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Abstract

In the following thesis , the optimal control problem concerning the optimal power
split between the power sources of the Hybrid Diesel-Electric Propulsion Plant (HIPPO-2)
established on the Laboratory of Marine Engineering (LME) is tackled with the use of
Reinforcement Learning methodologies . This optimization problem relies on the develop-
ment of a energy management and emissions minimization system and its control via the
Policy Gradient methodologies provided by the field of Reinforcement Learning . The im-
plementation of the Reinforcement Learning methodologies were enabled by the utilization
of Julia Programming language which is a nascent programming language discerned for its
higher level-simple syntax and its noteworthy speed close to that of lower level languages
such as C/C++ . The goal is to replicate the EMEMS system , achieve its real time con-
trol via a Reinforcement Learning agent and compare the results to more renowned control
schemes such as the Model Predictive Control (MPC).
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Chapter 1

Introduction

1.1 Motivation

In the recent years industries have been under enormous pressure concerning their
environmental footprint.Global warming has alerted many governments worldwide and has
incentivized them to take drastic measures in order to reduce their negative impact on the
environment.Specifically , the shipping industry which contributes to about 15 % of the
NOx emissions worldwide has been forced to discover ways to reduce their impact . The
shipping industry , like any other industry , is mainly economically driven which means that
the possible sanctions imposed in case of noncompliance with the measures enforced by the
governments and the maritime organizations such as the IMO & MARPOL has motivated
shipowners to explore ways to reduce their impact on the environment. The regulatory
framework proposed by IMO & MARPOL according to Annex VI concerning the gradual
reduction of emissions is characterized by the implementation of operational and design
limitations .For instance ,the NOx production limits have an upper bound related to the
rated engine speed and the area in which the vessel operates . The three NOx emission
tiers currently applied are presented in figure 6.3 .
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Figure 1.1: NOx Emissions Tiers

Furthermore , in the emission control areas (ECA - TierIII) efficiency metrics such as
the EEDI index for new vessels and the EEXI for existing ones , are examined referring
to the CO2 emissions. The regulation mainly aimed to the increase of the hull efficiency
however the trend nowadays is the direct regulation of the propulsion plant . Most vessels’
propulsion plants are composed of diesel engines which are the main power suppliers .
Considering that diesel engines have essentially reached their peak concerning performance
and thermal efficiency , novel methods and technologies are vital in order to meet the
emission reduction requirements .

According to [5] several promising technologies have been proposed. Some of them aim
to decrease the power demand, (i.e. by optimizing the efficiency of the hull and propeller)
and others to increase the efficiency of power plant itself. Regarding the second manner,
a lot of new recent technologies promise to reduce both emissions and fuel consumption.A
number of these efforts, are related with optimizing the existing diesel engines performace
mance regarding the emissions, directly (e.g. the EGR), or indirectly (e.g SCR). More-
over,alternative fuels (e.g. LNG and bio-fuels) and renewable sources of power have been
also proposed. Furthermore, advances in battery technologies regarding their capacitance
and efficiency, have already made possible the first fully battery depended ships, employing
both high energy efficiency and zero emissions. However, battery cost and limited capac-
itance still pose barriers which have to be overcome. An interesting solution which aims
to combine the proven availability and operational efficiency of conventional propulsion
manner, and the benefits of novel technologies is Hybrid Propulsion and Energy Conver-
sion. Hybrid propulsion is an option where one or more modes of powering the ship can
be utilized to optimize performance for economic, environmental or operational reasons.
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A common hybrid configuration is that the different powering modes feed a common elec-
trical bus bar from which power can be drawn for various purposes. This, however, is
not necessarily the case since many examples of mechanical linkages between independent
power sources have been designed and operated in ships, both past and present [5]. The
key factor in order to achieve respectable higher efficiency is the control strategy. For in-
stance, studies have shown that a 10-35 % fuel and emission reduction is possible in battery
deployment and intelligent use of DC configurations by implemented appropriate control
strategies.

In this context it is clear that the control methodology implemented on a hybrid propul-
sion system plays a crucial role if a notable efficiency improvement is the target. The cur-
rent thesis examines the implementation of methodologies from the artificial intelligence
spectrum in particular that of reinforcement learning . Advancements in the field of re-
inforcement learning has made ,the once disregarded as a purely theoretical concept , a
powerful representative of the capabilities of modern machine learning methods in control
applications . Control methodologies from a machine learning scope will be implemented
on a hybrid diesel - electric power plant facility (HIPPO-2) with the main focus being
the optimal power split between the two power sources in order to achieve good tracking
control with disturbance rejection and minimization of the fuel consumption and NOx

production of the system . Before introducing the concept of reinforcement learning and
presenting the experimental facility in the premises of the Laboratory of Marine Engineer-
ing (LME) a summary of previous work done on hybrid propulsion plants in general and
on the HIPPO-2 test bed specifically will be examined .

1.2 Previous work

It is a well known fact that the majority of control concepts and methodologies that are
eventually applied to marine hybrid propulsion stem from advancements mainly from the
automotive sector . Throughout the years various concepts have been implemented success-
fully . Regarding the problem of the optimal energy management of hybrid powertrains the
main concepts that tackle this optimization problem revolve around dynamic programming
(DP) , stochastic dynamic programming (SDP) , the Pontryagin’s minimization principle
(PMP) , the equivalent fuel consumption strategies (ECMS) and model predictive control
MPC/NMPC (linear/non linear) . ECMS is based on the concept that in charage sustain-
ing vehicles the battery is used only as an energy buffer and all the energy ultimately comes
from fuel . According to this notion the battery is considered to be a refillable auxiliary
fuel tank that can only be refilled by energy produced from the system itself and not any
other source outside of the main plant of the vehicle . Among the advanced control design
methodologies, MPC proved to be the most promising due to its ability to optimize online a
performance metric by generating a series of future projections about the time evolution of
the system . Its capability to handle simultaneously multivariable processes , satisfy system
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constraints and deal with long time delays while utilizing knowledge for plant disturbance
response made MPC and its derivatives very appealing to the HEV industry.

In maritime applications one could choose to implement a hybrid propulsion plant
with the main propulsive system being the common diesel engine with an electric motor
also being connected to the main shaft line. The idea is that in high loads and speeds
when the efficiency of a diesel engine is high the power will be produced by it . On the
other hand, during operations that are characterized by lower speeds for example during
maneuvering when the diesel engine has low efficiency the electric motor will provide the
power needed . Today the most common use of electrical components in vessels is the use
of shaft generators. In partial loads the diesel engine increases its efficiency by providing
extra power to the shaft generator which in turn covers various electrical supply demands
of the vessel .

Another common approach is the use of a hybrid power supply . In this case , a battery
is added to the plant which operates as an auxiliary power source . The battery could either
be charged offshore or recharged by the plant itself during operation . The second scheme is
based on the ECMS strategy which seeks to find the optimal power split in order to recharge
the battery online and at the same time utilize it wisely , namely at partial loads where the
diesel engine is the least efficient and has the highest soot and emissions production while
also caring for a reduction in the fuel consumption . This optimization problem is addressed
in the works of [2,3] where the framework of non linear MPC control is implemented in
an energy management and emissions minimization control system (EMEMS) and in [3,4]
where indirect ICE control through fuel rate control and direct ICE control with battery
considetation was applied. Both of them where experimentally tested on the HIPPO-2
testbed.
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Chapter 2

Reinforcement Learning

2.1 General

Reinforcement learning is simultaneously a problem , a class of solution methods that
work well on the problem and in general the field that studies this problem and its solution
methods. The concepts of reinforcement learning bear resemblance to the way leaving
organisms learn via interactions with the environment and the corresponding outcomes of
that interaction.

The general concept of learning by interacting with a previously unknown environment
is formalized in Reinforcement Learning with ideas from dynamical systems theory , specif-
ically as the optimal control of incompletely known Markov decision processes. The basic
idea revolves around an agent whose goal is to learn ( the learning goal depends on the
problem) by interacting with the environment over time . The specific terminology utilized
in the RL context will be analyzed in a subsequent section.

Reinforcement learning algorithms belong to the broad area of AI and Machine Learn-
ing (ML) . Machine learning algorithms are categorized 2 basic types · Supervised Learning
and Unsupervised Learning . Reinforcement learning differs from supervised learning which
contains algorithms that support learning from a training set of labeled examples provided
by a knowlegdable external supervisor . The object of this type of learning is to extrap-
olate/infer and generalize so as to respond well in situations not present in the training
set. In interactive problems ,similar to those that RL methods seek to tackle, it is often
impractical to capture first a set of examples of desired behavior that are both correct and
representative of all the situations in which the agent has to act . In situations the agent
has never encountered before he should be able to learn through its own experience .

Reinforcement learning differs also from unsupervised learning . The concept of un-
supervised learning is typically finding hidden structures in collections of unlabeled data.
Reinforcement learning and unsupervised learning share the fact that both of their meth-
ods do not rely on a labeled data set to extrapolate a behavior ( as in supervised learning
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) . However the algorithms’ goals in each case are different , because RL methods try
to maximize a signal generally called reward instead of trying to reveal a hidden pattern
among unlabeled data . Uncovering those hidden structures can surely be beneficial but is
not the main goal of RL methods which is solely the maximization of the reward signal.

Reinforcement learning algorithms especially those that belong to the more specific area
of Deep reinforcement learning methods ( where ML technics are used for approximation )
have been successfully implemented in many engineering applications that have to do with
optimal control and operations research .

2.2 Reinforcement Learning Elements and Formulation

In this section the basic elements needed to describe and analyze reinforcement learning
algorithms are discussed.

One can identify five main elements that can define a reinforcement learning system
: an agent , an environment (optionally its model) , a policy , a reward signal , a value
function . As mentioned before the goal of an agent is to seek way ( by interacting with
his environment ) to maximize his reward . Such problems are usually formulated with the
help of the Markov Decision Process scheme . Starting from a given state,the agent which
is the decision maker and the learner interacts with the environment by selecting actions
and moves to another state . The interaction with the environment produces a reward
signal that the agent recognises during his transitions between each possible state . The
figure below encapsulates the afore mentioned concept .

Figure 2.1: The agent - environment interaction

A Markov decision process (MDP) is defined as the tuple {S,A,Ra, p} where :

• S is the state space - the set of all possible states that the agent might encounter

• A is the action space - the set of all possible actions that the agent can take

• Ra is the reward that agent gets by taking action a
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2.2. REINFORCEMENT LEARNING ELEMENTS AND FORMULATION

• p(s′, r|s, a) is the probability that if the agent takes action a from state s will end up
in state s′ granted a reward r

p is the function that defines the dynamics of the systems described as a MDP with the
probability of each possible value depending on the immediately preceding state and action
. p is an ordinary deterministic function with 4 parameters p : S ×R×A× S → [0, 1]

p(s′, r|s, a) .
= Pr(St = s′, Rt = r|St−1 = s,At−1 = a) (2.2.1)

For each choice of s and a p defines a probability distribution

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A (2.2.2)

Return : The purpose of the agent is formalized in terms of the reward which is passed
from the environment to the agent during each transition from a state to another . The
reward signal is communicating to the agent what needs to be achieved but does not
provide any information on how that should be achieved . The agent seeks to maximize
the expected return :

Gt
.
= Rt+1 +Rt+2 +Rt+3 + ...+RT (2.2.3)

The additional concept of discounted returns is introduced . The agent now tries to
maximize the discounted return which is defined as follows ,

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1 = Rt+1 +Gt+1 (2.2.4)

Policy and Value Functions : The policy of an agent is essentially a mapping
from the state space to probabilities , meaning that a policy is a probability function
π(a|s) : S × A → [0, 1] that expresses the probability that action a will be selected from
the agent while he is at state s .

Value functions are functions of states (or state - action pairs ) that estimate ”how
goo” it is for the agent to be in a given state . For MDPs one can identify 2 basic value
functions .

• State-Value function Vπ(s) which is the expected return that the agent will gain
starting from s and following policy π .
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2.2. REINFORCEMENT LEARNING ELEMENTS AND FORMULATION

• Action-Value function Qπ(s, a) which is the expected return that the agent will
gain starting from s , taking action a and following policy π

Vπ(s)
.
= E [ Gt | St = s ]

Qπ(s, a)
.
= E [ Gt | St = s,At = a ]

(2.2.5)

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships . For any policy π and
any state s, the following consistency condition holds between the value of s and the value
of its possible successor states . This recursive property is known as Bellman Equation

Vπ(s) =
∑
a∈A

π(a|s)
∑

s′∈S,r∈R
p(s′, r|s, a)

[
r + γVπ(s

′)
]

(2.2.6)

The Bellman equation expresses a relationship between the value of a state and the
values of its successor states by averaging over all the possibilities weighting each one by
its probability of occurring .

s

a

p

π

r

s′

Figure 2.2: Backup Diagram - Bellman Equation

Another essential concept for the reinforcement learning theory is that of optimal policy
and value functions .

Definition: A policy π is defined to be better than or equal to a policy π′ if its expected
return is greater than or equal to that of π′ for all states .

π ≥ π′ if and only if Vπ(s) ≥ Vπ′(s) ∀ s ∈ S (2.2.7)

Chapter 2 Master Thesis 18



2.3. BASIC RL CONCEPTS

From the definition above one can naturally define the optimal state - value and
action - value functions corresponding to the optimal policy π∗

V∗(s) = maxVπ(s) ∀s ∈ S (2.2.8)

Q∗(s, a) = maxQπ(s, a) ∀s ∈ S (2.2.9)

V∗(s) = maxQ∗(s, a) over all a ∈ A(s) (2.2.10)

From equations 2.2.8 Belmman optimality equations derives

Vπ(s) = maxa

∑
s′∈S,r∈R

p(s′, r|s, a) [r + γVπ∗(s
′)] (2.2.11)

Qπ(s, a) = maxa

∑
s′∈S,r∈R

p(s′, r|s, a) [r + γQπ∗(s
′, a)] (2.2.12)

Equations 2.2.11 and 2.2.12 are systems of equations for each state , meaning that
with n states there are n equations in n unknowns . For a known p(s′, r|s, a) the
system could be solved with methods for non-linear systems . Dynamic programming
(DP) which refers to a collection of algorithms that can be used to compute optimal
policies essentially solve the optimal Bellman system of equations . However (DP)
is generally limited in RL due to the important assumption of a perfect model i.e
a model whose MPD dynamic p(s′, r|s, a) is completely known . This is an ideal
assumption that in most real-world applications is not true .

2.3 Basic RL Concepts

Now that the basic foundation of RL has been layed , the various RL algorithms
implemented to handle many real world problems will be discussed . Before taxon-
omizing the different RL algorithms that have been developed there are some basic
concepts that govern them and should be addressed in order to obtain a common
understanding of the RL ”lingo” .

Exploration vs Exploitation One of the common challenges that arise in rein-
forcement learning is the trade off between exploration and exploitation. Agent’s
goal is to maximize its reward received from the environment when taking an action
. For this reason , the agent will tend to prefer actions that it has already tried and
produced good results in terms of the reward it was granted . This tendency of the
agent is referred to as exploitation . The agent exploits its experience and prefers
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only the actions that produce good return . However , the agent also needs to explore
new possibilities while learning with the hope of discovering better routes to achieve
its goal in the long run . in general , neither of those can be pursued extensively
without failing a task and this is the reason that a balance between them is (for now)
the key to obtain a well trained agent that can generalize .

On policy vs Off policy learning The exploration - exploitation trade - off intro-
duced before paves the way for the introduction of another important concept that
divides RL learning methods . The goal of the agent is learning about the optimal
policy while behaving according to an exploratory policy . The agent needs to seek
learning action values subsequent to optimal behavior while also behaving non opti-
mally in order to explore all actions . To achieve that we first introduce the concepts
of on policy and off policy methods . On policy methods sample actions from the
same policy (behavior policy) that they try to optimize (target policy) . Off policy
methods on the other hand separate the target policy (i.e the policy that it they try
to optimize ) from the behavior policy (i.e the policy that they sample actions from
). Later the concept of importance sampling will be introduced , a general technique
for estimating expected values under one distribution given samples from another .

2.4 RL algorithms - Taxonomy and Comparison

Sutton and Barto in their well renowned book ”Reinforcement Learning : An
Introduction ” they approach RL algorithms by introducing categories , the tabular
solution methods and the approximation methods. Tabular methods are used in
problems in which the action and the state space are small enough for the approxi-
mate value functions to be represented as arrays or tables . Approximation methods
come into play in cases where the state space is large. A large state space does not
only mean excessive memory for large tables that fit them but also large time and
data to fit them accurately . Approximation methods are basically an extension to
tabular methods for large state spaces .

In general an important first branching point in a RL algorithm answers the
question Does the agent have access to (or learns) a model of the environment ? .
The key word here is the model of the environment which , as already mentioned ,
is a function that predicts state transitions and the corresponding rewards . So one
can make a distinction between :

• Model - free methods that do not rely on the knowledge of an transition
function .

• Model - based methods that do rely on a transition model .
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Having a transition model of the environment would be ideal because it would
allow the agent to plan ahead by simulating what would happen for a range of possible
choices and explicitly deciding between those options. Unfortunately , in most real
life applications a model that accurately captures the dynamics of the system is not
available to the agent . For this reason , model - free algorithms are to this day the
ones mostly used and developed .

The next common branching point in the RL algorithms taxonomy concerns what
the agent is learning during its training . We will focus mainly on the model - free
spectrum because the algorithms that will be used in this study stem from it . There
are two main approaches to training a model - free RL agent :

• Q-Learning

• Policy Optimization

• An interpolation between those

Q-Learning methods that belong to this family guide the agent to learn an approx-
imator of the state-action value function Qθ(s, a) for the optimal state-action value
function Q∗(s, a) . The objective function used is typically based on the Bellman
Equation (2.2.6) . This optimization is mostly performed off-policy. The actions
taken by the Q-learning agent are given by

a(s) = argmaxaQθ(s, a) (2.4.1)

And the Q(s, a) are updated via :

Q(s, a)← Q(s, a) + α[R + γmaxaQ(s′, a)−Q(s, a)] (2.4.2)

Q-Learning is also known as Off-policy Tempordal Difference (TD) control . TD
methods update estimates of the optimal state - action value functions based in part
on other learned estimates (bootstrapping) . Q-Learning methods as well as Policy
Optimization methods and their combinations do not rely on the knowledge of the
MDP model of the environment because they learn from raw experience .

Policy Optimization methods represent a policy π(a|s) that is parameterized by
some parameters θ , πθ(a|s) . These parameters are optimized either directly bu
gradient ascent on the performance objectives J(πθ(a|s)), or indirectly by maximizing
local approximations of J(πθ(a|s)) . This optimization is almost always performed
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on-policy . Policy optimization also usually involves learning an approximator Vφ(s)
for the on - policy value function Vπ(s) which gets used in figuring out how to update
the policy. Policy Optimization will be analyzed in detail later as the PPO algorithm
, a famous policy optimization algorithm , will be used to tackle the control problem
of the hybrid marine propulsion plant .

Policy Optimization and Q-Learning trade offs. The primary strength of policy
optimization methods is that they directly seek to optimize the policy directly . By
targeting the policy optimization directly the tend to be more stable and reliable . Q -
learning methods , on the other hand , approximate the optimal policy by optimizing
the state - value function that is indirectly . For this reason Q - learning methods tend
to be less stable and require extended hyperparameter tuning to achieve convergence
. However these methods tend to be also more sample efficient meaning that they
can reuse data more effectively than policy optimaztion techniques .

Model - Free RL

Policy Optimization Q - Learning Interpolation Between Them

Policy Gradient DQN DDPG

A2C/A3C C51 SAC

PPO / TRPO QR-DQN TD3

Table 2.1: Model - Free reinforcement learning algorithms
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Chapter 3

Propulsion Plant Description &
Modeling

In this chapter, the experimental powertrain facility Hybrid Intergrated Propul-
sion POwertrain HIPPO-2 that belongs to the laboratory of marine engineering
(LME) at the school of naval architecture and marine engineering (NTUA) is pre-
sented. The work of this thesis is based on the modeling of the various components
of HIPPO-2 that resulted from data driven analysis resulting from data acquired
from a series of physical system integrated sensors installed by the engine manufac-
turer as well as virtual sensors developed for the prediction of the engine emissions
. The mathematical models that approximate the system’s behavior are the results
of the work described analytically in [2,3] . These models are characterized by high
accuracy and are deemed sufficient enough to be directly used in the current project
.
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3.1 HIPPO-2 Testbed

The facility is composed of three major components, Internal Combustion En-
gine (ICE), Electric Motor/Generator (EM) and Electric Brake (EB), which applies
the load torque to the system. In addition, a virtual Battery (B) was also consid-
ered, which was simulated in parallel during the experimental test via the control
platform.The HIPPO-2 hybrid diesel-electric power plant consists of a internal com-
bustion engine (ICE) in serial connection to an electric motor (EM). In this config-
uration, the rotational speed of the ICE and the EM are identical and the supplied
torques add together to maintain the total torque demand applied by a electric motor
brake (EB).

Figure 3.1: The HIPPO-2 hybrid diesel-electric testbed of LME
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HIPPO-2 Integration

The ICE is a turbocharged CATERPILLAR R 6-cylinder 9.3-liter 4-stroke in-
dustrial diesel engine, model C9.3 ACERTTM, producing 261 kW at 2200 rpm and
maximum torque 1596 Nm at 1400 rpm. The loading diagram of engine is shown
in (Rating C). Accordingto the speed reference and the deviation of speed measure-
ment, the electronic control unit (ECU) of the ICE controls the fuel injection in the
cylinders in closed loop control, using controller in the form of look-up tables. The
engine is designed to meet U.S. EPA Tier 4 Final, EU Stage IV emission standards.
Exhaust Gas Recirculation (EGR) and Selective Catalyst Reducer (SCR) systems for
NOx reduction, are also incorporated, along with a Diesel Particulate Filter (DPF).

The EM is a standard AC induction 3-phase motor, with a rated power of 90 kW
at 1483 rpm, type M3BP 280SMB 4 IMB3/IM1001, manufactured by ABB R. The
EM can operate both as motor, to assist the engine, and as generator to store energy.
The EB is a standard AC induction 3-phase motor manufactured also by ABB R
, type M3BP 355SMB 4 IMB3/IM1001, with 315 kW load capacity, operating at
1488 rpm The 3 motors are connected in series, thus the operating speed range of
HIPPO-2 is from 600 to 2200 rpm, with maximum load of 341 kW (ICE and EM
combined power).

3.2 Plant Components Analysis & Modeling

3.2.1 Diesel Engine

General

The main attributes of diesel engines and consequently the reason of their dom-
inance as the main powering device in industry, over the past century, is their rela-
tively high power/weight ratio and their relatively high thermal efficiency [17]. Four
stroke turbocharged Diesels can reach efficiency of approximately 40 % .Two key
factors are responsible for the above.

The first is the increased compression ratio. When the working fluid is com-
pressed, its temperature rises, leading to increased thermal efficiency. Since, the
compressed fluid is consisted only from oxidizer (air), there is no self-ignition prob-
lem. The fuel ejects and the mixture ignites, at the desired crankshaft angle. The
second is that diesel engine can operate with lean mixtures of air and fuel in cylinder,
such that throttling of the intake air can be completely avoided, something which
is possible due to extremely hot air in cylinder. Consequently, the high thermal
efficiency is maintained to a certain degree for part load operations.

The operation of diesel engines is associated with two major drawbacks [18].
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The first is related to the low power-density they exhibit. This occurs from the
fact that the mixture inside the combustion chamber is always lean, and thus less
fuel can be burned in atmospheric conditions inside a cylinder. Moreover, engine
maximum speed is relatively low due to mechanical limitations. This problem is
sufficiently addressed with super or turbocharging the engine, namely, compressing
the air before enters the cylinder, allowing more fuel to be burnt, in this way. The
second disadvantage refers to issues of the exhaust gas purification. Apart of the
ideal products of combustion, which are water (H2O) and carbon dioxide (CO2),
several by products are also produced. A part of them are harmful to environment
or cause health problems to humans. Therefore, numerous legislation, aiming to
reduce the above effects, have been applied since the early 1970s for the automotive,
and the late 1990s for marine industry, implementing limits to their concentration
in the exhaust gases. The main pollutants that the above limits apply are nitrogen
oxides (NOX), unburned hydrocarbons (HC), carbon monoxide (CO) and soot. Key
factors for the concentration of above is ratio of air-fuel compered to stoichiometric
(λ) and the cylinder temperature.

Although, Diesel engines have lower raw emissions than Otto , their working prin-
ciple (i.e. lean operation), exclude the solution of the the three-ways-catalysts, since
this system requires stoichiometric air-fuel ratios. Consequently, other technologies
have developed, in order to restrict the above emissions, continually lowering fuel con-
sumption and optimizing performance at the same time. These options after-treat
the exhaust gas (e.g. Selective Catalyst Reducer - SCR), or affect the operation of
engine itself (e.g. Exhaust Gas Recirculation - EGR).

Transient operations behavior

Most of the engine-oriented literature is focused on steady state operation, al-
though transient applications represent a large portion of the engine operating pat-
terns (e.g. maneuvering conditions for ships), or even the majority of operations
(e.g. automotive vehicles). In recent years, due to the latest regulatory framework
regarding the engine emissions, more attention is given in regard to this operation
mode. According to literature [19], during transient loading profiles, gaseous and
noise emissions typically exceed their acceptable values following the extreme, non-
linear and non-steady-state conditions experienced during dynamic engine operation.
For instance, 50 % of NOx emissions from automotive engines during the European
Driving Cycle stem from periods of acceleration, whereas instantaneous particulate
matter and NOx emissions during load increase transients have been measured to be
1 to 2 orders of magnitude higher than their respective quasi-steady values.
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Figure 3.2: Byproducts’ relation to Air/Fuel ratio
[Handbook of Diesel Engines]

3.2.2 Diesel Engine Modeling

The dominance of the diesel engine as the main powering device in the heavy
industry has contributed to the development of various modeling methodologies that
opt for optimizing their use . Depending on the application there is a vast majority of
modeling techniques that could be used , each of which can approximate the operation
of a diesel engine to a specific accuracy . In [6] the diesel models are classified by
the dependencies of the model parameters namely into lumped models which are
described by ordinary differential equations and distributed systems the parameters
of which are described by partial differential equations . One can also distinguish the
various models between crank-angle resolution models or cycle averaged models and
their formulation as mean - value models or as discrete events models . These types of
models described can usually get too complex to be used for control applications. For
control oriented applications linear low - order models are generally preferred. In the
current thesis for the modelling of the engine dynamics such models are used derived
from fitting polynomials of a certain degree to data acquired from the experiments
. For example a parameter P depended on variables x and y is modeled by a linear
combination of mononomials of a given degree d
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P = θT · fd(x, y) where,

fd(x, y) = [1 x y xy x2 y2 ... xdy ydx xd yd]

3.2.3 Electric Motor-Generator

In hybrid propulsion plants, the electric machines are a key component, and
usually they are reversible (i.e. the can operate both as motor and generator).
The operation of these machines, according to [17], can be distinguished into three
modes, one motoring and two generating, which are: (1) to convert the electrical
power from the battery into mechanical power to drive the vehicle, (2) to convert
the mechanical power from the engine into electrical power to recharge the battery,
or (3) to recuperate mechanical power available at the drive train to recharge the
battery (regenerative braking). Of course, in a marine hybrid plant the latter is
not so common during operation, except maneuvering or special cases (e.g. during
propeller ventilation the electric part can absorb and store to battery a portion of
kinetic energy in order to reduce over-speeding). Desirable characteristics, for electric
machines operating in a hybrid propulsion plant are [17]: high efficiency, low cost,
high specific power, good controllability, fault tolerance, low noise, and uniformity
of operation (low torque fluctuations).

The electric machines which are used in propulsion plants are rotating machines,
with two major components, the stator and the rotor. The later is connected to the
moving part of the machine (output shaft), in which the acting torque is applied.
These electric machines are categorized into two major types according to current
supply, direct current (DC) motors and alternating-current (AC) motors. For each
category there are others sub-categories. At the experimental test-bed HIPPO 2,
the motor is an AC asynchronous squirrel cage motor, and therefore only this motor
type will be further described.

In AC motors in general, AC voltage is applied to stator, creating a rotating
magnetic field in the stator wingdings, which are, for three phase motors, one or
more sets of three.This magnetic field changes its orientation according to sign of
current flowing in the wingdings, which is continuously varying, and consequently
the orientation of the magnetic field keeps varying, resulting in a rotating magnetic
field. The speed of the rotating magnetic field is called the synchronous speed. It
equals the pulsation of the three-phase AC voltage divided by the number of poles. In
asynchronous AC machines (also called induction motors), the rotor does not rotate
with the same speed of the magnetic field when load to shaft is applied. The rotor
usually hosts a set of conductors with end rings, an arrangement known as ”squirrel
cage”. Electromotive force and thus current is induced in the rotor windings by the
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interaction of the conductors with the rotating magnetic field the rotor becomes an
electromagnet with alternating poles, attracted by those of the rotating magnetic
field of the stator.

Control of these motors is conducted with sophisticated electronics (inverters),
and various control schemes have been applied in the past, such as the Scalar Con-
trol (V/f Control), the Field Oriented Control, Sliding Control Mode (SMC) and the
Direct Torque Control (DTC). The industrial Drive which controls the AC motor
of HIPPO 2 is using the DTC control scheme. This type of control is based on
the mathematical approach of induction machines, and therefore various parame-
ters, such as stator resistance, mutual inductance, saturation co-efficiency, etc. are
required. The control variables are output torque and stator magnetic flux. DTC
is able to control more accurate and has the fastest response time, does not need
feedback devices and has reduced mechanical failure. The disadvantage is that due
to the inherent hysteresis of the comparator, higher torque and flux ripple exist

AC Induction Motor Modeling

Modeling approaches in general are categorized into quasi-static and dynamic
modeling . Dynamic approach refers to the complete and pretty accurate approxi-
mation of a dynamical system usually by a number of differential equations (ordinary
or even partial).Dynamical systems are of great use for system that are used for sim-
ulations that try to depict the real progress of a specific phenomenon and are usually
characterized by high computational cost (memory and time-wise).For this reason
detailed dynamic models are rarely used in control engineering . Quasi - static mod-
eling ,on the other hand, refers to the construction of models that ignore the dynamic
responses of the system and are applied in problems that under logical assumptions
that is possible . For example , in problems where the dynamic response of the sys-
tem is significantly lower in magnitude or in the time needed to return to a steady
state condition , than the sample time of the physical system’s controller the quasi
static model’s simplicity with an acceptable accuracy trade off is preferred.

HIPPO-2 AC motor is control via a DTC scheme . According to the manufacturer
[21], the dynamic response of a DTC driven AC motor to 100 % torque step is
typically 1–5 milliseconds (ms), which approaches the motor’s physical limit. The
sample time of the RL-based controller of the thesis is set to be 100 ms and for this
reason the AC induction motor dynamics can be completely disregarded without
impacting the controller’s behavior. A quasi - static model was then utilized to
describe the electric part of the HIPPO-2 Testbed .
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Willans Approach

Willans approach is simple quasi static approach that can be generally used in
energy converters where the input and output powers are considered to be linearly
dependent .

P2(t) = e · P1(t)− P0 (3.2.1)

where ,

• P1 is the power need in one form of energy to get P2 power in the other form
of energy

• P0 the power losses occurring after the energy conversion (friction , heat losses
,etc.)

• e is defined as the maximum efficiency namely the efficiency that can be ob-
tained when P0 is zero . Thus e represents the efficiency of the energy conversion
process only ( in particular electrical to mechanical and vice versa).

For an electric motor this approach takes the form of

Qem(t) · ωem(t) = e · Pem(t)− P0 , Pem ≥ 0 (generating)

(3.2.2)

Qem(t) · ωem(t) =
Pem(t)

e
− P0 , Pem < 0 (motoring)

(3.2.3)

where Pem(t) is the input power , ωem(t) is the rotational speed and Qem(t)
is the output torque . In contrast with other quasi-static approaches, this model
can describe the effect of the “idle” losses P0 for small values of power . In this
circumstance, it may occur that Pem > 0 while being Qem(t) · ωem(t) < 0, that is,
even if some mechanical power is available from the downstream powertrain, still the
energy source must supply a certain amount of electric power .

Moreover, it is suggested that parameters e and P0 are dependent on motor
speed ωem(t). However, good average approximations can be found and used without
significant error. In order to validate that, a Willans model was fitted to HIPPO’s
2 AC motor data and then its compared to experimental results. The data used for
fitting was derived from the manufacturer’s data-sheets for operating points 25 %,
50 %, 75 %, and 100 % of maximum load under nominal voltage. The result fitting
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of Willans model and its comparison with the experimental results [3] is shown at
Figs 3.3,3.4.

Considering the above figures, it is clear that model can predict the required
Power demand satisfactory enough, for low and high loads for both motoring and
generating modes.

Figure 3.3: Willans model fitting results , compared to test data from manufacturer [3]

Figure 3.4: Willans model comparison with experimental data [3]
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3.2.4 Battery modeling

Electrochemical batteries are key components of Hybrid Diesel - Electric Ships
and Vehicles (HEV), in general. The main function of these devices, in a hybrid
propulsion plant, is to transform and store electrical energy in chemical form, and
then re-transform it back to electricity, in order to be used by the electric motors,
when it is required.

Each battery cell is characterized by the maximum power it can provide to the
propulsion plant, and the nominal capacity. The first refers to the rate of energy a
battery can provide to the plant, and it is the product of current and voltage. The
latter, defines the amount of electricity a battery can supply, in terms of Coulombs
(Ampere-seconds, As) or more often in Ampere-hours, Ah. Also, a dimensionless pa-
rameter, the State of Charge (SoC), describes the remaining capacity of the battery,
and it is expressed as percentage or fraction of the nominal capacity.

SoC(t) =
Q(t)

Qnom

(3.2.4)

Battery charge, and therefore SoC, is difficult to be measured directly. Subse-
quently, it is calculated indirectly, from the charge equilibrium which is expressed
from

Q̇(t) = −Ib(t) (3.2.5)

It is common, in case of battery charge, a parameter to be taken into account, the
coulombic or charging efficiency nc [22–24] in order to model the fact that a fraction
current is not transformed into charge of the battery current due to irreversible,
parasitic reactions taking place in the battery. Therefore, the above equation takes
the form

Q̇(t) = −nc · Ib(t) (3.2.6)

Furthermore, it should be noted that not the whole capacity of the battery can be
used in practice [17]. There is SoC window, whose limits define the maximum SoC
that can be achieved during charging, and the minimum SoC that can be reached
during discharging, in order to maximize battery life. This feature is expressed by
the specific energy of battery.

Moreover, a group of attributes of a battery pack, operating in a hybrid power
plant, are usually required [17], most important of which are high specific energy,
high specific power, long calendar and cycle life,low initial and replacement costs,
high reliability, wide range of operating temperatures and high robustness.
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Quasi-static model for controller design

The model that will be used in the thesis for the approximation of the battery
behavior (charging / discharging) derives from the Equivalent Circuit Method (ECM)
. This method approximates the battery charge/discharge cycle well enough in the
region between 10-20% to 80-90% for the SoC . Beyond those limits the battery
behavior in respect to its voltage presents non linear characteristics and thus during
the simulation the SoC will be bounded by the aforementioned limits . A basic
physical model of a battery can be derived by considering an equivalent curcuit of
the system such as the one shown in figure 3.5

Figure 3.5: EC of the battery for the quasi static model [17]

In this curcuit , the battery is represented by an ideal open - curcuit voltage source
in series with an internal resistance. Kirchhoff’s voltage law for the equivalent circuit
yields the equation

Uoc(t)−Ri(t) · Ib(t) = Ub(t) (3.2.7)

Uoc is the open source voltage and is the equilibrium potential of the battery
. Since this quantity depends on the charge level , it is parameterized using the
following affine relationship

Uoc(t) = k2 ·Q(t) + k1 (3.2.8)

The constants k1 and k2 depend only on the battery construction and the number
of cells but not on operative variables and thus can be considered constant with time
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. The linearity expressed in equation 3.2.8 is equivalent to a constant voltage source
in series with a capacitor with constant capacitance . By considering that k2 =

Cb

Qnorm

where Cb is a bulk capacitance Equation 3.2.8 can be rewritten as

Uoc(t) = k2 · SOC(t) + k1 (3.2.9)

As for the internal resistance Ri , it takes into account several phenomena. In
principle, it is the combination of three contributions. The first is the ohmic resis-
tance Ro, i.e., the series of the ohmic resistance in the electrolyte, in the electrodes,
and in the interconnections and battery terminals. The second contribution is the
charge-transfer resistance Rct, associated with the “charge-transfer” (i.e., involving
electrons) reactions taking place at the electrodes. The third contribution is the
diffusion or concentration resistance Rd, associated with the diffusion of ions in the
electrolyte due to concentration gradients. Thus, in principle, the internal resistance
of a battery is calculated as the sum of those resistances

Ri(t) = Rd +Rct +Ro

Internal resistance’s components are approximated in the literature by various
models that can contain a large number of parameters . For the purpose of this
thesis an internal resistance modeled by an affine combination as for the OC voltage
is satisfactory

Ri(t) = k4 · SOC(t) + k3 (3.2.10)

In the present work , the battery modeling is intended for the application of
control methodologies on a propulsion system . For this reason the input variable
for the estimation of the SoC is wise to be the required power Pb(t) . Obviously the
input power Pb(t) is related to the current and the terminal voltage in the following
manner

Ib(t) =
Pb(t)

Ub(t)
(3.2.11)

Plugging equation 3.2.11 into equation 3.2.7 a quadratic equation with respect to
the terminal voltage is obtained

U2
b (t)− Uoc(t) · Ub(t) + Pb(t) ·Ri(t) = 0 (3.2.12)
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which has the solution

Ub(t) =
Uoc(t)

2
+

√
U2
oc(t)

4
− Pb ·Ri(t) (3.2.13)

Substituting the terminal voltage into equation 3.2.11 and multiplying with the
conjugate of the denominator the battery current and the input power take the form

Ib(t) =
Uoc(t)−

√
U2
oc(t)− 4Pb(t) ·Ri(t)

2Ri(t)
(3.2.14)

Pb(t) =
−U2

b (t) + Ub(t) · Uoc(t)

Ri(t)
(3.2.15)

Finally by using equation 3.2.14 and the definitions 3.2.4 and 3.2.5 a differential
equation for the state of charge is formulated :

dSOC

dt
= − 100

Qnorm

·
Uoc(t)−

√
U2
oc(t)− 4Pb(t) ·Ri(t)

2Ri(t)
(3.2.16)

Battery Operating Limits

The operating limits of the above model , can be derived from the equations of
the previous section . For the discharging case , the limitations applied are

1. Pb ≥ 0 where the equality stands for Ub = 0 or Ub = Uoc

2. Ub < Uoc

The maximum power can be found either by differentiating the input power equa-
tion or by noticing from equation 3.2.13 that the domain of definition of that function
requires that

U2
oc

4
− Pb ·Ri(t) ≥ 0 =⇒ Pb ≤ U2

oc

4Ri(t)
=⇒ Pbmax(t) =

U2
oc

4Ri(t)
(3.2.17)

The maximum is achieved at

Ub,Pmax =
Uoc(t)

2
, Ib,Pmax(t) =

Uoc

2Ri(t)
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Notice that the maximum power depends on OCV and by extension to the SoC
, which means that the maximum power is actually time varying .

Also, in case of control schemes involving battery cell components, additional
constraints regarding the battery function are applied, such as rate of SoC alteration,
maximum current and voltage, etc. [36]. These constraints refer to battery health,
and the are usually defined by the manufacturer. In this work, the battery component
is virtual i.e. its model running on the software during experimental tests, and
therefore, no further analysis is conducted .

3.3 Summary of HIPPO-2 Modeling

In this section a summary of the HIPPO-2 modeling is laid out by introducing the
equations that govern the system of and the mathematical models that where used to
approximate the function of each component of the HIPPO-2 powertrain.The models
introduced in this section are directly cited from the work of [2,3,4] who used them
for the control of HIPPO-2 using the nonlinear model predictive control methodology
(NMPC) . The models are deemed accurate enough and suitable for the modeling
of the reinforcement learning environment and for this reason the production of a
different set of models was considered beyond the scope of the current thesis .

3.3.1 Equations that govern the system

Rotational shaft dynamics

The rotational dynamic behavior of the power plant derives from the application
of Newton’s second law for rotation on the system .

dωeng

dt
=

1

Jsystem
(Qice +Qem −Qload) (3.3.1)

where ωeng is the engine shaft rotational speed, Jsystem is the powertrain moment
of inertia at the engine side, Qice is the brake torque of the engine delivered at the
shaft, Qem is the output torque of the electric motor/generator (positive if the EM
is motoring), and Qload is the torque load which is applied to the powertrain at the
engine side of the gearbox.

Diesel engine control-oriented model

In section 3.2.2 it was mentioned that for control oriented applications high order
models that tend to be more computationally costly are generally avoided . For this
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reason low order models are preferred and will be used in this work . The engine
brake torque output Qice and the fuel consumption ṁf are modelled by the following
manner [2]

Qice = θQ ·
[
1uice Neng N2

eng

]T
(3.3.2)

ṁf = ρf (f, Tf )·θf ·
[
1 uice Neng Nenguice u

2
ice N

2
eng

]T
(3.3.3)

The polynomial models above contain the electronic fuel index uice which is fed
to the engine ECU and the engine speed in rpm Neng . The vectors θQ,θf are the
regressors that weight each component of the polynomials vector suitably to fit the
experimental data acquired from HIPPO-2 . In equation 3.3.2 the terms containing
the engine speed refer to torque losses due to shaft frictions . Finally , ρf is the
measured fuel density (depended on the fuel quality and its temperature Tf ). The
aforementioned models where produced and used in [2] and the fitting accuracy
achieved is 0.994 and 0.995 respectively .

Figure 3.6: Diesel Engine Fuel Consumption model Eq.3.3.3
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NOx emissions modeling As far as the NOx emissions of the diesel engine are
concerned, the modeling problem becomes more complicated. The NOx produc-
tion depends not only on the engine operating point but also on the operation of a
high-pressure Exhaust Gas Recirculation (EGR) system. However, in the HIPPO-2
testbed, the EGR actuator is controlled by the engine Electronic Control Unit (ECU)
and it cannot be regulated with an external input signal. Besides, the control law of
the EGR system cannot be approximated due to the lack of specific measurements
such as the intake manifold air mass flow rate which is not available. As such, it
was decided to be excluded from the NOx model . The model created is based on
sigmoid functions that are generally capable of capturing non-linear patterns . The
model produced by [2] is the following :

ṁN = bN1 [aN1 − aN2σ1(z1)]u
aN4
ice Neng − bN2σ2(z2)σ3(z3)uiceNeng (3.3.4)

where σ(zi) is the sigmoid function and

• z1 = aN3(Neng −Neng,N0)

• z2 = aN5(uice − uice,N1)

• z3 = aN6(Neng −Neng,N1)

Neng,N0 , Neng,N1 , uice,N1 are specific values that influence the threshold of the sigmoid
functions and are chosen so as to capture the trend of the NOx production function
around the local minima observed when the NOx production function is plotted w.r.t
uice, Neng . The parameters aNi

, bNi
are fitted to the measured data with the model

achieving an accuracy of 0.953 .
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Figure 3.7: Diesel Engine NOx emissions behavior Eq. 3.3.4

Battery and Motor

In sections 3.2.3 and 3.2.4 the modeling of the motor and the (virtual) battery of
the HIPPO powertrain was thoroughly analyzed . Here the main equations derived
from that analysis are gathered . Firstly , the differential equation that capture the
state of charge dynamics 3.2.16 is

dSOC

dt
= − 100

Qnorm

·
Uoc(t)−

√
U2
oc(t)− 4Pb(t) ·Ri(t)

2Ri(t)
(3.3.5)

where the battery voltage Uoc(t) is

Uoc(t) = k2 · SOC(t) + k1 (3.3.6)

and finally the power consumption of the electric motor that stems from the
application of the Willans approach 3.2.2 is ,

Pb = Qem ·
2πNeng

60
· eK(uem)

w + P0 (3.3.7)
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where

• K(uem) =
2

1+2.7183(2uem )
− 1

• ew, P0 are the Willans coefficients fitted to the motor .

• Qem is the torque output/input (motoring/generating) .

The EM torque is modeled with the following linear relation

Qem = cem · uem (3.3.8)

where uem is the torque command as a percentage of the maximum torque which
is fed to the drive and cem expresses the transformation to torque units

3.3.2 System Constraints

Now the constraints of the system will be cited that if violated the episode will
be terminated because the problem will be considered infeasible

Engine Torque Command Limits

These limits refer to the potential of the engine to follow up the intermediate
torque control input

uicelim1
=

1

15
· SE − 2.5

3

uicelim2
= − 1

50
· SE − 120.91

(3.3.9)

uice ≤ min(uicelim1
, uicelim2

) (3.3.10)

Battery Limits

The battery limit can actually be derived from 3.2.17 and is the following

U2
oc

4Ri

− Pb ≥ 1000 (3.3.11)
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Chapter 4

Theoretical Framework

In this section policy optimization methods are discussed . In particular , the
mathematical framework of policy gradient methods will be analyzed . Once that
has been completed further analysis will be conducted concerning arguably the most
used policy optimization algorithm - proximal policy optimization (PPO).

4.1 Policy Gradient Methods-Introduction

Policy optimization methods in general refer to methods that try to learn a pa-
rameterized policy.Its parameters are optimized in a way such that the agent can
select actions without consulting a value or action-value function . The value func-
tions might still be used for optimization but not for the action selection process .
In particular , policy gradient methods optimize this parameterized policy using the
gradient of a scalar performance measure , usually denoted as J(θ) where θ ∈ Rb

is the policy’s parameter vector . If a methods also uses a learned value function as
well the the weight vector of that function is denoted by w ∈ Rd , V (s,w) .

π(α|s,θ) = p (At = α|St = s,θt = θ) (4.1.1)

The policy parameters θ are updated using the scalar performance measure :

θt+1 = θt + h · ˆ∇J(θt) (4.1.2)

Methods that update the policy in such manner are known as policy gradient
methods . Methods that learn approximations of both the policy and value func-
tions are called actor - critic methods . In policy gradient methods the policy can
be parameterized in any way assuming that it is differentiable with respect to its
parameters , namely the gradient of π(α|s,θ) exists and is finite .
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4.2 REINFORCE algorithm

At first a scalar performance measure needs to be introduced that can communi-
cate to the agent if the policy that it currently follows produces the results needed .
A first performance measure that one can use is a measure of the expected reward
that the agent will receive by following a certain policy . This can be formulated by
introducing the following :

• τ = (so, αo, ro, ..., sT−1, αT−1, rT−1, st) which is a state - action trajectory

• R(τ) =
T∑
t=0

R(st, αt) which is the sum of rewards for a trajectory τ

Using those one can define the performance measure J(θ) as :

J(θ) = E

[
T∑
t=0

R(st, αt);π(α|s,θ)

]
=
∑
τ

P(τ ;θ)R(τ) (4.2.1)

where P(τ ;θ) is the probability of following a trajectory τ following policy πθ
. The objective is to find the policy parameters θ that create a trajectory τ that
maximizes the expected rewards

argmax
θ

J(θ) = argmax
θ

∑
τ

P(τ ;θ)R(τ) (4.2.2)

Equation 4.1.2 describes the update rule of the policy parameters θ via gradient
ascent on the performance measure . Now that a first performance measure has been
established its gradient is computed as follows :

∇θJ(θ) = ∇θ
∑
τ

P(τ ;θ)R(τ) =
∑
τ

∇θP(τ ;θ)R(τ) =

=
∑
τ

P(τ ;θ)
P(τ ;θ)

∇θP(τ ;θ)R(τ) =
∑
τ

P(τ ;θ)∇θ log(P(τ ;θ))R(τ)
(4.2.3)

The derivation 4.2.3 can be used to calculate the gradient of the objective function
J . However the last sum of equation 4.2.3 can be written as an expectation with
respect to P as p.d.f of the random variable that formulates the probability that a
certain trajectory is followed when using policy π(α|s,θ)
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∇θJ(θ) = E [ log∇θP(τ ;θ)R(τ) ] (4.2.4)

The policy gradient can be represented as an expectation. That means that sam-
pling can be used to approximate it (of course all possible trajectories are generally
not available to calculate analytically).

∇θJ(θ) ≈
1

m

m∑
i=1

R(τi)∇θ log(P(τi;θ)) (4.2.5)

P(τi;θ) refers to the probability of following a trajectory τi when taking actions
following policy πθ . In their book Sutton & Barto provide a really helpful -yet
pretty logical- decomposition of this p.d.f .

P(τi;θ) = µ(so) ·
T−1∏
t=0

p(sit+1|sit, αi
t) · πθ(α

i
t|sit) (4.2.6)

• µ(so) , is the initial state probability

• p(sit+1|sit, αi
t) , is the MDP model

By ”logging” both sides of equation 4.2.6 and differentiating with respect to θone
can easily derive that

∇θ logP(τi;θ) =
T−1∑
t=0

∇θ log πθ(α
i
t|sit) (4.2.7)

The right side of equation 4.2.7 is often called Score function. Taking into account
equation 4.2.7 the objective function becomes :

∇θJ(θ) ≈
1

m

m∑
i=1

R(τi)
T−1∑
t=0

∇θ log πθ(α
i
t|sit)

∇θJ(θ) ≈
1

m

m∑
i=1

(
T−1∑
t=0

r(sit, α
i
t)

)(
T−1∑
t=0

∇θ log πθ(α
i
t|sit)

) (4.2.8)
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Intuition of the objective function The score function in equation 4.2.8 measures
the likelihood of the observed data , namely how likely a certain trajectory is under
the current policy . By multiplying the score function with the total reward of the
trajectory the likelihood of a policy that yields high reward is increased .

Equation 4.2.8 produces a first simple policy gradient algorithm which is generally
refered to as REINFORCE . This algorithm uses the so called Monte Carlo rollouts
which means that a complete trajectory (i.e complete episode) is played out before
calculating the total reward and updating the objective function. Simple as it is ,
REINFORCE algorithm has its drawbacks . The main drawback is the same that
concerns all the Monte Carlo methods , that is high variance which in turns leads to
bad convergence properties . The stochasticity of the policy drives the agent to select
different actions throughout the episode . Small changes in the agent’s decisions can
cause completely different results . Moreover consider the case where an agent during
episode (Α) takes all the low reward actions except maybe from the last 2-3 when
it picks actions with extremely high reward . Then the agent replays an episode
(B) during which it chooses always mediocre actions (i.e neither low neither high
rewards) . For the reason that Monte Carlo rollouts take into consideration only the
final reward achieved by the agent and not how it achieved it , episode (A) and (B)
would be considered equally ”good”. However episode (B) is actually better , during
which the agent displayed a mediocre yet stable behavior contrary to episode (A)
where even by luck it managed to pick the right last few actions to match the total
reward of episode (B).

Another issue with the Monte-Carlo rollouts is the poor data efficiency because
one has to wait until a full episode is completed before actually updating the policy.

4.3 Possible Policy Parametrizations

Before exploring the different ways that the REINFORCE algorithm can be en-
hanced the most common policy parametrizations will be discussed in order to obtain
a more tangible understanding of a parameterized policy. The manner in which the
policy will be parameterized depends on the model of the action space A , namely if
it is continuous or discrete . Continuous action spaces are characterized those whose
actions can take all real values within a given domain and discrete those that the
actions are modelled by discrete values . For instance , in a autonomous car prob-
lem the agent can turn the wheel to an angle ranging from [−π/2, π/2] ( continuous
action space ) , while in the classic benchmark problem of the inverted pendulum
the action space is the discrete set {−1, 1} (-1 to move the pendulum to the left and
1 to move to the right). The two most common representations currently used (one
for each case) are presented below :
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Discrete action space : The most common parametrization of a policy concerning
a discrete action space is the softmax policy . The actions are weighted using linear
combinations of features ϕ(s, a)T ·θ . Using the softmax function the parameterized
policy is represented as :

π(a|s,θ) = eϕ(s,a)
T ·θ∑

a e
ϕ(s,a)T ·θ (4.3.1)

The softmax function is essentially the generalization of the sigmoid function used
in neural networks for normalization . The utilization of a softmax function entails
the normalization of the output , in this case the output is the probability of an
action i.e the policy , to a probability distribution .

Continuous action space : Generalizing the afore mentioned concept the parame
trization of the policy function using a Gaussian is natural . In this case , assuming
that the values of the actions are Gaussian distributed , the mean of the Gaussian
can be defined as the ouput of a neural network with the state space as the input
with the variance being fixed or also modeled in a similar manner .

π(a|s,θ) = N (FNNθ(st),Σ) (4.3.2)

Having this Gaussian parametrization of the action one can with relatively sim-
ple algebra compute the score function and update the parameters with the REIN-
FORCE algorithm .

4.4 REINFORCE algorithm modifications

Now that some variants of parameterized policies have been proposed , it is time
to detail a series of improvements on the REINFORCE algorithm that can tackle the
variance issues described on paragraph 4.2 . Monte Carlo rollouts that characterize
the REINFORCE algorithms are noisy (high variance) and introduce an unbiased
estimate of the gradient. The solutions to these issues are the use of baselines
and temporal structures . Note that increasing the batch size before each update
could tackle the problem of high variance, but increasing it too much can lead to
significant sample inefficiency .

At first , a modification needs to be made in equation 4.2.8 . Interpreted as it
in its current version future actions impact past decisions because the time index t
in both the reward and the score function in equation 4.2.8 start at the same time
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instant . What should happen instead is summing the rewards from the time instant
a certain action was taken .

∇θJ(θ) ≈
1

m

m∑
i=1

[
T−1∑
t=0

∇θ log πθ(α
i
t|sit)

T−1∑
t′=t

r(sit′ , α
i
t′)

]
(4.4.1)

Recall that for a particular trajectory τ
T−1∑
t′=t

r(sit′ , α
i
t′) =̇ Gt (which can be also

discounted reward).

Baselines : Introducing the use of a baseline b(s) that is a term not related to θan
unbiased and less noisy gradient estimator is achieved . The baseline is subtracted
from the reward term of equation 4.4.1 . An initial baseline can be the value function
. The objective function then becomes

∇θJ(θ) ≈
1

m

m∑
i=1

[
T−1∑
t=0

∇θ log πθ(α
i
t|sit)

(
T−1∑
t′=t

r(sit′ , α
i
t′) − V (sit)

)]
(4.4.2)

This modification can be justified by recalling the definition of the state value
function (2.2.5) . The latest version of objective function essentially increases the
log probability of choosing an action αt proportionally to the how much the actual
returns are better than the expected . The expected returns are quantified by the
state value function V (st).

Temporal Structures : Apart from subtracting a baseline from the return Gt to
reduce variance , another modification that has been generally been proposed is
changing the target . Until now the target of the policy gradient algorithms was the
return Gt which is an unbiased estimation of the value function at a state st from
a single Monte Carlo rollout . The variance can be further reduced by introducing
bias via bootstrapping and also by value function approximation . That is when
the Actor-Critic methods come into play . The Actor is the policy , the agent,
that selects the actions during the episode . The Critic estimates whether those
actions where rewarding enough by estimating either of the state value functions
(u, q). Choosing the target to be the state - action value function q(s, a) equation
4.4.2 becomes

∇θJ(θ) ≈
1

m

m∑
i=1

[
T−1∑
t=0

∇θ log πθ(α
i
t|sit)

(
Q(sit′ , α

i
t′ ,w) − V (sit)

)]
(4.4.3)
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where w is the parameter vector of the estimated state-action value function .
The second factor of the product in equation 4.4.3 is defined as the Advantage

function

Aπ(s, a) =̇ Qπ(s, a)− Vπ(s) (4.4.4)

The critic can select any blend between Temporal Difference and Monte Carlo
structures for the target . That is

Qπ(s, a) = E
[
r0 + γr1 + γ2r2 + ... | s0, ao

]
(MC)

= E [ r0 + γV (s1) | s0, ao ] (1− step TD)

= E
[
r0 + γr1 + γ2V (s2) | s0, ao

]
(2− step TD)

= E
[
r0 + γr1 + ...+ γn−1rn−1 + γnV (sn) | s0, ao

]
(n− step TD)

The (MC) and the various (TD) structures can be combined to form the Gener-
alized Advantage Estimation (GAE).

A
(κ)
t = rt + γrt+1 + ...+ γκ−1rt+κ+1 + γκV (st+1)− V (st)

AGAE
t (γ, λ) = (1− λ) ·

(
A

(1)
t + λA

(2)
t + λ2A

(3)
t + ...

) (4.4.5)

The GAE depends on the hyperparamaters λ,γ ∈ (0, 1) . Hyperparameter γ is
the already established pararameter that downweights the rewards corresponding
to delayed effects . Hyperparameter λ essentialy controls the blend of the various
structures . Both γ and λ introduce bias however λ introduces much lass than γ .
Their values need tuning depending on the problem to achieve the desirable agent
behavior .

4.5 TRPO and PPO

Now that the foundations of policy gradient methods have been laid it is time
to dive a little bit deeper on the two most cited papers concerning policy gradient
methods . Complete proofs of some of the mathematical derivations will be omitted
because they deviate from the scope of this thesis . However the curious reader
is encouraged to study the corresponding papers due to the beautiful insights that
they provide on the topic . These papers concerning the TRPO and PPO algorithms
emerged from the need to meet some desired properties of a policy gradient algorithm
. These are
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• Quick convergence to local optima

• Each policy update to be a monotonic improvement

• During policy search alternate between policy evaluation and policy improve-
ment

The basic concepts that the TRPO & PPO papers introduce that opt for satis-
fying those demands are the utilization of the Minorize-Maximization (MM) algo-
rithm,importance sampling and Trust Region optimization .

4.5.1 MM algorithm

The Minorize - Maximization algorithm is an iterative optimization method which
exploits the convecity of a function to finds its optima . This method essentially
,constantly maximizes via iteration the lower bound function which approximates
the objective function of a problem . In order to do that it is assumed that the lower
bound function that approximates the objective function is simpler to optimize .

Figure 4.1: Graphic representation of the MM algorithm

M(θ) is called the minorized version of the objective function if{
M(θ; θi) ≤ η(θ) ∀ θ

M(θi; θi) = η(θi)

Then M is maximized instead of η(θ) and the next point where equality holds is

θi+1 = argmax
θ

M(θ; θi)

By applying many iterations of that manner η(θ) will eventually converge to a local
optima or saddle point .
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4.5.2 Trust Region Optimization

The two most renowned optimization methods are line search and trust region .
Gradient ascent/descent which is the method used for the update of the parameters
in the most simple policy gradient algorithm ,the REINFORCE algorithm , is a case
of line search . The ascending direction of the objective function is determined and
a step towards it is taken . This method poses some problems . It uses the first
order derivative and approximates a flat surface . If the objective function however
is characterized by intense curvature fluctuations each step is not guaranteed to lead
to convergence . Too large of a step can lead to a significant deviation from the best
local optima while too small of a step is leads to really slow learning .

The trust region optimization method takes care of those issues . In this kind of
optimization the maximum step size of exploration is determined at first and then
an optimal point is located within the trust region that the maximum step creates.

max
t∈Rn

Mk(t)

s.t ||s|| ≤ δ
(4.5.1)

where Mk(t) is the approximation of the objective function. The constraint on
the step size δ can be dynamically adjusted throughout the run according to the
curvature of the surface .

4.5.3 Importance Sampling

Another really useful technique used widely in the reinforcement learning and
machine learning in general field of study is the concept of importance sampling. It
is a very useful technique that allows the evaluation of properties of one distribution
given only samples of another distribution different from the one given . Due to its
extensive mathematical background attention will be focused on the result of that
technique .

Given a random variable x and a function of that random variable f(x) impor-
tance sampling calculates the expected value of f(x) where x has data distribution
p. Importance sampling offers the choice of not sampling the value of f(x) from p
but instead use the sample data from another distribution q and use the probability
ration between them to calibrate the result .

Ex∼p [f(x)]
sample from q−→ Ex∼q

[
f(x)p(x)

q(x)

]
(4.5.2)
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with a variance of

1

N

(
Ex∼p

[
p(x)

q(x)
f(x)2

]
− Ex∼p [f(x)]

2

)
(4.5.3)

Importance sampling is used in reinforcement learning problems where off policy
learning can be useful . In policy gradient methods for example once the policy is
updated the samples of the old policy are not reusable which means that standard
policy gradient methods are not sample efficient . Using importance sampling the
objective function can be rewritten in a manner that is sample efficient , meaning
that data from a previous policy can be used to calculate the new policy gradient

4.6 PPO algorithm

Now that the basic concepts that concern the PPO algorithm have been discussed
, it is time to apply them to describe some of the details of the algorithm that will
be used to tackle the continuous control problem of this thesis. The most commonly
used gradient estimator is that calculated in equation 4.4.3 which is rewritten as
follows :

∇θJ(θ) = Et

[
∇θ log πθ(α

i
t|sit)Ât

]
(4.6.1)

where Ât is the estimator of the advantage function and the expected value rep-
resents the average over a finite batch of samples in an algorithm that alternates
between optimization and sampling . The objective function of the policy gradient
method itself (symbolized with L to follow the original PPO paper) is

L(PG)(θ) = Et

[
log πθ(α

i
t|sit)Ât

]
(4.6.2)

Now take a step back and recall the initial objective of the whole conversa-
tion.That objective was to find a policy that maximizes the expected reward when
following that policy . This can be represented as the η function used to analyze the
MM algorithm in section 4.5.1 . So

η(θ) = E
τ∼πθ

[R(τ)] = E
τ∼πθ

[
∞∑
t=0

γtrt

]
(4.6.3)
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That is the function that needs to be optimized and in this case maximized . To
apply the MM algorithm , a surrogate function , i.e a function that approximates
η locally needs to be found . Combining the MM algorithm with the trust region
optimization technique in the TRPO paper it is proven that an objective function
that achieves monotonic improvement to begin with is the following :

maximize
θ

Et

[
πθ(αt|st)
πθold(αt|st)

Ât

]

s.t Et [KL(πθ(αt|st), πθold(αt|st))] ≤ δ

(4.6.4)

The hard constraint on 4.6.4 can be transformed into a penalty with a coefficient
β . TRPO algorithm uses the hard constraint because it is difficult to choose a cer-
tain penalty β . Directly cited from the PPO paper : ”..., to achieve our goal of
a first-order algorithm that emulates the monotonic improvement of TRPO, experi-
ments show that it is not sufficient to simply choose a fixed penalty coefficient β and
optimize the penalized objective Equation 4.6.5 with SGD; additional modifications
are required”

maximize
θ

Et

[
πθ(αt|st)
πθold(αt|st)

Ât

]
− β · Et [KL(πθ(αt|st), πθold(αt|st))] (4.6.5)

Equation 4.6.5 is the M function that will be optimized instead of the η function
according to the MM algorithm .The first term of that function contains expected
advantage function and it is estimated with importance sampling using the old policy
(i.e the policy before the update of the parameters) . KL(·, ·) represents the KL
divergence of 2 probability distributions . A hard constraint (TRPO) or a penalty
(PPO) is applied on the KL divergence of the new-updated policy and the old policy
. This ensures that the updated policy is not much different from the old policy and
for this reason the variance of the estimation from the importance sampling remains
at low levels (equation 4.5.3) .

The modifications proposed in the PPO paper are

• PPO with adaptive KL penalty coefficient

• PPO with clipped surrogate objective

Chapter 4 Master Thesis 51



4.6. PPO ALGORITHM

4.6.1 Adaptive KL penalty coefficient

This approach refers to the adaptive change of parameter β in order to achieve a
specific value of the KL divergence during each policy update. The simplest form of
this algorithm is performed following the steps below in each policy update

1. Optimize the KL-penalized objective

LKLPEN(θ) = Et

[
πθ(αt|st)
πθold(αt|st)

Ât − β ·KL(πθ(·|st), πθold(·|st))
]

(4.6.6)

2. Compute the average KL divergence d = Et [KL(πθ(·|st), πθold(·|st))]

• If d < dtarget/1.5 then β ← β/2

• If d > 1.5dtarget then β ← 2β

The updated β is then used for the next policy update . The initial value of
parameter β is also assumed to be a hyperparameter by the authors of the PPO
paper , though not that crucial in practice because the algorithm adjusts it quickly.

4.6.2 Clipped Surrogate Objective

The most used version of the PPO algorithm is that which utilizes a clipped sur-
rogate objective . The ReinforcementLearning.jl package of Julia programming
language uses this specific version of the PPO algorithm . A more detailed descrip-
tion of the ReinforcementLearning.jl package will be analyzed in a subsequent
chapter .

Theprobability ratio of the two policies , the old and the new one , is denoted as
rt(θ) . In the TRPO paper the surrogate objective to be maximized is

LCPI(θ) = Et

[
πθ(αt|st)
πθold(αt|st)

Ât

]
= Et

[
rt(θ)Ât

]
(4.6.7)

CPI stands for conservative policy iteration where this objective was first intro-
duced by S. Kakade and J. Langford. PPO algorithm differentiates itself from that
of TRPO by introducing a ”clip” in the probability ratio between the old and the
new policy .The objective proposed is the following

LCLIP (θ) = Et

[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(4.6.8)
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Equation 4.6.9 is different from 4.6.7 but there is some common ground between
them . The first term in the min(·, ·) function in equation 4.6.9 is the surrogate
objective of the TRPO paper . The second term clips , namely enforces an upper
and a lower bound on the probability ratio of the updated policy and its predecessor
. The minimum between the unclipped and clipped objective is a lower bound on the
unclipped objective (i.e the CPI objective). The clipped surrogate objective function
can be enhanced by adding an entropy bonus that ensures sufficient exploration and
advantage function estimators as objectives that help reduce the variance .

LCLIP+V F+S(θ) = Et

[
LCLIP (θ)− c1L

V F (θ) + c2S[θ](st)
]

(4.6.9)

where S is the entropy bonus and LV F (θ) is a squared-error loss (Vθ(st)−V targ
t )2

.

Algorithm 1 PPO algorithm pseudocode

Input : Initialize policy parameters θ0 and value function parameters φ0

for Iteration=0,1,2... do
for actor = 1,2,...,Nactors do

Run policy πθ until episode termination (final timestep T).
Compute the advantage estimates Â1, ..., ÂT

end for
for 1:Nepochs do

for 1:Nminibatches do
Compute the objectives and the entropy bonus LCLIP (θ) , LV F (θ) , S[θ](st)
Optimize the objective LCLIP+V F+S(θ) via Adam SGD

end for
end for
Update θold ← θ

end for

In algorithm 1 there are Nactors running in parallel the same policy πθ and collect
data at every time step.The information collected is the ones needed to construct the
surrogate loss function LCLIP+V F+S(θ) and it is then optimized via Adam minibatch
SGD.
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Chapter 5

Basic Controller Implementation

5.1 Classic Control through the RL scope

The thesis opts for introducing a rather academic approach on an optimal control
problem that has already been tackled by means of standard optimization method-
ologies such as the MPC and non linear MPC [3,2] . This approach as already
mentioned stems from the field of machine learning and particularly refers to rein-
forcement learning methodologies . In this section , it is deemed vital that a side
by side comparison between the two approaches is presented so as to fathom the
implementation of data based methodology on a control problem and discuss the
possible drawbacks that it may include.

Beginning by presenting the common ground among the two methodologies men-
tioned , both methods obviously refer to ways in which one can approach solving
an optimal control problem or generally an optimization problem . In other words ,
MPC as well as reinforcement learning attempt to solve a sequential decision making
problem to determine the actions that optimize a performance objective .

Model Predictive Control Model predictive control draws at every time step k
a vector of measurements and an observer estimates the state vector x̂k which de-
scribes fully the controller model at current time. Then the state x and input u
trajectories are optimized for a finite prediction horizon ∆th . The MPC scheme is
also characterized by the following quantities .

• J =
∫ tk+∆th
t=tk

l(ẋ(t),x(t),u(t),y(t), z(t),d(t),p)dt is an explicit representation
of the objective function where

– y(t) are the model outputs

– z(t) are algebraic variables
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– d(t) are the disturbances

– p(t) are time-varying variables

• F a controller model

• H constraints

The reinforcement learning scheme was described analytically in previous sections
and thus a summarised depiction of that scheme is presented to readily delineate the
side by side comparison of the two optimization schemes. Reinforcement learning
depends on the concept of the Markov Decision Processes (MPD) where the decision
making model is described by the state space S , the action space A , the rewards
R ⊆ R and a transition function of the environment f . The agent interacts with the
environment during a sequence of discrete-time steps. Every time step k the RL agent
obtains an observation of the state space Sk ∈ S and a reward Rk that expresses
how good the action was towards achieving the agent’s goal . The environment is
defined by E : S ×A −→ S ×R and ultimately the objective of the RL is to infer an
optimal control policy π : S −→ A that maximizes the cumulative return G when
the agent acts according to that policy .

Equivalence of elements The two schemes described above might seem to be dis-
tinctively different yet a more meticulous observation reveals equivalence among
concepts and quantities used to describe each one . The most obvious similarities
can be tracked among elements such as the control input u and the action a ∈ A ,
the plant and environment and of course the controller and agent . Although there
is significant correspondence between the aforementioned elements one should be
cautious also about the particularities that each of them entails in its definition .
To illustrate starting with the plant and the environment , in the MPC context the
plant is limited to the representation of the system process while the environment
with which an RL agent interacts is extended to provide information about the states
and the rewards as perceived by the agent. Furthermore, attention should focused
on the definition of the state provided by the two schemes . For the control com-
munity , the state vector x designates only internal properties of the system while
for the machine learning community the state vector usually denoted by s refers to
the environment’s condition which may include internal as well as external system
variables , namely forecast of measurements and/or previous measurements.

An analogy also can be detected between the objective function J and the cumu-
lative return G . The control community tries to minimize the objective function for
a given problem whereas the machine learning community maximizes the cumulative
return.The relation between both can be formalized through the immediate reward.
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In the deterministic setting , the scalar immediate reward rk+1 can be related to the
objective function as follows

rk+1 = −(Jk+1 − Jk) (5.1.1)

Optimality As far as optimality is concerned the MPC’s solution fidelity is largely
depended on the accuracy of the controller model , which is simplified in general for
the sake of reduction of the overall computational cost . On the other hand methods
that rely on the MDP scheme such as Dynamic Programming ensure optimality via
the Bellman principle . Their downside is the curse of dimensionality namely , the
exponential complexity growth with the increase of the size of the state-action space.
However as mentioned in section 2.2 DP is generally limited in RL due to the impor-
tant assumption of a perfect model. For this reason the collection of methods that
approximate any element of the MDP (i.e RL or the so called approximate dynamic
programming) can only guarantee optimality under certain conditions , when using
linear function approximations or Monte Carlo learning.The reinforcement learning
methodologies that do not guarantee optimality have nevertheless been able to tackle
real complex problems where exact methods may become infeasible.

Use of Models Models are generally used both in MPC and RL methodologies , yet
their usage is different in each case . In the MPC scheme the model used represents
the system and is generally called the controller model.That model encapsulates the
dynamics of the plant and is acquired via means of system identification or even with
the application of supervised learning methodologies based on log data provided
by the plant’s operation. The controller model is most of the times simplified ,
sacrificing fidelity and performance for the sake of convergence ,low computational
cost and consequently fast response. On the other hand,RL models in general refer
to models that approximate the policy or the value function quantities that do not
necessarily represent the system dynamics in the way the controller model does .
Note , however ,that system models, namely models that represent to some extent
the system dynamics or the environment dynamics are used in simulation based
reinforcement learning .

In this thesis,the approach of simulation based reinforcement learning is examined
with the model of the whole environment and its inherent dynamics being described
in sections 3.2.2-3.3.1. The reasons why simulation based RL is in some aspects
superior to directly applying the RL controller on the real system , in this case on
HIPPO-2 , are presented concisely in the following section .
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5.2 Real-World Reinforcement Learning

In [Challenges of Real-World RL] the challenges of direct implementation of rein-
forcement learning algorithms on real world systems are condensed into the nine most
common challenges that researchers should confront in order to allow for the produc-
tionisation of RL in real world problems. These are directly cited from [Challenges
of Real-World RL] below :

1. Off-line training from an external behavior policy

2. Learning on the real system from physical samples

3. High dimensional continuous state and action spaces

4. Safety constraints that should never or at least rarely be violated.

5. Tasks that may be partially observable, alternatively viewed as non-stationary
or stochastic.

6. Reward functions that are unspecified, multi-objective, or risk-sensitive

7. System operators who desire explainable policies and actions

8. Inference that must happen in real-time at the control frequency of the system

9. Large and/or unknown delays in the system actuators, sensors, or rewards.

The challenges mentioned can sometimes be a strong incentive for a researcher
to stick to simulated environments , when that is possible , due to the fact that
a simulated environment is characterized by unlimited data for training , trivial
consequences for poor action selection from the agent (worst case scenario a PC
that might crash) and system dynamics that are clearly defined via mathematical
equations . In this case , the main reasons that a simulated environment for the
agent’s training was used mostly relate to challenges 2,3,4 . Moreover,considering
that HIPPO-2 contains an ICE engine its control would require its constant operation
something that is extremely costly and the agent’s wrong action selections during
the training process could potentially damage it .

5.3 Julia Implementation

This sections aims to describe some of the reinforcement learning capabilities of
the Julia programming language by introducing the main key features that pertain
to reinforcement learning algorithms and experiments . The explicit package widely
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used in the Julia community for reinforcement learning experiments is the Reinforce-
mentLearning.jl package , which is a newly developed yet really promising package
for anyone opting for experimenting with various RL methodologies and environ-
ments . This section serves also as a brief guideline to anyone trying to grasp the
basic concepts of the aforementioned package.

5.3.1 Basic Features

Experiments generally refer to any simulated environment in the Julia jargon.In
order to run a simulation ,which is essentially a method, needs to define beforehand
the four attributes of the experiment method which are

• Environment

• Agent

• Stop Condition

• Hook

Environment: The environment in Julia is defined as a separate data structure
called AbstractEnv and every environment created is a subtype of that data struc-
ture . The necessary steps that one needs to do in order to create a custom envi-
ronment is define the action space, the state space, the reward and the observation
states.Furthermore, three basic functions are essential to define completely a cus-
tom environment which are the reset!() ,step!() and action() methods on the
environment data structure.

The names of the methods are actually self descriptive however , the reset!()

function initializes the necessary quantities at the end of each episode , the step!()
method includes the dynamics of the environment and is responsible for the state
transition .The action() checks that the selected action belongs to the action space
and feeds the action to the step!() method to complete the state transition for the
agent according to the selected action .

Agent: The agent is a data structure that accepts as attributes a policy and a
trajectory. The policy entails any approximator used and other hyperparameters
while the trajectory is responsible for storing the necessary data during each episode
at a given rate defined by the user .
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Stop Condition & Hook : The stop condition is also a self descriptive characteristic
of the environment and defines when the experiment is completed . The usual ways
to terminate an experiment is either after a predefined number of episodes (usually
preferred for single environments) or after a predefined number of state transitions
, namely steps (usually used in the so-called MultiThreadEnviroments used in al-
gorithms where data need to be sampled from the simultaneous run of numerous
identical enviroments is,like the PPO )

The hook facilitates the option for the user to extract data from the experiment
during any stage of the run , pre-episode , post-episode etc.One can create his own
custom hook with the most commonly used one being the one that collects the total
reward during each episode.
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Chapter 6

Energy Management & Emissions
Minimization Control System

In the previous section the optimal torque/power split for the control of HIPPO-2
was examined resembling the operation of a ship’s hybrid propulsion plant during
transient loading . In this section the Energy Management and Emissions Minimiza-
tion Control System (EMEMS) [2] is introduced and the problem formulation is also
presented . The application of the EMEM system has already been implemented
on the HIPPO-2 and the control scheme used was that of MPC [2] . In this the-
sis,the goal was to try to implement the EMEM system with reinforcement learning
methodologies and compare the results produced by the corresponding simulation.

6.1 Problem Formulation

The control problem objectives are revisited , this time with an additional goal
regarding the minimization of emissions and the fuel consumption .

• Speed tracking : Following the desired speed reference profile.

• State of charge control : Maintain the SoC levels around a predefined level
independently of the load profile

• Robustness : Rejecting external load disturbances with swift convergence to
a non-oscillatory behavior

• Minimization of energy consumption and emissions production: Fuel
consumption and emissions production become variables of the equivalent fuel
consumption (mec) that is essentially a combination of those two quantities.
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Equivalent Consumption

The equivalent consumption model was introduced by Paganelli [ECMS] and is a
strategy based on the concept that in self sustaining vehicles the battery used plays
the role of an energy buffer , namely a unit in the system that stores energy in the
form of electric charge , energy readily available to the system.The key note in this
concept is the fact that the recharge of the battery does not happen from an external
source rather internally from the system itself using fuel that is already used from
main power source , usually as well as in this case an ICE engine . The battery is
seen for this reason as an auxiliary reversible fuel tank .

In both charge and discharge phases , a virtual fuel consumption can be associated
with the use of electrical energy and can be summed to the actual fuel consumption
to obtain the instantaneous equivalent fuel consumption .

ṁec(t) = ṁf (t) + ṁbatt(t) = ṁf (t) +
s

Qlhv

Pbatt(t) · p(x) (6.1.1)

where ,

• ṁf (t) is the instantaneous fuel consumption

• ṁbatt(t) is the virtual fuel consumption associated with

– Qlhv fuel’s lower heating value

– Pbatt(t) the battery power

– p(x) is a correction that takes into account the deviation of the nominal
SOC from the reference

– s is the equivalence factor

The equivalent consumption in the current thesis was applied in the following
manner,

ṁec(t) = (1− A)ṁf + AλNṁN + λecems · λSOC
Pb

Qf

(6.1.2)

where λecems is a tuning parameter which is determined in simulation to derive
the same initial and final battery state of charge. In this way, the savings regarding
the hybrid operation can be evaluated in relation to the achieved energy efficiency
and battery energy conservation . The parameter λSOC refers to the penalty enforced
by the extensive usage of the battery . In general the goal for the SOC is to remain
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around 50 % which set to be the reference point and large deviation from it is
penalized with λSOC . λN is a scaling parameter to ensure that ṁf and ṁN are
on the same scale when considering the equivalent consumption and is equal to the
ratio of the maximum fuel rate to the maximum NOx production rate. Finally A
represents the relative weight between the fuel consumption and theNOx production.

λSOC =
|SOC − SOCref |3

103
(6.1.3)

RL agent quantities

To tackle the problem mentioned a policy gradient method and in particular
proximal policy optimization (PPO) will be used , the theory of which was analysed
in section 4. The agent will have access to a two dimensional action space that will
also be continuous .The actions of the agent , namely the control variables of the
controller , will be the derivative of the electronic fuel indexes of the ICE and the
electric motor in %.

Action & Action Space

α = [u̇ICE, u̇em]
T

A = [u̇ICEmin
, u̇ICEmax ]× [u̇emmin

, u̇emmax ]
(6.1.4)

States & State Space

s =
[
Neng, Ṅeng, Nerror, SOC, ˙SOC, SOCerror, ṁec

]T
S = [s1min

, s1max ]× [s2min
, s2max ]× ... × [s7min

, s7max ]
(6.1.5)

where

Nerror = Neng −Nref and SOCerror = SOC − SOCref

A critical step that needs to be done is the normalization of the states . State
normalization is of utmost importance in methods that depend on neural networks
to predict Q, V values or in the case of PPO to directly predict the optimal action
(via the policy representation as a normal distribution ). Normalization ensures that
all states are scaled on the same level , thus scale effects are depleted . In other words
, using the machine learning jargon , a feature scaling is performed before these are
provided to the actor - neural network that will predict the desirable quantities .
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The following function is used to perform the normalization of the states

ℵ(s) = tanh

(
2 · s−min(s)

max(s)−min(s)
− 1

)
(6.1.6)

By applying that function on the state space the normalized state space is engen-
dered (for the sake of symbol fluency the normalized quantities will be symbolized
with a n on the subscript ).

sn = ℵ(s) =
[
Neng.n, Ṅeng.n, Nerror.n, SOCn, ˙SOCn, SOCerror.n, ṁec.n

]T
(6.1.7)

Reward Function
The reward function of the RL scheme could be considered one of its ,if not

the, most essential parts . As already stated , an agent’s action selection process
is massively depended on the effect that the chosen action will have . The reward
function assimilates that effect and informs the agent on the suitability of his choice
on a given state transition . For this reason , the reward function shaping is an exigent
process that , unfortunately most of the times its final representation is established
via trial and error , as different problems require different reward functions and
explicit methodologies describing the reward function design do not exist .

The reward function for the problem discussed in this section is a linear combi-
nation of a number of functions

R = −→w ·
−→
f , where

−→w = [wN , wS, wṁ, wṠ, wṄ , wt]
−→
f =

[
fN(Nerror), fS(SOCerror), fṁ(ṁec), fṠ(

˙SOC), fṄ(Ṅeng), ft(tmotor)
] (6.1.8)

wi represent the weight factors assigned to each sub-function of the reward func-
tion.Those relative weights play a significant role as hyperparameters in the training
process and their values where determined mainly as a combination of intuition be-
hind the system’s operation and trial and error (with the use of hyperparameter
tuning tools),mainly due to the lack of an explicit methodology.In each experiment
described on the training results section the corresponding values of each weight are
mentioned.

As described from equation 6.1.8 the reward function is designed to be a multi-
dimensional function with variables
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• Nerror which is the tracking error

• SOCerror which represents the deviation from SOCref

• mec which is the equivalent consumption

• ˙SOC the derivative of the SOC

• Ṅeng the speed derivative

The sub-functions used are again hyperbolic functions and in particular tanh(·)
in order to scale each function in the [0,1] domain (they are also squared) .

fN(Nerror) = 1− tanh

(
2 · Nerror + 15

30
− 1

)2

fṄ(Ṅeng) = 1− tanh

(
2 · Ṅeng + 5

10
− 1

)2

fS(SOCerror) = 1− tanh (0.03 · exp(||SOCerror| − 1|)2

fṠ(
˙SOC) = 1− tanh

(
2 ·

˙SOC + 5

10
− 1

)2

fṁ(ṁec) = 1− tanh

(
2 · ṁec + 8.5

17
− 1

)2

(6.1.9)

In the following page the corresponding plots of the sub-functions that constitute
the reward function are presented . The sub-function regarding the SoC error reward
is presented separately. In these plots one should notice when the reward approaches
zero . The values around that area are essentially the bounds imposed in the quantity
of the sub-function . For instance in the speed error sub function if the speed error
exceeds 50 rpm the agent gains no reward from that part (with the episode not
necessarily being terminated ) .
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Figure 6.1: Speed Error , ˙SoC, Equivalent fuel Consumption & Ṅ sub-functions

Figure 6.2: SOCerror sub-function
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The next figure presents the whole plant-controller setup via the reinforcement
learning scope by establishing the controller - plant interaction dynamic that the
environment - agent pair entails .The environment is consisted of the consump-
tion,battery,ICE and electric motors models as well as an external environment model
which essentially represents an approximation of the sea environment and provides
the necessary references for the operation of the plant,in this case the HIPPO-2.

Figure 6.3: Environment (Plant)- Agent (Controller)
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Furthermore ,the agent’s action selection part is depicted which is the actor neural
network.The inputs of that NN are the state variables provided by the environment
and the outputs are a mean action and its deviation that comprise the normal dis-
tribution according to which an action is sampled and is fed back to environment,
namely to the ICE and the electric motor .

6.2 Training Results

The agent’s training sessions are categorized according to the value of the weight
factor of the equivalent consumption. The agent’s training was done with a spe-
cific relative weight factor A . The parameters of interest are presented in table
6.1. There the command rates of the ICE and the electric motor are presented (i.e
the action space of the agent) as well as the constraints regarding the SoC limits
and the engine’s revolution speed . The internal battery model and the equivalent
consumption parameters are also presented.

Parameter Symbol Value

SoC Constr. SOChard [20 80] %
Neng Constr. Neng,soft [700 2000]
EM cmd rate u̇em [-50 50] %/s
ICE cmd rate u̇ICE [-20 10] %/s

Equivalent Cons Parameters
λN 0.067

λecems 1.56

Battery Internal Model Parameters

Open Source Voltage Coefficient
kV1 696 V
kV2 1.022 V/%SOC

Internal Restistance Ri 0.0640 Ω
Nominal Capacity Qnom 27.84 kWh

Table 6.1: Control Scheme Parameters

In table 6.2 the parameters concerning the PPO algorithm execution are presented
. The agent was trained from data stemming from his interaction with 8 identical
environments with the complete episode having a duration of 500s (5000 steps with
sampling rate dt = 0.1s ) . The values that pertain to the PPO algorithm such as
the critic & actor loss weights where set to the values seen in table 6.2 according to
the commensurate values used in other continuous control applications .
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Parameter Value

Nenv 8
Update Frequency 2048
Max Steps 5000
Reward Discount γ 0.99
GAE coeff. λ 0.96
Clip Range 0.2
Critic Loss Weight 1.0
Actor Loss Weight 1.0
Entropy Loss Weight 0.01

Actor - Critic NN Structure

μ [ns 64 64 na]
log σ [ns 64 64 64 na]
Critic [ns 64 64 64 1]
Epochs 10
Optimizer (ADAM) 3 · 10−4

Microbatch Size 32

Table 6.2: PPO learning algorithm parameters

6.2.1 Training Scheme

The training scheme via which the agent learned , opted for good generalization
characteristics . In particular , the agent was trained in order to be able to cope
with an unknown simulation environment significantly different to that of training.
This was achieved by introducing randomness into the training methodology mainly
in two ways .

1. Changing the load coefficient cload randomly at each step following a uniform
distribution in [2.3 · 10−5, 2.7 · 10−5] .

2. Expose the agent to a simple yet , random speed tracking profile at the end
of each episode . A suitable function was created that served the purpose of
generating random speed profiles during after the end of each episode .

Random load demand : The purpose of the implementation of the random load
demand was the introduction of the agent to the randomness that the sea environ-
ment disturbances entail . The torque demand in training was derived used the
propeller law according to which the power needed to be produced to move the ship
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at a certain speed is proportional to the cube of the engine’s rotational speed . Thus
the torque provided is of magnitude ,

Tload = cload ·N2
eng (6.2.1)

By randomly changing the cload parameter in each step the agent gets accustomed
to the nature of the sea environment disturbances . While the range of the cload value
domain is not particularly large , it is satisfying because it introduces a sufficient
amount of complexity that allows the agent to converge eventually to a desirable
policy.It also approximates well enough the propeller law coefficient values of the
propulsion plant model according to which the final simulation is based [2] .

Random Speed Profile : In order for the agent to be able to generalize to various
speed profiles , but also allow for convergence to a sufficient policy , the agent
was trained on various step-like speed profiles . Some potential speed profiles are
presented below

Figure 6.4: Various speed profiles produced

These levels where produced by a custom function that generates speed profiles
by randomly assigning the value of the speed and the time in which the transition
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from a speed value to another occurs. In the figure above one can notice in each
speed profile 5 constant speed sectors . The speed values and the corresponding time
duration of those are the following

• Sector 1 : Nref ∈ [900, 1100] , tref ∈ [0, 0.15 · tep]

• Sector 2 : Nref ∈ [1400, 1600] , tref ∈ (0.15 · tep, 0.25 · tep]

• Sector 3 : Nref ∈ [1200, 1500] , tref ∈ (0.25 · tep, 0.5 · tep]

• Sector 4 : Nref ∈ [1700, 1900] , tref ∈ (0.5 · tep, 0.75 · tep]

• Sector 5 : Nref ∈ [1400, 1600] , tref ∈ (0.75 · tep, tep]

The speed profile generator assigned a reference speed value for each sector . The
duration of some of the sectors was also random , namely sectors 1,2 and 5 where in
some experiments assigned random duration.
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6.2.2 Training results A = 0

Now that the general methodology of the training has been established the results
of the training are presented starting with the case where the relative weight coef-
ficient A is set to 0 . Among various runs the reward sub-functions’ weights where
determined for this case to be the following

−→w A=0 = [wN wS wṁ wṄ wt] = [3 12 1.05 1 0.1]

The training was performed for 250 · 103 steps producing the following rewards

Figure 6.5: Average Reward per Episode (A=0) : The continuous line represents the mean
reward among the Nenv and the grey portions represent the deviation

The agent achieves convergence in the last episodes of the experiment and at
that point completes the 5000 steps of the episode with a normalized score (ratio
of the score attained to maximum possible score ) around 0.93. The results of the
last episode are almost identical for every environment (from the graph deviation is
minimal) and are the following
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Figure 6.6: Final Episodes’ speed profile and tracking speed (A=0)

Figure 6.7: Loading and power split for the last training episodes (A=0)

Figure 6.8: Error in tracking (A=0)
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Figure 6.9: The corresponding state of charge (A=0)

Figure 6.10: ICE’s NOx production (A=0)

Figure 6.11: ICE’s fuel consumption (A=0)
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6.2.3 Training results A = 0.5

Now the corresponding results from training the environment with the relative
weight coefficient set at 0.5 . The reward sub-functions’ weights where determined
for this case to be the following

−→w A=0.5 = [wN wS wṁ wṄ wt] = [3 12 0.85 1 0.1]

The training was performed for 250 · 103 steps producing the following rewards

Figure 6.12: Average Reward per Episode (A=0.5) : The continuous line represents the mean
reward among the Nenv and the grey portions represent the deviation

Again the agent achieves convergence in the last 10 episodes of its training with
the deviation among the environments being minimal . The normalized score at
those last episodes is around 0.92 meaning that the managed to minimize all the
quantities of interest . A comment about both rewards plots is that the training
needs to be long enough for the agent to converge at a desirable point.
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Figure 6.13: Final Episodes’ speed profile and tracking speed (A=0.5)

Figure 6.14: Error in tracking (A=0.5)

Figure 6.15: Loading and power split for the last training episodes (A=0.5)
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Figure 6.16: The corresponding state of charge (A=0.5)

Figure 6.17: ICE’s fuel consumption (A=0.5)

Figure 6.18: ICE’s NOx production (A=0.5)
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6.2.4 Comments on Training results

In both training sessions with different fuel to weight ratio the agent managed to
obtain a desirable (sub) optimal policy that enabled him afterwards to tackle the un-
known load disturbances while closely following a given speed profile . After a certain
number of steps in both cases the agent converged and in every environment achieved
almost identical performance with minimal deviation . In both cases (A=0,A=0.5)
the corresponding performance of the ICE engine is observed . The fuel consumption
in each case turned out to be really close to that,resulting by operating the ICE on
its own . The quantities of interest from the last of episode of its training session
is presented below . The NOx production in the case of A = 0.5 turned out to be
a little bit larger than the case where the ICE is solely operated and that occurred
because the agent recharged the battery above the reference level of SoC = 50 .

Weight A Cumulative Cumulative SOC
(Fuel to NOx) Fuel [l] NOx [g] Difference [%]

A=0.0 3.29 41.13 -1.76
ICE only 3.33 41.18 -
A=0.5 3.48 43.26 6.78

ICE only 3.34 41.44 -

Table 6.3: Training results concerning the fuel and NOx production for each training
scenario

6.3 Simulation Results

The training procedure essentially calibrated the agent’s actor neural network
so as to produce a desirable action when faced with a previously unknown state
. The now ”experienced” agent is set to handle the following scenario . A more
sophisticated level where the agent needs to calculate the optimal control commands
for a more complex speed profile . That speed profile is selected from a number of load
cycles provided in [2] which was used to experimentally test the NMPC controller
on HIPPO-2 . The foresaid cycle is the following
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Figure 6.19: Speed reference profile used in simulation

The selection of that cycle is the appropriate test to examine the agent’s ability to
generalize its learning and apply them to unknown instances . The aforementioned
speed profile is consisted of numerous speed variations that cover the whole spectrum
of the engine speed with curt transitions among them that enable the testing of the
agent’s response to such transient conditions .

6.3.1 Weight Coefficient A = 0

During the simulation the same values for the control scheme parameters where
implemented . The values used are the same used for the NMPC simulations in
order to set a common basis for comparison . Starting with the A=0 case the agent’s
performance is the following .

It should be noted that the following results for the NMPC refer to experimental
results and not simulation meaning that the transient response seen for instance in
the beginning of the experiment is not characteristic of the NMPC’s performance in
a corresponding simulation .

The agent’s performance regarding the speed tracking is really good considering
that the maximum speed error is around 40 rpm while the majority of the speed
error values lie within the [-10,10] range . That result is encouraging because it
indicates that the agent managed to generalize and apply the experience gained
from the training session into the previously unknown and rather complex speed
profile . One can also observe from the SOC diagram that in general the agent chose
a different path to satisfy the requirements of the simulation namely reducing the
NOx production and the corresponding fuel consumption .
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Figure 6.20: Speed Tracking A = 0

Figure 6.21: Speed Error A = 0 RL - NMPC

Figure 6.22: SOC trajectory A = 0 RL - NMPC
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Figure 6.23: RL-NMPC comparable Fuel Consumption (A=0)

Figure 6.24: RL-NMPC comparable NOx Production (A=0)
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6.3.2 Weight Coefficient A = 0.5

The corresponding results for the A=0.5 case are presented below . Again the
agent had no issue dealing with a completely unknown speed reference profile while
also satisfying the load demand .

Figure 6.25: Speed Tracking A = 0.5

Figure 6.26: Speed Error A = 0.5 RL - NMPC
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Figure 6.27: SOC trajectory A = 0.5 RL - NMPC

Figure 6.28: RL-NMPC comparable Fuel Consumption (A=0.5)

Figure 6.29: RL-NMPC comparable NOx Production (A=0.5)
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6.3.3 Weight Coefficient A = 0.8

A final case is also presented where the weight coefficient A was set to 0.8 . In
this mode the agent chose a slightly different splitting strategy . The corresponding
graphs are provided below

Figure 6.30: Speed Tracking A = 0.8

Figure 6.31: Speed Error A = 0.8 RL - NMPC
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Figure 6.32: SOC trajectory A = 0.8 RL - NMPC

Figure 6.33: RL-NMPC comparable Fuel Consumption (A=0.8)

Figure 6.34: RL-NMPC comparable NOx Production (A=0.8)
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6.3.4 Cases Comparison

In this section a brief comparison of the behavior of the agent is discussed while
also the final results of the simulations are presented . Generally , in both cases
the agent managed to achieve the basic goal of tracking the predefined speed profile
while also keeping NOx production and fuel consumption within lower levels .

The nature of the training however did not allow for significant alterations in
the behavior of the agent according to weight coefficient A . Indeed the fuel ration
A = 0 forced the agent to follow a path that minimized fuel consumption while
A = 0.5 allowed for a compromise between fuel consumption and the total NOx
production which was abridged in this case . Nevertheless , in both cases the agent
had an inclination towards choosing a path that made good use of the auxiliary
machine mostly in motoring mode . The reason for that is probably the fact that
the reward function depended on the rates of fuel consumption and NOx production
and not their cumulative value . This essentially means that the agent opted for
minimizing the rates which tend to be better for tracking purposes rather than the
whole equivalent consumption .

In the NMPC scheme a final stage penalty can easily be enforced to penalize the
excessive cumulative equivalent fuel consumption . On the RL scheme something like
that poses a number of difficulties considering that the agent relies on reward during
each state transition ; solving those issues was considered to be beyond the scope of
this thesis.Note also that in the case of the NMPC the controller was optimized to
minimize the cumulative weighted consumption mec = Amf + (1 − A)mNOx while
ignoring the term involving the battery (3.3.3).

The results regarding the quantities of interest are presented in the following table
,

Weight A Cumulative Cumulative SOC
(Fuel to NOx) Fuel [l] NOx [g] Difference [%]

RL (A=0) 6.72 87.18 3.56
NMPC (A=0) 6.71 94.7 2.82
RL (A=0.5) 6.76 86.9 2.7
NMPC (A=0.5) 6.83 91.8 3.41
RL (A=0.8) 6.75 88.86 1.90
NMPC(A=0.8) sim. 6.85 94.1 3.41
ICE Only 6.62 100.4 -

Table 6.4: Comparative Simulation Results

The results seem encouraging for the agent as in both simulated cases the cumu-
lative fuel as well as the cumulative NOx production are around the same level with
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the NMPC controller or even lower . In both cases one can also observe a significant
reduction in the cumulative NOx production relative to that of the NMPC case and
to that of the ICE-only operation.

The following diagramms present the comparative plots for the SOC , fuel con-
sumption rate and NOx production rate as well as the diagram presenting the power
split decisions to the enforced load demands .

Figure 6.35: Comparative SOC trajectories

Figure 6.36: Power split and load demand A=0 - A=0.5
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Figure 6.37: Power split and load demand A=0 - A=0.8

Some final comments pertinent to the load diagram , is that in this case the agent
was able to satisfy the load demands and its irregular fluctuations . Remember that
during training the load provided was following the propeller law with the coefficient
cload not surpassing a value of 2.5 · 10−5 . It is noteworthy the fact that during the
simulation the agent was regularly exposed to cload values significantly higher than
those the agent was ”familiar” with during its training . This indicates that overfit
was essentially avoided , enabling the agent to generalize .

The agent’s strategy in splitting the power is mainly trying to maintain the SOC
level around the desired reference while also taking advantage of the auxiliary motor
when needed for example during power sudden load increase (t1 ≈ 75s and t2 ≈ 800s)
. During small load transitions or seemingly constant load the agent decides to keep
the SOC levels around the same levels . The reason that happens is because the
goal is having a SOC level close to 50 at the end of the load cycle and not have a
fully discharged battery . In the case where A was set to 0.8 it can be observed from
figure 6.37 that the agent initially utilizes the motor in generating mode increasing
the battery’s charge in order to take advantage of it afterwards . The agent then
chooses again the fast transients around t1 and t2 to utilize the battery while the
rest of the time maintaining the SOC levels relatively constant .

Finally , the comparative plots for the ṁf and ṁNOx quantities are presented
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Figure 6.38: Comparative engine performance for the two different weighting coefficients
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Chapter 7

Conclusion

This is the conclusion chapter in which the work is recapitulated and the some
of the emerging results are discussed . Potential future work ideas are also provided
for individuals who want to base their project on this work or even enhance it .

7.1 Work Summary and Conclusions

The main goal of this work is implementing the newly emerged reinforcement
learning methodologies into real life applications and in particular the energy man-
agement of the HIPPO-2 hybrid diesel electric propulsion plant . The main task
of this thesis was to tackle the power split optimization problem of HIPPO-2 with
the application of a rather inchoate control scheme that pertains to reinforcement
learning. This project was largely influenced by the work of Vasilios Karistinos [2]
and Nikolaos Planakis [3] and other contributors who the Non linear model predic-
tive control to develop a real time Energy Management and Emissions Minimization
System (EMEMS). That system is reproduced in this work via the use of policy gra-
dient methods namely the proximal policy optimization (PPO) , with the workflow
being the following .

Initially , the differential equations governing the environment were updated with
models designed in the laboratory of marine engineering (LME) . Once the environ-
met’s dynamics were developed the implementation of the (PPO) algorithm took
place with the necessary calibrations . In general, only policy gradient methodolo-
gies were selected with the main reason for that being the fact that policy gradient
methodologies are the ones that can handle continuous action and state spaces more
efficiently .

The main objective was to create an agent who would essentially play the part
of the classic controller and decide on the optimal power split actions to minimize
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emissions while also satisfying other constraints that pertain to load demands , speed
profile tracking and maintaining a valid SOC level.The main idea behind EMEMS is
the use of a quantity called equivalent fuel consumption that simultaneously takes
into account the fuel consumption , NOx production and the electric energy usage
from the battery.In order to do that , the agent was trained at first in various simple
yet sufficient environments that would eventually allow the agent to generalize into
more complex conditions . Random speed tracking profiles with random transitions
in combination with a variable load that abided by the propeller law (varying the
coefficient) were effective for that cause . The training results were evaluated by
observing the convergence of the reward function relative to the maximum reward
that the agent could attain as well by collating the results with the scenario in which
only the diesel engine was operating. The agent was trained on two scenarios with
different fuel to NOx weight coefficient (A=0 & A=0.5 ) .

Finally,once the agents training was successful the performance of the agent was
tested in simulations using load cycles and speed profiles identical to those used in
[2] in order to have a common basis for a basic result’s evaluation . The results of the
simulation where encouraging because the agent proved able to cope with unknown
inputs. The agent during training managed to develop a certain logic that enabled it
to generalize and perform well with respect to the constraints and the fuel economy
and emissions reduction goal . As already mentioned in the corresponding section
the simulated results indicated that the agent could perform equally well or even
better in some cases with a more robust control scheme like the NMPC .

To summarize, the thesis is aligned with the general attitude towards the ap-
plication of reinforcement learning in the field of control and automation . The
results produced in this work indicate that an RL agent could potentially substitute
the classic controller in various control related applications that require real time
optimization . Nevertheless, considerable work needs to be done in the field of re-
inforcement learning to tackle the various drawbacks surrounding the methodologies
of this scheme mainly those regarding stability , efficient data manipulation and the
black-box dynamics of the methods that entail the use of neural networks.

7.2 Future Work Suggestions

This thesis provides the necessary impetus for anyone considering to further de-
velop the application of reinforcement learning methods into control related projects
.

First, while the agent presented the desirable performance in simulation , exper-
imental tests need to be performed in order to solidify the general capabilities of
that scheme . Moreover , although the models used in this thesis and the training
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methodologies where considered adequate there is always room for improvement by
introducing higher fidelity models . The training process could also be enhanced by
introducing the concept of levels cited in the paper ACCEL [13] where the agent
is facing levels with difficulty to complete that is proportional to its performance
at a given instance . It is a really interesting concept that is worthwhile exploring
. Furthermore , in this thesis the reward functions used were those that provided
the desirable results . However , further investigating the dynamic of the reward
function as well as the effect of other hyperparameters of the RL scheme provide an
interesting topic overall . Finally , other RL methodologies could be implemented
combined with different control objectives .
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