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Abstract 

Over the years, the practices that are used to ensure structural integrity and operational 

safety in the maritime sector have remained basically the same; and although efficient, 

they present some important drawbacks. In looking to enable a shift towards predictive 

and condition-based maintenance, the field of Structural Health Monitoring (SHM) has 

emerged as a viable option among stakeholders. The goal of SHM is to infer the 

existence or level of structural degradation using large amounts of in situ sensor-

obtained data. In this direction, the objective of this study is to construct a SHM system 

that estimates the thickness loss due to corrosion in the marine operational environment 

utilizing strain sensing. For this purpose, a simple rectangular plate at uniform corrosion 

was considered as a reference structural element, which was subjected to stochastic 

loading as well. The quantity of interest was treated in a probabilistic framework using 

Bayesian inference. Strain response data were produced through a high-fidelity Finite 

Element (FE) model and due to the nature of Bayesian updating, surrogate models were 

employed to proceed to solution efficiently. 

Keywords: Structural Health Monitoring, uncertainty quantification, inverse problem, 

Bayesian inference, strain sensing. 
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Περίλιψη 

Τα τελευταία χρόνια, οι πρακτικές που χρησιμοποιούνται για να διασφαλιστεί η 

κατασκευαστική ακεραιότητα και η λειτουργική ασφάλεια στον ναυτιλιακό τομέα 

έχουν παραμείνει ουσιαστικά ίδιες· και αν και αποδοτικές, παρουσιάζουν κάποια 

σημαντικα μειονκτήματα. Επιδιώκοντας μια μεταβολή προς την προγνωστική και  υπο 

συνθήκες συντήρηση, ο τομέας της Παρακολούθησης Δομικής Ακεραιότητας (ΠΔΑ) 

κατασκευών εχει αναδειχθεί ως βιώσιμη επιλογή απο τα ενδιαφερόμενα μέρη του 

τομέα. Ο στόχος των συστημάτων ΠΔΑ είναι η εξαγωγή συμπερασμάτων σχετικά με 

την ύπαρξη ή τον βαθμό δομικής υποβάθμισης, χρησιμοποιώντας μεγάλες ποσότητες 

δεδομένων απο επιτόπιους αισθητήρες. Προς αυτή την κατεύθυνση, ο σκοπός αυτής 

της εργασίας είναι να κατασκευάσει ενα σχέδιο ΠΔΑ, το οποίο να εκτιμάει την απώλεια 

πάχους λόγω διάβρωσης στο ναυτιλιακό περιβάλλον λειτουργείας, χρησιμοποιώντας 

ανίχνευση παραμορφώσεων. Για τον σκοπό αυτό, θεωρήθηκε μια απλή ορθογώνια 

πλάκα σε συνθήκες ομοιόμορφης διάβρωσης, η οποία υποβάλλεται μάλιστα σε 

στοχαστική φόρτιση. Ο χειρισμός της ποσότητας ενδιαφέροντος έγινε σε πλαίσιο 

πιθανοτήτων χρησιμοποιώντας Μπεϋζιανή συμπερασματολογία. Τα δεδομένα 

παραμορφωσιακής απόκρισης δημιουργήθηκαν μέσω ενός μοντέλου Πεπερασμένων 

Στοιχείων (ΠΣ) υψηλής ακρίβειας και λόγω της φύσης της Μπεϋζιανής αναβάθμισης 

πληροφορίας, υποκατάστατα μοντέλα χρησιμοποιήθηκαν για την επίτευξη της λύσης 

αποδοτικά. 

Λέξεις κλειδιά: Παρακολούθηση Δομικής Ακεραιότητας, ποσοτικοποίηση 

αβεβαιότητας, αντίστροφο πρόβλημα, Μπεϋζιανή συμπερασματολογία, αισθητήρες 

παραμορφώσεων. 
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1 Introduction 

1.1 Current State of Damage Identification Practices 

Preservation of structural integrity is a challenging task for infrastructure systems with 

geometry- and operational-level complexities, such as ships, offshore and land-based 

structures. The most common and effective practices to ensure the safe operation of a 

structure have remained unchanged over the better part of modern engineering history. 

These practices essentially are: a) significantly overcompensating for vaguely defined 

potential loading scenarios, usually of stochastic nature as well as uncertainty regarding 

the material, and b) planning ahead for normal wear. This is especially the case in the 

highly unpredictable and corrosive environment where ships and marine structures 

operate. In addition to conservative design, periodical surveys and maintenance are 

required throughout the life cycle of a structure. In the maritime industry, current 

practices involve strict preventive maintenance schemes centered around temporally 

fixed inspections that are imposed by the International Maritime Organization (IMO) 

and overseen by classification societies. Damage identification is based on visual 

inspection and non-destructive evaluation (NDE) carried out on site in predetermined 

minimum time intervals. Due to the vast number of structural elements a ship is 

composed of, surveys focus on designated areas and structural details that are expected 

to be corroded or are susceptible to certain types of failure [1]. 

In Figure 1.1 the sketch of a transverse section of a typical dry cargo vessel is depicted. 

Marked on it are notes and comments regarding damage modes most frequently 

occurring on each of the designated locations. This figure is provided in a relevant 

report of recommendations regarding the inspection of bulk carriers and tankers, 

published by the International Association of Classification Societies (IACS). 

 

Figure 1.1: Sketch of transverse bulkhead with instructions for damage inspection as 

recommended by IACS guidelines. (Source: [1]). 

In the maritime operational environment, one of the prevalent types of damage is 

corrosion induced thickness loss (CITL). This type of damage is part of the normal 



Introduction 

 

7 

 

operational wear of marine structures for which structural guidelines [2] require the 

addition of excess thickness to structural members. Common modes of corrosion 

involve uniform corrosion of extensive areas as well as pitting. Pitting is a type of 

localized corrosion that takes the form of small craters of variable size and geometry 

on the material. Usually, those craters are concentrated around specific locations 

forming a damaged area resembling locally contained uniform corrosion [3]. This mode 

of corrosion, along with uniform thickness loss is prevalent on plates in the marine 

environment. Typically, the material addition to plates required by guidelines [2] for 

safe design against corrosion constitutes 20% of the nominal plate thickness. The 

nominal thickness is also dictated by the guidelines to ensure safe operation under 

expected loading conditions during the lifespan of the structure. 

Due to scale, time and access constraints, inspection practitioners typically perform 

visual examinations on the aforementioned damage-prone locations. If the visual 

method does not suffice, a suitable Non-Destructive Testing (NDT) technique is 

deployed on site for a more refined assessment. The current NDT methods that 

dominate the field can be classified into three main categories; namely, enhanced visual 

and radiographic, acoustic and magnetic techniques [4]. Once structural damage has 

been identified by means of the employed inspection method, the operator must 

determine whether or not appropriate repair/renewal and maintenance should be 

performed. Selecting a suitable repair alternative involves a great deal of judgment and 

engineering insight and is typically a trade-off between robustness and cost. 

However, the aforementioned methods have many drawbacks. Firstly, human 

intervention is required. On top of that, the inspector is required to be highly skilled 

with great expertise and pass high qualification standards in order to ensure correct 

evaluation of the readings. Techniques require that the vicinity of the damage is known 

a priori and that the portion of the structure being inspected is readily accessible. 

Prevention is based on statistically locating faults by sample tests throughout the 

structure, focusing on areas susceptible to damage. Additionally, most methods are 

limited to detection of damage on or near the surface of the structure [5]. Moreover, 

NDE is applied on a single damage instance, at a specific timeframe. No information is 

gained about the evolution of the damage when operation continues, or the overall 

health of the structure given the presence of the damage. 

Furthermore, in order to transition to more environmentally and economically 

sustainable structures, it is required to reduce material wastage. It would be of 

immediate benefit to work components closer to failure rather than preventively 

replacing them because of uncertainty about their remaining operational reliability. The 

aforementioned issues illustrate the need for a shift into a more holistic and proactive 

approach to maintenance, i.e., Condition-based Maintenance (CBM). Essentially, CBM 

recommends maintenance actions (i.e., decisions) based on data gathered through a 

process of condition monitoring allowing operators to gain access to salient benefits 

[6].  Weighed against preventive maintenance, the primary advantages CBM offers are 

the increased system reliability as well as the significant cost savings due to the reduced 

material wastage and the decreased mean downtime as a result of less reliance on 

periodic inspections. The next section delves into the concepts of Digital Twin (DT) 
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and Structural Health Monitoring (SHM), which both play an increasingly important 

role in the realization of the CBM paradigm. 

1.2 Digital Twin and Structural Health Monitoring 

From a practical perspective, a DT can be defined as the computerized companion of a 

real-world physical asset, i.e., the Physical Twin (PT), intended to serve as a dynamic 

and accurate replica of the PT’s behavior within a target setting [7]. To ensure solid 

physical interpretability, the DT should be augmented with high-fidelity physics-based 

models, which will be constantly updated as data from permanently installed sensors 

on the PT and will be received in a real-time fashion. The DT can then be leveraged for 

conducting different “what-if” scenarios of service function (i.e., operation, inspection, 

etc.) for the life-cycle integrity management of the PT. The extant literature underlines 

many of the prospective and immediate benefits of the DT intervention in the industrial 

arena that accumulate to the PT’s overall efficiency, including risk [8] and cost [9] 

reduction, security [10], resilience [11] and reliability [12] enchantment and of course 

decision-making assistance [13]. An overview of the digital twin as it may be 

implemented in shipping, along with the underlying technologies it encompasses is 

shown in Figure 1.2. 

 

Figure 1.2: DT technology for an FPSO hull structure: Interaction between the 

physical space and the digital space. (Source: [14]). 

However, it should be noted that relevant research and application regarding the 

implementations of structural digital twin in modern ocean-going vessels and offshore 

structures are still at an early stage. In general, research on the subject is more focused 

on the implementation of the principles of SHM in order to gather insights on how to 

approach the problem of damage detection in ship structures, thus making possible the 

creation of a data enabled structural digital twin [15]. Structural Health Monitoring 

refers to systems which enable the automatic and on-line observation of structural 

integrity of any given component during service [16]. However, the information is not 
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limited to the structural health of a system, rather it may include data regarding 

operational procedures, performance metrics, financial analytics and anything of 

interest depending on each application. 

The SHM framework should not be considered just another NDE method [17]. In 

defense of this statement, note for example the case of an extreme event that exceeds 

operational specifications. In such a scenario traditional NDE methods usually require 

cease of operations. On the contrary, a SHM system can provide immediate feedback 

on the condition of the structure and assist in deciding whether operations can safely 

continue afterwards. Another fundamental differentiation element is that in order to 

apply NDE techniques, the existence of damage should already be known, while 

damage detection falls within the scope of SHM systems. Furthermore, NDE does not 

provide up-to-date information on the overall state of the structure. On the other hand, 

SHM refers to near real-time systems that function in parallel with the operation of the 

structure (DT). 

In the present study, one is interested in SHM as a damage-detection strategy. This idea 

of SHM as a damage-detection method is described by Farrar et al [5] as the following 

procedure: 

• Step 1: Operational evaluation 

• Step 2: Data acquisition, normalization, and cleansing. 

• Step 3: Feature extraction and data condensation. 

• Step 4: Statistical model development for feature discrimination. 

The final step may be broken down to four levels according to Rytter [18], progressively 

increasing in the depth of information required: 

➢ Level 1: Detection 

➢ Level 2: Localization 

➢ Level 3: Characterization 

➢ Level 4: Prediction 

Plates on a marine vessel, which is the subject of analysis in this work, are required to 

be replaced once damage exceeds a threshold indicated by formal guidelines. Hence, 

focus is pointed towards only level 1 and level 3 SHM statistical model development. 

As mentioned previously, in SHM, information about the structure integrity is being 

constantly updated using collected data. Towards this direction, one encounters 

Bayesian inferential statistics as powerful tool in SHM applications. One paradigm of 

this is the work of Zhu and Frangopol [19], where Bayesian updating is applied to assess 

the reliability and redundancy of a ships cross section based on load effects. 

Another thing that is important to point out is that the strain response of a structure is 

commonly used as the source of information for SHM. A strain-based framework was 

utilized in recent works of Silionis et al [20] for the detection and localization of 

extensive damage in thin-walled structures as well as by Argyris et al [21] for Bayesian 

optimal sensor placement for crack identification in structures. 
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In the marine and offshore industry, SHM implementations are frequently discussed. 

Corrosion detection on ship hull structures is studied in the works by Katsoudas [17] 

and by Silionis et al [22] where in both a strain-based approach is implemented and in 

the work by Yao et al [23] where a machine-vision, image-based approach is utilized. 

Nonetheless, to the author’s knowledge, the applications of SHM systems in the sector 

are still limited. One important consideration amongst the limiting factors is the lack of 

standardization and reliable metrics to evaluate the suggested methods [24]. SHM 

systems in practice are more commonly seen in offshore wind turbines as per the review 

of Martinez-Luengo et al [25]. 

1.3 Thesis Objective and Overview 

In the previous sections a brief overview of the research around SHM was presented. 

The present thesis is inspired not only by the aforementioned ideas but also by a 

willingness to approach the benefits of transitioning to a condition-based maintenance 

scheme, which empowers the vision of increased service performance, structural 

integrity and safety of operation in a sustainable future for the industry. More 

specifically, the purpose of this study is to design an appropriate SHM scheme that will 

be capable of estimating the corrosion induced thickness loss in marine plates, utilizing 

strain measurements. The thesis is focused on designing strategies for transforming the 

sensor data to thickness information. 

In this direction, a fictitious, plate-like structural entity was selected. The choice of this 

simplified structural domain extricates the analysis from the need to develop an 

accurate model of a real-world complex structure. Moreover, possible complicated 

effects of geometrical nature are avoided, hence, a more clear, direct view of parameter 

influence on the problem is thought to be observed which hopefully would allow for 

qualitative deductions to be made that could be generalized for different applications. 

The aforementioned plate was then subjected to a global uniform thickness reduction 

representing the uniform corrosion due to the operational environment of marine 

structures. Strain response data are obtained from a high-fidelity FE model. 

A kye challenge in modeling naval structures is the stochastic nature of their operational 

profile. The marine environment is modeled in a probabilistic manner, thus, designing 

and studying models in determined loading scenarios may not be representative of the 

real world. In the present study high operational variability was modeled in the input 

by introducing several parameters as random variables. The structural domain was 

considered to be subjected to distributed pressure loads of random peak magnitude and 

location. 

This inherent probabilistic nature of reality poses a corresponding uncertainty to the 

quantity of interest (QoI), i.e., the remaining from corrosion, thickness of the plate. The 

aim of this thesis is not limited to just point estimate this thickness. It is equally 

important to quantify this associated uncertainty that describes this parameter. It is 

important to note that the QoI and the observable data are only indirectly connected 

through a deterministic forward model, thus posing an inverse uncertainty 

quantification problem. Towards the direction of inverse uncertainty quantification, 

Bayesian statistics were considered the most appropriate approach since the QoI is 
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treated from the beginning as random variable and thus in a probabilistic manner. To 

proceed to the solution of the Bayesian problem Markov Chain Monte Carlo (MCMC) 

algorithm was employed. Due to the iteration nature of the aforementioned algorithm, 

surrogate models were necessary to proceed to solution efficiently. 

The following chapters elaborate on the aforementioned topics and explain in depth the 

concepts applied and the steps taken towards accomplishing the objective of this thesis. 

Chapter 2 provides some insight regarding the framework around the concepts included 

in this study. In Chapter 3 the development of the problem at hand is described followed 

by the details on the FE modeling procedure. Chapter 4 describes the procedure of 

selecting the optimal sensor features. In chapter 5 the probabilistic model is constructed 

along with surrogate modeling. Chapter 6 contains the results of Bayesian inference 

and finally, chapter 7 summarizes this analysis, offers some final thoughts around the 

subject and provides inspiration for extensions in the future. 
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2 Theoretical Background 

The introduction provided a first look into the ideas that inspired this work and a general 

overview of the procedures executed for the purposes of the present study. The aim of 

the current section is to present in theoretical terms the basic concepts and tools of 

analysis tied with the technical portion of this thesis. In this regard, by the end of this 

chapter, the reader should have a solid understanding of the concepts such as 

Uncertainty Quantification (UQ) in inverse problems, Bayesian Statistics, Markov 

Chain Monte Carlo methods (MCMC), Surrogate Modeling and Finite Element 

Method. The advanced reader can be directed to the literature referred along each 

subject for more specialized and holistic information. 

2.1 Uncertainty Quantification (UQ) 

Uncertainty quantification (UQ) is the process of quantifying and analyzing the 

uncertainty in mathematical models, simulations and data. The primary aim is to assess 

the reliability of predictions, account for the effects of variability, randomness and 

misspecification in models, and ultimately assist in decision-making. UQ is an 

increasingly important interdisciplinary field which combines statistical, computational 

and mathematical methods to estimate, propagate and bound the uncertainty in models. 

2.1.1 Sources and Types of Uncertainty 

There is no argument that structural systems are subject to a multitude of uncertainty 

sources. There are two primary classifications of uncertainty; namely, aleatoric and 

epistemic [26]. Aleatoric uncertainty is a type of uncertainty that originates from the 

unavoidable inherent randomness or variability in the system being modelled or 

measured. It is also referred to as stochastic or random uncertainty. Aleatoric 

uncertainty in engineering problems may become present in structural loads, as well as 

in material properties, structural dimensions (scantlings), and fabrication-related 

geometric tolerances, just to mention a few. Errors associated with the deployed data 

acquisition system (e.g., measurements noise, sensor misplacements, etc.) also fall 

under this category. Essentially, inherent variability is a state of nature, and the 

accompanying uncertainty is irreducible. In contrast epistemic uncertainty is the type 

of uncertainty that arises from the limited knowledge, data, or information available 

about the system being modelled or measured. Foremost among the sources of 

epistemic uncertainty is the prediction error related to the computational modeling 

procedures that have gained popularity in the last decades for several applications of 

practical interest in science and engineering. Theoretically, the uncertainty associated 

with these types of errors can be reduced by employing better physical-mathematical 

models or gathering additional data. Whilst aleatoric and epistemic uncertainty are 

referred to as two distinct classes, in practice, they often come together. This combined 

uncertainty is referred to as hybrid uncertainty. 

2.1.2 Engineering Model 

In the context of UQ, a model of an engineering system is a mathematical representation 

or computational simulation of the relevant physical processes. For given parameters 
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𝒙 ∈ 𝐷𝒙 from the domain 𝐷𝒙 ⊆ ℝ𝑀 with 𝑀 ∈ ℕ>0, the model predicts an output of 

interest �̃� ⊆ ℝ. A single response quantity is considered here for the sake of simplicity. 

The extension to multivariate outputs is straightforward, though. Accordingly, the 

model can be thought of a scalar-valued function: 

ℳ: 𝐷𝒙 → ℝ 

                     𝒙 ↦ �̃� = ℳ(𝒙) Eq. 2.1 

Many different types of such predictive models are encountered in engineering 

problems. This includes simple analytic expressions as well as numerical solutions of 

governing equations. Especially in the latter case, the model symbolized in Eq. 2.1 is 

often treated as a black-box i.e. it is only evaluated in a pointwise manner. Its internal 

structure may be unknown, too complex or simply considered explicitly. The only 

requirement is that the model is available in executable form. This type of model will 

be employed in the present study using finite element and surrogate modeling. 

2.1.3 Forward and Inverse Problems  

Broadly speaking, based on the engineering model described in section 2.1.2, UQ 

problems can be divided into forward UQ problems, i.e. characterizing the model 

outputs, and inverse UQ problems, i.e. learning about the model inputs. See Figure 2.1 

for visualization. A typical example of forward UQ problem is uncertainty propagation 

[27]. In uncertainty propagation one tries to quantify the influence of input parameter 

uncertainty on the predictions of the engineering model. By representing the uncertain 

inputs as random variables with a prespecified probability distribution, the problem 

becomes to characterize the corresponding output distribution. These types of problems 

are usually treated using conventional Monte Carlo methods [28]. Forward UQ 

problems also include reliability analysis where one focuses on the computation of the 

failure probability, e.g. that the system output exceed a certain threshold. However, the 

problem of interest in this study is model parameter estimation. Parameter estimation 

belongs to inverse UQ problems. In an inverse problem, one is given noisy observations 

of the system output and the goal is to estimate the unknown system input parameters 

and their corresponding uncertainties. The quantities that interest focuses on and the 

ones that can be observed are only indirectly connected through a deterministic forward 

model like the one in Eq. 2.1. 

 

Figure 2.1: Forward and inverse problems. (Source: [29]) 

The main issue when dealing with inverse UQ problems is that they are typically ill-

posed. A problem is called well-posed after Hadamard if the existence, uniqueness and 
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stability of a solution are given. Physical forward problems are often well-posed in this 

sense. In contrast, in the case of inverse problems, the measurement noise, the inability 

of the forward model to be inverted and a lack of data lead to ill-posedness. When a 

problem is ill-posed, a solution may be neither existent nor unique, moreover, it may 

not be continuously dependent on the data. For that reason, one cannot apply the 

conventional Monte Carlo methods in inverse problems. The standard numerical 

methods that cope with the issue of ill-posedness are the so-called regularization 

methods [30]. Another way to deal with inverse UQ problems is Bayesian inference. 

Bayesian inference establishes a probabilistic framework that allows one to coherently 

quantify uncertainties with due regard to all available information. It is based on the 

transition of a prior into a posterior probability distribution reflecting the learning 

process. Basically, the prior and the posterior represent the state of knowledge or level 

of uncertainty before and after incorporating the experimental observations. A thorough 

insight on how Bayesian inference is applied in inverse UQ problems will be presented 

in the next section. Regarding the issue of ill-posedness, Stuart [31] transferred 

Hadamard’s principle of well-posedness to Bayesian inverse problems: the posterior 

exists, it is unique, and it is locally Lipschitz continuous with respect to the data. 

2.2 Bayesian Inference  

2.2.1 General 

In the field of statistical analysis, there are two main competing philosophies; namely, 

the frequentist and the Bayesian [32]. Frequentist approach to statistical inference is 

also known as classical approach since it is being applied more widely by statisticians 

throughout the years. Regarding the Bayesian approach, although its origin is dated 

around the 18th century, the associated computational complexity limited its 

application. However, the current increasing power of computers is bringing Bayesian 

methods to the fore. 

The main differences between the frequentist and Bayesian approach lay on the 

interpretation of probability and the treatment of the parameters that need to be inferred. 

Frequentist approach interprets the probability of an event as the limit of the relative 

frequency with which the event occurs, in repeated trials under identical conditions. 

Alternatively, the Bayesian approach interpretation regards the probability as a measure 

of the degree of belief of the individual assessing the uncertainty of a particular event 

on a [0,1] scale. Furthermore, frequentist methods regard the parameters of interest as 

fixed, unvarying but unknown quantities whereas Bayesian methods regard these 

parameters as random variables and assign probability distributions to them. These 

probability distributions are the so-called prior distributions that basically reflect the 

subjective knowledge over the parameter values before considering any observations. 

Observing the data is then an event with respect to which the priors shall be conditioned. 

By applying the Baye’s rule one can extract the posterior distributions of the parameters 

as an inference of the combination of the subjective knowledge and the observations. 

Treating the parameters in a probabilistic framework (as random variables), 

automatically reflects the uncertainty of these parameters. This distinct feature gives a 

great advantage to Bayesian methods over frequentist methods. Generally speaking, 
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frequentist methods provide point estimations for the parameters (see the method 

Maximum Likelihood Estimation [33]) and fail to quantify statistical uncertainties, 

which is something that Bayesian methods are capable of doing. 

2.2.2 Likelihood Function 

In the following, the unknown parameters of the statistical model are denoted as 𝒙 =
(𝑥1, … , 𝑥𝐾)𝑇 ∈ ℝ𝑀. The number of the unknown is denoted as 𝑀 ∈ ℕ>0 which is in 

line with the notation of the preceding section. To proceed to the statistical 

identification of the unknown parameters, 𝑁 ∈ ℕ>0 real measurements 𝒚 =
(𝑦1, … , 𝑦𝑁)𝑇 ∈ ℝ𝑁 are extracted. In order to draw inferences from the data 𝒚 about the 

unknowns 𝒙, one has to establish the connection between them. Therefore, one 

constructs a probabilistic model 𝑝(𝒚|𝒙) that explains the randomness of the data for 

given parameter values. This is often denoted as: 

𝒀|𝒙 ~ 𝑝(𝒚|𝒙) Eq. 2.2 

In this way the actually acquired data are interpreted as random realization 𝒀 = 𝒚 

generated from Eq. 2.2 for the true values of the unknowns. This probabilistic model 

represents the likelihood function of the model, and it plays a key role in Bayesian 

inference [34]. For the obtained fixed observations 𝒚 the likelihood function is defined 

as: 

ℒ(𝒙|𝒚) = 𝑝(𝒚|𝒙) Eq. 2.3 

Hence, the likelihood emerges from evaluating the conditional density in Eq. 2.2 as a 

function of the unknowns 𝒙. It is remarked that while the form of ℒ(𝒙|𝒚) is seemingly 

simple, it embodies a variety of assumptions and simplifications that are made during 

the modeling process. Even the notions of true parameter values and a data generating 

mechanism can be seen as conceptualization. Further information on how such a 

statistical model will be constructed in connection with the inverse problem will be 

discussed in Chapter 5. 

It is also noted that, for 𝑁 independent observations 𝒚 the likelihood function becomes 

the product: 

ℒ(𝒙|𝒚) = ∏ 𝑝(𝑦𝑖|𝒙)

𝑁

𝑖=1

 Eq. 2.4 

 

2.2.3 Prior Distribution 

As mentioned before, the Bayesian approach to inference and prediction is built on 

probabilistic reasoning, involving a subjective interpretation of probability and 

randomness to the unknown parameters 𝒙. This way it allows for more thorough 

information processing and uncertainty analysis. The modeler’s and analyst’s ignorance 

regarding the true parameter values before analyzing the data is represented as a random 

vector: 
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𝑿 ~ 𝜋(𝒙) Eq. 2.5 

Here, π(𝒙) is called the prior distribution. In essence, instead of acknowledging the fact 

that the parameter values are not known, their uncertainty is modeled as a probability 

distribution. The true values are considered a realization 𝑿 = 𝒙 of the random vector in 

Eq. 2.5.  

The selection of the prior distribution is of utmost practical importance in Bayesian 

inference. It is as well the most controversial aspect. On the one hand, the prior allows 

one to incorporate qualitative and quantitative information other than the data. Beyond 

physical constraints, this includes heterogenous sources such as expert knowledge, 

previous experiments and published literature. On the other hand, this raises the 

question of how to encode such information into a probability distribution. Similar to 

the assumptions and simplifications have to be made in order to formulate a 

probabilistic data model as in Eq. 2.2, the determination of the prior parameter model 

in Eq. 2.5 can be understood as a modeling choice. 

Broadly speaking, one may classify Bayesian priors according to the way they are 

chosen and the information they convey. For start, one may distinguish between priors 

that are more subjective, i.e. elicited on the basis of one’s own or someone else’s 

personal belief [35], or more objective, i.e. constructed according to some more formal 

rules [36]. Subjective and objective prior distributions are also called informative and 

uninformative, respectively. These terms are used in order to characterize the prior with 

respect to its information content. There are also more or less functional priors that 

serve certain purposes. They are chosen for mere mathematical convenience or their 

regularization properties. Conjugacy [37], robustness [38] and sparsity [39] can be for 

instance achieved by choosing appropriate priors. 

In engineering practice, one often designates a well-known family of distributions as 

candidate priors. The corresponding parameters are then set to as to mirror the 

uncertainty as faithfully as possible. Uniform distributions are often chosen for 

parameters that can be bounded from above and below, e.g. due to physical constraints. 

Gaussian or lognormal distributions are often used for parameters that are unbounded 

or strictly positive, respectively. 

 

2.2.4 Posterior Distribution 

All things considered, Bayesian modeling rests on the marginal distribution 𝜋(𝒙) of the 

unknown parameters in Eq. 2.5 and the conditional distribution 𝑝(𝒚|𝒙) in Eq. 2.2. The 

unknowns and the data are represented as jointly random vectors: 

(𝒀, 𝑿) ~ 𝑝(𝒚, 𝒙) = 𝑝(𝒚|𝒙)𝜋(𝒙) Eq. 2.6 

This is a complete probability model of the Bayesian experiment. The true parameters 

and the actual data are regarded as a realization (𝒀, 𝑿) = (𝒚, 𝒙) of the joint random 

variables in Eq. 2.6. While the outcome of the data 𝒚 is observed, the true parameters 

𝒙 remain unobserved. 
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Now one can synthesize the prior information and the observed data in order to estimate 

the unknowns. In particular, one proceeds by conditioning on the realized data. Given 

the likelihood function in Eq. 2.3 and the prior distribution in Eq. 2.5, the posterior 

probability distribution follows from the Bayes’ law: 

𝑝(𝒙|𝒚) =
𝜋(𝒙)ℒ(𝒙|𝒚)

𝐶
 Eq. 2.7 

𝐶 = ∫ 𝜋(𝒙)ℒ(𝒙|𝒚)𝑑𝒙

ℝ𝑀

 
 

Eq. 2.8 

The normalizing term C is a constant, independent from the parameters 𝒙 such that the 

posterior probability distribution integrates to 1. It is usually called model evidence or 

marginal likelihood. In the same way as the prior represents the uncertainty about the 

unknowns before analyzing the data, the posterior in Eq. 2.7 summarizes the reduced 

uncertainty afterwards. 

In Figure 2.2 the functioning of Bayesian updating is illustrated for a single quantity of 

interest (QoI). The prior is transformed into the posterior density, which is paralleled 

by a reduction of the associated uncertainty and a higher degree of probability mass 

localization. For the sake of clarity, both the prior and the posterior density in the sketch 

are Gaussian. In most but the simplest cases, however, the posterior is a complex 

probability distribution that may exhibit strong non-normalities and a multiplicity of 

modes. Multivariate posteriors often contain linear correlations and complex 

dependencies between the variables involved. 

 

Figure 2.2: Bayesian inference. (Source: [29]) 

Now all information is contained in the posterior probability density function and one 

can proceed to the estimation of different moments of this distribution. The expected 

value and the covariance matrix are given as: 

𝔼[𝑿|𝒚] = ∫ 𝒙 𝑝(𝒙|𝒚)𝑑𝒙

ℝ𝑀

 Eq. 2.9 
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𝐶𝑜𝑣[𝑿|𝒚] = ∫(𝒙 − 𝔼[𝑿|𝒚])(𝒙 − 𝔼[𝑿|𝒚])𝑇 𝑝(𝒙|𝒚)𝑑𝒙

ℝ𝑀

 Eq. 2.10 

The posterior mean in Eq. 2.9 is often taken as a point estimate of the unknown 

parameter vector, where the covariance in Eq. 2.10 is regarded as a measure of 

statistical uncertainty, that allows the creation of credible intervals [40]. 

 

2.3 Markov Chain Monte Carlo (MCMC) 

2.3.1 Bayesian Computations 

Generally, Bayesian posteriors feature an analytic closed-form expression only on a 

rare occasion. In order to explore the posterior distribution and to calculate the 

corresponding posterior moments, one needs to proceed to computational methods. The 

most widespread approach to computational Bayesian inference is random sampling 

from the posterior. However, the model evidence term in Eq. 2.7 poses an important 

obstacle to sampling methods, since most of the times it is computationally inefficient 

or even impossible to be calculated. Thus, one cannot sample directly from the posterior 

distribution. This is where Markov Chain Monte Carlo (MCMC) techniques come to 

the front. MCMC methods construct a Markov Chain that is suitable for sampling from 

the posterior distribution and for estimating conditional expectations. However, they 

only need pointwise evaluations of the unnormalized posterior density, i.e. the 

numerator of Eq. 2.7, and thus dispense from computing the model evidence term. 

 

2.3.2 Monte Carlo Simulation (MCS) 

MCS is a sampling-based approach that is used to compute summary statistics for a 

quantity of interest and evaluate its probability density. To get a better understanding 

of the approach, consider the engineering model of Eq. 2.1, where now ℳ is a 

computational model (no analytic expression, black-box). Here the input is described 

as a random vector 𝒙 that has a probability density function (PDF) denoted as 𝑝𝑿. The 

computational model converts a specific realization of 𝑿 = 𝒙 into an uncertain output 

�̃� = ℳ(𝒙), which again for the sake of simplicity, is assumed to be an observed 

realization of a univariate random variable �̃�~𝑝�̃�. The mean value and the variance of 

�̃� can be expressed as follows: 

𝔼[�̃�] = 𝔼[ℳ(𝑿)] = ∫ ℳ(𝒙) 𝑝𝒙(𝒙)𝑑𝒙

𝐷𝑥

 Eq. 2.11 

𝕍[�̃�] = 𝕍[ℳ(𝑿)] = 𝔼[ℳ2(𝑿)] − (𝔼[ℳ(𝑿)])2 Eq. 2.12 
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Since the system’s behavior can only be determined in a point-by-point fashion, the 

integrals in the above equations are analytically intractable. To approximate these 

integrals, Monte Carlo (MC) methods rely on the law of large numbers [41]. 

Essentially, the concept behind it, is that the PDF of QoI can be estimated be repeatedly 

running the simulation with inputs randomly drawn from their corresponding PDF. 

There are three steps in its implantation [42]: 

1. Random sampling: Draw 𝑁𝑀𝐶 points 𝒙𝑖 as independent and identically 

distributed (i.i.d) samples from 𝑝𝑿. 

2. Numerical experimentation: Evaluate the output for the 𝑖th sample 𝑦�̃� = ℳ(𝒙𝒊). 

3. Statistical analysis: Compute the statistics on the discrete output points 𝑦�̃�. 

Elaborating on the third step, the value of �̃� in Eq. 2.11 can be estimated as: 

𝔼[�̃�] =
1

𝑁𝑀𝐶
∑ 𝑦�̃�

𝑁𝑀𝐶

𝑖=1

=
1

𝑁𝑀𝐶
∑ ℳ(𝒙𝑖)

𝑁𝑀𝐶

𝑖=1

 Eq. 2.13 

Furthermore, the unbiased estimate of the variance in Eq. 2.12 is computed as: 

𝕍[�̃�] =
1

𝑁𝑀𝐶 − 1
(∑ (�̃�𝑖)

2 − 𝑁𝑀𝐶

𝑁𝑀𝐶

𝑖=1

(𝔼[�̃�])2) Eq. 2.14 

It is important to mention that MCS can be applied in general for integral estimation 

even in higher dimensions. This method is known as Monte Carlo integration [43]. 

 

2.3.3 Basics of Markov Chains 

In order to understand how MCMC methods work, one should familiarize oneself with 

some basic important concepts regarding Markov Chain theory [44].  

State Space 

The state space 𝑆 of a Markov Chain {𝑿𝑡} is the set of all possible realizations (states) 

of the terms of the chain. For the sake of simplicity in this section the Markov Chain 

theory is presented on a discrete state space. It is then assumed that: 

𝑆 = {𝑠1, … , 𝑠𝑚} Eq. 2.15 

That is, the terms of the chain can take one of 𝑚 values s1, … , sm. In the following, 

the notations 𝑖, 𝑗 ≤ 𝑚 will correspond to two different realizations 𝑠𝑖, 𝑠𝑗 of the state 

space.  

Markov Property 

A sequence of random variables {𝑿1, 𝑿2, … , 𝑿𝑡} on a discrete state space 𝑆 is called a 

Markov Chain if and only if it satisfies the Markov property, i.e. the conditional 

probability of 𝑿𝑡+1 given 𝑿1, … , 𝑿𝑡 depends only on 𝑿𝑡: 
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𝑝(𝑿𝑡+1 = 𝑠𝑗|𝑿𝑡 = 𝑠𝑖, … 𝑿1 = 𝑠𝑖1
) = 𝑝(𝑿𝑡+1 = 𝑠𝑗|𝑿𝑡 = 𝑠𝑖) Eq. 2.16 

 

It is also assumed that the Markov Chains in this study are time-homogenous for every 

𝑖, 𝑗 ≤ 𝑚, namely: 

𝑝(𝑿𝑡+1 = 𝑠𝑗|𝑿𝑡 = 𝑠𝑖) = 𝑝(𝑠𝑗|𝑠𝑖) = 𝑝𝑖𝑗 ∈ ℝ𝛺×𝛺 Eq. 2.17 

One should think of the index 𝑡 as a measure of time. Time-homogeneity proposes that 

the transition probabilities from one state to another do not depend on time 𝑡 and thus, 

there is a constant transition matrix denoted as 𝑷 = [𝑝𝑖𝑗] as proposed in Eq. 2.17. 

It is important to notice that the evolution of a chain is described by the aforementioned 

transition matrix 𝑷 and by its occupational distribution at the initial time 𝑡 = 1 (initial 

distribution): 𝒂(1) = {𝑎1
(1), … , 𝑎𝑚

(1)}, where 𝑎𝑖
(1) = 𝑝(𝑿1 = 𝑠𝑖). The initial 

distribution of a chain is the 1 × 𝑚 vector of initial probabilities that are assigned to the 

different states 𝑠𝑖, with 𝑖 = 1, … , 𝑚. Considering the transition matrix 𝑷𝑖𝑗 and the initial 

probability distribution at time 𝑡 = 1, one can proceed to find the occupational 

probability distribution of the chain at time 𝑡 = 2 as follows [45]: 

𝑝(𝑿2 = 𝑠𝑗) = ∑ 𝑝(𝑿1 = 𝑠𝑖) × 𝑝(𝑿2 = 𝑠𝑗|

𝑚

𝑖=1

𝑿1 = 𝑠𝑖) Eq. 2.18 

In other words: 

𝑎𝑗
(2) = ∑ 𝑎𝑖

(1)

𝑚

𝑖=1

× 𝑝𝑖𝑗 
Eq. 2.19 

This can be as well expressed in a matrix form: 

𝒂(2) = 𝒂(1) × 𝑷 Eq. 2.20 

One can continue this process, linking each occupational probability distribution to the 

previous occupational probability distribution. Repeating this process back to the initial 

state, one can get that: 

𝒂(𝑡) = 𝒂(1) × 𝑷𝑡 = 𝒂(𝑡−1) × 𝑷 Eq. 2.21 

 

Irreducible Chain 

A discrete Markov chain is said to be irreducible if and only if every state leads to itself 

and every other state, i.e. if and only if there is a positive probability that for any starting 

state 𝑠𝑖 the chain will reach any other state s𝑗, including s𝑖 itself, in finite time. In 

essence when a Markov chain is irreducible all states communicate with each other. 
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Recurrent chain 

Suppose a state s𝑖 ∈ 𝑆 of a discrete Markov chain. Let 𝑉 be the total number of visits 

to the state s𝑖. The state 𝑠𝑖 is called recurrent if and only if: 

𝑝(𝑉 → ∞|𝑋1 = 𝑠𝑖) = 1 Eq. 2.22 

In other words, a state s𝑖 is recurrent if and only if the probability that the chain will 

return to that state in finite time, after started from s𝑖 itself, equals to one. Consequently, 

a Markov chain is called recurrent if and only if all the elements of its state space are 

recurrent. 

Aperiodic chain 

Suppose a recurrent state s𝑖 ∈ 𝑆 of a discrete Markov chain. The period of the state s𝑖 

is defined as: 

𝑑𝑠𝑖
= 𝑔𝑐𝑑 {𝑡 > 0 ∶ 𝑃𝑖𝑖 > 0} Eq. 2.23 

where 𝑔𝑐𝑑 is the greatest common denominator. In essence, ds𝑖
 is the minimum time 

the chain takes to return to s𝑖 after starting from s𝑖 itself. 

In an irreducible chain all the states have the same period 𝑑. A recurrent chain is called 

aperiodic if and only if the period of the chain equals to one, i.e. 𝑑 = 1. 

Stationary distribution 

If, for a given transition probability matrix 𝑷, there is an occupational distribution 𝒂 

such that the distribution of all the terms of the chain is equal to that occupational 

distribution, then 𝒂 is called a stationary distribution of the chain. When  𝒂 is a 

stationary distribution, then: 

𝒂(𝑡) = 𝒂(𝑡−1) = 𝒂 Eq. 2.24 

Combining Eq. 2.22 and Eq. 2.24, in order for an occupational distribution 𝑎, to be a 

stationary distribution of a Markov chain, the following must be true: 

𝒂 = 𝒂𝑷 Eq. 2.25 

Ergodicity and Convergence 

When a Markov chain is irreducible and aperiodic, then the Markov chain is ergodic. 

If a Markov chain is ergodic, then, irrespective of the initial distribution 𝒂(1): 

𝑙𝑖𝑚
𝑡→∞

𝒂𝑡 = 𝒂 Eq. 2.26 

Where 𝒂 is the unique stationary distribution of the chain. Basically, even if the initial 

distribution of the chain is not the stationary distribution, the terms 𝑿𝑡 of the sequence 

become less and less dependent on the initial value 𝑿1 as 𝑡 increases and their 

distribution converge to the stationary distribution. 
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Reversibility and Balance Condition 

Let {𝑿𝑡} be an irreducible Markov chain with state space 𝑆 and transition matrix 𝑷. A 

probability distribution 𝒂 on 𝑆 is said to be reversible for the chain if 𝒂 and 𝑷 are in 

detailed balance, i.e.: 

𝑎𝑖𝑝𝑖𝑗 = 𝑎𝑗𝑝𝑗𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑖 , 𝑠𝑗 ∈ 𝑆 Eq. 2.27 

Consequently, an irreducible Markov chain is said to be reversible if it has a reversible 

distribution. The Eq. 2.27 is also known as detailed balance condition. The most 

important outcome of  Eq. 2.27 for MCMC methods, is that if probability distribution 

𝒂 on 𝑆 satisfies the detailed balance condition, then the distribution 𝒂 is the stationary 

distribution of the Markov chain [46]. 

2.3.4 The Metropolis-Hastings (MH) algorithm 

Having a general idea about Markov chains and Monte Carlo Simulation, one can 

perceive MCMC methods as the amalgam of Markov chain philosophy and Monte 

Carlo sampling. While conventional MC methods generate independent samples, 

MCMC techniques draw correlated samples, where the next sample is dependent only 

on the existing previous sample, hence the name Markov Chain. There are a variety of 

MCMC methods that differ based on the way they construct the Markov chain and the 

way the generate samples. One of the most common MCMC methods used in Bayesian 

inference, that is also applied in this study, the Metropolis-Hastings (MH) algorithm. 

The MH algorithm constructs an ergodic Markov chain such that its stationary 

distribution equals the posterior distribution of the Bayesian problem. Based on the 

section 2.2, let 𝜋(𝒙) be the prior and 𝑝(𝒙|𝒚) be the posterior density of some QoI 𝒙. A 

Markov chain with stationary distribution 𝑝(𝒙|𝒚) is generated by initializing at 𝒙(0) 

from the prior density, and then repetitively proceeding as follows. Given a state 𝒙(𝑡) 

that the Markov chain has taken on in some iteration 𝑡, in the following iteration a 

candidate state 𝒙(∗) is randomly sampled from a proposal distribution 𝑞(𝒙(∗)|𝒙(𝑡)). In 

the MH correction step the proposed state is approved as the new state 𝒙(𝑡+1) = 𝒙(∗) of 

the Markov chain with probability: 

𝒶(𝒙(∗), 𝒙(𝑡)) = 𝑚𝑖𝑛 (1,
𝑝(𝒙(∗)|𝒚)𝑞(𝒙(𝑡)|𝒙(∗))

𝑝(𝒙(𝑡)|𝒚)𝑞(𝒙(∗)|𝒙(𝑡))
) Eq. 2.28 

Otherwise, the proposal will be rejected, i.e. the Markov chain remains in its state 

𝒙(𝑡+1) = 𝒙(𝑡) of the preceding iteration. In practice, the acceptance process is 

performed by sampling a random number 𝑢 from a uniform distribution in the interval 

[0,1]. The proposed state is accepted if 𝑢 < 𝒶(𝒙(∗), 𝒙(𝑡)), otherwise it is rejected.  It is 

important to note that due to the MH acceptance probability Eq. 2.28, the algorithm 

calls for the computation of posterior ratios only. Thus, the model evidence term of Eq. 

2.7 can be dropped and only the unnormalized posterior density has to be evaluated. 

Another key point that needs to be outlined is that the MH algorithm achieves to sample 

from the posterior because the acceptance probability Eq. 2.28 is equivalent to the 
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posterior distribution satisfying the detailed balance condition in Eq. 2.27, which results 

to the posterior being the stationary distribution of the Markov chain [46]. 

One way to simplify the aforementioned algorithm is to choose a symmetric proposal 

distribution, namely a proposal distribution that satisfies the following condition: 

𝑞(𝑥𝑎|𝑥𝑏) = 𝑞(𝑥𝑏|𝑥𝑎) for all 𝑥𝑎, 𝑥𝑏 and 𝑡. Then Eq. 2.28 becomes simply: 

𝒶(𝒙(∗), 𝒙(𝑡)) = 𝑚𝑖𝑛 (1,
𝑝(𝒙(∗)|𝒚)

𝑝(𝒙(𝑡)|𝒚)
) Eq. 2.29 

In that case the algorithm is called just Metropolis algorithm. A common symmetric 

proposal distribution that is chosen is a normal Gaussian distribution that is centered 

around the current state 𝒙(𝑡), namely 𝒙(∗) ~ 𝒩(𝒙(∗); 𝒙(𝑡), Σ𝒙). This process is known as 

Random Walk Metropolis sampling [47]. The algorithm that is employed in the present 

study is a Random Walk Metropolis sampling algorithm. 

At this moment it is important to point out that an MCMC algorithm is rarely initialized 

from its stationary distribution. This fact raises the concern that these initial values 

might bias the results even if the process reaches stationarity later on. To compensate 

for this, a burn-in period is often implemented, i.e. the first 𝑇 samples being discarded, 

with 𝑇 being chosen to be large enough so that the chain has reached its stationary 

regime by its time. In Figure 2.3 an indicative trace plot is illustrated. A trace plot is a 

graph of the sampled parameter values as a function of the step iterations. In essence, a 

trace plot presents the chain trajectory.  On the trace plot of Figure 2.3 one can clearly 

see the burn-in period and how the chain values in this period do not belong to the 

stationary distribution. 

 

Figure 2.3: Trace plot of a parameter of interest, where the circled region represents 

the burn-in period. (Source: [48]). 

 

 

2.3.5 Autocorrelation  

As mentioned before, in MCMC algorithms each subsequent sample is drawn using the 

current sample, resulting typically in the generation of correlated samples. This can be 
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an important problem since correlated samples can result in biased estimation of the 

posterior characteristics. However, two samples 𝑥𝑡 and  𝑥𝑡+𝑛 become asymptotic 

independent as the number 𝑛 increases, namely the correlation between those samples 

decays as the number 𝑛 increases. One can then proceed to assess the independency of 

the MCMC samples by calculating the effective sample size [49], i.e. the sample size 

that corresponds to fully random independent samples. In the present study, the 

effective sample size will not be calculated, but the samples’ correlation will be visually 

evaluated with trace plots and autocorrelation function graphs (ACF graphs). 

The ACF graph, also known as correlogram, shows the correlation between samples as 

a function of the values of 𝑛  (known as lags). It represents a correlation coefficient and 

is calculated as follows. Consider the MCMC samples {𝒙𝒕} where 𝑡 = 1, … , 𝑇 the 

number of iterations. The mean value of those samples is given by: 

�̅� =
1

𝑡
∑ 𝒙𝒕

𝑇

𝑡=1

 Eq. 2.30 

The autocovariance function at lag 𝑛, for 𝑛 ≥ 0, of the sequence is defined by: 

𝐶𝑛 =
1

𝑡
∑(𝒙𝑖 − �̅�)(𝒙𝑖+𝑛 − �̅�)

𝑡−𝑛

𝑖=1

 Eq. 2.31 

Then the ACF at lag 𝑛, for 𝑛 ≥ 0, of the sequence is defined by: 

𝑟𝑛 =
𝐶𝑛

𝐶0
 Eq. 2.32 

An indicative correlogram is shown in Figure 2.4, where the autocorrelation is large at 

short lags, but it goes quickly to zero as it should be in a successful MCMC process. 

 

Figure 2.4: Indicative ACF graph (correlogram). (Source [50]). 

 

At this moment it is important to point out that the covariance matrix Σ𝒙 of the proposal 

distribution determines the “stepsizes” of the algorithm, hence being a key aspect to the 

samples’ autocorrelation. Either choosing too large or too small variance for the 
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proposal distribution will give highly correlated samples. This is illustrated in Figure 

2.5. 

 

Figure 2.5: Chain behavior illustration (trace plots and PDF histograms) for different 

values of variance of the proposal distribution. (Source [48]). 

The situations presented in Figure 2.5 are also connected to the acceptance rate of the 

chain. In the first line the algorithm has a very high acceptance rate, making the chain 

move extremely slowly, and though convergence may be achieved, it will happen after 

an inefficient number of iterations. On the other hand, in the third line the acceptance 

rate is very low, and the chain gets stuck to some locations needing hundreds of 

iterations to take just one step to a new location. For the MH algorithm the optimal 

range of the acceptance rate is between 10% to 60%. 

2.3.6 Convergence Diagnostics 

One major issue when dealing with MCMC methodologies is to assess whether the 

chain has converged to the stationary posterior distribution and to the asymptotic 
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independence. These issues are monitored with a variety of diagnostic tools [49], 

however in this study the convergence and sampling behavior will be evaluated visually 

by examining trace plots after running multiple chains.  

Figure 2.6 illustrates two of the challenges of monitoring convergence of MCMC 

simulations. The left graph shows two sequences for the same QoI but with different 

initial state, each of which looks fine on its own (and indeed, when looked at separately 

would be thought to have achieved convergence), but the juxtaposition makes it clear 

that they have not converged to a common distribution. This graph illustrates that, to 

achieve convergence, the sequences must be mixed. The right graph in Figure 2.6 shows 

two chains that have mixed, in the sense that they have traced out a common 

distribution, but they do not appear to have converged to a stationary distribution 

overall. This graph illustrates that, to achieve convergence each individual sequence 

must reach stationarity. 

 

Figure 2.6: Examples of two challenges in assessing convergence of MCMC 

algorithms. (Source [51]). 

Based on the aforementioned the diagnosis of convergence is being performed by 

evaluating mixing and stationarity with the following simple approach. One first creates 

a few chains (at least three) each of which has a different initial state. It is important to 

note that the burn in period on these sequences must be discarded. Then, each created 

chain is split in half, and it is checked if all the resulting half-sequences have mixed. 

This simultaneously tests mixing (if all the chains have mixed well, the separate parts 

of the chains should also mix) and stationarity (if the first and second half of each 

sequence is traversing the same distribution).  

2.4  Surrogate Modeling 

2.4.1 General 

Due to the iterative nature of the MCMC methods in Bayesian inference, these methods 

are tied with high computational cost. This aspect of MCMC makes the use of surrogate 

modeling an appealing approach to gain computational efficiency. Surrogate modeling, 

also known as metamodeling, refers to the practice of constructing an approximate, yet 

less expensive, representation of the input-output relationship of a complex physical 
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process, like the one described in section 2.1.2. The produced model can then be 

evaluated at negligible cost to predict the outputs for a new set of inputs that exist within 

the initial observation domain [42]. The rise of Machine Learning (ML) and data-driven 

modeling [52] has made the concept of surrogate modeling even more viable, with 

potential applications in many areas, including SHM [53], material science [54] and 

many other. 

In general, a surrogate model does not maintain any virtual representation of the exact 

nature of the physical system of interest, but rather approximates its complex behavior 

exclusively based on a finite set of simulation data (support points) without requiring 

problem-specific knowledge (black-box model). Therefore, operational (e.g., loads) or 

state (e.g., damage features) information about the structure is integrated within the 

constructed surrogate model, allowing immediate access to predictions when a batch of 

input data is obtained from the system. As the approximate function is created based on 

the information carried by the support points, it is essential to generate informative pairs 

of data samples. To this end, the employed physics-based model ℳ is typically 

exploited within a simulation framework, which ends up with a list of data points, 

known as training data, expressed as: 

{𝒙𝑗; �̃�𝑗} Eq. 2.33 

Where 𝒙𝑗 is the 𝑗th input vector from the sampling plan, and �̃�j includes the 

corresponding outputs from evaluating the model ℳ, i.e., ỹ = ℳ(𝒙). The learning 

stage of the surrogate models is usually undertaken offline, whereas only the evaluation 

of model prediction occurs during the online stage allowing for future re-use and re-

production. In case of physical changes to the system, however, the surrogate model 

needs to be retrained. The surrogate predictions are denoted as �̂�, the corresponding 

surrogated model is denoted as ℳ̂, and its formulation is shown in Eq. 2.34: 

�̃�𝑗 = �̂� + 𝜂𝑗 = ℳ̂(𝒙𝑗) + 𝜂𝑗  Eq. 2.34 

Where 𝜂𝑗 is the error (residual) that describes the discrepancy between real observations 

�̃�𝑗 and approximations ℳ̂(𝒙𝑗). Depending on the degree of non-linearity of the 

mapping function a different modeling approach may be used. Among the most 

prevalent approximation approaches are linear/polynomial regression, Gaussian 

processes, neural networks and support vector machines to name a few. In the present 

work polynomial regression and support vector machines are employed on two different 

occasions in order to construct a surrogate that learns a mapping between the input 

parameters and the output response. 

2.4.2 Polynomial Regression 

In polynomial regression the relationship between the input vector 𝒙𝑗 and the output �̃�𝑗 

is modelled as an 𝑟-th degree polynomial in 𝒙𝑗. A nonlinear function is fitted to the data 

points, namely: 

�̃�𝑗 = 𝑏0 + 𝑏1𝒙𝑗 + 𝑏2𝒙𝑗
2 + ⋯ + 𝑏𝑟𝒙𝑗

𝑟 + 𝜂𝑗  Eq. 2.35 
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In order to estimate the polynomial coefficients 𝑏0, 𝑏1, … , 𝑏𝑟 the least square method is 

applied [55]. According to the method, the estimation of the polynomial coefficients 

requires the minimization of the sum of squared errors (SSE), i.e.: 

𝑆𝑆𝐸 = ∑ 𝜂𝑗
2 =

𝐽

𝑗=1

∑(�̃�𝑗 − 𝑏0 − 𝑏1𝒙𝑗 − 𝑏2𝒙𝑗
2 − ⋯ − 𝑏𝑟𝒙𝑗

𝑟)2

𝐽

𝑗=1

 Eq. 2.36 

Where 𝐽 is the total number of training data. To proceed to the minimization, one needs 

to differentiate SSE in turn with respect to 𝑏0, 𝑏1, … , 𝑏𝑟 and equate to zero. Thus, a set 

of 𝑟 + 1 normal equations will be generated. 

𝐽𝑏0 + 𝑏1 ∑ 𝒙𝑗

𝐽

𝑗=1

+ 𝑏2 ∑ 𝒙𝑗
2

𝐽

𝑗=1

+ ⋯ + 𝑏𝑟 ∑ 𝒙𝑗
𝑟

𝐽

𝑗=1

= ∑ 𝑦𝑗

𝐽

𝑗=1

 

𝑏0 ∑ 𝒙𝑗

𝐽

𝑗=1

+ 𝑏1 ∑ 𝒙𝑗
2

𝐽

𝑗=1

+ 𝑏2 ∑ 𝒙𝑗
3

𝐽

𝑗=1

+ ⋯ + 𝑏𝑟 ∑ 𝒙𝑗
𝑟+1

𝐽

𝑗=1

= ∑ 𝒙𝑗𝑦𝑗

𝐽

𝑗=1

 

⋮                  ⋮                    ⋮              ⋮            ⋮                   ⋮ 

𝑏0 ∑ 𝒙𝑗
𝑟

𝐽

𝑗=1

+ 𝑏1 ∑ 𝒙𝑗
𝑟+1

𝐽

𝑗=1

+ 𝑏2 ∑ 𝒙𝑗
𝑟+2

𝐽

𝑗=1

+ ⋯ + 𝑏𝑟 ∑ 𝒙𝑗
2𝑟

𝐽

𝑗=1

= ∑ 𝒙𝑗
𝑟𝑦𝑗

𝐽

𝑗=1

 

 

Eq. 2.37 

These equations can then be solved for 𝑏0, 𝑏1, … , 𝑏𝑟 by any appropriate analytic method 

for solving systems of equations, however most of times statistical software is used to 

obtain numerical solutions. 

2.4.3 Support Vector (SV) Regression 

When the complexity, non-linearity and the dimensions of an engineering problem 

increase, simple linear/polynomial methods tend to make inaccurate predictions, and 

more advanced regression methods need to be employed. Support vector machine 

(SVM) analysis is a popular machine learning tool for classification and regression [56]. 

It is considered a nonparametric technique because it relies on Kernel functions. 

Suppose one is given the training data {𝒙𝑗; �̃�𝑗}. In ε-SV regression, the goal is to find a 

function 𝑓(𝒙) that has at most 𝜀 deviation from the actually obtained targets �̃� for all 

the training data and at the same time is as flat as possible. In other words, the errors 

are not important as long as they are less than 𝜀, but any deviation larger that this will 

not be accepted. This function that predicts the values �̂� is expressed as follows: 

�̂� = ℳ̂(𝒙) = 𝒘𝑇𝐾(𝒙𝑗 , 𝒙) + 𝑏 Eq. 2.38 

Where 𝒘 is the weight vector and 𝑏 is an offset. The non-linear mapping function 

K(𝒙𝑗 , 𝒙) is the Kernel function [57]. Using input data mapping in a high-dimensional 

space the Kernel function changes the nonlinear regression problem into a linear 



Theoretical Background 

 

29 

 

regression problem in the higher dimension. In the present study a Gaussian Kernel 

function is employed i.e., for two points 𝒙𝑗, 𝒙𝑖: 

𝐾(𝒙𝑗 , 𝒙𝑖) = 𝑒𝑥𝑝 (−‖𝒙𝑗 − 𝒙𝑖‖
2

) Eq. 2.39 

In order to achieve flatness, one needs to seek small 𝑤. One way to ensure this is to 

minimize the norm ‖𝒘‖2. This can be formulated as a convex optimization problem. 

However, the existence of a function ℳ̂(𝒙) that approximates all pairs {𝒙𝑗; �̃�𝑗} with 𝜀 

precision assumes that the optimization problem is feasible. Most of the times this is 

not the case, and many times it is useful to allow for some errors to avoid overfitting 

[58]. To achieve that, the slack variables 𝜉𝑗 and 𝜉𝑗
∗
 are introduced. These variables 

allow regression errors to exist up to the value 𝜉𝑗 and 𝜉𝑗
∗
, yet still satisfying the required 

conditions (see soft margin concept [59]). Consequently, one can write this convex 

optimization problem as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝒘‖2 + 𝐶 ∑(

𝐽

𝑗=1

𝜉𝑗 + 𝜉𝑗
∗) 

Subject to {

�̃� − 𝒘𝑇𝐾(𝒙𝑗, 𝒙) − 𝑏 ≤ 𝜀 + 𝜉𝑗

𝒘𝑇𝐾(𝒙𝑗 , 𝒙) + 𝑏 − �̃� ≤ 𝜀 + 𝜉𝑗
∗

𝜉𝑗 , 𝜉𝑗
∗ ≥ 0

 

Eq. 2.40 

The constant 𝐶 > 0 determines the trade-off between the flatness of ℳ̂(𝒙) and the 

amount up to which the deviations larger than 𝜀 are tolerated. This corresponds to 

dealing with a so called 𝜀-sensitive loss function described by: 

|𝜉|𝜀 = {
0                    𝑖𝑓 |𝜉| ≤ 𝜀
|𝜉| ≤ 𝜀       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Eq. 2.41 

The optimization described above is computationally simpler to solve in its Lagrange 

dual formulation. The solution to the dual problem provides a lower bound to the 

solution of the primal (minimization) problem. The optimal values of the primal and 

dual problems does not need to be equal, and the difference is called the “duality gap.” 

But when the problem is convex and satisfies a constraint qualification condition, the 

value of the optimal solution to the primal problem is given by the solution of the dual 

problem. One can obtain the dual formula by introducing non-negative multipliers 𝑎𝑗 

and 𝑎𝑗
∗ for each observation. Then the following quantity must be minimized: 

𝐿(𝑎) =
1

2
∑ ∑(𝑎𝑗 − 𝑎𝑗

∗)(𝑎𝑖 − 𝑎𝑖
∗)𝐾(𝒙𝑗, 𝒙𝒊) + 𝜀 ∑(𝑎𝑗 + 𝑎𝑗

∗)

𝐽

𝑗=1

𝐽

𝑖=1

𝐽

𝑗=1

+ ∑ 𝑦𝑗(𝑎𝑗
∗ − 𝑎𝑗)

𝐽

𝑗=1

  

Eq. 2.42 

Subject to the constrains: 
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∑(𝑎𝑗 − 𝑎𝑗
∗)

𝐽

𝑗=1

= 0    , 𝑎𝑗 , 𝑎𝑗
∗ ∈ [0, 𝐶] Eq. 2.43 

Furthermore, the offset parameter 𝑏, is computed by exploited the Karush-Kuhn-Tucker 

(KKT) conditions which state that at the point of the solution the product between the 

dual variables and the constrains has to vanish [57]. 

After estimating all the required parameters, one can proceed to predictions for new 

values 𝒙, based on the following function: 

�̂� = ℳ̂(𝒙) = ∑(𝑎𝑗 − 𝑎𝑗
∗)𝐾(𝒙𝑗, 𝒙) + 𝑏

𝐽

𝑗=1

 Eq. 2.44 

 

2.5 Fundamentals of Finite Element Analysis (FEA) 

The recent advances in computational resources have allowed the development of high-

fidelity models to address the increased complexity of modern engineering systems. 

The present study makes use of such a model to generate a sufficient amount of 

structural response data (i.e., strain measurements) that is necessary for training the 

aforementioned employed surrogate models. For this formulation, the Finite Element 

Method (FEM) was employed, which is a widely used numerical technique for the 

simulation of complex physical phenomena. It was deemed appropriate to include some 

basic theoretical elements of FEM to accompany the present study. 

2.5.1 Basic Principles of the FEM 

The Finite Element Method (FEM) is essentially a simulation of the continuum as a 

series of fundamental elements interconnected at a finite number of points referred to 

as nodes. As far as frames are concerned, which consist of a number of beams connected 

to each other at specific points, FE modeling is very intuitive since physical boundaries 

and connection points between members already exists (visual example presented in 

Figure 2.7). Regarding continuous structures such as the hull of a ship, or other plate 

like structures, where no physical discretization is existent, the entire domain needs to 

be virtually separated into smaller constituting elements (visual example presented in 

Figure 2.8). The elements can be one-dimensional (beams), two-dimensional 

(triangular or rectangular) or even three-dimensional (tetrahedrals etc). The nodes are 

usually positioned on their corners or edges but can even be in the inside of the elements 

depending on the architecture of the element. 
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Figure 2.7: Example of discretization of a 2D structural frame into a FE model 

consisting of nine elements and six nodes. (Source: [60]). 

 

 

Figure 2.8: Example of FE modeling of a 𝑇 joint between two thin-walled plates. 

(Source: [61]). 

The continuous domain is simulated as a series of discrete variables or degrees of 

freedom, usually defined as the nodal displacements and optionally their derivatives as 

well. Displacements inside each element must be compatible with the nodal 

displacements and are directly dependent on the corresponding values at the nodes. As 

a result, the structural response is approximated by calculating all nodal displacements. 

The continuous problem is therefore transformed into a discrete one. Acquiring the 

structural response comes down to forming the equilibrium equations at the nodes and 

then solving the resulting system with respect to nodal displacements.  

To achieve an accurate solution, there are some conditions that need to be satisfied. 

Namely, conditions of equilibrium as well as geometrical continuity inside the elements 

and along their edges. It is interesting to note that a collection of elements connected 

only at their nodes is not a direct analogous of the continuum, as displacement 

continuity is only explicitly imposed at the nodes, thus gaps or overlaps between 

members can occur following this modelling approach (visual example presented in 
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Figure 2.9). Of course, it should always be taken into consideration that the FEM is 

meant to approximate reality and is not expected to produce exact results. 

 

 

Figure 2.9: Example of gap forming between the edges of triangular elements in the 

distorted state. Case of modeling a beam cantilever with triangular shell elements. 

(Source: [62]). 

However, with the implementation of several techmiques, this inherent error can be 

mitigated to an acceptable level for each application. The simplest approach to reduce 

inaccuracies in FE modelling is by using an increased number of smaller elements. 

Increased accuracy by increasing the fidelity of the model comes at the cost of increased 

need of computational power and time requirements. 

 Nonetheless, there are more sophisticated methods to increase accuracy. More 

specifically, each element is characterized by its shape function. The shape function 

takes the nodal values of a field quantity (such as the displacement) and projects it 

throughout the entire elemental domain. Appropriate design of the shape function can 

guarantee equilibrium and geometrical continuity inside the elements and along their 

boundaries while only enforced at the nodes. Several element types and shape functions 

are available in the literature and are included in commercial FEA software, each 

optimized for a specific type of application. It is clear that careful selection of the 

element architecture is important in achieving greater solution accuracy. 

In FEM, equilibrium is not necessarily satisfied at every location of the continuous 

domain. Regardless, there are two conditions that must always be satisfied. In particular 

these are: 

a) Equilibrium of forces (external and internal) on every node. 

b) Equilibrium of nodal forces of every element. 

The aforementioned conditions are visually summarized in Figure 2.10. 
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Figure 2.10: Visual explanation of elemental equilibrium and nodal equilibrium on an 

indicative FE mesh. (Source: [62]). 

The generalized form of the system of equilibrium equations of a FE model can be 

summarized in: 

{𝐹} = {𝐾} × {𝑈} Eq. 2.45 

where {𝐹} is the vector that contains all external force effects expressed as equivalent 

forces on every node. {𝐾} is the global stiffness matrix of the system and {𝑈} is the 

column vector containing all nodal displacements, the dependent variables or degrees 

of freedom (DOFs) of the system. 

The global stiffness matrix ({𝐾}) is derived as a direct superposition of the stiffness 

matrix of every element ({𝐾}𝑚). 

{𝐾} = ∑ {𝐾}𝑚

𝑚
 Eq. 2.46 

Commonly, the stiffness matrix of an element will be available in the literature 

regarding a specific element type. In general, the elemental stiffness matrix is expressed 

in terms of a local, on-element coordinate system. Before superimposing, each member 

stiffness matrix is expressed in terms of the selected global coordinates system and 

projected to the dimensions of the global stiffness matrix. Namely, a transformation to 

the coordinate system that is defined for the entire composite model is required. This 

global reference system does not coincide with the local systems of every element for 

most complex structures. The required transformation is executed with the use of a 

transformation matrix {𝑇}, which incorporates all necessary rotational conversions to 

reposition the reference system of the initial matrix. This is described in mathematical 

terms in Eq. 2.47. 

{𝐾}𝑚 = {𝑇}𝑇{�̂�}{𝑇} Eq. 2.47 
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The ^ notation is introduced to distinguish the matrixes which refer to the local 

coordinate system from their counterparts, those referring to the global coordinate 

system of the model. 

Once the elemental stiffness matrices ({𝐾}𝑚) have been formulated and expressed in 

the global coordinate system, the stiffness matrix of the entire model can be constructed 

as shown in Eq. 2.46. 

The subsequent step in establishing a FE model is to appropriately define any external 

loading and boundary conditions. The first are incorporated in {𝐹} matrix, as introduced 

earlier. In the discretised reality of FEA, where all external forces should be applied on 

nodes, it is important that any concentrated point loads coincide with a node in the 

model. Consequently, operational conditions should be taken into account when 

discretizing the model. It is made obvious that any distributed pressure loads are 

required to be discretized to equivalent point loads on node locations. 

As far as boundary conditions are concerned, these can be integrated as constraints of 

DOF in the displacement vector {𝑈}. Superficially, this procedure might be regarded as 

easy as setting some variable to a fixed value because of the way supports are modelled 

in classical mechanics theory. Nonetheless, when accuracy is desired, the application 

of idealized theoretical boundary conditions may not be acceptable. As a result, detailed 

modelling of the supports and boundary interactions may be required. For this matter, 

the analyst is expected to have ample theoretical knowledge and intuition regarding the 

problem at hand. 

It is important to keep in mind that in modern FEA environments most of the heavy 

mathematical workload has been automated and assigned to computers. Nevertheless, 

appropriate modelling of the problem, as well as evaluation and interpretation of the 

results still require human expertise and should not be adopted without judgement. 

Often, results from FEA are compared directly to results acquired from analytical 

solutions or experimental measurements where applicable. This practice ensures 

validity of the modelling and in case of significant deviations indicates the need for 

potential adjustments. 

2.5.2 FE Modeling of Thin-walled Structures 

The general procedure of structural analysis using the FEM has been introduced in the 

previous subsection. In the present work, a thin-walled plate structure falls in the scope 

of analysis. It was considered appropriate to discuss some more details regarding 

modelling thin-walled structures in FEA.  

Thin-walled structures are defined as these structures in which thickness is of much 

smaller magnitude than the rest of the dimensions. The prevalence of thin-walled 

components and structures in every domain is justified by their optimized nature in 

terms of material and weight economy. With clever geometrical modifications (e.g. 

stiffeners, corrugation) the desired stiffness and stability are achieved with significantly 

reduced thickness, resulting in less structure weight and less material requirements. 

Such thin-walled arrangements are common in marine constructions and include plates, 
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bulkheads, stiffened panels, or even the entire hull, often regarded as a thin-walled 

hollow girder to study its response in global bending and twisting. 

Thin-walled structures can be modeled using rectangular, flat, shell-type elements. 

Shell geometries are fully defined by their mid-surface and thickness. In general, a thin-

walled arrangements will be subjected to bending as well as in plane stresses. Assuming 

operation in the range of small deformations, the deformations due to bending and due 

to the plane stress conditions can be considered independent [63]. In this regard, the 

shell element can be derived by superimposing a plane stress element with a bending 

element [62] as seen in Figure 2.11. 

 

Figure 2.11: Modeling of a flat "shell" element by superimposing a "bending" and a 

“plane stress" element. (Source: [62]). 

This principle allows to simplify the formulation of the shell element, as its stiffness 

matrix can be produced by appropriately adding the stiffness matrices of its other two 

components. The stiffness matrices {𝐾�̂�} and {𝐾�̂�} of the bending and plane stress 

elements accordingly are available in the literature [62]. 

The resulting stiffness matrix for the shell element can be produced as follows: 

{𝐾�̂�} = [
{𝐾�̂�} {0}

{0} {𝐾�̂�}
] Eq. 2.48 

Since the bending model has three DOFs per node and a total of 4 nodes, the 

accompanying stiffness matrix will be 12 × 12 sized. Equivalently, for the plane stress 

element with two DOFs per node, the stiffness matrix will be 8 × 8 sized. 

Consequently, the stiffness matrix of the resulting shell element, as per the formulation 

of Eq. 2.48, will be a 20 × 20 matrix. In the aforementioned equation {0} symbolizes 

appropriately shaped zero matrices. 

In order to integrate the local, elemental stiffness matrix {𝐾�̂�} of a shell element to the 

global stiffness matrix of an entire model, as mentioned in a previous paragraph, a 

transformation to the global coordinate system is required. Similarly, the transformation 

can be written as follows: 

{𝐾}𝑚 = {𝑇}𝑇{𝐾�̂�}{𝑇} Eq. 2.49 
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Consequently, to model a thin-walled structure the discretization of its geometry must 

be decided, taking into account the loading conditions and any relevant constraints. The 

global stiffness matrix describing the entire model can then be constructed as per Eq. 

2.46.  

Following the methodology of the previous subsection, the loads should be discretized 

and incorporated in the forces vector. Then the boundary conditions should be modelled 

appropriately and expressed in terms of constraints of DOF in the displacement vector. 

Once the above are completed, getting the response of the structure comes down to 

solving the system of Eq. 2.45. 
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3 Problem Definition  

This section aims to offer a detailed description of the key parameters defining the 

reference problem studied in this work. Firstly, the problem geometry is described 

followed by the definition of the variable operational loads and damage states. 

Onwards, the proposed virtual sensor topologies are presented. Finally, details of the 

FE modelling, the source of the required data for this exploratory analysis, are 

discussed. It should be noted that, because this study is an expansion of the work by 

Katsoudas [17], the problem definition sections in both studies show many similarities. 

3.1 Idealized Plate Domain 

A ship is a complex structure and that can pose a serious modeling and computational 

challenge for numerical simulations. However, this complex design consists of simple 

structural entities such as plates and beams. These structural elements have been studied 

in detail in the past century and thus there is plenty of knowledge built around the 

behavior and modeling of such geometries. A SHM system can also be focused on 

individual structural components ensuring that if each component is safe the structural 

integrity as a whole is guaranteed. 

The most common structural element on a ship is the stiffened panel, a typical 

arrangement of which is pictured in Figure 3.1. Albeit, for the purposes of this 

theoretical study, the geometrical domain was decided to be a rectangular (square) 

𝑎0 × 𝑎0-sized plate with a thickness of 1% its other principal dimensions. For 

simplification purposes, the value of 𝑎0 is set to one meter.  

 

Figure 3.1: Typical structural arrangement of a ship’s hull bottom. (Source: [64]). 
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3.2 Loading Conditions 

The aforementioned plate was subjected to two different operational conditions. First, 

the plate was considered to be subjected to a variable operational load. The load 

magnitude and its center location were modeled as random variables. The pressure 

profile is selected to be represented by the product of exponents of the quadric relation 

of the centroid of a bell-shaped curve. The mathematical expression of this non-uniform 

pressure profile is shown in Eq. 3.1. 

𝑞(𝑥, 𝑦; 𝑄0, �̅�, �̅�) = 𝑄0𝑒𝑥𝑝 (−
1

2
(

𝑥 − �̅�

𝑠
)

2

) (−
1

2
(

𝑦 − �̅�

𝑠
)

2

) Eq. 3.1 

 

In the above, 𝑠 is a deterministic shape parameter, 𝑥, 𝑦 are deterministic variables 

representing coordinates on the plate plane relative to its centers as depicted in Figure 

3.2. The variability of the load is controlled through the peak amplitude 𝑄0 at the 

location of the peak of the load at (�̅�, �̅�). These quantities are considered to be 

independent continuous random variables following a normal distribution, i.e., 

𝑄0~𝒩(𝑞0; 𝜇𝑄0
, 𝜎𝑄0

), �̅�~𝒩(�̅�, 𝜇�̅� , 𝜎�̅�), �̅�~𝒩(�̅�, 𝜇�̅�, 𝜎�̅�). The particulars of each 

distribution were appropriately selected in order to achieve specific behavior of the 

load. The parameters of the load amplitude 𝜇𝑄0
, 𝜎𝑄0

 were selected such that the plate 

remains within the elastic regime and the load is distributed between zero and a 

maximum value. Furthermore, it was decided that the load random location would be 

symmetrically distributed around the center of the plate (0,0), which leads to 𝜇�̅� =

𝜇�̅� = 0. An indicative three-dimensional plot of the load profile around an arbitrarily 

selected center is presented in Figure 3.3. 

The equation defining the load yields a symmetrical around its center, bell-shaped 

surface that represents the load magnitude at each point. The surface extends to infinity 

along both axes of the plate plane. Due to the fact that the distribution is a product of 

exponents, the amplitude of the load degrades to zero in an asymptotic way within a 

relatively short distance from its center. Thus, the significant part of the distribution, 

where non-zero amplitude is observed, is considered to be bound within a diameter 

extending six times the value of 𝑠 around the center. The value of the 𝑠 parameter is set 

to be equal to 𝑎0/12. Consequently, the distribution of the load is constrained within a 

circular like area with a diameter of 𝑎0/2, denoted with the red concentric circles in 

Figure 3.2. 

In order to fit the significant part of the load within the structural domain, its peak 

coordinates (�̅�, �̅�) had to be constrained within specified boundaries. Assuming that 

the range of (−3𝜎, +3𝜎) around the mean of each coordinate is equal to the range 

(− 1 4⁄ 𝛼0, +1 4⁄ 𝛼0) on the plate, then the defined significant part of the load will fit 

completely within the structural domain with a probability of 99.46%. The latter is the 

product of the 99.73% probability of each independent coordinate value to be sampled 

within the specified range of 6𝜎, according to the known theory for random variables 
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following the normal distribution. Hence, the standard deviation of each coordinate was 

selected as 𝜎�̅� = 𝜎�̅� = 𝑎0/12.  

 

Figure 3.2: Top view of the plate with a two-dimensional representation of an instance 

of the load on it. 

 

Figure 3.3: 3D representation of an indicative realization of the load profile. 

The aforementioned properties are visually summarized in Figure 3.4. The blue crosses 

correspond to a few thousand instances of sampled load locations. By design, 99.46 % 

of the load location samples should be corresponding to a point on the plate within the 
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bounding box. As long as the load’s center is sampled within the bounding area, the 

entirety of the significant part of the load fits on the structural domain. 

 

Figure 3.4: Visual representation of realizations of the load location. 

The second operational condition that was considered, employed the same pressure 

profile given by Eq. 3.1, however the parameters 𝑄0, �̅�, �̅� are now considered to be 

known deterministic constants. In that way, the potential information gain when the 

loading conditions are not described by stochasticity, is studied. 

3.3 Damage Introduction, Sensor Topology and Boundary Conditions 

As already presented in the introduction chapter of this thesis, this work revolves 

around the design of an SHM system that will estimate the corrosion induced thickness 

loss and associated variability using data collected from strain sensors. Damage is 

introduced to the problem as global uniform corrosion affecting the entire plate domain 

and thus it is quite obvious that it can be modeled by reducing uniformly the thickness 

of the plate. Damage in the present study does not exceed 20% of the nominal thickness 

of the plate. Considering that the nominal thickness of the plate is 10 mm, the thickness 

of the corroded plate is examined in an interval [8, 10] mm. More specifically the 

damage scenario that will be applied is that the plate has lost 15.3% of its nominal 

thickness. Thus, the thickness value that needs to be inferred is 8.47 mm. 

In this work, strain measurements constitute the collected observation data of the 

inverse problem. Hence, sensor topology is an important aspect of the present analysis. 

At first a rectangular array of nine equally-spaced strain sensors was considered, i.e., a 

3 × 3 −size sensor grid that is illustrated in Figure 3.5. Every sensor is represented by 

a gray square mark, while sensors were considered to measure both longitudinal strain 

components along 𝑥 and 𝑦 axis (𝜀𝑥, 𝜀𝑦), as well as the in-plane shear strain (𝜀𝑥𝑦) on the 

plate at a specific location. An observation for the problem would consist of 9 different 

strain measurements for each component. The initial aim was also to assess the effect 
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of different grid sizes (4 × 4, 5 × 5, 6 × 6) for each of the components on the 

information gain about the QoI. Nevertheless, dealing with full grid sensor 

arrangements posed a tremendous computational cost in order to proceed to Bayesian 

solutions, making this concept not viable. Thus, it was considered crucial to proceed to 

dimensionality reduction. Taking as well into account that the plate domain is subjected 

only to uniform corrosion it was considered possible to find a specific strain sensor 

location and corresponding component that would account for the solution of the 

problem (optimal sensor). This specific sensor was selected from the 3 × 3 −size 

sensor grid and how it was selected, would be a subject in the following chapter of the 

thesis. 

 

Figure 3.5: 3 × 3 sensor grid. Each sensor measures longitudinal strain components 

along x and y axis as well as the in-plane shear strain on the plate. 

Finally, regarding the boundary conditions of the plate, it was decided that these will 

be unsymmetric. Namely, two adjacent sides of the plate were considered as clamped 

(top and right side) and the other two adjacent sides were considered as simply 

supported (bottom and left side). 

3.4 Finite Element Modeling 

A FE model of the plate geometry was generated. The FE model was ultimately 

intended to serve as a synthetic data generator whereby a computationally cheap 

surrogate model can be further trained to alleviate its burdensome computational 

demands. For this purpose, the ANSYS Mechanical commercial software by means of 

its integrated scripting language (APDL) has been employed. This allowed the model 

to be parameterized in terms of the input source variability parameters to enable an 

MCS-based iterative solution scheme. The problem has been cast in a linear static 

setting with the material being regarded as linear elastic and isotropic, as it was 

expected that the applied loads would not result in plastic deformation. In this context, 

a Young’s modulus of 207 GPa and a Poisson’s ratio of 0.3 were used as representative 

values of shipbuilding steels. 
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On the basis that the thickness of the plate was considerably smaller than its other 

dimensions, it was modeled using four-node rectangular shell elements with six degrees 

of freedom at each node; three translations along an orthogonal axis system and the 

respective rotations about these axes. Also 4-node rectangular shell elements 

(SHELL181) were employed. 

Element size was determined by comparing relative solution accuracy between 

alternative reasonably sized mesh options in three indicative load cases [17]. Based on 

this comparison an element width of 0.02 m was selected for the FE model provided 

that it offered accuracy and at the same time would save in required simulation time. 

As a result, a 50 × 50-element structured mesh was developed to simulate the 

rectangular plate. The meshed plate is presented in Figure 3.6. 

 

 

Figure 3.6: Meshed plate and contour plot of the longitudinal (𝜀𝑥) strain component 

on the face of the plate for an indicative pressure load realization. 

Concerning the boundary conditions, all degrees of freedom of the nodes along the top 

and right edge of the plate were restricted to simulate clamped support conditions, 

whereas translation along the 𝑥, 𝑦 and 𝑧 axis and rotation about the 𝑧 axis were restricted 

for the nodes of bottom and left side to simulate simply supported conditions. The 

distributed load was applied by discretizing the continuous function that controls its 

profile. For each load case, the corresponding values of the load magnitude were 

acquired at the locations of the nodes. More specifically, for a given thickness value 

denoted by 𝑡, the corresponding value of the load (𝑞) at a specific node with coordinates 

(𝑥𝑛, 𝑦𝑛), under the given loading scenario (𝑞0
(𝑟), �̅�(𝑟), �̅�(𝑟))is calculated as 

(𝑥𝑛, 𝑦𝑛, 𝑞0
(𝑟), �̅�(𝑟), �̅�(𝑟)) in accordance with Eq. 3.1. 

The FE model was used in order to extract strain measurements in the corroded state 

and also to generate data for surrogate modeling training using MC sampling. 
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4 Feature Selection 

As already mentioned in the previous section, one needs to proceed to dimensionality 

reduction by selecting a specific sensor location and strain component from the 3 × 3 

grid, to avoid inefficiency due to high computational cost. In this section the analysis 

used to select the most insightful sensor for the estimation process is described. 

Identifying damage-sensitive features from the collected system response data is 

generally crucial for the design of a reliable SHM architecture. As it will be discussed 

in the sections to come, during the process of parameter estimation, strain 

measurements generated by the high-fidelity FE model are subjected to multiple types 

of uncertainty, including inherent measurement noise, errors due to load stochasticity 

as well as prediction errors and surrogate modeling errors. Al these types of errors will 

be summed and will be considered as a total noise that will describe the uncertainty 

among the strain data observations. Towards this direction it was considered reasonable 

to assume that sensor location and strain component that presents the higher strain 

response as a numerical value and thus is affected less by the total noise, will be the 

most appropriate feature to proceed with. However, for the sake of completeness and 

to reassure that sensors with low strain response are not acceptable, the problem will be 

solved for a sensor that is susceptible to measurement noise as well. 

4.1 Stochastic Operational Conditions 

In the case of stochastic operational conditions, no specific strain response is available, 

since the parameters of the pressure profile are treated as random variables. 

Consequently, the exploration of the optimal feature will be conducted based on the 

statistical response of the plate domain after repeatedly solving the FE model a great 

amount of load realizations and thicknesses. The random parameters that define the 

pressure profile were sampled using MCS from their known distributions given in 

Section 3.2 while the random thickness’ values 𝑡 were sampled using MCS from a 

uniform distribution in the interval [8,10]mm. The number of MCS samples was 

decided to be 104 random realizations. This process was carried out for all sensor 

locations and strain components and the optimal sensor was selected after investigating 

all different results. Figure 4.1 illustrates the statistical response for three indicative 

sensor locations and corresponding strain components. Finally, it was decided that 𝜀𝑦 

strain measurements generated from sensor 5 of the equally-spaced 3 × 3 grid 

arrangement were the least susceptible to noise and thus, the corresponding sensor 

location and strain component was the optimal feature. Sensor 7 and strain component 

𝜀𝑥 was also selected, as the sensor prone to measurement noise. 
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                         (a)                                            (b)                                             (c)        

Figure 4.1:  Statistical strain response for (a) sensor 3 (b) sensor 5, (c) sensor 7 (3x3 

grid). 

 

4.2 Deterministic Operational Conditions 

In the case of deterministic operational conditions, the parameters that describe the 

pressure profile are known constants. Thus, by simulating the FE model in the corroded 

state the strain response of the plate for this loading condition is given. The strain 

response is illustrated as a contour plot in Figure 4.2 for all three different strain 

components. Based on the strain response values, generated from the FE model, on each 

sensor location and for every strain component, sensor 3 and strain component 𝜀𝑥𝑦  

describes the optimal feature of the deterministic scenario.  

  

                         (a)                                       (b)                                     (c) 

 

Figure 4.2: Contour plot of strain 𝜀𝑥 (a), 𝜀𝑦 (b) and 𝜀𝑥𝑦 (c) for the corroded plate. 
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5 Bayesian Modeling 

In this section uncertainty is introduced to the strain measurements extracted from the 

high-fidelity FE model. This process set the basis for proceeding to Bayesian inference 

because one can generate noisy observations for given values of thickness based on a 

prediction error probability distribution, formulating a probabilistic model in 

accordance with Section 2.2.2. Furthermore, in this section, the application of surrogate 

models to the needs of this study, in order to predict strain measurements will be 

presented before, applying the Bayes theorem to each case. 

5.1 Stochastic Operational Conditions 

5.1.1 FE-based Engineering Model 

The FE model described in the Section 3.4 will represent the engineering model of this 

problem in accordance with Section 2.1.2. This will be different depending on the 

operational conditions. Let ℳ represent the FE model that simulates the behavior of 

the corroded plate. In the case where load is defined by stochasticity, the model ℳ is 

parametrized by q0, x̅, y̅, t. The FE reading 𝜀𝐹𝐸 of a strain sensor for a particular strain 

component when the plate has thickness 𝑡 can be formulated as follows: 

𝜀𝐹𝐸 = ℳ(𝑞0, �̅�, �̅�, 𝑡) Eq. 5.1 

Based on Eq. 5.1 it is obvious that this study deals with an inverse UQ problem, where 

one will be given noisy independent strain measurements and aims to make an inference 

about the thickness parameter 𝑡 and its associated uncertainty. 

5.1.2 Prediction Error and Surrogate Modeling 

Due to load stochasticity, measurement errors, numerical approximations and general 

inadequacies, strain measurements εFE from the FE model ℳ are expected to deviate 

from real life observations, denoted by 𝜀. Considering the engineering model 

formulation of the previous section, actual strain measurements can then be interpreted 

as the following sum: 

𝜀 = 𝜀𝐹𝐸 + 𝜂𝑝 Eq. 5.2 

𝜀 = ℳ(𝑞0, �̅�, �̅�, 𝑡) + 𝜂𝑝 Eq. 5.3 

Where ηp is the prediction error that describes the discrepancy between the model 

measurements εFE and the actual experimental data ε. In this work, this error contains 

the uncertainty not only due to FE modeling errors but also due to inherent randomness 

of the problem representing both epistemic uncertainty and aleatoric variability of the 

system.  

However, in order to proceed to Bayesian inference by applying the MCMC algorithm, 

the FE model needs to be called a great number of times independently each time a new 

candidate of the thickness parameter is sampled from the proposal distribution. 

Consequently, the algorithm tends to be inefficient. With the intention of overcoming 
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this obstacle a surrogate model ℳ̂ is employed to cope with the iterative nature of the 

MCMC algorithms. Given the input parameters q0, x̅, y̅, t the surrogate models proceed 

to make a prediction about the strain measurement εFE. This prediction strain 

measurement is denoted by 𝜀̂, and is formulated as follows: 

𝜀̂ = ℳ̂(𝑞0, �̅�, �̅�, 𝑡) Eq. 5.4 

For the needs of stochastic operational conditions, the surrogate model needs to be 

trained taking four parameters 𝑞0, �̅�, �̅�, 𝑡 as inputs and one parameter εFE as output in 

the training process. The stochastic nature of the load causes simple regression models 

to be unsuitable as surrogate models for the case. Consequently, Gaussian support 

vector regression was employed.  

In order to create the baseline 𝐷𝑏𝑎𝑠𝑒 of the synthetic data that would be used for training 

and testing, the 104 realizations and strain results that were used in strain statistical 

response, were employed. Namely, the base set was formulated as 𝐷𝑏𝑎𝑠𝑒 =

{𝑞0𝑚
, �̅�𝑚, �̅�𝑚, t𝑚; εFE𝑚

}, where 𝑚 = 1, … , 104. From the total number of points in 

𝐷𝑏𝑎𝑠𝑒, 80% were assigned for training and 20% for testing purposes. The training 

𝐷𝑡𝑟𝑎𝑖𝑛 and testing 𝐷𝑡𝑒𝑠𝑡 datasets were ensured to be mutually exclusive to avoid 

compromising the measure of generalization of the surrogate. 

During the process of estimating the SV regression hyperparameters, a k-fold cross 

validation process of 5 folds was conducted. To achieve that, the entire available data 

set was split into 5 sets and the model was trained using the data from all except one 

(i.e., 4 out of the 5 sets), while the remaining one was used for validation. This was 

repeated for all 5 possible validation sets and the final validation score was obtained as 

the average of their respective scores. Furthermore, in order to assess the performance 

of the surrogate model the metric coefficient of determination, known as 𝑅2, was 

employed. In general, the larger the 𝑅2 is, the higher the accuracy of the trained model 

is, and a value larger than 0.8 is believed to represent a high degree of accuracy. The 

value of 𝑅2 between surrogate strain predictions and their corresponding targets from 

the FE model  𝜀𝐹𝐸, is defined as:  

𝑅2 = 1 −
∑ (𝜀�̂� − 𝜀𝐹𝐸𝑚

)
2𝑀

𝑚=1

∑ (𝜀 − 𝜀𝐹𝐸𝑚
)

2𝑀
𝑚=1

 Eq. 5.5 

Where 𝑀 is the size of 𝐷𝑡𝑒𝑠𝑡 , 𝜀FEm
 is the 𝑚th strain observation from the FE model 

and 𝜀m̂ is the corresponding predicted output from the surrogate model. As an indicative 

case, the score for the optimal sensor is presented in Figure 5.1. From the performance 

of the 𝑅2, it can be observed that the model has been trained effectively and that a 

sufficiently high performance has been achieved for the surrogate model (𝑅2 = 0.998). 
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Figure 5.1: Indicative regression fit representing the 𝑅2 score of the surrogate model. 

Nevertheless, no matter how good 𝑅2 score does the surrogate model have, there always 

an error in the predictions. The surrogate model error is formulated as follows: 

𝜂𝑠 = 𝜀𝐹𝐸 − 𝜀̂ Eq. 5.6 

Combining Eq. 5.2 with Eq. 5.6, one can proceed to the formulation of the model that 

relates the real strain observations 𝜀 with the ones generates from the surrogate model 

ε̂ as shown in Eq. 5.8 . This model will be used in the Bayesian framework. 

𝜀 = 𝜀̂ + 𝜂𝑝 + 𝜂𝑠 Eq. 5.7 

𝜀 = ℳ̂(𝑞0, �̅�, �̅�, 𝑡) + 𝜂 Eq. 5.8 

Where the term 𝜂 = ηp + ηs accounts for all types of modeling errors and 

measurements uncertainties and is considered to be random variable. This residual term 

is treated as a Gaussian zero-mean random variable with a user-specified variance; 

namely 𝛨~𝑝𝛨(𝜂; 𝜎), with 𝑝𝛨(𝜂; 𝜎) = 𝒩(0 , 𝜎). It should be noted that the residual 

parameter 𝜎 is considered to be unknown and is included in the parameters to be 

inferred with Bayesian modeling. As it will be clear in Section 5.1.3 the residual term 

constitutes the probabilistic model in accordance with Section 2.2.2, that one can use 

in order to  explain the randomness of the data for given parameter values and it will be 

used to formulate the likelihood function of the problem. 

5.1.3 Bayesian Formulation 

In this section the process followed to apply the Bayes theorem will be described. 

Prior Model and Input Uncertainty 

In Bayesian fashion the unknown QoI are treated as random variables. Namely for the 

present problem, a prior distribution 𝜋(𝑡) is assigned to the thickness parameter 𝑡 as 

follows: 

𝑇 ~ 𝜋(𝑡) Eq. 5.9 
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The Bayesian prior distribution quantifies a subjective degree of plausibility or belief 

about the true parameter values 𝑡. For this work, two different prior distributions for 

the thickness parameter were examined. The first will be an uninformative uniform 

prior distribution, whereas the second will be a more biased prior that will be selected 

based on statistical data from existing corrosion situations on the bottom of ships. The 

biased prior will be treated as a normal prior distribution. 

It should be noted that according to the previous section, the residual parameter 𝜎 is 

also included in the parameters to be inferred. Thus, another uninformative uniform 

prior distribution is assigned to this parameter: 

𝛴 ~ 𝜋(𝜎) Eq. 5.10 

A vector 𝜃 is then considered, that contains all the parameters that need to be inferred. 

Thus, 𝜃 is a two-dimensional vector, containing both plate thickness 𝑡 and the standard 

deviation of the residual model 𝜎, i.e., 𝜃 = {𝑡, 𝜎}𝑇. These parameters are considered to 

be independent. Consequently, the joint prior distribution 𝜋(𝜃) can be written as the 

product of the two independent prior distributions: 

𝜋(𝜃) = 𝜋(𝑡, 𝜎) = 𝜋(𝑡)𝜋(𝜎) Eq. 5.11 

 

Probabilistic Model and Likelihood Function 

Based on the residual term formulation in Eq. 5.8, actual strain observations viewed as 

outcomes 𝜀𝑖 of random variable: 

(𝛦𝑖|𝑄0 = 𝑞0, �̅� = �̅�, �̅� = �̅�, 𝑇 = 𝑡) ~ 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑞0, �̅�, �̅�, 𝑡); 𝜎) Eq. 5.12 

Thus, the observation data set of the problem is generated by independently sampling 

from the distribution of Eq. 5.12. The total number of observations was considered to 

be 𝑛 = 100 strain measurements. The measurements were generated initially, using a 

standard deviation level of 5𝜇𝜀, however different measurement noise levels will be 

also examined. 

Namely, for given values of the direct forward model input q0, x̅, y̅, t, data are viewed 

as random variables (𝐸𝑖| q0, x̅, y̅, t) with conditional distribution: 

𝑝(𝜀𝑖|𝑞0, �̅�, �̅�, 𝑡 ; 𝜎) = 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑞0, �̅�, �̅�, 𝑡); 𝜎) Eq. 5.13 

The model of Eq. 5.13 refers to a single observation. In order to formulate a conditional 

distribution for the total 𝑛 generated independent data 〈𝜀𝑖〉 for given values of the 

unknown parameters q0, x̅, y̅, t ,the following product is taken: 

𝑝(〈𝜀𝑖〉 |𝑞0, �̅�, �̅�, 𝑡 ; 𝜎) = ∏ 𝑝(𝜀𝑖|𝑞0, �̅�, �̅�, 𝑡; 𝜎)

𝑛

𝑖=1

 

 

Eq. 5.14 
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⇒ 𝑝(〈𝜀𝑖〉 |𝑞0, �̅�, �̅�, 𝑡 ; 𝜎) = ∏ 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑞0, �̅�, �̅�, 𝑡); 𝜎)

𝑛

𝑖=1

 Eq. 5.15 

Thus, the connection between the observation data 〈𝜀𝑖〉 and the unknown input QoI that 

are contained in the parameter vector 𝜃 is established, and the probabilistic model is 

constructed in accordance with Section 2.2.2. Based on the aforementioned, one can 

then formulate the likelihood function of the vector parameter 𝜃, for a single 

observation (Eq. 5.16) and for the total observation data (Eq. 5.17). 

ℒ(𝜃|𝜀𝑖) = 𝑝(𝜀𝑖|𝜃) Eq. 5.16 

ℒ(𝜃|〈𝜀𝑖〉) = ∏ 𝑝(𝜀𝑖|𝜃)

𝑛

𝑖=1

 Eq. 5.17 

In Bayesian problems and MCMC algorithms, the log-likelihood function is commonly 

employed for practical issues, such as treating the product for the total observations 

data as a sum. Hence, the log-likelihood is formulated above, and Eq. 5.16 and Eq. 5.17 

are developed to Eq. 5.18 and Eq. 5.19 accordingly. 

𝑙𝑜𝑔 ℒ(𝜃|𝜀𝑖) = 𝑙𝑜𝑔 𝑝(𝜀𝑖|𝜃) Eq. 5.18 

𝑙𝑜𝑔 ℒ(𝜃|〈𝜀𝑖〉) = ∑ 𝑙𝑜𝑔 𝑝(𝜀𝑖|𝜃)

𝑛

𝑖=1

 Eq. 5.19 

It is obvious that the likelihood function of the problem refers only to the parameter 

vector 𝜃, which contains the QoI, and therefore in order to use the constructed 

probabilistic model of Eq. 5.13, the influence of the load related parameters q0, x̅, y̅ on 

the output of the surrogate model ℳ̂ has to be accounted for, by marginalizing the 

likelihood over their corresponding domains 𝐷𝑞0
, 𝐷�̅�, 𝐷�̅�. Consequently, the quantity  

𝑝(𝜀𝑖|𝜃) is formulated by marginalization as follows: 

𝑝(𝜀𝑖|𝜃) = ∫ ∫ ∫ 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑞0, �̅�, �̅�, 𝑡); 𝜎) 𝑑𝑞0 𝑑�̅�

𝐷�̅�𝐷�̅�𝐷𝑞0

 𝑑�̅� Eq. 5.20 

The process of calculating the multidimensional integral in Eq. 5.20 is difficult to be 

performed analytically. This leads to the approximation of the integral and the 

likelihood function as a whole, through Monte Carlo integration. According to Monte 

Carlo integration, an approximation �̂�(𝜀𝑖|𝜃) of the multidimensional integral of Eq. 

5.20 is given by Eq. 5.21: 

�̂�(𝜀𝑖|𝜃) =
1

𝐾
∑ 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑞0, �̅�, �̅�, 𝑡); 𝜎)

𝐾

𝑘=1

 Eq. 5.21 

Where 𝐾 is the number of independently sampled forward model inputs 𝑞0, �̅�, �̅�. The 

samples are generated from their probability distributions as presented in Section 3.2. 

Consequently, the following approximation of the marginalized likelihood over all 

observation data is formulated and will be used in the Bayesian problem: 
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𝑙𝑜𝑔 ℒ̂(𝜃|〈𝜀𝑖〉) = ∑ 𝑙𝑜𝑔 �̂�(𝜀𝑖|𝜃)

𝑛

𝑖=1

 Eq. 5.22 

In order to select the appropriate number of samples 𝐾 for the integral approximation 

in Eq. 2.21, a convergence study was conducted, and the results are presented in Figure 

5.2, for an indicative 𝜃. Based on Figure 5.2 and considering that the marginalization 

process develops an additional computational cost to the Bayesian estimation problem, 

a number of 1500 samples was considered adequate to achieve convergence. 

 

Figure 5.2: Convergence diagram for the Monte Carlo integration. The red 

lines represent the 95% confidence intervals.  

Bayes Theorem  

Having set the prior model and constructed the likelihood function, one can proceed to 

the joint posterior probability function of the unknown parameters 𝜃 = {𝑡, 𝜎}𝑇 by 

conditioning on the observations data 〈𝜀𝑖〉 according to the Bayes theorem (see Eq. 

5.23). For the sake of simplicity, the Bayes theorem is presented using the likelihood 

function and not the log-likelihood function. 

𝑝(𝜃|〈𝜀𝑖〉) =
1

𝐶
𝜋(𝜃)ℒ̂(𝜃|〈𝜀𝑖〉) Eq. 5.23 

The term 𝐶 is the model evidence, given by Eq. 5.24, where 𝐷𝑡, 𝐷𝜎 are the 

corresponding domains of thickness and standard deviation accordingly. 

𝐶 = ∫ ∫ 𝜋(𝜃)ℒ̂(θ|〈εi〉) 𝑑𝑡 𝑑𝜎
𝐷𝜎𝐷𝑡

 

 

Eq. 5.24 

In order to proceed to parameter estimation and uncertainty quantification using Eq. 

5.25 the term 𝐶 needs to be omitted as discussed in Section 2.3.1. This will be achieved 

by applying the MH algorithm, in order to sample from the joint posterior distribution. 
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5.2 Deterministic Operational Conditions 

5.2.1 FE Based Engineering Model 

Similar to stochastic loading, in the deterministic load scenario the FE model will 

represent the engineering model of this problem. However, this time the quantities 

 𝑞0, �̅�, �̅� are considered known constants, and thus the model ℳ is only parametrized 

by the thickness of the plate 𝑡. The FE reading 𝜀𝐹𝐸 of a strain sensor for a particular 

strain component is given by Eq. 5.25 

𝜀𝐹𝐸 = ℳ(𝑡) Eq. 5.25 

5.2.2 Prediction Error and Surrogate Modeling  

Real strain measurements 𝜀 are expected to deviate from the measurements generated 

from the FE model, just like in stochastic operational conditions. As such actual strain 

measurements can then be interpreted as the following sum: 

𝜀 = ℳ(𝑡) + 𝜂𝑝 Eq. 5.26 

Where ηp is again the prediction error that describes the discrepancy between the model 

measurements εFE and the actual experimental data ε representing epistemic uncertainty 

and aleatoric variability. 

A surrogate model ℳ̂ will again be trained next in order to cope with the iteration 

nature of MCMC algorithm.  However, while the output of the model remains the strain 

measurement εFE, the input parameter in this case is just plate thickness 𝑡, namely the 

model is much simpler than the previous case. This fact allows simpler regression 

models to be suitable for the deterministic loading case.  Specifically, a second-degree 

polynomial is employed and only eight training points {𝑡, 𝜀𝐹𝐸} were considered 

adequate to achieve regression with high efficiency. Figure 5.3 illustrates the training 

data points and the corresponding regression second degree polynomial curve for the 

optimal sensor feature of this case. Predictions 𝜀̂ are estimated in accordance with Eq. 

5.27. The metric coefficient 𝑅2 was also employed in this case, and the score resulted 

in an 𝑅2 = 0.999, achieving efficiency of the surrogate. 

𝜀̂ = ℳ̂(𝑡) Eq. 5.27 
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Figure 5.3: Training data points and corresponding regression curve for the optimal 

sensor of the deterministic load scenario. 

Similar to the stochastic loading scenario, the surrogate modeling error is formulated 

next, i.e., ηs = εFE − ε̂, and combining it with Eq. 5.26 one can proceed to the 

formulation of the model that relates the real strain observations 𝜀 with the ones 

generates from the surrogate model ε̂, as shown in Eq. 5.28. This model will be used in 

the Bayesian framework. 

𝜀 = ℳ̂(𝑡) + 𝜂 Eq. 5.28 

Where the term 𝜂 = ηp + ηs accounts for all types of modeling errors and 

measurements uncertainties and is considered to be random variable. This residual term 

is treated again as a Gaussian zero-mean random variable with a user-specified 

variance; namely 𝛨~𝑝𝛨(𝜂; 𝜎), with 𝑝𝛨(𝜂; 𝜎) = 𝒩(0 , 𝜎).  The residual parameter 𝜎 is 

considered to be unknown and is included in the parameters to be inferred with 

Bayesian modeling.  

5.2.3 Bayesian Formulation 

Prior Model and Input Uncertainty 

The prior models in the case of the deterministic operational conditions appear to have 

no difference compared to the ones in the stochastic operational conditions. Thus, no 

further analysis is presented regarding prior models and the reader is referred to the 

corresponding Section 5.1.3. 

Probabilistic Model and Likelihood Function 

Based on the residual term formulation in Eq. 5.28, actual strain observations viewed 

as outcomes 𝜀𝑖 of random variable: 

(𝛦𝑖|𝑇 = 𝑡) ~ 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑡); 𝜎) Eq. 5.29 
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Thus, the observation data of the problem are generated by independently sampling 

from the distribution of Eq. 5.29, and the number of these data was considered to be 

again 𝑛 = 100 strain measurements. The measurements were generated, using a 

standard deviation level of 5𝜇𝜀. 

Namely, for given values of the direct forward model input t, data are viewed as random 

variables (𝐸𝑖| 𝑡) with conditional distribution: 

𝑝(𝜀𝑖|𝑡 ; 𝜎) = 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑡); 𝜎) Eq. 5.30 

The model of Eq. 5.30  refers to a single observation. In order to formulate a conditional 

distribution for the total 𝑛 generated independent data 〈𝜀𝑖〉 for given values of the 

unknown parameter t ,the following product is taken: 

𝑝(〈𝜀𝑖〉 |t ; 𝜎) = ∏ 𝑝(𝜀𝑖|t; 𝜎)

𝑛

𝑖=1

 

 

Eq. 5.31 

⇒ 𝑝(〈𝜀𝑖〉 |𝑡 ; 𝜎) = ∏ 𝑝𝐻(𝜀𝑖 − ℳ̂(𝑡); 𝜎)

𝑛

𝑖=1

 Eq. 5.32 

Thus, the connection between the observation data 〈𝜀𝑖〉 and the unknown input QoI that 

are contained in the parameter vector 𝜃 is once again established, and the probabilistic 

model is constructed in accordance with Section 2.2.2. Based on the aforementioned, 

one can then formulate the likelihood function of the vector parameter 𝜃, for a single 

observation (Eq. 5.33) and for the total observation data (Eq. 5.34) 

ℒ(𝜃|𝜀𝑖) = 𝑝(𝜀𝑖|𝜃) Eq. 5.33 

ℒ(𝜃|〈𝜀𝑖〉) = ∏ 𝑝(𝜀𝑖|𝜃)

𝑛

𝑖=1

 Eq. 5.34 

Similar to the stochastic case, the log-likelihood function is then employed for practical 

issues. Hence, the log-likelihood is formulated above, and Eq. 5.33 and Eq. 5.34 are 

developed to Eq. 5.35 and Eq. 5.36 accordingly. 

𝑙𝑜𝑔 ℒ(𝜃|𝜀𝑖) = 𝑙𝑜𝑔 𝑝(𝜀𝑖|𝜃) Eq. 5.35 

𝑙𝑜𝑔 ℒ(𝜃|〈𝜀𝑖〉) = ∑ 𝑙𝑜𝑔 𝑝(𝜀𝑖|𝜃)

𝑛

𝑖=1

 Eq. 5.36 

 

In the deterministic case, the constructed probabilistic model of strain observations, 

only refers to the parameter vector 𝜃 which contains the parameters of interest. 

Therefore, in this case no further marginalization of the likelihood function is necessary 

and one can proceed to the application of the Baye’s theorem directly. 
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Bayes Theorem  

Having set the prior model and constructed the likelihood function, one can proceed to 

the joint posterior probability function of the unknown parameters 𝜃 = {𝑡, 𝜎}𝑇 by 

conditioning on the observations data 〈𝜀𝑖〉 according to the Bayes theorem (Eq. 5.37). 

For the sake of simplicity, the Baye’s theorem is presented using the likelihood function 

and not the log-likelihood function. 

𝑝(𝜃|〈𝜀𝑖〉) =
1

𝐶
𝜋(𝜃)ℒ(𝜃|〈𝜀𝑖〉) Eq. 5.37 

The term 𝐶 is the model evidence, given by Eq. 5.38, where 𝐷𝑡, 𝐷𝜎 are the corresponding 

domains of thickness and standard deviation accordingly. 

𝐶 = ∫ ∫ 𝜋(𝜃)ℒ(θ|〈εi〉) 𝑑𝑡 𝑑𝜎
𝐷𝜎𝐷𝑡

 

 

Eq. 5.38 

Once again, in order to proceed to parameter estimation and uncertainty quantification 

using Eq. 5.38 the term 𝐶 needs to be omitted as discussed in Section 2.3.1. This will 

be achieved by applying the MH algorithm, in order to sample from the joint posterior 

distribution. 
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6 Metropolis Algorithm and Results 

In the present chapter the MH algorithm is applied to the Bayesian problem of this study 

in order to extract posterior samples for the QoI. Convergence diagnostics are 

examined, and parameter estimation is performed by calculating the mode of the 

posterior distribution as a point estimate, while the associated uncertainty is quantified 

by taking the 95% credible interval. 

6.1 Numerical Prerequisites 

Before proceeding to the application of the algorithm, a reminder regarding the 

numerical data for the specific problem will be presented in this section. The plate of 

interest is subjected to corrosion under both deterministic and stochastic operational 

conditions and has lost 15.3% of its nominal thickness. A total number of 100 strain 

measurements are generated from specific sensor locations and components on the plate 

in order to make estimation about the thickness of the corroded plate, i.e., 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 =

8.47 𝑚𝑚. At the same time the probabilistic model constructed to proceed to Bayesian 

inference posed another parameter of interest, which is the standard deviation 𝜎 of the 

residual error term 𝜂. The target value of the parameter of standard deviation is set to 

𝜎𝑡𝑎𝑟𝑔𝑒𝑡 = 5 𝜇𝜀. Consequently, the target parameter vector is considered as follows: 

𝜃𝑡𝑎𝑟𝑔𝑒𝑡 = {8.47, 5}𝑇 Eq. 6.1 

Furthermore, prior distribution needs to be selected for the parameter vector 𝜃. With 

respect to the thickness parameter, a uniform distribution in the interval [8, 10] mm will 

represent the uninformative prior, i.e., 𝜋(𝑡) = 𝑈(8,10), while a normal distribution will 

represent the more biased prior, i.e., 𝜋(𝑡) = 𝒩(8.6 ,0.1). The parameters of the biased 

prior have occurred based on statistical data from existing corrosion measurements on 

the bottom of bulk carriers [65]. As regards the standard deviation 𝜎, uninformative 

prior in an interval [1,30] με is selected, i.e., 𝜋(𝜎) = 𝑈(1,30). Considering that the two 

parameters are independent, the total prior of the problem is formulated as discussed in 

Section 5.1.3: 

𝜋(𝜃) = 𝜋(𝑡, 𝜎) = 𝜋(𝑡)𝜋(𝜎) Eq. 6.2 

In the Metropolis algorithm a proposal distribution needs to be considered, that will 

suggest a candidate as a next sample in order to be accepted or rejected according to 

the Metropolis correction step, as discussed in Section 2.3.4. In Random Walk 

Metropolis sampling, that is applied in the present study a symmetrical multivariate 

normal distribution is selected, i.e., 𝑞(𝜃(∗)|𝜃𝑗) = 𝒩(𝜃(∗); 𝜃𝑗 , 𝛴𝑝), where, by 𝜃(∗) is 

denoted the suggested from the proposal candidate,  𝜃𝑗 the current chain state at 

iteration 𝑗 and 𝛴𝑝 the covariance matrix of the proposal distribution. The covariance 

matrix of the proposal distribution will be considered after investigating the MCMC 

trace plots and the corresponding acceptance rates for different values of the matrix. 

After this process the following covariance matrix was considered acceptable: 

Σ𝑝 = [
0.04 0

0 0.5
] Eq. 6.3 
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Finally, it should be noted that the Metropolis algorithm was applied in order to 

generate a total number of 11000 samples, from which the first 1000 were discarded as 

the Burn-In period. Consequently, a total number of 10000 samples from the posterior 

distributions were generated for each targeted parameter. 

6.2 Stochastic Operational Conditions 

Results with respect to stochastic operational conditions are presented in this section.  

6.2.1 Convergence Diagnostics and Autocorrelation  

According to the theory discussed in sections 2.3.6 and 2.3.5 respectively, convergence 

of the chain created by the Metropolis algorithms, as well as autocorrelation need to be 

investigated. Convergence will be verified by evaluating the mixing and stationarity in 

trace plots, while autocorrelation will be illustrated in ACF graphs. For the convergence 

assessment three chains, each with a different initial point, were created. 

Optimal Sensor 

Figure 6.1 illustrates the trace plots for both parameters of thickness and standard 

deviation for the optimal sensor feature. With regard to the thickness parameter, it can 

be observed that all the chains have mixed adequately and reached stationarity. The 

chains are moving fast, and they are exploring the entire sample space around the true 

value of the parameter. On the other hand, regarding the parameter of standard deviation 

of the residual model, it is obvious, that despite the fact that all the three chains have 

adequately converged to a stationary distribution, this distribution is different 

depending on the initial point and none of these distributions seems to contain the true 

value of the parameter. The chains have not mixed, and general convergence is not 

achieved. Hence, no valid inference can be conducted with respect to the standard 

deviation of the error model. This is not something unexpected, due to the 

marginalization process that is applied in this case. The marginalization process is 

performed over the loading parameters 𝑞0, �̅�, �̅�, which along with the parameter of 

thickness 𝑡 determine the mean value of the constructed probabilistic model. Thus, by 

applying the process, the behavior of the mean is dominant, while the information 

regarding the spread of distribution, i.e., the standard deviation 𝜎 is fading. Therefore, 

the likelihood function appears to be flat, with respect to the standard deviation 

parameter which leads to the parameter not being easily identifiable.  
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                                      (a)                                                                  (b)     

Figure 6.1: Trace plots showing the trajectory of the chains for the optimal sensor 

under stochastic operational conditions, for the parameter of (a) thickness and (b) 

standard deviation. 

Figure 6.2 contains the ACF graph illustrating the samples autocorrelation behavior 

over different lag values for the thickness of the plate. It should be noted that since the 

chains of standard deviation parameter have not converged to a stationary distribution, 

there is no point in plotting the corresponding ACF graph for this parameter. Based on 

Figure 6.2, it is observed that the autocorrelation between samples is large at short lags, 

but decays quickly to zero as the lag number increases, considering acceptable 

autocorrelation behavior. It should be also noted that the acceptance rate in this case is 

approximately 34%. 

 

Figure 6.2: Correlogram for the parameter of thickness for the optimal sensor under 

stochastic operational conditions. 
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Noise-Sensitive Sensor 

Figure 6.3 illustrates the trace plots for the parameter of thickness for the sensor that it 

is prone to measurement errors. Based on this figure, it can be seen that chains are 

generally exploring the sample space around values that are close to the targeted 

thickness value and that they are mixed with each other. Nevertheless, each chain 

appears to get stuck very often for many iterations and does not explore the whole 

sample space adequately, resulting in high serial correlation between samples. This can 

be as well verified by the corresponding correlogram illustrated in Figure 6.4. 

Acceptance rate in this case drops to 6%. The sensor’s noise-sensitivity results in an 

inevitable high correlation, which cannot be accepted in order to make valid estimations 

about the target parameter. 

 

Figure 6.3: Trace plot showing the trajectory of the chains for the noise-sensitive 

sensor, for the parameter of thickness. 

 

Figure 6.4: Correlogram for the parameter of thickness for the noise-sensitive sensor. 
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6.2.2  Marginal Posterior Distributions 

After evaluating the convergence of the MCMC process, one can proceed to the 

development of the marginal posterior distributions based on the generated samples and 

calculate the mode of the distribution, as well as the 95% credible interval, which 

represent the point estimation of the target parameter and the corresponding uncertainty 

accordingly. These results are presented for the optimal sensor since, it is the only one 

that can produce valid inferences and will regard only the parameter of thickness, since 

chains for the standard deviation have not achieved convergence. 

Uninformative Uniform Prior 

Figure 6.5 illustrates the marginal posterior distribution for the thickness parameter 

along with a corresponding Q-Q plot when a uniform prior is applied, where it can be 

clearly observed that the distribution can be approximately described by a normal 

distribution. Furthermore, Table 1 contains the value of the point estimated thickness 

and the corresponding 95% credible interval. It is obvious that the method achieves a 

very good estimation of the targeted thickness with a relatively small uncertainty 

regardless of the fact that no prior knowledge is applied. 

 

                                     (a)                                                                (b) 

Figure 6.5: (a) Histogram of the posterior distribution of thickness for the optimal 

sensor under stochastic operational conditions, (b) corresponding Q-Q plot. (Uniform 

Prior). 

 

Table 6.1: Parameter estimations for the optimal sensor under stochastic operational 

conditions. (Uniform Prior). 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 8.46 0.12 [8.42, 8.49] 

𝝈 (με) 5 -  - 
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Informative Normal Prior 

Similarly, Figure 6.6 and Table 6.2 sum up the estimation results when the informative 

normal prior is applied. It appears that the posterior distribution has the exact same 

behavior and that point estimates do not diverge from the estimates based on the 

uniform prior, meaning that additional information does not reduce further the 

uncertainty of the parameter at this point. 

 

                                 (a)                                                               (b) 

Figure 6.6:(a) Histogram of the posterior distribution of thickness for the optimal 

sensor under stochastic operational conditions, (b) corresponding Q-Q plot. (Normal 

Prior). 

Table 6.2: Parameter estimations for the optimal sensor under stochastic operational 

conditions. (Normal Prior). 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 8.450 0.23 [8.41, 8.49] 

𝝈 (με) 5 -  - 

 

6.2.3 Outlier Behavior  

It is important to highlight that the aforementioned results, occurred for load instances 

that are considered relatively usual to occur, namely, these are load instances where the 

parameters q0, x̅, y̅ are outcomes of the random variables 𝑄0, �̅�, �̅� from distribution 

areas that are not further than −2𝜎 and +2𝜎. However, it is also critical to explore the 

respective results from load realizations that do not fall in these areas, and thus to 

describe the behavior of the system in outlier conditions. These outlier conditions occur 

when at least two of the parameters q0, x̅, y̅ are outcomes of the random variables 

𝑄0, �̅�, �̅� from distribution areas further than −2𝜎 and +2𝜎.  Employing the 

uninformative uniform prior, the results shown in Figure 6.7 and Table 6.3 are 
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generated. The chain has converged to a stationary distribution which is approximated 

by a normal distribution; however, this distribution does not contain the thickness’ 

target value, hence the estimations of the parameter are considered inaccurate. As a next 

step, the biased normal prior was also employed, and results are presented in Figure 6.8  

and Table 6.4 respectively. Based on these results, in order for the system to proceed to 

good and valid estimations for the thickness parameter under outlier operational 

conditions, a biased prior is required. It is also noted that the uncertainty interval is 

wider compared to the cases of the previous section. Furthermore, load instances that 

are described by the parameters 𝑞0, �̅�, �̅� from distribution areas further than −3𝜎 and 

+3𝜎, set the marginalized likelihood to zero and MCMC algorithm can’t be performed. 

 

                                      (a)                                                               (b) 

Figure 6.7:(a) Histogram of the posterior distribution of thickness, (b) corresponding 

Q-Q plot. (Outlier behavior with uniform prior). 

 

Table 6.3 Parameter estimations for the optimal sensor under stochastic operational 

conditions. (Outlier behavior with uniform prior). 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 9.00 6.26 [8.96, 9.04] 

𝝈 (με) 5 -  - 
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                                      (a)                                                         (b) 

Figure 6.8:(a) Histogram of the posterior distribution of thickness, (b) corresponding 

Q-Q plot. (Outlier behavior with normal prior). 

Table 6.4: Parameter estimations for the optimal sensor under stochastic operational 

conditions. (Outlier behavior with normal prior). 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 8.50 0.35 [8.34, 8.54] 

𝝈 (με) 5 -  - 
 

In an attempt to overcome outlier issues a different observation data set was also tested. 

Thus far strain measurements were generated from a single unknown operational 

condition described by the random variables 𝑄0, �̅�, �̅� and by adding the effect of noise. 

However, in the current attempt, strain measurements will be generated from different 

operational conditions along with an added noise outcome of the residual probabilistic 

model and will be considered as the observations within the Bayesian and MCMC 

process. In such manner, results are extracted by taking into account multiple and 

possible outlier conditions. Figure 6.9 illustrated the trace plot of the generated chain, 

while Figure 6.10 illustrates the generated thickness posterior distribution. In addition, 

Table 6.5 contains the corresponding numerical results. The chain appears to move 

around the target thickness adequately based on the trace plot, and through the created 

posterior distribution good point estimations and relatively narrow credible interval are 

obtained.  
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Figure 6.9: Trace plot showing the trajectory of the chain based on the new data set. 

 

                                   (a)                                                               (b) 

Figure 6.10: (a) Histogram of the posterior distribution of thickness for the optimal 

sensor under stochastic operational conditions based on the new data system, (b) 

corresponding Q-Q plot. 

Table 6.5: Parameter estimations for the optimal sensor under stochastic operational 

conditions base in the new data set system. 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 8.47 0 [8.39, 8.65] 

𝝈 (με) 5 -  - 

Nonetheless, after illustrating the correlogram of this case in Figure 6.11, it became 

obvious that the autocorrelation between samples has not decayed to zero even at lag 

number 50. Therefore, the generated samples are considered highly correlated resulting 

in biased estimation of the parameter of thickness. This signifies that for such a case, a 

larger number of samples is necessary to be generated in order to achieve asymptotic 

independence. 



Metropolis Algorithm and Results 

 

64 

 

 

Figure 6.11: Correlogram for the parameter of thickness based on the new data set. 

6.2.4 The Noise Level Effect 

The aforementioned results were generated for a standard deviation level 𝜎 of 5 με. 

However, it is essential to examine what is the effect of different noise levels on the 

estimation of the thickness parameter. Towards this direction, the MCMC process was 

performed for higher noise levels of 10 με and 20 με respectively. The results are 

illustrated and compared in the following figures. It can be observed that the more the 

noise level increases, the slower the correlation between samples decays to zero. For 

the highest noise level of 20 με, the correlation is extremely high even at large number 

of lags. The chain is not mixed appropriately (Figure 6.12) and no valid estimations can 

be made. At such a high noise level, the system requires a significantly larger number 

of generated samples in order to achieve asymptotic independence. With respect to the 

noise level of 10 με, a higher correlation between samples is observed but within 

acceptable limits. Hence, one can proceed to parameter estimation as shown in Table 

6.6, where the % difference between point estimate and target value is significantly 

increased compared to the noise level of 5 με, and the uncertainty interval appears 

wider. 

 

                          (a)                                         (b)                                          (c) 

Figure 6.12: Trace plots for different noise levels, (a) 5 με, (b) 10 με, (c) 20 με. 
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                            (a)                                         (b)                                          (c) 

Figure 6.13: Posterior distributions of thickness for different noise levels, (a) 

5 με, (b) 10 με, (c) 20 με. 

  

 

                         (a)                                         (b)                                         (c) 

Figure 6.14: Correlograms for different noise levels (a) 5 με, (b) 10 με, (c) 20 με. 

 

Table 6.6: Parameter estimations for noise level of 10 με. 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 8.40 0.83 [8.34, 8.50] 

𝝈 (με) 5 -  - 

 

6.3 Deterministic Operational Conditions 

Respectively, results with regard to deterministic operational conditions are presented 

in this section.  
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6.3.1 Convergence Diagnostics and Autocorrelation 

Similar to the case of stochastic operational conditions Figure 6.15 illustrates the trace 

plots of the chains for both parameters. In the current case it is observed that all chains 

for both parameters have mixed, each having reached the unique corresponding 

stationary distribution. The chains are moving adequately fast, and they are exploring 

the entire sample space around the true values of the targeted parameters. It should be 

noted that the acceptance rate in this case reaches 42%. Moreover, Figure 6.16 

illustrates the ACF graphs for both parameters, where it is clear that sample 

autocorrelation decays to zero quickly at short lags. Generally speaking, the created 

chain behaves better under deterministic operational conditions, with a higher 

acceptance rate and the ability to make estimations for both unknown parameters. 

 

                                     (a)                                                              (b) 

Figure 6.15: Trace plots showing the trajectory of the chains under deterministic 

operational conditions, for the parameter of (a) thickness and (b) standard deviation. 

 

 

                                     (a)                                                                 (b) 

Figure 6.16: Correlogram under deterministic operational conditions, for the 

parameter of (a) thickness and (b) standard deviation. 
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6.3.2 Marginal Posterior Distributions 

Based on the aforementioned, one can proceed to the marginal posterior distributions 

in order to make point estimations and credible intervals for the QoI. Figure 6.17 and 

Figure 6.18 illustrate the marginal posterior distributions for the thickness and standard 

deviation parameter respectively, when uninformative uniform prior is employed. Both 

parameters’ distributions can be approximated again by utilizing normal distributions. 

The corresponding estimations are presented in Table 6.7. It is observed that under 

deterministic operational conditions, Bayesian estimations are very close to the targeted 

values for both parameters with an associated narrow uncertainty 95% interval. Also, it 

should be noticed that estimations do not deviate much from the corresponding 

estimations under stochastic operational conditions with usual loading instances. 

 

                                     (a)                                                           (b) 

Figure 6.17: (a) Histogram of the posterior distribution of thickness under 

deterministic operational conditions, (b) corresponding Q-Q plot. (Uniform Prior). 

 

                                  (a)                                                              (b) 

Figure 6.18: (a) Histogram of the posterior distribution of standard deviation under 

deterministic operational conditions, (b) corresponding Q-Q plot. (Uniform Prior). 
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Table 6.7: Parameter estimations for the optimal sensor under deterministic 

operational conditions. (Uniform Prior). 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 8.47 0 [8.41, 8.52] 

𝝈 (με) 5 5.13 2.6 [4.36, 5.75] 

To further assess if parameter uncertainty with respect to the thickness of the plate can 

be further reduced, the biased normal prior was employed. Results are presented in 

Figure 6.19 and Table 6.8 respectively. However, it is observed that the behavior is 

almost identical to when the uniform prior distribution was employed, thus no 

additional knowledge can further reduce thickness uncertainty.  

 

                                       (a)                                                        (b) 

Figure 6.19: (a) Histogram of the posterior distribution of standard deviation under 

deterministic operational conditions, (b) corresponding Q-Q plot. (Normal Prior). 

 

Table 6.8: Parameter estimations for the optimal sensor under deterministic 

operational conditions. (Uniform Prior). 

Parameter Target Value Point 

Estimate 

% 

Difference 

Credible 

Interval 

𝒕 (mm) 8.47 8.48 0.12 [8.42, 8.52] 

𝝈 (με) 5 5.13 2.6 [4.36, 5.75] 
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7 Concluding Remarks 

The goal of the present study was to investigate a SHM system for parameter estimation 

and uncertainty quantification of the thickness of a plate domain in a uniformly 

corroded state, under both stochastic and deterministic operational conditions utilizing 

Bayesian inference. Strain measurements from sensors on the plate were considered as 

observation data. The implementation of the method was carried out in a numerical 

setting, through MCMC Metropolis algorithm and by using high-fidelity FE model and 

surrogate modeling to generate the strain response data. Different sources of uncertainty 

affecting the strain measurements in both operational conditions were considered to 

appropriately construct a probabilistic model in the Bayesian framework. The key 

findings of the employed research are listed below: 

• Sensor locations and strain components that appear to have the highest strain 

response are considered optimal for data collection because they are affected 

less by measurement noise. 

• Under stochastic operational conditions and for load instances that are relatively 

usual to occur, Bayesian estimations are very close to the targeted values 

regarding the thickness parameter. However, the system fails to make 

estimations about the residual parameter 𝜎 that describes measurement 

discrepancies in the constructed probabilistic model. 

• Under stochastic operational conditions the system does not behave well in 

outlier loading instances when no prior biased knowledge is available. Only 

when biased prior probability distribution is employed together with large 

number of generated samples, are Bayesian estimations unbiased and close to 

the real target values. 

• As measurement noise level increases, parameter uncertainty as well as sample 

correlation also increases. Sample correlation increases up to a point where no 

valid estimations can be developed, and a significantly larger number of 

samples is essential to achieve asymptotic sample independence. 

• Under deterministic operational conditions, the Bayesian system provides good 

estimations and narrow uncertainty intervals for both thickness and standard 

deviation parameter with no significant deviation from the stochastic case in 

usual loading conditions. 

The performance of Bayesian inference in thickness estimation of a plate subjected to 

uniform corrosion encourages the expansion of this application in a more complex 

framework like crack identification. The number of quantities of interest in such cases 

increases as now one is interested in the location of the crack, the crack’s length as well 

as the cracks orientation. The increased dimensionality of such problems poses serious 

constraints regarding the FE model, the surrogate models and the MCMC 

methodologies that are employed to deal with Bayesian inference. Most likely, 

conventional MH algorithm will not be appropriate and advanced and complicated 

MCMC methods, like Hamiltonian Monte Carlo will be necessary. 
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