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Abstract

This thesis addresses the critical issue of anomaly detection in marine operational systems
using clustering methods and machine learning models. The study aims to develop an effective
methodology for identifying anomalies within complex cargo vessel main engine data. The re-
search investigates the application of various unsupervised machine learning techniques to detect
anomalies, with a particular emphasis on the practical implementation of K-Means Clustering,
Gaussian Mixture Models, Density-Based Spatial Clustering of Applications with Noise, and
Self Organising Maps. Following the introductory section, where the purpose of this study is
stated, an extensive literature review of the marine engine anomaly detection topic is presented.
All the fundamental theories and insights concerning the algorithms employed are found in the
theoretical background. In this section are also presented the methodologies behind the machine
learning algorithms which are utilized for anomaly detection. The methodology section delves
into data preparation, encompassing data cleaning, de-noising, steady state identification, nor-
malization, and dimensionality reduction. The anomaly detection framework for each model
is then presented followed by a presentation of the simulated anomalies which are utilized for
model testing purposes. In the case study and results are presented detailed descriptions of
the data used, the data preparation procedure, and the implementation of anomaly detection
algorithms. The results showcase the effectiveness of each algorithm in identifying anomalies
within operational data. All models delivered good results. These results are critically analyzed
in the discussion section, along with potential improvements. Additionally addressed are few
data-related challenges such as the importance of maintaining the time sequence in time-series
data and overall data quality as a results affecting parameter. Also examined, are the impact of
dimensionality reduction on the accuracy of anomaly detection and the detection of simulated
anomalies. The key findings along with future research proposals in this field are summarized
in the conclusion section.
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Περίληψη

Η παρούσα εργασία εξετάζει το ζήτημα της ανίχνευσης λειτουργικών ανωμαλιών βασισμένες σε

μεθόδους συσταδοποίησης (clustering) και σε μοντέλα μηχανικής μάθησης (machine learning). Η
μελέτη στοχεύει στην ανάπτυξη μιας αποτελεσματικής μεθοδολογίας για τον εντοπισμό ανωμαλ-

ιών σε περίπλοκα δεδομένα που προέρχονται από την κύρια μηχανή εμπορικών πλοίων. Κατά τη
διάρκεια της εργασίας διερευνάται η εφαρμογή πολλών μη επιβλεπόμενων (unsupervised) τεχνικών
μηχανικής μάθησης για την ανίχνευση ανωμαλιών, με ιδιαίτερη έμφαση στην πρακτική εφαρμογή της
συσταδοποίησης K-Means, των Gaussian Mixture Models, Density-Based Spatial Clustering of
Applications with Noise και Self Organising Maps. Μετά την εισαγωγή, που αναφέρεται ο σκοπός
της εργασίας, ακολουθεί μια εκτενής βιβλιογραφική ανασκόπηση πάνω στο θέμα της ανίχνευσης αν-
ωμαλιών σε ναυτικούς κινητήρες. Στη συνέχεια, παρουσιάζεται το θεωρητικό υπόβαθρο που αφορά
τις έννοιες που χρησιμοποιούνται στην πορεία της εργασίας. Παράλληλα αναπτύσσονται οι θεω-
ρίες και οι μεθοδολογίες των αλγορίθμων μηχανικής μάθησης που χρησιμοποιούνται. Η ενότητα
που αφορά τη μεθοδολογία εμβαθύνει στην προετοιμασία των δεδομένων που περιλαμβάνει τα εξής:
λεπτομερείς περιγραφές των δεδομένων που χρησιμοποιήθηκαν, τη διαδικασία προετοιμασίας δε-
δομένων και την εφαρμογή αλγορίθμων ανίχνευσης ανωμαλιών. Στα αποτελέσματα που ακολου-
θούν, φαίνεται η αποτελεσματικότητα κάθε αλγορίθμου στον εντοπισμό ανωμαλιών με βάση τα
επιχειρησιακά δεδομένα. ΄Ολα τα μοντέλα παρουσίασαν αρκετά καλά αποτελέσματα. Αυτά αναλύον-
ται στην ενότητα επεξεργασίας και κριτικής των αποτελεσμάτων, μαζί με πιθανές βελτιώσεις για
αυτά. Επιπροσθέτως, αντιμετωπίζονται κάποιες προκλήσεις που σχετίζονται με τα δεδομένα, όπως
η σημασία της διατήρησης της χρονικής σειράς σε τέτοιου τύπου δεδομένα αλλά και η συνολική

ποιότητα των δεδομένων σαν παράμετρος που επηρεάζει τα αποτελέσματα. Εξετάζονται επίσης ο
αντίκτυπος των μεθόδων μείωσης διαστάσεων (dimensionality reduction) των δεδομένων στην
ακρίβεια της ανίχνευσης ανωμαλιών αλλά και η ανίχνευση προσομοιωμένων ανωμαλιών. Τα βασικά
ευρήματα μαζί με μελλοντικές προτάσεις σε αυτό το περιβάλλον συνοψίζονται στην ενότητα των

συμπερασμάτων.
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1 INTRODUCTION

1 Introduction

The development of new applications which collect and analyze data to reach meaningful
conclusions is continuously increasing in this rapidly evolving technological landscape. The inte-
gration of Machine Learning (ML) and Artificial Intelligence (AI) has emerged as a fundamental
catalyst, reshaping industries and redefining problem-solving paradigms. One industry that has
been notably affected is shipping. These technologies have assumed a pivotal role in revolution-
izing the maritime cluster, catalyzing advancements in operational efficiency, safety protocols,
and sustainability measures. Indicative applications utilizing these technologies within the in-
dustry include prediction of fuel consumption (Gkerekos et al., 2019), speed loss (Karagiannidis
& Themelis, 2021), propulsion power (Kim et al., 2020a), weather routing (Gkerekos & Lazakis,
2020), development of monitoring systems (Guanglei et al., 2019), energy efficiency analysis
(Beşikçi et al., 2016), and predictive maintenance algorithms (Jimenez et al., 2020).

Furthermore, a rise in investment focused on the four primary categories delineating the
smart shipping sector is anticipated (Economics & International, 2021). The categories are
namely:

1. smart port

2. autonomous vessels

3. on-board technologies

4. professional services technologies

Collectively, it is widely acknowledged within the industry that, achieving seamless integration
of smart applications across these domains, holds paramount significance for stakeholders and
industry players alike.

Among the various smart technologies, this study places particular emphasis on smart main-
tenance, recognizing the need for further research in ship operations. While the potential
benefits of AI applications in the shipping sector, such as achieving optimal and cost-effective
maintenance practices, have been acknowledged, as well as its potential positive impacts on per-
sonnel safety and security, a definitive technological solution for these challenges remains elusive.
Nonetheless, some endeavors have been observed concerning the advancement of Prognostics &
Health Management (PHM) for shipping systems (Velasco-Gallego & Lazakis, 2022a).

When it comes to Condition Based Maintenance (CBM) applications within the sector, it
is estimated that only around 2% of vessels operate under that scheme (Jimenez et al., 2020),
indicating limited integration of this aspect of ML and AI based technologies (Velasco-Gallego
& Lazakis, 2022c). A CBM program may be data-driven or physics based, such as the models
developed by Lamaris & Hountalas (2010) and Dimopoulos et al. (2014). The main disadvantage
of the latter lies in their high modeling complexity and difficulty of use (Vanem & Brandsæter,
2021).

In the case of a data-driven model, it is comprised of three main algorithms: anomaly detec-
tion, fault identification, and prognostics. Anomaly detection involves monitoring data streams
to identify deviations from the typical system behavior, which serve as indicators of system
changes (Chandola et al., 2009). In fault identification, a diagnostic tool is applied to discern
the nature of the detected anomaly—distinguishing between actual faults and unexpected yet
normal system behavior and precisely identifying the type of fault. The prognostics task strives
to predict the future behavior of the system based on its current state and estimate its remaining
useful life Vanem & Brandsæter (2021).

1.1 Objective of the Study

The focus of this study centers on the comprehensive analysis of multidimensional time series
data originating from the main engine of a merchant vessel. The primary objective of this study
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is the development and application of anomaly detection techniques to the available dataset.
One significant challenge emerges: the boundaries between abnormal and normal operating
states cannot be set, or such task proves to be very difficult. This challenge is primarily
attributed to the intricate complexity of the data and the correlation between various variables.
As a result, the establishment of a rule-based system relying on extreme values for anomaly
detection appears to be an unfeasible alternative.

Hence, this study adopts a data-driven perspective, deviating from the physics-based ap-
proaches. The proposed methodology revolves around the development of algorithms which
utilize clustering models and machine learning techniques to address the anomaly detection
challenge. Specifically, the examined methods include K-Means clustering, clustering with
GMM, DBSCAN, and Self Organising Maps (SOM) forming a comprehensive framework for
tackling this intricate problem.

Furthermore, special attention is paid to the data preparation phase, aiming to maximize
the utility of the provided dataset. This phase involves tasks as data cleaning and refinement
to remove noise, steady state identification to ensure proper training of the algorithms, data
normalization, and dimensionality reduction to reduce complexity of the datasets.

1.2 Purpose of the Study

Four fundamental pillars form the purpose of the study. First, it aims in a presentation
of practical applications associated with anomaly detection. Second, various methods are de-
veloped in the research, thereby providing a structured approach to addressing the anomaly
detection problem. Third, multiple anomaly detection models are developed, thus reflecting a
proactive approach to confronting this challenge. Fourth, the study is involved in the compari-
son of those anomaly detection models, enabling a critical assessment of their practical utility
and effectiveness.

1.3 Structure of Thesis

This paragraph showcases how the rest of the study is structured. The second chapter in-
volves a literature review about the topic of anomaly detection in marine machinery and its
applications. The next chapter contains the theoretical background required for the compre-
hension of the methodologies which are employed in the thesis. This also includes the theory
behind the employed clustering methods. Chapter four is named ”Methodology”. It comprises
of three parts: methodology of data preparation, of anomaly detection, and of how anomalies
are simulated. The case study and the results are shown in the fifth chapter, followed by a
discussion in the sixth. The final chapter, ”Future Work”, consists of potential concepts and
ideas for enhancement of the methodologies presented in the previous chapters.
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2 LITERATURE REVIEW

2 Literature Review

The concept of anomaly detection based on data driven methods has been already researched
in the maritime sector. Multiple studies have been identified implementing several ML method-
ologies.

Brandsæter et al. (2016) developed a framework based on Auto Associative Kernel Regres-
sion (AAKR) and Sequential Probability Ratio Test (SPRT). AAKR was responsible for signal
reconstruction of each data point and SPRT was implemented for the anomaly detection task
by performing residuals analysis. All historical observations were collected in a matrix from
which the reconstructed signals were created. Initially the signals were calculated as a linear
combination of each training point. Gaussian kernels were used as weights. To modify them,
an alternative distance measure was implemented which gave less importance to instances with
significant difference between the observation and training point. An adequate reconstruction
of the signal was expected to have a small Mean Square Error (MSE). The anomaly detection
by SPRT was performed sequentially for each point. The assumption was that normal-state
residuals must be normally distributed with mean 0 and standard deviation σ whereas the
anomalous are to have non-zero mean and/or different standard deviation from normal-state.
The system’s condition was determined by two decision variables which act as lower and upper
boundaries for an index which was calculated directly from a sequence of residuals. In case
the lower boundary was reached, the normal-state hypothesis was accepted. For instances be-
tween the two boundaries, no conclusion can be reached, and, if the upper limit was exceeded,
anomalous state was accepted. As highlighted by the authors, for each point’s reconstruction
with AAKR all training points must be used and, as a result, this method is not suitable for
large-dimensional datasets.

In their next study (Brandsæter et al., 2017), the authors presented a modified version of
AAKR. The modifications applied to the method include a modified distance measure and a k-
means clustering based approach to enhance the algorithm’s performance when reconstructing
the signal. The first modification was the addition of a distance scaling factor (vector) to
the distance measure. Authors treated all signals except one as explanatory variables and the
one remaining as a response variable. This dictated the values inserted in the vector. As
for the clustering, it was selected to replace the training points in the reconstruction phase
with a predetermined number of clusters resulting in an increased computational speed while
maintaining similar results.

Brandsæter et al. (2019) published another updated version of their research. A signifi-
cant modification between Brandsæter et al. (2019) and Brandsæter et al. (2017) was the use
of clustering based techniques for the detection of anomalies rather than SPRT. Data were
characterized as anomalous if:

� they did not belong to a cluster,

� there was a great distance between the cluster centroid and the data point,

� they belonged to clusters with small population and density.

Centered and enclosed clusters surrounding sets were also explored. Centered sets are those
where the boundary is defined by the distance between the centroid and standard deviation,
adjusted by a scaling factor. Enclosed sets, surround all points within the cluster. Agglomerative
hierarchical clustering has been examined in parallel to k-means. The optimal number of clusters
was defined after an internal validation of the obtained results. This means that the goodness
of fit between each cluster and the raw data from which it is generated is examined. The
last addition was a reconstruction credibility estimator which was based on the principle that
reconstructions from regions of the space, where the query vector is closer to dense historical
observations of explanatory variables, were considered more credible. The dataset consisted
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of five parameters. To perform this methodology in large datasets, dimensionality reduction
techniques need to be implemented. To simulate anomalies, a change in a parameter was
forced. Results show increased Root Mean Square Error (RMSE) which indicates that SPRT
would have been able to capture the anomalies. Other performance metrics introduced include
Expected Detection Delay (EDD) and Average Run Length (ARL) that express the expected
time from when an anomaly is introduced until detected and the expected time points between
false alarms respectively. The presented methodology showed similar results to Brandsæter
et al. (2016) even with relatively small number of clusters.

Vanem & Brandsæter (2021) explored anomaly detection exclusively through unsupervised
learning models. A comparative analysis between five methods is presented. These included k-
means, mixture of Gaussian models, density based clustering, self organising maps, and support
vector machines. Dimension reduction was applied to the data through Principle Component
Analysis (PCA) resulting in a seven dimensional dataset from twenty five initially. Superior
results may be achieved through a combination of different methods in one algorithm.

In all of the previously presented studies, Brandsæter et al. (2016), Brandsæter et al. (2017),
Brandsæter et al. (2019), and Vanem & Brandsæter (2021), time stamp, sequence, and depen-
dencies within the data have been neglected. This operation is not recommended (Bergmeir
et al., 2018), eventhough it delivered adequate results in the examined cases.

Guanglei et al. (2019) developed an algorithm for engine monitoring purposes based on
Gaussian Mixture Models and Principle Component Analysis. The aim is that this system can
detect machinery faults in their early stages, while providing an easy to implement and robust
methodology. This study also took into consideration ship navigational data in order to connect
ship machinery performance to weather or sea conditions.

A SOM based approach was introduced by Raptodimos & Lazakis (2018). Data were clus-
tered by implementing a two level methodology. In first level, the SOM algorithm ran until
minimal changes were noticed in the resulting map. The objective of the second level was to
group neighboring clusters by calculating the distance between cluster centres and comparing
it with four predetermined values. If no neighbor was found in the first loop, then it would
search for neighbors in a larger area, defined by the second value etc. Low frequency data from
a single ME cylinder were used.

Cheliotis et al. (2022) developed a fault detection and diagnostic model. The methodology
was divided in data collection, data preparation, fault detection, and the diagnostic module.
Data preparation was handled by DBSCAN. Also, corrections to ISO and other standard con-
ditions were performed. An Expected Behaviour approach was used with multiple Polynomial
Ridge Regression models. The residuals were analysed by Exponentially Weighted Moving
Average (EWMA) and were characterized as normal if they lied between control levels. The
diagnostic module presented was a Bayesian Network. Conditional probability distribution of
occurrence of a fault given the clustering results are calculated based on the assumption of inde-
pendence. The model may be used to monitor system degradation and trends while identifying
the root cause of faults.

Velasco-Gallego & Lazakis (2022c) addressed the anomaly detection and diagnosis issue with
a Long Short-Term Memory-Based Variational Autoencoder Neural Network in parallel with
multi-level Otsu’s thresholding. Pre-processing mainly constituted of steady state identification
via transforming the input time series into an image using first-order Markov chain (Velasco-
Gallego & Lazakis, 2022d). De-noising was combined with dimension reduction using VAE, an
algorithm which learns the parameters’ probability distribution and the time dependencies in
the dataset. For anomaly detection, Nomalised Root Mean Square Error (NRMSE) matrix is
calculated and converted into an image with distinct regions. The thresholds are defined by
Otsu’s method resulting in classes within the image whose number is defined from Gaussian
mixture models. Since Otsu’s method could not handle multiple classes, it was decided to keep
one for normal and one for anomalous behaviour.
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In their next study (Velasco-Gallego & Lazakis, 2022a), the authors explored fault clas-
sification through time series imaging by first-order Markov chain and image analysis with
ResNetSOV2 (a type of deep residual network) and Convolutional Neural Networks (CNN).
Pre-processing was handled as in Velasco-Gallego & Lazakis (2022c) with the addition of data
imputation step as described in Velasco-Gallego & Lazakis (2022b) and data normalisation with
sliding window algorithm. Time series images are then generated with first-order Markov chain
by estimating the transition matrix through a stochastic process. To validate the results, also,
Gramian Angular Field algorithm was used to transform time series data into an image. The
size was set to 50x50 pixels to avoid the risk of over-fitting. Best results found when using the
Markov-CNN method. Authors suggest that ResNetSOV2 may not be suitable with this study.

Cai et al. (2017) developed a fault diagnosis model for a marine ME. The engine was divided
into four subsystems (fuel, lubrication, intake and exhaust, cooling) and diagnosis was performed
in each one separately. If all variables from each subsystem were used, their existing high
correlation would have lead to complexity and redundancy. Thus, a selection of variables has
been used in the algorithm. A Support Vector Machine (SVM) model handled the classification
part and the association between fault features was analysed by the association rule mining
algorithm.

A predictive anomaly detection tool was proposed by Qu et al. (2022). The method is based
on an Echo State Network (ESN) for prediction of future time series and a deep auto-encoder
for the anomaly detection of the predicted data. Prediction of one minute’s data is based on
the previous three minutes. This minute is used as input to the anomaly detection algorithm.
Promising results were found from the study when compared to other methodologies.

Another predictive anomaly detection tool has been developed by Makridis et al. (2020).
Time-series forecasting methods have been created in this study by utilizing LSTM neural net-
works, one class SVMs, Gradient Boosting Classification, and Weighted Permutation Entropy.
The anomaly detection part of the algorithms was handled by rules and threshold values on the
residuals (actual - predicted). The study aimed to detect faults in the crosshead bearings of
main engines.

Kim et al. (2020b) came up with an ensemble approach to the problem. After data pre-
processing, which included removal of out-of-range values, idle periods, 10-minute averaging
and dimension reduction due to high correlation between certain parameters, multiple anomaly
detectors were trained. The detectors were based on a modified k-nearest neighborhood method
(Local Outlier Factor). The ensemble process identified local regions derived from LOF, through
a method called Locally Selective Combination in Parallel Outlier Ensembles (LSCP). It con-
structs competitive ensemble anomaly detectors for each of these local regions within the dataset,
thus ensuring the provision of resilient predictions. Then the anomalous regions were clustered
with k-means resulting in four clusters. Authors suggest that an Explainable Artificial Intelli-
gence (EAI) framework should be included in future work to improve analysis outcomes.

The effect of using an EAI technique such as Shapley Additive Explanation (SHAP) is
examined in Kim et al. (2021). Pre-processing remained the same as in previous study (Kim
et al., 2020b). Then, anomalies were detected with the use of Isolation Forest algorithm. Similar
to Random Forest, this method consists of multiple binary decision trees. SHAP was applied
to the anomalous instances with a goal of measuring the contribution of each sensor to those.
Also a SHAP value was calculated as a metric of anomalousness. Hierarchical clustering was
applied on the SHAP values to capture similar anomalous behaviour.
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3 Theoretical Background

This section involves the exploration of fundamental theories and insights which are required
for the comprehension of methodologies employed in this study. The significance of engine
monitoring is initially discussed with focus paid on the the sub-systems that constitute the
marine engine. Then, necessary information regarding the machine learning models is presented.
The text is structured as follows: A thorough dissection of supervised, semi-supervised, and
unsupervised machine learning models is presented accompanied by an explanatory analysis
of how an anomaly detection model based on each one would operate. A survey of clustering
algorithms, encompassing their diverse typologies follows. Finally, the methodology of models
utilized in the study is demonstrated.

3.1 Importance of Engine Modeling

The two purposes of engine modeling are performance evaluation or prediction and in-
terpretation of experimental results and phenomena occurring in an engine (Kyrtatos, 1993).
Anomaly detection falls within the first category since the objective of such methodologies is
to enhance engine monitoring by understanding previous faults and taking necessary actions to
ensure operational reliability and good performance.

3.1.1 Sub-systems of Marine Engine

In that context, Kyrtatos (1993) presented the systems of a marine engine that may be
modeled for either of the two purposes.

� Combustion chamber

� Piston rings assembly

� Piston-Connecting rod assembly

� Intake & Exhaust system

� Turbocharger

� Fuel system

� Cooling system

� Lubrication system

� Exhaust valves control system

� Bearings

� Coupled auxiliary machinery

In the case of condition monitoring, the sub-systems are utilized in order to better monitor
the overall operation of complex systems, such as those found in marine engines. By dividing
the engine in systems, one may focus in the within-system phenomena and also monitor the
interactions between systems that influence the overall performance (NASA, 2007; Dimopoulos
et al., 2014).
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3.1.2 Categories of Maintenance

When it comes to maintenance types, there two main categories: Corrective and Preventive.
The last is further divided in Condition Based Maintenance and Predetermined Maintenance
(PM).

When corrective maintenance is employed, the philosophy is to replace parts only when
failure occurs. This type of maintenance is used in applications where sudden fails in equipment
do not affect the overall performance or risk the life of employees.

On the other hand, the philosophy behind preventive maintenance is to replace parts before
their failure points. In the case of predetermined maintenance, the replacement intervals are
standard and have been determined based on historical observations or by information gathered
through similar machinery. This maintenance strategy often leads to waste of resources, since
the parts may have remaining useful life by he time they are replaced. Predetermined mainte-
nance is associated with increased reliability. CBM comes to optimize the maintenance field by
continuously monitoring the equipment’s condition. By doing so, it can be decided what part
replacement actions need to by taken at every time instance based on current conditions. These
techniques can rely on continuous monitoring and analysis and/or inspection and testing. The
first option usually requires sensor data which are gathered and transmitted to databases where
they are later analyzed and decisions are taken (Jimenez et al., 2020).

Anomaly detection comes to fulfill the requirement for robust condition analysis. In the
particular study this is done through machine learning methods. Other solutions for the same
task in marine engines include thermodynamic models, similar to what Lamaris & Hountalas
(2010) and Dimopoulos et al. (2014) have presented.

3.2 Categories of Machine Learning Models

3.2.1 Supervised Learning

In the domain of supervised learning, an underlying presumption exists regarding the an-
ticipated outcome. The input data arrives with labels, and the primary objective of the model
involves either establishing a correspondence between the output and input labels, or delineat-
ing a continuous output when mapped against the input label. The former approach is termed
classification, while the latter is referred to as regression. The datasets crafted for this purpose
function as guides, steering the algorithms towards the completion of their designated tasks.
These datasets encompass feedback mechanisms that facilitate this process, thus giving rise to
the term ”Supervised Learning.”

Figure 1: Schematic representation of supervised learning algorithms. Source: Raj (2023).
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3.2.2 Unsupervised Learning

On the contrary, unsupervised learning operates within a context where data lacks labels.
Its goal revolves around revealing inherent patterns embedded within the data points of the
given dataset. In contrast to supervised learning, it lacks an integrated feedback mechanism,
thereby earning the label of unsupervised learning. Common unsupervised learning techniques
are clustering and dimensionality reduction.

Figure 2: Schematic representation of unsupervised learning algorithms. Source: Raj (2023).

3.2.3 Semi-supervised Learning

An intermediate position is occupied by semi-supervised learning, bridging the gap between
supervised and unsupervised paradigms. In this context, during the model’s training phase,
the training dataset comprises a limited amount of labeled data combined with an extensive
collection of unlabeled data. This approach can also be characterized as an instance of weak
supervision. Semi-supervised learning models may utilize supervised or unsupervised learning
techniques (Raj, 2023).

Figure 3: Schematic representation of semi-supervised learning algorithms. Source: Raj (2023).

3.2.4 Supervised, Unsupervised & Semi-supervised Anomaly Detection

Previous researchers have utilized all three learning approaches to construct anomaly de-
tection algorithms in several application fields. The following apply when referring to the data
required in each learning type:

Supervised learning applications involves possessing a training dataset with labeled instances
for both normal and anomalous behaviors. Typically, prognostic models are constructed for both
normal and anomalous behaviors, and unseen data are subsequently assigned into one of these
categories.
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In unsupervised anomaly detection, the training dataset lacks labeling, assuming implicitly
that instances demonstrating normal behavior significantly outnumber anomalies in the test
data. Should this assumption prove incorrect, such techniques tend to experience an elevated
false alarm rate.

In semi-supervised anomaly detection, the training dataset exclusively consists of normal
data instances. A common methodology for anomaly detection is to establish a model specif-
ically for the category associated with normal behavior, subsequently employing this model
to identify anomalies within the test data. Since semi-supervised techniques do not mandate
anomaly class labels, they hold broader applicability compared to their supervised counterparts
(Chandola et al., 2009).

3.3 Taxonomy of Clustering Algorithms

The main parameters responsible for different types of clustering algorithms are initialization
conditions and measures of performance (Bindra & Mishra, 2017). An acceptable classification
of clustering methods is:

� Hierarchical clustering

� Partitional clustering

� Density based clustering

This categorization stems from a multitude of factors, and certain algorithms have emerged to
bridge the gap between these distinct approaches. A plethora of algorithms has been developed
to address diverse challenges across various domains. Yet, despite this surge in algorithmic
solutions, a universally applicable approach that comprehensively resolves all prevalent cluster-
ing problems remains elusive. Constructing an integrated framework (clustering) at an expert
level has proven to be a difficult task, resulting in diverse and specialized algorithms (Bindra &
Mishra, 2017; Rodriguez et al., 2019).

3.3.1 Hierarchical Clustering

These types of clustering algorithms generate a sequence of progressively nested partitions,
or clusters. This sequence can be visualized as a tree, commonly referred to as a cluster dendro-
gram, offering a hierarchical depiction of clusters. This hierarchical structure (tree) provides a
view of the data at each level of abstraction. Each data point residing within a leaf node forms
its own cluster, while the root encompasses all points within a singular cluster. By segmenting
the dendrogram at different levels, meaningful information can be extracted. The hierarchical
approach to clustering is categorized into agglomerative, and divisive classes. The majority of
hierarchical clustering algorithms have been primarily obtained using agglomerative methods.

Agglomerative clustering techniques operate with a bottom-up approach, where the merg-
ing of the most similar cluster pair is initiated by treating each of the K points as separate
clusters. This iterative procedure continues until all data points become members of a unified
cluster. Variations of agglomerative algorithms abound, differing mainly in how the resolution
of similarity discrepancies between existing clusters and merged clusters is adjusted. Numerous
agglomerative algorithms are available, contingent upon the distance measurement between two
clusters (Bindra & Mishra, 2017).

3.3.2 Partitional Clustering

Partitional clustering diverges significantly from the hierarchical approach, which progres-
sively generates clusters through iterative mergers or divisions. Partitional clustering, in con-
trast, assigns a collection of objects into k clusters without establishing a hierarchical arrange-
ment. Partitional algorithms are the preferred choice for handling extensive datasets due to
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their relatively modest computational demands. However, in terms of clustering coherence, this
method proves less effective than the agglomerative approach. These algorithms deduce cluster
shapes as hyper-ellipsoidal and essentially experiment with segmenting data into a predeter-
mined number of clusters to optimize a given criterion through data partitioning.

Centroid-based techniques allocate certain points to clusters in a manner that minimizes the
mean squared distance between points and the centroid of the designated cluster. The sum of
squared error function reigns supreme as the predominant criterion in the partitional approach,
serving as a measure of within-cluster variance. Among the most popular partitional clustering
algorithms that employ the sum of squared error function is K-Means and ISODATA algorithms
(Bindra & Mishra, 2017; Rodriguez et al., 2019).

3.3.3 Density Based Clustering

This category of clustering algorithms is based on the concept of the neighborhood. Clus-
ters are identified by ensuring that each given N-neighborhood (number of points that form a
neighborhood), with a specified N > 0, contains a minimum number of points, signifying that
the density within the N-neighborhood of points must surpass an initial criterion (Ester et al.,
1996). In this context, proximity between objects is not the defining factor; rather, the primary
focus rests on assessing local density. A cluster is perceived as an assemblage of data points
dispersed throughout the data space.

Within the domain of density-based clustering, the presence of contiguous regions featuring
low object density is pivotal, and the measurement of distance between them is conducted. Ob-
jects situated within these regions of low density contribute to outliers or noise. These methods
exhibit heightened resilience to noise and possess the capacity to uncover clusters characterized
by non-convex shapes. Representative methods of density based clustering include DBSCAN
and OPTICS (Ordering Points To Identify the Clustering Structure) (Bindra & Mishra, 2017).

3.4 Characteristics of Clustering Algorithms

Bindra & Mishra (2017) consider four characteristics that an efficient clustering algorithm
should have in order to solve its assigned problem. These include scalability, the necessity for
user’s domain knowledge, the ability to discover arbitrary shaped clusters, and the presence of
similarity and dissimilarity metrics.

When referring to scalability, the algorithm’s objective is to perform with large amount of
data within a respectable time.

Another issue is the requirement for prior domain knowledge. Many algorithms require a
predefined number of clusters or other parameters as input. However, the user may not be in a
position to estimate these parameters beforehand. This results in performance degradation of
the algorithms due to the dependence on user input.

Discovering arbitrary shaped clusters presents a formidable challenge, particularly in the
identification of clusters exhibiting diverse shapes and sizes. Certain algorithms, such as K-
means, fail to do that. Data attributes might have different dimensions, and an effective clus-
tering algorithm must possess the capacity to cluster this type of data. Density-based algorithms
like DBSCAN, employing the concept of Minpts, adapt to this challenge. However, a multitude
of algorithms based on either centroid or medoid-based methodologies struggle to meet the two
clustering criteria of developing varied clusters and converging concave shaped clusters.

Similarity and dissimilarity metrics are measures of quantification the similarity between
two objects. A capable algorithm should be able to merge two similar clusters and segregate
objects that display dissimilarity, even if that was not expected initially.
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3.5 Theoretical Part of Employed Methodologies

An exploration of the methodologies employed to create the anomaly detection models is
conducted. The mathematics behind each algorithm and the way it works are examined to
ensure proper understanding of how these algorithms will be transformed into anomaly detection
models. Furthermore, metrics of finding the optimal parameter combination, advantages and
disadvantages of each method are presented along with a simple example of clustering in a
sample 2-D dataset.

3.5.1 K-Means Clustering

K-Means is considered a common method for clustering (Makwana et al., 2013). The algo-
rithm was developed by Lloyd (1957) and the process may be summarized by the pseudocode of
Figure 4. The technique aims to group similar points into distinct clusters. K-Means requires
the number of clusters, K, to be specified before the algorithm’s initialization. It operates
by assigning data points to their nearest cluster centroid and adjusting the centroid positions
based on the assigned points in each iteration. The algorithm strives to minimize the within-
cluster variance and maximize the separation between clusters, thus optimizing the clustering
outcome. Given the algorithm’s nature, the random initialization of centroids at the beginning
may lead to different clusters in every run, giving overall non consistent results (Riveiro et al.,
2018; Farahnakian et al., 2023). Multiple methods and criteria have been developed in order to
establish the optimal number of clusters. Other than the criteria, this operation also requires
domain knowledge to evaluate the results (Makwana et al., 2013). The algorithm’s objective
function is formulated as:

J =
m∑
i=1

K∑
k=1

wik · ||xi – μk||
2

(1)

where wik = 1 for data point xi if it belongs to cluster k, otherwise wik = 0. μk is defined as
the centroid of xi’s cluster.

K-Means employs an EM approach to tackle the problem which is considered to be min-
imization in two-parts. Initially J is minimized with respect to (w.r.t.) wik and μk is fixed.
Technically, cluster assignments get updated (E-step) after differentiating J w.r.t. wik. In the
second phase, J is minimized w.r.t. μk and wik remains fixed. The M-step comprises of dif-
ferentiating J w.r.t. μk and recomputing the centroids after cluster assignment. The E-step is
formulated as:

∂J

∂wik
=

m∑
i=1

K∑
k=1

||xi – μk||
2

=⇒ wik =

{
1 ifk = argminj||xi – μk||

2

0 otherwise

(2)

The M-step may be formulated as:

∂J

∂μk
= 2 ·

m∑
i=1

wik · (xi – μk) = 0

=⇒ μk =

∑m
i=1wik · xi∑m
i=1wik

(3)
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Figure 4: K-Means clustering algorithm pseudocode. Source: Jin & Han (2010).

As previously mentioned, several methods have been proposed to determine the optimal
number of clusters in K-Means. Gupta et al. (2018) found that more than 30 methods exist.
The two principles based on which these are created may be summarized in the two following
points.

� Compactness: Focus is given on dense and compact clusters

� Separation: Different clusters to be well separated in space.

The examined methods in this study are summarized below.

Elbow Method
The elbow is considered to be the oldest method of determining the number of clusters.

The idea is described as repeating the K-Means algorithm with different number of clusters and
then plot the Sum of Squared Error (SSE) of distances over the number of clusters. The elbow
approach is based on the premise that the explained variation varies quickly for a few clusters,
then it slows down, forming a visible elbow in the curve. The amount of clusters we may employ
for our clustering process is represented by the elbow point (Yuan & Yang, 2019). Sometimes,
it may be difficult to choose the elbow because no clear elbow or multiple elbows may exist in
a particular dataset.

Silhouette Coefficient
The silhouette is mathematically expressed as follows:

S(i) =
b(i) – a(i)

max {a(i), b(i)}
(4)

where b(i) is the smallest average distance of point i to all points in any other cluster and a(i)
is the average distance of i from all other points in its cluster.

The silhouette was introduced in Kaufman & Rousseeuw (1990). The rationale behind this
method is that if only 3 clusters A,B and C are in the dataset and i belongs to cluster C, then
b(i) is calculated by measuring the average distance of i from every point in cluster A, the
average distance of i from every point in cluster B and taking the smallest resulting value. The
Silhouette Coefficient for the dataset is the mean of the Silhouette Coefficients of individual
points. The value lies between -1 and 1. If the value is zero, it means that the point may be
assigned also to another cluster. If the value is S(i) → 1, the entity is well clustered whereas
if S(i) → –1 it is not assigned to the correct cluster. The average coefficient of all data points

12



3.5 Theoretical Part of Employed Methodologies 3 THEORETICAL BACKGROUND

is the Silhouette of the dataset. When comparing different number of clusters, the superior is
this with the highest coefficient Makwana et al. (2013).

Calinski-Harabasz Index
The Calinski-Harabasz index was developed based on the principle that good clusters are

those that are both highly compact and well-separated from one another. These two principles
are expressed through the index which divides the variance of the sums of squares of the distances
of individual entities to their cluster center by the sum of squares of the distance between the
cluster centers. The selected number of clusters is this with the maximum index value (Calinski
& Harabasz, 1974). The CH index is mathematically expressed as follows.

CHk =
BCSM

k – 1
· n – k

WCSM
(5)

with k being the number of clusters, n the number of points, BCSM: Between Cluster Scat-
ter Matrix, calculates separation between clusters, WCSM: Within Cluster Scatter Matrix,
calculates compactness within clusters.

Last Leap & Last Major Leap
Most of the previous examined metric required a visual inspection of the results before

confirming the value of k. (Gupta et al., 2018) proposed two methods of identifying the number
of ”natural” clusters of a dataset: the Last Leap (LL) and the Last Major Leap (LML). The
first estimates the number that corresponds to well-separated clusters whereas the second aims
to determine equal clusters in terms of size. An equal number between both criteria satisfies
compactness and separation of clusters.

The LL criterion is expressed by the following index:

LL(k) =
dk – dk–1

dk

kLL = argmax LL(k)

(6)

where dk = mini ̸=j||vi – vj||
2 is the minimum distance between cluster centers.

The LML method defines the optimal number of clusters kLML through the following oper-
ation:

ILML(k) =

{
1 if12dk > maxl=k+1,...,kmax dl

0 otherwise
(7)

K = {k|ILML == 1} and (8)

kLML =

{
max K if K ̸= 0

1 otherwise
(9)

Advantages & Disadvantages of K-Means
As with every method, several advantages and disadvantages of K-Means have been found.

According to Google course for developers (Google, 2022), the significant pros of K-Means are
its ability to scale to large data sets due to its efficiency, the way that it adapts to new data, and
the simplicity to implement. On the contrary, the disadvantages of this method are summarized
in the manual selection of k, the initialization of centroids, and that clusters often may contain
outliers or that they can be assigned to a different outlier-only cluster.
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Simple Example of K-Means Implementation
A 2-dimensional case is considered as an example. It is know from the beginning of the

analysis that belong to three clusters. First, all methods of determining the number of clusters
are examined and the respective graphs are developed.

In Figure 5 the elbow is visible at k = 3, so that is the optimal number found by this
method. Similarly, in Figure 6 (Silhouette Coefficient), Figure 7 (Calinski-Harabasz Index), the
maximum is observed at k = 3. Finally, in Figure 8 the minimum distance between cluster
centres, dk, is plotted against the number of clusters. Since LL and LML identify leaps in dk to
determine the number of clusters and, as seen in the graph, the maximum distance is recorded
at k = 3, this is the optimal number of clusters.

Figure 5: Determination of number of clusters through the elbow method.

Figure 6: Visual determination of number of clusters through the silhouette coefficient with K-Means.

As for the clustering itself, the result can be observed in Figure 9. This example featured
a dataset of three well separated clusters. Each cluster is plotted in a different color and the
centroids are seen in black. The usual clusters produced by K-Means have circular (2-D) or
hyper-spherical shape (in higher dimensional spaces). This can make K-Means unsuitable for
certain types of data sets.
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Figure 7: Visual determination of number of clusters through the Calinski-Harabasz index.

Figure 8: Visual inspection of minimum distance between cluster centroids for different numbers of k for LL and
LML metrics.

Another drawback of the use of K-Means, as mentioned previously, is the handling of outliers.
Since the method cannot classify points as noise or outliers, like DBSCAN, these are enclosed
into clusters and are either located far away of the centroid, or in completely different cluster.
In the first case, these points have the ability to move the centroid in a non representative
position. Few such points can be seen in all clusters of Figure 9 although their ability to move
the centroid was minimal.

3.5.2 Gaussian Mixture Models

The assumption behind GMM may be thought as that each cluster is generated from a
mixture of Gaussian distributions. k is the predetermined number of desired clusters. GMM is
a probabilistic model which is capable of capturing complex patterns in the data and assign them
to a cluster based on a probability. The clusters produced by this method take hyper-ellipsoid
shapes and have various orientations inside the hyper-space due to the Gaussian distributions
(Vanem & Brandsæter, 2021). Similarly to K-Means, an expectation maximization approach is
used.

The first step of the algorithm is initialization of parameters for the Gaussian components.
These include mean (μk), covariance (Σk), and mixing coefficient (πk) of each of the k com-
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Figure 9: Representation of clustering with K-Means in sample dataset.

ponents. Additionally,
∑

k πk = 1. A common approach is to initialize the means through
K-Means. The density function is formulated as:

f(x) =
K∑

k=1

πk · N (x; μk,Σk) (10)

Following the initiation step, in the E (Expectation) step the probabilities of each data point
belonging to a particular component are calculated. Let i be the data-point index and l the
component that it belongs the probability is calculated as:

pil =
πl · N (xi; μi,Σl)∑K

k=1 πk · N (x; μk,Σk)
(11)

In the M-step, or the Maximization step, the algorithm updates the parameters of each
component based on the responsibilities calculated in the E-step. This iterative process refines
the model parameters. Specifically, the M-step involves updating the mixing coefficients (π),
means (μ), and covariances (Σ) as follows:

πl =
1

N

N∑
i=1

pil

μl =

∑N
i=1 pil · xi∑N
i=1 pil

Σl =

∑N
i=1 pil · (xi – μl) · (xi – μl)T∑N

i=1 pil

(12)

The algorithm iterates between E and M steps until convergence is achieved. Convergence
can be determined using various methods, such as monitoring changes in the log-likelihood
function or assessing the stability of the model parameters across iterations. Once the model
parameters stabilize or the maximum number of iterations is reached, the EM algorithm stops.

In order to find the optimal number of Gaussian components or clusters the model is ran
repeatedly for several k until is found. The silhouette coefficient (has been discussed previously),
the Bayesian Information Criterion (BIC), and the Akaike Information Criterion (AIC) are
chosen as metrics to evaluate the different models. Another metric named ”Integrated Complete
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Likelihood”, which is similar to BIC, has also been proposed by Vanem & Brandsæter (2021)
but is not used in this study. Hence, the concepts behind BIC and AIC are analyzed in the
following paragraphs.

Bayesian Information Criterion
BIC was developed as a metric for model selection. Models with lower score are preferred.

This criterion works under the assumption that adding parameters usually increases maximum
likelihood but may possibly result in over-fitting. Thus, a penalty term is introduced which
increases together with the number of parameters in the model (Schwarz, 1978). BIC is math-
ematically defined as:

BIC = k · ln(n) – 2 · ln(L̂) (13)

where:

� L̂: the maximized value of the likelihood value of the model

� n: the number of data-points

� k: the number of parameters estimated in the model

Akaike Information Criterion
AIC is a similar metric to BIC. Presented in Akaike (1973) it estimates the relative amount

of information lost by a given model: the less information a model loses, the higher the quality
of that model. The criterion rewards goodness of fit (as assessed by the likelihood function), but
introduces a penalty term that is an increasing function of the number of estimated parameters.
The penalty discourages over-fitting similarly to BIC. AIC is mathematically formulated as:

AIC = 2 · k – 2 · ln(L̂) (14)

where:

� L̂: the maximized value of the likelihood value of the model

� k: the number of parameters estimated in the model

Advantages & Disadvantages of GMM
GMMs have notable strengths in clustering. One strength is that they provide a probabilistic

estimate of all data-points with each cluster. This is useful with ambiguous data points that
fall at the border of two clusters. They produce non-spherical clusters with variable cluster
shapes and sizes. Also, they are less sensitive to scaling and large datasets. However, GMMs
struggle with non-normally distributed variables. Due to the Gaussian distribution assumption,
the results are elliptical clusters. Adequate data per cluster is crucial for good clustering results.
Also, the number of clusters needs to be specified in advance. GMM are sensitive to outliers and
initialization conditions which results to relatively slower convergence rates than other methods
(Ellis, 2023; Gao, 2012).

Simple Example of GMM Implementation
The same dataset as in K-Means is considered to showcase the abilities of GMM in this

example. All methods need to identify the three clusters in the dataset. As seen in Figure 10,
Figure 11, Figure 12 this is true. These figures verify the optimal number of clusters through
the metrics and visually. The three clusters are clearly visible in the 2-D space. The clustering
result is identical to K-Means, which is expected.
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Figure 10: Visual determination of number of clusters through BIC & AIC scores with GMM.

Figure 11: Visual determination of number of clusters through the silhouette coefficient with GMM.

Figure 12: Representation of clustering with GMM in sample dataset.
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3.5.3 Density-Based Spatial Clustering of Applications with Noise

DBSCAN, as the name suggests, is a density based clustering algorithm. Originally proposed
by Ester et al. (1996), operates by considering regions of high data density as potential clusters,
while identifying points in sparse areas as noise. This algorithm offers a robust solution for
clustering spatial data, capable of discovering clusters of arbitrary shape and handling outliers
effectively.

The algorithm of DBSCAN requires two critical components to be defined by the user: ε and
MinPts. The size of neighborhood (ε) defines the maximum distance within which points are
considered neighbors. The algorithm makes a distinction between core points, border points,
and noise. Core points are those which have at least MinPts neighbors at distance less or
equal than ε. Points categorized as bordering are within ε from a core point but have less
than MinPts neighbors within the same distance. As noise are considered these points whose
distance to their closest neighbor is greater than ε. Therefore, each cluster must have one or
more boundary points and at least one core point. Results produced by DBSCAN have irregular
hyper-shapes which differ from the more standardized hyper-spheres or ellipsoids produced by
K-Means and GMM.

Figure 13: DBSCAN algorithm pseudocode. Source: Schubert et al. (2017).

Parameter Selection & Metrics of Evaluation
Determining these two parameters of the method is not straightforward and in most scenarios

domain knowledge is required (Vanem & Brandsæter, 2021; Schubert et al., 2017). The approach
developed in this study predicted ε through the value of MinPts (Rahmah & Sitanggang, 2016).

The first step is to give potential values for MinPts. An initial approach of than value is
given as MinPts = 2 · Dimensions (Ester et al., 1996; Sander & Ester, 1998). Based on that,
more potential values are added, resulting in an array of MinPts. The next step is to find
the optimal value of ε for each MinPts. k Nearest Neighbors (k-NN) is used for this task,
an algorithm capable of identifying the k points closest to each point, where k is predefined
by the user. Additionally, the distances of k closest points are also returned. Based on that,
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k = MinPts is used. The mean distance of each point to its neighbors is calculated and then
sorted in ascending order and plotted. In that k-distance graph, the optimal value of ε is at the
point of maximum curvature Figure 14.

Subsequently, the dataset is clustered using DBSCAN with these hyper-parameter values. In
each iteration, the silhouette coefficient is calculated as a metric of evaluation. The results are
gathered at the end of this process. In order to find the best combination of hyper-parameters
the following approach has been developed.

Each iteration of the algorithm is ranked based on the following criteria:

� Bigger Silhouette Coefficient

� Lowest rank of noise ”cluster” in terms of points size

� Lowest number of noise points

� Highest number of points in clusters with more than 0.5% · (Total Data) points.

Following each iteration of the algorithm, the choice of hyper-parameters is ranked based on
these four metrics. A final score is calculated based on the average of the positions each
hyper-parameter combination got. The final parameter selection is based on the higher scoring
combination.

Advantages & Disadvantages of DBSCAN
According to Gupta (2023), advantages of this method include the ability to cluster data

of arbitrary shapes in comparison to K-Means which produces more spherical clusters. The
robustness to noise and the ability to exclude them from clusters is also highlighted. Also, not
requiring the number of clusters in advance is considered positive. Cons of DBSCAN include the
algorithm’s sensitivity to parameter selection, its ineffectiveness on datasets of varying density
distributions and high computational cost.

Simple Example of DBSCAN Implementation
The same case as in K-Means is considered to demonstrate the ability of DBSCAN. It is

noted that the method can cluster complex shaped data achieving good performance (Ester
et al., 1996). After defining the optimum number of MinPts with the previously described
scoring method, the point of maximum curvature of the k-distance graph is found through a
computational method. The optimal value of MinPts in that example is found to be 21, which
is significantly more than what Ester et al. (1996) suggested. The graph for the particular
example is shown in Figure 14.

The algorithm managed to identify the three clusters. Points identified as noise are labeled
as cluster -1. These points can also be treated as anomalies after further testing (Vanem &
Brandsæter, 2021).

3.5.4 Self Organising Maps

Self Organising Maps are an unsupervised learning technique. They are a type of ANN which
has a feed-forward structure with a single computational layer. SOMs are based on competitive
learning and topological organization principles, and they are commonly used for tasks like
clustering, visualization, and feature extraction (Akinduko & Mirkes, 2012). The algorithm was
initially proposed in Kohonen (1982) and its methodology is explained in the text that follows.

An SOM consists of a grid of neurons, usually in 1D or 2D formats (Akinduko & Mirkes,
2012). Each neuron in the grid is associated with a weight vector of the same dimensionality as
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Figure 14: Average k-NN distance graph to specify optimal value of ε in DBSCAN.

Figure 15: Representation of clustering with DBSCAN in sample dataset.

the input data. The goal of the SOM is to map the high-dimensional input data onto this grid
in a meaningful way (Günter & Bunke, 2002).

The number of neurons is initially estimated as a function of the total observations (n). In
a 1D map, is equal to M = round(5 ·

√
n). In a 2-dimensional example, keeping in mind that

the required neuron number is still equal to M, the grid size should be
√
M×

√
M (Tian et al.,

2014).
The training process involves iteratively adjusting the weights of the neurons to match the

input data distribution. The key idea is that neurons that are spatially close to each other in
the grid will respond similarly to similar input patterns. During that training phase, the SOM
adapts its weights to the input data distribution in such a way that nearby neurons respond to
similar inputs.

The training process, also shown in Figure 17, runs by iterating through a few steps. First,
the map’s neurons weights are initialized randomly or via a predetermined method, such as
through Principal Components. By utilizing that methodology one may ensure faster results
(Akinduko & Mirkes, 2012). Secondly, a data point from the training dataset is selected and
the distance between it all the neurons is calculated (usually Euclidean distance is used). The
neuron’s weight vector which was found to be the closest to the data point is updated. This
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Figure 16: Schematic representation of a SOM. Source: Alia et al. (2020).

process moves the winning neuron and its closest neurons towards that data point. This winning
neuron is called Best Matching Unit (BMU). The BMU’s weights are updated significantly more
than those of the other neurons. The learning rate and the neighborhood size are adjusted
over time, by being gradually decreasing as training progresses. These steps are repeated for
a predefined number of iterations or until convergence (Kohonen, 1982; Akinduko & Mirkes,
2012; Günter & Bunke, 2002).

The weight of neuron j is updated based on input x with i dimensions and learning rate η
by the following formula:

wji
new = wji

old + η · hj∗j · (xi – wji
old) (15)

with j∗ being the BMU and j another neuron.
hj∗j is the neighborhood function centered at the BMU and j. If it is Gaussian it is expressed
as:

hj∗j = exp

(
d(j∗, j)2

2 · radius2

)
(16)

d(j∗, j) is the distance between neurons j∗ and j, and radius is the current neighborhood radius.

Figure 17: SOM algorithm pseudocode. Source: Günter & Bunke (2002).

An additional input parameter required to train a SOM is the number of epochs or num-
ber of iterations that the algorithm will go through during training. One may monitor the
improvements of the map in the training process through two metrics: Quantization Error and
Topographic Error.
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Quantization Error
The quantization error refers to the discrepancy between a data point and its corresponding

BMU. It measures how well each data point is represented by its nearest neuron on the map.
The metric is calculated by using the Euclidean norm. x is the input vector and w is the weight
vector of the BMU.

Q = ||x – w|| (17)

The calculation of quantization error involves finding the mean distance between the sample
vectors and the cluster centroids that represent them. In the context of the Self-Organizing
Map (SOM), these cluster centroids correspond to the weight vectors. A lower quantization
error indicates that the model is doing a good job of representing data points close to their
respective BMUs. This may be simply achieved by increasing the number of nodes although
this may lead to distortion of the map’s topology (Pölzlbauer, 2004).

Topographic Error
The topographic error measures the extent to which the topology of the original data is

preserved on the grid. It quantifies the cases where the BMUs of neighboring input vectors are
not mapped to neighboring neurons on the grid. It reflects how well are the spatial relationships
maintained between data points. This process unfolds in the following manner: Across all data
samples, the best-matching unit and the second-best-matching unit are identified. When these
units are not neighboring on the map lattice, it is deemed an inconsistency. The cumulative
inconsistency is subsequently adjusted to fit within a scale of 0 to 1, where 0 signifies impeccable
preservation of topology.

The topographic error is mathematically expressed as:

T =
Number of BMUswithout topographic neighbors

Total number of data points
(18)

Similarly to the quantization error, with a lower topographic error is shown that the SOM
is maintaining the neighbor relationships between BMUs that were close in the original high-
dimensional space (Pölzlbauer, 2004).

Advantages & Disadvantages of SOM
The most advantageous aspect of SOMs lies in their simplicity and ease of comprehension.

Their operational logic is straightforward: proximity and ”connection” within the map indicate
similarity, while gaps represent dissimilarity. Furthermore, they exhibit remarkable efficacy.
Demonstrably adept at data classification, they can also be easily evaluated for their quality.
This allows for the quantification of map effectiveness and the strength of object similarities.

A notable challenge associated with SOM is acquiring suitable data. Generating a map
requires having values for every dimension of each sample element. Another drawback of SOM
is the difficulty in joining similar groups of data together, resulting in two or more clusters for
almost identical points. The last disadvantage is that SOM are considered to be computationally
expensive as a methodology (Kaski, 1997).

Simple Example of SOM Implementation
Similarly to what previously presented, the same example is considered to demonstrate how

SOMs work. A 2D 2 × 2 map is employed even though the dataset contains three distinct
clusters. The selection of the particular map predicts that the algorithm might detect four
clusters instead of three.

In this example it is chosen to iterate thirty times through the dataset to train the algorithm.
By monitoring the plot which contains the quantization and topographic errors, it is clear that
this number of iterations results in good results. As shown in Figure 18, the quantization
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Figure 18: SOM algorithm quantization and topographic errors.

Figure 19: Representation of clustering with SOM in sample dataset. Clusters are named after their assigned
neurons position in the map. Black points represent the four neurons.

error decreases and is equal to less than half of its original value at the 30th iteration. On
the contrary, the topographic error is equal to zero at all iterations and does not provide
information. this occurs due to the well separated clusters that, result in an almost perfect map
without topographic errors (Cabanes & Bennani, 2010). Additionally the low dimensionality of
the dataset might also be responsible for that.

In Figure 19 can be seen that the SOM algorithm managed to detect the three clusters
without utilizing all four neurons. This is a proof of the method’s capabilities. If a 3 × 1 map
was used instead, the expected result would have been similar to what shown in Figure 19 but
without the 4th neuron.

When taking into account the neuron positions, it is visible that they shape a cluster around
them. In the case of (0, 0) and (1, 0) the neurons are located at the border point of these clusters.
Although nodes are not equivalent to the cluster centroids of K-Means, in an ideal scenario they
should be be position close to the centroid. In this particular case, their resulting positions after
30 training iterations are moderately out of place. Potential reasons include wrong estimation
of learning rate or neighborhood radius, or excessive training that led to over-fitting.
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4 Methodology

The proposed framework aims to detect operational anomalies from a vessel’s ME in an
efficient manner. The study employs several unsupervised learning techniques to conduct the
anomaly detection task. This study’s methodology can be summarized in two steps. Data
preparation is the first major step. After that, the dataset is ready to be used as input in the
anomaly detection models, which is the second step. Several models are examined utilizing
methods such as K-Means clustering, DBSCAN, clustering with GMM, and SOMs. All of
the implemented methods theoretical framework and background are described in the previous
section.

Another step which is performed and refers mostly to the discussion section of the thesis
is the simulation of anomalies. This is performed in order to verify the performance of the
anomaly detection algorithms in almost real operational scenarios.

The structure of this section is as follows: presentation of all methodologies relevant to the
data preparation phase followed by a description of the way ML are transformed to anomaly de-
tection models. Then, follows a section which concerns anomalies typology and the methodology
based on which anomalies will be simulated.

Figure 20: Graphical representation of proposed methodology.

4.1 Data Preparation

This section deals with the initial treatment of the data up until the point when they are
ready to be imputed into the model. The purpose is to convert them from raw form in one
which extracts the most out of them. Øyvind Øksnes Dalheim & Steen (2020b) consider the
extensively used term ”data pre-processing” to be highly related with ”data preparation”. Data
preparation encompasses a broader set of activities that include data pre-processing but also
extends beyond it. It involves the entire process of collecting, cleaning, transforming, and
organizing the data to make it ready for analysis.

Several people have tried organize data preparation in steps. Pyle (1999, p. 112) considered
eight which are listed below. Not all of them apply to the current study, since the source is
written based on data preparation for a broader field of applications.

1. Accessing the data

2. Auditing the data

3. Enhancing and enriching the data
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4. Looking for sampling bias

5. Determining data structure

6. Building the Prepared Information Environment

7. Surveying the data

8. Modeling the data

Masmoudi et al. (2021) summarized the process into three steps, data cleaning, reduction, and
normalization.

This study follows the approach of Masmoudi et al. (2021) since both are in a similar field of
application. Some additions and modifications to that framework are presented and described
in the text that follows. Data preparation is structured in seven steps. The first step is identical
to what Masmoudi et al. (2021) considered. The second is data de-noising and the third involves
steady state identification of critical parameters. The fourth step is data normalization. At this
point, the features of the dataset are categorized in subsystems (fifth step) and dimensionality
reduction (sixth step) is performed within each subsystem. The seventh and final step is the
train-test data split.

4.1.1 Data Cleaning

In this step the raw dataset goes through the first reduction process. Issues being addressed
are the removal of unwanted, duplicate features, and abnormal values. In this context, ”abnor-
mal” refers to the existence of values in parameters that are physically impossible to occur or
contradictory (such as negative values in Shaft Power).

The decision to implement an imputation algorithm may be examined by considering the
quantity and frequency of missing values (NaN). The need to deploy such algorithm comes after
assessing their occurrence patterns. An imputation method previously used in the maritime
sector is with the use of ANN (Lazakis et al., 2018; Martinez-Luengo et al., 2019). Outside
the sector, several methods have been utilized, such us MSE, Support Vector Regression, and
Simple Linear Regression (Richman et al., 2009).

4.1.2 Data De-noising

This step is performed in order to eliminate noise of certain sensor signals. Several methods
are examined to handle this task. Noise reduction algorithms are classified in three categories
based on how they treat the data to reach the desired outcome.

� Filtering: Estimation of value at a given point, t, by utilizing the data preceding t.

� Smoothing: Estimation of value at point t by incorporating both preceding and subsequent
data.

� Prediction: Signal value prediction at point t+1 or beyond by observing the data prior to
t.

Smoothing may yield superior results in terms of de-noising, it necessitates access to past
and future samples of the signal, which may not always be feasible. Smoothing improves data
quality by replacing the noisy and irregular signal with a smoothed version that likely provides
a more accurate description of the observed phenomena (Pawel & Smyk, 2018).

Three smoothing and one prediction method that have previously been examined in similar
applications are explored in order to conclude which fits best to the data. These include:

1. Simple Moving Average, used by Pawel & Smyk (2018).
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2. Exponentially Weighted Moving Average (prediction), used by Velasco-Gallego & Lazakis
(2022d).

3. Savitzky-Golay Filter, used by Wen et al. (2023); Pawel & Smyk (2018).

4. Gaussian Filter, used by Pawel & Smyk (2018).

Simple Moving Average
Simple moving average is the simplest way to smooth data containing noise. A centered

moving average is examined in this case, meaning that the average will be calculated at each
window’s center. Mathematically this is expressed as:

SMA(i) =
1

w
·

i+w
2∑

j=i–w
2

xj (19)

where,

� w: the moving window size

� xj: average of the j-th window

Exponentially Weighted Moving Average
The EWMA is a prediction based method used to de-noise the dataset. It gives more weight

to recent observations while exponentially decreasing the weights of older observations. The
EWMA at a given time point is calculated as a weighted sum of the current value and the pre-
viously calculated EWMA, with weights determined by a smoothing factor. A higher smoothing
factor gives more emphasis to the current observations, making EWMA more responsive. Math-
ematically, it is expressed as follows:

EWMA(t) = α · x(t) + (1 – α) · EWMA(t – 1) (20)

Where,

� α: smoothing factor, 0<α<1

� x(t): current value at time t

Savitzky-Golay Filter
Savitzky & Golay (1964) developed a filter which smooths data by applying a polynomial

function to a window of points. The approach is based on least-squares. This aims to minimize
noise and keep the important features in the smoothed representation. To apply the filter,
window size and polynomial order must be given.

SAVGOL(i) =

n∑
k=0

aki
k (21)

Where,

� n: polynomial degree

� a: vector of coefficients which is calculated by minimizing the error

E =
M∑

i=–M

(SAVGOL(i) – xi)
2 (22)
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Figure 21: Examined Smoothing Techniques on Sample Dataset.

Gaussian Filtering
This smoothing algorithm is based on the normal/Gaussian distribution. The input data are

convoluted with a Gaussian kernel to achieve smoothing to a level determined by the standard
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deviation of the distribution.

f(x|μ,σ2) = 1√
2πσ2

· e–
(x–μ)2

2σ2 (23)

Where,

� σ: standard deviation

� μ: average

Figure 22: Impact of parameters σ and μ on shape of Normal distribution probability density function.

4.1.3 Steady State Identification

The aim of this study is to conduct an operational anomaly detection analysis in sensor
signals from a ME. To do that, the engine should be running on steady operating conditions.
Thus, except of the removal of not physically possible values from the data (first step), there is a
need to remove idle and transient states (Velasco-Gallego & Lazakis, 2022a,c). Only two studies
have been found in the maritime sector which deal with this issue. The first implemented image
generation through first order Markov chains and connected component analysis to identify
steady states. The method was compared to other frequently used approaches such as K-Means
clustering and GMM with Expectation Maximization algorithm and delivered superior results
(Velasco-Gallego & Lazakis, 2022d). The second method was developed based on a rolling
window approach and the assumption that steady state can be modeled by a linear trend model
(Øyvind Øksnes Dalheim & Steen, 2020a). The algorithm is to be applied individually in critical
variables of the examined system. A modified version of this algorithm is used in this study.
The original approach is described below.

There are four inputs needed: vector containing the data, rolling window size, significance
level, and steady state probability threshold. The algorithm is designed in such way that the
rolling windows have maximum overlap.

In each window, the model describing the data can be expressed as a linear function.

zt = b0 + b1t + at (24)

With,
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Figure 23: Illustration of the steady state identification algorithm. Each point is a member of more than one
rolling windows. The probability of a point being in a steady state is calculated from the times it was participating
in a steady window. Source: Øyvind Øksnes Dalheim & Steen (2020a).

� at: zero mean white noise with constant variance σa
2

� b0: intercept of line

� b1t: linear drift component formed by the slope b1 and relative time t inside the window.

b1 and b0 are estimated by a linear regression model within each window.

b1 =

∑
t · zt – 1

n

∑
t ·
∑

zt∑
t2 – 1

n(
∑

t)2
(25)

b0 =
1

n
·

(
n∑

t=1

zt – b1 ·
n∑

t=1

t

)
(26)

By calculating b1 and b0 the residuals can be estimated as:

res(t) = zt – b1 · t – b0 (27)

Then the standard deviation of the white noise is estimated

σa =

√√√√ 1

n – 2

n∑
t=1

res(t)2 (28)

The standard deviation of the estimated slope is calculated as

σb1 =

√ ∑n
t=1 res(t)

2

(n – 2) ·
∑n

t=1(t – t)2
=

σa√∑n
t=1(t – t)2

(29)

To decide if a window presents steady behaviour or not the t-value is calculated and com-
pared to t-critical which follows a Student’s distribution that depends on the significance level
α and the degrees of freedom n-2.
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Figure 24: Impact of degrees of freedom (ν) on Shape of Student’s t distribution probability density function.
t-critical is derived from the inverse cumulative distribution function.

t =
b1
σb1

(30)

The null hypothesis is formulated as: The window displays steady state behaviour if

|t| < ta/2,n–2 (31)

meaning that the slope component b1 is not statistically significant. If the hypothesis is accepted
the window is flagged as St=1, alternatively St=0. Each point is participating in more than one
windows, due to nature of the rolling window algorithm. The total number of tests performed
depends on the length of data and window and it is expressed as:

(Number of Tests) = (Length of Data) – (Window Length) + 1 (32)

The probability of a point to have steady behaviour is calculated based on the times it
participated in a window which displayed steady behaviour over the total times this point
participated in windows. Then it is compared to the steady state probability threshold which
was set as input arguments in the algorithm.

The modification which is implemented in the initial algorithm include a second steady-state
test. Another threshold value for the slope b1 is used to control missed and ”false positive”
steady state regions in the time series. If b1 of a window is over the maximum allowable value,
which is given as an input and is the same for all windows, then the window is categorized as
un-steady.

After the end of the double check process for each critical variable steady state identification,
a time-point is categorized steady if all critical variables are considered to show steady behaviour
there.

4.1.4 Train-Test Data Split

In order to evaluate the performance of the ML anomaly detection models which are imple-
mented in this study, the dataset should be split in Train and Test data. The previous data
preparation steps have been applied to the total dataset. The split was decided to be 75-25%
meaning that 75% of the rows are kept for training purposes of the ML models and the other
25% for testing. The operation selected randomly 75% of the dataset. The motive behind this
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action is capturing as much as possible of the ME/vessel operational conditions in the training
phase in order to eliminate false positive anomalies in the test period (Vanem & Brandsæter,
2021).

4.1.5 Data Normalization

When data are normalized the efficiency and accuracy of the ML algorithms increases (Mas-
moudi et al., 2021). Also, to employ other data preparation methods the data must be normal-
ized. Two techniques were examined by Masmoudi et al. (2021), Min-Max Normalization and
Z-score Normalization. In the Min-Max approach the data are scaled based on the minimum
and maximum value of the feature. The scaled data range is [0, 1]. In Z-score normalization
the data of the feature are scaled based on their mean and standard deviation. It is decided to
follow Z-score normalization.

z =
x – μ

σ
(33)

4.1.6 Data Division into Sub-systems

Based on what has been previously presented and considering the application of the anomaly
detection models which are to be created in this study, some systems of those may not be
included in the analysis either due to not being relevant to this study or due to absence of
data. It was found that researchers in anomaly detection consider different subsystems in
their studies depending on their purpose, as seen in Table 1. Cai et al. (2017); Gharib &
Kovács (2022) used these subsystems for fault diagnosis by implementing ML and data analysis
techniques respectively, whereas Nahim et al. (2015) divided the engine in these subsystems to
detect faults through a thermodynamic model.

Table 1: ME subsystems according to different studies.

Cai et al. (2017) Gharib & Kovács (2022) Nahim et al. (2015)

Fuel System Fuel System Combustion & Emissions
Lubrication System Lubrication System Lubrication System
Cooling System Cooling System Cooling System

Intake & Exhaust System Air Supply System Air System
Exhaust System Injection System

Due to the complexity and number of systems in a ME, it is believed that by examining
each subsystem separately, the algorithms’ overall performance will increase. The proposed
methodology is to detect anomalies in each subsystem, then processing them in parallel and
explore interactions between them. For example, it is expected that an anomaly in the Fuel
system will trigger an anomaly in the Intake & Exhaust system and vise versa.

4.1.7 Dimensionality Reduction

This step is considered to be a second data reduction phase. To enhance the performance
of the ML algorithms which will be used, the dataset’s dimension must decrease. It should be
noted that the anomaly detection methods are capable of running in big datasets without any
issue.

The need to use a method of dimensionality reduction emerges when high correlation between
the features exists. Vanem & Brandsæter (2021); Masmoudi et al. (2021) considered PCA to
perform this task. Factor Analysis was also used by Masmoudi et al. (2021). PCA works by
converting correlated features to linearly new uncorrelated principal components. This results
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in new orthogonal linear combinations. The method tries to capture as much of the total
system’s variance in the first principal component. Each of the next components captures
again the maximum possible percentage of variance. One can inspect variance captured by
each component and the total variance explained by a certain number of components visually
through a Scree plot. A Scree plot includes the variance explained by a principal component
and the cumulative explained variance of the system over the number of principal components.
The selection of number of components can be made through this plot.

PCA works by calculating the covariance matrix of the dataset. Then, the eigenvalues and
eigenvectors of this matrix are found. Given a known number of required principal components,
k, the eigenvectors which correspond to the top k eigenvalues multiplied by the data matrix
give the reduced dataset. A simple example is given below.

Simple Example of PCA Implementation
A dummy dataset containing five students and their grades in Math, English, and Art is

given. This dataset consists of three dimensions and there is a need to reduce them by one with
the use of PCA. The covariance matrix is calculated as follows:

Table 2: Student grades dataset for PCA demonstration.

Student Math English Art

1 90 60 90
2 90 90 30
3 60 60 60
4 60 60 90
5 30 30 30

cov(X,Y) =
1

n
·

n∑
i=1

(x – x) · (y – y) (34)

where,

� x, y: members of the X, Y variables

� x, y: mean of X, Y variables

� n: number of members

cov =

504 360 180
360 360 0
180 0 720

 (35)

The eigenvalues are the roots of the characteristic equation of the covariance matrix.

det(A – λI) = 0 =⇒ λ1 ≈ 44.82, λ2 ≈ 629.11, λ3 ≈ 910.07 (36)

The eigenvectors, v, are calculated for each eigenvalue as:

(cov – λI) · v = 0 =⇒ v1 =

–3.75
4.28
1.00

 , v2 =

–0.50
–0.68
1.00

 , v3 =

1.05
0.69
1.00

 (37)
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Finally, based on the two largest eigenvalues and their eigenvectors, the reduced dataset con-
taining two principal components can be calculated as

y = A ·W =


90 60 90
90 90 30
60 60 60
60 60 90
30 30 30

 ·

1.06 –0.50
0.69 –0.68
1 1

 =


226.8 4.2
187.5 –76.2
165.0 –10.8
195.0 19.2
82.5 –5.4

 (38)

Where,

� y: reduced dataset matrix

� A: raw dataset matrix

� W: matrix of the eigenvectors with the two largest eigenvalues

This matrix can now be used as input to conduct the needed analysis. The reduced dimensions
will allow for better performance and increased efficiency of the ML algorithms while there is
minimal information loss.

4.2 Anomaly Detection Models

In this study, unsupervised learning techniques are proposed to handle the anomaly detection
task. This is done mainly due to the unsupervised nature of scenarios considered in the maritime
sector (Velasco-Gallego & Lazakis, 2022c).

Furthermore, the examined methods utilize K-Means clustering, DBSCAN, GMM clustering,
and SOMs. The three first models are categorized as clustering methods, whereas the fourth is
an Artificial Neural Network ANN.

The concept followed in this study is to obtain clusters through the training process and
then predict to which of the predefined clusters each test data-point belongs to. The goal is to
identify if the new points belong to these clusters or not. If a point belongs to a cluster, it is
treated as normal, and if not, it is considered to be an anomaly. The method used to determine
if a test data point presents normal or anomalous behavior varies between the methods, due
to their typology. The specific method used in each case is presented in the paragraphs that
follow.

4.2.1 Anomaly Detection Framework for Data Points

Due to the split of the ME into four sub-systems, the task of classifying a point as anomaly is
considered more complex than the case with no sub-systems due to the following reasons. First
reason is the presence of four datasets containing the anomalies, rather than one. Secondly, is
the requirement of handling these four datasets and finding common anomalous points between
them.

To flag a point as an engine anomaly, it must have already been flagged in at least one
system. If the same time-point is found to be present in more than one anomalies dataset, then
the likelihood of that point to not be a false-positive anomaly increases.

4.2.2 Anomaly Detection with K-Means Clustering

In the case of K-Means, following the training phase valuable information about each cluster
in the model is collected. This information includes all the points which are assigned to each
cluster and each cluster’s centroid. Based on these, the distance of every point to its assigned
cluster center is calculated and stored in an array.
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Figure 25: Anomaly detection framework for data points.

The principle under which anomaly detection is conducted is stated as: If a point’s distance
from its assigned cluster center is more than a predetermined value then it considered anomalous.

Considering that K-Means produces hyper-spherical cluster shapes, the first attempt is to
assume the maximum distance of the training points from the center of the cluster as a form
of radius. This distance is then used as a threshold value. By predicting to which cluster each
test point is assigned to, the distances from the centers are calculated. The points where these
the distances exceed the threshold are classed as anomalies.

By following this ”cluster radius” approach underestimation of anomalies occurs since out-
liers, which have not been successfully removed from the test data after the preparation phase,
affect the ”radius”. K-Means method must include all given points into clusters and, as a re-
sult, outliers are also part of clusters. Due to their lower frequency, these points lay far away
from cluster centroids. Though, when searching for the maximum distance from a centroid it
is probable that this refers to an outlier. This results in a non representative threshold value
being used and outliers-anomalies within the test dataset being be regarded as normal.

To combat this issue a second approach is developed. Instead of using the maximum distance
from the centroid as a threshold the 98th percentile distance is used. This approach aims to
combat the effect of outliers present in the training set and give more realistic anomaly detection
result.

Figure 26: K-Means clustering anomaly detection methodology.
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4.2.3 Anomaly Detection with GMM

GMM is a probabilistic clustering method. When training the model, cluster assignments
are performed based on probabilistic method. A point is assigned to a certain cluster if the
probability of that point being a member of this cluster is higher than the probabilities of being
member of other clusters.

By applying the same rationale to the test data, a prediction is derived, indicating the
clusters to which these points are affiliated. Subsequently, the array of probabilities is derived
and scanned for anomalies. To classify a test point as normal, the probability corresponding to
its assigned cluster should be higher than a predetermined value. If that is not true, the point
is considered to be an anomaly.

Figure 27: GMM anomaly detection methodology.

4.2.4 Anomaly Detection with DBSCAN

DBSCAN requires special treatment due to the ability of this method to identify noise or
outlier points in the training phase. This is expected to assist in delivering superior clustering
results compared to K-Means and GMM. This characteristic empowers the method to establish
clusters primarily comprised of core points, which convey essential information, while border
points play a role in delineating the shapes of these clusters.

In this study, due to the extent of data preparation, the percentage of noise points within
total points in the training phase is expected to be insignificant and as a result, no further
processing of these points takes place.

Although DBSCAN is a density based clustering method, the metric for detecting anomalies
is distance based and depends on one of the method’s hyper-parameters; size of neighborhood
(ε). This variable is selected due to its importance in the method. It is assumed that normal
points will lay inside the neighborhood or at least at its border, meaning that the distance
between their closest point will be less or equal to ε (d ≤ ε). Respectively, if a point’s closest
neighbor’s distance is greater than ε, this point is considered as an anomaly.

4.2.5 Anomaly Detection with SOM

SOM is an unsupervised ANN which can be used for clustering purposes. In this case,
the model is used to detect anomalies in the test dataset. Previous applications of SOMs for
anomaly detection in the maritime field include Vanem & Brandsæter (2021) and Raptodimos
& Lazakis (2018). The followed procedure is to train a 2D SOM of a certain size, for a number
of epochs determined by a combination of the quantization and the topographic errors. Then,
by having the trained map, clusters of data-points that are created by the neurons are obtained.
The following step is to assign the test data-points to these clusters. By having a larger number
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Figure 28: DBSCAN anomaly detection methodology.

of clusters, compared to the other methods, it is assumed that the average of all training points
that are assigned to this node is an adequate reconstruction of the test point to be used for
anomaly detection purposes (Vanem & Brandsæter, 2021). Hence, the residuals are obtained
and the anomalies will be detected based on those.

Based on the above, two models which utilize the same trained SOM will be examined in
this study. The aim is to explore different techniques when it comes to the anomaly detection
part. As previously stated, both are based on residual analysis. The first method aims to detect
anomalies through a threshold value in the residuals whereas, the second explores clustering of
the residuals.

Anomaly Detection with SOM Based on Threshold Value
This approach seeks to classify data points as anomalies when their residual values exceed

a predetermined threshold. The threshold value is chosen based on the distribution of these
residuals, ensuring that it effectively captures deviations from the expected pattern in the data.

Anomaly Detection with SOM Based on Clustering of Residuals
In this case, instead of applying a simple threshold value, the K-Means clustering algorithm

is employed. As previously explained in K-Means clustering theoretical part, the anomaly
detection criterion is the point’s distance from the cluster centroid. If it is greater than the
98th percentile of all distances of cluster points from the centroid, then it is considered an
anomaly. This methodology is applied here, meaning that after obtaining the residuals clusters,
the distances from the centroids are calculated and those points that their distance exceeds the
98th percentile are categorized as anomalies.

Figure 29: SOM anomaly detection methodologies (threshold and clustering based).
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4.3 Simulation of Anomalies

The dataset to be used in the analysis may contain anomalies which are not known in
advance. In case the anomaly detection models are trained with a dataset containing anomalies,
they would not be capable of identifying them in the test phase. Hence, the steady state
algorithm is deployed with a goal of eliminating the pre-existing anomalies in order to have an
appropriate training dataset. As a result, anomalies must be simulated in the test data in order
to validate the models.

4.3.1 Typology of Anomalies

According to Chandola et al. (2009), anomalies are categorized in three types. Point anoma-
lies, contextual anomalies, and collective anomalies. In the case of an engineering application
and especially in the marine anomaly detection domain, Velasco-Gallego & Lazakis (2022a)
identified six types of anomalies.

� Single point anomalies.

� Two-point anomalies.

� Multiple point anomalies.

� Collective anomalies.

� Degradation.

� Transition occurrences between steady operational states.

An explanation of each anomaly type, except transitional occurrences which should have been
filtered out, is given in the text that follows.

Point Anomalies
Point anomalies are the simplest form of anomalies in data analysis. They refer to individual

data instances that deviate significantly from the overall data distribution. This category of
anomalies is the primary focus of most research in the field of anomaly detection (Chandola
et al., 2009). In the marine anomaly detection field, Velasco-Gallego & Lazakis (2022a) ex-
panded the category of ”point anomalies” into single, two-point, and multiple point anomalies.
The explanation behind this sub-categorization has to do with the fact the two and multiple
point anomalies are just repeated single point anomalies in the dataset. To illustrate point
anomalies in an actual ship-related scenario, a propeller RPM time-series should be taken into
consideration when a vessel is sailing through weather.

Figure 30: Point anomalies observed in a propeller RPM time-series graph. Source: Øyvind Øksnes Dalheim &
Steen (2020b).
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Collective Anomalies
Collective anomalies arise when a group of related data instances collectively deviates from

the norm in the entire dataset. While each individual instance in the group might not be
anomalous on its own, their combined occurrence as a collection is considered anomalous.

Collective anomalies have been studied in various types of data, including sequences, graphs,
and spatial data according to Chandola et al. (2009). It is important to note that while point
anomalies can occur in any dataset, collective anomalies only manifest in datasets where in-
stances are interconnected.

As per Velasco-Gallego & Lazakis (2022a), in a marine engine example, the high variations in
the exhaust gas outlet temperature of a turbocharger under steady operation can be considered
as a collective anomaly or a sudden noise increase in the time-series of shaft power.

Figure 31: Collective anomalies observed in a shaft power time-series graph. Source: Velasco-Gallego & Lazakis
(2022a).

Degradation Sequences
Attention is also paid to degradation patterns. These sequences are also considered as

collective anomalies. In Velasco-Gallego & Lazakis (2022a) are studied as a separate anomaly
category. This approach is also used in this study. This is done due to the importance of such
phenomena in condition monitoring and prognosis applications.

4.3.2 Simulation of Point Anomalies

The first step that needs to be made in order to simulate point anomalies is to determine
the time series on which they will be induced. The descriptive characteristics of the data must
be known and based on them the value of the anomalous instance is selected. When referring
to point anomalies, a spike is expected to be visible in the time-series plot. The last required
element to fully specify such anomalies is their position in the time-series (Velasco-Gallego &
Lazakis, 2022a).

When the aim is to simulate two or multiple point anomalies, spikes of similar magnitude
should be placed in close distance to each other, relative to the time-series length.

4.3.3 Simulation of Collective Anomalies

When referring to collective anomalies, Velasco-Gallego & Lazakis (2022a) mentioned a high
variability example in the turbocharger’s exhaust gas temperature time-series. The presence
of high variability can be easily be misinterpreted as noise. The underlying difference lies
in that noise is a permanent phenomenon which may obscure true data patterns whereas a
high variability is temporal issue which can be categorized as an anomaly. To simulate such
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Figure 32: Example of simulated point anomalies in ME Power.

anomalies noise is injected through multiple Gaussian distribution with different means and
standard deviations (Velasco-Gallego & Lazakis, 2022a; Zhao et al., 2019).

Other patterns which may be categorized as collective anomalies are extremely low or high
values at certain time periods which are not found elsewhere in the dataset (Chandola et al.,
2009). Similarly to what mentioned for point anomalies, the descriptive statistics of the time-
series must be know along with the position within it where the anomalies will be placed.

Figure 33: Example of simulated collective anomalies in ME Power. In a true dataset, the value of Power being
around 2600 kW might not be an anomaly. In the figure’s context since no other information is given about
Power these points may be categorized as collective anomalies.

4.3.4 Simulation of Degradation Sequences

An exponential model with Brownian motion is chosen to simulate the degradation se-
quence. Similar models have been used in Velasco-Gallego & Lazakis (2022a). Its effectiveness
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in representing patterns of accelerated degradation of engineering components has been proven
by Li et al. (2021). The mathematical modeling of such pattern involves a stochastic process
X(t), t ≥ 0, with X(t) representing a condition indicator of the system. The model is expressed
as:

X(t) = θ′ · exp
((
β
′ –
σ
2

2

)
t + σ · Β(t)

)
(39)

where, θ′ and β′ are random parameters representing the individual differences of components, σ
is a deterministic parameter representing the increasing random error, and Β(t) is the standard
Brownian Motion, responsible for the stochastic dynamics of the degradation.

Figure 34: Example of simulated degradation process in ME Power.

Brownian Motion
The Brownian Motion Β(t) at time t is characterized by three key principles.

1. The change in the Brownian Motion over a time interval [s, t] is independent of the values
at times before s.

2. The distribution of the change in Brownian Motion over a time interval [s, t] depends only
on the length of the interval t – s, not on the specific values of s and t.

3. The increments of the Brownian Motion are normally distributed with mean 0 and variance
t – s, resulting in the following: Β(t) – Β(s) ∼ N (0, t – s).

The notation can be expressed as follows: Β(t) ∼ N (0, t).
To simulate the Brownian motion discrete time steps are used. The increments ΔΒi over

small intervals Δt are sampled from a Gaussian distribution with mean 0 and variance Δt.
The cumulative sum of these increments gives the Brownian Motion values at each time step:
Β(t +Δt) = Β(t) +ΔΒi
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5 Case Study & Results

In this section, the case study and its outcomes are presented. The aim is that the order of
operations and steps within the analysis is maintained in the report for better understanding
of the reader.

Initially, a description of the data is presented. Then, the implementation of the data
preparation steps follows. This phase is of critical importance since the transformed dataset is
the input for the main part of the study, which is the implementation of the anomaly detection
models. After this phase, the simulated anomalies, which are employed to test the models,
are presented. An extensive analysis of all the examined methodologies is found later. Special
attention is paid on each algorithm’s tuning step. Then, a brief discussion concerning the main
outcomes from the application of each model follows.

5.1 Data Description

Data from a bulk carrier vessel which are collected via a data acquisition system are used in
this study. Since the aim is to detect anomalies in the operation of machinery systems, a two
stroke ME has been selected as the case study. All ME related parameters that are monitored
via the DAQ have been included in the original dataset. These involve mostly temperature and
pressure time series across all cylinders focusing on cooling, lubrication, intake, and exhaust
characteristics of the engine. Data relevant to the fuel system of the engine are also part of the
dataset. The data have been collected from the vessel’s sensors and then sent to a database
from which they have been extracted from to be utilized in this study. Data from January 1st
until 31st December of 2021 were collected with a sampling rate of 1 minute.

The initial dataset’s features that are utilized in this study may be found in Table 3.

5.2 Data Preparation

Each of the following steps are used in order to improve data quality and integrity for the
anomaly detection task. Dataset size decreases by implementing each of these preparation
methodologies. The process complies with what has been presented previously in the method-
ology section and is summarized as follows.

� Data cleaning

� Data de-noising

� Steady state identification

� Data normalization

� Data split into subsystems

� Dimensionality reduction

In order to demonstrate the effectiveness of these steps, a histogram and a time-series plot
of RPM data per step are presented respectively in Figure 36 and Figure 37. The distribution of
raw RPM data are displayed in the first subplot. Idle state is dominant. In the second subplot,
by removing idle state, a clearer representation of the data is exhibited. In the third subplot,
after the smoothing step, a similar distribution is illustrated . Lastly, the data distribution after
steady state identification is presented. It is visible that the data preparation step affects the
distribution of RPM.
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Table 3: Dataset feature names.

Variable Names

Cyl 01 AFT main bearing temp AMS ME cyl 3 PCO outlet temp AMS
Cyl 01 crank pin bearing temp AMS ME cyl 3 scav air temp AMS
Cyl 01 fore main bearing temp AMS ME cyl 4 exh gas outlet temp AMS
Cyl 02 AFT main bearing temp AMS ME cyl 4 JCW outlet temp AMS
Cyl 02 crank pin bearing temp AMS ME cyl 4 PCO outlet temp AMS
Cyl 03 AFT main bearing temp AMS ME cyl 4 scav air temp AMS
Cyl 03 crank pin bearing temp AMS ME cyl 5 exh gas outlet temp AMS
Cyl 04 AFT main bearing temp AMS ME cyl 5 JCW outlet temp AMS
Cyl 04 crank pin bearing temp AMS ME cyl 5 PCO outlet temp AMS
Cyl 05 AFT main bearing temp AMS ME cyl 5 scav air temp AMS
Cyl 05 crank pin bearing temp AMS ME cyl 6 exh gas outlet temp AMS
Cyl 06 AFT main bearing temp AMS ME cyl 6 JCW outlet temp AMS
Cyl 06 crank pin bearing temp AMS ME cyl 6 PCO outlet temp AMS

M/E Shaft RPM TRQM ME cyl 6 scav air temp AMS
M/E T/C RPM IND1 ME cyl lub oil temp AMS

ME air cooler cool w inlet press AMS ME FO inlet press AMS
ME air cooler cool w inlet temp AMS ME FO inlet temp AMS
ME air cooler cool w outlet temp AMS ME fuel index AMS

ME axial vibration AMS ME JCW inlet press AMS
ME Consumption TRQM ME JCW inlet temp AMS

ME control air inlet press AMS ME JCW outlet press AMS
ME cyl 1 exh gas outlet temp AMS ME main LO inlet press AMS
ME cyl 1 JCW outlet temp AMS ME main LO inlet temp AMS
ME cyl 1 PCO outlet temp AMS ME scav air receiver inlet pres AMS
ME cyl 1 scav air temp AMS ME scav air receiver temp AMS

ME cyl 2 exh gas outlet temp AMS ME TC exh gas inlet temp AMS
ME cyl 2 JCW outlet temp AMS ME TC exh gas outlet temp AMS
ME cyl 2 PCO outlet temp AMS ME TC LO inlet press AMS
ME cyl 2 scav air temp AMS ME TC LO outlet temp AMS

ME cyl 3 exh gas outlet temp AMS Shaft Power TRQM
ME cyl 3 JCW outlet temp AMS Shaft Torque TRQM
ME thrust bearing pad temp AMS

5.2.1 Data Cleaning

Data were received in twelve files, each one containing the data corresponding to one month.
All files were concatenated vertically resulting in the large raw data file. This file contained
data from 104 sources. Many of those were duplicates, others contained processed data (ISO
corrected etc.), data not directly sourced from sensors, and data with abnormal values.

The first action was the removal of these features. The aim was to only keep data directly
sourced form sensors. This step was carried out manually, adhering to the instructions provided
by the data source regarding variable naming-data sourcing combination. The result was a
significantly more compact dataset of 63 variables, the list of those can be seen in Table 3.

Handling of missing and/or NaN values took place. First, the total number of such instances
per variable were determined. As can be seen by Figure 38, an almost constant amount of NaN
values is contained in each variable. The presence of these has been linked to the period before
commissioning of the DAQ system onboard the vessel. More than average NaN values are found
in Cylinder 3 crank pin bearing temperature and turbocharger RPM time series for unknown
reasons. It is believed that a possible sensor fault may be responsible for those issues. Based
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Figure 35: Data reduction by steps in the data preparation phase. Only the steps in which data-points are
reduced are shown in this figure.

Figure 36: Histogram of ME RPM distribution per data preparation step.

on all the above, it was concluded that data imputation was not required.

5.2.2 Data De-noising

From the four algorithms tested for the de-noising of the time series data, it was decided to
use the Savitzky-Golay (SG) filter. This method provides flexibility and the data were fitted
better than the other examined methods. The decision to employ this filter was based on the
property of SG, which enables it to preserve some high-frequency components while effectively
removing noise. On the other hand, although frequently used, moving average presented signif-
icant lag and flattened certain effects. With respect to the Gaussian filter technique, it was not
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Figure 37: Time-series plot of ME RPM per data preparation step.

Figure 38: NaN values per variable in the raw dataset.

possible to fine tune the method resulting in either over or under-smoothed results. Between
EWMA, which was previously used in a marine engine application (Velasco-Gallego & Lazakis,
2022d), and SG, the second delivered slightly better results.

The filter was applied to the total dataset using the same parameters (window size, poly-
nomial degree) to determine the smoothing. Selected polynomial order for the filter was three.
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Figure 39: Optimum window size investigation of Savitzky-Golay filter.

Higher-degree polynomials introduced excessive oscillations and lower-degree oversimplified the
time-series. A third degree curve smoothed the data in an adequate way while captured intri-
cate patterns and variations. The tuning process of the algorithm consisted of investigation of
the smoothing results with multiple window sizes in a sample dataset. Windows ranging from
10 to 60 data points (1 point corresponds to 1 minute frequency) were examined. The optimal
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window size was found to be 40.
The effectiveness of smoothing can be observed through commonly used graphs for engines.

In the Power vs RPM graph, the shape before and after remains the same while in both cases,
a similar to propeller law curve is followed (Figure 40). Also, the distribution of shaft power
data after smoothing is analogous to what is observed before. Changes appear at the areas
with higher distribution of points, due to the noisy sensor signal being redistributed by the
smoothing process (Figure 41).

Figure 40: Shaft power vs RPM graph comparison between raw and smoothed datasets.

Figure 41: Histogram of Shaft power data before & after smoothing process.

5.2.3 Steady State Identification

Following the smoothing process, the steady state algorithm is deployed. The parameters
of the ME system identified as critical are ME RPM and shaft power. These two parameters
offer macroscopic description of the system’s state when combined. The aim of such algorithm
is to remove transient states and obtain a steady dataset to use in further steps of the analysis.
This highly depends on algorithm parameters tuning. For example, longer windows may be
more suitable for capturing sensor drift and long term trends whereas shorter windows are
utilized to identify abrupt changes in the data (Øyvind Øksnes Dalheim & Steen, 2020a).
Also, in the steady state testing section of the algorithm, the significance level of t-statistic
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along with probability and slope thresholds affect the performance. Since it is deployed in
each critical variable separately before combining the results, the selected parameters differ in
terms of significance level. This dissimilarity enhanced the identification task by allowing each
algorithm to perform better individually before combining the results.

The algorithms output is a vector containing the steady state probability of each point. To
classify a time-point as steady, both RPM and power probabilities should be greater than the
lowest accepted. A mask of these point indexes is used for filtering to obtain the steady dataset.

Table 4: Parameters used in steady state algorithm. The parameter testing process was based in multiple trial
runs.

Parameter ME RPM Shaft Power

Window Size 60 60
Significance Level 3% 2%

Maximum Accepted Slope 0.3 0.3
Lower Accepted Probability 0.1 0.1

Figure 42: Steady state identification algorithm plot. Steady RPM and shaft power over not-steady.

The performance of the algorithm has been tested on multiple sample datasets. One of them
is shown in Figure 42. ”Steady” refers to points presenting this behavior on both parameters.
The model allows for normal fluctuations in the data while big drops and spikes are classified
as ”not-steady”.

5.2.4 Data Normalization

Z-score or Normal Scaler is employed for the normalization task. The difference between a
variable’s mean and each point’s value over standard deviation scales the data while not affecting
the variability. Before and after normalization plots of graphs commonly used for performance
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Figure 43: Power vs RPM graph before and after normalization.

Figure 44: Mean exhaust gas temperature vs Power graph before and after normalization.

evaluation of engines are presented in Figure 43, Figure 44, and Figure 45 to demonstrate the
process.

Figure 45: Turbocharger RPM vs Power graph before and after normalization.

5.2.5 Data Division Into Sub-systems

Following normalization, the dataset is divided into subsystems according to what Cai et al.
(2017) presented, but with some additions and modifications. In that phase the dataset is almost
fully prepared, with all steps being completed except for dimensionality reduction, which will
be performed separately in each system. The lubrication system includes parameters referring
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to Lubricant Oil (LO) temperatures, pressures, and also main and crank pin bearing temper-
atures. Contained in intake & exhaust there are the signals of turbocharger inlet and outlet
temperatures. The Fuel System in this study also includes the Shaft RPM, Power, and Torque
parameters, whereas the cooling system includes features related mostly to jacket and piston
cooling. Complete tables of feature per sub-system can be found in Appendix A. Additional
information regarding the systems is found in Appendix B.

5.2.6 Dimensionality Reduction

PCA is employed for dimensionality reduction separately on each sub-system. The need
to perform such task arises from the presence of highly correlated variables within every sys-
tem. Many of those parameters, such as exhaust gas temperature, lubricant oil pressure and
others, are monitored across all cylinders, resulting in multiple sets of six (engine cylinder num-
ber) correlated variables. This can be observed in Figure 46 where a correlation heatmap of
all parameters is presented. A solution would be averaging the between-cylinder columns at
each time-point, (Kim et al., 2020b, 2021), but this option may lead to information loss from
individual cylinders that might be meaningful for anomaly detection or lead to incorrect con-
clusions. By using PCA, dimensions are reduced with the cost of losing a small percentage
of the initial dataset’s variability. The desired combination between principal components and
initial dataset’s explained variance in the transformed dataset is defined by the user and can be
determined with the help of a Scree plot.

The optimal number of Principal Components (PCs) is defined by a threshold value in the
explained variance ratio by each component. The threshold value is set at 0.01, meaning that
the optimal value of PCs is reached when the increase in explained variance ratio that the new
PC offers is less than 1%. Another approach considered for such task is the elbow method,
but the other approach delivered the required results. Based on PCA methodology, each PC
tries to capture as much of the system’s variance as possible. Thus, the slope of the explained
variance ratio over number of PCs curve is expected to be declining as PC number increases.
The reduction in components of each subsystem after PCA can be seen in Table 5. In the
same table is visible the total explained variance of the initial dataset which is captured by the
PCs. The Scree plot for the cooling and the intake & exhaust systems are presented below in
Figure 47 and Figure 48. Additionally, the plots for the remaining sub-systems may be found
in Appendix B.

Table 5: Number of components of each subsystem before and after PCA.

Subsystem Cooling Fuel Intake & Exhaust Lubrication

Before 18 7 17 18
After 8 5 4 6

Explained Variance Ratio 96.9% 99.8% 97.5% 97.9%

In all sub-systems except fuel the reduction of features is more or equal to 50% of the
original. These results are expected due to the presence of same sensors across all cylinders.
In fuel, the second dimension size is reduced from seven to six. This result is inconsistent with
other subsystems’ results and expectations regarding this particular subsystem. It is known
that an increase in shaft RPM would result in increases in consumption, fuel index, power,
torque suggesting that these features are highly correlated. Possible reasons for this outcome
are that the dataset might inherently possess a complex structure, where each column represents
crucial and distinct features that collectively contribute to the overall variance. Another possible
explanation could be weak correlation between columns of the subsystem so PCA cannot identify

50



5.2 Data Preparation 5 CASE STUDY & RESULTS

Figure 46: Correlation heatmap of variables in the dataset before division in systems and PCA.

Figure 47: Scree plot to visualize PCA in the cooling system. Explained variance per principal component &
cumulative explained variance over number of principal components.
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sub-spaces that explains high percentage of variance.

Figure 48: Scree plot to visualize PCA in the intake & exhaust system.

5.3 Anomaly Detection Models Implementation

In the pursuit of ensuring the seamless and reliable operation of marine engines, the ap-
plication of clustering methods and machine learning models has unveiled a promising avenue
for anomaly detection. This section presents a comprehensive analysis of the results obtained
through extensive experimentation and implementation of these techniques in the context of
marine engine systems operations.

Throughout this part, detailed descriptions of the methodologies employed, the datasets
utilized, and the performance metrics considered for evaluating the efficacy of anomaly detection
will be displayed. Furthermore, a comparative analysis of the various models applied will be
presented, highlighting their strengths and weaknesses.

Additionally, the purpose of this study is to find representative models for the anomaly
detection task by analyzing each method’s strengths and weaknesses and comparing different
performance metrics. To avoid losing this core purpose, the rest of this part focuses on two
out of the four systems of the ME, namely cooling and intake & exhaust. Results analogous to
what shown for the selected systems may be found in Appendix C.

As discussed, the dataset used for this anomaly detection task lacks labeled anomalies. Con-
sequently, conventional performance metrics shaped as a ratio of True Positives, True Negatives,
False Positives, and False Negatives cannot be applied. Hence, the metric used for evaluation
of the algorithms at this stage is formulated as:

Ratio of Anomalies =
Anomalies Detected

Dataset Points
(40)

This metric has been employed also in Vanem & Brandsæter (2021) and is carefully selected as
it does not categorize points as True/False Positives/Negatives, since there is no definitive truth
to classify data points as True Positives or Negatives. Consequently, traditional performance
metrics that rely on such categorization are not applicable. Furthermore, this ratio metric
reflects the relative performance of the employed anomaly detection methods. Also, it aids in
the selection of the most appropriate model or parameter tuning for a specific task. In the
sections that follow, Ratio of Anomalies will be used to identify and compare the different
models.
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5.3.1 K-Means Clustering Algorithm Results

The K-Means algorithm groups data points into K clusters, each centered around its respec-
tive centroid and determined using the squared Euclidean distance. K-Means can be adapted
to the task of anomaly detection by examining the proximity of data points to cluster centroids.
As previously discussed, K must be predefined in this algorithm. This results in the formulation
of a problem: finding the optimal value of K in order to end up with a good clustering result.
Five metrics are utilized in the search for K: the elbow method, the silhouette coefficient, the
Calinski-Harabasz index, the last leap, and the last major leap.

In an ideal environment with well defined clusters all of the metrics values should agree.
When no ideal cluster number if found, the silhouette coefficient and the Calinski-Harabasz
index are preferred. This is done because they encapsulate both compactness and separation of
clusters, that are requirements of K-Means, compared to other metrics which prioritize one of
the two criteria.

While diving further into the intricacies of anomaly detection with K-Means clustering, it
is essential to remember the differentiated approach to the anomaly detection criterion. The
methodology prioritizes robustness by utilizing a criterion which considers the 98th percentile
of distances in the training dataset. This choice, as opposed to the straightforward maximum
distance or ”radius”, safeguards the model against categorizing outliers and anomalies as normal
points.

Cooling System
In the case of the cooling system, the approach was to run the algorithm for K = [2, 35].

Since no known initial estimation method for K exists, a big enough number was chosen as the
maximum potential cluster number. The optimal number of clusters has been found to be equal
to 13. This number was selected by prioritizing the silhouette coefficient and the elbow plot as
cluster number determination metrics.

An issue concerning the silhouette coefficient is its value. As previously discussed, the opti-
mal number of clusters according to this metric is the one which has the maximum coefficient.
A value of 1 means well separated and compact clusters, 0 means an indifferent and not signif-
icant result, whereas -1 is equivalent to wrong cluster assignment. One could expect a higher
silhouette value for the optimal K, though, the complexity of the dataset is such that does not
allow for very good separation and compactness.

Figure 49: Silhouette coefficient in K-Means clustering plot over number of clusters for the cooling system.
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Additionally when referring to the elbow plot, no clear elbow appears to be present in the
first sight. When the figure is looked more carefully, two elbow points may be identified at
K = 9 and K = 13. Based on the second elbow, it is safe to assume that 13 is a good number
of clusters for the particular dataset.

Figure 50: K-Means clustering elbow plot for the cooling system.

Table 6: Optimal number of clusters of cooling system according to different methods (K-Means clustering).

Metric Elbow Silhouette CH index LL LML

Clusters 13 13 2 22 10

The anomaly detection algorithm is developed based on the K = 13 clusters. By applying
the trained model to the test dataset, the resulting distribution of points in these clusters
between the train and test phases is almost identical signaling good clustering performance.
Slight differences are present due to the detected anomaly points. The algorithm detected 597
different points, corresponding to 2.08% value in Ratio of Anomalies.

Intake & Exhaust System
The initial potential values of K have been kept the same as in the cooling system. The

optimal value of clusters has been found to be K = 5. This value has been identified from the
elbow, the CH index, the silhouette coefficient, and the LML index. Although the elbow method
suggested a second potential cluster value, K = 11, it is worth noting that the consensus among
four different methods favors the choice of K = 5 as the most suitable number of clusters for
this system. The alignment across multiple metrics reinforces the robustness and reliability of
this particular number, enhancing confidence in its selection.

Based on what previously discussed, the anomaly detection model has been trained with 5
clusters. The test dataset’s points distribution to clusters is highly comparable with the train
dataset’s. This alignment suggests that the model has successfully generalized its understanding
of the underlying data structure during training, effectively extending its ability to classify
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Figure 51: Distribution of points to clusters between train (left) and test (right) phases with K-Means in the
cooling system.

Figure 52: K-Means clustering elbow plot for the intake & exhaust system.

unseen data points into the same or similar clusters. Further to that, the model detected a
total of 539 points as anomalies, and the equivalent percentage of those with regards to the test
dataset is 1.87%.

Discussion Over K-Means Clustering Results
K-Means detected similar number of anomalies between the two systems. It was found that

the optimal value of K was 13 in the cooling system and 5 in the intake & exhaust system.
Although these numbers have been decided as optimal for the particular cases, the plethora
of metrics suggesting different values of K may easily turn the selection process to a confusing
operation. Furthermore, the manual character of this process requires plenty of time.

With regards to the anomaly criterion, the 98th percentile of distances between points and
cluster centroids has been found, through experimentation, to be ideal for anomaly detection.
In the case of considering the largest distance as the threshold, many anomalies are classified as
normal points since the method must assign all train points to clusters, including the potential
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Figure 53: Silhouette coefficient in K-Means clustering plot over number of clusters for the intake & exhaust
system.

Figure 54: Calinski-Harabasz index plot over number of clusters for the intake & exhaust system (K-Means
clustering).

anomalies. In the case of using a lower percentile value as threshold, many normal points, posi-
tioned at cluster boundaries, are classified as anomalies and overall the anomaly ratio increases
dramatically.

Another drawback of K-Means is the random initialization of the K centroids. This results
into slightly different outcome at each algorithm run. Alternative methods to this process have
been developed but were not explored in this study. Finally, this algorithm requires increased
run-time compared to the others. Nevertheless, it remains the most recognized clustering algo-
rithm.

5.3.2 Clustering With GMM Algorithm Results

GMM algorithm’s assumption is that each data are grouped in clusters generated by Gaus-
sian distributions. Similarly to K-Means, the number of clusters (k) needs to be pre-determined,
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Figure 55: Distribution of points to clusters between train (left) and test (right) phases with K-Means in the
intake & exhaust system.

and it should be established prior to the anomaly detection task. The available metrics to evalu-
ate and find the optimal number of clusters are: the AIC, the BIC, and the silhouette coefficient.

AIC and BIC are the preferred metrics for finding the optimal cluster number due to their
ability to penalize models with a lot of clusters in order to avoid over-fitting. Generally, lower
values of AIC and BIC are preferred. An elbow point should be identified in the graph of the
metric over k in order to reach an optimal value of k. Usually if found, the elbow point is the
same for both metrics and is used as the optimal k value. Alternatively, if no elbow is found
or kAIC ̸= kBIC, the optimal k is considered to be the one that is derived from the silhouette
coefficient.

The anomaly detection criterion in this algorithm is based on the cluster assignment prob-
ability. If a point’s probability is below a predefined threshold, then it is considered to present
anomalous behavior. The threshold is defined by the cluster assignment probabilities of the
training data points.

Cooling System
The possible cluster numbers for GMM in the cooling system are around the same as with

K-Means. It should be noted that this method uses K-Means to initialize the center positions of
the k Gaussian distributions for faster converging time. In this particular system, the algorithm
searched for the optimal k between 3 and 33. The optimal number was found to be equal to
k = 24 clusters through the combination of BIC and AIC. k = 6 was proposed by the silhouette
coefficient.

BIC and AIC penalize models with more clusters in order to avoid over-fitting. In the
particular case, from k = 22 the curve’s slope started to reduce so 24 is considered to deliver
good results.

The distribution of the cluster assignment probabilities of the train dataset has been plotted
in order to determine the threshold value for the anomaly detection criterion. It can be observed
that the majority of points have a probability value of P ≥ 0.75. Based on that observation,
every test point with cluster assignment probability less than 0.75 will be considered to be an
anomaly.

The distribution of points in clusters between the train and test phases showcased similar
results, indicating a small number of detected anomalies. This number has been found to be
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Figure 56: BIC and AIC plot for the cooling system.

Figure 57: Distribution of cluster assignment probabilities for the cooling system (GMM).

equal to 582 distinct points, which approximately correspond to 2.02% of the tested points.

Intake & Exhaust System
The application of the anomaly detection algorithm with GMM in the intake & exhaust

system follows the same approach as in the cooling system. The possible cluster values in this
case are [2, 29] and, as indicated by BIC and AIC the optimal is found to be k = 13. The
silhouette score indicated a value of k = 6.

The cluster assignment probabilities are obtained after the training process of the GMM
clustering algorithm. As seen in Figure 60, the distribution of probabilities has a longer tail
compared to the cooling system. The first option would constitute of setting the threshold
value equal to around 0.75 resulting in a ratio of anomaly between 7-10%. The second option is
to assume that this distribution corresponds to anomaly-free data and set the threshold value
accordingly. Following that option, the threshold value is set at P = 0.58, resulting in a total of
594 detected anomaly points. The percentage of those in the total test point is equal to 2.06%.
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Figure 58: Distribution of points to clusters between train (left) and test (right) phases with GMM in the cooling
system.

Figure 59: BIC and AIC plot for the intake & exhaust system.

This relatively small percentage of anomalies has no effect in the distribution of points to the
13 clusters between the train and test datasets, which is almost identical (Figure 61).

Discussion Over GMM Results
GMM offers a probabilistic clustering approach based on Gaussian distributions. They offer

probability estimates for the assignment of every point in any cluster, which is found to be
helpful with points that are between cluster borders. Furthermore, the probabilistic cluster
assignment and the probabilistic anomaly detection criterion offer a diversified and more robust
approach to the anomaly detection problem, when compared to the distance based criteria. On
the other hand, this method requires the number of clusters to be predefined, which presents
a challenge and requires computational time in order to find the optimal value. Additionally,
the method relies on K-Means and its random initialization for the first iteration. The last
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Figure 60: Distribution of cluster assignment probabilities for the intake & exhaust system (GMM).

Figure 61: Distribution of points to clusters between train (left) and test (right) phases with GMM in the intake
& exhaust system.

drawback is the method’s poor performance when the data are not normally distributed.

5.3.3 DBSCAN Algorithm Results

This method possesses the distinct advantage to identify outliers or anomalies right from the
training phase. This is an asset of this particular method due to the capability of eliminating
possible remaining anomalies in the train dataset. In this scenario, the assumption is made that
the training dataset does not contain anomalies, thus leading to the expectation of encountering
only a small number of outliers points.

The algorithm’s performance relies on two parameters which must be tuned. Through
the procedure described in Theoretical Background section, the problem is deconstructed in a
way that necessitates the tuning of only one of these parameters, namely MinPts. The process
involves an iterative approach, where different values of MinPts are explored. For each iteration,
the optimal value of ε is determined, and subsequently, the DBSCAN algorithm is applied. The
clustering results are then assessed, and the iteration yielding the highest score is selected,
ultimately leading to the identification of the optimal parameter combination.

The number of clusters in this method is not known a priori. Instead, the number of clusters
is determined dynamically during the execution of the algorithm. Larger MinPts tends to create
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less, but bigger, clusters, whereas smaller MinPTs creates a numerous compact clusters.
In the context of both the cooling and intake & exhaust systems, the process of determining

the optimal MinPts value followed a two-step procedure. Initially, a broad array of candidate
values was generated, with these values spaced at larger intervals. Subsequently, the winning
parameter from this initial array served as the central value for another array, which was de-
signed to explore values in close proximity to this central parameter. The final selection for
MinPts was based on the best parameter identified within this more refined array.

As for the anomaly detection task, this is based on ε parameter. If a test point’s distance
to each closest core point is larger that ε, then this point is considered an anomaly.

Cooling System
The optimal parameters of the DBSCAN anomaly detection algorithm in the cooling system

were found to be equal to MinPts = 216 and ε = 1.568. This result is far away from the initial
estimation of MinPts = 2 · Columns, proposed by Ester et al. (1996). The optimal value
of ε was found through the elbow in the average k-NN over number of points graph, with
k = MinPts = 216.

Figure 62: Average k-NN distance graph to specify optimal value of ε in the cooling system (DBSCAN).

As a density based method, DBSCAN clusters data points based on their proximity, which
is determined by the distance parameter ε. In this particular case, the algorithm clustered the
training dataset in four clusters. Notably, one of these clusters stands out as it encompasses
nearly 90% of all the training data points, while the remaining three clusters collectively accom-
modate the remaining data points. In a similar manner, the distribution of points to clusters
in the test phase results in the same image. This clustering pattern suggests the presence of
a dominant cluster that captures a substantial portion of the dataset, while the other clusters
represent more specialized or less prevalent patterns within the data. This results in 465 points
identified as anomalies, corresponding to 1.62% of the test data.

Intake & Exhaust System
The optimal results of DBSCAN hyper-parameters in the intake & exhaust system were

found to be MinPts = 133 and ε = 0.469. Similarly to the cooling system, MinPts value was
very different from the initial estimation of Ester et al. (1996).
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Figure 63: Distribution of points to clusters between train (left) and test (right) phases with DBSCAN in the
cooling system.

Figure 64: Average k-NN distance graph to specify optimal value of ε in the intake & exhaust system (DBSCAN).

In contrast to the previous scenario, the analysis indicated the presence of a significantly
larger number of clusters in this case, 31 in number. Furthermore, during both the training and
testing phases, it appears that data points are distributed more evenly among these clusters,
suggesting a more balanced and comprehensive clustering outcome.

The shift towards smaller values for the MinPts parameter, which subsequently leads to a
reduction in the ε parameter, is a significant contributing factor to this observed increase in
cluster number. Additionally, it is crucial to note that this shift in hyper-parameters results
in the emergence of numerous smaller clusters, which can capture more subtle data patterns.
However, it also raises concerns about the increased sensitivity to anomalies during the test
phase. The exact trade-offs between cluster degree of detail and anomaly detection performance
require further investigation and validation. The model detected 1006 anomaly points, 3.31%
of the total test data points.

Discussion Over DBSCAN Results
The application of DBSCAN in the cooling and intake & exhaust systems showcased another
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Figure 65: Distribution of points to clusters between train (left) and test (right) phases with DBSCAN in the
intake & exhaust system.

characteristic of the algorithm that has not been taken into consideration. Fewer, big clusters
lead to less anomalies, whereas more and compact clusters lead to more anomalies. This outcome
can be observed in DBSCAN results and in the comparative results table of the next chapter
(here). This clustering algorithm is density based and does not require the number of clusters to
be given in advance. Instead, it is determined based on the algorithm hyper-parameters while
it is executing. In parallel with the categorization of points as outliers in the training phase,
this algorithm is considered to be more advanced when compared to K-Means or GMM. Hyper-
parameter selection is of critical importance since the algorithm is very sensitive to changes in
them. This could also be a potential reason for the observed anomaly detection results.

5.3.4 SOM Threshold Based Anomaly Detection Algorithm Results

The utilization of SOMs leads to a clustering result which is comparable to the other methods
but also different. SOMs assign points to a predetermined number of nodes, which are either
arranged in a 1D or a 2D pattern. Node positions are updated with every iteration of the
algorithm, creating a more accurate clustering result. In the 2D arrangement, which is used
in this study, more nodes are updated given a certain radius of influence, due to their more
compact placement. The number of nodes is calculated according to the number of observations
(n) in each dataset by the equation round(

√
5 ·

√
n). The resulting map size is equal to 38×38.

Furthermore, the rate of node weight update within the radius of influence of each node can be
equal, or given by a Gaussian distribution, resulting in better tuned map. The second approach
is employed in this study. Regarding the learning rate, it is reduced based on the number of
iterations in order to avoid over-fitting of the algorithm. Radius of influence is also updated
with a similar function.

The residuals of all test data points are calculated following the training of the map. The
calculation involves calculating the average of all training points assigned to each node as a form
of test point reconstruction. For each test point, the residual is equal to the point itself minus
the reconstruction. The anomaly detection part of the algorithm is based on a threshold value
on this residual. This value is unique for each system and it is found through the distribution
of average residuals. The specifics of the operation and the algorithm parameters are described
separately for each system.
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Figure 66: Difference in radius of influence between nodes in 1D vs 2D SOM node arrangement.

Figure 67: Quantization and Topographic errors plot of SOM in the cooling system.

Cooling System
The optimal values for the initial learning rate and radius of influence are found through

experimentation with different values. For the particular system they are equal to 1.1 and 0.8
respectively. The SOM is trained for 80 iterations or epochs. As can be seen in Figure 67, this
parameter combination provides a decreasing quantization error as iterations progress, along
with a consistent topographic error from the 40th iteration and onwards.

A plot of point distribution to clusters between the train and test phase is required in order to
evaluate the clustering performance. The number of clusters is significantly larger compared to
the previous methods since each neuron and its assigned points shape a cluster. 38× 38 = 1444
neurons are present. To make visualization possible, the nodes of the SOM are clustered with
K-Means. The optimal number of node clusters is found to be 13. The cluster each node is
assigned to may be seen in Figure 68. Each node is identified by the position it held in the
original grid. As far as for the points distribution to these node clusters, it is similar between
the train and test phases, indicating a good resulting map.

Regarding the residuals and their distribution, this is depicted in a plot, and the threshold
for anomaly detection is established based on this visualization. In the particular system,
the majority of residuals is between 0 and 0.3 and the distribution is tailed towards bigger
values. This results in the threshold value being set at 0.65. Each point with residual ≥
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Figure 68: Clusters of SOM nodes plot in the cooling system.

Figure 69: Distribution of points to SOM node clusters between the train (left) and (test) phases in the cooling
system.

0.65 is categorized as an anomaly. 822 anomalies have been identified by this combination of
parameters. This number is equivalent to 2.86% of the test dataset.

Intake & Exhaust System
Similarly to the cooling system, the SOM algorithm in this dataset is also trained for 80

iterations. The optimal initial values of learning rate and radius of influence are equal to 1.15
and 1.85 respectively. The plot which visualizes the decrease in quantization and topographic
errors over the number of iterations shows a negative trend in the quantization error and a
steady value of topographic error after decreasing for 50 iterations.

The optimal cluster number for the nodes is found to be 10. The cluster to which each
node is assigned to is displayed in Figure 72. Based on that, the distribution of points in these
ten node clusters between the train and test phases may be observed in Figure 73. Again, the
distributions display high similarity, an indication of the capability of the model to effectively
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Figure 70: Distribution of reconstruction residuals in the cooling system.

Figure 71: Quantization and Topographic errors plot of SOM in the intake & exhaust system.

cluster unseen data, resulting in a favorable outcome.
The reconstruction procedure in this dataset lead to a more concentrated distribution of

residuals, with values ranging between 0.1 to 0.2. Based on that and the tail of the distribu-
tion towards the higher values, the threshold value is set at 0.3. The algorithm detected 452
anomalous points, a number that translates to a ratio of anomalies value equal to 1.57%.

Discussion Over SOM Threshold Based Anomaly Detection Results
The main drawback of SOMs according to this study is the plethora of parameters that

must be tuned. For example, it is required to specify values for map size, number of iterations,
learning rate, size of neighborhood and others. Additionally the algorithm requires a lot of
computational time making the tuning process difficult.

The threshold based anomaly detection delivered good results due to the choice of parame-
ters. The map was created to have enough nodes to allow for good reconstruction, which was
based on the average of the points assigned to a node. As a result, this method is sensitive to
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Figure 72: Clusters of SOM nodes plot in the intake & exhaust system.

Figure 73: Distribution of points to SOM node clusters between the train (left) and (test) phases in the intake
& exhaust system.

the quality of the map. The selection of the threshold values which are responsible for anomaly
detection was performed by averaging the residuals, based on the specific characteristics of each
system. More refined approaches regarding the determination of the threshold values may be
developed in future research.

5.3.5 SOM Clustering Based Anomaly Detection Algorithm Results

In this version of the anomaly detection with Self Organising Maps, the anomaly detection
part of the reconstruction residuals is handled by a clustering algorithm. Initially, the DBSCAN
algorithm was employed, and the noise points it detected were classified as anomalies. The
benefits of using DBSCAN for the task can be summarized in its ability to detect anomalies
by itself and that the number of clusters must not be predetermined. This plan was later
abandoned since almost no anomalies were detected. Instead, K-Means clustering has been
employed. In contrast to DBSCAN, this algorithm requires prior specification of the cluster
number. Additionally, it lacks autonomous anomaly detection capabilities since all points must
initially be assigned to clusters. This implies that points situated at a considerable distance
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Figure 74: Distribution of reconstruction residuals in the intake & exhaust system.

from the centroid of a cluster could potentially be anomalies. Consequently, the approach of
anomaly detection with K-Means is utilized, which is to classify points as anomalies if their
distance from the cluster centroid exceeds the 98th percentile of all distances between cluster
points and the cluster centroid (for the particular cluster).

The training and testing phases of the algorithm are identical between the clustering and
threshold based anomaly detection methodologies with SOMs. Therefore, attention will be
directed solely towards the outcomes of anomaly detection when employing this approach.

Cooling System
In the cooling system, the residuals have been clustered in two clusters. This number of

clusters was suggested by the silhouette coefficient and the CH index. No elbow was identified
in the Sum of Squared Error plot. By applying the anomaly detection criterion to these two
clusters, 576 data instances were categorized as anomalies. As a percentage of total points this
number is equivalent to 2.00% of them.

Intake & Exhaust System
The clustering of the residuals resulted in two clusters. Similarly to the cooling system the

optimal number was found by prioritizing the silhouette coefficient and the CH index as no
optimal number was identified by the elbow method. 576 points were detected as anomalies
corresponding to 2.00% of the test dataset points.

Discussion Over SOM K-Means Based Anomaly Detection Results
The advantages and disadvantages of the SOM training process have been discussed in the

threshold based version of the algorithm.
With regards to the anomaly detection scheme employed by this method, the clustering of

residuals is proposed as an alternative to threshold based criteria. The method for categorizing
points as anomalies was the same as in the K-Means algorithm, with the difference being that
it has been applied directly to the obtained clusters and not in a testing phase. Overall,
it produced results that are comparable to the threshold based method, something that is
promising for future research.
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6 Discussion

This section dives into the outcomes of the anomaly detection models, encompassing their
evaluation and discussion. It centers on deviations from anticipated results, as well as the ad-
vantages and disadvantages associated with various approaches. Additionally, it investigates the
detection of simulated anomalies within one system and analyzes the impact of dimensionality
reduction within the same context.

6.1 Discussion Over Anomaly Detection Results

Upon the initial examination of the outcomes produced by the anomaly detection algorithms,
it becomes apparent that the various methodologies under investigation delivered remarkably
comparable results. They demonstrated similarities in both the percentage of detected anoma-
lies within the test dataset and the manner in which data points were distributed among the
clusters between the two phases. This convergence in results suggests consistent performance
across the diverse approaches evaluated during the analysis.

Table 7: Anomalies detected by each algorithm in the cooling and intake & exhaust systems as percentage of
total test data points.

Detected Anomalies as Percentage of Test Data

System K-Means GMM DBSCAN SOM (Thresh.) SOM (Clust.)

Cooling System 2.08% 2.02% 1.62% 2.86% 2.00%
Intake & Exhaust System 1.87% 2.06% 3.50% 1.57% 2.00%

In order to further analyze the results, it is important to examine the detected anomalies
from the different methodologies in parallel. The expectation is to identify a common set of
data points that are flagged as anomalies across all applied models. An additional expectation
revolves around the discovery of shared anomalies between two or more of the systems.

Concerning the first expectation, all methods detected similar anomalies between June-2021
to November-2021. The selection of time window was chosen so that the detected anomalies are
clearly visible. In the cooling system, K-Means and the two SOM based algorithms identified
similar points as anomalies. GMM and DBSCAN, detected points in the same time series areas
as the other methods, although scattered and not as many when compared to the others. In the
intake & exhaust system, all methods except K-Means delivered comparable results. One may
consider DBSCAN’s detected anomalies to be more sparse compared to the other methods. In
this time window, K-Means fails to identify the majority of anomalies that were detected by
the other methods.

With respect to the second expectation, several of the detected points across the different
methods seem to be common between the two systems. If the same data point is considered
as an anomaly in more than one system, the likelihood of being a true anomaly is increased.
In order to quantify this into a meaningful outcome, the number of common unique anomalies
from all methods between the two systems will be used.

The number of total anomalies detected from all methods in the cooling system is 2216,
whereas in the intake & exhaust system this number is 2142. As percentages of the test dataset,
these numbers are transformed to 7.70%, and 7.45%. The number of common points between the
systems is 562, approximately 26% of the average detected anomalies. This number showcases
the performance of the employed methodology; detecting anomalies in ME sub-systems and
then comparing and finding common points between those.
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Figure 75: Comparison of detected anomalies by the different methods in the cooling system.

Figure 76: Comparison of detected anomalies by the different methods in the intake & exhaust system.

6.1.1 Proposal to Improve Results: Ensemble Anomaly Detection

When considering as anomalies all the unique detected points by the different methods, the
process of anomaly detection in each ME system identified that 7.5-7.7% of the test dataset
consists of anomalies. Even though the contents of the test data are not known, one could po-
tentially argue that these percentages are high, especially compared to the anomaly percentages
of the individual algorithms.

The proposal is to apply anomaly detection based on an ensemble of methods. By applying
all algorithms to a particular system and then processing the results in parallel, the categoriza-
tion of a point as anomaly may be done only if it is present in more than one anomaly dataset.
This ensures a more robust detection process since false positives would be excluded.
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6.1.2 Ensemble Anomaly Detection Results

The anomaly points are reduced from 2216 to 545 and from 2142 to 659 respectively, with
anomaly ratios of 1.89% and 2.29%, when the proposal is applied to the cooling and the intake
& exhaust systems. These numbers are close to the results that the methods delivered when
they were applied separately. This is a promising result as a first indication.

Time-series plots of selected parameters from each system have been created in order to
further analyze the results. The visualization is used to highlight the capabilities of the ensemble
method, as well as those of the proposed algorithms in general. The figures are focused on a
relatively small time window to allow for visual accuracy of the results.

Figure 77: Time-series plot of normal points vs. detected anomalies in selected parameters of the cooling system.

Several outcomes may be derived from Figure 77 and Figure 78. First is the, now, proven
capability of the methods to detect anomalies. The second concerns the detection of anoma-
lies between the different systems of the ME. As observed, the same time points have been
categorized as anomalies between both systems. However, at this stage of the research, it is
not possible to determine which system or parameter was the initial cause of these anomalies.
Furthermore, in both figures, anomaly points that might not be associated to anomalies from
the visualized parameters may be observed. This is affiliated with anomalies caused by other
parameters of the system.

6.1.3 Data Related Issues

In time series data, the order of observations holds significant meaning due to the presence
of temporal dependencies which according to Vanem & Brandsæter (2021) contain information.
This should be taken into consideration when splitting the dataset in parts. Despite the time-
dependent nature of the data, they are randomly split it into training and test sets, overlooking
the temporal sequence. While this is not ideal for time series data, it ensures that the training
data adequately represents the test data.
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Figure 78: Time-series plot of normal points vs. detected anomalies in selected parameters of the intake &
exhaust system.

To demonstrate the importance of representative training data, additional anomaly detection
models have been trained based on datasets that were split by maintaining the time sequence.
This means that the training dataset included the first 75% of observations, whereas the test
contained the remaining 25%. The results showed more than 50% anomaly ratio in all ME
systems. Moreover, there was no similarity observed in the distribution of points into clusters
between the training and testing phases.

These issues are the main preventative factors from employing the methodology of this
study for online anomaly detection. The training dataset should be representative of all future
observations, which, in the case of splitting the dataset based on timestamp proved not to
be true. To summarize, the training dataset should contain observations corresponding to all
conditions that the vessel and the main engine may encounter.

A possible solution to combat the time dependent issues is to utilize a time series reconstruc-
tion model, apply it to the dataset and then obtain the residuals. Then, perform the anomaly
detection algorithms on those.

Another data related issue is the quality of the training dataset. In unsupervised anomaly
detection, it is assumed that the training data represent normal system conditions. If new
observations significantly differ, they are identified as anomalies, potentially indicating system
faults or deviations from standard operation. In this study, the dataset contained no known
faults or anomalies though this may not be completely true. The thorough data preparation
phase aimed to eliminate these anomalies, although it may not have been possible to achieve
a 100% success rate in doing so. As a result, the detected anomalies may contain few false
positive data points. Additionally, the training dataset may enclose some anomalies which are
treated as normal, resulting in a few false negatives in the testing phase.

6.2 Effect of Dimensionality Reduction in Anomaly Detection Results

Dimensionality reduction offers a trade-off between decreased computational time, more
efficient ML operations, and information loss. In this study, PCA has been utilized for the task.
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This method transforms the dataset’s correlated features to uncorrelated principal components
(PCs). Each PC tries to captures as much of the dataset’s variance as possible. As a result,
every additional PC captures less of the system’s variance compared to what the previous did.
The methodology under which the optimal number of PCs is chosen may be found in PCA’s
methodology sub-section (see here).

The intake & exhaust system will be used as an example. The reason behind this selection
is that this particular system had the biggest reduction in features by PCA, from 17 to 4,
while maintaining 97.5% of the initial dataset’s variance. The K-Means, GMM, and DBSCAN
algorithms are applied in the non-PCA dataset and a comparative analysis of the results follows.

This dataset contains exactly the same data-points as the one used in the other steps of this
study. The only difference between them is the number of features.

6.2.1 Application of K-Means in No-PCA Dataset

Through the iterations of the K-Means algorithm it has been found that the optimal number
of clusters for the intake & exhaust system is 5. The algorithm searched in the range between
2 and 35. This number has been proposed by the CH index, the silhouette coefficient, and
the Last Leap. The resulting distribution of points between the train and test datasets, after
training the model and applying it to the test data, is comparable between the phases. This
ensures a good clustering result. The model identified 541 anomalies which correspond to 1.88%
of the test dataset.

Figure 79: Distribution of points to clusters when using K-Means between the train (left) and (test) phases in
the intake & exhaust system. The points of this dataset have not been transformed with PCA.

Figure 79 and the equivalent of the system where the original algorithm is applied to the
data (Figure 55) share no similarities when it comes to distribution to clusters. It is uncertain
if the equality in cluster number can be justified. Overall, the number of detected anomalies is
comparable between the with and without PCA datasets.

6.2.2 Application of GMM in No-PCA Dataset

The potential number of clusters tested in the case of clustering with GMMs was [12, 42].
The optimal, according to BIC, AIC, and the silhouette coefficient was 40. The model has been
trained based on that number. The distribution of the test points has been equivalent to what
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Figure 80: Distribution of points to clusters when using GMM between the train (left) and (test) phases in the
intake & exhaust system. The points of this dataset have not been transformed with PCA.

found in the training phase. This point distribution has no similarities to the clustering of the
same dataset with PCA.

The cluster assignment probability distribution of the training data is required in order to
determine the anomaly detection threshold. Practically, the probabilities of all points exceed
0.9 and this is where the threshold is set. This result, when compared to the tailed distribution
of the with PCA dataset, differs significantly. The procedure for setting the threshold has
became more straightforward in this case. Only 324 anomalies have been detected by this
model (corresponding to anomaly ratio 1.13%), which is less than the original model detected
(594 anomalies).

Figure 81: Distribution of cluster assignment probabilities of GMM for the intake & exhaust system in the dataset
without PCA.

6.2.3 Application of DBSCAN in No-PCA Dataset

The optimal hyper-parameter values of DBSCAN have been found equal to MinPts = 63
and ε = 0.5339. The number of clusters developed through the training process with these
parameters is equal to 64. Again, the number of clusters found in this example does not align
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with the algorithm where PCA has been performed.

Figure 82: Average k-NN distance graph to specify optimal value of ε in the intake & exhaust system without
PCA applied to the dataset (DBSCAN).

Using this method, the model detected a total of 798 anomalies. It is important to mention
that the same method in the, transformed with PCA, dataset had also detected an increased
number of anomalies compared to other methods. The ratio of anomalies value for DBSCAN
is equal to 2.77%.

Figure 83: Distribution of points to clusters when using DBSCAN between the train (left) and (test) phases in
the intake & exhaust system. The points of this dataset have not been transformed with PCA.

6.2.4 Comparative Analysis of Results Between With & Without PCA Datasets

Following the assumption that the transformed dataset contains only 97.5% of the variance
of the original, the logical deduction is that the algorithms should detect fewer anomalies in it
than in the original dataset. However, the initial significant observation which is derived when
comparing the results is that more or equal anomalies are detected in the transformed dataset.
Several reasons could have influenced this outcome which will be explained in the text that
follows.
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Table 8: Anomalies detected by each algorithm when applied to the intake & exhaust system with and without
dimensionality reduction.

Detected Anomalies in The Intake & Exhaust System

Algorithm / PCA With With [%] Without Without [%]

K-Means 539 1.87% 541 1.88%
GMM 594 2.06% 324 1.13%

DBSCAN 1006 3.50% 798 2.77%

1. There were multiple False Positive (FP) points categorized as anomalies in the detected
anomalies datasets when dimensionality reduction was used. That should have been
enough to influence the results.

2. Vanem & Brandsæter (2021) state that the first principal components are those carrying
the transformed sensor signal, whereas the last carry mostly noise. Based on that, it is pos-
sible that by removing the remaining noise from the dataset (2.5% not explained variance),
the dataset’s quality has been enhanced along with the sensibility to true anomalies.

3. PCA may have identified combinations of the principal components that explain the
anomalies better than the original parameters alone. By reducing dimensionality, PCA
may emphasize certain patterns or anomalies that were not as evident in the original
high-dimensional data.

Based on the analysis, it appears unlikely that all three points can hold simultaneously. In
the case that point 1 is true, it implies that the anomaly detection has not been successful. The
alternative scenario is that points 2 and 3 are valid. According to the findings so far, this is
considered to be the case in this study.

Overall, the performance of the algorithms increased when utilizing PCA for dimensionality
reduction. First, computational time was significantly reduced. Second, the dataset dimensions
were decreased and the information was stored in a more compact format. Third, the algorithms
delivered better, or at least equally good anomaly detection results.

6.3 Detection of Simulated Anomalies

The anomaly detection results highly depend on the dataset’s quality. In this study the
dataset contained no known faults. As a result, it has been difficult to evaluate the performance
of the models. In order to do so, anomalies have been generated, according to the simulation
methodology presented earlier (see here). The characteristics of these datasets are:

� The simulated anomalies are infused in a sequence of a parameter. Only some of the
sequence points are altered.

� Altered parameter specifics: 80 point degradation sequence, 2 single point anomalies. The
rest of the points have already been categorized as normal by the algorithms.

Additionally, the models have been tested with three datasets. The first contains one altered
parameter and has total length of 250 points, 82 of which are the simulated anomalies. The
second is similar to the first with the only difference being that the total length is 1500 points.
The last simulated dataset has 1500 points length but contains simulated anomalies in two
parameters.

Two questions arise from the way these anomalies have been simulated. The first refers to
their placement within the time-series. The second question has to do with the possibility of
encountering such data-points in real operational environments.
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Regarding the anomalies placement, it is considered to not be important since time-sequence
of data is not taken into consideration. Concerning the possibility of encountering the simulated
instances in real life scenarios, they have been created in such way, based on the characteristics
of the time-series that they simulate, in order to ensure a good result.

For the purpose of displaying the ability of the algorithms in detecting these anomalies, an
analysis of the cooling system will be presented.

6.3.1 Simulated Anomalies Presentation

Dataset 1
The selected parameter of the cooling system on which the anomalies are simulated is the

”ME Cylinder 3 Jacket Cooling Water Outlet Temperature”. The parameter is sourced through
the vessel’s Alarm Monitoring System (AMS). Usually, this temperature is kept at almost
constant levels and changes often occur due to faults. The time series plot for this parameter
may be seen below. The two single point anomalies are on the left side of the figure, whereas
the degradation pattern is on the right (Figure 84).

Figure 84: Time series plot of simulated anomalies in the ME Cylinder 4 Jacket Cooling Water Outlet Temper-
ature of the cooling system (dataset 1).

Dataset 2
Similarly to the previous dataset, the simulated anomalies are infused in ”ME Cylinder 3

Jacket Cooling Water Outlet Temperature” parameter.

Dataset 3
In this case, the simulated anomalies are infused in the jacket cooling water outlet tem-

perature time-series of cylinders 3 and 4. The simulated anomalies in the second parameter
have been placed at the same time-points where those of the first parameter are. By simulating
anomalies in one more parameter of the system, it is expected that the scenario mimics better
a real anomalous situation.

77



6.3 Detection of Simulated Anomalies 6 DISCUSSION

Figure 85: Time series plot of simulated anomalies in the ME Cylinder 4 Jacket Cooling Water Outlet Temper-
ature of the cooling system (dataset 2).

Figure 86: Time series plot of simulated anomalies in ME Cylinder 3 & 4 Jacket Cooling Water Outlet Temper-
ature of the cooling system (dataset 3).

6.3.2 Results of Simulated Anomalies Detection

The models are trained with the same datasets as in the previous steps of the study. The
main difference is that the test dataset is significantly more compact when compared to the
28310-point dataset that was originally used. Now, it contains the simulated anomalies and few
normal points.

The accuracy metric, as proposed in Velasco-Gallego & Lazakis (2022a), is utilized in order
to evaluate the results of anomaly detection. The mathematical formulation of this metric is
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found below:

Accuracy =
TP + TN

TP+ TN+ FP + FN
(41)

where:

� TP: True Positive

� TN: True Negative

� FP: False Positive

� FN: False Negative

The results include the implementation of the anomaly detection algorithms with K-Means,
GMM, and DBSCAN.

K-Means
In the K-Means implementation, the algorithm clustered the training data in 13 clusters, as

this number has been found to be the optimal for this dataset. As expected, the distribution
of test points to clusters displays no similarity with the train phase in any of the three cases
that were tested. Furthermore, in the first dataset, this algorithm identified 41 anomalous data-
points, with no FP points. The algorithm managed to detected both single point anomalies.
The performance of the algorithm did not change with the second dataset. Again, it managed
to detect 41 anomalies in total. Both single point anomalies have been detected. When the
third dataset was tested for anomaly detection, the algorithm managed to detect 75 of the 82
anomalous points.

Figure 87: Point distribution to clusters between train (left) and test (right) phases with K-Means in the cooling
system. The test dataset is ”simulated anomalies Dataset 1”. The distribution of points to clusters in the other
2 datasets is almost identical to the one presented here.

GMM
According to what presented previously, a good cluster number for the cooling system when

using the GMM algorithm is 23. When the algorithm was tested with the first dataset, it
identified only 9 TP points. One of the two simulated point anomalies has been detected. This
result does not demonstrate the capabilities of GMM. In the anomaly detection implementation
with the second dataset, the algorithm detected 126 points as anomalies. Out of those TP were
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47 of them, with the remaining 79 being FP and 2 being FN. Similar results were obtained
with the third dataset: 152 points detected, 68 TP, 84 FP, and 5 FN.

Overall, GMM underestimated the number of anomalies contained in the first dataset,
whereas it overestimated the anomalies in the second and third.

Figure 88: Point distribution to clusters between train (left) and test (right) phases with GMM in the cooling
system. The test dataset is ”simulated anomalies Dataset 1”. The distribution of points to clusters in the other
2 datasets is almost identical to the one presented here.

DBSCAN
In the case of DBSCAN, as previously stated, the number of clusters is not defined in

advance. In this case, it has been found to be 17. As far as the anomaly detection results are
concerned, when dataset 1 was applied, the model detected 76 anomalies, all of them were TP.
The model managed to detected both point anomalies. The anomalies detected from the second
dataset were 79. The model detected both point anomalies. 76 of them were TP and 3 were
FP. When the third dataset was applied, the model detected 81 anomalies. 79 of the 82 TP
were detected, with 2 FP also being detected.

6.3.3 Comparative Evaluation of Simulated Anomaly Detection Results

The results indicated that the models are able to detect a respectable percentage of the
simulated anomalies. K-Means and DBSCANmanaged to achieve the results without identifying
a lot of FP. On the contrary, GMM under-performed in the anomaly detection task with dataset
1 and performed averagely with datasets 2 and 3. Additionally, it detected significant amount
of FP points.

Generally, the algorithms identified the point anomalies as well as lots of points of the
degradation sequence. Again, the accuracy levels of the results should be enhanced by utilizing
an ensemble approach. With the present results, DBSCAN’s performance was superior when
compared to the other methods.

Furthermore, the ability of the algorithms to capture the simulated anomalies is depended
on their structure. In this example, the simulated time series was infused to only one or two
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Figure 89: Point distribution to clusters between train (left) and test (right) phases with DBSCAN in the cooling
system. The test dataset is ”simulated anomalies Dataset 1”. The distribution of points to clusters in the other
2 datasets is almost identical to the one presented here.

Table 9: Accuracy score for anomaly detection of simulated anomalies in the cooling system (dataset 1).

Accuracy Score Per Algorithm - Cooling System (Dataset 1)

Algorithm K-Means GMM DBSCAN

TP 41 9 76
TN 168 168 168
FP 0 15 0
FN 41 73 6

Accuracy 83.60% 70.80% 97.60%

Table 10: Accuracy score for anomaly detection of simulated anomalies in the cooling system (dataset 2).

Accuracy Score Per Algorithm - Cooling System (Dataset 2)

Algorithm K-Means GMM DBSCAN

TP 41 47 76
TN 1418 1372 1418
FP 0 79 3
FN 41 2 3

Accuracy 97.27% 94.60% 99.60%

Table 11: Accuracy score for anomaly detection of simulated anomalies in the cooling system (dataset 3).

Accuracy Score Per Algorithm - Cooling System (Dataset 3)

Algorithm K-Means GMM DBSCAN

TP 75 68 79
TN 1418 1343 1418
FP 0 84 2
FN 7 5 1

Accuracy 99.53% 94.07% 99.80%

parameters of the dataset. In a more realistic scenario, the affected parameters may have been
more. The effect of PCA may have also influenced the results, due to the fact that it could have
removed anomaly information explained by the lost percentage of variance.
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A note should also be added concerning the ”Accuracy” metric. This metric evaluates the
anomaly detection process in general by taking into account TP, FP, TN, and FN and not just
the percentage of detected anomalies. It is affected by the number of points in each category.
For example, while having similar number of detected anomalies, DBSCAN’s score increased
from 97.6% in dataset 1 to 99.6% in dataset 2. This is caused from the increase in the number
of normal points. As a result, the accuracy metric should be taken into account in parallel to
the percentage of detected anomalies.
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7 Conclusions

This study was involved in the anomaly detection of marine engine sensor data for condition
monitoring. Several algorithms have been used, all of them utilizing unsupervised machine
learning techniques. Each of the examined methods had different aspects where they excelled
or they did not perform as well in. Nevertheless, through this research, several characteristics
of the methods have been showcased. Robust methodologies have been developed in order to
find optimal hyper-parameter values for the machine learning algorithms. Additional methods
for finding optimal values used for anomaly detection purposes, such as thresholds, have also
been established through extensive experimentation and optimization on multiple datasets.

Each of the utilized algorithms, namely K-Means, GMMs, DBSCAN, and SOMs had its
own intricacies. It has been recognized that K-Means offered a simplistic and efficient approach,
GMMs excelled in modeling more complex data distributions, DBSCAN exhibited robustness
against noise, and SOMs provided valuable insights through the reconstruction process and
the clustering of residuals. Nonetheless, each method had its own set of limitations, such as
sensitivity to cluster numbers or assumptions about data distribution. Thus, it is suggested to
use an ensemble of methodologies even if, as showed, all individual methods performed well, in
order to have better anomaly detection results.

Other valuable outcomes included the potential positive effect of dimensionality reduction
in complex marine engine system datasets and the ability of the models to detect simulated
anomalies.

One of the main challenges associated with machine learning applications in the marine
machinery environment in general is the quality of data. In order to construct robust algorithms,
a plethora of data is required along with information about fault data. The latter may be used
for classification purposes or they can be removed in order to create unsupervised models.
Due to the absence of known faults or anomalies in this study, the approach used was to try
and eliminate anomalies which may have been present in the data preparation phase and then
assume that the remaining points displayed normal behavior. The algorithms have been trained
with such datasets and the anomaly detection has been based on that assumption.

7.1 Future Work

Following the conclusion of this study and the valuable insights gained from it, it is important
to highlight areas that could enhance the outcome of the present or that may hide potential for
further advancements in the field of condition monitoring.

1. Exploration of Additional Clustering Techniques: The field of clustering offers multiple
techniques, and further investigation into methods like hierarchical clustering or OPTICS
can provide a broader perspective on anomaly detection. Techniques like K-Means++
and other emerging clustering algorithms may yield novel insights and improved anomaly
detection capabilities.

2. Time Series Reconstruction & Clustering of Residuals: One of the main drawbacks of the
present study is its inability to scale-up easily to an online anomaly detection methodology.
Though clustering methods fit the anomaly detection task with their unsupervised char-
acter, proper representation of the test data in the training dataset is required to ensure
robust anomaly detection. In the case where not many data are available for training pur-
poses, combining time-series reconstruction techniques with clustering of residuals could
enhance the ability to detect anomalies in a dynamic, online manner while preserving the
temporal aspect of the data.

3. Anomaly Classification & Explainable AI: Developing a framework that can not only
detect anomalies, but also classify them into specific fault categories would be valuable
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for predictive maintenance and proactive decision-making tools. Future research can focus
on developing models that, not only identify anomalies, but also provide explanations with
the use of Explainable AI for why a particular data point is flagged as an anomaly. These
tools could be great aid to operators and superintendent engineers.

4. Fault Prognosis: As a natural progression of the previous point, predicting faults before
they occur is a significant goal. Future research can deal with fault prognosis techniques
that utilize historical data, and anomaly detection models to predict future issues.
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Appendix A: Parameters of Each Main Engine System

This appendix contains tables of the parameters in each sub-system of the main engine.
The first table contains the parameters related to the cooling and fuel systems, whereas in the
second are the parameters of the intake & exhaust and the lubrication systems.

Table 12: Parameters of cooling and fuel systems.

Cooling System Fuel System

ME air cooler cool w inlet pre AMS (MPa) M/E Shaft RPM TRQM (rpm)
ME air cooler cool w inlet tem AMS (C) ME Consumption TRQM (lt/hr)
ME air cooler cool w outlet te AMS (C) ME FO inlet press AMS (MPa)
ME cyl 1 JCW outlet temp AMS (C) ME FO inlet temp AMS (C)
ME cyl 1 PCO outlet temp AMS (C) ME fuel index AMS (%)
ME cyl 2 JCW outlet temp AMS (C) Shaft Power TRQM (kW)
ME cyl 2 PCO outlet temp AMS (C) Shaft Torque TRQM (kNm)
ME cyl 3 JCW outlet temp AMS (C)
ME cyl 3 PCO outlet temp AMS (C)
ME cyl 4 JCW outlet temp AMS (C)
ME cyl 4 PCO outlet temp AMS (C)
ME cyl 5 JCW outlet temp AMS (C)
ME cyl 5 PCO outlet temp AMS (C)
ME cyl 6 JCW outlet temp AMS (C)
ME cyl 6 PCO outlet temp AMS (C)
ME JCW inlet press AMS (MPa)
ME JCW inlet temp AMS (C)

ME JCW outlet press AMS (MPa)

89



Table 13: Parameters of intake & exhaust and lubrication systems.

Intake & Exhaust System Lubrication System

M/E T/C RPM IND1 (rpm) Cyl 01 AFT main bearing temp AMS (C)
ME cyl 1 exh gas outlet temp AMS (C) Cyl 01 crank pin bearing temp AMS (C)

ME cyl 1 scav air temp AMS (C) Cyl 01 fore main bearing temp AMS (C)
ME cyl 2 exh gas outlet temp AMS (C) Cyl 02 AFT main bearing temp AMS (C)

ME cyl 2 scav air temp AMS (C) Cyl 02 crank pin bearing temp AMS (C)
ME cyl 3 exh gas outlet temp AMS (C) Cyl 03 AFT main bearing temp AMS (C)

ME cyl 3 scav air temp AMS (C) Cyl 03 crank pin bearing temp AMS (C)
ME cyl 4 exh gas outlet temp AMS (C) Cyl 04 AFT main bearing temp AMS (C)

ME cyl 4 scav air temp AMS (C) Cyl 04 crank pin bearing temp AMS (C)
ME cyl 5 exh gas outlet temp AMS (C) Cyl 05 AFT main bearing temp AMS (C)

ME cyl 5 scav air temp AMS (C) Cyl 05 crank pin bearing temp AMS (C)
ME cyl 6 exh gas outlet temp AMS (C) Cyl 06 AFT main bearing temp AMS (C)

ME cyl 6 scav air temp AMS (C) Cyl 06 crank pin bearing temp AMS (C)
ME scav air receiver inlet pres AMS (MPa) ME cyl lub oil temp AMS (C)

ME scav air receiver temp AMS (C) ME main LO inlet press AMS (MPa)
ME TC exh gas inlet temp AMS (C) ME main LO inlet temp AMS (C)
ME TC exh gas outlet temp AMS (C) ME TC LO inlet press AMS (MPa)

ME TC LO outlet temp AMS (C)
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Appendix B: Characteristics of each Main Engine System Data

This brief section has the purpose of showcasing the characteristics of the parameters that
constitute the ME sub-systems. The following figures are presented for each system in order to
do that:

1. Time-series plot of system parameters.

2. Correlation heatmap of system parameters.

3. Scree plot of system parameters (plot that visualizes the selection of optimal number of
components in PCA)

4. Scatter-plot of principal components for each system, also containing distribution of each
component’s data-points.
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Cooling System

Figure 90: Time-series plot of parameters in the cooling system.

92



Figure 91: Heatmap of parameters in the cooling system.

Figure 92: Scree plot of the cooling system. Used to determined optimal value of principal components.
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Figure 93: Scatter-plots and distribution of cooling system PCs.
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Fuel System

Figure 94: Time-series plot of parameters in the fuel system.
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Figure 95: Heatmap of parameters in the fuel system.

Figure 96: Scree plot of the fuel system. Used to determined optimal value of principal components.
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Figure 97: Scatter-plots and distribution of fuel system PCs.
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Intake & Exhaust System

Figure 98: Time-series plot of parameters in the intake & exhaust system.
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Figure 99: Heatmap of parameters in the intake & exhaust system.

Figure 100: Scree plot of the intake & exhaust system. Used to determined optimal value of principal components.
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Figure 101: Scatter-plots and distribution of intake & exhaust system PCs.
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Lubrication System

Figure 102: Time-series plot of parameters in the lubrication system.
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Figure 103: Heatmap of parameters in the lubrication system.

Figure 104: Scree plot of the lubrication system. Used to determined optimal value of principal components.
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Figure 105: Scatter-plots and distribution of lubrication system PCs.
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Appendix C: Anomaly Detection Results for the Fuel & Lubri-
cation Systems

This appendix offers a brief presentation of the anomaly detection results in the other two
sub-systems that have not been included in the results section of the thesis.

This results presentation offers a table of cluster number, detected anomalies, ratio of anoma-
lies and distribution plots of points to clusters for each of the examined methods.

Fuel System

Table 14: Presentation of fuel system anomaly detection results.

Fuel System

K-Means GMM DBSCAN SOM (Thresh.) SOM (Clust.)

Cluster Number 23 25 28 11
Anomalies 591 555 756 613 578

Anomalies [%] 2.05& 1.93% 2.63% 2.13% 2.01%

Figure 106: Distribution of points to clusters between train (left) and test (right) phases with K-Means in the
fuel system.
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Figure 107: Distribution of points to clusters between train (left) and test (right) phases with GMM in the fuel
system.

Figure 108: Distribution of points to clusters between train (left) and test (right) phases with DBSCAN in the
fuel system.
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Figure 109: Clusters of SOM nodes plot in the fuel system.

Figure 110: Distribution of points to SOM node clusters between the train (left) and (test) phases in the fuel
system.
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Lubrication System

Table 15: Presentation of lubrication system anomaly detection results.

Lubrication System

K-Means GMM DBSCAN SOM (Thresh.) SOM (Clust.)

Cluster Number 5 10 2 7
Anomalies 572 613 951 770 576

Anomalies [%] 1.99% 2.13% 3.31% 2.68% 2.00%

A comment should be made here, about the results shown in Table 15. All methods iden-
tified smaller number of clusters as optimal when compared to the other systems. This is not
considered to be a negative result, except in the case of DBSCAN where it managed to clus-
ter the points in only two groups. This outcome can be considered negative from an anomaly
detection perspective because it reflects a limited ability to capture the underlying structure of
the dataset. When DBSCAN forms only one significant and one small clusters, the algorithm
may be oversimplifying the data complexity. True anomalies often exhibit unique patterns that
might not be detected by such simplified cluster structures.

Figure 111: Distribution of points to clusters between train (left) and test (right) phases with K-Means in the
lubrication system.
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Figure 112: Distribution of points to clusters between train (left) and test (right) phases with GMM in the
lubrication system.

Figure 113: Distribution of points to clusters between train (left) and test (right) phases with DBSCAN in the
lubrication system.
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Figure 114: Clusters of SOM nodes plot in the lubrication system.

Figure 115: Distribution of points to SOM node clusters between the train (left) and (test) phases in the
lubrication system.
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