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Abstract

Monitoring marine pollutants, such as Marine Debris and Oil Spills is of
fundamental importance for protecting the marine environment, public health and
maritime activities. The deployment of the latest-generation Earth Observation
satellite platforms has led to an increasing volume and variety of geospatial data,
facilitating continuous monitoring of the marine ecosystem and operational systems
development. However, the accurate detection and tracking of marine pollutants and
other features on the sea surface from the currently broadly available satellite data is
still a major challenge due to the properties of current sensors, the complex optical
properties of specific floating objects, the variability of the sea conditions and the
monolithic approaches employed so far (e.g., binary classification tasks). To this end,
this dissertation is concerned with the mapping of marine pollution, i.e., Marine
Debris and Qil Spill, and other sea surface features using multitemporal high-
resolution multispectral data at a global scale.

The first topic of this dissertation is the investigation of the capabilities of the
current Sentinel-2, Landsat-8 and Planet satellite sensors in detecting plastic debris.
Since at the beginning of this thesis, the research on marine litter detection from
satellite imagery was in its very infancy, the first step was to collect reliable in situ
data of Marine Debris to verify multispectral satellite observations. Thus, focusing on
Honduras Gulf (Caribbean Sea), a highly affected by plastic pollution region,
significant insights about plastics' spectral behavior, sources, travelling trajectories
and tracking were extracted, contributing to fundamental open issues regarding
Marine Debris monitoring.

Secondly, this dissertation contributes to benchmarking Marine Debris detection
using high-resolution multispectral Sentinel-2 satellite data. Well-established
Random Forest classifier and Deep Learning U-Net model were developed and
evaluated, and the labelled data were openly provided, triggering the research
community to create and validate current and future Marine Debris detection
solutions. The considered created database, named MARIDA (Marine Debris
Archive), was the first open-access benchmark dataset that discriminates Marine
Debris from other features that co-exist, such as floating macroalgae, ships, water-
related classes, etc. A detailed spectral and statistical analysis of MARIDA was also
offered through interactive online material, enabling the users to explore the spectral
behaviour of Marine Debris and other recorded classes. MARIDA FAIR data and
software are open and re-usable and can be integrated to several marine debris
detection solutions based on artificial intelligence, or satellite pre-processing
pipelines.

The third contribution of this dissertation is the development of a mapping
framework for marine pollutants and sea surface features detection, including

globally distributed Sentinel-2 satellite observations, aiming to support future
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operational solutions development. Towards this direction, a new state-of-the-art
convolutional model was proposed, named MariNeXt, which led to overall F1, mloU
and Overall Accuracy scores of 76%, 64% and 89%, outperforming all baselines by at
least 12% in F1 and mloU metrics. A Marine Debris and Oil Spill (MADOS) dataset
was also offered, composed of 174 Sentinel-2 scenes captured between 2015-2022,
with approximately 1.5M annotated pixels globally distributed and collected under
various weather conditions, forming 15 different thematic classes. Finally, important
findings regarding the discrimination potentials of the considered thematic classes
are discussed in detail based on an extensive quantitative and qualitative evaluation.

To the best of our knowledge, there is no other available mapping framework
and open-access dataset for marine pollutants and other sea surface features
detection at 10m spatial resolution with such thematic analysis and quite promising
mapping outcomes. By considering, without exceptions, the competing marine
pollutants, other sea surface features and water-related classes, reliable operational

monitoring solutions can be developed using the proposed framework and dataset.
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ExTeETAUEVN NEPIANYN

H Cwn otov mAavitn efaptatatl og onpavtikd Pabpd and toug wkeavovg,
OV ATIOTEAOVV TO HeYaAUTEQO HéQOg Tou veQoL otn I'n. ErumAéov, mepimov to
THLOV TOL TIAyKOOT LoV TIANOVOHOU (el OV maQAKTIax (v, VA OL ETLYXELQTOELG
mov  Pacilovial OTovV wWKEAVO OULVELCPEQOLV OTNUAVIIKA OTNV TAYKOOUL
owovoplia. Emouévwg, n peAétn tov Badaooiov megipdAAovtog amoteAet oruepa
TIQOTEQALOTITA YIX HEYAAO aQLOUO ETUOTNUOVIKWV KOWOTHTWYV, £0VIKWV KAl
dLeOVWV Popéwv kat ogyaviopwv. Idaiteoa n peAétn e BaAdoowag gumavong
(.X., Oadaoowx amogolppata, metEeAdOkNAWDES) amotedel éva amd Ta MO
TEOTPATA AAAX KL TUO ONUAVTIKA Ttedla €0evvac Adyw TwV KATAOTQOPLUKWV
ETUMTWOEWV Yix TN Promokiddtnta kat tov avOowmo. H éoevva kat n akoprig
Katayoa@n kol magakoAovOnomn tng BaAacowag Umavong koivetatr mAEov
anagaltntn) 1000 Yy TNV mEootacia tov O0AAAOCIOV OKOCLOTHHATOS KAl TNG
dNUOOIAG VYEelag OO0 KAL YL TNV LTTOOTHOLEN TNG YAAALLAG OLKOVOLIAG.

Ta dedopéva apatrionong yne mEOT@EEQOLV TN dLVATOTNTA VI KATAYQAEPT|
Kol magakoAovOnorn tov OaAdoowov meQPAAAOVTOG O peYAAES XwOUKES Kal
X00OVIKES KAlpakes pe maykoopa kaAvyn. Iduitepa ta teAevtaio xpovia 1
dudBeon TNAemOKOTUKWY deDOUEVWY amd aloONTEeg dOQLPOPWV TeAgvTaiag
YEVIAC KoL 1 avamtuln pefodwv mov Bacilovtat oe HOVTEAa kat peBodovg
U XAVIKNG LAOMOoTC, £xEL0dNYNOEL O EXIQETIKA AMOTEAETUATA O OXEOT) LE TNV
napakoAovOnon tov BaAdoowov megBdAAovrtoc. TlagoAo avtd, o axQPr|g
EVTOTILOUOG TV QUTIAVTWV Kal AAAWV oTolxElwv otV emipavela e OaAacoag
He TN XEMOoT Twv dabéouwy dogueopkwy dedopévwv amotedel i Wiaitepa
OUOKOAT TEOKANOT A0YW TWV QAOUATIKWOV KAl XWELKWV avaADCEWV TwV
00QLPOPWV KAl TwWV TOAVTIAOKWY OTTIKWV WOTHTWV OQLOUEVWY AVTIKELUEVWV
(r.X., MAaotka anogplppata). EmnAéov, ta povtéAa unxavikic pabnong mov
éxovv avarntuxOel éwg kal orjpeQa Yiot TV evTomiopd NG BaAdooag QUTAVOTg
TIC TEQLOOOTEQES POQEC APOQOUV O& TOAD OUYKEKQLUEVES TeQLoXéG (regional
models), yeyovdg mov meQoptlet TV kavot)Ta yevikevong Twv HoVTEéAwY, eva
OTOXEVOVV KVQIWG OTOV EVTOTUOUO HLAG HOVO HOQETS QUTAvVoNG (TT.X. TAaOTKA/
oXL mMAaoTkd 1M Tagovoia/ amovoia mETEEAAIOKNADAG) kat HAAloTa e OXL
wavormomtikés  emdooelc. TéAog, T mMEQLOOOTEQA CLOTHHATA TIOL  E€XOLV
avantuxOel pnéxotL onueQa e0TAlOVV KLRIWS 0TIV KATAVOTOT] KAL TO dAXWRLOUO
TV QACUATIKOV VTIOYRXAPWV XWEIS va Aapfdvouy vrtdpyv 1 XwoLKn 1) XQOVIKY
TIAT|Q0@OQIA.

IToog v katevOLVOT avTH, OTNV TTAROVOA DOAKTOQLKT] DLATOLPY|] HeAeTdTal
Kat avaAvetar Oeodkd TO avTikelpevo TOL evtomopoL e OaAdooiag
ovmavong (BaAdoowa amogplppata kol TeTEeAaloKNAES) Kabwg Kol AAAwV
AVTIKEEVWV/ OTOLXEIWV OTNV eMPAVELR TG OAAQTOAS e XOT)OT dLAXQOVIKWV

TIOAVPAOUATIKWV  DOQLPOQIKWY  dedOUéVwY LYMATNG xwowkne avaAvong oe
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naykoopa kAlpaxa. H paouer} ovvelopopd g datoPric etvat n avamtuln kat
a&oAGYNon evog peBodoAoYKOU TAALOIOV Yot TOV EVTOTUOMO TwVv OaAdooiwv
ATIOQQIHHATWV Kol TTETEEARLOKNA WYV e LVPNAT XWELKT] Kat Oepatikn avaAvor).

ITio ovykekQuéva, OTO TMEWTO OTAdO TapovoLaletal 1 dleevvNOT TWV
dUVATOTITWV TwV doELPOPWV VYMATG Xwowng avaAvorng Sentinel-2, Landsat-8
kat Planet otov evromopd twv OaAdoowwv amogoippdtwv. E@ocov dtav
Eexivnoe 1 OLYKEKQLUEVT) DLATELPT) 1] éQevva YA TNV avixvevon twv Bardcowwv
ATIOQQIHUATWV aTtd TNAETUOKOTILKA DEDOHEVA TAV 08 AQKETH TOWLHO OTADLO, TO
MEWTO BripHa Ntav 1 oVAAOYT] A&OTIOTWY deDOUEVWY AVAPOQAS [LE OKOTIO Vo
eTkaQomomnBovv oL dogupoplkéc magatnENoes. Emopévws, 1 épevvar apxika
emkevtowOnke otov KoAmo tng Ovdovoag (Kapaifikr) OaAacoa), pia megloxn
TIOL elvat amd TIg Mo eTMUPBAQUHEVES ATIO TNV TAROTIKT) QUTAVOT] Ttarykoouiws. H
OUYKEKQIHEVT] TeQloXn] amodelxOnKe Wavikn yia 11 HeAétn) ¢ TAAROTIKNG
QUTIAVOTG KAl TNV efaywyr] ONHAVIIKWOV OAMOTEAEOUATWY OXETIKA HE TX
ATIOEQIHHATA, TN @ACUATIKY] TOUG CUHTIEQLPOQA, TIG T YEC TOVG (TTOTAHLA) AAAK
Kat v Topelar tov akoAovBovv. Emopévwg, 1 magovoa datoPr) ouvelo@épet
ONHUAVTIKA O€ KQIOHA eQWTNHATa TOv €Xel O€0EL 1) €MIOTHOVIKT] KOLVOTNTA
OXETIKA UE TN HEAETN PAOIKWV XAQAKTNOLOTIKOV TWV ATIOQQLUUATWY HLE T XONjon
D0ELPOPLKWYV DEDOHEVWV.

H devtepn evotnta agood ot pebodoAoyia a&loAdynong (benchmarking) Ttov
EVTOTIOUOV TV OAAAOOIWV ATOQOIUUATWY UE TN XOT)OT TWV TOAVPATUATIKWOV
dedopévav  LYNANG  xwewkng  avaAvong  Sentinel-2. Ilio  ovykexQipéva,
dnpovEeynOnke to ovvoAo twv dedopévwyv MARIDA (Marine Debris Archive) pe
TIAQATIQENOELS TAAOTIKWV  ATOQQLUHATWV aAAG kal AAA@V  avTikelpévov/
otolxelwv Omweg Sargassum HAKQOQUKOG, TAolx, K.a. Kal avamtoxOnkav kat
a&oAoynOnrav ot aAyoéplOuot pnxavikrg uanong Random Forest kat U-Net. To
OUYKEKQIUEVO OUVOAO dedopévwv elval to mEWTo mov dlxwellel o MAdOTIKG
amogolppata and AAAx OTOLXElx TIOL CLVUTIAQXOULV OTNV ETIPAVELX TNG
Balaocoac oe MOAv@aouatikd dopLEoQkA dedopéva. Emione magovoiklovtat
OLeE0OKA 1) PACHUATIKT] KAL OTATIOTIKY] AVAALOT] TOU OUVOAOUL dedOpEVWVY HéEOW
OLOQAOTIKNG  LOTOOEADAS, OLEVKOAVVOVTAG TOUG XONOTEC VA eEeTAOOLY TN
PAOUATIKI] OULUTEQUPOQR TWV ATIOQQLUHATWY KBS kat Twv vndAomwv
katnyoowwv. Ta avorxta dedopéva MARIDA etvatl FAIR epooov eitvat evtomtiowa,
TIEOOPATIUA, DIAAELTOVQYIKA KAL ETTAVAXQT|OLLUOTIOW|TLUA.

H 7toitn evéomta g magovoag dWaKToQKrg datELPr]s elval 11 avamtuén
Hiag pebodoAoylag v tov avtépato eviomiopd g OaAdoolag gumavong kat
AAAwV otolxelwv oty erupavelx g OaAacoag pe okomd TNV LVTOOTHELEN
HEAAOVTIKWV EMIXELQNOWAKWY CLOTNUATWY TapakoAovOnong g BaAdooiag
ovmavonc. Ilpog avtr) v katevOvvon, dnuioveynOnie ula Pdorn dedopévwy e
TIEATNOTOELS TAAOTIKWOV ATOQOLUUATWVY KAt TeTQeAAIOKNADWY, kabwg kat

AAAwV oTtolXeiwv otnV empdvela TG BaAaocoag o maykoopx KAlpaka yix 15



katnyopies. H Bdon avt anmoteAeitat anod 1,5 exatoppvox eukovootoryeio Kot
174 dxopetiég eikdveg Sentinel-2 mov kaAvTTTOLVY TN XQOVIKN TTEQiOdO 2015-2022.
Entl mpooBétwe, vAomonjOnke kat afloAoynOnke éva katvotopo HovTéAo Babidg
UnNxavikng padnong, to MariNeXt, to omolo 0drjynoe oe vPnAdtepéc Tipég and ta
vmoAoma povtéAa avag@opds (baselines) oe OAec Tig petoucés afloAdynong.
TéAog, péow TOOTIKNG KAt TOOOTIKNG aAELOAGYNONG YiveTal AemTopeQT)S avaAvon
KAL TTQOVOIAOT] TWV ATIOTEAEOCUATWY OXETIKA HE TI dDUVATOTITA DIAKQLOG TWV
QATIOQOLUHUATWY KAl TETEEAXIOKNADWY amd ta LIOAOLTta oToLXEl/ avTiKelpEVa
oTo DOPLPOELKA dedopéva.

H magovoa dwxtoiffr) avantvooetat oe 6 kepddaiwa: Lto KepdAawo 1,
TLEQLYQAPETAL TO AVTIKE(LEVO TNG EMIOTNHOVIKIG HEAETNG KAL avATITVOOOVTAL OL
Paoikéc MTUXEC KAl TIQOKAT|OELS OTOV eVTOTOUO TS BaAdoolag QUTAVONG He N
XoMo1 Twv dxBéatpwv doQueogkwv dedopévwv. TTagaAAnAa, meoodiogiletat To
K{vNTEO, OL 0TOXOL TNG DLATOLPTIC KAOWES KAL 1) CLVELCEPOQA TG OTNV ETUOTIUOVIKT)
KowotnTa. AkOUn, magatiOeviar ot dpoolevoelc TOV TEOEKLYPAV ATO 1T
OUYKeKQILEVT] DlaTELRT Kol TEAOS TaoLOLALETAL 1) DO TOL TEVXOUG.

Zro Kepadaio 2, agxika, avantvooetal 1 diBéoun PipAloyoapia oxetika
He TO MEOPANHA NG MAaOTKNG QUTAvonS kabwg kat TG pedddovg mov €xouvv
xonooromBet ta teAevtaia Xeovia yix tnv magakoAovOnon tg. ErumAéov,
Yivetal avaokomnon twv pebodoAoywv mov éxovv mpotabdel and 1t ovyxoovn
BpAOYoapia yix tov evtomiouo tng Oaddooiag guTavong kat AAAwv ototyelwv
oV empaveln e BaAaocoag pe T XENOT TOAVQACHATIKWV €KOVWY LYPNATG
XWOLIKNG avaAvonc. Akoun, yivetal oUOVTOpT TeQlyQaen g dbeotpotntag kat
TV XAQAKTNELOTIKWY TWV d0QUEPOQLKWV EKOVWV VYPNATIS XWOIKNS avaAvong
Sentinel-2, Landsat-8 kat Planet. TéAog, magovotdlovtat oL QAOUATIKEG VTTOYQAPES
OAwV Twv efetaldpevwv atolxelwv oty empdvela g OaAaooag kabwg kat
oVaAVOVTAL TEEQLMTWOELS, HE OTITIKA TAXQADELYUATA, OTIS OTIOlEG O OLAXWOLOHOG
TOLG Bacel HOVO TNG PAOUATIKTG TAT|QO@OoRlaG elvat agkeTd SVOKOAOG.

1o KedAaio 3 avantvooetat ) peBodoAoyia yiax tnv magakoAovOnon twv
OaA&OOLWV ATIOQQLUUATWY KAL TOV EVIOTILOHO TNG T YT]S TOUG (TIOTALA) KAL TG
TOQEIXG TOUG HE TN XONON TWV TOAVPACUATIKWY dedOUévwy amd Toug
dopupodpovg Landsat-8, Planet & Sentinel-2. ITio ouvykekQuéva, avaivetat
dLeodka 1 OLAAOYT] TV dedOUEVWV AVAPOQAS KL TWV WKEAVOYQXQIKWV
dedOHEVWY, 1] MEO-eMe&eQyaria TV EKOVWV Kal 1 dadKaoior avayvweLong Twv
TAAOTIKOV  ATIOQQLUUATWY KAL TOU HAKQOQUKOUG Sargassum ot doQuQOQLK&
dedopéva otnv mepoxny tov kOAmov g Ovdovpac (Kapaifwr) OaAacoq).
‘Eneita, moagovoidlovial  avaALTIKA Ol QAOUATIKEG  VTOYQAPES TV
eEetalopevwv otorxeiwv kabwg Kal Ta PAOKA XAQAKTNELOTIKA (TNYES, TOOXLA,
TaxVmta, PAEOg) TV  ETUTAEOVIWV TAAOTIKOV —amooltpatwv. TéAog,

napatiOevtat 1 oOYKQLOT TWV ATOTEAETUATWV HE TA QATOTEAEOUATH TIOL
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nEoékLPav amd HovtéAo TeAevtalag texvoAoyiag kabwe kat e TNV vTtdoxovoa
BpAoyoapia.

Iro KepaAawo 4 avaAvetar 1 pebodoAoyla a&loAdyNONg EVIOTUOHOV TwWV
OaAdoowv amogoippdtwy (Marine Debris benchmarking) ota moAveaopatucd
dopuopka dedopévar Sentinel-2. AQxlkad YIvVeETal avaAvLTIKY] TEQLYQAPT] TNG
OVAAOYTG TV dedOUEVWV aVAPOQAS (KATAYQAPES ATO TOAITEC-EMIOTIHOVEG,
BpAOYoa@la, péoa eVNUEQWONG) TIOLU AQOQOVV O TAQAKTLEG TEQLOXES Kol
TOTAMIA TIOV elval eTUPAQUUEVA ATO TNV TMAAOTIKY] QUTIAVOT). XTI CLVEXELX
Yivetat dleEodikn] mapovolaon NG dADIKACIAG AVAYVWELOTG TWV KTTOQQLUHATWY
OTIC DOQLPOPLKES ekOvVeg Sentinel-2 kat Tov TMEWTOKOAAOL Ym@lomoinong mov
arkoAovOnOnke. EmmAéov, mapatiBeviar die£odukr) meQLyoa@r Kol OTATIOTIKN
avaAvon tov ouvvoAov dedopévwv (MARIDA) mov moékvpe, kabBws kat 1
OTITIKOTIOMOT TWV dOQUEPOQIKWY TAQATNONOEWV PACEL TNG PACUATIKNG TOULG
nAnogogiac. Entetta, avantvooovtat kat aElOAOYOUVTAL TIOOTUKA KAL TTOOOTUKA
oL néBodot unxaviknie padnong Random Forest kat U-Net kat ta anoteAéopata
niov eENxOnoav ovykpivovtal pe tnv eooeatn BiBAoyoagia. TéAog, ue Baon to
oVvvoAo dedopévwv MARIDA, efetalovial MeQaUTéQW @AOUATIKOL delkTEG KOl
XwOKA oTolxela, avaAvetat 1 oVHYPOAN tovg oty erutevyxBeloa ako(Pela Tov
HOVTEAOL, Kol TIROTEVOVTAL CUYKEKQLUEVOL CUVOLACOL Yt TOV X WELOUO TWV
LTIO HEAET) ETUTMAEOVTWV OTOLXELWV OTA TTOAVPACTUATUCE DOQULPOQLKA DEDOUEVA.

X1o KepaAaio 5, magovoidletal n pebodoAoyia evromiopov g BaAdooiag
euTavong (BaAaoolr ATOQEIHHATA KAl TETQEAAIOKNAIDES) OTA MOAVPEATUATIKA
dopuopLka dedopéva Sentinel-2. Apxukd, yivetat dleEodukr|) meQLyQa@r] g véag
Pdong dedopévwv (MADOS) kabwg kal magovoiaot) Twv OepHATIKOV KATNYOQLOV
IOV OLUTIEQLAAUBAVOVTAL HE OTTIKA TaQadelypata. Awourn, magovolxletat
OVTLTIQOOWTEVTIKY] TEQLOXT] HEATNG (AV . MeoOyelog) Tov oLVOAOL dedOUEVWY
MADOS otmv omola éywve katayQa@n kot peAétn g magovoiag
TeTEEARIOKNADAC pe TN XENon moAvpacuatikwy ekovwv Landsat-8, Planet &
Sentinel-2. EmimAéov, avaAvetal to katvotopo nebodoAoyucd mAaioo vy tov
evrormilopd e BaAaocowag pvmavong, to MariNeXt, mov avamtvxOnke Pdoet
pHovtéAov tedevtalag TexvoAoyiag Tto omolo ot ovvéxelax afloAoyrOnie
TIOOOTIKA Kol TooTika. TéAog, aoAovOel ekTevi|c egunVvelar NG CLUTTEQLPOQAS
tov MariNeXt kB¢ KAt avaAvTiKY] TeQLYQa®r], e OMTIKA TaQAdelyHaTa, Twv
MEQIMTWOEWY TOLV O EVIOTMIOMOE TwV OAAACOIWV ATOQEQIHHATWY KAl TWV
TMETEEAXIOKNA WV elval ePUKTOS 0T TTOAVPATUATIKA DEDOHEVAL.

TéAdog 1o KepaAawo 6 magovoldlel T CULUHTEQAOUATA TNG OATOLPYIS
oxoAalovtac ta Pactka HeO0dOAOYIKA OTOLXElX KAl TO TTEQAHATIKA EVQTJHATA.
Axoun, magéxetat ovlnon kat OkEPelS yix PeATiwoels, kat HeAAOVTUKES
ETEKTAOELS TOV TIQOTELVOUEVOL UEDODOAOYIKOU TAaoiov. Meta to KepaAaio 6

axoAovOeln BipAoyoaplia.
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O1 Baowkéc wéeg kat ta anoteAéopata g datopr)c éxovv dnuootevtel oe
ETUOTNUOVIKA TEQLODIKA KAl €XOUV Tmagovolaotel oe dedvr] ouvvédQua e
oNHavTkKO aQlOpo avagopwv. H avaAvon avtr) cvvdvaotikd pe ) dieodkn
AELOAGYNOT] NG TTEOTELVOUEVTG HeOODOAOYIAG UTIOQEL VAL CUVELOQPEQEL OT|HAVTIKA
ot onuwoveyia  Twv HEAAOVTIKWV ETIXELQNOLAKWDV OLOTNHATWV
nagakoAovOnong g OaAdoolag gumavong oe LVYNAN Xwowkn] kat Oepatikn

avaAvon.
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1 Introduction

This doctoral dissertation aims to study, design, implement and validate cutting-
edge methods for efficiently exploiting high-resolution multispectral satellite data
towards detecting marine pollutants on the sea surface. This chapter briefly presents
the current challenges in marine pollution detection from spaceborne data, the
overall motivation, the objectives and contributions of this PhD thesis, as well as the

scientific publications derived from this research.

1.1 Challenges & Motivation

Monitoring the marine environment is of fundamental importance as it supports
the sustainable use of ocean resources, enables environmental change assessment,
and protects human health from water pollution (Danovaro et al., 2016). Current
monitoring approaches rely mainly on in situ campaigns via conventional methods,
e.g., ships, nets, trawls, laboratory analysis etc. (Cadiou et al., 2020; Eriksen et al.,
2018; Parinos et al., 2019) and Earth Observation (EO) data due to several and
significant benefits. Indeed, EO data are beneficial to improve understanding of the
marine environment, providing cost-effective measurements of the sea surface at
several spatiotemporal scales with global coverage.

EO data can also support the UN Sustainable Development Goals (SDGs) by
providing reliable information on various targets related to environmental and socio-
economic aspects. For instance, EO data can help monitor the marine environment
by providing information on marine and coastal ecosystems’ health, ocean
acidification, coastal erosion, and sustainable management of fisheries (Canonico et
al,, 2019; UNDP, 2015), contributing to Goal 14, i.e., to conserve the oceans, seas and
marine resources for sustainable development. Among the targets outlined in Goal
14, reducing marine pollution by 2025 is considered significantly crucial. This is
particularly important because marine pollutants such as Oil Spills and Marine Debris
are of major concern due to their adverse impacts on marine life, human health, and
the economy (Barboza et al., 2018; Beaumont et al., 2019; Shahidul Islam and Tanaka,
2004). Additionally, the EU Mission 'Restore our Ocean and Waters' has set its sights
on protecting and restoring the health of the oceans aiming at zero pollution by the
year 2030.

Hence, effective marine pollution monitoring systems are crucial to understand
its sources and develop effective strategies to prevent and mitigate its impact on the
environment. Detecting and monitoring marine pollution forms or other sea surface
features from EO imagery with Machine Learning (ML) has already concentrated a
vast amount of research and development efforts. However, most remote sensing
and ML methods have been designed to detect a single pollutant/sea feature, or they

target a small number of categories without taking into consideration other



competing classes, usually resulting in several false positives (Heiselberg, 2020;
Sannigrahi et al., 2022; Solé Gémez et al., 2022). Marine monitoring solutions should
be designed to identify any sea surface feature or water-related class accurately while
being false-alarm resistant under complex weather and sea state conditions.
Additionally, in some cases, marine classes' present similar spectral and spatial
patterns, posing additional challenges on classification tasks in optical satellite
images. For instance, Sea snot has been recently regarded to significantly influence
Marine Debris detection (Hu et al., 2022). At the same time, the discrimination of
floating matters in radar data is considered significantly more difficult (Qi et al.,
2022).

To explore the unique characteristics of marine pollutants and other floating
materials, spectral analysis has been performed with optical imagery, also
considering the competing thematic classes (Hu, 2022; Qi et al.,, 2020; Qi and Hu,
2021). Apart from the spectral methods, only a few studies have considered
advanced Machine Learning (ML) techniques that exploit other patterns (e.g., spatial)
and try to address the detection of challenging cases such as small and texture-
complex floating objects (Mifdal et al., 2021; Solé Gomez et al., 2022). Moreover, very
few optical multispectral datasets are openly available to support spectral analysis
studies or research towards marine monitoring solutions (Liu et al., 2017; Mifdal et
al., 2021). This is because identifying and annotating sea surface features in optical
satellite data is quite challenging due to the properties of current sensors (e.g., S2
different band resolutions) (Hu, 2022, 2021) and the complex optical properties of
specific features (Dierssen, 2019; Garaba and Dierssen, 2018).

To this end, the motivation for this dissertation was to exploit high-resolution
globally distributed satellite data for marine pollutants monitoring, considering
various sea features that affect their detection, and propose a methodology based on
spectral analysis and advanced ML techniques to contribute to future monitoring
solutions development. We mainly focused on Marine Debris pollution, a challenging
and continuously growing issue, by collecting reports in coastal areas, investigating
monitoring from multi-source satellite data, and benchmarking. Oil slicks from
different sources (i.e., ship accidents, offshore refineries, discharges due to natural
disasters and seafloor natural seepages) were also considered and mapped in detail.
Additionally, particular focus is given to floating Sargassum macroalgae, other
materials co-existing with marine pollutants on the sea surface, and water-related
classes targeting an open-access database and a mapping framework with a thematic

analysis of 15 representative marine classes.

! Throughout this dissertation, the term 'marine classes' refers to all classes considered in the

analysis, including marine pollutants, floating objects, and water-related classes.



1.2 Objectives and contributions

The objectives of this dissertation were the following:

v

v

Study the state-of-the-art in marine pollutant detection with optical remote
sensing

Exploit multisource and multitemporal high-resolution data to detect and
identify plastic debris source, transport, distribution and accumulation patterns,
as well as the natural processes (e.g., precipitation, currents, wind) that
determine their occurrence.

Design and conduct an open-access satellite database including major marine
pollutants, i.e., Marine Debris and Oil Spill, and other competing marine classes.
Design, develop and evaluate a mapping framework for detecting marine
pollution forms and other features on the sea surface.

Identify and discuss the potential in detecting and discriminating marine

pollutants in high-resolution satellite data.

The main contributions of this PhD Thesis are:

v

The assessment of the capabilities of the current Planet, Sentinel-2 and Landsat-8
sensors in monitoring Marine Debris in the frame of sources, pathways, tracking
and spatial distributions, contributing to recent open issues highlighted by the
research community.

Benchmarking of Marine Debris detection from S2 images by openly providing a
novel Marine Debris dataset (MARIDA) and ML baselines for weakly supervised
semantic segmentation.

The development of a state-of-the-art and efficient classification framework
(MariNeXt) for marine pollutants (Marine Debris and Oil Spill) and other sea
surface features detection from multispectral data.

The creation of an open-access and well-curated dataset (MADOS) with 15
marine classes consisting of 1481155 S2 pixels and 174 S2 images.

The extraction and analysis of important findings regarding the discrimination
potentials of marine pollutants and considered marine classes based on extensive

quantitative and qualitative evaluation.

Additional contributions:

v

v

The systematic recording and statistical analysis of spectral signatures of
pollutants and other marine classes for the spectral patterns mapping.

The investigation of satellite discrimination of Marine Debris and Sargassum
macroalgae in Honduras Gulf (Caribbean Sea).

The mapping of the extent of the plastic pollution over Honduras Gulf, triggering
further research, clean-up activities (4ocean) and prevention solutions (Ocean

Cleanup) in the region.



v" The collection of in situ observations/reports at the global scale for Marine Debris

verification in satellite data with a focus on the Caribbean Sea.

AN

The validation of state-of-the-art global plastic debris modelling procedures.

v' The investigation of the effect of the earthquake activity and ocean conditions on
the oil slick spreading in Zakynthos Island (E. Mediterranean).

v" The quantitative and qualitative evaluation and comparison of shallow and deep
learning methods for the considered marine classes detection.

v" The application of state-of-the-art SegNeXt model in remote sensing data.

v" The assessment of the contribution of the spectral and spatial information to the
classification process.

v" The investigation of spectral indices and spatial features at multiple scales and

suggestion of specific combinations for the enhancement of marine classes

discrimination.

1.3 Scientific publications, Software and Dissemination of
research

Scientific journals

Kikaki, A., Karantzalos, K., Power, C. A., & Raitsos, D. E. (2020). Remotely sensing
the source and transport of marine plastic debris in Bay Islands of Honduras
(Caribbean Sea). Remote Sensing, 12(11), 1727.

Kikaki, K., Kakogeorgiou, I., Mikeli, P., Raitsos, D. E., & Karantzalos, K. (2022).
MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing
data. PloS one, 17(1), e0262247.

Kikaki, K., Kakogeorgiou, 1., Hoteit, I. & Karantzalos, K. (2023). Detecting Marine

Pollutants and Sea Surface Features with Deep Learning in Sentinel-2 Imagery.

Conferences
Mikeli, P., Kikaki, K., Kakogeorgiou, 1., & Karantzalos, K. (2022). How Challenging
is the Discrimination of Floating Materials on the sea surface using High Resolution
Multispectral Satellite data?. XXIV ISPRS, 43, 151-157.
Kikaki, A., Kakogeorgiou, 1., Mikeli, P., Raitsos, D. E., and Karantzalos, K. (2021).
Detecting and Classifying Marine Plastic Debris from high-resolution multispectral
satellite data, EGU General Assembly 2021, online, 19-30 Apr 2021, EGU21-15243.
Kikaki A., Karegeorgis A., Rousakis G., Karantzalos, K. (2019) Oil Spill detection by
satellite remote sensing in Zakynthos Island, Ionian Sea, E. Mediterranean. 12th
International Conference of the Hellenic Geographical Society, Athens, November.
Kikaki A., Karantzalos K., Kapsimalis V. (2018). Monitoring of Marine Pollution
using Multitemporal high-resolution remote sensing data. 11th International

Conference of the Hellenic Geographical Society, Lavrion, 12-15 April.



Kikaki, K., Kakogeorgiou, I., Karantzalos, K. (2018). Detecting Sargassum blooms and
Plastic Marine Debris from High-resolution Multispectral Satellite data. XXIV Ocean
Optics, Dubrovnik, 7-12 October.

Invited Talks
Kikaki, K., Kakogeorgiou, 1., Mikeli, P., Raitsos, D. E., & Karantzalos, K. (2022).
MARIDA: A Sentinel-2 dataset for Marine Debris detection. 2nd Workshop of the
IOCCG Task Force on Remote Sensing of Marine Litter and Debris, 8 March.

Interviews

ESA Success story: https://sentinel.esa.int/web/success-stories/-/copernicus-sentinel-

2-benchmark-dataset-for-detection-of-dense-marine-plastic-accumulations

Planet Explorer: https://www.planet.com/pulse/all-eyes-on-marine-plastic/

Hakai magazine: https://hakaimagazine.com/news/scientists-can-spy-shrimp-eggs-

from-space/

Research Community contributions

Member of International Ocean Colour Coordinating Group (IOCCG) Task Force on
Remote Sensing of Marine Litter and Debris (Algorithms & Applications topic)

Scientific Software & Interactive Online Material
Marine Debris Archive (MARIDA) Interactive Online Material with a detailed
overview and analysis of our Dataset: https://marine-debris.github.io/.
Marine Debris Archive (MARIDA) Quick Start Guide providing openly code and
pre-trained models: https://github.com/marine-debris/marine-debris.github.io
Marine Debris & Oil Spill (MADOS) implementation code and ML models will be

provided soon.

1.4 Thesis Roadmap

Below is a brief summary of the following chapters in this dissertation (Figure 1.1):
Chapter 2 consists of the work related to marine pollution detection from
multispectral satellite data and the current challenges based on a detailed spectral
analysis. Chapter 3 presents the investigation of floating debris monitoring with
satellite data. Chapter 4 introduces a novel benchmark for Marine Debris detection.
Chapter 5 presents the methodology for automated detection of marine pollutants
and other features. Finally, Chapter 6 summarizes the conclusions and suggests

methods and ideas for future work.



[2]

[1] Marine Pollution

[4]
ovel Marine
Litter Detection
Benchma

floating Plastic
Debris in
Multitemporal Data

Introduction

Figure 1.1 Thesis Roadmap.

[5]
Automated Marine
Pollution de

againstother
Competing Sea
Surface Features

[e]
onclusio
Future Perspe




2 Marine Pollution Detection: Current
Challenges and Related Work

This chapter provides an overall introduction and background related to
detecting marine pollutants and sea surface features studied in this dissertation.
Special focus is given to Marine Debris detection methods, a more recent research
field. The first section 2.1 presents the background related to plastics’ distribution
dynamics and monitoring. In section 2.2, we provide the related work regarding
Marine Debris and Oil Spill detection from S2 remote sensing data. Section 2.3
presents a brief description of satellite data specifications and existing datasets for
marine pollutants detection. Furthermore, section 2.4 constitutes the related work
about other sea features detection. Finally, in section 2.5, we demonstrate the spectral

analysis of all considered features and identify the discrimination challenges.

2.1 Plastic pollution: Distribution Dynamics & Monitoring

With evidence of a significant cumulative increase over the last 60 years, plastic
debris in marine environments is currently considered one of the most topical issues
in marine pollution due to its potential impact on human and ecosystem health
(Maximenko et al., 2019; Ostle et al., 2019). Plastics infiltrate the marine environment
through diverse land-based and sea-based activities. Additionally, plastics’ fate in
the marine environment is not predetermined but is influenced by a variety of factors
such as the characteristics of the plastics themselves (size, shape, density), climatic
conditions (precipitation, air intensity, temperature, solar radiation), sea currents and
waves, and biological interference (Galgani et al., 2015; Sebille et al., 2020).

The global amount of microplastic debris was estimated between 93 and 236
thousand metric tonnes for 2014 (Sebille et al., 2015), while there is also sufficient
evidence that the largest plastics accumulator (Great Pacific Garbage Patch) is
constantly growing (Lebreton et al,, 2018). Plastic debris has been found in fish
(Rochman et al., 2015) in different trophic levels and habitats. In fact, plastic debris
was found in >25% of individual animals and in >50% of the species collected in fish
markets in USA and Indonesia, revealing that plastic debris poses a threat to marine
animals and human health. Plastic debris events have been reported even in deep-sea
organisms (such as Cnidaria, Echinodermata and Arthropoda) in the equatorial mid-
Atlantic and the SW Indian ocean, mainly due to their exposure to human waste and
ingestion of plastic microfibres (Taylor et al.,, 2016). Microplastics from various
sources have been also found on seafloor sediments (Martin et al., 2017), in sea
surface microlayer in estuarine systems (Anderson et al., 2018) and in arctic waters
(Cozar et al., 2017), indicating that Marine Debris is abundant across all marine

systems.



Runoff (including riverine outflow) and beach users are important sources of
Marine Debris in coastal regions, while offshore transport by ocean currents has been
shown to be the most important driving force to the open waters (Willis et al., 2017).
Between 1.15 and 2.41 million tonnes of plastic waste enters the ocean every year
from rivers, with over 74% of emissions occurring between May and October
(Lebreton et al., 2017) (Figure 2.1). Mani et al. (Mani et al., 2015) indicated almost 900
thousand plastic particles per km? along the Rhine River, reflecting the significant
role of rivers as debris pathways to the open seas. The large mass of mismanaged
plastic waste (Jambeck et al., 2015) directly affects the amount of plastics in marine
ecosystems, while the constant increase in plastic production (Law et al., 2010) can
potentially have a significant impact on the amount of expected marine plastic debris
discharges.

Nevertheless, understanding plastic debris distribution dynamics is challenging
as it is influenced by its own physical characteristics (density, size) as well as
environmental features (such as winds, waves, thermohaline gradients) (Zhang,
2017). In particular, time series of plastic concentrations in the western North
Atlantic Ocean (Law et al, 2010) (1986 to 2008) showed that the highest
concentrations were associated with sea surface currents transport, indicating that
floating plastic debris is a passive tracer of ocean dynamics. Lusher et al. (Lusher et
al., 2015) found microplastics in surface and subsurface Arctic waters that entered
the sea via coastal sewage and wastewater and were transported by large-scale
currents to the open ocean. They also showed that sea surface temperature is an
important predictor of microplastics abundance, influencing water mass circulation
(i.e., cyclonic eddies, gyres and seafronts). Kataoka et al. (Kataoka et al., 2018) used
high-resolution aerial imagery in order to estimate debris distribution around
Vancouver Island (Canada) and relate its accumulation to Ekman flow and prevailed

winds.

Figure 2.1 Mass of river plastic flowing into oceans in tonnes per year (Lebreton et al., 2017).



The majority of litter-detection studies have been primarily conducted using
conventional methods (e.g., trawl], glass plate, net). These methodological approaches
are effective; however, they have weaknesses including the relatively high-cost, the
need for personnel, the deployment proximity to the land, and the low
spatiotemporal coverage of the acquired data. Alternatively, satellite remote sensing
could provide adequate information in detecting plastic debris at the surface of the
oceans at high spatial and temporal scales. The next section describes in detail the

remote sensing methods utilized so far for plastic debris detection and monitoring.

2.2 Detecting Marine Debris & Oil Spill from remote sensing
data

Marine Debris

To tackle the Marine Debris issue, several solutions for detecting (Martinez-
Vicente et al.,, 2019; Maximenko et al., 2019), cleaning (Zielinski et al.,, 2019) and
preventing (Schmaltz et al., 2020) have been developed and validated. Among those,
detecting and monitoring floating litter has recently gained the attention of most
research and development efforts (Bellou et al., 2021). For instance, Light Detection
And Ranging (LIDAR) imagery (Ge et al., 2016) and high-resolution commercial
satellite data (Acufna-Ruz et al., 2018) have been used with machine learning
techniques for beach debris identification and classification. Worldview-2, Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Synthetic
Aperture Radar (SAR) satellite datasets have been efficiently employed in
monitoring marine plastic debris events, for instance, after the great east Japan
earthquake on March 2011, when a remarkable amount of >1.5 million tonnes of
debris was generated (Arii et al., 2014; Matthews et al., 2017). Satellite data coupled
with ocean models have also been employed to investigate the temporal variability
of Marine Debris, its anthropogenic sources (Agustin et al., 2015; Pichel et al., 2012)
and its accumulation patterns (Atwood et al., 2019). Except for satellite imagery,
remote sensing data from manned aircraft (Garcia-Garin et al., 2021), unmanned
aerial vehicles (UAVs) (Bao et al., 2018; Jakovljevic et al., 2020; Martin et al., 2018;
Papakonstantinou et al., 2021; Wolf et al., 2020), bridge-mounted (Lieshout et al.,
2020) and underwater-cameras (Politikos et al., 2021) have also been employed for
floating Marine Debris detection.

Among current satellite sensors, S2 MSI is the most frequently used for
monitoring Marine Debris on the sea surface in coastal waters (Mukonza and Chiang,
2022). Since identifying and experimenting with floating marine litter in the open sea
is difficult, many efforts have been concentrated on artificial targets, coupled with
various methods, ie., image fusion (Kremezi et al, 2022), spectral indices
(Themistocleous et al., 2020), OBIA, Spectral Unmixing (SU), Matched Filtering (MF)

(Topouzelis et al.,, 2020), and ML (e.g., semi-supervised fuzzy c-means, K-means,
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Random Forest, SVM etc.) (Basu et al.,, 2021; Jamali and Mahdianpari, 2021). In a
different direction, other studies have focused on detecting floating Marine Debris in
real cases using S2 images (Table 2.1). Regarding preprocessing, most studies were
based on Surface Reflectance values. To understand Marine Debris behavior and
enhance the efforts in Marine Debris detection, different spectral analysis methods
have been considered (Arias et al.,, 2021; Biermann et al., 2020; Ciappa, 2022, 2021;
Gonzaga et al., 2021; Sannigrahi et al., 2022), as well as simulation experiments have
been performed by Hu (2021).

Table 2.1: Publications for Marine Debris (MD) mapping using Sentinel-2 data during the period 2018-2022.

General info Pre-processing Classification/ Detection
# of S2 # of
Publication Main purpose Study Area  Time span Atm. Corr. Reflectance Method
scenes classes
Biermann et Surface
MD detection Global 2018-2019 12 Yes Naive Bayes 5
al., 2020 Refl.
Mifdal et al., Float. Objects Surface SVM, RF, Naive
Global 2018-2020 15 Yes 2
2021 detection Refl.,, TOA Bayes, U-Net
. Naive Bayes,
Gonzaga et al., Manila Bay, Surface
MD detection 2019-2020 6 Yes MTME, FDI, 5
2021 Philippines Refl.
NDVI, PI
Arias et al., Windrows Greece, Surface Wasp Spectral
N/A 40 Yes 1
2021 detection Honduras Refl.,, TOA Index
Hawaii, N.
. . o Surface | Red edge bands,
Ciappa, 2021 MD detection ~ Adriatic, 2020 6 Yes 5
Refl. NDVI, PI, FDI
S.Domingo
Olyaei et al., . . Deep Knockoff,
MD detection Global 2015-2021 63 Yes Rayleigh 3
2022 SVM, RF
Sannigrahi et . Mediterranean 2018-2019 Surface
MD detection 27 Yes SVM, RF 3
al., 2022 Sea & 2021 Refl.
Drina, Los U-Net, U-
Sole Gomez et River debris Surface
. Angeles &  2018-2020 30 Yes Net3DE, DeepLab 3
al., 2022 detection Refl.
Yangtzee V3+
N.Adriatic, Surface
Ciappa, 2022 MD detection . 2020 6 Yes Spectral bands 4
Australia Refl.
U-Net, Label
Russwurm et Surface
MD detection Global 2015-2021 89 Yes Refinement 1
al., 2023 Refl.
Module
MD detection
Booth et al., Surface U-Net, MAP-
& density Global 2015-2021 63 Yes 1
2023 . Refl. Mapper
mapping
Duarte & Surface GANs, SI,
MD detection Global 2016-2021 25 Yes 7
Azevedo, 2023 Refl. XGBoost

Abbreviations: SVM= Support Vector Machine, RF= Random Forest, MTMF= Mixture Tuned Matched Filtering, FDI=
Floating Debris Index, NDVI= Normalized difference vegetation index, PI= Plastic Index, GANs= Generative
Adversarial Networks, SI= Spectral Indices, XGBoost= Extreme Gradient Boosting, N/A= Not Mentioned.

Machine learning methods have recently gained recognition for plastics
identification (Politikos et al.,, 2023). Using S2 data, well-established supervised
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learning techniques, i.e., naive Bayes, SVM, Random Forest (RF), U-Net, DeeplabV3+
(Basu et al.,, 2021; Biermann et al., 2020; Booth et al., 2022; Gonzaga et al., 2021; Jamali
and Mahdianpari, 2021; Mifdal et al., 2021; Ruflwurm et al., 2023; Sannigrahi et al.,
2022; Solé Gomez et al., 2022), as well as Generative Adversarial Networks (GANSs)
(Duarte and Azevedo, 2023) have also been applied for various Marine Debris
detection tasks. Concerning the number of classes, Biermann et al. (2020); Ciappa
(2021); Gonzaga et al. (2021) considered five classes.

Oil Spill

Oil Spill detection from satellite imagery has been extensively studied over the
past few decades (Al-Ruzougq et al., 2020). Specifically, radar sensors dominate due to
their all-weather and all-day capabilities (Dong et al., 2022). Nevertheless, exploiting
optical data is crucial to separate oil from look-alikes (i.e., biogenic slicks, low wind
speed, internal waves, ship wakes, algae, rain) and extract information about oil
types and thickness (Garcia-Pineda et al., 2020; Zhao et al., 2014). (Hu et al., 2009;
Pisano et al., 2015; Sun et al., 2015; Zhao et al., 2014) explored the optical properties
of oil slicks in multispectral data to determine sun glint effects on oil-water contrast
and investigated the differentiation from other look-alikes using interpretation,
spectral indices, and statistical methods. Landsat-8 images have been also utilized for

Oil Spill detection and concentration estimation.

Table 2.2: Publications for Oil Spill (Oil) mapping using Sentinel-2 data during the period 2018-2022.

General Info Pre-processing Classification/ Detection
Time  #0fS2 # of
Publication ~Main purpose  Study Area Atm. Corr. Reflectance Method
span  scenes classes
Kolokoussis
N Zakynthos Isl. &
Qil detection  Saronikos Gulf 2017 4 No TOA OBIA, SI 1
Karathanassi,
(Greece)
2018
Sun etal.,
2018 Oil detection ~ Gulf of Mexico 2004-2016 24 Yes Rayleigh |{Statistical analysis 1
. . . Region-based
Althawadi & Oil detection & Surface
Arabian Gulf 2016-2017 7 Yes segmentation, 1
Hashim, 2019  Calibration Refl. )
Regression
. SI, Dynamical
Rajendran et . . Ambarnaya
Qil detection 2020 14 No TOA permafrost 5
al., 2021 river, Russia
model, DSM
Rajendran et . . . Surface | PSA, Band ratios,
Qil detection Mauritius 2020 6 Yes
al., 2021 Refl. DSM
Rajendran et
Qil detection Mauritius 2020 8 No TOA Band ratios, DSM 1
al., 2021
Argamosa et Manila Bay, PCA, Gradient
Qil detection 2020 2 No TOA
al., 2021 Philippines boosting algor.
Samra & Ali,
2002 Qil detection Nile Delta ~ 2019-2021 N/A Yes Rayleigh {Band ratios, DSM 1
Tysiac et al., . . Ambarnaya
QOil detection 2020 6 No TOA SVM, SI 6

2022 river, Russia
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Abbreviations: OBIA= Object-Based Image Analysis, SI= Spectral Indices, DSM= Decorrelation Stretch Method, PSA=
Parallelepiped Supervised Algorithm, PCA= Principal Component Analysis, N/A= Not Mentioned, SVM= Support

Vector Machine.

Recent studies for Oil Spill detection based on S2 optical imagery are
summarized in Table 2.2. Starting from the pre-processing steps, most studies were
based on Top-of-Atmosphere (TOA) reflectance products. Moreover, several
methods have been focused on spectral indices (Kolokoussis and Karathanassi, 2018;
Rajendran et al., 2021a; Tysiac et al., 2022), spectral bands ratios (Abou Samra and
Ali, 2022; Rajendran et al., 2021c, 2021b) and Object-Based Image Analysis (OBIA)
(Kolokoussis and Karathanassi, 2018) (Table 2.2).

Support Vector Machine (SVM), Gradient Boosting Algorithm (Argamosa et al.,
2022; Tysiac et al., 2022) and Parallelepiped Supervised Algorithm (PSA) (Rajendran
et al., 2021c) have also been applied for Oil Spill detection. Additionally, statistical
methods have been implemented to detect Oil Spills and study oil slick distributions
in 52 images (Althawadi and Hashim, 2019; Argamosa et al., 2022; Sun et al., 2018a).
Oil Spill thickness was also determined through the Decorrelation Stretch Method
(Abou Samra and Ali, 2022; Rajendran et al., 2021b). Most studies were designed to
detect one class (i.e., Oil Spill), while only a few (Rajendran et al., 2021a; Tysiac et al.,
2022) considered five (i.e., Oil Spill, Water, Snow, Vegetation, Wetlands) or six (i.e., Oil
Spill, Water, Ground, Vegetation, Buildings, Snow) classes.

2.2.1 Satellite data and benchmark datasets

Satellite sensors with high spatial, spectral and temporal resolution are required
to develop automated detection methods and future operational solutions for
monitoring the marine environment. Two Copernicus Sentinel-2 satellites (Sentinel-
2A and 2B) were launched successfully on June 23, 2015, and March 7, 2017, with
Multi-Spectral Instrument (MSI) sensor. The twin satellites cover global coastal
waters at high spatial resolutions (10 m, 20m and 60 m). Additionally, they have
frequent revisit time of approximately five days (depending on the latitude),
delivering a large amount of free geospatial data. They also acquire data in 13
spectral bands ranging from the visible to the Short-Wave Infrared (SWIR). In our
study, we collected and utilized the S2 Level 1C products (Top-of-Atmosphere
reflectance) through EarthExplorer (USGS) and Coperinicus Open Access Hub .

Landsat-8 was launched on February 11, 2013 by National Aeronautics and
Space Administration (NASA) and United States Geological Survey (USGS), carrying
two instruments: the Operational Land Imager (OLI) and the Thermal Infrared
Sensor (TIRS). The OLI measures in the visible, near-infrared, and shortwave
infrared parts of the spectrum at a spatial resolution of 30 m with a revisit time of 16
days. L8 OLI also consists of a panchromatic band (15 m resolution), enabling pan-
sharpening methods. L8 levellT data were acquired from EarthExplorer (USGS).

PlanetScope provides imagery at 3 m to 5 m spatial resolution with almost daily



13

worldwide coverage. It consists of four bands (i.e., Blue, Green, Red, Near Infrared),
while the newest generation of Planet satellites carry additional bands (i.e., Coastal
Blue, Green I, Yellow, and Red Edge). Surface reflectance data were obtained from
Planet Labs, USA.

In general, most of the currently available marine remote sensing datasets focus
on detecting specific objects such as vessels (“Airbus Ship Detection Challenge,”
2021; Heiselberg and Heiselberg, 2017; Liu et al., 2017; Tang et al., 2015). Datasets for
cloud detection over the ocean (Kristollari and Karathanassi, 2020)
and Sargassum macroalgae extraction (Ody et al., 2019; Wang and Hu, 2021a) have
also been developed with a limited number of classes. Regarding Marine Debris,
hyperspectral measurements have already been conducted, exploring sensors’
capabilities in distinguishing plastics from other features such as vegetation, natural
material, and water types (Garaba et al., 2020; Garaba and Dierssen, 2020; Knaeps et
al., 2021; Tasseron et al., 2021). The aforementioned studies openly provided their
data.

Despite the challenging and continuously growing issue of marine pollution, the
available multispectral datasets are relatively limited in number and do not usually
employ open-access high-resolution satellite images over geographically extended
areas. These facts prohibit satellite data exploitation from ML frameworks and
operational solutions. In particular, for Marine Debris, (Arias et al., 2021; Booth et al.,
2022; Duarte and Azevedo, 2023; Mifdal et al., 2021; Rufwurm et al., 2023; Sannigrahi
et al., 2022; Solé Gémez et al., 2022) employed more than 15 S2 scenes, while for Oil
Spill only Sun et al. (2018) utilized a similar amount of S2 scenes. Additionally, most
studies' annotated/ reference data were sparse and restricted to one or a few small
geographical regions. Regarding Oil Spill, only Kolokoussis and Karathanassi (2018)
considered two different areas, while for Marine Debris (Biermann et al., 2020; Booth
et al, 2022; Duarte and Azevedo, 2023; Mifdal et al, 2021) examined globally
distributed events. Finally, most studies were limited to a single up to a three-year
period, while Sun et al. (2018) collected Oil Spill data for more than six years.

We highlight that most works in Tables 2.1 and 2.2 do not provide publicly
available data. Although extensive Synthetic Aperture Radar (SAR) datasets with Oil
Spills have already been introduced (Dong et al., 2022; Krestenitis et al., 2019), no S2
open-access dataset exists aiming to benchmark Oil Spill detection methods. For
Marine Debris, Mifdal et al. (2021) openly provided annotations of floating objects
(one general class) using global S2 imagery. Moreover, Topouzelis et al. (2020)

offered satellite observations from the artificial debris targets in Mytilene, Greece.
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2.3 Detecting Other Sea Surface features

Sargassum macroalgae
Regarding Sargassum detection from optical data, most remote sensing studies

have relied on floating algae indexes based on their red-edge spectral property in the
NIR. Hu (2009) proposed the Floating Algae Index (FAI) using MODIS 250 m bands
to detect large macroalgae blooms, including Sargassum macroalgae. An alternative
Floating Algae Index (AFAI) based on 1 km MODIS bands was developed by (Wang
and Hu, 2016), proposing band combinations for cloud-masking and a new method
for Sargassum quantification. Additionally, research has been focused on
investigating Sargassum spectral properties and the potential of discrimination from
other sea surface features (e.g., other algae species, Oil) by employing pure
spectroscopy and field or laboratory data (Hu et al., 2015; Qi et al., 2020).

Several studies have successfully applied vegetation and algae indices such as
FAI, AFAI, NDVI, DVI, MCI on Sentinel-3 and high-resolution data for Sargassum
detection and monitoring (Gower et al., 2013; Ody et al., 2019). The influence of
parameters such as Sargassum immersion depth and water turbidity was also
investigated to determine the relationship between AFAI (derived from the S2
sensor) and fractional coverage of Sargassum (Descloitres et al., 2021).

Regarding detection techniques using ML, the Random Forest algorithm, along
with FAI and vegetation indices, were applied to Landsat-8 imagery to monitor
spatial and temporal Sargassum distribution on Mexican coasts (Chavez et al., 2020;
Cuevas et al., 2018). A fully automated workflow has been suggested to extract
Sargassum from S2 imagery using FAI and Convolutional Neural Networks (CNNs)
while removing noise patterns (i.e., cloud artifacts and wave-induced glints) (Wang
and Hu, 2021a). Furthermore, RF has been applied to distinguish Sargassum from
Ulva (Xiao et al.,, 2022), and VGGUnet has been employed for Sargassum extraction
and biomass quantification in high-resolution optical data (Wang and Hu, 2021b).

Ships & Wakes
For Ship identification (i.e., size, type), statistical, threshold-based, and

transform-domain methods have been applied on different optical sensors (Kanjir et
al., 2018), while DL techniques on S2 data have been assessed (étepec et al,, 2019; Xie
et al., 2020). CNNs have also been examined to distinguish ships from icebergs
(Heiselberg, 2020), and self-supervised learning was exploited to generate binary
ship/no-ship segmentation outputs (Ciocarlan and Stoian, 2021). Other competing
bright classes, such as Waves and Wakes, have been studied based on SVMs
(Heiselberg and Heiselberg, 2017; Song et al., 2014), while Liu et al. (2021) proposed a
Radon transform method for Wake identification, effectively eliminating false alarms
such as Waves and Oil Spill.
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Sea snot

Reflectance spectra of Sea snot/ mucilage, extracted from multiple optical sensors,
were examined by Hu et al. (2022) to understand the potential of discrimination from
Marine Debris. Moreover, spectral indices (Kavzoglu and Goral, 2022), OBIA
(Kavzoglu et al., 2021) and SVM (Tuzcu Kokal et al., 2022) were adopted for Sea snot
detection, as well as validation against in situ reference data was performed by Yagci
et al. (2022). In addition, the correlation with Chlorophyll-a and Turbidity was
explored based on S2 imagery (Sunar et al., 2022).

2.4 Spectral analysis and discrimination challenges

Representative examples of marine pollutants and other features, along with
their spectral shapes in S2 images, are selected to be demonstrated in this section. For
each case, the spectral signature from a specific pixel/ target is shown. The utilized S2
spectral bands are: 443 nm, 490 nm, 560 nm, 665 nm, 705 nm, 740 nm, 783 nm, 842
nm, 865 nm, 1610 nm and 2190 nm. Additionally, for Marine Debris, Sargassum and
Sea snot, the mean spectra from the 5x5 pixel window (centered at the target/ pixel)
are calculated to eliminate the spectral distortions due to mixed band resolutions
(Hu, 2022, 2021). The subtraction technique was also performed due to its
effectiveness in minimizing the impact of variable subpixel coverage and nearby
water type (Hu, 2021; Qi et al., 2020).

Marine Debris

Marine Debris, especially plastics, have complex properties, diversifying in color,
chemical composition, size and immersion depth. In fact, floating marine plastic
debris can have various spectral signatures, occasionally similar to other features and
constituents, such as vegetation, sediments and water (Garaba et al., 2018; Garaba
and Dierssen, 2018). Additionally, spectral discrimination from other objects (e.g.,
ships, foam) is not straightforward, and differentiating from bright features (waves,
sunglint, clouds) is currently considered very challenging (Garaba and Dierssen,
2018).

In Figure 2.2, the S2 image shows elongated Marine Debris trajectories at
Motagua river front as citizen scientist Caroline Power reported. Inspection of the
reflectance spectra (Fig. ¢) shows the typical peak at NIR band which has been
already indicated by past studies based on spectra extraction from individual pixels
(Sannigrahi et al., 2022)(Sannigrahi et al., 2022) or plastic targets (Biermann et al.,
2020; Topouzelis et al., 2020). However, when averaging, a spectral trough at 833 nm
appears due to the elimination of the spectral distortions, confirming the cautious
notes by Hu, 2022. Further subtraction of nearby water was applied, and its SAM to
plastic was estimated using the plastic bags endmember suggested by Hu, 2021.
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Figure 2.2 a) RGB patch showing plastic debris at Motagua river front in Guatemala. b) The location is outlined
by a red square in the L2A Sentinel-2 image. c) The spectral signatures of the target and 5x5 pixels window as
well as the reflectance difference between them and the nearby water are demonstrated.

The SAM value of 8,1 revealed a “strong” spectral similarity (Garaba and Dierssen,
2018). The spectral similarity between the plastic pixel and the plastic endmember
was calculated using the following S2 bands: 560, 665, 704, 742, 842 and 865 nm.

Figure 2.3 a) RGB patch showing Oil Spill in N. Arabian Sea. b) The location is outlined by a red square in the

L2A Sentinel-2 image. c) The spectral signatures of the target and the nearby water are demonstrated.
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Oil Spill

Oil shows absorption and reflection peaks in the visible and infrared parts,
which can generate dark, gray, shiny, opaque, and rainbow colorations due to the
variation in the incidence of light (BAOAC, 2007).
Oil can be detected from the point of view of optical remote sensing since its
different inherent optical properties (i.e., scattering, absorption) from water
contribute to oil-water contrast. Furthermore, oil-water contrast depends on sun
glint, observing geometry, sea state (wind speed), oil thickness and state, and
spatial/spectral resolutions of remote sensing images (Hu et al., 2021; Sun and Hu,
2019). Additionally, when interpreting optical remote sensing data, factors such as
mixed pixels and water types (clear or turbid) need to be considered (Hu et al., 2021).
The spectral signatures indicate higher reflectance values for Oil Spill than water in
all S2 bands (Figure 2.3).

Sargassum macroalgae

Since 2011, massive Sargassum fluitans/ natans blooms have inundated Caribbean
and Atlantic coasts, posing a threat to tourism, fisheries, marine life and health. In
January 2019, large amounts of Sargassum were washed ashore on the Roatan coastal
zone in Honduras, captured by the Sentinel-2 sensor (Figure 2.4). Field
measurements suggest that in comparison with other floating algae species (e.g.,
Trichodesmium, Ulva), Sargassum has a distinctive reflectance curvature of 630 nm due
to its Chlorophyll pigments, resulting in a unique spectral signature (Hu et al., 2015).
The spectral signatures demonstrate the typical red-edge reflectance of the floating
vegetation and the local trough at 842 nm band (Figure 2.4). After averaging and
subtracting, we note that the reflectance at 560 nm is slightly higher than the red
band, indicating the presence of Chlorophyll pigment. For the SAM calculation, we
used the same bands described in the Marine Debris section and utilized the
Sargassum endmember recommended by Hu (2021). Its SAM value was 2,6,

suggesting a “very strong” spectral similarity (Garaba and Dierssen, 2018).

Sea snot

Sea snot (or mucilage) refers to macroaggregations excreted from
microorganisms, including phytoplankton, ranging from few cm to several km
(Yagci et al., 2022). Here, we focus on the recent event in the Marmara Sea in the
Spring of 2021, which raised awareness among the research community to monitor it
using remote sensing data (Hu et al., 2022; Tuzcu Kokal et al., 2022; Yagci et al,,
2022). On 24 June 2021, a S2 image demonstrates sea snot trajectories originating
from the Sea of Marmara that reached the coasts of Limnos Island in the N. Aegean
Sea. The spectral signatures show higher reflectance at red band than at green,
possibly indicating a non-living algae's presence (Figure 2.5). Our findings follow the

field measurements in the Gulf of Izmit collected by Yagci et al. (2022), who observed
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that the highest surface reflectance values were in green, red and NIR bands, as the

lowest were in SWIR bands.

Figure 2.4 a) RGB patch showing dense Sargassum macroalgae trajectories in Roatan Island (Honduras). b) The
location is outlined by a red square in the L2A Sentinel-2 image. c) The spectral signatures of the target and 5x5
pixels window and the reflectance difference between them and the nearby water are demonstrated.

Figure 2.5 a) RGB patch showing Sea snot in Limnos Island (N. Aegean Sea). b) The location is outlined by a red
square in the L2A Sentinel-2 image. c) The spectral signatures of the target and 5x5 pixels window and the
reflectance difference between them and the nearby water are demonstrated.
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Ships & Wakes
Vessels result in high reflectance at Red-Green-Blue (RGB) and Near-Infrared

(NIR) bands; and sometimes reflect a different color from white (e.g., red)
(Heiselberg, 2016). In general, vessel detection is still challenging, as complex sea
state features (i.e., waves, sunglint) or other look-alikes (i.e., clouds, small islands)
can be detected as false alarms (Kanjir et al.,, 2018). Additionally, turbulent wakes
and Kelvin waves created from moving vessels have similar spectral characteristics
to ships (Kanjir et al., 2018), yet their reflectance at the NIR band is much lower
(Heiselberg, 2016) (Figure 2.6).

Figure 2.6 Left: RGB patch showing Ship and Wakes in the Ionian Sea. Right: The spectral signatures of Ship,

Wakes and the nearby Water are demonstrated.

Waves-Whitecaps

Waves affect pixel values in optical data as wave slopes reflect the different
amounts of sun light, and breaking waves (whitecaps) create bright patches (Kanjir et
al., 2018). The high variation in the background reflectivity (clutter), proportional to
the wind speed and sea state, leads to erroneous detection of objects at the sea
surface (e.g., ships). In general, whitecaps appear "white" or spectrally flat in the
visible (400 nm-700 nm), as occasionally, their reflectance can be enhanced at NIR
band (Garaba and Dierssen, 2020) (Figure 2.7). Differentiating whitecaps from other
look-alike features (e.g., ice, plastics) is still challenging for ocean color remote

sensing and future sensor development (Garaba and Dierssen, 2020).

Water-related Classes
Clear water efficiently absorbs NIR to SWIR light with high reflectance at shorter

wavelengths. However, surface features (e.g., foam, plastics, floating macroalgae),
constituents within the water (e.g., sediments, phytoplankton) or shallow seafloor
can make the water much brighter than normal (Garaba and Dierssen, 2020).
Specifically for complex coastal waters, various spectral response patterns can be

recorded due to great variability in optical properties (Ruddick et al.,, 2006). The
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Figure 2.8 demonstrates a representative example of coastal waters ich in sediments
below. Sediment-laden water shows a characteristic spectral pattern with two major
peaks at 665 nm and 783 nm and a lower at 865 nm due to the increased
concentrations of suspended sediments. This part of the spectrum has already been
proposed to map turbidity and suspended matter using remote sensing (Dogliotti et
al., 2015).

Figure 2.7 Left: RGB patch showing Waves in Caribbean Sea. Right: The spectral signatures of Waves and nearby
Water are demonstrated.

Figure 2.8 Left: RGB patch showing Sediment-Laden Water in Guatemala. Right: The spectral signatures of
Sediment-Laden Water and nearby Clear Water are demonstrated.

ellyfish

The recent increase of jellyfish blooms has been correlated with global changes,
including warming temperatures, overfishing, eutrophication, hypoxia etc. (Condon
et al., 2013). Based on laboratory measurements, sea jellies reflectance spectra
resemble those of transparent plastic bottles due to the lack of pigment absorption
(Van der Zande et al., 2014). An event with suspected Jellyfish identified by Qi et al.
(2020) is presented below in Figure 2.9.
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Figure 2.9 Left: RGB patch showing suspected Jellyfish in Nova Scotia. Right: The spectral signatures of Jellyfish

and the nearby Water are demonstrated.

2.4.1 Challenging discrimination cases

By collecting numerous observations of marine pollutants and other sea surface
features and recording their spectral shapes, we argue that their discrimination is
quite challenging (Figure 2.10). In fact, the sea features complex optical properties
and variable sea conditions can lead to various spectral signatures. Discrimination
between competing classes becomes even more demanding when it is based only on
spectral signatures (Figures 2.11-2.13).

More specifically, features such as Foam, Sea snot, Sediment-laden Water, Dense
Sargassum macroalgae and man-made Ships and Oil Platforms exhibit higher
reflectance values than other water-related classes (i.e., Turbid, Shallow and Marine
Water), Waves, Wakes, Oil Spill and floating matters (i.e., Marine Debris, Natural
Organic Material, Sparse floating algae and Jellyfish) (Figure 2.10). The largest
overlapping of reflectance values is observed at the Blue and SWIR bands. Only
man-made Ships and Oil Platforms can be clearly separated from the other features
at SWIR wavelengths. Below, three representative challenging discrimination cases
in 52 imagery (10 m spatial resolution) are demonstrated (Figures 2.11-2.13).

Figure 2.11 demonstrates Marine Water, Dense & Sparse Debris and a Ship in
the region of Haiti. The spectral signatures analysis shows that Dense Debris and
Ship are spectrally close. Sparse Debris is spectrally similar to Water, indicating the
significant impact of density on spectral behavior. Marine Debris spectral signatures
can also be close to suspected Jellyfish. Additionally, these features occasionally
present similar spatial patterns (Figure 2.12). Another challenging case is the
discrimination between Oil Spill and Water (Figure 2.13). Figure indicates that their

separation based only on spectral shapes is quite demanding (Figure 2.13).
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Figure 2.11 Left: RGB patch showing Marine Debris, Ship and Marine water in the region of Haiti. Right: The
spectral signatures of Dense & Sparse Debris, Ship and the nearby Water are demonstrated.

Figure 2.12 a) RGB patch showing Marine Debris in Motagua river. b) RGB patch showing Jellyfish in Nova
Scotia. c) The spectral signatures of Dense Debris and Jellyfish are presented.

Figure 2.13 Left: RGB patch showing Oil Spill and Marine water. Right: The spectral signatures of Oil Spill and
the nearby Water are demonstrated.
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3 Detect and Track floating Plastic Debris in
Multitemporal Data

In this chapter, we assess the capabilities of current satellite sensors in detecting
and tracking Marine Debris. Section 3.1 demonstrates the specifications of Landsat-8,
Planet, Sentinel-2 and the ancillary data characteristics. Next, section 3.2 presents the
methodological approach for collecting in situ reports and identifying Marine Debris
in multitemporal high-resolution satellite images over Honduras Gulf. Furthermore,
experimental results on spatial distribution and major characteristics of Marine Debris
are described in section 3.3. Section 3.4 presents the discussion regarding marine
litter monitoring from satellite sensors. Conclusions from the whole chapter are

provided in section 3.5.

3.1 Multitemporal satellite data and Ground Truth

From June 2014 to December 2018, a total amount of 125 Landsat-8 (L8) OLI
levellT data and 340 Sentinel-2 (52) MSI levell1C images were collected. In particular,
three L8 path/row (i.e., 19/49, 18/49 and 17/49) and eight S2 tiles (i.e., 16PCC, 16PDC,
16PEC, 16PFC, 16PGC, 16QFD, 16QED and 16QDD) were selected, covering the
study area (Figure 3.1). The satellite data with a cloud presence of over 25% were
rejected and were not further processed. The rest of the data were atmospherically
corrected, and surface reflectance values were extracted using ACOLITE atmospheric
processor (Vanhellemont and Ruddick, 2018). Moreover, more than 400 high-
resolution Planet images were analyzed for mapping the observed plastic debris
and Sargassum in the study area.

Between 2014 and 2019, in situ data were collected through vessel and diving
expeditions around Bay islands (Table 3.1). Additional data were obtained from local
stakeholders who were engaged in beach cleanup, professional diving, the “Dive
Against Debris” initiative, fishing and media in Honduras, and the Solid Waste
Management office of the Municipality of Zacapa in Guatemala. Information about
floating plastic debris and Sargassum occurrences and trajectories was systematically
recorded and used as reference data against the multitemporal observations on the
satellite data. For Sargassum events, reports from the South Florida Optical
Oceanography Laboratory were also employed and analyzed. Meteorological and
sea state data (e.g., precipitation, wind, sea surface currents) were also acquired for a
six-year period, i.e., 2014-2019. These data were associated and linked with the
multitemporal satellite observations and debris events. In particular, daily
precipitation data were acquired from the La Ceiba station (15° 44’ 53"N, 86° 50’
36"W) through the National Oceanographic Data Center of National Oceanic and
Atmospheric Administration (NOAA) (https://www.nodc.noaa.gov/). Moreover,

data regarding the wind direction and speed were derived from the National Data
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Buoy Center (https://www.ndbc.noaa.gov/) and NASA Prediction of Worldwide
Energy Resources (https://power.larc.nasa.gov/data-access-viewer). Sea surface
currents velocity and direction was estimated using daily ocean physics analysis data
from (CMEMS, http://marine.copernicus.eu/).

(a) Planet Data (September — October 2016)

(b) Sentinel-2 Data (October 2016)

(c) Landsat-8 Data (October 2016)

Figure 3.1 Indicative satellite data for late September and October 2016 plastic debris event. (a) Planet satellite
images from 3m to 5m spatial resolution. (b) Sentinel-2 images at 10 m spatial resolution. (c) Landsat-8 images at

30m resolution.
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Table 3.1. Reported plastic debris events along with corresponding coordinates (WGS’84).

. Date of In Situ 3
Detected Debris Events Location of In Situ
Data Collection

September 2014 30/9 16.2193° N, 86.5960° W
November 2015 29/11 16.0667° N, 86.3965° W
October 2016 22/10 16.1843° N, 86.4233° W
November 2016 3/11 16.1182° N, 86.4958° W
October 2017 17/10 16.0367° N, 86.5878° W
February 2018 8/2 16.2516° N, 86.6008° W
March 2018 8/3 16.2955° N, 86.5416° W
October 2018 19/10 16.2999° N, 86.3897° W
September 2019 28/8 14.9827° N, 89.5442° W

3.2 Photo-Interpretation & Identification of Floating Marine
Debris

Based on the multitemporal reference data from in situ observations, numerous
satellite images from different satellite missions were collected and annotated with
plastic debris polygons in a Geographic Information System environment (i.e.,
QGIS). In particular, an intensive and laborious manual on-screen digitization was
performed from photo-interpretation experts, annotating numerous images with
plastic debris and Sargassum slicks. Apart from these two primary categories (i.e.,
plastic debris and Sargassum), plastics were also subdivided into individual polygons
according to the observed density of the plastics, i.e., (a) dense, (b) medium and (c)
sparse. In total, around 1500 pixels of “dense”, 3200 pixels of “medium” and 5000
pixels of “sparse” pixels were digitized. Based on the in situ data and verified debris
events around the Roatan and Cayos Cochinos islands, numerous pixels containing
clear material observations (i.e., not mixed pixels) were collected towards calculating
the spectral signatures of both plastic debris and Sargassum from the multitemporal
multispectral data. In order to do so, around 1600 reflectance values (Figure 3.2) were
extracted from the satellite data and compared with the literature (Acufia-Ruz et al.,
2018; Biermann et al.,, 2020; Hu et al., 2015). Since we collected and processed
numerous satellite images, the detection and verification of plastics were performed
on data acquired under various weather and ocean conditions.

Along with the events that were directly verified with in situ observations,
additional debris events were detected based on the observed spectral signatures,
plastic debris characteristics reported in the literature, the detected debris size and

pattern, the successful detection of debris on multitemporal data, the successful
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correlation of the estimated trajectories and sea surface currents direction, their

association with specific river discharges and corresponding rainfall events.

Figure 3.2 The systematically recorded, from the multispectral remote sensing data, spectral signatures of plastic
debris, dense Sargassum and seawater along with their standard deviation (n = 1600). (a) Spectral signatures of
plastic debris (red), dense Sargassum (green) and water (blue). (b) An indicative Planet image with

dense Sargassum. (c) Indicative Planet image with plastic debris.

The detected debris was verified based on the aforementioned criteria and was
discriminated from any other sea surface structure that may resemble plastic debris
i.e, mainly seawater convergences and fronts. In Table 3.2, all the detected and
verified events, the corresponding satellite data and the verification manner are
presented.

In order to quantify the detected plastics, the area of every debris slick was
calculated based on the number of pixels at every given polygon and the spatial
resolution of the satellite image. An adjustment based on material density (i.e., dense,
medium and sparse) was applied for every plastic debris pixel. In order to estimate
the weight of the detected plastics per polygon, we made the following assumptions
based also on the corresponding in situ observations: the average thickness of the
observed dense floating plastics was approximately 30 cm, which results in a plastic
mass of 5000 tonnes per km2. Although field and laboratory observations are
accurate and direct methods for plastics properties examination, prediction models
can provide an automated and cost-effective indication of discharged plastic debris
weight per river based on waste management, population density and hydrological

information. For this reason, the satellite-estimated weight for all events was also
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compared with the ones derived from state-of-the-art global prediction models
(Lebreton et al., 2017). In order to do so, the required geospatial data were obtained

and monthly plastic mass midpoint estimates (Lebreton et al., 2017) were used for

each river (Table 3.3).

Table 3.2. The detected 20 plastic debris events for the years 2014 to 2019 based on satellite and in situ data.

Satellite Data & Acquisition Dates

Demc(:’::)ve“ts (day/month), *clouds >25% Validation
Landsat-8 (L8) Sentinel-2 (S2) Planet (P)
September 2014 20/9, 29/9 - - in situ (30/9)
November 2015 3/11,10/11 29/11 24/11 in situ (29/11)
January 2016 22/1 15/1 26/1 photo-interpretation
February 2016 23/2 14/2* 16/2 photo-interpretation
September 2016 25/9* 4/9,11/9, 24/9 29/9 photo-interpretation
October 2016 4/10, 20/10 14/10 28/9, 8/10 in situ (22/10)
November 2016 5/11* 3/11 9/11* in situ (3/11)
January 2017 15/1* 12/1, 25/1, 31/1 29/1 photo-interpretation
February 2017 25/2 21/2 14/2,27/2 photo-interpretation
March 2017 13/3 23/3 6/3,22/3,26/3 photo-interpretation
August 2017 20/8* 10/8, 15/8, 30/8 25/8, 26/8 photo-interpretation
October 2017 21/9, 28/9 11/10, 14/10, 9/10 27/9, 7-8/10, 15-17/10 in situ (17/10)
January 2018 11/1 22/1,24/1 7/1, 8/1 photo-interpretation
February 2018 12/2* 16/2, 26/2 11/2, 24/2, 25/2 in situ (8/2)
March 2018 16/3 8/3,18/3 13/3,17/3 in situ (8/3)
September 2018 15/9, 24/9 14,9 19/9 13/9, 19/9 photo-interpretation
October 2018 26/10, 17/10 14/10, 24/10, 29/10 21-22/10 in situ (19/10)
November 2018 27/11 13/11, 23/11, 28/11 24/11 photo-interpretation
December 2018 20/12 13/12, 28/12 14/12, 19-22/12, 25/12 photo-interpretation
September 2019 18/9 4/9,9/9 3/9, 6/9 in situ (28/8)

In several cases of in situ collections, the floating plastic debris was mixed at a
certain extent with macroalgae species or organic material (wood, tree branches etc.).
This is expected and in accordance with the literature (Martinez-Vicente et al., 2019).
Due to the spatial resolution of the satellite data (i.e., 3 m to 30 m), discrimination of
plastics from other floating features was not achievable at the pixel level. Spectral
unmixing was also beyond the scope of this work. For this reason, throughout this
study, only the clear—inside the range of their standard deviation (Figure 3.2)—
plastic pixels were considered and annotated. We estimated the weight with the
same manner for all events; however, these estimations are representative for our

study area with cases of dense plastic masses (Lechner et al., 2014).
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3.3 Marine Debris Sources & Pathways Detection

The next subsections describe (i) the process of detecting and verifying the
plastic debris from space (Figure 3.3 and Figure 3.4), (ii) its spatial distribution and
extent in the study area (Figure 3.5), its major characteristics (Table 3.3), (iii) the
detection of debris source (Figure 3.7) and (iv) the observed dominant transport

trajectories of floating debris (Figure 3.8).

3.3.1 Verifying Satellite Observations

Plastic debris pixels identification was achieved through interpretation of
satellite-derived data from three satellite missions (Figure 3.1). Using successive
satellite images before and after the reported plastic events, we managed to detect
their sources at the rivers’ mouths as well as their transport trajectories in Bay Islands
area. In almost all cases that plastics were detected and tracked, they were

accumulated at dense masses following linear trajectories.

Figure 3.3 The detected plastic debris (red dots in the map) and snapshots of the corresponding satellite images at
the Gulf of Honduras and Bay Islands during late September—October 2017. (a,b) Planet images with the detected
plastic debris from the Motagua River on 27/9/2017. (c, d) The location of the detected debris on 15/10/2017. (e, f)
Two days afterwards (17/10/2017), debris reached Cayos Cochinos island. () Debris trails were detected
(9/10/2017) on a Sentinel-2 image. (h) Same as (g) but on a Planet image. (i) Debris detected on 7/10/2017
indicating that River Cangrejal also contributes to plastic pollution. (j) Planet data (27/9/2017) with the detected

plastics originating from the Chamelecon, Ulua and Tinto rivers.

Plastic debris was occasionally detected in fronts, which were identified in satellite
data through blue color differentiation due to discrete water masses (Figure 3.3).

Our results were verified with in situ data that were collected around the Bay
Islands i.e., Roatan, Utila and Cayos Cochinos (Figure 3.4). Collected data indicated
dense plastic masses of 6 km length (on average), and their widths varied from 1 m

to 40 m. Plastic debris in the Bay Islands was dominated by macroplastics and
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secondary microplastics, reflecting its proximity to land and plastic pollution
sources. In some cases (i.e., October 2017, November 2016 and November 2015),
satellite data captured exactly the region of observed plastic debris, and in other
cases (i.e., September 2014, October 2016, October 2018,) plastics were detected in

satellite data up to 10 km from the in situ collections (Figure 3.4).

Figure 3.4 Detected plastic debris in satellite data (red dots in the map) and the corresponding in situ verification
during the years of 20142018 around Bay Islands. (a) Collected in situ data southwest of Roatan island in
September 2014. (b) In situ observations and underwater capture in November 2016. (c) Collected plastics in
Roatan area. Sargassum macroalgae and a dead juvenile turtle were also recorded (October 2018). (d) Observed
plastics during October 2016. Organic material (i.e., wood) was also recorded. (e) Observed plastic masses during

November 2015. (f) Large plastic masses recorded in October 2017. Caroline Power acquired the photos of this
figure.

3.3.2 Spatial Distribution and Descriptive Information of Plastic
Debris

A validation procedure was applied on all reported plastic debris events from in
situ collections, leading to plastic debris pixels detection and annotation in the
available satellite data from 2014 onwards. In our study area, there is no evidence of
a specific region where plastics accumulate. Instead, plastic debris seems to be
distributed and travel all over the region, indicating a potential dynamic circulation
influencing its transport around the Bay Islands. Our detections highlight that
Guatemala’s and Honduras’ river mouths are the main sources of plastic pollution in
the study area.

In particular, the Motagua River (Guatemala) and Ulua River (Honduras) seem
to be major sources of frequent plastic debris discharges, followed by Tinto,

Cangrejal and Aguan rivers (Honduras). Other relatively large (e.g., Sico,
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Chamelecon) and smaller rivers (e.g., Lean, Cuero) in Honduras have been also
detected as occasional plastic debris sources (Figure 3.5).

In order to obtain more descriptive information about plastic debris source and
transport in the Bay Islands, we examined their characteristics during all recorded
events. Table 3.3 summarizes the satellite-detected events and provides information
regarding the surface area covered by debris, its estimated weight, the detected
trajectory based on multitemporal observations and oceanographic conditions for the
corresponding dates, i.e., surface currents and wind speed/ direction. In total, 20
plastic debris events were recorded based on in situ collections, satellite observations

and photo-interpretation.

Figure 3.5 Total satellite-detected marine plastic debris from 2014 to 2019 in the southeast Gulf of Honduras and
Bay Islands in the Caribbean Sea (red dots in the map). Plastics debris enters Caribbean Sea through river

discharges. Plastic debris travels long distances dispersed in the entire study area.

Analyzing the numerous collected data, we found that plastic debris events
occurred during late summer to early Spring (August to March). During the specific
events, plastics were still accumulated in dense masses, reinforcing the capability of
their detection, yet their spread, as well as their progressive degradation in smaller
plastic debris, did not allow further detection in available satellite data. Table
3.3 demonstrates that September, October, January and November were the months
with a significant presence of floating plastics at sea. Regarding the duration of their
presence at sea surface during the study period, in 2016 and 2017, the events lasted
for five months, while in 2018 they lasted for more than half a year. Based on the
outcomes of debris detection and quantification for all reported events, we found
that the total area of detected plastic debris was 0.77 km? in 2018, 0.5 km? in 2017 and
0.23 km? in 2016.

During the recorded events, currents appeared to have an SW-NE direction with
velocities ranging from 0.06 to 0.26 m/s (Figure 3.6) and easterly winds prevailed
with recorded speeds of 1.3 to 6.3 m/s. Based on the multitemporal satellite data,
debris tracking (i.e., detection of the same plastics at different locations/ images on

different dates) was achieved for 13 out of the 20 plastic debris events.
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Figure 3.6 Sea surface currents direction and velocity for the 9th of October 2017 as derived from CMEMS
(Global ocean 1/12° physics analysis and forecast daily product). Honduras gyre is recorded west of Roatan island.

Combining information from in situ data and remote sensing observations, we
calculated the plastic debris speed for those events. According to Table 3.3, plastics’
travelling speed ranged from 0.02 to 0.14 m/s; however, in every case their speed was
found to be lower than the currents’ speed. This indicates that debris travels at a
slower pace than the speed of sea surface currents, probably due to its heavy weight
and submerged structure. For this reason, we examined if larger, heavier patches
could lead to relative lower travelling speeds. However, testing such hypothesis
offers no such evidence, since no correlation was found between the estimated debris
weight and its speed (12 = 0.02, p >0.05, n = 13), indicating that the travelling pace is
mainly controlled by the intensity of ocean currents regardless of its weight. For
almost all cases indeed, we found that prevailing currents were strong enough to
transport plastic debris. The estimated speed of plastic debris (Table 3.3) was highly
correlated with currents’ velocity (12 = 0.75, p < 0.005, n = 13), yet debris speed did
not present any correlation with wind speed (12 = 0.01, p> 0.05, n = 13). The latter
result could be expected, as prevailing eastern wind direction affected debris

movement only for the detected event during November 2015 (Table 3.3).
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Table 3.3. The detected 20 plastic debris events in Bay Islands for the years 2014 to 2019. The detected area, weight, sources, travelling trajectories, wind and currents conditions are also

presented for each event.

Estimated
Detected Detected Travel Estimated Wind
Detected Source/ Weight . . Wind Currents Currents
YEAR MONTH i . Area Debris Distance Speed L Speed . i
River Discharges (Actual) L Direction Direction  Velocity m/s
Km? Direction days/Km mls mls
tonnes
2014 September Ulua, Motagua 0.026 130 SE-NW 1d/7km 0.08 ESE 1.3 SE-NW 0.09
2015 November Cangrejal, Motagua 0.028 140 NE-SW 5d/11km 0.02 ENE 4.9 SW-NE 0.06
January Limon, Motagua, Chamelecon, Aguan 0.052 260 SW-NE 4d/50km 0.14 NNW 5.2 SW-NE 0.22
February Chapagua, Tinto,Ulua, Aguan 0.019 95 SE-NW 7d/82km 0.14 ENE 5.6 SE-NW 0.26
2016 September Motagua, Lean, Chamelecon, Sico 0.047 235 SW-NE 5d/15km 0.04 E 5 SW-NE 0.06
October Aguan, Cangrejal, Ulua, Tinto, Balfate 0.055 275 SW-NE 12d/65km 0.06 NE 2.5 SW-NE 0.07
November Motagua, Cuero, San Juan 0.061 305 - - - NE 5 SW-NE 0.1
January Ulua, Tinto, Lean, Motagua, Cuero 0.112 560 - - - E 5.3 E-W 0.12
February Motagua 0.026 130 - - - SE 4.4 SW-NE 0.08
2017 March Aguan, Sico, Limon 0.085 425 SE-NW 7d/38km 0.06 ENE 5.9 SE-NW 0.12
August Ulua, Tinto, Cuero, Motagua 0.131 655 SW-NE 11d/105km 0.11 E 4.1 SW-NE 0.13
Motagua, Ulua, Tinto, Cangrejal,
October 0.14 700 SW-NE 2d/8km 0.04 ESE 3 SW-NE 0.1
Chamelecon
January Motagua, Ulua, Aguan, Sico 0.133 665 SW-NE 4d/15km 0.04 NNW 3.8 SW-NE 0.1
February Motagua, Ulua, Tinto, Aguan 0.035 175 - - - E 6.3 SE-NW 0.15
March Lean, Ulua, Cangrejal 0.024 120 - - - E 5.3 SE-NW 0.14
Motagua, Ulua, Tinto, Chamelecon,
September . 0.138 690 SW-NE 5d/21km 0.05 E 5.6 SW-NE 0.06
2018 Cangrejal
Motagua, Ulua, Tinto, Chamelecon, Lean,
October . 0.154 770 SW-NE 6d/38km 0.07 ENE 2.7 SW-NE 0.08
Cuero, Cangrejal
November Aguan, Motagua, Lean 0.135 675 SE-NW 1d/9km 0.1 ENE 3.6 SE-NW 0.12
December Cangrejal, Cuero, Motagua, Aguan, Tinto 0.149 745 - - - NNW 5.6 W-E 0.12
2019 September Motagua, Tinto, Ulua 0.053 265 - - - NE 2.3 S-N 0.08
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3.3.3 Mapping the Origin & Travelling Trajectories: Representative
Cases

For all of the recorded events (n = 20) we found that the detected floating debris
was originating from certain river mouths (Figure 3.5), and the discharges were
related to major recorded rainfalls. All satellite sensors captured plastic debris mostly
at river plumes, while only the very high-resolution Planet sensor recorded plastics
at the rivers’ tidal area. Satellite data were also capable of verifying in situ
observations of massive plastic debris areas along large rivers in the mainland. For
example, in late August/ early September 2019, debris source was verified with in
situ observations along the Motagua River around the city of Zacapa (Guatemala),
which is 170 km away from the river’s estuary. The detected debris floating along the
Motagua River (Figure 3.7) was only partially captured on custom-made litter-
stopping booms (nets with plastics, Figure 3.7c), while the majority of plastics (i.e.,
mostly plastic bottles, plates and food wrappers) were discarded through Motagua
River mouth. Satellite data evidently detected plastic debris areas during September
2019 (Figure 3.7e,f,g).

Figure 3.7 Detected floating plastic debris along the Motagua River in the Zacapa province of Guatemala and the
corresponding discharges detected in satellite data during late August/ September 2019. (a) Location of Zacapa
city. (b) Recorded plastic debris along the Motagua River. (c,d) Plastics partially collected by booms, which
managed to collect only a small amount of debris, since they were rapidly overwhelmed and debris overpassed
them. (e) Detected plastic discharges at the Motagua River mouth on a Planet image (3/9/2018). (f) Same as (e)
but on 6 September 2018. (g) Detected plastic debris in Motagua River mouth on Landsat-8 data (18/9/2018).
Julio R Guzman Perdomo acquired the photos (b), (c) and (d) of this figure.

Based on the detection of floating debris at multiple sequential dates, we
managed to track plastic debris transport and estimate its travelling trajectories for

13 out of 20 reported events (Figure 3.8). A quite representative case was the
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reported event of late September—October 2017, during which remarkable amounts
of plastics were discharged following the rainfalls of the 24th-25th of September 2017
and onwards. In particular, on the 7th and 9th of October, plastics from Cangrejal
River were tracked on Planet and Sentinel-2 data in a distance of 16 km up to 48 km
from the river’s mouth.

Tracking of floating debris was achieved in the multitemporal satellite data
between the 7th and 9th of October. On the 7th of October, two plastic slicks were
detected on a Planet image (1 km and 600 m length, respectively) originating from
the Cangrejal River. On the 9th of October (Planet and Sentinel-2 images), the same
debris was detected and tracked (1500 m length) travelling towards Cayos Cochinos,
indicating that the two previous instances had been accumulated into this larger one.
Based on detected river discharges, identified plastic slicks, tracking and surface
circulation, we estimated plastic debris travelling trajectories in the Bay Islands area
for October 2017. Our findings indicate that sea surface currents transported plastic
debris in a SW-NE direction, and due to the local dynamic circulation, debris

travelled over a long distance up to 170 km from the source (Figure 3.8).

Figure 3.8 Plastic debris source, corresponding river discharges and estimated debris trajectories based on
multitemporal satellite detections in the Bay Islands and Gulf of Honduras. (a) Motagua River discharges as
recorded during the 27" of September 2017. (b) Detected discharges of Chamelecon, Ulua and Tinto rivers on the
27t of September 2017. (c) Detected Cangrejal River discharge on the 20" of September 2017. (d) Estimated litter
travelling trajectories (red dashed lines) based on the multitemporal detections. Plastic pathways followed, in
general, a SW-NE direction similar to currents direction acquired from Copernicus Marine Environment
Monitoring Service (CMEMS).
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3.3.4 Comparison with state-of-the-art models

Last, to further validate the satellite-derived outcomes, we compared our results
with state-of-the-art global plastic debris modeling procedures (Lebreton et al., 2017).
Regarding the estimated weight and maximum plastics input per season, our results
differ slightly from model predictions. In particular, the global model predictions, for
most of the rivers within our study area, suggest that the season with the maximum
input of plastics is from October to December. However, evidence from satellite
observations shows that the maximum plastic debris season is longer (i.e., from
September to January). Regarding weight estimations, model predictions seem to
underestimate river plastic inputs during the period of January to March, when river
plastic inputs detected from remote-sensing were important. However, in order to
obtain more accurate comparison results, model outputs need to be produced during
the same period of time. Our weight estimations may be higher than previously
reported in other regions (e.g., the Mediterranean Sea) (Suaria et al., 2016); however,
plastic patches observed here were remarkably dense. Due to the heterogeneity of
polymers that marine plastic debris is composed of, additional in situ and laboratory
measurements would increase the accuracy of weight estimation. To this end, future
studies should incorporate a more multidisciplinary approach to reach an integrated
Marine Debris monitoring system (Maximenko et al., 2019), where model outputs
could be further improved by synergistically combined satellite-derived observations

and in situ collections.

3.4 Discussion

Plastics are rapidly increasing in both coastal and oceanic environments,
highlighting the urgent need for continuous tracking and monitoring, as well as for
implementing prevention measures. Here, we examined the effectiveness of satellite
sensors in monitoring plastic debris, with the Bay Islands province as a case study.
Over this region, large dense masses of floating plastics frequently occurred,
suggesting that it is an ideal region to investigate plastic debris dynamics. In situ
collection revealed several types of plastics, including bags, bottles, plates, caps,
forks, spoons and food wrappers.

Additionally, the frequently observed floating macroalgae Sargassum slicks in
the region, originating from the east (Wang and Hu, 2017), shows that this province
is ideal for satellite discrimination of plastic debris from floating macroalgae species.
Our results indicated that satellite sensors are capable of detecting plastic debris, as
we managed to identify all of the reported events. Moreover, our findings are
contributing to recent open issues and critical questions (Martinez-Vicente et al.,
2019) regarding plastic debris source, transport, distribution and natural processes
that influence them. In particular, based on in situ collection (vessel expeditions and

citizen science reports) and remote sensing, we attempted to respond to several of
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the suggested questions. Each identified event was described in detail, regarding the
plastic debris source (i.e., specific rivers) and amount (i.e., detected floating debris
size and estimated weight). Using temporarily dense satellite observations, we also
estimated (for certain events) plastic debris velocities and trajectories, leading to an
overall quantitative and qualitative description of plastic debris characteristics in the
Bay Islands of the Caribbean Sea.

Driven from numerous satellite observations during the reported events (2014-
2019), plastic debris covered a total area of 1.6 km2 with a total estimated weight of
8000 tonnes (Table 3.3). Our findings are in accordance with the local stakeholders,
which indicate that floating plastic debris has been increasing from 2016 onwards. In
particular, currently, shores have to be cleaned up from local authorities more
frequently than in 2016 and the years before i.e., from 1-2 times per year, steadily to
minimum 3-4 times, depending on the year. Moreover, our results indicated that
plastic debris was distributed all over the region, highlighting that there is an urgent
need for local authorities to take prevention measures at the national level.
Additional in situ data need to be collected, also within the water column, in order to
examine the biological and chemical mechanisms that control plastics degradation,
movement and accumulation in the study area.

Furthermore, based on verified multiple observations and cross-validation
between the different satellite sensors and in situ data, the main source of the plastic
debris was found to be the river discharges from the corresponding catchment basins
of Honduras and Guatemala. Plastics enter the Caribbean Sea through the river
estuaries, travelling over long distances up to 200 km from the source, due to
dynamic surface circulation. Plastic debris was systematically recorded after major
rainfall events between the months of August and March, which includes the main
rainfall season (i.e., October to February) (Schmitt and Gischler, 2016). Large rivers
(e.g., Motagua, Ulua, and Aguan) were the major plastic pathways towards Bay
Islands, confirming recent studies reporting on the significant impact of river
discharges on marine plastic pollution (Kataoka et al., 2019; Simon-Sanchez et al.,
2019). Apart from these major contributors, smaller rivers that pass through cities
(e.g., La Ceiba City —Cangrejal River) and plastic waste sourcing from major harbors
(e.g., Puerto Cortes harbor) were also detected to contribute to plastic pollution in the
study area.

Based on multitemporal satellite, meteorological (e.g., precipitation) and
oceanographic datasets (e.g., currents), plastic floating debris was tracked and
monitored, allowing us to record and estimate its travel distances and trajectories.
The detected and verified debris trajectories indicated that sea surface currents
significantly affect plastic debris transportation and distribution in the Bay Islands
region. This is in accordance with the literature (Law et al., 2010) since floating debris
has been proven to be strongly affected by ocean circulation. Floating debris was

detected occasionally at fronts, which is also in accordance with the literature (Pichel
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et al., 2012). Plastic debris followed, in general, an eastward direction. Regarding the
main oceanographic features, in most cases, the Honduras gyre (Carrillo et al., 2015;
Chérubin et al., 2008) was observed (~100 km) north of our study area. In cases that
the Honduras gyre was located closer to our study area (Figure 3.6), we did not
observe any relevant floating debris patterns, indicating the gyre as a transporting
driver. However, further investigation is needed to explore how smaller features
(such as the cyclonic eddy between Cayos Cochinos and Roatan islands) possibly
contribute to plastic debris transportation in Bay Islands area.

Regarding oceanic conditions that were recorded during reported debris events
over the Bay Islands, we found that the main current direction was SW-NE and the
mean current velocity was 0.11 m/s. Easterly winds prevailed, and the mean wind
speed was found to be 4.4 m/s. The multitemporal tracking of plastic debris indicated
a mean debris velocity of 0.07 m/s. Our findings about the mean current velocity and
wind conditions are consistent with previous studies (Mehrtens et al., 2001; Potemra,
2012). According to the literature, the travelling speed of the detected Marine Debris
varies from 0.05 m/s when it follows the geostrophic speed of currents, like in North
Pacific (Lebreton et al., 2012), to 0.35 m/s after tsunami (Matthews et al., 2017), and
0.5 m/s when debris velocity is constrained by boundary currents like the Gulf
Stream.

Satellite-derived monitoring of plastic debris certainly has acknowledged
weaknesses, and for this reason, we managed to track its distribution in 13 out of 20
recorded events. Continuous tracking of debris from the source (i.e., river mouth)
towards the open ocean was not always possible. This fact is attributed to the lack of
daily satellite observations, the relative high cloud coverage (cases with >25%
coverage is common during rainfalls), and the spatial resolution of open-access data
(i.e., S2 and L8), which cannot capture debris spread, especially during stormy
conditions (indeed, in most of the cases that debris tracking failed, the wind speed
was greater than 5 m/s and currents velocity was 20.1 m/s, while rainfall ranged from
49 mm to 292 mm). Comprehensive Marine Debris monitoring is certainly
interdisciplinary by nature. Satellite-derived approaches allow the detection and
tracking of floating debris at the surface, rather than providing information on the
submerged litter (Maximenko et al., 2019). More field campaigns accompanied with
auxiliary observations have to be carried out in order to examine in more detail how
the precipitation amount, wind speed and vertical mixing influence plastics
abundance and trajectories on sea surface (Goldstein et al., 2013). For instance, it has
been suggested that future efforts should involve a thorough investigation of
physical processes that affect plastic debris transport across multiple scales (e.g.,
Ekman, waves, Langmuir circulation), to successfully report their vertical and
horizontal distribution in the water column (Sebille et al., 2020).

The identified gradual increase in plastic marine pollution must be further

studied in relation also with the rapid urbanization and Municipal Solid Waste
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Management (MSWM) in the Caribbean Sea. In particular, Honduras’” urban
population has been increased from 22.7% to 55.3% during the period of 1960-2016,
while in Guatemala, the corresponding percentage increased from 31.1% to 52%. For
both countries, MSWM is very challenging (Aparcana, 2017), as open-air waste
burning, uncontrolled open-air dumps and disposal in water bodies are common
waste activities (Hettiarachchi et al., 2018). Lack of recycling and insufficient waste
treatment technology is also an essential issue leading to high plastic amounts in
landfills and dumps (Hettiarachchi et al., 2018). According to an earlier study (Lu,
2013), there is no policy for waste management in most urban areas in Guatemala,
while in Honduras, only urban areas have access to municipal waste collection
services. It is worth mentioning that in the largest cities of Honduras, only 28% of the
domestic waste is collected and only 3.7% of the total waste ends up in a sanitary or
controlled landfill.

3.5 Conclusions

The high-resolution multispectral satellite data can contribute significantly to the
efficient monitoring of marine litter dynamics, the detection of its origin and the
dominant marine plastic pathways. Ocean circulation plays an important role in
Marine Debris transportation, as in most examined cases, surface currents lead to the
dispersion of plastic debris in the whole region. Satellite and in situ observations
should be further analyzed synergistically to monitor the plastic debris dynamics in
major accumulation hotspots such as the North Atlantic gyre, which is the most
essential “attractor” in the surrounding region, as well as the possibility of the
Honduras gyre being the local accumulation center of debris. Limitations regarding
mainly the continuous tracking of plastic debris (e.g., on a daily basis) highlight the
need for automated machine learning algorithms capable of plastic pollution
detection using any additional optical or radar earth observation data. The successive
continuation of plastic debris detection efforts should involve an automated
approach (such as machine learning) encompassing both high-resolution satellite and
in situ observations. New technology and specific satellite sensors capable of direct
tracking of plastic debris could alter our understanding of marine plastic dynamics
remarkably. A new waste management plan must be set up for Guatemala and
Honduras, including both citizens and industries. Recycling and integrated waste
management systems, should be implemented everywhere within a country
(including smaller towns and villages in the mainland) and not only in the coastal
large cities. A well-designed management strategy is required to protect marine life
and public health at a global scale. Except for national waste-management laws and
local stakeholders’” involvement, management strategies should facilitate a

collaboration between Marine Debris networks. Eventually, international conventions
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can play a key role in reducing the produced plastic waste quantity and plastic

hazards through their lifecycle.
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4 A Novel Marine Litter Detection Benchmark

In this Chapter, we design, develop and evaluate a novel Marine litter detection
benchmark. In particular, section 4.1 describes the benchmark MARIDA dataset
properties, collected data (i.e., satellite images and in stu reports) characteristics and
the annotation process. Next, a thorough statistical and spectral analysis of MARIDA
dataset is presented in section 4.2. Section 4.3 presents the experimental design and
the developed Machine Learning baselines are evaluated qualitatively and
quantitatively. Section 4.4 details the classification outputs and identifies the future
challenges of MARIDA. In section 4.5, we provide further Machine Learning
experiments by exploiting both spatial and spectral information and gain significant
insights regarding the challenging task of Marine Debris detection and discrimination
from other competing classes. Conclusions from the whole chapter are provided in

section 4.6.

4.1 MARIDA: A novel Marine Litter Dataset

Here, we introduce MARIDA, an open-source dataset consisting of annotated
georeferenced polygons/pixels on S2 satellite imagery. MARIDA was designed to be
temporally and geographically well-distributed; thus, we used open-access data from
the S2 satellite sensor which coverage includes global coastal waters. S2 is capable of
detecting and continuous monitoring large floating debris, as it provides
multispectral data at a spatial resolution of 10 m and 20 m with a frequent revisit
time of 2-5 days.

Regarding Marine Debris ground-truth data, reported events were collected from
citizen scientists and social media over coastal areas and river mouths. After
identifying these cases in S2 satellite data, the events were verified with very high-
resolution satellite data (whenever possible due to availability), and the
corresponding Marine Debris pixels were annotated. Additionally, sea surface
features that co-occurred on satellite images were annotated: Ships, Sargassum
macroalgae, Foam, Waves and Natural Organic Material (i.e., vegetation and woody),
water types (i.e., Clear, Turbid Water and Sediment-Laden Water), Shallow Coastal
Waters including benthic habitats, Clouds and Cloud  Shadows. Regarding the
annotation procedure, three image-interpretation experts annotated the satellite
images by assessing the spectral and spatial patterns of all features, considering the
limitations of the S2 sensor (i.e., different band resolutions and limited signal-to-
noise ratio) (Hu, 2021). Finally, an inter-annotator agreement protocol was
established to merge the annotated data and aggregate the confidence levels derived
from the three experts (see the Annotation process and protocol section).

The current benchmark dataset aims to support real-world scientific issues that

could eventually not only facilitate research efforts in Marine Debris, but also offer
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operational monitoring solutions. Thus, MARIDA consists of realistic, non-iconic and
non-ideal (e.g., with term ideal, we refer to cloud-free data during calm sea state
conditions) satellite observations. MARIDA’s annotations are also sparse to reduce
the potentially noisy labels due to the complexity of sea surface features. The
annotated polygons with real cases on S2 images (10 m resolution) do not correspond
to thematic class endmembers or pure/clear pixels (in some cases, we annotated
sparse Marine Debris pixels or floating materials pixels under very thin clouds).

For constructing MARIDA, a specific process was designed and followed,
including three major steps (Figure 4.1): i) collection of reports (ground-truth data
and literature) regarding floating Marine Debris events in coastal areas, ii) satellite
data acquisition and processing, auxiliary weather data collection, spectral indices
calculation, image interpretation and annotation, statistical analysis, and iii)
MARIDA dataset generation and ML benchmarking.

Data Processing,
Annotation & Statistics

Figure 4.1 Schematic diagram representing the different steps for the construction of Marine Debris Archive-
MARIDA.

4.1.1 Marine Debris Ground Truth and Reports Collection

For a seven-year period (2015-2021), we gathered reports on marine litter and
plastic pollution across coastal areas and river mouths in several countries (Table
4.1). The reports included observations gathered by photographers and citizen
scientists, and information extracted from media, social media, and ocean clean-up
activities. The URLs of the reports used are included in the Table 4.2.

In addition to ground-truth data collection, the MARIDA dataset also included
published satellite-derived data on Marine Debris detection (Biermann et al., 2020;
Kikaki et al., 2020), and observations from rivers that have been reported in the
literature as major polluters (Cordova and Nurhati, 2019; Jang et al., 2014; Lebreton
et al.,, 2017; Schmidt et al., 2017; van Emmerik et al., 2020; Zhao et al., 2019). Table
4.1 demonstrates the source of the reported data (i.e., ground-truth and indicated by
literature), as well as the corresponding date and location, when available. For each

area, corresponding S2 tiles are also included (Table 4.1).
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Table 4.1: Collected Marine Debris reports across different countries and continents for the period 2015-2021. The
table shows the regions along with the reported events information (source, date and exact location).

Continent/ Country S2 Tile Source Date Location (WGS'84)
C. America/ Guatemala 16PCC Citizen Scientist 18/9/20 15.836206° N, 88.022087° W
C. America/ Guatemala 16PCC Photographer 16/6/18  15.827222° N, 88.047500° W
C. America/ Guatemala 16PCC Kikaki et al. (2020) 4/9/19 14.9827° N, 89.5442° W
C. America/ Honduras 16PDC Citizen Scientist 18/9/20 16.1490° N, 87.6282° W
C. America/ Honduras 16PEC, 16QED Citizen Scientist 23/9/20 16.042194° N, 86.432081° W
C. America/ Honduras 16PEC Kikaki et al. (2020) 29/11/15 16.0667° N, 86.3965° W
N. America/ S. Domingo 19QDA Media 13/7/18  18.467723° N, 69.886808° W
N. America/ Haiti 18QWE/ QYE/ 4ocean Clean-Ups 20/3/20 -
QYG
N. America/ Haiti 18QWE/ QYE/ 4ocean Clean-Ups 5/1/21 -
QYG
N. America/ Haiti 18QWE/ QYE/ 4ocean Clean-Ups 9/12/20 -
QYG
N. America/ Haiti 18QVQ\H;/GQYF/ 4ocean Clean-Ups 15/12/20 -
Asia/ Indonesia 50LLR Social Media 4/3/18 8.715828° S, 115.446799° E
Asia/ Vietnam 48PZC Social Media 23/11/19  15.994762° N, 108.27417° E
Asia/ Philippines 51PTS Social Media 18/5/19 -
Asia/ Philippines 51PTS Social Media 16/7/16 -
Europe/ Scotland 30VWH Biermann et al. (2020) 20/4/18 -
Africa/ South Africa 36JUN Biermann et al. (2020) 24/4/19 -
Asia/ South Korea 52S5DD Jang et al. (2014) - -
Asia/ Indonesia 48MXU/ MYU Cordova & Nurhati (2019) - -
Asia/ China 51IRVQ Zhao et al. (2019) - -
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Table 4.2. Source of Marine Debris reports with available links. All links were last accessed on 24 July 2021.

Site Source URL Link
Santo Domingo Media https://www.youtube.com/watch?v=sFy1Vmm42zQ
Indonesia/Bali Social Media https://www.youtube.com/watch?app=desktop&v=31CdhLMV7Es
https://www.tripadvisor.com/ShowUserReviews-g298085-d456220-
Vietnam/ Danang Social Media
1728403711-Non_Nuoc_Beach-Da_Nang.html
Haiti/ La Gonave Gulf  4ocean Clean-Ups https://www .facebook.com/4oceanBracelets/
https://www.dreamstime.com/manila-philippines-may-ocean-
Philippines/ Manila
Social Media plastic-pollution-manila-bay-shore-manila-philippines-may-ocean-
Bay
plastic-pollution-manila-bay-image149765103
Philippines/ Manila https://ichkaufnix.com/2016/07/16/der-plastikstrand-oder-wie-wir-
Social Media
Bay uns-selbst-vergiften/

4.1.2 Satellite Data Processing and Annotation

Satellite Data

Based on the ground-truth events, the corresponding S2 levellC images were
acquired for the exact reported dates and locations using a mean time window of 10
days. Additionally, for the regions that are significantly affected by plastic pollution
(such as river discharges), the seasonality and the periods of maximum plastic
presence were examined. We also extended our research for the entire 2015 to 2021
period, focusing on the major recorded rainfalls (https://power.larc.nasa.gov/data-
access-viewer/).

At an early stage for selecting images with potential Marine Debris, we visually
inspected S2 Red-Green-Blue (RGB) composites along with very high-resolution
Planet (https://www.planet.com) and Google Earth imagery, when available. The S2
data in which the visual inspection indicated Marine Debris occurrence were further
processed. Rayleigh reflectance values were extracted at 10 m resolution for 11 bands
using ACOLITE atmospheric processor, excluding Vapour (Band 9) and Cirrus (Band
10). To improve the accuracy of the following annotation step, FDI (Biermann et al.,
2020) and FAI (Hu, 2009) spectral indices were calculated.

Annotation Protocol

During the annotation step, three image-interpretation experts had access to the
gathered data, including reports, S2, Planet satellite imagery, and computed spectral
indices. The annotators digitized Marine Debris based on ground-truth events,
considering S2 sensor limitations, and employing domain knowledge about its
spectral behaviour (Biermann et al., 2020; Hu, 2021; Qi et al., 2020; Topouzelis et al.,
2019) and its accumulation patterns (i.e., fronts, marine litter windrows) (Cozar et al.,
2021). A laborious and intensive image interpretation and manual assessment of each

pixel were performed for all selected images leading to Marine Debris annotations at
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pixel level. In addition, diverse floating objects, sea state features, water types and
clouds were annotated based on image interpretation and established spectral
patterns (Dierssen, 2019; Hu et al., 2015; Kanjir et al., 2018; Kubryakov et al., 2021;
Liu et al, 2021). Wind data were also utilized (https://power.larc.nasa.gov/data-
access-viewer/) to examine the possibility of whitecaps, which may appear similar to
plastics in human eye (Dierssen, 2019).

Expert annotators recorded the thematic class and their confidence level for each
digitized polygon. In particular, all annotated polygons were labelled with three
confidence levels (i.e., #1 for high confidence, #2 for moderate and #3 for low
confidence level). After the annotation step, an inter-annotators agreement protocol

was established, which is described below:

i.  For Marine Debris, Natural Organic Material and Sparse Sargassum, which
occasionally can have similar spectral behaviour (Hu, 2021), the intersection
per two annotators extracted (i.e, an agreement between at least two
annotators regarding the class label). If so, the lowest confidence level that
was originally assigned was kept for these cases.

ii.  For the other features, the union of the annotated data was calculated. If at
least two contradictory annotated classes existed for the same digitized area,
the annotation was excluded. For the rest of the cases, where the three experts
agreed regarding polygon labeling, the lowest confidence score was kept.

For each annotation, Marine Debris report existence was also recorded (i.e., #1
when exact date and locations were identified and matched to the available reports,
#2 when patches were identified at a distance of either up to 20km or up to 6 days
apart from the reported locations and dates; and #3 for no recorded reports close to
the detected debris). Additionally, the cases that debris was detected based on
previous studies reporting river discharges, were labelled under category 3.

Regarding our annotation strategy, clouds/thin clouds were determined by their
intensity, texture and shape, as well as by their adjacent shadows. Regarding thin
clouds, following the same manner as for the other features/ classes, spectral
signatures were examined, and confidence levels were assigned. After the inter-
agreement protocol, the union of the annotations was estimated, while in cases with
different confidence level labelling, the lowest confidence level was kept (we note
that #1 is for high confidence level, #2 for moderate and #3 for low confidence level).

In cases that floating materials were below thin clouds or semi-transparent
features such as aerosols or haze, the experts proceeded with the annotation of the
considered floating feature only when its spectral profile/ shape/ pattern was not

significantly distorted (assigning also confidence levels in all cases).
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Refining Data
In order to improve the quality of our annotated data, the structure of the

recorded high-dimensional observations (i.e., 11 multispectral bands) was visualized
and explored. Specifically, to examine the pairwise distances between the high-
dimensional annotated pixels, we utilized t-distributed Stochastic Neighborhood
Embedding (t-SNE) algorithm proposed by Maaten and Hinton (2008), using
Spectral Angle Mapping (SAM) (Garaba and Dierssen, 2018; Kruse et al., 1993) as a
distance metric. By representing our data in a 2D space, spectral patterns of thematic
classes were mapped and outliers were identified and further explored (revisit the
data to determine if they had been erroneously annotated).

The annotation procedure resulted in a vector dataset of the digitized polygons,
in a shapefile format. The dataset was converted into a raster structure, which was
finally cropped into non-overlapping 256x256 pixel-sized patches. After the

cropping, each patch was available for extra visual inspection.

4.2 The MARIDA Benchmark Dataset

MARIDA contains 1381 patches, consisting of 837,357 annotated pixels, based on
63 S2 scenes acquired from 2015 to 2021. MARIDA provides patches (Figure 4.2) with
corresponding masks of pixel-wise annotated classes and confidence levels in the
format of GeoTiff. For each patch, the assigned multi-labels are given in a JSON file.
In addition, MARIDA includes shapefiles data in WGS’84/ UTM projection, with file
naming convention following the below scheme: s2_dd-mm-yy_ttt, where s2 denotes
the S2 sensor, dd denotes the day, mm the month, yy the year and ttt denotes the S2
tile. Shapefiles data include the class of each annotation, along with the confidence
score and the report description. The produced dataset is composed of geodata,
covering different sites around the globe (Figure 4.3). The selected study sites are
distributed over eleven countries (i.e., Honduras, Guatemala, Haiti, Santo Domingo,

Vietnam, South Africa, Scotland, Indonesia, Philippines, South Korea and China).

4.2.1 Thematic class distribution

To demonstrate the descriptive overview of MARIDA, the class and pixel
distributions are presented in Tables 4.3 and 4.4 and their spectral and statistical
analysis are illustrated in Figures 4.4 and 4.5. More specifically, the 15 different
classes of MARIDA are shown in Table 4.3, which includes the class description, the
corresponding number of provided image patches, and all acronyms of the
annotated classes. Regarding the class distribution, the MWater class has been
digitized in 870 patches due to its implicit abundance in satellite data and

straightforward annotation.
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Clouds, Cloud shadows, Natural organic material, Sargassum, Marine water,

Ship, Wakes, Waves Turbid water Clouds, Cloud shadows
Marine debris, Ship, Sediment-laden water,  Clouds, Cloud shadows,
Shallow water Turbid water, Foam Shallow water

Figure 4.2 Example of S2 patches provided in MARIDA.

Figure 4.3 The sites (red dots in the map) where Marine Debris events were reported, and corresponding Sentinel-
2 satellite images were acquired and processed. Marine Debris and other features that co-existed were annotated in
considered satellite data. The corresponding map is acquired from Natural Earth

(http://www.naturalearthdata.com/).
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As proposed by Hu (2021), we have included additional MWater pixels that were
close to Marine Debris pixels, in order not only to facilitate further experiments with
SAM, but also run experiments on pixel windows (3x3 or 5x5) and reflectance
difference. The second-highest number of 373 patches were labelled as Marine Debris,
indicating the high variety of annotations in different patches. Cloud, Ship and Turbid
Water were annotated in a sufficient number of patches (~200), as they are plenty in
the natural environment and easily identified by annotators.

The rest of the categories were digitized in fewer patches (appr. 50-100). Some of
the considered categories, such as SLWater, Sargassum blooms, CloudS, SWater were
easily digitized with compact, not extended polygons,
while Foam, NatM, Wakes and Waves required a laborious and intensive manual
assessment. Considering that MARIDA is a Marine Debris-oriented dataset, we
provide only a certain number of indicative cases with the classes mentioned above.
The artifact due to the dissimilar S2 band resolutions led to a specific spectral
signature primarily recorded on surrounding water pixels of Marine
Debris, SpS and Ship. This class was labelled as MixWater, as it corresponds to water,
and digitized around annotated Marine Debris pixels. For more details about patches
and class co-occurrence, readers are referred to the online material (https://marine-
debris.github.io/).

Table 4.3 The thematic classes of MARIDA. Name, description and corresponding number of patches are
presented for each class. All acronyms are stated here.

Class Name Acronym Description N;::}:s‘)f

Marine Debris MD Floating plastics or othf?r polyr'ners, mixed 373
anthropogenic debris

Dense Sargassum DenS Dense floating Sargassum macroalgae 49
Sparse Sargassum SpS Sparse floating Sargassum macroalgae 106
Natural Organic Material NatM Vegetation & Wood 71
Ship Ship Sailing & Anchored Vessels 182
Clouds Cloud Clouds including thin Clouds 181
Marine Water MWater Clear Water 870
Sediment-Laden Water SL Water High-Sediment river discharges with brown 51

colour

Foam recorded at river fronts or coastal wave
Foam Foam . 59
breaking area

Turbid Water TWater Turbid waters close to coastal areas 220

Shallow Water SWater Coastal waters, including co%'al reefs and 64
submerged vegetation

Waves Waves Waves 54

Cloud Shadows CloudS Cloud Shadows 71

Wakes Wakes Wakes & Waves from a sailing vessel 106

Mixed Water MixWater Water near floating materials 140

Total 1381
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Apart from the per-patch analysis, we also discuss the pixel-level distribution of

MARIDA classes. Table 4.4 summarizes the class distribution in pixel level for each

S2 tile, indicating that MARIDA provides numerous pixels annotated in 17 S2 tiles.

Table 4.4. MARIDA's class distribution at pixel-level. For Sentinel-2 tiles description, the reader is referred to
Table 1. For classes acronyms, the reader is referred to Table 4.3.

S2 SLWate Wake MixWate| #of #ofS2

Tile MD DenS SpS NatM Ship Cloud MWater . Foam TWater SWater Waves CloudS s . pixels scenes
16PCC| 1496 2048 574 78 3322 62082 60169 285886 712 99501 3960 3417 3585 5929 191 |532950 19
16PDC| 143 49 226 78 96 13507 15258 85449 334 24923 2251 0 883 253 75 |143525 6
16PEC| 129 222 645 193 485 11678 19341 11 86 27080 3782 108 1733 1115 51 66659 6
16QED| 0 474 691 0 90 4098 1719 0 0 0 5910 0 1841 221 0 15044 2
18QWEF| 0 0 0 0 0 0 324 0 0 0 0 1461 0 0 0 1785 1
18QYF|1112 4 200 154 408 7977 1360 0 0 0 1038 0 314 48 58 12673 13
18QYG| 90 0 0 7 0 373 222 0 0 831 277 0 106 0 15 1921 1
19QDA| 0 0 21 3 11 0 110 0 0 5 40 0 0 0 0 190 1
30VW

H 27 0 0 0 36 3505 24393 0 0 0 0 0 1975 0 0 29936 1
36JUN| 46 0 0 0 625 3500 600 0 0 300 0 0 0 18 0 5089 1
48MXU| 208 0 0 0 71 5807 194 0 0 382 45 0 489 15 12 7223 2
48MYU| 24 0 0 0 223 0 291 0 0 10 48 0 0 611 0 1207 2
48PZC| 24 0 0 0 298 4108 2079 0 48 4129 0 0 765 171 1 11623 3
50LLR| 41 0 0 3 27 402 485 0 41 0 18 841 0 72 5 1935 1
51PTS| 38 0 0 20 17 0 35 0 0 0 0 0 0 0 0 110 2
51RVQ| 17 0 0 0 0 363 163 0 0 0 0 0 37 0 0 580 1
52SDD| 4 0 0 328 94 0 2416 1591 4 451 0 0 0 37 2 4927 1
;i:ls 3399 2797 2357 864 5803 117400 129159 372937 1225 157612 17369 5827 11728 8490 410 |837377 63
Perc. %| 041 0,33 028 01 069 14,02 1542 4454 0,15 188 207 070 1,40 101 0,05 100

Overall, most given pixels correspond to Honduras Gulf, a known plastic

polluted region where a thorough remote-sensing study has been previously
conducted by Kikaki et al. (2020), based on ground-truth data. It should be noted

that, although we avoided digitizing extended regions with water or clouds, the

produced dataset cannot be balanced at pixel-level due to the implicit different size

and characteristics of considered sea features. Indeed, our goal was to create a

Marine Debris-oriented dataset. To this end, we provide a significant number of 3339
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Marine Debris pixels in total. The 1625 pixels were digitized and annotated with high
confidence, based on reports and domain knowledge. Additionally, 1235 pixels were
labelled with moderate and 539 pixels with low confidence (Table 4.5). For scenes
with large garbage trajectories and high confidence annotations, the readers are
referred to 18 September 2020 (tile 16PCC) and 14 March 2020 (tile 18QYF), where
ground-truth events were available. An indicative case with dense marine litter
patches at Motagua river mouth was also evident on 4 September 2016 (tile 16PCC).
For other scenes with high-confidence Marine Debris annotated data, the reader can

consider the online material (https://marine-debris.github.io/).

Table 4.5. The distribution of the confidence scores in pixel level for the classes of Marine Debris, Natural Organic
Material and Sparse Sargassum.

Confidence Level Marine Debris Natural Organic Material Sparse Sargassum
High 1625 (47.81%) 556 (64.35%) 2052 (87.06%)
Moderate 1235 (36.33%) 201 (23.26%) 290 (13.3%)

Low 539 (15.86%) 107 (12.38%) 15 (0.64%)

Total 3399 864 2357

4.2.2 Spectral signatures & statistical analysis

To study the spectral behavior of Marine Debris annotated data, we extracted the
mean spectral signatures for each scene, leading to a detailed analysis presented
thoroughly in the online material. The mean spectral reflectance of annotated pixels
with high confidence in MARIDA is depicted in Figure 4.4. The mean spectral
signatures are presented along with 25-75 percentiles as error bars to demonstrate
the variation along with the skewness of their distribution. Atmospheric correction
process, diverse proportions of floating Marine Debris within pixels, differences
resulting from colours and immersion, and mixed conditions in the natural
environment led to high variability of recorded Marine Debris spectral signatures.

However, the recorded Marine Debris mean spectral reflectance is very similar
with the corresponding simulated signature proposed recently by (Hu, 2021).
Slightly higher values in our data indicate different debris proportions within pixels.
In comparison with previous studies (Biermann et al., 2020; Kikaki et al., 2020;
Topouzelis et al., 2019), which exploited S2 imagery, higher reflectance at Green and
Red bands was observed, possibly due to the denser patches that we recorded.
Additionally, the mean spectral signature of high-confidence NatM was considered
for comparison, as in some cases with low subpixel proportions, their spectral
discrimination =~ was  not  straightforward. @ Regarding  Marine  Debris
and NatM comparison, it was found that their discrimination might be possible in
865 nm and SWIR bands.
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Figure 4.4 The spectral signatures of the Marine Debris and Natural Organic Material classes derived from the
annotations with the high confidence levels. The mean spectral signatures are presented with 25-75 percentiles as
error bars.

By applying t-SNE algorithm along with spectral signatures analysis described
above important insights were gained about spectral behaviour of floating Marine
Debris and the potential of spectral discrimination from other features with similar
patterns such as SpS, Ship, Waves and NatM.

Figure 4.5 presents t-SNE results for the considered features, indicating the
different confidence level for each annotation with a different symbol. Based on the
recorded data, a well-shaped Marine Debris cluster was developed, which is discrete
from other clusters. Very sparse recorded Marine Debris (e.g., 20 April 2018 in
Scotland) led to a smaller separate cluster between Waves and Marine Debris. A well-
shaped Ship cluster was also mapped, yet some annotated Ship pixels were depicted
in Marine Debris cluster due to the similar polymer types. Respectively, some dense
Marine Debris pixels were mapped in the Ship cluster. Some Ship pixels were also
depicted close to Waves pixels; this is evident in cases with moving vessels, where
discrimination of boundary Ship pixels from water-related classes (i.e., Wakes) was
challenging for a human expert.

Occasionally, NatM cannot be spectrally separated from Marine Debris (e.g., 18
September 2020 at Motagua river mouth). Mixed conditions at the river mouth, low
coverage at pixel-level and potentially colored marine litter (e.g., green or brown) led
to  uncertainties represented with low  confidence  Marine  Debris
and NatM annotations. However, dense Natural woody debris has a discrete spectral
signature (e.g., 7 October 2018 at Nakdong river mouth). This fact was also
confirmed by a smaller (but well-shaped) NatM cluster depicted in brown color
(Figure 4.5). A discrete SpS cluster was also formed, including NatM (i.e.,
vegetation). In some cases, the SpS annotated pixels have been mapped in the Marine
Debris and Waves clusters, though, the majority of these cases corresponded to
sparse floating materials that were detected at a lower subpixel level. This fact
confirms that sparse floating vegetation pixels in some cases cannot be spectrally

discriminated from sparse marine litter pixels (e.g., 4 March 2018 in Bali) (Hu, 2021).
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Figure 4.5 A 2D embedding using T-SNE algorithm with SAM metric for the classes: Marine Debris, Ships,
Sparse Sargassum, Natural Organic Material and Waves. Each class is represented with a different color.

Different symbols demonstrate the confidence level of annotations.

4.3 Detection with Machine Learning

In order to trigger more research efforts towards Marine Debris detection
methods and solutions, we provide software baselines for weakly supervised pixel-
level semantic segmentation tasks, by employing a Random Forest model (RF)
(Breiman, 2001) and an U-Net architecture (Ronneberger et al., 2015).

Random Forest

In particular, RF is a well-established supervised model, which has been widely
used in remote sensing and computer vision community. A RF classifier consists of
many decision trees and uses averaging to improve the predictive performance and
control over-fitting. For our RF model, we extracted features similar to the first place
team of Track 2 of the 2020 IEEE GRSS Data Fusion Contest (Robinson et al., 2021).
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We trained three different RF models: i) one based on spectral signatures of each
pixel (RFss), ii) one based on spectral signatures and calculated spectral indices
(RFssws1), and iii) one with spectral signatures, spectral indices, and extracted Gray-
Level Co-occurrence Matrix (GLCM) (Haralick et al., 1973) textural features
(RFssssicLem) in order to incorporate the spatial information. The extracted spectral
indices were NDVI, NDWI, FAI, FDI, Shadow Index (SI), Normalized Difference
Moisture Index (NDMI), Bare Soil Index (BSI) and NRD (Hu, 2021), which are
broadly used in remote sensing studies. To compute the GLCM features, Rayleigh
corrected RGB composites were converted to grayscale images which consequently
were quantized in 16 bins-level. The selected GLCM features were Contrast (CON),
Dissimilarity (DIS), Homogeneity (HOMO), Energy (ENER), Correlation (COR) and
Angular Second Moment (Haralick et al., 1973). For those features extraction, a

window of size 13 x 13 was used.

U-Net

The U-Net is a well-established deep learning model for semantic segmentation.
Its architecture consists of two parts, the down-sampling and the up-sampling part.
The first part encodes the input image yielding a low dimensional representation
using successive blocks of 3 x 3 convolutions for features extraction and max-pooling
layers for down-sampling. The feature maps/ produced channels are doubled in each
block, while the spatial dimensions are reduced by half. The second part decodes the
internal representation using successive up-convolution layers to create the final
segmentation output.

For our task, the first input layer of U-Net was modified to adapt to the 11
Rayleigh reflectance S2 bands, and the final classification layer was changed to
output the MARIDA classes. We also used 4 down-sampling and up-sampling
blocks, as well as 16 hidden channels produced by the initial down-sampling block.

Evaluation Metrics

To assess pixel-level semantic segmentation performance, we relied on three
metrics. Our main evaluation metric was the Jaccard Index or Intersection-over-
Union (IoU) (Everingham et al., 2015). In addition, the average for each class Fi score
(Macro-F1/ mF1) and the Pixel Accuracy (PA) for the per-class assessment were

employed.

To evaluate the performance of RF model and U-Net architecture, we relied on the

Intersection-over-Union (IoU):
TP (1)

oV = rp TP+ PN
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where TP is the number of true positives, FP the number of false positives and FN
the number of false negatives. Intuitively, IoU is equal to the ratio of intersection
between predicted and ground truth area to the union between predicted and
ground truth area. Considering that we deal with a multi-class task, the main
evaluation metric for the overall assessment is the mloU which is the average IoU

over all classes c:

1 n
mloU = —Z IoU, (2)
Nitac

The second metric is the average for each class F; score (Macro-F;/ mF;), which is
the harmonic mean between precision P =TP/(TP+ FP) and recall R =
TP/(TP + FN):

1" 1" 2P.R, (3)
F=—ZF = - e —
m n Clc ntZu. P, + R,

The third metric is the Pixel Accuracy (PA) for the per-class assessment and the
corresponding mean PA (mPA) for the overall assessment. For each class, PA is the
ratio of the correctly predicted pixels to the total number of pixels. For the multi-class
pixel-level classification, this metric is equivalent to recall R.

MARIDA is designed to be beneficial for several remote sensing applications
and tasks which are described in detail in the following section (Discussion).
However, it primarily aims to benchmark weakly supervised pixel-level semantic
segmentation learning methods. In particular, the produced dataset falls into
incomplete-supervision due to sparsely annotated data, inexact-supervision due to
sensor limitations (i.e., 10 m resolution, different bands resolution), and inaccurate
supervision derived from potential slightly noisy annotations (i.e., sensor noise,

human error).

Experimental Design

MARIDA was split into train, validation and test disjoint sets. The data were not
split randomly; instead, each data split was produced as a representative subset of
the whole dataset. For instance, the dataset was divided into subsets which were
ensured to have balanced class distribution (Table 4.6). It should be noted that the

data of each scene/unique date were retained in the same set. The split was selected
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to be ~50/25/25%. More specifically, the split contains 694 training (429,412 px), 328
validation (213,102 px) and 359 test (194,843 px) patches.

Table 4.6. Class distribution (%) for each split in MARIDA. All acronyms are stated in Table 4.3.

Class Train Validation Test Total
MD 27.38 25 28.13 27.01
DenS 3.46 3.66 3.62 3.55
SpS 8.07 7.93 6.69 7.68
NatM 5.04 6.1 4.46 5.14
Ship 12.82 12.8 14.21 13.18
Cloud 13.4 13.11 12.53 13.11
MWater 62.25 64.63 62.95 63
SLWater 3.46 4.27 3.62 3.69
Foam 4.32 4.27 4.18 4.27
TWater 16.57 15.24 15.32 15.93
SWater 5.48 3.35 418 4.63
Waves 3.31 549 3.62 391
CloudS 5.62 5.79 3.62 5.14
Wakes 7.2 8.23 8.08 7.68
MixWater 9.94 10.67 10.03 10.14

Due to the moderate size of MARIDA and aiming at a Marine Debris-oriented
dataset, the initial 15 classes were aggregated to 11 classes. The categories
of Wakes, CloudS, Waves and MixWater were grouped with MWater and formed a
water super-class, as they semantically belong to the same class as well as present
similar spectral profiles (see online material).

Regarding RF training, all models (RFss, RFss:s1, RFssisicLom) were composed of
125 trees, each with a maximum depth of 20 nodes. Due to pixel-level class
distribution, which is by nature imbalanced (e.g., Marine Water px contrary to Marine
Debris px), we used class weighting inversely proportional to class frequencies in the
training set. Additionally, the annotators’ confidence score was utilized such that low
confidence samples contribute less to the training process. Specifically, the weights
for high, moderate and low confidence samples were 1, 2/3 and 1/3, respectively. The
final selection of RF hyperparameters described above was based on grid search in
the validation set.

During the U-Net training process, the Adam algorithm was employed to
minimize the Cross-Entropy loss with an initial learning rate of 2x10. Moreover, we
utilized early stopping based on the loss of the validation set and trained for 44
epochs. After the 40™ epoch, the learning rate was reduced to 2x10°. The selected
batch size was 5 samples. We also employed random rotations of the input images
by -90°, 0°, 90°, or 180° and horizontal flips in order to augment the dataset. The
selection of the hyperparameters above and training set-up was based on grid search

in the validation set. It should be noted that the U-Net model was trained from
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scratch. To address the unbalanced data limitation, the proposed weighting scheme
was used on the Cross-Entropy loss for each class (Paszke et al., 2016). Finally, it
should be mentioned that in our U-Net baseline, in contrast to RF, we did not

experiment with the annotators’ confidence levels.

4.3.1 Quantitative & Qualitative evaluation

This subsection describes the quantitative and qualitative assessment of our ML
baseline outcomes in MARIDA. To evaluate our results quantitatively, we
demonstrate the scores for all metrics per class on the test set (Table 4.7). Overall, our
results indicate that RFSS+SI+GLCM leads to the highest average scores for all
metrics, followed by RFSS+SI and RFSS, which provide almost equivalent average
scores. Regarding scores per class, for SWater, U-Net provides the highest scores,
while for Ship, Clouds, MWater and Foam, RESS+SI+GLCM performs best. For DensS,
RFSS+SI leads to the highest scores, as for SpS, RESS+SI+GLCM leads to higher scores
for IoU and F1. For TWater, both RESS+SI+GLCM and U-Net achieve similarly high
scores. It is noteworthy to highlight that for SLWater, all RF models and U-Net
achieve for all metrics the highest scores (i.e., 1).

Regarding Marine Debris, RFss«si performs the highest scores, while adding
spatial information does not improve the classification performance results (i.e., loU
and Fi decreased slightly). Future experiments with different window sizes for the
extraction of GLCM textural features may lead to higher scores. We have to note that,
for the NatM class, all models lead to low scores. NatM presents similar spectral
behavior to Marine Debris, while both follow the same spatial patterns (e.g., linear
trajectories). In this case, adding spectral indices or textural information leads to
lower scores than the initial. Especially, U-Net predicts only few

annotated NatM pixels on the test set.

Table 4.7. Evaluation scores obtained by RFss, RFss+si, RFss+sncLemand U-Net for each class on Marine Debris
Archive. The highest scores are highlighted. All acronyms are stated in Table 4.3.

RFss RFssqs1 RFss+siGLem U-Net
Class IoU PA F1 IoU PA F1 IoU PA F1 IoU PA F1
MD 0.55 091 0.71 0.67 0.92 0.8 0.65 0.92 0.79 0.33 0.7 0.5
DenS 087 092 0.93 0.88 0.93 0.93 0.87 093 0.93 0.6 0.6 0.75
SpS 0.53 0.91 0.69 0.69 092 0.82 0.83 0.9 0.91 0.66 0.89 0.79
NatM 0.31 0.47 047 017 027 029 0.18 0.31 0.31 0.02 0.02 0.04
Ship 0.54 0.72 0.7 047 0.7 0.64 0.67 0.82 0.8 0.62 0.76 0.76

Clouds 075 08 08 074 082 08 0.84 0.86 091 0.62 0.62 0.76
MWater 066 082 079 065 083 079 075 093 0.86 0.61 0.88 0.76
SLWater 1 1 1 0.99 1 1 0.99 1 1 0.99 0.99 1

Foam 023 029 037 031 048 047 0.6 0.74  0.75 0.55 0.55 0.71
TWater 074 078 0.85 0.8 083 089 088 092 0.94 0.84 0.95 0.91
SWater 008 025 016 013 033 023 0.3 037 046 0.45 0.67 0.62
Average 057 072 069 059 0.73 0.7 069 079 0.79 0.57 0.69 0.69




57

Except for the quantitative evaluation described above, a qualitative (visual)
assessment of our baseline results on the test set was also performed (Figure 4.6). As
it is easily noticed, the two models, RFSS+SI+GLCM and U-Net, provide similar
results. Nevertheless, U-Net seems more robust to S2 noise and single pixels with
sharp spectral differences than RF. U-Net is capable of modeling the shapes and
spatial patterns of sea features, and appeared to be no sensitive in isolated pixels/
spikes, potentially due to the inherent multiple-scale information (successive
convolutional layers). On the other hand, RFSS+SI+GLCM is more prone to S2 noise
and mixed bands resolutions artifact. In particular, in RESS+SI+GLCM results, some
pixels around Marine Debris and SpS are classified as Cloud (Figure 4.6B,D).

In both models, small vessels are classified as Marine Debris (Figure 4.6C), which
is expected due to similar polymer types that are composed and possibly similar
floating material proportion within pixel. Regarding Cloud, RFSS+SI+GLCM predicts
more accurately the considered class than U-Net (Figure 4.6C,D), while U-Net
predicts better the SWater habitats (Figure 4.6C). The latter fact can be also seen in the
highest scores in all U-Net metrics (Table 4.7). In the coastal zone, both models lead
to similar results. However, in U-Net classification images, some Foam pixels are
predicted as Marine Debris, while in RF results, some TWater pixels are classified
as MWater (Figure 4.6A).

Figure 4.6 Classification results extracted by the baseline RESS+SI+GLCM and U-Net models. Selected indicative
cases demonstrate (A) S2_12-12-20_16PCC_6, (B) S2_22-12-20_18QYF_0, (C) S2_27-1-19_16QED_14 and (D)
52_14-9-18_16PCC_13 patches on test set. RGB patches are derived from Sentinel-2 data which were freely
downloaded from https://earthexplorer.usgs.gov/. All acronyms are stated in Table 4.3.

By assessing our baseline experiments quantitatively and qualitatively, we

observe that there is a consistency between metric scores and classification outputs in
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general. Yet, in some cases, the classification is still challenging. For instance,
although both models achieve high scores (in comparison with other classes)
for SpS (Table 4.7), in some cases with very sparse conditions, SpS pixels are
classified as Marine Debris (Figure 4.6D).

4.4 Discussion

In this Chapter, a new dataset (MARIDA) is introduced towards triggering the
research community at improving and developing new methods for detecting Marine
Debris and discriminating from other sea surface features that co-exist. Based on the
collected ground-truth, literature review and intensive image interpretation,
MARIDA provides 3399 Marine Debris pixels, labelled in different S2 tiles across
various countries, different seasons, years and sea state conditions. Thus, MARIDA is
an important geodata source for evaluating existing detection methods and

developing new techniques based on available S2 data.
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Figure 4.7 In order to inspect our developed model with the best performance, and subsequently understand the
importance of each input feature, we applied the permutation feature importance. Specifically, for each feature, we
performed random shuffling between different samples on test set to obtain the amount of decrease in the model’s

accuracy. For each feature, we performed this procedure 20 repeated times to estimate the mean decrease. However,
due to the multicollinearity of the input features, permuting one feature does not affect model’s accuracy as long as
similar information is still included. Thus, we calculated the Spearman Correlation among input features on train
set, in order to form highly correlated groups and keep only a single feature from each group . we selected a cut-off
threshold to form the groups with the most correlated features. Followingly, we trained the RFss:sicLcm from
scratch only on these features and obtained almost identical results (mloU = 0.67, mPA = 0.79, mF1=0.78),
compared to initial approach. This fact reveals that the selected subset of features preserves the same amount of
input information. We observe that the largest accuracy decrease occurs by permuting CON, NDWI, NDVI and
FDL
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After training four different models, the results showed that the developed
RFSS+SI+GLCM achieved the highest scores for all metrics; yet it seems more prone
to S2 noise and different bands resolutions than the deep U-Net architecture. Further
experimentation with RFSS+SI+GLCM indicated that the most distinctive feature is
the spatial feature CON (i.e, a measure of the intensity difference between a pixel
and its neighbour), followed by NDWI, NDVI and FDI (Figure 4.7). This fact is also
in line with Tasseron et al. (2021) who recommended that the combination of FDI
and NDVI can be efficient in the separation of vegetation and Marine Debris.

Low-confidence annotations were also included in our dataset, revealing
challenging cases where no ground-truth events existed, and thus, human-experts
attempted to identify the floating materials/ features based on domain knowledge,
image interpretation and statistical analysis. Indicative cases include the sparse
floating materials detected at fronts (e.g., 1 December 2019 in Jakarta Bay), very
turbid conditions (e.g., 12 January 2017 in Honduras), and windrows (29 August
2017 at Yangtze river mouth) where human-experts could not easily define if they
were dominated by dense foam or plastic concentrations. In addition, the spectral
discrimination of Marine Debris from NatM was not straightforward in some cases
(e.g., 18 September 2020 PCC). This issue was also observed in a previous study by
Moshtaghi et al. (2021), demonstrating that the considered floating materials (e.g.,
brown Marine Debris and woody debris) can have similar spectral patterns.

Regarding MARIDA limitations, it should be noted that the dataset is not
optimally balanced geographically due to the lack of open-access in situ data
reporting marine litter cases worldwide. MARIDA dataset can be augmented in
future works with other datasets (e.g., clouds), other recorded features such as
macroalgae species (e.g., Ulva, Noctiluca), jellyfish blooms (Qi et al., 2020) and future
collections of additional verified Marine Debris events.

Due to S2 spatial resolution, the annotation procedure was occasionally not
straightforward. For example, the discrimination between boundary Ship pixels
and Wakes in moving ships was challenging for all experts. Thus, these cases
potentially induced slight noise to the dataset. Certain S2 images with erroneous
atmospheric corrections, such as the S2 image acquired on 23 September 2020 (Bay
Islands, Honduras), were excluded, even though a major Marine Debris event was
reported in the region during this date. Furthermore, high cloud coverage did not
allow marine litter detection in all available S2 images in Santo Domingo, where a
significant event was reported (July 2018).

The ACOLITE Dark Spectrum Fitting (DSF) algorithm was selected in this work
after the recommendation from several studies (Biermann et al.,, 2020; Hu, 2021;
Kikaki et al., 2020; Topouzelis et al., 2019), reporting that ACOLITE performed well
in detecting marine litter. However, ACOLITE performs simple pixel replication and
no interpolation (such as bilinear or cubic) or other more sophisticated methods such

as pan-sharpening to resample the S2 20 m and 60 m bands to 10 m.
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Despite the limitations mentioned above, MARIDA is designed to be a multi-
task dataset with various future aspects. Firstly, the RF model used here can be
further enhanced by using spatial information at multiple scales (e.g., GLCM features
at different windows size). Further feature-engineering and selection of the most
distinctive bands, might improve the RF performance as well. Also, the
experimentation with the denoising of the prediction masks (as a meta-classifier) can
create more accurate classification outputs.

Regarding U-Net, experimentation with different loss functions and different
weighting schemes can potentially address the class imbalance. For instance, the
Focal Loss (Lin et al., 2017) may help the model focus on classes that have not been
trained well. Furthermore, the exploitation of annotators’ confidence level
information should be incorporated into the learning process. Another arising
challenge is the combination of the predictions from multiple models (ensemble
methods), potentially leading to more promising results. Experimentation with other
improved or more sophisticated architectures can also be examined. The integration
of advanced pre-processing techniques (i.e., cloud masking, denoising algorithms)
should improve Marine Debris detection and sea features classification outcomes
(Wang and Hu, 2021a).

Other tasks derived by MARIDA that could be further explored are the
unsupervised classification methods and/or clustering analysis, for better
understanding the spectral patterns of sea features. In addition, the produced dataset
can be used to evaluate existing spectral indices such as FDI, FAI and optimal
thresholds tuning, as well as the development of new spectral indices. Last but not
least, by providing annotated water pixels close to Marine Debris, we encourage the
readers to further experiment with subtracting nearby water pixels (i.e., reflectance

difference), windows-size and x subpixel proportion (Hu, 2021).

4.5 Further Experimentation on MARIDA

4.5.1 Exploiting Spectral & Spatial Information

Kikaki et al. (2022) proposed a set of spectral indices used in MARIDA
classification baselines. To further investigate the degree of sea surface feature
separation, we used a more extensive set of spectral indices. These indices were
chosen to enhance the spectral differences of competing classes.

More specifically, we used the additional spectral indices: i) Enhanced
Vegetation Index (EVI) for vegetation and Sargassum macroalgae mapping ii)
Modified Normalised Water Index (MNDWI) and Automated Water Extraction
Index (AWEI) for water-features extraction, and iii) Normalised Difference Snow and
Ice Index (NDSII) to highlight bright or other objects.
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Highlighting spectral properties via spectral indices is essential for detecting and
classifying materials and features on the sea surface. However, in challenging cases,
this information alone seems to be insufficient. For this reason, following MARIDA
analysis, we propose the combination of spectral information with spatial indices
that utilize information about the texture (i.e., GLCM, LBP), as well as edges, corners,
and flat image regions (i.e., Gaussian, Sobel, Hessian Eigenvalues). It should be noted
that this combination has not been widely investigated in the literature for this
challenging task.

Kikaki et al. (2022) proposed a classification baseline in which GLCM features
are used to provide texture information. We experimented with the Contrast (CON),
the Correlation (COR), the Homogeneity (HOMO), the DIS (Dissimilarity), the ASM
(Angular Second Moment) and ENER (Energy). These features are computed on a
quantized version of a single-band image. In this work, we used grayscale images
derived by RGB composites (Robinson et al., 2021) and quantized them in 16 bins
level. To extract a GLCM feature for a specific region (window around a pixel), the
associated GLCM matrix has to be computed first. In our case, a GLCM is a 16 x 16
(defined by the number of bins) matrix containing the probability of each pixel value
i co-occurring with a pixel value j, for defined distance offsets inside the selected
window (we used a sliding 13 x 13 window). Finally, the GLCM is multiplied by a
weight factor which depends on the selected texture feature. Although GLCMs
provide useful spatial information for distinguishing sea surface features, they are
computationally expensive, especially when calculated for multiple scales. To
overcome this obstacle and include the scale information into the process while
ensuring low computational costs: we utilized the Gaussian of the grayscale images
derived by RGB composites, the Sobel of the Gaussian image, and the Eigenvalues
Aof the Hessian Matrix of the Gaussian image at different scale levels (for standard
deviationo=1,2,4,8,16).

In order to enhance the included texture information, we also utilized the Local
Binary Patterns features (LBP, LBP UNI), which inform about the uniformity of local
texture. Intuitively, LBP examines the neighbors of a center pixel and determines if

the neighbor pixel values are more or less than the center pixel value.

4.5.2 Feature Selection using Machine Learning

This section presents a quantitative and qualitative evaluation based on the
extracted results after exploiting the 51 spectral and spatial features (S2 bands values,
GLCM, Local Binary patterns, Gaussian, Sobel of Gaussian Hessian Eigenvalues of
Gaussian) and applying the Random Forest classifier.

Firstly, we quantitatively assess the performance of the applied Random Forest
classifier (i.e., RF+). To evaluate our results and compare them with the

corresponding outcomes from MARIDA, we relied on three metrics, i.e., IoU, Recall



62

and F1. The Table 4.8 demonstrates the scores for all metrics per class obtained by
our RF+, as well as by MARIDA baseline models (RF* and U-NET*). Overall, we
observe that the proposed spectral and spatial features improve the classification
performance, as it is indicated by the higher average scores that our model achieves
for all metrics.

Regarding scores per class, Sediment-Laden Water still has the highest IoU,
Recall and F1 scores (i.e., 0.99 - 1.00). For Dense Sargassum, Sparse Sargassum, Ship,
Clouds, RF+ achieves an improvement of > +2% for IoU, > +1% for Recall and +2% for
F1 compared with the RF* and U-NET=. Interestingly, for the Foam class, RF+
improves IoU by +23%, Recall by +11% and F1 by +16%. Additionally, a significant
improvement of +21% for IoU, +18% for Recall and +25% for F1 can also be seen for
the Natural Organic Material class. However, both RF models provide the same results
for the Marine Debris class. As far as the class Shallow Water is concerned, the U-Net
model still achieves the highest scores for all metrics. To qualitatively evaluate the
performance of our Random Forest model (RF+), we visually inspected the produced
prediction maps and compared them to the respective classification results extracted
by MARIDA baselines (Figure 4.8). Although RF+ and RF* provide the same scores
for Marine Debris (Table 4.8), it seems that RF+ predicts better the specific class
(Figure 4.8). Especially, the prediction of Sargassum (Figure 4.8) by RF+ is
significantly improved; this fact is also consistent with the higher scores that our
model achieves (Table 4.8). Finally, the performance of RF+ appears to be better than
the U-Net* and RF* models over the coastal region (Figure 4.8), where Foam, Shallow

Water, and Turbid Water co-exist.

Table 4.8. Quantitative evaluation of the proposed RF*, compared with MARIDA (Kikaki et al., 2022) RF* and U-

Net*models.
RF U-Net* RF+

Method
IoU Recall Fi | IoU Recall Fi | IoU Recall F:
Marine Debris 65 92 79 | 33 70 50 | 65 92 79
Dense Sargassum 87 93 93 | 60 60 75 | 90 94 95
Sparse Sargassum 83 90 91 66 89 79 86 91 93
Natural Organic Material =~ 18 31 31 2 2 4 39 49 56
Ship 67 82 80 | 62 76 76 | 69 83 82
Clouds 84 86 91 62 62 76 | 87 88 93
Marine Water 75 93 86 61 88 76 80 95 89
Sediment-Laden Water 99 100 100 | 99 99 100 | 99 100 99
Foam 60 74 75 | 55 55 71 83 83 91
Turbid Water 88 92 94 | 84 95 91 90 92 95
Shallow Water 30 37 46 45 67 62 31 45 47
Average 69 79 79 | 57 69 69 74 83 83
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Overall, it seems that using the spatial information at multiple scales leads to better
classification results with less noise (e.g., less isolated pixels classified as Marine
Debris) and improved shape of predicted features (e.g., Clouds).

For further experimentation, we calculated Spearman Correlation to form highly
correlated groups among the included spectral and spatial features and keep only
one from each group. The selected features, each of which represents a different
group, are demonstrated in Figure 4.9. By applying the permutation feature
importance as described in (Kikaki et al., 2022) on the non-highly correlated features,
we managed to identify the most important features, i.e.,, NDWI, H EIG 2 516, CON,
NDVI, FDI and SOBEL S16. Instead, individual bands (e.g., green) and the LBP
group do not contribute to the classification process. Interestingly, H_EIG_2 seems to

be more important than H_EIG_ 1.

(a) (b) (c) (d)

U-Net* ke 1 |

= Marine Debris = Dense Sargassum - Sparse Sargassum
Ship Clouds = Marine Water
= Foam Turbid Water Shallow Water

- Natural Organic Material Sediment-Laden Water = Land Mask

Figure 4.8 Classification results obtained by our RF* and MARIDA baseline RF* and U-Net* models. (a) S2 12-
12-20 16PCC 6, (b) S2 22-12-20 18QYF 0, (c) S2 27-1-19 16QED 14, (d) S2 14-9-18 16PCC 13.
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Figure 4.9 Mean Accuracy Pixel Decrease of 29 non high correlated features based on Random Forest Permutation
method. SOBEL_o sort for Sobel filter of the Gaussian of standard deviation 0. H_EIG_A_o sort of Hessian
Eigenvalue A (1st or 2nd) of the Gaussian of standard deviation o.

4.5.3 Proposing nhew Combinations of Spectral & Spatial patterns

Finally, in order to further examine the ability of spectral and spatial features in
competing classes discrimination, we visualize them per couple, and discuss the
extracted insights based on the scattergrams analysis (Figure 4.10). we focused on the
major competing cases for Marine Debris detection on the sea surface, as indicated by
Kikaki et al. (2022). For this reason, we investigate the discrimination between Marine
Debris, Sargassum macroalgae, Natural Organic Material, Ship and Foam.

Marine Debris vs Sparse Sargassum (Figure 4.10a,b): Regarding the spectral
patterns of the considered floating materials, Marine Debris presents slightly lower
peak at NIR and higher values at SWIR. Well-established vegetation index NDVI
tends to have positive values for Sparse Sargassum and negative values for Marine
Debris (4.10a). Nevertheless, there is an overlapping area where NDVI values are
close to zero, possibly reflecting the cases with low subpixel proportions (i.e., sparse
conditions). Concerning FD], it significantly contributes to the classification process,
as it is the fourth most important feature (Figure 4.9). For this index there is a strong
theoretical justification (Tasseron et al., 2021) as well, yet we confirm that FDI alone
does not adequately separate the specific materials based on S2 data (Biermann et al.,
2020). This fact probably corresponds to the level of Marine Debris submersion, which
is higher at the sea surface than in a controlled environment. On the other hand, the
concurrent use of NDVI seems to highlight Sparse Sargassum and Marine Debris
spectral patterns differences. The combination NDVI & EVI could potentially

separate these features as well (Figure 4.10b).
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Marine Debris vs Ship (Figure 4.10c): Marine Debris and Ship present similar
spectral properties due to the same polymer composition. Additionally, they can be
distributed in similar spatial patterns. For instance, small vessels and Marine Debris
pixels can be depicted as individual pixels, leading to a challenging discrimination
task. This is can also be observed in Figure 4.10c, as none of the considered models is
able to predict the small ship correctly. Due to these challenges, the well-established
NDVI and FDI fail to distinguish Marine Debris from Ship. On the contrary, the
GLCM CON texture feature appears to be promising in this case. The GLCM CON
presents the high Ship contrast to is background; thus, the variety of its value might
be linked to the ship size. Moreover, improved results are achieved by combining
CON with the NDMI index. Marine Debris has higher NDMI value than Ship, based
on the fact that in the case of floating and partially submerged Marine Debris the
moisture is higher.

Marine Debris vs Natural Organic Material (Figure 4.10d): The Natural Organic
Material class consists of woody and vegetation debris which tends to accumulate on
the sea surface in very similar patterns to Marine Debris. As shown in Figure 4.10d,
NDVI seems to contribute to the discrimination of the considered materials, as it
captures the reflectance values difference at the red and NIR bands. The additional
use of MNDWI enhances their separation. The specific spectral index, by using green
and swir bands, extracts water information and removes background noise (i.e.,
built-up area, vegetation) (Xu, 2006). Marine Debris has higher values in MNDWI and
lower (mostly negative) values in NDVI than Natural Organic Material.

Marine Debris vs Foam (Figure 4.10e): Foam, compared to Marine Debris, has
higher reflectance values across spectral spectrum, presenting a peak at green and a
local minimum at 740nm as well (Kikaki et al., 2022). Furthermore, Foam
accumulation patterns in the wave breaking zone are different to Marine Debris. The
concurrent use of NDWI and Hessian Eigenvalue 2 of the Gaussian of standard
deviation o = 16 seems to enhance the discrimination of these two classes. The NDWI
has lower values for Marine Debris than for Foam; this is propably due to the fact that
Foam is a water-related class. Additionally, the Hessian Eigenvalue 2 of the Gaussian
of standard deviationo = 16 is higher for Marine Debris than for Foam.

Sparse Sargassum vs Natural Organic Material (Figure 4.10f): Sparse Sargassum and
Natural Organic Material are floating organic debris which follow similar linear
trajectories. Except for the common spatial patterns, the specific floating materials
can present similar spectral signatures, as natural organic debris may contain
vegetation such as leaves or plants. The EVI, as expected, highlights the vegetation,
yet there is an overlapping area where vegetation debris and Sparse Sargassum
macroalgae cannot be discriminated. Instead, BSI decreases the overlapping area,
further enhancing the separation between these two classes. Specifically, the BSI
index receives higher values for Natural Organic Material, which properties appear to

be closer to the soil, than Sparse Sargassum that mostly exhibits negative values.
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Figure 4.10 Scattergrams for the qualitative evaluation of challenging cases: (a) NDVI and FDI for Marine Debris
and Sparse Sargassum, (b) NDVI and EVI for Marine Debris and Sparse Sargassum, (c) NDMI and CON for
Marine Debris and Ship, (d) NDVI and MNDWI for Marine Debris and Natural Organic Material, (e) NDWI
and Hessian Eigenvalue 2 of Gaussian of o = 16 for Marine Debris and Foam (f) EVI and BSI for Natural Organic
Material and Sparse Sargassum.
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4.6 Conclusions

In this Chapter, we present MARIDA, a benchmark dataset for the detection of
Marine Debris on S2 multispectral satellite data. MARIDA challenges the research
community by: i) offering annotations of Marine Debris and various sea features that
co-occur in realistic cases, ii) providing a detailed overview of MARIDA as well as
spectral signatures analysis of annotated data, iii) evaluating ML algorithms, and iv)
identifying application cases and open issues. Considering that marine litter research
is increasing significantly and plastic debris monitoring using remote sensing is still
challenging, we provide a Marine Debris dataset appropriate for future detection
experiments, ML classification tasks and water quality monitoring. Except for
spectral and spatial features examined in this study, temporal features can be also
investigated to assess their contribution to specific marine classes detection (e.g.,
Turbid Water, Shallow Water). We envisage the continuous expansion of this dataset,

including additional cases from the global oceans.
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5 Marine Pollution detection against other
Competing Sea Surface Features

This Chapter introduces a Marine Debris and Oil Spill dataset (MADOS) and a
mapping framework for marine pollution detection. Section 5.1 describes MADOS
itself and the included thematic classes. A representative study area of MADOS
(Ionian Sea) is also demonstrated. In section 5.2, we present all ML baselines and our
novel DL model, named MariNeXt, for weakly-supervised semantic segmentation tasks.
In section 5.3, we evaluate our framework and perform a thorough ablation study.
Next, in section 5.4, we discuss MariNeXt's predictive capabilities and the potential
in detecting and discriminating marine pollutants in satellite data. The conclusions of

the whole chapter are presented in section 5.5.

5.1 Introducing the MADOS Benchmark Dataset

5.1.1 MADOS Data Processing & Curation

Satellite sensors with high spatial, spectral and temporal resolution are required
to develop operational solutions for monitoring the marine environment. Currently,
the openly available Copernicus S2 multispectral data cover global coastal waters at
high spatial resolutions (10 m, 20m and 60 m). Additionally, S2 satellite has a
frequent revisit time of approximately five days (depending on the latitude),
delivering a large amount of free geospatial data. It also acquires data in 13 spectral
bands, which range from the visible to the Short-Wave Infrared (SWIR). Therefore, in
our study, we utilized the S2 multispectral satellite images. We collected S2 Level 1C
products (Top-of-Atmosphere reflectance) through EarthExplorer (USGS).

The annotation was performed by three image-interpretation experts who had
access to all collected data. After the annotation step, an inter-annotators agreement
protocol was established and data refining was achieved using t-distributed
Stochastic Neighborhood Embedding (t-SNE) algorithm following MARIDA
methods and protocols (Kikaki et al., 2022). Similar to previous studies on floating
materials detection (Qi et al., 2020; Sun et al., 2018a; Zhao et al., 2014), we applied
Acolite to retrieve the Rayleigh reflectance. Based on the annotated data, we cropped
the S2 scenes into non-overlapped image patches. In the produced dataset, the initial
spatial resolution of each spectral band was retained without any upsampling
technique. Each provided image corresponds to 2.4x2.4 km?; thus, the 10m spectral
bands form image patches of 240x240 pixels, the 20m patches of 120x120 pixels and
the 60m patches of 40x40 pixels.
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5.1.2 MADOS thematic classes and annotations

We have constructed MADQOS, which contains annotated S2 data based on 174
scenes and 47 tiles captured between 2015-2022. Numerous annotations were created
consisting of 1481155 pixels based on studies, reports and data on marine pollution

as well as intensive photo-interpretation (Table 5.1). Finally, our globally distributed

dataset (Figure 5.1) contains 15 different thematic classes (Table 5.2).

Table 5.1: The sites where publications and reports were collected for MADOS construction.

Site Publications Reports
Marine debris
Global (Kikaki et al., 2022) (MARIDA)
Sl ElE (Kikaki et al., 2020) Caroline Power (Citizen scientist)
Honduras
Haiti (Kikaki et al., 2022) 4ocean Clean-ups

Manila, Philippines

(Gonzaga et al., 2021)

Calabria, Italy (Sannigrahi et al., 2022)
Beirut, Lebanon (Sannigrahi et al., 2022)
Oil spills
(Kolokoussis and Karathanassi,

Zakynthos Isl., Greece

Saronikos Gulf, Greece

2018)
(Parinos et al., 2019)
https://www.youtube.com/watch?v=kDOobamVt

Mauritius (Rajendran et al., 2021) AA&ab channel=GuardianNews
e R
East China Sea (Sun et al., 2018)
Red Sea (Vankayalapati et al., 2023)
Peru (Mega, 2022)
Arabian Guif (ATEREREL 22%12‘8))’ el siel, KAUST & NTUA reports and analysis
Jellyfish
Nova Scotia (Qi et al., 2020)
Sea snot

Marmara Sea (Hu et al., 2022)

We focus on two major marine pollutants, i.e., Oil Spill and Marine Debris. First,
oil slicks from different sources (i.e., ship accidents, offshore platforms, discharges
due to natural disasters and seafloor natural seepages) were recorded. Our aim was
to develop a model capable of detecting one Oil Spill thematic class and not different
oil types. However, oil forms of different thicknesses were considered and annotated
in MADOS, including all categories established by NOAA (2016): a) Dark, b) Mousse
(emulsified), ¢) Transitional dark, d) Metallic, e) Rainbow and f) Sheen (Figure 5.2).
Regarding Marine Debris, we used the open-access MARIDA dataset, which
distinguishes litter from various sea features. We also increased the number of
Marine Debris pixels by adding new observations based on recent reports and
publications.

Following previous studies (Biermann et al., 2020; Hu et al., 2022; Kikaki et al.,
2020; Martinez-Vicente et al., 2019), we additionally considered floating materials
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that have been suggested to be spectrally similar to plastics, or tend to be aggregated
with floating macroplastics on the ocean surface. Thus, Foam, Sargassum, Natural
Organic Material (including driftwood), Ships and Sea Snot trajectories (Hu et al., 2022)
were annotated (Figure 5.2). Suspected Jellyfish investigated by Qi et al., (2020) were
also taken into account to evaluate the discrimination from Marine Debris and Sea
Snot, as previous studies have indicated the potential of spectral similarities (Hu et
al., 2022; Van der Zande et al., 2014). Classes sometimes observed concurrently with
oil slicks, such as Oil Platform and Sparse Floating Algae, were also considered and
added. Moreover, sea state look-alikes were annotated and aggregated with the
Marine Water class. Other water-related classes recorded on our study regions (i.e.,
Sediment-Laden Water, Turbid Water, Shallow Water, Waves and Ship Wakes) have also
been annotated. Also, sparse Sargassum was grouped with other sparse floating algae
species, forming a Sparse Floating Algae (SpFa) super-class. We note that MADOS
consists of realistic observations recorded under diverse weather conditions aiming

to support real-world applications (Figure 5.2).

Figure 5.1 The globally distributed Sentinel-2 tiles from which MADOS data were sampled.

We note that clouds and cloud shadows were not included in our analysis. We
consider this a different, quite challenging, task that the remote sensing scientific
community is working on. Therefore, one could integrate any of the standard
software tools (such as MAJA, Fmask, Sen2Cor) into the processing pipeline to
address cloud and shadow detection.

From this point in the paper, we will use the acronyms presented in Table 5.2.
The Table 5.2 defines these acronyms to facilitate clarity throughout the text. Overall,
MADOS consists of 1481155 annotated pixels composed of 4696 MD pixels and
234568 Oil pixels, corresponding to 469600 m? and 23456800 m? areas, respectively.
Additionally, 2803 image patches are offered, each one covering 2.4x2.4 km?.
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Table 5.2: MADOS Thematic Classes. Per-class description, acronym, number of image patches and
corresponding annotated pixels.

# of patches  # of

# Class Name Acronym Description
(240x240) pixels
1 Marine Debris MD Floating plastics, mixed anthropogenic debris 472 4696
. . X Qil types including crude oil, emulsified, oil on water,
2 Oil Spill Qil 361 234568
metallic, sheen & rainbow
3 Dense Sargassum DenS Dense floating Sargassum macroalgae 77 4308
Sparse Floating
4 SpFA Sparse Sargassum & other macroalgae 157 4972
Algae
Natural Organic .
5 NatM Vegetation & Wood 92 1454
Material
6 Ship Ship Sailing & Anchored Vessels 298 13222
7 Marine Water MWater Clear Water & sea state Look-alikes 1360 496702
i -L
8 Sedlrr;\e]nt aden SLWater High-Sediment river discharges with brown colour 57 376061
ater
9 Foam Foam Foam recorded at river fronts or coastal wave breaking 58 1225
10 Turbid Water TWater Turbid waters close to coastal areas 232 170306
Coastal waters, including coral reefs and submerged
11  Shallow Water SWater . 140 122753
vegetation
12 Waves & Wakes ~ Waves Waves & Ship Wakes 224 20374
13 Oil Platform OilPlat Offshore Oil platform 348 15701
14 Jellyfish Jellyfish Jellyfish 12 2541
15 Sea snot Sea snot Sea snot/ mucilage 63 12272
Total 2803 1481155

In the Table 5.2, we observe that in MADOS, the distribution of samples per
class at the pixel- or patch-level is not uniform. As expected, water-related classes
can be found and digitized to a significantly larger extent than the usually small
floating objects like floating plastics. Specifically, the class MWater has been
annotated in 1360 patches, while the second-highest number of 472 patches was MD
and the third-highest number of 361 patches was Oil. The considerable amount of
annotated images indicates the high diversity of annotated Oil and MD pollutants.
On the other hand, Jellyfish and NatM are the least annotated classes as they are not

frequent in the marine environment and were not our primary focus.
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Figure 5.2 An overview of MADOS provided patches. Marine pollutants and Sea surface features were annotated

under various weather and sea state conditions.
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5.1.3 Oil Spill Detection in a MADOS Study Site: Zakynthos Isl.,
E.Mediterranean

High-resolution satellite data from different sensors (i.e., Sentinel-2, Landsat-8
and Planet) were used in order to monitor and identify the origin, structure and
spatial extent of naturally occurring sea surface oil slicks in the coastal zone of
Zakynthos Island (Ionian Sea, E. Mediterranean). We also examined the potential
effect of earthquake activity on the oil slick behavior during 2018-2019, a period
including a strong earthquake measuring magnitude Mw 6.8 occurred in the Ionian
Sea (26 October 2018). Based on successive satellite observations along with ocean

conditions description, we also explored Oil Spill spreading.

Zakynthos Island: A Representative MADOS Study Area

The island of Zakynthos is one of the most seismically active regions in the

Mediterranean Sea as it is located very close to Cephalonia fault and to the
convergent boundary between the Eurasian and African plates (Papazachos and
Papazachou, 1997). The study site includes two natural oil springs: a) the “Herodotus
springs” of Keri Lake, located in the southern part of island (Figure 5.3b) expanding
over an area of 3 km? at 1 m elevation (Avramidis et al., 2017); and b) offshore sea
surface oil slicks, commonly visible in the study area (Figure 5.3c). In the latter area,
continuous natural seepage of o0il has been recorded at depths of ~150 m. Earlier
studies on marine sediments conducted by HCMR, highlighted the presence of
petroleum hydrocarbons with peculiar molecular profiles, not characteristic of other
marine sediments in the Hellenic region. Previous studies of HCMR (2008) by side
scan sonar revealed the presence of several depressions on the seafloor covering an

overall area of 100x30 m, where natural hydrocarbon seepage occurs (Figure 5.3d).

Satellite & Auxilliary Data
52 multispectral data from April 2018 to September 2019 were collected as well

as L8 data were additionally obtained for earthquake events description. In total, two
L8 path rows, i.e., 184/34 and 185/34, and one S2 tile, i.e., 34SDG, were used for this
study. Planet satellite images (resolution=3 m) were also used for validation. Satellite
data with a cloud presence of over 25% were rejected and not further processed. The
rest of the data were atmospherically corrected and surface reflectance values were
extracted based on the ACOLITE atmospheric processor (Vanhellemont and
Ruddick, 2016). After atmospheric correction proposed indices (i.e. B2/B11 and
StdDev(B2)*B2/B11 by Kolokoussis & Karathanassi, 2018) were applied in all S2 data
for Oil Spill detection. CMEMS (http://marine.copernicus.eu) data were used for the
study of surface currents velocity and wind data from National Observatory of

Athens for wind conditions description.
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Regarding the earthquake activity period, multispectral (Sentinel-2 and Landsat-
8) and radar data (Sentinel-1) before and after the specific seismic events were
obtained from Copernicus and USGS official websites. During July 2019, successive
satellite images were used in order to estimate Oil Spill velocity and describe its

evolution along with ocean conditions.

Figure 5.3 (a) The island of Zakynthos, (b) Herodotus springs of Keri Lake (Sentinel-2 image), (c) Observed sea
sutface oil slick (http://patrastimes.gr/), (d) Side scan sonar profile illustrating seafloor depressions associated with
oil seepage on the left (by Dr. G. Rousakis HCMR).

Oil Spill Monitoring
Collected multispectral satellite data during October 2018-September 2019,

confirmed that Oil Spill is a permanent feature of study area, due to the natural oil

seep located underwater. It has to be emphasized that largest oil slicks were tracked
after seismic events. In almost all cases one oil slick of mean 6 km length and width
was ranged from 100 m to 2 km. Landsat-8 image acquired on 2 July 2019
demonstrates indicative Oil Spill position at sea surface (Figure 5.4). Earthquake
events recorded in Zakynthos area during the period late October 2018-Early
September 2019, are given in Table 5.3. The greatest earthquake occurred on 26
October 2018 (Mw 6.8), which led to the largest Oil Spill in study area for the
corresponding period. On 26 October 2018 four Oil Spill features were tracked in a
satellite image captured by Sentinel-2, 9 hours after the earthquake. Figure 5.5
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presents the Oil Spill areas in RGB composite. The length of these areas was 2-9 km,
as the width was 25 m-2 km. Bands ratio B2/B4 was also applied in the specific image
in order to outline the Oil Spill features (Figure 5.6).

Figure 5.4 Top-of-Atmosphere RGB composite of Landsat-8 acquired on 2 July 2019.

Table 5.3. Recorded seismic events and satellite data acquisition dates.

Earthquake activity | Earthquake magnitude Mw | Landsat-8 | Sentinel-2
26 October 2018 6.8 26/10
11 January 2019 3.7 16/1

27 February 2019 3.8 28/2
17 March 2019 4.5 21/3 25/3
23 April 2019 3.8 29/4 29/4

20 May 2019 3.9 24/5
20 June 2019 3.8 25/6,2/7 23/6
28, 30 July 2019 39,42 27/7, 3/8 28/7
14 August 2019 35 19/8 17/8
6 September 2019 3.7 13/9 6/9

In late July 2019 two successive Landsat-8 and Sentinel-2 images were used to
study oil slick spreading, i.e., 27 July (Landsat-8) — 28 July (Sentinel-2). The observed
oil slick covered a distance of 4.5 km in 24 hours. It moved in a SE-NW direction and
its recorded speed was 0.52 m/s (Figure 5.8). Surface currents model outputs
(CMEMS) indicated that mean currents velocity was 0.32 m/s with a NE-SW
direction (Figure 5.7). Southern winds prevailed and the average winds speed was

2.6 m/s. The specific event confirms that ocean conditions (i.e., winds and currents)
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contribute to Oil Spill spreading (De Dominicis et al.,, 2016; Zodiatis et al., 2018).
Information from forecasting models about Oil Spill weathering and three-
dimensional evolution need additionally to be regarded in a future study.
Experimental results showed that between 2018-2019 large oil slicks were
recorded after seismic events as the largest was outlined after strong earthquake
measuring magnitude Mw 6.8 in October 2018. Successive satellite images during late
July 2019 confirmed that Oil Spill spreading is affected by ocean parameters (i.e.,
winds and currents). A detailed comparison between remote sensing and in situ
measurements as well as results from Oil Spill forecasting models need to be

included in a future study.

Figure 5.5 (a) Atmospherically corrected Sentinel-2 RGB composite on 26 October 2018. (b)-(e) Oil Spill
detection. The RGB images are stretched for illustration purposes.
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Figure 5.6 Band ratio B2/B4 calculated for S2 image acquired on 26 October 2018.

Figure 5.7 Ocean currents velocity and direction for 27 July 2019 (CMEMS after proc.).
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Figure 5.8 Top-of-Atmosphere RGB composites. L8 Image acquired on 27 July 2019 (on the left). S2 Image
acquired on 28 July 2019 (on the right).

5.2 Machine learning classification frameworks

We present and discuss well-established and state-of-the-art models employed
as baselines in our experiments. Then, we describe in detail our MariNeXT
framework. Finally, we show our experimental design, including the evaluation

protocol and implementation details.

5.2.1 Baselines

Random Forest & U-Net

We examined two different baseline models using RF: i) one based on just the

spectral signatures and ii) one with spectral signatures, spectral indices and other
spatial features. In particular, the employed spectral indices were: NDVI, NDWI,
FAI, FDI, Shadow Index (SI), Normalized Difference Moisture Index (NDMI), Bare
Soil Index (BSI) and NRD. Following Mikeli et al. (2022), for the spatial features, we
utilized the grayscale images derived by RGB composites and computed: GrayLevel
Co-occurrence Matrix (GLCM), the Gaussian at multiple scales, the Sobel of the
Gaussians, and the Eigenvalues of the Hessian Matrix of the Gaussians. For RF and
U-Net the reader is referred to the section 4.1.4.

SegNeXt

We also employed a state-of-the-art convolution-based, encoder-decoder
architecture named SegNeXt (Guo et al., 2022). The encoder consists of a sequential
four-stage pyramid structure named Multi-Scale Convolutional Attention Network
(MSCAN). Each stage contains a down-sampling step followed by multiple blocks.
The multiple blocks are inspired by a ViT-like (Vision Transformer) structure
(Dosovitskiy et al., 2020), with the main difference being that the Multi-Scale
Convolutional Attention (MSCA) replaces the self-attention module. The MSCA
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module consists of a depth-wise 5 x 5 convolution layer followed by a multi-branch
depth-wise strip convolution layer that efficiently approximates the 7 x 7, 11 x 11 and
21 x 21 large-kernel convolutions, extracting information at multiple scales. The
down-sampling steps consist of 3 x 3 convolution and batch normalization layers.
The spatial dimensions of the first stage features are H/4 x W/4 and are further
reduced by half for each following stage, where W and H are the width and height of
the input image, respectively. Moreover, the decoder concatenates the output feature
maps extracted from the last three stages, discarding the features from the first stage.
Guo et al. (2022) highlight that stage-one features contain too much low-level
information that does not perform well in their evaluation setup with RGB images of
everyday objects, humans and actions. In order to capture global context, the
Hamburger (Geng et al., 2022) module is adopted, which factorizes the input features
using low-rank matrix decomposition, discarding the irregular noise and redundant

features while keeping the clean signal subspace.

5.2.2 The MariNeXt Framework

In this work, we have designed a semantic segmentation framework based on
recent convolutional attention mechanisms (Guo et al., 2022) that are able to encode
contextual information effectively depicted in multispectral satellite imagery in the
marine environment. In particular, we have adopted the aforementioned SegNeXt
architecture and proposed improvements in three directions, i.e., modeling, training
and testing (Figure 5.9). These improvements were tailored for marine mapping
applications and significantly boosted the performance of weakly-supervised marine

pollution detection. The three directions are described in the following paragraphs.

X4 Xa - v

(a) : (b)

Figure 5.9 Simplified overview of MariNeXt, which consists of two main parts: a) During the training process, the
input batch of images is augmented using the VSCP module combing the samples, which are then passed as new
input. Then MariNeXt exploits the S1 (1%-Stage Higher Resolution Features) to produce fine-grained predictions.
b) During testing, the TTA strategy is employed to produce several augmented views of the input image and
aggregate the predictions by major voting, producing refined predictions.
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1+-Stage Higher Resolution Features
Regarding the modeling part, we reexamine the design of SegNeXt that discards

the first-stage features. This implementation choice leads SegNeXT to output H/8 x
W/8 prediction maps, which are nearest-neighbor upsampled to match the input H x
W image. As shown by Guo et al. (2022), the high-resolution features might contain
too much low-level information for the RGB images of everyday objects. However, in
our case, various floating materials such as Marine Debris might be presented only on
a few pixels turning high-resolution features essential for effective modeling.
Additionally, this approach enables the model to output H/4 x W/4 prediction maps.
Thus, we show that exploiting additional high-resolution features from the encoder

improves the performance in the considered marine environment mapping task.

Very Simple Copy-Paste (VSCP)

As discussed in previous sections, the collection of ground truth data is

challenging, involves high-cost laborious work, while collecting high-quality and
confident annotations is not straight forward. For such cases, and unbalanced
datasets as MADQOS, considering data augmentation techniques can guide the model
to learn better feature representations. Towards this direction, we have integrated a
robust data augmentation strategy that fits perfectly to the particularities of marine
classes.

More specifically, Copy-Paste augmentation approaches are established
techniques for object detection and instance segmentation tasks (Dvornik et al., 2018;
Dwibedi et al., 2017; Fang et al., 2019). These methods are related to MixUp (Zhang et
al.,, 2022) and CutMix (Yun et al., 2019) augmentation strategies. However, compared
to MixUp and CutMix, Copy-Paste methods do not transfer an object's whole
bounding box but only the exact annotated pixels. Furthermore, as everyday objects
depicted in RGB images are placed in specific and oriented positions, most previous
works on Copy-Paste utilized the surrounding context to place the copied object in
the appropriate environment. Recently, Simple Copy-Paste (Ghiasi et al., 2021)
proposed placing the objects in random positions and demonstrated promising
results in instance segmentation.

In our case, MADOS consists of S2 satellite images captured at 786 km mean
orbital altitude in the aquatic environment. This fact means that the surrounding
context and the relative scale between the objects are always the same. Note also that
every floating material can co-occur with any other over the same background
environment (i.e., Water). For these reasons, in our case, there are not significantly
different surrounding contexts or scale issues. Therefore, inspired by Ghiasi et al.
(2021), we propose a straightforward and Very Simple Copy-Paste (VSCP) training
augmentation approach that fits excellently in our weakly-supervised semantic
segmentation task (Figure 5.10).
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In particular, given a batch XeRNbatcnCWH) and yeZ(NbarenW:H) \where X are the
input images, Y the groundtruth masks, Ny, is the batch size, C is the spectral

dimension, and W and H are the width and height, respectively, our approach

Nbatch
p =

augments the current training batch size by Nyg¢ J where || outputs the

greatest integer less than or equal to the input. Spec1f1cally, given the i and the i +
Nyscp samples in the current training batch, we construct a new augmented image by
adding the annotated regions and replacing the pixels to the image i from the image
i + Nyscp. The new synthesized image contains the annotations from both i and i +

Nyscp using the background (non-annotated regions) of the i image (Figure 5.10).

More formally, each pixel element x; 55, , and yy»er, of the Nyscp augmented images

XVSCPeRWvscr.CWH) yyith the corresponding ground truth masks YVS¢Pez(NvsceW.H),

are:

vscp Xn+Nyscp.cwhs if Yn+Nyscpwh F -1
Xncwh = :
OWs Xncwh otherwise
vscp _ ) Yn+Nyscpw,hr if Yn+Nyscpwh F -1
Ynwh = h :
Ynw,hs otherwise

forn=1,..,Nyscp, c=1,..,C,w=1,..,Wand h =1,...,H. Note that the non-

annotated pixels have y, ,, , = -1.

Test-Time Augmentation (TTA)

In a similar manner with (Gonzalo-Martin et al., 2021; Moshkov et al., 2020;
Wang et al., 2019b, 2019a), during the training procedure, we have also considered
augmentations during the inference (test-time) execution in order to refine MariNeXt
predictions by averaging the outputs across the different augmented views. To do so,
we have explored a simple and effective Test-Time Augmentation (TTA) strategy.

In particular, for each input image X € ROW*H a trained model f: RE*W*H —
N"*H produces an output YeN"*# forming the assigned integers that correspond to
the predicted class for each pixel. Using Ny different transformations {7}}11.\’:1 we

obtain a set of predictions {Y”}}7,

Y% = (T (X)), fori = 1, ..., Ny

Then for each pixel we aggregate the results using the majority voting which
corresponds to the mode of the sampling distribution:

N
yId = MODE({ }i—Tl)' forw=1,...Wand h=1,..,H

YTTA ENWXH

The final predicted image is the with elements y 7.
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In order to keep the initial spectral bands and object scales as in the raw S2 images,
we do not apply any color or scale transformation. Specifically, we combine rotations
of 0°, 90°, 180°, 270° with the horizontal flipping, resulting in N =8 different

transformations applied in test-time execution.

(a) (b) (c)

Figure 5.10 MariNeXt integrates the Very Simple Copy-Paste (VSCP) augmentation technique for constructing
new images, enriching MADOS. Given pairs of input images and annotations, VSCP combines the input and
annotated pixels of two images to create a new synthetic input pair increasing the class co-occurrence of input

data. The two input images show a) Sea state look-alikes and Marine Water and b) Ships, Wakes and Marine
Water. We also demonstrate the c) synthesized image. RGB images (top) and our corresponding annotations

(down) are presented.

5.2.3 Experimental design

Evaluation on MADOS
In order to train and assess MariNeXt and the other baseline models, we split

MADOS into three disjoint train, validation and test sets. The train set is employed to
train the models explicitly, the validation set to monitor the learning process and the
test set to perform our evaluation. Each of these sets retains the class distribution of
the whole MADOS dataset. Additionally, the cropped patches from each scene/
unique date are kept on the same set. The splits contain 1433 training (761887 pixels),
642 validation (358121 pixels) and 728 test (361147 pixels) patches. The number of
patches and pixels corresponds to approximately 50%/25%/25% of the initial
MADOS dataset. We note that each data split was created as a representative subset
of the entire MADOS dataset in terms of pixels and patches statistics (Table 5.4).
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Table 5.4 Patches and pixels class distribution (%) for the train, validation and test sets in MADOS.

Den SpF X . Foa TWate SWate OilPla .
Set MD NatM Ship Oil MWater SLWater Waves Jellyfish Sea snot
S A m r r t
Patches

Train 1745 3.07 6.21 3.63 9.56 14.24 48.92 202 216 872 502 684 104 0.42 2.16
Validation 15.26 1.87 4.83 3.43 11.68 11.99 47.82 234 202 732 452 919 1433 0.62 2.49
Test 17.03 2.88 5.08 247 11.8110.99 4835 1.79 192 824 536 9.2 14.7 0.27 22
Total 16.84 275 5.6 328 10.63 12.88 48.52 203 207 828 499 799 1242 0.43 2.25

Pixels

Train 034 024 034 014 078 1845 3477 2064 0.06 11.69 919 131 092 0.18 0.96
Validation 0.32 0.33 0.18 0.03 1.04 11.86 25.77 3506 01 1091 1117 1.12 1.1 0.26 0.75
Test 027 036 049 0.08 099 1427 38.62 2582 011 1168 353 177 133 0.08 0.62
Total 032 029 034 01 089 1584 33.53 2539 0.08 115 829 138 1.06 0.17 0.83

To assess the models' performance quantitatively, we relied on three evaluation
metrics: i) Jaccard Index or Intersection-over-Union (IoU), ii) F1 score, iii) Overall
Accuracy (OA), and iv) per class Recall. The evaluation metrics were calculated as
follows:

TP, (1)

JoUy=——"¢
%% = TP + FP. + FN,

where TP, are true positives, FFP, are false positives and FN, are false negatives of
each ¢ class.
Since we deal with a multi-class task, the evaluation metric for the overall assessment

is the mIoU which is the average IoU over all classes c:

1 n
mloU = —Z IoU, 2)
n c

The second metric is the average for each class F; score (Macro-F;/ mF;), which is
the harmonic mean between Precision P =TP/(TP+ FP) and Recall R =
TP/(TP + FN):

1 1" 2P.R, 3)
F, =— F, =-— —_—
m nzc e ™ n cP.+ R,

We also considered the Overall Accuracy:
_ TR (4)
o4 = Y2TP. + FP,

Implementation details

In all experiments, we upsampled the 20m and 60m bands to 10m using the
nearest-neighbor resampling approach. For both RF models, we sticked to the

training setup as proposed by (Kikaki et al., 2022; Mikeli et al., 2022). In a more
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detailed way, we employed 125 trees, each with a maximum depth of 20 nodes and
used a class weighting scheme to handle the class imbalance while the annotators’
confidence levels were also exploited. Regarding the spatial features, the grayscale
images derived by RGB composites were utilized in order to extract the GLCM
features using a 13 x 13 sliding window. We computed the Gaussian, the Sobel of the
Gaussians, and the Eigenvalues of the Hessian Matrix of the Gaussians at the
different scale levels using the standard deviation of o = 1, 2,4, 8, 16.

For the DL models, we based our implementation on MARIDA (Kikaki et al.,
2022), SegNext (Guo et al.,, 2022), timm (Wightman, 2019) and mmsegmentation
(MMSegmentation Contributors, 2020) libraries. For all models, we adapted the first
input layer to handle the 11 S2 bands and the final layer to output the MADOS 15
classes. Regarding SegNeXt, we used the smallest Tiny (SegNeXt-T) version. The
same was adopted in MariNeXt. All DL models were trained from scratch with
Adam algorithm for 80 epochs with an initial learning rate of 2x10* minimizing the
Cross-Entropy loss. After epochs 45 and 65 the learning rate was set to 2x10-° and
2x10, respectively. As detailed in Table 5.5, we set the batch size for UNet to 15 and
for SegNeXt and MariNeXt to 5. For data augmentations, we used 0°, 90°, 180° or 270°
random rotations as well as horizontal and vertical flips. Following MARIDA, we
used the same weighting scheme to alleviate the effects of the imbalanced class
distribution. During training, we maintained the exponential moving average (EMA) of
the trained parameters 6 by according to 8’ « a8’ + (1 — a)8, setting a = 0.999. We
found this process extremely beneficial to produce smooth loss curves as well as

robust and stable models.

Table 5.5 F1 scores of SegNeXt, U-Net and MariNeXt models over the different Batch sizes. The scores are
measured on MADOS test set and averaged over five trials.

Batch Size
Method
5 10 15 20
U-Net 53.6 59.7 63.8 61.2
SegNeXt 60.6 58.5 54.9 52.2
MariNeXt 76.0 74.4 69.1 62.0

5.3 MariNeXt Performance Evaluation

In this section, we compare our method with the other employed models and
evaluate its performance both quantitively and qualitatively. In addition, an ablation
study is performed to assess the main components of the developed MariNeXt

framework.
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5.3.1 Comparing MariNeXt with ML baselines

Firstly, the performance of all applied models is quantitatively evaluated.
Overall, we observe that MariNeXt achieved the best classification performance, as
indicated by the highest average scores for all evaluation metrics, i.e., 76.0% for F,
64.3% for mloU and 89.1% for OA (Table 5.6). Thus, MariNeXt outperformed all
baselines by at least 11.6% in F1 and 11.9% in mloU metrics.

The second highest scores were obtained by RF+ (i.e., 64.4% for Fi1and 52.4% for
mloU), followed by U-Net, which led to 63.8% for Fi1and 51.0% for mIoU. Regarding
the rest two classifiers, the default RF reached the lowest scores for all metrics while
SegNeXt achieved an improvement of +4.1% for Fi, +5.3% for mloU and +19.5% for
OA. We note that the default SegNeXt achieved the second-highest OA score (i.e.,
86.6%) (Table 5.6).

Table 5.6 Evaluation of MariNeXt against ML baselines on MADOS test set using F1, mean Intersection of
Union (mloU) and Overall Accuracy (OA) metrics, averaged over five trials. The highest scores are highlighted
with bold fonts.

Method F1(%) mloU (%) OA (%)
RF 56.6 43.9 67.1
RF+ (Mikeli et al., 2022) 64.4 524 83.8
U-Net (Ronneberger et al., 2015) 63.8 51.0 82.9
SegNext (Guo et al., 2022) 60.6 49.2 86.6
MariNeXt 76.0 64.3 89.1

5.3.2 Quantitative and Qualitative evaluation

To further assess the performance of developed MariNeXt and study the
agreement between the annotated data and the predictions, we present and discuss
the corresponding confusion matrix (Table 5.7). The scores are demonstrated for all
metrics per class on the test set. Our analysis and discussion are concentrated on the
achieved Fi1 scores, but similar conclusions can also be derived from the other
metrics. Specifically, the highest scores (i.e., >80%) for F1 were achieved for classes
with typical optical characteristics and spectra, such as SLWater, water-related classes
(i.e., MWater, TWater), DenS, SpFA, classes with distinct textural patterns such as
OilPlat and Foam, as well as floating organisms like Jellyfish and Sea snot.

On the other hand, Waves, MD and NatM showed the least F1 scores (i.e., <58%).
For Oil, Ship and SWater, our method led to Fi1 values >62%. Moreover, one can
observe that MD, a quite challenging case, presented relatively low rates for F1 (i.e.,
51.3%) and IoU (i.e., 34.6%). Nevertheless, 70.4% of its testing pixels were correctly
classified, indicating that there is a high possibility that our method detects MD
accurately. Also, 11.1% were classified as Ship and 12.7% as MWater. This can be
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attributed to the fact that plastics are spectrally similar to ships, as well as they can be
probably spectrally close to MWater under certain circumstances (e.g., low density,
submersion, polymer type, environmental conditions).

The Oil class, consisting of several oil types, presented high scores for both F:
(i.e., 78.3%) and IoU (i.e., 64.4%). In addition, 70.6% of its testing data were correctly
predicted as Oil. However, a proportion of 28.3% for Oil testing labeled pixels were
classified as MWater, indicating similar spectral behavior.

Regarding artificial materials and man-made objects, OilPlat, characterized by
distinct spatial structures, achieved a high Fi rate (i.e., 84.3%) and a very high Recall
value (i.e., 94.6%). On the contrary, Ship class composed of varying sizes and cruising
speeds reached a 62.8% F1 score. Almost half of the testing annotated data were
correctly classified as Ship, while 39.3% were wrongly predicted as OilPlat.
Apparently, these two classes share common spectral characteristics due to the
similar materials they consist of; thus, their discrimination is considered challenging.

Water-related classes, such as SLWater, MWater and TWater held high Fi scores
of over 90%. Foam also achieved high F1 score of over 80% due to its distinct spatial
pattern that presents in coastal areas (wave breaking). The least accurate water-
classes were SWater and Waves, with 63.7% and 37.7% F1 scores, respectively. Recall
values were 61.2% for SWater and 28.4% for Waves. This was mainly affected by the
confusions between SWater with MWater or TWater; and Waves with MWater or Oil.

Floating macroalgae species presented high Fi rates over 80%. However, as
Table 5.7 indicates, there is some misclassification cases between DenS and SpFA.
Specifically, 28.2% of DenS testing annotated data were predicted as SpFA. In fact,
this was expected since both classes belong to the same super-class of floating

macroalgae which contains mainly Sargassum.
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Table 5.7 The resulting Confusion Matrix after applying MariNeXt on MADOS test set. The metrics of Recall, IoU, Precision and F1are presented. Columns represent the predicted labels and

Predicted

rows represent the reference labels (%). All acronyms are stated in Table 5.2.

MD DenS SpFA NatM Ship Oil MWater SLWater Foam TWater SWater Waves OilPlat  Jellyfish # of pixels  Recall

not (test set) (%)

Ground Truth
MD 70.4 0.0 21 0.0 11.1 0.1 12.7 0.0 0.0 0.0 0.0 3.1 0.4 0.0 0.0 973 70.4
DenS 0.5 70.0 28.2 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1303 70.0
SpFA 1.2 1.3 90.4 0.2 0.0 0.0 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1786 90.4
NatM 22.7 0.0 5.3 46.1 17.6 0.1 5.7 0.0 0.0 0.2 0.0 2.3 0.0 0.0 0.0 278 46.1
Ship 3.1 0.0 0.0 0.0 52.7 21 0.3 0.2 0.0 0.4 0.0 1.6 39.3 0.3 0.0 3574 52.7
Oil 0.0 0.0 0.0 0.0 0.0 70.6 28.3 0.0 0.0 0.1 0.2 0.7 0.0 0.0 0.0 51528 70.6
MWater 0.1 0.0 0.0 0.0 0.0 26 95.7 0.0 0.0 1.1 0.2 0.4 0.0 0.0 0.0 139465 95.7
SLWater 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.3 0.0 0.7 0.0 0.0 0.0 0.0 0.0 93254 99.3
Foam 0.5 0.0 0.0 0.0 4.9 0.1 0.3 0.0 80.6 1.1 0.0 7.4 0.0 0.0 5.2 387 80.6
TWater 0.0 0.0 0.0 0.0 0.1 0.0 1.5 0.1 0.0 89.8 7.6 1.0 0.0 0.0 0.0 42168 89.8
SWater 0.0 0.0 0.0 0.0 0.0 0.0 26.1 0.0 0.0 12.4 61.2 0.3 0.0 0.0 0.0 12732 61.2
Waves 29 0.0 0.0 0.0 2.2 17.3 41.7 0.0 0.1 1.2 6.1 28.4 0.1 0.0 0.0 6401 28.4
OilPlat 0.1 0.0 0.0 0.0 35 1.1 0.3 0.0 0.0 0.0 0.0 0.5 94.6 0.0 0.0 4790 94.6
Jellyfish 1.1 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 13.1 0.0 84.4 0.0 274 84.4
Sea snot 224 0.0 0.0 0.0 0.0 7.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 69.6 2234 69.6
loU (%) 346 686 73.0 427 459 644 82.9 99.2 77.3 82.1 47.1 23.2 72.9 81.8 68.9 mloU: 64.3
Precision (%) 40.6 97.7 79.2 83.8 77.9 88.8 86.2 99.9 95.0 90.8 67.9 57.1 76.1 96.2 98.7 OA: 89.1
F1-score (%) 51.3 81.2 84.3 57.2 62.8 78.3 90.7 99.6 87.1 90.1 63.7 37.7 84.3 89.9 81.4 F1-macro: 76.0
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Figure 5.11 Prediction maps extracted by the applied baselines and MariNeXt. The RGB images show: a) Dense &
sparse Sargassum, Marine Water and haze/thin clouds, b) Oil Spill and Marine Water, c) Marine Debris and
Marine Water, and d) Jellyfish and rough sea state. The RGB images were stretched for illustration purposes.

Despite the number of testing pixels being the lowest compared to the other
categories, Jellyfish achieved a F1 score of almost 90%. As Table 5.7 shows, 13.1% of
the testing data were classified as Waves, a class of relatively high-intensity values in
the optical spectrum. The Sea snot class also reached a high F1 value of 81.4%, while
22.4% of its testing labeled data were classified as MD. Moreover, the quite
challenging NatM class, which contains vegetation and wood materials, resulted in a
Fi1 score of 57.2%. Again, we note that 22.4% of its testing annotations were classified
as MD.

Apart from the quantitative assessment, a qualitative evaluation of the applied
models on the test set was also performed. To describe the predictive power of
MariNeXt and employed baselines, we demonstrate representative classification
results in Figure 5.11. By inspecting all resulting maps, it is clean that MariNeXt
achieved the highest predictive performance. In particular, it led to high-resolution
results, being the most robust to isolated pixels/ spikes and weather conditions
(Figure 5.11). Especially in the case of Oil, our model could accurately discriminate
Oil from MWater in fine detail (Figure 5.11b). Although MariNeXt resulted in coarser
outputs than RF models due to its convolutional nature, it also managed to predict
small objects such as Jellyfish (Figure 5.11d).
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We generally observe an agreement between our MariNeXt prediction results
and metric scores. For instance, a small part of Sargassum pixels of low biomass
densities was misclassified as MD (Figure 5.11a), some MWater pixels around debris
were predicted as Oil (Figure 5.11c), and sparse Jellyfish pixels were classified as MD
(Figure 5.11d). These misclassification cases were also observed in the quantitative
results in Table 5.7.

Regarding the other ML baselines, it is observed that SegNeXt led to similar
classification results with MariNeXt but with relatively coarser outputs. This also
supports our framework design choices by including first-stage features and
exploiting their high-resolution feature representations. U-Net also yielded
satisfactory results for Sargassum and Oil while it misclassified several MD pixels as
Waves and almost all Jellyfish as Ship. Concerning RF models, the default RF, which
reached the lowest scores for all metrics (Table 5.7), failed to discriminate Oil from
MWater and Waves from MWater, presenting the highest sensitivity to S2 sensor noise
and isolated pixels (Figure 5.11b,d). However, adding spectral (indices) and texture/
spatial information substantially improved the classification performance results. In
fact, RF* reached the second highest metric scores (Table 5.7), providing high-
resolution outputs for Sargassum and Oil classes (Figure 5.11a,b). It also achieved to
predict some pixels correctly as Waves. On the other hand, in the case of small-width
objects (i.e., MD and Jellyfish), it led to misclassification results as part of MD pixels
was identified as SpFA, Waves and Oil, and Jellyfish was classified as OilPlat, MD and
Ship (Figure 5.11¢,d).

By evaluating the baselines qualitatively and quantitatively, we observe that
although RF* led to the second-highest rates (Table 5.7), its extracted maps presented
enough scattered, isolated predictions. This points out that RF* is prone to artifacts
(e.g., S2 mixed bands, low-density pixels) and weather conditions. Besides, the
qualitative interpretation showed that SegNeXt could capture the semantic context of
depicted classes. Note that SegNext produces H/8 x W/8 prediction maps, which are
simply nearest-neighbor upsampled. Therefore, it produces coarse-grained

prediction maps leading to relatively low Fi1 and mloU scores (Table 5.7).

5.3.3 Ablation study for MariNeXt

In order to demonstrate the impact of the design choices regarding the proposed
MariNeXt framework, we performed a detailed ablation by adding/ removing
different components. We report the corresponding Fi1 and mloU values for each
experiment in Table 5.8. After a close look at all experiments, we observe that TTA is
an essential feature, as it improved the model's performance in all experiments, i.e.,
either adding 1+-Stage Features or not, either with VSCP or not. In particular, by
integrating this augmentation strategy, the model produced more robust predictions

based on eight different augmentations of the same image. Without adding features



90

of the 1+t stage, TTA resulted in an increase of 2.8% for F1 and 2.4% for mloU, as with
the additional features the corresponding values were 1% and 2%, respectively.
Additionally, our VSCP augmentation strategy was critical for better
classification results (Table 5.8). This was expected since increasing the training
samples improves the model’s accuracy and generalization. In the case of default
SegNeXt, an improvement of 5.3% for F1 and 3.8% for mloU was obtained, as for the
extra high-resolution features, an enhancement of 6.4% for F1 and 6% for mloU was
performed. Table 6 also shows the importance of utilizing higher-resolution features
of the 1¢t stage. The additional features led to an improvement of 5.7% for Fi and 4.4%

for mIoU compared to the default model.

Table 5.8 Ablation study on the proposed approach. SegNeXt is considered as a baseline for the ablation.

1st-Stage Increased

Features VSCP BS TTA Fi mloU
60.6 49.2

v 63.4 51.6

v 65.9 53.0

v 66.3 53.6

v v 66.1 53.6

v v 67.3 55.6

v 4 69.0 56.2

v v 72.7 59.6

v v v 76.0% 64.3*

VSCP: Very Simple Copy-Paste, BS: Batch Size, TTA: Test-Time Augmentation, *MariNeXt

Furthermore, we wanted to investigate if the improved performance with the
additional mixed samples was due to the increased batch size. Thus, increasing the
batch size with unmixed samples was also examined, leading to lower metric scores
(Table 5.8). As evident in Table 5.8, the best combination is 1*-Stage Features, with
VSCP and TTA, which shows the effectiveness of our method over the baseline
SegNeXt. Also, we highlight that each component is orthogonal to the others, as each
one benefits the performance independently. Last but not least, we experimented
with four different BSs (5, 10, 15, 20), indicating that the batch size selection was
crucial for the performance of the applied models (Table 5.9).

Table 5.9 F1 scores of SegNeXt, U-Net and MariNeXt models over the different Batch sizes. The scores are
measured on MADOS test set and averaged over five trials.

Batch Size
Method
5 10 15 20
U-Net 53.6 59.7 63.8 61.2
SegNeXt 60.6 58.5 54.9 52.2

MariNeXt 76.0 74.4 69.1 62.0
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To further understand the effectiveness of MariNeXt's components, we
systematically enabled/ disabled them from our framework inspecting the class-wise
F1 scores (Table 5.10). By integrating high-resolution 1¢ stage features, F1scores were
significantly increased by over 12% for the MD, DenS, SpFA and Foam classes. High-
resolution features were beneficial for our task as we focused on pixel-based
predictions with objects presented at significantly different scales (e.g., Oil vs. MD)
Furthermore, by enabling TTA and VSCP, we observe an increase of over 20% for
NatM, Jellyfish and Foam (Table 5.10), which are the most under-representative classes
in the MADOS dataset. By integrating TTA, MariNeXt delivers more robust
predictions, improving the classification performance. At the same time, with VSCP,
MariNeXt synthesizes additional images on the fly, tackles unbalanced data and

strengthens its performance on our semantic segmentation task.

Table 5.10 Per class evaluation of our employed strategies on MADOS test set using F1 score, averaged over five
trials.

Method

MariNeXt
(Without
1st Stage)

MariNeXt
(Without

TTA+VSCP)

MariNeXt

Fi-Score

MD DenS SpFA NatM Ship Oil MWater SLWater Foam TWater SWater Waves OilPlat Jellyfish

395 635 718 55.3 54 772 87.6 99.9 61.1 87 64.9 35.6 82.9 81.6 72.8
456 720 766 306 61.3 802 90.0 98.4 66.8 86.4 56.3 43.2 83.4 25.9 77.2
513 812 843 572 628 783 90.7 99.6 87.1 90.1 63.7 37.7 84.3 90.0 81.4

5.4 Discussion

5.4.1 Potentials in detecting and discriminating marine pollutants
in S2 data

Based on our experimental results, the developed MariNeXt framework can
distinguish the two primary marine pollution forms, i.e., MD and Oil, on optical S2
images. The quantitative assessment presented in Table 5.7 indicated that only 0.1%
of MD was classified as Oil, while 0.02% of Oil was predicted as MD. Furthermore,
the calculated T-SNE plot (Figure 5.12) indicates a clear separation potential in the
2D space between these two pollutants. Based on our experiments in this study, we
conclude that it seems feasible to develop operational marine monitoring solutions
that consider both classes concurrently without major misclassification issues

between them.



92

Oil Spill

Based on both quantitative (Table 5.7) and qualitative results (Figure 5.11), we
reveal the most challenging cases for Oil. Most of these cases correspond to sparse
Oil regions without distinct spatial patterns classified as MWater (Figure 5.11).
Moreover, Waves are frequently misclassified as Oil (Figure 5.13a,b), (Table 5.7). The
main source of these misclassifications is that Oil, MWater (including sea-state look-
alikes) and Waves can be spectrally similar, leading to a significant overlap in T-SNE
plot (Figure 5.14). We argue that these observations are due to the high spectral
variations derived from different oil concentrations and weathering processes. These
outcomes are in accordance with the literature since Oil has been proven to present
spectral patterns similar to Water and Waves (Fingas and Brown, 2018; Sun et al.,
2015; Trujillo-Acatitla et al.,, 2022). However, MariNeXt managed to tackle these
similarities achieving a relatively high F178.3% for Oil.

In order to better understand MariNeXt’s efficiency, we present the learned
feature space against the initial one (based on Spectral Angle Mapping) (Figure 5.15).
Specifically, we extract the output features of the MariNeXt encoder, as they are
given to the decoder and visualize them (Figure 5.15b). During the training process,
MariNeXt managed to learn rich representations of the input data and alleviate the
challenging issue of Oil, Waves and MWater, by separating them to a certain extent in

the feature space (Figure 5.15b).

Marine Debris

For MD, the most competing classes were Ship, Sea snot and NatM (Table 5.7,
Figure 5.13b,c,d). As can be observed in the corresponding T-SNE plot (Figure 5.16),
despite the overall distinct cluster representations, there are several low-density
NatM and Sea snot pixels that overlap with the MD cluster. Dense MD pixels are also
depicted in the Ship cluster, which is in accordance with the literature (Kikaki et al.,
2022). Interestingly, the main MD and Sea snot clusters are distinguished (Figure
5.16), suggesting that the considered classes can be differentiated under certain
circumstances (e.g., Chlorophyll pigments presence), as was also reported by
Papageorgiou et al. (2022). Although MD detection from current sensors is quite
challenging (Martinez-Vicente, 2022), we show that state-of-the-art deep networks
like MariNeXt can contribute to addressing certain overlaps, e.g., MD against Ship
and Sea snot (Figure 5.17). Still, the most competing feature for MD is NatM due to

the usually similar spatial patterns and spectral behavior (Figure 5.17b).

Water-related Classes

In general, MWater, SLWater and TWater are performing well with a relatively
small number of false positives. However, in some cases, SWater is misclassified as
TWater, and Waves and SWater are predicted as MWater (Table 5.7, Figure 5.11d). The

corresponding T-SNE plot (Figure 5.18a) also confirms that almost all water-related
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classes exhibit similar spectral characteristics. The most well-separated cluster was
formed by SLWater (Figure 5.18a), which presents distinct spectral behavior due to
the increased concentrations of suspended sediments (highest Recall in Table 5.7).
Recent studies have also reported this outcome (Kikaki et al.,, 2022; Mikeli et al.,
2022). On the other hand, the Waves class (with relatively high-intensity values)
presents the greatest spectral variance derived from the different sea state conditions.
Although MariNeXt contributes to the separation of the water-related classes, we
highlight that the Waves class is the most challenging, and its accurate detection is

crucial for the overall performance of any operational marine mapping system.

Figure 5.12 T-SNE Analysis on MADOS dataset using Spectral Angle Mapping for Marine Debris and Oil Spill.
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Figure 5.13 Classification results obtained by our MariNeXt framework. We demonstrate representative cases of:
a) Ships, Wakes, Natural Organic Material and Marine Water, b) Ships, Wakes, Shallow & Marine Water, c)
Natural Organic Material, Marine Water and haze, d) Dense & sparse Sargassum, Marine Water and haze, e) Oil
Spill, Oil Platform and Marine Water, and f) Shallow & Marine Water, Oil Platform. The RGB images were
stretched for illustration purposes. Land, Clouds and thin clouds are masked with black color.

Other classes

Moreover, DenS and SpFA are well-distinguishable, with relatively high F:
scores of over 80% (Table 5.7, Figure 5.11). This is in accordance with the literature
that has indicated that Sargassum has unique spectral behavior that differs from other
floating materials and algae species (Hu et al., 2015; Qi and Hu, 2021). Nevertheless,
based on our experiments and the MADOS dataset, spFA can be confused with DenS
or other floating vegetation (i.e., NatM when vegetation is prominent) (Table 5.7,
Figure 5.11 and Figure 5.13d,e). Moreover, man-made classes like OilPlat and Ship,
composed of similar materials, are expectedly grouped together in the T-SNE
diagram (Figure 5.19a). Interestingly the Jellyfish class, which does not form a distinct
cluster in the T-SNE plot, is mainly dispersed in categories of relatively high-
intensity values like OilPlat and Ship. Previous studies (Van der Zande et al., 2014)
have indicated through laboratory observations that Jellyfish reflectance spectra
resemble those of transparent plastic bottles. However, we demonstrate that dense
Jellyfish trajectories can be spectrally close to dense polymer and/or artificial classes.
MariNeXt managed to capture the different spatial patterns of OilPlat, Ship and
Jellyfish, resulting in a relatively small number of misclassification cases (Figure
5.19Db, Figure 5.13a,b,{,g/h).
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Figure 5.14 T-SNE Analysis on MADQOS dataset using Spectral Angle Mapping for Oil Spill, Marine Water and
Waves & Wakes.

Figure 5.15 T-SNE Analysis using (a) SAM and (b) MariNeXt features for Oil Spill Waves & Wakes and Marine

Water. For fair comparison, we use only validation and testing samples.
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Figure 5.16 T-SNE Analysis on MADQOS dataset using Spectral Angle Mapping for Marine Debris, Ship,

Natural Organic Material and Sea snot.

Figure 5.17 T-SNE Analysis using (a) SAM and (b) MariNeXt features for Marine Debris, Ship, Natural
Organic Material and Sea snot. For fair comparison, we use only validation and testing samples.
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Figure 5.18 T-SNE Analysis on MADOS dataset using SAM for Marine Water, Foam, Turbid Water, Shallow
Water, Waves & Wakes and Sediment-Laden Water.

Figure 5.19 T-SNE Analysis using (a) SAM and (b) MariNeXt features for Ship, Oil Platform and Jellyfish. For

fair comparison, we use only validation and testing samples.

5.4.2 Limitations & Challenges

MADOS fills a current gap in benchmark data availability for marine pollution
detection, and the MariNeXt framework seems capable of classifying competing
marine classes. That being said, some limitations need to be considered. First,
MADOS is, by nature, an unbalanced dataset. Classes like MWater and Oil, which
are abundant in the dataset, tend to be predicted more frequently than under-
representative classes like Jellyfish and NatM. MADOS can be expanded in the
future with other observations to enhance the predictive capabilities of MariNeXt.

This will boost the detection accuracies on these less representative classes,
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particularly improving the model's performance when applied to large-scale real-
world applications. Furthermore, S2 data limitations (Hu, 2022), combined with
diverse marine environmental conditions, and not always consistent atmospheric
correction processes, led to high variability in MADOS reflectance values. These
challenges need to be addressed in any operational remote sensing system. Also,
during our experimental validation, we observed some systematic false positives
such as Waves around QilPlat, OilPlat mixed with Ship and MD spikes (Figure 5.13).
Post-processing strategies can tackle these systematic spurious correlations and keep
only the main floating object.

Putting the limitations aside, MADOS is a valuable dataset that benchmarks ML
algorithms for marine pollution detection from open S2 data, supporting the
development of future operational marine monitoring solutions. In addition to the
semantic segmentation, MADOS can contribute to other ML and remote sensing
tasks, including semi-, self- or unsupervised and transfer learning. We also
encourage the community to examine pan-sharpening methods or other upsampling

techniques beyond Nearest Neighbor resampling that has been mostly employed.

5.5 Conclusions

This study introduces MADOS, a globally-distributed benchmark dataset for
Marine Debris and Oil Spill detection from Sentinel-2 satellite imagery. MADOS
consists of competing marine classes and almost 1.5 million annotated pixels, being
to the best of our knowledge, the largest available Sentinel-2 dataset for marine
pollutants. We have also introduced MariNeXt, a novel DL framework capable of
recognizing specific spatial patterns and distinguishing competing classes that
cannot be spectrally separated. Through our experiments, MariNeXt led to
promising prediction maps and outperformed the other ML baselines in all
quantitative metrics.

We also demonstrate that Oil and MD tend to be separable and detectable. Most
false positives and negatives are related to low-density floating matters, objects
composed of similar materials or presenting high-intensity values, and some water-
related classes (i.e., Waves). By considering, without exceptions, the competing sea
surface features and water-related classes, reliable operational monitoring solutions
can be developed using the openly available multispectral data. Still, several
challenges exist, including the scarcity of in situ data, the need for more balanced
datasets, and the requirement for more sophisticated machine learning models
capable of accommodating multi-temporal data to facilitate informed decision-

making.
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6 Conclusions and Future Perspectives

6.1 Conclusions

In this dissertation, we have thoroughly studied various aspects of marine
pollutants detection and discrimination from other sea surface features using
multitemporal multispectral satellites. The main contribution is the development of a
novel framework that exploits high-resolution satellite data for marine pollution
mapping at a global scale.

Based on multitemporal satellite data from three current sensors, we identified
the sources, pathways and spatial distribution of marine litter in Honduras, a highly
polluted area of the second-largest coral reef in the world. This information is
essential and can be used to inform policies and actions to reduce marine litter and
protect the marine environment. Using Sentinel-2 satellite data, two highly reliable
datasets, i.e., MARIDA & MADQOS, were created based on existing in situ reports and
literature on marine pollution, ocean data and photo-interpretation. Machine
Learning baselines were developed, and a novel mapping framework (ie.,
MariNeXt) was proposed for marine pollution detection, formulating a weakly-
supervised semantic segmentation task. Under the proposed framework, spectral and
spatial features were successfully utilized, while their contribution to the
classification process has been evaluated. The proposed MariNeXt framework
resulted into an overall Fi of 76% for the 15 thematic classes, achieving an
improvement of 12% compared with the applied RF model that had the best
performance. Furthermore, aiming to contribute to future operational solutions,
MariNeXt framework capabilities and findings regarding the discrimination of
marine pollutants from various sea surface features were discussed in detail.

To the best of our knowledge, there is no other dataset and framework for
marine pollution detection at 10 m spatial resolution with such a thematic analysis
and quite promising outcomes. Additionally, we highly regard that we openly
provided a quick start code, an interactive online material with our detailed
statistical and spectral analysis and the created databases to trigger the research

community for further experiments.

6.2 Future work

In this section, we present some suggestions for further experiments inspired by

the work of this dissertation:
v Improve MariNext predictive capabilities by adding more observations from
marine pollutants and other features that are less common on the sea surface

or their identification is more challenging (e.g., Jellyfish).
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Increase the thematic resolution by additionally including types of classes
(e.g., add Oil types and different macroalgae species).

Apply our proposed methodology to satellite data with higher spatial and/or
temporal resolution (e.g., Planet satellite imagery) or data from new sensors.
Evaluate existing cloud masking techniques and develop new methods for
accurate cloud and cloud shadow detection.

Apply our methodology to multitemporal satellite data to assess marine
pollution levels in our study areas (e.g., Haiti) for the last seven years.
Evaluate our framework in different regions globally.

Utilize other state-of-the-art computer vision approaches in order to exploit
the vast majority of the non-annotated remote sensing data

Exploit temporal features (e.g., time series) to enhance marine pollutants
detection and monitoring potentially.

Evaluate the synergy between the multispectral Sentinel-2 satellite images
and radar data (e.g., Sentinel-1) for marine pollution monitoring.

Investigate advanced pan-sharpening techniques to increase the capabilities
of the Sentinel-2 sensor.

Organize fieldwork and perform in situ measurements to validate further
satellite results and examine spectra of different polymers, oil types and

algae species.
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