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Abstract

Object detection is a computer technology related to computer vision and image pro-

cessing that deals with detecting instances of semantic objects of a certain class (such

as humans, buildings, or cars) in digital images and videos. Object detection specifically

in aerial and satellite images presents unique challenges compared to object detection

in natural images, as aerial and satellite images often suffer from object size, scale and

resolution variations, complex backgrounds and imbalanced datasets. Additionally, the

large size of these images poses computational challenges for efficient and accurate object

detection algorithms. Finally, the publicly available remote sensing imaging datasets are

limited and creating and annotating new ones is a time and resource consuming endeavor.

Transfer learning is a technique in machine learning in which knowledge learned from

a task is re-used in order to boost performance on a related task. Reusing/transferring

information from previously learned tasks to new tasks has the potential to significantly

improve learning efficiency, as it allows the models to converge faster and potentially

achieve better performance, even with a limited amount of data for the new task. In this

thesis, the technique of transfer learning of pre-trained object detectors on a large dataset

to new datasets with or without further training is investigated. The rationale behind this

work concerns the study of the performance of the trained object detectors when evaluated

on similar categories of new datasets, in order to identify the challenges and strengths

of this approach as a solution to the challenges of object detection in satellite and aerial

images.

The current thesis is divided into three main parts. The first part of the thesis formu-

lates the problem and challenges of object detection in remote sensing imagery, as well

as it explains how transfer learning can be used to tackle these challenges. In addition,

it investigates the current state-of-the-art object detection algorithms, where a variety of

models are presented and five models are selected to be used in experiments throughout

this thesis.

In the next part of the thesis, the method that is followed during this project is formu-

lated. The transfer learning approach that is followed is analyzed and the datasets that

are being used in the experiments are presented. In addition, the metrics that are used

as a basis for the evaluation of our experiments are explained.

In the final part of the thesis, the results of the experiments are presented and ana-

lyzed. The results of training the object detectors in the baseline dataset, as well as the

results of transferring the trained object detectors to two new datasets with similar ob-

jects are presented both quantitatively and qualitatively. Finally, conclusions regarding

the method that was used and the results that were obtained are drawn and summarized.
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Περίληψη

Η ανίχνευση αντικειµένων είναι µια τεχνολογία που σχετίζεται µε την όραση υπολογιστών

και την επεξεργασία εικόνας που ασχολείται µε την ανίχνευση αντικειµένων µιας συγκεκρι-

µένης κατηγορίας (όπως άνθρωποι, κτίρια ή αυτοκίνητα) σε ψηφιακές εικόνες και ϐίντεο. Η

ανίχνευση αντικειµένων ειδικά σε εναέριες και δορυφορικές εικόνες παρουσιάζει µοναδικές

προκλήσεις σε σύγκριση µε την ανίχνευση αντικειµένων σε ϕυσικές εικόνες, καθώς οι ενα-

έριες και δορυφορικές εικόνες συχνά έχουν µεγάλες διακυµάνσεις µεγέθους αντικειµένων,

κλίµακας και ανάλυσης, πολύπλοκα υπόβαθρα ενώ τα σύνολα δεδοµένων είναι µη ισορρο-

πηµένα. Επιπλέον, το µεγάλο µέγεθος αυτών των εικόνων ϑέτει υπολογιστικές προκλήσεις

για αποτελεσµατικούς και ακριβείς αλγόριθµους ανίχνευσης αντικειµένων. Τέλος, τα δια-

ϑέσιµα σύνολα δεδοµένων είναι περιορισµένα και η δηµιουργία νέων συνόλων δεδοµένων

καταναλώνει χρόνο και πόρους.

Η µεταφορά µάθησης είναι µια τεχνική στη µηχανική µάθηση στην οποία η γνώση που

αποκτάται σέ ένα πρόβληµα επαναχρησιµοποιείται προκειµένου να ενισχυθεί η απόδοση σε

ένα σχετικό πρόβληµα. Η µεταφορά πληροφοριών σε νέα προβλήµατα έχει τη δυνατότητα

να ϐελτιώσει σηµαντικά την αποτελεσµατικότητα της εκµάθησης, καθώς επιτρέπει στα µο-

ντέλα να συγκλίνουν ταχύτερα και ενδεχοµένως να επιτύχουν καλύτερη απόδοση, ακόµη

και µε περιορισµένο αριθµό νέων δεδοµένων. Σε αυτή τη διπλωµατική εργασία, διερευνάται

η τεχνική µεταφοράς µάθησης ανιχνευτών αντικειµένων, προεκπαιδευµένων σε ένα µεγάλο

σύνολο δεδοµένων, σε νέα σύνολα δεδοµένων µε ή χωρίς περαιτέρω εκπαίδευση. Ο στόχος

σε αυτήν την εργασία περιλαµβάνει τη µελέτη της απόδοσης των εκπαιδευµένων ανιχνευτών

αντικειµένων όταν αξιολογούνται σε παρόµοιες κατηγορίες νέων συνόλων δεδοµένων, προ-

κειµένου να εντοπιστούν οι προκλήσεις και τα πλεονεκτήµατα της ανίχνευσης αντικειµένων

σε δορυφορικές και εναέριες εικόνες .

Η παρούσα διπλωµατική εργασία χωρίζεται σε τρία µέρη. Το πρώτο µέρος της εργασίας

διατυπώνει το πρόβληµα και τις προκλήσεις της ανίχνευσης αντικειµένων στις εικόνες τη-

λεπισκόπησης, καθώς και εξηγεί πώς µπορεί να χρησιµοποιηθεί η µεταφορά µάθησης για

την αντιµετώπιση αυτών των προκλήσεων. Επιπλέον, διερευνά τους σύγχρονους αλγόριθ-

µους ανίχνευσης αντικειµένων, όπου παρουσιάζονται διαφορετικά σύγχρονα µοντέλα και

επιλέγονται πέντε µοντέλα που ϑα χρησιµοποιηθούν στα πειράµατα.

Στο επόµενο µέρος της διπλωµατικής εργασίας, διατυπώνεται η µέθοδος που ακολουθε-

ίται κατά τη διάρκεια αυτής της εργασίας. Αναλύεται η µέθοδος µεταφοράς µάθησης που

ακολουθείται και παρουσιάζονται τα σύνολα δεδοµένων που χρησιµοποιούνται στα πειράµα-

τα. Επιπλέον, επεξηγούνται οι µετρικές που χρησιµοποιούνται ως ϐάση για την αξιολόγηση

των πειραµάτων.

Στο τελευταίο µέρος της διπλωµατικής εργασίας παρουσιάζονται και αναλύονται τα απο-
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τελέσµατα των πειραµάτων. Παρουσιάζονται τόσο ποσοτικά όσο και ποιοτικά τα αποτελέσµα-

τα της εκπαίδευσης των ανιχνευτών αντικειµένων στο ϐασικό σύνολο δεδοµένων, καθώς και

τα αποτελέσµατα της µεταφοράς των εκπαιδευµένων ανιχνευτών αντικειµένων σε δύο νέα

σύνολα δεδοµένων µε παρόµοια αντικείµενα. Τέλος, εξάγονται συµπεράσµατα σχετικά µε τη

µέθοδο που χρησιµοποιήθηκε και τα αποτελέσµατα που προέκυψαν.
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Chapter 1

Introduction

1.1 Object Detection in Remote Sensing Imaging

Remote sensing concerns the acquisition of information about an object or phe-

nomenon without making physical contact with the object, in contrast to in situ or on-site

observation. Today, remote sensing technologies enable the observation of the earth’s sur-

face using aerial images, with very high resolution. In recent years, deep learning and

specifically computer vision advancements have transformed the way satellite and aerial

images are analyzed and interpreted. A key example of a computer vision related task that

is widely used in order to analyze and interpret remote sensing images is object detection.

Object detection refers to the localization of objects of interest along with the prediction

of the category of the localized object in images. Object detection is a key component in

many computer vision applications such as automated driving, video surveillance, and

object tracking. It is one of the most researched areas of computer vision and in recent

years, several neural network-based approaches have been developed that are able to de-

tect objects in images with very high precision. However, object detection when applied in

aerial and satellite images still faces numerous challenges compared to object detection

in standard images. Some of the key important challenges are:

• Large Image Sizes: Aerial and satellite images are often extremely large for current

GPU memory capacity to analyze.

• Scale and Resolution Variations: Satellite images can have significant scale vari-

ations, as objects of interest may vary in size depending on their distance from the

satellite. Additionally, different satellites or sensors can capture images at varying

resolutions, leading to challenges in detecting objects accurately across different

scales. Finally aerial images can be taken in different angles, from nadir view to

oblique view.

• Object Size Variations and Small Object Detection: Object instances vary dra-

matically in scale. This is not only because of the spatial resolutions of sensors, but

also due to the size variations inside the same object category. Many aerial images

also contain small objects which are heavily overwhelmed by complex surrounding

scenes.
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• Crowded Objects: Objects such as vehicles in parking lots and planes in airports

are often densely arranged, leading to feature coupling between classes due to over-

lapping. Similarly to large image sizes, objects appearing in large multitudes cannot

be processed by current GPUs due to insufficient memory capabilities.

• Class Imbalance: Remote sensing imaging datasets tend to exhibit class imbal-

ance, meaning that certain object classes may be underrepresented compared to

others. This often leads to biased model training and affect the performance of

object detection algorithms, particularly for rare or less frequent classes.

• Complex Backgrounds and Clutter: Aerial and satellite images frequently exhibit

complex backgrounds due to the presence of diverse land cover, natural features,

and human infrastructure. Distinguishing objects from cluttered backgrounds can

be difficult, especially when objects share similar visual characteristics with the

surrounding environment.

• Limited Labeled Data: Annotated datasets for object detection in remote sensing

images are limited compared to other domains. Collecting and labeling large-scale

satellite imaging datasets is a resource-intensive and time-consuming process. The

scarcity of labeled data poses challenges for training accurate and robust object

detection models that can be applied in different tasks effectively.

1.2 Transfer Learning

The machine learning technique of transfer learning can help tackle and overcome

some of the challenges of object detection in remote sensing images that were presented

in the previous section. Transfer learning is a technique in machine learning in which

knowledge learned from one task is re-used in order to boost performance on a related

task. So, if a pre-trained model that has been trained on a large-scale dataset for object

detection is available, this model can be re-used in a different task.

The general steps of a transfer learning pipeline that can be applied in remote sensing

imaging start with selecting an object detector model. State-of-the-art models like Faster

R-CNN, RetinaNet, YOLO or DETR that will be presented in chapter 2 can serve as good

starting points for this task. The next step is to acquire a dataset of satellite and aerial

images with annotations in the form of bounding boxes around the objects classes of in-

terest. After that, data preprocessing steps like radiometric and atmospheric corrections,

data augmentation and image resizing and normalization are standard practice in this

type of images. Then the model is trained and finetuned on this preprocessed annotated

dataset until the results of the detections are deemed satisfactory.

The final step is to apply the technique of transfer learning to new data and evaluate

the robustness of the pre-trained model. There are several transfer learning strategies

that can be used:

• Full Transfer Learning: Fine-tune the entire network, including the backbone layers,

using the new dataset. This strategy requires a sufficient amount of labeled data.
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• Partial Transfer Learning: Freeze some of the initial layers (backbone layers) of

the pre-trained model while only training the new task-specific layers on the target

dataset. This approach is suitable when the target dataset is limited.

• Few-Shot Learning: Fine-tune the network with a very small number of labeled

samples, even as low as one or a few examples per class. This approach is useful

when only a limited amount of annotated data is available.

• Zero-Shot Learning: Evaluate the pre-trained model without further training on the

new dataset and asssess its performance.

Finally, in order to evaluate the performance of the transfer learning-based object

detector on a separate validation or test set, appropriate evaluation metrics such as mean

Average Precision (mAP), Intersection over Union (IoU), or Precision-Recall curves can be

used. The results can be compared with baseline models or other approaches to measure

the improvement achieved through transfer learning.

By applying transfer learning in object detection for satellite and aerial images, the

model can benefit from the rich representations learned from large-scale datasets, en-

hancing the precision of object detections. This approach can mitigate the challenges

listed and explained in the previous section, leading to more accurate and robust object

detection capabilities. Chapter 3 presents and epxlains the method of transfer learning

that is used in this thesis and the datasets that on which our method is evaluated.

1.3 Thesis Outline and Structure

The current thesis is organized as follows:

• Chapter 2 - Background: This chapter presents the history of object detection and

explains several state-of-the-art algorithms for object detection. Finally, five models

are selected for the experiments that were conducted in later parts of this thesis.

• Chapter 3 - Proposed Method: This chapter formulates the method that was used

in the experiments of this thesis, regarding transfer learning from pre-trained object

detectors to different datasets. In addition, the evaluation metrics that were used

in the experiments are formulated and explained. Finally, the three datasets that

were used in the experiments as well as the training and evaluation procedure are

presented.

• Chapter 4 - Results and Evaluation: This chapter presents all experiments that

were conducted related to Object Detection. First, the results of training the five

proposed models on the baseline dataset are presented. Then, these pre-trained

models are used in new datasets with or without further training and the results

are presented both qualitatively and quantitatively.

• Chapter 5 - Conclusions: This chapter includes a quick summary of the work that

was presented as well as some key conclusions.
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Chapter 2

Background

2.1 History of Object Detection

Object detection is an important computer vision task that deals with detecting in-

stances of visual objects of a certain class (such as humans, animals, or cars) in digital

images. The goal of object detection is to develop computational models and techniques

that provide one of the most basic pieces of knowledge needed by computer vision appli-

cations: What objects are where? The two most significant metrics for object detection are

accuracy (including classification accuracy and localization accuracy) and speed. Object

detection serves as a basis for many other computer vision tasks, such as instance seg-

mentation image captioning , object tracking etc. In recent years, the rapid development

of deep learning techniques has greatly promoted the progress of object detection, leading

to remarkable breakthroughs and propelling it to a research hotspot with unprecedented

attention. Object detection has now been widely used in many real-world applications,

such as autonomous driving, robot vision, video surveillance, multiple object tracking etc.

The progress of object detection has generally gone through two historical periods:

“Traditional object detection period (before 2014)” and “Deep learning based detection

period (after 2014)”, as shown in figure 2.1. The traditional object detection methods

were based on handcrafted features. Due to the lack of effective image representation

at that time, people had to design sophisticated feature representations and a variety of

speed-up skills. Some of the most important detectors of this period were the Viola Jones

Detectors [2], the HOG Detector [3] and the Deformable Part-based Model [4].

With the rapid development of the deep Convolutional Neural Networks for computer

vision tasks, many algorithms for object detection (deep object detectors) started appear-

ing in research. In 2014 R. Girshick et al. proposed the Region-Based Convolutional

Networks (R-CNN) [5], which was the first deep object detector that improved the detec-

tion capabilities of previous algorithm dramatically. This lead to models Fast R-CNN [6]

and eventually Faster R-CNN [7] that is considered state-of-the art even today. In the era

of deep learning, object detection can be grouped in two categories, “two-stage detectors”

(like Faster R-CNN) and “one-stage detectors” (like YOLO [8], RetinaNet [9] and DETR [10]),

where the former frames the detection as a “coarse-to-fine” process while the latter frames

it as to “complete in one step”. More specifically, the two stage process first generates

region proposals and then classifies each proposal into different object classes. On the
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Figure 2.1. Object Detection Milestones from survey [1]

other hand, one-stage detection considers object detection as a simple joint regression

and classification problem, adopting a unified framework to acquire final object classes

and locations in one step. The differences of the two approaches are depicted in figure

2.2. In the next sections of this chapter, several state-of-the-art models are presented

and analyzed. Then, five of these models will eventually be trained and evaluated with

the proposed method of transfer learning in this thesis.

Figure 2.2. Differences of One Stage and Two Stage Detectors

2.2 Two-Stage Detectors

2.2.1 Faster-RCNN

Faster R-CNN (Region-based Convolutional Neural Network) is a popular two-stage

object detection framework that combines the benefits of deep convolutional neural net-
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works (CNNs) and region proposal methods. It was introduced by Shaoqing Ren, Kaiming

He, Ross Girshick, and Jian Sun in 2015 [7] as an extension of the original R-CNN [6].

Figure 2.3 depicts the architecture of the Faster R-CNN algorithm.

Figure 2.3. Faster R-CNN Architecture

The first stage of the algorithm concerns the creation of region proposals (Region

Proposal Network - RPN), which are potential bounding boxes that contain objects in the

image. It achieves this by sliding a small network, typically a CNN, over the convolutional

feature map produced by a shared CNN backbone network. Popular CNN backbones that

are typically used for the RPN are ResNet [11] or VGG [12]. The predecessor algorithm

Fast R-CNN uses the Selective Search algorithm for Object Proposals instead of the RPN,

which is a time consuming process. In contrast, the RPN predicts objectness scores

and bounding box regression offsets for a set of anchor boxes at different positions and

scales. Anchors are placed on the initial image to depict possible objects and various sizes

and aspect ratios, with an example shown on figure 2.4. Since anchors usually overlap,

proposals also end up overlapping. Thus, these predicted proposals are then ranked and

filtered using non-maximum suppression (NMS) to obtain the most likely object regions.

The overall Region Propsal Network architecture is depicted in figure 2.5.

The second stage of the algorithm is identical with the Fast R-CNN detector. The
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Figure 2.4. Example of 9 possible Anchors in an input image

Figure 2.5. Region Propsal Network Architecture

architecture of the Fast R-CNN is depicted in figure 2.6. The Fast R-CNN architecture

includes a backbone CNN and a Region of Interest (ROI) layer which isolates the region of

the feature map that corresponds to the Object Proposal. These two connected layers are

split into 2 branches for the classification of the object and the regression of the bounding

box. An important aspect is that the classification and regression parts of the Fast R-CNN

algorithm are different from the RPN classification and regression.

The two-stage detector is trained in 4 steps. First, The RPN network is independently

trained on the Region Proposal problem. A pre-trained network is used as a backbone

and is then fine-tuned. Second, the Fast R-CNN part is independently trained using the

proposed regions of the RPN on the Detection problem. The next step is to initialize the

RPN network using the weights of the Fast R-CNN, so that the network is fine tune on

the Region Proposal task. The weights on the common layers of RPN and Fast R-CNN are

kept frozen. The final step involves training again the layers of the detection part ofFast

R-CNN on the final trained RPN.

Faster R-CNN is a very powerful algorithm in the task of object detection. For this

thesis, a Faster R-CNN model using the ResNet50 CNN as backbone is selected as the
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Figure 2.6. Fast R-CNN Architecture

first model for the experiments.

2.3 One-Stage Detectors

2.3.1 RetinaNet

RetinaNet [9] is a powerful Single Shot Detector that is comprised of three distinct

parts. A pre-trained backbone encoder CNN, a Feature Pyramid Network (FPN) and Con-

volutional heads to detect the objects built. The high-level architecture of RetinaNet

is depicted in figure 2.7. The main innovation of RetinaNet lies in its feature pyramid

network (FPN) backbone and the use of a novel focal loss function, as explained below.

The Feature Pyramid Network is the first key innovation and the basis upon which

RetinaNet is built. It starts with a backbone network (usually ResNet or VGG similar to

Faster R-CNN), in order to extract features from the input image. The FPN is then applied

on top to generate a pyramid of feature maps with different spatial resolutions. The FPN

combines high-resolution, semantically strong features with low-resolution, semantically

weak features through a top-down pathway and lateral connections. This process creates

a rich set of multi-scale features that are critical for detecting objects of various sizes.

The other key innovation of RetinaNet is the use of focal loss. One key challenge

in object detection is handling the extreme class imbalance between the vast number of

background regions and the limited number of foreground object regions. To address this,

RetinaNet introduces a novel loss function called the focal loss. The focal loss assigns

higher weights to hard and misclassified examples while down-weights easy examples.

By focusing on challenging samples, the model effectively addresses the class imbalance

issue and improves the accuracy of object detection.

In the final stage, RetinaNet includes two parallel sub-networks, the classification sub-

network (head) and the regression sub-network (head). The classification head predicts

the probability of each anchor box containing an object belonging to various predefined

classes. It applies several convolutional layers followed by a classification layer. The

regression head estimates the precise bounding box coordinates (i.e., offsets) for each
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anchor box, adjusting them to tightly fit the objects in the image.

During training, RetinaNet optimizes both the classification and regression heads

using the focal loss. The model is trained end-to-end, where the backbone network, FPN,

and the two sub-networks are jointly optimized.

RetinaNet offers several advantages. It achieves impressive accuracy by effectively

handling object detection at multiple scales with the help of the FPN. The focal loss

improves the model’s ability to handle class imbalance, leading to better detection per-

formance. Furthermore, RetinaNet operates efficiently by sharing computation across all

spatial locations of the image, making it also suitable for real-time applications.

Overall, RetinaNet has become a popular choice in the field of object detection due

to its accuracy, efficiency, and ability to handle multi-scale detection effectively. It has

been widely adopted in various domains, including autonomous driving, robotics, and

surveillance systems. For this thesis, a RetinaNet model using the ResNet50 CNN as

backbone is selected as the first model for the experiments.

Figure 2.7. RetinaNet Architecture

2.3.2 YOLO

You Only Look Once (YOLO) was a novel approach to object detection that was in-

troduced in 2015 [8]. It frames object detection as a regression problem to spatially

separated bounding boxes and associated class probabilities. It uses a single neural net-

work to predict bounding boxes and associated class probabilities directly from the full

images in one evaluation.

YOLO starts by dividing the input image into a grid of N cells, with each one being

responsible to detect and localize the object that it contains. These cells predict the

coordinates of the bounding box (Bounding Box Regression) and the class probability

and confidence score that an object is inside them (Classification). Finally it uses Non-

Maximum Suppression (NMS) to eliminate duplicate and overlapping detections. NMS

selects the most confident detection for each object and suppresses overlapping detec-

tions based on a threshold, resulting in a final set of non-overlapping, high-confidence

detections. The architecture of the YOLO algorith is depicted in figure 2.8.

Regarding the loss function used in YOLO, a complex function is used. It contains

2 temrs for bounding box regression, 2 terms for cell classification. Finally there is a

common term for classification and localization of the prediction. The loss function used
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Figure 2.8. YOLO Architecture

in YOLO combines the localization loss (based on the bounding box coordinates) and the

classification loss (based on the class probabilities). The confidence score is used to filter

out low-confidence detections during post-processing.

YOLO offers several advantages, including very high real-time performance, simplicity,

and the ability to detect objects accurately in different domains. It has been widely

adopted in various applications, such as autonomous driving, video surveillance, and

object recognition. However, YOLO may face challenges in detecting small objects and

objects with significant aspect ratio variations due to the fixed grid cell size and anchor

boxes. Finally, the loss function treats the same way errors in small and large bounding

boxes.

2.3.3 YOLOX

A series of algorithms have been developed since the inception of YOLO, like YOLOv2

[13], YOLOv3 [14], YOLOv4 and YOLOv5. Each one of them built on top of the original

algorithm to tackle its limitations and problems. The YOLO series always pursuit the

optimal speed and accuracy trade-off for real-time applications. However, all of these

detectors didn’t follow the major advances in object detection, i.e. anchor-free detectors,

advanced label assignment strategies and end-to-end (without NMS) detectors. The latest

iteration of the YOLO series that included these advances was the YOLOX model [15].

The key difference in YOLOX is that the original algorithm was switched to an anchor

free manner, while also adding a decoupled head and a novel label assignment strategy

(SimOTA). The difference in the architecture of YOLOX decoupled and the head of previous

iterations of the YOLO algorithms is depicted in figure 2.9.

YOLOX was able to achieve a better trade-off between speed and accuracy in all model

sizes. It surpassed the average precision achieved by the YOLOv3 algorithm while also

being able to achieve faster real-time detections. As a result, the YOLOX algorithm was

selected as the third model of the experiments of this thesis.
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Figure 2.9. Difference between YOLOv3 head and YOLOX decoupled head.

2.4 Transformer Based Object Detection

2.4.1 DETR

The DETR Algorithm is based on the paper ’End-to-end Object Detection with Trans-

formers’ by META AI[10]. Unlike traditional object detection models that rely on region

proposal methods and complex pipelines, DETR leverages the Transformer Architecture

[16] to perform end-to-end object detection in a single pass. It represents a significant

departure from the conventional two-stage approaches and has gained attention for its

simplicity, efficiency, and impressive performance. The high level architecture of the

DETR algorithm is depicted in figure 2.10.

Figure 2.10. DETR High-Level Architecture

The problem of object detection in the DETR algorithm is modeled as an image-to-set

problem. This eliminates the need for algorithms that include hand-crafted features

like the non-maximum suppression. In addition, the anchors that are basic on the

architecture of Faster R-CNN and RetinaNet to model the prior knowledge of the problem
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are not used. It is based on a single Transformer Encoder-Decoder architecture and a

set-based global loss function that results to unique predictions with the technique of

bipartite matching.

The transformer encoder processes the input image by dividing it into a grid of equally-

sized spatial regions or patches. Each patch is passed through a convolutional neural

network (CNN) backbone to extract a feature vector. These features are then flattened

and processed by a stack of transformer encoder layers. The encoder layers capture both

local and global contextual information, enabling effective representation learning.

The transformer decoder takes the output of the encoder, which consists of a set of

fixed-length feature vectors, and generates object queries and positional encodings. The

object queries serve as the representation of the classes to be detected. The positional

encodings capture the spatial information of each object query. The decoder layers attend

to both the encoder outputs and the previously generated object queries to refine the object

representations iteratively.

DETR offers several advantages over traditional object detection models. It eliminates

the need for complex region proposal methods, such as selective search or anchor-based

sampling, simplifying the detection pipeline. The end-to-end nature of DETR enables effi-

cient training and inference. Furthermore, DETR demonstrates impressive performance,

achieving competitive results on various benchmark datasets.

2.4.2 Deformable DETR

Deformable DETR is an extension of the original DETR framework that incorporates

deformable convolutional networks (DCN) to improve the modeling of spatial relationships

and handle object deformations more effectively. It was introduced by Xizhou Zhu et al.

in 2021[17]. The high level architecture of the Deformable DETR algorithm is depicted in

figure 2.11.

The deformable convolutional networks are introduced by Deformable DETR as the

backbone network in the encoder, in order to enhance the modelling of spatial relation-

ships by allowing the convolutional filter to spatially adaptive. In addition Deformable

DETR introduces deformable attention mechanisms in the transformer decoder, in order

to guide the attention computations, as depicted in figure 2.12.

The additions of deformable convolutional netwoks and attention mechanims are the

key improvements to the DETR algorithm. These additions enhance the model’s ability

to handle object deformations and improve the accuracy of object detection. Deformable

DETR represents a significant advancement in the field of object detection, particularly

for scenarios where objects undergo significant shape changes or deformations. For this

thesis, a Deformable DETR model is selected as the fourth model for the experiments.

2.4.3 ConvNeXt Architecture

The introduction of Visition Transformers (ViTs) [18] in 2020 were a breathrough in the

field of computer vision. They quickly superseded Convolutional Neural Networks as the

state-of-the-art image classification model. However, they faced difficulties when applied

Diploma Thesis 27



Chapter 2. Background

Figure 2.11. Deformable DETR High-Level Architecture

to different computer vision tasks, such as object detection and semantic segmentation.

This led to the introduction of the hierarchical Transformers (e.g., Swin Transformers

[19]) that reintroduced several Convolutional Net priors, making Transformers practically

viable as a generic vision backbone and demonstrating remarkable performance on a wide

variety of vision tasks beyond image classification. Swin Transformer’s success and rapid

adoption also revealed one thing: the essence of convolution is not becoming irrelevant;

rather, it remains much desired and has never faded.

However, the effectiveness of such hybrid approaches was still largely credited to the

intrinsic superiority of Transformers, rather than the inherent inductive biases of con-

volutions. Then Liu et. al in their work [20] reexamined the design spaces and tested

the limits of what a pure ConvNet can achieve. The result was to gradually "modernize"

a standard ResNet toward the design of a vision Transformer, and discover several key

components that contribute to the performance difference along the way. The outcome

of this exploration was a family of pure ConvNet models dubbed ConvNeXt. Constructed

entirely from standard ConvNet modules, ConvNeXts compete favorably with Transform-

ers in terms of accuracy and scalability outperforming Swin Transformers on detection

segmentation tasks, while maintaining the simplicity and efficiency of standard Convolu-

tional Neural Networks. Figure 2.13 shows the difference of the standard block of a classic

ConvNet (ResNet), a SWIN Transformer and the newly introduced ConvNeXt model.

This inspired us to explore a new model for the experiments done in this thesis, where

the standard ResNet50 backbone network of the Faster R-CNN is replaced by a ConvNeXt

based model. The resulting model is named Faster R-CNN ConvNeXt and serves as

the fifth model in the experiments that will be presented and evaluated in the following
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Figure 2.12. Deformable Attention used by the Deformable DETR Algorithm

chapters.
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Figure 2.13. Differences between a standard ResNet, a SWIN Transformer and ConvNeXt
block
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Chapter 3

Proposed Method

In this chapter, the proposed method for the experiments conducted during this thesis

is presented. We present the method of Transfer Learning that is used, as well as the

Evaluation Metrics for the experiments. We also present the three datasets that were used

for the experiments and some information on the training and evaluation procedures.

3.1 Transfer Learning

The rationale behind the work done during this thesis is based primarily on the tech-

nique of transfer learning. Transfer learning is a widely used technique in machine learn-

ing in which knowledge learned from a task is re-used in order to boost performance on

a related task. The idea is that reusing/transferring information from previously learned

tasks to new tasks has the potential to significantly improve learning efficiency.

The task at hand was identifying objects in satellite and aerial images, which inher-

ently contains many challenges, as explained in chapter 1. In summary, different datasets

contain images with varying scales, object sizes and resolutions or are taken at a different

angle. In addition, there are limited labeled datasets with aerial images and creating new

ones is expensive and time consuming. To that end, the proposed approach is to train

the models presented in chapter 2 in a very large, publicly available and well annotated

dataset with many object categories (presented in section 3.3.1), in order to have mod-

els that are capable of identifying the objects that this dataset contains. Subsequently,

these models can be evaluated on other datasets that contain similar object categories,

like the ones presented in subsections 3.3.2 and 3.3.3 and evaluate them in the same

categories. Going a step further, we evaluate the models on the new datasets with two

different approaches. First, we evaluate them without further training (zero-shot learning)

and secondly, we evaluate them while further training them on small subsets of the new

dataset (few-shot learning). In the second approach, we experiment with different small

subsets of the new dataset in order to identify the number of training images from the

new dataset that can be proven sufficient for good results.

This method could have real life applications and can be proven useful to both re-

searchers and practitioners. More particularly, since creating a new dataset can be

expensive, as images need to be collected and correctly annotated, the rationale behind

our approach is that if pretrained models on datasets with similar annotated objects are
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available, even a few extra training samples can be adequate for the new data and task.

3.2 Evaluation Metrics

Mean Average Precision (mAP) is a popular metric in measuring the accuracy of ob-

ject detectors like Faster R-CNN, YOLOX etc. It is the basis for many Object Detection

competitions and in this thesis, it serves as the basis for evaluation of our models. The

metric is based on other popular metrics in Machine Learning, like Precision, Recall and

Intersection over Union (IoU), which we will also briefly present.

3.2.1 Precision and Recall

Precision and recall are two important metrics used to evaluate the performance of

a classification problem. Precision measures the accuracy of positive predictions made

by the system. It calculates the ratio of true positive predictions (correctly predicted

positives) to the total number of positive predictions (both true positives and false posi-

tives). Precision focuses on how many of the positive predictions are actually correct. The

formula for precision is:

Precision =
True Positives

True Positives + False Positives

Recall, also known as sensitivity or true positive rate, measures the ability of a system

to find all the positive instances. It calculates the ratio of true positive predictions to

the total number of actual positive instances (true positives and false negatives). Recall

focuses on how many of the actual positive instances are correctly identified by the system.

The formula for recall is:

Recall =
True Positives

True Positives + False Negatives

Precision and recall are often inversely related. Increasing the precision tends to

decrease the recall, and vice versa. This trade-off occurs because increasing the threshold

for classifying an instance as positive (thereby reducing false positives) typically leads to

a decrease in the number of instances predicted as positive (which can increase false

negatives), and vice versa.

To summarize, precision focuses on the quality of positive predictions, while recall fo-

cuses on the completeness of positive predictions. Both metrics are valuable and should

be considered together to get a comprehensive understanding of the system’s perfor-

mance, especially in scenarios where false positives or false negatives have different im-

plications or costs. These two metrics, as well as the Intersection over Union are the basis

for the mean Average Precision, i.e. the basic metric of our experiments.

3.2.2 Intersection over Union

Intersection over Union (IoU) is used to evaluate the performance of object detection

by comparing the ground truth bounding box to the predicted bounding box . We use
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that to measure how much our predicted boundary overlaps with the ground truth (the

real object boundary). Figure 3.1 explains the mathematical calculation of IoU for two

boundaries. For object detection models, it is important to predefine an IoU threshold

above which the prediction is characterized as a true positive or false positive, as this also

distinguishes the different mean Average Precision definitions that are used. An example

of a true positive and a false positive detection, if the IoU threshold is set at 0.5, is shown

on figure 3.2

Figure 3.1. Intersection over Union definition

Figure 3.2. True Positive and False Positive definition in relation with IoU

3.2.3 Average Precision and mean Average Precision

After defining precision, recall and IoU, we need to define Average Precision (AP) and

mean Average Precision (mAP) which is the basic evaluation metric of our experiments.

Average precision computes the average precision value for recall values from 0 to 1, i.e.

it measures the precision-recall trade-off at different thresholds for classifying objects.

In order to calculate the Average Precision of each category, the first step is to sort the

predicted bounding boxes in descending order based on their confidence score. For each

predicted bounding box, it is determined whether whether it matches a ground truth

bounding box (based on a predefined IoU value, above which the predictions is charac-

terized as true positive). Precision and recall values are calculated at each threshold as

the number of true positives, false positives, and false negatives change. The next step
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is to plot the precision-recall curve, based on values obtained in step 1. The final step

is to compute the average precision as the area under the precision-recall curve. This

involves calculating the integral of precision with respect to recall. There are different

methods to compute this integral, such as the 11-point interpolation or the area under

the curve (AUC) approach. This calculates the Average Precision of each category. Then,

mean Average Precision is the mean of Average Precisions of all categories.

The MMdetection toolkit that is presented in 3.4 provides different mAP calculations

when the models are evaluated, based on the IoU threshold that is used and some other

implementation details. In this thesis, we use the PASCAL VOC [21] definition of average

precision, where the prediction is positive if the IoU value is grater than 0.5. if multiple

detections of the same object are detected, it counts the first one as a positive while

the rest as negatives. In order to calculate AP, an average of 11-point interpolation of

precision values for each recall value from 0 to 1 with step equal to 0.1 is calculated.

Another definition of mAP is the one defined by the COCO [22] dataset. In COCO mAP,

a 101-point interpolated AP definition is used in the calculation. For COCO, AP is the

average over multiple IoU (the minimum IoU to consider a positive match). AP@[.5:.95]

corresponds to the average AP for IoU from 0.5 to 0.95 with a step size of 0.05. In this

thesis, these two mAP values are calculated for all calculated for each experiment. The

PASCAL VOC definition is named mAP50 in the results, whereas the COCO definition is

named mAP50:95.

3.3 Datasets

3.3.1 DOTA

DOTA [23] is a large-scale dataset for object detection in aerial images. It is widely

used to develop and evaluate object detectors in aerial images. The images are collected

from different sensors and platforms. Each image is of the size in the range from 800×800

to 20,000×20,000 pixels and contains objects exhibiting a wide variety of scales, orienta-

tions, and shapes. DOTA provides annotations both in oriented and horizontal bounding

boxes. For this thesis, the horizontal bounding boxes were used, since the other two

datasets that will be evaluated only contained annotations for horizontal bounding boxes.

The team behind DOTA has released three versions of the dataset. DOTAv1 contains

15 categories, with 2,806 images and 188,282 annotated instances. DOTAv1.5 introduced

another category and also included annotations of extremely small instances (less than

10 pixels). Finally, the last iteration of the dataset, DOTAv2, collected more Google Earth,

GF-2 Satellite, and aerial images and introduced another two categories, for a total of 18

categories. In total there are 11,268 images and 1,793,658 instances in DOTAv2, split

into training, validation and test sets. For this thesis, the training and validation sets of

DOTAv2 were used, since the test set does not include annotations and is used for the

evaluation of the DOTA competition. The training set contains 1,830 images and 268,627

annotations whereas the validation set contains 593 images and 81,048 annotations. For

all experiments, the training and validation images were split in patches of size 512x512
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pixels. Table 3.1 presents the number of instances for each of the 18 categories for the

training and validation sets, where the problem of class imbalance is shown, while figure

3.3 presents annotated examples of the 18 categories taken from the DOTA website.

DOTA is diverse dataset that covers many of the important challenges inherent in

aerial imagery such as image and object scale variance, cluttered arrangements, arbitrary

orientations and aspect ratios and has category imbalance.

Category Training Set Validation Set

plane 8383 2832

baseball diamond 533 273

bridge 2402 546

ground track field 473 186

small vehicle 169268 50062

large vehicle 24570 5371

ship 40552 13801

tennis court 2600 783

basketball court 564 147

storage tank 7372 3175

soccer ball field 420 152

roundabout 631 228

harbor 6455 2443

swimming pool 2379 851

helicopter 652 78

container crane 256 14

airport 305 104

helipad 102 2

Table 3.1. Number of Objects in DOTAv2

3.3.2 HRRSD

The first dataset that the pretrained models on DOTAv2 were transferred and evalu-

ated was the High Resolution Remote Sensing Detection (HRRSD) dataset [24]. HRRSD

contains 21,761 images acquired from Google Earth and Baidu Map with the spatial

resolution from 0.15m to 1.2m. It contains 55,740 object instances and 13 categories

of Remote Sensing Imaging objects. 10 of these categories are common with DOTAv2

dataset, while 3 categories are unique to HRRSD and are not present in DOTAv2. The

training and test subsets of the dataset are used in this thesis, containing 4,352 and

13,057 images respectively. Table 3.2 presents the number of annotations of each cate-

gory, while with gray font we present the categories that are not present in DOTAv2 and

are not evaluated in our experiments. The annotations in HRRSD are given in horizontal

bounding boxes.

As explained in 3.1, we conduct experiments while training the pretrained DOTAv2

models on different percentages of the HRRSD training set. Similarly to DOTAv2, the

training set is split in patches of size 512x512 sizes. Table 3.3 contains the number

of the full training and test images, the number of the training images when split into

Diploma Thesis 35



Chapter 3. Proposed Method

Figure 3.3. Examples of DOTA annotations for each category

patches as well as the number of the patches that are used in the 5 different training

experiments.

3.3.3 ITCVD

The final dataset that is being evaluated in this thesis is the ITCVD [25] dataset. ITCVD

dataset is a large-scale, well annotated and challenging vehicle detection dataset. The

images were taken from an airplane platform which flied over Enschede, The Netherlands,

in the height of 330m above the ground. The images are taken in both nadir view and

oblique view where the tilt angle is 45 degrees. In total, the dataset contains 173 images,

split into 135 images with 23,543 vehicles in the training set and 38 images with 5,545

vehicles in the testing set. Each vehicle in the dataset is manually annotated using a

horizontal bounding box.

The pretrained models of DOTAv2 are evaluated in the task of vehicle detection on the

new dataset, since vehicle is one of the categories of DOTAv2. For that, we evaluate the

models both in the full testing images and also in the testing images split in 512x512

patches, as will be presented in section 4.3.
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Category Training Set Test Set

bridge 966 2713

airplane 1073 2837

ground track field 809 2446

vehicle 908 2890

parking lot 1042 2861

T junction 934 2729

baseball diamond 797 2495

tennis court 795 2713

basketball court 802 2384

ship 740 2428

crossroad 867 2613

harbor 838 2231

storage tank 839 2852

Table 3.2. Number of Objects in HRRSD

Set Number of Images

Training Set 4352

Testing Set 13057

Training Set (Patches with objects) 27648

0.5% of training set 138

1% of training set 276

5% of training set 1382

10% of training set 2764

20% of training set 5529

Table 3.3. Number of Images in the different HRRSD datasets

3.4 Training and Evaluation Procedure

MMDetection [26] is an open source object detection toolbox based on PyTorch [27].

It is a part of the OpenMMLab project. For the experiments conducted during this the-

sis, solely the MMDetection framework was used on a single GPU computer, which can

train and evaluate a variety of Object Detector models on different datasets. In addition,

MMDetection includes results for the models trained on the COCO [22] dataset, a well

known dataset for Object Detection tasks that contain 80 different categories of objects.

Some of these results are also presented in chapter 4. Finally, tools from the codebase

included in the paper ’Object Detection in Aerial Images: A Large-Scale Benchmark and

Challenges’ [28] for splitting images for training and translating the DOTA annotations

into COCO annotation format, in order to be used with the MMDetection toolbox were

used. The same paper also contains several benchmarks for certain object detectors on

the DOTA datasets, also presented in chapter 4.
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Chapter 4

Results and Evaluation

This chapter contains both quantitative and qualitative results from the experiments

conducted during this thesis. Section 4.1 presents the results of training the five models

presented in chapter 2 in the DOTAv2 dataset, whereas sections 4.2 and 4.3 present the

results of applying the technique of transfer learning to the HRRSD and ITCVD datasets.

4.1 Results on DOTAv2

The five models were first trained on the DOTAv2 dataset. The 4 models that were

available in the toolbox were available as pretrained in the COCO [22] dataset, while the

Faster R-CNN variation model with ConvNeXt backbone was created and trained from

scratch. Figure 4.1 presents the training losses of our experiments for the 5 models.

Table 4.1 presents the results for the two metrics that were introduced and explained in

section 3.2 for all experiments. Results from related experiments from similar studies

(referenced in the table) are presented in gray font, while the results of our experiments

are presented in black font. For each case, the higher mAP from the five models is shown

in bold font.

We observe that the 5 models exhibit similar results when evaluated on the DOTAv2

development set, both when the development set is split and when it is not. The mean

Average Precision of the models on the development set when split in patches is high when

compared with similar experiments from the past [28], given that DOTAv2 is characterized

as a difficult dataset to exhibit good results compared to its predecessors DOTAv1 and

DOTAv1.5. The poor results of the models when evaluated on the full images of the

development set is due to a number of factors. Firstly, DOTAv2 images have a large size

with objects in various relative sizes and the object detectors often miss the smaller sized

objects, since part of the algorithms is the rescaling of the input image. Secondly, the

algorithms set a number of maximum detections when evaluated that are often surpassed

by the big number of annotated objects of the development set images. The solution for

detecting objects in the full image is to detect the objects in smaller sized patches of the

image and then merge the results together, something that was not explored during the

experiments.

In addition, we observe that the two models that were able to achieve the best results

in DOTAv2 were YOLOX and Deformable DETR, which are more recent, advanced and
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sophisticated in relation to the Faster R-CNN and RetinaNet object detectors.

These five models that were trained on DOTAv2 were the basis for the subsequent

results of this thesis, presented in sections 4.2 and 4.3.

Metric
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

mAP50:95

COCO [26]
0.374 0.374 0.405 0.445 -

mAP50

COCO [26]
0.581 0.567 0.591 0.632 -

mAP50

DOTAv2 test [28]
0.5071 0.4931 - - -

mAP50:95

DOTAv2 dev (patch)
0.3292 0.3019 0.3421 0.3404 0.3094

mAP50

DOTAv2 dev (patch)
0.5367 0.5034 0.5549 0.5515 0.506

mAP50:95

DOTAv2 dev (full)
0.129 0.099 0.099 0.133 0.103

mAP50

DOTAv2 dev (full)
0.198 0.159 0.17 0.228 0.163

Table 4.1. Results of DOTAv2

4.2 Results on HRRSD

4.2.1 Quantitative Results

After training the five models that were studied during this thesis in the DOTAv2

dataset, the trained models are transferred to a new dataset to be evaluated. The first

dataset that was evaluated was HRRSD, with the results presented in this section. Six

experiments were conducted. The first was to evaluate the models on the new dataset

without further training (zero-shot). The next experiments were to further train all models

on five different subsets of the HRRSD train set, as explained in section 3.1. The number

of 512x512 sized patches that are part of each of these five experiments were presented

in table 3.3.

Tables 4.2 and 4.3 present the mean Average Precisions with the two different defini-

tions for these experiments. We observe that although the results of the zero-shot case

are poor compared to the results that these five models obtained on DOTAv2, further

training them even on a very small subset of the training set can significantly increase

the Average Precision. The results of these tables are also presented in figures 4.2 and

4.3, showing for the 5 models the increase in mean Average Precision with the increase

of the training set size. As far as the models that were used, we observe that the Faster

R-CNN and the YOLOX model were able to achieve the greater mAP. This is not the case

of Deformable DETR, which although had the second best results in the baseline dataset

DOTAv2, it was not able to transfer to the new dataset accordingly.
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4.2.2 Qualitative Results

Tables 4.4 through 4.9 include class-wise Average Precisions for each of the ten com-

mon categories of the HRRSD and DOTAv2 datasets and for each of the six experiments.

For the case of zero-shot learning, very few categories have high average precision (like

storage tanks and tennis courts), whereas the remaining categories are hard to detect

without further training. However, when trained on 20% of the dataset, most of the cate-

gories increase their average precision results significantly. There are still a few categories

that are hard to detect, like bridges or basketball courts and baseball diamonds, that will

be discussed in the next section with the qualitative results. In addition, we observe that

different models display the best behavior in different categories for each experiment. For

example, although Faster R-CNN has the best Average Precision in most categories in the

case of few-shot learning, bridges are better detected by the Deformable DETR algorithm

and certain categories are better detected by YOLOX.

4.2.2 Qualitative Results

To further investigate the results and the behavior of the models in the HRRSD dataset,

we select six images from the test set, presented along with their ground truth annotations

in figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. The first and very important observation from

these images is that the annotations of the HRRSD dataset are not complete. More

specifically, we observe that in the larger images of cases 1, 3, 5 and 6 that contain

larger objects, like basketball courts, bridges or storage tanks, the smaller images that

are present (in this case vehicles) were not annotated. In contrast, the small image of

case 2 has annotated vehicles. In addition, images of cases 1, 3 and 6 contain the ’hard’

categories to detect (bridge, baseball diamond and basketball court) , as presented in the

class-wise results.

Figures 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 present the detections of the model with

the best overall precision (Faster R-CNN) for each of the six experiments (zero-shot and

few-shot with different training sizes) and for each of the six cases that were presented

before. Some important observations per case are listed below:

• In case 1, we observe that for the case of zero-shot learning, several vehicles are

detected. As we explained earlier, these vehicles are not annotated in the ground

trouth annotations and thus they are considered false positives in the calculation

of average precision. In addition, we see the difficulty of the models to distinguish

between categories with similar features as the ground track field is mistakenly

detected as a tennis court. Finally, only half the models are able the detect the

presence of basketball courts.

• In case 2, vehicles are detected with ease by all models that are trained on the new

dataset, while in the case of zero-shot learning, few of the vehicles are missed. In

general, vehicles are considered an easy category, only in smaller images that do

not contain other annotated objects.

• Case 3 contains one of the harder categories to detect, bridges. Bridges have several

different aspect ratios and are it is also difficult to concretely define its extents. We
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can see that in all models, there are additional ’bridges’ detected, which are in

fact false positives. However the actual bridge is detected in the case of few-shot

learning, but not in the case of zero-shot learning

• Case 4 presents a view of an airport, with main parked airplanes. Planes are

detected easily in most of the models that are evaluated and very few are missed

by the detectors and are considered as false negatives in the average precision

calculation. We can see that again the presence of vehicles in the original image is

missed since they are not annotated, and they are subsequently not detected either.

• Case 5 contains several annotated storage tanks. We can observe though that the

smaller storage tanks that are apparent in the original image are not annotated,

marking another problem in the HRRSD dataset. The large storage tanks are easily

detected by the model in both cases of zero-shot and few-shot learning. In addition,

for the first three cases (zero-shot learning and few-shot learning with 0.5% and

1% of the training set), smaller storage tanks are detected as well and are thus

considered false positives in the results.

• In case 6, the original annotated image contains the categories of ground track field,

baseball diamond and tennis court. Again the presence of vehicles is missed in the

annotations of the dataset, and although some are detected in the case of zero-shot,

they are considered false positives. We can that the ground track field is now easily

detected and not confused with a tennis court, like in case 1. However the tennis

courts and baseball diamonds are missed and counted as false negatives in all of

the models with very few exceptions. Another important observation is that in the

case of zero-shot learning, a soccer ball field is detected. This is one of the categories

that are present in the DOTAv2 dataset but not in the HRRSD dataset. Thus the

model that is only trained on DOTAv2 is able to detect it. This does not affect the

calculation of the mean Average Precision of this case, since it is calculated only for

categories present in HRRSD.

Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

Zero-shot 0.264 0.257 0.360 0.256 0.262

0.5% of train set 0.490 0.444 0.490 0.397 0.417

1% of train set 0.626 0.564 0.557 0.499 0.484

5% of train set 0.717 0.631 0.550 0.654 0.610

10% of train set 0.737 0.648 0.568 0.674 0.598

20% of train set 0.751 0.686 0.780 0.682 0.678

Table 4.2. mAP50 Results on HRRSD
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Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

Zero-shot 0.163 0.159 0.213 0.161 0.158

0.5% of train set 0.278 0.242 0.281 0.202 0.217

1% of train set 0.356 0.303 0.322 0.275 0.255

5% of train set 0.443 0.320 0.282 0.330 0.364

10% of train set 0.464 0.343 0.287 0.349 0.323

20% of train set 0.488 0.373 0.452 0.353 0.418

Table 4.3. mAP50:95 Results on HRRSD

Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

plane 0.129 0.137 0.217 0.157 0.148

baseball diamond 0.035 0.013 0.027 0.019 0.021

bridge 0.009 0.006 0.034 0.014 0.010

ground track field 0.177 0.123 0.183 0.070 0.146

small vehicle 0.004 0.006 0.088 0.008 0.001

ship 0.013 0.006 0.111 0.063 0.012

tennis court 0.598 0.571 0.620 0.556 0.594

vasketball court 0.164 0.152 0.166 0.160 0.135

storage tank 0.484 0.529 0.550 0.537 0.478

harbor 0.021 0.043 0.134 0.027 0.035

Table 4.4. Classwise AP50:95 on HRRSD - Zero-shot

4.3 Results on ITCVD

4.3.1 Quantitative Results

The 5 models that were pre-trained on the DOTAv2 are evaluated on the ITCVD test

set that was presented in section 3.3.3, without further training. Tables 4.10 and 4.11

present the results for the two evaluation metrics and for both evaluation modes. Again,

in bold font is the model with the best mAP for each evaluation mode. We can observe that

again YOLOX is the model with the best results on this transfer learning task. Since for

this dataset only one category is detected, Average Precision and mean Average Precision

are the same. On one case we split the test set into patches of size 512x512 pixels before

evaluating the performance of the models, while on the other case we evaluate the models

on the full image. We detect very high mean Average Precision values for the models

evaluated on the patched images, whereas the results on the experiments on the full

images are rather poor. The reasons are similar to the ones presented in section 4.1,

namely the relative size of the vehicles to the full image that is re-scaled before passing

the evaluation pipeline and the fact that we have a maximum number of detections set in

all models.
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Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

plane 0.385 0.323 0.563 0.313 0.424

baseball diamond 0.074 0.079 0.088 0.055 0.017

bridge 0.075 0.044 0.021 0.066 0.031

ground track field 0.397 0.355 0.382 0.214 0.343

small vehicle 0.230 0.247 0.229 0.121 0.226

ship 0.264 0.112 0.267 0.213 0.142

tennis court 0.541 0.543 0.395 0.415 0.384

vasketball court 0.167 0.128 0.141 0.122 0.075

storage tank 0.565 0.553 0.647 0.432 0.467

harbor 0.078 0.041 0.073 0.069 0.062

Table 4.5. Classwise AP50:95 on HRRSD - 0.5% of training set

Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

plane 0.444 0.454 0.550 0.384 0.346

baseball diamond 0.164 0.104 0.112 0.131 0.051

bridge 0.119 0.073 0.065 0.088 0.059

ground track field 0.493 0.360 0.475 0.370 0.382

small vehicle 0.299 0.363 0.205 0.207 0.110

ship 0.400 0.316 0.334 0.286 0.247

tennis court 0.563 0.456 0.438 0.445 0.527

basketball court 0.185 0.098 0.051 0.110 0.118

storage tank 0.572 0.525 0.580 0.472 0.430

harbor 0.318 0.276 0.409 0.251 0.279

Table 4.6. Classwise AP50:95 on HRRSD - 1% of training set

4.3.2 Qualitative Results

Finally, we present some qualitative results to demonstrate the observations of the

previous section. To that end, two images from the test set are selected, which are being

presented in figures 4.16 and 4.17. The two images also include a box that corresponds

to the patch that will be evaluated along with the full image. One image is taken in nadir

view, similarly with the ones from the original dataset, while the other one is taken in

oblique view with an angle of 45 degrees. The images are evaluated with the 5 models

and figures 4.18 and 4.19 contain the detections of vehicles for each of the 5 models. We

can observe that all models exhibit very good results, as all the vehicles in the images are

correctly detected, even for the image that is taken in an oblique view. This is not the

case however when the models are evaluated in the full image, as demonstrated in figures

4.20 and 4.21, where the Faster R-CNN algorithm is evaluated on the full images. We

can observe that very few of the many vehicles that are present in the original images are

detected, and the ones that were correctly detected in the patches are not identified. That

explains the low Average Precision of the experiments that is presented in tables 4.10 and

4.11.
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Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

plane 0.581 0.475 0.475 0.473 0.520

baseball diamond 0.272 0.176 0.159 0.253 0.233

bridge 0.211 0.137 0.084 0.236 0.146

ground track field 0.580 0.458 0.522 0.519 0.553

small vehicle 0.493 0.294 0.152 0.181 0.306

ship 0.414 0.257 0.201 0.280 0.269

tennis court 0.615 0.448 0.245 0.438 0.491

basketball court 0.238 0.118 0.026 0.142 0.098

storage tank 0.607 0.514 0.619 0.485 0.588

harbor 0.415 0.325 0.342 0.297 0.431

Table 4.7. Classwise AP50:95 on HRRSD - 5% of training set

Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

plane 0.607 0.503 0.487 0.514 0.487

baseball diamond 0.255 0.249 0.154 0.275 0.217

bridge 0.212 0.131 0.083 0.240 0.093

ground track field 0.607 0.486 0.509 0.515 0.517

small vehicle 0.484 0.383 0.188 0.199 0.340

ship 0.444 0.261 0.198 0.290 0.166

tennis court 0.601 0.432 0.261 0.438 0.488

basketball court 0.286 0.147 0.043 0.183 0.154

storage tank 0.648 0.493 0.564 0.495 0.437

harbor 0.494 0.344 0.379 0.342 0.328

Table 4.8. Classwise AP50:95 on HRRSD - 10% of training set

Training mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

plane 0.600 0.521 0.607 0.501 0.559

baseball diamond 0.301 0.216 0.389 0.330 0.261

bridge 0.233 0.201 0.212 0.253 0.194

ground track field 0.649 0.527 0.642 0.558 0.587

small vehicle 0.525 0.403 0.421 0.137 0.374

ship 0.439 0.311 0.358 0.267 0.377

tennis court 0.658 0.489 0.533 0.431 0.566

basketball court 0.298 0.199 0.254 0.200 0.236

storage tank 0.643 0.489 0.684 0.488 0.557

harbor 0.537 0.373 0.419 0.363 0.468

Table 4.9. Classwise AP50:95 on HRRSD - 20% of training set

Evaluation mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

Zero-shot patch 0.731 0.749 0.871 0.826 0.725

Zero-shot full 0.108 0.123 0.014 0.014 0.105

Table 4.10. AP50 Results on ITCVD
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Figure 4.1. Training Loss in DOTAv2

Evaluation mode
Faster

R-CNN
RetinaNet YOLOX

Deformable

DETR

Faster R-CNN

ConvNeXt

Zero-shot patch 0.439 0.440 0.506 0.499 0.432

Zero-shot full 0.041 0.042 0.003 0.003 0.036

Table 4.11. AP50:95 Results on ITCVD
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4.3.2 Qualitative Results

Figure 4.2. Transfer Learning mAP50 curve for different percentages of training set

Figure 4.3. Transfer Learning mAP50:95 curve for different percentages of training set

Diploma Thesis 47



Chapter 4. Results and Evaluation

Figure 4.4. Test Image from HRRSD with ground truth annotations - Case 1

Figure 4.5. Test Image from HRRSD with ground truth annotations - Case 2
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4.3.2 Qualitative Results

Figure 4.6. Test Image from HRRSD with ground truth annotations - Case 3

Figure 4.7. Test Image from HRRSD with ground truth annotations - Case 4
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Figure 4.8. Test Image from HRRSD with ground truth annotations - Case 5

Figure 4.9. Test Image from HRRSD with ground truth annotations - Case 6
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4.3.2 Qualitative Results

(a) Zero-shot (b) 0.5% of train set

(c) 1% of train set (d) 5% of train set

(e) 10% of train set (f) 20% of train set

Figure 4.10. Object Detections in HRRSD - Case 1
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(a) Zero-shot (b) 0.5% of train set

(c) 1% of train set (d) 5% of train set

(e) 10% of train set (f) 20% of train set

Figure 4.11. Object Detections in HRRSD - Case 2

52 Diploma Thesis



4.3.2 Qualitative Results

(a) Zero-shot (b) 0.5% of train set

(c) 1% of train set (d) 5% of train set

(e) 10% of train set (f) 20% of train set

Figure 4.12. Object Detections in HRRSD - Case 3
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(a) Zero-shot (b) 0.5% of train set

(c) 1% of train set (d) 5% of train set

(e) 10% of train set (f) 20% of train set

Figure 4.13. Object Detections in HRRSD - Case 4

54 Diploma Thesis



4.3.2 Qualitative Results

(a) Zero-shot (b) 0.5% of train set

(c) 1% of train set (d) 5% of train set

(e) 10% of train set (f) 20% of train set

Figure 4.14. Object Detections in HRRSD - Case 5
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(a) Zero-shot (b) 0.5% of train set

(c) 1% of train set (d) 5% of train set

(e) 10% of train set (f) 20% of train set

Figure 4.15. Object Detections in HRRSD - Case 6
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Figure 4.16. Test Image from ITCVD - Case 1

Figure 4.17. Test Image from ITCVD - Case 2
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(a) Faster R-CNN (b) RetinaNet

(c) YOLOX (d) Deformable DETR

(e) Faster R-CNN ConvNeXt

Figure 4.18. Zero-shot Detections in ITCVD patch - Case 1
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4.3.2 Qualitative Results

(a) Faster R-CNN (b) RetinaNet

(c) YOLOX (d) Deformable DETR

(e) Faster R-CNN ConvNeXt

Figure 4.19. Zero-shot Detections in ITCVD patch - Case 2
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Figure 4.20. Zero-shot Detections in ITCVD full image with Faster R-CNNN - Case 1

Figure 4.21. Zero-shot Detections in ITCVD full image with Faster R-CNNN - Case 2
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Chapter 5

Conclusions

This master thesis included a thorough investigation of the topic of Object Detection

in Remote Sensing Imagery and the technique of Transfer Learning of trained object

detectors in different datasets. For this purpose, five state-of-the-art Object Detectors

were presented, analyzed and trained in a large publicly available dataset (DOTAv2),

presenting the results of each of the models and evaluating their ability to detect several

object categories. The next step was to evaluate these five detectors in two additional

datasets (HRRSD and ITCVD), both without further training (zero-shot transfer learning)

and with further training on various small subsets of the new datasets (few-shot transfer

learning). The results were presented and key observations were documented. Several

conclusions can be drawn from these experiments that were presented in chapters 3 and

4 and are also summarized below:

• All object detectors that were used in the experiments and were trained on DOTAv2

displayed a good performance in detecting the categories of DOTAv2, when compared

with similar projects from the past. The mean Average Precision of the detectors on

the development set, when split into smaller patches, is equal or greater than the

mean Average Precision of the test set found in similar projects [28]. This was not

the case when mean Average Precision was calculated for detections on the full

images of the development set, due to a number of factors, including the various

size of objects in the images and the inability of the detectors to identify small

objects because of re-scaling of the images in the evaluation pipeline. There are

other techniques to identify objects in the full image by detecting the objects in

patches and then merging the results into the full image that can be investigated

and evaluated in the future.

• The trained object detectors were evaluated in a new and similar dataset (HRRSD)

in two different modes. First, the detectors were evaluated without further training

them on the new dataset and secondly the detectors were evaluated after being

trained in small subsets of the new dataset. The new dataset contained 10 common

categories with DOTAv2 and the evaluation of the model’s ability to detect objects

was restricted only on these common objects. For the case of zero-shot object

detection, the mean Average Precision of the detections was very low, compared to

similar projects. A key reason for that was that the new dataset was problematic and

Diploma Thesis 61



Chapter 5. Conclusions

many annotations were missed in large-scale images. More specifically, in images

that contain large objects like bridges or ground track fields, the smaller objects

that may be present are not annotated. Thus, these items might be detected by

the zero-shot object detection pipeline and be counted as false positives. When the

object detectors were trained even on very few images of the new dataset (e.g. 1%

of the training set), the mean Average Precision increases significantly. This lead

to the realisation than even a few extra images can help when trying to transfer

information from previously learned tasks and datasets to new tasks and datasets.

• Six different cases from the HRRSD test set containing different categories were

presented and evaluated. Some of the important observations were that there are

categories that are often mixed because they contain similar features and the corre-

sponding objects have the same aspect ratio, like ground track field, tennis courts

and baseball diamonds. In addition, there are categories with poor average precision

results due to the difficulty to define the extent of the bounding box, like bridges

that are shown in one of the cases displayed. Other categories like storage tanks,

vehicles and planes are detected with very high precision in the examples shown.

• When the object detectors were evaluated in a dataset that contained only one of

the original categories of DOTAv2 (ITCVD that includes only annotated vehicles), the

detectors were able to identify the vehicles without further training and with very

high precision. Since the ITCVD dataset contained aerial images in both nadir and

oblique view, this is a significant achievement given that the original detectors were

trained only on images in nadir view that are present in DOTAv2. Thus, we can

conclude that transfer learning of the trained detectors for this type of tasks is a

real strength that the original detectors possess.
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List of Abbreviations

ML Machine Learning

DL Deep Learning

CV Computer Vision

TL Transfer Learning

OD Object Detection

CNN Convolutional Neural Network

GPU Graphical Processing Unit

mAP mean Average Precision

IoU Intersection over Union

DOTA Dataset for Object deTection in Aerial images

HRRSD High Resolution Remote Sensing Detection

COCO Common Objects in COntext

YOLO You Only Look Once

DETR DEtection TRansformer

RPN Region Proposal Network

NMS Non Maximum Suppression

FPN Feature Pyramid Network

DCN Deformable Convolutional Network
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