

SEARCH FOR A NEW TOPOPHYLLIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

Lucy Kotsiopoulou

Undergraduate Thesis Presentation in Experimental Particle Physics	July 20 2023	School of Applied Mathematics and Physical Sciences (SAMPS), NTUA
		An event display with two top quarks, each decaying into a jet, CMS Collaboration (2012).

Presentation Outline

Overview of Particle Physics

The CMS experiment at CERN

Motivation for the existence of a new Z'TC2 boson

Topcolour Assisted Technicolour: theory and phenomenology of a Z'

Experimental Methods Used by CMS

Analysis Strategy

Conclusions and future prospects

LUCY KOTSIOPOULOU	20.07.23	SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR			

Overview of Particle Physics

Photograph taken in the CERN/E.T.H Zurich 1.70 m—long Cloud Chamber during an experiment at the CERN synchrotron of 28.000 MeV, CERN (1977).

What is Particle Physics (PP)?

- Elementary constituents of matter
- Very early start: search for "substance of light " in Ancient Greece by Aristotle and Euclid
- Modern beginning:
 - Newton's corpuscular theory of light
 - Einstein's Nobel Prize for the photoelectric phenomenon

The Universe at different energy scales, from atomic physics to modern particle physics at the TeV scale., Thomson (2013).

PP in the Scientific Community

The Standard Model (SM) particles

 $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ $+ i F \mathcal{D} \mathcal{F} + h.c$ + $\chi_i \mathcal{Y}_{ij} \chi_j \not = h_c$ $+ |\mathcal{D}_{\mathcal{P}}|^{2} - \vee (\phi)$

 $\frac{\text{SM in group theory:}}{\text{SU (3)}_{\text{C}} \times \text{SU (2)}_{\text{L}} \times \text{U}_{\text{Y}}(1)}$

6

LUCY KOTSIOPOULOU	20.07.23	SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

The Standard Model (SM) forces

14.

· ·

LUCY KOTSIOPOULOU	20.07.23	SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR	7
		The subscript of the second	5210

The Higgs mechanism

$SU(3)_{c} \times SU(2)_{L} \times U_{\gamma}(1) \longrightarrow SU(3)_{c} \times U_{em}(1)$: ElectroWeak Symmetry Breaking (EWSB)

- → Higgs mechanism: gives mass to quarks, leptons, W & Z bosons
- No mass to to photon and gluons
- → Higgs field

Higgs boson

Illustrating the Higgs mechanism, drawings are by George Boixader, CERN (1996).

LUCY KOTSIOPOULOU	20.07.23	SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR	8

The CMS experiment at CERN

Installation of the CMS silicon track, CERN (2008).

Conseil Européen pour la Recherche Nucléaire (CERN)

LHC map in 3D, Vittorio Frigo, CERN (1997).

 $\underline{\textbf{LHC}}: \textbf{Large Hadron Collider}$

20.07.23

LUCY KOTSIOPOULOU

p ➡ ← 13TeV

n /A	NI-IN	IUL	UΓ	TILIU	11	U

Compact Muon Solenoid (CMS)

Illustration of the detection of particles at the CMS experiment, Barney (2004) 0m Im 2m 3m Key: Muon Electron Charged Hadron (e.g. Pion) - Neutral Hadron (e.g. Neutron) - - Photon 0 Tracker Electromagnetic Calorimeter The CMS detector, Maximilien Brice, CERN (2017). Hadron Superconducting Calorimeter Solenoid from return yoke interspersed Transverse slice with Muon chambers through CMS

LUCY KOTSIOPOULOU 20.07.23 SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR 11

 $\mathcal{L} = (D_{\mu}\phi)^{*}D^{*}\phi - (\mathcal{L}\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}F^{\mu\nu}$

Motivation for the existence of a new Z'TC2 boson

Peter Higgs' blackboard, Peter Tuffy, University of Edinburgh (2009).

The mystery of EWSB

2012

Discovery of the Higgs boson at CERN

- Provides the mechanism by which all other particles acquire mass
- Higgs boson = excitation of the Higgs field (QFT)

But...

What is EWSB?

- What are the actual interactions ?
- ✤ Why at v_{weak} (weak scale)?
- Fundamental interactions ?

But...

What is the Higgs?

- Elementary particle?
- Are there more "Higgses" ?
- Bound state of other particles ?

LUCY KOTSIOPOULOU 20.07.23

SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

13

Peter Higgs in front of blackboard, Peter University of Edinburgh (2009).

Origin of the "weak scale": Vweak

Vacuum Expectation Value (VEV) of scalar Higgs field:

$$v_{\text{weak}} = \frac{1}{\sqrt{(2\sqrt{(2)G_F})}} = 246 \text{GeV} \sim O(100) \text{GeV}$$

W[±] mass: 80.4 GeV/c² **Z⁰ mass:** 91.187 GeV/c²

- → <u>Strong QCD scale:</u> $\Lambda_{\text{ocd}} \sim O(100) \text{ MeV} \Rightarrow \underline{\text{well-defined}}$ quantity, arises directly from Quantum Mechanics (QM)
- → Scale of gravity: M_{Panck} ~ (10¹⁹) GeV → gravitational effects comparable to gauge interactions, "limit of the universe"
- → <u>Weak mass scale:</u> what causes it in nature? + fine-tuning needed

Topcolour Assisted Technicolour: theory and phenomenology of a Z'

An Industry in Change: Unparalleled Demand for Content is an Opportunity to Push the Boundaries of Creativity and Diversity, A Q & A with Sherri Potter, President, Worldwide Post Production at Technicolor (2019).

From the left, two experimental physicists, Fritz Dejongh and Vaia Papadimitriou, discuss a question in b physics with theorists Christopher Hill and Andreas Kronfeld, Fermilab Annual Report (1993).

<u>Topcolour Assisted</u> <u>Technicolour (TC2)</u>

Technicolour (TC) (1970s):

→

→

 \rightarrow

 \rightarrow

→

→

- Technifermions, Techniquarks, Technigluons:
- Novel Strong Dynamics (NSD)

Extended Technicolour (ETC):

mechanism for EWSB to quarks and leptons

Topcolour Assisted Technicolour (TC2):

- → Christopher T. Hill (1994, Fermilab)
 - <u>Idea</u>: Higgs = tt condensate**⟨tt⟩**
- → Testable consequence! Z'_{TC2} <u>Model IV</u>
 - quark generations (1,3) \supset U(1)₂
 - $L'_{IV} = (1/2g_{1}cot\theta_{H}) Z'_{\mu} (t_{L}^{-}\gamma_{\mu}t_{L} + b_{L}^{-}\gamma_{\mu}b_{L} + f_{1}t_{R}^{-}\gamma_{\mu}t_{R} + f_{2}b_{R}^{-}\gamma_{\mu}b_{R}) u_{L}^{-}\gamma_{\mu}u_{L} d_{L}^{-}\gamma_{\mu}d_{L} f_{1}u_{R}^{-}\gamma_{\mu}u_{R} f_{2}d_{R}^{-}\gamma_{\mu}d_{R}$

LUCY KOTSIOPOULOU 21.06.23 SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

17

Experimental Methods Used by CMS

A candidate event in which a top quark pair is produced. Each top quark decays to a b quark and a W boson. Each b quark produces a jet, shown by the orange cones and each W boson decays to a neutrino (not seen) and a muon (shown by the red lines), CMS Experiment at the LHC, CERN, (2022).

he LHC, CERN -Jul-27 18:33:11. 6309 / 13756525

Possible Z'TC2 Final States

A candidate event in which a top quark pair is produced. Each top quark decays to a b quark and a W boson. Each b quark produces a jet, shown by the orange cones and each W boson decays to a neutrino (not seen) and a muon (shown by the red lines), CMS Experiment at the LHC, CERN, (2022).

TTbar Events in the Detector

- Top decays before hadronisation -> can be seen "naked " in the detector
- Top pair production: <u>qq annihilation</u>(15%) or gluon fusion

An illustration of the appearance of a jet in a detector. In practice, the individual particles are not resolved, Thomson (2013).

Anti-kt Clustering Algorithm

- Inclusive jet finding algorithms for hadron-hadron collisions
- Behave like an idealised cone algorithm
- Regularity of the boundaries of the resulting jets

<u>Parameter p</u>: relative power of energy vs. geometric scales

The anti-k t jet clustering algorithm, Bakas, Cacciari and Salam, (2008).

N-Subjettiness

- Designed to identify boosted hadronicaly-decaying objects, like top quarks
- Tags boosted objects, rejects QCD
- N-subjettiness effectively counts the number of subjects in a given jet

Identifying Boosted Objects with N-subjettiness, Thaller % Tilburg, (2011).

• **T_N** quantifies how N-subjetty a jet is, to what degree it can be regarded as **composed of N subjets**

High top

Boosted

region

boost

boosted top decaying hadronically reconstructed as a large-radius jet

momentu

Low top

momentum

Resolved

region

Analysis Strategy

EST

Event display of a H -> 4e candidate event, ATLAS Collaboration, CERN (2012).

Outline of analysis - Main ideas

ROOT by CERN

- Open-source data analysis framework used by high energy physics and others
- Mix of python and C++
- programme.C

Two Background processes (BGK):

- tt production from SM processes
- Other particles from QCD interactions

Strategy

- 1. Work with Monte Carlo (MC) simulations of BGK
 - Add Signal (S) MC simulations for Z'
 - Analyse Data sample from 2016

Files

Background (QCD + tt) file:

TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

Signal Z' file:

ZprimeToTT_**M3500_W35**_TuneCP2_PSweights_13TeV-madgraph-pythiaMLM-pythia8_20UL.root

Top Tagger Development

- TT' and QCD background file:
 - "TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root"

Top Tagger: pt and mass cuts

LUCY KOTSIOPOULOU

20.07.23

Pt cuts for boosted jet phase space:

jetPt > 400 (GeV/c)

Top Tagger Development

Cuts:

LUCY KOTSIOPOULOU

2

3

minDR

Top Tagger Development: DRmin

Calculation of **DR** between Reconstructed Jet & Parton:

• Histogram of **min(DR)**

LUCY KOTSIOPOULOU

• Cuts: **DRmin < 0.5** (matched)

DRmin > 2 (non-matched)

20.07.23

Top Tagger: pt and mass cuts

Top Tagger: 3 different mass cuts

LUCY KOTSIOPOULOU

20.07.23

Top Tagger: 3 different mass cuts

Mass cut **A** for top jet:

140 < jetMass < 250 (GeV/c²)

LUCY KOTSIOPOULOU

20.07.23

Mass cut **A** for top jet:

140 < jetMass < 250 (GeV/c²)

LUCY KOTSIOPOULOU

20.07.23

SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

33

Mass cut **A** for top jet:

140 < jetMass < 250 (GeV/c²)

LUCY KOTSIOPOULOU

20.07.23

Mass cut **A** for top jet:

140 < jetMass < 250 (GeV/c²)

LUCY KOTSIOPOULOU

20.07.23

SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

Top Tagger: Efficiency diagram

LUCY KOTSIOPOULOU

21.06.23

Top Tagger: Efficiency diagram

Top Tagger: Pt Efficiency Diagram

LUCY KOTSIOPOULOU

21.06.23

Top Tagger: Pt Efficiency Diagram

20.07.23

LUCY KOTSIOPOULOU

20.07.23

SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

40

Top Tagger: Efficiency diagram with b cuts

Top Tagger: Pt Efficiency Diagram with b cuts

20.07.23

NEW Tight working point:30% Top Tagging efficiency(matched)[150,210] Mass Window cutb cuts

<u>NEW Loose</u> working point: 53% Top Tagging efficiency (matched) [140,250] Mass Window cut b cuts

LUCY KOTSIOPOULOU

Sensitivity diagram

- Add in Signal files;
 - "ZprimeToTT_M1400_W14_TuneCP2_Psweights_13TeV-madgraph-pythiaMLM-pythia8
 _20UL.root", for simulating the Z' signal of mass 1400GeV/c 2 and width 1%.
 - "ZprimeToTT_M2000_W20_TuneCP2_Psweights_13TeV-madgraph-pythiaMLM-pythia8
 _20UL.root", for simulating the Z' signal of mass 2000GeV/c 2 and width 1%.
 - "ZprimeToTT_M2500_W25_TuneCP2_Psweights_13TeV-madgraph-pythiaMLM-pythia8
 _20UL.root", for simulating the Z' signal of mass 2500GeV/c 2 and width 1%.
 - "ZprimeToTT_M3500_W35_TuneCP2_Psweights_13TeV-madgraph-pythiaMLM-pythia8
 _20UL.root", for simulating the Z' signal of mass 3500GeV/c 2 and width 1%.

Sensitivity calculation: Absolute yield comparison

20.07.23

SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

44

Sensitivity calculation: Absolute yield comparison

20.07.23

Sensitivity calculation: Different Z' masses

20.07.23

section scaling

Cross

scaling

section s

Cross

Sensitivity calculation: mJJ integration

LUCY KOTSIOPOULOU

20.07.23

Data analysis and comparison with MC simulations

- Add in Data file:
 - "JetHT_Run2016-17Jul2018.root", 2016 data file, The CMS Collaboration, CERN
- Calculate QCD using data-driven method

Calculating the QCD bgk: mJJ

NEW Loose working point: 53% Top Tagging efficiency (matched) [140,250] Mass Window cut b cuts

NEW Tight working point: 30% Top Tagging efficiency (matched) [150,210] Mass Window cut b cuts

20.07.23

Calculating the QCD bgk: Reversed Tight cuts (RC)

Tight working point: 30% Top Tagging efficiency (matched) [150,210] Mass Window cut b cuts

CONTROL REGION (CR)

REVERSED Tight working point: 30% Top Tagging efficiency (matched) [150,210] Mass Window cut NO b cuts (jetNBSubDCSV==0)

LUCY KOTSIOPOULOU

Calculating the QCD bgk: QCD Template

LUCY KOTSIOPOULOU

20.07.23

Stacking background; Overlaying signal and data

LUCY KOTSIOPOULOU

20.07.23

SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

53

Stacking background; Overlaying signal and data

LUCY KOTSIOPOULOU

20.07.23

Fitting result: m_{z'TC2} = 3500 GeV/c²

Fitting parameters:

N_tt

Events / (80)

- N_QCD •
- N_signal_i •

20.07.23

 $lnL(X|\vec{\theta}) = \sum_{i=1}^{N} \ln[p(\vec{x}_i|\vec{\theta})]$

Likelihood function and Bayesian upper limits: 1400 case

Fitting parameters:

- N_tt
- N_QCD

$$lnL(X|\vec{\theta}) = \sum_{i=1}^{N} \ln\left[p(\vec{x}_i|\vec{\theta})\right] \qquad \partial \frac{lnL}{\partial \vec{\theta}} \Big|_{\vec{\theta} = \hat{\theta}} = 0$$

• N_signal_i

$\alpha := credibility$ $\frac{2 cases:}{\alpha = 0.1}$ (90% Confidence Level) $\alpha = 0.05$ (95% Confidence Level)

$$\int_{0}^{\mu_{\alpha}} p(\mu) = (1-\alpha) \int_{0}^{\infty} p(\mu) d\mu$$

FINAL RESULT: Observed Bayesian Upper Limits vs. Mz'TC2

Conclusions and future prospects

- Signal Yield N_signal ~ σ_i
- Decrease in Signal Yield with Increase in mass
- CMS and ATLS continue search for Z' "The ATLAS Collaboration, "Search for tt resonances in fully hadronic final states in pp collisions at √s = 13 TeV with the ATLAS detector" (2021), <u>https://arxiv.org/abs/2005.05138</u>."
- Personal aspiration: calculation of possible cross sections at the LHC for Models 1-III

Thank you!

Further reading:

- M. Thomson, Modern Particle Physics (Cambridge University Press, Cambridge, 2013).
- C.T. Hill and R,M. Harris and S.J. Parke, "Cross Section for Topcolor Z't decaying to tt" (1999), <u>https://arxiv.org/pdf/hep-ph/9911288.pdf</u>.
- R.M. Harris and S. Jain,, "Cross Sections for Leptophobic Topcolor Z' decaying to top-antitop", <u>https://arxiv.org/abs/1112.4928</u> (2012).
- K. Lannon, F. Margaroli and C. Neu, "Measurements of the production, decay and properties of the top quark: a review" (2012), <u>https://arxiv.org/abs/1201.5873</u>.
- The CMS Collaboration, "Search for resonant tt production in proton-proton collisions at √s = 13 TeV" (2019), <u>https://arxiv.org/abs/1810.05905</u>
- The ATLAS Collaboration , "Search for tt resonances in fully hadronic final states in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector" (2021), https://arxiv.org/abs/2005.05138.

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

N-Subjettiness (part II)

Backup Slides

Top Tagger: pt and mass cuts (t3/t2)

21.06.23

Top Tagger: Pt binned t3/t1

Top Tagger: pt and mass cuts (t3/t2)

SEARCH FOR A NEW TOPOPHILIC LEPTOPHOBIC Z'TC2 BOSON IN THE FULLY HADRONIC TTBAR FINAL STATE USING THE CMS DETECTOR

LUCY KOTSIOPOULOU

21.06.23

Top Tagger: Pt binnes t3/t2

Top Tagger: loose and tight working points

Tight working point:30% Top Tagging (matched)-> Integral(τ_3/τ_1) = 0.3[150,210] Mass Window cut

Loose working point: 53% Top Tagging (matched) -> Integral(τ_3/τ_1) = 0.53 [140,250] Mass Window cut

Calculating the QCD bgk: loose cuts

NEW Loose working point: 53% Top Tagging efficiency (matched) [140,250] Mass Window cut b-cuts

LUCY KOTSIOPOULOU

21.06.23

Calculating the QCD bgk: Tight cuts

NEW Tight working point: 30% Top Tagging efficiency (matched)
[150,210] Mass Window cut b cuts

> SIGNAL REGION (SR)

LUCY KOTSIOPOULOU

21.06.23

Likelihood functions

LUCY KOTSIOPOULOU

Histogram of |cosθ*|

- Boost to CM reference frame
- Find Jet angle with z axis (θ^*)

