

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Μηχανικών Μεταλλείων - Μεταλλουργών Τομέας Μεταλλουργίας & Τεχνολογίας Υλικών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χριστίνα Σαβοργιανάκη

Ανάπτυξη μεθόδου ανάλυσης μικροπλαστικών σε πόσιμο νερό

Επιβλέπων: Δρ. Άνθιμος Ξενίδης

Καθηγητής ΕΜΠ

ΑΘΗΝΑ ΙΟΥΛΙΟΣ 2023

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Μηχανικών Μεταλλείων - Μεταλλουργών Τομέας Μεταλλουργίας & Τεχνολογίας Υλικών

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Χριστίνα Σαβοργιανάκη

Ανάπτυξη μεθόδου ανάλυσης μικροπλαστικών σε πόσιμο νερό

Επιβλέπων: Δρ. Άνθιμος Ξενίδης

Καθηγητής ΕΜΠ

Εγκρίθηκε από την τριμελή επιτροπή στις

Ανθιμος Ξενίδης, Καθηγητής ΕΜΠ,

Νυμφοδώρα Παπασιώπη, Καθηγήτρια ΕΜΠ,

Εμμανουέλλα Ρεμουντάκη, Καθηγήτρια ΕΜΠ,

ΑΘΗΝΑ ΙΟΥΛΙΟΣ 2023

Copyright © Χριστίνα Σαβοργιανάκη, 2023 Με επιφύλαξη κάθε δικαιώματος. All rights reserved.

ΠΡΟΛΟΓΟΣ

Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου, κύριο Άνθιμο Ξενίδη για όλη τη στήριξη του από το πρώτο λεπτό που αποφάσισε να αναλάβει αυτήν την εργασία. Επίσης θα ήθελα να ευχαριστήσω τον καθηγητή Massimo Del Bubba κι όλους τους ανθρώπους που βοήθησαν με την έρευνα μου στο Πανεπιστήμιο της Φλωρεντίας και στο εργαστήριο της εταιρίας LMF Biochimica.

Ένα πολύ μεγάλο ευχαριστώ οφείλεται στον Dr Leonardo Checchini για τις ατελείωτες ώρες που πέρασε μαζί μου ζυγίζοντας μικροπλαστικά, παρατηρώντας το νερό αλλά κυρίως μιλώντας για τα πάντα (και κυρίως για τον Ed Sheeran).

Για την συμβολή τους στο να μην καταρρέω κάθε μέρα θα ήθελα να ευχαριστήσω τους David Thomas, Dalma Jakab, Andreas Hagis, Στάθη Βεζύρη κι Εύα Αλεξάνδρου. Είστε οι καλύτεροι και σας λατρεύω.

Τέλος το πιο μεγάλο ευχαριστώ στους γονείς μου Αντώνη Σαβοργιανάκη κι Έλενα Αδαμοπούλου για την «υλικοτεχνική» υποστήριξη της μετακίνησης μου στο εξωτερικό, για την αγάπη που έδειξαν στη γάτα μου (η οποία θα τους λείψει τώρα που θα επιστρέψω) αλλά και για τις ατελείωτες κλήσεις που μου έκαναν ώστε να μου κρατήσουν παρέα όποτε το χρειαζόμουν, όποια ώρα κι αν ήταν.

Η Φλωρεντία ήταν μια εμπειρία ζωής. Σας ευχαριστώ.

ΠΕΡΙΛΗΨΗ

Η εργασία αυτή εκπονήθηκε στο Πανεπιστήμιο της Φλωρεντίας στην Ιταλία σε συνεργασία με το ΕΜΠ, υπό την επίβλεψη των καθηγητών Dr Massimo Del Bubba και Δρα Άνθιμου Ξενίδη στα πλαίσια του προγράμματος Erasmus+. Ο στόχος της έρευνας ήταν η ανάπτυξη μεθόδου αναγνώρισης και ποσοτικοποίησης μικροπλαστικών σε νερό με τη χρήση συστήματος Αέριας Χρωματογραφίας – Φασματοσκοπίας Μάζας με Πυρόλυση (Py-GC/MS). Η μέθοδος αυτή έχει χρησιμοποιηθεί κυρίως για την αναγνώριση μικροπλαστικών σε λύματα αλλά η χρήση της για ποσοτικοποίηση είναι σχετικά καινούργια στον χώρο της περιβαλλοντικής επιστήμης. Η ανάπτυξη της μεθόδου ποσοτικοποίησης ξεκίνησε με τη δημιουργία καμπυλών βαθμονόμησης για πολλαπλά ιόντα κάθε πολυμερούς ώστε να επαληθευτεί η γραμμικότητα των αποτελεσμάτων. Έπειτα, έγινε ανάλυση μιγμάτων πολυμερών αλλά και συνθετικών δειγμάτων όπου τα αποτελέσματα είχαν μεγάλη απόκλιση από τις αναμενόμενες τιμές. Αυτό συνέβη διότι οι αντιδράσεις που συμβαίνουν μεταξύ των πλαστικών μέσα στον πυρολύτη αποτελούν τροχοπέδη για την επιτυχή ανάλυση, γεγονός που τις καθιστά θέματα υψίστης σημασίας για μελλοντική έρευνα. Δεδομένης της αποτυχίας ποσοτικοποίησης, η έρευνα στράφηκε προς την αναγνώριση μικροπλαστικών στο νερό, κι έγινε επιτυχώς ανάλυση έξι πραγματικών δειγμάτων εμφιαλωμένου νερού, φιλτραρισμένου νερού και νερού βρύσης από την Φλωρεντία. Τα αποτελέσματα έδειξαν πως υπήρχαν μικροπλαστικά σε όλα τα δείγματα. Για την αναγνώριση των μικροπλαστικών γρησιμοποιήθηκαν οι λόγοι των εμβαδών των γρωματογραφικών κορυφών (που προέκυψαν από το σύστημα Py-GC/MS) για δύο επιλεγμένα ιόντα αναγνώρισης για κάθε πολυμερές, με γνώμονα τις επιτρεπόμενες τιμές ανοχής που έχουν τεθεί από την Ευρωπαϊκή Ένωση. Τα ιόντα έπρεπε να έχουν δείξει σταθερότητα στις τιμές τους σε όλες τις προηγούμενες αναλύσεις αλλά κι οι τιμές αυτές να είναι εντός των θεσμοθετημένων ορίων. Τέλος, έγινε προσπάθεια για ημι-ποσοτικοποίηση του πολυαιθυλενίου (PE) στα πραγματικά δείγματα γρησιμοποιώντας το ένα ιόν (m/z 140 για γρόνο κατακράτησης 8,58 min) που είχε δείξει την καλύτερη συνέπεια μεταξύ των αποτελεσμάτων των καμπυλών βαθμονόμησης και των συνθετικών δειγμάτων. Η ημι-ποσοτική ανάλυση αυτή έδειξε πως το εμφιαλωμένο νερό περιέχει περίπου 107 ng PE/L, το φιλτραρισμένο νερό περιέχει περίπου 270 ng PE/L και το νερό βρύσης περιέγει περίπου 300 ng PE/L.

ABSTRACT

This thesis project was carried out at the University of Florence in Italy, in collaboration with the National Technical University of Athens, under the supervision of Dr Massimo Del Bubba and Dr Anthimos Xenidis under the auspices of the Erasmus+ Program. This study aims at the development and verification of an identification and quantification method for microplastics in water using Py-GC/MS analysis. This method has been used mainly for the identification of microplastics in wastewater but its use for quantification is relatively new in the field of environmental science. Development of the quantification method began with the creation of calibration lines for multiple ions of each polymer in order to verify the linearity of the results. Then, analysis of polymer mixtures and synthetic samples was carried out with the results deviating significantly from the expected values. This was caused by the reactions occurring between the polymers in the pyrolyser, which proves they are a hindrance against successful analysis and puts them high on the priority list for future research. Given the failure of quantification, the research was focused on identification of microplastics in water which led to the successful analysis of six real samples from Florence. The results showed that there were microplastics present in all of the samples. For the identification of microplastics, the ratios of the areas of the chromatographic peaks (obtained from the Py-GC/MS system) for two selected identification ions for each polymer were used, based on the permitted tolerance values set by the European Union. The ions had to have shown stability in their values in all previous analyses and these values had to be within the established limits. Finally, an attempt was made to semi-quantify polyethylene (PE) in the real samples using the one ion (m/z 140 for a retention time of 8,58 min) that had shown the best consistency between the results of the calibration lines and the synthetic samples. The semi-quantitative analysis showed that the bottled water contains approximately 107 ng PE/L, the filtered water contains approximately 270 ng PE/L, and the tap water contains approximately 300 ng PE/L.

ΠΕΡΙΕΧΟΜΕΝΑ

1. ΕΙΣΑΓΩΓΗ	9
1.1 State-of-the-art για την ανάλυση μικροπλαστικών σε δείγματα με τη χρήση Αέριας Χρωματογραφίας-Φασματοσκοπίας Μάζας με Πυρόλυση	10
1.2 Τοξικότητα των μικροπλαστικών	12
1.3 Στόχοι της εργασίας	13
2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ	14
2.1 Πλαστικά	14
Ιστορία των πολυμερών	14
Δομή πολυμερών	15
Θερμοπλαστικά, θερμοσκληρυνόμενα και ελαστομερή	16
Πλαστικά	17 18
Κοινά εμπορικά πλαστικά	18
Αποδόμηση πλαστικών	19
2.2 Πυρόλυση	20
Πυρόλυση πολυμερών	20
Κύρια προϊόντα πυρόλυσης και χρωματογραφήματα κοινών πλαστικών	21
Συστήματα πυρόλυσης	24
2.3 Αέρια Χρωματογραφία – Φασματοσκοπία Μάζας	26
Αέρια Χρωματογραφία	27
Φασματοσκοπία Μάζας	27
Selected Ion Monitoring	28
3. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ	29
3.1 Υλικά κι αντιδραστήρια	29
3.2 Όργανα και μηχανήματα	30
3.3 Δειγματοληψία	32
3.4 Ανάλυση Δειγμάτων	33
4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΑΝΑΛΥΣΗ	34
4.1 Ποσοτική και ποιοτική ανάλυση	34
4.2 Καμπύλες βαθμονόμησης	34
4.3 Συνθετικά δείνματα	42
Νερό Milli-Q	42
Συνθετικά δείγματα με εμφιαλωμένο νερό, φιλτραρισμένο νερό και νερό βρύσης	43
4.4 Πραγματικά δείγματα	44

5. ΣΥΜΠΕΡΑΣΜΑΤΑ	48
ΒΙΒΛΙΟΓΡΑΦΙΑ	49
Παράρτημα A: Full-scan χρωματογραφήματα και φάσματα μάζας	53
Παράρτημα Β: Καμπύλες βαθμονόμησης	
Παράρτημα Γ: Αποτελέσματα μιγμάτων πολυμερών	66
Παράρτημα Δ: Αποτελέσματα συνθετικών δειγμάτων	71
Παράρτημα Ε: Αποτελέσματα πραγματικών δειγμάτων	77

ΛΙΣΤΑ ΠΙΝΑΚΩΝ

Πίνακας 1: State of the art βάσει βιβλιογραφικών αναφορών για ανάλυση δειγμάτων μ	ιε Py-
GC/MS	11
Πίνακας 2: Στοιχεία standard πολυμερών	29
Πίνακας 3: Λεπτομέρειες λειτουργίας συστήματος Py-GC/MS	31
Πίνακας 4: Αποτελέσματα καμπυλών βαθμονόμησης	38
Πίνακας 5: Αποτελέσματα μίγματος 4	41
Πίνακας 6: Ονοματολογία και είδος δειγμάτων	44
Πίνακας 7: Αποτελέσματα ημι-ποσοτικής ανάλυσης για πολυαιθυλένιο με βάση το m/	′z 140
	47

ΛΙΣΤΑ ΕΙΚΟΝΩΝ

Εικόνα 1: Χημική σύσταση καουτσούκ (Miller 2023)14
Εικόνα 2: Θεωρητικό χρωματογράφημα του PET (Shin, Hajima, and Chuichi 2011) 22
Εικόνα 3: Θεωρητικό χρωματογράφημα του PE (Shin, Hajima, and Chuichi 2011) 22
Εικόνα 4: Θεωρητικό χρωματογράφημα του PP (Shin, Hajima, and Chuichi 2011)23
Εικόνα 5: Θεωρητικό χρωματογράφημα του PMMA (Shin, Hajima, and Chuichi 2011)23
Εικόνα 6: Θεωρητικό χρωματογράφημα του PS (Shin, Hajima, and Chuichi 2011)24
Εικόνα 7: Σχηματική αναπαράσταση συστήματος Py-GC/MS (Watanabe et al. 2016) 25
Εικόνα 8: Σχηματική αναπαράσταση συστήματος GC/MS (Harvey 2019)26
Εικόνα 9: Πολυμερή δίπλα στο κύπελλο πυρόλυσης Eco-cup LF (4mm x 8mm)
Εικόνα 10: Πειραματική διάταξη διήθησης33
Εικόνα 11: Full scan χρωματογράφημα ΡΕ35
Εικόνα 12: Φάσμα μάζας κορυφής 8,58 (αριστερά) και κορυφής 19,23 (δεξιά)35
Εικόνα 13: Καμπύλες βαθμονόμησης πολυαιθυλενίου

Εικόνα 14: Διάγραμμα σημείων καμπυλών βαθμονόμησης (πορτοκαλί) και σημείων μιγμάτων (μπλε)
Εικόνα 15: Πειραματικά αποτελέσματα λόγου ιόντων αναγνώρισης σε σχέση με τη μέση τιμή (γαλάζιο κεντρικό σημείο) των λόγων για τις μεμονωμένες καμπύλες βαθμονόμησης. Το σφάλμα είναι το επιτρεπόμενο ανάλογα με την ευρωπαϊκή νομοθεσία
Εικόνα 16: Full scan χρωματογράφημα PET53
Εικόνα 17: Φάσμα μάζας κορυφής 11,53 (πάνω αριστερά), κορυφής 26,62 (πάνω δεξιά) και κορυφής 31,26 (κάτω)
Εικόνα 18: Full scan χρωματογράφημα PE53
Εικόνα 19: Φάσμα μάζας κορυφής 8,58 (αριστερά) και κορυφής 19,23 (δεξιά)53
Εικόνα 20: Full scan χρωματογράφημα PP54
Εικόνα 21: Φάσμα μάζας κορυφής 5,38 (πάνω αριστερά), κορυφής 10,33 (πάνω δεξιά) και κορυφής 14,53 (κάτω)
Εικόνα 22: Full scan χρωματογράφημα PMMA55
Εικόνα 23: Φάσμα μάζας κορυφής 3,07
Εικόνα 24: Full scan χρωματογράφημα PS56
Εικόνα 25: Φάσμα μάζας κορυφής 6,48 (πάνω αριστερά), κορυφής 21,18 (πάνω δεξιά) και κορυφής 29,66 (κάτω)
Εικόνα 26: Από αριστερά προς τα δεξιά: RT1-51/77, RT1-51/105, RT1-77/10577
Εικόνα 27: Από αριστερά προς τα δεξιά RT2-51/77, RT2-51/105, RT2- 77/10577
Εικόνα 28: Από αριστερά προς τα δεξιά RT3-51/77, RT3-51/105, RT3-51/149, RT3-51/297
Εικόνα 29: Από αριστερά προς τα δεξιά: RT1-56/70, RT1-140/56, RT1-140/70, RT2-55/69
Εικόνα 30: Από αριστερά προς τα δεξιά RT1-43/55, RT1-43/70, RT1-43/83, RT1-43/126
Εικόνα 31: Από αριστερά προς τα δεξιά RT1-55/70, RT1-55/83, RT1-55/126, RT1-70/83

Εικόνα 32: Από αριστερά προς τα δεξιά RT1-70/126, RT1-83/126
Εικόνα 33: Από αριστερά προς τα δεξιά RT2-43/57, RT2-43/69, RT2-43/83, RT2-43/11
Εικόνα 34: Από αριστερά προς τα δεξιά RT2-43/168, RT2-57/69, RT2-57/83, RT2-57/11
Εικόνα 35: Από αριστερά προς τα δεξιά RT2-57/168, RT2-69/83, RT2-69/111, RT2-69/168
Εικόνα 36: Από αριστερά προς τα δεξιά RT2-83/111, RT2-83/168, RT2-111/16883
Εικόνα 37: Από αριστερά προς τα δεξιά RT3-43/57, RT3-43/69, RT3-43/83, RT3-43/11
Εικόνα 38: Από αριστερά προς τα δεξιά RT3-57/69, RT3-57/83, RT3-57/11, RT3-69/83 84
Εικόνα 39: Από αριστερά προς τα δεξιά RT3-69/111, RT3-83/111
Εικόνα 40: Από αριστερά προς τα δεξιά RT1-41/69, RT1-41/85, RT1-41/10085
Εικόνα 41: Από αριστερά προς τα δεξιά RT1-69/85, RT1-69/100, RT1-85/10085
Εικόνα 42: Από αριστερά προς δεξιά RT1-78/102, RT1-78/103, RT1-78/104, RT1-78/103
Εικόνα 43: Από αριστερά προς τα δεξιά RT1-102/103, RT1-102/104, RT1-102/105, RT1 103/104
Εικόνα 44: Από αριστερά προς τα δεξιά RT1-103/105, RT1-104/10587
Εικόνα 45: Από αριστερά προς τα δεξιά RT2-91/104, RT2-91/130, RT2-91/20887
Εικόνα 46: Από αριστερά προς τα δεξιά RT2-104/130, RT2-104/208, RT2-130/208 88
Εικόνα 47: Από αριστερά προς τα δεξιά RT3-91/117, RT3-91/194, RT3-91/207, RT3 91/312
Εικόνα 48: Από αριστερά προς τα δεξιά RT3-117/194, RT3-117/207, RT3-117/312, RT3 194/207
Εικόνα 49: Από αριστερά προς τα δεξιά RT3-194/312, RT3-207/312

1. ΕΙΣΑΓΩΓΗ

Η ρύπανση του πλανήτη από μικροπλαστικά είναι ένα φυσικό επακόλουθο της αυξημένης παραγωγής πλαστικών κατά τον 20° και 21° αιώνα. Δεδομένου του ότι τα πλαστικά μιας χρήσης έγιναν εύκολα διαθέσιμα στον πληθυσμό (Meng, Kelly, και Wright 2020) και η συνεχής χρήση τους έγινε η νέα καθημερινότητα, η ανθρωπότητα έχει φτάσει τον πλανήτη σε σημείο όπου τα μικροπλαστικά βρίσκονται παντού – από τους υδρόβιους οργανισμούς μέχρι το ανθρώπινο αίμα κι από τα θαλάσσια ιζήματα μέχρι την ατμόσφαιρα (Rahman et al. 2021; Leslie et al. 2022). Οι εταιρείες ύδρευσης παγκοσμίως έχουν εντάξει διεργασίες και τεχνολογίες που απομακρύνουν τα μικροπλαστικά από το νερό που δίνουν στο δίκτυο, έτσι ώστε το τελικό προϊόν που φτάνει στα νοικοκυριά να είναι καθαρό και ασφαλές για κατανάλωση.

Ωστόσο, ενώ το νερό του δικτύου μπορεί να ρυπανθεί από το δίκτυο αγωγών κατά την πορεία του προς τα νοικοκυριά και το ποτήρι του καταναλωτή, υπάρχει ένας άλλος τρόπος με τον οποίο οι πολίτες καταναλώνουν νερό: με τη χρήση πλαστικών μπουκαλιών μιας χρήσης. Το εμφιαλωμένο νερό είναι θεωρητικά τόσο καθαρό όσο το νερό στην πηγή από όπου προήλθε, αλλά δεν πρέπει να αποκλείεται η περίπτωση το νερό να ρυπανθεί από το ίδιο του το δοχείο, δηλαδή το πλαστικό μπουκάλι. Η αποδόμηση του πλαστικού οφείλεται σε πολλούς παράγοντες όπως η μηχανική καταπόνηση, η έκθεση σε υπεριώδη ακτινοβολία ή η οξείδωση – διεργασίες που μπορούν να προκύψουν κατά τον κύκλο ζωής ενός πλαστικού μπουκαλιού (Webb et al. 2013).

Μέχρι πρότινος, οι πιο δημοφιλείς τεχνικές για τον ποιοτικό και ποσοτικό προσδιορισμό των μικροπλαστικών ήταν η μικρο-Φασματοσκοπία Υπέρυθρου Μετασχηματισμού Fourier (μFTIR) και η Φασματοσκοπία Raman, όπου τα αποτελέσματα εκφράζονταν σε πλήθος σωματιδίων ανά λίτρο ή ανά κυβικό μέτρο. Πρέπει να σημειωθεί όμως ότι αυτές οι μέθοδοι δεν δίνουν τα «βέλτιστα» αποτελέσματα καθώς τα σωματίδια μπορεί να έχουν διαφορετικά μεγέθη ή να αποτελούνται από διαφορετικά πολυμερή και πρόσθετα. Μία εναλλακτική αναλυτική μέθοδος είναι η Αέρια Χρωματογραφία – Φασματοσκοπία Μάζας με Πυρόλυση (Pyrolysis Gas Chromatography/Mass Spectrometry, Py-GC/MS), η οποία χρησιμοποιεί τις δυνατότητες ποιοτικής και ποσοτικής ανάλυσης ενός οργάνου GC/MS ώστε να αναλύσει τις ενώσεις διάσπασης πολυμερών που προκύπτουν κατά την πυρόλυση.

1.1 State-of-the-art για την ανάλυση μικροπλαστικών σε δείγματα με τη χρήση Αέριας Χρωματογραφίας-Φασματοσκοπίας Μάζας με Πυρόλυση

Η Αέρια Χρωματογραφία-Φασματοσκοπία Μάζας με Πυρόλυση (Py-GC/MS) είναι μία αναλυτική τεχνική που βρίσκεται σε άνοδο εδώ και αρκετά χρόνια όσον αφορά την ανάλυση των μικροπλαστικών μέσα σε διαφορετικές μήτρες. Χρησιμοποιώντας μια διάταξη πυρόλυσης single- ή multi-shot σε συνδυασμό με σύστημα GC/MS, οι ερευνητές παγκοσμίως έχουν καταφέρει να αναλύσουν ακόμα και πολύ μικρές ποσότητες ρύπων σε περιβαλλοντικά δείγματα έτσι ώστε να γίνει αναγνώριση των μικροπλαστικών που απαντώνται σε αυτά. Αν και οι τεχνικές μπορεί να διαφέρουν από μελέτη σε μελέτη, ένα από τα κύρια ζητήματα που απασχολεί τους ερευνητές είναι η εξαγωγή των μικροπλαστικών από τις περιβαλλοντικές μήτρες τους ή πιο συγκεκριμένα, η μείωση της παρεμβολής που μπορεί να έχει στα αποτελέσματα η οργανική ύλη που βρίσκεται μέσα στα δείγματα. Η πιο δημοφιλής μέθοδος είναι η χώνευση με υπεροξείδιο του υδρογόνου (H₂O₂) ή άλλες ουσίες, ανάλογα πάντα με την προέλευση του δείγματος και το ποσοστό ρύπανσής του (Gomiero et al. 2021; Xu et al. 2022; Okoffo, Rauert, and Thomas 2023; Laermanns et al. 2021). Mía μέθοδος που παρουσιάζει αρκετό ενδιαφέρον κι είναι σχετικά νέα στον χώρο της ανάλυσης μικροπλαστικών με Py-GC/MS είναι η εξαγωγή με χρήση μικροκυμάτων. Οι Hermabessiere και Rochman (2021) κατάφεραν να εξάγουν 5 διαφορετικά πολυμερή από ποικιλία συνθετικών μητρών, όπως από νερό αντίστροφης ώσμωσης ή πολτοποιημένα φιλέτα σολομού.

Έπειτα από το στάδιο της χώνευσης ή/και την γενικότερη προετοιμασία του δείγματος, τα συμπυκνώματα είτε τοποθετούνταν απευθείας στα κύπελλα της πυρόλυσης (Okoffo, Rauert, and Thomas 2023; Xu et al. 2022; Hermabessiere and Rochman 2021) είτε περνούσαν μέσα από φίλτρο ινών γυαλιού 0.7 μm, τα οποία με τη σειρά τους τοποθετούνταν μέσα στα κύπελλα της πυρόλυσης (Gomiero et al. 2021; Laermanns et al. 2021; Kirstein et al. 2021). Οι θερμοκρασίες πυρόλυσης κυμαίνονταν από τους 590°C έως τους 600°C κι ο χρόνος πυρόλυσης ήταν συνήθως μερικά δευτερόλεπτα. Η ανάλυση GC/MS γινόταν ως επί το πλείστον σε κατάσταση Selected Ion Monitoring (SIM) ώστε η ολοκλήρωση των κορυφών να γίνει με μεγαλύτερη ευκολία κι έτσι να επιτευχθεί η ποσοτικοποίηση των μικροπλαστικών μέσα στο δείγμα.

Είδος δείγματος	Θερμοκρασία Πυρόλυσης	Split ratio	Πολυμερή προς αναγνώριση	Διαδικασία προετοιμασίας δείγματος	Εύρος μεγεθών προς ανάλυση	Εύρος συγκεντρώσεων	Αναφορές
Επιφανειακά ύδατα Υπόγεια ύδατα	650 °C	1:50	PVC, PMMA, PP, PS, PET, PE	Υπερδιήθηση, χώνευση με Η2Ο2	0.01 - 1 μm	0.045 - 0.793 μg/L	Xu et al. (2022)
Πόσιμο νερό	590 °C	1:30	PE, PP, PS, PVC, PA, PMMA, PC, PET	Χώνευση με ένζυμο πρωτεάσης και Η2Ο2	1 - 10 µm	6.1 - 93.2 μg/m ³	Gomiero et al. (2021)
Λύματα	650 °C	1:50	PS, PMMA, PVC, PE, PET, PC, PP	Χώνευση με Η2Ο2, PLE	> 1 µm	7 - 3116 µg/L	Okoffo, Rauert and Thomas (2023)
Νερό αντίστροφης ώσμωσης (ΑΩ) και βρώμικο νερό ΑΩ Εμφιαλωμένο νερό και μύδια	590 °C	1:15	PC, PS, PMMA, PVC, PE	Εξαγωγή με μικροκύματα	> 1 µm	0.14 - 5.43 μg/m ³	Hermabessiere and Rochman (2021)
Ποτάμια ύδατα και ποτάμια ιζήματα	600 °C		PP, PS, PE	Χώνευση με Η2Ο2, PLE	50 - 300 μm	0.33 - 1.19 μg/m ³	Laermanns et al. (2021)
Πόσιμο νερό	590 °C	1:20		Επώαση με 5% sodium dodecyl sulfate	0.7 - 5 μm	0.14 - 5.43 μg/m ³	Kirstein et al. (2021)

Πίνακας 1: State of the art βάσει βιβλιογραφικών αναφορών για ανάλυση δειγμάτων με Py-GC/MS

Είναι επίσης σημαντικό να αναφερθεί πως σε όλα τα άρθρα, οι συγγραφείς προσπάθησαν να μειώσουν την επιρύπανση από πλαστικά σωματίδια όσο το δυνατόν περισσότερο, χρησιμοποιώντας δειγματολήπτες από ανοξείδωτο χάλυβα, εξοπλίζοντας τα εργαστήρια τους με φίλτρα HEPA, πλένοντας τα υαλικά με νερό MilliQ και θερμαίνοντας τα σε ειδικό φούρνο, φορώντας βαμβακερές ποδιές εργαστηρίου και ρούχα φτιαγμένα από φυσικές ίνες, κλπ.

Κάτι που παρουσιάζει αρκετό ενδιαφέρον είναι το γεγονός ότι στα δύο άρθρα όπου έγινε ανάλυση πόσιμου νερού (Gomiero et al. 2021; Kirstein et al. 2021), οι ερευνητές χρησιμοποίησαν αρκετά όμοιες μεθόδους για την προετοιμασία του δείγματος, κάτι που είναι πιθανό να οφείλεται στην παρουσία κάποιων ίδιων ατόμων και στις δύο ερευνητικές ομάδες. Πιο συγκεκριμένα, κι οι δύο ομάδες χρησιμοποίησαν εξοπλισμό από ανοξείδωτο χάλυβα και επώασαν τα φίλτρα σε 5% sodium dodecyl sulfate (SDS). Παρ'όλ'αυτά, οι Gomiero et al. (2021) έκαναν και το πρόσθετο βήμα της χώνευσης με H₂O₂. Τα θερμοκρασιακά προγράμματα της πυρόλυσης και της αέριας χρωματογραφίας ήταν επίσης τα ίδια. Χρησιμοποίησαν τη μέθοδο one-shot στους 590°C για 10 δευτερόλεπτα με θερμοκρασία διεπαφής στους 300°C.

1.2 Τοξικότητα των μικροπλαστικών

Τα μικροπλαστικά συχνά χωρίζονται σε δύο κατηγορίες: τα πρωτογενή και τα δευτερογενή. Τα πρωτογενή μικροπλαστικά είναι εκείνα που έχουν κατασκευαστεί ώστε να έχουν πολύ μικρό μέγεθος και χρησιμοποιούνται σε καλλυντικά ή προϊόντα προσωπικής υγιεινής, ενώ τα δευτερογενή μικροπλαστικά προκύπτουν από την αποσάθρωση μεγαλύτερων πλαστικών προϊόντων. Μία μεγάλη πηγή δευτερογενών μικροπλαστικών είναι τα υφάσματα τα οποία όλο και συχνότερα αποτελούνται από συνθετικές ίνες. Κατά τη διάρκεια του κύκλου ζωής τους έρχονται συνεχώς σε επαφή με το νερό (παραγωγή, πλύσιμο) κι αφήνουν μικρές πλαστικές ίνες οι οποίες καταλήγουν στα λύματα (Ahmed et al. 2023).

Λαμβάνοντας υπ'όψιν τις τρεις διόδους μέσω των οποίων σωματίδια μικρού μεγέθους μπορούν να εισέλθουν στο ανθρώπινο σώμα (εισπνοή, κατάποση, δερματική επαφή), τα μικροπλαστικά και τα συνθετικά υλικά μπορεί να αποτελέσουν κίνδυνο προς την ανθρώπινη υγεία – ανάλογα με τη συγκέντρωση την οποία ένας μέσος άνθρωπος συσσωρεύει στον οργανισμό του. Έχει αποδειχθεί πως τα νανοπλαστικά μπορούν να προσκολληθούν πάνω στις μεμβράνες των κυττάρων αλλά και να εισέλθουν μέσα στο κύτταρο όπου

αλληλοεπιδρούν με τα οργανίδια που βρίσκονται εκεί (Khan and Jia 2023), γεγονός που μπορεί να προκαλέσει την διαταραχή των κυτταρικών διεργασιών.

Επιπρόσθετα, είναι ανησυχητικό το γεγονός ότι το μέσο πλάτος των τριχοειδών αγγείων (5-8 μm) είναι αρκετά μικρό ώστε πιθανώς να φραγεί από σωματίδια μικροπλαστικών, επηρεάζοντας τη δυναμική των ρευστών στα τριχοειδή (Leslie et al. 2022). Στην έρευνα των Leslie et. al (2022), αναγνωρίστηκαν διαφορετικά πολυμερή μέσα σε δείγματα αίματος. Η μέγιστη συγκέντρωση ήταν 12 μg/ml αλλά η πλειοψηφία των δειγμάτων (77%) βρέθηκε να έχει κάποια μετρήσιμη συγκέντρωση μικροπλαστικών. Το πιο συχνά αναγνωρισθέν πολυμερές ήταν το PET, ακολουθούμενο από τα PE, PS και PMMA. Με στόχο τη διερεύνηση των συνέπειων των σωματιδίων πολυαιθυλενίου στον άνθρωπο, οι Gautam et al. (2022) αξιολόγησαν τις αντιδράσεις έξι διαφορετικών ανθρώπινων κυτταρικών σειρών έπειτα από καλλιέργεια τους με ποικιλία συγκεντρώσεων PE. Οι επιστήμονες κατέληξαν στο ότι οι υψηλότερες συγκεντρώσεις πολυαιθυλενίου μπορούσε να μειώσει την κυτταρική βιωσιμότητα ορισμένων σειρών.

1.3 Στόχοι της εργασίας

Ο κύριος στόχος αυτής της διπλωματικής εργασίας είναι να ερευνηθεί η βιωσιμότητα της χρήσης της Αέριας Χρωματογραφίας/Φασματοσκοπίας Μάζας με Πυρόλυση για την ποσοτική ανάλυση των μικροπλαστικών σε διάφορες μήτρες πόσιμου νερού. Χρησιμοποιώντας αρχικά συνθετικά επαλήθευση δείγματα για την της αποτελεσματικότητας της μεθόδου, έγιναν στη συνέχεια πειράματα με τη χρήση πραγματικών δειγμάτων νερού από το δίκτυο ύδρευσης της Φλωρεντίας (Ιταλία) αλλά και δείγματα εμφιαλωμένου νερού. Δυστυχώς, λόγω ανωτέρας βίας ήταν αδύνατη η πραγματοποίηση πλήρους ποσοτικής ανάλυσης οπότε κι ο στόχος μετατράπηκε από την ποσοτική ανάλυση των μικροπλαστικών στο νερό στην προσπάθεια αναγνώρισης των μικροπλαστικών στα πραγματικά δείγματα.

2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

2.1 Πλαστικά

Ιστορία των πολυμερών

Η φύση ανέκαθεν έδινε στους ανθρώπους πολυμερή υλικά, όπως το φυσικό καουτσούκ, το κεχριμπάρι ή το μετάξι. Παρ'όλ'αυτά, η επιστημονική κοινότητα καθυστέρησε αρκετά να αναγνωρίσει ότι οι ουσίες αυτές ήταν μακρομόρια κι όχι ουσίες μικρότερου μοριακού βάρους. Ακόμα κι όταν οι Raoult και van't Hoff παρουσίασαν αποδείξεις για την ύπαρξη μεγάλων μοριακών βαρών (10000-40000) στο καουτσούκ και την κυτταρίνη, η επιστημονική κοινότητα ήταν διστακτική καθώς πίστευαν πως οι ουσίες αυτές ήταν παραδείγματα κολλοειδών ουσιών. Στις αρχές του 20°υ αιώνα, η θεωρία των μοριακών συμπλεγμάτων ήταν ευρέως αποδεκτή και χρησιμοποιούνταν για να εξηγήσει τις πολυμερικές δομές ως απλά συσσωματώματα μικρών μορίων. Για παράδειγμα, το καουτσούκ θεωρείτο πως αποτελούνταν από βραχείες αλληλουχίες μονάδων ισοπρενίου, είτε με τη μορφή αλυσίδων είτε με τη μορφή κυκλικών δομών. Κάτι που ενέτεινε την γενικότερη σύγχυση ήταν το γεγονός ότι κανείς δεν μπορούσε να αποδείξει την ύπαρξη end groups στα προς ανάλυση μακρομόρια. Αυτό οδήγησε στην πεποίθηση ότι το καουτσούκ έχει μία δομή δακτυλίου (ένα διμεθυλικό κυκλοοκταδιένιο) όπου οι πολλαπλοί δακτύλιοι συγκρατούνταν μαζί, κι άρα το υλικό ήταν μια κολλοειδής ουσία. Όμως, όπως φαίνεται και στην Εικόνα 1, το καουτσούκ αποτελείται από ομάδες ισοπρενίου.

cis-1,4 polyisoprene (natural rubber) Εικόνα 1: Χημική σύσταση καουτσούκ (Miller 2023)

Η ανάπτυξη των θεωριών που βρίσκονται πιο κοντά στις επιστημονικά αποδεκτές θεωρίες του σήμερα έγινε τη δεκαετία του 1920 από τον Staudinger και τους συνεργάτες του, όταν αυτοί εδραίωσαν την ύπαρξη των μακρομορίων. Οι θεωρίες τους επιβεβαιώθηκαν περαιτέρω από αναλύσεις που έγιναν από τρίτους χρησιμοποιώντας ακτίνες X κι άλλες μεθόδους καθορισμού μοριακού βάρους.

Σήμερα, είναι γνωστό το γεγονός ότι τα μακρομόρια μπορεί να έχουν πολύ μεγάλα μήκη σε σύγκριση με τις άλλες διαστάσεις τους (κάτι το οποίο η βιομηχανία εκμεταλλεύεται για διάφορες εφαρμογές) κι έτσι μπορούν να δημιουργήσουν διάφορα σχήματα ανάλογα με το πως διπλώνουν και συσπειρώνονται. Ένα παράδειγμα είναι τα νουκλεϊκά οξέα αλλά κι οι πρωτεΐνες. Τα πιο κοινότυπα συνθετικά πολυμερή έχουν μοριακά βάρη τα οποία κυμαίνονται από δέκα μέχρι αρκετές χιλιάδες αλλά πολλά μπορεί να φτάσουν ακόμα και σε μερικά εκατομμύρια. Αυτός ο κλάδος της χημείας εξελίσσεται συνεχώς με την ανάπτυξη νέων και ταχύτερων διεργασιών καθώς και τον πειραματισμό με διάφορα πρόσθετα, καταλύτες και υλικά (Ravve 2012).

Δομή πολυμερών

Τα πολυμερή είναι μεγάλα μόρια τα οποία αποτελούνται από επαναλαμβανόμενες υπομονάδες που ονομάζονται mers και συνδέονται με ομοιοπολικούς δεσμούς. Υπάρχουν διαφορετικοί τρόποι δομής των πολυμερών. Η πιο απλή δομή είναι η γραμμική, όπου οι μονάδες συνδέονται σε μία γραμμή όπως συμβαίνει στο πολυαιθυλένιο. Είναι απαραίτητο οι ακριανές μονάδες του μορίου να είναι διαφορετικές από τις εσωτερικές ώστε να πληρούνται οι απαιτήσεις σθένους. Οι πολυμερικές αλυσίδες μπορούν επίσης να είναι διακλαδωμένες, όπως είναι το πολυαιθυλένιο χαμηλής πυκνότητας (LDPE). Άλλοι τρόποι δομής των πολυμερών είναι οι διασταυρωμένες και οι ημι-διασταυρωμένες αλυσίδες. Όταν οι διακλαδώσεις των αλυσίδων αρχίζουν να διαπλέκονται, δημιουργούνται δίκτυα πολυμερών τα οποία μπορούν να αποδώσουν διαφορετικές ιδιότητες στο υλικό ανάλογα με τον τρόπο που δομούνται στο χώρο. Για παράδειγμα, ένα επίπεδο δίκτυο έχει παρεμφερή δομή με αυτή του γραφίτη ενώ ένα τρισδιάστατο δίκτυο μοιάζει περισσότερο με τη δομή του διαμαντιού.

Όταν το πολυμερές αποτελείται από δύο (ή περισσότερες) επαναλαμβανόμενες δομικές μονάδες, ονομάζεται συμπολυμερές. Τα συμπολυμερή ακολουθούν τις ίδιες δομικές αρχές με τα απλά πολυμερή. Κάποια γνωστά συμπολυμερή είναι το πολυαιθυλένιο-οξικό βινύλιο ή το καουτσούκ νιτριλίου. Τα συμπολυμερή χωρίζονται σε τέσσερις κατηγορίες: τυχαία, εναλλασσόμενα, συσταδικά και ενοφθαλμισμένα. Τα τυχαία συμπολυμερή σχηματίζονται όταν οι επαναλαμβανόμενες μονάδες δεν ακολουθούν συγκεκριμένα μοτίβα επανάληψης ενώ τα εναλλασσόμενα συμπολυμερή παρουσιάζουν κάποια κανονικότητα στην επανάληψη τους. Τα συσταδικά συμπολυμερή αποτελούνται από συστάδες μεμονωμένων πολυμερών και ενώνονται με ομοιοπολικούς δεσμούς.

Τέλος, τα ενοφθαλμισμένα συμπολυμερή έχουν ως «ραχοκοκαλιά» ένα είδος πολυμερούς με τις διακλαδώσεις αυτής να αποτελούνται από ένα άλλο πολυμερές.

Αρχικά, τα πολυμερή διαχωρίζονταν σε δύο κατηγορίες ανάλογα με τον τρόπο δημιουργίας τους: τα πολυμερή συμπύκνωσης και τα πολυμερή προσθήκης. Πιο συγκεκριμένα, τα πολυμερή συμπύκνωσης «έχαναν» κάποια άτομα που υπήρχαν στα mers τους κατά τον πολυμερισμό ενώ τα πολυμερή προσθήκης δεν παρουσίαζαν καμία απώλεια από μονομερές σε πολυμερές. Αυτή η θεωρία όμως δεν μπορούσε να συμπεριλάβει όλα τα είδη πολυμερών καθώς αγνοούσε την απώλεια των διπλών δεσμών. Αυτό αμφισβητήθηκε από τον Paul Flory, ο οποίος πρότεινε μία άλλη θεωρία όπου η ταξινόμηση των πολυμερών εξαρτάται από τον μηχανισμό αντίδρασης της διαδικασίας σχηματισμού του μακρομορίου. Κατά την ταξινόμηση του Flory, όλα τα πολυμερή που σχηματίζονται με αντιδράσεις οι οποίες προκύπτουν σε διακριτά βήματα λέγονται σταδιακά πολυμερή ενώ τα πολυμερή που σχηματίζονται από αλυσιδωτές αντιδράσεις λέγονται αλυσιδωτά πολυμερή. Τα σταδιακά πολυμερή σχηματίζονται με πολύ πιο αργούς ρυθμούς από τα αλυσιδωτά πολυμερή, τα οποία σχηματίζονται σε δευτερόλεπτα ή κλάσματα του δευτερολέπτου (Ravve 2012; Soroush and Grady 2019).

Θερμοπλαστικά, θερμοσκληρυνόμενα και ελαστομερή

Τα πολυμερή ταξινομούνται περαιτέρω σε θερμοπλαστικά, θερμοσκληρυνόμενα και ελαστομερή. Η ταξινόμηση αυτή βασίζεται στο αν το προς επεξεργασία υλικό μπορεί να φτάσει στο σημείο δημιουργίας πυκνού διασταυρωμένου πλέγματος με την θέρμανση. Στο κρίσιμο σημείο αυτό, το πλέγμα «σκληραίνει» και δεν μπορεί να κινηθεί τόσο ελεύθερα στον χώρο – ή δεν κινείται καθόλου. Αυτό σημαίνει πως οποιαδήποτε αύξηση της θερμοκρασίας δεν θα επιφέρει κάποια αλλαγή στην πλαστικότητα του υλικού αλλά ούτε θα είναι διαλυτό το πολυμερές σε διάφορους διαλύτες. Αυτά τα υλικά λέγονται θερμοσκληρυνόμενα. Πολλά πολυμερή αδυνατούν να φτάσουν στο κρίσιμο σημείο κι άρα η κατάσταση τους μπορεί να αλλάξει ανάλογα με την θερμοκρασία και τους διαλύτες με τους οποίους έρχεται σε επαφή. Τα επονομαζόμενα θερμοπλαστικά μπορούν πάντα να ξαναγίνουν ρευστά όταν ανεβαίνει η θερμοκρασία του περιβάλλοντος τους, αλλά επέρχεται στερεοποίηση τους με την επικείμενη πτώση της. Τέλος, τα ελαστομερή είναι πιο μαλακά από τα θερμοπλαστικά αλλά έχουν αρκετά παρεμφερείς ιδιότητες. Έχουν τη δυνατότητα να διατηρήσουν το σχήμα τους έπειτα από τη δημιουργία πλέγματος.

Πλαστικά

Τα πλαστικά είναι υλικά τα οποία αποτελούνται από πληθώρα πολυμερών καθώς και από πολλά πρόσθετα, πρώτες ύλες οι οποίες επιλέγονται ανάλογα με την προβλεπόμενη χρήση του τελικού προϊόντος αλλά και το είδος της επεξεργασίας που θα υποστεί το υλικό. Για παράδειγμα, αν ο στόχος είναι να αποφευχθούν παρενέργειες από τις διεργασίες για την κατασκευή του υλικού μπορεί να γίνει προσθήκη λιπαντικών ουσιών. Αυτό θα βοηθήσει στην εξάλειψη της τριβής. Αντίστοιχα, μπορεί να γίνει προσθήκη αντιοξειδωτικών ουσιών ώστε να μειωθεί η πιθανότητα οξείδωσης κι άρα υποβάθμισης των ιδιοτήτων του πλαστικού. Ένα πρόσθετο που είναι αρκετά δημοφιλές για διάφορες εφαρμογές – αλλά κυρίως στον χώρο των ΑΠΕ – είναι οι ίνες γυαλιού. Τα καμπυλών υλικά που αποτελούνται από πολυμερή (είτε θερμοπλαστικά, είτε θερμοσκληρυνόμενα) και ίνες γυαλιού χρησιμοποιούνται ευρέως στην κατασκευή των πτερυγίων των ανεμογεννητριών. Οι ίνες γυαλιού αυξάνουν την ακαμψία και την αντοχή του υλικού χωρίς όμως να προσθέτουν βάρος στην κατασκευή, ενώ είναι προτιμητέες κι από οικονομικής απόψεως καθώς έχουν μικρότερη τιμή από άλλα υλικά όπως π.χ. τα ανθρακονήματα. Αντίθετα, υπάρχουν πολλά πρόσθετα τα οποία χρησιμοποιούνται ώστε να αυξηθεί η ευελιξία του πλαστικού. Δεδομένου του ότι πολλά πλαστικά υλικά προορίζονται για χρήση σε εξωτερικό χώρο, είναι να σημαντικό να ελαχιστοποιηθούν (αν όχι να εξαλειφθούν) οι επιπτώσεις της ηλιακής ακτινοβολίας. Συνήθως χρησιμοποιούνται διάφοροι σταθεροποιητές UV όπως βενζοτριαζόλες, βενζοφαινόνες ή οργανικές ενώσεις νικελίου.

Είναι εμφανές πως η βιομηχανία έχει αναπτύξει πρόσθετα για κάθε πιθανή εφαρμογή. Όσο οι ανάγκες για συνθετικά υλικά γίνονται όλο και πιο εξειδικευμένες, τόσο θα αυξάνεται κι η έρευνα για νέα και καινοτόμα πρόσθετα. Δυστυχώς, λόγω της μετέπειτα αποσύνθεσης των πλαστικών στο περιβάλλον, αυτά τα πρόσθετα διαχέονται στη βιόσφαιρα και βλάπτουν την χλωρίδα και την πανίδα του οικοσυστήματος καθώς πολλά από αυτά είναι τοξικά για τα ζώα, τα φυτά αλλά και τους ανθρώπους (Van Der Vegt 2002).

Μηχανικές ιδιότητες των πλαστικών

Τα πλαστικά είναι δημοφιλή υλικά στη βιομηχανία λόγω ορισμένων μηχανικών ιδιοτήτων τους. Αρχικά, η δυσκαμψία τους είναι χαμηλότερη από άλλα υλικά, με τα ελαστομερή να έχουν τις χαμηλότερες τιμές, ενώ οι τιμές των θερμοπλαστικών ποικίλουν ανάλογα με το είδος του πολυμερούς. Ενδιάμεσα σε αυτά βρίσκονται τα θερμοπλαστικά ελαστομερή τα οποία είναι συνήθως συσταδικά συμπολυμερή κι άρα οι ιδιότητες τους είναι ένα μίγμα των δύο. Τα θερμοσκληρυνόμενα έχουν ελαφρώς υψηλότερες τιμές, αλλά και πάλι είναι πολύ χαμηλότερες από άλλα είδη υλικών.

Για εφαρμογές που απαιτούν υψηλότερες τιμές δυσκαμψίας από αυτές που έχουν τα πολυμερή, μπορούν να προστεθούν ίνες ή μικρά σωματίδια από πιο δύσκαμπτα υλικά στην πολυμερική μήτρα. Έτσι επιτυγχάνεται αύξηση του μέτρου ελαστικότητας από δύο μέχρι και πέντε φορές. Αυτό συμβαίνει διότι τα σωματίδια ή/και οι ίνες θα φέρουν το περισσότερο φορτίο που ασκείται στο υλικό κι άρα οι μηχανικές ιδιότητες του πολυμερούς παίζουν μικρότερο ρόλο.

Μία ακόμα σημαντική μηχανική ιδιότητα είναι η αντοχή, μία ιδιότητα που δείχνει το αναγκαίο φορτίο ώστε να αστοχήσει το υλικό. Ενώ παρατηρείτο μία διαφοροποίηση στο μέτρο ελαστικότητας των θερμοπλαστικών και τον θερμοσκληρυνόμενων, οι διαφορές στις τιμές αντοχής των διάφορων πολυμερών είναι αρκετά μικρότερες. Προφανώς, αυτό δεν ισχύει για τα ενισχυμένα πλαστικά που η αντοχή τους εξαρτάται από την αντοχή των ινών με τις οποίες έχουν ενισχυθεί (Van Der Vegt 2002).

Κοινά εμπορικά πλαστικά

Τα πιο κοινά εμπορικά πλαστικά είναι αυτά με τα οποία οι άνθρωποι έρχονται σε επαφή σε καθημερινή βάση. Μπορεί να χρησιμοποιούνται για την κατασκευή συσκευασιών, συσκευών ή ακόμα και για την άσφαλτο πάνω στην οποία οδηγούν. Ξεκινώντας με το πολυαιθυλένιο (Polyethylene-PE), πρόκειται για ένα σχετικά μαλακό αλλά ανθεκτικό πολυμερές το οποίο έχει τρείς τύπους και χρησιμοποιείται ευρέως. Οι τύποι του πολυαιθυλενίου είναι το πολυαιθυλένιο χαμηλής πυκνότητας (Low-density polyethylene (LDPE)), το πολυαιθυλένιο υψηλής πυκνότητας (High-density polyethylene (HDPE)) και το γραμμικό πολυαιθυλένιο χαμηλής πυκνότητας (Linear low-density polyethylene (LLDPE)).

Όσο αυξάνεται η πυκνότητα του πολυμερούς, τόσο αυξάνεται κι η δυσκαμψία του. Το σημείο τήξης του πολυαιθυλενίου εξαρτάται επίσης από τον τύπο του, με τις μορφές χαμηλής πυκνότητας να τήκονται στους 105°C και τις υψηλής πυκνότητας να τήκονται κοντά στους 130°C. Το πολυαιθυλένιο χρησιμοποιείται κυρίως για την κατασκευή σακουλών, σωλήνων, μπουκαλιών και μερικές ειδικές ποιότητες PE χρησιμοποιούνται για την κατασκευή ινών.

Ένα ακόμα κοινό πλαστικό είναι το πολυπροπυλένιο (Polypropylene-PP) το οποίο είναι πιο σκληρό από το πολυαιθυλένιο. Το σημείο τήξης του βρίσκεται στους 165°C και το πολυμερές αυτό συνήθως αναμιγνύεται με καουτσούκ ώστε να βελτιωθούν οι μηχανικές του ιδιότητες. Το πολυπροπυλένιο είναι μία κρυσταλλική ουσία, αλλά πολλές φορές τα πολυμερή μπορεί να είναι και άμορφα όπως το πολυστυρένιο (Polystyrene-PS). Πρόκειται για ένα ψαθυρό και σκληρό πολυμερές με σημείο τήξης στους 90°C. Συχνά δημιουργείται συμπολυμερές με καουτσούκ ώστε να βελτιωθεί η αντοχή του. Το πολυστυρένιο χρησιμοποιείται ως αφρός για τη μόνωση σπιτιών ή για συσκευασίες αλλά ειδικές ποιότητες του χρησιμοποιούνται για την κατασκευή οικιακών προϊόντων.

Τέλος το πολυμεθακρυλικό μεθύλιο (Polymethyl methacrylate-PMMA) ή όπως είναι πιο ευρέως γνωστό, το πλεξιγκλάς πρόκειται για ένα σκληρό και διαφανές πολυμερές που χρησιμοποιείται σε πληθώρα οικιακών προϊόντων και προϊόντων διακόσμησης. Προτιμάται επίσης για εφαρμογές που απαιτούν διαφανή υλικά που μοιάζουν με γυαλί αλλά έχουν υψηλότερη αντοχή. Το σημείο τήξης του είναι περίπου 110°C.

Αποδόμηση πλαστικών

Όταν τα πλαστικά χρησιμοποιούνται για εφαρμογές σε εξωτερικό χώρο ή όταν φτάνουν στο τέλος του κύκλου ζωής τους και καταλήγουν στις χωματερές (ή ακόμα χειρότερα, στη θάλασσα ή άλλα υδάτινα σώματα), θα ξεκινήσουν να αποδομούνται. Παρά το γεγονός ότι ένα τυπικό πλαστικό αντικείμενο χρειάζεται περίπου 500 χρόνια για να αποδομηθεί πλήρως, το υλικό και πάλι θα διασπάται πριν από το πέρας αυτού του χρονικού διαστήματος λόγω της έκθεσης του στη φύση. Οι τέσσερις διαφορετικοί μηχανισμοί μέσω των οποίων αποδομούνται τα πλαστικά είναι η φωτοαποικοδόμηση, η θερμο-οξειδωτική αποικοδόμηση, η υδρολυτική αποικοδόμηση και η βιοαποικοδόμηση από μικροοργανισμούς.

2.2 Πυρόλυση

Πυρόλυση πολυμερών

Η πυρόλυση είναι μια διαδικασία θερμικής αποδόμησης κατά την οποία τα υλικά θερμαίνονται σε υψηλές θερμοκρασίες ώστε να υποστούν αντιδράσεις όπως η αφυδάτωση και το σπάσιμο των δεσμών τους. Στην ανάλυση των πολυμερών, η πυρόλυση χρησιμοποιείται σε συνδυασμό με την ανάλυση GC/MS έτσι ώστε τα προηγουμένως μεγάλα μακρομόρια να σπάσουν σε θραύσματα τα οποία μπορούν να αναλυθούν από ένα τέτοιο σύστημα. Κατά την πυρόλυση στους 500°C-800°C, δημιουργούνται ελεύθερες ρίζες λόγω της διάσπασης των μοριακών δεσμών. Αυτές οι ελεύθερες ρίζες μπορούν να είναι πρωτογενείς, δευτερογενείς ή τριτογενείς ανάλογα με το δυναμικό αντίδρασης τους. Μέσω των μεταξύ τους αντιδράσεων, τα αρχικά ασταθή προϊόντα (συνήθως πρωτογενείς ελεύθερες ρίζες) καταλήγουν σε σταθερές, πτητικές ενώσεις. Αν και μπορεί να είναι δύσκολη η αναγνώριση του πολυμερούς μέσω του εκάστοτε θραύσματος και της δομής του, τα πολλά χρόνια έρευνας έχουν αποδείξει πως οι αντιδράσεις της πυρόλυσης είναι εξαιρετικά επαναλήψιμες οδηγώντας στη δημιουργία πληθώρας βάσεων δεδομένων για πολυμερή και τα θραύσματα τους, οι οποίες μπορούν να χρησιμοποιηθούν από την επιστημονική κοινότητα.

Οι μηχανισμοί αποδόμησης μπορούν να διαχωριστούν σε τρείς διαφορετικές κατηγορίες: την **τυχαία αποδόμηση**, τον **αποπολυμερισμό αλυσίδας** και την **απομάκρυνση πλευρικών ομάδων**. Ο μηχανισμός που θα ακολουθήσει το κάθε πολυμερές εξαρτάται από τη δομή του πολυμερούς, το είδος των δεσμών του, το είδος του πολυμερούς, κλπ.

Η τυχαία αποδόμηση είναι η διαδικασία κατά την οποία το πολυμερές διασπάται σε τυχαία θραύσματα καθώς το μακρομόριο μπορεί να σπάσει σε οποιαδήποτε δύο σημεία. Ένα πολυμερές το οποίο υφίσταται τυχαία αποδόμηση είναι το πολυαιθυλένιο. Η δομή του συγκεκριμένου είναι βασικά μια απλή αλυσίδα ατόμων άνθρακα που ενώνονται με απλούς δεσμούς. Δεν υπάρχουν πλευρικές ομάδες ή διπλοί και τριπλοί δεσμοί κι άρα όταν το υλικό θερμαίνεται απότομα τα θραύσματα που εγχέονται στο σύστημα GC/MS μπορούν να αποτελούνται από 6 άτομα άνθρακα μέχρι και 41 άτομα. Για αυτόν το λόγο, το χρωματογράφημα του πολυαιθυλενίου είναι τόσο «πυκνό» με κορυφές παρόμοιας έντασης (Εικόνα 3: Θεωρητικό χρωματογράφημα του ΡΕ. Αντίθετα, ο αποπολυμερισμός αλυσίδας είναι σχετικά ρυθμισμένος καθώς το πολυμερές διασπάται έτσι ώστε να καταλήξει πίσω στο μονομερές του. Ένα παράδειγμα αποπολυμερισμού αλυσίδας είναι το πολυμεθακρυλικό μεθύλιο (PMMA) το οποίο αποδομείται προς μεθακρυλικό μεθύλιο, θραύσμα που δημιουργεί την μεγαλύτερη κορυφή στο χρωματογράφημα (Εικόνα 5). Ένα άλλο πολυμερές που ακολουθεί τον ίδιο μηχανισμό είναι το πολυτετραφθοροαιθυλένιο, ή όπως είναι εμπορικά γνωστό Teflon.

Ο τελευταίος μηχανισμός αποδόμησης είναι η απομάκρυνση πλευρικών ομάδων. Όπως είναι προφανές κι από την ονομασία, κατά την αντίδραση αυτή οι τυχόν πλευρικές ομάδες (καρβοξύλιο, βενζόλιο, κ.α.) που συνδέονται με την αλυσίδα με ελαφρώς πιο αδύναμους δεσμούς, απομακρύνονται από αυτήν. Για αυτό και σπάνια βρίσκεται θραύσμα μονομερούς εφόσον έχει απομακρυνθεί ένα πολύ σημαντικό κομμάτι της ταυτότητας του. Έπειτα από την απομάκρυνση, η πλευρική ομάδα συνήθως θα «κλέψει» ένα υδρογόνο από την αλυσίδα θα σπάσει περαιτέρω και θα δημιουργήσει αρωματικές ενώσεις. Χαρακτηριστικό παράδειγμα είναι το PVC το οποίο θραύεται σε υδροχλώριο, βενζόλιο, ναφθαλίνη, κ.α.

Τα συμπολυμερή σπάνε σε διαφορετικά προϊόντα ανάλογα με το είδος τους. Για παράδειγμα, τα τυχαία συμπολυμερή δεν έχουν κάποιο τυποποιημένο τρόπο με τον οποίο δημιουργούνται κι άρα κατά την πυρόλυση δημιουργούνται ολιγομερή που μπορεί να αποτελούνται από τα μονομερή όλων των αρχικών πολυμερών ή μόνο ενός. Τα χρωματογραφήματα αυτά συνήθως έχουν αρκετά περισσότερες κορυφές. Αντίθετα, τα πιο «ρυθμισμένα» συμπολυμερή θα αποτελούνται από πιο τα μονομερή (ή διμερή κλπ.) των αντίστοιχων αρχικών πολυμερών (Sam 2019).

Κύρια προϊόντα πυρόλυσης και χρωματογραφήματα κοινών πλαστικών

Παρακάτω παρατίθενται τα θεωρητικά χρωματογραφήματα των πέντε κοινών πλαστικών που θα αναλυθούν σε αυτήν την έρευνα. Τα πειραματικά χρωματογραφήματα full scan βρίσκονται στο Παράρτημα A: Full-scan χρωματογραφήματα και φάσματα μάζας.

Polyethylene terephthalate (PET)

Εικόνα 2: Θεωρητικό χρωματογράφημα του PET (Shin, Hajima, and Chuichi 2011)

Το PET σπάει σε αρκετά θραύσματα, με τα περισσότερα να δίνουν κορυφές όμοιας έντασης ιδίως σε σύγκριση με άλλα υλικά σε αυτό το κεφάλαιο. Κάτι ενδιαφέρον που δεν παρατηρείται στα άλλα πλαστικά αυτής της έρευνας είναι το σχήμα της κορυφής του βενζοϊκού οξέος (κορυφή BA) η οποία έχει το σχήμα «πλαγιάς» βουνού. Σε αυτήν την εργασία οι κορυφές που μελετήθηκαν είναι οι A, H και I που αντιπροσωπεύουν τα vinyl benzoate, bis(2-(benzoyloxy)ethyl) terephthalate, και 2-(4-((2-(benzoyloxy)ethoxy) carbonyl)benzoyloxy)ethyl vinyl terephthalate αντίστοιχα.

Polyethylene (PE)

Εικόνα 3: Θεωρητικό χρωματογράφημα του PE (Shin, Hajima, and Chuichi 2011)

Το PE είναι ένα γραμμικό πολυμερές με μόνο απλούς δεσμούς κι άρα αποδομείται τυχαία σε πολλαπλά θραύσματα με όμοιες εντάσεις. Πρόκειται επίσης για ένα υλικό το οποίο λόγω του μεγάλου αριθμού θραυσμάτων που παράγει μπορεί να «βρωμίσει» την κολώνα κι άρα πρέπει έπειτα από εκτενή ανάλυση πολυαιθυλενίου να καθαρίζεται η κολώνα με την πραγματοποίηση άδειων κύκλων. Δεδομένου ότι αυτές οι κορυφές είναι παρεμφερείς, αυτές που επιλέχθηκαν για ανάλυση είναι οι C10 και C30 που είναι γραμμικοί υδρογονάνθρακες με τον διπλό δεσμό στον πρώτο άνθρακα της αλυσίδας. Το νούμερο δίπλα στο C αναφέρεται στο πόσα άτομα άνθρακα υπάρχουν στο θραύσμα.

Polypropylene (PP)

Εικόνα 4: Θεωρητικό χρωματογράφημα του PP (Shin, Hajima, and Chuichi 2011)

Το χρωματογράφημα του πολυπροπυλενίου έχει μία κορυφή η οποία είναι αρκετά πιο έντονη από τις υπόλοιπες (C9) και στην οποία αντιστοιχεί το θραύσμα 2,4-dimethyl-1heptene. Για την ανάλυση χρησιμοποιήθηκαν επίσης οι κορυφές C15 και C25.

Polymethyl methacrylate (PMMA)

Εικόνα 5: Θεωρητικό χρωματογράφημα του PMMA (Shin, Hajima, and Chuichi 2011)

Το πολυμεθακρυλικό μεθύλιο έχει ως χαρακτηριστικό την κύρια κορυφή του, πολύ νωρίς στην ανάλυση η οποία αντικατοπτρίζει το μονομερές του μακρομορίου. Οι άλλες κορυφές που φαίνονται στα δεξιά είναι αμελητέες κι αποτελούνται από θραύσματα τα οποία προσεγγίζουν τα διμερή ή τριμερή του μεθακρυλικού μεθυλίου.

Polystyrene (PS)

Εικόνα 6: Θεωρητικό χρωματογράφημα του PS (Shin, Hajima, and Chuichi 2011)

Το πολυστυρένιο έχει επίσης μία αρκετά μεγάλη και χαρακτηριστική κορυφή στην αρχή της ανάλυσης. Οι κορυφές που χρησιμοποιήθηκαν είναι οι S, SS και SSS που είναι το μονομερές, διμερές και τριμερές αντίστοιχα.

Συστήματα πυρόλυσης

Τα συστήματα πυρόλυσης προστίθενται στην ήδη υπάρχουσα εγκατάσταση GC/MS. Ο κύριος στόχος αυτών των μηχανημάτων όταν σχεδιάστηκαν για πρώτη φορά ήταν η ταχεία θέρμανση του εγχεόμενου δείγματος σε αρκετά υψηλές θερμοκρασίες, έτσι ώστε τα θραύσματα να δημιουργήσουν στενές αλλά έντονες κορυφές στο χρωματογράφημα. Η βιομηχανία ανέπτυξε περαιτέρω αυτά τα μηχανήματα ώστε να μπορούν να πραγματοποιήσουν πιο περίπλοκες διεργασίες όπως είναι η έγχυση σε πολλαπλές φάσεις (multi-shot) κι η θερμική εκρόφηση αλλά κι ώστε να απλοποιήσουν την πειραματική διαδικασία ενσωματώνοντας αυτόματους δειγματολήπτες. Ο πυρολύτης συνδέεται με τη γραμμή αερίου μεταφοράς του αέριου χρωματογράφου ώστε η ροή να παρασύρει τα προϊόντα της πυρόλυσης από το σημείο θέρμανσης στην κολώνα. Υπάρχουν τρία κύρια είδη πυρολύτη που χρησιμοποιούνται στα εργαστήρια παγκοσμίως:

- Microfurnace
- Σημείου Curie
- Filament

Οι πυρολύτες microfurnace είναι οι πιο δημοφιλείς, και το σύστημα που χρησιμοποιήθηκε για αυτήν την εργασία είναι σύστημα Multi-Shot Microfurnace. Είναι οι πιο αποτελεσματικοί όταν χρησιμοποιούνται σε συγκεκριμένη σταθερή θερμοκρασία αλλά μπορούν να χρησιμοποιηθούν και με θερμοκρασιακό πρόγραμμα. Το δείγμα εγχέεται στο σύστημα είτε με τη χρήση σύριγγας (αν πρόκειται για υγρό δείγμα) είτε με την πτώση του κυπέλλου της πυρόλυσης μέσα στον πυρολύτη (αν είναι στερεό). Οι περισσότεροι πυρολύτες microfurnace λειτουργούν σε θερμοκρασίες μέχρι τους 1000°C. Ένα πρόβλημα που μπορεί να εμφανιστεί κατά τη χρήση αυτού του πυρολύτη είναι η δευτερεύουσα πυρόλυση, λόγω της μεγάλης επιφάνειας που βρίσκεται σε υψηλή θερμοκρασία. Οι πυρολύτες τύπου σημείου Curie χρησιμοποιούν σύρματα ή λεπτά φύλλα φερρομαγνητικών μετάλλων τα οποία θερμαίνονται επαγωγικά με τη βοήθεια ενός πηνίου υψηλής συχνότητας. Το ρεύμα οδηγεί στη θέρμανση του μετάλλου μέχρις ότου αυτό να φτάσει σε σημείο να χάσει τις φερρομαγνητικές του ιδιότητες όπου κι η θερμοκρασία θα σταθεροποιηθεί. Οι πυρολύτες αυτοί θερμαίνονται πολύ γρήγορα αλλά δυστυχώς μπορεί να είναι αρκετά δύσκολο να προσαρμοστεί το δείγμα πάνω σε κάποιο σύρμα ή φύλλο. Οι πυρολύτες τύπου filament χρησιμοποιούν ένα σύρμα ή μία λεπτή λωρίδα λευκόχρυσου για να θερμάνουν το δείγμα. Μπορούν να φτάσουν θερμοκρασίες μέχρι τους 1400 °C. Το δείγμα τοποθετείται πάνω στη λωρίδα αν αυτό είναι εφικτό αλλιώς τοποθετείται μέσα σε ένα σωλήνα χαλαζία ο οποίος τοποθετείται μέσα στην θερμαινόμενη επιφάνεια (Sam 2019).

Εικόνα 7: Σχηματική αναπαράσταση συστήματος Py-GC/MS (Watanabe et al. 2016)

2.3 Αέρια Χρωματογραφία – Φασματοσκοπία Μάζας

Η ανάπτυξη της αναλυτικής μεθόδου της Αέριας Χρωματογραφίας – Φασματοσκοπίας Μάζας (GC/MS) υποβοηθήθηκε από την ανάγκη της επιστημονικής κοινότητας να συνδυάσει τα δυνατά σημείο των δύο επιμέρους τεχνικών. Αφενός, ο αέριος χρωματογράφος μπορούσε να διαχωρίσει τα συστατικά ενός μίγματος σε επιμέρους εκλυόμενες μεμονωμένες ενώσεις κι αφετέρου, με τη φασματοσκοπία μάζας μπορούσε να γίνει αναγνώριση των μεμονωμένων ενώσεων αυτών. Η μέθοδος αυτή έγινε ακόμα πιο δημοφιλής όταν έγινε δυνατή η χρήση ακόμα και πολύ μικρής ποσότητας δείγματος για την επιτυχή ανάλυση περίπλοκων οργανικών ενώσεων. Βέβαια, πρέπει να σημειωθεί πως υπήρξαν αρκετά προβλήματα στην αρχή καθώς τα δύο όργανα λειτουργούσαν σε διαφορετικές συνθήκες πίεσης (GC σε πίεση ατμόσφαιρας ενώ MS σε πολύ χαμηλότερες πιέσεις). Επίσης, ενώ οι κορυφές του χρωματογράφου είχαν πλάτος μερικά δευτερόλεπτα, η σάρωση του φασματοσκόπιου μπορεί να κρατούσε ένα λεπτό. Ένα σύστημα GC/MS συνήθως αποτελείται από τρία «κομμάτια»:

- 1. Τον αέριο χρωματογράφο
- 2. Το φασματοσκόπιο μάζας
- Το σύστημα ανάλυσης δεδομένων (μπορεί να χρησιμοποιηθεί και για τον έλεγχο των ανωτέρω μηχανημάτων)

Για να πραγματοποιηθεί επιτυχώς η ανάλυση απαιτείται τα δείγματα να είναι σε πτητική φάση αλλά και να είναι θερμικώς σταθερά (Grayson 2016; Harvey 2019).

Εικόνα 8: Σχηματική αναπαράσταση συστήματος GC/MS (Harvey 2019)

Αέρια Χρωματογραφία

Οι μοντέρνοι αέριοι χρωματογράφοι χρησιμοποιούν στήλες πολύ μικρής εσωτερικής διαμέτρου (συνήθως 0,25-0,32mm) φτιαγμένες από πυριτία με επικάλυψη πολυιμιδίου. Η κινητή φάση στην ανάλυση είναι κάποιο αδρανές αέριο (π.χ. ήλιο) κι οι στήλες έχουν μήκος από 5 έως 30 m, ανάλογα με τις ανάγκες της ανάλυσης. Μία τυπική στήλη έχει μέγιστη χωρητικότητα κορυφών η οποία προσεγγίζει τις 400 με 600 κορυφές. Η ιδιότητα αυτή δεν εξαρτάται μόνο από την στήλη και τα φυσικοχημικά χαρακτηριστικά της, αλλά κι από την κατάσταση του οργάνου δηλαδή επηρεάζεται από την θερμοκρασία ή/και το θερμοκρασιακό πρόγραμμα, την πίεση και την ταχύτητα ροής του αερίου, κλπ. Θεωρητικά, η κάθε κορυφή πρέπει να έχει το σχήμα κανονικής κατανομής αλλά τις περισσότερες φορές παρατηρείται αύξηση του πλάτους της κορυφής είτε στην αρχή είτε στο τέλος. Σε κάθε κορυφή αντιστοιχεί ένας συγκεκριμένος χρόνος κατακράτησης που βοηθάει στην αναγνώριση των ουσιών όταν αναλύονται άγνωστα δείγματα. Τέλος, ένα πολύ σημαντικό στοιχείο για την κάθε ανάλυση με GC/MS είναι η επιλογή της σωστής θερμοκρασίας για όλα τα σημεία από όπου θα περάσει το δείγμα (Tranchida and Mondello 2019; Han, Zhang, and Liu 2019; Harvey 2019).

Φασματοσκοπία Μάζας

Η πιο διαδεδομένη τεχνική φασματοσκοπίας μάζας είναι η χρήση μονού τετραπόλου, μία τεχνική η οποία ξεκίνησε στα μέσα της δεκαετίας του 1950 και δεν έχει χάσει τη δημοτικότητα της λόγω του ότι ο απαιτούμενος εξοπλισμός δεν έχει πολύ μεγάλο κόστος, τα αποτελέσματα της είναι επαρκή για την πλειοψηφία των αναλύσεων που γίνονται από εργαστήρια, κι οι μεγαλύτερες βάσεις δεδομένων έχουν χτιστεί με και περιέχουν δεδομένα που έχουν ληφθεί με μονό τετραπόλου. Τα σύγχρονα φασματοσκόπια έχουν ταχύτητα 20000 amu ανά δευτερόλεπτο και μπορούν να δώσουν πολλά φάσματα στα πλαίσια μίας κλασσικής ανάλυσης GC/MS όπου ο λόγος m/z κυμαίνεται από 40 μέχρι 330. Στην φασματοσκοπία μάζας με πρόσκρουση ηλεκτρονίων, τα ηλεκτρόνια που εκπέμπονται από την πηγή συνήθως έχουν κινητική ενέργεια κοντά στα 70 eV, ποσό αρκετά μεγαλύτερο από αυτό που χρειάζεται για τη δημιουργία ενός κατιόντος κι άρα η κάθε ουσία παράγει πολλά περισσότερα ιόντα. Ένα μεγάλο θετικό αυτής της τεχνικής είναι το πως τα φάσματα που παράγει έχουν μεγάλο δείκτη επαναληψιμότητας κι άρα μπορούν εύκολα να διασταυρωθούν με βάσεις δεδομένων. Για ανάλυση δειγμάτων με θερμοκρασιακό πρόγραμμα συνήθως επιλέγονται ταχύτητες σάρωσης από 0,1 έως 1 s (Schäfer 2019; Tranchida and Mondello 2019; Harvey 2019).

Selected Ion Monitoring

Μία πολύ χρήσιμη τεχνική της φασματοσκοπίας μάζας είναι το Selected Ion Monitoring (SIM). Συνήθως το όργανο λαμβάνει τα φάσματα για όλα τα ιόντα που περνάνε μπροστά από τους αντίστοιχους αισθητήρες, με αποτέλεσμα τα φάσματα να δίνουν μεν μια γενική εικόνα μέσω της οποίας μπορεί να γίνει αναγνώριση της ουσίας να έχουν δε μειωμένη ευαισθησία και να μην μπορούν να χρησιμοποιηθούν για μεθόδους ποσοτικοποίησης. Το Selected Ion Monitoring, όπως λέει και το όνομα του «σαρώνει» μόνο τα ιόντα που ο εκάστοτε ερευνητής έχει επιλέξει από πριν, οδηγώντας έτσι σε αύξηση της ευαισθησίας του οργάνου. Το όργανο έχει τη δυνατότητα να παραμείνει εστιασμένο για περισσότερο χρόνο στους πιο σημαντικούς λόγους μάζας-φορτίου (m/z) κι άρα να δώσει πιο αντιπροσωπευτικά αποτελέσματα. Η μέθοδος SIM χρησιμοποιείται εκτενώς στην ανάλυση οργανικών ενώσεων σε χαμηλές περιεκτικότητες (π.χ. συγκεντρώσεις της τάξης των ng/mL) και στους τομείς της περιβαλλοντικής έρευνας, της βιομηχανίας τροφίμων και της βιοχημείας. Η ποσοτικοποίηση επιτυγχάνεται από την ολοκλήρωση των κορυφών των επιλεγμένων ιόντων και την μετέπειτα σύγκριση τους με δεδομένα που έχουν ληφθεί από γνωστή μάζα του αντίστοιχου αναλυτικού standard (Gosetti and Marengo 2019).

3. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

3.1 Υλικά κι αντιδραστήρια

Για τη δημιουργία των καμπυλών βαθμονόμησης και της ανάλυσης συνθετικών δειγμάτων χρησιμοποιήθηκαν καθαρά πολυμερή analytical grade. Η μορφή του κάθε υλικού αλλά κι ο προμηθευτής φαίνονται στον Πίνακας 2 και στην Εικόνα 9.

Πολυμερές	Μορφή υλικού	Προμηθευτής	
PET Σκόνη Goodfellow Cam		Goodfellow Cambridge Ltd.	
PE	Κόκκοι	Cospheric LLC	
РР	Ίνες	GoodFellow Cambridge Ltd.	
РММА	РММА Ко́ккоı Cospheric LLC		
PS	Κόκκοι	Polysciences Europe GmbH	

Πίνακας 2: Στοιχεία standard πολυμερών

Για την δημιουργία συνθετικών δειγμάτων χρησιμοποιήθηκε υπερκαθαρό νερό που παράχθηκε με σύστημα MilliQ μέσα στο Πανεπιστήμιο της Φλωρεντίας και μεταφέρθηκε στο εργαστήριο με γυάλινα μπουκάλια. Για τον καθαρισμό του συστήματος φιλτραρίσματος έπειτα από τη δειγματοληψία συνθετικών και πραγματικών δειγμάτων χρησιμοποιήθηκε διάλυμα 1% benzene dodecyl sulfate (DBS) (Honeywell International Inc) και καθαρή ισοπροπανόλη. Τα φίλτρα που χρησιμοποιήθηκαν ήταν φτιαγμένα από ίνες γυαλιού κι είχαν πορώδες της τάξης των 0.7μm (Whatman). Τα φίλτρα είχαν διάμετρο 25 mm. Τέλος, τα κύπελλα πυρόλυσης και οι αντίστοιχες ράβδοι μεταφοράς τους κατασκευάστηκαν από την Frontier Laboratories Ltd. Συγκεκριμένα, χρησιμοποιήθηκαν τα Eco-cup LF με διαστάσεις 4mm x 8mm και χωρητικότητα περίπου 80 μL και τα Eco-stick DF μήκους 80 mm.

Εικόνα 9: Πολυμερή δίπλα στο κύπελλο πυρόλυσης Eco-cup LF (4mm x 8mm)

Από αριστερά προς τα δεξιά: PET, PE, PP, PS, PMMA

3.2 Όργανα και μηχανήματα

Το κύριο αναλυτικό όργανο που χρησιμοποιήθηκε για την εργασία αυτή ήταν ένα σύστημα Αέριας Χρωματογραφίας-Φασματοσκοπίας Μάζας (Shimadzu GCMS-QP2010 Plus) το οποίο συνδέθηκε με την διάταξη πυρόλυσης (Frontier Laboratories Ltd EGA/PY-3030D). Τα στοιχεία για το θερμοκρασιακό πρόγραμμα και περαιτέρω λεπτομέρειες βρίσκονται στον Πίνακας 3. Το ζύγισμα των δειγμάτων έγινε με τη χρήση ζυγαριάς Mettler Toledo με ευαισθησία 1 μg.

Η πειραματική διάταξη για το φιλτράρισμα αποτελείτο από ένα ογκομετρικό χωνί χωρητικότητας 600 mL, μία κωνική φιάλη διήθησης χωρητικότητας 2 L, ένα χωνί buchner με συμπυκνωμένο γυαλί, μία αντλία κενού και τα προαναφερθέντα φίλτρα (Εικόνα 10).

Για την κοπή του φίλτρου έτσι ώστε να μπορεί να τοποθετηθεί στο κύπελλο της πυρόλυσης, χρησιμοποιήθηκε ένα στρογγυλό κοπτικό εργαλείο διαμέτρου 14 mm, μέγεθος ελαφρώς μεγαλύτερο από τη διάμετρο της απόληξης του ογκομετρικού χωνιού. Έπειτα, το φίλτρο διπλωνόταν στη μέση με τη χρήση δύο λαβίδων (χωρίς να έρχονται σε επαφή με την επιφάνεια από όπου είχε περάσει το νερό) και με τη χρήση μίας μεταλλικής χοάνης που προσαρμοζόταν πάνω στο κύπελλο της πυρόλυσης, ωθούταν μέσα σε αυτό.

Διάταξη πυρόλυσης				
αέριο μεταφοράς	Ήλιο			
θερμοκρασία πυρόλυσης	600 °C			
χρόνος πυρόλυσης	20 sec			
θερμοκρασία interface	350 °C			
Αέριος Χρωματογράφος				
εγχυτήρας	split/split-less			
λειτουργία	split 1:300 (βαθμονόμηση και συνθετικά) split 1:50 (πραγματικά)			
θερμοκρασία	300 C			
στήλη	SLB-5ms Μήκος: 30 m Πάχος: 0,25 μm Διάμετρος: 0,25 μm			
θερμοκρασιακό πρόγραμμα	40 °C για 2 min Αύξηση κατά 8 °C/min μέχρι τους 330°C 330 °C για 5 min			
Ψασματομετρο Μαζας				
θερμοκρασία πηγής	230 °C			
θερμοκρασία interface	280 °C			
ενέργεια ηλεκτρονίων	70 eV			

Πίνακας 3: Λεπτομέρειες λειτουργίας συστήματος Py-GC/MS

3.3 Δειγματοληψία

Η δειγματοληψία έγινε με διαφορετικό τρόπο ανάλογα με το είδος του νερού. Για το εμφιαλωμένο νερό, αγοράστηκαν μπουκάλια Aqua Panna από το σουπερμάρκετ κοντά στο πανεπιστήμιο. Τρία λίτρα εμφιαλωμένου νερού φιλτραρίστηκαν για κάθε δείγμα χρησιμοποιώντας την πειραματική διάταξη που περιεγράφηκε παραπάνω. Οπτικά το φίλτρο φαινόταν πλήρως καθαρό κι ομοιόμορφα άσπρο σε όλο το εμβαδό του. Συνολικά έγινε ανάλυση δύο δειγμάτων εμφιαλωμένου νερού.

Για τα δείγματα φιλτραρισμένου νερού (νερό ψύκτη) φιλτραρίστηκαν 3 λίτρα νερού για κάθε δείγμα, καθώς έπειτα από εκείνο το σημείο το φιλτράρισμα ήταν σχεδόν αδύνατο λόγω της απόθεσης στερεού υλικού πάνω στο φίλτρο. Το νερό προήλθε από τον ψύκτη νερού του Τμήματος Χημείας του Πανεπιστημίου της Φλωρεντίας κι η μεταφορά του στο εργαστήριο γινόταν ανά δυόμισι λίτρα τη φορά με τη χρήση γυάλινου μπουκαλιού. Οπτικά, το φίλτρο είχε μια γκρίζα επιφάνεια με μια ελαφριά πορτοκαλί απόχρωση εκεί που ερχόταν σε επαφή με το νερό. Αυτό μπορεί να υποδεικνύει την ύπαρξη μετάλλων στο νερό τα οποία προέρχονται από το σύστημα του ψύκτη. Έγινε ανάλυση δύο δειγμάτων φιλτραρισμένου νερού.

Τέλος, για τα δείγματα νερού βρύσης χρησιμοποιήθηκαν 2,5 λίτρα ανά δείγμα καθώς έπειτα από αυτήν την ποσότητα ήταν αδύνατο το περαιτέρω φιλτράρισμα λόγω στερεών στην επιφάνεια του φίλτρου. Η πειραματική διάταξη τοποθετήθηκε μέσα στον νεροχύτη του εργαστηρίου ώστε η ροή του νερού να γίνεται απευθείας από τη βρύση πάνω στο φίλτρο, σε αντίθεση με τις δύο προηγούμενες κατηγορίες νερού όπου τοποθετούνταν 500 ml νερού μέσα στο ογκομετρικό χωνί απευθείας. Η ροή ρυθμίστηκε με τέτοιο τρόπο ώστε το ύψος του νερού από την επιφάνειας του φίλτρου να μην ξεπερνάει τα 10 cm. Το φίλτρο είχε μία έντονα κίτρινη-πορτοκαλί επιφάνεια έπειτα από το τέλος της διαδικασίας, γεγονός που υποδεικνύει την ύπαρξη αλάτων σιδήρου. Πιθανολογείται πως αυτά προέρχονται από τα συστήματα σωληνώσεων που μεταφέρουν το νερό. Έγινε ανάλυση δύο δειγμάτων νερού βρύσης.
3.4 Ανάλυση Δειγμάτων

Έπειτα από την ολοκλήρωση του φιλτραρίσματος, τα τοιχώματα του ογκομετρικού χωνιού πλύθηκαν με διάλυμα 1% DBS μέσα σε MilliQ νερό. Έπειτα γινόταν πλύση με ισοπροπανόλη ώστε να απομακρυνθούν πλήρως τυχόν υπολείμματα DBS. Οι διαδικασίες αυτές γίνονταν με σκοπό να αποκολληθούν πλαστικά σωματίδια από τα τοιχώματα του χωνιού και να πέσουν πάνω στο προς ανάλυση φίλτρο. Η αντλία κενού έμενε ενεργή για 30 δευτερόλεπτα ακόμα ώστε να στεγνώσει ελαφρώς το φίλτρο.

Με το πέρας της διαδικασίας, το φίλτρο απομακρυνόταν από την πειραματική διάταξη με μία μυτερή λαβίδα ώστε να τοποθετηθεί πάνω στη μεταλλική χοάνη όπου και κοβόταν με το στρογγυλό κοπτικό εργαλείο. Έπειτα, το φίλτρο διπλωνόταν και τοποθετούνταν μέσα στο κύπελλο της πυρόλυσης. Απευθείας μετά από αυτό το στάδιο, το δείγμα έμπαινε στο σύστημα πυρόλυσης για ανάλυση, ώστε να αποφευχθεί τυχόν επιρύπανση.

Εικόνα 10: Πειραματική διάταξη διήθησης

4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΑΝΑΛΥΣΗ

4.1 Ποσοτική και ποιοτική ανάλυση

Η ποσοτική και ποιοτική ανάλυση με τη χρήση αέριας χρωματογραφίας βασίζονται στην επιλογή ιόντων που θα λειτουργούν αντίστοιχα για την αναγνώριση του θραύσματος αλλά και την ποσοτικοποίηση του. Αρχικά, η ποιοτική ανάλυση βασίζεται στον λόγο των εντάσεων δύο προεπιλεγμένων ιόντων, ο οποίος πρέπει να παραμένει εντός ορισμένων ορίων θεσμοθετημένων από την Ευρωπαϊκή Ένωση (European Union 2002). Η επιλογή των ιόντων εξαρτάται από τα αποτελέσματα και την συνέπεια που έχει δείξει ο λόγος τους κατά τη διάρκεια των αναλύσεων βαθμονόμησης, μιγμάτων, συνθετικών δειγμάτων κ.α.

Συγκεκριμένα, για την ανάλυση Electron Impact-GC/MS τα όρια είναι ως εξής:

- 10% (για λόγο >50%)
- 15% (για λόγο 20%-50%)
- 20% (για λόγο 10%-20%)
- 50% (για λόγο <10%)

Για την ποσοτικοποίηση, το ιόν επιλέγεται με βάση τις καμπύλες βαθμονόμησης και τα αποτελέσματα της επαλήθευσης τους. Συγκεκριμένα, όπως και για την αναγνώριση, επιλέγεται το ιόν που έχει δείξει τη μεγαλύτερη συνέπεια κι ορθότητα κατά την επαλήθευση των καμπυλών βαθμονόμησης μέσω των αναλύσεων μιγμάτων και συνθετικών δειγμάτων. Για κάθε πολυμερές προς εξέταση γίνεται επιλογή ενός και μόνου ιόντος ποσοτικοποίησης.

4.2 Καμπύλες βαθμονόμησης

Το πρώτο βήμα στην πειραματική διαδικασία ήταν η λήψη χρωματογραφημάτων σε όλο το φάσμα (full scan) για κάθε πολυμερές ώστε να γίνει η επιλογή των προς ανάλυση κορυφών και των αντίστοιχων ιόντων τους. Τα full scan χρωματογραφήματα αλλά και τα φάσματα μάζας των επιλεγμένων κορυφών δίδονται στη συνέχεια για το PE (Εικόνα 11 και Εικόνα 12), ενώ για όλα τα άλλα πολυμερή βρίσκονται στο Παράρτημα A: Full-scan χρωματογραφήματα και φάσματα μάζας. Οι επιλεγμένες προς ανάλυση κορυφές συμβολίζονται με κόκκινο βελάκι και τα αντίστοιχα επιλεγμένα ιόντα κάθε κορυφής είναι μέσα σε κόκκινα κουτιά στα φάσματα μάζας. Η επιλογή των κορυφών έγινε με γνώμονα πρώτον την ένταση τους και δεύτερον την αποφυγή επικάλυψης τους με κορυφές άλλων πολυμερών. Η επιλογή των ιόντων έγινε με βάση την ένταση τους σε σχέση με τα υπόλοιπα ιόντα της εκάστοτε κορυφής.

Η χάραξη των καμπυλών βαθμονόμησης είναι πολύ σημαντική καθώς μόνο έτσι μπορεί να αποδειχθεί η γραμμική σχέση μεταξύ της ποσότητας του πολυμερούς που αναλύεται και του εμβαδού της κορυφής που προκύπτει από την ανάλυση. Η γραμμική σχέση αυτή αποδεικνύει πως η ποσοτική ανάλυση των πολυμερών με τη μέθοδο Py-GC/MS είναι εφικτή.

Εικόνα 11: Full scan χρωματογράφημα PE

Εικόνα 12: Φάσμα μάζας κορυφής 8,58 (αριστερά) και κορυφής 19,23 (δεξιά)

Το κάθε πολυμερές τοποθετούνταν απευθείας μέσα στο κύπελλο της πυρόλυσης όπου και ζυγιζόταν. Τα βάρη κυμαίνονταν από τα 25 μg μέχρι τα 550 μg, κι ο στόχος ήταν η κάθε γραμμή βαθμονόμησης να έχει 5 σημεία. Έπειτα από το ζύγισμα, τοποθετείτο ένα φίλτρο GF/F 0.7 μm διαμέτρου 10 mm μέσα στο κύπελλο ώστε να αποφευχθεί τυχόν απώλεια μικροπλαστικών κατά τη μεταφορά των δειγμάτων από το δωμάτιο με τη ζυγαριά στο εργαστήριο. Ενώ αυτή η διαδικασία φαινόταν να λειτουργεί, δυστυχώς γρήγορα έγινε αντιληπτό το γεγονός ότι δεν υπήρχε αφθονία αυτών των φίλτρων στο εργαστήριο. Έτσι λήφθηκε η απόφαση το υλικό που θα τοποθετείτο πάνω από τα πολυμερή στο κύπελλο να είναι κόκκοι γυαλιού. Και τα δύο υλικά αναλύθηκαν με τη μέθοδο Py-GC/MS ώστε να διαπιστωθεί αν υπάρχει πιθανότητα παρεμβολής τους στις κορυφές των πολυμερών. Τα χρωματογραφήματα ήταν σχετικά κενά, δείχνοντας τον τυπικό «θόρυβο».

Η ανάλυση γινόταν με split ratio 1:300 το οποίο σημαίνει πως έπειτα από την πυρόλυση, μόνο ένα στα 300 μέρη αερίου που παράγονταν προωθούταν μέσα στον χρωματογράφο. Για παράδειγμα, από τα 200 μg πολυμερούς που πυρολύονταν, στον χρωματογράφο θα έφταναν 200/300=0,66 μg ή 660 ng. Αυτό είναι χρήσιμο καθώς επιτρέπει στον εκάστοτε ερευνητή να ζυγίσει μία πιο «προσιτή» ποσότητα υλικού και να λάβει δεδομένα για συγκεντρώσεις αντίστοιχες με αυτές που θα έβρισκε σε ένα πραγματικό δείγμα. Αυτός είναι κι ο λόγος που αργότερα κατά την ανάλυση των πραγματικών δειγμάτων το split ratio ήταν 1:50 ώστε να μπορούν να εντοπιστούν οι αρκετά μικρότερες συγκεντρώσεις μέσα στα δείγματα

Η καλή γραμμικότητα της σχέσης των δειγμάτων κρίνεται από την τιμή του R². Δεδομένου του ότι και τα πέντε πολυμερή έχουν τιμές μεγαλύτερες του 0,90 για όλες τις κορυφές και τα ιόντα που μελετήθηκαν (οι τιμές που δίνονται στον πίνακα 4 προέκυψαν από τον μέσο όρο των επιμέρους R² τιμών για τα ιόντα κάθε κορυφής) μπορεί να βγει το συμπέρασμα ότι τα πολυμερή όταν πυρολυθούν μόνα τους παρουσιάζουν γραμμικότητα μεταξύ της εγχυμένης ποσότητας και του εμβαδού της εκάστοτε κορυφής που μελετάται.

Οι γραφικές παραστάσεις για την περίπτωση του PE δίδονται στη συνέχεια ενώ για άλλες περιπτώσεις πολυμερών βρίσκονται στο Παράρτημα Β: Καμπύλες βαθμονόμησης και τα συνοπτικά τα αποτελέσματα αναλύονται στον Πίνακα 4. Στον πίνακα, η γραμμική περιοχή αναφέρεται στο εύρος των ποσοτήτων πολυμερών που αναλύθηκαν κι έχουν γραμμικότητα, ενώ ο χρόνος κατακράτησης αναφέρεται στο λεπτό που το όργανο εντόπισε την εκάστοτε κορυφή. Ανάλογα με το αν γινόταν ανάλυση δύο ή τριών κορυφών ανά πολυμερές υπάρχουν κι οι αντίστοιχοι χρόνοι κατακράτησης.

Εικόνα 13: Καμπύλες βαθμονόμησης πολυαιθυλενίου

Πολυμερές	Γραμμική περιοχή (ng)	Χρόνος κατακράτησης (min)	R ²	Χρόνος κατακράτησης (min)	R ²	Χρόνος κατακράτησης (min)	R ²
PET	83-1827	11,53	0,994	26,61	0,985	31,36	0,989
PE	113-1833	8,58	0,999	19,23	0,999	-	-
PP	227-1357	5,38	0,977	10,33	0,992	14,53	0,994
PMMA	115-1723	3,07	0,952	-	-	-	-
PS	223-1883	6,512	0,977	21,183	0,976	29,662	0,924

Πίνακας 4: Αποτελέσματα καμπυλών βαθμονόμησης

Έπειτα από το πέρας των 5 αναλύσεων για κάθε πολυμερές, έγινε και μια ανάλυση με split 1:100 κι αναλυόμενη ποσότητα κάπου κοντά στη μέση των καμπυλών βαθμονόμησης ώστε να προσδιοριστεί εάν η αλλαγή του split επηρεάζει τα αποτελέσματα. Τα αποτελέσματα για τα περισσότερα πολυμερή έδειξαν μια μικρή απόκλιση, αλλά όταν κι αυτά τα σημεία συγκαταλέγονταν μαζί με τα σημεία της γραμμής βαθμονόμησης το R² δεν έπεφτε κάτω από 0,90.

Το επόμενο βήμα ήταν η επαλήθευση των καμπυλών βαθμονόμησης, με τη χρήση μιγμάτων πολυμερών. Τα μίγματα προετοιμάστηκαν με ανάλογο τρόπο (ζύγισμα πολυμερών απευθείας μέσα στο κύπελλο της πυρόλυσης, προσθήκη κόκκων γυαλιού). Τα ληφθέντα αποτελέσματα ήταν διαφορετικά από το αναμενόμενο. Ως παράδειγμα δίνεται το φύλλο εργασίας του μίγματος 4 (Πίνακας 5) όπου φαίνεται η ποσότητα που ζυγίστηκε για το κάθε πολυμερές («μg weighed»), το split της ανάλυσης αλλά και η ποσότητα που θα εγχυόταν στο σύστημα («ng injected»). Μετά από την ολοκλήρωση των κορυφών για κάθε ιόν, οι τιμές αυτές αναλύονταν αυτόματα με βάση τις ευθείες που προέκυψαν από τις καμπύλες βαθμονόμησης κι έδιναν το αποτέλεσμα («ng calculated»). Η τιμή αυτή αντικατοπτρίζει την ποσοτικοποίηση του αποτελέσματος με βάση τις καμπύλες βαθμονόμησης μεμονωμένων πολυμερών. Τέλος, κάτω από το αποτέλεσμα βρίσκεται το ποσοστό που δείχνει τη σχέση της ποσότητας αυτής με την ποσότητα που είχε εγχυθεί στην πραγματικότητα. Τα

αντίστοιχα φύλλα για κάθε μίγμα βρίσκονται στο Παράρτημα Γ: Αποτελέσματα μιγμάτων πολυμερών.

Φαίνεται πως τα νανογραμμάρια που υπολογίστηκαν με βάση τις καμπύλες βαθμονόμησης δεν προσεγγίζουν επαρκώς την ποσότητα που εγχύθηκε στο όργανο. Αρχικά, ένας λόγος που μπορεί να υπάρχει μία **μικρή** απόκλιση σε τέτοιες μετρήσεις είναι τυχόν προβλήματα κατά το ζύγισμα. Η απόκλιση όμως στην περίπτωση των μιγμάτων συχνά έφτανε το 200% κάτι που δεν μπορεί να δικαιολογηθεί από την ανωτέρω εξήγηση. Η πιο λογική εξήγηση είναι πως τα πολυμερή αντιδρούν κατά την πυρόλυση κι αυτό επηρεάζει τα προϊόντα της πυρόλυσης που φτάνουν στην στήλη. Συγκεκριμένα, βρέθηκε ένα άρθρο των Lou et al. (2022) το οποίο πραγματεύεται τέτοιες αντιδράσεις για τέσσερα από τα πέντε πολυμερή τα οποία χρησιμοποιήθηκαν σε αυτήν την εργασία (PE, PP, PS, PMMA). Οι συγγραφείς κατέληξαν στο ότι μπορεί να γίνει επιλογή άλλων κορυφών για καλύτερα αποτελέσματα και μείωση της αβεβαιότητας για μερικά από τα πολυμερή, αλλά π.χ. το PMMA που έχει μία κύρια κορυφή δυστυχώς δεν μπορεί να αλλάξει σε μία λιγότερο έντονη κορυφή με καλύτερα αποτελέσματα.

Έπειτα από την ανάλυση 5 δειγμάτων, τα σημεία ενσωματώθηκαν στις γραφικές παραστάσεις των καμπυλών βαθμονόμησης με ποικίλα αποτελέσματα. Για παράδειγμα, κάποιες φορές ήταν αρκετά κοντά ώστε να θεωρηθούν επαρκή ενώ άλλες φορές φαινόταν να δημιουργείται μία εντελώς νέα «γραμμή βαθμονόμησης». Δύο χαρακτηριστικά παραδείγματα είναι το m/z 140 για τον πρώτο χρόνο κατακράτησης (8,58 min) του PE και οποιοδήποτε από τα 4 αναλυόμενα m/z του κύριου χρόνου κατακράτησης (3,07 min) του PMMA (Εικόνα 14).

- 39 -

Με βάση τα αποτελέσματα του m/z 140 για το PE, θα μπορούσε να γίνει μία ημι-ποσοτική ανάλυση. Η γραμμικότητα των αποτελεσμάτων του PMMA μέσα σε μίγματα ανοίγει νέους δρόμους για την περαιτέρω διερεύνηση της συμπεριφοράς του πολυμερούς μέσα σε μίγματα κατά την πυρόλυση. Είναι σημαντικό να αναφερθεί πως τα μίγματα που αναλύθηκαν για αυτήν την εργασία αποτελούνταν πάντα κι από τα πέντε πολυμερή, οπότε δεν γίνεται να καταλήξουμε σε συμπεράσματα για την συμπεριφορά του (ή οποιουδήποτε άλλου από τα πολυμερή) σε διπλά ή τριπλά μίγματα.

Πίνακας 5	: Αποτελέσματα	μίγματος 4
-----------	----------------	------------

Polyethylene												
μg weighed	20											
split	300							l	Polystyrene			
ng injected	67					μg weighed	43					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300					
Area	71357	80117	1089			ng injected	143					
ng calculated	131	164	103			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	4019634	704510	4092071	8500615	788152	
Area	91129	151824				ng calculated	3	13	15	40	16	
ng calculated	234,4	413,5				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
]	Polymethyl m	ethacrylate			Area	1286248	323558	232778	134512		
µg weighed	63					ng calculated	65	8	-86	-117		
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	210					Area	1135644	321249	80780	109749	13428	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	32	3	-80	-84	7	
Area	9276649	8196655	1105921	3344009				Pe	olypropylene			
ng calculated	484	488	488	471		μg weighed	68					
	Р	Polvethylene terephthalate					300					
		orycurytene te	repliciate			spin	500					
µg weighed	31	orycuryrene u				ng injected	227					
μg weighed split	31 300					ng injected RT= 5,38	227 m/z 43	m/z 55	m/z 70	m/z 83	m/z 126	
μg weighed split ng injected	31 300 103					ng injected RT= 5,38 Area	227 m/z 43 2583826	m/z 55 1259370	m/z 70 1893138	m/z 83 470421	m/z 126 190979	
μg weighed split ng injected RT= 11,53	31 300 103 m/z 51	m/z 77	m/z 105			ng injected RT= 5,38 Area ng calculated	227 m/z 43 2583826 342	m/z 55 1259370 349	m/z 70 1893138 339	m/z 83 470421 338	m/z 126 190979 307	
μg weighed split ng injected RT= 11,53 Area	31 300 103 m/z 51 68848	m/z 77 209259	m/z 105 366921			ng injected RT= 5,38 Area ng calculated RT= 10,33	227 m/z 43 2583826 342 m/z 43	m/z 55 1259370 349 m/z 57	m/z 70 1893138 339 m/z 69	m/z 83 470421 338 m/z 83	m/z 126 190979 307 m/z 111	m/z 168
μg weighed split ng injected RT= 11,53 Area ng calculated	31 300 103 m/z 51 68848 232	m/z 77 209259 236	m/z 105 366921 238			ng injected RT= 5,38 Area ng calculated RT= 10,33 Area	227 m/z 43 2583826 342 m/z 43 172642	m/z 55 1259370 349 m/z 57 129363	m/z 70 1893138 339 m/z 69 185674	m/z 83 470421 338 m/z 83 470421	m/z 126 190979 307 m/z 111 49081	m/z 168 1168
μg weighed split ng injected RT= 11,53 Area ng calculated RT= 26,61	31 300 103 m/z 51 68848 232 m/z 51	m/z 77 209259 236 m/z 77	m/z 105 366921 238 m/z 105			ng injected RT= 5,38 Area ng calculated RT= 10,33 Area ng calculated	300 227 m/z 43 2583826 342 m/z 43 172642 351	m/z 55 1259370 349 m/z 57 129363 348	m/z 70 1893138 339 m/z 69 185674 350	m/z 83 470421 338 m/z 83 470421 1436	m/z 126 190979 307 m/z 111 49081 341	m/z 168 1168 328
μg weighed split ng injected RT= 11,53 Area ng calculated RT= 26,61 Area	31 300 103 m/z 51 68848 232 m/z 51 37707	m/z 77 209259 236 m/z 77 153444	m/z 105 366921 238 m/z 105 581787			ng injected RT= 5,38 Area ng calculated RT= 10,33 Area ng calculated RT= 14,53	227 m/z 43 2583826 342 m/z 43 172642 351 m/z 43	m/z 55 1259370 349 m/z 57 129363 348 m/z 57	m/z 70 1893138 339 m/z 69 185674 350 m/z 69	m/z 83 470421 338 m/z 83 470421 1436 m/z 83	m/z 126 190979 307 m/z 111 49081 341 m/z 111	m/z 168 1168 328
μg weighed split ng injected RT= 11,53 Area ng calculated RT= 26,61 Area ng calculated	31 300 103 m/z 51 68848 232 m/z 51 37707 328	m/z 77 209259 236 m/z 77 153444 336	m/z 105 366921 238 m/z 105 581787 351			ng injected RT= 5,38 Area ng calculated RT= 10,33 Area ng calculated RT= 14,53 Area	300 227 m/z 43 2583826 342 m/z 43 172642 351 m/z 43 306398	m/z 55 1259370 349 m/z 57 129363 348 m/z 57 226118	m/z 70 1893138 339 m/z 69 185674 350 m/z 69 329837	m/z 83 470421 338 m/z 83 470421 1436 m/z 83 163117	m/z 126 190979 307 m/z 111 49081 341 m/z 111 119426	m/z 168 1168 328
μg weighed split ng injected RT= 11,53 Area ng calculated RT= 26,61 Area ng calculated RT= 31,26	31 300 103 m/z 51 68848 232 m/z 51 37707 328 m/z 51	m/z 77 209259 236 m/z 77 153444 336 m/z 77	m/z 105 366921 238 m/z 105 581787 351 m/z 105	m/z 149	m/z 297	ng injected RT= 5,38 Area ng calculated RT= 10,33 Area ng calculated RT= 14,53 Area ng calculated	360 227 m/z 43 2583826 342 m/z 43 172642 351 m/z 43 306398 365	m/z 55 1259370 349 m/z 57 129363 348 m/z 57 226118 379	m/z 70 1893138 339 m/z 69 185674 350 m/z 69 329837 345	m/z 83 470421 338 m/z 83 470421 1436 m/z 83 163117 345	m/z 126 190979 307 m/z 111 49081 341 m/z 111 119426 340	m/z 168 1168 328
μg weighed split ng injected RT= 11,53 Area ng calculated RT= 26,61 Area ng calculated RT= 31,26 Area	31 300 103 m/z 51 68848 232 m/z 51 37707 328 m/z 51 8919	m/z 77 209259 236 m/z 77 153444 336 m/z 77 44874	m/z 105 366921 238 m/z 105 581787 351 m/z 105 81892	m/z 149 61970	m/z 297 137449	ng injected RT= 5,38 Area ng calculated RT= 10,33 Area ng calculated RT= 14,53 Area ng calculated	300 227 m/z 43 2583826 342 m/z 43 172642 351 m/z 43 306398 365	m/z 55 1259370 349 m/z 57 129363 348 m/z 57 226118 379	m/z 70 1893138 339 m/z 69 185674 350 m/z 69 329837 345	m/z 83 470421 338 m/z 83 470421 1436 m/z 83 163117 345	m/z 126 190979 307 m/z 111 49081 341 m/z 111 119426 340	m/z 168 1168 328

4.3 Συνθετικά δείγματα

Nερό Milli-Q

Τα συνθετικά δείγματα προετοιμάστηκαν αφού πρώτα ζυγίστηκε η ζητούμενη ποσότητα πολυμερών απευθείας μέσα στο κύπελλο της πυρόλυσης ώστε να είναι πιο εύκολη η μεταφορά. Έπειτα, προστίθεντο 450 mL νερού MilliQ στο ογκομετρικό χωνί μαζί με 50 mL υδατικού διαλύματος DBS 1%. Με τη βοήθεια ενός stick που εφαπτόταν στα εσωτερικά του κυπέλλου της πυρόλυσης, αυτό βυθιζόταν στο νερό ώστε να διαχυθούν όλα τα πολυμερή μέσα στο διάλυμα. Το κύπελλο ξεπλενόταν με νερό MilliQ ώστε να απομακρυνθούν όλα τα πολυμερή σπό μέσα. Πραγματοποιήθηκε ανάλυση ενός κυπέλλου έπειτα από αυτή τη διαδικασία και διαπιστώθηκε πως όντως δεν παρέμεναν πολυμερή μέσα σε αυτό.

Το φιλτράρισμα ξεκινούσε με την εκκίνηση της αντλίας κενού, κι όταν το επίπεδο του διαλύματος έφτανε στα περίπου 3 cm πάνω από το φίλτρο ξεκινούσε η διαδικασία πλυσίματος των τοιχωμάτων του χωνιού με το διάλυμα DBS κι έπειτα με ισοπροπανόλη. Το φίλτρο κοβόταν με τη βοήθεια της κυκλικής λεπίδας διαμέτρου 14 mm και διπλωνόταν έτσι ώστε να μπορεί να τοποθετηθεί μέσα σε ένα νέο, καθαρό κύπελλο πυρόλυσης. Στην αρχή, δοκιμάστηκε και μια άλλη μέθοδος για την τοποθέτηση του δείγματος μέσα στο κύπελλο – η τοποθέτηση ενός στεγνού φίλτρου από πάνω ώστε να κοπούν μαζί και να μην υπάρξουν τυχόν απώλειες δείγματος – αλλά δυστυχώς δεν ήταν αποτελεσματική.

Έπειτα από την ανάλυση των αποτελεσμάτων της ανάλυσης με τις καμπύλες βαθμονόμησης διαπιστώθηκε το γεγονός πως τα αποτελέσματα ήταν ιδιαιτέρως χαμηλά – δεδομένου του ότι πολλές φορές τα μίγματα έδιναν πολύ υψηλότερες τιμές από το κανονικό. Εικάζεται πως έναν πολύ μεγάλο ρόλο σε αυτήν την απώλεια έπαιξε το γυάλινο ογκομετρικό χωνί, καθώς τα σωματίδια των πολυμερών «κολλούσαν» σε αυτό κατά το φιλτράρισμα με αποτέλεσμα να μη φτάνουν στο φίλτρο.

Ο λόγος των πλυσιμάτων με DBS έπειτα από την ανάλυση γινόταν με σκοπό ό,τι είχε κολλήσει πάνω στα τοιχώματα να απομακρυνθεί αλλά αν ληφθεί υπόψιν το μικρό μέγεθος των κόκκων, πολλές φορές μπορεί τα σωματίδια να μην ήταν καν φανερά με το γυμνό μάτι. Απόδειξη αυτού είναι το γεγονός ότι το πέμπτο συνθετικό δείγμα προετοιμάστηκε με διαφορετικό τρόπο κι έδωσε αρκετά καλύτερα αποτελέσματα ανάκτησης πολυμερών, δηλαδή πιο κοντά στις τιμές που θα μπορούσαμε να αναμένουμε από ένα απλό μίγμα πολυμερών. Ενώ το φίλτρο πέρασε από όλα τα στάδια (φιλτράρισμα νερού, πλύση με DBS

και ισοπροπανόλη), τα πολυμερή τοποθετήθηκαν απευθείας πάνω στο φίλτρο έπειτα από τις διαδικασίες αυτές. Όλα τα αποτελέσματα των συνθετικό δειγμάτων (SS2, SS4, SS5, SS6, SS7) βρίσκονται στο Παράρτημα Δ: Αποτελέσματα συνθετικών δειγμάτων. Τα SS1 και SS3 έχουν αποκλειστεί λόγω εξωτερικών παραγόντων.

Μία λύση σε αυτό το πρόβλημα θα μπορούσε να είναι η χρήση κάποιου άλλου υλικού για το φιλτράρισμα όπως ο ανοξείδωτος χάλυβας ή – αν το επιτρέπει η ανάλυση – ένα σκεύος με επικάλυψη από Teflon, καθώς κατά την πυρόλυση του παράγεται μόνο ένα προϊόν (τετραφθοροαιθυλένιο) (Shin, Hajima, and Chuichi 2011).

Έπειτα από την ανάλυση 7 συνθετικών δειγμάτων με μεγαλύτερη ή μικρότερη αποτυχία, διαπιστώθηκε πως η ποσοτική ανάλυση ήταν αδύνατη με τα δεδομένα που υπήρχαν εκείνη τη στιγμή οπότε και λήφθηκε η απόφαση η έρευνα να εστιαστεί στην ποιοτική ανάλυση των δειγμάτων. Για να γίνει επιτυχώς αυτό, έγινε ανάλυση των εντάσεων των κορυφών για κάθε ιόν σε κάθε επιλεγμένο χρόνο κατακράτησης ώστε να υπολογιστεί ο λόγος μεταξύ των ιόντων, κι άρα το επιτρεπόμενο όριο σύμφωνα με την ευρωπαϊκή νομοθεσία.

Συνθετικά δείγματα με εμφιαλωμένο νερό, φιλτραρισμένο νερό και νερό βρύσης

Τα συνθετικά δείγματα προετοιμάστηκαν με ακριβώς τον ίδιο τρόπο με τα προηγούμενα, απλώς αντί για νερό MilliQ χρησιμοποιείτο το αντίστοιχο είδος νερού. Σε όλα τα δείγματα βρέθηκαν και τα πέντε πολυμερή με τιμές λόγων ιόντων μέσα στα προβλεπόμενα όρια τις περισσότερες φορές. Από αυτήν τη διαδικασία μπόρεσε να γίνει η επιλογή των δύο ιόντων των οποίων ο λόγος θα είναι ενδεικτικός για την ύπαρξη του πολυμερούς μέσα στο δείγμα.

Τα επιλεγμένα ιόντα ήταν τα m/z 56 και 140 για χρόνο κατακράτησης 8,58 του PE, τα m/z 77 και 105 για χρόνο κατακράτησης 11,53 του PET, τα m/z 78 και 104 για χρόνο κατακράτησης 6,48 του PS, τα m/z 43 και 70 για χρόνο κατακράτησης 5,38 για το PP και τα m/z 41 και 69 για χρόνο κατακράτησης 3,07 του PMMA. Σημαντικό ρόλο έπαιξε και το γεγονός ότι τα ιόντα αυτά είχαν τη μεγαλύτερη ένταση στα ληφθέντα φάσματα μάζας αλλά κι ότι οι κορυφές στους αντίστοιχους χρόνους.

Τα συνθετικά δείγματα FSS1 και BSS1 (Πίνακας 6) αναλύθηκαν με split 1:50 ώστε να είναι όσο πιο κοντά γίνεται στις καταστάσεις με τις οποίες θα αναλύονταν τα πραγματικά δείγματα ενώ το DSS1 αναλύθηκε με 1:300.

Όνομα	Είδος	Очора	Είδος	Очора	Είδος
DSS1	Βρύσης (συνθετικό)	FSS1	Φιλτραρισμένο (συνθετικό)	BSS1	Εμφιαλωμένο (συνθετικό)
DS1	Βρύσης (πραγματικό)	FS1	Φιλτραρισμένο (πραγματικό)	BS1	Εμφιαλωμένο (πραγματικό)
DS2	Βρύσης (πραγματικό)	FS2	Φιλτραρισμένο (πραγματικό)	BS2	Εμφιαλωμένο (πραγματικό)

Πίνακας 6: Ονοματολογία και είδος δειγμάτων

4.4 Πραγματικά δείγματα

Στην Εικόνα 15 φαίνονται τα αποτελέσματα για τον εκάστοτε λόγο των ιόντων αναγνώρισης κάθε πολυμερούς. Συγκεκριμένα, το σημείο στο κέντρο (ανοιχτό γαλάζιο) είναι η μέση τιμή του λόγου από τις καμπύλες βαθμονόμησης κι όλες οι υπόλοιπες τιμές πρέπει να το προσεγγίζουν μέσα στα θεσμοθετημένα όρια (μαύρες καμπύλες). Πιο αναλυτικά τα αποτελέσματα για κάθε λόγω ιόντων που εξετάστηκε βρίσκονται στο σε σύγκριση και με τα πειραματικά αποτελέσματα των μιγμάτων και των συνθετικών δειγμάτων με νερό MilliQ.

Κατά την ανάλυση των συνθετικών δειγμάτων DSS1, FSS1 και BSS1 έγινε επιτυχώς η αναγνώριση όλων των πολυμερών που είχαν προστεθεί σε αυτά. Αυτό υποδεικνύει πως δεν υπήρξαν αντιδράσεις κατά την πυρόλυση από άλλες οργανικές ουσίες που να επηρεάσουν τα προϊόντα της πυρόλυσης που εξετάζονται και τα αντίστοιχα ιόντα αναγνώρισης.

Για το νερό βρύσης, σύμφωνα με τα ιόντα αναγνώρισης, τα πολυμερή που βρέθηκαν μέσα σε αυτό είναι τα PE, PP και PS. Είναι πολύ πιθανό η παρουσία αυτών των πλαστικών να οφείλεται στις σωληνώσεις του δικτύου μεταφοράς του νερού.

Το φιλτραρισμένο νερό έδωσε αντίστοιχα αποτελέσματα με το νερό βρύσης, γεγονός αναμενόμενο εν μέρει καθώς το νερό αυτό προέρχεται από την ίδια πηγή και περνάει μέσα από τις ίδιες σωληνώσεις. Φαίνεται πως τα φίλτρα του συστήματος δεν είναι λειτουργικά ως προς την απομάκρυνση των μικροπλαστικών.

Τέλος, στο εμφιαλωμένο νερό βρέθηκε PE και PS. Ενώ το πολυαιθυλένιο θα μπορούσε να θεωρηθεί αναμενόμενο (καθώς το καπάκι του μπουκαλιού είναι φτιαγμένο από PE), το πολυστυρένιο αποτελεί έκπληξη καθώς δεν υπάρχει πουθενά πάνω στο μπουκάλι. Συγκεκριμένα, το πλαστικό μπουκάλι είναι φτιαγμένο από PET κι η ετικέτα στο εξωτερικό του από PP. Αρχικά, δεν πρέπει να αποκλείεται το γεγονός η παρουσία του PS να οφείλεται και σε τυχόν μόλυνση από το περιβάλλον του εργαστηρίου, καθώς οι κορυφές του πολυστυρενίου για αυτά τα δείγματα δεν είχαν πολύ μεγάλη ένταση.

Για λόγους ερευνητικούς και μόνο, υπολογίστηκε η ποσότητα του πολυαιθυλενίου μέσα στα πραγματικά δείγματα με τη χρήση του ιόντος m/z 140. Τα αποτελέσματα παρατίθενται στον επόμενο Πίνακα (Πίνακας 7). Τα αποτελέσματα των συνθετικών δειγμάτων προσεγγίζουν σε ικανοποιητικό βαθμό τις θεωρητικές τιμές – ειδικά αν ληφθεί υπόψιν τυχόν κατακράτηση υλικού από το γυάλινο ογκομετρικό χωνί.

	Polyethylene	RT1 m/z 140	Polyethylene RT1 m/z 140						
	DS	581		FSS1					
µg weighed	55	Area	4266	µg weighed	56	Area	14954		
Split	300	ng found (2,5L)	307	Split	1:50	ng found (3L)	991		
ng injected	183	ng/L	123	ng injected	1120	ng/L	330		
	D	S1			FS	51			
µg weighed	-	Area	16337	µg weighed	-	Area	6848		
Split	1:50	ng found (2,5L)	1079	Split	1:50	ng found (3L)	472		
ng injected	-	ng/L	432	ng injected	-	ng/L	157		
	D	S2			FS	S2			
µg weighed	-	Area	6215	μg weighed	-	Area	17506		
Split	1:50	ng found (2,5L)	431	Split	1:50	ng found (3L)	1154		
ng injected	-	ng/L	173	ng injected	-	ng/L	385		
		Ро	lyethylene	RT1 m/z 140					
			BS	SS1					
		µg weighed	92	Area	25698				
		Split	1:50	ng found (3L)	1678				
		ng injected	1840	ng/L	559				
			B	S1					
		µg weighed	-	Area	1981				
		Split	1:50	ng found (3L)	160				
		ng injected	-	ng/L	53				
			В	S2					
		μg weighed	-	Area	7072				
		Split	1:50	ng found (3L)	486				
		ng injected	-	ng/L	162				

Πίνακας 7: Αποτελέσματα ημι-ποσοτικής ανάλυσης για πολυαιθυλένι
ο με βάση το m/z 140

Το νερό βρύσης και το φιλτραρισμένο νερό δίνουν αποτελέσματα συγκέντρωσης μικροπλαστικών κατά μέσο όρο 300 ng/L και 270 ng/L αντίστοιχα, συγκεντρώσεις αρκετά μεγάλες σε σύγκριση με τις αντίστοιχες έρευνες που μελετήθηκαν. Πρέπει όμως να επισημανθεί και πάλι πως πρόκειται για μία ημι-ποσοτική ανάλυση που χρειάζεται περαιτέρω επαλήθευση. Ιδανικά, τα ευρήματα αυτά θα μπορούσαν να διασταυρωθούν με μία άλλη μέθοδο αναγνώρισης πλαστικών σε νερό όπως η μFTIR.

5. ΣΥΜΠΕΡΑΣΜΑΤΑ

Κατά τη μελέτη αυτή έγιναν σημαντικά βήματα προς την επίτευξη του αρχικού στόχου, είναι όμως αναγκαία η περαιτέρω έρευνα γύρω από τις διάφορες πτυχές των παραγόντων που κατέστησαν την επίτευξη του στόχου αδύνατη. Αρχικά, πρέπει να διερευνηθούν οι αντιδράσεις κατά την πυρόλυση. Είναι σημαντικό να διαπιστωθεί μεταξύ ποιων πολυμερών συμβαίνουν αυτές οι αντιδράσεις και κατά πόσο τα αποτελέσματα αλλάζουν ανάλογα με τα αναλυόμενα πολυμερή. Είναι πρόβλημα μεταξύ δύο πολυμερών; Μεταξύ όλων; Αν υπάρχουν άλλα πολυμερή, εκτός αυτών που συμπεριλήφθηκαν στην έρευνα αυτή, αλλάζουν κι άλλο τα αποτελέσματα; Επίσης πρέπει να διαπιστωθεί αν υπάρχει η περίπτωση επιλογής άλλων κορυφών (δηλαδή άλλων προϊόντων πυρόλυσης) έτσι ώστε οι αντιδράσεις να μην έχουν κάποιο αντίκτυπο. Είναι προφανές πως αν οι αντιδράσεις αυτές αποδειχθούν τότε η συντριπτική πλειοψηφία των μελετών σχετικά με την ποσοτικοποίηση μικροπλαστικών με Py-GC/MS θα καταστούν άκυρες.

Σχετικά με την ανάλυση των δειγμάτων αυτής της μελέτης, το γεγονός ότι έγινε αναγνώριση μικροπλαστικών σε όλα τα πραγματικά δείγματα είναι ανησυχητικό, αλλά δυστυχώς όχι αναπάντεχο. Τα πλαστικά χρησιμοποιούνται σε όλες τις πτυχές της ζωής στον πλανήτη κι άρα είναι επόμενο να βρίσκονται στις πηγές νερού. Το πιο ενδιαφέρον αποτέλεσμα ήταν η παρουσία πολυστυρενίου μέσα στο εμφιαλωμένο νερό καθώς εάν ο λόγος για αυτό είναι η ύπαρξη πολυστυρενίου στην πηγή του νερού, η οποία είναι υπόγεια στους λόφους της περιοχής Mugello (κι όχι τυχόν επιρύπανση κατά την εμφιάλωση) η μόλυνση του φυσικού περιβάλλοντος από τα πλαστικά είναι πολύ χειρότερη από ότι πιστεύουμε.

Προσοχή πρέπει να δοθεί από τις τοπικές και πανεπιστημιακές αρχές σχετικά με την ύπαρξη μικροπλαστικών στο νερό του δικτύου ύδρευσης. Η αντικατάσταση των σωληνώσεων είναι σίγουρα μία δύσκολη, χρονοβόρα και κοστοβόρα διαδικασία αλλά δεδομένου του μεγάλου αριθμού ατόμων που βασίζονται σε αυτό το δίκτυο για πόσιμο νερό πιθανότατα είναι κάτι το οποίο αξίζει να γίνει.

Τέλος, πέρα από τα μικροπλαστικά βρέθηκαν κι αρκετά άλατα και μέταλλα μέσα στα δείγματα πόσιμου και φιλτραρισμένου νερού – σε σημείο που να είναι αδύνατο το φιλτράρισμα έπειτα από πολύ μικρή ποσότητα νερού. Θα ήταν καλό να διερευνηθεί η πηγή τους και τρόποι για την απομάκρυνση τους από το δίκτυο.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- Ahmed, A. S.Shafiuddin, Md Masum Billah, Mir Mohammad Ali, Md Khurshid Alam Bhuiyan, Laodong Guo, Mohammad Mohinuzzaman, M. Belal Hossain, et al. 2023.
 "Microplastics in Aquatic Environments: A Comprehensive Review of Toxicity, Removal, and Remediation Strategies." *Science of the Total Environment*. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.162414.
- European Union. 2002. Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Official Journal of the European Communities.
- Gautam, Ravi, Ji Hun Jo, Manju Acharya, Anju Maharjan, Da Eun Lee, Pramod Bahadur Pramod, Chang Yul Kim, Kil Soo Kim, Hyoung Ah Kim, and Yong Heo. 2022.
 "Evaluation of Potential Toxicity of Polyethylene Microplastics on Human Derived Cell Lines." *Science of the Total Environment* 838 (September). https://doi.org/10.1016/j.scitotenv.2022.156089.
- Gomiero, Alessio, Kjell Birger Øysæd, Luca Palmas, and Geir Skogerbø. 2021. "Application of GCMS-Pyrolysis to Estimate the Levels of Microplastics in a Drinking Water Supply System." *Journal of Hazardous Materials* 416 (August). https://doi.org/10.1016/j.jhazmat.2021.125708.
- Gosetti, Fabio, and Emilio Marengo. 2019. "Mass Spectrometry | Selected Ion Monitoring." In *Encyclopedia of Analytical Science*, 500–510. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14418-X.
- Grayson, Michael A. 2016. "A History of Gas Chromatography Mass Spectrometry (GC/MS)." In *The Encyclopedia of Mass Spectrometry*, 152–58. Elsevier. https://doi.org/10.1016/b978-0-08-043848-1.00020-1.
- Han, Yehua, Yanfen Zhang, and Huwei Liu. 2019. "Gas Chromatography | Principles." In Encyclopedia of Analytical Science, 237–44. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14348-3.
- Harvey, David J. 2019. "Gas Chromatography | Gas Chromatography/Mass Spectrometry." In *Encyclopedia of Analytical Science*, 169–79. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14103-4.

- Hermabessiere, Ludovic, and Chelsea M. Rochman. 2021. "Microwave-Assisted Extraction for Quantification of Microplastics Using Pyrolysis–Gas Chromatography/Mass Spectrometry." *Environmental Toxicology and Chemistry* 40 (10): 2733–41. https://doi.org/10.1002/etc.5179.
- Khan, Ajmal, and Zhenquan Jia. 2023. "Recent Insights into Uptake, Toxicity, and Molecular Targets of Microplastics and Nanoplastics Relevant to Human Health Impacts." *IScience* 23. https://doi.org/10.1016/j.isci.
- Kirstein, Inga V., Fides Hensel, Alessio Gomiero, Lucian Iordachescu, Alvise Vianello, Hans B. Wittgren, and Jes Vollertsen. 2021. "Drinking Plastics? Quantification and Qualification of Microplastics in Drinking Water Distribution Systems by MFTIR and Py-GCMS." *Water Research* 188 (January). https://doi.org/10.1016/j.watres.2020.116519.
- Laermanns, Hannes, Georg Reifferscheid, Jonas Kruse, Corinna Földi, Georg Dierkes, Dirk Schaefer, Christian Scherer, Christina Bogner, and Friederike Stock. 2021.
 "Microplastic in Water and Sediments at the Confluence of the Elbe and Mulde Rivers in Germany." *Frontiers in Environmental Science* 9 (December). https://doi.org/10.3389/fenvs.2021.794895.
- Leslie, Heather A., Martin J.M. van Velzen, Sicco H. Brandsma, A. Dick Vethaak, Juan J. Garcia-Vallejo, and Marja H. Lamoree. 2022. "Discovery and Quantification of Plastic Particle Pollution in Human Blood." *Environment International* 163 (May). https://doi.org/10.1016/j.envint.2022.107199.
- Lou, Fangfang, Jun Wang, Chen Sun, Jiaxing Song, Wanli Wang, Yuhan Pan, Qunxing Huang, and Jianhua Yan. 2022. "Influence of Interaction on Accuracy of Quantification of Mixed Microplastics Using Py-GC/MS." *Journal of Environmental Chemical Engineering* 10 (3). https://doi.org/10.1016/j.jece.2022.108012.
- Meng, Yuchuan, Frank J. Kelly, and Stephanie L. Wright. 2020. "Advances and Challenges of Microplastic Pollution in Freshwater Ecosystems: A UK Perspective." *Environmental Pollution* 256 (January): 113445. https://doi.org/10.1016/j.envpol.2019.113445.
- Miller, D.J. 2023. "Natural Rubber: Structure and Function." Https://Www.Halcyonagri.Com/En/Natural-Rubber-Structure-and-Function/. 2023.

- Okoffo, Elvis D., Cassandra Rauert, and Kevin V. Thomas. 2023. "Mass Quantification of Microplastic at Wastewater Treatment Plants by Pyrolysis-Gas Chromatography–Mass Spectrometry." *Science of the Total Environment* 856 (January). https://doi.org/10.1016/j.scitotenv.2022.159251.
- Rahman, Arifur, Atanu Sarkar, Om Prakash Yadav, Gopal Achari, and Jaroslav Slobodnik. 2021. "Potential Human Health Risks Due to Environmental Exposure to Nano- and Microplastics and Knowledge Gaps: A Scoping Review." Science of the Total Environment. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.143872.
- Ravve, A. 2012. "Introduction and Nomenclature." In *Principles of Polymer Chemistry*, 1–
 15. Springer New York. https://doi.org/10.1007/978-1-4614-2212-9_1.
- Sam, Karen D. 2019. "Gas Chromatography | Pyrolysis." In *Encyclopedia of Analytical Science*, 245–61. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11447-7.
- Schäfer, Mathias. 2019. "Mass Spectrometry | Fundamentals and Instrumentation." In Encyclopedia of Analytical Science, 358–65. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11258-2.
- Shin, Tsuge, Ohtani Hajima, and Watanabe Chuichi. 2011. "Pyrograms and Thermograms of 163 High Polymers, and MS Data of the Major Pyrolyzates." In *Pyrolysis ‒* GC/MS Data Book of Synthetic Polymers, 7–335. Elsevier. https://doi.org/10.1016/b978-0-444-53892-5.10002-1.
- Soroush, Masoud, and Michael C. Grady. 2019. "Polymers, Polymerization Reactions, and Computational Quantum Chemistry." In *Computational Quantum Chemistry*, 1–16. Elsevier. https://doi.org/10.1016/b978-0-12-815983-5.00001-5.
- Tranchida, Peter Q., and Luigi Mondello. 2019. "Conventional GC-MS Applications." In Hyphenations of Capillary Chromatography with Mass Spectrometry, 75–108. Elsevier. https://doi.org/10.1016/B978-0-12-809638-3.00002-8.
- Vegt, A K Van Der. 2002. "From Polymers to Plastics." http://www.vssd.nl/hlf.
- Watanabe, Atsushi, Chuichi Watanabe, Robert R. Freeman, Norio Teramae, and Hajime Ohtani. 2016. "Hydrogenation Reactions during Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Polymer Samples Using Hydrogen Carrier Gas." *Analytical Chemistry* 88 (10): 5462–68. https://doi.org/10.1021/acs.analchem.6b00892.

- Webb, Hayden K., Jaimys Arnott, Russell J. Crawford, and Elena P. Ivanova. 2013. "Plastic Degradation and Its Environmental Implications with Special Reference to Poly(Ethylene Terephthalate)." *Polymers* 5 (1): 1–18. https://doi.org/10.3390/polym5010001.
- Xu, Yanghui, Qin Ou, Meng Jiao, Gang Liu, and Jan Peter Van Der Hoek. 2022.
 "Identification and Quantification of Nanoplastics in Surface Water and Groundwater by Pyrolysis Gas Chromatography-Mass Spectrometry." *Environmental Science and Technology* 56 (8): 4988–97. https://doi.org/10.1021/acs.est.1c07377.

Παράρτημα A: Full-scan χρωματογραφήματα και φάσματα μάζας

Polyethylene Terephthalate (PET)

Εικόνα 16: Full scan χρωματογράφημα PET

Εικόνα 17: Φάσμα μάζας κορυφής 11,53 (πάνω αριστερά), κορυφής 26,62 (πάνω δεξιά) και κορυφής 31,26

Polypropylene (PP)

Εικόνα 20: Full scan χρωματογράφημα PP

Εικόνα 21: Φάσμα μάζας κορυφής 5,38 (πάνω αριστερά), κορυφής 10,33 (πάνω δεξιά) και κορυφής 14,53 (κάτω)

Polymethyl methacrylate (PMMA)

Εικόνα 22: Full scan χρωματογράφημα PMMA

Εικόνα 23: Φάσμα μάζας κορυφής 3,07

Polystyrene (PS)

Εικόνα 25: Φάσμα μάζας κορυφής 6,48 (πάνω αριστερά), κορυφής 21,18 (πάνω δεξιά) και κορυφής 29,66 (κάτω)

Παράρτημα Β: Καμπύλες βαθμονόμησης

Polyethylene terephthalate (PET)

Polypropylene (PP)

1000

ng

1500

PMMA-m/z 41 PMMA-m/z 69 y = 8107.4x + 5E+06 y = 8333x + 5E+06 $R^2 = 0.9719$ εμβαδόν κορυφής $R^2 = 0.97$ εμβαδόν κορυφής **.**.... ng ng

Polymethyl methacrylate (PMMA)

Polystyrene (PS)

Παράρτημα Γ: Αποτελέσματα μιγμάτων πολυμερών

	Mix 1												
		Polyeth	ylene										
μg weighed	91					-							
split	300								Polystyrene				
ng injected	303					μg weighed	111						
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300						
Area	242684	230020	4617			ng injected	370						
ng calculated	404	448	329			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105		
RT= 19,23	m/z 55	m/z 69				Area	6742871	1138122	6560046	13658983	1281053		
Area	139340	125326				ng calculated	413	423	429	454	436		
ng calculated	344,4	345,9				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208			
		Polymethyl m	ethacrylate			Area	2806022	752031	524421	326027			
μg weighed	58					ng calculated	412	342	330	302			
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312		
ng calculated	193					Area	2854337	847838	241889	334907	43940		
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	436	398	384	386	420		
Area	8771967	7729334	1053241	3149594				Р	olypropylene				
ng calculated	427	434	441	403		μg weighed	118						
	P	olyethylene te	erephthalate			split	300						
µg weighed	56					ng injected	393						
split	300					RT= 5,38	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126		
ng injected	187					Area	3863840	1971101	2886743	737194	292462		
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	562	577	554	543	582		
Area	77516	238460	434916			RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168	
ng calculated	256	262	273			Area	276704	220322	180166	140178	82801	2047	
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	501	514	342	504	495	476	
Area	57423	235500	925383			RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111		
ng calculated	567	581	625			Area	558794	272795	560366	286751	210420		
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	609	438	534	541	529		
Area	6362	30979	53065	44428	98182								
ng calculated	152	159	159	184	161								

	Mix 2											
		Polyethy	vlene									
μg weighed	70					-						
split	300]	Polystyrene			
ng injected	233					μg weighed	36					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300					
Area	191924	177164	3885			ng injected	120					
ng calculated	323	348	282			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	3542560	622506	3655748	7719582	706225	
Area	121403	177159				ng calculated	-69	-65	-58	-22	-53	
ng calculated	303,5	478,2				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
	F	Polymethyl m	ethacrylate			Area	1005498	253238	190690	107504		
μg weighed	71					ng calculated	1	-47	-146	-176		
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	237					Area	1180799	336201	88362	121790	16336	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	43	14	-58	-59	46	
Area	10067742	8915451	1220079	3645922				Р	olypropylene			
ng calculated	573	572	588	577		μg weighed	106					
	Pe	olyethylene te	rephthalate			split	300					300
μg weighed	108					ng injected	353					
split	300					RT= 5,38	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126	
ng injected	360					Area	2735988	1397960	2052015	522310	213188	
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	368	394	374	378	367	
Area	179837	555853	1026526			RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168
ng calculated	538	546	575			Area	179794	145877	199596	93183	55345	1411
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	361	378	368	372	370	369
Area	119711	503413	1960832			RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	
ng calculated	1323	1380	1451			Area	389103	333101	381027	194340	142637	
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	445	515	387	395	388	
Area	25182	128410	246347	209598	464000							
ng calculated	512	517	519	518	554							
						Mix 3						
---------------	---------	-----------------	--------------	---------	---------	---------------	---------	---------	-------------	----------	---------	---------
		Polyeth	ylene									
μg weighed	54											
split	300								Polystyrene			
ng injected	180					μg weighed	60					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300					
Area	113110	107590	2258			ng injected	200					
ng calculated	197	216	178			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	4753636	836049	4853894	10066025	936685	
Area	67878	62948				ng calculated	114	137	143	166	143	
ng calculated	181,3	186,6				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
		Polymethyl m	ethacrylate			Area	1539889	384689	275507	159310		
μg weighed	58					ng calculated	123	56	-25	-63		
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	193					Area	1590905	451701	114704	155322	19703	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	139	101	18	11	92	
Area	7501369	6628596	871430	2702495		Polypropylene						
ng calculated	283	306	280	246		μg weighed	30					
	F	Polyethylene te	erephthalate			split	300					
μg weighed	118					ng injected	100					
split	300					RT= 5,38						
ng injected	393					Area	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126	
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	1139105	543707	825167	199289	80781	
Area	185632	566169	986714			RT= 10,33	93	121	108	130	8	
ng calculated	554	555	554			Area	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	71163	52704	76556	34231	20082	470
Area	91187	379569	1451205			RT= 14,53	204	207	205	206	209	211
ng calculated	977	1011	1045			Area	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	166985	139637	145401	71001	50993	
Area	32425	167165	319190	265621	590457							
ng calculated	651	659	655	632	690							

						Mix 5						
		Polyethy	lene									
µg weighed	102					-						
split	100								Polystyrene			
ng injected	1020					µg weighed	90					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	100					
Area	777051	746764	16188			ng injected	900					
ng calculated	1254	1427	1069			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	13247598	2176251	12392564	25968754	2439822	
Area	477551	447054				ng calculated	1393	1405	1405	1441	1422	
ng calculated	1116,4	1167,5				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
		Polymethyl me	ethacrylate			Area	1539889	384689	275507	159310		
μg weighed	40					ng calculated	1193	1100	1160	1122		
split	100					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	400					Area	6412085	1949545	529877	724694	91835	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	1273	1225	1214	1199	1068	
Area	16211454	14498341	1973421	5584705				P	olypropylene			
ng calculated	1269	1221	1255	1256		µg weighed	99					
	I	Polyethylene te	rephthalate			split	100					
μg weighed	106					ng injected	990					
split	100					RT= 5,38	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126	
ng injected	1060					Area	8713714	4550792	6736272	1789722	626063	
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	1398	1401	1387	1351	1487	
Area	557686	1704059	3012212			RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168
ng calculated	1579	1574	1588			Area	780097	603772	846194	390167	230351	6220
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	1226	1218	1222	1209	1169	1176
Area	352437	1455289	5578717			RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	
ng calculated	4149	4219	4336			Area	1538499	1315432	1489747	761517	558855	
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	1554	1764	1294	1292	1255	
Area	63427	328998	617578	569028	1212913							
ng calculated	1244	1253	1211	1246	1359							

Παράρτημα Δ: Αποτελέσματα συνθετικών δειγμάτων

					Si	mulated Sample 2						
		Polyeth	ylene									
μg weighed	47					_						
split	300								Polystyrene			
ng injected	157					μg weighed	58					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300					
Area	51341	47256	1033			ng injected	193					
ng calculated	99	101	100			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	1738381	293770	1728505	3708905	327405	
Area	11342	11679	Does	sn't look like a	ı peak	ng calculated	-341	-376	-380	-344	-376	
ng calculated	52,3	55,6				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
]	Polymethyl m	ethacrylate			Area	321356	74312	52162	28125		
μg weighed	180					ng calculated	-155	-186	-344	-350		
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	600					Area	236229	65904	15014	20498	2370	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	-180	-189	-270	-270	-142	
Area	2860572	2410681	311019	948065				Р	olypropylene			
ng calculated	-242	-185	-215	-369		μg weighed	49					
	Р	olyethylene te	erephthalate			split	300					
μg weighed	46					ng injected	163					
split	300		N	o peaks detect	ed	RT= 5,38	m/z 43	m/z 55	m/z 43	m/z 55	m/z 70	m/z 83
ng injected	153					Area	409675	201817	294221	71916	28486	409675
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	-33	12	-7	32	-134	-33
Area						RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168
ng calculated						Area	23359	17558	25341	11467	6570	167
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	136	142	138	141	147	160
Area						RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	
ng calculated						Area	38878	29728	42164	20949	15110	
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	107	129	110	120	123	
Area												
ng calculated												

					Si	mulated Sample 4							
		Polyeth	ylene										
μg weighed	94					-							
split	300								Polystyrene				
ng injected	313					μg weighed	77						
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300						
Area	56107	52060	1198			ng injected	257						
ng calculated	107	111	110			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105		
RT= 19,23	m/z 55	m/z 69				Area	127149	20561	120762	263968	23062		
Area	15016	25275				ng calculated	-583	-634	-650	-620	-635		
ng calculated	60,6	90,3				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208			
]	Polymethyl m	ethacrylate		1	Area No visible poet							
μg weighed	108					ng calculated	No visible peak						
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312		
ng calculated	360					Area	No visible peak						
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated							
Area	785906	647232	83885	253980			Polypropylene						
ng calculated	-477	-390	-416	-612		μg weighed	136						
	Р	olyethylene to	erephthalate			split	300						
μg weighed	51					ng injected	453						
split	300		N	o peaks detect	ed	RT= 5,38	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126		
ng injected	170					Area	466917	230095	335105	81844	32780		
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	-23	21	2	40	-123		
Area						RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168	
ng calculated						Area	28039	21051	29869	13347	7814	174	
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	142	149	144	147	153	161	
Area						RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111		
ng calculated						Area	42820	29891	46491	23993	17113		
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	111	129	114	125	127		
Area													
ng calculated													

					Si	mulated Sample 5						
		Polyeth	ylene									
μg weighed	75											
split	300								Polystyrene			
ng injected	250					µg weighed	197					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300					
Area	190891	182010	3604			ng injected	657					
ng calculated	321	357	264			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	9079274	1499083	8471379	17438003	1650968	
Area	71011	64638				ng calculated	765	765	749	757	750	
ng calculated	188	191				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
]	Polymethyl m	ethacrylate			Area	3996458	1086500	726152	465210		
μg weighed	83					ng calculated	684	602	618	607		
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	277					Area	3724179	1109148	317086	430445	46118	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	641	594	601	585	449	
Area	9820643	8699843	1192930	3442297				Р	olypropylene			
ng calculated	546	547	564	505		μg weighed	66					
	P	olyethylene te	erephthalate			split	300					
μg weighed	125					ng injected	220					
split	300					RT= 5,38	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126	
ng injected	417					Area	2371027	1165944	1716339	432487	171401	
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	305	320	301	309	254	
Area	80855	241651	426155			RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168
ng calculated	265	265	268			Area	156960	119999	167938	76732	44622	1080
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	328	330	326	325	321	314
Area	51091	205934	771810			RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	
ng calculated	490	493	503			Area	304799	239327	309970	156292	111868	
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	364	396	329	335	324	
Area	11421	54180	89358	76793	154809							
ng calculated	249	244	227	249	222							

					Sir	nulated Sample 6						
		Polyethy	ylene									
μg weighed	45											
split	300]	Polystyrene			
ng injected	150					μg weighed	43					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300					
Area	133685	121767	2714			ng injected	143					
ng calculated	230	243	207			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	1677876	280127	1641676	3529662	311214	
Area	41163	36892				ng calculated	-350	-389	-395	-358	-390	
ng calculated	120	120				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
]	Polymethyl m	ethacrylate			Area	302330	65741	46845	25592		
µg weighed	98					ng calculated	-159	-193	-352	-356		
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	327					Area	270391	76024	18526	25532	2856	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	-172	-181	-259	-260	-136	
Area	6012308	5241137	702077	2096507				P	olypropylene			
ng calculated	115	144	131	34		μg weighed	96					
	Р	olyethylene te	rephthalate			split	300					
μg weighed	179					ng injected	320					
split	300					RT= 5,38	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126	
ng injected	597					Area	1021663	507821	733237	179988	72124	
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	73	109	88	115	-16	
Area	29785	87106	149595			RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168
ng calculated	124	126	127			Area	66103	55441	69282	30730	17218	420
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	197	212	196	196	196	203
Area	18951	73734	272640			RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	
ng calculated	100	98	105			Area	115111	88062	115105	53853	41094	
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	181	203	170	172	177	
Area	2650	13005	24849	19571	41448							
ng calculated	81	93	107	133	100							

					Si	mulated Sample 7						
		Polyeth	ylene									
μg weighed	80											
split	300								Polystyrene			
ng injected	267					μg weighed	82					
RT= 8,58	m/z 56	m/z 70	m/z 140			split	300					
Area	253897	229377	5425			ng injected	273					
ng calculated	421	447	381			RT= 6,48	m/z 78	m/z 102	m/z 103	m/z 104	m/z 105	
RT= 19,23	m/z 55	m/z 69				Area	2318917	391593	2293591	4887335	437855	
Area	72831	66047				ng calculated	-253	-283	-286	-250	-282	
ng calculated	192,6	194,5				RT= 21,18	m/z 91	m/z 104	m/z 130	m/z 208		
		Polymethyl m	ethacrylate			Area	414235	91570	65743	36073		
μg weighed	72					ng calculated	-134	-172	-325	-333		
split	300					RT= 29,66	m/z 91	m/z 117	m/z 194	m/z 207	m/z 312	
ng calculated	240					Area	339757	95402	23539	31995	3286	
RT= 3,07	m/z 41	m/z 69	m/z 85	m/z 100		ng calculated	-155	-166	-245	-246	-130	
Area	5640486	4977652	673701	1994687				Р	olypropylene			
ng calculated	72	114	105	-2		µg weighed	114					
	I	Polyethylene te	erephthalate			split	300					300
μg weighed	67					ng injected	380					
split	300					RT= 5,38	m/z 43	m/z 55	m/z 70	m/z 83	m/z 126	
ng injected	223					Area	1584281	789635	1145916	282617	114717	
RT= 11,53	m/z 51	m/z 77	m/z 105			ng calculated	169	199	178	194	100	
Area	9811	26883	46398			RT= 10,33	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	m/z 168
ng calculated	69	72	75			Area	98116	74854	107213	47894	27463	668
RT= 26,61	m/z 51	m/z 77	m/z 105			ng calculated	243	248	246	244	243	244
Area	7145	26991	100210			RT= 14,53	m/z 43	m/z 57	m/z 69	m/z 83	m/z 111	
ng calculated	-43	-41	-33			Area	194263	156179	181800	91805	65110	
RT= 31,26	m/z 51	m/z 77	m/z 105	m/z 149	m/z 297	ng calculated	257	290	224	233	227	
Area	No visible peak											

Παράρτημα Ε: Αποτελέσματα πραγματικών δειγμάτων

Polyethylene terephthalate (PET)

Εικόνα 26: Από αριστερά προς τα δεξιά: RT1-51/77, RT1-51/105, RT1-

77/105

Εικόνα 27: Από αριστερά προς τα δεξιά RT2-51/77, RT2-51/105, RT2-

77/105

Εικόνα 28: Από αριστερά προς τα δεξιά RT3-51/77, RT3-51/105, RT3-51/149, RT3-51/297

Polyethylene (PE)

Εικόνα 29: Από αριστερά προς τα δεξιά: RT1-56/70, RT1-140/56, RT1-140/70, RT2-55/69

Polypropylene (PP)

Εικόνα 30: Από αριστερά προς τα δεξιά RT1-43/55, RT1-43/70, RT1-43/83, RT1-43/126

Εικόνα 31: Από αριστερά προς τα δεξιά RT1-55/70, RT1-55/83, RT1-55/126, RT1-

Εικόνα 32: Από αριστερά προς τα δεξιά RT1-70/126, RT1-83/126

Εικόνα 33: Από αριστερά προς τα δεξιά RT2-43/57, RT2-43/69, RT2-43/83, RT2-

Εικόνα 34: Από αριστερά προς τα δεξιά RT2-43/168, RT2-57/69, RT2-57/83, RT2-57/111

Εικόνα 35: Από αριστερά προς τα δεξιά RT2-57/168, RT2-69/83, RT2-69/111, RT2-69/168

Εικόνα 36: Από αριστερά προς τα δεξιά RT2-83/111, RT2-83/168, RT2-111/168

Εικόνα 37: Από αριστερά προς τα δεξιά RT3-43/57, RT3-43/69, RT3-43/83, RT3-

Εικόνα 38: Από αριστερά προς τα δεξιά RT3-57/69, RT3-57/83, RT3-57/11, RT3-

69/83

Εικόνα 39: Από αριστερά προς τα δεξιά RT3-69/111, RT3-83/111

Polymethyl methacrylate (PMMA)

Εικόνα 40: Από αριστερά προς τα δεξιά RT1-41/69, RT1-41/85, RT1-

41/100

Εικόνα 41: Από αριστερά προς τα δεξιά RT1-69/85, RT1-69/100, RT1-85/100

Polystyrene (PS)

Εικόνα 42: Από αριστερά προς δεξιά RT1-78/102, RT1-78/103, RT1-78/104, RT1-78/105

Εικόνα 43: Από αριστερά προς τα δεξιά RT1-102/103, RT1-102/104, RT1-102/105, RT1-

103/104

Εικόνα 44: Από αριστερά προς τα δεξιά RT1-103/105, RT1-104/105

Εικόνα 45: Από αριστερά προς τα δεξιά RT2-91/104, RT2-91/130, RT2-91/208

Εικόνα 46: Από αριστερά προς τα δεξιά RT2-104/130, RT2-104/208, RT2-130/208

Εικόνα 47: Από αριστερά προς τα δεξιά RT3-91/117, RT3-91/194, RT3-91/207,

RT3-91/312

Εικόνα 48: Από αριστερά προς τα δεξιά RT3-117/194, RT3-117/207, RT3-117/312, RT3-194/207

Εικόνα 49: Από αριστερά προς τα δεξιά RT3-194/312, RT3-207/312