

Εφνικό Μετσοβίο Πολύτεχνειο Σχολή Μηχανολογών Μηχανικών Εργαστηρίο Πυρηνικής Τεχνολογίας

Αναπτύξη και Εφαρμογή Τεχνικών Προσδιορισμου

Φυσικών Ραδιένεργων Ισοτοπών στο Ατμοσφαιρικό

Αερολύμα και τις Ατμοσφαιρικές Αποθέσεις

 Δ I Δ AKTOPIKH Δ IATPIBH

Μητσιού Κ. Ιάσονα

Διπλωματούχου Μηχανολόγου Μηχανικού Ε.Μ.Π.

Επιβλέπων: Μάριος Ι. Αναγνωστάκης Καθηγητής Ε.Μ.Π.

ΑΘΗΝΑ, Σεπτέμβριος 2023

Εθνικό Μετσοβίο Πολυτεχνείο Σχολή Μηχανολογών Μηχανικών Εργαστήριο Πυρηνικής Τεχνολογίας

Αναπτύξη και Εφαρμογή Τεχνικών Προσδιορισμού

Φυσικών Ραδιένεργων Ισοτοπών στο Ατμοσφαιρικό

Αερολύμα και τις Ατμοσφαιρικές Αποθέσεις

 Δ i Δ aktopikh Δ iatpibh

Μητείου Κ. Ιάξονα

Διπλωματούχου Μηχανολόγου Μηχανικού Ε.Μ.Π.

Τριμελής Σύμβουλευτική	Επταμέλης Εξεταστική
Епітропн	Епітропн
 Μ.Ι. Αναγνωστάκης Καθηγητής Ε.Μ.Π. (επιβλέπων) Ν.Π. Πετρόπουλος Επ. Καθηγητής Ε.Μ.Π. Π.Κ. Ρούνη Λέκτορας Ε.Μ.Π. 	 Μ.Ι. Αναγνωστάκης Καθηγητής Ε.Μ.Π. (επιβλέπων) Ν.Π. Πετρόπουλος Επ. Καθηγητής Ε.Μ.Π. Π.Κ. Ρούνη Λέκτορας Ε.Μ.Π. Δ. Μητράκος Επ. Καθηγητής Ε.Μ.Π. Ι.Ε. Σταματελάτος Ερευνητής Α΄, Ε.Κ.Ε.Φ.Ε. «Δημόκριτος» Κ. Ελευθεριάδης Ερευνητής Α΄, Ε.Κ.Ε.Φ.Ε. «Δημόκριτος» Α. Ιωαννίδου Καθινήτοια Α.Π.Θ
	.,

ΑΘΗΝΑ, Σεπτέμβριος 2023

«Η υλοποίηση της διδακτορικής διατριβής συγχρηματοδοτήθηκε από την Ελλάδα και την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) μέσω του Επιχειρησιακού Προγράμματος «Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Δια Βίου Μάθηση», 2014-2020, στο πλαίσιο της Πράξης «Ενίσχυση του ανθρώπινου δυναμικού μέσω της υλοποίησης διδακτορικής έρευνας Υποδράση 2: Πρόγραμμα χορήγησης υποτροφιών ΙΚΥ σε υποψηφίους διδάκτορες των ΑΕΙ της Ελλάδας».

Επιχειρησιακό Πρόγραμμα Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Διά Βίου Μάθηση

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

«Η Έγκριση της διδακτορικής διατριβής από την ανώτατη σχολή Μηχανολόγων Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου δεν υποδηλώνει αποδοχή των γνωμών του συγγραφέα (Ν. 5343/1932, Άρθρο 202)»

Πρόλογος

Η παρακολούθηση της ραδιενέργειας περιβάλλοντος μέσω συστηματικών μετρήσεων φίλτρων αέρα, υγρών και στερεών δειγμάτων αποτελεί για περίπου 40 χρόνια μία από τις βασικές δραστηριότητες του Εργαστηρίου Πυρηνικής Τεχνολογίας του Ε.Μ.Π.. Ο στόχος της παρούσας Διδακτορικής Διατριβής ήταν η διεύρυνση των δυνατοτήτων παρακολούθησης της ραδιενέργειας περιβάλλοντος και η μελέτη της κύμανσης της συγκέντρωσης στην ατμόσφαιρα μίας σειράς ραδιενεργών ισοτόπων που βρίσκουν εφαρμογή ως ιχυηλάτες ατμοσφαιρικών διεργασιών.

Για τον σκοπό αυτό, διερευνήθηκε η επίδραση της κύμανσης ορισμένων ραδιενεργών ισοτόπων στο υπόστρωμα των ανιχνευτικών διατάξεων και προσδιορίσθηκαν βέλτιστα σενάρια χρονικής διάρκειας δειγματοληψίας και ανάλυσης, ώστε να επιτυγχάνονται τα καλύτερα δυνατά κατώτερα επίπεδα ανίχνευσης ανά περίπτωση. Επιπλέον, αναπτύχθηκε μεθοδολογία δειγματοληψίας, επεξεργασίας και ανάλυσης δειγμάτων υγρών και ξηρών ατμοσφαιρικών αποθέσεων και λήφθηκε πλήθος δειγμάτων ατμοσφαιρικού αερολύματος, υγρών, ξηρών και ολικών ατμοσφαιρικών αποθέσεων καθώς και υγρασίας. Από τις δειγματοληψίες και αναλύσεις που έγιναν εκτιμήθηκε η συγκέντρωση ενεργότητας και ο ρυθμός απόθεσης φυσικών ραδιενεργών ισοτόπων τα οποία ανιχνεύονται στην ατμόσφαιρα και μελετήθηκε η συσχέτισή τους με πλήθος μετεωρολογικών και άλλων παραμέτρων.

Η Διδακτορική Διατριβή εκπονήθηκε στο Εργαστήριο Πυρηνικής Τεχνολογίας του Ε.Μ.Π. κατά το χρονικό διάστημα Ιούνιος 2017 – Σεπτέμβριος 2023. Στο σημείο αυτό, κατ' αρχήν, θα ήθελα να εκφράσω της ευχαριστίες μου στα μέλη της Τριμελούς Συμβουλευτικής Επιτροπής:

Στον κ. Μ.Ι. Αναγνωστάκη (επιβλέπων), Καθηγητή Ε.Μ.Π., στον οποίο οφείλω το πάθος για την έρευνα της ραδιενέργειας περιβάλλοντος και του οποίου οι γνώσεις, η υποστήριξη και η καθοδήγηση ήταν καθοριστικές για την εκπόνηση της παρούσας Διδακτορικής Διατριβής.

Στον κ. Ν.Π. Πετρόπουλο, Επίκουρο Καθηγητή Ε.Μ.Π., για την υποστήριξη και καθοδήγησή του καθ' όλη τη διάρκεια της Διδακτορικής Διατριβής.

Στην κα Π.Κ. Ρούνη, Λέκτορα Ε.Μ.Π., για την υποστήριξη και το κλίμα συνεργασίας καθ' όλη τη διάρκεια της Διδακτορικής Διατριβής.

Επίσης, ευχαριστώ τον κ. Δ. Μητράκο, Επίκουρο Καθηγητή Ε.Μ.Π., τον κ. Ι.Ε. Σταματελάτο, Ερευνητή Α΄ του Ε.Κ.Ε.Φ.Ε. «Δημόκριτος», τον κ. Κ. Ελευθεριάδη, Ερευνητή Α΄ του Ε.Κ.Ε.Φ.Ε. «Δημόκριτος» και την κα Α. Ιωαννίδου, Καθηγήτρια του Α.Π.Θ., για την τιμή που μου έκαναν να συμμετάσχουν στην Επταμελή Εξεταστική Επιτροπή της Διατριβής.

Επιπλέον, ευχαριστώ ιδιαιτέρως τον Δρ. Λαγουβάρδο Κωνσταντίνο, Διευθυντή Ερευνών του Ινστιτούτου Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυξης, για την ευγενική διάθεση των μετεωρολογικών δεδομένων που χρησιμοποιήθηκαν στην παρούσα μελέτη.

Ακόμα, ευχαριστώ τους Υποψήφιους Διδάκτορες Η. Πουλοπούλου, Κ. Κανούτο και Α. Μηλιώνη για την υποστήριξη και την άψογη συνεργασία.

Για την εκπόνηση της παρούσας Διδακτορικής Διατριβής έλαβα οικονομική ενίσχυση από τον Ε.Λ.Κ.Ε. Ε.Μ.Π., για τέσσερα έτη υπό μορφή υποτροφίας, και από το Ι.Κ.Υ., για 16 μήνες υπό μορφή υποτροφίας, στα πλαίσια του Επιχειρησιακού Προγράμματος «Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Δια Βίου Μάθηση», 2014-2020, στο πλαίσιο της Πράξης «Ενίσχυση του ανθρώπινου δυναμικού μέσω της υλοποίησης διδακτορικής έρευνας Υποδράση 2: Πρόγραμμα χορήγησης υποτροφιών ΙΚΥ σε υποψηφίους διδάκτορες των ΑΕΙ της Ελλάδας».

Επιπροσθέτως, θα ήθελα να ευχαριστήσω τους γονείς μου, Κωνσταντίνο και Ευφροσύνη, και τον αδερφό μου Ορέστη, για την αμέριστη υποστήριξη που μου προσέφεραν όλα τα χρόνια εκπόνησης της Διδακτορικής Διατριβής. Τέλος, θα ήθελα να ευχαριστήσω τη σύζυγό μου Ελίζ, στην οποία και αφιερώνω την παρούσα Διδακτορική Διατριβή, η ολοκλήρωση της οποίας δε θα ήταν δυνατή χωρίς την αμέριστη υποστήριξη και συμπαράστασή της.

> Αθήνα, Σεπτέμβριος 2023 Ιάσων Κ. Μήτσιος

ΠΕΡΙΕΧΟΜΕΝΑ

ΚΕΦΑΛΑΙΟ 1

F	1
$\mathbf{F}_{1}\boldsymbol{\sigma}\boldsymbol{\alpha}\mathbf{v}\boldsymbol{\omega}\mathbf{v}\mathbf{n}$	
100/0/0/1	

Ραδι	ever	ογά ισότοπα στο αερόλυμα της ατμόσφαιρας και στις ατμοσφαιρικές	
αποθ	έσε	ις	7
2.1	Γο α	τμοσφαιρικό αερόλυμα	7
2.1.1	l Po	αδιενεργά ισότοπα στο ατμοσφαιρικό αερόλυμα	8
2.1.2	2 M	Ιέτρηση των ραδιενεργών ισοτόπων του ατμοσφαιρικού αερολύματος	10
2.1.3	3 То	ο ραδιενεργό ισότοπο ⁷ Be	12
2.1.4	4 To	ο ραδιενεργό ισότοπο ²¹⁰ Pb	13
2.1.5	5 То	α ραδιενεργά ισότοπα 222 Rn και 220 Rn	15
2.1	.5.1	Κύμανση του $^{222} Rn$ και του $^{220} Rn$	16
2.2 A	Ατμο	οσφαιρικές αποθέσεις	.17
2.2.1	Ι Δι	ειγματοληψία και ανάλυση ατμοσφαιρικών αποθέσεων	18
2.2.2	2 Σι	υγκεντρώσεις ⁷ Be και ²¹⁰ Pb στις ατμοσφαιρικές αποθέσεις	21
2.2.3	3 Σι	υσχέτιση με μετεωρολογικές και άλλες παραμέτρους	22
2.3 X	Χρήο	ση των ⁷ Be και ²¹⁰ Pb ως ιχνηθέτες σε ατμοσφαιρικά και άλλα μοντέλα	.24
2.4 I	Παρ	ακολούθηση της ραδιενέργειας περιβάλλοντος στο ΕΠΤ-ΕΜΠ	.28
2.4.1	I Δ	ειγματοληψίες και αναλύσεις χώματος	28
2.4.2	2 Δ	ειγματοληψίες και αναλύσεις ατμοσφαιρικού αερολύματος	29
2.4.3	3 Δ	ειγματοληψίες και αναλύσεις υγρών αποθέσεων	30
2.4.4	4 Н	γ-φασματοσκοπική ανάλυση στο ΕΠΤ-ΕΜΠ	33
2.4	4.4.1	Οι ανιχνευτές γερμανίου του ΕΠΤ-ΕΜΠ	34
2.4	1.4.2	Προσδιορισμός της ενεργότητας δείγματος	39
2.4	1.4.3	Επίδραση των θυγατρικών του ραδονίου και του θορονίου στις γ-φασματοσκοπικές	
		αναλύσεις	41
2.4	1.4.4	Τεχνικές περιορισμού της επίδρασης της κύμανσης του ραδονίου, του θορονίου και των	
		θυγατρικών τους στις γ-φασματοσκοπικές αναλύσεις	42
2.5 I	Βασι	ικοί στόχοι Διδακτορικής Διατριβής	.44
2.6 2	Ξυμτ	πληρωματικοί πίνακες και σχήματα του 2ºº Κεφαλαίου	.45

Επί	ίδρ	αση των βραχύβιων θυγατρικών του ραδονίου και του θορονίου στις γ-
φαα	5µ0	ατοσκοπικές αναλύσεις56
3.1	Εı	σαγωγή
3.2	K۱	ύμανση του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας 57
3.2	2.1	Η 1η δειγματοληψία60
3.2	2.2	Η 2 ^η , 3 ^η & 4 ^η δειγματοληψία61
3.2	2.3	Αποτελέσματα της μελέτης της κύμανσης του ραδονίου και των θυγατρικών του εντός του
		εργαστηρίου γ-φασματοσκοπίας63
3.2	2.4	Συσχέτιση της συγκέντρωσης του ραδονίου στο εργαστήριο γ-φασματοσκοπίας με εξωτερικές
		μετεωρολογικές παραμέτρους
3.2	2.5	Επίδραση του ραδονίου και των θυγατρικών του στο υπόστρωμα των ανιχνευτών γερμανίου70
3.3	Μ	ελέτη της επίδρασης της διάρκειας δειγματοληψίας στην εκτίμηση του
	υπ	αστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ74
3.3	3.1	Συλλογή των φασμάτων υποστρώματος
3.3	3.2	Ανάλυση των φασμάτων υποστρώματος76
3.4	Δε	ειγματοληψία και ανάλυση δειγμάτων αερολύματος80
3.4	4.1	Τα σενάρια δειγματοληψίας φίλτρων αέρα
3.4	4.2	Αποτελέσματα της γ-φασματοσκοπικής ανάλυσης των φίλτρων αέρα
3.5	Σι	ομπεράσματα

Επίδ ατμο	δρασ όσωα	η των βραχύβιων θυγατρικών του ραδονίου στη μέτρηση του ²¹⁰ Pb ποα	στην 91
4.1	Εισα	γωγή	
4.2	Κύμα ατμό	ανση της συγκέντρωσης του ραδονίου και των βραχύβιων θυγατρικών του σφαιρα	στην 92
4.3	Μεθα	οδολογία δειγματοληψίας και ανάλυσης	94
4.3.	.1 Yz	πολογισμός συγκεντρώσεων θυγατρικών του ραδονίου πάνω στο φίλτρο 4΄΄	97
4.	3.1.1	Υπολογισμός συγκεντρώσεων των θυγατρικών του ραδονίου με τη μέθοδο επίλυσης	του
		πλήρους συστήματος αναλυτικών εξισώσεων	99
4.	3.1.2	Υπολογισμός της συγκέντρωσης των θυγατρικών του ραδονίου με τη μέθοδο των	
		(Forkapic, et al., 2012)	

4.3.2 Δι	ερεύνηση της ευαισθησίας της επίλυσης του συστήματος αναλυτικών εξισώσεων παραγωγής-
κα	τανάλωσης110
4.3.2.1	Αποτελέσματα των γ-φασματοσκοπικών αναλύσεων
4.3.2.2	Προσδιορισμός τη συγκέντρωσης των θυγατρικών του ραδονίου στον αέρα μέσω της
	μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων115
4.3.2.3	Προσδιορισμός της συγκέντρωσης των θυγατρικών του ραδονίου στον αέρα μέσω της
	μεθόδου των (Forkapic, et al., 2012)
4.3.2.4	Σύγκριση της ατμοσφαιρικής συγκέντρωσης ενεργότητας των βραχύβιων θυγατρικών του
	ραδονίου μεταξύ των δύο μεθόδων121
4.3.3 Συ	νεισφορά των βραχύβιων θυγατρικών του ραδονίου στην ενεργότητα του ²¹⁰ Pb που
υπ	ολογίζεται πάνω στο φίλτρο αέρα 8΄΄x10΄΄ κατά τη γ-φασματοσκοπική ανάλυση124
4.3.3.1	Συνολικό πλήθος πυρήνων των βραχύβιων θυγατρικών του ραδονίου στα φίλτρα 8΄΄x10΄΄
	μέσω της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων126
4.3.3.2	Συνολικό πλήθος πυρήνων των βραχύβιων θυγατρικών του ραδονίου στα φίλτρα 8΄΄x10΄΄
	μέσω της μεθόδου των (Forkapic, et al., 2012)128
4.4 Συμπ	εράσματα130

Μεθοδο	λογία προσδιορισμού ραδιενεργών ισοτόπων στις ατμοσφαιρικές αποθέ	σεις
•••••		.132
5.1 Εισα	<i>ι</i> γωγή	132
5.2 Δειγ	ματοληψία και επεξεργασία ατμοσφαιρικών αποθέσεων	133
5.2.1 Y	γρές ατμοσφαιρικές αποθέσεις και υγρασία – ανάπτυξη μεθόδου	133
5.2.1.1	Βαθμονόμηση απόδοσης των ανιχνευτικών διατάξεων	141
5.2.1.2	Ανάλυση αβεβαιοτήτων	144
5.2.1.3	Σύγκριση των τριών διαδικασιών προετοιμασίας δείγματος υγρής απόθεσης	145
5.2.1.4	Οξίνιση του υγρού δείγματος για την αποφυγή προσρόφησης ραδιενεργών ισοτόπων στο	ι
	τοιχώματα του δοχείου	147
5.2.1.5	Δειγματοληψία, προετοιμασία και ανάλυση δειγμάτων υγρασίας	148
5.2.1.6	Δειγματοληψία προετοιμασία και ανάλυση δειγμάτων χιονιού	150
5.2.2 Δ	ειγματοληψία, προετοιμασία και ανάλυση δειγμάτων ξηρών ατμοσφαιρικών αποθέσεων	151
5.2.2.1	Αναλυτικός υπολογισμός της συγκέντρωσης ενεργότητας ραδιενεργών ισοτόπων στις ξη	ρές
	και στις ολικές αποθέσεις	153
5.3 Συμ	περάσματα	155

Συ	στη	ιμα	τικές δειγματοληψίες και αναλύσεις ατμοσφαιρικών αποθέσεων και
άλλ	λων	ν πε	εριβαλλοντικών μεγεθών156
6.1	Eı	ισαγ	γωγή156
6.2	Δε	ειγμ	ιατοληψίες ατμοσφαιρικών αποθέσεων156
6.	2.1	Συ	γκέντρωση ραδιενεργών ισοτόπων σε μεμονωμένα δείγματα βροχής
6.	2.2	Συ	γκέντρωση ραδιενεργών ισοτόπων σε δείγματα χιονιού160
6.	2.3	Σύ	γκριση της συγκέντρωσης ενεργότητας του ⁷ Βε στα δείγματα υγρών αποθέσεων166
6.	2.4	Συ	γκέντρωση ραδιενεργών ισοτόπων σε δείγματα υγρασίας167
6.	2.5	Pυ	θμός απόθεσης ραδιενεργών ισοτόπων στις ξηρές ατμοσφαιρικές αποθέσεις167
6.	2.6	Pυ	θμός απόθεσης ραδιενεργών ισοτόπων στις ολικές ατμοσφαιρικές αποθέσεις
6.	2.7	По	αράλληλη δειγματοληψία ατμοσφαιρικών αποθέσεων και ατμοσφαιρικού αερολύματος172
6.	2.8	Συ	νεχείς μετρήσεις ολικών ατμοσφαιρικών αποθέσεων179
6.3	Σι	υσχ	ετίσεις ρυθμών απόθεσης και συγκεντρώσεων ενεργότητας των ⁷ Be και ²¹⁰ Pb με
	με	ete0	ορολογικές και άλλες παραμέτρους και εφαρμογή σε ατμοσφαιρικά μοντέλα184
6.	3.1	Συ	σχετίσεις ρυθμών απόθεσης και συγκεντρώσεων ενεργότητας ⁷ Be και ²¹⁰ Pb με μετεωρολογικά
		δεδ	δομένα
(6.3.1	1.1	Συσχετίσεις των συγκεντρώσεων ενεργότητας $^7\mathrm{Be}$ και $^{210}\mathrm{Pb}$ με μετεωρολογικές παραμέτρους
			στα δείγματα υγρών αποθέσεων
(6.3.1	1.2	Συσχετίσεις της συγκέντρωσης ενεργότητας του ⁷ Βε με μετεωρολογικές παραμέτρους στα
			δείγματα υγρασίας
(6.3.1	1.3	Συσχετίσεις των ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb με μετεωρολογικές παραμέτρους στα
			δείγματα ξηρών αποθέσεων
(6.3.1	1.4	Συσχετίσεις των ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb με μετεωρολογικές παραμέτρους στα
			δείγματα ολικών αποθέσεων
(6.3.1	1.5	Συσχετίσεις των ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb με μετεωρολογικές παραμέτρους σε
			συνεχόμενα δείγματα αποθέσεων
(6.3.1	1.6	Συσχετίσεις των συγκεντρώσεων ενεργότητας ⁷ Be και ²¹⁰ Pb σε φίλτρα αέρα με
			μετεωρολογικές παραμέτρους
6.	3.2	Συ	σχετίσεις ρυθμών απόθεσης και συγκεντρώσεων ενεργότητας ⁷ Be και ²¹⁰ Pb με άλλους
		τυ	πικούς ατμοσφαιρικούς ρυπαντές
(6.3.2	2.1	Συσχετίσεις των ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb στα δείγματα ξηρών αποθέσεων με τυπικούς
			ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα
(6.3.2	2.2	Συσχετίσεις των ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb στα δείγματα ολικών αποθέσεων με
			τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα
(6.3.2	2.3	Συσχετίσεις των ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb στα δείγματα συνεχόμενων ατμοσφαιρικών
			αποθέσεων με τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

6.3	.2.4	Συσχετίσεις των συγκεντρώσεων ενεργότητας $^7\mathrm{Be}$ και $^{210}\mathrm{Pb}$ στο αερόλυμα με τυπικούς	
		ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα	205
6.3.3	δ Σι	υσχέτιση του ρυθμού απόθεσης του ⁷ Βε με το πλήθος των ηλιακών κηλίδων	206
6.3.4	Σı	υσχέτιση του ρυθμού απόθεσης του ⁷ Βε με το ύψος της τροπόπαυσης στα δείγματα	
	σι	υνεχόμενων ατμοσφαιρικών αποθέσεων	209
6.3.5	5 Et	κτίμηση της συνολικής επιφανειακής συγκέντρωσης ενεργότητας	216
6.3.6	5 E	κτίμηση της μέσης ταχύτητας απόθεσης	219
6.3.7	Y	πολογισμός του κανονικοποιημένου ως προς τις υγρές αποθέσεις συντελεστή εμπλουτισμο	ύ
	ρο	αδιενεργών ισοτόπων της ατμόσφαιρας	222
6.3.8	β Λ	οιπά ατμοσφαιρικά μοντέλα με προοπτική αξιοποίησης των μετρήσεων ατμοσφαιρικών	
	α	ποθέσεων	223
6.4 X	Ξυμ	περάσματα	.227
6.5 X	Ξυμη	πληρωματικοί πίνακες κεφαλαίου 6	.232

Επί	ίλογος	241
7.1	Συνοπτική Παρουσίαση της Διδακτορικής Διατριβής	241
7.2	Επιτεύγματα και σημεία πρωτοτυπίας της Δ.Δ	251
7.3	Προτάσεις Μελλοντικής Έρευνας	252
7.4	Δημοσιεύσεις – Ανακοινώσεις σε Συνέδρια	254

ВІВЛІОГРАФІА	25'	7
--------------	-----	---

ПАРАРТНМАТА

ПАРАРТНМА А	
Πιστοποιητικά ανιχνευτών γερμανίου	284
ПАРАРТНМА В	
Προσδιορισμός συντελεστή ισορροπίας F	289
ΠΑΡΑΡΤΗΜΑ Γ	
Συμπληρωματικά μετεωρολογικά δεδομένα	290

2η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜ	Π
	290
3η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜ	Π.
	292
4η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜ	Π.
	294

ΠΑΡΑΡΤΗΜΑ Δ

Συμπληρωματικοί πίνακες και διαγράμματα κύμανσης του ραδονίου και των θυγατρικών

	του
2η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ	Δ.1 2 ^η
3η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ	Δ.2 3 ^η
4 ^η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ	Δ.3 4 ^η

ПАРАРТНМА Е

Διαγράμματα ρυθμού κρούσεων φωτοκορυφής ²¹⁴ Bi ανιχνευτών γερμανίου ως προς τη			
σι	υγκέντρωση του ραδονίου και των θυγατρικών του		
E.1	3η Δειγματοληψία Διερεύνησης Κύμανσης του Ραδονίου και των Θυγατρικών του στο ΕΠΤ-		
	ЕМП		
E.2	4η Δειγματοληψία Διερεύνησης Κύμανσης του Ραδονίου και των Θυγατρικών του στο ΕΠΤ-		
	ЕМП		

ΠΑΡΑΡΤΗΜΑ ΣΤ

Διαγρά	μματα διαδοχικών φασμάτων φωτοκορυφών υποστρώματος ανιχνευτών γερμανίοι).
		36
ΣT.1	Υπόστρωμα φωτοκορυφών ανιχνευτή XtRa	36
ΣΤ.2	Υπόστρωμα φωτοκορυφών ανιχνευτή LEGe34	13
ΣΤ.3	Υπόστρωμα φωτοκορυφών ανιχνευτή Ge135	51
ΣΤ.4	Υπόστρωμα φωτοκορυφών ανιχνευτή Ge2	58
ПАРА	PTHMA Z	
Συνοπ	τική περιγραφή εργαλείου «Radical»36	65
ПАРА	РТНМА Н	
Υπολο	/ισμός L _D και MDA	30

ΠΑΡΑΡΤΗΜΑ Θ

Διαγρ	άμματα χρονική εξέλιξης cps των κυρίαρχων φωτοκορυφών των θυγατρικών του	
ρ	αδονίου και του θορονίου στα φίλτρα αέρα38	33
ПАРА	АРТНМА І	
Χρονι	κή εξέλιξη MDA επιλεγμένων ραδιενεργών ισοτόπων σε φίλτρα αέρα)1
ПАРА	АРТНМА ІА	
Υπολο	ογισμός σταθμισμένης μέσης τιμής39)5
ПАРА	APTHMA IB	
Βήματ	τα δημιουργίας «SEQUENCE» στο GENIE200039	97
ПАРА	АРТНМА ІГ	
Συντε	λεστές επίλυσης εξισώσεων με χρήση της μεθόδου των (Forkapic, et al., 2012)40)3
IΓ.1	1° τριήμερο Δειγματοληψίας φίλτρων αέρα 4΄΄40)4
ΙГ.2	2° τριήμερο Δειγματοληψίας φίλτρων αέρα 4΄΄40)7
ПАРА	ΑΡΤΗΜΑ ΙΔ	
Συμπλ	ληρωματικές καμπύλες βαθμονόμησης απόδοσης41	0
IΔ.1	Βαθμονομήσεις απόδοσης στον ανιχνευτή XtRa4	10
IΔ.2	Βαθμονομήσεις απόδοσης στον ανιχνευτή LEGe4	14
IΔ.3	Βαθμονομήσεις απόδοσης στον ανιχνευτή Ge4	17
ПАРА	APTHMA IE	
Ατμοσ	σφαιρικές συγκεντρώσεις βραχύβιων θυγατρικών του ραδονίου	9
IE.1	Υπολογισθείσες συγκεντρώσεις βραχύβιων θυγατρικών του ραδονίου με τη μέθοδο επίλυσης το	v
	πλήρους συστήματος αναλυτικών εξισώσεων4	19
IE.2	Υπολογισθείσες συγκεντρώσεις βραχύβιων θυγατρικών του ραδονίου με τη μέθοδο των	
	(Forkapic, et al., 2012)	26
ПАРА	ΑΡΤΗΜΑ ΙΣΤ	
Αντιπ	ροσωπευτικά αρχεία εισόδου ΡΕΝΕLΟΡΕ43	13
ПАРА	APTHMA IZ	
Κωδυ	κοί φίλτρων και υγρών κλασμάτων επεξεργασίας δειγμάτων ατμοσφαιρικών	
α	ποθέσεων και υγρασίας45	54

ПАРАРТНМА ІН

Συμπλι	ηρωματικά διαγράμματα συσχετίσεων συγκεντρώσεων ενεργότητας και ρυθμών
απ	τόθεσης ραδιενεργών ισοτόπων με μετεωρολογικές και άλλες παραμέτρους456
IH.1	Διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb στις ατμοσφαιρικές αποθέσεις ως
	προς τις αντίστοιχες συγκεντρώσεις τους στις παράλληλες δειγματοληψίες φίλτρων αέρα456
IH.2	Διαγράμματα συσχέτισης συγκεντρώσεων ενεργότητας ⁷ Be και ²¹⁰ Pb στις υγρές αποθέσεις ως
	προς τις αντίστοιχες μετεωρολογικές παραμέτρους458
IH.3	Διαγράμματα συσχέτισης συγκεντρώσεων ενεργότητας ⁷ Be στα δείγματα υγρασίας ως προς τις
	αντίστοιχες μετεωρολογικές παραμέτρους
IH.4	Δ ιαγράμματα συσχέτισης ρυθμών απόθεσης 7 Be και 210 Pb στα δείγματα ξηρών αποθέσεων ως
	προς τις αντίστοιχες μετεωρολογικές παραμέτρους
IH.5	Δ ιαγράμματα συσχέτισης ρυθμών απόθεσης $^7\mathrm{Be}$ και $^{210}\mathrm{Pb}$ στα δείγματα ολικών αποθέσεων ως
	προς τις αντίστοιχες μετεωρολογικές παραμέτρους
IH.6	Συμπληρωματικά διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷ Be και ²¹⁰ Pb στα συνεχόμενα
	δείγματα αποθέσεων ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους473
IH.7	Διαγράμματα συσχέτισης συγκεντρώσεων $^7\mathrm{Be}$ και $^{210}\mathrm{Pb}$ στο ατμοσφαιρικό αερόλυμα ως προς τις
	αντίστοιχες μετεωρολογικές παραμέτρους
IH.8	Δ ιαγράμματα συσχέτισης ρυθμών απόθεσης $^7\mathrm{Be}$ και $^{210}\mathrm{Pb}$ στα δείγματα ξηρών αποθέσεων ως
	προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα
IH.9	Δ ιαγράμματα συσχέτισης ρυθμών απόθεσης 7 Be και 210 Pb στα δείγματα ολικών αποθέσεων ως
	προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα
IH.10	Δ ιαγράμματα συσχέτισης ρυθμών απόθεσης $^7\mathrm{Be}$ και $^{210}\mathrm{Pb}$ στα δείγματα συνεχόμενων
	ατμοσφαιρικών αποθέσεων ως προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα492
IH.11	Δ ιαγράμματα συσχέτισης συγκεντρώσεων ενεργότητας $^7\mathrm{Be}$ και $^{210}\mathrm{Pb}$ στο ατμοσφαιρικό
	αερόλυμα ως προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα
IH.12	Διαγράμματα συσχέτισης των μηνιαίων ρυθμών απόθεσης του ⁷ Be ως προς το μηνιαίο πλήθος
	ηλιακών κηλίδων
IH.13	Δ ιαγράμματα συσχέτισης των συγκεντρώσεων ενεργότητας και των ρυθμών απόθεσης του $^7\mathrm{Be}$
	ως προς το ύψος της τροπόπαυσης
IH.14	Δ ιαγράμματα συσχέτισης των μέσων ταχυτήτων απόθεσης του ⁷ Be και του ²¹⁰ Pb ως προς τις
	αντίστοιχες μετεωρολογικές παραμέτρους

Εισαγωγή

Η παρούσα Διδακτορική Διατριβή (Δ.Δ.) εκπονήθηκε στο Εργαστήριο Πυρηνικής Τεχνολογίας της Σχολής Μηχανολόγων Μηχανικών του Ε.Μ.Π. (ΕΠΤ-ΕΜΠ). Το ευρύτερο αντικείμενο της Δ.Δ. ήταν η ανάπτυξη και εφαρμογή τεχνικών προσδιορισμού φυσικών ραδιενεργών ισοτόπων.

Από τις βασικές δραστηριότητες του ΕΠΤ-ΕΜΠ είναι η συστηματική παρακολούθηση της ραδιενέργειας περιβάλλοντος. Για περίπου σαράντα χρόνια γίνονται δειγματοληψίες και αναλύσεις πάσης φύσεως στερεών και υγρών δειγμάτων, καθώς και αερολύματος με χρήση φίλτρων αέρα, με στόχο τη διεύρυνση των δυνατοτήτων παρακολούθησης της ραδιενέργειας περιβάλλοντος – με έμφαση στην ατμόσφαιρα – και τη μελέτη της κύμανσης της συγκέντρωσης μίας σειράς ραδιενεργών ισοτόπων τα οποία βρίσκουν εφαρμογή ως ιχνηλάτες ατμοσφαιρικών διεργασιών. Ειδικότερα, στο πλαίσιο της Δ.Δ. έλαβαν χώρα:

i. Ανάπτυξη και βελτίωση τεχνικών δειγματοληψίας και γ-φασματοσκοπικής ανάλυσης υγρών και ξηρών ατμοσφαιρικών αποθέσεων. Προς την κατεύθυνση αυτή έγινε ανάπτυξη μεθόδων δειγματοληψίας και προετοιμασίας δειγμάτων υγρών (βροχή, χιόνι), ξηρών και ολικών (υγρών + ξηρών) ατμοσφαιρικών αποθέσεων, καθώς και υγρασίας. Όσον αφορά στη βελτίωση της ακρίβειας των μετρήσεων και την επίτευξη χαμηλών επιπέδων ανίχνευσης, έγινε διερεύνηση της κύμανσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, καθώς και της επίδρασης που αυτή έχει κατά τη διαδικασία της μέτρησης. Τα ισότοπα ενδιαφέροντος ήταν κυρίως το ⁷Be και ο ²¹⁰Pb. Ως αποτέλεσμα της μελέτης αυτής, γίνονται συγκεκριμένες προτάσεις για τον χειρισμό του υποστρώματος, αλλά και τη γ-φασματοσκοπική ανάλυση δειγμάτων αερολύματος πάνω σε φίλτρο, με χρήση δειγματολήπτη αέρα υψηλής παρογής. Καθώς ο ²¹⁰Pb, που ανιγνεύεται στα δείγματα αερολύματος που συλλέγονται, οφείλεται και σε κάποιο βαθμό στα βραχύβια θυγατρικά του ραδονίου τα οποία συλλέγονται και διασπώνται πάνω στο φίλτρο, κρίθηκε

απαραίτητο να μελετηθεί και αυτή η πτυχή της δειγματοληψίας και γφασματοσκοπικής ανάλυσης.

ii. Συστηματικές δειγματοληψίες υγρών, ξηρών και ολικών ατμοσφαιρικών αποθέσεων, καθώς και υγρασίας της ατμόσφαιρας, σε συνδυασμό με δειγματοληψίες αερολύματος στην ατμόσφαιρα, αλλά και μετεωρολογικών και άλλων παραμέτρων. Ο όγκος των δεδομένων που προέκυψαν από τις μετρήσεις αυτές επέτρεψε τη διαπίστωση αρκετών συσχετίσεων και οδήγησε σε ενδιαφέροντα συμπεράσματα για την κινητική των υπό μελέτη ραδιενεργών ισοτόπων στην ατμόσφαιρα αλλά και στο έδαφος.

Η Δ.Δ. αποτελείται από 7 Κεφάλαια τα οποία συνοδεύονται από 18 Παραρτήματα.

Στο 2º Κεφάλαιο αναπτύσσεται το θεωρητικό υπόβαθρο που αφορά στην εργασία και γίνεται η σχετική βιβλιογραφική ανασκόπηση. Ειδικότερα, γίνεται μια εισαγωγή στο ατμοσφαιρικό αερόλυμα, παρουσιάζονται τα βασικά ραδιενεργά ισότοπα που απαντώνται σε αυτό σε κανονικές συνθήκες, καθώς και οι βασικές μέθοδοι δειγματοληψίας και ανάλυσής τους. Ιδιαίτερη έμφαση δίνεται στις ιδιότητες του ⁷Be και του ²¹⁰Pb, στους μηγανισμούς που διέπουν την κίνησή τους στην ατμόσφαιρα, στις χρήσεις τους ως ραδιοϊχνηθέτες, καθώς και στις εφαρμογές τους σε μοντέλα μεταφοράς αερίων μαζών και σε μελέτες διάβρωσης και ιζηματογένεσης εδαφών. Ακόμα, παρουσιάζονται τα ²²²Rn και ²²⁰Rn και τα βραχύβια θυγατρικά τους, καθώς αποτελούν παράγοντες που έχουν σημαντική επίδραση στις γ-φασματοσκοπικές αναλύσεις ιδιαίτερα για μετρήσεις χαμηλών επιπέδων ραδιενέργειας – καθώς και βασικές τεχνικές μείωσης αυτής της επίδρασης. Ακολούθως, γίνεται περιγραφή των βασικών μηχανισμών με τους οποίους τα ραδιενεργά ισότοπα εναποτίθενται από το ατμοσφαιρικό αερόλυμα στο έδαφος. Εστιάζοντας στη μελέτη της εναπόθεσης του 7Be και του 210Pb, παρατίθενται οι βασικές μέθοδοι δειγματοληψίας και επεξεργασίας ατμοσφαιρικών αποθέσεων που εμφανίζονται στη βιβλιογραφία και δίνεται ένας συγκεντρωτικός κατάλογος μελετών που έγουν γίνει μέγρι σήμερα, αναφορικά με τις ατμοσφαιρικές αποθέσεις και την εκτίμηση του ρυθμού απόθεσης των υπό μελέτη ισοτόπων. Επιπροσθέτως, γίνεται ανασκόπηση των μετεωρολογικών και άλλων παραγόντων τα οποία είτε επηρεάζουν είτε συσγετίζονται με τις συγκεντρώσεις του ⁷Be και του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και τις ατμοσφαιρικές αποθέσεις. Ολοκληρώνοντας το συγκεκριμένο Κεφάλαιο, γίνεται μια συνοπτική περιγραφή των δραστηριοτήτων του ΕΠΤ-ΕΜΠ σχετικά με την παρακολούθηση της ραδιενέργειας περιβάλλοντος, τις

μεθόδους που έχουν χρησιμοποιηθεί για τη δειγματοληψία χώματος, ατμοσφαιρικού αερολύματος και υγρών αποθέσεων, την ανάλυση με γ-φασματοσκοπικές μεθόδους και τις σχετικές ανιχνευτικές διατάξεις του εργαστηρίου που χρησιμοποιήθηκαν στα πλαίσια της Διατριβής.

Στο **3**° **Κεφάλαιο** μελετάται η επίδραση των βραχύβιων θυγατρικών του ραδονίου κα του θορονίου στις γ-φασματοσκοπικές αναλύσεις, Τα ισότοπα αυτά αποτελούν μία από τις σημαντικότερες πηγές υποστρώματος μίας γ-φασματοσκοπικής διάταξης, επιδρώντας σημαντικά στα αποτελέσματα των αναλύσεων και τα κατώτερα επίπεδα ανίχνευσης, ιδιαίτερα για δείγματα χαμηλής ενεργότητας. Η μελέτη αυτή διαρθρώθηκε σε τρία βασικά μέρη:

- i. Αρχικά, μελετήθηκε η κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας, χρησιμοποιώντας τη μετρητική διάταξη ALPHAGUARD-ALPHAPM η οποία συγκροτήθηκε για τον σκοπό αυτό. Η συγκέντρωση του ραδονίου και των θυγατρικών του μελετήθηκαν ως προς την ημερήσια κύμανσή τους, συσχετίστηκαν με τις εξωτερικές του εργαστηρίου μετεωρολογικές παραμέτρους και στη συνέχεια, συσχετίστηκαν με τη φωτοκορυφή του ²¹⁴Bi στα 609.32 keV, η οποία αποτελεί σημαντική φωτοκορυφή του υποστρώματος, σε διαδοχικά φάσματα υποστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ. Είναι σημαντικό να επισημανθεί ότι οι φωτοκορυφές υποστρώματος χρησιμοποιούνται και ως δείκτης του συνεχούς υποστρώματος το οποίο παράγεται στο φάσμα λόγω των θυγατρικών του ραδονίου, και συνεπώς της κύμανσής του.
- ii. Στη συνέχεια, έχοντας επιβεβαιώσει το μέγεθος της επίδρασης που έχει η κύμανση του ραδονίου και των θυγατρικών του στο υπόστρωμα των ανιχνευτικών διατάξεων του ΕΠΤ-ΕΜΠ, έγινε λήψη πολλαπλών διαδοχικών φασμάτων υποστρώματος, διερευνήθηκαν οι διαφορές μεταξύ τους και συστάθηκε μια σειρά από κατευθυντήριες οδηγίες για χρήση των κατάλληλων φασμάτων υποστρώματος, ανάλογα με τη χρονική διάρκεια ανάλυσης του εκάστοτε δείγματος και τις ιδιαιτερότητες του υποστρώματος κάθε ανιχνευτή.
- iii. Η μελέτη του παρόντος Κεφαλαίου ολοκληρώνεται με τη δειγματοληψία και ανάλυση φίλτρων αέρα για μία σειρά σεναρίων χρονικής διάρκειας δειγματοληψίας και γ-φασματοσκοπικής ανάλυσης, διερευνώντας την επίδραση που έχουν τα βραχύβια θυγατρικά του ραδονίου και του θορονίου που

3

συλλέγονται στο φίλτρο, στα κατώτερα επίπεδα ανίχνευσης επιλεγμένων ραδιενεργών ισοτόπων. Η μελέτη αυτή ολοκληρώνεται προτείνοντας σενάρια χρονικής διάρκειας δειγματοληψίας και ανάλυσης φίλτρων αέρα ανάλογα με τα επιθυμητά κατώτερα επίπεδα ανίχνευσης, τους λόγους πραγματοποίησης δειγματοληψίας (μετρήσεις ρουτίνας ή έκτακτης ανάγκης), καθώς και τους χρόνους ημιζωής των μετρούμενων ραδιενεργών ισοτόπων.

Στις δειγματοληψίες αερολύματος γίνεται ταυτόχρονη δειγματοληψία, τόσον του ²¹⁰Pb όσο και των βραχύβιων θυγατρικών του ραδονίου, τα οποία εν τέλει, μετά τη διάσπασή τους προσμετρώνται στην τελική συγκέντρωση ενεργότητας του ²¹⁰Pb στο αερόλυμα. Για τον λόγο αυτό, και επειδή η παραγωγή, η μεταφορά στο περιβάλλον, καθώς και οι μηχανισμοί εναπόθεσής του ²¹⁰Pb έχουν ιδιαίτερο ενδιαφέρον για την επιστημονική κοινότητα, στο 4º Κεφάλαιο της παρούσας Δ.Δ. κρίθηκε σκόπιμο να διερευνηθεί ο βαθμός της επίδρασης που έχουν τα βραχύβια θυγατρικά του ραδονίου στα φίλτρα αέρα στην μετρούμενη συγκέντρωση ενεργότητας του ²¹⁰Pb στον αέρα. Ωστόσο, η συγκέντρωση του ραδονίου και των βραχύβιων θυγατρικών του στον ατμοσφαιρικό αέρα παρουσιάζουν κύμανση επηρεαζόμενη από πλήθος παραμέτρων. Για τη συγκεκριμένη μελέτη έγινε λήψη πολλαπλών δειγμάτων αερολύματος μέσω φίλτρων αέρα μικρής χρονικής διάρκειας, παράλληλα με φίλτρα αέρα μεγάλης χρονικής διάρκειας, κάτι που επέτρεψε τον ταυτόχρονο προσδιορισμό της συγκέντρωσης, τόσο του ²¹⁰Pb, όσο και των βραχύβιων θυγατρικών του ραδονίου. Οι ταυτόχρονες αυτές μετρήσεις, σε συνδυασμό με την επίλυση των διαφορικών εξισώσεων παραγωγήςκατανάλωσης των θυγατρικών του ραδονίου κατά τη διάρκεια της συλλογής-αναμονήςανάλυσης των δειγμάτων αερολύματος επέτρεψαν τον ακριβή προσδιορισμό του ²¹⁰Pb που συλλέγεται ως ²¹⁰Pb και αυτού που προκύπτει από τη διάσπαση των βραχύβιων θυγατρικών του ραδονίου. Η μεθοδολογία που αναπτύχθηκε και τα αποτελέσματα που προέκυψαν, συγκρίθηκαν με τα αποτελέσματα αντίστοιχων – απλούστερων – προσεγγίσεων της βιβλιογραφίας, οι οποίες δεν λαμβάνουν υπόψη την παραγωγή-κατανάλωση των βραχύβιων θυγατρικών του ραδονίου κατά τη διάρκεια της γ-φασματοσκοπικής ανάλυσης. Από τη μεθοδολογία που αναπτύχθηκε και εφαρμόσθηκε, εκτιμήθηκε η συνεισφορά των βραχύβιων θυγατρικών του ραδονίου στην ενεργότητα του ²¹⁰Pb που υπολογίζεται από την ανάλυση των φίλτρων αέρα.

Για τη διεύρυνση των δυνατοτήτων παρακολούθησης της περιβαλλοντικής ραδιενέργειας από το ΕΠΤ-ΕΜΠ στις υγρές (βροχή, χιόνι), τις ξηρές και τις ολικές (υγρές + ξηρές) αποθέσεις, καθώς και στην υγρασία, έγινε ανάπτυξη μεθοδολογίας δειγματοληψίας, επεξεργασίας, και ανάλυσης ατμοσφαιρικών αποθέσεων, η οποία παρουσιάζεται αναλυτικά στο 5° Κεφάλαιο. Χρησιμοποιώντας ως βάση τη μέθοδο δειγματοληψίας και επεξεργασίας δειγμάτων βροχής που αναπτύχθηκε στα πλαίσια παλαιότερης Διατριβής, αναπτύχθηκαν, τυποποιήθηκαν και ελέγχθηκαν ως προς την επαναληψιμότητά τους οι διαδικασίες δειγματοληψίας και προετοιμασίας υγρών, ξηρών και ολικών ατμοσφαιρικών αποθέσεων και υγρασίας, εφαρμόζοντας τη μέθοδο προσρόφησης ραδιενεργών ισοτόπων σε ρητίνη κατιόντων ως βασική μέθοδο επεξεργασίας. Στο πλαίσιο αυτό, δημιουργήθηκαν και νέες γεωμετρίες δειγμάτων γ-φασματοσκοπικής ανάλυσης, και οι ανιχνευτές του ΕΤΠ-ΕΜΠ βαθμονομήθηκαν κατάλληλα με χρήση του κώδικα προσομοίωσης Monte Carlo PENELOPE.

Στο 6° Κεφάλαιο, χρησιμοποιώντας τις μεθόδους δειγματοληψίας, επεξεργασίας και ανάλυσης ατμοσφαιρικών αποθέσεων και υγρασίας που αναπτύχθηκαν στο Κεφάλαιο 5, έγινε μια σειρά δειγματοληψιών ατμοσφαιρικών αποθέσεων και υγρασίας. Το σύνολο των δειγμάτων αναλύθηκε με μεθόδους γ-φασματοσκοπίας και προσδιορίσθηκαν σε αυτά οι συγκεντρώσεις και οι ρυθμοί απόθεσης των ραδιενεργών ισοτόπων ⁷Be και ²¹⁰Pb, καθώς και ¹³⁷Cs σε μικρό αριθμό δειγμάτων. Τα συλλεχθέντα δείγματα ομαδοποιήθηκαν βάσει του μηχανισμού ατμοσφαιρικής απόθεσής τους (υγρές, ξηρές, ολικές και υγρασία), καθώς και βάσει της χρονικής τους συνέχειας, και κάθε επιμέρους ομάδα συσχετίστηκε με μετεωρολογικές παραμέτρους, με συγκεντρώσεις ατμοσφαιρικών ρυπαντών, με το πλήθος των ηλιακών κηλίδων και με το ύψος της τροπόπαυσης. Επίσης, έγινε εκτίμηση της ταχύτητας εναπόθεσης των ραδιενεργών ισοτόπων στο έδαφος, υπολογισμός της συνολικής επιφανειακής συγκέντρωσης ενεργότητας του 7Be και του 210Pb, χρησιμοποιώντας τις χρονικά συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων, καθώς και υπολογισμός του κανονικοποιημένου ως προς τις υγρές αποθέσεις συντελεστή εμπλουτισμού της ατμόσφαιρας σε ραδιενεργά ισότοπα. Επιπροσθέτως, παράλληλα με ορισμένες από τις δειγματοληψίες ατμοσφαιρικών αποθέσεων, έλαβαν χώρα και δειγματοληψίες φίλτρων αέρα, με στόχο τη συσχέτιση των ατμοσφαιρικών συγκεντρώσεων του ⁷Be και του 210 Pb με τους ρυθμούς απόθεσής τους. Οι συστηματικές μετρήσεις που έγιναν επέτρεψαν την καταγραφή της χρονικής εξέλιξης της συγκέντρωσης των υπό μελέτη ραδιενεργών ισοτόπων στην επιφάνεια του εδάφους, μία πληροφορία πολύ σημαντική σε μοντέλα εκτίμησης του ρυθμού διάβρωσης του εδάφους. Ολοκληρώνοντας το παρόν Κεφάλαιο,

5

γίνεται ενδεικτικά παράθεση ατμοσφαιρικών μοντέλων όπου βρίσκουν εφαρμογή οι μετρήσεις ατμοσφαιρικών αποθέσεων, σε συνδυασμό με παράλληλες δειγματοληψίες φίλτρων αέρα και μετρήσεις και άλλων παραμέτρων.

Το 7° Κεφάλαιο αποτελεί τον επίλογο της παρούσας Δ.Δ. όπου συγκεντρώνονται τα βασικά συμπεράσματα της έρευνας που πραγματοποιήθηκε, παρουσιάζονται τα επιτεύγματα και τα στοιχεία πρωτοτυπίας της και παρατίθενται προτάσεις για μελλοντική έρευνα. Τέλος, παρουσιάζονται οι δημοσιεύσεις και οι ανακοινώσεις που έλαβαν χώρα κατά τη διάρκεια εκπόνησης της παρούσας Δ.Δ.

Η Διατριβή ολοκληρώνεται με 18 **Παραρτήματα** (A – IH) τα οποία περιέχουν πίνακες, σχήματα και πληροφορίες συμπληρωματικές στο κυρίως κείμενό της.

Ραδιενεργά ισότοπα στο αερόλυμα της ατμόσφαιρας και στις ατμοσφαιρικές αποθέσεις

2.1 Το ατμοσφαιρικό αερόλυμα

Ως αερόλυμα (aerosol) ορίζεται μία ποσότητα σωματιδίων σε υγρή ή στερεά μορφή, η οποία είναι διασκορπισμένη σε ένα αέριο μέσο. Τα αιωρούμενα σωματίδια του αερολύματος μπορούν να ταξινομηθούν ανάλογα με τα χαρακτηριστικά και τον τρόπο σχηματισμού τους σε διάφορες κατηγορίες, όπως (Ješkovský, et al., 2019):

- Σκόνη αποτελείται από στερεά σωματίδια που διασπείρονται στον ατμοσφαιρικό αέρα.
- Καπνός/αναθυμιάσεις αποτελείται από στερεά ή υγρά σωματίδια που δημιουργούνται από τη συμπύκνωση ατμών.
- iii. Ομίχλη αποτελείται από σταγονίδια νερού τα οποία βρίσκονται σε μορφή διαλύματος ή σε αιώρηση με άλλα σωματίδια.

Οι πηγές προέλευσης του ατμοσφαιρικού αερολύματος είναι είτε φυσικές (σταγόνες θαλασσινού νερού που εξατμίστηκαν, σκόνη, ηφαιστειακή τέφρα, βιογενή σωματίδια όπως η γύρη, προϊόντα χημικών αντιδράσεων αερίων της ατμόσφαιρας εξαιτίας της αλληλεπίδρασής τους με τη θερμότητα ή με την ηλιακή ακτινοβολία κ.α.) είτε ανθρωπογενείς (εκπομπές προϊόντων καύσης άνθρακα ή ξύλου, καυσαέρια από εργοστάσια ή οχήματα, σκόνη και αέρια από γεωργικές δραστηριότητες, προϊόντα καύσης από δασικές πυρκαγιές κ.α.).

Τα σωματίδια του ατμοσφαιρικού αερολύματος προσφέρονται ως πυρήνες συσσώρευσης για νερό και άλλους υδρατμούς και χωρίζονται βάσει του μεγέθους τους σε τρεις βασικές κατηγορίες:

i. Πυρήνες Aitken (<0.1 μm)

- ii. Περιοχή Συσσώρευσης (>0.1 μm και <2.0 μm)
- iii. Περιοχή Χονδρόκοκκων Σωματιδίων (>10.0 μm)

Τα παραπάνω σωματίδια μπορούν να διακριθούν επίσης και σε εισπνεύσιμα (inhalable) και αναπνεύσιμα (respirable) βάσει των φυσικών τους χαρακτηριστικών και των επιπτώσεων που έχουν στην υγεία (Ješkovský, et al., 2019). Στα εισπνεύσιμα σωματίδια κατατάσσονται τα σωματίδια τα οποία σε κανονικές συνθήκες μπορούν να εισέλθουν μέσω της μύτης ή του στόματος στο αναπνευστικό σύστημα και να εναποτεθούν στους πνεύμονες. Αποτελούνται από στερεά σωματίδια ή σταγονίδια με μέση αεροδυναμική διάμετρο από 2.5 έως 10 μm και ονομάζονται PM10. Στα αναπνεύσιμα σωματίδια κατατάσσονται τα σωματίδια με μέση διάμετρο <2.5μm (PM2.5) τα οποία μπορούν να εισέλθουν μέχρι και την κυψελιδική περιοχή των πνευμόνων χωρίς όμως αναγκαστικά να εναποτίθενται εκεί.

2.1.1 Ραδιενεργά ισότοπα στο ατμοσφαιρικό αερόλυμα

Το ατμοσφαιρικό αερόλυμα – εκτός των άλλων – περιέχει τόσο φυσικά όσο και τεχνητά ραδιενεργά ισότοπα, τα οποία βρίσκονται στο επίκεντρο του ενδιαφέροντος για την επιστημονική κοινότητα, όχι μόνον από ραδιο-οικολογικής άποψης, λόγω της συνεισφοράς τους στην εσωτερική και εξωτερική δόση των έμβιων οργανισμών, αλλά και λόγω της χρήσης που μπορεί να έχουν ως ραδιοϊχνηθέτες για τη μελέτη μεταφοράς και ανάμιξης αερίων μαζών (Ješkovský, et al., 2019). Το μεγαλύτερο μέρος των ραδιενεργών αυτών ισοτόπων βρίσκεται προσκολλημένο, ενσωματωμένο ή προσροφημένο στα αιωρούμενα σωματίδια του αερολύματος και κινείται μαζί με αυτό.

Τα σημαντικότερα¹ ραδιενεργά ισότοπα που περιέχονται στο ατμοσφαιρικό αερόλυμα είναι τα:

- ¹⁴C : είναι ισότοπο του άνθρακα και εμφανίζεται στην ατμόσφαιρα σε διάφορες μορφές όπως CO₂, CO, CH₄ και άλλους πτητικούς υδρογονάνθρακες. Ο άνθρακας διαχωρίζεται σε στοιχειακό (EC), οργανικό (OC) και ανθρακικό (CC) άνθρακα. Ο χρόνος ημιζωής του ¹⁴C είναι 5700 έτη.
- ³Η : εναλλακτικά συμβολίζεται ως "Τ", παράγεται είτε λόγω της αλληλεπίδρασης
 της κοσμικής ακτινοβολίας με την ατμόσφαιρα είτε λόγω πυρηνικών δοκιμών ή

¹ Λόγω κυρίως της επαναιώρησης από το έδαφος, στο ατμοσφαιρικό αερόλυμα μπορεί να βρεθεί οποιοδήποτε ραδιενεργό ισότοπο βρίσκεται στο έδαφος, όπως ισότοπα των τριών φυσικών ραδιενεργών σειρών.

εκπομπών από πυρηνικά εργοστάσια. Εντοπίζεται στο ατμοσφαιρικό αερόλυμα σε υδρατμούς ως ΗΤΟ, DTO και T₂O, στο αέριο υδρογόνο ως ΗΤ, DT και T₂ καθώς και σε υδρογονάνθρακες ως CH₃T. Το ³Η έχει χρόνο ημιζωής 12.312 έτη.

- ³⁷Ar, ³⁹Ar, ⁸¹Kr ⁸⁵Kr, ^{131m}Xe, ¹³³Xe, ^{133m}Xe, ¹³⁵Xe : αποτελούν ραδιενεργά ισότοπα ευγενών αερίων, τα οποία παράγονται κυρίως από πυρηνικές δοκιμές και εκπομπές πυρηνικών εργοστασίων και σε πολύ μικρές ποσότητες μέσω της αλληλεπίδρασής της κοσμικής ακτινοβολίας με την ατμόσφαιρα. Χρησιμοποιούνται για χρονολόγηση στην υδρο-οικολογία, για παρακολούθηση εκπομπών από πυρηνικά εργοστάσια ή εργοστάσια επανεπεξεργασίας πυρηνικού καυσίμου, καθώς και για την παρακολούθηση πυρηνικών δοκιμών.
- ²²²Rn, ²²⁰Rn : αποτελούν ραδιενεργά ισότοπα του ευγενούς αερίου Rn και μαζί με τα θυγατρικά τους προέρχονται από τις ραδιενεργές σειρές του ²³⁸U και του ²³²Th αντίστοιχα. Αποτελούν μέρος της μελέτης της παρούσας Δ.Δ. και για τον λόγο αυτό περισσότερες πληροφορίες δίνονται στις παραγράφους που ακολουθούν.
- ⁷Be : αποτελεί βραχύβιο ραδιενεργό ισότοπο και είναι αποτέλεσμα της αλληλεπίδρασης της κοσμικής ακτινοβολίας με την ατμόσφαιρα. Αποτελεί σημαντικό κομμάτι της μελέτης που διενεργήθηκε στην παρούσα Δ.Δ., και για τον λόγο αυτό περισσότερες πληροφορίες δίνονται στις παραγράφους που ακολουθούν.
- ¹⁰Be : αντίστοιχα με το ⁷Be είναι αποτέλεσμα αλληλεπίδρασης της κοσμικής ακτινοβολίας με πυρήνες της ατμόσφαιρας. Έχει χρόνο ημιζωής 1.5·10⁶ έτη και μαζί με το ⁷Be χρησιμοποιείται ως ραδιοϊχνηθέτης για τη μελέτη της στρατοσφαιρικής μεταφοράς αερίων μαζών, καθώς και της ανταλλαγής τους μεταξύ στρατόσφαιρας και τροπόσφαιρας.
- ²²Na : είναι προϊόν των αντιδράσεων κατακερματισμού της κοσμικής ακτινοβολίας με το στοιχείο Ar στην ατμόσφαιρα, έχει παρόμοια συμπεριφορά με το ⁷Be και χρόνο ημιζωής 2.602 έτη. Χρησιμοποιείται ως ραδιοϊχνηθέτης για τη μελέτη τη κατακόρυφης ανάμιξης αερίων μαζών, καθώς και την ανταλλαγή τους μεταξύ στρατόσφαιρας και τροπόσφαιρας.
- ²⁶A1 : είναι προϊόν των αντιδράσεων κατακερματισμού της κοσμικής ακτινοβολίας με τα στοιχεία Ar και Si στην ατμόσφαιρα και έχει χρόνο ημιζωής 0.708·10⁶ έτη.
- ¹³¹I : είναι ένα βραχύβιο τεχνητό ραδιενεργό ισότοπο με χρόνο ημιζωής 8.02 ημέρες. Αποτελεί προϊόν της σχάσης του ουρανίου και του πλουτωνίου.

Απαντάται στην ατμόσφαιρα είτε προσκολλημένο σε σωματίδια, είτε σε αέρια ανόργανη μορφή (I2, H, HOI), είτε σε αέρια οργανική μορφή (CHI3, CH2I2, CH3CH2CH2I).

- ¹²⁹I : είναι το μακροβιότερο ισότοπο του ιωδίου με χρόνο ημιζωής 15.7·10⁶ έτη.
 Παράγεται είτε φυσικά με αντιδράσεις κατακερματισμού μεταξύ της κοσμικής ακτινοβολίας με το Xe της ατμόσφαιρας είτε από τη σχάση του ουρανίου.
- ¹³⁷Cs : είναι ένα ανθρωπογενές ραδιενεργό ισότοπο με χρόνο ημιζωής 30.02 έτη.
 Οι πιο σημαντικές εκλύσεις του στην ατμόσφαιρα οφείλονται στις πυρηνικές δοκιμές που έχουν πραγματοποιηθεί στο παρελθόν, καθώς και στα πυρηνικά ατυχήματα του Chernobyl (1986) και της Φουκουσίμα (2011). Σε κανονικές συνθήκες μπορεί να ανιχνεύεται στην ατμόσφαιρα σε εξαιρετικά χαμηλές συγκεντρώσεις ως αποτέλεσμα επαναιώρησης
- ⁴⁰K : είναι ένα μακρόβιο φυσικό ραδιενεργό ισότοπο με χρόνο ημιζωής 1.2504·10⁹ έτη. Ο βασικός μηχανισμός εισαγωγής στον ατμοσφαιρικό αέρα είναι μέσω της επαναιώρησης σκόνης από το επιφανειακό έδαφος, ή λόγω καύσης βιομάζας.

2.1.2 Μέτρηση των ραδιενεργών ισοτόπων του ατμοσφαιρικού αερολύματος

Η διάσπαση ενός ραδιενεργού ισοτόπου έχει ως αποτέλεσμα τη δημιουργία του θυγατρικού του υπό τη μορφή ιόντος. Το φορτίο του θυγατρικού ραδιενεργού ισοτόπου οδηγεί στην προσκόλλησή του στα σωματίδια του ατμοσφαιρικού αερολύματος, τα οποία μπορούν να συλλεχθούν με κατάλληλες τεχνικές δειγματοληψίας, κάτι που επιτρέπει τελικά τον προσδιορισμό της συγκέντρωσης ενεργότητας των διαφόρων ραδιενεργών ισοτόπων στο ατμοσφαιρικό αερόλυμα (Eleftheriadis & Ioannidou, 2020).

Η μέτρηση των ραδιενεργών ισοτόπων που προσκολλώνται στο ατμοσφαιρικό αερόλυμα γίνεται με χρήση ειδικών αντλιών και φίλτρων αέρα. Τα φίλτρα αυτά (χάρτινα φίλτρα, φίλτρα νιτρικής ή οξικής κυτταρίνης, φίλτρα από ίνες γυαλιού, πολυπροπυλενίου ή χαλαζία) στη συνέχεια υπόκεινται σε κατάλληλη μετρητική διαδικασία, με ή χωρίς προηγούμενη χημική επεξεργασία (καύση, χημική διάλυση, χημικό ξέπλυμα κλπ.) για την απομόνωση των συλλεχθέντων σωματιδίων και κατ' επέκταση των ραδιενεργών ισοτόπων. Στην περίπτωση που είναι αναγκαίος ο διαχωρισμός των σωματιδίων του ατμοσφαιρικού αερολύματος ανάλογα με το μέγεθός

τους, μπορούν να χρησιμοποιηθούν αδρανειακοί συλλέκτες πρόσκρουσης πολλαπλών σταδίων (cascade impactors), συλλέκτες κυκλώνα (cyclone collectors) και ηλεκτροστατικοί κατακρημνιστήρες (electrostatic precipitators). Τέλος, για τη συλλογή συμπυκνωμένων υδρατμών ή υγρών σωματιδίων στο ατμοσφαιρικό αερόλυμα μπορεί να γίνει η χρήση συσκευής συμπύκνωσης ή αφυγραντήρα (Engelbrecht, 2012), (Eleftheriadis & Ioannidou, 2020).

Καθώς η συγκέντρωση ενεργότητας² ορισμένων ραδιενεργών ισοτόπων στο ατμοσφαιρικό αερόλυμα μπορεί να είναι πολύ χαμηλή (της τάξης των μBq/m³) για τη στατιστικά σημαντική ανίχνευσή τους απαιτείται συνήθως η δειγματοληψία πολύ μεγάλης χρονικής διάρκειας (δεκάδες ώρες) και μεγάλων όγκων αέρα (χιλιάδες κυβικά μέτρα).

Μετά τη συλλογή και ενδεχομένως την επεξεργασία τα δείγματα οδηγούνται προς ανάλυση για τον προσδιορισμό της συγκέντρωσης των ραδιενεργών ισοτόπων που περιέχουν. Οι αναλύσεις αυτές γίνονται:

- με χρήση αναλογικών μετρητών (proportional counters) για τον προσδιορισμό της ολικής-α ή ολικής-β ενεργότητας του δείγματος,
- με χρήση διατάξεων υγρού σπινθηρισμού (LSC) για μέτρηση ραδιενεργών
 ισοτόπων που εκπέμπουν α- και β-σωματίδια κατά τη διάσπασή τους,
- με χρήση α-φασματοσκοπικών μεθόδων για τον προσδιορισμό ραδιενεργών
 ισοτόπων που εκπέμπουν α-σωματίδια κατά τη διάσπασή τους,
- με χρήση γ-φασματοσκοπίας για τον ακριβή προσδιορισμό της συγκέντρωσης των ραδιενεργών ισοτόπων των οποίων η διάσπαση συνοδεύεται και από την εκπομπή γ-ακτινοβολίας.

Στην παρούσα μελέτη το σύνολο των δειγμάτων αναλύθηκε με μεθόδους γ-φασματοσκοπίας και το ενδιαφέρον επικεντρώθηκε κυρίως στα ισότοπα ⁷Be και ²¹⁰Pb. Για τον λόγο αυτό, περισσότερες πληροφορίες σχετικά με τη μέθοδο της γ-φασματοσκοπίας και τη συμπεριφορά και χρήση των ανωτέρω ραδιενεργών ισοτόπων δίνονται στις παραγράφους που ακολουθούν. Άλλα ισότοπα ενδιαφέροντος ήταν και τα βραχύβια θυγατρικά των ²²²Rn, ²²⁰Rn, καθώς αυτά μπορεί να επηρεάζουν τη διαδικασία της μέτρησης, όπως θα φανεί στο 3° Κεφάλαιο. Τέλος σε ορισμένες περιπτώσεις κατέστη δυνατή και η ανίχνευση των ισοτόπων ⁴⁰K και ¹³⁷Cs, λόγω επαναιώρησης.

 $^{^2}$ Πρόκειται για μετάφραση του όρου activity concentration.

2.1.3 Το ραδιενεργό ισότοπο ⁷Be

Το ⁷Be είναι ένα βραχύβιο ραδιενεργό ισότοπο κοσμικής προέλευσης με χρόνο ημιζωής 53.22 ημέρες. Παράγεται κυρίως στη στρατόσφαιρα (~70%) και μερικώς στην τροπόσφαιρα (~30%) από αντιδράσεις κατακερματισμού μεταξύ της κοσμικής ακτινοβολίας με τους ελαφρείς ατμοσφαιρικούς πυρήνες του C, N και O (Lal & Peters, 1967). Διασπάται μέσω σύλληψης ηλεκτρονίου και εκπέμπει φωτόνια ενέργειας 477.6 keV με ποσοστό εκπομπής 10.44%, γεγονός που καθιστά δυνατή την ανίχνευσή του με μεθόδους γ-φασματοσκοπίας (Lal, et al., 1958), (Cannizzaro, et al., 2004).

Εξαιτίας του μικρού χρόνου ημιζωής του, το μεγαλύτερο ποσοστό του ⁷Be που παράγεται στη στρατόσφαιρα δε φτάνει στην τροπόσφαιρα, καθώς ο μέσος χρόνος παραμονής του στρατοσφαιρικού αερολύματος είναι περίπου 1 έτος. Στα μεσαία κυρίως γεωγραφικά πλάτη, κυρίως κατά τη διάρκεια της άνοιξης και του καλοκαιριού, η μείωση του πάγους της τροπόπαυσης και η έντονη ανάμιξη αερίων μαζών μεταξύ στρατόσφαιρας και τροπόσφαιρας οδηγούν σε εμπλουτισμό της τροπόσφαιρας με «στρατοσφαιρικής» προέλευσης ⁷Be (Rastogi & Sarin, 2008), (Lal & Peters, 1967), (Feely, et al., 1989), (Dibb, et al., 1994), (Martin & McBride, 2012). O χρόνος παραμονής του ⁷Be στην τροπόσφαιρα εκτιμάται από 22 έως 48 ημέρες (Bleichrodt, 1978), (Durana, et al., 1996), και η συγκέντρωσή του σε αυτήν εξαρτάται από την εποχή, το ύψος από την επιφάνεια της Γης (Jasiulionis & Wershofen, 2005) καθώς και το γεωγραφικό πλάτος (Lal & Peters, 1962). Όπως όλα τα ισότοπα κοσμικής προέλευσης, το ⁷Be, παρουσιάζει κύμανση εξαρτώμενη του 11-ετούς κύκλου του ήλιου (Papastefanou & Ioannidou, 2004), (Ioannidou, et al., 2014), εμφανίζοντας αρνητική συσχέτιση με τον αριθμό των ηλιακών κηλίδων (Mohan, et al., 2019), (Zalewska, et al., 2021), (Ioannidou, et al., 2005), (Chao, et al., 2012). Λόγω της αργής μεταφοράς του ⁷Be από τη στρατόσφαιρα, έχει παρατηρηθεί ότι η ατμοσφαιρική συγκέντρωση του ⁷Be στο επίπεδο του εδάφους ανταποκρίνεται στη μεταβολή του πλήθους των ηλιακών κηλίδων με χρονική καθυστέρηση της τάξης των 5 μηνών (Gerasopoulos, et al., 2003). Σύμφωνα με την εκτενή βιβλιογραφική ανασκόπηση που πραγματοποιήθηκε από τους (Zhang, et al., 2021) η ατμοσφαιρική συγκέντρωση του ⁷Be σε παγκόσμιο επίπεδο κυμαίνεται από 0.33 έως 17.77 mBq/m³.

Το ⁷Be είναι ένας χρήσιμος ιχνηθέτης για ατμοσφαιρικά μοντέλα μεταφοράς αερίων μαζών, για τη μελέτη γεωχημικών διεργασιών, καθώς και για τη μελέτη διεργασιών διάβρωσης και ιζηματογένεσης (Sepulveda, et al., 2008), (Liu, et al., 2011), (Taylor, et al., 2016), (Wallbrink & Murray, 1994). Αφαιρείται συνεχώς από την ατμόσφαιρα κυρίως μέσω των υγρών αποθέσεων (Ishikawa, et al., 1995) και εισάγεται στο οικοσύστημα κυρίως ως Be^{2+} (Kaste, et al., 2002). Οι μετρήσεις της συγκέντρωσής του στις υγρές και ξηρές αποθέσεις επιτρέπουν την εκτίμηση της συνολικής ατμοσφαιρικής του εναπόθεσης (Jha, et al., 2015), (Chao, et al., 2012) (Baskaran, et al., 1993). Στο *Σχήμα 2.1* που ακολουθεί δίνεται η καθ' ύψος κατανομή της συγκέντρωσης ενεργότητας του ⁷Be (και του ²²Na) στον ατμοσφαιρικό αέρα.

Σχήμα 2.1 : Κατανομή της μέσης συγκέντρωσης ενεργότητας του ⁷Be και του ²²Na καθ' ύψος, καθώς και το εύρος της κύμανσης των συγκεντρώσεών τους στον επιφανειακό ατμοσφαιρικό αέρα (δείκτης ↔) (Jasiulionis & Wershofen, 2005).

2.1.4 Το ραδιενεργό ισότοπο ²¹⁰Pb

Ο ²¹⁰Pb είναι ένα ραδιενεργό ισότοπο με χρόνο ημιζωής 22.23 έτη το οποίο ανήκει στη ραδιενεργό σειρά του ουρανίου (²³⁸U) και παράγεται από τη ραδιενεργό διάσπαση του ²¹⁴Po. Διασπάται με β-διάσπαση και εκπέμπει φωτόνια ενέργειας 46.54 keV με ποσοστό εκπομπής 4.25%, γεγονός που καθιστά δυνατή – αν και σχετικά δύσκολη – την ανίχνευσή του με μεθόδους γ-φασματοσκοπίας. Το ²¹⁴Po είναι ένα από τα βραχύβια θυγατρικά του ²²²Rn, ενός ευγενούς ραδιενεργού αερίου που ανήκει στη ραδιενεργό σειρά του ουρανίου και εκλύεται κυρίως από το έδαφος στις ηπειρωτικές περιοχές, με

τη συγκέντρωσή του στον ατμοσφαιρικό αέρα να μειώνεται με το ύψος από την επιφάνεια της γης. Ως συνέπεια, αντίστοιχη μείωση ακολουθεί και η συγκέντρωση του ²¹⁰Pb (Daish, et al., 2005), (Lee & Feichter, 1995). Το γεγονός ότι ο ²¹⁰Pb παράγεται κυρίως σε ηπειρωτικές περιοχές³ καθώς και η προσκόλλησή του σε σωματίδια του αερολύματος, τον καθιστά πολύ καλό ιχνηθέτη για σωματίδια του αερολύματος, όπως τα θειώδη, σωματίδια σκόνης και σωματίδια PM10, καθώς και για τη μελέτη της οριζόντιας μεταφοράς αερίων μαζών, αλλά και για τη διάκρισή τους σε ηπειρωτικής ή θαλάσσιας προέλευσης (Turekian, et al., 1983), (Mattsson, et al., 1993), (Martin & McBride, 2012), (Genthon & Armengaud, 1995).

Αντίστοιχα με το ⁷Be, η συγκέντρωση του ²¹⁰Pb επηρεάζεται από πλήθος παραγόντων, όπως είναι η εποχή του έτους, η κύμανση της ατμοσφαιρικής πίεσης, η θερμοκρασία, η περιεχόμενη στο χώμα υγρασία⁴, οι ημερήσιες μεταβολές μετεωρολογικών παραμέτρων, η συχνότητα και το ύψος βροχόπτωσης καθώς και η χιονοκάλυψη των ηπειρωτικών περιοχών. Ο χρόνος παραμονής του ²¹⁰Pb στην τροπόσφαιρα σε περιοχές γεωγραφικού πλάτους όπως η Ελλάδα ποικίλει από 5 μέρες το χειμώνα έως 10 μέρες το καλοκαίρι (Balkanski, et al., 1993), (Semertzidou, et al., 2016), (Papastefanou, 2006). Ειδικότερα, σύμφωνα με (Balkanski, et al., 1993), ο ²¹⁰Pb που παράγεται (ως αποτέλεσμα της διάσπασης του ²²²Rn) σε υψόμετρο 9 km έχει χρόνο παραμονής στην ατμόσφαιρα έως και 4 φορές μεγαλύτερο από αυτόν που παράγεται στο κατώτερο 0.5km της ατμόσφαιρας.

O ²¹⁰Pb από τον αέρα εναποτίθεται⁵ πάλι στο έδαφος μέσω υγρών και ξηρών αποθέσεων⁶, με τον κυρίαρχο ρόλο να έχουν οι υγρές κατακρημνίσεις (Baskaran, 2011), (Koch, et al., 1996), (Cannizzaro, et al., 1999), (Hirose, et al., 2011), (Melieres, et al., 2003), και αποτελεί σημαντικό ραδιοϊχνηθέτη για τη μελέτη της διάβρωσης των εδαφών (Matisoff, 2014). Σύμφωνα με την εκτενή βιβλιογραφική ανασκόπηση που πραγματοποιήθηκε από τους (Zhang, et al., 2021) η συγκέντρωση ενεργότητας του ²¹⁰Pb στην ατμόσφαιρα σε παγκόσμιο επίπεδο κυμαίνεται από 0.003 έως 4.65 mBq/m³.

³ Η μέση παγκόσμια εκροή του ²²²Rn εκτιμάται στα 15 έως 22 mBq/(m²·s) για τις ηπειρωτικές περιοχές και στα 0.2 mBq/(m²·s) για τους ωκεανούς (Rama, et al., 1961), (Samuelsson, et al., 1986), (Nazaroff, 1992).

⁴ Καθώς επηρεάζει την εκροή του ραδονίου από το έδαφος.

⁵ Ο επιπλέον αυτός ²¹⁰Pb, καθώς δεν είναι σε ισορροπία στο έδαφος με το ήδη υπάρχον ²²⁶Ra, συνήθως χαρακτηρίζεται "unsupported" ²¹⁰Pb.

⁶ Ως αποτέλεσμα της απόθεσης αυτής στο έδαφος και της εν συνεχεία κατακόρυφης μετανάστευσης του ²¹⁰Pb, στα αδιατάρακτα επιφανειακά εδάφη παρατηρείται αυξημένη συγκέντρωση ²¹⁰Pb στην επιφάνεια και εκθετική κατά βάθος μείωση της συγκέντρωσης του.

2.1.5 Τα ραδιενεργά ισότοπα 222 Rn και 220 Rn

Το Ραδόνιο (²²²Rn) και το Θορόνιο (²²⁰Rn) είναι δύο αέρια ραδιενεργά ισότοπα τα οποία εισέρχονται στην ατμόσφαιρα ως θυγατρικά του ²²⁶Ra (σειρά του ²³⁸U) και του ²²⁴Ra (σειρά του ²³²Th). Το ²²²Rn έχει χρόνο ημιζωής 3.8232d, ενώ το ²²⁰Rn έχει χρόνο ημιζωής 55.8s. Η σημαντική αυτή διαφορά στους χρόνους ημιζωής δίνει στο ραδόνιο τη δυνατότητα να μετακινηθεί σημαντικά μεγαλύτερες αποστάσεις, να βρεθεί ευκολότερα στην ατμόσφαιρα και να αποθέσει τα θυγατρικά του ραδιενεργά ισότοπα αρκετά μακριά από το σημείο εκπομπής/παραγωγής του, συγκριτικά με το θορόνιο. Για τον λόγο αυτό το ραδόνιο έχει μεγαλύτερη ραδιοβιολογική σημασία και η κινητική του έχει διερευνηθεί περισσότερο στη βιβλιογραφία.

Κατά τη διάρκεια των δειγματοληψιών αερολύματος πάνω σε φίλτρα, τα βραχύβια φορτισμένα θυγατρικά του ραδονίου και του θορονίου συλλέγονται στα φίλτρα, εισάγοντας «θόρυβο» στις γ-φασματοσκοπικές αναλύσεις που ακολουθούν. Επιπροσθέτως, καθώς το ραδόνιο και το θορόνιο παράγονται από τα οικοδομικά υλικά και απελευθερώνονται και στους εσωτερικούς χώρους, τα θυγατρικά τους συνεισφέρουν σημαντικά στο υπόστρωμα των γ-φασματοσκοπικών αναλύσεων. Στον Πίνακα 2.1 δίνονται τα θυγατρικά του ραδονίου και του θορονίου τα οποία παρουσιάζουν το μεγαλύτερο ενδιαφέρον για τις γ-φασματοσκοπικές αναλύσεις (Be, et al., 2008) (Be, et al., 2004).

Μητρικά ραδιενεργά ισότοπα	Θυγατρικά ραδιενεργά ισότοπα	Χρόνος ημιζωής	Ενέργειες κυρίαρχων εκπομπών φωτονίων (keV)	Ποσοστά εκπομπής (%)
	214ph	26.016 min	295.224	18.414
	ΓŬ	20.910 IIIII	351.932	35.60
²²² P n	²¹⁴ Bi	19.8 min	609.312	45.49
Rn			1120.287	14.91
			1764.494	15.31
	²¹⁰ Pb	22.23 a	46.539	4.252
²²⁰ D n	²¹² Pb	10.64 h	238.632	43.6
Kn	²⁰⁸ Tl	3.058 min	583.187	85.0

Πίνακας 2.1: Κυρίαρχου ενδιαφέροντος θυγατρικά ραδιενεργά ισότοπα του ραδονίου (²²²Rn) και του θορονίου (²²⁰Rn).

2.1.5.1 Κύμανση του $^{222} Rn$ και του $^{220} Rn$

Μεγάλος αριθμός μελετών έχει γίνει με αντικείμενο τη μελέτη της κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του σε εσωτερικούς και εξωτερικούς χώρους. Βάσει των μελετών αυτών (El-Hussein, 1996), (Huet, et al., 2010), (Stochioiu, et al., 2008), (De Francesco, et al., 2010), (Steck, 2009), (Clouvas, et al., 2011), (Tchorz-Trzeciakiewicz & Klos, 2017), η συγκέντρωση του ραδονίου και του θορονίου μπορεί να ποικίλει ανάλογα με το είδος του υπεδάφους και το περιεχόμενό του σε ουράνιο (και κατ' επέκταση ράδιο) και θόριο, σε συνδυασμό με το μέγεθος των πόρων του εδάφους, την υγρασία και άλλες παραμέτρους. Τα οικοδομικά υλικά και η συγκέντρωσή τους σε ράδιο, ο εξαερισμός των δωματίων καθώς και η απόσταση κάθε δωματίου-ορόφου ενός κτιρίου από το έδαφος – κατά κανόνα παρατηρείται μείωση της συγκέντρωσης όσο υψηλότερος είναι ο όροφος – έχουν πολύ μεγάλη επίδραση στις συγκεντρώσεις ραδονίου και θορονίου σε εσωτερικούς

Η κύμανση του ραδονίου και των θυγατρικών του επηρεάζεται ακόμα σημαντικά και από τις διάφορες μετεωρολογικές παραμέτρους. Συγκεκριμένα, σύμφωνα με προηγούμενες μελέτες (Robinson, 1996), (Kitto, 2005), (Xie, et al., 2015), (Schubert, et al., 2018), (Li, et al., 2018), (Aquilina & Fenech, 2019), (Baltrenas, et al., 2020), (Singh, et al., 2005), (Martin & McBride, 2012) η συγκέντρωση του ραδονίου συσχετίζεται:

- αρνητικά με την εξωτερική θερμοκρασία,
- αρνητικά με τη θερμοκρασία του σημείου δρόσου,
- αρνητικά με την ταχύτητα του ανέμου,
- θετικά με την εξωτερική βαρομετρική πίεση,
- θετικά με την εξωτερική σχετική υγρασία,
- θετικά με τη διαφορά της εσωτερικής (μέσα στο κτίριο) από την εξωτερική πίεση (ΔPout-in),
- θετικά με τη διαφορά της εσωτερικής (μέσα στο κτίριο) με την εξωτερική θερμοκρασία (ΔT_{out-in}).

Καθώς η κύμανση του ραδονίου, του θορονίου και των θυγατρικών τους μπορεί να επηρεάζει σημαντικά το υπόστρωμα των γ-φασματοσκοπικών αναλύσεων, ειδικά σε μετρήσεις πολύ χαμηλών επιπέδων ραδιενέργειας, η κύμανση αυτή και η αντίστοιχη επίδραση στις γ-φασματοσκοπικές αναλύσεις αποτελεί αντικείμενο ευρείας μελέτης στα πλαίσια της παρούσας Δ.Δ..

2.2 Ατμοσφαιρικές αποθέσεις

Τα ραδιενεργά ισότοπα, που βρίσκονται στην ατμόσφαιρα με ποικίλους τρόπους, μετά την προσκόλλησή τους στα σωματίδια του αερολύματος ακολουθούν την κίνηση και συμπεριφορά του αερολύματος και τελικά αποτίθενται στις επιφάνειες που είναι διαθέσιμες – κυρίως στο έδαφος. Οι ατμοσφαιρικές αποθέσεις των ραδιενεργών ισοτόπων μπορούν να διακριθούν σε ξηρές και υγρές (βροχή, χιόνι).

Ως ξηρή απόθεση ορίζεται η διαδικασία της εναπόθεσης λόγω διάχυσης ή λόγω της επίδρασης της βαρύτητας. Στις υγρές αποθέσεις ο κυρίαρχος μηχανισμός που οδηγεί στην εναπόθεση από την ατμόσφαιρα στο έδαφος είναι οι υγρές κατακρημνίσεις, βροχή και χιόνι. Οι μηγανισμοί υγρής απόθεσης διακρίνονται σε rainout/snowout και washout. Ειδικότερα, στις συνθήκες θερμοκρασίας και σχετικής υγρασίας που λαμβάνει χώρα ο σχηματισμός των νεφών, τα σωματίδια του αερολύματος είναι απαραίτητα καθώς προσφέρουν τους πυρήνες πάνω στους οποίους συμπυκνώνεται το νερό ή ο πάγος, οδηγώντας στον σχηματισμό σταγονιδίων και κατ' επέκταση των ίδιων των νεφών. Η ενσωμάτωση των σωματιδίων του ατμοσφαιρικού αερολύματος στα σταγονίδια των νεφών οδηγεί στη συνέγεια στην απομάκρυνσή τους από την ατμόσφαιρα και την εναπόθεσή τους στο έδαφος μέσω των υγρών αποθέσεων (Kreidenweis, 2002). Η απομάκρυνση των ραδιενεργών ισοτόπων που βρίσκονται μέσα στα σταγονίδια του νέφους και απομακρύνονται με τις σταγόνες της βροχής ή του χιονιού αποτελεί το rainout ή το snowout αντίστοιχα. Παράλληλα, κατά τη διάρκεια ενός φαινομένου βροχόπτωσης ή χιονόπτωσης, οι σταγόνες ή οι χιονονιφάδες κατακρημνίζουν (συμπαρασύρουν) και σωματίδια του ατμοσφαιρικού αερολύματος που βρίσκονται μεταξύ του νέφους και του εδάφους. Αυτός ο μηγανισμός κατακρήμνισης ατμοσφαιρικών σωματιδίων και κατ' επέκταση ραδιενεργών ισοτόπων ονομάζεται washout. Εν γένει, κατά τη διάρκεια μίας βροχόπτωσης/χιονόπτωσης συνυπάρχουν και οι δύο μηγανισμοί απομάκρυνσης του αερολύματος από την ατμόσφαιρα. Καθώς το φαινόμενο υγρής απόθεσης εξελίσσεται, το μεγαλύτερο μέρος της συγκέντρωσης των ραδιενεργών ισοτόπων μεταξύ νέφους και εδάφους εξαντλείται, με αποτέλεσμα το rainout/snowout να κυριαρχεί στο υπόλοιπο του φαινομένου και οι μετρούμενες συγκεντρώσεις των ραδιενεργών ισοτόπων να οφείλονται στις περιεχόμενες στο νέφος συγκεντρώσεις. Για τη διάκριση των δύο φαινομένων ιδιαίτερα επεξηγηματικό είναι το Σχήμα 2.2. Σύμφωνα με τη μελέτη των (Chen, et al., 2016), το φαινόμενο washout

κυριαρχεί στα πρώτα 20mm της βροχόπτωσης ενώ στη συνέχεια κυριαρχεί το φαινόμενο rainout. Επιπλέον, εκτιμάται ότι κατά το πρώτο 1mm της βροχόπτωσης συντελείται το 27% έως 34% του συνολικού washout (Ishikawa, et al., 1995).

- O snow flakes or rain drops
- aerosols with radionuclides

Σχήμα 2.2 : Σχηματική αναπαράσταση της υγρής κατακρήμνισης των σωματιδίων του ατμοσφαιρικού αερολύματος και κατ' επέκταση των ραδιενεργών ισοτόπων από σταγόνες βροχής ή χιόνι, όπου (A) κατακρήμνιση αποκλειστικά μέσω rainout, (B) κατακρήμνιση αποκλειστικά από washout, και (C) κατακρήμνιση από συνδυασμό rainout και washout (Ishikawa, et al., 1995).

Η ατμοσφαιρική εναπόθεση των ραδιενεργών ισοτόπων στο έδαφος αποτελεί αντικείμενο ενδιαφέροντος για μεγάλο πλήθος ερευνών, καθώς η μελέτη τους συνδράμει στην κατανόηση της κίνησης των αερίων μαζών και της συμπεριφοράς των σωματιδίων του ατμοσφαιρικού αερολύματος, αλλά και στον έλεγχο και επιβεβαίωση διαφόρων μετεωρολογικών μοντέλων (Zhang, et al., 2021), (Baklanov & Sorensen, 2001).

2.2.1 Δειγματοληψία και ανάλυση ατμοσφαιρικών αποθέσεων

Το μεγαλύτερο μέρος της παρούσας Δ.Δ. εστιάζει στη δειγματοληψία, την επεξεργασία και την ανάλυση ατμοσφαιρικών αποθέσεων. Στη βιβλιογραφία, η χρονική διάρκεια των δειγματοληψιών αυτών ποικίλει από μερικές ημέρες έως μερικούς μήνες, ανάλογα με τον στόχο της εκάστοτε μελέτης, ενώ τα δύο βασικά ραδιενεργά ισότοπα που ανιχνεύονται στην πλειοψηφία των δειγματοληψιών αυτών είναι το ⁷Be και ο ²¹⁰Pb. Οι δειγματολήπτες που χρησιμοποιούνται μπορεί να είναι μεταλλικά ή πλαστικά δοχεία συλλογής, κωνικές ή επίπεδες επιφάνειες, να καλύπτονται από κολλώδεις ουσίες (για τις ξηρές αποθέσεις) και να ξεπλένονται σε τακτά χρονικά διαστήματα με απιονισμένο ή οξινισμένο νερό (Σχήμα 2.3) (Roupsard, 2013), (Erickson, 1997). Εν γένει, η δειγματοληψία αυστηρά υγρών ή ξηρών κατακρημνίσεων απαιτεί αυτοματοποιημένα συστήματα επιλογής τους είδους της κατακρήμνισης ή συνεχή παρακολούθηση της διαδικασίας συλλογής δείγματος, σε συνδυασμό με τις μετεωρολογικές συνθήκες. Συχνά, μία δειγματοληψία μπορεί να γίνεται για καθορισμένη χρονική περίοδο, ανεξάρτητα από τις μετεωρολογικές συνθήκες – στην περίπτωση αυτή γίνεται συλλογή ολικών αποθέσεων, δηλαδή υγρών και ξηρών στο ίδιο δείγμα.

Σχήμα 2.3 : α) Φωτογραφία από αυτοματοποιημένους συλλέκτες ξηρής και υγρής απόθεσης (αριστερά) (Erickson, 1997), β) Φωτογραφία πειραματικής εγκατάστασης για τη σύγκριση διαφόρων τύπων επιφανειών για τη συλλογή ξηρής απόθεσης κατασκευασμένων από διάφορα υλικά (δεξιά) (Roupsard, 2013).

Για την επεξεργασία των υγρών ή ολικών αποθέσεων⁷, είναι ιδιαίτερα σημαντική η διαδικασία που θα ακολουθηθεί για τον περιορισμό του όγκου του δείγματος ή την απομόνωση των ραδιενεργών ισοτόπων από αυτό. Οι κυρίαρχες προσεγγίσεις που προτείνονται και έχουν υιοθετηθεί στη βιβλιογραφία συνοψίζονται στη συνέχεια:

⁷ Που μπορεί να περιέχουν και σημαντική υγρή συνιστώσα.

- Α. Φιλτράρισμα του συνόλου του δείγματος ή ενός κλάσματος αυτού μέσα από χάρτινο φίλτρο διήθησης και στη συνέχεια γ-φασματοσκοπική ανάλυση του φίλτρου (Papandreou, et al., 2011), (Juri Ayub, et al., 2009), ή χημική επεξεργασία του και α-φασματοσκοπική ανάλυση του υπολείμματος (Tateda & Iwao, 2008). Η προσέγγιση αυτή ωστόσο δεν επιτυγχάνει την πλήρη συγκράτηση των περιεχόμενων στο δείγμα ραδιενεργών ισοτόπων.
- B. Πλήρης ή μερική εξάτμιση του δείγματος για την επίτευξη μικρότερων και διαχειρίσιμων όγκων δειγμάτων (Rodenas, et al., 1997) η οποία όμως μπορεί να οδηγήσει σε απώλεια έως και των 2/3 της συλλεχθείσας ποσότητας του ⁷Be και συνεπώς σε εσφαλμένα τελικά αποτελέσματα (Jungck, et al., 2009).
- Γ. Ραδιοχημική επεξεργασία του υγρού που προέκυψε με κατάλληλες χημικές ουσίες για τη συγκαθίζηση με Fe(OH)³ και απομόνωση των ραδιενεργών ισοτόπων, και εν συνεχεία προσδιορισμός τους με μεθόδους γ- ή α-φασματοσκοπίας (Miyake & Ohtsuka, 1964). (Goel, et al., 1956).
- Δ. Ραδιοχημική επεξεργασία του δείγματος με κατάλληλες χημικές ουσίες για τη συγκαθίζηση με MnO₂ και απομόνωση των ραδιενεργών ισοτόπων, και εν συνεχεία προσδιορισμός τους με μεθόδους γ-φασματοσκοπίας (Wallbrink & Murray, 1994), (Taylor, et al., 2016).
- Ε. Φιλτράρισμα του δείγματος μέσα από ρητίνες ιοντοανταλλαγής κατιόντων, ανιόντων ή συνδυασμό αυτών, με αποτέλεσμα τη συγκράτηση των ραδιενεργών ισοτόπων στις ρητίνες και εν συνεχεία γ-φασματοσκοπική ανάλυση των ρητινών (Jungck, et al., 2009), (Harvey & Matthews, 1989), (Tokuyama, et al., 1993).

Στον Πίνακα 2.3 που δίνεται στο τέλος του παρόντος κεφαλαίου, γίνεται συνοπτικά μία ανασκόπηση των ερευνητικών εργασιών που επικεντρώθηκαν στη δειγματοληψία και ανάλυση ατμοσφαιρικών αποθέσεων και συγκεκριμένα παρατίθενται:

- οι μέσες ετήσιες συγκεντρώσεις των ατμοσφαιρικών αποθέσεων του ²¹⁰Pb και του
 ⁷Be, όπως αυτές μετρήθηκαν σε κάθε έρευνα,
- η χρονική περίοδος των δειγματοληψιών καθώς και η διάρκεια συλλογής των επιμέρους δειγμάτων,
- το υλικό και η συνολική επιφάνεια συλλογής των συλλεκτών που χρησιμοποιήθηκαν,
- η βασική μέθοδος επεξεργασίας των δειγμάτων που συλλέχθηκαν,

η μέθοδος προσδιορισμού της συγκέντρωσης ραδιενέργειας του ⁷Be και του ²¹⁰Pb στα δείγματα.

Οι βασικές μέθοδοι επεξεργασίας και ανάλυσης των δειγμάτων ατμοσφαιρικών αποθέσεων που εφαρμόσθηκαν στις μελέτες που παρουσιάζονται στον Πίνακα 2.3 δίνονται συνοπτικά στο Σχήμα 2.12 στην παράγραφο 2.6 του παρόντος κεφαλαίου.

2.2.2 Συγκεντρώσεις ⁷Be και ²¹⁰Pb στις ατμοσφαιρικές αποθέσεις

Από τα αποτελέσματα των ερευνών που παρουσιάζονται στον Πίνακα 2.3 προκύπτει ένα εύρος μέσων ετήσιων ατμοσφαιρικών αποθέσεων από 47 έως 1054 Bq/(m²·y) για το ²¹⁰Pb και από 390 έως 6350 Bq/(m²·y) για το ⁷Be, ενώ είναι φανερό και το μεγάλο πλήθος των διαφορετικών προσεγγίσεων για τη δειγματοληψία, την επεξεργασία και ανάλυση των δειγμάτων αυτών. Κατά κανόνα, η συγκέντρωση του ⁷Be στις ατμοσφαιρικές αποθέσεις παρουσιάζει θετική συσχέτιση με αυτήν του ²¹⁰Pb, ενώ η απουσία της ανωτέρω συσχέτισης αποτελεί ισχυρή ένδειξη ανάμιξης ηπειρωτικών και θαλάσσιων αερίων μαζών (Baskaran, et al., 1993), (McNeary & Baskaran, 2003), (Baskaran & Swarzenski, 2007), (Kim, et al., 2000).

Όσον αφορά στο μέγεθος των σωματιδίων με τα οποία συσχετίζονται τα ισότοπα ενδιαφέροντος, το 88% της ξηρής απόθεσης του ⁷Be συσχετίζεται με σωματίδια <1.1μm, ενώ μόνο το 1% προσκολλάται σε σωματίδια > 7μm (Young & Silker, 1974), (Papastefanou & Ioannidou, 1996), (Ioannidou & Paatero, 2014). Η συνεισφορά της ξηρής απόθεσης στην ολική απόθεση κυμαίνεται από 1% έως 44% για το ⁷Be και από 5% έως 51% για το ²¹⁰Pb (Zhang, et al., 2021), (Chao, et al., 2012). Όσον αφορά στην ταχύτητα εναπόθεσης, για το ⁷Be έχει εύρος από 0.01 (Wallbrink & Murray, 1994) έως 8.4 cm/s και για τον ²¹⁰Pb από 0.1 έως 12.7 cm/s (Zhang, et al., 2021).

Από τις μελέτες που αναφέρονται στον Πίνακα 2.3, προσδιορίζεται και το εύρος της συγκέντρωσης του ²¹⁰Pb και του ⁷Be και στις υγρές αποθέσεις – ως επί το πλείστον σε δείγματα βροχοπτώσεων. Βάσει των παραπάνω ερευνών, η συγκέντρωση του ²¹⁰Pb και του ⁷Be κυμαίνεται στα δείγματα βροχόπτωσης από 0.01Bq/L (Mohan, et al., 2019) έως 3.3 Bq/L (Caillet, et al., 2001) και από 0.02 Bq/L(Wallbrink & Murray, 1994) έως 10.45 Bq/L (Caillet, et al., 2001) αντίστοιχα. Επιπροσθέτως, στη μελέτη των (Ishikawa, et al., 1995) μετρήθηκε η συγκέντρωση του ⁷Be σε δείγματα χιονιού στα οποία είχε εύρος από 0.223 ± 0.10 Bq/L έως 4.1 ± 0.03 Bq/L. Συγκριτικά, σύμφωνα με τους
(Ioannidou & Papastefanou, 2006), το χιόνι παρουσιάζει υψηλότερη απόδοση στην απομάκρυνση των ραδιενεργών ισοτόπων από την ατμόσφαιρα, σε σχέση με τη βροχόπτωση. Αντίστοιχα με τη βροχόπτωση, σε μεγάλης χρονικής διάρκειας χιονοπτώσεις ο κυρίαρχος μηχανισμός κατακρήμνισης των ραδιενεργών ισοτόπων είναι το snowout (αντίστοιχου του rainout).

Στις περισσότερες από τις μελέτες που παρουσιάζονται στον Πίνακα 2.3 έγινε και υπολογισμός του λόγου ²¹⁰Pb/7Be στις ατμοσφαιρικές αποθέσεις, καθώς αποτελεί χρήσιμο δείκτη για τη μελέτη της κατακόρυφης και οριζόντιας μεταφοράς αερίων μαζών (Baskaran, 1995), (Koch, et al., 1996) (Lee, et al., 2007), (Tositti, et al., 2014), με τις τιμές του να βρίσκονται στο εύρος μεταξύ 0.004 έως 0.5 (Zhang, et al., 2021). Ο λόγος αυτός σχετίζεται αρνητικά με το πλήθος των υγρών κατακρημνίσεων, κάτι το οποίο αποδίδεται στο γεγονός ότι τους μήνες με τις περισσότερες υγρές κατακρημνίσεις η υγρασία στο έδαφος φτάνει σε κορεσμό, με αποτέλεσμα να εμποδίζεται η εκροή του ²²²Rn από αυτό και κατά συνέπεια, να ανανεώνεται με χαμηλότερο ρυθμό η συγκέντρωση του ²¹⁰Pb στον αέρα. Υπολογίζεται ότι μετά από ένα συμβάν βροχόπτωσης οι ατμοσφαιρικές συγκεντρώσεις του ⁷Be και του ²¹⁰Pb ανανεώνονται κατά μέσο όρο σε 1 με 2 ημέρες (Caillet, et al., 2001). Ακόμα, το καλοκαίρι, λόγω συναγωγής, ο ²¹⁰Pb κινείται ανοδικά, ενώ αντίθετα η αύξηση της θερμοκρασίας οδηγεί στη μεταφορά ⁷Be από τα ανώτερα στρώματα της ατμόσφαιρας στα κατώτερα (Rogers & Nielson, 1991), οδηγώντας σε μείωση του λόγου τους στον επιφανειακό ατμοσφαιρικό αέρα (Koch, et al., 1996).

2.2.3 Συσχέτιση με μετεωρολογικές και άλλες παραμέτρους

Οι συγκεντρώσεις του ⁷Be και του ²¹⁰Pb στον ατμοσφαιρικό αέρα και τις ατμοσφαιρικές αποθέσεις κυμαίνονται, επηρεαζόμενες από πλήθος διαφορετικών παραγόντων, όπως είναι οι τοπικές μετεωρολογικές διακυμάνσεις, οι συγκεντρώσεις των ατμοσφαιρικών ρυπαντών στην ατμόσφαιρα, καθώς και η γεωγραφική θέση όπου έγινε η δειγματοληψία.

Ειδικότερα, το ⁷Be και ο ²¹⁰Pb παρουσιάζουν παρόμοιες εποχικές μεταβολές, με τις μέγιστες επιφανειακές συγκεντρώσεις να παρατηρούνται τον χειμώνα και τις ελάχιστες το καλοκαίρι, κυρίως λόγω των αυξημένων υγρών κατακρημνίσεων τους χειμερινούς μήνες (Yamamoto, et al., 2006). Η συγκέντρωση τους στις ατμοσφαιρικές αποθέσεις εμφανίζει σε ορισμένες από τις σχετικές έρευνες θετική συσχέτιση με το ύψος των

υγρών κατακρημνίσεων (βροχή και χιόνι) (Doering & Akber, 2008), (Beks, et al., 1998), (Nishikawa, et al., 1984), (Melieres, et al., 2003), (Baskaran, et al., 1993). Στην έρευνα των (Taylor, et al., 2016) υποστηρίζεται ότι χαμηλής έντασης βροχόπτωση οδηγεί σε αποτελεσματικότερη κατακρήμνιση των ραδιενεργών ισοτόπων, συγκριτικά με την υψηλής έντασης βροχόπτωση.

Από την άλλη πλευρά, οι συγκεντρώσεις των εν λόγω ραδιενεργών ισοτόπων στον ατμοσφαιρικό αέρα ακολουθούν διαφορετική τάση (Daish, et al., 2005) παρουσιάζοντας αρνητική συσχέτιση με το ύψος της βροχόπτωσης, την ένταση του ανέμου και τη σχετική υγρασία και θετική συσχέτιση με τη θερμοκρασία (Mohan, et al., 2019), (Zalewska, et al., 2021), (Ioannidou, et al., 2005), (Duenas, et al., 2009).

Στα υψηλά γεωγραφικά πλάτη οι συγκεντρώσεις του ⁷Be εξαρτώνται κυρίως από τη μεταφορά αερίων μαζών που προέρχονται από τα μεσαία γεωγραφικά πλάτη, στα οποία παρατηρείται έντονη εποχική κατακόρυφη ανταλλαγή αερίων μαζών μεταξύ στρατόσφαιρας-τροπόσφαιρας, με τις μέγιστες συγκεντρώσεις να παρατηρούνται τους θερμούς μήνες. Ακόμα, παρατηρούνται υψηλότερες συγκεντρώσεις του ⁷Be σε παραθαλάσσιες περιοχές, καθώς υπάρχουν περισσότεροι διαθέσιμοι προς συμπύκνωση πυρήνες λόγω της υψηλότερης περιεκτικότητας του αερολύματος σε θειώδη (Feely, et al., 1989).

Καθώς η ατμοσφαιρική απόθεση των ραδιενεργών ισοτόπων ποικίλει από περιοχή σε περιοχή, στην έρευνα των (Preiss, et al., 1996) έγινε προσπάθεια γεωγραφικής ομαδοποίησης των ατμοσφαιρικών αποθέσεων του ²¹⁰Pb. Οι περιοχές των δειγματοληψιών κατανεμήθηκαν βάσει του γεωγραφικού τους πλάτους και για κάθε ομάδα προσδιορίσθηκε ο μέσος ετήσιος ρυθμός εναπόθεσης, όπως φαίνεται στον Πίνακα 2.2 που ακολουθεί. Επισημαίνεται ότι οι περιοχές δειγματοληψίας ατμοσφαιρικών αποθέσεων της παρούσας Δ.Δ. αντιστοιχούν στο εύρος 30°-60° Ν.

<i>itiliooo</i> (110155, <i>et u</i> , 1990).	
Εύρος γεωγραφικού πλάτους	Μέσος ετήσιος ρυθμός απόθεσης 210 Pb [Bq/(y·m ²)]
60°-80° N	25
30°-60° N	117
10°-30° N	161
10°-30° N	66
30°-50° N	53
60°-90° N	3.5

Πίνακας 2.2: Μέσος ετήσιος ρυθμός απόθεσης του ²¹⁰Pb ανά εύρος γεωγραφικού πλάτους σε παγκόσμιο επίπεδο (Preiss, et al., 1996).

Οι συγκεντρώσεις ενεργότητας του ⁷Be και του ²¹⁰Pb παρουσιάζουν παρόμοια συμπεριφορά με τις συγκεντρώσεις του αερολύματος και διαφόρων ατμοσφαιρικών ρυπαντών. Συγκεκριμένα, έχει παρατηρηθεί ισχυρή θετική συσχέτιση μεταξύ της συγκέντρωσης του ²¹⁰Pb και του ⁷Be με τα σωματίδια PM10 του αερολύματος (Mohan, et al., 2019) καθώς και θετική συσχέτιση της συγκέντρωσης ενεργότητας του ⁷Be με τη συγκέντρωση του O₃ και τη συγκέντρωση σκόνης στον ατμοσφαιρικό αέρα (Tositti, et al., 2014), (Huang, et al., 2022), (Zalewska, et al., 2021), κάτι το οποίο διερευνήθηκε και στη μελέτη των (Chao, et al., 2014) χωρίς όμως να οδηγήσει σε αντίστοιχα αποτελέσματα.

2.3 Χρήση των ⁷Be και ²¹⁰Pb ως ιχνηθέτες σε ατμοσφαιρικά και άλλα μοντέλα

Η γνώση της συγκέντρωσης στην ατμόσφαιρα και του ρυθμού απόθεσης των ραδιενεργών ισοτόπων έχει πολύ μεγάλη σημασία και βρίσκει μία σειρά από εφαρμογές. Έχοντας γνώση του συνόλου των ατμοσφαιρικών αποθέσεων των ραδιενεργών ισοτόπων, σε συνδυασμό με τις ατμοσφαιρικές τους συγκεντρώσεις, καθώς και με την κατά βάθος κατανομή τους στο έδαφος ή στη στήλη του νερού υπάρχει η δυνατότητα:

- εκτίμησης της εξωτερικής δόσης στον άνθρωπο ((Pröhl, et al., 2012), (ICRP, 2020), (Müller & Prohl, 1993) μετά από πυρηνικό ή ραδιολογικό ατύχημα,
- υπολογισμού της συγκέντρωσής τους στην τροφική αλυσίδα, με χρήση κατάλληλων υπολογιστικών μοντέλων όπως το NUREG 1.109 (Till & Meyer, 1983), το FARMLAND (Brown & Simmonds, 1995), το ECOSYS (Müller & Prohl, 1993), το PATHWAY (Whicker & Kirchner, 1987) και το RadCon (Crawford & Domel, 2000), (Crawford, et al., 2000),
- υπολογισμού των χρόνων παραμονής ραδιενεργών ισοτόπων και σωματιδίων αερολύματος στην ατμόσφαιρα, σε ποταμούς καθώς και στη στήλη του νερού σε θαλάσσια περιβάλλοντα (Koch, et al., 1996), (Ciffroy, et al., 2003), (Baskaran & Swarzenski, 2007), (Dlugosz-Lisiecka, 2021), (Graustein & Turekian, 1986),
- εκτίμησης της συσσωρευτικής συνολικής εναπόθεσής τους στην επιφάνεια της Γης ((Feichter, et al., 1991), (Young & Silker, 1974),
- μοντελοποίησης των διεργασιών ξηρής και υγρής απόθεσης (Sportisse, 2007),

- μοντελοποίησης και προσδιορισμού διεργασιών διάβρωσης και ιζηματογένεσης
 εδαφών (Wallbrink & Murray, 1994), (Matisoff, 2014), (Taylor, et al., 2016),
- χρήσης σε μοντέλα οριζόντιας μεταφοράς αερίων μαζών ή κατακόρυφης ανάμιξης μεταξύ στρατόσφαιρας και τροπόσφαιρας (Zanis, et al., 2003), (Hongyu, et al., 2016), (Melieres, et al., 2003).

Ειδικότερα, η μελέτη της μεταφοράς αερίων μαζών βρίσκεται τα τελευταία χρόνια στο επίκεντρο του ενδιαφέροντος της επιστημονικής κοινότητας, και πλήθος μοντέλων έχουν δημιουργηθεί για την προσομοίωση και πρόβλεψή της. Συγκεκριμένα, γενικής κυκλοφορίας ατμοσφαιρικά μοντέλα (General Circulation Models – GCMs) όπως τα GISS (Hansen, et al., 1983) και LMD (Sadourny & Laval, 1984), καθώς και μοντέλα χημικών ραδιοϊχνηθετών (Chemistry Tracer Models – CTMs) χρησιμοποιούν τα ισότοπα ²¹⁰Pb και ⁷Be ως ραδιοϊχνηθέτες, και σε συνδυασμό με μετεωρολογικές παραμέτρους επιβεβαιώνουν και βελτιώνουν τις προσομοιώσεις μεταφοράς αερίων μαζών (Gerasopoulos, et al., 2003), (Genthon & Armengaud, 1995), (Terzi & Kalinowski, 2017), (Heinrich & Jamelot, 2011), (Hongyu, et al., 2016), (Feichter, et al., 1991), (Preiss & Genthon, 1997) (Preiss, et al., 1996), (Liu, et al., 2001), (Lee, et al., 2004).

O ²¹⁰Pb χρησιμοποιείται κυρίως ως ραδιοϊχνηθέτης για τη μεταφορά αερίων μαζών πάνω από ηπειρωτικές (υψηλές συγκεντρώσεις ²¹⁰Pb) ή και θαλάσσιες (χαμηλές συγκεντρώσεις ²¹⁰Pb) περιοχές (Paatero & Hatakka, 2000), (Piliposian & Appleby, 2003), (Duenas, et al., 2011) καθώς και για τη μελέτη της ανάμιξης αερίων μαζών μεταξύ στρατόσφαιρας και τροπόσφαιρας (Jacobi & Andre, 1963), (Rehfeld & Heimann, 1995).

Το ⁷Be χρησιμοποιείται κυρίως ως ραδιοϊχνηθέτης για την κατακόρυφη ανάμιξη αερίων μαζών (Genthon & Armengaud, 1995) καθώς και για τη μεταφορά αέρα μεταξύ στρατόσφαιρας και τροπόσφαιρας (Alonso Hernandez, et al., 2004), (Simon, et al., 2009), (Pacini, et al., 2015), (Rehfeld & Heimann, 1995). Οι υψηλές συγκεντρώσεις ⁷Be στον επιφανειακό αέρα υποδεικνύουν εισροή αερίων μαζών από τα κατώτερα στρώματα της στρατόσφαιρας και τα ανώτερα στρώματα της τροπόσφαιρας, (Alonso-Hernandez, et al., 2014). Ειδικότερα, σε φαινόμενα αναδίπλωσης της τροπόπαυσης, η εισβολή του ξηρού στρατοσφαιρικού αέρα συνοδεύεται από τιμές σχετικής υγρασίας μικρότερες του 40%, καθώς και από αύξηση των επιφανειακών συγκεντρώσεων του όζοντος (Ακριτίδης, 2008), (Hernandez-Ceballos, et al., 2017), (Stohl, et al., 2000), οι οποίες

συσχετίζονται θετικά με τις συγκεντρώσεις του ⁷Be (Huang, et al., 2022), (Zanis, et al., 2003), (Scheel, et al., 1999), (Allen, et al., 2003), (Cristofanelli, et al., 2006), (Mohan, et al., 2019). Σύμφωνα με τη μελέτη των (Ioannidou, et al., 2014), η συγκέντρωση του ⁷Be στον ατμοσφαιρικό αέρα ανταποκρίνεται μέσα σε 3 μέρες στην αλλαγή του ύψους της τροπόπαυσης, το οποίο παρουσιάζει θετική συσχέτιση με τη θερμοκρασία. Στην περίπτωση που δεν παρατηρείται συσχέτιση μεταξύ ⁷Be και του Ο3 προκύπτει το συμπέρασμα ότι για την περιοχή ενδιαφέροντος, καθώς και για τη χρονική διάρκεια της μελέτης δεν υπάρχει ισχυρή επίδραση της στρατόσφαιρας στις συγκεντρώσεις των ανωτέρω στην τροπόσφαιρα (Liu, et al., 2004), ή ότι η παρουσία του Ο3 οφείλεται κυρίως σε ανθρωπογενείς παράγοντες (ρυπαντές που εκλύονται από μηχανές εσωτερικής καύσης, εργοστάσια παραγωγή ενέργειας, διυλιστήρια κλπ.) που μπορεί να επηρεάσουν τις συσχετίσεις μεταξύ του Ο3 και του ⁷Be (Μπασιάς, 2013).

Επιπλέον των παραπάνω εφαρμογών σε μοντέλα, οι ραδιενεργοί ιχνηθέτες ⁷Be και ²¹⁰Pb παρέχουν τη δυνατότητα υπολογισμού μίας σειράς παραμέτρων που χαρακτηρίζουν την εναπόθεση και κίνηση των ραδιενεργών ισοτόπων και του αερολύματος στο περιβάλλον, όπως:

Α. Η ταχύτητα εναπόθεσης του αερολύματος

Η ταχύτητα εναπόθεσης είναι ένα μέγεθος που προσδιορίζεται εμπειρικά βάσει της εξίσωσης (2.1) (Young & Silker, 1980):

$$u_{d} = \frac{F}{C}$$
(2.1)

Όπου

F: ο επιφανειακός ρυθμός απόθεσης του ραδιενεργού ισοτόπου σε Bq/(s·m²)

C: η συγκέντρωση ενεργότητας του ραδιενεργού ισοτόπου στον ατμοσφαιρικό αέρα

 Bq/m^3

και επηρεάζεται από πλήθος παραγόντων όπως:

- το μέγεθος των σωματιδίων του ατμοσφαιρικού αεροζόλ,
- τα χαρακτηριστικά της διεπαφής μεταξύ ατμοσφαιρικού αέρα και επιφάνειας εναπόθεσης,

- τις μετεωρολογικές συνθήκες,
- τη χημική μορφή στην οποία βρίσκονται οι προς απόθεση χημικές ουσίες και σωματίδια του αερολύματος.

Ως προς την ταχύτητα ξηρής απόθεσης, για μεγάλου μεγέθους σωματίδια κυρίαρχο ρόλο έχει η επίδραση της βαρύτητας ενώ για μικρού μεγέθους σωματίδια (<0.1μm) κυριαρχεί το φαινόμενο της διάχυσης (Pröhl, et al., 2012), με την ταχύτητα ξηρής απόθεσης να συσχετίζεται θετικά με την ταχύτητα του ανέμου και αρνητικά με τη θερμοκρασία και την υγρασία (Chen, et al., 2012), (Young & Silker, 1980).

B. Ο συντελεστής επαναιώρησης σκόνης

Η επαναιώρηση της σκόνης από το επιφανειακό έδαφος στην ατμόσφαιρα είναι κυρίως αποτέλεσμα (Hernandez, et al., 2007):

- της επίδρασης του ανέμου,
- της συνδυαστικής επίδρασης ισχυρών καταιγίδων με έντονους ανέμους,
- του παφλασμού των σταγόνων της βροχής (rainsplash),
- της κίνηση των οχημάτων,
- των αγροτικών εργασιών,
- των εργασιών εξόρυξης.

Η επαναιώρηση αξιολογείται μέσω του υπολογισμού του εμπειρικού συντελεστή επαναιώρησης "K" (m⁻¹), ο οποίος υπολογίζεται διαιρώντας την ατμοσφαιρική συγκέντρωση (Bq/m³) του εκάστοτε ραδιενεργού ισοτόπου με τη συγκέντρωση της επιφανειακής του εναπόθεσης (Bq/m²) βάσει της εξίσωσης (2.2) (IAEA, 1992), (Papastefanou, 2008):

$$k = \frac{C_{air}}{C_{dep}}$$
(2.2)

Όπου

 C_{air} : η συγκέντρωση ραδιενέργειας του εκάστοτε ραδιενεργού ισοτόπου στον

ατμοσφαιρικό αέρα Bq/m³

 C_{dep} : η επιφανειακή συγκέντρωση ραδιενέργειας του εκάστοτε ραδιενεργού ισοτόπου Bq/m² Οι τιμές του συντελεστή επαναιώρησης υπολογίζονται κυρίως για ραδιενεργά ισότοπα που απαντώνται στο ατμοσφαιρικό αερόλυμα αποκλειστικά λόγω της επαναιώρησής τους από το έδαφος. Ωστόσο, βάσει παρελθοντικών ερευνών έχουν προσδιοριστεί και μέσω των συγκεντρώσεων του ⁷Be, και κυμαίνονται από $0.16 \cdot 10^{-3}$ m⁻¹ (Papastefanou & Ioannidou, 1991), (Papastefanou, et al., 1995).

2.4 Παρακολούθηση της ραδιενέργειας περιβάλλοντος στο ΕΠΤ-ΕΜΠ

Από τις σημαντικές δραστηριότητες του ΕΠΤ-ΕΜΠ διαχρονικά είναι η συστηματική παρακολούθηση (monitoring) της ραδιενέργειας περιβάλλοντος. Αυτό επιτυγχάνεται με συνεχείς δειγματοληψίες και αναλύσεις του αερολύματος της ατμόσφαιρας (Papandreou, et al., 2011), υγρών και ξηρών ατμοσφαιρικών αποθέσεων (Savva, et al., 2018), (Mitsios & Anagnostakis, 2020), ενώ όποτε χρειάζεται πραγματοποιούνται δειγματοληψίες από το έδαφος (Anagnostakis, et al., 1996). Στο πλαίσιο των συστηματικών δειγματοληψιών και αναλύσεων, γίνεται μία συνεγής προσπάθεια για τη βελτίωση των τεχνικών δειγματοληψίας και ανάλυσης και την επίτευξη υψηλότερης ακρίβειας και χαμηλότερων επιπέδων ανίχνευσης (Minimum Detectable Activity – MDA). Παράλληλα, γίνεται μία συνεχής προσπάθεια ανάπτυξης νέων πρωτοκόλλων δειγματοληψίας και ανάλυσης που να ανταποκρίνονται σε πλήθος περιπτώσεων, είτε αυτές αποτελούν συστηματικές μετρήσεις ρουτίνας είτε μετρήσεις για έκτακτα περιστατικά έκλυσης ραδιενεργών ισοτόπων στο περιβάλλον (Potiriadis, et al., 2013). Στις παραγράφους που ακολουθούν γίνεται μία πολύ σύντομη περιγραφή των παραπάνω δραστηριοτήτων, με έμφαση σε αυτές που συνδέονται με την επιτήρηση της ραδιενέργειας στην ατμόσφαιρα.

2.4.1 Δειγματοληψίες και αναλύσεις χώματος

Η συλλογή, η επεξεργασία και η ανάλυση δειγμάτων χώματος βρίσκεται στο επίκεντρο του ενδιαφέροντος του ΕΠΤ-ΕΜΠ για περίπου 40 χρόνια. Πρακτικά ξεκίνησε το 1986 με αφορμή τη διασπορά ραδιενεργών ισοτόπων στον Ελλαδικό χώρο εξαιτίας του ατυχήματος του Chernobyl. Έκτοτε, μεγάλο πλήθος δειγμάτων (> 2500) συλλέχθηκε και αναλύθηκε οδηγώντας στον προσδιορισμό της συγκέντρωσης μίας σειράς ραδιενεργών ισοτόπων σε αυτό (¹³⁷Cs, ¹³⁴Cs, ¹²⁵Sb, ^{110m}Ag, ⁹⁵Zr, ¹⁴¹Ce, ¹⁴⁴Ce,

¹⁰³Ru, ¹⁰⁶Ru, ⁵⁴Mn, ²²⁶Ra, ²³²Th, ⁴⁰K, ²³⁸U, ²¹⁰Pb), καθώς και στη δημιουργία χαρτών που απεικονίζουν την κατανομή τους στο έδαφος της ηπειρωτικής Ελλάδας (Simopoulos, 1989), (Petropoulos, et al., 1995), (Anagnostakis, et al., 1996), (Petropoulos, et al., 2001).

Πέρα από την συλλογή επιφανειακών δειγμάτων χώματος, στο ΕΠΤ-ΕΜΠ λαμβάνει χώρα και η μελέτη της κατά βάθος κατανομής των ραδιενεργών ισοτόπων (Papadakos, et al., 2017), καθώς και η κατανομή της συγκέντρωσής τους στα διαφόρων μεγεθών κοκκομετρικά κλάσματά του (Padovani, et al., 2018), (Savva, et al., 2016), (Mitsios, et al., 2016). Οι τεχνικές δειγματοληψίας, επεξεργασίας και ανάλυσης των ανωτέρω δειγμάτων έχουν αναπτυχθεί σε προηγούμενες έρευνες που έχουν πραγματοποιηθεί από το ΕΠΤ-ΕΜΠ, (Αναγνωστάκης, 1998), (Καρφόπουλος, 2012), (Μήτσιος, 2016), (Σάββα, 2017).

2.4.2 Δειγματοληψίες και αναλύσεις ατμοσφαιρικού αερολύματος

Οι δειγματοληψίες και αναλύσεις του ατμοσφαιρικού αερολύματος στο ΕΠΤ-ΕΜΠ ξεκίνησαν επίσης το 1986, πάλι με αφορμή το ατύχημα στο Chernobyl. Σήμερα, οι δειγματοληψίες αερολύματος λαμβάνουν χώρα σε τακτά χρονικά διαστήματα (μία εβδομάδα το μήνα) με στόχο την παρακολούθηση της κύμανσης της συγκέντρωσης των ραδιενεργών ισοτόπων στην ατμόσφαιρα. Σε περιπτώσεις έκτακτης ανάγκης ή σε περιπτώσεις που παρουσιάζουν ιδιαίτερο ενδιαφέρον, όπως φαινόμενα μεταφοράς σκόνης, η συχνότητα των δειγματοληψιών προσαρμόζεται ανάλογα. Για τη δειγματοληψία του ατμοσφαιρικού αερολύματος το ΕΠΤ-ΕΜΠ διαθέτει μία αντλία υψηλής παροχής DH-50810E της εταιρείας F&J τοποθετημένη στην οροφή του Κτιρίου Κ που στεγάζεται το ΕΠΤ-ΕΜΠ, σε ύψος 8 μέτρα από το έδαφος, καθώς και 5 μικρότερες φορητές αντλίες Staplex TFIA-2 οι οποίες μπορούν να χρησιμοποιηθούν είτε στην οροφή του Κτιρίου Κ είτε σε απομακρυσμένες τοποθεσίες.

Τα φίλτρα που χρησιμοποιούνται για τις δειγματοληψίες είναι κυρίως φίλτρα κατασκευασμένα από ίνες γυαλιού (glass fiber) και οι τεχνικές επεξεργασίας και ανάλυσης που έχουν αναπτυχθεί έχουν οδηγήσει στη στατιστικά σημαντική ανίχνευση των τεχνητών ραδιενεργών ισοτόπων ¹³¹I, ¹³⁷Cs, ¹³⁴Cs από το ατύχημα της Φουκουσίμα (Potiriadis, et al., 2013), (Σάββα, 2017) με τα κατώτερα επίπεδα ανίχνευσης να κυμαίνονται από 15 έως 30 μBq/m³, καθώς και των φυσικών ραδιενεργών ισοτόπων ⁷Be, ²²Na, ²¹⁰Pb, με τα εύρη των συγκεντρώσεών τους να κυμαίνονται μεταξύ 1.0 ± 0.4

Σχήμα 2.4 : Οι αντλίες DH-50810E της F&J (αριστερά) και Staplex TFIA-2 (δεξιά)

2.4.3 Δειγματοληψίες και αναλύσεις υγρών αποθέσεων

Στα πλαίσια της παρακολούθησης της ραδιενέργειας στις υγρές ατμοσφαιρικές αποθέσεις, στο ΕΠΤ-ΕΜΠ έχουν υπάρξει κατά καιρούς τρεις διαφορετικές προσεγγίσεις για τη δειγματοληψία, επεξεργασία και ανάλυσή τους. Στην 1^η προσέγγιση τοποθετήθηκαν δειγματολήπτες στην οροφή του Κτιρίου Κ καθώς και σε οροφή κτιρίου στην περιοχή της Μεγαλόπολης. Στη 2^η και 3^η προσέγγιση, η συλλογή της υγρής απόθεσης – δείγματα βροχοπτώσεων – έγινε με την τοποθέτηση πλαστικών δοχείων στην οροφή του Κτιρίου Κ του ΕΠΤ-ΕΜΠ και οι διαδικασίες που ακολουθήθηκαν είναι συμβατές με τις διαδικασίες Α και Ε που παρουσιάζονται στο *Σχήμα 2.12*.

Ειδικότερα, στην **1**^η **προσέγγιση** που εφαρμόσθηκε στα πλαίσια της Διδακτορικής Διατριβής του (Παπαδόπουλος, 2010) τα βήματα που ακολουθήθηκαν είναι τα εξής:

- Συλλογή δείγματος βροχόπτωσης σε δοχεία πολυαιθυλενίου μέσω κατάλληλα προσαρμοσμένων χοάνων επιφάνειας 0.04m² η κάθε μία.
- Ξέπλυμα του δοχείου συλλογής με διάλυμα HNO3 συγκέντρωσης 5% και προσθήκη του διαλύματος στο τελικό δείγμα που προορίζεται για προσυγκέντρωση.

- Προσυγκέντρωση του δείγματος με εξάτμιση σε υδατόλουτρο σε θερμοκρασία 80°C, μέχρι τελικού όγκου 250mL.
- Συσκευασία του δείγματος σε κατάλληλη γεωμετρία και γ-φασματοσκοπική ανάλυσή του.

Η διαδικασία αυτή ήταν ιδιαίτερα χρονοβόρα, καθώς η προσυγκέντρωση μεγάλων όγκων δειγμάτων διαρκεί αρκετές ημέρες. Επίσης, το τελικό δείγμα προς γ-φασματοσκοπική ανάλυση δημιουργεί ίζημα στη βάση του δοχείου συσκευασίας μετά από ορισμένο χρονικό διάστημα, με αποτέλεσμα τη μη ομοιόμορφη κατανομή των ραδιενεργών ισοτόπων σε αυτό. Μία παραλλαγή της προσέγγισης αυτής ήταν η ραδιοχημική επεξεργασία του δείγματος και ο προσδιορισμός των περιεχόμενων σε αυτό ραδιενεργών ισοτόπων με μεθόδους α-φασματοσκοπίας, καθώς και με τη μέθοδο ανάλυσης κινητικής φωσφορισμού (Kinetic Phosporescence Analysis, KPA), οι οποίες όμως ξεφεύγουν από τα πλαίσια ενδιαφέροντος της παρούσας Δ.Δ.. Με χρήση των ανωτέρω μεθόδων προσδιορίσθηκε στα δείγματα βρόχινου νερού από την περιοχή Αθηνών και Μεγαλόπολης συγκέντρωση ²³⁸U με εύρος από 2.2±0.6 mBq/kg έως 90±14 mBq/kg. Περισσότερες πληροφορίες σχετικά με τις διαδικασίας που ακολουθήθηκαν μπορούν να αναζητηθούν στην εργασία του (Παπαδόπουλος, 2010).

Στη **2**^η προσέγγιση που εφαρμόστηκε από τους (Papandreou, et al., 2011) τα βήματα που ακολουθήθηκαν είναι τα εξής:

- Συλλογή του δείγματος βροχόπτωσης σε πλαστικά δοχεία συνολικής επιφάνειας
 1m² με παράλληλη παρακολούθηση του ύψους της βροχόπτωσης.
- Ξέπλυμα των δοχείων με 1N HNO3 και συλλογή του συνόλου του δείγματος σε μικρότερα πλαστικά δοχεία.
- Φιλτράρισμα του δείγματος μέσα από φίλτρα Whatman no. 42 διαμέτρου 90mm
 και παράλληλο ξέπλυμα των πλαστικών δοχείων με 1N HNO3. (ένα φίλτρο ανά
 2L δείγματος).
- iv. Συσκευασία του συνόλου των φίλτρων που χρησιμοποιήθηκαν σε κατάλληλα βαθμονομημένη γεωμετρία και ανάλυσή τους με γ-φασματοσκοπία, με στόχο τον προσδιορισμό του ⁷Be.
- Αργή εξάτμιση του υγρού που προέκυψε από το φιλτράρισμα για μείωση του όγκου του και ανάλυσή με γ-φασματοσκοπία σε τυποποιημένη γεωμετρία όγκου.

Με τη διαδικασία αυτή η συγκέντρωση του ⁷Be στα φίλτρα που αναλύθηκαν είχε εύρος από 0.09 ± 0.02 έως 3.24 ± 0.06 Bq/L (Papandreou, et al., 2011). Ωστόσο, μετρήθηκε ⁷Be και στο υγρό που συλλέχθηκε από το φιλτράρισμα, γεγονός που αναδεικνύει την αδυναμία συγκράτησης του συνόλου του ⁷Be από τα φίλτρα που χρησιμοποιήθηκαν. Αυτός άλλωστε ήταν και ο λόγος για τον οποίο συνέχισε η προσπάθεια βελτίωσης της τεχνικής που οδήγησε στην 3^η προσέγγιση.

Στην **3^η προσέγγιση** που τυποποιήθηκε και εφαρμόστηκε στα πλαίσια της Διδακτορικής Διατριβής της (Σάββα, 2017) τα βήματα που ακολουθήθηκαν είναι τα εξής:

- Δειγματοληψία των υγρών κατακρημνίσεων με χρήση πλαστικών δοχείων συνολικής επιφάνειας 0.75m².
- ii. Συλλογή του δείγματος και ρύθμιση του pH \approx 5, ώστε να αποφεύγεται η υδρόλυση των κατιόντων των μετάλλων.
- Προσθήκη 1gr ρητίνης κατιόντων τύπου DOWEX[®] 50WX8 ανά 1L δείγματος με ελάχιστη ποσότητα τα 20gr ρητίνης για δείγματα έως 20L, ώστε να επιτευχθεί ελάχιστος τυποποιημένος όγκος ρητίνης προς ανάλυση.
- iv. Ανάδευση του δείγματος με τη ρητίνη για ~ 1h.
- v. Φιλτράρισμα του διαλύματος για την κατακράτηση της ρητίνης.
- vi. Ήπια ξήρανση της ρητίνης σε δοχείο που περιέχει Silica Gel.
- vii. Συσκευασία της ρητίνης σε τυποποιημένη γεωμετρία και γ-φασματοσκοπική ανάλυση.
- viii. Προετοιμασία δείγματος όγκου 282cm³ από το υγρό που προέκυψε από το φιλτράρισμα και γ-φασματοσκοπική ανάλυση για επιβεβαίωση απουσίας⁸ ραδιενεργών ισοτόπων σε αυτό.

Με τη διαδικασία αυτή (3^η προσέγγιση) στα τελικά δείγματα ρητίνης μετρήθηκε (Savva, et al., 2018):

- \blacktriangleright συγκέντρωση ⁷Be με εύρος από 0.67 ± 0.02 έως 2.21 ± 0.08 Bq/L,
- συγκέντρωση ²¹⁰Pb με εύρος από 22.4 ± 4.9 έως 278.0 ± 14.2 mBq/L
- συγκέντρωση 40 K με εύρος από 10.4 ± 7.8 έως 138.3 ± 33.2 mBq/L

ενώ δεν ανιχνεύεται κανένα από τα ισότοπα αυτά στο νερό μετά το φιλτράρισμα.

⁸ Στην πραγματικότητα αυτό που διαπιστώνεται στην περίπτωση μη-ανίχνευσης είναι ότι η ποσότητα ⁷Be στο φίλτρο είναι κάτω από τα όρια ανίχνευσης.

Όπως προκύπτει από τα αποτελέσματα των τριών παραπάνω προσεγγίσεων, η χρήση της ρητίνης είναι αποδοτικότερη και οδηγεί στην πλήρη συγκράτηση των ραδιενεργών ισοτόπων στη ρητίνη. Για τον λόγο αυτό, στα πλαίσια της παρούσας Δ.Δ. επιλέχθηκε να εφαρμοσθεί – ως βάση – η μεθοδολογία που στηρίζεται στη χρήση ρητίνης, αφού εξελιχθεί, τυποποιηθεί και προσαρμοστεί κατάλληλα για δείγματα υγρών, ξηρών και ολικών ατμοσφαιρικών αποθέσεων.

2.4.4 Η γ-φασματοσκοπική ανάλυση στο ΕΠΤ-ΕΜΠ

Στις περισσότερες των περιπτώσεων, τα περιβαλλοντικά δείγματα που συλλέγονται και επεξεργάζονται στο ΕΠΤ-ΕΜΠ αναλύονται με μεθόδους γ-φασματοσκοπίας. Αντιστοίχως, και στα πλαίσια της παρούσας Δ.Δ., το σύνολο των συλλεχθέντων δειγμάτων αναλύθηκε με τη μέθοδο αυτή.

Η γ-φασματοσκοπική ανάλυση είναι μία μη καταστροφική μέθοδος προσδιορισμού ραδιενεργών ισοτόπων. Η λειτουργία της βασίζεται στην επεξεργασία του φάσματος των φωτονίων που εκπέμπονται κατά τη διάσπαση των ραδιενεργών πυρήνων. Με τη γ-φασματοσκοπία επιτυγχάνεται ο ποιοτικός προσδιορισμός του είδους των πυρήνων που διασπώνται, δηλαδή του αντίστοιχου ραδιενεργού ισοτόπου. Ταυτόχρονα, επιτυγχάνεται και η ποσοτική εκτίμηση του πλήθους των πυρήνων που διασπώνται στη μονάδα του χρόνου, για κάθε είδος πυρήνα δηλαδή, υπολογίζεται η ραδιενέργεια του δείγματος. Η γ-φασματοσκοπία είναι μία από τις ευρύτερα χρησιμοποιούμενες ραδιομετρικές τεχνικές, καθώς παρουσιάζει αρκετά πλεονεκτήματα, εν συγκρίσει με τις άλλες μεθόδους ανάλυσης, όπως για παράδειγμα με την α-φασματοσκοπία:

- Η πλειοψηφία των ραδιενεργών ισότοπων που συνήθως μελετώνται εκπέμπουν ακτίνες-γ.
- Είναι μη καταστροφική μέθοδος.
- Αναλύει ταυτόχρονα όλα τα γ-ραδιενεργά ισότοπα που περιέχονται σε ένα δείγμα,
 χωρίς να απαιτείται ειδική διαδικασία για το κάθε ένα από αυτά.
- Δεν απαιτείται σύνθετη προετοιμασία ή ραδιοχημική επεξεργασία των δειγμάτων.

Η ανάλυση των γ-φασμάτων που συλλέγονται στο ΕΠΤ-ΕΜΠ πραγματοποιείται με τη χρήση του κώδικα SPUNAL (SPectrum UNix AnaLysis), ο οποίος είναι γραμμένος σε γλώσσα FORTRAN 77 και έχει εξ' ολοκλήρου αναπτυχθεί στο ΕΠΤ-ΕΜΠ (Simopoulos, 1989). Οι δυνατότητες και τα χαρακτηριστικά του εν λόγω κώδικα έχουν διερευνηθεί εκτενώς στις διδακτορικές διατριβές των (Αναγνωστάκης, 1998) και (Καρφόπουλος, 2012), και τα αποτελέσματά των αναλύσεων του κώδικα επιβεβαιώνονται μέσα από την τακτική συμμετοχή του ΕΠΤ-ΕΜΠ σε Ασκήσεις Διασύγκρισης που οργανώνονται από το δίκτυο ALMERA⁹ του Διεθνούς Οργανισμού Ατομικής Ενέργειας, καθώς και από Ασκήσεις Διασύγκρισης αντίστοιχων λογισμικών γ-φασματοσκοπικής ανάλυσης (Ali Santoro, et al., 2020). Στην παράγραφο που ακολουθεί περιγράφονται οι ανιχνευτικές διατάξεις του ΕΠΤ-ΕΜΠ που χρησιμοποιούνται κατά τη γ-φασματοσκοπική ανάλυση και παρουσιάζονται συνοπτικά ορισμένα θέματα που άπτονται της γ-φασματοσκοπικής ανάλυσης ιδιαίτερα στην περίπτωση ανάλυσης δειγμάτων χαμηλής ραδιενέργειας.

2.4.4.1 Οι ανιχνευτές γερμανίου του ΕΠΤ-ΕΜΠ

Το σύνολο των δειγμάτων που αναλύεται με μεθόδους γ-φασματοσκοπίας στο ΕΠΤ-ΕΜΠ γίνεται με χρήση ανιχνευτών υπερκαθαρού γερμανίου (High Purity Germanium, HPGe). Το ΕΠΤ-ΕΜΠ διαθέτει 5 τέτοιους ανιχνευτές, εκ των οποίων οι 4 χρησιμοποιούνται για μετρήσεις στο εργαστήριο και ένας για μετρήσεις πεδίου (in-situ). Συνοπτικά, οι ανιχνευτές μαζί με τις ηλεκτρονικές συνιστώσες που συγκροτούν την ανιχνευτική διάταξη παρατίθενται στη συνέχεια:

- Ανιχνευτής υπερκαθαρού γερμανίου εκτεταμένου εύρους (Extended Range, XtRa) με σύστημα μείωσης συνεχούς υποστρώματος (Compton Suppression System, CSS) (ΣΑΒΒΑ, 2017). Η διάταξη τέθηκε σε λειτουργία το 1999 (XtRa), ενώ η προσθήκη του συστήματος Compton Suppression έγινε αργότερα (Savva, et al., 2014). Οι επιμέρους συνιστώσες της ανιχνευτικής διάταξης είναι:
 - a. Βασική ανιχνευτική διάταξη XtRa συμβατικός κλάδος διάταξης:
 - Ομοαξονικός ανιχνευτής γερμανίου εκτεταμένου εύρους (XtRa), της Canberra Industries (CI),
 - Τροφοδοτικό υψηλής τάσης, τύπου 3106D της CI,
 - Προενισχυτής τύπου 2002CSL της CI, ενσωματωμένος στον κρυοστάτη,
 - Ενισχυτής ύψους παλμών, τύπου 2026 της CI,
 - Αναλογοψηφιακός μετατροπέας, τύπου 8701 της CI,
 - Πολυκαναλικός αναλυτής, AIM-556A της CI,
 - Ελεγκτής στάθμης υγρού αζώτου (LN₂), τύπου 1786Α της CI,

⁹ Analytical Laboratories for the Measurement of Environmental Radioactivity.

- Θωράκιση, τύπου 767 της CI.
- b. Κλάδος εγκατεστημένου συστήματος Compton Suppression:
 - Δακτυλιοειδές τμήμα και τμήμα plug NaI,
 - Τροφοδοτικό υψηλής τάσης, τύπου 3002D της CI,
 - Προενισχυτής, τύπου 2005 της CI,
 - Ενισχυτής, τύπου 2006 της CI,
 - Ενισχυτής, τύπου 2020 της CI,
 - Μονάδα ελέγχου σύμπτωσης, τύπου 2040 της CI,
 - Multiport II, της CI.

Σχήμα 2.5 : Η ανιχνευτική διάταξη ΧtRa-CSS του ΕΠΤ-ΕΜΠ.

Ο ομοαξονικός ανιχνευτής υπερκαθαρού γερμανίου έχει διάμετρο 80 mm, ύψος 78 mm και σχετική απόδοση 104.5%. Η απόσταση του κρυστάλλου από τον κρυοστάτη είναι 5 mm και το παράθυρο του κρυστάτη είναι κατασκευασμένο από ανθρακονήματα πάχους 0.5 mm. Το μέγεθος του ανιχνευτή σε συνδυασμό με το λεπτό παράθυρο από ανθρακονήματα τον καθιστούν κατάλληλο για ανίχνευση φωτονίων χαμηλών ενεργειών και του δίνουν υψηλή ανιχνευτική απόδοση σε μεγάλο ενεργειακό εύρος. Το δακτυλιοειδές τμήμα του ανιχνευτή NaI του CSS έχει εσωτερική διάμετρο Ø111 mm, εξωτερική διάμετρο Ø195 mm και ύψος 267 mm. Το τμήμα plug του ανιχνευτή NaI του CSS έχει διάμετρο συιστάλλου Ø103 mm και ύψος κρυστάλλου 51 mm. Τα παραπάνω χαρακτηριστικά συνδυαζόμενα με το σύστημα Compton Suppression συνιστούν μια ανιχνευτική ικανότητα του ανιχνευτή σε όρους εύρους ημίσεως ύψους (FWHM) είναι:

1.03 keV για ενέργεια φωτονίων 122.06 keV,

2.043 keV για ενέργεια φωτονίων 1332.5 keV.

Ο λόγος peak-to-Compton για φωτόνια ενέργειας 1332.50 keV είναι 82.2:1.

- Ανιχνευτής υπερκαθαρού γερμανίου (HPGe). Η διάταξη τέθηκε σε λειτουργία το
 1983 και οι επιμέρους συνιστώσες της είναι:
 - Ανιχνευτής υπερκαθαρού γερμανίου (HPGe), της CI,
 - Τροφοδοτικό υψηλής τάσης, τύπου 3106D της CI,
 - Προενισχυτής, τύπου 2001 της CI,
 - Ενισχυτής ύψους παλμών, τύπου 2020 της CI,
 - Αναλογοψηφιακός μετατροπέας τύπου 8701 της CI,
 - Πολυκαναλικός αναλυτής, AIM-550 της CI,
 - Ελεγκτής στάθμης υγρού αζώτου (LN2), τύπου 1786 της CI.

Ο συγκεκριμένος ομοαξονικός ανιχνευτής υπερκαθαρού γερμανίου (HPGe) έχει διάμετρο Ø55.3 mm, ύψος 65 mm και σχετική απόδοση 33.8%. Είναι τοποθετημένος σε κρυοστάτη από Al, γεγονός που περιορίζει σημαντικά την απόδοσή του για φωτόνια χαμηλών ενεργειών. Η διακριτική του ικανότητα σε όρους FWHM είναι:

- 0.85 keV για φωτόνια ενέργειας 122.06 keV,
- 1.78 keV για φωτόνια ενέργειας 1332.50 keV.

Ο λόγος peak-to-Compton για φωτόνια ενέργειας 1332.50 keV είναι 66.5:1.

Στα κεφάλαια που ακολουθούν, ο συγκεκριμένος ανιχνευτής θα αναφέρεται ως ανιχνευτής «Ge1».

Σχήμα 2.6 : Η ανιχνευτική διάταξη Ge1 του ΕΠΤ-ΕΜΠ.

- iii. Ανιχνευτής γερμανίου χαμηλών ενεργειών (Low Energy Germanium Detector, LEGe). Η διάταξη τέθηκε σε λειτουργία το 1988 και είναι κατάλληλα βαθμονομημένη, ώστε να μπορεί να χρησιμοποιηθεί είτε στην ενεργειακή περιοχή 20-200 keV, είτε στην ενεργειακή περιοχή 20-2000 keV. Οι επιμέρους συνιστώσες της διάταξης είναι:
 - Επίπεδος ανιχνευτής γερμανίου χαμηλών ενεργειών (LEGe) της CI,
 - Τροφοδοτικό υψηλής τάσης, τύπου 3105 της CI,
 - Προενισχυτής τύπου 2001CP της CI, ενσωματωμένος στον κρυοστάτη,
 - Ενισχυτής ύψους παλμών, τύπου 2020 της CI,
 - Αναλογοψηφιακός μετατροπέας, τύπου 8075 της CI,
 - Πολυκαναλικός αναλυτής, AIM-550 της CI,
 - Ελεγκτής στάθμης υγρού αζώτου (LN2), τύπου 1786Α της CI.

Ο συγκεκριμένος επίπεδος ανιχνευτής υπερκαθαρού γερμανίου είναι τύπου n, κυλινδρικού σχήματος, διαμέτρου Ø50.5 mm, επιφάνειας 2000 mm² και ύψους 20 mm. Η χρήση του εν λόγω ανιχνευτή εστιάζει στην ανίχνευση χαμηλής ενέργειας φωτονίων, καθώς το κατασκευασμένο από Be και πάχους 0.5 mm παράθυρο του κρυοστάτη συμβάλλει στην πολύ μικρή εξασθένισή τους. Η διακριτική ικανότητα του ανιχνευτή σε όρους FWHM είναι:

- 341 eV για φωτόνια ενέργειας 5.9 keV,
- 530 eV για φωτόνια ενέργειας 122 keV.

Σχήμα 2.7 : Η ανιχνευτική διάταξη LEGe του ΕΠΤ-ΕΜΠ.

- Ανιχνευτής υπερκαθαρού γερμανίου (HPGe). Η διάταξη τέθηκε σε λειτουργία το
 2012 και οι συνιστώσες της είναι:
 - Ομοαξονικός ανιχνευτής γερμανίου (HPGe) της CI,
 - Μονάδα LYNX[®] της CI που περιέχει ενσωματωμένες όλες τις ηλεκτρονικές μονάδες παροχής υψηλής τάσης, λήψης και επεξεργασίας ηλεκτρικού σήματος που απαιτούνται για τη λειτουργία του ανιχνευτή.

Ο συγκεκριμένος ομοαξονικός ανιχνευτής υπερκαθαρού γερμανίου έχει διάμετρο Ø59.5 mm, ύψος 61 mm και σχετική απόδοση 40.9%. Ο ανιχνευτής είναι τοποθετημένος σε κρυοστάτη από Al γεγονός που μειώνει την απόδοση για φωτόνια που βρίσκονται στην περιοχή των χαμηλών ενεργειών. Η διακριτική ικανότητα του ανιχνευτή σε όρους FWHM:

- 0.875 keV για ενέργεια φωτονίων 122.06 keV,
- 1.8 keV για ενέργεια φωτονίων 1332.50 keV.

Ο λόγος peak-to-Compton για φωτόνια ενέργειας 1332.50 keV είναι 63:1.

Στα κεφάλαια που ακολουθούν, ο συγκεκριμένος ανιχνευτής θα αναφέρεται ως ανιχνευτής «Ge2».

Σχήμα 2.8 : Η ανιχνευτική διάταξη Ge2 του ΕΠΤ-ΕΜΠ.

- V. Ο ανιχνευτής γερμανίου ευρείας ενεργειακής περιοχής (Broad Energy Germanium Detector, BEGe). Η διάταξη τέθηκε σε λειτουργία το 2003 και οι συνιστώσες της είναι:
 - Ανιχνευτής BEGe, τύπου BE3825 της CI,

- Προενισχυτής, τύπου 7935-SL7 ενσωματωμένος στον κρυοστάτη,
- Μονάδα Inspector 2000 της CI που περιέχει ενσωματωμένες όλες τις ηλεκτρονικές μονάδες παροχής υψηλής τάσης, λήψης και επεξεργασίας ηλεκτρικού σήματος που απαιτούνται για τη λειτουργία του ανιχνευτή.

Ο ανιχνευτής έχει διάμετρο Ø70 mm, επιφάνεια 3800 mm² και πάχος 25 mm. Το παράθυρο από ανθρακονήματα που διαθέτει σε συνδυασμό με τη σχετικά καλή του απόδοση και διακριτική ικανότητα, επιτρέπει την ανίχνευση φωτονίων χαμηλών ενεργειών και τη χρήση του σε όλο το επιθυμητό ενεργειακό εύρος. Βάσει της κατασκευής του η κυρίαρχη χρήση του είναι για μετρήσεις πεδίου (in situ). Τα χαρακτηριστικά του όμως, τον καθιστούν σημαντικό και για μετρήσεις μέσα στο εργαστήριο και για τον σκοπό αυτό έχουν γίνει μελέτες για τη δημιουργία θωράκισης, καθώς και κατάλληλης βαθμονόμησης ενέργειας, διακριτικής ικανότητας και απόδοσης (Σπανίδης, 2021). Η διακριτική του ικανότητα σε όρους FWHM είναι:

- 0.440 keV για ενέργεια φωτονίων 5.9 keV,
- 0.658 keV για ενέργεια φωτονίων 122 keV,
- 1.780 keV για ενέργεια φωτονίων 1332.50 keV.

Σχήμα 2.9 : Η ανιχνευτική διάταξη BEGe του ΕΠΤ-ΕΜΠ.

Στα πλαίσια της παρούσας Δ.Δ. χρησιμοποιήθηκαν οι ανιχνευτές 1-4 με τη σειρά που αναφέρονται στην παραπάνω λίστα. Τα πιστοποιητικά των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ παρουσιάζονται στο Παράρτημα Α.

2.4.4.2 Προσδιορισμός της ενεργότητας δείγματος

Ανεξαρτήτως της προέλευσης ενός δείγματος ή της διαδικασίας με την οποία επεξεργάσθηκε και συσκευάσθηκε, για τον προσδιορισμό της τελικής ενεργότητας των περιεχόμενων σε αυτό ραδιενεργών ισοτόπων λαμβάνουν χώρα τα παρακάτω βήματα, με το κάθε ένα από αυτά να εισάγει αβεβαιότητα στο τελικό αποτέλεσμα:

- Προσδιορισμός της καθαρής επιφάνειας της φωτοκορυφής. Υπολογίζεται απευθείας από το λογισμικό ανάλυσης του φάσματος (στην προκειμένη περίπτωση τον κώδικα SPUNAL).
- ii. Αφαίρεση του υποστρώματος λόγω φωτοκορυφών. Συνήθως γίνεται αυτόματα από το λογισμικό φασματοσκοπικής ανάλυσης, υπό την προϋπόθεση ότι έχει γίνει η κατάλληλη μέτρηση του υποστρώματος και εισαγωγή δεδομένων από τον χρήστη. Το υπόστρωμα αυτό παρουσιάζει κύμανση χρονικά, κυρίως το τμήμα του που οφείλεται στα βραχύβια θυγατρικά του ραδονίου (Σχήμα 2.10), τόσο μέσα στην ημέρα, όσο και κατά τη διάρκεια της λειτουργικής ζωής του ανιχνευτή. Όπως γίνεται σαφές από τα παραπάνω, έχει πολύ μεγάλη σημασία η ακριβής εκτίμηση του υποστρώματος, της κύμανσής του και της αντίστοιχης αβεβαιότητας που το συνοδεύει, ιδιαίτερα για δείγματα με πολύ χαμηλά επίπεδα φυσικής ραδιενέργειας. Για τον λόγο αυτό είναι απαραίτητη η συστηματική λήψη φασμάτων υποστρώματος, καθώς και η λήψη μέτρων για τον περιορισμό της κύμανσής του.
- Επιλογή της κατάλληλης συνάρτησης βαθμονόμησης απόδοσης,¹⁰ συνοδευόμενη με την κατάλληλη αβεβαιότητα.
- iv. Εφαρμογή εφόσον απαιτείται κατάλληλων διορθώσεων λόγω του φαινομένου της αυταπορρόφησης.
- v. Εφαρμογή διορθώσεων για το φαινόμενο της πραγματικής σύμπτωσης φωτονίων (true coincidence) για τα φωτόνια που είναι απαραίτητο (οι συντελεστές διόρθωσης πραγματικής σύμπτωσης που χρησιμοποιήθηκαν για τους υπολογισμούς της παρούσας Δ.Δ. υπολογίσθηκαν με χρήση του προγράμματος TrueCoinc, Version 1.5 (IAEA, 2002). Ειδικά για τις διορθώσεις αυτές πρέπει να τονισθεί ότι έχουν ιδιαίτερη σημασία για την περίπτωση μικρού πάχους δειγμάτων που βρίσκονται πολύ κοντά στον ανιχνευτή και για ανιχνευτές υψηλής απόδοσης, όπως είναι ο ανιχνευτής XtRa.

Στο Σχήμα 2.11 γίνεται σύγκριση ενός φάσματος ανάλυσης φίλτρου αέρα στον ανιχνευτή XtRa, με ισόχρονο φάσμα υποστρώματος στον ίδιο ανιχνευτή.

 $^{^{10}}$ Η οποία μπορεί να έχει προσδιορισθεί πειραματικά, μέσω προσομοίωσης ή με συνδυασμό.

Σχήμα 2.10: Φάσμα υποστρώματος του ανιχνευτή XtRa, όπου επισημαίνονται οι κυρίαρχες φωτοκορυφές υποστρώματος που οφείλονται στα θυγατρικά του ²²²Rn και του ²²⁰Rn.

Σχήμα 2.11: Σύγκριση φάσματος υποστρώματος 48h και ισόχρονου φάσματος φίλτρου αέρα στον ανιχνευτή XtRa.

2.4.4.3 Επίδραση των θυγατρικών του ραδονίου και του θορονίου στις γφασματοσκοπικές αναλύσεις

Παρότι κατά τη διάσπαση του ραδονίου και του θορονίου δεν εκπέμπεται γ-ακτινοβολία που να επιδρά στις γ-φασματοσκοπικές αναλύσεις, τα θυγατρικά τους ραδιενεργά ισότοπα (όπως δίνονται στον Πίνακα 2.1) εκπέμπουν γ-ακτινοβολία η οποία συνεισφέρει στο φυσικό ραδιενεργό υπόστρωμα των ανιχνευτικών διατάξεων και δημιουργεί προβλήματα στον προσδιορισμό των περιεχόμενων στα δείγματα ραδιενεργών ισοτόπων, καθώς και στην ακρίβεια των τελικών αποτελεσμάτων. Ειδικότερα, η αυξημένη συγκέντρωση των θυγατρικών του ραδονίου και του θορονίου είτε στο δείγμα που αναλύεται, είτε στο χώρο όπου γίνεται η ανάλυση :

- δυσχεραίνει την ανίχνευση αυξάνοντας τα κατώτερα επίπεδα ανίχνευσης άλλων
 ραδιενεργών ισοτόπων που βρίσκονται στο δείγμα σε χαμηλές συγκεντρώσεις,
- αυξάνει την αβεβαιότητα προσδιορισμού του ²²⁶Ra και του ²²⁸Ra στα δείγματα, μέσω των θυγατρικών τους, ενώ μπορεί να οδηγήσει και σε λανθασμένη θετική ή αρνητική ανίχνευση των εν λόγω ραδιενεργών ισοτόπων,
- μπορεί να οδηγήσει τους ερευνητές σε εξαγωγή λανθασμένων συμπερασμάτων για την ύπαρξη ραδιενεργών ισοτόπων που δε βρίσκονται στην πραγματικότητα στο δείγμα (false positive)¹¹ αλλά έχουν κοινές φωτοκορυφές με φωτοκορυφές των θυγατρικών του ραδονίου και του θορονίου.

Για τον περιορισμό των παραπάνω επιδράσεων έχουν λάβει χώρα διάφορες μελέτες (Dragounova & Rulik, 2013) (Bossew, 2005) (Trnkova & Rulik, 2009), (Hyza, et al., 2019) (Banjanac, et al., 2013), με τις βασικές μεθόδους περιορισμού να περιγράφονται στην παράγραφο που ακολουθεί.

2.4.4.4 Τεχνικές περιορισμού της επίδρασης της κύμανσης του ραδονίου, του θορονίου και των θυγατρικών τους στις γ-φασματοσκοπικές αναλύσεις

Μεγάλο πλήθος μελετών έχει λάβει χώρα με σκοπό την ανάπτυξη τεχνικών μείωσης και ελέγχου της επίδρασης του ραδονίου του θορονίου¹² και των θυγατρικών τους στις γ-φασματοσκοπικές αναλύσεις (El-Hussein, 1996), (Mohamed, et al., 2008), (Trnkova & Rulik, 2009), (Banjanac, et al., 2013), (Radulescu, et al., 2013), (Zeng, et al., 2014), (Laubenstein & Lawson, 2020). Οι προτεινόμενες τεχνικές είναι είτε ενεργητικές είτε παθητικές.

 $^{^{11}}$ Αυτό μπορεί να συμβεί στην περίπτωση ασυνήθιστα μεγάλων συγκεντρώσεων $^{226} Ra,~^{228} Ra$ ή $^{224} Ra.$

¹² Πρακτικά η συγκέντρωση θορονίου και των θυγατρικών του στον αέρα στις περισσότερες περιπτώσεις είναι αμελητέα και δεν αποτελεί πρόβλημα.

Βασική ενεργητική τεχνική είναι ο συνεχής αερισμός του χώρου του εργαστηρίου με φρέσκο ατμοσφαιρικό αέρα, ο οποίος διέρχεται από σύστημα φίλτρων για τον καθαρισμό του από τη σκόνη και τα σωματίδια και την απορρόφηση του ραδονίου.

Στις παθητικές τεχνικές περιλαμβάνονται:

- η ερμητική θωράκιση των εσωτερικών επιφανειών του εργαστηρίου με σκοπό την αποτροπή της διάχυσης του ραδονίου και του θορονίου στον χώρο,
- η χρήση καθαρών υλικών από ραδιενεργά ισότοπα στις θωρακίσεις των ανιχνευτών και σε ό,τι εξάρτημα είναι αυτό δυνατό,
- η χρήση γυαλισμένου μολύβδου στις θωρακίσεις, ο οποίος θα καθαρίζεται συχνά εσωτερικά, ώστε να μην επηρεάζονται οι γ-φασματοσκοπικές αναλύσεις από τα θυγατρικά του ραδονίου και του θορονίου τα οποία έχουν επικαθίσει στο εσωτερικό των θωρακίσεων,
- η πλήρωση του ελεύθερου όγκου μεταξύ δείγματος και θωράκισης με στεγανό και χαμηλής πυκνότητας υλικό ή με χρήση συστήματος Compton Suppression (Savva, et al., 2014) που λόγω του όγκου του περιορίζει τον διαθέσιμο όγκο ραδονίου που μπορεί να εισέλθει εσωτερικά της ανιχνευτικής διάταξης,
- η διοχέτευση της εξάτμισης του δοχείου αζώτου του εκάστοτε ανιχνευτή (dewar)
 στο εσωτερικό του ανιχνευτή, με στόχο τη μειωμένη εισροή ραδονίου και
 θορονίου καθώς και των θυγατρικών τους.

Οι τρεις τελευταίες τεχνικές έχουν κατά καιρούς εφαρμοσθεί είτε εφαρμόζονται μέχρι και σήμερα από το ΕΠΤ-ΕΜΠ.

Ειδικά για την ανάλυση φίλτρων αερολύματος, μία ακόμα λύση για επίτευξη χαμηλότερων επιπέδων ανίχνευσης είναι και η χρονική καθυστέρηση μεταξύ της λήψης ενός δείγματος-φίλτρου και της γ-φασματοσκοπικής ανάλυσής του. Για τον λόγο αυτό έχουν γίνει μελέτες οι οποίες ερευνούν διάφορα σενάρια δειγματοληψίαςκαθυστέρησης-ανάλυσης του φίλτρου, με στόχο τη βελτιστοποίηση των μετρήσεων (Bem, et al., 2002), (Korun, 2006), (Stochioiu, et al., 2008), (EPA, 2009), (Hyza, et al., 2019). Αντίστοιχη διερεύνηση έλαβε χώρα και στα πλαίσια της παρούσας Δ.Δ, ειδικά για δειγματοληψίες μεγάλης χρονικής διάρκειας.

2.5 Βασικοί στόχοι Διδακτορικής Διατριβής

Με βασικό στόχο την επέκταση των δυνατοτήτων του ΕΠΤ-ΕΜΠ ως προς την ολοκληρωμένη παρακολούθηση της ραδιενέργειας περιβάλλοντος, στα πλαίσια της παρούσας Δ.Δ. επιχειρείται επέκταση των τεχνικών δειγματοληψίας, ώστε να συμπεριληφθούν όλα τα είδη ατμοσφαιρικών αποθέσεων και να επιτευχθούν όσο το δυνατόν υψηλότερα επίπεδα ακρίβειας των μετρήσεων και χαμηλότερα επίπεδα ανίχνευσης, ώστε να καταστεί δυνατή η παρακολούθηση του ρυθμού ατμοσφαιρικών αποθέσεων. Προς την κατεύθυνση αυτή η παρούσα Δ.Δ. κινήθηκε σε δύο κατευθύνσεις:

- Ανάπτυξη τεχνικών δειγματοληψίας και επεξεργασίας δειγμάτων ατμοσφαιρικών αποθέσεων.
- Βελτίωση της ακρίβειας και των επιπέδων ανίχνευσης των γ-φασματοσκοπικών αναλύσεων των δειγμάτων. Για τον σκοπό αυτό και λαμβάνοντας υπόψη όσα με λεπτομέρεια αναπτύχθηκαν στις παραγράφους που προηγήθηκαν, έγινε:
 - διερεύνηση της επίδρασης που έχει η κύμανση της συγκέντρωσης του ραδονίου (²²²Rn) και των θυγατρικών του στον εσωτερικό χώρο του εργαστηρίου γ-φασματοσκοπίας,
 - διερεύνηση της κύμανσης των φωτοκορυφών του υποστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ,
 - διερεύνηση της επίδρασης που έχει στα κατώτερα επίπεδα ανίχνευσης η συγκέντρωση των θυγατρικών του ραδονίου και του θορονίου πάνω στα φίλτρα που συλλέγονται κατά τη διάρκεια δειγματοληψιών αέρα μεγάλης διάρκειας,
 - διερεύνηση της επίδρασης που έχουν τα θυγατρικά του ραδονίου στον ατμοσφαιρικό αέρα στη συνολική ποσότητα του ²¹⁰Pb που συλλέγεται στα φίλτρα δειγματοληψίας αέρα.

Η επίτευξη των παραπάνω στόχων επέτρεψε εν συνεχεία τη συστηματική δειγματοληψία υγρών και ξηρών αποθέσεων και συσχέτιση των συγκεντρώσεων των ραδιενεργών ισοτόπων σε αυτές με διάφορες παραμέτρους καθώς και χρήση τους σε ατμοσφαιρικά μοντέλα.

2.6 Συμπληρωματικοί πίνακες και σχήματα του 200 Κεφαλαίου

Στον Πίνακα 2.3 που ακολουθεί παρατίθενται ερευνητικές μελέτες που εστιάζουν στη δειγματοληψία και ανάλυση δειγμάτων ατμοσφαιρικών αποθέσεων, οι βασικές μέθοδοι δειγματοληψίας και επεξεργασίας τους, καθώς και τα αποτελέσματα των μετρήσεών τους.

Πίνακας 2.3: Μέσες ετήσιες συγκεντρώσεις του ²¹⁰Pb και του ⁷Be στις ολικές ατμοσφαιρικές αποθέσεις για πλήθος διαφορετικών περιοχών και μεθόδων επεξεργασίας.

²¹⁰ Pb	⁷ Be	Χρονικό βήμα	Χρονική	Μέθοδος	Βασική μέθοδος	Μάθοδος αυάλυσης	Позном	Βιβλιογραφική
$Bq/(y \cdot m^2)$	$Bq/(y \cdot m^2)$	δειγματοληψίας	περίοδος	δειγματοληψίας	επεξεργασίας	מימגטטוןג	Περιοχή	αναφορά
257	-	15 ημέρες	1999-2000	Βροχόμετρο 400cm ² , 20L	Φιλτράρισμα μέσα από φίλτρα κυτταρίνης ιοντοανταλλαγής (Macherey Nagel type MN616 LSA and LSB filters)	γ-φασματοσκοπία	Petit-Saut, French Guiana	(Melieres, et al., 2003)
47	700	1 μήνας	2010-2011	Δοχεία Πολυαιθυλένιου, 1.25m², 50L, οξινισμένο με HCL	Πλήρης Ξήρανση	γ-φασματοσκοπία	Cienfuegos, Cuba	(Alonso-Hernandez, et al., 2014)
55			1987	 	Συγκαθίζηση του ²¹⁰ Ρb με χρήση Fe(OH) ₃	α-φασματοσκοπία για το ²¹⁰ Ρο μέσω του οποίου υπολογίστηκε ο ²¹⁰ Ρb	Groningen, Holland	(Beks, et al., 1998)
60			1988					
56			1989					
47		1.05	1990					
57	-	ι εροομασα	1991	δοχείο οξινισμένο				
85			1992	με νιτρικό οξύ				
100			1993					
91			1994					
479	2070	15 ημέρες	2006	Ατσάλινος συλλέκτης 3m² με κεραμική επιφάνεια	Συγκαθίζηση του ²¹⁰ Pb και του ⁷ Be με χρήση Fe(OH) ₃	γ-φασματοσκοπία	Shanghai, China	(Du, et al., 2008)

$73 \pm 8.0 \\ 197 \pm 35 \\ 78.5 \pm 8.0$	_	από 1 έως 30 ημέρες	1997-1998	Συλλέκτης 1m ²	Φιλτράρισμα μέσα από φίλτρο Nucleopore με μέγεθος πόρου 0.22μm	α-φασματοσκοπία για το ²¹⁰ Ρο μέσω του οποίου υπολογίστηκε ο ²¹⁰ Ρb	Odawa, Japan Tsuyazaki, Japan Akajima, Japan	(Tateda & Iwao, 2008)
103	1256	1 μήνας	2006-2007	Μέτρηση από το Ιι	Μέτρηση από το Institut de Radioprotection et de Sûreté Nucléaire		Bordeaux, France	(Saari, et al., 2010)
182	918	1	2001	Πλαστικός συλλέκτης 4m ²	Πλάρης Ξάραμση		Tsukuba, Japan	(Hiraga at al. 2004)
234	1474	ι μηνας	2001	Πλαστικός συλλέκτης 3.7m ²	πληρης Ξηρανοη	γ-φασματοσκοπια	Nagasaki, Japan	(Hirose, et al., 2004)
150 ± 3	2087 ± 23	από 1 έως 22 ημέρες	1997-1998	Κυλινδρικός συλλέκτης πολυαιθυλένιου 0.275m ²	Συγκαθίζηση του ²¹⁰ Pb και του ⁷ Be με χρήση Fe(OH) ₃	γ-φασματοσκοπία	Versoix, Switzerland	(Caillet, et al., 2001)
1054	5300	1 μήνας	1991-2002	Δοχείο από ανοξείδωτο ατσάλι 0.5m ²	Φιλτράρισμα από ρητίνες ανιόντων και κατιόντων	γ-φασματοσκοπία	Tatsunokuchi, Japan	(Yamamoto, et al., 2006)
	1536						Plymouth, UK	
-	1021	από 3 έως 30 ημέρες	2009-2010	Πλαστικά δοχεία 0.05m ²	Συγκαθίζηση με MnO2	γ-φασματοσκοπία	Chilton, UK	(Taylor, et al., 2016)
	1548						Aberporth, UK	
-	1030 ± 100	1 μήνας	1988-1989	Υγρές αποθέσεις μέσω γυάλινης οροφής 77.5m ² Ξηρές αποθέσεις μέσω κολλώδους επιφάνειας 2.4m ²	Συγκαθίζηση με MnO2 (για τις υγρές αποθέσεις)	γ-φασματοσκοπία	Black Mountain, Australia	(Wallbrink & Murray, 1994)
123	1468	ανά συμβάν βροχόπτωσης ή ανά 10 ημέρες	2003-2004	Δοχεία πολυαιθυλενίου επιφάνειας 0.28m ²	Συγκαθίζηση του ²¹⁰ Pb και του ⁷ Be με χρήση Fe(OH) ₃	γ-φασματοσκοπία	Tampa Bay, Florida, USA	(Baskaran & Swarzenski, 2007)

	861.4		1987		Μερική εξάτμιση δείγματος για τελικό όγκο 1L	γ-φασματοσκοπία	Thessaloniki, Greece	(Ioannidou & Papastefanou, 2006)
	457.9		1988	Χοάνες συνολικής επιφάνειας 1.12m²				
	487.0	ανά συμβάν	1989					
-	733.2	βροχόπτωσης και μεταξύ αυτών	1990					
	712.8		1991					
	1164.1		1992	-				
172	2450	ανά συμβάν βροχόπτωσης και ανά 7 ή 14 ημέρες	1989-1991	Δοχεία πολυαιθυλενίου επιφάνειας 0.28m ²	Συγκαθίζηση του ²¹⁰ Pb και του ⁷ Be με χρήση Fe(OH) ₃	γ-φασματοσκοπία	Galveston, Texas USA	(Baskaran, et al., 1993)
-	1070 ± 100		2004	- Χοάνη από ανοξείδωτο ατσάλι επιφάνειας 0.57m ²	Μερική εξάτμιση δείγματος για τελικό όγκο 1L	γ-φασματοσκοπία	Brisbane, Australia	(Doering & Akber, 2008)
	1164 ± 92	1 μήνας	2005					
	1362 ± 100		2006					
	841	ανά συμβάν βροχόπτωσης και	1987	Χοάνες επιφάνειας 1.12m ²	Μερική εξάτμιση δείγματος για τελικό όγκο 1L	γ-φασματοσκοπία	Thessaloniki, Greece	(Papastefanou & Ioannidou, 1991)
-	540		1988					
	483	μεταξύ αυτών	1989					
221	2026	ανά συμβάν βροχόπτωσης ή ανά μήνα για τις ζηρές αποθέσεις	2016-2017	Δοχείο πολυαιθυλενίου επιφάνειας 0.1017m ² για υγρές αποθέσεις & ατσάλινες επιφάνειες για ξηρές αποθέσεις	Πλήρη εξάτμιση	γ-φασματοσκοπία	Mangalore, India	(Mohan, et al., 2019)
-	6350	1 εβδομάδα	1985-1986	Συλλέκτης από ανοξείδωτο ατσάλι επιφάνειας 0.93m ²	Χρήση ρητίνης ιοντοανταλλαγής	γ-φασματοσκοπία	Hokitika, New Zealand	(Harvey & Matthews, 1989)

	767		1056		Συγκαθίζηση με χρήση	,	Kodai Kanal, India		
-	677	-	1956	-	E.D. I.A. (Goel, et al., 1959)	γ-φασματοσκοπια	Mumbai, India	(Thor & Zutshi, 1958)	
215	2155	Συλλογή φίλτρων	^{ων} 1007 1000	1007 1000		Υπολογισμός των ρυθμών εναπόθεσης μέσω της ατμοσφαιρικής συνκέντοωσης του ⁷ Be και		Arabian Sea	(Rengarajan & Sarin,
275	1560	αέρα ανά 2000m ³	1777 1777		του ²¹⁰ Ρb και των ταχυτήτων εναπόθεσής τους	, paoparoonomia	Bay of Bengal	2004)	
200	3783	1 μήνας	3 1 μήνας	1977-1978	Δοχεία πολυαιθυλενίου	Συγκαθίζηση του ²¹⁰ Pb και του ⁷ Be με χρήση Fe(OH) ₃ (Krishnaswami et al	γ-φασματοσκοπία	New Haven, Connecticut, USA	(Turekian, et al., 1983)
115	2850			διαμέτρου 25cm	1980), (Benninger, 1978)		Bermuda, USA		
-	1267	Αν 200-400 λίτρα συνολικής δειγματοληψίας βροχοπτώσεων	1970-1971	Χοάνη συνδεδεμένη με δοχείο	Συγκαθίζηση με χρήση E.D.T.A. (Goel, et al., 1959)	γ-φασματοσκοπία	Mumbai, India	(Lal, et al., 1979)	
_	686.9	<15 nuéoec	2012	Δοχείο πολυαιθυλενίου	Συγκαθίζηση του ²¹⁰ Pb και	ν-φασματοσκοπία	Xiamen,	(Zhang et al. 2016)	
	834.1		2013	επιφάνειας 0.437m ²	του ⁷ Be με χρήση Fe(OH) ₃	γφασματοσκοπια	China	(211011g, et ul., 2010)	
366	1467	1 μήνας	2006-2011	Μεταλλικό δοχείο με κεραμική βαμμένη επιφάνεια επιφάνειας 3m ²	Συγκαθίζηση του ²¹⁰ Pb και του ⁷ Be με χρήση Fe(OH) ₃	γ-φασματοσκοπία	Shanghai, China	(Du, et al., 2015)	
226	1486		2001-2002	Πλαστικοί συλλέκτες	Πλήρης εξάτμιση	γ-φασματοσκοπία	Kumamoto, Japan	(Momoshima_et al	
240	1693	10 ημέρες	2002-2003	συνολικής επιφάνειας 0.26m ²				2006)	
_	420	1 μήνας	1995	Συλλέκτης	Πλήρης εξάτμιση	ν-φασματοσκοπία	Damascus,	(Othman, et al., 1998)	
	634	112	1996	επιφάνειας 0.9m ²			Syria		
59	834	20 έως 40 ημέρες	2009-2010	4 ουχεια συνολικης επιφάνειας 0.412m ²	Πλήρης εξάτμιση	γ-φασματοσκοπία	Huelva, Spain	(Lozano, et al., 2011)	

144	1215	1 μήμας	2005 2015		Μερική εξάτμιση		Malaga Spain	(Duenes et al. 2017)
144	1213	ι μηνας	2003-2013	-	1L	γ-φασματοσκοπια	Malaga, Spall	(Duenas, et al., 2017)
-	469 ± 145	1 μήνας	1995-1998	Βροχόμετρο διατομής 1m ²	Πλήρης εξάτμιση	γ-φασματοσκοπία	Granada,	(Gonzalez-Gomez, et al.,
238	2133	-	1996-1998	Ξύλινος συλλέκτης με επιφανειακή επικάλυψη πολυαιθυλενίου επιφάνειας 10m ²	Η διαδικασία περιγράφετα Nelson & Buess	αι από τους (Benitez- eler, 1998)	Woods Hole, Massachusetts , USA	(Benitez-Nelson & Buesseler, 1999)
235	1900	Ανά βροχόπτωση ή ανά 10 ημέρες ή ανά μήνα	1999-2001	Συλλέκτης Πολυαιθυλενίου Επιφάνειας 0.28m ²	Πλήρης Εξάτμιση	γ-φασματοσκοπία	Detroit, Michigan, USA	(McNeary & Baskaran, 2003)
130	2167	2 εβδομάδες	1995-1996	2 δοχεία HDPE διαμέτρου 32cm το καθένα	Πλήρης Εξάτμιση	γ-φασματοσκοπία	Stillpond, Maryland, USA	(Kim, et al., 2000)
180	1200		1998	-				
290	1300		1999					
340	2000		2000					
250	970		2001					
250	1400		2002					
120	820		2003					
170	1200	1 μήνας	2004	Ατσάλινη Χοάνη	Εξάτμιση για τελικό όγκο	γ-φασματοσκοπία	Monaco	(Pham, et al., 2013)
320	2000		2005	επιφανείας 411	100 III			
230	1500	-	2006					
66	390		2007	-				
225	1500		2008					
115	1100]	2009	1				
110	1000		2010					

Στο Σχήμα 2.12 που ακολουθεί γίνεται μια συνοπτική περιγραφή των βημάτων των βασικών κατηγοριών δειγματοληψίας, επεξεργασίας και ανάλυσης δειγμάτων ατμοσφαιρικών αποθέσεων που χρησιμοποιήθηκαν από τις μελέτες που αναφέρονται στον Πίνακα 2.3.

Συμπληρωματικά στο *Σχήμα 2.12*, τα βασικά είδη συλλεκτών που χρησιμοποιήθηκαν για τις περιγραφόμενες διαδικασίες είναι τα εξής:

- ί. Βροχόμετρο,
- ii. Δοχείο πολυαιθυλενίου,
- iii. Συλλέκτης από ανοξείδωτο ατσάλι,
- iv. Ατσάλινος συλλέκτης με κεραμική επιφάνεια,
- Νλαστική χοάνη συνδεδεμένη με δοχείο πολυαιθυλενίου για τη συλλογή των υγρών αποθέσεων.

Α. Φιλτράρισμα του δείγματος

B. Εξάτμιση του δείγματος

Σχήμα 2.12: Συνοπτική περιγραφή των βημάτων των βασικών κατηγοριών δειγματοληψίας, επεξεργασίας και ανάλυσης δειγμάτων ατμοσφαιρικών αποθέσεων που χρησιμοποιήθηκαν από τις μελέτες που αναφέρονται στον Πίνακα 2.3.

ΚΕΦΑΛΑΙΟ 3

Επίδραση των βραχύβιων θυγατρικών του ραδονίου και του θορονίου στις γφασματοσκοπικές αναλύσεις

3.1 Εισαγωγή

Τα βραχύβια θυγατρικά του ραδονίου και του θορονίου αποτελούν μία από τις σημαντικότερες πηγές υποστρώματος μίας γ-φασματοσκοπικής διάταξης. Κατά συνέπεια η κύμανση του ραδονίου (²²²Rn) – κυρίως –, του θορονίου (²²⁰Rn) και των θυγατρικών τους μπορεί να έχει σημαντική επίδραση στα αποτελέσματα των γ-φασματοσκοπικών αναλύσεων, ιδιαίτερα για δείγματα χαμηλής φυσικής ραδιενέργειας. Επιπροσθέτως, η ύπαρξη των θυγατρικών του ραδονίου και του θορονίου σε ένα δείγμα μπορεί να επηρεάζει την ακρίβεια και τα κατώτερα επίπεδα ανίχνευσης άλλων ισοτόπων ενδιαφέροντος. Όπως αναφέρθηκε και στο 2° Κεφάλαιο, έχει λάβει χώρα μεγάλο πλήθος μελετών για τον περιορισμό της επίδρασης αυτής και ορισμένες από τις αναπτυχθείσες τεχνικές έχουν εφαρμοστεί στο παρελθόν ή εφαρμόζονται μέχρι και σήμερα στο ΕΠΤ-ΕΜΠ (Banjanac, et al., 2013) (El-Hussein, 1996) (Laubenstein & Lawson, 2020) (Radulescu, et al., 2013).

Στο τμήμα αυτό της παρούσας Δ.Δ. σκοπός ήταν:

- Να μελετηθεί η κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εσωτερικού του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ και να μελετηθεί η επίδραση της κύμανσης αυτής στα φάσματα υποστρώματος επιλεγμένων ανιχνευτών γερμανίου,
- Να προταθεί κατάλληλη μεθοδολογία προσδιορισμού του βέλτιστου υποστρώματος για επιλεγμένες φωτοκορυφές και επιλεγμένους ανιχνευτές γερμανίου,

56

 Να προσδιορισθούν κατάλληλα σενάρια δειγματοληψίας αερολύματος και γ-φασματοσκοπικής ανάλυσης, με σκοπό την επίτευξη χαμηλότερων επιπέδων ανίχνευσης και υψηλότερης ακρίβειας για επιλεγμένα ραδιενεργά ισότοπα που ενδιαφέρουν σε δειγματοληψίες ρουτίνας και σε καταστάσεις έκτακτης ανάγκης.

3.2 Κύμανση του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας

Με στόχο τη βαθύτερη μελέτη του υποστρώματος των ανιχνευτών του ΕΠΤ-ΕΜΠ θεωρήθηκε σκόπιμο να γίνει διερεύνηση της κύμανσης του ραδονίου και των θυγατρικών του μέσα στο εργαστήριο, παράλληλα με τη λήψη φασμάτων υποστρώματος σε επιλεγμένους ανιχνευτές γερμανίου, όπως δίνονται στον Πίνακα 3.1.

Ανιχνευτής	Υλικό παραθύρου κρυοστάτη	Εξάτμιση υγρού αζώτου εντός της θωράκισης	Ελεύθερος διαθέσιμος όγκος εντός της θωράκισης
XtRa-XtCSS*	Ανθρακονήματα	Ναι	~ 1L
LEGe Βηρύλλιο		Ναι	~ 44L
Ge1	Αλουμίνιο	Ναι	$\sim 26L$
Ge2	Αλουμίνιο	Όχι	~ 17L

Πίνακας 3.1 : Βασικά χαρακτηριστικά επιλεγμένων ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ

*Η εγκατάσταση του συστήματος Compton Suppression στον ανιχνευτή XtRa μειώνει σημαντικά τον ελεύθερο όγκο στο εσωτερικό της θωράκισης.

Στο ΕΠΤ-ΕΜΠ για τη μέτρηση του ραδονίου και των θυγατρικών του διατίθενται τα παρακάτω μετρητικά όργανα:

- ALPHAGUARD, Professional Radon Monitor, GENITRON Instruments GmbH, T: EF, S/N: 1232,
- ALPHAGUARD, Professional Radon Monitor, SAPHYMO GmbH, T: EF, S/N: 1991,
- ALPHAPM, SAPHYMO GmbH, T: APM, S/N: 0157.
Από τα παραπάνω συστήματα, το ALPHAGUARD της εταιρείας GENITRON χρησιμοποιείται αποκλειστικά για μετρήσεις της συγκέντρωσης του ραδονίου, δίνοντας αποτελέσματα σε Bq/m³. Το ALPHAGUARD της εταιρείας SAPHYMO μπορεί να χρησιμοποιηθεί για μετρήσεις ραδονίου (Bq/m³), αλλά και να συνδυαστεί με το ALPHAPM, ώστε η διάταξη των δύο συστημάτων να παρέχει αποτελέσματα συγκέντρωσης ραδονίου και συγκέντρωσης θυγατρικών ραδονίου (σε mWL), εκτιμώντας ταυτόχρονα και τον συντελεστή ισορροπίας (Equilibrium Factor) μεταξύ του ραδονίου και των θυγατρικών του. Το ALPHAPM μπορεί να χρησιμοποιηθεί αυτόνομα, αποκλειστικά για μετρήσεις της συγκέντρωσης των θυγατρικών του ραδονίου. Και τα δύο διαθέσιμα συστήματα ALPHAGUARD πραγματοποιούν επιπλέον μετρήσεις της θερμοκρασίας (°C), της πίεσης (mbar) και της σχετικής υγρασίας (%). Για τη συλλογή των αποτελεσμάτων των μετρήσεων των παραπάνω μετρητικών οργάνων χρησιμοποιείται το λογισμικό DATAEXPERT v.04.54.00 b.12.0113.1226 της εταιρείας SAPHYMO GmbH, Germany (https://www.bertintechnologies.com/industry/nuclear/, Τελευταία Πρόσβαση 4/8/2023).

Στα πλαίσια της παρούσας μελέτης έγιναν 4 δειγματοληψίες στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ με τα παραπάνω όργανα. Σε όλες τις δειγματοληψίες, στο σύστημα ALPHAGUARD, ορίσθηκε σταθερά χρόνου ολοκλήρωσης 60 min για επίτευξη καλύτερης στατιστικής και συλλογής μικρότερου όγκου δεδομένων¹³. Επιπροσθέτως, το ALPHAGUARD τέθηκε σε λειτουργία διάχυσης, που σημαίνει ότι το ραδόνιο εισέρχεται στον θάλαμο μέτρησης του οργάνου μέσω φίλτρου μόνο μέσω της διαδικασίας της διάχυσης. Αντίστοιχα, το ALPHAPM ρυθμίστηκε να πραγματοποιεί μετρήσεις με συλλογή αέρα ροής 2 L/min. Ο αέρας περνά μέσα από κατάλληλο φίλτρο της συσκευής, το οποίο αντικαθίσταται μετά από κάθε δειγματοληψία.

Είναι σημαντικό να σημειωθεί ότι το εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, που βρίσκεται στο υπόγειο του Κτιρίου Κ, επικοινωνεί συνεχώς με τους άλλους χώρους του κτιρίου, καθώς οι πόρτες των επιμέρους δωματίων παραμένουν συνεχώς ανοιχτές. Επίσης, επικοινωνεί μέσω αγωγού εξαερισμού με τον εξωτερικό ατμοσφαιρικό αέρα, ενώ βρίσκονται σε συνεχή λειτουργία μονάδες κλιματισμού για ρύθμιση της θερμοκρασίας στην περιοχή 20-23 °C για την καλύτερη λειτουργία των

¹³ Η εναλλακτική επιλογή της συλλογής δεδομένων με ολοκλήρωση κάθε 10min δεν κρίθηκε ότι εξυπηρετεί τον σκοπό της παρούσας μελέτης.

ανιχνευτικών διατάξεων. Στο Σχήμα 3.1 που ακολουθεί δίνεται ένα σκαρίφημα του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ όπου διακρίνονται οι τέσσερις ανιχνευτές γερμανίου, η θέση όπου τοποθετήθηκε η διάταξη ALPHAGUARD-ALPHAPM κατά τη διάρκεια των μετρήσεων, καθώς και οι θέσεις των κλιματιστικών, του εξαερισμού και της εισόδου. Στο Σχήμα 3.2 διακρίνεται η διάταξη των ALPHAGUARD-ALPHAPM στο εσωτερικό του εργαστηρίου σε λειτουργία.

Σχήμα 3.1 : Σκαρίφημα εργαστηρίου γ-φασματοσκοπίας ΕΠΤ-ΕΜΠ.

Σχήμα 3.2 : Συγκρότηση της διάταξης AlphaGUARD-AlphaPM στο κέντρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ.

Τα χαρακτηριστικά για τις δειγματοληψίες που έλαβαν χώρα παρουσιάζονται στον Πίνακα 3.2 που ακολουθεί.

Δειγματοληψία	Ημερομηνίες δειγματοληψίας	AlphaGUARD - AlphaPM	Συλλογή φάσματος υποστρώματος	Σχόλια
1 ^ŋ	30/7/2020 έως 11/8/2020	Ναι	Όχι	Χρήση μόνο της συσκευής AlphaGUARD
2 ^η	13/10/2020 έως 25/10/2020	Ναι	Όχι	Διερεύνηση της κύμανσης του ραδονίου μέσα στο εργαστήριο
3 ^η	1/3/2021 έως 13/3/2021	Ναι	XtRa, XtCSS LEGe, Ge1 Ge2	Παράλληλη συλλογή 6 διαδοχικών φασμάτων υποστρώματος 48h το κάθε ένα
4 ^ŋ	15/4/2022 έως 27/4/2022	Ναι	Ge1, Ge2	Παράλληλη συλλογή 48 διαδοχικών φασμάτων υποστρώματος 6h το κάθε ένα

Πίνακας 3.2 : Χαρακτηριστικά των τεσσάρων δειγματοληψιών.

Στις παραγράφους που ακολουθούν δίνονται περισσότερες λεπτομέρειες για τις τέσσερις δειγματοληψίες που έγιναν και γίνεται σχολιασμός των αποτελεσμάτων των μετρήσεων.

3.2.1 Η 1^η δειγματοληψία

Κατά την πρώτη φάση των πειραμάτων, από τις 30 Ιουλίου του 2020 έως και τις 11 Αυγούστου 2020, χρησιμοποιήθηκε το όργανο AlphaGUARD (Professional Radon Monitor, GENITRON Instruments GmbH, T: EF, S/N: 1232) το οποίο τοποθετήθηκε στο κεντρικό τραπέζι του εργαστηρίου γ-φασματοσκοπίας και ξεκίνησε δειγματοληψία με στόχο την αρχική διερεύνηση του επιπέδου της κύμανσης της συγκέντρωσης του ραδονίου στον χώρο του εργαστηρίου.

Η αρχική αυτή δειγματοληψία επιβεβαίωσε την ύπαρξη κύμανσης της συγκέντρωσης του ραδονίου στον εσωτερικό χώρο του εργαστηρίου. Ωστόσο, πέραν της επιβεβαίωσης που προσέφερε, δε θα χρησιμοποιηθεί στις αναλύσεις που θα ακολουθήσουν, καθώς κατά τη διάρκεια της δειγματοληψίας αυτής αστάθμητοι παράγοντες επηρέασαν τις συνθήκες λειτουργίας στο εργαστήριο. Συγκεκριμένα, μια εκτεταμένη διακοπή ρεύματος στις εγκαταστάσεις του ΕΜΠ οδήγησε στη διακοπή λειτουργίας των κλιματιστικών μονάδων του χώρου¹⁴. Η έλλειψη κλιματισμού προκάλεσε αύξηση της θερμοκρασίας στο εργαστήριο γ-φασματοσκοπίας με

¹⁴ Επισημαίνεται ότι τόσο οι γ-φασματοσκοπικές διατάξεις, όσο και τα όργανα μέτρησης ραδονίου τροφοδοτούνται από σύστημα αδιάλειπτης παροχής ρεύματος και η λειτουργία τους συνέχισε κανονικά.

αποτέλεσμα την αύξηση της συγκέντρωσης του ραδονίου. Το γεγονός αυτό, αν και αποτελεί σημαντικό δεδομένο που τονίζει τη σημασία διατήρησης σταθερών συνθηκών στο χώρο όπου πραγματοποιούνται οι γ-φασματοσκοπικές αναλύσεις, δε θα χρησιμοποιηθεί περαιτέρω. Με το πέρας της διακοπής ηλεκτροδότησης επανήλθε η λειτουργία των κλιματιστικών μονάδων και ο χώρος προσαρμόστηκε ξανά στις κανονικές συνθήκες λειτουργίας.

Τα αποτελέσματα της αρχικής αυτής μέτρησης δίνονται στο Σχήμα 3.3, όπου ο χρόνος της δειγματοληψίας παρουσιάζεται στον οριζόντιο άξονα¹⁵. Η συγκέντρωση του ραδονίου δίνεται σε Bq/m³ και η αβεβαιότητα των μετρήσεων σε επίπεδο 1σ. Οι δειγματοληψίες που ακολουθούν διεξήχθησαν σε κανονικές συνθήκες λειτουργίας του εργαστηρίου.

Σχήμα 3.3 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 30/7/2020-11/8/2020.

3.2.2 H 2^η, 3^η & 4^η δειγματοληψία

Οι δειγματοληψίες 2, 3 και 4 μπορούν να ομαδοποιηθούν, καθώς αφορούν σε κανονικές συνθήκες λειτουργίας του εργαστηρίου γ-φασματοσκοπίας. Τα επιμέρους χαρακτηριστικά κάθε μίας από τις ανωτέρω δειγματοληψίες είναι τα εξής:

2^η δειγματοληψία

¹⁵ Για λόγους συσχέτισης με τα φάσματα 48 ωρών των ανιχνευτικών διατάξεων η κλίμακα του χρόνου έχει διαιρεθεί ανάλογα με κάθετες γραμμές.

Η δεύτερη χρονικά δειγματοληψία έγινε από τις 13 Οκτωβρίου του 2020 έως και τις 25 Οκτωβρίου του 2020. Στη φάση αυτή χρησιμοποιήθηκε η διάταξη των ALPHAGUARD (Professional Radon Monitor, SAPHYMO GmbH, T: EF, S/N: 1991) και ALPHAPM (SAPHYMO GmbH, T: APM, S/N: 0157) σε σύνδεση, ώστε να γίνει ταυτόχρονη παρακολούθηση της συγκέντρωσης του ραδονίου, καθώς και των θυγατρικών του. Τα θυγατρικά του ραδονίου προσδιορίζονται ως σύνολο μέσω του υπολογισμού του PAEC (Potential Alpha Energy Concentration) και η διαδικασία υπολογισμού του συντελεστή ισορροπίας F (Equilibrium Factor) παρουσιάζεται αναλυτικά στο Παράρτημα B.

3^η δειγματοληψία

Η τρίτη χρονικά δειγματοληψία έγινε από την 1 Μαρτίου του 2021 έως και τις 13 Μαρτίου του 2021. Στη φάση αυτή χρησιμοποιήθηκε η διάταξη των AlphaGUARD (Professional Radon Monitor, SAPHYMO GmbH, T: EF, S/N: 1991) και AlphaPM (SAPHYMO GmbH, T: APM, S/N: 0157) σε σύνδεση, ώστε να γίνει ταυτόχρονη παρακολούθηση της συγκέντρωσης του ραδονίου, καθώς και των θυγατρικών του.

Παράλληλα με την παρακολούθηση της συγκέντρωσης του ραδονίου και των θυγατρικών του, έγινε και λήψη φασμάτων υποστρώματος των ανιχνευτών XtRa, XtCSS, LEGe, Ge1 και Ge2. Ως χρονικό βήμα λήψης των φασμάτων υποστρώματος επιλέχθηκαν οι 48h, καθώς αποτελούν ένα από τα συνήθη χρονικά διαστήματα γ-φασματοσκοπικής ανάλυσης δειγμάτων στο ΕΠΤ-ΕΜΠ. Ωστόσο, η έλλειψη ικανού πλήθους σημείων για την εξαγωγή στατιστικά σημαντικών συσχετίσεων έκανε αναγκαία τη διεξαγωγή και 4^{ης} δειγματοληψίας που ακολουθεί.

4^η δειγματοληψία

Η 4^η δειγματοληψία έλαβε χώρα με στόχο τη συλλογή αρκετών δεδομένων για την επίτευξη στατιστικά σημαντικών συσχετίσεων μεταξύ της κύμανσης της συγκέντρωσης του ραδονίου και των θυγατρικών του, με την κύμανση επιλεγμένων φωτοκορυφών του υποστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ. Για τη δειγματοληψία αυτή χρησιμοποιήθηκε η διάταξη των AlphaGUARD (Professional Radon Monitor, SAPHYMO GmbH, T: EF, S/N: 1991) – AlphaPM (SAPHYMO GmbH, T: APM, S/N: 0157) και πραγματοποιήθηκε δειγματοληψία για χρονικό διάστημα 12 ημερών μεταξύ 15/4/2022 έως 27/4/2022. Ταυτόχρονα, ξεκίνησε και η λήψη φάσματος με χρονικό βήμα 6h στους ανιχνευτές Ge1 και Ge2 με χρήση της επιλογής «SEQUENCE» του προγράμματος GENIE2000. Οι υπόλοιποι ανιχνευτές του εργαστηρίου δε συμμετείχαν στη συγκεκριμένη δειγματοληψία, καθώς δεν κρίθηκε απαραίτητο για την επίτευξη των προσδοκώμενων αποτελεσμάτων.

Για τις δειγματοληψίες 2, 3 και 4 έγινε παράλληλη παρακολούθηση και καταγραφή των τοπικών μετεωρολογικών συνθηκών που επηρεάζουν την εκροή του ραδονίου από το έδαφος και ενδεχομένως τη συγκέντρωση του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας (Robinson, 1996), (Kitto, 2005), (Xie, et al., 2015), (Schubert, et al., 2018), (Li, et al., 2018), (Aquilina & Fenech, 2019), (Baltrenas, et al., 2020), (Singh, et al., 2005), (Martin & McBride, 2012). Για την περιοχή που βρίσκεται το ΕΠΤ-ΕΜΠ, κρίθηκε ως αντιπροσωπευτικότερος από τους πλησιέστερους μετεωρολογικούς σταθμούς ο σταθμός «Παπάγου». Για τον σταθμό ελήφθησαν μετεωρολογικά δεδομένα μέσω της ιστοσελίδας <u>https://meteosearch.meteo.gr/</u> (τελευταία πρόσβαση 24/7/2023). Στην ιστοσελίδα αυτή το Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυξης του Αστεροσκοπείου Αθηνών¹⁶ διατηρεί χρονοσειρές μετεωρολογικών Εθνικού δεδομένων για πλήθος μετεωρολογικών σταθμών στην Ελλάδα. Το σύνολο των μετεωρολογικών δεδομένων που χρησιμοποιήθηκαν για τη μελέτη που περιγράφεται στο Κεφάλαιο 3, παρουσιάζεται στο Παράρτημα Γ.

3.2.3 Αποτελέσματα της μελέτης της κύμανσης του ραδονίου και των θυγατρικών του εντός του εργαστηρίου γ-φασματοσκοπίας

Για την εξαγωγή συμπερασμάτων από την παρούσα μελέτη τα αποτελέσματα των δειγματοληψιών 2, 3 και 4 αντιμετωπίζονται συγκεντρωτικά. Για τον λόγο αυτό, τα Σχήματα που δίνονται στην παράγραφο αυτή είναι τα πλέον αντιπροσωπευτικά. Τα Σχήματα και οι Πίνακες με τα επιμέρους δεδομένα για κάθε μία δειγματοληψία δίνονται στο Παράρτημα Δ. Σε όλους τους Πίνακες και τα Σχήματα που ακολουθούν, τα δεδομένα συνοδεύονται με το αντίστοιχο τυπικό τους σφάλμα (1σ). Ειδικότερα, το τυπικό σφάλμα για τις ωριαίες τιμές των συγκεντρώσεων του ραδονίου δίνεται απευθείας από το AlphaGUARD.

¹⁶ Ορισμένα από τα δεδομένα διετέθησαν ευγενώς μετά από προσωπική επικοινωνία από τον Διευθυντή Ερευνών του Ινστιτούτου Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυξης Δρ. Κωνσταντίνο Λαγουβάρδο.

Κατά τη διάρκεια των ανωτέρω δειγματοληψιών, μέσα στο εργαστήριο γ-φασματοσκοπίας η θερμοκρασία κυμάνθηκε από 20.6°C έως 23.4°C, η σχετική υγρασία κυμάνθηκε από 28.6% έως 61.5% και η πίεση από 980.3mbar έως 1007.8mbar. Δεν παρατηρήθηκε καμία στατιστικά σημαντική συσχέτιση μεταξύ της συγκέντρωσης του ραδονίου και των θυγατρικών του με τη θερμοκρασία, τη σχετική υγρασία ή την πίεση στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας. Συγκεντρωτικά στοιχεία από τις μετρήσεις της συγκέντρωσης του ραδονίου και των θυγατρικών του για κάθε μία από τις ανωτέρω δειγματοληψίες δίνονται στον Πίνακα 3.3 που ακολουθεί.

	²²² Rn (Bq/m ³)		Θυγατρικά ²²² Rn (mWL)			Συντελεστής ισορροπίας*			
Δειγματοληψια	Min	Max	Mean (± 1σ)	Min	Max	Mean (± 1σ)	Min	Max	Mean (± 1σ)
2 ^η	16	74	37.8 ± 9.3	0.6	9.3	4.3 ± 1.4	0.13	0.78	0.43 ± 0.10
3 ^ŋ	13	56	27.3 ± 6.7	1.1	6.2	2.8 ± 0.9	0.16	0.75	0.39 ± 0.10
4 ^ŋ	10	71	33.2 ± 12.5	0.8	10.9	4.2 ± 2.3	0.12	0.78	0.45 ± 0.13

Πίνακας 3.3 : Ελάχιστες (min), Μέγιστες (max) και Μέσες Τιμές (Mean) των μετρήσεων του ραδονίου και των θυγατρικών του για κάθε μία από τις δειγματοληψίες 2, 3 και 4.

*Οι τιμές που προκύπτουν είναι αντίστοιχες με τη μέση τιμή 0.4 του συντελεστή ισορροπίας που δίνεται στο (UNSCEAR, 2000).

Στα αντιπροσωπευτικά Σχήματα 3.4, 3.5 και 3.6 που ακολουθούν απεικονίζονται:

- η ωριαία κύμανση της συγκέντρωσης του ραδονίου για την 4η δειγματοληψία (15/4/2022-27/4/2022) εφαρμόζοντας καμπύλη προσαρμογής κινούμενου μέσου 6 περιόδων για καλύτερη απεικόνιση της κύμανσης (σχήμα 3.4),
- ii. η συσχέτιση μεταξύ των μέσων 6h συγκεντρώσεων του ραδονίου και των θυγατρικών του για τη χρονική διάρκεια της 4^{ης} δειγματοληψίας (σχήμα 3.5),
- iii. η συχνότητα των παρατηρήσιμων περιοδικών μέγιστων και ελάχιστων της συγκέντρωσης του ραδονίου (Bq/m³) μέσα στο 24ωρο από τις συνδυαστικές μετρήσεις και των τριών ανωτέρων δειγματοληψιών (σχήμα 3.6).

Σχήμα 3.4 : Ωριαία Κύμανση της συγκέντρωσης του ²²²Rn στον εσωτερικό χώρο του εργαστηρίου γ-φασματοσκοπίας κατά τη διάρκεια της 4^{ης} δειγματοληψίας (15/4/2022-27/4/2022), ξεκινώντας από τις 15/4/2022 στις 00:00.

Σχήμα 3.5 : Συσχέτιση (στατιστικά σημαντική) μεταξύ των μέσων 6h συγκεντρώσεων του ραδονίου και των θυγατρικών του για τη χρονική διάρκεια της 4^{ης} δειγματοληψίας (15/4/22-27/4/22).

Σχήμα 3.6 : Συχνότητα περιοδικών μέγιστων (max) και ελάχιστων (min) της συγκέντρωσης του ραδονίου (Bq/m³) μέσα στο 24ωρο στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ από τις μετρήσεις της 2^η, της 3^η και της 4^η δειγματοληψίας. Το μέγεθος των κύκλων είναι ανάλογο της συχνότητας εμφάνισης κάθε συμβάντος.

Από τα αποτελέσματα των ανωτέρω δειγματοληψιών προκύπτει ότι:

- i. σε όλες τις περιπτώσεις παρατηρείται ημερήσια κύμανση της συγκέντρωσης
 του ραδονίου και των θυγατρικών του μέσα στο εργαστήριο
 γ-φασματοσκοπίας, με τις μέγιστες και τις ελάχιστες τιμές να απέχουν περίπου
 12 ώρες μεταξύ τους (Σχήμα 3.4),
- ii. η κύμανση της συγκέντρωσης του ραδονίου παρουσιάζει πολύ καλή συσχέτιση με τη συγκέντρωση των θυγατρικών του (Σχήμα 3.5),
- iii. οι μέγιστες συγκεντρώσεις του ραδονίου και των θυγατρικών του παρατηρούνται κυρίως τις απογευματινές ώρες (80% των μεγίστων παρατηρούνται μεταξύ 13:00 με 20:00), ενώ οι ελάχιστες παρατηρούνται από

τα μεσάνυχτα έως τις πρώτες πρωινές ώρες (81% των ελαχίστων παρατηρούνται μεταξύ 00:00 με 10:00) (*Σχήμα 3.6*).

Στο σύνολό της, η κύμανση της συγκέντρωσης του ραδονίου παρουσιάζει σχετική σταθερότητα περί τη μέση τιμή, γεγονός που σημαίνει ότι δεν επηρεάζει σημαντικά τις γ-φασματοσκοπικές αναλύσεις στην περίπτωση φασμάτων μεγάλης διάρκειας (π.χ. 24 ή 48 ώρες).

3.2.4 Συσχέτιση της συγκέντρωσης του ραδονίου στο εργαστήριο γφασματοσκοπίας με εξωτερικές μετεωρολογικές παραμέτρους

Όπως αναφέρθηκε και στο 2° Κεφάλαιο, η συγκέντρωση του ραδονίου στους εσωτερικούς χώρους επηρεάζεται σημαντικά από τις εξωτερικές μετεωρολογικές συνθήκες (Baltrenas, et al., 2020), (Robinson, 1996), (Aquilina & Fenech, 2019), (Xie, et al., 2015), (Schubert, et al., 2018), (Li, et al., 2018), (Kitto, 2005). Χρησιμοποιώντας τα μετεωρολογικά δεδομένα που έγιναν διαθέσιμα στο ΕΠΤ-ΕΜΠ, έγινε διερεύνηση για πιθανές συσχετίσεις μεταξύ των μέσων ημερήσιων τιμών της συγκέντρωσης του ραδονίου στο εργαστήριο με τις μέσες ημερήσιες τιμές διαφόρων μετεωρολογικών παραμέτρων. Τα αποτελέσματα των συσχετίσεων αυτών δίνονται στο Πίνακα 3.4 που ακολουθεί, ενώ αντιπροσωπευτικά διαγράμματα δίνονται στα Σχήματα 3.7, 3.8, 3.9, 3.10 και 3.11. Για διευκόλυνση του αναγνώστη, στους πίνακες που ακολουθούν οι συσχετίσεις οι οποίες διαπιστώνεται ότι είναι στατιστικά σημαντικές παρουσιάζονται με χρώμα «γκρι».

Δειγματοληψία	²²² Rn vs T _{out}		²²² Rn	vs P _{out}	²²² Rn vs ταχύτητα ανέμου	
	R	p-Value	R	p-Value	R	p-Value
2 ^η	+ 0.7215	0.01220	- 0.6132	0.04483	- 0.7827	0.00440
3 ^ŋ	+ 0.8104	0.00249	- 0.6129	0.04497	- 0.6226	0.04077
4 ^ŋ	+ 0.9167	0.00007	- 0.1327	0.69731	- 0.5874	0.0574

Πίνακας 3.4α : Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου (Bq/m³) με τη μέση ημερήσια τιμή της εξωτερικής θερμοκρασίας (T_{out}) και της εξωτερικής πίεσης (P_{out}), καθώς και με τη μέση ημερήσια τιμή της ταχύτητας του ανέμου.

Πίνακας 3.4β : Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου (Bq/m³) με τη μέση ημερήσια τιμή της διαφοράς μεταξύ εξωτερικής και εσωτερικής θερμοκρασίας (ΔT_{out-in}) και πίεσης (ΔP_{out-in}).

Δουματολογία	²²² Rn vs	ΔT_{out-in}	222 Rn vs ΔP_{out-in}		
Δειγματοληψια	R	p-Value	R	p-Value	
2 ^η	+ 0.7622	0.00639	- 0.3534	0.28636	
3 ^η	+ 0.8161	0.00219	- 0.7632	0.00628	
4 ^ŋ	+ 0.9183	0.00007	- 0.8441	0.00109	

Σχήμα 3.7 : Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής θερμοκρασίας (°C) για τη χρονική περίοδο της 3^{ης} δειγματοληψίας.

Σχήμα 3.8 : Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής πίεσης (mbar) για τη χρονική περίοδο της 3^{ης} δειγματοληψίας.

Σχήμα 3.9 : Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική θερμοκρασία (ΔT_{out-in}) για τη χρονική περίοδο της 4^{ης} δειγματοληψίας.

Σχήμα 3.10 : Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική πίεση (ΔP_{out-in}) για τη χρονική περίοδο της 4^{ης} δειγματοληψίας.

Σχήμα 3.11 : Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της ταχύτητας του ανέμου (km/h) για τη χρονική περίοδο της 2^{ης} δειγματοληψίας.

Από τα αποτελέσματα των ανωτέρω δειγματοληψιών προκύπτει ότι η συγκέντρωση του ραδονίου στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας εμφανίζει:

- στατιστικά σημαντική θετική συσχέτιση με την εξωτερική θερμοκρασία
 καθώς και με τη διαφορά της εσωτερικής από την εξωτερική θερμοκρασία,
- ασθενή αρνητική συσχέτιση στις περισσότερες περιπτώσεις με την εξωτερική βαρομετρική πίεση καθώς και με τη διαφορά της εσωτερικής από την εξωτερική πίεση,
- iii. ασθενή αρνητική συσχέτιση με την ταχύτητα του ανέμου.

3.2.5 Επίδραση του ραδονίου και των θυγατρικών του στο υπόστρωμα των ανιχνευτών γερμανίου

Από τα αποτελέσματα της προηγούμενης παραγράφου επιβεβαιώνεται η κύμανση του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας καθώς και η επίδραση που έγουν σε αυτή την κύμανση οι μετεωρολογικές συνθήκες στο εξωτερικό περιβάλλον. Το επόμενο βήμα της παρούσας μελέτης είναι η αξιολόγηση της επίδρασης που έχει η κύμανση του ραδονίου στο υπόστρωμα των ανιχνευτικών διατάξεων του ΕΠΤ-ΕΜΠ. Για τον σκοπό αυτό, για τους ανιχνευτές που αναφέρονται στον Πίνακα 3.2, παράλληλα με την 3^η και 4^η δειγματοληψία γινόταν και λήψη φάσματος υποστρώματος. Για κάθε ένα από τα φάσματα που συλλέχθηκαν υπολογίσθηκε ο ρυθμός κρούσεων (counts per second - cps) για τις φωτοκορυφές του υποστρώματος λόγω των βραχύβιων θυγατρικών του ραδονίου και θορονίου. Στη συνέχεια, επιχειρήθηκε η συσχέτιση των τιμών του ρυθμού κρούσεων της φωτοκορυφής¹⁷ του ²¹⁴Bi στα 609.32 keV, με την κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εργαστήριο. Τα σχετικά αποτελέσματα δίνονται στον Πίνακα 3.5. Αντιπροσωπευτικά διαγράμματα για τις συσχετίσεις αυτές δίνονται στα Σχήματα 3.12, 3.13, 3.14 και 3.15, ενώ το σύνολο των σχετικών διαγραμμάτων δίνεται στο Παράρτημα Ε. Τα προς σύγκριση διαδοχικά φάσματα υποστρώματος είναι χρονικής διάρκειας 48h για την 3^η δειγματοληψία και 6h για την 4^η δειγματοληψία, συνεπώς οι συγκεντρώσεις του ραδονίου και των θυγατρικών του με τις οποίες συγκρίνονται είναι οι αντίστοιγης χρονικής διάρκειας μέσες συγκεντρώσεις.

¹⁷ Η φωτοκορυφή αυτή λόγω του μεγάλου ποσοστού εκπομπής των φωτονίων θεωρείται η πλέον χαρακτηριστική εξ όλων των φωτοκορυφών που οφείλονται στα θυγατρικά του ραδονίου.

Πίνακας 3.5α : Συσχέτιση μεταξύ της συγκέντρωσης του ραδονίου και των θυγατρικών του με το ρυθμό καταγραφής (cps) της φωτοκορυφής του ²¹⁴Bi (609.32 keV) στα φάσματα υποστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ για την 3^η δειγματοληψία.

Cps της φωτοκορυφής υποστρώματος	3η Δ	ειγματοληψ υποσ [,]	Σχόλια		
	²²² Rn		Θυγατρικά ²²² Rn		
(609.32 keV)	R	p-Value	R	p-Value	
XtRa	+ 0.7216	0.10547	+ 0.8239	0.04379	Πιθανόν καλές συσχετίσε οι οποίες ωστόσο
XtCSS	+0.5619	0.24586	+0.4321	0.39219	χρήσης 48h μέσων τιμών. Καλύτερη συσχέτιση μπορεί να επιτευνθεί με
LEGe	+ 0.4390	0.38380	+ 0.2464	0.63790	χρήση περισσότερων πειραματικών δεδομένων.
Gel	+ 0.6824	0.13529	+0.7498	0.08607	
Ge2	+ 0.9043	0.01330	+0.8726	0.02331	

Πίνακας 3.5β : Συσχέτιση μεταξύ της συγκέντρωσης του ραδονίου και των θυγατρικών του με τα cps της φωτοκορυφής του 214 Bi (609.32 keV) στα φάσματα υποστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ για την 4^η δειγματοληψία.

Cps της φωτοκορυφής υποστρώματος του ²¹⁴ Bi (609.32 keV)	4η Δ	ειγματοληψία υποστρ	Σχόλια		
	²²² Rn		Θυγατρικά ²²² Rn		Η συλλογή φασμάτων
	R	p-Value	R	p-Value	υποστρώματος με μικρότερο χρονικό βήμα (6h) οδήγησε σε περισσότερα πειραματικά δεδομένα που επέτρεψαν την εξαγωγή στατιστικά
Ge1	+ 0.6207	<0.00001	+ 0.5592	0.00004	
Ge2	+ 0.6560	<0.00001	+ 0.6675	<0.00001	σημαντικών συσχετίσεων.

Σχήμα 3.12: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^η δειγματοληψία και τον ανιχνευτή Ge2.

Σχήμα 3.13: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής ²¹⁴Bi στα 609.32keV για την 3^{η} δειγματοληψία και τον ανιχνευτή Ge2.

Σχήμα 3.14: Συσχέτιση μεταξύ της μέσης 6h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής ²¹⁴Bi στα 609.32keV για την 4^η δειγματοληψία και τον ανιχνευτή Ge2.

Σχήμα 3.5: Συσχέτιση μεταξύ της μέσης 6h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής ²¹⁴Bi στα 609.32keV για την 4^η δειγματοληψία και τον ανιχνευτή Ge2.

Από τα αποτελέσματα που παρουσιάζονται στα παραπάνω γραφήματα προκύπτει ότι η κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας επηρεάζει στατιστικά σημαντικά τα υποστρώματα των ανιχνευτών γερμανίου, αλλά η επίδραση αυτή λόγω της περιοδικότητας του φαινομένου τείνει να εξαφανίζεται σε μεγάλης διάρκειας φάσματα (48h). Ενδιαφέρον επίσης παρουσιάζει το γεγονός ότι οι ισχυρότερες συσχετίσεις μεταξύ της κύμανσης του ραδονίου και του ρυθμού καταμέτρησης της φωτοκορυφής του υποστρώματος εμφανίζεται για τον ανιχνευτή Ge2, για τον οποίο δεν έχουν ληφθεί μέτρα μείωσης του υποστρώματος ραδονίου, μέσω της εισαγωγής στο εσωτερικό της θωράκισης της εξάτμισης του υγρού αζώτου. Το γεγονός αυτό υποδηλώνει ότι η τεχνική αυτή για τη μείωση του υποστρώματος λόγω του ραδονίου, παρόλο που δεν εξαφανίζει την επίδραση των θυγατρικών του ραδονίου στο υπόστρωμα των ανιχνευτών γερμανίου, έχει τη δυνατότητα να την περιορίσει σημαντικά.

Στο σημείο αυτό πρέπει να αναφερθεί ότι, καθώς κυμαίνεται το υπόστρωμα φωτοκορυφών λόγω των θυγατρικών ραδονίου και θορονίου, αντιστοίχως κυμαίνεται και το συνεχές υπόστρωμα του φάσματος το οποίο οφείλεται στις σκεδάσεις των φωτονίων των θυγατρικών ραδονίου και φωτονίου.

73

3.3 Μελέτη της επίδρασης της διάρκειας δειγματοληψίας στην εκτίμηση του υποστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ

Ένας από τους σημαντικότερους παράγοντες για την ανίχνευση και τον ακριβή προσδιορισμό της συγκέντρωσης ενεργότητας των περιεχόμενων σε ένα δείγμα ραδιενεργών ισοτόπων είναι ο ακριβής προσδιορισμός του υποστρώματος κατά τη γ-φασματοσκοπική ανάλυση. Το υπόστρωμα της μέτρησης (background) διαχωρίζεται σε συνεχές υπόστρωμα (continuum background) και υπόστρωμα φωτοκορυφών (photopeak background). Το συνεχές υπόστρωμα μιας μέτρησης είναι κυρίως¹⁸ αποτέλεσμα της ανίχνευσης φωτονίων του δείγματος ή και του υποστρώματος μετά τη σκέδασή τους στη θωράκιση στο ίδιο το δείγμα ή και στον ανιχνευτή. Κατά τη συνήθη διαδικασία της γ-φασματοσκοπική ανάλυσης, το λογισμικό που χρησιμοποιείται αφαιρεί κατάλληλα το συνεχές υπόστρωμα, ώστε να προσδιορισθεί η καθαρή επιφάνεια (net area) της κάθε φωτοκορυφής. Για τον προσδιορισμό της ενεργότητας ραδιενεργών ισοτόπων των οποίων οι φωτοκορυφές ανιχνεύονται στο υπόστρωμα του ανιχνευτή (photopeak background) χρειάζεται να γίνει επιπλέον με κατάλληλο τρόπο η αφαίρεση της επιφάνειας φωτοκορυφής που αντιστοιχεί στο υπόστρωμα, ώστε να υπολογιστεί η καθαρή – διορθωμένη για υπόστρωμα – επιφάνεια φωτοκορυφής και εν συνεχεία η ενεργότητα του αντίστοιχου ραδιενεργού ισοτόπου. Προφανώς, αυτές οι καθαρές επιφάνειες φωτοκορυφών, που έχουν διορθωθεί με αφαίρεση του υποστρώματος, είναι ευαίσθητες στην κύμανση του υποστρώματος φωτοκορυφής, ειδικά σε χαμηλής ραδιενέργειας δείγματα¹⁹. Τέτοια δείγματα, για παράδειγμα, είναι τα δείγματα μικρού όγκου. Ένα σημείο ακόμα που παίζει μεγάλο ρόλο σε τέτοιου είδους αναλύσεις είναι η αβεβαιότητα της διορθωμένης φωτοκορυφής, η οποία επηρεάζεται τόσο από την αβεβαιότητα της καθαρής επιφάνειας φωτοκορυφής, όσο και από την αβεβαιότητα της φωτοκορυφής του υποστρώματος²⁰.

¹⁸ Στο συνεχές υπόστρωμα συνεισφέρει και η αλληλεπίδραση της κοσμικής ακτινοβολίας με τον ανιχνευτή και τη θωράκιση, κάτι που ξεφεύγει από το αντικείμενο της διατριβής.

¹⁹ Και κατά συνέπεια μικρής επιφάνειας φωτοκορυφής.

²⁰ Για αβεβαιότητες σ₁ και σ₂ της επιφάνειας φωτοκορυφής του υποστρώματος και της επιφάνειας φωτοκορυφής του φάσματος ενός δείγματος αντίστοιχα, η αβεβαιότητα της διορθωμένης ως προς το υπόστρωμα επιφάνειας φωτοκορυφής είναι σ = $(\sigma_1^2 + \sigma_2^2)^{0.5}$.

Όπως έγινε εμφανές από τις προηγούμενες παραγράφους, στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ διαπιστώνεται κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του, η οποία υπό προϋποθέσεις συσχετίζεται στατιστικά σημαντικά με το υπόστρωμα των ανιχνευτικών διατάξεων. Για τον λόγο αυτό, στην παράγραφο αυτή της παρούσας Δ.Δ. μελετάται με λεπτομέρεια η χρονική κύμανση του υποστρώματος των ανιχνευτών που οφείλεται στο ραδόνιο και τα θυγατρικά ραδονίου και θορονίου²¹, και γίνεται σύγκριση μεταξύ μικρής και μεγάλης χρονικής διάρκειας φασμάτων υποστρώματος, με στόχο την ορθότερη επιλογή του φάσματος υποστρώματος λαμβάνοντας υπόψη διάφορες παραμέτρους.

3.3.1 Συλλογή των φασμάτων υποστρώματος

Η χρονική διάρκεια συλλογής φάσματος υποστρώματος σε έναν ανιχνευτή επαφίεται στην κρίση του εκάστοτε ερευνητή. Μερικές από τις συνήθεις πρακτικές που ακολουθούνται είναι:

- η συλλογή φάσματος υποστρώματος για χρονική διάρκεια όση και η αναμενόμενη χρονική διάρκεια ανάλυσης του δείγματος,
- ii. η συλλογή φάσματος υποστρώματος μεγάλης χρονικής διάρκειας, ώστε να επιτευχθούν όσο το δυνατόν μικρότερες αβεβαιότητες στις φωτοκορυφές ενδιαφέροντος,
- iii. η συλλογή πολλών φασμάτων υποστρώματος και η χρήση της σταθμισμένης μέσης τιμής των αποτελεσμάτων²².

Στο ΕΠΤ-ΕΜΠ μέχρι σήμερα ακολουθείται η πρακτική (ii) και συγκεκριμένα συλλέγεται ένα φάσμα υποστρώματος χρονικής διάρκειας 1000000s, απ' όπου προσδιορίζονται οι φωτοκορυφές υποστρώματος οι οποίες και πρέπει να αφαιρούνται κατάλληλα από τις αντίστοιχες φωτοκορυφές των αναλυόμενων δειγμάτων.

Το ερώτημα λοιπόν που τίθεται είναι κατά πόσον το υπόστρωμα κατά τη διάρκεια λήψης ενός φάσματος 48h, καθώς και η αβεβαιότητα που το συνοδεύει, εκτιμώνται κατάλληλα μέσω του φάσματος χρονικής διάρκειας 1000000s αυτού. Ειδικότερα, κρίθηκε σκόπιμο να διερευνηθεί αν κάποια από τις προαναφερθείσες

²¹ Δε μελετήθηκε η κύμανση του ²²⁰Rn, ωστόσο οι φωτοκορυφές των θυγατρικών του ραδιενεργών ισοτόπων ανιχνεύονται στο υπόστρωμα των ανιχνευτικών διατάξεων και παρουσιάζουν κύμανση.

²² Στο Παράρτημα ΙΑ δίνονται οι εξισώσεις που χρησιμοποιούνται για τον υπολογισμό της σταθμισμένης μέσης τιμής.

περιπτώσεις (i) και (iii) οδηγούν στον υπολογισμό ενός πιο συντηρητικού²³ αποτελέσματος.

Με σκοπό τη διερεύνηση των ανωτέρω, και επιλέγοντας ως χρονική διάρκεια λήψης φάσματος υποστρώματος τα 172800sec (48h), που είναι και μία συνήθης χρονική διάρκεια γ-φασματοσκοπικής ανάλυσης στο ΕΠΤ-ΕΜΠ, έγινε λήψη έξι διαδοχικών φασμάτων υποστρώματος (Consecutive Spectra), με χρήση της επιλογής «SEQUENCE» του GENIE2000. Τα φάσματα συλλέχθηκαν ταυτόχρονα και για τους τέσσερις ανιχνευτές (XtRa, LEGe, Ge1, Ge2) με στόχο τον προσδιορισμό των κυρίαρχων φωτοκορυφών υποστρώματος, όπως αυτές δίνονται στον *Πίνακα 3.6*.

Ραδιενεργό	Φωτοκορυφή	ĺ	Ραδιενεργό	Φωτοκορυφή
ισότοπο	(keV)		ισότοπο	(keV)
Pb-210	46.54		T1 209	583.19
Th-234	63.30		11-208	860.53
U-235 & Ra-226	185.99			338.32
РЬ-212	87.20		Ac-228	911.20
	238.63			968.96
Pb-214	295.22		Cs-137*	661.66
	351.93		$C_{2} \in 0^{**}$	1173.23
Bi-214	609.31		0-00	1332.49
	1120.29		K-40	1460.82
	1764.49			

Πίνακας 3.6 : Οι φωτοκορυφές υποστρώματος που εξετάστηκαν.

* Εντοπίζεται στο υπόστρωμα του ανιχνευτή HPGe (33.8%) ο οποίος βρισκόταν σε λειτουργία πριν από το έτος 1986, οπότε έλαβε χώρα το ατύχημα του Τσερνόμπιλ

** Εντοπίζεται στο υπόστρωμα του ανιχνευτή LEGe λόγω της χρήσης ανακυκλωμένου μετάλλου για την κατασκευή της θωράκισής του που έγινε το 1987 από το ΕΠΤ-ΕΜΠ.

3.3.2 Ανάλυση των φασμάτων υποστρώματος

Για κάθε μία από τις φωτοκορυφές του Πίνακα 3.6 προσδιορίστηκε ο ρυθμός καταγραφής γεγονότων (cps) και το αντίστοιχο σφάλμα για κάθε επιμέρους φάσμα χρονικής διάρκειας 172800sec και για κάθε ανιχνευτή. Ακολούθως, υπολογίστηκαν για κάθε ανιχνευτή:

ο ρυθμός καταγραφής γεγονότων (cps) και το αντίστοιχο σφάλμα για το φάσμα υποστρώματος που προέκυψε από την πρόσθεση των 6 επιμέρους διαδοχικών φασμάτων («Συνολικά cps») και την ανάλυσή τους ως ένα ενιαίο φάσμα,

²³ Κατά τη μέτρηση, η υπερεκτίμηση της αβεβαιότητας είναι προτιμότερη από την υποεκτίμησή της, η οποία μπορεί να οδηγήσει σε εσφαλμένη ανίχνευση ενός ισοτόπου.

 η σταθμισμένη μέση τιμή του ρυθμού καταγραφής γεγονότων (cps) και το αντίστοιχο σφάλμα των 6 επιμέρους φασμάτων («Μέσο cps»).

Στα Σχήματα 3.16, 3.17, 3.18, 3.19 και 3.20 που ακολουθούν, καταγράφονται τα πλέον αντιπροσωπευτικά αποτελέσματα των αναλύσεων των φασμάτων υποστρώματος που συλλέχθηκαν. Το σύνολο των αποτελεσμάτων για κάθε φωτοκορυφή ενδιαφέροντος και για κάθε ανιχνευτή δίνεται στο Παράρτημα ΣΤ.

Σχήμα 3.16 : Σύγκριση διαδοχικών φασμάτων υποστρώματος με τις τιμές των «Συνολικών cps» και του «Μέσου cps» για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²¹⁴Bi (609.31 keV).

Σχήμα 3.17 : Σύγκριση διαδοχικών φασμάτων υποστρώματος με τις τιμές του «Συνολικών cps και του «Μέσου cps» για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹⁴Pb (295.22 keV).

Σχήμα 3.18 : Σύγκριση διαδοχικών φασμάτων υποστρώματος με τις τιμές των «Συνολικών cps» και του «Μέσου cps» για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²³⁴Th (63.30 keV).

Σχήμα 3.19 : Σύγκριση διαδοχικών φασμάτων υποστρώματος με τις τιμές των «Συνολικών cps» και του «Μέσου cps» για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²⁰⁸Tl (583.19 keV).

Σχήμα 3.20 : Σύγκριση διαδοχικών φασμάτων υποστρώματος με τις τιμές των «Συνολικών cps» και του «Μέσου cps» για τον ανιχνευτή LEGe και τη φωτοκορυφή του ⁶⁰Co (1173.23 keV).

Από τα αντιπροσωπευτικά αποτελέσματα που παρουσιάζονται στα Σχήματα 3.16, 3.17, 3.18, 3.19 και 3.20 εξάγονται μία σειρά συμπερασμάτων:

- Σε ορισμένες περιπτώσεις παρατηρούνται μικρές ως αμελητέες διαφορές μεταξύ των διαδοχικών 48h φασμάτων καθώς και μεταξύ των «Συνολικών cps» με το «Μέσο cps» (Σχήμα 3.16). Η περίπτωση αυτή είναι και η ευκολότερη στην επιλογή της τιμής του υποστρώματος.
- Σε ορισμένες περιπτώσεις παρατηρείται μεγάλη κύμανση μεταξύ των διαδοχικών 48h φασμάτων. Στις περιπτώσεις αυτές, παρόλο που η τιμή του «Μέσου cps» είναι πολύ κοντά στη τιμή των «Συνολικών cps», το αντίστοιχο τυπικό σφάλμα του είναι πολύ μεγαλύτερο (Σχήμα 3.17).
- iii. Σε ορισμένες περιπτώσεις η τιμή «Μέσου cps» είναι σχετικά κοντά με την τιμή των «Συνολικών cps» και τα τυπικά σφάλματα είναι πολύ χαμηλά και περίπου ίδια (Σχήμα 3.18). Ενδιαφέρον παρουσιάζει ότι αυτό ισχύει και για τη φωτοκορυφή του ²³⁴Th, που δεν αποτελεί θυγατρικό του ραδονίου ή του θορονίου και παρουσιάζει κύμανση λόγω της στατιστικής της φωτοκορυφής.
- iv. Υπάρχουν περιπτώσεις όπου η φωτοκορυφή υποστρώματος είναι τόσο κοντά στα όρια ανίχνευσης που δεν ανιχνεύεται σε όλα τα διαδοχικά φάσματα υποστρώματος διάρκειας 48h (Σχήμα 3.19). Αυτό έχει ως αποτέλεσμα την εμφάνιση μεγάλων διαφορών μεταξύ της τιμής του «Μέσου cps» με την τιμή των «Συνολικών cps» καθώς και μεταξύ των τυπικών τους σφαλμάτων (Σχήμα 3.20).

Τα παραπάνω συμπεράσματα δικαιολογημένα οδηγούν σε μία σειρά από ερωτήματα:

i. Ποιο είναι το πιο αντιπροσωπευτικό φάσμα υποστρώματος και τυπικό σφάλμα που το συνοδεύει στην περίπτωση γ-φασματοσκοπικής ανάλυσης χρονικής διάρκειας 2 ημερών (48h), όταν έχει συλλεχθεί φάσμα υποστρώματος 12 ημερών; Αν το «Μέσο cps» και τα «Συνολικά cps» έχουν περίπου την ίδια τιμή, η συντηρητική προσέγγιση θα ήταν να επιλεγεί το φάσμα υποστρώματος με την υψηλότερη αβεβαιότητα, που στις περισσότερες περιπτώσεις σχετίζεται με την τιμή του «Μέσου cps» (Σχήμα 3.17). Ωστόσο, αν η τιμή του «Μέσου cps» είναι πολύ διαφορετική από την τιμή των «Συνολικών cps» τότε η πιο συντηρητική προσέγγιση είναι να επιλεγεί το φάσμα υποστρώματος με την υψηλότερη τιμή cps μαζί με την αβεβαιότητά του (Σχήμα 3.20).

ii. Ποιο είναι το αντιπροσωπευτικό φάσμα υποστρώματος και η αβεβαιότητα που το συνοδεύει στην περίπτωση μιας μικρής χρονικής διάρκειας μέτρησης, όταν οι φωτοκορυφές υποστρώματος είναι στα όρια ανίχνευσης και δεν εντοπίζονται πάντα στα διήμερα φάσματα υποστρώματος; Στη συγκεκριμένη περίπτωση, αν χρησιμοποιηθεί διήμερο φάσμα υποστρώματος υπάρχει η πιθανότητα εσφαλμένα να αποδοθεί φωτοκορυφή από το υπόστρωμα στο δείγμα που έχει αναλυθεί (Σχήμα 3.19 και 3.20) ή να υπερεκτιμηθεί²⁴ μια υπαρκτή φωτοκορυφή του δείγματος. Συνεπώς, η συντηρητική προσέγγιση στην περίπτωση αυτή είναι η χρήση της τιμής του «Μέσου cps», που θα είναι και το υψηλότερο, και της αβεβαιότητάς που το συνοδεύει.

3.4 Δειγματοληψία και ανάλυση δειγμάτων αερολύματος

Μία από τις δραστηριότητες του ΕΠΤ-ΕΜΠ, όπως αναφέρθηκε και στο προηγούμενο κεφάλαιο, είναι και η παρακολούθηση της ραδιενέργειας στο αερόλυμα της ατμόσφαιρας. Αυτό γίνεται με κατάλληλη δειγματοληψία αέρα μέσα από ειδικά φίλτρα. Για τον σκοπό αυτό, το ΕΠΤ-ΕΜΠ διαθέτει μία αντλία δειγματοληψίας αέρα υψηλής παροχής F&J DH-50810E η οποία βρίσκεται εγκατεστημένη στην οροφή του κτιρίου Κ, όπου στεγάζεται το ΕΠΤ-ΕΜΠ. Τα φίλτρα που χρησιμοποιούνται για τις δειγματοληψίες είναι κατασκευασμένα από ίνες γυαλιού (glass fiber filters) διαστάσεων 8''x10''. Υπό κανονικές συνθήκες, και ανάλογα με τη χρονική διάρκεια της δειγματοληψίας, στο ατμοσφαιρικό αερόλυμα ανιχνεύονται τα φυσικά ραδιενεργά ισότοπα ⁷Be και ²¹⁰Pb, και μερικές φορές ²²Na, παράλληλα με τα βραχύβια θυγατρικά του ραδονίου (²²²Rn) και του θορονίου (²²⁰Rn). Σε περιπτώσεις καταστάσεων έκτακτης ανάγκης, μπορεί να ανιχνευθούν και άλλα ραδιενεργά ισότοπα, όπως ¹³¹I, ¹³⁷Cs και ¹³⁴Cs (Potiriadis, et al., 2013), ενώ σε ιδιαίτερες περιπτώσεις ακόμα και μη αναμενόμενα ραδιενεργά ισότοπα, όπως το ¹⁰⁶Ru (Masson, et al., 2019). Σε τέτοιες καταστάσεις, τα τεχνητά αυτά ραδιενεργά ισότοπα πρέπει να είναι ανιχνεύσιμα ακόμα και σε πολύ χαμηλές συγκεντρώσεις, της τάξης των mBq/m³ ή και μBq/m³, κάτι που σημαίνει ότι τα αντίστοιγα κατώτερα επίπεδα ανίγνευσης πρέπει να είναι όσο το δυνατόν χαμηλότερα.

²⁴ Μία φωτοκορυφή υποστρώματος που δεν είναι ανιχνεύσιμη δε σημαίνει απαραίτητα ότι έχει επιφάνεια μηδενική. Στην περίπτωση αυτή η μη μηδενική επιφάνεια της μη ανιχνεύσιμης φωτοκορυφής του υποστρώματος θα αποδίδεται στο δείγμα, οδηγώντας σε υπερεκτίμηση της ραδιενέργειας του δείγματος.

Στόχος της έρευνας που παρουσιάζεται στην παράγραφο αυτή είναι η βελτίωση των κατώτερων επιπέδων ανίχνευσης (MDA) των γ-φασματοσκοπικών αναλύσεων δειγμάτων ατμοσφαιρικού αερολύματος²⁵ που γίνονται στο ΕΠΤ-ΕΜΠ.

3.4.1 Τα σενάρια δειγματοληψίας φίλτρων αέρα

Βάσει των δυνατοτήτων εξοπλισμού και προσωπικού του ΕΠΤ-ΕΜΠ, εμπειρίας προηγούμενων περιπτώσεων έκτακτης ανάγκης, καθώς και του προγράμματος συστηματικών δειγματοληψιών ατμοσφαιρικού αερολύματος στο ΕΠΤ-ΕΜΠ, επιλέχθηκαν τα ακόλουθα σενάρια χρονικής διάρκειας δειγματοληψίας: 6h, 24h, 48h, 120h & 168h. Η μέση παροχή αέρα κατά τη δειγματοληψία ήταν ~ 1160 SLPM. Για κάθε σενάριο έγινε συλλογή 2 φίλτρων αέρα με σκοπό τον έλεγχο της επαναληψιμότητας δειγματοληψιών και αναλύσεων. Στο σημείο αυτό κρίνεται σκόπιμο να τονισθεί ότι στη συγκεκριμένη σειρά πειραμάτων διερευνάται η απομείωση της ραδιενέργειας των βραχύβιων θυγατρικών του ραδονίου και του θορονίου τα οποία συλλέγονται πάνω στο φίλτρο αέρα και τα οποία επιδρούν στα κατώτερα επίπεδα ανίχνευσης άλλων ισοτόπων που ενδεχομένως συλλέγονται στο φίλτρο. Συνεπώς δεν ενδιαφέρει αυτή καθεαυτή η τιμή της ενεργότητας π.χ. ισοτόπων κοσμικής προέλευσης που ενδεχομένως συλλέγονται πάνω στα φίλτρα.

Τα φίλτρα που συλλέχθηκαν διπλώθηκαν σε γεωμετρία 5.08cm×6.35cm×0.9cm, η οποία έχει υιοθετηθεί και βαθμονομηθεί σε προηγούμενη εργασία (Savva, et al., 2018) και είναι η βασική γεωμετρία γ-φασματοσκοπικής ανάλυσης φίλτρων αέρα αυτού του τύπου στο ΕΠΤ-ΕΜΠ. Για τη γ-φασματοσκοπική ανάλυση των φίλτρων χρησιμοποιήθηκε ο ανιχνευτής XtRa (Savva, et al., 2014).

Μετά το πέρας της συλλογής ενός φίλτρου αέρα και έως την έναρξη της γ-φασματοσκοπικής του ανάλυσης, υπάρχει αναπόφευκτα μία μικρή καθυστέρηση (delay) λίγων λεπτών λόγω της μεταφοράς του φίλτρου από τη θέση δειγματοληψίας στον χώρο ανάλυσης, τη συσκευασία του φίλτρου σε κατάλληλη γεωμετρία, καθώς και την τοποθέτησή του μέσα στον ανιχνευτή. Για κάθε φίλτρο αέρα συλλέχθηκαν τα ακόλουθα φάσματα με χρήση της επιλογής «SEQUENCE» του προγράμματος GENIE2000:

 $^{^{25}}$ Δείγματα «φίλτρων α
έρα» όπως θα αναφέρονται στο υπόλοιπο της παρούσας παραγράφου.

- ένα φάσμα χρονικής διάρκειας 2h, αμέσως μετά την τοποθέτηση του φίλτρου στον ανιχνευτή,
- τέσσερα διαδοχικά φάσματα χρονικής διάρκειας 6h έκαστο (μετά το αρχικό 2h φάσμα),
- τρία διαδοχικά φάσματα χρονικής διάρκειας 24h έκαστο (μετά το αρχικό 2h φάσμα και τα τέσσερα 6h φάσματα).

Η συλλογή του αρχικού φάσματος χρονικής διάρκειας 2h έγινε με σκοπό τη διερεύνηση της επίδρασης των βραχύβιων θυγατρικών του ραδονίου στο υπόβαθρο της μέτρησης. Ο λόγος που επιλέχθηκαν να συλλεχθούν στη συνέχεια τα φάσματα σε τμήματα των 6h και 24h είναι για να επιτευχθεί καλύτερη εποπτεία της εξέλιξης του ρυθμού μείωσης της συγκέντρωσης ενεργότητας των θυγατρικών του ραδονίου και του θορονίου, και κατ' επέκταση της επίδρασή τους στη βελτίωση του συνεχούς υποστρώματος και εντέλει των κατώτερων επιπέδων ανίχνευσης (MDA). Όλα τα συλλεχθέντα φάσματα αναλύθηκαν με τον κώδικα SPUNAL (Simopoulos, 1989), ενώ οι τελικοί υπολογισμοί ενεργότητας των βραχύβιων θυγατρικών του ραδονίου έγιναν με χρήση του εργαλείου RadiCal που αναπτύχθηκε στα πλαίσια της παρούσας Δ.Δ. σε υπολογιστικό φύλλο excel (Παράρτημα Ζ). Τονίζεται ότι στη φάση αυτή της διερεύνησης, η επιφάνεια των φωτοκορυφών των βραχύβιων θυγατρικών του ραδονίου παρέχει πληροφορία για το συνεχές υπόστρωμα που παράγεται στο φάσμα

3.4.2 Αποτελέσματα της γ-φασματοσκοπικής ανάλυσης των φίλτρων αέρα

Για κάθε φίλτρο αέρα που συλλέχθηκε στα πλαίσια της παρούσας μελέτης και για κάθε σενάριο δειγματοληψίας και ανάλυσης που εφαρμόσθηκε:

- i. υπολογίστηκε ο ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του ραδονίου 214 Pb (351.93 keV) και 214 Bi (609.31 keV), και του θορονίου 212 Pb (238.63 keV) και 208 Tl (583.19 keV),
- ii. υπολογίστηκαν τα MDAs των παρακάτω ραδιενεργών ισοτόπων: ⁷Be (477.6 keV), ¹⁰⁶Ru (621.90 keV μέσω του ¹⁰⁶Rh), ²²Na (1274.54 keV), ¹³⁷Cs (661.66 keV), ¹³⁴Cs (604.72 keV) και ¹³¹I (364.49keV), χρησιμοποιώντας τη

μεθοδολογία που περιγράφεται στο (Gilmore, 2008) και παρουσιάζεται στο Παράρτημα Η.

Στον Πίνακα 3.7 δίνεται ο κατάλογος των φίλτρων αέρα που συλλέχθηκαν για τα διάφορα σενάρια δειγματοληψίας.

Κωδικός φίλτρου αέρα	Σενάριο δειγματοληψίας (h)	Delay (min)	Συνολικός όγκος αέρα (m ³)
a0532	6	13.5	422.03
a0533	6	6.0	399.39
a0534	24	4.5	1574.8
a0535	24	10.0	1601.5
a0536	24	10.4	1627.8
a0537	48	9.2	3435.0
a0577	48	5.4	3727.2
a0538	120	9.3	8363.9
a0542	120	9.2	8680.2
a0539	168	9.2	12437
a0541	168	10.7	11769

Πίνακας 3.7: Κατάλογος δειγμάτων φίλτρων αέρα που συλλέχθηκαν και τα αντίστοιχα σενάρια δειγματοληψίας.

Από την ανάλυση των παραπάνω φασμάτων εκτιμήθηκε η επιφάνεια φωτοκορυφής για όλες τις ενέργειες φωτονίων που αναφέρονται παραπάνω και προσδιορίσθηκε ο ρυθμός καταγραφής γεγονότων (cps). Ακολουθούν αντιπροσωπευτικά διαγράμματα στα οποία παρουσιάζεται η χρονική εξέλιξη του cps των βραχύβιων θυγατρικών του ραδονίου και του θορονίου για τα διάφορα σενάρια δειγματοληψίας²⁶ και ανάλυσης. Το σύνολο των διαγραμμάτων για όλα τα σενάρια δειγματοληψίας και ανάλυσης και για όλα τα συλλεχθέντα φίλτρα δίνεται στο Παράρτημα Θ.

Από το Σχήμα 3.21 που ακολουθεί προκύπτει ότι, ανεξαρτήτως από το σενάριο δειγματοληψίας και γ-φασματοσκοπικής ανάλυσης, η επίδραση των θυγατρικών του ραδονίου στο υπόστρωμα φωτοκορυφών και κατά συνέπεια και στο συνεχές²⁷ υπόστρωμα, μειώνεται σημαντικά μετά το πέρας των πρώτων 2h από τη συλλογή του

²⁶ Για το σενάριο δειγματοληψίας 24h έγιναν 3 δειγματοληψίες φίλτρων αέρα.

²⁷ Τα κατώτερα επίπεδα ανίχνευσης επηρεάζονται από το συνεχές υπόστρωμα του φάσματος που οφείλεται στις σκεδάσεις των φωτονίων από τα βραχύβια θυγατρικά ραδονίου και θορονίου και όχι άμεσα από τις φωτοκορυφές του υποστρώματος. Οι φωτοκορυφές λόγω των βραχύβιων θυγατρικών ραδονίου και θορονίου όμως παρέχουν ένδειξη για το αντίστοιχο συνεχές υπόστρωμα.

δείγματος φίλτρου αέρα, ως αποτέλεσμα των μικρών χρόνων ημιζωής των ραδιενεργών ισοτόπων ²¹⁴Bi και ²¹⁴Pb.

Σχήμα 3.21 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του ραδονίου ²¹⁴Pb και ²¹⁴Bi από τη δειγματοληψία φίλτρου αέρα 120h (φίλτρο a0538).

Σε αντίθεση με τα θυγατρικά του ραδονίου, τα θυγατρικά του θορονίου (²¹²Pb και ²⁰⁸Tl), λόγω του μεγαλύτερου χρόνου ημιζωής του ²¹²Pb, έχουν σημαντική παρουσία στο υπόστρωμα φωτοκορυφών και κατά συνέπεια και στο συνεχές υπόστρωμα των μετρήσεων για αρκετές μέρες μετά το πέρας της δειγματοληψίας, όπως προκύπτει από τα *Σχήματα 3.22* και *3.23*. Το γεγονός αυτό δείχνει ότι, προκειμένου να βελτιωθούν ακόμα περισσότερο τα επίπεδα ανίχνευσης, χρειάζεται αναμονή της γ-φασματοσκοπικής ανάλυσης του φίλτρου για μεγαλύτερο χρονικό διάστημα, το οποίο μπορεί να υπερβαίνει και τις 48 ώρες στην περίπτωση δειγματοληψίας αέρα πολύ μεγάλης διάρκειας.

Σχήμα 3.22 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του θορονίου ²¹²Pb και ²⁰⁸Tl από τη δειγματοληψία φίλτρου αέρα 6h (φίλτρο a0532).

Στο Σχήμα 3.24 που ακολουθεί γίνεται σύγκριση του φάσματος υποστρώματος του ανιχνευτή XtRa με τα συλλεχθέντα φάσματα από την ανάλυση του φίλτρου a0538 (διάρκεια δειγματοληψίας 120h) για τις πρώτες 2h μετά το πέρας της δειγματοληψίας, καθώς και για το χρονικό διάστημα 2-26h. Από το σχήμα αυτό επιβεβαιώνεται η έντονη επίδραση των θυγατρικών του ραδονίου και θορονίου στο συνεχές υπόστρωμα της γ-φασματοσκοπικής ανάλυσης και τονίζεται το γεγονός πως μετά την παρέλευση 2 ωρών από το πέρας της δειγματοληψίας του φίλτρου αέρα, το συνεχές υπόστρωμα της μέτρησης έχει βελτιωθεί, αλλά δεν φτάνει ακόμα το φάσμα υποστρώματος του ανιχνευτή.

Σχήμα 3.24 : Σύγκριση φάσματος υποστρώματος του ανιχνευτή XtRa με το αρχικό φάσμα 2h και το φάσμα 2-26h από τη δειγματοληψία 120h του φίλτρου αέρα α0538.

Επιπροσθέτως, στα Σχήματα 3.25, 3.26 και 3.27 δίνονται αντιπροσωπευτικές τιμές για τη χρονική εξέλιξη των κατωτέρων επιπέδων ανίχνευσης (MDA) για μία σειρά φωτοκορυφών επιλεγμένων ραδιενεργών ισοτόπων και για χαρακτηριστικά σενάρια δειγματοληψίας και ανάλυσης φίλτρων αέρα. Το σύνολο των διαγραμμάτων που αφορούν τη χρονική εξέλιξη του MDA για τα διάφορα σενάρια δειγματοληψίας δίνεται στο Παράρτημα Ι.

Σχήμα 3.25 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 6h.

Σχήμα 3.26 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 120h.

Σχήμα 3.27 : Χρονική εξέλιξη του MDA για το I-131 σε φίλτρα ατμοσφαιρικού αέρα διαφορετικής διάρκειας δειγματοληψίας.

Από τα αντιπροσωπευτικά γραφήματα που παρουσιάζονται στα Σχήματα 3.24, 3.25 και 3.26, προκύπτουν τα ακόλουθα συμπεράσματα:

- μια αρχική καθυστέρηση χρονικής διάρκειας 2h μεταξύ της συλλογής του φίλτρου αέρα και της δειγματοληψίας βελτιώνει σημαντικά τα MDA,
- ii. όσο μεγαλύτερη είναι η καθυστέρηση έναρξης της ανάλυσης του φίλτρου αέρα, τόσο μεγαλύτερη είναι και η βελτίωση του MDA, ειδικά για μεγάλης διάρκειας δειγματοληψίες αέρα,
- iii. καθυστέρηση μεγαλύτερη των 50h έχει πολύ μικρή επίδραση στο τελικό αποτέλεσμα, ακόμα και για δειγματοληψίες πολλών ημερών,
- για τον προσδιορισμό βραχύβιων ραδιενεργών ισοτόπων, όπως το ¹³¹Ι, ο χρόνος ημιζωής τους πρέπει να λαμβάνεται υπόψη στην επιλογή του κατάλληλου χρόνου καθυστέρησης για την επίτευξη του βέλτιστου MDA.

Ένα ακόμα σημείο που είναι σημαντικό να τονισθεί στην περίπτωση δειγματοληψιών μεγάλης διάρκειας είναι ότι η πολύ υψηλή αρχική συγκέντρωση των θυγατρικών του ραδονίου και του θορονίου στα φίλτρα αέρα οδηγεί στην εμφάνιση αξιόλογων φωτοκορυφών από φωτόνια τα οποία έχουν πολύ χαμηλά ποσοστά εκπομπής. Οι φωτοκορυφές αυτές συνήθως δεν απαντώνται στα φάσματα ή δεν αξιολογούνται κατά τη διαδικασία της γ-φασματοσκοπικής ανάλυσης. Η εμφάνιση των φωτοκορυφών αυτών μπορεί να προκαλέσει σύγχυση στον ερευνητή, να οδηγήσει σε παρερμηνεία των αποτελεσμάτων της ανάλυσης και στην απόδοσή τους σε άλλα ραδιενεργά ισότοπα. Ενδεικτικά, μπορεί εσφαλμένως να αποδοθούν:

- οι φωτοκορυφές 277.37 keV και 763.45 keV του ²⁰⁸Tl ως φωτοκορυφές των ²³⁹Np (277.60 keV) και ^{110m}Ag (763.49 keV) αντίστοιχα,
- η φωτοκορυφή 658.7 keV του ²¹⁴Bi ως φωτοκορυφή του ^{110m}Ag (657.76 keV),
- η φωτοκορυφή 53.23 keV του ²¹⁴Pb ως φωτοκορυφή του ¹³³Ba (53.16 keV).

3.5 Συμπεράσματα

Στο κεφάλαιο αυτό μελετήθηκε η κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας καθώς και η επίδραση της κύμανσης αυτής, στα φάσματα υποστρώματος των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ. Από τις μετρήσεις που έγιναν διαπιστώθηκε ότι η συγκέντρωση του ραδονίου παρουσιάζει στατιστικά σημαντική θετική συσχέτιση με τα βραχύβια θυγατρικά του, καθώς και με τις αντίστοιχες φωτοκορυφές που ανιχνεύονται στο υπόστρωμα των ανιχνευτών, ενώ παρατηρήθηκε ότι η προσθήκη αέριου αζώτου στο εσωτερικό της θωράκισης των ανιχνευτών δεν επηρεάζει σημαντικά τη συσχέτιση αυτή. Επιπροσθέτως, διαπιστώθηκε ότι οι εξωτερικές μετεωρολογικές συνθήκες επηρεάζουν στατιστικά σημαντικά την κύμανση της συγκέντρωσης του ραδονίου στο εσωτερικό του εργαστηρίου και κατ' επέκταση και το υπόστρωμα των γ-φασματοσκοπικών αναλύσεων. Ειδικότερα παρατηρήθηκαν:

- Ισχυρή θετική συσχέτιση μεταξύ της συγκέντρωσης του ραδονίου με την εξωτερική θερμοκρασία, καθώς και με τη διαφορά της εσωτερικής (εντός του εργαστηρίου) από την εξωτερική θερμοκρασία (ΔT_{out-in}).
- ii. Ασθενής αρνητική συσχέτιση μεταξύ της συγκέντρωσης του ραδονίου με την εξωτερική πίεση, καθώς και με τη διαφορά της εσωτερικής (εντός του εργαστηρίου) από την εξωτερική πίεση (ΔPout-in).
- iii. Ασθενής αρνητική συσχέτιση μεταξύ της συγκέντρωσης του ραδονίου με την ταχύτητα του ανέμου (εξωτερικά του εργαστηρίου).

Ένα άλλο θέμα που διερευνήθηκε ήταν η κύμανση των φωτοκορυφών των θυγατρικών του ραδονίου και του θορονίου στα φάσματα υποστρώματος και παρατηρήθηκαν σημαντικές διαφορές μεταξύ των διαδοχικών φασμάτων διάρκειας 48h στους επιλεγμένους ανιχνευτές γερμανίου. Από την ανάλυση και επεξεργασία μεγάλου πλήθους φασμάτων υποστρώματος προέκυψε μία σειρά συμπερασμάτων και συστάσεων για τη χρήση των υποστρωμάτων, κυρίως κατά την ανάλυση δειγμάτων με χαμηλά επίπεδα φυσικής ραδιενέργειας:

- i. Το φάσμα υποστρώματος που θα χρησιμοποιηθεί για μιας μικρής χρονικής διάρκειας γ-φασματοσκοπική ανάλυση θα πρέπει να είναι το «Μέσο cps» από πολλαπλά φάσματα υποστρώματος ίσης χρονικής διάρκειας με τη χρονική διάρκεια ανάλυσης του δείγματος. Η χρήση των «Συνολικών cps» προτείνεται μόνο σε περιπτώσεις όπου μια συγκεκριμένη φωτοκορυφή του φάσματος υποστρώματος δεν είναι παρούσα σε όλα τα επιμέρους μικρής χρονικής διάρκειας φάσματα υποστρώματος.
- Για μεγάλης χρονικής διάρκειας γ-φασματοσκοπική ανάλυση προτείνεται η χρήση φάσματος υποστρώματος «Συνολικών cps».
- iii. Για γ-φασματοσκοπική ανάλυση χρονικής διάρκειας μικρότερη των 24h, η ημερήσια κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του μπορεί να επηρεάσει σημαντικά τα τελικά αποτελέσματα.
- iv. Παρά το γεγονός ότι η διοχέτευση της εξάτμισης του υγρού αζώτου στο εσωτερικό της θωράκισης μειώνει σημαντικά το υπόστρωμα των ανιχνευτικών διατάξεων, δεν απαλείφει την επίδραση της κύμανσης των θυγατρικών του ραδονίου στις φωτοκορυφές του φάσματος υποστρώματος. Αυτό υποδεικνύει ότι επιπρόσθετα μέτρα για τη μείωση του υποστρώματος των ανιχνευτών χρειάζεται να λάβουν χώρα.
- v. Για μικρής χρονικής διάρκειας γ-φασματοσκοπικές αναλύσεις φίλτρων αέρα, μια χρονική καθυστέρηση 2h μεταξύ της λήψης του δείγματος και της έναρξης της γ-φασματοσκοπικής ανάλυσης θεωρείται κρίσιμη για τη σημαντική βελτίωση των MDAs.
- vi. Για μεγάλης χρονικής διάρκειας γ-φασματοσκοπικές αναλύσεις μια χρονική καθυστέρηση 24h μεταξύ της λήψης του δείγματος και της έναρξης της γ-φασματοσκοπικής ανάλυσης θα βελτιώσει σημαντικά τα MDAs.
- vii. Μεγαλύτερης χρονικής διάρκειας καθυστέρηση θα οδηγήσει σε πολύ μικρή βελτίωση των MDAs και δεν προτείνεται, ειδικά όταν σκοπός είναι ο προσδιορισμός βραχύβιων ραδιενεργών ισοτόπων.
- νiii. Στην περίπτωση δειγματοληψιών μεγάλης διάρκειας, η έντονη παρουσία τις
 πρώτες ημέρες των βραχύβιων θυγατρικών ραδονίου και θορονίου στο δείγμα,

μπορεί να οδηγήσει σε εσφαλμένη απόδοση φωτοκορυφών σε ισότοπα που δεν υπάρχουν στο δείγμα.

ΚΕΦΑΛΑΙΟ 4

Επίδραση των βραχύβιων θυγατρικών του ραδονίου στη μέτρηση του ²¹⁰Pb στην ατμόσφαιρα

4.1 Εισαγωγή

Το ραδιενεργό ισότοπο ²¹⁰Pb είναι το θυγατρικό του ²²²Rn με το μεγαλύτερο χρόνο ημιζωής (22.23 έτη). Η παραγωγή του, η μεταφορά του στο περιβάλλον καθώς και οι μηχανισμοί εναπόθεσής του έχουν αποτελέσει το αντικείμενο μελέτης μεγάλου πλήθους ερευνών, όπως παρουσιάστηκε και στο 2° κεφάλαιο. Οι ατμοσφαιρικές συγκεντρώσεις και οι ρυθμοί εναπόθεσης του ²¹⁰Pb χρησιμοποιούνται για τη μελέτη μεταφοράς αερίων μαζών, για τον υπολογισμό χρόνων παραμονής σωματιδίων του αερολύματος στην ατμόσφαιρα, καθώς και για την αξιολόγηση μοντέλων προσομοίωσης της παγκόσμιας κυκλοφορίας αερίων μαζών (Li, et al., 2018), (Rangarajan, et al., 1986), (Vecchi, et al., 2005), (Baskaran, 1995), (Baskaran, 2011), (Gaggeler, et al., 1995). Παρά το γεγονός ότι σε παγκόσμιο επίπεδο, η συγκέντρωση του ²¹⁰Pb θεωρείται σταθερή²⁸, οι ατμοσφαιρικές συγκεντρώσεις του σε τοπικό επίπεδο επηρεάζονται σημαντικά από εποχικές μεταβολές, από μετεωρολογικές παραμέτρους καθώς και από ανθρωπογενείς παράγοντες (Rangarajan, et al., 1975), (Baskaran, 2011), (Balkanski, et al., 1993).

Στις δειγματοληψίες ατμοσφαιρικού αερολύματος με χρήση αντλιών και φίλτρων αέρα γίνεται ταυτόχρονη δειγματοληψία, τόσο του ²¹⁰Pb που βρίσκεται στον αέρα, όσο και των λοιπών βραχύβιων θυγατρικών του ραδονίου. Όλα τα βραχύβια θυγατρικά του ραδονίου τα οποία συλλέγονται (²¹⁸Po, ²¹⁴Pb, ²¹⁴Bi και ²¹⁴Po) τελικά θα διασπαστούν πάνω στο φίλτρο σε ²¹⁰Pb, στο μεγαλύτερο ποσοστό τους, πριν ακόμα αρχίσει η γ-φασματοσκοπική ανάλυση του φίλτρου²⁹. Ως αποτέλεσμα, κατά τη

²⁸ Λόγω του σταθερού ρυθμού παραγωγής και κατανάλωσης.

²⁹ Ειδικά στην περίπτωση μεγάλης καθυστέρησης πριν τη γ-φασματοσκοπική ανάλυση.

γ-φασματοσκοπική ανάλυση μετριέται κυρίως μόνο ²¹⁰Pb, ο οποίος οφείλεται (i) στο ²¹⁰Pb που συλλέχθηκε πάνω στο φίλτρο ως ²¹⁰Pb και (ii) στο ²¹⁰Pb που παρήχθη από τη διάσπαση των βραχύβιων θυγατρικών του ραδονίου που συλλέχθηκαν στο φίλτρο. Η εκτίμηση του ποια είναι τελικά η ποσότητα του ²¹⁰Pb που συλλέχθηκε ως ²¹⁰Pb στο φίλτρο³⁰ δεν είναι εύκολη, καθώς, εκτός των άλλων, τόσο η συγκέντρωση του ²¹⁰Pb, όσο και η συγκέντρωση του ραδονίου και των θυγατρικών του στον ατμοσφαιρικό αέρα παρουσιάζει κύμανση. Η κύμανση αυτή εξαρτάται από πλήθος παραμέτρων, όπως η θερμοκρασία, η υγρασία και η ταχύτητα του ανέμου (Singh, et al., 2005), (Mostafa, et al., 2020), (Aquilina & Fenech, 2019), (Gaggeler, et al., 1995). Για τον λόγο αυτό, στο κεφάλαιο αυτό της παρούσας Δ.Δ. κρίθηκε σκόπιμο να γίνει μία διερεύνηση, με στόχο να εκτιμηθεί το μέγεθος της επίδρασης που έχουν τα βραχύβια θυγατρικά του ραδονίου που συλλέγονται πάνω στο φίλτρο κατά τη γ-φασματοσκοπική ανάλυση, και εντέλει στην ακρίβεια με την οποία γίνεται ο προσδιορισμός του ²¹⁰Pb που βρίσκεται στον αέρα.

4.2 Κύμανση της συγκέντρωσης του ραδονίου και των βραχύβιων θυγατρικών του στην ατμόσφαιρα

Στα πλαίσια της διερεύνησης, αρχικά, κρίθηκε σκόπιμο να γίνει παρακολούθηση της κύμανσης που παρουσιάζει η συγκέντρωση του ραδονίου και των βραχύβιων θυγατρικών του στο εξωτερικό περιβάλλον. Στην περίπτωση που η κύμανση αυτή θα μπορούσε να θεωρηθεί αμελητέα, ο προσδιορισμός της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου θα μπορούσε να επιτευχθεί σχετικά εύκολα με μία μόνο μέτρηση. Αντιθέτως, στην περίπτωση που η κύμανση που παρουσιάζεται είναι μεγάλη, θα έπρεπε να αναπτυχθεί μία διαδικασία για την παρακολούθηση και την καταγραφή της κύμανσης αυτής.

Για τον σκοπό αυτό, το χρονικό διάστημα μεταξύ 19/10/2021 – 22/10/2021 έγινε μία σειρά προκαταρκτικών μετρήσεων του ραδονίου και των θυγατρικών του με τη διάταξη AlphaGUARD-AlphaPM, η οποία τοποθετήθηκε στην οροφή του Κτιρίου Κ του ΕΠΤ-ΕΜΠ. Κατά τη διάρκεια των μετρήσεων η θερμοκρασία περιβάλλοντος κυμάνθηκε μεταξύ 13.8°C – 25.8°C, η σχετική υγρασία μεταξύ 42.3% – 74 .5% και η

³⁰ Δηλαδή ποια είναι η συγκέντρωση του 210Pb στο αερόλυμα.

ατμοσφαιρική πίεση μεταξύ 995.3mbar – 1003.8mbar. Στα Σχήματα 4.1 και 4.2 που ακολουθούν, παρουσιάζεται η χρονική κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του. Από τα γραφήματα αυτά διαπιστώνεται η – αναμενόμενη – ύπαρξη σημαντικής κύμανσης του ραδονίου και των θυγατρικών του, με το συντελεστή ισορροπίας F μεταξύ τους να εκτιμάται σε 0.44±0.18. Η επιβεβαίωση της χρονικής κύμανσης καθιστά αναγκαία την ανάπτυξη μεθοδολογίας για την παρακολούθηση των θυγατρικών του ραδονίου κατά τη διάρκεια μίας δειγματοληψίας μεγάλης διάρκειας που γίνεται με στόχο την ανίχνευση του ²¹⁰Pb.

Σχήμα 4.1 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) στην οροφή του Κτιρίου \overline{K} του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 19/10/21-22/10/21.

Σχήμα 4.2 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) στην οροφή του Κτιρίου Κ του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 19/10/21-22/10/21.
4.3 Μεθοδολογία δειγματοληψίας και ανάλυσης

Για την διάκριση του ²¹⁰Pb που συλλέγεται στο φίλτρο ως ²¹⁰Pb από εκείνον που είναι αποτέλεσμα της διάσπασης των βραχύβιων θυγατρικών του ραδονίου τα οποία συλλέχθηκαν στο φίλτρο, χρησιμοποιήθηκαν δύο αντλίες:

- i. F&J DH-50810E High Volume Air Sampler με φίλτρα 8΄ x10΄ (θα αναφέρεται ως «μεγάλη αντλία»). Η αντλία αυτή χρησιμοποιείται για τη συλλογή αερολύματος μεγάλης διάρκειας. Στην περίπτωση αυτή στα φίλτρα συλλέγεται και ο ²¹⁰Pb σε ανιχνεύσιμα επίπεδα.
- ii. Staplex TFIA-2 220 Volts AC/DC (s/n 21688N), με φίλτρα 4΄³¹ (θα αναφέρεται ως «μικρή αντλία»). Η αντλία αυτή χρησιμοποιείται για τη συλλογή αερολύματος μικρής διάρκειας και τον προσδιορισμό των βραχύβιων θυγατρικών του ραδονίου.

Ο σχεδιασμών των δειγματοληψιών αυτών ήταν τέτοιος ώστε:

- να συλλεχθούν πολλαπλά φίλτρα αέρα 4΄΄ μικρής διάρκειας, τα οποία θα αναλυθούν με γ-φασματοσκοπία αμέσως μετά το πέρας κάθε δειγματοληψίας, ώστε να προσδιορισθούν οι συγκεντρώσεις των βραχύβιων θυγατρικών του ραδονίου (²¹⁴Pb, ²¹⁴Bi) στον ατμοσφαιρικό αέρα,
- να συλλεχθεί παράλληλα με τα φίλτρα 4΄΄ ένα φίλτρο 8΄΄x10΄΄ το οποίο θα αναλυθεί με γ-φασματοσκοπία και θα προσδιορισθεί η συγκέντρωση ενεργότητας του ²¹⁰Pb σε αυτό,
- να υπολογισθεί η συνεισφορά στο συνολικό ²¹⁰Pb που ανιχνεύεται στο φίλτρο, του ²¹⁰Pb που παράγεται στο φίλτρο 8΄ x10΄ ως αποτέλεσμα της διάσπασης των βραχύβιων θυγατρικών του ραδονίου που συλλέχθηκαν στο φίλτρο αυτό.

Προς την κατεύθυνση αυτή, η διαδικασία που περιγράφεται προηγουμένως επαναλήφθηκε δύο φορές, ώστε να ελεγχθούν τα τελικά αποτελέσματα για επαναληψιμότητα. Συγκεκριμένα, έγιναν δύο τριήμερες³² δειγματοληψίες (30/3/22 - 1/4/22 και 10/5/22 - 12/5/22). Σε κάθε τριήμερη δειγματοληψία συλλέχθηκαν 12 φίλτρα 4΄΄ και ένα φίλτρο 8΄ x10΄΄. Ειδικότερα, σε κάθε ημέρα δειγματοληψίας συλλέχθηκαν τέσσερα φίλτρα 4΄΄ χρονικής διάρκειας 1h με 64min παύση μεταξύ των

³¹ Η βαθμονόμηση του φίλτρου από ίνες γυαλιού διαμέτρου 4΄΄ (100 Staplex Type TFAGF41) για τον ανιχνευτή XtRa έγινε μέσω προσομοίωσης Monte-Carlo, με χρήση του κώδικα PENELOPE και δίνεται στο Παράρτημα ΙΔ.

³² Η δειγματοληψία δεν ήταν 24ωρη, αλλά διαρκούσε 8 ώρες κάθε μέρα για τρεις ημέρες.

δειγματοληψιών. Παράλληλα με τη συλλογή των φίλτρων 4΄΄ έγινε και συλλογή φίλτρου αέρα 8΄ x10΄΄. Η συλλογή αέρα στο φίλτρο 8΄ x10΄΄ ξεκινούσε κάθε ημέρα ταυτόχρονα με την έναρξη συλλογής των φίλτρων 4΄΄ και σταματούσε με το τέλος συλλογής του τελευταίου φίλτρου της ημέρας. Μετά την ολοκλήρωση του τριημέρου των μετρήσεων το φίλτρο 8΄ x10΄΄ αφαιρέθηκε από τη μεγάλη αντλία και οδηγήθηκε προς ανάλυση. Η διάταξη δειγματοληψίας φαίνεται στο **Σχήμα 4.3**.

Σχήμα 4.3 : Η διάταξη των αντλιών του πειράματος. Αριστερά διακρίνεται η μικρή αντλία και δεξιά η μεγάλη στην οροφή του Κτιρίου Κ του ΕΠΤ-ΕΜΠ.

Η παροχή όγκου αέρα για τη μεγάλη αντλία μετριέται αυτόματα³³ κατά τη διάρκεια της δειγματοληψίας, ενώ η παροχή όγκου αέρα για τη μικρή αντλία προσδιορίστηκε για κάθε φίλτρο χωριστά ως ο μέσος όρος 6 παρατηρήσεων στο ροόμετρο πλωτήρος της αντλίας που έγιναν ανά δεκάλεπτο και διορθώθηκε κατάλληλα βάσει της καμπύλης βαθμονόμησης παροχής της αντλίας. Ενδεικτικά στο *Σχήμα 4.4* που ακολουθεί δίνεται η καμπύλη βαθμονόμησης παροχής την ίδια ακριβώς μεθοδολογία δειγματοληψίας, η οποία δίνεται σχηματικά στο *Σχήμα 4.5*.

 $^{^{33}}$ Η συστηματική αβεβαιότητα που εισάγεται για την παροχή της αντλίας είναι 2.5% (ΣΑΒΒΑ, 2017).

Σχήμα 4.4 : Καμπύλη βαθμονόμησης παροχής της αντλίας 21688Ν.

Με τον τρόπο αυτό, κάνοντας την εύλογη υπόθεση ότι το δείγμα αερολύματος που συλλέχθηκε στην οροφή του Κτιρίου Κ από τη «μεγάλη» και από τη «μικρή» αντλία είχε την ίδια συγκέντρωση βραχύβιων θυγατρικών του ραδονίου και ότι η συγκέντρωση αυτή παρέμενε σχετικά σταθερή σε κάθε επιμέρους δειγματοληψία διάρκειας 1h, η συνολική συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου (πυρήνες/m³) που υπολογίζεται από τις δειγματοληψίες των φίλτρων 4΄΄ μπορεί να αποδοθεί αναλογικά και στο φίλτρο 8΄΄x10΄΄. Η γνώση πλέον της συνολικής συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στο φίλτρο 8΄΄x10΄΄, προσφέρει τη δυνατότητα – με κατάλληλο υπολογισμό – διάκρισης του ²¹⁰Pb που συλλέχθηκε σε αυτό ως ²¹⁰Pb, από εκείνον που είναι αποτέλεσμα διάσπασης των συλλεχθέντων βραχύβιων θυγατρικών του ραδονίου. Η υλοποίηση της διαδικασίας αυτής περιγράφεται αναλυτικά στις παραγράφους που ακολουθούν.

Η παύση 64min μεταξύ των δειγματοληψιών των φίλτρων 4΄΄ είναι αναγκαία ώστε να «κρυώσει» η μικρή αντλία, και προσφέρει τον απαραίτητο χρόνο για τη μεταφορά και προετοιμασία του φίλτρου 4΄΄ για γ-φασματοσκοπική ανάλυση.

Σχήμα 4.5 : Μεθοδολογία δειγματοληψίας τριημέρου δειγματοληψίας – συνολική συλλογή 12 φίλτρων 4΄΄ και ενός φίλτρου 8΄΄ x10΄΄.

4.3.1 Υπολογισμός συγκεντρώσεων θυγατρικών του ραδονίου πάνω στο φίλτρο 4''

Τα βραχύβια θυγατρικά του ραδονίου τα οποία ακολουθούν τη διάσπασή του και προηγούνται του ²¹⁰Pb είναι κατά σειρά τα:

218
Po $\rightarrow ^{214}$ Pb $\rightarrow ^{214}$ Bi $\rightarrow ^{214}$ Po

με χρόνους ημιζωής 3.071min, 26.916min, 19.8min και 162.3μs αντίστοιχα. Από αυτά, μόνο ο ²¹⁴Pb και το ²¹⁴Bi εκπέμπουν αξιόλογα φωτόνια και μπορούν να ανιχνευθούν με μεθόδους γ-φασματοσκοπικής ανάλυσης (*Πίνακας 2.1*) και για τον λόγο αυτό σε αυτά τα ισότοπα επικεντρώνονται και οι υπολογισμοί που ακολουθούν. Ωστόσο, λόγω των μικρών χρόνων ημιζωής του ²¹⁴Pb και του ²¹⁴Bi, η γ-φασματοσκοπική ανάλυση των φίλτρων πρέπει να λάβει χώρα το ταχύτερο δυνατόν μετά το πέρας της δειγματοληψίας του αερολύματος, για να επιτευχθεί καλή στατιστική στα τελικά αποτελέσματα.

Μέχρι σήμερα έχει υπάρξει πλήθος μελετών με στόχο τον προσδιορισμό της συγκέντρωσης των θυγατρικών του ραδονίου που έχουν συλλεχθεί σε φίλτρα, με μεθόδους "α-", "β-" ή γ-φασματοσκοπίας (Irfan & Fagan, 1979), (Martinez, et al., 2017), (Pressyanov, 1997), (El-Hussein, et al., 2001), (Forkapic, et al., 2012), (Bem, et al., 2002), (Stajic & Nikezic, 2015), (Stoulos & Ioannidou, 2020), (Rozas, et al., 2016), (Thomas, 1971), (Jimenez-Ramos, et al., 2006). Ειδικότερα, στην περίπτωση που χρησιμοποιείται η μέθοδος γ-φασματοσκοπίας το κυρίαρχο ζήτημα προς επίλυση είναι ο προσδιορισμός της συγκέντρωσης του ²¹⁸Po, μέσω των συγκεντρώσεων του ²¹⁴Pb και του ²¹⁴Bi. Σε ορισμένες μελέτες, για την επίλυση των εξισώσεων παραγωγής-κατανάλωσης που διέπουν τα βραχύβια θυγατρικά του ραδονίου έγινε χρήση των προγραμμάτων Η/Υ όπως Mathematica (Forkapic, et al., 2012) ή Matlab (Martinez, et al., 2017). Σε άλλες μελέτες έγινε υπόθεση του λόγου των συγκεντρώσεων μεταξύ των θυγατρικών, βάσει δεδομένων προηγούμενων μελετών³⁴ (Stoulos & Ioannidou, 2020).

Στην παρούσα εργασία ο υπολογισμός των συγκεντρώσεων του ²¹⁸Po, του ²¹⁴Pb και του ²¹⁴Bi έγινε με δύο τρόπους, με στόχο να γίνει τελικά σύγκριση των αποτελεσμάτων:

 i. Ο 1°ς τρόπος υπολογισμού των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου έγινε μέσω της επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων παραγωγής-κατανάλωσης που τα διέπει (Harms & Jerome, 2004), (Irfan & Fagan, 1979), λαμβάνοντας υπόψη και την παραγωγή-κατανάλωση

 $^{^{34}}$ Έγινε υπόθεση ότι ο λόγος μεταξύ των συγκεντρώσεων των θυγατρικών του ραδονίου είναι $^{218}\rm{Po}/^{214}\rm{Pb}/^{214}\rm{Bi}=1/0.7/0.4$

κατά τη διάρκεια της γ-φασματοσκοπικής ανάλυσης³⁵, το οποίο αποτελεί και την ουσιώδη διαφορά με τον 2° τρόπο που ακολουθεί. Στις παραγράφους που ακολουθούν, η ανωτέρω μέθοδος θα αναφέρεται ως «μέθοδος επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων».

ii. Ο 2^{ος} τρόπος υπολογισμού των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου έγινε μέσω της επίλυσης των αναλυτικών εξισώσεων με χρήση του προγράμματος Mathematica, ακολουθώντας τη μέθοδο των (Forkapic, et al., 2012). Στη μέθοδο αυτή δε λαμβάνεται υπόψη η παραγωγή-κατανάλωση κατά τη διάρκεια της γ-φασματοσκοπικής ανάλυσης. Στις παραγράφους που ακολουθούν, η ανωτέρω μέθοδος θα αναφέρεται ως «μέθοδος των (Forkapic, et al., 2012)».

Επιπλέον, επειδή ο χρόνος ημιζωής του ²¹⁴Po είναι 162.3μs, έγινε υπόθεση ραδιενεργού ισορροπίας με το μητρικό του ²¹⁴Bi. Επομένως, η συγκέντρωση ενεργότητας του ²¹⁴Po θεωρήθηκε ίση με τη συγκέντρωση ενεργότητας του ²¹⁴Bi που εκτιμήθηκε σε κάθε φίλτρο 4΄΄^{36,37}.

Στις παραγράφους που ακολουθούν δίνονται αναλυτικά οι δύο προσεγγίσεις προσδιορισμού των συγκεντρώσεων των βραχύβιων των θυγατρικών του ραδονίου στο ατμοσφαιρικό αερόλυμα που ακολουθήθηκαν.

4.3.1.1 Υπολογισμός συγκεντρώσεων των θυγατρικών του ραδονίου με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων

Τα θυγατρικά του ραδονίου που συλλέγονται στα φίλτρα 4΄΄ και για τα οποία θα γίνει η αναλυτική επίλυση των εξισώσεων που διέπουν την παραγωγή-κατανάλωσή τους, με στόχο τον προσδιορισμό της συγκέντρωσής τους στον αέρα είναι τα: ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi και στις εξισώσεις που ακολουθούν θα συμβολίζονται με τους αριθμούς «1», «2» και «3» αντίστοιχα.

³⁵ Η διόρθωση για παραγωγή-κατανάλωση κατά τη διάρκεια της γ-φασματοσκοπικής ανάλυσης θεωρείται απαραίτητη για ραδιενεργά ισότοπα με χρόνους ημιζωής ($t_{1/2}$) μικρότερους από 20 φορές τη χρονική διάρκεια της γ-φασματοσκοπικής ανάλυσης (t_c), δηλαδή για $t_{1/2}$ <20· t_c (IAEA & ALMERA, 2021).

³⁶ Αξίζει να σημειωθεί ότι η διάσπαση του ²¹⁴Bi σε ²¹⁰Tl με ποσοστό 0.021% θεωρήθηκε αμελητέα.

³⁷ Η συνεισφορά των πυρήνων του ²¹⁴Po στο σύνολο των συλλεχθέντων πυρήνων των βραχύβιων θυγατρικών του ραδονίου είναι οριακά αμελητέα. Ωστόσο συμπεριλαμβάνεται στους υπολογισμούς για λόγους πληρότητας.

Τα βασικά στάδια της διαδικασίας δειγματοληψίας και ανάλυσης που ακολουθήθηκε δίνονται στο Σχήμα 4.6.

Σχήμα 4.6 : Διάγραμμα ροής δειγματοληψίας-ανάλυσης θυγατρικών ραδονίου στον ατμοσφαιρικό αέρα στα φίλτρα 4΄΄.

Οι μεταβλητές που δίνονται στο Σχήμα 4.6 είναι οι εξής:

- C1, C2, C3 είναι οι συγκεντρώσεις πυρήνων (πυρήνες/m³) ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi
 στην ατμόσφαιρα αντίστοιχα.
- Α⁰₁, Α⁰₂, Α⁰₃ είναι οι ενεργότητες (Bq) των ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi κατά την έναρξη της 1^{ης} γ-φασματοσκοπικής ανάλυσης.
- A_1^1, A_2^1, A_3^1 είναι οι ενεργότητες (Bq) των ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi κατά την έναρξη της $2^{\eta\varsigma}\gamma$ -φασματοσκοπικής ανάλυσης.
- A^{c1}₁, A^{c1}₂, A^{c1}₃ είναι οι μη διορθωμένες³⁸ για παραγωγή-κατανάλωση ενεργότητες (Bq), όπως προέκυψαν από την 1^η γ-φασματοσκοπική ανάλυση.
- A₁^{c2}, A₂^{c2}, A₃^{c2} είναι οι μη διορθωμένες για παραγωγή-κατανάλωση ενεργότητες (Bq), όπως προέκυψαν από την 2^η γ-φασματοσκοπική ανάλυση.
- t_s είναι η χρονική διάρκεια (sec) της δειγματοληψίας ατμοσφαιρικού αέρα.
- t_d είναι η χρονική διάρκεια (sec) της καθυστέρησης μεταξύ του τέλους της δειγματοληψίας και της έναρξης της γ-φασματοσκοπικής ανάλυσης.
- t_c είναι η χρονική διάρκεια (sec) κάθε επιμέρους βήματος της γ-φασματοσκοπικής ανάλυσης.

³⁸ Πρόκειται για την ενεργότητα που υπολογίζεται από το πρόγραμμα φασματοσκοπικής ανάλυσης μέσω της απλής σχέσης: activity=area/(time-yield·efficiency), χωρίς δηλαδή να λαμβάνεται υπόψη η παραγωγή-κατανάλωση πυρήνων κατά τη διάρκεια της μέτρησης.

Καθώς μέσω της γ-φασματοσκοπικής ανάλυσης μπορούν να προσδιορισθούν μόνο τα ²¹⁴Pb και ²¹⁴Bi που εκπέμπουν φωτόνια, ο υπολογισμός της συγκέντρωσης του ²¹⁸Po είναι μόνο έμμεσα δυνατός, λαμβάνοντας υπόψη τις εξισώσεις παραγωγής-κατανάλωσης. Για επίλυση των εξισώσεων αυτών χρειάζεται να γίνουν τουλάχιστον δύο διαδοχικές και μικρής χρονικής διάρκειας γ-φασματοσκοπικές αναλύσεις. Για λόγους απλότητας, οι χρονικές διάρκειες δειγματοληψίας, καθυστέρησης και ανάλυσης κρατήθηκαν σταθερές σε όλα τα πειράματα. Τέλος, πρέπει να επισημανθεί ότι τα φίλτρα αέρα αναλύθηκαν στον ανιχνευτή XtRa, ο οποίος και έχει την υψηλότερη απόδοση και κατά συνέπεια, δυνατότητα επίτευξης καλύτερης στατιστικής.

Όπως φαίνεται και στο Σχήμα 4.6, το συγκεκριμένο πείραμα χωρίζεται σε 3 διαφορετικές φάσεις (δειγματοληψία – καθυστέρηση – ανάλυση). Για τον λόγο αυτό, η κατάστρωση και επίλυση των εξισώσεων θα γίνει ανά φάση.

$H \Delta EI\Gamma MATO \Lambda H \Psi IA \ (0 \le t \le t_s)$

Κατά τη διάρκεια της δειγματοληψίας, η συγκέντρωση:

- του ²¹⁸Po στο φίλτρο αυξάνεται καθώς ο αέρας περνά μέσα από αυτό και ταυτόχρονα μειώνεται λόγω της ραδιενεργού διάσπασής του,
- του ²¹⁴Pb στο φίλτρο αυξάνεται καθώς ο αέρας περνά μέσα από αυτό, αυξάνεται λόγω της ραδιενεργού διάσπασης του ²¹⁸Po και μειώνεται λόγω της ραδιενεργού διάσπασης του ίδιου του ισοτόπου,
- του ²¹⁴Bi στο φίλτρο αυξάνεται καθώς ο αέρας περνά μέσα από αυτό, αυξάνεται λόγω της ραδιενεργού διάσπασης του ²¹⁴Pb και μειώνεται λόγω της ραδιενεργού διάσπασης του ίδιου του ισοτόπου.

Συνεπώς, οι εξισώσεις υπολογισμού της συγκέντρωσης των παραπάνω ραδιενεργών ισοτόπων στον ατμοσφαιρικό αέρα είναι:

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = C_1 \mathrm{V}\varepsilon - \lambda_1 \mathrm{N}_1 \tag{4.1}$$

$$\frac{dN_2}{dt} = C_2 V \varepsilon + \lambda_1 N_1 - \lambda_2 N_2$$
(4.2)

$$\frac{\mathrm{d}N_3}{\mathrm{d}t} = C_3 V \varepsilon + \lambda_2 N_2 - \lambda_3 N_3 \tag{4.3}$$

101

 $\ensuremath{ \textit{Optou}}$:

- Ν1, Ν2, Ν3 : το πλήθος των πυρήνων των ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi αντίστοιχα, πάνω στο φίλτρο,
- $V: \eta \pi \alpha \rho \circ \chi \eta \tau \eta \varsigma \alpha v \tau \lambda (\alpha \varsigma (m^3/s)),$
- ε: ο βαθμός απόδοσης συγκράτησης σωματιδίων του φίλτρου,
- $λ_1, λ_2, λ_3:$ οι σταθερές διάσπασης των ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi αντίστοιχα,
- $T_1, T_2, T_3:$ or crónor hmicungs two 218 Po, 214 Pb kar 214 Bi antístorca.

Με ολοκλήρωση των Εξισώσεων 4.1, 4.2 και 4.3 ως προς τον χρόνο προκύπτουν οι εξισώσεις 4.4, 4.5 και 4.6 αντίστοιχα:

$$N_{1}(t) = C_{1} \left[\frac{V\varepsilon}{\lambda_{1}} \left(1 - e^{-\lambda_{1}t} \right) \right] \Rightarrow N_{1}(t) = C_{1} \mathbf{a}$$

$$N_{2}(t) = C_{1} \left[\frac{V\varepsilon}{\lambda_{2}} \left(1 - e^{-\lambda_{2}t} \right) + \frac{V\varepsilon}{\lambda_{2} - \lambda_{1}} \left(e^{-\lambda_{2}t} - e^{-\lambda_{1}t} \right) \right] + C_{2} \left[\frac{V\varepsilon}{\lambda_{2}} \left(1 - e^{-\lambda_{2}t} \right) \right] \Rightarrow$$

$$N_{2}(t) = C_{1} \mathbf{b} + C_{2} \mathbf{c}$$

$$(4.5)$$

$$N_{3}(t) =$$

$$C_{1}\left[\frac{V\epsilon}{\lambda_{3}}\left(1-e^{-\lambda_{3}t}\right)+\frac{V\epsilon\lambda_{1}}{(\lambda_{2}-\lambda_{1})(\lambda_{3}-\lambda_{2})}\left(e^{-\lambda_{2}t}-e^{-\lambda_{3}t}\right)+\frac{V\epsilon\lambda_{2}}{(\lambda_{2}-\lambda_{1})(\lambda_{3}-\lambda_{1})}\left(e^{-\lambda_{3}t}-e^{-\lambda_{1}t}\right)\right]$$
$$+C_{2}\left[\frac{V\epsilon}{\lambda_{3}}\left(1-e^{-\lambda_{3}t}\right)+\frac{V\epsilon}{(\lambda_{2}-\lambda_{1})(\lambda_{3}-\lambda_{2})}\left(e^{-\lambda_{3}t}-e^{-\lambda_{2}t}\right)(\lambda_{2}-\lambda_{1})\right]$$
$$+C_{3}\left[\frac{V\epsilon}{\lambda_{3}}\left(1-e^{-\lambda_{3}t}\right)\right] \Rightarrow N_{3}(t) = C_{1}\mathbf{d} + C_{2}\mathbf{e} + C_{3}\mathbf{f}$$
(4.6)

Όπου :

$$\begin{aligned} \mathbf{a} &= \frac{V\varepsilon}{\lambda_1} \left(1 - e^{-\lambda_1 t} \right) \\ \mathbf{b} &= \frac{V\varepsilon}{\lambda_2} \left(1 - e^{-\lambda_2 t} \right) + \frac{V\varepsilon}{\lambda_2 - \lambda_1} \left(e^{-\lambda_2 t} - e^{-\lambda_1 t} \right) \\ \mathbf{c} &= \frac{V\varepsilon}{\lambda_2} \left(1 - e^{-\lambda_2 t} \right) \\ \mathbf{d} &= \frac{V\varepsilon}{\lambda_3} \left(1 - e^{-\lambda_3 t} \right) + \frac{V\varepsilon\lambda_1}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_2)} \left(e^{-\lambda_2 t} - e^{-\lambda_3 t} \right) + \frac{V\varepsilon\lambda_2}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} \left(e^{-\lambda_3 t} - e^{-\lambda_1 t} \right) \end{aligned}$$

$$\mathbf{e} = \frac{V\varepsilon}{\lambda_3} \left(1 - e^{-\lambda_3 t} \right) + \frac{V\varepsilon}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_2)} \left(e^{-\lambda_3 t} - e^{-\lambda_2 t} \right) (\lambda_2 - \lambda_1)$$
$$\mathbf{f} = \frac{V\varepsilon}{\lambda_3} \left(1 - e^{-\lambda_3 t} \right)$$

Οι συντελεστές **a**, **b**, **c**, **d**, **e** και **f** προσδιορίζονται αποκλειστικά για $t = t_s$.

$H KA\Theta Y\Sigma TEPH\Sigma H (0 \le t \le t_d)$

Η καθυστέρηση είναι το χρονικό διάστημα που αναπόφευκτα μεσολαβεί από τη λήξη της δειγματοληψίας έως την έναρξη της γ-φασματοσκοπικής ανάλυσης. Στο χρονικό αυτό διάστημα λαμβάνει χώρα η συλλογή, η προετοιμασία και η μεταφορά του φίλτρου αέρα προς ανάλυση. Κατά τη διάρκεια της καθυστέρησης αυτής:

- το ²¹⁸Ρο μειώνεται λόγω της ραδιενεργού διάσπασής του,
- ο ²¹⁴Pb αυξάνεται λόγω της ραδιενεργού διάσπασης του ²¹⁸Po και μειώνεται λόγω της ραδιενεργού διάσπασης του ίδιου του ισοτόπου,
- το ²¹⁴Bi αυξάνεται λόγω της ραδιενεργού διάσπασης του ²¹⁴Pb και μειώνεται λόγω της ραδιενεργού διάσπασης του ίδιου του ισοτόπου.

Συνεπώς, οι εξισώσεις υπολογισμού της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου για τη διάρκεια της *καθυστέρησης* είναι:

$$\frac{\mathrm{dN_1}'}{\mathrm{dt}} = -\lambda_1 \mathrm{N_1}' \tag{4.7}$$

$$\frac{\mathrm{dN}_{2}'}{\mathrm{dt}} = \lambda_{1} N_{1}' - \lambda_{2} N_{2}' \tag{4.8}$$

$$\frac{\mathrm{dN}_{3}'}{\mathrm{dt}} = \lambda_2 N_2' - \lambda_3 N_3' \tag{4.9}$$

Από τις *Εξισώσεις 4.4*, *4.5* και *4.6* για t=ts λαμβάνονται οι αρχικές συνθήκες για τη λύση των εξισώσεων της καθυστέρησης, οι οποίες είναι:

$$N_{1}(t_{S}) = C_{1}\mathbf{a} = N'_{1}(0)$$

$$N_{2}(t_{S}) = C_{1}\mathbf{b} + C_{2}\mathbf{c} = N_{2}'(0)$$

$$N_{3}(t_{S}) = C_{1}\mathbf{d} + C_{2}\mathbf{e} + C_{3}\mathbf{f} = N_{3}'(0)$$

Έχοντας τις παραπάνω αρχικές συνθήκες, θεωρώντας ως χρονική t=0 τη λήξη της δειγματοληψίας και ολοκληρώνοντας ως προς τον χρόνο προκύπτουν οι *Σχέσεις* 4.10, 4.11 και 4.12 οι οποίες είναι οι λύσεις των Εζισώσεων 4.7, 4.8 και 4.9:

$$N_{1}'(t) = C_{1}(\mathbf{a}e^{-\lambda_{1}t}) \Rightarrow N_{1}'(t) = C_{1}\mathbf{g}$$

$$N_{2}'(t) = C_{1}\left[\frac{\mathbf{a}\lambda_{1}}{\lambda_{1}-\lambda_{2}}\left(e^{-\lambda_{2}t}-e^{-\lambda_{1}t}\right)+\mathbf{b}e^{-\lambda_{2}t}\right] + C_{2}(\mathbf{c}e^{-\lambda_{1}t}) \Rightarrow N_{2}'(t) = C_{1}\mathbf{h} + C_{2}\mathbf{i}$$

$$N_{3}'(t) = C_{1}\left[\frac{\mathbf{a}\lambda_{1}\lambda_{2}}{\lambda_{1}-\lambda_{2}}\left(\frac{e^{-\lambda_{2}t}-e^{-\lambda_{3}t}}{\lambda_{3}-\lambda_{2}}-\frac{e^{-\lambda_{3}t}-e^{-\lambda_{1}t}}{\lambda_{1}-\lambda_{3}}\right)+\frac{\mathbf{b}\lambda_{2}(e^{-\lambda_{2}t}-e^{-\lambda_{3}t})}{\lambda_{3}-\lambda_{2}}+\mathbf{d}e^{-\lambda_{3}t}\right]$$

$$+C_{2}\left[\frac{c\lambda_{2}(e^{-\lambda_{2}t}-e^{-\lambda_{3}t})}{\lambda_{3}-\lambda_{2}}+\mathbf{e}e^{-\lambda_{3}t}\right] + C_{3}(\mathbf{f}e^{-\lambda_{3}t}) \Rightarrow$$

$$(4.10)$$

$$N_{3}'(t) = C_{1}j + C_{2}n + C_{3}l$$
(4.12)

Όπου :

$$g = ae^{-\lambda_{1}t}$$

$$h = \frac{a\lambda_{1}}{\lambda_{1}-\lambda_{2}} (e^{-\lambda_{2}t} - e^{-\lambda_{1}t}) + be^{-\lambda_{2}t}$$

$$i = ce^{-\lambda_{1}t}$$

$$j = \frac{a\lambda_{1}\lambda_{2}}{\lambda_{1}-\lambda_{2}} (\frac{e^{-\lambda_{2}t} - e^{-\lambda_{3}t}}{\lambda_{3}-\lambda_{2}} - \frac{e^{-\lambda_{3}t} - e^{-\lambda_{1}t}}{\lambda_{1}-\lambda_{3}}) + \frac{b\lambda_{2}(e^{-\lambda_{2}t} - e^{-\lambda_{3}t})}{\lambda_{3}-\lambda_{2}} + de^{-\lambda_{3}t}$$

$$n = \frac{c\lambda_{2}(e^{-\lambda_{2}t} - e^{-\lambda_{3}t})}{\lambda_{3}-\lambda_{2}} + ee^{-\lambda_{3}t}$$

$$l = fe^{-\lambda_{3}t}$$

Επομένως, κατά τη λήξη της χρονικής διάρκειας της καθυστέρησης, υπολογίζοντας για $t=t_d$ τους συντελεστές g, h, i, j, n και l^{39} οι Εζισώσεις 4.10, 4.11 και 4.12 γίνονται:

$$N_1'(t_d) = C_1 \mathbf{g} \stackrel{\cdot \lambda_1}{\Rightarrow} \lambda_1 N_1'(t_d) = \lambda_1 C_1 \mathbf{g} \Rightarrow A_1^0 = \lambda_1 C_1 \mathbf{g}$$
(4.13)

$$N_{2}'(t_{d}) = C_{1}\mathbf{h} + C_{2}\mathbf{i} \stackrel{\cdot\lambda_{2}}{\Rightarrow} \lambda_{2}N_{2}'(t_{d}) = \lambda_{2}C_{1}\mathbf{h} + \lambda_{2}C_{2}\mathbf{i} \Rightarrow A_{2}^{0} = \lambda_{2}C_{1}\mathbf{h} + \lambda_{2}C_{2}\mathbf{i}$$
(4.14)

$$N'_{3}(t_{d}) = C_{1}\mathbf{j} + C_{2}\mathbf{n} + C_{3}\mathbf{l} \stackrel{\cdot\lambda_{3}}{\Rightarrow} \lambda_{3}N'^{(t_{d})}_{3} = \lambda_{3}C_{1}\mathbf{j} + \lambda_{3}C_{2}\mathbf{n} + \lambda_{3}C_{3}\mathbf{l} \Rightarrow$$

³⁹ Οι τιμές των συντελεστών **a**, **b**, **c**, **d**, **e** και **f** χρησιμοποιούνται όπως προσδιορίστηκαν στο προηγούμενο βήμα της δειγματοληψίας.

$$A_3^0 = \lambda_3 C_1 \mathbf{j} + \lambda_3 C_2 \mathbf{n} + \lambda_3 C_3 \mathbf{l}$$
(4.15)

Λύνοντας το σύστημα *Εξισώσεων* 4.13, 4.14 και 4.15 ως προς τις συγκεντρώσεις πυρήνων προκύπτουν οι σχέσεις:

$$C_1 = \frac{A_1^0}{\lambda_1 g} \tag{4.16}$$

$$C_2 = \frac{A_2^0 - \lambda_2 C_1 \mathbf{h}}{\lambda_2 \mathbf{i}} \tag{4.17}$$

$$C_3 = \frac{A_3^0 - \lambda_3 C_1 \mathbf{j} - \lambda_3 C_2 \mathbf{n}}{\lambda_3 \mathbf{l}}$$
(4.18)

Για τον υπολογισμό των A^o₁, A^o₂, A^o₃ θα πρέπει να ληφθούν υπόψη τα αποτελέσματα της γ-φασματοσκοπικής ανάλυσης των φίλτρων αέρα.

H γ-ΦΑΣΜΑΤΟΣΚΟΠΙΚΗ ΑΝΑΛΥΣΗ ($0 \le t \le t_c$)

υπολογισμός της συγκέντρωσης του ²¹⁸Ρο με τη μέθοδο 0 της γ-φασματοσκοπικής ανάλυσης γίνεται δυνατός μέσω του υπολογισμού της συγκέντρωσης των ²¹⁴Pb και ²¹⁴Bi σε δύο διαδοχικά φάσματα, όπου από τη σύγκριση των αποτελεσμάτων και των εξισώσεων παραγωγής-κατανάλωσης προκύπτει η συγκέντρωσή του. Από τα αποτελέσματα των δύο φασμάτων της γ-φασματοσκοπικής ανάλυση του φίλτρου, προκύπτουν οι μη-διορθωμένες τιμές της ενεργότητας A21, A₃^{c1}, A₂^{c2}, A₃^{c2}. Ωστόσο, για ραδιενεργά ισότοπα των οποίων ο χρόνος ημιζωής είναι της ίδιας τάξης μεγέθους με τον χρόνο της ανάλυσης είναι απαραίτητο να γίνουν διορθώσεις για την παραγωγή-κατανάλωσή τους και κατά τη διάρκεια της ανάλυσης. Οι διορθώσεις αυτές γίνονται σημαντικές, όταν ο χρόνος ημιζωής του ραδιενεργού ισοτόπου είναι περίπου 20 φορές μεγαλύτερος από τη χρονική διάρκεια της ανάλυσης (IAEA & ALMERA, 2021). Επομένως, για τον υπολογισμό των διορθωμένων τιμών Α2 και Α3 χρειάζεται να γίνει ολοκλήρωση των Εξισώσεων 4.19, 4.20 και 4.21 που ακολουθούν, ως προς τη χρονική διάρκεια της ανάλυσης, δηλαδή από t=0 έως και t=t_c.

Οπότε για την 1^η γ-φασματοσκοπική ανάλυση ισχύει:

$$A_1^{c1} = A_1^0 e^{-\lambda_1 t} (4.19)$$

$$A_{2}^{c1} = A_{2}^{o}e^{-\lambda_{2}t} + \frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}A_{1}^{o}\left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t}\right)$$
(4.20)

$$A_{3}^{c1} = A_{1}^{0} \frac{\lambda_{3} \lambda_{2}}{\lambda_{1} - \lambda_{2}} \left(\frac{e^{-\lambda_{2} t} - e^{-\lambda_{3} t}}{\lambda_{3} - \lambda_{2}} - \frac{e^{-\lambda_{3} t} - e^{-\lambda_{1} t}}{\lambda_{1} - \lambda_{3}} \right) + A_{2}^{0} \lambda_{3} \frac{(e^{-\lambda_{2} t} - e^{-\lambda_{3} t})}{\lambda_{3} - \lambda_{2}} + A_{3}^{0} e^{-\lambda_{3} t}$$
(4.21)

Ολοκληρώνοντας τις παραπάνω εξισώσεις από t = 0 έως $t = t_c$ προκύπτουν οι Εξισώσεις 4.22, 4.23 και 4.24 αντίστοιχα:

$$A_{1}^{0} = A_{1}^{c1} \frac{\lambda_{1} t_{c}}{1 - e^{-\lambda_{1} t_{c}}}$$
(4.22)

$$A_{2}^{0} = \lambda_{2} \frac{A_{2}^{c1}t_{c} - \left[\frac{A_{1}^{0}T_{1}}{(T_{1} - T_{2})\ln(2)}\right] \cdot \left[T_{1}(1 - e^{-\lambda_{1}t_{c}}) - T_{2}(1 - e^{-\lambda_{2}t_{c}})\right]}{1 - e^{-\lambda_{2}t_{c}}}$$
(4.23)

$$A_{3}^{0} = \frac{\lambda_{3}}{1 - e^{-\lambda_{3}t_{c}}} \{A_{3}^{c1}t_{c} - A_{1}^{0}\frac{\lambda_{3}\lambda_{2}}{\lambda_{1} - \lambda_{2}} \Big[\frac{1}{\lambda_{3} - \lambda_{2}} \Big(\frac{1 - e^{-\lambda_{2}t_{c}}}{\lambda_{2}} - \frac{1 - e^{-\lambda_{3}t_{c}}}{\lambda_{3}}\Big) - \frac{1}{\lambda_{1} - \lambda_{3}} \Big(\frac{1 - e^{-\lambda_{3}t_{c}}}{\lambda_{3}} - \frac{1 - e^{-\lambda_{1}t_{c}}}{\lambda_{1}}\Big)\Big] - A_{2}^{0}\frac{\lambda_{3}}{\lambda_{3} - \lambda_{2}} \Big(\frac{1 - e^{-\lambda_{2}t_{c}}}{\lambda_{2}} - \frac{1 - e^{-\lambda_{3}t_{c}}}{\lambda_{3}}\Big)\}$$

$$(4.24)$$

Έχοντας ως βάση τις *Εξισώσεις 4.22* και 4.23, για τη 2^η διαδοχική γ-φασματοσκοπική ανάλυση έχουμε:

$$A_1^1 = A_1^{c_2} \frac{\lambda_1 t_c}{1 - e^{-\lambda_1 t_c}}$$
(4.25)

$$A_{2}^{1} = \lambda_{2} \frac{A_{2}^{c2} t_{c} - \left[\frac{A_{1}^{1} T_{1}}{(T_{1} - T_{2}) \ln(2)}\right] \cdot [T_{1}(1 - e^{-\lambda_{1} t_{c}}) - T_{2}(1 - e^{-\lambda_{2} t_{c}})]}{1 - e^{-\lambda_{2} t_{c}}}$$
(4.26)

Επίσης, μεταξύ της αρχής της $1^{\eta\varsigma}$ και της αρχής της $2^{\eta\varsigma}\gamma$ -φασματοσκοπικής ανάλυσης ισχύει:

$$A_1^1 = A_1^0 e^{-\lambda_1 t_c} (4.27)$$

$$A_{2}^{1} = A_{2}^{0}e^{-\lambda_{2}t_{c}} + \frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}A_{1}^{0}\left(e^{-\lambda_{1}t_{c}} - e^{-\lambda_{2}t_{c}}\right)$$
(4.28)

Λύνοντας το σύστημα των Εζισώσεων 4.22, 4.23, 4.25, 4.26, 4.27 και 4.28 ως προς A_1^0 προκύπτουν οι σχέσεις:

$$A_1^{0} = \frac{-\lambda_2 A_2^{c1} t_c e^{-\lambda_2 t_c} + \lambda_2 A_2^{c2} t_c}{-\lambda_2 k m e^{-\lambda_2 t_c} + \frac{\lambda_2}{\lambda_2 - \lambda_1} (1 - e^{-\lambda_2 t_c}) (e^{-\lambda_1 t_c} - e^{-\lambda_2 t_c}) + \lambda_2 k m e^{-\lambda_1 t_c}}$$
(4.29)

οπότε το A₂^o μπορεί να υπολογισθεί από τη σχέση:

$$A_2^{o} = \lambda_2 \frac{A_2^{c1} t_c - A_1^{o} \mathbf{km}}{1 - e^{-\lambda_2 t_c}}$$

Όπου :

$$\mathbf{k} = \frac{T_1}{(T_1 - T_2) \ln(2)}$$
$$\mathbf{m} = T_1 (1 - e^{-\lambda_1 t_c}) - T_2 (1 - e^{-\lambda_2 t_c})$$

Με γνωστές πλέον τις τιμές των A_1^o , A_2^o και A_3^{c1} μπορεί να υπολογισθεί η τιμή του A_3^o από την Εξίσωση 4.24.

(4.30)

Επομένως, για χρονικό διάστημα δειγματοληψίας t_s, καθυστέρησης t_d και δύο διαδοχικές ισόχρονες γ-φασματοσκοπικές αναλύσεις χρονικής διάρκειας t_c η καθεμία, είναι δυνατός ο υπολογισμός των συγκεντρώσεων (πυρήνες/m³) των ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi από τις *Εξισώσεις 4.16*, *4.17* και *4.18* αντίστοιχα. Υποθέτοντας ραδιενεργό ισορροπία μεταξύ του ²¹⁴Bi και του ²¹⁴Po γίνεται υπολογισμός και των πυρήνων του ²¹⁴Po, το πλήθος των οποίων όμως είναι πρακτικά αμελητέο.

Για την υλοποίηση της παραπάνω διαδικασίας και την επίλυση των εξισώσεων, χρησιμοποιήθηκαν οι παρακάτω τιμές των παραμέτρων:

- $t_s = 3600s \rightarrow \chi \rho \sigma v \kappa \eta \delta i \alpha \rho \kappa \epsilon i \alpha \delta \epsilon i \gamma \mu \alpha \tau \sigma \lambda \eta \psi i \alpha \zeta \phi i \lambda \tau \rho \omega v 4''$
- $t_d = 240 s \rightarrow \chi \rho onich diarkeia kaqustérnsnz (staqerh gia óla ta gilttra 4'')$
- $t_c = 300s \& 600s \& 900s \rightarrow \chi$ ρονική διάρκεια διαδοχικών γ-φασματοσκοπικών αναλύσεων για τρία διαφορετικά σενάρια χρονικής διάρκειας λήψης φασμάτων
- V: παροχή αέρα αντλίας $(m^3/s) =$ όγκος αέρα $(m^3)/t_s(s)$
- ε = 0.9998 → ποσοστό συγκράτησης σωματιδίων στο φίλτρο 4΄΄ (<u>http://www.staplex.com/airsamplers/filterpapers.htm</u>, τελευταία πρόσβαση 1/9/2022)
- $\lambda_1 = 0.003761789 \text{ s}^{-1}$
- $\lambda_2 = 0.000429204 \text{ s}^{-1}$
- $\lambda_3 = 0.000583457 \text{ s}^{-1}$
- $T_1 = 184.26 \text{ s}$
- $T_2 = 1614.96 \text{ s}$
- $T_3 = 1188 \text{ s}$

4.3.1.2 Υπολογισμός της συγκέντρωσης των θυγατρικών του ραδονίου με τη μέθοδο των (Forkapic, et al., 2012)

Για λόγους πληρότητας έγινε εφαρμογή και της προσέγγισης των (Forkapic, et al., 2012) για τον προσδιορισμό των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα, με χρήση του υπολογιστικού προγράμματος Mathematica.

Σύμφωνα με την προσέγγιση αυτή, αρχικά εισάγονται οι διαφορικές εξισώσεις 4.1, 4.2 και 4.3 που εκφράζουν τη συλλογή των θυγατρικών του ραδονίου στα φίλτρα αέρα καθώς και την παραγωγή-κατανάλωσή τους κατά της διάρκεια της δειγματοληψίας. Για την επίλυση των εξισώσεων αυτών από το πρόγραμμα, απαιτούνται να δοθούν:

- οι τιμές των παραμέτρων λ1, λ2, λ3, V, ε και ts,
- οι αρχικές συνθήκες $N_1(0) = N_2(0) = N_3(0) = 0$.

Το αποτέλεσμα επίλυσης του συστήματος διαφορικών εξισώσεων είναι της μορφής:

$$N_1(t_s) = N_1'(0) = \alpha_1 C_1 \tag{4.31}$$

$$N_2(t_s) = N_2'(0) = \alpha_2 C_1 + \alpha_3 C_2$$
(4.32)

$$N_{3}(t_{s}) = N_{3}'(0) = \alpha_{4}C_{1} + \alpha_{5}C_{2} + \alpha_{6}C_{3}$$
(4.33)

όπου **α**₁, **α**₂, **α**₃, **α**₄, **α**₅, **α**₆, οι συντελεστές που προκύπτουν ως αποτέλεσμα της επίλυσης των εξισώσεων 4.1, 4.2 και 4.3 και είναι διαφορετικοί για κάθε φίλτρο αέρα.

Έχοντας πλέον ως αρχικές συνθήκες τις $N_1'(0)$, $N_2'(0)$, $N_3'(0)^{40}$ είναι δυνατή η επίλυση του συστήματος διαφορικών *Εξισώσεων 4.7*, *4.8*, και *4.9* από το πρόγραμμα, όπου για χρόνο καθυστέρησης t_d και χρόνο γ-φασματοσκοπικής ανάλυσης t_c οι λύσεις για τον υπολογισμό του ²¹⁴Pb και του ²¹⁴Bi είναι της μορφής:

$$N_2'(t_d) = \alpha_7 C_1 + \alpha_8 C_2 \tag{4.34}$$

$$N_2'(t_d + t_c) = \alpha_9 C_1 + \alpha_{10} C_2 \tag{4.35}$$

⁴⁰ Ta N₁⁽⁰⁾, N₂⁽⁰⁾ και N₃⁽⁰⁾ αφορούν το πλήθος πυρήνων των ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi αντίστοιχα, στα συλλεχθέντα φίλτρα 4΄΄ στο πέρας της δειγματοληψίας τους, δηλαδή στην αρχή της περιόδου της καθυστέρησης.

$$N_2'(t_d + t_c + t_c) = \alpha_{11}C_1 + \alpha_{12}C_2$$
(4.36)

$$N_{3}'(t_{d}) = \alpha_{13}C_{1} + \alpha_{14}C_{2} + \alpha_{15}C_{3}$$
(4.37)

$$N_3'(t_d + t_c) = \alpha_{16}C_1 + \alpha_{17}C_2 + \alpha_{18}C_3$$
(4.38)

Στο σημείο αυτό έγκειται και η διαφορά μεταξύ των δύο μεθόδων (της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων και της μεθόδου των (Forkapic, et al., 2012)). Στη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων, για τα αποτελέσματα της γ-φασματοσκοπικής ανάλυσης εφαρμόστηκαν κατάλληλες διορθώσεις για την παραγωγή-κατανάλωση κατά τη διάρκεια της δειγματοληψίας. Στη μέθοδο των (Forkapic, et al., 2012) που παρουσιάζεται στην παράγραφο αυτή γίνεται η υπόθεση ότι τα μετρούμενα συμβάντα (counts, κατάλληλα διορθωμένα ως προς την απόδοση και το φαινόμενο της πραγματικής σύμπτωσης) στα φάσματα των γ-φασματοσκοπικών αναλύσεων ταυτίζονται με τους πυρήνες που διασπάστηκαν κατά τη διάρκεια αυτών.

Από τη γ-φασματοσκοπική ανάλυση των φίλτρων προκύπτει η μη διορθωμένη (ως προς την παραγωγή-κατανάλωση) συγκέντρωση ραδιενέργειας (Bq/m³) για τον ²¹⁴Pb και το ²¹⁴Bi. Σύμφωνα με τη μέθοδο των (Forkapic, et al., 2012), από τη μη διορθωμένη συγκέντρωση ραδιενέργειας είναι δυνατός ο προσδιορισμός του πλήθους των πυρήνων που διασπάστηκαν κατά τη διάρκεια της δειγματοληψίας, πολλαπλασιάζοντας τη συγκέντρωση ενεργότητας με τον όγκο αέρα (m³) που αντιστοιχεί σε κάθε φίλτρο και με τη διάρκεια της γ-φασματοσκοπικής ανάλυσης. Το πλήθος των πυρήνων που διασπάστηκαν κατά τη διάρκεια κάθε γ-φασματοσκοπικής ανάλυσης στη συνέχεια αντιστοιχεί στη διαφορά μεταξύ του συνόλου των αδιάσπαστων πυρήνων πριν και μετά την ανάλυση.

Επομένως, αν κατά τη διάρκειά της $1^{\eta\varsigma}$ γ-φασματοσκοπικής ανάλυσης οι πυρήνες ²¹⁴Pb και ²¹⁴Bi που διασπάστηκαν είναι N_2^{c1} και N_3^{c1} αντίστοιχα, και για τη 2^{η} γ-φασματοσκοπική ανάλυση οι πυρήνες του ²¹⁴Pb που διασπάστηκαν είναι N_2^{c2} , τότε σε συνδυασμό με τις εξισώσεις 4.34 έως και 4.38 προκύπτουν:

$$N_2^{c1} = N_2'(t_d) - N_2'(t_d + t_c)$$
(4.39)

$$N_2^{c2} = N_2'(t_d + t_c) - N_2'(t_d + t_c + t_c)$$
(4.40)

$$N_3^{c1} = N_3'(t_d) - N_3'(t_d + t_c)$$
(4.41)

Εισάγοντας τις Εξισώσεις 4.39, 4.40 και 4.41 στο υπολογιστικό πρόγραμμα είναι δυνατή η επίλυση του συστήματος και ο προσδιορισμός των συγκεντρώσεων C₁, C₂, C₃ (πυρήνες/m³) των θυγατρικών του ραδονίου ²¹⁸Po, ²¹⁴Pb και ²¹⁴Bi αντίστοιχα στην ατμόσφαιρα. Και στην προσέγγιση αυτή το υπολογιζόμενο πλήθος των πυρήνων του ²¹⁴Po είναι αμελητέο.

4.3.2 Διερεύνηση της ευαισθησίας της επίλυσης του συστήματος αναλυτικών εξισώσεων παραγωγής-κατανάλωσης

Ο υπολογισμός της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον αέρα μέσω γ-φασματοσκοπικής ανάλυσης είτε με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων είτε με τη μέθοδο των (Forkapic, et al., 2012) οδηγεί σε αποτελέσματα τα οποία είναι πολύ ευαίσθητα σε μικρές αποκλίσεις των μετρούμενων συγκεντρώσεων. Ακόμα και μια απόκλιση μέσα στο εύρος ±1σ της μετρούμενης τιμής της ενεργότητας του ²¹⁴Pb ή του ²¹⁴Bi μπορεί να οδηγήσει τα προς επίλυση συστήματα εξισώσεων σε αρνητική λύση ή σε μη-λύση. Η υψηλή αυτή ευαισθησία έγκειται στον πολύ μικρό χρόνο ημιζωής του ²¹⁸Po και στο γεγονός ότι υπολογίζεται βάσει της διαφοράς στη συγκέντρωση του ²¹⁴Pb μεταξύ των δύο διαδοχικών φασμάτων.

Με στόχο να αντιμετωπισθεί αυτό το πρόβλημα και να ελεγχθεί η ευαισθησία της μεθόδου που αναπτύχθηκε επιλέχθηκαν οι δύο ακόλουθες προσεγγίσεις:

Κάθε φίλτρο 4΄΄ που συλλέχθηκε αναλύθηκε με γ-φασματοσκοπία λαμβάνοντας 6 διαδοχικά φάσματα των 5min, χρησιμοποιώντας τη δυνατότητα «SEQUENCE» του προγράμματος GENIE2000 (Παράρτημα IB). Τα συλλεχθέντα φάσματα στη συνέχεια υπέστησαν επεξεργασία σε ομάδες, σε τρία διαφορετικά σενάρια χρονικής διάρκειας λήψης του φάσματος⁴¹. Η επίλυση των συστημάτων εξισώσεων έγινε ξεχωριστά για κάθε σενάριο:

⁴¹ Η συλλογή διαδοχικών φασμάτων των 5min, επιτρέπει στη συνέχεια την ενοποίησή τους με λογιστικό τρόπο και δημιουργία νέων φασμάτων διάρκειας 10min, 15min κ.ο.κ.. Έτσι, από 6 διαδοχικά φάσματα διάρκειας 5min μπορούν να σχηματισθούν 3 διαδοχικά φάσματα διάρκειας 10min ή 2 διαδοχικά φάσματα διάρκειας 15min. Πρέπει να σημειωθεί ότι η επιλογή μεγαλύτερης διάρκειας δειγματοληψίας δεν οδηγεί σε επίλυση του συστήματος, καθώς στο δεύτερο φάσμα η συνεισφορά του ²¹⁸Po στην αύξηση των πυρήνων ²¹⁴Pb θα είναι αμελητέα.

- a. Το 1° σενάριο χρησιμοποίησε τα πρώτα δύο διαδοχικά φάσματα 5min για κάθε φίλτρο.
- b. Το 2ο σενάριο χρησιμοποίησε τα πρώτα δύο διαδοχικά φάσματα 10min
 για κάθε φίλτρο.
- c. Το 3ο σενάριο χρησιμοποίησε τα δύο διαδοχικά φάσματα 15min για κάθε φίλτρο.
- Για κάθε τιμή της ενεργότητας ²¹⁴Pb και ²¹⁴Bi που μετρήθηκε (τιμή ± 1σ) σε κάθε φίλτρο 4΄΄, από κάθε φάσμα και για κάθε ένα από τα τρία χρονικά σενάρια επεξεργασίας φασμάτων, εξετάστηκαν ως τιμές εισόδου στο αναλυτικό σύστημα εξισώσεων⁴² όλοι οι δυνατοί συνδυασμοί τιμών μεταξύ ²¹⁴Pb και ²¹⁴Bi σε εύρος ± 3σ περί της μετρούμενης τιμής. Δηλαδή, για κάθε ζεύγος τιμών ενεργότητας ²¹⁴Pb και ²¹⁴Bi που προέκυψαν από την ανάλυση ενός φίλτρου, και για κάθε χρονικό σενάριο επεξεργασίας φασμάτων (5min, 10min, 15min) εξετάστηκαν συνολικά 7x7=49 διαφορετικοί συνδυασμοί τιμών ενεργότητας. Με αυτόν τον τρόπο επιτεύχθηκε ο προσδιορισμός θετικών λύσεων του συστήματος αναλυτικών εξισώσεων, ακόμα και σε περιπτώσεις που η χρήση της τιμής της ενεργότητας που μετρήθηκε οδηγούσε σε αρνητική ή μη-λύση του συστήματος.

Στις παραγράφους που ακολουθούν δίνονται τα αποτελέσματα των γ-φασματοσκοπικών αναλύσεων καθώς και τα αποτελέσματα της επεξεργασίας των αποτελεσμάτων αυτών με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων, καθώς και με τη μέθοδο των (Forkapic, et al., 2012).

4.3.2.1 Αποτελέσματα των γ-φασματοσκοπικών αναλύσεων

Στην παράγραφο αυτή δίνονται τα συνοπτικά αποτελέσματα των γ-φασματοσκοπικών αναλύσεων για κάθε φίλτρο 4΄΄ και κάθε χρονικό σενάριο ανάλυσης για τα δύο τριήμερα δειγματοληψίας. Στον Πίνακα 4.1 δίνονται πληροφορίες για το σύνολο των φίλτρων 4΄΄ που συλλέχθηκαν και στα δύο τριήμερα δειγματοληψίας, καθώς και ο όγκος αέρα που συλλέχθηκε.

⁴² Η συγκεκριμένη διερεύνηση δεν εφαρμόσθηκε στην προσέγγιση επίλυσης με τη μέθοδο των (Forkapic, et al., 2012), καθώς χρησιμοποιήθηκε καθαρά για σύγκριση των τελικών αποτελεσμάτων της με αυτά της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Τριήμερα δειγματοληψίας	Ημερομηνία δειγματοληψίας	Αριθμός φίλτρου 4΄΄ (ανά ημέρα)	Κωδικός φίλτρου	Όγκος αέρα (m³)
		1	a0595	63.33
	20/2/2022	2	a0596	63.33
	30/3/2022	3	a0597	62.28
		4	a0598	68.53
		1	a0599	63.33
10	21/2/2022	2	a0600	68.53
I	31/3/2022	3	a0601	68.53
		4	a0602	68.53
		1	a0603	68.01
	1/4/2022	2	a0604	68.53
	1/4/2022	3	a0605	68.53
		4	a0606	68.53
		1	a0608	68.53
	10/5/2022	2	a0609	68.53
		3	a0610	68.53
		4	a0611	68.53
		1	a0612	68.53
20	11/5/2022	2	a0613	68.53
2	11/3/2022	3	a0614	68.53
		4	a0615	68.53
		1	a0616	68.53
	12/5/2022	2	a0617	68.53
	12/5/2022	3	a0618	68.53
		4	a0619	68.53

Πίνακας 4.1 : Σύνολο φίλτρων αέρα 4΄΄ και από τα δύο τριήμερα δειγματοληψίας.

Τα αποτελέσματα των γ-φασματοσκοπικών αναλύσεων των ανωτέρω φίλτρων δίνονται στους *Πίνακες 4.2* και 4.3 που ακολουθούν. Όλα τα αποτελέσματα δίνονται συνοδευόμενα με αβεβαιότητα σε επίπεδο 1σ⁴³.

⁴³ Είναι σημαντικό να τονιστεί ότι η κύμανση του υποστρώματος των ανιχνευτών λόγω των θυγατρικών του ραδονίου που μελετήθηκε στο κεφάλαιο 3 δεν επιδρά σημαντικά στις παρούσες μετρήσεις καθώς: (i) λαμβάνουν χώρα αμέσως μετά τη λήψη του φίλτρου αέρα και η ενεργότητα των βραχύβιων θυγατρικών του ραδονίου είναι σημαντικά υψηλότερη από τις φωτοκορυφές του υποστρώματος, και (ii) η γ-φασματοσκοπική ανάλυση ολοκληρώνεται μετά από 34min από το πέρας της δειγματοληψίας, όπου η επίδραση των βραχύβιων θυγατρικών του ραδονίου παραμένει πολύ ισχυρή ως προς το υπόστρωμα (βλ. Σχήμα 3.24).

ήα γίας		διενεργό sότοπο		Σι	ογκέντρωση	ενεργότητας	; Bq/m ³	
ιατολην	τρου 4		1° 5min	2° 5min	1°10min	2° 10min	1° 15min	2° 15min
ηΗμ δειγμ	Α (Ìφ	Ρα	A ^{c1}	A ^{c2}	A ^{c1}	A ^{c2}	A ^{c1}	A ^{c2}
	1	²¹⁴ Pb	0.56 ± 0.03	0.45 ± 0.03	0.51 ± 0.03	0.39 ± 0.02	0.47 ± 0.02	0.32 ± 0.02
	1	²¹⁴ Bi	0.76 ± 0.05	0.71 ± 0.04	0.73 ± 0.04	0.65 ± 0.04	0.71 ± 0.04	0.59 ± 0.03
22	2	²¹⁴ Pb	0.50 ± 0.03	0.43 ± 0.04	0.47 ± 0.02	0.35 ± 0.02	0.44 ± 0.02	0.28 ± 0.02
/3/20	2	²¹⁴ Bi	0.69 ± 0.04	0.67 ± 0.04	0.68 ± 0.03	0.61 ± 0.05	0.66 ± 0.04	0.55 ± 0.03
30	2	²¹⁴ Pb	0.44 ± 0.03	0.48 ± 0.03	0.46 ± 0.02	0.31 ± 0.02	0.42 ± 0.02	0.29 ± 0.02
	3	²¹⁴ Bi	0.66 ± 0.06	0.64 ± 0.04	0.65 ± 0.04	0.56 ± 0.03	0.62 ± 0.04	0.49 ± 0.03
	4	²¹⁴ Pb	0.28 ± 0.02	0.25 ± 0.02	0.27 ± 0.02	0.21 ± 0.01	0.25 ± 0.01	0.17 ± 0.02
	4	²¹⁴ Bi	0.44 ± 0.03	0.39 ± 0.03	0.41 ± 0.02	0.36 ± 0.02	0.40 ± 0.01	0.32 ± 0.02
	1	²¹⁴ Pb	0.47 ± 0.03	0.41 ± 0.03	0.44 ± 0.02	0.34 ± 0.02	0.42 ± 0.02	0.27 ± 0.01
	1	²¹⁴ Bi	0.61 ± 0.04	0.59 ± 0.04	0.60 ± 0.03	0.55 ± 0.03	0.59 ± 0.03	0.46 ± 0.02
	2 -	²¹⁴ Pb	0.28 ± 0.02	0.23 ± 0.02	0.25 ± 0.02	0.20 ± 0.01	0.23 ± 0.01	0.16 ± 0.01
2022		²¹⁴ Bi	0.42 ± 0.03	0.38 ± 0.03	0.40 ± 0.02	0.34 ± 0.02	0.38 ± 0.02	0.30 ± 0.02
31/3/.	2	²¹⁴ Pb	0.34 ± 0.02	0.33 ± 0.02	0.33 ± 0.02	0.29 ± 0.02	0.32 ± 0.02	0.22 ± 0.01
	3	²¹⁴ Bi	0.53 ± 0.03	0.51 ± 0.03	0.52 ± 0.03	0.47 ± 0.04	0.51 ± 0.02	0.40 ± 0.02
	4	²¹⁴ Pb	0.31 ± 0.03	0.25 ± 0.02	0.28 ± 0.02	0.23 ± 0.01	0.27 ± 0.02	0.19 ± 0.01
	4	²¹⁴ Bi	0.49 ± 0.05	0.42 ± 0.04	0.46 ± 0.03	0.36 ± 0.04	0.43 ± 0.02	0.34 ± 0.03
	1	²¹⁴ Pb	0.35 ± 0.03	0.31 ± 0.03	0.33 ± 0.02	0.26 ± 0.02	0.31 ± 0.02	0.21 ± 0.01
	1	²¹⁴ Bi	0.54 ± 0.04	0.53 ± 0.03	0.53 ± 0.03	0.45 ± 0.03	0.51 ± 0.02	0.41 ± 0.02
	2	²¹⁴ Pb	0.43 ± 0.03	0.36 ± 0.02	0.39 ± 0.02	0.31 ± 0.02	0.37 ± 0.02	0.25 ± 0.02
2022	2	²¹⁴ Bi	0.62 ± 0.04	0.62 ± 0.04	0.62 ± 0.03	0.51 ± 0.02	0.59 ± 0.03	0.45 ± 0.02
1/4/2	2	²¹⁴ Pb	0.45 ± 0.03	0.42 ± 0.03	0.44 ± 0.02	0.35 ± 0.02	0.42 ± 0.02	0.29 ± 0.02
	3	²¹⁴ Bi	0.70 ± 0.04	0.64 ± 0.05	0.67 ± 0.03	0.60 ± 0.03	0.65 ± 0.03	0.55 ± 0.02
	Α	²¹⁴ Pb	0.43 ± 0.03	0.35 ± 0.02	0.39 ± 0.02	0.28 ± 0.03	0.36 ± 0.02	0.25 ± 0.01
	4	²¹⁴ Bi	0.63 ± 0.04	0.60 ± 0.03	0.61 ± 0.03	0.52 ± 0.03	0.59 ± 0.03	0.47 ± 0.02

Πίνακας 4.2 : Αποτελέσματα της γ-φασματοσκοπικής ανάλυσης φίλτρων αέρα 4΄΄ για το 1° τριήμερο δειγματοληψίας και για διαδοχικά φάσματα 5min, 10min και 15min.

ήα γίας		διενεργό σότοπο		Σι	ογκέντρωση	ενεργότητας	; Bq/m ³	
ιατολην	τρου 4		1° 5min	2° 5min	1°10min	2º 10min	1° 15min	2° 15min
ηΗμ δειγμ	A (ئم	Ρα	A ^{c1}	A ^{c2}	A ^{c1}	A ^{c2}	A ^{c1}	A ^{c2}
	1	²¹⁴ Pb	0.55 ± 0.03	0.50 ± 0.03	0.53 ± 0.03	0.40 ± 0.02	0.50 ± 0.02	0.32 ± 0.02
	1	²¹⁴ Bi	0.63 ± 0.03	0.58 ± 0.03	0.61 ± 0.03	0.58 ± 0.03	0.61 ± 0.03	0.50 ± 0.03
22	2	²¹⁴ Pb	0.28 ± 0.02	0.27 ± 0.07	0.27 ± 0.02	0.20 ± 0.02	0.25 ± 0.01	0.17 ± 0.02
/5/203	2	²¹⁴ Bi	0.39 ± 0.02	0.43 ± 0.03	0.42 ± 0.03	0.34 ± 0.02	0.39 ± 0.02	0.32 ± 0.02
10	2	²¹⁴ Pb	0.22 ± 0.03	0.18 ± 0.02	0.20 ± 0.01	0.14 ± 0.01	0.18 ± 0.01	0.12 ± 0.01
	3	²¹⁴ Bi	0.28 ± 0.02	0.26 ± 0.02	0.27 ± 0.02	0.25 ± 0.02	0.27 ± 0.01	0.22 ± 0.01
	4	²¹⁴ Pb	0.22 ± 0.03	0.17 ± 0.02	0.19 ± 0.01	0.17 ± 0.01	0.19 ± 0.01	0.13 ± 0.01
	4	²¹⁴ Bi	0.31 ± 0.02	0.31 ± 0.04	0.31 ± 0.02	0.25 ± 0.02	0.30 ± 0.02	0.22 ± 0.02
	1	²¹⁴ Pb	0.36 ± 0.02	0.28 ± 0.02	0.32 ± 0.02	0.24 ± 0.02	0.30 ± 0.02	0.21 ± 0.01
	1	²¹⁴ Bi	0.46 ± 0.03	0.41 ± 0.05	0.44 ± 0.03	0.39 ± 0.02	0.42 ± 0.02	0.36 ± 0.02
	2	²¹⁴ Pb	0.37 ± 0.03	0.32 ± 0.03	0.34 ± 0.03	0.27 ± 0.02	0.33 ± 0.02	0.22 ± 0.01
2022	2	²¹⁴ Bi	0.56 ± 0.03	0.52 ± 0.03	0.54 ± 0.03	0.46 ± 0.03	0.52 ± 0.02	0.42 ± 0.02
11/5/	2	²¹⁴ Pb	0.26 ± 0.02	0.24 ± 0.02	0.25 ± 0.02	0.21 ± 0.01	0.24 ± 0.01	0.17 ± 0.01
	3	²¹⁴ Bi	0.42 ± 0.03	0.40 ± 0.03	0.41 ± 0.03	0.35 ± 0.02	0.40 ± 0.02	0.30 ± 0.02
	4	²¹⁴ Pb	0.28 ± 0.02	0.26 ± 0.03	0.26 ± 0.02	0.23 ± 0.01	0.26 ± 0.01	0.19 ± 0.01
	4	²¹⁴ Bi	0.45 ± 0.03	0.41 ± 0.03	0.43 ± 0.03	0.39 ± 0.04	0.43 ± 0.03	0.34 ± 0.03
	1	²¹⁴ Pb	0.70 ± 0.05	0.62 ± 0.04	0.66 ± 0.04	0.48 ± 0.03	0.61 ± 0.03	0.40 ± 0.03
	1	²¹⁴ Bi	0.83 ± 0.05	0.78 ± 0.05	0.81 ± 0.05	0.75 ± 0.06	0.78 ± 0.05	0.65 ± 0.04
	2	²¹⁴ Pb	0.44 ± 0.03	0.36 ± 0.03	0.40 ± 0.02	0.33 ± 0.02	0.38 ± 0.02	0.27 ± 0.01
2022	2	²¹⁴ Bi	0.61 ± 0.04	0.62 ± 0.04	0.61 ± 0.03	0.55 ± 0.03	0.61 ± 0.03	0.47 ± 0.02
12/5/	2	²¹⁴ Pb	0.39 ± 0.03	0.36 ± 0.02	0.53 ± 0.03	0.40 ± 0.02	0.36 ± 0.03	0.23 ± 0.01
	3	²¹⁴ Bi	0.59 ± 0.03	0.57 ± 0.03	0.61 ± 0.03	0.58 ± 0.03	0.56 ± 0.03	0.42 ± 0.03
	Δ	²¹⁴ Pb	0.40 ± 0.03	0.35 ± 0.02	0.27 ± 0.02	0.20 ± 0.02	0.37 ± 0.02	0.25 ± 0.01
	4	²¹⁴ Bi	0.62 ± 0.03	0.59 ± 0.03	0.42 ± 0.03	0.34 ± 0.02	0.57 ± 0.02	0.48 ± 0.02

Πίνακας 4.3 : Αποτελέσματα της γ-φασματοσκοπικής ανάλυσης φίλτρων αέρα 4΄΄ για το 2° τριήμερο δειγματοληψίας και για διαδοχικά φάσματα 5min, 10min και 15min.

4.3.2.2 Προσδιορισμός τη συγκέντρωσης των θυγατρικών του ραδονίου στον αέρα μέσω της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων

Για κάθε φίλτρο αέρα και για κάθε σενάριο λήψης των διαδοχικών φασμάτων, έγινε διερεύνηση ως προς την ευαισθησία του τελικού αποτελέσματος της επίλυσης του συστήματος αναλυτικών εξισώσεων συνδυάζοντας, τις μετρούμενες τιμές του ²¹⁴Pb και του ²¹⁴Bi, όπως αυτές δίνονται στους *Πίνακες 4.*2 και *4.3*, σε εύρος ± 3σ. Για τον λόγο αυτό, και επειδή οι μετρούμενες τιμές δεν έδωσαν σε όλες τις περιπτώσεις θετική λύση του συστήματος αναλυτικών εξισώσεων, η συνολική συγκέντρωση των θυγατρικών του ραδονίου (²¹⁸Po, ²¹⁴Pb, ²¹⁴Bi και ²¹⁴Po) δίνεται ως εύρος λύσεων με «Κάτω» και «Άνω» όριο. Η απόδοση των χαρακτηρισμών «Κάτω» ή «Άνω» όριο βασίζεται στο άθροισμα των ελάχιστων και αντίστοιχα μέγιστων συγκεντρώσεων (πυρήνων/m³) του ²¹⁸Po, του ²¹⁴Pb, του ²¹⁴Bi και του ²¹⁴Po.

Στον Πίνακα 4.4 που ακολουθεί δίνονται τα «Κάτω» και «Άνω» όρια για κάθε φίλτρο 4΄΄ και σενάριο λήψης διαδοχικών φασμάτων. Επιπροσθέτως, από τα επιμέρους «Κάτω» και «Άνω» όρια των διαφόρων σεναρίων, για κάθε φίλτρο υπολογίζονται και οι μέσοι όροι «Κάτω» και «Άνω» ορίων αντίστοιχα.

Όπως είναι εμφανές στα αποτελέσματα του Πίνακα 4.4 που ακολουθεί, δεν κατέστη δυνατή η εύρεση θετικής λύσης του συστήματος αναλυτικών εξισώσεων για κάθε σενάριο λήψης διαδοχικών φασμάτων, σε εύρος ± 3σ, γεγονός που τονίζει τη σημασία συνδυασμού των δύο προσεγγίσεων που αναφέρθηκαν στην παράγραφο 4.3.2 για την αντιμετώπιση της ευαισθησίας επίλυσης του συστήματος.

Στον Πίνακα 4.4. παρατίθενται τα «Κάτω» και «Άνω» όρια για το σύνολο της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα (πυρήνες/m³) και για τα δύο τριήμερα δειγματοληψίας, εφαρμόζοντας τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων. Η κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου για κάθε ημέρα από τις 2x3=6 ημέρες δειγματοληψίας δίνεται στα Σχήματα 4.7, 4.8, 4.9, 4.10, 4.11 και 4.12.

Πίνακας 4.4 : «Κάτω» και «Άνω» όρια για το σύνολο της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα (πυρήνες/m³) και για τα δύο τριήμερα δειγματοληψίας, εφαρμόζοντας τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

ία ríας	κάτω όριο πυρήνων/m ³				$\omega v/m^3$	Άνω όριο πυρήνων/m ³			
Ημερομην δειγματοληψ	Αριθμός φίλτρου 4	5min	10min	15min	Μέσος όρος κάτω ορίων	5min	10min	15min	Μέσος όρος άνω ορίων
	1	-	4410	4646	4528	-	5089	5131	5110
2022	2	3618	3478	-	3548	4510	3911	-	4211
30/3/	3	4187	-	3888	4038	4917	-	-	4917
(1)	4	2209	2354	2122	2228	2913	2638	2840	2797
	1	-	3085	-	3085	4260	4175	3963	4133
2022	2	2256	1986	2236	2159	2441	2805	2364	2537
31/3/	3	2684	-	3424	3054	2888	3594	3578	3353
	4	2100	2357	-	2229	2596	3298	2418	2771
	1	3147	2876	-	3012	3415	3696	3589	3567
2022	2	3018	3537	3630	3395	4073	4273	3810	4052
1/4/2	3	-	3434	3822	3628	4740	3849	4485	4358
	4	-	3501	3956	3729	-	4036	4128	4082
	1	-	-	3656	3656	-	4237	4180	4209
2022	2	2262	2357	2680	2433	3064	2846	-	2955
10/5/	3	-	-	1478	1478	1812	-	1910	1861
	4	1386	1739	1558	1561	1827	1871	2128	1942
	1	2188	2130	2346	2221	2895	2665	2493	2684
2022	2	2861	3434	-	3148	3469	3585	3639	3564
11/5/	3	2137	2298	2044	2160	2946	2797	2912	2885
	4	2412	2300	2505	2406	-	-	2692	2692
	1	4765	4078	4589	4477	5624	4347	5440	5137
2022	2	3595	3499	3311	3468	4029	4234	3489	3917
12/5/	3	3210	3168	3147	3175	4049	4004	3664	3906
	4	3208	3986	3362	3519	3402	4168	3698	3756

^{*}Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα αναλυτικών εξισώσεων σε εύρος $\pm 3\sigma$ περί της μετρούμενης τιμής.

Σχήμα 4.7 : Κύμανση της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια της δειγματοληψίας στις 30/3/2022.

Σχήμα 4.8 : Κύμανση της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια της δειγματοληψίας στις 31/3/2022.

Σχήμα 4.9 : Κύμανση της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια της δειγματοληψίας στις 1/4/2022.

Σχήμα 4.10 : Κύμανση της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια της δειγματοληψίας στις 10/5/2022.

Σχήμα 4.11 : Κύμανση της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια της δειγματοληψίας στις 11/5/2022.

Σχήμα 4.12 : Κύμανση της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια της δειγματοληψίας στις 12/5/2022.

Από τα παραπάνω αποτελέσματα προκύπτει ότι:

- κατά τη διάρκεια των ανωτέρω δειγματοληψιών η συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου στον αέρα είχε εύρος από ~1400 έως ~5600 πυρήνες/m³,
- τα αποτελέσματα των συνολικών συγκεντρώσεων (πυρήνες/m³) των βραχύβιων θυγατρικών του ραδονίου στην ατμόσφαιρα παρουσιάζουν αξιόλογη κύμανση και κατά τη διάρκεια των ημερήσιων δειγματοληψιών και μεταξύ των τριών διαδοχικών ημερών της δειγματοληψίας,
- δεν επιτυγχάνονται θετικές λύσεις του αναλυτικού συστήματος εξισώσεων σε εύρος ± 3σ περί της μετρούμενης τιμής για κάθε σενάριο χρονικής διάρκειας λήψης διαδοχικών φασμάτων,
- τα εύρη της συγκέντρωσης των πυρήνων στην ατμόσφαιρα που προκύπτουν από τα τρία διαφορετικά σενάρια χρονικής διάρκειας λήψης διαδοχικών φασμάτων έχουν μεν διαφορές, αλλά σε μεγάλο βαθμό αλληλεπικαλύπτονται. Το γεγονός αυτό τονίζει την ευαισθησία της μεθόδου, αλλά οδηγεί και στο συμπέρασμα ότι η επιλογή πολλαπλών σεναρίων χρονικής διάρκειας λήψης διαδοχικών φασμάτων μπορεί να εφαρμοσθεί, ώστε να προσδιορισθούν θετικές λύσεις του συστήματος εξισώσεων για όλα τα φίλτρα αέρα, χωρίς να επηρεάζει σημαντικά το τελικό αποτέλεσμα.

4.3.2.3 Προσδιορισμός της συγκέντρωσης των θυγατρικών του ραδονίου στον αέρα μέσω της μεθόδου των (Forkapic, et al., 2012)

Η μέθοδος αυτή χρησιμοποιήθηκε κυρίως για συγκριτικούς λόγους και για τον λόγο αυτό δεν έγινε διερεύνηση για εύρεση θετικών λύσεων του συστήματος σε εύρος ± 3σ επί των αποτελεσμάτων της γ-φασματοσκοπικής ανάλυσης. Στον Πίνακα 4.5 που ακολουθεί δίνονται τα αποτελέσματα των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου (πυρήνες/m³) για κάθε φίλτρο 4΄΄ και σενάριο λήψης διαδοχικών φασμάτων στη μορφή «τιμή±1σ». Επίσης, προσδιορίζεται η μέση τιμή της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον αέρα, βάσει των αποτελεσμάτων των επιμέρους σεναρίων.

Οι συντελεστές **a**₁ έως και **a**₁₈ (για τις *Εξισώσεις 4.31* έως 4.38) για κάθε φίλτρο αέρα και για κάθε σενάριο λήψης διαδοχικών φασμάτων, όπως αυτοί προσδιορίσθηκαν από το πρόγραμμα Mathematica δίνονται στο Παράρτημα ΙΓ.

Πίνακας 4.5 : Συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα (πυρήνες/m³) και για τα δύο τριήμερα δειγματοληψίας, όπως εκτιμήθηκε εφαρμόζοντας τη μέθοδο των (Forkapic, et al., 2012).

μηνία ληψίας	μός ου 4΄΄	Συγκέντρωση πυρήνων/m ³							
Ημερο δειγματο	Αριί φίλτρο	5min	10min	15min	Μέσος όρος				
	1	-	-	$7253 \ \pm \ 1395$	7253 ± 1395				
/2023	2	-	-	-	-				
30/3	3	$7061 \ \pm \ 1325$	-	$6432 \ \pm \ 1398$	6746 ± 963				
	4	4021 ± 856	3979 ± 777	$3990 ~\pm~ 1257$	3997 ± 569				
5	1	-	-	-	-				
/2022	2	-	3847 ± 790	3778 ± 841	3812 ± 577				
31/3	3	5134 ± 997	5263 ± 920	5118 ± 1026	5172 ± 567				
	4	-	4429 ± 973	4358 ± 1216	4393 ± 779				
	1	$4950~\pm~1107$	5055 ± 912	-	5003 ± 717				
2022	2	-	$5961 \ \pm \ 1005$	-	$5961 \ \pm \ 1005$				
1/4/	3	$6614 \hspace{0.1in} \pm \hspace{0.1in} 1165$	$6563 \ \pm \ 1096$	$6612 \hspace{0.1in} \pm \hspace{0.1in} 1245$	6596 ± 676				
	4	-	-	$5880 \ \pm \ 1119$	$5880 \ \pm \ 1119$				
	1	$6785 \ \pm \ 1290$	-	-	$6785 ~\pm~ 1290$				
/2023	2	$3971 \ \pm \ 2167$	-	$3930 ~\pm~ 1126$	$3950 ~\pm~ 1221$				
10/5	3	-	-	-	-				
	4	-	3117 ± 670	3016 ± 750	3066 ± 503				
	1	-	-	4481 ± 991	4481 ± 991				
/2023	2	-	5192 ± 1099	-	5192 ± 1099				
11/5	3	3874 ± 908	3991 ± 774	3992 ± 872	3952 ± 493				
	4	4176 ± 1129	4274 ± 839	4359 ± 958	4270 ± 567				
6	1	8611 ± 1863	-	-	8611 ± 1863				
/2022	2	-	$6076 \ \pm \ 1039$	$6187 \hspace{.1in} \pm \hspace{.1in} 1177$	6131 ± 785				
12/5.	3	5605 ± 1247	-	-	5605 ± 1247				
	4	-	5912 ± 980	-	5912 ± 980				

^{*}Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

Η απουσία διερεύνησης ευαισθησίας για εύρεση θετικών λύσεων σε εύρος ±3σ περί της μετρούμενης τιμής είχε ως αποτέλεσμα σε αρκετές περιπτώσεις να μην προκύψει θετική λύση του συστήματος εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

Από τα παραπάνω αποτελέσματα προκύπτει ότι με χρήση της συγκεκριμένης μεθόδου, υπολογίζεται συστηματικά υψηλότερη συγκέντρωση του πλήθους πυρήνων των βραχύβιων θυγατρικών του ραδονίου στον αέρα, συγκριτικά με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων, με τη συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου να προσδιορίζεται σε εύρος ±3σ περί των υπολογιζόμενων μέσων όρων από ~300 έως ~14200 πυρήνες/m³. Η διαφορά αυτή πιθανότατα οφείλεται στην απουσία διόρθωσης για παραγωγή-κατανάλωση κατά τη διάρκεια της γ-φασματοσκοπικής ανάλυσης με τη μέθοδο των (Forkapic, et al., 2012).

4.3.2.4 Σύγκριση της ατμοσφαιρικής συγκέντρωσης ενεργότητας των βραχύβιων θυγατρικών του ραδονίου μεταξύ των δύο μεθόδων

Παρόλο που ο στόχος της συγκεκριμένης διερεύνησης είναι ο προσδιορισμός της συγκέντρωσης των πυρήνων/m³ των βραχύβιων θυγατρικών του ραδονίου στην ατμόσφαιρα και η επίδρασή τους στο συνολικό ²¹⁰Pb στα φίλτρα αέρα, ενδιαφέρον παρουσιάζει και η σύγκριση των υπολογιζόμενων ατμοσφαιρικών συγκεντρώσεων ενεργότητας των βραχύβιων θυγατρικών του ραδονίου μεταξύ της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων και της μεθόδου των (Forkapic, et al., 2012). Για τον λόγο αυτό, επιλέχθηκε μία αντιπροσωπευτική ημέρα δειγματοληψίας, συγκεκριμένα η 30^η Μαρτίου του 2022 του 1^{ου} τριημέρου δειγματοληψίας, για τους εν λόγω υπολογισμός. Από τη στιγμή που έχει λάβει χώρα ο υπολογισμός της επιμέρους συγκέντρωσης πυρήνων/m³ για κάθε βραχύβιο θυγατρικό του ραδονίου⁴⁴, ο υπολογισμός των επιμέρους συγκεντρώσεων ενεργότητας γίνεται βάσει της εξίσωσης:

$$\mathbf{R} = \lambda \cdot \mathbf{C} \tag{4.42}$$

Όπου :

R: η συγκέντρωση ενεργότητας στον αέρα (Bq/m³) του ραδιενεργού ισοτόπου,

⁴⁴ Το σύνολο των επιμέρους συγκεντρώσεων πυρήνων/m³ για κάθε συλλεχθέν φίλτρο και κάθε μέθοδο που εφαρμόσθηκε για τα 2 τριήμερα δειγματοληψίας δίνεται στο Παράρτημα ΙΕ.

- λ: η σταθερά διάσπασης του εκάστοτε ραδιενεργού ισοτόπου (s⁻¹),
- C: η ατμοσφαιρική συγκέντρωση πυρήνων/m³ του εκάστοτε ραδιενεργού
 Ισοτόπου.

Στους Πίνακες 4.6 και 4.7 που ακολουθούν δίνονται οι συγκεντρώσεις ενεργότητας των βραχύβιων θυγατρικών του ραδονίου για κάθε φίλτρο 4΄΄ που συλλέχθηκε στις 30/3/2022, όπως αυτοί υπολογίστηκαν και με τις 2 μεθόδους. Στο σημείο αυτό είναι σημαντικό να σημειωθεί ότι σε όλες τις περιπτώσεις η συνεισφορά των πυρήνων του ²¹⁴Po είναι αμελητέα, και για τον λόγο αυτό, παρά τη ραδιενεργό του ισορροπία με το ²¹⁴Bi, δε συμπεριλαμβάνεται στους κάτωθι υπολογισμούς. Επίσης, να σημειωθεί ότι τα «Κάτω» και «Άνω» όρια που προέκυψαν από τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων και κατηγοριοποιούνται ως «Κάτω» και «Άνω» βάσει του συνόλου των πυρήνων των βραχύβιων θυγατρικών του ραδονίου και όχι από τον αριθμό των επιμέρους πυρήνων κάθε θυγατρικού.

Πίνακας 4.6 : Συγκέντρωση ενεργότητας των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα στις30/3/2022, όπως αυτή υπολογίσθηκε με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων⁴⁵.

<i>in</i> inpoors o	υστηματός						
Φίλτρο αέρα 4΄΄	Ραδιενεργό Ισότοπο	Μέσος όρος κάτω ορίων πυρήνων/m³	Μέσος όρος άνω ορίων πυρήνων/m ³	Συγκέντρωση ενεργότητας κάτω ορίων Bq/m ³	Συγκέντρωση ενεργότητας άνω ορίων Bq/m ³	Σύνολο Bq/m ³ κάτω ορίων	Σύνολο Bq/m ³ άνω ορίων
	²¹⁸ Po	191	1547	0.7	5.8		
a0595	²¹⁴ Pb	2758	1625	1.2	0.7	2.8	7.6
	²¹⁴ Bi	1580	1939	0.9	1.1		
a0596	²¹⁸ Po	1357	1752	5.1	6.6		
	²¹⁴ Pb	936	893	0.4	0.4	6.3	7.9
	²¹⁴ Bi	1369	1566	0.8	0.9		
	²¹⁸ Po	685	1985	2.6	7.5		
a0597	²¹⁴ Pb	1174	175	0.5	0.1	3.8	8.5
	²¹⁴ Bi	1297	1719	0.8	1.0		
a0598	²¹⁸ Po	268	920	1.0	3.5		
	²¹⁴ Pb	1069	1045	0.5	0.4	2.0	4.6
	²¹⁴ Bi	945	1206	0.6	0.7		

⁴⁵ Το άνω και κάτω όριο αναφέρεται στο **σύνολο** των πυρήνων όλων των βραχύβιων θυγατρικών

Πίνακας 4.7 : Συγκέντρωση ενεργότητας των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα στις30/3/2022, όπως αυτή υπολογίσθηκε με τη μέθοδο των (Forkapic, et al., 2012).

Φίλτρο αέρα 4΄΄	Ραδιενεργό Ισότοπο	Μέσος όρος πυρήνων/m ³	Συγκέντρωση ενεργότητας Bq/m³	Σύνολο Bq/m ³				
	²¹⁸ Po	26 ± 967	0.1 ± 3.6					
a0595	²¹⁴ Pb	2852 ± 973	1.2 ± 0.4	$3.9 \ \pm \ 3.7$				
	²¹⁴ Bi	$4376 \ \pm \ 255$	2.6 ± 0.1					
	²¹⁸ Po							
a0596	²¹⁴ Pb	Δεν έγινε δυνατή η εύρεση θετική λύσης για το φίλτρο a0596 με τη μέθοδο των (Forkapic, et al., 2012)						
	²¹⁴ Bi							
	²¹⁸ Po	$1198 \ \pm \ 691$	$4.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.6$					
a0597	²¹⁴ Pb	$1597 \ \pm \ 633$	0.7 ± 0.3	7.5 ± 2.6				
	²¹⁴ Bi	3952 ± 221	2.3 ± 0.1					
a0598	²¹⁸ Po	45 ± 413	0.2 ± 1.6					
	²¹⁴ Pb	1498 ± 382	0.6 ± 0.2	$2.2 \hspace{0.2cm} \pm \hspace{0.2cm} 1.6$				
	²¹⁴ Bi	2454 ± 87	1.4 ± 0.1					

Στο Σχήμα 4.13 που ακολουθεί γίνεται σύγκριση μεταξύ των υπολογισθέντων συνολικών συγκεντρώσεων ενεργότητας των βραχύβιων θυγατρικών ραδονίου. Επειδή με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων οι υπολογισθείσες συγκεντρώσεις ενεργότητας προέκυψαν από διερεύνηση σε εύρος ±3σ περί των μετρούμενων τιμών από τις γ-φασματοσκοπικές αναλύσεις, όπως έχει ήδη αναφερθεί, στο Σχήμα 4.13 δίνεται και το άνω και κάτω εύρος σε ±3σ που προκύπτει από τη μέθοδο των (Forkapic, et al., 2012) για λόγους σύγκρισης.

Για λόγους απλότητας της σύγκρισης μεταξύ των δύο μεθόδων, και μόνο για το Σχήμα 4.13, η μέθοδος επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων θα αναφέρεται ως «Μέθοδος Α΄» και η μέθοδος των (Forkapic, et al., 2012) θα αναφέρεται ως «Μέθοδος Β΄».

Σχήμα 4.13 : Ενδεικτικό⁴⁶ διάγραμμα μεταξύ του εύρους (±3σ) της συγκέντρωσης ενεργότητας του ραδονίου και των βραχύβιων θυγατρικών του, όπως αυτές εκτιμήθηκαν με εφαρμογή της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων (Μέθοδος Α΄) και της μεθόδου των (Forkapic, et al., 2012) (Μέθοδος Β΄).

Από το παραπάνω Σχήμα 4.13 προκύπτει ότι το εύρος λύσεων της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων βρίσκεται εντός του εύρους της μεθόδου των (Forkapic, et al., 2012).

4.3.3 Συνεισφορά των βραχύβιων θυγατρικών του ραδονίου στην ενεργότητα του ²¹⁰Pb που υπολογίζεται πάνω στο φίλτρο αέρα 8΄ x10΄΄ κατά τη γ-φασματοσκοπική ανάλυση

Όπως αναφέρεται στην παράγραφο 4.1, πρωταρχικός στόχος όλης της διαδικασίας που παρουσιάζεται στις προηγούμενες παραγράφους, ήταν η εκτίμηση της συνεισφοράς των βραχύβιων θυγατρικών του ραδονίου, στην ενεργότητα του ²¹⁰Pb που υπολογίζεται κατά τη γ-φασματοσκοπική ανάλυση των φίλτρων αέρα 8"x10", τα οποία χρησιμοποιούνται στις συστηματικές μετρήσεις που γίνονται στο ΕΠΤ-ΕΜΠ. Για τον υπολογισμό της συνεισφοράς αυτής των βραχύβιων θυγατρικών του ραδονίου, για κάθε τριήμερο δειγματοληψίας, παράλληλα με τη δειγματοληψία των φίλτρων 8΄ x10΄΄, όπως φαίνεται και στο *Σχήμα* 4.5. Η παράλληλη δειγματοληψία των φίλτρων 8΄ x10΄΄ έγινε, ώστε να

⁴⁶ Οι μετρήσεις του ραδονίου και των θυγατρικών δεν έχουν γίνει την ίδια ημερομηνία.

συλλεχθεί ικανοποιητικός όγκος αέρα σε αυτά και να επιτευχθεί όσο το δυνατόν καλύτερη στατιστική για τον υπολογισμό του ²¹⁰Pb. Για τον ίδιο λόγο, κάθε φίλτρο 8''x10'' αναλύθηκε για 1000000sec στον ανιχνευτή XtRa και τα αποτελέσματα της ανάλυσης δίνονται στον *Πίνακα 4.8* που ακολουθεί.

Τριήμερο δειγματοληψίας	Κωδικός φίλτρου 8΄΄x10΄΄	Συνολικός όγκος αέρα (m ³)	Συγκέντρωση ενεργότητας ²¹⁰ Pb (μBq/m ³)	Σύνολο πυρήνων ²¹⁰ Pb στο φίλτρο
1°	a607	1478.22	1230 ± 62	$1.8 \cdot 10^9 \pm 0.1 \cdot 10^{9-47}$
2°	a620	1460.83	853 ± 62	$1.3 \cdot 10^9 \pm 0.1 \cdot 10^{9-48}$

Πίνακας 4.8 : Συγκέντρωση του ²¹⁰Pb που μετρήθηκε στα φίλτρα 8΄ x10΄΄ για τα δύο τριήμερα δειγματοληψίας.

Για να αποδοθούν οι συγκεντρώσεις των βραχύβιων θυγατρικών του ραδονίου που εκτιμήθηκαν από τα φίλτρα 4'' τα οποία συλλέχθηκαν σε κάθε τριήμερο δειγματοληψίας, στο αντίστοιχο φίλτρο 8''x10'' έγιναν οι ακόλουθες παραδοχές:

- Η συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου παραμένει σταθερή
 κατά τη διάρκεια της δειγματοληψίας κάθε επιμέρους φίλτρου 4''.
- Η παύση 64min μεταξύ των επιμέρους δειγματοληψιών φίλτρων 4΄΄ χωρίζεται σε δύο ίσα μέρη 32min το κάθε ένα και η συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου που αποδίδεται σε κάθε μέρος είναι ίση με αυτή του πλησιέστερου φίλτρου 4΄΄ σε αυτό⁴⁹.

Με τον τρόπο αυτό, κάθε οκτάωρο δειγματοληψίας⁵⁰ χωρίζεται σε 4 τμήματα, όπου σε κάθε τμήμα η συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου στον αέρα θεωρείται ότι είναι ίση με αυτήν που προσδιορίζεται από το αντίστοιχο φίλτρο 4΄΄. Η χρονική διάρκεια καθενός από τα τέσσερα τμήματα ορίζεται στους *Πίνακες* 4.9a και 4.9β ως «Αντιπροσωπευτικός χρόνος».

 $^{^{47}}$ Με ακρίβεια πυρήνα είναι 1838
113480 ± 92096967 πυρήνες.

⁴⁸ Με ακρίβεια πυρήνα είναι 1260500834 ± 91932662 πυρήνες.

⁴⁹ Δηλαδή η υπολογισθείσα συγκέντρωση βραχύβιων θυγατρικών του ραδονίου από το 1° φίλτρο 4΄΄ αποδίδεται στα πρώτα 60min(δειγματοληψία 1°^υ φίλτρου) + 32min(1° μισό της πρώτης παύσης)=92min, από το 2° φίλτρο 4΄΄ αποδίδεται σε 32min(2° μισό της πρώτης παύσης)+60min(δειγματοληψία 2°^υ φίλτρου)+32min(1° μισό της δεύτερης παύσης)=124min, κ.ο.κ..

⁵⁰ Η τριήμερης διάρκειας δειγματοληψία των φίλτρων 8"x10" συνίσταται ουσιαστικά από τρία οκτάωρα, ένα κάθε μέρα, δηλαδή συνολικά 24 ώρες.

Στις παραγράφους που ακολουθούν δίνονται οι συγκεντρώσεις των βραχύβιων θυγατρικών του ραδονίου, όπως αυτές αποδίδονται στα φίλτρα αέρα 8΄ x10΄, για κάθε τριήμερο δειγματοληψίας, καθώς και για κάθε μία από τις δύο διαφορετικές μεθόδους επίλυσης του συστήματος αναλυτικών εξισώσεων.

4.3.3.1 Συνολικό πλήθος πυρήνων των βραχύβιων θυγατρικών του ραδονίου στα φίλτρα 8΄ x10΄ μέσω της μεθόδου επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων

Χρησιμοποιώντας τα αποτελέσματα του Πίνακα 4.4 από τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων, το σύνολο των πυρήνων των βραχύβιων θυγατρικών του ραδονίου που αποδίδεται στα φίλτρα 8΄ x10΄ για κάθε μία ημέρα των δύο τριήμερων δειγματοληψιών δίνεται στους Πίνακες 4.9α και 4.9β.

Πίνακας 4.9α : «Κάτω» και «Άνω» όρια του συνολικού πλήθους πυρήνων των βραχύβιων θυγατρικών του ραδονίου στο φίλτρο 8΄ x10΄ (a607) για το 1° τριήμερο δειγματοληψίας (30/3/2022-1/4/2022).

νία Ιψίας	rpou	1° Τριήμερο δειγματοληψίας								
ημοσαμη Πηοστολη	Αριθμός φί? 4΄΄	Συνολικός Όγκος Αέρα (m³)	Αντιπροσωπευτικός χρόνος δειγματοληψίας (min)	Αντιστοιχία όγκου αέρα σε κάθε αντιπροσωπευτικό τμήμα (m ³)	Κάτω όριο συνόλου πυρήνων	Άνω όριο συνόλου πυρήνων				
	1		92	106.24	481068	542902				
2022	2	108.88	124	143.20	508063	602931				
30/3/	3	498.88	124	143.20	578158	704100				
	4		92	106.24	236745	297162				
	1	499.25	92	106.32	328003	439392				
2022	2		124	143.30	309439	363513				
31/3/	3		124	143.30	437648	480544				
	4		92	106.32	236938	294582				
	1		92	102.24	307900	364661				
2022	2	480.00	124	137.80	467843	558380				
1/4/2	3	480.09	124	137.80	499952	600548				
	4		92	102.24	381207	417349				
ΣΥΝ	ΙΟΛΟ	1478.22	1296	1478.22	4772964	5666064				

Πίνακας 4.9β : «Κάτω» και «Άνω» όρια του συνόλου των πυρήνων των βραχύβιων θυγατρικών του ραδονίου στο φίλτρο 8΄ x10΄ (a620) για το 2° τριήμερο δειγματοληψίας (10/5/2022-12/5/2022).

Ημερομηνία δειγματοληγίας Αριθμός φίλτρου 4΄΄		2° Τριήμερο δειγματοληψίας								
		Συνολικός όγκος αέρα (m³)	Αντιπροσωπευτικός χρόνος δειγματοληψίας (min)	Αντιστοιχία όγκου αέρα σε κάθε αντιπροσωπευτικό τμήμα (m ³)	Κάτω όριο συνόλου πυρήνων	Άνω όριο συνόλου πυρήνων				
	1	491.75	92	104.72	382873	440733				
2022	2		124	141.15	343419	417100				
10/5/	3		124	141.15	208620	262681				
	4		92	104.72	163475	203375				
	1		92	103.57	230074	278029				
2022	2	196 25	124	139.60	439392	497583				
11/5/	3	400.33	124	139.60	301490	402747				
	4		92	103.57	249166	278823				
	1		92	102.80	460286	528102				
2022	2	102 72	124	138.56	480577	542791				
12/5/	3	402.75	124	138.56	439932	541175				
	4		92	102.80	361732	386130				
ΣΥΝ	ΙΟΛΟ	1460.83	1296	1460.83	4061037	4779269				

Το σύνολο των υπολογισθέντων πυρήνων των βραχύβιων θυγατρικών του ραδονίου στους παραπάνω πίνακες μετά τη διάσπασή τους (λίγες ώρες μετά το πέρας της συλλογής του φίλτρου) καταλήγουν σε ²¹⁰Pb και προσμετρώνται στη συγκέντρωση ενεργότητας του ²¹⁰Pb που υπολογίζεται κατά τη γ-φασματοσκοπική ανάλυση. Συγκρίνοντας τα παραπάνω αποτελέσματα με τα αποτελέσματα του *Πίνακα 4.8* προκύπτει ότι η συνεισφορά των βραχύβιων θυγατρικών του ραδονίου στο σύνολο της μετρούμενης συγκέντρωσης του ²¹⁰Pb έχει ένα εύρος από 0.26% έως 0.38%. Συγκρίνοντας το εύρος αυτό με την αβεβαιότητα των αναλύσεων με μεθόδους γ-φασματοσκοπίας, η οποία για τον ²¹⁰Pb κυμαίνεται από 5% έως 7%, προκύπτει το συμπέρασμα ότι η συλλογή των βραχύβιων θυγατρικών του ραδονίου πάνω στο φίλτρο δεν επηρεάζει στατιστικά σημαντικά τη μετρούμενη συγκέντρωση του ²¹⁰Pb στα φίλτρα αέρα και πρέπει να θεωρείται αμελητέα.

4.3.3.2 Συνολικό πλήθος πυρήνων των βραχύβιων θυγατρικών του ραδονίου στα φίλτρα 8΄ x10΄ μέσω της μεθόδου των (Forkapic, et al., 2012)

Χρησιμοποιώντας τα αποτελέσματα του Πίνακα 4.5 από την επίλυση του συστήματος εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012), το σύνολο των πυρήνων των βραχύβιων θυγατρικών του ραδονίου που αποδίδεται στα φίλτρα 8΄ x10΄ για κάθε ημέρα δειγματοληψίας δίνεται στους Πίνακες 4.10α και 4.10β.

Επειδή, όπως προαναφέρθηκε, δεν προέκυψαν λύσεις του συστήματος εξισώσεων για κάθε φίλτρο 4΄΄ μέσω της προσέγγισης με τη μέθοδο των (Forkapic, et al., 2012), η απόδοση των αποτελεσμάτων του συνόλου των πυρήνων των βραχύβιων θυγατρικών του ραδονίου από τα φίλτρα 4΄΄ στο φίλτρο 8΄ x10΄΄ προσαρμόστηκε ανάλογα, καταμερίζοντας τον χρόνο και τον όγκο δειγματοληψίας σε 3 αντί για 4 μέρη, όπου κρίθηκε αναγκαίο.

Πίνακας 4.10α : Σύνολο πυρήνων βραχύβιων θυγατρικών του ραδονίου στο φίλτρο 8΄ x10΄ (a0607) κατά τη διάρκεια του 1^{ov} τριημέρου δειγματοληψίας (30/3/2022-1/4/2022).

νία ψίας ντρου		1° Τριήμερο δειγματοληψίας						
Ημερομη δειγματολη	Αριθμός φίλ 4΄΄	Συνολικός όγκος αέρα (m ³)	Αντιπροσωπευτικός χρόνος δειγματοληψίας (min)	Αντιστοιχία όγκου αέρα σε κάθε αντιπροσωπευτικό τμήμα (m ³)	Σύνολο πυρήνων			
	1		154	177.84	1289826 ± 248077			
2002/2002 30/3/2002	2	100 00	Δεν αποδόθηκαν πυρήνες στο παρόν φίλτρο					
	3	498.88	186	214.80	1449103 ± 206877			
	4		92	106.24	424604 ± 60475			
	1		Δεν αποδό	θηκαν πυρήνες στο π	αρόν φίλτρο			
2022	2	499.25	216	249.63	951667 ± 144005			
31/3/	3		124	143.30	741128 ± 81248			
	4		92	106.32	467100 ± 82790			
	1		92	102.24	511476 ± 73340			
2022	2	480.00	124	137.80	821489 ± 138551			
1/4/2	3	480.09	124	137.80	908962 ± 93115			
	4		92	102.24	601167 ± 114459			
ΣΥΝΟΛΟ		1478.22	1296	1478.22	8166522 ± 434208			

νία Ιγίας	λτρου		2° Τριήμερο δειγματοληψίας						
Ημερομη δειγματολη	Αριθμός φί	Συνολικός όγκος αέρα (m³)	Αντιπροσωπευτικός χρόνος δειγματοληψίας (min)	Αντιστοιχία όγκου αέρα σε κάθε αντιπροσωπευτικό τμήμα (m ³)	Σύνολο πυρήνων				
	1	401 75	92	104.72	710577 ± 135067				
2022	2		186	211.73	836330 ± 258524				
10/5/	3	491.73	Δεν αποδόθηκαν πυρήνες στο παρόν φίλτρο						
	4	4	154	175.30	537510 ± 88180				
	1	486.35	92	103.57	464111 ± 102650				
2022	2		124	139.60	724791 ± 153386				
11/5/	3		124	139.60	551740 ± 68771				
	4		92	103.57	442219 ± 58753				
	1		92	102.80	885272 ± 191555				
2022	2	182 72	124	138.56	849563 ± 108741				
12/5/	3	482.73	124	138.56	776593 ± 172752				
	4		92	102.80	607752 ± 100732				
ΣΥΝΟΛΟ 1		1460.83	1296	1460.83	7386458 ± 472871				

Πίνακας 4.10β : Σύνολο πυρήνων βραχύβιων θυγατρικών του ραδονίου στο φίλτρο 8΄ x10΄ (a0620) κατά τη διάρκεια του 2^{00} τριημέρου δειγματοληψίας (10/5/2022-12/5/2022).

Συγκρίνοντας τα παραπάνω αποτελέσματα με τα αποτελέσματα του Πίνακα 4.8 προκύπτει ότι η συνεισφορά των βραχύβιων θυγατρικών του ραδονίου στο σύνολο της μετρούμενης συγκέντρωσης του ²¹⁰Pb στην περίπτωση αυτή έχει ένα εύρος από 0.44% έως 0.59%. Παρά το γεγονός ότι με την προσέγγιση αυτή προκύπτει μεγαλύτερη συνεισφορά των βραχύβιων θυγατρικών του ραδονίου στο σύνολο της μετρούμενης συγκέντρωσης του ²¹⁰Pb στα φίλτρα αέρα, και πάλι, η αβεβαιότητα της γ-φασματοσκοπικής ανάλυσης, που κυμαίνεται από 5% έως 7%, παραμένει σημαντικά μεγαλύτερη. Επομένως, επιβεβαιώνεται το συμπέρασμα ότι και με την εφαρμογή της μεθόδου των (Forkapic, et al., 2012), η συγκέντρωση των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα δεν επηρεάζει στατιστικά σημαντικά τη μετρούμενη συγκέντρωση του ²¹⁰Pb στα φίλτρα αέρα.
4.4 Συμπεράσματα

Στη μελέτη που περιεγράφηκε στο κεφάλαιο αυτό, έλαβε χώρα η αναλυτική επίλυση των εξισώσεων παραγωγής-κατανάλωσης κατά τη δειγματοληψία, την καθυστέρηση και την ανάλυση φίλτρων αέρα, με στόχο τον προσδιορισμό της συγκέντρωσης των βραχύβιων θυγατρικών του ραδονίου στον αέρα και τον υπολογισμό της συνεισφοράς τους στη μετρούμενη συγκέντρωση του ²¹⁰Pb στα φίλτρα αέρα. Για τον λόγο αυτό έλαβαν χώρα δύο τριήμερα δειγματοληψίας όπου σε κάθε τριήμερο συλλέχθηκαν 12 φίλτρα 4΄΄ παράλληλα με ένα φίλτρο 8΄΄x10΄΄. Τα αποτελέσματα επεξεργάσθηκαν και συγκρίθηκαν με δύο τρόπους: (i) με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων, η οποία συμπεριέλαβε τις διορθώσεις παραγωγής-κατανάλωσης των βραχύβιων θυγατρικών του ραδονίου τον αάρα τη διάρκεια της γ-φασματοσκοπικής ανάλυσης, και (ii) με την μέθοδο των (Forkapic, et al., 2012). Από τα αποτελέσματα της παραπάνω ανάλυσης προκύπτουν τα ακόλουθα συμπεράσματα:

- Η πολύ υψηλή ευαισθησία επίλυσης του συστήματος εξισώσεων για τον προσδιορισμό των βραχύβιων θυγατρικών του ραδονίου αντιμετωπίζεται ικανοποιητικά συνδυάζοντας μετρήσεις από διαφορετικά σενάρια χρονικής διάρκειας λήψης φασμάτων, καθώς και αναζητώντας θετική λύση του συστήματος σε εύρος ±3σ περί την τιμή της μετρούμενης συγκέντρωσης του ²¹⁴Pb και του ²¹⁴Bi.
- Τα βραχύβια θυγατρικά του ραδονίου κυμάνθηκαν σε εύρος από ~1400 έως
 ~5600 πυρήνες/m³ και κατά τη διάρκεια της ημέρας και μεταξύ των ημερών κάθε τριημέρου δειγματοληψίας.
- Οι συνολικές συγκεντρώσεις πυρήνων/m³ των βραχύβιων θυγατρικών του ραδονίου που προκύπτουν με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων είναι σταθερά μικρότερες από αυτές που προκύπτουν με τη χρήση της μεθόδου των (Forkapic, et al., 2012). Η διαφορά αυτή αποδίδεται στο γεγονός ότι η προσέγγιση των (Forkapic, et al., 2012) δε συμπεριλαμβάνει διορθώσεις παραγωγής-κατανάλωσης κατά τη διάρκεια της γ-φασματοσκοπικής ανάλυσης.
- Παρά τη λεπτομερή προσέγγιση υπολογισμού των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου, προκύπτει ότι το ποσοστό συνεισφοράς

τους στον συνολικό συλλεχθέντα ²¹⁰Pb (το οποίο κυμαίνεται από 0.26% έως 0.38%) είναι τόσο μικρό που δεν είναι στατιστικά σημαντικό συγκρινόμενο με τις αβεβαιότητες των γ-φασματοσκοπικών αναλύσεων (οι οποίες κυμαίνονται από 5% έως 7%).

Σύμφωνα με τα παραπάνω συμπεράσματα, η μέθοδος που χρησιμοποιήθηκε για τον προσδιορισμό των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα μπορεί να χρησιμοποιηθεί για τη διερεύνηση και παρακολούθηση της κύμανσης της συγκέντρωσής τους, με μεθόδους γ-φασματοσκοπίας, ακόμα και όταν τα επίπεδα ραδιενέργειας είναι πολύ χαμηλά, όπως στο εξωτερικό περιβάλλον.

ΚΕΦΑΛΑΙΟ 5

Μεθοδολογία προσδιορισμού ραδιενεργών ισοτόπων στις ατμοσφαιρικές αποθέσεις

5.1 Εισαγωγή

Τα ραδιενεργά ισότοπα στο ατμοσφαιρικό αερόλυμα και τις ατμοσφαιρικές αποθέσεις αποτελούν αντικείμενο μελέτης για την επιστημονική κοινότητα εδώ και δεκαετίες (Zhang, et al., 2021). Ο ακριβής προσδιορισμός της συγκέντρωσης και της κύμανσης των παραπάνω ισοτόπων – εκτός των άλλων – προσφέρει σημαντικά δεδομένα για τη μελέτη της μεταφοράς αερίων μαζών και την αξιολόγηση ατμοσφαιρικών μοντέλων, ενώ αποτελεί και υψηλής αξίας πληροφορία για τον σχεδιασμό της απόκρισης σε καταστάσεις έκτακτης ανάγκης σε περιπτώσεις ραδιολογικών ή πυρηνικών ατυχημάτων (IAEA, 1995), (ICRP, 2020).

Το ΕΠΤ-ΕΜΠ στα πλαίσια της ερευνητικής του δραστηριότητας, καθώς και σε συνεργασία με την ΕΕΑΕ, ακολουθεί ένα σταθερό πρόγραμμα δειγματοληψίας του ατμοσφαιρικού αερολύματος, μέσω της συλλογής φίλτρων αέρα, και παρακολουθεί τις μεταβολές της συγκέντρωσης διαφόρων ραδιενεργών ισοτόπων σε αυτό (Potiriadis, et al., 2013). Επιπροσθέτως, στο παρελθόν έχουν λάβει χώρα αρχικές μελέτες για την επέκταση της παρακολούθησης της ραδιενέργειας στο νερό της βροχής (Παπαδόπουλος, 2010), (Papandreou, et al., 2011), (Savva, et al., 2018), (Σάββα, 2017).

Στο 5° κεφάλαιο της Δ.Δ. παρουσιάζεται η ανάπτυξη και η εφαρμογή τεχνικών προσδιορισμού ραδιενεργών ισοτόπων στις ατμοσφαιρικές αποθέσεις⁵¹, που

⁵¹ Τα ραδιενεργά ισότοπα τα οποία συνήθως ανιχνεύονται στις ατμοσφαιρικές αποθέσεις, χαρακτηρίζονται ως "Fallout RadioNuclides" (FRN) και βρίσκουν αρκετές εφαρμογές ως ιχνηλάτες περιβαλλοντικών διεργασιών.

περιλαμβάνουν και τη δειγματοληψία και ανάλυση ξηρών, υγρών (βροχή, χιόνι) και ολικών (ξηρών + υγρών) ατμοσφαιρικών αποθέσεων, καθώς και υγρασίας.

5.2 Δειγματοληψία και επεξεργασία ατμοσφαιρικών αποθέσεων

Όπως αναφέρθηκε και στο 2° Κεφάλαιο, έχουν γίνει πολλές μελέτες προσδιορισμού της συγκέντρωσης των ραδιενεργών ισοτόπων στις ατμοσφαιρικές αποθέσεις από τη διεθνή επιστημονική κοινότητα, στις οποίες γίνεται – ως επί το πλείστον – είτε προσδιορισμός της συγκέντρωσης των ραδιενεργών ισοτόπων σε υγρές αποθέσεις (κυρίως σε συμβάντα βροχοπτώσεων) είτε σε ολικές (ξηρές και υγρές αποθέσεις) με καθορισμένο χρονικό βήμα συλλογής του δείγματος, συνήθως ένα μήνα.

Στην παρούσα Δ.Δ. σκοπός ήταν να αναπτυχθεί μεθοδολογία για δειγματοληψία, επεξεργασία και ανάλυση των πάσης φύσεως δειγμάτων ατμοσφαιρικών αποθέσεων και υγρασίας, με δυνατότητα μικρότερου χρονικού βήματος συλλογής, καθώς και μικρότερου όγκου δείγματος, κάτι που θα επιτρέψει την πιο λεπτομερή χρονικά παρακολούθηση της εξέλιξης της συγκέντρωσης των ραδιενεργών ισοτόπων στις αποθέσεις.

5.2.1 Υγρές ατμοσφαιρικές αποθέσεις και υγρασία – ανάπτυξη μεθόδου

Βασικός στόχος ήταν η ανάπτυξη τεχνικής για την επεξεργασία και την ανάλυση δειγμάτων υγρών αποθέσεων και υγρασίας μικρού όγκου (~ 2 έως 4 λίτρα), ώστε να είναι δυνατή η παρακολούθηση μεμονωμένων συμβάντων βροχόπτωσης ή χιονόπτωσης.

Χρησιμοποιώντας ως βάση προηγούμενη μελέτη που έχει διεξαχθεί στο ΕΠΤ-ΕΜΠ (Σάββα, 2017), καθώς και τη μέθοδο που προτείνεται στην εργασία (Komura, et al., 2007), επιλέχτηκε ως βασική μέθοδος για την απομόνωση των ραδιενεργών ισοτόπων από τα δείγματα υγρών κατακρημνίσεων, η ανάμιξη των δειγμάτων με τη ρητίνη ιοντοανταλλαγής κατιόντων DOWEX[®] 50WX8 hydrogen form, 100-200 mesh. Η συγκεκριμένη ρητίνη αποτελείται από πορώδη σφαιρίδια διαμέτρου 100-200 mesh και όταν βρίσκεται στο ίδιο διάλυμα με ιόντα του ίδιου φορτίου, ανταλλάσσει ιόντα με αυτά του διαλύματος. Με αυτόν τον τρόπο, τα ιόντα του διαλύματος – στην προκειμένη περίπτωση τα ραδιενεργά ισότοπα σε μορφή ιόντων που περιέχονται στο διάλυμα – παγιδεύονται στην επιφάνεια και στους πόρους της ρητίνης. Τα περισσότερα ραδιενεργά ισότοπα στην ατμόσφαιρα βρίσκονται σε μορφή κατιόντων (Kaste, et al., 2002) και για τον λόγο αυτό, επιλέχθηκε η συγκεκριμένη ρητίνη κατιόντων. Σε αντίστοιχες δειγματοληψίες που έχουν λάβει χώρα σε παγκόσμιο επίπεδο, όπως αναφέρθηκε και στο Κεφάλαιο 2, μπορεί να γίνει ταυτόχρονη χρήση ρητίνης κατιόντων με ρητίνη ανιόντων σε ανάμιξη, για την κάλυψη όλου του εύρους φορτίων. Με τη μέθοδο που προτείνεται, το τελικό δείγμα προς ανάλυση είναι πλέον η ρητίνη, η οποία και θα πρέπει να απομονωθεί από το υγρό δείγμα.

Στα πλαίσια της έρευνας που έγινε για την ανάπτυξη της μεθοδολογίας επεξεργασίας και ανάλυσης των δειγμάτων υγρών ατμοσφαιρικών αποθέσεων επιλέχθηκε να μελετηθούν τα παρακάτω:

- i. Η απόδοση της μεθόδου που βασίζεται στη χρήση της ρητίνης, ως προς τη συγκράτηση των ραδιενεργών ισοτόπων στις υγρές ατμοσφαιρικές αποθέσεις, συγκριτικά με τη μέθοδο του φιλτραρίσματος του υγρού δείγματος που έχει χρησιμοποιηθεί στο παρελθόν από το ΕΠΤ-ΕΜΠ (Papandreou, et al., 2011).
- ii. Η ενδεχόμενη επίδραση που μπορεί να έχει η χρήση μαγνητικού αναδευτήρα για την ανάμιξη της ρητίνης με το υγρό δείγμα, στην τελική μετρούμενη συγκέντρωση ενεργότητας. Η διερεύνηση αυτή ήταν επιβεβλημένη, καθώς στις τεχνικές οδηγίες που συνοδεύουν τη ρητίνη αποθαρρύνεται η χρήση μαγνητικού αναδευτήρα (SIGMA-ALDRICH, 2011).
- iii. Η επαναληψιμότητα της μεθόδου.

Για τον σκοπό της παραπάνω διερεύνησης τοποθετήθηκαν στην οροφή του Κτιρίου Κ του ΕΠΤ-ΕΜΠ τρεις πλαστικοί συλλέκτες, συνολικής επιφάνειας ~ 0.56m² (Σχήμα 5.1) και συλλέχθηκε ένα δείγμα βροχής 22 λίτρων κατά τη διάρκεια συμβάντος έντονης βροχόπτωσης που έλαβε χώρα στις 16 Ιουνίου του 2018.

Το δείγμα που συλλέχθηκε και από τους τρεις συλλέκτες αναμίχθηκε, για να ομογενοποιηθεί, και στη συνέχεια, χωρίστηκε σε 6 υπο-δείγματα με τη μέθοδο του

scooping⁵². Με χρήση των παραπάνω υπο-δειγμάτων δοκιμάστηκαν προκειμένου να συγκριθούν οι τρεις παρακάτω διαδικασίες προετοιμασίας δείγματος:

- Ανάμιξη δείγματος με τη ρητίνη κατιόντων με χρήση μαγνητικού αναδευτήρα,
- Ανάμιξη δείγματος με τη ρητίνη κατιόντων χειροκίνητα με χρήση γυάλινου αναδευτήρα,
- Φιλτράρισμα του αρχικού δείγματος με χρήση φίλτρων Whatman 42
 διαμέτρου 90mm.

Σχήμα 5.1 : Πλαστικοί συλλέκτες για δειγματοληψία ατμοσφαιρικών αποθέσεων στην οροφή του Κτιρίου Κ του ΕΠΤ-ΕΜΠ

Κάθε μία από τις τρεις αυτές διαδικασίες επαναλήφθηκε δύο φορές⁵³ για έλεγχο της επαναληψιμότητας της διαδικασίας. Τα βήματα που ακολουθήθηκαν για κάθε διαδικασία χωριστά δίνονται στο *Σχήμα 5.2* που ακολουθεί.

⁵² Πρόκειται για μία διαδικασία τυχαίας δειγματοληψίας υπο-δείγματος από ένα μεγαλύτερου όγκου δείγμα, το οποίο είναι κατά το δυνατόν ομογενοποιημένο.

⁵³ Έτσι, έγιναν συνολικά έξι δοκιμές, όσα και τα υπο-δείγματα που παρήχθησαν από το αρχικό δείγμα βροχόπτωσης.

Διαδικασία #1 Χρήση ρητίνης και μαγνητικού αναδευτήρα	Διαδικασία #2 Χρήση ρητίνης και χειροκίνητη ανάμιξη με γυάλινο αναδευτήρα	Διαδικασία #3 Χρήση φίλτρου Whatman 42 διαμέτρου 90mm	
	Ζύγιση δείγματος		
Πέρασμα του δείγματος	ς από κόσκινο διαμέτρου 45μ μεγάλης διαμέτρου	um για την αφαίρεση σωματιδίων	
Μέτρηση υγρασίας της ρητί ποσότητας της αντίστοιχης α	ίνης για προσδιορισμό της παιτούμενης ξηρής μάζας		
Χρήση ρητίνης, ώστε η να είναι (για μέγιστη μάζα υγ	αντίστοιχη ξηρή μάζα της .5.5gr γρού δείγματος ≈ 3.7 L)		
Προετοιμασία της ρη 150mL απιονια	τίνης αναδεύοντάς τη σε 5μένου νερού		
Προσαρμογή του pH ≈ 5 το HN0	υ δείγματος με προσθήκη Ο3	Φιλτράρισμα του δείγματος	
Προσθήκη της ι	οητίνης στο δείγμα	μέσα από φίλτρο Whatman 42 διαμέτρου 90mm	
Ανάδευση της ρητίνης με το δείγμα για 120min με χρήση μαγνητικού αναδευτήρα	Ανάδευση της ρητίνης με το δείγμα για 120min χειροκίνητα με χρήση γυάλινου αναδευτήρα		
Ξεκούραση του δείγματο καθίζηση τι	ς, ώστε να επιτευχθεί η ης ρητίνης		
Φιλτράρισμα του δείγματος 42 διαμέτρου 90mm κα			
Ξήρανση της συλ θερμοκρασία δω	Ξήρανση του φίλτρου σε θερμοκρασία δωματίου (21 °C)		
Συσκευασία της ρητίνης σ 8.72cm ³ και ανάλυσή τη	Δίπλωμα του φίλτρου σε γεωμετρία 3.2x3.2cm² πάχους 15mm και ανάλυσή του με γ-φασματοσκοπία		

Σχήμα 5.2 : Τα βήματα επεξεργασίας και προετοιμασίας των 6 υπο-δειγμάτων από το δείγμα βροχής που συλλέχθηκε στις 16/06/2018 για κάθε μία από τις τρεις διαφορετικές διαδικασίες.

Χαρακτηριστικές φωτογραφίες από τα επιμέρους βήματα των τριών διαδικασιών, που περιγράφονται στο Σχήμα 5.2, δίνονται στο Σχήμα 5.3.

Σχήμα 5.3 : a) Προετοιμασία ρητίνης σε απιονισμένο νερό, b) Ανάδευση υγρού δείγματος με ρητίνη, c) Φιλτράρισμα υγρού δείγματος για απομόνωση/συλλογή ρητίνης, d) Ρητίνη που συλλέχθηκε μετά το πέρας του φιλτραρίσματος, e) Δείγμα ρητίνης μετά το πέρας της ξήρανσής της.

Στο σημείο αυτό, είναι βασικό να δοθούν επιπρόσθετες πληροφορίες σχετικά με ορισμένα από τα βήματα των διαδικασιών που συγκρίθηκαν στο Σχήμα 5.2:

Κατά τη διάρκεια της δειγματοληψίας, μεγάλα σωματίδια, έντομα και φύλλα μπορεί να παρασυρθούν και να καταλήξουν μέσα στους δειγματολήπτες.
 Όπως αναφέρεται στη βιβλιογραφία, το μεγαλύτερο ποσοστό των ραδιενεργών ισοτόπων προσκολλάται σε αιωρούμενα σωματίδια διαμέτρου <1.1μm με μόνο 1% αυτών να προσκολλάται σε σωματίδια >7μm (Young &

Silker, 1974), (Papastefanou & Ioannidou, 1996), (Ioannidou & Paatero, 2014). Για τον λόγο αυτό, επιλέχτηκε το σύνολο του υγρού δείγματος να περνάει μέσα από κόσκινο 45μm, ώστε να γίνεται απομάκρυνση των μεγάλων σωματιδίων, φύλλων κλπ., κάτι που δεν επηρεάζει τελικά τη συγκέντρωση των ραδιενεργών ισοτόπων στο τελικό δείγμα.

- Η ρητίνη που χρησιμοποιήθηκε για τις παραπάνω διαδικασίες βρίσκεται συσκευασμένη σε ερμητικά κλειστό δοχείο, περιέχοντας ποσοστό υγρασίας ~ 50%. Καθώς δεν ήταν γνωστό αν υπάρχει σημαντική απώλεια υγρασίας κατά το επαναλαμβανόμενο άνοιγμα του δοχείου, για κάθε ένα από τα δείγματα των διαδικασιών #1 και #2 έγινε μέτρηση της υγρασίας της ρητίνης πριν το ζύγισμά της.
- Με σκοπό την επίτευξη επαναλήψιμης γεωμετρίας του τελικού προς ανάλυση δείγματος ρητίνης, το ποσό της ρητίνης που χρησιμοποιήθηκε για την ανάδευση κάθε δείγματος επιλέχτηκε κατάλληλα, ώστε ο όγκος της, μετά την ξήρανση να οδηγεί στην πλήρωση με ακρίβεια συγκεκριμένης γεωμετρίας δείγματος. (χρήση ~ 10.80 gr ρητίνης για την προετοιμασία κάθε δείγματος⁵⁴).
- Για υψηλότερη απόδοση της ιοντοανταλλαγής, η ρητίνη που χρησιμοποιήθηκε, χρειάζεται να αναδευτεί σε 150mL απιονισμένου νερού για ~ 5min, ώστε να διογκωθούν τα σφαιρίδια που την αποτελούν.
- Η προσαρμογή του pH \approx 5 έγινε για να αποτραπεί η υδρόλυση των κατιόντων των μετάλλων (Komura, et al., 2007).
- Προσοχή πρέπει να δοθεί κατά την ανάδευση της ρητίνης με τον μαγνητικό αναδευτήρα, ώστε να μην επιλεγεί και θέρμανση τους δείγματος, καθώς υψηλές θερμοκρασίες προκαλούν απώλεια των ιδιοτήτων της ρητίνης (SIGMA-ALDRICH, 2011), (Aittola, et al., 1982).
- Μετά την ανάδευση της ρητίνης με το δείγμα, αν ακολουθήσει αμέσως φιλτράρισμα μέσα από φίλτρο Whatman 42 διαμέτρου 90mm, τα σφαιρίδια της ρητίνης αποφράσσουν τους πόρους του φίλτρου, με αποτέλεσμα το φιλτράρισμα να γίνεται με πολύ αργό ρυθμό και να διαρκεί αρκετές ημέρες (3 με 4 ημέρες) για ένα δείγμα <4L. Αν όμως, το δείγμα αφεθεί να ηρεμήσει

⁵⁴ Στις μελλοντικές βελτιώσεις της παρούσας μεθόδου θα μπορούσε να εισαχθεί η διερεύνηση της ελάχιστης ποσότητας ρητίνης που απαιτείται για την πλήρη προσρόφηση των ραδιενεργών ισοτόπων, ώστε να περιοριστεί η κατανάλωση ρητίνης για την προετοιμασία των δειγμάτων.

(~ 8h) και η ρητίνη καθιζάνει, τότε το φιλτράρισμα επιταχύνεται και ολοκληρώνεται σε μόλις λίγες ώρες (~ 4h).

- Με το πέρας του φιλτραρίσματος υπάρχει περίπτωση μικροποσότητα (<0.01% επί της συνολικής ποσότητας) ρητίνης να έχει προσκολληθεί στην επιφάνεια του φίλτρου Whatman 42. Για την απόσπαση της ρητίνης από αυτό και προσθήκη της στο υπόλοιπο δείγμα, προτείνεται το προσεκτικό τρίψιμο της επιφάνειας του φίλτρου.
- Η ρητίνη που συλλέχθηκε ξηραίνεται πλήρως αν παραμείνει εκτεθειμένη στον αέρα του εργαστηρίου στους ~ 21 °C, για χρονικό διάστημα ~ 2 ημερών. Για επιτάχυνση της διαδικασίας ξήρανσης μπορεί να τοποθετηθεί σε ερμητικά κλειστό δοχείο που περιέχει silica gel.

Συγκεντρωτικά, τα δείγματα προς ανάλυση που προέκυψαν από τις παραπάνω διαδικασίες είναι:

- i. δείγματα ρητίνης σε κυλινδρική γεωμετρία 8.72cm³. Η γεωμετρία αυτή περιέχεται σε ένα αλουμινένιο τρυβλίο εσωτερικής διαμέτρου 3.9cm, το οποίο καλύπτεται από δύο στρώσεις πλαστικής μεμβράνης (Σχήμα 5.4). Για τη μέτρηση, το τρυβλίο προσαρμόζεται στο κέντρο του ανιχνευτή με την πλευρά της πλαστικής μεμβράνης σε επαφή με αυτόν,
- δείγματα φίλτρων Whatman 42 διαμέτρου 90mm, τα οποία διπλώνονται σε γεωμετρία 3.2x3.2 cm² πάχους 1.5mm, (Σχήμα 5.5),
- δείγματα φίλτρων Whatman 42 διαμέτρου 90mm τα οποία αναλύθηκαν χωρίς
 να διπλωθούν από τις διαδικασίες #1 και #2,
- υγρά κλάσματα που συλλέχθηκαν μετά από το φιλτράρισμα των δειγμάτων.
 Τα δείγματα αυτά αναλύθηκαν σε γεωμετρία Marinelli.

Όλα τα παραπάνω είδη δειγμάτων αναλύθηκαν με τεχνικές γ-φασματοσκοπίας στους ανιχνευτές του ΕΠΤ-ΕΜΠ. Οι γ-φασματοσκοπικές αναλύσεις που έλαβαν χώρα για την ανάπτυξη της μεθόδου, αλλά και για το σύνολο των ατμοσφαιρικών αποθέσεων κατά τη διάρκεια της παρούσας Δ.Δ., δίνονται στον Πίνακα 5.1.

Πίνακας 5.1 : Οι βασικές γεωμετρίες δειγμάτων από την επεξεργασία ατμοσφαιρικών αποθέσεων της παρούσας Δ.Δ. και οι ανιχνευτές που βαθμονομήθηκαν και χρησιμοποιήθηκαν για κάθε μία από αυτές.

	XtRa	Ge2	LEGe
Ρητίνη σε κυλινδρική γεωμετρία 8.72cm ³	\checkmark	\checkmark	\checkmark
Φίλτρο Whatman 42 διαμέτρου 90mm διπλωμένο σε γεωμετρία 3.2x3.2 cm ² πάχους 1.5mm			
Φίλτρο Whatman 42 διαμέτρου 90mm	\checkmark	\checkmark	
Κλάσμα υγρού από φιλτράρισμα δείγματος σε γεωμετρία Marinelli			

Σχήμα 5.4 : Συσκευασία ρητίνης σε κυλινδρική γεωμετρία 8.72 cm³.

Σχήμα 5.5 : Διπλωμένο Φίλτρο Whatman 42 διαμέτρου 90mm σε γεωμετρία 3.2x3.2 cm² πάχους 1.5mm.

5.2.1.1 Βαθμονόμηση απόδοσης των ανιχνευτικών διατάξεων

Για την ανάλυση των διαφόρων τύπων δειγμάτων που περιγράφονται στην προηγούμενη παράγραφο, έπρεπε να βαθμονομηθούν για απόδοση οι αντίστοιχες ανιχνευτικές διατάξεις του ΕΠΤ-ΕΜΠ που χρησιμοποιήθηκαν. Όλες οι βαθμονομήσεις έγιναν με χρήση του κώδικα προσομοίωσης Monte Carlo PENELOPE (Salvat, et al., 2011) και ειδικότερα της έκδοσης του έτους 2011.

Ο κώδικας PENELOPE είναι γραμμένος σε γλώσσα προγραμματισμού FORTRAN και είναι σχεδιασμένος να προσομοιώνει τη μεταφορά ποζιτρονίων, ηλεκτρονίων και φωτονίων μέσα στην ύλη μέσα από σύνθετες κατασκευές από ποικίλα υλικά. Ο κώδικας αποτελείται από ένα σύνολο υπορουτίνων, οι οποίες προσομοιώνουν τους μηχανισμούς που διέπουν τα φυσικά φαινόμενα που λαμβάνουν χώρα κατά την αλληλεπίδραση ακτινοβολίας και ύλης. Συγκεκριμένα, παρέχει τη δυνατότητα προσομοίωσης σημειακών πηγών β+, β- ή γ-ακτινοβολίας στο ενεργειακό εύρος από 50eV έως 1GeV. Για την πραγματοποίηση της προσομοίωσης συγκεκριμένου προβλήματος, αρχικά απαιτείται η περιγραφή του, η οποία εισάγεται μέσω των αρχείων δεδομένων εισόδου (αρχείο εισόδου «.in», αρχείο γεωμετρίας «.geo», αρχείο υλικού «.mat»). Ενδεικτικά αρχεία εισόδου που χρησιμοποιήθηκαν για την παρούσα Δ.Δ. δίνονται στο Παράρτημα ΙΣΤ. Περισσότερες πληροφορίες σχετικά με τον κώδικα PENELOPE και τις δυνατότητές του μπορούν να αναζητηθούν σε προγενέστερες εργασίες του ΕΠΤ-ΕΜΠ (Νικολάου , 2006), (Καρφόπουλος, 2012), (Χαβιάρας, 2015), (Σάββα, 2017).

Για την προσομοίωση μίας ανιχνευτικής διάταξης πρέπει να είναι γνωστά και με ακρίβεια τα γεωμετρικά χαρακτηριστικά της. Η διαδικασία προσδιορισμού των γεωμετρικών χαρακτηριστικών που θα χρησιμοποιηθούν κατά την προσομοίωση περιγράφεται ως «χαρακτηρισμός του ανιχνευτή⁵⁵». Ο χαρακτηρισμός των ανιχνευτών XtRa, Ge2 και LEGe του ΕΠΤ-ΕΜΠ έχει λάβει χώρα σε προγενέστερες εργασίες σπουδαστών του ΕΠΤ-ΕΜΠ, (Χαβιάρας, 2015), (Σάββα, 2017), (Τσιαντή, 2018).

Στα πλαίσια της εργασίας αυτής, για κάθε συνδυασμό γεωμετρίας δείγματος-ανιχνευτή του Πίνακα 5.1 προσδιορίσθηκε η συνάρτηση της καμπύλης

⁵⁵ Detector characterization.

απόδοσης. Από τη μακροχρόνια εμπειρία στο ΕΠΤ-ΕΜΠ έχει διαπιστωθεί ότι μία κατάλληλη συνάρτηση βαθμονόμησης απόδοσης είναι της μορφής:

$$\ln(eff) = a_0 + a_1 \cdot \ln(E) + a_2 \cdot \ln(E)^2$$
(5.1)

όπου *eff* είναι η απόδοση φωτοκορυφής για την εκάστοτε ενέργεια φωτονίου και *E* είναι η ενέργεια του φωτονίου σε keV.

Επιπλέον, μία καλή πρακτική κατά τη βαθμονόμηση απόδοσης είναι η ενεργειακή περιοχή 0-2000keV να διαιρείται σε δύο περιοχές – υψηλών και χαμηλών ενεργειών – με ενδιάμεσο σημείο περί την ενέργεια 250-300keV⁵⁶.

Στον Πίνακα 5.2. δίνονται οι συντελεστές των συναρτήσεων βαθμονόμησης απόδοσης φωτοκορυφής, για τις γεωμετρίες όγκου 8.72cm³ στους ανιχνευτές XtRa, Ge2 και LEGe. Οι αντίστοιχες καμπύλες απόδοσης δίνονται στο Σχήμα 5.6.

Πίνακας 5.2 : Καμπύλες βαθμονόμησης απόδοσης για την κυλινδρική γεωμετρία όγκου 8.72cm³ που χρησιμοποιείται για την ανάλυση δειγμάτων ρητίνης για τους ανιχνευτές XtRa, Ge2 και LEGe.

	Xt	Ra	G	e2	LEGe		
	<279.19 keV >279.19 keV		<279.19 keV >279.19 keV <279.19 keV >279.19 keV <		<279.19 keV	>279.19 keV	
ao	-8.4127	2.7757	-9.8451	4.6170	-11.169	8.8227	
a ₁	3.1838	-0.9233	3.8709	-1.4500	4.6209	-2.6753	
a ₂	-0.3608	0.0157	-0.4463	0.0425	-0.5536	0.1112	
RMS	0.68%	0.66%	0.74%	0.77%	1.39%	0.99%	
R ²	0.9989	0.9998	0.9993	0.9998	0.9991	0.9998	

⁵⁶ Το ενδιάμεσο σημείο που χρησιμοποιείται στο ΕΠΤ-ΕΜΠ είναι στην ενέργεια των 279.19 keV.

Σχήμα 5.6 : Καμπύλες βαθμονόμησης απόδοσης για την κυλινδρική γεωμετρία όγκου 8.72 cm³ που χρησιμοποιείται για την ανάλυση δειγμάτων ρητίνης για τους ανιχνευτές XtRa, Ge2 και LEGe.

Στο Σχήμα 5.7 διακρίνεται η γεωμετρία δείγματος-ανιχνευτή και στο Σχήμα 5.8 δίνεται η απεικόνιση⁵⁷ του ανιχνευτή XtRa, του δείγματος γεωμετρίας όγκου 8.72cm³, τη θωράκισης καθώς και του συστήματος Compton Suppression.

Σχήμα 5.7 : Απεικόνιση της γεωμετρίας όγκου 8.72cm³ τοποθετημένης πάνω από τον ανιχνευτή XtRa.

⁵⁷ Η απεικόνιση γίνεται μέσω του προγράμματος gview2D από το πακέτο προσομοίωσης του κώδικα PENELOPE το οποίο διαβάζει τη γεωμετρία από το αρχείο γεωμετρίας .geo της προσομοίωσης.

Σχήμα 5.8 : Απεικόνιση της ανιχνευτικής διάταξης του ανιχνευτή XtRa με τη γεωμετρία όγκου 8.72cm³ (διακρίνεται η θωράκιση καθώς και το σύστημα Compton Suppression).

Οι βαθμονομήσεις απόδοσης για τη βασική κυλινδρική γεωμετρία των 8.72cm³, επιβεβαιώθηκαν μέσω της συμμετοχής του ΕΠΤ-ΕΜΠ σε Ασκήσεις Διασύγκρισης του δικτύου ALMERA (IAEA-TEL-2018-04 & IAEA-TEL-2019-04). Το σύνολο των βαθμονομήσεων που έλαβαν χώρα στην παρούσα Δ.Δ. δίνονται στο Παράρτημα ΙΔ.

5.2.1.2 Ανάλυση αβεβαιοτήτων

Στην παρούσα Δ.Δ., όλα τα αποτελέσματα των μετρήσεων που έγιναν για την ανάπτυξη της μεθοδολογίας δειγματοληψίας και ανάλυσης δειγμάτων αποθέσεων, καθώς και τα αποτελέσματα του συνόλου των μετρήσεων που ακολουθούν στο

επόμενο κεφάλαιο, συνοδεύονται από συνδυασμένη τυπική αβεβαιότητα⁵⁸ που λαμβάνει υπόψη αβεβαιότητες τύπου Α και τύπου Β (JCGM/WG 1, et al., 2008).

Σχετικά με την αβεβαιότητα τύπου Α, η αβεβαιότητα της επιφάνειας φωτοκορυφής, που υπολογίζεται μέσω της γ-φασματοσκοπικής ανάλυσης των δειγμάτων, θεωρείται επικρατούσα.

Όσον αφορά την αβεβαιότητα τύπου Β, οι βασικές συνιστώσες της είναι:

- η συστηματική αβεβαιότητα της φωτοκορυφής του υποστρώματος αφορά τον προσδιορισμό του ²¹⁰Pb (14.2% για τον ανιχνευτή XtRa, 12.2% για τον ανιχνευτή XtCSS και 12.9% για τον ανιχνευτή LEGe σε επίπεδο 1σ),
- ii. η ζύγιση του δείγματος, που εισάγει μια σχετική αβεβαιότητα <1% σε επίπεδο
 1σ,
- iii. η βαθμονόμηση απόδοσης, που εισάγει μια σχετική αβεβαιότητα σε επίπεδο
 1σ της τάξης του:
 - a. 2.3% (συστηματική αβεβαιότητα βαθμονόμησης) για τον ανιχνευτή XtRa (Σάββα, 2017),
 - b. 1.2% (συστηματική αβεβαιότητα βαθμονόμησης) για τον ανιχνευτή Ge2 (Τσιαντή, 2018)
 - c. 1.4% (συστηματική αβεβαιότητα βαθμονόμησης) για τον ανιχνευτή LEGe

Στο σημείο αυτό είναι σημαντικό να σημειωθεί ότι δε συμπεριλαμβάνεται στο τελικό αποτέλεσμα αβεβαιότητα που αφορά το ποσοστό προσρόφησης των ραδιενεργών ισοτόπων στη ρητίνη, καθώς θεωρείται πλήρης η προσρόφησή τους σε αυτή, όπως θα δοθεί και στα αποτελέσματα του Κεφαλαίου 6 που ακολουθεί.

5.2.1.3 Σύγκριση των τριών διαδικασιών προετοιμασίας δείγματος υγρής απόθεσης

Και οι τρεις διαδικασίες προετοιμασίας δείγματος υγρής απόθεσης που αναφέρονται στο Σχήμα 5.2 συγκρίθηκαν ως προς την συγκέντρωση ενεργότητας⁵⁹ του ⁷Be του τελικού δείγματος. Εννοείται ότι σε κάθε περίπτωση έγιναν οι κατάλληλες διορθώσεις λόγω decay. Για κάθε μία από τις διαδικασίες υπολογίστηκε

⁵⁸ Combined standard uncertainty.

⁵⁹ Καθώς σε όλες τις διαδικασίες το αρχικό δείγμα βροχής ήταν το ίδιο, η σύγκριση μπορεί να οδηγήσει σε συμπεράσματα σχετικά με την αποτελεσματικότητα και επαναληψιμότητα της κάθε διαδικασίας προετοιμασίας δείγματος.

η τιμή U-score μεταξύ των αποτελεσμάτων των 2 υπο-δειγμάτων, ώστε η διαδικασία να ελεγχθεί ως προς την επαναληψιμότητα. Ο υπολογισμός του U-score έγινε βάσει της σχέσης (5.2) που ακολουθεί:

$$u - score = \frac{|Value_1 - Value_2|}{\sqrt{unc_1^2 + unc_2^2}}$$
(5.2)

όπου Value₁ και Value₂ είναι οι συγκεντρώσεις ενεργότητας και unc₁ και unc₂ οι συνολικές αβεβαιότητες σε επίπεδο 1σ για κάθε ένα από τα 2 υπο-δείγματα της κάθε διαδικασίας αντίστοιχα. Οι συγκεντρώσεις θεωρείται ότι δεν διαφέρουν στατιστικά σημαντικά για τιμή του U-score <1.96 σε επίπεδο εμπιστοσύνης 95%. Στον Πίνακα 5.3 δίνονται τα αποτελέσματα συγκέντρωσης του ⁷Be για κάθε υπο-δείγμα κάθε μιας από τις 3 διαδικασίες, καθώς και τα σχετικά U-score.

Διαδικασίες	Υπο-δείγμα	Όγκος υπο-δείγματος (L)	Συγκέντρωση ενεργότητας ± 1σ (Bq/L)	U-score
1	1	3.666	0.78 ± 0.02	1 27
1	2	3.666	0.84 ± 0.03	1.27
2	3	3.696	0.79 ± 0.04	0.22
2	4	3.676	0.78 ± 0.04	0.55
3	5	3.654	0.12 ± 0.01	1.96
	6	3.640	0.16 ± 0.02	1.80

Πίνακας 5.3 : Σύγκριση των συγκεντρώσεων ενεργότητας του ⁷Be για τα υπο-δείγματα των 3 διαδικασιών προετοιμασίας δείγματος υγρής απόθεσης και τα αντίστοιχα U-score.

Από τα αποτελέσματα του παραπάνω πίνακα προκύπτει ότι η συλλογή των ραδιενεργών ισοτόπων από δείγμα υγρής απόθεσης αποκλειστικά με χρήση φίλτρου Whatman 42, (διαδικασία #3) γίνεται μόνο σε ένα μικρό ποσοστό και με «οριακά» αποδεκτή επαναληψιμότητα.

Οι διαδικασίες #1 και #2 δίνουν αντίστοιχα αποτελέσματα συγκέντρωσης ενεργότητας και παρουσιάζουν και οι δύο ικανοποιητική επαναληψιμότητα. Επιπροσθέτως, προκύπτει ότι η χρήση του μαγνητικού αναδευτήρα για την ανάμιξη της ρητίνης με το δείγμα δεν φαίνεται να επηρεάζει το τελικό αποτέλεσμα. Συνεπώς, επειδή η χειροκίνητη χρήση του γυάλινου αναδευτήρα αποτελεί μια απαιτητική για τον ερευνητή διαδικασία, επιλέχτηκε να υιοθετηθεί η Διαδικασία #1 με χρήση του μαγνητικού αναδευτήρα.

Κλάσματα του νερού που συλλέχθηκε ως αποτέλεσμα του φιλτραρίσματος για κάθε υπο-δείγμα των διαδικασιών #1 και #2, συσκευάστηκαν σε γεωμετρία Marinelli και αναλύθηκαν στον ανιχνευτή Ge2 προκειμένου να επιβεβαιωθεί ότι δεν υπήρχαν ανιχνεύσιμες συγκεντρώσεις ⁷Be σε αυτά. Αντιστοίχως, αναλύθηκαν στον ανιχνευτή Ge2 και σε γεωμετρία 3.2x3.2cm² πάχους 1.5mm και τα φίλτρα Whatman 42 που χρησιμοποιήθηκαν για φιλτράρισμα. Σε όλες τις παραπάνω αναλύσεις οι συγκεντρώσεις του ⁷Be ήταν κάτω από το επίπεδο ανίχνευσης, που για τα υγρά κλάσματα ήταν 0.36Bq/L και για τα φίλτρα 0.02Bq/L. Στο σημείο αυτό, είναι σημαντικό να προστεθεί ότι για επιβεβαίωση της απόδοσης κατακράτησης των ραδιενεργών ισοτόπων στη ρητίνη αναλύθηκε με γ-φασματοσκοπία το μεγαλύτερο ποσοστό των φίλτρων, καθώς και των υγρών κλασμάτων που προέκυψαν ως αποτέλεσμα της προετοιμασίας των δειγμάτων τα οποία συλλέχθηκαν στην παρούσα Δ.Δ, οι κωδικοί των οποίων δίνονται στο Παράρτημα ΙΖ.

Ακολουθώντας τα βήματα που περιγράφονται στη διαδικασία #1, η οποία τελικά επιλέχθηκε ως καταλληλότερη, έγινε η προετοιμασία όλων των δειγμάτων υγρών αποθέσεων (βροχή και χιόνι) καθώς και υγρασίας, που συλλέχθηκαν στην παρούσα Δ.Δ..

5.2.1.4 Οξίνιση του υγρού δείγματος για την αποφυγή προσρόφησης ραδιενεργών ισοτόπων στα τοιχώματα του δοχείου

Ο όγκος των προς ανάλυση δειγμάτων στο ΕΠΤ-ΕΜΠ μπορεί να είναι ανά περιόδους μεγάλος, γεγονός που σημαίνει ότι μπορεί να δημιουργείται γραμμή αναμονής στην προετοιμασία και την ανάλυση δειγμάτων.

Όταν όμως ένα υγρό δείγμα παραμένει μέσα σε πλαστικό δοχείο για μεγάλο χρονικό διάστημα, υπάρχει πιθανότητα μέρος των ραδιενεργών ισοτόπων που περιέχει να προσκολληθούν στα τοιχώματα του δοχείου και κατά συνέπεια, να απομακρυνθούν από το προς ανάλυση δείγμα, οδηγώντας εν τέλει σε υποεκτίμηση της τελικής συγκέντρωσης ενεργότητας στο υγρό δείγμα. Για να μελετηθεί η έκταση του προβλήματος και να αναζητηθούν ενδεχόμενες λύσεις του, από δείγμα βροχής ~8.2L που συλλέχθηκε στις 18 Δεκεμβρίου του 2018, δημιουργήθηκαν, υπέστησαν επεξεργασία και αναλύθηκαν 3 υπο-δείγματα, όπως φαίνεται στον Πίνακα 5.4 που ακολουθεί:

147

Υπο-δείγμα βροχής	Όγκος Δείγματος (L)	Συγκέντρωση ενεργότητας ± 1σ (Bq/L)	MDA (Bq/L)
Άμεση προετοιμασία και ανάλυση μετά τη δειγματοληψία	2.738	1.92 ± 0.09	0.03
Αναμονή δύο εβδομάδων για προετοιμασία και ανάλυση	2.732	1.48 ± 0.07	0.02
Οξίνιση του δείγματος στο δοχείο με ΗΝΟ3 και αναμονή δύο εβδομάδων για προετοιμασία και ανάλυση	2.724	2.17 ± 0.10	0.02

Πίνακας 5.4 : Συγκέντρωση ⁷Be στα υπο-δείγματα από τη βροχή στις 18/12/2018.

Από τα αποτελέσματα των αναλύσεων του παραπάνω πίνακα προκύπτει σαφώς ότι η οξίνιση του δείγματος στο δοχείο, εν αναμονή της επεξεργασίας και ανάλυσής του, είχε σημαντική επίδραση στο τελικό αποτέλεσμα. Συγκεκριμένα, η τιμή U-score μεταξύ του δείγματος που αναλύθηκε άμεσα με εκείνο που αναλύθηκε μετά από 2 εβδομάδες αλλά είχε οξινιστεί είναι 1.86⁶⁰, γεγονός που δείχνει ότι δε διαφέρουν στατιστικά σημαντικά σε επίπεδο εμπιστοσύνης 95%. Αντιθέτως, το αντίστοιχο U-score με το δείγμα που ήταν σε αναμονή για δύο εβδομάδες χωρίς να οξινιστεί είναι 3.86, που υποδηλώνει στατιστικά σημαντική διαφορά. Ειδικότερα, η συγκέντρωση ενεργότητας ⁷Be στο μη οξινισμένο δείγμα ήταν περίπου 25% χαμηλότερη, καθώς, όπως φαίνεται, ποσότητα ⁷Be έχει προσροφηθεί στα τοιχώματα του δοχείου.

Είναι σημαντικό στο σημείο αυτό να προστεθεί ότι το οξινισμένο δείγμα είχε pH≈3, λόγω της προσθήκης του HNO₃, το οποίο είναι χαμηλότερο από αυτό που απαιτείται κατά τη διαδικασία προετοιμασίας του δείγματος (pH≈5). Ωστόσο, επειδή η ρητίνη που χρησιμοποιείται είναι μια ισχυρά όξινη ρητίνη, διατηρεί τις ιδιότητές της ακόμα και σε πολύ χαμηλά pH (Helfferich, 1995).

5.2.1.5 Δειγματοληψία, προετοιμασία και ανάλυση δειγμάτων υγρασίας

Από τη στιγμή που επιλέχτηκε η διαδικασία #1, όπως περιγράφτηκε στο Σχήμα 5.2, κρίθηκε σκόπιμο να εξεταστεί το κατά πόσον η χρήση της μεθόδου αυτής μπορεί να δώσει αποτελέσματα για τον προσδιορισμό της συγκέντρωσης του ⁷Be, καθώς και άλλων ραδιενεργών ισοτόπων που ενδεχομένως υπάρχουν και σε δείγματα υγρασίας

⁶⁰ Η σχετικά υψηλή αυτή τιμή οφείλεται στην πολύ χαμηλή αβεβαιότητα των μετρήσεων και όχι τόσο στη μεγάλη διαφορά των δύο τιμών.

της ατμόσφαιρας. Για τον σκοπό αυτό, σε μία περίοδο με αυξημένη υγρασία και βροχοπτώσεις συλλέχθηκαν:

- ί. υγρασία στις 15 και 16 Νοεμβρίου 2018.
- ii. βροχή στις 17 και 18 Νοεμβρίου 2018.
- iii. υγρασία στις 19 και 20 Νοεμβρίου 2018.

Στόχος των δειγματοληψιών αυτών ήταν να διερευνηθεί κατά πόσο υπάρχουν ανιχνεύσιμες ποσότητες ⁷Be στην υγρασία, καθώς και αν η βροχόπτωση επιδρά σημαντικά σε αυτές.

Για τη συλλογή του δείγματος υγρασίας χρησιμοποιήθηκε αφυγραντήρας ισχύος 320W με δοχείο συλλογής 2.8L, κατάλληλα τοποθετημένος, ώστε να προστατεύεται από την άμεση επαφή με τις υγρές κατακρημνίσεις, όπως φαίνεται στο *Σχήμα 5.9*. Όλα τα υγρά δείγματα αναλύθηκαν ακολουθώντας τη διαδικασία #1 για την ανάλυση υγρών κατακρημνίσεων.

Σχήμα 5.9 : Αφυγραντήρας στην οροφή του Κτιρίου Κ για δειγματοληψία υγρασίας

Τα αποτελέσματα των αναλύσεων των δειγμάτων που συλλέχθηκαν δίνονται στον Πίνακα 5.5.

Δείγμα	Όγκος δείγματος (L)	Συγκέντρωση ενεργότητας ⁷ Be ± 1σ (Bq/L)	MDA (Bq/L)	Σ υγκέντρωση ενεργότητας 210 Pb $\pm 1\sigma$ (Bq/L)	MDA (Bq/L)
Υγρασία προ βροχόπτωσης 15-16/11/2018	2.750	0.07 ± 0.02	0.02	<mda< td=""><td>0.04</td></mda<>	0.04
Βροχόπτωση 17-18/11/2018	3.506	0.80 ± 0.04	0.02	0.07 ± 0.02	0.03
Υγρασία μετά τη βροχόπτωση 19-20/11/2018	2.818	<mda< td=""><td>0.02</td><td><mda< td=""><td>0.03</td></mda<></td></mda<>	0.02	<mda< td=""><td>0.03</td></mda<>	0.03

Πίνακας 5.5 : Αποτελέσματα προσδιορισμού της συγκέντρωσης ενεργότητας σε νερό βροχής και ατμοσφαιρικής υγρασίας

Από τα παραπάνω αποτελέσματα προκύπτει ότι η μέθοδος που αναπτύχθηκε μπορεί να χρησιμοποιηθεί για τον προσδιορισμό συγκέντρωσης ενεργότητας σε δείγματα υγρασίας. Ωστόσο, παρατηρείται ότι τα επίπεδα συγκέντρωσης του ⁷Be στην υγρασία είναι ιδιαίτερα χαμηλά, και μάλιστα στο δείγμα υγρασίας που συλλέχθηκε μετά τη βροχόπτωση το ⁷Be δεν ήταν ανιχνεύσιμο. Το αποτέλεσμα αυτό ήταν αναμενόμενο, καθώς η βροχόπτωση κατακρημνίζει το υπάρχον ⁷Be στην ατμόσφαιρα. Επιπροσθέτως, τα αποτελέσματα της γ-φασματοσκοπικής ανάλυσης στο δείγμα βροχόπτωσης έδειξαν ανιχνεύσιμη συγκέντρωση ²¹⁰Pb στο νερό της βροχής, γεγονός που δείχνει τη δυνατότητα χρήσης της μεθόδου αυτής για τον ποσοτικό προσδιορισμό και άλλων ραδιενεργών ισοτόπων. Στα δύο δείγματα υγρασίας που αναλύθηκαν δεν κατέστη δυνατή η ανίχνευση ²¹⁰Pb.

5.2.1.6 Δειγματοληψία προετοιμασία και ανάλυση δειγμάτων χιονιού

Για την ολοκληρωμένη εφαρμογή της μεθόδου επεξεργασίας και ανάλυσης υγρών κατακρημνίσεων, έγινε συλλογή και επεξεργασία χιονιού κατά τη διάρκεια χιονόπτωσης που έλαβε χώρα στις 8 Ιανουαρίου 2019. Η χιονόπτωση είχε συνολικό ύψος ~ 9cm. Το δείγμα χιονιού, αφού συλλέχτηκε, αφέθηκε να λιώσει σε θερμοκρασία δωματίου και στη συνέχεια υπέστη επεξεργασία όπως τα δείγματα βροχής και υγρασίας. Η ανάλυση του δείγματος χιονιού δίνεται στον *Πίνακα 5.6*.

Δείγμα	Όγκος Δείγματος (L)	Συγκέντρωση ενεργότητας ⁷ Be ± 1σ (Bq/L)	MDA (Bq/L)	Σ υγκέντρωση ενεργότητας 210 Pb \pm 1σ (Bq/L)	MDA (Bq/L)
Χιόνι 8/1/2019	3.521	0.14 ± 0.02	0.02	0.08 ± 0.01	0.03

Πίνακας 5.6 : Αποτελέσματα προσδιορισμού ραδιενεργών ισοτόπων σε δείγματα χιονιού

Από τα παραπάνω αποτελέσματα επιβεβαιώνεται η αποτελεσματικότητα της εφαρμογής της αναπτυχθείσας μεθόδου και σε δείγματα χιονιού, για τον ποσοτικό προσδιορισμό της συγκέντρωσης ενεργότητας του ⁷Be και του ²¹⁰Pb στις πάσης φύσεως υγρές ατμοσφαιρικές αποθέσεις.

5.2.2 Δειγματοληψία, προετοιμασία και ανάλυση δειγμάτων ξηρών ατμοσφαιρικών αποθέσεων

Για την ολοκληρωμένη παρακολούθηση των ατμοσφαιρικών αποθέσεων χρειάζεται η επέκταση της αναπτυχθείσας μεθόδου και στις ξηρές αποθέσεις. Όπως αναφέρθηκε και στο 2° Κεφάλαιο, ξηρές ονομάζονται οι αποθέσεις που λαμβάνουν χώρα κυρίως λόγω της βαρυτικής εναπόθεσης των σωματιδίων του ατμοσφαιρικού αερολύματος.

Η πρώτη προσπάθεια επέκτασης της μεθόδου δειγματοληψίας και ανάλυσης ξηρών ατμοσφαιρικών αποθέσεων έγινε στα πλαίσια της Δ.Ε. του ΕΠΤ-ΕΜΠ (Καρύδης, 2021) και συνεχίστηκε στα πλαίσια της παρούσας Δ.Δ.. Στη βιβλιογραφία παρουσιάζονται αρκετές προσεγγίσεις για τη δειγματοληψία ξηρής απόθεσης (Wallbrink & Murray, 1994), (Ioannidou & Papastefanou, 2006), (Baskaran & Swarzenski, 2007), (Chao, et al., 2012), (Gautam, et al., 2022), οι οποίες περιγράφονται στο 2° Κεφάλαιο. Στην παρούσα μελέτη επιλέχτηκε να χρησιμοποιηθούν ως δειγματολήπτες ξηρής απόθεσης οι ίδιοι δειγματολήπτες που χρησιμοποιούνται και για τις υγρές ατμοσφαιρικές αποθέσεις.

Η βασική διαφορά με τη δειγματοληψία υγρής απόθεσης είναι ότι στο πέρας της δειγματοληψίας το δείγμα μέσα στον δειγματολήπτη είναι σε μορφή σκόνης και σε ένα ποσοστό προσκολλημένο στα τοιχώματά του. Για τον λόγο αυτό απαιτείται το προσεκτικό «ξέπλυμα» της λεκάνης με αραιό οξύ, ώστε να γίνει συλλογή του αερολύματος και των ραδιενεργών ισοτόπων που έχουν αποτεθεί. Για τον σκοπό αυτό, όλοι οι δειγματολήπτες ξηρής απόθεσης που χρησιμοποιήθηκαν κατά την ανάπτυξη της μεθόδου, καθώς και για τα δείγματα που συλλέχθηκαν μετέπειτα, ξεπλύθηκαν με 500mL διάλυμα νιτρικού οξέος μοριακότητας 0.1M, με χρήση πιπέτας. Στη συνέχεια, οι δειγματολήπτες ξεπλύθηκαν πάλι με απιονισμένο νερό, μέχρι να προκύψει ένας συνολικός όγκος δείγματος ~ 3L. Το υγρό πλέον δείγμα που είχε προκύψει αναλυόταν στη συνέχεια με τη διαδικασία #1 ανάλυσης υγρών δειγμάτων. Καθώς η χρήση αραιού διαλύματος νιτρικού οξέος κατέβαζε το pH του υγρού δείγματος σε πολύ χαμηλά επίπεδα, ακολουθούσε η προσαρμογή του με την προσθήκη ~ 15mL διαλύματος αμμωνίας κανονικότητας 7.5N, έως ότου να επιτευχθεί η επιθυμητή τιμή pH \approx 5. Ωστόσο, όπως διαπιστώθηκε και στην παράγραφο 5.2.1.4, η ρητίνη που χρησιμοποιείται στην παρούσα μελέτη είναι μια ισχυρά όξινη ρητίνη και διατηρεί τις ιδιότητές της ακόμα και σε πολύ χαμηλά pH. Για τον λόγο αυτό, στα μετέπειτα δείγματα ξηρής απόθεσης που συλλέχθηκαν στην παρούσα Δ.Δ. δεν έγινε αντίστοιχη προσαρμογή του pH. Τα υπόλοιπα βήματα που ακολουθήθηκαν μέχρι τη γ-φασματοσκοπική ανάλυση των δειγμάτων είναι ίδια με αυτά που αναφέρθηκαν στην παράγραφο 5.2.1.

Καθώς δεν ήταν εξ' αρχής γνωστό το απαιτούμενο χρονικό διάστημα δειγματοληψίας ξηρής απόθεσης για τη συλλογή ανιχνεύσιμων συγκεντρώσεων ραδιενεργών ισοτόπων στους δειγματολήπτες, αρχικά έλαβαν χώρα 3 δειγματοληψίες διαφορετικής χρονικής διάρκειας, χρησιμοποιώντας κάθε φορά τρεις δειγματολήπτες συνολικής επιφάνειας 0.56m². Τα αποτελέσματα των τριών αυτών αρχικών δειγματοληψιών ξηρής απόθεσης δίνονται στον *Πίνακα 5.7*.

Δείγμα	Περίοδος συλλογής	Χρονική διάρκεια συλλογής (σε ημέρες)	Ρυθμός απόθεσης ⁷ Be Bq/(week·m ²)	MDA Bq/(week∙m²)	Ρυθμός απόθεσης ²¹⁰ Pb Bq/(week⋅m ²)	MDA Bq/(week·m²)
#1	24/6/2019- 8/7/2019	14	1.78 ± 0.05	0.01	0.39 ± 0.04	0.08
#2	19/7/2019- 23/8/2019	35	0.78 ± 0.03	0.01	0.13 ± 0.02	0.04
#3	28/8/2019- 19/9/2019	22	0.30 ± 0.02	0.01	<mda< td=""><td>0.06</td></mda<>	0.06

Πίνακας 5.7 : Αποτελέσματα γ-φασματοσκοπικών αναλύσεων των αρχικών δειγματοληψιών και αναλύσεων δειγμάτων ξηρής απόθεσης

Από τα παραπάνω αποτελέσματα επιβεβαιώνεται η δυνατότητα επέκτασης της μεθόδου που αναπτύχθηκε για δείγματα υγρών αποθέσεων και σε δείγματα ξηρής απόθεσης, οδηγώντας στον προσδιορισμό των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb με καλή ακρίβεια. Οι ρυθμοί απόθεσης των παραπάνω ισοτόπων που βρέθηκαν σε αυτή τη φάση της διερεύνησης είναι συμβατές με αυτές της βιβλιογραφίας (Zhang, et al., 2021).

Συνοπτικά, οι βασικές αλλαγές για την εφαρμογή της μεθόδου σε δείγματα ξηρής απόθεσης, οι οποίες υιοθετήθηκαν και για όλες τις ξηρές αποθέσεις που συλλέχθηκαν στην παρούσα Δ.Δ., είναι οι εξής:

- Ξέπλυμα των δειγματοληπτών με 500mL διαλύματος νιτρικού οξέος μοριακότητας 0.1M,
- Επιπρόσθετο ξέπλυμα των δειγματοληπτών με απιονισμένο νερό έως ότου το συνολικό προς ανάμιξη με τη ρητίνη δείγμα να έχει όγκο ~ 3L,
- Επεξεργασία και ανάλυση του δείγματος ως δείγμα υγρής απόθεσης. Στην περίπτωση αυτή τα στερεά σωματίδια της ξηρής απόθεσης συγκρατούνται κατά το φιλτράρισμα μαζί με την ρητίνη, σχηματίζοντας ενιαίο δείγμα.

5.2.2.1 Αναλυτικός υπολογισμός της συγκέντρωσης ενεργότητας ραδιενεργών ισοτόπων στις ξηρές και στις ολικές αποθέσεις

Μία βασική υπόθεση που γίνεται για τον υπολογισμό της συγκέντρωσης των ραδιενεργών ισοτόπων στις ξηρές αποθέσεις⁶¹ είναι αυτή του «συνεχούς ρυθμού απόθεσης». Πρακτικά, αυτό σημαίνει ότι κατά τη διάρκεια συλλογής ενός δείγματος ξηρής απόθεσης και εν γένει, ενός οποιουδήποτε δείγματος ατμοσφαιρικής απόθεσης, ο ρυθμός απόθεσης των ραδιενεργών ισοτόπων στους δειγματολήπτες είναι σταθερός. Συνεπώς, για τους ραδιενεργούς πυρήνες που αποτίθενται κατά τη διάρκεια της δειγματοληψίας ισχύει:

$$\frac{\mathrm{dN}}{\mathrm{dt}} = \mathbf{n} - \lambda \mathbf{N} \tag{5.3}$$

Όπου:

Ν: ο αριθμός των πυρήνων του ραδιενεργού ισοτόπου

λ: η σταθερά διάσπασης του ραδιενεργού ισοτόπου (s⁻¹)

n: ο συνεχής σταθερός ρυθμός απόθεσης του ραδιενεργού ισοτόπου (πυρήνες/s)

Ολοκληρώνοντας την εξίσωση (5.3) ως προς τον χρόνο t, με αρχική συνθήκη $N = N_0$ για t = 0 προκύπτει:

$$N = \frac{n}{\lambda} + (N_0 - \frac{n}{\lambda}) \cdot e^{-\lambda t}$$
(5.4)

⁶¹ Αυτό ισχύει σε κάθε περίπτωση αποθέσεων, αλλά έχει ιδιαίτερη σημασία όταν η διάρκεια δειγματοληψίας είναι μεγάλη, όπως στην περίπτωση ξηρών αποθέσεων.

Όπου:

- Ν₀: ο αριθμός των πυρήνων του ραδιενεργού ισοτόπου μέσα στους
 δειγματολήπτες τη στιγμή έναρξης της δειγματοληψίας
- Ν: ο αριθμός των πυρήνων του ραδιενεργού ισοτόπου στο πέρας της
 δειγματοληψίας

Για $N_0 = 0$, όταν δηλαδή ο δειγματολήπτης αρχικά δεν περιέχει ραδιενεργούς πυρήνες, ο ρυθμός απόθεσης των πυρήνων (πυρήνες/s) υπολογίζεται από την (5.4) σύμφωνα με την εξίσωση:

$$n = \frac{\lambda \cdot N}{1 - e^{-\lambda t}} \tag{5.5}$$

όπου:

t: η χρονική διάρκεια της δειγματοληψίας

λ·Ν: η ενεργότητα του ραδιενεργού ισοτόπου τη στιγμή περάτωσης της δειγματοληψίας (που υπολογίζεται από το αποτέλεσμα της γ-φασματοσκοπικής ανάλυσης με διορθώσεις διάσπασης για την ημερομηνία περάτωσης της δειγματοληψίας)

Το τελικό αποτέλεσμα της παραπάνω ανάλυσης δίνεται στη μορφή «Bq/(week·m²)», το οποίο στην πραγματικότητα εκφράζει ροή ενεργότητας του υπό μελέτη ισοτόπου ανά μονάδα επιφάνειας και μονάδα χρόνου, και προκύπτει εφαρμόζοντας τα παρακάτω βήματα:

- i. μετατρέποντας στο αποτέλεσμα της εξίσωσης (5.5) τα sec σε week,
- διαιρώντας το n με το εμβαδόν της συνολικής επιφάνειας των δειγματοληπτών,
- iii. πολλαπλασιάζοντας τον ρυθμό απόθεσης πυρήνων του ισοτόπου n, με τη σταθερά διάσπασης λ (s⁻¹) του εκάστοτε ραδιενεργού ισοτόπου.

Καθώς σε μία περίοδο δειγματοληψίας μπορεί να υπάρξουν τόσο ξηρές όσο και υγρές αποθέσεις, ιδιαίτερα σε μεγάλης διάρκειας δειγματοληψίες, το δείγμα στην περίπτωση αυτή πρέπει να θεωρείται ως δείγμα ολικών ατμοσφαιρικών αποθέσεων (ξηρές και υγρές). Τέτοιου είδους δείγματα μπορεί κατά τη στιγμή δειγματοληψίας να βρίσκονται σε ξηρή⁶² ή υγρή μορφή και τα δείγματα αυτά πρέπει να αναλύονται με την κατάλληλη κατά περίπτωση διαδικασία.

5.3 Συμπεράσματα

Στο κεφάλαιο αυτό παρουσιάστηκε η ανάπτυξη μεθοδολογίας δειγματοληψίας προετοιμασίας και ανάλυσης υγρών και ξηρών ατμοσφαιρικών αποθέσεων. Συλλέχθηκαν, επεξεργάσθηκαν και αναλύθηκαν δείγματα βροχής, υγρασίας, χιονιού και ξηρών αποθέσεων. Τα αποτελέσματα των γ-φασματοσκοπικών αναλύσεων οδήγησαν στην ανίχνευση και τον προσδιορισμό με υψηλή ακρίβεια της συγκέντρωσης ενεργότητας για τα ραδιενεργά ισότοπα ⁷Be και ²¹⁰Pb, καθώς και του ρυθμού απόθεσής τους, ο οποίος βρίσκεται εντός του αναμενόμενου από τη βιβλιογραφία εύρους. Τα κατώτερα επίπεδα ανίχνευσης που επιτεύχθηκαν στις υγρές αποθέσεις ήταν αρκετά χαμηλά, της τάξης του ~ 0.02 Bq/L τόσο για το ⁷Be όσο και για τον ²¹⁰Pb. Όσον αφορά στο ρυθμό απόθεσης στις ξηρές και ολικές αποθέσεις, τα κατώτερα επίπεδα ανίχνευσης της τάξης του 0.01 Bq/(week·m²) για το ⁷Be και 0.04 Bq/(week·m²) για το ²¹⁰Pb.

Στο 6° Κεφάλαιο που ακολουθεί παρουσιάζονται τα αποτελέσματα τα οποία προέκυψαν με τη συστηματική εφαρμογή της παραπάνω μεθοδολογίας δειγματοληψίας, επεξεργασίας και ανάλυσης δειγμάτων ατμοσφαιρικών αποθέσεων, για ένα αρκετά μεγάλο χρονικό διάστημα.

 $^{^{62}}$ Η υγρή φάση της απόθεσης μπορεί κατά τη στιγμή συλλογής του δείγματος να έχει εξατμισθεί.

ΚΕΦΑΛΑΙΟ 6

Συστηματικές δειγματοληψίες και αναλύσεις ατμοσφαιρικών αποθέσεων και άλλων περιβαλλοντικών μεγεθών

6.1 Εισαγωγή

Όπως αναφέρθηκε και σε προηγούμενα κεφάλαια, μία από τις βασικές δραστηριότητες του ΕΠΤ-ΕΜΠ είναι η παρακολούθηση της ραδιενέργειας περιβάλλοντος, συμπεριλαμβανομένης και της ραδιενέργειας στην ατμόσφαιρα. Με την ολοκλήρωση της ανάπτυξης μεθοδολογίας για τη δειγματοληψία, επεξεργασία και ανάλυση υγρών, ξηρών και ολικών ατμοσφαιρικών αποθέσεων, η οποία παρουσιάστηκε στο προηγούμενο κεφάλαιο, κατέστη πλέον δυνατή η επέκταση της συστηματικής παρακολούθησης της ραδιενέργειας περιβάλλοντος και στις ατμοσφαιρικές αποθέσεις, καθώς και στην υγρασία της ατμόσφαιρας. Στο κεφάλαιο αυτό παρουσιάζεται το σύνολο των δειγματοληψιών ατμοσφαιρικών αποθέσεων που έγιναν στα πλαίσια της παρούσας Δ.Δ. για χρονική περίοδο περίπου 4.5 ετών (06/2018 - 11/2022). Οι δειγματοληψίες κατά την περίοδο αυτή δεν ήταν συνεχείς περιλαμβάνονται και περίοδοι παύσεων είτε λόγω του σχεδιασμού των πειραμάτων και των αναλύσεων είτε λόγω εξωτερικών παραγόντων που απέτρεπαν την διεξαγωγή συνεχόμενων και συστηματικών δειγματοληψιών. Πάντως, έγινε προσπάθεια, πέραν από τις συστηματικές δειγματοληψίες που έγιναν, να γίνουν δειγματοληψίες και σε περιόδους με ιδιαίτερο ενδιαφέρον από μετεωρολογικής απόψεως, όπως καταγράφεται στις παραγράφους που ακολουθούν.

6.2 Δειγματοληψίες ατμοσφαιρικών αποθέσεων

Τα δείγματα που συλλέχθηκαν και αναλύθηκαν κωδικοποιήθηκαν κατάλληλα, ανάλογα με το είδος της απόθεσης που αντιπροσωπεύουν. Ο κωδικός κάθε δείγματος αποτελείται από 5 χαρακτήρες, δύο γράμματα και τρεις αριθμούς, είναι δηλαδή της μορφής ΓΓΑΑΑ. Τα δύο γράμματα χαρακτηρίζουν τον τύπο του δείγματος (είδος απόθεσης) και συγκεκριμένα:

- Με "DR" ξεκινούν οι κωδικοί των δειγμάτων ξηρών αποθέσεων,
- Με "WR" ξεκινούν οι κωδικοί των δειγμάτων υγρών αποθέσεων είτε είναι χιόνι είτε βροχή,
- Με "TR" ξεκινούν οι κωδικοί των δειγμάτων ολικών αποθέσεων, δηλαδή δείγματα που περιέχουν και υγρές και ξηρές αποθέσεις,
- Με τα γράμματα "HR" ξεκινούν οι κωδικοί των δειγμάτων υγρασίας.

Τα τρία ψηφία που ακολουθούν αποτελούν τον αύξοντα αριθμό του κάθε είδους δείγματος. Συνολικά συλλέχθηκαν:

- 25 δείγματα ξηρής απόθεσης,
- 23 δείγματα υγρής απόθεσης (χιόνι ή βροχή),
- 12 δείγματα ολικής απόθεσης,
- 9 δείγματα ατμοσφαιρικής υγρασίας.

Το σύνολο των δειγμάτων ατμοσφαιρικών αποθέσεων και υγρασίας που συλλέχθηκαν στην παρούσα Δ.Δ. δίνονται με χρονολογική σειρά στον Πίνακα 6.34 που βρίσκεται στο τέλος του κεφαλαίου. Για κάθε δείγμα παρατίθενται και σχόλια σχετικά με τις συνθήκες υπό τις οποίες πραγματοποιήθηκε κάθε δειγματοληψία ή τους λόγους που την επέβαλαν. Στον πίνακα αυτόν περιλαμβάνονται στην αρχή και τέσσερα δείγματα με κωδικούς QSA1 έως QSA4, τα οποία χρησιμοποιήθηκαν κατά τις αρχικές φάσεις δοκιμών της διαδικασίας επεξεργασίας των δειγμάτων απόθεσης.

Επιπροσθέτως, όπως αναφέρθηκε και στο προηγούμενο κεφάλαιο, για τα περισσότερα από τα δείγματα που συλλέχθηκαν, έγινε επικουρικά ανάλυση και των φίλτρων που χρησιμοποιήθηκαν κατά το φιλτράρισμά τους, καθώς και κλασμάτων του νερού που απομένει από το φιλτράρισμα. Για τα φίλτρα αυτά οι κωδικοί ξεκινούν με το γράμμα «F», ενώ για τα υγρά κλάσματα με το γράμμα «W» ακολουθούμενα από τα αντίστοιχα δύο γράμματα που συμβολίζουν το εκάστοτε είδος δείγματος. Σε όλα τα φίλτρα και κλάσματα υγρών που αναλύθηκαν, οι συγκεντρώσεις ενεργότητας για τα προς μελέτη ραδιενεργά ισότοπα ήταν χαμηλότερες από τα όρια ανίχνευσης (MDA). Το μεγάλο πλήθος δειγμάτων φίλτρων και υγρών κλασμάτων (νερού) που προέκυψαν από την επεξεργασία των δειγμάτων απόθεσης, σε συνδυασμό με το

γεγονός ότι τα υπό διερεύνηση ισότοπα ήταν πάντα κάτω από τα όρια ανίχνευσης στα δείγματα αυτά, οδήγησε τελικά στην απόφαση να μην αναλύονται όλα αυτά τα δείγματα, αλλά μόνον ορισμένα από αυτά ενδεικτικά. Το σύνολο των φίλτρων και υγρών κλασμάτων που αναλύθηκαν ήταν 109. Για λόγους πληρότητας, οι κωδικοί των δειγμάτων αυτών δίνονται στο Παράρτημα ΙΖ.

Στις παραγράφους που ακολουθούν δίνονται τα αποτελέσματα της συγκέντρωσης των ραδιενεργών ισοτόπων που ανιχνεύθηκαν στα δείγματα του *Πίνακα 6.34*, ομαδοποιημένα κατά κατηγορία, ενώ γίνεται και μία σειρά από συσχετίσεις με διάφορες παραμέτρους και άλλες μετρήσεις που έγιναν παράλληλα με τις δειγματοληψίες των αποθέσεων. Για διευκόλυνση του αναγνώστη, στους πίνακες που ακολουθούν οι συσχετίσεις οι οποίες διαπιστώνεται ότι είναι στατιστικά σημαντικές παρουσιάζονται με χρώμα «γκρι».

Το σύνολο αυτών των δεδομένων στη συνέχεια αξιοποιείται για την εξαγωγή συμπερασμάτων. Στο σημείο αυτό είναι σημαντικό να τονιστεί ότι για τις ξηρές και ολικές αποθέσεις τα αποτελέσματα δίνονται ως μέσος εβδομαδιαίος ρυθμός απόθεσης σε Bq/(week·m²) ή mBq/(week·m²).

Στο σημείο αυτό είναι πολύ σημαντικό να αναφερθεί ότι, στην προσπάθεια άντλησης της μεγαλύτερης δυνατής πληροφορίας από τα δείγματα που συλλέχθηκαν και αναλύθηκαν, καθώς και της διερεύνησης πιθανών συσχετίσεων, τα δείγματα ομαδοποιήθηκαν και υπέστησαν στατιστική επεξεργασία και διερεύνηση συσχετίσεως με διάφορους τρόπους, συγκεκριμένα: ως δείγματα ξηρών αποθέσεων, ως δείγματα ολικών (υγρές και ξηρές) αποθέσεων και ως δείγματα συνεχόμενων αποθέσεων (περιλαμβάνουν δείγματα υγρών και ξηρών αποθέσεων). Επίσης, πρέπει να επισημανθεί ότι η εύρεση μίας στατιστικά σημαντικής συσχέτισης μεταξύ δύο μεγεθών δεν μπορεί να θεωρηθεί απόδειξη ότι υπάρχει εξάρτηση μεταξύ των δύο μεγεθών.

6.2.1 Συγκέντρωση ραδιενεργών ισοτόπων σε μεμονωμένα δείγματα βροχής

Με εξαίρεση τα αποτελέσματα των δειγμάτων βροχής που χρησιμοποιήθηκαν για την ανάπτυξη της μεθόδου δειγματοληψίας και επεξεργασίας υγρών αποθέσεων, τα οποία δίνονται στο κεφάλαιο 5, συλλέχθηκε νερό βροχής από ακόμα πέντε ανεξάρτητα συμβάντα βροχόπτωσης. Στον Πίνακα 6.1 που ακολουθεί δίνονται τα σχετικά αποτελέσματα.

Κωδικός	⁷ Be			²¹⁰ Pb			
Δείγματος	Bq/L		MDA (Bq/L)	mBq/L			MDA (mBq/L)
QSA2	0.83 ±	0.03	0.01	<mda< td=""><td>30</td></mda<>		30	
WR001	0.80 ±	0.04	0.02	67	±	15	32
WR002	1.92 ±	0.09	0.01	58	±	20	41
WR007	2.25 ±	0.05	0.01	220	±	27	53
WR008	3.11 ±	0.08	0.01	191	±	12	29
WR021	4.11 ±	0.08	0.01	709	±	23	37

Πίνακας 6.1 : Αποτελέσματα επεξεργασίας και ανάλυσης μεμονωμένων δειγματοληψιών βροχής.

Οι μεμονωμένες περιπτώσεις βροχόπτωσης που συλλέχθηκαν δεν είναι πολλές, καθώς τα περισσότερα δείγματα της Δ.Δ. ήταν δείγματα ολικών αποθέσεων. Ωστόσο, από τα παραπάνω αποτελέσματα διαπιστώνεται ότι συστηματικά ανιχνεύεται ⁷Be και ²¹⁰Pb στις βροχοπτώσεις, σε συγκεντρώσεις που είναι αναμενόμενες βάσει βιβλιογραφίας (Caillet, et al., 2001), (Mohan, et al., 2019), (Mohan, et al., 2019). Τα αποτελέσματα συνοδεύονται από ικανοποιητική αβεβαιότητα που επιτρέπει τη στατιστική τους διαφοροποίηση και τη σύγκρισή τους. Ακόμα, τα κατώτερα επίπεδα ανίχνευσης είναι ιδιαίτερα χαμηλά για το ⁷Be, και ικανοποιητικά για τον ²¹⁰Pb, οι συγκεντρώσεις ενεργότητας του οποίου είναι μία τάξη μεγέθους μικρότερες από αυτές του ⁷Be.

Αν και το μικρό πλήθος των μεμονωμένων δειγμάτων βροχόπτωσης δεν επιτρέπει την εξαγωγή στατιστικά σημαντικών συσχετίσεων μεταξύ ⁷Be και ²¹⁰Pb, παρατηρείται μια έντονη τάση συσχέτισης μεταξύ των συγκεντρώσεων ενεργότητάς τους και αρκετά υψηλή τιμή του συντελεστή συσχέτισης (R²=0.7219), όπως φαίνεται στο *Σχήμα 6.1*, γεγονός που διαπιστώνεται και σε αντίστοιχες μελέτες στη βιβλιογραφία (Chen, et al., 2016), (Mohan, et al., 2019).

Σχήμα 6.1 : Συσχέτιση μεταξύ των συγκεντρώσεων ενεργότητας ⁷Be-²¹⁰Pb σε δείγματα βροχής.

6.2.2 Συγκέντρωση ραδιενεργών ισοτόπων σε δείγματα χιονιού

Κατά τη διάρκεια εκπόνησης της Δ.Δ. έλαβαν χώρα τρία σημαντικά συμβάντα χιονόπτωσης στην περιοχή της Αττικής:

i. Κακοκαιρία "Τηλέμαχος"

Το δείγμα χιονιού από τη συγκεκριμένη κακοκαιρία που έπληξε τη χώρα συλλέχθηκε στην περιοχή της Πολυτεχνειούπολης Ζωγράφου, όπου βρίσκεται το ΕΠΤ-ΕΜΠ, στις 8/1/2019 και χρησιμοποιήθηκε για επιβεβαίωση της αναπτυχθείσας μεθόδου επεξεργασίας και ανάλυσης δειγμάτων ατμοσφαιρικών αποθέσεων, όπως αυτή περιγράφτηκε στο 5° κεφάλαιο, και τα αποτελέσματα της επεξεργασίας δίνονται στον Πίνακα 5.6

ii. Κακοκαιρία "Μήδεια"

Η κακοκαιρία Μήδεια διήρκησε μεταξύ 13 και 16 Φεβρουαρίου 2021, και εξελίχθηκε σε χιονοκαταιγίδα. Η θέση δειγματοληψίας ήταν στον Λόφο Ανθέων στην περιοχή Άνοιξη της Αττικής (38°07'34.4''N, 23°51'50.7''E). Το συνολικό ύψος της χιονόπτωσης στη θέση δειγματοληψίας έφτασε τα 80cm. Ωστόσο, το δείγμα που συλλέχθηκε και αναλύθηκε αφορά τα πρώτα 20cm της χιονόπτωσης, τα οποία συλλέχθηκαν στις 15/2/2021, κατά τη διάρκεια μιας παύσης του φαινομένου, όπως φαίνεται και στο Σχήμα 6.2.

Σχήμα 6.2 : Δειγματοληψία των πρώτων 20cm χιονιού από τη χιονόπτωση της κακοκαιρίας "Μήδεια"

Τα αποτελέσματα της ανάλυσης του συγκεκριμένου δείγματος δίνονται στον Πίνακα 6.2 που ακολουθεί.

Πίνακας 6.2 : Συγκέντρωση ενεργότητας ⁷Be και ²¹⁰Pb στο δείγμα χιονιού της κακοκαιρίας "Μήδεια"

Κωδικός Δείγματος	$^{7}\mathrm{Be}$	e	²¹⁰ Pb		
	$Bq/L \pm 1\sigma$	MDA (Bq/L)	$mBq/L\pm 1\sigma$	MDA (mBq/L)	
WR006	0.74 ± 0.02	0.01	40 ± 15	31	

Όπως και στο δείγμα χιονιού της κακοκαιρίας "Τηλέμαχος", έτσι και στο δείγμα της κακοκαιρίας "Μήδεια" ανιχνεύθηκε και ⁷Be και ²¹⁰Pb. Ωστόσο, το γεγονός ότι το δείγμα που συλλέχθηκε αφορά μόνο τα πρώτα 20cm της χιονόπτωσης δεν το κάνει αντιπροσωπευτικό του συνόλου της ενεργότητας των δύο ισοτόπων που αποτέθηκε στο έδαφος.

iii. Κακοκαιρία "Ελπίς"

Η κακοκαιρία "Ελπίς" διήρκησε από 24/1/2022 έως και 25/1/2022. Η θέση δειγματοληψίας ήταν και πάλι στον Λόφο Ανθέων στην περιοχή Άνοιξη της Αττικής. Καθώς ήταν αναμενόμενο το μεγάλο ύψος χιονόπτωσης, από την προηγούμενη ημέρα (23/1/22) είχε προετοιμασθεί η θέση δειγματοληψίας, με την τοποθέτηση πάνω σε επίπεδη επιφάνεια πλαστικού φύλλου, ώστε να διευκολυνθεί η συλλογή του δείγματος, όπως φαίνεται στο Σχήμα 6.3.

Σχήμα 6.3 : Επιφάνεια συλλογής δείγματος χιονιού από την κακοκαιρία "Ελπίς".

Ο αρχικός σχεδιασμός της συγκεκριμένης δειγματοληψίας ήταν η συλλογή της χιονόπτωσης ανά εκατοστό πάνω από την επιφάνεια δειγματοληψίας. Ωστόσο, η κακοκαιρία εξελίχτηκε σε χιονοκαταιγίδα και η σφοδρότητα της χιονόπτωσης δεν επέτρεπε τη συνεχή συλλογή κάθε εκατοστού που αποτίθετο. Για τον λόγο αυτό η συλλογή των κλασμάτων του χιονιού από το ανώτερο προς το κατώτερο έγινε μετά το πέρας της χιονόπτωσης στις 25/1/22. Το συνολικό ύψος της χιονόστρωσης ήταν 45cm και γι' αυτό, κάνοντας την υπόθεση ότι το μεγαλύτερο ποσοστό της συγκέντρωσης των ραδιενεργών ισοτόπων βρίσκεται στα πρώτα εκατοστά (όπου κυριαρχεί το φαινόμενο του washout), επιλέχτηκαν τα κλάσματα της χιονόστρωσης να είναι τα 0-1cm, 1-2cm, 2-3cm, 3-4cm, 4-5cm, 5-10cm, 10-15cm, 15-20cm, 20-30cm και 30-45cm. Η υπόθεση αυτή βασίστηκε στη διαπίστωση των (Ishikawa, et al., 1995) ότι το πρώτο 1mm της βροχόπτωσης αποτελεί το 27% έως 34% του συνολικού washout, και θεωρήθηκε ότι ανάλογη τάση θα ακολουθηθεί και από το φαινόμενο της χιονόπτωσης.

Τα κλάσματα που συλλέχθηκαν τοποθετήθηκαν σε πλαστικά δοχεία, όπως φαίνεται στο *Σχήμα 6.4*, και στη συνέχεια οξινίστηκαν με προσθήκη HNO₃ και οδηγήθηκαν στο εργαστήριο για επεξεργασία και ανάλυση. Τα αποτελέσματα της γ-φασματοσκοπικής ανάλυσης των δειγμάτων δίνονται στον *Πίνακα 6.3*.

Σχήμα 6.4 : Τα κλάσματα χιονόστρωσης της κακοκαιρίας "Ελπίς".

Πίνακας	6.3	:	Συγκέντρωση	ραδιενεργών	ισοτόπων	στα	διάφορα	κλάσματα	επί	του
συνολικοί	ό ύψο	υς	της χιονόστρω	σης της κακοκ	αιρίας "Ελι	πίς".				

Κωδικός	Κλάσμα	⁷ Be		²¹⁰ Pb		
Δείγματος	(cm)	Bq/L	MDA (Bq/L)	mBq/L	MDA (mBq/L)	
WR010	30-45	1.40 ± 0.03	0.01	52 ± 22	47	
WR011	20-30	$0.99 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.03$	0.01	103 ± 19	40	
WR012	15-20	0.80 ± 0.02	0.01	<mda< td=""><td>43</td></mda<>	43	
WR013	10-15	0.97 ± 0.03	0.01	123 ± 20	42	
WR014	5-10	0.63 ± 0.02	0.01	<mda< td=""><td>35</td></mda<>	35	
WR015	4-5	0.22 ± 0.02	0.01	<mda< td=""><td>44</td></mda<>	44	
WR016	3-4	0.20 ± 0.02	0.01	<mda< td=""><td>61</td></mda<>	61	
WR017	2-3	0.19 ± 0.02	0.01	<mda< td=""><td>50</td></mda<>	50	
WR018	1-2	0.17 ± 0.03	0.01	<mda< td=""><td>66</td></mda<>	66	
WR019	0-1	0.32 ± 0.02	0.01	64 ± 19	41	

Η γραφική απεικόνιση των παραπάνω μετρήσεων δίνεται στα Σχήματα 6.5 και 6.6.

Σχήμα 6.5 : Συγκέντρωση ενεργότητας ⁷Be στα κλάσματα της χιονόπτωση της κακοκαιρίας "Ελπίς".

Σχήμα 6.6 : Συγκέντρωση ενεργότητας ²¹⁰Pb στα κλάσματα της χιονόπτωση της κακοκαιρίας "Ελπίς".

Είναι εμφανές, ότι το μεγαλύτερο ποσοστό της συγκέντρωσης των ραδιενεργών ισοτόπων εντοπίζεται στα τελευταία (ανώτερα) εκατοστά της χιονόστρωσης, κάτι το οποίο έρχεται σε αντίθεση με την αρχική υπόθεση. Κατά τη διάρκεια της χιονόπτωσης, τα ραδιενεργά ισότοπα που εναποτίθενται στην επιφάνεια της Γης προέρχονται είτε από τον ατμοσφαιρικό αέρα μέσω της κατακρήμνισής τους από τις νιφάδες του χιονιού (αντίστοιχο του washout) ή από τις νιφάδες τις ίδιες στην περίπτωση που βρίσκονται μέσα στο νέφος κατά τη συμπύκνωσή τους (snowout αντίστοιχο του rainout). Συνεπώς, τα παραπάνω αποτελέσματα θα μπορούσαν να ερμηνευτούν βάσει των δύο παρακάτω υποθέσεων ή του συνδυασμού τους:

- Κατά την εξέλιξη της χιονόπτωσης, χιονονιφάδες όλο και υψηλότερης συγκέντρωσης σε ραδιενεργά ισότοπα εναποτέθηκαν στο έδαφος λόγω του snowout.
- ii. Κατά την εξέλιξη της χιονόπτωσης, λόγω των υψηλής ταχύτητας ανέμων νέες αέριες μάζες πλούσιες σε ⁷Be και ²¹⁰Pb μετακινήθηκαν στη περιοχή της χιονόπτωσης με αποτέλεσμα την κατακρήμνιση των ραδιενεργών ισοτόπων που μετέφεραν.

Στο σημείο αυτό είναι σημαντικό να προστεθεί ότι από τα διαθέσιμα μετεωρολογικά δεδομένα κατά τη διάρκεια της κακοκαιρίας "Ελπίς" δεν είναι δυνατή η εκτίμηση της έντασης της χιονόπτωσης συναρτήσει του χρόνου, κάτι το οποίο μπορεί να αποτελεί σημαντικό παράγοντα για την ερμηνεία των παραπάνω αποτελεσμάτων. Πάντως, αυτό που μπορεί να λεχθεί εμπειρικά είναι ότι στη συγκεκριμένη χιονοκαταιγίδα τα πρώτα εκατοστά εναποτέθηκαν σε χρονικό διάστημα λίγων λεπτών, ενώ τα υπόλοιπα σε χρονικό διάστημα μίας ημέρας. Σύμφωνα με προηγούμενες έρευνες (Caillet, et al., 2001), σε υψηλής έντασης υγρές αποθέσεις τα περιεχόμενα ραδιενεργά ισότοπα μεταξύ νέφους και εδάφους κατακρημνίζονται σε σύντομο χρονικό διάστημα (washout), ενώ το φαινόμενο του rainout/snowout είναι το κυρίαρχο στην υπόλοιπη διάρκεια του φαινομένου. Επιπροσθέτως, υποστηρίζεται ότι οι χαμηλής έντασης υγρές αποθέσεις οδηγούν σε αποδοτικότερη κατακρήμνιση των ατμοσφαιρικών ραδιενεργών ισοτόπων (Ioannidou & Papastefanou, 2006) (Taylor, et al., 2016). Επομένως, πιθανότατα στη συγκεκριμένη χιονοκαταιγίδα, η αρκετά χαμηλότερη ένταση του φαινομένου μετά την αρχικά έντονη χιονόπτωση, σε συνδυασμό με τους υψηλής έντασης ανέμους να επέτρεψε τη συνεχή εισροή αερίων μαζών πλούσιων σε ⁷Be και ²¹⁰Pb τα οποία κατακρημνίζονταν με τη χιονόπτωση, καθώς και την απόθεση χιονονιφάδων υψηλής συγκέντρωσης σε ραδιενεργά ισότοπα λόγω του snowout.
6.2.3 Σύγκριση της συγκέντρωσης ενεργότητας του ⁷Be στα δείγματα υγρών αποθέσεων

Στο σημείο αυτό, ενδιαφέρον παρουσιάζει η σύγκριση των συγκεντρώσεων ενεργότητας του ⁷Be που υπολογίστηκαν από το σύνολο των δειγμάτων καθαρών υγρών αποθέσεων (βροχής και χιονιού). Επισημαίνεται ότι η συνολική συγκέντρωση ενεργότητας για τη χιονόπτωση της χιονοκαταιγίδας «Ελπίς» υπολογίστηκε αποδίδοντας σε κάθε εκατοστό τη συγκέντρωση που αναλογεί και υπολογίζοντας τον μέσο όρο από τις επιμέρους συγκεντρώσεις ενεργότητας όλων των εκατοστών. Επίσης, είναι σημαντικό να τονιστεί ότι η συγκέντρωση ενεργότητας «Μήδεια» αφορά μόνο τα πρώτα 20cm της χιονόπτωσης (η χιονόπτωση έφτασε συνολικό ύψος τα 80cm). Η ανωτέρω σύγκριση γίνεται στο *Σχήμα 6.7* που ακολουθεί. Αυτό που παρατηρείται είναι ότι η συγκέντρωση ενεργότητας ⁷Be στα δείγματα βροχής είναι εν γένει πολύ υψηλότερη από ότι στα δείγματα χιονόπτωσης.

*Να σημειωθεί ότι η συγκέντρωση ενεργότητας της χιονοκαταιγίδας «Μήδεια» αφορά μόνο τα πρώτα 20cm της χιονόπτωσης.

6.2.4 Συγκέντρωση ραδιενεργών ισοτόπων σε δείγματα υγρασίας

Πέρα από τα δύο αρχικά δείγματα υγρασίας, τα οποία συλλέχθηκαν στη φάση των δοκιμών της μεθόδου, συλλέχθηκαν ακόμα 7 δείγματα. Η χρονική διάρκεια της κάθε δειγματοληψίας υγρασίας είχε εύρος από 1 έως 8 ημέρες, ώστε να συλλεχθεί ικανοποιητική ποσότητα δείγματος, καθώς η συλλογή της εξαρτάται από τη σχετική υγρασία στην ατμόσφαιρα. Τα συγκεντρωτικά αποτελέσματα για όλα τα δείγματα δίνονται στον *Πίνακα 6.4*, από όπου προκύπτει ότι το εύρος συγκέντρωσης ενεργότητας του ⁷Be είναι από 0.04 έως 0.15 Bq/L, με το MDA να κυμαίνεται από 0.003 έως 0.020 Bq/L. Σε κανένα δείγμα δεν κατέστη δυνατή η ανίχνευση ²¹⁰Pb, του οποίου η απόθεση, σύμφωνα με τη βιβλιογραφία, συσχετίζεται θετικά με τη σχετική υγρασία στην ατμόσφαιρα (Pham, et al., 2011), (Mohan, et al., 2018).

Κωδικός	⁷ Be	²¹⁰ Pb		
Δείγματος	Bq/L	MDA (Bq/L)	mBq/L	MDA (mBq/L)
HR001	$0.07 \hspace{.1in} \pm \hspace{.1in} 0.01$	0.02		
HR002	<mda< td=""><td>0.02</td><td></td><td></td></mda<>	0.02		
HR003	<mda< td=""><td>0.01</td><td></td><td></td></mda<>	0.01		
HR004	$0.08 \hspace{0.2cm} \pm \hspace{0.2cm} 0.05$	0.01		
WR020	$0.15 \hspace{0.1cm} \pm \hspace{0.1cm} 0.02$	0.01	<mda< td=""><td>~ 40</td></mda<>	~ 40
HR005	$0.05 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	0.01		
HR006	$0.06 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	0.01		
HR007	$0.04 \hspace{0.1in} \pm \hspace{0.1in} 0.01$	0.01		
HR008	$0.05 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	0.01		

Πίνακας 6.4 : Συγκεντρώσεις ραδιενεργών ισοτόπων στα δείγματα υγρασίας που συλλέχθηκαν στην παρούσα Δ.Δ..

6.2.5 Ρυθμός απόθεσης ραδιενεργών ισοτόπων στις ξηρές ατμοσφαιρικές αποθέσεις

Η δειγματοληψία και επεξεργασία δειγμάτων ξηρής απόθεσης αποτέλεσε μεγάλο μέρος της παρούσας Δ.Δ., καθώς η εισαγωγή της στις συστηματικές περιβαλλοντικές

μετρήσεις που διεξάγονται από το ΕΠΤ-ΕΜΠ είναι αναγκαία για την ολοκληρωμένη παρακολούθηση της ραδιενέργειας περιβάλλοντος.

Πέρα από τα 3 αρχικά δείγματα που χρησιμοποιήθηκαν για την ανάπτυξη της μεθόδου, συλλέχθηκαν επιπροσθέτως ακόμα 22 δείγματα ξηρής απόθεσης. Τα συγκεντρωτικά αποτελέσματα των γ-φασματοσκοπικών αναλύσεων των δειγμάτων ξηρής απόθεσης δίνονται στον *Πίνακα 6.5*.

Κωδικός	⁷ Be		²¹⁰ Pb					
Δείγματος	Bq/(week	x ∙m²)	$\frac{MDA}{Bq/(week \cdot m^2)}$	mBq/((wee	k∙m²)	MDA mBq/(week·m ²)
DR001	1.78	±	0.05	0.01	388	±	42	78
DR002	0.78	±	0.03	0.01	135	±	23	42
DR003	0.30	±	0.02	0.01	<	MD	A	64
DR004	1.75	±	0.06	0.01	652	±	43	83
DR005	0.80	±	0.03	0.01	254	±	25	50
DR006	12.60	±	0.28	0.01	1660	±	56	85
DR007	0.93	±	0.07	0.02	780	±	99	200
DR008	3.36	±	0.14	0.02	902	±	100	200
DR009	4.29	±	0.10	0.01	881	±	1	87
DR010	2.02	±	0.08	0.02	347	±	79	165
DR011	0.85	±	0.09	0.02	233	±	102	204
DR012	2.08	±	0.10	0.02	443	±	95	192
DR013	0.94	±	0.06	0.02	381	±	74	151
DR014	3.24	±	0.14	0.02	612	±	100	203
DR015	4.28	±	0.16	0.02	815	±	98	199
DR016	16.55	±	0.33	0.01	2195	±	69	106
DR017	0.72	±	0.13	0.02	<	MD	A	200
DR018	0.93	±	0.32	0.06	185	±	66	171
DR019	2.43	±	0.15	0.02	689	±	35	83
DR020	2.22	±	0.09	0.01	310	±	17	39
DR021	0.63	±	0.13	0.03	159	±	37	96
TR013	4.42	±	0.30	0.04	529	±	59	145
DR022	2.98	±	0.25	0.04	468	±	53	136
TR014	0.99	±	0.22	0.04	377	±	51	129
DR023	1.27	±	0.21	0.04	300	±	50	129

Πίνακας 6.5 : Αποτελέσματα ρυθμού απόθεσης ραδιενεργών ισοτόπων, όπως εκτιμήθηκε από τα δείγματα ξηρής απόθεσης που συλλέχθηκαν στην παρούσα Δ.Δ.

Εκτός από ⁷Be και ²¹⁰Pb, σε ένα δείγμα, συγκεκριμένα στο δείγμα DR009, έγινε οριακή ανίχνευση και του ισοτόπου ¹³⁷Cs με τον ρυθμό απόθεσης να προσδιορίζεται στα 65 ± 58 mBq/(week·m²). Το αποτέλεσμα αυτό αναδεικνύει την αποτελεσματικότητα της αναπτυχθείσας μεθοδολογίας για την παρακολούθηση και άλλων ραδιενεργών ισοτόπων στην ατμόσφαιρα, πέραν του ⁷Be και του ²¹⁰Pb. Μετά από την ανίχνευση και του ¹³⁷Cs, για κάθε ένα από τα δείγματα του *Πίνακα 6.5* έγινε υπολογισμός του MDA και για το ¹³⁷Cs. Το εύρος του MDA, το οποίο εξαρτάται από τη χρονική διάρκεια της δειγματοληψίας καθώς και τη διάρκεια της γ-φασματοσκοπικής ανάλυσης του δείγματος, βρέθηκε στην περιοχή 2 έως 31 mBq/(week·m²).

Από τα παραπάνω αποτελέσματα είναι εμφανής η μεγάλη κύμανση των μετρούμενων συγκεντρώσεων του ⁷Be και του ²¹⁰Pb στις ατμοσφαιρικές αποθέσεις, με το ⁷Be να παρουσιάζει ρυθμό απόθεσης από 0.30 έως 16.55 Bq/(week·m²) και το ²¹⁰Pb από 135 έως 2195 mBq/(week·m²). Η συσχέτιση μεταξύ των δύο ροών απόθεσης ⁷Be και ²¹⁰Pb στις ξηρές αποθέσεις δίνεται στο *Σχήμα* 6.8.

Από το παραπάνω σχήμα προκύπτει ότι παρά τη διαφορετική προέλευση των δύο ραδιενεργών ισοτόπων ενδιαφέροντος υπάρχει πολύ καλή συσχέτιση μεταξύ τους στις ξηρές αποθέσεις, με τον συντελεστή συσχέτισης να είναι στατιστικά σημαντικός και p-value<0.00001, κάτι το οποίο επιβεβαιώνεται και από αντίστοιχες ερευνητικές μελέτες, όπως αυτές αναφέρθηκαν στο Κεφάλαιο 2.

6.2.6 Ρυθμός απόθεσης ραδιενεργών ισοτόπων στις ολικές ατμοσφαιρικές αποθέσεις

Όπως αναφέρθηκε και στην παράγραφο 6.1, η ολική απόθεση περιλαμβάνει ξηρές και υγρές ατμοσφαιρικές αποθέσεις. Η δειγματοληψία και επεξεργασία ολικών αποθέσεων αποτελεί πολύ σημαντικό εργαλείο για την παρακολούθηση της περιβαλλοντικής ραδιενέργειας, καθώς επιτρέπει τη συστηματική της παρακολούθηση, με μικρή επέμβαση από τον ερευνητή, καθώς δεν απαιτείται η συνεχής παρακολούθηση των μετεωρολογικών συνθηκών και η αλλαγή των δειγματοληπτών ή η χρήση ειδικών δειγματοληπτών ξηρής/υγρής απόθεσης. Στα πλαίσια της παρούσας Δ.Δ. έγινε συλλογή 12 δειγμάτων ολικής απόθεσης. Τα αποτελέσματα της γ-φασματοσκοπικής ανάλυσης των δειγμάτων αυτών δίνονται στον Пі́vaка 6.6.

	⁷ Be			²¹⁰ Pb				
Κωδικός Δείγματος	Bq/(w	veek	∵m²)	MDA Bq/(week·m ²)	mBq/(wee	k∙m²)	MDA mBq/(week·m ²)
TR001	6.98	±	0.14	0.01	430	±	15	23
TR003	8.82	±	0.17	0.01	1085	±	23	18
TR002	19.2	±	0.4	0.07	3335	±	122	205
TR004	18.4	±	0.4	0.01	1925	±	49	56
TR005	29.9	±	0.6	0.02	2349	±	114	205
TR006	27.3	±	0.8	0.03	1553	±	187	374
TR007	17.3	±	0.3	0.01	1960	±	83	144
TR008	14.6	±	0.3	0.02	1889	±	113	201
TR009	40.2	±	0.8	0.02	6629	±	180	231
TR010	26.1	±	0.5	0.01	2959	±	68	68
TR011	22.6	±	0.4	0.01	1462	±	74	135
TR012	31.4	±	0.6	0.02	1342	±	95	183

Πίνακας 6.6: Αποτελέσματα γ-φασματοσκοπικής ανάλυσης για τα δείγματα ολικής απόθεσης που συλλέχθηκαν στα πλαίσια της παρούσας Δ.Δ.

Τα παραπάνω αποτελέσματα αναδεικνύουν υψηλότερες συγκεντρώσεις για το ⁷Be και τον ²¹⁰Pb στις ολικές αποθέσεις συγκριτικά με τα αποτελέσματα των ξηρών

αποθέσεων του *Πίνακα 6.5*, κάτι το οποίο αναμενόταν. Ειδικότερα, για το ⁷Be παρατηρείται ένα εύρος ρυθμού απόθεσης από 6.98 έως 40.23 Bq/(week·m²), και για το ²¹⁰Pb από 430 έως 6629 mBq/(week·m²). Επιπροσθέτως, όπως προαναφέρθηκε, σε ορισμένα από τα δείγματα ολικών αποθέσεων έγινε ανίχνευση και του ραδιενεργού ισοτόπου ¹³⁷Cs. Τα αποτελέσματα για τα εν λόγω δείγματα μαζί με τα κατώτερα επίπεδα ανίχνευσης που κυμαίνονται από 1 έως 17 mBq/(week·m²)⁶³ δίνονται στον *Πίνακα 6.7*. Η υψηλότερη συγκέντρωση ¹³⁷Cs μετρήθηκε στο δείγμα TR001 το οποίο ελήφθη για μία περίοδο περίπου δύο μηνών και συμπίπτει χρονικά με δασικές πυρκαγιές στη ζώνη αποκλεισμού του Chernobyl. Τα δείγματα TR007 και TR010 στα οποία επίσης ανιχνεύθηκε ¹³⁷Cs, δεν συλλέχθηκαν παράλληλα με κάποιο συμβάν που άμεσα να δικαιολογεί την παρουσία του ¹³⁷Cs σε αυτά, ωστόσο, το Μάρτιο του 2021 οπότε ελήφθη το δείγμα TR007 έλαβε χώρα συμβάν μεταφοράς αφρικανικής σκόνης, η οποία πολύ πιθανό να οδήγησε στην παρουσία ¹³⁷Cs στην ατμόσφαιρα, ενώ την ίδια περίοδο έγινε και έκρηξη του ηφαιστείου της Αίτνας.

	¹³⁷ Cs					
Κωδικός Δείγματος	mBq/(week·m ²)	MDA mBq/(week·m ²)				
TR001	51 ± 30	1				
TR003	<mda< td=""><td>1</td></mda<>	1				
TR002	<mda< td=""><td>7</td></mda<>	7				
TR004	<mda< td=""><td>2</td></mda<>	2				
TR005	<mda< td=""><td>8</td></mda<>	8				
TR006	<mda< td=""><td>17</td></mda<>	17				
TR007	12 ± 7	5				
TR008	<mda< td=""><td>9</td></mda<>	9				
TR009	<mda< td=""><td>9</td></mda<>	9				
TR010	10 ± 2	2				
TR011	<mda< td=""><td>5</td></mda<>	5				
TR012	<mda< td=""><td>8</td></mda<>	8				

Πίνακας 6.7 : Ρυθμός απόθεσης ¹³⁷Cs στα δείγματα ολικής απόθεσης που συλλέχθηκαν στα πλαίσια της παρούσας Δ.Δ.

⁶³ Ο υπολογισμός ενός εβδομαδιαίου ρυθμού απόθεσης, ειδικά για το Cs-137 το οποίο μπορεί να οφείλεται σε γεγονότα πολύ μικρής διάρκειας, δεν είναι και η πλέον ενδεδειγμένη προσέγγιση. Μια ακριβέστερη προσέγγιση θα έπρεπε να λάβει υπόψη τη χρονική διάρκεια παραμονής του υπόψη νέφους στην περιοχή και άλλες παραμέτρους

Αντίστοιχα με τις ξηρές αποθέσεις, μελετήθηκε και η συσχέτιση μεταξύ των συγκεντρώσεων του ⁷Be και του ²¹⁰Pb στις ολικές αποθέσεις, η οποία δίνεται στο *Σχήμα 6.9*, από όπου προκύπτει ότι υπάρχει μια ασθενής συσχέτιση μεταξύ ⁷Be και ²¹⁰Pb στις ολικές αποθέσεις με τον συντελεστή συσχέτισης να είναι οριακά μόνον στατιστικά σημαντικός με p-value = 0.013851.

6.2.7 Παράλληλη δειγματοληψία ατμοσφαιρικών αποθέσεων και ατμοσφαιρικού αερολύματος

Για την ολοκληρωμένη παρακολούθηση της συγκέντρωσης των ραδιενεργών ισοτόπων στην ατμόσφαιρα, παράλληλα με ορισμένες από τις δειγματοληψίες ατμοσφαιρικών αποθέσεων έλαβαν χώρα και δειγματοληψίες ατμοσφαιρικού αερολύματος, όπως περιγράφεται στα σχόλια του *Πίνακα 6.34*. Οι δειγματοληψίες αυτές έγιναν με χρήση της αντλίας υψηλής παροχής F&J DH-50810E, που χρησιμοποιήθηκε και για τη δειγματοληψία ατμοσφαιρικού αέρα στα κεφάλαια 3 και 4. Συνολικά, συλλέχθηκαν 16 φίλτρα 8΄ x10΄΄ τα οποία συσκευάστηκαν στην τυπική γεωμετρία 5.08cm×6.35cm×0.9cm που χρησιμοποιείται στο ΕΠΤ-ΕΜΠ (Savva, et al., 2018) και αναλύθηκαν με γ-φασματοσκοπία στον ανιχνευτή XtRa. Τα χαρακτηριστικά της δειγματοληψίας κάθε φίλτρου δίνονται στον *Πίνακα 6.8*. Για καθαρά πρακτικούς λόγους, η διάρκεια κάθε δειγματοληψίας – με εξαίρεση μία περίπτωση – δεν υπερέβη τις επτά ημέρες, κάτι που σημαίνει ότι περίπου στις μισές περιπτώσεις δεν γινόταν δειγματοληψία αέρα καθ' όλη την περίοδο δειγματοληψίας αποθέσεων. Τα ποσοστά αλληλοεπικάλυψης της δειγματοληψίας αέρα και συλλογής αποθέσεων δίνονται στον **Πίνακα 6.8**.

Κωδικός Φίλτρου αέρα	Κωδικός δείγματος ατμοσφαιρικής απόθεσης που λήφθηκε παράλληλα	Χρονική διάρκεια δειγματοληψίας φίλτρου αέρα (ημέρες)	Ποσοστό χρονικής αλληλοεπικάλυψης δειγματοληψίας αέρα και δειγματοληψίας ατμοσφαιρικής απόθεσης
a0548	DR003	13	59%
a0554	DR004	7	47%
a0559	DR007	7	100%
a0560	TR007	7	50%
a0562	TR008	7	100%
a0563	TR010	7	33%
a0564	DR010	7	100%
a0567	DR012	7	100%
a0568	TR011	7	100%
a0569	DR014	7	100%
a0570	DR016	7	78%
a0571	DR018	7	100%
a0572	DR020	7	29%
a0573	DR021	4.2	60%
a0574	DR022	7	100%
a0575	DR023	7	100%

Πίνακας 6.8 : Χαρακτηριστικά δειγματοληψίας φίλτρων αέρα που ελήφθησαν παράλληλα με δειγματοληψίες ατμοσφαιρικών αποθέσεων.

Στους πίνακες που ακολουθούν (*Πίνακας 6.9* και *Πίνακας 6.10*) παρατίθενται τα αποτελέσματα των γ-φασματοσκοπικών αναλύσεων των φίλτρων αέρα.

Κωδικός	⁷ Be			2	²¹⁰ Pb		
Φίλτρου αέρα	r	nBq/m	3	μΙ	μBq/m ³		
a0548	11.9	±	0.2	1174	±	22	
a0554	9.1	±	0.2	936	±	18	
a0559	7.0	±	0.1	1123	±	21	
a0560	5.5	±	0.1	826	±	19	
a0562	5.2	±	0.1	510	±	12	
a0563	6.6	\pm	0.1	578	\pm	15	
a0564	9.1	±	0.2	626	±	16	
a0567	8.3	\pm	0.2	1011	±	22	
a0568	9.8	\pm	0.2	1031	\pm	22	
a0569	9.1	±	0.2	1740	±	35	
a0570	10.5	±	0.2	1195	±	24	
a0571	9.6	\pm	0.2	826	\pm	19	
a0572	8.4	±	0.2	1166	±	25	
a0573	8.1	±	0.2	1143	±	24	
a0574	9.1	±	0.2	1772	±	35	
a0575	6.7	±	0.1	1223	±	24	

Πίνακας 6.9 : Συγκεντρώσεις ενεργότητας των ισοτόπων ⁷Be και ²¹⁰Pb στα φίλτρα αέρα που συλλέχθηκαν παράλληλα με δείγματα ατμοσφαιρικών αποθέσεων.

Πίνακας 6.10 : Συγκεντρώσεις ενεργότητας των ισοτόπων ⁴⁰K και ¹³⁷Cs στα φίλτρα αέρα που συλλέχθηκαν παράλληλα με δείγματα ατμοσφαιρικών αποθέσεων.

Κωδικός	⁴⁰ K		¹³⁷ Cs		
Φίλτρου αέρα	ł	uBq/m	3	nBq/m ³	MDA (nBq/m ³)
a0548	35	±	4	262 ± 174	260
a0554	79	±	6	<mda< td=""><td>331</td></mda<>	331
a0559	51	±	5	281 ± 183	274
a0560	73	±	10	<mda< td=""><td>622</td></mda<>	622
a0562	53	±	8	<mda< td=""><td>515</td></mda<>	515
a0563	54	±	10	<mda< td=""><td>760</td></mda<>	760
a0564	55	±	10	<mda< td=""><td>708</td></mda<>	708
a0567	69	±	9	<mda< td=""><td>641</td></mda<>	641
a0568	60	±	10	<mda< td=""><td>644</td></mda<>	644
a0569	72	±	11	1391 ± 508	584
a0570	69	±	9	<mda< td=""><td>610</td></mda<>	610
a0571	55	±	10	<mda< td=""><td>715</td></mda<>	715
a0572	59	±	11	<mda< td=""><td>560</td></mda<>	560
a0573	90	±	11	<mda< td=""><td>626</td></mda<>	626
a0574	56	±	9	<mda< td=""><td>557</td></mda<>	557
a0575	55	±	9	<mda< td=""><td>470</td></mda<>	470

Από τα παραπάνω αποτελέσματα διαπιστώνεται ότι σε κάθε δείγμα αερολύματος που συλλέχθηκε ανιχνεύθηκαν ⁷Be, ²¹⁰Pb και ⁴⁰K, ενώ σε λίγα δείγματα αερολύματος ανιχνεύθηκε και ¹³⁷Cs. Στα σχήματα που ακολουθούν (*Σχήμα 6.10, Σχήμα 6.11* και *Σχήμα 6.12*) παρατίθενται ανά δύο οι συγκεντρώσεις ενεργότητας των τριών ισοτόπων ⁷Be, ²¹⁰Pb και ⁴⁰K σε μία προσπάθεια αναζήτησης συσχετίσεων μεταξύ τους.

Σχήμα 6.10 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας ⁷Be και ²¹⁰Pb στα φίλτρα αέρα.

Σχήμα 6.11 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας ⁷Be και ⁴⁰K στα φίλτρα αέρα.

Σχήμα 6.12 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας ²¹⁰Pb και ⁴⁰K στα φίλτρα αέρα.

Από κατάλληλη στατιστική επεξεργασία που έγινε διαπιστώθηκε ότι δεν προκύπτει στατιστικά σημαντική συσχέτιση μεταξύ των εν λόγω ραδιενεργών ισοτόπων στο αερόλυμα της ατμόσφαιρας, γεγονός που ενδεχομένως οφείλεται στις διαφορετικές πηγές προέλευσής τους ή σε ορισμένες περιπτώσεις στο μικρό πλήθος πειραματικών σημείων. Σύμφωνα με τις έρευνες των (Pham, et al., 2011), (Lee, et al., 2007), η παρατήρηση θετικής συσχέτισης στις ατμοσφαιρικές συγκεντρώσεις ⁷Be και ²¹⁰Pb αποτελεί ένδειξη παρόμοιας ατμοσφαιρικές συγκεντρώσεις ⁷Be και ²¹⁰Pb άποτελεί και στην εργασία (Δαλάκα, 2023).

Η απουσία στατιστικά σημαντικής συσχέτισης μεταξύ ⁷Be και ²¹⁰Pb στον αέρα, η οποία προέκυψε από τις δειγματοληψίες και μετρήσεις της παρούσας εργασίας, έρχεται σε αντίθεση με τα αποτελέσματα των δειγματοληψιών ατμοσφαιρικών αποθέσεων που έγιναν παράλληλα, όπου διαπιστώνεται ικανοποιητική θετική συσχέτιση, όπως φαίνεται στο Σχήμα 6.13, με το R² να είναι στατιστικά σημαντικό με p-value < 0.00001.

Σχήμα 6.13 : Συσχέτιση μεταξύ των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα ατμοσφαιρικών αποθέσεων που συλλέχθηκαν παράλληλα με φίλτρα αέρα.

Σε μία περαιτέρω διερεύνηση, εξετάσθηκε η ύπαρξη συσχέτισης μεταξύ των συγκεντρώσεων του ⁷Be και του ²¹⁰Pb στον ατμοσφαιρικό αέρα και στις ατμοσφαιρικές αποθέσεις. Τα αποτελέσματα των συσχετίσεων που επιχειρήθηκαν δίνονται στον *Πίνακα 6.11*. Μάλιστα, σε μία προσπάθεια ανεύρεσης συσχέτισης έγινε και επιλογή μόνο των περιπτώσεων όπου η δειγματοληψία αέρα κάλυπτε πλήρως (100%) την περίοδο όπου γινόταν δειγματοληψία αποθέσεων. Οι συγκεντρώσεις του ⁷Be και του ²¹⁰Pb στις ατμοσφαιρικές αποθέσεις και στα φίλτρα αέρα που ελήφθησαν παράλληλα δίνονται στα *Σχήματα 6.14* και 6.15.

Πίνακας 6.11 : Συντελεστές Συσχέτισης μεταξύ των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στις ατμοσφαιρικές αποθέσεις με τις αντίστοιχες συγκεντρώσεις τους στις δειγματοληψίες φίλτρων αέρα που γίνονταν παράλληλα.

T		-		
		R	Στατιστικά σημαντικό	p-value
7 P .o	Όλες οι παράλληλες δειγματοληψίες*	-0.2879	Όχι	0.2796
'Be	Μόνο αλληλοεπικάλυψη 100%**	+0.4729	Όχι	0.2839
210	Όλες οι παράλληλες δειγματοληψίες***	-0.4159	Όχι	0.1008
	Μόνο αλληλοεπικάλυψη 100%****	+0.4399	Όχι	0.3233

* N=16, **N=7, ***N=15, ****N=7

Σχήμα 6.14 : Συγκέντρωση ενεργότητας του ⁷Be στα φίλτρα αέρα και ρυθμός απόθεσης.

Από τα παραπάνω αποτελέσματα – ιδιαίτερα του Πίνακα 6.11 - είναι εμφανές ότι οι διαφορετικοί μηχανισμοί που ενδεχομένως διέπουν την απόθεση των ⁷Be και ²¹⁰Pb οδηγούν στην αποτυχία στατιστικά σημαντικής συσχέτισης μεταξύ της συγκέντρωσης στην ατμόσφαιρα και της απόθεσης στο έδαφος και για τα δύο ισότοπα. Παρ' όλα αυτά, στα Σχήματα 6.14 και 6.15 φαίνεται καθαρά μία τάση για αρνητική συσχέτιση, με τις χαμηλότερες τιμές της συγκέντρωσης στον αέρα να συμπίπτουν με τις υψηλότερες αποθέσεις. Το συμπέρασμα που προκύπτει από τα παραπάνω είναι ότι για την εκτίμηση του ρυθμού απόθεσης και εν τέλει της ενεργότητας των ραδιενεργών ισοτόπων στο έδαφος, δεν επαρκεί η γνώση της συγκέντρωσής τους στον αέρα, αλλά πρέπει να γίνουν κατάλληλες δειγματοληψίες απόθεσης. Το παραπάνω συμπέρασμα ενισχύεται και από το γεγονός ότι, ενώ ανιχνεύεται ¹³⁷Cs σε τρία από τα δεκαέξι φίλτρα αέρα, κάτι το οποίο φαίνεται να οφείλεται σε φαινόμενα μεταφοράς σκόνης από την έρημο Σαχάρα [<u>NOAA</u>, <u>ECMWF</u>, <u>Copernicus</u>, τελευταία πρόσβαση 2/6/2023], το ¹³⁷Cs δεν ανιχνεύεται στις αντίστοιχες ατμοσφαιρικές αποθέσεις.

6.2.8 Συνεχείς μετρήσεις ολικών ατμοσφαιρικών αποθέσεων

Όπως φαίνεται και από τον Πίνακα 6.34, από το σύνολο των δειγματοληψιών που πραγματοποιήθηκαν, οι 32 έγιναν χωρίς διακοπή, επιτρέποντας τη συνεχή παρακολούθηση των ατμοσφαιρικών αποθέσεων για το χρονικό διάστημα από 6/7/2020 έως και 4/10/2021. Στο συγκεκριμένο χρονικό διάστημα, που καλύπτει συνολικά 15 μήνες, έγινε συλλογή δειγμάτων ξηρών και ολικών αποθέσεων και τα αποτελέσματα υπέστησαν επεξεργασία, ώστε να δώσουν εκτιμήσεις της απόθεσης και σε μηνιαία βάση. Τα δείγματα που συλλέχθηκαν συνεχώς, χωρίς χρονική διακοπή, αντιμετωπίζονται ως ξεχωριστή ομάδα δειγμάτων και θα αναφέρονται ως «συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων». Τα αποτελέσματα των συνεχών μετρήσεων ολικών αποθέσεων του ⁷Be και του ²¹⁰Pb δίνονται στα Σχήματα 6.16 και 6.17.

Από τα αποτελέσματα των Σχημάτων 6.16 και 6.17 προκύπτει ότι η μεγαλύτερη ποσότητα των ραδιενεργών ισοτόπων εναποτέθηκε κυρίως τους φθινοπωρινούς και χειμερινούς μήνες, με τις κυμάνσεις να αποδίδονται κυρίως στην ποσότητα των υγρών κατακρημνίσεων, όπως θα εξετασθεί στην Παράγραφο 6.3.1. Επιπροσθέτως, παρατηρείται μια ισχυρή συσχέτιση μεταξύ ⁷Be και ²¹⁰Pb, με τον συντελεστή συσχέτισης R² να είναι στατιστικά σημαντικός με p-value < 0.00001, όπως φαίνεται στο Σχήμα 6.18.

Σχήμα 6.16 : Ρυθμός απόθεσης του ⁷Be στις συνεχείς μετρήσεις ατμοσφαιρικών αποθέσεων.

Σχήμα 6.17 : Ρυθμός απόθεσης του ²¹⁰Pb στις συνεχείς μετρήσεις ατμοσφαιρικών αποθέσεων.

Σχήμα 6.18 : Συσχέτιση μεταξύ των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb για τα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων, όπου με «πορτοκαλί» χρώμα τονίζονται τα δείγματα ολικών (ζηρών + υγρών) αποθέσεων, ενώ με «μπλε» χρώμα οι αμιγώς ξηρές αποθέσεις.

Από το σύνολο των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων, πέρα από την κατανομή των ρυθμών απόθεσης που δίνεται στα Σχήματα 6.16 και 6.17, έγινε υπολογισμός και των αντίστοιχων μηνιαίων τιμών, όπως αυτές δίνονται στον Πίνακα 6.12.

				²¹⁰ Pb			
Έτος Μή	Μήνας		Bq/	2	mBq/		
		(m	onth∙m	1 ⁻)	(m	onth∙n	n²)
	Αύγουστος	39.1	±	0.7	4803	±	100
•	Σεπτέμβριος	48.6	±	0.6	6674	±	114
2020	Οκτώβριος	74.9	±	1.3	8221	±	173
	Νοέμβριος	114	±	2.0	9368	±	377
	Δεκέμβριος	132	±	2.7	10403	±	506
	Ιανουάριος	132	±	2.7	10403	±	506
	Φεβρουάριος	86.6	±	2.5	5551	±	595
	Μάρτιος	69.7	±	0.8	9551	±	237
	Απρίλιος	104	±	1.6	13295	±	229
2021	Μάιος	10.8	±	0.2	2219	±	169
	Ιούνιος	63.3	±	0.9	4106	±	181
	Ιούλιος	27.3	±	0.6	3903	±	140
	Αύγουστος	9.8	±	0.3	1675	±	66
	Σεπτέμβριος	9.5	±	0.5	1640	±	101

Πίνακας 6.12 : Μηνιαίες τιμές του ρυθμού απόθεσης για τα ισότοπα ⁷Be και ²¹⁰Pb βάσει των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων.

Από τα αποτελέσματα του Πίνακα 6.12 προκύπτει ένα μηνιαίο εύρος του ρυθμού απόθεσης, από 9.5 έως 132 Bq/(month·m²) για το ⁷Be και από 1640 έως 13295 mBq/(month·m²) για το ²¹⁰Pb.

Καθώς οι μηνιαίες τιμές του ρυθμού απόθεσης εξομαλύνουν τις εβδομαδιαίες μεταβολές των ατμοσφαιρικών αποθέσεων, έχει ενδιαφέρον η συσχέτισή τους, η οποία δίνεται στο Σχήμα 6.19. Η συσχέτιση που προκύπτει είναι υψηλότερη και πάλι στατιστικά σημαντική με p-value = 0.000037.

Από τις μετρήσεις που πραγματοποιήθηκαν έγινε και μία εκτίμηση της μέσης ετήσιας απόθεσης⁶⁴, η οποία για το ⁷Be είναι 790 ± 5 Bq/(year·m²) και για το ²¹⁰Pb είναι 78.7 ± 1.0 Bq/(year·m²), τα οποία είναι αναμενόμενα βάσει βιβλιογραφίας (Zhang, et al., 2021), όπως δίνεται στο Κεφάλαιο 2.

Επιλέγοντας μία σειρά από συνεχόμενες δειγματοληψίες οι οποίες πραγματοποιήθηκαν από τον Φεβρουάριο του 2021 έως και τον Σεπτέμβριο του 2021, (συνολικά 26 δειγματοληψίες) οι οποίες είναι μικρού χρονικού βήματος (7 έως 14 ημέρες η κάθε μία) και στις οποίες ήταν εμφανής η διάκριση μεταξύ ξηρών και ολικών αποθέσεων, κατέστη δυνατός ο υπολογισμός του λόγου μεταξύ της ξηρής και της ολικής απόθεσης για την περίοδο αυτή, ο οποίος δίνεται στον **Πίνακα 6.13**.

⁶⁴ Δεν πρόκειται για τη μέση τιμή από μετρήσεις σειράς ετών, αλλά ετήσια τιμή που έχει προκύψει από τις 12 μηνιαίες τιμές ενός έτους με το σφάλμα της σε επίπεδο 1σ.

	⁷ Be	²¹⁰ Pb
	Bq/m^2	Bq/m ²
Ξηρή Απόθεση	64.5 ± 0.8	12.1 ± 0.3
Ολική Απόθεση	313.5 ± 3.2	29.9 ± 0.7
Συνολική* Απόθεση	378.0 ± 3.3	42.0 ± 0.8
Λόγος Ξηρής/Ολικής	0.206 ± 0.003	0.404 ± 0.014
Λόγος Ξηρής/Συνολικής	0.170 ± 0.003	0.290 ± 0.010

Πίνακας 6.13 : Λόγος ξηρής/ολικής απόθεσης, για τα ⁷Be και ²¹⁰Pb την περίοδο από 1/2/2021 έως 4/10/2021.

^{*}Ως «Συνολική» απόθεση νοείται η απόθεση που έχει προκύψει κατά την παραπάνω χρονική περίοδο, τόσο από τις ξηρές όσο και από τις ολικές κατακρημνίσεις είναι δηλαδή το άθροισμα όλων των αποθέσεων στην παραπάνω περίοδο.

Από τα παραπάνω αποτελέσματα επιβεβαιώνεται το γεγονός ότι ο κύριος μηχανισμός απόθεσης του ⁷Be και του ²¹⁰Pb είναι μέσω των υγρών κατακρημνίσεων. Ειδικότερα, οι υγρές αποθέσεις για το ⁷Be συνεισφέρουν περί το 80%, ενώ για τον ²¹⁰Pb περί το 70% των συνολικών αποθέσεων.

6.3 Συσχετίσεις ρυθμών απόθεσης και συγκεντρώσεων ενεργότητας των ⁷Be και ²¹⁰Pb με μετεωρολογικές και άλλες παραμέτρους και εφαρμογή σε ατμοσφαιρικά μοντέλα

Τα αποτελέσματα από τις αναλύσεις των πάσης φύσεως ατμοσφαιρικών αποθέσεων, αν συνδυασθούν με μετεωρολογικά δεδομένα και άλλα περιβαλλοντικά μεγέθη, όπως συγκεντρώσεις ατμοσφαιρικών ρυπαντών στον αέρα, αριθμό ηλιακών κηλίδων, ύψος της τροπόπαυσης κλπ., μπορούν να οδηγήσουν σε πολύ ενδιαφέρουσες συσχετίσεις και στην εξαγωγή χρήσιμων συμπερασμάτων. Επιπλέον, με χρήση απλών μαθηματικών μοντέλων μπορούν να οδηγήσουν και στον υπολογισμό μεγεθών όπως η μέση ταχύτητα απόθεσης των σωματιδίων του ατμοσφαιρικού αερολύματος, καθώς και του κανονικοποιημένου ως προς τις υγρές αποθέσεις συντελεστή εμπλουτισμού της ατμόσφαιρας σε ραδιενεργά ισότοπα.

6.3.1 Συσχετίσεις ρυθμών απόθεσης και συγκεντρώσεων ενεργότητας ⁷Be και ²¹⁰Pb με μετεωρολογικά δεδομένα

Τα μετεωρολογικά δεδομένα που χρησιμοποιήθηκαν στα πλαίσια της εργασίας αυτής διετέθησαν στο ΕΠΤ-ΕΜΠ από το Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυξης του Εθνικού Αστεροσκοπείου Αθηνών, και αφορούν μετρήσεις που έγιναν στο μετεωρολογικό σταθμό της περιοχής Παπάγου, όπως και τα δεδομένα που χρησιμοποιήθηκαν στις αναλύσεις του κεφαλαίου 3. Τα δεδομένα διετέθησαν σε μορφή χρονοσειράς 10-λέπτου, από τα οποία εν συνεχεία υπολογίστηκαν οι αντίστοιχες μέσες τιμές για όλη τη διάρκεια της εκάστοτε δειγματοληψίας. Το σύνολο των δεδομένων για κάθε δείγμα ατμοσφαιρικής απόθεσης που συλλέχθηκε στην παρούσα Δ.Δ. δίνεται στον *Πίνακα 6.35* που παρατίθεται στο τέλος του κεφαλαίου. Σε όλες τις συσχετίσεις που ακολουθούν η θερμοκρασία δίνεται σε °C, η σχετική υγρασία σε %, η ατμοσφαιρική πίεση σε mbar και η ταχύτητα του ανέμου σε km/h.

6.3.1.1 Συσχετίσεις των συγκεντρώσεων ενεργότητας ⁷Be και ²¹⁰Pb με μετεωρολογικές παραμέτρους στα δείγματα υγρών αποθέσεων

Τα δείγματα αμιγώς υγρών αποθέσεων – βροχής στη συγκεκριμένη περίπτωση – που συλλέχθηκαν στα πλαίσια της Δ.Δ. είναι συνολικά 6, καθώς στις περισσότερες περιπτώσεις έγινε συλλογή υγρής και ξηρής απόθεσης, δηλαδή ολικής απόθεσης. Για τον λόγο αυτό, το μικρό πλήθος δεδομένων υγρής απόθεσης δεν οδήγησε σε στατιστικά σημαντικές συσχετίσεις. Ωστόσο, η τάση που εμφανίζουν οι συγκεντρώσεις ενεργότητας του ⁷Be και του ²¹⁰Pb εμφανίζει ενδιαφέρον και για τον λόγο αυτό παρουσιάζονται στον *Πίνακα 6.14* οι αντίστοιχοι συντελεστές συσχέτισης R.

Από τα αποτελέσματα του *Πίνακα 6.14* προκύπτει μια τάση αρνητικής συσχέτισης μεταξύ του ρυθμού απόθεσης του ⁷Be και του ύψους της βροχόπτωσης, κάτι το οποίο έρχεται σε αντίθεση με την αναμενόμενη θετική συσχέτιση μεταξύ τους (Caillet, et al., 2001) και μπορεί να δικαιολογηθεί:

- από το μικρό πλήθος δεδομένων,
- με την υπόθεση ότι στα δείγματα που συλλέχθηκαν, όσο αυξανόταν το ύψος
 βροχόπτωσης (όπου κυριαρχεί το rainout) η συγκέντρωση των ραδιενεργών

ισοτόπων στο συνολικό δείγμα μειωνόταν, λόγω της μικρής συνεισφοράς του rainout,

 ότι η ραγδαιότητα της βροχόπτωσης οδηγούσε σε αύξηση του συνολικού ύψους βροχόπτωσης, χωρίς να κατακρημνίζει αποδοτικά τα περιεχόμενα στην ατμόσφαιρα ραδιενεργά ισότοπα (Taylor, et al., 2016).

Επίσης, παρατηρείται τάση αρνητικής συσχέτισης μεταξύ του ²¹⁰Pb και της σχετικής υγρασίας. Η αρνητική αυτή συσχέτιση θα μπορούσε να δικαιολογηθεί από το γεγονός ότι κατά τη διάρκεια ενός φαινομένου βροχόπτωσης η ατμόσφαιρα φθάνει σε κορεσμό υγρασίας, με αποτέλεσμα, προϊόντος του χρόνου, να μειώνεται η συγκέντρωση των ραδιενεργών ισοτόπων σε αυτή.

Πίνακας 6.14 : Συντελεστές συσχέτισης μεταξύ των μετεωρολογικών παραμέτρων και των συγκεντρώσεων ενεργότητας ⁷Be (Bq/L) και ²¹⁰Pb (mBq/L) στις υγρές κατακρημνίσεις (N=6 για το ⁷Be, N=5 για τον ²¹⁰Pb).

	7-	Be	²¹⁰ Pb		
	R	p-value	R	p-value	
Θερμοκρασία	+0.3557	0.4890	+0.5735	0.3121	
Σχετική υγρασία	-0.6943	0.1259	-0.9360	0.0192	
Ατμοσφαιρική πίεση	+0.4957	0.3174	-0.3341	0.5827	
Ύψος βροχόπτωσης	-0.7336	0.0970	-0.2452	0.6910	
Μέση ταχύτητα ανέμου	+0.0917	0.8628	+0.2606	0.6720	

Το γεγονός ότι τα μετεωρολογικά δεδομένα που διατέθηκαν ήταν σε μορφή χρονοσειράς δεκαλέπτου, επέτρεψε και τον υπολογισμό της μέσης και μέγιστης έντασης βροχόπτωσης. Οι συσχετίσεις αυτές έχουν ενδιαφέρον, καθώς σύμφωνα με προηγούμενες μελέτες, οι χαμηλότερης έντασης βροχοπτώσεις οδηγούν σε αποδοτικότερη κατακρήμνιση των ραδιενεργών ισοτόπων στον ατμοσφαιρικό αέρα (Ioannidou & Papastefanou, 2006), (Taylor, et al., 2016). Οι σχετικοί υπολογισμοί μαζί με τους συντελεστές συσχέτισης για το ⁷Be και τον ²¹⁰Pb δίνονται στους *Πίνακες* 6.15 και 6.16 αντίστοιχα.

Πίνακας 6.15 : Μέση και Μέγιστη Ένταση Βροχόπτωσης κατά τη διάρκεια της δειγματοληψίας δειγμάτων υγρής απόθεσης.

Κωδικός	Μέση έντα Βροχόπτως	ση σης	Μέγιστη ένταση Βροχόπτωσης
δείγματος	mm/h		mm/h
QSA2	5.1 ±	2.1	17.4
WR001	2.5 ±	0.5	6.8
WR002	3.4 ±	1.9	12.6
WR007	1.2 ±	1.0	3.2
WR008	1.1 ±	0.5	3.4
WR021	4.4 ±	3.2	14.0

Πίνακας 6.16 : Συντελεστές συσχέτισης μεταξύ της μέσης και μέγιστης έντασης βροχόπτωσης κατά τη διάρκεια της δειγματοληψίας δειγμάτων υγρής απόθεσης.

		Μέση ένταση βροχόπτωσης	Μέγιστη ένταση βροχόπτωσης
⁷ Be		-0.1342	+0.4626
'Be	p-value	0.7999	0.4327
R 210 pt		-0.1389	+0.5293
²¹⁰ Pb	p-value	0.7930	0.3590

Από τα παραπάνω αποτελέσματα δεν προκύπτει κάποια στατιστικά σημαντική συσχέτιση μεταξύ της έντασης της βροχόπτωσης και της συγκέντρωσης ενεργότητας του ⁷Be και του ²¹⁰Pb στις υγρές κατακρημνίσεις, αλλά μόνον κάποιες τάσεις θετικής συσχέτισης του ρυθμού απόθεσης των δύο ισοτόπων με τη μέγιστη ένταση της βροχόπτωσης, πιθανόν επειδή τα δεδομένα είναι λίγα (N=6). Επιπλέον, τα δεδομένα αυτά δεν έχουν προκύψει από συνεχόμενες δειγματοληψίες υγρών κατακρημνίσεων, που σημαίνει ότι δεν είναι γνωστός ο βαθμός κατά τον οποίο έχει ανανεωθεί ή όχι η συγκέντρωση του ατμοσφαιρικού αέρα σε ραδιενεργά ισότοπα μεταξύ των συμβάντων βροχόπτωσης.

Επισημαίνεται ότι τα δείγματα χιονιού, αν και αποτελούν δείγματα υγρής απόθεσης, λόγω του διαφορετικού μηχανισμού απόθεσης συγκριτικά με τη βροχή, δεν συμπεριλαμβάνονται στις παραπάνω συσχετίσεις. Επιπλέον, επειδή κατά τη διάρκεια της Δ.Δ. συλλέχθηκαν δείγματα χιονιού από τρεις μόνον διαφορετικές χιονοπτώσεις, το πλήθος των πειραματικών δεδομένων δεν επαρκεί για την εξαγωγή συσχετίσεων με τις μετεωρολογικές συνθήκες στις περιπτώσεις αυτές.

6.3.1.2 Συσχετίσεις της συγκέντρωσης ενεργότητας του ⁷Be με μετεωρολογικές παραμέτρους στα δείγματα υγρασίας

Τα δείγματα υγρασίας που συλλέχθηκαν ήταν εννέα, ενώ ανιχνεύσιμη ποσότητα ⁷Be εντοπίστηκε μόνο σε επτά από αυτά. Αντίστοιχα με τις υγρές αποθέσεις, οι συσχετίσεις μεταξύ των μετεωρολογικών παραμέτρων και των δειγμάτων υγρασίας δίνονται στον Πίνακα 6.17.

Πίνακας 6.17 : Συντελεστές συσχέτισης μεταξύ των μετεωρολογικών παραμέτρων και της συγκέντρωσης ενεργότητας του ⁷Be στ<u>α δείγματα υγρασίας</u>. (N=7).

	⁷ Be		
	R	p-value	
Θερμοκρασία	+0.1806	0.6984	
Σχετική υγρασία	-0.0400	0.9321	
Ατμοσφαιρική πίεση	-0.2914	0.5260	
Μέση ταχύτητα ανέμου	+0.2905	0.5274	

Από τα παραπάνω αποτελέσματα δεν προκύπτει κάποια συσχέτιση μεταξύ της συγκέντρωσης του ⁷Be στην υγρασία ως προς τις διάφορες μετεωρολογικές παραμέτρους.

6.3.1.3 Συσχετίσεις των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb με μετεωρολογικές παραμέτρους στα δείγματα ξηρών αποθέσεων

Αντίστοιχα με τα παραπάνω δείγματα, στον Πίνακα 6.18 δίνονται οι συσχετίσεις των αποτελεσμάτων του ρυθμού απόθεσης των δειγματοληψιών ξηρής απόθεσης ως

προς τις διάφορες μετεωρολογικές παραμέτρους. Τα δείγματα ολικών αποθέσεων θα εξεταστούν ανεξάρτητα στην επόμενη παράγραφο, ώστε να διερευνηθούν οι συσχετίσεις στους διαφορετικούς μηχανισμούς απόθεσης.

Πίνακας	6.18	:	Συντελεστές	συσχέτισης	μεταξύ	μετεωρολογικώ	ν παραμέτρων	και	των
ρυθμών ο	ιπόθεσ	ης	⁷ Ве каї ²¹⁰ Рb	στις ξηρές α	ατμοσφαι	ιρικές αποθέσεις	(N=25 για το ⁷	Be, 1	√ =23
για τον 21	⁰ Pb).								

	7	Be	²¹⁰ Pb		
	R	p-value	R	p-value	
Θερμοκρασία	+0.1257	0.5494	-0.0026	0.9906	
Σχετική υγρασία	+0.0173	0.9346	+0.0686	0.7558	
Ατμοσφαιρική πίεση	-0.1367	0.5147	+0.0032	0.9884	
Μέση ταχύτητα ανέμου	-0.1497	0.4751	-0.0872	0.6924	

Όπως είναι εμφανές από τα αποτελέσματα του παραπάνω Πίνακα 6.18, δεν προκύπτει καμία συσχέτιση, ή εμφανής τάση, μεταξύ του ρυθμού απόθεσης του ⁷Be, του ²¹⁰Pb και των μετεωρολογικών παραμέτρων που εξετάσθηκαν στα δείγματα ξηρών ατμοσφαιρικών αποθέσεων. Το γεγονός αυτό σημαίνει ότι η βαρύτητα και η διάχυση, που είναι οι βασικοί μηχανισμοί απόθεσης μεγάλων και μικρών σωματιδίων αντίστοιχα για την περίπτωση της ξηρής απόθεσης, δεν επηρεάζονται σημαντικά από τις μετεωρολογικές παραμέτρους που εξετάστηκαν.

6.3.1.4 Συσχετίσεις των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb με μετεωρολογικές παραμέτρους στα δείγματα ολικών αποθέσεων

Αντίστοιχα με τις προηγούμενες παραγράφους, στον Πίνακα 6.19 που ακολουθεί δίνονται οι συντελεστές συσχέτισης μεταξύ των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb και των διαφόρων μετεωρολογικών παραμέτρων στα δείγματα ολικών αποθέσεων.

Πίνακας 6.19 : Συντελεστές συσχέτισης μεταξύ μετεωρολογικών παραμέτρων και των συγκεντρώσεων ⁷Be και ²¹⁰Pb στις ολικές ατμοσφαιρικές αποθέσεις (N=12 για το ⁷Be και τον 210 Pb).

	7	Be	²¹⁰ Pb		
	R	p-value	R	p-value	
Θερμοκρασία	-0.1884	0.5576	-0.2232	0.4856	
Σχετική υγρασία	+0.4080	0.1880	+0.2506	0.4321	
Ατμοσφαιρική πίεση	+0.2093	0.5138	+0.2145	0.5032	
Ύψος βροχόπτωσης	+0.0300	0.9263	-0.1500	0.6417	
Μέση ταχύτητα ανέμου	-0.3173	0.3149	-0.0866	0.7890	

Στις ολικές ατμοσφαιρικές αποθέσεις, μέρος της απόθεσης οφείλεται και σε υγρές αποθέσεις. Για τον λόγο αυτό, όπως και με τις υγρές αποθέσεις, έγινε υπολογισμός της μέσης και της μέγιστης έντασης βροχόπτωσης κατά τη διάρκεια κάθε δειγματοληψίας και τα αποτελέσματα μαζί με τις συσχετίσεις τους ως προς τις ροές απόθεσης των ραδιενεργών ισοτόπων δίνονται στους *Πίνακες 6.20* και 6.21.

Από τα αποτελέσματα των Πινάκων 6.20 και 6.21 και λαμβάνοντας υπόψη τις συσχετίσεις που προέκυψαν από τις υγρές και ξηρές αποθέσεις, προκύπτει το συμπέρασμα ότι η συμβολή της ξηρής απόθεσης στη συγκέντρωση των αποτιθέμενων ραδιενεργών ισοτόπων δεν επιτρέπει τη συσχέτισή τους με τις διάφορες μετεωρολογικές παραμέτρους. Αυτό το συμπέρασμα τονίζει την ανεξαρτησία του μηχανισμού απόθεσης και την ανάγκη συνεχών δειγματοληψιών ατμοσφαιρικών αποθέσεων για την απόκτηση της πλήρους εικόνας της κίνησης των ραδιενεργών ισοτόπων στην ατμόσφαιρα.

τοληψίας δειγμάτων ολικής ατμοσφαιρικής απόθεσης.									
	Κωδικός	Μέση ένταση βροχόπτωσης			Μέγιστη ένταση βροχόπτωσης				
	σειγματός		mm/h		mm/h				
	TR001	1.4	±	0.2	8.2				
	TR003	1.9	±	0.7	7.6				
	TR002	1.0	±	0.4	3.0				
	TR004	1.4	±	0.7	13.0				
		1			+				

0.3

0.1

0.1

0.1

0.1

0.2

0.7

0.2

 \pm

±

±

 \pm

±

±

 \pm

±

13.8

2.4

0.8

0.6

1.6

2.8

6.2

1.2

TR005

TR006

TR007

TR008

TR009

TR010

TR011

TR012

2.2

0.7

0.5

0.4

0.6

1.0

2.0

0.9

Πίνακας 6.20 : Μέση και μέγιστη ένταση βροχόπτωσης κατά τη διάρκεια της δειγματοληψίας δειγμάτων ολικής ατμοσφαιρικής απόθεσης.

Πίνακας 6.21 : Συντελεστές	συσχέτισης μεταξύ	της μέσης	και μέγιστης	έντασης
βροχόπτωσης κατά τη διάρκει απόθεσης.	α της δειγματοληψία	ας δειγμάτων	ολικής ατμος	σφαιρικής
		Mán	<u> </u>	

		Μέση ένταση βροχόπτωσης	Μέγιστη ένταση βροχόπτωσης
⁷ D a	R	0.1752	0.2093
Be	p-value	0.5860	0.5138
21001.	R	0.3362	0.2713
²¹⁰ Pb	p-value	0.2853	0.3937

Η ομαδοποίηση των δειγμάτων που ελήφθησαν σε δείγματα υγρών, ξηρών και ολικών αποθέσεων έχει ως αποτέλεσμα τα δείγματα συχνά να μην προέρχονται από συνεχόμενες χρονικά δειγματοληψίες. Αυτό σημαίνει ότι δε λαμβάνεται υπόψη ο

χρόνος ανανέωσης της ατμόσφαιρας σε ραδιενεργά ισότοπα, ούτε η χρονική συνέχεια των ατμοσφαιρικών αποθέσεων και η χρονική ακολουθία των μετεωρολογικών μεταβολών. Για τον λόγο αυτό, επειδή ένα ποσοστό του συνόλου των δειγμάτων ελήφθη συνεχόμενα, χωρίς ενδιάμεσες χρονικές παύσεις, κρίνεται σκόπιμη η διερεύνηση συσχετίσεων των διαφόρων μετεωρολογικών παραμέτρων για τα δείγματα αυτά στην παράγραφο που ακολουθεί.

6.3.1.5 Συσχετίσεις των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb με μετεωρολογικές παραμέτρους σε συνεχόμενα δείγματα αποθέσεων

Για λόγους πληρότητας και με στόχο τη διερεύνηση της επίδρασης των μετεωρολογικών συνθηκών στις ατμοσφαιρικές αποθέσεις, έγινε διερεύνηση της συσχέτισης των διάφορων μετεωρολογικών παραμέτρων στον ρυθμό απόθεσης του ⁷Be και του ²¹⁰Pb σε μία σειρά από δείγματα ατμοσφαιρικών αποθέσεων τα οποία συλλέχθηκαν συνεχόμενα. Τα αποτελέσματα των συσχετίσεων αυτών δίνονται στον *Πίνακα 6.22*.

Όπως φαίνεται από τον παρακάτω Πίνακα 6.22, σε αντίθεση με τα αποτελέσματα των συσχετίσεων των ξηρών και των ολικών αποθέσεων με τις μετεωρολογικές παραμέτρους που παρουσιάστηκαν προηγουμένως στις παραγράφους 6.3.1.3 και 6.3.1.4, στην περίπτωση των συνεχόμενων δειγματοληψιών παρατηρείται:

- στατιστικά σημαντική αρνητική συσχέτιση μεταξύ των ⁷Be, ²¹⁰Pb και της θερμοκρασίας,
- στατιστικά σημαντική θετική συσχέτιση μεταξύ των ⁷Be, ²¹⁰Pb και της σχετικής υγρασίας.

Πίνακας 6.22 : Συντελεστές συσχέτισης μεταξύ μετεωρολογικών παραμέτρων και των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων (N=32 για το ⁷Be, N=31 για τον ²¹⁰Pb).

	7	Be	²¹⁰ Pb		
	R	p-value	R	p-value	
Θερμοκρασία	-0.4746	0.0061	-0.4305	0.0156	
Σχετική υγρασία	+0.6184	0.0002	+0.4987	0.0043	
Ατμοσφαιρική πίεση	+0.1338	0.4654	+0.1360	0.4657	
Μέση ταχύτητα ανέμου	+0.2138	0.2400	+0.2317	0.2098	

Καταρχήν, το γεγονός ότι για αυτή την ομάδα των συνεχόμενων δειγμάτων διαπιστώνονται συσχετίσεις με μετεωρολογικές παραμέτρους είναι από μόνο του πολύ ενδιαφέρον και σημαντικό. Η αρνητική συσχέτιση των ρυθμών απόθεσης με τη θερμοκρασία μπορεί να αποδοθεί στο γεγονός ότι τα ανοδικά ρεύματα αέρα που δημιουργούνται αντιτίθενται στην κατακόρυφη απόθεση των ραδιενεργών ισοτόπων στο έδαφος. Από την άλλη πλευρά, η θετική συσχέτιση με την υγρασία αποδίδεται στο γεγονός ότι όσο υψηλότερη είναι η σχετική υγρασία:

- τόσο περισσότερη είναι η συμπύκνωση υγρασίας στα σωματίδια του ατμοσφαιρικού αερολύματος, με αποτέλεσμα την αύξηση της μάζας τους και άρα, υψηλότερη συμβολή της επίδρασης της βαρύτητας στην απόθεσή τους.
- τόσο αυξάνεται το μέγεθος των σωματιδίων που οδηγεί σε μεγαλύτερη διαθέσιμη επιφάνεια προσκόλλησης ραδιενεργών ισοτόπων και σωματιδίων που φέρουν ραδιενεργά ισότοπα.

Επιπλέον, αξίζει να σημειωθεί ότι μεγάλο ποσοστό των δειγματοληψιών στις οποίες παρατηρείται υψηλή σχετική υγρασία, μπορεί να σημαίνει ότι κατά τη διάρκεια της δειγματοληψίας έλαβε χώρα φαινόμενο υγρής απόθεσης, το οποίο είναι αποδοτικότερο για την απόθεση των ραδιενεργών ισοτόπων στο έδαφος, συγκριτικά με τους μηχανισμούς που διέπουν τις ξηρές αποθέσεις.

Λόγω της σημασίας των παραπάνω διαπιστώσεων, οι παραπάνω συσχετίσεις παρουσιάζονται και γραφικά στα Σχήματα 6.20, 6.21, 6.22 και 6.23.

Σχήμα 6.20 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be και της θερμοκρασίας στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων.

Σχήμα 6.21 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be και της σχετικής υγρασίας στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων.

Σχήμα 6.22 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb και της θερμοκρασίας στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων.

Σχήμα 6.23 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb και της σχετικής υγρασίας στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων.

Ιδιαίτερο ενδιαφέρον παρουσιάζει και ο λόγος των ρυθμών απόθεσης ²¹⁰Pb/⁷Be, ο οποίος δίνει πληροφορίες για τον διαφορετικό μηχανισμό απόθεσης των ²¹⁰Pb και ⁷Be. Σύμφωνα με τη βιβλιογραφία, τους μήνες που παρουσιάζονται οι περισσότερες υγρές κατακρημνίσεις αναμένεται μείωση του λόγου αυτού, ενώ αντίθετα τους ξηρότερους μήνες αναμένεται αύξηση (Koch, et al., 1996), (Lee, et al., 2007), (Tositti, et al., 2014), (Zhang, et al., 2021). Για τις συνεχόμενες μετρήσεις τις παρούσας Δ.Δ., υπάρχει η δυνατότητα υπολογισμού του λόγου αυτού ανά δείγμα, αλλά και σε μηνιαίο επίπεδο όπως δίνεται στον *Πίνακα 6.23*. Η παραπάνω συσχέτιση φαίνεται παραστατικά στα *Σχήματα 6.24* και 6.25, από όπου προκύπτει ότι υπάρχει ασθενής αρνητική επίδραση του ύψους βροχόπτωσης στον λόγο²¹⁰Pb/⁷Be, το οποίο έρχεται σε συμφωνία με τις αντίστοιχες έρευνες στη βιβλιογραφία.

Κωδικός Δείγματος	Λόγο ²¹⁰ Ρb / ⁷	ос Ве	Κωδικός Δείγματος	Λόγο ²¹⁰ Ρb/	ος ⁷ Be
DR005	0.319 ±	0.035	DR012	0.213 ±	0.047
TR003	0.123 ±	0.003	DR013	0.406 ±	0.083
TR002	0.174 ±	0.007	TR011	0.065 ±	0.003
DR006	0.132 ±	0.005	TR012	0.043 ±	0.003
TR004	0.104 ±	0.003	DR014	0.189 ±	0.032
TR005	0.079 ±	0.004	DR015	0.190 ±	0.024
TR006	0.057 \pm	0.007	DR016	0.133 ±	0.005
DR007	0.840 ±	0.123	DR017	<md< td=""><td>A</td></md<>	A
DR008	0.269 ±	0.032	DR018	0.198 ±	0.097
TR007	0.114 ±	0.005	DR019	0.284 ±	0.023
TR008	0.129 ±	0.008	DR020	0.140 ±	0.010
TR009	0.165 ±	0.006	DR021	0.251 ±	0.079
TR010	0.113 ±	0.003	TR013	0.120 ±	0.015
DR009	0.205 ±	0.005	DR022	0.157 ±	0.022
DR010	0.172 ±	0.040	TR014	0.380 ±	0.097
DR011	0.275 ±	0.124	DR023	0.236 ±	0.055

Πίνακας 6.23α : Λόγος των ρυθμών απόθεσης ²¹⁰Pb/⁷Be ανά δείγμα στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων.

Μήνας	210	Λόγος ⁰ Pb / ⁷ H	; Be	Ύψος Βροχόπτωσης (mm)
Αύγουστος	0.123	±	0.003	22.8
Σεπτέμβριος	0.137	±	0.003	8.6
Οκτώβριος	0.110	±	0.003	25.8
Νοέμβριος	0.082	±	0.004	15.6
Δεκέμβριος	0.079	±	0.004	202.6
Ιανουάριος	0.079	±	0.004	50.0
Φεβρουάριος	0.064	±	0.007	21.2
Μάρτιος	0.137	±	0.004	12.4
Απρίλιος	0.127	±	0.003	17.2
Μάιος	0.206	±	0.016	0.0
Ιούνιος	0.065	±	0.003	27.2
Ιούλιος	0.143	±	0.006	0.0
Αύγουστος	0.171	±	0.009	0.0
Σεπτέμβριος	0.173	±	0.014	0.2

Πίνακας 23β : Λόγος των ρυθμών απόθεσης ²¹⁰Pb/7Be ανά μήνα στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων.

Σχήμα 6.24 : Λόγος ρυθμών απόθεσης ²¹⁰Pb/⁷Be και ύψους βροχόπτωσης στα συνεχόμενα δείγματα ατμοσφαιρικών δειγματοληψιών.

Σχήμα 6.25 : Λόγος ρυθμών απόθεσης ²¹⁰Pb/⁷Be και ύψους βροχόπτωσης στους συνεχόμενους μήνες δειγματοληψίας.

Μία άλλη παράμετρος που έχει ενδιαφέρον να μελετηθεί και να συσχετισθεί με τον ρυθμό απόθεσης είναι η κατεύθυνση του ανέμου κατά τη διάρκεια μίας δειγματοληψίας. Ιδιαίτερα για την περίπτωση συνεχόμενων δειγματοληψιών, αυτό κατέστη δυνατό, βάσει των μετεωρολογικών δεδομένων που διετέθησαν. Στο **Σχήμα 6.26** απεικονίζεται το ρόδο ανέμου με την κατανομή των κυρίαρχων ημερήσιων κατευθύνσεων του ανέμου και της ταχύτητάς τους, για τη χρονική περίοδο 6/7/2020 έως και 4/10/2021.

Από το παρακάτω ρόδο ανέμου προκύπτει ότι κατά την περίοδο των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων οι κυρίαρχες κατευθύνσεις του ανέμου ήταν νοτιοδυτικές (SW) πρωτίστως και δευτερευόντως νοτιοανατολικές (SE). Κρίνοντας από τη γεωγραφική θέση του μετεωρολογικού σταθμού όπου έγιναν οι μετρήσεις, οι νοτιοδυτικές κατευθύνσεις ανέμου μπορούν εύλογα να συσχετιστούν με μάζες αέρα που έχουν περάσει από μεγαλύτερη έκταση ηπειρωτικών περιοχών, συγκριτικά με τις άλλες διευθύνσεις ανέμου που καταγράφονται την περίοδο αυτή, όπως φαίνεται και στο *Σχήμα 6.27*. Επιπλέον, όπως φαίνεται και από τα δεδομένα του *Πίνακα 6.35*, οι υψηλότεροι ρυθμοί απόθεσης⁶⁵ του ²¹⁰Pb αλλά και του ⁷Be ανιχνεύθηκαν σε δείγματα που κατά τη δειγματοληψία τους η κυρίαρχη κατεύθυνση του ανέμου ήταν η νοτιοδυτική. Στο σημείο αυτό πρέπει να αναφερθεί, και ενδεχομένως έχει τη σημασία του, ότι όταν πνέουν νοτιοδυτικοί άνεμοι οι αέριες

 $^{^{65}}$ Καθώς και η υψηλότερη τιμή συγκέντρωση
ς $^{210} \rm{Pb}$ στον αέρα.

μάζες έρχονται από την ευρύτερη περιοχή της Κεντρικής Πελοποννήσου, όπου, όπως είναι γνωστό, στην περιοχή της Μεγαλόπολης υπάρχουν μεγάλα κοιτάσματα λιγνίτη κοντά στην επιφάνεια του εδάφους, αποθέσεις ιπτάμενης τέφρας και λειτουργούν ορυχεία λιγνίτη και θερμικοί σταθμοί. Μάλιστα σύμφωνα με προηγούμενες έρευνες που έχουν πραγματοποιηθεί στο ΕΠΤ-ΕΜΠ (Papadopoulos, et al., 2011), (Rouni, et al., 2001), (Simopoulos & Angelopoulos, 1987), στην περιοχή παρατηρείται αυξημένη εκροή ραδονίου από το έδαφος στην ατμόσφαιρα.

Σχήμα 6.26 : Ρόδο ανέμου με την κατανομή των κυρίαρχων ημερήσιων κατευθύνσεων του ανέμου και της ταχύτητάς τους για τη χρονική περίοδο 6/7/2020 έως και 4/10/2021.

Σχήμα 6.27 : Κύριες κατευθύνσεις ανέμου και η γεωγραφική τοποθέτησή τους για τη χρονική περίοδο 6/7/2020 έως και 4/10/2021.

6.3.1.6 Συσχετίσεις των συγκεντρώσεων ενεργότητας ⁷Be και ²¹⁰Pb σε φίλτρα αέρα με μετεωρολογικές παραμέτρους

Όπως αναφέρθηκε και σε προηγούμενη παράγραφο, παράλληλα με ορισμένες δειγματοληψίες αποθέσεων συλλέχθηκαν και φίλτρα αέρα, είτε με πλήρη είτε με μερική χρονική αλληλοεπικάλυψη. Για την πληρότητα των συγκρίσεων των συγκεντρώσεων ενεργότητας του ⁷Be και του ²¹⁰Pb με τα μετεωρολογικά δεδομένα, στον *Πίνακα 6.24* δίνονται οι σχετικές συσχετίσεις των συγκεντρώσεων των ισοτόπων αυτών στο ατμοσφαιρικό αερόλυμα, με τις διάφορες μετεωρολογικές παραμέτρους. Από τα παρακάτω αποτελέσματα προκύπτει θετική συσχέτιση μεταξύ της σχετικής υγρασίας και της συγκέντρωσης του ⁷Be και του ²¹⁰Pb και αρνητική

οποίο είναι αναμενόμενο και από αντίστοιχες προηγούμενες μελέτες (Mohan, et al., 2018), (Ioannidou, et al., 2005), (Duenas, et al., 2009), (Pham, et al., 2011), (Huang, et al., 2022).

	7	Be	²¹⁰ Pb		
	R	p-value	R	p-value	
Θερμοκρασία	+0.7762	0.0004	+0.5903	0.0161	
Σχετική Υγρασία	-0.7294	0.0013	-0.3797	0.1469	
Ατμοσφαιρική Πίεση	-0.2982	0.2619	+0.1095	0.6864	
Μέση Ταχύτητα Ανέμου	+0.2191	0.4149	+0.0768	0.7774	

Πίνακας 6.24 : Συντελεστές συσχέτισης μεταξύ μετεωρολογικών παραμέτρων και των συγκεντρώσεων ⁷Be και ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα.

6.3.2 Συσχετίσεις ρυθμών απόθεσης και συγκεντρώσεων ενεργότητας ⁷Be και ²¹⁰Pb με άλλους τυπικούς ατμοσφαιρικούς ρυπαντές

Οπως αναφέρθηκε και στο 2° κεφάλαιο, έχουν γίνει κατά καιρούς μελέτες για τη διερεύνηση της ενδεχόμενης συσχέτισης μεταξύ ραδιενεργών ισοτόπων που ανιχνεύονται στο ατμοσφαιρικό αερόλυμα με διάφορους ατμοσφαιρικούς ρυπαντές. Για τη διερεύνηση αυτή στα πλαίσια της Δ.Δ., χρησιμοποιήθηκαν τα ελεύθερα διαθέσιμα δεδομένα από το Υπουργείο Περιβάλλοντος & Ενέργειας [ΥΠΕΝ, τελευταία πρόσβαση 7/6/2023]. Συγκεκριμένα, επιλέχθηκαν τα δεδομένα ατμοσφαιρικών που καταγράφονται από τον σταθμό της Αγ. Παρασκευής, καθώς είναι ο πλησιέστερος σταθμός στο ΕΠΤ-ΕΜΠ και ο μόνος με διαθέσιμη βάση δεδομένων έως και το έτος 2021. Οι συσχετίσεις που ακολουθούν αφορούν τις ξηρές αποθέσεις, τις ολικές αποθέσεις, καθώς και τις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων. Τα δεδομένα από τις δειγματοληψίες υγρών αποθέσεων και υγρασίας βρίσκονται εκτός του χρονικού εύρους των ελεύθερα διαθέσιμων δεδομένων ατμοσφαιρικών ρυπαντών και δε συμπεριλαμβάνονται στις συσχετίσεις που ακολουθούν.

Τα δεδομένα των ατμοσφαιρικών ρυπαντών δίνονται σε μg/m³ και ng/m³ και αφορούν τις μέσες εβδομαδιαίες συγκεντρώσεις τους στον ατμοσφαιρικό αέρα. Το σύνολο των δεδομένων των ατμοσφαιρικών ρυπαντών που αντιστοιχούν χρονικά με τα δείγματα ατμοσφαιρικών αποθέσεων προς συσχέτιση δίνονται στον *Πίνακα 6.36* στην παράγραφο 6.5 στο τέλος του κεφαλαίου. Είναι σημαντικό να τονιστεί ότι τα δεδομένα ατμοσφαιρικών ρυπαντών που διατίθενται αφορούν στη συγκέντρωσή τους στον αέρα, κάτι το οποίο αναμένεται να επηρεάσει την ισχύ των συσχετίσεων, καθώς δεν υπάρχει ισχυρή συσχέτιση μεταξύ της συγκέντρωσης των ραδιενεργών ισοτόπων στην ατμόσφαιρα και τις ατμοσφαιρικές αποθέσεις, όπως παρατηρήθηκε και στα αποτελέσματα του *Πίνακα 6.11*.

6.3.2.1 Συσχετίσεις των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα ξηρών αποθέσεων με τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Βάσει των δεδομένων που δόθηκαν στον Πίνακα 6.36, οι συσχετίσεις μεταξύ των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb και των ατμοσφαιρικών ρυπαντών δίνονται στον Πίνακα 6.25.

Ατμοσφαιρικοί ρυπαντές	⁷ Be		²¹⁰ Pb	
	R	p-value	R	p-value
PM2.5*	-0.1044	0.6194	-0.0005	0.9982
PM10*	-0.0490	0.8161	+0.0346	0.8755
NO*	+0.2345	0.2592	+0.3621	0.0895
NO2 [*]	+0.0686	0.7446	+0.2102	0.3357
O3*	-0.0023	0.9913	-0.1929	0.3779
As**	-0.0002	0.9993	-0.1095	0.6554
Cd**	+0.0510	0.8262	+0.0927	0.7058
Ni ^{**}	-0.0412	0.8593	-0.0361	0.8834
Pb**	-0.2095	0.3621	-0.2642	0.2744
BaP***	+0.0574	0.8522	+0.1459	0.6876

Πίνακας 6.25 : Συντελεστές συσχέτισης μεταξύ των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb στις ξηρές ατμοσφαιρικές αποθέσεις με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών.

*N=25 για το ⁷Be, N=23 για τον ²¹⁰Pb

 ** N=21 gia to 7Be, N=20 gia tov ^{210}Pb

*** N=12 gia to $^7\!\mathrm{Be},$ N=11 gia tov $^{210}\!\mathrm{Pb}$
Όπως προκύπτει από τα παραπάνω αποτελέσματα δεν παρατηρείται κάποια συσχέτιση ή τάση μεταξύ των συγκεντρώσεων του ⁷Be και του ²¹⁰Pb στις ατμοσφαιρικές αποθέσεις και των συγκεντρώσεων των διάφορων ατμοσφαιρικών ρυπαντών στην ατμόσφαιρα.

6.3.2.2 Συσχετίσεις των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα ολικών αποθέσεων με τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Αντίστοιχα με τις ξηρές αποθέσεις, στον Πίνακα 6.26 που ακολουθεί δίνονται τα αποτελέσματα των συσχετίσεων μεταξύ των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb στις ολικές αποθέσεις με τις αντίστοιχες συγκεντρώσεις των ατμοσφαιρικών ρυπαντών.

Ατμοσφαιρικοί	7	Be	²¹⁰ Pb		
ρυπαντές	R	p-value	R	p-value	
PM2.5*	+0.4156	0.1579	+0.3874	0.2134	
PM10*	+0.2811	0.3522	+0.3779	0.2258	
NO*	+0.5253	0.0653	+0.3537	0.2594	
NO2 [*]	+0.3791	0.2014	+0.0678	0.8342	
O3*	-0.2105	0.4900	-0.2750	0.3870	
As**	-0.4869	0.1084	-0.3528	0.2872	
Cd**	-0.1411	0.6618	+0.1679	0.6217	
Ni ^{**}	-0.1265	0.6952	+0.2360	0.4848	
Pb**	-0.2512	0.4310	-0.2895	0.3879	
BaP***	+0.3878	0.2386	+0.2914	0.4140	

Πίνακας 6.26 : Συντελεστές συσχέτισης μεταξύ των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb στις ολικές ατμοσφαιρικές αποθέσεις με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών.

*N=12 για το ⁷Be, N=12 για τον ²¹⁰Pb

 ** N=11 yia to 7Be, N=11 yia tov ^{210}Pb

 *** N=10 yia to 7Be, N=10 yia tov ^{210}Pb

Παρά το γεγονός ότι στο σύνολο των ανωτέρω συσχετίσεων οι συντελεστές συσχέτισης είναι υψηλότεροι από αυτούς των αντίστοιχων συσχετίσεων με τις ξηρές αποθέσεις, και στην περίπτωση αυτή δεν προκύπτει κάποια συσχέτιση μεταξύ των

ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb στις ολικές ατμοσφαιρικές αποθέσεις και των συγκεντρώσεων των διάφορων ατμοσφαιρικών ρυπαντών.

6.3.2.3 Συσχετίσεις των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων με τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Όπως με τις μετεωρολογικές παραμέτρους, έτσι και με τους ατμοσφαιρικούς ρυπαντές, για την πληρότητα της παρούσας μελέτης, στον *Πίνακα 6.27* που ακολουθεί δίνονται οι συντελεστές συσχέτισης μεταξύ των συγκεντρώσεων των ατμοσφαιρικών ρυπαντών με τους ρυθμούς απόθεσης του ⁷Be και του ²¹⁰Pb στα δείγματα των συνεχόμενων ατμοσφαιρικών αποθέσεων.

Πίνακας 6.27 : Συντελεστές συσχέτισης μεταξύ των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb στις συνεχόμενες ατμοσφαιρικές αποθέσεις με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών.

Ατμοσφαιρικοί	7	Be	²¹⁰ Pb		
ρυπαντές	R	R p-value		p-value	
PM2.5*	-0.2478	0.1715	-0.1425	0.4444	
PM10*	-0.3448	0.0533	-0.2105	0.2557	
NO [*]	+0.3496	0.0498	+0.3394	0.0618	
NO2 [*]	+0.1503	0.4116	+0.1221	0.5129	
O3 [*]	-0.4595	0.0082	-0.4387	0.0136	
As**	-0.0245	0.9015	-0.1034	0.6078	
Cd**	+0.2827	0.1449	+0.2977	0.1315	
Ni ^{**}	+0.1766	0.3687	+0.2921	0.1393	
Pb**	-0.2066	0.2915	-0.2373	0.2333	
BaP***	+0.6125	0.0053	+0.4944	0.0370	

*N=32 για το ⁷Be, N=31 για τον ²¹⁰Pb

*** N=28 gia to $^7\mathrm{Be},$ N=27 gia tov $^{210}\mathrm{Pb}$

*** N=19 gia to $^7\!Be,$ N=18 gia tov $^{210}\!Pb$

Από τα παραπάνω αποτελέσματα, για τους περισσότερες ατμοσφαιρικούς ρύπους δεν προκύπτουν στατιστικά σημαντικές συσχετίσεις. Ωστόσο, στη συγκεκριμένη περίπτωση προκύπτουν όχι μόνον υψηλότερες τιμές του συντελεστή συσχέτισης, αλλά και στατιστικά σημαντικές συσχετίσεις :

- μεταξύ του όζοντος (O₃) με το ⁷Be και τον ²¹⁰Pb (στατιστικά σημαντική αρνητική συσχέτιση),
- μεταξύ του βενζο[α]πυρένιου (BaP)⁶⁶ με το ⁷Be και τον ²¹⁰Pb (στατιστικά σημαντική θετική συσχέτιση),
- μεταξύ του μονοξείδιου του αζώτου (NO) και του ⁷Be (στατιστικά σημαντική θετική συσχέτιση).

Αντίστοιχα με τα αποτελέσματα της παραγράφου 6.3.1.5, η χρήση των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων οδηγεί σε στατιστικά σημαντικές συσχετίσεις μεταξύ ορισμένων ατμοσφαιρικών ρυπαντών και των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb, ενώ δεν παρατηρούνται συσχετίσεις ομαδοποιώντας τα αποτελέσματα ανάλογα με το είδος της απόθεσης (ξηρές ή ολικές).

Σύμφωνα με προηγούμενες μελέτες (Huang, et al., 2022), (Stohl, et al., 2000), η συγκέντρωση του ⁷Be στην ατμόσφαιρα παρουσιάζει θετική συσχέτιση με τη συγκέντρωση του Ο3 και αποτελεί δείκτη εισβολών στρατοσφαιρικής προέλευσης αερίων μαζών. Στη συγκεκριμένη περίπτωση παρατηρείται αρνητική συσγέτιση μεταξύ των δύο μεγεθών, γεγονός που τονίζει ότι οι μηγανισμοί που επηρεάζουν τη συγκέντρωση του ⁷Be στις ατμοσφαιρικές αποθέσεις δεν ακολουθούν την ίδια τάση με τους μηγανισμούς που εμπλουτίζουν την ατμόσφαιρα με το εν λόγω ισότοπο. Επιπροσθέτως, η αρνητική συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb με την ατμοσφαιρική συγκέντρωση του O3 αποδίδεται στο γεγονός ότι η απόθεση του ²¹⁰Pb ακολουθεί την ίδια τάση με αυτή του ⁷Be, καθώς και ότι στην περίπτωση που υπάρχει σημαντική επίδραση στρατοσφαιρικών εισβολών αέρα παρατηρείται αντίστοιχη θετική συσχέτιση μεταξύ O3 με ²¹⁰Pb στον ατμοσφαιρικό αέρα, λόγω των συγκεντρώσεων του στρατοσφαιρικού ²¹⁰Pb (²¹⁰Pb και ²²²Rn που λόγω ανοδικών ρευμάτων και ανάμιξης στρατοσφαιρικού αέρα «παγιδεύτηκε» στην στρατόσφαιρα) (Liu, et al., 2004). Στο σημείο αυτό είναι σημαντικό να προστεθεί ότι η παρουσία του Ο3 στον ατμοσφαιρικό αέρα οφείλεται σε σημαντικό βαθμό και σε ανθρωπογενείς

⁶⁶ Το βενζο[α]πυρένιου (BaP) είναι ένας πολυκυκλικός αρωματικός υδρογονάνθρακας. Μπορεί να σχηματιστεί κατά τη διάρκεια ατελούς καύσης ή πυρόλυσης οργανικών ουσιών κατά τη διάρκεια βιομηχανικών διεργασιών και επεξεργασίας τροφίμων. Η κύρια πηγή ατμοσφαιρικού BaP είναι η καύση ξύλου σε κατοικίες, ενώ βρίσκεται επίσης στα καυσαέρια των αυτοκινήτων (ειδικά από κινητήρες ντίζελ), σε όλους τους καπνούς που προέρχονται από την καύση οργανικών υλικών (συμπεριλαμβανομένου του καπνού του τσιγάρου) και στα ψημένα τρόφιμα. Το BaP είναι τοξικό για τα ανθρώπινα γονίδια και έχει ταξινομηθεί ως παράγοντας της Ομάδας 1 (δηλαδή καρκινογόνος για τον άνθρωπο) από τον Διεθνή Οργανισμό Έρευνας για τον Καρκίνο (IARC) του Παγκόσμιου Οργανισμού Υγείας.

παράγοντες (δηλαδή από ρυπαντές που εκλύονται από μηχανές εσωτερικής καύσης, εργοστάσια παραγωγή ενέργειας, διυλιστήρια κλπ.) που μπορεί να επηρεάσουν τις συσχετίσεις μεταξύ του O₃ και των συγκεντρώσεων των ραδιενεργών ισοτόπων (Μπασιάς, 2013). Η στατιστικά σημαντική θετική συσχέτιση μεταξύ των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb με τη συγκέντρωση του BaP, καθώς και της απόθεσης του ⁷Be με τη συγκέντρωση του NO χρήζει περαιτέρω διερεύνησης, καθώς οι κύριες πηγές προέλευσης των BaP και NO (ατελής καύση σε μηχανές εσωτερικής καύσης) διαφέρουν σημαντικά από τις πηγές προέλευσης του ⁷Be και του ²¹⁰Pb. Τέλος, είναι σημαντικό να τονιστεί ότι δεν παρατηρείται κάποια στατιστικά σημαντική συσχέτιση των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb με τα σωματίδια PM10, κάτι το οποίο αναμενόταν βάσει προηγούμενων μελετών (Mohan, et al., 2018), (Mohan, et al., 2019), (Zalewska, et al., 2021). Πάντως, απουσία συσχέτιση έρευνα των (Chao, et al., 2014).

6.3.2.4 Συσχετίσεις των συγκεντρώσεων ενεργότητας ⁷Be και ²¹⁰Pb στο αερόλυμα με τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Η συγκεκριμένη σειρά συσχετίσεων ολοκληρώνεται με τις συσχετίσεις των συγκεντρώσεων των ατμοσφαιρικών ρυπαντών στην ατμόσφαιρα με τις συγκεντρώσεις ενεργότητας του ⁷Be και του ²¹⁰Pb στα φίλτρα αέρα που συλλέχθηκαν παράλληλα με ορισμένες ατμοσφαιρικές αποθέσεις, όπως αυτά δόθηκαν στον *Πίνακα* 6.8. Οι σχετικές συσχετίσεις δίνονται στον *Πίνακα* 6.28, όπου βάσει των αποτελεσμάτων του προκύπτουν στατιστικά σημαντικές συσχετίσεις:

- μεταξύ του όζοντος (O3) με το ⁷Be (στατιστικά σημαντική θετική συσχέτιση),
- μεταξύ του PM2.5 με το ²¹⁰Pb (στατιστικά σημαντική θετική συσχέτιση),
- μεταξύ του PM10 με το ²¹⁰Pb (στατιστικά σημαντική θετική συσχέτιση).

Η ισχυρή θετική συσχέτιση του ⁷Be με το O₃ στον ατμοσφαιρικό αέρα είναι αναμενόμενη και αποτελεί δείκτη εισβολών στρατοσφαιρικής προέλευσης αερίων μαζών (Huang, et al., 2022), (Stohl, et al., 2000). Είναι σημαντικό να παρατηρηθεί πως η αντίστοιχη συσχέτιση είναι αρνητική στην περίπτωση των ατμοσφαιρικών αποθέσεων, τονίζοντας τη διαφορά της τάσης που ακολουθούν οι ατμοσφαιρικές συγκεντρώσεις των ραδιενεργών ισοτόπων στην ατμόσφαιρα με τους αντίστοιχους ρυθμούς απόθεσής τους. Ακόμα, η ισχυρή θετική συσχέτιση μεταξύ του ²¹⁰Pb και των

σωματιδίων PM2.5 και PM10 είναι η αναμενόμενη, καθώς ο ²¹⁰Pb αποτελεί καλό ραδιοϊχνηθέτη των σωματιδίων του ατμοσφαιρικού αερολύματος, γεγονός που έχει επιβεβαιωθεί και από προηγούμενες μελέτες στη βιβλιογραφία (Turekian, et al., 1983), (Mattsson, et al., 1993), (Martin & McBride, 2012), (Genthon & Armengaud, 1995), (Mohan, et al., 2019). Τέλος, είναι σημαντικό να επισημανθεί ότι στην περίπτωση του BaP παρατηρείται μια τάση πιθανής αρνητικής συσχέτισης, η οποία όμως δεν μπορεί να επιβεβαιωθεί λόγω έλλειψης πειραματικών δεδομένων.

Ατμοσφαιρικοί	7	Be	²¹⁰ Pb		
ρυπαντές	R	p-value	R	p-value	
PM2.5*	+0.3211	0.2253	+0.6937	0.0029	
PM10*	+0.4301	0.0963	+0.7009	0.0025	
NO*	-0.1884	0.4847	-0.1342	0.6202	
NO2 [*]	-0.1273	0.6385	+0.3723	0.1556	
O3 [*]	+0.8337	0.0001	+0.3348	0.2050	
As**	+0.1987	0.5359	+0.3158	0.3173	
Cd**	-0.4670	0.1259	-0.3066	0.3324	
Ni ^{**}	+0.2229	0.4862	+0.3293	0.2959	
Pb**	+0.2429	0.4468	+0.2088	0.5149	
BaP***	-0.8331	0.0798	-0.7533	0.1415	

Πίνακας 6.28 : Συντελεστές συσχέτισης μεταξύ των συγκεντρώσεων ενεργότητας του ⁷Be και του ²¹⁰Pb στα φίλτρα αέρα με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών.

*N=16, **N=12, ***N=5

6.3.3 Συσχέτιση του ρυθμού απόθεσης του ⁷Be με το πλήθος των ηλιακών κηλίδων

Όπως αναφέρθηκε και στο 2° Κεφάλαιο, σύμφωνα με τη βιβλιογραφία (Gerasopoulos, et al., 2003), (Chao, et al., 2012), (Mohan, et al., 2018), (Pham, et al., 2011), αναμένεται η ύπαρξη αρνητικής συσχέτισης μεταξύ του πλήθους των ηλιακών κηλίδων και τις συγκέντρωσης του ⁷Be στην ατμόσφαιρα. Η συσχέτιση αυτή συνήθως μελετάται για μεγάλα χρονικά διαστήματα που είναι ίσα ή και ξεπερνούν σε διάρκεια τον 11ετή κύκλο της ηλιακής δραστηριότητας. Στην παρούσα Δ.Δ. μελετήθηκε η εν λόγω συσχέτιση συγκρίνοντας τους μηνιαίους ρυθμούς απόθεσης του ⁷Be στα δείγματα των συνεχόμενων ατμοσφαιρικών αποθέσεων, με το συνολικό μηνιαίο πλήθος των ηλιακών κηλίδων, και επιπλέον έγινε διερεύνηση της καθυστερημένης επίδρασης που έχει το πλήθος των ηλιακών κηλίδων στο ρυθμό απόθεσης του ⁷Be στην επιφάνεια του εδάφους όπου και μετριέται⁶⁷. Τα δεδομένα του πλήθους των ηλιακών κηλίδων αντλήθηκαν από το Βασιλικό Παρατηρητήριο του Βελγίου (<u>SILSO</u>, Τελευταία Πρόσβαση 7/6/2023).

Στο Σχήμα 6.28 παρουσιάζεται η μηνιαία κύμανση του συνολικού πλήθους ηλιακών κηλίδων από τον Αύγουστο του 2019 έως και τον Σεπτέμβριο του 2021, καθώς για αυτούς τους μήνες εξετάστηκε η καθυστέρηση της επίδρασης των ηλιακών κηλίδων στη συγκέντρωση του ⁷Be στις συνεχόμενες ατμοσφαιρικές αποθέσεις. Η καθυστερημένη αυτή επίδραση αναφέρεται στη βιβλιογραφία και οφείλεται στον χρόνο που απαιτείται, ώστε το ⁷Be να μεταφερθεί από το σημείο παραγωγής του στην ανώτερη ατμόσφαιρα, μέχρι την τροπόσφαιρα και κατ' επέκταση, να αποτεθεί στην επιφάνεια της Γης. Συγκεκριμένα, στη μελέτη των (Gerasopoulos, et al., 2003), προκύπτει ότι η κύμανση του αριθμού των ηλιακών κηλίδων επιδρά στη συγκέντρωση του ⁷Be στην ατμόσφαιρα στο επίπεδο του εδάφους με χρονική καθυστέρηση 5 μηνών.

Σχήμα 6.28 : Πλήθος μηνιαίων ηλιακών κηλίδων από τον Αύγουστο του 2019 έως και τον Σεπτέμβριο του 2021.

⁶⁷ Πολύ μεγάλο ενδιαφέρον θα είχε η μελέτη της καθυστερημένης επίδρασης του πλήθος των ηλιακών κηλίδων στη συγκέντρωση του ⁷Be στον αέρα. Αυτό δεν έγινε στα πλαίσια της Δ.Δ. επειδή οι μετρήσεις της συγκέντρωσης ⁷Be στον αέρα που έγιναν στα πλαίσια της Διατριβής δεν ήταν συνεχείς.

Η διαδικασία διερεύνησης της καθυστερημένης επίδρασης του πλήθους των ηλιακών κηλίδων στον ρυθμό απόθεσης του ⁷Be έγινε ως ακολούθως:

- Για μηδενική χρονική καθυστέρηση, σε κάθε μηνιαία τιμή του ρυθμού απόθεσης ⁷Be αντιστοιχίζεται ο μηνιαίος αριθμός ηλιακών κηλίδων.
- Για χρονική καθυστέρηση ενός μήνα, σε κάθε μηνιαία τιμή του ρυθμού απόθεσης ⁷Be αντιστοιχίζεται το μηνιαίο πλήθος ηλιακών κηλίδων του προηγούμενου μήνα κ.ο.κ..
- Τα δεδομένα για κάθε βήμα καθυστέρησης προσαρμόζονται σε γραμμικό μοντέλο, υπολογίζεται ο συντελεστής συσχέτισης R και η τιμή p-value για τον έλεγχο της στατιστικής υπόθεσης σημαντικότητάς του.

Στο Σχήμα 6.29, παρουσιάζονται τα αποτελέσματα της διερεύνησης που έχει η καθυστερημένη επίδραση του πλήθους των ηλιακών κηλίδων στον ρυθμό απόθεσης του ⁷Be. Όπως παρατηρείται, η μέγιστη συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be με το μηνιαίο πλήθος ηλιακών κηλίδων εντοπίζεται με χρονική καθυστέρηση 9 μηνών. Η διαφορά στην εκτίμηση της καθυστέρησης από 5 σε 9 μήνες δεν θεωρείται σημαντική. Ωστόσο, η μελέτη της καθυστερημένης αυτής επίδρασης χρήζει περισσότερης διερεύνησης με δειγματοληψίες σε μεγαλύτερη χρονική περίοδο.

Σχήμα 6.29 : Συντελεστής συσχέτισης R μεταξύ του μηνιαίου πλήθους ηλιακών κηλίδων και του ρυθμού απόθεσης του ⁷Be στις συνεχόμενες ατμοσφαιρικές αποθέσεις (6/7/2020 έως και 4/10/2021) συναρτήσει της χρονικής καθυστέρησης της επίδραση του πλήθους των ηλιακών κηλίδων.

6.3.4 Συσχέτιση του ρυθμού απόθεσης του ⁷Be με το ύψος της τροπόπαυσης στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων

Η τροπόπαυση αποτελεί το διαχωριστικό όριο μεταξύ της τροπόσφαιρας και της στρατόσφαιρας. Όπως αναφέρθηκε και στο 2° Κεφάλαιο, ο χρόνος παραμονής των σωματιδίων του ατμοσφαιρικού αερολύματος στη στρατόσφαιρα είναι πολύ μεγαλύτερος (1-2 χρόνια) συγκριτικά με τον χρόνο παραμονής στην τροπόσφαιρα που είναι μερικές εβδομάδες. Για τον λόγο αυτό, η στρατόσφαιρα αποτελεί μια "δεξαμενή" ⁷Be το οποίο είτε εισέρχεται σταδιακά στην τροπόσφαιρα μέσω της τροπόπαυσης είτε εισέρχεται σε μεγαλύτερες ποσότητες ως αποτέλεσμα της κατακόρυφης ανάμιξης αερίων μαζών μεταξύ στρατόσφαιρας και τροπόσφαιρας, ένα φαινόμενο το οποίο χαρακτηρίζεται ως αναδίπλωση της τροπόπαυσης.

Γενικότερα, η αύξηση της θερμοκρασίας οδηγεί σε άνοδο των αερίων μαζών, που με τη σειρά τους οδηγούν σε κάθοδο αέριες μάζες πλούσιες σε ⁷Be οι οποίες βρίσκονται στα ανώτερα στρώματα της τροπόσφαιρας. Η κίνηση αυτή των αερίων μαζών είναι που οδηγεί και στη θετική συσχέτιση μεταξύ της θερμοκρασίας και του ύψους της τροπόπαυσης, με αποτέλεσμα τη θετική συσχέτιση μεταξύ του ύψους της τροπόπαυσης και της συγκέντρωσης του ⁷Be στον ατμοσφαιρικό αέρα (Ioannidou, et al., 2014). Ωστόσο, η απόθεση τελικά των σωματιδίων του αερολύματος στην επιφάνεια της Γης επηρεάζεται και από άλλους παράγοντες, με κυρίαρχο τις υγρές κατακρημνίσεις. Για τον λόγο αυτό έχει ενδιαφέρον και η διερεύνηση της συσχέτιση μεταξύ της ενεργότητας των ραδιενεργών ισοτόπων στις ατμοσφαιρικές αποθέσεις με το ύψος της τροπόπαυσης.

Το ύψος της τροπόπαυσης μεταβάλλεται χρονικά και εξαρτάται εκτός των άλλων από το γεωγραφικό πλάτος. Δεν υπάρχουν ελεύθερα διαθέσιμα δεδομένα για το ύψος της τροπόπαυσης, υπάρχουν όμως διαθέσιμα δεδομένα για τη θερμοκρασία και την πίεση της τροπόπαυσης, καθώς και για το γεωδυναμικό ύψος⁶⁸, την πίεση και τη θερμοκρασία κάθε ισοβαρούς επιπέδου της ατμόσφαιρας. Με βάση τα παραπάνω δεδομένα είναι δυνατός ο υπολογισμός του ύψους της τροπόπαυσης, χρησιμοποιώντας τη μέθοδο που αναφέρεται στη μελέτη των (Ioannidou, et al.,

⁶⁸ Το γεωδυναμικό ύψος προσεγγίζει το πραγματικό ύψος μιας ισοβαρούς επιφάνειας πάνω από τη μέση στάθμη της θάλασσας (στην οποία αντιστοιχεί η τιμή «0»).

2014). Συγκεκριμένα, για τον προσδιορισμό του ύψους της τροπόπαυσης χρησιμοποιήθηκαν οι παρακάτω εξισώσεις⁶⁹:

$$Z_1 = \frac{287 \cdot \text{Tavg}_i}{9.81} \cdot \ln\left(\frac{P_{1i}}{P_{tri}}\right) + GH_{1i}$$
(6.1)

$$Z_2 = \frac{287 \cdot T_{avgi}}{9.81} \cdot \ln\left(\frac{P_{2i}}{P_{tri}}\right) + GH_{2i}$$
(6.2)

$$T_{avgi} = \frac{T_{tri} + Tiso_i}{2}$$
(6.3)

$$Z = \frac{Z_1 + Z_2}{2}$$
(6.4)

όπου:

το ί αναφέρεται σε κάθε ημέρα χωριστά από 1/1/2018 έως και 31/12/2022,

- Ttri: Η θερμοκρασία του αέρα στην τροπόπαυση.
- Tisoi: Η θερμοκρασία του αέρα στο πλησιέστερο στην τροπόπαυση ισοβαρές επίπεδο.
- T_{avgi}: Η μέση θερμοκρασία του αέρα μεταξύ της θερμοκρασίας της τροπόπαυσης και του πλησιέστερου ισοβαρούς επιπέδου.
- P1i: Η πίεση του ισοβαρούς επιπέδου κάτω από την τροπόπαυση.
- P2i: Η πίεση του ισοβαρούς επιπέδου πάνω από την τροπόπαυση.
- Ptri: Η πίεση του αέρα στην τροπόπαυση.
- GH1i: Το γεωδυναμικό ύψος του ισοβαρούς επιπέδου κάτω από την τροπόπαυση.
- GH2i: Το γεωδυναμικό ύψος του ισοβαρούς επιπέδου πάνω από την τροπόπαυση.
- Ζ1: Το ύψος της τροπόπαυσης όπως αυτό προσδιορίζεται από το πλησιέστερο
 ισοβαρές επίπεδο κάτω από την τροπόπαυση.
- Ζ2: Το ύψος της τροπόπαυσης όπως αυτό προσδιορίζεται από το πλησιέστερο
 ισοβαρές επίπεδο πάνω από την τροπόπαυση.
- Ζ: Ύψος της τροπόπαυσης όπως προσδιορίζεται από το μέσο όρο των Ζ1 και Ζ2.

⁶⁹ Στις εξισώσεις 6.1 και 6.2 ο αριθμός «9.81» αντιστοιχεί στην επιτάχυνση της βαρύτητας και έχει μονάδες τα «m/s²», και ο αριθμός «287» αντιστοιχεί στη σταθερά του αέρα και έχει μονάδες «J/(Kg·K)».

Τα δεδομένα για τους παραπάνω υπολογισμούς διατίθενται ελεύθερα από την Εθνική Υπηρεσία Ωκεανών και Ατμόσφαιρας (NOAA) των Ηνωμένων Πολιτειών της Αμερικής (<u>NOAA PSL</u>, τελευταία πρόσβαση 11/6/2023). Οι γεωγραφικές συντεταγμένες στα ελεύθερα διαθέσιμα δεδομένα δίνονται σε δεκαδική μορφή και με βήμα 2.5 μοιρών και για τον λόγο αυτό οι συντεταγμένες που χρησιμοποιήθηκαν για τους υπολογισμούς των δύο σημείων δειγματοληψίας ήταν οι (37.98N, 23.79E) και (38.3N, 23.86E) αντίστοιχα, εφαρμόζοντας γραμμική παρεμβολή μεταξύ 37.5 με 40.0 Ν και μεταξύ 22.5 και 25 Ε.

Στα πλαίσια της παρούσας Δ.Δ. δημιουργήθηκαν υπολογιστικά φύλλα excel τα οποία δίνουν τη δυνατότητα αυτόματης επιλογής των επιθυμητών γεωγραφικών συντεταγμένων του σημείου ενδιαφέροντος και υπολογισμού του ύψους της τροπόπαυσης. Τα δύο σημεία δειγματοληψίας για τα οποία υπολογίστηκε το ύψος της τροπόπαυσης είναι το ΕΠΤ-ΕΜΠ (37°58'41.7"N, 23°47'06.1"E) και ο Λόφος Ανθέων στην περιοχή της Άνοιξης Αττικής (38°07'34.4"N, 23°51'50.7"E). Το ύψος της τροπόπαυσης για την περιοχή που βρίσκεται το ΕΠΤ-ΕΜΠ υπολογίστηκε για κάθε ημέρα για τα έτη 2018 έως και 2022, και για τον Λόφο Ανθέων για τα έτη 2021 και 2022.

Καθώς η χρονική διάρκεια κάθε δειγματοληψίας ποικίλει, έγινε κατάλληλος προσδιορισμός του μέσου ύψους τροπόπαυσης, ώστε να γίνεται αντιστοίχιση με τη μετρούμενη ενεργότητα του ⁷Be στις αποθέσεις. Οι τιμές για το μέσο ύψος τροπόπαυσης που υπολογίστηκαν για την περίοδο που αντιστοιχεί σε κάθε δείγμα αποθέσεων δίνονται στον *Πίνακα 6.29*. Επίσης, για λόγους πληρότητας καθώς και για τη γενικότερη εποπτεία της κύμανσης του ύψους της τροπόπαυσης, στο *Σχήμα 6.30* που ακολουθεί δίνονται οι ημερήσιες τιμές του ύψους της τροπόπαυσης για τα έτη 2020 και 2021 (περίοδο που περιλαμβάνει τις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων που έλαβαν χώρα στην παρούσα Δ.Δ.) στις γεωγραφικές συντεταγμένες του ΕΠΤ-ΕΜΠ.

211

Πίνακας 6.29 : Μέσο ύψος της τροπόπαυσης για κάθε δείγμα ατμοσφαιρικής απόθεσης που συλλέχθηκε στα πλαίσια της παρούσας Δ.Δ.

Κωδικός	Μέσο ύψος
δειγματος	τροποπαυσης (m)
QSA1	11032
QSA2	11032
QSA3	11032
QSA4	11032
HR001	11364
WR001	11138
HR002	12675
WR002	9376
WR003	9376
WR004	9376
WR005	9420
DR001	14610
DR002	15486
DR003	14508
TR001	10786
DR004	12609
DR005	15909
TR003	15861
TR002	14601
DR006	13766
TR004	12470
TR005	11231
TR006	10829
WR006	8702
DR007	11281
DR008	10570
TR007	10711
TR008	9415
TR009	10452
TR010	11171
DR009	12528
DR010	11947
DR011	12518
DR012	12256
DR013	12023

Κωδικός Δείγματος	Μέσο ύψος τροπόπαυσης (m)			
TR011	11034			
WR007	10985			
TR012	11849			
DR014	13869			
DR015	12857			
DR016	16096			
DR017	16615			
DR018	15445			
DR019	16191			
DR020	15637			
DR021	14628			
TR013	12401			
DR022	13586			
TR014	14020			
DR023	12127			
HR003	13172			
WR008	12975			
HR004	11069			
WR010	7685			
WR011	7685			
WR012	7685			
WR013	7685			
WR014	7685			
WR015	7685			
WR016	7685			
WR017	7685			
WR018	7685			
WR019	7685			
WR020	11676			
WR021	11514			
HR005	12519			
HR006	12854			
HR007	13376			
HR008	12132			

Σχήμα 6.30 : Κύμανση του ημερήσιου ύψους της τροπόπαυσης για τα έτη 2020 και 2021 στην περιοχή του ΕΠΤ-ΕΜΠ (γεωγραφικές συντεταγμένες 37.98N, 23.79E).

Από το παραπάνω σχήμα είναι εμφανής μια περιοδικότητα στο ύψος της τροπόπαυσης, με τα μέγιστα να παρατηρούνται τους θερινούς και τα ελάχιστα τους χειμερινούς μήνες.

Στη μελέτη των (Ioannidou, et al., 2014) αναφέρεται ότι υπάρχει μια καθυστέρηση τριών ημερών στην επίδραση που έχει το ύψος της τροπόπαυσης στην ενεργότητα του ⁷Be στον ατμοσφαιρικό αέρα. Ωστόσο, επειδή τα περισσότερα δεδομένα ρυθμού απόθεσης του ⁷Be της παρούσας Δ.Δ. αφορούν χρονικά διαστήματα 7 ημερών ή περισσότερο, δεν κρίνεται σκόπιμη η διερεύνηση τέτοιας καθυστέρησης. Στον *Πίνακα 6.30* που ακολουθεί δίνονται οι τιμές του συντελεστή συσχέτισης R, καθώς και οι τιμές p-value για τις συσχετίσεις μεταξύ των τιμών του μέσου ύψους της τροπόπαυσης με τον ρυθμό απόθεσης του ⁷Be στις διάφορες ατμοσφαιρικές αποθέσεις, ομαδοποιώντας τις κατάλληλα, όπως και στις προηγούμενες παραγράφους.

213

Είδος απόθοπης	Συντελεστής συσχέτισης			
Ειοος αποθεοής	R	p-value		
Υγρή απόθεση (βροχή) *	0.4053	0.4253		
Υγρασία **	-0.5261	0.2252		
Ξηρή Απόθεση***	0.1145	0.5858		
Ολική Απόθεση ****	-0.3240	0.3042		
Συνεχόμενες Δειγματοληψίες (6/7/20- 4/10/21) *****	-0.4544	0.0090		
Μηνιαίες Αποθέσεις *****	-0.7038	0.0050		

Πίνακας 6.30 : Συντελεστές συσχέτισης και τιμές p-value μεταξύ των συγκεντρώσεων ενεργότητας και των ρυθμών απόθεσης του ⁷Be στα δείγματα ατμοσφαιρικών αποθέσεων με το εκάστοτε αντίστοιχο μέσο ύψος της τροπόπαυσης.

N = 6, N = 7, N = 7, N = 25, N = 12, N = 32, N = 14

Από τα παραπάνω αποτελέσματα δεν προκύπτει συσχέτιση μεταξύ του μέσου ύψους της τροπόπαυσης με τις υγρές, τις ξηρές και τις ολικές αποθέσεις καθώς και με την υγρασία. Ωστόσο, προκύπτει αρνητική συσχέτιση στην περίπτωση των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων και των μηνιαίων αποθέσεων, τονίζοντας για μία φορά ακόμα τη σημασία της χρονικής συνέχειας στη λήψη των δειγμάτων ατμοσφαιρικών αποθέσεων. Ιδιαίτερο ενδιαφέρον είναι το γεγονός ότι όλες οι συσχετίσεις είναι αρνητικές, ενώ οι συσχετίσεις του ύψους της τροπόπαυσης με τη συγκέντρωση του ⁷Be στον ατμοσφαιρικό αέρα στη μελέτη των (Ioannidou, et al., 2014) προσδιορίσθηκαν θετικές. Αυτή η διαφορά είναι αναμενόμενη και δικαιολογείται από το γεγονός ότι χαμηλότερα ύψη τροπόπαυσης απαντώνται κυρίως τους μήνες με τα υψηλότερα ποσοστά υγρών κατακρημνίσεων, οι οποίες αποτελούν και τον κυρίαρχο μηχανισμό απόθεσης των ραδιενεργών ισοτόπων στην επιφάνεια της Γης. Στο Σχήμα 6.31 δίνεται σε αντιπαραβολή η εξέλιξη της συγκέντρωσης του ⁷Be στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων με το ημερήσιο ύψος της τροπόπαυσης.

Σχήμα 6.31 : Ημερήσιο ύψος της τροπόπαυσης και ρυθμός απόθεσης του ⁷Be στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων (6/7/2020 έως 4/10/2021).

Κατά τη διάρκεια των συνεχόμενων δειγματοληψιών το μέγιστο ύψος της τροπόπαυσης παρατηρήθηκε στα 17.2km στις 24/7/2020 και το ελάχιστο ύψος της τροπόπαυσης παρατηρήθηκε στα 8.4 km στις 23/3/2021, το οποίο έρχεται σε συμφωνία με το εύρος του ύψους της τροπόπαυσης (από 7.6km έως 16.3 km) που υπολογίσθηκε από τους (Ioannidou, et al., 2014) για την περιοχή της Θεσσαλονίκης το έτος 2009, όπως δίνεται και στο *Σχήμα 6.32* που ακολουθεί.

Σχήμα 6.32 : Ημερήσια κύμανση του ύψους της τροπόπαυσης για την περιοχή της Θεσσαλονίκης (40.50°N, 22.90°E) κατά τη διάρκεια του έτους 2009 (Ioannidou, et al., 2014).

Ακόμα, ενδιαφέρον παρουσιάζει το γεγονός ότι τα δύο μεγάλα συμβάντα χιονόπτωσης "Μήδεια" και "Ελπίς", για τα οποία συλλέχθηκε δείγμα χιονιού στην περιοχή του Λόφου Ανθέων, έλαβαν χώρα παράλληλα με πολύ χαμηλά ύψη της τροπόπαυσης. Οι ημερομηνίες έναρξης των συμβάντων αυτών (15/2/2021 και 24/1/2022 αντίστοιχα) σημειώνονται στο *Σχήμα 6.33*, όπου δίνεται το ύψος της τροπόπαυσης για τα έτη 2021 και 2022 στις γεωγραφικές συντεταγμένες του Λόφου Ανθέων.

Σχήμα 6.33 : Κύμανση του ύψους της τροπόπαυσης για τα έτη 2021 και 2022 στις γεωγραφικές συντεταγμένες 38.13N, 23.86E. Με κόκκινο σημειώνονται οι ημερομηνίες έναρξης των χιονοκαταιγίδων "Μήδεια" και "Ελπίς".

6.3.5 Εκτίμηση της συνολικής επιφανειακής συγκέντρωσης ενεργότητας

Όπως αναφέρθηκε και στο 2° Κεφάλαιο, το ⁷Be και κυρίως ο ²¹⁰Pb έχουν εφαρμογή και ως ιχνηθέτες σε μοντέλα για τη μελέτη φαινομένων διάβρωσης και ιζηματογένεσης εδαφών και τον προσδιορισμό σχετικών συντελεστών. Κατά συνέπεια, η γνώση της επιφανειακής αλλά και της κατά βάθος κατανομής ενεργότητας των ισοτόπων αυτών είναι πολύ χρήσιμη πληροφορία για τέτοιου είδους μελέτες.

Οι συστηματικές και ειδικότερα οι συνεχόμενες δειγματοληψίες ατμοσφαιρικής απόθεσης δίνουν τη δυνατότητα της συνεχούς παρακολούθησης των αποτιθέμενων στο έδαφος ραδιενεργών ισοτόπων, προσφέροντας χρήσιμες πληροφορίες στη μελέτη της κινητικής τους στο έδαφος (οριζόντια ή κατακόρυφη μετανάστευση, επαναιώρηση κλπ.). Στην παρούσα Δ.Δ., χρησιμοποιώντας τα δεδομένα των συνεχόμενων δειγματοληψιών ατμοσφαιρικής απόθεσης, μπορεί να υπολογιστεί η συσσωρευτική απόθεση στην επιφάνεια του εδάφους για τα ισότοπα ⁷Be και ²¹⁰Pb, όπως δίνεται στα Σχήματα 6.34 και 6.35 που ακολουθούν. Η συγκέντρωση (Bq/m²) στην επιφάνεια του εδάφους υπολογίζεται για κάθε χρονική στιγμή λαμβάνοντας υπόψη την απόθεση (στην προκειμένη περίπτωση με βήμα μία εβδομάδα) και τη ραδιενεργό διάσπαση του ισοτόπου. Στην περίπτωση που είναι γνωστή η επιφανειακή συγκέντρωση του ραδιενεργού ισοτόπου κατά την έναρξη των συνεχόμενων δειγματοληψιών, τότε θα πρέπει να λαμβάνεται υπόψη και η απομείωση (decay) της αρχικής αυτής ποσότητας. Στην παρούσα μελέτη δεν ήταν γνωστή η επιφανειακή συγκέντρωση στο έδαφος των υπό μελέτη ραδιενεργών ισοτόπων τη χρονική στιγμή έναρξης των συνεχόμενων δειγματοληψιών. Για τον λόγο αυτό, για το ⁷Be έγινε η υπόθεση ότι η επιφανειακή συγκέντρωσή του στις 6/7/2020 είναι ίδια με τη συγκέντρωση που προέκυψε στις 6/7/2021 (έναν χρόνο αργότερα) χρησιμοποιώντας για τον υπολογισμό αυτό μόνο τα αποτελέσματα των δειγματοληψιών. Για το ⁷Be αυτό είναι μία καλή παραδοχή λόγω του μικρού χρόνου υποδιπλασιασμού του.

Για τον ²¹⁰Pb, επειδή έχει σημαντικά μεγαλύτερο χρόνο ημιζωής από το ⁷Be, διαφορετική προέλευση και παρουσιάζει αξιόλογη κατακόρυφη μετανάστευση, δεν έγινε αντίστοιχη υπόθεση για την αρχική συγκέντρωση στην επιφάνεια του εδάφους. Έτσι, στο Σχήμα 6.35 δίνεται η επιφανειακή συσσωρευτική συγκέντρωσή του, ξεκινώντας από μηδενική αρχική συγκέντρωση. Είναι σημαντικό να τονιστεί ότι η επιφανειακή συσσωρευτική συγκέντρωση που δίνεται στα Σχήματα 6.34 και 6.35 που ακολουθούν δεν αντιστοιχεί απαραίτητα στη συγκέντρωση που θα μετρηθεί σε περίπτωση δειγματοληψίας επιφανειακού δείγματος χώματος, καθώς τα ραδιενεργά ισότοπα μετά την απόθεσή τους κινούνται με διάφορους μηχανισμούς, μπορεί όμως αυτή η επιφανειακή συσσωρευτική συγκέντρωση να βρει εφαρμογή στη μελέτη των μηχανισμών αυτών.

Όπως προκύπτει από το Σχήμα 6.34, για χρονικό διάστημα μεγαλύτερο των 45 εβδομάδων⁷⁰, η συνεισφορά της υποθετικής αρχικής επιφανειακής συγκέντρωσης του ⁷Be γίνεται αμελητέα. Αυτό σημαίνει ότι η συστηματική και συνεχόμενη δειγματοληψία ατμοσφαιρικών αποθέσεων για μεγάλο χρονικό διάστημα

⁷⁰ Αντιστοιχεί σε έξι χρόνους υποδιπλασιασμού του ⁷Be.

(>45 εβδομάδων) οδηγεί στη γνώση της "χωρίς επίδραση από την αρχική συγκέντρωση ⁷Be ή από άλλους μηχανισμούς⁷¹" επιφανειακής ενεργότητας (Bq/m²) του ⁷Be στο έδαφος κάθε χρονική στιγμή.

Σχήμα 6.34 : Χρονική Εξέλιξη : a) της συσσωρευτικής συγκέντρωσης του ⁷Be στο έδαφος χρησιμοποιώντας αποκλειστικά τις μετρούμενες συγκεντρώσεις των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων, b) της υποθετικής αρχικής επιφανειακής συγκέντρωσης του ⁷Be, c) της συσσωρευτικής συγκέντρωσης του ⁷Be αθροίζοντας τις μετρούμενες συγκεντρώσεις του ⁷Be με την υποθετική αρχική συγκέντρωσή του.

Σχήμα 6.35 : Χρονική εξέλιξη της συσσωρευτικής επιφανειακής συγκέντρωσης του ²¹⁰Pb στο έδαφος από την ημερομηνίας έναρξης των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων.

⁷¹ Με εξαίρεση ενδεχόμενη κατακόρυφη μετανάστευση, επαναιώρηση, ή λόγω διάβρωσης.

Στο σημείο αυτό αξίζει να σημειωθεί ότι η μέγιστη συγκέντρωση ενεργότητας του ⁷Be στο έδαφος σύμφωνα με τους παραπάνω υπολογισμούς εντοπίζεται περί τις 20/2/2021 με τιμή 289 ± 1.7 Bq/m², η οποία έρχεται σε πολύ καλή συμφωνία με την τιμή 320 ± 52 Bq/m² η οποία είχε εκτιμηθεί μέσω απευθείας μετρήσεων στο έδαφος στην περιοχή του ΕΠΤ-ΕΜΠ, σε προηγούμενη μελέτη (Καρφόπουλος, 2012) η οποία είχε γίνει στις 3/4/2011. Η συμφωνία των δύο αυτών τιμών επιφανειακής ενεργότητας του ⁷Be, που σημειωτέον αντιστοιχούν σε παραπλήσιες χρονικές στιγμές μέσα στο έτος (τέλη Φεβρουαρίου - αρχές Απριλίου) με χρονική διαφορά ~ 10 έτη⁷² αποτελεί ισχυρή ένδειξη:

- της αξιοπιστίας και ακρίβειας των δειγματοληψιών, μετρήσεων και υπολογισμών που έγιναν στην εργασία αυτή,
- της επαναληψιμότητας του φαινομένου της απόθεσης του ⁷Be διαχρονικά.

6.3.6 Εκτίμηση της μέσης ταχύτητας απόθεσης

Ένα μέγεθος το οποίο έχει πολύ ενδιαφέρον να υπολογίζεται είναι η μέση ταχύτητα απόθεσης των ραδιενεργών ισοτόπων και κατ' επέκταση των σωματιδίων στα οποία αυτά είναι προσκολλημένα, από τον ατμοσφαιρικό αέρα στην επιφάνεια του εδάφους. Ο υπολογισμός της ταχύτητας απόθεσης για ένα ραδιενεργό ισότοπο μπορεί να γίνει από την εξίσωση (2.1) που δόθηκε στο κεφάλαιο 2 (Young & Silker, 1980).

Στην εργασία αυτή πραγματοποιήθηκαν 16 παράλληλες δειγματοληψίες ατμοσφαιρικών αποθέσεων και ατμοσφαιρικού αερολύματος σε φίλτρα αέρα. Οι συγκεντρώσεις των ραδιενεργών ισοτόπων στα φίλτρα αέρα και οι ρυθμοί απόθεσης στα παράλληλα δείγματα ατμοσφαιρικών αποθέσεων δίνονται στους *Πίνακες 6.5, 6.6* και 6.9. Βάσει αυτών έγινε ο υπολογισμός της μέσης ταχύτητας απόθεσης, όπως παρουσιάζεται στον *Πίνακα 6.31* που ακολουθεί.

Από τα αποτελέσματα του Πίνακα 6.31 προκύπτει ένα εύρος μέσης ταχύτητας απόθεσης για το ⁷Be από 0.042mm/s έως 6.54 mm/s και για τον ²¹⁰Pb από 0.23 mm/s έως 8.47 mm/s. Μάλιστα, όπως διαπιστώνεται για το ⁷Be η ταχύτητα υγρής απόθεσης είναι περί τις δύο τάξεις μεγέθους υψηλότερη από την ταχύτητα της ξηρής. Επιπλέον,

 $^{^{72}}$ Περίπου στην ίδια φάση του ενδεκ
αετούς κύκλου του ηλίου.

όπως διαπιστώνεται στο Σχήμα 6.36, υπάρχει ισχυρή και στατιστικά σημαντική θετική συσχέτιση μεταξύ των μέσων ταχυτήτων απόθεσης των ⁷Be και ²¹⁰Pb (R = +0.9335, p-value < 0.00001).

Κωδικός	Kasucác	Μέση ταχύτητα απόθεσης ud						
κωσικός φίλτρου	ατμοσφαιρικής		⁷ Be		²¹⁰ Pb			
αερα	αποθεσης	1	nm/s		1	mm/s	5	
a0548	DR003	0.042	±	0.003	<	MD	A	
a0554	DR004	0.32	±	0.01	1.15	±	0.08	
a0559	DR007	0.22	±	0.01	1.15	±	0.15	
a0560	TR007	5.19	±	0.14	3.92	±	0.19	
a0562	TR008	4.65	±	0.14	6.12	±	0.39	
a0563	TR010	6.54	±	0.16	8.7	±	0.29	
a0564	DR010	0.37	±	0.02	0.92	±	0.21	
a0567	DR012	0.41	±	0.02	0.72	±	0.16	
a0568	TR011	3.82	±	0.11	2.34	±	0.13	
a0569	DR014	0.59	±	0.03	0.58	±	0.10	
a0570	DR016	2.61	±	0.07	3.04	±	0.11	
a0571	DR018	0.16	±	0.06	0.37	±	0.13	
a0572	DR020	0.44	±	0.02	0.44	±	0.03	
a0573	DR021	0.13	±	0.03	0.23	±	0.05	
a0574	DR022	0.54	±	0.05	0.44	±	0.05	
a0575	DR023	0.31	±	0.05	0.41	±	0.07	

Πίνακας 6.31 : Μέση ταχύτητα απόθεσης ⁷Be και ²¹⁰Pb για τα δείγματα ατμοσφαιρικών αποθέσεων που συλλέχθηκαν παράλληλα με φίλτρα ατμοσφαιρικού αέρα.

Σχήμα 6.36 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ⁷Be και της μέσης ταχύτητας απόθεσης του ²¹⁰Pb.

Συνδυάζοντας τις τιμές του Πίνακα 6.31 με τα αντίστοιχα μετεωρολογικά δεδομένα του Πίνακα 6.35, μελετήθηκαν οι συσχετίσεις μεταξύ της μέσης ταχύτητας απόθεσης του ⁷Be και του ²¹⁰Pb με τις διάφορες μετεωρολογικές συνθήκες. Τα αποτελέσματα των συσχετίσεων αυτών δίνονται στον Πίνακα 6.32 που ακολουθεί.

Πίνακας 6.32 : Συντε	λεστές συσχέτισης	ς μεταξύ των	μέσων	ταχυτήτων	απόθεσης	'Be	και
²¹⁰ Pb με τις διάφορες με	ετεωρολογικές συν	θήκες.					

	u_d - 7Be		$u_d - {}^{210}Pb$		
	R	R p-value		p-value	
Θερμοκρασία	-0.5986	0.0143	-0.6292	0.0120	
Σχετική υγρασία	+0.6468	0.0068	+0.5310	0.0417	
Ατμοσφαιρική πίεση	+0.0374	0.8906	+0.2117	0.4488	
Μέση ταχύτητα ανέμου	-0.3164	0.2325	-0.1493	0.5954	

Από τα παραπάνω αποτελέσματα για την ταχύτητα απόθεσης και του ⁷Be αλλά και του ²¹⁰Pb προκύπτει ότι έχουν αρνητική συσχέτιση με τη θερμοκρασία και θετική συσχέτιση με τη σχετική υγρασία. Η αρνητική συσχέτιση της ταχύτητας απόθεσης με τη θερμοκρασία πιθανότατα θα μπορούσε να αποδοθεί στο γεγονός ότι οι υψηλές

θερμοκρασίες δημιουργούν ανοδικά ρεύματα αέρα, κάτι το οποίο εμποδίζει την απόθεση, μειώνοντας την ταχύτητα. Η θετική συσχέτιση της σχετικής υγρασίας με την ταχύτητα απόθεσης αποδίδεται στο γεγονός ότι όσο υψηλότερη είναι η σχετική υγρασία στην ατμόσφαιρα, τόσο μεγαλύτερη η συμπύκνωση υγρασίας γύρω από τα σωματίδια του αέρα, γεγονός που μπορεί παράλληλα και να αυξάνει την ταχύτητα απόθεσής τους, αλλά και ενδεχομένως να αυξάνει την αποδοτικότητα της σάρωσης των ραδιενεργών ισοτόπων από την ατμόσφαιρα. Οι παραπάνω συσχετίσεις οδηγούν στα ίδια συμπεράσματα με τις συσχετίσεις των προηγούμενων παραγράφων.

6.3.7 Υπολογισμός του κανονικοποιημένου ως προς τις υγρές αποθέσεις συντελεστή εμπλουτισμού ραδιενεργών ισοτόπων της ατμόσφαιρας

Στην μελέτη του (Baskaran, 1995) για τον προσδιορισμό της σημασίας των υγρών αποθέσεων στις ετήσιες ατμοσφαιρικές αποθέσεις, ορίζεται ο συντελεστής εμπλουτισμού ραδιενεργών ισοτόπων της ατμόσφαιρας **a** ο οποίος είναι κανονικοποιημένος ως προς την υγρή απόθεση και υπολογίζεται από την εξίσωση:

$$a = (F_s \cdot R_t) / (F_t \cdot R_s) \tag{6.5}$$

όπου

- F_s : ο συνολικός εποχικός ρυθμός απόθεσης του ραδιενεργού ισοτόπου
- Ft : ο ετήσιος ρυθμός απόθεσης του ραδιενεργού ισοτόπου
- Rs : το συνολικό εποχικό ύψος υγρών αποθέσεων
- Rt : το ετήσιο ύψος υγρών αποθέσεων

Για τιμές του συντελεστή **a** μεγαλύτερες του 1.0 υποδεικνύεται ότι οι ρυθμοί απόθεσης των ραδιενεργών ισοτόπων είναι υψηλότεροι των αναμενόμενων, βάσει της ποσότητας των υγρών κατακρημνίσεων, ενώ τιμές μικρότερες του 1.0 υποδεικνύουν εξάντληση των ρυθμών απόθεσης των ραδιενεργών ισοτόπων, δηλαδή σημαντική μείωση των συγκεντρώσεων των ραδιενεργών ισοτόπων στον ατμοσφαιρικό αέρα, λόγω υψηλής συχνότητας και ποσότητας υγρών αποθέσεων.

Οι συνεχόμενες δειγματοληψίες που έγιναν στην παρούσα Δ.Δ., περιλαμβάνουν ένα ολόκληρο έτος (Σεπτέμβριος 2020 - Αύγουστος του 2021). Χρησιμοποιώντας τις

μετρούμενες ροές απόθεσης για το ⁷Be και τον ²¹⁰Pb καθώς και τα διαθέσιμα μετεωρολογικά δεδομένα, στον *Πίνακα 6.33* που ακολουθεί δίνονται οι συγκεντρώσεις των εν λόγω ραδιενεργών ισοτόπων ανά εποχή, συνοδευόμενες από το συνολικό ύψος βροχόπτωσης ανά εποχή και την αντίστοιχη τιμή του συντελεστή εμπλουτισμού **a**.

	Συνολικό ύψος	υνολικό ύψος		²¹⁰ Pb		
Εποχές	βροχόπτωσης (mm)	Bq/(season·m ²)	a factor	Bq/(season·m ²)	a factor	
Φθινόπωρο	50	237.3 ± 2.5	2.1	24.3 ± 0.4	2.2	
Χειμώνας	273.8	350.9 ± 4.6	0.6	26.4 ± 0.9	0.4	
Άνοιξη	29.6	184.9 ± 1.8	2.7	25.1 ± 0.4	3.8	
Καλοκαίρι	27.2	100.3 ± 1.1	1.6	9.7 ± 0.2	1.6	
Σύνολο	380.6	873.5 ± 5.6		85.4 ± 1.1		

Πίνακας 6.33 : Κανονικοποιημένος ως προς τις υγρές αποθέσεις συντελεστής a για το ⁷Be και το ²¹⁰Pb ανά εποχή για τις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων.

Όπως προκύπτει από τα παραπάνω αποτελέσματα, οι τιμές του συντελεστή **a** για το ⁷Be και τον ²¹⁰Pb είναι παραπλήσιες και σίγουρα ακολουθούν την ίδια τάση, υποδεικνύοντας:

- εξάντληση της ροής των ραδιενεργών ισοτόπων κατά την περίοδο του χειμώνα,
 το οποίο δικαιολογείται από τα μεγάλα ύψη βροχόπτωσης καθώς και τη
 συχνότητά τους, που δεν επέτρεπαν την ανανέωση των συγκεντρώσεων των
 ραδιενεργών ισοτόπων στην ατμόσφαιρα,
- υψηλές τιμές του συντελεστή α τις υπόλοιπες εποχές με τις μέγιστες τιμές να παρατηρούνται την άνοιξη.

6.3.8 Λοιπά ατμοσφαιρικά μοντέλα με προοπτική αξιοποίησης των μετρήσεων ατμοσφαιρικών αποθέσεων

Οι μετρήσεις ατμοσφαιρικών αποθέσεων, είτε αυτές είναι αποκλειστικά από συλλογή υγρών ή ξηρών αποθέσεων είτε είναι από συλλογή ολικών αποθέσεων, μπορούν να χρησιμοποιηθούν με κατάλληλες συνδυαστικές μετρήσεις, για:

τον υπολογισμό συντελεστών από διάφορα μαθηματικά μοντέλα,

 επιβεβαίωση των αποτελεσμάτων ατμοσφαιρικών μοντέλων τα οποία προσομοιώνουν και προβλέπουν την κίνηση των αερίων μαζών σε παγκόσμιο επίπεδο.

Τα μοντέλα αυτά ανήκουν σε μία κατηγορία μοντέλων γενικής κυκλοφορίας της ατμόσφαιρας (General Circulation Models, GCMs) και συνεχώς αναπτύσσονται και βελτιώνονται, όπως αναφέρεται και στο κεφάλαιο 2. Στη συνέχεια ακολουθεί μια συνοπτική λίστα από ατμοσφαιρικά μοντέλα, η χρήση των οποίων είναι δυνητικά εφικτή συνδυάζοντας κατάλληλα τα δεδομένα ατμοσφαιρικών αποθέσεων με ατμοσφαιρικές συγκεντρώσεις, μετρήσεις συγκεντρώσεων ενεργότητας στα επιμέρους κλάσματα υγρών αποθέσεων, καθώς και μετρήσεις επιφανειακών συγκεντρώσεων ραδιενεργών ισοτόπων στο έδαφος:

 Υπολογισμός του συντελεστή απόδοσης κατακρήμνισης/σάρωσης ραδιενεργών ισοτόπων

Αν υποτεθεί στην περίπτωση υγρής κατακρήμνισης ότι πάνω από τους δειγματολήπτες γνωστού εμβαδού αντιστοιχεί μία ατμοσφαιρική στήλη η οποία πριν από το συμβάν υγρής κατακρήμνισης είχε συγκέντρωση M⁻ από ένα συγκεκριμένο ραδιενεργό ισότοπο (ραδιοϊχνηθέτης), τότε σύμφωνα με τη μελέτη του (Genthon, 1992a), (Genthon, 1992b) μπορεί να εφαρμοστεί η παρακάτω εξίσωση:

$$M^+ = M^- \cdot \exp(-a \cdot P) \tag{6.6}$$

Όπου

- M⁺: η μάζα του ραδιοϊχνηθέτη στην ατμοσφαιρική στήλη μετά τη λήξη του συμβάντος υγρής κατακρήμνισης
- Μ⁻: η μάζα του ραδιοϊχνηθέτη στην ατμοσφαιρική στήλη πριν την έναρξη του συμβάντος υγρής κατακρήμνισης
- α: ο συντελεστής απόδοσης της κατακρήμνισης/σάρωσης του ραδιοϊχνηθέτη από
 την ατμοσφαιρική στήλη από το συμβάν υγρής απόθεσης ο οποίος ορίζεται
 εμπειρικά, ανάλογα με το είδος της υγρής απόθεσης (χιόνι/βροχή), καθώς κα
 τον τρόπο σάρωσης του ραδιοϊχνηθέτη (σύγκρουση/ πυρηνοποίηση)
 (Genthon, 1992a), (Genthon, 1992b)
- P: η ποσότητα της υγρής κατακρήμνισης σε kg/m²

Στην περίπτωση που υπάρχει η δυνατότητα δειγματοληψίας της υγρής απόθεσης σε επιμέρους κλάσματα για γνωστή επιφάνεια απόθεσης, τότε μπορεί να εφαρμοστεί τμηματικά η εξίσωση (6.6) και να γίνει υπολογισμός και επιβεβαίωση του συντελεστή απόδοσης κατακρήμνισης/σάρωσης **a**.

ii. Υπολογισμός συνεισφοράς "washout" και "rainout" σε συμβάν βροχόπτωσης

Στη μελέτη των (Ishikawa, et al., 1995) έγινε προσπάθεια μοντελοποίησης της απόθεσης του ⁷Be με τον χρόνο, για συμβάντα υγρών αποθέσεων, διαχωρίζοντας τους παράγοντες "washout" (κατακρήμνιση/σάρωση των ραδιενεργών ισοτόπων στην ατμοσφαιρική στήλη από τις σταγόνες της βροχής ή το χιόνι) και "rainout" (σάρωση των ραδιενεργών που βρίσκονται μέσα στο σύννεφο από τις σταγόνες/χιονονιφάδες κατά τη συμπύκνωση, καθώς και κατά την πορεία εξόδου τους από το σύννεφο). Συγκεκριμένα, υποθέτοντας σταθερό ρυθμό υγρής κατακρήμνισης και κάνοντας διαδοχικές δειγματοληψίες των κλασμάτων της, γνωρίζοντας τη χρονική διάρκεια συλλογής για κάθε επιμέρους κλάσμα, τότε η συγκέντρωση του ραδιενεργού ισοτόπου ως προς τον χρόνο δίνεται από την εξίσωση:

$$A(t) = r \cdot \frac{a}{k} \cdot \left(1 - e^{-k \cdot t}\right) + b \cdot r \cdot t$$
(6.7)

όπου

- r: ο ρυθμός της υγρής κατακρήμνισης σε mm/h
- t: η χρονική διάρκεια συλλογής κάθε επιμέρους κλάσματος υγρής
 κατακρήμνισης
- α: σταθερά που εκτιμάται σε 4 Bq/L
- k: σταθερά που εκτιμάται σε 1 h^{-1}
- b: σταθερά που εκτιμάται σε 1 Bq/L

Στην παραπάνω σχέση ο σταθερός όρος εκφράζει το "washout" και ο μεταβαλλόμενος όρος το "rainout". Επομένως, συλλέγοντας πολλαπλά κλάσματα της υγρής απόθεσης, είναι δυνατόν να γίνει προσδιορισμός των σταθερών όρων α, k και b και να υπολογισθεί με υψηλότερη ακρίβεια η συνεισφορά του "washout" και του "rainout" σε κάθε συμβάν βροχόπτωσης.

iii. Υπολογισμός washout ratio

Στην περίπτωση που λαμβάνει χώρα ταυτόχρονη δειγματοληψία υγρής απόθεσης και ατμοσφαιρικού αέρα, τότε υπάρχει η δυνατότητα να υπολογιστεί το "washout ratio" σύμφωνα με την εξίσωση (McNeary & Baskaran, 2003):

$$W = 1.2 \cdot 10^3 \cdot \frac{C_{rain}}{C_{air}}$$
(6.8)

όπου:

W: το "washout ratio"

- Crain: η συγκέντρωση ενεργότητας του ραδιενεργού ισοτόπου στο δείγμα υγρής απόθεσης σε Bq/kg
- Cair: η συγκέντρωση ενεργότητας του ραδιενεργού ισοτόπου στον ατμοσφαιρικό αέρα σε mBq/m³ για πυκνότητα του αέρα 1.2 kg/m³ σε θερμοκρασία 20°C και πίεση 760 mmHg.

iv. Διερεύνηση φαινομένων διάβρωσης εδαφών

Οι συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων βρίσκουν εφαρμογή και στη μελέτη της διάβρωσης των εδαφών. Στην περίπτωση αυτή χρησιμοποιείται κυρίως⁷³ ο ²¹⁰Pb⁷⁴. Συγκεκριμένα, στην περίπτωση όπου δεν υπάρχουν εξωτερικές απώλειες του ²¹⁰Pb, η μεταβολή του αποθεματικού της συγκέντρωσής του στο χώμα δίνεται από την εξίσωση (Turekian, et al., 1983):

$$\frac{\mathrm{dI}}{\mathrm{dt}} = \mathbf{F} - \lambda \cdot \mathbf{I} \tag{6.9}$$

όπου :

F: ο ρυθμός απόθεσης του ²¹⁰Pb_{xs} (unsupported) σε Bq/(m²·y)

Ι: το αποθεματικό της συγκέντρωσης του 210 Pb_{xs} στο χώμα σε Bq/m²

λ: η σταθερά διάσπασης του 210 Pb σε y⁻¹

Υποθέτοντας μια σταθερή κατάσταση (steady state) σε ετήσιο επίπεδο, από την εξίσωση (6.9) προκύπτει ότι dI/dt = 0 και συνεπώς $F = \lambda \cdot I$. Αυτό σημαίνει ότι γνωρίζοντας το αποθεματικό του ²¹⁰Pb_{xs} μπορεί να υπολογιστεί ο ετήσιος ρυθμός απόθεσης και το αντίστροφο. Συνεπώς, συνδυάζοντας δειγματοληψίες χώματος με

⁷³ Για τη μελέτη φαινόμενων διάβρωσης χρησιμοποιείται επίσης και το ¹³⁷Cs, αλλά με διαφορετικό τρόπο, καθώς δεν παρουσιάζει συνεχή απόθεση στο έδαφος.

⁷⁴ Για τη μελέτη των φαινομένων αυτών όπου δηλώνεται ²¹⁰Pb εννοείται ο «unsupported» ²¹⁰Pb.

δειγματοληψίες ατμοσφαιρικών αποθέσεων μπορεί να γίνει σύγκριση μεταξύ των δύο και να διερευνηθούν φαινόμενα διάβρωσης εδαφών.

6.4 Συμπεράσματα

Με την ολοκλήρωση των δειγματοληψιών και των αναλύσεων των ατμοσφαιρικών κατακρημνίσεων και μετά από ενδελεχή διερεύνηση για την ύπαρξη συσχετίσεων με πλήθος διαφορετικών παραμέτρων, προέκυψαν μία σειρά από συμπεράσματα, τα κυριότερα των οποίων δίνονται συνοπτικά παρακάτω:

- Η αναπτυχθείσα μέθοδος για τη συλλογή, επεξεργασία και ανάλυση δειγμάτων ατμοσφαιρικών αποθέσεων επέτρεψε την αξιόπιστη και με καλή ακρίβεια μέτρηση των:
 - Συγκέντρωσης ενεργότητας ⁷Be σε δείγματα βροχής, χιονιού και υγρασίας,
 - Ρυθμού απόθεσης ⁷Be σε δείγματα ξηρής και ολικής απόθεσης,
 - Συγκέντρωσης ενεργότητας²¹⁰Pb σε δείγματα βροχής και χιονιού,
 - Ρυθμού απόθεσης ²¹⁰Pb σε δείγματα ξηρής και ολικής απόθεσης,
 - Ρυθμού απόθεσης ¹³⁷Cs σε μικρό πλήθος δείγματα ξηρής και ολικής απόθεσης.
- Το εύρος των συγκεντρώσεων ενεργότητας και ρυθμών απόθεσης των ραδιενεργών ισοτόπων που ανιχνεύθηκαν είναι:
 - a. $\gamma \iota \alpha \tau o {}^7Be$:
 - από 0.77 έως 4.11 Bq/L στη βροχή
 - από 0.14 έως 1.40 Bq/Lστο χιόνι
 - από 0.04 έως 0.15 Bq/L στην υγρασία
 - από 0.30 έως 16.55 Bq/(week·m²) στις ξηρές αποθέσεις
 - από 6.98 έως 40.23 Bq/(week·m²) στις ολικές αποθέσεις
 - b. gia ton 210 Pb :
 - από 50 έως 709 mBq/L στη βροχή
 - από 40 έως 123 mBq/L στο χιόνι
 - από 135 έως 2195 mBq/(week·m²) στις ξηρές αποθέσεις
 - από 430 έως 6629 mBq/(week·m²) στις ολικές αποθέσεις
 - c. gia to ^{137}Cs :

- ανιχνεύθηκε οριακά σε ένα δείγμα ξηρής απόθεσης με συγκέντρωση 65 ± 58 mBq/(week·m²),
- ανιχνεύθηκε σε 3 δείγματα ολικών αποθέσεων με εύρος από 10 έως 51 mBq/(week·m²) τα οποία συμπίπτουν με φαινόμενα μεταφοράς σκόνης από την έρημο Σαχάρα, καθώς και με τις δασικές πυρκαγιές που έλαβαν χώρα στην περιοχή του Chernobyl.
- iii. Από την ομαδοποίηση των μετρήσεων σε υγρές, ξηρές, ολικές (ξηρές + υγρές) και συνεχόμενες αποθέσεις, η οποία επιλέχθηκε για την ανεξάρτητη διερεύνηση ύπαρξης συσχετίσεων, ανάλογα με το είδος της απόθεσης, αλλά και τη διερεύνηση συσχετίσεων σε συνεχόμενες χρονικά δειγματοληψίες, προέκυψε ότι η χρονική σύνδεση μεταξύ των δειγμάτων είναι ιδιαίτερα σημαντική, καθώς συμπεριλαμβάνει τις μειώσεις και αυξήσεις των συγκεντρώσεων των ραδιενεργών ισοτόπων στην ατμόσφαιρα, όπως αυτές διαδέχονται η μία την άλλη. Ειδικότερα, στις περισσότερες περιπτώσεις οι συσχετίσεις μεταξύ ρυθμών απόθεσης και διαφόρων μετεωρολογικών και άλλων παραμέτρων μπορεί να απουσιάζουν όταν λαμβάνονται υπόψη μεμονωμένα δείγματα, βάσει του είδους απόθεσης (υγρές, ξηρές, ολικές), αλλά αντίθετα να διαπιστώνονται συσχετίσεις όταν χρησιμοποιούνται δείγματα πάσης φύσεως αποθέσεων, τα οποία όμως έχουν ληφθεί συνεχόμενα.
- iv. Η εξέλιξη της συγκέντρωσης ενεργότητας των ραδιενεργών ισοτόπων κατά τη διάρκεια συμβάντος χιονόπτωσης έδειξε υψηλότερες συγκεντρώσεις στα τελευταία εκατοστά χιονόπτωσης που εναποτέθηκαν, οδηγώντας σε αντίθετα από τα αναμενόμενα από τη βιβλιογραφία συμπεράσματα, υποδεικνύοντας την πιθανή εισροή εξωτερικών αερίων μαζών πλούσιων σε ραδιενεργά ισότοπα, καθώς και τη σημασία της περιεχόμενης στο σύννεφο συγκέντρωσης των ραδιενεργών ισοτόπων στην τελική εναποτιθέμενη ενεργότητα (snowout).
- ν. Προέκυψε ισχυρή θετική συσχέτιση μεταξύ της συγκέντρωσης του ⁷Be και του ²¹⁰Pb στα δείγματα ξηρής απόθεσης και ασθενής θετική συσχέτιση στα δείγματα ολικής απόθεσης.
- vi. Δεν προέκυψε συσχέτιση μεταξύ των συγκεντρώσεων των ραδιενεργών ισοτόπων ⁷Be και ²¹⁰Pb στις ατμοσφαιρικές αποθέσεις, με τις συγκεντρώσεις τους στον ατμοσφαιρικό αέρα, όπως αυτές προέκυψαν από τις παράλληλες δειγματοληψίες φίλτρων αέρα. Αυτό φαίνεται να οφείλεται στη συνεισφορά

228

των μηχανισμών που διέπουν τις ατμοσφαιρικές αποθέσεις, καθώς και τη σημασία των υγρών αποθέσεων, οι οποίες οδηγούν από τη μία σε μείωση της συγκέντρωσης των ραδιενεργών ισοτόπων στην ατμόσφαιρα και από την άλλη σε αύξηση στις ατμοσφαιρικές αποθέσεις.

- vii. Από τις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων προέκυψε ότι το μεγαλύτερο ποσοστό του ⁷Be και του ²¹⁰Pb εναποτίθεται κατά τους φθινοπωρινούς και χειμερινούς μήνες, με τα δύο ισότοπα να εμφανίζουν ισχυρή θετική συσχέτιση για τις δειγματοληψίες αυτές, τόσο για εβδομαδιαία, όσο και για μηνιαία χρονικά βήματα.
- viii. Η ετήσια απόθεση εκτιμήθηκε στα 790 ± 5 Bq/(year·m²) για το ⁷Be και στα 78.7 ± 1.0 Bq/(year·m²) για το ²¹⁰Pb.
 - ix. Ο λόγος του ρυθμού απόθεσης μεταξύ του συνόλου των ετήσιων ξηρών αποθέσεων προς την ετήσια απόθεση υπολογίστηκε στα 0.17 ± 0.003 για το ⁷Be και στα 0.29 ± 0.010 για το ²¹⁰Pb.
 - Χ. Η προσπάθεια συσχέτισης των μετρήσεων που έγιναν στα πλαίσια της
 Διατριβής με τις διάφορες μετεωρολογικές παραμέτρους έδειξε:
 - Ασθενή αρνητική συσχέτιση μεταξύ της σχετικής υγρασίας και της συγκέντρωσης του ²¹⁰Pb σε δείγματα βροχής.
 - Ισχυρή θετική συσχέτιση μεταξύ του ύψους βροχόπτωσης και της συγκέντρωσης του ⁷Be σε δείγματα υγρασίας.
 - Ισχυρή θετική συσχέτιση μεταξύ της σχετικής υγρασίας και του ρυθμού απόθεσης του ⁷Be και του ²¹⁰Pb στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων.
 - Ισχυρή αρνητική συσχέτιση μεταξύ της θερμοκρασίας και του ρυθμού απόθεσης του ⁷Be και του ²¹⁰Pb στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων.
 - Δεν παρατηρήθηκε στατιστικά σημαντική συσχέτιση μεταξύ του λόγου ²¹⁰Pb/⁷Be στις ατμοσφαιρικές αποθέσεις με το ύψος βροχόπτωσης, ωστόσο οι μέγιστες τιμές απαντώνται μόνο για μηδενικά ύψη βροχόπτωσης (απουσία υγρών αποθέσεων). Το εύρος του λόγου ²¹⁰Pb/⁷Be ανά δείγμα ήταν από 0.043 έως 0.840.

- Η κυρίαρχη κατεύθυνση του ανέμου κατά τη διάρκεια των συνεχόμενων δειγματοληψιών ήταν η Νοτιοδυτική (SW) και ταυτίστηκε με το μεγαλύτερο πλήθος των μέγιστων ρυθμών απόθεσης του ²¹⁰Pb.
- Οι συγκεντρώσεις του ⁷Be στον ατμοσφαιρικό αέρα παρουσίασαν ισχυρή θετική συσχέτιση με τη θερμοκρασία και ισχυρή αρνητική συσχέτιση με τη σχετική υγρασία. Οι συγκεντρώσεις του ²¹⁰Pb στον ατμοσφαιρικό αέρα παρουσίασαν ασθενή θετική συσχέτιση με την υγρασία. Οι συσχετίσεις αυτές είναι ακριβώς αντίθετες με τις αντίστοιχες συσχετίσεις των ατμοσφαιρικών αποθέσεων.
- xi. Η συσχέτιση των μετρήσεων των συνεχόμενων δειγματοληψιών ατμοσφαιρικής απόθεσης με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών έδειξε:
 - a. $\gamma \iota \alpha \tau o {}^7Be$:
 - Ισχυρή αρνητική συσχέτιση με την ατμοσφαιρική συγκέντρωση του όζοντος (O₃),
 - Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του βενζο[α]πυρένιου (BaP),
 - Ασθενή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του μονοξειδίου του αζώτου (NO).
 - b. gia tov 210 Pb:
 - Ασθενή αρνητική συσχέτιση με την ατμοσφαιρική συγκέντρωση του όζοντος (O₃),
 - Ασθενή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του βενζο[α]πυρένιου (BaP).
- xii. Η συσχέτιση των μετρήσεων στον ατμοσφαιρικό αέρα με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών έδειξε:
 - a. $\gamma \iota \alpha \tau o {}^7Be$:
 - Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του όζοντος (O₃),
 - b. gia tov 210 Pb:
 - Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση των σωματιδίων PM2.5,

- Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση σωματιδίων PM10.
- xiii. Οι ρυθμοί απόθεσης του ⁷Be στα δείγματα των συνεχόμενων ατμοσφαιρικών αποθέσεων παρουσιάζουν ασθενή αρνητική συσχέτιση με το πλήθος των ηλιακών κηλίδων, αν ληφθεί μία καθυστερημένη επίδραση των κηλίδων 9 μηνών.
- xiv. Αναφορικά με το ύψος της τροπόπαυσης διαπιστώνεται:
 - Αρνητική συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων και στις μηνιαίες αποθέσεις με το ύψος της τροπόπαυσης.
 - Οι ελάχιστες τιμές του ύψους της τροπόπαυσης συμπίπτουν με τα δύο ισχυρά συμβάντα χιονόπτωσης που συλλέχθηκαν στην παρούσα Δ.Δ..
- xv. Οι συνεχόμενες δειγματοληψίες δίνουν τη δυνατότητα υπολογισμού της συσσωρευτικής συγκέντρωσης ενεργότητας (Bq/m²) του ⁷Be στο έδαφος κάθε χρονική στιγμή, κάτι που αποτελεί σημαντικό δεδομένο για τη μελέτη φαινομένων διάβρωσης εδαφών.
- xvi. Η ταχύτητα απόθεσης του ⁷Be είχε εύρος από 0.042mm/s έως 6.544 mm/s και του ²¹⁰Pb από 0.230 mm/s έως 8.465 mm/s, ενώ υπάρχει ισχυρή θετική συσχέτιση μεταξύ των ταχυτήτων απόθεσης των δύο ισοτόπων. Επιπλέον, παρατηρείται ασθενής αρνητική συσχέτιση μεταξύ της ταχύτητας απόθεσης και της θερμοκρασίας και ασθενής θετική συσχέτιση με τη σχετική υγρασία, γεγονός που τονίζει την επίδραση της αυξημένης ανοδικής μεταφοράς αερίων μαζών με την αύξηση της θερμοκρασίας στην ταχύτητα απόθεσης, καθώς και την αυξημένη σάρωση των αιωρούμενων ραδιενεργών ισοτόπων σε συνθήκες αυξημένης σχετικής υγρασίας.
- xvii. Ο υπολογισμός του συντελεστή *α* εμπλουτισμού της ατμόσφαιρας σε ραδιενεργά ισότοπα κανονικοποιημένου ως προς τις υγρές αποθέσεις, οδηγεί στο συμπέρασμα ότι, κατά τη διάρκεια των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων στην παρούσα Δ.Δ., έλαβε χώρα εξάντληση της ροής των ραδιενεργών ισοτόπων κατά την περίοδο του χειμώνα, κάτι το οποίο δικαιολογείται από τα μεγάλα ύψη βροχόπτωσης, καθώς και τη συχνότητά τους, που δεν επέτρεπαν την ανανέωση των ραδιενεργών ισοτόπων στην

ατμόσφαιρα. Ακόμα, υψηλές τιμές του συντελεστή **α** παρατηρήθηκαν τις υπόλοιπες εποχές με τις μέγιστες τιμές να παρατηρούνται την άνοιξη.

6.5 Συμπληρωματικοί πίνακες κεφαλαίου 6

Στην παρούσα παράγραφο παρατίθεται ο συγκεντρωτικός Πίνακας 6.34 του συνόλου των δειγμάτων ατμοσφαιρικών αποθέσεων που συλλέχθηκαν κατά τη διάρκεια εκπόνησης της παρούσας Δ.Δ., ο Πίνακας 6.35 στον οποίο δίνεται το σύνολο των μετεωρολογικών δεδομένων όπως αυτά αντιστοιχούν σε κάθε δείγμα ατμοσφαιρικής απόθεσης που συλλέχθηκε στην παρούσα Δ.Δ., καθώς και ο Πίνακας 6.36 στον οποίο δίνονται οι μέσες εβδομαδιαίες συγκεντρώσεις ατμοσφαιρικών ρυπαντών στο ατμοσφαιρικής απόθεσης.

Πίνακας 6.34 : Το σύνολο των ατμοσφαιρικών δειγμάτων που συλλέχθηκαν και επεξεργάσθηκαν με την αναπτυχθείσα μέθοδο στα πλαίσια της παρούσας Δ.Δ. σε χρονολογική σειρά.

Κωδικός	δικός Περίοδος δειγματοληψίας Επιφάνεια		Επιφάνεια	Μάζα	Σ ()						
δείγματος	Έναρξη	Λήξη	Σύνολο ημερών	συλλογης (m ²)	δείγματος (gr)	Σχολια					
QSA1					3666	ρητίνη +	4 από τα 6 υπο-δείγματα				
QSA2	16/6/2018	17/6/2018	1	0.56	3666	μαγνητικος αναδευτήρας	για την ανάπτυξη τη				
QSA3					3696	ρητίνη + γειοοκίνητη	μευσσου επεξεργασίας ατμοσφαιρικών				
QSA4					3676	ανάδευση	αποθέσεων				
HR001	15/11/2018	16/11/2018	1	-	2750	υγρασία προ-βροχής					
WR001	17/11/2018	18/11/2018	1	-	3506	βροχή					
HR002	19/11/2018	20/11/2018	1	-	2818	υγρασία μετά-βροχής					
WR002					2738	β	ροχή				
WR003	18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018	3 18/12/2018		_	2732	βροχή που αναλύθηκε με καθυστέρηση 2 εβδομάδων για διερεύνηση προσρόφησης των ραδιενεργών ισοτόπων στα τοιχώματα του δοχείου	
WR004				-	2724	βροχή που ΗΝΟ3 σ αναλύθηκε καθυστ διερεύνηση των ραδιενε στα τοιχώμα	οξινίστηκε με ε pH=3 και με 2 εβδομάδες έρηση για προσρόφησης ργών ισοτόπων ιτα του δοχείου				

WR005	8/1/2019	8/1/2019	0	4.5	3521	χιόνι από την κακοκαιρία "Τηλέμαχος"- μέσο ύψος απόθεσης 9cm
DR001	24/6/2019	8/7/2019	14	0.56	-	
DR002	19/7/2019	23/8/2019	35	0.56	-	- αρχικες σειγματοληψιες ξηρής απόθεσης για επέκταση της μεθόδου
DR003	28/8/2019	19/9/2019	22	0.56	-	(Δ.Ε. Καρύδης)
TR001	11/3/2020	6/5/2020	56	0.75	-	ολική απόθεση παράλληλα με πυρκαγιά στη ζώνη αποκλεισμού του Τσερνόμπιλ
DR004	6/5/2020	21/5/2020	15	0.75	-	ξηρή απόθεση παράλληλα με Sahara dust event* - ταυτόχρονη συλλογή φίλτρου αέρα a0554
DR005	6/7/2020	24/7/2020	18	0.75	-	ξηρή απόθεση
TR003	24/7/2020	17/9/2020	55	0.75	-	ολική απόθεση
TR002	17/9/2020	21/9/2020	4	0.75	-	ολική απόθεση παράλληλα με το μεσογειακό κυκλώνα "Ιανό"
DR006	25/9/2020	8/10/2020	13	0.75	-	ξηρή απόθεση
TR004	8/10/2020	6/11/2020	29	0.75	-	ολική απόθεση
TR005	6/11/2020	31/1/2021	86	0.56	3492	ολική απόθεση - λόγω μεγάλης ποσότητας αναλύθηκε το 7.44% του ολικού δείγματος
TR006	1/2/2021	22/2/2021	21	0.56	3936	ολική απόθεση - λόγω μεγάλης ποσότητας αναλύθηκε το 17.68% του ολικού δείγματος
WR006	15/2/2021	15/2/2021	0	0.18	4074	χιόνι από την κακοκαιρία "Μήδεια"- συλλογή στον Λόφο Ανθέων, Άνοιξη, Αττικής περιλαμβάνει τα πρώτα 20cm της ολικής απόθεσης
DR007	22/2/2021	1/3/2021	7	0.75	-	ξηρή απόθεση παράλληλη συλλογή φίλτρου αέρα a0559
DR008	1/3/2021	8/3/2021	7	0.75	-	ξηρή απόθεση
TR007	8/3/2021	22/3/2021	14	0.75	-	ολική απόθεση παράλληλα με την έκρηξη του ηφαιστείου της Αίτνα- παράλληλη συλλογή φίλτρου αέρα a0560
TR008	22/3/2021	29/3/2021	7	0.75	-	ολική απόθεση παράλληλη συλλογή φίλτρου αέρα a0562
TR009	29/3/2021	5/4/2021	7	0.75	-	ολική απόθεση
TR010	5/4/2021	26/4/2021	21	0.75	-	ολική απόθεση- παράλληλη συλλογή φίλτρου αέρα a0563
DR009	26/4/2021	10/5/2021	14	0.75	-	ξηρή απόθεση

DR010	10/5/2021	17/5/2021	7	0.75	-	ξηρή απόθεση- παράλληλη συλλογή φίλτρου αέρα a0564
DR011	17/5/2021	24/5/2021	7	0.75	-	ξηρή απόθεση παράλληλα με της δασικές πυρκαγιές της Κορίνθου
DR012	24/5/2021	31/5/2021	7	0.75	-	ξηρή απόθεση- παράλληλη συλλογή φίλτρου αέρα a0567
DR013	31/5/2021	7/6/2021	7	0.75	-	ξηρή απόθεση
TR011	7/6/2021	14/6/2021	7	0.75	-	ολική απόθεση- παράλληλη συλλογή φίλτρου αέρα a0568
WR007	9/6/2021	9/6/2021	0	0.1875	2746	βροχή
TR012	14/6/2021	22/6/2021	8	0.75	-	ολική απόθεση
DR014	22/6/2021	29/6/2021	7	0.75	-	ζηρή απόθεση- παράλληλη συλλογή φίλτρου αέρα a0569
DR015	29/6/2021	6/7/2021	7	0.75	-	ξηρή απόθεση
DR016	6/7/2021	15/7/2021	9	0.75	-	ζηρή απόθεση- παράλληλη συλλογή φίλτρου αέρα a0570
DR017	15/7/2021	22/7/2021	7	0.75	-	ξηρή απόθεση
DR018	22/7/2021	29/7/2021	7	0.75	-	ζηρή απόθεση παράλληλα με δασική πυρκαγιά στο Βύρωνα- παράλληλη συλλογή φίλτρου αέρα a0571
DR019	29/7/2021	6/8/2021	8	0.75	-	ζηρή απόθεση παράλληλα με δασικές πυρκαγιές σε Β. Αττική και Β. Εύβοια
DR020	6/8/2021	30/8/2021	24	0.75	-	ζηρή απόθεση παράλληλα με δασικές πυρκαγιές σε Β. Αττική, Β. Εύβοια, Μεσσηνία, Ηλεία- παράλληλη συλλογή φίλτρου αέρα a0572
DR021	30/8/2021	6/9/2021	7	0.75	-	ζηρή απόθεση- παράλληλη συλλογή φίλτρου αέρα a0573
TR013	6/9/2021	13/9/2021	7	0.75	-	ξηρή απόθεση (εκ παραδρομής δόθηκε κωδικός "ολικής απόθεσης")
DR022	13/9/2021	20/9/2021	7	0.75	-	ξηρή απόθεση- παράλληλη συλλογή φίλτρου αέρα a0574
TR014	20/9/2021	27/9/2021	7	0.75	-	ζηρή απόθεση- (εκ παραδρομής δόθηκε κωδικός "ολικής απόθεσης")

DR023	27/9/2021	4/10/2021	7	0.75	-	ζηρή απόθεση- παράλληλη συλλογή φίλτρο αέρα a0575	
HR003	6/10/2021	8/10/2021	2		3094	υγρασία προ-β	ροχής
WR008	8/10/2021	10/10/2021	2	0.375	3544	βροχή	
HR004	11/10/2021	12/10/2021	1	-	3082	υγρασία μετά-β	βροχής
WR010			1	-	3334	χιόνι από την κακοκαιρία "Ελπίς", συλλογή στο Λόφο Ανθέων, Άνοιξη, Αττική διαχωρισμός κλασμάτων δείγματος βάσει του ύψους χιονόπτωσης	30-45cm
WR011			1	-	3398		20-30cm
WR012			1	-	3488		15-20cm
WR013			1	-	3546		10-15cm
WR014	24/1/2022	25/1/2022	1	-	3578		5-10cm
WR015	- 24/1/2022	25/1/2022	1	-	3230		4-5cm
WR016			1	-	2440		3-4cm
WR017			1	-	2592		2-3cm
WR018			1	-	1818		1-2cm
WR019	-		1	-	2608		0-1cm
WR020	17/5/2022	19/5/2022	2	-	2222	υγρασία προ-βρ	οοχής**
WR021	18/5/2022	19/5/2022	1	0.1875	2804	βροχή	
HR005	3/10/2022	11/10/2022	8	-	2828	υγρασία	
HR006	18/10/2022	21/10/2022	3	-	2798	υγρασία	
HR007	24/10/2022	26/10/2022	2	-	2792	υγρασία	
HR008	27/10/2022	2/11/2022	6	-	2422	υγρασία	

*Sahara dust event: έντονα συμβάντα μεταφοράς αφρικανικής σκόνης ** Εκ παραδρομής δόθηκε κωδικός υγρής απόθεσης

Κωδικός δείγματος	Κυρίαρχη	Θερμοκρασία		Σχετική υγρασία	Ατμοσφαιρικ ή πίεση	Ύψος βροχής	Μέση ταχύτητα ανέμου
	ανέμου	°C		%	mbar	mm	km/h
QSA1							
QSA2	SE	10.5	0.3	<u>005⊥12</u>	10066 ± 0.2	50.8	27 ± 0.5
QSA3	512	19.5	± 0.5	80.3 ± 1.2	1000.0 ± 0.2	30.8	2.7 ± 0.3
QSA4							
HR001	E	10.8	± 0.2	70.2 ± 0.8	1021.0 ± 0.1	0.2	9.5 ± 0.4
WR001	E	10.7	± 0.2	85.0 ± 0.6	1017.1 ± 0.4	42.0	11.6 ± 0.4
HR002	SW	15.5	± 0.2	81.7 ± 1.0	$1014.0~\pm~0.3$	3.6	4.7 ± 0.7
WR002							
WR003	SE	8.3	± 0.4	86.2 ± 1.0	$1013.1~\pm~0.8$	20.6	$9.5\ \pm 0.6$
WR004							
WR005	NE	-0.4	± 0.4	82.8 ± 2.1	$1020.3~\pm~0.2$	7.6	$3.6 \ \pm 0.6$
DR001	NE	26.7	± 0.2	48.4 ± 0.5	1011.3 ± 0.1	0.2	$8.6 \ \pm 0.6$
DR002	NE	27.2	± 0.1	44.9 ± 0.4	$1010.5~\pm~0.0$	0.0	$9.2 \hspace{0.1in} \pm \hspace{0.1in} 0.5$
DR003	NE	24.3	± 0.1	46.3 ± 0.4	$1013.9~\pm~0.0$	0.0	$8.9\ \pm 0.2$
TR001	SW	13.2	± 0.1	61.5 ± 0.3	$1014.4~\pm~0.0$	125.6	7.2 ± 0.1
DR004	ESE	23.1	± 0.3	46.0 ± 0.7	1013.7 ± 0.1	0.4	5.3 ± 0.2
DR005	NE	25.5	± 0.2	49.0 ± 0.5	$1009.8~\pm~0.0$	0.0	8.6 ± 0.1
TR003	ESE	26.5	± 0.1	48.0 ± 0.3	$1010.7~\pm~0.0$	22.8	$7.4 \ \pm 0.2$
TR002	NE	21.2	± 0.2	68.6 ± 0.9	1013.2 ± 0.1	7.8	9.8 ± 0.2
DR006	SW	22.1	± 0.2	61.8 ± 0.7	1012.1 ± 0.1	0.4	4.4 ± 0.1
TR004	SW	17.4	± 0.1	66.9 ± 0.4	1016.7 ± 1.5	25.4	5.4 ± 0.3
TR005	SW	11.5	± 0.0	74.2 ± 0.2	$1016.9~\pm~0.0$	268.2	8.1 ± 0.2
TR006	SW	9.7	± 0.1	72.4 ± 0.4	$1018.3~\pm~0.1$	21.2	$6.0 \ \pm 0.1$
WR006	NE	0.2	± 0.1	90.2 ± 0.6	1023.1 ± 0.3	3.2	7.7 ± 0.2

Πίνακας 6.35 : Μετεωρολογικά δεδομένα (μέση τιμή και τυπική απόκλιση) κατά τη διάρκεια των δειγματοληψιών ατμοσφαιρικών αποθέσεων της παρούσας Δ.Δ.

DR007	ESE	11.0 ±	0.3	61.4 ± 0.9	$1026.6~\pm~0.1$	0.0	$7.4\ \pm 0.9$	
DR008	NE	10.6 ±	0.2	61.5 ± 0.8	$1022.9~\pm~0.1$	0.0	$3.4\ \pm 0.2$	
TR007	SW	10.9 ±	0.1	68.4 ± 0.6	$1010.7~\pm~0.1$	3.2	$3.2\ \pm 0.2$	
TR008	SE	8.2 ±	0.3	63.2 ± 1.1	$1021.2~\pm~0.1$	1.4	$1.9\ \pm 0.2$	
TR009	SW	12.1 ±	0.2	65.4 ± 0.8	$1016.3~\pm~0.1$	11.0	$3.1 \ \pm 0.1$	
TR010	SW	13.1 ±	0.1	62.7 ± 0.5	$1016.3~\pm~0.1$	14.0	$2.4\ \pm 0.2$	
DR009	SW	20.2 ±	0.2	51.4 ± 0.7	$1013.2~\pm~0.1$	0.0	$1.3\ \pm 0.1$	
DR010	SW	19.3 ±	0.3	48.4 ± 0.9	$1010.2~\pm~0.1$	0.0	$1.6\ \pm 0.1$	
DR011	SW	21.1 ±	0.3	46.2 ± 0.8	$1013.5~\pm~0.1$	0.0	$1.6\ \pm 0.1$	
DR012	SE	22.1 ±	0.3	54.3 ± 0.9	$1011.8~\pm~0.1$	0.0	$1.5\ \pm 0.1$	
DR013	SE	20.2 ±	0.3	55.3 ± 1.0	$1017.0~\pm~0.1$	0.0	$1.6\ \pm 0.2$	
TR011	SE	20.5 ±	0.3	66.3 ± 1.1	$1011.8~\pm~0.1$	24.0	$1.5 \ \pm 0.1$	
WR007	NNE	20.9 ±	0.7	70.3 ± 3.2	$1010.9~\pm~0.1$	3.6	$1.4 \ \pm 0.1$	
TR012	SW	23.1 ±	0.3	57.9 ± 0.9	$1012.3~\pm~0.1$	3.2	$1.5 \ \pm 0.1$	
DR014	SE	29.2 ±	0.3	50.3 ± 0.9	$1012.3~\pm~0.1$	0.0	$2.3 \ \pm 0.3$	
DR015	SE	28.0 ±	0.3	47.2 ± 1.0	$1008.9~\pm~0.1$	0.0	$2.3 \ \pm 0.2$	
DR016	Е	28.3 ±	0.3	40.8 ± 0.7	1011.1 ± 0.0	0.0	$3.1 \ \pm 0.2$	
DR017	SE	27.1 ±	0.3	54.1 ± 1.0	$1006.1~\pm~0.1$	0.0	$2.0\ \pm 0.2$	
DR018	NE	27.9 ±	0.3	37.3 ± 0.8	$1012.7~\pm~0.1$	0.0	$3.0 \ \pm 0.2$	
DR019	SE	33.0 ±	0.3	28.9 ± 0.6	$1008.0~\pm~0.1$	0.0	$1.4 \ \pm 0.1$	
DR020	SE	27.1 ±	0.2	45.4 ± 0.5	1011.1 ± 0.0	0.0	$2.3 \hspace{0.1in} \pm \hspace{0.1in} 0.1$	
DR021	SE	23.5 ±	0.2	54.5 ± 0.8	$1013.9~\pm~0.1$	0.0	$2.7\ \pm 0.2$	
TR013	NE	20.7 ±	0.2	61.8 ± 0.8	$1014.4~\pm~0.1$	0.2	$2.8\ \pm 0.2$	
DR022	SW	25.6 ±	0.3	44.0 ± 0.8	$1013.6~\pm~0.1$	0.0	$1.9\ \pm 0.2$	
TR014	SE	21.1 ±	0.3	53.4 ± 0.9	$1016.5~\pm~0.1$	0.0	$2.4\ \pm 0.2$	
DR023	NE	18.7 ±	0.2	56.5 ± 0.6	$1018.8~\pm~0.0$	0.0	$4.0\ \pm 0.2$	
HR003	SE	16.9 ±	0.3	69.9 ± 1.0	$1016.9~\pm~0.1$	0.8	$3.6\ \pm 0.4$	
WR008	SE	18.2 ±	0.3	83.4 ± 1.1	$1015.9~\pm~0.1$	5.8	$1.5 \ \pm 0.3$	
HR004	SW	18.4 ±	0.2	73.5 ± 1.2	1010.4 ± 0.2	0.2	$1.6 \ \pm 0.3$	
WR010								
-------	----	------	-----	-----	----------------	------------------	------	-----------------
WR011	NE			0.1	80.3 ± 1.1		6.6	
WR012								
WR013								
WR014		0.2				1022.0 ± 0.1		106 + 06
WR015		0.2	Ξ 0			1023.9 ± 0.1		10.0 ± 0.0
WR016								
WR017								
WR018								
WR019								
WR020	E	19.7	± 0	.5	58.0 ± 1.7	$1016.4~\pm~0.2$	17.4	$9.5\ \pm 0.4$
WR021	Е	18.6	± 0	.5	57.2 ± 2.1	$1017.0~\pm~0.3$	17.4	12.0 ± 0.5
HR005	NE	18.4	± 0	.2	55.2 ± 0.7	$1019.1~\pm~0.1$	0.0	$8.5\ \pm 0.2$
HR006	NE	16.2	± 0	.3	62.6 ± 1.1	$1020.3~\pm~0.1$	0.0	$9.2 \ \pm 0.3$
HR007	Е	19.0	± 0	.5	65.3 ± 1.5	$1019.0~\pm~0.1$	0.0	$3.2 \ \pm 0.1$
HR008	NE	18.0	± 0	.2	52.4 ± 0.8	$1020.7~\pm~0.1$	0.0	8.6 ± 0.3

Κωδικός			$\mu g/m^3$		ng/ m ³					
δείγματος	PM2.5	PM10	NO	NO ₂	O3	As	Cd	Ni	Pb	BaP
DR001	2364	3999	197	2164	18080	0.500	0.045	17.950	2.100	0.003
DR002	2086	3324	179	1084	17279	0.050	0.003	0.050	0.210	-
DR003	1716	2535	184	1256	17312	-	-	-	-	-
TR001	1752	2274	201	1410	13529	0.219	0.168	2.131	0.550	0.017
DR004	2349	5084	158	1445	14969	0.117	0.084	6.067	0.257	0.006
DR005	1877	2640	176	1053	15705	0.486	0.311	0.292	42.039	0.002
TR003	1909	3151	183	1234	16603	0.382	0.188	2.717	14.064	0.005
TR002	1775	3423	182	625	13146	-	-	-	-	_
DR006	1246	2283	315	2292	11579	0.269	0.016	2.235	0.592	0.002
TR004	1352	1883	246	1632	11079	0.302	0.075	7.314	0.664	0.006
TR005	1614	1983	274	1212	8656	0.263	0.171	1.359	2.177	0.057
TR006	1858	3212	336	1754	9351	0.133	0.243	0.800	8.933	0.036
DR007	2774	4259	325	2052	10337	0.100	0.190	2.500	0.100	0.000
DR008	1773	2606	237	1674	10900	0.100	0.170	1.100	0.100	0.001
TR007	1692	2730	230	1556	10713	0.100	0.165	0.200	7.100	0.010
TR008	1853	2619	201	1574	11333	0.100	0.230	2.500	0.100	-
TR009	2224	3355	279	1765	11856	0.100	0.170	3.900	0.100	0.029
TR010	1937	3139	339	1959	11615	0.133	0.233	0.267	6.600	0.007
DR009	2540	5409	419	1442	8537	0.150	0.090	0.300	4.200	0.014
DR010	1392	2731	171	601	16168	0.100	0.020	0.200	9.500	0.001
DR011	1828	3358	170	1149	17662	0.100	0.020	0.200	0.100	-
DR012	2131	4007	203	2114	18216	0.100	0.020	0.200	11.000	0.001
DR013	1874	2941	177	1308	17921	0.100	0.020	0.200	0.100	-
TR011	2127	3123	178	1604	16735	0.200	0.040	0.400	13.100	0.001
TR012	1983	2990	194	1741	17231	0.088	0.018	0.175	0.088	0.001
DR014	3753	7711	234	2479	18444	0.100	0.020	0.200	11.000	-

Πίνακας 6.36 : Μέσες εβδομαδιαίες συγκεντρώσεις ατμοσφαιρικών ρυπαντών στο ατμοσφαιρικό αερόλυμα όπως αυτές αντιστοιχούν στην εκάστοτε δειγματοληψία ατμοσφαιρικής απόθεσης.

DR015	2539	4821	174	1760	19548	0.100	0.020	0.200	0.100	0.001
DR016	2056	3488	175	785	19976	0.078	0.124	1.244	0.078	_
DR017	2119	4367	186	1417	17448	0.100	0.020	0.200	12.400	0.001
DR018	1810	3368	168	479	19891	-	-	-	-	_
DR019	3823	8063	187	2027	20804	0.088	0.018	1.925	0.088	0.001
DR020	2455	4042	188	1089	18767	0.117	0.023	0.875	5.950	0.001
DR021	1899	3120	185	1130	17463	0.100	0.020	0.200	0.100	_
TR013	1884	3471	178	828	16220	0.300	0.220	0.200	0.100	_
DR022	2750	5269	201	1887	17542	0.300	0.170	7.100	24.200	-
TR014	1964	3428	206	1733	14418	-	-	-	-	-
DR023	1828	2947	173	849	14975	-	-	-	-	-

*Το σύμβολο "-" αφορά ελλείπουσες τιμές.

ΚΕΦΑΛΑΙΟ 7

Επίλογος

Το Κεφάλαιο αυτό αποτελεί τον επίλογο και τη σύνοψη της Διατριβής. Στις παραγράφους που ακολουθούν παρουσιάζονται συνοπτικά η έρευνα που πραγματοποιήθηκε κατά τη διάρκεια εκπόνησής της, οι προκλήσεις που έπρεπε να αντιμετωπισθούν, τα αποτελέσματά της, καθώς και τα βασικά συμπεράσματα που προέκυψαν. Ακόμα, παρατίθενται τα επιτεύγματα και τα σημεία πρωτοτυπίας της διατριβής και γίνονται οι προτάσεις για μελλοντική επέκταση της έρευνας. Τέλος παρουσιάζονται οι δημοσιεύσεις και οι ανακοινώσεις σε συνέδρια που έλαβαν χώρα μέχρι την ολοκλήρωση της Διατριβής.

7.1 Συνοπτική Παρουσίαση της Διδακτορικής Διατριβής

Ο βασικός στόχος της Διατριβής ήταν η διεύρυνση των δυνατοτήτων παρακολούθησης της ραδιενέργειας περιβάλλοντος στο ΕΠΤ-ΕΜΠ – με έμφαση στην ατμόσφαιρα – προκειμένου να καταστεί δυνατή η ολοκληρωμένη μελέτη της κύμανσης της συγκέντρωσης ενεργότητας και της απόθεσης μίας σειράς ραδιενεργών ισοτόπων. Προς την κατεύθυνση επίτευξης του στόχου αυτού, η έρευνα που πραγματοποιήθηκε κινήθηκε σε δύο άξονες:

- Ανάπτυξη, βελτίωση και τυποποίηση τεχνικών δειγματοληψίας και γ-φασματοσκοπικής ανάλυσης υγρών ξηρών και ολικών ατμοσφαιρικών αποθέσεων.
- ii. Συστηματικές δειγματοληψίες υγρών, ξηρών και ολικών ατμοσφαιρικών αποθέσεων, καθώς και υγρασίας της ατμόσφαιρας, σε συνδυασμό με δειγματοληψίες αερολύματος στην ατμόσφαιρα, αλλά και μετεωρολογικών και άλλων παραμέτρων.

Αναφορικά με την ανάπτυξη και βελτίωση των μεθόδων δειγματοληψίας και ανάλυσης δειγμάτων υγρών ατμοσφαιρικών αποθέσεων και υγρασίας, ως βάση χρησιμοποιήθηκε μεθοδολογία που είχε αναπτυχθεί στο ΕΠΤ-ΕΜΠ στο παρελθόν, η οποία όμως επεκτάθηκε σημαντικά, ελέγχθηκε ως προς την επαναληψιμότητα και τυποποιήθηκε ως διαδικασία.

Αναφορικά με τη γ-φασματοσκοπική ανάλυση των δειγμάτων ατμοσφαιρικών αποθέσεων, με στόχο την επίτευξη της υψηλότερης ακρίβειας ανάλυσης και χαμηλότερων επιπέδων ανίχνευσης, έγινε συστηματική και ενδελεχής διερεύνηση της επίδρασης που έχει στην ανάλυση το υπόστρωμα κατά τη διάρκεια της μέτρησης και δόθηκε μεγάλη έμφαση στη μείωση του, καθώς και στη ρεαλιστική εκτίμησή του κατά τη διάρκεια της μέτρησης. Κατά τις γ-φασματοσκοπικές αναλύσεις έμφαση δόθηκε στην ανίχνευση και στον ποσοτικό προσδιορισμό των ισοτόπων ⁷Be και ²¹⁰Pb. Ειδικά για το ²¹⁰Pb, έγινε ενδελεχής διερεύνηση, προκειμένου να επιβεβαιωθεί ότι το ποσοστό του ²¹⁰Pb που παράγεται πάνω σε φίλτρο αέρα, το οποίο συλλέγεται κατά τη δειγματοληψία αερολύματος, από τη διάσπαση των βραχύβιων θυγατρικών του ραδονίου που συλλέγονται σε αυτό είναι αμελητέο.

Η συνολική μεθοδολογία δειγματοληψίας και ανάλυσης που αναπτύχθηκε εφαρμόσθηκε εν συνεχεία για μετρήσεις υγρών, ξηρών, ολικών ατμοσφαιρικών αποθέσεων και ατμοσφαιρικής υγρασίας. Οι δειγματοληψίες και μετρήσεις αυτές πραγματοποιήθηκαν καθόλη τη διάρκεια εκπόνησης της Διατριβής και αφορούσαν (i) αμιγώς υγρές κατά τη διάρκεια επεισοδίων βροχόπτωσης ή χιονόπτωσης, (ii) αμιγώς ξηρές και (iii) ολικές αποθέσεις, ενώ για μία μεγάλη χρονική περίοδο κατέστη δυνατή η πραγματοποίηση συνεχόμενων δειγματοληψιών και μετρήσεων. Σε αρκετές περιπτώσεις οι μετρήσεις αποθέσεων συνδυάσθηκαν με μετρήσεις της συγκέντρωσης ενεργότητας στον αέρα, ενώ συλλέχθηκαν δεδομένα από πλήθος μετεωρολογικών και άλλων παραμέτρων από διάφορες πηγές.

Μετά τη συλλογή μεγάλου πλήθους αποτελεσμάτων από τις μετρήσεις αποθέσεων και συγκεντρώσεων στον αέρα, ακολούθησε η επεξεργασία τους, με στόχο την εξεύρεση συσχετίσεων μεταξύ διαφόρων μεγεθών και προφανώς την εξαγωγή των σχετικών συμπερασμάτων. Στη φάση αυτή της επεξεργασίας των αποτελεσμάτων ακολουθήθηκαν διάφορες προσεγγίσεις και δοκιμάσθηκε η αξιοποίηση των αποτελεσμάτων των μετρήσεων μετά από κατάλληλες ομαδοποιήσεις. Έτσι, έγινε προσπάθεια εξεύρεσης συσχετίσεων με διάφορα μεγέθη (i) μόνο για τις ξηρές αποθέσεις, (ii) για τις ολικές αποθέσεις και (iii) για τις συνεχόμενες μετρήσεις αποθέσεων. Από τη διαδικασία αυτή επεξεργασίας των αποτελεσμάτων των μετρήσεων διαπιστώθηκε ότι οι καλύτερες συσχετίσεις

242

προκύπτουν από τις συνεχόμενες μετρήσεις αποθέσεων, κάτι που είναι σημαντικό για το μελλοντικό σχεδιασμό μίας δειγματοληψίας.

Οι επιμέρους στόχοι που ετέθησαν κατά την εκπόνηση της Διατριβής ήταν:

- η βελτίωση των τεχνικών γ-φασματοσκοπίας που εφαρμόζονται από το ΕΠΤ-ΕΜΠ για την ανάλυση δειγμάτων πολύ χαμηλής ραδιενέργειας,
- ii. η διερεύνηση της κύμανσης του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας και η συσχέτισή τους με το υπόστρωμα των ανιχνευτικών διατάξεων,
- iii. η διερεύνηση της κύμανσης του υποστρώματος φωτοκορυφών των ανιχνευτικών διατάξεων λόγω της κύμανσης των θυγατρικών του ραδονίου και του θορονίου και η επιλογή του κατάλληλου φάσματος υποστρώματος ανά περίπτωση,
- η διερεύνηση της επίδρασης που έχουν στα κατώτερα επίπεδα ανίχνευσης τα θυγατρικά του ραδονίου και του θορονίου που συλλέγονται στα φίλτρα αέρα κατά τη δειγματοληψία αερολύματος,
- ν. η επιλογή κατάλληλων σεναρίων χρονικής διάρκειας δειγματοληψίας, αναμονής πριν την ανάλυση και διάρκειας γ-φασματοσκοπικής ανάλυσης ανά περίπτωση,
- vi. η διερεύνηση της επίδρασης των συλλεχθέντων βραχύβιων θυγατρικών του ραδονίου στο συνολικό μετρούμενο ²¹⁰Pb στα φίλτρα ατμοσφαιρικού αέρα,
- vii. η ανάπτυξη μεθοδολογίας για συστηματική δειγματοληψία, επεξεργασία και ανάλυση δειγμάτων ατμοσφαιρικών αποθέσεων και υγρασίας,
- viii. η συστηματική δειγματοληψία δειγμάτων ατμοσφαιρικών αποθέσεων και υγρασίας και η συσχέτιση των αποτελεσμάτων με μετεωρολογικές και άλλες παραμέτρους, καθώς και η αξιοποίηση των αποτελεσμάτων των μετρήσεων σε ατμοσφαιρικά μοντέλα.

Μετά το 2° Κεφάλαιο που αποτελεί την ανασκόπηση της σχετικής βιβλιογραφίας και τη συνοπτική παρουσίαση εξοπλισμού και διαδικασιών στο ΕΠΤ-ΕΜΠ, στο 3° Κεφάλαιο παρουσιάζεται η μελέτη της επίδρασης των θυγατρικών του ραδονίου και του θορονίου στις γ-φασματοσκοπικές αναλύσεις. Για τον λόγο αυτό, αρχικά μελετήθηκε η κύμανση του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας. Συνολικά έλαβαν χώρα 4 δειγματοληψίες χρονικής διάρκειας 12 ημερών η καθεμία και εκτιμήθηκαν οι ωριαίες συγκεντρώσεις του ραδονίου και των θυγατρικών του. Παράλληλα με ορισμένες δειγματοληψίες έγινε και συλλογή διαδοχικών φασμάτων υποστρώματος σε επιλεγμένους ανιχνευτές, ώστε να μελετηθεί η ύπαρξη συσχέτισης μεταξύ της κύμανσης του ραδονίου και των θυγατρικών του με το υπόστρωμα των ανιχνευτικών διατάξεων. Από τα αποτελέσματα των μετρήσεων προέκυψε ότι:

- δεν διαπιστώθηκε στατιστικά σημαντική συσχέτιση μεταξύ της συγκέντρωσης
 του ραδονίου και των θυγατρικών του με τη θερμοκρασία, τη σχετική υγρασία
 ή την πίεση στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας,
- παρατηρείται ημερήσια κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του, με τις μέγιστες και τις ελάχιστες τιμές να απέχουν περίπου 12 ώρες μεταξύ τους, όπου οι μέγιστες συγκεντρώσεις του ραδονίου και των θυγατρικών του παρατηρούνται κυρίως τις απογευματινές ώρες και οι ελάχιστες από τα μεσάνυχτα έως τις πρώτες πρωινές ώρες,
- η κύμανση της συγκέντρωσης του ραδονίου παρουσιάζει πολύ καλή συσχέτιση με την κύμανση της συγκέντρωσης των θυγατρικών του.

Οι μετρούμενες συγκεντρώσεις του ραδονίου μέσα στο εργαστήριο συσχετίστηκαν με τις εξωτερικές μετεωρολογικές συνθήκες. Από τα αποτελέσματα των συσχετίσεων προέκυψε ότι η συγκέντρωση του ραδονίου στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ παρουσιάζει:

- στατιστικά σημαντική θετική συσχέτιση με την εξωτερική θερμοκρασία,
 καθώς και με τη διαφορά της εσωτερικής από την εξωτερική θερμοκρασία,
- ασθενή αρνητική συσχέτιση, στις περισσότερες περιπτώσεις, με την εξωτερική βαρομετρική πίεση, καθώς και με τη διαφορά της εσωτερικής από την εξωτερική πίεση,
- ασθενή αρνητική συσχέτιση με την ταχύτητα του ανέμου.

Η σύγκριση της κύμανσης του ραδονίου και των θυγατρικών του με την κύμανση των υποστρωμάτων των ανιχνευτών του ΕΠΤ-ΕΜΠ έγινε μέσω της φωτοκορυφής του ²¹⁴Bi (609.32keV) των φασμάτων υποστρώματος. Από τη σύγκριση αυτή προέκυψε ότι η κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας επηρεάζει στατιστικά σημαντικά τα υποστρώματα των ανιχνευτών γερμανίου. Ωστόσο, η επίδραση αυτή τείνει να εξαφανίζεται σε μεγάλης διάρκειας φάσματα. Οι ισχυρότερες

συσχετίσεις μεταξύ της κύμανσης του ραδονίου και του ρυθμού καταμέτρησης της φωτοκορυφής του υποστρώματος εμφανίζονται για τον ανιχνευτή Ge2 για τον οποίο δεν λαμβάνεται κανένα μέτρο μείωσης του υποστρώματος.

Έχοντας επιβεβαιώσει την κύμανση του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας και την επίδρασή του στην κύμανση του υποστρώματος των ανιχνευτών, κρίθηκε σκόπιμη η διερεύνηση της επιλογής του καταλληλότερου φάσματος υποστρώματος κατά την ανάλυση ενός δείγματος, ανάλογα με το ισότοπο και τη διάρκεια δειγματοληψίας. Για τον σκοπό αυτό, έγινε συστηματική δειγματοληψία και ανάλυση πλήθους φασμάτων υποστρώματος διαφορετικής διάρκειας και από την επεξεργασία των αποτελεσμάτων της ανάλυσής τους τελικά προτείνεται κατάλληλη μεθοδολογία επιλογής του φάσματος υποστρώματος κοντά στα όρια ανίχνευσης.

Η μελέτη του Κεφαλαίου 3 επεκτάθηκε και στο υπόστρωμα το οποίο δημιουργείται στο γ-φάσμα εξαιτίας της δειγματοληψίας φίλτρων αέρα, και ειδικότερα στην επίδραση που έχουν στα κατώτερα επίπεδα ανίχνευσης επιλεγμένων ραδιενεργών ισοτόπων τα θυγατρικά του ραδονίου και του θορονίου που συλλέγονται πάνω στα φίλτρα. Για τον σκοπό αυτό, προγραμματίσθηκαν και πραγματοποιήθηκαν πλήθος δειγματοληψιών φίλτρων αέρα για διάφορα σενάρια δειγματοληψίας τα οποία υπέστησαν επεξεργασία με διάφορους τρόπους και μελετήθηκε η χρονική εξέλιξη των θυγατρικών του ραδονίου και του θορονίου πάνω σε αυτά, καθώς και τα κατώτερα επίπεδα ανίχνευσης των ραδιενεργών ισοτόπων ⁷Be, ¹⁰⁶Ru, ²²Na, ¹³⁷Cs, ¹³⁴Cs και ¹³¹I. Από τις αναλύσεις αυτές προέκυψαν τα ακόλουθα αποτελέσματα:

- μία χρονική καθυστέρηση 2h μεταξύ της συλλογής του φίλτρου αέρα και της δειγματοληψίας, οδηγεί σε σημαντική βελτίωση των κατωτέρων επιπέδων ανίχνευσης,
- ii. για μεγάλης διάρκειας δειγματοληψίες (μερικών ημερών) απαιτείται μεγαλύτερη χρονική καθυστέρηση, της τάξης των 24 ωρών.

Στο 4° Κεφάλαιο, στόχος ήταν να μελετηθεί η επίδραση των βραχύβιων θυγατρικών του ραδονίου στη συγκέντρωση του ²¹⁰Pb που μετράται πάνω σε ένα φίλτρο αέρα. Για τον σκοπό αυτό, αφού διαπιστώθηκε το επίπεδο της κύμανσης της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εξωτερικό περιβάλλον,

245

αναπτύχθηκε και εφαρμόσθηκε μεθοδολογία για την εκτίμηση της κύμανσης αυτής στην ατμόσφαιρα με τεχνικές γ-φασματοσκοπίας. Η μεθοδολογία αυτή βασίζεται σε σειρά δειγματοληψιών και πειραματικών μετρήσεων καθώς και στην ανάπτυξη και επίλυση των διαφορικών εξισώσεων που διέπουν την εξέλιξη όλων των βραχύβιων θυγατρικών του ραδονίου από τη φάση της δειγματοληψίας έως και την ολοκλήρωση της γ-φασματοσκοπικής ανάλυσης. Καθώς η επίλυση των διαφορικών αυτών εξισώσεων είναι ιδιαίτερα ευαίσθητη και εξαρτάται από τα πειραματικά δεδομένα τα οποία τροφοδοτούνται στις εξισώσεις, αναπτύχθηκε ιδιαίτερη τεχνική ώστε οι εξισώσεις να αποδίδουν λύσεις σχεδόν σε κάθε περίπτωση. Η μεθοδολογία αυτή κατέστησε δυνατή την εκτίμηση άνω και κάτω ορίου του συνολικού πλήθους των πυρήνων όλων των θυγατρικών του ραδονίου που συλλέγονται πάνω στο φίλτρο και τα οποία τελικά μεταπίπτουν σε ²¹⁰Pb. Εκτός από τη μεθοδολογία που αναπτύχθηκε, για λόγους σύγκρισης, χρησιμοποιήθηκε και άλλη – απλούστερη – μεθοδολογία η οποία εμφανίζεται στη βιβλιογραφία. Από τα αποτελέσματα της παραπάνω ανάλυσης προέκυψε ότι:

- Η πολύ υψηλή ευαισθησία επίλυσης του συστήματος εξισώσεων για τον προσδιορισμό των βραχύβιων θυγατρικών του ραδονίου αντιμετωπίζεται ικανοποιητικά συνδυάζοντας μετρήσεις από διαφορετικά σενάρια χρονικής διάρκειας λήψης φασμάτων, καθώς και αναζητώντας θετική λύση του συστήματος σε εύρος ±3σ περί της μετρούμενης συγκέντρωσης του ²¹⁴Pb και του ²¹⁴Bi.
- Παρά τη λεπτομερή προσέγγιση υπολογισμού των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου, προκύπτει ότι το ποσοστό συνεισφοράς τους στον συνολικό συλλεχθέντα ²¹⁰Pb κυμαίνεται από 0.26% έως 0.38% και είναι τόσο μικρό που δεν είναι στατιστικά σημαντικό συγκρινόμενο με τις αβεβαιότητες των γ-φασματοσκοπικών αναλύσεων οι οποίες κυμαίνονται από 5% έως 7%.
- Η μέθοδος που χρησιμοποιήθηκε για τον προσδιορισμό των συγκεντρώσεων των βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα μπορεί να χρησιμοποιηθεί για την παρακολούθηση της κύμανσης της συγκέντρωσής τους με μεθόδους γ-φασματοσκοπίας.

Η μεθοδολογία η οποία αναπτύχθηκε και επιλύθηκε για τη διερεύνηση της επίδρασης των βραχύβιων θυγατρικών του ραδονίου στον ²¹⁰Pb που συλλέγεται στο

φίλτρο αέρα, μπορεί πολύ εύκολα να προσαρμοστεί και να χρησιμοποιηθεί στην περίπτωση άλλων ισοτόπων τα οποία συλλέγονται σε δειγματοληψίες αέρα μεγάλης διάρκειας τις οποίες ακολουθεί μεγάλης διάρκειας γ-φασματοσκοπική ανάλυση.

Στο 5° Κεφάλαιο παρουσιάζεται η ανάπτυξη, βελτίωση και τυποποίηση της μεθοδολογίας δειγματοληψίας και επεξεργασίας των υγρών δειγμάτων ατμοσφαιρικών αποθέσεων. Η μεθοδολογία αυτή παρέχει τη δυνατότητα μικρότερου χρονικού βήματος συλλογής, καθώς και μικρότερου όγκου δείγματος, κάτι που επιτρέπει την πιο λεπτομερή χρονικά παρακολούθηση της εξέλιξης της συγκέντρωσης αποθέσεις. Τα των ραδιενεργών ισοτόπων στις αποτελέσματα $\tau\omega\nu$ γ-φασματοσκοπικών αναλύσεων των δειγμάτων που επεξεργάσθηκαν με την αναπτυχθείσα μέθοδο, οδήγησαν στην ανίχνευση και στον προσδιορισμό με υψηλή ακρίβεια της συγκέντρωσης ενεργότητας και του ρυθμού απόθεσης για τα ραδιενεργά ισότοπα ⁷Be και ²¹⁰Pb, και διαπιστώθηκε ότι τα αποτελέσματα που προέκυψαν βρίσκονται σε καλή συμφωνία με τη βιβλιογραφία. Τα κατώτερα επίπεδα ανίχνευσης που επιτεύχθηκαν στις υγρές αποθέσεις ήταν αρκετά χαμηλά, της τάξης του ~ 0.02 Bq/L τόσο για το ⁷Be όσο και για τον ²¹⁰Pb. Όσον αφορά τον ρυθμό απόθεσης στις ξηρές και ολικές αποθέσεις, τα κατώτερα επίπεδα ανίχνευσης που επιτεύχθηκαν ήταν 0.01 Bq/(week·m²) για το ⁷Be και 0.04 Bq/(week·m²) για τον ²¹⁰Pb.

Στο 6° Κεφάλαιο, εφαρμόζοντας την ολοκληρωμένη πλέον μεθοδολογία δειγματοληψίας, προετοιμασίας δείγματος και γ-φασματοσκοπικής ανάλυσης ατμοσφαιρικών αποθέσεων και υγρασίας, έλαβαν χώρα συστηματικές δειγματοληψίες υγρών, ξηρών και ολικών αποθέσεων, καθώς και υγρασίας. Συλλέχθηκαν συνολικά 25 δείγματα ξηρής απόθεσης, 23 δείγματα υγρής απόθεσης, 12 δείγματα ολικής απόθεσης και 9 δείγματα υγρασίας. Παράλληλα με μερικά από τα παραπάνω δείγματα συλλέχθηκαν και 16 δείγματα ατμοσφαιρικού αερολύματος σε φίλτρα. Τα δείγματα ατμοσφαιρικών αποθέσεων ομαδοποιήθηκαν με διάφορους τρόπους, ανάλογα με το είδος της εναπόθεσης, καθώς και βάσει της χρονικής τους συνέχειας. Για κάθε ομάδα δειγμάτων διερευνήθηκε η συσχέτιση των συγκεντρώσεων ενεργότητας (για δείγματα υγρής απόθεσης και υγρασίας) ή των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb με:

 την εξωτερική θερμοκρασία, τη σχετική υγρασία, την ατμοσφαιρική πίεση, την ταχύτητα του ανέμου, καθώς και το ύψος της βροχόπτωσης (για τα δείγματα υγρών αποθέσεων και υγρασίας),

- με τις ατμοσφαιρικές συγκεντρώσεις των ατμοσφαιρικών ρυπαντών PM2.5, PM10, NO, NO₂, O₃, As, Cd, Ni, Pb και BaP,
- το πλήθος των ηλιακών κηλίδων (μόνο για το ⁷Be),
- το ύψος της τροπόπαυσης (μόνο για το ⁷Be).

Επιπροσθέτως, χρησιμοποιώντας τις συνεχόμενες χρονικά δειγματοληψίες ατμοσφαιρικών αποθέσεων έγινε εκτίμηση:

- του ετήσιου ρυθμού απόθεσης του ⁷Be και του ²¹⁰Pb,
- της συσσωρευτικής συγκέντρωσης του ⁷Be και του ²¹⁰Pb στο έδαφος,
- της μέσης ταχύτητας εναπόθεσης των ραδιενεργών ισοτόπων,
- του κανονικοποιημένου ως προς τις υγρές αποθέσεις συντελεστή εμπλουτισμού της ατμόσφαιρας σε ⁷Be και ²¹⁰Pb.

Από το σύνολο των δειγματοληψιών και των μετρήσεων που έγιναν στα πλαίσια της Διατριβής, καθώς και τη διερεύνηση διαφόρων συσχετίσεων προέκυψαν τα ακόλουθα αποτελέσματα και συμπεράσματα:

- Το εύρος των συγκεντρώσεων ενεργότητας και των ρυθμών απόθεσης των ραδιενεργών ισοτόπων που ανιχνεύθηκαν είναι:
 - a. $\gamma \iota \alpha \tau o {}^7Be$:
 - από 0.77 έως 4.11 Bq/L στη βροχή
 - από 0.14 έως 1.40 Bq/L στο χιόνι
 - από 0.04 έως 0.15 Bq/L στην υγρασία
 - από 0.30 έως 16.55 Bq/(week·m²) στις ξηρές αποθέσεις
 - από 6.98 έως 40.23 Bq/(week·m²) στις ολικές αποθέσεις
 - b. gia ton 210 Pb :
 - από 50 έως 709 mBq/L στη βροχή
 - από 40 έως 123 mBq/L στο χιόνι
 - από 135 έως 2195 mBq/(week·m²) στις ξηρές αποθέσεις
 - από 430 έως 6629 mBq/(week·m²) στις ολικές αποθέσεις
- ii. Η χρονική αλληλουχία μεταξύ των δειγμάτων είναι ιδιαίτερα σημαντική για την επίτευξη συσχετίσεων μεταξύ των διαφόρων μεγεθών, καθώς συμπεριλαμβάνει τις μειώσεις και αυξήσεις των συγκεντρώσεων των ραδιενεργών ισοτόπων στην ατμόσφαιρα, όπως αυτές διαδέχονται η μία την άλλη, με αποτέλεσμα να επιτυγχάνονται συσχετίσεις μεταξύ των ρυθμών

απόθεσης με μετεωρολογικές και άλλες παραμέτρους, που απουσιάζουν στις περιπτώσεις ομαδοποίησης των δειγμάτων βάσει του μηχανισμού εναπόθεσης.

- iii. Παρατηρήθηκε ισχυρή θετική συσχέτιση μεταξύ της συγκέντρωσης του ⁷Be και του ²¹⁰Pb στα δείγματα ξηρής απόθεσης και ασθενής θετική συσχέτιση στα δείγματα ολικής απόθεσης.
- iv. Το μεγαλύτερο ποσοστό του ⁷Be και του ²¹⁰Pb εναποτίθεται κατά τους φθινοπωρινούς και χειμερινούς μήνες, με τα δύο ισότοπα να εμφανίζουν ισχυρή θετική συσχέτιση για τις δειγματοληψίες αυτές, τόσο για εβδομαδιαία, όσο και για μηνιαία χρονικά βήματα.
- v. Η μέση ετήσια απόθεση υπολογίστηκε στα 790 ± 5 Bq/(year·m²) για το ⁷Be και στα 78.7 ± 1.0 Bq/(year·m²) για τον ²¹⁰Pb.
- vi. Ο λόγος του ρυθμού απόθεσης μεταξύ του συνόλου των ετήσιων ξηρών αποθέσεων προς την ετήσια απόθεση υπολογίστηκε στα 0.17 ± 0.003 για το ⁷Be και στα 0.29 ± 0.010 για τον ²¹⁰Pb.
- vii. Η διερεύνηση συσχέτισης των αποτελεσμάτων των ατμοσφαιρικών αποθέσεων με τις διάφορες μετεωρολογικές παραμέτρους έδειξε:
 - Ισχυρή θετική συσχέτιση μεταξύ της σχετικής υγρασίας και του ρυθμού απόθεσης του ⁷Be και του ²¹⁰Pb στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων.
 - Ισχυρή αρνητική συσχέτιση μεταξύ της θερμοκρασίας και του ρυθμού απόθεσης του ⁷Be και του ²¹⁰Pb στις συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων.
 - Δεν παρατηρήθηκε στατιστικά σημαντική συσχέτιση μεταξύ του λόγου ²¹⁰Pb/⁷Be στις ατμοσφαιρικές αποθέσεις με το ύψος βροχόπτωσης, ωστόσο οι μέγιστες τιμές απαντώνται μόνο για μηδενικά ύψη βροχόπτωσης (απουσία υγρών αποθέσεων). Το εύρος του λόγου ²¹⁰Pb/⁷Be ανά δείγμα ήταν από 0.043 έως 0.840.
 - Η κυρίαρχη κατεύθυνση του ανέμου κατά τη διάρκεια των συνεχόμενων δειγματοληψιών ήταν η Νοτιοδυτική (SW) και ταυτίστηκε με το μεγαλύτερο πλήθος των μέγιστων ρυθμών απόθεσης του ²¹⁰Pb.
 - Οι συγκεντρώσεις του ⁷Be στον ατμοσφαιρικό αέρα παρουσίασαν ισχυρή θετική συσχέτιση με τη θερμοκρασία και ισχυρή αρνητική συσχέτιση με τη σχετική υγρασία. Οι συγκεντρώσεις του ²¹⁰Pb στον ατμοσφαιρικό αέρα

παρουσίασαν ασθενή θετική συσχέτιση με την υγρασία. Οι συσχετίσεις αυτές είναι ακριβώς αντίθετες με τις αντίστοιχες συσχετίσεις των ατμοσφαιρικών αποθέσεων.

- viii. Η σύγκριση των μετρήσεων των συνεχόμενων δειγματοληψιών ατμοσφαιρικής απόθεσης με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών έδειξε:
 - a. $\gamma \iota \alpha \tau o {}^7Be$:
 - Ισχυρή αρνητική συσχέτιση με την ατμοσφαιρική συγκέντρωση του όζοντος (O₃).
 - Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του βενζο[α]πυρένιου (BaP).
 - Ασθενή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του μονοξειδίου του αζώτου (NO).
 - b. gia tov 210 Pb:
 - Ασθενή αρνητική συσχέτιση με την ατμοσφαιρική συγκέντρωση του όζοντος (O₃).
 - Ασθενή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του βενζο[α]πυρένιου (BaP).

Πάντως, πρέπει να επισημανθεί ότι η διαπίστωση συσχέτισης δεν πρέπει να συγχέεται με τη ύπαρξη εξάρτησης του ενός μεγέθους από το άλλο.

- ix. Η συσχέτιση των μετρήσεων στον ατμοσφαιρικό αέρα με τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών έδειξε:
 - a. $\gamma \iota \alpha \tau o ^7 Be$:
 - Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση του όζοντος (O₃),
 - b. gia ton 210 Pb:
 - Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση των σωματιδίων PM2.5,
 - Ισχυρή θετική συσχέτιση με την ατμοσφαιρική συγκέντρωση σωματιδίων PM10.
- x. Οι ρυθμοί απόθεσης του ⁷Be στα δείγματα των συνεχόμενων ατμοσφαιρικών αποθέσεων παρουσιάζουν ασθενή αρνητική συσχέτιση με το πλήθος των ηλιακών κηλίδων για καθυστερημένη επίδραση 9 μηνών.

- xi. Το ύψος της τροπόπαυσης παρουσιάζει αρνητική συσχέτιση με το ρυθμό απόθεσης του ⁷Be στα δείγματα των συνεχόμενων δειγματοληψιών ατμοσφαιρικών αποθέσεων και κατ' επέκταση, στις επιμέρους μηνιαίες συνολικές αποθέσεις.
- xii. Η ταχύτητα απόθεσης του ⁷Be εκτιμήθηκε στην περιοχή από 0.042mm/s έως 6.544 mm/s και του ²¹⁰Pb από 0.230 mm/s έως 8.465 mm/s, ενώ διαπιστώνεται ισχυρή θετική συσχέτιση μεταξύ τους. Ακόμα, παρατηρείται ασθενής αρνητική συσχέτιση μεταξύ της ταχύτητας απόθεσης και της θερμοκρασίας και ασθενής θετική συσχέτιση με τη σχετική υγρασία, γεγονός που τονίζει την επίδραση της αυξημένης ανοδικής μεταφοράς αερίων μαζών με την αύξηση της θερμοκρασίας στην ταχύτητα απόθεσης, καθώς και την αυξημένη σάρωση των αιωρούμενων ραδιενεργών ισοτόπων σε συνθήκες αυξημένης σχετικής υγρασίας.
- xiii. Ο υπολογισμός του συντελεστή εμπλουτισμού της ατμόσφαιρας σε ραδιενεργά ισότοπα κανονικοποιημένου ως προς τις υγρές αποθέσεις, οδήγησε στο συμπέρασμα ότι τους χειμερινούς μήνες μεταξύ των ετών 2020 και 2021 το υψηλό ύψος βροχοπτώσεων οδήγησε σε εξάντληση της ροής των ραδιενεργών ισοτόπων από την ατμόσφαιρα.

7.2 Επιτεύγματα και σημεία πρωτοτυπίας της Δ.Δ.

Τα επιτεύγματα και τα στοιχεία πρωτοτυπίας της παρούσας Δ.Δ. μπορούν να συνοψιστούν στα εξής:

- Ανάπτυξη ολοκληρωμένης μεθοδολογίας για δειγματοληψία, επεξεργασία και ανάλυση με μεθόδους γ-φασματοσκοπίας δειγμάτων υγρών, ξηρών και ολικών ατμοσφαιρικών αποθέσεων, καθώς και υγρασίας.
- Διεξαγωγή συστηματικών δειγματοληψιών ατμοσφαιρικών αποθέσεων και υγρασίας και προσδιορισμός των συγκεντρώσεων/ρυθμών απόθεσης των ραδιενεργών ισοτόπων ⁷Be και ²¹⁰Pb.
- iii. Συσχέτιση των ρυθμών απόθεσης του ⁷Be και του ²¹⁰Pb με μετεωρολογικές παραμέτρους, συγκεντρώσεις ατμοσφαιρικών ρυπαντών, πλήθος ηλιακών κηλίδων και με το ύψος της τροπόπαυσης (μόνο για το ⁷Be).
- iv. Υπολογισμός μίας σειράς παραμέτρων για το ⁷Be και τον ²¹⁰Pb, όπως: ο ετήσιος ρυθμός απόθεσης, η συσσωρευτική επιφανειακή τους συγκέντρωση

ενεργότητας, η ταχύτητας εναπόθεσης, ο κανονικοποιημένος ως προς τις υγρές αποθέσεις συντελεστής εμπλουτισμού της ατμόσφαιρας.

- ν. Αναλυτική επίλυση των εξισώσεων που διέπουν την παραγωγή-κατανάλωση των βραχύβιων θυγατρικών του ραδονίου από τη δειγματοληψία φίλτρων αέρα έως την ολοκλήρωση της γ φασματοσκοπικής ανάλυσης τους. Συναφώς, ανάπτυξη μεθοδολογίας για την αντιμετώπιση του προβλήματος της ευαισθησίας, κατά την επίλυση του συστήματος των εξισώσεων αυτών.
- Νοσδιορισμός του ποσοστού της συνεισφοράς των συλλεχθέντων βραχύβιων θυγατρικών του ραδονίου στα φίλτρα αέρα στον συνολικά μετρούμενο ²¹⁰Pb πάνω σε αυτά.
- vii. Ενδελεχής διερεύνηση θεμάτων που αφορούν τα υποστρώματα των ανιχνευτικών διατάξεων του ΕΠΤ-ΕΜΠ και σύσταση κατευθυντήριων οδηγιών για την επιλογή του κατάλληλου φάσματος υποστρώματος, ανάλογα με τις ιδιαιτερότητες των φωτοκορυφών υποστρώματος του εκάστοτε ανιχνευτή, καθώς και τη χρονική διάρκεια λήψης φάσματος του εκάστοτε δείγματος προς ανάλυση.
- viii. Σύσταση κατευθυντήριων οδηγιών για την επίτευξη όσο το δυνατόν χαμηλότερων επιπέδων ανίχνευσης μίας σειράς ισοτόπων σε φίλτρα αέρα, ανάλογα με τη διάρκεια δειγματοληψίας.
- ix. Δημιουργία του υπολογιστικού εργαλείου Excel «Radical» για τον υπολογισμό συγκεντρώσεων ενεργότητας και κατωτέρων επιπέδων ανίχνευσης για ραδιενεργά ισότοπα για όλες τις βασικές γεωμετρίες και υλικά δειγμάτων για τους ανιχνευτές του ΕΠΤ-ΕΜΠ, με δυνατότητες επέκτασης ή διαμόρφωσης του εργαλείου για την εισαγωγή νέων συνδυασμών «γεωμετρίας δείγματος-υλικού δείγματος-ανιχνευτή».

7.3 Προτάσεις Μελλοντικής Έρευνας

Οι προτάσεις για μελλοντική έρευνα βάσει των αποτελεσμάτων καθώς και των τεχνικών που αναπτύχθηκαν και εφαρμόσθηκαν στην παρούσα Δ.Δ. συνοψίζονται στις εξής:

 Συστηματικές και συνεχόμενες χρονικά δειγματοληψίες ατμοσφαιρικών αποθέσεων για μεγάλο χρονικό διάστημα με ταυτόχρονη δειγματοληψία φίλτρων αέρα, με στόχο τη συνεχή παρακολούθηση της ραδιενέργειας περιβάλλοντος. Οι συνεχόμενες δειγματοληψίες ατμοσφαιρικών αποθέσεων για μεγάλη χρονική διάρκεια θα επιτρέψουν:

- Την επίτευξη ισχυρότερων συσχετίσεων μεταξύ των ρυθμών απόθεσης των ραδιενεργών ισοτόπων με τις διάφορες μετεωρολογικές παραμέτρους, τις συγκεντρώσεις ατμοσφαιρικών ρυπαντών και το πλήθος των ηλιακών κηλίδων.
- Τη συνεχή καταγραφή του ρυθμού απόθεσης των ραδιενεργών ισοτόπων, καθώς και της συσσωρευτικής τους συγκέντρωσης, κάτι που θα επιτρέψει τη μελέτη της κατακόρυφης μετανάστευσης των ραδιενεργών ισοτόπων στο έδαφος, καθώς και σε άλλα περιβαλλοντικά συστήματα, προσφέροντας σημαντικές πληροφορίες για μελέτες διάβρωσης και ιζηματογένεσης εδαφών.
- Τη διερεύνηση της συσχέτισης μεταξύ της συγκέντρωσης στον αέρα και του ρυθμού απόθεσης ραδιενεργών ισοτόπων στο έδαφος – ενδεχομένως με χρονική καθυστέρηση – κάτι το οποίο δεν επετεύχθη στα πλαίσια της Διατριβής από τις μετρήσεις που έγιναν.
- Βελτίωση της μεθοδολογίας προετοιμασίας δειγμάτων αποθέσεων με χρήση συνδυασμένη χρήση ρητίνης κατιόντων και ρητίνης ανιόντων.
- Προσδιορισμός μη ραδιενεργών ιχνοστοιχείων στο αερόλυμα που συλλέγεται με τεχνικές INAA και XRF.
- iv. Δειγματοληψία των επιμέρους κλασμάτων υγρών αποθέσεων με στόχο:
 - τη διερεύνηση της μεταβολής της συγκέντρωσης ενεργότητας των ραδιενεργών ισοτόπων κατά την εξέλιξη του εκάστοτε φαινομένου,
 - τον υπολογισμό της συνεισφοράς του rainout/snowout και του washout
 στη συνολική εναπόθεση των ραδιενεργών ισοτόπων στο έδαφος στο
 πέρας του εκάστοτε φαινομένου,
 - τον υπολογισμό του συντελεστή απόδοσης κατακρήμνισης/σάρωσης των ραδιενεργών ισοτόπων από την ατμόσφαιρα.
- Δειγματοληψία υγρών αποθέσεων με ταυτόχρονη δειγματοληψία φίλτρων
 αέρα για τον υπολογισμό του συντελεστή W (washout ratio).
- Αξιοποίηση των πάσης φύσεως μετρήσεων και υπολογισμών σε μοντέλα προσομοίωσης μεταφοράς αερίων μαζών, καθώς και διασποράς και απόθεσης

ραδιενεργών ισοτόπων στο έδαφος, με στόχο την αξιολόγησή τους ή την επέκτασή τους.

7.4 Δημοσιεύσεις - Ανακοινώσεις σε Συνέδρια

Κατά τη διάρκεια εκπόνησης της παρούσας Δ.Δ. έλαβαν χώρα οι παρακάτω δημοσιεύσεις σε επιστημονικά περιοδικά και πρακτικά συνεδρίων, καθώς και ανακοινώσεις σε συνέδρια:

Δημοσιεύσεις σε Επιστημονικά Περιοδικά

- Braysher, E., Russell, B., Collins, S.M., van Es, E.M., Shearman, R., Dal Molin, F., Read, D., Anagnostakis, M., Arndt, R, Bednár, A., Bituh, T., Bolivar, J.P., Cobb, J., Dehbi, N., Di Pasquale, S., Gascó, C., Gilligan, C., Jovanovič, P., Lawton, A., Lees, A.M.J., Lencsés, A., Mitchell, L., Mitsios, I., Petrinec, B., Rawcliffe, J., Shyti, M., Suárez-Navarro, J.A., Suursoo, S., Tóth-Bodrogi, E., Vaasma, T., Verheyen, L., Westmoreland, J., de With, G., "Development of a reference material for analysing naturally occurring radioactive material from the steel industry", Analytica Chimica Acta, 2021, vol. 1141, 221-229
- Ali Sartoro, M.C., Anagnostakis, M.J., Boshkova, T., Camacho, A., Fornaciari Iljadica, M.C., Collins, S.M., Diaz Perez, R., Delgado, J.U., Đurašavić, M., Dutch, M.A., Gomes, R.S., Gudelis, A., Hurtado Bermudez, S., Hernandorena, R., Jevremovic, A., Kandic, A., Korun, M., Karfopoulos, K., Laubenstein, M., Long, S., Margineanu, R.M., Mitsios, I., Mulas, D., Nikolić, J.K., Pantelica, A., Peyres Medina, V., Pibida, L., Potiriadis, C., Silva, R.L., Siri, S., Šešlak, B., Verheyen, L., Vodenik, B., Vukanac, I., Weidner, H., Zorko, B., "Determination of the probability for locating peaks by computerized peak location methods in gamma-ray spectrometry as a function of the relative peak area uncertainty", Applied Radiation and Isotopes, 2020, vol.155
- Lépy, M.C., Thiam, C., Anagnostakis, M., Galea, R., Gurau, D., Hurtado, S., Karfopoulos, K., Liang, J., Liu, H., Luca, A., Mitsios, I., Potiriadis, C., Savva, M.I., Thanh, T.T., Thomas, V., Townson, R., Vasilopoulou, D., Zang, M., "A benchmark for Monte Carlo simulation in gamma-ray spectrometry", Applied Radiation and Isotopes, 2019, vol.154

 Padovani, S., Mitsios, I., Anagnostakis, M., Mostacci, D., "Analysis of the Vertical Distribution and the Size Fractionation of Natural and Artificial Radionuclides in the Soil in the Vicinity of Hot Springs", Radiation Effects & Defects in Solids, 2018, vol. 173, nos. 9–10, 794–806

Δημοσιεύσεις σε Πρακτικά Συνεδρίων

- Mitsios, I.K., Pappa, F.K., Patiris, D.L., Rouni, P.K., Anagnostakis, M.J., Tsabaris, C., "In depth analysis of a sediment core from north Aegean sea", HNPS Advances in Nuclear Physics, 2022, vol. 28, 215-218, doi: 10.12681/hnps.3608
- Alafogiannis I., Tugnoli F., Mitsios, I.K., Anagnostakis, M.J., "Development of a computer code for the calculation of self-absorption correction factors in γ-spectrometry applications", HNPS Advances in Nuclear Physics, 2022, vol. 28, 98-103, doi: 10.12681/hnps.3607
- Mitsios, I. K., Anagnostakis, M. J., "A fast method for the determination of 7Be in rainwater and atmospheric humidity samples", Proceedings of the 22nd International Conference on Radionuclide Metrology and its Applications (ICRM2019), 27-31 May 2019, Salamanca, Spain, ISSN 2522-4328, https://physics.nist.gov/ICRM/ICRM_technicalseries_2.pdf

Ανακοινώσεις σε Συνέδρια

- M.-C. Lépy, C. Thiam, M. Anagnostakis, C. Cosar, A. De Blas del Oyo 4, H. Dikmen, M.A. Duch, R. Galea, M.L. Ganea, M. Hult, S. Hurtado, K. Karfopoulos, A. Luca, G. Lutter, I. Mitsios, H. Persson, C. Potiriadis, S. Röttger, N. Salpadimos, M.I. Savva, O. Sima, T.T. Thanh, R. Townson, A. Vargas, T. Vasilopoulou, L. Verheyen, T. Vidmar, "A benchmark for Monte Carlo simulations in Gamma-ray spectrometry Part II: True coincidence summing correction factors", 23rd International Conference on Radionuclide Metrology and its Applications (ICRM2023), Oral Presentation, Bucharest, Romania, March 2023
- M.-C. Lépy, L. Chambon, V. Lourenco, B. Sabot, A. De Vismes, R. Galea, R. Idoeta, P. Jodlowski, K. Kanoutos, K. Karfopoulos, A. Meyer, I. Mitsios, V. Peyres, P. Saganowski, N. Salpadimos, M.I. Savva, O. Sima, T.T. Thanh, R. Townson, Z. Tymiński, T. Vasilopoulou, L. Verheyen, T. Vidmar, "Self-

attenuation in the low-energy range: an experimental study on Pb-210", 23rd International Conference on Radionuclide Metrology and its Applications (ICRM2023), Poster Presentation, Bucharest, Romania, March 2023

- D.L. Patiris, C. Tsabaris, S. Alexakis, G. Eleftheriou, F. Androulakaki, F.K. Pappa, K. Sarantakos, S.K., Roumelioti, I.K. Mitsios, E. Ioannidou, "*Rapid radiometric mapping of coastal areas by means of mobile in situ gamma-ray spectrometry*", Poster Presentation, The 6th International Conference on Environmental Radioactivity ENVIRA 2021
- Mitsios, I. K., Anagnostakis, M. J., "The effect of time in the background of typical low-level gamma spectrometry measurements", 22nd International Conference on Radionuclide Metrology and its Applications (ICRM2019), Poster Presentation, Salamanca, Spain, May 2019

ΒΙΒΛΙΟΓΡΑΦΙΑ

- [1] Aittola, J.-P., Chyssler, J., & Ringberg, H. (1982). *Thermal Stability of Ion-Exchange Resins*. Studsvik Energiteknik AB.
- [2] Ali Santoro, M. C., Anagnostakis, M. J., Boshkova, T., Camacho, A., Fornaciari Iljadica, M. C., Collins, S. M., Diaz Perez, R., Delgado, J. U., Đurašavić, M., Dutch, M. A., Gomes, R. S., Gudelis, A., Hurtado Bermudez, S., Hernandorena, R., Jevremovic, A., Kandic, A., Korun, M., Karfopoulos, K., Laubenstein, M., Long, S., Margineanu, R.M., Mitsios, I., Mulas, D., Nikolić, J.K., Pantelica, A., Peyres Medina, V., Pibida, L., Potiriadis, C., Silva, R. L., Siri, S., Šešlak, B., Verheyen, L., Vodenik, B., Vukanac, I., Weidner, H., Zorko, B. (2020). Determining the probability of locating peaks using computerized peak-location methods in gamma-ray spectra as a function of the relative peak-area uncertainty. *Applied Radiation and Isotopes, 155*.
- [3] Allen, D. J., Dibb, J. E., Ridley, B., Pickering, K. E., & Talbot, R. W. (2003). An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations. *Journal of Geophysical Research, 108.*
- [4] Alonso Hernandez, C., Cartas Aguila, H., Diaz Asencio, M., & Munoz Caravaca, A. (2004). Reconstruction of ¹³⁷Cs signal in Cuba using ⁷Be as tracer of vertical transport processes in the atmosphere. *Journal of Environmental Radioactivity*, 75, 133-142.
- [5] Alonso-Hernandez, C. M., Morera-Gomez, Y., Cartas-Aguila, H., & Guillen-Arruebarrena, A. (2014). Atmospheric deposition patterns of ²¹⁰Pb and ⁷Be in Cienfuegos, Cuba. *Journal of Environmental Radioactivity*, 138, 149-155.
- [6] Anagnostakis, M. J., Hinis, E. P., Simopoulos, S. E., & Angelopoulos, M. G. (1996). Natural Radioactivity Mapping of Greek Surface Soils. *Environmental International*, 22, 3-8.
- [7] Aquilina, N. J., & Fenech, S. (2019). The Influence of Meteorological Parameters on Indoor and Outdoor Radon Concentrations: A preliminary Case Study. *Journal of Environmental Pollution and Control, 2*.

- [8] Baklanov, A., & Sorensen, J. H. (2001). Parameterisation of Radionuclide Deposition in Atmospheric Long-Range Transport Modelling. *Physics and Chemistry of the Earth*, 26, 787-799.
- Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., & Turekian,
 K. K. (1993). Transport and Residence Times of Tropospheric Aerosols Inferred from a Global Three-Dimensional Simulation of ²¹⁰Pb. *Journal of Geophysical Research, 20*, 573-586.
- [10] Baltrenas, P., Grubliauskas, R., & Danila, V. (2020). Seasonal Variation of Indoor Radon Concentration Levels in Different Premises of a University Building. Sustainability Science, 12.
- Banjanac, R., Udovicic, V., Dragic, A., Jokovic, D., Maletic, D., Veselinovic,
 N., & Grabez, B. (2013). Daily Variations of Gamma-Ray Background and
 Radon Concentration. *Romanian Journal of Physics*, 58, 14-21.
- [12] Baskaran, M. (1995). A search for the seasonal variability on the depositional fluxes of ⁷Be and ²¹⁰Pb. *Journal of Geophysical Research*, 100, 2833-2840.
- Baskaran, M. (2011). Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review. *Journal of Environmental Radioactivity*, 102, 500-513.
- [14] Baskaran, M., & Swarzenski, P. W. (2007). Seasonal variations on the residence times and partitioning of short-lived radionuclides (²³⁴Th, ⁷Be and ²¹⁰Pb) and depositional fluxes of ⁷Be and ²¹⁰Pb in Tampa Bay, Florida. *Marine Chemistry*, 104, 27-42.
- [15] Baskaran, M., Coleman, C. H., & Santschi, P. H. (1993). Atmospheric Depositional Fluxes of ⁷Be and ²¹⁰Pb at Galveston and College Station, Texas. *Journal of Geophysical Research*, 20, 555-571.
- [16] Be, M. -M., Chiste, V., Dulieu, C., Browne, E., Chechev, V., Kuzmenko, N., Helmer, R., Nichols, A., Schonfeld, E., Dersch, R. (2004). *Monographie BIPM-5, Table of Radionuclides (Vol.2 A = 151 to 242).* Sevres, Trance: BIPM.

- [17] Be, M. -M., Chiste, V., Dulieu, C., Browne, E., Chechev, V., Kuzmenko, N., Kondev, F., Luca, A., Galan, M., Pearce, A., Huang, X. (2008). *Monographie BIPM-5, Table of Radionuclides (Vol. 4 A = 133 to 252).* Sevres: BIPM.
- [18] Beks, J. P., Eisma, D., & van der Plicht, J. (1998). A record of atmospheric ²¹⁰Pb deposition in The Netherlands. *The Science of the Total Environment*, 222, 35-44.
- [19] Belmaker, R., Lazar, B., Stein, M., & Beer, J. (2011). Short residence time and fast transport of fine detritus in the Judean Desert: Clues from ⁷Be in settled dust. *Geophysical Research Letters*, 38.
- Bem, H., Bem, E. M., Krzeminska, M., & Ostrowska, M. (2002).
 Determination of radioactivity in air filters by alpha and gamma spectrometry. *Nukleonika*, 47(2), 87-91.
- [21] Benitez-Nelson, C. R., & Buesseler, K. O. (1998). Measurement of Cosmogenic ³²P and ³³P Activities in Rainwater and Seawater. *Analytical Chemistry*, 70, 64-72.
- Benitez-Nelson, C. R., & Buesseler, K. O. (1999). Phosphorus 32, phosphorus 37, beryllium 7, and lead 210: Atmospheric fluxes and utility in tracing stratosphere/troposphere exchange. *Journal of Geophysical Research*, 11, 745-754.
- [23] Benninger, L. K. (1978). ²¹⁰Pb balance in Long Island Sound. Geochimica et Cosmochimica Acta, 42, 1165-1174.
- [24] Bleichrodt, J. F. (1978). Mean tropospheric residence time of cosmic-rayproduced beryllium-7 at north temperate latitudes. *Journal of Geophysical Research*, 83, 3058-3062.
- [25] Bossew, P. (2005). A very long-term HPGe-background gamma spectrum. *Applied Radiation and Isotopes, 62*, 635-644.
- [26] Brattich, E., Hernandez-Ceballos, M. A., Orza, J. G., Bolivar, J. P., & Tositti,
 L. (2016). The western Mediterranean basin as an aged aerosols reservoir.
 Insights from an old-fashioned but efficient radiotracer. *Atmospheric Environment*, 141, 481-493.

- [27] Brown, J., & Simmonds, J. R. (1995). FARMLAND: A Dynamic Model for the Transfer of Radionuclides Through Terrestrial Foodchains NRPB-R73. Chilton: NRPN.
- [28] Caillet, S., Arpagaus, P., Monna, F., & Dominik, J. (2001). Factors controlling ⁷Be and ²¹⁰Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland. *Journal Of Environmental Radioactivity, 53*, 241-256.
- [29] Cannizzaro, F., Greco, G., Raneli, M., Spitale, M. C., & Tomarchio, E. (1999). Determination of ²¹⁰Pb concentration in the air at ground-level by gammaspectrometry. *Applied Radiation and Isotopes*, *51*, 239-249.
- [30] Cannizzaro, F., Greco, G., Raneli, M., Spitale, M. C., & Tomarchio, E. (2004). Concentration measurements of ⁷Be at ground level air at Palermo, Italycomparison with solar activity over a period of 21 years. *Journal of Environmental Radioactivity*, 72, 259-271.
- [31] Chao, J. H., Chiu, Y. J., Lee, H. P., & Lee, M. C. (2012). Deposition of beryllium-7 in Hsinchu, Taiwan. *Applied Radiation and Isotopes*, 70, 415-422.
- [32] Chao, J. H., Liu, C. C., Cho, I. C., & Niu, H. (2014). Monitoring of ⁷Be in surface air of varying PM10 concentrations. *Applied Radiation and Isotopes*, 89, 95-101.
- [33] Chen, J., Luo, S., & Huang, Y. (2016). Scavenging and fractionation of particle-reactive radioisotopes ⁷Be, ²¹⁰Pb and ²¹⁰Po in the atmosphere. *Geochimica et Cosmochimica Acta*, 188, 208-223.
- [34] Chen, L., Peng, S., Liu, J., & Hou, Q. (2012). Dry deposition velocity of total suspended particles and meteorological influence in four locations in Guangzhou, China. *Journal of Environmental Sciences*, 24, 632-639.
- [35] Ciffroy, P., Reyss, J.-L., & Siclet, F. (2003). Determination of the residence time of suspended particles in the turbidity maximum of the Loire estuary by ⁷Be analysis. *Estuarine Coastal and Shelf Science*, *57*, 553-568.
- [36] Clouvas, A., Xanthos, S., & Takoudis, G. (2011). Indoor radon levels in Greek Schools. *Journal of Environmental Radioactivity*, 102, 881-885.

- [37] Crawford, J., Domel, R. U., Harris, F. F., & Twinning, J. T. (2000). RadCon: A Radiological Consequences Model, Technical Guide, Version 2.0. ANSTO E-744, ISBN 0-642-59982-3.
- [38] Cristofanelli, P., Bonasoni, P., Collins, W., Feichter, J., Forster, C., James, P., Kentarchos, A., Kubik, P. W., Land, C., Meloen, J., Roelofs, G. J., Siegmund, P., Sprenger, M., Schnabel, C., Stohl, A., Tobler, L., Tositti, L., Trickl, T., Zanis, P. (2003). Stratosphere-to-troposphere transport: A model and method evaluation. *Journal of Geophysical Research*, 108.
- [39] Cristofanelli, P., Bonasoni, P., Tositti, L., Bonafe, U., Calzolari, F., Evangelisti, F., Sandrini, S., Stohl, A. (2006). A 6-year analysis of stratospheric intrusions and their influence on ozone at Mt. Cimone (2165m above sea level). *Journal of Geophysical Research*, 111.
- [40] Daish, S. R., Dale, A. A., Dale, C. J., May, R., & Rowe, J. E. (2005). The temporal variations of ⁷Be, ²¹⁰Pb and ²¹⁰Po in air in England. *Journal of Environmental Radioactivity*, 84, 457--467.
- [41] De Francesco, S., Pascale Tommasone, F., Cuoco, E., & Tedesco, D. (2010).
 Indoor radon seasonal variability at different floors of buildings. *Radiation Measurements*, 45, 928-934.
- [42] Dibb, J. E., Meeker, D. L., Finkel, R. C., Southon, J. R., Caffee, M. W., & Barrie, L. A. (1994). Estimation of stratospheric input to the Arctic troposphere: ⁷Be and ¹⁰Be in aerosols at Alert, Canada. *Journal of Geophysical Research*, 99, 12855-12864.
- [43] Dlugosz-Lisiecka, M. (2021). Aerosol removal coefficients based on ⁷Be, ²¹⁰Pb, and ²¹⁰Po radionuclides in the urban atmosphere. *Journal of Atmospheric Chemistry*, 78, 209-218.
- [44] Doering, C., & Akber, R. (2008). Beryllium-7 in near-surface air and deposition at Brisbane, Australia. *Journal of Environmental Radioactivity*, 99, 461-467.
- [45] Dragounova, L., & Rulik, P. (2013). Low level activity determination by means of gamma spectrometry with respect to the natural background fluctuation. *Applied Radiation and Isotopes*, 81, 123-127.

- [46] Du, J., Du, J., Baskaran, M., Bi, Q., Huang, D., & Jiang, Y. (2015). Temporal variations of atmospheric depositional fluxes of ⁷Be and ²¹⁰Pb over 8years (2006-2013) at Shanghai, China, and synthesis of global fallout data. *Journal* of Geophysical Research: Atmospheres, 120, 4323-4339.
- [47] Du, J., Zhang, J., Zhang, J., & Wu, Y. (2008). Deposition patterns of atmospheric ⁷Be and ²¹⁰Pb in coast of East China Sea, Shanghai, China. *Atmospheric Environment*, 42, 5101-5109.
- [48] Duenas, C., Fernandez, M. C., Canete, S., & Perez, M. (2009). ⁷Be to ²¹⁰Pb concentration ration in ground level air in Malaga (36.7°N, 4.5°W). *Atmospheric Research*, 92, 49-57.
- [49] Duenas, C., Gordo, E., Liger, E., Cabello, M., Canete, S., Perez, M., & de la Torre-Luque, P. (2017). ⁷Be, ²¹⁰Pb and ⁴⁰K depositions over 11 years in Malaga. *Journal of Environmental Radioactivity*, 178-179, 325-334.
- [50] Duenas, C., Orza, J., Cabello, M., M.C., F., Canete, S., Perez, M., & Gordo, E. (2011). Air mass origin and its influence on radionuclide activities (⁷Be and ²¹⁰Pb) in aerosol particles at a coastal site in the western Mediterranean. *Atmospheric Research*, 101, 205-214.
- [51] Durana, L., Chudy, M., & Masarik, J. (1996). Investigation of Be-7 in the Bratislava atmosphere. *Journal of Radioanalytical Nuclear Chemistry*, 207, 345-356.
- [52] Eleftheriadis, K., & Ioannidou, A. (2020). Chapter 4 Radioactive aerosol analysis. Στο Μ. F. L'Annunziata (Επιμ.), Handbook of Radioactivity Analysis: Volume 2 (4th ed., pp. 263-313). Academic Press.
- [53] El-Hussein, A. (1996). Unattached Fractions, Attachment and Deposition Rates of Radon Progeny in Indoor Air. *Applied Radiation and Isotopes*, 47(5/6), 515-523.
- [54] El-Hussein, A., Mohamemed, A., Abd El-Hady, M., Ahmed, A. A., Ali, A. E., & Barakat, A. (2001). Diurnal and seasonal variation of short-lived radon progeny concentration and atmospheric temporal variations of ²¹⁰Pb and ⁷Be in Egypt. *Atmospheric Environment*, 35, 4305-4313.

- [55] Engelbrecht, R. (2012). Chapter 10 Envionmental Radioactivity Monitoring.
 Στο Μ. F. L'Annunziata (Επιμ.), *Handbook of Radioactivity Analysis* (pp. 695-726). Elsevier.
- [56] EPA. (2009). Radiological Laboratory Sample Analysis Guide for Incidents of National Significance Radionuclides in Air.
- [57] Erickson, M. D. (1997). The Procedures Manual of the Environmental Measurements Laboratory (28th ed., Vol. I). (N. A. Chieco, Editor) New York: U.S. Department of Energy.
- [58] Feely, H. W., Larsen, R. J., & Sanderson, C. G. (1989). Factors That Cause Seasonal Variations in Beryllium-7 Concentrations in Surface Air. *Journal Of Environmental Radioactivity*, 9, 223-249.
- [59] Feichter, J., Brost, R. A., & Heimann, M. (1991). Three-Dimensional Modeling of the Concentration and Deposition of ²¹⁰Pb Aerosols. *Journal of Geophysical Research*, 96, 22447-22460.
- [60] Forkapic, S., Mrda, D., Veskovic, M., Todorovic, N., Bikit, K., Nikolov, J., & Hansman, J. (2012). Radon Equilibrium Measurement in the Air. *Paper* presented at the First East European Radon Symposium-FERAS, (pp. 140-147).
- [61] Gaggeler, H. W., Jost, D. T., Baltensperger, U., Schwikowski, M., & Seibert,
 P. (1995). Radon and Thoron Decay Product and ²¹⁰Pb Measurements at
 Jungfraujoch, Switzerland. *Atmospheric Environment*, 29(5), 607-616.
- [62] Gautam, Y. P., Sharma, A. K., Kumar, D., Kumar, V., Tripathi, A. R., Kumar, J., Saradhi, I. V., Kumar, V. A. (2022). Site-specific dry and wet deposition velocities using ⁷Be and mass interception factor for various types of plant leaves at narora site, INDIA. *Radiation Protection Dosimetry*, 198, 1258-1264.
- [63] Genthon, C. (1992a). Simulations of the long-range transport of desert dust and sea-salt in a general circulation model. *Precipitation Scavenging and Atmosphere-Surface Exchange, Hemisphere*, 1783-1794.

- [64] Genthon, C. (1992b). Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere. *Tellus*, 44B, 371-389.
- [65] Genthon, C., & Armengaud, A. (1995). GCM simulations of atmospheric tracers in the polar latitudes: South Pole (Antarctica) and Summit (Greenland) cases. *The Science of the Total Environment, 160/161*, 101-116.
- [66] Gerasopoulos, E., Zerefos, C. S., Papastefanou, C., Zanis, P., & O' Brien, K.
 (2003). Low-frequency variability of beryllium-7 surface concentrations over the Eastern Mediterranean. *Atmospheric Environment*, 37, 1745-1756.
- [67] Gilmore, G. R. (2008). Practical Gamma-Ray Spectrometry (2nd ed.). John Wiley & Sons, Ltd.
- [68] Goel, P. S., Jha, S., Lal, D., Radhakrishna, P., & Rama. (1956). Cosmic Ray Produce Beryllium Isotopes in Rain Water. *Nuclear Physics*, 1(3), 196-201.
- [69] Goel, P. S., Narasappaya, N., Prabhakara, C., Rama, T., & Zutshi, P. K. (1959). Study of Cosmic Ray Produced Short-Live P32, P33, B7, and S32 in Tropical Latitudes. *Tellus XI*, 1, 91-100.
- [70] Gonzalez-Gomez, C., Azahra, M., Lopez-Penalver, J. J., Camacho-Garcia, A., Bardouni, T. E., & Boukhal, H. (2006). Seasonal variability in ⁷Be depositional fluxes at Granada, Spain. *Applied Radiation and Isotopes, 64*, 228-234.
- [71] Gras, J. L. (2003). Climatology of Tropospheric Aerosols. At *Aerosols* (pp. 13-20). Victoria, Australia: Elsevier Science Ltd.
- [72] Graustein, W. C., & Turekian, K. K. (1986). ²¹⁰Pb and ¹³⁷Cs in Air and Soils Measure the Rate and Vertical Profile of Aerosol Scavenging. *Journal of Geophysical Research*, 91, 14355-14366.
- [73] Hansen, J., Russell, G., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R., & Travis,
 L. (1983). Efficient three-dimensional global models for climate studies: Models I and II. *Monthly Weather Review*, 111, 609-662.
- [74] Harms, A. V., & Jerome, S. M. (2004). On the integrated decay and ingrowth equations used in the measurement of radioactive decay families: the general solution. *Applied Radiation and Isotopes*, 61, 367-372.

- [75] Harvey, M. J., & Matthews, K. M. (1989). ⁷Be Deposition in a High-Rainfall Area of New Zealand. *Journal of Atmospheric Chemistry*, 8, 299-306.
- [76] Heinrich, P., & Jamelot, A. (2011). Atmospheric transport simulation of ²¹⁰Pb and ⁷Be by the LMDz general circulation model and sensitivity to convection and scavenging parameterization. *Atmospheric Research, 2011*, 54-66.
- [77] Helfferich, F. G. (1995). *Ion exchange*. New York: Dover Publications, Inc.
- [78] Hernandez, F., Karlsson, L., & Hernandez-Armas, J. (2007). Impact of the tropical storm Delta on the gross alpha, gross beta, ⁹⁰Sr, ²¹⁰Pb, ⁷Be, ⁴⁰K and ¹³⁷Cs activities measured in atmospheric aerosol and water samples collected in Tenerife (Canay Islands). *Atmospheric Environment, 41*, 4940-4948.
- [79] Hernandez-Ceballos, M., Brattich, E., Lozano, R., & Cinelli, G. (2017). ⁷Be behaviour and meteorological conditions associated with ⁷Be peak events in Spain. *Journal of Environmental Radioactivity*, 166, 17-26.
- [80] Hirose, K., Honda, T., Yagishita, S., Igarashi, Y., & Aoyama, M. (2004). Deposition behaviors of ²¹⁰Pb, ⁷Be and thorium isotopes observed in Tsukuba and Nagasaki, Japan. *Atmospheric Environment*, 38, 6601-6608.
- [81] Hirose, K., Kikawada, H., Doi, T., Su, C.-C., & Yamamoto, M. (2011). ²¹⁰Pb deposition in the far East Asia: controlling factors of its spatial and temporal variations. *Journal of Environmental Radioactivity*, 102, 514-519.
- [82] Hongyu, L., Considine, D. B., Horowitz, L. W., Crawford, J. H., Rodriguez, J. M., Strahan, S. E., Damon, M. R., Steenrod, S. D., Xu, X., Kouatchou, J., Carouge, C., Yantosca, R. M. (2016). Using beryllium-7 to assess cross-tropopause transport in global models. *Atmospheric Chemistry and Physics*, 16, 4641-4659.
- [83] Huang, S., Huang, P.-R., Newman, S., Li, K.-F., Lin, Y.-C., Huh, C.-A., Lin, N.-H., Hsu, S.-C., Liang, M.-C. (2022). Enhanced stratospheric intrusion at Lulin Mountain, Taiwan inferred from beryllium-7 activity. *Atmospheric Environment*, 268.
- [84] Huet, C., Tymen, G., & Boulaud, D. (2010). Long-Term Measuremens of Equilibrium Factor and Unattached Fraction of Short-Lived Radon Decay

Products in a Dwelling - Comparison with Praddo Model. *Aerosol Science & Technology*, 35(1), 553-563.

- [85] Huh, C. A., & Su, C. C. (2004). Distribution of fallout radionuclides (⁷Be, ¹³⁷Cs, ²¹⁰Pb and ^{239,240}Pu) in soils of Taiwan. *Journal of Environmental Radioactivity*, 77, 87-100.
- [86] Hyza, M., Rulik, P., & Bednar, V. (2019). Optimization of the radioactive aerosol sampling and measuring procedure with respect to radon concentration in the air. *Radiation Protection Dosimetry*, 186(2-3), 280-283.
- [87] IAEA. (1992). Modelling of resuspension, seasonality and losses during food processing: First report of the Vamp Terrestrial Working Group. IAEA-TECDOC-647, Vienna.
- [88] IAEA. (1995). Validation of models using Chernobyl fallout data from the Central Bohemia region of the Czech Republic: Scenario CB. IAEA-TECDOC-795, Vienna.
- [89] IAEA. (2002). Specialized software utilities for gamma ray spectrometry. Vienna: International Atomic Energy Agency.IAEA-TECDOC-1275, Vienna.
- [90] ICRP. (2020). Dose coefficients for external exposures to environmental sources. SAGE.
- [91] Ioannidou, A., & Paatero, J. (2014). Activity size distribution and residence time of ⁷Be aerosols in the Arctic atmosphere. *Atmospheric Environment*, 88, 99-106.
- [92] Ioannidou, A., & Papastefanou, C. (2006). Precipitation scavenging of ⁷Be and ¹³⁷Cs radionuclides in air. *Journal of Environmental Radioactivity*, 85, 121-136.
- [93] Ioannidou, A., Manolopoulou, M., & Papastefanou, C. (2005). Temporal changes of ⁷Be and ²¹⁰Pb concentrations in surface air at temperate latitudes. *Applied Radiation and Isotopes*, 63, 277-284.
- [94] Ioannidou, A., Vasileiadis, A., & Melas, D. (2014). Time lag between the tropopause height and ⁷Be activity concentrations on surface air. *Journal of Environmental Radioactivity*, 129, 80-85.

- [95] Irfan, M., & Fagan, A. J. (1979). Measurement of radon daughters in air using gamma spectrometry. *Nuclear Instruments and Methods*, 166, 567-570.
- [96] Ishikawa, Y., Murakami, H., Sekine, T., & Yoshihara, K. (1995). Precipitation Scavenging Studies of Radionuclides in Air Using Cosmogenic ⁷Be. *Journal* of Environmental Radioactivity, 26, 19-36.
- [97] Jacobi, W., & Andre, K. (1963). The Vertical Distribution of Radon 222, Radon 220 and Their Decay Products in the Atmosphere. *Journal of Geophysical Research*, 68, 3799-3814.
- [98] James, J. P., Ravi, P. M., Joshi, R. M., Hegde, A. G., & Sarkar, P. K. (2010). Estimation of site-specific deposition velocities and mass interception factor using ⁷Be and the prediction of deposition pattern of radionuclides at Kaiga site, India. *Radiation Protection Dosimetry*, 141, 248-254.
- [99] Jasiulionis, R., & Wershofen, H. (2005). A study of the vertical diffusion of the cosmogenic radionuclides, ⁷Be and ²²Na in the atmosphere. *Journal of Environmental Radioactivity*, 79, 157-169.
- [100] JCGM/WG 1, BIPM, IEC, IFCC, ILAC, ISO, OIML. (2008). JCGM 100:2008 (GUM 1995 with minor corrections): Evaluation of measurement data-Guide to the expression of uncertainty in measurement (1st ed.).
- [101] Ješkovský, M., Kaizer, J., Kontuĺ, I., Lujaniené, G., Müllerová, M., & Povinec, P. P. (2019). Chapter 3 Analysis of environmental radionuclides.
 Στο F. M. L'Annunziata (Editor), *Handbook of Radioactivity Analysis: Volume* 2 (4th ed., pp. 137-261). Academic Press.
- [102] Jha, A., Schkade, U., & Kirchner, G. (2015). Estimating short-term soil erosion rates after single and multiple rainfall events by modelling the vertical distribution of cosmogenic ⁷Be in soils. *Geoderma*, 243-244, 149-156.
- [103] Jimenez-Ramos, M. C., Manjon, G., & Abril, J. M. (2006). Influence of sampling air flow rate in the decay correction applied to the determination of ⁷Be and short-lived radionuclides in aerosol samples. *Atmospheric Environment*, 40, 7215-7221.

- [104] Jungck, M. H., Andrey, J.-L., & Foidevaux, P. (2009). Determination of radionuclide levels in rainwater using ion exchange resin and γ-spectrometry. *Journal of Environmental Radioactivity*, 100, 361-365.
- [105] Juri Ayub, J., Di Gregorio, D. E., Velasco, H., Huck, H., Rizzotto, M., & Lohaiza, F. (2009). Short-term seasonal variability in ⁷Be wet deposition in a semiarid ecosystem of central Argentina. *Journal of Environmental Radioactivity*, 100, 977-981.
- [106] Kaste, J. M., Norton, S. A., & Hess, C. T. (2002). Environmental Chemistry of Beryllium-7. *Reviews in Mineralogy and Geochemistry*, 50(1), 271-289.
- [107] Kim, G., Hussain, N., Scudlark, J. R., & Church, T. M. (2000). Factors Influencing the Atmospheric Depositional Fluxes of Stable Pb, ²¹⁰Pb, and ⁷Be into Chesapeake Bay. *Journal of Atmospheric Chemistry*, 36, 65-79.
- [108] Kitto, M. E. (2005). Interrelationship of indoor radon concentrations, soil-gas flux, and meteorological parameters. *Journal of Radioanalytical and Nuclear Chemistry*, 264, 381-385.
- [109] Koch, D. M., Jacob, D. J., & Graustein, W. C. (1996). Vertical Transport of tropospheric aerosols as indicated by ⁷Be and ²¹⁰Pb in a chemical tracer model. *Journal of Geophysical Research*, 101, 651-666.
- [110] Komura, K., Kuwahara, Y., Abe, T., Tanaka, K., Murata, Y., & Inoue, M. (2007). Measurements of short-lived cosmic-ray-produced radionuclides in rainwater. *Journal of Environmental Radioactivity*, 96, 103-109.
- [111] Korun, M. (2006). Optimization of counting times for short-lived gamma-ray emitters in air filter samples. *Applied Radiation and Isotopes*, *64*, 1329-1332.
- [112] Kreidenweis, S. M. (2002). AEROSOLS | Role in Cloud Physics. Στο J. R. Holton, & J. A. Curry (Επιμ.), *Encyclopedia of Atmospheric Sciences* (1st ed., pp. 40-47). Academic Press.
- [113] Krishnaswami, S., Benninger, L. K., Aller, R. C., & Von Damm, K. L. (1980). Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: Evidence from ⁷Be, ²¹⁰Pb, and ^{239,240}Pu. *Earth and Planetary Science Letters*, 47, 307-318.

- [114] Lal, D., & Peters , B. (1962). Cosmic ray produced isotopes and their applications to problems in geophysics. *Progress in Cosmic Ray and Elementary Particles*, 6, 3-74.
- [115] Lal, D., & Peters, B. (1967). Cosmic Ray Produced Radioactivity on the Earth. At Sitte, K. (eds) Kosmische Strahlung II / Cosmic Rays II. Handbuch der Physik / Encyclopedia of Physics (Vol. 9 / 46 / 2). Berlin: Springer. doi:doi.org/10.1007/978-3-642-46079-1_7
- [116] Lal, D., Malhotra, P. K., & Peters, B. (1958). On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. *Journal of Atmospheric and Terrestrial Physics*, 12, 306-328.
- [117] Lal, D., Nijampurkar, V. N., Rajagopalan, G., & Somayajulu, B. L. (1979). Annual Fallout of ³²Si, ²¹⁰Pb, ²²Na, ³⁵S and ⁷Be in rains in India. *Proceedings* of the Indian Academy of Sciences, 88, 29-40.
- [118] Laubenstein, M., & Lawson, I. (2020). Low Background Radiation Detection Techniques and Mitigation of Radioactive Backgrounds. *Frontiers in Physics*, 8.
- [119] Lee, H. N., & Feichter, J. (1995). An intercomparison of wet precipitation scavenging schemes and the emission rates of ²²²Rn for the simulation of global transport and deposition of ²¹⁰Pb. *Journal of Geophysical Research*, 100, 253-270.
- [120] Lee, H. N., Tositti, L., Zheng, X., & Bonasoni, P. (2007). Analyses and comparisons of variations of ⁷Be, ²¹⁰Pb, and ⁷Be/²¹⁰Pb with ozone observations at two Global Atmosphere Watch Stations from high mountains. *Journal of Geophysical Research*, 112.
- [121] Lee, H. N., Wan, G., Zheng, X., Sanderson, C. G., Josse, B., Wang, S., Yang, W., Tang, J., Wang, C. (2004). Measurements of ²¹⁰Pb and ⁷Be in China and their analysis accompanied with global model calculations of ²¹⁰Pb. *Journal of Geophysical Research*, 109.
- [122] Li, Y., Fan, C., Xiang, M., Liu, P., Mu, F., Meng, Q., & Wang, W. (2018). Short-term variations of indoor and outdoor radon concentrations in a typical

semi-arid city of Northwest China. Journal of Radioanalytical and Nuclear Chemistry, 317, 297-306.

- [123] Liu, G., Yang, M., Warrington, D. N., Liu, P., & Tian, J. (2011). Using beryllium-7 to monitor the relative proportions of interrill and rill erosion from loessal soil slopes in a single rainfall event. *Earth Surface Processes and Landforms*, 36, 439-448.
- [124] Liu, H., Jacob, D. J., Bey, I., & Yantosca, R. M. (2001). Constraints from ²¹⁰Pb and ⁷Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. *Journal of Geophysical Research*, 106, 109-128.
- [125] Liu, H., Jacob, D. J., Dibb, J. E., Fiore, A. M., & Yantosca, R. M. (2004). Constraints on the sources of tropospheric ozone from ²¹⁰Pb-⁷Be-O₃ correlations. *Journal of Geophysical Research*, 109.
- [126] Lozano, R. L., San Miguel, E. G., Bolivar, J. P., & Baskaran, M. (2011). Depositional fluxes and concentrations of ⁷Be and ²¹⁰Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coasts in Spain. *Journal of Geophysical Research*, 116.
- [127] Martin, P., & McBride, J. L. (2012). Radioactivity in the Environment -Chapter 2 - Radionuclide Behaviour and Transport in the Tropical Atmospheric Environment (Vol. 18). (J. R. Twining, Editor) Elsevier. doi:10.1016/B978-0-08-045016-2.00002-3
- [128] Martinez, J. E., Juste, B., Ortiz, J., Martorell, S., & Verdu, G. (2017). Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant. *Radiation Physics and Chemistry*, 140, 20-24.
- [129] Masson, O., Steinhauser, G., Zok, D., Saunier, O., Angelov, H., Babic, D., Beckova, V., Bieringer, J., Bruggeman, M., Burbidge, C. I., Conil, S., Dalheimer, A., De Geer, L.-E., De Vismes Ott, A, Eleftheriadis, K., Estier, S., Fischer, H., Garavaglia, M. G., Gasco Leonarte, C., Gorzkiewicz, K., Hainz, D., Hoffman, I., Hyza, M., Isajenko, K., Karhumen, T., Kastlander, J., Katzlberger, C., Kierepko, R., Knetsch, G.-J., Kovendine Konyi, J., Lecomte, M., Mietelski, J. W., Min, P., Moller, B., Nielsen, S. P., Nikolic, J., Nikolovska, L., Penev, I., Petrinec, B., Povinec, P. P., Querfeld, R., Raimondi,

O., Ransby, D., Ringer, W., Romanenko, O., Rusconi, R., Saey, P.R.J., Samsonov, V., Silobritiene, B., Simion, E., Soderstrom, C., Sostaric, M., Steinkopff, T., Steinmann, P., Sykora, I., Tabachnyi, L., Todorovic, D., Tomankiewicz, E., Tschiersch, J., Tsibranski, R., Tzortzis, M., Ungar, K., Vidic, A., Weller, A., Wershofen, H., Zagyvai, P., Zalewska, T., Zapata Garcia, D., Zorko, B. (2019). Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017. *PNAS*, *116*(34), 16750-16759.

- [130] Matisoff, G. (2014). ²¹⁰Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment. *Journal of Environmental Radioactivity*, 138, 343-354.
- [131] Mattsson, R., Hatakka, J., Paatero, J., & Reissell, A. (1993). The variations and trends of the particle-bound sulphur in the ground level air in Finland during the last 30 years. Helsinki: Finnish Association for Aerosol Research. *Report Series in Aerosol Science, 23*, 159-165.
- [132] Mauring, A., Gafvert, T., & Aleksandersen, T. B. (2014). Implications for analysis of ²²⁶Ra in a low-level gamma spectrometry laboratory due to variations in radon background levels. *Applied Radiation and Isotopes*, 94, 54-59.
- [133] McNeary, D., & Baskaran, M. (2003). Depositional characteristics of ⁷Be and ²¹⁰Pb in southeastern Michigan. *Journal of Geophysical Research*, 108.
- [134] Melieres, M.-A., Pourchet, M., & Richard, S. (2003). Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring. *Journal of Environmental Radioactivity*, 66, 261-269.
- [135] Mitsios, I. K., & Anagnostakis, M. J. (2020). A fast method for the determination of ⁷Be in rainwater and atmospheric humidity samples. 22nd International Conference on Radionuclide Metrology and its Applications, (pp. 29-32). Salamanca. Recovery from https://physics.nist.gov/ICRM/ICRM_technicalseries_2.pdf
- [136] Mitsios, I. K., Karangelos, D. J., & Anagnostakis, M. J. (2016). Investigation of the Dependence of the Activity Concentration of Natural and Artificial

Radionuclides on Particle Size in Surface Soil. 25th Hellenic Conference on Nuclear Physics (HNPS2016), (pp. 217-221). Athens, Greece.

- [137] Miyake, Y., & Ohtsuka, Y. (1964). Beryllium-7 in Rain Water. Papers in Meteorology and Geophysics, 15(1), 89-92.
- [138] Mohamed, A., Ahmed, A. A., Ali, A. E., & Yuness, M. (2008). Attached and Unattached activity size distribution of short-lived radon progeny (²¹⁴Pb) and evaluation of deposition fraction. *Proceedings of the 3rd Environmental Physics Conference*, (pp. 89-97). Aswan, Egypt.
- [139] Mohan, M. P., D'Souza, R. S., Rashmi Nayak, S., Kamath, S. S., Shetty, T., Sudeep Kumara, K., Yashodhara, I., Mayya, Y. S., Karunakara, N. (2018). A study of temporal variations of ⁷Be and ²¹⁰Pb concentrations and their correlations with rainfall and other parameters in the South West Coast of India. *Journal of Environmental Radioactivity*, 192, 194-207.
- [140] Mohan, M. P., Shiny D'Souza, R., Rashmi Nayak, S., Kamath, S. S., Shetty, T., Sudeep Kimara, K., Mayya, Y. S.; Karunakara, N. (2019). Influence of rainfall on atmospheric deposition fluxes of ⁷Be and ²¹⁰Pb in Mangaluru (Mangalore) at the Southwest Coast of India. *Atmospheric Environment, 202*, 281-295.
- [141] Momoshima, N., Nishio, S., Kusano, Y., Fukuda, A., & Ishimoto, A. (2006). Seasonal variations of atmospheric ²¹⁰Pb and ⁷Be concentrations at Kumamoto, Japan and their removal from the atmosphere as wet and dry depositions. *Journal of Radioanalytical and Nuclear Chemistry*, 268(2), 297-304.
- [142] Mostafa, M. Y., Khalaf, H. N., & Zhukovsky, M. (2020). Radon decay products equilibrium at different aerosol concentrations. *Applied Radiation* and Isotopes, 156.
- [143] Müller, H., & Prohl, G. (1993). ECOSYS-87: A dynamic model for assessing radiological consequences of nuclear accidents. *Health Physics*, 64, 232-252.
- [144] Nazaroff, W. W. (1992). Radon transport from soil to air. Reviews of Geophysics, 30, 137-160.

- [145] Nishikawa, T., Masayoshi, A., & Okabe, S. (1984). Time Variation of Radon Daughters Concentration in Snowfall. *Radioisotopes*, 33, 257-261.
- [146] Othman, I., Al-Masri, M. S., & Hassan, M. (1998). Fallout of ⁷Be in Damascus City. *Journal of Radioanalytical and Nuclear Chemistry*, 238, 187-191.
- [147] Paatero, J., & Hatakka, J. (2000). Source areas of airborne ⁷Be and ²¹⁰Pb Measured in Northern Finland. *Health Physics*, 79, 691-696.
- [148] Pacini, A. A., Usoskin, I. G., Mursula, K., Echer, E., & Evangelista, H. (2015). Signature of a sudden stratospheric warming in the near-ground ⁷Be flux. *Atmospheric Environment*, 113, 27-31.
- [149] Padovani, S., Mitsios, I., Anagnostakis, M., & Mostacci, D. (2018). Analysis of the vertical distribution and size fractionation of natural and artificial radionuclides in soils in the vicinity of hot springs. *Radiation Effects & Defects in Solids*, 173, 794-806.
- [150] Papadakos, G. N., Karangelos, D. J., Petropoulos, N. P., Anagnostakis, M. J., Hinis, E. P., & Simopoulos, S. E. (2017). Uncertainty assessment method for the Cs-137 fallout inventory and penetration depth. *Journal of Environmental Radioactivity*, 171, 234-245.
- [151] Papadopoulos, N. K., Efstathopoulos, A. V., Karangelos, D. J., & Petropoulos, N. P. (2011). Determination of Uranium Isotope Concentrations in Precipitation in the Vicinity of Lignite-Fired Power Plants. *Nuclear Technology & Radiation Protection, 26*, 1-10.
- [152] Papandreou, S. M., Savva, M. I., Karfopoulos, K. L., Karangelos, D. J., Anagnostakis, M. J., & Simopoulos, S. E. (2011). Monitoring of ⁷Be atmospheric activity concentration using short term measurements. *Nuclear Technology & Radiation Protection*, 26(2), 101-109.
- [153] Papastefanou, C. (2006). Residence time of tropospheric aerosols in association with radioactive nuclides. *Applied Radiation and Isotopes*, 64, 93-100.
- [154] Papastefanou, C. (2008). Radioactive nuclides as tracers of environmental processes. At *Radioactive Aerosols* (Radioactivity in the Environment ed., Vol. 12, pp. 59-70).
- [155] Papastefanou, C., & Ioannidou, A. (1991). Depositional Fluxes and Other Physical characteristics of Atmospheric Beryllium-7 in the Temperate Zones (40°N) with a dry (Precipitation-free) Climate. *Atmospheric Environment*, 25A, 2335-2343.
- [156] Papastefanou, C., & Ioannidou, A. (1996). Influence of Air Pollutants in the ⁷Be Size Distribution of Atmospheric Aerosols. *Aerosol Science and Technology*, 24, 102-106.
- [157] Papastefanou, C., & Ioannidou, A. (2004). Beryllium-7 and solar activity. *Applied Radiation and Isotopes*, 61, 1493-1495.
- [158] Papastefanou, C., Ioannidou, A., Stoulos, S., & Manolopoulou, M. (1995). Atmospheric deposition of cosmogenic ⁷Be and ¹³⁷Cs from fallout of the Chernobyl accident. *Science of the Total Environment*, 170, 151-156.
- [159] Petropoulos, N. P., Anagnostakis, M. J., Hinis, E. P., & Simopoulos, S. E. (2001). Geographical mapping and associated fractal analysis of the long-lived Chernobyl fallout radionuclides in Greece. *Journal of Environmental Radioactivity*, 53, 59-66.
- [160] Petropoulos, N. P., Hinis, E. P., & Simopoulos, S. E. (1995). Cs-137 Chernobyl fallout in Greece and its associated radiological impact. NRE VI, International Symposium, (pp. 369-373). Montreal.
- [161] Pham, M. K., Betti, M., Nies, H., & Povinec, P. P. (2011). Temporal changes of ⁷Be, ¹³⁷Cs and ²¹⁰Pb activity concentrations in surface air at Monaco and their correlation with meteorological parameteres. *Journal of Environmental Radioactivity*, 102, 1045-1054.
- [162] Pham, M. K., Povinec, P. P., Nies, H., & Betti, M. (2013). Dry and wet deposition of ⁷Be, ²¹⁰Pb and ¹³⁷Cs in Monaco air during 1998-2010: Seasonal variations of deposition fluxes. *Journal of Environmental Radioactivity*, 120, 45-57.

- [163] Piliposian, G. T., & Appleby, P. G. (2003). A simple model of the origin and transport of ²²²Rn and ²¹⁰Pb in the atmosphere. *Continuum Mechanics and Thermodynamics*, 15, 503-518.
- [164] Potiriadis, C., Anagnostakis, M. J., Clouvas, A., Eleftheriadis, K., Florou, E., Housiadas, C., Ioannides, K., Ioannidou, A., Karangelos, D. I., Karfopoulos, K. L., Kehagia, K., Kolovou, M., Kritidis, P., Manolopoulou, M., Papastefanou, K., Savva, M. I., Simopoulos, S. E., Stamoulis, K., Stoulos, S., Xanthos, S., Xarchoulakos, D. (2013). Environmental Measurements and Inspections on Imported Foods and Feedstuffs in Greece After the Fukushima Accident. *Radiation Protection Dosimetry*, 156(4), 465-474.
- [165] Preiss, N., & Genthon, C. (1997). Use of a new database of lead 210 for global aerosol model validation. *Journal of Geophysical Research*, 102, 347-357.
- [166] Preiss, N., Melieres, M.-A., & Pourchet, M. (1996). A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface and watersediment interfaces. *Journal of Geophysical Research*, 101, 847-862.
- [167] Pressyanov, D. S. (1997). Integrated measurements of ²¹⁸Po, ²¹⁴Pb and ²¹⁴Bu + ²¹⁴Po in air under environmental concentrations. *Nuclear Instruments & Methods in Physics Research*, 397, 448-454.
- [168] Pröhl, G., Twining, J. R., & Crawford, J. (2012). Radioactivity in the Environment - Chapter 7 - Radiological Consequences Modelling (Vol. 18).
 (J. R. Twining, Editor) Elsevier. doi:10.1016/B978-0-08-045016-2.00007-2
- [169] Radulescu, I., Blebea-Apostu, A. M., Margineanu, R. M., & Mocanu, N. (2013). Backgroung radiation reduction for a high-resolution gamma-ray spectrometer used for environmental radioactivity measurements. *Nuclear Instruments and Methods in Physics Research A*, 715, 112-118.
- [170] Rama, Kolde, M., & Goldberg, E. D. (1961). Lead-210 in natural waters. Science, 134, 98-99.
- [171] Rangarajan, C., Gopalakrishnan, S., Chandrasekaran, V. R., & Eapen, C. D. (1975). The Relative Concentrations of Radon Daughter Products in Surface Air and the Significance of their Ratios. *Journal of Geophysical Research*, 80, 845-848.

- [172] Rangarajan, C., Madhavan, R., & Gopalakrishnan, S. S. (1986). Spatial and Temporal Distribution of Lead-210 in the Surface Layers of the Atmosphere. *Journal of Environmental Radioactivity*, 3, 23-33.
- [173] Rastogi, N., & Sarin, M. M. (2008). Atmospheric ²¹⁰Pb and ⁷Be in ambient aerosols over low- and high- altitude sites in semiarid region: temporal variability and transport processes. *Journal of Geophysical Research*, 113.
- [174] Rehfeld, S., & Heimann, M. (1995). Three dimensional atmospheric transport simulation of the radioactive tracers ²¹⁰Pb, ⁷Be, ¹⁰Be, and ⁹⁰Sr. *Journal of Geophysical Research, 26*, 141-161.
- [175] Rengarajan, R., & Sarin, M. M. (2004). Atmospheric deposition fluxes of ⁷Be, 210Pb and chemical species to the Arabian Sea and Bay of Bengal. *Indian Journal of Marine Sciences*, 33(1), 56-64.
- [176] Robinson, A. L. (1996, May). Radon Entry into Buildings: Effects of Atmospheric Pressure Fluctuations and Building Structural Factors.
- [177] Rodenas, C., Gomez, J., Quindos, L. S., Fernandez, P. L., & Soto, J. (1997).
 ⁷Be Concentrations in Air, Rain Water and Soil in Cantabria (Spain). *Applied Radiation and Isotopes, 48*(4), 545-548.
- [178] Rogers, V. C., & Nielson, K. K. (1991). Correlations for predicting air permeabilities and ²²²Rn diffusion coefficient of soils. *Health Physics*, 61, 225-230.
- [179] Rouni, P. K., Petropoulos, N. P., Anagnostakis, M. J., Hinis, E. P., & Simopoulos, S. E. (2001). Radioenvironmental survey of the Megalopolis lignite field basin. *The Science of the Total Environment, 272*, 261-272.
- [180] Roupsard, P. (2013). Etude phénoménologique du dépôt sec d'aérosols en milieu urbain : Influence des propriétés des surfaces, de la turbulence et des conditions météorologiques. PhD Thesis, University of Rouen.
- [181] Rozas, S., Idoeta, R., Alegria, N., & Herranz, M. (2016). Radiological characterisation and radon equilibrium factor in the outdoor air of a postindustrial urban area. *Journal of Environmental Radioactivity*, 151, 126-135.
- [182] Saari, H.-K., Schmidt, S., Castaing, P., Blanc, G., Sautour, B., Masson, O., & Kirk Cochran, J. (2010). The particulate ⁷Be/²¹⁰Pbxs and ²³⁴Th/²¹⁰Pbxs activity

ratios as tracers for tida-to-seasonal particle dynamics in the Gironde estuary (France): Implications for the budget of particle-associated contaminants. *Science of the Total Environment, 408*, 4784-4794.

- [183] Sadourny, R., & Laval, K. (1984). January and July performance of the LMD-GCM. New Perspectives in Climate Modelling, 173-197.
- [184] Salvat, F., Fernandez-Varea, J. M., & Sempau, J. (2011). PENELOPE-2011, A Code System for Monte Carlo Simulation of Electron and Photon Transport. Barcelona, Spain: OECD Nuclear Energy Agency.
- [185] Samuelsson, C., Hallstadius, L., Persson, B., Hedvall, R., Holm, E., & Forkman, B. (1986). ²²²Rn and ²¹⁰Pb in the Arctic summer air. *Journal of Environmental Radioactivity*, 3, 35-54.
- [186] Savva, M. I., Karangelos, D. J., & Anagnostakis, M. J. (2018). Determination of ⁷Be and ²²Na activity in air and rainwater samples by gamma-ray spectrometry. *Applied Radiation and Isotopes*, 134, 466-469.
- [187] Savva, M. I., Karangelos, D. J., Anagnostakis, M. J., & Simopoulos, S. E. (2016). Analysis of size-fractionated soil samples by gamma spectrometry. *Applied Radiation and Isotopes*, 109, 563-565.
- [188] Savva, M. I., Karfopoulos, K. L., Karangelos, D. J., Anagnostakis, M. J., & Simopoulos, S. E. (2014). Installation and performance testing of an XtRa -NaI(Tl) Compton Suppression System at the NED-NTUA. *Applied Radiation and Isotopes*, 87, 361-364.
- [189] Scheel, H. E., Sladkovic, R., & Kanter, H.-J. (1999). Ozone Variations at the Zugspitze (2962m a.s.l.) during 1996-1997. *Transactions on Ecology and the Environment*, 28, 264-268.
- [190] Schubert, M., Musolff, A., & Weiss, H. (2018). Influences of meteorological parameters on indoor radon concentrations (²²²Rn) excluding the effects of forces ventilation and radon exhalation from soil and building materials. *Journal of Environmental Radioactivity*, 192, 81-85.
- [191] Semertzidou, P., Piliposian, G. T., & Appleby, P. G. (2016). Atmospheric residence time of ²¹⁰Pb determined from the activity ratios with its daughter

radionuclides ²¹⁰Bi and ²¹⁰Po. *Journal of Environmental Radioactivity, 160*, 42-53.

- [192] Sepulveda, A., Schuller, P., Walling, D. E., & Casillo, A. (2008). Use of ⁷Be to document soil erosion associated with a short period of extreme rainfall. *Journal of Environmental Radioactivity*, 99, 35-49.
- [193] SIGMA-ALDRICH. (2011). Recovery at 07/06/2018, from http://sigmaaldrich.custhelp.com/app/answers/detail/a_id/3082/p/19 ,1001/session/L3RpbWUvMTUxOTk5ODMyMy9zaWQvTHFQdG1DR24%3 D
- [194] Simon, J., Meresova, J., Sykora, I., Jeskovsky, M., & Holy, K. (2009). Modeling of temporal variations of vertical concentration profile of ⁷Be in the atmosphere. *Atmospheric Environment*, 43, 2000-2004.
- [195] Simopoulos, S. E. (1989). Soil sampling and Cs-137 analysis of the Chernobyl fallout in Greece. *Applied Radiation and Isotopes*, *40*(7), 607-613.
- [196] Simopoulos, S. E., & Angelopoulos, M. G. (1987). Natural Radioactivity Releases from Lignite Power Plants in Greece. *Journal of Environmental Radioactivity*, 5, 379-389.
- [197] Singh, K., Singh, M., Singh, S., Sahota, H. S., & Papp, Z. (2005). Variation of radon (²²²Rn) progeny concentrations in outdoor air as a function of time, temperature and relative humidity. *Radiation Measurements*, 39, 213-217.
- [198] Sportisse, B. (2007). A review of parameterizations for modelling dry deposition and scavenging of radionuclides. *Atmospheric Environment*, 41, 2683-2698.
- [199] Stajic, J. M., & Nikezic, D. (2015). Analysis of Radon and Thoron Progeny Measurements Based on Air Filtration. *Radiation Protection Dosimetry*, 163, 333-340.
- [200] Steck, D. J. (2009). Annual Average Indoor Radon Variations Over Two Decades. *Health Physics*, 96(1), 37-47.
- [201] Stochioiu, A., Sahagia, M., Bercea, S., Ivan, C., & Tudor, I. (2008). Monitoring of the Radioactivity Concentration of Air in the Area of the IFIN-

HH, Romania. International Congress of the International Radiation Protection Association. Argentina.

- [202] Stohl, A., Spichtinger-Rakowsky, N., Bonasoni, P., Feldmann, H., Memmesheimer, M., Scheel, H. E., Trickl, T., Hubener, S., Ringer, W., Mandl, M. (2000). The influence of stratospheric intrusions on alpine ozone concentrations. *Atmospheric Environment*, 34, 1323-1354.
- [203] Stoulos, S., & Ioannidou, A. (2020). Radon and its progenies variation in the urban polluted atmosphere of the Mediterranean city of Thessaloniki, Greece. *Environmental Science and Pollution Research*, 27, 1160-1166.
- [204] Tateda, Y., & Iwao, K. (2008). High ²¹⁰Po atmospheric deposition flux in the subtropical coastal area of Japan. *Journal of Environmental Radioactivity*, 99, 98-108.
- [205] Taylor, A., Keith-Roach, M. J., Iurian, A. R., Mabit, L., & Blake, W. H. (2016). Temporal variability of beryllium-7 fallout in southwest UK. *Journal* of Environmental Radioactivity, 160, 80-86.
- [206] Tchorz-Trzeciakiewicz, D. E., & Klos, M. (2017). Factors affecting atmospheric radon concentration, human health. Science of the Total Environment, 584-585, 911-920.
- [207] Terzi, L., & Kalinowski, M. (2017). World-wide seasonal variation of ⁷Be related to large-scale atmospheric circulation dynamics. *Journal of Environmental Radioactivity*, 178-179, 1-15.
- [208] Thomas, J. W. (1971). Determination of the Working Level of Radon Daughters by the Modified Tsivoglou Method. doi:doi:10.2172/4649649
- [209] Thor, R., & Zutshi, P. K. (1958). Annual Deposition of Cosmic Ray Produced Be7 at Equtorial. *Tellus X*, 1, 99-103.
- [210] Till, J. E., & Meyer, H. R. (1983). Radiological Assessment: A textbook on Environmental Dose Analysis. NUREG/CR-3332US Nuclear Regulatory Commission. Washington, D.C.
- [211] Tokuyama, H., Oonishi, M., & Matsuura, H. (1993). Environmental Background Level of Cosmic Ray Produces ²²Na. Journal of Environmental Radioactivity, 21, 213-218.

- [212] Tositti, L., Brattich, E., Cinelli, G., & Baldacci, D. (2014). 12 years of ⁷Be and ²¹⁰Pb in Mt. Cimone, and their correlation with meteorological parameters. *Atmospheric Environment*, 87, 108-122.
- [213] Trnkova, L., & Rulik, P. (2009). Low background shielding of HPGe detector. *Applied Radiation and Isotopes*, 67, 723-725.
- [214] Turekian, K. K., Benninger, L. K., & Dion, E. P. (1983). ⁷Be and ²¹⁰Pb Total Deposition Fluxes at New Haven, Connecticut and at Bermuda. *Journal of Geophysical Research*, 88, 5411-5415.
- [215] UNSCEAR. (2000). Sources and Effects of Ionizing Radiation UNSCEAR
 2000 Report to the General Assembly, with Scientific Annexes (Vol. I: SOURCES). New York: United Nations.
- [216] Vecchi, R., Marcazzan, G., & Valli, G. (2005). Seasonal variation of ²¹⁰Pb activity concentration in outdoor air of Milan (Italy). *Journal of Environmental Radioactivity*, 82, 251-266.
- [217] Wallbrink, P. J., & Murray, A. S. (1994). Fallout of ⁷Be in South Eastern Australia. *Journal of Environmental Radioactivity*, 25, 213-228.
- [218] Whicker, R., & Kirchner, T. B. (1987). Pathway: A Dynamic food-chain model to predict radionuclide ingestion after fallout deposition. *Health Physics*, 52, 717-737.
- [219] Xie, D., Liao, M., & Kearfott, J. (2015). Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building - A case study. *Radiation Measurements*, 82, 52-58.
- [220] Yamamoto, M., Sakaguchi, A., Sasaki, K., Hirose, K., Igarashi, Y., & Kim, C. (2006). Seasonal and spatial variation of atmospheric ²¹⁰Pb and ⁷Be deposition: features of the Japan Sea side of Japan. *Journal of Environmental Radioactivity*, 86, 110-131.
- [221] Young, J. A., & Silker, W. A. (1974). The determination of air-sea exchange and oceanic mixing rates using ⁷Be during the Bomex Experiment. *Journal of Geophysical Research*, 79(30), 4481-4489.

- [222] Young, J. A., & Silker, W. B. (1980). Aerosol Deposition Velocities on the Pacific and Atlantic Oceans Calculated from ⁷Be Measurements. *Earth and Planetary Science Letters*, 50, 92-104.
- [223] Zalewska, T., Biernacik, D., & Marosz, M. (2021). Correlations between ⁷Be, ²¹⁰Pb, dust and PM10 concentrations in relation to meteorological conditions in northern Poland in 1998-2018. *Journal of Environmental Radioactivity*, 228.
- [224] Zanis, P., Trickl, T., Stohl, A., Wernli, H., Cooper, O., Zerefos, C., Gaeggeler, H., Schnabel, C., Tobler, L., Kubik, P. W., Priller, A., Scheel, H. E., Kanter, H. J., Cristofanelli, P., Forster, C., James, P., Gerasopoulos, E., Delcloo, A., Papayannis, A., Claude, H. (2003). Forecast, observation and modelling of a deep stratospheric intrusion event over Europe. *Atmospheric Chemistry and Physics*, *3*, 763-777.
- [225] Zeng, Z., Mi, Y., Ma, H., Cheng, J., Su, J., & Yue, Q. (2014). The characteristics of a low background germanium gamma ray spectrometer at China JinPing underground laboratory. *Applied Radiation and Isotopes*, 91, 165-170.
- [226] Zhang, F., Wang, J., Baskaran, M., Zhong, Q., Wang, Y., Paatero, J., & Du, J. (2021). A global dataset of atmospheric ⁷Be and ²¹⁰Pb measurements: annual air concentration and depositional flux. *Earth System Science Data*, 13, 2963-2994.
- [227] Zhang, L., Yang, W., Chen, M., Wang, Z., Lin, P., Fang, Z., Qiu, Y., Zheng, M. (2016). Atmospheric Deposition of ⁷Be in the Southeast of China: A Case Study in Xiamen. *Aerosol and Air Quality Research*, 16, 105-113.
- [228] Ακριτίδης, Δ. (2008). Συνοπτικά και δυναμικά χαρακτηριστικά της δομής της ανώτερης τροπόσφαιρας κατά τη μεταφορά στρατοσφαιρικού όζοντος. Μεταπτυχιακή Διατριβή Ειδίκευσης, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σχολή Θετικών Επιστημών, Τμήμα Γεωλογίας, Τομέας Μετεωρολογίας και Κλιματολογίας, Θεσσαλονίκη, Ελλάδα
- [229] Αναγνωστάκης, Μ. Ι. (1998). γ-Φασματοσκοπική Ανάλυση Δειγμάτων Χαμηλών Ραδιενεργειών στην Περιοχή Χαμηλών Ενεργειών. Διδακτορική

Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Τμήμα Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.

- [230] Δαλάκα, Α. (2023). Διερεύνηση της Διακύμανσης της Ενεργότητας και Κατανομής Μεγέθους Ραδιενεργών Ιχνηθετών στο Ατμοσφαιρικό Αερόλυμα. Διδακτορική Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [231] IAEA, & ALMERA. (2021, June). EVT1904351 "Virtual Training Workshop of IAEA's ALMERA Network on Advanced Topics in Gamma-ray Spectrometry".
- [232] Καρύδης, Ε. (2021). Ανάπτυξη Μεθοδολογίας για την Ανίχνευση Ραδιενεργών Ισοτόπων σε Δείγματα Ξηρής Ατμοσφαιρικής Απόθεσης. Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Τμήμα Μηχανολόγων Μηχανικών, Εργαστήριο Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [233] Καρφόπουλος, Κ. Λ. (2012). Ανάπτυξη και Εφαρμογή Μετρητικών Τεχνικών για την Ανάλυση της Φυσικής και της Τεχνολογικά Επαγόμενης Ραδιενέργειας σε Οικοσυστήματα. Διδακτορική Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [234] Μήτσιος, Ι. Κ. (2016). Μελέτη της Συγκέντρωσης Φυσικών και Τεχνητών Ραδιενεργών Ισοτόπων στα Διάφορα Κοκκομετρικά Κλάσματα του Επιφανειακού Χώματος. Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [235] Μπασιάς, Κ. Ε. (2013). Μετρήσεις της Συγκέντρωσης του Ισοτόπου Κοσμικής Προέλευσης ⁷Be στο Αεροζόλ της Ατμόσφαιρας και στο Νερό της Βροχής. Διπλωματική Εργασία, Τομέας Πυρηνικής Τεχνολογίας, Σχολή Μηχανολόγων Μηχανικών, Αθήνα, Ελλάδα.
- [236] Νικολάου, Α. (2006). Προσομοίωση τηε Αλληλεπίδρασης Φωτονιακών Ακτινοβολιών και Υλης με Χρήση του Κώδικα PENELOPE - Εφαρμογή σε Προβλήματα Υπολογισμού Θωρακίσεων και Βαθμονόμησης Ανινχευτικών Διατάζεων. Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.

- [237] Παπαδόπουλος, Ν. Κ. (2010). Μοντέλα διακίνησης και εναπόθεσης στερεών σωματιδίων ιπτάμενης τέφρας στο περιβάλλον και συνακόλουθες ραδιολογικές επιπτώσεις στη λεκάνη της Μεγαλόπολης. Διδακτορική Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [238] Σάββα, Μ. Ι. (2017). Ανάπτυζη και Εφαρμογή Τεχνικών Προσδιορισμού Πολύ Χαμηλών Συγκεντρώσεων Ραδιενεργών Ιχνοστοιχείων σε Δείγματα Περιβαλλοντικής Σημασίας. Διδακτορική Διατριβή, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [239] Σπανίδης, Α. Θ. (2021). Σχεδίαση και Κατασκευή Θωράκισης Φορητού Ανιχνευτή BEGe με την Μέθοδο Προσομοίωσης Monte-Carlo. Διπλωματική Εργασία, Εθνικό Μετρόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [240] Τσιαντή, Μ. (2018). Μετρήσεις Χαμηλών Επιπέδων Φυσικής και Τεχνητά Επαγόμενης Ραδιενέργειας σε Περιβαλλοντικά Δείγματα. Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.
- [241] Χαβιάρας, Δ. Ε. (2015). Παραμετρική Μελέτη της Γεωμετρίας Δείγματος για την Ανίχνευση ²¹⁰Pb σε Δείγματα Χώματος Μικρού Ογκου. Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Μηχανολόγων Μηχανικών, Τομέας Πυρηνικής Τεχνολογίας, Αθήνα, Ελλάδα.

ΠΑΡΑΡΤΗΜΑΤΑ

ПАРАРТНМА А

Πιστοποιητικά ανιχνευτών γερμανίου

Στο παράρτημα Α παρουσιάζονται τα πιστοποιητικά των ανιχνευτών γερμανίου του ΕΠΤ-ΕΜΠ.

DETECTOR SPECIFICATION AND PERFORMANCE DATA

Specifications		•					
Detector Model	GX10021		Serial nur	nber <u>b 00078</u>	3		
Cryostat Model	7500SL						
Preamplifier Mod	lifier Model 2002CSL						
The purchase specifications and therefore the warranted performance of this detector are as follows :							
Nominal volume cc. Relative efficiency 100 %							
Percention 2 10 keV (FWHM) at 1 33 MeV							
Resolution	keV (FWTM) at 1.33 McV						
1.20 keV (FWHM) at 122 keV							
	keV (FW	TM) at					
Peak/Comton	78:1	Cryostat we	II diameter	Well dept	h mm		
Cryostat descripti	on or Drawing Nu	unber if special	Vertical Dipstick, ty	pe 7500SL (C	arbon Epoxy wind	dow) + 4"	
CFE							
				•			
Physical Charac	cteristics						
Geometry	Coaxial one open	end, closed end	facing window				
Diameter	80	mm	Active volume		cc		
Length	78	mm	Crystal well de	epth	mm		
Distance from win	ndow (outside) 5	mm	Crystal well di	ameter	mm		
Electrical Char.	acteristics						
Depletion voltage	<u>(+)4000</u>	Vdc					
Recommended bia	as voltage Vdc	(+)4500	Vdc			•	
Leakage current a	t recommended b	ias <u>0.01</u>	nA				
Preamplifier test j	point voltage at re	commended vol	age <u>-1.1</u> Vd	C			
Perclution and	Efficiency						
Resolution and	Emclency						
With amp time co	onstant of	<u>6</u>	μs				
Isotope	57Co	⁶⁰ Co	1			1	
Energy (keV)	122	1332				ł	
Eucipy (keV)	1.03	2.04				1	
FWTM (keV)	1.05	3.00				1	
Pret/Compton		82 2-1	+	220 a		1	
Peak Compton		104 5%				1	
Test are perform	ed following IFF	F standard test	NSI/IFFF std325-1	996	1	1	
- Test are periori	rea following IEE	d - See German	ium detector manual	Section 7			
- Standard Canoe	ITA CICCITOTILES USC	a · See German	ium detector mandar	Section /			
Tested by :	144		Date : September 7	1999			
1	9				•		
Approved by :	//		Date : September 7	1999			
41 E	///					-	
0	TY		Docum : GDAME001	Date : 0.	2/02/99	1	
/	U		Issue : Spec. Sheet GC	Name :P	VE		
\mathcal{C}			Revue : D Basis : 0.W001PVF 15	Page : 1. Appr :	1		

Σχήμα Α.1 : Πιστοποιητικό Ανιχνευτή XtRa

6.1 SPECIFICATIONS

The purchase specifications and therefore the warranted performance of this detector are as follows:

Cryostat Description or Drw. No. if special _____7500

6.2 PHYSICAL/PERFORMANCE DATA

Actual performance of this detector when tested is given below. Digital printouts are also enclosed in the rear envelope of the instruction manual.

Geometry	Closed End Co	axial
Diameter	55.3	mп

Length______65___mm

Active area facing window 24.15 cm²

Distance from window 5 mm

ELECTRICAL CHARACTERISTICS

Depletion Voltage +) 3000 Vdc.

Recommended Bias Voltage+) 3000 Vdc.

Leakage Current at Recommended Bias NA Na.

Preamplifier Test Point Voltage at Recommended Bias <u>1.48</u> Vdc.

Capacitance at Recommended Bias <u>NA</u> pf.

RESOLUTION AND EFFICIENCY

Isotope	Co ⁵ 7	Co ⁶⁰		
Energy (keV)	122	1332		
FWHM (keV)	0.85	1.78		
FWTM (keV)	1.61	3.26		
Peak/Compton		66.5:1		
Efficiency (%)		33.8%		

Σχήμα A.2 : Πιστοποιητικό Ανιχνευτή Ge (33.8%) (Gel όπως αναφέρεται στο κυρίως κείμενο της παρούσας Δ.Δ.)

DETECTOR SPECIFICATIONS AND PERFORMANCE DATA

7.1 SPECIFICATIONS

Model___GL2020-7500_____Serial Number__b_87547____

The purchase specifications and therefore the warranted performance of this detector are as follow:

Energy	5.9 keV	122 keV	
Resolution (eV (FWHM))	400	680	

Cryostat Description or Drw. No. if special ____ Vertical dipstick, type 7500 + 4" CFE + PHW

7.2 PHYSICAL/PERFORMANCE DATA

Date September 16th, 1988

Actual performance of this detector when tested is given below.

Active Diameter <u>50.5</u> mm Active Area <u>2000</u> mm² Thickness <u>20</u> mm Distance from Window <u>5</u> mm Window Thickness <u>.5</u> mm

ELECTRICAL CHARACTERISTICS

Depletion Voltage (-)1500 Vdc.

Recommended Bias Voltage (-)2000 Vdc.

Reset Rate at Recommended Bias_____ sec. (PO Preamp only)

Preamplifier Test Point Voltage at Recommended Bias _____ Vdc. (RC Preamp only)

RESOLUTION AND EFFICIENCY - With Amp. Time Constant of _4 ____microseconds.

lsotope	Fe ⁵⁵	Co ^{s 7}	Co ^{s 7}	
Energy (keV)	5.9	6.4 •	122	
FWHM (eV))	341		530	
FWTM (eV)')			996	

* Substitutes for Fe-55 in some cases where Fe-55 peaks are not well separated.

Σχήμα A.3 : Πιστοποιητικό Ανιχνευτή LEGe

DETECTOR SPECIFICATION AND PERFORMANCE DATA

Cryostat Model Preamplifier Mode The purchase spec Nominal volume Resolution	7500SL el <u>2002CSL</u>			
Preamplifier Mode The purchase spec Nominal volume Resolution	el <u>2002CSL</u>			
The purchase spec Nominal volume Resolution				
Nominal volume Resolution	ifications and the	refore the warran	ted performance of this dete	ctor are as follows
Resolution	cc	Re	lative efficiency 40 %	
	1.8 keV (FWHN	1) at 1.33 MeV		
	keV (FW	TM) at 1.33 Me	v	
	.875 keV (FWH	M) at <u>122 keV</u>		
Deals/Commenter	keV (FW	TM) at		22.0
Peak/Compton	<u>03:1</u>	Cryostat we	ll diameter We	ell depth mm
Cryostat descriptio	on or Drawing Nu	mber it special]	SOOSL	
Physical Chara	cteristics			
Geometry	Convintione onen	and closed and	Fasture with Janu	
Diameter	Contraction Contraction	s) mm	Active volume	
Length	(A1) mm	Crystal well denth	cc
Distance from win	dow (outside) 6		Crystal well diameter	
Depletion voltage	(+)3000	Vdc		
Depletion voltage Recommended bia Leakage current at	(+)3000 s voltage Vdc recommended bia	Vdc (+)3500 as 0.01	Vdc	
Depletion voltage Recommended bia Leakage current at Preamplifier test p	(+)3000 is voltage Vdc recommended bis oint voltage at rec	Vdc (+)3500 as 0.01 ommended volta	Vdc . nA ge <u>-1.1</u> Vdc	
Depletion voltage Recommended bia Leakage current at Preamplifier test por Resolution and D	(+)3000 is voltage Vdc recommended bia oint voltage at rec Efficiency	Vdc (+)3500 is <u>0.01</u> ommended volta	Vdc . nA gc <u>-1.1</u> Vdc	
Depletion voltage Recommended bia Leakage current at Preamplifier test po Resolution and I With amp time con	(+)3000 is voltage Vdc recommended bis oint voltage at rec Efficiency istant of	Vdc (+)3500 is 0.01 ommended volta 4 µ	Vdc . nA gc <u>-1.1</u> Vdc s	
Depletion voltage Recommended bia Leakage current at Preamplifier test po Resolution and I With amp time con Isotope	(+)3000 is voltage Vdc recommended bia oint voltage at rec Efficiency istant of ³⁷ Co	Vdc (+)3500 is 0.01 ommended volta 4 µ	Vdc nA gc <u>-1.1</u> Vdc s	
Depletion voltage Recommended bia Leakage current at Preamplifier test po Resolution and 1 With amp time con Isotope Energy (keV)	(+)3000 is voltage Vdc recommended bis oint voltage at rec Efficiency istant of ³⁷ Co 122	Vdc (+)3500 is 0.01 ommended volta 4 µ ⁶⁰ Co 1332	Vdc nA gc <u>-1.1</u> Vdc s	
Depletion voltage Recommended bia Leakage current at Preamplifier test pu Resolution and 1 With amp time con Isotope Energy (keV) FWHM (keV)	(+)3000 is voltage Vdc recommended bia oint voltage at rec Efficiency istant of ³⁷ Co 122 .821	Vdc (+)3500 is 0.01 commended volta 4 µ ⁶⁰ Co 1332 1.77	Vdc . nA ge <u>-1.1</u> Vdc s	
Depletion voltage Recommended bia Leakage current at Preamplifier test pur Resolution and I With amp time con Isotope Energy (keV) FWHM (keV)	(+)3000 is voltage Vdc e recommended bia oint voltage at rec Efficiency istant of ³⁷ Co 122 .821	Vdc (+)3500 is 0.01 commended volta 4 µ ⁶⁰ Co 1332 1.77 3.28	Vdc nA gc <u>-1.1</u> Vdc s	
Depletion voltage Recommended bia Leakage current at Preamplifier test pr Resolution and I With amp time con Isotope Energy (keV) FWHM (keV) FWHM (keV) Peak/Compton	(+)3000 is voltage Vdc recommended bia oint voltage at rec Efficiency istant of ³⁷ Co 122 .821	Vdc (+)3500 is 0.01 commended volta 4 µ ⁶⁰ Co 1332 1.77 3.28 69.3:1	Vdc nA gc <u>-1.1</u> Vdc s	

Σχήμα A.4 : Πιστοποιητικό Ανιχνευτή HPGe (40.9%) (Ge2 όπως αναφέρεται στο κυρίως κείμενο της παρούσας Δ.Δ.)

DETECTOR SPECIFICATION AND PERFORMANCE DATA AFTER REPAIR

Specifications

Detector ModelBE3825Cryostat Model7935SL-7Preamplifier Model2002CSL

Serial number b 04070

Cryostat description or Drawing Number if special Multi Attitude cryostat, type 793551-7

Physical Characteristics

Active Diameter	70	mm	Distance from window (outside)	<u>5</u>	mm
Active Diameter			Window this mass	0.5	mm
Active Area	3800	mm-	window inickness	0.2	
1	25	-	Window material	Carbo	on Epoxy
Thickness	25	11111	W HIGOW HILDENNE		

Electrical Characteristics

Depletion voltage	(+)3000	Vdc		
Recommended bias v	oltage Vdc	(+)3500	Vdc	
Reset rate at recomme	ended bias	L	sec (PC) preamp only)
Preamplifier test poin	t voltage at reco	ommended bias	s <u>-0.6</u>	Vdc (RC preamp only)

Resolution and Efficiency

With amp time constant of $\frac{4}{\mu s}$

	and the second			
Icotone	55 Fe	°'Co	60Co	
Isotope	50	122	1332.5	
Energy (kev)	5.9	(10	1780	
FWHM (eV)	440	658	1/00	
THE (AT)		1204	3295	

- Tests are performed following IEEE standard test ANSI/IEEE std325-1996

- Tests are performed foronting to a set of the set of

La

Date : January 25, 2007

Tested by :

Date : January 25, 2007

Approved by :

Σχήμα A.5 : Πιστοποιητικό Ανιχνευτή BEGe

ПАРАРТНМА В

Προσδιορισμός συντελεστή ισορροπίας F

Ο συνδυασμός χρήσης των οργάνων AlphaGUARD-AlphaPM επιτρέπει τον ταυτόχρονο προσδιορισμό της συγκέντρωσης του ραδονίου και των θυγατρικών στον αέρα του χώρου στον οποίο τοποθετούνται. Το AlphaGUARD δίνει τη συγκέντρωση του ραδονίου σε Bq/m³ και το AlphaPM τη συγκέντρωση των θυγατρικών του ραδονίου σε mWL.

Ειδικότερα, το ALPHAPM μετρά το "Potential Alpha Energy" σε MeV/L, δηλαδή την ενέργεια που απελευθερώνουν τα θυγατρικά του ραδονίου από τη διάσπασή τους ανά λίτρο αέρα που περνά μέσα από το όργανο. Θυγατρικά του ραδονίου συγκέντρωσης 1WL (Working Level) ελευθερώνουν ενέργεια 1.3·10⁵ MeV/L ως αποτέλεσμα της «α-διάσπασής» τους. Συνεπώς, διαιρώντας τα μετρούμενα MeV/L με την ενέργεια «1.3·10⁵ MeV/L» προκύπτουν τα WL των θυγατρικών του ραδονίου.

Από τα WL που προκύπτουν, θεωρώντας ισορροπία του ραδονίου με τα θυγατρικά του, το AlphaGUARD υπολογίζει την υποθετική συγκέντρωση του ραδονίου σε Bq/m³ βάσει της εξίσωσης:

$$\frac{A'/37}{100} \cdot ER = WL$$

Όπου:

A': η υποθετική συγκέντρωση του ραδονίου σε Bq/m^3 αν βρισκόταν σε ισορροπία

με τα θυγατρικά του.

- ER : το «Equilibrium Ratio» (ο λόγος ισορροπίας) μεταξύ του ραδονίου και των θυγατρικών του.
- WL : το Working Level των θυγατρικών του ραδονίου όπως αυτά προέκυψαν από τη μέτρηση του AlphaPM

Συνεπώς, για ER = 1, η υποθετική συγκέντρωση των θυγατρικών του ραδονίου είναι A' = 3700 · WL. Με τον τρόπο αυτό, συγκρίνοντας την υποθετική (A') με τη μετρούμενη (A) συγκέντρωση του ραδονίου προκύπτει ο συντελεστής ισορροπίας F (equilibrium factor) από την εξίσωση:

$$F = \frac{A'}{A}$$

ΠΑΡΑΡΤΗΜΑ Γ

Συμπληρωματικά μετεωρολογικά δεδομένα

Στο Παράρτημα Γ παρουσιάζεται το σύνολο των μετεωρολογικών δεδομένων που χρησιμοποιήθηκαν στα πλαίσια της διερεύνησης της κύμανσης του ραδονίου στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ.

Γ.1 2^η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ

Στον Πίνακα Γ.1 που ακολουθεί δίνονται τα εξωτερικά μετεωρολογικά δεδομένα του εργαστηρίου ΕΠΤ-ΕΜΠ από το μετεωρολογικό σταθμό Παπάγου όπως αυτά έγιναν διαθέσιμα από το Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυζης του Εθνικού Αστεροσκοπείου Αθηνών, και αφορούν τις πλήρεις ημέρες δειγματοληψίας της 2^{ης} περιόδου δειγματοληψίας της κύμανσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ (14/10/2020-24/10/2020). Η αβεβαιότητες δίνονται σε επίπεδο 1σ.

•	Μέση Ημερήσια	Ύψος	Μέση Ημερήσια	Μέση Τανήτητα	Κύοια Κατεύθυνση
Ημερομηνία	Θερμοκρασία	Βροχής	Βαρομετρική		Ανάμου
	(°C)	(mm)	Πίεση (mbar)	Ανεμου (κπι/π)	Ανεμου
14/10/20	$19.1 \hspace{0.1 in} \pm \hspace{0.1 in} 0.5$	0.0	$1015.0 \hspace{0.1 in} \pm \hspace{0.1 in} 0.3$	3.6 ± 0.5	SW
15/10/20	17.7 ± 0.8	0.0	$1017.5 \hspace{0.1 in} \pm \hspace{0.1 in} 0.2$	2.2 ± 0.5	SW
16/10/20	$19.7 \hspace{0.1 in} \pm \hspace{0.1 in} 0.8$	0.0	1014.1 ± 0.3	2.4 ± 0.7	SW
17/10/20	$20.6 \hspace{0.1 in} \pm \hspace{0.1 in} 0.5$	0.2	$1011.6 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2$	3.7 ± 0.6	SW
18/10/20	18.0 ± 0.7	0.0	$1014.0 \hspace{0.1 in} \pm \hspace{0.1 in} 0.2$	$2.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	SE
19/10/20	16.2 ± 0.4	0.0	$1019.5 \hspace{0.1 in} \pm \hspace{0.1 in} 0.3$	6.3 ± 0.6	ESE
20/10/20	16.2 ± 0.4	0.0	$1021.6 \hspace{0.1in} \pm \hspace{0.1in} 0.1$	7.8 ± 0.6	ENE
21/10/20	15.1 ± 0.2	0.0	$1021.5 \hspace{0.1in} \pm \hspace{0.1in} 0.1$	9.0 ± 0.4	NE
22/10/20	17.6 ± 0.5	0.0	$1021.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	7.5 ± 0.6	ENE
23/10/20	17.6 ± 1.0	0.0	$1020.1 \hspace{0.1 in} \pm \hspace{0.1 in} 0.2$	1.4 ± 0.3	SE
24/10/20	18.7 ± 0.9	0.0	$101\overline{6.5} \pm 0.2$	1.9 ± 0.4	ESE

Πίνακας Γ.1: Μέσες Ημερήσιες Τιμές μετεωρολογικών δεδομένων μετεωρολογικού σταθμού Παπάγου από 14/10/2020 έως και 24/10/2020.

Στον Πίνακα Γ.2 που ακολουθεί δίνονται οι τιμές της θερμοκρασίας και της πίεσης εντός του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, όπως αυτές προσδιορίσθηκαν από το AlphaGUARD. Ακόμα δίνονται οι διαφορές μεταξύ της εξωτερικής και εσωτερικής θερμοκρασίας (ΔT_{out-in}) καθώς και μεταξύ της εξωτερικής και εσωτερικής πίεσης (ΔP_{out-in}).

Πίνακας Γ.2: Μέσες Ημερήσιες Τιμές της θερμοκρασίας και της πίεσης εντός του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ καθώς και οι διαφορές τους με τις αντίστοιχες εξωτερικές τιμές για τη χρονική περίοδο από 14/10/2020 έως και 24/10/2020.

Ημερομηνία	Μέση Ημερήσια Θερμοκρασία (°C)	Μέση Ημερήσια Βαρομετρική Πίεση (mbar)	$\Delta T_{out-in}(^{o}C)$	ΔP_{out-in}
14/10/20	$23.0 \ \pm \ 0.04$	$993.6 \hspace{0.1 in} \pm \hspace{0.1 in} 0.3$	-3.9 ± 0.5	$21.4 \hspace{0.1in} \pm \hspace{0.1in} 0.04$
15/10/20	$22.7 \hspace{0.1 in} \pm \hspace{0.1 in} 0.03$	$995.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2$	-5.0 ± 0.8	21.7 ± 0.04
16/10/20	$22.7 \hspace{0.1 in} \pm \hspace{0.1 in} 0.05$	$992.4 \hspace{0.1in} \pm \hspace{0.1in} 0.3$	-3.0 ± 0.8	21.7 ± 0.05
17/10/20	$22.9 \hspace{0.1 in} \pm \hspace{0.1 in} 0.01$	$990.4 \hspace{0.1in} \pm \hspace{0.1in} 0.2$	$-2.4 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	$21.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.07$
18/10/20	$22.7 \hspace{0.1 in} \pm \hspace{0.1 in} 0.02$	$992.6 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2$	-4.7 ± 0.7	$21.4 \hspace{0.1in} \pm \hspace{0.1in} 0.05$
19/10/20	$22.6 \ \pm \ 0.05$	$997.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.3$	-6.4 ± 0.4	$21.6 \hspace{0.1in} \pm \hspace{0.1in} 0.04$
20/10/20	$22.4 \hspace{0.1in} \pm \hspace{0.1in} 0.03$	$999.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	-6.2 ± 0.4	$21.9 \hspace{0.1in} \pm \hspace{0.1in} 0.03$
21/10/20	$22.4 \hspace{0.1cm} \pm \hspace{0.1cm} 0.02$	999.5 \pm 0.1	-7.3 ± 0.2	22.0 ± 0.03
22/10/20	$22.4 \hspace{0.1cm} \pm \hspace{0.1cm} 0.03$	999.3 ± 0.1	$-4.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	$21.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$
23/10/20	$22.4 \hspace{0.1cm} \pm \hspace{0.1cm} 0.03$	$998.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.2$	$-4.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.9$	$21.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.04$
24/10/20	22.4 ± 0.02	$99\overline{4.7} \pm 0.2$	-3.7 ± 0.9	21.8 ± 0.05

Γ.2 3^η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ

Στον Πίνακα Γ.3 που ακολουθεί δίνονται τα εξωτερικά μετεωρολογικά δεδομένα του εργαστηρίου ΕΠΤ-ΕΜΠ από το μετεωρολογικό σταθμό Παπάγου όπως αυτά έγιναν διαθέσιμα από το Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυζης του Εθνικού Αστεροσκοπείου Αθηνών, και αφορούν τις πλήρεις ημέρες δειγματοληψίας της 3^{ης} περιόδου δειγματοληψίας της κύμανσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ (2/3/2021-12/3/2021). Η αβεβαιότητες δίνονται σε επίπεδο 1σ.

	Μέση Ημερήσια	Ύψος	Μέση Ημερήσια	Μέση Τανήτητα	Κύοια Κατεύθυνση
Ημερομηνία	Θερμοκρασία	Βροχής	Βαρομετρική		Αυάμου
	(°C)	(mm)	Πίεση (mbar)	Ανεμου (κπ/π)	Ανεμου
2/3/2021	7.5 ± 0.3	0.0	1029.4 ± 0.2	8.2 ± 0.9	Е
3/3/2021	9.3 ± 0.8	0.0	$1028.5 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	5.4 ± 1.0	NE
4/3/2021	11.2 ± 0.8	0.0	$1023.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	1.2 ± 0.2	WSW
5/3/2021	$12.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	0.0	$1018.7 \hspace{0.1in} \pm \hspace{0.1in} 0.1$	2.5 ± 0.4	SW
6/3/2021	13.5 ± 0.4	0.0	$1019.6 \hspace{0.1 in} \pm \hspace{0.1 in} 0.2$	3.4 ± 0.3	SW
7/3/2021	9.8 ± 0.3	0.0	$1022.6 \hspace{0.1in} \pm \hspace{0.1in} 0.2$	$2.1 \hspace{0.1in} \pm \hspace{0.1in} 0.2$	NE
8/3/2021	10.0 ± 0.4	0.0	$1017.7 \hspace{0.1 in} \pm \hspace{0.1 in} 0.4$	0.9 ± 0.2	WSW
9/3/2021	11.7 ± 0.4	0.0	1014.3 ± 0.2	$4.4 \hspace{0.1in} \pm \hspace{0.1in} 0.8$	SE
10/3/2021	12.6 ± 0.7	0.0	$1011.1 \hspace{.1in} \pm \hspace{.1in} 0.3$	2.1 ± 0.4	SW
11/3/2021	9.3 ± 0.5	0.0	1014.0 ± 1.1	3.7 ± 0.6	NNE
12/3/2021	7.9 ± 0.7	0.0	1021.0 ± 0.3	2.6 ± 0.7	SW

Πίνακας Γ.3: Μέσες Ημερήσιες Τιμές μετεωρολογικών δεδομένων μετεωρολογικού σταθμού Παπάγου από 2/3/2021 έως και 12/3/2021.

Στον Πίνακα Γ.4 που ακολουθεί δίνονται οι τιμές της θερμοκρασίας και της πίεσης εντός του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, όπως αυτές προσδιορίσθηκαν από το AlphaGUARD. Ακόμα δίνονται οι διαφορές μεταξύ της εξωτερικής και εσωτερικής θερμοκρασίας (ΔT_{out-in}) καθώς και μεταξύ της εξωτερικής και εσωτερικής πίεσης (ΔP_{out-in}).

Πίνακας Γ.4: Μέσες Ημερήσιες Τιμές της θερμοκρασίας και της πίεσης εντός του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ καθώς και οι διαφορές τους με τις αντίστοιχες εξωτερικές τιμές για τη χρονική περίοδο από 14/10/20 έως και 24/10/20.

Ημερομηνία	Μέση Ημερήσια Θερμοκρασία (°C)	Μέση Ημερήσια Βαρομετρική Πίεση (mbar)		$\Delta T_{out-in}(^{\circ}C)$		ΔP_{out-in}		
2/3/2021	21.3 ± 0.01	1006.4	± 0.2	-13.8 ±	0.3	23.0	±	0.04
3/3/2021	21.1 ± 0.02	1005.4	± 0.1	-11.8 ±	0.8	23.1	±	0.06
4/3/2021	$21.1 \hspace{0.1 in} \pm \hspace{0.1 in} 0.01$	1001.2	± 0.5	-9.9 ±	0.8	22.6	±	0.04
5/3/2021	$21.0 \ \pm \ 0.01$	996.3	± 0.1	-8.3 ±	0.5	22.4	±	0.04
6/3/2021	$21.1 \ \pm \ 0.00$	997.2	± 0.2	-7.6 ±	0.4	22.4	±	0.09
7/3/2021	$21.1 \ \pm \ 0.00$	1000.3	± 0.2	-11.3 ±	0.3	22.3	±	0.04
8/3/2021	$21.0~\pm~0.01$	995.3	± 0.4	-11.0 ±	0.4	22.4	±	0.06
9/3/2021	$20.8~\pm~0.01$	992.0	± 0.2	-9.1 ±	0.4	22.3	±	0.06
10/3/2021	$20.6~\pm~0.01$	989.0	± 0.3	-8.1 ±	0.7	22.1	±	0.06
11/3/2021	20.8 ± 0.05	991.5	± 1.0	-11.6 ±	0.6	22.5	±	0.10
12/3/2021	20.8 ± 0.01	998.3	± 0.4	-13.0 ±	0.7	22.7	±	0.06

Γ.3 4^η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ

Στον Πίνακα Γ.5 που ακολουθεί δίνονται τα εξωτερικά μετεωρολογικά δεδομένα του εργαστηρίου ΕΠΤ-ΕΜΠ από το μετεωρολογικό σταθμό Παπάγου όπως αυτά έγιναν διαθέσιμα από το Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυζης του Εθνικού Αστεροσκοπείου Αθηνών, και αφορούν τις πλήρεις ημέρες δειγματοληψίας της 4^{ης} περιόδου δειγματοληψίας της κύμανσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ (16/4/2022-26/4/2022). Η αβεβαιότητες δίνονται σε επίπεδο 1σ.

Ημερομηνία	Μέση Ημερήσια Θερμοκρασία (°C)	Ύψος Βροχής (mm)	Μέση Ημερήσια Βαρομετρική Πίεση (mbar)	Μέση Ταχύτητα Ανέμου (km/hr)	Κύρια Κατεύθυνση Ανέμου
16/4/2022	15.9 ± 0.8	5.8	1012.7 ± 0.4	7.2 ± 0.7	ESE
17/4/2022	13.2 ± 0.4	1.2	1004.2 ± 0.5	8.6 ± 0.6	ENE
18/4/2022	9.3 ± 0.2	0.2	1006.4 ± 0.4	7.0 ± 0.5	NE
19/4/2022	9.1 ± 0.3	0.0	$1012.2 \hspace{0.1in} \pm \hspace{0.1in} 0.5$	6.5 ± 0.9	ESE
20/4/2022	12.5 ± 0.7	0.0	1015.7 ± 0.2	8.1 ± 0.5	SW
21/4/2022	14.5 ± 0.8	0.0	1015.7 ± 0.1	5.4 ± 0.5	ESE
22/4/2022	15.3 ± 0.9	0.0	$1012.5 \hspace{0.1in} \pm \hspace{0.1in} 0.4$	5.4 ± 0.4	Е
23/4/2022	16.1 ± 1.0	0.0	1008.5 ± 0.1	$4.4 \hspace{0.1in} \pm \hspace{0.1in} 0.4$	SW
24/4/2022	17.3 ± 1.1	0.0	$1009.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	$4.3 \hspace{0.1in} \pm \hspace{0.1in} 0.6$	Е
25/4/2022	$20.1 \hspace{0.1in} \pm \hspace{0.1in} 0.7$	0.0	1009.4 ± 0.1	$6.5 \hspace{0.1in} \pm \hspace{0.1in} 0.6$	SW
26/4/2022	19.2 ± 0.9	0.0	1010.4 ± 0.2	4.4 ± 0.5	E

Πίνακας Γ.5: Μέσες Ημερήσιες Τιμές μετεωρολογικών δεδομένων μετεωρολογικού σταθμού Παπάγου από 16/4/2022 έως και 26/4/2022.

Στον Πίνακα Γ.6 που ακολουθεί δίνονται οι τιμές της θερμοκρασίας και της πίεσης εντός του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, όπως αυτές προσδιορίσθηκαν από το AlphaGUARD. Ακόμα δίνονται οι διαφορές μεταξύ της εξωτερικής και εσωτερικής θερμοκρασίας (ΔT_{out-in}) καθώς και μεταξύ της εξωτερικής και εσωτερικής πίεσης (ΔP_{out-in}).

Πίνακας Γ.6: Μέσες Ημερήσιες Τιμές της θερμοκρασίας και της πίεσης εντός του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ καθώς και οι διαφορές τους με τις αντίστοιχες εξωτερικές τιμές για τη χρονική περίοδο από 16/4/2022 έως και 26/4/2022.

Ημερομηνία	Μέση Ημερήσια Θερμοκρασία (°C)	Μέση Ημερήσια Βαρομετρική Πίεση (mbar)	ΔT_{out-in} (°C)	$\Delta P_{\text{out-in}}$	
16/4/2022	$22.7 \hspace{0.1 in} \pm \hspace{0.1 in} 0.02$	$991.1 \hspace{0.1 in} \pm \hspace{0.1 in} 0.4$	-6.8 ± 0.8	21.7 ± 0.04	
17/4/2022	$22.6~\pm~0.00$	$982.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$	-9.4 ± 0.4	$21.4 \hspace{0.1in} \pm \hspace{0.1in} 0.07$	
18/4/2022	$22.5 \hspace{0.1 in} \pm \hspace{0.1 in} 0.02$	$984.4 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4$	-13.1 ± 0.2	22.0 ± 0.04	
19/4/2022	$22.3 \hspace{0.1 in} \pm \hspace{0.1 in} 0.05$	$989.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4$	-13.3 ± 0.3	22.5 ± 0.04	
20/4/2022	$22.0 \ \pm \ 0.01$	$993.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	-9.5 ± 0.7	22.4 ± 0.03	
21/4/2022	$21.9 \ \pm \ 0.01$	$993.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	-7.4 ± 0.8	22.0 ± 0.02	
22/4/2022	$21.9 \ \pm \ 0.00$	$990.8 \hspace{0.1 in} \pm \hspace{0.1 in} 0.4$	-6.6 ± 0.9	21.7 ± 0.04	
23/4/2022	$21.9 \ \pm \ 0.01$	$986.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	-5.9 ± 1.0	21.6 ± 0.03	
24/4/2022	$22.0 \ \pm \ 0.01$	988.4 ± 0.1	-4.7 ± 1.1	21.5 ± 0.02	
25/4/2022	22.2 ± 0.02	988.1 ± 0.1	-2.1 ± 0.7	21.3 ± 0.03	
26/4/2022	22.4 ± 0.02	989.1 ± 0.1	-3.1 ± 0.9	21.2 ± 0.02	

ΠΑΡΑΡΤΗΜΑ Δ

Συμπληρωματικοί πίνακες και διαγράμματα κύμανσης του ραδονίου και των θυγατρικών του

Στο Παράρτημα Δ παρατίθενται τα διαγράμματα και οι πίνακες κύμανσης του ραδονίου και των θυγατρικών του στα πλαίσια της 2^{ης}, της 3^{ης} και της 4^{ης} δειγματοληψίας, όπως αυτές παρουσιάστηκαν στο Κεφάλαιο 3 της παρούσας Δ.Δ. για τη μελέτη της κύμανσης του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ.

Δ.1 2^η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ

Τα διαγράμματα και οι πίνακες που ακολουθούν αφορούν τη 2η δειγματοληψία μελέτης της κύμανσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, η οποία έλαβε χώρα από τις 13/10/2020 έως και τις 25/10/2020 (με πλήρεις ημέρες δειγματοληψίας να είναι από 14/10/2020 έως και 24/10/2020).

Σχήμα Δ.1 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο της 2^{ης} δειγματοληψίας 13/10/2020-25/10/2020. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Ημερομηνία Μέτρησης	Ώρα Μέτρησης (24h)	Rn (Bq/m ³)		m ³)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
14/10/2020	05:00	47	±	8	991.9	51.5
15/10/2020	01:00	47	±	8	996.0	49.3
15/10/2020	18:00	53	±	8	994.5	53.0
16/10/2020	13:00	54	±	9	992.2	56.8
17/10/2020	19:00	68	±	11	991.4	56.8
18/10/2020	16:00	70	±	11	991.9	53.0
20/10/2020	00:00	49	±	8	999.9	54.3
20/10/2020	17:00	42	±	7	999.1	49.8
22/10/2020	17:00	54	±	9	998.9	53.0
23/10/2020	18:00	68	±	11	996.9	51.0
24/10/2020	18:00	74	±	12	993.5	49.3

Πίνακας Δ.1: Χρονικά σημεία εμφάνισης περιοδικών μεγίστων της συγκέντρωσης του ραδονίου για τη 2^η δειγματοληψία 13/10/2020-25/10/2020.

Πίνακας Δ.2: Χρονικά σημεία εμφάνισης περιοδικών ελαχίστων της συγκέντρωσης του ραδονίου για τη 2^η δειγματοληψία 13/10/2020-25/10/2020.

Ημερομηνία Μέτρησης	Ώρα Μέτρησης (24h)	Rn (Bq/m ³)			Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
14/10/2020	14:00	25	±	5	994.0	52.5
15/10/2020	10:00	25	±	5	997.2	53.0
16/10/2020	8:00	30	±	5	994.1	52.5
17/10/2020	8:00	29	±	5	990.4	60.5
18/10/2020	3:00	26	±	5	991.6	50.8
19/10/2020	0:00	24	±	5	994.9	50.3
20/10/2020	10:00	22	±	4	1000.0	49.3
21/10/2020	22:00	22	±	4	999.9	53.0
23/10/2020	3:00	29	±	5	999.0	52.5
24/10/2020	2:00	30	±	5	996.0	51.3
25/10/2020	0:00	38	±	6	993.2	49.3

Σχήμα Δ.2 : Συχνότητα παρατηρήσιμων περιοδικών μέγιστων και ελάχιστων της συγκέντρωσης του ραδονίου (Bq/m³) μέσα στο 24ωρο στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

Σχήμα Δ.3: Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο της 2^{ης} δειγματοληψίας 13/10/2020-25/10/2020. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

· · · · ·				
Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn progenies (mWL)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
14/10/2020	18:00	4.371	994.6	48.8
15/10/2020	19:00	5.870	995.0	52.0
16/10/2020	13:00	6.334	992.2	56.8
17/10/2020	18:00	7.517	990.7	56.8
18/10/2020	17:00	7.221	992.2	51.8
19/10/2020	13:00	4.835	998.2	50.8
22/10/2020	14:00	5.236	999.0	53.0
23/10/2020	18:00	8.446	996.9	51.0
24/10/2020	19:00	9.291	994.1	53.0

Πίνακας Δ.3: Χρονικά σημεία εμφάνισης περιοδικών μεγίστων της συγκέντρωσης των θυγατρικών του ραδονίου για τη 2^η δειγματοληψία 13/10/2020-25/10/2020.

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn progenies (mWL)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
15/10/2020	5:00	3.378	995.7	48.3
16/10/2020	4:00	3.167	993.6	52.5
16/10/2020	19:00	3.188	990.8	56.0
18/10/2020	3:00	3.611	991.6	50.8
19/10/2020	3:00	3.167	996.1	50.3
21/10/2020	5:00	2.428	999.2	50.8
22/10/2020	20:00	4.012	999.1	55.0
24/10/2020	7:00	5.258	995.2	48.3

Πίνακας Δ.4: Χρονικά σημεία εμφάνισης περιοδικών ελαχίστων της συγκέντρωσης των θυγατρικών του ραδονίου για τη 2^η δειγματοληψία 13/10/2020-25/10/2020.

Σχήμα Δ.4 : Συχνότητα παρατηρήσιμων περιοδικών μέγιστων και ελάχιστων της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) μέσα στο 24ωρο στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

Σχήμα Δ.5 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη συγκέντρωση του ραδονίου (Bq/m³) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

Σχήμα Δ.6 : Κύμανση του συντελεστή ισορροπίας F μεταξύ του ραδονίου κα των θυγατρικών του στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Σχήμα Δ.7 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς τη θερμοκρασία (°C) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.1.)

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.1.)

Σχήμα Δ.9 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς την πίεση (mbar) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.1.)

Σχήμα Δ.10 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη θερμοκρασία (°C) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

Σχήμα Δ.11 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη σχετική υγρασία (%) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

Σχήμα Δ.12 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς την πίεση (mbar) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 13/10/2020-25/10/2020.

Σχήμα Δ.13: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής θερμοκρασίας για τη χρονική περίοδο της 2^{ης} δειγματοληψίας.

Σχήμα Δ.14: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική θερμοκρασία (ΔT_{out-in}) για τη χρονική περίοδο της 2^{ης} δειγματοληψίας.

Σχήμα Δ.15: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής βαρομετρικής πίεσης για τη χρονική περίοδο της 2^{ης} δειγματοληψίας.

Σχήμα Δ.16: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική πίεση (ΔP_{out-in}) για τη χρονική περίοδο της 2^{ης} δειγματοληψίας.

Σχήμα Δ.17: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της ταχύτητας του ανέμου για τη χρονική περίοδο της 2^{ης} δειγματοληψίας.

Δ.2 3^η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ

Τα διαγράμματα και οι πίνακες που ακολουθούν αφορούν την 3^η δειγματοληψία μελέτης της κύμανσης του ραδονίου και των θυγατρικών στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, η οποία έλαβε χώρα από τις 1/3/2021 έως και τις 13/3/2021 (με πλήρεις ημέρες δειγματοληψίας να είναι από 2/3/2021 έως και 12/3/2021).

Σχήμα Δ.18 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο της 3^{ης} δειγματοληψίας 1/3/2021-13/3/2021. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn (Bq/m ³)		n ³)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
1/3/2021	18:00	39	±	18	1001.2	37.0
2/3/2021	20:00	33	±	6	1006.6	31.8
3/3/2021	14:00	31	±	5	1005.3	31.3
4/3/2021	16:00	45	±	7	998.8	30.8
5/3/2021	16:00	42	±	7	995.1	32.8
6/3/2021	15:00	56	±	9	996.7	37.5
7/3/2021	04:00	48	±	8	1000.2	37.5
8/3/2021	16:00	38	±	6	992.7	39.8
9/3/2021	19:00	34	±	6	991.1	41.3
10/3/2021	17:00	42	±	7	987.0	36.5
11/3/2021	14:00	40	±	7	992.4	38.0
12/3/2021	15:00	33	±	6	996.9	33.3
13/3/2021	16:00	35	±	6	993.7	38.8

Πίνακας Δ.5: Χρονικά σημεία εμφάνισης περιοδικών μεγίστων της συγκέντρωσης του ραδονίου για την 3^η δειγματοληψία 1/3/2021-13/3/2021.

Πίνακας Δ.6: Χρονικά σημεία εμφάνισης περιοδικών ελαχίστων της συγκέντρωσης του ραδονίου για την 3^η δειγματοληψία 1/3/2021-13/3/2021.

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn (Bq/m ³)			Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
2/3/2021	9:00	15	±	3	1007.4	32.3
3/3/2021	4:00	13	±	3	1005.0	31.3
4/3/2021	2:00	16	±	3	1004.4	29.6
5/3/2021	5:00	20	±	4	996.4	32.3
6/3/2021	10:00	19	±	4	997.9	37.5
6/3/2021	22:00	18	±	4	999.1	39.3
8/3/2021	12:00	17	±	4	995.9	38.8
9/3/2021	15:00	20	±	4	991.3	41.3
10/3/2021	0:00	18	±	4	991.3	37.0
11/3/2021	2:00	19	±	4	987.0	41.8
12/3/2021	4:00	16	±	4	999.7	34.5
13/3/2021	6:00	17	±	4	994.4	37.5

Σχήμα Δ.19 : Συχνότητα παρατηρήσιμων περιοδικών μέγιστων και ελάχιστων της συγκέντρωσης του ραδονίου (Bq/m³) μέσα στο 24ωρο στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

Σχήμα Δ.20 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο της 3^{ης} δειγματοληψίας 1/3/2021-13/3/2021. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn progenies (mWL)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)			
1/3/2021	21:00	2.428	1002.9	36.0			
2/3/2021	18:00	2.111	1006.4	31.9			
3/3/2021	13:00	2.998	1006.2	32.3			
4/3/2021	16:00	6.208	998.8	30.8			
5/3/2021	16:00	4.603	995.1	32.8			
6/3/2021	15:00	4.878	996.7	37.5			
8/3/2021	16:00	3.716	992.7	39.8			
10/3/2021	16:00	5.954	987.2	36.5			
12/3/2021	18:00	3.188	996.1	35.0			
13/3/2021	16:00	5.131	993.7	38.8			
	Ημερομηνία Μέτρησης 1/3/2021 2/3/2021 3/3/2021 4/3/2021 5/3/2021 8/3/2021 10/3/2021 12/3/2021 13/3/2021	Ημερομηνία Μέτρησης Ώρα Μέτρησης (24h) 1/3/2021 21:00 2/3/2021 18:00 3/3/2021 13:00 4/3/2021 16:00 5/3/2021 16:00 8/3/2021 16:00 10/3/2021 16:00 12/3/2021 16:00 13/3/2021 16:00	Ημερομηνία ΜέτρησηςΩρα Μέτρησης (24h)Rn progenies (mWL)1/3/202121:002.4282/3/202118:002.1113/3/202113:002.9984/3/202116:006.2085/3/202115:004.8788/3/202116:003.71610/3/202116:003.18813/3/202116:005.131	Ημερομηνία Μέτρησης (24h)Ωρα Μέτρησης (24h)Rn progenies (mWL)Ατμοσφαιρική Πίεση (mbar)1/3/202121:002.4281002.92/3/202118:002.1111006.43/3/202113:002.9981006.24/3/202116:006.208998.85/3/202115:004.603995.16/3/202115:004.878996.78/3/202116:005.954987.210/3/202118:003.188996.113/3/202116:005.131993.7			

Πίνακας Δ.7: Χρονικά σημεία εμφάνισης περιοδικών μεγίστων της συγκέντρωσης των θυγατρικών του ραδονίου για την 3^η δειγματοληψία 1/3/2021-13/3/2021.

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn progenies (mWL)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
2/3/2021	8:00	1.056	1007.0	33.3
3/3/2021	9:00	1.436	1005.8	31.8
4/3/2021	6:00	1.774	1003.1	28.8
5/3/2021	5:00	2.375	996.4	32.3
6/3/2021	8:00	2.671	996.6	37.0
7/3/2021	9:00	1.890	1002.0	37.5
8/3/2021	14:00	1.974	994.0	39.3
9/3/2021	13:00	1.974	992.4	41.8
9/3/2021	23:00	2.354	991.5	37.0
11/3/2021	17:00	2.428	995.2	36.5
12/3/2021	4:00	1.372	999.7	34.5
13/3/2021	5:00	1.869	994.3	37.8

Πίνακας Δ.8: Χρονικά σημεία εμφάνισης περιοδικών ελαχίστων της συγκέντρωσης των θυγατρικών του ραδονίου για την 3^η δειγματοληψία 1/3/2021-13/3/2021.

Σχήμα Δ.21 : Συχνότητα παρατηρήσιμων περιοδικών μέγιστων και ελάχιστων της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) μέσα στο 24ωρο στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

Σχήμα Δ.22: Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη συγκέντρωση του ραδονίου (Bq/m³) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

Σχήμα Δ.23 : Κύμανση του συντελεστή ισορροπίας F μεταξύ του ραδονίου κα των θυγατρικών του στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Σχήμα Δ.24 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς τη θερμοκρασία (°C) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.18.)

Σχήμα Δ.25 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς τη σχετική υγρασία (%) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.18.)

Σχήμα Δ.26 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς την πίεση (mbar) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.18.)

Σχήμα Δ.27 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη θερμοκρασία (°C) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

Σχήμα Δ.28 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη σχετική υγρασία (%) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

Σχήμα Δ.29 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς την πίεση (mbar) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 1/3/2021-13/3/2021.

Σχήμα Δ.30: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής θερμοκρασίας για τη χρονική περίοδο της 3^{ης} δειγματοληψίας.

Σχήμα Δ.31: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική θερμοκρασία (ΔT_{out-in}) για τη χρονική περίοδο της 3^{ης} δειγματοληψίας.

Σχήμα Δ.32: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής βαρομετρικής πίεσης για τη χρονική περίοδο της 3^{ης} δειγματοληψίας.

Σχήμα Δ.33: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική πίεση (ΔP_{out-in}) για τη χρονική περίοδο της 3^{ης} δειγματοληψίας.

Σχήμα Δ.34: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της ταχύτητας του ανέμου για τη χρονική περίοδο της 3^{ης} δειγματοληψίας.

Δ.3 4^η Δειγματοληψία διερεύνησης κύμανσης του ραδονίου και των θυγατρικών του στο ΕΠΤ-ΕΜΠ

Τα διαγράμματα και οι πίνακες που ακολουθούν αφορούν την 4^η δειγματοληψία μελέτης της κύμανσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ, η οποία έλαβε χώρα από τις 15/4/2022 έως και τις 27/4/2022 (με πλήρεις ημέρες δειγματοληψίας να είναι από 16/4/2022 έως και 26/4/2022).

Σχήμα Δ.35 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο της 4^{ης} δειγματοληψίας 15/4/2022-27/4/2022. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn (Bq/m ³)		m ³)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
15/4/2022	19:00	51	±	8	993.8	34.5
16/4/2022	17:00	71	±	11	989	34.3
18/4/2022	23:00	28	±	5	986.9	38
20/4/2022	20:00	41	±	7	992.1	37.5
21/4/2022	16:00	55	±	9	993.5	39.3
22/4/2022	19:00	60	±	9	988.9	40.8
23/4/2022	13:00	64	±	10	987.1	43
24/4/2022	14:00	63	±	10	988.5	44
26/4/2022	01:00	60	±	9	989.1	43.5
26/4/2022	22:00	50	±	8	990.4	42.3
27/4/2022	14:00	66	±	10	991.3	41.3

Πίνακας Δ.9: Χρονικά σημεία εμφάνισης περιοδικών μεγίστων της συγκέντρωσης του ραδονίου για την 4^η δειγματοληψία 15/4/2022-27/4/2022.

Πίνακας Δ.10: Χρονικά σημεία εμφάνισης περιοδικών ελαχίστων της συγκέντρωσης του ραδονίου για την 4^η δειγματοληψία 15/4/2022-27/4/2022.

Ημερομηνία Μέτρησης	Ώρα Μέτρησης (24h)	Rn (Bq/m ³)		m ³)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
16/4/2022	1:00	21	±	4	993.7	35.5
18/4/2022	11:00	14	±	3	985	39.8
21/4/2022	2:00	19	±	4	993.5	38.8
22/4/2022	8:00	20	±	4	992.6	42.3
23/4/2022	10:00	24	±	5	987.1	43.5
24/4/2022	4:00	23	±	4	988.1	45
25/4/2022	9:00	27	±	5	988.1	45
26/4/2022	9:00	24	±	5	989.1	39.8
27/4/2022	9:00	24	±	5	991.4	40.3

Σχήμα Δ.36 : Συχνότητα παρατηρήσιμων περιοδικών μέγιστων και ελάχιστων της συγκέντρωσης του ραδονίου (Bq/m³) μέσα στο 24ωρο στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

Σχήμα Δ.37 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο της $4^{\eta\varsigma}$ δειγματοληψίας 15/4/2022-27/4/2022. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Πίνακ	ας Δ.11:	Χρονικά	σημεία εμφ	άνισης 1	περιοδικών	μεγίστων	της	συγκέντρωσης	των
θυγατρ	οικών του	ραδονίου	για την 4 ^η δε	ιγματολι	ηψία 15/4/2	022-27/4/2	022.	•	

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn progenies (mWL)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
15/4/2022	20:00	4.476	994.8	33.8
16/4/2022	17:00	8.235	989	34.3
20/4/2022	16:00	4.223	992.6	37.5
22/4/2022	16:00	7.306	988.9	41.8
23/4/2022	20:00	8.277	986.9	42.3
24/4/2022	18:00	10.895	988	44.5
25/4/2022	20:00	7.770	988	44
26/4/2022	21:00	8.150	990	41.8
27/4/2022	14:00	8.404	991.3	41.3

Ημερομηνία Μέτρησης	Ωρα Μέτρησης (24h)	Rn progenies (mWL)	Ατμοσφαιρική Πίεση (mbar)	Σχετική Υγρασία (%)
16/4/2022	6:00	2.143	991.9	32.8
17/4/2022	9:00	3.399	983.3	33.8
21/4/2022	7:00	1.953	993.2	38.3
22/4/2022	8:00	1.974	992.6	42.3
23/4/2022	7:00	2.333	986.9	43
24/4/2022	8:00	2.956	988.8	45
25/4/2022	9:00	3.336	988.1	45
26/4/2022	7:00	2.787	988.5	39.8
26/4/2022	1:00	5.617	989.1	43.5

Πίνακας Δ.12: Χρονικά σημεία εμφάνισης περιοδικών ελαχίστων της συγκέντρωσης των θυγατρικών του ραδονίου για την 4^η δειγματοληψία 15/4/2022-27/4/2022.

Σχήμα Δ.38 : Συχνότητα παρατηρήσιμων περιοδικών μέγιστων και ελάχιστων της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) μέσα στο 24ωρο στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

Σχήμα Δ.39 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη συγκέντρωση του ραδονίου (Bq/m³) στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

Σχήμα Δ.40 : Κύμανση του συντελεστή ισορροπίας F μεταξύ του ραδονίου κα των θυγατρικών του στον χώρο του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022. Οι κάθετες γραμμές του διαγράμματος συμβολίζουν το πέρας ενός 48ωρου δειγματοληψίας.

Σχήμα Δ.41 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς τη θερμοκρασία (°C) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.35.)

Σχήμα Δ.42 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς τη σχετική υγρασία (%) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.35.)

Σχήμα Δ.43 : Κύμανση της συγκέντρωσης του ραδονίου (Bq/m³) ως προς την πίεση (mbar) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

*(Οι αβεβαιότητες της συγκέντρωσης του ραδονίου δεν περιλαμβάνονται για βελτίωση του τελικού οπτικού αποτελέσματος. Το σύνολο των δεδομένων των ωριαίων συγκεντρώσεων του ραδονίου με τις συνοδευόμενες αβεβαιότητές τους σε επίπεδο 1σ δίνονται στο Σχήμα Δ.35.)

Σχήμα Δ.44 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη θερμοκρασία (°C) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

Σχήμα Δ.45 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς τη σχετική υγρασία (%) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

Σχήμα Δ.46 : Κύμανση της συγκέντρωσης των θυγατρικών του ραδονίου (mWL) ως προς την πίεση (mbar) στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ τη χρονική περίοδο 15/4/2022-27/4/2022.

Σχήμα Δ.47: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής θερμοκρασίας για τη χρονική περίοδο της 4^{ης} δειγματοληψίας.

Σχήμα Δ.48: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική θερμοκρασία (ΔT_{out-in}) για τη χρονική περίοδο της 4^{ης} δειγματοληψίας.

Σχήμα Δ.49: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της εξωτερικής βαρομετρικής πίεσης για τη χρονική περίοδο της 4^{ης} δειγματοληψίας.

Σχήμα Δ.50: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της διαφοράς της εσωτερικής από την εξωτερική πίεση (ΔP_{out-in}) για τη χρονική περίοδο της 4^{ης} δειγματοληψίας.

Σχήμα Δ.51: Συσχέτιση μεταξύ της μέσης ημερήσιας συγκέντρωσης του ραδονίου και της μέσης ημερήσιας τιμής της ταχύτητας του ανέμου για τη χρονική περίοδο της 4^{ης} δειγματοληψίας.

ПАРАРТНМА Е

Διαγράμματα ρυθμού κρούσεων φωτοκορυφής ²¹⁴Bi ανιχνευτών γερμανίου ως προς τη συγκέντρωση του ραδονίου και των θυγατρικών του

Στο Παράρτημα Ε παρουσιάζονται τα διαγράμματα συσχέτισης των τιμών του ρυθμού κρούσεων της φωτοκορυφής του ²¹⁴Bi (609.32 keV) στα διαδοχικά φάσματα υποστρώματος των ανιχνευτών XtRa, XtCSS, LEGe, Ge1 και Ge2 με την κύμανση της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εργαστήριο γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ.

Ε.1 3^η Δειγματοληψία Διερεύνησης Κύμανσης του Ραδονίου και των Ουγατρικών του στο ΕΠΤ-ΕΜΠ.

Τα διαγράμματα που ακολουθούν αφορούν τις συσχετίσεις μεταξύ των μέσων 48h τιμών της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ με τα 6 διαδοχικά φάσματα υποστρώματος διάρκειας 48h το κάθε ένα για κάθε έναν από τους ανιχνευτές XtRa, XtCSS, LEGe, Ge1 και Ge2.

Σχήμα Ε.1: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^η δειγματοληψία και τον ανιχνευτή XtRa.

Σχήμα Ε.2: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^{η} δειγματοληψία και τον ανιχνευτή XtRa.

Σχήμα Ε.3: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^η δειγματοληψία και τον ανιχνευτή XtCSS.

Σχήμα Ε.4: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^{η} δειγματοληψία και τον ανιχνευτή XtCSS.

Σχήμα Ε.5: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^η δειγματοληψία και τον ανιχνευτή LEGe.

Σχήμα Ε.6: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^η δειγματοληψία και τον ανιχνευτή LEGe.

Σχήμα Ε.7: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3ⁿ δειγματοληψία και τον ανιχνευτή Ge1.

Σχήμα Ε.8: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^{η} δειγματοληψία και τον ανιχνευτή Ge1.

Σχήμα Ε.9: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής του ²¹⁴Bi στα 609.32keV για την 3^η δειγματοληψία και τον ανιχνευτή Ge2.

Σχήμα Ε.10: Συσχέτιση μεταξύ της μέσης 48h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής ²¹⁴Bi στα 609.32keV για την 3^η δειγματοληψία και τον ανιχνευτή Ge2.

Ε.2 4^η Δειγματοληψία Διερεύνησης Κύμανσης του Ραδονίου και των Θυγατρικών του στο ΕΠΤ-ΕΜΠ.

Τα διαγράμματα που ακολουθούν αφορούν τις συσχετίσεις μεταξύ των μέσων 6h τιμών της συγκέντρωσης του ραδονίου και των θυγατρικών του στο εσωτερικό του εργαστηρίου γ-φασματοσκοπίας του ΕΠΤ-ΕΜΠ με τα 48 διαδοχικά φάσματα υποστρώματος διάρκειας 6h το κάθε ένα για κάθε έναν από τους ανιχνευτές Ge1 και Ge2.

Σχήμα Ε.11: Συσχέτιση μεταξύ της μέσης 6h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής ²¹⁴Bi στα 609.32keV για την 4^η δειγματοληψία και τον ανιχνευτή Ge1.

Σχήμα Ε.12: Συσχέτιση μεταξύ της μέσης 6h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής ²¹⁴Bi στα 609.32keV για την 4^η δειγματοληψία και τον ανιχνευτή Ge1.

Σχήμα Ε.13: Συσχέτιση μεταξύ της μέσης 6h συγκέντρωσης του ραδονίου με τα cps της φωτοκορυφής 214 Bi στα 609.32keV για την 4^η δειγματοληψία και τον ανιχνευτή Ge2.

Σχήμα Ε.14: Συσχέτιση μεταξύ της μέσης 6h συγκέντρωσης των θυγατρικών του ραδονίου με τα cps της φωτοκορυφής ²¹⁴Bi στα 609.32keV για την 4^η δειγματοληψία και τον ανιχνευτή Ge2.

ΠΑΡΑΡΤΗΜΑ ΣΤ

Διαγράμματα διαδοχικών φασμάτων φωτοκορυφών υποστρώματος ανιχνευτών γερμανίου

Στο παράρτημα ΣΤ παρουσιάζεται το σύνολο των αποτελεσμάτων/διαγραμμάτων από την ανάλυση των διαδοχικών φασμάτων υποστρώματος των ανιχνευτών XtRa, LEGe, Ge1 και Ge2. Σε κάθε διάγραμμα δίνονται τα cps της φωτοκορυφής και η αβεβαιότητά της. Επιπροσθέτως, δίνονται το «Μέσο cps» των 6 διαδοχικών φασμάτων, όπως αυτά υπολογίστηκαν με τη μέθοδο που αναλύεται στο Παράρτημα ΙΑ, καθώς και τα «Συνολικά cps» που είναι το αποτέλεσμα της ενοποίησης των 6 διαδοχικών φασμάτων υποστρώματος και της ανάλυσής τους ως ένα ενιαίο φάσμα.

ΣΤ.1 Υπόστρωμα φωτοκορυφών ανιχνευτή XtRa

Στους Πίνακες ΣΤ.1-ΣΤ.3 δίνονται ο ρυθμός καταγραφής γεγονότων (cps) και η αβεβαιότητα σε επίπεδο 1σ των κυρίαρχων φωτοκορυφών υποστρώματος στον ανιχνευτή XtRa για 6 διαδοχικά φάσματα 48h το κάθε ένα, το ολικό («Συνολικά cps»), καθώς και το μέσο φάσμα («Μέσο cps») υποστρώματος. Οι φωτοκορυφές δίνονται με σειρά αύξουσας ενέργειας φωτονίων και αντιστοιχίζονται στο ραδιενεργό ισότοπο στο οποίο οφείλεται η εκπομπή τους.

Βαδιουσουά	Ενέργεια	1º 48h	φάσμα	2° 48h φάσμα		3º 48h	φάσμα
ραδιενεργό ισότοπο	φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	±1σ
Pb-210	46.52	3.42E-03	7.32E-04	3.46E-03	7.30E-04	4.11E-03	7.35E-04
Th-234	63.29	9.12E-03	8.13E-04	9.53E-03	8.09E-04	1.01E-02	8.20E-04
U-235-Ra-226	185.99	1.35E-02	1.03E-03	1.36E-02	1.04E-03	1.43E-02	1.05E-03
Pb-212	238.63	1.24E-02	9.92E-04	1.19E-02	9.95E-04	1.15E-02	9.90E-04
Pb-214	295.22	Not Detected		1.30E-03	8.40E-04	Not Detected	
Ac-228	338.4	2.35E-03	7.83E-04	1.85E-03	7.90E-04	3.22E-03	7.90E-04
Pb-214	351.99	4.07E-03	7.45E-04	3.42E-03	7.48E-04	3.62E-03	7.53E-04
TI-208	583.14	4.77E-03	6.22E-04	4.86E-03	6.33E-04	5.49E-03	6.12E-04
Bi-214	609.32	4.66E-03	6.19E-04	4.43E-03	6.15E-04	4.16E-03	6.25E-04
TI-208	860.47	Not De	tected	8.96E-04	5.19E-04	Not De	etected
Ac-228	911.07	4.42E-03	5.22E-04	4.50E-03	5.29E-04	4.63E-03	5.19E-04
Ac-228	968.9	1.81E-03	5.34E-04	1.56E-03	5.34E-04	1.84E-03	5.34E-04
Bi-214	1120.28	1.82E-03	4.94E-04	1.86E-03	5.12E-04	1.73E-03	5.20E-04
К-40	1460.75	2.65E-02	5.62E-04	2.67E-02	5.83E-04	2.75E-02	5.67E-04
Bi-214	1764.51	2.40E-03	3.27E-04	2.45E-03	3.46E-04	2.54E-03	3.45E-04

Πίνακας ΣΤ.1 : Ρυθμός καταγραφής γεγονότων (cps) για τα διαδοχικά φάσματα υποστρώματος 1, 2 και 3 στον ανιχνευτή XtRa.

Βαδιουσουά	Ενέργεια	4º 48h	φάσμα	5º 48h	φάσμα	6° 48h φάσμα	
ισότοπο	φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	cps
Pb-210	46.52	3.64E-03	7.35E-04	3.50E-03	7.30E-04	4.08E-03	7.32E-04
Th-234	63.29	1.03E-02	8.18E-04	9.76E-03	8.10E-04	9.01E-03	8.19E-04
U-235-Ra-226	185.99	1.49E-02	1.04E-03	1.42E-02	1.05E-03	1.41E-02	1.04E-03
Pb-212	238.63	1.25E-02	1.00E-03	1.20E-02	9.89E-04	1.13E-02	9.93E-04
Pb-214	295.22	Not Detected		1.20E-03	8.47E-04	Not Detected	
Ac-228	338.4	2.94E-03	7.82E-04	3.41E-03	7.81E-04	2.22E-03	7.86E-04
Pb-214	351.99	3.67E-03	7.47E-04	3.39E-03	7.60E-04	2.93E-03	7.56E-04
TI-208	583.14	4.77E-03	6.27E-04	4.67E-03	6.25E-04	5.45E-03	6.11E-04
Bi-214	609.32	4.36E-03	6.24E-04	4.64E-03	6.27E-04	4.67E-03	6.25E-04
TI-208	860.47	Not De	etected	Not De	etected	Not De	etected
Ac-228	911.07	4.40E-03	5.28E-04	5.30E-03	5.11E-04	4.47E-03	5.17E-04
Ac-228	968.9	1.84E-03	5.36E-04	1.96E-03	5.32E-04	2.20E-03	5.40E-04
Bi-214	1120.28	1.75E-03	5.10E-04	1.87E-03	5.16E-04	2.02E-03	5.08E-04
K-40	1460.75	2.78E-02	5.56E-04	2.72E-02	5.77E-04	2.77E-02	5.88E-04
Bi-214	1764.51	2.50E-03	3.45E-04	2.47E-03	3.53E-04	2.31E-03	3.49E-04

Πίνακας ΣΤ.2 : Ρυθμός καταγραφής γεγονότων (cps) για τα διαδοχικά φάσματα υποστρώματος 4, 5 και 6 στον ανιχνευτή XtRa.

Πίνακας ΣΤ.3 : Ρυθμός καταγραφής γεγονότων (cps) για το συνολικό («Συνολικά cps») και το μέσο («Μέσο cps») φάσμα υποστρώματος στον ανιχνευτή XtRa.

Βαδιουσουά	Ενέργεια	Συνολικ	ό φάσμα	Μέσο φάσμα		
ισότοπο	φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	
Pb-210	46.52	3.54E-03	3.00E-04	3.70E-03	2.99E-04	
Th-234	63.29	1.04E-02	4.66E-04	9.64E-03	4.71E-04	
U-235-Ra-226	185.99	1.41E-02	4.27E-04	1.41E-02	4.68E-04	
Pb-212	238.63	1.19E-02	4.04E-04	1.19E-02	4.34E-04	
Pb-214	295.22	1.69E-03	4.30E-04	1.25E-03	5.96E-04	
Ac-228	338.4	2.71E-03	3.20E-04	2.67E-03	5.62E-04	
Pb-214	351.99	3.52E-03	3.07E-04	3.52E-03	3.44E-04	
TI-208	583.14	5.00E-03	2.55E-04	5.01E-03	3.39E-04	
Bi-214	609.32	4.49E-03	2.56E-04	4.49E-03	2.54E-04	
TI-208	860.47	5.38E-04	2.16E-04	8.96E-04	5.19E-04	
Ac-228	911.07	4.65E-03	2.11E-04	4.63E-03	3.17E-04	
Ac-228	968.9	2.63E-03	2.44E-04	1.87E-03	2.18E-04	
Bi-214	1120.28	1.84E-03	2.07E-04	1.84E-03	2.08E-04	
K-40	1460.75	2.72E-02	2.31E-04	2.72E-02	4.91E-04	
Bi-214	1764.51	2.44E-03	1.40E-04	2.44E-03	1.40E-04	

Στα Σχήματα ΣΤ.1-ΣΤ.15 δίνονται σε μορφή διαγράμματος τα αποτελέσματα που παρουσιάζονται στους Πίνακες ΣΤ.1-ΣΤ.3.

Σχήμα ΣΤ.1 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²¹⁰Pb (46.52 keV).

Σχήμα ΣΤ.2 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²³⁴Th (63.29 keV).

Σχήμα ΣΤ3: Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και την πολλαπλή φωτοκορυφή των ²³⁵U-²²⁶Ra (185.99 keV).

Σχήμα ΣΤ.4 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²¹²Pb (238.63 keV).

Σχήμα ΣΤ.5 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του 214 Pb (295.22 keV).

Σχήμα ΣΤ.6 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²²⁸Ac (338.4 keV).

Σχήμα ΣΤ.7 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και την φωτοκορυφή του ²¹⁴Pb (351.99 keV).

Σχήμα ΣΤ.8 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²⁰⁸Tl (583.14 keV).

Σχήμα ΣΤ.9 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²¹⁴Bi (609.32 keV).

Σχήμα ΣΤ.11 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²²⁸Ac (911.07 keV).

Σχήμα ΣΤ.12 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²²⁸Ac (968.9 keV).

Σχήμα ΣΤ.13 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²¹⁴Bi (1120.28 keV).

Σχήμα ΣΤ.14 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του 40 K (1460.75 keV).

Σχήμα ΣΤ.15 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή XtRa και τη φωτοκορυφή του ²¹⁴Bi (1764.51 keV).

ΣΤ.2 Υπόστρωμα φωτοκορυφών ανιχνευτή LEGe

Στους Πίνακες ΣΤ.4-ΣΤ.6 δίνονται ο ρυθμός καταγραφής γεγονότων (cps) και η αβεβαιότητα σε επίπεδο 1σ των κυρίαρχων φωτοκορυφών υποστρώματος στον ανιχνευτή LEGe για 6 διαδοχικά φάσματα, το ολικό («Συνολικά cps»), καθώς και το μέσο («Μέσο cps») φάσμα υποστρώματος. Οι φωτοκορυφές δίνονται με σειρά αύξουσας ενέργειας φωτονίων και αντιστοιχίζονται στο ραδιενεργό ισότοπο στο οποίο οφείλεται η εκπομπή τους.

Πίνακας ΣΤ.4	4 : Ρυθμός κ	αταγραφή	ς γεγονό	των (cps)	για τα	διαδοχικά	φάσματα
υποστρώματος	1, 2 και 3 στον ο	ανιχνευτή]	LEGe.				
Ραδιουσομό	Ενέργεια	1º 48h o	φάσμα	2º 48h	φάσμα	3° 48h φάσμα	
ισότοπο	φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	±1σ

ισότοπο	φωτοκορυφης (keV)	cps	±1σ	cps	±1σ	cps	±1σ
Pb-210	46.52	2.30E-03	3.88E-04	2.37E-03	3.91E-04	2.44E-03	3.87E-04
Th-234	63.29	1.28E-02	4.73E-04	1.30E-02	4.73E-04	1.38E-02	4.77E-04
Pb-212	87.2	8.32E-04	5.21E-04	1.00E-03	5.24E-04	Not De	etected
U235-Ra226	185.99	6.55E-03	5.36E-04	6.29E-03	5.41E-04	6.77E-03	5.37E-04
Pb-212	238.63	1.65E-03	4.37E-04	1.83E-03	4.37E-04	1.22E-03	4.31E-04
Pb-214	295.22	1.20E-03	3.56E-04	1.22E-03	3.56E-04	1.34E-03	3.51E-04
Ac-228	338.4	Not De	tected	Not Detected		Not Detected	
Pb-214	351.99	1.30E-03	3.03E-04	1.10E-03	3.15E-04	1.25E-03	3.18E-04
TI-208	583.14	4.35E-04	2.70E-04	Not De	etected	Not Detected	
Bi-214	609.32	7.05E-04	2.63E-04	1.07E-03	2.64E-04	1.17E-03	2.69E-04
Cs-137	661.62	6.09E-04	2.50E-04	5.57E-04	2.51E-04	5.41E-04	2.43E-04
Ac-228	911.07	Not De	tected	Not De	etected	3.49E-04	2.35E-04
Bi-214	1120.28	Not De	tected	4.84E-04	2.23E-04	Not De	etected
Co-60	1173.22	Not De	tected	Not De	etected	Not De	etected
Co-60	1332.51	3.67E-04	1.91E-04	Not De	etected	Not De	etected
K-40	1460.75	1.04E-03	1.84E-04	1.03E-03	1.72E-04	1.28E-03	1.78E-04
Bi-214	1764.51	3.05E-04	1.71E-04	2.92E-04	1.54E-04	3.40E-04	1.44E-04

Πίνακας	ΣΤ.5	:	Ρυθμός	καταγραφής	γεγονότ	των (cps)	για	τα	διαδοχικά	φάσματα
υποστρώματος 4, 5 και 6 στον ανιχνευτή LEGe.										

Ραδιουσουά	Ενέργεια	4° 48h φάσμα		5° 48h	φάσμα	6° 48h φάσμα		
ισότοπο	φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	±1σ	
Pb-210	46.52	1.44E-03	3.86E-04	1.98E-03	3.84E-04	1.72E-03	3.98E-04	
Th-234	63.29	1.29E-02	4.69E-04	1.33E-02	4.76E-04	1.27E-02	4.77E-04	
Pb-212	87.2	Not Detected		Not Detected		Not Detected		
U235-Ra226	185.99	6.55E-03	5.36E-04	6.64E-03	5.35E-04	7.06E-03	5.35E-04	
Pb-212	238.63	1.75E-03	4.36E-04	1.80E-03	4.34E-04	2.26E-03	4.34E-04	
Pb-214	295.22	1.05E-03	3.54E-04	9.72E-04	3.51E-04	1.14E-03	3.57E-04	
Ac-228	338.4	Not Detected		Not Detected		Not Detected		
Pb-214	351.99	1.61E-03	3.21E-04	1.80E-03	3.13E-04	1.59E-03	3.10E-04	
TI-208	583.14	5.70E-04	2.63E-04	6.58E-04	2.66E-04	5.48E-04	2.63E-04	
Bi-214	609.32	8.61E-04	2.75E-04	1.14E-03	2.63E-04	1.09E-03	2.67E-04	
Cs-137	661.62	7.78E-04	2.48E-04	5.95E-04	2.52E-04	6.39E-04	2.54E-04	
Ac-228	911.07	Not Detected		Not Detected		4.72E-04	2.28E-04	
Bi-214	Bi-214 1120.28		Not Detected		Not Detected		Not Detected	
Co-60	Co-60 1173.22		2.24E-04	Not Detected		Not Detected		
Co-60	1332.51	Not Detected		Not Detected		2.93E-04	1.88E-04	
K-40	1460.75	8.67E-04	1.78E-04	9.72E-04	1.88E-04	8.02E-04	1.96E-04	
Bi-214	1764.51	3.67E-04	1.55E-04	3.53E-04	3.53E-04 1.48E-04		Not Detected	

Γαδιουσομό	Ενέργεια	Συνολικό φάσμα		Μέσο φάσμα	
ισότοπο	φωτοκορυφής (keV)	cps	±1σ	cps	±1σ
Pb-210	46.52	2.04E-03	1.58E-04	2.04E-03	3.66E-04
Th-234	63.29	1.31E-02	1.91E-04	1.31E-02	3.70E-04
Pb-212	87.2	5.57E-04	2.14E-04	9.15E-04	3.70E-04
U235-Ra226	185.99	6.64E-03	2.17E-04	6.64E-03	2.35E-04
Pb-212	238.63	1.75E-03	1.77E-04	1.75E-03	3.07E-04
Pb-214	295.22	1.16E-03	1.44E-04	1.15E-03	1.45E-04
Ac-228	338.4	2.50E-04	1.29E-04	Not Detected	
Pb-214	351.99	1.44E-03	1.28E-04	1.44E-03	2.42E-04
TI-208	583.14	4.60E-04	1.09E-04	5.54E-04	1.33E-04
Bi-214	609.32	1.01E-03	1.10E-04	1.01E-03	1.68E-04
Cs-137	661.62	6.19E-04	1.02E-04	6.19E-04	1.02E-04
Ac-228	911.07	2.58E-04	9.73E-05	4.12E-04	1.64E-04
Bi-214	1120.28	2.53E-04	9.57E-05	4.84E-04	2.23E-04
Co-60	1173.22	2.96E-04	9.13E-05	5.01E-04	2.24E-04
Co-60	1332.51	2.58E-04	7.94E-05	3.29E-04	1.34E-04
K-40	1460.75	9.99E-04	7.45E-05	1.01E-03	1.52E-04
Bi-214	1764.51	2.95E-04	6.31E-05	3.33E-04	6.87E-05

Πίνακας ΣΤ.6: Ρυθμός καταγραφής γεγονότων (cps) για το συνολικό και το μέσο φάσμα υποστρώματος στον ανιχνευτή LEGe.

Στα Σχήματα Ε.16-Ε.32 δίνονται σε μορφή διαγράμματος τα αποτελέσματα που παρουσιάζονται στους Πίνακες ΣΤ.4-ΣΤ.6.

Σχήμα ΣΤ.16 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²¹⁰Pb (46.52 keV).

Σχήμα ΣΤ.17 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²³⁴Th (63.29 keV).

Σχήμα ΣΤ.19 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και την πολλαπλή φωτοκορυφή των ²³⁵U-²²⁶Ra (185.99 keV).

Σχήμα ΣΤ.20 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²¹²Pb (238.63 keV).

Σχήμα ΣΤ.21 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²¹⁴Pb (295.22 keV).

Σχήμα ΣΤ.22 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²²⁸Ac (338.4 keV).

Σχήμα ΣΤ.24 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²⁰⁸Tl (583.14 keV).

Σχήμα ΣΤ.25 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²¹⁴Bi (609.32 keV).

Σχήμα ΣΤ.27 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²²⁸Ac (911.07 keV).

Σχήμα ΣΤ.28 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²¹⁴Bi (1120.28 keV).

Σχήμα ΣΤ.29 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ⁶⁰Co (1173.22 keV).

Σχήμα ΣΤ.30 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ⁶⁰Co (1332.51 keV).

Σχήμα ΣΤ.31 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ⁴⁰K (1460.75 keV).

Σχήμα ΣΤ.32 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή LEGe και τη φωτοκορυφή του ²¹⁴Bi (1764.51 keV).

ΣΤ.3 Υπόστρωμα φωτοκορυφών ανιχνευτή Ge1

Στους Πίνακες ΣΤ.7-ΣΤ.9 δίνονται ο ρυθμός καταγραφής γεγονότων (cps) και η αβεβαιότητα σε επίπεδο 1σ των κυρίαρχων φωτοκορυφών υποστρώματος στον ανιχνευτή Ge1 για 6 διαδοχικά φάσματα, το ολικό («Συνολικά cps»), καθώς και το μέσο («Μέσο cps») φάσμα υποστρώματος. Οι φωτοκορυφές δίνονται με σειρά αύξουσας ενέργειας φωτονίων και αντιστοιχίζονται στο ραδιενεργό ισότοπο στο οποίο οφείλεται η εκπομπή τους.

Πίνακας ΣΤ.7 : Ρυθμός καταγραφής γεγονότων (cps) για τα διαδοχικά φάσματα υποστρώματος 1, 2 και 3 στον ανιχνευτή Ge1.

Ραδιενεργό	Ενέργεια	1º 48h 0	φάσμα	2º 48h	φάσμα	3º 48h	φάσμα
Ισότοπο	Φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	±1σ
Th-234	63.29	1.94E-03	9.82E-04	2.44E-03	9.82E-04	3.13E-03	9.54E-04
U-235-Ra-226	185.99	4.12E-03	1.28E-03	5.89E-03	1.26E-03	4.90E-03	1.27E-03
Pb-212	238.63	5.80E-03	1.13E-03	6.93E-03	1.13E-03	6.24E-03	1.13E-03
Pb-214	295.22	3.43E-03	9.27E-04	3.25E-03	9.36E-04	2.79E-03	9.33E-04
Ac-228	338.4	1.52E-03	8.39E-04	1.19E-03	8.39E-04	1.30E-03	8.34E-04
Pb-214	351.99	5.56E-03	8.19E-04	5.05E-03	8.20E-04	5.15E-03	8.08E-04
TI-208	583.14	2.74E-03	5.43E-04	2.88E-03	5.34E-04	2.20E-03	5.29E-04
Bi-214	609.32	5.30E-03	6.07E-04	5.04E-03	5.96E-04	3.88E-03	6.07E-04
Cs-137	661.62	7.81E-04	5.55E-04	Not De	etected	Not De	etected
Ac-228	911.07	2.26E-03	4.38E-04	1.45E-03	4.50E-04	2.06E-03	4.38E-04
Ac-228	968.9	9.61E-04	4.23E-04	9.53E-04	4.14E-04	8.46E-04	4.18E-04
Bi-214	1120.28	1.33E-03	4.22E-04	1.20E-03	4.18E-04	1.31E-03	4.24E-04
K-40	1460.75	6.16E-03 3.81E-04		6.21E-03 3.61E-04		5.95E-03	3.79E-04
Bi-214	1764.51	1764.51 2.18E-03		2.23E-03	2.97E-04	2.12E-03	3.03E-04

Πίνακας ΣΤ.8 : Ρυθμός καταγραφής γεγονότων (cps) για τα διαδοχικά φάσματα υποστρώματος 4, 5 και 6 στον ανιχνευτή Ge1.

Ραδιενεργό	Ενέργεια	4º 48h 0	φάσμα	5° 48h	φάσμα	6º 48h	φάσμα
Ισότοπο	Φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	±1σ
Th-234	63.29	3.26E-03	9.48E-04	2.77E-03	9.60E-04	3.11E-03	9.59E-04
U-235-Ra-226	185.99	4.95E-03	1.26E-03	5.22E-03	1.27E-03	5.30E-03	1.26E-03
Pb-212	238.63	6.15E-03	1.12E-03	6.47E-03	1.12E-03	7.26E-03	1.12E-03
Pb-214	295.22	2.88E-03	9.39E-04	2.37E-03	9.45E-04	2.24E-03	9.39E-04
Ac-228	338.4	2.02E-03	8.28E-04	1.21E-03	8.31E-04	Not De	etected
Pb-214	351.99	4.20E-03	8.22E-04	5.19E-03	8.24E-04	4.50E-03	8.24E-04
TI-208	583.14	2.67E-03	5.34E-04	2.76E-03	5.32E-04	2.27E-03	5.32E-04
Bi-214	609.32	4.13E-03	6.21E-04	3.86E-03	6.20E-04	4.44E-03	6.14E-04
Cs-137	661.62	8.07E-04	5.47E-04	Not De	etected	Not De	etected
Ac-228	911.07	1.33E-03	4.54E-04	1.83E-03	4.33E-04	1.72E-03	4.39E-04
Ac-228	968.9	Not De	tected	Not De	etected	1.03E-03	4.26E-04
Bi-214	1120.28	1.47E-03	4.11E-04	1.63E-03	4.18E-04	1.59E-03	3.98E-04
K-40	1460.75	6.01E-03 3.75E-04		6.09E-03 3.80E-04		6.09E-03	3.80E-04
Bi-214	1764.51	2.02E-03	2.89E-04	2.12E-03	3.02E-04	1.70E-03	3.13E-04

Ραδιενεονό	Ενέργεια	Συνολικ	ό φάσμα	Μέσο φ	άσμα
Ισότοπο	Φωτοκορυφής (keV)	cps	±1σ	cps	±1σ
Th-234	63.29	2.67E-03	3.95E-04	2.79E-03	4.59E-04
U-235-Ra-226	185.99	5.09E-03	5.18E-04	5.07E-03	5.29E-04
Pb-212	238.63	6.48E-03	4.59E-04	6.48E-03	4.90E-04
Pb-214	295.22	2.84E-03	3.82E-04	2.83E-03	4.29E-04
Ac-228	338.4	1.21E-03	3.41E-04	1.45E-03	3.73E-04
Pb-214	351.99	4.95E-03	3.36E-04	4.94E-03	4.55E-04
TI-208	583.14	2.59E-03	2.18E-04	2.58E-03	2.58E-04
Bi-214	609.32	4.44E-03	2.50E-04	4.45E-03	5.57E-04
Cs-137	661.62	7.15E-04	2.29E-04	7.94E-04	3.90E-04
Ac-228	911.07	1.81E-03	1.80E-04	1.78E-03	3.21E-04
Ac-228	968.9	1.11E-03	2.13E-04	9.47E-04	2.10E-04
Bi-214	1120.28	1.42E-03	1.70E-04	1.43E-03	1.69E-04
K-40	1460.75	6.08E-03	1.55E-04	6.09E-03	1.53E-04
Bi-214	1764.51	2.06E-03	1.24E-04	2.07E-03	1.70E-04

Πίνακας ΣΤ.9 : Ρυθμός καταγραφής γεγονότων (cps) για το συνολικό και το μέσο φάσμα υποστρώματος στον ανιχνευτή Ge1.

Στα Σχήματα ΣΤ.33-ΣΤ.46 δίνονται σε μορφή διαγράμματος τα αποτελέσματα που παρουσιάζονται στους Πίνακες ΣΤ.7-ΣΤ.9.

Σχήμα ΣΤ.33 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ²³⁴Th (63.29 keV).

Σχήμα ΣΤ.35 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge1 και τη φωτοκορυφή του ²¹²Pb (238.63 keV).

Σχήμα ΣΤ.36 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge1 και τη φωτοκορυφή του ²¹⁴Pb (295.22 keV).

Σχήμα ΣΤ.37 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge1 και τη φωτοκορυφή του ²²⁸Ac (338.4 keV).

Σχήμα ΣΤ.38 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge1 και τη φωτοκορυφή του ²¹⁴Pb (351.99 keV).

Σχήμα ΣΤ.39 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ²⁰⁸Tl (583.14 keV).

Σχήμα ΣΤ.40 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ²¹⁴Bi (609.32 keV).

Σχήμα ΣΤ.41 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ¹³⁷Cs (661.62 keV).

Σχήμα ΣΤ.42 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ²²⁸Ac (911.07 keV).

Σχήμα ΣΤ.43 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge1 και τη φωτοκορυφή του ²²⁸Ac (968.9 keV).

Σχήμα ΣΤ.44 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ²¹⁴Bi (1120.28 keV).

Σχήμα ΣΤ.45 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ⁴⁰K (1460.75 keV).

Σχήμα ΣΤ.46 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Gel και τη φωτοκορυφή του ²¹⁴Bi (1764.51 keV).

ΣΤ.4 Υπόστρωμα φωτοκορυφών ανιχνευτή Ge2

Στους Πίνακες ΣΤ.10-ΣΤ.12 δίνονται ο ρυθμός καταγραφής γεγονότων (cps) και η αβεβαιότητα σε επίπεδο 1σ των κυρίαρχων φωτοκορυφών υποστρώματος στον ανιχνευτή Ge2 για 6 διαδοχικά φάσματα, το ολικό («Συνολικά cps»), καθώς και το μέσο («Μέσο cps») φάσμα υποστρώματος. Οι φωτοκορυφές δίνονται με σειρά αύξουσας ενέργειας φωτονίων και αντιστοιχίζονται στο ραδιενεργό ισότοπο στο οποίο οφείλεται η εκπομπή τους.

Πίνακας	ΣΤ.10	:	Ρυθμός	καταγραφής	γεγονότων	(cps)	για	τα	διαδοχικά	φάσματα
υποστρώμ	ιατος 1,	2 к	αι 3 στον	' ανιχνευτή Ge	2.					

Ραδιουσουά	Ενέργεια	1º 48h 0	φάσμα	2º 48h	φάσμα	3º 48h	φάσμα
Ισότοπο	Φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	±1σ
Pb-210	46.52	4.36E-03	6.45E-04	4.36E-03	6.50E-04	4.24E-03	6.55E-04
Th-234	63.29	5.17E-03	7.05E-04	6.32E-03	6.97E-04	5.94E-03	7.02E-04
Pb-212	87.2	3.32E-03	5.37E-04	2.35E-03 5.08E-04		2.59E-03	4.93E-04
U-235-Ra-226	185.99	7.64E-03	8.94E-04	5.73E-03	8.96E-04	6.41E-03	8.97E-04
Pb-212	238.63	2.40E-03	7.80E-04	3.31E-03	8.29E-04	1.27E-03	7.87E-04
Pb-214	295.22	3.02E-03	6.64E-04	4.40E-03	6.64E-04	3.76E-03	6.61E-04
Ac-228	338.4	8.28E-04	5.75E-04	Not De	etected	8.84E-04	5.83E-04
Pb-214	351.99	6.10E-03	5.80E-04	5.99E-03	5.88E-04	5.93E-03	5.82E-04
TI-208A	583.14	7.54E-04	3.89E-04	1.05E-03	3.82E-04	1.29E-03	3.88E-04
Bi-214	609.32	4.64E-03	4.08E-04	4.53E-03	3.95E-04	5.10E-03	4.02E-04
Ac-228	911.07	1.08E-03	3.02E-04	8.85E-04	3.05E-04	9.73E-04	3.21E-04
Ac-228	968.9	5.98E-04	3.00E-04	Not De	etected	5.43E-04	3.02E-04
Bi-214	1120.28	1.16E-03	2.66E-04	1.09E-03	2.90E-04	1.47E-03	2.95E-04
K-40	1460.75	3.90E-03	2.65E-04	3.94E-03	2.70E-04	3.72E-03	2.77E-04
Bi-214	1764.51	1.62E-03	2.14E-04	1.68E-03	2.12E-04	1.71E-03	2.19E-04

Πίνακας ΣΤ.11 : Ρυθμός καταγραφής γεγονότων (cps) για τα διαδοχικά φάσματα υποστρώματος 4, 5 και 6 στον ανιχνευτή Ge2.

Ραδιενεργό	Ενέργεια	4º 48h o	φάσμα	5° 48h	φάσμα	6º 48h	φάσμα
Ισότοπο	Φωτοκορυφής (keV)	cps	±1σ	cps	±1σ	cps	±1σ
Pb-210	46.52	3.62E-03	6.52E-04	4.32E-03	6.49E-04	4.29E-03	6.50E-04
Th-234	63.29	6.10E-03	6.84E-04	5.71E-03	6.99E-04	5.25E-03	6.97E-04
Pb-212	87.2	3.07E-03	5.28E-04	2.65E-03	5.16E-04	2.56E-03	5.03E-04
U-235-Ra-226	185.99	6.68E-03	8.95E-04	5.07E-03	9.03E-04	6.54E-03	9.00E-04
Pb-212	238.63	2.86E-03	7.47E-04	1.80E-03	7.80E-04	1.31E-03	7.87E-04
Pb-214	295.22	4.35E-03	6.49E-04	2.81E-03	6.54E-04	3.00E-03	6.53E-04
Ac-228	338.4	Not De	tected	Not De	etected	8.35E-04	5.89E-04
Pb-214	351.99	6.89E-03	5.76E-04	5.84E-03	5.77E-04	5.20E-03	5.86E-04
TI-208A	583.14	7.56E-04	3.80E-04	1.20E-03	3.82E-04	1.08E-03	3.83E-04
Bi-214	609.32	4.79E-03	3.95E-04	4.11E-03	3.91E-04	3.93E-03	3.95E-04
Ac-228	911.07	1.24E-03	3.06E-04	8.60E-04	2.91E-04	7.45E-04	3.21E-04
Ac-228	968.9	Not De	tected	7.18E-04	2.99E-04	6.44E-04	3.02E-04
Bi-214	1120.28	1.34E-03	2.85E-04	1.36E-03	2.80E-04	1.05E-03	2.77E-04
К-40	1460.75	3.68E-03	2.74E-04	3.56E-03 2.78E-04		3.79E-03	2.76E-04
Bi-214	1764.51	1.80E-03	2.12E-04	1.75E-03	2.09E-04	1.93E-03	2.00E-04

Βαδιουσομό	Ενέργεια	Συνολικ	ό φάσμα	Μέσο φ	άσμα
Ισότοπο	Φωτοκορυφής (keV)	cps	±1σ	cps	±1σ
Pb-210	46.52	4.10E-03	2.66E-04	4.20E-03	2.65E-04
Th-234	63.29	5.93E-03	2.84E-04	5.75E-03	4.22E-04
Pb-212	87.2	3.12E-03	2.78E-04	2.74E-03	3.24E-04
U-235-Ra-226	185.99	6.34E-03	3.65E-04	6.35E-03	7.99E-04
Pb-212	238.63	2.93E-03	3.39E-04	2.15E-03	7.54E-04
Pb-214	295.22	3.55E-03	2.69E-04	3.56E-03	6.51E-04
Ac-228	338.4	6.27E-04	2.36E-04	8.49E-04	3.36E-04
Pb-214	351.99	5.99E-03	2.36E-04	6.00E-03	4.96E-04
TI-208A	583.14	9.84E-04	1.57E-04	1.02E-03	2.04E-04
Bi-214	609.32	4.52E-03	1.62E-04	4.51E-03	3.96E-04
Ac-228	911.07	9.35E-04	1.26E-04	9.66E-04	1.60E-04
Ac-228	968.9	4.96E-04	1.25E-04	6.26E-04	1.50E-04
Bi-214	1120.28	1.26E-03	1.15E-04	1.24E-03	1.52E-04
K-40	1460.75	3.76E-03	1.12E-04	3.77E-03	1.30E-04
Bi-214	1764.51	1.75E-03	8.59E-05	1.75E-03	1.01E-04

Πίνακας ΣΤ.12: Ρυθμός καταγραφής γεγονότων (cps) για το συνολικό και το μέσο φάσμα υποστρώματος στον ανιχνευτή Ge2.

Στα Σχήματα ΣΤ.47-ΣΤ.61 δίνονται σε μορφή διαγράμματος τα αποτελέσματα που παρουσιάζονται στους Πίνακες ΣΤ.10-ΣΤ.12.

Σχήμα ΣΤ.47 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹⁰Pb (46.52 keV).

Σχήμα ΣΤ.50 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και την πολλαπλή φωτοκορυφή των ²³⁵U-²²⁶Ra (185.99 keV).

Σχήμα ΣΤ.51 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹²Pb (238.63 keV).

Σχήμα ΣΤ.52 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹⁴Pb (295.22 keV).

Σχήμα ΣΤ.53 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²²⁸Ac (338.4 keV).

Σχήμα ΣΤ.54 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹⁴Pb (351.99 keV).

Σχήμα ΣΤ.55 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²⁰⁸Tl (583.14 keV).

Σχήμα ΣΤ.56 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹⁴Bi (609.32 keV).

Σχήμα ΣΤ.57 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²²⁸Ac (911.07 keV).

Σχήμα ΣΤ.58 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²²⁸Ac (968.9 keV).

Σχήμα ΣΤ.59 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹⁴Bi (1120.28 keV).

Σχήμα ΣΤ.60 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ⁴⁰K (1460.75 keV).

Σχήμα ΣΤ.61 : Διαδοχικά φάσματα υποστρώματος με συνολικές και σταθμισμένες μέσες τιμές cps για τον ανιχνευτή Ge2 και τη φωτοκορυφή του ²¹⁴Bi (1764.51 keV).

ΠΑΡΑΡΤΗΜΑ Ζ

Συνοπτική περιγραφή εργαλείου «Radical»

Στο παράρτημα Ζ παρουσιάζεται το υπολογιστικό φύλλο excel Radical που αναπτύχθηκε στα πλαίσια της παρούσας Δ.Δ.. Το εργαλείο Radical δίνει στον χρήστη τη δυνατότητα επιλογής μεταξύ 5 διαφορετικών ανιχνευτών οι οποίοι προσδιορίζονται μέσω των αντίστοιχων βαθμονομήσεών τους (ενέργειας, διακριτικής ικανότητας και απόδοσης). Στη συνέχεια, ο χρήστης εισάγοντας τις απαραίτητες πληροφορίες, όπως αυτές θα αναλυθούν στην πορεία, μπορεί να προσδιορίσει τη συγκέντρωση των ραδιενεργών ισοτόπων στο δείγμα ενδιαφέροντος, καθώς και τα κατώτερα επίπεδα ανίχνευσης. Επιπροσθέτως, περιλαμβάνεται η δυνατότητα εκτέλεσης κάποιων συνήθων υπολογισμών που χρειάζονται κατά τον προσδιορισμό της συγκέντρωσης ραδιενέργειας ραδιενεργών ισοτόπων. Στα Σχήματα που ακολουθούν δίνονται στιγμιότυπα από τα επιμέρους υπολογιστικά φύλλα του εργαλείου Radical.

Το υπολογιστικό εργαλείο Radical, όπως αυτό διαμορφώθηκε στα πλαίσια της παρούσας Δ.Δ., περιλαμβάνει στο σύνολό του 11 βασικές καρτέλες. Κάθε επιμέρους καρτέλα, καθώς και η λειτουργία της δίνονται συνοπτικά στη λίστα που ακολουθεί:

Λίστα Καρτελών Υπολογιστικού Εργαλείου Radical:

i. «Sample Name»

Η παρούσα καρτέλα παίρνει το όνομα του εκάστοτε δείγματος προς ανάλυση και έχει τη δυνατότητα εισαγωγής 20 διαφορετικών ραδιενεργών ισοτόπων. Ο χρήστης μπορεί να επιλέξει ανάμεσα:

- σε 5 ανιχνευτές (XtRa, XtCSS, LEGe, HPGE(33.8%) (που στο εργαλείο Radical ονομάζεται Ge), HPGe(40.9%) (που στο εργαλείο Radical ονομάζεται Ge-40)
- σε 8 διαφορετικές βαθμονομημένες γεωμετρίες (δίνεται πίνακας όπου διευκρινίζεται ποια γεωμετρία, για ποιον ανιχνευτή και για ποιο υλικό είναι βαθμονομημένη)
- σε 3 διαφορετικά υλικά δειγμάτων

Ακόμα, ο χρήστης εισάγει:

- τη μάζα ή τον όγκο (για φίλτρα αέρα) του δείγματος
- την ημερομηνία συλλογής και ανάλυσης του δείγματος
- τη χρονική διάρκεια γ-φασματοσκοπικής ανάλυσης του δείγματος
- τις συνοδευόμενες αβεβαιότητες βαθμονόμησης
- το ραδιενεργό ισότοπο με
 - τον χρόνο ημιζωής του
 - τις ενέργειες και τα ποσοστά εκπομπής των κυρίαρχων φωτονίων του
 - την επιφάνεια φωτοκορυφής κάθε φωτονίου και την αβεβαιότητά της σε επίπεδο 1.65σ, όπως αυτά προσδιορίζονται από το λογισμικό SPUNAL
- τον συντελεστή διόρθωσης για το φαινόμενο πραγματικής σύμπτωσης για όσες φωτοκορυφές απαιτείται
- τον συντελεστή διόρθωσης αυταπορρόφησης στην περίπτωση διεξαγωγής
 υπολογισμών για συνδυασμό «γεωμετρίας δείγματος-υλικού δείγματος-ανιχνευτή» διαφορετικό από τους ήδη έτοιμους.

Ως τελικό αποτέλεσμα δίνεται η μέση σταθμισμένη συγκέντρωση ενεργότητας για κάθε ραδιενεργό ισότοπο, όπως αυτή προκύπτει από τις επιμέρους φωτοκορυφές του, συνοδευόμενη με τις κατάλληλες διορθώσεις διάσπασης.

ii. «XtRa», «XtCSS», «LEGe», «Ge», «Ge-40»

Στις 5 αυτές καρτέλες δίνονται για κάθε ανιχνευτή που χρησιμοποιείται στο Radical:

- οι συντελεστές της ενεργειακής βαθμονόμησης κάθε ανιχνευτή
- οι συντελεστές της βαθμονόμησης διακριτικής ικανότητας κάθε ανιχνευτή
- οι συντελεστές βαθμονόμησης απόδοσης για κάθε συνδυασμό γεωμετρίας
 δείγματος-υλικού δείγματος-ανιχνευτή που χρησιμοποιείται στο εργαλείο
 Radical.

Οι συντελεστές αυτοί χρησιμοποιούνται ως αρχεία εισόδου από την καρτέλα «Sample Name» για τον υπολογισμό των συγκεντρώσεων ενεργότητας των ραδιενεργών ισοτόπων. Επίσης, ο χρήστης έχει τη δυνατότητα σε κάθε επιμέρους καρτέλα να χρησιμοποιήσει του συντελεστές αυτούς για ανεξάρτητους υπολογισμούς ενεργειακής βαθμονόμησης, βαθμονόμησης διακριτικής ικανότητας ή βαθμονόμησης απόδοσης.

iii. «BG»

Στην καρτέλα αυτή περιέχονται τα δεδομένα για το υπόστρωμα φωτοκορυφών για κάθε ανιχνευτή που περιέχεται στο Radical, ώστε να χρησιμοποιούνται ως αρχεία εισόδου για την καρτέλα «Sample Name» και να γίνεται αυτοματοποιημένα η διόρθωση των φωτοκορυφών των δειγμάτων ως προς τις φωτοκορυφές υποστρώματος. Επίσης, στην καρτέλα περιέχονται και τα φάσματα υποστρώματος κάθε ανιχνευτή σε μορφή λίστας καναλιών με τις αντίστοιχες κρούσεις το κάθε ένα, ώστε να χρησιμοποιούνται ως αρχεία εισόδου για την καρτέλα «Detection Limits» που ακολουθεί, όπου γίνεται ο υπολογισμός των κατώτερων επιπέδων ανίχνευσης.

iv. «Detection Limits»

Στην καρτέλα αυτή, αντίστοιχα με την καρτέλα «Sample Name» ο χρήστης μπορεί να επιλέξει το συνδυασμό γεωμετρίας δείγματος-υλικού δείγματοςανιχνευτή που χρειάζεται, να εισάγει τα απαραίτητα δεδομένα του δείγματος προς επεξεργασία, και εισάγοντας για κάθε φωτοκορυφή ενδιαφέροντος την ενέργεια, το ποσοστό εκπομπής, το κανάλι του κεντροειδούς της, καθώς και το FW.1M να υπολογίσει τις τιμές του Ld, του MDA και του Lc (Decision Threshold).

v. «Various Calculations»

Η καρτέλα αυτή δημιουργήθηκε, για να επικουρεί στη διαδικασία επεξεργασίας ενός φάσματος και προσφέρει στον χρήστη τις δυνατότητες:

- Υπολογισμού της ενέργειας φωτονίων ύστερα από σκέδαση Compton για όλο το πιθανό εύρος γωνιών σκέδασης.
- Υπολογισμού διορθώσεων διάσπασης.
- Εφαρμογής του U-test για να διαπιστωθεί αν δύο τιμές διαφέρουν στατιστικά σημαντικά ή όχι μεταξύ τους.
- Εφαρμογή T-test για να διερευνηθεί αν ο συντελεστής γραμμικής συσχέτισης R² που προκύπτει από μια οποιαδήποτε συσχέτιση δύο μεγεθών είναι στατιστικά σημαντικά διάφορος του μηδενός.
- vi. «Normal Distr. Table», «Student Distr. Table»

Οι καρτέλες αυτές περιέχουν τους πίνακες της Κανονικής Κατανομής και της Κατανομής Student, ώστε να χρησιμοποιούνται ως δεδομένα εισόδου στους

υπολογισμούς του T-test που λαμβάνει χώρα στην καρτέλα «Various Calculations».

Στα Σχήματα που ακολουθούν περιέχονται στιγμιότυπα από τις διάφορες καρτέλες του υπολογιστικού εργαλείου Radical.

A	В	С	D	E	F	G	н	I	J	К	L	M	N	0	Р	Q	R	S
DETECTOR OPTIONS	XtRa	Xt-CSS	LEGe	Ge	Ge-40							S	ample				Uncertain	ties % (1 0)
	geom2	geom5	geom8	geom10	geomPetri	geomPetricap	geomAlcap	geomELKETHE		Mass Net (gr) or (Litres)	Geometry	Reference date (dd/mm/yyyy)	Analysed on	Collect Time (sec)	for decay		Weighing Calibration source	0.010%
GEOMETRY OPTIONS	1	2	3	4	5	6	7	8		282.00	reom?	10/07/2017	10/10/2017	80000	92.46		Simulation	0.00%
										282.00	geoinz	10/07/2017	10/10/2017	80000	52.40			
MATERIAL OPTIONS	4MHCL	Soil3%	Air Filter												Διόρθωση διάσπασης		*Currently for simula	ted geometries there is
	1	2	3												από τη μεση της ανάλυσης		a 1.26% unc	ertainty in 10
DETECTOR	V	D -		Availiable				Material & G	eometry					<u>\</u> .	an a			
DETECTOR	Xt	ка		combinations		4MHCL		Air Filter			Soil3%			<u> </u>				1
				Detector	2	5	8	10	Petri	Petricap	Alcap	Elkethe						
•	1	1		XtRa	×	×	N	1	V				Δ	εδομένα Δε	τίγματος			
			Υ.	Xt-CSS	V	N	N	N						& Ανάλυ	σης		Εισο	xγωγή 📄
Geometry				LEGe	×				N	1	V	N					Πρόσ	σθετων
Geometry	geo	miz		Ge	N	N	N										Αβεβα	ιοτήτων
^	1	1		Ge-40	N												Cirboba	
			17	V = .														
			<u>ا</u>	Επιλογι	ή Ανιχνε	υτή			i									
Material	4M	HCL			P		C											
•		1	•	Επιλογή	Γεωμετ	σίας		Διαθέσι	μοι Σ	υνδυασμο	í							
-		1					Γε	ωμετοίας	-Ανιγ	νευτή-Yλ	ικού							
			E	πιλογή Υλ	λικού		C		/									
True/False	Radionuclide	T1/2 (days)	λ	Insert 1:Included 0:Not Included	Peak Energy (keV)	Yield (%)	Area (given by spunal)	True coinc. Corr. Factor	Area Corr.	Uncertainty (90%)	Eff. Corr. Factor	eff	Activity (Bq)	Activity[Ri] (Bq/kg)	1σ (of Area given by spunal)	σва[cps]*Collect time	Collect Time*Mass*Yield*Ef f	1σ (Bq/kg)
Not Inc luded				0			-	.000	0	1	1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded	T	T -		0	. .		1 1	1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded	∖	1		0			1 1	1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded	N N	i -		0		$\sim 1/$	112	1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded	A = 5 =		#DIV/0!	0				1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded		ομενα		0	-			1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded	Ραδιεν	νεργού		0		Δεδομέν	/α	1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded	Ισοτ	όπου		0		Φωτοκοου	φών –	1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc luded				0		· · · · · · · · · · · · · · · · · · ·		1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00
Not Inc Iuded				0				1.000	0		1.000	#NUM!	0.00	0.00	0.00	0.00	#NUM!	0.00

Σχήμα Ζ.1 : Μέρος 1° της καρτέλας «Sample Name»

Σχήμα Ζ.2 : Μέρος 2° της καρτέλας «Sample Name»

A	В	С	D	E	F	G	Н	L	J
								Calculations for	or FW.1M in e
	Channel → E	nergy, FW. 1M		,	Energ	$y \rightarrow Channel$	1	FW.1M from ch	FW.1M to ch
			Συντελεσ	στες				118.2592739	122.0755193
			Ενεργεια	κής	Channel	400 4070000		F	F
Energy factors	0 1000707		Βαθμονόμ	ησης	Channel	120.1673966		Energy from	Energy to
a0	0.4022/3/		<u> </u>	· ")	Engen	E0. E4		58.60	60.47903472
a1	0.4921300		00.040		Energy	59.54	_		
az	-2.42000E-00								
FW.1M factors			FW 144 (ab)		FW.1	M → Channel			
a0	3.607552		Γυντελεστές						
a1	0.001739201		3.8 LUVTE	λεστές					
a2	-2.09101E-08		Βαθμον	νόμη σ ης	Channel	3124 157781			
			EV Augura						
channel	120 1673966		Διακρ	στικής	EW 1M	8 84			
charmer	120.1010000		— Ικανά	στητας		0.04			
				<u> </u>					
7		Peak Efficier	су						
geom2	90 					·3	\		
	<279.19 keV	>279.19 keV	Energy (keV)	Peak Effieciency	1	ETP			
a0	-8.89102	1.22497	5, ()			13			
a1	2.72877	-0.9071	59.54	0.060285814		2)			
a2	-0.30353	0.02313		2 8 8 8 7 4 1 5 3 2 8 6 1 1 7 9 9 9 4 6		200			
-						αεγ		-	
geom5			E 0.10	D		a (j			
	<2/9.19 KeV	>2/9.19 KeV	Energy (keV)	Peak Efficciency	T	BB			
ao	-0.04500	1.14905	50.54	0 400007005		Σģ			
a1	2.90/00	-0.0430	59.54	0.120307005	5	d ∑			
dZ	-0.3363	-0.00052			4	°E ⊲			
geom 8	5				N	5 4		(
geomo	<270 10 koV	>270 10 koV	Enorgy (ko)/)	Poak Efficcionau		USU DE LE	L .	Συντελε	στές —
20	7 00385	1 78212	Lifelgy (kev)	Feak Lilleciency		USA CO	- `_	Βαθμονόι	ingne –
a0 a1	2 86099	-0 74892	59 54	0 172514865		/16		Βασμονοι	
a2	-0.32665	0.00596	55.54	0.112514005		Σur		Απόδο	σης –
geom10					To To	eff			
	<279.19 keV	>279.19 keV	Energy (keV)	Peak Effieciency	It	alce			
ao	-7.233441	1.573618			μ <u>Γ</u>	CO			
a1	2.58677	-0.6589579	59.54	0.195248134	.=	P P			
a2	-0.297668	0.000708808			< <	No			
geomPetri					.0	u E		1	
- Accession out	<279.19 keV	>279.19 keV	Energy (keV)	Peak Effieciency	3%	ja no			
a0	-10.549	2.2045			<u> </u>	Pilot Di			
a1	3.9367	-0.8206	59.54	0.18498472	0	N O O WI			
a2	-0.4327	0.0101			0	A DE			
ao a1 a2	<279.19 keV -10.549 3.9367 -0.4327	>279.19 keV 2.2045 -0.8206 0.0101	Energy (keV) 59.54	Peak Effieciency 0.18498472	Soil 39	Συντελεστι από Προσομοίσι. Ι.Μήτστοι.			

Σχήμα Z.3 : Καρτέλα «XtRa» (αντιπροσωπευτική των αντίστοιχων καρτελών των υπόλοιπων ανιχνευτών).

A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	Р	Q
			XtRa (Mar 2021)			XtCSS (Mar 2021	1)		LEGe (Mar 2021)			Ge (Mar 2021)			Ge 40% (Mar 202	1)
Radionuclides	Energies (keV)	cps	Error 90%	1σ	cps	Error 90%	1σ	cps	Error 90%	1σ	cps	Error 90%	1σ	cps	Error 90%	1σ
Pb-210	46.52	0.00345	14.2%	0.000296909	0.00343	12.2%	0.000253612	0.002	12.9%	0.000156364	0	0.0%	0	0.0041	10.5%	0.000260909
Th-234	63.29	0.0102	8.1%	0.000500727	0.0102	5.6%	0.000346182	0.013	2.4%	0.000189091	0.00257	30.4%	0.000473503	0.00546	8.3%	0.000274655
Pb-212A	87.2	0	0.0%	0	0.00136	17.2%	0.00014177	0.000392	67.2%	0.000159651	0	0.0%	0	0.0034	13.4%	0.000276121
Pb-212B	238.63	0.0121	7.2%	0.000528	0.0122	4.5%	0.000332727	0.00161	17.9%	0.000174661	0.00616	12.1%	0.000451733	0.003	18.6%	0.000338182
Pb-214A	295.22	0.00134	42.3%	0.000343527	0.00105	33.0%	0.00021	0.000587	40.5%	0.000144082	0.0014	44.4%	0.000376727	0.00331	13.2%	0.0002648
Ac-228A	338.4	0.00274	19.2%	0.000318836	0.00239	12.9%	0.000186855	0.000373	56.9%	0.000128628	0.00126	44.3%	0.000338291	0.000511	74.7%	0.000231344
Pb-214B	351.99	0.0033	15.3%	0.000306	0.00354	8.5%	0.000182364	0.00105	19.7%	0.000125364	0.00255	21.5%	0.000332273	0.00597	6.5%	0.000235182
TI-208A	583.14	0.00504	8.4%	0.000256582	0.00276	8.6%	0.000143855	0.000353	50.0%	0.00010697	0.00214	19.3%	0.000250315	0.00103	24.9%	0.000155436
Bi-214A	609.32	0.00424	9.8%	0.00025183	0.00345	7.0%	0.000146364	0.000652	26.9%	0.000106296	0.00248	16.2%	0.000243491	0.00457	5.9%	0.000163412
Cs-137	661.62	0	0.0%	0	0	0.0%	0	0.000656	30.1%	0.00011967	0.000767	48.4%	0.000224987	0	0.0%	0
TI-208B	860.47	0.000688	51.4%	0.000214322	0.000506	36.8%	0.000112853	0	0.0%	0	0.00173	17.0%	0.000178242	0	0.0%	0
Ac-228B	911.07	0.00446	7.8%	0.000210836	0.00406	5.0%	0.00012303	0.000372	41.8%	0.00009424	0.000847	34.3%	0.000176073	0.000857	25.1%	0.000130368
Ac-228H	968.9	0.00279	14.3%	0.0002418	0.00248	9.0%	0.000135273	0.000148	103.4%	9.27467E-05	0.00117	23.0%	0.000163091	0.000336	61.7%	0.000125644
Bi-214B	1120.28	0.00169	20.3%	0.000207921	0.00155	10.7%	0.000100515	0.000195	80.4%	9.50182E-05	0.00167	16.8%	0.000170036	0.00139	13.4%	0.000112885
Co-60A	1173.22	0	0.0%	0	0	0.0%	0	0.00029	50.4%	8.85818E-05	0	0.0%	0	0	0.0%	0
Co-60B	1332.51	0	0.0%	0	0	0.0%	0	0.000224	58.1%	7.88752E-05	0	0.0%	0	0	0.0%	0
K-40	1460.75	0.0271	1.4%	0.000229939	0.0271	1.1%	0.000180667	0.000944	13.2%	0.00007552	0.00593	4.0%	0.000143758	0.00384	4.9%	0.000114036
Bi-214C	1764.51	0.00233	11.0%	0.000155333	0.00238	5.5%	7.93333E-05	0.000267	37.3%	6.03582E-05	0.00177	10.5%	0.000112636	0.0018	8.2%	8.94545E-05
Ļ																/
<u> </u>	Range of Energies	47.50														/
45.52	46.52	47.52														
86.2	87.2	99.2						· · ·								
237.63	238.63	239.63														
294.22	295.05	296.22						V.								
337.4	338.4	339.4				_										
350.99	351.99	352.99														
582.14	583.14	584.14					ps φωτοκορ	υφών υπο	στρώματος							
608.32	609.32	610.32					αι	πχνευτών								
660.62	661.62	662.62)						
859.47	860.47	861.47														
910.07	911.07	912.07														
967.9	968.9	969.9														
1119.28	1120.28	1121.28														
1172.22	1173.22	1174.22														
1331.51	1332.51	1333.51														
1459.75	1460.75	1461.75														
1763.51	1764.51	1765.51														

Σχήμα Ζ.4 : Μέρος 1° Καρτέλας «BG».

S	Т	U	V	W	х	Y	Z	AA
Channel		BC	G Spectrum Counts			_	Background Colle	ection Time (tB)
channer	XtRa (Mar 2021)	XtCSS (Mar 2021)	LEGe (Mar 2021)	Ge (Mar 2021)	Ge40% (Mar 2021)		XtRa (Mar 2021)	1036800
1	0	0	0	0	0		XtCss (Mar 2021)	1036800
2	0	0	0	0	91298		LEGe (Mar 2021)	1036800
3	0	0	0	0	28774		Ge (Mar 2021)	1036800
4	0	0	0	0	2665		Ge40% (Mar 2021)	1036800
5	0	0	0	0	10693			
6	0	0	0	0	22161			
7	0	0	0	0	28586			
8	0	0	0	0	27454			
9	0	0	0	0	21496			
10	0	0	0	0	19099			
11	0	0	0	0	18549			
12	0	0	0	0	18085			
13	0	0	0	0	17591			
14	0	0	0	0	17432			
15	0	0	0	0	17160			
16	0	0	0	0	16671			
17	0	0	0	0	16421			
18	0	0	0	0	16096	N.		
19	0	0	0	0	15765		Φάσματα υποστρώματ	ος ανιχνευτών
20	0	0	0	0	16599	1		
21	0	0	0	0	16498			
22	0	0	0	0	15322			
23	0	0	0	0	15013			
24	0	0	0	0	15428			
25	0	0	0	0	16037			
26	0	0	0	0	15552			
27	0	0	0	0	13844			
28	0	0	0	0	12478			
29	0	0	0	0	12233			
30	0	0	0	0	11658			
31	0	0	0	0	11290			
32	0	0	0	0	11151			
33	0	0	0	0	10990			
34	0	0	0	0	10419			
35	0	0	0	0	10277			
36	1	1	0	0	10089			
37	0	207	0	0	9943	j		
38	1	2445	0	0	9779	1		

Σχήμα Ζ.5 : Μέρος 2° Καρτέλας «BG».

A	В	С	D	E	F	G	н	- I	1	К	L	M	N	0	Р	Q	R	S	
Channel	Spectrum Counts		DETECTOR OPTIONS	XtRa	Xt-CSS	LEGe	Ge	Ge-40							Sam	nnle			L
1			DETECTOR OF HOUS	1	2	3	4	5							Jan	ipie			E
2	–												Mass (gr) or	Geometry	Reference date	Anaburation	Callert Time (see)	lotal days	L
3			GEOMETRY OPTIONS	geom2	geom5	geom8	geom10	geomPetri	geomPetricap	geomAlcap	geomELKETHE		(Litres)	Geometry	(dd/mm/yyyy)	Analysed on	collect time (sec)	(for decay	L
4			deometrici op nois	1	2	3	4	5	6	7	8		281.00	500m3	01/01/2022	12/08/2022	410710	227.75	Ē
5													201.90	geomz	01/01/2022	12/06/2022	410/12	221.15	
6			MATERIAL OPTIONS	4MHCL	Soil3%	Air Filter													
7			in the of the lot	1	2	3													
8																	<u>`</u>		
9			DETECTOR	XtRa		-	Availiable		AMALICI		Waterial	& Geometry	6-	120/			· · ·		
10			-				combinations	2	HINITCL	0	Air Filter	Detail	Detailar	11376	Ellization -				
11	Φάσμα		÷	1			Detector	2	5	8	10	Petri	Petricap	Акар	Elkethe				
12	φάσμα					T	XtRa	~	N	N	N N	N				Δε	δομένα Δεί	γματος 🗕	
13	Ανάλυσης		-				Xt-CSS		N	1	N	d	1	d	al.		& Δνάλυ	$\frac{1}{2}$	
14	Δείνματος		Geometry	geom2		<u> </u>	LEGe	N	N	1		N	N	N	v		a munu		
15							Ge-40	1	v			-							
17			-	1			00.40												
18						· · · ·													
19			Allers we	4841101			Επιλογή Α	νιχνευτή	1J										
20			Material	411111	-				ζ										
21			•				Επιλονή Γε	ωμετοία	-										
22			-	1		Г <u></u> с			٩ ٩										
23							2 (17)	<u></u>											
24						Eπ	ιλογη γλικ	<u>ov</u>											╞
25			Radionuclide	Channel	Peak Energy	Yield (%)	EW.1M	1.5*FWHM	BG from	Peak from	Peak to	BG to	n	m	CSL-1	CSU+1	Bs	CBL-1	
					(keV)														
26								0.00	0	0	0	0	1	0	0	0	0	0	Γ
27				-		<u> </u>	1	0.00	0	0	0	0	1	0	0	0	0	0	
28			· · · · ·		/ /	/ /	•	0.00	0	0	0	0	1	0	0	0	0	0	
29			\` `		- /			0.00	0	0	0	0	1	0	0	0	0	0	
30					1			0.00	U	0	0	0	1	0	0	0	U	0	ŀ
32					11			0.00	0	0	0	0	1	0	0	0	0	0	t
33					1			0.00	0	0	0	0	1	0	0	0	0	0	t
34								0.00	0	0	0	0	1	0	0	0	0	0	F
35				V				0.00	0	0	0	0	1	0	0	0	0	0	
36			\sim					0.00	0	0	0	0	1	0	0	0	0	0	1
37				Δεδομένα	_			0.00	0	0	0	0	1	0	0	0	0	0	
38				Φωτοκορυφά	ov L			0.00	0	0	0	0	1	0	0	0	0	0	F
39								0.00	U	U	U	U	1	0	U	0	U	U	F
40								0.00	0	0	0	0	1	0	0	0	0	0	H
42								0.00	o l	0	0	0	1	0	o o	0	0	0	t
43								0.00	0	0	0	0	1	0	0	0	0	0	t
44								0.00	0	0	0	0	1	0	0	0	0	0	F
45								0.00	0	0	0	0	1	0	0	0	0	0	
																			1.2

Σχήμα Ζ.6 : Μέρος 1° Καρτέλας «Detection Limits».

N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB
Sample						Background	Collection Time							
Mass (gr) or	Geometry	Reference date	Analysed on	Collect Time (sec)	lotal days		tв	1036800						
(Litres)	deonicaly	(dd/mm/yyyy)	Analysed on	conect time (sec)	(in decay									
281.90	geom2	01/01/2022	12/08/2022	410712	227.75									
			11,00,2012											
Soi	13%													
Petricap	Alcap	Fikethe												
	, and p													
٦	1	1											٦	
										Αποτελέσμαι	a Ld M	DA & Lc		
										111010100000	.u Lu, 111	DITCELE		
										<u> </u>)	
											\ \	N		
										1	```` ,			
										1		N	N	
									· · · · · · · · · · · · · · · · · · ·					
														`
n	m	Cst-1	CSU+1	Bs	CBL-1	CBU+1	Вв	Ав	Ld	Eff. Corr. Factor	eff	MDA (Bq)	MDA (Bq/kg) or (Bq/m^3)	LC (Decision Threshold) [Ba/ke]
n	m	C51-1	C5U+1 0	Bs	CBL-1 0	CBU+1	Вв	Ав	Ld #DIV/0!	Eff. Corr. Factor	eff #NUM!	MDA (Bq) #DIV/0!	MDA (Bq/kg) or (Bq/m^3) #DIV/0!	LC (Decision Threshold) [Bq/kg] #DIV/01
n 1 1	m 0 0	CsL-1 0 0	CSU+1 0 0	Bs 0	CBL-1 0 0	CBU+1 0 0	B8 0 0	Ав 0 0	Ld #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000	eff #NUM! #NUM!	MDA (Bq) #DIV/0! #DIV/0!	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/0! #DIV/0!
n 1 1 1	m 0 0	CsL-1 0 0 0	Csu+1 0 0 0	Bs 0 0 0	CBL-1 0 0 0	CBU+1 0 0 0	BB 0 0 0	Ав 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000	eff #NUM! #NUM! #NUM!	MDA (Bq) #DIV/0! #DIV/0! #DIV/0!	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1	m 0 0 0	CsL-1 0 0 0	Csu+1 0 0 0 0	Bs 0 0 0 0	CBL-1 0 0 0	CBU+1 0 0 0 0	BB 0 0 0 0	AB 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/0! #DIV/0! #DIV/0! #DIV/0!	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1	m 0 0 0 0	CSI-1 0 0 0 0 0	CSu+1 0 0 0 0 0	Bs 0 0 0 0 0	CBL-1 0 0 0 0 0	CBU+1 0 0 0 0 0	BB 0 0 0 0 0	AB 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/0! #DIV/0! #DIV/0! #DIV/0!
n 1 1 1 1 1 1 1	m 0 0 0 0 0	CSL-1 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0	CBI-1 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0	Csi-1 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0	Ld #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
N 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBI-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Csi-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Eff. Corr. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBI-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Eff. Corr. Factor 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Eff. Corr. Factor 1.000	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01
n 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Csi-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.00	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Lc (Decision Threshold) [Bq/kg] #DIV/01
n 1 1 1 1 1 1 1 1 1 1 1 1 1	m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CSL-1 0 0 0 0 0 0 0 0 0 0 0 0 0	CSU+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBL-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CBU+1 0 0 0 0 0 0 0 0 0 0 0 0 0	BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ld #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	Eff. Corr. Factor 1.000 1.00	eff #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM! #NUM!	MDA (Bq) #DIV/01	MDA (Bq/kg) or (Bq/m^3) #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	Lc (Decision Threshold) [Bq/kg] #DIV/01

Σχήμα Ζ.7 : Μέρος 2° Καρτέλας «Detection Limits».

Σχήμα Ζ.8 : Μέρος 3° Καρτέλας «Detection Limits».

A	В	С		D	E
	Scattering	Photon Calcu	latio	ons	
Scattering angle (θ) =	180			Scattering angle (θ) =	180
					and the second sec
Energy of Initial photon (keV) =	1076.64	νπολογισμ	óc	Energy of Scattering Photon (keV) =	209.80
	Ļ	Γιάτισμ	.υς		Ļ
Energy of Scattering Photon (keV) =	206.50	Ενεργεια	5	Energy of Initial photon (keV) =	1173.00
		φωτονίων	/		
II Test	L(Compton	L J	Descritions	
U-lest	0.00247	`	\vdash	Decay Corrections	00 100 14000
value 1 =	0.00347	-		Date Sampled	00/00/1980
10 =	0.000509177			Data Analyzad	06/06/2019
Value 2 -	0.00461	1.0		Date Analyzeu	00/00/2018
1a =	0.00401			Half Life (days)	157680
10 -	0.000400302	-		Han Ene (days)	157000
U-Test Width of acceptance ±	1.64			Activity (Bg ń Bg/kg)	1.01535
Li Test Desuit	-1.995588452		Acti	vity with decay corrections (Bq ή Bq/	kg) 1.068881509
0-Test Result	Statistic Difference	e			
	Second of second bio second for the			1	
				\	
Linear Correlation Coefficient Si	gnificance		I I_t	est	
R^2	0.408		01	Διορθώσεις	
R	0.639			Διάσπασης	,
(linear correlation coefficient)	0.000	-			
n (number of experimental measurements)	22				
v	20				
(degrees of freedom)					
(confidence level)	99.00%				
to (student stochastic variable)	3.712		<u> </u>		
t(1+p)/2,n-2	2.845			1-test	-
Wr (linear correlation coefficient distribution)	0.756				
W	2.647				
σω(mean)	0.229				
(1+p)/2	99.50%				
Z(1+p)/2	2.570	<u>s</u>			
	0.165				
(Ur-2(1+p)/2*0ω (Ur-2(1+p)/2*0ω	1.346				
Rupper limit	0.165				
R lower limit	0.873				
Is it significantly different from zero?	YES	-) -			

Σχήμα Z.9 : Καρτέλα «Various Calculations».

Α	В	С	D	E	F	G	Н	1	J	К	L	М	N	0
z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		z		
0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586		0.00	0.50000	
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56360	0.56749	0.57142	0.57535		0.01	0.50399	
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409		0.02	0.50798	
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173		0.03	0.51197	
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793		0.04	0.51595	
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240		0.05	0.51994	
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490		0.06	0.52392	
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524		0.07	0.52790	
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327		0.08	0.53188	
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891		0.09	0.53586	
1	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214		0.10	0.53983	
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298		0.11	0.54380	
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147		0.12	0.54776	
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774		0.13	0.55172	
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189		0.14	0.55567	
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408		0.15	0.55962	
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449		0.16	0.56360	
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327		0.17	0.56749	
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062		0.18	0.57142	
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670		0.19	0.57535	
2	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169		0.20	0.57926	
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574		0.21	0.58317	
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899		0.22	0.58706	
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158		0.23	0.59095	
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361		0.24	0.59483	
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520		0.25	0.59871	
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643		0.26	0.60257	
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736		0.27	0.60642	
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807		0.28	0.61026	
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861		0.29	0.61409	
3	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900		0.30	0.61791	
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929		0.31	0.62172	
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950		0.32	0.62552	
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965		0.33	0.62930	
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976		0.34	0.63307	
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983		0.35	0.63683	
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989		0.36	0.64058	
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992		0.37	0.64431	
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995		0.38	0.64803	
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997		0.39	0.65173	
4	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998	0.99998	0.99998	0.99998		0.40	0.65542	
												0.41	0.65910	
												0.42	0.66276	

Σχήμα Z.10 : Καρτέλα «Normal Distr. Table».

А	В	С	D	E	F	G	н	1	J	к	L	М	Ν
1	2	3	4	5	6	7	8	9	10	11	12		Column number
One- sided	75%	80%	85%	90%	95%	97.50%	99%	99.50%	99.75%	99.90%	99.95%		9
Two- sided	50%	60%	70%	80%	90%	95%	98%	99%	99.50%	99.80%	99.90%		
1	1.000	1.376	1.963	3.078	6.314	12.710	31.820	63.660	127.300	318.300	636.600		Row number
2	0.816	1.080	1.386	1.886	2.920	4.303	6.965	9.925	14.090	22.330	31.600		21
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453	10.210	12.920		
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610		
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869		
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959		
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408		
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041		
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781		
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587		
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437		
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318		
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221		
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140		
15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073		
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015		
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965		
					:								
110	0.677	0.845	1.042	1.290	1.659	1.982	2.361	2.622	2.866	3.167	3.382		
111	0.677	0.845	1.041	1.289	1.659	1.982	2.361	2.621	2.865	3.166	3.381		
112	0.677	0.845	1.041	1.289	1.659	1.982	2.360	2.621	2.864	3.166	3.380		
113	0.677	0.845	1.041	1.289	1.659	1.981	2.360	2.620	2.864	3.165	3.379		
114	0.677	0.845	1.041	1.289	1.659	1.981	2.360	2.620	2.863	3.164	3.378		
115	0.677	0.845	1.041	1.289	1.659	1.981	2.360	2.619	2.863	3.164	3.377		
116	0.677	0.845	1.041	1.289	1.658	1.981	2.359	2.619	2.862	3.163	3.376		
117	0.677	0.845	1.041	1.289	1.658	1.981	2.359	2.618	2.862	3.162	3.376		
118	0.677	0.845	1.041	1.289	1.658	1.980	2.359	2.618	2.861	3.161	3.375		
119	0.677	0.845	1.041	1.289	1.658	1.980	2.358	2.617	2.861	3.161	3.374		
120	0.677	0.845	1.041	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373		
Infinite	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291		

Σχήμα Z.11 : Καρτέλα «Student Distr. Table».

ПАРАРТНМА Н

Υπολογισμός L_D και MDA

Στο Παράρτημα Η δίνονται οι εξισώσεις υπολογισμού του κατώτερου ορίου ανίχνευσης L_D, καθώς και της ελάχιστης ανιχνεύσιμης ραδιενέργειας MDA. Ως κατώτερο όριο ανίχνευσης L_D ορίζεται εκείνο το όριο επιφάνειας (area) της σχηματιζόμενης φωτοκορυφής πάνω από το οποίο η φωτοκορυφή ανιχνεύεται για συγκεκριμένο επίπεδο εμπιστοσύνης. Εναλλακτικά, αν πρόκειται να μετρηθεί ένα δείγμα (a priori εκτίμηση), το κατώτερο όριο ανίχνευσης αποτελεί η ελάχιστη επιφάνεια που πρέπει να έχει μία φωτοκορυφή, ώστε να ανιχνευτεί με βεβαιότητα, σε ένα συγκεκριμένο επίπεδο εμπιστοσύνης. Για καλύτερη κατανόηση των μεγεθών που απαιτούνται για τον υπολογισμό του L_D παρατίθεται το ακόλουθο σχήμα, όπου διακρίνονται τα η κανάλια στα οποία κατανέμεται μία φωτοκορυφή (συνιστάται το η να έχει μέγεθος ±1.5 FWHM), τα m κανάλια αριστερά και δεξιά της φωτοκορυφής για εκτίμηση του υποστρώματος, καθώς και το συνεχές υπόστρωμα B που αντιστοιχεί

Από τη στατιστική προκύπτει ότι η τιμή του L_D σε επίπεδο εμπιστοσύνης 95% και σε όρους επιφάνειας μπορεί να υπολογιστεί από την εξίσωση (Gilmore, 2008):

$$L_{\rm D} = 2.71 + 3.29 \cdot [B \cdot (1 + \frac{n}{2m})]^{1/2} \tag{H.1}$$

Όπου:

- Β η επιφάνεια του συνεχούς υποστρώματος που αντιστοιχεί στην εξεταζόμενη φωτοκορυφή.
- m το πλήθος των καναλιών αριστερά και δεξιά της φωτοκορυφής τα οποία
 χρησιμοποιούνται για τον προσδιορισμό του συνεχούς υποστρώματος Β
- n το πλήθος των καναλιών στα οποία κατανέμεται η εξεταζόμενη φωτοκορυφή.

Η επιφάνεια του συνεχούς υποστρώματος υπολογίζεται με τη μέθοδο του τραπεζίου από την εξίσωση:

$$B = n \cdot \left(\frac{C_{L-1} + C_{U+1}}{2}\right)$$
(H.2)

Όπου:

Cl-1 αριθμός κρούσεων του πρώτου καναλιού πριν τη φωτοκορυφή

 $C_{U^{+1}}$ αριθμός κρούσεων του πρώτου καναλιού μετά τη φωτοκορυφή

Στην περίπτωση που η φωτοκορυφή ενδιαφέροντος υπάρχει και στο υπόστρωμα του ανιχνευτή και στο δείγμα προς ανάλυση, τότε έχει υιοθετηθεί από το ΕΠΤ-ΕΜΠ ο προσδιορισμός του L_D βάσει της εξίσωσης (Luca, 2009):

$$L_{\rm D} = 2k_{\rm a}\sqrt{B_{\rm s}\left(1 + \frac{n_{\rm s}}{2m_{\rm s}}\right) + A_{\rm b}\frac{t_{\rm s}}{t_{\rm b}}\left(1 + \frac{t_{\rm s}}{t_{\rm b}}\right) + B_{\rm b}\left(\frac{t_{\rm s}}{t_{\rm b}}\right)^2\left(1 + \frac{n_{\rm b}}{2m_{\rm b}}\right)}$$
(H.3)

Όπου:

- Ld το όριο ανίχνευσης (Detection Limit) μετρούμενο σε πλήθος καταμετρημένων γεγονότων.
- Bs, Bb η επιφάνεια του συνεχούς υποστρώματος στα φάσματα του δείγματος και του υποστρώματος αντίστοιχα.
- As η καθαρή επιφάνεια φωτοκορυφής στο φάσμα του υποστρώματος.
- ts, tb ο χρόνος συλλογής των φασμάτων δείγματος και υποστρώματος από τον ανιχνευτή αντίστοιχα.
- ns, nb το πλήθος των καναλιών στα οποία κατανέμεται η φωτοκορυφή στα φάσματα δείγματος και υποστρώματος αντίστοιχα.
- m_s, m_b το πλήθος καναλιών αριστερά και δεξιά της φωτοκορυφής στα φάσματα δείγματος και υποστρώματος για τον προσδιορισμό της επιφάνειας του συνεχούς υποστρώματος.

Ανεξαρτήτως του τρόπου προσδιορισμού του L_D, το κατώτερο όριο ανίχνευσης ραδιενέργειας MDA υπολογίζεται μέσω της παρακάτω εξίσωσης:

$$MDA = \frac{L_D}{\text{time-yield-eff-mass}}$$
(H.4)

Όπου:

- yield το ποσοστό εκπομπής της ενέργειας φωτονίου για την οποία γίνεται υπολογισμός του MDA
- eff συντελεστής βαθμονόμησης απόδοσης ανίχνευσης για την ενέργεια φωτονίου που δίνεται ο υπολογισμός του MDA
- mass μάζα του δείγματος που αφορά η γ-φασματοσκοπική ανάλυση

ΠΑΡΑΡΤΗΜΑ Θ

Διαγράμματα χρονική εξέλιξης cps των κυρίαρχων φωτοκορυφών των θυγατρικών του ραδονίου και του θορονίου στα φίλτρα αέρα

Στο Παράρτημα Θ παρουσιάζονται τα σχήματα του Κεφαλαίου 3 σχετικά με τη διερεύνηση της χρονικής εξέλιξης του ρυθμού καταγραφής γεγονότων (cps) για τις κυρίαρχες φωτοκορυφές των θυγατρικών του ραδονίου και του θορονίου στα φίλτρα αέρα, για κάθε σενάριο χρονικής διάρκειας δειγματοληψίας, όπως δίνεται στον Πίνακα 3.7.

Σχήμα Θ.1 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του ραδονίου ²¹⁴Pb και ²¹⁴Bi από τη δειγματοληψία φίλτρου αέρα 6h (φίλτρο a0532).

Σχήμα Θ.3 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του ραδονίου 214 Pb και 214 Bi από τη δειγματοληψία φίλτρου αέρα 6h (φίλτρο a0533).

Σχήμα Θ.4 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του θορονίου 212 Pb και 208 Tl από τη δειγματοληψία φίλτρου αέρα 6h (φίλτρο a0533).

Σχήμα Θ.10 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του θορονίου ²¹²Pb και 208 Tl από τη δειγματοληψία φίλτρου αέρα 24h (φίλτρο a0536).

Σχήμα Θ.13 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του ραδονίου ²¹⁴Pb και ²¹⁴Bi από τη δειγματοληψία φίλτρου αέρα 48h (φίλτρο a0577).

Σχήμα Θ.22 : Ρυθμός καταγραφής γεγονότων (cps) των θυγατρικών του θορονίου ²¹²Pb και 208 Tl από τη δειγματοληψία φίλτρου αέρα 168h (φίλτρο a0541).

ПАРАРТНМА І

Χρονική εξέλιξη MDA επιλεγμένων ραδιενεργών ισοτόπων σε φίλτρα αέρα

Στο Παράρτημα Ι παρουσιάζονται τα σχήματα του Κεφαλαίου 3 σχετικά με τη διερεύνηση της χρονικής εξέλιξης των MDA επιλεγμένων ραδιενεργών ισοτόπων για κάθε σενάριο χρονικής διάρκειας δειγματοληψίας, όπως δίνεται στον Πίνακα 3.7. Όλα τα φίλτρα αναλύθηκαν στον ανιχνευτή XtRa του ΕΠΤ-ΕΜΠ.

Σχήμα I.1: Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 6h (φίλτρο a0532).

Σχήμα I.2: Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 6h (φίλτρο a0533).

Σχήμα I.3: Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 24h (φίλτρο a0534).

Σχήμα I.4 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 24h (φίλτρο a0535).

Σχήμα I.5 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 24h (φίλτρο a0536).

Σχήμα I.6 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 48h (φίλτρο a0537).

Σχήμα I.7 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 48h (φίλτρο a0577).

Σχήμα I.8 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 120h (φίλτρο a0538).

Σχήμα I.9 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 120h (φίλτρο a0542).

Σχήμα I.10 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 168h (φίλτρο a0539).

Σχήμα I.11 : Χρονική εξέλιξη του MDA για επιλεγμένα ραδιενεργά ισότοπα σε φίλτρο ατμοσφαιρικού αέρα δειγματοληψίας 168h (φίλτρο a0541).

ΠΑΡΑΡΤΗΜΑ ΙΑ

Υπολογισμός σταθμισμένης μέσης τιμής

Στο Παράρτημα ΙΑ δίνονται οι εξισώσεις υπολογισμού της σταθμισμένης μέσης τιμής (weighted mean). Η σταθμισμένη μέση τιμή χρησιμοποιείται στις περιπτώσεις όπου χρειάζεται να γίνει ο υπολογισμός της τιμής ενός μεγέθους το οποίο έχει μετρηθεί με δύο ή περισσότερες προσεγγίσεις. Χρησιμοποιώντας τη σταθμισμένη μέση τιμή, το τελικό αποτέλεσμα «κλίνει» περισσότερο στις συνιστώσες με τη μικρότερη αβεβαιότητα και λιγότερο σε αυτές με υψηλές αβεβαιότητες. Η σταθμισμένη μέση τιμή βρίσκει συχνή χρήση στην περίπτωση που προσδιορίζεται η συγκέντρωση ενεργότητας ενός ραδιενεργού ισοτόπου από δύο ή περισσότερες φωτοκορυφές ή και από δύο ή περισσότερους ανιχνευτές. Με τον τρόπο αυτό, οι φωτοκορυφές του ισοτόπου που έχουν μικρότερη αβεβαιότητα επηρεάζουν περισσότερο το τελικό αποτέλεσμα σε αντίθεση με αυτές που έχουν υψηλή αβεβαιότητα. Η εξίσωση υπολογισμού της σταθμισμένης μέσης τιμής είναι η παρακάτω (Debertin & Helmer, 1988):

$$\bar{\mathbf{x}} = \left(\sum_{i=1}^{n} \mathbf{w}_i \mathbf{x}_i\right) / \left(\sum_{i=1}^{n} \mathbf{w}_i\right)$$
(IA. 1)

Όπου :

- x η σταθμισμένη μέση τιμή
- xi οι επιμέρους τιμές πλήθους «i = 1 ... n», για τις οποίες υπολογίζεται η
 σταθμισμένη μέση τιμή
- w_i οι συντελεστές βαρύτητας (weighting factors) κάθε επιμέρους τιμής x_i

Οι συντελεστές βαρύτητας wi για κάθε επιμέρους τιμή xi υπολογίζονται βάσει της εξίσωσης:

$$w_i = \frac{1}{s_i^2}$$

Όπου:

 s_i^2 η μεταβλητότητα (variance) κάθε επιμέρους τιμής x_i (όπου το s_i ισούται με την

(IA. 2)

τυπική απόκλιση σ κάθε επιμέρους τιμής xi)

Η μεταβλητότητα που συνοδεύει τη σταθμισμένη μέση τιμή x̄ προσδιορίζεται με δύο τρόπους:

 Αρχικά, προσδιορίζεται η «εσωτερική μεταβλητότητα» (internal variance) που προκύπτει από τις επιμέρους μεταβλητότητες si² και δεν εξαρτάται από τη σύγκλιση των επιμέρους τιμών xi. Η «εσωτερική μεταβλητότητα» προσδιορίζεται βάσει της εξίσωσης:

$$s_{\text{internal}}^2 = \frac{1}{\sum_{i=1}^n w_i}$$
(IA.3)

Στη συνέχεια, προσδιορίζεται η «εξωτερική μεταβλητότητα» (external variance) η οποία συμπεριλαμβάνει στον υπολογισμό της και τις επιμέρους μεταβλητότητες si² καθώς και τις διαφορές μεταξύ των επιμέρους τιμών xi από τη σταθμισμένη μέση τιμή x̄. Η «εξωτερική μεταβλητότητα» προσδιορίζεται βάσει της εξίσωσης:

$$s_{\text{external}}^{2} = \frac{\sum_{i=1}^{n} w_{i} \cdot (x_{i} - \bar{x})^{2}}{(n-1) \cdot \sum_{i=1}^{n} w_{i}}$$
(IA. 4)

Ως μεταβλητότητα της σταθμισμένης μέσης τιμής x χρησιμοποιείται η μεγαλύτερη μεταβλητότητα μεταξύ της «εσωτερικής» και της «εξωτερικής» μεταβλητότητας.

ПАРАРТНМА ІВ

Βήματα δημιουργίας «SEQUENCE» στο GENIE2000

Στο παράρτημα ΙΒ παρουσιάζεται βήμα προς βήμα η διαδικασία δημιουργίας «SEQUENCE» ή αλλιώς ακολουθίας, στο πρόγραμμα GENIE2000 που χρησιμοποιείται από το ΕΠΤ-ΕΜΠ για τη λήψη των φασμάτων των γφασματοσκοπικών αναλύσεων. Μέσω της επιλογής «SEQUENCE» δίνεται η δυνατότητα λήψης πολλαπλών κατ' εξακολούθηση φασμάτων ίδιας χρονικής διάρκειας και για συγκεκριμένο ανιχνευτή, χωρίς να απαιτείται η παρουσία ή η αλληλεπίδραση του ερευνητή.

Τα βήματα δημιουργίας και έναρξης ενός «SEQUENCE» στο πρόγραμμα GENIE2000 είναι τα εξής:

- Δημιουργία ενός φακέλου στην Επιφάνεια Εργασίας του Υπολογιστή (ή στη συνήθη θέση αποθήκευσης των συλλεχθέντων) και ονομασία του βάσει της χαρακτηριστικής ονομασίας του προς ανάλυση δείγματος.
- Άνοιγμα του λογισμικού GENIE2000 και επιλογή του ανιχνευτή όπου θα ξεκινήσει η συλλογή φάσματος.
- Gamma GE File MCA Calibrate Display Analyze Edit Options Datasource Help ******** Sample Info... Analysis Sequence Idle Channel: 2647 : 1316.8 keV Preset: 1000000/0.00 Acquire Start Expand On Clear ROI Index: -+ Datasource Prev Next TIME INFO Acq. Start Elapsed Preset
- 3. Από τη λίστα του μενού γίνεται επιλογή του «Edit > Analysis Sequence».

 Στο παράθυρο που αναδύεται μπορεί να γίνει επιλογή από την αριστερή λίστα με ονομασία «Step Selection» των βημάτων της ακολουθίας προς δημιουργία. Επιλέγοντας το «Insert Step» γίνεται εισαγωγή του επιθυμητού βήματος της ακολουθίας στη λίστα «Current Steps».

ep Selection:	Edit Steps	Current Steps:	
eak Locate eak Area	Insert Step	>	
teractive Peak Fit rea Correction fficiency Correction	Delete Step		
arentDaughterCorrection teractive Analysis	Select Algorithm		
ost NID Processing	Setup Algorithm		
Apply and the second se		<	>
		Sequence Preferences	1

 Για την έναρξη συλλογής φάσματος πρέπει να γίνει επιλογή του βήματος «Acquisition» από τη λίστα «Step Selection». Επιλέγοντας το «Insert Step», εμφανίζεται το βήμα «Acquisition - Acquire» στη λίστα «Current Steps».

Current Steps:	ire 🔗
Acquisition - Acqu	ire 🔼
<	>
Sequence Proference	
	Sequence Preference

6. Επιλέγοντας το βήμα «Acquisition – Acquire» που εμφανίστηκε στη λίστα «Current Steps» και στη συνέχεια, επιλέγοντας την επιλογή «Setup Algorithm» από την κεντρική λίστα «Edit Steps», αναδύεται το παράθυρο «Acquire Setup», όπου εισάγεται ο επιθυμητός χρόνος συλλογής φάσματος.

🔁 Edit Anal	ysis Sequence		×
Step Pee Acqui	re Setup	×	
Area Effic Nuc	et	Computational Preset None Value:	~
Pari C Real ⁻ Intel Deti ISO Pos	Time C Sec C Min C Hr	C Integral Start Chan: 0 C Area Stop Chan: 0	
Rep QA. Sav Sav	et ount: 0	 Don't Clear Data/Time at Start of Acquisition Clear Data/Time at Initial Start of Acquisition Clear Data/Time at Start of Acquisition 	
	Cancel Help		

7. Στη συνέχεια, επιλέγοντας το βήμα «Save Datasource» από τη λίστα «Step Selection», αποθηκεύεται το συλλεχθέν φάσμα. Η παραπάνω διαδικασία μπορεί να επαναληφθεί όσες φορές είναι αναγκαίο, για την Έναρξη-Λήξη-Αποθήκευση όσων συνεχόμενων φασμάτων χρειάζονται. Προσοχή πρέπει να δοθεί στο ότι το χρονικό διάστημα λήψης φάσματος που ορίσθηκε στο βήμα vi, θα πρέπει να είναι ίδιο σε όλα τα επιμέρους «Acquisition-Acquire» βήματα, διότι δε δίνεται η επιλογή της λήψης διαφορετικής χρονικής διάρκειας φασμάτων σε ακολουθία.

eak Area	Edit Steps	Current Steps:
teractive Peak Fit	Insert Step	Acquisition - Acquire
rea Correction fficiency Correction uclide Identification arentDaughterCorrection	Delete Step	Save Datasource - Save Datasource to Fi Acquisition - Acquire Save Datasource - Save Datasource to Fi Acquisition - Acquire
eractive Änalysis etection Limits		Save Datasource - Save Datasource to Fi
011929 Char. Limits	Select Algorithm	
eporting A Analysis	Setup Algorithm	
ave Datasource 🗸 🗸		<

8. Έπειτα, επιλέγοντας το «Sequence Preferences» αναδύεται το παράθυρο «Analysis Sequence Preferences» όπου επιλέγοντας το «Automatic file naming for Save Datasource steps» το ίδιο το λογισμικό αποθηκεύει το αρχείο της συλλογής φάσματος στον φάκελο CAMFILES σε μορφή .CNF και τους δίνει ως όνομα τον εκάστοτε αύξοντα αριθμό ξεκινώντας από το 00000001.CNF έως το 10⁸.

Sequence	×
Analysis Sequence Preferences	
 Edit sample information Prompt to select datasource Automatic file naming for Save Datasource steps 	Efficiency Calibration Import calibration at execution Prompt Specify now; (Be2820_pt.cal)
Cascade Correction Enable Cascade Correction Prompt for Geometry Composer file C Use:	Browse
ОК	Help
OK Cancel Help Load	Store Execute

9. Για την επιλογή διαφορετικής ονομασίας των συλλεχθέντων φασμάτων, καθώς και προσδιορισμό του φακέλου αποθήκευσής τους (όπως ορίστηκε στο βήμα i), το βήμα viii παραλείπεται και στο παράθυρο «Edit Analysis Sequence» επιλέγεται είτε «Execute» για εκτέλεση της ακολουθίας είτε «Store» για αποθήκευση της ακολουθίας, όπως φαίνεται στα βήματα x και xi αντίστοιχα.

10. Για την εκτέλεση της ακολουθίας επιλέγεται το «Execute». Στο αναδυόμενο παράθυρο που εμφανίζεται χρειάζεται να προσδιορισθεί η διεύθυνση του φακέλου όπου θα αποθηκεύονται τα φάσματα, καθώς και κάθε όνομα φάσματος που θα συλλεχθεί, με τη σειρά που θα συλλεχθεί. Αν, για παράδειγμα, η ακολουθία ανάλυσης περιλαμβάνει τη συλλογή 10 φασμάτων, θα ζητηθούν με τη σειρά και τα 10 ονόματα πριν ξεκινήσει η λήψη φάσματος. Απαιτείται προσοχή να μη δοθεί το ίδιο όνομα σε 2 ή περισσότερα φάσματα που περιέχονται στον ίδιο φάκελο.

	Save Dat	asource	 ? 🗙	
Step Selection: Peak Area Interactive Pea Area Correction Efficiency Corre Nuclide Identifi ParentDaughte	Save in:	Air Filter Sequence Spectra	EE V	ource to Fi
Interactive Ana Detection Limit ISO11929 Char Post NID Proce Reporting QA Analysis Save Datasour	File name:	Spectrum1	ОК	purce to Fi
<	Save as type: Description:	CAM Files (*.CNF)	 Cancel Help	
ОК	,pilon.	1		

11. Μόλις ετοιμαστεί η ακολουθία ανάλυσης, για την αποθήκευσή της για μελλοντική χρήση, στο παράθυρο «Edit Analysis Sequence» επιλέγεται το «Store», και στο αναδυόμενο παράθυρο δίνεται το όνομα της ακολουθίας, καθώς και μια μικρή περιγραφή της, ώστε να ξεχωρίζει από άλλες αποθηκευμένες ακολουθίες.

Step Selection: Peak Area	Edit Ste	psCurrer	it Steps:		
Interactive Peak Fit Area Correction Efficiency Correction	Store Analy	sis Sequence	a 🔀	ve Datasource to Fi	
Nuclide Ídentification ParentDaughterCorrectior	File name:	Sequence1	. ASF	ve Datasource to Fi	
Interactive Ánalysis	Seq. Description:	Sequence1	x	ve Datasource to Fi	
Detection Limits ISO11929 Char. Limits Post NID Processing Reporting	Directory is:	C:\GENIE2K\CTLFILES\			
QA Analysis Save Datasource	OK Car	Help		>	
		Sequenc	e Preferences		

12. Για την επιλογή μιας ήδη αποθηκευμένης ακολουθίας ανάλυσης, από το μενού επιλογών του GENIE2000 γίνεται επιλογή του «Analyze». Από τις επιλογές που αναδύονται επιλέγεται το «Execute Sequence», όπου και εμφανίζονται όλες οι αποθηκευμένες ακολουθίες ανάλυσης με τα ονόματά τους. Μόλις επιλεγεί η επιθυμητή ακολουθία, επιλέγοντας το «Start» το πρόγραμμα ζητά από το χρήστη τις πληροφορίες που αναφέρονται στο βήμα x και η λήψη φάσματος ξεκινά. Είναι σημαντικό να σημειωθεί πως αν επιλεγεί η λήψη φασμάτων με ακολουθία, το GENIE2000 δε δίνει τη δυνατότητα στον χρήστη να κλείσει το πρόγραμμα και τον υπολογιστή και η λήψη του φάσματος να συνεχιστεί, όπως γίνεται στην απλή λήψη φάσματος. Επομένως, ο υπολογιστής, καθώς και το πρόγραμμα πρέπει να μείνουν ανοιχτά καθ' όλη της διάρκεια της λήψης φάσματος.

ΠΑΡΑΡΤΗΜΑ ΙΓ

Συντελεστές επίλυσης εξισώσεων με χρήση της μεθόδου των (Forkapic, et al., 2012)

Στο Παράρτημα ΙΓ δίνονται οι συντελεστές **α**₁ έως και **α**₁₈ (για τις *Εξισώσεις* 4.31 έως 4.38) για κάθε φίλτρο αέρα και για κάθε σενάριο χρονικής διάρκειας λήψης διαδοχικών φασμάτων, όπως αυτοί προσδιορίσθηκαν από το πρόγραμμα Mathematica, στα πλαίσια της διερεύνησης που έλαβε χώρα στο κεφάλαιο 4 της παρούσας Δ.Δ..

ΙΓ.1 1° τριήμερο Δειγματοληψίας φίλτρων αέρα 4΄΄

Πίνακας ΙΓ.1 : Συντελεστές Επίλυσης Εξισώσεων κατά τη δειγματοληψία και κατά τη γ-φασματοσκοπική ανάλυση για τα φίλτρα αέρα 4΄΄ του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022, όπως αυτοί προκύπτουν με χρήση του υπολογιστικού προγράμματος Mathematica, επιλέγοντας συγκεντρώσεις ενεργότητας δύο διαδοχικών φασμάτων χρονικής διάρκειας 5min το κάθε ένα.

Ημερομηνία Κ Δειγματοληψίας Φ	Κωδικός	Συντ	ελεστές τ	; Επίλυα η Δειγμ	σης Εξι ατοληψ	σώσεων νία	ν κατά		Συντελ	εστές Ε	πίλυση	ς Εξισά	οσεων κ	ατά τη	γ-φασμ	ατοσκο	πική Αν	/άλυση	
Δειγματοληψιας	Ψιλιρου	a_1	a₂	a3	a4	a₅	a ₆	a ₇	a ₈	a ₉	a ₁₀	a 11	a ₁₂	a ₁₃	a ₁₄	a 15	a 16	a ₁₇	a 18
	a0595	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	28.17	25.57	25.15	22.48	15.89	16.93	23.00	16.82	17.43	19.30
20/2/2022	a0596	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	28.17	25.57	25.15	22.48	15.89	16.93	23.00	16.82	17.43	19.30
50/5/2022	a0597	4.60	30.60	31.70	14.60	15.83	26.02	30.18	28.60	27.70	25.15	24.73	22.11	15.63	16.65	22.62	16.55	17.14	18.99
	a0598	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0599	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	28.17	25.57	25.15	22.48	15.89	16.93	23.00	16.82	17.43	19.30
21/2/2022	a0600	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
51/5/2022	a0601	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0602	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0603	5.02	33.41	34.62	15.94	17.28	28.41	32.95	31.23	30.25	27.46	27.01	24.14	17.07	18.18	24.70	18.07	18.72	20.73
1/4/2022	a0604	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
1/4/2022	a0605	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0606	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89

Πίνακας ΙΓ.2 : Συντελεστές Επίλυσης Εξισώσεων κατά τη δειγματοληψία και κατά τη γ-φασματοσκοπική ανάλυση για τα φίλτρα αέρα 4΄΄ του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022, όπως αυτοί προκύπτουν με χρήση του υπολογιστικού προγράμματος Mathematica επιλέγοντας συγκεντρώσεις ενεργότητας δύο διαδοχικών φασμάτων χρονικής διάρκειας 10min το κάθε ένα.

Ημερομηνία Κωδικ Δειγματοληψίας Φίλτρ	Κωδικός	Συντ	ελεστές τ	; Επίλυα η Δειγμ	σης Εξι ατοληψ	σώσεων νία	ν κατά	ά Συντελεστές Επίλυσης Εξισώσεων κατά τη γ-φασματοσκοπική Ανάλυση											
Δειγματοληψιας	Φιλιρου	a_1	a₂	a₃	a4	a₅	a ₆	a7	a ₈	a ₉	a 10	a 11	a ₁₂	a ₁₃	a 14	a 15	a 16	a 17	a ₁₈
	a0595	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	25.15	22.48	19.59	17.37	15.89	16.93	23.00	17.27	17.46	16.20
20/2/2022	a0596	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	25.15	22.48	19.59	17.37	15.89	16.93	23.00	17.27	17.46	16.20
30/3/2022	a0597	4.60	30.60	31.70	14.60	15.83	26.02	30.18	28.60	24.73	22.11	19.27	17.09	15.63	16.65	22.62	16.98	17.17	15.94
	a0598	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0599	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	25.15	22.48	19.59	17.37	15.89	16.93	23.00	17.27	17.46	16.20
21/2/2022	a0600	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
51/5/2022	a0601	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0602	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0603	5.02	33.41	34.62	15.94	17.28	28.41	32.95	31.23	27.01	24.14	21.04	18.66	17.07	18.18	24.70	18.54	18.75	17.40
1/4/2022	a0604	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
1/4/2022	a0605	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0606	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54

Πίνακας ΙΓ.3 : Συντελεστές Επίλυσης Εξισώσεων κατά τη δειγματοληψία και κατά τη γ-φασματοσκοπική ανάλυση για τα φίλτρα αέρα 4΄΄ του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022, όπως αυτοί προκύπτουν με χρήση του υπολογιστικού προγράμματος Mathematica επιλέγοντας συγκεντρώσεις ενεργότητας δύο διαδοχικών φασμάτων χρονικής διάρκειας 15min το κάθε ένα.

Ημερομηνία Κωδικ Δειγματοληψίας Φίλτρ	Κωδικός	Συντ	ελεστές τ	; Επίλυα η Δειγμ	σης Εξι ατοληψ	σώσεων νία	ν κατά	ά Συντελεστές Επίλυσης Εξισώσεων κατά τη γ-φασματοσκοπική Ανάλυση											
Δειγματοληψιας	Φιλιρου	aı	a₂	a₃	a4	a₅	a ₆	a7	a ₈	a ₉	a 10	a 11	a 12	a ₁₃	a ₁₄	a 15	a 16	a 17	a ₁₈
	a0595	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	22.23	19.76	15.16	13.43	15.89	16.93	23.00	17.29	17.14	13.60
20/2/2022	a0596	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	22.23	19.76	15.16	13.43	15.89	16.93	23.00	17.29	17.14	13.60
30/3/2022	a0597	4.60	30.60	31.70	14.60	15.83	26.02	30.18	28.60	21.87	19.44	14.91	13.21	15.63	16.65	22.62	17.00	16.86	13.38
	a0598	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0599	4.68	31.11	32.24	14.84	16.09	26.45	30.69	29.08	22.23	19.76	15.16	13.43	15.89	16.93	23.00	17.29	17.14	13.60
21/2/2022	a0600	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
51/5/2022	a0601	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0602	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0603	5.02	33.41	34.62	15.94	17.28	28.41	32.95	31.23	23.88	21.22	16.28	14.42	17.07	18.18	24.70	18.56	18.41	14.61
1/4/2022	a0604	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
1/4/2022	a0605	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0606	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72

ΙΓ.2 2° τριήμερο Δειγματοληψίας φίλτρων αέρα 4΄΄

Πίνακας ΙΓ.4 : Συντελεστές Επίλυσης Εξισώσεων κατά τη δειγματοληψία και κατά τη γ-φασματοσκοπική ανάλυση για τα φίλτρα αέρα 4΄΄ του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022, όπως αυτοί προκύπτουν με χρήση του υπολογιστικού προγράμματος Mathematica επιλέγοντας συγκεντρώσεις ενεργότητας δύο διαδοχικών φασμάτων χρονικής διάρκειας 5min το κάθε ένα.

Ημερομηνία Κα Δειγματοληψίας Φί	Κωδικός	Συντ	ελεστές τ	; Επίλυο η Δειγμ	σης Εξι ατοληψ	σώσεων νία	ν κατά		Συντελ	εστές Ε	πίλυση	ς Εξισά	οσεων κ	ατά τη	γ-φασμ	ατοσκο	πική Α	νάλυση	
Δειγματοληψιας	Φιλιρου	a1	a₂	a₃	a4	a₅	a ₆	a ₇	a ₈	a ₉	a ₁₀	a 11	a ₁₂	a 13	a 14	a 15	a 16	a ₁₇	a 18
	a0608	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
10/5/2022	a0609	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
10/5/2022	a0610	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0611	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0612	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
11/5/2022	a0613	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
11/5/2022	a0614	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0615	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0616	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
12/5/2022	a0617	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
12/5/2022	a0618	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89
	a0619	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	30.49	27.67	27.22	24.33	17.20	18.32	24.89	18.21	18.86	20.89

Πίνακας ΙΓ.5 : Συντελεστές Επίλυσης Εξισώσεων κατά τη δειγματοληψία και κατά τη γ-φασματοσκοπική ανάλυση για τα φίλτρα αέρα 4΄΄ του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022, όπως αυτοί προκύπτουν με χρήση του υπολογιστικού προγράμματος Mathematica επιλέγοντας συγκεντρώσεις ενεργότητας δύο διαδοχικών φασμάτων χρονικής διάρκειας 10min το κάθε ένα.

Ημερομηνία Κα Δειγματοληψίας Φί	Κωδικός	Συντ	ελεστές τ	; Επίλυα η Δειγμ	σ ης Εξι ατοληψ	σώσεω\ νία	ν κατά		Συντελ	εστές Ε	πίλυση	ς Εξισά	οσεων κ	ατά τη	γ-φασμ	ατοσκο	πική Αν	νάλυση	
Δειγματοληψιας	Ψιλιρου	a_1	a₂	a₃	a4	a₅	a ₆	a ₇	a ₈	a ₉	a ₁₀	a 11	a ₁₂	a ₁₃	a ₁₄	a 15	a 16	a ₁₇	a ₁₈
	a0608	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
10/5/2022	a0609	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
10/5/2022	a0610	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0611	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0612	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
11/5/2022	a0613	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
11/5/2022	a0614	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0615	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0616	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
12/5/2022	a0617	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
12/5/2022	a0618	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54
	a0619	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	27.22	24.33	21.20	18.81	17.20	18.32	24.89	18.69	18.90	17.54

Πίνακας ΙΓ.6 : Συντελεστές Επίλυσης Εξισώσεων κατά τη δειγματοληψία και κατά τη γ-φασματοσκοπική ανάλυση για τα φίλτρα αέρα 4΄΄ του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022, όπως αυτοί προκύπτουν με χρήση του υπολογιστικού προγράμματος Mathematica επιλέγοντας συγκεντρώσεις ενεργότητας δύο διαδοχικών φασμάτων χρονικής διάρκειας 15min το κάθε ένα.

Ημερομηνία	Κωδικός	Συντελεστές Επίλυσης Εξισώσεων κατά τη Δειγματοληψία				Συντελεστές Επίλυσης Εξισώσεων κατά τη γ-φασματοσκοπική Ανάλυση													
Δειγματοληψιας	Φιλιρου	a1	a₂	a₃	a4	a₅	a ₆	a7	a ₈	a ₉	a 10	a 11	a 12	a ₁₃	a ₁₄	a 15	a 16	a 17	a 18
	a0608	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
10/5/2022	a0609	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
10/5/2022	a0610	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0611	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0612	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
11/5/2022	a0613	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
11/5/2022	a0614	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0615	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0616	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
12/5/2022	a0617	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0618	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72
	a0619	5.06	33.67	34.89	16.07	17.42	28.63	33.22	31.48	24.07	21.39	16.41	14.54	17.20	18.32	24.89	18.71	18.55	14.72

ΠΑΡΑΡΤΗΜΑ ΙΔ

Συμπληρωματικές καμπύλες βαθμονόμησης απόδοσης

Πέραν των βασικών βαθμονομήσεων απόδοσης που αναφέρθηκαν στο κεφάλαιο 5 της παρούσας Δ.Δ., στα πλαίσια των ερευνών που έλαβαν χώρα κατά τη διάρκεια εκπόνησης της διατριβής πραγματοποιήθηκαν 15 επιπρόσθετες βαθμονομήσεις στους ανιχνευτές XtRa, LEGe και Ge2 του ΕΠΤ-ΕΜΠ για πλήθος συνδυασμών «γεωμετρίας δείγματος-υλικού δείγματος-ανιχνευτή», οι οποίες παρουσιάζονται στο Παράρτημα ΙΔ.

Να σημειωθεί ότι για κάθε καμπύλη βαθμονόμησης απόδοσης δίνονται οι συντελεστές των εξισώσεών της (για χαμηλές <279.19keV, και υψηλές ενέργειες >279.19keV) σύμφωνα με την εξίσωση:

$$\ln(\text{eff}) = a_0 + a_1 \cdot \ln(\text{E}) + a_2 \cdot \ln(\text{E})^2$$

όπου *eff* είναι η απόδοση φωτοκορυφής για την εκάστοτε ενέργεια φωτονίου και *E* είναι η ενέργεια του φωτονίου σε keV.

ΙΔ.1 Βαθμονομήσεις απόδοσης στον ανιχνευτή XtRa

Οι συνδυασμοί «γεωμετρίας δείγματος-υλικού δείγματος» που βαθμονομήθηκαν στον ανιχνευτή XtRa είναι οι ακόλουθοι:

- Συνδυασμός 1 : Κυλινδρική γεωμετρία όγκου 8.72cm³, εσωτερικής διαμέτρου
 3.9cm από αλουμίνιο, κλεισμένη με πλαστική μεμβράνη (στην πλευρά της γεωμετρίας που είναι στραμμένη προς τον ανιχνευτή), γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.07gr/cm³.
- Ευνδυασμός 2 : Κυλινδρική γεωμετρία όγκου 8.72cm³, εσωτερικής διαμέτρου
 3.9cm από αλουμίνιο, κλεισμένη με φύλλο αλουμινίου (στην πλευρά της γεωμετρίας που είναι στραμμένη προς τον ανιχνευτή), γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.07gr/cm³.
- Ευνδυασμός 3 : Κυλινδρική γεωμετρία όγκου 8.72cm³, εσωτερικής διαμέτρου
 3.9cm από αλουμίνιο, κλεισμένη με φύλλο αλουμινίου (στην πλευρά της γεωμετρίας που είναι στραμμένη προς τον ανιχνευτή), γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.49gr/cm³.

- iv. Συνδυασμός 4 : Κυλινδρική γεωμετρία όγκου 26.1cm³, εσωτερικής διαμέτρου
 5.23cm από πολυπροπυλένιο, γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.00gr/cm³.
- *Συνδυασμός 5* : Κυλινδρική γεωμετρία όγκου 26.1cm³, εσωτερικής διαμέτρου 5.23cm από πολυπροπυλένιο, γεμισμένη με σκωρία υψικαμίνου (blast furnace slag) πυκνότητας 1.724gr/cm³.
- νi. Συνδυασμός 6 : Κυλινδρική γεωμετρία όγκου 26.1 cm³, εσωτερικής διαμέτρου
 5.23 cm από πολυπροπυλένιο, με τοποθετημένο στο εσωτερικό της φίλτρο αέρα κομμένο σε σχήμα δίσκου διαμέτρου 4.275 cm και πάχους 0.2 mm.
- νii. Συνδυασμός 7 : Φίλτρο αέρα 4΄΄ ενεργής διαμέτρου 9cm (καθώς από την προσαρμογή του φίλτρου στην αντλία για τη δειγματοληψία αέρα, μέρος της εξωτερικής επιφάνειας του φίλτρου, σχήματος δακτυλίου και πάχους ~0.58cm, δεν είναι διαθέσιμο για συλλογή δείγματος) πάχους 0.5mm.

	Συνδυα	ασμός 1	Συνδυα	ασμός 2	Συνδυασμός 3		
	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	
a _o	-8.544	2.497	-8.7828	2.3818	-9.4838	2.3637	
a1	3.2241	-0.8382	3.3093	-0.8079	3.5632	-0.8145	
a ₂	-0.3629	0.0103	-0.3709	0.0081	-0.3946	0.0092	
RMS	0.88%	0.66%	1.03%	0.72%	1.43%	0.70%	
\mathbf{R}^2	0.9979	0.9998	0.9970	0.9998	0.9937	0.9998	

Πίνακας ΙΔ.1α : Συντελεστές καμπύλων βαθμονόμησης απόδοσης για τον ανιχνευτή XtRa για διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος».

Πίνακας ΙΔ.1β : Συντελεστές καμπύλων βαθμονόμησης απόδοσης για τον ανιχνευτή XtRa για διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος».

	Συνδυα	ασμός 4	Συνδυα	ισμός 5	Συνδυασμός 6		
	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	
ao	-10.549	2.2045	-13.524	1.9854	-6.4168	2.7706	
a ₁	3.9367	-0.8206	5.0262	-0.7854	2.4547	-0.8745	
a ₂	-0.4327	0.0101	-0.5347	0.0086	-0.289	0.0122	
RMS	2.38	0.72	3.48%	0.99%	0.445	0.79%	
R ²	0.9837	0.9998	0.9711	0.9998	0.9996	0.9997	

	Συνδυασμός 7					
	<279.19 keV	>279.19 keV				
ao	-6.6843	2.3313				
a_1	2.4301	-0.8547				
a ₂	-0.2857	0.0131				
RMS	0.16	0.75				
\mathbb{R}^2	0.9999	0.9997				

Πίνακας ΙΔ.1γ : Συντελεστές καμπύλων βαθμονόμησης απόδοσης για τον ανιχνευτή XtRa για διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος».

Στο Σχήμα ΙΔ.1 που ακολουθεί δίνεται η συγκριτική αναπαράσταση των καμπύλων βαθμονόμησης για τους διάφορους συνδυασμούς «γεωμετρίας δείγματοςυλικού δείγματος» στον ανιχνευτή XtRa.

Σχήμα ΙΔ.1 : Συγκριτική αναπαράσταση των καμπύλων βαθμονόμησης για τους διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος» στον ανιχνευτή

ΙΔ.2 Βαθμονομήσεις απόδοσης στον ανιχνευτή LEGe

Οι συνδυασμοί «γεωμετρίας δείγματος-υλικού δείγματος» που βαθμονομήθηκαν στον ανιχνευτή LEGe είναι οι ακόλουθοι:

- Συνδυασμός 1 : Κυλινδρική γεωμετρία όγκου 8.72cm³, εσωτερικής διαμέτρου
 3.9cm από αλουμίνιο, κλεισμένη με πλαστική μεμβράνη (στην πλευρά της γεωμετρίας που είναι στραμμένη προς τον ανιχνευτή), γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.00gr/cm³.
- ii. Συνδυασμός 2 : Κυλινδρική γεωμετρία όγκου 60.57cm³, εσωτερικής διαμέτρου 6.77cm από PVC, γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.00gr/cm³.
- Εξυνδυασμός 3 : Κυλινδρική γεωμετρία όγκου 26.1cm³, εσωτερικής διαμέτρου
 5.23cm από πολυπροπυλένιο, με τοποθετημένο στο εσωτερικό της φίλτρο αέρα κομμένο σε σχήμα δίσκου διαμέτρου 4.275cm και πάχους 0.2mm.
- iv. Συνδυασμός 4 : Κυλινδρική γεωμετρία όγκου 26.1cm³, εσωτερικής διαμέτρου
 5.23cm από πολυπροπυλένιο, γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.00gr/cm³.
- *Συνδυασμός 5* : Κυλινδρική γεωμετρία όγκου 18.1cm³, εσωτερικής διαμέτρου
 5.58cm από πολυπροπυλένιο, γεμισμένη με τυπικής σύστασης χώμα πυκνότητας 1.00gr/cm³.
- νi. Συνδυασμός 6 : Κυλινδρική γεωμετρία όγκου 26.1cm³, εσωτερικής διαμέτρου
 5.23cm από πολυπροπυλένιο, γεμισμένη με σκωρία υψικαμίνου (blast furnace slag) πυκνότητας 1.724gr/cm³.

	Συνδυα	ισμός 1	Συνδυο	ισμός 2	Συνδυασμός 3		
	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	
ao	-13.046	8.7218	-17.268	7.613	-11.025	8.8398	
a_1	5.3468	-2.6488	6.6332	-2.5451	4.6194	-2.6313	
a_2	-0.6237	0.1094	-0.7415	0.1036	-0.5533	0.1074	
RMS	0.65%	1.09%	1.45%	1.19%	1.46%	1.01%	
R ²	0.9998	0.9998	0.9984	0.9997	0.9990	0.9998	

Πίνακας ΙΔ.2α : Συντελεστές καμπύλων βαθμονόμησης απόδοσης για τον ανιχνευτή LEGe για διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος».

	Συνδυα	ασμός 4	Συνδυα	ισμός 5	Συνδυασμός 6		
	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV	
a _o	-15.006	8.4265	-13.463	8.4948	-18.444	7.687	
a_1	5.9387	-2.6806	5.3852	-2.6471	7.2185	-2.4759	
a ₂	-0.6789	0.1126	-0.6238	0.1098	-0.7997	0.0979	
RMS	0.85%	1.03%	0.72%	0.95%	2.23%	1.45%	
R ²	0.9996	0.9998	0.9997	0.9998	0.9962	0.9997	

Πίνακας ΙΔ.2β : Συντελεστές καμπύλων βαθμονόμησης απόδοσης για τον ανιχνευτή LEGe για διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος».

Στο Σχήμα ΙΔ.2 που ακολουθεί δίνεται η συγκριτική αναπαράσταση των καμπύλων βαθμονόμησης για τους διάφορους συνδυασμούς «γεωμετρίας δείγματοςυλικού δείγματος» στον ανιχνευτή LEGe.

Σχήμα ΙΔ.2 : Συγκριτική αναπαράσταση των καμπύλων βαθμονόμησης για τους διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος» στον ανιχνευτή

ΙΔ.3 Βαθμονομήσεις απόδοσης στον ανιχνευτή Ge

Οι συνδυασμοί «γεωμετρίας δείγματος-υλικού δείγματος» που βαθμονομήθηκαν στον ανιχνευτή Ge2 είναι οι ακόλουθοι:

- Συνδυασμός 1 : Φίλτρο Whatman 90mm, διπλωμένο σε γεωμετρία 3.2x3.2cm²
 πάχους 1.5mm.
- Ευνδυασμός 2 : Φίλτρο Whatman 90mm, το οποίο έχει διάμετρο 9cm και πάχος 0.5mm.

Πίνακας ΙΔ.3 : Συντελεστές καμπύλων βαθμονόμησης απόδοσης για τον ανιχνευτή Ge για διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος».

	Συνδυο	ισμός 1	Συνδυασμός 2			
	<279.19 keV	>279.19 keV	<279.19 keV	>279.19 keV		
a _o	-9.986	5.059	-10.768	3.8647		
a_1	4.0032	-1.522	3.9393	-1.3687		
a ₂	-0.4592	0.0474	-0.4412	0.0399		
RMS	0.81%	0.72%	0.61%	0.66%		
R ²	0.9992	0.9998	0.9992	0.9999		

Στο Σχήμα ΙΔ.3 που ακολουθεί δίνεται η συγκριτική αναπαράσταση των καμπύλων βαθμονόμησης για τους διάφορους συνδυασμούς «γεωμετρίας δείγματοςυλικού δείγματος» στον ανιχνευτή Ge2

Σχήμα ΙΔ.3 : Συγκριτική αναπαράσταση των καμπύλων βαθμονόμησης για τους διάφορους συνδυασμούς «γεωμετρίας δείγματος-υλικού δείγματος» στον ανιχνευτή

ΠΑΡΑΡΤΗΜΑ ΙΕ

Ατμοσφαιρικές συγκεντρώσεις βραχύβιων θυγατρικών του ραδονίου

Στο Παράρτημα ΙΕ δίνεται το σύνολο των επιμέρους συγκεντρώσεων πυρήνων/m³ των βραχύβιων θυγατρικών του ραδονίου για κάθε συλλεχθέν φίλτρο 4΄΄ και κάθε μέθοδος που εφαρμόσθηκε για τα 2 τριήμερα δειγματοληψίας (30/3/2022-1/4/2022 και 10/5/2022-12/5/2022), όπως αυτά παρουσιάσθηκαν στο κεφάλαιο 4 της παρούσας Δ.Δ..

IE.1 Υπολογισθείσες συγκεντρώσεις βραχύβιων θυγατρικών του ραδονίου με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Στους Πίνακες ΙΕ.1, ΙΕ.2, ΙΕ.3, ΙΕ.4, ΙΕ.5 και ΙΕ.6, που ακολουθούν δίνονται οι συγκεντρώσεις πυρήνων/m³ των βραχύβιων θυγατρικών του ραδονίου στα συλλεχθέντα φίλτρα 4΄΄, όπως αυτοί υπολογίσθηκαν με τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων. Τα αποτελέσματα δίνονται ως «Κάτω» και «Άνω» όριο λόγω της διερεύνησης που έλαβε χώρα για αναζήτηση θετικών λύσεων του συστήματος αναλυτικών εξισώσεων σε εύρος ±3σ περί των μετρούμενων τιμών του ²¹⁴Pb και ²¹⁴Bi από τις γ-φασματοσκοπικές αναλύσεις των φίλτρων. Η συνεισφορά των πυρήνων του ²¹⁴Po στην τελική ατμοσφαιρική συγκέντρωση των πυρήνων των βραχύβιων θυγατρικών του ραδονίου είναι αμελητέα και γι' αυτό δε συμπεριλαμβάνεται στους πίνακες που ακολουθούν.

Πίνακας IE.1 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 5min η κάθε μία και τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Κωδικός	Ραδιενεργό	Πυρήν	νες/m³	Bq	/m ³	Σύν πυρήν	ολο ων/m ³
φάσματος	ισότοπο	Κάτω	Άνω	Κάτω	Άνω	Κάτω	Άνω
		όριο	όριο	όριο	όριο	όριο	όριο
	Po-218						
a0595	Pb-214			-	-		
	Bi-214						
	Po-218	1411	1355	5.31	5.10		
a0596	Pb-214	867	1582	0.37	0.68	3618	4510
	Bi-214	1340	1573	0.78	0.92		
	Po-218	320	2565	1.2	9.65		
a0597	Pb-214	2217	116	0.95	0.05	4187	4917
	Bi-214	1650	2236	0.96	1.30		
	Po-218	172	1413	0.65	5.32	2200	2012
a0598	Pb-214	1102	212	0.47	0.09	2209	2913
	Bi-214	935	1288	0.55	0.75		
	Po-218		389		1.46		
a0599	Pb-214	-	2577	-	1.11	-	4260
	Bi-214		1294		0.76		
	Po-218	154	1121	0.58	4.22		
a0600	Pb-214	1217	287	0.52	0.12	2256	2441
	Bi-214	885	1033	0.52	0.60		
	Po-218	783	1332	2.95	5.01		
a0601	Pb-214	718	254	0.31	0.11	2684	2888
	Bi-214	1183	1302	0.69	0.76		
	Po-218	949	127	3.57	0.48		
a0602	Pb-214	254	1418	0.11	0.61	2100	2596
	Bi-214	897	1051	0.52	0.61		
	Po-218	667	1643	2.51	6.18	01.45	0.41.5
a0603	Pb-214	1173	255	0.5	0.11	3147	3415
	Bi-214	1307	1517	0.76	0.89		
	Po-218	807	1321	3.04	4.97		
a0604	Pb-214	993	1183	0.43	0.51	3018	4073
	Bi-214	1218	1569	0.71	0.92		
	Po-218		316		1.19		
a0605	Pb-214	-	2563	-	1.10	-	4740
	Bi-214		1861		1.09		
	Po-218		•	•		-	
a0606	Pb-214			-	-		
	Bi-214						

Πίνακας ΙΕ.2 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 10min η κάθε μία και τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Κωδικός	Ραδιενεργό	Πυρή	νες/m³	Bq	/m ³	Σύν πυρήν	ολο ων/m³
φάσματος	ισότοπο	Κάτω	Άνω	Κάτω	Άνω	Κάτω	Άνω
		όριο	όριο	όριο	όριο	όριο	όριο
	Po-218	76	1433	0.29	5.39		
a0595	Pb-214	2831	1788	1.22	0.77	4410	5089
	Bi-214	1503	1868	0.88	1.09		
	Po-218	1429	2149	5.37	8.08		
a0596	Pb-214	717	203	0.31	0.09	3478	3911
	Bi-214	1332	1559	0.78	0.91		
	Po-218						
a0597	Pb-214				-		
	Bi-214						
	Po-218	364	1282	1.37	4.82		
a0598	Pb-214	1035	211	0.44	0.09	2354	2638
	Bi-214	955	1145	0.56	0.67		
	Po-218	284	2502	1.07	9.41		
a0599	Pb-214	1804	165	0.77	0.07	3085	4175
	Bi-214	997	1508	0.58	0.88		
	Po-218	849	735	3.19	2.77		
a0600	Pb-214	222	940	0.10	0.4	1986	2805
	Bi-214	915	1130	0.53	0.66		
	Po-218		536		2.02		
a0601	Pb-214	-	1653	-	0.71		3594
	Bi-214		1405		0.82		
	Po-218	230	563	0.86	2.12		
a0602	Pb-214	1122	1406	0.48	0.60	2357	3298
	Bi-214	1005	1329	0.59	0.78		
	Po-218	131	1958	0.49	7.37		
a0603	Pb-214	1540	84	0.66	0.04	2876	3696
	Bi-214	1205	1654	0.70	0.96		
	Po-218	358	1956	1.35	7.36		
a0604	Pb-214	1746	477	0.75	0.20	3537	4273
	Bi-214	1433	1840	0.84	1.07		
	Po-218	730	1885	2.75	7.09		
a0605	Pb-214	1320	314	0.57	0.13	3434	3849
	Bi-214	1384	1650	0.81	0.96		
	Po-218	14	625	0.05	2.35		
a0606	Pb-214	2100	1786	0.90	0.77	3501	4036
	Bi-214	1387	1625	0.81	0.95		

Πίνακας IE.3 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 15min η κάθε μία και τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Κωδικός	Ραδιενεργό	Πυρήν	νες/m³	Bq	/m ³	Σύν πυρήν	νολο ων/m³
φάσματος	ισότοπο	Κάτω	Άνω	Κάτω	Άνω	Κάτω	Άνω
		όριο	όριο	όριο	όριο	όριο	όριο
	Po-218	306	1661	1.15	6.25		
a0595	Pb-214	2684	1461	1.15	0.63	4646	5131
	Bi-214	1656	2009	0.97	1.17		
	Po-218						
a0596	Pb-214				-		
	Bi-214						
	Po-218	1230		4.63			
a0597	Pb-214	1223	-	0.53	-	3888	
	Bi-214	1435		0.84			
	Po-218	1049	1405	3.95	5.28		
a0598	Pb-214	130	234	0.06	0.10	2122	2840
	Bi-214	943	1201	0.55	0.70		
	Po-218		66		0.25		
a0599	Pb-214	-	2711	-	1.16	-	3963
	Bi-214		1186		0.69		
-	Po-218	412	1041	1.55	3.92		
a0600	Pb-214	895	280	0.38	0.12	2236	2364
	Bi-214	929	1043	0.54	0.61		
-	Po-218	446	1030	1.68	3.88		
a0601	Pb-214	1677	1132	0.72	0.49	3424	3578
	Bi-214	1301	1416	0.76	0.83		
	Po-218		155		0.58		
a0602	Pb-214	-	1176	-	0.5	-	2418
	Bi-214		1087		0.63		
-	Po-218		566		2.13		
a0603	Pb-214	-	1563	-	0.67	-	3589
	Bi-214		1460		0.85		
-	Po-218	171	1269	0.64	4.77		
a0604	Pb-214	2075	973	0.89	0.42	3630	3810
	Bi-214	1384	1568	0.81	0.91		
	Po-218	447	2316	1.68	8.71		
a0605	Pb-214	1931	232	0.83	0.10	3822	4485
	Bi-214	1444	1937	0.84	1.13		
	Po-218	381	1081	1.43	4.07		
a0606	Pb-214	1979	1313	0.85	0.56	3956	4128
	Bi-214	1596	1734	0.93	1.01		

Πίνακας IE.4 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 5min η κάθε μία και τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Κωδικός	Ραδιενεονό	Πυρήν	νες/m³	Bq	/m ³	Σύν πυρήν	ολο ων/m³
φάσματος	ισότοπο	Κάτω	Άνω	Κάτω	Άνω	Κάτω	Άνω
		όριο	όριο	όριο	όριο	όριο	όριο
	Po-218						
a0608	Pb-214				-		
	Bi-214						
	Po-218	79	1375	0.30	5.17		
a0609	Pb-214	1424	245	0.61	0.11	2262	3064
	Bi-214	759	1444	0.44	0.84		
	Po-218		151		0.57		
a0610	Pb-214	-	1156	-	0.50	-	1812
	Bi-214		505		0.29		
	Po-218	269	568	1.01	2.14		
a0611	Pb-214	460	548	0.20	0.24	1386	1827
	Bi-214	657	711	0.38	0.41		
	Po-218	445	712	1.67	2.68		
a0612	Pb-214	1084	1318	0.47	0.57	2188	2895
	Bi-214	659	865	0.38	0.50		
	Po-218	744	556	2.91	2.09		
a0613	Pb-214	887	1532	0.38	0.66	2861	3469
	Bi-214	1230	1381	0.72	0.81		
	Po-218	938	1300	3.53	4.89		
a0614	Pb-214	151	313	0.06	0.13	2137	2946
	Bi-214	1048	1333	0.61	0.78		
	Po-218	589		2.21			
a0615	Pb-214	740	-	0.32	-	2412	-
	Bi-214	1083		0.63			
	Po-218	3023	3205	11.37	12.06		
a0616	Pb-214	218	877	0.09	0.38	4765	5624
	Bi-214	1524	1542	0.89	0.90		
	Po-218	31	755	0.12	2.84		
a0617	Pb-214	2348	1868	1.01	0.8	3595	4029
	Bi-214	1216	1406	0.71	0.82		
	Po-218	581	820	2.18	3.09		
a0618	Pb-214	1287	1774	0.55	0.76	3210	4049
	Bi-214	1342	1455	0.78	0.85]	
	Po-218	897	196	3.37	0.74		
a0619	Pb-214	857	1789	0.37	0.77	3208	3402
	Bi-214	1454	1417	0.85	0.83	1	

Πίνακας IE.5 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 10min η κάθε μία και τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Κωδικός	Ραδιενεργό	Πυρήνες/m³ Bq/m³		Πυρήνες/m ³ Bq/m ³ Σύν πυρήν		Σύνα πυρήνα	νολο νων/m³	
φάσματος	ισότοπο	Κάτω	Άνω	Κάτω	Άνω	Κάτω	Άνω	
		όριο	όριο	όριο	όριο	όριο	όριο	
	Po-218		197		0.74			
a0608	Pb-214	-	3254	-	1.40	-	4237	
	Bi-214		786		0.46			
	Po-218	967	753	3.64	2.83			
a0609	Pb-214	418	935	0.18	0.40	2357	2846	
	Bi-214	972	1158	0.57	0.68			
	Po-218						•	
a0610	Pb-214			-				
	Bi-214							
	Po-218	337	837	1.27	3.15			
a0611	Pb-214	668	198	0.29	0.08	1739	1871	
	Bi-214	734	836	0.43	0.49			
	Po-218	417	1540	1.57	5.79			
a0612	Pb-214	1071	152	0.46	0.07	2130	2665	
	Bi-214	642	973	0.37	0.57			
	Po-218	1533	739	5.77	2.78			
a0613	Pb-214	441	1459	0.19	0.63	3434	3585	
	Bi-214	1460	1387	0.85	0.81			
	Po-218	190	1415	0.72	5.32			
a0614	Pb-214	1125	56	0.48	0.02	2298	2797	
	Bi-214	983	1326	0.57	0.77			
	Po-218	1122		4.22				
a0615	Pb-214	91	-	0.04	-	2300	-	
	Bi-214	1087		0.63				
	Po-218	1967	892	7.40	3.35			
a0616	Pb-214	971	2368	0.42	1.02	4078	4347	
	Bi-214	1140	1087	0.67	0.63			
	Po-218	104	1793	0.39	6.74			
a0617	Pb-214	2067	715	0.89	0.31	3499	4234	
	Bi-214	1328	1726	0.77	1.01			
	Po-218	1096	720	4.12	2.71			
a0618	Pb-214	719	1745	0.31	0.75	3168	4004	
	Bi-214	1353	1539	0.79	0.90]		
	Po-218	325	820	1.22	3.08			
a0619	Pb-214	2039	1613	0.88	0.69	3986	4168	
	Bi-214	1622	1735	0.95	1.01			

Πίνακας IE.6 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 15min η κάθε μία και τη μέθοδο επίλυσης του πλήρους συστήματος αναλυτικών εξισώσεων.

Κωδικός	Ραδιενεργό	Πυρήν	νες/m³	Bq	/m ³	Σύν πυρήν	ολο ων/m³	
φάσματος	ισότοπο	Κάτω	Άνω	Κάτω	Άνω	Κάτω	Άνω	
		όριο	όριο	όριο	όριο	όριο	όριο	
	Po-218	108	1486	0.41	5.59			
a0608	Pb-214	2785	1677	1.20	0.72	3656	4180	
	Bi-214	763	1017	0.45	0.59			
	Po-218	610		2.29				
a0609	Pb-214	1027	-	0.44	-	2680	-	
	Bi-214	1043		0.61				
	Po-218	379	80	1.42	0.30			
a0610	Pb-214	559	1222	0.24	0.52	1478	1910	
	Bi-214	540	608	0.32	0.35			
	Po-218	180	608	0.68	2.29			
a0611	Pb-214	747	694	0.32	0.30	1558	2128	
	Bi-214	631	826	0.37	0.48			
	Po-218	683	1372	2.57	5.16			
a0612	Pb-214	901	235	0.39	0.10	2346	2493	
	Bi-214	762	886	0.44	0.52			
	Po-218		73		0.28			
a0613	Pb-214	-	2244	-	0.96	-	3639	
	Bi-214		1322		0.77			
	Po-218	35	17	0.13	0.06			
a0614	Pb-214	1173	1684	0.50	0.72	2044	2912	
	Bi-214	836	1211	0.49	0.71			
	Po-218	266	1327	1.00	4.99			
a0615	Pb-214	1197	113	0.51	0.05	2505	2692	
	Bi-214	1042	1252	0.61	0.73			
	Po-218	1471	884	5.53	3.33			
a0616	Pb-214	1953	3107	0.84	1.33	4589	5440	
	Bi-214	1165	1449	0.68	0.85			
	Po-218	872	1543	3.28	5.80			
a0617	Pb-214	1029	402	0.44	0.17	3311	3489	
	Bi-214	1410	1544	0.82	0.90			
	Po-218	28	62	0.11	0.23			
a0618	Pb-214	1832	2263	0.79	0.97	3147	3664	
	Bi-214	1287	1339	0.75	0.78			
	Po-218	453	1851	1.71	6.96			
a0619	Pb-214	1628	303	0.70	0.13	3362	3698	
	Bi-214	1281	1544	0.75	0.90			

ΙΕ.2 Υπολογισθείσες συγκεντρώσεις βραχύβιων θυγατρικών του ραδονίου με τη μέθοδο των (Forkapic, et al., 2012).

Στους Πίνακες ΙΕ.7, ΙΕ.8, ΙΕ.9, ΙΕ.10, ΙΕ.11 και ΙΕ.12, που ακολουθούν δίνονται οι συγκεντρώσεις πυρήνων/m³ των βραχύβιων θυγατρικών του ραδονίου στα συλλεχθέντα φίλτρα 4΄΄, όπως αυτοί υπολογίσθηκαν με τη μέθοδο των (Forkapic, et al., 2012). Τα αποτελέσματα δίνονται ως τιμή ±1σ. Η συνεισφορά των πυρήνων του ²¹⁴Po στην τελική ατμοσφαιρική συγκέντρωση των πυρήνων των βραχύβιων θυγατρικών του ραδονίου είναι αμελητέα και γι' αυτό δε συμπεριλαμβάνεται στους πίνακες που ακολουθούν.

Πίνακας ΙΕ.7 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 5min η κάθε μία και τη μέθοδο των (Forkapic, et al., 2012).

Κωδικός φάσματος	Ραδιενεργό ισότοπο	Πυρι	ήνες	/m ³]	Bq/m	3	Σ πυρ	ζύνολ ήνων	$\frac{10}{m^3}$
	Po-218									
a0595	Pb-214					-				
	Bi-214									
	Po-218									
a0596	Pb-214					-				
	Bi-214									
	Po-218	2200	±	985	8.28	±	3.70			
a0597	Pb-214	802	±	820	0.34	±	0.35	7061	±	1325
	Bi-214	4058	±	338	2.37	±	0.20			
	Po-218	90	±	640	0.34	±	2.41			
a0598	Pb-214	1449	±	542	0.62	±	0.23	4021	±	856
	Bi-214	2481	±	173	1.45	±	0.10			
	Po-218									
a0599	Pb-214					-				
	Bi-214									
	Po-218									
a0600	Pb-214					-				
	Bi-214									
	Po-218	734	±	748	2.76	±	2.81			
a0601	Pb-214	1312	±	629	0.56	±	0.27	5134	±	997
	Bi-214	3088	±	197	1.80	±	0.11			
	Po-218									
a0602	Pb-214					-				
	Bi-214									
	Po-218	54	±	829	0.20	±	3.12			
a0603	Pb-214	1854	±	690	0.80	±	0.30	4950	±	1107
	Bi-214	3042	±	249	1.77	±	0.15			
	Po-218									
a0604	Pb-214					-				
	Bi-214									
	Po-218	575	±	871	2.16	±	3.28			
a0605	Pb-214	2020	±	737	0.87	±	0.32	6614	±	1165
	Bi-214	4018	±	237	2.34	±	0.14	1		
	Po-218									
a0606	Pb-214					-				
	Bi-214									

^{*}Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

Πίνακας ΙΕ.8 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 10min η κάθε μία και τη μέθοδο των (Forkapic, et al., 2012).

Κωδικός φάσματος	Ραδιενεργό ισότοπο	Πυρήνα	ες/m³	1	Bq/m³ Σύνολο πυρήνων/m					
	Po-218									
a0595	Pb-214				-					
	Bi-214									
	Po-218									
a0596	Pb-214				-					
	Bi-214									
	Po-218									
a0597	Pb-214				-					
	Bi-214									
	Po-218	39 ±	552	0.15	±	2.08				
a0598	Pb-214	1521 ±	527	0.65	±	0.23	3979	±	777	
	Bi-214	2419 ±	142	1.41	±	0.08				
	Po-218									
a0599	Pb-214				-					
	Bi-214									
	Po-218	201 ±	556	0.75	±	2.09				
a0600	Pb-214	1270 ±	541	0.55	±	0.23	3847	±	790	
	Bi-214	2376 ±	145	1.39	±	0.08				
	Po-218	1036 ±	654	3.90	±	2.46				
a0601	Pb-214	1030 ±	625	0.44	±	0.27	5263	±	920	
	Bi-214	3198 ±	167	1.87	±	0.10				
	Po-218	403 ±	677	1.51	±	2.55				
a0602	Pb-214	1273 ±	672	0.55	±	0.29	4429	±	973	
	Bi-214	2753 ±	193	1.61	±	0.11				
	Po-218	146 ±	647	0.55	±	2.43				
a0603	Pb-214	1777 ±	621	0.76	±	0.27	5055	±	912	
	Bi-214	3133 ±	167	1.83	±	0.10				
	Po-218	254 ±	712	0.95	±	2.68				
a0604	Pb-214	2031 ±	684	0.87	±	0.29	5961	±	1005	
	Bi-214	3677 ±	187	2.15	±	0.11				
	Po-218	294 ±	778	1.10	±	2.93				
a0605	Pb-214	2285 ±	744	0.98	±	0.32	6563	±	1096	
	Bi-214	3984 ±	207	2.32	±	0.12	1			
	Po-218									
a0606	Pb-214				-					
	Bi-214									

^{*}Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

Πίνακας ΙΕ.9 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 1^{ου} τριημέρου δειγματοληψίας 30/3/2022-1/4/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 15min η κάθε μία και τη μέθοδο των (Forkapic, et al., 2012).

Κωδικός φάσματος	Ραδιενεργό ισότοπο	Πυρ	ήνες	/m ³]	Bq/m	3	Σ πυρ	ώνολ ήνων	$\frac{10}{m^3}$
	Po-218	26	±	967	0.10	±	3.64			
a0595	Pb-214	2852	±	973	1.22	±	0.42	7253	±	1395
	Bi-214	4376	±	255	2.55	±	0.15			
	Po-218									
a0596	Pb-214					-				
	Bi-214									
	Po-218	195	±	971	0.73	±	3.65			
a0597	Pb-214	2392	±	964	1.03	±	0.41	6432	±	1398
	Bi-214	3845	±	286	2.24	±	0.17			
	Po-218	5	±	906	0.02	±	3.41			
a0598	Pb-214	1525	±	861	0.65	±	0.37	3990	±	1257
	Bi-214	2461	±	134	1.44	±	0.08			
	Po-218									
a0599	Pb-214					-				
	Bi-214									
	Po-218	158	±	587	0.59	±	2.21			
a0600	Pb-214	1263	±	587	0.54	±	0.25	3778	±	841
	Bi-214	2357	±	136	1.38	±	0.08			
	Po-218	108	±	715	0.41	±	2.69			
a0601	Pb-214	1859	±	717	0.80	±	0.31	5118	±	1026
	Bi-214	3151	±	166	1.84	±	0.10			
	Po-218	278	±	832	1.05	±	3.13			
a0602	Pb-214	1399	±	872	0.60	±	0.37	4358	±	1216
	Bi-214	2681	±	160	1.56	±	0.09			
	Po-218									
a0603	Pb-214					-				
	Bi-214									
	Po-218									
a0604	Pb-214					-				
	Bi-214									
	Po-218	195	±	863	0.74	±	3.25			
a0605	Pb-214	2391	±	868	1.03	±	0.37	6612	±	1245
	Bi-214	4025	±	231	2.35	±	0.14	1		
	Po-218	228	±	780	0.86	±	2.93			
a0606	Pb-214	1994	±	782	0.86	±	0.34	5880	±	1119
	Bi-214	3657	±	184	2.13	±	0.11	1		

^{*}Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

Πίνακας ΙΕ.10: Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 5min η κάθε μία και τη μέθοδο των (Forkapic, et al., 2012).

Κωδικός φάσματος	Ραδιενεργό ισότοπο	Πυρ	ήνες	/m ³]	Bq/m ^a	3	Σύνολο πυρήνων/m ³		
	Po-218	388	±	967	1.46	±	3.64			
a0608	Pb-214	2695	±	823	1.16	±	0.35	6785	±	1290
	Bi-214	3702	±	224	2.16	±	0.13			
	Po-218	563	±	1730	2.12	±	6.51			
a0609	Pb-214	1110	±	1272	0.48	±	0.55	3971	±	2167
	Bi-214	2298	±	287	1.34	±	0.17			
	Po-218									
a0610	Pb-214					-				
	Bi-214									
	Po-218									
a0611	Pb-214					-				
	Bi-214									
	Po-218									
a0612	Pb-214					-				
	Bi-214									
	Po-218									
a0613	Pb-214					-				
	Bi-214									
	Po-218	269	±	687	1.01	±	2.59			
a0614	Pb-214	1212	±	568	0.52	±	0.24	3874	±	908
	Bi-214	2392	±	171	1.40	±	0.10			
	Po-218	327	±	871	1.23	±	3.28			
a0615	Pb-214	1280	±	690	0.55	±	0.30	4176	±	1129
	Bi-214	2570	±	198	1.50	±	0.12			
	Po-218	108	±	1373	0.41	±	5.17			
a0616	Pb-214	3707	±	1224	1.59	±	0.53	8611	±	1863
	Bi-214	4797	±	296	2.80	±	0.17			
	Po-218									
a0617	Pb-214					-				
	Bi-214									
	Po-218	404	±	920	1.52	±	3.46			
a0618	Pb-214	1818	±	813	0.78	±	0.35	5605	±	1247
	Bi-214	3382	±	214	1.97	±	0.12			
	Po-218									
a0619	Pb-214					-				
	Bi-214									

^{*}Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

Πίνακας IE.11 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 10min η κάθε μία και τη μέθοδο των (Forkapic, et al., 2012).

Κωδικός φάσματος	Ραδιενεργό ισότοπο	Πυρ	ήνες	z/m ³]	3q/m	3	Σύνολο πυρήνων/m ³		
	Po-218									
a0608	Pb-214					-				
	Bi-214									
	Po-218									
a0609	Pb-214					-				
	Bi-214									
	Po-218									
a0610	Pb-214					-				
	Bi-214									
	Po-218	687	±	477	2.58	±	1.79			
a0611	Pb-214	517	±	453	0.22	±	0.19	3117	±	670
	Bi-214	1913	±	128	1.12	±	0.07			
	Po-218									
a0612	Pb-214					-				
	Bi-214									
	Po-218	213	±	769	0.80	±	2.89			
a0613	Pb-214	1777	±	764	0.76	±	0.33	5192	±	1099
	Bi-214	3201	±	180	1.87	±	0.11			
	Po-218	497	±	547	1.87	±	2.06			
a0614	Pb-214	1021	±	523	0.44	±	0.22	3991	±	774
	Bi-214	2473	±	164	1.44	±	0.10			
	Po-218	861	±	594	3.24	±	2.23			
a0615	Pb-214	773	±	569	0.33	±	0.24	4274	±	839
	Bi-214	2639	±	165	1.54	±	0.10			
	Po-218									
a0616	Pb-214					-				
	Bi-214									
	Po-218	618	±	737	2.32	±	2.77			
a0617	Pb-214	1783	±	708	0.77	±	0.30	6076	±	1039
	Bi-214	3675	±	187	2.14	±	0.11			
	Po-218				•					
a0618	Pb-214					-				
	Bi-214									
	Po-218	483	±	695	1.82	±	2.62			
a0619	Pb-214	1781	±	666	0.76	±	0.29	5912	±	980
	Bi-214	3648	±	183	2.13	±	0.11]		

^{*}Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

Πίνακας ΙΕ.12 : Αποτελέσματα συγκεντρώσεων (πυρήνες/m³) βραχύβιων θυγατρικών του ραδονίου στον ατμοσφαιρικό αέρα κατά τη διάρκεια του 2^{ου} τριημέρου δειγματοληψίας 10/5/2022-12/5/2022 χρησιμοποιώντας τα αποτελέσματα δύο διαδοχικών γ-φασματοσκοπικών αναλύσεων χρονικής διάρκειας 15min η κάθε μία και τη μέθοδο των (Forkapic, et al., 2012).

Κωδικός φάσματος	Ραδιενεργό ισότοπο	Πυρ	ήνες	/m ³]	3q/m	3	Σύνολο πυρήνων/m ³		
	Po-218				1			1		
a0608	Pb-214					-				
	Bi-214									
	Po-218	5	±	804	0.02	±	3.02			
a0609	Pb-214	1525	±	774	0.65	±	0.33	3930	±	1126
	Bi-214	2400	±	153	1.40	±	0.09			
	Po-218							•		
a0610	Pb-214					-				
	Bi-214									
	Po-218	38	±	525	0.14	±	1.98			
a0611	Pb-214	1128	±	524	0.48	±	0.22	3016	±	750
	Bi-214	1851	±	113	1.08	±	0.07			
	Po-218	262	±	692	0.98	±	2.60			
a0612	Pb-214	1597	±	692	0.69	±	0.30	4481	±	991
	Bi-214	2622	±	157	1.53	±	0.09			
	Po-218									
a0613	Pb-214					-				
	Bi-214									
	Po-218	295	±	606	1.11	±	2.28			
a0614	Pb-214	1200	±	606	0.52	±	0.26	3992	±	872
	Bi-214	2497	±	161	1.46	±	0.09			
	Po-218	568	±	668	2.14	±	2.51			
a0615	Pb-214	1075	±	662	0.46	±	0.28	4359	±	958
	Bi-214	2716	±	183	1.58	±	0.11			
	Po-218									
a0616	Pb-214					-				
	Bi-214									
	Po-218	502	±	819	1.89	±	3.08			
a0617	Pb-214	1868	±	823	0.80	±	0.35	6187	\pm	1177
	Bi-214	3816	±	191	2.23	±	0.11			
	Po-218									
a0618	Pb-214					-				
	Bi-214									
	Po-218									
a0619	Pb-214					-				
	Bi-214									

*Στα κελιά όπου υπάρχει «-» δεν έγινε δυνατή η εύρεση θετικής λύσης για το σύστημα εξισώσεων με τη μέθοδο των (Forkapic, et al., 2012).

ΠΑΡΑΡΤΗΜΑ ΙΣΤ

Αντιπροσωπευτικά αρχεία εισόδου PENELOPE

Στο Παράρτημα ΙΣΤ παρουσιάζονται αντιπροσωπευτικά αρχεία εισόδου «.geo» και «.in» για τον κώδικα Monte Carlo «PENELOPE», έκδοση του 2011, που χρησιμοποιήθηκαν για τις βαθμονομήσεις απόδοσης των διαφόρων συνδυασμών «ανιχνευτή-γεωμετρία δείγματος-υλικού δείγματος». Ενδεικτικά αναφέρεται ότι:

- τα αρχεία εισόδου «.in» αποτελούν τα κατευθυντήρια αρχεία εισόδου δεδομένων. Σε αυτά δηλώνονται σημαντικά στοιχεία όπως η ενέργεια/ες του σωματιδίου/ων της σημειακής πηγής, το είδος της ακτινοβολίας, ο αριθμός των ιστοριών σωματιδίων προς προσομοίωση, ο χρόνος προσομοίωσης, το είδος και το πλήθος των εικονικών ανιχνευτών ενέργειας δόσης, κτλ. Επίσης, στα αρχεία αυτά δηλώνονται τα ονόματα του αρχείου γεωμετρίας και υλικών που θα χρησιμοποιηθούν στην προσομοίωση.
- στα αρχεία εισόδου «.geo» περιγράφεται η γεωμετρία του προβλήματος που προσομοιώνεται. Οι διάφορες γεωμετρίες όγκου περιγράφονται ως στοιχειώδη γεωμετρικά σχήματα των επιθυμητών διαστάσεων, φραγμένα από τις κατάλληλες επιφάνειες, τα οποία αποτελούνται από ομογενή υλικά. Κάθε μια από τις επιφάνειες που ορίζουν το σώμα συνοδεύεται από κατάλληλο μοναδιαίο δείκτη, που ορίζει σε ποια πλευρά της επιφάνειας βρίσκεται το ομογενές υλικό. Το υλικό από το οποίο αποτελείται το κάθε σώμα ορίζεται από έναν αύξοντα αριθμό υλικού που αντιστοιχεί με εξωτερικό αρχείο υλικού «.mat», το οποίο μπορεί να ληφθεί είτε από την έτοιμη βιβλιοθήκη υλικών του κώδικα Monte Carlo «PENELOPE» είτε να δημιουργηθεί εκ νέου.

Αρχείο εισόδου «.in» για τον ανιχνευτή XtRa και την κυλινδρική γεωμετρία όγκου 8.72cm³ και διαμέτρου 3.9cm, που χρησιμοποιείται για την ανάλυση δειγμάτων ρητίνης.

ENDETC 0,662000,1000 EDBODY 15 EDBODY 16

END

[Ends the reading of input data]

Αρχείο εισόδου «.geo» για τον ανιχνευτή XtRa (οι προσαρμογές του συγκεκριμένου αρχείου γεωμετρίας «.geo» έγιναν επί του αρχικού αρχείου που δημιουργήθηκε στη Διδακτορική Διατριβή της (Σάββα, 2017)) και την κυλινδρική γεωμετρία όγκου 8.72cm³ και διαμέτρου 3.9cm, που χρησιμοποιείται για την ανάλυση δειγμάτων ρητίνης.

Canberra XtRa Geom Data, with NaI d.l. Alcap Resin SURFACE (1) PLANE Z1=-16.6 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.660000000000E+01, 0) SURFACE (2) PLANE Z2=-16.65 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.665000000000E+01, 0) SURFACE (3) CYLINDER R1=4.00 INDICES=(1, 1, 0, 0, -1) X-SCALE=(4.0000000000000E-00, 0) SURFACE (4) PLANE Z3=-16.75 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(0.167500000000E+02, 0) SURFACE (5) CYLINDER R2=5.00 INDICES=(1, 1, 0, 0, -1) SURFACE (6) PLANE Z4=-27.6 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.7600000000000E+01, 0) SURFACE (7) CYLINDER R3=4.85 INDICES=(1, 1, 0, 0, -1) X-SCALE=(4.8500000000000E-00, 0) Y-SCALE=(4.8500000000000E-00, 0) SURFACE (8) PLANE Z5=-17.4 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.740000000000E+01, 0) SURFACE (9) PLANE Z6=-17.55 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.755000000000E+01, 0) SURFACE (10) CYLINDER R4=4.25 INDICES=(1, 1, 0, 0, -1) X-SCALE=(4.2500000000000E-00, 0) Y-SCALE=(4.2500000000000E-00, 0) SURFACE (11) PLANE Z7=-19.5 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.950000000000E+01, 0) SURFACE (12) CYLINDER R5=4.10 INDICES=(1, 1, 0, 0, -1)

X-SCALE=(4.1000000000000E-00, 0) Y-SCALE=(4.1000000000000E-00, 0) SURFACE (13) PLANE Z8=-20.2 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.0200000000000E+01, 0) SURFACE (14) PLANE Z9=-21.9 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.190000000000E+01, 0) SURFACE (15) PLANE Z10=-22.6 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.2600000000000E+01, 0) SURFACE (16) PLANE Z11=-25.6 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.560000000000E+01, 0) SURFACE (17) PLANE Z12=-25.3 INDICES=(0, 0, 0, 1, 1) SURFACE (18) CYLINDER R6=0.8 INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.8000000000000E-00, 0) Y-SCALE=(0.8000000000000E-00, 0) SURFACE (19) PLANE Z13=-27.1 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.710000000000E+01, 0) SURFACE (20) CYLINDER R7=1.3 INDICES=(1, 1, 0, 0, -1) X-SCALE=(1.3000000000000E-00, 0) SURFACE (21) PLANE Z14=-17.25 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.725000000000E+01, 0) SURFACE (22) PLANE Z15=-17.256 (front d.l. XtRa) INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.725600000000E+01, 0) SURFACE (23) PLANE Z16=-25.05 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.505000000000E+01, 0) SURFACE (24) PLANE Z17=-18.4 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.840000000000E+01, 0) SURFACE (25) CYLINDER R8=0.80 (hole diameter) INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.8000000000000E-00, 0) Y-SCALE=(0.8000000000000E-00, 0) SURFACE (26) PLANE Z18=21.5 INDICES=(0, 0, 0, 1,-1)

Z-SCALE=(21.500000000000E+00, 0) SURFACE (27) PLANE Z19=20.55 INDICES=(0, 0, 0, 1,-1) Z-SCALE=(20.550000000000E+00, 0) SURFACE (28) PLANE Z20=10.55 INDICES=(0, 0, 0, 1,-1) Z-SCALE=(10.55000000000E+00, 0) SURFACE (29) PLANE Z21=10.45 INDICES=(0, 0, 0, 1, -1) Z-SCALE=(10.45000000000E+00, 0) SURFACE (30) PLANE Z22=10.29 INDICES=(0, 0, 0, 1, -1) Z-SCALE=(10.290000000000E+00, 0) SURFACE (31) CYLINDER R9=25.4 INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.254000000000E+02, 0) Y-SCALE=(0.2540000000000E+02, 0) SURFACE (32) CYLINDER R10=24.45 INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.2445000000000E+02, 0) Y-SCALE=(0.244500000000E+02, 0) SURFACE (33) CYLINDER R11=14.45 INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.144500000000E+02, 0) Y-SCALE=(0.1445000000000E+02, 0) SURFACE (34) CYLINDER R12=14.35 INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.1435000000000E+02, 0) Y-SCALE=(0.1435000000000E+02. 0) SURFACE (35) CYLINDER R13=14.19 INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.141900000000E+02, 0) Y-SCALE=(0.141900000000E+02, 0) SURFACE (36) PLANE Z23=-30.31 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(30.310000000000E+00, 0) SURFACE (37) PLANE Z24=-31.47 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(31.47000000000E+00, 0) SURFACE (38) PLANE Z25=-31.57 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(31.57000000000E+00, 0) SURFACE (39) PLANE Z26=-41.57 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(41.57000000000E+00. 0) SURFACE (40) PLANE Z27=-42.52

INDICES=(0, 0, 0, 1, 1) Z-SCALE=(42.52000000000E+00, 0) SURFACE (41) CYLINDER R14=5.7 INDICES=(1, 1, 0, 0, -1) X-SCALE=(5.700000000000E+00, 0) Y-SCALE=(5.700000000000E+00, 0) SURFACE (42) PLANE Z28=0.7 INDICES=(0, 0, 0, 1, -1) Z-SCALE=(0.600000000000E+00, 0) SURFACE (43) PLANE Z29=1.7 INDICES=(0, 0, 0, 1, -1) Z-SCALE=(1.6000000000000E+00, 0) SURFACE (44) CYLINDER R15=3.65 INDICES=(1, 1, 0, 0, -1) X-SCALE=(3.650000000000E+00, 0) Y-SCALE=(3.6500000000000E+00, 0) SURFACE (45) PLANE Z29=-16.32 INDICES=(0, 0, 0, 1, 1)Z-SCALE=(1.632000000000E+01, 0) SURFACE (46) PLANE Z29=0.5 INDICES=(0, 0, 0, 1,-1) Z-SCALE=(0.500000000000E+00, 0) SURFACE (47) CYLINDER R16=3.80 (peripheral d.l. XtRa) INDICES=(1, 1, 0, 0, -1) X-SCALE=(3.800000000000E+00, 0) Y-SCALE=(3.8000000000000E+00, 0) SURFACE (48) CYLINDER R17=0.57 INDICES=(1, 1, 0, 0, -1) X-SCALE=(0.570000000000E+00, 0) Y-SCALE=(0.570000000000E+00, 0) SURFACE (49) PLANE Z29=-25.10 (back d.l. XtRa) INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.510000000000E+01, 0) SURFACE (50) CYLINDER R18=5.465 INDICES=(1, 1, 0, 0, -1) X-SCALE=(5.465000000000E-00, 0) Y-SCALE=(5.4650000000000E-00, 0) SURFACE (51) PLANE Z30=-18.8 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.880000000000E+01, 0) SURFACE (52) PLANE Z31=-44.05 INDICES=(0, 0, 0, 1, 1)Z-SCALE=(4.4050000000000E+01, 0) SURFACE (53) PLANE Z32=-44.2 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(4.4200000000000E+01, 0)

SURFACE (54) PLANE Z33=-42.82 INDICES=(0, 0, 0, 1, 1)Z-SCALE=(4.2820000000000E+01, 0) SURFACE (55) PLANE Y1= 19.5 (39cm/2) INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.000000000000E+00, 0) AYY=(0.000000000000E+00, 0) AYZ=(0.0000000000000E+00, 0) AX=(0.000000000000E+00, 0) AY=(1.000000000000E+00, 0) AZ=(0.0000000000000E+00, 0) A0=(-1.950000000000E+01, 0) SURFACE (56) PLANE Y2=-19.5 INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.0000000000000E+00, 0) AXZ=(0.000000000000E+00, 0) AYY=(0.000000000000E+00, 0) AYZ=(0.0000000000000E+00, 0) AZZ=(0.0000000000000E+00, 0)AX=(0.000000000000E+00, 0) AY=(1.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(1.950000000000E+01, 0) SURFACE (57) PLANE X1=16 (32cm/2) INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.0000000000000E+00, 0) AXZ=(0.0000000000000E+00, 0) AYY=(0.0000000000000E+00, 0) AYZ=(0.0000000000000E+00, 0) AZZ=(0.000000000000E+00, 0) AX=(1.000000000000E+00, 0) AY=(0.000000000000E+00, 0) AZ = (0.0000000000000E + 00, 0)SURFACE (58) PLANE X2=-16 INDICES=(0, 0, 0, 0, 0)AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.000000000000E+00, 0) AYY=(0.000000000000E+00, 0) AYZ=(0.000000000000E+00, 0) AZZ=(0.000000000000E+00, 0) AX=(1.000000000000E+00, 0) AY=(0.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(1.60000000000E+01, 0) SURFACE (59) PLANE Y3= 18 (36cm/2) INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0)

AXZ=(0.0000000000000E+00, 0) AYY=(0.0000000000000E+00, 0) AYZ=(0.0000000000000E+00, 0) AZZ=(0.0000000000000E+00, 0)AX=(0.000000000000E+00, 0) AY=(1.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(-1.800000000000E+01, 0) SURFACE (60) PLANE Y4=-18 INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.0000000000000E+00, 0) AYY=(0.0000000000000E+00, 0) AYZ=(0.000000000000E+00. 0) AZZ=(0.0000000000000E+00, 0)AX=(0.000000000000E+00, 0) AY=(1.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(1.800000000000E+01, 0)SURFACE (61) PLANE X3=14.5 (29cm/2) INDICES=(0, 0, 0, 0, 0)AXX=(0.0000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.000000000000E+00, 0) AYY=(0.000000000000E+00, 0) AYZ=(0.000000000000E+00, 0) AZZ=(0.000000000000E+00, 0) AX=(1.000000000000E+00, 0) AY=(0.0000000000000000E+00, 0) AZ=(0.000000000000E+00, 0) SURFACE (62) PLANE X4=-14.5 INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.000000000000E+00, 0) AYY=(0.000000000000E+00, 0) AYZ=(0.0000000000000E+00, 0) AZZ=(0.0000000000000E+00, 0)AX=(1.000000000000E+00, 0) AY=(0.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(1.450000000000E+01, 0) SURFACE (63) PLANE Z34=-47.72 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(4.7720000000000E+01, 0) SURFACE (64) PLANE Z35=-47.82 INDICES=(0, 0, 0, 1, 1)Z-SCALE=(4.782000000000E+01, 0) SURFACE (65) PLANE Y5= 18.1 (1mm paxos tapsiou) INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0)

AXZ=(0.0000000000000E+00, 0) AYY=(0.0000000000000E+00, 0) AYZ=(0.000000000000E+00, 0) AZZ=(0.0000000000000E+00, 0)AX=(0.000000000000E+00, 0) AY=(1.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(-1.810000000000E+01, 0) SURFACE (66) PLANE Y6=-18.1 INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.0000000000000E+00, 0) AYY=(0.0000000000000E+00, 0) AZZ=(0.0000000000000E+00, 0)AX=(0.0000000000000E+00, 0) AY=(1.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(1.810000000000E+01, 0)SURFACE (67) PLANE X5=14.6 (1mm paxos tapsiou) INDICES=(0, 0, 0, 0, 0)AXX=(0.0000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.000000000000E+00, 0) AYY=(0.000000000000E+00, 0) AYZ=(0.000000000000E+00, 0) AZZ=(0.000000000000E+00, 0) AX=(1.000000000000E+00, 0) AY=(0.0000000000000000E+00, 0) AZ=(0.000000000000E+00, 0) SURFACE (68) PLANE X6=-14.6 INDICES=(0, 0, 0, 0, 0) AXX=(0.000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.000000000000E+00, 0) AYY=(0.000000000000E+00, 0) AYZ=(0.000000000000E+00, 0) AZZ=(0.000000000000E+00, 0) AX=(1.000000000000E+00, 0) AY=(0.000000000000E+00, 0) AZ=(0.000000000000E+00, 0) A0=(1.460000000000E+01, 0) SURFACE (69) PLANE Z36=-46.72 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(4.672000000000E+01, 0) SURFACE (70) CYLINDER R19=1.5 INDICES=(1, 1, 0, 0, -1) X-SCALE=(1.500000000000E+00, 0) Y-SCALE=(1.500000000000E+00, 0) X-SHIFT=(2.0000000000000E+00, 0) SURFACE (71) PLANE Z37=-59.2

SURFACE (72) CYLINDER R20=1.8 INDICES=(1, 1, 0, 0, -1) X-SCALE=(1.800000000000E+00, 0) Y-SCALE=(1.800000000000E+00, 0) X-SHIFT=(2.0000000000000E+00, 0) SURFACE (73) PLANE Z38=-47.42 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(4.7420000000000E+01, 0) SURFACE (74) CYLINDER R21=2.3 INDICES=(1, 1, 0, 0, -1) X-SCALE=(2.3000000000000E+00, 0) Y-SCALE=(2.3000000000000E+00, 0) X-SHIFT=(2.0000000000000E+00, 0) SURFACE (75) PLANE Z39=-29.16 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.916000000000E+01, 0) SURFACE (76) CYLINDER R22=12.75 INDICES=(1, 1, 0, 0, -1) X-SCALE=(1.275000000000E+01, 0) Y-SCALE=(1.2750000000000E+01, 0) SURFACE (77) CYLINDER R23=5.6 INDICES=(1, 1, 0, 0, -1) X-SCALE=(5.600000000000E+00, 0) Y-SCALE=(5.600000000000E+00, 0) SURFACE (78) PLANE Z40=-28.31 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.831000000000E+01, 0) SURFACE (79) CYLINDER R24=9.75 INDICES=(1, 1, 0, 0, -1) X-SCALE=(9.750000000000E+00, 0) Y-SCALE=(9.7500000000000E+00, 0) SURFACE (80) CYLINDER R25=10.3 INDICES=(1, 1, 0, 0, -1) X-SCALE=(1.030000000000E+01, 0) Y-SCALE=(1.0300000000000E+01, 0) SURFACE (81) CYLINDER R26=5.655 INDICES=(1, 1, 0, 0, -1) X-SCALE=(5.655000000000E+00, 0) Y-SCALE=(5.655000000000E+00, 0) SURFACE (82) PLANE Z41=-2.46 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.460000000000E+00, 0) SURFACE (83) PLANE Z42=-3.31 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(3.310000000000E+00. 0) SURFACE (84) PLANE Z43=-1.31

INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.310000000000E+00, 0) SURFACE (85) PLANE Z44=-7.81 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(7.810000000000E+00, 0) SURFACE (86) PLANE Z45=-7.56 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(7.560000000000E+00, 0) SURFACE (87) CYLINDER R27=5.15 INDICES=(1, 1, 0, 0, -1) X-SCALE=(5.150000000000E+00, 0) SURFACE (88) PLANE Z46=-14.0 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.4000000000000E+01, 0) SURFACE (89) PLANE Z47=-16.14(patoura polypropelene) INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.614000000000E+01, 0) SURFACE (90) CYLINDER R28=4.5 INDICES=(1, 1, 0, 0, -1) X-SCALE=(4.500000000000E+00, 0) Y-SCALE=(4.500000000000E+00, 0) SURFACE (91) PLANE Z46=-13.4 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.3400000000000E+01, 0) SURFACE (92) CONE (geom2) INDICES=(0, 0, 0, 0, 0) AXX=(1.000000000000E+00, 0) AXY=(0.000000000000E+00, 0) AXZ=(0.0000000000000E+00, 0) AYY=(1.000000000000E+00, 0) AYZ=(0.000000000000E+00, 0) AZZ=(-4.7259000000000E-04, 0) AX=(0.000000000000E+00, 0) AY=(0.000000000000E+00, 0) AZ=(-0.1716640000000E+00, 0) A0=(-1.5588760000000E+01, 0) SURFACE (93) PLANE Z48=-16.02 INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.6020000000000E+01, 0) SURFACE (94) PLANE Z49=-15.02 (geom8) INDICES=(0, 0, 0, 1, 1) Z-SCALE=(1.502000000000E+01, 0) SURFACE (95) PLANE Z50=-7.36 (NaI plug d.l. down) INDICES=(0, 0, 0, 1, 1) SURFACE (96) CYLINDER R29=5.855 (NaI annulus d.l. in) INDICES=(1, 1, 0, 0, -1)

X-SCALE=(5.855000000000E+00, 0) Y-SCALE=(5.8550000000000E+00, 0) SURFACE (97) CYLINDER R30=9.55 (NaI annulus d.l. out) INDICES=(1, 1, 0, 0, -1) X-SCALE=(9.550000000000E+00, 0) Y-SCALE=(9.5500000000000E+00, 0) SURFACE (98) PLANE Z51=-2.66 (NaI annulus d.l. up) INDICES=(0, 0, 0, 1, 1) Z-SCALE=(2.660000000000E+00, 0) SURFACE (99) PLANE plexi holder Z=0.1 INDICES=(0, 0, 0, 1, -1) Z-SCALE=(0.1000000000000E+00, 0) Z-SHIFT=(-1.6420000000000E+01, 0) SURFACE (100) PLANE plastic foil top Z=0.102 INDICES=(0, 0, 0, 1,-1) Z-SCALE=(0.102000000000E+00, 0) Z-SHIFT=(-1.6420000000000E+01, 0) SURFACE (101) CYLINDER Alcap extradious R=1.99 INDICES=(1, 1, 0, 0, -1) X-SCALE=(1.9900000000000E-00, 0) Y-SCALE=(1.9900000000000E-00, 0) SURFACE (102) CYLINDER Alcap_intradious R=1.95 INDICES=(1, 1, 0, 0, -1) X-SCALE=(1.950000000000E-00, 0) Y-SCALE=(1.950000000000E-00, 0) SURFACE (103) PLANE Alcap in depth upside down Z=0.832 INDICES=(0, 0, 0, 1, -1) Z-SCALE=(0.832000000000E+00, 0) Z-SHIFT=(-1.6420000000000E+01, 0) SURFACE (104) PLANE Alcap bottom end upside down Z=0.892 INDICES=(0, 0, 0, 1, -1) Z-SCALE=(0.892000000000E+00, 0) Z-SHIFT=(-1.6420000000000E+01, 0) BODY (1) Cryostat Window MATERIAL(1) SURFACE (1), SIDE POINTER=(-1) SURFACE (2), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(-1) BODY (2) Upper Aluminum MATERIAL(2) SURFACE (1), SIDE POINTER=(-1) SURFACE (4), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(+1) SURFACE (5), SIDE POINTER=(-1) BODY (3) Side Aluminum MATERIAL(2) SURFACE (4), SIDE POINTER=(-1) SURFACE (52), SIDE POINTER=(+1) SURFACE (5), SIDE POINTER=(-1)

SURFACE (7), SIDE POINTER=(+1) BODY (4) Down Aluminum MATERIAL(2) SURFACE (5), SIDE POINTER=(-1) SURFACE (52), SIDE POINTER=(-1) SURFACE (53), SIDE POINTER=(+1) BODY (5) Side Cu 1/9 MATERIAL(3) SURFACE (8), SIDE POINTER=(-1) SURFACE (9), SIDE POINTER=(+1) SURFACE (10), SIDE POINTER=(-1) SURFACE (3), SIDE POINTER=(+1)BODY (6) Side Cu 2/9 MATERIAL(3) SURFACE (9), SIDE POINTER=(-1) SURFACE (11), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(+1) SURFACE (12), SIDE POINTER=(-1) BODY (7) Side Cu 3/9 MATERIAL(3) SURFACE (13), SIDE POINTER=(+1) SURFACE (11), SIDE POINTER=(-1) SURFACE (3), SIDE POINTER=(+1) SURFACE (10), SIDE POINTER=(-1) BODY (8) Side Cu 4/9 MATERIAL(3) SURFACE (13), SIDE POINTER=(-1) SURFACE (14), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(+1)SURFACE (12), SIDE POINTER=(-1) BODY (9) Side Cu 5/9 MATERIAL(3) SURFACE (14), SIDE POINTER=(-1) SURFACE (15), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(+1) SURFACE (10), SIDE POINTER=(-1) BODY (10) Side Cu 6/9 MATERIAL(3) SURFACE (15), SIDE POINTER=(-1) SURFACE (16), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(+1) SURFACE (12), SIDE POINTER=(-1) BODY (11) Side Cu 7/9 MATERIAL(3) SURFACE (17), SIDE POINTER=(-1) SURFACE (16), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(-1)SURFACE (18), SIDE POINTER=(+1) BODY (12) Side Cu 8/9 MATERIAL(3) SURFACE (16), SIDE POINTER=(-1)

SURFACE (19), SIDE POINTER=(+1) SURFACE (18), SIDE POINTER=(+1) SURFACE (20), SIDE POINTER=(-1) BODY (13) Side Cu 9/9 MATERIAL(3) SURFACE (19), SIDE POINTER=(-1) SURFACE (6), SIDE POINTER=(+1) SURFACE (20), SIDE POINTER=(-1) BODY (14) Ge front Dead Layer MATERIAL(4) SURFACE (21), SIDE POINTER=(-1) SURFACE (22), SIDE POINTER=(+1) SURFACE (3), SIDE POINTER=(-1)BODY (15) Ge Crystal Upper MATERIAL(4) SURFACE (22), SIDE POINTER=(-1) SURFACE (24), SIDE POINTER=(+1) SURFACE (47), SIDE POINTER=(-1) BODY (16) Ge Crystal Well MATERIAL(4) SURFACE (24), SIDE POINTER=(-1) SURFACE (49), SIDE POINTER=(+1) SURFACE (25), SIDE POINTER=(+1) SURFACE (47), SIDE POINTER=(-1) BODY (17) Shield Upper 1/4 MATERIAL(5) SURFACE (26), SIDE POINTER=(-1) SURFACE (27), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (18) Shield Upper 2/4 MATERIAL(6) SURFACE (27), SIDE POINTER=(-1) SURFACE (28), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (19) Shield Upper 3/4 MATERIAL(7) SURFACE (28), SIDE POINTER=(-1) SURFACE (29), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (20) Shield Upper 4/4 MATERIAL(3) SURFACE (29), SIDE POINTER=(-1) SURFACE (30), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (21) Shield Side 1/4 MATERIAL(5) SURFACE (30), SIDE POINTER=(-1) SURFACE (36), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) SURFACE (32), SIDE POINTER=(+1) BODY (22) Shield Side 2/4 MATERIAL(6) SURFACE (30), SIDE POINTER=(-1) SURFACE (36), SIDE POINTER=(+1) SURFACE (32), SIDE POINTER=(-1) SURFACE (33), SIDE POINTER=(+1) BODY (23) Shield Side 3/4 MATERIAL(7) SURFACE (30), SIDE POINTER=(-1) SURFACE (36), SIDE POINTER=(+1) SURFACE (33), SIDE POINTER=(-1) SURFACE (34), SIDE POINTER=(+1) BODY (24) Shield Side 4/4 MATERIAL(3) SURFACE (30), SIDE POINTER=(-1) SURFACE (36), SIDE POINTER=(+1) SURFACE (34), SIDE POINTER=(-1) SURFACE (35), SIDE POINTER=(+1) BODY (25) Shield Down 1/4 MATERIAL(3) SURFACE (36), SIDE POINTER=(-1) SURFACE (37), SIDE POINTER=(+1) SURFACE (41), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (26) Shield Down 2/4 MATERIAL(7) SURFACE (37), SIDE POINTER=(-1) SURFACE (38), SIDE POINTER=(+1) SURFACE (41), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (27) Shield Down 3/4 MATERIAL(6) SURFACE (38), SIDE POINTER=(-1) SURFACE (39), SIDE POINTER=(+1) SURFACE (41), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (28) Shield Down 4/4 MATERIAL(5) SURFACE (39), SIDE POINTER=(-1) SURFACE (40), SIDE POINTER=(+1) SURFACE (41), SIDE POINTER=(+1) SURFACE (31), SIDE POINTER=(-1) BODY (29) Polyprorylene Cap MATERIAL(8) SURFACE (45), SIDE POINTER=(-1) SURFACE (1), SIDE POINTER=(+1) SURFACE (50), SIDE POINTER=(-1) BODY (30) Polyprorylene Well MATERIAL(8) SURFACE (50), SIDE POINTER=(-1) SURFACE (89), SIDE POINTER=(+1) SURFACE (91), SIDE POINTER=(-1)

SURFACE (5), SIDE POINTER=(+1) BODY (31) Polyprorylene patoura MATERIAL(8) SURFACE (89), SIDE POINTER=(-1) SURFACE (45), SIDE POINTER=(+1) SURFACE (50), SIDE POINTER=(-1) SURFACE (90), SIDE POINTER=(+1) BODY (32) Ge Dead Layer peripheral MATERIAL(4) SURFACE (23), SIDE POINTER=(+1) SURFACE (22), SIDE POINTER=(-1) SURFACE (3), SIDE POINTER=(-1) SURFACE (47), SIDE POINTER=(+1)BODY (33) patoura tapsiou 1/4 MATERIAL(5) SURFACE (40), SIDE POINTER=(-1) SURFACE (54), SIDE POINTER=(+1) SURFACE (55), SIDE POINTER=(-1) SURFACE (59), SIDE POINTER=(+1) SURFACE (57), SIDE POINTER=(-1) SURFACE (58), SIDE POINTER=(+1) BODY (34) patoura tapsiou 2/4 MATERIAL(5) SURFACE (40), SIDE POINTER=(-1) SURFACE (54), SIDE POINTER=(+1) SURFACE (56), SIDE POINTER=(+1) SURFACE (60), SIDE POINTER=(-1) SURFACE (57), SIDE POINTER=(-1) SURFACE (58), SIDE POINTER=(+1) BODY (35) patoura tapsiou 3/4 MATERIAL(5) SURFACE (40), SIDE POINTER=(-1) SURFACE (54), SIDE POINTER=(+1) SURFACE (57), SIDE POINTER=(-1) SURFACE (61), SIDE POINTER=(+1) SURFACE (55), SIDE POINTER=(-1) SURFACE (56), SIDE POINTER=(+1) BODY (36) patoura tapsiou 4/4MATERIAL(5) SURFACE (40), SIDE POINTER=(-1) SURFACE (54), SIDE POINTER=(+1) SURFACE (62), SIDE POINTER=(-1) SURFACE (58), SIDE POINTER=(+1) SURFACE (55), SIDE POINTER=(-1) SURFACE (56), SIDE POINTER=(+1) BODY (37) tapsi 1/5 MATERIAL(5) SURFACE (54), SIDE POINTER=(-1) SURFACE (63), SIDE POINTER=(+1) SURFACE (59), SIDE POINTER=(+1) SURFACE (65), SIDE POINTER=(-1) SURFACE (67), SIDE POINTER=(-1) SURFACE (68), SIDE POINTER=(+1)

BODY (38) tapsi 2/5 MATERIAL(5) SURFACE (54), SIDE POINTER=(-1) SURFACE (63), SIDE POINTER=(+1) SURFACE (60), SIDE POINTER=(-1) SURFACE (66), SIDE POINTER=(+1) SURFACE (67), SIDE POINTER=(-1) SURFACE (68), SIDE POINTER=(+1) BODY (39) tapsi 3/5 MATERIAL(5) SURFACE (54), SIDE POINTER=(-1) SURFACE (63), SIDE POINTER=(+1) SURFACE (61), SIDE POINTER=(+1) SURFACE (67), SIDE POINTER=(-1) SURFACE (65), SIDE POINTER=(-1) SURFACE (66), SIDE POINTER=(+1) BODY (40) tapsi 4/5 MATERIAL(5) SURFACE (54), SIDE POINTER=(-1) SURFACE (63), SIDE POINTER=(+1) SURFACE (68), SIDE POINTER=(+1) SURFACE (62), SIDE POINTER=(-1) SURFACE (65), SIDE POINTER=(-1) SURFACE (66), SIDE POINTER=(+1) BODY (41) tapsi 5/5 MATERIAL(5) SURFACE (63), SIDE POINTER=(-1) SURFACE (64), SIDE POINTER=(+1) SURFACE (65), SIDE POINTER=(-1) SURFACE (66), SIDE POINTER=(+1) SURFACE (67), SIDE POINTER=(-1) SURFACE (68), SIDE POINTER=(+1) SURFACE (72), SIDE POINTER=(+1) BODY (42) cryostat MATERIAL(2) SURFACE (70), SIDE POINTER=(-1) SURFACE (53), SIDE POINTER=(-1) SURFACE (71), SIDE POINTER=(+1) BODY (43) teflon prostateftiko kylindros MATERIAL(8) SURFACE (70), SIDE POINTER=(+1) SURFACE (72), SIDE POINTER=(-1) SURFACE (63), SIDE POINTER=(-1) SURFACE (71), SIDE POINTER=(+1) BODY (44) teflon prostateftiko patoura MATERIAL(8) SURFACE (74), SIDE POINTER=(-1) SURFACE (70), SIDE POINTER=(+1) SURFACE (73), SIDE POINTER=(-1) SURFACE (63), SIDE POINTER=(+1) BODY (45) Al base of annulus NaI 1/2 MATERIAL(2)

SURFACE (36), SIDE POINTER=(+1) SURFACE (75), SIDE POINTER=(-1) SURFACE (76), SIDE POINTER=(-1) SURFACE (77), SIDE POINTER=(+1) BODY (46) Al base of annulus NaI 2/2 MATERIAL(2) SURFACE (75), SIDE POINTER=(+1) SURFACE (78), SIDE POINTER=(-1) SURFACE (80), SIDE POINTER=(+1) SURFACE (76), SIDE POINTER=(-1) BODY (47) Al inside annulus cap MATERIAL(2) SURFACE (75), SIDE POINTER=(+1) SURFACE (82), SIDE POINTER=(-1) SURFACE (77), SIDE POINTER=(+1) SURFACE (81), SIDE POINTER=(-1) BODY (48) Al outside annulus cap MATERIAL(2) SURFACE (79), SIDE POINTER=(+1) SURFACE (80), SIDE POINTER=(-1) SURFACE (75), SIDE POINTER=(+1) SURFACE (82), SIDE POINTER=(-1) BODY (49) NaI annulus MATERIAL(9) SURFACE (96), SIDE POINTER=(+1) SURFACE (97), SIDE POINTER=(-1) SURFACE (75), SIDE POINTER=(+1) SURFACE (98), SIDE POINTER=(-1) BODY (50) upper Al base of annulus 1/2MATERIAL(2) SURFACE (83), SIDE POINTER=(+1) SURFACE (82), SIDE POINTER=(-1) SURFACE (80), SIDE POINTER=(+1) SURFACE (76), SIDE POINTER=(-1) BODY (51) upper Al base of annulus 2/2MATERIAL(2) SURFACE (82), SIDE POINTER=(+1) SURFACE (84), SIDE POINTER=(-1) SURFACE (77), SIDE POINTER=(+1) SURFACE (76), SIDE POINTER=(-1) BODY (52) Al base of plug 1/2 MATERIAL(2) SURFACE (85), SIDE POINTER=(+1) SURFACE (86), SIDE POINTER=(-1) SURFACE (77), SIDE POINTER=(-1) BODY (53) Al base of plug 2/2MATERIAL(2) SURFACE (86), SIDE POINTER=(+1) SURFACE (82), SIDE POINTER=(-1) SURFACE (87), SIDE POINTER=(+1) SURFACE (77), SIDE POINTER=(-1) BODY (54) NaI plug detector MATERIAL(9) SURFACE (95), SIDE POINTER=(+1) SURFACE (82), SIDE POINTER=(-1) SURFACE (87), SIDE POINTER=(-1) BODY (55) upper Al of plug MATERIAL(2) SURFACE (82), SIDE POINTER=(+1) SURFACE (84), SIDE POINTER=(-1) SURFACE (77), SIDE POINTER=(-1) BODY (56) back dead layer MATERIAL(4) SURFACE (23), SIDE POINTER=(+1) SURFACE (47), SIDE POINTER=(-1) SURFACE (49), SIDE POINTER=(-1) SURFACE (25), SIDE POINTER=(+1) BODY (57) NaI plug dead layer down MATERIAL(9) SURFACE (86), SIDE POINTER=(+1) SURFACE (95), SIDE POINTER=(-1) SURFACE (87), SIDE POINTER=(-1) BODY (58) NaI annulus periphreal d.l. in MATERIAL(9) SURFACE (81), SIDE POINTER=(+1) SURFACE (96), SIDE POINTER=(-1) SURFACE (82), SIDE POINTER=(-1) SURFACE (75), SIDE POINTER=(+1) BODY (59) NaI annulus periphreal d.l. out MATERIAL(9) SURFACE (97), SIDE POINTER=(+1) SURFACE (79), SIDE POINTER=(-1) SURFACE (82), SIDE POINTER=(-1) SURFACE (75), SIDE POINTER=(+1) BODY (60) NaI annulus up d.l. MATERIAL(9) SURFACE (98), SIDE POINTER=(+1) SURFACE (97), SIDE POINTER=(-1) SURFACE (82), SIDE POINTER=(-1) SURFACE (96), SIDE POINTER=(+1) BODY (61) plastic foil MATERIAL(8) SURFACE (99), SIDE POINTER=(+1) SURFACE (100), SIDE POINTER=(-1) SURFACE (101), SIDE POINTER=(-1) BODY (62) Al cap sides MATERIAL(2) SURFACE (101), SIDE POINTER=(-1) SURFACE (102). SIDE POINTER=(+1) SURFACE (100), SIDE POINTER=(+1) SURFACE (103), SIDE POINTER=(-1) BODY (63) Al cap bottom (upside down)

MATERIAL(2) SURFACE (103), SIDE POINTER=(+1) SURFACE (104), SIDE POINTER=(-1) SURFACE (101), SIDE POINTER=(-1) BODY (64) pigi ogkou MATERIAL(10) SURFACE (100), SIDE POINTER=(+1) SURFACE (103), SIDE POINTER=(-1) SURFACE (102), SIDE POINTER=(-1) MODULE (90) Whole XtRa MATERIAL(0) BODY (1) BODY (2) BODY 3) (BODY 4) (BODY 5) (BODY 6) (BODY 7) (BODY 8) (BODY (9) BODY (10)BODY (11)BODY (12) BODY (13) BODY (14) BODY (15) BODY (16) BODY (17) BODY (18) BODY (19) BODY (20)BODY (21) BODY (22) BODY (23)(24) BODY BODY (25) BODY (26) BODY 27) (BODY (28) BODY 29) (BODY (30) BODY (31)BODY (32) BODY (33) BODY (34) BODY (35) BODY (36) BODY (37) BODY (38) (39) BODY BODY (40)BODY (41) BODY (42) (43) BODY BODY (44) BODY (45) BODY (46) BODY (47)

BODY	(48)
BODY	(49)
BODY	(50)
BODY	(51)
BODY	(52)
BODY	(53)
BODY	(54)
BODY	(55)
BODY	(56)
BODY	(57)
BODY	(58)
BODY	(59)
BODY	(60)
BODY	(61)
BODY	(62)
BODY	(63)
BODY	(64)
ΠΑΡΑΡΤΗΜΑ ΙΖ

Κωδικοί φίλτρων και υγρών κλασμάτων επεξεργασίας δειγμάτων ατμοσφαιρικών αποθέσεων και υγρασίας

Στο Παράρτημα ΙΖ και συγκεκριμένα στον Πίνακα ΙΖ.1 που ακολουθεί, παρουσιάζονται οι κωδικοί του συνόλου των φίλτρων και υγρών κλασμάτων που προέκυψαν και αναλύθηκαν ως αποτέλεσμα της ανάλυσης δειγμάτων ατμοσφαιρικών αποθέσεων και υγρασίας, στα πλαίσια της παρούσας Δ.Δ..

Πίνακας IZ.1 : Σύνολο κωδικών δειγμάτων φίλτρων και υγρών κλασμάτων που προέκυψαν και αναλύθηκαν ως αποτέλεσμα της ανάλυσης δειγμάτων ατμοσφαιρικών αποθέσεων και υγρασίας.

Δείγμα ατμοσφαιρικής απόθεσης/υγρασίας	Δείγμα φίλτρου	Δείγμα υγρού κλάσματος
QSA1	RF003	-
QSA2	RF004	-
QSA3	RF005	-
QSA4	RF006	-
HR001	FHR001	-
WR001	-	-
HR002	-	-
WR002	FWR002	WT123
WR003	FWR003	-
WR004	FWR004	-
WR005	FWR005	-
DR001	FDR001	WT127
DR002	FDR002	WT128
DR003	-	WT129
TR001	FTR001	WTR001
DR004	FDR004	WDR004
DR005	FDR005	WDR005
TR003	FTR003	WTR003
TR002	FTR002	WTR002
DR006	FDR006	WDR006
TR004	FTR004	WTR004
TR005	FTR005	WTR005
TR006	FTR006	WTR006
WR006	FWR006	WWR006
DR007	FDR007	WDR007
DR008	FDR008	WDR008
TR007	FTR007	WTR007

TR008	FTR008	WTR008
TR009	FTR009	WTR009
TR010	FTR010	WTR010
DR009	FDR009	WDR009
DR010	FDR010	WDR010
DR011	FDR011	WDR011
DR012	FDR012	WDR012
DR013	FDR013	WDR013
TR011	FTR011	WTR011
WR007	FWR007	WWR007
TR012	FTR012	WTR012
DR014	FDR014	WDR014
DR015	FDR015	WDR015
DR016	FDR016	WDR016
DR017	FDR017	WDR017
DR018	FDR018	WDR018
DR019	FDR019	WDR019
DR020	FDR020	WDR020
DR021	FDR021	WDR021
TR013	FTR013	WWTR013
DR022	FDR022	WDR022
TR014	FTR014	WTR014
DR023	FDR023	WDR023
HR003	FHR003	WHR003
WR008	FWR008	WWR008
HR004	FHR004	WHR004
WR010	FWR010	WWR010
WR011	FWR011	WWR011
WR012	FWR012	WWR012
WR013	FWR013	WWR013
WR014	FWR014	WWR014
WR015	FWR015	-
WR016	FRW016	-
WR017	FWR017	-
WR018	-	-
WR019	-	WWR019
WR020	FWR020	-
WR021	FWR021	-
HR005	FHR005	-
HR006	FHR006	-
HR007	FHR007	-
HR008	FHR008	-
5		

ПАРАРТНМА ІН

Συμπληρωματικά διαγράμματα συσχετίσεων συγκεντρώσεων ενεργότητας και ρυθμών απόθεσης ραδιενεργών ισοτόπων με μετεωρολογικές και άλλες παραμέτρους

Στο Παράρτημα ΙΗ παρουσιάζονται τα συμπληρωματικά διαγράμματα συσχετίσεων μεταξύ των συγκεντρώσεων ενεργότητας και των ρυθμών απόθεσης ραδιενεργών ισοτόπων με διάφορες μετεωρολογικές και άλλες παραμέτρους, όπως αυτές διερευνήθηκαν στο Κεφάλαιο 6 της παρούσας Δ.Δ..

IH.1 Διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στις ατμοσφαιρικές αποθέσεις ως προς τις αντίστοιχες συγκεντρώσεις τους στις παράλληλες δειγματοληψίες φίλτρων αέρα

Σχήμα IH.2 : Συσχέτιση μεταξύ των συγκεντρώσεων ενεργότητας και ρυθμών απόθεσης του ²¹⁰Pb στις παράλληλες δειγματοληψίες φίλτρων αέρα και ατμοσφαιρικών αποθέσεων (παράλληλες δειγματοληψίες με 100% αλληλοεπικάλυψη).

Σχήμα IH.3 : Συσχέτιση μεταξύ των συγκεντρώσεων ενεργότητας και ρυθμών απόθεσης του ⁷Be στις παράλληλες δειγματοληψίες φίλτρων αέρα και ατμοσφαιρικών αποθέσεων (όλες οι παράλληλες δειγματοληψίες).

Σχήμα IH.4 : Συσχέτιση μεταξύ των συγκεντρώσεων ενεργότητας και ρυθμών απόθεσης του ⁷Be στις παράλληλες δειγματοληψίες φίλτρων αέρα και ατμοσφαιρικών αποθέσεων (παράλληλες δειγματοληψίες με 100% αλληλοεπικάλυψη).

IH.2 Διαγράμματα συσχέτισης συγκεντρώσεων ενεργότητας ⁷Be και ²¹⁰Pb στις υγρές αποθέσεις ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους

Σχήμα IH.5 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στις υγρές αποθέσεις και της θερμοκρασίας.

Σχήμα ΙΗ.6 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στις υγρές αποθέσεις και της σχετικής υγρασίας.

Σχήμα ΙΗ.7 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στις υγρές αποθέσεις και της ατμοσφαιρικής πίεσης.

Σχήμα ΙΗ.8 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στις υγρές αποθέσεις και του συνολικού ύψους βροχόπτωσης.

Σχήμα ΙΗ.9 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στις υγρές αποθέσεις και της μέσης ταχύτητας του ανέμου.

Σχήμα IH.10 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στις υγρές αποθέσεις και της μέγιστης έντασης βροχόπτωσης.

Σχήμα IH.11 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στις υγρές αποθέσεις και της μέσης έντασης βροχόπτωσης.

Σχήμα IH.12 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στις υγρές αποθέσεις και της θερμοκρασίας.

Σχήμα IH.13 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στις υγρές αποθέσεις και της σχετικής υγρασίας.

Σχήμα IH.14 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στις υγρές αποθέσεις και της ατμοσφαιρικής πίεσης.

Σχήμα IH.15 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στις υγρές αποθέσεις και του συνολικού ύψους βροχόπτωσης.

Σχήμα ΙΗ.16 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στις υγρές αποθέσεις και της μέσης ταχύτητας του ανέμου.

Σχήμα IH.17 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στις υγρές αποθέσεις και της μέγιστης έντασης βροχόπτωσης.

Σχήμα ΙΗ.18 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στις υγρές αποθέσεις και της μέσης έντασης βροχόπτωσης.

IH.3 Διαγράμματα συσχέτισης συγκεντρώσεων ενεργότητας ⁷Be στα δείγματα υγρασίας ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους

Σχήμα IH.19 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στην υγρασία και της θερμοκρασίας.

Σχήμα IH20 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στην υγρασία και της σχετικής υγρασίας.

Σχήμα IH.21 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στην υγρασία και της ατμοσφαιρικής πίεσης.

Σχήμα IH.22 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στην υγρασία και της μέσης ταχύτητας του ανέμου.

IH.4 Διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα ξηρών αποθέσεων ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους

Σχήμα IH.23 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της θερμοκρασίας.

Σχήμα IH.24 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της σχετικής υγρασίας.

Σχήμα IH.25 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της ατμοσφαιρικής πίεσης.

Σχήμα IH.26 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της μέσης ταχύτητας του ανέμου.

Σχήμα IH.27 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της θερμοκρασίας.

Σχήμα IH.28 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της σχετικής υγρασίας.

Σχήμα IH.29 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της ατμοσφαιρικής πίεσης.

Σχήμα IH.30 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της μέσης ταχύτητας του ανέμου.

IH.5 Διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα ολικών αποθέσεων ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους

Σχήμα IH.32 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της σχετικής υγρασίας.

Σχήμα IH.33 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της ατμοσφαιρικής πίεσης.

Σχήμα IH.34 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και του συνολικού ύψους βροχόπτωσης.

Σχήμα IH.35 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της μέσης ταχύτητας του ανέμου.

Σχήμα IH.36 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της μέγιστης έντασης βροχόπτωσης.

Σχήμα IH.37 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της μέσης έντασης βροχόπτωσης.

Σχήμα IH.38 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της θερμοκρασίας.

Σχήμα IH.39 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της σχετικής υγρασίας.

Σχήμα IH.40 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της ατμοσφαιρικής πίεσης.

Σχήμα IH.41 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και του συνολικού ύψους βροχόπτωσης.

Σχήμα IH.42 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της ταχύτητας του ανέμου.

Σχήμα IH.43 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της μέγιστης έντασης βροχόπτωσης.

Σχήμα IH.44 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της μέσης έντασης βροχόπτωσης.

IH.6 Συμπληρωματικά διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα συνεχόμενα δείγματα αποθέσεων ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους

Στην παράγραφο αυτή δίνονται τα συμπληρωματικά διαγράμματα συσχέτισης μεταξύ των ρυθμών απόθεσης ⁷Be και ²¹⁰Pb με την ατμοσφαιρική πίεση και τη μέση ταχύτητα ανέμου στα συνεχόμενα δείγματα αποθέσεων, καθώς τα διαγράμματα που αφορούν τις συσχετίσεις με τη θερμοκρασία και τη σχετική υγρασία δόθηκαν στο Κεφάλαιο 6 και είναι τα Σχήματα 6.20, 6.21, 6.22 και 6.23.

Σχήμα IH.45 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων και της ατμοσφαιρικής πίεσης.

Σχήμα IH.46 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων και της μέσης ταχύτητας του ανέμου.

Σχήμα IH.47 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων και της ατμοσφαιρικής πίεσης.

Σχήμα IH.48 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα συνεχόμενα δείγματα ατμοσφαιρικών αποθέσεων και της μέσης ταχύτητας του ανέμου.

IH.7 Διαγράμματα συσχέτισης συγκεντρώσεων ⁷Be και ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους

Σχήμα ΙΗ.49 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της θερμοκρασίας.

Σχήμα IH.50 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της σχετικής υγρασίας.

Σχήμα IH.51 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της ατμοσφαιρικής πίεσης.

Σχήμα IH.52 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της μέσης ταχύτητας του ανέμου.

Σχήμα IH.53 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της θερμοκρασίας.

Σχήμα IH.54 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της σχετικής υγρασίας.

Σχήμα IH.55 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της ατμοσφαιρικής πίεσης.

Σχήμα IH.56 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της μέσης ταχύτητας του ανέμου.

IH.8 Διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα ξηρών αποθέσεων ως προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Σχήμα IH.57 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.58 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του PM10 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.59 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.60 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.61 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.62 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.63 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.64 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.65 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του Pb στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.66 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.67 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.68 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του PM10 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.69 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα ΙΗ.70 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα ΙΗ.71 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.72 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα ΙΗ.73 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.74 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.75 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του Pb στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.76 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ξηρών αποθέσεων και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

IH.9 Διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα ολικών αποθέσεων ως προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Σχήμα IH.77 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.78 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του PM10 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.79 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.80 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.81 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.82 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.83 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.84 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.85 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του Pb στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.86 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.87 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.89 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.90 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.91 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.92 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.93 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.94 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.95 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του Pb στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.96 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα ολικών αποθέσεων και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

IH.10 Διαγράμματα συσχέτισης ρυθμών απόθεσης ⁷Be και ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων ως προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Σχήμα IH.97 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.98 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του PM10 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.99 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.100 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.101 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.102 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.103 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.104 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.106 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.107 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.108 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του PM10 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.109 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.110 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα III.111 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.112 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.113 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.114 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.115 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του Pb στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.116 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ²¹⁰Pb στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

IH.11 Διαγράμματα συσχέτισης συγκεντρώσεων ενεργότητας ⁷Be και ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα ως προς τυπικούς ατμοσφαιρικούς ρυπαντές στην ατμόσφαιρα

Σχήμα IH.117 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.118 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του PM10 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.119 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.120 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.121 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.122 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.123 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.124 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.125 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του Pb στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.126 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.127 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του PM2.5 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.128 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του PM10 στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.129 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του NO στο ατμοσφαιρικό αερόλυμα.

Σχήμα ΙΗ.130 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του NO₂ στο ατμοσφαιρικό αερόλυμα.

Σχήμα ΙΗ.131 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του O₃ στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.132 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του As στο ατμοσφαιρικό αερόλυμα.

Σχήμα ΙΗ.133 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του Cd στο ατμοσφαιρικό αερόλυμα.

Σχήμα ΙΗ.134 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του Ni στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.135 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του Pb στο ατμοσφαιρικό αερόλυμα.

Σχήμα IH.136 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ²¹⁰Pb στο ατμοσφαιρικό αερόλυμα και της συγκέντρωσης του BaP στο ατμοσφαιρικό αερόλυμα.

IH.12 Διαγράμματα συσχέτισης των μηνιαίων ρυθμών απόθεσης του ⁷Be ως προς το μηνιαίο πλήθος ηλιακών κηλίδων

Στα διαγράμματα που ακολουθούν παρουσιάζεται η καθυστερημένη επίδραση του μηνιαίου πλήθους των ηλιακών κηλίδων στο μηνιαίο ρυθμό απόθεσης του ⁷Be όπως αυτή περιγράφτηκε στο Κεφάλαιο 6.

Σχήμα IH.137 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 0 μηνών.

Σχήμα IH.138 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 1 μηνών.

Σχήμα IH.139 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 2 μηνών.

Σχήμα IH.140 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 3 μηνών.

Σχήμα IH.141 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 4 μηνών.

Σχήμα IH.142 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 5 μηνών.

Σχήμα IH.143 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 6 μηνών.

Σχήμα IH.144 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 7 μηνών.

Σχήμα IH.145 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 8 μηνών.

Σχήμα IH.146 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 9 μηνών.

Σχήμα IH.147 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 10 μηνών.

Σχήμα IH.148 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 11 μηνών.

Σχήμα IH.149 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το μηνιαίο αριθμό ηλιακών κηλίδων για καθυστερημένη επίδραση 12 μηνών.

IH.13 Διαγράμματα συσχέτισης των συγκεντρώσεων ενεργότητας και των ρυθμών απόθεσης του ⁷Be ως προς το ύψος της τροπόπαυσης

Σχήμα IH.151 : Συσχέτιση μεταξύ της συγκέντρωσης ενεργότητας του ⁷Be στα δείγματα υγρασίας ως προς το ύψος της τροπόπαυσης.

Σχήμα IH.152 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ξηρών αποθέσεων ως προς το ύψος της τροπόπαυσης.

Σχήμα IH.153 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα ολικών αποθέσεων ως προς το ύψος της τροπόπαυσης.

Σχήμα IH.154 : Συσχέτιση μεταξύ του ρυθμού απόθεσης του ⁷Be στα δείγματα συνεχόμενων ατμοσφαιρικών αποθέσεων ως προς το ύψος της τροπόπαυσης.

Σχήμα IH.155 : Συσχέτιση μεταξύ του μηνιαίου ρυθμού απόθεσης του ⁷Be ως προς το ύψος της τροπόπαυσης.

IH.14 Διαγράμματα συσχέτισης των μέσων ταχυτήτων απόθεσης του ⁷Be και του ²¹⁰Pb ως προς τις αντίστοιχες μετεωρολογικές παραμέτρους

Σχήμα IH.156 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ⁷Be και της θερμοκρασίας.

Σχήμα ΙΗ.157 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ⁷Be και της σχετικής υγρασίας.

Σχήμα IH.158 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ⁷Be και της ατμοσφαιρικής πίεσης.

Σχήμα IH.159 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ⁷Be και της μέσης ταχύτητας του ανέμου.

Σχήμα IH.160 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ²¹⁰Pb και της θερμοκρασίας.

Σχήμα IH.161: Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ²¹⁰Pb και της σχετικής υγρασίας.

Σχήμα IH.162 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ²¹⁰Pb και της ατμοσφαιρικής πίεσης.

Σχήμα IH.163 : Συσχέτιση μεταξύ της μέσης ταχύτητας απόθεσης του ²¹⁰Pb και της μέσης ταχύτητας του ανέμου.