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Abstract The work in this thesis primarily revolves around efficient algorithmic
frameworks for settings where information is not readily available. Specifically, we
look at limitations of provided information from three main angles: (1) Informa-
tion is difficult to quantify. In this line of work we focused on distortion in voting
(JAIR’22, AAAI’22), which is the notion that quantifies the impact of being able
to use only limited information on the social welfare of the outcome (i.e. in terms
of approximation). Here we study both the effects of various forms of limited
information on metric distortion and also the distortion of a very popular mecha-
nism, STV, in relation to the dimensionality of the underlying metric space. (2)
Information is private to strategic agents and needs to be revealed to the algo-
rithm through properly designed incentives. This area is commonly referred to
as mechanism design and my related work focuses on fighting strong impossibility
results by restricting our analysis in “natural” sub-classes of the general instance
space (WINE’21). In this setting we have studied the approximability of the fa-
cility location problem by truthful mechanisms, whose allocation is aligned with
the agent incentives. (3) Communication is expensive. Combining this restriction
along with the strategic environment described previously, we show that known
mechanisms have implementations with asymptotically optimal communication
complexity (SAGT’20, full version under minor revision TOCS’23). In most of
our works, our objective is to maximize the social welfare. Furthermore, some
work has been focused on a classical aspect of algorithmic game theory, that of
equilibrium computation, where we study the complexity of computing a Pure
Nash Equilibrium in linear weighted congestion games and also show an efficient
algorithm for computing approximate equilibria in a natural subclass of Max-Cut
games (ICALP’20).
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Αφαιρετική περίληψη Η παρούσα διδακτορική διατριβή μελετάει αποδοτικά

αλγοριθμικά πλαίσια για περιβάλλοντα στα οποία η πληροφορία δεν είναι άμεσα δια-

θέσιμη. Πιο συγκεκριμένα μελετάει περιορισμούς στην πρόσβαση στην πληροφορία

από τρεις διαφορετικές γωνίες: (1) Η πληροφορία είναι προσωπική (και ιδιωτική) σε

στρατηγικούς παίκτες και χρειάζεται να αποκαλυφθεί στον αλγόριθμο μέσα από κα-

τάλληλα σχεδιασμένα κίνητρα: Αυτή η περιοχή συνήθως αναφέρεται ως «αλγοριθμικός

σχεδιασμός μηχανισμών». Η έρευνα στα πλαίσια της διατριβής επικεντρώνεται στην

αντιμετώπιση ισχυρών αρνητικών αποτελεσμάτων περιορίζοντας την ανάλυση σε «φυ-

σιολογικά» υποσύνολα στιγμιότυπων του προβλήματος, μια πρακτική από την περιοχή

της ανάλυσης πέραν της χειρότερης περίπτωσης στη θεωρία αλγορίθμων. Συγκεκρι-

μένα, αναλύεται η προσεγγισιμότητα του προβλήματος χωροθέτησης εγκαταστάσεων

από φιλαλήθεις μηχανισμούς. (2) Η επικοινωνία είναι ακριβή: Μελετώντας αυτόν

τον περιορισμό σε περιβάλλοντα με στρατηγικούς παίκτες αποδεικνύεται ότι απλοί

μηχανισμοί για κλασσικά προβλήματα μπορούν να υλοποιηθούν με ασυμπτωτικά βέλ-

τιστη πολυπλοκότητα επικοινωνίας (ανάμεσα στον μηχανισμό και τους παίκτες). (3)

Η πληροφορία που χρησιμοποιείται από τον μηχανισμό είναι περιορισμένη: η διατριβή

εστιάζει στην παραμόρφωση στο πρόβλημα της ψηφοφορίας, που είναι η έννοια που πο-

σοτικοποιεί την επίπτωση της πρόσβασης σε περιορισμένη πληροφορία στην κοινωνική

ωφέλεια του αποτελέσματος ενός αλγορίθμου (σε όρους προσέγγισης της βέλτιστης

λύσης). Εδώ μελετώνται και οι επιπτώσεις διάφορων μορφών περιορισμένης πληρο-

φορίας στην μετρική παραμόρφωση αλλά και η παραμόρφωση ενός πολύ διαδεδομένου

μηχανισμού, του STV, σε σχέση με την διαστασιμότητα του σχετικού μετρικού χώρου.
Επιπλέον, στα πλαίσια της διατριβής διερευνάται η κλασική πτυχή της αλγοριθμικής

θεωρίας παιγνίων που αφορά την πολυπλοκότητα υπολογισμού αμιγών ισορροπιών.

Μελετάται το πρόβλημα αυτό στο πλαίσιο των βεβαρυμένων παιγνίων συμφόρησης με

γραμμικές συναρτήσεις καθυστέρησης, και παρουσιάζεται ένας αποδοτικός αλγόριθ-

μος για τον υπολογισμό προσεγγιστικών ισορροπιών σε μια ενδιαφέρουσα κλάση των

Max-Cut παιγνίων.
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Chapter 1

Extended Abstract in Greek

1.1 Εισαγωγή

Η αλγοριθμική θεωρία παιγνίων Algorithmic Game Theory αποτελεί ένα ισχυρό
πλαίσιο που βρίσκεται στην τομή της επιστήμης των υπολογιστών, των μαθηματικών

και της μικροοικονομίας. Ο κύριος της στόχος είναι να αντιμετωπίσει τις προκλήσεις

που προκύπτουν από στρατηγικές αλληλεπιδράσεις μεταξύ παικτών (πχ. ατόμων ή

πρακτόρων) που επιδιώκουν το δικό τους συμφέρον ή μεταξύ αυτών και μιας αρχής.

Ως αναδυόμενο πεδίο μελέτης, έχει λάβει μεγάλο ερευνητικό ενδιαφέρον και προβολή

τα τελευταία χρόνια, με πολλά ισχυρά κίνητρα από προβλήματα που συναντώνται στον

πραγματικό κόσμο. Ορισμένα παραδείγματα είναι τα εξής:

• Μοντελοποίηση πολύπλοκων αλληλεπιδράσεων: Σε πολλά σενάρια, οι αποφάσεις
του κάθε ατόμου σε περιβάλλοντα πολλαπλών παικτών είναι αλληλεξαρτημένες,

με την έννοια ότι η προτιμώμενη ενέργεια κάθε παίκτη εξαρτάται από την ε-

πιλογή των ενεργειών των άλλων. Η αλγοριθμική θεωρία παιγνίων παρέχει

τα μαθηματικά εργαλεία για τη μοντελοποίηση και ανάλυση τέτοιων αλληλε-

πιδράσεων, μελετώντας τη συμπεριφορά παικτών με στρατηγική συμπεριφορά

μέσω της ανάλυσης της πολυπλοκότητας και της ποιότητας σχετικών ισορροπι-

ών χρησιμοποιώντας κατάλληλες έννοιες όπως η τιμή της αναρχίας κ.λπ...

• Χρήση δημόσιων πόρων : ΄Ενα πολύ συνηθισμένο πρόβλημα στην πράξη προ-
κύπτει από την ανάγκη πολλών παίκτων να ανταγωνίζονται για πόρους. ΄Ενα

πολύ καλά μελετημένο σχετικό παράδειγμα είναι τα παίγναι συμφόρησης, δηλα-

δή περιβάλλοντα στα οποία οι παίκτες πρέπει να αποφασίσουν ποιους πόρους

θα χρησιμοποιήσουν για να επιτύχουν τους στόχους τους, λαμβάνοντας υπόψη

ότι το κόστος κάθε πόρου εξαρτάται από το πόσοι παίκτες τον χρησιμοποιούν.

΄Ενα πραγματικό παράδειγμα εφαρμογής αυτού του τύπου των παιγνίων είναι η

μοντελοποίηση της κυκλοφορίας σε δημόσια οδικά δίκτυα.

• Σχεδιασμός μηχανισμών συμβατών με στρατηγικά κίνητρα (incentive- com-
patible): Σε πολλά στρατηγικά περιβάλλοντα, η συμπεριφορά των παίκτων ε-
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πηρεάζεται από ιδιωτικές (προσωπικές) πληροφορίες. Οι παίκτες έχουν τη δυ-

νατότητα να παραποιήσουν τις ιδιωτικές τους πληροφορίες που αναφέρουν προ-

κειμένου να επηρεάσουν τον μηχανισμό αν αυτό τους προσφέρει μια πιο επιθυ-

μητή έκβαση. Σε πολλές εφαρμογές, είναι επιθυμητό ή ακόμη και απαραίτητο

να υπάρχει εγγύηση ότι ο χρησιμοποιούμενος μηχανισμός δεν επιτρέπει τέτοια

συμπεριφορά, δηλαδή ότι ο μηχανισμός σχεδιάζεται με τέτοιο τρόπο ώστε να

αναγκάζει τους παίκτες να παρέχουν αληθείς πληροφορίες. Τέτοιοι μηχανισμοί

ονομάζονται incentive-compatible (μηχανισμοί συμβατοί με στρατηγικά κίνη-
τρα) και αποτελούν επίσης ένα μεγάλο αντικείμενο της αλγοριθμικής θεωρίας

παιγνίων. Επιπλέον, οι μηχανισμοί μπορεί να χρειάζεται να μεγιστοποιήσουν άλ-

λα κριτήρια, όπως τη κοινωνική δικαιοσύνη ή το κέρδος, λαμβάνοντας υπόψη τις

προτιμήσεις και τους περιορισμούς του περιβάλλοντος των παικτών. Ορισμένες

εφαρμογές μπορούν να βρεθούν σε δημοπρασίες, συστήματα ψηφοφορίας, χω-

ροθέτηση δημόσιων εγκαταστάσεων, κατανομή περιορισμένων πόρων μεταξύ

των παικτών κ.λπ...

Ο κύριος στόχος αυτής της εργασίας επικεντρώνεται στην πτυχή του σχεδιασμο-

ύ μηχανισμών στις περιοχές της αλγοριθμικής θεωρίας παιγνίων και της κοινωνικής

επιλογής Social Choice, όπου μελετάμε επίσης περιβάλλοντα πολλαπλών παικτών α-
πό μη στρατηγική σκοπιά. Συγκεκριμένα, επικεντρωνόμαστε σε αλγοριθμικά πλαισία

για προβλήματα πολλαπλών παικτών σε περιβάλλοντα όπου οι πληροφορίες δεν είναι

εύκολα προσβάσιμες, από δύο σκοπιές:

• Οι πληροφορίες είναι ιδιωτικές : Σε αυτήν την περίπτωση, χρειάζεται να δημιουρ-
γήσουμε φιλαλήθεις μηχανισμούς για περιβάλλοντα με στρατηγικούς παίκτες.

• Οι πληροφορίες είναι περιορισμένες : Οι παίκτες δεν μπορούν ή δεν είναι διατε-
θειμένοι να παράσχουν πλήρεις πληροφορίες, ή η ανταλλαγή πληροφοριών είναι

δαπανηρή.

Ο στόχος της παρούσας διατριβής είναι να σχεδιαστούν αλγόριθμοι ή κανόνες και

πρωτόκολλα (μηχανισμοί) που εγγυώνται επιθυμητούς λόγους προσέγγισης σε σχέση

με τις βέλτιστες λύσεις, όταν οι παίκτες έχουν περιορισμένες ή ιδιωτικές πληροφορίες

και παράλληλα ενθαρρύνουν επιθυμητή συμπεριφορά, όταν οι παίκτες έχουν ιδιωτικές

πληροφορίες και είναι στρατηγικοί. Επιπλέον, ενδιαφερόμαστε να κατανοήσουμε τους

περιορισμούς στο σχεδιασμό τέτοιων συστημάτων, δηλαδή κάποιους κάτω φράγματα

για τα βέλτιστα δυνατά αποτελέσματα, σε κάθε πεδίο. Στο πεδίου του σχεδιασμού

μηχανισμού για στρατηγικούς παίκτες επικεντρωνόμαστε στο παράδειγμα του προ-

βλήματος χωροθέτησης εγκαταστάσεων (Facility Location Problem) και εισάγουμε
την έννοια της ανάλυσης πέρα από τη χειρότερη περίπτωση στον σχεδιασμό μηχανι-

σμών. Για την περίπτωση της περιορισμένη πληροφορία, σε μη στρατηγικό περιβάλλον,

επικεντρωνόμαστε στην παραμόρφωση στο πρόβλημα της ψηφοφορίας (Distortion in
Voting), μια σχετικά πρόσφατα εισαγόμενη έννοια που μετρά την επίδραση της δυνα-
τότητας πρόσβασης μόνο σε μερική πληροφορία στη δυνατότητά μας να προσεγγίσουμε

τη βέλτιστη κοινωνική έκβαση. Επιπλέον, συνδυάζοντας τις έννοιες των στρατηγικών
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κινήτρων και των περιορισμένων πληροφοριών, μελετούμε την πολυπλοκότητα επικοι-

νωνίας (communication complexity) σε βασικά, γνωστά, μονο-παραμετρικά (single
parameter) περιβάλλοντα, όπως δημοπρασίες και το πρόβλημα της χωροθέτησης μίας
δομής, και αναπτύσσουμε μηχανισμούς που είναι ασυμπτωτικά βέλτιστοι από πλευράς

επικοινωνίας. Τέλος, δίνουμε έμφαση στην κλασική έννοια του υπολογισμού ισορ-

ροπιών και μελετούμε την πολυπλοκότητα του υπολογισμού των Αμιγών Ισορροπιών

(Nash Pure Nash Equilibria) ή προσεγγιστικών Αμιγών Ισορροπιών Nash σε βεβα-
ρυμένα παιγνία συμφόρησης (Weigthed Congestion Games).

Σχεδιασμός μηχανισμών για στρατηγικά περιβάλλοντα με ιδιωτικές

πληροφορίες:

Ο πρώτος τύπος προβλημάτων που πρόκειται να παρουσιάσουμε ανήκει στον το-

μέα της μελέτης και σχεδιασμού φιλαλήθων ή ινςεντιvε-ςομπατιβλε μηχανισμών. Τα

κύρια παραδείγματα που μελετούνται σε αυτόν τον τομέα έχουν την ακόλουθη μορ-

φή: αναλαμβάνουμε το ρόλο μιας αρχής που προσπαθεί να κατανείμει διάφορα αγαθά

στους παίκτες ή σε ένα περιβάλλον στο οποίο ανήκουν οι παίκτες. Σε αυτήν την πε-

ρίπτωση, οι παίκτες έχουν ιδιωτικές αποτιμήσεις επί των πιθανών αποτελεσμάτων και

μπορεί να συμπεριφέρονται στρατηγικά προκειμένου να επηρεάσουν τον μηχανισμό, αν

είναι δυνατόν να προκύψει ένα καλύτερο αποτέλεσμα για τον εαυτό τους με αυτόν τον

τρόπο. Μια βασική ιδιότητα που θέλουμε πάντα οι μηχανισμοί μας να έχουν εδώ είναι

η φιλαλήθεια (truthfulness). Δηλαδή, να εγγυώνται ότι κανένας παίκτης δεν μπορεί
να επιτύχει καλύτερο τελικό αποτέλεσμα για τον εαυτό του με το να παραποιήσει τις

πληροφορίες που δηλώνει στον μηχανισμό. Τα δύο βασικά παραδείγματα που μελε-

τούνται σε αυτό το πλαίσιο είναι τα προβλήματα χωροθέτησης εγκαταστάσεων και οι

δημοπρασίες.

Το πρόβλημα της χωροθέτησης εγκαταστάσεων ([177]) μελετά την αντιστάθμιση

μεταξύ της προσβασιμότητας των υπηρεσιών και της αποδοτικότητας τους ως προς το

κόστος. Στην έκδοση που μελετάμε, θέλουμε να τοποθετήσουμε ένα συγκεκριμένο

αριθμό εγκαταστάσεων με στόχο την ελαχιστοποίηση του κοινωνικού κόστους, δηλαδή

των συνολικών αποστάσεων των παικτών προς τις πλησιέστερες εγκαταστάσεις σε

αυτούς. Σε αυτή την έκδοση του προβλήματος οι εγκαταστάσεις δεν έχουν κόστος για

το άνοιγμά τους ή τη λειτουργία τους με την πάροδο του χρόνου. Σε αυτήν τη μορφή,

αυτό είναι ένα πολύ καλά μελετημένο πρόβλημα ([116, 136, 166, 186, 111, 167]...), του

οποίου η ντετερμινιστική έκδοση του έχει ουσιαστικά χαρακτηριστεί πλήρως ([112])

και η τυχαιοποιημένη έκδοση του έχει επίσης μελετηθεί εκτενώς.

Τα προβλήματα δημοπρασιών αποτελούν επίσης έναν πολύ μεγάλο τομέα μελέτης

της αλγοριθμικής θεωρίας παιγνίων. Γενικά, η ιδέα είναι ότι ο ¨πωλητής’ (μηχανισμός)

θέλει να πουλήσει ένα ή πολλά αγαθά σε παίκτες που συμμετέχουν στη δημοπρασία.

Συνήθως οι παίκτες έχουν ιδιωτικές αξιολογήσεις που αντιπροσωπεύουν πόσο θέλουν

κάθε αντικείμενο και προσπαθούν να μεγιστοποιήσουν το όφελός τους προσπαθώντας

να μεγιστοποιήσουν τη διαφορά μεταξύ της αξιολόγησής τους και της τιμής που τε-

λικά πληρώνουν για τα αγαθά που αποκτούν. Υπάρχουν πολλές σχετικές μορφές
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δημοπρασιών, όπως δημοπρασίες με μονό αντικείμενο ([220]), διάφορες μορφές δη-

μοπρασιών με πολλά αντικείμενα, όπως δημοπρασίες πολλαπλών αντικειμένων όπου

πωλούνται πολλαπλές αντιγραφές του ίδιου αντικειμένου, συνδυαστικές δημοπρασίες

όπου οι παίκτες θέλουν συνδυασμούς αντικειμένων, ειδικοί τομείς αξιολόγησης όπως

sub-modular, sub-additive αξιολογήσεις κ.λπ. ΄Εχουν μελετηθεί επίσης πολλές μορ-
φές δημοπρασιών, όπως οι δημοπρασίες με σφραγισμένες προσφορές (Sealed Bid),
όπου οι παίκτες υποβάλλουν τις πλήρεις αξιολογήσεις τους στον μηχανισμό σε σφρα-

γισμένες προσφορές, ή οι αύξουσες δημοπρασίες, όπου η τιμή του αγαθού ανεβαίνει

και οι παίκτες αποφασίζουν εάν θα συνεχίσουν να συμμετέχουν ή όχι.

Σε αυτό το πλαίσιο του σχεδιασμού μηχανισμών σε στρατηγικά περιβάλλοντα,

μελετάμε δύο βασικές ερωτήσεις:

Ερώτημα 1. Μπορούμε να εισάγουμε έννοιες από την ανάλυση πέρα από τη χει-

ρότερη περίπτωση στον σχεδιασμό μηχανισμών προκειμένου να δημιουργήσουμε μη-

χανισμούς με καλές ιδιότητες για ῾ῥεαλιστικά στην πράξη᾿᾿ στιγμιότυπα προβλημάτων,

για τα οποία δεν μπορούν να υπάρχουν τέτοιοι μηχανισμοί στη γενική περίπτωση·

Μπορούμε επίσης να χρησιμοποιήσουμε αυτήν την ανάλυση για να κατανοήσουμε τη

φύση της φιλαλήθειας σε αυτά τα προβλήματα;

Για αυτήν την ερώτηση επικεντρωνόμαστε στο πρόβλημα χωροθέτησης εγκαταστάσε-

ων, για το οποίο έχουν δειχθεί πολύ ισχυρά όρια όσον αφορά την ύπαρξη τέτοιων

επιθυμητών μηχανισμών. Για παράδειγμα, μπορούμε να έχουμε καλούς, δηλαδή με

περιορισμένη προσέγγιση και φιλαλήθεις μηχανισμούς, μόνο όταν προσπαθούμε να

εκχωρήσουμε έως δύο εγκαταστάσεις σε μια γραμμή ([112]). Με αυτήν τη σκέψη,

δημιουργήθηκε η έννοια της ανάλυσης ῾῾πέρα από τη χειρότερη περίπτωση᾿᾿ ανάλυση

στον σχεδιασμό μηχανισμών.

Η ανάλυση ῾῾Πέρα από τη Χειρότερη Περίπτωση᾿᾿ εισήχθη για πρώτη φορά ως

μαθηματικό πλαίσιο για την ανάλυση προβλημάτων που έχουν δείξει να είναι υπολο-

γιστικά δύσκολα στη χειρότερη περίπτωση, αλλά φαίνεται να μην είναι τόσο δύσκολα

στα περισσότερα ρεαλιστικά στην πράξη παραδείγματα. Αυτή η μορφή ανάλυσης ο-

ρίζει έννοιες που αιχμαλωτίζουν αυτήν την έννοια των ῾῾πραγματικών᾿᾿ ή ῾῾μέσων᾿᾿

περιπτώσεων, όπως η ῾ὁμαλότητα᾿᾿ (smoothness) ή η ῾ἑυστάθεια με μικρές διαταρα-
χές᾿᾿ (perturbation stability) και δείχνουν ότι μέσα σε αυτές τις έννοιες η επίλυση
του προβλήματος γίνεται εφικτή ([43, 31]). Για το πρόβλημα της χωροθέτησης εγκα-

ταστάσεων, ειδικά, επιλέχθηκε η έννοια της ῾ἑυστάθειας σε διαταραχές᾿᾿, λόγω της

στενής σχέσης της με το πρόβλημα της συσταδοποίησης (clustering) για το οπο-
ίο αυτή η έννοια ανάλυσης πέρα από τη χειρότερη περίπτωση έχει επιδείξει μεγάλη

επιτυχία ([13, 33, 35, 34, 202, 203]). Ουσιαστικά, ένα πρόβλημα συσταδοποίησης

είναι ευσταθές με μικρές διαταραχές εάν μικρές διαταραχές σε αυτό (ή στο μετρικό

χώρο στον οποίο ανήκει) δεν επηρεάζουν τη βέλτιστη συσταδοποίηση του προβλήμα-

τος. Στην περίπτωσή μας, αντί να δείξουμε ότι η περιορισμένη ευστάθεια επιτρέπει

τη δημιουργία γρήγορων αλγορίθμων, θέλουμε να δείξουμε ότι μπορούμε να δημιουρ-

γήσουμε μηχανισμούς με επιθυμητές ιδιότητες, όπως φιλαλήθεια και καλή ή φραγμένη
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προσέγγιση που δεν μπορούν να υπάρχουν στη γενική περίπτωση.

Ερώτημα 2. Ποιο είναι το βέλτιστο ποσό πληροφοριών που απαιτείται προκει-

μένου να εφαρμόσουμε μηχανισμούς για γνωστά, βασικά προβλήματα χωρίς να θυσι-

άζουμε τις επιθυμητές ιδιότητες του μηχανισμού·

Η αποτελεσματική επικοινωνία αποτελεί πάντα έναν από τους κύριους στόχους του

σχεδιασμού μηχανισμών. Υπάρχουν πολλοί λόγοι γι΄ αυτό το ενδιαφέρον, όπως το

γεγονός ότι η εξαγωγή δεδομένων από πολλά κατανεμημένα μέρη μπορεί να είναι πολύ

κοστοβόρα, ή το γεγονός ότι η αποκάλυψη προσωπικής πληροφορίας σε μεγάλο βαθμό

μπορεί να μην θεωρείται θεμιτή η ασφαλής, ή ακόμη η αναγνώριση ότι η άμεση απο-

κάλυψη ολόκληρης της πληροφορίας στον μηχανισμό είναι ανεπιθύμητη δεδομένου ότι

επιβάλλει υψηλό γνωστικό κόστος από τους παίκτες, κ.λπ. ([47, 4, 190, 164, 215])...

Μελετάμε αυτή την έννοια για δύο κύριες κατηγορίες προβλημάτων: Δημοπρασίες

και χωροθέτηση εγκαταστάσεων. Συγκεκριμένα επικεντρωνόμαστε στις δημοπρασίες

ενός αντικειμένου (single item) και στις δημοπρασίες πολλαπλών μονάδων (multi
unit) με παίκτες που θέλουν ο καθένας το πολύ μια μονάδα αντικειμένου, από την
οπτική γωνία της προσπάθειας ελαχιστοποίησης της επικοινωνίας μεταξύ των παικτών

και του μηχανισμού. Για το πρόβλημα της χωροθέτησης εγκαταστάσεων, μελετούμε τη

χωροθέτηση μίας εγκατάστασης, το οποίο μπορεί επίσης να θεωρηθεί ως μοντελοπο-

ίηση σχημάτων ψηφοφορίας, και επικεντρωνόμαστε στην εύρεση ενός προσεγγιστικού

μέσου (approximate median), δηλαδή της βέλτιστης λύσης, μέσω δειγματοληψίας.

Σχεδίαση αλγορίθμων για μη στρατηγικά περιβάλλοντα με

περιορισμένη πληροφορία:

Σε πολλές περιπτώσεις χρειάζεται να σχεδιάσουμε και να μελετήσουμε μηχανισμο-

ύς σε μη-στρατηγικά περιβάλλοντα με στόχους διαφορετικούς από την ανθεκτικότητα

στη στρατηγική. ΄Ενα προεξέχον παράδειγμα που περιέχει τέτοιου είδους ερωτήσεις

είναι η ψηφοφορία από τον τομέα της κοινωνικής επιλογής. Σε ένα πρόβλημα ψη-

φοφορίας, οι παίκτες θέλουν να εκλέξουν έναν επιθυμητό υποψήφιο ή ένα σύνολο

υποψηφίων. Κάθε παίκτης έχει μια προτίμηση για τους υποψηφίους και θέλουμε να

δημιουργήσουμε μηχανισμούς που θα επιτρέψουν την εκλογή των κορυφαίων υποψη-

φίων που ικανοποιούν την πλειοψηφία όσο το δυνατόν καλύτερα. Υπάρχουν πολλές

έννοιες από την κοινωνική επιλογή που μετρούν την ποιότητα ενός νικητή, όπως η έν-

νοια του ωφέλιμιστικού νικητή (utilitarian winner), που μεγιστοποιεί την κοινωνική
ευημερία (social welfare), ή ενός νικητή Condorcet , ο οποίος κερδίζει σε κάθε μεμο-
νωμένη σύγκριση με οποιονδήποτε άλλο υποψήφιο κ.λπ. ([222, 223, 36, 124, 161])...

Ακόμα κι όταν οι παίκτες δεν είναι στρατηγικοί και είναι πρόθυμοι να μοιραστο-

ύν τις πληροφορίες τους, η δημιουργία μηχανισμών που εγγυώνται τέτοιες ιδιότητες,

όταν αυτό είναι εφικτό, εξακολουθεί να είναι μια πρόκληση. ΄Ενα σχετικά πρόσφα-

το ερευνητικό ενδιαφέρον έχει επικεντρωθεί στις utilitarian ψηφοφορίες, όπου κάθε
ψηφοφόρος έχει ένα υποκείμενο αριθμητικό ώφελος για κάθε υποψήφιο, που αναπαρι-
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στά την προτίμηση του σε αυτόν, στην περίπτωση όπου δεν είναι δυνατή η απόκτηση

της πλήρους πληροφορίας από τους ψηφοφόρους. Στην κύρια περίπτωση λαμβάνεται

υπόψη ότι ακόμη και αν για κάθε ψηφοφόρο υπάρχουν ακριβή αριθμιτικά ωφέλη για

κάθε υποψήφιο, λόγω του υψηλού γνωστικού κόστους της αναγνώρισης αυτών των

οφελών ή λόγω της υψηλής αξίας της ιδιωτικής πληροφορίας, οι ψηφοφόροι μπορούν

να παρέχουν μόνο μια κατάταξη προτίμησης των υποψηφίων που είναι συνεπής με τις

σχετικές προσωπικές τους αποτιμήσεις. Η έννοια της παραμόρφωσης μετρά την ε-

πίδραση της χρήσης περιορισμένων πληροφοριών στο πρόβλημα της ψηφοφορίας στον

βαθμό που το αποτέλεσμα επιτυγχάνει κοινωνική ευημερία ([194]).

΄Οπως και προηγουμένως, εστιάζουμε σε δυο ευρεία ερωτήματα σε αυτήν την κα-

τεύθυνση:

Ερώτημα 3. Ποιά είναι η επίδραση στην μετρική παραμόρφωση (metric distor-
tion) σε περιβάλλοντα ψηφοφορίας με έναν νικητή όταν η πρόσβαση στην πληροφορία
περιοριστεί περαιτέρω;

Η μετρική παραμόρφωση (metric distortion) αναφέρεται στην περίπτωση όπου οι
ωφέλειες των παικτών είναι ενσωματωμένες σε ένα μετρικό χώρο ([18]) (δηλαδή είναι

οι ῾ἁποστάσεις᾿᾿ τους από τους υποψήφιους σε αυτόν τον μετρικό χώρο). Αυτό το

πρόβλημα έχει μελετηθεί εκτενώς και έχει καθοριστεί ένα κάτω όριο για την παραμόρ-

φωση ([149]) το οποίο επιτυγχάνεται από έναν ντετερμινιστικό μηχανισμό ([131]). Η

ερώτησή μας επεκτείνει περαιτέρω την έννοια ότι η πληροφορία μπορεί να είναι δύσκο-

λο να αποκτηθεί και ρωτάμε ερωτήσεις όπως: ποια είναι τα όρια παραμόρφωσης όταν

οι παίκτες παρέχουν ατελείς κατατάξεις μόνο των κορυφαίων υποψηφίων που προτι-

μούν, πόσες διαδοχικές συγκρίσεις απαιτούνται για να επιτευχθεί σχεδόν βέλτιστη

παραμόρφωση και τι μπορούμε να κάνουμε με χρήση δειγματολειψίας.

Ερώτημα 4. Ποια είναι η σχέση μεταξύ της μετρικής παραμόρφωσης και της δια-

στασιμότητας (dimensionality) του υποκείμενου μετρικού χώρου· Επίσης, μπορούμε
να χρησιμοποιήσουμε φυσικούς κανόνες μάθησης για να δημιουργήσουμε μηχανισμο-

ύς με χαμηλή παραμόρφωση·

Σε αυτήν την περίπτωση επικεντρωνόμαστε στην ανάλυση ενός κυρίαρχου μηχανι-

σμού ψηφοφορίας: του “STV”. Ο στόχος μας είναι να φράξουμε την παραμόρφωση
του STV με βάση τη διάσταση του υποκείμενου μετρικού χώρου και να μελετήσουμε
επίσης μηχανισμούς που πλησιάζουν αυτό το κάτω όριο. Επιπλέον, αναλύουμε την

αποδοτικότητα κατανεμημένων, αποκεντρικοποιημένων δυναμικών μάθησης από τους

παίκτες και τη σύγκλισή τους σε έναν υποψήφιο με χαμηλή παραμόρφωση.

Υπολογισμός ισορροπιών:

΄Οπως αναφέρθηκε παραπάνω, μία από τις πιο βασικές λειτουργίες της αλγοριθμικής
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θεωρίας παιγνίων είναι η μελέτη της αλληλεπίδρασης μεταξύ στρατηγικών παικτών

με εγωιστικά κίνητρα. Ο βασικός και πιο γνωστός όρος που σχετίζεται με αυτήν

την έννοια είναι το Σημείο Ισορροπίας κατά NASH (Nash Equilibrium) ([184, 185]).
Μια κατάσταση του παιχνιδιού, δηλαδή η επιλογή μιας στρατηγικής για κάθε παίκτη,

είναι σημείο ισορροπίας κατά Nash αν κανένας παίκτης δεν μπορεί να αυξήσει το κέρ-
δος του του αλλάζοντας μονομερώς τη στρατηγική του. Μια στρατηγική για κάθε

παίκτη μπορεί να είναι είτε αμιγής (ντετερμινιστική), όπου παίζει ντετερμινιστικά μία

από τις διαθέσιμες στρατηγικές του, είτε μεικτή (τυχαίος) όπου παίζει μια κατανομή

των στρατηγικών του. Μία ισορροπία που αποτελείται από καθαρές στρατηγικές ο-

νομάζεται Αμιγής ισορροπία Nash (PNE). Σε αυτό το περιβάλλον επικεντρωνόμαστε
στα παίγνια συμφόρησης, στα οποία οι παίκτες πρέπει να χρησιμοποιήσουν κοινούς

πόρους. Συγκεκριμένα, έχουμε πεπερασμένα σύνολα παικτών και πόρων για τους ο-

ποίους ανταγωνίζονται οι παίκτες. Οι στρατηγικές των παικτών είναι υποσύνολα των

πόρων, και κάθε παίκτης θέλει να ελαχιστοποιήσει τον συνολικό κόστος των πόρων

στην επιλεγμένη στρατηγική του. Κάθε πόρος συσχετίζεται με μια συνάρτηση κα-

θυστέρησης που καθορίζει το κόστος της χρήσης αυτού του πόρου ως συνάρτηση

της συμφόρησης του, δηλαδή του αριθμού των παικτών που χρησιμοποιούν αυτόν τον

πόρο στη στρατηγική τους.

Η κύρια ερώτηση στην οποία επικεντρωνόμαστε σε αυτήν την κατεύθυνση είναι η

εξής:

Ερώτημα 5. Ποια είναι η πολυπλοκότητα εύρεσης Αμιγών Ισορροπιών Nash σε
βεβαρημένα παίγνια συμφόρησης;

Τα παίγνια συμφόρησης ([201]) ανήκουν σε μια ευρύτερη κατηγορία παιγνίων που

ονομάζονται παιγνία δυναμικού (Potential Games) ([178]) τα οποία πάντα διαθέτουν
τουλάχιστον μία Αμιγή Ισορροπία κατά Ναση. ΄Ετσι, οι ερευνητές έχουν μελετήσει

εκτενώς την πολυπλοκότητα εύρεσης τέτοιων ισορροπιών σε παίγνια συμφόρησης, με

πολλά αποτελέσματα για πολλαπλές παραλλαγές, όπως συμμετρικά ή ασύμμετρα πα-

ίγνια, όπου όλοι οι παίκτες έχουν ή δεν έχουν τα ίδια σύνολα στρατηγικών αντίστοιχα,

παιγνία συμφόρησης δικτύου, όπου οι στρατηγικές αντιστοιχούν σε διαδρομές σε ένα

υποκείμενο δίκτυο και άλλα. Ωστόσο, λιγότερη προσοχή έχει δοθεί στη μελέτη των

βεβαρυμμένων παιγνίων δυναμικού, όπου κάθε παίκτης συμβάλλει στη συμφόρηση

των πόρων που χρησιμοποιεί με διαφορετικό βάρος ([95, 113, 118, 189, 63, 64, 153]).

Το επιχείρημα που χρησιμοποιούμε για να δείξουμε ότι κάθε παίγνιο δυναμικο-

ύ διαθέτει Αμιγείς Ισορροπίες κατά Ναση είναι ένα επιχείρημα τοπικής αναζήτησης,

που καθιστά αυτήν την κατηγορία παιγνίων να ανήκει σε μια κλάση πολυπλοκότητας

που ονομάζεται “Polynomial time Local Search” (τοπική αναζήτηση πολυωνυμικού
χρόνου), ή εν συντομία PLS. ΄Οταν ένα πρόβλημα ανήκει στις πιο δύσκολες κατηγορίες
προβλημάτων μέσα σε αυτήν την τάξη, το ονομάζουμε PLS-πλήρες (PLS-complete)
και θεωρείται ότι είναι υπολογιστικά δύσκολο. Βλέπουμε εδώ ότι παραλλαγές του

παιχνιδιού που διαθέτουν γρήγορους αλγόριθμους στην μη βεβαρυμμένη περίπτωση,
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γίνονται αμέσως δύσκολες όταν εισάγονται βεβαρημένοι παίκτες. Επίσης, μελετάμε

την πολυπλοκότητα εύρεσης προσεγγιστικών ισορροπιών για τέτοιες περιπτώσεις.

1.2 Σχεδιασμός μηχανισμών για στρατηγι-

κά περιβάλλοντα: Ανάλυση πέραν της

χειρότερης περίπτωσης και πολυπλοκότη-

τα επικοινωνίας.

1.2.1 Σχεδιασμός Φιλαλήθων Μηχανισμών για το

Πρόβλημα της Χωροθέτησης σε Στιγμιότυπα

Ευσταθή σε Διαταραχές.

Σε αυτήν την εργασία εξετάζουμε τα k-Facility Location games (παίγνια χωρο-
θέτησης k εγκαταστάσεων), όπου k ≥ 2 εγκαταστάσεις τοποθετούνται στην ευθεία
(των πραγματικών αριθμών) βάσει των προτιμήσεων n στρατηγικών παικτών. Τέτοια
προβλήματα ενδιαφέρουν διάφορα σενάρια στην Κοινωνική Επιλογή, όπου μια τοπική

αρχή σχεδιάζει να κατασκευάσει έναν σταθερό αριθμό δημόσιων εγκαταστάσεων σε

μια περιοχή (βλ. για παράδειγμα, [177]). Η επιλογή των τοποθεσιών βασίζεται στις

προτιμήσεις των τοπικών κατοίκων, ή παικτών. Κάθε παίκτης αναφέρει την ιδανική του

τοποθεσία, και η τοπική αρχή εφαρμόζει έναν (ντετερμινιστικό ή τυχαίο) μηχανισμό,

ο οποίος απεικονίζει τις προτιμήσεις των παικτών σε k τοποθεσίες εγκαταστάσεων.
Κάθε παίκτης αξιολογεί το αποτέλεσμα του μηχανισμού με βάση το κόστος σύνδε-

σης του, δηλαδή την απόσταση της ιδανικής (πραγματικής) του τοποθεσίας προς την

πλησιέστερη εγκατάσταση. Οι παίκτες επιδιώκουν να ελαχιστοποιήσουν το κόστος

σύνδεσης τους και μπορεί να δηλώσουν λανθασμένες (ψευδείς) ιδανικές τοποθεσίες

στην προσπάθεια τους να επηρεάσουν τον μηχανισμό. Συνεπώς, ο μηχανισμός πρέπει

να είναι φιλαλήθης, δηλαδή πρέπει να εξασφαλίζει ότι κανένας παίκτης δεν μπορεί να ε-

πωφεληθεί από τη ψευδή αναφορά της τοποθεσίας του, ή ακόμη και ομαδικά φιλαλήθης

(group strategyproof ), δηλαδή ανθεκτικός σε συνεργατικές συμπεριφορές μεταξύ των
στρατηγικών παικτών.

Ο στόχος της τοπικής αρχής (δηλ. του μηχανισμού) είναι να ελαχιστοποιήσει το

κοινωνικό κόστος, δηλαδή το άθροισμα των κοστών σύνδεσης των παικτών. Εκτός

από την τοποθέτηση των εγκαταστάσεων με έναν τρόπο που είναι συμβατός με τις

στρατηγικές των παικτών, που ορίζεται με την (ομαδική) φιλαλήθεια, ο μηχανισμός

πρέπει να οδηγεί σε ένα κοινωνικά επιθυμητό αποτέλεσμα, το οποίο καθορίζεται από

τον λόγο προσέγγισης του μηχανισμού ως προς το βέλτιστο κοινωνικό κόστος.

Λόγω του σημαντικού ερευνητικού ενδιαφέροντος για το θέμα, η θεμελιώδης και

πλέον βασική ερώτηση σχετικά με την προσέγγιση του βέλτιστου κοινωνικού κόστους

από μηχανισμούς που είναι φιλαλήθεις για το k-Facility Location πρόβλημα στην
ευθεία έχει κατανοηθεί αρκετά καλά. Για μία εγκατάσταση (k = 1), η τοποθέτηση της
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εγκατάστασης στη θέση της του διάμεσου (median) παίκτη είναι ομαδικά φιλαλήθης
και βελτιστοποιεί τον κοινωνικό κόστος. Για δύο εγκαταστάσεις (k = 2), ο καλύτερος
δυνατός λόγος προσέγγισης είναι n−2 και επιτυγχάνεται από έναν φυσικό μηχανισμό
που είναι ομαδικά φιλαλήθης και τοποθετεί τις εγκαταστάσεις στην αριστερότερη και τη

δεξιότερη θέση [112, 192]. Ωστόσο, για τρεις ή περισσότερες εγκαταστάσεις (k ≥ 3),
δεν υπάρχει κανένας ντετερμινιστικός, ανώνυμος

1
μηχανισμός, που να είναι φιλαλήθης

με φραγμένο λόγο προσέγγισης (όσον αφορά το n και το k) [112]. Ωστόσο, υπάρχει
ένας πιθανοτικός (randomized) ανώνυμος μηχανισμός που είναι ομαδικά φιλαλήθης
με λόγο προσέγγισης n [116] (βλ. επίσης το Κεφάλαιο 3 για μια επιλεκτική λίστα με
πρόσθετες αναφορές).

Ευστάθεια σε Διαταραχές σε k-Facility Location Games. Η εργασία
μας στοχεύει στο να παρακάμψει το ισχυρό αρνητικό αποτέλεσμα του [112] και είναι

εμπνευσμένη από την πρόσφατη επιτυχία στον σχεδιασμό αλγορίθμων πολυωνυμικού

χρόνου για στιγμιότυπα συσταδοποίησης που είναι γ-ευσταθή (βλ. [13, 33, 35, 34,
202, 203]). ΄Ενα στιγμιότυπο ενός προβλήματος συσταδοποίησης, όπως το k-Facility
Location (αντίστοιχα k-median τιμή στη βιβλιογραφία των αλγόριθμων βελτιστοπο-
ίησης και των αλγορίθμων προσέγγισης), είναι γ-ευσταθές σε διαταραχές (ή απλά
γ-ευσταθές), για κάποιο γ ≥ 1, αν η βέλτιστη συσταδοποίηση δεν επηρεάζεται από
την μείωση της κλίμακας κάποιου υποσυνόλου των εγγραφών του πίνακα αποστάσεων

κατά έναν παράγοντα το πολύ γ (δηλ, την διαίρεση οποιονδήποτε αποστάσεων ανάμεσα
σε τοποθεσίες παικτών κατά το πολύ έναν παράγοντα gamma) [43, 31].
Η έννοια της ευστάθειας σε διαταραχές εισήχθη αρχικά από τους Bilu και Linial

[43] και τους Awasthi, Blum και Sheffet [31] και έχει ενθαρρύνει μεγάλο όγκο επι-
πρόσθετης έρευνας (δείτε, για παράδειγμα, [13, 33, 34, 203] και τις αναφορές τους)

με σκοπό την απόκτηση θεωρητικής κατανόησης της ανώτερης απόδοσης στην πράξη

αρκετά απλών αλγορίθμων συσταδοποίησης για γνωστά δύσκολα προβλήματα συστα-

δοποίησης στην κλάση NP-hard (όπως η τοποθέτηση k εγκαταστάσεων σε γενικούς
μετρικούς χώρους). Εν γένει, οι βέλτιστες συστάδες ενός γ-ευσταθούς στιγμιοτύπου
είναι κάπως καλά διαχωρισμένες μεταξύ τους και, συνεπώς, σχετικά εύκολο να ανα-

γνωριστούν (δείτε επίσης τις κύριες ιδιότητες των ευσταθών σε διαταραχές στιγμιο-

τύπων στο υποκεφάλαιο 3.3). Ως αποτέλεσμα, φυσικές επεκτάσεις απλών αλγορίθμων,

όπως ο αλγόριθμος single linkage (αντίστοιχα αλγόριθμος του Kruskal), μπορούν να
βρούν τη βέλτιστη συσταδοποίηση σε πολυωνυμικό χρόνο, υπό την προϋπόθεση ότι

γ ≥ 2 [13], και τυπικές αλγοριθμικές προσεγγίσεις, όπως ο δυναμικός προγραμματι-
σμός (αντίστοιχα, η τοπική αναζήτηση), λειτουργούν σε σχεδόν γραμμικό χρόνο για

γ > 2 +
√
3 (αντίστοιχα, γ > 5) [3].

Σε αυτήν την εργασία, ερευνούμε κατά πόσον ο περιορισμός της ανάλυσης σε

ευσταθή στιγμιότυπα επιτρέπει βελτιωμένους μηχανισμούς που είναι φιλαλήθεις, με

φραγμένους (και ιδανικά σταθερούς) λόγους προσέγγισης για την τοποθέτηση k ε-
γκαταστάσεων στην ευθεία, με k ≥ 2. Σημειώνουμε ότι τα αρνητικά αποτελέσματα
του [112] εξαρτώνται καίρια από το γεγονός ότι η συσταδοποίηση (και η αντίστοιχη

1
΄Ενας μηχανισμός είναι ανώνυμος εάν το αποτέλεσμά του εξαρτάται μόνο από τις θέσεις

των παικτών, χωρίς να λαμβάνει υπόψη του την ταυτότητά τους.
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τοποθέτηση των εγκαταστάσεων) που παράγεται από οποιονδήποτε ντετερμινιστικό

μηχανισμό με φραγμένο λόγο προσέγγισης πρέπει να είναι ευαίσθητη στις λανθασμένες

αναφορές τοποθεσίας από συγκεκριμένους παίκτες (δείτε επίσης το υποκεφάλαιο 3.6).

Επομένως, είναι πολύ φυσικό να εξετάσουμε αν ο περιορισμός σε γ-ευσταθή στιγ-
μιότυπα επιτρέπει την δημιουργία ντετερμινιστικών η πιθανοτικών μηχανισμών με μη

τετριμμένους λόγους προσέγγισής για το πρόβλημα της τοποθέτησης k εγκαταστάσε-
ων k στην ευθεία (k-Facility Location Game).
Μια κεντρική, ενδιαφέρουσα παρατήρηση, είναι ότι για ένα επαρκώς μεγάλο γ, τα

γ-ευσταθή στιγμιότυπα του k-Facility Location διαθέτουν επιπλέον δομή που θα μπο-
ρούσε κανείς να εκμεταλλευθεί για τον σχεδιασμό φιλαλήθων μηχανισμών με καλούς

λόγους προσέγγισης (βλέπε επίσης το υποκεφάλαιο 3.3). Για παράδειγμα, η τοποθεσία

κάθε παίκτη είναι τουλάχιστον γ−1 φορές πιο κοντά στην πλησιέστερη εγκατάσταση
απ΄ ό,τι σε οποιαδήποτε άλλη τοποθεσία παίκτη που ανήκει σε διαφορετική συστάδα

(Πρόταση 3.3.2). Επιπλέον, για γ ≥ 2 +
√
3, η απόσταση μεταξύ δύο διαδοχικών

συστάδων είναι μεγαλύτερη από τη διάμετρό τους (Λήμμα 3.3.4).

Επιγραμματικά, σε αυτό το πλαίσιο δείχνουμε ότι η βέλτιστη λύση είναι φιλαλήθης

σε (2+
√
3)-ευσταθή στιγμιότυπα, όταν η βέλτιστη λύση στο πραγματικό στιγμιότυπο

δεν περιλαμβάνει συστάδες που αποτελούνται μόνο από έναν παίκτη, και ότι η τοπο-

θέτηση της εγκατάστασης στον παίκτη δίπλα από τον δεξιότερο σε κάθε συστάδα της

βέλτιστης συσταδοποίησης (ή στον μοναδικό παίκτη, για συστάδες που αποτελούνται

από έναν παίκτη) είναι φιλαλήθης και (n − 2)/2-προσεγγιστική για 5-ευσταθή στιγ-
μιότυπα (ακόμη κι αν η βέλτιστη λύση περιλαμβάνει συστάδες με μόνο έναν παίκτη).

Από την αρνητική πλευρά, δείχνουμε ότι για κάθε k ≥ 3 και κάθε δ > 0, δεν υπάρχει
ντετερμινιστικός ανώνυμος μηχανισμός που να επιτυγχάνει φραγμένο λόγο προσέγγι-

σης και να είναι φιλαλήθης σε (
√
2− δ)-ευσταθή στιγμιότυπα. Αποδεικνύουμε επίσης

ότι η τοποθέτηση της εγκατάστασης σε έναν τυχαίο παίκτη σε κάθε μία συστάδα της

βέλτιστης συσταδοποίησης είναι φιλαλήθης και 2-προσεγγιστική σε 5-ευσταθή. Εξ
όσων γνωρίζουμε, αυτή είναι η πρώτη φορά που αποδεικνύεται η ύπαρξη ντετερμινι-

στικών (αντίστοιχα πιθανοτικών) φιλαλήθων μηχανισμών με περιορισμένο (αντίστοιχα

σταθερό) λόγο προσέγγισης για μια μεγάλη και φυσική κλάση στιγμιότυπων του k-
Facility Location προβλήματος.

1.2.2 Δειγματοληψία και Βέλτιστη Εξαγωγή Προ-

τιμήσεων σε Απλούς Μηχανισμούς.

Η αποτελεσματική εξαγωγή προτιμήσεων (preference elicitation) έχει αποτελέσει
ένα κεντρικό θέμα και μια μεγάλη πρόκληση από το ξεκίνημα της έρευνας στον σχε-

διασμό μηχανισμών, με πολλές εφαρμογές σε περιβάλλοντα με πολλαπλούς παίκτες

και σύγχρονα συστήματα τεχνητής νοημοσύνης. Πράγματι, η απαίτηση από κάθε πα-

ίκτη να επικοινωνήσει όλες τις προτιμήσεις του θεωρείται ευρέως μη πρακτική, και

ένας σημαντικός όγκος εργασίας έχει εξερευνήσει εναλλακτικές προσεγγίσεις για την

περικοπή της ποσότητας των εξαγόμενων πληροφοριών, ερωτώντας ακολουθιακά μια

σειρά φυσικών ερωτημάτων για να αποκτήσει μόνο τα σχετικά (ή απαραίτητα) μέρη
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πληροφορίας από κάθε παίκτη.

Αυτή η έμφαση έχει υποστηριχτεί σθεναρά για αρκετούς λόγους. Πρώτον, έχει α-

ναγνωριστεί από τους συμπεριφορικούς οικονομολόγους ότι η απόκτηση πληροφοριών

επιβάλλει υψηλό γνωστικό κόστος [190, 164], και οι παίκτες μπορεί ακόμη να διστάζουν

να αποκαλύψουν την πλήρη (ιδιωτική) αξιολόγησή τους. Ως αποδεικτικό παράδειγμα,

συχνά αναφέρεται η υπεροχή των indirect (μη άμεσων) μηχανισμών [29]. Πράγμα-
τι, σε ορισμένους τομείς με σοβαρούς περιορισμούς επικοινωνίας [4, 180], ένας direct
revalation μηχανισμός (απευθείας αποκάλυψης πληροφορίας) - όπου κάθε παίκτης
πρέπει να αποκαλύψει τις πλήρεις προτιμήσεις του - θεωρείται ακόμη και ανεφάρμο-

στος. Για παράδειγμα, η επικοινωνία αναγνωρίζεται τυπικά ως ο κύριος περιορισμός

σε κατανεμημένα περιβάλλοντα [170]. ΄Οπως εξηγούν οι Blumrosen και Feldman [46],
οι παίκτες λειτουργούν συνήθως σε έναν περικομμένο χώρο δράσης λόγω τεχνικών,

συμπεριφορικών ή ρυθμιστικών λόγων. Τέλος, ένας μηχανισμός που επιτυγχάνει α-

ποτελεσματική εξαγωγή προτιμήσεων θα προσέφερε ισχυρότερες εγγυήσεις για τον

έλεγχο της ιδιωτικότητας των πληροφοριών [216].

Η γενική ερώτηση για το αν ένας μηχανισμός κοινωνικής επιλογής μπορεί να

προσεγγιστεί ακριβώς από ένα μικρότερο υποσύνολο του πλήρους πληθυσμού των

παικτών αποτελεί ένα από τα κύρια θέματα στην υπολογιστική κοινωνική επιλογή. ΄Ι-

σως η πιο καθιερωμένη προσέγγιση για την περικοπή των εξαγόμενων πληροφοριών

είναι η χρήση δειγματοληψίας. Συγκεκριμένα, δεδομένου ότι σε πολλές εφαρμογές το

ζήτημα της συγκέντρωσης προτιμήσεων από όλους τους παίκτες μπορεί να είναι αδύνα-

το, ο σχεδιαστής πραγματοποιεί μια συγκέντρωση προτιμήσεων επιλέγοντας τυχαία

ένα μικρό υποσύνολο του συνολικού πληθυσμού [58, 83]. Αυτή η προσέγγιση είναι

ιδιαίτερα γνωστή στο πλαίσιο της ψηφοφορίας, όπου ο στόχος είναι συνήθως να ¨προ-

βλεφθεί’ το αποτέλεσμα του μηχανισμού που έχει πρόσβαση σε πλήρεις πληροφορίες

χωρίς να διεξαχθεί πραγματικά η ψηφοφορία για ολόκληρο τον πληθυσμό [82]. Συ-

γκεκριμένα παραδείγματα των παραπάνω σεναρίων περιλαμβάνουν τις δημοσκοπήσεις

για τις εκλογές, τα exit poll και τις διαδικτυακές δημοσκοπήσεις.
Στο πρώτο μέρος της εργασίας μας, ακολουθούμε αυτήν τη μακρά γραμμή έρευ-

νας στην υπολογιστική κοινωνική επιλογή. Συγκεκριμένα, αναλύουμε την δειγματική

πολυπλοκότητα (sample complexity) του διάσημου μηχανισμού του median (του δι-
άμεσου) στο πλαίσιο των facility location games, όπου κάθε παίκτης συσχετίζεται με
ένα σημείο - που αντιστοιχεί στην προτιμώμενη του τοποθεσία - σε κάποιο υποκείμενο

μετρικό χώρο. Ο μηχανισμός του διάμεσου έχει ιδιαίτερη σημασία στην κοινωνική επι-

λογή. Πράγματι, το διάσημο θεώρημα αδυναμίας τωνGibbard-Satterthwaite [130, 207]
δηλώνει ότι για κάθε κανόνα ψηφοφορίας (voting rule) που είναι προς (onto) - για
κάθε εναλλακτικό αποτέλεσμα (δηλ. νικητή της ψηφοφορίας) υπάρχει ένα προφίλ

ψηφοφόρων που θα έκανε αυτήν την εναλλακτική να κερδίσει - και μη-δικτατορικός

(non-dictatorial), υπάρχουν περιπτώσεις όπου ένας παίκτης έχει συμφέρον να ψηφίσει
μια εναλλακτική που δεν αντιστοιχεί στις πραγματικές του προτιμήσεις - δηλαδή ο κα-

νόνας δεν είναι φιλαλήθης. Σημαντικό είναι ότι αυτό το εμπόδιο εξαφανίζεται όταν οι

προτιμήσεις των ψηφοφόρων περιορίζονται. ΄Ισως ο πιο γνωστός τέτοιος περιορισμός
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προτιμήσεων είναι αυτός των single-peaked (μονο-κορυφωμένων) προτιμήσεων2, που
εισήγαγε ο Black [45], για τις οποίες ο μηχανισμός του διάμεσου του Moulin [181]
είναι πράγματι φιλαλήθης.

Το κύριο αποτέλεσμα μας σε αυτήν την κατεύθυνση είναι να δείξουμε ότι για κάθε

ϵ > 0, ένα δείγμα μεγέθους c(ϵ) = Θ(1/ϵ2) παράγει αναμενόμενο λόγο προσέγγισης
1+ ϵ ως προς τον βέλτιστο κοινωνικό κόστος του γενικευμένου μηχανισμού διαμέσου
στο μετρικό χώρο (Rd, | · |1), όσο ο αριθμός των παικτών n→∞.
Στο δεύτερο μέρος της εργασίας μας, προσπαθούμε να σχεδιάσουμε δημοπρασίες

με ελάχιστη πολυπλοκότητα επικοινωνίας. Ως ένα συγκεκριμένο κίνητρο, εξετάζουμε

μια δημοπρασία ενός αντικειμένου (single-item), και υποθέτουμε ότι κάθε αποτίμηση
των παικτών μπορεί να εκφραστεί με k bits. Μια σημαντική παρατήρηση είναι ότι τα
πιο κυρίαρχα μοντέλα δημοπρασιών είναι πολύ μη αποδοτικά από πλευράς επικοινω-

νίας. Πράγματι, η Vickrey - ή δημοπρασία σφραγισμένης προσφοράς (sealed bid)-
δημοπρασία [221] είναι ένας μηχανισμός άμεσης αποκάλυψης, που απαιτεί ολόκληρες

τις ιδιωτικές πληροφορίες από τους n παίκτες, οδηγώντας σε μια πολυπλοκότητα επι-
κοινωνίας των n · k bits. Πρέπει όμως να σημειωθεί ότι, παρόλο που η δημοπρασία
του Vickrey διαθέτει πολλές θεωρητικά ελκυστικές ιδιότητες, η αντίστοιχη ανοδική
(ascending) μορφή της εμφανίζει καλύτερη απόδοση στην πράξη [28, 29, 145, 144],
για λόγους που σχετίζονται κυρίως με την απλότητα, τη διαφάνεια και τις εγγυήσεις

απορρήτου της τελευταίας μορφής. Δυστυχώς, η υλοποίηση του κανόνα του Vickrey
μέσω μιας δημοπρασίας Ενγλιση (δλδ ascending) απαιτεί - στη χειρότερη περίπτωση
- εκθετική επικοινωνία τάξης n ·2k, καθώς ο δημοπράτης πρέπει να καλύψει ολόκληρο
το χώρο αποτιμήσεων. Συνεπώς, το μοτίβο εξαγωγής προτιμήσεων σε μια δημοπρασία

τύπου English είναι ευρέως ανεπιτυχές και η έλλειψη προγνώσεων για τις αποτιμήσεις
των παικτών υπονομεύει σημαντικά την απόδοσή της.

Σε αυτό το πλαίσιο, δείχνουμε ότι ο κανόνας του ἵςκρεψ μπορεί να εφαρμοστεί

με αναμενόμενη επικοινωνία 1 + ϵ bits από έναν μέσο παίκτη, για κάθε ϵ > 0, επι-
τυγχάνοντας ασυμπτωτικά το προφανές κάτω όριο. Ως συμπέρασμα, παρέχουμε έναν

ενδιαφέροντα τρόπο αύξησης της τιμής σε μια δημοπρασία τύπου English. Χρησι-
μοποιούμε επίσης τη μορφή των δημοπρασιών ενώς αντικειμένου με ένα αποδοτικό

σχήμα κωδικοποίησης για να αποδείξουμε ότι τα ίδια όρια επικοινωνίας μπορούν να

επιτευχθούν σε δημοπρασίες με αθροιστικές αποτιμήσεις (additive valuations) μέσω
ταυτόχρονων αναδυόμενων δημοπρασιών, υποθέτοντας ότι ο αριθμός των αντικειμένων

είναι σταθερός. Τέλος, προτείνουμε μια αύξουσα δημοπρασία πολλαπλών μονάδων α-

ντικειμένου (multi-unit auction) με παίκτες που ο καθένας θέλει το πολύ μια μονάδα·

2
Συγκεκριμένα, υποθέτουμε ότι οι εναλλακτικές είναι ταξινομημένες σε μια γραμμή, α-

ντιπροσωπεύοντας τις θέσεις τους· όπως περιγράφεται στη θεωρία της χωρικής ψηφοφορίας

[90, 24], είναι συχνά λογικό να υποθέτουμε ότι οι εναλλακτικές μπορούν να αντιπροσωπευ-

θούν ως σημεία σε μια γραμμή (π.χ. στις πολιτικές εκλογές η θέση ενός υποψηφίου μπορεί

να υποδεικνύει εάν ανήκει στην αριστερή η δεξιά πτέρυγα). Οι προτιμήσεις ενός παίκτη είναι

single-peaked αν προτιμά εναλλακτικές που είναι πιο κοντά στο κορυφαίο σημείο του. Σημει-
ώνουμε ότι σε περιπτώσειςsingle-peaked προτιμήσεων είναι γνωστό ότι δεν μπορεί να υπάρχει
κύκλος Condorcet.
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ο μηχανισμός μας ανακοινώνει σε κάθε γύρο δύο ξεχωριστές τιμές και βασίζεται σε

έναν αλγόριθμο δειγματοληψίας που εκτελεί προσεγγιστική επιλογή με περιορισμένη

επικοινωνία, οδηγώντας πάλι σε ασυμπτωτικά βέλτιστη επικοινωνία. Τα αποτελέσμα-

τά μας δεν απαιτούν καμία προηγούμενη γνώση για τις αποτιμήσεις των παικτών, και

κυρίως προέρχονται από φυσικές τεχνικές δειγματοληψίας.

1.3 Σχεδιασμός μηχανισμών για μη στρα-

τηγικά περιβάλλοντα: Περιβάλλοντα με

περιορισμένη πληροφορία.

1.3.1 Μετρική Παραμόρφωση υπό Περιορισμένες

Πληροφορίες

Η συγκέντρωση των προτιμήσεων των ατόμων σε μια συλλογική απόφαση βρίσκε-

ται στην καρδιά της θεωρίας της κοινωνικής επιλογής και έχει πρόσφατα βρει πολλές

εφαρμογές σε πεδία όπως η ανάκτηση πληροφοριών, τα συστήματα συστάσεων και η

μηχανική μάθηση [222, 223, 36, 124, 161]. Η κλασική θεωρία του vον Νευμανν ανδ

Μοργενστερν [224] υποθέτει ότι οι ατομικές προτιμήσεις αντιπροσωπεύονται μέσω

μιας συνάρτησης ωφέλειας, που αναθέτει αριθμητικές (ή cardinal) τιμές σε κάθε ε-
ναλλακτική. Ωστόσο, στη θεωρία των ψηφοφοριών, καθώς και στις περισσότερες

πρακτικές εφαρμογές, οι μηχανισμοί συνήθως συλλέγουν μόνο διατακτικές (ordinal)
πληροφορίες από τους ψηφοφόρους, που υποδεικνύουν μια σειρά προτιμήσεων για τους

υποψήφιους. Παρόλο που αυτό φαίνεται ασύμβατο με μια utilitarian αναπαράσταση,
έχει αναγνωριστεί ότι μπορεί να είναι δύσκολο για έναν ψηφοφόρο να καθορίσει μια

ακριβή αριθμητική τιμή για κάθε εναλλακτική του (δλ. για κάθε υποψήφιο), και η

παροχή μόνο διατακτικών πληροφοριών μειώνει σημαντικά το γνωστικό φορτίο. Αυτό

θέτει το ερώτημα: Ποια είναι η απώλεια στην αποτελεσματικότητα ενός μηχανισμού

που εξάγει μόνο διατακτικές πληροφορίες σε σχέση με τη κοινωνική ευημερία, δηλαδή

το άθροισμα των ατομικών ωφελειών πάνω σε μια επιλεγμένη εναλλακτική· Το πλαίσιο

της παραμόρφωσης, που εισήγαγαν οι Procaccia και Rosenstein [194], μετρά ακριβώς
αυτήν την απώλεια από την κατεύθυνση των προσεγγιστικών αλγορίθμων, και έχει

λάβει σημαντική προσοχή τα τελευταία χρόνια.

΄Οπως αποδεικνύεται, οι εγγυήσεις προσέγγισης που μπορούμε να ελπίζουμε ότι

μπορούμε να επιτύχουμε εξαρτώνται καίρια από τις υποθέσεις που κάνουμε για τις

ωφέλειες των ατόμων. Για παράδειγμα, στην απουσία οποιασδήποτε δομής, στο [194]

παρατηρήθηκε ότι κανένας διατακτικός μηχανισμός δεν μπορεί να επιτύχει περιορι-

σμένη παραμόρφωση. Σε αυτό το έργο, επικεντρωνόμαστε στο πλαίσιο της μετρικής

παραμόρφωσης, που εισήγαγαν οι Anshelevich et al.[18], όπου οι ψηφοφόροι και οι υ-
ποψήφιοι θεωρούνται σημεία σε ένα αυθαίρετο μετρικό χώρο· αυτό είναι παρόμοιο με τα

μοντέλα στη θεωρία της χωρικής ψηφοφορίας(spatial voting theory) [74]. Σε αυτό το
πλαίσιο, οι προτιμήσεις των ψηφοφόρων μετρώνται μέσω της ¨κοντινότητάς’ τους από
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κάθε υποψήφιο, και ο στόχος είναι να διαλέξουμε έναν υποψήφιο που (περίπου) ελαχι-

στοποιεί το κοινωνικό κόστος, δηλαδή τη συνολική απόσταση από τους ψηφοφόρους.

Μια αρκετά απλοϊκή μορφή αυτού του πλαισίου εκδηλώνεται όταν οι ψηφοφόροι και οι

υποψήφιοι ενσωματώνονται σε μια μονοδιάστατη γραμμή, και η τοποθεσία τους υποδη-

λώνει αν βρίσκονται ῾ἁριστερά᾿᾿ ή ῾῾δεξιά᾿᾿ στο πολιτικό φάσμα. Ωστόσο, το πλαίσιο της

μετρικής παραμόρφωσης έχει πολύ μεγαλύτερη εμβέλεια, καθώς δεν γίνονται καθόλου

υποθέσεις για τον υποκείμενο μετρικό χώρο.

Σημαντικό είναι ότι αυτό το παράδειγμα προσφέρει έναν πειστικό τρόπο για να

συγκρίνουμε ποσοτικά διάφορους κανόνες ψηφοφορίας που χρησιμοποιούνται συχνά

στην πράξη [214, 149, 132, 18], ενώ λειτουργεί και ως ένα σημείο αναφοράς για τον

σχεδιασμό νέων μηχανισμών που αναζητούν καλύτερα όρια παραμόρφωσης [131, 183].

Μια κοινή υπόθεση που χρησιμοποιείται σε αυτήν τη γραμμή έρευνας είναι ότι ο αλ-

γόριθμος έχει πρόσβαση στις πλήρεις σειρές προτεραιότητας των ψηφοφόρων. Ω-

στόσο, υπάρχουν πολλά πρακτικά σενάρια όπου θα ήταν επιθυμητό να περικόψουμε

τις διατακτικές πληροφορίες που αποκομίζονται από τον μηχανισμό. Για παράδειγμα, η

απαίτηση για παροχή μόνο των κορυφαίων προτιμήσεων θα μπορούσε να ανακουφίσει

περαιτέρω το γνωστικό κόστος, καθώς ενδέχεται να είναι δύσκολο για έναν ψηφοφόρο

να συγκρίνει εναλλακτικές που βρίσκονται στο κάτω μέρος της λίστας προτιμήσεών

του (για επιπρόσθετη κινητοποίηση για την εξέταση των ατελών ή μερικών διατάξεων

παραπέμπουμε στα [123, 70, 39], και τις αναφορές τους), ενώ οποιαδήποτε περικοπή

της αποκομιζόμενης πληροφορίας θα μεταφραστεί επίσης σε πιο αποτελεσματική επι-

κοινωνία. Αυτοί οι λόγοι έχουν κατευθύνει αρκετούς συγγραφείς να μελετήσουν την

υποβάθμιση της παραμόρφωσης υπό απουσία πληροφοριών [150, 14, 138, 98, 50], επι-

τρέποντας πιθανώς μια πιθανοτική ανάλυση (δείτε την υποενότητα μας με τα σχετικά

έργα). Σε αυτό το έργο, ακολουθούμε αυτήν τη γραμμή έργου, προσφέροντας νέες

αντιλήψεις και βελτιωμένα όρια σε σχέση με τα προηγούμενα αποτελέσματα.

Η κύρια συνεισφορά μας σε αυτήν την κατεύθυνση είναι τριπλή: Πρώτον, εξε-

τάζουμε μηχανισμούς που πραγματοποιούν μια ακολουθία διαδοχικών συγκρίσεων με-

ταξύ των υποψηφίων. Δείχνουμε ότι ένας δημοφιλής ντετερμινιστικός μηχανισμός

που λειτουργεί σε πολλές φάσεις αποκλεισμού υποψηφίων οδηγεί σε παραμόρφωση

O(logm) ενώ κάνει μόνο m− 1 από τις Θ(m2) δυνατές διαδοχικές συγκρίσεις, όπου
m αντιπροσωπεύει τον αριθμό των υποψηφίων. Η ανάλυσή μας για αυτόν τον μηχα-
νισμό εκμεταλλεύεται ένα ισχυρό τεχνικό λήμμα που αναπτύχθηκε από τον Kempe
(AAAI ’20). Παρέχουμε επίσης ένα αντίστοιχο κάτω όριο στην παραμόρφωση του.
Αντίθετα, αποδεικνύουμε ότι οποιοσδήποτε μηχανισμός που πραγματοποιεί λιγότερες

από m − 1 διαδοχικές συγκρίσεις οδηγεί αναπόφευκτα σε μη περιορισμένη παραμόρ-
φωση. Επιπλέον, μελετούμε τη δύναμη των ντετερμινιστικών μηχανισμών υπό ατελείς

διατάξεις. Ειδικότερα, όταν οι παίκτες παρέχουν τις k κορυφαίες τους προτιμήσεις,
δείχνουμε ένα άνω όριο 6m/k + 1 για την παραμόρφωση, για κάθε k ∈ 1, 2, . . . ,m.
Επομένως, βελτιώνουμε σημαντικά το προηγούμενο όριο 12m/k που είχε θεσπίσει ο
Kempe (AAAI ’20), και πλησιάζουμε περισσότερο το καλύτερο γνωστό κάτω όριο.
Τέλος, ασχολούμαστε με την πολυπλοκότητα δειγματοληψίας για να εξασφαλίσουμε

σχεδόν βέλτιστη παραμόρφωση σε σχέση με τον βέλτιστο κοινωνικό κόστος με υψη-
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λή πιθανότητα. Η κύρια συνεισφορά μας είναι να δείξουμε ότι ένα τυχαίο δείγμα από

Θ(m/ϵ2) ψηφοφόρους είναι αρκετό για να διασφαλίσει παραμόρφωση 3 + ϵ με υψηλή
πιθανότητα, για κάθε αρκετά μικρό ϵ > 0. Αυτό το αποτέλεσμα βασίζεται στην α-
νάλυση της ευαισθησίας του ντετερμινιστικού μηχανισμού που εισήγαγαν οι Gkatzelis,
Halpern και Shah (FOCS ’20). Σημαντικό είναι ότι όλα τα όρια της δειγματοληψίας
μας είναι ανεξάρτητα από την κατανομή.

1.3.2 Διαστασιμότητα και Συντονισμός στην Ψη-

φοφορία: Η παραμόρφωση του STV

Σε αυτήν την εργασία συνεχίζουμε την έρευνα στην περιοχή της μετρικής παρα-

μόρφωσης. Μια σημαντική οπτική, είναι ότι αυτό το πλαίσιο προσφέρει ένα ποσοτικό

῾῾σημείο αναφοράς᾿᾿ για τη σύγκριση διαφόρων κανόνων ψηφοφορίας που χρησιμοποιο-

ύνται συχνά στην πράξη. Πράγματι, μία από τις κύριες σκέψεις της εργασίας μας

αφορά στον χαρακτηρισμό της απόδοσης του μηχανισμού Single Transferable Vote3,
η αλλιώς STV.
Ο STV είναι ένα δημοφιλές σύστημα ψηφοφορίας που χρησιμοποιείται στις εθνι-

κές εκλογές πολλών χωρών, συμπεριλαμβανομένων της Αυστραλίας, της Ιρλανδίας

και της Ινδίας, καθώς και σε πολλές άλλες διαδικασίες συγκέντρωσης προτιμήσεων,

όπως για παράδειγμα στα Βραβεία Ακαδημίας Oscar. Για να είμαστε πιο ακριβείς, ο
STV προχωρά με επαναληπτικό τρόπο: Σε κάθε γύρο, οι ψηφοφόροι ψηφίζουν τον
προτιμώμενο τους υποψήφιο - ανάμεσα στους ενεργούς, ενώ ο υποψήφιος που έλαβε

την λιγότερη υποστήριξη στον τρέχοντα γύρο αποκλείεται. Αυτή η διαδικασία επανα-

λαμβάνεται για m− 1 γύρους, όπου το m αντιπροσωπεύει τον αριθμό των (αρχικών)
υποψηφίων, και ο τελευταίος υποψήφιος που επιζεί κηρύσσεται νικητής του STV.
Επιπλέον, πρέπει να σημειωθεί ότι αυτή η διαδικασία είναι γενικά μη-ντετερμινιστική

λόγω της ανάγκης για μηχανισμό λήψης αποφάσεων σε περίπτωση ισοπαλίας· όπως

στο [214], θα εργαστούμε με το parallel universe μοντέλο των ῝ονιτζερ κ.ά. [79], όπου
ένας υποψήφιος θεωρείται νικητής του STV αν επιβιώνει μετά από κάποια ακολουθία
αποκλεισμών.

Σε αυτό το πλαίσιο, οι Skowron και Elkind [214] ήταν οι πρώτοι που ανέλυσαν
τη μετρική παραμόρφωση του STV υπό μετρικές προτιμήσεις. Συγκεκριμένα, έδειξαν
ότι η παραμόρφωση του STV σε γενικούς μετρικούς χώρους είναι πάντα O(logm),
ενώ έδωσαν επίσης ένα σχεδόν tight κάτω όριο της μορφής Ω(

√
logm). Ενδιαφέρον

παρουσιάζει μια προσεκτική εξέταση του κάτω ορίου τους, αποκαλύπτοντας την ύπαρ-

ξη ενός μετρικού υπό-χώρου υψηλών διαστάσεων, όπως απεικονίζεται στο Σχήμα

1.1, και είναι γνωστό γεγονός στη θεωρία των μετρικών απεικονίσεων (metric em-
beddings) ότι δεν μπορούν να απεικονιστούν ισομετρικά (isometrically) σε χαμηλών
διαστάσεων

4
Ευκλείδειους χώρους [173]. Ως αποτέλεσμα, οι Skowron και Elkind

3
Για συνέπεια με την προηγούμενη έρευνα, το ΣΤ῞ θα αντιπροσωπεύει σε όλη αυτή την

εργασία την μορφή του προβλήματος με μοναδικού νικητή
4
Λέμε ότι ένας Ευκλείδειος χώρος είναι χαμηλής διάστασης αν η διάστασή του d είναι

φραγμένη από μια ¨μικρή’ παγκόσμια σταθερά, δηλαδή d = O(1).
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[214] αφήνουν ανοικτό το ακόλουθο ενδιαφέρον ερώτημα:

Ερώτημα Α. Ποια είναι η παραμόρφωση του STV σε Ευκλείδειους χώρους χα-
μηλής διάστασης;

Σχήμα 1.1: Μια μετρική υψηλών-διαστάσεων σε μορφή γράφου ῾ἁστέρα᾿᾿.

Βεβαίως, η απόδοση των κανόνων ψηφοφορίας σε χώρους χαμηλής διάστασης

έχει αποτελέσει αντικείμενο εντατικής μελέτης στη θεωρία της χωρικής ψηφοφορίας,

υπό την υπόθεση ότι οι ψηφοφόροι και οι υποψήφιοι είναι συνήθως ενσωματωμένοι

σε υποχώρους μικρής διάστασης [24, 90]. Επομένως, είναι φυσικό να αναρωτηθούμε

εάν μπορούμε να εστιάσουμε την ανάλυση του STV σε χώρους χαμηλής διάστασης.
Στην πραγματικότητα, ως μέρος μιας ευρύτερης ατζέντας, μπορούν να τεθούν ανάλογα

ερωτήματα και για άλλους μηχανισμούς. Ωστόσο, είναι ενδιαφέρον να σημειώσουμε

ότι για πολλούς κανόνες ψηφοφορίας που αναλύονται μέσα στο πλαίσιο της μετρικής

παραμόρφωσης υπάρχουν κάτω όρια για χαμηλές-διαστάσεις. Μερικά παραδείγματα

αυτών δίνονται στον πίνακα 1.1. Σε αντίθεση, η εργασία μας θα εστιάσει στον STV
από τους μηχανισμούς στον πίνακα 1.1, απαντώντας αποτελεσματικά στο Ερώτημα Α.

Σημαντικό είναι ότι θα παράσχουμε έναν χαρακτηρισμό που πηγαίνει πολύ πέρα από

τους ευκλείδειους χώρους, σε μετρικές με ῾ἑγγενώς᾿᾿ χαμηλή διάσταση (low intrinsic
dimension).
Η επόμενη στόχευση της εργασίας μας ενθαρρύνεται απευθείας από την αποδο-

τικότητα του κανόνα STV σε σύγκριση με τον κανόνα πλειοψηφίας (plurality rule),
και ιδιαίτερα τις στρατηγικές συνέπειες αυτής της ασυνέπειας. ΄Ενα καλό σημείο εκ-

κίνησης για αυτήν τη συζήτηση πηγάζει από το γεγονός ότι σε πολλές θεμελιώδεις

περιπτώσεις συγκέντρωσης προτιμήσεων οι υποψήφιοι επιλέγονται από μη αποδοτικούς

μηχανισμούς, και σε πολλές περιπτώσεις οποιαδήποτε αλλαγή αντιμετωπίζει ανυπέρ-

βλητα εμπόδια. Για παράδειγμα, στις πολιτικές εκλογές ο μηχανισμός ψηφοφορίας κα-

θορίζεται συνήθως από τους εκλογικούς νόμους, ή ακόμη και από το σύνταγμα [165].
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Mechanism Lower Bound Dimension

Plurality 2m− 1 1
Borda 2m− 1 1

Copeland 5 2
Veto 2n− 1 1

Approval 2n− 1 1

Table 1.1: Η Ευκλείδεια διάσταση που απαιτείται για να κατασκευαστεί ένα
(ισχυρό) κάτω όριο για διάφορους κοινούς κανόνες ψηφοφορίας, αυτά τα απο-

τελέσματα περιλαμβάνονται στο [18]. Να σημειώσουμε ότι για τον Copeland, η
μετρική που κατασκευάστηκε στο [18] δεν είναι Ευκλείδεια, αλλά μπορεί εύκολα

να τροποποιηθεί σε μια.

Ως αποτέλεσμα, η κατανόηση της συμπεριφοράς στρατηγικών πρακτόρων (παικτών)

όταν αντιμετωπίζουν ανεπαρκείς μηχανισμούς είναι απολύτως σημαντική [56, 225]. ΄Ε-

νας αρκετά ανεξάρτητος τρόπος να το δούμε αυτό είναι εάν αυτόνομοι παίκτες μπορούν

να συγκλίνουν σε αποδεκτές κοινωνικές επιλογές μέσω φυσικών κανόνων μάθησης.

Αυτό θέτει το ερώτημα:

Ερώτημα Β. Σε τι βαθμό μπορεί η στρατηγική συμπεριφορά να βελτιώσει την

αποδοτικότητα στο πρόβλημα της ψηφοφορίας;

Τονίζουμε ότι, αν και στην απουσία οποιασδήποτε πληροφορίας μπορεί να είναι ασαφές

πώς μπορούν οι παίκτες να εμπλακούν σε στρατηγική συμπεριφορά, στις περισσότερες

περιπτώσεις που ενδιαφέρουν τους παίκτες, αυτοί έχουν πολλές προγενέστερες πλη-

ροφορίες πριν ψηφίσουν, π.χ. μέσω δημοσκοπήσεων, έρευνας αγοράς, προγνώσεων,

προηγούμενων εκλογών ή ακόμα και πρώιμης ψηφοφορίας. Πράγματι, υπάρχει μια

εκτενής σειρά εργασιών που μελετά τη δυναμική του πληθυσμού για παίκτες που ψη-

φίζουν ανταποκρινόμενοι στις πληροφορίες που διαθέτουν (βλ. [200] και τις αναφορές

του), καθώς και το ρόλο της πληροφορίας στον προσδιορισμό της δημόσιας πολιτικής

[158].

Για να μελετήσουμε αυτήν την κατεύθυνση, προτείνουμε ένα φυσικό μοντέλο,

σύμφωνα με το οποίο οι παίκτες ενεργούν επαναληπτικά βάσει ορισμένων μερικών

ανατροφοδοτήσεων σχετικά με τις προτιμήσεις των άλλων ψηφοφόρων. Εξηγούμε

πώς ο STV μπορεί να ενταχθεί πολύ φυσικά σε αυτό το πλαίσιο, ενώ καθιερώνουμε
την ύπαρξη απλών και αποκεντρωμένων δυναμικών συντονισμού που συγκλίνουν σε

μια κοντινά βέλτιστη εναλλακτική λύση.

Το τελευταίο μέρος της εργασίας μας προσφέρει ορισμένες βελτιώσεις και επε-

κτάσεις προηγούμενων εργασιών, κυρίως κινούμενες από ορισμένες θεμελιώδεις εφαρ-

μογές στο πλαίσιο των facility location παιγνίων. Συγκεκριμένα, επικεντρωνόμαστε
κυρίως στον βέλτιστο - υπό μετρικές προτιμήσεις - ντετερμινιστικό μηχανισμό που

προτάθηκε πρόσφατα από τους Gkatzelis, Halpern και Shah [131]· δείχνουμε ότι επι-
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τυγχάνει βέλτιστη παραμόρφωση σε ultra-metrics και σχεδόν βέλτιστη παραμόρφωση
για αποστάσεις που ικανοποιούν τις τριγωνικές ανισότητες (προσεγγιστικά).

1.4 Υπολογισμός ισορροπιών.

1.5 Το πρόβλημα Node Max-Cut και ο Υπο-

λογισμός Ισορροπιών σε Βεβαρημένα

Παίγνια με Γραμμικές Συναρτήσεις

Με κίνητρο την εντυπωσιακή επιτυχία της τοπικής αναζήτησης στη συνδυαστική

βελτιστοποίηση, όταν οι Johnson et al. εισήγαγαν την κλάση πολυπλοκήτητας τοπικής
αναζήτησης (Polynomial Local Search - PLS) [143], που αποτελείται από προβλήματα
τοπικής αναζήτησης με πολυωνυμικά επαληθεύσιμα τοπικά βέλτιστα. Η PLS περιλαμ-
βάνει πολλά φυσικά πλήρη προβλήματα (δείτε π.χ., [176]), με το Circuit-Flip[143]
και τοMax-Cut [208] να αποτελούν τα πλέον γνωστά), και θέτει τα θεμέλια για την
μελέτη της πολυπλοκότητας του υπολογισμού τοπικών βέλτιστων. Τα τελευταία 15

χρόνια, ένα σημαντικό μέρος της έρευνας στην PLS-πληρότητα κινητοποιήθηκε από
το πρόβλημα υπολογισμού μιας αμιγούς ισορροπίας κατά Nash παιγνίων δυναμικού
(potential games) (δείτε π.χ., [2, 213, 127] και τις αναφορές που αναφέρονται εκεί).
Σε αυτά τα παίγνια, κάθε βελτιωτική αλλαγή στρατηγικής από έναν παίκτη μειώνει

μια συνάρτηση δυναμικού και τα τοπικά βέλτιστα αντιστοιχούν σε αμιγείς ισορροπίες

κατά Nash (pure Nash equilibria) [178].
Ο υπολογισμός ενός τοπικού βέλτιστου τουMax-Cut με την γειτονιά flip (γνω-

στό και ως Local-Max-Cut) έχει εξεταστεί εκτενώς ως ένα από τα πιο διαδεδομένα
προβλήματα στην PLS. Δεδομένου ενός γράφου με βάρη στις ακμές, μια τομή θεωρε-
ίται τοπικά βέλτιστη εάν δεν μπορούμε να αυξήσουμε το βάρος της μετακινώντας έναν

κόμβο από τη μία πλευρά της τομής στην άλλη. Από τότε που αποδείχθηκε η PLS-
πληρότητά του από τους Sch”affer και Yannakakis [208], οι ερευνητές έχουν δείξει ότι
το Local-Max-Cut παραμένει PLS-πλήρες για γράφους με μέγιστο βαθμό πέντε
[89], είναι πολυωνυμικά επιλύσιμο για κυβικούς γράφους [191], και η smoothed πολυ-
πλοκότητα του είναι είτε πολυωνυμική σε πλήρεις γράφους [12] και αραιούς γράφους

[89], είτε σχεδόν πολυωνυμική σε γενικούς γράφους [71, 92]. Επιπλέον, λόγω της

απλότητάς του και της ευελιξίας του, το Max-Cut έχει χρησιμοποιηθεί ευρέως σε
αναγωγές PLS (βλ. για παράδειγμα [2, 127, 213]). Το Local-Max-Cut μπορεί
επίσης να χαρακτηριστεί ως ένα παίγνιο, όπου κάθε κόμβος στοχεύει να μεγιστοποι-

ήσει το συνολικό βάρος των ακμών που διασχίζουν την τομή. Τα παιχνίδια τομής

είναι παίγνια δυναμικού (η τιμή της τομής είναι η συνάρτηση δυναμικού), κάτι που έχει

ενθαρρύνει την έρευνα στον αποτελεσματικό υπολογισμό προσεγγιστικών ισορροπιών

για το Local-Max-Cut [41, 64]. Κατά την αντίληψη μας, πέρα από την έρευνα για
την smoothed πολυπλοκότητα του Local-Max-Cut (και ίσως το Local-Max-
Cut είναι P-πλήρες για μη-βεβαρημένους γράφους [208, Θεώρημα 4.5]), δεν έχει
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υπάρξει μέρχρι στιγμής έρευνα για το κατά πόσο (και σε τι βαθμό) επιπρόσθετη δομή

στα βάρη των ακμών επηρεάζει την πολυπλοκότητα του Local-Max-Cut.
Μια στενά συνδεδεμένη κατεύθυνση έρευνας ασχολείται με την πολυπλοκότητα

του υπολογισμού μιας αμιγούς ισορροπίας Ναση (ή PNE, για συντομία) σε παίγνια
συμφόρησης [201], ένα τυπικό παράδειγμα παιγνίων δυναμικού [178] και μία από τις

πιο εκτενώς μελετημένες κλάσεις παιχνιδιών στη περιοχή της Αλγοριθμικής Θεωρίας

Παιγνίων (δείτε π.χ., [113] για μια σύντομη ανάλυση των προηγούμενων ερευνών).

Στα παίγνια συμφόρησης (ή CGs, για συντομία), ένα πεπερασμένο σύνολο παικτών
ανταγωνίζονται για ένα πεπερασμένο σύνολο πόρων. Οι στρατηγικές αντιστοιχούν

σε υποσύνολα πόρων, και οι παίκτες στοχεύουν στο να ελαχιστοποιήσουν τον συνο-

λικό κόστος των πόρων στις στρατηγικές τους. Κάθε πόρος e συσχετίζεται με μια
(μη αρνητική και μη φθίνουσα) συνάρτηση καθυστέρησης, που καθορίζει το κόστος

χρήσης του e ως συνάρτηση της συμφόρησης του e (δηλαδή, του αριθμού παικτών που
περιλαμβάνουν το e στη στρατηγική τους). Οι ερευνητές έχουν εκτενώς μελετήσει
τις ιδιότητες ειδικών περιπτώσεων και παραλλαγών των παιγνίων συμφόρησης. Στο

πλαίσιο αυτής της εργασίας οι ποιό σχετικές εστιάζουν σε συμμετρικά (αντίστοιχα,

μη-συμμετρικά) CGs, όπου οι παίκτες μοιράζονται το ίδιο σύνολο στρατηγικών (α-
ντίστοιχα, έχουν διαφορετικά σύνολα στρατηγικών), παίγνια συμφόρησης σε δίκτυα,

όπου οι στρατηγικές αντιστοιχούν σε μονοπάτια σε ένα υποκείμενο δίκτυο (γράφο),

και στα βεβαρημένα CGs, όπου οι παίκτες συνεισφέρουν στη συμφόρηση με διαφορε-
τικά βάρη ο καθένας.

Οι Fabrikant et al. [95] απέδειξαν ότι ο υπολογισμός ενός PNE για μη-συμμετρικά
CGs δικτύου ή συμμετρικά CGs είναι PLS-πλήρης, και ανάγεται σε ένα πρόβλημα
ελάχιστης ροής min-cost-flow για συμμετρικά CGs δικτύου. Περίπου την ίδια περίοδο,
οι [118, 189] απέδειξαν ότι τα παίγνια συμφόρησης με βάρη έχουν μια (βεβαρημένη)

συνάρτηση δυναμικού, και συνεπώς έχουν τουλάχιστον ένα PNE, εάν οι συναρτήσεις
καθυστέρησης είναι είτε αφινικές είτε εκθετικές (και οι [140, 141] απέδειξαν ότι από μια

άποψη, αυτός ο περιορισμός είναι απαραίτητος). Στη συνέχεια, οι Ackermann at al.
[2] χαρακτήρισαν τα σύνολα στρατηγικών των CGs που εγγυώνται αποτελεσματικό
υπολογισμό ισορροπιών. Χρησιμοποίησαν επίσης μια παραλλαγή του Local-Max-
Cut, που ονομάζεται threshold games (παίγνια κατωφλίου), για να απλοποιήσουν
την απόδειξη της PLS-πληρότητας του [95] και για να δείξουν ότι ο υπολογισμός
ενός PNE για ασύμμετρα δίκτυα CGs με (εκθετικά απότομες) γραμμικές συναρτήσεις
καθυστέρησης είναι PLS-πλήρης.
Από την άλλη πλευρά, η πολυπλοκότητα του υπολογισμού ισορροπίας για τα CGs

με βάρη δεν είναι καλά κατανοημένη μέχρι στιγμής. ΄Ολα τα αποτελέσματα υπολογι-

στικής πολυπλοκότητας που προαναφέρθηκαν ισχύουν και για τα CGs με βάρη, καθώς
γενικεύουν τα τυπικά CGs (όπου οι παίκτες έχουν μοναδιαίο βάρος). Αλλά από τη
θετική πλευρά, γνωρίζουμε μόνο πώς να υπολογίσουμε αποτελεσματικά ένα PNE για
τα CGs με βάρη σε parallel links με γενικές συναρτήσεις καθυστέρησης [120] και για
τα CGs με βάρη σε parallel links με ταυτοτικές συναρτήσεις καθυστέρησης και μη-
συμμετρικές στρατηγικές [126]. Παρά το σημαντικό ενδιαφέρον για τον υπολογισμό

(ακριβούς ή προσεγγιστικού) του PNE για τα CGs (βλ. για παράδειγμα [63, 64, 153]
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και τις αναφορές που περιέχονται εκεί), δεν κατανοούμε πώς (και σε ποιο βαθμό) η

πολυπλοκότητα του υπολογισμού ισορροπίας επηρεάζεται από τα βάρη των παικτών.

Αυτό ισχύει ιδιαίτερα για τα CGs με βάρη με γραμμικές συναρτήσεις καθυστέρησης,
τα οποία έχουν συνάρτηση δυναμικού και ο υπολογισμός της ισορροπίας βρίσκεται

στην PLS.
Σε αυτήν την κατεύθυνση, αρχικά δείχνουμε ότι ο υπολογισμός μιας PNE με γραμ-

μικές συναρτήσεις βαρών είναι PLS-πλήρης για πολύ περιορισμένους χώρους στρα-
τηγικών, δηλαδή όταν οι στρατηγικές των παικτών είναι διαδρομές σε ένα δίκτυο

σειριακό-παράλληλο (series parallel) με μοναδικούς (κοινούς για όλους τους παίκτες)
αρχικό κόμβο και κόμβο προορισμό. Επιπλέον, στην ίδια εργασία αποδεικνύεται ότι

και για πολύ περιορισμένες συναρτήσεις καθυστέρησης, δηλαδή ταν η καθυστέρηση

σε κάθε πόρο είναι ίση με τη συμφόρηση, σε γενικά δίκτυα το πρόβλημα είναι επίσης

PLS-πλήρες, μέσω μιας αναγωγής σε ένα ειδικά ορισμένο νέο πρόβλημα, το Node-
Max-Cut . Τα αποτελέσματά μας αποκαλύπτουν ένα εντυπωσιακό χάσμα ανάμεσα
στην πολυπλοκότητα υπολογισμού μιας PNE στα παίνγια συμφόρησης με παίκτες που
έχουν βάρη και στα παίγνια χωρίς βάρη, καθώς στην περίπτωση των μη βεβαρημένων

παικτών, το PNE μπορεί να υπολογιστεί εύκολα είτε από ένα απλό προσεκτικό αλ-
γόριθμο (για δίκτυα σειριακά-παράλληλα) είτε από οποιαδήποτε διαδικασία βέλτιστης

απόκρισης (best response) (όταν η καθυστέρηση είναι ίση με τη συμφόρηση). Τέλος
δείχνουμε επίσης πώς να υπολογίσουμε αποτελεσματικά ένα (1 + ϵ)-προσσεγγιστικό
PNE για το Node-Max-Cut, εάν ο αριθμός των διαφορετικών βαρών των κορυφών
του γράφου είναι σταθερός.

1.6 Βιβλιογραφικές πληροφορίες

Τα αποτελέσματα που παρουσιάζονται σε αυτήν τη διατριβή έχουν ήδη εμφανιστεί

σε δημοσιεύσεις, με την παρακάτω δομή.

Το Κεφάλαιο 3 βασίζεται στο [114], το οποίο εμφανίστηκε στο WINE 2021. Το
Κεφάλαιο 4 βασίζεται στο [7], το οποίο εμφανίστηκε στο SAGT 2020, και η πλήρης
έκδοση βρίσκεται υπό (minor) αναθεώρηση για το TOCS 2023. Το Κεφάλαιο 5
βασίζεται στο [11], το οποίο εμφανίστηκε στο JAIR 2022. Μια συντομότερη έκδοση
εμφανίστηκε στο ICALP 2020. Το Κεφάλαιο 6 βασίζεται στο [10], το οποίο εμφα-
νίστηκε στο AAAI 2022. Το Κεφάλαιο 7 βασίζεται στο [122], το οποίο εμφανίστηκε
στο ICALP 2020.
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Chapter 2

Introduction

Algorithmic game theory is a powerful framework that lies in the intersection
of computer science, mathematics and micro-economics. It’s main focus is to
address the challenges arising in strategic interactions among self-interested agents
or between them and some authority. As an emerging field of study, it has received
much research interest in the past years, motivated also by several real-world key
problems. Some examples are:

• Modeling complex interactions: In many scenarios, the decisions of agents in
multi-agent environments are interdependent, in the sense that each agent’s
preferred action depends on the choice of actions of others. Algorithmic
game theory provides the mathematical tools to model and analyze such
interactions, studying the behavior of such strategic agents by analyzing the
complexity and quality of related equilibria using notions such as price of
anarchy etc...

• Resource usage : A very common family of real-world problems is the need
to have multiple agents compete over resources. A very well studied related
example is congestion games, i.e. settings in which agents have to decide
which resources to use in order to achieve their goals, keeping in mind that
the cost of each resource depends on how many agents use it. A real world
application of this type of games is modeling traffic on public road networks.

• Incentive-compatible mechanism design: In many strategic settings agents’
behaviour is influenced by private information. Agents have the ability to
misreport their private information in an attempt to manipulate the mech-
anism if that would grant them a more desirable outcome. In many appli-
cations a guarantee that the used mechanism does not allow such behaviour
i.e. that the mechanism is designed in such a way that it elicits truthful
information from the agents is desirable or even essential. Such mechanisms
are called incentive-compatible and are also a big focus of algorithmic game
theory. Furthermore, mechanisms might need to maximize other criteria
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such as fairness or profit while taking into account the agents’ preferences
and constraints. Some applications can be found in auctions, voting systems,
facility location, allocation of limited resources among agents etc...

The main focus of this work lies in the mechanism design aspect of algorithmic
game theory and social choice, where we also study multi-agent environments from
a non strategic point of view. Specifically, we focus on algorithmic frameworks for
multi-agent problems in settings with not readily available information, from two
perspectives:

• Information is private: In which case we need to create truthful mechanisms
for environments with strategic agents.

• Information is limited : Where agents cannot or will not provide their full
information, or information exchange is expensive.

The goal is to design algorithms or rules and protocols (mechanisms) that guaran-
tee desirable approximation ratios over the optimal solutions when agents have lim-
ited or private information and also incentivize desirable behaviour, when agents
hold private information. Furthermore, we are interested in understanding the
limitations in designing such systems, i.e. some lower bounds on what the best
possible achievable outcome could be, in each domain. On the incentivized version
of mechanism design we focus on the paradigm of the facility location problem and
introduce the notion of beyond worst case analysis in mechanism design. For the
limited information, non-incentivized version, we focus on distortion in voting, a
relatively newly introduced notion that measures the effect of having incomplete in-
formation in our ability to approximate the optimal social outcome. Furthermore,
combining the notions of strategic incentives and limited information we study the
communication complexity of well-studied single parameter environments, such as
auctions and single-facility location and develop communication-wise asymptoti-
cally optimal mechanisms. Finally, dedicating some focus to the classical notion of
equilibrium computation, we study the complexity of computing Pure Nash Equi-
libria, or approximate Pure Nash Equilibria in weighted congestion games.

Mechanism design for strategic domains with private information:

The first type of problems we are going to present belong in the area of studying
and designing truthful, or incentive-compatible, mechanisms. The main paradigms
studied in this field have the following form: we take the role of an authority that
tries to allocate various goods to agents or on some underlying environment the
agents belong in. In this setting agents have private valuations over outcomes
and they may behave strategically in order to manipulate the mechanism, if it is
possible to elicit a better outcome for themselves in that manner. A key property
we always want our mechanisms to have here is strategyproofness. I.e. to guarantee
that no agent can be better off by misreporting their private information to the
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mechanism. The two main paradigms we study in this setting are the facility
location problems and auctions.

The facility location problem ([177]) embodies the trade-off between service
accessibility and cost efficiency. In the version we study, a specific number of
facilities need to be allocated with the objective of minimizing the social cost, i.e.
the aggregate distances of agents to their closest facilities. This version of the
problem is offline and facilities don’t have a cost for being opened or operated over
time. In this form, this is a very well studied ([116, 136, 166, 186, 111, 167]...)
problem who’s deterministic version has essentially been fully characterized ([112])
and who’s randomized version has also been well studied.

Auction settings are also a very big field of study of algorithmic game theory.
In general the idea is that the “seller” (mechanism) wants to sell single or multiple
goods to agents participating in the auction. Typically agents have a private
valuation that represents how much they want each item and they try to maximize
their utility by trying to maximize the difference between their valuation and the
price they finally pay for acquired items. There are many related settings, such
as single item auctions ([220]), various forms of multi-item auctions such as multi-
item auctions where multiple instances of the same item are sold, combinatorial
auctions where agents want combinations of items, specific valuation domains such
as sub-modular, sub-additive valuations etc... Many auction formats have also
been studied like sealed bid auctions, where the agents submit their full valuations
to the mechanism in sealed bids or ascending auctions where the price of the good
ascends and bidders decide whether to keep participating or not.

In this setting of strategic mechanism design we study two main broad ques-
tions:

Question 1. Can we introduce beyond worst case analysis concepts in mecha-
nism design in order to create mechanisms with good properties for “real-world”
instances for problems for which no such mechanisms can exist in the general case?
Can we also use this analysis to understand the nature of strategyproofness in said
problems?

For this question we focus on the facility location problem for which very hard
limitations have been shown regarding the existence of desired mechanisms. For
example, we can have nice, i.e. bounded approximation and truthful mechanisms,
only when we try to allocate up to two facilities on the line ([112]). With that in
mind the idea of introduced the logic of beyond worst case analysis in mechanism
design was conceived.

Beyond worst case analysis was first introduced as a mathematical framework
to analyze problems that have been shown to be computationally hard in the worst
case but seem to be not as hard to solve in most realized examples. This form
of analysis defines concepts that capture this notion of “real-world” or “average”
instances such as smoothness or perturbation stability and show that within these
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notions the underlying problem becomes tractable ([43, 31]). For the facility lo-
cation problem specifically, the notion of perturbation stability was chosen, due
to it’s close relation to the clustering problem for which this beyond worst case
notion has shown great success ([13, 33, 35, 34, 202, 203]). Essentially a clustering
instance is perturbation stable if making small perturbations to it (or the metric
space it resides on) does not affect the optimal clustering of the instance. In our
case, instead of showing that restricting the instance space to perturbation stable
instances allows us to create fast algorithms we want to show that we are able to
create mechanisms with desired properties such as strategyproofness and good or
bounded approximation that cannot exist in the general case.

Question 2. What is the optimal amount of information required in order to
implement mechanisms for key problems without sacrificing the desired properties
of the mechanism?

Efficient communication has always been a primary desideratum in mechanism
design. There are many reasons for this interest such as the fact that extracting
data from multiple distributed parties can be expensive, or the fact that commu-
nication serves as a proxy for information considerations, or even the realization
that direct revelation is undesirable in the sense that it induces a high cogni-
tive cost and bidders may be hesitant to completely disclose their valuation etc
([47, 4, 190, 164, 215])...

We study this concept for two main categories of problems: Auctions and facil-
ity location. Specifically we focus on single item auctions and multi-unit auctions
with bidders with unit demands from the perspective of trying to minimize the
communication between agents and the mechanism. For the facility location prob-
lem, we study 1-facility location which can also be considered as a modeling for
voting schemes and focus on finding an approximate median, i.e. optimal solution,
through sampling.

Non strategic algorithm design in domains with limited information:

In many cases we need to design and study mechanisms in non strategic envi-
ronments with objectives other than strategyproofness. A prominent example
containing such questions is voting from the social choice domain. In voting peo-
ple want to elect a desired candidate or a set of candidates. Every agent has a
preference over the candidates and we want to create mechanisms that elicit top
candidates that satisfy the majority as good as possible. There are many notions
from social choice quantifying the quality of a winner such as the notion of a util-
itarian winner, that maximizes the social welfare, or a Condorcet winner which
is a candidate that wins when pairwise compared with any other candidate etc
([222, 223, 36, 124, 161])...

Even when agents are not strategic and willing to share their information it is
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still a challenge to create mechanisms that guarantee such properties when they
are applicable. A recent related research interest has focused in utilitarian voting,
where there is an underlying numerical utility of each candidate for each voter,
in the case where requiring full information from the voters is not possible. The
main setting considers that even though each voter has exact utilities (numerical)
for each candidate due to the high cognitive cost of realizing these utilities or due
to the high value of private information they can only provide a ranking over the
candidates that is consistent with their utilities. The notion of distortion then
quantifies the impact of utilizing only limited information in the voting process on
the social welfare of the outcome ([194]).

Again, we focus on two broad questions in this domain:

Question 3. What is the effect in metric distortion for single winner settings
when information is further truncated?

Metric distortion refers to the setting where the utilities of the agents are em-
bedded in a metric space ([18]) (i.e. are their “distances” to the candidates in
that metric space). This problem has been studied extensively and a lower bound
in distortion has been established ([149]) that has also later been matched by a
deterministic mechanism ([131]). Our question further extends the notion that
information may be difficult to attain and we ask questions such as: what are the
distortion bounds when incomplete top rankings are provided by the agents, how
many pairwise comparisons are required to achieve almost optimal distortion and
what can we do with sampling.

Question 4. What is the relation between metric distortion and the dimension-
ality of the underlying metric space? Also, can we use natural learning rules to
create mechanisms with low distortion?

In this case we focus on the analysis of a prominent voting mechanism: STV. Our
goal is to bound the distortion of STV by the dimensionality of the underlying
instance and also study mechanisms that approach this lower bound. Furthermore
we analyse the efficiency of deterministic decentralized dynamics by the agents
and their convergence to a candidate with low distortion.

Computation of equilibria:

As mentioned above, one of the most basic functions of algorithmic game theory
is studying the interaction among strategic players with self-serving incentives.
The main and most well known notion related to this concept is the famous Nash
Equilibrium ([184, 185]). A state of the game, i.e. a selection of a strategy for each
agent, is a Nash Equilibrium if no agent can increase their utility by unilaterally
changing their strategy. A strategy for each player can either be pure (determin-
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istic), where they deterministically play one of their available strategies, or mixed
(randomized) where they play a distribution over their strategies. An equilibrium
consisting of pure strategies is called a Pure Nash Equilibrium (PNE). In this en-
vironment we focus on congestion games which are games in which agents have
to use shared resources. Specifically we have finite sets of agents and resources
over which agents compete. Agent strategies are subsets of the resources and each
agent wants to minimize the total cost of the resources in their chosen strategy.
Each resource is associated with a latency function which determines the cost of
using that resource as a function of it’s congestion, which is the number of players
using that resource in their strategy.

The main question we focus on in this setting is the following:

Question 5. What is the complexity of finding Pure Nash Equilibria in weighted
congestion games?

Congestion games ([201]) belong in a wider class of games called potential games
([178]) that always admit at least one PNE. Thus, researchers have studied exten-
sively the complexity of finding such equilibria in congestion games, with many
results for many variations such as symmetric or asymmetric games, where all
agents have or don’t have the same sets of strategies respectively, network con-
gestion games, where strategies correspond to paths in an underlying network
and more. Still, less focus has been devoted to the study of weighted potential
games, where each agent contributes to the congestion with a different weight
([95, 113, 118, 189, 63, 64, 153]).

The argument that we use to show that every potential game admits PNE is a
local search argument, which makes this class of games belong in a complexity class
called Polynomial time Local Search, or PLS for short. When a problem belongs
to the hardest sets of problems within this class, PLS-complete, is considered to
be computationally hard. We see here that variations of the game that admit
fast algorithms in the unweighted case, instantly become hard when introducing
weighted players. We also study the complexity of finding approximate equilibria
for such cases.

2.1 Strategic mechanism design: Beyond worst

case and communication complexity.

2.1.1 Strategyproof Facility Location in Perturbation
Stable Instances.

We consider k-Facility Location games, where k ≥ 2 facilities are placed on
the real line based on the preferences of n strategic agents. Such problems are
motivated by natural scenarios in Social Choice, where a local authority plans to
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build a fixed number of public facilities in an area (see e.g., [177]). The choice of the
locations is based on the preferences of local people, or agents. Each agent reports
her ideal location, and the local authority applies a (deterministic or randomized)
mechanism that maps the agents’ preferences to k facility locations.

Each agent evaluates the mechanism’s outcome according to her connection
cost, i.e., the distance of her ideal location to the nearest facility. The agents
seek to minimize their connection cost and may misreport their ideal locations in
an attempt of manipulating the mechanism. Therefore, the mechanism should be
strategyproof, i.e., it should ensure that no agent can benefit from misreporting her
location, or even group strategyproof, i.e., resistant to coalitional manipulations.
The local authority’s objective is to minimize the social cost, namely the sum
of agent connections costs. In addition to allocating the facilities in a incentive
compatible way, which is formalized by (group) strategyproofness, the mechanism
should result in a socially desirable outcome, which is quantified by the mecha-
nism’s approximation ratio to the optimal social cost.

Since Procaccia and Tennenholtz [192] initiated the research agenda of ap-
proximate mechanism design without money, k-Facility Location has served as the
benchmark problem in the area and its approximability by deterministic or ran-
domized strategyproof mechanisms has been studied extensively in virtually all
possible variants and generalizations. For instance, previous work has considered
multiple facilities on the line (see e.g., [112, 116, 136, 166, 186]) and in general
metric spaces [111, 167]), different objectives (e.g., social cost, maximum cost, the
L2 norm of agent connection costs [102, 192, 116]), restricted metric spaces more
general than the line (cycle, plane, trees, see e.g., [5, 85, 108, 133, 175]), facilities
that serve different purposes (see e.g., [156, 163, 212]), and different notions of
private information about the agent preferences that should be declared to the
mechanism (see e.g., [72, 101, 174] and the references therein).

Due to the significant research interest in the topic, the fundamental and most
basic question of approximating the optimal social cost by strategyproof mech-
anisms for k-Facility Location on the line has been relatively well-understood.
For a single facility (k = 1), placing the facility at the median location is group
strategyproof and optimizes the social cost. For two facilities (k = 2), the best
possible approximation ratio is n − 2 and is achieved by a natural group strat-
egyproof mechanism that places the facilities at the leftmost and the rightmost
location [112, 192]. However, for three or more facilities (k ≥ 3), there do not ex-
ist any deterministic anonymousstrategyproof mechanisms for k-Facility Location
with a bounded (in terms of n and k) approximation ratio [112]. On the positive
side, there is a randomized anonymous group strategyproof mechanismwith an
approximation ratio of n [116] (see also Section 3 for a selective list of additional
references).

Perturbation Stability in k-Facility Location Games. Our work aims to
circumvent the strong impossibility result of [112] and is motivated by the recent
success on the design of polynomial-time exact algorithms for perturbation sta-
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ble clustering instances (see e.g., [13, 33, 35, 34, 202, 203]). An instance of a
clustering problem, like k-Facility Location (a.k.a. k-median in the optimization
and approximation algorithms literature), is γ-perturbation stable (or simply, γ-
stable), for some γ ≥ 1, if the optimal clustering is not affected by scaling down
any subset of the entries of the distance matrix by a factor at most γ. Perturbation
stability was introduced by Bilu and Linial [43] and Awasthi, Blum and Sheffet
[31] (and has motivated a significant volume of followup work since then, see e.g.,
[13, 33, 34, 203] and the references therein) in an attempt to obtain a theoretical
understanding of the superior practical performance of relatively simple cluster-
ing algorithms for well known NP-hard clustering problems (such as k-Facility
Location in general metric spaces). Intuitively, the optimal clusters of a γ-stable
instance are somehow well separated, and thus, relatively easy to identify (see
also the main properties of stable instances in Section 3.3). As a result, natural
extensions of simple algorithms, like single-linkage (a.k.a. Kruskal’s algorithm),
can recover the optimal clustering in polynomial time, provided that γ ≥ 2 [13],
and standard approaches, like dynamic programming (resp. local search), work in
almost linear time for γ > 2 +

√
3 (resp. γ > 5) [3].

In this work, we investigate whether restricting our attention to stable in-
stances allows for improved strategyproof mechanisms with bounded (and ideally,
constant) approximation guarantees for k-Facility Location on the line, with k ≥ 2.
We note that the impossibility results of [112] crucially depend on the fact that
the clustering (and the subsequent facility placement) produced by any determin-
istic mechanism with a bounded approximation ratio must be sensitive to location
misreports by certain agents (see also Section 3.6). Hence, it is very natural to
investigate whether the restriction to γ-stable instances allows for some nontrivial
approximation guarantees by deterministic or randomized strategyproof mecha-
nisms for k-Facility Location on the line.

To study the question above, we adapt to the real line the stricternotion of
γ-metric stability [13], where the definition also requires that the distances form a
metric after the γ-perturbation. In our notion of linear γ-stability, the instances
should retain their linear structure after a γ-perturbation. Hence, a γ-perturbation
of a linear k-Facility Location instance is obtained by moving any subset of pairs
of consecutive agent locations closer to each other by a factor at most γ ≥ 1. We
say that a k-Facility Location instance is γ-stable, if the original instance and any
γ-perturbation of it admit the same unique optimal clustering

Interestingly, for γ sufficiently large, γ-stable instances of k-Facility Location
have additional structure that one could exploit towards the design of strategyproof
mechanisms with good approximation guarantees (see also Section 3.3). E.g., each
agent location is γ − 1 times closer to the nearest facility than to any location
in a different cluster (Proposition 3.3.2). Moreover, for γ ≥ 2 +

√
3, the distance

between any two consecutive clusters is larger than their diameter (Lemma 3.3.4).
From a conceptual viewpoint, our work is motivated by a reasoning very sim-

ilar to that discussed by Bilu, Daniely, Linial and Saks [44] and summarized in
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“clustering is hard only when it doesn’t matter” by Roughgarden [205]. In a nut-
shell, we expect that when k public facilities (such as schools, libraries, hospitals,
representatives) are to be allocated to some communities (e.g., cities, villages or
neighborhoods, as represented by the locations of agents on the real line) the
communities are already well formed, relatively easy to identify and difficult to
radically reshape by small distance perturbations or agent location misreports.
Moreover, in natural practical applications of k-Facility Location games, agents
tend to misreport “locally” (i.e., they tend to declare a different ideal location in
their neighborhood, trying to manipulate the location of the local facility), which
usually does not affect the cluster formation. In practice, this happens because
the agents do not have enough knowledge about locations in other neighborhoods,
and because “large non-local” misreports are usually easy to identify by combining
publicly available information about the agents (e.g., occupation, address, habits,
lifestyle). Hence, we believe that the class of γ-stable instances, especially for rela-
tively small values of γ, provides a reasonably accurate abstraction of the instances
of k-Facility Location games that a mechanism designer is more likely to deal with
in practice. Thus, we feel that our work takes a small first step towards justifying
that (not only clustering but also) strategyproof facility location is hard only when
it doesn’t matter.

In this line of work, we show that the optimal solution is strategyproof in
(2 +

√
3)-stable instances whose optimal solution does not include any singleton

clusters, and that allocating the facility to the agent next to the rightmost one in
each optimal cluster (or to the unique agent, for singleton clusters) is strategyproof
and (n − 2)/2-approximate for 5-stable instances (even if their optimal solution
includes singleton clusters). On the negative side, we show that for any k ≥ 3
and any δ > 0, there is no deterministic anonymous mechanism that achieves a
bounded approximation ratio and is strategyproof in (

√
2−δ)-stable instances. We

also prove that allocating the facility to a random agent of each optimal cluster is
strategyproof and 2-approximate in 5-stable instances. To the best of our knowl-
edge, this is the first time that the existence of deterministic (resp. randomized)
strategyproof mechanisms with a bounded (resp. constant) approximation ratio is
shown for a large and natural class of k-Facility Location instances.

2.1.2 Sampling and Optimal Preference Elicitation in
Simple Mechanisms.

Efficient preference elicitation has been a central theme and a major challenge
from the inception of mechanism design, with a myriad of applications in multi-
agent environments and modern artificial intelligence systems. Indeed, requesting
from every agent to communicate all of her preferences is considered widely im-
practical, and a substantial body of work has explored alternative approaches to
truncate the elicited information, sequentially asking a series of natural queries in
order to elicit only the relevant parts of the information.
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This emphasis has been strongly motivated for a number of reasons. First, it
has been acknowledged by behavioral economists that soliciting information in-
duces a high cognitive cost [190, 164], and agents may even be reluctant to reveal
their complete (private) valuation; as pertinent evidence, the superiority of indirect
mechanisms is often cited [29]. In fact, in certain domains with severe commu-
nication constraints [4, 180] a direct revelation mechanism—one in which every
agent has to disclose her entire preferences—is considered even infeasible. Indeed,
communication is typically recognized as the main bottleneck in distributed en-
vironments [170]. As explained by Blumrosen and Feldman [46], agents typically
operate with a truncated action space due to technical, behavioral or regulatory
reasons. Finally, a mechanism with efficient preference elicitation would provide
stronger information-privacy guarantees [216].

The general question of whether a social choice function can be accurately
approximated by less than the full set of agents constitutes one of the main themes
in computational social choice. Perhaps the most standard approach to truncate
the elicited information consists of sampling. More precisely, given that in many
real-world applications it might be infeasible to gather preferences from all the
agents, the designer performs preference aggregation by randomly selecting a small
subset of the entire population [58, 83]. This approach is particularly familiar in
the context of voting, where the goal is typically to predict the outcome of the
full information mechanism without actually holding the election for the entire
population [82]; concrete examples of the aforementioned scenarios include election
polls, exit polls, as well as online surveys.

In the first part of our work, we follow this long line of research in com-
putational social choice. Specifically, we analyze the sample complexity of the
celebrated median mechanism in the context of facility location games, where ev-
ery agent is associated with a point—corresponding to her preferred location—on
some underlying metric space. The median mechanism is of particular importance
in social choice. Indeed, the celebrated Gibbard-Satterthwaite impossibility theo-
rem [130, 207] states that for any onto—for every alternative there exists a voting
profile that would make that alternative prevail—and non-dictatorial voting rule,
there are instances for which an agent is better off casting a vote that does not
correspond to her true preferences—i.e. the rule is not strategy-proof. Impor-
tantly, this impediment disappears when the agents’ preferences are restricted.
Arguably the most well-known such restriction is that of the single-peaked prefer-
ences,1 introduced by Black [45], for which Moulin’s [181] median mechanism is

1More precisely, suppose that the alternatives are ordered on a line, representing their
positions; as argued in spatial voting theory [90, 24], it is often reasonable to assume
that the alternatives can be represented as points on a line (e.g., in political elections a
candidate’s position may indicate whether she is a “left-wing” or a “right-wing” candidate).
An agent’s preferences are single-peaked if she prefers alternatives which are closer to her
peak. We remark that in single-peaked domains it is known that there can be no Condorcet
cycles.
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indeed strategy-proof.
Our key result here is to show that for any ϵ > 0, a sample of size c(ϵ) = Θ(1/ϵ2)

yields in expectation a 1+ ϵ approximation with respect to the optimal social cost
of the generalized median mechanism on the metric space (Rd, ∥ · ∥1), while the
number of agents n→∞.

In the second part of our work, we endeavor to design auctions with mini-
mal communication complexity. As a concrete motivating example, we consider
a single-item auction, and we assume that every valuation can be expressed with
k bits. An important observation is that the most dominant formats are very
inefficient from a communication standpoint. Indeed, Vickrey’s—or sealed-bid—
auction [221] is a direct revelation mechanism, eliciting the entire private informa-
tion from the n agents, leading to a communication complexity of n ·k bits; in fact,
it should be noted that although Vickrey’s auction possesses many theoretically
appealing properties, its ascending counterpart exhibits superior performance in
practice [28, 29, 145, 144], for reasons that mostly relate to the simplicity, the
transparency, as well as the privacy guarantees of the latter format. Unfortu-
nately, implementing Vickrey’s rule through an English auction requires—in the
worst case—exponential communication of the order n·2k, as the auctioneer has to
cover the entire valuation space. Thus, the elicitation pattern in an English auc-
tion is widely inefficient, and the lack of prior knowledge on the agents’ valuations
would dramatically undermine its performance.

In this direction, we study a series of exemplar environments from auction
theory through a communication complexity framework, measuring the expected
number of bits elicited from the agents; we posit that any valuation can be ex-
pressed with k bits, and we mainly assume that k is independent of the number of
agents n. In this context, we show that Vickrey’s rule can be implemented with
an expected communication of 1 + ϵ bits from an average bidder, for any ϵ > 0,
asymptotically matching the trivial lower bound. As a corollary, we provide a
compelling method to increment the price in an English auction. We also lever-
age our single-item format with an efficient encoding scheme to prove that the
same communication bound can be recovered in the domain of additive valuations
through simultaneous ascending auctions, assuming that the number of items is
a constant. Finally, we propose an ascending-type multi-unit auction under unit
demand bidders; our mechanism announces at every round two separate prices and
is based on a sampling algorithm that performs approximate selection with lim-
ited communication, leading again to asymptotically optimal communication. Our
results do not require any prior knowledge on the agents’ valuations, and mainly
follow from natural sampling techniques.
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2.2 Non strategic mechanism design: Domains

with limited information.

2.2.1 Metric-Distortion Bounds under Limited Infor-
mation.

Aggregating the preferences of individuals into a collective decision lies at the
heart of social choice, and has recently found numerous applications in areas such
as information retrieval, recommender systems, and machine learning [222, 223,
36, 124, 161]. The classic theory of von Neumann and Morgenstern [224] postu-
lates that individual preferences are captured through a utility function, assigning
numerical (or cardinal) values to each alternative. Yet, in voting theory, as well
as in most practical applications, mechanisms typically elicit only ordinal infor-
mation from the voters, indicating an order of preferences over the candidates.
Although this might seem at odds with a utilitarian representation, it has been
recognized that it might be hard for a voter to specify a precise numerical value
for an alternative, and providing only ordinal information substantially reduces
the cognitive burden. This begs the question: What is the loss in efficiency of
a mechanism extracting only ordinal information with respect to the utilitarian
social welfare, i.e., the sum of individual utilities over a chosen candidate? The
framework of distortion, introduced by Procaccia and Rosenschein [194], measures
exactly this loss from an approximation-algorithms standpoint, and has received
considerable attention in recent years.

As it turns out, the approximation guarantees we can hope for crucially de-
pend on the assumptions we make on the utility functions. For example, in the
absence of any structure Procaccia and Rosenschein [194] observed that no ordinal
deterministic mechanism can obtain bounded distortion. In this work, we focus
on the metric distortion framework, introduced by Anshelevich et al. [18], wherein
voters and candidates are thought of as points in some arbitrary metric space;
this is akin to models in spatial voting theory [74]. In this context, the voters’
preferences are measured by means of their “proximity” from each candidate, and
the goal is to output a candidate who (approximately) minimizes the social cost,
i.e., the total distance to the voters. A rather simplistic view of this framework
manifests itself when agents and candidates are embedded into a one-dimensional
line, and their locations indicate whether they are “left” or “right” on the political
spectrum. However, the metric distortion framework has a far greater reach since
no assumptions whatsoever are made for the underlying metric space.

Importantly, this paradigm offers a compelling way to quantitatively compare
different voting rules commonly employed in practice [214, 149, 132, 18], while
it also serves as a benchmark for designing new mechanisms in search of better
distortion bounds [131, 183]. A common assumption made in this line of work is
that the algorithm has access to the entire total orders of the voters. However,
there are many practical scenarios in which it might be desirable to truncate the
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ordinal information elicited by the mechanism. For example, requesting only the
top preferences could further relieve the cognitive burden since it might be hard for
a voter to compare alternatives which lie on the bottom of her preferences’ list (for
additional motivation for considering incomplete or partial orderings we refer to the
works of Fotakis et al. [123], Chen et al. [70], Benferhat et al. [39], and references
therein), while any truncation in the elicited information would also translate to
more efficient communication. These reasons have driven several authors to study
the decay of distortion under missing information [150, 14, 138, 98, 50], potentially
allowing some randomization (see our related work subsection). In this work, we
follow that line of research, offering several new insights and improved bounds over
prior results.

In this direction, our primary contribution is threefold. First, we consider
mechanisms that perform a sequence of pairwise comparisons between candidates.
We show that a popular deterministic mechanism employed in many knockout
phases yields distortion O(logm) while eliciting only m − 1 out of the Θ(m2)
possible pairwise comparisons, where m represents the number of candidates. Our
analysis for this mechanism leverages a powerful technical lemma developed by
Kempe (AAAI ‘20). We also provide a matching lower bound on its distortion. In
contrast, we prove that any mechanism which performs fewer than m− 1 pairwise
comparisons is destined to have unbounded distortion. Moreover, we study the
power of deterministic mechanisms under incomplete rankings. Most notably,
when agents provide their k-top preferences we show an upper bound of 6m/k+1 on
the distortion, for any k ∈ {1, 2, . . . ,m}. Thus, we substantially improve over the
previous bound of 12m/k established by Kempe (AAAI ‘20), and we come closer to
matching the best-known lower bound. Finally, we are concerned with the sample
complexity required to ensure near-optimal distortion with high probability. Our
main contribution is to show that a random sample of Θ(m/ϵ2) voters suffices to
guarantee distortion 3 + ϵ with high probability, for any sufficiently small ϵ > 0.
This result is based on analyzing the sensitivity of the deterministic mechanism
introduced by Gkatzelis, Halpern, and Shah (FOCS ‘20). Importantly, all of our
sample-complexity bounds are distribution-independent.

2.2.2 Dimensionality and Coordination in Voting: The
Distortion of STV

In this work we continue to explore the notion of metric-distortion. Impor-
tantly, this framework of distortion offers a quantitative “benchmark” for com-
paring different voting rules commonly employed in practice. Indeed, one of the
primary considerations of our work lies in characterizing the performance of the
single transferable vote2 mechanism (henceforth STV).

2For consistency with prior work STV will represent throughout this paper the single-
winner variant of the system, which is sometimes referred to as instant-runoff voting (IRV)

46



STV is a widely-popular iterative voting system employed in the national
elections of several countries, including Australia, Ireland, and India, as well as
in many other preference aggregation tasks; e.g., in the Academy Awards. To be
more precise, STV proceeds in an iterative fashion: In each round, agents vote for
their most preferred candidate—among the active ones, while the candidate who
enjoyed the least amount of support in the current round gets eliminated. This
process is repeated for m − 1 rounds, where m represents the number of (initial)
alternatives, and the last surviving candidate is declared the winner of STV. As
an aside, notice that this process is generally non-deterministic due to the need
for a tie-breaking mechanism; as in [214], we will work with the parallel universe
model of Conitzer et al. [79], wherein a candidate is said to be an STV winner if
it survives under some sequence of eliminations.

In this context, Skowron and Elkind [214] were the first to analyze the dis-
tortion of STV under metric preferences. Specifically, they showed that the dis-
tortion of STV in general metric spaces is always O(logm), while they also gave
a nearly-matching lower bound in the form of Ω(

√
logm). Interestingly, a care-

ful examination of their lower bound reveals the existence of a high-dimensional
submetric, as depicted in Figure 2.1, and it is a well-known fact in the theory of
metric embeddings that such objects cannot be isometrically embedded into low-
dimensional3 Euclidean spaces [173]. As a result, Skowron and Elkind [214] left
open the following intriguing question:

Question 1. What is the distortion of STV under low-dimensional Euclidean
spaces?

Figure 2.1: A high-dimensional metric in the form of a “star” graph.

in the literature.
3We say that a Euclidean space is low-dimensional if its dimension d is bounded by a

“small” universal constant, i.e. d = O(1).
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Needless to say that the performance of voting rules in low-dimensional spaces
has been a subject of intense scrutiny in spatial voting theory, under the premise
that voters and candidates are typically embedded in subspaces with small di-
mension [24, 90]. For example, recent experimental work by Elkind et al. [88]
evaluates several voting rules in a 2-dimensional Euclidean space, motivated by
the fact that preferences are typically crystallized on the basis of a few crucial
dimensions; e.g., economic policy and healthcare. Indeed, in the so-called Nolan
Chart—a celebrated political spectrum diagram—political views are charted along
two axes, expanding upon the traditional one-dimensional representation; to quote
from the work of Elkind et al. [88]:

“...the popularity of the Nolan Chart [...] indicates that two dimen-
sions are often sufficient to provide a good approximation of voters’
preferences.”

Thus, it is natural to ask whether we can refine the analysis of STV under
low-dimensional spaces. In fact, as part of a broader agenda analogous questions
can be raised for other mechanisms as well. However, it is interesting to point
out that for many voting rules analyzed within the framework of distortion there
exist low-dimensional lower bounds; some notable examples are given in Table 2.1.
In contrast, our work will separate STV from the mechanisms in Table 2.1, ef-
fectively addressing Question 1. Importantly, we shall provide a characterization
well-beyond Euclidean spaces, to metrics with “intrinsically” low dimension.

Mechanism Lower Bound Dimension

Plurality 2m− 1 1
Borda 2m− 1 1

Copeland 5 2
Veto 2n− 1 1

Approval 2n− 1 1

Table 2.1: The Euclidean dimension required to construct a (tight) lower
bound for several common voting rules; these results appear in [18]. We
should note that for Copeland the metric constructed in [18] is not Euclidean,
but can be easily modified to be one.

The next consideration of our work is directly motivated by the efficiency of
STV compared to the plurality rule, and in particular the strategic implications
of this discrepancy. A good starting point for this discussion stems from the fact
that in many fundamental preference aggregation settings alternatives are chosen
by inefficient mechanisms, and in many cases any reform faces insurmountable
impediments. For example, in political elections the voting mechanism is typically
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dictated by electoral laws, or even the constitution [165]. As a result, under-
standing the behavior of strategic agents when faced with inefficient mechanisms
is of paramount importance [56, 225]. A rather orthogonal way of viewing this
is whether autonomous agents can converge to admissible social choices through
natural learning rules; this begs the question:

Question 2. To what extent can strategic behavior improve efficiency in voting?

We stress that although in the absence of any information it might be unclear
how agents can engage in strategic behavior, in most applications of interest agents
have plenty of prior information before they cast their votes, e.g. through polls,
surveys, forecasts, prior elections, or even early voting. Indeed, there is a prolific
line of work which studies population dynamics for agents that cast their votes
in response to the information they possess (see [200], and references therein), as
well as the role of information in shaping public policy [158].

To address such considerations we propose a natural model wherein agents act
iteratively based on some partial feedback on the other voters’ preferences. We
explain how STV can be very naturally cast in this framework, while we establish
the existence of simple and decentralized coordination dynamics converging to a
near-optimal alternative.

The final theme of our work offers certain refinements and extensions of prior
works, mostly driven by some fundamental applications in the context of facil-
ity location games. Specifically, we primarily focus on the optimal—under metric
preferences—deterministic mechanism recently introduced by Gkatzelis, Halpern,
and Shah [131]; we show that it recovers the optimal bound under ultra-metrics,
and near-optimal distortion under distances satisfying approximate triangle in-
equalities.

2.3 Computation of equilibria.

2.4 Node Max-Cut and Computing Equilib-

ria in Linear Weighted Congestion Games

Motivated by the remarkable success of local search in combinatorial opti-
mization, Johnson et al. introduced [143] the complexity class Polynomial Local
Search (PLS), consisting of local search problems with polynomially verifiable local
optimality. PLS includes many natural complete problems (see e.g., [176]), with
Circuit-Flip [143] and Max-Cut [208] among the best known ones, and lays the
foundation for a principled study of the complexity of local optima computation.
In the last 15 years, a significant volume of research on PLS-completeness was mo-
tivated by the problem of computing a pure Nash equilibrium of potential games
(see e.g., [2, 213, 127] and the references therein), where any improving deviation
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by a single player decreases a potential function and its local optima correspond
to pure Nash equilibria [178].

Computing a local optimum of Max-Cut under the flip neighborhood (a.k.a.
Local-Max-Cut) has been one of the most widely studied problems in PLS.
Given an edge-weighed graph, a cut is locally optimal if we cannot increase its
weight by moving a vertex from one side of the cut to the other. Since its PLS-
completeness proof by Schäffer and Yannakakis [208], researchers have shown that
Local-Max-Cut remains PLS-complete for graphs with maximum degree five
[89], is polynomially solvable for cubic graphs [191], and its smoothed complexity
is either polynomial in complete [12] and sparse [89] graphs, or almost polynomial
in general graphs [71, 92]. Moreover, due to its simplicity and versatility, Max-
Cut has been widely used in PLS reductions (see e.g., [2, 127, 213]). Local-Max-
Cut can also be cast as a game, where each vertex aims to maximize the total
weight of its incident edges that cross the cut. Cut games are potential games
(the value of the cut is the potential function), which has motivated research
on efficient computation of approximate equilibria for Local-Max-Cut [41, 64].
To the best of our knowledge, apart from the work on the smoothed complexity
of Local-Max-Cut (and may be that Local-Max-Cut is P-complete for un-
weighted graphs [208, Theorem 4.5]), there has not been any research on whether
(and to which extent) additional structure on edge weights affects hardness of
Local-Max-Cut.

A closely related research direction deals with the complexity of computing a
pure Nash equilibrium (equilibrium or PNE, for brevity) of congestion games [201],
a typical example of potential games [178] and among the most widely studied
classes of games in Algorithmic Game Theory (see e.g., [113] for a brief account of
previous work). In congestion games (or CGs, for brevity), a finite set of players
compete over a finite set of resources. Strategies are resource subsets and players
aim to minimize the total cost of the resources in their strategies. Each resource
e is associated with a (non-negative and non-decreasing) latency function, which
determines the cost of using e as a function of e’s congestion (i.e., the number of
players including e in their strategy). Researchers have extensively studied the
properties of special cases and variants of CGs. Most relevant to this work are
symmetric (resp. asymmetric) CGs, where players share the same strategy set
(resp. have different strategy sets), network CGs, where strategies correspond to
paths in an underlying network, and weighted CGs, where player contribute to the
congestion with a different weight.

Fabrikant et al. [95] proved that computing a PNE of asymmetric network
CGs or symmetric CGs is PLS-complete, and that it reduces to min-cost-flow for
symmetric network CGs. About the same time [118, 189] proved that weighted
congestion games admit a (weighted) potential function, and thus a PNE, if the
latency functions are either affine or exponential (and [140, 141] proved that in a
certain sense, this restriction is necessary). Subsequently, Ackermann et al. [2]
characterized the strategy sets of CGs that guarantee efficient equilibrium compu-
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tation. They also used a variant of Local-Max-Cut, called threshold games, to
simplify the PLS-completeness proof of [95] and to show that computing a PNE
of asymmetric network CGs with (exponentially steep) linear latencies is PLS-
complete.

On the other hand, the complexity of equilibrium computation for weighted
CGs is not well understood. All the hardness results above carry over to weighted
CGs, since they generalize standard CGs (where the players have unit weight).
But on the positive side, we only know how to efficiently compute a PNE for
weighted CGs on parallel links with general latencies [120] and for weighted CGs
on parallel links with identity latency functions and asymmetric strategies [126].
Despite the significant interest in (exact or approximate) equilibrium computation
for CGs (see e.g., [63, 64, 153] and the references therein), we do not understand
how (and to which extent) the complexity of equilibrium computation is affected
by player weights. This is especially true for weighted CGs with linear latencies,
which admit a potential function and their equilibrium computation is in PLS.

In this work, we seek a more refined understanding of the complexity of local
optimum computation for Max-Cut and pure Nash equilibrium (PNE) computa-
tion for congestion games with weighted players and linear latency functions. We
show that computing a PNE of linear weighted congestion games is PLS-complete
for very restricted strategy spaces, namely when player strategies are paths on a
series-parallel network with a single origin and destination. Furthermore, in the
same work we also show that the problem remains PLS-complete even for very
restricted latency functions, namely when the latency on each resource is equal
to the congestion, for general networks, through a reduction from a newly defined
appropriate local search problem we call Node-Max-Cut. In this light we also show
how to compute efficiently a (1 + ε)-approximate equilibrium for Node-Max-Cut,
if the number of different vertex weights is constant.

2.5 Bibliographic information

The results presented in this thesis have already appeared in publications,
following the structure below.

Chapter 3 is based on [114] which appeared in WINE 2021. Chapter 4 is based
on [7] which appeared in SAGT 2020 and full version is under minor revision for
TOCS 2023. Chapter 5 is based on [11] which appeared in JAIR 2022. A shorter
version has appeared in ICALP 2020. Chapter 6 is based on [10] which appeared
in AAAI 2022. Chapter 7 is based on [122] which appeared in ICALP 2020.
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Chapter 3

Facility location in
perturbation stable instances

Approximate mechanism design without money for variants and generalizations
of Facility Location games on the line has been a very active and productive area
of research in the last decade.

Previous work has shown that deterministic strategyproof mechanisms can only
achieve a bounded approximation ratio for k-Facility Location on the line, only if
we have at most 2 facilities [112, 192]. Notably, stable (called well-separated in
[112]) instances with n = k+1 agents play a key role in the proof of inapproximabil-
ity of k-Facility Location by deterministic anonymous strategyproof mechanisms
[112, Theorem 3.7]. On the other hand, randomized mechanisms are known to
achieve a better approximation ratio for k = 2 facilities [166], a constant approxi-
mation ratio if we have k ≥ 2 facilities and only n = k+1 agents [91, 116], and an
approximation ratio of n for any k ≥ 3 [116]. Fotakis and Tzamos [111] considered
winner-imposing randomized mechanisms that achieve an approximation ratio of
4k for k-Facility Location in general metric spaces. In fact, the approximation
ratio can be improved to Θ(ln k), using the analysis of [25].

For the objective of maximum agent cost, Alon et al. [5] almost completely
characterized the approximation ratios achievable by randomized and determinis-
tic strategyproof mechanisms for 1-Facility Location in general metrics and rings.
Fotakis and Tzamos [116] presented a 2-approximate randomized group strate-
gyproof mechanism for k-Facility Location on the line and the maximum cost
objective. For 1-Facility Location on the line and the objective of minimizing the
sum of squares of the agent connection costs, Feldman and Wilf [102] proved that
the best approximation ratio is 1.5 for randomized and 2 for deterministic mech-
anisms. Golomb and Tzamos [136] presented tight (resp. almost tight) additive
approximation guarantees for locating a single (resp. multiple) facilities on the
line and the objectives of the maximum cost and the social cost.

Regarding the application of perturbation stability, we follow the approach of
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beyond worst-case analysis (see e.g., [202, 203]), where researchers seek a theo-
retical understanding of the superior practical performance of certain algorithms
by formally analyzing them on practically relevant instances. The beyond worst-
case approach is not anything new for Algorithmic Mechanism Design. Bayesian
analysis, where the bidder valuations are drawn as independent samples from a
distribution known to the mechanism, is standard in revenue maximization when
we allocate private goods (see e.g., [204]) and has led to many strong and ele-
gant results for social welfare maximization in combinatorial auctions by truthful
posted price mechanisms (see e.g., [86, 103]). However, in this work, instead of
assuming (similar to Bayesian analysis) that the mechanism designer has a rela-
tively accurate knowledge of the distribution of agent locations on the line (and use
e.g., an appropriately optimized percentile mechanism [217]), we employ a deter-
ministic restriction on the class of instances (namely, perturbation stability), and
investigate if deterministic (resp. randomized) strategyproof mechanisms with a
bounded (resp. constant) approximation ratio are possible for locating any num-
ber k ≥ 2 facilities on such instances. To the best of our knowledge, the only
previous work where the notion of perturbation stability is applied to Algorithmic
Mechanism Design (to combinatorial auctions, in particular) is [107] (but see also
[32, 94] where the similar in spirit assumption of endowed valuations was applied
to combinatorial markets).

3.1 Our contribution

Our conceptual contribution is that we initiate the study of efficient (wrt. their
approximation ratio for the social cost) strategyproof mechanisms for the large and
natural class of γ-stable instances of k-Facility Location on the line. Our technical
contribution is that we show the existence of deterministic (resp. randomized)
strategyproof mechanisms with a bounded (resp. constant) approximation ratio
for 5-stable instances and any number of facilities k ≥ 2. Moreover, we show that
the optimal solution is strategyproof for (2 +

√
3)-stable instances, if the optimal

clustering does not include any singleton clusters (which is likely to be the case in
virtually all practical applications). To provide evidence that restriction to stable
instances does not make the problem trivial, we strengthen the impossibility result
of Fotakis and Tzamos [112], so that it applies to γ-stable instances, with γ <

√
2.

Specifically, we show that that for any k ≥ 3 and any δ > 0, there do not exist
any deterministic anonymous strategyproof mechanisms for k-Facility Location on
(
√
2−δ)-stable instances with bounded (in terms of n and k) approximation ratio.
At the conceptual level, we interpret the stability assumption as a prior on the

class of true instances that the mechanism should be able to deal with. Namely,
we assume that the mechanism has only to deal with γ-stable true instances, a
restriction motivated by (and fully consistent with) how the stability assump-
tion is used in the literature on efficient algorithms for stable clustering (see e.g.,
[13, 33, 34, 43], where the algorithms are analyzed for stable instances only). More
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specifically, our mechanisms expect as input a declared instance such that in the
optimal clustering, the distance between any two consecutive clusters is at least
(γ−1)2

2γ times larger than the diameters of the two clusters (a.k.a. cluster-separation
property, see Lemma 3.3.5). This condition is necessary (but not sufficient) for
γ-stability and can be easily checked. If the declared instance does not satisfy the
cluster-separation property, our mechanisms do not allocate any facilities. Other-
wise, our mechanisms allocate k facilities (even if the instance is not stable). We
prove that for all γ-stable true instances (with the exact stability factor γ depend-
ing on the mechanism), if agents can only deviate so that the declared instance
satisfies the cluster-separation property (and does not have singleton clusters, for
the optimal mechanism), our mechanisms are strategyproof and achieve the desired
approximation guarantee. Hence, if we restrict ourselves to γ-stable true instances
and to agent deviations that do not obviously violate γ-stability, our mechanisms
should only deal with γ-stable declared instances, due to strategyproofness. On
the other hand, if non-stable true instances may occur, the mechanisms cannot dis-
tinguish between a stable true instance and a declared instance, which appears to
be stable, but is obtained from a non-stable instance through location misreports.

The restriction that the agents of a γ-stable instance are only allowed to de-
viate so that the declared instance satisfies the cluster-separation property (and
does not have any singleton clusters, for the optimal mechanism) bears a strong
conceptual resemblance to the notion of strategyproof mechanisms with local ver-
ification (see e.g., [27, 23, 61, 68, 121, 117, 137]), where the set of each agent’s
allowable deviations is restricted to a so-called correspondence set, which typically
depends on the agent’s true type, but not on the types of the other agents. Instead
of restricting the correspondence set of each individual agent independently, we
impose a structural condition on the entire declared instance, which restricts the
set of the agents’ allowable deviations, but in a global and observable sense. As
a result, we can actually implement our notion of verification, by checking some
simple properties of the declared instance, instead of just assuming that any devi-
ation outside an agent’s correspondence set will be caught and penalized (which is
the standard approach in mechanisms with local verification [23, 68, 61], but see
e.g., [27, 111] for noticeable exceptions).

On the technical side, we start, in Section 3.3, with some useful properties of
stables instances of k-Facility Location on the line. Among others, we show (i)
the cluster-separation property (Lemma 3.3.4), which states that in any γ-stable

instance, the distance between any two consecutive clusters is at least (γ−1)2

2γ times
larger than their diameters; and (ii) the so-called no direct improvement from
singleton deviations property (Lemma 3.3.7), i.e., that in any 3-stable instance, no
agent who deviates to a location, which becomes a singleton cluster in the optimal
clustering of the resulting instance, can improve her connection cost through the
facility of that singleton cluster.

In Section 3.4, we show that for (2 +
√
3)-stable instances whose optimal clus-

tering does not include any singleton clusters, the optimal solution is strategyproof
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(Theorem 3.4.1). For the analysis, we observe that since placing the facility at the
median location of any fixed cluster is strategyproof, a misreport cannot be prof-
itable for an agent, unless it results in a different optimal clustering. The key step
is to show that for (2+

√
3)-stable instances without singleton clusters, a profitable

misreport cannot change the optimal clustering, unless the instance obtained from
the misreport violates the cluster-separation property. To the best of our knowl-
edge, the idea of penalizing (and thus, essentially forbidding) a whole class of
potentially profitable misreports by identifying how they affect a key structural
property of the original instance, which becomes possible due to our restriction to
stable instances, has not been used before in the design of strategyproof mecha-
nisms for k-Facility Location (see also the discussion above about resemblance to
mechanisms with verification).

We should also motivate our restriction to stable instances without singleton
clusters in their optimal clustering. So, let us consider the rightmost agent xj of
an optimal cluster Ci in a γ-stable instance x⃗. No matter the stability factor γ, it
is possible that xj performs a so-called singleton deviation. Namely, xj deviates
to a remote location x′ (potentially very far away from any location in x⃗), which
becomes a singleton cluster in the optimal clustering of the resulting instance.
Such a singleton deviation might cause cluster Ci to merge with (possibly part of
the next) cluster Ci+1, which in turn, might bring the median of the new cluster
much closer to xj (see also Fig. 3.1 in Section 3.3). It is not hard to see that if we
stick to the optimal solution, where the facilities are located at the median of each
optimal cluster, there are γ-stable instances1, with arbitrarily large γ ≥ 1, where
some agents can deviate to a remote location and gain, by becoming singleton
clusters, while maintaining the desirable stability factor of the declared instance
(see also Fig. 3.1).

To deal with singleton deviations2, we should place the facility either at a loca-
tion close to an extreme one, as we do in Section 3.5 with the AlmostRightmost
mechanism, or at a random location, as we do in Section 3.7 with the Random
mechanism. More specifically, in Section 3.5, we show that the AlmostRight-
most mechanism, which places the facility of any non-singleton optimal cluster at
the location of the second rightmost agent, is strategyproof for 5-stable instances
of k-Facility Location (even if their optimal clustering includes singleton clusters)
and achieves an approximation ratio at most (n−2)/2 (Theorem 3.5.1). Moreover,
in Section 3.7, we show that the Random mechanism, which places the facility

1E.g., let k = 2 and consider the Θ(γ)-stable instance (0, 1−ε, 1, 6γ, 6γ+ε, 6γ+1, 6γ+
1 + ε, 6γ + 2), for any γ ≥ 1. Then, the agent at location 6γ can decrease its connection
cost (from 1) to ε by deviating to location (6γ)2.

2Another natural way to deal efficiently with singleton deviations is through some
means of location verification, such as winner-imposing verification [111] or ε-symmetric
verification [117, 121]. Adding e.g., winner-imposing verification to the optimal mecha-
nism, discussed in Section 3.4, results in a strategyproof mechanism for (2 +

√
3)-stable

instances whose optimal clustering may include singleton clusters.
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of any optimal cluster at a location chosen uniformly at random, is strategyproof
for 5-stable instances (again even if their optimal clustering includes singleton
clusters) and achieves an approximation ratio of 2 (Theorem 3.7.1).

To obtain a deeper understanding of the challenges behind the design of strat-
egyproof mechanisms for stable instances of k-Facility Location on the line, we
strengthen the impossibility result of [112, Theorem 3.7] so that it applies to γ-
stable instances with γ <

√
2 (Section 3.6). Through a careful analysis of the

image sets of deterministic strategyproof mechanisms, we show that for any k ≥ 3,
any δ > 0, and any ρ ≥ 1, there do not exist any ρ-approximate deterministic
anonymous strategyproof mechanisms for (

√
2 − δ)-stable instances of k-Facility

Location on the line (Theorem 3.6.5). The proof of Theorem 3.6.5 requires addi-
tional ideas and extreme care (and some novelty) in the agent deviations, so as to
only consider stable instances, compared against the proof of [112, Theorem 3.7].
Interestingly, singleton deviations play a crucial role in the proof of Theorem 3.6.5.

3.2 Notation, Definitions and Preliminaries

We let [n] = {1, . . . , n}. For any x, y ∈ R, we let d(x, y) = |x − y| be the
distance of locations x and y on the real line. For a tuple x⃗ = (x1, . . . , xn) ∈ Rn,
we let x⃗−i denote the tuple x⃗ without coordinate xi. For a non-empty set S of
indices, we let x⃗S = (xi)i∈S and x⃗−S = (xi)i ̸∈S . We write (x⃗−i, a) to denote the
tuple x⃗ with a in place of xi, (x⃗−{i,j}, a, b) to denote the tuple x⃗ with a in place
of xi and b in place of xj , and so on. For a random variable X, E(X) denotes the
expectation of X. For an event E in a sample space, Pr(E) denotes the probability
that E occurs.

Instances. We consider k-Facility Location with k ≥ 2 facilities and n ≥ k + 1
agents on the real line. We let N = {1, . . . , n} be the set of agents. Each agent
i ∈ N resides at a location xi ∈ R, which is i’s private information. We usually
refer to a locations profile x⃗ = (x1, . . . , xn) ∈ Rn, x1 ≤ · · · ≤ xn, as an instance.
By slightly abusing the notation, we use xi to refer both to the agent i’s location
and sometimes to the agent i (i.e., the strategic entity) herself.

Mechanisms. A deterministic mechanism M for k-Facility Location maps an
instance x⃗ to a k-tuple (c1, . . . , ck) ∈ Rk, c1 ≤ · · · ≤ ck, of facility locations. We
let M(x⃗) denote the outcome of M in instance x⃗, and let Mj(x⃗) denote cj , i.e.,
the j-th smallest coordinate in M(x⃗). We write c ∈ M(x⃗) to denote that M(x⃗)
places a facility at location c. A randomized mechanism M maps an instance x⃗ to
a probability distribution over k-tuples (c1, . . . , ck) ∈ Rk.

Connection Cost and Social Cost. Given a k-tuple c⃗ = (c1, . . . , ck), c1 ≤
· · · ≤ ck, of facility locations, the connection cost of agent i wrt. c⃗, denoted
d(xi, c⃗), is d(xi, c⃗) = min1≤j≤k |xi − yj |. Given a deterministic mechanism M
and an instance x⃗, d(xi,M(x⃗)) denotes the connection cost of agent i wrt. the
outcome of M(x⃗). If M is a randomized mechanism, the expected connection cost
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of agent i is Ec⃗∼M(x⃗)(d(xi, c⃗)). The social cost of a deterministic mechanismM for
an instance x⃗ is cost(x⃗,M(x⃗)) =

∑n
i=1 d(xi,M(x⃗)). The social cost of a facility

locations profile c⃗ ∈ Rk is cost(x⃗, c⃗) =
∑n

i=1 d(xi, c⃗). The expected social cost of a
randomized mechanism M on instance x⃗ is

cost(x⃗,M(x⃗)) =
n∑

i=1

Ec⃗∼M(x⃗)(d(xi, c⃗)) .

The optimal social cost for an instance x⃗ is cost∗(x⃗) = minc⃗∈Rk

∑n
i=1 d(xi, c⃗).

For k-Facility Location, the optimal social cost (and the corresponding optimal
facility locations profile) can be computed in O(kn log n) time by standard dynamic
programming.

Approximation Ratio. A mechanism M has an approximation ratio of ρ ≥ 1,
if for any instance x⃗, cost(x⃗,M(x⃗)) ≤ ρ cost∗(x⃗). We say that the approximation
ratio ρ of M is bounded, if ρ is bounded from above either by a constant or by a
(computable) function of n and k.

Strategyproofness. A deterministic mechanism M is strategyproof, if no agent
can benefit from misreporting her location. Formally, M is strategyproof, if for all
location profiles x⃗, any agent i, and all locations y, d(xi,M(x⃗)) ≤ d(xi,M((x⃗−i, y)).
Similarly, a randomized mechanism M is strategyproof (in expectation), if for all
location profiles x⃗, any agent i, and all locations y,
Ec⃗∼M(x⃗)(d(xi, c⃗)) ≤ Ec⃗∼M((x⃗−i,y)(d(xi, c⃗)).

Clusterings. A clustering (or k-clustering, if k is not clear from the context) of
an instance x⃗ is any partitioning C⃗ = (C1, . . . , Ck) of x⃗ into k sets of consecutive
agent locations. We index clusters from left to right. I.e., C1 = {x1, . . . , x|C1|},
C2 = {x|C1|+1, . . . , x|C1|+|C2|}, and so on. We refer to a cluster Ci that includes

only one agent (i.e., with |Ci| = 1) as a singleton cluster. We sometimes use (x⃗, C⃗)
to highlight that we consider C⃗ as a clustering of instance x⃗.

Two clusters C and C ′ are identical, denoted C = C ′, if they include the
exact same locations. Two clusterings C⃗ = (C1, . . . , Ck) and Y⃗ = (Y1, . . . , Yk)
of an instance x⃗ are the same, if Ci = Yi, for all i ∈ [k]. Abusing the notation,
we say that a clustering C⃗ of an instance x⃗ is identical to a clustering Y⃗ of a
γ-perturbation x⃗′ of x⃗ (see also Definition 3.3.1), if |Ci| = |Yi|, for all i ∈ [k].

We let xi,l and xi,r denote the leftmost and the rightmost agent of each cluster
Ci. Under this notation, xi−1,r < xi,l ≤ xi,r < xi+1,l, for all i ∈ {2, . . . , k − 1}.
Exploiting the linearity of instances, we extend this notation to refer to other
agents by their relative location in each cluster. Namely, xi,l+1 (resp. xi,r−1)
is the second agent from the left (resp. right) of cluster Ci . The diameter of a
cluster Ci is D(Ci) = d(xi,l, xi,r). The distance of clusters Ci and Cj is d(Ci, Cj) =
minx∈Ci,y∈Cj{d(x, y)}, i.e., the minimum distance between a location x ∈ Ci and
a location y ∈ Cj .

A k-facility locations (or k-centers) profile c⃗ = (c1, . . . , ck) induces a clustering
C⃗ = (C1, . . . , Ck) of an instance x⃗ by assigning each agent / location xj to the
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cluster Ci with facility ci closest to xj . Formally, for each i ∈ [k], Ci = {xj ∈ x⃗ :
d(xj , ci) = d(xj , c⃗)}. The optimal clustering of an instance x⃗ is the clustering of x⃗
induced by the facility locations profile with minimum social cost.

The social cost of a clustering C⃗ induced by a k-facility locations profile c⃗ on
an instance x⃗ is simply cost(x⃗, c⃗), i.e., the social cost of c⃗ for x⃗. We sometimes
refer to the social cost cost(x⃗, C⃗) of a clustering C⃗ for an instance x⃗, without any
explicit reference to the corresponding facility locations profile. Then, we refer to
the social cost cost(x⃗, c⃗), where each facility ci is located at the median location
of Ci (the left median location of Ci, if |Ci| is even).

We often consider certain structural changes in a clustering due to agent devi-
ations. Let C⃗ be a clustering of an instance x⃗, which due to an agent deviation,
changes to a different clustering C⃗ ′. We say that cluster Ci is split when C⃗ changes
to C⃗ ′, if not all agents in Ci are served by the same facility in C⃗ ′. We say that Ci

is merged in C⃗ ′, if all agents in Ci are served by the same facility, but this facility
also serves in C⃗ ′ some agents not in Ci.

3.3 Perturbation Stability on the Line: Defi-

nition and Properties

Next, we introduce the notion of γ-(linear) stability and prove some useful
properties of γ-stable instances of k-Facility Location, which are repeatedly used
in the analysis of our mechanisms.

Definition 3.3.1 (γ-Pertrubation and γ-Stability). Let x⃗ = (x1, . . . , xn) be a
locations profile. A locations profile x⃗′ = (x′1, . . . , x

′
n) is a γ-perturbation of x⃗, for

some γ ≥ 1, if x′1 = x1 and for every i ∈ [n − 1], d(xi, xi+1)/γ ≤ d(x′i, x
′
i+1) ≤

d(xi, xi+1). A k-Facility Location instance x⃗ is γ-perturbation stable (or simply, γ-
stable), if x⃗ has a unique optimal clustering (C1, . . . , Ck) and every γ-perturbation
x⃗′ of x⃗ has the same unique optimal clustering (C1, . . . , Ck).

Namely, a γ-perturbation x⃗′ of an instance x⃗ is obtained by moving a subset
of pairs of consecutive locations closer by a factor at most γ ≥ 1. A k-Facility
Location instance x⃗ is γ-stable, if x⃗ and any γ-perturbation x⃗′ of x⃗ admit the same
unique optimal clustering (where clustering identity for x⃗ and x⃗′ is understood as
explained in Section 3.2). We consistently select the optimal center ci of each
optimal cluster Ci with an even number of points as the left median point of Ci.

Our notion of linear perturbation stability naturally adapts the notion of metric
perturbation stability [13, Definition 2.5] to the line. We note, the class of γ-stable
linear instances, according to Definition 3.3.1, is at least as large as the class of
metric γ-stable linear instances, according to [13, Definition 2.5]. Similarly to [13,
Theorem 3.1] (see also [205, Lemma 7.1] and [31, Corollary 2.3]), we can show
that for all γ ≥ 1, every γ-stable instance x⃗, which admits an optimal clustering
C1, . . . , Ck with optimal centers c1, . . . , ck, satisfies the following γ-center proximity
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property: For all cluster pairs Ci and Cj , with i ̸= j, and all locations x ∈ Ci,
d(x, cj) > γd(x, ci).

We repeatedly use the following immediate consequence of γ-center proximity
(see also [205, Lemma 7.2]). The proof generalizes the proof of [205, Lemma 7.2]
to any γ ≥ 2.

Proposition 3.3.2. Let γ ≥ 2 and let x⃗ be any γ-stable instance, with unique
optimal clustering C1, . . . , Ck and optimal centers c1, . . . , ck. Then, for all clusters
Ci and Cj, with i ̸= j, and all locations x ∈ Ci and y ∈ Cj, d(x, y) > (γ−1)d(x, ci).

The following observation, which allows us to treat stability factors multiplica-
tively, is an immediate consequence of Definition 3.3.1.

Observation 3.3.3. Every α-perturbation followed by a β-perturbation of a lo-
cations profile can be implemented by a (αβ)-perturbation and vice versa. Hence,
a γ-stable instance remains (γ/γ′)-stable after a γ′-perturbation, with γ′ < γ, is
applied to it.

We next show that for γ large enough, the optimal clusters of a γ-stable in-
stance are well-separated, in the sense that the distance of two consecutive clusters
is larger than their diameters.

Lemma 3.3.4 (Cluster-Separation Property). For any γ-stable instance on the
line with optimal clustering (C1, . . . , Ck) and all clusters Ci and Cj, with i ̸= j,

d(Ci, Cj) >
(γ−1)2

2γ max{D(Ci), D(Cj)}.

The cluster-separation property of Lemma 3.3.4 was first obtained in [3] as a
consequence of γ-cluster proximity. For completeness, we present a different proof
that exploits the linear structure of the instance.

Proof. It suffices to establish the lemma for two consecutive clusters Ci and Ci+1.
We recall that d(Ci, Ci+1) = d(xi,r, xi+1,l). Moreover, by symmetry, we can assume
wlog. that D(Ci) ≥ D(Ci+1).

If Ci is a singleton, D(Ci) = 0 and the lemma holds trivially. If |Ci| = 2, wlog.
we can only consider the case where xi,l is Ci’s center. Otherwise, i.e., if xi,r is Ci’s
center in optimal clustering (C1, . . . , Ci, . . . , Ck) with centers (ci, . . . , xi,r, . . . , cj),
the same clustering (C1, . . . , Ci, . . . , Ck) with centers (c1, . . . , xi,l, . . . , cj) is also op-
timal for the γ-stable instance x⃗ (and should still be optimal after a γ perturbation
of x⃗, due to the stability of the instance). We then have:

D(Ci) = d(xi,l, xi,r) = d(ci, xi,r) <
1

(γ − 1)
d(xi,r, xi+1,r) =

1

(γ − 1)
d(Ci, Ci+1)⇒

d(Ci, Ci+1) > (γ − 1)D(Ci)

where the first inequality follows from Proposition 3.3.2. The lemma then
follows by noticing that for any γ ≥ 1:
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γ − 1 ≥ γ2 + 1

2γ
− 1

The most interesting case is where |Ci| ≥ 3 and xi,l < ci ≤ xi,r. Suppose
d(xi,l, ci) = βD(Ci), for some β ∈ (0, 1] and hence d(ci, xi,r) = (1− β)D(Ci) (i.e.,
β quantifies how close ci is to Ci’s extreme points and to the closest point of Ci+1.)
We recall that d(Ci, Ci+1) = d(xi,r, xi+1,l).

We start with a tighter analysis of the equivalent of Proposition 3.3.2 for xi,l
and xi+1,l, taking into account their specific ordering on the line:

d(xi,l, xi+1,l) ≥ d(xi,l, ci+1)− d(xi+1,l, ci+i)

> γd(xi,l, ci)−
d(xi+1,l, ci)

γ

= γd(xi,l, ci)−
d(xi+1,l, xi,l)− d(xi,l, ci)

γ
⇒

d(xi,l, xi+1,l) >
γ2 + 1

γ + 1
d(xi,l, ci)

Where the second inequality stands due to the γ-center proximity property
of γ stable instances and the equality stands because xi,l < ci < xi+1,l. Since
d(Ci, Ci+1) = d(xi,r, xi+1,l) = d(xi,l, xi+1,l) − D(Ci), and by d(xi,l, ci) = βD(Ci),
we get that:

d(Ci, Ci+1) >
(β(γ2 + 1)

γ + 1
− 1
)
D(Ci) (3.1)

Furthermore, by Proposition3.3.2, we have that d(xi,r, xi+1,l) > (γ−1)d(xi,r, ci).
Hence, by d(ci, xi,r) = (1− β)D(Ci), we get that:

d(Ci, Ci+1) > (1− β)(γ − 1)D(Ci) (3.2)

So, by (3.1) and (3.2) we have that it must be:

d(Ci, Ci+1) > max
{β(γ2 + 1)

γ + 1
− 1, (1− β)(γ − 1)

}
D(Ci) (3.3)

We now observe that for any fixed γ > 1, the first term of the max in (3.3),
β(γ2+1)
γ+1 − 1, is increasing for all β > 0, while the second term, (1 − β)(γ − 1), is

decreasing for all β ∈ (0, 1]. Hence, for any fixed γ > 1, the minimum value of the
max in (3.3) is achieved when β satisfies:

β(γ2 + 1)

γ + 1
− 1 = (1− β)(γ − 1)

Solving for β, we get that:

β =
1

2
+

1

2γ
, (3.4)
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with β ∈ (1/2, 1], when γ ≥ 1.
We conclude the proof by substituting the value of β in (3.4) to (3.3).

Setting γ ≥ 2 +
√
3, we get that:

Corollary 3.3.5. Let γ ≥ 2 +
√
3 and let x⃗ be any γ-stable instance with unique

optimal clustering (C1, . . . , Ck). Then, for all clusters Ci and Cj, with i ̸= j,
d(Ci, Cj) > max{D(Ci), D(Cj)}.

The following is an immediate consequence of the cluster-separation property
in Lemma 3.3.4.

Observation 3.3.6. Let x⃗ be a k-Facility Location with a clustering C⃗ = (C1, . . . , Ck)
such that for any two clusters Ci and Cj, max{D(Ci), D(Cj)} < d(Ci, Cj). Then,
if in the optimal clustering of x⃗, there is a facility at the location of some x ∈ Ci,
no agent in Ci is served by a facility at xj ̸∈ Ci.

(!!!What does this say?? Remove!!!)Next, we establish the so-called no direct
improvement from singleton deviations property, used to show the strategyproof-
ness of the AlmostRightmost and Random mechanisms. Namely, we show that
in any 3-stable instance, no agent deviating to a singleton cluster in the optimal
clustering of the resulting instance can improve her connection cost through the
facility of that singleton cluster.

Lemma 3.3.7. Let x⃗ be a γ-stable instance with γ ≥ 3 and optimal clustering
C⃗ = (C1, ..., Ck) and cluster centers (c1, ..., ck), and let an agent xi ∈ Ci \ {ci}
and a location x′ such that x′ is a singleton cluster in the optimal clustering of the
resulting instance (x⃗−i, x

′). Then, d(xi, x
′) > d(xi, ci).

Proof. We establish the lemma for the leftmost agent xi,l as the deviating agent.
Specifically, we show that xi,l needs to move by at least d(xi,l, ci) to the left in
order to become a singleton cluster. The property then follows for the rest of the
agents.

Suppose xi,l can create a singleton cluster by deviating less than d(xi,l, ci) to
the left. I.e., for some x′ such that d(x′, xi,l) < d(xi,l, ci) the optimal clustering of
x⃗′ = (x⃗−xi,l

, x′) is such that the agent location at x′ becomes a singleton cluster.

We call this clustering (that is optimal for x⃗′) C⃗ ′. Notice that since d(x′, xi,l) <
d(xi,l, ci), x

′ is in the gap between clusters Ci−1 and Ci as by 3-perturbation
stability we have d(xi−1,r, xi,l) > 2d(xi,l, ci). This means that in order for this case
to be feasible, no agents from Ci−1 can be clustered together with agents in Ci in
(x⃗′, C⃗ ′), because x′ lies between them and is a singleton cluster.

Consider now the instance x⃗−xi,l
. We know that cost(x⃗−xi,l

, C⃗ ′) ≥ cost(x⃗−xi,l
, C⃗).

That is, since otherwise the optimal clustering for x⃗ would make xi,l a single-

ton cluster and serve the rest of the agents as in C⃗ ′. Let diff be the difference
in the total cost agents in x⃗−xi,l

experience between clusterings C⃗ and C⃗ ′. I.e.
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diff = cost(x⃗−xi,l
, C⃗ ′)− cost(x⃗−xi,l

, C⃗). As before, since xi,l is not a singleton clus-

ter in (x⃗, C⃗) we know that d(xi,l, ci) < diff (or else setting xi,l as a singleton would

have a lower cost in x⃗ than C⃗).
But we can perform a 3-perturbation in x⃗ in the following way: Scale down

all distances between agents from x1 up to xi−1,r and all distances between agents
from xi,l+1 to xn (xn being the rightmost agent of the instance) by 3. Call this
instance x⃗per. Since agents of clusters Ci−1 and Ci are not clustered together

neither in C⃗ nor in C⃗ ′ we have that

diffper ≤
cost(x⃗−xi,l

, C⃗ ′)− cost(x⃗−xi,l
, C⃗)

3
.

So diffper ≤ diff/3. Since d(xi,l, ci) is unaffected in the perturbation and by sta-
bility the optimal clustering of x⃗per must remain the same (as x⃗) we have that it
must be d(xi,l, ci) < diff/3 (1).

Finally, the least amount of extra social cost suffered between cost(x⃗, C⃗) and
the case of setting xi,l as a center that serves only itself and serve the remaining

agents of the instance as on C⃗ ′ (i.e. as they would be served should x′ gets a facility
that served only herself), will be diff − d(xi,l, ci). This means that the optimal
clustering algorithm would only choose this solution when d(x′, ci) > diff−d(x, ci).
So the agent must deviate by at least diff − 2d(x, ci). But from (1) we have

diff − 2d(x, ci) > 3d(x, ci)− 2d(xi,l, ci) = d(xi,l, ci) ,

which concludes the proof of the lemma.

The following shows that for 5-stable instances x⃗, an agent cannot form a
singleton cluster, unless she deviates by a distance larger than the diameter of her
cluster in x⃗’s optimal clustering.

Lemma 3.3.8. Let x⃗ be any γ-stable instance with γ ≥ 5 and optimal clustering
C⃗ = (C1, ..., Ck). Let xi ∈ Ci \ {ci} be any agent and x′ any location such that x′

is a singleton cluster in the optimal clustering of instance x⃗′ = (x⃗−i, x
′), where xi

has deviated to x′. Then, d(x′, xi) > D(Ci).

Sketch. Initially, we show that a clustering C⃗ ′ of instance x⃗′ = (x⃗−i, x
′), with

d(x′, xi) ≤ D(Ci), cannot be optimal and contain x′ as a singleton cluster, unless
some agent x⃗ \ Ci is clustered together with some agent in Ci. To this end,
we use the lower bound on the distance between difference clusters for 5-stable
instances show in Lemma 3.3.4. Then, using stability arguments, i.e. that the
optimal clustering should not change for instance x⃗, even when we decrease, by
a factor of 4, the distances between consecutive agents in x⃗ \ Ci, we show that
in C⃗ ′ agents in x⃗ \ Ci experience an increase in cost of at least 2D(Ci) (notice
that x⃗ \ Ci = x⃗′ \ (Ci ∪ {x′})). But the additional cost of serving x′ from ci in
clustering C⃗ is at most 2D(Ci), since d(x

′, xi) ≤ D(Ci) and d(xi, ci) ≤ D(Ci).
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Figure 3.1: An example of a so-called singleton deviation. The deviating
agent (grey) declares a remote location, becomes a singleton cluster, and es-
sentially turns the remaining agents into a (k−1)-Facility Location instance.
Thus, the deviating agent can benefit from her singleton deviation, due to
the subsequent cluster merge.

Mechanism 1: OPTIMAL
Result: An allocation of k-facilities
Input: A k-Facility Location instance x⃗.

1 Compute the optimal clustering (C1, . . . , Ck). Let ci be the left median point
of each cluster Ci.

2 if
(
∃i ∈ [k] with |Ci| = 1

)
or
(
∃i ∈ [k − 1] with

max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1)
)
then

Output: “FACILITIES ARE NOT ALLOCATED”.
3 else

Output: The k-facility allocation (c1, . . . , ck)

Hence retaining clustering C⃗ and serving location x′ from ci would have a smaller
cost than the supposedly optimal clustering C⃗ ′. The complete proof follows by a
careful case analysis.

The proof is deferred to appendix 3.A of the chapter.

3.4 The Optimal Solution is Strategyproof for

(2 +
√
3)-Stable Instances

We next show that the Optimal mechanism, which allocates the facilities
optimally, is strategyproof for (2 +

√
3)-stable instances of k-Facility Location

whose optimal clustering does not include any singleton clusters. More specifically,
in this section, we analyze Mechanism 1.

In general, due to the incentive compatibility of the median location in a single
cluster, a deviation can be profitable only if it results in a k-clustering different
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from the optimal clustering (C1, . . . , Ck) of x⃗. For γ is sufficiently large, γ-stability
implies that the optimal clusters are well identified so that any attempt to alter
the optimal clustering (without introducing singleton clusters and without violat-
ing the cluster separation property, which is necessary of stability) results in an
increased cost for the deviating agent. We should highlight that Mechanism 1 may
also “serve” non-stable instances that satisfy the cluster separation property. We
next prove that the mechanism is stategyproof if the true instance is (2 +

√
3)-

stable and its optimal clustering does not include any singleton clusters, when the
agent deviations do not introduce any singleton clusters and not result in instances
that violate the cluster separation property (i.e. are served by the mechanism) .

Theorem 3.4.1. The Optimal mechanism applied to (2 +
√
3)-stable instances

of k-Facility Location without singleton clusters in their optimal clustering is strat-
egyproof and minimizes the social cost.

Proof. We first recall some of the notation about clusterings, introduced in Sec-
tion 3.2. Specifically, for a clustering C⃗ = (C1, . . . , Ck) of an instance x⃗ with
centers c⃗ = (c1, . . . , ck), the cost of an agent (or a location) x is d(x, C⃗) =
minj∈[k]{d(x, cj)}. The cost of a set of agents X in a clustering C⃗ is cost(X, C⃗) =∑

x∈X d(xj , C⃗). Finally, the cost of an instance x⃗ in a clustering C⃗ is cost(x⃗, C⃗) =∑
xj∈x⃗ d(xj , C⃗). This general notation allows us to refer to the cost of the same

clustering for different instances. I.e, if C⃗ is the optimal clustering of x⃗, then
cost(y⃗, C⃗) denotes the cost of instance y⃗ in clustering C⃗ (where we select the same
centers as in clustering C⃗ for x⃗).

The fact that if Optimal outputs k facilities, they optimize the social cost
is straightforward. So, we only need to establish strategyproofness. To this end,
we show the following: Let x⃗ be any (2 +

√
3)-perturbation stable k-Facility Lo-

cation instance with optimal clustering C⃗ = (C1, . . . , Ck). For any agent i and
any location y, let Y⃗ be the optimal clustering of the instance y⃗ = (x⃗−i, y) re-
sulting from the deviation of i from xi to y. Then, if y does not form a singleton
cluster in (y⃗, Y⃗ ), either d(xi, C⃗) < d(xi, Y⃗ ), or there is an i ∈ [k − 1] for which
max{D(Yi), D(Yi+1)} ≥ d(Yi, Yi+1).

So, we let xi ∈ Ci deviate to a location y, resulting in y⃗ = (x⃗−i, y) with optimal
clustering Y⃗ . Since y is not a singleton cluster, it is clustered with agents belonging
in one or two clusters of C⃗, say either in cluster Cj or in clusters Cj−1 and Cj . By

optimally of C⃗ and Y⃗ , the number of facilities serving Cj−1 ∪Cj ∪ {y} in (y⃗, Y⃗ ) is

no less than the number of facilities serving Cj−1 ∪ Cj in (x⃗, C⃗). Hence, there is
at least one facility in either Cj−1 or Cj .

Wlog., suppose that a facility is allocated to an agent in Cj in (y⃗, Y⃗ ). By
Corollary 3.3.5 and Observation 3.3.6, no agent in Cj is served by a facility in

x⃗\Cj in Y⃗ . Thus we get the following cases about what happens with the optimal

clustering Y⃗ of instance y⃗ = (x⃗−i, y):

Case 1: y is not allocated a facility in Y⃗ : This can happen in one of two ways:
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Case 1a: y is clustered together with some agents from cluster Cj and no

facility placed in Cj serves agents in x⃗ \ Cj in Y⃗ .

Case 1b: y is clustered together with some agents from a cluster Cj and at

least one of the facilities placed in Cj serve agents in x⃗ \ Cj in Y⃗ .

Case 2: y is allocated a facility in Y⃗ . This can happen in one of two ways:

Case 2a: y only serves agents that belong in Cj (by optimality, y must
be the median location of the new cluster, which implies that either
y < xi,l and y only serves xi,l or xj,l ≤ y ≤ xj,r).

Case 2b: In Y⃗ , y serves agents that belong in both Cj−1 and Cj .

We next show that the cost of the original clustering C⃗ is less than the cost of
clustering Y⃗ in y⃗. Hence, mechanism Optimal would also select clustering C⃗ for
y⃗, which would make xi’s deviation to y non-profitable. In particular, it suffices
to show that:

cost(y⃗, C⃗) < cost(y⃗, Y⃗ )⇔
cost(x⃗, C⃗) + d(y, C⃗)− d(xi, C⃗) < cost(x⃗, Y⃗ ) + d(y, Y⃗ )− d(xi, Y⃗ )⇔

d(y, C⃗)− d(y, Y⃗ ) < cost(x⃗, Y⃗ )− cost(x⃗, C⃗) + d(xi, C⃗)− d(xi, Y⃗ )

Since xi’s deviation to y is profitable, d(xi, C⃗)− d(xi, Y⃗ ) > 0. Hence, it suffices to
show that:

d(y, C⃗)− d(y, Y⃗ ) ≤ cost(x⃗, Y⃗ )− cost(x⃗, C⃗)
= cost(Cj , Y⃗ )− cost(Cj , C⃗) + cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)(3.5)

We first consider Case 1a and Case 2a, i.e., the cases where Y⃗ allocates facilities
to agents of Cj (between xj,l and xj,r) that serve only agents in Cj . Note that in
case 2a, y can also be located outside of Cj and serve only xi,l. We can treat this
case as Case 1a, since it is equivalent to placing the facility on xi,l and serving y
from there.

In Case 1a and Case 2a, we note that (3.5) holds if the clustering Y⃗ allocates
a single facility to agents in Cj ∪ {y}, because the facility is allocated to the

median of Cj ∪ {y}, hence d(y, C⃗) − d(y, Y⃗ ) = cost(Cj , Y⃗ ) − cost(Cj , C⃗), while

cost(x⃗ \ Cj , Y⃗ ) − cost(x⃗ \ Cj , C⃗) ≥ 0, since C⃗ is optimal for x⃗. So, we focus on
the most interesting case where the agents in Cj ∪ {y} are allocated at least two
facilities. We observe that (3.5) follows from:

d(y, C⃗)− d(y, Y⃗ ) ≤ 1
γ

(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(3.6)

cost(Cj , C⃗)− cost(Cj , Y⃗ ) ≤
(
1− 1

γ

)(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(3.7)
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To establish (3.6) and (3.7), we first consider the valid γ-perturbation of the
original instance x⃗ where all distances between consecutive agent pairs to the left
of Cj (i.e. agents {x1, x2, . . . , xj−1,r}) and between consecutive agent pairs to the
right of Cj (i.e. agents {xj+1,l, . . . , xk,r}) are scaled down by γ. By stability, the

clustering C⃗ remains the unique optimal clustering for the perturbed instance x⃗′.
Moreover, since agents in x⃗ \Cj are not served by a facility in Cj in C⃗ and Y⃗ , and
since all distances outside Cj are scaled down by γ, while all distances within Cj

remain the same, the cost of the clusterings C⃗ and Y⃗ for the perturbed instance x⃗′

is cost(Cj , C⃗)+ cost(x⃗\Cj , C⃗)/γ and cost(Cj , Y⃗ )+ cost(x⃗\Cj , Y⃗ )/γ, respectively.

Using cost(x⃗′, C⃗) < cost(x⃗′, Y⃗ ) and γ ≥ 2, we obtain:

cost(Cj , C⃗)− cost(Cj , Y⃗ ) < 1
γ

(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(3.8)

≤
(
1− 1

γ

)(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(3.9)

Moreover, if Cj ∪ {y} is served by at least two facilities in Y⃗ , the facility

serving y (and some agents of Cj) is placed at the median location of Y⃗ ’s cluster
that contains y. Wlog., we assume that y lies on the left of the median of Cj .

Then, the decrease in the cost of y due to the additional facility in Y⃗ is equal to
the decrease in the cost of xi,l in Y⃗ , which bounds from below the total decrease

in the cost of Cj due to the additional facility in Y⃗ . Hence,

d(y, C⃗)− d(y, Y⃗ ) ≤ cost(Cj , C⃗)− cost(Cj , Y⃗ ) (3.10)

We conclude Case 1a and Case 2a, by observing that (3.6) follows directly from
(3.10) and (3.8).

Finally, we study Case 1b and Case 2b, i.e, the cases where some agents of Cj

are clustered with agents of x⃗ \ Cj in Y⃗ . Let C ′
j1 and C ′

j2 denote the clusters of

(y⃗, Y⃗ ) including all agents of Cj (i.e., Cj ⊆ C ′
j1 ∪C ′

j2). By hypothesis, at least one
of C ′

j1 and C
′
j2 contains an agent z ∈ x⃗\Cj . Suppose this is true for the cluster C

′
j1.

Then, D(C ′
j1) > D(Cj), since by Corollary 3.3.5, for any γ ≥ (2+

√
3), the distance

of any agent z outside Cj to the nearest agent in Cj is larger than Cj ’s diameter.
But since both C ′

j1 and C
′
j2 contain agents of Cj , we have that d(C

′
j1, C

′
j2) < D(Cj).

Therefore, D(C ′
j1) > d(C ′

j1, C
′
j2) and the cluster-separation property is violated.

Hence the resulting instance y⃗ is not γ-stable and Mechanism 1 does not allocated
any facilities for it.

3.5 A Deterministic Mechanism Resistant to

Singleton Deviations

Next, we present a deterministic strategyproof mechanism for 5-stable in-
stances of k-Facility Location whose optimal clustering may include singleton clus-
ters. To make singleton cluster deviations non profitable, cluster merging has to
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be discouraged by the facility allocation rule. So, we allocate facilities near the
edge of each optimal cluster, ending up with a significantly larger approximation
ratio and a requirement for larger stability, in order to achieve strategyproofness.
Specifically, we now need to ensure that no agent can become a singleton cluster
close enough to her original location. Moreover, since agents can now gain by
splitting their (true) optimal cluster, we need to ensure that such deviations are
either non profitable or violate the cluster-separation property.

Theorem 3.5.1. AlmostRightmost (Mechanism 2) is strategyproof for 5-stable
instances of k-Facility Location and achieves an approximation ratio of (n− 2)/2.

Proof. The approximation ratio of (n − 2)/2 follows directly from the fact that
the mechanism allocates the facility to the second rightmost agent of each non-
singleton optimal cluster.

As for strategyproofness, let x⃗ denote the true instance and C⃗ = (C1, . . . , Ck)
its optimal clustering. We consider an agent xi ∈ Cj deviating to location y,

resulting in an instance y⃗ = (x⃗−i, y) with optimal clustering Y⃗ . Agent xi’s cost is
at most D(Cj). Agent xi could profitably declare false location y in the following
ways:

Mechanism 2: AlmostRightmost
Result: An allocation of k-facilities
Input: A k-Facility Location instance x⃗.

1 Find the optimal clustering C⃗ = (C1, . . . , Ck) of x⃗.
2 if there are two consecutive clusters Ci and Ci+1 with

max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1) then
Output: “FACILITIES ARE NOT ALLOCATED”.

3 for i ∈ {1, . . . , k} do
4 if |Ci| > 1 then
5 Allocate a facility to the location of the second rightmost agent of Ci,

i.e., ci ← xi,r−1.

6 else
7 Allocate a facility to the single agent location of Ci: ci ← xi,l
8 end

9 end
Output: The k-facility allocation c⃗ = (c1, . . . , ck).

Case 1: The agents in Cj are clustered together in Y⃗ and y is allocated a facility
with d(y, xi) < d(xi, xi,r−1) ≤ D(Cj) (xi,r−1 is the location of xi’s facility,
when she is truthful).

Case 1a: y is a singleton cluster and d(y, xi) < D(Cj). For 5-stable in-
stances, Lemma 3.3.8 implies that xi ∈ Cj has to move by at least
D(Cj) to become a singleton cluster, a contradiction.
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Case 1b: y is the second rightmost agent of a cluster C ′
j in (y⃗, Y⃗ ). Then,

the agent xi can gain only if d(y, xi) < D(Cj). In Case 1, the agents

in Cj are clustered together in Y⃗ . If y < xi, y must be the second
rightmost agent of a cluster on the left of xj,l and by Lemma 3.3.4,
d(xi, y) ≥ d(xj,l, xj−1,r) > D(Cj). Hence, such a deviation cannot be
profitable for xi (note how this case crucially uses the facility allocation
to the second rightmost agent of a cluster). If y > xi, xi can only gain
if y is the second rightmost agent of a cluster including Cj ∪{y, xj+1,l}
and possibly some agents on the left of Cj , which is treated below.

Case 2: The agents in Cj are clustered together in Y⃗ and Cj is merged with some
agents from Cj+1 and possibly some other agents to the left of xj,l (note that
merging Cj only with agents to the left of xj,l does not change the facility
of xi). Then, we only need to consider the case where the deviating agent
xi is xj,r, since any other agent to the left of xj,r−1 cannot gain, because
cluster merging can only move their serving facility further to the right. As
for xj,r, we note that by optimality and the hypothesis that agents in Cj

belong in the same cluster of Y⃗ , xi,r cannot cause the clusters Cj and Cj+1

to merge in Y⃗ by deviating in the range [xj,r, xj+1,l]. The reason is that
the set of agents (Ci \ {xj,r}) ∪ {y} ∪ Cj+1 cannot be served optimally by
a single facility, when the set of agents Cj ∪ Cj+1 requires two facilities in

the optimal clustering C⃗. Hence, unless Cj+1 is split in Y⃗ (which is treated
similarly to Case 3a), xj,r can only move her facility to Cj+1, which is not
profitable for her, due to Lemma 3.3.4.

Case 3: Cj is split into two clusters in Y⃗ . Hence, the leftmost agents, originally
in Cj , are served by a different facility than the rest of the agents originally
in Cj . We next show that in any profitable deviation of xi where Cj is
split, either the deviation is not feasible or the cluster-separation property
is violated. The case analysis below is similar to the proof of Theorem 3.4.1.

Case 3a: Agents in Cj are clustered together with some agents of x⃗ \ Cj

in Y⃗ . By hypothesis, there are agents z, w ∈ Cj placed in different

clusters of Y⃗ , and at least one of them, say z, is clustered together
with an agent p ∈ Cℓ, with ℓ ̸= j, in Y⃗ . For brevity, we refer to
the (different) clusters in which z and w are placed in clustering Y⃗
as C ′

z and C ′
w, respectively. Then, D(C ′

z) ≥ d(p, z) > D(Cj), by
Lemma 3.3.4. But also d(C ′

z, C
′
w) < d(z, w) ≤ D(Cj), and conse-

quently, D(C ′
z) > d(C ′

z, C
′
w), which implies that the cluster-separation

property is violated and Mechanism 2 does not allocate any facilities
in this case.

Case 3b: Agents in Cj are split and are not clustered together with any

agents of x⃗\Cj in Y⃗ . Hence, y is not clustered with any agents in x⃗\Cj
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in Y⃗ . Otherwise, i.e., if y is not clustered with agents of Cj in Y⃗ , it

would be suboptimal for clustering Y⃗ to allocate more than one facility
to agents of Cj \ {xi} and at most k − 2 facilities to (x⃗ ∪ {y}) \ Cj ,

while the optimal clustering C⃗ allocates a single facility to Cj and k−1
facilities to x⃗ \ Cj . But again if y is only clustered with agents of Cj ,

it is suboptimal for clustering Y⃗ to allocate more than one facility to
agents of (Cj∪{y})\{xi} and at most k−2 facilities to x⃗\Cj , while the

optimal clustering C⃗ allocates a single facility to Cj and k−1 facilities
to x⃗ \ Cj , as shown in the proof of Theorem 3.4.1.

3.6 Low Stability and Inapproximability by

Deterministic Mechanisms

We next extend the impossibility result of [112, Theorem 3.7] to
√
2-stable

instances of k-Facility Location on the line, with k ≥ 3. Thus, we provide strong
evidence that restricting our attention to stable instances does not make strate-
gyproof mechanism design trivial.

3.6.1 Image Sets, Holes and Well-Separated Instances

We start with some basic facts about strategyproof mechanisms and by adapt-
ing the technical machinery of well-separating instances from [112, Section 2.2] to
stable instances.

Image Sets and Holes. Given a mechanism M , the image set Ii(x⃗−i) of an
agent i with respect to an instance x⃗−i is the set of facility locations the agent i
can obtain by varying her reported location. Formally, Ii(x⃗−i) = {a ∈ R : ∃y ∈
R with M(x⃗−i, y) = a}.

If M is strategyproof, any image set Ii(x⃗−i) is a collection of closed intervals
(see e.g., [209, p. 249]). Moreover, a strategyproof mechanismM places a facility at
the location in Ii(x⃗−i) nearest to the declared location of agent i. Formally, for any
agent i, all instances x⃗, and all locations y, d(y,M(x⃗−i, y)) = infa∈Ii(x⃗−i){d(y, a)}.

Some care is due, because we consider mechanisms that need to be strate-
gyproof only for γ-stable instances (x⃗−i, y). The image set of such a mechanism
M is well defined (possibly by assuming that all facilities are placed to essentially
+∞), whenever (x⃗−i, y) is not γ-stable. Moreover, the requirement that M places
a facility at the location in Ii(x⃗−i) nearest to the declared location y of agent i
holds only if the resulting instance (x⃗−i, y) is stable. We should underline that all
instances considered in the proof of Theorem 3.6.5 are stable (and the same holds
for the proofs of the propositions adapted from [112, Section 2.2]).
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Any (open) interval in the complement of an image set I ≡ Ii(x⃗−i) is called a
hole of I. Given a location y ̸∈ I, we let ly = supa∈I{a < y} and ry = infa∈I{a > y}
be the locations in I nearest to y on the left and on the right, respectively. Since I
is a collection of closed intervals, ly and ry are well-defined and satisfy ly < y < ry.
For convenience, given a y ̸∈ I, we refer to the interval (ly, ry) as a y-hole in I.

Well-Separated Instances. Given a deterministic strategyproof mechanism M
with a bounded approximation ρ ≥ 1 for k-Facility Location, an instance x⃗ is
(x1| · · · |xk−1|xk, xk+1)-well-separated if x1 < · · · < xk < xk+1 and ρd(xk+1, xk) <
mini∈{2,...,k}{d(xi−1, xi)}. We call xk and xk+1 the isolated pair of the well-
separated instance x⃗.

Hence, given a ρ-approximate mechanism M for k-Facility Location, a well-
separated instance includes a pair of nearby agents at distance to each other less
than 1/ρ times the distance between any other pair of consecutive agents. There-
fore, any ρ-approximate mechanism serves the two nearby agents by the same
facility and serve each of the remaining “isolated” agents by a different facility.
We remark that well-separated instances are also ρ-stable.

We are now ready to adapt some useful properties of well-separated instances
from [112, Section 2.2]. It is not hard to verify that the proofs of the auxiliary
lemmas below apply to

√
2-stable instances, either without any change or with

some minor modifications (see also [112, Appendix A]). For completeness, we give
the proofs of the lemmas below in Appendix 3.B.

Lemma 3.6.1 (Proposition 2.2, [112]). Let M be any deterministic startegyproof
mechanism with a bounded approximation ratio ρ ≥ 1. For any (x1| · · · |xk−1|xk, xk+1)-
well-separated instance x⃗, Mk(x⃗) ∈ [xk, xk+1].

Lemma 3.6.2 (Proposition 2.3, [112]). Let M be any deterministic startegyproof
mechanism with a bounded approximation ratio ρ ≥ 1, and let x⃗ be a (x1| · · · |xk−1|xk, xk+1)-
well-separated instance with Mk(x⃗) = xk. Then, for every (x1|...|xk−1|x′k, x′k+1)-
well-separated instance x⃗′ with x′k ≥ xk, Mk(x⃗

′) = x′k.

Lemma 3.6.3 (Proposition 2.4, [112]). Let M be any deterministic startegyproof
mechanism with a bounded approximation ratio ρ ≥ 1, and let x⃗ be a (x1| · · · |xk−1|xk, xk+1)-
well-separated instance with Mk(x⃗) = xk+1. Then, for every (x1|...|xk−1|x′k, x′k+1)-
well-separated instance x⃗′ with x′k+1 ≤ xk+1, Mk(x⃗

′) = x′k+1.

3.6.2 Nonexistence of strategyproof mechanisms, with
bounded approximation in stable instances.

In this subsection we show that our restriction to deterministic mechanisms
that only guarantee strategyproofness in stable instances is imposed by the nature
of the problem and is actually the only way that bounded approximation strate-
gyproof mechanisms can be created for this family of instances. More specifically,
a natural question to arise after observing the negative result of [112] and our

70



positive results about creating good mechanisms that only work when restricted
to the domain of strategyproof instances would be: ”Can we create mechanisms
that are strategyproof (not necessarily bounded approximation) for all instances
but also bounded approximation for stable instances?”. Here we show that the
answer to this question is no.

The idea behind this observation is the following: In the proof of the negative
result in [112, Theorem 3.7] we see that the authors start with an original in-
stance that due to bounded approximation has to have a specific allocation. Then
they argue that because of the mechanism’s behaviour in that first instance the
mechanism would have to follow a specific behaviour in a slightly altered instance
than the original for one of two reasons: either to maintain strategyproofness or to
maintain bounded approximation. Building on this logic then we follow a series of
intermediate instances along with the equivalent ”forced” behaviour of the mecha-
nism, in order to guarantee these properties, to finally end up in an contradictory
allocation (i.e. recreate the original instance showing that the mechanism would
allocate two facilities over the well separated pair, violating the bounded approx-
imation property). All we need to do to reach the required conclusion then, is to
recreate a similar (or the same proof) showing that each intermediate instance in
which we determine the mechanism’s behaviour by the fact that it should maintain
a bounded approximation ratio is stable. Thus we allow the mechanism to only be
strategyproof in general instances but only require it to be bounded approxima-
tion in stable ones. Reaching the same contradiction as in the original proof we
conclude that such a mechanism doesn’t exist.

Theorem 3.6.4. For every k ≥ 3, any deterministic strategyproof mechanism for
k-facility location on the real line with n ≥ k + 1 agents has unbounded approxi-
mation ratio within any domain of γ-stable instances, for any γ ≥ 1.

Proof. We only consider the case where k = 3 and n = 4. It is then not hard to
verify that the result stands for any k ≥ 3 and n ≥ k+1. To reach a contradiction,
let M be any deterministic anonymous mechanism

3.6.3 The Proof of the Impossibility Result

We are now ready to establish the main result of this section. The proof of
the following builds on the proof of [112, Theorem 3.7]. However, we need some
additional ideas and to be way more careful with the agent deviations used in the
proof, since our proof can only rely on

√
2-stable instances.

Theorem 3.6.5. For every k ≥ 3 and any δ > 0, any deterministic anonymous
strategyproof mechanism for (

√
2−δ)-stable instances of k-Facility Location on the

real line with n ≥ k + 1 agents has an unbounded approximation ratio.

Proof. We only consider the case where k = 3 and n = 4. It is not hard to verify
that the proof applies to any k ≥ 3 and n ≥ k + 1. To reach a contradiction, let
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M be any deterministic anonymous strategyproof mechanism for (
√
2 − δ)-stable

instances of 3-Facility Location with n = 4 agents and with an approximation ratio
of ρ ≥ 1.

We consider a (x1|x2|x3, x4)-well-separated instance x⃗. For a large enough
λ ≫ ρ and a very large (practically infinite) B ≫ 6ρλ, we let x⃗ = (0, λ, 6B +
λ, 6B + λ + ε), for some small enough ε > 0 (ε ≪ λ/ρ). By choosing λ and ε
appropriately, becomes the instance x⃗ γ-stable, for γ ≫

√
2.

By Lemma 3.6.1, M3(x⃗) ∈ [x3, x4]. Wlog, we assume that M3(x⃗) ̸= x3 (the
case where M3(x⃗) ̸= x4 is fully symmetric and requires Lemma 3.6.2). Then,
by moving agent 4 to M3(x⃗), which results in a well-separated instance and, by
strategyproofness, requires that M keeps a facility there, we can assume wlog.
that M3(x⃗) = x4.

Since x⃗ is well-separated and M is ρ-approximate, both x3 and x4 are served
by the facility at x4. Hence, there is a x3-hole h = (l, r) in the image set I3(x⃗−3).
Since M(x⃗) places a facility at x4 and not in x3, the right endpoint r of h lies
between x3 and x4, i.e. r ∈ (x3, x4]. Moreover, since M is ρ-approximate and
strategyproof for (

√
2− δ)-stable instances, agent 3 should be served by a facility

at distance at most ρλ to her, if she is located at 4B. Hence, the left endpoint of
the hole h is l > 3B. We distinguish two cases based on the distance of the left
endpoint l of h to x4.
Case 1: x4 − l >

√
2λ. We consider the instance y⃗ = (x⃗−3, a), where a > l is

arbitrarily close to l (i.e., a ≳ l) so that d(a, x4) =
√
2λ. Since d(x1, x2) = λ,

d(x2, a) is quite large, and d(a, x4) =
√
2λ, the instance y⃗ is (

√
2 − δ)-stable, for

any δ > 0. By strategyproofness,M(y⃗) must place a facility at l, since l ∈ I3(x⃗−3).
Now, we consider the instance y⃗′ = (y⃗−4, l). Since we can choose a > l so

that d(l, a)≪ λ, the instance y⃗′ is (x1|x2|l, a)-well-separated and (
√
2− δ)-stable.

Hence, by strategyproofness, M(y⃗′) must keep a facility at l, because l ∈ I4(y⃗−4).
Then, by Lemma 3.6.3, y′4 = a ∈ M(y⃗′), because for the (x1|x2|x3, x4)-well-

separated instance x⃗, M3(x⃗) = x4, and y⃗
′ is a (x1|x2|l, a)-well-separated instance

with y′4 ≤ x4. Since both l, a ∈ M(y⃗′), either agents 1 and 2 are served by the
same facility of M(y⃗′) or agent 2 is served by the facility at l. In both cases, the
social cost of M(y⃗′) becomes arbitrarily larger than a − l, which is the optimal
social cost of the 3-Facility Location instance y⃗′.
Case 2: x4 − l ≤

√
2λ.

Let m = (r+ l)/2 be the midpoint of the x3-hole (l, r) in I3(x⃗−3). We consider
the instance y⃗ = (x⃗−3, a), where a < m is arbitrarily close to m (i.e., a ≲ m) so
that a− l < r− a and d(a, x4) ≲

√
2λ/2. The latter is possible since x3 is already

arbitrarily close to x4 and the right endpoint r of the hole h = (l, r) lies in (x3, x4].
Since d(x1, x2) = λ, d(x2, a) is quite large, and d(a, x4) ≲

√
2λ/2, the instance y⃗ is

(
√
2 − δ)-stable, for any δ > 0. By strategyproofness, M(y⃗) must place a facility

at l, since l ∈ I3(x⃗−3) and l is the nearest endpoint of the hole h = (l, r) to a.
As before, we now consider the instance y⃗′ = (y⃗−4, l). Since d(x1, x2) = λ,

d(x2, a) is quite large, and d(a, l) < d(a, r) ≤
√
2λ/2, the instance y⃗′ is (

√
2 − δ)-
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stable, for any δ > 0. Hence, by strategyproofness, M(y⃗′) must keep a facility at
l, because l ∈ I4(y⃗−4).

To conclude the proof, we need to construct a (x1|x2|l′, l′ + ε)-well-separated
instance z⃗ with l′ ∈ M(z⃗). Then, we can reach a contradiction to the hypothesis
that M has a bounded approximation ratio, by applying Lemma 3.6.3, similarly
to Case 1.

To this end, we consider the image set I4(y⃗
′
−4) of agent 4 in y⃗′−4 = (x1, x2, a).

Since l ∈ M(y⃗′), l ∈ I4(y⃗′−4). If a − ε ∈ I4(y⃗′−4), the instance z⃗ = (y⃗′−4, a − ε) is

(x1|x2|a−ε, a)-well-separated (and thus, (
√
2−δ)-stable, for any δ > 0). Moreover,

by strategyproofness, M(z⃗) must place a facility at a− ε, because a− ε ∈ I4(y⃗′−4).
Otherwise, there must be a hole h′ = (l′, r′) in the image set I4(y⃗

′
−4), with l

′ > l
(because l ∈ I4(y⃗′−4)) and r′ < a − ε (because of the hypothesis that a − ε ̸∈ l ∈
I4(y⃗

′
−4)). We consider the instance z⃗′ = (y⃗′−4, l

′ + ε) = (x1, x2, l
′ + ε, a). Since

l′ + ε ∈ (l, a), d(a, l′ + ε) < d(a, l) <
√
2λ/2 and the instance z⃗′ is (

√
2− δ)-stable,

for any δ > 0. Therefore, by strategyproofness and since l′ ∈ I4(y⃗′−4), M(z⃗′) must
place a facility at l′. We now consider the instance z⃗ = (z⃗′−3, l

′) = (x1, x2, l
′, l′+ε),

which is (x1|x2|l′, l′ + ε)-well-separated (and thus, (
√
2− δ)-stable, for any δ > 0).

Moreover, by strategyproofness and since l′ ∈M(z⃗′), and thus, l′ ∈ I3(z⃗′−3), M(z⃗)
must place a facility at l′.

Therefore, starting from the (
√
2 − δ)-stable instance y⃗′, with l ∈ M(y⃗′), we

can construct a (x1|x2|l′, l′ + ε)-well-separated instance z⃗ with l′ ∈ M(z⃗). Then,
by Lemma 3.6.3, z4 = l′ + ε ∈M(z⃗), because for the (x1|x2|x3, x4)-well-separated
instance x⃗, M3(x⃗) = x4, and z⃗ is a (x1|x2|l′, l′ + ε)-well-separated instance with
z4 ≤ x4. Since both l′, l′ + ε ∈ M(z⃗), the social cost of M(z⃗) is arbitrarily larger
than ε, which is the optimal social cost of the 3-Facility Location instance z⃗.

3.7 A Randomized Mechanism with Constant

Approximation

In this section, we show that for an appropriate stability, a simple random-
ized mechanism is strategyproof, can deal with singleton clusters and achieves an
approximation ratio of 2.

The intuition is that the AlmostRightmost mechanism can be easily trans-
formed to a randomized mechanism, using the same key properties to guaran-
tee strategyproofness, but achieving an O(1)-approximation, as opposed to O(n)-
approximation of AlmostRightmost. Specifically, Random (see also Mecha-
nism 3) again finds the optimal clusters, but then places a facility at the location
of an agent selected uniformly at random from each optimal cluster. We again use
cluster-separation property, as a necessary condition for stability of the optimal
clustering. The stability properties required to guarantee strategyproofness are
very similar to those required by AlmostRightmost, because the set of possible
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profitable deviations is very similar for AlmostRightmost and Random. Fi-
nally, notice that the cluster-separation property step of Random (step 2) now
makes use that due to Lemma 3.3.4, it must be 1.6 · max{D(Ci), D(Ci+1)} <
d(Ci, Ci+1) for 5-stable instances.

Mechanism 3: Random
Result: An allocation of k-facilities
Input: A k-Facility Location instance x⃗.

1 Find the optimal clustering C⃗ = (C1, . . . , Ck) of x⃗.
2 if there are two consecutive clusters Ci and Ci+1 with

1.6 ·max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1) then
Output: “FACILITIES ARE NOT ALLOCATED”.

3 for i ∈ {1, . . . , k} do
4 Allocate the facility to an agent ci selected uniformly at random from the

agents of cluster Ci

5 end
Output: The k-facility allocation c⃗ = (c1, . . . , ck).

Theorem 3.7.1. Random (Mechanism 3) is strategyproof and achieves an ap-
proximation ratio of 2 for 5-stable instances of k-Facility Location on the line.

Sketch. We present here the outline of the proof. The full proof then follows. The
approximation guarantee is straightforward to verify. As mentioned, the proof of
strategyproofness is smilar to the proof of Theorem 3.5.1. In general, we need to
cover the key deviation cases, which include the following:

Case 1: why agent deviating agent x ∈ Ci cannot gain by becoming a member of
another cluster,

Case 2: or by becoming a self serving center,

Case 3: or by merging or splitting Ci.

Cases 2 and 3 can be immediately derived from the proof of Theorem 3.5.1.
The most interesting case is Case 1: xi deviates to x

′ to be clustered together
with agents from a different cluster of C⃗, in order to gain, without splitting Ci

(again consider C⃗ = (C1, ..., Ck) the optimal clustering of original instance x⃗ and
C⃗ ′ the optimal clustering of instance x⃗′ = (x⃗−i, x

′)).
By analyzing the expected value of agent xi in both clusterings C⃗ and C⃗ ′ we

show that in order for her to be able to gain from such a deviation, it must be
d(x′, xi) < D(Ci) and x

′ is clustered together with agents in Ci−1 or Ci+1, suppose
Ci−1 w.l.o.g. Since agents in Ci \ xi are not split in clustering C⃗ ′, we know they
form cluster C ′

i′ ∈ C⃗ ′. Hence, in this case x ∈ C ′
i′−1. The key to the proof is to

show that since d(x′, xi) < D(Ci) then clustering C⃗ ′ on instance x⃗′ violates the
cluster separation property verification step, either between clusters C ′

i′ and C
′
i′−1

or between clusters C ′
i′−1 and C ′

i′−2. This is also the reason why in this case the
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cluster separation property verification step needs to be more precise, for 5-stable
instances, as mentioned in the description of the algorithm.

Proof. The approximation guarantee easily follows from the fact that since a facil-
ity is uniformly at random placed over each optimal cluster, the expected cost of
the sum of the cost of the agents in each cluster is 2 times their cost in the optimal
clustering.

As is it always with our mechanisms, agent xi ∈ Ci cannot gain by moving
within the range of Ci (this would only increase her utility).

Since the analysis of Random is so similar to the analysis of the mechanism in
Section 3.5, we skip the detailed case analysis and mention only the key deviation
cases that need be covered. Specifically these include:

Case 1: why agent xi ∈ Ci cannot gain by becoming a member of another cluster,

Case 2: or by becoming a self serving center

Case 3: or by merging or splitting Ci.

Without loss of generality, consider the deviating agent to be the edge agent
xi,l ∈ Ci, declaring location x′ creating instance x⃗′ = (x⃗−xi,l

, x′) with optimal

clustering C⃗ ′. If our results stand for her, they easily transfer to all agents in Ci. Ci

contains n agents, including xi,l. For simplicity, without loss of generality we index
these agents from left to right, excluding xi,l , such as xi,l ≤ xi,1 ≤ · · · ≤ xi,n−1 ,
where xi,1 = xi,l+1 and xi,n−1 = xi,r . Now for simplicity, we represent d(xi,l, xi,j)
by di,j . Of course di,l = 0. We define as Xi the discrete random variable that takes
values from sample space {di,l, di,1, di,2, . . . , di,n−1} uniformly at random. That is,
Xi represents the cost agent xi,l experiences if she is served by the facility placed
in Ci by the mechanism. Then, the expected cost of xi,l should she not deviate is:

E(Xi) =
0 + di,1 + . . .+ di,n−1

n

That is, since for any agent xj /∈ Ci, d(xj , xi,l) > D(Ci) = di,n−1 by Lemma 3.3.4.
Now, for Case 1, “why agent x ∈ Ci cannot gain by becoming a member of

another cluster”. Notice that this is the case where agents in Ci are not merged
or splitted in C⃗ ′. With some abuse of notation, this allows us to refer to the
cluster containing agents in Ci \ xi,l in C⃗ ′ of x⃗ as C ′

i. C ′
i−1 then is the set of

agents belonging to the cluster immediately to the left of C ′
i (i.e. the rightmost

agent of C ′
i−1, excluding x

′, is xi−1,r). Consider a deviation x′ that places the
deviating agent in cluster C ′

i−1 after step 1 of the mechanism. Again for simplicity
consider d(x′, xi,l) = c and we index agents in Ci−1 inversely, such that xi−1,1̂ ≥
xi−1,2̂ ≥ . . . ≥ xi−1,n̂′ (meaning that now xi−1,r = xi−1,1̂, xi−1,r−1 = xi−1,2̂ etc.)

where |Ci−1| = n′. Equivalently we set d(xi,l, xi−1,ĵ) = di−1,j . By Corollary 3.3.5,
we have di,1 ≤ di,2 ≤ · · · ≤ di,n−1 ≤ di−1,1 ≤ · · · ≤ di−1,n′ . Now we define
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uniform random variable X ′
i with sample space {di,1, . . . , di,n−1} (see that di,l is

now absent) and random variable X ′
i−1 with sample space {c, di−1,1, . . . , di−1,n′}.

Now X ′
i represents the cost of xi,l should she be served by the facility placed in C ′

i

of the changed instance (which now doesn’t include her) and X ′
i−1 her cost should

she be served by the facility placed at C ′
i−1 (which now includes her false declared

location). The expected cost of xi,l now becomes E(min{X ′
i, X

′
i−1}).

But, since di,1 ≤ di,2 ≤ . . . ≤ di,n−1 ≤ di−1,1 ≤ . . . ≤ di−1,n′ , unless d(x′, xi,l) <
di,n−1 = D(Ci), we have that:

E(min{X ′
i, X

′
i−1}) = E(X ′

i) =
di,1 + . . .+ di,n−1

n− 1
> E(Xi)

That means that xi,l cannot gain by this deviation unless x′ both belongs in C ′
i−1

and d(x′, xi,l) < D(Ci). All we need to show now is that any such situation would
result in a violation of the inter-cluster distance between C ′

i−1 and C ′
i or between

C ′
i−1 and C ′

i−2, guaranteed by the cluster-separation property and hence it would
be caught by the mechanism’s cluster-separation property verification step.

Specifically consider the distance of xi,l to her center ci of Ci in the optimal
clustering. We know that it must be d(Ci−1, Ci) ≥ D(Ci) · 1.6, by Lemma 3.3.4,
for the given stability factor of 5. But in order for this distance to be tight, it
must be that d(xi,l, ci) = 0.4 · D(Ci) (see factor c of proof of Lemma 3.3.4 -due
to stability properties, if d(xi,l, ci) < 0.4 · D(Ci) or > 0.4 · D(Ci), d(Ci−1, Ci)
grows larger than D(Ci) · 1.6). Furthermore, in order for this distance to be
tight, it must also be d(ci−1, xi−1,r) < 0.4 · D(Ci) (since by stability it must be
d(Ci−1, Ci) = d(xi−1,r, xi,l) > (γ − 1)d(xi−1,r, ci−1)).

Now, since it must be d(x′, xi,l) < D(Ci) it will be d(x′, ci) < 1.4D(Ci) and
d(x′, xi−1,r) > 0.6D(Ci) (since d(Ci, Ci−1) > 1.6D(Ci) by Lemma 3.3.4). Finally
we distinguish between two cases:

Case 1: ci−1 ∈ C ′
i−1. Now notice that d(xi,l, ci−1) > 5d(xi,l, ci) so d(xi,l, ci−1) >

2D(Ci). Then D(C ′
i−1) ≥ d(ci−1, x

′) > D(Ci) (since d(x′, xi,l) < D(Ci)).
But then d(C ′

i−1, C
′
i) ≤ d(x′, ci) ≤ 1.4 ·D(Ci) which means that the cluster

separation verification property of step 2 would be violated.

Case 2: ci−1 /∈ C ′
i−1. Then, in this edge case we notice it would be d(C ′

i−1, C
′
i−2) ≤

d(ci−1, xi−1,r) ≤ 0.4D(Ci). But D(C ′
i−1) ≥ d(xi−1,r, x

′) ≥ 0.6D(Ci). Hence
the verification property of step 2 is again violated between C ′

i−1 and C ′
i−2.

All we have to do to finish, is note that as ci moves to the right or to the left,
d(Ci−1, Ci) grows by a multiplicative factor γ − 1 (=4) of d(xi,l, ci) (see proof of
Leamma 3.3.4) and d(xi,l, ci−1) by a multiplicative factor of 5 (remember, it must
be both d(xi,l, ci−1) > 5d(xi,l, ci) and d(xi,r, ci−1) > 5d(xi,r, ci)). Which means
that the above inequalities will still hold. 3

3Notice here that while this property was a must-have for AlmostRightmost to work
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For Case 2, why agent xi,l cannot gain by becoming a self serving cluster, we
simply notice the following: her cost, should she not deviate, is at most D(Ci)
(see expected value from previous case). But, from Lemma 3.3.8 we know that xi,l
must deviate by at-least ≥ D(Ci), for a stability factor of 5. So she cannot gain
from this deviation4.

For Case 3, it is not hard to see that by merging all the agents in Ci with agents
/∈ Ci, her expected cost can only increase. Furthermore, splitting the agents in Ci

would cause the cluster-separation property verification step to identify the split
(see the proof of the strategyproofness of the AlmostRightmost mechanism, in
Section 3.5) and remove all agents of Ci from the game.

3.A Proof of lemma 3.3.8.

We first present the outline of the proof and then the proof follows. We do
this because despite the mostly relatively straight forward arguments used in the
proof, due to the delicate formalization required in order to formally describe all
the mentioned conditions, the proof gains a good amount of descriptive length.
We consider random agent xi ∈ Ci of instance x⃗ with optimal clustering C⃗ =
(C1, ..., Ck), deviating to location x′ creating instance x⃗′ = (x−i, x

′).
Initially we show that due to the large distance between clusters Ci and Cj with

i ̸= j, guaranteed by Lemma 3.3.4 for 5-stable instances, we need only study the
cases where x′ ∈ (xi−1,r, xi,l) and x′ ∈ (xi,r, xi+1,l) and in the optimal clustering

C⃗ ′ of instance x⃗′ no agent in x⃗′ \Ci is served together with any agent in Ci
5, as in

all other cases either x′ is not a singleton in C⃗ ′ or d(x′, xi) > D(Ci).
The rest of the proof follows the logic of the proof of Theorem 3.4.1 (which

follows), tailored to this specific case. More specifically, given the observation
above, we notice the following: In alternative clustering C⃗ ′′ in which we forcefully
place two facilities serving only agents in Ci (optimally with regards to serving
agents in Ci), and serve the remaining agents, x⃗\Ci, optimally with k−2 facilities,
the cost agents in x⃗ \ Ci experience in clustering C⃗ ′′ is the same cost agents in
x⃗′ \Ci

⋃
x′ experience in clustering C⃗ (notice that the sets x⃗ \Ci and x⃗

′ \Ci
⋃
x′).

Now, the cost of agents in Ci in clustering C⃗ ′′ is at least D(Ci)/2 smaller than it is
in C⃗ ′ (that is since we can always place the facility to the edge agent further from
ci - see proof of Theorem 3.4.1). But since C⃗ ′′ is not optimal for x⃗ this means that

i.e. the mechanism wouldn’t work if x′ both belongs in C ′
i−1 and d(x′, xi,l) < D(Ci), here

this might not the case. We can easily see this guarantees strategyproofness, but it might
not be necessary which means the mechanism may work for smaller stability factors.

4Again, while this property guarantees strategyproofness, it might not be necessary for
example, we see that in one of the bad edge cases, where all agents of Ci are gathered on
xi,r, with ci = xi,r a stability of 3 would suffice to guarantee that xi,l needs to deviate by
at-least D(Ci) to become a self-serving cluster.

5Note here that we refer to the group of agents that belong in cluster Ci of the optimal
clustering of instance x⃗. This group is well defined for instance x⃗′ as well.
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agents in x⃗ \ Ci experience an increase in cost larger than D(Ci)/2 in clustering
C⃗ ′′ when compared to clustering C⃗. For brevity we symbolize this cost increase as
cst, so we say cst > D(Ci)/2.

We now we consider the 4-perturbation of instance x⃗ in which all distances
among agents to the left and to the right of Ci are shrunk by a factor of 4. By
stability we know that the optimal clustering of the perturbed instance should be
the same as the optimal clustering of the original! But in the perturbed instance
all costs of agents in x⃗ \ Ci are divided by 4 in both clusterings C⃗ and C⃗ ′′ while
the costs of agents in Ci remain the same. So, in order for C⃗ ′′ to be sub-optimal
in the perturbed instance it must be cst/4 > D(Ci)/2 which means cst > 2D(Ci).
But serving agent x′ of x⃗′ by ci has cost at most 2D(Ci) if d(x

′, xi) < D(Ci) since
d(xi, ci) < D(Ci). This means that clustering C⃗ ′ cannot be optimal for x⃗.

Proof. We want to show the lemma for any γ-stable instance for γ ≥ 5.
We prove the lemma for random agent xj ∈ Ci for some cluster Ci in optimal

clustering C⃗ = (C1, . . . , Ck) of the γ-stable instance x⃗. Consider that the agent
declares false location x′ providing input profile x⃗′ = (x⃗−j , x

′) to the mechanism in
order to become a singleton cluster. That is, if the optimal clustering of instance
x⃗′ is Y⃗ then x′ is a single agent cluster in Y⃗ .

We first study the case where |Ci| = 2. But then, from Lemma 3.3.7 we know
that for any γ-stable instance for γ ≥ 3 agent xj ∈ Ci of optimal clustering C⃗
must deviate by at least his distance to Ci’s center in order to become a singleton
cluster in Y⃗ . I.e. it must be d(x′, xj) > d(xj , ci) = D(Ci), so the lemma stands for
this case.

For the most general case, |Ci| ≥ 3 we start with some observations. By
Lemma 3.3.4 we know that for any two clusters Ci and Cj of optimal clustering

C⃗ = (C1, . . . , Ck) of x⃗ we have d(Ci, Cj) >
(
(γ−1)2

2γ

)
max{D(Ci), D(Cj)}. For

γ ≥ 5 that is:

d(Ci, Cj) > 1.6max{D(Ci), D(Cj)}. (3.11)

To begin, we notice the following claim:

Claim 1. Agent xi cannot declare a false location x′ with xi,l ≤ x′ ≤ xi,r in such

a way that x′ is a singleton cluster in Y⃗ .

We can easily see the validity of the claim, since by optimality (also see proof of
Theorem 3.4.1) xj ∈ Ci cannot change the optimal clustering by deviating within
the bounds of cluster Ci, i.e. if xi,l ≤ x′ ≤ xi,r.Hence it must be x′ ̸= [xi,l, xi,r].
Even so, for completeness, we provide a proof of the claim, tailored to the case of
5-stable instances, after the proof of the lemma.

In addition, we notice that if x′ ≤ xi−1,r or x
′ ≥ xi+1,l then the lemma trivially

stands, again by Equation 3.11 (I.e. in this case it would be d(x′, xj) > 1.6D(Ci)).
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This means that we need only study the cases where x′ ∈ (xi−1,r, xi,l) or x
′ ∈

(xi,r, xi+1,l) and d(x′, xj) < D(Ci) (and show that x′ cannot become a singleton

cluster in Y⃗ in these cases).
Suppose, contrary to the lemma’s claim, that agent declares location x′ ∈

(xi−1,r, xi,l) with d(x
′, xj) < D(Ci) such that x′ is a singleton in Y⃗ (the other case,

x′ ∈ (xi,r, xi+1,l), is symmetrical). Then we notice the following three properties

for optimal clustering Y⃗ of instance x⃗′:

Property 1: In Y⃗ there is a facility among agents in Ci \ xj .

Property 2: In Y⃗ no agent“to the left” of cluster Ci (i.e. by an agent in some
cluster Cl for l < i, of C⃗) is served by an agent in Ci \ xj .

Property 3: In Y⃗ no agent “to the right” of cluster Ci (i.e. by an agent in some
cluster Cl for l > i, of C⃗) is served by an agent in Ci \ xj .

The imminent conclusion from Properties 1, 2 and 3 is the following: Consider
instance x⃗ \ Ci and it’s optimal k − 2-clustering C⃗−2. Then cost(x⃗ \ Ci, Y⃗ ) =
cost(x⃗ \ Ci, C⃗−2)

6. We provide short proofs for each one of these three properties
right after the proof of the lemma.

We are now ready to complete the proof. In order to do so we bound the extra
cost experienced by agents in x⃗\Ci in the possible re-clustering after xi’s deviation,
i.e. cost(x⃗ \ Ci, Y⃗ ) − cost(x⃗ \ Ci, C⃗). We do this by considering the following
alternative clustering C ′ of instance x⃗: serve agents in Ci using two facilities,
optimally and agents in x⃗ \Ci using the remaining k− 2 facilities optimally. So in
C⃗ ′ we have:

cost(Ci, C⃗
′) ≤ cost(Ci, C⃗)−

D(Ci)

2
, (3.12)

since placing the second facility placed among agents in Ci to the edge-agent
further away from ci reduces the cost by at least D(Ci)

2 .

But since C⃗ is optimal in x⃗ and hence C⃗ ′ is not, it must be:

cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗) >
D(Ci)

2
(3.13)

Otherwise it would be cost(x⃗, C⃗ ′) < cost(x⃗, C⃗). Now notice that properties 1,
2 and 3 mean that agents in x⃗ \Ci are clustered in exactly the same way in C⃗ ′ as
in Y⃗ . That means that:

cost(x⃗′ \ {Ci

⋃
x′}, Y⃗ ) = cost(x⃗ \ Ci, C⃗

′) (3.14)

and that no agent to the left of Ci is clustered together with any agent to the right
of Ci in C⃗

′.

6For a description of this notation, of the form cost(x⃗, C⃗), see proof of Theorem 3.4.1
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The last observation means if we consider a 4-perturbation of instance x⃗, in-
stance x⃗p, in which we divide all distances among agents between [xl, xi−1,r] and
agents between [xi+1,l, xr], where xl and xr the leftmost and rightmost agents of
the instance equivalently we have that:

cost(x⃗p \ Ci, C⃗ ′)− cost(x⃗p \ Ci, C⃗) =
cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗)

4

But in xp the distances among agents in Ci remain unaffected which means that
in xp, Equation 3.12 still stands. This means, that since the instance is 5-stable,

clustering C⃗ ′ must still be sub-optimal in x⃗p and hence it must be

cost(x⃗p \ Ci, C⃗ ′)− cost(x⃗p \ Ci, C⃗) >
D(Ci)

2
⇒

cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗)

4
>
D(Ci)

2
⇒

cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗) > 2D(Ci).

(3.15)

Noticing again that by Equation (3.14), cost(x⃗′\{Ci
⋃
x′}, Y⃗ ) = cost(x⃗\Ci, C⃗

′)
and by Equation (3.15) and cost(x⃗ \ Ci, C⃗) = cost(x⃗′ \ {Ci

⋃
x′}, C⃗) we have

cost(x⃗′ \ {Ci

⋃
x′}, Y⃗ )− cost(x⃗ \ {Ci

⋃
x′}, C⃗) > 2D(Ci).

Finally, since d(x′, xi) < D(Ci),

cost({Ci

⋃
x′ \ xi}, C⃗)− cost({Ci

⋃
x′ \ xi}, Y⃗ ) < 2D(Ci),

since d(xi, ci) ≤ D(Ci). By adding the last two equations we get that cost(x⃗′, Y⃗ ) >
cost(x⃗′, C⃗) which means that Y⃗ is not optimal.

We now present the proofs of Claim 1 and Properties 1, 2 and 3, used in
the main proof of Lemma 3.3.8.

Of Claim 1. Consider x′i,l and x
′
i,r to be the leftmost and rightmost agents of Ci\xj

(i.e. if xj ̸= xi,r, xi,l then xi,r = x′i,r and xi,l = x′i,l).

Contrary to the claim, suppose x′i,l ≤ x′ ≤ x′i,r and x′ is a singleton cluster Y⃗ .
Since x′ is a singleton and x′i,l and x

′
i,r are to her left and right side equivalently, x′i,l

and x′i,r cannot be served by the same facility in Y⃗ (since clustering Y⃗ is optimal
for x⃗′). This means that either x′i,l or x

′
i,r is served by an agent in x⃗ \ Ci or there

are two facilities among agents in Ci \ xj in Y⃗ . Both of these cases are infeasible
though. For the first one, suppose that xi,r is not served by an agent in Ci \xj . By
Equation 3.11 that means that the cost of serving xi,r is at-least 1.6D(Ci). But

since x′i,l ≤ x′ ≤ x′i,r x
′, d(x′, xi,r) < D(Ci) so Y⃗ could not be optimal in x⃗′. For
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the latter case (Y⃗ places two facilities among agents in Ci \ xj) we see that if Y⃗
is optimal for x⃗′ then the optimal (k− 1)-clustering of instance (x⃗−j) would place
two facilities among agents in Ci \ xj (since x′ is a singleton removing her and
one facility from the instance should yield the exact same clustering for the rest
of the agents). But then, since in C⃗ there is only one facility among agents in Ci,
C⃗ could not be optimal for instance x⃗ (because if the optimal (k− 1)-clustering of
instance (x⃗−j) places two facilities among agents in set Ci \ xj then the optimal
k-clustering of instance x⃗ should place at least as many among agents in Ci) ,
which is a contradiction.

Finally we notice that if xj = xi,l, x
′ cannot become a singleton in Y⃗ if x′ ∈

[xi,l, x
′
i,l] since the cost serving agent xj by ci in that interval is only decreased (in

relation to the cost of serving her by ci in x⃗ - she’s getting closer to her serving
facility). Similarly for the case of xj = xi,r moving in interval [x′i,r, xi,r]. The
above mean that agent xj cannot become a singleton cluster by moving within the

bounds of Ci (i.e. if x
′ is a singleton in Y⃗ it must be x′ /∈ [xi,l, xi,r]), which is the

claim.

Of Property 1. We know that |Ci \ xj | ≥ 2. Furthermore, since d(x′, xj) < D(Ci)
we have that d(x′, ci) < 2D(Ci). But if there is no facility among agents in Ci \xj
that means that these agents are all served by a facility placed in a location xl
with xl ∈ Cl with l ̸= i. But, again by Equation 3.11 that would mean that

cost(Ci \ xj , Y⃗ ) > 2 ∗ 1.6D(Ci) + cost(Ci \ xj , C⃗) (3.16)

(since |Ci \ xj | ≥ 2, d(Ci, Cl) ≥ 1.6D(Ci)). Furthermore, since agents in x⃗ \Ci are

served by the same number of facilities in Y⃗ as in C⃗, but also have to serve agents
in Ci \ xj in Y⃗ (i.e. the placement of the (k − 1) facilities among agents in x⃗ \ Ci

is not optimal in Y⃗ as it is in C⃗, for these agents) we have

cost(x⃗ \ Ci, Y⃗ ) ≥ cost(x⃗ \ Ci, C⃗). (3.17)

Hence, by adding (3.16) and (3.17) we have that :

cost(x⃗ \ xj , Y⃗ ) > 2 ∗ 1.6D(Ci) + cost(x⃗ \ xj , C⃗)

By remembering that x⃗′ = (x⃗−j , x
′) and in Y⃗ x′ is a singleton cluster (i.e. has

cost 0) the above becomes:

cost(x⃗′, Y⃗ ) > 2 ∗ 1.6D(Ci) + cost(x⃗ \ xj , C⃗) (3.18)

But, alternative clustering C⃗ ′ for x⃗′ in which we serve all agents as we do in C⃗
and also serve location x′ by ci has cost

cost(x⃗′, C⃗ ′) ≤ cost(x⃗ \ xj , C⃗) + 2D(Ci), (3.19)
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since d(x′, ci) < 2D(Ci).
This means that, by (3.18) and (3.19) cost(x⃗′, Y⃗ ) > cost(x⃗′, C⃗ ′) which means

that clustering Y⃗ would be sup-optimal for instance x⃗′, which is a contradiction.
Notice that by Observation 3.3.6, property 1 means that no agents in Ci \ xj

are served by an agent not in Ci in Y⃗ .

Of Property 2. Property 2 is trivial: since x′ ∈ (xi−1,r, xi,l) and x
′ forms a single-

ton cluster in Y⃗ , by optimality no agent to the left of x′ is clustered together with
agents to the right of x′.

Of Property 3. Initially, for property 3 we notice the following: At most 1 agent
in Ci+1 can be clustered together with agents in Ci in Y⃗ . Otherwise, due to the
distance between Ci and Ci+1, clustering Y⃗ would be sub-optimal (using the same
reasoning as for property 1). Obviously, due to optimality, this agent can only be
xi+1,l.

We now consider the structure of cluster Ci in relation to agent xi+1,l. Specif-
ically, by Equation (3.11) it must be

d(xi,r, xi+1,l) > 1.6 ·D(Ci), (3.20)

since d(xi,r, xi+1,l) = d(Ci, Ci+1). By looking at the proof of Lemma 3.3.4 we
see that the smallest possible distance between Ci and Ci+1 is achieved when

d(xi,l, ci) =
D(Ci)

c for c = 2γ2

γ2+γ
⇒ 1

c = 0.6 for γ = 5. This means that since agent

xj deviates to the left in this case, by at most D(Ci), it must be

d(x′, ci) ≤ 1.6D(Ci), (3.21)

in the edge case. Furthermore, by Observation 3.3.6, since xi+1,l is not served

by an agent in Ci+1 there is no facility among agents in Ci+1 in Y⃗ . I.e. all
agents in Ci+1 \ xi+1,l are served by a facility placed on [xi+2,l, xn] where xn the
rightmost agent location in the instance. But, by Lemma 3.3.4, if xi+1,l is served

by ci+1 ∈ Ci+1 in C⃗, d(Ci+1, Ci+2) > 1.6D(Ci+1) ≥ 1.6d(xi+1,l, ci+1) and so, it is

cost(xi+1,o, Y⃗ ) ≥ d(xi+1,o, xi+2,l) ≥ 1.6d(xi+1,l, ci+1), (3.22)

for every xi+1,o ∈ Ci+1 \ xi+1,l.

Now we are able to show that clustering Y⃗ cannot be optimal for instance
x⃗′ in the edge case. We will compare it with clustering C⃗ (where every agent is
served by the same facility as in clustering C⃗ and x′ is served by ci). We have the
following:

cost(x⃗′ \ {x′
⋃
Ci

⋃
Ci+1}, Y⃗ ) ≥ cost(x⃗′ \ {x′

⋃
Ci

⋃
Ci+1}, C⃗),
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by optimality. Furthermore,

cost(Ci+1, Y⃗ ) ≥ cost(Ci+1, C⃗)− d(xi+1,l, ci) + 1.6d(xi+1,l, ci+1) + 1.6D(Ci),

by optimality and equations (3.20) and (3.22). Also,

cost(Ci \ x, Y⃗ ) ≥ cost(Ci \ x, C⃗),

by optimality. Finally,

cost(x′, Y⃗ ) + 1.6D(Ci) > cost(x′, C⃗),

by equation (3.21).
By adding we get cost(x⃗′, Y⃗ ) > cost(x⃗′, C⃗) which means that Y⃗ is sub-optimal

for instance x⃗′. All we need to finalize this observation is realize that as we
move away from the edge case, the above inequalities become easier to satisfy.
Specifically if Ci had center c′i < ci we see that factor 1.6 of inequality (3.21)
decreases while d(Ci, Ci+1) increases. If c

′
i > ci the same factor of inequality (3.21)

may increase by |c′i− ci|, but then d(Ci, Ci+1) increases by at least γ2+1
γ+1 · |c

′
i− ci| >

4.3|c′i − ci| (since d(xi,l, xi+1,l) >
γ2+1
γ+1 d(xi,l, ci) - see proof of Lemma 3.3.4), hence

maintaining cost(x⃗′, Y⃗ ) > cost(x⃗′, C⃗).

3.B Proofs of Auxiliary Lemmas Used in the

Proof of Theorem 3.6.5

For completeness, we restate the proofs of the auxiliary lemmas with the prop-
erties of well-separated instances adapted from [112] and used in the proof of
Theorem 3.6.5.

Before we proceed with the proofs of the auxiliary lemmas, we need the fol-
lowing basic fact about the facility allocation of any determistic strategyproof
mechanism.

Lemma 3.B.1 (Proposition 2.1, [112]). Let M be a deterministic strategyproof
with a bounded approximation ratio of ρ ≥ 1 for

√
2-stable instances of k-Facility

location on the line. For any (k+1)-location instance x⃗ with x1 ≤ x2 ≤ . . . ≤ xk+1,
M1(x⃗) ≤ x2 and Mk(x⃗) ≥ xk.

Proof. We show it for M1(x⃗) ≤ x2, the other case is symmetric. Suppose x2 <
M1(x⃗). Then the agent in x1 has the incentive to deviate to location x2, since
M1(x⃗−1, x2) = x2 due to the bounded approximation of M (i.e., in (x⃗−1, x2), M
allocates k facilities to k different locations). Notice that (x⃗−1, x2) is γ-stable for
any γ ≥ 1.
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3.B.1 The Proof of Lemma 3.6.1

Proof. Since M has a bounded approximation, the isolated pair xk and xk+1 must
be served by the same facilityMk(x⃗). By Lemma 3.B.1, we know thatMk(x⃗) ≥ xk.
Then, it must also be Mk(x⃗) ≤ xk+1 . Otherwise, like in Lemma 3.B.1, agent xk
could declare location xk+1 and decrease her cost, since Mk(x⃗−k, xk+1) = xk+1 by
the bounded approximation of M . Again, the instance (x⃗−k, xk+1) is arbitrarily
stable.

3.B.2 The Proof of Lemma 3.6.2

We can now proceed to the proofs of the auxiliary lemmas, Lemma 3.6.3 and
Lemma 3.6.2, which refer to the movement of isolated pairs. We only present the
proof of Lemma 3.6.2 here. The proof of Lemma 3.6.3 is fully symmetric.

The proof shown here, refers to 2-Facility Location on well separated instances
with 3 agents. All arguments as well as the stability factor of the instance only
depend on the well separated property of the rightmost pairs of agents as well
as their distance from the third agent from the right. That is, that since in all
instances studied in the proof we only change distance between the agents of
the isolated, rightmost pair, in the range (0, d(x1, x2)/r) and only increase the
distance between the isolated pair and the leftmost agent x1, any instance with a
large enough distance between x1 and x2, i.e. for which d(x1, x2) > γ · ρd(x2, x3)
will be γ-stable in all parts of the proof. In that way it is easy to verify that
the arguments presented here extend to (x1| . . . |xk−1|xk, xk+1)-well separated and
stable instances of at least a specific minimum distance d(xk−1, xk).

Consider M to be a deterministic, strategyproof, anonymous and bounded
approximation mechanism, with approximation ration of at most ρ, for 2-facility
location. We will work on instance x⃗ with three agents x1 < x2 < x3 which is
(x1|x2, x3)-well separated.

The proof of Lemma 3.6.2 directly follows from the following propositions,
originally established in [112, Appendix A].

Proposition 3.B.2. Consider (x1|x2, x3)-well separated, stable instance x⃗ for
which M2(x⃗) = x2. Then for instance x⃗′ = (x⃗−2, x

′
2) where x2 ≤ x′2 ≤ x3 it

will be M2(x⃗′) = x′2

Proof. Notice that since d(x′2, x3) < d(x2, x3) instance x⃗′ is still (x1|x2, x3)-well
separated. Furthermore, since x1 is allocated a facility (by the ρ-approximation
property of the instance), x⃗′ is at least as stable as x⃗ since the distance between
the isolated pair is shortened and their distance from x1 has grown. All that
needs to be shown is that image set I2(x⃗−2) includes the interval [x2, x3]. Since
x2 is allocated a facility, we know x2 ∈ I2(x⃗−2). Furthermore, by the bounded
approximation property ofM x3 ∈ I2(x⃗−2). Assume there is a hole (l, r) ∈ I2(x⃗−2)
with x2 ≤ l < r ≤ xk. Consider location y ∈ (l, r) such that d(y, l) < d(y, r).
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By strategyproofness l ∈ M(x⃗−2, y). But then, by Lemma 3.B.1 we have that
F2(x⃗−j , y) > y which contradicts M ’s bounded approximation ratio, since the two
agents of the isolated pair of (x⃗−j , y) are served by different facilities.

Proposition 3.B.3. Consider (x1|x2, x3)-well separated stable instance x⃗ for which

M2(x⃗) = x2. Then for every (x1|x2, x′3)-well separated instance x⃗′ = (⃗x−3, x
′
3), if

x⃗′ is also well separated, M2(x⃗′) = x2.

We notice that in that case, the distance between the agents of the isolated
pair might grow a from x⃗ to x⃗′. Since the proof of this proposition uses instances
where the distance of the isolated pair varies from ϵ to d(x1, x2)/ρ the proposition
stands for stable instances only if all possible (x1|x2, x′3)-well separated instances

x⃗′ = (⃗x−3, x
′
3) are well separated. It is easy to see, that since in all these instances

it must be d(x2, x3) < d(x1, x2)/ρ then for a large enough distance d(x1, x2) (i.e.
d(x1, x2) > γ · ρd(x2, x3)) x⃗′ is always stable. We show the following proof consid-
ering that we have made this assumption.

Proof. Since M2(x⃗) < x3, we know that x3 /∈ I3(x⃗−3). So, there is a x3-hole
(l, r) ∈ I3(x⃗−3). SinceM2(x⃗) = x2, l = x2 and r > 2x3−x2 (by strategyproofness).
By strategyproofnes, if x′3 < (r+ l)/2 (for x2 < x′3 for well separated instance x⃗′),
M2(x⃗) = x2.

To finish, we show that there are no (x1|x2, x′3)-well separated instances x⃗′ =

(x⃗−3, x
′
3) with x

′
3 ≥ (r+ l)/2 andM2(x⃗′) ̸= x2. Again, we reach a contradiction by

assuming that there is a point y ≥ (r + l)/2 for which (x⃗−3, y) is a (x1|x2, y)-well
separated instance with M2((x⃗−3, y)) ̸= x2. If such a y exists, then there exists
x′k ∈ [(r + l)/2, r) for which x⃗′ = (x⃗−3, x

′
3) is a (x1|x2, x′3)-well separated. But

then, M2(x⃗′) = r > x′3 (by strategyproofness, because x′3 is closer to r than to l).

Since x⃗′ is (x1|x2, x′3)-well separated this contradicts lemma 3.6.1 which dictates
that it must be M2(x⃗−3, x

′
3) ∈ [x2, x

′
3].

Proposition 3.B.4. Consider (x1|x2, x3)-well separated stable instance x⃗ for which
M2(x⃗) = x2. Then for every (x1|x′2, x′3)-well separated instance x⃗′ = (x⃗−{2,3}, x

′
2, x

′
3),

with x2 < x′2 < (x2 + x3)/2, if x⃗′ is also well separated, M2(x⃗′) = x2.

Note that, as for proposition 3.B.3 the restriction that x⃗′ is also γ-stable is
equivalent to d(x1, x2) > γ · ρd(x2, x3).

Proof. Since x′2 ∈ [x2, x3] we have that M2(x⃗−2, x
′
2) = x′2, by proposition 3.B.2.

But since d(x′2, x3) < d(x2, x3), (x⃗−2, x
′
2) is (x1|x′2, x3)-well separated. Hence,

by proposition 3.B.3, for (x1|x′2, x′3)-well separated instance x⃗′ = (x⃗−{2,3}, x
′
2, x

′
3),

M2(x⃗′) = x′2

Proposition 3.B.5. Consider (x1|x2, x3)-well separated stable instance x⃗ for which
M2(x⃗) = x2. Then for every (x1|x′2, x′3)-well separated instance x⃗′ = (x⃗−{2,3}, x

′
2, x

′
3),

with x2 ≤ x′2, if x⃗′ is also well separated, M2(x⃗′) = x2.
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Proof. We will inductively use proposition 3.B.4 to create instance x⃗′. Consider
d = d(x′2, x2), δ = d(x3, x2)/2 and κ = ⌈d/δ⌉. Then for every λ = 1, 2, 3 . . . , κ
consider instance x⃗λ = (x⃗−{2,3}, x2+(λ−1)δ, x3+(λ−1)δ). Now observe that x⃗λ is
well separated since for it’s rightmost pair, x′2 = x2+(λ−1)δ and x′3 = x3+(λ−1)δ
it is d(x′2, x

′
3) > 2δ while d(x1, x

′
2) > d(x1, x2). By iteratively applying proposition

3.B.4 to x⃗λ, we have that for every (x⃗−{2,3}, y2, y3) well separated instance with
x2 + (λ − 1)δ ≤ y2 ≤ x2 + λδ, M2(x⃗−{2,3}, y2, y3) = y2. For λ = κ we get
M2(x⃗−{2,3}, x

′
2, x

′
3) = x′2 .
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Chapter 4

Sampling and Optimal
Preference Elicitation in Simple
Mechanisms

Preference elicitation has received considerable attention in computational so-
cial choice [76, 78, 84, 169, 168]. Segal [211] provided bounds on the communi-
cation required to realize a social choice rule through the notion of budget sets,
with applications in resource allocation tasks and stable matching. The bound-
aries of computational tractability and the strategic issues that arise in optimal
preference elicitation were investigated by Conitzer and Sandholm for a series of
voting schemes [77], while the same authors established the worst-case number of
bits required to execute common voting rules [78]. The trade-off between accuracy
and information leakage in facility location games has been studied by Feldman et.
al [105], investigating the behavior of truthful mechanisms with truncated input
space—e.g., ordinal information models.

More recently, the trade-off between efficiency—in terms of distortion as in-
troduced by Procaccia and Rosenschein [193]—and communication was addressed
by Mandal et al. [171] (see also [6]). Their results were subsequently improved
using machinery from streaming algorithms [172], such as linear sketching and
Lp-sampling [179, 142]. In similar spirit, some works [188, 40] address efficient
preference elicitation in the form of top-ℓ elicitation, meaning that the agents are
asked to provide the length ℓ prefix of their ranking instead of their full ranking.
This trade-off between efficiency and communication has also been an important
consideration in the metric distortion framework [19]—a setting closely related to
our work; e.g., see [152, 151, 51, 9], as well as [21] for a comprehensive overview of
that line of work.

Another important consideration in the literature relates to the interplay be-
tween communication constraints and incentive compatibility. In particular, Van
Zandt [219] articulated conditions under which communication and incentive com-
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patibility can be examined separately, while Reichelstein [198], and Segal and Fadel
[96] examined the communication overhead induced in truthful protocols, i.e. the
communication cost of truthfulness. An additional prominent line of research stud-
ies mechanism design under communication constraints (see [180] and references
therein). Specifically, in a closely related to ours work, Blumrosen, Nisan and Se-
gal [47] considered the design of a single-item auction in a communication model
in which every bidder could only transmit a limited number of bits. One of their
key results was a 0.648 social welfare approximation for 1-bit auctions (every bid-
der could only transmit a single bit to the mechanism) and uniformly distributed
bidders. Further, the design of optimal—w.r.t. the obtained revenue—bid levels
in an English auction was considered in [80], assuming known prior distributions.

4.1 Contributions

Our work provides several new insights on sampling and preference elicitation
for a series of exemplar environments from mechanism design.

Facility Location Games. First, we turn our attention to facility location
games; specifically, we consider Moulin’s median mechanism, one of the most fun-
damental allocation rules in voting. We observe that unlike the median as a func-
tion, the social cost of the median exhibits a sensitivity property. Subsequently,
we show that for any ϵ > 0, a random sample of size c = Θ(1/ϵ2) suffices to re-
cover a 1 + ϵ approximation w.r.t. the optimal social cost of the full information
median in the metric space (R, | · |), while the number of agents n → ∞; this
guarantee is established both in terms of expectation (Theorem 4.3.8), and with
high probability (Theorem 4.3.9). Consequently, it is possible to obtain a near-
optimal approximation with an arbitrarily small fraction of the total information.
Our analysis is quite robust, implying directly the same characterization for the
median on simple and open curves. Next, we extend this result for the general-
ized median in high-dimensional metric spaces (Rd, ∥ · ∥1) in Theorem 4.3.11. In
contrast, the sensitivity property of the median does not extend on trees, as im-
plied by Theorem 4.3.12. Finally, for completeness, we show that sampling cannot
provide meaningful guarantees w.r.t. the expected social cost when allocating at
least 2 facilities on the line through the percentile mechanism (Theorem 4.3.13).

These results constitute natural continuation on efficient preference elicitation
and sampling in social choice [83, 82, 58, 76], and supplement the work of Feldman
et al. [105]; yet, to the best of our knowledge, we are the first to investigate the
performance of sampling in facility location games. We stress that our guarantees
do not require any prior knowledge or any discretization assumptions. Moreover,
the sensitivity property of the median’s social cost could be of independent interest,
as it can be potentilly employed to design differentially private [87] and noise-
tolerant implementations of the median mechanism. From a technical standpoint,
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one of our key contributions is a novel asymptotic characterization of the rank of
the sample’s median (Theorem 4.3.3), discussed further in the subsection below.

Auctions. Next, in Section 4.4, we espouse a communication complexity frame-
work in order to design a series of auctions with optimal preference elicitation. In
particular, we measure the number of bits elicited from the agents in expecta-
tion, endeavoring to minimize it. We mainly make the natural assumption that
the number of bits that can represent any valuation—expressed with parameter
k—is independent on the number of agents n; thus, we focus on the communi-
cation complexity while n asymptotically grows. In this context, we show that
we can asymptotically match the lower bound of 1 bit per bidder for a series of
fundamental settings, without possessing any prior knowledge.

• First, we propose an ascending auction in which the ascend of the price is cal-
ibrated adaptively through a sampling mechanism. Thus, in Theorem 4.4.9
we establish that we can implement Vickrey’s rule with only 1+ ϵ bits from
an average bidder, for any ϵ > 0;

• Moreover, we consider the design of a multi-item auction with m items and
bidders with additive valuations. Our main contribution is to design an
efficient encoding scheme that substantially truncates the communication in
a simultaneous implementation, asymptotically recovering the same optimal
bound whenever the number of itemsm is a small constant (Theorem 4.4.12);

• Finally, we develop a novel ascending-type multi-unit auction in the do-
main of unit-demand bidders. Our proposed auction announces in every
round two separate prices—based on a natural sampling algorithm (see
Theorem 4.4.13), leading again to the optimal communication bound (The-
orem 4.4.16).

Our results supplement prior work [198, 96] by showing that the incentive
compatibility constraint does not augment the communication requirements of the
interaction process for a series of fundamental settings. We also corroborate on one
of the main observations of Blumrosen et al. [47]: asymmetry helps—in deriving
tight communication bounds. Indeed, in our mechanisms the information elicita-
tion is substantially asymmetrical. Finally, we believe that our results could have
practical significance due to their simplicity and their communication efficiency.

4.1.1 Overview of Techniques

Facility Location Games. In Section 4.3, our first key observation in Theo-
rem 4.3.2 is that the social cost of the median admits a sensitivity property. Thus,
it is possible to obtain a near-optimal approximation w.r.t. the optimal social cost
even if the allocated facility is very far from the median. The sensitivity of the
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social cost of the median essentially reduces a near-optimal approximation to the
concentration of the rank of the sample’s median. Based on this insight, we prove
in Theorem 4.3.3 that when the participation is large (i.e. n → ∞) the distri-
bution of the rank of the sample’s median converges to a continuous transformed
beta distribution. This result should not be entirely surprising given that—as is
folklore in statistics—the order statistics of the uniform distribution on the unit
interval have marginal distributions belonging to the beta distribution family (e.g.,
see [81]). Having made these connections, the rest of our guarantees in Section 4.3
for more general metrics follow rather directly.

Auctions. With regard to our results in Section 4.4, we commence our overview
with the single-item auction, and we then describe our approach for several ex-
tensions. In particular, for our ascending auction we consider as a black-box an
algorithm that implements a second-price auction; then, at every round of the auc-
tion we simulate a sub-auction on a random sample of agents, and we broadcast
the “market-clearing price” in the sub-auction as the price of the round. From a
technical standpoint, we show that as the size of the sample increases, the frac-
tion of the agents that will remain active in the forthcoming round gets gradually
smaller (Theorem 4.4.5), leading to Theorem 4.4.8 and Theorem 4.4.9. It should
also be noted that the truncated communication does not undermine the incentive
compatibility of our mechanism, as implied by Theorem 4.4.2 and Theorem 4.4.3.
Moving on to the multi-item auction with additive valuations, we employ a basic
principle from information theory: encode the more likely events with fewer bits.
This simple observation along with a property of our single-item auction allow
us to substantially reduce the communication complexity when the auctions are
executed in parallel.

Finally, we alter our approach for the design of a multi-unit auction with
unit demand bidders. In contrast to a standard ascending auction, our idea is to
broadcast in every round two separate prices, a “high” price and a “low” price.
Subsequently, the mechanism may simply recurse on the agents that reside between
the two prices. The crux of this implementation is to design an algorithm that
takes as input a small number of bits, and returns prices that are tight upper and
lower bounds on the final VCG payment. To this end, we design a novel algorithm
that essentially performs stochastic binary search on the tree that represents the
valuation space; more precisely, in every junction, or decision, the branching is
made based on a small sample of agents, eliminating at every step half the points
on the valuation space. From an algorithmic standpoint, this gives a simple pro-
cedure performing approximate selection from an unordered list with very limited
communication.
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4.2 Preliminaries

Facility Location Games. Consider a metric space (M,dis(·, ·)), where dis :
M×M → R is a metric (or distance function) on M; i.e., for any x,y, z ∈ M,
dis satisfies the following: (i) identity of indiscernibles: dis(x,y) = 0 ⇐⇒ x = y;
(ii) symmetry: dis(x,y) = dis(y,x); and (iii) triangle inequality: dis(x,y) ≤
dis(x, z) + dis(z,y). Given as input an n-tuple I = (x1, . . . ,xn), with xi ∈ M,
the ℓ-facility location problem consists of allocating ℓ facilities on M in order
to minimize the social cost ; more precisely, if L is the finite the set of allocated
facilities, the induced social cost w.r.t. the distance function dis is defined as

cost(L,dis) ≜
n∑

i=1

min
x∈L

dis(x,xi);

that is, every point is assigned to its closest (allocated) facility. For notational
simplicity, we omit the distance function and we simply write cost(L). With a
slight abuse of notation, when |L| = 1, we will use cost(x) to represent the social
cost of allocating a single facility on x ∈M. In a mechanism design setting every
point in the instance I is associated with a strategic agent, and xi represents her
preferred private location (e.g. her address); naturally, every agent i endeavors
to minimize her (atomic) distance from the allocated facilities. A mechanism is
called strategy-proof if for every agent i, and for any possible valuation profile,
i minimizes her distance by reporting her actual valuation; if the mechanism is
randomized, one is typically interested in strategy-proofness in expectation.

The Median Mechanism. Posit a metric space (Rd, ∥ · ∥1). The Median is
a mechanism for the 1-facility location problem which allocates a single facility on
the median of the reported instance. For high-dimensional spaces, the median is
defined coordinate-wise; more precisely, if I = (x1, . . . ,xn) represents an arbitrary
instance on Rd, and we denote with xji the j

th coordinate of xi in some underlying
coordinate system,

median(I) ≜ (median(x11, . . . , x
1
n), . . . ,median(xd1, . . . , x

d
n)).

In this context, the following properties have been well-establish in social choice,
and we state them without proof.

Proposition 4.2.1. The Median mechanism is strategy-proof.

Proposition 4.2.2. The Median mechanism is optimal w.r.t. (i.e. minimizes)
the social cost in the metric space (Rd, ∥ · ∥1).

The median can also be defined beyond Euclidean spaces [210], as it will be
discussed in more detail in Section 4.3.3. It should also be noted that the median
can be employed heuristically for the ℓ-facility location problem when additional
separability conditions are met; for example, the instance could correspond to
residents of isolated cities, and it would be natural to assign one facility to a single
“cluster”.
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Auctions. In the domains we are studying in Section 4.4, the valuation of an
agent i for any bundle of items S is fully specified by the values vi,j , for every
item j; if a single item—and potentially multiple units of the same item—are to
be disposed, we use vi for simplicity. Moreover, in Section 4.4 we employ a com-
munication complexity framework in order to analyze the measure of information
elicited from the agents; thus, we need to assume that every value vi,j can be ex-
pressed with k bits. We will mainly assume that k is a parameter independent of
the number of agents n, and one should imagine that a small constant k (e.g. 32 or
64 bits) would suffice. In this context, we define the communication complexity of
a mechanism to be the expected number of bits elicited from the participants dur-
ing the interaction process, and we study the asymptotic growth of this function
as n→∞. We will assume that an agent remains active in the auction only when
positive utility can be obtained. Thus, if the (monotonically increasing) announced
price for item j coincides with the value vi,j of some agent i, we presume that i
will withdraw from the auction; we use this hypothesis to handle certain singular
cases (e.g., all agents could have the same value for the item).

For the incentive compatibility analysis in Section 4.4 we will need to refine
and extend the notion of strategy-proofness from facility location games. A mech-
anism will be referred to as strategy-proof if truthful reporting is a universally
dominant strategy—a best response under any possible action profile and random-
ized realization—for every agent.

Obvious Strategy-Proofness. A strategy si is obviously dominant if for any
deviating strategy s′i, starting from any earliest information set where s′i and si
disagree, the best possible outcome from s′i is no better than the worst possible
outcome from si. A mechanism is obviously strategy-proof (OSP) if it has an
equilibrium in obviously dominant strategies. Notice that OSP implies strategy-
proofness, so it is a stronger notion of incentive compatibility [164].

Ex-Post Incentive Compatibility. We will also require a weaker notion of
incentive compatibility; a strategy profile (s1, . . . , sn) constitutes an ex-post Nash
equilibrium if the action si(vi) is a best response to every action profile s−i(v−i)—
for any agent i and valuation vi. A mechanism will be called ex-post incentive
compatible if sincere bidding constitutes an ex-post Nash equilibrium.

Additional Notation. We will denote with N = [n] the set of agents that
participate in the mechanism. In a single parameter environment, the rank of an
agent corresponds to the index of her private valuation in ascending order (ties
are broken arbitrarily according to some predetermined rule; e.g. lexicographic
order) and indexed from 1, unless explicitly stated otherwise. We will use the
standard notation of f(n) ∼ g(n) if limn→+∞ f(n)/g(n) = 1 and f(n) ≲ g(n)
if limn→+∞ f(n)/g(n) ≤ 1, where n will always be implied as the asymptotic
parameter. For notational brevity, we will let

(
n
m

)
= 0 when m > n. Finally, ∥x∥1
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denotes the L1 norm of x ∈ Rd, while d will mainly represent the dimension of the
underlying space.

4.3 Facility Location Games and Approxima-

tion of the Median Mechanism

The most natural approximation of the Median mechanism consists of taking
a random sample of size c, and allocating a (single) facility to the median of the
sample, as implemented in ApproxMedianViaSampling (Mechanism 4). Per-
haps surprisingly, we will show that this simple approximation yields a social cost
arbitrarily close to the optimal for the metric space (Rd, ∥ · ∥1)—for a sufficiently
large sample. Our analysis commences with the median on the line, where our
main contribution lies in Theorem 4.3.8. Our approach is quite robust and yields
analogous guarantees for the median defined on curves (Theorem 4.3.10) and the
generalized median on the metric space (Rd, ∥ · ∥1) (Theorem 4.3.11). We conclude
this section by illustrating the barriers of sampling approximations when allocat-
ing a single facility on a tree metric, as well as allocating multiple facilities on the
line.

Mechanism 4: ApproxMedianViaSampling(N, ϵ, δ)

Input: Set of agents N , accuracy parameter ϵ > 0, confidence parameter
δ > 0

Output: x ∈ Rd such that cost(x) ≤ (1+ ϵ)cost(xm), where xm = median(N)
Set c = Θ(1/(ϵδ)2) to be the size of the sample
Let S be a random sample of c agents from N
return median(S)

In this section we do not have to dwell on incentive considerations given
that our sampling mechanism ApproxMedianViaSampling directly inherits its
truthfulness from the Median mechanism (recall Theorem 4.2.1)—assuming of
course that the domain admits a median.

Proposition 4.3.1. ApproxMedianViaSampling is strategy-proof.

4.3.1 Median on the Line

In the following, we will tacitly consider an underlying arbitrary instance I =
(x1, . . . , xn), with xi ∈ R the (private) valuation—the preferred location—of agent
i. To simplify the exposition, we will assume—without any loss of generality—that
the number of agents n is odd, with n = 2κ+ 1 for some κ ∈ N.
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Sensitivity of the Median. The first potential obstacle in approximating the
Median mechanism relates to the sensitivity of the median. In particular, notice
that the function of the median has an unbounded sensitivity, that is, a unilateral
deviation in the input can lead to an arbitrarily large shift in the output; more
concretely, consider an instance with n = 2κ + 1 agents, and let κ agents reside
at −l and κ+ 1 agents at +l for some large l > 0. If an agent from the rightmost
group was to switch from +l to −l, then the median would also relocate from +l to
−l, leading to a potentially unbounded deviation. It should be noted that in the
regime of statistical learning theory, one technique to circumvent this impediment
and ensure differential privacy revolves around the notion of smooth sensitivity ;
e.g., see [30, 57]. Our approach is based on the observation that the social cost of
the Median inherently presents a sensitivity property. Formally, we establish the
following lemma:

Lemma 4.3.2 (Sensitivity of the Median). Let xm = median(I) and x ∈ R some
position such that ϵ · n agents reside between x and xm, with 0 ≤ ϵ < 1/2. Then,

cost(x) = cost(xm)

(
1 +O

(
4ϵ

1− 2ϵ

))
.

Proof. For the sake of presentation, let us assume that x ≥ xm. Consider the set
L containing the ⌊n/2⌋− ϵ ·n leftmost agents (ties are broken arbitrarily), and the
set R with the ⌊n/2⌋ − ϵ · n rightmost agents, leading to a partition as illustrated
in Figure 4.1. Now observe that if we transfer the facility from xm = median(I)
to x the cumulative social cost of L and R remains invariant, i.e.,∑

i∈R∪L
|xi − xm| =

∑
i∈R∪L

|xi − x|.

In other words, the increase in social cost incurred by group L is exactly the social
cost decrease of group R. Thus, it follows that

cost(x) ≤ cost(xm) + 2ϵn|x− xm|, (4.1)

where notice that this inequality is tight when the agents in the interval (xm, x)
are accumulated arbitrarily close to xm. Moreover, we have that

cost(xm) ≥
∑
i∈R
|xi − xm| ≥ (⌊n/2⌋ − ϵn) |x− xm|, (4.2)

and the claim follows from bounds (4.1) and (4.2).

As a result, Theorem 4.3.2 implies that a unilateral deviation by a player can
only lead to an increase of O(1/n) in the social cost. To put it differently, if an
adversary corrupts arbitrarily a constant number of reports, the increase in social
cost will be asymptotically negligible. Indeed, even if the allocated facility lies
arbitrarily far from the median, the induced social cost might still be near-optimal.
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Figure 4.1: Partition of the agents on the line.

Now let us assume—without loss of generality—that c = 2ρ + 1, for some
ρ ∈ N, where c is the size of the sample; also recall that n = 2κ+1. Motivated by
Theorem 4.3.2, our analysis will be oblivious to the agents’ locations on the line,
but instead, our focus will be on characterizing the rank of the sample’s median—
the relative order of the sample’s median w.r.t. the entire instance; this approach
will also allow us to directly obtain a guarantee in more general metric spaces.
More precisely, consider a random variable Xr that represents the rank—among
the entire instance—of the sample’s median, normalized in the domain [−1, 1];
for instance, if the sample’s median happens to coincide with the median of the
entire instance, then Xr = 0. The reason behind this normalization relates to
our asymptotic characterization (Theorem 4.3.3). Now fix a particular rank i/κ
in [−1, 1]. Notice that the number of configurations that correspond to the event
{Xr = i/κ} is (

κ− i
ρ

)(
κ+ i

ρ

)
.

As a result, the probability mass function of Xr can be expressed as follows:

P
[
Xr =

i

κ

]
=

(
κ− i
ρ

)(
κ+ i

ρ

)
(
2κ+ 1

2ρ+ 1

) . (4.3)

It is interesting to notice the similarity of this expression to the probability mass
function of a hypergeometric distribution. We also remark that the normalization
constraint of the probability mass function (4.3) yields a well-known variant of the
Vandermonde identity:

κ∑
i=−κ

(
κ− i
ρ

)(
κ+ i

ρ

)
=

2κ∑
i=0

(
i

ρ

)(
2κ− i
ρ

)
=

(
2κ+ 1

2ρ+ 1

)
.

For this reason, we shall refer to the distribution of Xr as the (κ, ρ)-Vandermonde
distribution. Importantly, Theorem 4.3.2 tells us that the concentration of the
Vandermonde distribution—for sufficiently large values of parameter ρ—suffices
to obtain a near-optimal approximation with respect to the social cost. However,
quantifying exactly the concentration of the Vandermonde distribution appears
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to be challenging.1 In light of this, our main insight—and the main technical
contribution of this section—is an asymptotic characterization of this distribution.

Theorem 4.3.3 (Convergence of the Vandermonde Distribution). If we let κ →
+∞ the (κ, ρ)-Vandermonde distribution converges to a continuous distribution
with probability density function ϕ : [−1, 1]→ R, such that

ϕ(t) = C(ρ)(1− t2)ρ, (4.4)

where

C(ρ) = B

(
1

2
, ρ+ 1

)−1

=
(2ρ+ 1)!

(ρ!)222ρ+1
.

In the statement of the theorem, B represents the beta function. Recall that
for x, y ∈ R>0, the beta function is defined as

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
, (4.5)

where Γ represents the gamma function. One can verify the normalization con-
straint in Theorem 4.3.3 using a quadratic transform u = t2 as follows:∫ 1

−1
(1− t2)ρdt = 2

∫ 1

0
(1− t2)ρdt =

∫ 1

0
u−

1
2 (1− u)ρdu = B

(
1

2
, ρ+ 1

)
.

Moreover, the final term can be expressed succinctly through the following lemma:

Lemma 4.3.4. If Γ represents the gamma function and n ∈ N,

Γ

(
1

2
+ n

)
=

(2n)!

4nn!

√
π.

Before we proceed with the proof of Theorem 4.3.3, we state an elementary
result from real analysis.

Lemma 4.3.5. Let f : [−1, 1]→ R be an integrable function2 and x some number
in (−1, 1); then,

lim
n→+∞

x+ 1

n

n∑
i=1

f

(
−1 + i · x+ 1

n

)
=

∫ x

−1
f(t)dt.

1Ariel Procaccia pointed out to us that there is a more elementary way to “upper-
bound” the concentration of Xr; see [54, Lemma 1]. Yet, we remark that their argument
would only provide a guarantee with high probability, and not in expectation.

2The integrability here is implied in the standard Riemannian-Darboux sense.
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Proof of Theorem 4.3.3. Take some arbitrary x ∈ (−1, 1), let ν = ⌊xκ⌋ + κ + 1,
and consider a random variable Xr drawn from a (κ, ρ)-Vandermonde distribution.
It follows that

lim
κ→+∞

P[Xr ≤ x] = lim
κ→+∞

⌊xκ⌋∑
i=−κ

(
κ− i
ρ

)(
κ+ i

ρ

)
(
2κ+ 1

2ρ+ 1

)

= lim
n→+∞

ν∑
i=1

(
n− i
ρ

)(
i− 1

ρ

)
(

n

2ρ+ 1

) , (4.6)

where recall that n = 2κ + 1. Given that n!/(n − j)! = Θn(n
j),∀j ∈ N, we can

recast (4.6) as

lim
κ→+∞

P[Xr ≤ x] =
(2ρ+ 1)!

(ρ!)2
lim

n→+∞

1

n2ρ+1

ν∑
i=1

(n− i)!
(n− i− ρ)!

(i− 1)!

(i− 1− ρ)!

=
(2ρ+ 1)!

(ρ!)2
lim

n→+∞

1

n2ρ+1

ν∑
i=1

(n− i)ρiρ, (4.7)

where the last derivation follows by ignoring lower order terms. Finally, from (4.7)
we obtain that

lim
κ→+∞

P[Xr ≤ x] =
(2ρ+ 1)!

(ρ!)2
lim

n→+∞

1

n

ν∑
i=1

(
i

n
−
(
i

n

)2
)ρ

=
(2ρ+ 1)!

(ρ!)2
lim

ν→+∞

x+ 1

2ν

ν∑
i=1

(
i · x+ 1

2ν
−
(
i · x+ 1

2ν

)2
)ρ

=
(2ρ+ 1)!

(ρ!)222ρ+1
lim

ν→+∞

x+ 1

ν

ν∑
i=1

(
2i · x+ 1

ν
−
(
i · x+ 1

ν

)2
)ρ

=
(2ρ+ 1)!

(ρ!)222ρ+1
lim

ν→+∞

x+ 1

ν

ν∑
i=1

(
1−

(
−1 + i · x+ 1

ν

)2
)ρ

=
(2ρ+ 1)!

(ρ!)222ρ+1

∫ x

−1
(1− t2)ρdt,

where in the last line we applied Theorem 4.3.5, concluding the proof.

Having established this asymptotic characterization, we are now ready to argue
about the concentration of the induced distribution with respect to parameter ρ.
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Theorem 4.3.6 (Concentration). Consider a random variable X3 with probability
density function ϕ(t) = C(ρ)(1− t2)ρ. Then, for any ϵ > 0 and δ > 0, there exists
some ρ0 = Θ(1/(ϵδ)2) such that ∀ρ ≥ ρ0,

P[|X| ≥ ϵ] ≤ δ.

Proof. Consider some j ∈ N. The jth moment of |X| can be expressed as

E[|X|j ] = C(ρ)

∫ 1

−1
|t|j(1− t2)ρdt = 2C(ρ)

∫ 1

0
tj(1− t2)ρdt.

Applying the quadratic transformation u = t2 yields

E[|X|j ] =
B

(
j

2
+

1

2
, ρ+ 1

)
B

(
1

2
, ρ+ 1

) . (4.8)

Recall from Stirling’s approximation formula that n! = Θ
(√

2πn
(
n
e

)n)
; thus,

we obtain that C(ρ) grows as

C(ρ) =
(2ρ+ 1)!

(ρ!)222ρ+1
= Θ(

√
ρ).

In particular, this along with (4.8) imply that E[|X|] = Θ(1/
√
ρ). Thus, if we

apply Markov’s inequality we obtain that

P[|X| ≥ ϵ] = O
(

1

ϵ
√
ρ

)
.

As a result, it suffices to select ρ = Θ(1/(ϵδ)2) so that P[|X| ≥ ϵ] ≤ δ; notice
that tighter bounds w.r.t. the confidence parameter δ can be obtained if we apply
Markov’s inequality for higher moments of |X| through (4.8).

We also highlight the following important byproduct, which was established
above en route to proving Theorem 4.3.6.

Corollary 4.3.7. Consider a random variable X with probability density function
ϕ(t) = C(ρ)(1− t2)ρ. Then, E[|X|] = Θ(1/

√
ρ).

We are now ready to analyze the approximation ratio of our sampling median,
both in terms of expectation and with high probability.

3It is interesting to note that X is a sub-Gaussian random variable [160] with variance

proxy σ2 = Θ(1/ρ); indeed, notice that (1− t2)ρ ≤ e−ρt2 , with the bound being tight for
|t| ↓ 0. This observation leads to an alternative—and rather elegant—way to analyze the
concentration of X.
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Theorem 4.3.8 (Sampling Median on the Line). Consider a set of agents N =
[n] that lie on the one-dimensional metric space (R, | · |). Then, for any ϵ > 0,
ApproxMedianViaSampling(N, ϵ, δ = 1) takes a sample of size c = Θ(1/ϵ2)
and yields in expectation a 1 + ϵ approximation w.r.t. the optimal social cost of
the full information Median, while n→ +∞.

Proof. Consider a random variable X with probability density function ϕ(t) =
C(ρ)(1−t2)ρ. Theorem 4.3.3 implies thatX corresponds to the rank of the sample’s
median with sample size c = 2ρ+1, while n→ +∞. Let g : (0, 1) ∋ x 7→ 2x/(1−x);
we know from Theorem 4.3.2 that the expected approximation ratio on the social
cost is 1 +O(E[g(|X|)]). But, it follows that

E[g(|X|)] = 4C(ρ)

∫ 1

0

t

1− t
(1− t2)ρdt ≤ 8C(ρ)

∫ 1

0
t(1− t2)ρ−1dt

= 8
2ρ+ 1

2ρ
C(ρ− 1)

∫ 1

0
t(1− t2)ρ−1dt.

Now notice that Theorem 4.3.7 implies that

C(ρ− 1)

∫ 1

0
t(1− t2)ρ−1dt = Θ

(
1
√
ρ

)
.

As a result, we have shown that the expected approximation ratio is 1 +
O(1/√ρ), and taking ρ = Θ(1/ϵ2) concludes the proof.

Corollary 4.3.9. Consider a set of agents N = [n] that lie on the metric space
(R, | · |). Then, for any ϵ > 0 and δ > 0, ApproxMedianViaSampling(N, ϵ, δ)
takes a sample of size c = Θ(1/(ϵδ)2) and yields with probability at least 1 − δ a
1+ ϵ approximation w.r.t. the optimal social cost of the full information Median,
while n→ +∞.

Proof. The claim follows directly from Theorem 4.3.2, Theorems 4.3.3 and 4.3.6.

Extension to the Median on Curves

Here we give a slight extension of the previous guarantee when the agents lie on
a curve. More precisely, let C be a curve parameterized by a continuous function
ψ : [0, 1] → Rd. We will assume that C is simple and open, i.e. ψ is injective in
[0, 1]; see an example in Figure 4.2. We also consider the distance between two
points A,B ∈ C to be the length of the induced (simple) sub-curve from A to B,
denoted with ℓ(A,B).

Notice that any simple and open curve naturally induces a ranking—a total
order—over its domain; indeed, for any points A,B ∈ Im(ψ) ≡ C, we let A ⪯
B ⇐⇒ ψ−1(A) ≤ ψ−1(B). Thus, we may define the median on the curve, which
is strategy-proof and optimal w.r.t. the induced social cost. Importantly, our
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previous analysis is robust, and our methodology for the median on the line is
directly applicable.

Theorem 4.3.10 (Sampling Median on Curves). Consider a set of agents N = [n]
that lie on the metric space (C, ℓ(·, ·)), where C represents a simple and open curve
on some subset of a Euclidean space. Then, for any ϵ > 0,
ApproxMedianViaSampling(N, ϵ, δ = 1) takes a sample of size c = Θ(1/ϵ2)
and yields in expectation a 1 + ϵ approximation w.r.t. the optimal social cost of
the full information Median, while n→ +∞.

Figure 4.2: An example of a simple and open curve C. The distance ℓ(A,B)
between two points A,B ∈ C is defined as the length from A to B.

4.3.2 High-Dimensional Median

Next, in this subsection we extend our analysis for the high-dimensional metric
space (Rd, ∥ · ∥1). Specifically, consider some arbitrary instance I = (x1, . . . ,xn),
where xi ∈ Rd; we will denote with xji the j

th coordinate of xi in some underlying
coordinate system. Also, recall that the median of I is derived through the median
in every coordinate, i.e.,

median(I) = (median(x11, . . . , x
1
n), . . . ,median(xd1, . . . , x

d
n)).

Naturally, theMedian takes as input some instance I and outputs themedian(I).
We establish the following theorem:

Theorem 4.3.11 (High-Dimensional Sampling Median). Consider a set of agents
N = [n] that lie on the metric space (Rd, ∥ · ∥1). Then, for any ϵ > 0,
ApproxMedianViaSampling(N, ϵ, δ = 1) takes a sample of size c = Θ(1/ϵ2)
and yields in expectation a 1 + ϵ approximation w.r.t. the optimal social cost of
the full information Median, while n→ +∞.

Proof. Consider some facility at x ∈ Rd, with x = (x1, . . . , xd); the induced social
cost of x can be expressed as
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cost(x) =

n∑
i=1

∥xi − x∥1 =
n∑

i=1

d∑
j=1

|xji − x
j | =

d∑
j=1

n∑
i=1

|xji − x
j |.

Let X = (X1, . . . , Xd) be the output of the ApproxMedianViaSampling (a
random variable). For any j ∈ [d], and with c = Θ(1/ϵ2), Theorem 4.3.8 implies
that

E

[
n∑

i=1

|xji −X
j |

]
≤ (1 + ϵ)

n∑
i=1

|xji − x
j
m|+ on(1),

where xm = (x1m, . . . , x
d
m) = median(I). Thus, by linearity of expectation we

obtain that for n→∞,

E[cost(X)] ≤ (1 + ϵ)cost(xm) = (1 + ϵ)cost∗.

Importantly, observe that even in the high-dimensional case it suffices to take
c = Θ(1/ϵ2), independently from the dimension of the space d, in order to obtain a
guarantee in expectation. We also remark that it is straightforward to extend The-
orem 4.3.9 for the high-dimensional median, and recover a near-optimal allocation
with high probability.

4.3.3 Median on Trees

In contrast to our previous positive results, our characterization breaks when
allocating a facility on a general network. In particular, consider an unweighted tree
G = (V,E), and assume that every node is occupied by a single agent. One natural
way to define the median on G is by arbitrarily choosing a generalized median for
each path of the tree; however, as articulated by Vohra and Schummer [210], for
any two paths that intersect on an interval, it is crucial that the corresponding
generalized medians must not contradict each other, a condition they refer to as
consistency. Providing a formal definition of consistency would go beyond the
scope of our study; instead, we refer the interested reader to the aforementioned
work.

Now imagine that the designer has no prior information on the topology of the
network, and will have to rely solely on the information extracted by the agents.
Given that the graph might be vast, we consider a sample of nodes and we then
construct the induced graph by querying the agents in the sample4 (naturally, we
posit that every agent knows her neighborhood). However, notice that the induced
graph need not be a tree, and hence, it is unclear even how to determine the output
of the sampling approximation. In fact, any node in the subgraph may lead to a
social cost far from the optimal.

4This model is analogous to the standard approach in property testing [135].
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Figure 4.3: An unweighted “star” graph G with n nodes, with every node
occupied by a single agent. It is easy to verify that v∗ constitutes the unique
median on G, satisfying the consistency condition of Vohra and Schummer.
Notice that allocating a facility on v∗ yields a social cost of n− 1, while any
other allocation leads to a social cost of 2n− 3.

Proposition 4.3.12. Consider an unweighted star graph G = (V,E) with |V | = n.
Then, even if we take a sample of size c = n/2, every node in the sample will yield
an approximation of 2 − 1/(n − 1) w.r.t. the optimal social cost with probability
1/2.

An approximation ratio of 2 is trivial in the following sense: There exists
a mechanism, namely RandomDictator, which selects uniformly at random
a single player and allocates the facility on her preferred position on the un-
derlying metric space. An application of the triangle’s inequality shows that
RandomDictator yields in expectation a 2 approximation w.r.t. the optimal
social cost.5 In that sense, augmenting the sample does not seem particularly
helpful when the underlying metric space corresponds to a network.

4.3.4 Sampling with Multiple Facilities

Finally, we investigate the performance of a sampling approximation when allo-
cating multiple facilities. For the sake of simplicity, we posit a metric space (R, |·|),
and we consider the Percentile mechanism, an allocation rule that assigns fa-
cilities on particular percentiles of the input. More precisely, the Percentile
mechanism is parameterized by a sequence r1 < r2 < . . . , with every rj ∈ [n]
corresponding to a rank of the input; if the instance I = (x1, . . . , xn) is given
in increasing order, we allocate a facility j on xrj for every j. Naturally, the

5On the other hand, it is easy to see that any deterministic dictatorship yields in the
worst-case an n− 1 approximation.
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Median can be classified in this family of mechanisms. Another prominent mem-
ber is the TwoExtremes mechanism, proposed by Procaccia and Tennenholtz
[195] for the 2-facility location problem. As the name suggests, this mechanism
allocates two facilities at the minimum and the maximum reports of the instance,
leading to an n − 2 approximation ratio w.r.t. the optimal social cost (in fact,
the TwoExtremes is the only anonymous and deterministic mechanism with
bounded approximation ratio [115]). We remark that the Percentile mecha-
nism is always strategy-proof, while its approximation ratio w.r.t. the optimal
social cost is generally unbounded.

Now consider ApproxPercentileViaSampling, simulating Percentile on
a sample of size c; we will tacitly presume that at least 2 facilities are to be
allocated. Let us assume that the leftmost percentile L contains at most (1− α)n
agents, for some constant α > 0, and denote with l the distance between L and
the complementary set of agents R; see Figure 4.4. If we let the inner-distance
between in L and R approach to 0 and l→∞, we can establish the following:

Proposition 4.3.13. There are instances for which even with a sample of size
c = αn = Θ(n) the ApproxPercentileViaSampling has in expectation an un-
bounded approximation ratio w.r.t. the social cost of the full information Percentile
mechanism.

Figure 4.4: An instance that corresponds to Theorem 4.3.13, as l→∞; given
that at least two facilities are to be allocated, any mechanism with bounded
social cost has to allocate facilities on both L and R.

Indeed, for the instance we described the social cost of the full information
mechanism approaches to 0, as it always allocates a facility on L, and at least one
facility on R. In contrast, there will be a positive probability—albeit exponen-
tially small—that the approximation mechanism fails to sample an agent from L.
Moreover, the same limitation (Theorem 4.3.13) applies for an additive approxi-
mation, instead of a relative one. Perhaps, it would be interesting to examine the
performance of a sampling approximation if we impose additional restrictions on
the instance, such as stability conditions.

Remark. One of our insights is that unlike the outcome of the underlying mech-
anism, the social cost often presents a sensitivity property. This observation could
be of independent interest in analyzing sampling approximations in voting. We
explore this idea for the plurality rule in Section 4.A.
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4.4 Auctions

In this section, we study a series of environments in the regime of auction the-
ory. For every instance, we develop a mechanism which asymptotically minimizes
the communication complexity, i.e. the numbers of bits elicited from the partici-
pants. We commence with the design of a single-item auction, and we gradually
extend our techniques to cover more general domains.

4.4.1 Single-Item Auction

This subsection presents our ascending auction for disposing a single and in-
divisible item. On a high level, instead of updating the price in a static manner
through a fixed increment, we propose a simple adaptive mechanism. Before we
proceed with the description and the analysis of our mechanism, we wish to con-
vey some intuition for our implementation. Specifically, as a thought experiment,
imagine that every valuation vi is drawn from some arbitrary distribution D, and
assume—rather unreasonably—that we have access to this distribution. In this
context, one possible approach to minimize the communication would be to deter-
mine a threshold value Th such that Pv∼D[v ≥ Th] ≤ ϵ, for some small ϵ > 0. The
auctioneer could then simply broadcast at the first round of the auction the price
p := Th, and with high probability the agents above the threshold would constitute
only a small fraction of the initial population. Moreover, the previous step could
be applied recursively for the distribution D conditioned on v ≥ Th, until only
a few agents remain active. Our proposed mechanism will essentially mirror this
though experiment, but without any distributional assumptions, or indeed, any
prior knowledge.

Specifically, we consider some black-box deterministic algorithm A that faith-
fully simulates a second-price auction. Namely, A takes as an input a set of agents
S and returns a tuple (w, p): w is the agent with the highest valuation among S
(ties are broken arbitrarily), and p corresponds to the second highest valuation.
Of course, A only simulates a second-price auction, without actually allocating
items and imposing payments.

In every round, our mechanism selects a random sample from the active agents,6

and simulates through algorithm A a sub-auction. Then, the “market-clearing
price” in the sub-auction is announced as the price of the round, and this process
is then repeated iteratively. The pseudocode for our mechanism
(AscendingAuctionViaSampling) is given in Mechanism 5.

Interestingly, our mechanism induces a format that couples an ascending auc-
tion with the auction simulated by A. We shall establish the following properties:

Proposition 4.4.1. Under truthful reporting, AscendingAuctionViaSampling
returns—with probability 1—the VCG outcome.

6Naturally, we assume that the sample contains at least 2 agents, so that the second-
price rule is properly defined.
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Mechanism 5: AscendingAuctionViaSampling(N,A, ϵ)
Input: Set of agents N , algorithm A which simulates a second-price auction,
parameter ϵ > 0

Output: VCG outcome (Winner & Payment)
while |N | > c do

Let S be a random sample of c = Θ(1/ϵ2) agents from N
Set w := winner in A(S)
Announce p := payment in A(S)
Update the active agents: N := {i ∈ N \ S : vi > p} ∪ {w}

end
if |N | = 1 then

return (w, p)
else

return A(N)
end

Proof. First, notice that in any iteration of the while loop only agents that are
below or equal to the second highest valuation will withdraw from the auction.
Now consider the case where upon exiting the while loop only a single agent w
remains in the set of active agents N . Then, it follows that the announced price
p in the final round—which by construction coincides with the valuation of some
player—exceeds the valuation of every player besides w. Thus, by definition, the
outcome implements the VCG rule. Moreover, if after the last round 2 ≤ |N | ≤ c,
the claim follows given that A faithfully simulates a second-price auction.

Proposition 4.4.2. AscendingAuctionViaSampling is ex-post incentive com-
patible if A simulates a sealed-bid auction.7

Proof. Consider any round of the auction and some agent i that has been selected
in the sample S; we identify two cases. First, if vi ≥ vj ,∀j ∈ S \ {i}, sincere
reporting clearly constitutes a best response for i. Indeed, notice that since A
simulates a second-price auction, the winner in the sub-auction does not have any
control over the announced price of the round. In the contrary case, agent i does
not have an incentive to misreport and remain active in the auction given that the
final payment will always be greater or equal to her valuation—observe that the

7In fact, AscendingAuctionViaSampling (with A implemented as a sealed-bid auc-
tion) is dominant strategy incentive compatible if the sequence of announced prices is
non-decreasing; this property can be guaranteed if the “market-clearing price” in the
sub-auction serves as a reserved price. Otherwise, truthful reporting is not necessarily a
dominant strategy. For example, assume that every agent i, besides some agent j, commits
to the following—rather ludicrous—strategy: i reports truthfully, unless i remains active
with at most 2c other agents; in that case, i will act as if her valuation is 0. Then, the
best response for j is to act as if her valuation is ∞.
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announced price always increases throughout the auction. Next, let p the payment
in A(S) and i /∈ S. It follows that if vi ≤ p then a best response for i is to withdraw
from the auction, while if vi > p then i’s best response is to remain active in the
forthcoming round.

Proposition 4.4.3. AscendingAuctionViaSampling is obviously strategy-proof
(OSP) if A simulates an English auction.

Proof. Notice that the induced mechanism performs a standard English auction,
but instead of interacting with every agent in a given round, we “ascend” in a
small sample; only when a single agent remains active we broadcast the current
price to the rest of the agents. Now consider some agent i that participates in the
sub-auction. If the current price is below her valuation vi, then the best possible
outcome from quitting is no better than the worst possible outcome from staying
in the auction. Otherwise, if the price is above vi, then the best possible outcome
from staying in the auction is no better than the worst possible outcome from
withdrawing in the current round. Indeed, notice that the announced price can
only increase throughout the auction. Of course, the same line of reasoning applies
for a round of interaction with the entire set of active agents; essentially, the claim
follows from the OSP property of the English auction.

Next, we analyze the communication complexity of our proposed auction. Nat-
urally, we have to assume that the valuation space is discretized, with k bits being
sufficient to express any valuation. The first thing to note is a trivial lower bound
on the communication.

Fact 4.4.4 (Communication Lower Bound). Every mechanism that determines
the agent with the highest valuation—with probability 1—must elicit at least n bits.

Importantly, we will show that this lower bound can be asymptotically re-
covered. In particular, observe that as the size of sample increases, the fraction
of agents that will choose to remain active—at least in the forthcoming round—
gradually diminishes; the following lemma makes this property precise.

Lemma 4.4.5 (Inclusion Rate). Let Xa be a random variable representing the
proportion of agents that will remain active in a given round of the
AscendingAuctionViaSampling with sample size c; then,

E[Xa] ≲
2

c+ 1
.

As a result, the size of the sample c allows us to calibrate the number of agents
that we wish to include in the following round—the inclusion rate. Before we
proceed with the proof of Theorem 4.4.5, we first state some standard asymptotic
formulas.
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Fact 4.4.6. (
n

c

)
∼ nc

c!
.

Fact 4.4.7.
n∑

i=1

ip ∼ np+1

p+ 1
∼

n∑
i=1

(i− 1)p.

Proof of Theorem 4.4.5. Suppose that there are n active agents in some round
of the AscendingAuctionViaSampling (here we slightly abuse notation given
that n corresponds to the initial number of agents). Let us denote with Xr the
rank—in the domain [n]—of the player with the second highest valuation (recall
that ties are broken arbitrarily according to some fixed order) in the sample. We
will show that

E[Xr] ∼ n
c− 1

c+ 1
.

Indeed, simple combinatorial arguments yield that the probability mass function
of Xr can be expressed as

P[Xr = i] =

(
n− i
1

)(
i− 1

c− 2

)
(
n

c

) .

As a result, it follows that

E[Xr] =
n∑

i=1

iP[Xr = i] ∼ c!

nc

n∑
i=1

i(n− i)
(
i− 1

c− 2

)

=
c!

nc

(
n

n∑
i=1

i

(
i− 1

c− 2

)
−

n∑
i=1

i2
(
i− 1

c− 2

))

∼ c!

nc

(
n

n∑
i=1

i

(
i

c− 2

)
−

n∑
i=1

i2
(

i

c− 2

))

∼ c!

nc

(
n

n∑
i=1

ic−1

(c− 2)!
−

n∑
i=1

ic

(c− 2)!

)

∼ c(c− 1)

nc

(
nc+1

c
− nc+1

c+ 1

)
= n

c− 1

c+ 1
,

where we applied the asymptotic bounds from Fact 4.4.6 and Fact 4.4.7; also note
that we ignored lower order terms in the third and fourth line. Finally, the proof
follows given that Xa ≤ (n−Xr)/n; the inequality here derives from the fact that
multiple agents could have the same valuation with the agent with rank Xr, and
we assumed that such agents will quit.
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Next, we are ready to analyze the communication complexity of our mech-
anism. In the following theorem, we implicitly assume that the agents report
sincerely.

Theorem 4.4.8. Let Q be the communication complexity of a deterministic al-
gorithm A, faithfully simulating a second-price auction, and N = [n] be a set of
agents. For any ϵ > 0 and c = Θ(1/ϵ2), denote by t(n; c, k) the expected commu-
nication complexity of AscendingAuctionViaSampling(N,A, ϵ). Then,

t(n; c, k) ≲ (1 + ϵ)n+Q(c; k) log n. (4.9)

Proof. Consider some round of the AscendingAuctionViaSampling with n
active agents; as in Theorem 4.4.5, let us denote with Xa the proportion of agents
that will remain active in the following round of the auction. If T represents the
(randomized) communication complexity of our mechanism, we obtain that

E[T (n; c, k)] = E[T (nXa; c, k)] +Q(c; k) + n− c. (4.10)

There are various ways to bound randomized recursions of such form; our anal-
ysis will leverage the concentration of Xa. In the sequel, we will tacitly assume
that the agents’ valuations are pairwise distinct, as this yields an upper bound on
the actual communication complexity (in our case, ties can only truncate commu-
nication). We will first establish that

V[Xa] ∼
2(c− 1)

(c+ 2)(c+ 1)2
. (4.11)

Indeed, consider the random variable Xr that represents the rank of the agent
with the second highest valuation in the sample. Analogously to the proof of
Theorem 4.4.5, it follows that

E[X2
r ] =

n∑
i=1

i2 P[Xr = i] ∼ c!

nc

n∑
i=1

i2(n− i)
(
i− 1

c− 2

)

∼ c!

nc

(
n

n∑
i=1

i2
(

i

c− 2

)
−

n∑
i=1

i3
(

i

c− 2

))

∼ c!

nc

(
n

n∑
i=1

ic

(c− 2)!
−

n∑
i=1

ic+1

(c− 2)!

)

∼ c(c− 1)

nc

(
nc+2

c+ 1
− nc+2

c+ 2

)
= n2

c(c− 1)

(c+ 2)(c+ 1)
.
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As a result, (4.11) follows given that V[Xr] = E[X2
r ] − (E[Xr])

2 and V[Xa] =
V[Xr]/n

2; notice that under the assumption that the valuations are pairwise dis-
tinct, it follows that Xa = (n − Xr)/n. For notational simplicity, let us de-
note with µ = E[Xa] and σ =

√
V[Xa]. Chebyshev’s inequality implies that

P[|Xa − µ| ≥
√
cσ] ≤ 1/c. It is also easy to see that µ+

√
cσ ≤ 4/

√
c; hence, with

probability at least 1− 1/c, nXa ≤ 4n/
√
c. Consequently, (4.10) gives that

t(n; c, k) ≲

(
1− 1

c

)
t

(
4n√
c
; c, k

)
+

1

c
t(n; c, k) + n+Q(c; k), (4.12)

where we used the fact that t(n; c, k) is decreasing w.r.t. n. Moreover, (4.12) can
be recast as

t(n; c, k) ≲ t

(
4n√
c
; c, k

)
+

c

c− 1
n+

c

c− 1
Q(c; k). (4.13)

Now consider any small ϵ > 0, and let c = Θ(1/ϵ2);8 from the previous recursion
we obtain that

t(n; c, k) ≲ (1 + ϵ)n+Q(c; k) log n,

as desired.

In particular, if A simulates a sealed-bid auction Q(c; k) = c · k, while if A
simulates an English auction Q(c; k) = c · 2k; indeed, implementing a faithful
second-price auction through a standard ascending format necessitates covering
the entire valuation space, i.e. 2k potential prices. Theorem 4.4.8 implies that the
size of the sample c induces a trade-off between two terms: As we augment the size
of the sample c we truncate the first term in (4.9)—most agents withdraw from a
given round—at the cost of increasing the simulation of the sub-auction A—the
second term in (4.9). Returning to our earlier thought experiment where we had
access to the distribution over the valuations, the term Q(c; k) log n is essentially
the overhead which we incur given that we do not possess any prior information.
Yet, if k does not depend on n and we examine the asymptotic growth of the
expected communication complexity w.r.t. the number of agents n, we obtain the
following:

Corollary 4.4.9 (Single-Item Auction with Optimal Communication). Let A be
an algorithm faithfully simulating a second-price auction, and N = [n] a set of
agents. For any ϵ > 0 and c = Θ(1/ϵ2), denote by t(n; c, k) the expected com-
munication complexity of AscendingAuctionViaSampling(N,A, ϵ). If k is a
constant independent of n,

t(n; c, k) ≲ (1 + ϵ)n.

8We do not claim that our analysis w.r.t. the size of the sample is tight; the rather
crude bound c = Θ(1/ϵ2) is an artifact of our analysis, but nonetheless it will suffice for
our purposes.
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Remark. It is important to point out that the elicitation pattern in our pro-
posed mechanism (AscendingAuctionViaSampling) is highly asymmetrical.
Indeed, while most of the agents will be eliminated after the first round, having
only revealed a single bit from their valuations, the agents who are close to winning
the item will have to disclosure a substantial amount of information; arguably, this
property is desirable. Notice that this is in stark contrast to a standard English
auction in which every withdrawing bidder approximately reveals her valuation.

4.4.2 Multi-Item Auction with Additive Valuations

As an extension of the previous setting, consider than the auctioneer has to
allocate m (indivisible) items to n agents, with the valuation space being additive;
that is, for every agent i and for any bundle of items S ̸= ∅,

vi(S) =
∑
j∈S

vi,j ,

where recall that vi,j represents the value of item j for agent i. Naturally, we are
going to employ an AscendingAuctionViaSampling for every item. It should
be clear that—by virtue of Theorem 4.4.1—the induced mechanism implements
with probability 1 the VCG outcome; every item is awarded to the agent who
values it the most, and the second-highest valuation for that particular item is
imposed as the payment. Moreover, Theorem 4.4.2 implies the following:

Proposition 4.4.10. Employing for every item AscendingAuctionViaSampling
yields an ex-post incentive compatible multi-item auction with additive valuations.

Our main insight in this domain is that a simultaneous implementation can
lead to a much more communication-efficient interaction process.

Sequential Implementation. First, assume that we have to perform an in-
dependent and separate auction for each item. Then, Fact 4.4.4 implies that our
mechanism has to elicit at least n ·m bits. As in the single-item setting, we can
asymptotically match this lower bound.

Proposition 4.4.11. Consider a set of agents N = [n] with additive valuations
for m (indivisible) items, and denote by t(n;m, c, k) the expected communication
complexity of employing for each item AscendingAuctionViaSampling. Then,
for any ϵ > 0 and with k assumed a constant independent of n,

t(n;m, c, k) ≲ (1 + ϵ)nm.

Simultaneous Implementation. On the other hand, we will show that the
communication complexity can be substantially reduced when the m auctions are
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performed in parallel. Specifically, our approach employs some ideas from informa-
tion theory in order to design a more efficient encoding scheme. More concretely,
let us first describe the general principle. Consider a discrete random variable that
has to be encoded and subsequently transmitted to some receiver; it is well un-
derstood in coding theory that the values of the random variable which are more
likely to be observed have to be encoded with relatively fewer bits, so that the
communication complexity is minimized in expectation.

Now the important link is that in the AscendingAuctionViaSampling with
a large sample size c a random agent will most likely withdraw from a given round.
Thus, we consider the following encoding scheme: An agent i—remaining active
in at least one of the m auctions—will transmit a bit 0 in the case of withdrawal
from all the auctions; otherwise, i may simply transmit an mi-bit vector that
indicates the auctions that i wishes to remain active, where mi ≤ m is the number
of auctions in which i is still active. Although the latter part of the encoding is
clearly sub-optimal—given that we have encoded events with substantially different
probabilities with the same number of bits, it will be sufficient for our argument.
Consider a round of the parallel implementation with n agents and let p be the
probability that a random agent will withdraw from every auction in the current
round. Given that every player is active in at most m auctions, it follows from the
union bound that 1 − p ≲ 2m/(c + 1). Thus, if B represents the total number of
bits transmitted in the round, we obtain that

E[B] = n (1 · p+m · (1− p)) ≲ n

((
1− 2m

c+ 1

)
+m

(
2m

c+ 1

))
.

As a result, for every δ > 0 and size of sample c = Θ(m2/δ), we have that
E[B] ≤ n(1 + δ). Also note that in expectation only a small fraction of agents
will “survive” in a given round of the parallel auction—asymptotically at most
2m/(c + 1). Thus, similarly to Theorem 4.4.9, we can establish the following
theorem:

Theorem 4.4.12 (Simultaneous Single-Item Auctions). Consider some set of
agents N = [n] with additive valuations for m indivisible items, and assume that
k and m are constants independent of n. There exists an encoding scheme such
that if t(n;m, c, k) is the expected communication complexity of implementing in
parallel an AscendingAuctionViaSampling for every item, then for any ϵ > 0
and for sufficiently large c = c(ϵ,m),

t(n;m, c, k) ≲ (1 + ϵ)n.

4.4.3 Multi-Unit Auction with Unit Demand

Finally, we design a multi-unit auction wherem units of the same item are to be
disposed to n unit demand bidders; naturally, we are interested in the non-trivial
case where m ≤ n. We shall consider two canonical cases.
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First, let us assume that the number of units m is a small constant. Then,
we claim that our approach in the single-item auction can be directly applied.
Indeed, we propose an ascending auction in which at every round we invoke some
algorithm A that simulates the VCG outcome—i.e., A identifies the m agents with
the highest valuations, as well as the (m+ 1)-highest valuation as the payment—
for a random sample. Next, the “market-clearing price” in the sub-auction is
announced in order to “prune” the active agents. As a result, we can establish
guarantees analogous to Theorems 4.4.1 and 4.4.2 and Theorem 4.4.9; the analysis
is similar to the single-item auction, and is therefore omitted.

Our main contribution in this subsection is to address the case wherem = γ ·n,
for some constant γ ∈ (0, 1). Specifically, unlike a standard English auction, our
idea is to broadcast in every round two separate prices; the agents who are above
the high price ph are automatically declared winners,9 while the agents below the
lower price pℓ will have to quit the auction. Then, the mechanism may simply
recurse on the agents that lie in the intermediate region. In this context, we
consider the following encoding scheme:

• If vi > ph, then i transmits a bit of 1;

• If vi < pℓ, then i transmits a bit of 0;

• otherwise, i may transmit some arbitrary 2-bit code.

Observe that the last condition ensures that the encoding is non-singular. In
contrast to our approach in the single-item auction, this communication pattern
requires the transmission of a 2-bit code from some agents; nonetheless, we will
show that this overhead can be negligible, and in particular, the fraction of agents
that reside between ph and pℓ can be made arbitrarily small. For simplicity in
the exposition, here we will tacitly assume that the agents’ valuations are pairwise
distinct. The pseudocode for our mechanism is given in Mechanism 6.

The crux of the MultiUnitAuctionViaSampling lies in the implementation
of the subroutines at steps 4 and 5. This is is addressed in the following theorem:

Theorem 4.4.13. Consider a set of agents N = [n] and a number of units m.
There exists a sampling algorithm such that for any ϵ > 0 and any δ > 0 satisfies
the following:

• It takes as input at most 4k log(4k/δ)/ϵ2 bits.

• With probability at least 1 − δ it returns prices ph and pℓ, such that ph is
between the (m+1)-ranked player and the (m+1+ ⌈ϵn⌉)-ranked player, and
pℓ is between the (m+1−⌈ϵn⌉)-ranked player and the (m+1)-ranked player.

9However, the winners do not actually pay ph, but rather a common price determined at
the final round of the auction; this feature is necessary in order to provide any meaningful
incentive compatibility guarantees.
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Mechanism 6: MultiUnitAuctionViaSampling(N,m)

Input: Set of agents N , number of items m
Output: VCG outcome (Winners & Payment)
Initialize the winners W := ∅ and the losers L := ∅
ph := EstimateUpperBound(N,m)
pℓ := EstimateLowerBound(N,m)
Announce ph and pℓ
Update the winners: W :=W ∪ {i ∈ N | vi > ph}
Update the losers: L := L ∪ {i ∈ N | vi < pℓ}
if ph = pℓ then

return (W,ph)
else

Set m := m− |{i ∈ N : vi > ph}|
Set N := N \ (W ∪ L)
return MultiUnitAuctionViaSampling(N,m)

end

Proof. Consider a perfect binary tree of height k, such that each of the 2k leaves
corresponds to a point on the discretized valuation space, as illustrated in Fig-
ure 4.5. Our algorithm will essentially perform stochastic binary search on this
tree. To be precise, beginning from the root of the tree, we will estimate an addi-
tional bit of ph and pℓ in every level of the tree. Let us denote with x1, x2, . . . , xr,
with xi ∈ {0, 1}, the predicted bits after r levels. In the current level, we take a
random sample S of size c with replacement10(S here is potentially a multiset),
and we query every agent i ∈ S on whether vi ≤ x1x2 . . . xr011 . . . 1, where the
threshold is expressed in binary representation. Let us denote with Xµ the random
estimation derived from the sample, i.e.,

Xµ =

∑
i∈S 1{vi ≤ x1x2 . . . xr01 . . . 1}

c
.

Recall that the output of the algorithm consists of two separate k-bit numbers
ph and pℓ. For convenience, a sample will be referred to as ϵ-ambiguous if |Xµ−γ| <
ϵ, where γ = m/n and ϵ > 0 some parameter. Intuitively, whenever the sample is
unambiguous we can branch with very high confidence; that is, we predict a bit of 1
if Xµ < γ, and a bit of 0 if Xµ > γ. In contrast, in every ϵ-ambiguous junction the
“high” estimation—corresponding to ph—will predict a bit of 1, whilst the “lower”
estimation—corresponding to pℓ—will predict a bit of 0. One should imagine that
the two estimators initially coincide, until they separate when a “close” decision
arises (see Figure 4.5). We claim that this algorithm will terminate with high

10We assume sampling with replacement to slightly simplify the analysis; our approach
is also directly applicable when the sampling occurs without replacement.
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probability with the desired bounds. For our analysis we will employ the following
standard lemma:

Lemma 4.4.14 (Chernoff-Hoeffding Bound). Let {X1, X2, . . . , Xc} be a set of
i.i.d. random variables with Xi ∼ Bern(p) and Xµ = (X1+X2+ · · ·+Xc)/c; then,

P(|Xµ − p| ≥ ϵ) ≤ 2e−2ϵ2c.

The main observation is that if for all samples Xµ has at most ϵ/2 error,
then the estimations ph and pℓ will be within the desired range in our claim. Let
us denote with pe the probability that for a single estimate and after k levels
there exists a sample with more than ϵ/2 error; the union bound implies that
pe ≤ 2ke−ϵ2c/2. Thus, for any ϵ > 0 and δ > 0, pe ≤ δ for c ≥ 2 log(2k/δ)/ϵ2.
Furthermore, by the union bound, we obtain that the probability of error of either
of the two estimates with input at most 2ck bits is at most 2δ; rescaling δ := δ/2
concludes the proof.

Figure 4.5: The binary-tree representation of the valuation space. The red
lines correspond to potential branching of the two estimates.

Consequently, the algorithm described in Theorem 4.4.13 will be employed
to implement lines 4 and 5 in our MultiUnitAuctionViaSampling. In addi-
tion, notice that we can recognize whenever the estimated prices ph and pℓ are
incongruous—in the sense that either the winners are more than the available
items, or that the remaining agents are less than the available items, in which case
we simply repeat the estimation. Thus, we obtain the following properties:

Proposition 4.4.15. The MultiUnitAuctionViaSampling is ex-post incen-
tive compatible.

Theorem 4.4.16 (Multi-Unit Auction with Optimal Communication). Consider
some set of unit demand agents N = [n], and m identical units. Moreover, denote
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by t(n; k) the expected communication complexity of the mechanism
MultiUnitAuctionViaSampling(N,m), with steps 4 and 5 implemented through
the algorithm of Theorem 4.4.13. If k = O(n1−ℓ) for some ℓ > 0, then for any
ϵ > 0,

t(n; k) ≲ (1 + ϵ)n.

Proof. Theorem 4.4.13 implies that for any ϵ > 0 and δ > 0,

t(n; k) ≤ (1− δ)((1 + 2ϵ)n+ t(2ϵn; k)) + δ(2n+ t(n; k)) + 4k
log(4k/δ)

ϵ2
,

where the first term corresponds to the induced communication when the sampling
algorithm of Theorem 4.4.13 succeeds, the second term is the worst-case commu-
nication whenever the sampling algorithm fails to return prices within the desired
range, while the last term is the communication of the sampling algorithm. Thus,
solving the induced recursion and using that k = O(n1−ℓ) concludes the proof.

4.A Sampling Approximation of the Plural-

ity Rule

Approximating the plurality rule is quite folklore in social choice; e.g., see [82,
58]. More recently, Bhattacharyya and Dey [82] analyzed the sample complexity
of determining the outcome in several common voting rules under a γ-margin
condition; that is, they assumed that the minimum number of votes that need to
be modified in order to alter the winner is at least γ ·n. In fact, a standard result by
Canetti et al. [58] establishes that at least Ω(log(1/δ)/γ2) samples are required in
order to determine the winner in the plurality rule with probability at least 1− δ,
even with 2 candidates. This lower bound might appear rather unsatisfactory;
for one thing, the designer does not typically have any prior information on the
margin γ. More importantly, in many practical scenarios we expect the margin to
be negligible, leading to a substantial overhead in the sample complexity.

The purpose of this section is to show that these obstacles could be circum-
vented once we take a utilitarian approach. Indeed, instead of endeavoring to
determine the winner in the election with high probability, we are interested in
approximating the social welfare. More precisely, assume that n agents have to
select among m alternatives or candidates. We let ui,j represent the score that
agent i ∈ [n] assigns to candidate j ∈ [m]. In this way, the social welfare of an
outcome j ∈ [m] is defined as

SW(j) =
n∑

i=1

ui,j .

Notice, however, that the social welfare approximation problem through the
plurality rule is hopeless under arbitrary valuations, in light of obvious information-
theoretic barriers. (the framework of distortion introduced by Procaccia and
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Rosenschein [193] quantifies exactly these limitations.) For this reason, and for
the sake of simplicity, we are considering the social welfare approximation prob-
lem in a very simplistic setting.

Definition 4.A.1. A voter i is said to be single-minded if ui,r = 1 for some
candidate r ∈ [m], and ui,j = 0, ∀j ̸= r.

In fact, in the simple setting where all agents are single-minded it is easy to
see that the plurality rule is actually strategy-proof. Recall that in the plurality
rule every agent i votes for a single candidate j ∈ [m], i.e. agent i broadcasts
an m-tuple (0, 0, . . . , 1, 0), assigning 1 to the position that corresponds to her
preferred candidate. We are now ready to analyze the sampling approximation of
the plurality rule.

Mechanism 7: ApproxPluralityViaSampling(N, [m], ϵ, δ)

Input: Set of agents N , set of candidates [m], accuracy parameter ϵ > 0,
confidence parameter δ > 0

Output: Candidate j ∈ [m] such that SW(j) ≥ (1− ϵ)SW(j∗) with
probability at least 1− δ, where j∗ represents the optimal candidate

Set c = 2m2 log(2m/δ)/ϵ2, the size of the sample
Let S be a random sample11of c agents from N
return Plurality(S)

Theorem 4.A.2. Consider a set of single-minded agents N , and any number of
candidates m. For any ϵ > 0 and any δ > 0,
ApproxPluralityViaSampling(N, [m], ϵ, δ) yields with probability at least 1−
δ an approximation ratio of 1 − ϵ w.r.t. the optimal social welfare of the full
information Plurality, for any c ≥ c0(m, ϵ, δ), where

c0(m, ϵ, δ) =
2m2 log(2m/δ)

ϵ2
.

The proof of this theorem is simple and proceeds with a standard Chernoff
bound argument; for completeness, we provide a detailed proof.

Proof of Theorem 4.A.2. First, let us denote with sj = (
∑n

i=1 ui,j) /n the score of
the jth candidate in the full information plurality rule. Consider a sample of size c,
and let (Xi,1, . . . , Xi,m) represent the voting profile of the agent that was selected in
the ith iteration of the sampling process. It follows that Xi,j ∼ Bern(sj),∀j ∈ [m].
Moreover, recall that we consider sampling with replacement, so that the set of
random variables {X1,j , . . . , Xc,j} is pairwise independent for any j ∈ [m]; our
results are also applicable when the sampling occurs without replacement given

11Here we assume that we sample with replacement.
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that the correlation between the random variables is negligible – for sufficient large
n, although we do not formalize this here.

As a result, if we denote with ŝj = (
∑c

i=1Xi,j) /c, a standard Chernoff bound
argument implies that ∀ϵ′ > 0, ∀δ′ > 0, and c ≥ log(2/δ′)/(2(ϵ′)2), |ŝj − sj | ≤ ϵ′

with probability at least 1− δ′. By the union bound, we obtain that |ŝj − sj | ≤ ϵ′
for all j ∈ [m] and with probability at least 1−mδ′. Thus, we let δ′ = δ/m for some
arbitrary δ > 0. We also let s∗ = sj∗ to be the score of the most preferred candidate
j∗ – among the entire population N . By definition, the optimal social welfare is
SW∗ = SW(j∗) =

∑n
i=1 ui,j∗ = ns∗. If r = argmaxj ŝj is the random output of

ApproxPluralityViaSampling(N, [m], ϵ′, δ), it follows that sr ≥ s∗ − 2ϵ′ with
probability at least 1− δ. Thus, we obtain that

SW(r) =

n∑
i=1

ui,r = nsr ≥ n(s∗ − 2ϵ′)

= SW∗−2ϵ′SW
∗

s∗

≥ SW∗(1− 2ϵ′m),

where in the final inequality we used that s∗ ≥ 1/m. Finally, setting ϵ′ = ϵ/(2m)
for an arbitrary ϵ > 0 concludes the proof.
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Chapter 5

Metric-Distortion Bounds
under Limited Information

Research in the metric distortion framework was initiated by Anshelevich et al.
[18]. Specifically, they analyzed the distortion of several common voting rules, most
notably establishing that Copeland’s rule has distortion at most 5, with the bound
being tight for certain instances. They also conjectured that the ranked pairs
mechanism always achieves distortion at most 3, which is also the lower bound
for any deterministic mechanism. This conjecture was disproved by Goel et al.
[132],1 while they also studied fairness properties of certain voting rules. Moreover,
Skowron and Elkind [214] established that a popular rule named single transferable
vote (STV) has distortion O(logm), along with a nearly-matching lower bound.
The barrier of 5 set out by Copeland was broken by Munagala and Wang [183],
presenting a novel deterministic rule with distortion 2+

√
5. The same bound was

obtained by Kempe [149] through an LP duality framework, who also articulated
sufficient conditions for proving the existence of a deterministic mechanism with
distortion 3. This conjecture was only recently confirmed by Gkatzelis et al. [131],
introducing the plurality matching mechanism. Closely related to our study is
also the work of Gross et al. [138], wherein the authors provide a near-optimal
mechanism that only asks m + 1 voters for their top-ranked alternatives. The
main difference with our setting is that we require an efficiency guarantee with
high probability, and not in expectation.

Broader Context. Beyond the metric case most focus has been on analyzing
distortion under a unit-sum assumption on the utility function, ensuring that
agents have equal “weights”. In particular, Boutilier et al. [52] provide several
upper and lower bounds, while they also study learning-theoretic aspects under
the premise that every agent’s utility is drawn from a distribution; cf., see the

1A tight bound of Θ(
√
m) for the ranked pairs mechanism was subsequently given

by Kempe [149].
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work of Procaccia et al. [196]. Moreover, several multi-winner extensions have
been studied in the literature. Caragiannis et al. [66] study the committee selection
problem, which consists of selecting k alternatives that maximize the social welfare,
assuming that the value of each agent is defined as the maximum value derived from
the committee’s members. We also refer to Benadè et al. [37] for the participatory
budgeting problem, and to Benadè et al. [38] when the output of the mechanism
should be a total order over alternatives (instead of a single winner).

More special metric spaces have been considered by Feldman et al. [104], Fain
et al. [97], Anagnostides et al. [8], strengthening some of the results we previously
described. The trade-off between efficiency and communication has been addressed
by Mandal et al. [171, 172], while Amanatidis et al. [6] investigated the decay of
distortion under a limited amount of cardinal queries—in addition to the ordinal
information. We should also note a series of works analyzing the power of ordi-
nal preferences for some fundamental graph-theoretic problems [110, 15, 16, 17].
Finally, we point out that strategic issues are typically ignored within this line of
work. We will also posit that agents provide truthfully their preferences, but we
refer to Bhaskar et al. [42], Caragiannis et al. [65, 67] for rigorous considerations
on the strategic issues that arise. We refer the interested reader to the excellent
survey of Anshelevich et al. [22], as we have certainly not exhausted the literature.

5.1 Contributions

First, we study voting rules which perform a sequence of pairwise comparisons
between two candidates, with the result of each comparison being determined by
the majority rule over the entire population of voters. This class includes many
common mechanisms such as Copeland’s rule [206] or the minimax scheme of Levin
and Nalebuff [162], and has received considerable attention in the literature of
social choice; cf., see the discussion of Lang et al. [157], and references therein.
Within the framework of (metric) distortion, the following fundamental question
arises:

How many pairwise comparisons between two candidates are needed
to guarantee non-trivial bounds on the distortion?

For example, Copeland’s rule (and most of the common voting rules within this
class) elicits all possible pairwise comparisons, i.e.

(
m
2

)
= Θ(m2), and guarantees

distortion at most 5 [18]. Thus, it is natural to ask whether we can substantially
truncate the number of elicited pairwise comparisons without sacrificing too much
the efficiency of the mechanism. We stress that we allow the queries to be dynam-
ically adapted during the execution of the algorithm. In this context, we provide
the following strong positive result:

Theorem 5.1.1. There exists a deterministic mechanism that elicits only m − 1
pairwise comparisons and guarantees distortion O(logm).
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The corresponding mechanism is particularly simple and natural: In every
round we arbitrarily pair the remaining candidates and we only extract the cor-
responding comparisons. Next, we eliminate all the candidates who “lost” and
we continue recursively until a single candidate emerges victorious. Interestingly,
this mechanism is widely employed in practical applications, for example in the
knockout phases of many competitions, with the difference that typically some
“prior” is used in order to construct the pairings. The main technical ingredi-
ent of the analysis is a powerful lemma developed by Kempe via an LP duality
argument [149]. Specifically, Kempe characterized the social cost ratio between
two candidates when there exists a sequence of intermediate alternatives such that
every candidate in the chain pairwise-defeats the next one. We also supplement
our analysis for this mechanism with a matching lower bound on a carefully con-
structed instance (Theorem 5.3.6). Moreover, we show that any mechanism which
performs (strictly) fewer than m − 1 pairwise comparisons has unbounded dis-
tortion (Theorem 5.3.1). This limitation applies even if we allow randomization
either during the elicitation or the winner determination phase. Indeed, there are
instances for which only a single alternative can yield bounded distortion, but
the mechanism simply does not have enough information to identify the “right”
candidate.

Next, we study deterministic mechanisms which only receive an incomplete
order of preferences from every voter, instead of the entire rankings. This setting
has already received attention in the literature, most notably by Kempe [150], and
has numerous applications in real-life voting systems. Arguably the most impor-
tant such consideration arises when every voter provides her k-top preferences,
for some parameter k ∈ [m]. Kempe [150] showed that there exists a determin-
istic mechanism which elicits only the k-top preferences and whose distortion is
upper-bounded by 79m/k; using a powerful tool developed in [149] this bound can
be improved all the way down to 12m/k. However, this still leaves a substan-
tial gap with respect to the best-known lower bound, which is 2m/k if we ignore
some additive constant factors. Thus, [150] left as an open question whether the
aforementioned upper bound can be improved. In our work, we make substantial
progress towards bridging this gap, proving the following:

Theorem 5.1.2. There exists a deterministic mechanism that only elicits the k-
top preferences and yields distortion at most 6m/k + 1.

We should stress that the constant factors are of particular importance in this
framework; indeed, closing the gap even for the special case of k = m has received
intense scrutiny in recent years [18, 183, 149, 131]. From a technical standpoint, the
main technique for proving such upper bounds consists of identifying a candidate
for which there exists a path to any other node such that every candidate in the
path pairwise-defeats the next one by a sufficiently large margin (which depends
on k). Importantly, the derived upper bound crucially depends on the length of
the path. Our main technical contribution is to show that there always exists a
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path of length 2 with the aforedescribed property, while the previous best result
by Kempe established the claim only for paths of length 3.

Although our approach can potentially bring further improvements, closing the
gap inevitably requires different techniques. In particular, a promising direction
appears to stem from extending some of the claims established by Gkatzelis et al.
[131]. Indeed, we observe that a natural generalization of their main technical
ingredient would lower the upper bound to 4m/k − 1 (Theorem 5.4.7), which
appears to be optimal when k is close to m. More precisely, Gkatzelis et al. [131]
proved that a certain graph always has a perfect matching when the entire rankings
are available; we conjecture that under k-top preferences there always exists a
perfect matching for a subset of a k/m fraction of the voters (see Theorem 5.4.6
for a more precise statement).

We also provide some other important bounds for deterministic mechanisms
under missing information. Most notably, if the voting rule performs well on an
arbitrary (potentially adversarially selected) subset of the voters can we quantify
its distortion over the entire population? We answer this question with a sharp
upper bound in Theorem 5.4.3. In fact, we use this result as a tool for some of
our other proofs, but nonetheless we consider it to be of independent interest. It
should be noted that even in the realm of partial or incomplete rankings there
exists an instance-optimal mechanism via linear programming; this was first ob-
served by Goel et al. [132] when the total orders are available, but it directly
extends in more general settings. Interestingly, we show that the recently intro-
duced mechanism of Gkatzelis et al. [131] which always obtains distortion at most
3 can be substantially outperformed by the LP mechanism. Namely, for some
instances the mechanism of Gkatzelis et al. [131] yields distortion almost 3, while
the instance-optimal mechanism yields distortion close to 1.

Finally, we consider mechanisms which receive information from only a “small”
random sample of voters; that is, we are concerned with the sample complexity re-
quired to ensure efficiency, which boils down to the following fundamental question:

How large should the size of the sample be in order to guarantee
near-optimal distortion with high probability?

More precisely, we are interested in deriving sample-complexity bounds which
are independent of the number of voters n. This endeavor is particularly motivated
given that in most applications n ≫ m. Naturally, sampling approximations are
particularly standard in the literature of social choice. Indeed, in many scenarios
one wishes to predict the outcome of an election based on a small sample (e.g. in
polls or exit polls), while in many other applications it is considered even infeasible
to elicit the entire input (e.g. in online surveys). In this context, we will be content
with obtaining near-optimal distortion with high probability (e.g. 99%). This
immediately deviates from the line of research studying randomized mechanisms
wherein it suffices to obtain a guarantee in expectation; cf., see Anshelevich and
Postl [14]. We point out that it has been well-understood that a guarantee only
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in expectation might be insufficient in many cases; for example, Fain et al. [98]
considered as the objective the squared distortion as a proxy in order to limit as
much as possible the variance in the distortion. In fact, Fain et al. [98] are also
concerned with sample complexity issues, but from a very different standpoint.

We stress that we only allow randomization during the preference elicitation
phase; for a given random sample, which corresponds to the entire rankings of the
voters, the mechanisms we consider act deterministically. Specifically, we analyze
two main voting rules along this vein.

Theorem 5.1.3 (Approximate Copeland). For any sufficiently small ϵ > 0 there
exists a mechanism that takes a sample of size Θ(log(m)/ϵ2) voters and yields
distortion at most 5 + ϵ with probability 0.99.

The techniques required for the proof of this theorem are fairly standard.
More importantly, we analyze the sample complexity of PluralityMatching,
the mechanism of Gkatzelis et al. [131] which recovers the optimal distortion bound
of 3 (among deterministic mechanisms). In this context, we establish the following
result:

Theorem 5.1.4 (Approximate PluralityMatching). For any sufficiently small
ϵ > 0 there exists a mechanism that takes a sample of size Θ(m/ϵ2) voters and
yields distortion at most 3 + ϵ with probability 0.99.

More precisely, the main ingredient of PluralityMatching is a maximum-
matching subroutine for a certain bipartite graph. Our first observation is that the
size of the maximum matching can be determined through a much smaller graph
which satisfies a “proportionality” condition with respect to a maximum-matching
decomposition. Although this condition cannot be explicitly met since the algo-
rithm is agnostic to the decomposition, our observation is that sampling (with
sufficiently many samples) will approximately satisfy this requirement, eventually
leading to the desired conclusion.

We stress that we do not guarantee that the winner in our sample will coincide
with that over the entire population. In fact, the sample complexity bounds for
the winner determination problem—for virtually every reasonable voting rule—
depend on the margin of victory; see the work of Dey and Bhattacharyya [82].
However, we argue that this feature is undesirable. For one thing, the algorithm
does not have any prior information on the margin, and hence it is unclear how to
tune this parameter in practice. More importantly, in many scenarios the margin
might be very small, leading to a substantial overhead in the sample-complexity
requirements of the mechanism. One of our conceptual contributions is to show
that we can circumvent such limitations once we espouse a utilitarian framework.
Indeed, all of our bounds are distribution-independent (and instance-oblivious).

We should also point out that, although we are emphasizing sample-complexity
considerations, we believe that our results have another very clear motivation.
Namely, given that in most applications n≫ m, it is important to provide sublinear
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algorithms whose running time does not depend on n. In this context, we provide
a Monte Carlo implementation of PluralityMatching whose time complexity
scales independently of n.

5.2 Preliminaries

A metric space is a pair (M, d), where d :M×M → R constitutes a metric
onM, i.e., (i) ∀x, y ∈ M, d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles), (ii)
∀x, y ∈ d(x, y) = d(y, x) (symmetry), and (iii) ∀x, y, z ∈ M, d(x, y) ≤ d(x, z) +
d(z, y) (triangle inequality). Consider a set of n voters V = {1, 2, . . . , n} and
a set of m candidates C = {a, b, . . . , }; candidates will be typically represented
with lowercase letters such as a, b, w, x, but it will be sometimes convenient to use
numerical values as well. We assume that every voter i ∈ V is associated with a
point vi ∈M, and every candidate a ∈ C to a point ca ∈M. Our goal is to select
a candidate x who minimizes the social cost : cost(x) =

∑n
i=1 d(vi, cx). This task

would be trivial if we had access to the agents’ distances from all the candidates.
However, in the standard metric distortion framework every agent i provides only
a ranking (a total order) σi over the points in C according to the order of i’s
distances from the candidates. We assume that ties are broken arbitrarily, subject
to transitivity, but we will not abuse the tie-breaking assumption.

In this work, we are considering a substantially more general setting wherein
every agent provides a subset of σi. More precisely, we assume that agent i provides
as input a set Pi of ordered pairs of distinct candidates, such that (a, b) ∈ Pi =⇒
a ≻i b, where a, b ∈ C; it will always be assumed that Pi corresponds to the
transitive closure of the input. We will allow Pi to be the empty set, in which
case i does not provide any information to the mechanism; with a slight abuse
of notation, we will let Pi ≡ σi when i provides the entire order of preferences.
We will say that the input P = (P1, . . . ,Pn) is consistent with the metric d if
(a, b) ∈ Pi =⇒ d(vi, ca) ≤ d(vi, cb), ∀i ∈ V , and this will be denoted with d▷P. We
will represent with top(i) and sec(i) i’s first and second most preferred candidates,
respectively. We may also sometimes use the notation ab = {i ∈ V : a ≻i b}.

A deterministic social choice rule is a function that maps an election in the
form of a 3-tuple E = (V,C,P) to a single candidate a ∈ C. We will measure
the performance of f for a given input of preferences P in terms of its distortion,
namely, the worst-case approximation ratio it provides with respect to the social
cost:

distortion(f ;P) = sup
cost(f(P))

mina∈C cost(a)
, (5.1)

where the supremum is taken over all metrics such that d ▷ P. That is, once
the mechanism selects a candidate (or a distribution over candidates if the social
choice rule is randomized), an adversary can select any metric space subject to
being consistent with the input preferences. Similarly, in Section 5.3 where we
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study mechanisms that perform pairwise comparisons, the adversary can select
any metric space consistent with the elicited comparisons. The distortion of a
social choice rule f is defined as the supremum of distortion(f ;P) (5.1) taken over
all possible input preferences P (and possible values of n), under a fixed value for
the number of candidates m. We point out the following:

Proposition 5.2.1. Under any given preferences P, there exists a metric space
consistent with P.

This proposition follows immediately from Proposition 1 of Anshelevich et al.
[18], which established the claim when P = σ.

5.2.1 Instance-Optimal Voting

An important observation is that under any input preferences P there exists a
deterministic instance-optimal mechanism; this was noted by Goel et al. [132] (see
also [52]) when P = σ, but their mechanism directly applies to our more general
setting. We briefly present their idea, as we will also employ this mechanism for
our experiments.

The first ingredient is an optimization problem that allows to compare a
pair of distinct candidates, subject to the set of preferences given to the mech-
anism. Specifically, for a, b ∈ C, with a ̸= b, consider the following linear program
Metric-LP(a, b):

maximize
∑n

i=1 xi,a
subject to

∑n
i=1 xi,b = 1;

xi,p ≤ xi,q, ∀(p, q) ∈ Pi,∀i ∈ V ;
xi,i = 0, ∀i ∈ V ∪ C;
xi,j = xj,i, ∀i, j ∈ V ∪ C;
xi,j ≤ xi,k + xk,j ,∀i, j, k ∈ V ∪ C.

(5.2)

It should be pointed out that some of the constraints in Metric-LP (5.2) are
redundant, in the sense that they are implied by others, but we will not dwell
on such optimizations here. We will represent with D(a|b) the value of the linear
program Metric-LP(a, b); if it is unbounded, we let D(a|b) = +∞. We also
note that the linear program is always feasible by virtue of Theorem 5.2.1. In this
context, the mechanism of Goel et al. [132] consists of the following steps:

• For any pair a, b ∈ C, with a ̸= b, compute D(a|b); also let D(a|a) = 1.

• Set D(a) = maxb∈C D(a|b).

• Return the candidate b with the minimum value D(a) over all a ∈ C; ties
are broken arbitrarily.
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This mechanism will be referred to as Minimax-LP to distinguish from the
minimax voting scheme of Simpson and Kramer [162]. The Minimax-LP rule
essentially performs brute-force search over all possible metrics in order to iden-
tify the candidate who minimizes the distortion; nonetheless, it can be solved in
poly(n,m) time given that the Metric-LP admits a strongly polynomial time
algorithm; this follows because the bit complexity L—the number of bits required
to represent it [147]—is small: L = O(log(n+m)). Moreover, it is easy to establish
the following:

Theorem 5.2.2. For any given preferences P, the Minimax-LP rule is instance-
optimal in terms of distortion.

In particular, when P = σ we note that Minimax-LP always yields distortion
at most 3 by virtue of the upper-bound of Gkatzelis et al. [131]. Nevertheless, in
this work we will be mostly interested in providing upper bounds on the distortion
of Minimax-LP under incomplete rankings.

5.3 Sequence of Pairwise Comparisons

In this section, we are considering voting rules that perform a sequence of
pairwise comparisons between two candidates, with the result of each comparison
being determined by the majority rule over the entire population of voters. To
put it differently, consider the tournament graph T = (C,E) where (a, b) ∈ E if
and only if candidate a pairwise-defeats candidate b; that is, |ab| ≥ n/2. (It will
be tacitly assumed without any loss of generality that ties are broken arbitrarily
so that T is indeed a tournament.) We are studying mechanisms which elicit
edges from T , and we want to establish a trade-off between the number of elicited
edges and the distortion of the mechanism. We commence with the following lower
bound:

Proposition 5.3.1. There are instances for which any deterministic mechanism
which elicits (strictly) fewer than m− 1 edges from T has unbounded distortion.

Sketch of Proof. Consider a family of tournaments T as illustrated in Figure 5.1,
with the set C∗ containing a single candidate. Then, there are metric spaces for
which all the voters are arbitrarily close to the candidate in C∗ and arbitrarily far
from any other candidate. Thus, any mechanism with bounded distortion has to
identify the candidate in C∗. However, any pairwise comparison can eliminate at
most one candidate from being in C∗. As a result, if T̂ = (C, Ê) is the subgraph
based on the elicited edges, there will be at least two distinct candidates which
could lie in C∗ for some tournament in T consistent with T̂ , leading to the desired
conclusion.

In fact, the same limitation applies even if we allow randomization, either
during the elicitation or the winner determination phase. On the other hand, we
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Figure 5.1: A hard class of tournament graphs when fewer thanm−1 pairwise
comparisons are elicited (see Theorem 5.3.1). C∗ contains a single candidate
whose is located arbitrarily closed to all the voters in the underlying metric
space.

will show that m − 1 edges from T suffice to obtain near-optimal distortion. To
this end, we will employ a powerful technical lemma due to Kempe, proved via an
LP-duality argument.

Lemma 5.3.2 ([149]). Let a1, a2, . . . aℓ be a sequence of distinct candidates such
that for every i = 2, . . . , ℓ at least half of the voters prefer candidate ai−1 over
candidate ai. Then, cost(a1) ≤ (2ℓ− 1)cost(aℓ).

Armed with this important lemma, we introduce theDominationRootmech-
anism. DominationRoot determines a winning candidate with access only to
a pairwise comparison oracle; namely, O takes as input two distinct candidates
a, b ∈ C and returns the losing candidate based on the voters’ preferences (recall
that in case of a tie the oracle returns an arbitrary candidate).

Mechanism 8: DominationRoot

Input: Set of candidates C, Pairwise comparison oracle O;
Output: Winner w ∈ C;
1. Initialize S := C;
2. Construct arbitrarily a set Π of ⌊S/2⌋ pairings from S;
3. For every {a, b} ∈ Π remove O(a, b) from S;
4. If |S| = 1 return w ∈ S; otherwise, continue from step 2;

We refer to Figure 5.2 for an illustration of DominationRoot. The analysis
of this mechanism boils down to the following simple claims:

Claim 5.3.3. DominationRoot elicits exactly m− 1 edges from T .

Proof. The claim follows given that for every elicited edge we remove a candidate
for the rest of the mechanism, until only a single candidate survives.
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Figure 5.2: An implementation ofDominationRoot form = 14 candidates.
Nodes correspond to candidates and edges to pairwise comparisons. We
have highlighted with different colors pairwise comparisons that correspond
to different rounds of the mechanism. Also, the “height” of every candidate
indicates the order of elimination.

Claim 5.3.4. DominationRoot returns a candidate w which can reach every
other node in T in paths of edge-length at most ⌈logm⌉ in T .

Proof. Consider the partition of candidates C1, . . . , Cr such that Ci contains the
candidates who were eliminated during the i-th round for i ∈ {1, 2, . . . , r − 1},
and Cr = {w}. Observe that every candidate a ∈ Ci (with i ∈ {1, 2, . . . , r − 1})
was pairwise-defeated by some candidate in Cj for j > i; thus, the claim follows
inductively since r = ⌈logm⌉.

We now arrive to one of our central results, establishing that onlym−1 pairwise
comparisons suffice to obtain near-optimal distortion:

Theorem 5.3.5. DominationRoot elicits only m − 1 edges from T and guar-
antees distortion at most 2⌈logm⌉+ 1.

Proof. The theorem follows directly from Theorem 5.3.3, Theorem 5.3.4, and The-
orem 5.3.2.

This theorem, along with Theorem 5.3.1, imply a remarkable gap depending
on whether the mechanism is able to elicit at least m − 1 pairwise comparisons.
We also provide a matching lower bound for the distortion of DominationRoot:

Proposition 5.3.6. There exist instances for which DominationRoot yields
distortion at least 2 logm+ 1.
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Proof. We will first show that the bound established in Theorem 5.3.2 is tight.
Indeed, consider a set of ℓ of candidates {1, 2, . . . , ℓ}, for an even number ℓ, and
two voters (the instance directly extends to an arbitrary even number of voters)
positioned according to the pattern of Figure 5.3a. Then, the following profile of
preferences is consistent with the underlying metric space:

• 1 ≻1 3 ≻1 2 ≻1 5 ≻1 · · · ≻1 ℓ− 2 ≻1 ℓ;

• 2 ≻2 1 ≻2 4 ≻2 3 ≻2 · · · ≻2 ℓ ≻2 ℓ− 1.

Now observe that—at least under some tie-breaking rule—candidate i pairwise-
defeats candidate i−1 for i = 2, 3, . . . , ℓ. Moreover, it follows that cost(i) = 2i−1,
for all i, implying that cost(ℓ)/cost(1) = 2ℓ− 1, as desired.

Next, consider m candidates such that m is a power of 2. We first consider ℓ =
logm+1 candidates positioned according to our previous argument (Figure 5.3a);
the rest of the candidates are located arbitrarily far from the voters. It is easy
to see that there exists a sequence of pairings (Figure 5.3b) such that cℓ will be
declared victorious, leading to a distortion of 2 logm+1 by virtue of our previous
argument.

(a) A metric embedding of voters and
candida-
tes establishing that Theorem 5.3.2 is
tight.

(b) A sequence of pairings such that cℓ
emerges victorious. We have highlighted
with different colors pairings that corre-
spond to different rounds.

Figure 5.3: Proof of Theorem 5.3.6.

5.4 Distortion of Deterministic Rules under

Incomplete Orders

In this section, we complement our previous results that assumed access to
pairwise comparisons (Section 5.3) by characterizing the distortion of deterministic
voting mechanisms under different classes of incomplete preferences. We commence
this section with another useful lemma by [149].
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Lemma 5.4.1 ([149]). Consider three distinct candidates w, y, x ∈ C such that
|wy| ≥ αn and |yx| ≥ αn, with α ∈ (0, 1]. Then,

cost(w)

cost(x)
≤ 2

α
+ 1.

In particular, notice that if w is the winner in Copeland’s rule, it follows that
for any candidate x there exists some other candidate y such that w pairwise-
defeats y and y pairwise-defeats x [182]; thus, applying Theorem 5.4.1 for α = 1/2
implies that the winner in Copeland’s rule has distortion upper-bounded by 5.
This was initially established by Anshelevich et al. [18].

As a warm-up, we first employ this lemma to characterize the distortion when,
for all pairs of candidates, at least a small fraction of voters has provided their
pairwise preferences. We stress that all of our upper bounds are attainable by the
Minimax-LP rule, but nonetheless our proofs are constructive in the sense that we
provide (efficiently implementable) mechanisms that obtain the desired bounds.

Proposition 5.4.2. Consider an election E = (V,C,P) such that for every pair of
distinct candidates a, b ∈ C, it holds that

∑n
i=1 1 {(a, b) ∈ Pi ∨ (b, a) ∈ Pi} ≥ α ·n,

with α ∈ (0, 1]. Then, there exists a voting rule that obtains distortion at most
4/α+ 1.

Proof. Consider a complete, weighted and directed graph G = (C,E,w) such that

wa,b =

∑n
i=1 1{(a, b) ∈ Pi}

n
.

In words, wa,b represents the fraction of voters who certainly prefer a to b;
observe that if we had the complete rankings it would follow that wa,b +wb,a = 1,
but here we can only say that wa,b +wb,a ≤ 1. Moreover, by assumption, we know
that wa,b +wb,a ≥ α, implying that wa,b ≥ α/2 or wb,a ≥ α/2. With that in mind,

we construct from G an unweighted and directed graph Ĝ = (C, Ê) according to
the following threshold rule: (a, b) ∈ Ê ⇐⇒ wa,b ≥ α/2. We have argued that our

assumption implies that (a, b) ∈ Ê ∨ (b, a) ∈ Ê. As a result, we can deduce that
Ĝ contains as a subgraph a tournament; thus, there exists a king vertex w [199]
so that every node a ∈ C is reachable from w in at most 2 steps, and our claim
follows directly from Theorem 5.4.1.

We remark that this upper bound is tight up to constant factors, at least for
certain instances. Indeed, if we only have an α fraction of the votes in the presence
of 2 candidates, it is easy to show an Ω(1/α) lower bound for any mechanism, even
if we allow randomization.

5.4.1 Missing Voters

Building on Theorem 5.4.2, consider an election E = (V,C,P) and a mechanism
that has access to the votes of only a subset V \Q of voters, where Q ⊂ V is the set
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ofmissing voters such that |Q| = ϵ·n. If the mechanism performs well on V \Q, can
we characterize the distortion over the entire set of voters as ϵ increases? Observe
that this setting is tantamount to Pi = ∅ for all i ∈ Q. In the following theorem
we provide a sharp bound:

Theorem 5.4.3. Consider a mechanism with distortion at most ℓ w.r.t. an arbi-
trary subset with (1 − ϵ) fraction of all the voters, for some ϵ ∈ (0, 1). Then, the
distortion of the mechanism w.r.t. the entire population is upper-bounded by

ℓ+
ϵ

1− ϵ
(ℓ+ 1).

Proof. Consider a candidate b ∈ C with distortion at most ℓ w.r.t. the agents
in V \ Q. Moreover, consider some arbitrary candidate a ∈ C, and let Sb =∑

i∈V \Q d(vi, cb), and Sa =
∑

i∈V \Q d(vi, ca); observe that, by assumption, Sb/Sa ≤
ℓ. Our analysis will distinguish between the following two cases:

Case I: Sb ≥ Sa > 0.2 Then, for all i ∈ Q it follows that

Sbd(vi, ca) + Sad(ca, cb) ≥ Sa(d(vi, ca) + d(ca, cb)) ≥ Sad(vi, cb),

and hence,

Sad(vi, cb) ≤ Sad(ca, cb) + Sbd(vi, ca) + d(ca, cb)d(vi, ca);

summing over all i ∈ Q gives

Sa
∑
i∈Q

d(vi, cb) ≤ |Q|Sad(ca, cb) + Sb
∑
i∈Q

d(vi, ca) + d(ca, cb)
∑
i∈Q

d(vi, ca)

≤ |Q|Sad(ca, cb) + Sb
∑
i∈Q

d(vi, ca) + |Q|d(ca, cb)
∑
i∈Q

d(vi, ca). (5.3)

Moreover, observe that

(5.3) ⇐⇒
Sb +

∑
i∈Q d(vi, cb)

Sa +
∑

i∈Q d(vi, ca)
≤ Sb + |Q|d(ca, cb)

Sa
. (5.4)

Next, we have that d(ca, cb) ≤ d(vi, ca) + d(vi, cb),∀i; summing over all i ∈ V \Q
implies that (n− |Q|)d(ca, cb) ≤ Sa + Sb ≤ (ℓ+ 1)Sa. Therefore, along with (5.4)
we obtain that

cost(b)

cost(a)
≤ ℓ+ |Q|

n− |Q|
(ℓ+ 1) = ℓ+

ϵ

1− ϵ
(ℓ+ 1).

2The case where Sa = 0 can be trivially handled. Indeed, it implies that Sb ≤ ℓ×Sa = 0,
which in turn yields that d(ca, cb) = 0; thus, cost(a) = cost(b).
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Case II: Sb < Sa. In this case, we can simply observe that

cost(b)

cost(a)
≤
Sb +

∑
i∈Q d(vi, ca) + |Q|d(ca, cb)
Sa +

∑
i∈Q d(vi, ca)

≤ 1 + |Q|d(ca, cb)
Sa

.

Thus, the proof follows given that (n− |Q|)d(ca, cb) ≤ Sa + Sb < 2Sa.

A few remarks are in order. First, Borodin et al. [48] provided a similar result
when the revealed votes contain complete preferences; it is plausible that their
approach can be extended along the line of Theorem 5.4.3. In fact, if all the voters
in the set V \Q had provided their entire rankings, we could derive a similar result
via Theorem 5.4.2, but, unlike Theorem 5.4.2, Theorem 5.4.3 is parameterized in
terms of the distortion with respect to the voters in V \ Q. Theorem 5.4.3 will
be a useful tool in the sequel in order to establish bounds under k-top preferences
(Theorem 5.4.7) and random sampling (Theorem 5.5.9), but we consider it to
be of independent interest beyond those applications. We also point out that
the derived bound in Theorem 5.4.3 is tight for certain instances. For example,
consider an instance on the line with only two candidates a and b, so that every
candidate receives half of the votes among the voters in V \ Q; assume without
loss of generality that a is selected as the winning candidate, having distortion 3
w.r.t. the voters in V \Q. However, we have to accept that (1 − ϵ)/2 fraction of
the voters could reside in the midpoint (ca + cb)/2, while the rest of the agents
could all lie in cb; thus, the distortion of candidate a reads

cost(a)

cost(b)
=

1−ϵ
2

d(ca,cb)
2 + 1−ϵ

2 d(ca, cb) + ϵd(ca, cb)

1−ϵ
2

d(ca,cb)
2

= 3 + 4
ϵ

1− ϵ
,

which matches the bound of Theorem 5.4.3 when ℓ = 3.

5.4.2 Top Preferences

In this subsection, we investigate how the distortion increases when every voter
provides only her k-top preferences, for some parameter k ∈ [m]. It should be noted
that the two extreme cases are by now well understood. Specifically, when k = m
the mechanism has access to the entire rankings, and we know that any determin-
istic mechanism has distortion at least 3, matching the upper bound established
by Gkatzelis et al. [131]. On the other end of the spectrum, when k = 1, the plu-
rality rule—which incidentally is the optimal deterministic mechanism when only
the top preference is given—yields distortion at most 2m − 1 [18]. Consequently,
the question is to quantify the decay of distortion as we gradually increase k. We
commence by reminding a lower bound given by Kempe [150]:

Proposition 5.4.4. Any deterministic mechanism that elicits only the k-top pref-
erences from every voter out of the m alternatives has distortion Ω(m/k).
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More precisely, the best lower bound is 2m/k, ignoring some additive constant
factors;

Proof. First of all, assume without any loss of generality that k | (m− 1),3 and let
n = (m−1)/k be the number of voters. For simplicity, let us enumerate the number
of candidates as C = {1, 2, . . . , n× k}∪ {x}. Now consider some preference profile
P in which the k-top preferences of voter i correspond to the set of candidates
{(i− 1)k+1, . . . , (i− 1)k+ k} according to some arbitrary order; observe that all
of these sets are pairwise disjoint.

Based on these preferences, the mechanism has to select some candidate. If
x is selected, the lower bound follows trivially since x could actually be the last
choice for every voter. Therefore, let us assume that candidate 1 was selected by
the mechanism; this hypothesis is without loss of generality due to the symmetry
of the input P. The main observation is that the agents and the candidates could
be located on the metric space of Figure 5.4. Indeed, it is easy to check that
the induced metric space is consistent with the given preferences. As a result, it
follows that

cost(1)

cost(x)
=
D + (n− 1)× (δ + 2D)

D + (n− 1)× δ
=

1 + (n− 1)× (δ/D + 2)

1 + (n− 1)× δ/D
. (5.5)

Thus, for δ/D ↓ 0, we obtain that cost(1)/cost(x)→ 2n− 1 = Ω(m/k).

We should note that although in our worst-case example the number of voters
n is smaller than the number of candidates m, which is not the canonical case, our
argument directly extends whenever n is a multiple of (m− 1)/k, allowing n to be
arbitrarily large. Moreover, a similar construction shows an Ω(m/k) lower bound
for α-decisive metrics, in the sense of Anshelevich and Postl [14], for any α ∈ [0, 1];
indeed, it suffices to place the voters within the “cluster” of their k-most preferred
candidates.

Theorem 5.4.5. There exists a deterministic mechanism that elicits only the k-
top preferences from every voter out of m candidates and has distortion at most
6m/k + 1.

Before we proceed with the proof, it is important to point out that having
only the k-top preferences is not subsumed by our previous consideration in The-
orem 5.4.2; e.g., even if k = m− 2, there could be two candidates which lie on the
last two positions of every voter’s list, and hence, it is impossible to know which
one is mostly preferred among the voters.

3If it is not the case that k | (m− 1), take k′ to be the smallest number larger than k
such that k′ | (m−1), and apply our argument for k′; given that k′ < 2k, we will establish
again a lower bound of Ω(m/k), even though the mechanism had more information than
the k-top preferences.

132



Figure 5.4: The metric space considered for the proof of Theorem 5.4.4,
where δ/D ↓ 0 for some positive numbers δ and D. The distance between
two points is simply the shortest path in the graph.

Proof of Theorem 5.4.5. Let Li be the set with the k-top preferences of voter i.
For a candidate a ∈ C, we let

Va =

∑n
i=1 1{a ∈ Li}

n
;

i.e., the fraction of voters for which a is among the k-top preferences. Notice that∑
a∈C Va = k, and hence, by the pigeonhole principle there exists some candidate

x such that Vx ≥ k/m. Similarly to Theorem 5.4.2 we consider the weighted,
complete and directed graph G = (C,E,w), so that

wa,b =

∑n
i=1 1{(a, b) ∈ Pi}

n
.

Moreover, based on G we construct the unweighted and directed graph Ĝ = (C, Ê),
so that (a, b) ∈ Ê ⇐⇒ wa,b ≥ k/(3m); the constant 1/3 in the threshold is selected
as the largest number which makes the following argument work. In particular,
we will show that Ĝ has a king vertex, and then the theorem will follow by virtue
of Theorem 5.4.1.

Let C ′ = {a ∈ C : ∃b ∈ C \ {a}.(a, b) /∈ Ê ∧ (b, a) /∈ Ê} and C∗ = C \ C ′.
Observe that the induced subgraph on C∗ contains as a subgraph a tournament,
and as such, it has a king vertex w ∈ C∗ (we will argue very shortly that indeed
C∗ ̸= ∅). As a result, if C ′ = ∅ the theorem follows.

In the contrary case, C ′ contains at least two (distinct) nodes; let a, b ∈ C ′ be
such that (a, b) /∈ Ê ∧ (b, a) /∈ Ê. An important observation is that Va ≤ 2k/(3m)
and Vb ≤ 2k/(3m). Indeed, for the sake of contradiction let us assume that Va >
2k/(3m). Given that (a, b) /∈ Ê we can infer that b is preferred over a in at least
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a k/(3m) fraction of the voters; however, this would imply that (b, a) ∈ Ê, which
is a contradiction. Similarly, we can show that Vb ≤ 2k/(3m). Consequently, x
cannot belong in the set C ′, where recall that x is a candidate for which Vx ≥ k/m,
verifying that C∗ ̸= ∅.

Next, it is easy to see that for all a ∈ C ′, (x, a) ∈ Ê; this follows since Va ≤
2k/(3m) for all a ∈ C ′ while Vx ≥ k/m. As a result, if x = w or if there exists
the edge (w, x) ∈ Ê, then w can reach every node in at most 2 steps, and the
theorem follows. Otherwise, it follows that there exists a path of length 2 from w
to x since w is a king vertex in the induced subgraph on C∗ and x ∈ C∗. We shall
distinguish between two cases.

First, assume that for all z ∈ C∗
1 , (x, z) ∈ Ê, where C∗

1 is the subset of C∗

which is reachable from w via a single edge. Then, given that we have assumed
that (w, x) /∈ Ê and the induced graph on C∗ is a tournament, it follows that
(x,w) ∈ Ê, and subsequently x can reach every node in C in paths of length at
most 2, as desired.

Finally, assume that there exists some y ∈ C∗
1 such that (x, y) /∈ Ê. This

implies that y is preferred over x in at least a 2k/(3m) fraction of the voters. If for
every candidate a ∈ C ′ it holds that (w, a) ∈ Ê or (z, a) ∈ Ê for some z ∈ C∗

1 , we

can conclude that w can reach every node in Ĝ in at most 2 steps, again reaching
the desired conclusion. On the other hand, assume that there exists b ∈ C ′ such
that (w, b) /∈ Ê and (z, b) /∈ Ê for all z ∈ C∗

1 . By the definition of the set C∗,

we can infer that (b, w) ∈ Ê and (b, z) ∈ Ê for all z ∈ C∗
1 . Moreover, we know

that from all of the votes candidate y received, candidate b was below in at most
a k/(3m) fraction (over all the voters); otherwise, it would follow that (y, b) ∈ Ê.
As a result, since y is preferred over x in at least a 2k/(3m) fraction of the voters,
we can conclude that (b, x) ∈ Ê, in turn implying that b can reach every node in
Ĝ in paths of length at most 2, concluding the proof.

From an algorithmic standpoint, although our proof of Theorem 5.4.5 is con-
structive, leading to an efficiently implementable voting rule, the established upper
bound can also be subsequently attained by the instance-optimal Minimax-LP
mechanism. Theorem 5.4.5 substantially improves over the previous best-known
bound which was 12m/k [150, 149]. Nonetheless, there is still a gap between the
aforementioned lower bound (Theorem 5.4.4). Before we conclude this section, we
explain how one can further improve upon the bound obtained in Theorem 5.4.5.

Conjecture 5.4.6. If we assume that every agent provides her k-top preferences
for some k ∈ [m], there is a candidate a ∈ C and a subset S ⊆ V such that

• There exists a perfect matching M : S → S in the integral domination graph
of a (see Theorem 5.5.4 in the next section);

• |S| ≥ n× k/m.
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Figure 5.5: The anatomy of our proof for Theorem 5.4.5. The set of candi-
dates is partitioned into a “good” set C∗ and a “bad” set C ′; C∗ has a king
vertex w, and we can essentially apply the reasoning of Theorem 5.4.2. A
key observation is that C ′ is always dominated by some node in C∗, namely
x.

When k = m, this was shown to be true by [131]. On the other end of the
spectrum, when k = 1 it is easy to verify that the plurality winner establishes this
conjecture.

Proposition 5.4.7. If Theorem 5.4.6 holds, then there exists a deterministic
mechanism which elicits only the k-top preferences and yields distortion at most
4m/k − 1.

Proof. Let a ∈ C be the candidate which satisfies Theorem 5.4.6. Then, it follows
that a yields distortion at most 3 w.r.t. the voters in the set S [131]. As a result,
Theorem 5.4.3 implies that the distortion of a is upper-bounded by

3 + 4
n− |S|
|S|

≤ 4m

k
− 1.

5.5 Randomized Preference Elicitation and

Sampling

Previously, we characterized the distortion when only a deterministically (and
potentially adversarially) selected subset of voters has provided information to the
mechanism. This raises the question of bounding the distortion when the mecha-
nism elicits information from only a small random sample of voters. Here, a single
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sample corresponds to the entire ranking of a voter. We stress that randomization
is only allowed during the preference elicitation process; for any given random
sample as input, the mechanism has to select a candidate deterministically. We
commence this section with a simple lower bound, which essentially follows from
a standard result due to Canetti et al. [59].

Proposition 5.5.1. Any mechanism which yields distortion at most 3 + ϵ with
probability at least 1− δ requires Ω(log(1/δ)/ϵ2) samples, even for m = 2.

Proof. Consider two candidates a, b, and assume that exactly (1− ϵ)/2 fraction of
the voters prefer candidate a. It is easy to verify that a yields distortion strictly
larger than 3 + ϵ; thus, any mechanism with distortion at most 3 + ϵ has to
return candidate b. However, the winner determination problem with margin ϵ
requires Ω(log(1/δ)/ϵ2) samples to solve with probability 1−δ [59], concluding the
proof.

5.5.1 Approximating Copeland

We begin by analyzing a sampling approximation of Copeland’s rule. Below
we summarize the main result of this subsection.

Theorem 5.5.2. For any sufficiently small ϵ > 0 and δ > 0 there exists a mech-
anism that takes a sample of size c = Θ(log(m/δ)/ϵ2) voters and yields at most
5 + ϵ distortion with probability at least 1− δ.

We recall that when the entire input is available, Copeland yields distortion
at most 5 [18]. It follows from Theorem 5.5.2 that Θ̃(m/ϵ2) bits of information in
total from the voters suffice to yield 5 + ϵ distortion with high probability, where
the notation Θ̃(·) suppresses poly-logarithmic factors. Before we proceed with the
proof of Theorem 5.5.2, we state the following standard fact:

Lemma 5.5.3 (Chernoff-Hoeffding Bound). Let {X1, X2, . . . , Xc} be a set of i.i.d.
random variables with Xi ∼ Bern(p) and Xµ = (X1 +X2 + · · ·+Xc)/c; then,

P(|Xµ − p| ≥ ϵ) ≤ 2e−2ϵ2c.

Proof of Theorem 5.5.2. Consider the complete, weighted and directed graph G =
(C,E,w) so that wa,b = |ab|/n. We will show how to use the random sample in or-

der to construct a graph Ĝ = (C,E, ŵ) which approximately preserves the weights
of G with high probability. In particular, consider some parameters ϵ ∈ (0, 1/2)
and δ ∈ (0, 1), and take a sample S of size |S| = c = Θ(log(m/δ)/ϵ2) from the set
of voters V ; for simplicity, we assume that the sampling occurs with replacement
in order to guarantee independence, but the result holds even without replacement
given that the dependencies are negligible; e.g., see the work of Kontorovich and
Ramanan [154]. Now we let ŵa,b = |{i ∈ S : a ≻i b}|/c. Theorem 5.5.3 implies
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that |ŵa,b − wa,b| < ϵ with probability at least 1 − δ/m2. Thus, the union bound
implies that for all distinct pairs a, b we have approximately preserved the weights:
|ŵa,b − wa,b| < ϵ with probability at least 1− δ.

From Ĝ we construct the directed graph T = (C, Ê) so that (a, b) ∈ Ê ⇐⇒
ŵa,b ≥ 1/2; if ŵa,b = ŵb,a for some distinct candidates a, b ∈ C, we only retain one
of the edges arbitrarily (this conundrum can be avoided by taking c to be odd). In
this way, T will be a tournament, and as such, there exists a candidate w which
can reach every node in T in at most 2 steps. Thus, for any a ∈ C there exists
some intermediate candidate b ∈ C so that |wb| ≥ 1/2 − ϵ and |ba| ≥ 1/2 − ϵ.
As a result, Theorem 5.4.1 implies that the distortion of w is upper-bounded by
4/(1− 2ϵ) + 1 ≤ 5 + 16ϵ, for any ϵ ≤ 1/4. Finally, rescaling ϵ by a constant factor
concludes the proof.

5.5.2 Approximating Plurality Matching

In light of Theorem 5.5.1, the main question that arises is whether we can
asymptotically reach the optimal distortion bound of 3. To this end, we will an-
alyze a sampling approximation of PluralityMatching, a deterministic mech-
anism introduced by [131] that obtains the optimal distortion bound of 3. To
keep the exposition reasonably self-contained, we recall some basic facts about
PluralityMatching.

Definition 5.5.4 ([131], Definition 5). For an election E = (V,C, σ) and a can-
didate a ∈ C, the integral domination graph of candidate a is the bipartite graph
G(a) = (V, V,Ea), where (i, j) ∈ Ea if and only if a ⪰i top(j).

Proposition 5.5.5 ([131], Corollary 1). There exists a candidate a ∈ C whose
integral domination graph G(a) admits a perfect matching.

Before we proceed let us first introduce some notation. For this subsection
it will be convenient to use numerical values in the set {1, 2, . . . ,m} to represent
the candidates. We let Πj =

∑
i∈V 1{top(i) = j}, i.e. the number of voters

for which j ∈ C is the top candidate. For candidate j ∈ C we let G(j) be the
integral domination graph of j, and Mj be a maximum matching in G(j). In the
sequel, it will be useful to “decompose” Mj as follows. We consider the partition
of V into V 0

j , V
1
j , . . . , V

m
j such that V k

j = {i ∈ V : Mj(i) = k} for all k ∈ [m],

while V 0
j represents the subset of voters which remained unmatched underMj ; see

Figure 5.6.
Moreover, consider a set S = S0

j ∪S1
j ∪· · ·∪Sm

j such that Sk
j ⊆ V k

j for all k; we
also let c = |S|, and Π′

j = c/n× Πj . For now let us assume that Π′
j ∈ N for all j.

We let GS(j) represent the induced subgraph of G(j) w.r.t. the subset S ⊆ V and
the new plurality scores Π′

j . We start our analysis with the following observation:
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Figure 5.6: An example of a matching decomposition in the integral domi-
nation graph of candidate 1.

Observation 5.5.6. Assume that S is such that |Sk
j |/c = |V k

j |/n for all k. Then,

if MS
j represents the maximum matching in GS(j), it follows that |MS

j |/c =
|Mj |/n.

Sketch of Proof. First, it is clear that |MS
j | ≥

∑m
k=1 |Sk

j | = c/n
∑m

k=1 |V k
j | = c/n×

|Mj |. Thus, it remains to show that |MS
j | ≤ c/n × |Mj |. Indeed, if we assume

otherwise, we can infer via an exchange argument than Mj is not a maximum
matching.

Let us denote with Φj = Mj/n; roughly speaking, we know from the work
of Gkatzelis et al. [131] that Φj is a good indicator for the “quality” of candidate
j. Importantly, Theorem 5.5.6 tells us that we can determine Φj in a much smaller
graph, if only we had a sampling-decomposition that satisfied the “proportional-
ity” condition of the claim. Of course, determining explicitly such a decomposition
makes little sense given that we do not know the sets V k

j , but the main observation
is that we can approximately satisfy the condition of Theorem 5.5.6 through sam-
pling. It should be noted that we previously assumed that Π′

j ∈ N, i.e., we ignored
rounding errors. However, in the worst-case rounding errors can only induce an
error of at most m/c in the value of Φj ; thus, we remark that our subsequent
selection of c will be such that this error will be innocuous, in the sense that it
will be subsumed by the “sampling error” (see Theorem 5.5.8). Before we proceed,
recall that for p, p̂ ∈ ∆([k]),
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dTV(p, p̂)
def
= sup

S⊆[k]
|p(S)− p̂(S)| = 1

2
∥p− p̂∥1,

where ∥ · ∥1 represents the ℓ1 norm. In this context, we will use the following
standard fact:

Lemma 5.5.7 ([60]). Consider a discrete distribution p ∈ ∆([k]) and let p̂ be the
empirical distribution derived from N independent samples. For any ϵ > 0 and
δ ∈ (0, 1), if N = Θ((k+log(1/δ))/ϵ2) it follows that dTV(p, p̂) ≤ ϵ with probability
at least 1− δ.

As a result, if we draw a set S with |S| = c = Θ((m + log(1/δ))/ϵ2) samples
(without replacement4) we can guarantee that

m∑
k=0

∣∣∣∣∣ |Sk
j |
c
−
|V k

j |
n

∣∣∣∣∣ ≤ 2ϵ;

m∑
k=1

∣∣∣∣∣Π̂k

c
− Πk

n

∣∣∣∣∣ ≤ 2ϵ,

where Sk
j represents the subset of S which intersects V k

j , and Π̂k is the empirical
plurality score of candidate k. Thus, the following lemma follows directly from
Theorem 5.5.6 and Theorem 5.5.7.

Lemma 5.5.8. Let Φ̂j = |M̂j |/c, where M̂j is the maximum matching in the graph
GS(j). Then, if |S| = Θ((m + log(1/δ))/ϵ2) for some ϵ, δ ∈ (0, 1), it follows that
(1− ϵ)Φj ≤ Φ̂j ≤ (1 + ϵ)Φj with probability at least 1− δ.

Theorem 5.5.9. For any sufficiently small ϵ > 0 and δ > 0 there exists a mecha-
nism that takes a sample of size Θ((m+log(m/δ))/ϵ2) voters and yields distortion
at most 3 + ϵ with probability at least 1− δ.

Proof. Fix some ϵ ∈ (0, 1/4) and δ ∈ (0, 1). If we draw Θ((m + log(m/δ))/ϵ2)
samples, Theorem 5.5.8 along with the union bound imply that (1− ϵ)Φj ≤ Φ̂j ≤
(1 + ϵ)Φj for all j ∈ [m], with probability at least 1− δ, where Φ̂j is defined as in

Theorem 5.5.8. Conditioned on the success of this event, let w = argmaxj∈C Φ̂j .
Theorem 5.5.5 implies that there exists some candidate x for which Φx = 1; hence,
we know that Φ̂w ≥ Φ̂x ≥ 1 − ϵ, in turn implying that Φw ≥ (1 − ϵ)/(1 + ϵ) ≥
1− 2ϵ (Theorem 5.5.8). As a result, it follows that there exists a subset of voters
V ′ for which there exists a perfect matching in the integral domination graph
G(w), with |V ′| ≥ n(1 − 4ϵ). Thus, it follows that for the subset of voters in
V ′ candidate w yields distortion at most 3 [131], and Theorem 5.4.3 leads to the
desired conclusion.

4Although the samples are not independent since we are not replacing them, observe
that the induced bias is negligible for n substantially larger than m.
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5.A Plurality Matching vs Minimax-LP

In this section, we compare the PluralityMatching mechanism of Gkatzelis
et al. [131] with the instance-optimal mechanism, namely Minimax-LP; here, we
tacitly posit that P = σ, i.e. all the agents provide their entire rankings to the
mechanism.

5.A.1 Instance Optimality

The first question that arises is how far could the distortion ofPluralityMatching
be with respect to the instance-optimal candidate. To address this question, we
commence with the following proposition:

Lemma 5.A.1 (Lemma 6, [131]). For any election E = (V,C, σ), a candidate
a ∈ C can be selected by PluralityMatching only if plu(a) ≥ veto(a).

With this lemma at hand, we consider an instance with n = m voters V =
{1, 2, . . . ,m} and a set of m candidates C = {a, . . . }. We assume that for every
voter i ∈ [n − 1], sec(i) = a, while the (single) top-preferences of all the voters
i ∈ [n − 1] are assumed to be pairwise-distinct. Finally, the last voter places
candidate a in her last place, while her preferences are otherwise arbitrary. An
example with four candidates {a, b, e, f} corresponds to the following input:

• b ≻1 a ≻1 e ≻1 f ;

• f ≻2 a ≻2 b ≻2 e;

• e ≻3 a ≻3 f ≻3 b;

• b ≻4 f ≻4 e ≻4 a.

In general, observe that for any candidate b ∈ C \ {a}, it follows that |ab| =
n− 2. Further, we will use the following standard lemma:

Lemma 5.A.2. Consider two (distinct) candidates a, b ∈ C such that |ab| ≥ αn >
0. Then,

cost(a)

cost(b)
≤ 2

α
− 1.

This implies that the distortion of candidate a is 1 +O(1/m). However, given
that plu(a) = 0 < 1 = veto(a), we know from Theorem 5.A.1 that a cannot
be selected by PluralityMatching. We will show that every other candidate
yields distortion close to 3. In particular, consider the metric space illustrated in
Figure 5.7. It is easy to verify that the induced metric space is consistent with the
given preferences. But, it follows that cost(a) = m, while cost(b) = 2+3(m−2) =
3m − 4 for any b ̸= a, implying that cost(b)/cost(a) = 3 − O(1/m). As a result,
we have arrived at the following conclusion:

140



Proposition 5.A.3. For any sufficiently small ϵ > 0 and m = O(1/ϵ) there is
a profile of preferences σ such that Minimax-LP yields distortion at most 1 + ϵ,
while PluralityMatching yields distortion at least 3− ϵ.

Figure 5.7: A metric space embedded on an unweighted and undirected graph;
this example corresponds to m = n = 4, but the pattern should be already
clear.

5.A.2 Decisive Metrics

Moreover, it is natural to compare these mechanisms in more refined metrics.
Specifically, we espouse the α-decisiveness assumption of Anshelevich and Postl
[14], according to which d(vi, cp) ≤ α · d(vi, cq), where p = top(i) and q = sec(i),
and α ∈ [0, 1] some parameter; notice that the general case corresponds to α = 1,
while for α = 0 every voter also serves as a candidate. The first observation
is that this particular refinement can be addresses by simply incorporating some
additional constraints in the linear program. More precisely, for a pair of distinct
candidates a, b this leads to the following linear program Metricα-LP(a, b):

maximize
∑n

i=1 xi,a
subject to

∑n
i=1 xi,b = 1;

xi,top(i) ≤ α · xi,sec(i),∀i ∈ V ;

xi,p ≤ xi,q, ∀(p, q) ∈ Pi,∀i ∈ V ;
xi,i = 0, ∀i ∈ V ∪ C;
xi,j = xj,i, ∀i, j ∈ V ∪ C;
xi,j ≤ xi,k + xk,j , ∀i, j, k ∈ V ∪ C.

(5.6)

Here we have assumed that every agent i provides her most preferred candi-
date top(i), as well as her second most preferred candidate sec(i). Having solved
the Metricα-LP(a, b) (5.6) for every distinct pair of candidates a, b, we simply
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select the candidate who minimizes the maximum cost obtained over all other can-
didates; this mechanism shall be referred to as the Minimaxα-LP. Similarly to
Theorem 5.2.2, we can establish the following:

Proposition 5.A.4. For any given preferences P and any α ∈ [0, 1] the Minimaxα-LP
rule is instance-optimal in terms of distortion under α-decisive metrics.

We should point out that for α-decisive metrics PluralityMatching always
yields a candidate with distortion 2+α. Moreover, [131] showed a lower bound of
2+α− 2(1−α)/m′ for deterministic mechanisms, where m′ = 2⌊m/2⌋; thus, they
showed that their mechanism obtains the optimal distortion only when m → ∞
or when α = 1, leaving a substantial gap.

We will show thatMinimaxα-LP can substantially outperformPluralityMatching
even for α-decisive metrics with α close to 0. Specifically, consider an election with
3 candidates and 2 voters5 with the following preferences: σ1 = a ≻ b ≻ e, and σ2 =
e ≻ b ≻ a. For this election, b could be returned by PluralityMatching [131].
However, we claim that b yields distortion 2 + α, while a and e have distortion
1+2α. Indeed, we will show that candidate a has always distortion upper-bounded
by 1 + 2α (by symmetry, the same holds for e), while for candidate b there ex-
ists a metric space for which b yields distortion 2 + α. Specifically, we have that
d(ca, cb) ≤ d(v1, ca) + d(v1, cb) ≤ (1 + α)d(v1, cb); thus, we obtain that

d(v1, ca) ≤ αd(v1, cb), (5.7)

d(v2, ca) ≤ d(v2, cb) + d(ca, cb) ≤ (1 + α)d(v1, cb) + d(v2, cb). (5.8)

Summing these inequalities yields that cost(a) ≤ (1+2α)d(v1, cb)+d(v2, cb) ≤
(1 + 2α)cost(b). Similarly, we can prove that cost(a) ≤ (1 + 2α)cost(e). On the
other hand, for candidate b, Gkatzelis et al. [131] considered the metric space of
Figure 5.8.

Naturally, the distance between a pair of nodes is the corresponding shortest
path in the graph. Thus, for this instance it follows that cost(e) = 1, while
cost(b) = 2 + α, implying that the distortion of b is 2 + α. Thus, for α → 0
PluralityMatching loses a factor of 2 with respect to the optimal candidate,
which would be identified by the Minimaxα-LP rule by virtue of Theorem 5.A.4.

Proposition 5.A.5. There exists a preference profile σ such that Minimaxα-LP
yields distortion 1+2α, while PluralityMatching yields distortion at least 2+α
under α-decisive metrics.

Nonetheless we should point out that PluralityMatching does not require
knowing the value of parameter α, unlike the instance-optimal mechanism.

5This example is taken from [131].
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Figure 5.8: A metric space embedded on a graph.

143



Chapter 6

Dimensionality and
Coordination in Voting: The
Distortion of STV

The framework of distortion under metric preferences was first introduced a
few years ago by Anshelevich et al. [18] (see also [20]). Specifically, they observed
a lower bound of 3 for any deterministic mechanism, while they also showed—
among others—that Copeland’s method, a very popular voting system, always
incurs distortion at most 5, with the bound being tight for certain instances. This
threshold was subsequently improved by Munagala and Wang [183], introducing a
novel (deterministic) mechanism with distortion 2+

√
5, while the same bound was

independently obtained by Kempe [149] through an approach based on LP dual-
ity. The lower bound of 3 was only recently matched by PluralityMatching,
a mechanism introduced by Gkatzelis, Halpern, and Shah [131]. In Section 6.5
we investigate the performance of this mechanism under certain refinements and
extensions, leveraging an important property established in [131] regarding the
existence of a perfect fractional matching on a certain bipartite graph.

All of the aforementioned results apply under arbitrary metric spaces. Several
special cases have also attracted attention in the literature. For one-dimensional
spaces, Feldman et al. [104] establish several improved bounds, while a comprehen-
sive characterization in a distributed setting was recently given by Filos-Ratsikas
and Voudouris in [109]. Another notable refinement germane to our consider-
ations in Section 6.5 was studied by Anshelevich and Postl [14] in the form of
α-decisiveness, imposing that voters support their top choices by a non-negligible
margin. This condition has led to several refined upper and lower bounds; cf. see
[131]. The interested reader is referred to the concise survey of Anshelevich et al.
[22] for detailed accounts on the rapidly growing literature on the subject. More-
over, for related research beyond the framework of distortion we refer to [128], and
references therein.
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The model we introduce in Section 6.4 is related to the seminal work of Branzei,
Caragiannis, Morgenstern, and Procaccia [55] (see also the extensive follow-up
work, such as [187]), viewing voting from the standpoint of price of anarchy (PoA).
In particular, the authors study the discrepancy between the plurality scores un-
der truthfulness, and under worst-case limit points of best-response dynamics. In-
stead, we argue that the utilitarian performance of a voting rule—in terms of
distortion—offers a very compelling alternative to study this discrepancy, simi-
larly to the original formulation of PoA in the context of routing games [155],
while going beyond best-response dynamics is very much in line with the modern
approach in the context of learning in games [69]. Finally, we stress that Ques-
tion 2 has already received extensive attention in the literature (cf. see [56, 225]
and references therein), but it was not addressed within the framework of (metric)
distortion.

6.1 Contributions

Our first contribution is to relate the distortion of STV to the dimensionality
of the underlying metric space. Specifically, our first insight is to employ the
following fundamental concept from metric geometry:1

Definition 6.1.1 (Doubling Dimension). The doubling constant of a metric space
(M, dist) is the least integer λ ≥ 1 such that for all x ∈M and for all r > 0, every
ball B(x, 2r) can be covered by the union of at most λ balls of the form B(s, r),
where s ∈M; that is, there exists a subset S ⊆M with |S| ≤ λ such that

B(x, 2r) ⊆
⋃
s∈S
B(s, r). (6.1)

The doubling dimension is then defined as dim(M) := log2 λ.
2

This concept generalizes the standard notion of dimension since dim(Rd) =
Θ(d) when Rd is endowed with the ℓp norm. Moreover, it is clear that for a
finite metric space (M, dist), dim(M) ≤ log2 |M|; for example, this is essentially
tight for the high-dimensional metric of Figure 2.1. The concept of doubling
dimension was introduced by Larman [159] and Assouad [26], and was first used in
algorithm design by Clarkson [75] in the context of the nearest neighbors problem.
Nevertheless, we are not aware of any prior characterization that leverages the
doubling dimension in the realm of voting theory. In the sequel, it will be assumed
that (M,dist(·, ·)) stands for the metric space induced by the set of candidates
and voters. In this context, our first main contribution is the following theorem:

1To keep the exposition reasonably smooth, the formal definition of standard notation
is deferred to the preliminaries in Section 6.2.

2To avoid trivialities it will be assumed that λ ≥ 2.
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Theorem 6.1.2. If d is the doubling dimension ofM, then the distortion of STV
is O(d log logm).

For doubling metrics3 this theorem already implies an exponential improve-
ment in the distortion over the Ω(

√
logm) lower bound for general metrics. More-

over, it addresses as a special case Question 1:

Corollary 6.1.3. The distortion of STV under low-dimensional Euclidean spaces
is O(log logm).

To the best of our knowledge, this is the first result that relates the performance
of any voting rule to the “intrinsic dimensionality” of the underlying metric space.
It also corroborates the experimental findings of Elkind et al. [88] regarding the su-
periority of STV on the 2-dimensional Euclidean plane. More broadly, we suspect
that our characterization applies for a wide range of iterative voting rules, to which
STV serves as a canonical example. We should note that the O(log logm) factor
appears to be an artifact of our analysis. Indeed, we put forward the following
conjecture:

Conjecture 6.1.4. If d is the doubling dimension of M, then the distortion of
STV is O(d).

Verifying this conjecture in light of our result might be of small practical im-
portance, but nonetheless we believe that it can be established by extending our
techniques. In fact, for one-dimensional spaces we actually confirm this conjecture,
proving that the distortion of STV on the line is O(1) in Theorem 6.3.1. It should
be noted, however, that the underlying phenomenon is inherently different once we
turn our attention to higher-dimensional spaces. In addition, to complement our
positive results we refine the lower bound of Skowron and Elkind [214], showing an
Ω(
√
d) lower bound, where d represents the doubling dimension of the submetric

induced by the set of candidatesMC . Thus, it should be noted that there are still
small gaps left to be bridged in future research.

Other Notions of Dimension. An important advantage of the doubling dimen-
sion is that it essentially subsumes other commonly-used notions of dimension.
Most notably, Karger and Ruhl [146] have introduced a concept of dimension
based on the growth rate of a (finite) metric space, and it is known ([139, Propo-
sition 1.2]) that the doubling dimension can only be a factor of 4 larger than the
growth rate of Karger and Ruhl. Moreover, a similar statement applies for the
local density of an unweighted graph, another natural notion of volume that has
been employed in the analysis of a graph’s bandwidth [100].

High-Level Intuition. In this paragraph we briefly attempt to explain why the
distortion of STV depends on the “covering dimension” of the underlying metric

3A doubling metric refers to a metric space with doubling dimension upper-bounded
by some universal constant.
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space. First, we have to describe the technique developed by Skowron and Elkind
[214]. Specifically, their method for deriving an upper bound for the distortion of
an iterative voting rule consists of letting a substantial fraction of agents reside
within close proximity to the optimal candidate, and then analyze how the support
of these agents propagates throughout the evolution of the iterative process. More
precisely, the overall distance covered immediately implies an upper bound on the
distortion (see Theorem 6.2.2). The important observation is that the underly-
ing dimension drastically affects this phenomenon. In particular, when a large
fraction of agents lies in a low-dimensional ball supporting many different candi-
dates, we can infer that their (currently) second most-preferred alternatives ought
to be “close”—for most of the agents—by a covering argument (and the triangle
inequality). This directly circumscribes the propagation of the support, as hinted
in Figure 6.1b, juxtaposed to the phenomenon in high dimensions in Figure 6.1a.
We stress that we shall make use of this basic skeleton developed by Skowron and
Elkind [214]. We should also remark that we prove the O(logm) bound under
general metrics through a simpler analysis (see Theorem 6.3.3), which incidentally
reveals a very clean recursive structure; this argument will be directly invoked for
the proof of our main theorem.

(a) The propagation of the support in
high dimensions.

(b) The propagation of the support in
low dimensions.

Figure 6.1: The impact of the underlying dimension on STV.

The next theme of our work is motivated by the performance of STV, and in
particular offers a preliminary answer to Question 2. Specifically, to formally ad-
dress such questions we first propose a natural iterative model: In each day every
agent has to select a single candidate, and at the end of the round agents are in-
formed about the (plurality) scores of all the candidates (cf., see [49]). This process
is repeated for sufficiently many days, and it is assumed that the candidate who
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enjoyed the largest amount of support in the ultimate day will eventually prevail.
Observe that in this scenario truthful engagement appears to be very unrealistic
since agents would endeavor to adapt their support based on the popularity of
each candidate; for example, it would make little sense to squander one’s vote (at
least towards the last stages) to an unpopular candidate. More broadly, there is an
interesting nexus between distortion and stability, as we elaborate in Section 6.4,
emphasizing on a connection with the notion of core in cooperative game theory
(Theorem 6.4.2).

In this context, STV already suggests a particularly natural strategic engage-
ment, improving exponentially over the outcome of the truthful dynamics. Yet,
it yields super-constant distortion due to the greedy aspect of the induced dy-
namics. We address this issue by designing a simple and decentralized explo-
ration/exploitation scheme:

Theorem 6.1.5. There exist simple, deterministic and distributed dynamics that
converge to a candidate with O(1) distortion.

We elaborate on the proposed dynamics, as well as on all the aforementioned
issues in Section 6.4.

The final contribution of our work concerns refinements and extensions of prior
results under metric preferences, providing new insights along two main lines.
First, we study preference aggregation under ordinal information when agents and
candidates are located in ultra-metric spaces, which is a strengthening of the stan-
dard metric assumption. This setting is mostly motivated by the fundamental
bottleneck variant in facility location games, wherein the cost of a path between an
agent and a server corresponds to the largest weight among the edges in the path,
instead of their sum [125]; it should be noted that ultra-metrics also commonly
arise in branches of mathematics such as metric geometry [1], and p-adic analysis
[197]. In this context, our main observation is that the PluralityMatching
mechanism of Gkatzelis, Halpern, and Shah [131] always obtains distortion 2,
which incidentally is the provable lower bound for any deterministic mechanism.
It is particularly interesting that the optimal mechanism under metric spaces re-
tains its optimality under an important refinement, illustrating the robustness of
PluralityMatching.

We also study the performance of PluralityMatching under distance func-
tions that satisfy a ρ-relaxed triangle inequality. This consideration is directly
driven by the fact that many well-studied and commonly-arising distances are
only approximately metrics (most notably, the squared Euclidean distance is a 2-
approximate metric), but we believe that there is another concrete reason. Most
research in the realm of distortion has thus far been divided between the metric
case and the unit-sum case, with these two lines of research being largely discon-
nected. Studying approximate metrics serves as an attempt to bridge this gap. In
this context, we prove a lower bound of ρ2 + ρ + 1, while PluralityMatching
incurs distortion at most 2ρ2+ρ, thus leaving a small gap for future research. No-
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tice that for the special case ρ := 1 this recovers the result of Gkatzelis, Halpern,
and Shah [131].

6.2 Preliminaries

A metric space is a pair (M, dist(·, ·)), where dist : M×M 7→ R is a met-
ric on M, i.e., (i) ∀x, y ∈ M,dist(x, y) = 0 ⇐⇒ x = y (identity of indis-
cernibles), (ii) ∀x, y ∈ M,dist(x, y) = dist(y, x) (symmetry), and (iii) ∀x, y, z ∈
M,dist(x, y) ≤ dist(x, z)+dist(z, y) (triangle inequality). Now consider a set of n
voters V = {1, 2, . . . , n}, and a set of m candidates C; we will reference candidates
with lowercase letters such as a, b, w, x. Voters and candidates are associated with
points in a finite metric space (M,dist), while it is assumed thatM is the (finite)
set induced by the set of voters and candidates. The goal is to select a candidate
x who minimizes the social cost : SC(x) =

∑n
i=1 dist(i, x). This task would be

trivial if we had access to the agents’ distances from all the candidates. However,
in the metric distortion framework every agent i provides only a ranking (a total
order) σi over the points in C according to the order of i’s distances from the
candidates, with ties broken arbitrarily. We also define σ := (σ1, . . . , σn), while we
will sometimes use top(i) to represent i’s most preferred alternative.

A deterministic social choice rule is a function that maps an election in the
form of a 3-tuple E = (V,C, σ) to a single candidate a ∈ C. We will measure
the performance of f for a given input of preferences σ in terms of its distortion;
namely, the worst-case approximation ratio it provides with respect to the social
cost:

distortion(f ;σ) = sup
SC(f(σ))

mina∈C SC(a)
, (6.2)

where the supremum is taken over all metrics consistent with the voting profile.
The distortion of a social choice rule f is the maximum of distortion(f ;σ) over all
possible input preferences σ. To put it differently, once the mechanism selects a
candidate (or a distribution over candidates if the social choice rule is randomized)
an adversary can select any metric space subject to being consistent with the
input preferences. These definitions naturally apply for refinements and extensions
studied in the present work.

We define the open ball on the metric space (M,dist) with center x ∈M and
radius r > 0 as B(x, r) := {z ∈ M : dist(z, x) < r}. An alternative definition for
the doubling dimension considers the diameter of subsets, instead of the radius of
balls; that is, the doubling constant is the smallest value of λ such that every subset
ofM can be covered by at most λ subsets of (at most) half the diameter. According
to this definition, for any submetric X ⊆ M it follows that dim(X ) ≤ dim(M).
Nonetheless, it will be convenient to work with the initial notion (Theorem 6.1.1)
since switching between the two definitions can only affect the dimension by at
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most a factor of 2 (see [139]). The following standard covering lemma will be useful
for the analysis of STV in doubling metrics.

Lemma 6.2.1. Consider a metric space (M, dist) with doubling constant λ ≥ 1.
Then, for any x ∈ M and r > 0, the ball B(x, r) can be covered by at most
λ⌈log(r/ϵ)⌉ balls of radius at most ϵ.

Proof. If we apply apply Theorem 6.1.1 successively we can conclude that any
ball of radius r can be covered by at most λi balls of radius r/2i. Thus, taking
i := ⌈log(r/ϵ)⌉ leads to the desired conclusion.

It should be noted that (when unspecified) the log(·) will always be implied to
the base 2. We conclude this section with a useful lemma observed by Skowron
and Elkind [214], which will be used for analyzing iterative voting rules.

Lemma 6.2.2 ([214]). Consider two distinct candidates a, b ∈ C. If r := dist(a, b)/h
for some parameter h > 0, and at most γn agents reside in B(a, r) for some
γ ∈ [0, 1), then

SC(b)

SC(a)
≤ 1 +

h

1− γ
. (6.3)

Proof. The triangle inequality implies that

SC(b)

SC(a)
=

∑
i∈V dist(i, b)∑
i∈V dist(i, a)

≤
∑

i∈V (dist(i, a) + dist(a, b))∑
i∈V dist(i, a)

= 1 + n
dist(a, b)∑
i∈V dist(i, a)

≤ 1 +
dist(a, b)

(1− γ)r

= 1 +
h

1− γ
.

6.3 STV in Doubling Metrics

6.3.1 STV on the Line

As a warm-up, we will analyze the performance of STV on the line. In partic-
ular, the purpose of this subsection is to establish the following result:

Theorem 6.3.1. The distortion of STV on the line is at most 15.
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Before we proceed with the proof of this theorem a few remarks are in order.
First of all, we did not pursue optimizing the constant in the theorem, although
this might be an interesting avenue for future research. It should also be noted that
Theorem 6.3.1 already implies a stark separation between STV and Plurality,
as the latter is known to admit a one-dimensional Ω(m) lower bound (recall Ta-
ble 2.1).

Proof of Theorem 6.3.1. Let w ∈ C be the winner of STV under some (fixed)
sequence of eliminations, and x ∈ C be the candidate who minimizes the social
cost. In the sequel it will be assumed that dist(x,w) > 0; in the contrary case
the theorem follows trivially. Moreover, we let r := d(x,w)/7, and we consider a
sequence of balls {Bi}4i=1 so that every ball Bi has center at x and radius (2i−1)×r,
for i = 1, 2, 3, 4. We will show that at most half of the voters could reside in B1.

For the sake of contradiction, let us assume that at least a γ > 1/2 fraction
of the voters are in B1; that is,

∑
i∈V 1{i ∈ B1} = γn > n/2. First, we will

argue that at the time the last candidate in Bi gets eliminated there is always a
candidate located in Bi+1 \ Bi. Indeed, in the contrary case we can deduce that
the last candidate to be eliminated from Bi would receive the support of all the
voters in B1, which is a contradiction since by construction all the candidates in
B4 have to be eliminated (this follows given that w /∈ B4). Now consider the stage
of STV just before the last candidate from B1 was eliminated; observe that this is
well-defined as B1 initially contains at least one candidate, namely x ∈ C. Let us
denote with aℓ, ar ∈ C the leftmost and the rightmost (respectively) nearest active
candidates from B1—which are not in B1. We shall distinguish between two cases:

Case I. aℓ ∈ B2 \ B1 and ar ∈ B2 \ B1. Following the elimination of the last
candidate from B1 every voter in B1 will support either aℓ or ar. Thus, (by the
pigeonhole principle) we can conclude that one of these two candidates accumulates
at least n/4 supporters in the round following the elimination of the last candidate
from B1. Let us assume without any loss of generality that this candidate is aℓ. It
is important to point out that the support of a candidate can only grow throughout
the execution of STV, until elimination. Now consider the stage just before aℓ gets
eliminated. We previously argued that there exists a candidate y ∈ B4 \ B3 that
has to remain active after the elimination of aℓ. This implies that y received at
least n/4 votes at this particular stage—just before the elimination of aℓ. However,
observe that none of the supporters of y can derive from B1 since for every voter in
B1 candidate aℓ is (strictly) superior to y. Moreover, the eventual winner w should
also have at least n/4 supporters at this stage in order to qualify for the next round,
but the supporters of w are certainly not from B1, and are also different from the
supporters of y. This follows since both are active at this stage and y ̸= w, implied
by the fact that d(x, y) < 7r ≤ d(x,w). As a result, we have concluded that the
total number of voters is strictly more than n, which is an obvious contradiction.

Case II. Only one of the candidates aℓ and ar resides in B2 \ B1. Notice that
our previous argument implies that at least one of the two should be in B2 \ B1,
and hence, there is indeed no other case to consider. Let us assume without any
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loss of generality that the candidate in B2 \ B1 is aℓ. Observe that just before
the last candidate from B1 gets eliminated every voter in B1 either supports the
candidate in B1 or candidate aℓ. Moreover, we have argued that there are at least 5
remaining candidates. Thus, we can infer that the last candidate from B1 received
at most 20% of the votes at the round of elimination, in turn implying that aℓ

enjoyed the support of at least 30% of the voters. Consequently, we can easily
reach a contradiction similarly to the previously considered case.

Figure 6.2: An illustration of our argument for Theorem 6.3.1.

As a result, we have established that γ ≤ 1/2, where recall that γ represents
the fraction of agents in B1, and the theorem follows by Theorem 6.2.2.

6.3.2 Main Result

Moving on to the main result of this section, we will prove the following theo-
rem:

Theorem 6.3.2. If d is the doubling dimension ofM, then the distortion of STV
is O(d log logm).

Before we proceed with the proof of this theorem, let us first present an analysis
for general metric spaces. Our argument will uncover the same bound O(logm) in
terms of distortion, as in [214], but it is considerably simpler, and it will also be
used in the proof of Theorem 6.3.2.

Theorem 6.3.3. The distortion of STV is O(logm).

Proof. Let w ∈ C be the winner of STV under some sequence of eliminations,
and x ∈ C be the candidate who minimizes the social cost. Moreover, let r :=
dist(x,w)/(4Hm + 2), where Hm denotes the m-th harmonic number. If V1 repre-
sents the subset of voters in B(x, r) and γ := |V1|/n, we will show that γ ≤ 1/2.
Then, our claim will follow from Theorem 6.2.2.

For the sake of contradiction, let us assume that γ > 1/2. We will establish
that no voter in V1 will support candidate w at any stage of STV, which is an
obvious contradiction since γ > 1/2 and w was assumed to be the winner. In

particular, let D
(t)

be defined as follows:

D
(t)

:=
1

γn

∑
i∈V1

dist(x, top(i; t)), (6.4)

152



where top(i; t) represents the most preferred (active) candidate for voter i after

round t = 1, . . . ,m − 1. The quantity D
(0)

is also defined as in Equation (6.4),
assuming that top(i; 0) := top(i). Thus, observe that the triangle inequality yields
that

D
(0) ≤ 1

γn

∑
i∈V1

(dist(x, i) + dist(i, top(i)) < 2r. (6.5)

Moreover, we claim that if a voter i supports a candidate a at round t, then

dist(x, a) ≤ D
(t−1)

+ 2r. Indeed, we will show the following: If two voters i, j in
B(x, r) support two candidates a, b respectively, then it follows that dist(x, a) ≤
dist(x, b) + 2r. In particular, successive applications of the triangle inequality
yield that dist(i, a) ≤ dist(i, b) ≤ dist(x, i) + dist(x, b) ≤ r + dist(x, b), while
dist(i, a) ≥ dist(x, a)− dist(x, i) ≥ dist(x, a)− r, in turn implying that

dist(x, a) ≤ dist(x, b) + 2r. (6.6)

By symmetry, it also follows that dist(x, b) ≤ dist(x, a) + 2r. Next, we will

(inductively) establish that the quantity D
(m−2)

is strictly less than 4Hm × r. In-
deed, first note that under the invariance D

(t)
< 4Hm × r the voters in B(x, r)

support at least two distinct candidates; otherwise, the unique supported candi-
date a would prevail since γ > 1/2, which in turn is a contradiction given that

dist(x,w) > D
(t)

+ 2r =⇒ a ̸= w. Next, observe that at round t = 1, . . . ,m − 1
at most n/(m − t + 1) agents alter their support. This follows since there are
exactly m− t+ 1 candidates, while STV eliminates the one who enjoys the least
amount of support. Moreover, all the agents who recast their support will end
up coalescing with a candidate whose distance from x increases by at most a 2r
additive factor—compared to the previously supported alternative; this follows by
the bound of Equation (6.6), and the fact that there is indeed another candidate
supported by voters in B(x, r) in round t (as we previously argued). As a result,
we have shown the following recursive structure:

D
(t) ≤ D(t−1)

+
1

γ

2r

m− t+ 1
≤ D(t−1)

+
4r

m− t+ 1
, (6.7)

for all t = 1, . . . ,m− 2. This verifies the assertion that D
(m−2)

< 4Hm × r. Thus,
in the ultimate round of STV more than half the voters support a candidate a
for which dist(a, x) < 2r + 4r × Hm, which is a contradiction since dist(x,w) =
2r × (2Hm + 1).

Next, we provide the proof of Theorem 6.3.2. In particular, the main technical
challenge of the analysis lies in maintaining the appropriate invariance during
STV. We address this with a simple trick, essentially identifying a subset of the
domain with a sufficient degree of regularity. We should also note that the second
part of the proof makes use of the technique devised by Skowron and Elkind [214].
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Proof of Theorem 6.3.2. As before, let w ∈ C be the winner of STV under some
sequence of eliminations, and x ∈ C be the candidate who minimizes the social
cost. Moreover, let r := dist(x,w)/(4h + 7), where h is defined as h := 1 +
⌈log2(6λlogHm+1)⌉ = Θ(d log logm). If γ represents the fraction of the voters in
B(x, r), we will establish that γ ≤ 2/3.

For the sake of contradiction, let us assume that γ > 2/3. Our argument will
characterize the propagation of the support of the voters in B(x, r). In particular,
we proceed in the following two phases:

Phase I. Our high-level strategy is to essentially employ the argument in the
proof of Theorem 6.3.3, but not for the entire set of voters in B(x, r). Instead, we
will establish the existence of a set with a helpful invariance, which still contains
most of the voters. More precisely, we first consider a covering {B(zj , rj)}µj=1 of
the ball B(x, r), where the radius of every ball is at most ϵ× r for some parameter
ϵ ∈ (0, 1). The balls that do not contain any voter may be discarded for the
following argument. We let S(0) be the union of these balls. We know from
Theorem 6.2.1 that µ = µ(ϵ;λ) ≤ λlog(1/ϵ)+1. For Phase I we assume that more
than M candidates remain active in STV, where M := 6µ, while ϵ := 1/Hm.

Let us consider a round t = 1, . . . ,m −M of STV. In particular, let a ∈ C
be the candidate who is eliminated at round t. Observe that if a is not supported
by any voter residing in B(x, r), the support of these agents remains invariant
under round t. Thus, let us focus on the contrary case. Specifically, if there exists
a ball in the covering which contains exclusively supporters of candidate a, we
shall remove every such ball from the current covering, updating analogously the
set S(t). Given that we are at round t, we can infer that the number of such
supporters is at most n/(m − t + 1) < n/M . Thus, since we can only remove µ
balls from the initial covering, it follows that the set S := S(t) with t = m −M
contains strictly more than 2n/3− nµ/M = n/2 voters.

Next, we will argue about the propagation of the support for the voters in S
during the first m −M rounds of STV. By construction of the set S, we have
guaranteed the following invariance: Whenever a candidate a supported by voters
in S gets eliminated, every supporter of a from S lies within a ball of radius at

most ϵ with agents championing a different candidate. Now, let us define D
(t)

as
follows:

D
(t)

:=
1

γ′n

∑
i∈S

dist(i, top(i; t)), (6.8)

where γ′ represents the fraction of the voters residing in S. Note that D
(t)

is
defined slightly differently than in the proof of Theorem 6.3.3. Consider two voters
i, j supporting two candidates a, b respectively. We will show that dist(i, b) ≤
dist(i, a) + 2 dist(i, j), and similarly, dist(j, a) ≤ dist(j, b) + 2 dist(i, j). Indeed,
successive applications of the triangle inequality imply that

154



dist(i, b) ≤ dist(i, j) + dist(j, b)

≤ dist(i, j) + dist(j, a)

≤ dist(i, j) + dist(j, i) + dist(i, a)

= dist(i, a) + 2 dist(i, j).

Thus, if the voters i and j happen to reside within a ball of radius at most ϵ,
we can infer that dist(i, b) ≤ dist(i, a)+4ϵ. As a result, by the recursive argument
of Theorem 6.3.3 we can conclude that

D
(t) ≤ D(t−1)

+
1

γ′
4ϵr

m− t+ 1
≤ D(t−1)

+
8ϵr

m− t+ 1
, (6.9)

in turn implying that

D
(m−M) ≤ 8(ϵr)Hm. (6.10)

Consequently, we have essentially shown that the propagation of the support
is “decelerated” by a factor of ϵ. In particular, for ϵ = 1/Hm this implies that
during the first phase the agents in S support candidates within O(1)× r distance
from candidate x.

Phase II. At the beginning of the second phase there are M remaining can-
didates. Let us denote with Bj := B(x, (2j − 1) × r). In this phase we will argue
about the entire set of voters in B(x, r). Let m1 ≤M be the number of candidates
supported by voters in B(x, r) at the beginning of the second phase. Our previous
argument implies that every such candidate will reside in B7; this follows directly
by applying the triangle inequality. Let us denote with mj the number of candi-
dates residing outside B4+2j for j ≥ 2 at the round the last candidate from B3+2j

gets eliminated.
By the pigeonhole principle, we can infer that there exists a candidate a in

B7 who enjoys the support of at least γn/m1 voters. Moreover, observe that the
triangle inequality implies that no voter will support a candidate outside B8 as
long as candidate a remains active. Thus, at the round a gets eliminated we can
deduce that (1 − γ)n/m2 ≥ γn/m1 ⇐⇒ m2 ≤ m1 × (1 − γ)/γ, where we used
that the number of candidates in every subset can only decrease during STV.
Inductively, we can infer that

mh ≤
(
1− γ
γ

)h−1

m1 <

(
1

2

)h−1

M ≤ 1, (6.11)

for h = ⌈log2M⌉ + 1, where we used that γ > 2/3. This implies that the winner
of STV should lie within B4+2h, i.e. dist(x,w)/r < 4h + 7, which is a contra-
diction since dist(x,w) = (4h + 7) × r. Thus, the theorem follows directly from
Theorem 6.2.2.
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6.3.3 The Lower Bound

In this subsection we refine the Ω(
√
logm) lower bound of Skowron and Elkind

[214, Theorem 4] based on the doubling dimension of the submetric induced by
the set of candidatesMC . In particular, we will establish the following theorem:

Theorem 6.3.4 (Lower Bound for STV). For any λ ≥ 2 there exists a metric
space induced by the set of candidates (MC , dist), with d = Θ(log λ) being the
doubling dimension of MC , and a voting profile such that the distortion of STV
is Ω(

√
d).

For the proof, we consider first a tree T with λ number of leaves; it will be
assumed that λ is such that λ = ai for some i ∈ N, where {ai}i∈N is a sequence
such that a1 = 2 and ai+1 = 2(ai + 1) for i ≥ 1. Notice that if this is not
the case we can always select the maximal λ′ smaller than λ that satisfies this
property; given that λ′ = Θ(λ) this would not affect the conclusion (up to constant
factors). Then, the next (or first) layer will consist of nodes which are parents
of leaves, and in particular, every node in layer 1 will be parent to exactly 2
(mutually distinct) leaves, and we will say that the branching factor is b1 :=
2. This construction is continued iteratively until we reach the root, with the
branching factor of layer i > 1 satisfying bi+1 = 2(bi + 1); the first two layers of
this construction are illustrated in Figure 6.3. Observe that by construction the
branching factor increases exponentially fast. Moreover, the number of nodes in
the i-th layer is mi = mi−1/bi, with m0 := λ. Now let h be the height of the
induced tree. We can infer that

mh =
mh−1

bh
=

λ∏h
i=1 bi

≥ λ∏h
i=1 4

i
=

λ

4
∑h

i=1 i
=

λ

2h(h+1)
, (6.12)

where we used that bi+1 ≤ 4bi. Thus, sincemh = 1, it follows that h = Ω(
√
log2 λ).

Finally, we incorporate a node which is connected via edges to all the leaves. Then,
the distance between two nodes is defined as the length of the shortest path in
the induced unweighted graph. The metric space we introduced will be henceforth
represented as (MC , dist).

Claim 6.3.5. The doubling dimension of the metric space (MC ,dist) is Θ(log λ).

Proof. It is easy to see that the doubling constant of the metric space (MC ,dist)
is at least λ. Thus, the claim follows since |MC | ≤ 2λ and dim(MC) ≤ log2 |MC |.

The Voting Instance. We assume that voters and candidates are mapped to
points on the metric space (MC ,dist). In particular, for every point x ∈ T we
assign a (distinct) candidate, while every remaining candidate will be allocated to
the point connected to all the leaves. In this way, (MC , dist) is indeed the metric
space induced by the set of candidates. We will let x ∈ C be a candidate located
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Figure 6.3: A 2-layer instance of the tree T employed for the lower bound in
Theorem 6.3.4.

to the point connected to all the leaves, and w ∈ C be the candidate at the root of
T . Moreover, for a layer i of T we place νi number of voters at each point of the
layer, such that ν0 = 1 and νi+1 = (bi + 1)νi for all i ≥ 0 (here we tacitly assume
that b0 = 0); no voters are collocated with candidate x.

Claim 6.3.6. There exists an elimination sequence such that w ∈ C is the winner
of STV.

Proof. Given that νi+1 = (bi + 1)νi we can inductively infer that there exists
an elimination sequence such that every candidate in layer i is eliminated before
any candidate in the layer i + 1, while every candidate collocated with x will be
eliminated before any candidate in T . This concludes the proof.

Claim 6.3.7. SC(w)/SC(x) = Ω(h).

Proof. Let ni be the total number of agents residing in the i-th layer of the tree T .
We will show that ni+1 = ni/2, for all i = 0, 1, . . . , h−1. Indeed, for i ≥ 0 it follows
that ni+1 = νi+1mi+1 = (bi + 1)νimi+1 = ni(bi + 1)/bi+1 = ni/2, where we used
thatmi = mi−1/bi and bi+1 = 2(bi+1). As a result, it follows that SC(w) ≥ n0×h,
while it is easy to show that SC(x) ≤ 4n0, concluding the proof.

Proof of Theorem 6.3.4. The lower bound follows by directly applying and com-
bining Theorem 6.3.5, Theorem 6.3.6, and Theorem 6.3.7.

Notice that this theorem implies as a special case the Ω(
√
logm) lower bound

for general metrics, which only applies when the metric (MC , dist) is near-uniform.

Remark 6.3.8. It is not difficult to show that the distortion of STV is always
O(∆), where ∆ represents the aspect ratio of MC—the ratio between the largest
(pairwise) distance to the smallest distance in MC . In fact, this bound is tight—
up to constant factors—for certain instances, as implied by the construction in
Theorem 6.3.4.
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6.4 Coordination Dynamics

In this section we explore the degree to which natural and distributed learning
dynamics can converge to social choices with near-optimal distortion. We should
point out that there is a concrete connection between such considerations and the
results of the previous section, which will be revealed in detail very shortly. First,
let us commence with the following observation:

Observation 6.4.1. Consider a voting instance under a metric space so that some
candidate a ∈ C has distortion at least D.4 Then, there exists a candidate x ̸= a
and subset W ⊆ V such that

1. Every agent in W strictly prefers x to a;

2. |W |/n ≥ 1− 2/(D+ 1).

This statement essentially tells us that candidates with large distortion are
inherently unstable, in the sense that there will exist a large “coalition” of voters
that strictly prefer a different outcome. Interestingly, this observation implies a
connection between (metric) distortion and the notion of core in cooperative game
theory. To be more precise, we will say that a set of coalitions W is α-large, with
α ∈ [0, 1], if it contains every coalitionW ⊆ V such that |W |/n ≥ α; a candidate a
is said to be in the core if there does not exist a coalition W ∈ W such that every
agent in W (strictly) prefers a different alternative.5 In this context, the following
proposition follows directly from Theorem 6.4.1:

Proposition 6.4.2. Consider a voting instance under a metric space so that some
candidate a ∈ C has distortion at least D. Then, candidate a cannot be in the core
with respect to an α-large set of coalitions, as long as α ≤ 1− 2/(D+ 1).

As a result, it is interesting to study the strategic behavior and the potential
coordination dynamics that may arise in the face of an inefficient voting system.

6.4.1 The Model

We consider the following abstract model: For some given voting system, agents
are called upon to cast their votes for a series of T days or rounds, where T is
sufficiently large. After the end of each day, voters are informed about the results
of the round, and the winner is determined based on the results of the ultimate
day. This is essentially an iterative implementation of a given voting rule, in place
of the one-shot execution typically considered, and it is introduced to take into
account external information typically accumulated before the actual voting (e.g.
through polls). For concreteness, we will assume that the voting rule employed

4That is, SC(a)/minx∈C SC(x) ≥ D.
5Considering only “large” coalitions is standard in the literature; cf. [53].
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in each day is simply the Plurality mechanism, not least due to its popularity
both in theory and in practice.

Before we describe and analyze natural dynamics in this model, let us first
note that if all the voters engage truthfully throughout this game, the victor will
coincide with the plurality winner, and as we know there are instances for which
this candidate may have Ω(m) distortion. As a result, Theorem 6.4.1 implies
that there will be a large coalition with a 1 − Θ(1/m) fraction of the voters that
strictly prefer a different outcome. Indeed, the lower bound of Plurality is built
upon m − 1 clusters of voters formed arbitrarily close, while a different extreme
party with roughly the same plurality score could eventually prevail. However, the
access to additional information renders this scenario rather unrealistic given that
we expect some type of adaptation or coordination mechanism from the agents.

6.4.2 A Greedy Approach

Let us denote with n
(t)
a the plurality score of candidate a at round t ∈ [T ].

A particularly natural approach for an agent to engage in this scenario consists
of maintaining a time-varying parameter θ(t), which will essentially serve as the
“temperature”. Then, at some round t > 1 agent i will support the candidate b

for which b ⪰i a for all a, b ∈ C(t), where C(t) := {a ∈ C : n
(t−1)
a ≥ θ(t)}.6 That

is, agents only consider candidates who exceeded some level of support during
the previous day. Then, the temperature parameter is updated accordingly, for
example with some small constant increment θ(t+1) := θ(t) + ϵ, for some ϵ >
0. In this context, observe that for a sufficiently small ϵ these dynamics will
converge to an STV winner (based on the parallel universe model). This implies
that the greedy tactics already offer an exponential improvement—in terms of the
utilitarian efficiency—compared to the truthful dynamics. Nevertheless, the lower
bound for STV (Theorem 6.3.4) suggests that we have to design a more careful
adaptive rule in order to attain O(1) distortion.

6.4.3 Exploration/Exploitation

The inefficiency of the previous approach—and subsequently of STV—stems
from the greedy nature of the iterative process: Agents may choose to dismiss
candidates prematurely. For example, this becomes immediately apparent by in-
specting the elimination pattern in the lower bound of Theorem 6.3.4. In light
of this, the remedy we propose—and what arguably occurs in many practical
scenarios—is an exploration phase. In particular, voters initially do not possess
any information about the preferences of the rest of the population. Thus, they
may attempt to explore several alternatives in order to evaluate the viability of

6The definition of the set C(t) for t > 1 is subject to |C(t)| ≥ |C(t−1)| − 1, i.e. agents
never disregard more than 1 candidate in the course of a single round; in the contrary case
the guarantee we state for the dynamics does not hold due to some pathological instances.

159



each candidate; while doing so, agents will endeavor to somehow indicate or favor
their own preferences. After the exploration phase, agents will leverage the infor-
mation they have learnt to adapt their support. More concretely, we will consider
the following dynamics:

1. Exploration phase: In each round t ∈ [m] every agent i maintains a list L(t)i ,

initialized as L(1)i := ∅. If C
(t)
i := C \ L(t)i , then at round t an agent i shall

vote for the candidate a ∈ C(t)
i such that a ⪰i b for all b ∈ C(t)

i . Then, agent

i updates her list accordingly: L(t+1)
i := L(t)i ∪ {a};

2. Exploitation phase: Every agent supports the first candidate7 within her list
that managed to accumulate—over all prior rounds—at least n/2 votes.

In a sense, voters try to balance between voting for their most-preferred can-
didates and having an impact on the final result. We shall refer to this iterative
process as Coordination dynamics.

Theorem 6.4.3. Coordination dynamics lead to a candidate with distortion at
most 11.

Proof. Let w ∈ C be the winner under Coordination dynamics, and x ∈ C be
the candidate who minimizes the social cost. If r := dist(x,w)/5, we consider the
sequence of balls {Bi}3i=1 such that Bi := B(x, (2i− 1)r) for i = 1, 2, 3. If γ is the
fraction of the voters in B1, we will argue that γ ≤ 1/2.

For the sake of contradiction, let us assume that γ > 1/2. Let t be the first
round for which a voter in B1 supports a candidate outside B3. Then, it follows by
the triangle inequality that the list of this voter just after round t− 1 included all
the candidates in B2. This in turn implies that by round t − 1 every agent in B1
had already voted for all candidates in B1. Given that γ > 1/2, we can conclude
that no agent from B1 voted for w during the exploitation phase.

Now let us consider the first round for which some candidate a ∈ C accu-
mulated at least n/2 votes, which clearly happens during the exploration phase.
Then, at the exact same round at least n/2 agents have a in their list; this follows
since agents vote for different candidates during the exploration phase, and a can-
didate is always included in the list once voted for. As a result, our tie-breaking
assumption implies that there will be a candidate with the support of at least n/2
agents during the exploitation phase. But our previous argument shows that this
candidate cannot be w, which is an obvious contradiction. As a result, we have
shown that γ ≤ 1/2, and the theorem follows by Theorem 6.2.2.

Before we conclude this section, let us briefly mention some intriguing open
problems related to our results. Specifically, we have attempted to argue that

7For simplicity, it is assumed that in case multiple such agents exist we posit some
arbitrary but common among all agents tie-breaking mechanism.

160



candidates with small distortion may arise through natural learning rules. This
was motivated in part by Theorem 6.4.1, which implies the instability of outcomes
with large distortion. However, the converse of this statement is not quite true:
Although there always exists a candidate with distortion at most 3 [131], there
might be a subset with at least half of the voters that strictly prefer a different
outcome (a.k.a. Condorcet’s paradox). Still, there might be an appropriate notion
of stability which ensures that near-optimal candidates are in some sense stable.
In spirit, this is very much pertinent to the main result of Gkatzelis et al. [131]
concerning the existence of an undominated candidate, leading to the following
question:

Question 3. Are there deterministic and distributed learning rules which converge
to a candidate with distortion 3?

6.5 Intrinsic Robustness of Plurality Match-

ing

Gkatzelis et al. [131] introduced the PluralityMatching (deterministic)
mechanism, and they showed that it always incurs distortion at most 3 under
metric preferences. Nonetheless, it is natural to ask how it performs in more
refined, as well as in more general spaces. It should be noted that Gkatzelis et al.
[131] established the robustness of PluralityMatching under different objective
functions (measuring the social cost); namely, they showed that the same distortion
bound can be achieved for the more stringent fairness ratio of Goel et al. [132]. In
this section we extend the robustness of PluralityMatching along two regimes.

6.5.1 Ultra-Metrics

First, we study the power of PluralityMatching under ultra-metric spaces;
in particular, recall the following definition:

Definition 6.5.1. An ultra-metric on a set M is a function dist :M×M 7→ R
such that ∀x, y, z,

1. dist(x, y) = 0 if and only if x = y (identity of indiscernibles);

2. dist(x, y) = dist(y, x) (symmetry);

3. dist(x, z) ≤ max{dist(x, y), dist(y, z)} (ultra-metric inequality).

Notice that these axioms also imply that dist(x, y) ≥ 0,∀x, y ∈ M. We will
say that an ultra-metric space is an ordered pair (M,dist) consisting of a set
M along with an ultra-metric dist on M. Naturally, every ultra-metric is also a
metric since max{dist(x, y), dist(y, z)} ≤ dist(x, y)+ dist(y, z), but the converse is
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not necessarily true. Perhaps the simplest conceivable ultra-metric is the discrete
metric, which is defined on a setM as follows:

dist(x, y) =

{
1 if x ̸= y;

0 if x = y,

where x, y ∈ M. As we explained in our introduction, we study this setting
mostly driven by the fundamental bottleneck variant in facility location games.
Specifically, if the cost of a path corresponds to the maximum-weight edge in the
path (posit non-negative weights), and the distance between two nodes in the graph
is the minimum-cost path among all possible paths, it is well-known that these (so-
called minimax ) distances satisfy the ultra-metric inequality of Theorem 6.5.1. In
Table 6.1 we summarize some lower bounds for well-studied mechanisms; they
mostly follow directly from the techniques of Anshelevich et al. [18], and thus we
omit their proof.

Mechanism Lower Bound

Plurality & Borda m
k-top Ω(m/k)

Approval & Veto n
Any Deterministic 2

Table 6.1: Lower bounds for standard mechanisms under ultra-metric spaces.
We use k-top to represent any deterministic mechanism which elicits only the
k-top preferences.

In particular, we first prove a lower bound of 2 for any deterministic mechanism
under ultra-metrics:

Proposition 6.5.2. There exists a voting profile for which the distortion of any
deterministic mechanism under an ultra-metric space is at least 2.

Proof. Consider a voting instance with two candidates a, b and n voters, such that
the votes between the two candidates are split equally. Assume without any loss
of generality that the mechanism eventually selects candidate b. We will present
an ultra-metric space for which the social cost of a is half than the social cost of
b. Specifically, consider an unweighted path graph with 3 nodes endowed with the
minimax distance. We assume that candidate a resides in the leftmost node of the
graph along with all of the voters who supported a; on the other hand, candidate
b resides in the rightmost node of the graph, while all of her supporters lie in the
intermediate node (see Figure 6.4). Then, it follows that SC(a) = n/2 whereas
SC(b) = n, as desired.
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Figure 6.4: An example of our construction for the proof of Theorem 6.5.2
for n = 2 voters; the argument is similar to the one for metric spaces, but
observe that in this case dist(1, b) = 1 ̸= 2 since we have considered minimax
distances.

Importantly, we will show that PluralityMatching always matches this
lower bound. To keep the exposition reasonable self-contained we shall first recall
some basic ingredients developed in [131].

Definition 6.5.3 ([131], Definition 5). For an election E = (V,C, σ) and a can-
didate a ∈ C, the integral domination graph of candidate a is the bipartite graph
GE(a) = (V, V,Ea), where (i, j) ∈ Ea if and only if a ⪰i top(j).

Proposition 6.5.4 ([131], Corollary 1). There exists a candidate a ∈ C whose
integral domination graph GE(a) admits a perfect matching.

We should also note that a candidate whose integral domination graph admits
a perfect matching can be identified in strongly polynomial time. In particular,
PluralityMatching always returns such a candidate. These ingredients suffice
in order to establish the following:

Theorem 6.5.5. PluralityMatching returns a candidate with distortion at
most 2 under any ultra-metric space.

Proof of Theorem 6.5.5. Let a ∈ C be a candidate whose integral domination
graph GE(a) admits a perfect matching M : V 7→ V (recall Theorem 6.5.4), such
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that a ⪰i top(M(i)) for all i ∈ V . Then, it follows that

SC(a) =
∑
i∈V

dist(i, a)

≤
∑
i∈V

dist(i, top(M(i))) (a ⪰i top(M(i)), ∀i ∈ V )

≤
∑
i∈V

dist(i, b) + dist(b, top(M(i))) (triangle inequality)

= SC(b) +
∑
i∈V

dist(b, top(i))) (M is a perfect matching)

≤ SC(b) +
∑
i∈V

max{dist(i, b),dist(i, top(i))} (ultra-metric inequality)

= SC(b) +
∑
i∈V

dist(i, b) (top(i) ⪰i b)

= 2SC(b).

Given that the choice of b was arbitrary the theorem follows.

6.5.2 Approximate Metrics

Next, we study the distortion of deterministic mechanisms when the distances
approximately satisfy the triangle inequality, as formalized in the following defini-
tion:

Definition 6.5.6. For some parameter ρ ≥ 1, a ρ-approximate metric on a set
M is a function dist :M×M 7→ R such that ∀x, y, z,

1. dist(x, y) = 0 if and only if x = y (identity of indiscernibles);

2. dist(x, y) = dist(y, x) (symmetry);

3. dist(x, z) ≤ ρ(dist(x, y) + dist(y, z)) (ρ-relaxed triangle inequality).

Again we point out that these axioms imply that dist(x, y) ≥ 0,∀x, y ∈ M.
We commence with the following lower bound:

Proposition 6.5.7. There exists a voting profile for which the distortion of every
deterministic mechanism under a ρ-approximate metric space is at least ρ2+ρ+1.

Proof of Theorem 6.5.7. As usual, consider an instance with 2n voters and 2 can-
didates a, b ∈ C, such that every candidate obtains exactly half of the votes. Let
us assume without any loss of generality that the social choice rule selects candi-
date b. Now consider a ρ-approximate metric dist(·, ·) on the setM = {x, y, z, ω}
defined as follows:
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x y z ω


0 1 2ρ ϵ x
1 0 1 ρ+ ρϵ y
2ρ 1 0 ρ2 + ρ+ ρϵ z
ϵ ρ+ ρϵ ρ2 + ρ+ ρϵ 0 ω

;

here we assume that ϵ ∈ (0, 1). It is a simple exercise to verify that dist(·, ·) indeed
satisfies the axioms of a ρ-approximate metric. We also assume that a := x and
b := z; the n supporters of candidate a are located on ω, while the n supporters
of candidate b on y. Then, it follows that the agents’ locations are consistent with
their preferences, while the distortion of candidate b reads

SC(b)

SC(a)
=
nd(z, ω) + nd(y, z)

nd(x, ω) + nd(x, y)
=
ρ2 + ρ+ ρϵ+ 1

ϵ+ 1
. (6.13)

Taking the supremum of this ratio over ϵ ∈ (0, 1) concludes the proof.

To provide some intuition let us assume that dist corresponds to the squared
Euclidean distance.8 If we consider the usual voting scenario wherein the votes
are splitted equally among two candidates (see the proof of Theorem 6.5.7 and
Figure 6.5), then it follows that the distortion of candidate b reads

SC(b)

SC(a)
=
n× 12 + n× (2 + δ)2

n× 12 + n× δ2
=
δ2 + 4δ + 5

δ2 + 1
. (6.14)

Figure 6.5: The lower bound for squared Euclidean distances.

Interestingly, this ratio increases as δ goes from 0 to a sufficiently small con-
stant, implying a notable qualitative difference compared to the standard metric
case. In particular, for the squared Euclidean distance it follows that the distortion
is lower-bounded by supδ

δ2+4δ+5
δ2+1

= (4 + 2
√
2)/(4 − 2

√
2) ∼= 5.8284. For general

approximate metrics we can employ the techniques of Gkatzelis et al. [131] to show
the following:

Theorem 6.5.8. PluralityMatching returns a candidate with distortion at
most 2ρ2 + ρ under ρ-approximate metrics.

8Note that Young’s inequality implies that dist(·, ·) is a 2-approximate metric.
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As a result, this theorem leaves a gap between the upper bound derived
for PluralityMatching and the lower bound of Theorem 6.5.7 when ρ > 1.
Nonetheless, it should be noted that for ρ-approximate metrics there exists an
instance-optimal and computationally efficient mechanism based on linear pro-
gramming (cf. [132]).
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Chapter 7

Node-Max-Cut and the
Complexity of Equilibrium in
Linear Weighted Congestion
Games

Existence and efficient computation of (exact or approximate) equilibria for
weighted congestion games have received significant research attention. We briefly
discuss here some of the most relevant previous work. There has been significant
research interest in the convergence rate of best response dynamics for weighted
congestion games (see e.g., [73, 62, 93, 99, 134]). Gairing et al. [126] presented a
polynomial algorithm for computing a PNE for load balancing games on restricted
parallel links. Caragiannis et al. [64] established existence and presented efficient
algorithms for computing approximate PNE in weighted CGs with polynomial
latencies (see also [106, 129]).

Bhalgat et al. [41] presented an efficient algorithm for computing a (3 + ε)-
approximate equilibrium in Max-Cut games, for any ε > 0. The approximation
guarantee was improved to 2 + ε in [64]. We highlight that the notion of approx-
imate equilibrium in cut games is much stronger than the notion of approximate
local optimum of Max-Cut, since the former requires that no vertex can signifi-
cantly improve the total weight of its incidence edges that cross the cut (as e.g., in
[41, 64]), while the latter simply requires that the total weight of the cut cannot
be significantly improved (as e.g., in [64]).

Johnson et al. [143] introduced the complexity class PLS and proved that
Circuit-Flip is PLS-complete. Subsequently, Schäffer and Yannakakis [208]
proved that Max-Cut is PLS-complete. From a technical viewpoint, our work
is close to previous work by Elsässer and Tscheuschner [89] and Gairing and Sa-
vani [127], where they show that Local-Max-Cut in graphs of maximum degree
five [89] and computing a PNE for hedonic games [127] are PLS-complete, and by
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Ackermann et al. [2], where they reduce Local-Max-Cut to computing a PNE
in network congestion games.

7.1 Contributions

In this work we show that equilibrium computation in linear weighted CGs is
significantly harder than for standard CGs, in the sense that it is PLS-complete
either for very restricted strategy spaces, namely when player strategies are paths
on a series-parallel network with a single origin and destination, or for very re-
stricted latency functions, namely when resource costs are equal to the congestion.
Our main step towards proving the latter result is to show that computing a
local optimum of Node-Max-Cut, a natural and interesting restriction of Max-
Cut where the weight of each edge is the product of the weights of its endpoints,
is PLS-complete.

For the complexity of equilibrium computation we will mostly focus on the fist
part here. More specifically, using a tight reduction from Local-Max-Cut, we
first show, in Section 7.3, that equilibrium computation for linear weighted CGs on
series-parallel networks with a single origin and destination is PLS-complete (The-
orem 7.3.1). The reduction results in games where both the player weights and
the latency slopes are exponential. Our result reveals a remarkable gap between
weighted and standard CGs regarding the complexity of equilibrium computation,
since for standard CGs on series-parallel networks with a single origin and desti-
nation, a PNE can be computed by a simple greedy algorithm [119].

Aiming at a deeper understanding of how different player weights affect the
complexity of equilibrium computation in CGs, we show that computing a PNE
of weighted network CGs with asymmetric player strategies and identity latency
functions is PLS-complete Again the gap to standard CGs is remarkable, since
for standard CGs with identity latency functions, any better response dynamics
converges to a PNE in polynomial time. Node-Max-Cut plays a role similar to
that of threshold games in [2, Sec. 4] in the constructed reduction.

Node-Max-Cut is a natural restriction of Max-Cut and settling the com-
plexity of its local optima computation may be of independent interest, both con-
ceptually and technically. Node-Max-Cut coincides with the restriction of Max-
Cut shown (weakly) NP-complete on complete graphs in the seminal paper of
Karp [148], while a significant generalization of Node-Max-Cut with polynomial
weights was shown P-complete in [208].

As a complement to this,we show that a (1 + ε)-approximate equilibrium for
Node-Max-Cut, where no vertex can switch sides and increase the weight of its
neighbors across the cut by a factor larger than 1 + ε, can be computed in time
exponential in the number of different weights (see Theorem 7.4.1 for a precise
statement). Thus, we can efficiently compute a (1 + ε)-approximate equilibrium
for Node-Max-Cut, for any ε > 0, if the number of different vertex weights
is constant. Since similar results are not known for Max-Cut, we believe that
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Theorem 7.4.1 may indicate that approximate equilibrium computation for Node-
Max-Cut may not be as hard as for Max-Cut. An interesting direction for
further research is to investigate (i) the quality of efficiently computable approxi-
mate equilibria for Node-Max-Cut; and (ii) the smoothed complexity of its local
optima.

7.2 Basic Definitions and Notation

Polynomial-Time Local Search (PLS). A polynomial-time local search (PLS)
problem L [143, Sec. 2] is specified by a (polynomially recognizable) set of instances
IL, a set SL(x) of feasible solutions for each instance x ∈ IL, with |s| = O(poly(|x|)
for every solution s ∈ SL(x), an objective function fL(s, x) that maps each solu-
tion s ∈ SL(x) to its value in instance x, and a neighborhood NL(s, x) ⊆ SL(x) of
feasible solutions for each s ∈ SL(x). Moreover, there are three polynomial-time
algorithms that for any given instance x ∈ IL: (i) the first generates an initial
solution s0 ∈ SL(x); (ii) the second determines whether a given s is a feasible
solution and (if s ∈ SL(x)) computes its objective value fL(s, x); and (iii) the
third returns either that s is locally optimal or a feasible solution s′ ∈ NL(s, x)
with better objective value than s. If L is a maximization (resp. minimization)
problem, a solution s is locally optimal if for all s′ ∈ NL(s, x), fL(s, x) ≥ fL(s′, x)
(resp. fL(s, x) ≤ fL(s′, x)). If s is not locally optimal, the third algorithm returns
a solution s′ ∈ NL(s, x) with f(s, x) < f(s′, x) (resp. f(s, x) > f(s′, x)). The
complexity class PLS consists of all polynomial-time local search problems. By
abusing the terminology, we always refer to polynomial-time local search problem
simply as local search problems.

PLS Reductions and Completeness. A local search problem L is PLS-reducible
to a local search problem L′, if there are polynomial-time algorithms ϕ1 and ϕ2
such that (i) ϕ1 maps any instance x ∈ IL of L to an instance ϕ1(x) ∈ IL′ of L′; (ii)
ϕ2 maps any (solution s′ of instance ϕ1(x), instance x) pair, with s

′ ∈ SL′(ϕ1(x)),
to a solution s ∈ SL(x); and (iii) for every instance x ∈ IL, if s′ is locally optimal
for ϕ1(x), then ϕ2(s

′, x) is locally optimal for x.
By definition, if a local search problem L is PLS-reducible to a local search

problem L′, a polynomial-time algorithm that computes a local optimum of L′ im-
plies a polynomial time algorithm that computes a local optimum of L. Moreover,
a PLS-reduction is transitive. As usual, a local search problem Q is PLS-complete,
if Q ∈ PLS and any local search problem L ∈ PLS is PLS-reducible to Q.

Max-Cut and Node-Max-Cut. An instance of Max-Cut consists of an undirected
edge-weighted graph G(V,E), where V is the set of vertices and E is the set of
edges. Each edge e is associated with a positive weight we. A cut of G is a vertex
partition (S, V \ S), with ∅ ≠ S ̸= V . We usually identify a cut with one of
its sides (e.g., S). We denote δ(S) = {{u, v} ∈ E : u ∈ S ∧ v ̸∈ S} the set of
edges that cross the cut S. The weight (or the value) of a cut S, denoted w(S),
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is w(S) =
∑

e∈δ(S)we. In Max-Cut, the goal is to compute an optimal cut S∗ of
maximum value w(S∗).

In Node-Max-Cut, each vertex v is associated with a positive weight wv and
the weight of each edge e = {u, v} is we = wuwv, i.e. equal to the product of
the weights of e’s endpoints. Again the goal is to compute a cut S∗ of maximum
value w(S∗). As optimization problems, both Max-Cut and Node-Max-Cut are
NP-complete [148].

In this work, we study Max-Cut and Node-Max-Cut as local search prob-
lems under the flip neighborhood. Then, they are referred to as Local-Max-
Cut and Local-Node-Max-Cut. The neighborhood N(S) of a cut (S, V \ S)
consists of all cuts (S′, V \ S′) where S and S′ differ by a single vertex. Namely,
the cut S′ is obtained from S by moving a vertex from one side of the cut to
the other. A cut S is locally optimal if for all S′ ∈ N(S), w(S) ≥ w(S′). In
Local-Max-Cut (resp. Local-Node-Max-Cut), given an edge-weighted (resp.
vertex-weighted) graph, the goal is to compute a locally optimal cut. Clearly, both
Max-Cut and Node-Max-Cut belong to PLS. In the following, we abuse the
terminology and refer to Local-Max-Cut and Local-Node-Max-Cut asMax-
Cut and Node-Max-Cut, for brevity, unless we need to distinguish between the
optimization and the local search problem.

Weighted Congestion Games. A weighted congestion game G consists of n players,
where each player i is associated with a positive weight wi, a set of resources
E, where each resource e is associated with a non-decreasing latency function
ℓe : R≥0 → R≥0, and a non-empty strategy set Σi ⊆ 2E for each player i. A game
is linear if ℓe(x) = aex+ be, for some ae, be ≥ 0, for all e ∈ E. The identity latency
function is ℓ(x) = x. The player strategies are symmetric, if all players share the
same strategy set Σ, and asymmetric, otherwise.

We focus on network weighted congestion games, where the resources E cor-
respond to the edges of an underlying network G(V,E) and the player strategies
are paths on G. A network game is single-commodity, if G has an origin o and
a destination d and the player strategies are all (simple) o − d paths. A network
game is multi-commodity, if G has an origin oi and a destination di for each player
i, and i’s strategy set Σi consists of all (simple) oi−di paths. A single-commodity
network G(V,E) is series-parallel, if it either consists of a single edge (o, d) or
can be obtained from two series-parallel networks composed either in series or in
parallel (see e.g., [218] for details on composition and recognition of series-parallel
networks).

A configuration s⃗ = (s1, . . . , sn) consists of a strategy si ∈ Σi for each player
i. The congestion se of resource e in configuration s⃗ is se =

∑
i:e∈si wi. The

cost of resource e in s⃗ is ℓe(se). The individual cost (or cost) ci(s⃗) of player
i in configuration s⃗ is the total cost for the resources in her strategy si, i.e.,
ci(s⃗) =

∑
e∈si ℓe(se). A configuration s⃗ is a pure Nash equilibrium (equilibrium or

PNE, for brevity), if for every player i and every strategy s′ ∈ Σi, ci(s⃗) ≤ ci(s⃗−i, s
′)

(where (s⃗−i, s
′) denotes the configuration obtained from s⃗ by replacing si with s

′).
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Namely, no player can improve her cost by unilaterally switching her strategy.

Equilibrium Computation and Local Search. [118] shows that for linear weighted
congestion games, with latencies ℓe(x) = aex + be, Φ(s⃗) =

∑
e∈E(aes

2
e + bese) +∑

iwi
∑

e∈si(aewi+be) changes by 2wi(ci(s⃗)−ci(s⃗−i, s
′)), when a player i switches

from strategy si to strategy s′ in s⃗. Hence, Φ is a weighted potential function,
whose local optimal (wrt. single player deviations) correspond to PNE of the
underlying game. Hence, equilibrium computation for linear weighted congestion
games is in PLS. Specifically, configurations corresponds to solutions, the neighbor-
hood N(s⃗) of a configuration s⃗ consists of all configurations (s⃗−i, s

′) with s′ ∈ Σi,
for some player i, and local optimality is defined wrt. the potential function Φ.

Max-Cut and Node-Max-Cut as Games. Local-Max-Cut and Local-Node-
Max-Cut can be cast as cut games, where players correspond to vertices of
G(V,E), strategies Σ = {0, 1} are symmetric, and configurations s⃗ ∈ {0, 1}|V |

correspond to cuts, e.g., S(s⃗) = {v ∈ V : sv = 0}. Each player v aims to maximize
wv(s⃗) =

∑
e={u,v}∈E:su ̸=sv

we, that is the total weight of her incident edges that
cross the cut. For Node-Max-Cut, this becomes wv(s⃗) =

∑
u:{u,v}∈E∧su ̸=sv

wu,
i.e., v aims to maximize the total weight of her neighbors across the cut. A cut s⃗
is a PNE if for all players v, wv(s⃗) ≥ wv(s⃗−i, 1− sv). Equilibrium computation for
cut games is equivalent to local optimum computation, and thus, is in PLS.

A cut s⃗ is a (1 + ε)-approximate equilibrium, for some ε > 0, if for all players
v, (1 + ε)wv(s⃗) ≥ wv(s⃗−i, 1 − sv). Note that the notion of (1 + ε)-approximate
equilibrium is stronger than the notion of (1+ ε)-approximate local optimum, i.e.,
a cut S such that for all S′ ∈ N(S), (1 + ε)w(S) ≥ w(S′) (see also the discussion
in [64]).

7.3 Hardness of Computing Equilibria in

Weighted Congestion Games on Series-

Parallel Networks

Theorem 7.3.1. Computing a pure Nash equilibrium in weighted congestion games
on single-commodity series-parallel networks with linear latency functions is PLS-
complete.

Proof sketch. Membership in PLS follows from the potential function argument of
[118]. To show hardness, we present a reduction from Max-Cut.

Let H(V,A) be an instance of Local-Max-Cut with n vertices and m edges.
Based on H, we construct a weighted congestion game on a single-commodity
series-parallel network G with 3n players, where for every i ∈ [n], there are three
players with weight wi = 16i. Network G is a parallel composition of two identical
copies of a simpler series-parallel network. We refer to these copies as G1 and G2.
Each of G1 and G2 is a series composition of m simple series-parallel networks Fij ,
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Figure 7.1: The series-parallel network Fij that corresponds to edge {i, j} ∈
A.

Figure 7.2: An example of the network G constructed in the proof
of Theorem 7.3.1 for graph H(V,A), with V = {1, 2, 3, 4} and A =
{{1, 2}, {1, 3}, {1, 4}, {2, 4}}. G is a parallel composition of two parts, each
consisting of the smaller networks F12, F13, F14 and F24 (see also Figure 7.1)
connected in series.

each corresponding to an edge {i, j} ∈ A. Network Fij is depicted in Figure 7.1,
where D is assumed to be a constant chosen (polynomially) large enough. An
example of the entire network G is shown in Figure 7.2.

In each of G1 and G2, there is a unique path that contains all edges with
latency functions ℓi(x) = Dx/4i, for each i ∈ [n]. We refer to these paths as pui for
G1 and pli for G2. In addition to the edges with latency ℓi(x), p

u
i and pli include all

edges with latencies ℓij(x) =
wijx
wiwj

=
wijx
16i+j , which correspond to the edges incident

to vertex i in H.
Due to the choice of the player weights and the latency slopes, a player with

weight wi must choose either pui or pli in any PNE. We can prove this claim by in-
duction on the player weights. The players with weight wn = 16n have a dominant
strategy to choose either pun or pln, since the slope of ℓn(x) is significantly smaller
than the slope of any other latency ℓi(x). In fact, the slope of ℓn is so small that
even if all other 3n − 1 players choose one of pun or pln, a player with weight wn

would prefer either pun or pln over all other paths. Therefore, we can assume that
each of pun and pln are used by at least one player with weight wn in any PNE,
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which would increase their latency so much that no player with smaller weight
would prefer them any more. The inductive argument applies the same reasoning
for players with weights wn−1, who should choose either pun−1 or pln−1 in any PNE,
and subsequently, for players with weights wn−2, . . . , w1. Hence, we conclude that
for all i ∈ [n], each of pui and pli is used by at least one player with weight wi.

Moreover, we note that two players with different weights, say wi and wj , go
through the same edge with latency ℓij(x) =

wijx
wiwj

in G only if the corresponding

edge {i, j} is present in H. The correctness of the reduction follows the fact that
a player with weight wi aims to minimize her cost through edges with latencies
ℓij in G in the same way that in the Max-Cut instance, we want to minimize
the weight of the edges incident to a vertex i and do not cross the cut. Formally,
we next show that a cut S is locally optimal for the Max-Cut instance if and
only if the configuration where for every k ∈ S, two players with weight wk use puk
and for every k ̸∈ S, two players with weight wk use plk is a PNE of the weighted
congestion game on G.

Assume an equilibrium configuration and consider a player a of weight wk that
uses puk together with another player of weight wk (if this is not the case, vertex
k is not included in S and we apply the symmetric argument for plk). By the
equilibrium condition, the cost of player a on puk is at most her cost on plk, which
implies that

m∑
k=1

2D16k

4k
+

∑
j:{k,j}∈A

wkj(2 · 16k + xuj 16
j)

16k+j
≤

m∑
k=1

2D16k

4k
+

∑
j:{k,j}∈A

wkj(2 · 16k + xlj16
j)

16k+j
,

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending on whether, for each
vertex j connected to vertex k in H, one or two players (of weight wj) use puj .
Simplifying the inequality above, we obtain that:∑

j:{k,j}∈A

wkj(x
u
j − 1) ≤

∑
j:{k,j}∈A

wkj(x
l
j − 1) (7.1)

Let S = {i ∈ V : xui = 2}. By hypothesis, k ∈ S and the left-hand side of (7.1)
corresponds to the total weight of the edges in H that are incident to k and do
not cross the cut S. Similarly, the right-hand side of (7.1) corresponds to the total
weights of the edges in H that are incident to k and cross the cut S. Therefore,
(7.1) implies that we cannot increase the value of the cut S by moving vertex k
from S to V \ S. Since this or its symmetric condition holds for any vertex k of
H, the cut (S, V \S) is locally optimal. To conclude the proof, we argue along the
same lines that any locally optimal cut of H corresponds to a PNE in the weighted
congestion game on G.
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7.4 Computing Approximate Equilibria for

Node-Max-Cut

We complement our PLS-completeness proof for Node-Max-Cut, with an ef-
ficient algorithm computing (1 + ε)-approximate equilibria for Node-Max-Cut,
when the number of different vertex weights is a constant. We note that similar
results are not known (and a similar approach fails) for Max-Cut. Investigating
if stronger approximation guarantees are possible for efficiently computable ap-
proximate equilibria for Node-Max-Cut is beyond the scope of this work and an
intriguing direction for further research.

Given a vertex-weighted graph G(V,E) with n vertices and m edges, our al-
gorithm, called BridgeGaps, computes a (1 + ε)3-approximate equilibrium for a
Node-Max-Cut, for any ε > 0, in (m/ε)(n/ε)O(Dε) time, where Dε is the number
of different vertex weights in G, when the weights are rounded down to powers of
1 + ε. We next sketch the algorithm and the proof of Theorem 7.4.1.

For simplicity, we assume that n/ε is an integer and that vertices are indexed
in nondecreasing order of weight, i.e., w1 ≤ w2 ≤ · · · ≤ wn. BridgeGaps first
rounds down vertex weights to the closest power of (1 + ε). Namely, each weight
wi is replaced by weight w′

i = (1 + ε)⌊log1+ε wi⌋. Clearly, an (1 + ε)2-approximate
equilibrium for the new instance G′ is an (1+ ε)3-approximate equilibrium for the
original instance G. The number of different weights Dε, used in the analysis, is
defined wrt. the new instance G′.

Then, BridgeGaps partitions the vertices of G′ into groups g1, g2, . . ., so that
the vertex weights in each group increase with the index of the group and the ratio
of the maximum weight in group gj to the minimum weight in group gj+1 is no less
than n/ε. This can be performed by going through the vertices, in nondecreasing
order of their weights, and assign vertex i + 1 to the same group as vertex i, if
w′
i+1/w

′
i ≤ n/ε. Otherwise, vertex i + 1 starts a new group. The idea is that for

an (1 + ε)2-approximate equilibrium in G′, we only need to enforce the (1 + ε)-
approximate equilibrium condition for each vertex i only for i’s neighbors in the
highest-indexed group (that includes some neighbor of i). To see this, let gj be
the highest-indexed group that includes some neighbor of i and let ℓ be the lowest
indexed neighbor of i in gj . Then, the total weight of i’s neighbors in groups
g1, . . . , gj−1 is less than εw′

ℓ. This holds because i has at most n − 2 neighbors
in these groups and by definition, w′

q ≤ (ε/n)w′
ℓ, for any i’s neighbor q in groups

g1, . . . , gj−1. Therefore, we can ignore all neighbors of i in groups g1, . . . , gj−1, at
the expense of one more 1 + ε factor in the approximate equilibrium condition.

Since for every vertex i, we need to enforce its (approximate) equilibrium
condition only for i’s neighbors in a single group, we can scale down vertex weights
in the same group uniformly (i.e., dividing all the weights in each group by the
same factor), as long as we maintain the key property in the definition of groups
(i.e., that the ratio of the maximum weight in group gj to the minimum weight
in group gj+1 is no less than n/ε). Hence, we uniformly scale down the weights
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in each group so that (i) the minimum weight in group g1 becomes 1; and (ii)
for each j ≥ 2, the ratio of the maximum weight in group gj−1 to the minimum
weight in group gj becomes exactly n/ε. This results in a new instance G′′ where
the minimum weight is 1 and the maximum weight is (n/ε)Dε . Therefore, a (1+ε)-
approximate equilibrium in G′′ can be computed, in a standard way, after at most
(mε)(n/ε)2Dε ε-best response moves.

Putting everything together and using ε′ = ε/7, so that (1+ε′)3 ≤ 1+ε, for all
ε ∈ (0, 1], we obtain the following. We note that the running time of BridgeGaps
is polynomial, if Dε = O(1) (and quasipolynomial if Dε = poly(log n)).

Theorem 7.4.1. For any vertex-weighted graph G with n vertices and m edges and
any ε > 0, BridgeGaps computes a (1+ε)-approximate pure Nash equilibrium for
Node-Max-Cut on G in (m/ε)(n/ε)O(Dε) time, where Dε denotes the number of
different vertex weights in G, after rounding them down to the nearest power of
1 + ε.

7.A The Proof of Theorem 7.3.1

We will reduce from the PLS-complete problem Max-Cut and given an in-
stance of Max-Cut we will construct a network weighted network Congestion
Game for which the Nash equilibria will correspond to maximal solutions of Max-
Cut and vice versa. First we give the construction and then we prove the theorem.
For the formal PLS-reduction, which needs functions ϕ1 and ϕ2, ϕ1 returns the
(polynomially) constructed instance described below and ϕ2 will be revealed later
in the proof.

LetH(V,E) be an edge-weighted graph of aMax-Cut instance and let n = |V |
and m = |E|. In the constructed network weighted CG instance there will be 3n
players which will share n different weights inside the set {16i : i ∈ [n]} so that
for every i ∈ [n] there are exactly 3 players having weight wi = 16i. All players
share a common origin-destination pair o− d and choose o− d paths on a series-
parallel graph G. Graph G is a parallel composition of two identical copies of a
series-parallel graph. Call these copies G1 and G2. In turn, each of G1 and G2 is a
series composition of m different series-parallel graphs, each of which corresponds
to the m edges of H. For every {i, j} ∈ E let Fij be the series-parallel graph that
corresponds to {i, j}. Next we describe the construction of Fij , also shown in Fig.
7.1.

Fij has 3 vertices, namely oij , vij and dij and n + 1 edges. For any k ∈ [n]
other than i, j there is an oij − dij edge with latency function ℓk(x) =

Dx
4k

, where
D serves as a big constant to be defined later. There are also two oij − vij edges,
one with latency function ℓi(x) =

Dx
4i

and one with latency function ℓj(x) =
Dx
4j

.
Last, there is a vij − dij edge with latency function ℓij(x) =

wijx
wiwj

, where wij is

the weight of edge {i, j} ∈ E and wi and wj are the weights of players i and j,
respectively, as described earlier. Note that in every Fij and for any k ∈ [n] the
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latency function ℓk(x) = Dx
k appears in exactly one edge. With Fij defined, an

example of the structure of such a network G is given in Fig. 7.2.
Observe that in each of G1 and G2 there is a unique path that contains all

the edges with latency functions ℓi(x), for i ∈ [n], and call these paths pui and pli
for the upper (G1) and lower (G2) copy respectively. Note that each of pui and pli
in addition to those edges, contains some edges with latency function of the form
wijx
wiwj

. These edges for path pui or pli is in one to one correspondence to the edges

of vertex i in H and this is crucial for the proof.
We go on to prove the correspondence of Nash equilibria in G to maximal cuts

in H, i.e., solutions of Max-Cut. We will first show that at a Nash equilibrium,
a player of weight wi chooses either pui or pli. Additionally, we prove that pui
and pli will have at least one player (of weight wi). This already provides a good
structure of a Nash equilibrium and players of different weights, say wi and wj ,
may go through the same edge in G (the edge with latency function wijx/wiwj)
only if {i, j} ∈ E. The correctness of the reduction lies in the fact that players
in G try to minimize their costs incurred by these type of edges in the same way
one wants to minimize the sum of the weights of the edges in each side of the cut
when solving Max-Cut.

To begin with, we will prove that at equilibrium any player of weight wi chooses
either pui or pli and at least one such player chooses each of pui and pli. For that,
we will need the following proposition as a building block, which will also reveal a
suitable value for D.

Proposition 7.A.1. For some i, j ∈ [n] consider Fij (Fig. 7.1) and assume that
for all k ∈ [n], there are either one, two or three players of weight wk that have to
choose an oij − dij path. At equilibrium, all players of weight wk (for any k ∈ [n])
will go through the path that contains a edge with latency function ℓk(x).

Proof. The proof is by induction on the different weights starting from bigger
weights. For any k ∈ [n] call ek the edge of Fij with latency function ℓk(x) and
call eij the edge with latency function

wijx
wiwj

. For some k ∈ [n] assume that for all

l > k all players of weight wl have chosen the path containing el and lets prove
that this is the case for players of weight wk as well. Since D is going to be big
enough, for the moment ignore edge eij and assume that in Fij there are only n
parallel paths each consisting of a single edge.

Let the players be at equilibrium and consider any player, say player K, of
weight wk. The cost she computes on ek is upper bounded by the cost of ek if all
players with weight up to wk are on ek, since by induction players with weight > wk

are not on ek at equilibrium. This cost is upper bounded by ck =
D(3

∑k
l=1 16

l)

4k
=

3D 16k+1−1
16−1

4k
.

For any edge el for l < k, the cost that K computes is lower bounded by
c< = D16k

4k−1 since she must include herself in the load of el and the edge with the
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smallest slope in its latency function is ek−1. But then c
k < c<, since

ck < c< ⇔
3D 16k+1−1

16−1

4k
<
D16k

4k−1
⇔ 48 · 16k − 3 < 60 · 16k

Thus, at equilibrium players of weight wk cannot be on any of the el’s for all
l < k. On the other hand, the cost that K computes for el for l > k is at least

c>l = D(16l+16k)
4l

, since by induction el is already chosen by at least one player of

weight wl. But then c
k < c>l since

3D 16k+1−1
16−1

4k
<
D(16l + 16k)

4l
⇔

48 · 16k − 3 < 15
16l + 16k

4l−k
⇔

48 · 4l−k16k < 15 · 16l = 15 · 4l−k4l−k16k .

Thus, at equilibrium players of weight wk cannot be on any of the el’s for all l > k.
This completes the induction for the simplified case where we ignored the

existence of eij , but lets go on to include it and define D so that the same analysis

goes through. By the above, c< − ck = D16k

4k−1 −
3D 16k+1−1

16−1

4k
> D and also for any

l > k it is c>l − c
k = D(16l+16k)

4l
− 3D 16k+1−1

16−1

4k
> D (this difference is minimized

for l = k + 1). On the other hand the maximum cost that edge eij may have is

bounded above by cij =
wij3

∑n
l=1 16

l

wiwj
, as eij can be chosen by at most all of the

players and note that cij ≤ 16n+1maxq,r∈[n]wqr. Thus, one can choose a big value
for D, namely D = 16n+1maxq,r∈[n]wqr, so that even if a player with weight wk

has to add the cost of eij when computing her path cost, it still is cij + ck < c<

(since c<− ck > D ≥ cij) and for all l > k: cij + ck < c>l (since c>l − c
k > D ≥ cij),

implying that at equilibrium all players of weight wk may only choose the path
through ek.

Other than revealing a value for D, the proof of Porposition 7.A.1 reveals a
crucial property: a player of weight wk in Fij strictly prefers the path containing ek
to the path containing el for any l < k, independent to whether players of weight
> wk are present in the game or not. With this in mind we go back to prove that
at equilibrium any player of weight wi chooses either p

u
i or pli and at least one such

player chooses each of pui and pli. The proof is by induction, starting from bigger
weights.

Assume that by the inductive hypothesis for every i > k, players with weights
wi have chosen paths pui or pli and at least one such player chooses each of pui
and pli. Consider a player of weight wk, and, wlog, let her have chosen an o − d
path through G1. Since at least one player for every bigger weight is by induction
already in the paths of G1 (each in her corresponding pui ), Proposition 7.A.1 and
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the remark after its proof give that in each of the Fij ’s the player of weight wk has
chosen the subpath of puk , and this may happen only if her chosen path is puk . It
remains to show that there is another player of weight wk that goes through G2,
which, with an argument similar to the previous one, is equivalent to this player
choosing path plk.

To reach a contradiction, let puk be chosen by all three players of weight wk,
which leaves plk empty. Since all players of bigger weights are by induction settled
in paths completely disjoint to plk, the load on this path if we include a player of
weight wk is upper bounded by the sum of all players of weight < wk plus wk,
i.e., 16k + 3

∑k−1
t=1 16t = 16k + 316k−1

16−1 , which is less than the lower bound on the

load of puk , i.e., 3 · 16k (since puk carries 3 players of weight 16k). This already is
a contradiction to the equilibrium property, since puk and plk share the exact same
latency functions on their edges which, given the above inequality on the loads,
makes puk more costly than plk for a player of weight wk. To summarize, we have
the following.

Proposition 7.A.2. At equilibrium, for every i ∈ [n] a player of weight wi chooses
either pui or pli. Additionally, each of pui and pli have been chosen by at least one
player (of weight wi).

Finally, we prove that every equilibrium of the constructed instance corre-
sponds to a maximal solution of Max-Cut and vice versa. Given a maximal
solution S of Max-Cut we will show that the configuration Q that for every
k ∈ S routes 2 players through puk and 1 player through plk and for every k ∈ V \S
routes 1 player through puk and 2 players through plk is an equilibrium. Conversely,
given an equilibrium Q the cut S = {k ∈ V : 2 players have chosen puk at Q} is a
maximal solution of Max-Cut.

Assume that we are at equilibrium and consider a player of weight wk that has
chosen puk and wlog puk is chosen by two players (of weight wk). By the equilibrium
conditions the cost she computes for puk is at most the cost she computes for plk,
which, given Proposition 7.A.2, implies

m∑
i=1

2D16k

4k
+
∑

{k,j}∈E

wkj(2 · 16k + xuj 16
j)

16k16j
≤

m∑
i=1

2D16k

4k
+
∑

{k,j}∈E

wkj(2 · 16k + xlj16
j)

16k16j

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending whether, for any
j : {k, j} ∈ E, one or two players (of weight wj) respectively have chosen path puj .
By canceling out terms, the above implies∑

{k,j}∈E

wkjx
u
j ≤

∑
{k,j}∈E

wkjx
l
j ⇔

∑
{k,j}∈E

wkj(x
u
j − 1) ≤

∑
{k,j}∈E

wkj(x
l
j − 1) (7.2)

Define S = {i ∈ V : xui = 2}. By our assumption it is k ∈ S and the left
side of (7.2), i.e.,

∑
{k,j}∈E wkj(x

u
j − 1), is the sum of the weights of the edges
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of H with one of its vertices being k and the other belonging in S. Similarly,
the right side of of (7.2), i.e.,

∑
{k,j}∈E wkj(x

l
j − 1) is the sum of the weights of

the edges with one of its vertices being k and the other belonging in V \ S. But
then (7.2) directly implies that for the (neighboring) cut S′ where k goes from
S to V \ S it holds w(S) ≥ w(S′). Since k was arbitrary (given the symmetry
of the problem), this holds for every k ∈ [n] and thus for every S′ ∈ N(S) it is
w(S) ≥ w(S′) proving one direction of the claim. Observing that the argument
works backwards we complete the proof. For the formal proof, to define function
ϕ2, given the constructed instance and one of its solutions, say s′, ϕ2 returns
solution s = {k ∈ V : 2 players have chosen puk at s′}.

7.B Missing Technical Details from the Anal-

ysis of BridgeGaps

In this section, we present an algorithm that computes approximate equilib-
ria for Node-Max-Cut. Let G(V,E) be vertex-weighted graph with n vertices
and m edges, and consider any ε > 0. The algorithm, called BridgeGaps and
formally presented in Algorithm 9, returns a (1 + ε)3-approximate equilibrium
(Lemma 7.B.2) for G in time O(mε ⌈

n
ε ⌉

2Dε) (Lemma 7.B.1), where Dε is the num-
ber of different rounded weights, i.e., the weights produced by rounding down each
of the original weights to its closest power of (1+ ε). To get a (1+ ε)-approximate
equilibrium, for ε < 1, it suffices to run the algorithm with ε′ = ε

7 .

Description of the Algorithm. BridgeGaps first creates an instance G′ with
weights rounded down to their closest power of (1 + ε), i.e., weight wi is replaced
by weight w′

i = (1 + ε)⌊log1+ε wi⌋ in G′, and then computes a (1 + ε)2-approximate
equilibrium for G′. Observe that any (1 + ε)2-approximate equilibrium for G′ is a
(1 + ε)3-approximate equilibrium for G, since∑
j∈Vi:si=sj

wj ≤ (1 + ε)
∑

j∈Vi:si=sj

w′
j ≤ (1 + ε)3

∑
j∈Vi:si ̸=sj

w′
j ≤ (1 + ε)3

∑
j∈Vi:si ̸=sj

wj ,

where Vi denotes the set of vertices that share an edge with vertex i, with the first
and third inequalities following from the rounding and the second one following
from the equilibrium condition for G′.

To compute a (1 + ε)2-approximate equilibrium, BridgeGaps first sorts the
vertices in increasing weight order and note that, wlog, we may assume that w′

1 = 1,
as we may simply divide all weights by w′

1. Then, it groups the vertices so that the
fraction of the weights of consecutive vertices in the same group is bounded above
by ⌈n/ε⌉, i.e., for any i, vertices i and i+ 1 belong in the same group if and only

if
w′

i+1

w′
i
≤ ⌈nε ⌉. This way, groups gj are formed on which we assume an increasing

order, i.e., for any j, the vertices in gj have smaller weights than those in gj+1.
The next step is to bring the groups closer together using the following process

which will generate weights w′′
i . For all j, all the weights of vertices on heavier
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groups, i.e., groups gj+1, gj+2, . . ., are divided by dj =
1

⌈n/ε⌉
wmin

j+1

wmax
j

so that
wmin

j+1 /dj
wmax

j
=

⌈nε ⌉, where w
min
j+1 is the smallest weight in gj+1 and wmax

j is the biggest weight in

gj . For vertex i, let the resulting weight be w′′
i , i.e., w

′′
i =

w′
i

Πj∈Ii
dj
, where Ii contains

the indexes of groups below i’s group, and keep the increasing order on the vertex

weights. Observe that by the above process for any i:
w′′

i+1

w′′
i
≤ ⌈nε ⌉, either because i

and i+1 are in the same group or because the groups are brought closer together.

Additionally if i and i + 1 belong in different groups then
w′′

i+1

w′′
i

= ⌈nε ⌉, implying

that for vertices i, i′ in different groups with w′′
i′ > w′′

i it is
w′′

i′
w′′

i
≥ ⌈nε ⌉. Thus, if we

let Dε be the number of different weights in G′, i.e., Dε = |{w′
i : i vertex of G

′}|,
then the maximum weight w′′

n is w′′
n = w′′

n
w′′

n−1

w′′
n−1

w′′
n−2

. . .
w′′

2
w′′

1
≤ ⌈nε ⌉

Dε

In a last step, using the w′′ weights, BridgeGaps starts from an arbitrary
configuration (a 0-1 vector) and lets the vertices play ε-best response moves, i.e.,
as long as there is an index i of the vector violating the (1 + ε)-approximate
equilibrium condition, BridgeGaps flips its bit. When there is no such index
BridgeGaps ends and returns the resulting configuration.

Lemma 7.B.1. For any ε > 0, BridgeGaps terminates in time O(mε ⌈
n
ε ⌉

2Dε)

Proof. We are going to show the claimed bound for the last step of BridgeGaps
since all previous steps can be (naively) implemented to end in O(n2) time.

The proof relies on a potential function argument. For any s⃗ ∈ {0, 1}n, let

Φ(s⃗) =
1

2

∑
i∈V

∑
j∈Vi:si=sj

w′′
i w

′′
j .

Since for the maximum weight w′′
n it is w′′

n ≤ ⌈nε ⌉
Dε , it follows that Φ(s⃗) ≤

m⌈nε ⌉
2Dε . On the other hand whenever an ε-best response move is made by

BridgeGaps producing s⃗ ′ from some s⃗, Φ decreases by at least ε, i.e., Φ(s⃗) −
Φ(s⃗ ′) ≥ ε. This is because, if i is the index flipping bit from s⃗ to s⃗ ′, then by the
violation of the (1 + ε)-equilibrium condition

w′′
i

∑
j∈Vi:si=sj

w′′
j ≥ w′′

i (1 + ε)
∑

j∈Vi:si ̸=sj

w′′
j ⇒

∑
j∈Vi:si=sj

w′′
i w

′′
j −

∑
j∈Vi:s′i=s′j

w′′
i w

′′
j ≥ ε,

since
∑

j∈Vi:s′i=s′j
w′′
i w

′′
j ≥ 1, and

Φ(s⃗)− Φ(s⃗ ′) =
∑

j∈Vi:si=sj

w′′
i w

′′
j −

∑
j∈Vi:s′i=s′j

w′′
i w

′′
j ≥ ε.

Consequently, the last step of the algorithm will do at most
m⌈n

ε
⌉2Dε

ε ε-best response
moves.
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Mechanism 9: BridgeGaps, computing (1 + ε)3-approximate equilibria

Input: A Node-Max-Cut instance G(V,E) with n vertices and weights
{wi}i∈[n] sorted increasingly with w1 = 1, and an ε > 0.

Output: A vector s⃗ ∈ {0, 1}n partitioning the vertices in two sets.

1 for i ∈ [n] do wi := (1 + ε)⌊log1+ε wi⌋

2 groups:= 1;
insert w1 into ggroups; ; // Assign the weights into groups

{gj}j∈[groups]
for i ∈ {2, ..., n} do

if wi
wi−1

> ⌈nϵ ⌉ then groups++;
insert wi into ggroups;

3 for j ∈ {2, ..., groups} do
wmin
j := minimum weight of group gj ; ; // Bring the groups ⌈nε ⌉
close

wmax
j−1 := maximum weight of group gj−1;

dj =
1

⌈n/ε⌉
wmin

j+1

wmax
j

for wi ∈ gj ∪ . . . ∪ ggroup do wi := wi/dj ;

4 s⃗:= an arbitrary {0, 1}n vector;
5 For all i, let Vi = {j : {i, j} ∈ E} be the neighborhood of i in G;

while ∃i :
∑

j∈Vi:si=sj
wj > (1 + ε)

∑
j∈Vi:si ̸=sj

wj do

si := 1− si;; // Moves towards equilibrium

6 return s⃗.

Lemma 7.B.2. For any vertex-weight graph G and any ε > 0, BridgeGaps
returns a (1 + ε)3-approximate equilibrium for Node-Max-Cut in G.

Proof. Clearly, BridgeGaps terminates with a vector s⃗ that is a (1+ε)-approximate
equilibrium for the instance with the w′′ weights. It suffices to show that s⃗ is a
(1 + ε)2-approximate equilibrium for G′, i.e., the instance with the w′ weights,
since this will directly imply that s⃗ is a (1+ ε)3-approximate equilibrium for G, as
already discussed at the beginning of the description of the algorithm.

Consider any index i and let V h
i be the neighbors of i that belong in the

heaviest group among the neighbors of i. By the (1 + ε)-approximate equilibrium
condition it is∑
j∈Vi\V h

i :si=sj

w′′
j +

∑
j∈V h

i :si=sj

w′′
j ≤ (1 + ε)

( ∑
j∈Vi\V h

i :si ̸=sj

w′′
j +

∑
j∈V h

i :si ̸=sj

w′′
j

)
. (7.3)

Recalling that for every j, w′′
j =

w′
j

Πk∈Ij
dk
, where Ij contains the indexes of groups
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below j’s group, and letting D = Πk∈Ijdk, for a j ∈ V h
i , gives∑

j∈Vi\V h
i :si=sj

w′
j +

∑
j∈V h

i :si=sj

w′
j ≤ D

( ∑
j∈Vi\V h

i :si=sj

w′′
j +

∑
j∈V h

i :si=sj

w′′
j

)
(7.4)

On the other hand for any j and j′, if j′ belongs in a group lighter than j then

by construction
w′′

j

w′′
j′
≥ n

ε (recall the way the groups were brought closer), which

gives nw′′
j′ ≤ εw′′

j , yielding∑
j∈Vi\V h

i :si ̸=sj

w′′
j +

∑
j∈V h

i :si ̸=sj

w′′
j ≤ (1 + ε)

∑
j∈V h

i :si ̸=sj

w′′
j (7.5)

Using equations (7.4), (7.3) and (7.5), in this order, and that D
∑

j∈V h
i :si ̸=sj

w′′
j =∑

j∈V h
i :si ̸=sj

w′
j ≤

∑
j∈Vi:si ̸=sj

w′
j , we get∑

j∈Vi:si=sj

w′
j ≤ (1 + ε)2

∑
j∈Vi:si ̸=sj

w′
j

as needed.

Remark 7.B.3. We observe the following trade off: we can get a (1 + ε)2-
approximate equilibrium if we skip the rounding step at the beginning of the al-
gorithm but then the number of different weights Dε and thus the running time of
the algorithm may increase. Also, if ∆ is the maximum degree among the vertices
of G, then replacing n

ε with ∆
ε in the algorithm and following a similar analysis

gives O(mε ⌈
∆
ε ⌉

2Dε) running time.
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Mathématique de France, 111:429–448, 1983.

[27] V. Auletta, R. De Prisco, P. Penna, and G. Persiano. The power of verifica-
tion for one-parameter agents. Journal of Computer and System Sciences,
75:190–211, 2009.

[28] Lawrence M. Ausubel. An efficient ascending-bid auction for multiple ob-
jects. American Economic Review, 94(5):1452–1475, December 2004.

185



[29] Lawrence M. Ausubel and Paul Milgrom. The lovely but lonely vickrey
auction. In Combinatorial Auctions, chapter 1. MIT Press, 2006.

[30] Marco Avella-Medina and Victor-Emmanuel Brunel. Differentially private
sub-gaussian location estimators, 2019.

[31] P. Awasthi, A. Blum, and O. Sheffet. Center-based clustering under pertur-
bation stability. Inf. Process. Lett., 112(1-2):49–54, 2012.

[32] M. Babaioff, S. Dobzinski, and S. Oren. Combinatorial auctions with en-
dowment effect. In Proc. of the 2018 ACM Conference on Economics and
Computation (EC 2018), pages 73–90, 2018.

[33] M.-F. Balcan, N. Haghtalab, and C. White. k-Center Clustering Under Per-
turbation Resilience. In Proc. of the 43rd International Colloquium on Au-
tomata, Languages and Programming (ICALP 2016), volume 55 of LIPIcs,
pages 68:1–68:14, 2016.

[34] Maria-Florina Balcan and Yingyu Liang. Clustering under perturbation
resilience. SIAM Journal on Computing, 45(1):102–155, 2016.

[35] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clustering under
approximation stability. Journal of the ACM, 60(2), 2013.

[36] Gleb Beliakov, Tomasa Calvo, and Simon James. Aggregation of Preferences
in Recommender Systems, pages 705–734. Springer US, 2011. doi: 10.1007/
978-0-387-85820-3 22.
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