,54⇒φ'=32,68° για PI=15 από το διάγραμμα του Kenney,
- φ'=28,75° για PI=15 από το διάγραμμα των Bjerrum και Simmons και
- φ'=35° από την καμπύλη δοκιμής τριαξονικής φόρτισης με στερεοποίηση χωρίς αποστράγγιση με παράλληλη μέτρηση της πίεσης των πόρων CUPP.

Προσεγγιστικά θεωρείται $φ' \approx 32^{\circ}$.

Πριν την προφόρτιση $E_{uaρ\chi}/\overline{c_u}$ =900⇒ $E_{uaρ\chi}$ =9635 kPa για PI=15 και OCR=1 (η άργιλος πριν της επιβληθεί η προφόρτιση είναι κανονικά στερεοποιημένη NC αφού 0,20< $\overline{c_u}/\sigma'_{vo}$ ≈0,22<0,25) και μετά την προφόρτιση $E_{ute\lambda}/\overline{c_u}$ =500⇒ E_u =14135 kPa για PI=15 και OCR=($\overline{\sigma'_{vo}}$ + q)/ $\overline{\sigma'_{vo}}$ ≈3 από τον πίνακα των Duncan και Buchignani.

5.2 ΣΤΡΩΣΗ ΙΙ ΤΕΦΡΗΣ ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΜΕΣΟΛΕΠΤΟΚΟΚΚΗΣ ΙΛΥΩΔΟΥΣ ΑΜΜΟΥ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΜΕ q_c=8,50 MPa

5.2.1 ΤΥΠΟΠΟΙΗΜΕΝΗ ΔΟΚΙΜΗ ΔΙΕΙΣΔΥΣΗΣ SPT - ΚΟΚΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ – ΟΡΙΑ ATTERBERG – ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

ХАРА	ΚΤΗΡΙΣΤΙ	ΚΑ ΣΤΡΩΣ Α	ΗΣ ΙΙ ΤΕΦ ΜΜΟΥ Μ	ΡΗΣ ΧΟΝΛ ΕΣΗΣ ΠΥΚ		ΉΣ ΕΩ Σ ΜΕ q	Σ ΜΕΣ _c =8,50	ОЛЕГ МРа	ТОК	ОККН	ΣΙΛΥΩ	ΩΔΟΥΣ	Σ
ΛΗ ϽΣ ΔΥΣΗΣ		KOKKON	ИЕТРІКН А	ΝΑΛΥΣΗ		OF ATTEF	PIA RBERG	ΞΙΑΣ	ΣΙΑΣ		02	ΟΣ	
TYNONOIHMENH AOKIN AIEI2AYZHZ SPT APIOM(KPOYZEΩN ΓIA 30 cm ΔIEI2	XAAIKIΩN ΣYΓKPATOYMENO ΣΤΟ ΚΟΣΚΙΝΟ Ν° 4) AMMOY ΣΥΓΚΡΑΤΟΥΜΕΝΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	ΟΣΤΟ ΑΡΓΙΛΟΥ - ΙΛΥΟΣ ΝΟ ΑΠΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	ΣΤΟ ΙΛΥΟΣ ΔΙΕΡΧΟΜΕΝΟ Ο ΤΟ ΚΟΣΚΙΝΟ Ν° 200	TO APΓΙΛΟΥ ΔΙΕΡΧΟΜΕΝΟ Ο ΚΟΣΚΙΝΟ Ν [°] 200 < 0005	ΟΡΙΟ ΠΛΑΣΤΙΚΟΤΗΤΑΣ	ΟΡΙΟ ΥΔΑΡΟΤΗΤΑΣ	τρητο φΥΣΙΚΗΣ ΥΓΡΑ	ΠΟΣΟΣΤΟ ΣΧΕΤΙΚΗΣ ΥΓΡΑ	ειδικο βάρος	EHPO ØAINOMENO BAP	YFPO ØAINOMENO BAP	νυσομ ζητης πορων
z	ΠΟΣΟΣΤΟ	ΠΟΣΟΣΤΟ Σ	ΔΙΕΡΧΟΜΕ	ПО20 АП	ПОΣОΣ АПО Т	ΡL	Ц	w	۱۲	tn/m ³ γ_s	tn/m ³ γ _d	tn/m³ γ _{υγρ.}	е
				ΓΕΩ	ΣΤΡΗΣΗ 1	-							
16		75	25	25		19	24	23	80	2,65	1,52	1,85	74
18		78	22	22				28					
		1	n	ΓΕΩ	ΣΤΡΗΣΗ 2								
17		74	26	26									
18		77	23	23									
				ME	ΣΗ ΤΙΜΗ			r					
17,250		76,0	24,0	24,0		19,0	24,0	25,5	80,0	2,65	1,52	1,85	74,0

5.2.2 ΓΩΝΙΑ ΤΡΙΒΗΣ ΚΑΙ ΜΕΤΡΟ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΣΥΜΠΙΕΣΗΣ

Υπολογίζεται ο διορθωμένος αριθμός κρούσεων της Τυποποιημένης Δοκιμής Διείσδυσης SPT λόγω της στάθμης του υδροφόρου ορίζοντα $N' = 15 + 0.5 \times (N - 15)$, ο συντελεστής διόρθωσής του λόγω της πίεσης του υπερκείμενου εδάφους στη στάθμη εκτέλεσης της δοκιμής c_N συναρτήσει της ενεργού πίεσης από το διάγραμμα των Peck, Hanson και Thornburn και ο τελικά διορθωμένος αριθμός κρούσεων της δοκιμής $N_c = c_N \times N'$.

ΜΕΣΟ	ΕΣΩΤΙ ΟΛΕΠΤ	EPIKH I OKOKH	ΩΝΙΑ ΤΡΙ (ΗΣ ΙΛΥΩ/	ΙΒΗΣ Σ ΔΟΥΣ Α	ΤΡΩΣΗΣ ΑΜΜΟΥ	Σ ΙΙ ΤΕΦ Υ ΜΕΣΗ	ΡΗΣ Χ Σ ΠΥΚ		ΟΚΟΚΚΗΣ ΆΣ ΜΕ q	Ξ ΕΩΣ =8,50	MPa
		ΓΕΩΊ	ΓΡΗΣΗ 1					ΓΕΩΤ	ΡΗΣΗ 2		
002	N	NI	σ' _{vo}		N	302	N	NI	σ' _{vo}		N
BAG	IN	N [*]	kPa	C _N	N _c	BAG	IN	N	kPa	C _N	N _c
8,03	16	15,5	88,59	1,05	16,3	7,93	17	16,0	87,64	1,05	16,8
9,23	18	16,5	99 <i>,</i> 99	1,00	16,5	9,23	18	16,5	99,99	1,00	16,5
A	ΝΘΙΘ	ος κρο	ΥΣΕΩΝ ΤΥ	иопс	IHMEN	ΗΣ ΔΟΚ	ίμης	ΔΙΕΙΣΔ`	γΣΗΣ SPT	N=17,	3
ΔΙΟΡ	ϿΩΜΕ	ΝΟΣ ΑΓ	ΝΘΜΟΣ Κ	ρογσε	ΩΝ ΤΥΠ	опоін	MENH	Σ ΔΟΚ	ΜΗΣ ΔΙΕΙ	δαγδη	Σ SPT
					N _c =1	.6,5					

- φ=32,50° για N_c=16,5 από το διάγραμμα των Peck, Hanson και Thornburn,
- $\phi \sqrt{20 \times N_c}$ =+15=33,17° για N_c=16,5 κατά Osaki και
- $\phi = \sqrt{12 \times N_c} + 25 = 39,07^{\circ}$ για N_c=16,5 κατά Dunham.

Αγνοώντας την τιμή κατά Dunham γιατί έχει σημαντική απόκλιση προσεγγιστικά θεωρείται φ≈33°.

- $E_s=C_1+C_2\times N=14537$ kPa με $C_1=2,60$ και $C_2=0,69$ για ιλυώδη άμμο και για N=17,3 κατά Παπαδόπουλο και Αναγνωστόπουλο,
- E_s=α+C×N=10920 kPa με α=40 και C=4 για χονδρόκοκκη έως μεσολεπτόκοκκη άμμο και για N=17,3>15 κατά Αναγνωστόπουλο και Τάσιο,
- E_s=5×(N+15)=16150 kPa για N=17,3 κατά Webb και
- E_s=7,5×(1-0,3²)×N=12693 kPa για N=17,3 κατά Farrent.

Προσεγγιστικά θεωρείται E_s=13575 kPa.

5.3 ΣΤΡΩΣΗ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ AMMOY ME ΛΙΓΗ ΙΛΥ ME q_c =14,00 MPa

5.3.1 ΤΥΠΟΠΟΙΗΜΕΝΗ ΔΟΚΙΜΗ ΔΙΕΙΣΔΥΣΗΣ SPT - ΚΟΚΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ – ΟΡΙΑ ATTERBERG – ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

ХАРАКТН	ΙΡΙΣΤΙΚΑ Σ	ΣΤΡΩΣΗΣ Ι	III ТЕФРН	Σ ΠΥΚΝΗΣ	Ε ΛΕΠΤΟΚ	οκκηΣ		ΙΟΥ Μ	ΕΛΙΓ	н ілү	ME q	_c =14,0	0 MPa
ΛΗ ΣΣ ΔΥΣΗΣ		KOKKON	ИЕТРІКН А	ΝΑΛΥΣΗ		OF ATTEF	PIA RBERG	ΞIΑΣ	ΣΙΑΣ		ΩΣ	ΟΣ	
TYNONOIHMENH AOKIN AIEIZAYZHZ SPT APIOM KPOYZEΩN FIA 30 cm AIEIZ	XA/IKIΩN ΣYFKPATOYMENO ΣΤΟ ΚΟΣΚΙΝΟ N° 4) AMMOY ΣΥΓΚΡΑΤΟΥΜΕΝΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	ΟΣΤΟ ΑΡΓΙΛΟΥ - ΙΛΥΟΣ ΕΝΟ ΑΠΟ ΤΟ ΚΟΣΚΙΝΟ Ν° 200	ΣΤΟ ΙΛΥΟΣ ΔΙΕΡΧΟΜΕΝΟ Ο ΤΟ ΚΟΣΚΙΝΟ Ν [°] 200	TO APFIAOY AIEPXOMENO O KOZKINO N° 200 < 0005	ΟΡΙΟ ΠΛΑΣΤΙΚΟΤΗΤΑΣ	ΟΡΙΟ ΥΔΑΡΟΤΗΤΑΣ	ΠΟΣΟΣΤΟ ΦΥΣΙΚΗΣ ΥΓΡΑ	ΠΟΣΟΣΤΟ ΣΧΕΤΙΚΗΣ ΥΓΡΑ	ειδικο βαροΣ	EHPO ØAINOMENO BAF	YFPO ØAINOMENO BAP	ΔΟΡΩΝΟΡΩΝ
z	ΠΟΣΟΣΤΟ	ΠΟΣΟΣΤΟ Σ	ло Олерхоме	ΠΟΣΟ ΑΠ	ΠΟΣΟΣ ΑΠΟ Τ	Ы	Г	w	۱ſ	n/m ³ Ys	n/m ³ y _d	n/m³ γ _{υγρ.}	e
			7	Г	ΕΩΤΡΗΣΗ	1				t.	Ч	Ч	
30		92	8	8				25		2,70	1,64	2,05	65
32		91	9	9							-		
38		94	6	6									
40		94	6	6									
42		91	9	9									
45		93	7	7									
		92	8	8									
		1	0	Г	ΕΩΤΡΗΣΗ	2							
33		91	9	9				21		2,72	1,62	2,04	68
32		92	8	8				26					
34		94	6	6									
34		94	6	6									
55		91	9 10	9 10									
		90	8 10	8 10									
		32	0	O	ΛΕΣΗ ΤΙΝΛ	н							
35,727		92,2	7,8	7,8				24,0		2,71	1,63	2,05	66,5

5.3.2 ΓΩΝΙΑ ΤΡΙΒΗΣ ΚΑΙ ΜΕΤΡΟ ΜΟΝΟΔΙΑΣΤΑΤΗΣ ΣΥΜΠΙΕΣΗΣ

Υπολογίζεται ο διορθωμένος αριθμός κρούσεων της Τυποποιημένης Δοκιμής Διείσδυσης SPT λόγω της στάθμης του υδροφόρου ορίζοντα $N' = 15 + 0.5 \times (N - 15)$, ο συντελεστής διόρθωσής του λόγω της πίεσης του υπερκείμενου εδάφους στη στάθμη εκτέλεσης της δοκιμής c_N συναρτήσει της ενεργού πίεσης από το διάγραμμα

ΕΣΩΤΙ	ЕРІКН	ΓΩΝΙΑ	τριβής Σ	τρωΣι	IΣ III TE	ΦΡΗΣ Γ	IYKNH	ΙΣ ΛΕΠ	тококки	ΙΣ ΑΝ	ΙΜΟΥ		
			M	Ε ΛΙΓΗ	ΙΛΥ ΜΕ	q _c =14,	00 MF	Pa					
		ΓΕΩΊ	ΓΡΗΣΗ 1					ΓΕΩΤ	ΡΗΣΗ 2				
ΒΑΘΟΣ	Ν	N'	kPa o' _{vo}	C _N	N _c	βAΘOΣ	Ν	N'	kPa σ' _{vo}	- C _N	N _c		
10,23	30	22,5	110,27	0,96	21,6	10,68	33	24,0	114,99	0,95	22,8		
11,78	32	23,5	126,54	0,93	21,9	12,23	32	23,5	131,27	0,92	21,6		
13,23	38	26,5	141,77	0,90	23,9	13,73	34	24,5	147,02	0,89	21,8		
14,68	3 38 26,5 141,77 0,90 23,9 13,73 34 24,5 147,02 0,89 21,8 8 40 27,5 156,99 0,88 24,2 15,70 34 24,5 167,70 0,85 20,8												
16,73	42	28,5	178,52	0,85	24,2	18,53	33	24,0	197,42	0,81	19,4		
18,23	45	30,0	194,27	0,82	24,6	20,23	35	25,0	215,27	0,79	19,8		
А	ΝΘΙΘ	ος κρο	ΥΣΕΩΝ ΤΥ	иопс	IHMEN	ΗΣ ΔΟΚ	ΙΜΗΣ	ΔΙΕΙΣΔ`	γΣΗΣ SPT	N=35,	7		
ΔΙΟΡΟ	ϿΩΜΕ	ΝΟΣ ΑΓ	ΝΘΜΟΣ Κ	ΡΟΥΣΕ	ΩΝ ΤΥΠ	опоін	MENH	Σ ΔΟΚΙ	ΜΗΣ ΔΙΕΙ	ΣΔΥΣΗ	Σ SPT		
					N _c =2	2,2							

των Peck, Hanson και Thornburn και ο τελικά διορθωμένος αριθμός κρούσεων της δοκιμή $N_c = c_N \times N'$.

- $φ=34,50^{\circ}$ για N_c=22,2 από το διάγραμμα των Peck, Hanson και Thornburn,
- $φ = \sqrt{20 \times N_c} + 15 = 36,07^\circ$ για N_c=22,2 κατά Osaki και
- $\phi = \sqrt{12 \times N_c} + 25 = 41,32^{\circ}$ για N_c=22,2 κατά Dunham.

Αγνοώντας την τιμή κατά Dunham γιατί έχει σημαντική απόκλιση προσεγγιστικά θεωρείται φ≈35°.

- E_s=C₁+C₂×N=36060 kPa με C₁=7,50 και C₂=0,80 για άμμο και για N=35,7 κατά Παπαδόπουλο και Αναγνωστόπουλο,
- E_s=α+C×N=16495 kPa με α=40 και C=3,50 για λεπτόκοκκη άμμο και για N=35,7>15 κατά Αναγνωστόπουλο και Τάσιο,
- E_s=5×(N+15)=25350 kPa για N=35,7 κατά Webb και
- E_s=7,5×(1-0,3²)×N=26192 kPa για N=35,7 κατά Farrent.

Προσεγγιστικά θεωρείται E_s=26024 kPa.

5.4 ΕΛΕΓΧΟΣ ΕΔΑΦΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ S_r, γ_d, γ_{υγρ.}

Υπολογίζονται αναλυτικά οι εδαφικές παράμετροι $S_r = \frac{\gamma_s \times w}{e}$, $\gamma_d = \frac{\gamma_s}{1+e}$ και $\gamma_{v\gamma\rho.} = \frac{\gamma_s \times (1+w)}{1+e}$ και οι τιμές τους προσεγγίζουν αυτές που προκύπτουν από την εκτέλεση των επί τόπου δοκιμών.

ΕΛΕ ΣΤΙ	ΓΧΟΣ Γ ΡΩΣΗΣ ΑΡΓΙΛ	ΙΑΡΑΝ Ι ΚΑΣΤ ΟΥ ΜΕ	1ETPΩN ΆΝΗΣ Ξ q _c =0,5	N S _r , γ _d , MAΛAł 50 MPa	Υ _{υγρ.} (ΗΣ	ΕΛ ΣΤΡΩΣ ΜΕΣΟ ΜΕΣ	ΕΓΧΟΣ ΈΗΣ ΙΙ ΤΕ ΟΛΕΠΤΟ ΈΗΣ ΠΥΚ	ПАРАМ ФРНΣ Х КОККН	ΈΤΡΩΝ ΚΟΝΔΡΟ Σ ΙΛΥΩΔ ΑΣ ΜΕ ο	S _r , γ _d , γ ΟΚΟΚΚΗ ΟΥΣ ΑΝ η _c =8,50	υγρ. ΙΣ ΕΩΣ ΛΜΟΥ ΜΡa	ΕΛΕ Σ ΛΕΠΤΟ	ΓΧΟΣ Π. ΤΡΩΣΗ: ΚΟΚΚΗ: (ΑΡΑΜΕ Σ ΙΙΙ ΤΕΦ Σ ΑΜΜ 1c=14,00	ΤΡΩΝ ΦΡΗΣ Γ ΟΥ ΜΕ Ο ΜΡa	S _r , γ _d , γ ΙΥΚΝΗΣ ΛΙΓΗ Ι	^ζ υγρ. Ξ ΛΥ ΜΕ
ΠΟΣΟΣΤΟ ΦΥΣΙΚΗΣ ΥΓΡΑΣΙΑΣ	ΕΙΔΙΚΟ ΒΑΡΟΣ	ΔΕΙΚΤΗΣ ΠΟΡΩΝ	ΒΑΘΜΟΣ ΚΟΡΕΣΜΟΥ	ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΥΓΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΠΟΣΟΣΤΟ ΦΥΣΙΚΗΣ ΥΓΡΑΣΙΑΣ	ΕΙΔΙΚΟ ΒΑΡΟΣ	ΔΕΙΚΤΗΣ ΠΟΡΩΝ	ΒΑΘΜΟΣ ΚΟΡΕΣΜΟΥ	ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΥΓΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΠΟΣΟΣΤΟ ΦΥΣΙΚΗΣ ΥΓΡΑΣΙΑΣ	ΕΙΔΙΚΟ ΒΑΡΟΣ	ΔΕΙΚΤΗΣ ΠΟΡΩΝ	ΒΑΘΜΟΣ ΚΟΡΕΣΜΟΥ	ΞΗΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ	ΥΓΡΟ ΦΑΙΝΟΜΕΝΟ ΒΑΡΟΣ
	۲s			þγ	γ υγρ.		۲s			PΛ	Yuyp.		۶Å			þγ	γ _{υγρ} .
3	tn/m³	Ð	Š	tn/m³	tn/m ³	3	tn/m³	Ð	Š	tn/m³	tn/m³	3	tn/m³	Ð	Š	tn/m³	tn/m³
		ΓΕΩΤΙ	ΡΗΣΗ 1					ΓΕΩΤΡ	ΉΣΗ 1					ΓΕΩΤΡΗ	IΣH 1		
36	2,58	90	103	1,36	1,85	28	2,65	74	100	1,52	1,95	25	2,70	65	104	1,64	2,05
37	2,56	92	103	1,33	1,83									ΓΕΩΤΡΗ	IΣH 2		
37	2,57	91	104	1,35	1,84							26	2,72	68	104	1,62	2,04
36	2,58	92	101	1,34	1,83									ΜΕΣΗ	тімн		
36	2,57	90	103	1,35	1,84							26	2,71	67	104	1,63	2,04
		ΓΕΩΤΙ	ΡΗΣΗ 2														
37	2,58	92	104	1,34	1,84												
36	2,59	90	104	1,36	1,85												
37	2,59	91	105	1,36	1,86												
37	2,56	91	104	1,34	1,84												
	,	ΜΕΣΗ		1	1												
37	2,58	91	103	1,35	1,84												

6. ΕΚΤΙΜΗΣΗ ΚΑΘΙΖΗΣΕΩΝ ΕΥΚΑΜΠΤΗΣ ΚΥΚΛΙΚΗΣ ΔΕΞΑΜΕΝΗΣ

6.1 ΠΡΙΝ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

6.1.1 ΑΜΕΣΕΣ ΚΑΘΙΖΗΣΕΙΣ

Υπολογίζονται οι άμεσες καθιζήσεις που προκαλεί η εύκαμπτη κυκλική δεξαμενή ακτίνας 15 m που ασκεί στο έδαφος ομοιόμορφη πίεση p=100 kPa από τον πίνακα του Milovic $\rho = p \times \frac{2}{E} \times R \times I_p$ για διάφορα σημεία της σε απόσταση r από το κέντρο της και από τον πίνακα των Ahlvin και Ulery $\rho = p \times \frac{1+\nu}{E} \times \alpha \times [\frac{z}{a} \times A + (1-\nu) \times H]$ και για σημεία εκτός αυτής. Για τις υποκείμενες της αργίλου στρώσεις ισχύει η αρχή της επαλληλίας.

	ΜΕΘΟ	ΔΟΣ ΜΙΙΟVΙΟ	
ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΚΕΝΤΡΟ	r/R	ΣΥΝΤΕΛΕΣΤΗΣ ΕΠΙΡΡΟΗΣ	καθιζήση
r			ρι
Ι		' pl	m
0,0	0,0	0,1297	0,0404
1,5	0,1	0,1293	0,0402
3,0	0,2	0,1288	0,0401
4,5	0,3	0,1267	0,0394
6,0	0,4	0,1246	0,0388
7,5	0,5	0,1206	0,0376
9,0	0,6	0,1167	0,0363
10,5	0,7	0,1080	0,0336
12,0	0,8	0,0994	0,0309
13,5	0,9	0,0751	0,0234
15,0	1,0	0,0509	0,0158
ΓΙΑ ΑΣΤΡΑ Ε=Ε _u =96	ΓΓΙΣΤΕΣ 35 kPa,	ΣΥΝΘΗΚΕΣ v=v, ENΩ EINAI (H/R	,=0,50 KAI 3) ₁ =0,467

1A	ΜΕΣΕ	Σ ΚΑΘΙΖΗΣ	ΕΙΣ ΣΤΡΩΣΙ	ΗΣ Ι ΚΑΣΤΑΝΗ	Σ ΜΑΛΑΚΗ	Σ ΑΡΓΙΛΟΥ	ME q _c =0,50 MI	Pa
			Μ	ΙΕΘΟΔΟΣ ΑΗΙ	VIN & ULER	Y		
ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΚΕΝΤΡΟ	r/α	A ₁₁	H _{I1}	καθιζήση Για z ₁₁ =0,00	A _{l2}	H _{I2}	καθιζήση για z ₁₂ =7,00 m	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ
r				ρ _{l1}			ρ ₁₂	ρ _ι
		1 00000		111	0.57704	4.07504	111	111
0,0	0,0	1,00000	2,00000	0,2335	0,57781	1,27501	0,2119	0,0216
1,5	0,1	1,00000	1,98989	0,2323	0,57348	1,26757	0,2105	0,0218
3,0	0,2	1,00000	1,97978	0,2312	0,56915	1,26013	0,2092	0,0220
4,5	0,3	1,00000	1,94865	0,2275	0,55526	1,23780	0,2051	0,0224
6,0	0,4	1,00000	1,91751	0,2239	0,54136	1,21547	0,2010	0,0229
7,5	0,5	1,00000	1,86163	0,2174	0,51500	1,17837	0,1938	0,0236
9,0	0,6	1,00000	1,80575	0,2108	0,48863	1,14127	0,1865	0,0243
10,5	0,7	1,00000	1,71564	0,2003	0,44607	1,09080	0,1760	0,0243
12,0	0,8	1,00000	1,62553	0,1898	0,40350	1,04032	0,1655	0,0243
13,5	0,9	0,75000	1,44936	0,1692	0,34730	0,98139	0,1525	0,0168
15,0	1,0	0,50000	1,27319	0,1487	0,29110	0,92246	0,1395	0,0092
30,0	2,0	0,00000	0,51671	0,0603	0,03509	0,49954	0,0622	-0,0018
45,0	3,0	0,00000	0,33815	0,0395	0,00948	0,33350	0,0400	-0,0005
EI.	Α ΑΣΤ	ΡΑΓΓΙΣΤΕΣ	ΣΥΝΘΗΚΕΣ	v=v _u =0,50 KAI	E=E _u =9635	kPa, ENΩ El	NAI $(z/\alpha)_{12}=0,40$	57

•

				1	ΜΕΘΟΔΟΣ	MILOVIC				
ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΚΕΝΤΡΟ	r/R	ΣΥΝΤΕ	ΕΛΕΣΤΕΣ ΕΠΙ	ρροής	ΚΑΘΙΖΗΣΕΙ ΣΤΡΩΜΑΤΟΓΙ ΧΑΡΑΚΤΗΓ ΣΤΡΩ	Σ ΕΔΑΦΙΚΗΣ ΡΑΦΙΑΣ ΜΕ ΤΑ ΡΙΣΤΙΚΑ ΤΗΣ ΩΣΗΣ ΙΙ	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ ΣΤΡΩΣΗΣ ΙΙ	ΚΑΘΙΖΗΣΕΙΣ ΣΤΡΩΜΑΤΟΓΡ ΧΑΡΑΚΤΗΡ ΣΤΡΩΣ	Ξ ΕΔΑΦΙΚΗΣ ΡΑΦΙΑΣ ΜΕ ΤΑ ΙΣΤΙΚΑ ΤΗΣ ΈΗΣ ΙΙΙ	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ ΣΤΡΩΣΗΣ ΙΙΙ
r		1.	1 mm	1	$\rho_{[I+II][E2]}$	$\rho_{I[E2]}$	ριι	$\rho_{[I+II+III][E3]}$	$\rho_{[I+II][E3]}$	ρ _{ιιι}
		'pi	'p[I+II]	'p[I+II+III]	m	m	m	m	m	m
0,0	0,0	0,18527	0,25011	0,47540	0,0746	0,0553	0,0193	0,0740	0,0389	0,0351
1,5	0,1	0,18410	0,24854	0,47220	0,0741	0,0549	0,0192	0,0735	0,0387	0,0348
3,0	0,2	0,18293	0,24696	0,46900	0,0737	0,0546	0,0191	0,0730	0,0384	0,0346
4,5	0,3	0,17990	0,24287	0,46010	0,0725	0,0537	0,0188	0,0716	0,0378	0,0338
6,0	0,4	0,17687	0,23877	0,45120	0,0712	0,0528	0,0185	0,0702	0,0372	0,0331
7,5	0,5	0,17033	0,22995	0,43375	0,0686	0,0508	0,0178	0,0675	0,0358	0,0317
9,0	0,6	0,16380	0,22113	0,41630	0,0660	0,0489	0,0171	0,0648	0,0344	0,0304
10,5	0,7	0,15213	0,20538	0,38680	0,0613	0,0454	0,0159	0,0602	0,0320	0,0282
12,0	0,8	0,14047	0,18963	0,35730	0,0566	0,0419	0,0147	0,0556	0,0295	0,0261
13,5	0,9	0,11060	0,14931	0,28910	0,0445	0,0330	0,0115	0,0450	0,0232	0,0218
15,0	1,0	0,08073	0,10899	0,22090	0,0325	0,0241	0,0084	0,0344	0,0170	0,0174
ΓΙΑ ΣΤΡΑ	ΓΓΙΖΟ	ΜΕΝΕΣ ΣΥΝ	ΙΘΗΚΕΣ ν=0,	30 KAI E=E _s , (H/R) _[I+II] :	/1,35, APA =0,630 KAI	E _{II} =10056 k (H/R) _[1+11+111] :	Pa KAI E _{III} =19 =1,363	9277 kPa, EN	Ω EINAI (H/F	R) _I =0,467,

KAΘIZHΣE	EIS STF	οΩΣΗΣ ΙΙ ΤΕ	ΝΟΧ ΖΗΔΦΞ	ΝΔΡΟΚΟΚΚΗ.	Σ ΕΩΣ ΜΕΣ(ΟΛΕΠΤΟΚ	νυγκηΣ ιλγΩ	DMMA 3Y0	Υ ΜΕΣΗΣ Π	/KNOTHTA	E ME q _c =8,5	0 MPa KAI ΣΤ	μΩΣΗΣΠΙ
				τεφρης Γ	ΙΥΚΝΗΣ ΛΕ	птококк	12 AMMOY I	ME AIFH IAY	ME q _c =14,00	0 MPa			
						MEOOd	DE AHLVIN &	3 ULERY					
ANOZTAZH ANO TO KENTPO	r/α	A _{II1}	H _{II1}	KAΘIZHΣH ΓΙΑ z _{II1} =7,00 m	A _{II2} ≡A _{III1}	H _{II2} ≡H _{II1}	KA©IZHΣH FIA z _{I12} =9,45 m	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ ΣΤΡΩΣΗΣ ΙΙ	KAΘIZHΣH ΓΙΑ ^{ZIII1} =9,45 m	A _{III2}	H _{III2}	KA©IZHΣH ΓIA ^{ZIII2=20,45 m}	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ ΣΤΡΩΣΗΣ ΙΙΙ
<u> </u>				PII1[E2]			P112[E2]	PII	PII11[E3]			P1112[E3]	ρ
				E			Е	Е	Е			ш	ш
0,0	0,0	0,57781	1,27501	0,2254	0,46781	1,10506	0,2072	0,0182	0,1081	0,19712	0,65973	0,0739	0,0342
1,5	0,1	0,57348	1,26757	0,2240	0,46364	1,09908	0,2058	0,0182	0,1074	0,19559	0,65765	0,0735	0,0338
3,0	0,2	0,56915	1,26013	0,2226	0,45946	1,09310	0,2045	0,0181	0,1067	0,19405	0,65557	0,0732	0,0335
4,5	0,3	0,55526	1,23780	0,2183	0,44674	1,07546	0,2006	0,0177	0,1046	0,18963	0,64400	0,0717	0,0329
6,0	0,4	0,54136	1,21547	0,2140	0,43402	1,05783	0,1966	0,0174	0,1026	0,18521	0,63244	0,0703	0,0322
7,5	0,5	0,51500	1,17837	0,2066	0,41165	1,02303	0,1892	0,0174	0,0987	0,17825	0,62793	0,0690	0,0296
0'6	0,6	0,48863	1,14127	0,1992	0,38927	0,98823	0,1817	0,0175	0,0948	0,17128	0,62342	0,0678	0,0270
10,5	0,7	0,44607	1,09080	0,1885	0,35725	0,95515	0,1733	0,0152	0,0904	0,16240	0,61065	0,0656	0,0248
12,0	0,8	0,40350	1,04032	0,1778	0,32523	0,92207	0,1649	0,0129	0,0860	0,15351	0,59789	0,0635	0,0225
13,5	0,9	0,34730	0,98139	0,1647	0,28476	0,87829	0,1540	0,0107	0,0803	0,14355	0,58302	0,0611	0,0193
15,0	1,0	0,29110	0,92246	0,1516	0,24430	0,83451	0,1431	0,0085	0,0747	0,13359	0,56816	0,0586	0,0160
30,0	2,0	0,03509	0,49954	0,0710	0,04258	0,48644	0,0712	-0,0002	0,0372	0,05182	0,41307	0,0364	0,0008
45,0	3,0	0,00948	0,33350	0,0461	0,01203	0,32925	0,0462	0,0000	0,0241	0,02047	0,30501	0,0244	-0,0003
ΓΙΑ ΣΤΡΑΓΓ	IZOME	ΕΝΕΣ ΣΥΝΘΙ	HKEΣ v=0,3	0 KAI $E=E_s/1$,	35, APA E _{II} =	-10056 kPa	KAI E _{III} =1927	77 kPa, ENΩ E	einai (z/α) _{II1} :	=0,467, (z/α) ₁₁₂ =(z/α) ₁₁₁ =	:0,630 KAI (z/o	t) ₁₁₁₂ =1,363

6.1.2 ΧΡΟΝΙΕΣ ΚΑΘΙΖΗΣΕΙΣ

Χωρίζεται η στρώση της αργίλου σε τρεις υποστρώσεις (υπόστρωση Ι με πάχος 2 m, υπόστρωση ΙΙ με πάχος 2 m και υπόστρωση ΙΙΙ με πάχος 4 m) και για το μέσο καθεμίας υπολογίζεται ο δείκτης πόρων e_o συναρτήσει της ενεργού πίεσης από την καμπύλη της δοκιμής μονοδιάστατης συμπίεσης της αργίλου και οι χρόνιες καθιζήσεις που προκαλεί η εύκαμπτη κυκλική δεξαμενή ακτίνας 15 m που ασκεί στο έδαφος ομοιόμορφη πίεση p=100 kPa κατά Terzaghi και από τον πίνακα των Ahlvin και Ulery $\rho_{c1} = c_c \times h/(1 + e_o) \times log [[\sigma'_{vo} + (A + B \times p]/\sigma'_{vo}].$

ΟΣΤΡΩΣΗ	МЕΣН ГАОМН	σ' _{vo}	ΔΕΙΚΤΗΣ ΠΟΡΩΝ
лпо	Γζ	kPa	e _o
I	1,00	18,40	0,94
II	3,00	45,20	0,93
III	5,50	66,20	0,92

Οι καθιζήσεις που προκύπτουν <u>διαδικασία</u> τη αυτή με <u>αντιστοιχούν</u> σε δοκιμή μονοδιάστατης συμπίεσης της αργίλου στο εργαστήριο, ενώ στη φύση το έδαφος βρίσκεται υπό τρισδιάστατες συνθήκες φόρτισης. Υπολογίζονται οι τελικά διορθωμένες χρόνιες <u>καθιζήσεις $\rho_c = \lambda \times \rho_{c1}$ με</u> <u>λ=0,92 για Α=0,7 για κανονικά</u> στερεοποιημένη άργιλο ΝC πριν την προφόρτιση και H/D=0,23 από το αντίστοιχο διάγραμμα.

	IONIKH IZHZH	ρ _{cl}	Е	4396	4393	4390	4380	4369	4337	4304	4198	4088	3505	2790	0014	0001	
	ΣΥΛ KA6			Ó	0	0	0	0	0	0	0	0	0	0	0,	0	
	(ΣΥΜΠΙΕΣΟΜΕΤΡ ΚΑΘΙΖΗΣΗ Α	Pc1I	w	0,4778	0,4775	0,4772	0,4760	0,4749	0,4714	0,4678	0,4563	0,4443	0,3810	0,3033	0,0015	0,0001	
	ΚΑΘΙΖΗΣΗ ΥΠΟΣΤΡΩΣΗΣ ΙΙΙ	Рсуп.ш	Е	0,1479	0,1477	0,1474	0,1465	0,1455	0,1427	0,1399	0,1321	0,1240	0,1053	0,0843	0,0012	0,0001	
50 MPa	Δσ _z νn.ιι		kРа	95,78	95,53	95,27	94,35	93,42	90,74	88,06	80,99	73,92	58,96	44,01	0,49	0,02	
ME q _c =0,9	B _{vn III}			0,30150	0,30302	0,30453	0,30820	0,31187	0,31270	0,31352	0,29193	0,27035	0,19448	0,11860	-0,02405	-0,00730	67
ΑΡΓΙΛΟΥ	Avn			0,65634	0,65228	0,64821	0,63528	0,62236	0,59474	0,56712	0,51799	0,46887	0,39517	0,32146	0,02894	0,00753	′α) _{ΥΠ.III} =0,3
νΗΣ ΜΑΛΑΚΗΣ	ΚΑΘΙΖΗΣΗ ΥΠΟΣΤΡΩΣΗΣ ΙΙ	р _{сүп.н}	Е	0,1274	0,1273	0,1273	0,1271	0,1269	0,1263	0,1257	0,1225	0,1193	0,1006	0,0779	0,0002	0,0000	_{п.II} =0,200 КАI (z/
ΙΚΑΣΤΑΙ	Δσ _{zYΠ.II}		kPa	99,25	99,19	99,13	98,89	98,66	97,83	97,01	93,00	89,00	67,89	46,78	0,09	0,01	67, (z/α) _Y
ΣΤΡΩΣΗΣ	B _{vn}			0,18857	0,19082	0,19306	0,20039	0,20772	0,22148	0,23524	0,24754	0,25983	0,17248	0,08513	-0,01593	-0,00412	/α) _{ΥΠ.1} =0,0
ΔΟΙΖΗΣΕΙΣ	Avn			0,80388	0,80106	0,79824	0,78854	0,77884	0,75684	0,73483	0,68249	0,63014	0,50642	0,38269	0,01680	0,00419	EINAI (z
XPONIE2 K	ΚΑΘΙΖΗΣΗ ΥΠΟΣΤΡΩΣΗΣ Ι	P _{cYII.I}	В	0,2025	0,2025	0,2025	0,2025	0,2024	0,2024	0,2023	0,2017	0,2011	0,1752	0,1411	0,0000	0,0000	
	$\Delta\sigma_{zY\Pi.I}$		kPa	66'63	66'63	99,92	99,90	99,88	99,79	99,70	99,04	98,39	73,66	48,93	0,01	0,00	
	B _{vn} .			0,06601	0,06697	0,06794	0,07128	0,07462	0,08228	0,08994	0,10794	0,12593	0,08102	0,03610	-0,00566	-0,00141	
	Avn.			0,93334	0,93232	0,93131	0,92773	0,92415	0,91560	0,90704	0,88249	0,85794	0,65557	0,45320	0,00574	0,00141	
	r/α			0'0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	2,0	3,0	
	ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΚΕΝΤΡΟ	,	_	0'0	1,5	3,0	4,5	6,0	7,5	9,0	10,5	12,0	13,5	15,0	30,0	45,0	

6.1.3 ΣΥΝΟΛΙΚΕΣ ΚΑΘΙΖΗΣΕΙΣ - ΠΡΟΦΙΛ ΚΑΘΙΖΗΣΕΩΝ

Υπολογίζονται οι συνολικές άμεσες καθιζήσεις $\sum \rho_{άμεσες}$ και οι συνολικές καθιζήσεις $\sum \rho$ που προκαλεί η εύκαμπτη κυκλική δεξαμενή ακτίνας 15 m που ασκεί στο έδαφος ομοιόμορφη πίεση p=100 kPa κατά Milovic και Ahlvin και Ulery (τιμές παραπλήσιες – ίσως λίγο πιο συντηρητική η μέθοδος Milovic) και σχεδιάζονται τα προφίλ τους συναρτήσει του βάθους.

		KAOIZH	ΣΕΙΣ ΕΔΑΦ	ΟΙΚΗΣ ΣΤΡ	ΩΜΑΤΟΓΡ	ΑΦΙΑΣ	-
r/R		MEGOTO			νιέζες κα		5.
	ρ _ι	ρ _{cl}	ρ _{ιι}	ρ _{ιιι}	٤ρ	2ρ _{άμεσες}	Σρ
	m	m	m	m	m	m	m
-1,0	0,0158	0,2790	0,0084	0,0174	0,2949	0,0417	0,3207
-0,9	0,0234	0,3505	0,0115	0,0218	0,3739	0,0567	0,4072
-0,8	0,0309	0,4088	0,0147	0,0261	0,4397	0,0717	0,4805
-0,7	0,0336	0,4198	0,0159	0,0282	0,4534	0,0778	0,4976
-0,6	0,0363	0,4304	0,0171	0,0304	0,4667	0,0838	0,5142
-0,5	0,0376	0,4337	0,0178	0,0317	0,4713	0,0871	0,5208
-0,4	0,0388	0,4369	0,0185	0,0331	0,4757	0,0903	0,5272
-0,3	0,0394	0,4380	0,0188	0,0338	0,4774	0,0920	0,5300
-0,2	0,0401	0,4390	0,0191	0,0346	0,4791	0,0938	0,5328
-0,1	0,0402	0,4393	0,0192	0,0348	0,4795	0,0943	0,5336
0,0	0,0404	0,4396	0,0193	0,0351	0,4800	0,0948	0,5344
0,1	0,0402	0,4393	0,0192	0,0348	0,4796	0,0943	0,5336
0,2	0,0401	0,4390	0,0191	0,0346	0,4791	0,0938	0,5328
0,3	0,0394	0,4380	0,0188	0,0338	0,4774	0,0920	0,5300
0,4	0,0388	0,4369	0,0185	0,0331	0,4757	0,0903	0,5272
0,5	0,0376	0,4337	0,0178	0,0317	0,4712	0,0871	0,5207
0,6	0,0363	0,4304	0,0171	0,0304	0,4667	0,0838	0,5142
0,7	0,0336	0,4198	0,0159	0,0282	0,4534	0,0778	0,4976
0,8	0,0309	0,4088	0,0147	0,0261	0,4397	0,0717	0,4805
0,9	0,0234	0,3505	0,0115	0,0218	0,3739	0,0567	0,4072
1,0	0,0158	0,2790	0,0084	0,0174	0,2949	0,0417	0,3207

		ΚΑΘΙΖΗΣ	ΕΙΣ ΕΔΑΦ	ΙΚΗΣ ΣΤΡ	ΩΜΑΤΟΓΡ	ΑΦΙΑΣ	
. / D	ΜΕΘ	οδος αηι	.VIN & UL	ERY ΓΙΑ ΤΙ	Σ ΑΜΕΣΕΣ	ε καθιζης	ΣΕΙΣ
r/R	ρι	ρ _{cl}	ρ _{II}	ρ _{ιιι}	Σρ _ι	Σρ _{άμεσες}	Σρ
	m	m	m	m	m	m	m
-3,0	-0,0005	0,0001	0,0000	-0,0003	-0,0004	-0,0008	-0,0007
-2,0	-0,0018	0,0014	-0,0002	0,0008	-0,0004	-0,0012	0,0002
-1,0	0,0092	0,2790	0,0085	0,0160	0,2882	0,0337	0,3127
-0,9	0,0168	0,3505	0,0107	0,0193	0,3673	0,0467	0,3972
-0,8	0,0243	0,4088	0,0129	0,0225	0,4331	0,0597	0,4685
-0,7	0,0243	0,4198	0,0152	0,0248	0,4441	0,0643	0,4841
-0,6	0,0243	0,4304	0,0175	0,0270	0,4547	0,0688	0,4992
-0,5	0,0236	0,4337	0,0174	0,0296	0,4573	0,0706	0,5043
-0,4	0,0229	0,4369	0,0174	0,0322	0,4598	0,0725	0,5094
-0,3	0,0224	0,4380	0,0177	0,0329	0,4604	0,0730	0,5110
-0,2	0,0220	0,4390	0,0181	0,0335	0,4610	0,0736	0,5126
-0,1	0,0218	0,4393	0,0182	0,0338	0,4611	0,0738	0,5131
0,0	0,0216	0,4396	0,0182	0,0342	0,4612	0,0740	0,5136
0,1	0,0218	0,4393	0,0182	0,0338	0,4611	0,0738	0,5131
0,2	0,0220	0,4390	0,0181	0,0335	0,4610	0,0735	0,5126
0,3	0,0224	0,4380	0,0177	0,0329	0,4604	0,0731	0,5110
0,4	0,0229	0,4369	0,0174	0,0322	0,4598	0,0726	0,5095
0,5	0,0236	0,4337	0,0174	0,0296	0,4573	0,0707	0,5043
0,6	0,0243	0,4304	0,0175	0,0270	0,4547	0,0688	0,4992
0,7	0,0243	0,4198	0,0152	0,0248	0,4441	0,0642	0,4841
0,8	0,0243	0,4088	0,0129	0,0225	0,4331	0,0597	0,4685
0,9	0,0168	0,3505	0,0107	0,0193	0,3673	0,0467	0,3972
1,0	0,0092	0,2790	0,0085	0,0160	0,2882	0,0337	0,3127
2,0	-0,0018	0,0014	-0,0002	0,0008	-0,0004	-0,0012	0,0002
3,0	-0,0005	0,0001	0,0000	-0,0003	-0,0004	-0,0008	-0,0007

6.2 ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

6.2.1 ΑΜΕΣΕΣ ΚΑΘΙΖΗΣΕΙΣ

Υπολογίζονται οι άμεσες καθιζήσεις που προκαλεί η εύκαμπτη κυκλική δεξαμενή ακτίνας 15 m που ασκεί στο έδαφος ομοιόμορφη πίεση p=100 kPa από τον πίνακα του Milovic $\rho = p \times \frac{2}{E} \times R \times I_p$ για διάφορα σημεία της σε απόσταση r από το κέντρο της και από τον πίνακα των Ahlvin και Ulery $\rho = p \times \frac{1+\nu}{E} \times \alpha \times [\frac{z}{a} \times A + (1-\nu) \times H]$ και για σημεία εκτός αυτής. Για τις υποκείμενες της αργίλου στρώσεις ισχύει η αρχή της επαλληλίας, ενώ η επιρροή της προφόρτισης είναι σημαντικά εξασθενημένη σε σχέση με την άργιλο για αυτό και δεν υπολογίζεται αναλυτικά. Προσεγγιστικά θεωρείται μια αύξηση του μέτρου μονοδιάστατης συμπίεσής τους E_s της τάξης του 30%

ΑΜΕΣΕΣ ΚΑ	ΑΘΙΖΗΣ	εις στρωσης ι	ΚΑΣΤΑΝΗΣ			
ΜΑΛΑΚΗΣ ΑΓ	γολιλ	ME q _c =0,50 M	Pa META THN			
	ПР	ΟΦΟΡΤΙΣΗ				
	ΜΕΘΟ	ΔΟΣ ΜΙΙΟΥΙΟ				
ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΚΕΝΤΡΟ	r/R	ΣΥΝΤΕΛΕΣΤΗΣ ΕΠΙΡΡΟΗΣ	καθιζήση			
r		1.	ρι			
•		'pl	m			
0,0	0,0	0,1297	0,0275			
1,5	0,1	0,1293	0,0274			
3,0	0,2	0,1288	0,0273			
4,5	0,3	0,1267	0,0269			
6,0	0,4	0,1246	0,0264			
7,5	0,5	0,1206	0,0256			
9,0	0,6	0,1167	0,0248			
10,5	0,7	0,1080	0,0229			
12,0	0,8	0,0994	0,0211			
13,5	0,9	0,0751	0,0159			
15,0	1,0	0,0509	0,0108			
ΓΙΑ ΑΣΤΡΑ	ΓΓΙΣΤΕΣ	ΣΥΝΘΗΚΕΣ ν=ν	v _u =0,50 KAI			
E=E _u =14135	kPa ME	ΤΑ ΤΗΝ ΠΡΟΦ	ΟΡΤΙΣΗ, ΕΝΩ			
	EINA	(H/R) _I =0,467				

ΑΜΕΣΕΣ	KAG	ΟΙΖΗΣΕΙΣ ΣΊ	ΡΩΣΗΣ Ι Κ	ΑΣΤΑΝΗΣ ΜΑΛ ΠΡΟΦΟΙ	ΑΚΗΣ ΑΡΓΙ ΣΤΙΣΗ	ΙΛΟΥ ΜΕ ϥ		TA THN			
			M	ΙΕΘΟΔΟΣ ΑΗΙ	VIN & ULER	Y					
ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΚΕΝΤΡΟ	r/α	A _{I1}	H _{I1}	καθιζήΣη Για z _{l1} =0,00	A ₁₂	H ₁₂	ΚΑΘΙΖΗΣΗ ΓΙΑ z _{l2} =7,00 m	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ			
r				ρ _{l1}			ρ ₁₂	ρ _ι			
0.0	0.0	1 00000	2 00000	0 1592	0 57781	1 27501	0 1444	0.01/17			
1.5	0,0	1,00000	1 98989	0,1592	0,57748	1,27501	0,1444	0,0147			
3.0	0.2	1.00000	1.97978	0.1576	0.56915	1,26013	0.1426	0.0150			
4.5	0.3	1.00000	1.94865	0.1551	0.55526	1.23780	0.1398	0.0153			
6,0	0,4	1,00000	1,91751	0,1526	0,54136	1,21547	0,1370	0,0156			
7,5	0,5	1,00000	1,86163	0,1482	0,51500	1,17837	0,1321	0,0161			
9,0	0,6	1,00000	1,80575	0,1437	0,48863	1,14127	0,1272	0,0166			
10,5	0,7	1,00000	1,71564	0,1365	0,44607	1,09080	0,1200	0,0166			
12,0	0,8	1,00000	1,62553	0,1294	0,40350	1,04032	0,1128	0,0166			
13,5	0,9	0,75000	1,44936	0,1154	0,34730	0,98139	0,1039	0,0114			
15,0	1,0	0,50000	1,27319	0,1013	0,29110	0,92246	0,0951	0,0063			
30,0	2,0	0,0000	0,51671	0,0411	0,03509	0,49954	0,0424	-0,0012			
45,0	3,0	0,00000	0,33815	0,0269	0,00948	0,33350	0,0272	-0,0003			
ΓΙΑ ΑΣΤΡ	45,0 3,0 0,00000 0,33815 0,0269 0,00948 0,33350 0,0272 -0,0003 ΓΙΑ ΑΣΤΡΑΓΓΙΣΤΕΣ ΣΥΝΘΗΚΕΣ ν=ν _u =0,50 ΚΑΙ Ε=Ε _u =14135 kPa ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ, ΕΝΩ ΕΙΝΑΙ (7/α) ₁₀ =0.467										

καθιζήσει														
ME c	_c =8,5	0 MPa KAI	ΣΤΡΩΣΗΣ ΙΙΙ	ΤΕΦΡΗΣ Π	ΚΝΗΣ ΛΕΙ	ТОКОККН	Σ ΑΜΜΟΥ Ν	ΙΕ ΛΙΓΗ ΙΛΥ Ι	ME q _c =14,00) Mpa				
				ME	ΤΑ ΤΗΝ ΠΙ	οφορτιΣι	1							
					ΜΕΘΟΔΟΣ	MILOVIC								
ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΚΕΝΤΡΟ	r/R	ΣΥΝΤΕ	ΕΛΕΣΤΕΣ ΕΠΙ	ρροής	ΚΑΘΙΖΗΣΕΙ ΣΤΡΩΜΑΤΟΓΙ ΧΑΡΑΚΤΗΓ ΣΤΡΩ	Σ ΕΔΑΦΙΚΗΣ ΡΑΦΙΑΣ ΜΕ ΤΑ ΡΙΣΤΙΚΑ ΤΗΣ ΙΣΗΣ ΙΙ	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ ΣΤΡΩΣΗΣ ΙΙ	ΚΑΘΙΖΗΣΕΙΣ ΣΤΡΩΜΑΤΟΓΡ ΧΑΡΑΚΤΗΡ ΣΤΡΩΣ	Έ ΕΔΑΦΙΚΗΣ ΑΦΙΑΣ ΜΕ ΤΑ ΙΣΤΙΚΑ ΤΗΣ ΕΗΣ ΙΙΙ	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ ΣΤΡΩΣΗΣ ΙΙΙ				
r		Ι.	L n un	1	$\rho_{[I+II][E2]}$	$\rho_{I[E2]}$	ρ _{ιι}	$\rho_{[I+II+III][E3]}$	$\rho_{[I+II][E3]}$	ρ _{ιιι}				
		'pi	'p[I+II]	'p[I+II+III]	m	m	m	m	m	m				
0,0	0,0	0,18527	0,25011	0,47540	0,0574	0,0425	0,0149	0,0569	0,0299	0,0270				
1,5	0,1	0,18410	0,24854	0,47220	0,0570	0,0422	0,0148	0,0565	0,0298	0,0268				
3,0	0,2	0,18293	0,24696	0,46900	0,0567	0,0420	0,0147	0,0561	0,0296	0,0266				
4,5	0,3	0,17990	0,24287	0,46010	0,0557	0,0413	0,0145	0,0551	0,0291	0,0260				
6,0	0,4	0,17687	0,23877	0,45120	0,0548	0,0406	0,0142	0,0540	0,0286	0,0254				
7,5	0,5	0,17033	0,22995	0,43375	0,0528	0,0391	0,0137	0,0519	0,0275	0,0244				
9,0	0,6	0,16380	0,22113	0,41630	0,0507	0,0376	0,0132	0,0498	0,0265	0,0234				
10,5	0,7	0,15213	0,20538	0,38680	0,0471	0,0349	0,0122	0,0463	0,0246	0,0217				
12,0	0,8	0,14047	0,18963	0,35730	0,0435	0,0322	0,0113	0,0428	0,0227	0,0201				
13,5	0,9	0,11060	0,14931	0,28910	0,0343	0,0254	0,0089	0,0346	0,0179	0,0167				
15,0	1,0	0,08073	0,10899	0,22090	0,0250	0,0185	0,0065	0,0264	0,0130	0,0134				
ΓΙΑ ΣΤΡΑΙ	TIZON	ΛΕΝΕΣ ΣΥΝΟ	ƏHKEΣ v=0,3 kPa, ENΩ EI	0 kai e=1,3 Nai (H/R) _i =0	*(E _s /1,35)),467, (H/R	META THN) _[1+11] =0,630	ΠΡΟΦΟΡΤΙΣΙ ΚΑΙ (H/R) _{[I+II+}	H, APA E _{II} =13	072 kPa KAI	E _{III} =25060				

E.

			KH ΣH Π			3	0	8	8	8	8	8	1	8	8	3	9	3		
ζΗΣΩΊ			ΣΥΝΟΛΙ ΚΑΘΙΖΗ ΣΤΡΩΣΗ	μ	E	0,026	0,026	0,025	0,025	0,024	0,022	0,020	0,019	0,017	0,014	0,012	000'0	-0,000	0,467,	
50 MPa KAI Σ ⁻			KAΘIZHΣH ΓΙΑ z _{III2} =20,45 m	P1112[E3]	ш	0,0568	0,0566	0,0563	0,0552	0,0541	0,0531	0,0521	0,0505	0,0488	0,0470	0,0451	0,0280	0,0188	EINAI (z/α) _{II1} =	
Σ ΜΕ q _c =8,5	ΟΡΤΙΣΗ		H _{iii2}			0,65973	0,65765	0,65557	0,64400	0,63244	0,62793	0,62342	0,61065	0,59789	0,58302	0,56816	0,41307	0,30501	O kPa, END	
YKNOTHTA:	THN NPOC		A _{III2}			0,19712	0,19559	0,19405	0,18963	0,18521	0,17825	0,17128	0,16240	0,15351	0,14355	0,13359	0,05182	0,02047	(AI E _{III} =2506	
υν Μέζης Π	MPa META		KAΘIZHΣH ΓΙΑ z _{III1} =9,45 m	PIII1[E3]	ш	0,0831	0,0826	0,0821	0,0805	0,0789	0,0759	0,0729	0,0695	0,0662	0,0618	0,0574	0,0286	0,0185	=13072 kPa	8
ΔΟΥΣ ΑΜΜΟ	ME q _c =14,00	k ULERY	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ ΣΤΡΩΣΗΣ ΙΙ	βıı	m	0,0140	0,0140	0,0139	0,0136	0,0134	0,0134	0,0134	0,0117	0,0099	0,0082	0,0065	-0,0002	0,0000	ΓΙΣΗ, APA Ε _Π =	[z/α) ₁₁₁₂ =1,36
ΌΚΚΗΣ ΙΛΥΩ	ΙΕ ΛΙΓΗ ΙΛΥ Ι	DE AHLVIN 8	KAΘIZHΣH ΓΙΑ ^{Z_{II2}=9,45 m}	P112[E2]	E	0,1593	0,1583	0,1573	0,1543	0,1512	0,1455	0,1398	0,1333	0,1268	0,1185	0,1101	0,0548	0,0355	ΙΝ ΠΡΟΦΟΡΙ	₁ =0,630 KAI (
олептоко	AMMOY N	ME00A(H ₁₁₂ ≡H ₁₁₁₁	<u> </u>		1,10506	1,09908	1,09310	1,07546	1,05783	1,02303	0,98823	0,95515	0,92207	0,87829	0,83451	0,48644	0,32925	5) МЕТА ТН	x) ₁₁₂ =(z/α) ₁₁₁₃
Σ ΕΩΣ ΜΕΣ	ΓΟΚΟΚΚΗΣ		A _{II2} ≣A _{III1}			0,46781	0,46364	0,45946	0,44674	0,43402	0,41165	0,38927	0,35725	0,32523	0,28476	0,24430	0,04258	0,01203	1,3*(E _s /1,35	(z/c
дрококкн	ΥΚΝΗΣ ΛΕΠ		KAΘIZHΣH ΓΙΑ z _{li1} =7,00 m	PI11[E2]	ш	0,1734	0,1723	0,1712	0,1679	0,1646	0,1589	0,1532	0,1450	0,1367	0,1267	0,1166	0,0546	0,0355	=0,30 KAI E=	
ΦΡΗΣ ΧΟΝ	ΤΕΦΡΗΣ Π'		H ₁₁₁			1,27501	1,26757	1,26013	1,23780	1,21547	1,17837	1,14127	1,09080	1,04032	0,98139	0,92246	0,49954	0,33350	ΥΝΘΗΚΕΣ ν=	
ΡΩΣΗΣ ΙΙ ΤΕ			A _{II1}			0,57781	0,57348	0,56915	0,55526	0,54136	0,51500	0,48863	0,44607	0,40350	0,34730	0,29110	0,03509	0,00948	ΟΜΕΝΕΣ	
ΙΣ ΣΤΙ			r/α			0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	2,0	3,0	AFFIZ	
ΚΑΘΙΖΗΣΕ			ANOZTAZH ANO TO KENTPO			0'0	1,5	3,0	4,5	6,0	7,5	0'6	10,5	12,0	13,5	15,0	30,0	45,0	ΓΙΑ ΣΤΙ	

6.2.2 ΧΡΟΝΙΕΣ ΚΑΘΙΖΗΣΕΙΣ

Χωρίζεται η στρώση της αργίλου σε τρεις υποστρώσεις (υπόστρωση Ι με πάχος 2 m, υπόστρωση ΙΙ με πάχος 2 m και υπόστρωση ΙΙΙ με πάχος 4 m) και για το μέσο καθεμίας υπολογίζεται ο δείκτης πόρων e_o συναρτήσει της ενεργού πίεσης από την καμπύλη της δοκιμής μονοδιάστατης συμπίεσης της αργίλου και οι χρόνιες καθιζήσεις που προκαλεί η εύκαμπτη κυκλική δεξαμενή ακτίνας 15 m που ασκεί στο έδαφος ομοιόμορφη πίεση p=100 kPa (που δεν ξεπερνά την πίεση προφόρτισης q=100 kPa) κατά Terzaghi και από τον πίνακα των Ahlvin και Ulery $\rho_{c1} = c_r \times h/(1 + e_o) \times log [[σ'_{νo} + (A + B × p]/σ'_{νo}].$

ΟΣΤΡΩΣΗ	МЕΣН ГАОМН	σ' _{vo}	ΔΕΙΚΤΗΣ ΠΟΡΩΝ
рпү	Γζ	kPa	e _o
I	1,00	18,40	0,94
II	3,00	45,20	0,93
III	5,50	66,20	0,92

Οι καθιζήσεις που προκύπτουν με τη διαδικασία αυτή δοκιμή <u>αντιστοιχούν σε</u> μονοδιάστατης συμπίεσης της αργίλου στο εργαστήριο, ενώ στη φύση το έδαφος βρίσκεται υπό τρισδιάστατες συνθήκες φόρτισης. Υπολογίζονται οι τελικά διορθωμένες χρόνιες <u>καθιζήσεις $\rho_c = \lambda \times \rho_{c1}$ με</u> <u>λ=0,80 για Α=0,3 για</u> υπερστερεοποιημένη άργιλο ΟC μετά την προφόρτιση και Η/D=0,23 από το αντίστοιχο διάγραμμα.

				XPONIE2	ΚΑΘΙΖΗΣΕΙΣ ΣΤ	ΤΩΣΗΣ Ι Κ	ΑΣΤΑΝΗΣ	MAAAK	ΉΣ ΑΡΓΙΛΟΥ ΜΕ	: q _c =0,50 h	MPa META	V THN UP	οφορτιΣΗ		
AIIOZTAZH AIIO TO KENTPO	r/α	Ayn.i	B _{VII.1}	Δσ _{zγΠ.1}	ΚΑΘΙΖΗΣΗ ΥΠΟΣΤΡΩΣΗΣ Ι	Ayn.ıı	B _{YII.II}	Δσ _{zvn.} ιι	ΚΑΘΙΖΗΣΗ ΥΠΟΣΤΡΩΣΗΣ ΙΙ	Ayn.iii	Byn.III	Δσ _{zYΠ.III}	ΚΑΘΙΖΗΣΗ ΝΙΟΣΤΡΩΣΗΣ ΙΙΙ	ΣΥΝΟΛΙΚΗ ΚΑΘΙΖΗΣΗ (ΣΥΜΠΙΕΣΟΜΕΤΡΟ)	ΣΥΝΟΛΙΚΗ KAΘIZHΣΗ
5					ρ _{cvn.1}				Р _с чп.п				Рсуп.ш	ρ _{c1l}	ρ _{c1}
-				kPa	ш			kPa	ш			kPa	ш	ш	ш
0'0	0,0	0,93334	0,06601	99,93	0,0325	0,80388	0,18857	99,25	0,0204	0,65634	0,30150	95,78	0,0237	0,0767	0,0706
1,5	0,1	0,93232	0,06697	99,93	0,0325	0,80106	0,19082	99,19	0,0204	0,65228	0,30302	95,53	0,0237	0,0766	0,0705
3,0	0,2	0,93131	0,06794	99,92	0,0325	0,79824	0,19306	99,13	0,0204	0,64821	0,30453	95,27	0,0237	0,0766	0,0705
4,5	0,3	0,92773	0,07128	06'66	0,0325	0,78854	0,20039	98,89	0,0204	0,63528	0,30820	94,35	0,0235	0,0764	0,0703
6,0	0,4	0,92415	0,07462	99,88	0,0325	0,77884	0,20772	98,66	0,0204	0,62236	0,31187	93,42	0,0234	0,0762	0,0701
7,5	0,5	0,91560	0,08228	99,79	0,0325	0,75684	0,22148	97,83	0,0203	0,59474	0,31270	90,74	0,0229	0,0757	0,0696
9,0	0,6	0,90704	0,08994	99,70	0,0325	0,73483	0,23524	97,01	0,0202	0,56712	0,31352	88,06	0,0224	0,0751	0,0691
10,5	0,7	0,88249	0,10794	99,04	0,0324	0,68249	0,24754	93,00	0,0197	0,51799	0,29193	80,99	0,0212	0,0732	0,0674
12,0	0,8	0,85794	0,12593	98,39	0,0323	0,63014	0,25983	89,00	0,0191	0,46887	0,27035	73,92	0,0199	0,0713	0,0656
13,5	0,9	0,65557	0,08102	73,66	0,0281	0,50642	0,17248	67,89	0,0161	0,39517	0,19448	58,96	0,0169	0,0612	0,0563
15,0	1,0	0,45320	0,03610	48,93	0,0227	0,38269	0,08513	46,78	0,0125	0,32146	0,11860	44,01	0,0135	0,0487	0,0448
30,0	2,0	0,00574	-0,00566	0,01	0,0000	0,01680	-0,01593	0,09	0,0000	0,02894	-0,02405	0,49	0,0002	0,0002	0,0002
45,0	3,0	0,00141	-0,00141	0,00	0,0000	0,00419	-0,00412	0,01	0,0000	0,00753	-0,00730	0,02	0,0000	0,0000	0,0000
						EINAI (z	/α) _{YΠ I} =0,C)67, (z/α)	_{YП.II} =0,200 KAI (z/	/α) _{YΠ.III} =0,ŝ	367				
	l														

6.2.3 ΣΥΝΟΛΙΚΕΣ ΚΑΘΙΖΗΣΕΙΣ - ΠΡΟΦΙΛ ΚΑΘΙΖΗΣΕΩΝ

Υπολογίζονται οι συνολικές άμεσες καθιζήσεις $\sum \rho_{άμεσες}$ και οι συνολικές καθιζήσεις $\sum \rho$ που προκαλεί η εύκαμπτη κυκλική δεξαμενή ακτίνας 15 m που ασκεί στο έδαφος ομοιόμορφη πίεση p=100 kPa κατά Milovic και Ahlvin και Ulery (τιμές παραπλήσιες – ίσως λίγο πιο συντηρητική η μέθοδος Milovic) και σχεδιάζονται τα προφίλ τους συναρτήσει του βάθους.

	КАС)ΙΖΗΣΕΙΣ Ε	ΔΑΦΙΚΗΣ	ΣΤΡΩΜΑ ΡΟΦΟΡΤΙΙ	ΤΟΓΡΑΦΙ/ ΣΗ	ΑΣ ΜΕΤΑ	THN
r/R		ΜΕΘΟΔΟ	Σ ΜΙΙΟΥΙΟ	ΓΙΑ ΤΙΣ Α	ΜΕΣΕΣ Κ/	ΑΘΙΖΗΣΕΙΣ	
	ρι	ρ _{cl}	ρ _{II}	ρ _{ιιι}	Σρι	Σρ _{άμεσες}	Σρ
	m	m	m	m	m	m	m
-1,0	0,0108	0,0448	0,0065	0,0134	0,0556	0,0307	0,0755
-0,9	0,0159	0,0563	0,0089	0,0167	0,0722	0,0416	0,0978
-0,8	0,0211	0,0656	0,0113	0,0201	0,0867	0,0525	0,1181
-0,7	0,0229	0,0674	0,0122	0,0217	0,0903	0,0569	0,1243
-0,6	0,0248	0,0691	0,0132	0,0234	0,0939	0,0613	0,1304
-0,5	0,0256	0,0696	0,0137	0,0244	0,0952	0,0637	0,1333
-0,4	0,0264	0,0701	0,0142	0,0254	0,0965	0,0661	0,1362
-0,3	0,0269	0,0703	0,0145	0,0260	0,0972	0,0673	0,1376
-0,2	0,0273	0,0705	0,0147	0,0266	0,0978	0,0686	0,1391
-0,1	0,0274	0,0705	0,0148	0,0268	0,0979	0,0690	0,1395
0,0	0,0275	0,0706	0,0149	0,0270	0,0981	0,0694	0,1400
0,1	0,0274	0,0705	0,0148	0,0268	0,0979	0,0690	0,1395
0,2	0,0273	0,0705	0,0147	0,0266	0,0978	0,0686	0,1391
0,3	0,0269	0,0703	0,0145	0,0260	0,0972	0,0673	0,1376
0,4	0,0264	0,0701	0,0142	0,0254	0,0966	0,0661	0,1362
0,5	0,0256	0,0696	0,0137	0,0244	0,0952	0,0637	0,1333
0,6	0,0248	0,0691	0,0132	0,0234	0,0938	0,0613	0,1304
0,7	0,0229	0,0674	0,0122	0,0217	0,0903	0,0569	0,1242
0,8	0,0211	0,0656	0,0113	0,0201	0,0867	0,0525	0,1181
0,9	0,0159	0,0563	0,0089	0,0167	0,0722	0,0416	0,0978
1,0	0,0108	0,0448	0,0065	0,0134	0,0556	0,0307	0,0755

	KAG	ΙΖΗΣΕΙΣ Ε	ΔΑΦΙΚΗΣ	ΣΤΡΩΜΑ	ТОГРАФИ	ας Μετά	THN
r/R	MEG	οδος αμ	ILVIN & U	LERY FIA 1	ΊΣ ΑΜΕΣΕ	Σ ΚΑΘΙΖΗ	ΣΕΙΣ
	ρι	ρ _{cl}	ρ _{ιι}	ρ _{ιιι}	Σρι	Σρ _{άμεσες}	Σρ
	m	m	m	m	m	m	m
-3,0	-0,0003	0,0000	0,0000	-0,0003	-0,0003	-0,0006	-0,0006
-2,0	-0,0012	0,0002	-0,0002	0,0006	-0,0010	-0,0008	-0,0006
-1,0	0,0063	0,0448	0,0065	0,0123	0,0511	0,0251	0,0699
-0,9	0,0114	0,0563	0,0082	0,0148	0,0677	0,0344	0,0907
-0,8	0,0166	0,0656	0,0099	0,0173	0,0822	0,0438	0,1094
-0,7	0,0166	0,0674	0,0117	0,0191	0,0840	0,0474	0,1148
-0,6	0,0166	0,0691	0,0134	0,0208	0,0857	0,0508	0,1199
-0,5	0,0161	0,0696	0,0134	0,0228	0,0857	0,0523	0,1219
-0,4	0,0156	0,0701	0,0134	0,0248	0,0857	0,0538	0,1239
-0,3	0,0153	0,0703	0,0136	0,0253	0,0856	0,0542	0,1245
-0,2	0,0150	0,0705	0,0139	0,0258	0,0855	0,0547	0,1252
-0,1	0,0149	0,0705	0,0140	0,0260	0,0854	0,0549	0,1254
0,0	0,0147	0,0706	0,0140	0,0263	0,0853	0,0550	0,1256
0,1	0,0149	0,0705	0,0140	0,0260	0,0854	0,0549	0,1254
0,2	0,0150	0,0705	0,0139	0,0258	0,0854	0,0547	0,1251
0,3	0,0153	0,0703	0,0136	0,0253	0,0856	0,0542	0,1245
0,4	0,0156	0,0701	0,0134	0,0248	0,0858	0,0538	0,1239
0,5	0,0161	0,0696	0,0134	0,0228	0,0857	0,0523	0,1219
0,6	0,0166	0,0691	0,0134	0,0208	0,0856	0,0508	0,1199
0,7	0,0166	0,0674	0,0117	0,0191	0,0839	0,0473	0,1147
0,8	0,0166	0,0656	0,0099	0,0173	0,0822	0,0438	0,1094
0,9	0,0114	0,0563	0,0082	0,0148	0,0677	0,0344	0,0907
1,0	0,0063	0,0448	0,0065	0,0123	0,0511	0,0251	0,0699
2,0	-0,0012	0,0002	-0,0002	0,0006	-0,0010	-0,0008	-0,0006
3,0	-0,0003	0,0000	0,0000	-0,0003	-0,0003	-0,0006	-0,0006

7. ΜΕΛΕΤΗ ΠΡΟΣΩΡΙΝΗΣ ΑΝΤΙΣΤΗΡΙΞΗΣ ΠΑΡΕΙΩΝ ΕΚΣΚΑΦΗΣ

Για την προσωρινή αντιστήριξη των παρειών της εκσκαφής βάθους 3,5 m μελετούνται ως λύσεις το αυτοφερόμενο πέτασμα πασσαλοσανίδων, το απλώς αγκυρωμένο πέτασμα πασαλοσανίδων, η αντηριδωτή αντιστήριξη και το ελεύθερο κεκλιμένο πρανές.

7.1 ΑΥΤΟΦΕΡΟΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ

Η μελέτη γίνεται με χρήση του προγράμματος ReWard 2.5 στο οποίο τίθενται ως δεδομένα το βάθος της εκσκαφής, οι εδαφικές παράμετροι και τα πάχη των στρώσεων, η στάθμη του υδροφόρου ορίζοντα εκατέρωθεν της εκσκαφής και η διατομή των πασσαλοσανίδων που χρησιμοποιούνται που επιλέγεται σύμφωνα με τους καταλόγους των κατασκευαστικών εταιρειών (Larssen LX32 με b=600 mm και h=450 mm) και προκύπτουν ως αποτελέσματα το ελάχιστο βάθος έμπηξης του πετάσματος, οι πιέσεις του εδάφους κατά Rankine, τα διαγράμματα ροπών κάμψης και τεμνουσών του πετάσματος και οι μέγιστες τιμές τους και το βάθος στο οποίο αυτές αναπτύσσονται.

	ΣΥΝ	ΙΟΨΗ ΑΠΟ	ΟΤΕΛΕΣΜΑΤΩΝ						
	ΕΛΑΧΙΣΤΟ		ΒΑΘΟΣ		ΒΑΘΟΣ				
	ΒΑΘΟΣ	M _{max}	ГІА M=M _{max}	Q _{max}	ГIA Q=Q _{max}				
	εμπηέης								
	m	kNm/m	m	kN/m	m				
ΠΡΙΝ ΤΗΝ	12,28	-425 <i>,</i> 8	8,31	-385 <i>,</i> 6	10,82				
ΠΡΟΦΟΡΤΙΣΗ									
ΕΛΕΓΧΟΣ		M_{max}	/σ _{επ.} =3406 cm ³ <5	5500 cm ³					
ΔΙΑΤΟΜΗΣ	Ο έλεγχος	ικανοποιε	είται για επιτρεπό	ρμενη τάσr	ι εφελκυσμού				
		του	χάλυβα σ _{επ.} =125	N/mm ² .					
META THN	3,67	-0,3	3,54	-5,1	3,64				
ΠΡΟΦΟΡΤΙΣΗ*									
ΕΛΕΓΧΟΣ		Mm	_{ax} /σ _{επ.} =2 cm ³ <<55	500 cm^3					
ΔΙΑΤΟΜΗΣ	Ο έλεγχος	ικανοποιε	είται για επιτρεπό	ρμενη τάσr	ι εφελκυσμού				
		του	χάλυβα σ _{επ.} =125	N/mm ² .					
* <u>Η λύση αυτή είναι</u>	αντιοικονομικη	<u>ή αφού τα ει</u>	ντατικά μεγέθη που α	αναπτύσσον	<u>ται στο πέτασμα</u>				
<u>είναι πολύ μικρά, εν</u>	<u>ώ το βάθος έμι</u>	<u>τηξης του πε</u>	<u>ετάσματος δεν καλύτ</u>	<u>ττει το ελάχι</u>	<u>στο απαιτούμενο</u>				
<u>όριο των 0,5 m μ</u>	μέσα στο φέροι	ν στρώμα δη	ιλαδή τη στρώση ΙΙ τε	εφρής χονδρ	<u>όκοκκης έως</u>				
<u>μεσολε</u>	<u>πτόκοκκης ιλυα</u>	<u>ύδους άμμοι</u>	<u>υ μέσης πυκνότητας</u>	<u>με q_c=8,50 Ν</u>	<u>1Pa.</u>				

7.1.1 ΠΡΙΝ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

ReWard.	Page no	1
	Job no	
	Engineer	
	Revision	
	Date	11/10/2010
	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh	ReWaRD 2	5 Service
teliko\8.ÁÕÔÏÖÅÑÏÌÅÍĨ ÐÅÔÁÓÌÁ ÐÑÉÍ ÔÇÍ ÐÑÏÖÏÑÔÉÓÇ.RWD	Release 10)
Licensed to:		
©1992-2003 Geocentrix Ltd. All Rights Reserved.	1	

Construction Stages

Name	Term	Objects present in this stage
Construction	Short	Retaining Wall 1
Stage 1		On retained side: Ground Profile 1, Borehole 1, Water Table 1,
		On excavated side: Excavation 1, Borehole 1, Water Table 2,

Ground Profiles

Name	Туре	Other Properties
Ground Profile 1	Horizontal	
	Ground	

Excavations

Name	Туре	Depth	Plan	Plan	Other Properties	
		(m)	length	breadth	• •	
			(m)	(m)		
Excavation 1	Horizontal Excavation	3.50	-	-		

Soils

Class	State	Other Properties
Unclassified	Unspecified	Soil is not fissured
Unclassified	Unspecified	
Unclassified	Unspecified	
	Class Unclassified Unclassified Unclassified	Class State Unclassified Unspecified Unclassified Unspecified Unclassified Unspecified

Soil properties

Name	Wet weight	Dry weight	Failure state	Friction	Cohesion	Poisson's
	kN/m^3	kN/m^3		0	kPa	ratio
Soil 1	18.4	18.4	Peak	32.0	0.0	0.30
Soil 2	19.5	16.5	Peak	33.0	0.0	0.30
Soil 3	20.5	17.5	Peak	35.0	0.0	0.30

Soil properties (undrained)

Name	Strength	Strength increase	From depth
	kPa	kN/m^3	m
Soil 1	7.5	0.9	0.00

Layers

Name	Туре	Thickness	Soil	Dip	OCR	Tension	
		(m)		(°)		crack	
Layer 1	Undrained Layer	7.00	Soil 1	0.0	1.0	None	Not rigid
Layer 2	Drained Layer	2.45	Soil 2	0.0	1.0	None	Not rigid
Layer 3	Drained Layer	11.00	Soil 3	0.0	1.0	None	Not rigid

Job No		Revision		Page No	2
Engineer		Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\8.ÁŐÔÏÖÅÑIÌÅÍĨ ĐÅÔÁÓÌÁ ĐÑÉÍ ÔÇÍ ĐÑÏÖĨÑÔÉÓÇ.RWD			ReWaRD Release 1	2.5 Service 0	
Licensed to:					

Layers : Limi	ting coefficients				
Name	Limiting coefficients	Ka	Kac	Кр	Крс
Layer 1	Rankine				
Layer 2	Rankine				
Layer 3	Rankine				

Boreholes

Name	DepthContains layers:
	(m)
Borehole 1	20.45 Layer 1; Layer 2; Layer 3;

Water Tables

Name	Туре	Depth	Gradient Other Properties
		(m)	(kN/m^3)
Water Table 1	Hydrostatic Water Table	2.00	9.81 Hydraulically connected to overlying water
Water Table 2	Hydrostatic Water Table	3.50	9.81 Hydraulically connected to overlying water

Retaining Walls

Name	Туре	Depth of toe	Upstand	Material	Density	E
		m	m		kg/m^3	GPa
Retaining Wall 1	Sheet Pile Wall	20.00	0.00	Steel	7800	210.0

Retaining Wall sections

Name	Section	Sectional area	Moment of inertia	Section modulus
		cm^2/m	cm^4/m	cm^3/m
Retaining Wall 1	Sheet pile section =	242	72028	3201
	LX32			

Sheet pile sections

Section	b	h	d	t	f	A	m/L	m/A	Π	Z
	mm	mm	mm	mm	mm	cm^2/m	kg/m	kg/m^2	cm^4/m	cm^3/m
LX32	600	450	21.5	9.8	328	242	113.9	189.8	72028	3201

Retaining Walls : Soil-structure Interface

Name	Soil-structure Interface	Interface	Drained	Undrained	Max.
		/soil friction	adhesion	adhesion	adhesion
			/cohesion	/cohesion	kPa
Retaining Wall 1	Custom Interface	0.00	0.00	0.00	0.0
_		0.00	0.00	0.00	0.0

Design Standard

Type = Custom Design Standard Earth pressure coefficients Type = Rankine No tension crack Cantilever toe-in = 20%

Equilibrium calculated at the minimum safe embedment (with designated safety factors)

Job No	Revision		Page No	3
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplymatikh				2.5 Service
teliko\8.AOOIOANIIAII ĐĂOAOIA ĐNEI OÇI ĐNIOINOEOÇ.RWD				0
Licensed to:				

Design Standard [Continued]

Unfavourable Permanent (G) = 1.00 Variable (Q) = 1.00Accidental (A) = 1.00Favourable Permanent (G) = 1.00 Variable (Q) = 1.00Accidental (A) = 1.00 Minimum surcharge = 0 kPa On shearing resistance = 1.00 On effective cohesion = 1.00On undrained strength = 1.00 On effective earth pressures = 1.50 On total earth pressures = 1.00 Safety factor on resistance applied via: Gross passive pressures Minimum active pressure = 0.00 kN/m^3 Unplanned excavation = None Softened formation = 0 m On bending moments = 1.00On shear forces = 1.00 On prop forces Short-term = 1.00/1.00 Long-term = 1/1

Job No	Revision		Page No	4
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\8.ÁÕÕlÖÅÑIÌÅÍĬ ĐÅÔÁÓÌÁ ĐŇÉÍ ÔÇÍ ĐÑIÖIŇÔÉÓÇ.RWD			ReWaRD Release 1	2.5 Service 0
Licensed to:			1	

Job No	Revision	•	Page No	5
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouc teliko\8.ÁÕÕÏÖÅÑÏÌÅÍÏ ĐÅÔÁ	∖\Desktop\diplvmatikh)ÌÁ ĐÑÉÍ ÔÇÍ ĐÑÏÖÏÑÔÉÓÇ	.RWD	ReWaRD 2 Release 10	.5 Service
Licensed to:				

Construction Stage 1 - Earth Pressures As Built

Job No	Revision	•	Page No	6
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\8.ÁŐÔÏÖÅÑÏÌÅÍĨ ĐÅÔÁÓÌÁ ĐŇÉÍ ÔÇÍ ĐÑÏÖÏÑÔÉÓÇ.RWD				2.5 Service 0
Licensed to:				

Construction Stage 1 - Earth Pressures At Minimum Safe Embedment

Job No	· · · · ·	Revision		Page No	7
Engineer	· · · · · · · · · · · · · · · · · · ·	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\8.ÁŐÔÏÖÅÑIÌÅÍĬ ĐÅÔÁÓÌÁ ĐŇÉÍ ÔÇÍ ĐÑÏÖĨŇÔÉÓÇ.RWD				ReWaRD Release 1	2.5 Service 0
Licensed to:					

Construction Stage 1 - Structural Forces

Job No		Revision	•	Page No	8
Engineer		Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\8.ÁÕÔÏÖÅÑIÌÅÍĬ ĐÅÔÁÓÌÁ ĐÑÉÍ ÔÇÍ ĐÑÏÖĨÑÔÉÓÇ.RWD				ReWaRD Release 1	2.5 Service 0
Licensed to:					

Job No			Revisio	n	Page No	9
Engineer			Date	11/10/20	10 Checked	
Document: C:	\Users\nancou	ico\Desktop\di	plvmatikh	_	ReWaRD 2	5 Service
teliko\8.AOOI	DANIIAII ĐÀO.	ÁOIA ÐÑÉI Ó(çi ənioinoe	ÓÇ.RWD	Release 10	
Licensed to:						
Construction S	Stage 1 - Earth	Pressures As	Built			
Depth	EarthPr	WaterPr	TotalPr	EarthPr	WaterPr	TotalPr
m	kPa	kPa	kPa	kPa	kPa	kPa
	Retained	Retained	Retained	Excavated	Excavated	Excavated
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
3.50	42.99	0.00	42.99	0.00	0.00	0.00
3.50	42.99	0.00	42.99	21.41	0.00	21.41
5.95	83.51	0.00	83.51	71.05	0.00	71.05
5.95	83.51	0.00	83.51	71.05	0.00	71.05
7.00	100.88	0.00	100.88	92.32	0.00	92.32
7.00	23.52	49.03	72.55	102.02	34.32	136.35
9.45	30.52	73.06	103.58	182.58	58.35	240.93
9.45	28.05	73.06	101.11	198.63	58.35	256.97
10.50	31.09	83.36	114.45	240.06	68.65	308.70
10.50	31.09	83.36	114.45	240.06	68.65	308.70
17.25	50.65	149.55	200.21	506.42	134.84	641.26
Construction S	Stage 1 - Earth	Pressures At	Minimum Safe	e Embedment		
Depth	EarthPr	WaterPr	TotalPr	EarthPr	WaterPr	TotalPr
m	kPa	kPa	kPa	kPa	kPa	kPa
	Retained	Retained	Retained	Excavated	Excavated	Excavated
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
3.50	42.99	0.00	42.99	0.00	0.00	0.00
3.50	42.99	0.00	42.99	21.41	0.00	21.41
5.95	83.51	0.00	83.51	71.05	0.00	71.05
5.95	83.51	0.00	83.51	71.05	0.00	71.05
7.00	100.88	0.00	100.88	92.32	0.00	92.32
7.00	23.52	49.03	72.55	102.02	34.32	136.35
9.45	30.52	73.06	103.58	182.58	58.35	240.93
9.45	28.05	73.06	101.11	198.63	58.35	256.97
10.50	31.09	83.36	114.45	240.06	68.65	308.70
10.50	31.09	83.36	114.45	240.06	68.65	308.70
10.82	32.02	86.49	118.51	252.67	71.78	324.45

Job No	Revision		Page No	10
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvma	likh		ReWaRD	2.5 Service
teliko\8.ÁÕÕlÖAŇIIAII ĐAÔAÓIA ĐŇÉI ÔÇI ĐŇI	OIÑOÉÓÇ.	RWD	Release 1	0
Licensed to:				
Construction Stage 1 - Required Embedment As Results of earth pressure calculation	Built			
Retaining Wall				
Name = Prototype: Retaining Wall 1				
Retained height = 3.50 m				
Depth of toe = 20.00 m				
Partial factors				
Factors on actions				
Unfavourable				
Permanent (G) = 1.00				
Variable (Q) = 1.00				
Accidental (A) = 1.00				
Favourable				
Permanent (G) = 1.00				
Variable (Q) = 1.00				
Accidental (A) = 1.00				
Minimum surcharge = 0 kPa				
Factors on material properties				
On shearing resistance = 1.00				
On effective conesion = 1.00				
On undrained strength = 1.00				
Factors on resistance				
On effective earth pressures = 1.50				
On total earth pressures = 1.00	-			
Minimum active pressure = 0.00 kN/m^2	s passive pr	essures		
Sofoty morgins on geometry				
Unplanned exception = None				
Softened formation = 0 m				
Factors on structural forces				
On bending moments = 1.00				
On shear forces = 1.00				
On prop forces				
Short-term = 1.00/1.00				
Long-term = $1/1$				
Moments				
Overturning = 9791 kNm/m				
Restoring = 18148 kNm/m				
Out-of-balance = -8357 kNm/m				
Restoring/Overturning = 185 %				
Reaction at wall toe = -2465.8 kN/m				
				•

Job No	Revision		Page No	11
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvm	atikh		ReWaRD 2.	5 Service
teliko\8.ÁÕÕIÖÅÑIÌÅÍĬ ĐÅÔÁÓÌÁ ĐŇÉÍ ÔÇÍ ĐÍ	NIOINOÉÓÇ.F	RWD	Release 10	
Licensed to:				
Construction Stage 1 - Required Embedment A Results of earth pressure calculation	t Minimum Sa	ife Embedm	ent	
Retaining Wall				
Name = Prototype: Retaining Wall 1				
Retained height = 3.50 m				
Depth of toe = 12.28 m				
Partial factors				
Factors on actions				
Unfavourable				
Permanent (G) = 1.00				
Variable (Q) = 1.00				
Accidental (A) = 1.00				
Favourable				
Permanent (G) = 1.00				
Variable $(Q) = 1.00$				
Accidental (A) = 1.00				
Minimum surcharge = 0 kPa				
Factors on material properties				
On snearing resistance = 1.00				
On undrained strength = 1.00				
Eactors on resistance				
On effective earth pressures = 1.50		5		
On total earth pressures = 1.00		-		
Safety factor on resistance applied via: Gro	ss passive pre	essures		
Minimum active pressure = 0.00 kN/m^3				
Safety margins on geometry				
Unplanned excavation = None				
Softened formation = 0 m				
Factors on structural forces				
On bending moments = 1.00				
On shear forces = 1.00				
On prop forces				
Short-term = $1.00/1.00$				
Long-term - 1/1				
Overturning = 2445 kNm/m				
Restoring = 2445 kNm/m				
Out-of-balance = 0 kNm/m				
Restoring/Overturning = 100 %				
The wall is in equilibrium				
Reaction at wall toe = -385.6 kN/m				
Construction Stage 1: Structural Forces	oroo Nictor			
(m) Moment (kN/m) (k	N/m)			
	with			
8.31 -425.8 -0.7 See al	hoveMaximum	hendina m	oment	
10.82 -3.9 -385.6 See al	boveMaximum	shear force)	
			-	
Construction Stage 1: Messages Validating the construction stage				

.

Job No	Revision		Page No	12
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvma	tikh		ReWaRD	2.5 Service
teliko\8.ÁŐÔIÖÁÑIÌÁÍI ÐÅÔÁÓIÁ ÐÑÉÍ ÔÇÍ ÐÑĬ	ÖĨŇÔÉÓÇ.F	RWD	Release 1	0
Licensed to:				
Construction Stage 1: Messages [Continued] Calculating earth pressures as built (for the spec Calculating earth pressures at the minimum safe Calculating structural forces Calculating base stability Calculating displacements Calculating durability 2 error/warning message(s) generated during the for more information	ified wall len embedmen e calculation	gth and safe t (with the s s: please ins	ety factors) becified sa) fety factors) lessages View

7.1.2 ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

ELA VARIA	Page no	1
	Job no	
	Engineer	
	Revision	
	Date	11/10/2010
	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh	ReWaRD 2	.5 Service
teliko\10.ÁÖÔÏÖÅÑIÌÅÍÏ ÐÅÔÁÓÌÁ META ÔÇÍ ÐŇÏÖÏŇÔÉÓÇ.RWD	Release 10)
Licensed to:		
©1992-2003 Geocentrix Ltd. All Rights Reserved.		

Construction Stages

	-	
Name	Term	Objects present in this stage
Construction	Short	Retaining Wall 1
Stage 1		On retained side: Ground Profile 1, Borehole 1, Water Table 1,
-		On excavated side: Excavation 1, Borehole 1, Water Table 2,

Ground Profiles

Ground Promes		
Name	Туре	Other Properties
Ground Profile 1	Horizontal	
	Ground	

Excavations

Name	Туре	Depth (m)	Plan length (m)	Plan breadth (m)	Other Properties	
Excavation 1	Horizontal Excavation	3.50	-	-		

Soils

Name Type		Class	State	Other Properties
Soil 2	Sand	Unclassified	Unspecified	
Soil 3	Sand	Unclassified	Unspecified	
Soil 1	Clay	Unclassified	Unspecified	Soil is not fissured

Soil properties

Name	Wet weight	Dry weight Failure state		Friction	Cohesion	Poisson's
	kN/m^3	kN/m^3		0	kPa	ratio
Soil 2	19.5	16.5	Peak	33.0	0.0	0.30
Soil 3	20.5	17.5	Peak	35.0	0.0	0.30
Soil 1	18.4	18.4	Peak	32.0	0.0	0.30

Soil properties (undrained)

Name	Strength	Strength increase	From depth
	kPa	kN/m^3	m
Soil 1	28.3	0.0	0.00

Layers							
Name	Туре	Thickness (m)	Soil	Dip (°)	OCR	Tension crack	
Layer 1	Undrained Layer	7.00	Soil 1	0.0	1.0	None	Not rigid
Layer 2	Drained Layer	2.45	Soil 2	0.0	1.0	None	Not rigid
Layer 3	Drained Layer	11.00	Soil 3	0.0	1.0	None	Not rigid

Job No	Revision		Page No	2
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\De	ReWaRD	2.5 Service		
teliko\10.ÁÕÕÏÖÅÑÏÌÅĺĨ ÐÅÔÁÓÌA	Release 1	0		
Licensed to:				

Layers : Limiting coefficients

Name	Limiting coefficients	Ka	Kac	Кр	Kpc
Layer 1	Rankine				
Layer 2	Rankine				
Layer 3	Rankine				

Boreholes

Name	Depth Contains layers:
	(m)
Borehole 1	20.45 Layer 1; Layer 2; Layer 3;

Water Tables

Name	Туре	Depth	Gradient/Other Properties
		(m)	(kN/m^3)
Water Table 1	Hydrostatic Water Table	2.00	9.81 Hydraulically connected to overlying water
Water Table 2	Hydrostatic Water Table	3.50	9.81 Hydraulically connected to overlying water

Retaining Walls

Retaining wans						
Name	Туре	Depth of toe	Upstand	Material	Density	E
	•••	m	m		kg/m^3	GPa
Retaining Wall 1	Sheet Pile Wall	20.00	0.00	Steel	7800	210.0

Retaining Wall sections

Name	Section	Sectional area	Moment of inertia	Section modulus
		cm^2/m	cm^4/m	cm^3/m
Retaining Wall 1	Sheet pile section = LX32	242	72028	3201

Sheet pile sections

Section	b	h	d	t	f	A	m/L	m/A		Z
	mm	mm	mm	mm	mm	cm^2/m	kg/m	kg/m^2	cm^4/m	cm^3/m
LX32	600	450	21.5	9.8	328	242	113.9	189.8	72028	3201

Retaining Walls : Soil-structure Interface

Name	Soil-structure Interface	Interface	Drained	Undrained	Max.
		/soil friction	adhesion	adhesion	adhesion
			/cohesion	/cohesion	kPa
Retaining Wall 1	Custom Interface	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	0.0

Design Standard

Type = Custom Design Standard Earth pressure coefficients Type = Rankine No tension crack Cantilever toe-in = 20% Equilibrium calculated at the minimum safe embedment (with designated safety factors)

Job No	Revision	1.	Page No	3
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\10.ÁÕÔÏÖÅÑĬÌÅÍĨ ĐÅÔÁÓÌÁ META ÔÇÍ ĐÑÏÖÏÑÔÉÓÇ.RWD				2.5 Service 0
Licensed to:				

Design Standard [Continued]

Unfavourable Permanent (G) = 1.00Variable (Q) = 1.00Accidental (A) = 1.00Favourable Permanent (G) = 1.00 Variable (Q) = 1.00Accidental (A) = 1.00Minimum surcharge = 0 kPa On shearing resistance = 1.00 On effective cohesion = 1.00 On undrained strength = 1.00On effective earth pressures = 1.50 On total earth pressures = 1.00 Safety factor on resistance applied via: Gross passive pressures Minimum active pressure = 0.00 kN/m^3 Unplanned excavation = None Softened formation = 0 m On bending moments = 1.00 On shear forces = 1.00 On prop forces Short-term = 1.00/1.00 Long-term = 1/1

میک

Job No	Revision		Page No	4
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\10.ÁŐÔÏÖÅÑIÌÅÍÏ ĐÅÔÁÓÌÁ META ÔÇÍ ĐÑÏÖÏÑÔÉÓÇ.RWD			ReWaRD Release 1	2.5 Service 0
Licensed to:				

Construction Stage 1 - Drawing Board 10 5 15 10 5 0____ Ţ 5 25 1 2 3 4 5 Scale 1:250 10 0 metres

Job No	Revision		Page No	5
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplymatikh teliko\10.ÁÕÔÏÖÅÑÏÌÅĺĨ ĐÅÔÁÓÌÁ META ÔÇÍ ĐÑIÖÏÑÔÉÓÇ.RWD			ReWaRD Release 1	2.5 Service 0
Licensed to:				

Job No		Revision	· ·	Page No	6
Engineer		Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\10.ÁÕÔÏÖÅÑĨÌÅÍĬ ĐÅÔÁÓÌÁ META ÔÇÍ ĐŇÏÖÏŇÔÉÓÇ.RWD			ReWaRD Release 1	2.5 Service 0	
Licensed to:					

Job No	Revision		Page No	7
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\10.ÁÕÔÏÖÅÑĨÌÅĺĨ ĐÅÔÁÓÌÁ META ÔÇÍ ĐÑÏÖÏÑÔÉÓÇ.RWD				2.5 Service 0
Licensed to:				

Construction Stage 1 - Structural Forces

Job No	F	Revision		Page No	8
Engineer	ľ	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh				ReWaRD	2.5 Service
teliko\10.ÁÕÔÏÖÅÑÏÌÅÍĨ ÐÅÔÁÓÌÁ META ÔÇÍ ÐÑÏÖÏÑÔÉÓÇ.RWD			Release 1	0	
Licensed to:					

Job No			Revisior	ו	Page No	9
Engineer			Date	11/10/2010	Checked	
Document: C:	Users\nancou	co\Desktop\di	plvmatikh		ReWaRD 2	.5 Service
teliko\10.ÁÕÔ	IOAÑIIAÍI ĐÁC	DÁÓIÁ META	ÔÇÍ ĐÑIỜIÑÔI	ÉÓÇ.RWD	Release 10	
Licensed to:						
Construction S	Stage 1 - Earth	Pressures As	Built		······································	
Depth	EarthPr	WaterPr	TotalPr	EarthPr	WaterPr	TotalPr
m	kPa	kPa	kPa	kPa	kPa	kPa
	Retained	Retained	Retained	Excavated	Excavated	Excavated
0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.00	0.00	0.00	0.00	0.00	0.00	0.00
2.00	0.00	0.00	0.00	0.00	0.00	0.00
3.07	0.00	0.00	0.00	0.00	0.00	0.00
3.07	0.00	0.00	0.00	0.00	0.00	0.00
3.50	7.86	0.00	7.86	0.00	0.00	0.00
3.50	7.86	0.00	7.86	56.54	0.00	56.54
5.95	52.94	0.00	52.94	101.62	0.00	101.62
5.95	52.94	0.00	52.94	101.62	0.00	101.62
7.00	72.26	0.00	72.26	120.94	0.00	120.94
7.00	23.52	49.03	72.55	102.02	34.32	136.35
9.45	30.52	73.06	103.58	182.58	58.35	240.93
9.45	28.05	73.06	101.11	198.63	58.35	256.97
10.50	31.09	83.36	114.45	240.06	68.65	308.70
10.50	31.09	83.36	114.45	240.06	68.65	308.70
17.25	50.65	149.55	200.21	506.42	134.84	641.26
Construction S	Stage 1 - Earth	Pressures At	Minimum Safe	Embedment		
Depth	EarthPr	WaterPr	TotalPr	EarthPr	WaterPr	TotalPr
m	kPa	kPa	kPa	kPa	kPa	kPa
	Retained	Retained	Retained	Excavated	Excavated	Excavated
0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.00	0.00	0.00	0.00	0.00	0.00	0.00
2.00	0.00	0.00	0.00	0.00	0.00	0.00
3.07	0.00	0.00	0.00	0.00	0.00	0.00
3.07	0.00	0.00	0.00	0.00	0.00	0.00
3.50	7.86	0.00	7.86	0.00	0.00	0.00
3.50	7.86	0.00	7.86	56.54	0.00	56.54
3.64	10.42	0.00	10.42	59.10	0.00	59.10
L 1						

Job No	Revision		Page No	10
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvma	tikh		ReWaRD 2.5	Service
teliko\10.ÁŐŐIŐÅÑIIÁÍI ÐÁÓÁÓIÁ META ÓÇÍ ÐI	NIOINÓÉÓÇ	RWD	Release 10	
Licensed to:				
Construction Stage 1 - Required Embedment As Results of earth pressure calculation	Built			
Retaining Wall				
Name = Prototype: Retaining Wall 1				
Retained height = 3.50 m				
Depth of toe = 20.00 m				
Partial factors				
Factors on actions				
Unfavourable				
Permanent (G) = 1.00				
Variable $(Q) = 1.00$				
Accidental (A) = 1.00				
Favourable				
Permanent (G) = 1.00				
Variable $(Q) = 1.00$				
Accidental (A) = 1.00				
Minimum surcharge = 0 kPa				
Factors on material properties				
On snearing resistance = 1.00				
On effective conesion = 1.00				
Con undrained strength = 1.00				
On effective earth pressures = 1.50				
On total earth pressures $= 1.00$				
Safety factor on resistance applied via: Gross	a possivo pr	Securoe		
Minimum active pressure = 0.00 kN/m^3	s passive pre	5350163		
Safety margins on geometry				
Linnlanned excavation = None				
Softened formation = 0 m				
Factors on structural forces				
On bending moments = 1.00				
On shear forces = 1.00				
On prop forces				
Short-term = 1.00/1.00				
Long-term = $1/1$				
Moments				
Overturning = 7652 kNm/m				
Restoring = 19494 kNm/m				
Out-of-balance = -11842 kNm/m				
Restoring/Overturning = 255 %				
Reaction at wall toe = -2743.1 kN/m				
	· · · · · · · · · · · · · · · · · · ·			

Job No	Revision		Page No	11
Engineer	Date 11/1	0/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvma	tikh		ReWaRD	2.5 Service
teliko\10.ÁÕÔÏÖÅÑÏIÅÍÏ ÐÅÔÁÓÌÁ META ÔÇÍ Ð	NIOINOÉÓÇ.RW	/D	Release 1	0
Licensed to:				
Construction Stage 1 - Required Embedment At	Minimum Safe E	mbedm	ent	
Results of earth pressure calculation	·····			
Retaining Wall				
Name = Prototype: Retaining Wall 1				
Retained height = 3.50 m				
Depth of toe = 3.67 m				
Partial factors				
Factors on actions				
Unfavourable				
Permanent (G) = 1.00				
Variable $(Q) = 1.00$				
Accidental (A) = 1.00				
Favourable				
Veriable (O) = 1.00				
variable $(Q) = 1.00$ Accidental $(A) = 1.00$				
$\frac{1}{1000} = 1.00$				
Eactors on material properties				
On shearing resistance = 1.00				
On effective cohesion = 1.00				
On undrained strength = 1.00				
Factors on resistance				
On effective earth pressures = 1.50				
On total earth pressures = 1.00				
Safety factor on resistance applied via: Gros	s passive pressu	res		
Minimum active pressure = 0.00 kN/m^3	- p			
Safety margins on geometry				
Unplanned excavation = None				
Softened formation = 0 m				
Factors on structural forces				
On bending moments = 1.00				
On shear forces = 1.00				
On prop forces				
Short-term = 1.00/1.00				
Long-term = 1/1				
Moments				
Overturning = 1 kNm/m				
Restoring = 1 kNm/m				
Out-of-balance = 0 kNm/m				
Restoring/Overturning = 100 %				
The wall is in equilibrium				
Reaction at wall toe = -5.1 km/m				
Construction Stage 1: Structural Forces				
Depth Bending Shear Force Prop Fo	rceNotes			
(m) Moment (kN/m) (kN	m)			
(kNm/m)				
3.54 -0.3 -0.3 See abo	ove Maximum bei	nding m	oment	
3.64 -0.1 -5.1 See abo	veMaximum she	ear force)	
Construction Stage 1: Messages	l			
Validating the construction stage				
·				

Job No	Revision		Page No	12
Engineer	Date	11/10/2010	Checked	•••••
Document: C:\Users\nancouco\Desktop\	diplvmatikh		ReWaRD	2.5 Service
teliko\10.ÁÖÖIÖÁŇIIÁÍI ÐÁÓÁÓIÁ META ÓÇÍ ÐŇIÓINÓÉÓÇ.RWD			Release 1	0
Licensed to:				

Construction Stage 1: Messages [Continued] Calculating earth pressures as built (for the specified wall length and safety factors) Calculating earth pressures at the minimum safe embedment (with the specified safety factors) Calculating structural forces Calculating base stability Calculating displacements Calculating durability 2 error/warning message(s) generated during the calculations: please inspect the Messages View for more information

7.2 ΑΠΛΩΣ ΑΓΚΥΡΩΜΕΝΟ ΠΕΤΑΣΜΑ ΠΑΣΣΑΛΟΣΑΝΙΔΩΝ

Η μελέτη γίνεται με χρήση του προγράμματος ReWard 2.5 στο οποίο τίθενται ως δεδομένα το βάθος της εκσκαφής, οι εδαφικές παράμετροι και τα πάχη των στρώσεων, η στάθμη του υδροφόρου ορίζοντα εκατέρωθεν της εκσκαφής, η διατομή των πασσαλοσανίδων που χρησιμοποιούνται που επιλέγεται σύμφωνα με τους καταλόγους των κατασκευαστικών εταιρειών (Larssen LX32 με b=600 mm και h=450 mm) και το βάθος των οριζόντιων ελκυστήρων και προκύπτουν ως αποτελέσματα το ελάχιστο βάθος έμπηξης του πετάσματος, οι πιέσεις του εδάφους για απλή στήριξη στον πόδα (FREE EARTH SUPPORT), τα διαγράμματα ροπών κάμψης και τεμνουσών του πετάσματος, οι μέγιστες τιμές τους και το βάθος στο οποίο αυτές αναπτύσσονται και η δύναμη αγκύρωσης των οριζόντιων ελκυστήρων.

ΣΥΝΟΨΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ						
	ΕΛΑΧΙΣΤΟ ΒΑΘΟΣ ΕΜΠΗΞΗΣ	M _{max}	ΒΑΘΟΣ ΓΙΑ Μ=Μ _{max}	Q _{max}	BAΘΟΣ ΓΙΑ Q=Q _{max}	
	m	kNm/m	m	kN/m	m	
ΠΡΙΝ ΤΗΝ	7,65	105,2	3,75	-60,9	1,00	
ΠΡΟΦΟΡΤΙΣΗ	F _α =60,9 kN/m					
ΕΛΕΓΧΟΣ		M _{ma}	$x/\sigma_{\epsilon\pi}=842 \text{ cm}^3<5.$	500 cm ³		
ΔΙΑΤΟΜΗΣ	Ο έλεγχος	ικανοποιε	είται για επιτρεπό	μενη τάσι	η εφελκυσμού	
		του	χάλυβα σ _{επ.} =125	N/mm⁴.		
ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ ΕΛΕΓΧΟΣ ΔΙΑΤΟΜΗΣ	 Η λύση αυτή δεν υφίσταται αφού σε αυτή την περίπτωση δεν απαιτείται πέτασμα για την προσωρινή αντιστήριξη των παρειών της εκσκαφής. 					

7.2.1 ΠΡΙΝ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

HAWABU .	Page no	1
	Job no	
	Engineer	
	Revision	· · ·
	Date	11/10/2010
	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\9.ÁÐËÙÓ ÁÃÊÕÑÙÌÁÍĨ ĐÅÔÁÓÌÁ ĐÑÉÍ ÔÇÍ ĐÑĬÖĬÑÔÉÓÇ.RWD	ReWaRD 2 Release 10	.5 Service
Licensed to:		
©1992-2003 Geocentrix Ltd. All Rights Reserved.	• • • • • • • • • • • • • • • • • • • •	

Construction Stages

Name	Term	Objects present in this stage
Construction	Short	Retaining Wall 1
Stage 1		On retained side: Ground Profile 1, Borehole 1, Water Table 1, Anchor 1,
		On excavated side: Excavation 1, Borehole 1, Water Table 2,

Ground Profiles

Name	Туре	Other Properties
Ground Profile 1	Horizontal	
	Ground	

Excavations			ζ			
Name	Туре	Depth	Plan	PlanC	Other Properties	
		(m)	length	breadth	-	
			(m)	(m)		
Excavation 1	Horizontal Excavation	3.50	-	-		

Soils

Name	Туре	Class	State	Other Properties
Soil 1	Clay	Unclassified	Unspecified	Soil is not fissured
Soil 2	Sand	Unclassified	Unspecified	
Soil 3	Sand	Unclassified	Unspecified	

Soil properties

Name	Wet weight	Dry weight Failure state		Friction	Cohesion	Poisson's
	kN/m^3	kN/m^3		0	kPa	ratio
Soil 1	18.4	18.4	Peak	32.0	0.0	0.30
Soil 2	19.5	16.5	Peak	33.0	0.0	0.30
Soil 3	20.5	17.5	Peak	35.0	0.0	0.30

Soil properties (undrained)

Name	Strength	Strength increase	From depth
	kPa	kN/m^3	m
Soil 1	7.5	0.9	0.00
langung and a start of the second			

Name	Туре	Thickness	Soil	Dip	OCR	Tension	
		(m)		(°)		crack	
Layer 1	Undrained Layer	7.00	Soil 1	0.0	1.0	None	Not rigid
Layer 2	Drained Layer	2.45	Soil 2	0.0	1.0	None	Not rigid
Layer 3	Drained Layer	11.00	Soil 3	0.0	1.0	None	Not rigid

Job No		Revision		Page No	2
Engineer		Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvmatikh teliko\9.ÁĐĔ ÁÃÊÕÑÙÌÅÍĬ ĐÅÔÁÓÌÁ ĐÑÉÍ ÔÇÍ ĐÑIÖÏÑÔÉÓÇ.RWD				ReWaRD Release 1	2.5 Service 0
Licensed to:					

Layers : Limiting coefficients								
Name	Limiting coefficients	Ka	Kac	Кр	Крс			
Layer 1	Rankine							
Layer 2	Rankine							
Layer 3	Rankine							

Boreholes

Name	DepthContains layers:
	(m)
Borehole 1	20.45 Layer 1; Layer 2; Layer 3;

Water Tables

Name	Туре	Depth (m)	GradientOther Properties (kN/m^3)
Water Table 1	Hydrostatic Water Table	2.00	9.81 Hydraulically connected to overlying water
Water Table 2	Hydrostatic Water Table	3.50	9.81 Hydraulically connected to overlying water

Retaining Walls

Name	Туре	Depth of toe	Upstand	Material	Density	E
		m	m		kg/m^3	GPa
Retaining Wall 1	Sheet Pile Wall	20.00	0.00	Steel	7800	210.0

Retaining Wall sections

Name	Section	Sectional area	Moment of inertia	Section modulus
		cm^2/m	cm^4/m	cm^3/m
Retaining Wall 1	Sheet pile section = LX32	242	72028	3201

Sheet pile sections

Section	b	h	d	l t	f	A	m/L	m/A		Z
	mm	mm	mm	mm	mm	cm^2/m	kg/m	kg/m^2	cm^4/m	cm^3/m
LX32	600	450	21.5	9.8	328	242	113.9	189.8	72028	3201

Retaining Walls : Soil-structure Interface

Name	Soil-structure Interface	Interface /soil friction	Drained adhesion	Undrained adhesion	Max. adhesion
Retaining Wall 1	Custom Interface	0.00	/cohesion 0.00 0.00	/cohesion 0.00 0.00	кРа 0.0 0.0

Anchors

Name	Туре	Depth (m)	Horizontal spacing (m)	Inclination (°)	Pre-stress (kN/anchor)	L/EAOther (m/kN) Properties
Anchor 1	Anchor	1.00	1.00	0.0	0.00	0.10 Permanent

Job No		Revision		Page No	3
Engineer		Date	11/10/2010	Checked	
Document: (ÁÃÊŐÑÙÌÅÍ	C:\Users\nancouco\Desktop\diplvmat Ĩ ĐÅÔÁÓÌÁ ĐÑÉÍ ÔÇÍ ĐŇÏÖĨŇÔÉÓO	ikh teliko\9./ Ç.RWD	ÁÐËÙÓ	ReWaRD	2.5 Service 0
Licensed to:		• • • • • •			
Design Stan	dard				
Type = Cust Earth pressu Type = Ra No tension o Cantilever to	om Design Standard ure coefficients ankine crack be-in = 20%				
Equilibrium	calculated at the minimum safe embe	edment (with	n designated	safety fact	tors)
Unfavourabl Permaner Variable (Accidenta Favourable Permaner Variable (Accidenta Minimum su On shearing On effective On undraine	The function $(G) = 1.00$ Q) = 1.00 Q = 1.00	ζ.			
On effective On total ear Safety facto Minimum ac	earth pressures = 1.50 th pressures = 1.00 r on resistance applied via: Gross pa tive pressure = 0.00 kN/m^3	ssive pressu	ures		
Unplanned e Softened for	excavation = None rmation = 0 m				
On bending On shear fo On prop foro Short-terr Long-tern	moments = 1.00 rces = 1.00 ces n = 1.00/1.00 n = 1/1				

Job No	Revision		Page No	4
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvm ÁÃÊŐÑÙÌÅĬĨ ĐÅÔÁÓÌÁ ĐÑÉÍ ÔÇÍ ĐÑĬÖĬŇÔÉĆ	atikh teliko\9.)Ç.RWD	ÁÐËÚÓ	ReWaRD Release 1	2.5 Service 0
Licensed to:				

Construction Stage 1 - Drawing Board 5 0 5 10 15 15 ... --10 5 0 ζ Ψ 5 10 _ 15 _ 20 25 -----30 ____ ____ 0 1 2 3 4 5 10 metres

Job No	Revision		Page No	5
Engineer	Date	11/10/2010	Checked	
Document: C:\Users\nancoucc ÁÃÊÕÑÙÌÅÍĨ ĐÅÔÁÓÌÁ ĐÑÉÍ	Desktop\diplvmatikh teliko\9.)ÇÍ ÐÑÏÖÏÑÔÉÓÇ.RWD	ÁÐËÙÓ	ReWaRD Release 1	2.5 Service
Licensed to:				

Construction Stage 1 - Earth Pressures As Built

Job No		Revision		Page No	6
Engineer		Date	11/10/2010	Checked	
Document: ÁÃÊÕÑÙÌÅ	C:\Users\nancouco\Desktop\diplvma Ĭ ĐÅÔÁÓÌÁ ĐŇÉÍ ÔÇÍ ĐŇÏÖÏŇÔĚÓ	tikh teliko\9. Ç.RWD	ÁÐËÙÓ	ReWaRD Release 1	2.5 Service 0
Licensed to:					

Construction Stage 1 - Earth Pressures At Minimum Safe Embedment

Job No	R	evision	•	Page No	7
Engineer	D	ate	11/10/2010	Checked	
Document: ÁÃÊÕÑÙÌÅ	C:\Users\nancouco\Desktop\diplvmatik Ĩ ĐÅÔÁÓÌÁ ĐŇÉÍ ÔÇÍ ĐŇÏÖÏŇÔÉÓÇ.	h teliko\9./ RWD	ÁÐËÙÓ	ReWaRD Release 1	2.5 Service 0
Licensed to:					

Job No		Revision		Page No	8
Engineer		Date	11/10/2010	Checked	
Document: ÁÃÊÕÑÙÌÂ	C:\Users\nancouco\Desktop\diplvmai	ikh teliko\9 Ç.RWD	ÁÐËÙÓ	ReWaRD Release 1	2.5 Service 0
Licensed to:					

Job No			Revisio	า	Page No	9
Engineer			Date	11/10/201	10 Checked	
Document: C:	\Users\nancou	ico\Desktop\di	plvmatikh telik	o\9.ÁÐËÙÓ	ReWaRD 2	.5 Service
ÁAÉÓNUIÁII I	ĐẢÔÁÓ Á ĐÑI	ÉI ÔÇI ĐÑIÔIN	NÔÉÓÇ.RWD		Release 10	
Licensed to:						
Construction S	Stage 1 - Earth	Pressures As	Built			
Depth	EarthPr	WaterPr	TotalPr	EarthPr	WaterPr	TotalPr
m	kPa	kPa	kPa	kPa	kPa	kPa
	Retained	Retained	Retained	Excavated	Excavated	Excavated
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
1.00	1.64	0.00	1.64	0.00	0.00	0.00
1.00	1.64	0.00	1.64	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
3.50	42.99	0.00	42.99	0.00	0.00	0.00
3.50	42.99	0.00	42.99	21.41	0.00	21.41
5.95	83.51	0.00	83.51	71.05	0.00	71.05
5.95	83.51	0.00	83.51	71.05	0.00	71.05
7.00	100.88	0.00	100.88	92.32	0.00	92.32
7.00	23.52	49.03	72.55	102.02	34.32	136.35
9.45	30.52	73.06	103.58	182.58	58.35	240.93
9.45	28.05	73.06	101.11	198.63	58.35	256.97
10.50	31.09	83.36	114.45	240.06	68.65	308.70
10.50	31.09	83.36	114.45	240.06	68.65	308.70
20.00	58.62	176.52	235.14	614.93	161.81	776.74
Construction S	Stage 1 - Earth	Pressures At	Minimum Safe	e Embedment		
Depth	EarthPr	WaterPr	TotalPr	EarthPr	WaterPr	TotalPr
m	kPa	kPa	kPa	kPa	kPa	kPa
	Retained	Retained	Retained	Excavated	Excavated	Excavated
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
0.90	0.00	0.00	0.00	0.00	0.00	0.00
1.00	1.64	0.00	1.64	0.00	0.00	0.00
1.00	1.64	0.00	1.64	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
2.00	18.18	0.00	18.18	0.00	0.00	0.00
3.50	42.99	0.00	42.99	0.00	0.00	0.00
3.50	42.99	0.00	42.99	21.41	0.00	21.41
5.95	83.51	0.00	83.51	71.05	0.00	71.05
5.95	83.51	0.00	83.51	71.05	0.00	71.05
7.00	100.88	0.00	100.88	92.32	0.00	92.32
7.00	23.52	49.03	72.55	102.02	34.32	136.35
7.65	25.37	55.39	80.76	123.34	40.68	164.02

Job No	Revision	Page No	10
Engineer	Date 11/10/2010	Checked	
Document: C:\Users\nancouco\Desktop\diplvma	tikh teliko\9.ÁÐÉÙÓ	ReWaRD 2.5 S	Service
ÁŘEÔŇUÌAÍI ĐẢÔAÓIÁ ĐŇÉI ÔÇÍ ĐŇIOIŇÔEÓ	Ç.RWD	Release 10	
Licensed to:			
Construction Stage 1 - Required Embedment As	Built	1	
Results of earth pressure calculation			
Retaining Wall			
Name = Prototype: Retaining Wall 1			
Retained height = 3.50 m			
Depth of toe = 20.00 m			
Partial factors			
Factors on actions			
Unfavourable			
Permanent (G) = 1.00			
Variable (Q) = 1.00			
Accidental (A) = 1.00			
Favourable			
Permanent (G) = 1.00			
Variable (Q) = 1.00			
Accidental (A) = 1.00			
Minimum surcharge = 0 kPa			
Factors on material properties			
On shearing resistance = 1.00			
On effective cohesion = 1.00			
On undrained strength = 1.00			
Factors on resistance			
On effective earth pressures = 1.50			
On total earth pressures = 1.00			
Safety factor on resistance applied via: Gros	s passive pressures		
Minimum active pressure = 0.00 kN/m^3			-
Safety margins on geometry			
Unplanned excavation = None			
Softened formation = 0 m			
Factors on structural forces			
On bending moments = 1.00			
On shear forces = 1.00			
On prop forces			
Short-term = 1.00/1.00			
Long-term = $1/1$			
Moments			
Overturning = 28383 kNm/m			
Restoring = 839/1 kNm/m			
Out-of-balance = -55589 kNm/m			
Restoring/Overturning = 296 %			

~

Job No	Revision	Page No 11
Engineer	Date 11/10/2010	Checked
Document: C:\Users\nancouco\Desktop\diplvma	tikh teliko\9.ÁÐËÙÓ	ReWaRD 2.5 Service
ÁÂÊÔŇÙÌAÍI ĐAÔÁÓÌÁ ĐÑÉÍ ÔCÍ ĐÑIOIÑÔÉÓ	C.RWD	Release 10
Licensed to:	•	
Construction Stage 1 - Required Embedment At Results of earth pressure calculation	Minimum Safe Embedm	ient
Retaining Wall	· · · · · · · · · · · · · · · · · · ·	
Name = Prototype: Retaining Wall 1		
Retained height = 3.50 m		
Depth of toe = 7.65 m		
Partial factors		
Factors on actions		
Unfavourable		
Permanent (G) = 1.00		
Variable (Q) = 1.00		
Accidental (A) = 1.00		
Favourable		
Permanent (G) = 1.00		
Variable $(Q) = 1.00$		
Accidental (A) = 1.00		
Minimum surcharge = 0 kPa		
Factors on material properties		
On snearing resistance = 1.00		
On effective conesion = 1.00		
On undrained strength = 1.00		
On offective earth pressures = 1.50		
On total earth pressures $= 1.00$		
Safety factor on resistance applied via: Gros	s passiva prossuras	
Minimum active pressure = 0.00 kN/m^3	s passive pressures	
Safety margins on geometry		
Unplanned excavation = None		
Softened formation = 0 m		
Factors on structural forces		
On bending moments = 1.00		
On shear forces = 1.00		
On prop forces		
Short-term = 1.00/1.00		
Long-term = $1/1$		
Moments		
Overturning = 1535 kNm/m		
Restoring = 1535 kNm/m		
Out-of-balance = 0 kNm/m		
Restoring/Overturning = 100 %		
I ne wall is in equilibrium		
Construction Stage 1: Structural Forces	ree Notes	
Deput Denuing Snear Force Prop Fo	ICENULES	

	Jehn	Denuing	Shear Furce	FIDE FOICE NOTES	
	(m)	Moment	(kN/m)	(kN/m)	٦
		(kNm/m)			
	1.00	0.0	-60.9	60.9	
1	3.75	105.2	0.2	See above Maximum bending moment	_
\$	1.00	0.0	-60.9	See above Maximum shear force	

ł

Construction Stage 1: Messages Validating the construction stage

Job No	Revision	Page No 12					
Engineer	Date 11/1	0/2010 Checked					
Document: C:\Users\nancouco\Des	ktop\diplvmatikh teliko\9.ÅĐË	ÚÓ ReWaRD 2.5 Service					
ÁĂÊÔŇUÌAÍI ĐAÔÁÓIÁ ĐŇÉÍ ÔÇÍ	ĐÑIOIÑOÉÓÇ RWD	Release 10					
Licensed to:							
Construction Stage 1: Messages [Continued] Calculating earth pressures as built (for the specified wall length and safety factors)							
Calculating earth pressures at the minimum safe embedment (with the specified safety factors)							
Calculating structural forces							
Calculating base stability							
Calculating displacements							
Calculating durability							
2 error/warning message(s) generated during the calculations: please inspect the Messages View							
for more information							

جها

Για εγκάρσια απόσταση των οριζόντιων ελκυστήρων που χρησιμοποιούνται 2,5 m η δύναμη αγκύρωσής τους προκύπτει F_{α} =152,3 kN και η διατομή τους επιλέγεται σύμφωνα με τους καταλόγους των κατασκευαστικών εταιρειών (Cold Worked High Strength Alloy Steel με d=25 mm και $F_{\alpha max}$ =170 kN). Οι οριζόντιοι ελκυστήρες αγκυρώνονται πάνω σε σώμα αγκύρωσης (δεύτερο πέτασμα πασσαλοσανίδων) ύψους 2,2 m (το οποίο ισορροπεί με P_{α} =20 kN/m και P_{p} =81,8 kN/m) και σε απόσταση τουλάχιστον 5,7 m από το κυρίως πέτασμα (ώστε το πρίσμα των παθητικών πιέσεών του να μην αλληλεμπλέκεται με το πρίσμα των ενεργητικών πιέσεων του κυρίως πετάσματος - και τα δύο υπό 45° γωνία ως προς την οριζόντιο για άργιλο υπό αστράγγιστες συνθήκες).

7.2.2 ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

Η λύση αυτή δεν υφίσταται αφού σε αυτή την περίπτωση δεν απαιτείται πέτασμα για την προσωρινή αντιστήριξη των παρειών της εκσκαφής.

7.3 ΑΝΤΗΡΙΔΩΤΗ ΑΝΤΙΣΤΗΡΙΞΗ ΠΡΙΝ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

Η μελέτη γίνεται με χρήση της περιβάλλουσας πιέσεων για μαλακή έως στιφρή άργιλο κατά Peck με m=0,4 για στρώση αργίλου με ικανό πάχος και λ_{α} =1- (4×m× $\overline{c_u}$)/(γ_{κορ.}×H)=0,77 για γ_{κορ.}×H/ $\overline{c_u}$ ≈7>6. Τοποθετούνται τρεις σειρές αντηρίδων μήκους 2,5 m με την πρώτη σε βάθος 25% του βάθους της εκσκαφής και την τελευταία σε απόσταση 1 m από τον πυθμένα της - για τη διευκόλυνση της

εκτέλεσης εργασιών - που αναλαμβάνουν πίεση σ_{vh}= $\lambda_{\alpha} \times \gamma_{kop.} \times H=49,85$ kPa με βάση την αρχή της ισοκατανομής (πρώτη σειρά αντηρίδων με ζώνη επιρροής 1,3 m F₁=42,37 kN/m, δεύτερη σειρά αντηρίδων με ζώνη επιρροής 0,8 m F₂=39,88 kN/m και τρίτη σειρά αντηρίδων με ζώνη επιρροής 1,4 m F₃=69,79 kN/m). Για εγκάρσια απόσταση των σειρών αντηρίδων που χρησιμοποιούνται 2,5 m η δύναμη που αναλαμβάνει η καθεμία προκύπτει F₁=105,93 kN, F₂=99,7 kN και F₃=174,48 kN και η διατομή τους επιλέγεται σύμφωνα με τους καταλόγους των κατασκευαστικών εταιρειών (150×150 για την πρώτη και δεύτερη σειρά αντηρίδων με F_{max}=115 kN και 200×200 για την τρίτη με F_{max}=216 kN).

Είναι προφανές ότι η μελέτη αντηριδωτής αντιστήριξης μετά την προφόρτιση είναι αντιοικονομική.

7.4 ΕΛΕΥΘΕΡΟ ΚΕΚΛΙΜΕΝΟ ΠΡΑΝΕΣ ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

Η μελέτη γίνεται με χρήση του νομογραφήματος του Taylor με N_s=0,235 για πρανές ανοίγματος 2,5 m στον πυθμένα της εκσκαφής υπό γωνία 80° ως προς την οριζόντιο και άργιλο υπό αστράγγιστες συνθήκες. Εξασφαλίζεται ευστάθεια αφού $F=\overline{c_u}/(N_s \times \gamma_{kop.} \times H)=1,9>1,5.$

Είναι προφανές ότι η μελέτη ελέυθερου κεκλιμένου πρανούς πριν την προφόρτιση δεν εξασφαλίζει ευστάθεια.
8. ΜΕΛΕΤΗ ΘΕΜΕΛΙΩΣΗΣ SILO

Μελετάται silo οκταγωνικής διατομής εξωτερικής πλευράς 4 m και διαμέτρου 9,66 m με τοιχώματα πάχους 0,2 m. Το συνολικό του ύψος είναι 32 m από τα οποία 25,5 m είναι το ωφέλιμο ύψος του, 3 m το ύψος του δώματος (με πλάκες πάχους 0,2 m) και 1,6 m το ύψος της στέγης που κατέρχεται με κλίση 1/3. Το silo ιδίου βάρους 5703 kN εδράζεται σε τετραγωνική πλάκα πλευράς 16 m και πάχους 1,5 m ιδίου βάρους 9600 kN και όταν είναι πλήρες με σιτάρι ειδικού βάρους 7,5 kN/m³ (ιδίου βάρους 13566 kN) μεταφέρει στο έδαφος συνολικό φορτίο 28869 kN ασκώντας του πίεση 113 kPa.

Για τη θεμελίωση του silo μελετούνται ως λύσεις το άκαμπτο αβαθές θεμέλιο, η βαθειά θεμελίωση με πασσάλους και η βελτίωση – ενίσχυση του εδάφους με χαλικοπασσάλους και στραγγιστήρια.

8.1 ΑΚΑΜΠΤΟ ΑΒΑΘΕΣ ΘΕΜΕΛΙΟ

Η μελέτη γίνεται με χρήση του προγράμματος Larix 5 στο οποίο τίθενται ως δεδομένα η πίεση που ασκείται στο έδαφος, οι εδαφικές παράμετροι και τα πάχη των στρώσεων και προκύπτουν ως αποτελέσματα οι πιθανοί κύκλοι ολίσθησης του εδάφους κατά Bishop, οι αντίστοιχοι συντελεστές ασφαλείας και ο δυσμενέστερος κύκλος με τον ελάχιστο συντελεστή.

ΣΥΝΟΨΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ						
ΕΛΑΧΙΣΤΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΑΣΦΑΛΕΙΑΣ						
ΠΡΙΝ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ* F _{min} =0,92						
ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ*	F _{min} =1,63					
* <u>Η λύση αυτή δεν εξασφαλίζει</u>	*Η λύση αυτή δεν εξασφαλίζει ευστάθεια αφού ο ελάχιστος συντελεστής ασφαλείας είναι					
	<u>μικρότερος του 2.</u>					

8.1.1 ΠΡΙΝ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

λάτος θε	Πλάτος θεμελίου 16μ										27 10 10 16:48	
τάθμη θ	εμελίωσης	;-1,5 µ a	πό την ει	πιφάνεια ι	ου εδάφ	ouc	Φορτί	ο λειτουρ	viac P=1	3 KPa	27.1	. Version 1
	MOIOMA					,			1.431 - 1		Laik	
IIFO20												
Διεπιφα		ρικων στ	ρώσεων	/ 		1		- /				
	τιεριγραφη			γ	ος C	Σου	x I	Σημεία π	δυγώνου	× 1	v	
Land			ľ	[kN/m ³]	[kN/m ²]	(p.	[m]	[m]	21 JP.	[m]	[m]	
Στρώση	Ι (Άργιλα	05)	0.00	18.40	10.71	1	-48.50	0	2	-45.00	0	
						5	-35.00	-1.50	4	-8.00	0.00	
						7	-8.00	-1.50	8	8.00	-1.50	
						11	45.00	0.00	12	50.50	-0.00	
Στρωση	11 (Άμμο	ς)	33.00	19.50	0	1	-48.50	-7.00	2	-45.00	-7.00	
Stokan	TTT (7)111		25 00	20 50	0	5	45.00	-7.00	6	50.50	-7.00	
2 tpworf	ττι (Αμμ		35.00	20.50	0	3	17.75	-9.45	4	48.50	-9.45	
Στάθμη υ	νωὶ϶γοπι	υδάτων										
Πίεση νερα	ού μόνιμο					-						
Υw	Κατάσταση	u	Σημ.	x	v	Σημ Σημ		vou v l	Σημ	x	v	
[kN/m ³]	-			[m]	[m]		[m]	[m]		[m]	[m]	-
10.00	Ενεργή	δυναμ.	1	-48.50	-2.00	2	50.50	-2.00				
	Παράμετρο		χης	Γεωμ	ετρία							
TkN/ml	W ₂	LF	X1	V. 1	¥-	Va						
Indentity	[kN/m]	[m]	[m]	[m]	^2 [m]	[m]						
1.00E+4	[kN/m] 1.00E+4	[m] 0	[m] -8.00	[m] -1.50	[m] 8.00	[m] -1.50						
1.00E+4 1.00E+4 1.00E+4 1.00E+4 L_E :	[kN/m] 1.00E+4 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ	[m] 0 0 0	[m] -8.00 -8.00 8.00	[m] -1.50 0.00 0.00	 8.00 −8.00 8.00	m -1.50 -1.50 -1.50						
1.00E+4 1.00E+4 1.00E+4 1.00E+4 L _E : ΦΟΡΤΙΑ Επιφανε	[kN/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ	<u>[m]</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00	[m] -1.50 0.00 0.00	^2 [m] 8.00 −8.00 8.00	92 -1.50 -1.50 -1.50						
1.00E+4 1.00E+4 1.00E+4 1.00E+4 L _E : ΦΟΡΤΙΑ Επιφανε	[kN/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ	[m] 0 0 0 ωγής ΤίΟ	[m] -8.00 -8.00 8.00	[m] -1.50 0.00 0.00	~2 8.00 -8.00 8.00	72 72 71.50 -1.50 -1.50 -1.50	У1 [1]	X2 [22]	¥2	P1 [th/m2]	P2 [Jalor 2	Διεύθυνση
1.00E+4 1.00E+4 1.00E+4 L _E : ΦΟΡΤΙΑ Ξπιφανε	[kN/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ	[m] 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00	<u>γ</u> [m] -1.50 0.00 0.00 0.00	^2 [m] 8.00 -8.00 8.00	72 [m] -1.50 -1.50 -1.50 -1.50 -1.50	Y₁ [m] −1.50	X2 [m] 8.00	У 2 [m] −1.50	ρ ₁ [k₩/m²] -113.00	₽2 [k№m²] -113.00	Διεύθυνση Υ
1.00E+4 1.00E+4 1.00E+4 1.00E+4 L _E : ΦΟΡΤΙΑ Ξπιφανε Ξπιλογε Ξπιλογε	[Ν\/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ Διακό φορ Περιγραφή Γεριγραφή 5 δ _T	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] - 8 . 00 - 8 . 00 8 . 00 8 . 00	γ1 [m] -1.50 0.00 0.00 0.00 φορτίο	<u>(т)</u> 8.00 -8.00 8.00	77 [m] -1.50 -1.50 -1.50 -1.50 -1.50	Y₁ [m] −1.50	X2 [m] 8.00	У 2 [m] −1.50	P₁ [k\V/m²] -113.00	₽2 [kŪVm²] −113.00	Διεύθυνση γ
[1000:44 1.000:44 1.000:44 1.000:44 1.000:44 1.000:44 L _E : ΦΟΡΤΙΑ Ξπιφανε Ξπιφανε Ξπιλογε Ξπιλογε	[Ν\/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ Διακό φορ Περιγραφή Γεριγραφή Γεριγραφή Γεριγραφή	[m] 0 0 0 νγής τίο γισμων	[m] -8.00 -8.00 8.00 8.00	γη [m] -1.50 0.00 0.00 0.00 φορτίο	<u>(т)</u> 8.00 -8.00 8.00	yy [m] −1.50 −1.50 −1.50 −1.50 ×t [m] −8.00	Y₁ [m] −1.50	X2 [m] 8.00	У 2 [m] −1.50	<mark>[k№/m²]</mark> _113.00	₽2 [ktV/m²] −113.00	Διεύθυνση
[τουτ] 1.002+4 1.002+4 1.002+4 1.002+4 L _E : ΦΟΡΤΙΑ Ξπιφανε Ξπιλογε Ξπιλογε Κτεγ δτ	[Ν\/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ μακό φορ Περιγραφή 25 07 [-] 0.200 Δυγνά στων	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00 βυθυγε ευθυγε	γη [m] -1.50 0.00 0.00 0.00 φορτίο φορτίο με	<u>(т)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 x ₁ [m] -8.00	Υ1 [m] -1.50	Χ 2 [m] 8.00	Уг [m] -1.50	[kt\/m²] -113.00	β 2 [kW/m²] -113.00	Διεύθυνση γ
[1000+4 1.000+4 1.000+4 1.000+4 Le : ΦΟΡΤΙΑ Επιφανε Επιλογε Επιλογε Κrey δ _T : η _L :	[[Ν\/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ μακό φορ Περιγραφή ες υπολοτ ς δη [-] 0.0200 Ανοχή σύγκλ Ανομόμος λια	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] - 8 . 00 - 8 . 00 8 . 000	γη [m] -1.50 0.00 0.00 0.00 φορτίο φορτίο με	<u>(т)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 x ₁ [m] -8.00	Υ1 [m] -1.50	<mark>Χ2</mark> [m] 8.00	γ 2 [m] -1.50	[kt√m²] −113.00 άθεια υτ	β 2 [kW/m²] -113.00	Διεύθυνση γ
[[] [] [] [] [] [] [] [] [] [] [] [] []	[Ν\/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγ α α α α α α α α α α α α α	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00 βυγγ ευθυγ λήψεων	γη [m] -1.50 0.00 0.00 0.00 φορτίο με	<u>(m)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	Υ1 [m] -1.50	<mark>χ2</mark> [m] 8.00	γ 2 [m] -1.50	[k\/m²] -113.00	β 2 [kN/m²] –113.00	Διεύθυνση γ εται με
[[] [] [] [] [] [] [] [] [] [] [] [] []	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ μακό φορ Περιγραφή 25 υπολογ 5 δτ 0.0200 Ανοχή σύγκλ	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] - 8.00 - 8.00 8.00 8.00 8.00 8.00	γη -1.50 0.00 0.00 0.00 φορτίο με	<u>(т)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	Υ1 [m] -1.50	<mark>χ2</mark> [m] 8.00	γ 2 [m] -1.50	ρ ι [kV/m²] -113.00 άθεια υτ	P 2 [kN/m²] -113.00	Διεύθυνση γ
[1.00E+4] 1.00E+4] 1.00E+4] 1.00E+4] LE ΦΟΡΤΙΑ Επιλογε Επιλογε Επιλογε Κτεγ δη Γ ΠΕΡΙΕ	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ μακό φορ Περιγραφή 3.5 υπολογ 5. δτ 0.0200 Ανοχή σύγκλ Αριθμός λωρ 3.4 Λ Λ Ο	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00 8.00 8.00 8.00	γη [m] -1.50 0.00 0.00 0.00 φορτίο με	<u>(т)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	Υ1 [m] -1.50	<mark>χ2</mark> [m] 8.00	γ 2 [m] -1.50	β 1 [kV/m²] -113.00	P 2 [kN/m²] -113.00	Διεύθυνση γ
1.00E+4 1.00E+4 1.00E+4 1.00E+4 L _E : ΦΟΡΤΙΑ Επιφανε Επιλογε Επιλογε Κτεγ δ ₇ : η _L : Π Ε Ρ Ι Ε	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ αιακό φορ Περιγραφή ας υπτολογ 5 δτ 0.0200 Ανοχή σύγκλ Αριθμός λωρ 3 Α Λ Λ Ο	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00 β.00 β.00 β.00 β.00 β.00	γη -1.50 0.00 0.00 0.00 φορτίο με	<u>(m)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	Υ1 [m] -1.50	<mark>χς</mark> [m] 8.00	γ 2 [m] -1.50	Ρι [kV/m²] -113.00 άθεια υπ	p 2 [kN/m²] -113.00	Διεύθυνση γ
1.00E+4 1.00E+4 1.00E+4 1.00E+4 L _E : ΦΟΡΤΙΑ Επιλογεί Μέθοδος Κτεγ δ _T : η _L : Π Ε Ρ Ι Ε	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ αιακό φορ Περιγραφή ας υπτολογ ς δτ 0.0200 Ανοχή σύγκλ Αριθμός λωρ 3 Α Λ Λ Ο	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00 β.00 β.00 β.00 β.00 β.00	με	<u>(m)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	Υ1 [m] -1.50	<mark>χ</mark> ε [m] 8.00	γ 2 [m] -1.50	Ρι [kV/m?] -113.00 -	p 2 [ktVim²] -113.00	Διεύθυνση γ
1.00E+4 1.00E+4 1.00E+4 1.00E+4 LE ΦΟΡΤΙΑ Επιλογε Επιλογε Κτεγ δη Γ 1.00E+4 Γ Επιλογε Επιλογε Γ Επιλογε Γ Επιλογε Γ Επιλογε Επιλογε Επιλογε Γ Επιλογε Γ Επιλογε Επιλογε	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ αιακό φορ Περιγραφή ας υπτολογ ς δτ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00 β.00 β.00 β.00 β.00 β.00	με	<u>(m)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	Υ 1 [m] -1.50	<mark>χ2</mark> [m] 8.00	γ 2 [m] -1.50	<mark>Ρι [kt//m?]</mark> -113.00 −	p 2 [kN/m²] -113.00	Διεύθυνση γ
1.00E+4 1.00E+4 1.00E+4 1.00E+4 LE ΦΟΡΤΙΑ Επιλογε Επιλογε Κτεγ δ ₇ η Ε ΠΕΡΙΕ	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ Διακό φορ Περιγραφή 2ς υπολογ 5 δτ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ 3 Α Λ Λ Ο	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00	γη [m] -1.50 0.00 0.00 0.00 φορτίο με	Δ (m) 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	<u>y</u> ι [m] -1.50	<mark>χ2</mark> [m] 8.00	y 2 [m] -1.50	Ρι [kV/m²] -113.00 −	β 2 [kN/m²] -113.00	Διεύθυνση γ
[1.00E+4] 1.00E+4] 1.00E+4] 1.00E+4] LE ΦΟΡΤΙΑ Επιφανε Επιλογει Κτεγ δ ₇ η _L ΠΕΡΙΕ	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ μακό φορ περιγραφή τς υπολογ ς δτ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00	γη (m) -1.50 0.00 0.00 0.00 φορτίο με	Δ (m) 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 x ₁ [m] -8.00	Υ 1 [m] -1.50	<mark>χ2</mark> [m] 8.00	y 2 [m] -1.50	P ₁ [kV/m²] -113.00 άθεια υτ	<mark>₽₂</mark> [ktVm²] -113.00	Διεύθυνση γ
[1.00E+4] 1.00E+4] 1.00E+4] 1.00E+4] LE ΦΟΡΤΙΑ Επιφανε Επιλογει Κτεγ δ _T n _L ΠΕΡΙΕ	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ μακό φορ Περιγραφή τς υπολογ ς δτ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00	γη -1.50 0.00 0.00 0.00 φορτίο με	<u>ά</u> κρα	γ [m] -1.50 -1.50 -1.50 -1.50 χ -1.50 0 συντελ	Υ 1 [m] -1.50	<mark>χ2</mark> [m] 8.00	y 2 [m] -1.50	<mark>Ρι [kV/m²]</mark> -113.00 άθεια υτ	<mark>Ρ₂</mark> [ktV m²] -113.00	Διεύθυνση γ
[1000:44] 1.002:44] 1.002:44] 1.002:44] 1.002:44] 1.002:44] 1.002:44] 1.002:44] 1.002:44] 1.002:44] 1.002:44] 1.002:46] Emilooyia Emilooyia Midoodoc Krey δ ₇ n_L I.E.PIE	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ Δακό φορ Περιγραφή τς υπολογ ς δη [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ 3 Α Λ Λ Ο	[m] 0 0 0 0 0 0 0 0 0 7 50.000 1005 επανα 150.000 207 Σ Ε Σ	[m] -8.00 -8.00 8.00 β.00 β.00 β.00 β.00 β.00 β.00	γη -1.50 0.00 0.00 0.00 φορτίο	<u>б</u> кра	ур [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 диутел	<u>Υ1</u> [m] -1.50	χ 2 [m] 8.00	γ 2 [m] -1.50	<mark>[ktV/m²]</mark> -113.00 άθεια υτ	β 2 [ktVim²] -113.00	Διεύθυνση γ
(1.00E+4 1.00E+4 1.00E+4 1.00E+4 LE : ΦΟΡΤΙΑ Επιφανε Επιλογε Επιλογε Κτεγ δ ₇ : η _L : ΓΕΡΙΕ	[Ν\/m] 1.00E+4 1.00E+4 Μήκος εισαγ α α α α α α α α α α α α α	[m] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[m] -8.00 -8.00 8.00 8.00	μ] [m] -1.50 0.00 0.00 0.00 φορτίο με	<u>(m)</u> 8.00 -8.00 8.00	γ [m] -1.50 -1.50 -1.50 -1.50 -1.50 0 συντελ	<u>γ</u> 1 [m] -1.50	<mark>χ2</mark> [m] 8.00	γ 2 [m] -1.50	[kV/m²] -113.00	P2 [kN/m²] -113.00	Διεύθυνση γ

λάτος θε	pepouda		ας αβα	ουυς θεμε/		ιροφοριια	πο εσαφο	S		07 10 10 10:10
TADUE OF	euelic ve	νμ ν - 1 5 · · · -		emotion	1011 - 54-	0.00	theast	Arizou	oviac P-112 KPa	27.10.10, 16:48
	εμενιωσι	I2 - 1,5 H a		επιφανεία	100 2000	υυς	ψορπ	U VEITOU	prius r=1 13 MPa	Larix-5 - Version 1.2
күклоі	ΟΛΙΣΘΗ	ΣΗΣ ΜΕ 1		IKPOTEP	ΟΥΣ ΣΥΝ	ΤΕΛΕΣΤΕ	Σ ΑΣΦΑ	ΑΕΙΑΣ		
Αριθμ. κύκλου	×	У	R	Zwangs- Punkt	Αγκύριο	Foided	Lamair	L _{min}	Παρατήρηση βλέπε υποσημείωση	
451	-5.62	13.08	19.9	6 1		0.92	[m]	ក្រា	1)	
L _{aman} L _{min} Υπόμνη	: υπ : δε μα υποσ	ολογιστικό, α δομένο, ελάχ ημειώσει	πταιτούμε ιστο ελεύί ων	νο ελεύθερο μ θερο μήκος αγ	ιήκος αγκύρα κύρωσης	ωσης στην π	εριοχή L _{min}	• L _{max}		
1)	λη *	: 0 0	συντελε	στής ασφα	αλείας υΓ	παραι 10λείπετα	η ρηση αι του ε	πιθυμητ	ού.	
		No.								
									×	
								Sector States	And the second se	
										Nr.:

8.1.2 ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

Πλάτος θεμελίου 16μ											27 10 10 16:4:		
		-1540			OIL SAA		(Doorf	Astone	iac D 1	12 KDa	27.10	.10, 16:4	
	chevimonic	, ,,,, µ u		Πψανεία Τ	ου εσαφά	iuς	Ψορτι	o verionbi	μας Ρ=1	is NPa	Larix-5	- Version 1	
ΊΡΟΣΟΙ	MOIQMA												
Διεπιφάν	νειες εδαφ	ρικών στ	ρώσεων	,									
	Περιγραφή			Παράμετρα	s a	5	. 1	Σημεία πο	ολυγώνου				
			(°)	[kN/m ³]	[kN/m ²]	zηµ.	x [m]	(m)	zηµ.	(m)	y [m]		
Στρώση	Ι (Άργιλα	ος)	0.00	18.40	10.71	1	-48.50	0	2	-45.00	0		
			1 H			3	-35.00	-1 50	4	-8.00	0.00		
						7	-8.00	-1.50	8	8.00	-1.50		
		B				9	8.00	0.00	10	35.00	0		
Ετρώση	Ι (Βελτιά	ωμένη -	0.00	18.40	19.49	1	-48.50	-7.00	2	-45.00	-7.00		
						3	-45.00	0 00	4	-35.00	0		
		1.	-			7	8.00	-1.50	8	8.00	0.00		
						9	20.50	-7 00	10	45.00	0		
Στρώση	Ι (Βελτιά	ωμένη -	0.00	18.40	28.27	1	-50.50	-7.00	2	-45.00	-7.00		
		_	1			3	-35.00	-7.00	4	-35.00	0		
						5	8.00	-1.50	6	-8.00	-1.50		
						9	35.00	0	10	35.00	-7.00		
ετρώση	II (Άμμοσ	ç)	33.00	19.50	0	11	45.00	-7.00	12	50.50	-7.00		
						3	-35.00	-7.00	4	35.00	-7.00		
Ετρώση	III (Auu	oc)	35.00	20.50	0	5	45.00	-7.00	6	50.50	-7.00		
	4 tr. b. s					3	17.75	-9.45	4	48.50	-9.45		
Ŷ₩ [kN/m³] 10.00 Κατάσταση	Κατάσταση Ενεργή ι Στάθι	υ δυναμ. μη υπογείω	Σημ. 1 ν υδάτων γι	χ [m] -48.50 α τους υπολα	y [m] -2.00 ογισμούς ενε	Σημ. Σημ. 2 ργή ή ανενε	εία πολύγο χ [m] 50.50	y [m] -2.00	Σηµ.	x [m]	y [m]		
ΥΨ [kN/m ³] 10.00 Κατάσταση μ τοιχεια	Κατάσταση Ενεργή : Στάθμ : Υπολ διατμητικ	υ δυναμ. μη υπογείω ωγισμός πίε κης αντογ	Σημ. 1 ν υδάτων γι σης πόρων Χ Π ς	χ [m] - 48 , 50 α τους υπολα υδροδυναμι	y [m] -2.00 ογισμούς ενε κά ή υδροστα	Σημ. Σημ. 2 ργή ή ανενε ατικά	χ [m] 50.50	y [m] -2.00	Σημ.	x [m]	y [m]		
ΥΨ [kN/m ³] 10.00 Κατάσταση Γ	Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο	υ δυναμ. μη υπογείω ωγισμός πίε κης αντο	Σημ. 1 ν υδάτων γι σης πόρων Χης	χ [m] -48.50 α τους υπολα υδροδυναμι	y [m] -2.00 ογισμούς ενε κά ή υδροστα ετρία	Σημ. Σημ. 2 ργή ή ανενε ατικά	κατά πολυγώ (m) 50.50	y [m] -2.00	Σημ.	x [m]	y [m]		
Υ₩ [kN/m³] 10.00 Κατάσταστη Γ τοιχεια Ψ ₁ [kN/m]	Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο W ₂ [kWm]	υ δυναμ. μη υπογείω ωγισμός πίε κης αντογ ς L _E [m]	Σημ. <u>1</u> ν υδάτων γι εσης πόρων Χης χη	χ [m] - 48.50 α τους υπολα υδροδυναμι υδροδυναμι Δροδυναμι Δροδυναμι μη	y [m] -2.00 ογισμούς ενε κά ή υδροστα ετρία Χ ₂ [m]	Σημ. 2 ργή ή ανενε ατικά У2 [m]	και πολυγώ (m) 50.50	y [m] -2.00	Σημ.	x [m]	y [m]		
Υw [kN/m ³] 10.00 απάσταση σ τοιχεια W1 [kN/m] .00E+4	Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο W ₂ [kN/m] 1.00E+4	υ δυν αμ μη υπογείω ιογισμός πίε (ης αντο) ς L _E [m] 0	Σημ. 1 ν υδάτων γι σσης πόρων Χης Χης -8.00	χ [m] -48.50 α τους υπολο υδροδυναμι υδροδυναμι Υ1 [m] -1.50	y [m] -2.00 ογισμούς ενε κά ή υδροστα ετρία x ₂ [m] 8.00	Σημ. Σημ. 2 ργή ή ανενε σπικά	20.50	y [m] -2.00	Σημ.	x [m]	y [m]		
Yw [KV/m ³] 10.00 Κατάσταση Γ (KV/m] [KV/m] .00E+4 .00E+4 .00E+4 -E	Κατάσταση Ενεργή : Στάθμ : Υπολ διατμητικ Παράμετρο W ₂ [kW/m] 1.00E+4 1.00E+4 1.00E+4 Mήκος εισαγι	υ δυναμ. μη υπογείω ωγισμός πίε (ης αντο) ς L _E [m] 0 0 0 0 ωγιής	Σημ. 1 ν υδάτων γι σσης πόρων Χης Χης -8.00 -8.00 8.00	x [m] -48.50 α τους υπολο ατους υπολο τους οπολο υσροδιναμι Υ1 [m] -1.50 0.00 0.00	y [m] -2.00 ογισμούς ενε κά ή υδροστα ετρία x ₂ [m] 8.00 -8.00 8.00	Σημ. Σημ. 2 ργή ή ανενε πικά	и поци [m] 50.50	y [m] -2.00	Σημ.	x [m]	y [m]		
Yw [ktV/m³] 10.00 Karáotaan v TOIXEIA W1 [ktV/m] .00E+4 .00E+4 .00E+4 .00E+4 LE DOPTIA Triφαvε	Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο W ₂ [kN/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγι ειακό φορ Περιγραφή	υ δυναμ. μη υπογείω ονισμός πίε (ης αντο; ς L _E [m] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Σημ. 1 ν υδάτων γι σης πόρων XΠS X1 [m] -8.00 -8.00 8.00	χ [m] -48.50 a α τους υπολο uδροδίωαμι Υη [m] -1.50 0.00 0.000 0.00	y [m] -2.00 ογγσμούς ενε σγγσμούς ενε τρία Χ ₂ [m] 8.00 -8.00 8.00	Σημ. 2 ργή ή ανενε πικά	χ (m) 50.50 ργή	y [m] -2.00	Σημ. 	x [m]	У [m]	Διεύθυνστ	
Υψ [kkV/m³] 10.00 Karáoraan Varáoraan " " "	Κατάσταση Ενεργή : Στάθ : Υπολ διατμητικ Παράμετρο W ₂ [kW/m] 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγι κακό φορτ	υ δυναμ. μη υπογείω ονισμός ττίε (ης αντο) ς L _E [m] 0 0 0 ωγής τίο	Σημ. 1 ν υδάτων γι σαγς πόρων XΠS Xη [m] -8.00 -8.00 -8.00 8.00	χ [m] -48.50 a τους υπολε α τους υπολε υδροδυναμι Γεωμ y1 [m] -1.50 0.000 0.000 0.000 0.000 φορτ [ο φορτ [ο	y [m] -2.00 Σγισμούς ενε κά ή υδροστα Σ(m] 8.00 -8.00 8.00	Σημ. Σημ. 2 ργή ή ανενε πικά ^y 2 [m] -1.50 -1.50 -1.50	<u>х</u> [m] 50.50 Руń	y [m] -2.00 -2.00	Σημ. У2 [m] -1.50	х [m] [ktVm ²] –113.00	y [m] [ktVm ²] -113.00	Διεύθυνστ γ	
Υψ Υψ [kt/m³] 10.00 Karáotaan (aráotaan U (b) ETOIXEIA (b) W1 (kt/m) [kt/m] (b) (kt/m) (b)	Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο W ₂ [klV/m] 1.00E+4 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγί διακό φορ Περιγραφή : ς υπολογ ς δη - - - - - - - - - - - - -	υ δυναμ. μη υπογείω ονισμός πίε (ης αντο; ς L _E [m] 0 0 0 0 ωγής τίο Γιο Γιο 50.000	Σημ. 1 ν υδάτων γι σης πόρων X15 X1 [m] -8.00 -8.00 8.00	χ [m] -48.50 a τους υπολα α τους υπολα υδροδιναμι Γεωμ γ1 [m] -1.50 0.00 0.00	у [m] -2.00 ругаройс гле сай у иброота втріа ж.2 [m] 8.00 -8.00 8.00	Σημ. Σημ. 2 ργή ή σνενε πικά	у у у у у у (m) -1.50	y [m] -2.00 Xg [m] 8.00	Σημ . У 2 [m] -1.50	<u>р</u> [kdVm?] -113.00 -	y [m] [kl√m²] -113.00	Διεύθυνση	
Υψ [ktV/m³] 10.00 Karáotaan Varáotaan W1 [ktV/m³] U Toixea W1 [kt/m] L00E+4 .00E+4 .00E+4 <td>Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο W₂ [kl\m] 1.00E+4 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγι Κακό φορ Περιγραφή : ς υπολογ ς δη - 0.0200 Ανοχή σύγκλ</td> <td>υ δυναμ. μη υπογείω ονισμός πίε (ης αντο) ς L_E [m] 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Σημ. 1 ν υδάτων γι σης πόρων X1S X1 [m] -8.00 -8.00 8.00 8.00</td> <td>χ [m] -48.50 α τους υπολα υδροδιναμμ γη [m] -1.50 0.00 0.00 0.00 0.00</td> <td>у [m] -2.00 ругаройс гиг сай у иброота втріа Х.2 [m] 8.00 -8.00 8.00</td> <td>Σημ. Σημ. 2 ργή ή σανενε πικά</td> <td><u>y</u> <u>[m]</u> 50.50 ργή </td> <td>y [m] -2.00 [m] 8.00</td> <td>Υ2 [m] -1.50</td> <td>χ [m] [kdV/m²] - -113.00 -</td> <td>у [м] [kt√m²] -113.00</td> <td>Διεύθυνση γ ται με</td>	Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο W ₂ [kl\m] 1.00E+4 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγι Κακό φορ Περιγραφή : ς υπολογ ς δη - 0.0200 Ανοχή σύγκλ	υ δυναμ. μη υπογείω ονισμός πίε (ης αντο) ς L _E [m] 0 0 0 0 0 0 0 0 0 0 0 0 0	Σημ. 1 ν υδάτων γι σης πόρων X1S X1 [m] -8.00 -8.00 8.00 8.00	χ [m] -48.50 α τους υπολα υδροδιναμμ γη [m] -1.50 0.00 0.00 0.00 0.00	у [m] -2.00 ругаройс гиг сай у иброота втріа Х.2 [m] 8.00 -8.00 8.00	Σημ. Σημ. 2 ργή ή σανενε πικά	<u>y</u> <u>[m]</u> 50.50 ργή 	y [m] -2.00 [m] 8.00	Υ 2 [m] -1.50	χ [m] [kdV/m²] - -113.00 -	у [м] [kt√m²] -113.00	Διεύθυνση γ ται με	
ΥΨ [ktV/m³] 10.00 Karáσταση "Toixεia W1 [ktV/m] [ktV/m] [ktV/m] "Toixeia W1 [ktV/m] [kt/m]	Κατάσταση Ενεργή : Στάθι : Υπολ διατμητικ Παράμετρο W2 [k0/m] 1.00E+4 1.00E+4 1.00E+4 1.00E+4 1.00E+4 Μήκος εισαγι Κακό φορ Περιγραφή 	υ διυναμ. ψη υπογείω ογισμός πίε (ης αντο) ς Lg [m] 0 0 0 0 0 0 ψγής	Σημ. 1 ν υδάτων γι σης πόρων χης (m) -8.00 -8.00 -8.00 8.00 Οφ έλιμο ευθυγς λήψεων	χ [m] -48.50 α τους υπολε υδροδικαμμ γη [m] -1.50 0.00 0.00 0.00 φορτ(ο α αραμμισμένα με	y [m] -2.00 ογισμούς ενε κά ή υδροστα Στρία Χ ₂ [m] 8.00 -8.00 8.00	Σημ. Σημ. 2 ργή ή ανενε miká	χ (m) 50.50 ργή μη [m] -1.50	χ [m] -2.00 χε [m] 8.00	Σημ . У 2 [m] -1.50	χ [fm] [kdV/m²] -113.00	γ [k]/m ² [k]/m ²] -113.00	Διεύθυνστ γ ται με	

ALL MAN

Ελεγχος φ	έρουσας	ικανότητο	ις αβαθα	ούς θεμελ	ίου σε πρ	οφορτισμ	ένο έδαφ	ρος		ZENIOU S
Πλάτος θε	μελίου 16	βμ			-					27.10.10, 16:41
Στάθμη θε	μελίωσης	ς -1,5 μ απ	τό την ετ	τιφάνεια	του εδάφα	ους	Φορτί	ο λειτου	ργιας Ρ=113 ΚΡα	Larix-5 - Version 1.2
	Παρατόρηση									
Αριθμ. κύκλου	x	У	н	Zwangs- Punkt	Αγκύριο	Γδιαθεσ		Lmin	βλέπε υποσημείωση	
451	[m]	[m]	[m]	1		1,63	[m]	[m]		
FataBeor Laman Lmin	: διαί : υπο : διαδ	θέσιμη ασφά/ ολογιστικό, απ ομένο, ελάχια	κεια, απαιτή ταιτούμενα πο ελεύθει	ούμενη ασφ ο ελεύθερο μ ρο μήκος αγ	άλεια F _{απαπ} . ιήκος αγκύρα κύρωσης	= 1.00 ωσης στην π	εριο <mark>χή</mark> L _{min}	- L _{max}		
										Nr.:

8.2 ΒΑΘΕΙΑ ΘΕΜΕΛΙΩΣΗ ΜΕ ΠΑΣΣΑΛΟΥΣ

8.2.1 ΠΡΙΝ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΕΜΠΗΓΝΥΟΜΕΝΩΝ ΠΑΣΣΑΛΩΝ Φ50 ΜΕ ΣΤΑΤΙΚΟΥΣ ΤΥΠΟΥΣ											
D		0,50	m	α	ΑΠΟ ΔΙΑΓΡΑΜΜΑ TOMLINSON	0,45	0				
Ap	πD ² /4	0,20	m ²	cu	ΓΙΑ ΤΟ ΜΕΣΟ ΤΟΥ ΔΖ _Ι	11,40	kPa				
с	ΣΤΡΩΣΗΣ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΥ ΙΛΥ ΜΕ q _c =14,00 MPa	0	0		ας	5,13	kPa				
N _c	ΣΤΡΩΣΗΣ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΥ ΙΛΥ ΜΕ q _c =14,00 MPa	46,1	124	Δz _i		5,50	m				
σ'_{ν}	ΓΙΑ ΤΗΝ ΑΙΧΜΗ ΣΤΑ 12,00 m	128,85	kPa	K _{II}	ΓΙΑ ΜΕΣΗ ΣΧΕΤΙΚΗ ΠΥΚΝΟΤΗΤΑ	1,0)				
Nq	ΣΤΡΩΣΗΣ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΥ ΙΛΥ ΜΕ q_c =14,00 MPa	33,2	296	σ' _{vII}	ΓΙΑ ΤΟ ΜΕΣΟ ΤΟΥ ΔΖ _{ΙΙ}	90,49	kPa				
γαν.	ΣΤΡΩΣΗΣ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΥ ΙΛΥ ΜΕ q _c =14,00 MPa	10,50	kN/m ³	δ _{II}	ΓΙΑ ΑΜΜΟ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ	25	o				
Ν _γ	ΣΤΡΩΣΗΣ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΥ ΙΛΥ ΜΕ q_c =14,00 MPa	45,2	228	f _{sull}	K _{ii} σ' _{vii} tanδ _{ii}	42,19	kPa				
q _{pu}	$1,3cN_c+\sigma'_vN_q+0,3\gamma_{\alpha v.}DN_\gamma$	4361,42	kPa	Δz _{II}		2,45	m				
Q _{pu}	A _p q _{pu}	856,36	kN	K _{III}	ΓΙΑ ΜΕΓΑΛΗ ΣΧΕΤΙΚΗ ΠΥΚΝΟΤΗΤΑ	1,5	;				
				σ' _{vIII}	ΓΙΑ ΤΟ ΜΕΣΟ ΤΟΥ ΔΖ _{ΙΙΙ}	115,52	kPa				
				δ _{III}	ΓΙΑ ΠΥΚΝΗ ΑΜΜΟ	30	0				
			100,04	kPa							
	Δz _{III} 2,55 m										
	Q _{su} πDΣ(f _{su} Δz) 607,42 kN										
	đ	ΔΕΡΟΥΣΑ Ι	KANOTH	ΓA Q _u	=Q _{nu} +Q _{su} =1463,78 kN						

Υπολογίζεται το επιτρεπόμενο φορτίο κεφαλής ενός μεμονωμένου πασσάλου Φ50 $P_{επ.Φ50}$ =min(P₁,P₂,P₃)=671,15 kN με P₁=(Q_{pu}+0,8×Q_{su})/2=671,15 kN, P₂=Q_{pu}/2,5+ (0,8×Q_{su})/1=828,48 kN και P₃=6000×A_p=1178,10 kN και ο απαιτούμενος αριθμός πασσάλων για την ανάληψη του συνολικού φορτίου που μεταφέρει το silo στο έδαφος n_{απ.Φ50}=ΣW/(P_{επ.}-W_{αν.Φ50})≈46 με W_{αν.Φ50}=31,91 kN.

Υπολογίζεται η ελάχιστη στάθμη αιχμής μεμονωμένων πασσάλων Φ80, Φ100 και Φ120 κατά DIN4014 3D, η αντοχή αιχμής τους $Q_{pu}=q_{pu}\times A_p$ ($q_{pu}=2,80$ Mpa για $q_c=14,00$ MPa), η οριακή αντοχή τους λόγω πλευρικών τριβών σε κάθε στρώση i $Q_{su}=\sum (f_{sui}\times\Delta z_i)\times A_p$ (στρώση I με $f_{su}=11,40$ kPa για $c_u=11,40$ kPa, στρώση II με $f_{su}=68,00$ kPa για $q_c=8,50$ MPa και στρώση III με $f_{su}=112,00$ kPa για $q_c=14,00$ MPa) και η φέρουσα ικανότητά τους $Q_u=Q_{pu}+Q_{su}$.

	ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΕΓΧΥΤΩΝ ΠΑΣΣΑΛΩΝ Φ80, Φ100 ΚΑΙ Φ120 ΚΑΤΑ DIN4014									
D	A _p	ελαχιστη σταφμη αιχμης	ΣΤΑΘΜΗ ΑΙΧΜΗΣ	Q _{pu}	Δz _i	Δz _{II}	Δz _{III}	Q _{su}	Q _u	
m	m ²	m	m	kN	m	m	m	kN	kN	
0,80	0,50	11,85	13,50	1407,43	5,50	2,45	4,05	1716,31	3123,75	
1,00	0,79	12,45	14,50	2199,11	5,50	2,45	5,05	2497,25	4696,37	
1,20	1,13	13,05	15,50	3166,73	5,50	2,45	6,05	3418,93	6585,66	

Υπολογίζεται το επί μέρους φορτίο που αναλαμβάνει ένας μεμονωμένος πάσσαλος Φ80 κατά DIN4014 για διάφορες στάθμες υποχώρησης της κεφαλής του p/D και για την υποχώρηση στην οποία ολοκληρώνονται οι τριβές ρ_{su}=0,5×Q_{su}+0,5<3 cm.

	ΚΑΤΑΣΚΕΥΗ ΔΙΑΓΡΑΜΜΑΤΟΣ ΦΟΡΤΙΟΥ - ΜΕΤΑΤΟΠΙΣΗΣ ΕΓΧΥΤΟΥ ΠΑΣΣΑΛΟΥ Φ80 ΚΑΤΑ DIN4014										
ΕΞΑΝΤΛΗ: ΣΤΗ ΣΤΑ	ΣΗ ΑΝΤΟΧΗΣ ΑΙΧΜΗΣ ΔΘΜΗ ΤΗΣ ΑΙΧΜΗΣ	ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΗ ΙΛΥ ΜΕ q _c =14,00 MPa		ΕΞΑΝ ΠΛΕΥΡΙΚΗΣ ΤΕΦΡΗΣ Σ ΜΕΣΟΛΕΠ ΑΜΜΟΥ Μ	ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ Ι ΤΕΦΡΗΣ ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΜΕΣΟΛΕΠΤΟΚΟΚΚΗΣ ΙΛΥΩΔΟΥΣ ΑΜΜΟΥ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΜΕ g _c =8,50 MPa			ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ Ι ΚΑΣΤΑΝΗΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ q _c =0,50 MPa			
ρ=0,02*D	1,60 cm										
q _c	14,00 MPa	q _c	14,00	MPa	q _c	8,50	MPa	Cu	11,40	kPa	
q _p	0,98 MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40	kPa	
Qp	492,60 kN	Q _{su}	1140,02	kN	Q _{su}	418,71	kN	Q _{su}	157,58	kN	
					ΣQ _{su}	1716,31	kN	Q	2208,92	kN	
ρ=0,03*D	2,40 cm				-						
q _c	14,00 MPa	q _c	14,00	MPa	q _c	8,50	Мра	Cu	11,40	kPa	
q _p	1,26 MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40	kPa	
Q _p	633,35 kN	Q _{su}	1140,02	kN	Q _{su}	418,71	kN	Q _{su}	157,58	kN	
					ΣQ _{su}	1716,31	kN	Q	2349,66	kN	
ρ=0,10*D	8,00 cm										
q _c	14,00 MPa	q _c	14,00	MPa	q _c	8,50	MPa	Cu	11,40	kPa	
q _{pu}	2,80 MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40	kPa	
Q _{pu}	1407,43 kN	Q _{su}	1140,02	kN	Q _{su}	418,71	kN	Q _{su}	157,58	kN	
	-	-			ΣQ _{su}	1716,31	kN	Q _u	3123,75	kN	
	ΥΠ¢	οχΩρήΣη ς		(ΛΗΡΩΝΟΝ	ΤΑΙ ΟΙ ΤΡΙΒΙ	EΣ ρ _{su} =1,36	cm < 3,00 c	m			
Qp	418,71 kN				ΣQ _{su}	1716,31	kN	Q	2135,03	kN	

Οι τιμές του σχεδιάζονται σε διάγραμμα συναρτήσει της υποχώρησης της κεφαλής του πασσάλου (Διάγραμμα Φορτίου – Μετατόπισης κατά DIN4014).

Υπολογίζεται το επιτρεπόμενο φορτίο κεφαλής ενός μεμονωμένου πασσάλου Φ80 $P_{e\pi.\Phi80}$ =min(P_1,P_2)=1561,88 kN με ρ_1 =0,99 cm για P_1 =Q_u/2=1561,88 kN και P_2 =2171,98 kN για ρ_2 =1,5 cm και ο απαιτούμενος αριθμός πασσάλων για την ανάληψη του συνολικού φορτίου που μεταφέρει το silo στο έδαφος n_{απ.Φ80}=ΣW/P_{επ.}≈19 (το υπό άνωση ίδιο βάρος του πασσάλου μπορεί να αγνοηθεί κατά DIN4014).

Υπολογίζεται το επί μέρους φορτίο που αναλαμβάνει ένας μεμονωμένος πάσσαλος Φ100 κατά DIN4014 για διάφορες στάθμες υποχώρησης της κεφαλής του p/D και για την υποχώρηση στην οποία ολοκληρώνονται οι τριβές ρ_{su}=0,5×Q_{su}+0,5<3 cm.

ΕΞΑΝΤΛΗΣ ΣΤΗ ΣΤΑ	Η ΑΝΤΟΧΗΣ ΑΙΧΜΗΣ ΘΜΗ ΤΗΣ ΑΙΧΜΗΣ ΑΙΧΜΗΣ ΟΓΓΟΚΟΚΚΗΣ ΑΠΟΥΡΙΚΗΣ ΤΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΗ ΙΛΥ ΜΕ q _c =14,00 MPa		ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ Ι ΤΕΦΡΗΣ ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΜΕΣΟΛΕΠΤΟΚΟΚΚΗΣ ΙΛΥΩΔΟΥΣ ΑΜΜΟΥ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΜΕ q _r =8,50 MPa			ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ Ι ΚΑΣΤΑΝΗΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ q _c =0,50 MPa				
ρ=0,02*D	2,00	cm								
q _c	14,00	MPa	q _c	14,00	MPa	q _c	8,50	MPa	Cu	11,40 kPa
q _p	0,98	MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40 kPa
Q _p	769,69	kN	Q _{su}	1776,88	kN	Q _{su}	523,39	kN	Q _{su}	196,98 kN
						ΣQ _{su}	2497,25	kN	Q	3266,94 kN
ρ=0,03*D	3,00	cm								
q _c	14,00	MPa	q _c	14,00	MPa	q _c	8,50	Мра	c _u	11,40 kPa
q _p	1,26	MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40 kPa
Q _p	989,60	kN	Q _{su}	1776,88	kN	Q _{su}	523,39	kN	Q _{su}	196,98 kN
						ΣQ _{su}	2497,25	kN	Q	3486,85 kN
ρ=0,10*D	10,00	cm								
q _c	14,00	MPa	q _c	14,00	MPa	q _c	8,50	MPa	Cu	11,40 kPa
q _{pu}	2,80	MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40 kPa
Q _{pu}	2199,11	kN	Q _{su}	1776,88	kN	Q _{su}	523,39	kN	Q _{su}	196,98 kN
						ΣQ _{su}	2497,25	kN	Q _u	4696,37 kN
		ΥΠ	ΟΧΩΡΗΣΗ Ο		ΛΗΡΩΝΟΝ	ΤΑΙ ΟΙ ΤΡΙΒΕ	Σ ρ _{su} =1,75	cm < 3,00 c	m	
Q _n	673,48	kN				ΣQ _{SU}	2497,25	kN	Q	3170,73 kN

Υπολογίζεται το επιτρεπόμενο φορτίο κεφαλής ενός μεμονωμένου πασσάλου Φ100 $P_{\epsilon\pi.\Phi100}$ =min(P₁,P₂)=2348,19 kN με ρ₁=1,30 cm για P₁=Q_u/2=2348,19 kN και P₂=2717,77 kN για ρ₂=1,5 cm και ο απαιτούμενος αριθμός πασσάλων για την ανάληψη του συνολικού φορτίου που μεταφέρει το silo στο έδαφος n_{απ.Φ100}=ΣW/P_{επ.}≈13 (το υπό άνωση ίδιο βάρος του πασσάλου μπορεί να αγνοηθεί κατά DIN4014).

Υπολογίζεται το επί μέρους φορτίο που αναλαμβάνει ένας μεμονωμένος πάσσαλος Φ120 κατά DIN4014 για διάφορες στάθμες υποχώρησης της κεφαλής του p/D και για την υποχώρηση στην οποία ολοκληρώνονται οι τριβές p_{su}=0,5×Q_{su}+0,5<3 cm.

ΚΑΤΑΣΚΕΥΗ ΔΙΑΓΡΑΜΜΑΤΟΣ ΦΟΡΤΙΟΥ - ΜΕΤΑΤΟΠΙΣΗΣ ΕΓΧΥΤΟΥ ΠΑΣΣΑΛΟΥ Φ120 ΚΑΤΑ DIN4014										
ΕΞΑΝΤΛΗ: ΣΤΗ ΣΤΑ	ΣΗ ΑΝΤΟΧΗΣ ΑΙΧΜΗΣ ΔΘΜΗ ΤΗΣ ΑΙΧΜΗΣ	ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ ΙΙΙ ΤΕΦΡΗΣ ΠΥΚΝΗΣ ΛΕΠΤΟΚΟΚΚΗΣ ΑΜΜΟΥ ΜΕ ΛΙΓΗ ΙΛΥ ΜΕ q _c =14,00 MPa		ΕΞΑΝ ΠΛΕΥΡΙΚΗΣ ΤΕΦΡΗΣ Σ ΜΕΣΟΛΕΠ ΑΜΜΟΥ Μ	ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ Ι ΤΕΦΡΗΣ ΧΟΝΔΡΟΚΟΚΚΗΣ ΕΩΣ ΜΕΣΟΛΕΠΤΟΚΟΚΚΗΣ ΙΛΥΩΔΟΥΣ ΑΜΜΟΥ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ ΜΕ q _c =8,50 MPa			ΕΞΑΝΤΛΗΣΗ ΑΝΤΟΧΗΣ ΠΛΕΥΡΙΚΗΣ ΤΡΙΒΗΣ ΣΤΗ ΣΤΡΩΣΗ Ι ΚΑΣΤΑΝΗΣ ΜΑΛΑΚΗΣ ΑΡΓΙΛΟΥ ΜΕ q _c =0,50 MPa		
ρ=0,02*D	2,40 cm									
q _c	14,00 MPa	q _c	14,00	MPa	q _c	8,50	MPa	Cu	11,40 kPa	
q _p	0,98 MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40 kPa	
Q _p	1108,35 kN	Q _{su}	2554,49	kN	Q _{su}	628,07	kN	Q _{su}	236,37 kN	
					ΣQ _{su}	3418,93	kN	Q	4527,29 kN	
ρ=0,03*D	3,60 cm				-					
q _c	14,00 MPa	q _c	14,00	MPa	q _c	8,50	Мра	Cu	11,40 kPa	
q _p	1,26 MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40 kPa	
Q _p	1425,03 kN	Q _{su}	2554,49	kN	Q _{su}	628,07	kN	Q _{su}	236,37 kN	
					ΣQ _{su}	3418,93	kN	Q	4843,96 kN	
ρ=0,10*D	12,00 cm									
q _c	14,00 MPa	q _c	14,00	MPa	q _c	8,50	MPa	Cu	11,40 kPa	
q _{pu}	2,80 MPa	f _{su}	112,00	kPa	f _{su}	68,00	kPa	f _{su}	11,40 kPa	
Q _{pu}	3166,73 kN	Q _{su}	2554,49	kN	Q _{su}	628,07	kN	Q _{su}	236,37 kN	
	-	-			ΣQ _{su}	3418,93	kN	Q _u	6585,66 kN	
	ΥΠ	ΟΧΩΡΗΣΗ Ο		ΛΗΡΩΝΟΝ	ΤΑΙ ΟΙ ΤΡΙΒΙ	ΞΣ ρ _{su} =2,21	cm < 3,00 c	m		
Qp	1020,61 kN				ΣQ _{su}	3418,93	kN	Q	4439,54 kN	

Οι τιμές του σχεδιάζονται σε διάγραμμα συναρτήσει της υποχώρησης της κεφαλής του πασσάλου (Διάγραμμα Φορτίου – Μετατόπισης κατά DIN4014).

Υπολογίζεται το επιτρεπόμενο φορτίο κεφαλής ενός μεμονωμένου πασσάλου Φ120 $P_{e\pi.\Phi120}$ =min(P_1 , P_2)=3013,26 kN με ρ_1 =1,64 cm για P_1 = Q_u /2=3292,83 kN και P_2 =3013,26 kN για ρ_2 =1,5 cm και ο απαιτούμενος αριθμός πασσάλων για την

ανάληψη του συνολικού φορτίου που μεταφέρει το silo στο έδαφος n_{απ.Φ120}=ΣW/P_{επ.}≈10 (το υπό άνωση ίδιο βάρος του πασσάλου μπορεί να αγνοηθεί κατά DIN4014).

Σχεδιάζεται το διάγραμμα των ανεμοπιέσεων που ασκούνται καθ ύψος του silo σε επιφάνεια διαμέτρου 9,66 m κατά τους Ελληνικούς Κανονισμούς (πρώτα 15 m - εκ των οποίων τα πρώτα 3 m δεν αναλαμβάνουν τίποτα - ανεμοπίεσης 100 kg/m², επόμενα 15 m ανεμοπίεσης 125 kg/m² και υπόλοιπο ύψος ανεμοπίεσης 150 kg/m²), μελετούνται δύο δυσμενείς συνδυασμοί (στατικός συνδυασμός πλήρους ανεμοπίεσης και πλήρους silo και σεισμικός συνδυασμός – λόγω του μεγάλου ύψους του silo και της ευαισθησίας των πασσάλων σε οριζόντιες φορτίσεις - μισής ανεμοπίεσης, σεισμικού συντελεστή 0,16g και πλήρους silo) για έκκεντρη φόρτιση κεντρικής πασσαλομάδας 16Φ120 πασσάλων με κεφαλόδεσμο πάχους 1,5 m ως προς το σημείο έμπηξής τους σε αυτόν 0,5 m και υπολογίζεται η τελική διάταξή τους σε αυτήν για τον δυσμενέστερο από τους δύο.

	ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΠΑΣΣΑΛΟΜΑΔΑΣ ΥΠΟ ΣΤΑΤΙΚΗ ΚΑΙ ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ											
Σ	W	28869	kN				F _{σεισμική}	4619,04 kN				
W _{πλάκα}	ις έδρασης	9600	kN	α	0,16	g	F _{σεισμική πλάκας έδρασης}	1536,00 kN	d _{σεισμική πλάκας έδρασης}	0,25	m	
W	/ _{silo}	19269	kN				F _{σεισμική silo}	3083,04 kN	d _{σεισμική silo}	16,25	m	
0 ⊠	h ₁	12,00	m	σ_{W1}	1,00	kPa	W ₁	115,92 kN	d1	10,00	m	
NEΝ	h ₂	15,00	m	σ_{W2}	1,25	kPa	W ₂	181,13 kN	d ₂	23,50	m	
₽⊔	h ₃	0,50	m	σ_{W3}	1,50	kPa	W ₃	7,25 kN	d ₃	31,25	m	
ΣΤΑ	ΤΙΚΑ ΓΙΑ	ΣΗ=ΠΛΗ	ΡΗΣ /	ANEMO	ΟΠΙΕΣΗ Κ	AI	ΣΕΙΣΜΙΚΑ ΓΙΑ ΣΗ=	ΜΙΣΗ ΑΝΕΜΟ	ΠΙΕΣΗ ΚΑΙ ΠΛΗΡΕΣ	ΣΙΛΟ Κ	(AI	
		ΣV=ΠΛΗ	ΙΡΕΣ	δινο				ΣV=ΠΛΗΡ	ες σιλο			
Σ	ΞH	304,29	kN				ΣΗ	4771,19 kN	ΕΛΕΓΧΟΣ ΠΑΣΣΑΛΟΙ	ΜΑΔΑΣ	ΓΙΑ	
Σ	V	28869	kN				ΣV	28869 kN	ΤΟΝ ΔΥΣΜΕΝΕ	δτερο		
Μσ	τατική	5642,04	kNm				Μ _{σεισμική}	53304,42 kN	ΣΥΝΔΥΑΣΜ	0		
топос	JETOYN	ΓΑΙ ΣΕ ΤΕ	τραγ	ΩΝΙΚΟ Ι	KANNABC) 16Ф	120 ΠΑΣΣΑΛΟΙ ΜΕ Α	ΞΟΝΙΚΗ ΑΠΟΣ	ΤΑΣΗ s=4,60 m KAI A	ΠΟΣΤΑ	λΣH	
		ΑΠΟ ΤΟ) akp	ο της	ΠΛΑΚΑΣ s	₁ =0,5	0 m ΓΙΑ ΤΗΝ ΑΝΑΛΗ	ΨΗ ΤΩΝ ΣΗ, Σ	V ΚΑΙ Μ _{σεισμική}			
n	1	.6	P ₁	(P _{min})	935,22	kN	<pre></pre>					
s	4,60	m	l	P ₂	1514,61	kN	P _{min} >U (EΨΕ/\ΚΥΣΙΫΙΟΣ ΣΕ ΚΑΝΕΙΝΑΝ ΠΑΣΣΑΛΟ)					
s/2	2,30	m		P ₃	2094,01	kN						
							P _{max} <p<sub>επ.Φ120=3013,26 kN</p<sub>					

Υπολογίζεται ο δείκτης του εδάφους για οριζόντια φόρτιση κατά Broms K_h=n_h×z/D για κάθε στρώση (στρώση Ι με n_h=500 kN/m³ για μαλακή κανονικά στερεοποιημένη άργιλο NC, στρώση ΙΙ με n_h=1500 kN/m³ και στρώση ΙΙΙ με n_h=2000 kN/m³ για μέσης πυκνότητας υπό άνωση άμμους).

Η μελέτη γίνεται με χρήση του προγράμματος PFHAL στο οποίο τίθενται ως δεδομένα τα εντατικά μεγέθη που ασκούνται στην πασσαλομάδα για τους δύο δυσμενείς συνδυασμούς που μελετούνται, οι συντεταγμένες των πασσάλων της με αναφορά στο κέντρο της και ο δείκτης του εδάφους για οριζόντια φόρτιση κατά Broms K_h για κάθε στρώση και προκύπτουν ως αποτελέσματα τα εντατικά μεγέθη που ασκούνται σε κάθε πάσσαλό της χωριστά και η μετατόπιση της κεφαλής τους.

ΣΥΝΟΨΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ									
	M _{resmax}	δ _{max}							
	kNm m								
ΣΤΑΤΙΚΗ ΦΟΡΤΙΣΗ 88,5 0,0009									
ΕΛΕΓΧΟΣ ΘΡΑΥΣΗΣ	M _{resmax} =88,5 kNm<	:M _{yield} =3118,5 kNm							
	Ο έλεγχος ικ	ανοποιείται.							
ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ	1369,2	0,0085							
ΕΛΕΓΧΟΣ ΘΡΑΥΣΗΣ M _{resmax} =1369,2 kNm <m<sub>yield=3118,5 kNm</m<sub>									
	Ο έλεγχος ικανοποιείται.								

Επιλέγεται οπλισμός BSt42/50 σε ποσοστό 1% της διατομής του πασσάλου 0,0113 m² και σκυρόδεμα Bn250 με $β_R$ =17500 kPa και $β_s/β_R$ =24. Υπολογίζεται η ροπή θραύσης του M_{yield}=v×m×R³× $β_R$ =3118,5 kNm με v=1,5 και m=0,55 για n=N_{max}/(R²× $β_R$)=0,368 με N_{max}=2316,3 kN και μ_o=0,01× $β_s/β_R$ =0,24 από το αντίστοιχο νομογράφημα.

T1

RIB/RZB-Prog. P F A H L 104 Raeumliche Pfahlwerke

PILE	GRO	OUP	16	PII	ES		D^{a}	=1.	20m	(ST)	ATIKH	FORTISH)
										_		
ECI	H O	DR	υc	ĸ	DE	R	ΕI	NG	G A B	Е	Dat	tei:T1.PFA
====						====						
GEOM	1	17	50	0 0	-6	an	-6	90	0 00) n	00	
GHOM	2			=	-2	30	-6	90	=	, o. ≖	00	
	ว้	_		=	2	30	-6	90	=	=		
	4	=		=	6.	90	-6	90	=	=		
	5	=		=	-6	90	-2	30	=	=		
	6	=		=	-2	30	-2	30	=	=		
	7	=		=	2	30	-2	30	=			
	8	=		=	6.	90	-2	30	=	=		
	q	=		=	-6	90	2	30	Ξ	=		
	10			=	-2.	30	2	30	=			
	11	=		=	2	30	2	30	=	=		
	12	=		=	6.	90	2	30	_	=		
	13	=		=	-6	90	6	90	=	=		
	14	=		=	-2	30	6	90	=	22		
	15			=	2	30	6	90	=	=		
	16	222		=	6	90	6	90	=	=		
OUER	11	16 1	\$	0 11	6 0	11	16	0.2	>32	1 13		
MATTE	30	000	, 1	3000				0.1				
BRTT	1		2 1	3	5	50						
	1	1	2 3	4	2	45						
	1	2	8 4	5	q.	55						
RAND	(1	16 1	۰. . . ۱	0 1	1 0	0.0	h					
T.A.ST	1	288	69.0	ບ 1∧ຄ	304	29	, , , ,	าก	0 00	0 00	5642	04
AUSC	1	10 0	1		502.		0.1		0.00	0.00	0032	
ENDE	1	10 0	-									
QUER MATE BETT RAND LAST AUSG ENDE	14 15 16 (1 30 1 1 (1 1 1	= 16 1 0000. 1 288 10 0) 1: 2.1: 2.3: 8.4:) 69.0 1	= = 0.11 3000 3 4 5 0 1	-2. 2. 6. 5. 2. 9. 1 0 304.	30 90 .11 50 45 55 0 (29	6 6 16 1.6	.90 .90 .90 0.2	= = 232 0.00	= = 1.13	5642	. 04

÷

ΣΤΑΤΙΚΗ ΦΟΡΤΙΣΗ

ΣΕΛΙΔΑ: 2

PROTOKOLL DER EINGABE

1. SYSTEM

BRAUCHBARKEITSUNTERSUCHUNG WURDE DURCHGEFUEHRT

DIMENSIONEN:

LAGERUNGSART:

.

LAENGE , ABSTAND , KOORD INATEN	(M)	ART	KOPF FUSS
WINKEL	(ALTGRAD)	0	II
TRAEGHEITSMOMENTE	(M**4)	1	0I
FLAECHEN	(M**2)	2	00
BETTUNGSGROESSE QUER Z. PFAHL	(MN/M**2)	3	I0
BETTUNGSGROESSE AM FUSS	(MN/M**3)	4	I
KRAEFTE	(KN)	5	0
MOMENTE	(KN.M)		
VERSCHIEBUNGEN	(M)		
VERDREHUNGEN	(1)		
BODENPRESSUNG	(MN/M)		

GEOMETRIE DES SYSTEMS

PFAHL	I,	x	Y	Z	ALPHA	OMEGA
	(M)	(M)	(M)	(M)	(GRD)	(GRD)
1	17.500	.000	-6.900	-6.900	.000	.000
2	17.500	.000	-2,300	-6.900	.000	.000
3	17.500	.000	2.300	-6.900	.000	.000
4	17.500	.000	6.900	-6.900	.000	.000
5	17.500	.000	-6.900	-2.300	.000	.000
6	17.500	.000	-2.300	-2.300	.000	.000
7	17.500	.000	2.300	-2.300	.000	.000
8	17.500	.000	6.900	-2.300	.000	.000
9	17.500	.000	-6.900	2.300	.000	.000
10	17.500	.000	-2.300	2.300	.000	.000
11	17.500	. 0,00	2.300	2.300	.000	.000
12	17.500	.000	6.900	2.300	.000	.000
13	17.500	.000	-6.900	6.900	.000	.000
14	17.500	.000	-2.300	6.900	.000	.000
15	17.500	.000	2.300	6.900	.000	.000
16	17.500	.000	6.900	6.900	.000	.000
E=	30000.(MN/M2)	G==	13000.(MN/	/M2)		

ΣΕΛΙΔΑ: 3

ΣΤΑΤΙΚΗ ΦΟΡΤΙΣΗ

•

QUERSCH	INITTSWERTT	E					
PFAHL	I1	12	IT		F		
	(M4)	(M4)	(M4)		(M2)		
1-16	.11600	.11600	.23200	1	L.13000		
SYSTEM	BESCHREIBU	NG					
PFAHL	LAGERUNG Q	UERBELASTU	NG BETTU	IGS1	ÆRLAUF		
	ART	Y1 Z1	¥1	Z1	FUSS (MN/M3)		
1-16	0	0 0	1	1	STARR		
BETTUN	SVERLAUF						
BETTUN	INR. ABSCHN	. ORDINATI	e abstai	۰D			
		(MN/M2)	1) (1	1)			
1	1	2.1300	0 5.50	00			
	2	12.3400	2.45	50			
	3	28.4500	9.5	50			
LASTFA	LLE						
LFNR	RX (KN) RY (KN)) RZ (I	QN)	MX (KNM)	MY (KNM)	MZ (KNM)
1	28869.	0 304.3	3	.0	.0	.0	5642.0

. م

<u>ΕΡΓΟ</u> : ΑΝΑΛΥΣΗ ΦΟΡΤΙΣΕΩΝ ΣΕ ΣΥΣΤΟΙΧΙΑ 16 ΠΑΣΣΑΛΩΝ											
<u>ΕΡΙΟ</u> : ΑΝΑΛΥΣΗ ΦΟΡΙΙΖΕΙΣΝ ΖΕ ΣΥΣΙΟΙΧΙΑ 16 ΠΑΣΣΑΛΙΣΝ ΣΤΑΤΙΚΗ ΦΟΡΤΙΣΗ											
E R G F											
GE SAMT I LFNR	FORMAENDERI VX (M)	ung am be VY(M)	ZUGSPUN VZ	KT (M)	DX(1)	DY	(1)	DZ (1)			
1	.00093	.00053	.00	000	.00000	.00	000	.00001			
lastfai	LL: 1										
SCHNIT	FKRAEFTE										
PF X/L	M1 (KNM)	Q2 (KN)	M2 (KNM)	Q1 (KN)	MRES (KNM)	QRES (KN)	N (KN)	MT (KNM)			
1.0	. 0	.0	-88.5	-19.0	88.5	19.0	-1873.3	. 0			
.1	.0	.0	-56.9	-17.1	56.9	17.1					
.2	.0	.0	-28.6	-15.3	28.6	15.3					
د. ۸	.0	.0	-3.0	-13.A	3.U 17 2	13.9 8 8					
5	.0	.0	28.2	-3.1	28.2	3.1					
.6	.0	.0	28.8	1.8	28.8	1.8					
.7	. 0	.0	23.4	4.1	23.4	4.1					
. 8	.0	.0	15.5	4.8	15.5	4.8					
. 9	. 0	.0	6.9	5.0	6.9	5.0					
1.0	.0	.0	-1.9	5.0	1.9	5.0					
2.0	.0	.0	-88.5	-19.0	88.5	19.0	-1827.3	. 0			
.1	.0	.0	-56.9	-17.1	56.9	17.1					
.2	.0	.0	-28.6	-15.3	28.6	15.3					
.3	.0	.0	-3.0	-13.9	3.0	13.9					
.4	.0	. U N	17.2	-8.8 _2 1	1/.2 28-2	ช.ช วา					
. 6	.0	.0	28.8	1.8	28.8	1.8					
.7	.0	.0	23.4	4.1	23.4	4.1					
. 8	. 0	. 0	15.5	4.8	15.5	4.8					
. 9	. 0	.0	6.9	5.0	6.9	5.0					
1.0	.0	. 0	-1.9	5.0	1.9	5.0					
3.0	. 0	. 0	-88.5	-19.0	88.5	19.0	-1781.4	.0			
.1	. 0	.0	-56.9	-17.1	56.9	17.1					
.2	.0	. 0	-28.6	-15.3	28.6	15.3					
.3	.0	.0	-3.0	-13.9	3.0	13.9					
.4	.0	. U	17.2	-8.8	17.2	8.8					
د. م	.0	. U N	20.2 28 8	-3.1 1 8	20.∠ 28 9	3.1 1 8					
.7	.0	.0	23.4	4.1	23.4	4.1					
. 8	.0	.0	15.5	4.8	15.5	4.8					
. 9	.0	.0	6.9	5.0	6.9	5.0					
1.0	.0	.0	-1.9	5.0	1.9	5.0					
4.0	.0	. 0	-88.5	-19.0	88.5	19.0	-1735.5	.0			
.1	.0	. 0	-56.9	-17.1	56.9	17.1					
.2	.0	.0	-28.6	-15.3	28.6	15.3					
.3	.0	.0	-3.0	-13.9	3.0	13.9					
.4	.0	.0	17.2	-8.8	17.2	8.8					
. 5 6	. 0	.0	28 8	-5.1 1 9	20.2 28 8	J.⊥ 1 Ω					
.7	.0	.0	23.4	4.1	23.4	4.1					
.8	.0	. 0	15.5	4.8	15.5	4.8					
. 9	. 0	. 0	6.9	5.0	6.9	5.0					
1.0	. 0	.0	-1.9	5.0	1.9	5.0					

EPFO: ANA	ΣΕΛΙΔΑ: 5											
۲												
PF X/L 5 .0	M1 (KNM) .0	Q2 (KN) . 0	M2 (KNM) -88,5	Q1 (KN) -19.0	MRES (KNM) 88.5	QRES (KN) 19.0	· N (KN) -1873.3	MT (KNM) . 0				
.1 .2 .3	.0 .0 .0	. 0 . 0 . 0	-56.9 -28.6 -3.0	-17.1 -15.3 -13.9	56.9 28.6 3.0	17.1 15.3 13.9						
.4 .5 .6 .7	.0 .0 .0 .0	.0 .0 .0	17.2 28.2 28.8 23.4	-8.8 -3.1 1.8 4.1	17.2 28.2 28.8 23.4	8.8 3.1 1.8 4.1						
.8 .9 1.0	.0 .0 .0	. 0 . 0 . 0	15.5 6.9 -1.9	4.8 5.0 5.0	15.5 6.9 1.9	4.8 5.0 5.0						
6.0 .1 .2 .3 .4 .5 .6	.0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0	-88.5 -56.9 -28.6 -3.0 17.2 28.2 28.8	-19.0 -17.1 -15.3 -13.9 -8.8 -3.1 1.8	88.5 56.9 28.6 3.0 17.2 28.2 28.8	19.0 17.1 15.3 13.9 8.8 3.1 1.8	-1827.3	. 0				
.8 .9 1.0	. 0 . 0 . 0	.0 .0 .0	15.5 6.9 -1.9	4.1 4.8 5.0 5.0	15.5 6.9 1.9	4.1 4.8 5.0 5.0						
7 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	-88.5 -56.9 -28.6 -3.0 17.2 28.2 28.8 23.4 15.5 6.9 -1.9	-19.0 -17.1 -15.3 -13.9 -8.8 -3.1 1.8 4.1 4.8 5.0 5.0	88.5 56.9 28.6 3.0 17.2 28.2 28.8 23.4 15.5 6.9 1.9	19.0 17.1 15.3 13.9 8.8 3.1 1.8 4.1 4.8 5.0 5.0	-1781.4	. 0				
8 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	-88.5 -56.9 -28.6 -3.0 17.2 28.2 28.8 23.4 15.5 6.9 -1.9	$\begin{array}{c} -19.0 \\ -17.1 \\ -15.3 \\ -13.9 \\ -8.8 \\ -3.1 \\ 1.8 \\ 4.1 \\ 4.8 \\ 5.0 \\ 5.0 \end{array}$	88.5 56.9 28.6 3.0 17.2 28.2 28.8 23.4 15.5 6.9 1.9	$19.0 \\ 17.1 \\ 15.3 \\ 13.9 \\ 8.8 \\ 3.1 \\ 1.8 \\ 4.1 \\ 4.8 \\ 5.0 \\ 5.0 \\ 5.0 \\ 1.8 \\ $	-1735.5	. 0				
9.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	-88.5 -56.9 -28.6 -3.0 17.2 28.2 28.8 23.4 15.5 6.9 -1 9	-19.0 -17.1 -15.3 -13.9 -8.8 -3.1 1.8 4.1 4.8 5.0 5.0	88.5 56.9 28.6 3.0 17.2 28.2 28.8 23.4 15.5 6.9	19.0 17.1 15.3 13.9 8.8 3.1 1.8 4.1 4.8 5.0	-1873.3	. 0				

<u>εργο</u> : Α Ν	ΙΑΛΥΣΗ ΦΟ	ρτισεων	ι ΣΕ ΣΥΣ	TOIXIA	16 ΠΑΣΣ	ΆΛΩΝ			ΣΕΛΙΔΑ: 6	
ΣΤΑΤΙΚΗ ΦΟΡΤΙΣΗ SCHNITTKRAEFTE										
10.0	. 0	.0	-88.5	-19.0	88.5	19.0	-1827.3			
.1	.0	.0	-56.9	-17.1	56.9	17.1				
. 2	.0	.0	-28.6	-15.3	28.6	15.3				
. 3	.0	.0	-3.0	-13.9	3.0	13.9				
. 4	.0	. 0	17.2	-8.8	17.2	8.8				
.5	.0	.0	28.2	-3.1	28.2	3.1				
. 6	. 0	.0	28.8	1.8	28.8	1.8				
.7	.0	.0	23.4	4.1	23.4	4.1				
. 8	.0	. 0	15.5	4.8	15.5	4.8				
.9	.0	. 0	6.9	5.0	6.9	5.0				
1.0	.0	.0	-1.9	5.0	1.9	5.0				
L1 .0	.0	.0	-88.5	-19.0	88.5	19.0	-1781.4	.0		
.1	.0	.0	-56.9	-17.1	56.9	17.1				
.2	.0	.0	-28.6	-15.3	28.6	15.3				
.3	. 0	.0	-3.0	-13.9	3.0	13.9				
. 4	.0	.0	17.2	-8.8	17.2	8.8				
.5	.0	.0	28.2	-3.1	28.2	3.1				
. 6	.0	.0	28.8	1.8	28.8	1.8				
. /	.0	.0	23.4	4.1	23.4	4.1				
. 0	.0	.0	15.5	4.8	15.5	4.8				
1 0	.0	.0	-1 0	5.0	0.9 1 0	5.0				
1.0	.0	.0	~1.9	5.0	1.9	5.0				
.2 .0	.0	.0	-88.5	-19.0	88.5	19.0	-1735.5	. 0		
. 1	.0	.0	-56.9	-17.1	56.9	17.1				
. 2	.0	.0	-28.6	-15.3	28.6	15.3				
	.0	.0	-3.0	~13.9	3.0	13.9				
.4	.0	.0	1/.2	-8.8	1/.2	8.8 ว 1				
.5	.0	.0	20,2	-3.1 1 0	20.2	3.1				
.0	.0	.0	20.0	1 1	20.0	1.0				
.8	.0	.0	15 5	4.1	15 5	4.1				
. 9	.0	. 0	6.9	5.0	-5.5 6 9					
1.0	.0	.0	-1.9	5.0	1.9	5.0				
з 0	0	0	-88 5	-19 0	88 5	19.0	-1072 2	0		
	.0	.0	-56 9	-17 1	56 9	17 1	-10/3.3	.0		
.2	.0	.0	-28.6	-15.3	28 6	15 3				
.3	.0	.0	-3.0	-13.9	3.0	13.9				
. 4	.0	. 0	17.2	-8.8	17.2	8.8				
.5	. 0	.0	28.2	-3.1	28.2	3.1				
. 6	.0	.02	28.8	1.8	28.8	1.8				
.7	.0	.0	23.4	4.1	23.4	4.1				
. 8	.0	. 0	15.5	4.8	15.5	4.8				
. 9	. 0	.0	6.9	5.0	6.9	5.0				
1.0	.0	. 0	-1.9	5.0	1.9	5.0				
.4 .0	.0	.0	-88.5	-19.0	88.5	19.0	-1827.3	. 0		
.1	.0	.0	-56.9	-17.1	56.9	17.1				
. 2	. 0	.0	-28.6	-15.3	28.6	15.3				
.3	. 0	.0	-3.0	-13.9	3.0	13.9				
. 4	.0	.0	17.2	-8.8	17.2	8.8				
. 5	.0	. 0	28.2	-3.1	28.2	3.1				
. 6	. 0	.0	28.8	1.8	28.8	1.8				
.7	.0	.0	23.4	4.1	23.4	4.1				
. 8	.0	.0	15.5	4.8	15.5	4.8				
.9	.0	.0	6.9	5.0	6.9	5.0				
1.0	.0	.0	-1.9	5.0	1.9	5.0				

r

<u>ΕΡΓΟ</u>: ΑΝΑΛΥΣΗ ΦΟΡΤΙΣΕΩΝ ΣΕ ΣΥΣΤΟΙΧΙΑ 16 ΠΑΣΣΑΛΩΝ ΣΤΑΤΙΚΗ ΦΟΡΤΙΣΗ

ΣΕΛΙΔΑ: 7	

SCHNITTKR	AEFTE						•	
PF X/L	M1	Q2	M2	Q1	MRES	QRES	N	MT
	(KNM)	(KN)	(KNM)	(KN)	(KNM)	(KN)	(KN)	(KNM)
15 0	0	0	00 E	10.0	00 F	10.0	1701 4	•
15 .0	.0	.0	-88.5	-19.0	88.5	19.0	-1/81.4	.0
. 1	.0	.0	-56.9	-1/.I	56.9	17.1		
.2	.0	.0	-28.6	-15.3	28.6	15.3		
.3	.0	.0	-3.0	-13.9	3.0	13.9		
. 4	.0	. 0	17.2	-8.8	17.2	8.8		
.5	.0	. 0	28.2	-3.1	28.2	3.1		
. 6	.0	. 0	28.8	1.8	28.8	1.8		
.7	.0	.0	23.4	4.1	23.4	4.1		
. 8	.0	.0	15.5	4.8	15.5	4.8		
.9	.0	.0	6.9	5.0	6.9	5.0		
1.0	. 0	.0	-1.9	5.0	1.9	5.0		
16 .0	. 0	.0	-88.5	-19.0	88.5	19.0	-1735.5	.0
.1	. 0	.0	-56.9	-17.1	56.9	17.1		
.2	.0	.0	-28.6	-15.3	28.6	15.3		
.3	.0	.0	-3.0	-13.9	3.0	13,9		
. 4	.0	.0	17.2	-8.8	17.2	8.8		
.5	.0	.0	28.2	-3.1	28.2	3.1		
.6	.0	.0	28.8	1.8	28.8	1.8		
. 7	.0	. 0	23.4	4.1	23.4	4.1		
.8	.0	.0	15.5	4.8	15.5	4.8		
.9	.0	.0	6.9	5.0	6.9	5.0		
1.0	.0	.0	-1.9	5.0	1.9	5.0		

ENDE

ړ

•

<u>ΕΡΓΟ</u>: ΑΝΑΛΥΣΗ ΦΟΡΤΙΣΕΩΝ ΣΕ ΣΥΣΤΟΙΧΙΑ 16 ΠΑΣΣΑΛΩΝ ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ

٠

Т2

RIB/RZB-Prog. PFAHL IO4 Raeumliche Pfahlwerke

<u>P</u>	ILE	: G	ROU	<u>P 1</u>	6 PI	LES	D=1	20m	(SE	ISMIKH	FORTISH)
E	CH	10	DR	υc	к	DER	EIN	GAB	E	Datei	: T2 . PFA
==					====						
Gł	EOM	1	1	7.50	0.0	-6.90	-6.90	0.0	0 0.0	0	
		2		22	=	-2.30	-6.90	=	=		
		3		=	=	2.30	-6.90	=	=		
		4		=	=	6.90	-6.90	=	=		
		5		=	=	-6.90	-2.30	=	=		
		6		=	=	-2.30	-2.30	=	=		
		7		=	=	2.30	-2.30	=	=		
		8		-	=	6.90	-2.30	=	=		
		9		=	=	-6.90	2.30	=	=		
		10		=	=	-2.30	2.30	=	=		
		11		=	=	2.30	2.30	=	=		
		12		=	=	6.90	2.30	-	=		
		13		-	=	-6.90	6.90	-	~		
		14		=	=	-2.30	6.90	=	=		
		15			=	2.30	6.90	=	=		
		16			=	6.90	6.90	=	=		
Qt	JER	(1	16	1)	0.11	6 0.11	.6 0.3	232	1.13		
M	ATE	3	0000	. 1	3000						
BF	ETT	1		2.1	3	5.50					
		1		12.3	4	2.45					
		1		28.4	5	9,55					
RA	AND	(1	16	1)	01	1000).				
Ľ	\ST	1	28	869.	00	4771.19	0.00	0.00	0.00	53304.4	2
Αl	JSG	1	10	01							
EN	IDE										

\$

ΣΕΛΙΔΑ: 2

ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ

PROTOKOLL DER EINGABE

1. SYSTEM

BRAUCHBARKEITSUNTERSUCHUNG WURDE DURCHGEFUEHRT

DIMENSIONEN:

LAGERUNGSART:

.

LAENGE, ABSTAND, KOORDINATEN	(M)	ART	KOPF FUSS
WINKEL	(ALTGRAD)	0	II
TRAEGHEITSMOMENTE	(M**4)	1	0I
FLAECHEN	(M**2)	2	00
BETTUNGSGROESSE QUER Z. PFAHL	(MN/M**2)	З	I0
BETTUNGSGROESSE AM FUSS	(MN/M**3)	4	I
KRAEFTE	(KN)	5	0
MOMENTE	(KN.M)		
VERSCHIEBUNGEN	(M)		
VERDREHUNGEN	(1)		
BODENPRESSUNG	(MN/M)		

GEOMETRIE DES SYSTEMS

PFAHL	\mathtt{L}	Х	Y	\mathbf{Z}	ALPHA	OMEGA
	(M)	(M)	(M)	(M)	(GRD)	(GRD)
1	17.500	.000	-6.900	-6.900	.000	.000
2	17.500	.000	-2.300	-6,900	.000	.000
3	17.500	.000	2.300	-6.900	.000	.000
4	17.500	.000	6.900	-6.900	.000	.000
5	17.500	.000	-6.900	-2.300	.000	.000
6	17.500	. 000	-2.300	-2.300	.000	. 000
7	17.500	.000	2.300	-2.300	.000	.000
8	17.500	.000	6.900	-2.300	.000	.000
9	17,500	.000	-6.900	2.300	.000	.000
10	17.500	.000	-2.300	2.300	.000	.000
11	17.500	.000	2.300	2.300	.000	. 000
12	17.500	.000	6.900	2,300	.000	.000
13	17.500	.000	-6.900	6.900	.000	. 000
14	17.500	.000	-2.300	6.900	.000	.000
15	17.500	.000	2.300	6.900	.000	.000
16	17.500	.000	6.900	6.900	.000	.000

E= 30000. (MN/M2) G= 13000. (MN/M2)

234

ΣΕΛΙΔΑ: 3

ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ

QUERSCH	INITTSWER:	FTE					•	
PFAHL	11		12	IT		F		
	(M4)	(M4)	(M4)		(M2)		
1-16	.11600	.11	600	.23200	:	1.13000		
SYSTEM	BESCHREI	BUNG						
PFAHL	LAGERUNG	QUERBE	LASTUN	G BETTU	NGS	VERLAUF		
	ART	¥1	Z1	¥1	Z1	FUSS (MN/M	3)	
1-16	0	0	0	1	1	STARR		
BETTIN	SVERLAUF							
BETTUN	INR. ABSCH	IN. OR	DINATE	ABSTA	ND			
		(MN/M2)	()	M)			
1	1		2.1300	5.5	00			
	2	1	2.3400	2.4	50			
	3	2	8.4500	9.5	50			
LASTFAL	CLLE							
LFNR	RX (F	KIN)	RY (KN)	RZ (1	KN)	MX (KNM)	MY (KNM)	MZ (KNM)
1	28869	9.0	4771.2		.0	. 0	.0	53304.4

ΣΕΙΣΜΙΚΗ ΦΟΡΤΙΣΗ

ΣΕΛΙΔΑ: 4

.

ERGEBNISSE

=

GESAMT	FORMAENDEI	RUNG AM BEZU	GSPUNKT			
LFNR	VX (M)	VY (M)	VZ (M)	DX(1)	DY(1)	DZ(1)
1	.00093	.00847	.00000	.00000	.00000	.00004

LASTFALL: 1

SCI	HNITT	KRAEFTE							
PF	X/L	M1	Q2	M2	Q1	MRES	QRES	N	MT
		(KNM)	(KN)	(KNM)	(KN)	(KNM)	(KN)	(KN)	(KNM)
1	. 0	. 0	. 0	-1369.2	-298.2	1369.2	298.2	-2316.3	.0
	.1	. 0	.0	-874.7	-267.2	874.7	267.2		
	.2	. 0	.0	-432.0	-239.5	432.0	239.5		
	.3	.0	.0	-33.3	-217.2	33.3	217.2		
	. 4	.0	.0	280.9	-136.8	280.9	136.8		
	.5	.0	.0	450.8	-46.4	450.8	46.4		
	.6	.0	.0	457.7	30.0	457.7	30.0		
	.7	.0	.0	369.9	65.1	369.9	65.1		
	.8	. 0	.0	243.4	77.0	243.4	77.0		
	. 9	. 0	.0	106.0	79.1	106.0	79.1		
	1.0	. 0	.0	-32.5	79.1	32.5	79.1		
2	. 0	. 0	.0	-1369.2	-298.2	1369.2	298.2	-1975.0	. 0
	. 1	. 0	.0	-874.7	-267.2	874.7	267.2		
	. 2	.0	. 0	-432.0	-239.5	432.0	239.5		
	.3	. 0	. 0	-33.3	-217.2	33.3	217.2		
	. 4	. 0	.0	280.9	-136.8	280.9	136.8		
	. 5	.0	.0	450.8	-46.4	450.8	46.4		
	. 6	.0	.0	457.7	30.0	457.7	30.0		
	.7	. 0	.0	369.9	65.1	369.9	65.1		
	. 8	.0	. 0	243.4	77.0	243.4	77.0		
	. 9	.0	.0	106.0	79.1	106.0	79.1		
	1.0	.0	.0	-32.5	79.1	32.5	79.1		
3	. 0	.0	. 0	-1369.2	-298.2	1369.2	298.2	-1633.7	.0
	.1	. 0	.0	-874.7	-267.2	874.7	267.2		
	. 2	. 0	.0	-432.0	-239.5	432.0	239.5		
	.3	. 0	.0	-33.3	-217.2	33.3	217.2		
	. 4	. 0	.0	280.9	-136.8	280.9	136.8		
	.5	. 0	. 0	450.8	-46.4	450.8	46.4		
	. 6	. 0	. 0	457.7	30.0	457.7	30.0		
	.7	. 0	.0	369.9	65.1	369.9	65.1		
	. 8	. 0	.0	243.4	77.0	243.4	77.0		
	. 9	. 0	. 0	106.0	79.1	106.0	79.1		
	1.0	. 0	.0	-32.5	79.1	32.5	79.1		
4	. 0	.0	.0	-1369.2	-298.2	1369.2	298.2	-1292.4	. 0
	. 1	.0	.0	-874.7	-267.2	874.7	267.2		
	.2	.0	. 0	-432.0	-239.5	432.0	239.5		
	.3	. 0	.0	-33.3	-217.2	33.3	217.2		
	.4	.0	.0	280.9	-136.8	280.9	136.8		
	.5	. 0	.0	450.8	-46.4	450.8	46.4		
	.6	.0	. 0	457.7	30.0	457.7	30.0		
	. 7	.0	.0	369.9	65.1	369.9	65.1		
	.8	. 0	.0	243.4	77.0	243.4	77.0		
	. 9	.0	.0	106.0	79.1	106.0	79.1		
	1.0	.0	.0	-32.5	79.1	32.5	79.1		

EPTO: AN	ΑΛΥΣΗ ΦΟΓ	τιΣεΩ	Ν ΣΕ ΣΥΣ	TOIXIA	16 ΠΑΣ	ΣΑΛΩΝ			ΣΕΛΙΔΑ: 5
1		د	ΕΕΙΣΜΙΚΗ	Ι ΦΟΡΤΙΣ	Н				
SCHNITTKR	AEFTE								
PF X/L	Ml	Q2	M2	Q1	MRES	QRES	N	MT	
	(KNM)	(KN)	(KNM)	(KN)	(KNM)	(KN)	(KN)	(KNM)	
5.0	.0	.0	-1369.2	-298.2	1369.2	298.2	-2316.3	.0	
.1	.0	.0	-874.7	-267.2	874.7	267.2			
.2	.0	.0	-432.0	-239.5	432.0	239.5			
.3	.0	. 0	-33.3	-217.2	33.3	217.2			
.4	.0	. 0	280.9	-136.8	280.9	136.8			
.5	.0	.0	450.8	-46.4	450.8	46.4			
.6	.0	.0	457.7	30.0	457.7	30.0			
.7	.0	.0	369.9	65.1	369.9	65.1			
.8	. 0	.0	243.4	77.0	243.4	77.0			
.9	. 0	.0	106.0	79.1	106.0	79.1			
1.0	.0	.0	-32.5	79.1	32.5	79.1			
6.0	.0	.0	-1369.2	-298.2	1369.2	298.2	-1975.0	. 0	
.1	.0	.0	-874.7	-267.2	874.7	267.2			
.2	.0	.0	-432.0	-239.5	432.0	239.5			
، 3	.0	.0	-33.3	-217.2	33.3	217.2			
. 4	.0	.0	280.9	-136.8	280.9	136.8			
. 5	. 0	.0	450.8	-46.4	450.8	46.4			
.6	.0	.0	457.7	30.0	457.7	30.0			
.7	.0	.0	369.9	65.1	369.9	65.1			
. 8	. 0	.0	243.4	77.0	243.4	77.0			
. 9	. 0	.0	106.0	79.1	106.0	79.1			
1.0	. 0	.0	-32.5	79.1	32.5	79.1			
7.0	.0	.0	-1369.2	-298.2	1369.2	298.2	-1633.7	. 0	
.1	.0	.0	-874.7	-267.2	874.7	267.2			
.2	.0	.0	-432.0	-239.5	432.0	239.5			
.3	. 0	.0	-33.3	-217.2	33.3	217.2			
.4	.0	.0	280.9	-136.8	280.9	136.8			
.5	.0	.0	450.8	-46.4	450.8	46.4			
. 6	.0	.0	457.7	30.0	457.7	30.0			
.7	.0	.0	369.9	65.1	369.9	65.1			
.8	.0	.0	243.4	77.0	243.4	77.0			
.9	.0	.0	106.0	79.1	106.0	79.1			
1.0	.0	. 0	-32.5	79.1	32.5	79.1			
8.0	.0	.0	-1369.2	-298.2	1369.2	298.2	-1292.4	.0	
.1	.0	.0	-874.7	-267.2	874.7	267.2			
.2	.0	.0	-432.0	-239.5	432.0	239.5			
. 3	.0	.0	-33.3	-217.2	33.3	217.2			
.4	.0	.0	280.9	-136.8	280.9	136.8			
.5	.0	.0	450.8	-46.4	450.8	46.4			
.6	.0	.0	457.7	30.0	457.7	30.0			
.7	.0	. 0	369.9	65.1	369.9	65.1			
.8	.0	.0	243.4	77.0	243.4	77.0			
.9	.0	.0	106.0	79.1	106.0	79.1			
1.0	.0	.0	-32.5	79.1	32.5	79.1			
9.0	.0	.0	-1369.2	-298.2	1369.2	298.2	-2316.3	.0	
. 1	. 0	. 0	-874.7	-267.2	874.7	267.2			
.2	.0	.0	-432.0	-239.5	432.0	239.5			
.3	, 0	.0	-33.3	-217.2	33.3	217.2			
.4	.0	.0	280.9	-136.8	280.9	136.8			
.5	.0	.0	450.8	-46.4	450.8	46.4			
.6	.0	. 0	457.7	30.0	457.7	30.0			
.7	.0	.0	369.9	65.1	369.9	65.1			
.8	.0	.0	243.4	77.0	243.4	77.0			
.9	.0	.0	106.0	79.1	106.0	79.1			
1.0	.0	.0	-32.5	79.1	32.5	79.1			

Г

<u>uno</u> .		00211 201				10 11/122				
			-	ΣΕΙΣΜΙΚΗ	Ι ΦΟΡΤΙΣ	H				
CHNIT	TKR	AEFTE								
PF X/	'L	M1	Q2	M2	Q1	MRES	QRES	. N	MT	
		(KNM)	(KN)	(KNM)	(KN)	(KNM)	(KN)	(KN)	(KNM)	
10.	0	.0	.0	-1369.2	-298.2	1369.2	298.2	-1975.0	. 0	
	1	. 0	. 0	-874.7	-267.2	874.7	267.2			
	2	0	0	-432 0	-239 5	432 0	239 5			
•	2	.0	.0	-33.3	-217.2	33 3	233.3			
•	ر ۸	.0	.0	-33.3	126.0	33.3	126 0			
•	4	.0	.0	280.9	-130.8	280.9	136.8			
•	5	.0	.0	450.8	-46.4	450.8	46.4			
•	6	.0	.0	457.7	30.0	457,7	30.0			
•	7	.0	.0	369.9	65.1	369.9	65.1			
	8	.0	.0	243.4	77.0	243.4	77.0			
	9	.0	. 0	106.0	79.1	106.0	79.1			
1.	0	. 0	.0	-32.5	79.1	32.5	79.1			
11	0	. 0	. 0	-1369.2	-298.2	1369 2	298 2	-1633 7	n	
- •	1	, ÷ ∩		-874 7	-267 0	87/ 7	267 2	1000.7	.0	
•	- 2	.0		-122 0	Z	420 0	201.2			
•	4 2	.0		-432.0	-439.5	4.3∠.0	239.5			
•	<u>د</u>	. U	.0	-33.3	-217.2	5.55	217.2			
. •	4	.0	. 0	280.9	-136.8	280.9	136.8			
•	5	.0	.0	450.8	-46.4	450.8	46.4			
•	6	.0	. 0	457.7	30.0	457.7	30.0			
	7	.0	.0	369.9	65.1	369.9	65.1			
	8	. 0	.0	243.4	77.0	243.4	77.0			
	9	. 0	. 0	106.0	79.1	106.0	791			
1.	0	. 0	. 0	-32 5	79 1	32 5	79 1			
	•			01.0	/0.1	52.5	12.1			
12	0	0	0	-1369 2	-208 2	1260 2	200 2	1000 4	0	
12 .	1	.0	.0	-1309.2	-290.2	1309.2	290.2	-1292.4	.0	
•	T .	.0	.0	-8/4./	-267.2	8/4./	267.2			
•	2	.0	.0	-432.0	-239.5	432.0	239.5			
•	3	.0	.0	-33.3	-217.2	33.3	217.2			
•	4	.0	.0	280.9	-136.8	280.9	136.8			
-	5	.0	.0	450.8	-46.4	450.8	46.4			
	6	.0	.0	457.7	30.0	457.7	30.0			
	7	.0	.0	369.9	65.1	369.9	65.1			
	8	.0	.0	243.4	77.0	243.4	77.0			
	9	. 0	0	106 0	79 1	106.0	79 1			
, י	ñ	.0		-32 5	79.1	32 5	79.1			
±.	°			52.5	/ J . L	52.5	79.1			
13	0	0		-1260 0	-200 0	1260 0	200 0	00100	~	
	1		.0	-1309.Z	-290.2	T202'S	290.2	-2310.3	.0	
•	T T	.0	.0	-8/4./	-267.2	874.7	267,2			
•	2	. 0	.0	-432.0	-239.5	432.0	239.5			
•	3	.0	.0	-33.3	-217.2	33.3	217.2			
	4	.0	. 0	280.9	-136 🖧	280.9	136.8			
	5	.0	.0	450.8	-46.4	450.8	46.4			
	6	. 0	.0	457.7	30.0	457.7	30.0			
	7	. 0	n	369 9	65 1	369 9	65 1			
•	8	. ° 0	. J n	243 4	77 0	2/3 /	77 0			
•	á		.5	104 0	70 1	106 0	70.1			
	0	.0	.0	T00.0	79.1	100.0	19.1			
т.	U	. 0	.0	-32.5	79.1	32.5	79.1			
	~	~	-	1000 0						
.4	0	. 0	.0	-1369.2	-298.2	1369.2	298.2	-1975.0	.0	
•	1	.0	.0	-874.7	-267.2	874.7	267,2			
	2	. 0	.0	-432.0	-239.5	432.0	239.5			
	3	.0	. 0	-33.3	-217.2	33.3	217.2			
-	4	.0	. 0	280.9	-136.8	280.9	136 8			
	5	. 0	 N	450 8	-46 4	450 8	200.0 86 A			
•	6		.0	457 7	30.4	457 7	20.4			
•	7	.0	.0	260 0	50.0 CF 1	457.7	50.0			
•	<u> </u>		.0	209.9	00.1	309.9	1.00			
•	0	.0	.0	243.4	77.0	243.4	77.0			
•	9	.0	.0	106.0	79.1	106.0	79.1			
1.	0	. 0	.0	-32.5	79.1	32.5	79.1			

EPFO :		αλγΣΗ ΦΟΡ	τιχεΩ	Ν ΣΕ ΣΥΣ	TOIXIA	16 ΠΑΣΣ	ΞΑΛΩΝ			ΣΕΛΙΔΑ: 7
			2	ΕΙΣΜΙΚΗ	Ι ΦΟΡΤΙΣ	н				
SCHI	NITT	KRAEFTE								
PF X	/L	M1	Q2	M2	Q1	MRES	QRES	. N	MT	
		(KNM)	(KN)	(KNM)	(KN)	(KNM)	(KN)	(KN)	(KNM)	
15	.0	.0	.0	-1369.2	-298.2	1369.2	298.2	-1633.7	. 0	
	.1	.0	.0	-874.7	-267.2	874.7	267.2			
	.2	.0	.0	-432.0	-239.5	432.0	239.5			
	. 3	.0	.0	-33.3	-217.2	33.3	217.2			
	.4	.0	.0	280.9	-136.8	280.9	136.8			
	.5	.0	.0	450.8	-46.4	450.8	46.4			
	.6	.0	.0	457.7	30.0	457.7	30.0			
	.7	.0	.0	369.9	65.1	369.9	65.1			
	.8	. 0	.0	243.4	77.0	243.4	77.0			
	. 9	.0	.0	106.0	79.1	106.0	79.1			
1	.0	.0	.0	-32.5	79.1	32.5	79.1			
16	.0	. 0	.0	-1369.2	-298.2	1369.2	298.2	-1292.4	.0	
	.1	. 0	.0	-874.7	-267.2	874.7	267.2			
	.2	. 0	.0	-432.0	-239.5	432.0	239.5			
	.3	.0	.0	-33.3	-217.2	33.3	217.2			
	.4	.0	.0	280.9	-136.8	280.9	136.8			
	.5	.0	.0	450.8	-46.4	450.8	46.4			
	.6	. 0	.0	457.7	30.0	457.7	30.0			
	.7	. 0	.0	369.9	65.1	369.9	65.1			
	. 8	.0	.0	243.4	77.0	243.4	77.0			
	.9	.0	.0	106.0	79.1	106.0	79.1			
1	.0	. 0	.0	-32.5	79.1	32.5	79.1			

ENDE

ړ

8.2.2 ΜΕΤΑ ΤΗΝ ΠΡΟΦΟΡΤΙΣΗ

Είναι προφανές ότι η μελέτη βαθειάς θεμελίωσης με πασσάλους μετά την προφόρτιση είναι αντιοικονομική.

8.3 ΒΕΛΤΙΩΣΗ – ΕΝΙΣΧΥΣΗ ΕΔΑΦΟΥΣ ΜΕ ΧΑΛΙΚΟΠΑΣΣΑΛΟΥΣ ΚΑΙ ΣΤΡΑΓΓΙΣΤΗΡΙΑ

Το επίχωμα της προφόρτισης που αποφασίστηκε τελικά να κατασκευαστεί ώστε να καλύπτει τις ανάγκες της συνολικής μελέτης που έγινε εκτελείται σε δύο φάσεις μία πρώτη με ύψος 2,5 m και την τελική και δεύτερη φάση με συμπλήρωση άλλων 2,5 m ύψους μέχρι τα 5 m της στέψης του που έχει μήκος 70 m (τα πρανή του επιχώματος κατέρχονται με κλίση ½ και έχουν μήκος 10 m το καθένα). Οι διαστάσεις αυτές αφορούν την πλευρά της περιοχής μελέτης με μήκος 100 m, ενώ μια ενδεικτική τομή του επιχώματος κατά την άλλη διεύθυνση φαίνεται παρακάτω.

Όπως μελετήθηκε ήδη, η απευθείας έδραση του silo στο έδαφος με άκαμπτο αβαθές θεμέλιο δεν εξασφαλίζει τον ελάχιστο απαιτούμενο συντελεστή ασφαλείας 2 ακόμα και μετά την προφόρτισή του. Αποφασίζεται, λοιπόν, βελτίωση - ενίσχυση του εδάφους με δίκτυο χαλικοπασσάλων (με $\gamma_{xa\lambda}$ =21 kN/m³, $\phi_{xa\lambda}$ =42,5° και $E_{xa\lambda}$./ $E_{\epsilon\delta}$.~20) διαμέτρου D_{xaλ}=0,8 m σε διάταξη τετραγωνικού καννάβου πλευράς s=2,3 m που εκτείνεται κάτω από την περιοχή του silo σε μήκος 40 m, οι οποίοι λειτουργούν ταυτόχρονα και ως στραγγιστήρια επιταχύνοντας την ολοκλήρωση της στερεοποίησης. Στην υπόλοιπη περιοχή μελέτης για τον ίδιο λόγο τοποθετούνται πλαστικά στραγγιστήρια διαμέτρου d_{στραγγ}=5 cm. Το βελτιωμένο – ενισχυμένο έδαφος αποκτά πλέον νέο ειδικό βάρος γ* και νέες παραμέτρους διατμητικής αντοχής c* και φ* που υπολογίζονται για το μέσο της στρώσης.

Συντελεστής αντικατάστασης: $\alpha_s=0,78\times(D_{\chi\alpha\lambda}/s)^2=0,094$ Για (A/A_{χαλ.})₁=1/ α_s =10,64 και $\phi_{\chi\alpha\lambda}$ =42,5° από το αντίστοιχο διάγραμμα προκύπτει συντελεστής βελτίωσης - ενίσχυσης του εδάφους κατά Priebe β=1/Y=1,45⇒Y=0,69. Για E_{χαλ}/E_{εδ}.~20 και $\phi_{\chi\alpha\lambda}$ =42,5° από το αντίστοιχο διάγραμμα προκύπτει διόρθωση του λόγου A/A_{χαλ}. κατά Priebe Δ(A/A_{χαλ}.)=0,3, άρα τελικά A/A_{χαλ}=(A/A_{χαλ}.)₁+ Δ(A/A_{χαλ}.)=10,94. Συντελεστής συγκέντρωσης τάσεων: n=[1/Y-(1- α_s)]/ α_s =5,79 Για ομοιόμορφη πίεση σ₀=100 kPa που ασκείται στο έδαφος από το επίχωμα σ_{εδ}.= $\sigma_0/[n\times\alpha_s+(1-\alpha_s)]$ =68,97 kPa και σ_{χαλ}.= $(n\times\sigma_0)/[n\times\alpha_s+(1-\alpha_s)]$ =399,11 kPa. γ*= $\alpha_s\times\gamma_{\chi\alpha\lambda}$ +(1- α_s)× $\gamma_{ε\delta}$.=18,64 kN/m³ c*_{αρχ}.= $(1-\alpha_s)$ *c_{υπροφ}.=34 kPa και $\phi^*_{\alpha\rho\chi}$.=tan⁻¹[$\frac{\alpha_s\times(\gamma'_{\chi\alpha\lambda}\times z+\sigma_{\chi\alpha\lambda})}{\gamma^*/\times z+\sigma_0}$ ×tan $\phi_{\chi\alpha\lambda}$.]=18,8°

Σημειώνεται ότι στην περιοχή εκτός του επιχώματος οι παράμετροι διατμητικής αντοχής του εδάφους δεν μεταβάλλονται από τις αρχικές τιμές τους, ενώ στην περιοχή κάτω από τα πρανή του προκύπτουν ως μέση τιμή των παραμέτρων διατμητικής αντοχής του εδάφους των δύο εκατέρωθεν περιοχών.

Με χρήση του προγράμματος Larix 5 στο οποίο τίθενται ως δεδομένα η πίεση που ασκείται στο έδαφος, οι εδαφικές παράμετροι και τα πάχη των στρώσεων και προκύπτουν ως αποτελέσματα οι πιθανοί κύκλοι ολίσθησης του εδάφους κατά Bishop, οι αντίστοιχοι συντελεστές ασφαλείας και ο δυσμενέστερος κύκλος με τον ελάχιστο συντελεστή εκτελείται έλεγχος ευστάθειας τόσο του ίδιου του επιχώματος όσο και του εδάφους παρουσίας χαλικοπασσάλων για κάθε φάση της προφόρτισης και σε κάθε περίπτωση. Όπου απαιτείται λαμβάνεται υπ όψιν χρήση κατάλληλου γεωυφάσματος συγκεκριμένων προδιαγραφών για βελτίωση των συνθηκών ισορροπίας.

ΣΥΙ	ΝΟΨΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
	ΕΛΑΧΙΣΤΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΑΣΦΑΛΕΙΑΣ
ΕΠΙΧΩΜΑ*	F _{min} =1,29
Α ΦΑΣΗ ΠΡΟΦΟΡΤΙΣΗΣ	F _{min} =1,62
ΜΕΓΑΛΟ ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΟ*	
Α ΦΑΣΗ ΠΡΟΦΟΡΤΙΣΗΣ	F _{min} =1,62
ΜΙΚΡΟ ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΟ*	
Α ΦΑΣΗ ΠΡΟΦΟΡΤΙΣΗΣ	F _{min} =2,57
ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΟ ΠΡΙΣΜΑ*	
Β ΦΑΣΗ ΠΡΟΦΟΡΤΙΣΗΣ	F _{min} =1,27
ΜΕΓΑΛΟ ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΟ*	
Β ΦΑΣΗ ΠΡΟΦΟΡΤΙΣΗΣ	F _{min} =1,70
ΜΙΚΡΟ ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΟ*	
* <u>Εξασφαλίζεται ευστάθεια ακ</u>	τόμα και με F _{min} <2 αφού πρόκειται για προσωρινή μελέτη <u>.</u>

8.3.1 ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΕΠΙΧΩΜΑΤΟΣ

λήφθη υ			nos npo	φορησης	υψους οι	ι πλατους	ς στέψης	70µ			281100	-
	πόψη στοι	ις υπολο	γισμούς	συμβολή	γεωυφάσ	ματος ον	ομαστική	ς αντοχή	5 600 kN/i	m	27.10.	10, 16:39
											Larix-5 -	Version 1.2
ΡΟΣΟΝ												
ιεπιφάν	ειες εδαφ	ικών στρ	οώσεων	i.								
	Περιγραφή		1	Παράμετρο	s	Sau	× 1	Σημεία π	ολυγώνου	× I	v	
			e []	[kN/m ³]	[kN/m ²]	Ζημ.	(m]	y [m]	211	[m]	[m]	
Ξηιχώσει	١Ç		33.00	20.00	0	1	-48.50	0	2	-45.00	5 00	
						5	45.00	5.00	6	50.50	-0.00	
ζτρώση Ι	Ι (Άργιλο	ος)	0.00	18.40	10.71	1	-48.50	0	2	-45.00	0	
						5	45.00	ŏ	6	50.50	-0.00	
Οτρώση Ι	ΙΙ (Άμμος	;)	33.00	19.50	0	1	-48.50	-7.00	2	-45.00	-7.00	
		1-	25	20 50		5	45.00	-7.00	6	50.50	-7.00	
τρώση :	11Ι (Άμμα	ς)	35.00	20.50	0	1	-48.50	-9.45 -9.45	4	48.50	-9.45	
τ άθμη υ Ιίεση νερα	υ πογείων ού μόνιμο	υδάτων	Ŧ									
	Παράμετρο	\$	Σου	l v l	v	Σημ	εία πολυγ	ώνου	Σημ	x I	v	
[kN/m ³]			(P.	[m]	[m]		[m]	[m]		[m]	[m]	-
10.00	Ενεργή	δυναμ.	1	-48.50	-2.00	2	50.50	-2.00			-	
Παρά Η [kN/m ²]	μετρος K _{max} [kN/m]	X1	Γεω У1 [m]	μετρία X ₂ [m]	У2 [m]							
		[m]	[m]	[m] 45.00	[m]							
πιλογε	ες υπολο	γισμων				νάφειας						
Ξπιλογέ Ξπιλογέ	ες υπολοι	γισμων				νάφειας						
Ξπιλογε Ξπιλογέ Μέθοδος	ες υπολο ν ς	γισμων _{nL}	ευθυγ	ραμμισμένα	ι άκρα							
Ξπιλογέ Ξπιλογέ Μέθοδος Κrey δτ : η_ :	ες υπολογ ς [-] ο.0200 Ανοχή σύγκλ Αριθμός λως	γισμων n _L 50.000 λισης επανα οίδων	ευθυγ	με με	α άκρα	ο συντε	λεστής ο	κσφαλεία	ς σε συσ	τάθεια υ	πολογίζι	ται με
Ξπιλογέ Ξπιλογέ Μέθοδος Κrey δ _T : n _L : 1 Ε Ρ ΙΙ ΟΥΚΛΟΙ Αριθυ.	ες υπολογ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ Β Α Λ Λ C Ι ΟΛΙΣΘΗΣ	γισμων nL 50.000 λισης επανα βίδων ΟΥ ΣΕΣ :HΣ ΜΕ 1 v	ευθυγ ιλήψεων ΓΟΥΣ ΜΙ	ραμμισμένα με ΚΡΟΤΕΡ ί	α άκρα ΟΥΣ ΣΥΝ	ο συντε ΤΕΛΕΣΤΕ Γ ενεντ	λεστής ε ΕΣΑΣΦΑ	κσφαλεία ΛΕΙΑΣ Γ	ς σε συσ	τάθεια υ ήρηση	πολογίζι	ται με
Ξπιλογί Ξπιλογί Μέθοδος Κrey δτ : n _L : ΤΕΡΙΙ ΚΥΚΛΟΙ Αριθμ. κύκλου	ες υπολογ 	γισμων nL 50.000 Νσης επανο οίδων ΟΥ ΣΕΣ :HΣ ΜΕ 1 y	ευθυγ ιλήψεων ΓΟΥΣ ΜΙ	ραμμισμένα με KPOTEP Zwangs- Punkt	α άκρα ΟΥΣ ΣΥΝ Αγκύριο	ο συντε ΤΕΛΕΣΤΕ Γδιαθέσ	λεστής ε ΕΣΑΣΦΑ Γαπαι	κσφαλεία ΛΕΙΑΣ L _{min}	ς σε συσ Παραι	τάθεια υ ήρηση οσημείωση	πολογίζι	αται με
Eπιλογί Eπιλογί Mέθοδος Krey δη : η_ : Π Ε Ρ ΙΙ (ΥΚΛΟΙ Αριθμ. κύκλου 576	ες υπολογ ς δ _T [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ Β Α Λ Λ Ο Ι ΟΛΙΣΘΗΣ χ [m] -39.84	γισμων nL 50.000 λισης επανο οίδων ΟΥΣΕΣ ΕΗΣ ΜΕ Π y jm] 11.17	ευθυγ ιλήψεων ΓΟΥΣ ΜΙ R [m] 18.14	ραμμισμένο με ΚΡΟΤΕΡ Zwangs- Punkt 6	α άκρα ΟΥΣ ΣΥΝ Αγκύριο	ναφείας Ο συντε ΤΕΛΕΣΤΕ Γδιαθέσ 1.29	λεστής ε ΞΣΑΣΦΑ L _{arran} [m]	χαφαλεία ΛΕΙΑΣ Lmin [m]	ς σε αυσ Παραι βλέπε υπ	τάθεια υ ήρηση οσημείωση	πολογίζι	ται με
Eπιλογί Eπιλογί Mέθοδος Krey δτ : n_ : Π Ε Ρ ΙΙ ΚΥΚΛΟΙ Αριθμ. κύκλου 576 F δαδασ Lαπαι Υπόμνη τοσημείω 5)	ες υπολογ (ς δτ [-] 0.0200 Ανοχή σύγκ/ Αριθμός λωρ Β Α Λ Λ C Ι ΟΛΙΣΘΗΣ Χ [m] -39.84 : διαθ : υπα : υπα : οτο 5)	γισμων η _L 50.000 λισης επανο δίδων ΟΥΣΕΣ (Π) 11.17 9 μειώσεα : Τέι	ευθυγ κλήψεων ΓΟΥΣ ΜΙ Π [m] 18.1.4 άλεια, απαι παιτούμε ιστο ελεύθα ων	με ΚΡΟΤΕΡ Ζwangs- Punkt ο ο ελεύθερο ο ερο μήκος αγ	α άκρα ΟΥΣ ΣΥΝ Αγκύριο άλεια Ε _{σποπ} ικύρωσης	Ο συντε ΤΕΛΕΣΤΕ Γ διαδια 1.29 =100 ωσης στην τ Παρα χείο συν	λεστής ε ΕΣΑΣΦΑ Γαπαι [m] τέριοχή L _{min} τήρηση άφειας.	χαφαλεία ΛΕΙΑΣ [m] - L _{mex}	ς σε συσ βλέπε υπ	τάθεια υ ήρηση οσημείωση	πολογίζι	ται με
Eπιλογι Eπιλογι Eπιλογί Mέθοδος Krey δτ : n_ : Π Ε Ρ ΙΙ Αριθμ. κύκλου 576 F δαδασ Laman Υπόμνη τοσημείω 5)	ες υπολογ (ς δτ [-] 0.0200 Ανοχή σύγκ/ Αριθμός λωρ Β Α Λ Λ C Ι ΟΛΙΣΘΗΣ Χ [m] -39.84 : διαδ : υπο : υπο : στο : στο : στο : Ο : Ο : Ο : Ο : Ο : Ο : Ο : Ο	γισμων η _L 50.000 Νοης επανο δίδων ΟΥΣΕΣ ΕΗΣΜΕΤ Υ [m] 11.17 θέσιμη ασφι λογιστικό, ομένο, ελάχ ημειώσεια : Τέμ	ευθυγ ιλήψεων ΓΟΥΣ ΜΙ [m] 18.14 ίλεια, απαι παιτούμε ιστο ελεύθα ων	ραμμισμένο με ΚΡΟΤΕΡ Ζwangs- Punkt 6 τούμενη ασφ ο ελεύθερο ερο μήκος αγ	α άκρα ΟΥΣ ΣΥΝ Αγκύριο άλεια Ε _{σποπ} κύρωσης	Ο συντε ΤΕΛΕΣΤΕ Γ διαδια 1.29 =100 ωσης στην τ Παρα χείο συν	λεστής ε ΕΣΑΣΦΑ Γαπαι [m] τήρηση άφειας.	χαφαλεία ΛΕΙΑΣ [m] - L _{mex}	ς σε συσ βλέπε υπ	τάθεια υ ήρηση οσημείωση	πολογίζι	ται με

C:\cubus\DATA\Dipl_2010_Oct_211a_Έλεγχος επιχώματος προφόρτισης.L5S

8.3.2 ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΕΔΑΦΟΥΣ ΠΑΡΟΥΣΙΑΣ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ

ελεγχος									1004			
	OUVONIKOU	επιχωμα	πος προ	ς την πλε	υρα του μ	εγαλου α	ντισταθμ	στικου			23.10	.10, 15:2
ληφθη α	στους υπο.	λογισμού	ς συμβολ	νή γεωυφο	άσματος ο	ονομαστιι	κής αντοχ	(ής 300 k	:N/m		Larix-5	- Version 1.
ΤΡΟΣΟ	MOIQMA											
Διεπιοά		οικών στ	OUTEUN									
TICHT	Περιγραφή		pwozwy	Παράμετρα	oc			Σημεία 1	τολυνώνου			
			\$	Y 2	C	Σημ.	x	y	Σημ.	x	У	
Ξπιχώσε	ELC		33.00	20.00	[KN/m-]	1	-48.50	[m] 0	2	[m] -45.00	[m] 0	
- A			00.00	20100	Ŭ	3	-40.00	2.50	4	-10.00	2.50	
						5	-5.00	5.00	6	35.00	5.00	
						9	47.00	2.50	10	50.50	-0.00	
Ετρώση	Ι (Άργιλ	oc)	0.00	18.40	10.71	1	-48.50	0	2	-45.00	0	
						5	-5.00	0	6	40.00	0	
Tokan	T (Erolo	VA Volt	10 00	19 64	24 00	7	47.00	0	8	50.50	-0.00	
rpworf	I (nepro	AI AGAI	10.00	10.04	54.00	3	-40.00	-7.00	4	-10.00	-7.00	
						5	-5.00	-7.00	6	-5.00	0	
						9	47.00	-7.00	10	50.50	-7.00	1
Ετρώση	ΙΙ (Άμμο	ς)	33.00	19.50	0	1	-50.50	-7.00	2	-45.00	-7.00	
						5	-5.00	-7.00	6	40.00	-7.00	1
Towor	TTT (Aug	20)	35 00	20 50	0	7	47.00	-7.00	8	50.50	-7.00	
	(Uhh	- 57	55.00	20.50	U	3	17.75	-9.45	4	48.50	-9.45	
τάθμη	υπογείων	υδάτων										
ίεση νερ	ού μόνιμο											
	Παράμετρο	s	-			Σημ	εία πολυγα	ώνου	1.12		1	1
[kN/m ³]	Kataotaon	u	2ημ.	x [m]	y (m]	Σημ.	X [m]	y (m)	Σημ.	x [m]	y [m]	
10.00	Ενεργή	δυναμ.	1	-48.50	-2.00	2	50.50	-2.00		104	Fud	
τοιχεία	άμετοος		Γειοι									
τοιχεία Παρά Η	άμετρος Κ _{max}	X1	Γεωμ Υ1	μετρία X ₂	y 2				ŧ			
τοιχεία Παρά Η [kN/m ²] 69.08	άμετρος Κ _{max} [kN/m]	x ₁ [m]	Γεωμ У1 [m]	μετρία X ₂ [m]	y 2 [m]				ŧ			
ΤΟΙ Χεία Παρα Η [ktN/m ²] 69.08 Η : ζ _{max} :	άμετρος Κ _{max} [kN/m] 240.00 Δύναμη σι Δύναμη για	X ₁ [m] -45.00 υνάφειας ι την εξόλκε	Γεωμ Υ1 [m] Ο υση ή τη δια	μετρία Χ2 [m] -10.00	Υ 2 [m] 0 στοιχείου συν	νάφειας			44			
τοιχεία Παρι Η [ktV/m ²] <u>69.08</u> 1 : (max : πιλογε	άμετρος Κ _{max} [kN/m] 240.00 Δύναμη σι Δύναμη για ες υπολογ	Χ ₁ [m] -45.00 υνάφειας ι την εξόλκε γισμων	Γεωμ Υ1 [m] Ο Ο	μετρία Χ2 [m] –10.00	Υ2 [m] Ο ΤΤΟΙΧΕΊΟU συν	νάφειας			ę			
ΤΟΙΧΕΙΩ Παρα Η [kN/m²] 69.08 1 : (max Πιλογέ Λέθοδος	άμετρος Κ	Χ ₁ [m] -45.00 Ιντάφεκας την εξόλκε γισμων ηι_	Γεωι Υ1 [m] 0 υση ή τη δια ευθυγρ	μετρία χ ₂ [m] –10.00 άρρηξη του α	Υ 2 [m] ο πτοιχείου συν άκρα	νάφειας			8			
τοιχεια Παρι Η (kW/m ²) 69.08 69.08 1 : (max : πιλογε Λέθοδος	άμετρος Κ _{max} [kN/m] 240.00 Δύναμη σι Δύναμη για ες υπολογ	x ₁ [m] -45.00 ννάφεκας ι την εξόλκε γισμων η _L	Γεωμ Υ1 [m] Ο υση ή τη δια ευθυγι	μετρία Χ ₂ [m] -10.00 άρρηξη του α	Υ 2 [m] 0 στοιχείου συν	ιάφειας			8			
ΤΟΙΧΕΙΩ Παρκ Παρκ [ktV/m2] 69.08 1 (max Πιλογέ πιλογέ Λέθοδος Krey Τ	Δύναμη σε Δύναμη σε Δύναμη τοι Δύναμη γιο Διο	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα	Γεωμ Υ1 [m] 0 υση ή τη δια ευθυγς λήψεων	μετρία <u>x</u> 2 [m] -10.00 άρρηξη του α με	γ ₂ [m] Ο στοιχείου συν	νάφειας Ο συντελ	ιεστής α	σφαλεία	ς σε συσ	τάθεια υ	πολογίζε	ται με
ΤΟΙΧΕΙα Παρε Η 69.08	Δ Δ Δ Δ	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης ετανα ίδων	Γεωγ Υ1 [m] 0 υση ή τη δια ευθυγγ λήψεων	μετρία Χ ₂ [m] -10.00 άρρηξη του α αμμισμένα με	γ ₂ (m) ο στοιχείου συν	νάφειας Ο συντεί	Νεστής α	σφαλεία	ς σε συσ	τάθεια υ	πολογ (ζ ε	ται με
ΤΟΙχεία Παρκ Η 69.08 (kN/m²) 69.08 (max (παx) (παx) <td>άμετρος Κ_{max} [kN/m] 240.00 Δύναμη σι Δύναμη για ες υπολογ ες δτ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ</td> <td>x₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n_L 50.000 ισης επανα ίδων</td> <td>Γεωγ Υ1 [m] 0 υση ή τη δια ευθυγρ λήψεων</td> <td>μετρία χ₂ [m] -10.00 άρρηξη του α φαμμισμένα με</td> <td>γ2 [m] Ο στοιχείου συν</td> <td>νάφειας Ο συντεί</td> <td>ι.εστής α</td> <td>σφαλεία</td> <td>ς σε συσι</td> <td>τάθεια υ</td> <td>πολογίζε</td> <td>ται με</td>	άμετρος Κ _{max} [kN/m] 240.00 Δύναμη σι Δύναμη για ες υπολογ ες δτ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ίδων	Γεωγ Υ1 [m] 0 υση ή τη δια ευθυγρ λήψεων	μετρία χ ₂ [m] -10.00 άρρηξη του α φαμμισμένα με	γ2 [m] Ο στοιχείου συν	νάφειας Ο συντεί	ι.εστής α	σφαλεία	ς σε συσι	τάθεια υ	πολογίζε	ται με
Τοιχεία Παρκ Η (kN/m²) 69.08 (max	άμετρος Κ _{max} [kN/m] 240.00 Δύναμη σι Δύναμη για ες υπολογ ες δτ [-] 0.0200 Ανοχή σύγκλ Αριθμός λωρ Β Α Λ Λ Ο ΟΛΙΣΘΗΣ	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ίδων	Γεωγ Υ1 [m] 0 υση ή τη δια ευθυγμ λήψεων ΟΥΣ ΜΙΗ	μετρία χ ₂ [m] -10.00 άρρηξη του α με ΚΡΟΤΕΡΟ 2	y2 (m) (m) 0 στοιχείου συσ σ άκρα 0	νάφειας Ο συντεί ΈΑΕΣΤΕ	ιεστής α ΣΑΣΦΑΛ	σφαλεία ΝΕΙΑΣ	ς σε συσ:	τάθεια υ	πολογίζε	ται με
Τοιχεία Παρκ Η (kN/m²) 69.08 Η (kN/m²) 69.08 Η (max Επιλογέ Μέθοδος Κτεγ Τ Δριθμ. Κύκλου	Δύναμη σι Δύναμη σι Δύναμη τοι Δύ	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ιδων Υ Σ Ε Σ ΗΣ ΜΕ Τ y	Γεωγ y ₁ (m) 0 υση ή τη δια ευθυγμ λήψεων ΥΟΥΣ ΜΙΗ R	μετρία χ ₂ [m] -10.00 άρρηξη του α με κροτερο Zwangs- Punkt	γ ₂ (m) ο πτοιχείου συτ άκρα ΔΥΣ ΣΥΝΤ Αγκύριο	νάφειας Ο συντελ ΓΕΛΕΣΤΕ Γδιαθεσ	λεστής α ΣΑΣΦΑ/ Γαπαι	σφαλεία ΝΕΙΑΣ Lmin	ς σε αυστ Βλέπειμα	τάθεια υ ήρηση ισημείωτα	πολογίζε	ται με
Τοιχεία Παρκ Η (kN/m²) 69.08 (max	Δύναμη σι Δύναμη σι Δύναμη τοι Δύναμη τοι Δύναμη τοι Δύναμη για Δίναμη για Δί	x1 [m] -45.00 νκάφειας ιτην εξόλικε γισμων nL 50.000 ισης επανα ιδων ΥΣΕΣ ΗΣΜΕΤ y [m]	Γεωγ y ₁ (m) 0 υση ή τη δια ευθυγμ λήψεων ΥΟΥΣ ΜΙΗ R [m]	μετρία χ ₂ [m] -10.00 άρρηξη του α με ναμμισμένα με CPOTE PC Zwangs- Punkt	γ ₂ [m] 0 πτοιχείου συτ άκρα ΦΥΣ ΣΥΝΤ Αγκύριο	νάφειας Ο συντελ ΓΕΛΕΣΤΕ Γδιαθεσ	Δεστής α ΣΑΣΦΑ/ Laman [m]	σφαλεία \ΕΙΑΣ L _{min} [m]	ς σε συστ βλέπε υπο	τάθεια υ ήρηση	πολογίζε	ται με
Τοιχεία Παρκ Η (kNVm²) 69.08 Η (kNVm²) 69.08 Η (max Πλογέ Πλογέ Μέθοδος Krey Τ Τ Ν Ε Πλογέ Κτεγ Τ Τ Ν Ν Ε Ν Ν Ν Ν Πλ Πλ Ν	Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη για Δύναμη για Δίναμη για Δύναμη για Δίναμη για Δίναμη για Δίναμη για Δίναμη για Δίναμη για Δίναμη για Δίναμη για Δίναμη για Δια δια Δια δια	x1 [m] -45.00 ννάφειας ιτην εξόλικε γισμων nL 50.000 ισης επανα ιδών ΥΣΕΣ ΗΣΜΕΤ y [m] 57.40	Γεωγ y ₁ (m) 0 υση ή τη δικ ευθυγμ λήψεων ΟΥΣ ΜΙΗ R [m] 64.20	μετρία χ ₂ [m] -10.00 άρρηξη του α με φαμμισμένα με (POTEPC Zwangs- Punkt 1	γ ₂ (m) ο στοιχείου συν άκρα ΟΥΣ ΣΥΝΤ Αγκύριο	νάφειας Ο συντεί Γδιαθοσ 1.62	δεστής α ΣΑΣΦΑ/ Lamar [m]	σφαλεία ΝΕΙΑΣ Lmin [m]	ς σε συστ βλέπε υπο	τάθεια υ ήρηση ισημείωση	πολογ (ζε	ται με
Τοιχεία Παρκ Η (kNVm²) 69.08 Η (kNVm²) 69.08 Η (max Επιλογέ Μέθοδος Κτεγ Κτεγ Τ Η Ε Ι Ε Ρ Ι Ι (ΥΚΛΟΙ Αριθμ. κύκλου 221 δαθασ	Δύναμη σι Δύναμη σι Δίναμη σι	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ίδων γ Σ Ε Σ ΗΣ ΜΕ Τ y [m] 57.40 έσιμη ασφά	Γεω) y ₁ (m) 0 υση ή τη δια ευθυγμ ευθυγμ κ (η) (η) (η) (η) (η) (η) (η) (η)	μετρία χ ₂ [m] -10.00 άρρηξη του α άρρηξη του α με με CPOTEPC Zwangs- Punkt 1 νύμετη ασφά δέχθθεροι μασφά	y2 (m) 0 πτοιχείου συτο άκρα άκρα ΟΥΣ ΣΥΝΤ Αγκύριο Αγκύριο Ακεία Farmar = ίκος συνείων	νάφειας Ο συντεί ΓελεΣτε Γδιαθοσ 1.62 100 300 μα την τη	δεστής α ΣΑΣΦΑ/ Lamair [m]	σφαλεία ΝΕΙΑΣ Lmin [m]	ς σε συστ βλέπε υπο	τάθεια υ ήρηση ίσημείωση	πολογίζε	ται με
Τοιχεία Παρκ Η 69.08 Η 69.08 Η Κημαχ Επιλογέ Μέθοδος Κτεγ Τ Τ Επιλογέ Μέθοδος Κτεγ Τ Τ Ν Ε Κτεγ Τ Τ Ν Ε Κ Κ Κ Κ Γ	Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Διο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ίδων Ψ Σ Ε Σ ΗΣ ΜΕ Τ y [m] 57.40 έσιμη ασφά λογιστικό, α	Γεωγ y ₁ 0 υση ή τη δια ευθυγμ λήψεων ΟΥΣ ΜΙΗ R [m] 64.20 Λεία, απαιτα παιτούμενο στο ελεύθερ	μετρία χ ₂ [m] -10.00 άρρηξη του α άρρηξη του α με με ΚΡΟΤΕΡΟ Ζwangs- Ρunkt 1 1 ούμενη ασφά κείθθερο μη ασφά		νάφειας Ο συντεύ ΓεΛΕΣΤΕ Γδιαθεσ 1.62 100 μοτης στην π.	δεστής α ΣΑΣΦΑ/ Lamair [m] εριοχή L _{min} -	σφαλεία ΝΕΙΑΣ Lmin [m]	ς σε συστ βλέπε υπο	τάθεια υ ήρηση ισημείωση	πολογίζε	ται με
Τοιχεία Παρκ Η 69.08 Η (kw/m²) 69.08 Η (max Ξπιλογέ Μέθοδος Κτεγ Τ Τ Επιλογέ Κτεγ Τ Τ Ν Ε Ν Κ Κ Κ Κ Κ Κ Ν Ε Π Κ		x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ίδων Ψ Σ Ε Σ ΗΣ ΜΕ Τ y [m] 57.40 έσιμη αφφά λογιστικό, ελάχι	Γεω) ^y 1 0 υση ή τη δια ευθυγρ ευθυγρ λήψεων ^c ΟΥΣ ΜΙΡ R [m] 64.20 Λεία, απαιτα παιτούμενο στο ελεύθερ	μετρία χ ₂ [m] -10.00 άρρηξη του α άρρηξη του α με με ΚΡΟΤΕΡΟ Ζwangs- Ρυπκτ 1 ούμενη ασφά κοι μήκος αγκ	Υ2 [m] 0 πτοιχείου συτ άκρα άκρα Αγκύριο Ακια F _{artan =} άκος αγκύρω	νάφειας Ο συντεί ΓελεΣτε Γδισθεσ 1.62 1.00 μοτης στην τι.	δεστής α ΣΑΣΦΑ/ Lamair [m] εριοχή L _{min} -	σφαλεία ΝΕΙΑΣ Lmin [m]	ς σε συστ βλέπε υπο	τάθεια υ ήρηση ισημείωση	πολογίζε	ται με
Τοιχεία Παρκ Η 69.08 Η (kw/m²) 69.08 Η (max Ξπιλογέ Μέθοδος Κτεγ Τ Τ Νέθοδος Κτεγ Τ Τ Ν Ε Ν Κτεγ Τ Ν <	Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Διο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ίδων Ψ Σ Ε Σ ΗΣ ΜΕ Τ y [m] 57.40 έσιμη ασφά λογιστικό, ελάχι	Γεω ^y 1 0 υση ή τη δια ευθυγρ ευθυγρ λήψεων ^c ΟΥΣ ΜΙΡ R [m] 64.20 Λεία, απαιτα παιτούμενο στο ελεύθερ	μετρία χ ₂ [m] -10.00 άρρηξη του α άρρηξη του α με Δαμμισμένα με ΚΡΟΤΕΡΟ Ζwangs- Ρunkt 1 1 ούμενη ασφά έλειδθέρο μια μήκος αγκ	Υ2 [m] 0 πτοιχείου συτ άκρα άκρα Αγκύριο Ακια F _{arran =} κίκος αγκύρω	νάφειας Ο συντελ ΓελεΣτε Γδιαθεσ 1.62 1.00 σσης στην π.	δεστής α ΣΑΣΦΑ/ Lamair [m] εριοχή L _{min} -	σφαλεία ΝΕΙΑΣ Lmin [m]	ς σε συστ βλέπε υπο	τάθεια υ ήρηση ισημείωση	πολογίζε	ται με
Τοιχεία Παρκ Η (kNV/m²) 69.08 Η (kNV/m²) 69.08 Η (max Επιλογέ Μέθοδος Κτεγ Τ Τ Νέθοδος Κτεγ Τ Ν Ε Ν	Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη σι Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Δύναμη για Διο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	x ₁ [m] -45.00 ννάφειας ι την εξόλκε γισμων n _L 50.000 ισης επανα ίδων Υ Σ Ε Σ ΗΣ ΜΕ Τ y [m] 57.40 έσιμη ασφά λογιστικό, ελάχι	Γεω) ⁹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	μετρία χ ₂ [m] -10.00 άρρηξη του α όρμμισμένα με ΚΡΟΤΕΡΟ Ζwangs- Punkt 1 1 ούμενη ασφά έλειδθερο μηκος αγκ	γ2 (m) ο πτοιχείου συτ άκρα άκρα Αγκύριο Αγκύριο Αλεια F _{arran =} (κος αγκύρω ύρωσης	νάφειας Ο συντε) ΓΕΛΕΣΤΕ Γδιαθεσ 1.62 1.00 σσης στην π.	λεστής α ΣΑΣΦΑ/ Larrair [m] εριοχή L _{min} -	σφαλεία \ΕΙΑΣ Lmin [m] L _{max}	ς σε συστ βλέπε υπο	τάθεια υ ήρηση ισημείωση	πολογίζε	εται με

Ελεγχος συν	ολικού επιχώματος προς τη	γις πλευρά του μενάλου αντισταθ	ματικού	
Ελήφθη στου	ς υπολογισμούς συμβολή ν	εωυφάσματος ονομαστικός αντο	200 kN/m	23.10.10, 15:27
11 1 1	· ····································		AIS OOD KIWIII	Larix-5 - Version 1.2
Υπόμνημαυ	ποσημειώσεων			
5) 5)	: Τέμνει δύο φο	Παρατήρηση ρές ένα στοιχείο συνάφειας		
	-			
			an a	Net
				INT.:

ΠΡΟΣΟΜ Διεπιφάνι	UVUAROU	CTTIMIN	τος ποο		οφορτιση		πας χαλικ	οπασσα	λων		ZEAIOO	2
ΠΡΟΣΟΜ Διεπιφάνι		επιχωμα		S IIIV IIAE	υρα 100 μ	ikpou uv	ποιαθήιο	пкоо			23.10.	10, 15:3
ΠΡΟΣΟΝ Διεπιφάνι											Larix-5 -	Version 1
Διεπιφάν	οιαμα											
	ειες εδαφ	ικών στ	ρώσεωι	<u>,</u>								
	Ιεριγραφη		¢	Παράμετρο γ	ος C	Σημ.	x	Σημεία τ ν	τολυγώνου Σημ.	×	v	
			[1	[kN/m ³]	[kN/m ²]		[m]	[m]		[m]	[m]	
επιχωσει	ç		33.00	20.00	0	1	-50.50	0.00	2	-47.00 -40.00	0.00	
						5	-35.00	5.00	6	5.00	5.00	
						9	45.00	-0.00	10	40.00	-0.00	
Στρώση Ι	(Άργιλα	(S)	0.00	18.40	10.71	1	-50.50	0.00	2	-45.00	0.00	
						5	45.00	-0.00	6	48.50	-0.00	
ετρωση Ι	(Άργιλα	$b\varsigma + X\alpha$	18.80	18.64	34.00	1	-50.50	-7.00	2	-45.00 -40.00	-7.00	
						5	5.00	0	6	5.00	-7.00	
Στρώση Ι	Ι (Άμμος	;)	33.00	19.50	0	1	-50.50	-7.00	2	-40.00	-7.00	
Στρώση Τ	II (Aupo	c)	35.00	20.50	0	3	5.00	-7.00	4	50.50	-7.00	
and a second second		31	55.00		5	3	16.62	-9.45	4	48.50	-9.45	
TÓBUR	TOVENON	υδάτων										
ίεση νεοού		oourwv										
П	αράμετρο	5				Σημ	εία πολυγα	ώνου				
YW K	ατάσταση	u	Σημ.	X	y	Σημ.	×	у	Σημ.	x	у	
10.00	EVENVE	διιναυ	1	-50,50		2	48 50			լոյ	[m]	
Μέθοδος	δ _T	nL	ευθυγ	pahhiahęva	άκρα							
Krey	0.0200	50.000		με		Ο συντελ	εστής α	σφαλείαα	οε συστ	άθεια υ	πολογίζε	ται με
	ΑΛΛΟ ΟΛΙΣΘΗΣ	ΥΣΕΣ ΗΣΜΕΤ	ογε Μι		ύτε σύνι	ΈΛΕΣΤΕ	Σ ΑΣΦΑ					
Αριθμ.	x	y	R	Zwangs-	Αγκύριο	Foider	Lamou	L _{min}	Παρατή	ρηση		
κύκλου	[m]	[m]	[m]	Punkt			Iml	[m]	βλέπε υπο	σημείωση		
261	-46.23	7.04	13.39	1		1.62		ful				
Fäid8eor Lattait			παιτουμενα	ελεύθερο μι	κος αγκύρω	σης στην π	εριοχή L _{min} -	L _{max}				
Faasko Laman Lmin	: δεδο	μένο, ελάχιο	παιτούμενο 5το ελεύθει	∙ ελεύθερο μι	ίκος αγκύρω ύρωσης	ιώσης στην πι	εροχή L _{min} -	L _{mex}				
Fadeco Laman Lmin	: ٥٤٥٥	μένο, ελάχια	παπουμενα	ελεύθερο μι	ίκος αγκύρω ύρωσης	ι,ως στην π.	εροχή L _{min} -	L _{max}				

Car LAPs drawspectrum inspects Z3.10.10, 15 Mydph arous umokoyrapuós auµβokh γεωυφάσματος ονομαστικής αντοχής 300 kN/m Larke 5- Version IPOZOMOLOMA Inspector in polycetose Inspector in polyc	NOY LUC L	WINDTOAL	επιχωμ		doily rip	s dobuoils						22 10	10 15.00
Αμφοη στους υπολογγαμούς σύμρολη γεωύφασματίας ανομαστικής αντοχής 500 κτωτη Larks - version IPOΣΟΜΟΙΩΜΑ Interprévence εδαφικών στρώσεων Τηρώχη ή Παράμτερος χρημ χημ χη μη χη χημ χη χη χημ χη χη χημ χη χηματη πολυγώνου Στημα χη χη χη χη χη χη χη χη χη χημ χη χηματη πολυγώνου Στημαι την χη χημ χη	14-0-				4				6 - 200 kl	N/m		23.10	.10, 15.30
ΙPOZOMOLQMA Interpérieure State (Sage) (Kών στρώσεων) Περιγραφή Παράμετρος Ζημ Χ Υ Σημεία πολυγώνου Πατιχάσεις 33.00 20.00 3 -40.00 2.50 4 -10.00 2.50 Στρώση Ι (Άργιλος) 0.00 18.40 10.71 1 -48.50 0 2 -45.00 0 2.50 4 -10.00 2.50 4 -10.00 2.50 4 -10.00 2.50 4 -10.00 2.50 4 -10.00 2.50 4 -10.00 2.60 6 32.00 2.50 6 32.00 -2.50 6 42.00 2.00 0 2.45.00 -0.00 4 -10.00 -7.00 4 40.00 -7.00 4 40.00 -7.00 4 40.00 -7.00 4 40.00 -7.00 4 40.00 -7.00 4 40.00 -7.00 4 40.00 -7.00 4 40.00 -7.00 5	ιηφοη σ	τους υπολά	ογισμου	ς συμρον	η γεωυφα	ισματος ο	νομαστικ	της αντοχ	ης 300 KI	N/III		Larix-5	- Version 1.2
ματπφάνειες εδαφικών στρώσεων Περιγροφή Παράμετρος Σημι χ Υ Σημι χ γ χ γ χ γ π γ γ π γ γ π γ π γ π γ π γ π γ π φ π π φ π π φ π π φ π π π φ π <th< th=""> π π</th<>	POZON	ΑΜΩΙΟΝ											
Γίεργφοφη Γίορμετρος Σημι χ Υ	ιεπιφάν	ειες εδαφι	κών στ	ρώσεων		F							
ίη μελίm ³ [ps/m ³] [m]		Περιγραφή		¢	Παράμετρα γ	c c	Σημ.	x	Σημεία π γ	ολυγωνου Σημ.	×	у	
Sh (χαθ είς Sh (χαθ είς				[1]	[kN/m ³]	[kN/m ²]		[m]	[m]	2	[m]	[m]	
δ μ φ φ φ φ 5 -5.00 5.00 5.00 5.00 5.00 5.00 δ μ φ φ φ φ 9 47.00 0 10 55.50 -0.00 δ μ φ φ φ 10.71 1 -48.50 0 2 -45.00 0 δ μ φ φ φ 18.40 10.71 1 -48.50 0 2 -45.00 0 δ μ φ φ 18.40 18.64 34.00 1 -50.50 -7.00 2 -45.00 -7.00 δ μ φ φ 7 47.00 0 8 56.50 -7.00 2 -45.00 -7.00 δ μ φ φ 7 40.00 -7.00 2 -45.00 -7.00 2 -45.00 -7.00 δ μ φ φ 33.00 19.50 0 1 -50.50 -7.00 2 -45.00 -7.00 δ μ φ φ 33.00 19.50 0 1 -50.50 -7.00 2 -45.00 -7.00 δ μ φ φ 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 δ μφ φ 10.00 7.00 3 17.75 -9.45 2 -16.62 -9.45 δ μφ φ 10.90 <td>πιχωσει</td> <td>ιç</td> <td></td> <td>33.00</td> <td>20.00</td> <td>0</td> <td>3</td> <td>-40.00</td> <td>2.50</td> <td>4</td> <td>-10.00</td> <td>2.50</td> <td></td>	πιχωσει	ιç		33.00	20.00	0	3	-40.00	2.50	4	-10.00	2.50	
Βτρώση Ι (Άργιλος) 0.00 18.40 10.71 9 47.00 0 10 50.50 -0.00 Βτρώση Ι (Περιοχή Χαλι 18.80 18.64 34.00 1 -50.50 -7.00 2 -45.00 0 Ετρώση Ι (Περιοχή Χαλι 18.80 18.64 34.00 1 -50.50 -7.00 2 -45.00 -7.00 Βτρώση ΙΙ (Περιοχή Χαλι 18.80 18.64 34.00 1 -50.50 -7.00 4 -10.00 -7.00 Βτρώση ΙΙ (Άμμος) 33.00 19.50 0 1 -50.50 -7.00 2 -45.00 -7.00 Βτρώση ΙΙΙ (Άμμος) 33.00 19.50 0 1 -50.50 -7.00 2 -45.00 -7.00 Βτρώση ΙΙΙ (Άμμος) 33.00 19.50 0 1 -50.50 -7.00 2 -45.00 -7.00 Βτρώση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 Βτρώσμ τρος Σημ Χ Υ Σημ Χ Υ Υ							5	-5.00	5.00	6 8	35.00	2.50	
Διατή το (μη μπαχ) Διατή του ματή χαλι Διατή ματή ματή ματή ματή ματή ματή ματή μ	ατοώση ΄	Ι (Άργιλοι	-)	0.00	18.40	10,71	9	47.00	0	10	50.50	-0.00	
Στράση Ι (Περιοχή Χαλι 18.80 18.64 34.00 1 -5.05 -7.00 2 -45.00 -7.00 Ετράση ΙΙ (Περιοχή Χαλι 18.80 18.64 34.00 1 -50.50 -7.00 2 -45.00 -7.00 Ετράση ΙΙ (Άμμος) 33.00 19.50 0 3 -40.00 -7.00 40.00 -7.00 Ετράση ΙΙΙ (Άμμος) 33.00 19.50 0 3 -40.00 -7.00 2 -45.00 -7.00 Ετράση ΙΙΙ (Άμμος) 33.00 19.50 0 3 -40.00 -7.00 40.00 -7.00 Ετράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -50.55 -7.00 40.00 -7.00 Ετράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 Ετράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 Ιεσόσταστ Σημ. Χ Υπ Υπ Υπ Υπ Υπ Υπ -10.00 -10.0	ripacit :		51				3	-40.00	0	4	-10.00	0	
Στράση Ι (Περιοχή Χαλτ. 18.60 18.64 34.00 1 -50.50 -7.00 2 -45.00 -7.00 Βτράση ΙΙ (Άμμος) 33.00 19.50 0 3 -0.00 -7.00 6 -5.00 -7.00 Βτράση ΙΙΙ (Άμμος) 33.00 19.50 0 3 -40.00 -7.00 10 50.50 -7.00 Βτράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -50.00 -7.00 4 -10.00 -7.00 Βτράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -60.50 -7.00 4 -10.00 -7.00 Βτράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 Ιτάθμη υπογείων υδάτων Ι [m]							7	47.00	0	8	50.50	-0.00	
	τρώση	Ι (Περιοχ:	ή Χαλι	18.80	18.64	34.00	1	-50.50	-7.00	2 4	-45.00 -10.00	-7.00	
Strpáση II (Άμμος) 33.00 19.50 9 47.00 -7.00 10 50.50 -7.00 Strpáση II (Άμμος) 33.00 19.50 0 1 -50.50 -7.00 2 45.00 -7.00 Strpáση III (Άμμος) 35.00 20.50 0 1 -50.50 -7.00 4 10.00 -7.00 Strpáση III (Άμμος) 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 Strpáση III (Άμμος) 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 Strpáση του στοχείων υδάτων Σημ. χ Υ Σημ. χ γ Σημ. χ γ Σημ. χ γ χ γ χ γ χ γ χ γ χ γ χ γ χ γ χ γ χ γ χ γ χ γ γ χ γ χ γ χ γ χ γ χ γ γ γ γ							5	-5.00	-7.00	6	-5.00	-7.00	
Ετράση ΙΙ (Άμμος) 33.00 19.50 0 3 - 7.00 2 - 43.00 -7.00 Βτράση ΙΙΙ (Άμμος) 35.00 20.50 0 3 - 40.00 -7.00 4 - 10.00 -7.00 Ετράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 - 48.50 -9.45 2 - 16.62 -9.45 Ετράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 - 48.50 -9.45 2 - 16.62 -9.45 Ετράση ΙΙΙ (Άμμος) 35.00 20.50 0 1 - 48.50 -9.45 2 - 16.62 -9.45 Ετράση ΙΙΙ (Άμμος) 3 - 17.75 -9.45 4 48.50 -9.45 Ετράση ΙΙΙ (Άμμος) Σημ. x y Σημ. x y Σημ. x y Κατάσταση υ Σημ. (m) [m] [m] [m] [m] [m] [m] 10.00 Ενεργή δυναμ. 1 - 48.50 -2.00 2 50.50 -2.00 2 50.50 -2.00 2 μ Υπολογισμώς κτις πίεσης πέρων υδροδωνομκός εκεργή ή σκεκεργή μ (m) [m] [m] [m] [m] [m] [m] [m] [m] [m]<	a la companya da companya d			1			9	47.00	-7.00	10	50.50	-7.00	
35.00 20.50 0 35.00 -7.00 6 40.00 -7.00 3 50.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 3 17.75 -9.45 4 46.50 -9.45 παράμετρος Σημ. χ χ χ γ 46.50 -9.45 παράμετρος Σημ. χ χ χ χ γ κατάσταση μ μ 10.00 Ενεργή δυναμ. 1 -48.50 -2.00 2 50.50 -2.00 κατάσταση Σημ. χ χ χ χ χ χ μ : : Υπόθμη υπογείων υδάτων για τους υπολογισμούς ενεργή ή ανενεργή	τρώση .	ΙΙ (Άμμος) –	33.00	19.50	0	3	-40.00	-7.00	4	-45.00	-7.00	
Δτρώση ΙΙΙ (Άμμος) 35.00 20.50 0 1 -48.50 -9.45 2 -16.62 -9.45 Δτάθμη υπογείων υδάτων Παράμετρος Σημ. χ Υ Κατάσταση μ Γη Γ							5	-5.00	-7.00	6	40.00	-7.00	
	δτρώση 🗄	III (Άμμο	ς)	35.00	20.50	0	1	-48.50	-9.45	2	-16.62	-9.45	
Υψ Κατάσταστ υ Σημ. χ Υ 10.00 Εν εργή δυναμ. 1 -48.50 -2.00 2 50.50 -2.00	ίεση νερα	ού μόνιμο Παράμετρος					Σημ	εία πολυγ	ώνου				
Ιουτοί Ενεργή δυναμ. Ι -48.50 -2.00 2 50.50 -2.00 Κατάσταση : Στάθμη υπογείων υδάτων για τους υπολογισμούς ενεργή ή ανενεργή -2.00 -2.00 -2.00 Κατάσταση : Στάθμη υπογείων υδάτων για τους υπολογισμούς ενεργή ή ανενεργή -2.00 -2.00 -2.00 Κτοιχεία συνάφειας Παράμετρος Γεωμετρία	YW 3	Κατάσταση	u	Σημ.	X	y (m)	Σημ.	X [m]	y [m]	Σημ.	X [m]	y (m)	
Κατάσταση : Στάθμη υπογείων υδάτων γκα τους υπολογισμούς ενεργή ή σνενεργή μ : Υπολογισμός πίεσης πόρων υδροδυναμικά ή υδροστατικά Κατάσταση : Στάθμη υπογείων υδροδυναμικά ή υδροστατικά Εποχεία συνάφειας Η Γεωμετρία (Μλ/m) Γεωμετρία [m] γη 69.08 240.00 -45.00 0 -10.00 0 Η : Δύναμη συνάφειας Γ Μ Γ Δύναμη συνάφειας Κηταχ : Δύναμη συνάφειας Παράγειας Παράγειας Παράγειας Κηταχ : Δύναμη συνάφειας Παράγειας Παράγειας Παράγειας Κηταχ : Δύναμη συνάφειας Επιλογες υπολογισμων Επιλογές Ο συριτελεστής σσαφολείας σε συστάθεια μπολογίζεται με	10.00	Ενεργή	δυναμ.	1	-48.50	-2.00	2	50.50	-2.00		1.1	6.9	
69.08 240.00 -45.00 0 -10.00 0 Η : Δύναμη συνάφειας Κ _{παχ} : Δύναμη για την εξόλκευση ή τη διάρρηξη του στοιχείου συνάφειας Ξπιλογες υπολογισμων Ξπιλογές Μέθοδος δ _T n _L ευθυγραμμισμένα άκρα	H [kN/m ²]	K _{max} [kN/m]	X1 [m]	y 1 [m]	x ₂ [m]	y 2 [m]							
Η : Δίναμη συνάφειας Κ _{παχ} : Δύναμη για την εξόλκευση ή τη διάρρηξη του στοιχείου συνάφειας Ξπιλογες υπολογισμων Ξπιλογές Μέθοδος δ _Τ n _L ευθυγραμμισμένα άκρα [-] Κτον 0, 0200, 50, 000 με με 0 στριτελεστής σσοφλείας σε συστάθεια μπολογίζεται μ	69.08	240.00	-45.00	0	-10.00	0							
Μέθοδος δ _Τ η _L ευθυγραμμισμένα άκρα [-] Κτον Ο 0200 50 000 με Ο συριτελεστής σσοσλείας σε σματάθεια μπολογίζεται μ	Ξπιλογε Επιλογέ	ες υπολογ ς	ωτωμων										
[-] Κτον 0.0200 50.000 με 0.000 με 0.0000 με 0.000 με	Μέθοδος	δτ	nL	ευθυγ	ραμμισμένο	άκρα		Part City Re-					
	Krev	0.0200	50.000		με		Ο συντε		σφαλεία	ς σε συς	τάθεια υ	πολογίζ	εται με
8 _Τ : Ανοχή σύγκλισης επαναλήψεων	1			Substant Trans				λεστης ο					

C:cubusiDATAiDipl_2010_Oct_2/2a_ia_Έλεγχος επιχώματος Α΄ Φάσης Προφόρτισης_Αριστερά_Berm.L5S

στους υπολο μα υποσημι η 5)	γισμούς σι ειώσεων : Τέμνει	δύο φορές	ιφάσματος ον ένα στοιχεί	ομαστικής αντοχ Παρατήρηση ο συνάφειας.	ής 300 kN/m	23.10.10, 15:3
μα υποσημι h 5)	ειώσεων : Τέμνει	δύο φορές	ένα στοιχεί	_Παρατήρηση ο συνάφειας.		L or J- Yersion 1.
μα υποσημι 90 5)	 Ξ΄ Τέμνει 	δύο φορές	ένα στοιχεί	Παρατήρηση ο συνάφειας.		
5)	: Τέμνει	δύο φορές	ένα στοιχεί	Παρατηρηση ο συνάφειας.	7	
1		s.,		. ,	×	
		6×.				
		6×.				
	-	6.				
		6×				
		6				
	15					
						Nr.:
	Dipl_2010_0ct	Dipl 2010_Oct_22a_ia_EAxy	Σίρι 2010_Oct_2/2a_ja_Έλεγχος επιχώματος	ΣιρΙ_2010_Od_222a_ίa_Έλεγχος επιχώματος Α΄ Φάσης Προφό	Σιρί_2010_OCI_2/22a_ia_Έλογχος επιχώματος Α΄ Φάσης Προφόρτισης Αριστερά. Βεσ	201 201 Ο Cl. 222 Ι.Ξ. Έληγος επιχώματος Α' Φάσης Προφόρτισης. Αριστερά. Berm.155

την πλευρά τ υπολογισμού	all unich		40010115	napere	A start	ondoou			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
υπολογισμού	ου μεγαλ	ου αντιστα	αθμιστικού)					23.10.10,	15:3
	ς συμβολ	νή γεωυφά	ασματος ο	νομαστικ	τής αντοχι	ής 300 kl	N/m		Larix-5 - Ver	sion 1
MA										
εδαφικών στ	Γρώσεων	1								
φαφή		Παράμετρο	s	5		Σημεία π	ολυγώνου	- I	V	
	(¶	[kN/m ³]	[kN/m ²]	Ζημ.	x [m]	y [m]	∠ηµ.	(m)	y [m]	
	33.00	20.00	0	1 3	-48.50 -40.00	2.50	2	-45.00	5.00	
				57	37.00	5.00	8	42.00	2.50	
ργιλος)	0.00	18.40	10.71	9 1	47.00 -48.50	0	10	50.50	-0.00	
				3	-40.00	0	4	-10.00	0	
	0.00	10.10	16.16	7	47.00	0	8	50.50	-0.00	
ρανες μεγαλ	0.00	18.40	10.10	1	-45.00	0.00	4	-40.00	0	
	-			5	-10.00 40.00	0	6	47.00	0	
ενάλο Βρτηι	0.00	18.40	21.60	9	47.00	-7.00	10	50.50	-7.00 -7.00	
eloure permit	5.00	13.10		3	-40.00	-7.00	4	-40.00	0	
				5	40.00	0	8	47.00	0	
σωτερικό πρ	0.00	18.40	27.00	9	47.00	-7.00	10	-45.00	-7.00	
100.0				3	-40.00 -10.00	-7.00	4	-10.00	-7.00	
				7	40.00	-7 00	8	47.00	-7.00	
εριοχή Χαλι	18.80	18.64	34.00	1	-50.50	-7.00	2	-45.00	-7.00	
				3 5	-40.00	-7.00	4	-10.00	-7.00	
				7	40.00	0 -7.00	8	47.00	-7.00	
ικρό Berm)	0.00	18.40	21.60	1	-50.50	-7.00	2	-45.00	-7.00	
				5	-5.00	-7.00	6	40.00	-7.00	
				7	40.00	-7.00	8	47.00	-7.00	
Άμμος)	33.00	19.50	0	1	-50.50	-7.00	2	-45.00	-7.00	
				5	-5.00	-7.00	6 8	40.00	-7.00	
(Άμμος)	35.00	20.50	0	1	-48.50	-9.45	2	-16.62	-9.45	
είων υδάτων	v		L]	3	1 11.15				191	
	T			Σni	εία πολιγ	ώνου			1	
στασή υ	Σημ.	X	y Imi	Σημ.	X	y Im	Σημ.	X	y [m]	
εργή δυναμ.	1	-48.50	-2.00	2	50.50	-2.00		[rii]	Ind	
Στάθμη υπογεία Υπολογισμός π	ων υδάτων γ riεσης πόρω	για τους υπολ ον υδροδυναμ	λογισμούς εν ιικά ή υδροστ	εργή ή ανεν ατικά	εργή					
άφειας				_						
max X1	Υ1 Υ1	X2	y ₂							
V/m] [m]	[m]	[m]	[m]							
	ογιλος) ρανές μεγάλ εγάλο Berm) σωτερικό πρ εριοχή Χαλι ικρό Berm) Άμμος) (Άμμος) (Άμμος) (Άμμος) τείων υδάτων νιμο σταση υ μογή δυναμ. Στάθμη υπογεί Υπολογισμός π άφειας ος χ.	ίη 33.00 ογιλος) 0.00 ρανές μεγάλ 0.00 εγάλο Berm) 0.00 εγάλο Berm) 0.00 εφιοχή Χαλι 18.80 ικρό Berm) 0.00 Άμμος) 33.00 (Άμμος) 35.00 κρίων υδάτων Στάθμη υπογείων υδάτων γ Υπολογισμός πίεσης πόρω Δ άφειας Γείω	[η] [kWm³] 33.00 20.00 ογιλος) 0.00 18.40 ρανές μεγάλ 0.00 18.40 εγάλο Berm) 0.00 18.40 εγάλο Berm) 0.00 18.40 εριοχή Χαλι 18.80 18.40 εριοχή Χαλι 18.80 18.40 εριοχή Χαλι 18.80 18.40 κρό Berm) 0.00 18.40 κρό Βετος 33.00 19.50 κρό Βετος 35.00 20.50 κρίωνος 35.00 20.50 κρίμος 1	[η] [klvm³] [klvm³] 33.00 20.00 0 ογιλος) 0.00 18.40 10.71 ρανές μεγάλ 0.00 18.40 16.16 εγάλο Berm) 0.00 18.40 21.60 σωτερικό πρ 0.00 18.40 21.60 εριοχή Χαλι 18.80 18.64 34.00 ικρό Berm) 0.00 18.40 21.60 Άμμος) 33.00 19.50 0 (Άμμος) 35.00 20.50 0 κρίθη υπογείων υδάτων για τους υπολογισμούς εν Υπολογισμός πίεσης πόρων υδροδυκαμικά ή υδροσι Στιθμη υπογείων υδάτων για τους υπολογισμούς εν Υπολογισμός πίεσης πόρων υδροδυκαμικά ή υδροσι	φ μκν/m³ μκν/m² Ζημ 33.00 20.00 0 1 33.00 20.00 0 1 ογιλος) 0.00 18.40 10.71 1 ογιλος) 0.00 18.40 10.71 1 σωτερικό 0.00 18.40 16.16 1 σωτερικό 0.00 18.40 21.60 1 σωτερικό 0.00 18.40 21.60 1 τ 33.00 18.40 21.60 1 τ 33.00 18.40 21.60 1 τ 5 7 7 7 τ 5 7 7 7 τ 18.80 18.64 34.00 3 τ 5 7 7 7 τ 33.00 19.50 0 1 τ 35 7 7 7 τ 35 7 7 7	ψ μκ/m³ μκ/m² Σμμ. [m] 33.00 20.00 0 1 -48.50 33.00 20.00 0 1 -48.50 5 -5.00 9 47.00 9 47.00 37.00 9 47.00 9 47.00 3 -40.00 5 5 0 1 -48.50 3 9 47.00 3 -40.00 5 5 0 16.16 1 -50.50 7 40.00 5 -10.00 7 7 40.00 5 -10.00 7 40.00 5 -10.00 7 40.00 5 -10.00 5 -10.00 1 -50.50 3 -40.00 5 -10.00 1 -50.50 3 -40.00 5 -5.00 7 47.00 -55.50 5 -5.00 3 -40.00	μ μωνm²) μωνm²) μωνm²) μωνm²) μωνm²) μωνm² μm² μa μa <	ιμ μαν/m³ μα/m³ μα/m³ μα/m³ μα/m	ιμι μμνm² μμνm² μμνm² μμνm² μμν μm² μm² <t< th=""><th>ι μαν(m) μα</th></t<>	ι μαν(m) μα

- rettor	TOOC TOV				αθυιστικά	nú núpovo	as Yavi			23 10 10 15:30
λήφΑn σ		λονισμούς	- auußol		άσματος	ovouartik		nc 300 1	kN/m	Larix-5 - Version 1.26
	1005 0110.	to hopody	, ooppo		achaios	- ropoortio	-15 -110/			
Επιλογε	ες υπολο	γισμων								
Μέθοδος	δτ	ոլ	ευθυγ	ραμμισμένα	α άκρα					
Krev	0.0200	50.000		με		Ο συντελ	λεστής ο	σφαλεία	ας σε συστάθεια υ	πολογίζεται με ε
n EPIE	Αριθμός λωι	ο Υ Σ Ε Σ								
күклоі	ολιΣθΗ	HΣ ME T	OYE MI	KPOTEP	ΟΥΣ ΣΥΝ	ΤΕΛΕΣΤΕ	Σ ΑΣΦΑ	ΛΕΙΑΣ		
Αριθμ. κύκλου	x	y	R	Zwangs- Punkt	Αγκύριο	F διαθεσ	Larrain	L _{min}	Παρατήρηση βλέπε υποσημείωση	
1.20	[m]	[m]	[m]	2		1 27	[m]	[m]		
^L min Υπόμνη ποσημείω	: οεα μα υποσι	ομενο, εκαχι ημειώσευ	UV	ρο μηκος αγ	γκυρωσης	Παραι	τήρηση			
5)	5)	: Tέμ	νει δύο	φορές	ένα στοι	χείο συνά	άφειας.			

λεγχος προς την πλευρα το		i autority ripe	οφορτισής	παρουσ	ιας χαλικ	ondoodxi	DV DV		201002	
We a refer to the reserve to	ο μικροι	aviidide	μιστικου						23.10.10, 1	5:4°
	_								Larix-5 - Versi	JU 13
ΙΡΟΣΟΜΟΙΩΜΑ										
Διεπιφάνειες εδαφικών στρ	ρώσεων					_				
Περιγραφή		Παράμετρο	is c	Sou	× 1	Σημεία πο	δυγώνου	× 1	V	
	۴ ۲	[kN/m ³]	[kN/m ²]	zijp.	[m]	y [m]	2110.	[m]	[m]	
Επιχώσεις	33.00	20.00	0	1	-50.50	0.00	2	-47.00	0.00	
				3	-42.00	2.50	4	5.00	5.00	
				7	35.00	5.00	8	40.00	2.50	
States T (Save)aa)	0.00	18 40	10 71	9	45.00	-0.00	10	48.50	-0.00	
school t (ablived)	0.00	10.40	10.71	3	-40.00	0.00	4	5.00	0	
			-	5	10.00	0	6	40.00	-0.00	
Στρώση Ι (Πρανές μεγάλ	0.00	18.40	16.16	1	-50.50	-7.00	2	-47.00	-7.00	
				3	-47.00	0.00	4	-40.00	0.00	
				5	40.00	-0.00	8	45.00	-0.00	
	E. S. S.			9	45.00	-7.00	10	50.50	-7.00	
Στρώση Ι (Μεγάλο Berm)	0.00	18.40	21.60	1	-50.50	-7.00	2	-47.00	0.00	
				5	5.00	0	6	10.00	0	
				7	40.00	-0.00	8	40.00	-7.00	
Στρώση Ι (Εσωτερικό πρ	0.00	18.40	27.00	1	-50.50	-7.00	2	-47.00	-7.00	
				3	-47.00	0.00	4	-40.00	0.00	
				7	10.00	-7.00	8	40.00	-7.00	
	10.00	10.00	24.00	9	45.00	-7.00	10	50.50	-7.00	
Στρώση Ι (Περιοχή Χαλι	18.80	18.64	34.00	3	-47.00	0.00	4	-40.00	0.00	
				5	5.00	0	6	5.00	-7.00	
				9	45.00	-7.00	10	50.50	-7.00	
Στρώση Ι (Μικρό Berm)	0.00	18.40	21.60	1	-50.50	-7.00	2	-47.00	-7.00	
			•	5	-40.00	-7.00	6	5.00	-7.00	
				7	10.00	-7.00	8	40.00	-7.00	
Στρώση ΙΙ (Άμμος)	33.00	19.50	0	1	-50.50	-7.00	2	-47.00	-7.00	
and a subject of the second second				3	-40.00	-7.00	4	5.00	-7.00	
				7	45.00	-7.00	8	50.50	-7.00	
Στρώση ΙΙΙ (Άμμος)	35.00	20.50	0	1	-48.50 16.62	-9.45	2 4	-17.75 48.50	-9.45	
Στάθμη υπογείων υδάτων										
Πίεση νερού μόνιμο Παράμετρος				Ση	εία πολυγ	ώνου				
γω Κατάσταση υ	Σημ.	X	y (m)	Σημ.	X	y [m]	Σημ.	x íml	y [m]	
10.00 Ενεργή δυναμ.	1	-50.50	-2.00	2	48.50	-2.00		1.1	1.4	
Κατάσταση : Στάθμη υπογείω υ Υπολογισμός πίμ	ον υδάτων γ εσης πόρω	νια τους υπο. ν υδροδυναμ	λογισμούς εν μκά ή υδροσ	εργή ή ανεν τατικά	εργή					
	soll inches									
Επιλογες υπολογισμων										
Επιλογές		in an un much	a áva=							
Μεθοσος ο _T Π _L [-]	EUAD	4hombio head	u ukpu					- 60 -	ne basel ?	
Krey 0.0200 50.000	a hôme car	με		O OUVIE	Λεστής (ασφαλείας	; σε συσ	ιασεία υ	πολογιζετάι	με
η_ : Αριθμός λωρίδων	analdenna									
								2		
								2		
								,		

C. oubus/DATA/Dipl_2010_Oct_2/2b_ii_Έλεγχος επιχώματος Β΄ Φάσης Προφόρτισης_Δεξιά.L5S

Ελεγχος τ	TPOC TRV	πλευρά τ	OU LIKOO	ύαντιστο	ιθμιστικού	is napou	Sids XuAll	ito nuo o	anuv		22 10 10	15.44
1	1.1.1.		- 1-11-10								23.10.10	, 15:41
-				and the second second							Larix-5 - Ve	rsion 1.26
REPIE	AAAC	ΥΣΕΣ	1									
куклоі	ολιχθησ			KPOTEP	OYE EYN	ΤΕΛΕΣΤΕ	Σ ΑΣΦΑ	ΛΕΙΑΣ				
Αριθμ.	x	У	R	Zwangs-	Αγκύριο	F διαθεσ	Laman	L _{min}	Пар	ατήρηση		
KUKAOU	[m]	[m]	[m]	PUNKI			[m]	[m]	BYELLE I	ποσημείωση		
Fager	-47.40 : διαθ	11.04 τοιμη ασφά	16.28 λεια, αποι		άλεια Ε	1.70						
Lamar L _{min}	. υπο : δεδα	ομένο, ελάχι	παπουμενα ιστο ελεύθε	ο εκευσερο μ ρο μήκος αγ	ιηκος αγκυρα ικύρωσης	ωσης στην τι	εριοχη L _{min}	- L _{max}				
		÷										
				1								
A INC.												
											Nr.:	

ΕΙΣΑΓΩΓΗ ΓΕΩΥΦΑΣΜΑΤΟΣ ΟΝΟΜΑΣΤΙΚΗΣ ΑΝΤΟΧΗΣ 300 kN/m

Η εισαγωγή των γεωυφασμάτων γίνεται μέσω δύο συντελεστών Κ max και S όπου: K_{max} = Η μέγιστη αντοχή που απαιτείται για την διαρροή του γεωυφάσματος σε kN/m. S = Η απαιτούμενη τάση για την ενεργοποίηση του γεωυφάσματος σε kN/m². ΤΟΠΟΘΕΤΗΣΗ ΓΕΩΥΦΑΣΜΑΤΟΣ ΣΤΗ ΣΤΑΘΜΗ 0.00 Ισχύει Κ _{max} = T_{ult} / FS $E(v\alpha t : T_{ult} (kN/m) = H ονομαστική αντοχή του γεωυφάσματος =$ 300 και : FS = Συντελεστής Ασφαλείας (βλ. Πίνακα Koemer 1990) = 1,25 $A\rho\alpha K_{max} = 240$ Ισχύει Η = K _{max} / L_e (1)Είναι : F = συντελεστής ασφάλειας αγκύρωσης = 1,5 $και: τ_{min} = \sigma_v' * tan \delta$ όπου : δ = 0.83 - 0.90 φ $φ^0 = η γωνία εσωτερικής τριβής του εδάφους =$ 33 Θεωρώ συντηρητικά ότι δ = 0.83 φ = 27,39 $\sigma_{v}' = \eta$ ενεργός γεωστατική τάση στην στάθμη τοποθέτησης του γεωυφάσματος Στάθμη τοποθέτησης γεωυφάσματος h (m) = 0 10 Στάθμη φυσικού πυθμένα Ζ (m) = 0 Ελάχιστο ύψος επιχώματος πάνω από το ενεργό τμήμα του γεωυφάσματος Ζεπ (m) = 5 Ειδικό βάρος επιχώσεων $(kN/m^3) =$ 20 Άρα τελικά σ_v' (kN/m²) = 100 Επομένως είναι τ_{min} $(kN/m^2) =$ 51,81 Από σχέση (1) έχω L_e (m) = 3 *Τελικά είναι Η = 69,08* ΕΙΣΑΓΩΓΗ ΓΕΩΥΦΑΣΜΑΤΟΣ ΟΝΟΜΑΣΤΙΚΗΣ ΑΝΤΟΧΗΣ 600 kN/m Η εισαγωγή των γεωυφασμάτων γίνεται μέσω δύο συντελεστών Κ max και S όπου: K_{max} = Η μέγιστη αντοχή που απαιτείται για την διαρροή του γεωυφάσματος σε kN/m. S = H απαιτούμενη τάση για την ενεργοποίηση του γεωυφάσματος σε kN/m². ΤΟΠΟΘΕΤΗΣΗ ΓΕΩΥΦΑΣΜΑΤΟΣ ΣΤΗ ΣΤΑΘΜΗ 0.00 Ισχύει K_{max} = T_{ult} / FS $E(v\alpha t : T_{ult} (kN/m) = H ονομαστική αντοχή του γεωυφάσματος =$ 600 και : FS = Συντελεστής Ασφαλείας (βλ. Πίνακα Koemer 1990) = 1.25 $A\rho\alpha K_{max} = 480$ Ισχύει Η = K_{max} / L_e (1) Είναι : F = συντελεστής ασφάλειας αγκύρωσης = 1,5 $και: τ_{min} = \sigma_v' * tan \delta$ όπου : δ = 0.83 - 0.90 φ φ⁰ = η γωνία εσωτερικής τριβής του εδάφους = 33 Θεωρώ συντηρητικά ότι δ = 0.83 φ = 27.39 $\sigma_{v}' = \eta$ ενεργός γεωστατική τάση στην στάθμη τοποθέτησης του γεωυφάσματος Στάθμη τοποθέτησης γεωυφάσματος h (m) = 0 10 $\gamma_w =$ Στάθμη φυσικού πυθμένα Ζ (m) = 0 Ελάχιστο ύψος επιχώματος πάνω από το ενεργό τμήμα του γεωυφάσματος Ζεπ (m) = 5 Ειδικό βάρος επιχώσεων $(kN/m^3) =$ 20 Άρα τελικά σ_v' (kN/m²) = 100 Επομένως είναι τ_{min} $(kN/m^2) =$ 51,81 Από σχέση (1) έχω L_e (m) = 7

Τελικά είναι H = 69,08

Συντελεστής κατακόρυφης στερεοποίησης: c_v =4,5×10⁻⁸ m²/sec Έστω απαιτούμενος χρόνος στερεοποίησης t_c=3 μήνες. Για διπλή στράγγιση της στρώσης της αργίλου (H=3,50 m) ο χρονικός παράγοντας για κατακόρυφη στράγγιση προκύπτει T_v=c_v×t_c/H²=0,03 και από το αντίστοιχο διάγραμμα ο βαθμός κατακόρυφης στερεοποίησης U_v=0,20. Για K_r/K_v=3 (προσχωσιγενείς αργιλικές αποθέσεις με διακοπτόμενες ενστρώσεις και φακούς μεγαλύτερης διαπερατότητας) και K_{rs}/K_v=1,25 K_r/K_{rs}=2,4. Συντελεστής οριζόντιας στερεοποίησης: c_r=(K_r/K_v)×c_v=13,5×10⁻⁸ m²/sec Ακτίνα επιρροής χαλικοπασσάλου: R_e=(1,13×s)/2=1,16 m Για R_s/R_{χαλ}=1,25 A=ln(R_e/R_{χαλ})-3/4+(K_r/K_{rs}-1)×ln(R_s/R_{χαλ})=0,63. Χρονικός παράγοντας για οριζόντια στράγγιση: T_r=c_r×t_c/D_e²=0,19 Βαθμός οριζόντιας στερεοποίησης: U_r=1-e^{(-8×Tr)/A}=0,91 Βαθμός στερεοποίησης: 1-U=(1-U_v)×(1-U_r)⇒U=0,93 √

Σημειώνεται ότι τα παραπάνω μεγέθη με δείκτη s αναφέρονται στη ζώνη αναμόχλευσης γύρω από κάθε χαλικοπάσσαλο ακτίνας $R_s=0,50$ m.

8.3.4 ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΚΑΝΝΑΒΟΥ ΣΤΡΑΓΓΙΣΤΗΡΙΩΝ

Συντελεστής κατακόρυφης στερεοποίησης: c_v =4,5×10⁻⁸ m²/sec Έστω απαιτούμενος χρόνος στερεοποίησης t_c =3 μήνες. Για διπλή στράγγιση της στρώσης της αργίλου (H=3,50 m) ο χρονικός παράγοντας για κατακόρυφη στράγγιση προκύπτει T_v = c_v × t_c /H²=0,03 και από το αντίστοιχο διάγραμμα ο βαθμός κατακόρυφης στερεοποίησης U_v=0,20. Για K_r/K_v=2 (προσχωσιγενείς αργιλικές αποθέσεις με διακοπτόμενες ενστρώσεις και φακούς μεγαλύτερης διαπερατότητας) και K_r/K_v=1,5 K_r/K_{rs}=1,3. Συντελεστής οριζόντιας στερεοποίησης: c_r =(K_r/K_v)× c_v =13,5×10⁻⁸ m²/sec Μετά από δοκιμές τελικά επιλέγεται κατάλληλη διάταξη τετραγωνικού καννάβου των στραγγιστηρίων πλευράς s=1,00 m. Ακτίνα επιρροής στραγγιστηρίου: R_e=(1,13×s)/2=0,57 m Για R_s/r_{στραγγ}.=2 A=ln(R_e/r_{στραγγ}.)-3/4+(K_r/K_{rs}-1)×ln(R_s/r_{στραγγ}.)=2,60. Χρονικός παράγοντας για οριζόντια στράγγιση: T_r= c_r × t_c /D_e²=0,82 Βαθμός οριζόντιας στερεοποίησης: U_r=1-e^{(-8×Tr)/A}=0,92

Σημειώνεται ότι τα παραπάνω μεγέθη με δείκτη s αναφέρονται στη ζώνη αναμόχλευσης γύρω από κάθε στραγγιστήριο ακτίνας R₅=0,05 m.

8.3.5 ΤΕΛΙΚΟΣ ΕΛΕΓΧΟΣ ΕΥΣΤΑΘΕΙΑΣ ΑΚΑΜΠΤΟΥ ΑΒΑΘΟΥΣ ΘΕΜΕΛΙΟΥ ΠΑΡΟΥΣΙΑΣ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ

Με χρήση του προγράμματος Larix 5 στο οποίο τίθενται ως δεδομένα η πίεση που ασκείται στο έδαφος, οι εδαφικές παράμετροι και τα πάχη των στρώσεων και προκύπτουν ως αποτελέσματα οι πιθανοί κύκλοι ολίσθησης του εδάφους κατά Bishop, οι αντίστοιχοι συντελεστές ασφαλείας και ο δυσμενέστερος κύκλος με τον ελάχιστο συντελεστή εκτελείται ο τελικός έλεγχος ευστάθειας του silo με άκαμπτο αβαθές θεμέλιο που ασκεί επί του εδάφους ομοιόμορφη πίεση 113 kPa παρουσίας χαλικοπασσάλων σε κάθε περίπτωση.

ΣΥΝΟ	ΨΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
	ΕΛΑΧΙΣΤΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΑΣΦΑΛΕΙΑΣ
ΜΕΓΑΛΟ ΠΡΟΥΠΑΡΧΟΝ	F _{min} =4,71>2
ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΟ*	
ΜΙΚΡΟ ΑΝΤΙΣΤΑΘΜΙΣΤΙΚΟ*	F _{min} =4,55>2

ταρουσία	ις χαλικοτ	τασσάλων	avuara	λιματικού				22/10/2	15
ιο μεγαλά		αμχυνιύς	aviolat	PIOTIKOU				23.10.10	, 15:4
								Lan-3 - V6	- SIU[1
ρώσεων									
[Παράμετρο	s			Σημεία πο	λυγώνου			
¢ [9]	γ [kN/m ³]	C [kN/m ²]	Σημ.	x [m]	y [m]	Σημ.	x [m]	y [m]	
0.00	18.40	10.71	1	-48.50	0	2	-45.00	0	
	-		3	-35.00	0	4	7.00	-1.50	
			7	23.00	-1.50	8	23.00	-0.00	
			11	50.50	-0.00		45.00	7 00	
0.00	18.40	19.49	1	-50.50 -45.00	-1.00	2 4	-45.00	-7.00	
-	- 1		5	-5.00	-1 50	6	7.00	-1.50	
		•	9	23.00	-0.00	10	35.00	0	
			11	45.00	-7.00	12	45.00	-7.00	
0.00	18.40	28.27	1	-50.50	-7.00	2	-45.00	-7.00	
			3	-35.00	-7.00	4	7.00	0	
			7	7.00	-1.50	8	23.00	-1.50	
			11	45.00	0	12	45.00	-7.00	
4.80	18.64	25.61	13	50.50	-7.00	2	-45.00	-7.00	
			3	-35.00	-7.00	4	-5.00	-7.00	
			5	-5.00	-1.50	8	23.00	-1.50	
			9	23.00	-0.00	10	37.00	-7.00	
			13	50.50	-7.00	12	10.00		
18.80	18.64	25.61	1	-50.50	-7.00	2	-45.00	-7.00	
			5	7.00	-7.00	6	7.00	-1.50	
			9	35.00	-7.00	10	35.00	-7.00	
			11	45.00	-7.00	12	45.00	-7.00	
0.00	18.40	19.49	1	-50.50	-7.00	2	-45.00	-7.00	
			3	-35.00	-7.00	4	-5.00	-7.00	
			7	35.00	-7 00	8	45.00	-7.00	
33.00	19.50	0	9	-50.50	-7.00	2	-45.00	-7.00	
			3	-40.00	-7.00	4	-5.00	-7.00	
			7	47.00	-7.00	8	50.50	-7.00	
35.00	20.50	0	1	-48.50	-9.45	2	-16.62 48.50	-9.45 -9.45	
				_					
}									
_	1	1	Σημ	ιεία πολυγι	ώνου		1 1		
Σηµ.	x [m]	y [m]	Σημ.	x [m]	y [m]	Σημ.	x [m]	y [m]	
1	-48.50	-2.00	2	50.50	-2.00				
ν υδάτων γι εσης πόρωι	ια τους υπολ ν υδροδυναμ	ικά ή υδροστ	εργή ή ανεν ατικά	εργή					
VBC									
AIIS	Γεω	μετρία		T					
X1	y1	X2	y ₂						
7.00		7.00	-1.50		_				
23.00	-0.00	23.00	-1.50						
1 7.00		23.00	-1.50	1					
	ταρουσία ταρουσία τα μεγάλα φώσεων φ [1] 0.00 0.00 0.00 4.80 18.80 0.00 33.00 35.00 χτημ. 1 νυ υδάτων γ κσης πόρων χτης χη [m] 7.00	Σημ. χ Σημ. χ χ Γεω 0.00 18.40 0.00 18.40 0.00 18.40 0.00 18.40 0.00 18.40 0.00 18.40 18.80 18.64 18.80 18.64 13.00 19.50 35.00 20.50 χ Γεω χημ. χ [m] 1.48.50 γ Γεω χημ. χ [m] 1.7.00 20.50 0.00	Σημ. χ γ 2 Γεωμετρος 0 φ γ C (1 [kN/m³] [kN/m²] 0.00 18.40 10.71 0.00 18.40 19.49 0.00 18.40 19.49 0.00 18.40 28.27 4.80 18.64 25.61 18.80 18.64 25.61 33.00 19.50 0 35.00 20.50 0 35.00 20.50 0 x Y m [m] [m] m 1 -48.50 -2.00 w υδάτων για τους υπολογισμούς ενι εσης πόρων υδροδυναμικά ή υδροστ γ [m] [m] [m] 1 -48.50 -2.00 x Y [m] [m] [m] [m] 1 -48.50 -2.00 x [m] [m] 1 -48.50 -2.00	ταρουσίας χαλικόπασσαλών ταράμετρος Σημ. φ΄ γ C Σημ. [1] [kNm³] [kNm²] 0.00 18.40 10.71 1 0.00 18.40 19.49 1 0.00 18.40 19.49 1 0.00 18.40 28.27 1 0.00 18.40 28.27 1 13	Ταρουσίας χαλικοτίασσαλων ρώσεων φ Υ Κ Σημ. χ φ Υ Κ Σημ. χ 0.00 18.40 10.71 1 -48.50 0.00 18.40 19.49 1 -50.50 0.00 18.40 19.49 1 -50.50 0.00 18.40 19.49 1 -50.50 0.00 18.40 28.27 1 -50.50 0.00 18.40 28.27 1 -50.50 0.00 18.40 28.27 1 -50.50 0.00 18.40 28.27 1 -50.50 11 45.00 3 -35.00 5 9 23.00 11 45.00 13 50.50 4.80 18.64 25.61 1 -50.50 3 -35.00 11 45.00 13 50.50 5 7.00 -7.00 13 50.50 5 7.00 -7.00 -7.00 -7.00 13 <td< td=""><td>Ταρουσίας χαλικοπασασαών του μεγάλου προυπάρχοντος αντισταθμιστικού ρώσεων φ Ταράμετρος Σημ χ 0.00 18.40 10.71 1 -48.50 0 9 35.00 0 15.50.50 -7.00 0.00 18.40 19.49 1 -50.50 -7.00 0.00 18.40 19.49 3 -45.00 0 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 1 45.00 0 -7 -7.00 -5.00 0 1 45.00 0 -7 -7.00 -5.00 0 1 45.00 0 -7 -7.00 -5.00 0 1 45.00 0 -7 -7.00 -7.00 18.80 18.64 25.61 1 -50.50 -7.00 13 50.50 -7.00<!--</td--><td>ταρουσίας χαλικοπασσάλων ρώσεων τη μνη κ/μ χη Σημ χ Υ 0.00 18.40 10.71 1 -48.50 0 2 0.00 18.40 10.71 1 -48.50 0 2 0.00 18.40 19.71 1 -48.50 0 2 0.00 18.40 19.49 1 -50.50 -0.00 2 0.00 18.40 19.49 1 -50.50 -7.00 2 0.00 18.40 28.27 1 -50.50 -7.00 12 0.00 18.40 28.27 1 -50.50 -7.00 12 1.3 50.50 -7.00 12 3 -35.00 -7.00 12 4.80 18.64 25.61 1 -50.50 -7.00 12 13 50.50 -7.00 12 3 -35.00 -7.00 12 13.80<td>ταρουσίας χαλικοπασσάλων μεγάλου προυπάρχοντος αντισταθμιστικού σύστεων Σημεία πολυγώνου τη τ</td><td>Σελιοά z Σελιοά z Σελιοά z Σαι μεγάλου προυπάρχοντος αντισταθμιστικού Σαι μαι το του το του το του του του του του το</td></td></td></td<>	Ταρουσίας χαλικοπασασαών του μεγάλου προυπάρχοντος αντισταθμιστικού ρώσεων φ Ταράμετρος Σημ χ 0.00 18.40 10.71 1 -48.50 0 9 35.00 0 15.50.50 -7.00 0.00 18.40 19.49 1 -50.50 -7.00 0.00 18.40 19.49 3 -45.00 0 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 0.00 18.40 28.27 1 -50.50 -7.00 1 45.00 0 -7 -7.00 -5.00 0 1 45.00 0 -7 -7.00 -5.00 0 1 45.00 0 -7 -7.00 -5.00 0 1 45.00 0 -7 -7.00 -7.00 18.80 18.64 25.61 1 -50.50 -7.00 13 50.50 -7.00 </td <td>ταρουσίας χαλικοπασσάλων ρώσεων τη μνη κ/μ χη Σημ χ Υ 0.00 18.40 10.71 1 -48.50 0 2 0.00 18.40 10.71 1 -48.50 0 2 0.00 18.40 19.71 1 -48.50 0 2 0.00 18.40 19.49 1 -50.50 -0.00 2 0.00 18.40 19.49 1 -50.50 -7.00 2 0.00 18.40 28.27 1 -50.50 -7.00 12 0.00 18.40 28.27 1 -50.50 -7.00 12 1.3 50.50 -7.00 12 3 -35.00 -7.00 12 4.80 18.64 25.61 1 -50.50 -7.00 12 13 50.50 -7.00 12 3 -35.00 -7.00 12 13.80<td>ταρουσίας χαλικοπασσάλων μεγάλου προυπάρχοντος αντισταθμιστικού σύστεων Σημεία πολυγώνου τη τ</td><td>Σελιοά z Σελιοά z Σελιοά z Σαι μεγάλου προυπάρχοντος αντισταθμιστικού Σαι μαι το του το του το του του του του του το</td></td>	ταρουσίας χαλικοπασσάλων ρώσεων τη μνη κ/μ χη Σημ χ Υ 0.00 18.40 10.71 1 -48.50 0 2 0.00 18.40 10.71 1 -48.50 0 2 0.00 18.40 19.71 1 -48.50 0 2 0.00 18.40 19.49 1 -50.50 -0.00 2 0.00 18.40 19.49 1 -50.50 -7.00 2 0.00 18.40 28.27 1 -50.50 -7.00 12 0.00 18.40 28.27 1 -50.50 -7.00 12 1.3 50.50 -7.00 12 3 -35.00 -7.00 12 4.80 18.64 25.61 1 -50.50 -7.00 12 13 50.50 -7.00 12 3 -35.00 -7.00 12 13.80 <td>ταρουσίας χαλικοπασσάλων μεγάλου προυπάρχοντος αντισταθμιστικού σύστεων Σημεία πολυγώνου τη τ</td> <td>Σελιοά z Σελιοά z Σελιοά z Σαι μεγάλου προυπάρχοντος αντισταθμιστικού Σαι μαι το του το του το του του του του του το</td>	ταρουσίας χαλικοπασσάλων μεγάλου προυπάρχοντος αντισταθμιστικού σύστεων Σημεία πολυγώνου τη τ	Σελιοά z Σελιοά z Σελιοά z Σαι μεγάλου προυπάρχοντος αντισταθμιστικού Σαι μαι το του το του το του του του του του το

	TOOC TOV	πλεμοά		λου ποου	πάονοντο	C OVIIOTO	Auguro				ZEAR	003
	ipos ili	Incopul	ιου μεγα	Noo mpoo	Παρχονιο	s aviio la	орюпкос				23.1	0.10, 15:45
						_					Larix-	5 - Version 1.2
		τίο										
	Περιγραφή	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Δράση		X ₁	y 1	X2	¥2	D1	D2	Διεύθυνση
			Ωφέλιμα	0 0001[0		[m] 7.00	[m] -1.50	[m] 23.00	[m] -1.50	[kN/m ²]	[kN/m ²]	
Επιλογε Επιλογές	ς υπολο ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	γισμων	cu fu		- <u>funn</u>							
Νιεουους	от [-]	- 14	EUBUY	γραμμισμενα	а акра							
1EPIB	Αριθμός λω			KROTER		2						
Αριθμ.	X	y y	R	Zwangs-	ΟΥΣΣΥΝΤ Αγκύριο	ΓΕΛΕΣΤΕ: F διαθεσ	Σ ΑΣΦΑ/		Παρατ	ήρηση	1	-
κύκλου	[m]	[m]	[m]	Punkt		0.000	ſml	ſml	βλέπε υπο	σημείωση		
751	8.11	16 72	22 63				Full	luit				
็ อิเฉยิยฮ -สิทสมา -min	: διαξ : υπο : δεδι	2έσιμη ασφά λογιστικό, α ομένο, ελάχι	23.33 ίλεια, απαιτ πταιτούμενι στο ελεύθε	1 τούμενη ασφ ο ελεύθερο μ ρο μήκος αγ	άλεια F _{απαπ ⇒} ήκος αγκύρω κύρωσης	4 . / ⊥ 1.00 ωσης στην πε	:ριοχή L _{min} -	L _{max}				
F badeur Lamair Lmin	: διαξ : υπο : δεδ	3έσιμη ασφ λογιστικό, α ομένο, ελάχι	<u>ίλεια, απαι</u> πατούμε ιστο ελεύθε	1 Ιούμενη ασφ ο ελεύθερο τ ερο μήκος αγ	άλεια F _{σπαι =} ήκος αγκύρω κύρωσης	<u>4.71</u> 1.00 υσης στην πε	:ροχή L _{min} -	L _{max}				
F todesor Lamain Limin	: διαξ : υπο : δεδ	λογιστικό, α	 ίλεια, απαιτ παιτούμεν ιστο ελεύθε	Ι <u>Ι</u> Ιτούμενη ασφ ο ελεύθερο ο ερο μήκος αγ	άλεια F _{σπαι =} ήκος αγκάρω κύρωσης	<u>1.0</u> σης στην πε	:ροχή L _{min} -	L _{max}				
Fooderg Laman Lmin	: δια : υπο : δεδ	λογιστικό, α ομένο, ελάχι	 ίλεια, απαιαι παιτούμενι ιστο ελεύθε	1 1 τούμενη ασφ ο ελεύθερο ο ελεύθερο μήκος αγ	άλεια F _{orran =} ήκος αγκάρω κύρωσης	<u>4.71</u> 1.00 ματης στην πε	iρoχή L _{min} -	L _{max}				
Foodeurg Lamaur Lmin	: διαξ : υπο : δεδ	λογιστικό, α ομένο, ελόχι	δ.33	1 1 Ιτούμενη ασφι ο κένθερο μ ήκος αγι	άλεια F _{orman =} ήκος αγκάρως κύρωσης	<u>4.71</u> 1.00 σσης στην πε	:ρ ωχή L_{min} -	L _{max}				
F badeur Lamair Lmin	: δια : υπο : δεδ	2601μα ασφ λογιστικό, α ομένο, ελόχι	δ.33	1 1 1 τούμενη ασφ ο ελεύθερο κρο μήκος αγ	άλεια F _{orman =} ήκος αγκάρω κύρωσης	<u>4.71</u> 1.00 σσης στην πε	:ροχή L _{min} -	L _{max}				

Nr.:

AEVYOC T	τοος την πλευρά τ		i aviata	ιιστικού	, <u>/</u>					00 10 10	15.0
11/05	in nycoba	oo hiichoi		PIOTIKOU						23.10.10,	15:4
										Lanx-0 - Ver	SIGHT 1.
ΙΡΟΣΟΝ	ΜΟΙΩΜΑ										
ιεπιφάν	ειες εδαφικών στ	ρώσεων									
	Περιγραφή		Παράμετρο	os o	Sau	× 1	Σημεία πο	ολυγώνου	× 1		
		Ű	[kN/m ³]	[kN/m ²]	2ημ.	[m]	[m]	2110.	[m]	y [m]	
Στρώση]	[(Άργιλος)	0.00	18.40	10.71	1 3 5 7	-50.50 -35.00 -23.00 -7.00	0.00 0.00 -1.50 0	2 4 6 8	-45.00 -23.00 -7.00 5.00	0.00 0.00 -1.50 0	
Στρώση Ι	Ι (Πρανές μεγάλ	0.00	18.40	19.49	11 1 3	48.50 -50.50 -45.00	-0.00 -7.00 0.00	2 4	45.00 -45.00 -35.00	-7.00	
	23				7 9 11	-23.00 -7.00 5.00 45.00	-1.50 0 -0.00	8 10 12	-7.00 35.00 45.00	-0.00 -7.00	
Ετρώση Ξ	Ι (Μεγάλο Berm)	0.00	18.40	28.27	1 3 5 7	-50.50 -45.00 -23.00 -7.00	-7.00 0.00 0.00 -1.50	2 4 6 8	-45.00 -37.00 -23.00 -7.00	-7.00 0.00 -1.50 0	
		Z I			9 11	5.00	-7.00	10 12	35.00 45.00	-0.00 -7.00	
Ετρώση Ξ	Ι (Περιοχές Ι,	4.80	18.64	25.61	13	-50.50	-7.00	2 4	-45.00 -37.00 -23.00	-7.00 0.00	
					7 9 11	-7.00 5.00 35.00	-1.50 0 -7.00	8 10 12	-7.00 5.00 45.00	0 -7.00 -7.00	
Ετρώση Ι	Ι (Περιοχή ΙΙ)	18.80	18.64	25.61	13 1 3 5 7 9	50.50 -50.50 -45.00 -35.00 -23.00 -7.00	-7.00 -7.00 0.00 -7.00 -1.50 -7.00	2 4 6 8 10	-45.00 -35.00 -23.00 -7.00 5.00	-7.00 0.00 -7.00 -1.50 -7.00	
Ετρώση Ξ	Ι (Μικρό Berm)	0.00	18.40	19.49	11 13 1 3 5 7	35.00 50.50 -50.50 -45.00 -35.00 5.00	-7.00 -7.00 0.00 -7.00 -7.00 -7.00	12 2 4 6 8	45.00 -45.00 -35.00 -7.00 35.00	-7.00 -7.00 0.00 -7.00 -7.00	
Στρώση Ι	ΙΙ (Άμμο <mark>ς</mark>)	33.00	19.50	o	9 1 3 5	45.00 -50.50 -35.00 5.00	-7.00 -7.00 -7.00 -7.00	10 2 4 6	50.50 -47.00 -7.00 40.00	-7.00 -7.00 -7.00 -7.00	
Στρώση Ξ	III (Άμμος)	35.00	20.50	0	7 1 3	45.00 -48.50 16.62	-7.00 -9.45 -9.45	8 2 4	50.50 -17.75 48.50	-7.00 -9.45 -9.45	
τάθμη υ	πογείων υδάτων										
ίεση νερο	ού μόνιμο				-	-fa 1					
γw [kN/m ³]	Κατάσταση μ	Σημ.	X [m]	y [m]	2ημ Σημ.	χ [m]	y [m]	Σημ.	x [m]	y [m]	
Κατάσταση	: Στάθμη υπογείω	ι τη	α τους υπολ	ογισμούς εν	εργή ή ανεν	48.50	-2.00				
u	: Υπολογισμός πί	εσης πόρων	νδροδυναμ	ικά ή υδροστ	ατικά						
τοιχεια	διατμητικης αντο	XUS									
	Παράμετρος		Γεωι	ετρία	1						
[kN/m]	W ₂ L _E [kN/m] [m]	x ₁ [m]	У1 [m]	x ₂ [m]	y 2 [m]						
1.00E+4 1.00E+4 1.00E+4	1.00E+4 0 1.00E+4 0 1.00E+4 0	-7.00 -23.00 -23.00	0.00 -1.50	-7.00 -23.00 -7.00	-1.50 -1.50 -1.50						
LE :	ιναι κας εισαγωγής								,*.,		

ney Xos 4											and stars	1 10 15 1 10 10 10 10 10 10 10 10 10 10 10 10 1
λεγχος π	ρος την τ	τλευρά τ	ου μικροι	ύ αντιστα	θμιστικού						23.10	.10, 15:49
									a man in the second second		Larix-5	- Version 1.
ΟΟΡΤΙΑ πιφανει	ακό φορ	τίο										
Г	Ιεριγραφή			Δράση		X1	y ₁	X ₂	y ₂	P1 [kN/m ²]	P2 [kN/m ²]	Διεύθυνση
			Ωφέλιμο	φορτίο		-23.00	-1.50	-7.00	-1.50	-113.00	-113.00	У
Επιλογες Επιλογές	ς υπολο	γισμων										
Μέθοδος	δ _T	nL	ευθυγ	ραμμισμένα	α άκρα							
Krey	0.0200	50.000		με		Ο συντελ	εστής ο	σφαλεία	ς σε συσ	στάθεια υπ	πολογίζ	εται με
		ΟΥΣΕΣ ΣΗΣ ΜΕ	ε τογε ΜΙΙ	KPOTEP	ΟΥΣ ΣΥΝ	ΤΕΛΕΣΤΕ	Σ ΑΣΦΑ	ΛΕΙΑΣ				
Αριθμ.	x	У	R	Zwangs-	Αγκύριο	F διαθεσ	Lanan	L _{min}	Παρατ βλέπε υπ	τήρηση ιοσημείωση		11
KUNIOU	[m]	[m]	[m]	- unit			[m]	[m]				-
Fδισθεσ Lamair Lmin	-22.15 : διαι : υπα : δεδ	16.92 θέσιμη ασφ ολογιστικό, ομένο, ελάງ	23.85 άλεια, απαιτ απαιτούμενα (ιστο ελεύθε	ι τούμενη ασφ ο ελεύθερο μ ερο μήκος αγ	ράλεια F _{aman} μήκος αγκύρι γκύρωσης	4.55 = 1.00 ωσης στην π.	ερюχή L _{min}	- L _{max}	1	1		
F tooteo Lamoir Lmin	-22.13 : διαί : υπ : δεδ	<u>16,92</u> θέσιμη ασφ δογιστικό, ολόγιστικό, ομένο, ελάγ	23.85 άλεια, απαιτ απαιτούμενας (ιστο ελεύθε	1 τούμενη ασφ ο ελεύθερο η ερο μήκος αγ	ράλεια F _{αττατ} μήκος αγκύρι γκύρωσης	4.55 = 1.00 ωσης στην π	εριοχή L _{min}	- Lmex	2			
F 860860 Lamour Lmin	-22.13 : ŏiai : um : ŏeŏ	<u>16,92</u> βέσμη ασφ λογιστικό, ομένο, ελά	23.85 άλεια, απαιτ απαιτούμεται (ιστο ελεύθε	1 τούμενη ασφ ο ελεύθερο η ερο μήκος αγ	 μάλεια F _{απαπ} ηλίκος αγκέρυ γκύρωσης	4.55 = 1.00 ωσης στην τι	εριοχή L _{min}	- L _{max}				
F backer Lamoir Lmin	-22.13 : Joid : unt : Join : J	<u>16.92</u> βέσιμη ασφ βλογιστικό, ομένο, ελά	23.85	1 τούμενη ασφ ο ελεύθερο μ όρο μήκος αγ	μάλεια F _{ατταπ} ηγίκος αγκέρυ γκύρωσης	<u>4.55</u> =1.00 ωσης στην τι-	εριοχή L _{min}	- L _{max}				
F backer Lamor Lmin	-22.13 : Jian :	<u>16.92</u> θέσιμη ασφ θλογιστικό, ομένο, ελάγ	<u>23.85</u> άλεια, απαιπ απαιτούμεται (ματο ελεύθε	1 πούμενη ασφ ο ελεύθερο προ μήκος α	μ φάλεια F _{ατταπ} γκύρωσης	<u>4.55</u> =1.00 ωσης στην τι	εριοχή L _{min}	- Lmax				
F bases Lamor Lmin	-22.13 : Joid : Unit : Õeð	<u>16.92</u> Βέσιμη ασφ Βέσιμη ασφ Οδογιστικό, ομένο, ελό	23.85	1 τούμενη ασφ ο ελεύθερο μ ήκος αγ	μάλεια Ε _{σποπ} . μήκος αγκέρι γκύρωσης	<u>4.55</u> =1.00 ωσης στην τι	εριοχή L _{min}	- Lmax				

8.3.6 ΕΛΕΓΧΟΣ ΘΡΑΥΣΗΣ ΚΕΦΑΛΗΣ ΧΑΛΙΚΟΠΑΣΣΑΛΩΝ ΣΕ ΦΑΣΗ ΛΕΙΤΟΥΡΓΙΑΣ

Συντελεστής αντικατάστασης: $\alpha_s=0,78 \times (D_{\chi\alpha\lambda}./s)^2=0,094$ Συντελεστής συγκέντρωσης τάσεων: $n=[1/Y-(1-\alpha_s)]/\alpha_s=5,79$ Για ομοιόμορφη πίεση $\sigma_o=113$ kPa που ασκείται στο έδαφος από το silo $\sigma_{\epsilon\delta.}=\sigma_o/[n \times \alpha_s+(1-\alpha_s)]=77,87$ kPa και $\sigma_{\chi\alpha\lambda.}=(n \times \sigma_o)/[n \times \alpha_s+(1-\alpha_s)]=450,86$ kPa. $\sigma'_{hp}=(1+K_o)/2 \times (\sigma'_{vo(-3,70\ m)}+\sigma_{\epsilon\delta.})+3 \times c_{ut\epsilon\lambda.(-3,70\ m)}=181,82$ kPa όπου $K_o=0,50$ και οι υπολογισμοί για στάθμη 1 m+1,5D_{χαλ.} κάτω από την κεφαλή των χαλικοπασσάλων. $\sigma_{vop.\chi\alpha\lambda.}=tan^2(45^o+\phi_{\chi\alpha\lambda}./2) \times \sigma'_{hp}=939,11$ kPa $F=\sigma_{vop.\chi\alpha\lambda.}/\sigma_{\chi\alpha\lambda.}=2,1>2$ Εξασφαλίζεται ευστάθεια.