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Abstract

Over the years, the practices that are used to ensure structural integrity and operational
safety in the maritime sector have remained basically the same; and although efficient,
they present some important drawbacks. In looking to enable a shift towards predictive
and condition-based maintenance, the field of Structural Health Monitoring (SHM) has
emerged as a viable option among stakeholders. The goal of SHM is to infer the
existence or level of structural degradation using large amounts of in situ sensor-
obtained data. In this direction, the objective of this study is to construct a SHM system
that estimates the thickness loss due to corrosion in the marine operational environment
utilizing strain sensing. For this purpose, a simple rectangular plate at uniform corrosion
was considered as a reference structural element, which was subjected to stochastic
loading as well. The quantity of interest was treated in a probabilistic framework using
Bayesian inference. Strain response data were produced through a high-fidelity Finite
Element (FE) model and due to the nature of Bayesian updating, surrogate models were
employed to proceed to solution efficiently.

Keywords: Structural Health Monitoring, uncertainty quantification, inverse problem,
Bayesian inference, strain sensing.



IHepiiwyn

Ta televtaio ypdvia, Ol TPAKTIKEG TOL YPTCULOTOOVVTOL Y10, VO OUGPOAMOTEL M
KOTOGKEVOOTIKY] OKEPALOTNTO KOL 1 AEITOVPYIKY OCPAAE, GTOV VOLTIMOKO TOUEN
EYOVV TOPALEIVEL OVGLOOTIKA 1O1EC KO OV KOl OTOJOTIKEG, TOPOVGLALOVY KATOL0L
ONUOVTIKO HElOVKTAaTO. Emdidkovtog pa peTafoAn Tpog TV TPOYVMGTIKT KOl VIO
ouvOnkeg cuvtpnon, o topéag g Iapakorovdnong Aopikng Akepardtnrag (ITAA)
KOTAOKELAOV Yel avadeybel g Pldoiun emAoyn om0 To EVOLAPEPOUEVO LEPN TOV
topéa. O o10)0¢ TV cvotnudtwv ITAA eivor n e€aywyn GOUTEPAGUATOV GYETIKA pE
v Ymapén M tov Babpd doptkng vroPadong, ¥PNoYLOTOIMVTAS HEYAAEG TOGOTNTES
dedopévmv ano emttdémiong acOnmpes. [Ipog avtn v katevbuven, o oKomdg aVTNG
™G epyaciog lval va Kotaokevdoet eva ox€o1o ITAA, 10 0moio va EKTIHAEL TV ATOAELL
Téyovg AOY® JSAPPwoNG 6To VOLTIAMOKO TEPIBAAAOV AgtTovpyEiog, ¥PNOLOTOIDOVTOS
aviyvevon mapapopem®cewyv. o Tov okomd avtd, Bewpndnke o anin opboymvia
TAdKo og cvvOnkeg opowduopeng daPpwong, n omoia vwoPfdiAietal pdAoTO OF
oTOXaoTIKY POpTIoN. O YEPIoUdg TG TOCOTNTOG EVOLAPEPOVTOG £YIVE GE TTANICLO
mhavotnTeV Ypnoipomoldvia Mmebliovr cvumepacupatoroyio. Ta  dedopéva
TAPOLOPOOCIOKNG amdKpIoNg dnpovpyndnkav pécm evog poviédov Ilenepacpévov
Yroyeiov (IIX) vyming axpifetog kat Adym g evong g Mreblovig avafaduiong
TANpoeopiag, vroKaTdoTaTe LOVIELD YpnotomomOnKay yio TV enitevén g Aong
OTOJOTIKA.

AéEerg  hewdud:  TlapaxorobOnon  Aouwkng  AkePOIOTNTOC, TOCOTIKOTOINGOM
afeporotnrag, avtiotpopo mpdPAnua, Mrebliov cvumepacpatoroyio, ocOnTpeg
TOPALOPPDOCEWDV.
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Introduction

1 Introduction

1.1 Current State of Damage Identification Practices

Preservation of structural integrity is a challenging task for infrastructure systems with
geometry- and operational-level complexities, such as ships, offshore and land-based
structures. The most common and effective practices to ensure the safe operation of a
structure have remained unchanged over the better part of modern engineering history.
These practices essentially are: a) significantly overcompensating for vaguely defined
potential loading scenarios, usually of stochastic nature as well as uncertainty regarding
the material, and b) planning ahead for normal wear. This is especially the case in the
highly unpredictable and corrosive environment where ships and marine structures
operate. In addition to conservative design, periodical surveys and maintenance are
required throughout the life cycle of a structure. In the maritime industry, current
practices involve strict preventive maintenance schemes centered around temporally
fixed inspections that are imposed by the International Maritime Organization (IMO)
and overseen by classification societies. Damage identification is based on visual
inspection and non-destructive evaluation (NDE) carried out on site in predetermined
minimum time intervals. Due to the vast number of structural elements a ship is
composed of, surveys focus on designated areas and structural details that are expected
to be corroded or are susceptible to certain types of failure [1].

In Figure 1.1 the sketch of a transverse section of a typical dry cargo vessel is depicted.
Marked on it are notes and comments regarding damage modes most frequently
occurring on each of the designated locations. This figure is provided in a relevant
report of recommendations regarding the inspection of bulk carriers and tankers,
published by the International Association of Classification Societies (IACS).
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\\
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| ]
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I
i
1
I
1
T
|
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Figure 1.1: Sketch of transverse bulkhead with instructions for damage inspection as
recommended by IACS guidelines. (Source: [1]).

In the maritime operational environment, one of the prevalent types of damage is
corrosion induced thickness loss (CITL). This type of damage is part of the normal

6
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operational wear of marine structures for which structural guidelines [2] require the
addition of excess thickness to structural members. Common modes of corrosion
involve uniform corrosion of extensive areas as well as pitting. Pitting is a type of
localized corrosion that takes the form of small craters of variable size and geometry
on the material. Usually, those craters are concentrated around specific locations
forming a damaged area resembling locally contained uniform corrosion [3]. This mode
of corrosion, along with uniform thickness loss is prevalent on plates in the marine
environment. Typically, the material addition to plates required by guidelines [2] for
safe design against corrosion constitutes 20% of the nominal plate thickness. The
nominal thickness is also dictated by the guidelines to ensure safe operation under
expected loading conditions during the lifespan of the structure.

Due to scale, time and access constraints, inspection practitioners typically perform
visual examinations on the aforementioned damage-prone locations. If the visual
method does not suffice, a suitable Non-Destructive Testing (NDT) technique is
deployed on site for a more refined assessment. The current NDT methods that
dominate the field can be classified into three main categories; namely, enhanced visual
and radiographic, acoustic and magnetic techniques [4]. Once structural damage has
been identified by means of the employed inspection method, the operator must
determine whether or not appropriate repair/renewal and maintenance should be
performed. Selecting a suitable repair alternative involves a great deal of judgment and
engineering insight and is typically a trade-off between robustness and cost.

However, the aforementioned methods have many drawbacks. Firstly, human
intervention is required. On top of that, the inspector is required to be highly skilled
with great expertise and pass high qualification standards in order to ensure correct
evaluation of the readings. Techniques require that the vicinity of the damage is known
a priori and that the portion of the structure being inspected is readily accessible.
Prevention is based on statistically locating faults by sample tests throughout the
structure, focusing on areas susceptible to damage. Additionally, most methods are
limited to detection of damage on or near the surface of the structure [5]. Moreover,
NDE is applied on a single damage instance, at a specific timeframe. No information is
gained about the evolution of the damage when operation continues, or the overall
health of the structure given the presence of the damage.

Furthermore, in order to transition to more environmentally and economically
sustainable structures, it is required to reduce material wastage. It would be of
immediate benefit to work components closer to failure rather than preventively
replacing them because of uncertainty about their remaining operational reliability. The
aforementioned issues illustrate the need for a shift into a more holistic and proactive
approach to maintenance, i.e., Condition-based Maintenance (CBM). Essentially, CBM
recommends maintenance actions (i.e., decisions) based on data gathered through a
process of condition monitoring allowing operators to gain access to salient benefits
[6]. Weighed against preventive maintenance, the primary advantages CBM offers are
the increased system reliability as well as the significant cost savings due to the reduced
material wastage and the decreased mean downtime as a result of less reliance on
periodic inspections. The next section delves into the concepts of Digital Twin (DT)
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and Structural Health Monitoring (SHM), which both play an increasingly important
role in the realization of the CBM paradigm.

1.2 Digital Twin and Structural Health Monitoring

From a practical perspective, a DT can be defined as the computerized companion of a
real-world physical asset, i.e., the Physical Twin (PT), intended to serve as a dynamic
and accurate replica of the PT’s behavior within a target setting [7]. To ensure solid
physical interpretability, the DT should be augmented with high-fidelity physics-based
models, which will be constantly updated as data from permanently installed sensors
on the PT and will be received in a real-time fashion. The DT can then be leveraged for
conducting different “what-if” scenarios of service function (i.e., operation, inspection,
etc.) for the life-cycle integrity management of the PT. The extant literature underlines
many of the prospective and immediate benefits of the DT intervention in the industrial
arena that accumulate to the PT’s overall efficiency, including risk [8] and cost [9]
reduction, security [10], resilience [11] and reliability [12] enchantment and of course
decision-making assistance [13]. An overview of the digital twin as it may be
implemented in shipping, along with the underlying technologies it encompasses is
shown in Figure 1.2.

Asset Scale
lodels

sale

Component
Scale Models

>
&
>
>
N
m

ANALYZE

* Sensor Data

* Corrosion

= Elasto-plastic Model
= S-N Curves

* Route/Wave Model

Figure 1.2: DT technology for an FPSO hull structure: Interaction between the
physical space and the digital space. (Source: [14]).

However, it should be noted that relevant research and application regarding the
implementations of structural digital twin in modern ocean-going vessels and offshore
structures are still at an early stage. In general, research on the subject is more focused
on the implementation of the principles of SHM in order to gather insights on how to
approach the problem of damage detection in ship structures, thus making possible the
creation of a data enabled structural digital twin [15]. Structural Health Monitoring
refers to systems which enable the automatic and on-line observation of structural
integrity of any given component during service [16]. However, the information is not
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limited to the structural health of a system, rather it may include data regarding
operational procedures, performance metrics, financial analytics and anything of
interest depending on each application.

The SHM framework should not be considered just another NDE method [17]. In
defense of this statement, note for example the case of an extreme event that exceeds
operational specifications. In such a scenario traditional NDE methods usually require
cease of operations. On the contrary, a SHM system can provide immediate feedback
on the condition of the structure and assist in deciding whether operations can safely
continue afterwards. Another fundamental differentiation element is that in order to
apply NDE techniques, the existence of damage should already be known, while
damage detection falls within the scope of SHM systems. Furthermore, NDE does not
provide up-to-date information on the overall state of the structure. On the other hand,
SHM refers to near real-time systems that function in parallel with the operation of the
structure (DT).

In the present study, one is interested in SHM as a damage-detection strategy. This idea
of SHM as a damage-detection method is described by Farrar et al [5] as the following
procedure:

e Step 1: Operational evaluation

e Step 2: Data acquisition, normalization, and cleansing.

e Step 3: Feature extraction and data condensation.

e Step 4: Statistical model development for feature discrimination.

The final step may be broken down to four levels according to Rytter [18], progressively
increasing in the depth of information required:

» Level 1: Detection

> Level 2: Localization

» Level 3: Characterization
» Level 4: Prediction

Plates on a marine vessel, which is the subject of analysis in this work, are required to
be replaced once damage exceeds a threshold indicated by formal guidelines. Hence,
focus is pointed towards only level 1 and level 3 SHM statistical model development.

As mentioned previously, in SHM, information about the structure integrity is being
constantly updated using collected data. Towards this direction, one encounters
Bayesian inferential statistics as powerful tool in SHM applications. One paradigm of
this is the work of Zhu and Frangopol [19], where Bayesian updating is applied to assess
the reliability and redundancy of a ships cross section based on load effects.

Another thing that is important to point out is that the strain response of a structure is
commonly used as the source of information for SHM. A strain-based framework was
utilized in recent works of Silionis et al [20] for the detection and localization of
extensive damage in thin-walled structures as well as by Argyris et al [21] for Bayesian
optimal sensor placement for crack identification in structures.



Introduction

In the marine and offshore industry, SHM implementations are frequently discussed.
Corrosion detection on ship hull structures is studied in the works by Katsoudas [17]
and by Silionis et al [22] where in both a strain-based approach is implemented and in
the work by Yao et al [23] where a machine-vision, image-based approach is utilized.
Nonetheless, to the author’s knowledge, the applications of SHM systems in the sector
are still limited. One important consideration amongst the limiting factors is the lack of
standardization and reliable metrics to evaluate the suggested methods [24]. SHM
systems in practice are more commonly seen in offshore wind turbines as per the review
of Martinez-Luengo et al [25].

1.3 Thesis Objective and Overview

In the previous sections a brief overview of the research around SHM was presented.
The present thesis is inspired not only by the aforementioned ideas but also by a
willingness to approach the benefits of transitioning to a condition-based maintenance
scheme, which empowers the vision of increased service performance, structural
integrity and safety of operation in a sustainable future for the industry. More
specifically, the purpose of this study is to design an appropriate SHM scheme that will
be capable of estimating the corrosion induced thickness loss in marine plates, utilizing
strain measurements. The thesis is focused on designing strategies for transforming the
sensor data to thickness information.

In this direction, a fictitious, plate-like structural entity was selected. The choice of this
simplified structural domain extricates the analysis from the need to develop an
accurate model of a real-world complex structure. Moreover, possible complicated
effects of geometrical nature are avoided, hence, a more clear, direct view of parameter
influence on the problem is thought to be observed which hopefully would allow for
qualitative deductions to be made that could be generalized for different applications.
The aforementioned plate was then subjected to a global uniform thickness reduction
representing the uniform corrosion due to the operational environment of marine
structures. Strain response data are obtained from a high-fidelity FE model.

A kye challenge in modeling naval structures is the stochastic nature of their operational
profile. The marine environment is modeled in a probabilistic manner, thus, designing
and studying models in determined loading scenarios may not be representative of the
real world. In the present study high operational variability was modeled in the input
by introducing several parameters as random variables. The structural domain was
considered to be subjected to distributed pressure loads of random peak magnitude and
location.

This inherent probabilistic nature of reality poses a corresponding uncertainty to the
quantity of interest (Qol), i.e., the remaining from corrosion, thickness of the plate. The
aim of this thesis is not limited to just point estimate this thickness. It is equally
important to quantify this associated uncertainty that describes this parameter. It is
important to note that the Qol and the observable data are only indirectly connected
through a deterministic forward model, thus posing an inverse uncertainty
quantification problem. Towards the direction of inverse uncertainty quantification,
Bayesian statistics were considered the most appropriate approach since the Qol is
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treated from the beginning as random variable and thus in a probabilistic manner. To
proceed to the solution of the Bayesian problem Markov Chain Monte Carlo (MCMC)
algorithm was employed. Due to the iteration nature of the aforementioned algorithm,
surrogate models were necessary to proceed to solution efficiently.

The following chapters elaborate on the aforementioned topics and explain in depth the
concepts applied and the steps taken towards accomplishing the objective of this thesis.
Chapter 2 provides some insight regarding the framework around the concepts included
in this study. In Chapter 3 the development of the problem at hand is described followed
by the details on the FE modeling procedure. Chapter 4 describes the procedure of
selecting the optimal sensor features. In chapter 5 the probabilistic model is constructed
along with surrogate modeling. Chapter 6 contains the results of Bayesian inference
and finally, chapter 7 summarizes this analysis, offers some final thoughts around the
subject and provides inspiration for extensions in the future.
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2 Theoretical Background

The introduction provided a first look into the ideas that inspired this work and a general
overview of the procedures executed for the purposes of the present study. The aim of
the current section is to present in theoretical terms the basic concepts and tools of
analysis tied with the technical portion of this thesis. In this regard, by the end of this
chapter, the reader should have a solid understanding of the concepts such as
Uncertainty Quantification (UQ) in inverse problems, Bayesian Statistics, Markov
Chain Monte Carlo methods (MCMC), Surrogate Modeling and Finite Element
Method. The advanced reader can be directed to the literature referred along each
subject for more specialized and holistic information.

2.1 Uncertainty Quantification (UQ)

Uncertainty quantification (UQ) is the process of quantifying and analyzing the
uncertainty in mathematical models, simulations and data. The primary aim is to assess
the reliability of predictions, account for the effects of variability, randomness and
misspecification in models, and ultimately assist in decision-making. UQ is an
increasingly important interdisciplinary field which combines statistical, computational
and mathematical methods to estimate, propagate and bound the uncertainty in models.

2.1.1 Sources and Types of Uncertainty

There is no argument that structural systems are subject to a multitude of uncertainty
sources. There are two primary classifications of uncertainty; namely, aleatoric and
epistemic [26]. Aleatoric uncertainty is a type of uncertainty that originates from the
unavoidable inherent randomness or variability in the system being modelled or
measured. It is also referred to as stochastic or random uncertainty. Aleatoric
uncertainty in engineering problems may become present in structural loads, as well as
in material properties, structural dimensions (scantlings), and fabrication-related
geometric tolerances, just to mention a few. Errors associated with the deployed data
acquisition system (e.g., measurements noise, sensor misplacements, etc.) also fall
under this category. Essentially, inherent variability is a state of nature, and the
accompanying uncertainty is irreducible. In contrast epistemic uncertainty is the type
of uncertainty that arises from the limited knowledge, data, or information available
about the system being modelled or measured. Foremost among the sources of
epistemic uncertainty is the prediction error related to the computational modeling
procedures that have gained popularity in the last decades for several applications of
practical interest in science and engineering. Theoretically, the uncertainty associated
with these types of errors can be reduced by employing better physical-mathematical
models or gathering additional data. Whilst aleatoric and epistemic uncertainty are
referred to as two distinct classes, in practice, they often come together. This combined
uncertainty is referred to as hybrid uncertainty.

2.1.2 Engineering Model

In the context of UQ, a model of an engineering system is a mathematical representation
or computational simulation of the relevant physical processes. For given parameters
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x € D, from the domain D, € R with M € N,,, the model predicts an output of
interest ¥ € R. A single response quantity is considered here for the sake of simplicity.
The extension to multivariate outputs is straightforward, though. Accordingly, the
model can be thought of a scalar-valued function:

M:D, - R
x> y=M(x) Eg. 2.1

Many different types of such predictive models are encountered in engineering
problems. This includes simple analytic expressions as well as numerical solutions of
governing equations. Especially in the latter case, the model symbolized in Eq. 2.1 is
often treated as a black-box i.e. it is only evaluated in a pointwise manner. Its internal
structure may be unknown, too complex or simply considered explicitly. The only
requirement is that the model is available in executable form. This type of model will
be employed in the present study using finite element and surrogate modeling.

2.1.3 Forward and Inverse Problems

Broadly speaking, based on the engineering model described in section 2.1.2, UQ
problems can be divided into forward UQ problems, i.e. characterizing the model
outputs, and inverse UQ problems, i.e. learning about the model inputs. See Figure 2.1
for visualization. A typical example of forward UQ problem is uncertainty propagation
[27]. In uncertainty propagation one tries to quantify the influence of input parameter
uncertainty on the predictions of the engineering model. By representing the uncertain
inputs as random variables with a prespecified probability distribution, the problem
becomes to characterize the corresponding output distribution. These types of problems
are usually treated using conventional Monte Carlo methods [28]. Forward UQ
problems also include reliability analysis where one focuses on the computation of the
failure probability, e.g. that the system output exceed a certain threshold. However, the
problem of interest in this study is model parameter estimation. Parameter estimation
belongs to inverse UQ problems. In an inverse problem, one is given noisy observations
of the system output and the goal is to estimate the unknown system input parameters
and their corresponding uncertainties. The quantities that interest focuses on and the
ones that can be observed are only indirectly connected through a deterministic forward
model like the one in Eq. 2.1.

forward
mputs outputs
mverse

‘\_\______,,/

Figure 2.1: Forward and inverse problems. (Source: [29])

The main issue when dealing with inverse UQ problems is that they are typically ill-
posed. A problem is called well-posed after Hadamard if the existence, uniqueness and
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stability of a solution are given. Physical forward problems are often well-posed in this
sense. In contrast, in the case of inverse problems, the measurement noise, the inability
of the forward model to be inverted and a lack of data lead to ill-posedness. When a
problem is ill-posed, a solution may be neither existent nor unique, moreover, it may
not be continuously dependent on the data. For that reason, one cannot apply the
conventional Monte Carlo methods in inverse problems. The standard numerical
methods that cope with the issue of ill-posedness are the so-called regularization
methods [30]. Another way to deal with inverse UQ problems is Bayesian inference.
Bayesian inference establishes a probabilistic framework that allows one to coherently
quantify uncertainties with due regard to all available information. It is based on the
transition of a prior into a posterior probability distribution reflecting the learning
process. Basically, the prior and the posterior represent the state of knowledge or level
of uncertainty before and after incorporating the experimental observations. A thorough
insight on how Bayesian inference is applied in inverse UQ problems will be presented
in the next section. Regarding the issue of ill-posedness, Stuart [31] transferred
Hadamard’s principle of well-posedness to Bayesian inverse problems: the posterior
exists, it is unique, and it is locally Lipschitz continuous with respect to the data.

2.2 Bayesian Inference
2.2.1 General

In the field of statistical analysis, there are two main competing philosophies; namely,
the frequentist and the Bayesian [32]. Frequentist approach to statistical inference is
also known as classical approach since it is being applied more widely by statisticians
throughout the years. Regarding the Bayesian approach, although its origin is dated
around the 18™ century, the associated computational complexity limited its
application. However, the current increasing power of computers is bringing Bayesian
methods to the fore.

The main differences between the frequentist and Bayesian approach lay on the
interpretation of probability and the treatment of the parameters that need to be inferred.
Frequentist approach interprets the probability of an event as the limit of the relative
frequency with which the event occurs, in repeated trials under identical conditions.
Alternatively, the Bayesian approach interpretation regards the probability as a measure
of the degree of belief of the individual assessing the uncertainty of a particular event
on a [0,1] scale. Furthermore, frequentist methods regard the parameters of interest as
fixed, unvarying but unknown quantities whereas Bayesian methods regard these
parameters as random variables and assign probability distributions to them. These
probability distributions are the so-called prior distributions that basically reflect the
subjective knowledge over the parameter values before considering any observations.
Observing the data is then an event with respect to which the priors shall be conditioned.
By applying the Baye’s rule one can extract the posterior distributions of the parameters
as an inference of the combination of the subjective knowledge and the observations.
Treating the parameters in a probabilistic framework (as random variables),
automatically reflects the uncertainty of these parameters. This distinct feature gives a
great advantage to Bayesian methods over frequentist methods. Generally speaking,
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frequentist methods provide point estimations for the parameters (see the method
Maximum Likelihood Estimation [33]) and fail to quantify statistical uncertainties,
which is something that Bayesian methods are capable of doing.

2.2.2 Likelihood Function

In the following, the unknown parameters of the statistical model are denoted as x =
(x4, ..., xx)T € RM. The number of the unknown is denoted as M € N, which is in
line with the notation of the preceding section. To proceed to the statistical
identification of the unknown parameters, N € Ny, real measurements y =
(yy, ..., yn)T € RY are extracted. In order to draw inferences from the data y about the
unknowns x, one has to establish the connection between them. Therefore, one
constructs a probabilistic model p(y|x) that explains the randomness of the data for
given parameter values. This is often denoted as:

Y[x ~p(ylx) Eq. 2.2

In this way the actually acquired data are interpreted as random realization Y =y
generated from Eq. 2.2 for the true values of the unknowns. This probabilistic model
represents the likelihood function of the model, and it plays a key role in Bayesian
inference [34]. For the obtained fixed observations y the likelihood function is defined
as:

L(x|y) = p(yl|x) Eq.23

Hence, the likelihood emerges from evaluating the conditional density in Eq. 2.2 as a
function of the unknowns x. It is remarked that while the form of L(x|y) is seemingly
simple, it embodies a variety of assumptions and simplifications that are made during
the modeling process. Even the notions of true parameter values and a data generating
mechanism can be seen as conceptualization. Further information on how such a
statistical model will be constructed in connection with the inverse problem will be
discussed in Chapter 5.

It is also noted that, for N independent observations y the likelihood function becomes
the product:

ety = | [poio Eq. 2.4

2.2.3 Prior Distribution

As mentioned before, the Bayesian approach to inference and prediction is built on
probabilistic reasoning, involving a subjective interpretation of probability and
randomness to the unknown parameters x. This way it allows for more thorough
information processing and uncertainty analysis. The modeler’s and analyst’s ignorance
regarding the true parameter values before analyzing the data is represented as a random
vector:
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X ~ m(x) Eq. 2.5

Here, t(x) is called the prior distribution. In essence, instead of acknowledging the fact
that the parameter values are not known, their uncertainty is modeled as a probability
distribution. The true values are considered a realization X = x of the random vector in
Eq. 2.5.

The selection of the prior distribution is of utmost practical importance in Bayesian
inference. It is as well the most controversial aspect. On the one hand, the prior allows
one to incorporate qualitative and quantitative information other than the data. Beyond
physical constraints, this includes heterogenous sources such as expert knowledge,
previous experiments and published literature. On the other hand, this raises the
question of how to encode such information into a probability distribution. Similar to
the assumptions and simplifications have to be made in order to formulate a
probabilistic data model as in Eq. 2.2, the determination of the prior parameter model
in Eq. 2.5 can be understood as a modeling choice.

Broadly speaking, one may classify Bayesian priors according to the way they are
chosen and the information they convey. For start, one may distinguish between priors
that are more subjective, i.e. elicited on the basis of one’s own or someone else’s
personal belief [35], or more objective, i.e. constructed according to some more formal
rules [36]. Subjective and objective prior distributions are also called informative and
uninformative, respectively. These terms are used in order to characterize the prior with
respect to its information content. There are also more or less functional priors that
serve certain purposes. They are chosen for mere mathematical convenience or their
regularization properties. Conjugacy [37], robustness [38] and sparsity [39] can be for
instance achieved by choosing appropriate priors.

In engineering practice, one often designates a well-known family of distributions as
candidate priors. The corresponding parameters are then set to as to mirror the
uncertainty as faithfully as possible. Uniform distributions are often chosen for
parameters that can be bounded from above and below, e.g. due to physical constraints.
Gaussian or lognormal distributions are often used for parameters that are unbounded
or strictly positive, respectively.

2.2.4 Posterior Distribution

All things considered, Bayesian modeling rests on the marginal distribution r(x) of the
unknown parameters in Eq. 2.5 and the conditional distribution p(y|x) in Eq. 2.2. The
unknowns and the data are represented as jointly random vectors:

Y, X) ~p(y,x) = p(ylx)m(x) Eq. 2.6

This is a complete probability model of the Bayesian experiment. The true parameters
and the actual data are regarded as a realization (¥, X) = (y,x) of the joint random
variables in Eq. 2.6. While the outcome of the data y is observed, the true parameters
x remain unobserved.
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Now one can synthesize the prior information and the observed data in order to estimate
the unknowns. In particular, one proceeds by conditioning on the realized data. Given
the likelihood function in Eq. 2.3 and the prior distribution in Eq. 2.5, the posterior
probability distribution follows from the Bayes’ law:

m(x)L(x|y)

Eq. 2.7
C q

p(x|y) =

C = fn(x)L(ny)dx

M Eq. 2.8

The normalizing term C is a constant, independent from the parameters x such that the
posterior probability distribution integrates to 1. It is usually called model evidence or
marginal likelihood. In the same way as the prior represents the uncertainty about the
unknowns before analyzing the data, the posterior in Eq. 2.7 summarizes the reduced
uncertainty afterwards.

In Figure 2.2 the functioning of Bayesian updating is illustrated for a single quantity of
interest (Qol). The prior is transformed into the posterior density, which is paralleled
by a reduction of the associated uncertainty and a higher degree of probability mass
localization. For the sake of clarity, both the prior and the posterior density in the sketch
are Gaussian. In most but the simplest cases, however, the posterior is a complex
probability distribution that may exhibit strong non-normalities and a multiplicity of
modes. Multivariate posteriors often contain linear correlations and complex
dependencies between the variables involved.

F 3

posterior

PDF

prior

Qol

Figure 2.2: Bayesian inference. (Source: [29])

Now all information is contained in the posterior probability density function and one
can proceed to the estimation of different moments of this distribution. The expected
value and the covariance matrix are given as:

E[X|y] = pr(xly)dx Eq. 2.9
RM
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Cov[X|y] = f (x — E[X|yD(x — E[X]yD" p(x|y)dx Eg.2.10
RM

The posterior mean in Eq. 2.9 is often taken as a point estimate of the unknown
parameter vector, where the covariance in Eq. 2.10 is regarded as a measure of
statistical uncertainty, that allows the creation of credible intervals [40].

2.3 Markov Chain Monte Carlo (MCMC)
2.3.1 Bayesian Computations

Generally, Bayesian posteriors feature an analytic closed-form expression only on a
rare occasion. In order to explore the posterior distribution and to calculate the
corresponding posterior moments, one needs to proceed to computational methods. The
most widespread approach to computational Bayesian inference is random sampling
from the posterior. However, the model evidence term in Eq. 2.7 poses an important
obstacle to sampling methods, since most of the times it is computationally inefficient
or even impossible to be calculated. Thus, one cannot sample directly from the posterior
distribution. This is where Markov Chain Monte Carlo (MCMC) techniques come to
the front. MCMC methods construct a Markov Chain that is suitable for sampling from
the posterior distribution and for estimating conditional expectations. However, they
only need pointwise evaluations of the unnormalized posterior density, i.e. the
numerator of Eq. 2.7, and thus dispense from computing the model evidence term.

2.3.2 Monte Carlo Simulation (MCS)

MCS is a sampling-based approach that is used to compute summary statistics for a
quantity of interest and evaluate its probability density. To get a better understanding
of the approach, consider the engineering model of Eq. 2.1, where now M is a
computational model (no analytic expression, black-box). Here the input is described
as a random vector x that has a probability density function (PDF) denoted as pyx. The
computational model converts a specific realization of X = x into an uncertain output
y = M (x), which again for the sake of simplicity, is assumed to be an observed
realization of a univariate random variable ¥ ~py. The mean value and the variance of
Y can be expressed as follows:

E[7] = E[M(X)] = f M (%) py (x)dx Eq. 2.11
Dy
V[Y] = VIM (X)] = E[M?(X)] — (E[M(X)])? Eq. 2.12
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Since the system’s behavior can only be determined in a point-by-point fashion, the
integrals in the above equations are analytically intractable. To approximate these
integrals, Monte Carlo (MC) methods rely on the law of large numbers [41].
Essentially, the concept behind it, is that the PDF of Qol can be estimated be repeatedly
running the simulation with inputs randomly drawn from their corresponding PDF.
There are three steps in its implantation [42]:

1. Random sampling: Draw N, points x; as independent and identically
distributed (i.i.d) samples from py.

2. Numerical experimentation: Evaluate the output for the ith sample y, = M (x;).

3. Statistical analysis: Compute the statistics on the discrete output points ;.

Elaborating on the third step, the value of ¥ in Eq. 2.11 can be estimated as:

1 Nmc 1 Nmc
E[Y] =N_237l =N—z M(x;) Eq. 2.13
Mc 4 Mc =

Furthermore, the unbiased estimate of the variance in Eq. 2.12 is computed as:

Nmc
~ 1 -
VPl = 5 Zl (7)? = Nugc (EI7])? Eq. 214

It is important to mention that MCS can be applied in general for integral estimation
even in higher dimensions. This method is known as Monte Carlo integration [43].

2.3.3 Basics of Markov Chains

In order to understand how MCMC methods work, one should familiarize oneself with
some basic important concepts regarding Markov Chain theory [44].

State Space

The state space S of a Markov Chain {X,} is the set of all possible realizations (states)
of the terms of the chain. For the sake of simplicity in this section the Markov Chain
theory is presented on a discrete state space. It is then assumed that:

S ={s1, ., Sm} Eqg. 2.15

That is, the terms of the chain can take one of m values s, ..., s,,. In the following,
the notations i, j < m will correspond to two different realizations s;, s; of the state
space.

Markov Property

A sequence of random variables {X, X,, ..., X;} on a discrete state space S is called a
Markov Chain if and only if it satisfies the Markov property, i.e. the conditional
probability of X,,; given X4, ..., X; depends only on X;:
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p(Xt+1 = Sj|Xt =S Xl = Sil) = p(Xt+1 = Slet = Si) Eq 2.16

It is also assumed that the Markov Chains in this study are time-homogenous for every
i,j < m,namely:

p(Xe11 = si|Xe = 51) = p(sj|s;) = pij € R?*? Eq. 2.17

One should think of the index t as a measure of time. Time-homogeneity proposes that
the transition probabilities from one state to another do not depend on time ¢ and thus,
there is a constant transition matrix denoted as P = [p;;] as proposed in Eq. 2.17.

It is important to notice that the evolution of a chain is described by the aforementioned
transition matrix P and by its occupational distribution at the initial time t = 1 (initial
distribution): a® ={a,®,..,a,M}, where ;¥ =p(X, =s5;). The initial
distribution of a chain is the 1 x m vector of initial probabilities that are assigned to the
different states s;, with i = 1, ..., m. Considering the transition matrix P;; and the initial

probability distribution at time t = 1, one can proceed to find the occupational
probability distribution of the chain at time ¢t = 2 as follows [45]:

m
p(Xs=5) = ) p(Xs = 50 Xp(Xo = 51 X, = 50) Eq. 2.18

i=1
In other words:

Ui Eg. 2.19
o® = Z a® x py;

i=1
This can be as well expressed in a matrix form:
a® =aV x P Eq. 2.20

One can continue this process, linking each occupational probability distribution to the
previous occupational probability distribution. Repeating this process back to the initial
state, one can get that:

a® =a® x Pt =t~V x P Eqg.2.21

Irreducible Chain

A discrete Markov chain is said to be irreducible if and only if every state leads to itself
and every other state, i.e. if and only if there is a positive probability that for any starting
state s; the chain will reach any other state s;, including s; itself, in finite time. In
essence when a Markov chain is irreducible all states communicate with each other.
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Recurrent chain

Suppose a state s; € S of a discrete Markov chain. Let V be the total number of visits
to the state s;. The state s; is called recurrent if and only if:

p(V - o|X; =5) =1 Eq. 2.22

In other words, a state s; is recurrent if and only if the probability that the chain will
return to that state in finite time, after started from s; itself, equals to one. Consequently,
a Markov chain is called recurrent if and only if all the elements of its state space are
recurrent.

Aperiodic chain

Suppose a recurrent state s; € S of a discrete Markov chain. The period of the state s;
is defined as:

ds, = ged {t > 0: P; > 0} Eqg. 2.23
where gcd is the greatest common denominator. In essence, dg, is the minimum time
the chain takes to return to s; after starting from s; itself.

In an irreducible chain all the states have the same period d. A recurrent chain is called
aperiodic if and only if the period of the chain equals to one, i.e. d = 1.

Stationary distribution

If, for a given transition probability matrix P, there is an occupational distribution a
such that the distribution of all the terms of the chain is equal to that occupational
distribution, then a is called a stationary distribution of the chain. When a is a
stationary distribution, then:

a(t) — a(t_l) =a Eq. 2.24

Combining Eqg. 2.22 and Eq. 2.24, in order for an occupational distribution a, to be a
stationary distribution of a Markov chain, the following must be true:

a=aP Eg. 2.25

Erqgodicity and Convergence

When a Markov chain is irreducible and aperiodic, then the Markov chain is ergodic.
If a Markov chain is ergodic, then, irrespective of the initial distribution a:

L{im at=a Eq. 2.26
Where a is the unique stationary distribution of the chain. Basically, even if the initial
distribution of the chain is not the stationary distribution, the terms X, of the sequence

become less and less dependent on the initial value X; as t increases and their
distribution converge to the stationary distribution.
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Reversibility and Balance Condition

Let {X,} be an irreducible Markov chain with state space S and transition matrix P. A
probability distribution a on S is said to be reversible for the chain if a and P are in
detailed balance, i.e.:

a;p;j = a;pj; for all s;,s; €S Eq. 2.27

Consequently, an irreducible Markov chain is said to be reversible if it has a reversible
distribution. The Eq. 2.27 is also known as detailed balance condition. The most
important outcome of Eq. 2.27 for MCMC methods, is that if probability distribution
a on S satisfies the detailed balance condition, then the distribution a is the stationary
distribution of the Markov chain [46].

2.3.4 The Metropolis-Hastings (MH) algorithm

Having a general idea about Markov chains and Monte Carlo Simulation, one can
perceive MCMC methods as the amalgam of Markov chain philosophy and Monte
Carlo sampling. While conventional MC methods generate independent samples,
MCMC techniques draw correlated samples, where the next sample is dependent only
on the existing previous sample, hence the name Markov Chain. There are a variety of
MCMC methods that differ based on the way they construct the Markov chain and the
way the generate samples. One of the most common MCMC methods used in Bayesian
inference, that is also applied in this study, the Metropolis-Hastings (MH) algorithm.

The MH algorithm constructs an ergodic Markov chain such that its stationary
distribution equals the posterior distribution of the Bayesian problem. Based on the
section 2.2, let w(x) be the prior and p(x|y) be the posterior density of some Qol x. A
Markov chain with stationary distribution p(x|y) is generated by initializing at x(©
from the prior density, and then repetitively proceeding as follows. Given a state x()
that the Markov chain has taken on in some iteration t, in the following iteration a
candidate state x®* is randomly sampled from a proposal distribution q(x®|x®)). In
the MH correction step the proposed state is approved as the new state x(+1 = x() of
the Markov chain with probability:

Eq. 2.28

Q) ® [
a(x(*),x(t))=min<1 P(xIy)a(xOlx )>

! p(x(t) |y)q(x(*) |x(t))

Otherwise, the proposal will be rejected, i.e. the Markov chain remains in its state
xD = x(® of the preceding iteration. In practice, the acceptance process is
performed by sampling a random number u from a uniform distribution in the interval
[0,1]. The proposed state is accepted if u < a(x™,x®), otherwise it is rejected. It is
important to note that due to the MH acceptance probability Eq. 2.28, the algorithm
calls for the computation of posterior ratios only. Thus, the model evidence term of Eq.
2.7 can be dropped and only the unnormalized posterior density has to be evaluated.
Another key point that needs to be outlined is that the MH algorithm achieves to sample
from the posterior because the acceptance probability Eq. 2.28 is equivalent to the
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posterior distribution satisfying the detailed balance condition in Eq. 2.27, which results
to the posterior being the stationary distribution of the Markov chain [46].

One way to simplify the aforementioned algorithm is to choose a symmetric proposal
distribution, namely a proposal distribution that satisfies the following condition:
q(xqlxp) = q(xplx,) forall x,, x;, and t. Then Eq. 2.28 becomes simply:

p(x® y))
. Eq. 2.29
p(x®|y) |

In that case the algorithm is called just Metropolis algorithm. A common symmetric
proposal distribution that is chosen is a normal Gaussian distribution that is centered
around the current state x®, namely x® ~ N (x®; x®, 5,). This process is known as
Random Walk Metropolis sampling [47]. The algorithm that is employed in the present
study is a Random Walk Metropolis sampling algorithm.

a(x®, x®) = min (1

At this moment it is important to point out that an MCMC algorithm is rarely initialized
from its stationary distribution. This fact raises the concern that these initial values
might bias the results even if the process reaches stationarity later on. To compensate
for this, a burn-in period is often implemented, i.e. the first T samples being discarded,
with T being chosen to be large enough so that the chain has reached its stationary
regime by its time. In Figure 2.3 an indicative trace plot is illustrated. A trace plot is a
graph of the sampled parameter values as a function of the step iterations. In essence, a
trace plot presents the chain trajectory. On the trace plot of Figure 2.3 one can clearly
see the burn-in period and how the chain values in this period do not belong to the
stationary distribution.
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Figure 2.3: Trace plot of a parameter of interest, where the circled region represents
the burn-in period. (Source: [48]).

2.3.5 Autocorrelation

As mentioned before, in MCMC algorithms each subsequent sample is drawn using the
current sample, resulting typically in the generation of correlated samples. This can be
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an important problem since correlated samples can result in biased estimation of the
posterior characteristics. However, two samples x, and x;,, become asymptotic
independent as the number n increases, namely the correlation between those samples
decays as the number n increases. One can then proceed to assess the independency of
the MCMC samples by calculating the effective sample size [49], i.e. the sample size
that corresponds to fully random independent samples. In the present study, the
effective sample size will not be calculated, but the samples’ correlation will be visually
evaluated with trace plots and autocorrelation function graphs (ACF graphs).

The ACF graph, also known as correlogram, shows the correlation between samples as
a function of the values of n (known as lags). It represents a correlation coefficient and
is calculated as follows. Consider the MCMC samples {x;} where t =1,...,T the
number of iterations. The mean value of those samples is given by:

_ 1
X=-

=) % Eq. 2.30

gk

t=1
The autocovariance function at lag n, for n > 0, of the sequence is defined by:

t—n

1
C, = ?Z(xi B (X — ) Eq. 2.31
i=1

Then the ACF at lag n, for n > 0, of the sequence is defined by:

Cn

™ = =+
Co

Eq. 2.32

An indicative correlogram is shown in Figure 2.4, where the autocorrelation is large at
short lags, but it goes quickly to zero as it should be in a successful MCMC process.
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Figure 2.4: Indicative ACF graph (correlogram). (Source [50]).

At this moment it is important to point out that the covariance matrix X, of the proposal
distribution determines the “stepsizes” of the algorithm, hence being a key aspect to the
samples’ autocorrelation. Either choosing too large or too small variance for the
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proposal distribution will give highly correlated samples. This is illustrated in Figure
2.5.
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Figure 2.5: Chain behavior illustration (trace plots and PDF histograms) for different
values of variance of the proposal distribution. (Source [48]).

The situations presented in Figure 2.5 are also connected to the acceptance rate of the
chain. In the first line the algorithm has a very high acceptance rate, making the chain
move extremely slowly, and though convergence may be achieved, it will happen after
an inefficient number of iterations. On the other hand, in the third line the acceptance
rate is very low, and the chain gets stuck to some locations needing hundreds of
iterations to take just one step to a new location. For the MH algorithm the optimal
range of the acceptance rate is between 10% to 60%.

2.3.6 Convergence Diagnostics

One major issue when dealing with MCMC methodologies is to assess whether the
chain has converged to the stationary posterior distribution and to the asymptotic
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independence. These issues are monitored with a variety of diagnostic tools [49],
however in this study the convergence and sampling behavior will be evaluated visually
by examining trace plots after running multiple chains.

Figure 2.6 illustrates two of the challenges of monitoring convergence of MCMC
simulations. The left graph shows two sequences for the same Qol but with different
initial state, each of which looks fine on its own (and indeed, when looked at separately
would be thought to have achieved convergence), but the juxtaposition makes it clear
that they have not converged to a common distribution. This graph illustrates that, to
achieve convergence, the sequences must be mixed. The right graph in Figure 2.6 shows
two chains that have mixed, in the sense that they have traced out a common
distribution, but they do not appear to have converged to a stationary distribution
overall. This graph illustrates that, to achieve convergence each individual sequence
must reach stationarity.
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Figure 2.6: Examples of two challenges in assessing convergence of MCMC
algorithms. (Source [51]).

Based on the aforementioned the diagnosis of convergence is being performed by
evaluating mixing and stationarity with the following simple approach. One first creates
a few chains (at least three) each of which has a different initial state. It is important to
note that the burn in period on these sequences must be discarded. Then, each created
chain is split in half, and it is checked if all the resulting half-sequences have mixed.
This simultaneously tests mixing (if all the chains have mixed well, the separate parts
of the chains should also mix) and stationarity (if the first and second half of each
sequence is traversing the same distribution).

2.4 Surrogate Modeling

2.4.1 General

Due to the iterative nature of the MCMC methods in Bayesian inference, these methods
are tied with high computational cost. This aspect of MCMC makes the use of surrogate
modeling an appealing approach to gain computational efficiency. Surrogate modeling,
also known as metamodeling, refers to the practice of constructing an approximate, yet
less expensive, representation of the input-output relationship of a complex physical
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process, like the one described in section 2.1.2. The produced model can then be
evaluated at negligible cost to predict the outputs for a new set of inputs that exist within
the initial observation domain [42]. The rise of Machine Learning (ML) and data-driven
modeling [52] has made the concept of surrogate modeling even more viable, with
potential applications in many areas, including SHM [53], material science [54] and
many other.

In general, a surrogate model does not maintain any virtual representation of the exact
nature of the physical system of interest, but rather approximates its complex behavior
exclusively based on a finite set of simulation data (support points) without requiring
problem-specific knowledge (black-box model). Therefore, operational (e.g., loads) or
state (e.g., damage features) information about the structure is integrated within the
constructed surrogate model, allowing immediate access to predictions when a batch of
input data is obtained from the system. As the approximate function is created based on
the information carried by the support points, it is essential to generate informative pairs
of data samples. To this end, the employed physics-based model M is typically
exploited within a simulation framework, which ends up with a list of data points,
known as training data, expressed as:

Where x; is the jth input vector from the sampling plan, and ¥; includes the

corresponding outputs from evaluating the model M, i.e., § = M (x). The learning
stage of the surrogate models is usually undertaken offline, whereas only the evaluation
of model prediction occurs during the online stage allowing for future re-use and re-
production. In case of physical changes to the system, however, the surrogate model
needs to be retrained. The surrogate predictions are denoted as y, the corresponding
surrogated model is denoted as M, and its formulation is shown in Eq. 2.34:

Where 7 is the error (residual) that describes the discrepancy between real observations

J; and approximations JV[(xj). Depending on the degree of non-linearity of the
mapping function a different modeling approach may be used. Among the most
prevalent approximation approaches are linear/polynomial regression, Gaussian
processes, neural networks and support vector machines to name a few. In the present
work polynomial regression and support vector machines are employed on two different
occasions in order to construct a surrogate that learns a mapping between the input
parameters and the output response.

2.4.2 Polynomial Regression
In polynomial regression the relationship between the input vector x; and the output J;

is modelled as an r-th degree polynomial in x;. A nonlinear function is fitted to the data
points, namely:

y] = bO + blx] + bzsz + b + brxj‘r + T]} Eq 235
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In order to estimate the polynomial coefficients by, by, ..., b,- the least square method is
applied [55]. According to the method, the estimation of the polynomial coefficients
requires the minimization of the sum of squared errors (SSE), i.e.:

SSE = Z”jz 22(371 — by — byx; — byx;* — -+ = byx;")? Eq.2.36

Where ] is the total number of training data. To proceed to the minimization, one needs
to differentiate SSE in turn with respect to by, b4, ..., b,- and equate to zero. Thus, a set
of r + 1 normal equations will be generated.

These equations can then be solved for by, b4, ..., b, by any appropriate analytic method
for solving systems of equations, however most of times statistical software is used to
obtain numerical solutions.

2.4.3 Support Vector (SV) Regression

When the complexity, non-linearity and the dimensions of an engineering problem
increase, simple linear/polynomial methods tend to make inaccurate predictions, and
more advanced regression methods need to be employed. Support vector machine
(SVM) analysis is a popular machine learning tool for classification and regression [56].
It is considered a nonparametric technique because it relies on Kernel functions.

Suppose one is given the training data {xj; 37]-}. In e-SV regression, the goal is to find a
function f(x) that has at most € deviation from the actually obtained targets y for all
the training data and at the same time is as flat as possible. In other words, the errors
are not important as long as they are less than &, but any deviation larger that this will
not be accepted. This function that predicts the values y is expressed as follows:

9=M(x)=w'K(xj,x)+b Eq. 2.38

Where w is the weight vector and b is an offset. The non-linear mapping function
K(xj,x) is the Kernel function [57]. Using input data mapping in a high-dimensional
space the Kernel function changes the nonlinear regression problem into a linear
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regression problem in the higher dimension. In the present study a Gaussian Kernel
function is employed i.e., for two points x;, x;:

K(xj,xi) = exp (—”x] — xl-”z) Eq 2.39

In order to achieve flatness, one needs to seek small w. One way to ensure this is to
minimize the norm ||w/||2. This can be formulated as a convex optimization problem.
However, the existence of a function M (x) that approximates all pairs {xj; 37]-} with &
precision assumes that the optimization problem is feasible. Most of the times this is
not the case, and many times it is useful to allow for some errors to avoid overfitting
[58]. To achieve that, the slack variables &; and ¢;” are introduced. These variables
allow regression errors to exist up to the value ¢; and ¢, yet still satisfying the required
conditions (see soft margin concept [59]). Consequently, one can write this convex
optimization problem as follows:

J
1
Minimize 5 Iw]|? + Cz(fj +¢7)
j=1
Eqg. 2.40
7—wlK(xj,x) —b <e+§;
Subject to { WK (x;,x) +b -y < e+ ¢
§,§;7=0
The constant € > 0 determines the trade-off between the flatness of M (x) and the
amount up to which the deviations larger than & are tolerated. This corresponds to
dealing with a so called e-sensitive loss function described by:

iflél<e

I€le = {Ifl <& otherwise Eqg.2.41

The optimization described above is computationally simpler to solve in its Lagrange
dual formulation. The solution to the dual problem provides a lower bound to the
solution of the primal (minimization) problem. The optimal values of the primal and
dual problems does not need to be equal, and the difference is called the “duality gap.”
But when the problem is convex and satisfies a constraint qualification condition, the
value of the optimal solution to the primal problem is given by the solution of the dual
problem. One can obtain the dual formula by introducing non-negative multipliers a;
and a;" for each observation. Then the following quantity must be minimized:

J ]
L(a) —%zz (a; — ;") (a; — a;)K(x), x;) +£Z(a] +a;")

=t Eq. 2.42
+ Z )
j=1

Subject to the constrains:
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]
Z(aj ~4")=0 , a,q" €[0,] Eq. 2.43
=1

Furthermore, the offset parameter b, is computed by exploited the Karush-Kuhn-Tucker
(KKT) conditions which state that at the point of the solution the product between the
dual variables and the constrains has to vanish [57].

After estimating all the required parameters, one can proceed to predictions for new
values x, based on the following function:

]
9 =M@ =) (4 a7 )K(x;x) + b Eq. 2.44
j=1

2.5 Fundamentals of Finite Element Analysis (FEA)

The recent advances in computational resources have allowed the development of high-
fidelity models to address the increased complexity of modern engineering systems.
The present study makes use of such a model to generate a sufficient amount of
structural response data (i.e., strain measurements) that is necessary for training the
aforementioned employed surrogate models. For this formulation, the Finite Element
Method (FEM) was employed, which is a widely used numerical technique for the
simulation of complex physical phenomena. It was deemed appropriate to include some
basic theoretical elements of FEM to accompany the present study.

2.5.1 Basic Principles of the FEM

The Finite Element Method (FEM) is essentially a simulation of the continuum as a
series of fundamental elements interconnected at a finite number of points referred to
as nodes. As far as frames are concerned, which consist of a number of beams connected
to each other at specific points, FE modeling is very intuitive since physical boundaries
and connection points between members already exists (visual example presented in
Figure 2.7). Regarding continuous structures such as the hull of a ship, or other plate
like structures, where no physical discretization is existent, the entire domain needs to
be virtually separated into smaller constituting elements (visual example presented in
Figure 2.8). The elements can be one-dimensional (beams), two-dimensional
(triangular or rectangular) or even three-dimensional (tetrahedrals etc). The nodes are
usually positioned on their corners or edges but can even be in the inside of the elements
depending on the architecture of the element.
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Figure 2.7: Example of discretization of a 2D structural frame into a FE model
consisting of nine elements and six nodes. (Source: [60]).

Z

Figure 2.8: Example of FE modeling of a T joint between two thin-walled plates.
(Source: [61]).

The continuous domain is simulated as a series of discrete variables or degrees of
freedom, usually defined as the nodal displacements and optionally their derivatives as
well. Displacements inside each element must be compatible with the nodal
displacements and are directly dependent on the corresponding values at the nodes. As
a result, the structural response is approximated by calculating all nodal displacements.
The continuous problem is therefore transformed into a discrete one. Acquiring the
structural response comes down to forming the equilibrium equations at the nodes and
then solving the resulting system with respect to nodal displacements.

To achieve an accurate solution, there are some conditions that need to be satisfied.
Namely, conditions of equilibrium as well as geometrical continuity inside the elements
and along their edges. It is interesting to note that a collection of elements connected
only at their nodes is not a direct analogous of the continuum, as displacement
continuity is only explicitly imposed at the nodes, thus gaps or overlaps between
members can occur following this modelling approach (visual example presented in
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Figure 2.9). Of course, it should always be taken into consideration that the FEM is
meant to approximate reality and is not expected to produce exact results.
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Figure 2.9: Example of gap forming between the edges of triangular elements in the
distorted state. Case of modeling a beam cantilever with triangular shell elements.
(Source: [62]).

However, with the implementation of several techmiques, this inherent error can be
mitigated to an acceptable level for each application. The simplest approach to reduce
inaccuracies in FE modelling is by using an increased number of smaller elements.
Increased accuracy by increasing the fidelity of the model comes at the cost of increased
need of computational power and time requirements.

Nonetheless, there are more sophisticated methods to increase accuracy. More
specifically, each element is characterized by its shape function. The shape function
takes the nodal values of a field quantity (such as the displacement) and projects it
throughout the entire elemental domain. Appropriate design of the shape function can
guarantee equilibrium and geometrical continuity inside the elements and along their
boundaries while only enforced at the nodes. Several element types and shape functions
are available in the literature and are included in commercial FEA software, each
optimized for a specific type of application. It is clear that careful selection of the
element architecture is important in achieving greater solution accuracy.

In FEM, equilibrium is not necessarily satisfied at every location of the continuous
domain. Regardless, there are two conditions that must always be satisfied. In particular
these are:

a) Equilibrium of forces (external and internal) on every node.
b) Equilibrium of nodal forces of every element.

The aforementioned conditions are visually summarized in Figure 2.10.
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Figure 2.10: Visual explanation of elemental equilibrium and nodal equilibrium on an
indicative FE mesh. (Source: [62]).

The generalized form of the system of equilibrium equations of a FE model can be
summarized in:

{F} = {K} x{U} Eqg. 2.45

where {F} is the vector that contains all external force effects expressed as equivalent
forces on every node. {K} is the global stiffness matrix of the system and {U} is the
column vector containing all nodal displacements, the dependent variables or degrees
of freedom (DOFs) of the system.

The global stiffness matrix ({K}) is derived as a direct superposition of the stiffness
matrix of every element ({K}™).

wy=> £q. 2.46

Commonly, the stiffness matrix of an element will be available in the literature
regarding a specific element type. In general, the elemental stiffness matrix is expressed
in terms of a local, on-element coordinate system. Before superimposing, each member
stiffness matrix is expressed in terms of the selected global coordinates system and
projected to the dimensions of the global stiffness matrix. Namely, a transformation to
the coordinate system that is defined for the entire composite model is required. This
global reference system does not coincide with the local systems of every element for
most complex structures. The required transformation is executed with the use of a
transformation matrix {T}, which incorporates all necessary rotational conversions to
reposition the reference system of the initial matrix. This is described in mathematical
terms in Eq. 2.47.

{K}™ = {TYT{K}T} Eq. 2.47
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The ™ notation is introduced to distinguish the matrixes which refer to the local
coordinate system from their counterparts, those referring to the global coordinate
system of the model.

Once the elemental stiffness matrices ({K}™) have been formulated and expressed in
the global coordinate system, the stiffness matrix of the entire model can be constructed
as shown in Eq. 2.46.

The subsequent step in establishing a FE model is to appropriately define any external
loading and boundary conditions. The first are incorporated in {F} matrix, as introduced
earlier. In the discretised reality of FEA, where all external forces should be applied on
nodes, it is important that any concentrated point loads coincide with a node in the
model. Consequently, operational conditions should be taken into account when
discretizing the model. It is made obvious that any distributed pressure loads are
required to be discretized to equivalent point loads on node locations.

As far as boundary conditions are concerned, these can be integrated as constraints of
DOF in the displacement vector {U}. Superficially, this procedure might be regarded as
easy as setting some variable to a fixed value because of the way supports are modelled
in classical mechanics theory. Nonetheless, when accuracy is desired, the application
of idealized theoretical boundary conditions may not be acceptable. As a result, detailed
modelling of the supports and boundary interactions may be required. For this matter,
the analyst is expected to have ample theoretical knowledge and intuition regarding the
problem at hand.

It is important to keep in mind that in modern FEA environments most of the heavy
mathematical workload has been automated and assigned to computers. Nevertheless,
appropriate modelling of the problem, as well as evaluation and interpretation of the
results still require human expertise and should not be adopted without judgement.
Often, results from FEA are compared directly to results acquired from analytical
solutions or experimental measurements where applicable. This practice ensures
validity of the modelling and in case of significant deviations indicates the need for
potential adjustments.

2.5.2 FE Modeling of Thin-walled Structures

The general procedure of structural analysis using the FEM has been introduced in the
previous subsection. In the present work, a thin-walled plate structure falls in the scope
of analysis. It was considered appropriate to discuss some more details regarding
modelling thin-walled structures in FEA.

Thin-walled structures are defined as these structures in which thickness is of much
smaller magnitude than the rest of the dimensions. The prevalence of thin-walled
components and structures in every domain is justified by their optimized nature in
terms of material and weight economy. With clever geometrical modifications (e.g.
stiffeners, corrugation) the desired stiffness and stability are achieved with significantly
reduced thickness, resulting in less structure weight and less material requirements.
Such thin-walled arrangements are common in marine constructions and include plates,
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bulkheads, stiffened panels, or even the entire hull, often regarded as a thin-walled
hollow girder to study its response in global bending and twisting.

Thin-walled structures can be modeled using rectangular, flat, shell-type elements.
Shell geometries are fully defined by their mid-surface and thickness. In general, a thin-
walled arrangements will be subjected to bending as well as in plane stresses. Assuming
operation in the range of small deformations, the deformations due to bending and due
to the plane stress conditions can be considered independent [63]. In this regard, the
shell element can be derived by superimposing a plane stress element with a bending
element [62] as seen in Figure 2.11.

Figure 2.11: Modeling of a flat "shell" element by superimposing a "bending"” and a
“plane stress" element. (Source: [62]).

This principle allows to simplify the formulation of the shell element, as its stiffness
matrix can be produced by appropriately adding the stiffness matrices of its other two
components. The stiffness matrices {Kz} and {Kz} of the bending and plane stress
elements accordingly are available in the literature [62].

The resulting stiffness matrix for the shell element can be produced as follows:

{Kz} = [{{KE}} {5(,0;}} Eq. 2.48

Since the bending model has three DOFs per node and a total of 4 nodes, the
accompanying stiffness matrix will be 12 x 12 sized. Equivalently, for the plane stress
element with two DOFs per node, the stiffness matrix will be 8 x 8 sized.
Consequently, the stiffness matrix of the resulting shell element, as per the formulation
of Eq. 2.48, will be a 20 x 20 matrix. In the aforementioned equation {0} symbolizes
appropriately shaped zero matrices.

In order to integrate the local, elemental stiffness matrix {Kz} of a shell element to the
global stiffness matrix of an entire model, as mentioned in a previous paragraph, a
transformation to the global coordinate system is required. Similarly, the transformation
can be written as follows:

{K}™ = {TYT{KHT} Eq. 2.49
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Consequently, to model a thin-walled structure the discretization of its geometry must
be decided, taking into account the loading conditions and any relevant constraints. The
global stiffness matrix describing the entire model can then be constructed as per Eqg.
2.46.

Following the methodology of the previous subsection, the loads should be discretized
and incorporated in the forces vector. Then the boundary conditions should be modelled
appropriately and expressed in terms of constraints of DOF in the displacement vector.
Once the above are completed, getting the response of the structure comes down to
solving the system of Eq. 2.45.
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3 Problem Definition

This section aims to offer a detailed description of the key parameters defining the
reference problem studied in this work. Firstly, the problem geometry is described
followed by the definition of the variable operational loads and damage states.
Onwards, the proposed virtual sensor topologies are presented. Finally, details of the
FE modelling, the source of the required data for this exploratory analysis, are
discussed. It should be noted that, because this study is an expansion of the work by
Katsoudas [17], the problem definition sections in both studies show many similarities.

3.1 Idealized Plate Domain

A ship is a complex structure and that can pose a serious modeling and computational
challenge for numerical simulations. However, this complex design consists of simple
structural entities such as plates and beams. These structural elements have been studied
in detail in the past century and thus there is plenty of knowledge built around the
behavior and modeling of such geometries. A SHM system can also be focused on
individual structural components ensuring that if each component is safe the structural
integrity as a whole is guaranteed.

The most common structural element on a ship is the stiffened panel, a typical
arrangement of which is pictured in Figure 3.1. Albeit, for the purposes of this
theoretical study, the geometrical domain was decided to be a rectangular (square)
ao X ay-sized plate with a thickness of 1% its other principal dimensions. For
simplification purposes, the value of a, is set to one meter.
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; ] .
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Beam [ ;< : . 4>
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Figure 3.1: Typical structural arrangement of a ship’s hull bottom. (Source: [64]).
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3.2 Loading Conditions

The aforementioned plate was subjected to two different operational conditions. First,
the plate was considered to be subjected to a variable operational load. The load
magnitude and its center location were modeled as random variables. The pressure
profile is selected to be represented by the product of exponents of the quadric relation
of the centroid of a bell-shaped curve. The mathematical expression of this non-uniform
pressure profile is shown in Eq. 3.1.

_ 1(x—X\° 1(y-7\
q(x,y;Q0,X,Y) = Qoexp —§< S ) _E< . ) Eg. 3.1

In the above, s is a deterministic shape parameter, x,y are deterministic variables
representing coordinates on the plate plane relative to its centers as depicted in Figure
3.2. The variability of the load is controlled through the peak amplitude Q, at the
location of the peak of the load at (X,Y). These quantities are considered to be
independent continuous random variables following a normal distribution, i.e.,
Qo~N(qo; ko, 0g,)» X~N (%, ug,05), Y~N(¥,uy,07). The particulars of each
distribution were appropriately selected in order to achieve specific behavior of the
load. The parameters of the load amplitude u,,, 5o, Were selected such that the plate
remains within the elastic regime and the load is distributed between zero and a
maximum value. Furthermore, it was decided that the load random location would be
symmetrically distributed around the center of the plate (0,0), which leads to uz =
uy = 0. An indicative three-dimensional plot of the load profile around an arbitrarily
selected center is presented in Figure 3.3.

The equation defining the load yields a symmetrical around its center, bell-shaped
surface that represents the load magnitude at each point. The surface extends to infinity
along both axes of the plate plane. Due to the fact that the distribution is a product of
exponents, the amplitude of the load degrades to zero in an asymptotic way within a
relatively short distance from its center. Thus, the significant part of the distribution,
where non-zero amplitude is observed, is considered to be bound within a diameter
extending six times the value of s around the center. The value of the s parameter is set
to be equal to a,/12. Consequently, the distribution of the load is constrained within a
circular like area with a diameter of a,/2, denoted with the red concentric circles in
Figure 3.2.

In order to fit the significant part of the load within the structural domain, its peak
coordinates (X,Y) had to be constrained within specified boundaries. Assuming that
the range of (=30, +30) around the mean of each coordinate is equal to the range
(—1/4 ay, +1/4 a;) on the plate, then the defined significant part of the load will fit
completely within the structural domain with a probability of 99.46%. The latter is the
product of the 99.73% probability of each independent coordinate value to be sampled
within the specified range of 6a, according to the known theory for random variables
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following the normal distribution. Hence, the standard deviation of each coordinate was

selected as o5 = oy = ay/12.
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Figure 3.2: Top view of the plate with a two-dimensional representation of an instance
of the load on it.
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Figure 3.3: 3D representation of an indicative realization of the load profile.

The aforementioned properties are visually summarized in Figure 3.4. The blue crosses
correspond to a few thousand instances of sampled load locations. By design, 99.46 %
of the load location samples should be corresponding to a point on the plate within the
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bounding box. As long as the load’s center is sampled within the bounding area, the
entirety of the significant part of the load fits on the structural domain.

x Y | o

-

% - Load location Realisation

Figure 3.4: Visual representation of realizations of the load location.

The second operational condition that was considered, employed the same pressure
profile given by Eq. 3.1, however the parameters Q,, X,Y are now considered to be
known deterministic constants. In that way, the potential information gain when the
loading conditions are not described by stochasticity, is studied.

3.3 Damage Introduction, Sensor Topology and Boundary Conditions

As already presented in the introduction chapter of this thesis, this work revolves
around the design of an SHM system that will estimate the corrosion induced thickness
loss and associated variability using data collected from strain sensors. Damage is
introduced to the problem as global uniform corrosion affecting the entire plate domain
and thus it is quite obvious that it can be modeled by reducing uniformly the thickness
of the plate. Damage in the present study does not exceed 20% of the nominal thickness
of the plate. Considering that the nominal thickness of the plate is 10 mm, the thickness
of the corroded plate is examined in an interval [8, 10] mm. More specifically the
damage scenario that will be applied is that the plate has lost 15.3% of its nominal
thickness. Thus, the thickness value that needs to be inferred is 8.47 mm.

In this work, strain measurements constitute the collected observation data of the
inverse problem. Hence, sensor topology is an important aspect of the present analysis.
At first a rectangular array of nine equally-spaced strain sensors was considered, i.e., a
3 x 3 —size sensor grid that is illustrated in Figure 3.5. Every sensor is represented by
a gray square mark, while sensors were considered to measure both longitudinal strain
components along x and y axis (&, €,,), as well as the in-plane shear strain (&,,,) on the
plate at a specific location. An observation for the problem would consist of 9 different
strain measurements for each component. The initial aim was also to assess the effect
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of different grid sizes (4 x4, 5x5, 6 x 6) for each of the components on the
information gain about the Qol. Nevertheless, dealing with full grid sensor
arrangements posed a tremendous computational cost in order to proceed to Bayesian
solutions, making this concept not viable. Thus, it was considered crucial to proceed to
dimensionality reduction. Taking as well into account that the plate domain is subjected
only to uniform corrosion it was considered possible to find a specific strain sensor
location and corresponding component that would account for the solution of the
problem (optimal sensor). This specific sensor was selected from the 3 x 3 —size
sensor grid and how it was selected, would be a subject in the following chapter of the
thesis.
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Figure 3.5: 3 x 3 sensor grid. Each sensor measures longitudinal strain components
along x and y axis as well as the in-plane shear strain on the plate.

Finally, regarding the boundary conditions of the plate, it was decided that these will
be unsymmetric. Namely, two adjacent sides of the plate were considered as clamped
(top and right side) and the other two adjacent sides were considered as simply
supported (bottom and left side).

3.4 Finite Element Modeling

A FE model of the plate geometry was generated. The FE model was ultimately
intended to serve as a synthetic data generator whereby a computationally cheap
surrogate model can be further trained to alleviate its burdensome computational
demands. For this purpose, the ANSYS Mechanical commercial software by means of
its integrated scripting language (APDL) has been employed. This allowed the model
to be parameterized in terms of the input source variability parameters to enable an
MCS-based iterative solution scheme. The problem has been cast in a linear static
setting with the material being regarded as linear elastic and isotropic, as it was
expected that the applied loads would not result in plastic deformation. In this context,
a Young’s modulus of 207 GPa and a Poisson’s ratio of 0.3 were used as representative
values of shipbuilding steels.
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On the basis that the thickness of the plate was considerably smaller than its other
dimensions, it was modeled using four-node rectangular shell elements with six degrees
of freedom at each node; three translations along an orthogonal axis system and the
respective rotations about these axes. Also 4-node rectangular shell elements
(SHELL181) were employed.

Element size was determined by comparing relative solution accuracy between
alternative reasonably sized mesh options in three indicative load cases [17]. Based on
this comparison an element width of 0.02 m was selected for the FE model provided
that it offered accuracy and at the same time would save in required simulation time.
As a result, a 50 x 50-element structured mesh was developed to simulate the
rectangular plate. The meshed plate is presented in Figure 3.6.
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Figure 3.6: Meshed plate and contour plot of the longitudinal (e,) strain component
on the face of the plate for an indicative pressure load realization.

Concerning the boundary conditions, all degrees of freedom of the nodes along the top
and right edge of the plate were restricted to simulate clamped support conditions,
whereas translation along the x, y and z axis and rotation about the z axis were restricted
for the nodes of bottom and left side to simulate simply supported conditions. The
distributed load was applied by discretizing the continuous function that controls its
profile. For each load case, the corresponding values of the load magnitude were
acquired at the locations of the nodes. More specifically, for a given thickness value
denoted by t, the corresponding value of the load (q) at a specific node with coordinates
(Xn, ¥2), under the given loading scenario (q,™,%™,5™)is calculated as

(%, Yo 40T, T, 5 in accordance with Eq. 3.1.

The FE model was used in order to extract strain measurements in the corroded state
and also to generate data for surrogate modeling training using MC sampling.
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4 Feature Selection

As already mentioned in the previous section, one needs to proceed to dimensionality
reduction by selecting a specific sensor location and strain component from the 3 x 3
grid, to avoid inefficiency due to high computational cost. In this section the analysis
used to select the most insightful sensor for the estimation process is described.

Identifying damage-sensitive features from the collected system response data is
generally crucial for the design of a reliable SHM architecture. As it will be discussed
in the sections to come, during the process of parameter estimation, strain
measurements generated by the high-fidelity FE model are subjected to multiple types
of uncertainty, including inherent measurement noise, errors due to load stochasticity
as well as prediction errors and surrogate modeling errors. Al these types of errors will
be summed and will be considered as a total noise that will describe the uncertainty
among the strain data observations. Towards this direction it was considered reasonable
to assume that sensor location and strain component that presents the higher strain
response as a numerical value and thus is affected less by the total noise, will be the
most appropriate feature to proceed with. However, for the sake of completeness and
to reassure that sensors with low strain response are not acceptable, the problem will be
solved for a sensor that is susceptible to measurement noise as well.

4.1 Stochastic Operational Conditions

In the case of stochastic operational conditions, no specific strain response is available,
since the parameters of the pressure profile are treated as random variables.
Consequently, the exploration of the optimal feature will be conducted based on the
statistical response of the plate domain after repeatedly solving the FE model a great
amount of load realizations and thicknesses. The random parameters that define the
pressure profile were sampled using MCS from their known distributions given in
Section 3.2 while the random thickness’ values t were sampled using MCS from a
uniform distribution in the interval [8,10]mm. The number of MCS samples was
decided to be 10* random realizations. This process was carried out for all sensor
locations and strain components and the optimal sensor was selected after investigating
all different results. Figure 4.1 illustrates the statistical response for three indicative
sensor locations and corresponding strain components. Finally, it was decided that ¢,
strain measurements generated from sensor 5 of the equally-spaced 3 x 3 grid
arrangement were the least susceptible to noise and thus, the corresponding sensor
location and strain component was the optimal feature. Sensor 7 and strain component
&, was also selected, as the sensor prone to measurement noise.
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Figure 4.1: Statistical strain response for (a) sensor 3 (b) sensor 5, (c) sensor 7 (3x3

grid).

4.2 Deterministic Operational Conditions

In the case of deterministic operational conditions, the parameters that describe the
pressure profile are known constants. Thus, by simulating the FE model in the corroded
state the strain response of the plate for this loading condition is given. The strain
response is illustrated as a contour plot in Figure 4.2 for all three different strain
components. Based on the strain response values, generated from the FE model, on each
sensor location and for every strain component, sensor 3 and strain component &,,,

describes the optimal feature of the deterministic scenario.

() (b)
— E— —
-.246E-03 -.137E-03 —-.Z2T74E-04 .822E-04 .192E-03
-.192E-03 -.022E-04 .27T4E-04 .137E-03 .246E-03

Figure 4.2: Contour plot of strain ¢, (a), &, (b) and &,,, (c) for the corroded plate.
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5 Bayesian Modeling

In this section uncertainty is introduced to the strain measurements extracted from the
high-fidelity FE model. This process set the basis for proceeding to Bayesian inference
because one can generate noisy observations for given values of thickness based on a
prediction error probability distribution, formulating a probabilistic model in
accordance with Section 2.2.2. Furthermore, in this section, the application of surrogate
models to the needs of this study, in order to predict strain measurements will be
presented before, applying the Bayes theorem to each case.

5.1 Stochastic Operational Conditions

5.1.1 FE-based Engineering Model

The FE model described in the Section 3.4 will represent the engineering model of this
problem in accordance with Section 2.1.2. This will be different depending on the
operational conditions. Let M represent the FE model that simulates the behavior of
the corroded plate. In the case where load is defined by stochasticity, the model M is
parametrized by q,, X, ¥, t. The FE reading ez of a strain sensor for a particular strain
component when the plate has thickness t can be formulated as follows:

SFE = M(QOﬂf) }_/; t) Eq 51

Based on Eq. 5.1 it is obvious that this study deals with an inverse UQ problem, where
one will be given noisy independent strain measurements and aims to make an inference
about the thickness parameter t and its associated uncertainty.

5.1.2 Prediction Error and Surrogate Modeling

Due to load stochasticity, measurement errors, numerical approximations and general
inadequacies, strain measurements epg from the FE model M are expected to deviate
from real life observations, denoted by &. Considering the engineering model
formulation of the previous section, actual strain measurements can then be interpreted
as the following sum:

E=¢€pg Ty Eqg. 5.2
£ =M(qo, % y,t) +n, Eq.5.3

Where 7, is the prediction error that describes the discrepancy between the model
measurements egg and the actual experimental data . In this work, this error contains
the uncertainty not only due to FE modeling errors but also due to inherent randomness
of the problem representing both epistemic uncertainty and aleatoric variability of the
system.

However, in order to proceed to Bayesian inference by applying the MCMC algorithm,
the FE model needs to be called a great number of times independently each time a new
candidate of the thickness parameter is sampled from the proposal distribution.
Consequently, the algorithm tends to be inefficient. With the intention of overcoming
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this obstacle a surrogate model M is employed to cope with the iterative nature of the
MCMC algorithms. Given the input parameters q,, X, ¥, t the surrogate models proceed
to make a prediction about the strain measurement egg. This prediction strain
measurement is denoted by &, and is formulated as follows:

é\ = ]\7[(‘10; f’ )_}; t) Eq 54

For the needs of stochastic operational conditions, the surrogate model needs to be
trained taking four parameters q,, X, y, t as inputs and one parameter g as output in
the training process. The stochastic nature of the load causes simple regression models
to be unsuitable as surrogate models for the case. Consequently, Gaussian support
vector regression was employed.

In order to create the baseline D?%5¢ of the synthetic data that would be used for training
and testing, the 10* realizations and strain results that were used in strain statistical
response, were employed. Namely, the base set was formulated as D?3%¢ =
{40, Xm> Y tm; €pE,y, ), Where m =1, ..., 10%*. From the total number of points in
Dbas¢  80% were assigned for training and 20% for testing purposes. The training

Dt*m and testing D¢t datasets were ensured to be mutually exclusive to avoid
compromising the measure of generalization of the surrogate.

During the process of estimating the SV regression hyperparameters, a k-fold cross
validation process of 5 folds was conducted. To achieve that, the entire available data
set was split into 5 sets and the model was trained using the data from all except one
(i.e., 4 out of the 5 sets), while the remaining one was used for validation. This was
repeated for all 5 possible validation sets and the final validation score was obtained as
the average of their respective scores. Furthermore, in order to assess the performance
of the surrogate model the metric coefficient of determination, known as R?, was
employed. In general, the larger the R? is, the higher the accuracy of the trained model
is, and a value larger than 0.8 is believed to represent a high degree of accuracy. The
value of R? between surrogate strain predictions and their corresponding targets from
the FE model &g, is defined as:

_ %:1(@ - EFEm)Z
%:1(5 - SFEm)Z

Where M is the size of D¢t | &pg,,, 1S the mth strain observation from the FE model
and &, is the corresponding predicted output from the surrogate model. As an indicative
case, the score for the optimal sensor is presented in Figure 5.1. From the performance
of the R?, it can be observed that the model has been trained effectively and that a
sufficiently high performance has been achieved for the surrogate model (R? = 0.998).

R*=1

Eq.5.5
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Figure 5.1: Indicative regression fit representing the R? score of the surrogate model.

Nevertheless, no matter how good R? score does the surrogate model have, there always
an error in the predictions. The surrogate model error is formulated as follows:

Ns = &g — & Eq. 5.6

Combining Eq. 5.2 with Eqg. 5.6, one can proceed to the formulation of the model that
relates the real strain observations & with the ones generates from the surrogate model
€ as shown in Eq. 5.8 . This model will be used in the Bayesian framework.

e=&+n, +1n; Eq. 5.7
£ =M(qo, %, y,t)+1 Eq.5.8

Where the term n =n, +ns accounts for all types of modeling errors and
measurements uncertainties and is considered to be random variable. This residual term
is treated as a Gaussian zero-mean random variable with a user-specified variance;
namely H~py(m; o), with py(n; o) = N (0,0). It should be noted that the residual
parameter o is considered to be unknown and is included in the parameters to be
inferred with Bayesian modeling. As it will be clear in Section 5.1.3 the residual term
constitutes the probabilistic model in accordance with Section 2.2.2, that one can use
in order to explain the randomness of the data for given parameter values and it will be
used to formulate the likelihood function of the problem.

5.1.3 Bayesian Formulation

In this section the process followed to apply the Bayes theorem will be described.

Prior Model and Input Uncertainty

In Bayesian fashion the unknown Qol are treated as random variables. Namely for the
present problem, a prior distribution 7(t) is assigned to the thickness parameter t as
follows:

T ~n(t) Eq. 5.9
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The Bayesian prior distribution quantifies a subjective degree of plausibility or belief
about the true parameter values t. For this work, two different prior distributions for
the thickness parameter were examined. The first will be an uninformative uniform
prior distribution, whereas the second will be a more biased prior that will be selected
based on statistical data from existing corrosion situations on the bottom of ships. The
biased prior will be treated as a normal prior distribution.

It should be noted that according to the previous section, the residual parameter o is
also included in the parameters to be inferred. Thus, another uninformative uniform
prior distribution is assigned to this parameter:

X ~mn(o) Eg. 5.10

A vector 6 is then considered, that contains all the parameters that need to be inferred.
Thus, 6 is a two-dimensional vector, containing both plate thickness t and the standard
deviation of the residual model o, i.e., 8 = {t,o}". These parameters are considered to
be independent. Consequently, the joint prior distribution w(6) can be written as the
product of the two independent prior distributions:

n(0) = n(t,0) = n(t)n(o) Eq.5.11

Probabilistic Model and Likelihood Function

Based on the residual term formulation in Eq. 5.8, actual strain observations viewed as
outcomes ¢; of random variable:

(EilQO = qOrX = f;Y = }_7,T = t) ~pH(€i _ﬁ(QO'fiy't);a) Eq 5.12

Thus, the observation data set of the problem is generated by independently sampling
from the distribution of Eq. 5.12. The total number of observations was considered to
be n = 100 strain measurements. The measurements were generated initially, using a
standard deviation level of 5ue, however different measurement noise levels will be
also examined.

Namely, for given values of the direct forward model input q,, X, ¥, t, data are viewed
as random variables (E;| q,,%, ¥, t) with conditional distribution:

p(&ilqo, %, 7, t;0) = pu(e; — M (qo, %, ¥, 1); 0) Eq. 5.13

The model of Eq. 5.13 refers to a single observation. In order to formulate a conditional
distribution for the total n generated independent data (g;) for given values of the
unknown parameters q, X, ¥, t ,the following product is taken:

n
p(<£i> |C[0; fi }_/) t ’ O—) = np(‘gil‘h’f; }_]1 tl 0-) Eq 5.14
i=1
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n
= p((e a0, %7,t30) = | [ putei = F(q0,%,3,0 ) Eq.5.15

=1

Thus, the connection between the observation data (¢;) and the unknown input Qol that
are contained in the parameter vector 8 is established, and the probabilistic model is
constructed in accordance with Section 2.2.2. Based on the aforementioned, one can
then formulate the likelihood function of the vector parameter 6, for a single
observation (Eq. 5.16) and for the total observation data (Eq. 5.17).

£(6le) = p(eil6) Eq. 5.16
Lol = | [peae) Eq. 547
i=1

In Bayesian problems and MCMC algorithms, the log-likelihood function is commonly
employed for practical issues, such as treating the product for the total observations
data as a sum. Hence, the log-likelihood is formulated above, and Eq. 5.16 and Eq. 5.17
are developed to Eq. 5.18 and Eqg. 5.19 accordingly.

log L(O|e;) = log p(&;|0) Eq. 5.18
n

log L(B|(g;)) = z log p(&;|6) Eq. 5.19
i=1

It is obvious that the likelihood function of the problem refers only to the parameter
vector 6, which contains the Qol, and therefore in order to use the constructed
probabilistic model of Eq. 5.13, the influence of the load related parameters q,, X, ¥ on
the output of the surrogate model M has to be accounted for, by marginalizing the
likelihood over their corresponding domains D, , Dy, Dy. Consequently, the quantity

p(&;|6) is formulated by marginalization as follows:

p(&)0) = ] J j pH(si — M (qo, %, 7, t);a) dqydx dy Eq. 5.20

Dqo Dx Dy

The process of calculating the multidimensional integral in Eq. 5.20 is difficult to be
performed analytically. This leads to the approximation of the integral and the
likelihood function as a whole, through Monte Carlo integration. According to Monte
Carlo integration, an approximation p(g;|0) of the multidimensional integral of Eqg.
5.20 is given by Eq. 5.21:

K
1 o
pail) == > puer — M (00, %,3,; 0) Eq.5.21
k=1

Where K is the number of independently sampled forward model inputs q,, X, y. The
samples are generated from their probability distributions as presented in Section 3.2.
Consequently, the following approximation of the marginalized likelihood over all
observation data is formulated and will be used in the Bayesian problem:
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n
log £(O(e)) = ) log p(zi10) Eq. 5.22
i=1

In order to select the appropriate number of samples K for the integral approximation
in Eq. 2.21, a convergence study was conducted, and the results are presented in Figure
5.2, for an indicative 6. Based on Figure 5.2 and considering that the marginalization
process develops an additional computational cost to the Bayesian estimation problem,
a number of 1500 samples was considered adequate to achieve convergence.
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Figure 5.2: Convergence diagram for the Monte Carlo integration. The red
lines represent the 95% confidence intervals.

Bayes Theorem

Having set the prior model and constructed the likelihood function, one can proceed to
the joint posterior probability function of the unknown parameters 8 = {t,a}" by
conditioning on the observations data (g;) according to the Bayes theorem (see Eq.
5.23). For the sake of simplicity, the Bayes theorem is presented using the likelihood
function and not the log-likelihood function.

1 .
p(6l(&;)) = Eﬂ(H)L(HI(Si)) Eq. 5.23

The term C is the model evidence, given by Eq. 5.24, where D,, D, are the
corresponding domains of thickness and standard deviation accordingly.

c= fD | L m(O)LENE) dt do Eq.5.24

In order to proceed to parameter estimation and uncertainty quantification using Eq.
5.25 the term C needs to be omitted as discussed in Section 2.3.1. This will be achieved
by applying the MH algorithm, in order to sample from the joint posterior distribution.

50



Bayesian Modeling

5.2 Deterministic Operational Conditions
5.2.1 FE Based Engineering Model

Similar to stochastic loading, in the deterministic load scenario the FE model will
represent the engineering model of this problem. However, this time the quantities
qo, X,y are considered known constants, and thus the model M is only parametrized
by the thickness of the plate t. The FE reading ez¢ of a strain sensor for a particular
strain component is given by Eq. 5.25

5.2.2 Prediction Error and Surrogate Modeling

Real strain measurements ¢ are expected to deviate from the measurements generated
from the FE model, just like in stochastic operational conditions. As such actual strain
measurements can then be interpreted as the following sum:

e=M(t) +n, Eq. 5.26

Where 1, is again the prediction error that describes the discrepancy between the model

measurements erg and the actual experimental data € representing epistemic uncertainty
and aleatoric variability.

A surrogate model M will again be trained next in order to cope with the iteration
nature of MCMC algorithm. However, while the output of the model remains the strain
measurement epg, the input parameter in this case is just plate thickness t, namely the
model is much simpler than the previous case. This fact allows simpler regression
models to be suitable for the deterministic loading case. Specifically, a second-degree
polynomial is employed and only eight training points {t,epz} were considered
adequate to achieve regression with high efficiency. Figure 5.3 illustrates the training
data points and the corresponding regression second degree polynomial curve for the
optimal sensor feature of this case. Predictions £ are estimated in accordance with Eq.
5.27. The metric coefficient R? was also employed in this case, and the score resulted
inan R? = 0.999, achieving efficiency of the surrogate.

&= M(t) Eqg. 5.27
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Figure 5.3: Training data points and corresponding regression curve for the optimal
sensor of the deterministic load scenario.

Similar to the stochastic loading scenario, the surrogate modeling error is formulated
next, i.e., g = €pg — &, and combining it with Eqg. 5.26 one can proceed to the
formulation of the model that relates the real strain observations & with the ones
generates from the surrogate model €, as shown in Eq. 5.28. This model will be used in
the Bayesian framework.

£ = F(E) +1 Eq. 5.28

Where the term 7 =n, +ns accounts for all types of modeling errors and
measurements uncertainties and is considered to be random variable. This residual term
is treated again as a Gaussian zero-mean random variable with a user-specified
variance; namely H~py (n; o), with py(n; ) = N'(0, 0). The residual parameter o is
considered to be unknown and is included in the parameters to be inferred with
Bayesian modeling.

5.2.3 Bayesian Formulation

Prior Model and Input Uncertainty

The prior models in the case of the deterministic operational conditions appear to have
no difference compared to the ones in the stochastic operational conditions. Thus, no
further analysis is presented regarding prior models and the reader is referred to the
corresponding Section 5.1.3.

Probabilistic Model and Likelihood Function

Based on the residual term formulation in Eq. 5.28, actual strain observations viewed
as outcomes ¢; of random variable:

(BT =) ~ pu(e; — M(1); 0) Eq.5.29
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Thus, the observation data of the problem are generated by independently sampling
from the distribution of Eq. 5.29, and the number of these data was considered to be
again n = 100 strain measurements. The measurements were generated, using a
standard deviation level of 5ue.

Namely, for given values of the direct forward model input t, data are viewed as random
variables (E;| t) with conditional distribution:

p(eilt;0) = pu(e; — M(1); 0) Eq. 5.30

The model of Eqg. 5.30 refers to a single observation. In order to formulate a conditional
distribution for the total n generated independent data (e;) for given values of the
unknown parameter t ,the following product is taken:

p(ed Itio) = | [pealto) cq. 51
i=1
= p({&)|t;0) = HPH(Ei — M (t); o) Eq. 5.32
i=1

Thus, the connection between the observation data (g;) and the unknown input Qol that
are contained in the parameter vector 6 is once again established, and the probabilistic
model is constructed in accordance with Section 2.2.2. Based on the aforementioned,
one can then formulate the likelihood function of the vector parameter 6, for a single
observation (Eq. 5.33) and for the total observation data (Eq. 5.34)

L(B1e) = p(zil0) Eq. 533
£olen = | [pealo) Eq. 5.34
i=1

Similar to the stochastic case, the log-likelihood function is then employed for practical
issues. Hence, the log-likelihood is formulated above, and Eq. 5.33 and Eqg. 5.34 are
developed to Eqg. 5.35 and Eq. 5.36 accordingly.

log L(O|g;) = log p(&;|0) Eg. 5.35
n

log L(O|(e;)) = Z log p(&;|6) Eq. 5.36
i=1

In the deterministic case, the constructed probabilistic model of strain observations,
only refers to the parameter vector 6 which contains the parameters of interest.
Therefore, in this case no further marginalization of the likelihood function is necessary
and one can proceed to the application of the Baye’s theorem directly.
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Bayes Theorem

Having set the prior model and constructed the likelihood function, one can proceed to
the joint posterior probability function of the unknown parameters 8 = {t,a}" by
conditioning on the observations data (&;) according to the Bayes theorem (Eq. 5.37).
For the sake of simplicity, the Baye’s theorem is presented using the likelihood function
and not the log-likelihood function.

1
p(Ble)) = -m(9)L(ON(e:) Eq. 5.37

The term C is the model evidence, given by Eq. 5.38, where D, D, are the corresponding
domains of thickness and standard deviation accordingly.

c= j | f T(O)LOIE) de do Eq. 5.38

Once again, in order to proceed to parameter estimation and uncertainty quantification
using Eq. 5.38 the term C needs to be omitted as discussed in Section 2.3.1. This will
be achieved by applying the MH algorithm, in order to sample from the joint posterior
distribution.
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6 Metropolis Algorithm and Results

In the present chapter the MH algorithm is applied to the Bayesian problem of this study
in order to extract posterior samples for the Qol. Convergence diagnostics are
examined, and parameter estimation is performed by calculating the mode of the
posterior distribution as a point estimate, while the associated uncertainty is quantified
by taking the 95% credible interval.

6.1 Numerical Prerequisites

Before proceeding to the application of the algorithm, a reminder regarding the
numerical data for the specific problem will be presented in this section. The plate of
interest is subjected to corrosion under both deterministic and stochastic operational
conditions and has lost 15.3% of its nominal thickness. A total number of 100 strain
measurements are generated from specific sensor locations and components on the plate
in order to make estimation about the thickness of the corroded plate, i.e., tigrger =
8.47 mm. At the same time the probabilistic model constructed to proceed to Bayesian
inference posed another parameter of interest, which is the standard deviation ¢ of the
residual error term n. The target value of the parameter of standard deviation is set to
Orarget = 5 ue. Consequently, the target parameter vector is considered as follows:

Otarget = {8:47, 57 Eg. 6.1

Furthermore, prior distribution needs to be selected for the parameter vector 8. With
respect to the thickness parameter, a uniform distribution in the interval [8, 10] mm will
represent the uninformative prior, i.e., m(t) = U(8,10), while a normal distribution will
represent the more biased prior, i.e., w(t) = N'(8.6,0.1). The parameters of the biased
prior have occurred based on statistical data from existing corrosion measurements on
the bottom of bulk carriers [65]. As regards the standard deviation o, uninformative
prior in an interval [1,30] e is selected, i.e., m(a) = U(1,30). Considering that the two
parameters are independent, the total prior of the problem is formulated as discussed in
Section 5.1.3:

n(0) =n(t,0) = n(t)n(o) Eg. 6.2

In the Metropolis algorithm a proposal distribution needs to be considered, that will
suggest a candidate as a next sample in order to be accepted or rejected according to
the Metropolis correction step, as discussed in Section 2.3.4. In Random Walk
Metropolis sampling, that is applied in the present study a symmetrical multivariate
normal distribution is selected, i.e., q(6”]67) = ¥(8™; 67, %,), where, by 8¢ is
denoted the suggested from the proposal candidate, 6/ the current chain state at
iteration j and X, the covariance matrix of the proposal distribution. The covariance
matrix of the proposal distribution will be considered after investigating the MCMC
trace plots and the corresponding acceptance rates for different values of the matrix.
After this process the following covariance matrix was considered acceptable:

-3
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Finally, it should be noted that the Metropolis algorithm was applied in order to
generate a total number of 11000 samples, from which the first 1000 were discarded as
the Burn-In period. Consequently, a total number of 10000 samples from the posterior
distributions were generated for each targeted parameter.

6.2 Stochastic Operational Conditions

Results with respect to stochastic operational conditions are presented in this section.

6.2.1 Convergence Diagnostics and Autocorrelation

According to the theory discussed in sections 2.3.6 and 2.3.5 respectively, convergence
of the chain created by the Metropolis algorithms, as well as autocorrelation need to be
investigated. Convergence will be verified by evaluating the mixing and stationarity in
trace plots, while autocorrelation will be illustrated in ACF graphs. For the convergence
assessment three chains, each with a different initial point, were created.

Optimal Sensor

Figure 6.1 illustrates the trace plots for both parameters of thickness and standard
deviation for the optimal sensor feature. With regard to the thickness parameter, it can
be observed that all the chains have mixed adequately and reached stationarity. The
chains are moving fast, and they are exploring the entire sample space around the true
value of the parameter. On the other hand, regarding the parameter of standard deviation
of the residual model, it is obvious, that despite the fact that all the three chains have
adequately converged to a stationary distribution, this distribution is different
depending on the initial point and none of these distributions seems to contain the true
value of the parameter. The chains have not mixed, and general convergence is not
achieved. Hence, no valid inference can be conducted with respect to the standard
deviation of the error model. This is not something unexpected, due to the
marginalization process that is applied in this case. The marginalization process is
performed over the loading parameters g, X, ¥, which along with the parameter of
thickness t determine the mean value of the constructed probabilistic model. Thus, by
applying the process, the behavior of the mean is dominant, while the information
regarding the spread of distribution, i.e., the standard deviation o is fading. Therefore,
the likelihood function appears to be flat, with respect to the standard deviation
parameter which leads to the parameter not being easily identifiable.
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Figure 6.1: Trace plots showing the trajectory of the chains for the optimal sensor
under stochastic operational conditions, for the parameter of (a) thickness and (b)
standard deviation.

Figure 6.2 contains the ACF graph illustrating the samples autocorrelation behavior
over different lag values for the thickness of the plate. It should be noted that since the
chains of standard deviation parameter have not converged to a stationary distribution,
there is no point in plotting the corresponding ACF graph for this parameter. Based on
Figure 6.2, it is observed that the autocorrelation between samples is large at short lags,
but decays quickly to zero as the lag number increases, considering acceptable
autocorrelation behavior. It should be also noted that the acceptance rate in this case is
approximately 34%.
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Figure 6.2: Correlogram for the parameter of thickness for the optimal sensor under
stochastic operational conditions.
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Noise-Sensitive Sensor

Figure 6.3 illustrates the trace plots for the parameter of thickness for the sensor that it
IS prone to measurement errors. Based on this figure, it can be seen that chains are
generally exploring the sample space around values that are close to the targeted
thickness value and that they are mixed with each other. Nevertheless, each chain
appears to get stuck very often for many iterations and does not explore the whole
sample space adequately, resulting in high serial correlation between samples. This can
be as well verified by the corresponding correlogram illustrated in Figure 6.4.
Acceptance rate in this case drops to 6%. The sensor’s noise-sensitivity results in an
inevitable high correlation, which cannot be accepted in order to make valid estimations
about the target parameter.
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Figure 6.3: Trace plot showing the trajectory of the chains for the noise-sensitive
sensor, for the parameter of thickness.
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Figure 6.4: Correlogram for the parameter of thickness for the noise-sensitive sensor.
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6.2.2 Marginal Posterior Distributions

After evaluating the convergence of the MCMC process, one can proceed to the
development of the marginal posterior distributions based on the generated samples and
calculate the mode of the distribution, as well as the 95% credible interval, which
represent the point estimation of the target parameter and the corresponding uncertainty
accordingly. These results are presented for the optimal sensor since, it is the only one
that can produce valid inferences and will regard only the parameter of thickness, since
chains for the standard deviation have not achieved convergence.

Uninformative Uniform Prior

Figure 6.5 illustrates the marginal posterior distribution for the thickness parameter
along with a corresponding Q-Q plot when a uniform prior is applied, where it can be
clearly observed that the distribution can be approximately described by a normal
distribution. Furthermore, Table 1 contains the value of the point estimated thickness
and the corresponding 95% credible interval. It is obvious that the method achieves a
very good estimation of the targeted thickness with a relatively small uncertainty
regardless of the fact that no prior knowledge is applied.
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Figure 6.5: (a) Histogram of the posterior distribution of thickness for the optimal
sensor under stochastic operational conditions, (b) corresponding Q-Q plot. (Uniform
Prior).

Table 6.1: Parameter estimations for the optimal sensor under stochastic operational
conditions. (Uniform Prior).

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 8.46 0.12 [8.42, 8.49]
o (ne) 5 - -

59



Metropolis Algorithm and Results

Informative Normal Prior

Similarly, Figure 6.6 and Table 6.2 sum up the estimation results when the informative
normal prior is applied. It appears that the posterior distribution has the exact same
behavior and that point estimates do not diverge from the estimates based on the
uniform prior, meaning that additional information does not reduce further the
uncertainty of the parameter at this point.
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Figure 6.6:(a) Histogram of the posterior distribution of thickness for the optimal
sensor under stochastic operational conditions, (b) corresponding Q-Q plot. (Normal
Prior).

Table 6.2: Parameter estimations for the optimal sensor under stochastic operational
conditions. (Normal Prior).

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 8.450 0.23 [8.41, 8.49]
o (pe) 5 - -

6.2.3 Outlier Behavior

It is important to highlight that the aforementioned results, occurred for load instances
that are considered relatively usual to occur, namely, these are load instances where the
parameters q,, %,y are outcomes of the random variables Q,,X,Y from distribution
areas that are not further than —20 and +20. However, it is also critical to explore the
respective results from load realizations that do not fall in these areas, and thus to
describe the behavior of the system in outlier conditions. These outlier conditions occur
when at least two of the parameters qq, X,y are outcomes of the random variables
Qo, X, Y from distribution areas further than —2¢ and +20. Employing the
uninformative uniform prior, the results shown in Figure 6.7 and Table 6.3 are
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generated. The chain has converged to a stationary distribution which is approximated
by a normal distribution; however, this distribution does not contain the thickness’
target value, hence the estimations of the parameter are considered inaccurate. As a next
step, the biased normal prior was also employed, and results are presented in Figure 6.8
and Table 6.4 respectively. Based on these results, in order for the system to proceed to
good and valid estimations for the thickness parameter under outlier operational
conditions, a biased prior is required. It is also noted that the uncertainty interval is
wider compared to the cases of the previous section. Furthermore, load instances that
are described by the parameters q,, x, y from distribution areas further than —3¢ and
+30, set the marginalized likelihood to zero and MCMC algorithm can’t be performed.
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Figure 6.7:(a) Histogram of the posterior distribution of thickness, (b) corresponding
Q-Q plot. (Outlier behavior with uniform prior).

Table 6.3 Parameter estimations for the optimal sensor under stochastic operational
conditions. (Outlier behavior with uniform prior).

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 9.00 6.26 [8.96, 9.04]
o (ne) 5 - -
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Table 6.4: Parameter estimations for the optimal sensor under stochastic operational
conditions. (Outlier behavior with normal prior).

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 8.50 0.35 [8.34, 8.54]
o (pe) 5 - -

In an attempt to overcome outlier issues a different observation data set was also tested.
Thus far strain measurements were generated from a single unknown operational
condition described by the random variables Q,, X, Y and by adding the effect of noise.
However, in the current attempt, strain measurements will be generated from different
operational conditions along with an added noise outcome of the residual probabilistic
model and will be considered as the observations within the Bayesian and MCMC
process. In such manner, results are extracted by taking into account multiple and
possible outlier conditions. Figure 6.9 illustrated the trace plot of the generated chain,
while Figure 6.10 illustrates the generated thickness posterior distribution. In addition,
Table 6.5 contains the corresponding numerical results. The chain appears to move
around the target thickness adequately based on the trace plot, and through the created
posterior distribution good point estimations and relatively narrow credible interval are
obtained.
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Figure 6.10: (a) Histogram of the posterior distribution of thickness for the optimal
sensor under stochastic operational conditions based on the new data system, (b)
corresponding Q-Q plot.

Table 6.5: Parameter estimations for the optimal sensor under stochastic operational
conditions base in the new data set system.

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 8.47 0 [8.39, 8.65]
o (ne) 5 - -

Nonetheless, after illustrating the correlogram of this case in Figure 6.11, it became
obvious that the autocorrelation between samples has not decayed to zero even at lag
number 50. Therefore, the generated samples are considered highly correlated resulting
in biased estimation of the parameter of thickness. This signifies that for such a case, a
larger number of samples is necessary to be generated in order to achieve asymptotic
independence.
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Figure 6.11: Correlogram for the parameter of thickness based on the new data set.

6.2.4 The Noise Level Effect

The aforementioned results were generated for a standard deviation level o of 5 pe.
However, it is essential to examine what is the effect of different noise levels on the
estimation of the thickness parameter. Towards this direction, the MCMC process was
performed for higher noise levels of 10 pe and 20 ue respectively. The results are
illustrated and compared in the following figures. It can be observed that the more the
noise level increases, the slower the correlation between samples decays to zero. For
the highest noise level of 20 pe, the correlation is extremely high even at large number
of lags. The chain is not mixed appropriately (Figure 6.12) and no valid estimations can
be made. At such a high noise level, the system requires a significantly larger number
of generated samples in order to achieve asymptotic independence. With respect to the
noise level of 10 pe, a higher correlation between samples is observed but within
acceptable limits. Hence, one can proceed to parameter estimation as shown in Table
6.6, where the % difference between point estimate and target value is significantly
increased compared to the noise level of 5 ue, and the uncertainty interval appears
wider.

8.6 8.6
8.55
85+
8.5
P~ _ ~8.4
: 2 : ﬁ
£ £ 8.45 E
Py P P
5 5 84 383
= g s
- - -
2 S g
& & 8.35 £ gl
83
8.1
8.25
8.35
8.2
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations Iterations
(a) (b) (©

Figure 6.12: Trace plots for different noise levels, (a) 5 pe, (b) 10 pe, (c) 20 pe.
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Table 6.6: Parameter estimations for noise level of 10 pe.

40

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 8.40 0.83 [8.34, 8.50]
o (ne) 5 - -

6.3 Deterministic Operational Conditions

Respectively, results with regard to deterministic operational conditions are presented

in this section.
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6.3.1 Convergence Diagnostics and Autocorrelation

Similar to the case of stochastic operational conditions Figure 6.15 illustrates the trace
plots of the chains for both parameters. In the current case it is observed that all chains
for both parameters have mixed, each having reached the unique corresponding
stationary distribution. The chains are moving adequately fast, and they are exploring
the entire sample space around the true values of the targeted parameters. It should be
noted that the acceptance rate in this case reaches 42%. Moreover, Figure 6.16
illustrates the ACF graphs for both parameters, where it is clear that sample
autocorrelation decays to zero quickly at short lags. Generally speaking, the created
chain behaves better under deterministic operational conditions, with a higher
acceptance rate and the ability to make estimations for both unknown parameters.
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Figure 6.15: Trace plots showing the trajectory of the chains under deterministic
operational conditions, for the parameter of (a) thickness and (b) standard deviation.
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6.3.2 Marginal Posterior Distributions

Based on the aforementioned, one can proceed to the marginal posterior distributions
in order to make point estimations and credible intervals for the Qol. Figure 6.17 and
Figure 6.18 illustrate the marginal posterior distributions for the thickness and standard
deviation parameter respectively, when uninformative uniform prior is employed. Both
parameters’ distributions can be approximated again by utilizing normal distributions.
The corresponding estimations are presented in Table 6.7. It is observed that under
deterministic operational conditions, Bayesian estimations are very close to the targeted
values for both parameters with an associated narrow uncertainty 95% interval. Also, it
should be noticed that estimations do not deviate much from the corresponding
estimations under stochastic operational conditions with usual loading instances.
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Table 6.7: Parameter estimations for the optimal sensor under deterministic
operational conditions. (Uniform Prior).

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 8.47 0 [8.41, 8.52]
o (ne) 5 5.13 2.6 [4.36, 5.75]

To further assess if parameter uncertainty with respect to the thickness of the plate can
be further reduced, the biased normal prior was employed. Results are presented in
Figure 6.19 and Table 6.8 respectively. However, it is observed that the behavior is
almost identical to when the uniform prior distribution was employed, thus no
additional knowledge can further reduce thickness uncertainty.
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Figure 6.19: (a) Histogram of the posterior distribution of standard deviation under
deterministic operational conditions, (b) corresponding Q-Q plot. (Normal Prior).

Table 6.8: Parameter estimations for the optimal sensor under deterministic
operational conditions. (Uniform Prior).

Parameter Target Value Point % Credible
Estimate Difference Interval
t (mm) 8.47 8.48 0.12 [8.42, 8.52]
o (1e) 5 5.13 2.6 [4.36, 5.75]
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7 Concluding Remarks

The goal of the present study was to investigate a SHM system for parameter estimation
and uncertainty quantification of the thickness of a plate domain in a uniformly
corroded state, under both stochastic and deterministic operational conditions utilizing
Bayesian inference. Strain measurements from sensors on the plate were considered as
observation data. The implementation of the method was carried out in a numerical
setting, through MCMC Metropolis algorithm and by using high-fidelity FE model and
surrogate modeling to generate the strain response data. Different sources of uncertainty
affecting the strain measurements in both operational conditions were considered to
appropriately construct a probabilistic model in the Bayesian framework. The key
findings of the employed research are listed below:

e Sensor locations and strain components that appear to have the highest strain
response are considered optimal for data collection because they are affected
less by measurement noise.

e Under stochastic operational conditions and for load instances that are relatively
usual to occur, Bayesian estimations are very close to the targeted values
regarding the thickness parameter. However, the system fails to make
estimations about the residual parameter ¢ that describes measurement
discrepancies in the constructed probabilistic model.

e Under stochastic operational conditions the system does not behave well in
outlier loading instances when no prior biased knowledge is available. Only
when biased prior probability distribution is employed together with large
number of generated samples, are Bayesian estimations unbiased and close to
the real target values.

e As measurement noise level increases, parameter uncertainty as well as sample
correlation also increases. Sample correlation increases up to a point where no
valid estimations can be developed, and a significantly larger number of
samples is essential to achieve asymptotic sample independence.

e Under deterministic operational conditions, the Bayesian system provides good
estimations and narrow uncertainty intervals for both thickness and standard
deviation parameter with no significant deviation from the stochastic case in
usual loading conditions.

The performance of Bayesian inference in thickness estimation of a plate subjected to
uniform corrosion encourages the expansion of this application in a more complex
framework like crack identification. The number of quantities of interest in such cases
increases as now one is interested in the location of the crack, the crack’s length as well
as the cracks orientation. The increased dimensionality of such problems poses serious
constraints regarding the FE model, the surrogate models and the MCMC
methodologies that are employed to deal with Bayesian inference. Most likely,
conventional MH algorithm will not be appropriate and advanced and complicated
MCMC methods, like Hamiltonian Monte Carlo will be necessary.
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