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Chapter 1
Introduction

The shallow lake problem is a well-known problem of environmental eco-
nomics with a great mathematical interest. It is observed that the heavy
use of fertilizers on the surrounding land and the increased inflow of waste
water from industries and human settlements release phosphorus into the
lakes and this causes an intense growth of phytoplankton. As a result, the
shallow lakes flip from a clear state (oligotrophic state) to a turbid state
(euthrophic state) with a greenish look. Limnologists have shown a great
interest in this natural phenomenon and have proposed a model to quan-
tify the evolution of the concentration of phosphorus into the lake. More
specifically, the amount of phosphorus in algae is usually modeled by the

non-linear stochastic differential equation:

dz(t) = (u(t) — bx(t) + r(z(t))) dt + ox(t)dW;,
z(0) =2 > 0.

(1.0.1)

The first term, u : [0,00) — (0,00), in the drift part of the dynamics,
represents the exterior load of phosphorus as a result of human activities.
The second term is the rate of loss bz(t), which is due to sedimentation,
outflow and sequestration in other biomass. The third term, r(z(t)), is
the rate of recycling of phosphorus on the bed of the lake. This term is
assumed to be a sigmoid function (see [15]) and the typical choice in the
literature is the function = — 2%/(2*41). An uncertainty in the rate of loss

is assumed and is introduced in the model through a linear multiplicative
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Gaussian white noise with intensity o.

The economics of the lake arise from the conflicting services it offers to
the community. On the one hand, a clear lake is a recourse for ecological
services. On the other hand, the lake serves as a waste sink for the agri-
cultural and industrial activities. When the users of the lake cooperate,
the loading strategy, u € 4, (to be determined in the next section), can be
used as a control to maximize the total benefit from the lake. Assuming

an infinite horizon, this benefit is typically defined as

J(w:u) = E, [ /0 T e (lnut) — ca®(0)) dt || (1.0.2)

where p > 0 is the discount rate and x(-) is the solution to (1.0.1), for a
given exterior loading (control) u(-), and initial state 2(0) = x. The total
benefit of the lake increases with the increase of loading of phosphorus as
Inu, but at the same time decreases with the existing amount of phospho-
rus inside the lake as —cz?, due to the implied decline in quality of its
ecological services. The positive parameter c¢ reflects the relative weight of
this component.

For the optimal management of the lake, we need to maximize the total
benefit over all admissible controls u € . The set of admissible control
31, will be specified in the next chapter. In this way, the value function of

the problem is defined as

V(z) = sup J(z;u), (1.0.3)

uetly

Therefore, the shallow lake problem becomes a problem of control theory
or a differential game in the case where we have competitive users of the
lake [13, 15, 50]. As a control problem (see [23], Section IIL.7), the value
function V' given by (1.0.3) is expected to satisfy the HJB equation

1
pV — H(x,V,) — 50%2% =0 (1.0.4)
where the Hamiltonian H is defined by

H(z,p) =sup [(u—bz+r(z)p+Inu—cz?]. (1.0.5)

u>0



Assuming that V, < 0, (1.0.4) reduces to:

1
pV — (r(x) — bx) Vy + In(=V,) + ca® + 1 — 502352{/;333 =0 (1.0.6)

The shallow lake problem has been extensively studied in the literature,
especially its deterministic version. When o = 0, the case where the opti-
mally controlled lake has two equilibria and a Skiba point or indifference
point [47, 49| is of particular interest. The leftmost (oligotrophic) equilib-
rium point of the system of the lake corresponds to a lake with low concen-
tration of phosphorus, while the rightmost one (eutrophic) corresponds to
a lake with high concentration of phosphorus. At the Skiba point, there are
two different optimal strategies, each one driving the system to a different
equilibrium and the value function is not differentiable thereat. There-
fore, the value function, V', cannot be a classical solution to the HJB eq.
(1.0.4). Actually, the correct mathematical framework to work with, espe-
cially when the value function does not a priori possess the regularity of
a classical solution, is that of viscosity solutions, as it was developed by
Crandall and Lions [17|. The connection of control theory problems with
HJB equations has been extensively studied, see e.g |3, 23, 22, 37, 38§].

In order to uncover the range of parameters for which Skiba points ap-
pear, an extensive exploration of the parameter space and the qualitative
differences of the Pontryagin system of the shallow lake (bifurcation anal-
ysis) has been conducted [31, 49]. Properties of the value function of the
deterministic shallow lake problem have been proved in [32].

A basic question that, to the best of our knowledge, has not been com-
pletely answered so far is that of the existence of optimal control. The
existence of optimal control is usually taken as a hypothesis and the op-
timal dynamics of the lake is studied mostly through the necessary con-
ditions, which are determined by the Pontryagin Maximum Principle, and
the equilibrium points of the corresponding dynamical system [49, 50]. A
rigorous answer to this question was given by Bartaloni in [7, 8|, albeit
under restrictions that do not fully cover the range of the parameters for

which Skiba points are present.
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In addition, there has been increasing interest recently in the stochastic
version of the problem (¢ # 0). Specifically, deterministic systems with two
equilibrium points and one Skiba point have a fundamentally different be-
haviour from their stochastic counterparts. In particular, in the presence of
noise, random fluctuations lead the system from the one equilibrium point
to the other one (metastability). In the case of a shallow lake, variations in
the rate of loss drive the lake from the oligotrophic to the eutrophic state
and vice versa, a phenomenon which is naturally observed. The interest in
the study of metastable systems firstly arose from phenomena in the field
of chemistry. Arrhenius [2] in 1889 physically justified an expression for
the mean transition time of the system to go from the one local equilib-
rium to the other. Later, H. Eyring and H. A. Kramers [20, 35] with the
well-known Eyring-Kramers law refined the Arrhenius law by specifying
the prefactor term in Arrhenius’ expression. In the sequel, M.I.Freindlin
and A.D.Wentzell [24] introduced the theory of large deviations to explain
and understand the metastable behaviour of various dynamical systems.
Even though, metastable systems have been extensively studied ever since
(see e.g. |12, 9]), the majority of results concern dynamical systems for
which the drift function is not a function of the noise intensity. However,
in the context of (stochastic) control theory, one naturally expects that
in metastable systems, like the shallow lake system in the case of Skiba
points, the drift term of the optimally controlled system will depend on
the noise via the presence of the value function, which in turn depends on
the noise via the Hamilton-Jacobi-Bellman correction. The phenomenon
of metastability in the shallow lake problem is studied numerically in [26],
where the value function of the shallow lake problem is approximated for

small o, based on heuristic methods of perturbation analysis.

Furthermore, thorough examination of the stochastic version of the shal-
low lake problem is conducted by Kossioris, Loulakis and Souganidis [33]
who analytically derive properties of the value function and characterise it
as the unique (in a suitable class) state-constraint viscosity solution of the
Hamilton-Jacobi-Bellman (HJB) equation (1.0.4).

The shallow lake problem has some nonstandard features and, hence,



it requires some special analysis. First of all, the problem is formulated as
a state constraint one on a semi-infinite domain. Viscosity solutions with
state constraint boundary conditions were introduced for first order equa-
tions by [48, 14]. For second order equations one should consult |30, 36, 1].
In addition, a priori knowledge of the properties of the solution is necessary
to guarantee that the Hamiltonian is well-defined, due to the logarithmic
term in the cost functional, which leads to a logarithm of the derivative of
the value function in (1.0.6). Then, in the case of the stochastic shallow
lake problem, ellipticity of (1.0.6) degenerates at the boundary, x = 0. Fi-
nally, the control space is open and unbounded, so the usual assumptions
made to prove existence in control problems with infinite horizon (see e.g.
[10, 19, 44]) are not satisfied here.

The first main contribution of this work is the rigorous proof of existence
of optimal control in both the stochastic and deterministic shallow lake
problem without any restrictions in the parameter space. In the presence
of noise, the proof follows the general lines of a verification principle (see
e.g. [23]) with appropriate modifications to address the loss of ellipticity
at the boundary and a possible blow-up of the benefit for small controls.
This approach is not always feasible in the deterministic problem, since
the value function may fail to be differentiable. In [7] and [8] the existence
of optimal control is established by proving uniform localization lemmas
followed by diagonal arguments. This approach is successfully carried out
under the assumption that either the parameter b or the discount parameter
p are greater than 31/3/8. Our approach here is entirely different and does
not require any restrictions on the parameter space. More specifically, we
prove that both the value function and the total benefit achieved when
the system is driven by the candidate optimal control suggested by the
Pontryagin Maximum Principle are viscosity solutions to the same well-
posed problem. In this way, it is proved that the optimal total benefit,
that is the value function V, is attained by an admissible control and in

this way this control is characterised as optimal.

The second main contribution of this work is the analysis of the metastable

behaviour of the shallow lake problem, carried out in the more general
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framework of stochastic control problems which exhibit Skiba points. In
more detail, we study the expected value of the transition time from the one
well to the other for a process in a noise-dependent double-well potential
and we prove a generalization of the Arrhenius law. To do this, we firstly
exploit the fact that the mean transition time solves a Poisson problem, the
solution of which is given in an explicit integral form in the one-dimensional
case. In the following, we prove the locally uniform convergence of the noisy
integrand to a noiseless one, by proving the convergence of the derivatives
of the noisy value function to the derivatives of the noiseless value func-
tion. To prove this, we adapt a methodology introduced by Fleming and
Souganidis in [21], which is based on a semiconvexity argument.

This Thesis is organised as follows. Chapter 2 is preliminary and con-
tains some necessary definitions and results that will be useful in the fol-
lowing. In Chapter 3, we generalize the results in [33] to include sigmoid
recycling rates that are more general than the standard choice, 2%/(2? 4 1),
as well as the penalty parameter, ¢, which cannot be scaled away with a
suitable change of variables. In Chapter 4, we prove existence of optimal
control in both the deterministic and stochastic case. In Chapter 5, we
study the asymptotic behaviour of the value function, V', at +oo as well
as the tails of the invariant density of the optimally controlled process,
x*(t), that is the optimally controlled concentration of phosphorus into the
lake. In Chapter 6, we implement a numerical scheme constructed based
on Barles and Souganidis scheme [4] and study numerically the paths and
the properties of the optimally controlled lake. Finally, in Chapter 7, we
study the metastable behaviour of stochastic control problems which ex-
hibit Skiba points and prove the generalization of Arrhenius law for the

case of noise-dependent double-well potential.



Chapter 2
Preliminaries

In this Chapter, we present the main notation and definitions we will use

in the following.

2.1 Viscosity Solutions

Following the notation and definitions in [16], we consider ordinary dif-
ferential equations of the form F'(z,u(z), Du(z), D*u(x)) = 0, where F :
OxRxRxRxR — R. Here, u is a real-valued function defined in a
subset O of R and Du, D?*u correspond to the first and second derivative
of u, respectively. We require F' to be a continuous function which satisfies

the following monotonicity conditions:
F(z,r,p,X) < F(z,s,p, X) whenever r < s (2.1.1)

F(z,r,p,X) < F(x,r,p,Y) whenever X >Y (2.1.2)

A function F' which satisfies condition 2.1.2 is called degenerate elliptic and
a function F' which satisfies both conditions 2.1.1 and 2.1.2 is called proper.

We now proceed with the definition of viscosity solution.
Definition 2.1.1. Let u : O — R be continuous function.
(i) u is a viscosity subsolution of F' =10 on O if
Flz, u(x), Dé(x), D*6(x)) < 0,

7
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for all x € O and for all ¢ = ¢, € C*(O) such that x is a mazimum
point of u — ¢.

(1) w is a viscosity supersolution of F'=0 on O if
F(z,u(z), Dg(x), D*¢(x)) = 0,

for all x € O and for all = ¢, € C*(O) such that x is a minimum
point of u — ¢.

(11i) We say that u is a viscosity solution of F' = 0 on O if it is both a

subsolution and supersolution of F' = 0.

In the following, we will give an equivalent definition of the viscosity

solutions, based on the notion of second-order semijet of the function w :

O —R.
Definition 2.1.2. Ifu: O - R, 2 € O
(i) we say that (p, X) € J3Tu(@) (the second-order "superjet” of u at x)
of
1
u(z) <u(z) + plx — ) —|—§X(:L‘—§7)2+0(|x—i|2) as O >z — 2
(2.1.3)

(i) we say that (p, X) € J5 u(Z) (the second-order "subjet" of u at ) if

u(x) Zu(i)—l—p(m—i)+%X(:L‘—§:)2+0(|x—f|2) asO>zr — 12
(2.1.4)

Based on the above definition, we have the following equivalent defini-

tion of viscosity solutions.
Definition 2.1.3. Let u: O — R be continuous function.

(i) u is a viscosity subsolution of F' =10 on O if

F(z,u(z),p, X) <0 forallz € O and (p, X) € J5 u(x).

(i1) w is a viscosity supersolution of F' =10 on O if

F(z,u(z),p, X) >0 forallz € O and (p, X) € J5 u(x).
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(11i) We say that u is a viscosity solution of F' = 0 on O if it is both a

subsolution and supersolution of F = 0.

Remark 2.1.1. For first-order differential equations of the form
F(z,u(zx), Du(z)) = 0,

we define the wviscosity solutions accordingly. In this case, the first-order
"superjet” and "subjet”, denoted by DT u(x) and D~ u(z), are defined as in
Definition 2.1.3 considering a first-order approximation of u and are called

the superdifferential and subdifferential of u at x (see e.g. [29], page 139).

Next, we recall the notion of constrained viscosity solutions (see e.g.
48], [14], [30], [51]).

Definition 2.1.4. Let u : O — R be continuous function. We say that u

s a constrained viscosity solution to F' =0 if

(i) u is a viscosity subsolution of F =0 on O and

(i1) w is a viscosity supersolution of F' =0 on O

2.2 Pontryagin Maximum Principle and Skiba
points

In this section, we will state the Pontryagin Maximum Principle (PMP)
which provides a general set of necessary conditions for existence of optimal
control in a control theory problem. In this direction, we will firstly present
the general setting of a maximization problem in an infinite time horizon
in order to comply with the setting of the shallow lake problem.

We consider the (controlled) ordinary differential equation:

J](t) = f(x(t),u(t)), t=>0
z(0) = xo

(2.2.1)

where u € U, the set of admissible controls, and the cost functional:

o0

J(x;u) = /e_”tg(a:(t),u(t))dt

0



Chapter 2. Preliminaries 10

where () is the solution to (2.2.1) with control u, which starts at z(0) = x.

Control problem:
maximise J(x;u) over all u € U

If there exists a control u* € U that maximizes the cost functional J, then
the control u* is called optimal.

If v* is an optimal control and z* is the associated optimal trajectory,
then Pontryagin’s necessary conditions state that there exists a function

p*, called the co-state, such that if

H(z,u,p) = g(x,u) + pf(z,u) (2.2.2)
then

1. z*, p* are solutions to the system:

=0
be (2.2.3)
p=—G +pp
2. u*(t) maximizes the Hamiltonian H i.e
e F1 (2" (£), u, p*(8)) = B (2" (8), 4 (2), p* (1) (2.2.4)

u

3. p*(t) satisfies the transversality condition

lim e 'p*(t) = 0 (2.2.5)

t—o00

Following [49] and assuming that f, # 0 and H,, < 0, it is proved
that relation (2.2.4) implies a one-to-one correspondence between (x,p)
and (x,u) representations of an optimal trajectory. Therefore, one can
derive the system (2.2.3) of the problem expressed in the state-control
space. Then, according to PMP, one should look for candidate optimal
trajectories among the phase curves of this system which satisfy also the
transversality condition (2.2.5). In the one-dimensional case with infinite
time horizon, the admissible curves for optimality are usually situated on

the stable manifolds of a steady state of the state-control system (see e.g.

[31]).
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When for an initial state xg, there exist two candidate optimal trajec-
tories (z1(+),u1(+)) and (za(+), us2(+)) with J(zo;u1) = J(zo;uz), the point
xo is called an indifference point or a Skiba point (see [47]). For a proof of
the existence of such points see e.g. [49] and in the case of the shallow lake

problem see e.g. the appendix of [50].

2.2.1 Application to the shallow lake problem

if u* :[0,00) — (0,00) is an optimal control and z*(¢) is the associated

optimal trajectory, then there exists a function p*(¢) such that if
H(z,u,p) =Inu— cx® + p(u— bz + r(r)) (2.2.6)
then

1. z*, p* are solutions of the system:

=% —y—br+r(z
b (@) (2.2.7)

p=—L+pp=(p+b—r(x))p+2z

2. u*(t) maximizes the Hamiltonian H i.e.

_ _ 1
max H (2" (), u, p"(t)) = H (2" (t),u*(1), p* (1)) = u*(t) = g
(2.2.8)
3. p*(t) satisfies the transversality condition
lim e 'p*(t) = 0 (2.2.9)

t—o00

Due to relation (2.2.8), there is a one-to-one correspondence between
the control u* and the co-state p* and the system (2.2.7) can be rewritten

in the state-control form:

t=u—br+r(x)= f(ux)

w=—(p+b—1"(x))u+2czu® =: g(u,x) = 2cru (u — g1(x))
(2.2.10)
The autonomous system (2.2.10) is called the shallow lake system and its

phase curves correspond to potential optimal trajectories of the shallow



Chapter 2. Preliminaries 12

lake problem. This system may either have one or multiple equilibria (see
[49]). In the former case, the equilibrium is a saddle point, while in the
latter there are always two saddle points. The leftmost one is characterised
as the oligotrophic steady state of the lake and the rightmost one is called
the eutrophic steady state. In the Appendix of [49], it is proved that the
only admissible solution curves for optimality are on the stable manifolds

of the saddle points and three different cases are distinguished.

e The lake moves towards the oligotrophic steady state regardless of its

initial pollution level, xg.

e The lake moves towards the eutrophic steady state regardless of its

initial pollution level, x.

e There exists a threshold value, z,, of the initial pollution level: if
To < x4, then the lake moves towards the oligotrophic steady state,
whereas if o > x,, the lake moves towards the eutrophic steady
state. The point x, can either be a repeller or an indifference point
(Skiba point). When z, is a repeller, it is itself a steady state and
the resulting policy is everywhere single-valued. On the other hand,
indifference points are initial states for which there are two distinct
controls corresponding to the same total benefit. One of these con-
trols leads to the oligotrophic steady-state while the other one leads
to the eutrophic steady-state. In this case, the resulting policy is
everywhere single-valued except for the indifference point, at which

it may take two values, see Figure 2.1.

Based on this analysis, the candidate optimal path (z*,u*) suggests a
candidate total benefit, called Jp, which, following [32], is constructed as
follows:

Let (xg,up) be a saddle point of (2.2.10). By definition of the saddle
points, following [32], the total benefit Jp, which corresponds to system
(2.2.10) computed at xq is given by:

o0 o0

Jp(x0) = [P (Inu(t) — ca?(t)) dt = [ e (Inug — cad) dt = —IMO;CI‘%
0 0
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035¢
0.26p
= 017p

0087k 1 | 1

Figure 2.1: Part of the phase plane of the system (2.2.10). The points P,
Q are the saddle steady-states, the point S is a vortex and x, is the Skiba
point. The green and the blue curve form the optimal solution, which is
everywhere single-valued except for the Skiba point whereat the optimal

control may take two values.
Then the total benefit at any point x can be found via the stable man-
ifold of the corresponding saddle point (see the three cases above) through

integration, as follows:

x x x

dJ 1
Inla) = Tn(ao) + [ W)k = Tntao) + [ )k = Tp(an) - [ ik
x0o o o
(2.2.11)
d
For the second equality, we used that % = p along the trajectories of
x

(2.2.10) (for a proof, see the Appendix of [50]), while for the third one, we
used (2.2.8). In Chapter 4, the function Jp will serve as a candidate value

function, and this is how we will refer to it.
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Chapter 3
Regularity Estimates

The stochastic version of the shallow lake problem was thoroughly studied
by Kossioris, Loulakis and Souganidis [33]. In their paper, they analytically
derived properties of the value function and characterised it as the unique
(in a suitable class) state-constraint viscosity solution of a Hamilton-Jacobi-
Bellman (HJB) equation. In this section, we review their results [33] and
we extend them to include 1) sigmoid recycling rates that are more general
than the standard choice 22 /(22 +1) and 2) all positive values of the weight
parameter c. Notice that some of the proofs are simple modifications of the
ones presented in [33], but we include them here for completeness purposes.
Results that do not demand any adaptation will be recorded here without

their proofs.

3.1 The value function and the HJB

We assume that there exists a filtered probability space (2, F, {F; >0, P)
satisfying the usual conditions, and a Brownian motion W = {W,, ¢ > 0}
defined on that space. An admissible control u(-) € &, is an F;-adapted,

P-a.s. locally integrable process with values in U = (0, o), satisfying

E UOOO et 1nu(t)dt] < 00, (3.1.1)

such that the problem (1.0.1) has a unique strong solution z(-). Further-

more, throughout the paper, the recycling rate function r is a sigmoid

15
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function satisfying Assumption 1.
Assumption 1. The rate of recycling r(x) satisfies the following:
1. r € C'(|0,00)) and nondecreasing

2. r(0) =0 and r(z) < (b+ p)z close to 0.

3. a:= lim r(z) < o0
T—r00
4. The limit lim (a — r(z))x =: C exists and is a finite, necessarily
T—00

nonnegative, real number.

5. lim 7'(x) = 0.

T—r00

One main difficulty in the study of this problem is related to the fact
that the control functions u take values in the open unbounded set (0, c0)
so that supremum in (1.0.5) might take infinite values. Indeed, when U =
(0, 00), we find

Hir.p) = { (r(z) —bx)p— (In(—=p) +cx®*+1) if p<O, (3.1.2)

400 if p>0.

One naturally expects that since the shallow lake looses its value with
a higher concentration of phosphorus, the value function is a decreasing
function of the initial state of phosphorus. Assuming that V, < 0, (1.0.4)
becomes (1.0.6).

Since the problem is set on (0, 00), it is necessary to introduce boundary
conditions to guarantee the well-posedness of the corresponding bound-
ary value problem. Given the possible degeneracies of Hamilton-Jacobi-
Bellman equations at x = 0, the right framework is that of continuous vis-
cosity solutions in which boundary conditions are considered in the weak
sense. Since at the boundary point x = 0

inf {—u+bx —r(z)} <O, (3.1.3)

uelU

that is, there always exists a control that can drive the system inside (0, 00),

the problem should be considered as a state constraint one on the interval
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[0, 00), meaning that V' is a subsolution in [0,00) and a supersolution in
(0, 00).

Now we present the main results of the Chapter and their proofs are
given in section 3.4.

Theorem 1 characterises the value function of the stochastic shallow lake

problem as a state-constraint viscosity solution to the Hamilton-Jacobi-
Bellman (HJB) equation (1.0.4)

Theorem 1. If 0 < 0 < p + 2b, the value function V is a continuous

constrained viscosity solution to equation (1.0.4) in [0,00).

In particular, the value function V is characterised as the unique con-
strained viscosity solution of (1.0.6) because of the following comparison
principle (Theorem 2). In section 3.3, it is proved that V satisfies the

conditions of Theorem 2.

Theorem 2. If 0 < 0% < p+ 2b, assume that u € C([0,00)) is a strictly
decreasing subsolution to (1.0.4) in [0,00) and v € C([0,00)) is a strictly
decreasing supersolution to (1.0.4) in (0,00) such that v > —ci(1 + 27),
where q can be any real number strictly smaller than |k(o)|, where k(o) is
the negative root of (3.4.5) and Du < —% in the viscosity sense, for cyi, co

positive constants. Then u < v in [0,00).

Remark 3.1.1. Theorem 2 was stated in [33] (see Theorem 2.2) with the
parameter q being equal to 2. Actually, it follows from (3.4.5) that when
o? €[0,p+ 2b), we have |k(o)| > 2.

Notice that both of these results were proven in [33] only for the stochastic
case (o > 0.)

The proofs of Theorems 1-2 are presented in detail in section 3.4.

3.2 Properties of the dynamics

In order to prove Theorem 1, we need to establish first some key properties
of the dynamics of the lake and of the value function of the problem. In

this section, we state and prove some basic properties which refer to the
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lake’s dynamics. In more detail, it is proved that i) the concentration of
phosphorus, x;, remains non-negative when the process starts from a non-
negative quantity, x, ii) the set of admissible controls is independent of the
initial state, x, and iii) the higher the loading of phosphorus, u, the higher
the resulting concentration of phosphorus, z(-). These results apply to both
the stochastic and deterministic case.

Let

¢
Z, = Wi (o*/2)t ang M;(u) :/—u(s)ds (3.2.1)
0

Proposition 3.2.1.

(i) Ifx >0, u € Yy, and x(-) is the solution to (1.0.1), then P[x(t) >
0, V¢t > 0] = 1. In particular, P[z(t) > M,(u), V¢t > 0] = 1.

(i) For allx,y >0, U, =, =: 4L

(iii) Suppose x1(-), xao(-) satisfy (1.0.1) with controls uy, us € U, re-
spectively, and x1(0) = x1, x2(0) = x9. If x1 < x9 and P[ul(t) <
us(t), Vt > 0} =1, then

Plaa(t) — 21(t) > (22 — 1) 2y, VE > 0] = 1.

Proof. (i) Let u € 4, be an arbitrary admissible control. We define
y(t) = ez (t) and apply Ito’s rule to get

dy(t) = eV Odx(t) — oy(t)dW (t) + J;y(t)dt +d(e= "0 z(-),

{0ty +rwl) - 0+ Fowto } o

that is y(-) satisfies a regular ODE with random coefficients. By
variation of parameters we can get the following pathwise implicit

representation for z(+)

x(t) =xZ, + /0 % (us +7(zs)) ds. (3.2.2)

The claim is now obvious, since u and r are non-negative. O
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(i) Fix u € U, and x € [0,00) and let z(-) the unique strong solution to
(1.0.1) with 2(0) = z, and, for any y > 0, consider the sde

dw(t) = { —bw(t) - (z(t) — w(t)) + 1 ((t)) }dt + ow(t)dW (1)
w(0) =z —y,

(3.2.3)
and note that, based on the assumptions made on r, the coefficients
are Lipschitz and grow at most linearly. Therefore, the eq. (3.2.3)
has a unique strong solution defined for all ¢ > 0. It is easy to see
now that the process y(t) = x(t) —w(t) satisfies (1.0.1) with y(0) = y.
Moreover, the uniqueness of y(-) follows from that of z(-), so u € 4,,.
OJ

(iii) Since the processes x(-), z3(-) are the unique strong solutions to
(1.0.1), the conditions 1 < x» and Pluy(t) < us(t), V& > 0] =1
imply that P[z1(¢) < z(t), Vt > 0] = 1 based on the Comparison
Theorem of Ikeda and Watanabe [27]. Furthermore, based on (3.2.2),
the process w(t) = xo(t) — x1(t) satisfies

w(t) = (v — 11) 72, +/ %(uz(s) —up(s) + r(xe(s)) — r(xl(s))) ds.

0

The claim is now immediate, since r is nondecreasing.

]

Proposition 3.2.1(ii) indicates that the set of admissible controls is inde-
pendent of the initial state . Therefore, in the following, we will denote

the set of admissible controls by 4, regardless of the starting point z in
(1.0.1).

3.3 Properties of the value function

Propositions 3.3.1, 3.3.2, 3.3.3 refer to properties of the value function V' in
(1.0.3). Note that these properties are derived directly from the definition

of V in (1.0.3), so they are not a consequence of any differential equation,
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such as (1.0.6), that V may satisfy. On the contrary, they are used as a
crucial input in the characterization of the value function as a constrained
viscosity solution to (1.0.4), as they ensure that the associated Hamiltonian
of the control problem is finite, and they outline a class of functions among
which there is uniqueness of solutions to (1.0.4). Notice also that the results
of Proposition 3.3.3 assume that o > 0, while the other two also apply to

the deterministic case.

Remark 3.3.1. In the following, we will assume that
o? < p+ 2b,

because otherwise the value function V is not finite. Indeed, if we consider
an admissible control u € 4 and x(-) the unique strong solution to (1.0.1)

with x(0) = z, from Proposition 3.2.1(i), we have that

E { /0 h epth(t)dt} >E { /0 h eptMtQ(u)dt} :

After simple computations (see Appendixz Lemma A.1(iii) ), it follows that
if o2 > p+2b, E [/ e_”tMtQ(u)dt} =00 and so 'V = oo.
0

Let
c

Proposition 3.3.1. Suppose 0 < 02 < p + 2b

(i) The function x — V(z) + Az?®, where A is defined in (3.3.1), is

decreasing on [0, +00).

. : : 1y (e
(ii) The value function at zero satisfies V(0) < - In (\/@) .

(i) Fiz x1,29 € [0,00) with x1 < x3, and, for u € W, let z(-) be the
solution to (1.0.1) with control u and x(0) = zy. If 7, is the hitting
time of x(-) on [xg, +00), that is, T, = inf{t > 0: x(t) > z2}, then

V(x1) = ilégE [/OTu e " (Inu(t) — ca®(t)) dt + epT“V(xQ)L. .
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Proof. (i) Fix 1,29 > 0 with z; < 2. It suffices to show that, for J as
in (1.0.2) and for any control u € 4,

J(wo;u) + Azs < J(w1;u) + Ax?,

Since this holds trivially if J(xe;u) = —oo, we may assume that

J(x9;u) > —o00.

Consider now the solutions z;(-),z2(-) to (1.0.1) with initial condi-
tions x1, x2 and a common control u € L. Relation (3.2.2) and Propo-
sition 3.2.1(iii) implies that, P-a.s. and for all ¢t > 0,

z1(t) + 22(t) > (x1 + 22) Zy, and xo(t) — z1(t) > (29 — 1) Z;.
Note that since u € Y and J(xq;u) > —o0,
/000 e Plas(t) dt < +oo = /000 e Plat(t) dt < +oo
= J(z1;u) > —o0.
In particular,

J(xzo;u)—J(z1;u) =E /Ooz_pt(lnu(t) — cx3(t))dt

—/Ooz_pt(ln u(t) — cxi(t))dt

_ [ /0 e te(ay(t) — o () (ea(t) + a:l(t))dt}

< —c(x3 — x%)/ e "E[Z}] dt = —A(z] — z7).
0
O

(ii) Using Prop. 3.2.1(iii), Jensen’s inequality and part (i) of Lemma A.1,
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we find
Inc < 1 <
—+E e Inu(t) dt| < —-InE pe "\ eu(t) dt
2p 0 P 0
1 oo
= ;lnE [/ p(p + b)e "'/eM;(u) dt}
0
In(b 1 o
< (b +p) +-InE {/ pe P\/cx(t) dt}
P P 0
In(b 1 o
< (b +p) + —InE [/ pe Plex®(t) dt} :
p 2p 0

In view of (3.1.1), we need only consider u € $ such that

D:=E {/ e Plea®(t) dt} < 00.
0

Then
o In(b In(pD [
E{/ e " [Inu(t) — cxz(t)}dt} < n(b+p) + n(pD) p- 2
0 P 2p 2p
1 b+ p)
<-In ,
P (\/260
and the assertion holds. O

(iii) We have
J(wvu) = E [ /0 e (nu(t) — ca(1) dt}

+E Mooe—ﬂt(lnu(t) —c®(1)) dt; 7, < +oo} :

u

Conditioning on the o-field F.,, and applying the strong Markov

property, the rightmost term becomes

E

e PR

u

/ e_p(t_T“)(ln u(t) — ca®(t)) dt |F, ] ; Ty < 400

u

<E[e "] V(xy),

since on the event {7, < +oo}, (7, + -) satisfies (1.0.1) with initial

condition z(7,) = xs and control u(r, + -). Taking the supremum
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over u € il we see that the left hand side of (3.3.2) is less than or
equal the right hand one.

For the reverse inequality, take any u € $ and consider (1.0.1) driven
by the Brownian motion B(t) = W(r, +t) — W(7,), and, for ¢ > 0,

choose a control u, such that
Vi(zg) < J(x2;us) + €.
Define now the new control u, € i as

u(t) fort <m,
u(t) =
us(t —m1,) fort>m,.

Just as in the proof of the upper bound we get
V(zy) > J(x1;5us) = E {/ ’ e P (Inu(t) — c:nQ(t)) dt + e P J(x9; ug)]
0

>E [/Om e P (Inu(t) — cx®(t)) dt + epT“V(xg)} —¢,

which concludes the proof. O

]

Based on Prop. 3.3.1(i) and 3.3.1(ii), it follows that V' < oo in [0, 00)
when 02 < p + 2b. Furthermore, Prop. 3.3.1(iii) is a special case of the dy-

namic programming principle. In the next two Propositions (3.3.2, 3.3.3),

we prove the key properties of the value function V' which guarantee that

V' satisfies the assumptions of the comparison Theorem 2.

In particular, Proposition 3.3.2, states that V' does not go to minus

infinity more quickly than —C?. Furthermore, it shows that V is strictly

decreasing and that V satisfies DV < —C < 0 in the viscosity sense.

Proposition 3.3.2. Suppose 0 < 02 < p + 2b.

(i) There ezist constants Ky, Ko > 0, such that, for any x > 0, we have

2
a 1 a
K, <V A - | < K. (3.3.3
1 < Vix)+ (x+b+p) +pn<x+b+p) < Ky ( )
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(ii) There exist constant C; > 0 and function ¢ : [0,+00) — (0,00)
with lir% c(x) = e~ WO sych that, for any x1, 15 € [0, +00) with
T—

T < To,
V(Z'Q) — V(SL'1>

To —T1

< —c(x9) < —=C1 < 0. (3.34)

Proof. (i) Proof lower bound: The claim will follow by choosing the

control u(t) = =Y. 4 4 —r(x(t)), which is clearly admissible. Then,

1+22(t)
(3.2.2) gives

x(t) ::thJr/Ot% <a f:—%))ds

t
Zy 1V x(s)
=27, + aMy(1 Zr o
xZ; 4+ aMy(1) + 7. 17 22(s)

(3.3.5)
ds

and, hence,

Y Zy 1Va(s) ?
— ———=ds
o Zs 1+2%(s)
¢ t 72
Zy 1Vx(s) /Zt 2z - (1V a(s))
2aM,(1) [ 2t =25 Zi 22V TS))
MO A pre T Ll M A g1y

23 (t) = 2°Z7 + 2axZ; M (1) + a* M7 (1) + (

To estimate the rightmost term from above, note that, in view of
(3.3.5), < z(s)Z; !, while for the third and fourth terms of the sum

we use that 11152((2)) < 1. It follows that

t22
cr?(t) < cx2zf+2achtMt(1)+c(a+1)2M3(1)+2c/O Z—’;ds, (3.3.6)

It is easy to see that

E {/ e‘ptcx2Zt2dt1 :/ e "cx’E [ Z7] di
0 0

N (3.3.7)
_ 023'2/ e—(p+26—02)tdt _ Aﬂfz,
0

Lemma A.1 (ii) gives

E [/ e‘pt2ac:thMt(1)dt} = 2aA:E/ e 'R [Zt]dt _ et ,
0 0 (p+0)

(3.3.8)



25 3.3. Properties of the value function

while Lemma A.1 (i) and Lemma A.1 (iii) yield

2A

/ TR [MP(1)] di = 24 / e ME[M(1)] di =

We also have

o0 t Z2 () t A
/ cept/ E {—’;} ds dt = c/ ept/ e(@*=2)(t=9) 1o gy — 22
0 0 Z; 0 0 P

3

Using the last four observations in (3.3.6), we find for some constant

B,
/ e "Elca®(t)] dt < A|(z + L)Q + B|. (3.3.11)
0 p+b
. 1V 1
On the other hand, using that, for all x > 0, > , and
14+22 ~ 1+x

Jensen’s inequality, we find
/ e PE[Inu(t)] dt > / e #E[In (14 2(t))] de
0 0

> —% In (/OOO pe (14 E[x(t)})dt)
_ Ly <1 + p/ooo e "E [a;(t)]dt) :

p

By (3.3.5) it follows that E[z(t)] < 2E[Z] + (a + DE[M,(1)] =
ze " + (a+ 1DE[M,(1)].

Hence, using Lemma A.1 (i), we obtain

/ e*PtE[lnu@)} dtZ—lln (1_|_ pPT +CL+1)
0

P p+b p+0

The preceding estimate and (3.3.11) together imply that, for some

suitable constant K7,

V(z) > J(x;u) = E[/OOO e " (Inu(t) — ca®(t)) di]

2
1
2—A<x+ a ) ——1n<x+L)+K1.
b+p p b+p
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Proof of the upper bound: In view of Prop. 3.3.1(i) and 3.3.1(ii), it

suffices to find K5 > 0, such that the asserted inequality holds for
x> 1.

Fix v € Y. Then

22 (t) > 2?22 + Zfo/O Zis (u(s) +r(z(s)))ds

2

t
= 2?7} + 20 Z;M(a + u) — / 7t2:c(a —r(z(s))ds
0 S

> 2272 + 2ax 2 My (1) + 227, M (u)
tZtQ
- / ﬁ2$(s) (@ —r(x(s)))ds
0 s

Since lim z(a—r(z)) =C € R = z(a—r(z)) < K for some suitable
Tr—00

positive constant K, we can further estimate x(¢) from below by
t Z2
22 (t) > 2?22 + 2axZ; My (1) + 2272, M, (u) — ZK/O Z—';ds. (3.3.12)

Using the elementary inequality Ina < ab — Inb — 1, which holds for

all a,b > 0, and Lemma A.1 (ii), we obtain, for some B,

/ N e "E[Inu(t)]dt <E { / N e_pt{QAthu(t) —In (2A13Zt)} dt}
: : ] _ In(2Ax) N 2b + o

=E {/ e P2ecxZ,M,(u) dt

0 p 2p?
00 t Z2
< cE [/0 e Pt (932(15) — 2?72 — 2axZ,M,(1) + 2K/0 Z—';Q ds) dt}
Inz+ B
_ T’

where in the final step we have used (3.3.12).

In view of (3.3.7), (3.3.8) and (3.3.10), for every u € 4l there exists
K5 > 0 such that

2
a 1 a
J(x: < —A — =1 _ K.
(z;u) < <I+b+p) pn(:v+p+b)+ 2

The assertion now follows by taking the supremum over u € i1.
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(ii)) Let n > 0 such that r(z) < (b+ p)x Vx € (0,n). In view of
Proposition 3.3.1(i), it suffices to assume that xo < 7, since otherwise

we have

V(zg) — V() < —A(zs — 27) < —An(ze — 11).
For a positive constant d, choose a control uy € i that is constant
and equal to d up to time 7, = 7,,. Then, Proposition 3.3.1(iii) yields

Ind — cx’
p

V(zy) > (1-— E[e“’”}) + E[e_pTd]V(mg),

or equivalently,

(V(aa) = Vie)JE[ ] < ~(md = Vo) - 5 | [“emar].
(3.3.13)

Consider now the solution z4(-) to (1.0.1) with x(0) = 1 and control
ug. Applying Ito’s formula to e ?'z4(t), followed by the optional
stopping theorem for the bounded stopping time 7y = 74 A N, we get

Ele "™ zq(ry)] — 21 =E MTN e (d = (b+ p)aa(t) +r(wa)) dt|
(3.3.14)

The leftmost term of (3.3.14) is equal to
$2E [e_’”d; Td < N} + e_pNE[.CL’d(TN); Tq > N] .

On the other hand, since we have assumed that zo < 7, we have
z4(t) < n up to time 75. Thus, the right hand side of (3.3.14) is
bounded by E [ [ e~*'d dt].

Letting N — oo in (3.3.14), by the monotone convergence theorem,

we have

sz[e_pTd] —x1 < dE[/ ' e_"tdt}
0

& (22 — 21)E[e™] < (d+ pay) ]E[/Om e "'dt].
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Substituting this in (3.3.13) and choosing Ind = pV (z1) + 1+ cz3, we
find

-1

V(l‘g) — V(:L‘l) < —(1‘2 — ZL'1> <€pV(x1)+1+cx§ + px1> . (3315)

The assertion now follows setting

1
c(x2) = Anl{zs > n} + (e”v(o)“*“% + pxg) 1{z, <7}

and
1

Cy = An A (f,”’v(())JrlJ””72 + pn)i > 0.
m
The next assertion together with (3.3.4) states the locally Lipschitz
continuity of the value function in the stochastic case. Moreover, relation
(3.3.17) gives us the appropriate boundary condition for the HIB eq. (1.0.4)

that guarantees the well-posedness of the corresponding boundary value

problem.
Proposition 3.3.3. Suppose 0 < 0 < p + 2b.

(i) There exists an increasing function L, : [0,00) — R with hH(l) L,(x) =
z—

e~V O+ sych that, for any x1, 15 € [0,00) with 1 < 13,

Vi(wy) — V(1)

> —L 3.1
pra— > —Ly(29) (3.3.16)
(i1) V is differentiable at zero and
In (= V'(0)) +pV(0) +1=0. (3.3.17)

Proof. (i) Fix z1,x as in the statement. It follows from Proposition

3.3.1(iii) that for any € > 0 there exists a control u. € { such that

V() <E {/ e P Inwu.(t) dt} +E[e "™V (z2) + ec(a — z7),
0
(3.3.18)
where 7, is the hitting time on [xq, +00) of the solution z.(+) to (1.0.1)

with 2(0) = x; and control ..
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Using the elementary inequality

e(t .
Inu.(t) <Ink + us (t) —1, with k = e?VE)+1
K
we find
1 [/
V(zy) — V(xe) < —E {/ e "u(t) dt} +ec(z —22).  (3.3.19)
k 0

To conclude it suffices to show that

1g [ /0 et () dt} < Lo (22)(zs — 1), (3.3.20)

K
To do this, we apply Itd’s rule to the semimartingale Y, = e=Ptt77<(t)
where v > 0 is a constant to be determined, and find

t 2
Y, — e =/ K(—pd8+7dﬁcs(8)+%d<za)s)
0

_ /Ot Vo= 9+ (ue(s) — bae(s) + r(2o(s))

VPo?a?

5 <S)>ds + M,

where M, stands for the martingale yo fot Yz (s) dW (s).
Next, we apply the optional stopping theorem for the bounded stop-
ping time 7y = min{7., N}, with N € N, to find

ElY,

TN

}—ewl:E

V(= o (0s) = banls) £ r(al)

2 2.2
yiorl(s)
+ — )ds].

Since 0 < z.(s) < x5 in [0,7.] and p > 0,

e’szE[e—PTN} —e™ >R

| V(= () = bt

2 2,2
Yorzi(t)
+ 1= )dt],
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and since 0 <Y; < e ?e*2 in [0, 7],
TN
e’ — "t > 4R {/ e Pu.(t) dt} +E
0

/0 TNYt (—bwa(t)

egoy,)

2

Note that the term in the parenthesis above is nonnegative if yz.(¢) >

20/0?, and greater than or equal to —b*/20? in any case. Hence,

2b

TN b2€§ TN
e’ — e’ > 4R [/ e "lu(t) dt} - —5E [/ eptdt} :
0 20 0

Letting N — oo we get

Te b2 o2 Te
12 — ¥ > 4K {/ e Pu(t) dt} 2R {/ eptdt} . (3.3.21)
0 0

To show (3.3.20), it suffices to control the term E [[* e *'dt] by
E [ e u(t) dt].

Without loss of generality we can now assume that ec < A. Then,
Proposition 3.3.1(i) and eq. (3.3.18) give

0< Vizy) — V(xa) — ec(z? — 2?)

<E { /0 " et (1) dt] _ pV(22)E { /0 e dt] .

Jensen’s inequality then implies that

E {/ e Plu(t) dt} > eV (@2) g {/ e ! dt} :
0 0

and (3.3.21) gives,

Wy = 20) 2 €% = 2 (= O B | [ eunar].
0
(3.3.22)

with C'(zq) = %e%_pv(m).
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(i)

We will now choose v appropriately in order to optimize the preceding

inequality. Choosing v = ¢(x2)/x2 in (3.3.22), where

qlxs) = 12Cles) | \/(xQO(I2)> + 2,0(25), (3.3.23)

2 2

we obtain

E {/OTE e P (t) dt} < (w2 — 11) (1 + g(2)) 7).

Substituting this in (3.3.19) and letting ¢ — 0 yield

V(zy) = V(1)

To — I

> — (1 + g(s)) e 71 7PV (), (3.3.24)
The claim now follows. O

It follows from (3.3.15) that, for any = € (0, 7],

V(z) - V(0)

Xz

< _e—pV(O)—l—cm2

Letting x — 0 we get

z—0 €

Y

while (3.3.24) gives

V(z) —V(0) > (14 gla))t@ V@,

Letting x — 0 and noting that ¢(z) — 0 and V(z) — V(0), we have

lim inf —V(:E) — V) > _e PV O
x—0 x

which proves the claim.



Chapter 3. Regularity Estimates 32

3.4 Proof of the main results

In this section, we prove Theorems 1 and 2.

Proof of Theorem 1: Since the Hamiltonian (3.1.2) can take infinite
values, we have a singular stochastic control problem and the value function
(1.0.3) should satisfy the following variational inequality (see [41], Section
4):

1
min [pV — H(z,V,) — 5029521/9“, V.| =0, in[0,00). (3.4.1)

That V' is a viscosity solution in (0, 00) follows as in [41], so we omit the
details. It remains to prove the subsolution property at x = 0. Let ¢ be a
test function such that V' —¢ has a maximum at x = 0 with V' (0)—¢(0) = 0.
It suffices to assume that —¢’(0) > 0, otherwise the result is immediate.
Given that —¢'(0) > 0, we have:

pp(0) — H(0,¢'(0)) = p¢(0) + 1 +1In ( — ¢/(0))
<pV(0)+1+In(—V'(0) =0

where we used that V' — ¢ has a maximum at 0 and relation (3.3.17).
Now, it follows that (1.0.3) is a continuous constrained viscosity solution
of the equation (1.0.6) since inequality (3.3.4) implies that p < —C' for any
p € DV (z), with x € (0,00). The regularity of V in (0, c0) follows from

the classical results for uniformly elliptic operators. O

Next we prove the comparison Theorem 2. The proof is based on the
strategy in [28] (see also [18], [51]). Based on Lemma 4.2 [33], the difference
u — v of the functions u, v satisfying the assumptions of Theorem 2 is a

subsolution of the corresponding linearized equation.

Lemma 3.4.1 (Lemma 4.2 [33]). Suppose u, v satisfy the assumptions of

Theorem 2. Then 1) = u — v 1s a subsolution of

pY +bxDyp — (a+ c*) | D] — %U%Z’D% =0 in [0,00). (3.4.2)
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Then, we conclude to our main result by comparing u — v with the ap-
propriate supersolution of the linearized equation; see also [18] and [51].
The difference with the existing results is that, due to the presence of the
logarithmic term, the commonly used functions of simple polynomials do
not yield a supersolution of the equation.

Proof of Theorem 2: The main step is the construction of a solution of

the linearized equation. For this, we consider the ode
1
pw + (br — (a+ ¢*))w' — 50293210" =0, (3.4.3)

which has a solution of the form

2a + 2c*

= h (/= 4.4
w(zx) =z "J( . ), (3.4.4)
where k is a root of o )
2 P
k +(1+;) -£=0 (3.4.5)

and J a solution of the degenerate hypergeometric equation
" +(b—x)y —ay =0 (3.4.6)

with @ = k and b = 2(k 4+ 1+ b/0?).

Since we are looking for a solution of (3.4.3) with superquadratic growth
at +00, we choose k to be the negative root of (3.4.5).

We further choose J to be the Tricomi solution of (3.4.6) which satisfies

2p
oy

J(0)>0 and J(@) =271+ +o(z7)) asz— .

With this choice, the function w defined in (3.4.4) for x > 0 and by
continuity at x = 0, satisfies w(0),w'(0) > 0 and w(z) ~ J(0)z %, as
T — 0.

Note that w is increasing in [0,00) since it would otherwise have a
positive local maximum and this is impossible by (3.4.3). In particular, w
satisfies (3.4.2).

Set now ¢ = u — v and consider € > (. Since

lim (¢(z) — ew(z)) < lim (u(0) 4 c1(1 + 2%) — eJ(0)z ")

T—00 T—00

= lim —eJ(0)z™" = —o0,

T—00
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there exists z¢ € [0, 00) such that

max (V(z) — ew(z)) = ¥(z°) — ew(z®).

x>0

By Lemma 3.4.1, 9 is a subsolution of (3.4.2). We now use ew as a test

function to find that
0> ph(z°) + ebx‘w(x) — e (a + ) |Jw'(x9))] — %eaz(xe)Qw”(xe)
= p(Y () — ew(xF)).

Hence, 1(z) < ew(x) for all x € [0, 00). Since € is arbitrary, this proves

the claim. O



Chapter 4
Existence of Optimal Control

A basic question that, to the best of our knowledge, has not been completely
answered so far is that of existence of optimal control. In the presence of
noise, the elliptic regularity of the value function permits the adoption
of the usual methodology. On the other hand, this approach is not always
feasible in the deterministic case because the value function is not expected
in general to be smooth. Indeed, when the system of the lake has a Skiba

point, the value function is not differentiable thereat.

4.1 Deterministic shallow lake problem

In this section, we prove the existence of optimal control in the absence of
noise. All the results of this section assume that o = 0. To prove that the
optimal value is attainable, we establish a Comparison Principle (Theorem
3) and we use it to dominate the value function, V', by the candidate value
function, Jp of section 2.2.1, which is constructed based on the Pontryagin
Maximum Principle.

Therefore, the first step in our methodology is to derive a Comparison Prin-
ciple, analogous to Theorem 2. The proof of Theorem 3 is a modification

of the proof of Theorem 2.
Theorem 3. Assume that

e u € C([0,00)) is a strictly decreasing subsolution of (1.0.6) (with

35
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o =0)in [0,00), with Du < —L in the viscosity sense, for some

* )

positive constant c*.

e v € C([0,00)) is a strictly decreasing supersolution of (1.0.6) (with
o =10) in (0,00), such that v > —co(1 + z7), where cy can be any

positive constant and q can be any real number.
Then, v < v in [0, 00).

Proof. Let n > 0 sufficiently small. We consider the ordinary differential

equation
1
pw + (bx — (a+c*))w' — 577.%210" =0, (4.1.1)
which has a solution of the form
2a + 2c¢*
= hg(/— 4.1.2
wla) = HT (), (112)
where k is a root of ,
2 2
Bt (1+2)k-L =0 (4.1.3)
n n

and J a solution of the degenerate hypergeometric equation

zy” + (b—x)y —ay =0 (4.1.4)
with @ = k and b= 2(k + 1+ b/7).
We choose k to be the negative root of (4.1.3). We further choose J to
be the Tricomi solution of (4.1.4) which satisfies

2
J(0)>0 and J(x)=a"(1+ Ly o(z™")) asz — oo
nx
With this choice, the function w defined in (4.1.2) for z > 0 and by
continuity at x = 0, satisfies w(0),w’(0) > 0 and w(z) ~ J(0)z~*, as
x — 00. We choose n > 0 sufficiently small so that £k < —q.
Note that w is increasing in [0,00) since it would otherwise have a
positive local maximum and this is impossible by (4.1.1).
Set now ¢ = u — v and consider € > 0. Since 1) — ew < 0 in a neighbor-
hood of infinity, there exists z¢ € [0, 00) such that
max (¢(z) — ew(z)) = (z°) — ew(z).

x>0
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By Lemma 3.4.2 (with o = 0), ¢ is a subsolution of
pt + bxDp — (a+ )| Dyl =0 €[0,00)
We now use ew as a test function to find that

0> pih(x°) + ebz‘w'(z) — e(a + ) |w'(z9))|

" 0 () - ewa)) + S(2°) e (@?)
p (1(a%) — cw(a?)) < —n(a)eu’(a*)

2
Note that the function g(z) = nz?w”(z) is bounded from below because

from (4.1.1) for z > (a+c*)/b we have g(z) = pw(x)+ (bx—(a+c*))w'(z) >

pw(0), since w is increasing in [0, c0). Therefore,

p(W(z) —ew(x)) < —¢ [Oinf)g for all z € [0, 00)

Since ¢ is arbitrary, this proves the claim. O

Notice that based on Proposition 3.3.2(ii) the value function V is strictly
decreasing and DV < —%, in the viscosity sense, for some positive constant
c. We proceed now be proving that the value function V' is a constrained

viscosity solution of eq. (1.0.6) in [0, 00) when o = 0.

Theorem 4. The value function V' is a continuous constrained viscosity
solution of eq. (1.0.6) on [0,00). Particularly, V satisfies (1.0.6) at z =0

i the classical sense.

Proof. Following exactly the steps of the proof of Theorem 1, presented
in Chapter 3 for the stochastic case, it suffices to prove that the value
function V satisfies (3.3.17) when o = 0. Therefore, we will show that V'
is differentiable at 0 and

In(—V'(0)) + pV (0

~—

+1=0 (4.1.5)

We will first prove that liminf
h—0+

Claim 1. There exists h > 0 such that there exists €9 > 0 such that for all
e € (0,e9) if u® is an e—optimal control, then Tl = inf{t > 0 : z.(t) >
h} < oo, where x.(-) is the solution of the (1.0.1) with control u® and
z:(0) = 0.

V) =V(O) o ~evory
- > .
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Proof. By contradiction, let us assume that for any h > 0 there exists
{en}nen (g4 4 0) for which there exists u", &, —optimal control with 7/, =
00. Then ¥V n € N, if h, = 1/n, 3 &, > 0 (¢, J 0) and u" &,—optimal
control such that 7 := 7, = c0. If ,, = 2., then zp(t) < 1/n ¥Vt > 0.

Using the elementary inequality Inu" < 1n A,, + A_ — 1 with 4, = 1/n, we
find

n

o0

J(0;u™) :/e”t(lnu”(t) — ezl (t))dt < 1/n +n/e Plu™(t)dt

0
/e_”tu”(t)dt
0

I
0\8

t—l—/e PL(ba, (t) — 7 (2,(1))) dt

:p/e ptxn(t)dt—i-/e_pt (b, (t) — 7 (zna(t))) dt
0 0
+0b
S -
pn
Therefore
In(1
J(0;u™) < n(l/n) +p+b = V(0) = lim J(0;u") = —oc0

1% n— 00

which is a contradiction.
]

Claim 2. c¢(h) = inf {7} >0, where h and {Th.}oo.., are defined in

0<e<eo
Claim 1.

Proof. By contradiction, let us assume that . inf {7} = 0. Then there ex-
<e<ep

ists a subsequence of stoppmg times {Tun }nen corresponding to a sequence
in (0,20) €, 4 0 such that 7", — 0.
Then, since for all ¢ € (0 T, ) n €N,

)y fym

h
Tun

h= /(u“(t)—bxn(t)+r(xn(t)))dt

0

and
0<z,(t) <h
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we have h
lim [ w"(t)dt = h (4.1.6)
n—0o0
0
1 — e Prin
Then for ¢, = ———, Jensen’s inequality gives:
J(OS Un) < / €7pt(ln un(t) — C$2n(t))dt 4 e*p‘rfnv(h)
0
Thn
1 —pt, n
Sonln| o ettt | + V() (4.1.7)

n

< 6, In ((%) +énln 0/ W (0)dt | + V)

Since lim ¢, =0, by (4.1.6), we get:
n—oo
V(0) = lim J(0;u") < V(h)

n—oo

which is a contradiction since V' is (strictly) decreasing. O]

We consider now h, u®, 7" and z. as in Claim 1. Then for all € € (0, &)

y Tuf

h
Tue

V(0) —e < J(0;u°) < /e_pt(ln uf(t) — cx?(t))dt + e M=V (h)

0

£

Using the elementary inequality Inu® <In A 4 uz — 1, for A > 0 we find
that
’ThE
InA—1 1
V(0)—e< " (1 - e_pT£E> + 1 / e P (t)dt + e PV (R)
P 0
Moreover,
Ths
e el = [ e P (uF(t) — (b+ p)ao(t) + 1 (wo(t))) dt

1 — 6_07—35

> [ e Pl (t)dt — T(b + p)h

0
rh,
0
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1_ _PT;LE _PTLLE
V) —z< (lna—14 0T R T
A A
1 — e Pmie (b+p)h  ph h
V(0) — V(h) ; (1nA—1+ e V(h))+g+Z
Choosing A = f we find
STV - vy
I (-M) T HV0) = V) - Y (0) 2 -
—e T,E

w > —exp ((—1 — pV(0) + b(V(0) = V(h) + %))

where the last inequality follows from Claim 2. Letting now ¢ — 0" and

then h — 01, we find:

lim inf w

h—0+ h -

-1V (0)

Moreover, from Proposition 3.3.2(ii), we have that

< _(-1-pV(0)

lim sup —VUL) — V()
h—0+ h

and this gives (4.1.5) and concludes the proof (see also proof of Theorem

1).
]

We now show that our candidate value function, Jp satisfies the as-

sumptions made for the supersolution v in Theorem 3.

Lemma 4.1.1. Let Jp be the candidate value function of (2.2.11). Then,
1. Jp is decreasing.
ii. Jp is a viscosity solution to (1.0.6) with o =0, in (0, 00).

iii. There exists cy > 0, such that Jp(x) > —co(1 + x2), for all x > 0.
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dJ 1
Proof. i. Along the stable manifold d—P = —— < 0. Therefore, Jp is
x u

decreasing. Moreover, & = g(x,u) < 0 for x close to zero, which

implies that Jp(0) = 91612% Jp(x) < 0.

ii. The total benefit Jp(z) of (2.2.11), for z different from the Skiba
point (if there exists such a point), is the classical solution to eq.
(1.0.6) constructed by the method of characteristics. In the case of a
Skiba point, it was proved in [32] that Jp is also a viscosity solution
to (1.0.6) at the Skiba point.

iii. Let © > “=. Since Jp is a classical solution to (1.0.6) at = and

Jj < 0, we have that

pJp(z) = sup {(u —bx + () Jb(x) + Inu — ﬁ}

u>0

> In (bx —r(x)) — 2 > —2?

By continuity of J, in [0, c0), we conclude the proof.
]

We have now collected all the key ingredients to establish our main exis-

tence result.

Corollary 4.1.1. The deterministic shallow lake problem admits an opti-

mal control.

Proof. 1Tt is a direct consequence of Theorems 3 and 4 , Lemma 4.1.1 and
Proposition 3.3.2(ii) that V' < Jp. Hence, the control suggested by the
Pontryagin Maximun Principle is indeed optimal and it is given in the

feedback form as u*(t) = u(z(t)) = _V’(alc(t))' -

4.2 Stochastic shallow lake problem

In this section, we prove existence of optimal control in the presence of
noise. Based on Theorem 1, V' is a constrained viscosity solution to (1.0.4)
in [0, 00) and from classical results for uniformly elliptic operators, it follows

that V is actually a classical solution to (1.0.6) in (0,00). In fact, it can
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be proved that V' is actually two times differentiable at z = 0 and in this
way, from Proposition 3.3.3(ii), it follows that V" is a classical solution to
(1.0.6) in [0, 00). This result is stated in Proposition 4.2.1.

Proposition 4.2.1. If 0 < 02 < p+2b, the value function V is a classical

solution to the equation (1.0.6) on [0,00) and
V'(0) = —(p+b—7'(0)) (V'(0))*

Proof. What remains to be shown is that V' satisfies (1.0.6) at x = 0 in
the classical sense. It suffices to show that V' is two times differentiable at
x =0 and C'([0,00)). We will first show that V € C'(]0,00)). Since V is
C?(0,00), we will prove the regularity of V' (close) to zero.

Let 0 < z < b. From Propositions 3.3.2(ii) and 3.3.3(i), we have that:

—0,(x) < V'(z) < —c(z)

Taking z — 0, it follows that lim V'(z) = e PV O = 17(0).
T—
Therefore, V € C'([0, 00)).
Now, we proceed with the second derivative of V.
From eq. (1.0.6), we have that for z > 0:
2 [pVi(x)+ (bx —r(x)V'(z) + In(=V'(z)) + 1 2

Vi'(z) = = > + e (42.0)

Setting Q(z) = pV (z) + (bx — r(z))V'(x) + In(—=V"(x)) + 1, we have that

V/I (.T)
V()

Q(x)=(p+b—7r"(x)V'(x) + (bx —r(z))V"(zx) + =

Let € > 0. Then
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(Q(I)e— I a(s)ds) ' = B(x)e” JZ a(s)ds

Q) = Q) "7 + / " B(s)e ) ot g

x

Since Elirgl+ a(s)ds = —oo and ll_r}r(l] Qe) =0,

12

Qz) _ %/ﬂ(s)e{a(t)dtds
0

Let 0 < n < min{—p£(0),—1/V'(0)}. There exists ¢ > 0 such that
Vs € [0, €]

5(0) =1 < Bs) < B(0) +1
L+ (vl —n) = <als) < B+ (vl +0)

Then
(ﬁ(()) + 77) fm e!(%%+(v+@_n>ﬁ)dtds
Q(z) < 0
x? = x?
(8(0) + ) | 5~ el o 1) g
< 0
- 1(2-2b/02) (1/V/(0)=n) 5
lim sup Qaff) < —B(0)V(0)0?/2 (4.2.2)
Similarly,
11?J51f% > —B(0)V'(0)0?/2 (4.2.3)

Therefore, from (4.2.1), (4.2.2), (4.2.3), we have

lim V" (z) = —(p 4 b — 1(0))(V'(0))?

x—0

Since V' € C'[0, 00) N C?(0, 00), the assertion follows. O
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The elliptic regularity of the Value function in the presence of noise per-
mits the adoption of the usual methodology in order to prove the existence
of the optimal control. In this direction, we follow the steps described in
[23], with appropriate modifications to address the loss of ellipticity at the
boundary and a possible blow-up of the benefit for small controls, due to

the presence of the logarithmic term.

Theorem 5. The stochastic shallow lake problem admits an optimal (feed-

back) control, which satisfies:

>0 (4.2.4)
where x(-) is the solution of (1.0.1) corresponding to this control.

Proof. Let x(t) be the solution of the sde

d(t) = f(x(t), —prgpay)dt + ox(t)dW,
z(0) =z

and u(t) = —m the corresponding control.

We apply Ito’s Rule to the stochastic process g(t, z(t)) = e ”*V (z(t)) and
we find for ¢ > O:

V(z) =e "V (x(t))

e (pV (x(s)) = (r(x(s))) = bx(s)))V'(x(s))) + 1) ds

V”(:v(s)))02:172(8)d3—/e‘psox(s))V'(:v(s)))dWs

0

N | —

/
j |

e "*(In(u(s)) — cx?(s))ds

ml

B
=
8
=
~—
~—
+

o\“



45 4.2. Stochastic shallow lake problem

We also consider the stopping times 0,, = inf{t > 0: |z(t)—z| > n}An

and taking expected values in the above relation, we get that, for all n € N:

V(z) =E [e " V(z(6,)] + E /e_ps(ln(u(s)) — cx®(s))ds

e Since V is decreasing, we have that

limsup E [e_”O"V(x(Hn))] < lim E [e‘pen} V(0)=0

n—00 n—oo

e Since V'(z) is bounded from above by a negative quantity, we have

that u(s) is also bounded from above by a constant, say C. Thus, we

have that:
0 00
nILnQOE /e_ps(C’ —1In(u(s)))ds| =E /e_ps(C’ — In(u(s)))ds

by monotone convergence theorem. Therefore,

O 00
lim E /6_”5 In(u(s))ds| =E /e_ps In(u(s))ds
n—oo

0 0

e Regarding the last term, we also have that

On 0
lim E /epsxz(s)ds =E /e”sxz(s)ds
n—oo

0 0

by monotone convergence theorem.

Thus, we have that

e}

V(z) <E /e‘ps(ln(u(s)) —cx?(s))ds| = J(x;u) < V(z)

and this concludes the proof.
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Remark 4.2.1. The optimal control, written in feedback form, u*(x) =
_v+m7 for o > 0, is obviously a bounded and locally Lipschitz function.
Therefore, the problem (1.0.1) has a unique strong solution z(-) (see The-
orem 3.4 [39]) and the optimal control u* is admissible. Furthermore, the
admissibility of the optimal control in the deterministic case is an immedi-
ate consequence, from the way it was constructed, since it is located on the

stable manifold of the Pontryagin system of the lake (2.2.10).



Chapter 5
Asymptotic Behaviour

In this chapter, we study the asymptotic behaviour of the system as z —

400 and we present two main results.

The first, Theorem 6, describes the exact asymptotic behavior of the value
function V' at +oo. In Chapter 6, we present and implement a monotone
numerical scheme approximating (1.0.3). Relation (5.0.1) is crucial for the
accurate computation of V' in this setting, because it suggests the boundary
condition on the right end of the computational domain. The proof of

Theorem 6 follows the lines of the proof of Theorem 2.3 in [33].

Theorem 6. As x — oo,

Viz) = —A (x + %pf _ %m {ZA(x + %)} 4K 4o(1). (5.0.1)

where

K 1 <2b+02 _ Ad?(p +2b)
P

n G L 2AC) (5.0.2)

Proof. We write V' as

V(z)=—A (:r: + ﬁ)g - %m (QA(x + ﬁ)) + K +v(z).

Straightforward calculations yield that v is a viscosity solution in (0, c0)

47
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of the equation

1—plr+2)0 1
( b+P)2 o _0.21,2vll_|_f =0,
240 (:)H—m)

pv+ (br —r(x))v +In | 1+ 5

(5.0.3)

where

_a(b+ %) + (b+ p)r(a) L ulbtp)
pla+z(b+p)) 2p(a+z(b+ p))°

2A
—pla =@t a(btp) + 240

()

Note that f is smooth on [0, c0) and vanishes as x — 0o (see Assumption
1).

Let vy(y) = v(¥) and observe that, if vy(1) — 0as A — 0, then v(z) — 0

as r — oo. It turns out that v, solves

W1l )0)

puy + <bx — Ar(%)) vy +1In [ 1+ AN
2Ap (x + ﬁ—%)

1 x
- 50'23321)3: + f(x) =0.
Since, by (3.3.3) vy is uniformly bounded, we consider the half-relaxed
limits v*(y) = limsup,_,, \ o vr(7) and v.(y) = liminf,,, \ovr(7) in

(0, 00), which are (see [6]) respectively sub- and super-solutions of

1
pw + byw' — 502y2w” =0. (5.0.4)
It is easy to check that for any y > 0 we have v*(y) = limsup,_,., v(x)
and v,(y) = liminf, ,, v(x).
The subsolution property of v* and the supersolution property of v,
give

limsupv(z) <0 < liminfv(z) < limsupv(z).

T—$00 T—00 T—00



49

Next, we study the stationary distribution of the optimally controlled lake.
Since the optimal control, as it is indicated by Theorem 5, is a feedback
control, we can substitute it back in the dynamics of the lake and derive
the stochastic differential equation of the optimally controlled system.

Indeed, the optimal dynamics for the shallow lake problem are described
by

dr* () = (—W — bt (t) + r(az*(t))) dt + oa* (£)dW (¢)
z*(0) =z

(5.0.5)

The last Proposition describes the behaviour of the tails of the station-
ary distribution of the amount of phosphorous in the optimally controlled
lake.

Proposition 5.0.1. The density, f, of the stationary distribution of the
optimal dynamics (5.0.5) is

fa) = 2201 ) o= B (5.0.6)

where Z is a normalising constant and

o0

O, () = / ( — Va’l(u) —l—?”(u))%, x> 0.

xT

In particular,

: 1 :
}31{}1(1) 20, (z) = V0] and zh_{](f)lo O, (z) =0. (5.0.7)

Proof. In order to calculate the stationary distribution f of a process y;,

we need to solve the stationary Fokker-Planck equation:

Ci(f)=0, >0, /f: | (5.0.8)

where L7 is the adjoint of the generator £, of the process. Equation (5.0.8)
takes a convenient form, when the corresponding process y(t) has a constant
diffusion coefficient. Particularly, if dy(t) = g(y(t))dt + odw,, eq. (5.0.8)

becomes

02d2f_
7d_y2_— F>0, /f_l (5.0.9)
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from where we deduce that
2
fly) = Cexp (; /g(y)dy> (5.0.10)

where C'is a normalization constant. Therefore, regarding the dynamics of
the optimally controlled stochastic lake, it is reasonable to apply the trans-
formation y(t) = log(z*(t)), in order to conclude to a constant diffusion

process. Indeed, applying Ito’s rule to the process y(t) = log z*(t), we find

02

dy(t) = (e_y(t)h(ey(t)) 5 ) dt + odW, (5.0.11)

where h(z) = —ﬁ — bz + r(z) is the drift of the optimally controlled
lake z*. If we denote by g the drift of the process y in (5.0.11), then using

(5.0.10) we deduce that the stationary distribution of z* is

fr(logz) 1 2
=———==-C ——k 5.0.12
oy = 29T 2 ey (2t (5.0.12)
where for the function k we have:
g(logzx) 1 o>\ 1 7r(x)
K (z) = = po )2 1
(=) x 22V (x) T\ r a2
Setting
1 r(u)
O, () :/V’(u)ugdu_/qu’

then for a suitable normalization constant Z, we conclude to relation (5.0.6)
From this representation, we can deduce the asymptotic behaviour of the

function ®, at zero and at infinity.
O



Chapter 6
Numerical Approximation

The aim of this Chapter is the numerical investigation of the shallow prob-
lem. In particular, we want to study the behaviour of the optimally con-
trolled lake and how it depends on the various parameters of the problem.
As it was proven in Chapter 4, the optimal control is given in the feed-
v+m' Therefore, we need first to compute numerically
the value function of the problem. To do this, we will solve numerically

back form, u(x) = —

the Hamilton-Jacobi-Bellman equation (1.0.6) based on the methodology
proposed in [33].

6.1 Barles—Souganidis Scheme

Barles and Souganidis in [4], developed a general argument to establish
convergence of approximation schemes to the viscosity solutions of fully
nonlinear second-order elliptic or parabolic, possibly degenerate, partial
differential equations. Their methodology doesn’t make any convexity or
concavity assumptions and has been extensively applied for the numerical
approximation of solutions to first-order equations, see e.g. [45, 46, 34, 43|,

and for various nonlinear second-order equations, see e.g. [40, 5, 11, 25].

Next, following [32] which considered the deterministic problem, we
present and implement the monotone finite difference scheme constructed
in [33| to approximate numerically the value function of the deterministic

and stochastic shallow lake problem and recover numerically the dynamics

o1
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of optimally controlled lake.

Let Az denote the step size of a uniform partition 0 = ¢y < 27 <
< xy-1 < zy =1of [0,]] for I > 0 sufficiently large. Having in mind
(3.3.4), if V; is the approximation of V' at z;, we employ a backward finite
difference discretization to approximate the first derivative in the linear
term of (1.0.6), a forward finite difference discretization for the derivative in
the logarithmic term and a central finite difference scheme to approximate

the second derivative.

Therefore, we have the following finite-difference, for ¢+ = 1, . — 1

1 Vi=Viei 1] 5 Vigr —
Vi— = Vb ) L 2 1 ]
f p(r(ml) bxl> . + P [cacZ +1+1In ( )1

0* Vi + Vi 1—2v

- — =0. (6.1.1
2" (A LY
Setting
2 1 a*
g(x,w, z,d) = [(Ax) - —(r(x) - bx) Ax + —z ]w—i—
p p

1(cad"Z—i—l)(Aav)Q—i—l(Ayz:)z In (—Z - w) +1A£L' <r(x)—bx>d—a—2x2(z+d)

p p x ) o p 2p ’
(6.1.2)

the numerical approximation of V' satisfies

g(q;i;‘/%‘/zdrly‘/;fl) :Oﬂ for i= 17"'7 N-1. (613)

Following [4], the numerical approximation scheme defined by (6.1.3)

can be written in the form
S(r,z,v"(z),v") =0 in [0,00), (6.1.4)

where S : RT x Rt x R x M(R*) — R, r = Az and v" is defined by
v"(y) = V; for y € [x;,x;41). Here, M(R™) is the space of locally bounded
functions defined in R™. For the numerical scheme 6.1.4, it was proven in

[33] the following convergence result

Proposition 6.1.1 (Proposition 2, [33]). A numerical scheme defined by

(6.1.4), with v"(x;41) < V" (x;), is consistent and monotone, provided that

Ax(r(x) —bx) < %2 (6.1.5)
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In addition, it is stable and v", r — 0, converges locally uniformly to the

unique constrained viscosity solution of the equation (1.0.6).

For the numerical computations, since in (6.1.1) we have N —1 equations
with N + 1 unknowns. we exploit the boundary condition (3.3.17) at x = 0
and we also estimate the value of V' at the right endpoint x = [ based on
the formula (5.0.1) of the asymptotic behaviour of the value function V' as

xr — +00.

The set of equations

Vi — %(T(ﬂ?l) — b:z:i> —W_A‘ﬁ‘l + % [cxf +1+1In (——V"JZ;W)}

—E Y for i=1,2,. N~ 1
Vo [1In (~Yglh)] — o,
(6.1.6)
together with the boundary condition
a 2 1 a
Vv =-4 (l+b+p> —;ln (2A(l+m)) + K (6.1.7)

form a N x N system of nonlinear equations. In this work, we approximate
the solution to this system using the Newton-Raphson method. As an
initial estimation of the solution, in order to run the Newton-Rapshon
algorithm, we considered a quadratic function V such that VO(zy) =
Vi, VO(xg) = V2(0) = %ln <\b/%> (see Proposition 3.3.1(ii)) and VO(x;) =
VO(0) — Aze(?V° (41 5o that the second equation of (6.1.6) is (initially)
satisfied.

The significance of our methodology for the computation of the con-
strained viscosity solution V' is that we are free to choose any value of the

parameter o we want, as long as the condition o2

< p+ 2b is met (see
Remark 3.3.1) and the condition 6.1.5 is satisfied. In this way, we are not
restricted only to small values of the noise parameter o, as in the small-
noise asymptotics approximation of [26]. Notice also that in the case of the
usual choice of the recycling function r(z) = 2?/(x* + 1), condition 6.1.5 is
satisfied if e.g. b > 0.5, independently of the step size Ax.

In the first part of our numerical investigation, we study the problem

with the typical choice of the function r, i.e. r(z) = z?/(z* + 1), while



Chapter 6. Numerical Approximation 54

in the second part we study the properties of the value function V, which

corresponds to a hyperbolic tangent function.

6.2 The value function V and the optimal pol-
icy

In order to gain some first insight into the problem, we begin by exploring

the properties of the value function V' for various values of the parame-

ters b,c,p,o. In our analysis, our choice of parameters is based on the

bifurcation analysis made in [49].

Figures 6.1a and 6.1c show the graph of the value function for the fixed
parameters (b, ¢, p) = (0.65,1,0.03) and (b, ¢, p) = (0.65,0.5,0.03) respec-
tively, with the noise o varying. Notice that these graphs also depict the
value function in the deterministic case (o = 0). Since the optimal policy
is given in a feedback form as u*(z) = —1/V’(x), we can also illustrate
the optimal loading of phosphorus as a function of the current amount of
phosphorus. In Figures 6.1b and 6.1d, the optimal management policies
that correspond to the value functions of Figures 6.1a and 6.1c are shown.
For the choice of parameters (b, ¢, p) = (0.65,1,0.03), the optimal policies
are smooth functions. On the other hand, when (b, ¢, p) = (0.65,0.5,0.03),
the system exhibits a Skiba point and the noiseless optimal policy is dis-

continuous at this point. This can be seen as a jump of the optimal policy
at the Skiba point.

6.3 Invariant distribution

In this section, we numerically investigate the properties of the equilibrium
distribution of the optimally controlled lake for different combinations of
the parameters of the problem.

From Proposition 5.0.1, we have an exact expression for the stationary
distribution f of the optimally controlled lake. For the usual choice of the
recycling rate 7, that is the function z%/(z* + 1), formula (5.0.6) takes the
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Figure 6.1: The value function V' (left) and the optimal policy (right)

for different values of noise including the deterministic case (¢ = 0).
Parameters: Fig 6.1a- 6.1b: (b,c,p) = (0.65,1,0.03) and Fig 6.1c-6.1d:
(b, ¢, p) = (0.65,0.5,0.03)



Chapter 6. Numerical Approximation 56

form:

o0

1
arctan(z) — w/2 + / ———du

1 _ b
f(fl?) _ Za: 2(1+02) exp | — Vgl(u)u2

le ')

x
where Z is a normalization constant. Therefore, since we have the approx-
imation of the value function V', we can also compute the invariant density
f.

Apart from the invariant density, f, and cumulative distribution, F), of
the optimally controlled lake, we also present some bifurcation diagrams
based on its transformation invariant function, I = ox f. The utility of this
function as a basis of bifurcation theory has been already highlighted (see
e.g. [52] and [49]). The main advantage of the transformation invariant
function is that it is invariant under transformations of the coordinate sys-
tems and gives us insight into the inherent properties of the dynamics of the
optimally controlled (stochastic) lake. Following the definitions introduced
in [26], the local maximisers of the transformation invariant I are called
stochastic attractors of the process, while the local minimiser of I is called
the regime switching threshold. The stochastic attractors are the natural
analogue of the attracting steady states of the deterministic problem and
the regime switching threshold is the analogue of the indifference point (the
Skiba point).

For the fixed parameters (b, ¢, p) = (0.65,0.5,0.03) Figure 6.2 shows the
invariant density and cumulative distribution functions for several values of
the noise parameter o. For this set of parameters, the deterministic prob-
lem exhibits a Skiba point. In the presence of small noise, the lake spends
most of the time in the eutrophic state, while we notice that as noise in-
creases, the lake tends to be "clean" most of the time. Nevertheless, the
invariant density function fails to be that concentrated around a particular
point as in the case of small noise. In particular, the polynomial tails of
the density function get fatter as o increases (see Prop. 5.0.6). A more
detailed presentation of this shift from a bimodal distribution (with a peak
at the eutrophic state) to a unimodal one with a peak to the oligotrophic
(clean) state due to the increase of noise is depicted in Figure 6.3. In this

diagram, the locations of the modes and antimodes of the transformation
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invariant I with respect to ¢ are illustrated. In the case of the fixed param-
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Figure 6.2: Invariant density and cumulative distribution function for

different values of the noise parameter o. The choice of parameters is
(b, ¢, p) = (0.65,0.5,0.03).

eters (b, ¢, p) = (0.8,0.5,0.03), the deterministic problem exhibits a unique
equilibrium in the eutrophic state (see [49]). Therefore, we have qualita-
tively different dynamics comparing to the previous case. In the presence
of small noise, the invariant is unimodal with a peak at the eutrophic state,
but with the introduction of more and more noise the location of the mode
is moved to a cleaner state. These results are summarized in Figures 6.4
and 6.5. The same behaviour for large values of noise, as in the previous
cases, is also present for combinations of parameters for which the deter-
ministic problem exhibits a unique equilibrium in the oligotrophic state.
Based on the above observations, we could say that the introduction of
more noise seems to eventually "clean" the lake. Notice that if we were
limited to small values of noise, e.g. o < 0.2 see Figures 6.3 and 6.5, we
could not observe this behaviour.

Figure 6.6a illustrates a bifurcation diagram for the fixed parameters
(b, p) = (0.65,0.03) and noise o = 0.1 with respect to the cost of pollution c.
As it was expected, according to the definition of the total benefit (1.0.2),
large values of ¢ give more weight to the ecological services of the lake and
thus "clean" the lake. This is not the case, for the bifurcation diagram with

respect to the discount factor p. In Figure 6.6b the bifurcation diagram
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Figure 6.3: Bifurcation diagrams for the extrema of the transformation
invariant function with respect to the noise parameter o when (b, ¢, p) =
(0.65,0.5,0.03). The vertical axis corresponds to the location of the ex-

trema of the transformation invariant function.

with respect to p for the fixed parameters (b,c¢) = (0.65,0.8) and noise
o = 0.1 is depicted. In this diagram, we observe that as the discount
factor p increases, the stochastic attractors of the system move towards the
eutrophic states. This may indicate that as we increase p, that is we care
less for the future generations and more for the current value of the lake,

we conclude to load more phosphorus into the lake.

6.4 The rate of recycling

In this section, we present some numerical results, when a hyperbolic tan-
gent function is used as the rate of recycling. Initially, we consider as rate
of recycling the function r(z) = tanh(z — 3) + tanh(3). In Figure 6.7,
we present the value function for different combinations of the parameters
(b, ¢, p) and different values of noise. In Figure 6.8 the invariant density
functions and the optimal policies, which correspond to the preceding value
functions, are shown. We observe that the lake exhibits two attractors for
small values of noise, when (b, ¢, p) = (0.8,0.06,0.5), while it has only one
when (b, ¢, p) = (0.65,0.5,0.03) and (b, ¢, p) = (0.5,0.5,0.01). Nevertheless,
in all three cases, the increase of noise shifts the mass to cleaner states of

the lake. Afterwards, in Figure 6.10 we illustrate the changes in the value
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Figure 6.4: Invariant density and cumulative distribution function for

different values of the noise parameter o. The choice of parameters is

(b, c,p) = (0.8,0.5,0.03).

function, which are induced by small changes in the rate of recycling r.

Particularly, we numerically approximate the value functions V' that cor-

respond to the rate of recycling r(z) = 1(tanh(a(z — 3)) + tanh(3a)) for
various values of the parameter a and the step function 1{z > 3} in the

deterministic and stochastic (o = 0.1) case.
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Figure 6.5: Bifurcation diagram for the extrema of the Transformation
Invariant function with respect to the noise parameter o when (b, ¢, p) =
(0.8,0.5,0.03). The vertical axis stands for the location of the critical points

of the Transformation Invariant function.
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Figure 6.6: Left: Bifurcation diagram for the transformation invariant func-
tion with respect to the cost of pollution ¢ when (b, p, o) = (0.65,0.03,0.1).
Right: Bifurcation diagram for the transformation invariant distribution
with respect to the discount factor p when (b,¢,0) = (0.65,0.8,0.1). The
vertical axes correspond to the location of the extrema of the transforma-

tion invariant function.
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Chapter 7

Metastability

In this Chapter, we present the last main contribution of this work which
is an analysis of the metastable behaviour of stochastic control problems
which exhibit Skiba points. In more detail, we study the expected value
of the transition time from the one well to the other for a process in a
noise-dependent double-well potential and we prove a generalization of the
Arrhenius law. In section 7.3, we consider the shallow lake problem as an

application to the described methodology.

7.1 Main results

We assume that there exists a filtered probability space (2, F, {F; }i>0, P)
satisfying the usual conditions, and a Brownian motion W (-) defined on
that space. Let us also assume that the state dynamics is now described

by the following autonomous stochastic differential equation:

daf(t) = f(2°(t),u(t))dt + /2edW, t>0

(7.1.1)
¥(0)=2>0
where the function f € C* (R x U) and it satisfies:
o <C
e (7.1.2)

|z, u)] < C(1+ [a] + |ul)

65
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Let G be continuous on R x U, G(z,-) € C*(U) and p > 0. We consider

the value function of the problem

V.(x) =supE, [/000 epsG(IE(s),u(s))ds} (7.1.3)

uell

where 4 is the set of F;—adapted, P—a.s. locally integrable processes with

values in U satisfying

E, [ /0 h e_psG(xE(s),u(s))ds} < o0

such that the stochastic differential equation (7.1.1) has a unique strong
solution ().

Henceforward, we make the following assumptions:

Assumption 2. (i) The value function V. is a (classical) solution to the

associated HJB equation:
—eV'— H(z,V])+ pV. =0 (7.1.4)
where H(z,p) = sup{ f(x, u)p + G(z, u)}.
uelU

(i) There exists £g > 0 such that V. and V! are uniformly bounded with

respect to € < g9 on every compact subset of R
(iii) H(z,p) is C* and Hy, > 0

(iv) There exists an optimal stationary Markov control policy of the form

u*(s) = g (z*(s), VI(x*(s))) =: u*(z*(s)) such that
ful, " (2))V(x) + Gu(z, 0" (x)) =0
and g is a continuous function.

Under Assumption 2, the optimally controlled system (7.1.1) takes the

form:

daf(t) = —F/(2°(t))dt +2edW, t>0
z°(0)=2>0

(7.1.5)
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where F!(x) = —f(z, g(z,V!(x)). Based on Assumption 2 (i)-(ii) and sta-

bility property of viscosity solutions,
V. "=V, locally uniformly (7.1.6)

where V; is a viscosity solution to the HJB equation (7.1.4) for ¢ = 0. We

make the following assumption on function V4.

Assumption 3. The function Vy of (7.1.6) is almost everywhere differen-
tiable.

Lemma 7.1.1. Assuming 2 and 3, let € be a compact subset of R. Then:
(i) There exists C' = C(2) such that V!'(x) > C for allxz € Q and e < &.

(ii) The family of functions { F;}cso converges locally uniformly to a func-

tion Fy, which is almost everywhere differentiable with
Fy(z) = = f(z, g(z, V5(2))).
We are now ready to state our main result:

Theorem 7. We assume that the function Fy of Lemma 7.1.1 forms a
double well potential with local minima x4 and local maximum x., with
r_ <z, < x4 and that Fy is C* close to x4, x,. Furthermore, we assume
that there exist a,q, M > 0 and b € R (independent of €) such that F.(x) >
axi+b, for allx > M. Let 7¢ = inf{t > 0: 2°(t) < x_} be the first hitting
time of x_ of the stochastic process x¢ of (7.1.5). Then the expectation of

€
Ty s

when x¢ starts at x,, satisfies
lim e log .., (75 ] = Fo(zs) — Fo(zs) (7.1.7)

We will now state a result which is of general interest and stands on its

own. We begin by stating the assumptions of the Lemma.

Assumption 4. We assume that the drift f is linear with respect to u, i.e.
it is of the form f(z,u) = a(z)u + b(x) and the function G(z,u) is a con-
cave function of u for all x € R. We further assume that the noiseless value
function Vy is a classical solution to the HIB eq. (7.1.4) for e = 0 every-
where except for a finite number of points xo whereat it is not differentiable,

but there exist the side derivatives Vi(xzo(—)), Vy(xo(+)).
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Lemma 7.1.2. Under Assumption 4, if there exists the optimal control,
then it is given in the feedback form u*(z) = h,(—a(z)V{(x)), where h,
is the inverse of the function G,(x,-), and for the drift of the optimally

controlled system at xy we have:

f(@o, u™(2zo(=))) - f (o, u" (20(+))) # 0

Proof. Since the optimal control exists, it should satisfy the following rela-
tion:

a(z)Vy(z) + Gu(z,u) =0
which gives u*(x) = h,(—a(x)V{(z)). By contradiction, let us assume that
(o, u” (w0(=))) = alwo) hay (—alz0)Vg(wo(=))) + blzo) =0, (7.1.8)

and without loss of generality we assume that Vj(xzo(—)) < V{(zo(+)).
Taking v — xo(—) in HJB, by (7.1.8), we find:

pV (o) = G (0, hay (—a(z0) Vg (20(—)))) (7.1.9)

Taking now z — zo(+) in HJB and substituting (7.1.9) and (7.1.8), we
find:

G (0, hay (—a(30) Vi (w0(—)))) = G (0, b (=) Vi (0(+)))) =
— (o) (Baal(—a(0) V§(0(=))) = by (—a(w0) Vi (m0(+))) ) V" (wo(+))

which by Mean Value Theorem and the monotonicity of h,,, gives

Gu(o, hyy(—a(z0)y) = —a(zo) V' (z0(+))) (7.1.10)

for some y € (V'(xo(—)), V'(zo(+))), which is a contradiction, since relation
(7.1.10) implies that y = V'(zo(+)). O

An interesting application of this result is presented in Lemma B.1(iv)
in Appendix B in the case of the shallow lake problem. The fact that the
drift of the optimally controlled lake does not disappear at the Skiba point,
from the left and from the right, guarantees the existence of the side limits
of the second derivative of V' at the Skiba point.
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7.2 Proofs

7.2.1 Proof of Lemma 7.1.1

(i) We will prove this claim following the lines of proof of Lemma 3.1
in [21]. Let m = inf{Q} > —oco, M = sup{Q} < c0. If [ =
max{|m|, |M|}, we consider a function ¢ € C*°(R) such that

oz) =1 if z€Q

(
o) =0 if z < =2l or x> 2l
)?

(9 ()) <C’l on supp ¢

For brevity, we write v = V_, vy = V! and uy; = V. Differentiating

twice eq. (7.1.4) with respect to x, we obtain:
_6u/1,1 — Hyy — 2]——,pacull - pr (u11)2 - Hpu'n + pu;; =0

Next we define w = ¢uy; and compute (on ¢ > 0):

—ew" — Hy(z,uy)w' + pw + 25%1{/

— O Hyp(, 1) (1) + 6 Hyy 26 Hyuny e (2510 = 67) g+ Hyf

Let 2 be a point in (¢ > 0) at which w attains a negative minimum.
If for some value of e, w is non-negative on (¢ > 0), we can conclude
that V(z) > 0 Vo € . Then w'(z) = 0, w(zg) < 0 and w"(zg) >
0. Moreover, by Assumption 2(iii) there exists 79 > 0 such that
Hpp(x,u1) > mno >0 for all z € Q.

Therefore, we have at x = x
mo (w(20))* < —¢*Hap + (=20 Hy, — eC + ¢ — Hyd') w(wo)

= now?(x¢) < A+ Bw(zo) = w(xg) >C

where C' constant independent of ¢ (and z,). Here, we used the fact
that since u; = V! is bounded on supp ¢ by Assumption 2(ii) (uni-
formly with respect to ), each partial derivative of H is bounded at
(x,uy(z)) for x € supp ¢.

Therefore V' (z) > w(zo) > C, Yz € Q, £ < «,. d
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(ii) Since V! is locally uniformly bounded with respect to € and Vj is
almost everywhere differentiable, it follows (see Theorem 3.2 (i) [21])
that V! — V{ almost everywhere. Therefore, the continuity of g and
the boundedness of V! on compact sets imply, by bounded conver-
gence theorem, that F. converges locally uniformly to a function Fg,

which is almost everywhere differentiable with

Fo(z) = = f(x, g(x, V5 ().

7.2.2 Proof of Theorem 7

For every € > 0, we know that the function h(z) = E, [75_] solves the

T —

Poisson problem:
Lh(z)=—-1, z>ua_

h(xz) =0, r <z

where £ is the generator of the process x° in (7.1.5). That is

(eh(x) — Fl(x)W (x)) = -1, x>zl

h(z) =0, r<ax_

This problem is solved explicitly and for x = =, takes the form:

£ ] -1 [ [ (BOZED) 4

€

We denote by D the area of integration. Notice that in D, the function
(z,y) — Fy(z) — Fo(y) attains its maximum at (z.,xy) and for A > x, let
us consider the compact set D; = D N ((—oo, A] x R) which contains the
point (x,,zy) and the unbounded set Dy = D \ D;. Moreover, denote by
I,(¢), I5(e) the integral of exp (M) over Dy and Dy, respectively,
to get

// e (FeC-F() gy dy = Ii(e) + Ix(e) (7.2.1)
D
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Since D is compact and F. converges uniformly on compact sets to Fy,

there exists a non-negative function A(e), with lir% A(e) = 0, such that
E—>

[(FL(2) = Fe(y)) — (Fo(2) — Foly))| < Ale) V(y, 2) € Dr.

Therefore,

€_¥ // 1(FO( dde < Il // 7(F0(z —Fo(y )dydze =
D1 Dl

Which gives from standard Laplace asymptotics that,

lir%elog I () = Fo(zs) — Fo(xy) (7.2.2)
e—
Since F. converges uniformly to Fy on [z_,z,], there exists &1 > 0 such

that F.(z) < Fo(z) +1 < Fo(z.) + 1, Vz € [v_,24], Ve < g. Thus,

T4 o0

_ //e;(mz)—n(y))dydz < L@, /6 L) g
z_ A A

which based on bounds of the upper incomplete Gamma function (see [42]),

gives

limsupelogIr(e) < Fy(xy) +1—b—aA? (7.2.3)

o—0
By choosing A sufficiently large (such that 1 —b — aA? < —Fy(z)), from
relations (7.2.1), (7.2.2), (7.2.3) we find that

hmalog // exp ( F( )) dydz = Fy(x,) — Fo(zy)

which concludes the proof. O

7.3 Application to the shallow lake problem

The metastable behaviour of shallow lakes is naturally observed and in
mathematical terms corresponds to a system with two equilibrium points
and a Skiba point. In the presence of noise, the system moves from the

oligotrophic state to the eutrophic state and vice versa, see Figure 7.1.
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Furthermore, the markovian nature of the optimal control leads to a system
with a noise-dependent drift function. Therefore, the shallow lake problem
is offered as a suitable application of our result, Theorem 7. In Figure
7.2, the double-well potential of the deterministic shallow lake problem is
depicted indicating the difference term appearing in relation (7.1.7). Notice
that this quantity is exactly identified as the height of the barrier that the
process has to overcome in order to get to the first well. In the following, we
assume that the parameters b, ¢, p are such that the deterministic shallow
lake problem possesses two equilibrium points and one Skiba point.

If we apply the transformation y(¢) = log z(¢) to the process x(t) of the
stochastic shallow lake problem (1.0.1), we find by Ito’s rule:

dy(t) = (e—ymu(t) — bt (V) v — 7) dt + cdWW,
y(0) =y

Therefore, the dynamics of the shallow lake problem is described in terms

(7.3.1)

of (7.1.1). We can now consider the value function of the shallow lake

problem in terms of the process y(t), i.e.

o0

Viy) = sug E, /e”t (Inu(t) — ce® D) dt| = V(eY)
ue
0
From Proposition 4.2.1, it follows that V is a classical solution in R to
equation

1 -~ . -

—5021/” — H(z,V')+pV =0 (7.3.2)
where H(z,p) = <7’(6“”)6‘x —-b— %2> p—In(—p) + © — 1 — ce* and the
optimally controlled system (7.3.1) takes the form:

a7 (t) = —FL (7 ()t + odW,

y7(0) =y

(7.3.3)

where )

Fl(y) = = th—r(e¥)e v+
)= g (@)
Obviously, our verification argument for the deterministic shallow lake
problem implies that Fy is C' (R \ {z,}), where z, is the logarithm of
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b=0.65, ¢=0.512, p=0.03, =0 b=0.65, c=0.512, p=0.03, 0=0.1
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Figure 7.1: 7.1a: Lf‘?ie paths of the optimally controlleé lzike (deterministic
case) for different initial positions. 7.1b: One simulated path of the opti-

mally controlled lake (stochastic case) with two stochastic attractors.

the Skiba point. Proposition 7.3.1 and Lemma 7.3.1 show that the shal-
low lake problem, under the assumption of two saddle equilibrium points
and one Skiba point, satisfies the hypothesis of Theorem 7. Therefore, the

Arrhenius Law is stable under our model.

Proposition 7.3.1. We assume that the recycling rate function r, in ad-
dition to Assumption 1, satisfies also that r(x) < bx ¥V x > 0. Let Q@ C R
compact and oy < \/p. Then there exists C = C(2,00) > 0 such that
V/(x)] < C for allz € Q, o < 0y.

Proof. Since V/(z) = V'(e*)e*, Proposition 3.3.2(ii) implies that there
exists C' > 0 (independent of o) such that V'(z) < —C < 0 for all
x € . Therefore, it suffices to show that there exists a continuous function
® : (0,00) — (0,00) independent of ¢ such that V/(z) > —®&(x) for all
x> 0.

Let 0 < 21 < x and for d > 0 consider a control u € 4 which equals d up
to time 75 = inf{t > 0 : z(t) < x;} where z(-) is the solution of (1.0.1)

with control v and x(0) = z. Then
Td
V() > E [ / e~ (In u(t) — cx2(t))dt] LE [V, (a1)
0

—nd-E [ /0 K e"’tdt} _ (K [ /0 K e‘ﬂta:Q(t)dt} LE [ V, (1)
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Figure 7.2: The potential Fj of the deterministic optimally controlled shal-
low lake when (b, ¢, p, o) = (0.65,0.512,0.03,0)

Based on Proposition 3.3.1(ii) and 3.3.2(ii), V,(2) < ;1In ( b;;) =: D for
all 0 < o9, z > 0. Thus, we find:

V,(2)—V,(z1) > (Ind—pD)E [ /0 k eptdt} _E [ /0 K eptcazz(t)dt] (7.3.4)

Applying Ito’s rule to the semimartingale Y; = e ?*22(t), then the optional

<T

stopping theorem for the bounded stopping time 7y = 7. A inf{t > 0 :
xz(t) > N} A N, and letting N — oo, we find
Td

BB [e7™] —2® <E

0
+ 02x2(t))dt]
If m = m(x;) = — sup{—bx + r(z)}, then m > 0. Choosing d < m/2, we
T>T

have

Td Td
i -2 < —(p—0o})E /e_pth(t)dt + p2iE /e_ptdt (7.3.5)

0 0

Combining (7.3.4) and (7.3.5), we find

Td

2
Vo(x) = Vy(z1) > <1nd —pD — pcfx;g> E /e_ptdt +—° S (2] — 2%)
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Td
In order to control the term E / e P'dt |, we now apply Ito’s rule to the

0
semimartingale Z; = e *'z(t), following the same steps as above, to find:

Td

7E[e?] -2 <E /e‘pt (—px(t) +d — bax(t) + r(x(t))) dt

0
Td

< nE [e"”ﬂ — T — %]E /e_ptdt
0

Thus

Td
r1—x < —%E /e_ptdt (7.3.7)

0

If we finally choose d = d(x;) = min [exp (pD + o ) ,m(m)] /2, we find

2
pP—0g

Vale) = Volon) 2 —2 (o) = p0 = L) (o — )

m(z1) p—0j

2x(r —x1) (7.3.8)

2
P —0q

Dividing by x — x; and taking the limit + — 21, we conclude that

Vi) 2 s (o) - pp = L) - 2 g

) 2 ) PRy R

Therefore, V'(z) > ®(e*)e” for all z € R.
[

Lemma 7.3.1. F,(x) > bx+C for allxz > 1, where C' constant independent

of o.

Proof. Let > 1. Since V/(z) < —C < 0, where C' is a constant indepen-
dent of o and r(z) < a for all x > 0, we have that

2

Fy(z) = / <V/(163/) — r(ey)> e Ydy + (b+ %)x > bx + Const

(e
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Appendix A
Some useful identities

Lemma A.1. Assume that f is a positive P-a.s. locally integrable F; and
let My(f) be defined as in (3.2.1). Then,

() E UOOO e~ M, (f) dt] _ ﬁ E UOOO e (1) dt} |
(i1)

E UOOO e " Z, My (f) dt} =

AcT'E [T e P Z,f(t) dt]  if o* < p+ 2,
00 if 02 > p + 2b.

(iii)

E { /0 h e PEME(f) dt} =

2AcT'E [ [T e f(E)M,(f) dt]  if o < p+ 2b,
00 if 02 > p+ 2b.
Proof: (i) Since f is Fi-adapted we have

E[M,(f)] =E [/OtE[Zt\]-"S] fg) ds] — /Ot eI [f(s)] ds.

Therefore,

E{ /0 h e P M, (f) dt} = /0 b E[f(s)] / ety ds

_/%E {/Oooe—ptf(t) dt} :

77
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(ii) Conditioning first on F; we have

' f<8) :| ! 02—-2b)(t—s
E[Z,M,(f)] =E || E[Z}F, ds| = [ o 2=9IE |7, d
zntr) = | [ El27) ) | = [ 256 ds
and, hence,
E| [ erzmpat = [ gz, T ermeot g g
[T zan a = [Tz [T ¢ ds

AcT'E [ e P Z,f(t) dt]  if o < p+2b
00 if 0% > p + 2b.

(iii) By Fubini’s theorem we have

E[M2(f) _QE{

—QE[// E[Z2|7) ()dqu}
_2// (o —2b)(t— Q)E{ q] dq ds

=/Oe “W0R [f(q)M, (/)] da.

q) dq ds]

and, therefore,

B | [ a = [T (o] e g

0 0 q

2Ac'E [ e f(E)M,(f) dt]  if o < p+ 20,
00 if 02 > p+2b. O
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Further estimates on V

We begin by proving a result on the asymptotic behaviour of the derivative
of the value function at +o00. We should highlight that this result is true
for the value function of both the stochastic and the deterministic shallow

lake problem.

Proposition B.0.1. For 0 < 0% < p+ 2b, there exist constants M, B > 0,
C € R such that
V'(z) > —Bx+C Vx> M.

Proof. Let 0 < x1 < xo and for d > 0 consider a control u € i which
equals d up to time 75 = inf{t > 0: x(t) < 21} where z(-) is the solution
of (1.0.1) with control u and z(0) = x2. Then

Vizs) > E { /0 Y et (n u(t) — ch(t))dt} R[] V()

(V(wa) = V(a)E[e=] > (Ind — pV(22))E [ /0 K e"’tdt]
—cE UOM e_pth(t)dt} (B.0.1)

Applying Tto’s rule to the semimartingale Y; = e=*'2%(t), we find

Y, — 22 = /0 e " [(0® — 2b — p)a®(s) + 22(s) (u(s) + r(z(s)))] ds + Mi(t)

where M;(t) = 20 fot e P52 (s)dW,

79
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Applying now the optional stopping theorem for the bounded stopping
time 7n = 7y Ainf{t > 0: x(t) > N} A N, we have

E[Y,,] — 25 =E UOTN e " ((0% = 2b — p)2*(s) + 2z(s) (d + r(z(s)))) ds]
Since z(s) > x; on [0, 7x], we have

P[] 4 < - SE [ /0 v e”sxz(s)ds} +2(d+a)E [ /0 v epsx(s)ds]
Letting N — oo, we get

Td Td
P Eler™] — 22 < —%]E {/ e_psxids} +2(d+ a)E {/ e_psxsds]
0 0

(22— 22)E[e~"™] < —%E { /0 " e_pst(s)ds} +2(d+a)E { /O k e_psx(s)ds}

Td
+ px%E [/ e_psds}
0

— cE { /0 K e—psxz(s)ds] > A(x] — a3)E[e™"™]

_92A(d+ a)E [ / K e_psx(s)ds} — ApilE [ /0 k e_psds] (B.0.2)

0

Now (B.0.1) gives

(V(03) = Ve)JBle ) > (nd = pV ()~ AprE | [ eas]
b A@? — 2D)E[e"™] — 24(d + a)E [ /0 k e”sx(s)ds] (B.0.3)

In order to control the last term in relation (B.0.3), we apply Ito’s rule to

the semimartingale Y; = e~*'x(t).

Vi — a5 = / e (u(s) — (b + p)a(s) + r(a(s))) ds + May(t)

where Ms(t) = o fg e Px(s)dWs. Applying again the optional stopping

theorem for the bounded stopping time 7y, we have

B[Y,y] -2 = E [ [ e @ o)+ rtato)as
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Since z(s) > x;1 on [0, 7n], letting N — oo, we have

21E[e™"] — 25 <E [ /0 U (d— (b4 p)als) + r(a(s))) ds]

(21 — 22)E[e=™] < (d + pz2)E [ /O k e”sds}

+E [/0 e (—(b+ p)a(s) + r(x(s)) ds} (B.0.4)

(21 — 22)Ele™] < (d + prs + a)E { /0 k e—des]

—(b+p)E [ /0 K e_psx(s)ds] (B.0.5)

_E —ps d > _ E —PTd
[/0 e Px(s) 3} _b—i—p<x1 xo)Ele ™7™
Td
— WE {/ e"’sds] (B.0.6)
b+p 0

Relation (B.0.3) based on (B.0.6) becomes:

(V(w2) = V(1)) E[e™"™] =

(“ld oV (za) — Apa — 2T ﬁ; e a)> . U e_ptdt]
0
2A(d + a)

b+p

+ A(z? — 22)E[e *™] + (z1 — 22)E [e7™] (B.0.7)
Td
If we denote by g(d; x2) the coefficient of E [ / e”tdt], we can consider
0

the following two possible scenarios.

e Case 1: If rfllaacg(d; x9) > 0, we choose d = d(xy) = arg max g(d; z2)
> d>0
and relation (B.0.7) gives:

2A(d(z2) + a)
> ek S e VA s
Ty — 11 = A($1 +$2) b—I—p

S oAy — 2A(d(z2) + a)
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Notice that d(xs) is bounded from above, since d(zy) is such that

g'(d; z9) = 0, which gives that

—2A(pxy + 2a) + \/4A%(pry + 2a)2 + 16A(b + p)

dlz) = sA
b+p
<3/ — =
=V aa
Thus,
V(zg) — V(xq) S oy - 2A(dy + a) (B.0.5)
To — I1 - b+ 1% o

e Case 2: If g(d;z2) < 0 Vd > 0, then focusing on relation (B.0.5) and
choosing ( 9 < r1 < T9 < x1 + 1, we have that for all z > xq:

d+praot+a—(b+plr<d+pla1+1)+a—(b+px<d—(p+a)

So if we choose d = p, relation (B.0.5) becomes:

(1 — 29)Ele™?™] < —aE {/ e_psds} (B.0.9)
0
(B.0.7) L9 V() = V(1) > g(p;za)  2A(p+a) 2 Ay
To — Ty a b+ p
(B.0.10)

Since V (x) + Ax? is decreasing by Proposition 3.3.1(i), we have:

2A(p+a)®  2Ap(p+ a)x
- 2

122) 2 Inp —pV(0) = B.0.11
9(p;x2) = Inp —pV(0) b, 5 ( )
Relation (B.0.10) based on (B.0.11) becomes
> —(lnp—pV(0)) —
DErEE a(b+ p)
2Ap(p + a)

— | — 24 B.0.12
Sor 2 (B0
The assertion now follows by taking B = 2‘28}@’; +24, M = 2(pv‘21+a) and
€ = min{L(lnp — pV/(0)) - 2zl _2Ads, =

The fact that V' does not go to minus infinity more quickly than linearly
along with its upper bound is enough to establish the boundedness of the

second derivative of V' at +o0o as it is stated in the following corollary.



83

Corollary B.0.1. For the value function, V', of the stochastic shallow lake

problem, we have

—o00 < liminf V() < limsup V" (z) < oo

T—00 r—00

Proof. Since V is a classical solution to (1.0.6), we have that

2 ( V(z) ,r(x) Vi(z) In(=V'(x)) 1
1 _ = . . .
V(x>_02(p x? ( x ) x i x? +C+x2
(B.0.13)
Based on Proposition 3.3.3, lim Vw(f ) = _A. Furthermore, based on Propo-
T—>00

sition B.0.1 and 3.3.4, for x >> 1, =Bz + C < V'(z) < —C}. Therefore,
relation (B.0.13) gives

2

2 .. .
= (=pA —=0bB + ¢) < liminf V" (z) < limsup V"' (z) < —

T—00 T—00 g

(=pA+c)
0

We now proceed by proving properties of the noiseless value function.

Proposition B.0.2 refers to the regularity of V.

Proposition B.0.2. The value function, V', of the deterministic shallow
lake problem is C?((0,00) \ {z.}) where x, is the Skiba point.

Proof. According to the analysis of section 4.1, it follows that the value
function V is identical to the function Jp constructed based on the Pon-
tryagin Maximum Principle. Along the optimal solution of the system of
the lake (2.2.10), we have that f(z,u) # 0 for all x # x_, z, x,. Therefore,
based on the Implicit Function Theorem and the HJB eq. (1.0.6), it fol-
lows that the value function, V', is C*([0,00) \ {z_, x4, z.}). Since along

the optimal trajectories % = —% and Z—Z = %, it remains to prove that
there exists the limit lim 9wt) and it is finite, where for simplic-

(z,u)—(z0,u0) f(u,z)

ity reasons we denote by (zg,uy) the saddle steady states of the system
(2.2.10). The point (xq, ug) satisfies:

up = bxg — r(x0) (B.0.14)
bip _ (o) -

Up = 2cxq 2cxo
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The linear approximation around (zq, ug) gives:

T — Zo —b+7'(wo) 1 T — Zo
d = 5 2(1-323) 20
u— 1 2ug + uy —(0+p) + 2" % +4dzouo | \u — ug

(1) (s5+

A
(B.0.15)
In order to determine the direction of the optimal trajectory close to
(20, up), we need to compute the eigenvector which corresponds to the
negative eigenvalue of A. If we denote by A* < 0, the negative eigenvalue

of A, then the corresponding eigenvector is

. 1
v _<b_ﬂ@®+AJ (B.0.16)

Therefore, close to (g, ug) along the optimal trajectory we have that

u—ug = (b—1"(20) + X*) (= — x0) (B.0.17)
k(u?),,xo)

By (B.0.17), we can now compute the following limit along the optimal

trajectory:

: g(u,z) . g(uo + k(ug, o)
(ac,u)l—l>r(rmlo,uo) flu,z) zhj]a[clo fug + k(ug, 20)(z — 20), 7)
[(@+P%—T)H%+ka%Xx—%»
up + k(ug, xo)(z — x9) — bx + r(x)
2cx (ug + k(ug, zo)(z — x0))?
uo + k(ug, xo)(x — z9) — b + r(a:)]

i - h(z, xo, ug) _ h(zo, xo, o)
DLH z—xo k(xo,up) —b+r'(x)  k(zo,u0) — b+ 1'(x0)
h(zo, o, up)

A(#0)

(z — o), 7)
(

]

Now, Lemma B.1 collects all the key properties of V' to establish the

boundedness of its second derivative, whereat the second derivative exists.

Lemma B.1. For the value function, V, of the deterministic shallow lake

problem we have that
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(i) lim Y& — ¢(_2 )

(ii) V"(0) = —(p+b—1(0)) (V'(0))°

(111) the limit lim V" (x) exists and is finite

T—00

(i) the limits lim V"(z) and lim V"(x) exist and are finite.

T—Ts— T—Tx+

Proof. (i) Since V is a classical solution to the HIB eq. (1.0.6) for z > =z,

we have
/ !
i V. () _ lim T _pVi(z) W(=V'(z)) 1
T—00 T z—o0 b — r(x) 2 2 2
c

where in the last line we used Propositions 3.3.3, B.0.1 and 3.3.4.

(ii) Differentiating once the HIB eq. (1.0.6) for x close to 0, we find

(r'(z) = (p+ b)) V'(z) — 2cx

V”(l‘) — :
—r(x) +bx + g

(B.0.18)

Taking z — 0, the assertion follows since V is C*(]0,0) \ x.) and
C2((0,00) \ ).

(iii) By relation (B.0.18), we find

lim V"(z) = lim

c p 2c
AT AU (R G T I
(p+)W(p+% ) b

(iv) Because of (B.0.18) and the fact that the side derivatives V) (z.(—)),
Vi (x.(+)) exist (see Proposition 3.8 [32]), we just need to show that
the limit of the denominator of (B.0.18) as z — x,(%) is not zero.

This is an immediate consequence of Lemma 7.1.2.
O
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Detailed abstract in Greek

To mpdAnua g enyNc Auvng elvon Eval Yvewo o TedfBAnua tng nepiBoahhov-
x\¢ owovoplag ye peydho padnuatind evotagpépov. Topatnpeiton 6Tt 1 ueydin
Yenon Mraoudtenv ota TEpBdAlovTa €0dpn xou 1 ALENUEVY EIGEOT| AUUATWY
omo TIG Blopnyavieg xou TOUg OoUOUS ATEAEUTEQMVOUY PUGPORO GTIG AVES
%o UTO TEOXAAEL TNV €vTov avdmTuln Tou QuTOTAXYXToU. {2¢ amoTéleoya,
ot pnyéc Muveg petanintouy ond pa xadopn xatdotacn (oAyotpopxy| xa-
tdoTtaon) ot po Yohf xatdo taon (EUTpoPixn XaTdo TaoT) UE TEAoVLTY 6.
Ou Auvordyol €youy Bellel €VTovo eVOLIPEROY YIoL QUTO TO PUOXD PULVOUE-
VO %o €YOLV TEOTEIVEL €Vl LOVTEAO Yol TNV TOCOTIXOTOMOT TNG YPOVIXY|C
eZENMENG TNG CUYXEVTEPWONG TOU Ywoopou Uéca otn Auvn. Ihio cuyxexper-
UEVOL, 1) TOCOTNTA TOU POCPOEOL GTN AMUvn doviehomolelton cuVAWS Ue T

Un Yeouuxr otoyao Tt dtapopint| e€iowon:

dx(t) = (u(t) — bx(t) + r(x(t))) dt + ox(t)dWy,
z(0) =2 > 0.

(B.0.19)

O mpwtog 6poc, u @ [0,00) — (0,00), otov cuvtekeoth ohioUnong
(drift), avumpoownelel 10 e€mTEPIXG POPTIO PWOPOEOL WS ATOTENECUA TWY
avipwmvwy dpaotnptotitwy. O deltepoc bpog elvan 0 pulude anietos b (t),
o omoiog ogetheton oe QUOLXES BlepYaoleS, OTWe TNV xodilnom, TNV ExEOY| o
™ 0éouevarn oe dikn Bropdla. O tpitoc dpoc, r(x(t)), civon o puiuoS avo-
2OUAOONS TOU PuG(POEoL 6Tov TUiuéva TNg AMuvng. Autdg o dpog Vewpeiton
6t elvon o otypoedfc ouvdptnon (BAéme [15]) xou n tumxh emhoyy ot
BiBhoypagpio etvar 1 ouvdptnon = — 2?/(2? + 1). Trodétovue v Unop-

&n offefondtnrog otov pudud anmieiag xou 1 afeBoudTnTa AUt ElodyETAUL GTO
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HOVTENO UECK EVOC YEOUUIXOU TOMNATAAGLAC TIXO) YXAOUGLHvOLU Aeuxol Vo-
eVBou e évtaon o.

H owovouunt| Sidotact tou ntpofAfuatoc tne enyfic AMuvne mpoxUnTel and
TIC UVTIXPOUOUEVEC UTNEEGIEG TTOU TEOGQEPEL OTNY XowoTnTo. Ao 1 pla
TAeLpd, Wit xordoy| Auvn Tpoopépel oxohoyixég umnpecie. Amo TN dAAn
TAEURA, 1) MUV Yenotuelel ¢ amodEXTNG AmOBAATWY YIol TIC YEWEYIXES KoL
Blounyavixée dpaotneidtntes. ‘Otav ol yehotee Tne AMuvng cuvepydlovTa, 1
otpatny pépTwong, u € i, utopel va ypnowonotnlel wg EAEYyog Yo T
ueytoToToinon Tou cuvokxol ogehoug and TN Auvn. Trovetovtog dnelpo

Ypovix6 optlovta, To dgehog auto opiletar cuVHIWS we eEHC
J(z;u) =E, {/ e " (Inu(t) — ca®(t)) dt| , (B".0.20)
0

omou p > 0 ebvar T0 TPOELOPANTING ETTONIO XOU x(+) elvou n Aoom Trg
(B".0.19), yio 8edoyévo ewtepixd goptio (éheyyoc) u(-), xu 2(0) = z. To
oLVOAXS bpeNOG TN AUvng avgdveTan Ue TNV alENoT Tou GopTiou PWTPoEOL
o¢ Inu, ahAd TaUTOYPOVA UELWVETAL UE TNV TEEYOLVCN TOCGHTNT PELCPOEOV
0TO E0WTEQO TNG Aluvng g —cx?, MOy NG CUVETAYOUEVNG TTOONG TNG
TOLOTNTOC TWV OLXOAOYIXWY LTNEectwy tNg Aluvne. H et nopdueteog ¢
avTatonteilel T oyeTiny BapdtnTa auTrc TS cuviotwoog. [ T BéATio
oloyelplon NG AMUvng, TEETEL Vo UEYIOTOTOLCOUUE TO GUYOAIXO OPENOC WG
TEOG OAOUG TOUC AmodEXTOVUG EAcyyoug u € U,. Me autdv tov TpoTO, N

ouvdpTnon a&lag Tou TEolAruatog opiletar we e€ng

V(z) = sup J(z;u), (B".0.21)

uetly

Enopévwg, to mpdfinua tng enync AMuvng yetatpéneton o mpoBinua tng Ve-
wplag erEyyou 1 o dlopopind TalyVio oTNV TERIMTWOT TOU €YOUUE oVToY -
vioTixolg yehoteg tne Auvne [13, 15, 50]. Q¢ npdfinua eréyyou (Bh. [23],
Kegdhowo I11.7), n ouvdptnon a&iag V' tng oy. (1.0.3) avauévetar vor ixovo-
motel Ty e&iowon HIB

1
pV — H(x,V,) — 50'2562‘/961 =0 (B".0.22)
omou 1 ouvdptnon H oplleton wg
H(z,p) =sup [(u—bz+7r(z))p+Inu—cz?]. (B".0.23)
u>0
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Trodétovrag 6n V,, < 0, n €€, (1.0.4) xotahrfiyer otn:

1
pV = (r(w) = b2) Vo + In(=V2) + ca? + 1= 50%2" Ve =0 (B0.24)

To npdfAnua tng ey e Alpuvng €yer ueketniel extevag ot BdAoypaplo,
Wlwg N vietepuvoTixt| Tou exdoyr. Otav o = 0, 1 teplntwon émou 1 Bér-
TIoTA EAEYYOUEVT Alvn €yel Vo omuela loopporiag xon éva onueto Skiba, 7
onueio adgopiac (indifference point) [47, 49] napovoidler Wiaitepo evdla-
pépov. To apiotepdtepo (OAyoTROPING) ONUEiD 160PEOTING TOU GUG THUATOS
¢ Mpvng avtiotouyel og uio AMuvn ue younhh cuYXEVTIPKGOT PWoPoEou, EVE
10 8ediotepo (eutpoPixd) avtioToyel o wor Auvn ue udnin cuyxévtpwaorn
pwopoeov. Y10 ornuelo Skiba umdpyouv 600 dlapopeTnéc BEATIOTEC GTRUTN-
Yiég, xodeplo and Tig omoleg 0dNYel T0 CUCTNUA OE DLUPOPETIXT XATAC TAOT)
looppomiog xou 1 cuvdpTtnomn allag dev elvon Topaywylown excl. Enouévoc,
n ouvdptnon ollag, V, dev umopel va etvan yior xhaowxry Aoon tne edloworng
HJB (1.0.4). YtV nporypatixdmnta, 10 owoto Yadnuotixd Thaiolo ye to o-
To{o UTOPOUUE Vo EpYAOTOUUE, EWBXE 6Tay 1) cuvdpTnoT allag Bev €yl ex
TWV TPOTEQWY TNV OUUAGTNTO plog xAaotxng Adong, elvor autd TV AICEWY
1&wdoug (viscosity solutions), omwe avorntiydnxe and toug Crandall xon Li-
ons [17]. H oUvdeon twv npofinudtey e Jewplioc eréyyou pe tic e€lo®oele
HJIB éyer pehetniel extevae, Bréne m.y. [3, 23, 22, 37, 38].

ITpoxetévou va TeoGBloPIGTEL TO €VPOC TWV TUPAUETOMVY YL TIC OTOLEC
epgaviCovton tar onuetor Skiba, Siedhydn extetopévn Siepedvnomn Tou yHEOou
TWV TOQUUETEWY XL TV TOOTIXMY OLpop®y Tou cuoThuatog Pontryagin
e enyhc Mpvng (avdluon Stxhddwong) [31, 49]. Idiétntee Tne ouvdptnong
okiog Tou VIETEPUVIOTIXOU TpoBAuaTog TG pnyic Alpvng €youv amodelydet
oto [32].

‘Eva foocind epdytnua mou, €€ 66wV yvopiCoupe, dev €yl amavtniel TAfowe
uéypL orjepa etvar autod TG Lmodng BéATiotou eréyyou. H Omapln Bérti-
otou eAEyyou AuuPdvetar cuvilwg kg uTdVeoT xou 1) BEATIOTY duvaLXY TNg
AMuyng yeretdron xupltg PEGW TV avoryxalwy cuvinxoy, ol oToleg TPocdlo-
eilovton amd Ty apyn peylotou Tou Pontryagin, xou twv onueionv ooppotiog
ToU avTioToryou Buvopxol cucThAuatoc [49, 50]. Mio awotney| andvinon oo

gpwTnuo ouTd 86UNxe and tov Bartaloni oto [7, 8], av xou und EELOPLEUOUC
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TIOU BEV XUAUTTOUY TATPWS TO EUPOG TWV TUPUUETEWY Yo TI OTO{EC UTEEY 0LV

oruela Skiba.

Emuniéov, npdoputa avamtiydnxe EVIOVo EVOLUQEPOV YOl TN CTOY O TIXY)
exdoyr| tou mpoPhiuatoc (o # 0). Xuyxexpyévo, To VIETEPUIVIGTIXE, GL-
oTAuaTa UE dVo oruela lwoppoTiag xo €va ornuelo Skiba €youv Vepehiwdng
OLOUPOPETIXT) CUUTIERLPORY UTO TAL AVTIGTOLY Ol GTOYAUO TS CUC TAUNTA. L UYXE-
xpWéva, moapoucta Yoplfou, oL TuyalES BLaXUUAVOELC 001YoUV To GUCTNUN
and o éva onueio wwopponiac oto Ao (UetoeuoTdleta). Nty mEpinTrOoN
™e ey Auvng, ot Btaxuudvoelg Tou puBPo) am®AELIG 0B YOV TN Aluvn and
TNV OALYOTROPIXT) GTNY EUTROPIXT] XATAC TUOT) X0 AVTIGTEOQA, PUVOUEVO TIOU
Topatneeiton cuyvd ot @OoT. To evdlapepoy Yol TN UEAETN TWV UETAEUC TO-
VOV oL TPATLY TEOEXVYE aEyd amd porvoueva oTov Topéa Tng Xruelag. O
Arrhenius [2] to 1889 Suxonohéynoe wior Exppoot Yo Tov U€co ypdvo petdfa-
O™¢ TOU CUCTAUATOS amtd TO €val T EAAYLOTO 610 dhho. Apydtepa, ot H.
Eyring xou H. A. Kramers [20], [35] ye tov yvwoté véuo Eyring-Kramers
ouumAfipwoay tov vopo Arrhenius mpoodloptlovtag Tov Tpo-napdyovTa oTNV
éxgpoon tou Arrhenius. Xtn ouvéyewa, ou M.LFreindlin xou A.D.Wentzell
24] ewohyoryay T Yewplor twv Meydhwyv Atoxhicenmy yio v e€Rynarn xou xo-
TOVONOT) TG PETAEVC T} 00C GUUTERLPOEES BLAPORWY BUVOLXDY GUGC TNUATWY.
Hopdho mou ta yetocuotodr cuo ThUaTa €youv pehetniel éxtote extevg (B
m.y. [12], [9]), n mAetovoTTa TWVY OMOTEAEOUSTOY 0popd BUVOIXE CUG THUNTA
yioo T omolar 1) ouvdpeTnon ohioUnong dev elvar cuVdETNOT TN EVTIUONE TOU
YoplBou. Qotéoo, oto mhaioto g (oToyaoTtixrc) Yewplac eréyyou, eivor
PUOXO VL AVOUEVEL Xavelg OTL oe PeTAEUo Ta | CUCTHUNTA, OTKS To 0O TN
Ho TNG ey A AMuvng oty mepintwon twyv onueiwy Skiba, o 6pog oAlodnong
Tou BéATIoTO EAEYYOUEVOL GUGTHUNTOC Vo e€opTdton amd Tov opufo péow
N mapovaciog Tne ocuvdptnong o&lag, 1 omola ue TN oeled TNE eCopTdTon omd
T0 Vépufo péow tng dbpdwong Hamilton-Jacobi-Bellman. To g@auvouevo
e peTaeuoTdlelng oTo TEOBANUN Tng enync Alpvng ueietdTon apriunTixd
oo [26], 6mou 1 ouvdptnon ofioc Tou TEOPAUaTOC TG eMyc Alpvne Teo-
oeyylleton yia uxpec TWéS Tou o, Ue Bdom eupeTinée Pedodoug avdhuog

OLAUTUROLY V.

Emniéov, dic€odxt| eC€tacT TNg oToYAoTAS EXO0YHAS TOU TROPBAnuUo-
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T0¢ TN ey AMuvng Bieldryeton and Toug Kossioris, Loulakis xon Sougani-
dis [33] ot onolot e€dyouv avahuTixd WBL6TNTES TNC cUVAETNONS adlug XaL T
Yopaxtneillouy we T povadixny (o€ wiot XatAANAN xhdor) Aoon EOBouC e
TEPLOPLOUONE XATUC TUOTC (state-constraint) ¢ e€iowone Hamilton-Jacobi-
Bellman (HJB) (1.0.4).

To mpoBhnua g enync Apvng €xel oploUéva Un TUTIXE YoRUXTNELO Ti-
%4 xa, ¢ ex ToUToL, amantel ey avdiuor. Tlpdto an’ dha, To TEOLANUN
OLUTUTIOVETOL WG TEOBANUA TEPLOPLOUOY XAUTAC TAOTG OF EVAL NUI-ATELP0 TED .
AVoeig 1€nhdoug pe cuvoplaxéc cuVITXES TEPLOPLOHOU XU TAG TS EloTydncay
yio e€lowoelg Tewtne TENne and [48] xau [14]. T e&iowoei Sedtepnc téEng
Vo mpémet vor oupPBoukeutel xavelc ta [30], [36] xou [1]. Emniéov, n ex tov
TEOTEPWY YVAOOT TOV WOTATWY TNg Aiong efvan amapoftnTn yior vor e€acpaL-
otel ot N Xophtoviavy ebvan xahd oplopevr), Aoyw Ttou hoyoptduxod 6pou
0TN cLVAETNOT x6GTOUS, O oTtolog 0dNYEL oE hoYdELiuo TNG TUEAYWYOU TNG
ouvdptnong aglauc oto (1.0.6). 2T CUVEYELY, OTNY TEPITTMOT TOU GTOYAUC TI-
%00 TEOPBAAUATOC NS AMUYNG, 1) EAAELTTIXOTN T TOU (1.0.6) ex@UAleToL 670
dxpo, x = 0. Téhog, 0 ywpoc ehéyyou elval avoixTOC XaL ATELROC, OTOTE Ol
ouvrjlelg unovécelg Tou Yivovton yiol TV am6deln Tng Unapdng oe TpofBAnuo-
o0 ehéyyou ue dmewpo optlovta (Bh. m.y. [10, 19, 44]) Sev wavomololvtat

0.

H mpwtn xdpta cuvelo@opd autrc tng epyaoiog etvar 1 awotner andoet-
&n tne Umopéne BEATIoTOU EAEYYOU TOGO GTO GTOYACTIXG OGO XAl OTO VIE-
TEQUIVIOTIXG TROBANUA TNG eny e Aluvng ywelc TEploplonols 6To YMEo TwY
mopopétewy. Me tny mapouoia Yoplfou, 1 anddelln axoloudel Tig yevinég
Yeopuée wac apyhc enahilevone (verification principle) (Bh. my. [23]) ue
HATIAANAES TPOTIOTOLACELS YLOL TNV OVTLETOTIOT TNG UMOAELNS TNG EAAELTTL-
%0TNTAC 0T0 GOVOPO xal WG TdovAC TOAD devNTIXAC TWINS (~ —00) TOU
opéNoug Yo Uixpolg eAEyyous. Auth 1 mpooéyyion Oev elvon ThvTa QTN
OTO VIETEPUWIO TIXO TEOPBANUL, xodi¢ 1 cuvdpTnoT okiog umopet vo unv etvor
noparywyiown. Xta [7] xou [8] n Unapdn BéltioTou eléyyou TEXUNPLOVETAL
UE TNV omOOELN ANUUATOV TOU apOopOUY OUOLOMORQ PROYUEVOUS ENEYYOUC
axoloudoluevewy amd doryovia emtyetpiuate. H mpooéyylon auth meoryuo-

Tomotelton e emtuyloa uTd TNV Mpolnddeon oTL elte 1 mapducTEog b elte 1)

99



TOPGUETPOS TEOECOPANONG p Elvon UEYUADTERES Mo 3v3/8. H TEOGEYYLON
Mo €86 elvol EVIEADG DLUPORETIXNY XL BEV ATALTEL XAVEVY TEQLOPLOUSO OTO
Y®po Tov Topuuétewy. Il cuyxexpéva, amodexviouue 6Tt T6C0 1 GUVdE-
o™ a&lag 600 XuL TO GUVOMXO OPEAOG TIOU ETUTUYYAVETAUL OTAY TO GUCTNUA
odnyeiton and tov unodriplo BéEATIoTo éAeyyo Tou Tpoteivetar and TNV Ap-
¥1 Meylotou tou Pontryagin etvar Aoeic €mdoug oto 610 xohd tedetuévo
TeOBANua. Me autdy Tov TpdTo anodexvieTal 6Tl T0 BEATIGTO GUVOAIXS OpE-
hog, onhadY| 1 ouvdptnon alloc V', emTuyydveTon omd €voy amodexTo EAEY YO
X0 PE AUTOV TOV TPOTIO 0 EAEYY0G aUTOC yopaxTnplletar we BEATIOTOC.

H dedtepn xbplo cuvelogopd g mapoloag epyactiog etvon 1 avdhuon tng
UETHEUC ToOUC GUUTEPLPORAS TOU TEOBAUUTOS TNG enyhc Aluvng, 1 omola
TEAUYHATOTOIELTOL OTO YEVIXOTERO TAUIGIO TV TEOBANUATWY 0TOYACTXOU €-
Aéyyou mou mapouctdlouv onueior Skiba. ITo avohutixd, yeketdue TNV avo-
UEVOUEVT THr TOL Ypovou UeTdBacng amd To €va TNYddL 670 GAAO Yol o
oldwacior oe €va VopuUBOECUPTMUEVO BUVUULXS BLTAO) TNYUBLOY X0t ATOOEL-
%«v0OUUE Lot Yevixeuot tou vouou Arrhenius. I'a var To xdvoupe owto, exue-
TAAAEVOUAOTE XAT dpyYdS TO YEYOVOS OTL 0 HECOG YpOVOS PETAPacng emAEL
eva teoPAnua Poisson, n Ador tou onolou diveTon emoxiB3ig o€ 0OAOXANEWTIXY
HOP®T) GTY LOVOOLAC TUTY TERITTWOT. X TN CUVEYELX, ATOOENYVOUYE TNV TOTI-
%3 opolopoppn clyxhor tou Yopufndoug oloxknpmuatog o €va addeufo,
ATOBELXVIOVTAS TN CUYXALOT] TV ToRUy®OY®Y TNg YopuPfndoug cuvdptnong
okiog oTic mapaywyoug Tne adopuPng cuvdptnong ofioc. I'a vo To omode-
{oupe autd, mpocupudloupe wo pedodoroyia mou eworyoryay ot Fleming xou

Souganidis oto [21], n onola Bactletor o€ évar emyelpNUol NUIXVETOTNTAC.

B’.1 Kegdiowo 2

To Kegdhowo 2 elvor TpoxatapxTind xon TEQIEYEL OPLOUEVOUS AmapalTnTOUS O-
ELOMOUE X0 ATOTEAEGUOTO TTOU ELVAL Y EHOHIL YLOL T ETOUEV XEPAAOLAL. LUYXE-
xptpéva, mopouatdlovto ot oplopol Tng Aong &ihdoug (viscosity solution) xou
NS AUomg EMBOUC UE TEPLOPIOUO XATAC TAUOTG (state-constraint). Emmiéov,
owrtumwvetar 1 Apy Tou Pontryagin, n popgy| mou nafpvel otny mepintwon

Tou HpofAfuatoc e eny e AMuvng xon ue Bdomn auth xataoxeudleTon 1) UTO-
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Lo cuvdiptnon oiog, Jp mou Yo yenoyloroicouue oto Kegdhaio 4 yio tny
amodelln Unapdng PEATIOTOU EAEYYOL GTNY TEPITTWOY TOU VIETEQUIVIO TIXOU

TEOBAAUATOC.

B’.2 Kegpdiowo 3

Y10 Kegdhawo 3, yevixebouye ta amotehéopoto tou [33] ylor vor cuuneptAdBou-
ue olypoedeic puduolc avoxixhwone mou elvon To yevixol amd TNV TUTIXY
emhoyh, x — 2% /(2 + 1) xoddde xou v tapdueteo Bdpouc, ¢, Tou dev uno-
el va amoppogniel UeTd amd xoTdAANAN aAAOY ) LETABANTOVY. Luyxexpuéva,
umo¥€toupe 6Tl 1 cuvdpTtnon pUIUOD avoxdXAwCNG T Efval Pl GLYHOEWOTS

cuVdpETNoT Tou Wavorolel TV Tddeon B'.1.

YnéO9eon B’.1. O puiuds avaxikdwong r(z) wavonoel ta axédovia:
1. r € C' ([0,0)) ka1 avéovoa
2. r(0) =0 kar r(xz) < (b+ p)x xovtd oo 0.

3. a:= lim r(z) < o0
T—00

4. To épo lim (a — r(x))xr = C vrdpyer ka1 elvar évag memepaoéros,
T—00
avaykaotikd un apynuikos, mpayuatikos aptopog

5. lim 7'(x) = 0.

T—00

To wOpro anoteréopata Tou Kegolalou agopolv Tov yopoxTtnotoud tng
ouvdptnone o&iag we TN ADoT EOBOUS TEPLOPIGUOU-XATACTACTS EVOSC HAADS

tevetuévou mpoPAruatog. Ou anodeilelg Toug divovton oTny evotnTa 3.4.

Oevpenua B'.1. Edir 0 < o2

< p+2b, n ouwvdptnon aéiag V' eivar jua
ouveyns Abon 1Eddous e mepopiopols katdotaons (state-constraint) otny

eblowon (B'.0.22) oo [0, 00).

Yuyxexpwéva, n ouvdpetnon ollac Vo yopaxtneiletor ¢ 1 povadxs) Abon
1&idoug meptoptopol xoatdotaone e (B.0.24) héyw tne oaxdroudng apyrc
obyxplong (Oedpnua B'.2).
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Oewpnua B.2. Av 0 < 0? < p+ 2b, urotérovtag éri u € C([0,00)) elvar
pa yvnoiws gdivovoa vrodvon wng (B'.0.22) oo [0, 00) kat v € C([0,00))
efvar pua yvnoiws gdivovoa vrepAvon g (B'.0.22) oo (0,00) wétowa dote
v > —c1(1 + 29), énov q umopel va elvar omowodnmoTE TPayUATIKES APIOUOS
avotnpd pukpdtepos and |k(o)|, dnov k(o) eivar n apvnuxrj pila tov (3.4.5)
ka1 Du < —é e Ty €vvoia Tov 1£00LS, Yia ¢, ¢ UetikéS otalepés. Tote

u < v oo [0,00).

TN CUVEYELXL, OLUTUTMVOVTAL, X0l ATOOEVUOVTAL OTIC EVOTNTES 3.2 o
3.3, WIOTNTEG NG dLVOIXAC TOL TEOBAAUATOS X TG ouvdptnong okiog.
Yuyxexpyéva, otny Hpdtaon B'.1, anodewvieta ot i) n ouyxévipwan @o-
oQOEOU, Ty, TUPUUEVEL U aEVNTIXY 6Ty 1) Sladixaota Eextvd amd o U op-
N Too6TNT, T, i) To GUVORO TwV EMTEETTOV ENEY YWY elvon aveEdotnto
and TV apy W xatdoToo, o, xou iil) éco yeyolitepn elvan 1 pdoTion Q-
obEoU, U, TOGO UEYUADTERT EfVAL 1) TEOXUTTOUCA GUYXEVTPWOT| PWGPHEOU,

‘Eotw
[ 7
Z, = Wi (b 2) g5 M;(u) :/—tu(s)ds (B".2.1)
0

IIp6taon B'.1.
(i) Ava >0, u € Yy, ka1 z() efvar n Aon tns (B'.0.19), téve Pla(t) >
0, Vt > 0] = 1. Suykexpiéva, Plz(t) > My(u), Vt > 0] = 1.
(i) Ia kdOe x,y > 0, 4, = 4, =: L
(ili) YrmoOérouue 6t 1(-), x2(-) ikavomowdy tny €£. (B’.0.19) ue eAéyyoug

wy, uz € Y, avtiororya, kar x1(0) = 1, 22(0) = x2. Av x1 < 29 KO1

Plui(t) < us(t), Vt > 0] =1, e
P[ZL’Q(t) - ZE1<t> Z (1/’2 - I1>Zt, Vit Z 0} =1.
O Ipotdoec B'.2, B".3, B'.4 avagépovial o 1810TNTEC TNC cLVAETNOTS adlog
Ve (B".0.21). LNUELOOTE OTL AUTEC OL LBLOTNTEC TPoXUTTTOLY ameLlelag and

Tov optopd e V oto (B'.0.21), ondte Bev eivar GUVETELD OTOLGOATOTE BLo-

popwiic e&iowang, omwe 1 (B'.0.24), tou unopel vo ixavoroel n V. Avtideta,
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XENOWOTOLUVTUL (¢ xa0pLoTIXOS TaPdYOVTIG OTOV YURUXTNRIoUO TNG Ou-
viptnone aluc wg wovadixrc Aong LEWOoUS TEPLOPLOHOY XATACTUONS TNG
(B.0.22), xadcdc e€aoparilouvv ott 1 oyetin) XotAtoviovy| Tou TpoBAAuoTtog
eAEyYOU elvon TEMEQUOUEVT X0 TEQLYPAPOUV Lol XALOT) CUVARTAOEWY PETOED
TV omolwy uTdpyel Lovadixotnta Aoewv tne (B".0.22). Ynuewdote enlong
ot T amotehéopata e Hpdtaong B'.4 unotétouy bt o > 0, eve tor dhha 500

oY 0oLV XaL Yol TNV VIETEPUIVIC T TEPITTWOT. X1 cLVEYEL, uTo¥éTouue

oTL
o < p+ 20,
enELdT) SlopopeTind 1 cuvdpTtnon oliag V' dev elvon memepacuévn ([3)\ 2y oho
3.3.1).
"Eotw

c

ITpétaoy B'.2. Yrobétoupe éu 0 < 0? < p+ 2b.

(i) H ouvdptnon = — V(x) + Ax?, dnov A opiletar otn (B'.2.2), elvar

pOivovoa oo [0, +00).

. / / ’ / 1 b+p
(i) H owvdptnon aiag oto undév wavoroel V(0) < +In (@> .

(ili) Eotw x1,x9 € [0,00) pe x1 < x9, kai, yia u € 4, éotw x(-) n Adon
oty €€, (1.0.1) pe eyyo u ka1 x(0) = 1. Av 1, elvar o xpdrog
kpovong s x(-) oo [Ta,+00), 6nAadn, 7, = inf{t > 0: z(t) > .},

TdTe

Vi(zy) = TéﬁE [ /0 e (Inu(t) — ca®(t)) dt + epTuV(%Z}B;Q,g)

Ytic endueveg dvo Ilpotdoec (B3, B'.4), AVAUPECOUNE TIG PaCIXES LOLOTT
TeC TNE ouvdpTnong ollag V' mou eyyuwvtar 6Tt V' ixavorotel Tic unodécelg
ToL Vewprjuotog olyxpetone B'.2.

Ewwortepa, nlpotaocn B'.3, oniovet 6tin V dev tnyaivel oto pelov dnelpo
o yefyopa ond to —Ca?. Emniéov, delyvel 6t 1 V ebvon yvnolwe @divouoa

xan 6Tt wcovorotel Ty DV < —C' < 0 ye v évvola Tou 1mdoug.

Ilpotaon B'.3. A uvroféoouue du 0 < o2 < p + 2b.
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(i) Ymdpyovr orabepés Ky, Ky > 0, tétoies vote, ya kdle x > 0, éyouue

2
a 1 a
K < V@) +Alz+—) +-1 + < K, (B'.24
1 < Vi) (x b+p> pn<x b+p) < fo )

(ii) Ymdpyer oradepd Cy > 0 ka1 ovvdptnon ¢ @ [0,4+00) — (0,00) e

liH(l] c(x) = e~ VO téron dote, ya kdle x1, 14 € [0, +00) e x1 <
T—
T2,

V(Q?Q) — V(:L‘l)

To — 1

< —C(ZL'Q) < () <. (B’25>

O endpevog toyuptopoe poali e to (B'.2.5) oniwver tnyv tomixd Lipschitz -
OLOTNTAL TG cUVAETNONE a&lag 6T oToY Ao TIXN TepinTwon. Emmiéov, n oyéon
(B'.2.7) pog diver Ty xotdAAnin ouvoptoxt) ouvifxn yio v e&iowon HIB,
(B".0.22) mou eyyudton 611 T0 avTioTOLYO TEOBANUL CUVORLIXEY TGV Elvor

xaAd tedeuévo.
ITebtaon B’.4. Ag unotéoouue 6t 0 < o? < p+ 2b.

(1) Ymdpyer e avéovoa owvdptnon L, : [0,00) — R e hH(l) L,(x) =
x—
e~ PV O+ réroa dote, yia kdle 1,74 € [0,00) e x1 < Ty,

V(ZEQ) — V(I’l)

To — 1

> Ly (@) (B'.2.6)

(1) H ovvdptnon V' eivar napaywyioun oto undév kai

In (= V'(0)) + pV(0) +1=0. (B".2.7)

B’.3 Kegpdiowo 4

Y10 Kegdhowo 4, amodewcvboupe tnyv Onapln BEATIoTou EAéyyoU T6GO GTNY
VIETEQUIIO TIXY) G0 X 0TN oToyaoTixy| tepintwon. Iapousio Yoplfou, 1
eEMETTIXT OUAAOTNTA TNE CUVAETNONG aliog ETTEENEL TNV LIOVETNON TNE OU-
vijdoug pedodoroyiag. Amd tnv AN TAELEd, 1 TEOCEYYLON AUTH Bev elvon
TAVTOL EQUXTY| 0T VIETEPUIVIOTIXY) TERITTWOT), EMELDT| 1 cLVAETNOT a&lag OEV
avopéveTal yevixd vo etvon opady|. Ipdyuott, dtav 1o cbotnua tne Aluvng

€yel éva onueto Skiba, 1 cuvdptnon a&lag dev elvon Sopopiowur exel.
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TN VIETEQUIMIO TIXT| TERITTWOT), TEOXEWEVOU Var amodel&ouue OTL 1) BEATL-
ot ol ebvon e@uxty), amodetxviouue war Apyy) Xoyxpelone (Oedpnuo B'.3)
X0 TN YENOWOTOLOUVUE Yol VoL XURLIPY AOOUNE TN cuvdptnon ollag, V', and tnv
vrodhgia ouvdpTtnon adloag, Jp g evotnTag 2.2.1, 1 onola xataoxcudleTon

ue Bdon v Apyr) Méyiotou Pontryagin.
Ocwenua B'.3. Ag vnobéoouue ot

e u € C(]0,00)) elvar pua yvnoing pdivovoa vroAvon s (B'.0.24) (ue
o =0) owo [0,00), pne Du <

1 / /
— oo M€ TV évvoia Tou 160U, Yia

/7 z /7
kdrowa Uetikr) otalepd c;.

e v e (C([0,00)) elvar pua yynoins pdivovoa vrepAvon tng (B.0.24) (ue
o =0) ovo (0,00), térowr dove v > —co(1 + x9), dmov ¢y pmopel va
efvar omowaonmote Jetikn) otalepd ka1 q umopel va elvar omowoodrmote

Tpayuatikos aproucs.
Téte, u < v oo [0, 00).

Ynuewdote ot e Baon v Hpedtaon B'.2.0(ii) n ouvdetnon a&iac V' eivou
yvnolng @divouca xou DV < —%, UE TNV €vvola Tou LEWOoUS, Yia Xdmota
Vetinr) otadepd c. Luveyilouye €meita amodeixviovTag OTL 1 cuvdpeTnon a&lag
V' ebvan o Moon i€iddoug teploplopol-xatdotacng tne eélowong (1.0.6) oto

[0, 00) 6tavy o = 0.

Ocwenua B'.4. H ocwdptnon a&las V eivar pa owveyns Avon 1Ewdous
mepopiopov kardotaons s efiowons (B.0.24) oto [0, 00). Edikétepa, n'V

ucavoroiel Tny (B'.0.24) oto x = 0 ue v kAaoikr) évvow.

‘Enetta 8elyvouue otL 1 unodrigia cuvdptnon okiog pag, Jp, ixavorolel TiC

umo¥€oeic Tou €yvay yla TNy utephlon v 6To Ocwpnua B'.3.

Afupo B'.1. Eoww 6u Jp elvar n vroprigia ovvdptnon aéias tng (2.2.11).

Tore,
i. Jp etvar pOivovoa.
ii. Jp etvar Aon 1&ddous oo (1.0.6) pe o =0, oo (0, 00).
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i, Trdpyer ca > 0, wérowo dote Jp(x) > —co(1 + 22), ya kdOe z > 0.
‘Etot, xatahryouue oo Boacind cuunépacya

ITopiopa B'.1. To vreteppuviotiké mpdpAnpia tng pnxns Aluvng emdéyetai
PéAtioTo édeyyo.

‘Eneita, anodewvboupe tny Utopdn BEATioTou eréyyou Tapouaia YoplBou
(0 > 0). Me Bdon to Oedpnuo B'.1, n V' eivar wa Ao €ddoug tng €E.
(B".0.22) o710 [0,00) xou amd xhooxd AMOTEAEGUOTO Y1 OUOLOUOPQU ENREL-
TTUX00¢ TEAECTEG, TEOXUTTEL OTL 1) V' elvol 0TnV Moty HotixdTNTOL Lol XAAGIXT
ANoon e (B.0.24) oto (0,00). Ev téet, anodewvietar 6t 1 V' ebvon 0o
popeg mapaywylown oto & = 0 xou ye autOV Tov TEOTO, and TNy Ilpdtaon
B’.4(ii), mpoxinter 6Tt n V' elvon po xhoowry hoon e €€, (B.0.24) oto

[0, 00). To anotéheopa avtéd avapépetoar oty Ilpdtoon B'.5.

IMpotacn B.5. Av 0 < ¢* < p+ 2b, n owdptnon aélas V etvar pua
kAaoikn Adon wng e€iowons (B'.0.24) oo [0, 00) ka1

V(0) = ~(p +b—r'(0)) (V'(0))?

H elheimting opyahdtntar Tng ouvdptnong ofiog moapoucio YopdfBou emi-
Teénel TNV LioVETNOT TNE cuvdoug uedodoloyiag yia TV anddelln Tng -
&ng tou Pértiotou eréyyou. Ilpog auth v xatediuvor, axorovdolue o
Bridarta Tou meptypdpovton 6To (23], e XATEAANIES TEOTOTOIAOELS YLoL TNV o-
VTWETOTLOT TNG AMWOAEINS TNE EAAELTTUXOTNTAC OTO OPLO XAl YIS €xPNENG TOU
0QEROUC Ylal IxEoUS EAEYYOUC, AOY® TS Tapouaciog Tou hoyoupriuxol dpou.
Ocwenua B'.5. To ogtoyaotiké mpdfAnua tns pnxns Aiuvng déyetar évay
Pértioo (avatpopodotolevo) éNeyyo, o omolog €lvar TnNg LOpPIiS:

u(t) = —m, £>0 (B'3.1)

onov z(-) etvar n Adon tns (B".0.19) mov avtiotoel oe avtdr tov éleyyo.

B’.4 Kegpdhoo 5

Y10 Kegdhowo 5, PEAETIUE TNV ACUUTITOTIXY CUUTERLPOES TNG CUVEETNOTNS

okiag, V, 010 +00 %adde xo TIC OUPEC TN AVOAAOIWTNG XATAVOUNS TNG
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BérTiota eheyyduevne Bradixactoc, z*(t), mou elvan 1 BEATIOTO EAEY Y OUEVT
CUYXEVTRPWOT POCPOEOL GTN AUV

To BOewpnua B'.6 mepypdgel TNy oxeiBy| doUUTTOTIXY CUUTERLPORY TNG GU-
véptnong allag V' oto 4+00. 310 xe@dhato 6, TopouctdCouye xal UAOTOOUUE
éva povotovo apliuntind oyfua tou mpooeyyiler tnv (B.0.21). H oyéon
(B'.4.1) eivar xadopiotixfc onuaciac yior tov oxplB) utohoyioud tne V' ooe
auTt6 To TAalolo, xadde mpoTelvel TNV oploxr) cuVIXY oTo BeCLd dxPO TOU

UTOAOYLO TIXOU TEBiOL.

Ocwenua B'.6. Kalds v — oo,

V()= —A (x 3 i p)2 - %m [QA(x + %)} YK 4o(l). (B41)

77
OoTov

P 1 <2b+02 _Ad’(p+2b)
p\ 2p (b + p)?
2T CUVEYELY, UEAETAUE TNV avolholwTn xoatavour| Tng PEATIOTA EAeY Y Oue-

1+ QAC) (B4.2)

vne AMuvng. Aedouévou 6Tt 0 BEATIGTOC EAEYYOC, OTWE UTOBEWVVETOL And TO
Octpnua B'.5, elvon évag éAeyyog avatpo@odoTnone, UTOPOUUE VO TOV AVTL-
AATOO THOOUPE Cotve 6T1) BUVOLXT) TNS AUyNng xan var €8 YOUUE TN GTOY OO TIXT

oLaopint] e€iowor Tou BEATIOTA EAEYYOUEVOL GUC THUATOC!
dr*(t) = (‘W — bt (t) + r(x*(t))) dt + o™ ()dW (¢)
z*(0) =2z

(B'.4.3)

H teheutaio [Tpdtoom meptypdget T CUUTERLPORE TWV OLEWY TNG AVUANO-

lwtng xoTavoung TG TOCOTNTAS POCPOEOL 6T BEATIGTU EAEYYOUEVT AUvn.

ITpbtaom B'.6. H nukvdtnta, f, tng avaAloiwtng katavouns tns fértiota
eAeyxouerns dwdicaotas (B'.4.3) eivar:

fa) = -

E:ﬂ(“fz) e~ 72 %) (B'.4.4)
omov Z otalepd kavovikomoinons kai

Yuykerpiuéva,

lim 1P, (z) = V7(0) kar lim &, (x) = 0. (B".4.5)



B’.5 Kegdiowo 6

Y10 Kegdhowo 6, vhomololue éva aprdunTtind oyfuo TOU XUTUCKEVAOTNXE UE
Bdon to oynuo [4] twv Barles xau Souganidis xou pehetdue aprduntind T

TEOYLEC Xou TIC WOTNTES TNG PEATIOTA EASY Y OUEVNS AUvng.

‘Eotw Az 1o BAua g ogodpopeng dtauéeone 0 = 29 < 21 < ... <
zn_1 < oy = 1L tou [0,]] yio I > 0 opxetd peydro. Xpnowonotolue o
TPOC To T OLAXELITOTOMOT TEMEQUOUEVKY DLUPOPWY Yol TNV TEOCEYYLOT)
NG TEOTNE THURAYDYOU 0TOV Yeouuxd 6po tou (B'.0.24), o tpog to epmpdc
OLOXELTOTIOLNGCT| TEMEQUOUEVLV BLAPORMY YLl TNV TOEAYWYO GTOV Aoyaprduixd
OPO X0 EVOL XEVTEIXO OY UM TETEQUACUEVWV DLAPORKY YO TNV TEOCEYYIOT] TNG
0E0TEPNC TOEAY WY OU.

Enouévwg, €Youde To Topaxdte Oy AU TENERUCUEVWY DLUPORKY, YL 1 =

1,....,N—1:
1 i— Vi |1 i1 — Vi
Vi — ;(r(ml) —bx,-)vA—xl—i-; [cxf—l— 1+1In (_VHA—:U)l
2
07 JVip1 + Vi =2V, ,
- —x; =0. (B'.5.1
2px’L (AJ;)Q ( )

Axohoulovtog To [4], anodexvieton 6Tt TO ToEATAVE Oy AU EiVoL GUVETES

/ ’ /
X0l LOVOTOVO BEBOUEVOL OTL
2

Ax(r(z) — bx) < %xQ. (B'.5.2)
Emunicov ebvar euotodec xou ouyxAIVEL OUOLOUOR(I OTA GUUTOYT| GTY] HOVOBLXY)
Aoom €ddoug Teploplopol-xatactdoewy tne HIB.
Mo toug apriuntixoie utohoytopolce, dedopévou 6t oto (B'.5.1) éyoupe
N — 1 e€wowoeic ye N + 1 ayvedoTouC. EXUETAAAEVOUACTE TNV GUVORLAXT
ouvirxn (B".2.7) oto = 0 xou extipolye enione vy tur tou V' oto 8e€id
dxpo x = [ e Bdon tov tOno (B'.4.1) Tng aouunTWTIXAC CUUTERPLPORES TNG
ouvdptnone alloc V xadoe x — +oo.

To clotnua e€ilomoewy
Vi— %(r(xl) — bx»% + % [cmf +1+1In (—%)]
o2 2Vig1+Vi1 2V .
_2_px22 +1(Az)% < = Qop 1_1,2,...,N—1
Vor 3 [1+n (<)) o
(B".5.3)
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woli ue 0 ouvoplaxt| cuvVIHxT

2
a 1 a
Vy=—-A(l+ — (240 +—) |+ K B'.5.4

" ( b+p> pn( ( b+p>) ( )

amoteroly éva clotnua N X N un yeoupxwy e€lohoewy. MNTny Topolod
epyaota, tpoceyyllouvde T Moo aUTO) TOU CUCTAUATOS YETOWOTOLOVTAS TN
uédodo Newton-Raphson.

H onuoavtixotnta tng pedodoroylag yag yia Tov uTohoyloud tng Aoong
Kadoug V' éyxeltan 010 yeyovog oTL elpacte ehedicpol vo emAéCouue o-
TOLIOHTOTE THY) TN TUPUUETEOU 0 YENOUUE, EQOCOV xavoTotettan 1 cUVITXN
02 < p+2b (Bréne Lydho 3.3.1) xou 1 ouvdixn B'.5.2. Me awté tov 1pémo
0ev neplopllOUAG TE U6VO G Uxpéc TéS Tou Yoplfou, o, 6Twe ato [26].

2T GUVEYELY, VAOTIOLOUUE TO TUPATAVG Gy VU0 X0 HEAETAUE TIG LOLOTNTES
g ouvdptnong okiog (fﬁ\ eoveg 6.1a xo 6.1¢) xou ¢ PéhTiong oTpuTn-
yYhe evomddeons ewopdpou (Bh. eixdveg 6.1b xou 6.1d) xadidg ahhdler n
Tiwr Tou YoplBou, o yia TN cLVADN ETAOYY TNC OLYUOEWBOUSC CLUVAPTNOMC,
r = a?/(z* + 1). H emdoyh twv nopopétpny xohITTel xou Thy Tepintn-
on Hovadol onuelov ooppomiog xat TNy Tepintwon Utapéng onueiou Skiba.
Yy teleutola Tepintwon, Topatneolue éva dhuo (aouvéyela) Tou BEATIOTOU
ehéyyou oo onueio Skiba.

‘Eneito, yehetdpe Tic TOTHES AhAAYES TNG CUUTEQLPORAS TNG avoAAolw-
NG XATAVOUNC TOU BEATIOTO EAEY Y OUEVOU GUG THUATOS GE GYEDT) UE TIC OLdpo-
eec mapauétpous. Tooo otny mepintwon Tou povadixol onueiou tooppotiog
(elte ohyotpogxd cite eutpoEd), 660 xou GTNV TERITTWON Tou anueiou
Skiba, mapatneolue 6Tt 10 onueio ueyioTou TNg xoTavourg UeToVELTOL TIPOG
UXEOTERES TWESC TOU o ooy xadne auidveton o Yopufog, eved oL 0UPRES
™G xaTavourc oto dmetpo moyaivouv. To amoteréopato autd cuvoilovto
oTIG exoveg 6.2 xou 6.4, eve) avadexvOOoVTaL TO ASTTOUEPMS OTOL YRUPTd-
o Bloohddwone (bifurcation diagrams) 6.3 xou 6.5, 6nou ameixovilovta ot
VEoEC TV TOTXOV UEYIOTWY Xou EAXY(OTWY TNG AVAAAOIWTNG XATUVOUNC GV
cuvdptnom tou Yoplfou, 0.

Ou eix. 6.6a xou 6.6b delyvouv TNV ahharyr) TNG CUUTERLPORES TG OVIAAO-
fwTng xatavounc o€ oo UE TO XOGTOG HOANUVOTS, €, X0 TO TEOELOPANTING

Tapdyovia, p, avtioTolya.
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Téhog, mopovoidloude Ypagrlata Tng ouvdptnong oliag, Tou BEATIoTOoU
eAEY 0oL xou TN avoAAOlWTNG XaTavoung, 6Tay 0 pLIUOS avaxiXAWOTG efval

1 ouvdetnon urepBolixic epantopévne (BA. emdvec 6.7, 6.8 xou 6.10).

B’.6 Kegpdhowo 7

Y10 Kegdhawo 7, yehetdue 0 petocuotodr) cuuneptpopd tpoBAnudtwy oTo-
Yoo TixoU ehéyyou mou eugaviCouv onueior Skiba xou amodetxviouue TN ye-
vixeuorn Tou vopou Arrhenius yio Ty mepinTwon Tou YopuPoclaupTiuevou
BLVAULXOU BITAOU TNYAdLOU.

OcwpoluEe TNV aUTOVOUN CTOYAGTIXT Blapopxt| e€lonao:

da?(t) = f(2°(t), u(t))dt +/2edW, t>0

(B".6.1)
2°(0)=2>0
orou n owdptnon f € C1 (R x U) wavorotel:
| <C
g (B".6.2)

[f (2, u)] < C(L A+ Ja| + |ul)
"Eotw G cuveyhc ouvdptnon oto R x U, G(z,-) € CHU) xou p > 0. Ocw-

eolpE TN cuvdptnom o&lag Tou TEOBAUTOC!

Vo) =swpE. | [ e G, u(s)as] (56.3)

uel
omou U elvon 10 GOVOho F;—TpocupUuoouévey, P—o.5. tomxd ohoxhnedotuwy

OLodaoLdY PE TWES oto U mou xavorotodv:

E, [ | e usas

€10l Hote 1 otoyaoTny| dtagopix e€iowon (B".6.1) va éyel toyueh hoom x(-).

< 00

2T CUVEYELR, XAVOUPE TIC axolovleg uToVECELS:

YnéOeon B'.2. (i) H owdptnon aéias V. eivar (khaoikny) Adon tng
oyxenkns esiowons HJIB:

—eV" — H(z,V!) + pV. =0 (B'.6.4)

émov H(x,p) = sug{f(x, w)p + G(x,u)}.
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(i) Ymdpyer g > 0 térow wote o owvaptioes V. kar V! va efvar opor-
Opoppa gpayéves ws mpog € < gy o€ kdle ouumayés vrooUvodo Tou
R

iii) H(z,p) etvar C? ka1 H,, > 0
bp

() Trdpyer pa BéAtiotn atpatnyikn eAéyyov Markov tng popeng u*(s) =

g (z*(s), VI(z*(s))) =: u*(z*(s)) térowa cote
fulw, @ (2)V:(2) + Gu(w,u* () = 0
Kai n g elvar ovveyns ouvdptnon.

Tno6 v unddeon B'.2, 1o Béhtiota eheyyduevo alotnuoe (B'.6.1) moipver
poper:

daf(t) = —F/(2°(t))dt +/2edW, t>0

z°(0)=2>0

(B".6.5)

émouv Fl(x) = —f(z, g(x, V(z)). Me Bdon v Tnddeon 2 (i)-(ii) xow v

©16TNToL ELoTAdELC TV AICEWY DGOV,
0 / / ’
V. “3 V tomxd opotduopno (B".6.6)

émou Vp ebvon 1 Aon i€adoug oty e€iowon (7.1.4) vy € = 0. Kdvoupe tnv

axohovdn unddeon yio T cuvdptnon Vp.

YnéO9eon B'.3. H owidptnon Vy g ox. (7.1.6) eivar oyeddr mavtod
rapaywyioun.

Adppa B'.2. 116 ng vrobéoes B'.2 ka1 B'.3, éotw () ouurayés vrootvolo

tou R. Tére:
(1) Yrmdpye C = C(Q) téroo dore V' (x) > C gop al\ © € Q ka1 € < g.

(11) H owcoyéveia ovvaptioewy { F.}.~o ouykAivel opoidpopga ota ouunayn

otn ovvdptnon Fy.
To Poaocixd pag anotéheoya ebvan to axdrouo:
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Ocwenua B'.7. Trodérouue 6t n owvdptnon Fy tov Anuuatos B'.2 oxn-
patiCer éva dvvauiko NmAov myyaoiol e tomkd eAdY10Ta T4 Kal TOTIKG HéYI-
0T0 Ty, M€ T_ < T, < T4 Ka1 6T 1) [y elvan C' kovtd ota x4, x,. EmmAéor,
vnofétoupe 6t vndpyow a,q, M > 0 ka1 b € R (avebdptnra wov €) térowa
bote Fe(x) > axi+b, yia kdibe x > M. Eoto i =inf{t > 0: z°(t) <x_}
0 Xpdros mpdTNg Kpovons tou x_ and tn dwdikaoia x° s €£. (B'.6.5). Tére
n avauevouern Tun tov xpdvou T, , otav n owdikaoia x° Eexivder oto x4,

1kavomolel

limelogE,, [75 | = Fo(z.) — Fo(z4) (B".6.7)
e—0

H petacuotodfic CUPTERLPORE TV PN MY AVGY TapaTneeltonr 6T Quon
xan ot pordnuatinolg 6poug avtioTolyel ot Eva clo TNua Ue 500 onueia Looppo-
o xan éva onueto Skiba. Xty noapousia YopdBou, To cbhoTrua xveltar and
TNV ONYOTROPIXT| XUTAOTAGT| OTNV EUTEOPIXY| oL avTioTEoPa, BA. ewdva 7.1.
Emunicov, n popxofovy| @born tou BErtiotou ehéyyou odnyel ot Eva olo TN
ue YopuPoelapTtduevn cuvdptnorn okiodnone. Enopévee, to mpoBinua tng
enxYNS AMuvng Teoc@epeTon ¢ XATAAANAT) EQUPUOYY| TOU ATOTEAECUAUTOS HOG,
Ocwenua B'.7. Trodetouue 6t ot tapdueteot b, ¢, p elvon T€TOlEC WOTE TO VTE-
TEQUIVIO TIXO TTROBANUA TNG eny RS Aluvng va dadetel 800 oruela 1ooppoTiag
xan éva oruelo Skiba.

Eqopuélovtog tov petaoynuatiopd y(t) = logz(t) ot Swdwwaoia (1)
TOU GTOY Ao TXOV TEOPBAAUATOS NS PNY S Aluvng (B".0.19), Beloxouye :

dy(t) = (e‘y(t)u(t) — b+ (eV0) v — 7) dt + odWW,

y(0) =y
{d¢ ex toUTOU, 1 BUVHUIXY| TOL TEOPBAAUATOC TNG eNY NS AlUvng TeplypdpeTon

(B".6.8)

émoe oty €€, (B.6.1) xou unopolye va eZetdooupe T ouvdptnon o&iog Tou

TeoPBAAUTOS TNG eNY NS AMUVNG ¢ Teog TN dLadixaoia y(t), ONAO™

o0

V(y) =supE, /e"’t (Inu(t) — cezy(t)) dt| =V(eY)
ueid
0

Ané v Ipodtaon B'.5, mpoxintel 6TL 1 cuvdptnon V eiva xhaoowt) Ao

oto R ¢ elowone

1 .- - - -
—§a2v” — H(z,V')+pV =0 (B".6.9)
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6mou H(z,p) = (r(ef‘)e_x —b— %2) p—In(—p)+x—1—ce* xou 10 PéhTioTML
eheyyduevo cvotnuo (B'.6.8) nadpver ) poppn:
a7 (t) = —FL (" ()t + odW,

y7(0) =y

(B'.6.10)

OTOoU
2

g
Fl(y) = = b—r(e!)e? + —
W) = e e+

ot T0 povtéro autd amodexvOOUUE To BUO TEAEUTALN AMOTEAEGUATS UOC.

IIpbtaon B'.7. Trolétovue éti n owvdptnon pviuol avakikAwong r, e-
kt6s ané tny Tréleon B'.1, ikavoroel enions kai r(z) < bz ¥V x > 0. Eotw
Q C R ouunayés kar og < /p. Tore vndpyer C = C(§2,00) > 0 wéroio dote
V/(x)] < C ya xdbe z € Q, o < 0y.

Afppa B'.3. F,(x) > br+ C ya kdle x > 1, émov C orabepd avekdptnn

TOU O.

To emyelonuo emahfAleucc Uag YL TO VIETEQUIVIOTIXO TEOBANUA TNS P
yhc Muvne ovvendyeto ot 1) Fy ebvon C* (R \ {z,.}), 6mov ., elvar 0 hoydiprd-
uog tou onuelouv Skiba. H Ilpétaon B'.7 xaw to Afuupa B'.3 detyvouv 61t 1o
TEOBANUa TNS ey Mg Auvng, ud Ty undleon Uopéne 600 onuciwy LWoppo-
lac xou evog onuelou Skiba, ixavorolel Tic uto¥éoeic Tou Oewpruatoc B'.7.

Enopéveg, o vouog Arrhenius efvar euotodic yio 0 povtélo pag.
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