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Abstract

The main scope of this Ph.D. dissertation is the development and implementation of a
methodological framework for early warning of intense floods using innovative
technologies. The key feature of this research is the collection, analysis, and use of datasets
obtained by a newly installed weather radar, the Rainscanner system, located in Athens,
Greece. The Rainscanner system is an X-Band weather radar that can obtain reflectivity
fields of fine temporal and spatial scales of up to two minutes and 100 m x 100 m,
respectively. These high-resolution datasets are essential for understanding the spatial and
temporal characteristics of a storm’s rainfall fields and are suited for local-based
applications, such as small-basin rainfall-runoff modeling and nowcasting. However,
weather radar datasets are yet to be widely accepted and used, mainly because of the
uncertainty governed by the datasets due to various sources of errors and the scarcity of
such data. A weather radar is not a typical/commercial device, and proper handling of the
generated raw datasets is required. Considering the above, this dissertation aims to provide
a holistic approach to properly managing and using weather radar data for hydrological
applications. This approach is divided into two main sections.

The first section includes a review of the weather radar types, formulation, sources of errors,
and quality control. To that end, a framework is devised where the raw weather radar
datasets are quality-corrected in two phases: a) through the application of clutter-filters
derived in a pre-process, such as ground-clutter filtering, gap-filling algorithms and
reflectivity thresholds and b) through the cross-correlation with ground rain gauges. Apart
from the ground-clutter filtering process, the most critical source of uncertainty is deriving
the reflectivity (Z) to rainfall rate (R) transformation equation, the Z-R relationship. It is
acknowledged that the Z-R relationship varies in time and space. Therefore, in this thesis,
multiple Z-R relationships are derived in varying locations to assess this issue. Fifty-three
stations and thirty-eight events in the region of Attica were used for this process, which led
to the extraction of interesting findings concerning the Z-R parameter values to the
proximity of a location to specific geographical locations and the storm’s classification.

The second section of this thesis focused on developing a framework for real-time flood risk
assessment as part of a Flood Early Warning System (FEWS). This system is designed to
focus on flash flood events characterized by their small duration and intensive rainfall rates.
To that end, a gridded rainfall-based FEWS is devised based on the Flash Flood Guidance
(FFG) system. In such a concept, all calculations are performed at the grid level, making the
system easier to understand, calibrate, operate, and adjust based on the user's needs and

available data. The system compares forecasted rainfall with threshold rainfall fields
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derived from inverse rainfall-runoff models. For this comparison, a rainfall-runoff model is
devised using the time-area diagram theory through Geographical Information Systems
(GIS) and the MATLAB programming language. The devised rainfall-runoff model is a
gridded hydrological model suitable for small ungauged basins, such as those found in the
Attica region. Using this model, one can derive rainfall threshold maps for the entire Attica
Region and a peri-urban basin, the Sarantapotamos basin, and perform a sensitivity-based
approach to extract the effects of system parameters on the results. The GFFG system is
formulated and simulated based on historical events obtained by the weather radar. The
effects of system parameters (such as soil moisture conditions before the rainfall event and
thresholds derived for flooding) are examined through sensitivity-based simulations. In the
final stage, a storm-tracking algorithm uses multiple reflectivity thresholds to provide cell
identification and tracking procedures to identify the storm's cell movement in consecutive
images. This application uses image analysis and processing, highlighting the usability of
weather radars in such applications.

This thesis establishes a comprehensive framework for leveraging weather radar datasets
within a Flood Early Warning System. It highlights the significance of meticulous quality
control processes and introduces easily configurable operational methodologies to harness

the potential of weather radar data effectively.
Keywords: Weather radar; X-Band; Reflectivity; Z-R relationship; Flash flood; Flood Early

Warning System; FFG; gridded; rainfall-runoff; storm tracking; Athens; Floods; Rainfall

Rate; Sarantapotamos

iv



Development and implementation of a methodological framework for early warning of

intense floods using innovative technologies

Table of Contents

AcKNOW1edgements .........cueeeinriininniininniiinniiiniencisesssssssssessseses i
ADSEIAC ..ottt b s s st iii
Table Of CONtENtS ......uceeeeeireeitceitctceee e seesse e sesens \4
Selected Publications.........ceeiceceiicneieniniinnncncennnceesnnsssesesesssenes viii
ADDIEVIatioNS.. ...ttt senes ix
Extended ADSEIact .......cieniiirinniiniiinniniinniincnnenincnsnssssenssssssessssseans xi
ERTEVNG ITEQIANUT cueceiniririnitctiinitcinciinniniscnessssnsesssssesessssssssseasanes XXXVii
1. INtroduction...iciicciicetcce s sse s nesene 1
1.1 Natural Hazards and DiSasters .........eeeeeeenenesenesinnsnsssnsssnsnsssssseseeneeeessssnnes 1
L2 FIOOAS ettt sssssssssssssssssssssssssssssssssssssssssssssssssnsnes 3
121 Flooding Mitigating Measures ............c.coeeueeucccieineniniee s 5
122 The 2007/60/EC F1oOd DIrective .........cccceeveeueuerinirieeireieeeneeeeceeee e 7

1.3  Flood Early Warning Systems (FEWS) ...........uiriiinnniininrnniienninnnssesinsnesinnes 8
1.3.1 INtrOdUCHON. ... 8
1.3.2 FEWS COmMPONENLS......ooooiiiiiieiieieietettctctctnc e 9
1.3.3 FEWS Implementations ...........ccccceiviviiiininiiiininiiciiccccccneeceseecnnes 14

1.4  Means of Precipitation Measurement ............vevereresesecnenincnnnininiscsescenneeessnes 20
1.5 Weather Radar....iiiiiicitctctcteceeeecssssssesesssssssssssssessssssssssssassnanes 24
1.5.1 INtrOdUCHON. ...ttt 24
152 Types of Weather Radars ...........cccoueveveiiiiicicc e 24
153 Historical use of Weather Radars...........ccocciviiiininiiiininiiiiccceccen 27
154 Formulation and EQUations ............ccoeueveveiiiccccc e 31
1.5.5 Weather Radar Sources of EITOTIS ........ccccoouiiviiiniiiniiiniciccineieecceccene 38
1.5.6 Weather radar applications..........cccceeeiviviiiiininiiiininiccinceeeceeee 40

1.6 ReSearch Attt eessssssesesesesessssssssssssseseessssssssssssanes 42
1.7  Scientific Significance, Questions, and Originality ..........ccceceueeiieeeececnnnnnns 44
1.8 LimitationS....ciiiiiiiciiiiiiinciinicininsenssnssessssssssesssssssesssssssssessssessssesseseanes 46
1.9 TheSis StIUCUTE ...ttt sssssesesssssssssssssssesssesessssssssananes 46



Development and implementation of a methodological framework for early warning of

intense floods using innovative technologies

2. Study Area and Data Used .........ocvuvevurenrienniininnienniensinnsesnisessiseesesseanes 49
21  The Attica ReGION...ueiiiiiitcitctttcttsssssessssssssssss s ssssasssanes 49
2.1.1 Attica DIStrICtS....c.oiviiiiiiiiici 50
2.1.2 Land USe ..o 51
2.1.3  Hydrological Scheme - Climate..........cccocoeiviiiiniiinininiiiccec e 52
214 Historical FIoOd EVENts.........ccccoeeininiiiiiniiiiiceceeeeeeeeeee e 54
215 Early Warning Systems in Greece...........cococvuvuvivinirininieieieieiccicccccccccccenes 55
2.2 Data Used.....eeeeiiiiiiiscncnncnnscncneseessssssssssssssssssesssssssssssssssssssssssssssssssssnes 58
221 Weather Radar Datasets ... 58
222 Rain Gauge Datasets ..o 60
223 GIS DAtasets .......cccceivuiiiiiiiiiiicii 62
3. Methodological Framework .........cicvnicnreninncsunncnnisencsnnscssesesscsanaees 65
3.1 INETOAUCHION. ettt sssesessssssssassssssesesssssssssssnananes 65
3.2  Radar File Management and Quality Control ...........verciieinininiicccccccnnnnns 66
3.2.1 Pre-Process Quality Control..........ccoviiviviiiininiiiiiniiiicicceens 67
322 Post-Process Quality CONtrol...........cooueveieiiiicciiii e, 72
3.3  Z-R Calibration FTameWOIK ... 73
3.3.1 Data CONVETSION ......ccvuiuiiiiiiiiiiiiiicicc s 74
3.3.2 Correlation ANAlYSis ........ccceueueiiiiii s 76
3.3.3 Z-R Optimization algorithm ............cccoooii e, 78
3.4  Rainfall-Runoff Model.............cccceueueueuneces .80
34.1 INtroduction.......c.ciiiiiiii s 80
342 Gridded Model ... 81
3.4.3 Time-Area Diagram ..o 83
344 L0ss Method.........cccoiiiiiiiiiiiiic e 85
3.5 Gridded Flash FIood GUidance ...........ceeeeereerenenenesennsnenesetssnnsssssssseseensessssssnes 87
3.5.1 Threshold Runoff Component............cccccoueueuiininiiininiiininicieccceeecnens 89
3.5.2 Hydrological Model. ... 91
3.5.3 FFG Computations .........ccoeveveiririiinieieieiciccsctcsccccce e 92
3.6  Strom Tracking and TrajectOry ... 94
3.6.1 Cell Identification .........ceiiviriiiiniiiciic s 94
3.6.2 Cell Tracking ......coveveveveieieieicictccccc s 96
4. Results and DiSCUSSION ......ucuiiviiiniiriiniitiiiitiininnnesessessssene 99
41 Z-R ANALYSIS ittt esssssssssssssessssssssssssssssssssssssssssssasssssssanes 99
4.1.1 Correlation Coefficient ANalysis.........cccocovvninininininincieccccccccc 99
412 Event-based Z-R calibration...........ccccccveeoiviniiiininiiininccinecceeecceenees 103

vi



Development and implementation of a methodological framework for early warning of

intense floods using innovative technologies

413 Station-based Z-R calibration..........ccccveeiivieiinnciiinccinecceeeeeee 105
414 Single Z-R calibration.........ccccceiiiiiiiiiiicc 108
4.1.5 Z-R relationships COMPAriSON..........ccceueueueurireiiiieii e 110

4.2  Rainfall-Runoff Model Simulations..........iiinniiinniiinnnniiisnniiinnin. 113
421 Gridded Rainfall-Runoff model calibration..........c.cccceeceveeneiniecinecncinnenne 113
422 Rainfall Events ANalysis.........c.cccoveeieieiiiciccicccccc e 115

4.3  Gridded Flash Flood Guidance Application.........eeceiiiccccccceecennnne 123
4.3.1 Derivation of Threshold Maps............ccccooeiiinniiiiiicccc, 123
4.3.2 GFFG for selected rainfall events............cccccccovviiiiiiniiiinniiciiniccce, 130

4.4  Storm Trajectory ANAlYSis ... 142
441 Cell Identification ReSUILS .......ccceveueiririeiciiriciieceeeee e 142
442 Cell Tracking ReSUlts .........cccoeiviviiiiiniiiiiiiiiciccee 144

5. Conclusions and Future Research...........ceeenninrcicncccnnncicnnncncncnnne 151
5.1  SUIMIMALY cuuceirrereirietenennistesenssesesessssssssssssssssssssssssessssssssssssssssssssssssssssssssssssssssssssssssans 151
5.2  Overview of main findings ... 155
5.3  Future ReSearchu...... it 161
S ) = T 163
APPENAIX A ..ttt ssssssssssssassssssst st es s s sbssnes 181
WX 0 o] (T B 5 g 5 185
FAN 0 1] (T B 5 191

vii



Development and implementation of a methodological framework for early warning of

intense floods using innovative technologies

Selected Publications

Bournas A, Baltas E (2023) Analysis of Weather Radar Datasets through the
Implementation of a Gridded Rainfall-Runoff Model. Enviromental Process 10:7.
https://doi.org/10.1007/s40710-023-00621-2

Bournas A, Baltas E (2022) Investigation of the gridded flash flood Guidance in a Peri-
Urban basin in greater Athens area, Greece. Journal of Hydrology 610:127820.
https://doi.org/10.1016/j.jhydrol.2022.127820

Bournas A, Baltas E (2022) Determination of the Z-R Relationship through Spatial
Analysis of X-Band Weather Radar and Rain Gauge Data. Hydrology 9:137.
https://doi.org/10.3390/hydrology9080137

Bournas A, Baltas E (2021) Comparative Analysis of Rain Gauge and Radar Precipitation
Estimates towards Rainfall-Runoff Modelling in a Peri-Urban Basin in Attica, Greece.
Hydrology 8, 29., https://doi.org/10.3390/hydrology8010029

Pappa A, Bournas A, Lagouvardos K, Baltas E (2021) Analysis of the Z-R relationship
using X-Band weather radar measurements in the area of Athens. Acta Geophysica,
https://doi.org/10.1007/s11600-021-00622-5

viii


https://doi.org/10.1007/s40710-023-00621-2
https://doi.org/10.1016/j.jhydrol.2022.127820
https://doi.org/10.3390/hydrology9080137
https://doi.org/10.3390/hydrology8010029
https://doi.org/10.1007/s11600-021-00622-5

Development and implementation of a methodological framework for early warning of

intense floods using innovative technologies

Abbreviations
AMC Antecedent Soil Moisture
ANN Artificial Neural Network
API Antecedent Precipitation Index
ARC Antecedent Runoff Conditions
ARI Average Recurrence Interval
CN Curve Number
DEM Digital Elevation Model
DSD Drop Size Distribution
EWS Early Warning System
FEWS Flood Early Warning System
FFPI Flash Potential Index
FFG Flash Flood Guidance
FHRM Flood Hazard and Risk Maps
FRMP Flood Risk Management Plan
GFFG Gridded Flash Flood Guidance
GIS Geographical Information Systems
IDW Inverse Distance Weighting
MAP Mean Areal Precipitation
MBE Mean Bias Error
NMAE Normalized Mean Absolute Error
NMB Normalized Mean Bias
NTUA National Technical University of Athens
PFRA Preliminary Flood Risk Assessment
PPI Plan Point Indicator
QPE Quantitative Precipitation Estimates
RMSE Root Mean Square Error
RR Rainfall-Runoff
SAC-SMA Sacramento Soil Moisture Accounting Model
TC Total Cost

UH Unit Hydrograph



Development and implementation of a methodological framework for early warning of

intense floods using innovative technologies




Extended Abstract

Introduction

Flash Floods are presently among the most lethal weather-related hazards on a global scale.
Their origin diverges from conventional river-driven floods, primarily from abrupt and
intense precipitation over a brief duration. Usually confined to local settings, they associate
closely with convective storms, limiting their spatial impact (Houze Jr. et al., 2015). Factors
influencing flash floods include basin geomorphology, size, slope, soil water retention, and
initial moisture conditions events (Merz and Bloschl 2003; Houze Jr. et al. 2015; Velasquez
et al. 2020). Sediment loads and altered river cross-sections due to high rainfall, especially
in post-fire or developmental areas, can reroute rivers and induce flooding beyond
riverbeds. Urbanization, deforestation, and intensified storm events due to climate change
drive local-scale flash flooding, reshaping vulnerability events (Alfieri et al. 2012; Gaur and
Simonovic 2015; Rogger et al. 2017; Caloiero et al. 2017). This evolving threat transforms
previously unaffected regions into flood-prone zones (Bournas and Baltas 2021a). Notably,
the Mediterranean region has witnessed substantial economic losses and loss of life from
recent flash floods (Diakakis et al. 2012, 2019; Pereira et al. 2017; Feloni 2019; Varlas et al.
2019; Spyrou et al. 2020).

Most research on flood management is focused on understanding the hydrometeorological
processes that influence the extreme weather conditions leading to flood events. To that end,
one of the main non-structural methods for mitigating flood and flash flood problems is the
development and use of a Flood Early Warning System (FEWS). An integrated FEWS
consists of various technical and non-technical subsystems concerning a) disaster risk
knowledge, b) detection and monitoring analysis, c) forecasting and thresholds of hazards
and non-technical components, d) warning dissemination and communication, e)
preparedness to respond, and f) response capabilities (Perera et al. 2019). Although the
methods used to simulate the hydrometeorological processes are critical, the main
uncertainty lies in the chaotic nature of the atmosphere and the lack of sufficient resolution
and quality of data (Marchi et al. 2010). Moreover, even in cases with a good level of data,
there may be high uncertainty in the modeling of a watershed system, which could lead to
incorrectly estimated discharges compared to observed values (Di Baldassarre and
Montanari 2009).

The desired spatial and temporal scale to monitor rainfall events that lead to flash floods is
higher than the resolution offered by traditional rain gauge networks (Anagnostou et al.

2017). When sufficient data are not obtained, the ability to provide timely warnings is
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reduced (Mimikou and Baltas 1996), while in cases where measurements are nearly absent,
unreliable, or spatially insufficient, such as in Greece, the problem is exacerbated.

By further deepening the development and organization of FEWS against flood risk, we can
expect benefits such as a) improved prediction accuracy, b) quicker response times, and c)
better knowledge of potentially flooded areas to strategically plan and execute flood
protection measures. Today, the main areas where a FEWS can advance in Greece are a) new
technologies concerning data collection and mining and b) more precise and effortless
methods that lead to more and higher-quality information for decision-making. Developing
an FEWS based on weather radar datasets can lead to significant reductions in the mortality
rate and the economic impact of the flood-affected areas. European-wide FEWS, such as the
EFAS and ERIC, have limited usage in Greece, mainly because of unavailable datasets and
mis-calibrated models required for such systems. Greece is disconnected from Central
Europe, where monitoring systems like the OPERA radar composite are in place, while
typical river monitoring systems are not as applicable to Greece’s small-scale basins.
Greece's diverse geography, extensive coastline, and small basins prone to flash floods face
growing threats. Recent events have highlighted this vulnerability (Feloni et al., 2020; Varlas
et al.,, 2021). While forecasting attempts exist (Spyrou et al., 2020; Varlas et al., 2021, 2019), a
comprehensive FEWS is absent due to research-operation challenges (Georgakakos et al.,
2022, 2021). Instead, the National Hellenic Meteorological Service (NMMS) issues daily
forecasts lacking flash flood specifics.

The main goal of this Ph.D. dissertation is the development of a suitable methodology for
processing weather radar datasets of high spatial and temporal resolutions. The research
questions this dissertation aims to answer are divided into two sections. The first concerns
the use of weather datasets: What are the major factors to consider when utilizing weather radar
datasets? Do weather radar datasets provide any benefit compared to rain gauge networks, or are they
governed by uncertainty?”. The second question concerns the implementation of a FEWS:
What are the necessary components of an integrated flood early warning system (FEWS) based on
weather radar datasets? Can such a system be efficient at an operational level, and how can it be
implemented? To answer these questions, datasets of a newly installed weather radar system,
the NTUA X-Band Rainscanner system, were obtained, calibrated, and evaluated against
datasets provided by ground-based measurements from meteorological stations.

This dissertation is divided into two main sections. The first section includes a review of the
weather radar types, formulation, sources of errors, and quality control. The second section
of this thesis deals with developing a framework for an easy-to-use and applied Flood Early
Warning System (FEWS). This application is designed to focus on flash flood events

characterized by low-duration intensive rainfall.
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Overall, this dissertation is structured in five chapters. The first chapter provides an
Introduction that situates the thesis context and reviews the characteristics of FEWS and the
use of weather radars. The second chapter consists of an analysis of the study area and the
data used for this research. The third chapter includes the methodological framework
applied. In the fourth chapter, the results for the study area are presented for a series of
events between 2018 and 2023. Finally, the fifth chapter provides the conclusions drawn

from this research and recommendations for future work.

Study Area and Data Used

The study area is the Attica region, specifically the area defined by the coverage of the
Rainscanner system, as shown in Figure 1. The Rainscanner is located in Athens, Greece,
within the National Technical University of Athens (NTUA) Zographou campus, featuring
an installation elevation of 200 m, overseeing mainly the east side of Athens up to a 50 km
distance. The extent of the Rainscanner, as seen in Figure 1, includes the majority of the
Attica Prefecture, apart from a small area on the west, beyond Mount Gerania, as well as a
small section of the Central Greece prefecture north of Mount Parthitha, a part of the Asopos

river basin.

23°1 i5‘0”E 24°1 i5'0”E

LEGEND
. Rainscanner Location
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- City of Athens
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37°45'0'N
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37°45'0'N

Figure 1: The Study area.
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Due to the presence of Hymettus Mountain, the entire southwest area is obstructed and,
therefore, cannot be measured by this Rainscanner system. Similarly, the entire “Mesogeia”
region, including the Athens “Eleftherios Venizelos” airport, is out of reach. However, the
Rainscanner location favors observing precipitation systems with a west-to-east and north-
to-southwest direction, which are the majority of systems in the area, making it a viable
option for observing and providing nowcasts and forecasts for the city of Athens and its
vicinity.
Land use in the Attica region is characterized by a high urban fabric, where 27% of the region
is of artificial type, while the rest (73%) is agricultural and forest type. In west Attica lies the
largest peri-urban basin, the Sarantapotamos River basin. This basin has a total area of 341
km?, of which 231 km? features rural characteristics. A key characteristic of the subbasins
formed in the Attica region is a large number of highly urbanized small basins vulnerable
to flash flood events due to the lengthy coastline.
The primary datasets used in this research are summarized below:
e Rainscanner Datasets. The X-Band weather radar datasets are generated by the
Rainscanner system, featuring a 100 m x 100m spatial accuracy and a 2-minute
temporal resolution. The technical specifications of the system are shown in Table 1.

The files are provided in georeferenced ASCII text files.

e RainGauge datasets: The National Observatory of Athens Automatic Network
(NOAAN) is used (Lagouvardos et al. 2017). Specifically, data from 53 stations in the
Attica region are used, as shown in Figure 2, with their respective NOAAN IDs. The
datasets consist of 10-minute precipitation measurements that have been quality-
controlled concerning spatial and temporal inconsistencies against neighboring

stations.

e A Digital Elevation Model (DEM) with a 5m x 5m resolution, provided by the
National Cadastre & Mapping Agency S.A. (Copyright © 2012, National Cadastre &
Mapping Agency S.A.).

e The CORINE Land Cover (CLC, 2018) and the dataset URBAN Atlas 2018 feature an
inventory of land cover —the former for Europe and the latter for the selected urban
areas.

e (IS-based datasets were acquired from open-access sources. Boundaries of the
administrative regions were provided by geodata.gov.gr, while datasets, e.g., road
network, were provided by the OpenStreetMap initiative.

e A list of the rain gauge stations with known Intensity-Duration-Frequency curves

(IDF) is used, shown in Figure 2. The IDF curve parameters were derived from the
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Flood Risk Management Plans for Greece by the Ministry of Environment, Energy,
and Climate Change (SSW-MEECC 2017).

Table 1: Technical Specifications of the NTUA Rainscanner weather radar system

Parameter Value

Peak Power 25 kW

Wave Length X-Band 3.2 cm
Frequency 9410 (+ 30 MHz)
PRF 833 — 1500 Hz
Pulse Duration 1200 - 500 ns
Rotation Rate 12 rpm
Azimuth & Elevation Beamwidth 2.50

Azimuth Accuracy +0.5°

Scanning Range 50 km
Maximum Spatial Resolution 100 m x 100 m

24°Ei'O“E

> 40%
Fadas™

L EGEND

' @® Rainscanner
1 A IDF Stations
H NOANN Rain Gauge

37°45'0'N
I
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Figure 2: The Study area, rain gauge network, and the location of the IDF station
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Methodological Framework

The methodological framework considered for this research is shown in Figure 3. It consists
of five main components: 1) the File Management and Data correction, 2) the Z-R calibration,
3) the Rainfall-Runoff model, 4) the Gridded FFG system, and 5) the Storm tracking

algorithm.
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Figure 3: The Methodological Framework
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Each component is crucial for the functionality of the entire FEWS. The components belong
to two different categories. One category deals with the Rainscanner data quality control
and transformation into rainfall, while the other utilizes rainfall maps to produce FEWS
products.

1. The File management and data correction component deals with the pre-processing
quality control, where corrections are applied to radar data to address ground clutter and
occultation issues. Ground clutter refers to undesired signals from non-rain objects. The
ground clutter correction identifies cluttered areas through a clear sky map and employs
methods like clutter subtraction or flagging with interpolation. Occultation results from
radar signal obstruction. Occultation correction deals with areas where radar signals are
blocked, utilizing neighboring data for gap-filling. Spatial and temporal aggregations
ensure that the desired resolutions are achieved. The processed data are spatially projected,
stored in specific file formats, and named based on timestamp and product type. During
post-processing, further quality control checks are performed to address (if any) extreme
values and/or temporal inconsistencies.

2. The Z-R calibration deals with the derivation of the Z-R relationship, which is crucial
for converting radar reflectivity (Z) to rainfall intensity (R). A correlation framework is
established using rain gauge-Rainscanner data. The conversion aligns spatial and temporal
resolutions, with rain gauges serving as "true rainfall." The correlation analysis used the
Pearson correlation coefficient to determine the well-correlated datasets used in the
optimization. The optimization targets the Z-R parameter values by minimizing the RMSE.
Three optimization groups focus on deriving station-based, event-based, and entire dataset
relationships. The results are compared with established Z-R equations to reveal spatial-
temporal variability and enhance understanding of rainfall characteristics.

3. The rainfall-runoff model components concern a gridded model. The model is based on
the time-area diagram technique, building on the Clarks unit hydrograph model. The model
parameters are calculated using GIS tools through a DEM. Excess rainfall is calculated using
the NRCS-CN method, with runoff routed through a linear reservoir. A linear relationship
is applied to adjust the CN values based on soil moisture conditions. The model is designed
for flash flood prediction in small to medium-sized basins and employs the Rainscanner-
generated rainfall maps to produce the flow hydrograph for a given position. A series of Z-
R relationships are used to determine the impact of the generated runoff characteristics in
various rainfall events.

4. The Gridded Flash Flood Guidance (GFFG) is an FEWS based on rainfall thresholds and
the FFG value, defined as the accumulated rainfall over a predetermined duration that will
cause minor flooding. The system incorporates hydrological and meteorological conditions

to determine areas under risk of flooding for lead times up to 6 hours. The system uses three
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parameters: threshold runoff, soil moisture conditions, and forecasted accumulated rainfall
over predetermined durations. The first is a static characteristic of a given grid, which is
calculated using the five-year rainfall Average Recurrence Interval (ARI). The second is a
dynamic variable affecting rainfall losses. The third, the FFG value, is calculated through
inverted rainfall-runoff modeling for a given threshold runoff and soil moisture conditions.
In this application, the GFFG is applied on a 500m x 500m grid scale, deriving threshold
maps for three soil moisture conditions and accumulation periods. The system is applied in
flood events using the Rainscanner datasets, marking flood-prone areas.

5. The Storm tracking algorithm involves two processes: cell identification and cell
tracking. In cell identification, reflectivity thresholds determine the cell’s core boundaries
and centroids. Multiple thresholds are used to identify coverage and core cells, with a 25
dBZ appropriate for coverage and a 35 dBZ for the cell cores. A minimum area of 4 km? is
set to define a cloud cell in either case. The Cell tracking process utilizes motion vectors and
cross-correlation between consecutive images. An optimization process matches the cells
based on characteristics such as area and fitting ellipse properties. A cost function is utilized
to solve the linear assignment problem and to match the past and current cell storms by
minimizing total cost. The cost function uses the Euclidean distance between each cell and
other cell characteristics. Finally, the Merging and splitting of cells are considered. The
algorithm is applied in a series of events to determine its ability to identify and track cells.
Different temporal scales are used, such as the tracking of 10-min reflectivity fields between
more extended periods. Eventually, areas with high reflectivity, i.e., above 35 dBZ, are

identified in multiple events to highlight areas subject to intense rainfall.
Results and Discussion

Z-R Calibration

In this section, a comprehensive Z-R analysis and an optimization process are conducted to
enhance the accuracy of the radar-based rainfall estimation. The procedure involves two
primary components: a correlation analysis and an optimization process. The aim here is to
establish station-based and event-based Z-R relationships, highlighting the variability of the
Z-R relationship in time and space.

The correlation analysis is based on Pearson's r correlation coefficient index, which shows
whether the same rainfall volume is measured in each timestep by the Rainscanner and the
rain gauges. The calculations are performed at the Station level, i.e., the correlation index is
calculated between the station's rain gauge timeseries and the designated Rainscanner cell
for that station per event. Then, two correlation thresholds, 0.6 or 0.7, are used to distinguish
between the well- and poor-correlated stations for 13 events. In Figure 4, the number of

events a station exhibits a correlation over 0.6 or 0.7 is shown, which reveals the reliability
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of the Rainscanner datasets to the location of each station. Notably, coastal stations and
stations within a 10km range from the Rainscanner location present a more often good
correlation, whereas stations on high elevation do not. Figure 5 demonstrates the mean
correlation coefficients for all events and well-correlated events (r > 0.6). Higher correlation
thresholds lead to fewer well-correlated events due to the stringent criteria. The choice of
threshold is thus essential, as it must ensure data quality while retaining a substantial

dataset for optimization.

Beam Blockage
and Clutter Area

Beam Blockage
and Clutter Area

Figure 4. Number of events with a correlation coefficient between Rainscanner and rain gauge
datasets: a) higher than 0.6 and b) higher than 0.7. Source: (Bournas and Baltas 2022a)
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Figure 5. The mean correlation coefficient between the Rainscanner and rain gauge stations for a) all
available events and b) utilizing events with an r > 0.6 correlation at each station.

Source: (Bournas and Baltas 2022a)

The assessment of the poorly-correlated station's location within the study area reveals

several patterns. Stations near or within cluttered areas, particularly northeast of the
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Rainscanner, exhibit consistently low correlations, typically below 0.6, due to the limited
number of well-correlated events. Stations within a 10 km radius of the Rainscanner
generally have more well-correlated events, except for Ampelokipoi station (ID 2), which is
an exception. Coastal front stations also experience a reduction in well-correlated events
with higher correlation thresholds. For instance, the Faliro station (ID 8) goes from seven
well-correlated events at a 0.6 threshold to just four at a 0.7 threshold. This trend is not found
only in coastal areas, as Dionysos station (ID 6) exhibits a similar pattern in the northeast.
After testing various thresholds, the 0.6 threshold was considered optimal since it filters out
poor correlations while retaining sufficient data for optimization.

Notably, some stations have high correlations in only a limited number of events. This
behavior is influenced by storm-based characteristics such as rainfall amount, wind
intensity, and possible bright band effects. Such dynamics contribute to correlations and can
lead to systematic errors. While this study did not extensively investigate these aspects, it
acknowledges their significance. Low correlations are not solely attributed to Rainscanner
errors but can indicate systematic errors in certain rain gauge stations.

As previously described, the Z-R optimization process follows the correlation analysis.
Three optimization groups define station-based, event-based, and entire dataset Z-R
relationships. The findings are discussed based on the values of parameters a and b, which
are derived in each case. In the established Z-R relationships, parameter a values ranging
from 50 to 250 are suited for stratiform events, while values from 250 to 500 are better suited
for convective events. Finally, values over 1000 are derived for snowfall events. The results

from each optimization group are described below:

Event-Based Z-R Calibration:

The event-based optimization highlights the variability of the Z-R relationship between
events. Furthermore, the derived parameters are used to assess the classification of each
storm. Two optimizations are performed, one where both parameters are optimized, and
one where parameter b is set to 1.60 and parameter a is optimized. Both optimizations
resulted in high variability of the parameter values in both cases. The most intriguing result
was the parameters value of three events when parameter a was over 1000. Such values
indicate snowfall events, which was the case as revealed by cross-checking with historical
information. Therefore, the value of event-based calibration lies in classifying events and
removing inappropriate datasets for further processing. Specifically, snowfall events feature
different radar parameters and, therefore, are inconsistent with convective or stratiform-

based events.
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Station-Based Z-R Calibration:

In this approach, the Z-R relationships are calibrated for each rain gauge station, using

multiple events after excluding the snowfall events. The results are shown in Figure 6. Each
subfigure exhibits the spatial variability of values for parameters a and b. Furthermore, in
Figure 7, the spatial variability of parameter a is shown when parameter b is set to a constant

value.
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Figure 6: Spatial variability of Z-R parameter, a) for parameter a, b) for parameter b, Source:

(Bournas and Baltas 2022a)
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Figure 7: Spatial variability of Z-R parameter a, when a fixed parameter b is used,

Source: (Bournas and Baltas 2022a)
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As shown in panel a of Figure 6, the higher values for parameter a are found in the
southwest, at the coastal front of Athens, while the lower values are found in the north
section. As previously mentioned, a high value for parameter 2 and a low value for
parameter b are found in Z-R relationships better suited to convective-type events. Since the
sample includes both convective and stratiform events, this result indicates that higher
reflectivity is measured on the coast front and less on the northeast. This finding can also be
related to the typical trajectory of rainstorms in Athens. As featured in the studied events,
storm cells in Athens tend to have a west-to-east direction. This trajectory usually takes the
storm cell above the Gulf of Salamina and towards Mount Aigaleo. Especially in convective
events, the storm cell feeds with moisture while it passes the sea, only to discharge when it
hits the mainland and the higher elevation that Mount Aigaleo offers. Water discharge, i.e.,
rainfall, occurs rapidly in the coastal regions, imitating convective-based storm
characteristics. From then on, the storm cell keeps discharging until it reaches Athens' city
center and then heads to the north due to the presence of Hymmetus Mountain in the east.
When it arrives at higher elevation locations, the rainfall intensity has dropped, and
stratiform-based rainfall intensities are observed. A lower rainfall intensity does not
necessarily mean less rainfall accumulation since the storm cloud may lose its velocity, thus

delaying its departure from these regions.

Single Z-R Calibration:

In this optimization, a unified Z-R relationship is derived using the entire correlated dataset.

Two approaches are considered: one using all available data and another using a
calibration/validation scheme. In the first case, the relationship is Z=300R"¢°, while in the
second case, it is Z = 321R"%. The second relationship was then validated with various
stations and showed minimal differences in correlation and RMSE values. Therefore, the
second relationship is considered more robust.

The derived relationships are subsequently compared with previously established
relationships. Firstly, the comparison is made upon the precipitation and accumulation
timeseries per station. Figure 8 shows the rainfall and accumulative rainfall timeseries for
the Psychiko station on event 6. Blue bars denote the rain gauge measurements within the
figures, while the Rainscanner measurements are presented with lines of different colors
based on the Z-R relationship used. Specifically, with green color, the Marshal and Palmar
equation, Z=200R"¢, with red color the all-data calibration equation 5.2, Z=321R"%, with
purple color the Event-based Z-R, with black color the Station Based Z-R, and with a blue
color the optimized relationship when the station dataset for the particular event is used.
The optimized relationship is the best-fit relationship since the Z-R parameters are

optimized to match the specific data.
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The Marshal and Palmer equation shows the higher deviations in all figures. In other words,
it leads to overestimating rainfall compared to the rain gauge datasets. The equation closer
to the optimized relationship is the station-based equation, followed by the All-data and
event-based relationships. Figure 8 (Psychiko station, event 6) shows that while the
optimized result fits better in each 10-minute rainfall height interval, the rainfall
accumulation does not feature the best result compared to other relationships. This is caused
by the gap of the Rainscanner dataset at 02:00, where no data was recorded, disrupting the
accumulation time series graph.

Finally, in Figure 9, the RMSE, BIAS, Normalized Mean Absolute Error (NMAE), and
Normalized Mean Bias (NMB) indexes between the rain gauge measurements and the
rainfall heights are estimated for each Z-R relationship. The optimum relationship is the
optimized result of each station per event, featuring the best results that the rest of the
relationships should imitate. All indices are set to have zero as their optimum value, while
NMAE and BIAS are also allowed to have negative values. Furthermore, apart from the
mean value (red line), which should be found to be close to zero, the spread of the sample
is also essential. Among the evaluated Z-R relationships, the all-data calibrated one
(Z=321R'%%) performs the best, followed by Z=261R">? and Z=431R!%, while the Marshal and
Palmer (Z=200R"®) yields the poorest outcome in all metrics. The substantial mean deviation
and significant spread in the Marshal and Palmer relationship indicate its limited
applicability across most stations. Although Z=431R!% seems promising, its negative NMB

suggests underestimation and suitability mainly for high reflectivity convective events.
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Figure 8. Precipitation and accumulative precipitation for Psychiko, on Event 6.
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Figure 9. Boxplots of the a) RMSE, b) Bias, c) NMAE, and d) NMB per Z-R relationship

Rainfall-Runoff Model

The gridded rainfall-runoff model is applied to the rural part of Sarantapotamos River, with

its outlet at the cross-section with the Attiki Odos freeway, totaling an area of 231.50 km?.

The time-area diagram is derived from GIS, using a 500 m x 500 m grid size based on the

basin size. The grid leads to a total of 1021 grids. Figure 10 shows the gridded slope and CN

AMCH-II values, while Figure 11 shows the derived time-area diagram of the subbasin. The

rainfall-runoff model is applied to six events. The events are shown in Table 2, featuring

their duration and the 5-day accumulated precipitation to evaluate the prior soil moisture

conditions better.

Table 2: Simulated events and main characteristics; Source: (Bournas and Baltas 2022b)

Event Start Datetime End Datetime Dzz;t)m A;i[();};n) Mear;{:;;ef;fzzﬁatlve
6 17-12-2018 23:40  18-12-2018 13:50 14.2 13.8 25.8
21 24-11-2019 21:40  25-11-2019 08:30 10.8 37.0 304
31 01-06-2020 14:00  01-06-2020 20:00 6.0 0.0 20.5
48 09-06-2021 18:00  10-06-2021 02:44 8.7 0.2 25.0
50 12-06-2021 11:50  12-06-2021 19:00 7.2 32.0 26.0
61 23-11-202117:30  24-11-2021 07:40 14.2 2.6 26.4
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Figure 10. Gridded datasets; a) Slope %, b) Curve Number for AMC-II conditions
Source: (Bournas and Baltas 2022b)
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Figure 11. Time-area diagram: a) Time travel raster; b) Cumulative area % per hour at the basin

outlet. Source: (Bournas and Baltas 2022b)

The events simulated were both stratiform- and convective-based. Of the simulated events,
events 31, 48, and 50 featured convective-based characteristics, i.e., increased rainfall rates
with small footprints. The hydrographs of Figure 12 show that in the stratiform events, the
selection of the Z-R relationship features minor differences in all events. In contrast, in the
convective events, while all relationships estimated 10-20 years return period, a single
relationship led to unrealistic rainfall and runoff values, as showcased by the extreme runoff
values and the high return period of rainfall as calculated by the IDF curves for the region
(the rainfall return period is calculated above 100 years). This warrants caution when using
a Z-R relationship since it can lead to unrealistic results.

Furthermore, between the used relationships, it is shown that the typically used Marshal
and Palmer relationship leads to the highest amount of generated runoff. In contrast, the
convective-based Z-R relationships feature the least generated runoff in the stratiform
events but the highest in the convective-based among the rest. This result indicates that a
convective-based relationship is preferable for these events, i.e., events with high rainfall

intensities. In contrast, for stratiform events, it will probably underestimate the generated
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runoff. Therefore, when considering flash flood early warning system implementations, a
convective-based relationship should be desired, whereas in continuous rainfall-runoff
simulation, where light rain and low runoff are simulated, it should be avoided.
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Figure 12. Hydrographs generated for all events. Blue and red bars denote mean area rainfall and

rainfall losses, respectively. Source: (Bournas and Baltas 2022b)
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Gridded Flash Flood Guidance

The GFFG is applied in the Sarantapotamos basin and Attica region. Firstly, the threshold
runoff maps are presented, and the results are discussed. Secondly, the system is applied in
a series of rainfall events to extract the potential flood risk in each case.

In Figure 13, the threshold maps for the three accumulation periods, 1-, 3- and 6-hours, are
presented for medium saturated soil moisture conditions. Figure 14 shows the threshold
runoff for two different soil moisture conditions (medium and saturated). In real-time
monitoring, the threshold maps are named the FFG maps when the current soil moisture

conditions are used.
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Figure 13: Threshold rainfall values for different rainfall duration: a) 1-h, b) 3-h, and c) 6-h.

Source (Bournas and Baltas 2022c¢)
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Figure 14: Threshold rainfall for a 3-h accumulation period for a) ACM-II and b) AMC-III

conditions; Source (Bournas and Baltas 2022c)
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By applying the above methodology, the FFG maps are derived for three accumulation
periods (1-, 3-, and 6 hours). The main findings concern the characteristics of generated
maps, such as the dependencies of the thresholds to the soil moisture conditions and the
accumulation periods. Different accumulation periods aim to be used and assessed through
the respective duration forecasted products. This is because a more extended duration
provides a longer lead time, however, with increased uncertainty. This is not only due to
the uncertainty of the provided forecast but also due to the uncertainty regarding the exact
moment flooding will occur within the designated period. More specifically, the system
does not warn on the exact time that flooding will occur within the accumulation period.
Instead, it warns on whether flooding will eventually occur. The effect of soil moisture on
the generated maps is significant since the threshold runoff features lower values during
medium or wet conditions. The latter means that less rainfall accumulation is required to
create flooding conditions. The results also indicate that the effect of soil moisture is at its
maximum in land uses with permeable CN (CN values close to 50). This is because the
calculated CN changes dramatically between dry and wet conditions. In contrast, highly
impervious areas are less dependent on soil moisture conditions since runoff potential is
already high.

Below is the application to the Attica Basin and the Sarantapotamos for flood events. For
this extended abstract, Event 50 is presented. This event occurred on 12-06-2021. Figure 15
shows the rainfall maps, with highlighted cells for potential floods. A 3-hour accumulation
period is used. As seen in the figure, areas highlighted for flooding were well-correlated
with the areas where high rainfall occurred.

Rainfall, D=3h, Valid on 12-06 15:00 60 Rainfall, D=3h, Valid on 12-06 16:00 60 Rainfall, D=3h, Valid on 12-06 17:00

2 N

Flooded Cells, D=3h, Valid on 12-06 15:00 Flooded Cells, D=3h, Valid on 12-06 16:00 Flooded Cells, D=3h, Valid on 12-06 17:00

' L

L HERE:

Figure 15: 3-hour Gridded Rainfall, valid per timestamp for Event 50, Sarantapotamos subbasin.

The first row shows the rainfall fields; the second row shows the flooded cells.
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The difference between the accumulation periods is observed in the rainfall height and
extent in each timestamp. The benefit lies mainly in the provided lead time. The 3-h and 6-
h durations are the most useful. However, in these cases, the exact time of flooding is
unknown, while in the 1-h duration, the uncertainty is less. Figure 16 shows the total flooded
cells for each duration for both Sarantapotamos and the Attica Region. As shown, the result

is the same regardless of period used (1h or 3h or 6h).
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Figure 16: Total Cells flagged for flood based on the GFFG system for Event 50 at the

Sarantapotamos basin and Attica Region.

Finally, a sensitivity-based analysis is performed. The main parameters of the system are
adjusted, and the result is shown. The main parameters of the system are a) the rainfall
return period used to calculate the threshold runoff, b) the soil moisture conditions, and c)
the Z-R relationship used to transform reflectivity into rainfall. In Figure 17, different values
of the above a, b, ¢, are used and compared with the 16:00 timeframe shown. In panel (a),
the change of the rainfall return period for the calculation of runoff threshold is performed
from T=5 years to T=10 years, in panel (b), the soil moisture is changed from 70% to 100%,
while in panel (c) the Z-R relationship is changed from the Z=321R'* to the Z=200R'®
relationship. Observing Figure 17 and comparing it with the time frame shown, it is shown
that the effect of the return period is minimal, while the effect of the soil moisture conditions
is the most significant. The change in the Z-R relationship also increases the number of
potential cells flagged for flood since the used Z-R results in higher rainfall intensity values,

but not as high as the soil moisture conditions.
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Figure 17: Impact of the number of cells flagged for flood for a selected timeframe, by changing the:
a) return period from T=5 years to T=10 years, b) Soil moisture from 70% to 100% and c) the used Z-
R from Z=321R"* to Z=200R*<,

Storm Tracking

The storm tracking algorithm includes the storm cell's identification and tracking
procedures. The first case shows the algorithm's ability to track cloud cells. Figure 18 shows
the difference between utilizing a different reflectivity threshold and whether a polygon or
a fitting ellipse represents the cloud cell’s boundaries. The 25 dBZ threshold works well
when identifying polygon boundaries but does not work well with a fitting ellipse. By
setting a 4 km? area threshold, 11 cells are identified above this threshold. In the 30 dBZ case,
the fitting ellipse features better results concerning the core cell identification. Since the
emphasis is given on intense rainfall systems, the 30 dBZ with a fitting ellipse is used to
identify the cell centroids and store their attributes (e.g., the ellipse characteristics and
centroid coordinates). Finally, the 35 dBZ limit highlights areas with higher-than-average

rainfall intensities, signifying areas where heavy rain occurred.
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Figure 18: Results of the cell algorithm when a different reflectivity threshold is used; 25-, 30-dBZ
shown in each row, and when a polygon or fitting ellipse is used to form the boundaries, each

column.

Figure 19 illustrates the application of the cell track algorithm, using 10-min derived
reflectivity images in a 10-min temporal interval. Specifically, five 2-min reflectivity images
are merged to define the 10-min reflectivity field. Following this, a 10-minute time step is
used, and the tracking algorithm is applied to perform the matchmaking of each cell and the
merging and splitting of cells. The resulting timeframe cells are shown with red polygons,
while the previous ones are dashed black. The objective is to match the centroids of black

cells to those of the red cells. The algorithm works well and successfully merges the cells.
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% 10%

Figure 19: The matchmaking procedure between four timeframes with a 10-minute step

Following this procedure, the algorithm is applied to all events observed by the
Rainscanner. In Figure 20, the tracking for events E31 and E50 is shown. In blue borders: the
border of a cell whose threshold is above either 35 dBZ (first row) or 40 dBZ (second row).
In red polygons: the centroids of cells. In dashed black lines, the tracking. The above 40 dBZ
results are more visually appealing due to the fewer identified cells.

In Figure 21, the centroids of the 35 dBZ are shown in red rectangles. The result shows
improved clarity regarding the location of the cells and the direction of the storms for events

31 and 50. Similar results for all featured events are shown in Appendix B.
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Figure 20: Cells borders of events 31 and 50 for two reflectivity thresholds: over 35 dBZ (first row),

over 40 dBZ (second row)
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Figure 21: Centroids of storm cells (red rectangles) with a reflectivity threshold > 35 dBZ
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The tracking confirmed the west-to-east direction of the storm events, which is featured in
most events. Figure 22 shows the main directions of the storms featured in Attica. Most
storms have a southwest-to-northeast direction, passing over Athens city center, followed
by west-to-east and northwest-to-east directions. South-to-northeast directions are observed
mainly with convective-based storms, whereas North-to-south directions are observed
during winter, featuring stratiform events characterized by their low velocity and rainfall
intensity. Moreover, snowfall events also feature Northeast-to-southwest directions, with
the slowest velocity among other events. Convective-based events, i.e., events that showcase
the highest reflectivity values, had an east-to-west direction, as featured in the studied
events E31 and E50.

5 X 10*
NorthWest :|
West -
SouthWest _
South :|
SouthEast ]
East .
NorthEast -
North I
4l 0% 20% 40%
Wind Direction %
“5—6 -4 -2 (; 2 4 6
S x 104

Figure 22: Main directions of storm clouds in Attica Region; Red lines are for storms occurring most

often, followed by blue, yellow, and purple.

Conclusions and Future Research

This Ph.D. dissertation focuses on developing and implementing a methodology for early
warning of intense floods using innovative technologies, primarily centered around a newly
installed weather radar system called the X-Band Rainscanner in Athens, Greece. The high-
resolution data from this radar system is crucial for understanding rainfall's spatial and
temporal characteristics, especially for local applications like small-basin rainfall-runoff
modeling and nowcasting. The dissertation is divided into two main sections. The first

section reviews various aspects of weather radar technology, specifically on the variability
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of the Z-R relationship, and the second focuses on applying a Flood Early Warning System
(FEWS).

Concerning the Z-R variability, it is found that although significant variability is showcased
in time and space, several patterns that explain this variability are extracted. Specifically,
the location’s characteristics within the study area, such as its elevation and proximity from
various locations, such as the distance from the weather radar, the coastline, the clutter-
affected areas, and the high-elevation areas, affect the Z-R relationship. These characteristics
affect the storm’s characteristics, which this study was able to extract using high-resolution
rainfall fields.

Concerning the application of FEWS, this research showcased the required components and
processes to obtain reliable results through an easy-to-apply methodological framework.
Through the development of a gridded rainfall-runoff model, the impact of the Z-R
relationship on the generated runoff is performed, where it was found that convective-based
Z-R relationships work well with respected convective events but tend to lead to
underestimation of runoff when used in light rain. On the other hand, caution should be
exercised when utilizing a Z-R relationship since this can lead to excessive errors in the
generated runoff, highlighted by the difference in the event's return period as calculated by
the intensity duration curves derived for the region. The implementation of the GFFG
system reached valuable results concerning issuing flash flood warnings using high-
resolution modeling and highlighting the impact of the soil moisture conditions prior to the
events. Finally, the storm-tracking algorithm showcased the ability of the Rainscanner
system to be used for forecasting applications by focusing on identifying and tracking storm
cells. The algorithm was able to distinguish and match storm cells in consecutive images,
making it a valuable tool for further nowcasting applications. The algorithm was finally
applied in a series of events that occurred in Athens, showcasing the west-to-east direction
of summer convective events and the north-to-south direction of winter stratiform events.
The dissertation presents a holistic approach to using weather radar-derived datasets for an
FEWS implementation in Athens, offering valuable insights into radar technology, Z-R
relationships, and flash flood forecasting methodologies. It introduces innovative
techniques and contributes to the field of flood early warning systems. Future research aims
to extend the findings of this thesis to other regions with different characteristics. Moreover,
the assimilation and analysis of additional data such as runoff measurements, satellite data,
distrometers data, and other meteorological radars to the individual points of this research,
as well as the integration of stochastic methods to quantify and assess the uncertainty of the

individual systems is proposed.
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Extevng IlepiAnim

Eltoaywyn

H ev Adyw ddaktogkr) datopr] (A.A) pe titAo «Avamtuén kat epaguoyn pedodoAoyiog
£yraune mQEOEOTOMONG  LOXVOWY  TANUULOWY e XONOTN VEWV TEXVOAOYLWV»,
ETUKEVTOWVETAL 0TIV AVATITUET KAl €QAQHOYT] €vOg HeO0doAOYIKOU TAaLoloL Y TNV
£yKauen TEOEWOTIOMNON LOXVEWY KATALYOWV KAl TANUHLOWY, XONOLUOTIOWOVTAS VEEG
TEXVOAOYLEG Kal OUYKEKQIUEVA dedopéva amd  petewEoAoywd opavtag. Tétowx
OLOTIHATA QAVTAQ CLUVAVTWVTAL KUQIWS YL TNV AVTLETWTIOT] AlPVIdLWV TATUHULOWV
oL 0Ttoleg ATOTEAOVV pia Ao TIS TTo OAVATNPOQES PUOKES KATAOTQOPES OE TTAYKOTHLO
emtimtedo. Ta XapakTnoloTkKd TV apvidlwV TATUHULVEWV d@EQOLY ATt TIG CUUPBATIKESG
TOTALEG TANUMUQEES, KaOwG TEoKAAOUVTAL ATO ATIOTOUES Kol £VTOVES BOOXOTTWOELS,
TIOL TIOAY LATOTIOLOVVTAL O€ OUVTOHO XQOVIKO DACTNUA, EVW TIAT)TTOLY KLQEIWS aoTuKég
nieploxés. Ot aupvidleg mANUUYEES amoteAovv ouvOws eMELCOdIX TEQLOQLOUEVNG
éxTaomg, KaL opeidovtal oe cvykekQéVoL TUTIOL kKatatyideg (Houze Jr. et al. 2015). Ou
TIAQAYOVTEG TIOV ETNEERCOLYV TNV EUPAVLIOT) KAL TNV £VIAOT) TWV ALPVIdLWV TANUULOWY,
EKTOG TNG €VTOVNG BOOXOTTWOTG, elval 1 YEWHOQPOAOY o TNG AekAVNC amtoEoNS, OTtWS
t0 puéyebog, N kAloT), 1) LOATOTTEQATOTITA TOV EDAPOVS KAL OLAQXIKES OLVONKES LYQATIAG
(Merz and Bloschl 2003; Houze Jr. et al. 2015; Veldsquez et al. 2020). H petafoAn g
YeWHOQPOAOYIAG OTIWS YL TTAQADELY A 1) HETABOAT] TWV DXTOUWYV EVOS TTOTAROV AdYw
™me dAPowone KAl NG MHETAPOQAS WNUATWY TOL  TIQOKAAE(TAL amd  OXVEES
pooxomtwoelg, Telvel va peTaBAAAEL TA QUOIKA XAQAKTNQLOTIKA TWV TOTAMWV.
ErunmAéov, ot Blateg aAdayéc xonjoewv yng, 0nwe 1 aotikonoinon, n anoPidwon twv
daoWV KAl Ol dATIKES TLOKAYLES, HETABAAAOLY TNV TOWTOTTA TWV TEQLOXWV EVAVTL
TATIUHVOWV KoL 0€ CLUVOVAOUO e TIO OLXVES VYMATG évtaonc kKataryideg, odnyovv oe
avénon Twv awpvidwwv Anupvowv (Alfieri et al. 2012; Gaur and Simonovic 2015; Rogger
et al. 2017; Caloiero et al. 2017). Q)¢ anotéAeopa meQLOXES MOV O0TO MAQEABOV dev 1)Tary
eTuQEETELS o8 TATUUVEES, TMALoV elval evaAwTteg oe avtég (Bournas and Baltas 2021a).
v megoxr e Meooyelov, ta teAevtaia xpovia, ot aupvidlec mANuULEES €xouvv
TIOOKAAETEL OXL HOVO OTJUAVTUKES OLKOVOULKES AAAL akOpa KAt avOQWTILVES amwAeLeg
(Diakakis et al. 2012, 2019; Pereira et al. 2017; Feloni 2019; Varlas et al. 2019; Spyrou et al.
2020).

Mia amd Tig kOQLEG HUN-KATAOKELAOTIKEG HEOODOLS Yt TNV AVIHETWTION TWV
TANUULEWV elval N avamtvén kat 11 xonjon Xvotnudtwv Eyxoauong Igoewomnoinong
[MTAnppvowv (ZETIIT). Eva oAokAnowpévo LEIIT amoteAeitat amod dix@ooa Texvikd Kat
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UN-TEXVIKX VTTOCLOTIUATO TTOL APOQOVY, 0r) OTNV AVAALOT] TWV XAXQAKTIOLOTIKWY TIOU
TEOKAAOVV TOV Kivduvo mANupvoac, ) otnv magakoAovOnomn kat avaAvon twv
KALQIKWV OUOTNUATWY, Y) 0TIV TEOY VWO KaloL kKat ) 0€oTtion oglwv ktvdvvov, d) otn
HLETAPOQA TWV TIQOEWOTOMOEWY, €) 0TV TOOETOLUATIX KAL TIG €VEQYELEG AXVTIOQAOTG
(Perera et al. 2019). ITapdAo mov ot uéBodot Tov XONOHOTOVVTAL YL TNV avAAvon Kot
TIQOOOMOIWOT TWV VOQOUETEWPOAOYIKWV dADIKATIWOV KATA TNV dlkQKelx piag évrovng
Pooxomtwong duxpégovy o MOALVTIAOKOTNTA, 1) KU afefatdtnta g ekTinong
TANUHLEKOV KIVOUVOU €YKELTAL 0TI XAXOTIKT] QUOT TNG ATUOOPAIOAS Kal TNV éAAen)n
ETAEKOVS aAvAALONG Kat dedopévay LA toldtntag (Marchi et al. 2010). Axéun katoe
TLEQLITWOELS OOV LTAQXEL daBeTuoTnTa AEOTUOTWV dedOpéVwY, €xel Poebel mwg
evoéxetal va vy el LPNAT aBeBatdtnta oTNV TEOTOUOLWOT) TS ATIOQEOT|G CUYKQLTIKA
pe TIic mapatnEnOeloes TIpéS, YEYOVOS TTOL opelAdeTal otnv kKAlpaka kot otig pebodovg
TLOL XQNOIHOTIOLOVVTAL 0T LOQOAOY KA povtéAa (Di Baldassarre and Montanari 2009). H
erBuunT XwOIkN kat Xeovikn kKAlpaka twv mediwv Beoxng mov 0dnyovv oe alpvidieg
TANUUVEES elvat vYMAOTEQN amO TNV avTIOTOLXN AVAAULOT] TIOL TIEOOPEQOLY TA
ntaeadootak& diktva emiyewwv PBooxoyedewv (Anagnostou et al. 2017), evw otav 1
erlQovunt avdAvon twv dedopévwv dev etvar dabéoun, 1 duvatdtnTa TTAROXNS
Eyrapwv mEoeomomMoewy  pewwvetat onuavtika (Mimikou and Baltas 1996). Le
TLEQLITWOELS, OTWGS ovpPaivel otnv EAAGda, 6mov dev vmtapxovv dabéotpleg LetEr)oeLs,
N n aflomotia twv dedouévwv elval ukEr, To TEOPANUa  emdevwvetal. g
AMOTEAEOUA, N KALHAKA KAL) TOLOTNTO TV deDOUEVWY ETUOQOVV OTUAVTIKA KL OTNV
niolotnta evog XETIIL

Lo mAalolo ovvexoug avantuEng twv LEII n épevva emikevtowvetal, oty BeAtiowon
NG TOLOTNTAG TG MEOYVWOTG, TNV av&NoT Tov dOETIHOV XQOVOL avTIdEAoNS KAt
OTNV AMOTEAETUATIKOTEQN OLAXVOT] TNG TANQOPORIAG OXETIKA UE TOV XQOVO KAl TIG
TEQLOXEG TIOL TROKELTAL VA TANUpLELooLY. Ot dV0 MEWTEC CLVIOTWOES HUTOQOVV VA
eTuTeELXOOVV UE TNV EPAQUOYT] VEWV TEXVOAOYLWV TIOL APOQOVV 0T CLAAOYT] KAl TNV
emeepyaoia dedopEvVwY KABWS KaL 0TV XET)0T] TIO TIEOXWENUEVWY HOVTEAWY, dONAadN
elval AQENKTA CLVOEDEUEVEG UE TNV AVAAVOT] KAL TV TOLOTTA TWV dEOOUEVWY £L00DOV,
Kat kvolwg g Booxdmtwone. I'a mtapdderypa XEIIT tov emtucevigwvovtat oe agvidleg
TATNUHVES, dNAadY) Oe emelcOdx PEOXTIS VYMATC XWEOXQOVIKNG HeTABANTOTNTAC,
ATALTOUV avTIoToLXNG AvAALONG dedopéva €l00dOV, Kol CUYKEKQIUEVA YIX Tt OedOEVA
Pooxomtwong Pactloviar oxedov amokAewotikd otV enefeQyacio  dedOUEVWY
HETEWQOAOY KOV pavTdQ. Ltnv EAA&da, ta evowraikd LEIIIT émws to European Flood
Awareness System (EFAS), xat ovykexoyéva ta ovotrjuata ERIC kat EPICHA vy
aLpvidleg MANUUVEES, €XOLV TEQLOQLOUEVT] XOT|OT] TOL O@eideTal KLRIWS a) 0T un

dubeootTnTa KOQWWV CLOTNUATWY, TLX. MHI KAALYN Tov Evpwraikov dutdov
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HETEWQOAOY KWV pavta otnv megintwor tov EPICHA otnv EAAGda, ) g un
dBeouoOTNTAC TWV KATAAANAWY dedOUEVWY Vi T PaOpovounon Twv HOVTEAWY, KAt
Y) ot peBodoAoyiax mov akoAovOeltar kabwc T avagepbévia  ovoTruaTa
OXEOLATTNKAYV YIX EQPAQHOYT) O HEYAAX TOTAUIAX CLOTHUATA KAL OXL O€ HIKQEG AeKAVES
QATIOQQEONG TIOL ATAVTWVTAL 0Ttov EAANVIKO xweo. Ewwd otnv EAAGDda, 1) peydAn
TIOKIAOHOQ@IA 0NV Yewyoapia Kat 1) HEYAAN akTtoyQauun g, dnuoveyel moAAég
HUIKQEG AEKAVEG XTIOQEOT|G OL OTTOlEG €XOLV aoTIKOTOWMN O el OTA TTEDLVA TUNHATA TOVG, HIE
ATOTEAETHUA VO ElVAL EVAAWTEG O ALPVIOLEC TANUUVOES, HE TEOCPATA ETIELTODIX VA
eruPePatwvovy Ty vTodeon OTL OL TEPLOXEC avTES elval evdAwrteg (Feloni et al., 2020;
Varlas et al., 2021). EmuntAéov, omwe avagéeOnke, 11 EAAGda eltvat amtokoppévn amo ta
niegupegelakd Bvpwmnaika diktva cvAAOYNG dedopévwy, OMWG AVTA TNG KEVTOUKNG
Evowmng, kat wg amotéAeoua oL TEQLOOOTEQES £QEVVEG AV OTN TIOYVWOT EVaVTL
TATUHVOWV E€TUKEVTQWVOVTAL OTNV XON 0T d0QLPOQLkwV dedouévawy, (Spyrou et al., 2020;
Varlas et al., 2021, 2019) ta omoia Opwg dev Oewpovvtat TOoo a&dmoTa 600 AVTA TWV
HeTEWEOAOY KWV pavtaQ. O emionuog pooeag mMEOYvVwong katgoL otnv EAAGda elval
EOvikny MetewpoAoywkn Yrinoeoia (EMY), n omolar exdidel nuegnotec meoPAEPels, e
HEYLOTO X0OVIKO BrIHa 3-wOwWV, OLOTIOLEG DEV £XOVV TV ATALTOVUEVT] XWOLKT] KOL XOOVIKT)
axQBelx Y TNV avixvevon Kol avVTILETWTLOT) alPVIOwV TANUULEWY 0& AOTIKEG KAl
NUXOTIKES TTEQLOXEG 0T0 TAaioo evog LEIIT.

O xvowog otdx0g e ovykekQévns AA. etvar 1 avantuén pag pebodoAoyiag
EXTIUNONG KAL TTEOYVWOTNG LOXVOWV KATALY LOWV Kol TATUUVQWV LLE TN XO1OT) dedOUEVWY
HUETEWEOAOYIKOV QaVTAQ LVYNANG XWOIKNG Kat XQoVikng avaAvone. Ta epevvntika
gowTHata Tov 1) A.A. oKOTEVEL VA amtavTijoel avaAvovtal o€ dVo evotnrtec. H mowtn
ETUKEVTQWVETAL OTNV OVLAAOYTY), emeepyaocia kat avaAvon twv dedopévwv amd To
HETEWQOAOYIKO QAVTAQ KAl amavid ot €&ng epwtuata: "Tlowor eivar ot kvpLot
niapdyovtec mov mpénel va AneQovv vmoyn yww tn xpnon dedouévwv uetewpoloykov
pavtap; Ioteg eivar ot mnyéc afefatotnrac kat mwes uropovy av eEalewpOovy;". H devtepn
EVOTITA €TMUKEVIQWVETAL OTNV AVATITLET piag peBodoAoylag exktipnong mMANUULELKOD
KIvOUVOL 0€ MEAYHATIKO XQOVO, we vrtoovotnua evog LEIIIT kat anmavtdel ota €£1)¢
eowmuata: "lMowa eivar ta anapaitnta pépn evoc XEII Paociouévov oe dedopéva
petewpodoyikov pavtap; Ilolec eivar oL TAPAUETPOL VOGS TETOLOV OVOTIUATOC KAL TIWG
avtéc emnpealovy TNy extiunon nAnupvpikov kwovvov, Ti vdpodoyika epyaleia
anartovvtal va yia vAoronBei éva tétowo XEIIT;”.

I'a tov okomd avtd, xonowpomowovvrat T dedopéva amd éva vEO €£YKATEOTNUEVO
oVOTNUA HeETEWQEOAOY KOV QarvTaQ, TUTov X-Band (Rainscanner - Xapwtg ooxrg) tov
EOvikov MetoodBov TToAvtexveiov (EMII). Ta dedopéva avtd emefeoydloviat Kot

emaAnOevovtal péow pag pebodoloyiag Paduovounong tng oxéong Z-R, tne oxéong
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TLOU OLVOEEL TNV HETQOVHEVT avakAaoTkotnta (Z) o€ évtaor Peoxns (R), pe duxOéoa
dedopéva amd eTyElOVS HETEWQEOAOYIKOVS otaBpovs. EmumAéov avantvooetal éva
oVOTNUA €KTIUNONG TANUULEKOV KIVOUVOU, KAl OUYKEKQIHUEVA M TTaQaAAayr) tov
ovotruatog Flash Flood Guidance (FFG), to Gridded Flash Flood Guidance (GFFG). Zto
TAQLO0 €QPAQUOYNS TOV TAQATAVW OULOTHUATOS, avantuxOnkav dvo vOPOAOYLKA
eoyaldela, éva kataveunUévo HOVTEAO PEOXTG-ATIOQQOTG KATAAANAO Y pikQég
Agkdveg amopEong, kat évag aAdyoQlOpog maeakoAovOnong KAtaydoQogwy  VEPWV
(Storm Tracking) 7oV €@AQUOOTNKE PE OKOTO TOV EVIOTIOUO KAL TNV TTAQakoAovOnon
TWV LOXVOWV KUTTAQWYV KaTALydag.

H AA. amoteAeltat amo €L kepdAawa. Xto mowto kepaAaio (Introduction)
TILQOVOLALETAL TO AVTIKEIUEVO, O OKOTIOS TNG dXTOLBTS, N BBALOYQAPIKT] AvaoKOTINOT
oe Dépata OV APOPOVY OTA HETEWQOAOYIKWV QavTaQ Kat taw LEIT, kat mapatiBevtat
T EQEVVITIKA €QWTNHATA TIOL eTdIWKEL VA artavtrjoel. To devtepo kepaAato (Study
Area and Data Used) agood otnv eMOKOTNOT) TNG TTEQLOXN MEAETNG KAl TwV dedopévwy
miov xonoworomOnkav. To toito kepaAaio (Methodological Framework) avagéoetal
oto pnebodoAoywd mAaloo mov epaguootnke otnv AA. kaBwg Kat ot eMUEQOUG
HeOodoA0Yieg TTOL ePaQUOTTNKAY Y KAOE eQyaoia, evw 0to tétaQto kedAato (Results
and Discussion) magovoiklovtal ta amoteAéopata e épevvag avd egyaoia. TéAog, oto
riéumrto kepdAawo (Conclusions and Future Research) magovoidlovtatr cvvomtikd ta

ovpumegaopata TG A.A. KaBwg kat 0TOXOL KA TQOTATELG MEAAOVTIKT|G €QEVVAG.

ITegroxn MeAétng kat Aedopéva

H megoxn peAémng etvar 1) meQloxr) e ATTIKNG KAL, OUYKEKQUUEVA, T) TEQLOXT] TTOV
KaAVTITETaL ano 1o ovotnua Rainscanner kat gpatvetat oto Lxnqua 1. To Rainscanner
Poloketar otnv AOnva, evtdc Tov MavemoTnuakoL xweov tov EMII, otov dnuo
Zwydgov og VPopeTEo eykataotaon 200 pétoa. H epBéAeiax tov etvar 50 km kot 071twg
patvetat oto Lxnua 1, megtdapBavel to peyaAvtepo tunpa tov Nopot ATtiknig, ektdg
QATO P HKET) TteQloxn) ota dutikd, mépa amo to Opog I'epavia, evaw emiBAémet kat éva
ko tunpa Booeta tov 0povg IlapgvnOag, pépog e Aekdvng Amogoorc Iotapov
(AAIT) Aowmov. Adyw e magovoiag tov YHNTTOU OTa avatoAukd, OAOKANON M
VOTLOdLTIKY TteQLoXT) etvat abéatn kabwg n déoun tov Rainscanner epmnodiCetal and tov
0pewvd  oyko. Qg amotéAeopa  OAOKANEN 1 meQuoxn] Twv  Meooyewwy,
ovumeQAaBavopévou tov aegoAtpéva ABrvag, "EAevBéploc BeviCéAog", etvat extdg
euBéAetac. Qotooo, 1 tonobeoia tov Rainscanner elvat evvoik!) Y TV apakoAovOnon
OLOTNUATWY PEOXOTITWONG, KABWS 1 Ao @la TV CLOTNUATWY AVTWV £XOLV DUTIKN
Kat Pogela dLtevOvvoM, KAOLOTWVTAG TNV pia KAAT) ETUAOYN Yot TV TTAQOXT] TTOOYVWOIEWY

Y TV TOAN g AOrvac.
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O xonoeig yng otnv Attikr) xagaktnoilovratr amd vnAS TOTO0TO AOTUKOV LOTOV, KaBwg
T0 27% T1Ng TMEQLOXTS Elval aoTIKOTOMUEVT), EVW TO LTTOAOLTIO 73%, Elval YewQYLKOU KAl
daowoVL tumov. Ot LVTTOAEKAVES ATIOQEONG TIOV DLAUOQPWVOVTAL OTNV TEQLOXT] TNG
Attucng elva Yevikd HikQég kat bPnAd aotucontomuéves. X dutikr) Attikr) Boloketat
n AAIT Zapavtamotapov, N HeyaAvTeQn NUAOTIKTY) AeKAVT TG ATTIKIG, e OUVOALKT)

éxtaon 341 km?, amd ta omola ta 231 km?, etvat un-aotikd e ayQoTkA XQOKTIOLOTUCA.
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Zxnua 1: H megroxr) peAétng

Ta Baouwed dedopéva ov xonopomomOnkav otn AA. etvat ta e&ng:
¢ Aedopéva petewoloykov pavtag. Ta dedopéva tov Rainscanner dixOétovv xwoukn
axpiBewx 100 m x 100 m kot xpovikr) avaAvon 2 Aemttwv. Ta agyela vtopaAAovtan
o€ éva 0TAdLo TRo-eTeEeQyaniag Yo TNV eEaAendn 1) TNV HelwoT) TWV EMMTOOEWY
TV OPAAUATWV TIOL o@elAovTatl 0to avdyAvgo tov eddgoug (ground clutter) kat
¢ eEaocBéviong tov onuatos. Ta dedopéva mapéxovtat oe apxeia tvTtov ASCII pe
mv avtiotoln yvewavagopk. Ta Texvikd YXAQAKTNELOTIKA TOL OULOTIHATOS

Rainscanner magovoixlovtat otov ITivaka 1.
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Aedopéva emiyelwv petewoAoyikwv otabuwv: XonotpomowmOniayv dedopéva and 1o
Avtopato Atktvo tov EOvikov Aotegookomeiov e AOnvag (EAA - NOAAN), mov
amoteAeitat amd 53 otaOpovg yx v mepoxn g Attikric (Lagouvardos x.&. 2017). Ta
dedoEVA apoQOVV HETETOELS BEOXOTITWOTG e XOOVIKO Pripa 10 Aemttd, oL omoleg éxouv
vToBANOel oe €éAeyX0 TOLOTNTAG, AVAPOQIKA e XWOLKES KAl XQOVUKES avakpiBeleg. Xto
Iynua 2, pe umAe xowpa, Tmagovotdlovtar ot Oéoelc twv otabuwv  mov
xonowonomOnkav otnv A.A.
o Wneuo Movtédo Edagpouvg (WME) pe avaAvon S5p x 5y, mov magéxetat anod v
KtnuatoAoyo A.E.
Ot xatnyopteg kdAvyng yne CORINE (CLC, 2018) xat ta dedopéva URBAN Atlas 2018,
oLV TEEQLAAUPBAVOLY €vav KATAAOYO TNG YEWYQAPIKIG KAALYNG, TOV TEWTO Yl
0AOkANEN ™V EvgeTn kat tov 0e0TeQo Y aotikég meQlox g g Evpwnmc.
¢ Tewywoka dedOHEVA ATO AVOLKTEG TINYEC, OTIWG 1) L0TOoEADda geodata.gov.gr, dTov
TIAQEXOVTAL TA OQLX TWV DIOKTTIKWYV TEQLOXWV, KOG Kat AAAa dedopéva, OTIWGS TO
00K0 dlKTLO, A6 TNV TEWTOROVAi OpenStreetMap.
Alota twv duxOéopuwv otabuwv pe yvwotéc oupotes kaumvAes (Intensity-Duration
Frequency-IDF) mov mooéxkvipav oto mAaiowo ovvtaéng twv Xxedlwv Awxxeloong
Kwdvvov INAnupvowv vy v EAAGda amd to Ymoveyeio ITegiBdAAovtog, Evégyeiag
kot KAatuang AAAayng (SSW-MEECC 2017), Exnuo 2.

IMivakag 1: Texvika XoQoKTNELOTUKA TOU HETEWQOAOY KOV pavtaQ Rainscanner

INapdpeToog Twn

Méyiotn woxv 25 kW

Mrjiog Kbopatog X-Band 3.2 cm
Zuxvomnta 9410 (+ 30 MHz)
PRF 833 - 1500 Hz
Awdoketa ITaApov 1200 - 500 ns
Zuxvotnta meQLOTOOPTIS 12 rpm
Katakdoven kot 0ollovtid ywvia déoung 2.50

OoplévTia axpifela +£0.5°

Méyiotn EpupéAeia 50 km

Méyiotn xwokr) avdAvon 100 m x 100 m
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Zxnua 2: : To dixtvo emiyeliwv LOQOUETEWQOAOYLKWY OTAOUWV e 0edOHEVA BOOXOTTWOTS

(EAA) xa pe dedopéva opupolawv kapmvAwv (IDF)

MeBodoAoyiko I[TAaioo

To peBodoAoywd mAaiolo mov avantOxOnke kat epagudéoTnke ot magovoa aA.A.
nagovotdletal oto Lxnua 3. Amoteleitar and mévte kvQr voovoTHuata, 1)
dlxxelolomn xat dOEOwon TV HeTewEOAOYIKWY dedopevwy, 2) m Babuovounon tng
oxéong Z-R, 3) to povtéAo Booxns-amopeons, 4) to cvotnua GFFG kat 5) tov aAyoolOuo
TIAEAKOAOVONONG KATALYO0POWV Vepwv. Ta do mpwta cvotiuata anaQtiCovy TV
TEWTN evotnTa NG A.A., dONAadr] AVTNG TOL ETUKEVTQWVETAL 0TI OLVAAOYN, emeEepyaoia
KL avaAvon twv dedopévwy Tov HeTtewQoAoywkol pavtdo. Ta vmoAowma tola
CLOTIUATA ETUKEVTIQWVOVTAL 0TIV EKTIUNOT TOV TANUULOKOD KIVOUVOL 010 TtAalolo

epapuoyng evog LEIIL
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Zxnua 3: To peBodoAoykd nAaiolo

[Mapakatw agovotdlovat ot emUéQOVs dadikaoieg KaBe LTTOCLOTHUATOG.

1. H Awxxelgion kot d01600wor Twv HETEWEOAOYIKWY dEdOMEVWY OXeTileTaL TOV EAgy X0
niootnTag, dNAadn tig dopbwoels ota aveneEépyaota dedopéva TOV PAVTAQ Y VA
AVTIHETWTIOTOUV KLEIWS Tt TEOPANUATA TIOL TIOKAAOVVTAL OTO ONHA ATO TIG
AVAKARTELS TOL AVAYAUPOL TOL €dAPOLS KAl TNG dLOEOWONG NG EKOVAS QAVTAQ AXTIO

keva dedouévwv. Ta opaApata Adyw avayAvgov avagépoviat oe averOvunta
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ONHATA A0 AvVTIKElpEVA TIOL dev elvat BROXT, VW Ta KEVA UTTOQOVV V& EUPAVIOTOVV
ATIO ONUEAKES ATOKALOELS TOUG OTJUATOS QAVTAQ AOYW OTATIKWV KAL M) OTATIKWV
otoxwv. Avtéc ot dpbwoelg TEQUAAUBAVOLY  aQXKA TOV  EVTOTUOUO TV
TEOPANUATIKWOV TEQLOXWYV, XONOIHOTOLWVTIAG TAQATNENOES o0& ouvOrkec atbolov
KALQOV, eV 1 d0pOwoT TwV KEVWV TOAYUATOTOLEITAL HE TV EQPAQUOYT] KOLTNOlWV
OULUTIAT|QWOT)G, COUPVA HLE TIG TUUES YELTOVIKWV KEALWV. LT ovVéXel, epagpolovtat
OL KATAAANAEG XWOIKES KAL XQOVIKEG TIQOOAQUOYES YIX Vi eEXTPAALOTOVV OL eTOLUNTEG
avaAvoec. Ta enmefegyaopéva dedopéva, amodnkebovTal 0 CUYKEKQLUEVES LOQEPES
apxetwv, ASCIL kat ovopdlovtatl pe Bdor) T Xeovikr) ojuavor] tovs. TéAog, oto otddio
NG HETA-€MEEEQYATIAG TIOAYUATOTIOLOVVTAL TLEQALTEQW EAEYXOL YOt TNV AVTLUETWTILOT
aKEAlwV TIHWV KABWS KAl TN XOOVIKT) CLVETIELX 0TO OVVOAO TwV dedopévwv.

2. H dwdwaoia Babuovounong g oxéong Z-R oxetiCetat pe v magaywyn s
oxéong Z=aR®, 1 omtolat XONOHOTOLE(TAL VI TN HETATQOTI TNG AVAKAROTIKOTNTAS TOL
oavtag (Z) oe évtaon Peoxns (R) pe xonon twv nagapétowyv a kat b. H pabuovounon
Paoiletal otn CLOXETION TWV DEDOUEVWV QAVTAQ HE TA DEDOUEVA ETILYEWWY, HETA TNV
eVOVYQAUHLON TNG XWOLKNG KAL XQOVIKNG avAALONG Twv dedopévwyv 0 avTr] TV
emiyewwv  Pooxoyodewv, kabws avtéc AN@Onkav wg "to mEayuatuko Vog
pooxomtwonc". H avaAvon tng ovox£Tiong YIVETal e TOV VTTOAOYLOHO TOL CLVTEAEOT)
OLOXETIONG P, TIOL XONOLHOTOLEITAL Yix TOV KABOOQIOHO TWV KAAX OLOXETIOUEVWY
dedopévayv, dnAadn avtwv pe ovvteAdeot) p dvw tov 0.60, TOL XENOIHOTIOLOVVTAL
petémerta otig dxdwkaoieg Paduovounons. Enerta 1 Pabuovournon otoxevel otov
VTTOAOYIOUO KoL OXOALXOUO TWV TV TV TAQAUETOWV TG Z-R, a kat b, péow g
eAaxlotomnoinong Tov TeteaywvikoL o@dApatog (RMSE). Toelg opddec Padpovounong
ETUKEVTQWVOVTAL OTNV MAQAYWYN OX€0ewV Baoel oTaBuwV, CUUPAVTWY Kt OAOKANQOV
ovvOoAov dedopévav. Ta amoteAéopata ovykpivovtal pe kabtepwpéves eflowoels Z-R,
ATOKAAVTITOVTAG TNV XWEOXQOVIKY] HETAPANTOTNTA KAl EVIOXVOVTAS TNV KATAVONOT)
TWV XAQAKTNOLOTIKWV TNG BEOXMNC.

3. H dwxdwkaoia tov povtéAov Pooxns-amopoorc oxetiCetal pe v avantuln kat
EPAQUOYNG VOGS KATAVEUTUEVOL HOVTEAOL BROXNS-ATTOQEONG oL O KAVEL XONON TWV
dedopévwy pavtdp. To povtédo Paociletar otnv TEXVIKN OAYQAUHUATOS XQOVOL-
aToEQEOT|G, Paciopévn oto povadiaio vdgoyeapnua kata Clark. Ot mapdpetoot tov
povtéAov vmoAoyiCovtat péow tov WME tng megoxnc peAétng kat texvicwv GIS. H
eveQYOG Pooxontwor) vroAoyiCetat xonopomnowwvtag tn pédodo NRCS-Curve Number
(CN), evw 1 amoQor] dlodeveTal PECW VOGS CLOTHUATOS YOAULKOV Taptevtioa. ' tov
LTTOAOYIOUO TwV TipHwv CN pe Baon Tig toéxovoes ovvOnkes LVYEATIAS TOV €dAPOUVS
XONOLUOTIOLELTAL UL YOOUILIKY) OX£€0T HETAED TV ENOWV, HEOWV KAL UYQWV OLVONKWV

vyoaoilag kat Ttov TOo00TOL vypaociag oe ka&be xoovikr] otypr). To povtédo
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epappootnke ot AAIT Zagavtamotapov 0mov emAExOnKe Hia oepd oxéoewv Z-R ya
va dLegevvnOel 1 eTOQAOT) TOVS OTA XAQAKTIOLOTIKA TOU TATUHUVQOYQAPT|UATOS OTIWS
0 X0OVOG ALXUTG, O€ LI OERQ ETELOODIWV BEOXNG.

4. Toovotnua GFFG etvat éva ovotnpa meoedomoinong éVavTL apvidLwy TANHHLEWY
Paoclopévo oe VTOAOYIOUEVA O€ MEAYUATIKO XQOVO 0o voug Ppoxng, dedopévng
dudoketag, v tur) FFG, n omoilax vmd T ovykekoupéveg vdpoAoyikés ouvOnkes Oa
MEOKAAEoeL HKENG éxtaons TANuuvea. To ovotnua cvvdvdlel LVOQOAOYIKES Kot
HLETEWQOAOYIKEG OLEQYATLES Y TOV EVTOTIUOUO TEQLOXWV HE KIVOUVO TANUULOAG Yix
XQOVIKEG TIQOEWOTOUOELS €S 6 WQEES, KAL XQNOUOTOLEL TQES TTAQAHUETQOVG: &) TNV
ntaeoxn katw@AoL (threshold runoff), ) v katdotaon vypaoiag Tov edagoug (soil
moisture condition) kat y) v abgototikr) fooxomtwor) dedouévng droretas. H mowtn
TEAMETQOG, Dewpeltal oTatky] Kat eEXQTATAL ATO TA XAQAKTNOLOTIKA TNG Agkdvng
QATIOQQOTG 1] OTNV OvYkekQWEVT Tmepintwon tov Grid. T'w tov vmoAoyouo
XONOLUOTIOLETOL VA LOVTEAO BOOXTIC ATIOQQOT|G [LE EQPAQIOYT] BOOXTC lOTG pe avTng oV
TIOOKVTITEL Vit TTEQLOdO emava@oAag S5-etwv. H devtepn elval pia dvvapkn petaPAnt)
mov emnoedlel TIC amwAeleg PEOXOTTWONG KAL EKTIHATAL &lTe ATO  €QAQUOYT
LOEOAOY KOV HOVTEAOV, elTe amo To VPO PEOXOTTWOTS TwV TeAevtalwy Nuegwv. TéAog,
n tun FFG vroAoyiletat péow avtiotgopns dadkaoiag BEOXTS-mtoQoT|S, Yo Hix
dedopevn amoEEoT) KaTw@ALOU kat cuvOTKeS LYPaolag Tov edagous. Emertan tiun avt)
OUYKQIVETAL [LE TNV TN TS TEOYVWONG. Le avtiv Vv epaopoyr), to GFFG epagoudletat
oe kataveunuévn pooen kAtpaxag 500u x 500u, mapdyovtag xagteg FFG v toelg
turikég ovvOnKes vypaoiag Ttov eddgouvg kol duxgkelag Peoxomtwone. TéAog, to
oVOTNUA EPAQUOLETAL OE HIX TERA& ETTELTODIWV XQNOUOTIOLWVTAG T OEDOUEVA TOL
Rainscanner, evtomiCovtag TIg eQLOXEG OV elval ETIQEETIEIS 08 TANUUVQEG.

5. O aAyooOuog Storm tracking meotAapavel OO dladikaoies, a) TOV EVIOTUOUO TWV
KATALYOOQOQWY KLTTAQWV Kal ) TNV magakoAovONon Twv KUTTAQWV QUTWV. XN
dladikaoia EVTOTUOHOV TWV KUTTAQWV, XONOTLUOTIOLOVVTAL KATWPALX AVAKAXROTIKOTTAG
Ywx tov KaBopopd Twv TEQOXWV TOoL TEQBAAOLY TO KUTTAQO KAOWS Kal TIg
OLVTETAYUEVES TOV KEVTQOUL TOV. LUYKEKQLUEVQ, eetdlovTal Katw@Ala amo 25 dBZ éwg
35 dBZ, yux 1oV &evTtoTIOpO KLTTAQWV HE eAdxtoto euPadd 4 km? EmmAéov
XONOLUOTIOLEITAL EKTOS TOU TTIOAVYWVOU KAL 1 €QAQHOYT) MG €AAenpng, n omola wg
HaONuUatikd povtéAo epaguoletal kaAvtepa ot ddikaotes magakoAovOnong. H
dtadikaoia MAQAKOAOVONONG TWV KUTTAQWV XQNOLWUOTOLEL DIXDOXIKES EWKOVEG KAL
epaguoOCel éva HovTéAo ovvayme OX€0ewV HETAED TWV KUTTAQWV. LUYKEKQUUEVA
noaypatoroteitatr pia ddkaocia PeATIOTONTOMONG TOL YOAUMUIKOU TIQOPAT)HATOS
QAVTLOTOLXIOTG KUTTAQWV TOL MaQeABOVTOG e TV KUTTAQX, PACEL CLYKEKQLUEVWV

XAQAKTNQLOTIKWV TOVG, OMWS TO OXNHA, TO eUPaddv, Kol KLElwg v Heta&d Toug
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evkAeldela amootaon. EmnmAéov, Aaupdvovtatl vtoyn Kot oL daxducaoieg oLYXWVELOTS
Kal 0xlQeong twv kKuttdowv. O aAyoQlOpog epaopoletal oe X TERA ETELTODIWY
Boox1c Y va kaBoglotel 1 dUVATOTITA TOL V& AVIXVEVEL KAL VX KATAYQAPEL KUTTAQX
0€ DLAPOQRES XQOVIKEG KALHAKES, OTIWG 1) TaxpakoAovONoT mediwv avarkAaotucotntoag 10-
Aemtwv. TéAOg, 0 adyoplOpoc epappoletat kat Y KUTTaea VPNATS avakAaotikdttag,
avw twv 35 dBZ, oe MOAAATIAG eTteloddx BOOXTIC Kol DLEQEVVWVTAL T XAQAKTNOLOTIKA

TWV KATALYOOPOQWV VEQWV 0TV ATTiKn.
Amnotedéopata kat ZuCrtnon

BaOuovounon Z-R

Le autnv TV eVOTINTA TIOAYHATOTIOLEITAL [ OPALOIKT) aVAALOT) KAt BaOpovounong g
oxéong Z-R vy ) PBeAticwon g akpPetag g extipnong g Beoxns péow oavtao. H
ddkaoia amoteAeitar amo OVO KVELX OTAdIX, TNV AVAAVLOT) CLOXETLOTG TWV DEDOUEVWVY
Kat ) dwxdwaotio Padpovounong g oxéong Z-R. Ltdxog etvat péow NG oLOXETIONG
TV DEOOUEVWV TWV ETIYELWV OTAO U@V KAL TOV HETEWQEOAOYLKOV QAVTAQ, VA TIROKVOLV
noAAamAéc oxéoelc Z-R xat va avaAvbodv ta xaQaktnoloTikd Toug yix Kabe
meQlmTwoT).

H avdAvon g ovoyétiong PaciCetal 0Tov LMTOAOYIOUO TOL CLVTEAECTH] CLOXETIONG
Pearson p. Ot vtoAoylopol agxikd TEAYUATOTOOVVTAL O¢ eminedo otabuov, dnAadn
vroAoyiCetat évag ovvTeAeoTNG OLOXETIONG Y kK&Oe oTaBud avd ovpPdv. Xto Lxnua
4 magovolaletatl 0 aQOUOS TwV CLUPAVTWV ava otabuo, anod ta 13 emeloddx OV
xonowomomOnkayv, OmMov 0 CLVTEAEOTIIC CLOXETIONG NTAV AVW TOL 0QIOV, €VW OTO
Ixnua 5 ep@aviCetar 1 péon T ovoxétlone ava otabuo, mewtov  otav
XONOHOTOLOVVTAL OAX T CLUUPBAVTA KALDEVTEQOV OTAV XONTLLUOTIOLOVVTAL [LOVO T KAAX
OLOXETIOUEVA DEdOMLEVA, ONAQDY) cLOXETLOT dvw Tov 0.6.

H avaAvon twv otaOuwv pe kakr) ovoxétion oe oxéon pe 1 0€0m toug otV meQLoXT)
G peAétne anokaAvntel agketd potiBa. Ot otabuol mov Polokovtat Kovia 1) evtdg
megloxwv pe 00puvPo, ek ota PopetoavatoAtk tov Rainscanner, epgpaviCovv
OLVEXWG XAUNAEC ovoxeTioels, kdtw amod 0.6, Kat TeQLOQLOUEVO aQlOUO cLUPBAVTWY He

KaAT) ovoxETion.
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Zxnpa 4: O aplBuog twv oVPPAVTWV pe oLVTEAEOTH] CLOXETIONG HETaEL Tov Rainscanner kat
TwV emiyelwv otaduov va etvat vpnAotegog amnd (a) 0,6 kad (B) 0,7. ITnyn): (Bournas ko Baltas
2022a)

LEGEND
Rain Gauge Station
Correlation Coefficient (r)

LEGEND
Rain Gauge Station
Correlation Coefficient (r)

r<05

= 05<r<06 B Poor correlation
E 06<r<08 E 06<r<08
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H r>09 B r>09
Beam Blockage

- Beam Blockage
and Clutter Area and Clutter Area

Zxnua 5: O péoog ovvreAeotc ovoxétiong petald tov Rainscanner kat twv emiyetwv otaduwv
Ywx () OAa tax DB €oua ovpPavta kat (3) XONOHOTIOLWVTAG TA CULBAVTIA IOV EUPAVIOAV

ovoyxétion dvw tov 0.6 o€ kK&dOe otaOuo. ITnyn): (Bournas kat Baltas 2022a)

Ot otaBpot evtog axtivac 10 km amd to Rainscanner epgaviCovv yevikd moAA&
oVHPAVTA e KAAT) OLOXETION, EKTOC Ao Tov otaBpd AumeAdoxknmol (ID 2), o omotog
amoteAet e€alpeor). Ot otabuol ov PelokovTal 0To MAQAAAKO UETWTO TAQOLOIALOLY
pelwon ota kKAAWS ovoxetilopéva ovpPavia otav e@aguoletal éva vimAdtego
katw@AL TN mapdderypa, o otaBpog ®aAneo (ID 8) amod emtd kaAd cvoxetiopéva
ovupavta pe KatwAL 0.6, £xeL KaAT) oLOXETION O€ HOALS TEOTEQA OTAV TO KATWPAL elvat
0.7. Aut n tdon dev elval ATOKAELOTIKN LOVO YL TG TTAQAKTLEG TteQLOXES, KaBwGS Kat 0

otaOuog Awvooov (ID 6) otmn PopeoavatoAwr] megoxn eupaviCelt mapduox
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ovUTEQUPOQA. Metd TOV éAeyX0 daQOQwV Katw@Alwv, t0 katw@AL 0.6 OewpEr)OnKe
BEéATIOTO KAOWS PINTOAQEL AXQKETA KAAL TIG KAKEG OLOXETIOELS, eV dlXTNEEL ETTOOKN
dedopéva v ) Pabpovounon. TéAog, etvatr onuavtikd va onuelwdel ot ogopévol
otaOpol magovolklovv LVYNAEC ovoxeTloels HOVO O €va TEQLOQLOUEVO aQLOUd
ovUBAVTWV. AUTH 1] CUUTTEQLPOQAR OLOXETICETAL [E T XAQAKTNOLOTIKA TIC KaTorydag
OTwg o VYOG Peoxns, TV évtaot) te. EmimAéov, o xapunAég ovoyxetioelg umoet var pmv
opeldovtal povo oe opaApata tov Rainscanner, aAAd umogovv va vTodNAwWvVoLV
OLOTNUATIKA OQAAUATO 0& OUYKEKQLUEVOUG oTaBpovg pavtdo. Tétoteg diepevvrioelg
ATALToUV ETUTAEOV DEDOHEVA Kol Ty €KTOG Ttediov avaAvong g ev Adyw A.A..

Metd Vv avaAvorn cvox€Tiong, MEAYHATOTOLE(TaL TOo O0TAdlo NG Pabuovounon g
oxéong Z-R. Xonowomoovvtal Teelg opades Pabpovounong, avtr) mov agogad ota
ETELOOOLA BEOXTG, AVTY] TTOL APOPA CTOLG OTAOOUG KAL ALTT] IOV APOQA GTO GUVOAO
TV dedopévwy. O OXOALXOUOS TV AMOTEAEOUATWVY YiveTal otn BAoT TWV TIHWOV TWV
TIAQAUETOWV & Kat b. Zuykexouuéva Baoel BALOYoa@iag, TIHES TNG TAQAETQOL & TIOL
Kupatvovtat and 50 éwg 250 epappolovtal Yix oTeatoOpoQ@a cvoTrpuata (stratiform)
eva Tipég amtd 300 g 500 etvat katdAANAES Y petarywykov tomov (convective-based)
emeloodix Bpoxr)s. Ot convective TOToOL PRoxéc XaparkTnollovTal amd peyYAAng évtaong
PEOXOTTWOT) Kol KON XWOLIKT) KAlpaka, oe avtiOeon pe ta stratiform ovotruata mov
QaPOQOVV VEPT HeE PeYAAN Xwowkn KAlpaxka kot N xapaxtnolotika Booxrs. Ot
convective TOTOL katarydeg ovpPaivouvy KLEIWS To kaAokaioy, kabwe opellovtal o
Bloun avipwor) vepoL Adyw Oeppokpaotaknic dapoAac, evaw ot stratiform etvor Tumucd
OLOTHUATA TV XEEQVWV UNVV. TEAOC TIpEC TNG magapéToov a peyaAvtegeg tov 1000
OUVAVTWOVTAL O€ ETTELCODLA XLOVLIOV.

Ta amoteAéopata ano ) Badupovounon g oxéong Z-R yua kdOe opdda eppaviCovrat
TIAQAKATW:

BaOuovounon oe enintedo emetcodiov Bpoxmne

H PaBuovounon oe emimedo emetoodiov Poxnc amookomel oto va avadeifer tn
petaPAntom)ta g oxéong Z-R petald duxpopetikwv emeoodiwv Pooxrs. Ot
TIAQAHETOOL TIOV TIQOKVTITOUV HUTIOQOUV v XQNotpomomdovv yux va afloAoynOel n
Katdta&n e kabe katarydag oVppwva He Ta ws dvw avapegBévta. Ate&rxOnoav dvo
BeATiotomou)oelg, pilar Oov Kat ot dVO TTARAHETOOL BEATIOTOTIOLOVVTAL KAl pia OTIOL 1)
TAQAETEOS b opiletat otabepr) otnv tiun) 1.60 kot BeATiotoTOLEITAL HOVO 1) TAQAIETQOG
a. Kat ot dvo PeAtiotonom)oelg odrynoav oe vPnAn HetafAnToTnTa TV TIHOV TWV
TIAQAUETOWV O KAOE TeQIMTWOT). Le TEELS TTEQLTITWOELS, 1) TAQAUETQOS & LTTOAOYIOTNKE
o€ TIéc dvw tov 1000, oL omtoteg ovvdéovTal e emelOOdLX XLOVOTITWwoNG. EAéyxovtac ta
ol avtd emeloOdR pE TANEOQORLec Kawoy, eTuPePalwdnke Mwe amoteAovoav

ETELOODLX XLOVOTITWOTNG KAl doa avadetkvoeTal 1 alia g Padpovounong oe emimedo

xlix
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eTeloodiwv PBEOXTG. LUYKEKQIHEVA, €MEWDN TA EMELCOOX XLOVIOL amaQTilovtal amo
dLAPOQETIKA XAQAKTNOLOTUKA AXTIO OTL AVTA TNG PEOXOTTWOTG, EMNEEALOVTOL XQVITIKA
oL maQdeTEOL NG 0X€0ong Z-R kat aga emiPaAAetal n agaigeon Twv emelcodiwy avtwv
amo petémnerta Padpovounoels, m.x. Padpovouroels oe eminedo otaOpwv.

BaOuovounon oe enintedo emiyetov otaluov

Le avtv VvV MEOCEYYLWoN, oL oxéoels Z-R Pabupovopovvtal yx kabe pepovwpévo
otaOud, XONOWOTOLWVTAG TOAAATIAL eTTELTODL, HETA TNV AQAlQET TWV €MELTOdIWV
xoviov. Ta anoteAéopata magovodloviatl oto LxNua 6, 0oL defld KAl AQLOTEQX
TAQOLOLALETAL 1) XWOIKN UETAPANTOTNTA T@WV TIHOV TV TAXQAUETOWV a4 Kat b
avtiotolxa. EmumAéov, oto Zxnua 7, magovotdletal n xwokn petaBAntotmta g

TIQAUETQOL A OTAV 1) TAQAMUETQOG b opiletat oe pix ota®eQr) Tiu).

]
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<200

200 - 300
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Zxfua 6: Xwotkr) ovox£TLoT TwVv Tagapétowyv Z-R, a) magapetoog a, b) mapdpetooc b,
IInyn: (Bournas and Baltas 2022a)
Onwg @atvetar oto maveAd a Tov LXUATOS 6, oL LVPNAES TIHES TNG TTAQAMETQOVL 4
evromiCovtal OTO VOTIODUTIKO HEQOS, OTO MaQAAl0 pétwmo g AONvac, evw ot
XAHNAOTEQES TIHES 0TO PoOEEelo Tupa. OTtwg avapépOnie, vPNAN T TS TARAUETOOL
a Kat avtiotorxa XanAn tpn g mapapéteov b epgpaviCovtat oe oxéoelg Z-R mov elvat
TUO KATAAANAEG Yix convective emteloddia. Aedopévou otL to detypa meglaupavet 1ooo
convective 000 kot stratiform emelcodr, avtd TO ATMOTEAECUA LTIOdEKVVEL OTL M
LVPNAOTEQN AVAKAQOTIKOTITA OLVAVTIATAL OTO TIQAALO HETWTIO Kol ALYOTEQO OTO
PooetoavatoAwo tuniua g megoxne peAétne. H duagpopomoinon avty pmopel va
oxetiCetat KAt e TNV TUTIKT) TEOX X TV Kataty dwv otnv AN va, kabwg oL katarydeg
otV AOnva tetvouv va £xovv dlevBuvor amo T OVTIKA TTEOG AVATOAIKA. LUYKEKQLUEVX

TO KEVTIQO TWV KATAYWOWV TEQVAEL MAVW amd TOV KOATO TN¢ ZaAapivag omov
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T0QOdOTE(TAL ATtd TO VEQO TG OAAaToag, Kot odnyeltat Eog To 600 AlydAew KAt TNV
nteproxr] tov Ilewpak. H expdotwon tng peyaAvtegns moodtntag veov, dnAadn n
Booxomtwor, ovpPalvel AMOTOHA TOWTA OTIS TIAQAKTLEG TEQLOXEC, MIHMOUMEVN T
XQQAKTNOOTIKA convective katarydwv. ‘Emerta, 1 xataryda ovvexiCet va
EKPOQTWVETAL UE KATELOLVOT] TEOC TA AVATOAIKA UEXOL VA QTACEL OTO KEVTQO TG
AOBMvac. Exel teAka katevOvvetat eog ta BoQeloaVATOAKA 1) OTa avaTOA k& AdYw TG
niagovotag Tov 6govg Yunttos. Otav @tdver oe tonobeoieg pe vPNMAG vPopeTEo, N
évtaon e Pooxdntwong éxel pHetwbel, kat éTOL OTIC TEQLOXEC AVTEG TTAQATNEOVVTAL
POOXOTTWOES HE XXQAKTNOWOTIKA stratiform, dnAadn pétowag évraonc peyaAng
dLaQKELAG.
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Zxnua 7: Xwokt) ouox£TIon NG MAQAUETQOL a TNG oxéong Z-R 6tav n tapdpetoog b etvat
otaBeon [Inyn: (Bournas and Baltas 2022a)

BaOuovounon eviaiac oxéone Z-R

Le avt] ) BabOupovounor, okondg etvat n avadelén piag evoromuévng oxéong Z-R
XONOLOTIOWOVTAS TO OUVOAO TV OLOXETWOUéVWY dedopévwv. Efetalovrat dvo
nEooeyyloels: plor xonowomowwvtag OAa ta dwBéoua dedopéva Kat pix AAAN
XONOHOTOWOVTAG éva oXNUa PeAtiotonolnong/emaAn0evone. LInv mEwTn meQimTwon
n oxéon mov eEdyetal etvar 1) Z=300R", eve otnv devtepn n Z=321R"%. H emaAnOevon
G deVTeENG OX£€0MG 08 oTaBHoUg ToL dev ouUpeTelxav oty Padupovounon delxvel

HUIKQEG ATOKALOEIS TOOO OTO OLVTEAEOTI) OLOXETIONG 000 Kot 0to opaAua RMSE oe

li
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emimedo otabuov, kal doa Oewpeital kat mo aflOmoTn ot OX€0N HE TNV TOWTN
OO EYYLOM.

Ot mapaydpeveg oxéoelg Z-R ovykpivovtat ot ovvéxewx pe BAloyoapucés oxéoels.
Apxka, 11 oUyKLoT Yivetat pe BAoN TIC XQOVOOEeLRES BEOXOTTWONG KAt atfQOLOTIKTG
Pooxomtwong ava otabpo. Lto Lxnua 8 magovolaletat éva TMaQAdelyo Yix Tov
otaOuo, Yuxko, kat 1o emetoddlo E6. Ot umAe pmageg vmodetkvoouy TIg HETONOELS TOV
BooxOHETOOV, eV oL peTET)oels Tov Rainscanner mapovolxlovTat pLe YOaUHES o€ dlikpoa
xowuata, pe Paon ) oxéon Z-R mov xonowomnow|0nre. TUYKeKQIHEVA, e TOAOLVO
xowua, n eflowon Marshal kat Palmar, Z=200R'¢, pe koxkwvo xowpa 1 e€lowon
PaBpovounong oAwv twv dedopévewy, Z=32IR"3, pe pwB xowua n efloworn Z-R
Paoilopevn oto emeloodLlo PEOXNG, e HAVEO XoWHA 1) e£lowon mov vTtoAoyioOnke Y
tov otaBuod xar pe pumAe xowua m PeAtiotomtomuevn oxéorn (optimum), Otav
xonowonoteltar o oOVOAO dedopuévwy TOL OTAOHOD HOVO YIX TO OUYKEKQUUEVO
emeloodlo Booxrs. To amotéAeopa mov taLalel kaAvUtepa oe k&AOe yodpnua eival 1
teAevtala emAOYT) Ao TIC TAQATIAVW, APOL OL TapdueTEoL Z-R BeATioTomoovvat yx
va TaQLACovV e T OUYKEKQLUEVA dedopéva.

Le 0Aa ta oxnuata, 1) e€lowon Marshal kat Palmer deiyvel tic peyaAvtepeg amokAioelc.
Luykekouuéva,  oxéon odnyel oe vTteEEKTIUNON NG BEOXOTTWONG T& CUYKQLOT HE T
dedopéva tov Ppoxoyoapov. H eflowon mov eivar 1o kovtd otn PeAtiotomompévn
oxéon elvar avty mov PaciCetat otov otabuo, Kot akoAovBolv oL eElOWOELS TOv
BaoiCovtatl 0To oVVOAO TV dEDOUEVWV KAL YIX TO OUYKEKQLUEVO €TTEL000L0. Lto LXua
8, magatnoeital otL evw 1) BeATiotomtomuévn oxéon (optimized) patvetar va detxver tnv
KaAUTeQN mEooapuoyr) oe kaBe 10Aemto Uog PeoxonmTwong, N Ty e aboloTikn
Booxomtwong dev magovotdlel TO KAAVTEQO AMOTéAeoUx 0 OUYKQOLON HE TIG KAAEC
oxéoelc. Avto opeidetal otnv éAAenpn dedopévwv tov Rainscanner otig 02:00, 6tov dev
KATAYQAPOVTOL DEDOUEVA, DATAQATTOVTAG TO YOAPNUA aBQoLloTikrc BROXOTTWoNG.
TéAoc, ota dayoappata tov oxuatos 9, magovotdlovtat ot deikteg RMSE, BIAS,
Normalized Mean Absolute Error (NMAE) kat Normalized Mean Bias (NMB) peta&v twv
HETOT|OEWYV TOV BROXOYQAPWV Kol TwV LWV BEOXOTITWONG TOL eKTIUNONKAV Héow kAOe
oxéong Z-R.

Onwg @atvetar oto XxNua 9, ta kaAvtepa anoteAéopata oe OAOVG TOLG delKTES Ta
TAQOLOLALEL TO CVVOAO TV dedopéVwV oL amaQTiCovy TIg BEATIOTEG AVOoeLS (optimum),
dnAadn tic Z-R mov meokvmtouy yia k&dOe otabuo ava yeyovog. OAot o deikteg éxovv
WG BEATIOTN TN TNV pundevikn Tiun, evaw ot detkteg BIAS kat NMAE €xovuv kat agvntikég
TIHEG, avAdEKVVOVTAG TNV VLTOEKTIUNON 1] LTegekTiunon g Pooxne amd To
Rainscanner. EmtumtAéov, extdc amd Tig TIHES TV dEKTWY, KAL OVYKEKQUUEVA TNV TLUN TNG

dlapéoov, OV ATEKOVICETAL e TNV KOKKLVT] YOAUUN Kol TRéTtel va ipooeyyilet tnv

lii
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pundevucy tr), efetdletal emiong Kol 1) OXOTOPA TOL delyHATOS, OOV 1) HIKQOTEQN

dlxoToQd etvat kat 1) PEATIOT.

[ |Rain Gauge [ Rain Gauge
~——a— Marshal n Palmer —g— a=200 b=1.60
—=#— All Data 12 |=—8— a=321 b=1.53
—=#— Event Based —8— =279 b=1,79
—— Station Based —8— a=402 b=1.83
—a— Optimized —— a=365 b=1.48

25

Rainfall height [mm]
;
Accumulative Rainfall [mm]
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Zxnua 8: Yipog Booxr|s (agtotepa) kat abolotikn} fooxomtwor (de€la) yiax tov otadpo Wuy ko,

oto emtelcddo Eb.
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Zxnua 9: Boxplots twv a) RMSE, b) Bias, c) NMAE, and d) NMB vy k&0e oxéon Z-R
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Avdapeoa ot allodoynuéveg oxéoelg Z-R, avt mov Paciletat oe 0Aa ta dedopéva,
Z=321R'%, etvar 11 kaAUteEn, akoAovOovpevn and g Z=261R"? kat Z=431R'?%, evw 1)
Z=200R '* tng Marshal kot Palmer divet ta xe100teQa amoteAEOUATA O OAEG TIG LETOUKEG.
H oxéon Marshal kat Palmer Adyw g peydAng amokAiong tng dixptéoov, amo avt tng
BéATIOTC, KAOWG KoL TN HeYAAT TUTIKT) ATIOKALOT), OTIWS AVADEKVVETAL ATIO TO LLEYAAO
€VQOG HETAED TOV AV KAL KATW TETAQTNUOQLOV, palvetal mwg dev evdelkvutal yx to
oVUVoAo twv otabuawv. ITagoAo mov  Z=431R"» napovotdlel Oetikd amoteAéopata, 1
aovntkr] T NMB vnodekviel vmoektipnon g Pooxdnmtwong, Kat aga Koivetal,

KATAAANAT KLEIWG HOVO Y emeloodix LYMATIC avakAaoTKoTnTAg.

MovtéAo Bpoxrg - Amoppornjg

To povtéAo Boxnc-amoeEorc avantuxOnKe Kot eQaQUOLETAL OTO L) AOTIKO TUTUA TG
AAIT Xoapavrandtapov, pe €£0d0 TO ONUEl0 dAOTAVOWOTG TOVU TOTAHOV HUE TOV
avtokvnTodeopo e Attikrjc Odov ouvvoAwrc éktaong 231,50 km?2 To dudyoappa
X00VOL-amoEEONG EokLTITEL 0TOo eaguoyn LITI, xonowonowwvtag péyedog keAov 500
ux 500 u pe Baon to péyebog e Aexavng amopoorc. H kataveunuévn avtr| pooen
odnyel oe ouvoAucd 1021 keAtd. 1o Zxnua 10 magovotdlovtat oL KAITELS TV KEALWV KAt
ottipec CN AMCHIL evw oto Zxrjua 11 magovotdletat to St yQa A XQOVOU-ETUPAVELXG
e AAIT Zagavtamotapov. To povtéAo BEoxTs-amoQor|s EQaQUOLeTaL 0T OLVEXELX
oe €£L emeloodlx Pooxnc, mov mapovotilovtat otov mivaka 2. O mivakag 2 erunAéov
e UPBAveL TN dlkQKelx TOL YeYovoTog, kabwg kat TNV abpoloTikn BooXOnMTwoT Twv
TIQONYOVUEVWY TIEVTE NUEQWYV, TIQOKELEVOL va aEloAoynBovv ot cuvOTKkeg vyoaoiag

TOL £dAPOVS TNV TUEQA TOV YEYOVOTOG.

ITivakag 2: ITgpooopowwéva eTteloodLa Kol KUQLX XAXQOKTNQLOTUKA.

IInyn: (Bournas and Baltas 2022b)

Enewoo Aoxn TéAog Arorelx SZDPaIy Méon emupaveiakn
oo Hpegounvia Huepounvia (h) (mm) ooxomtworn (mm)
6 17-12-2018 23:40  18-12-2018 13:50 14.2 13.8 25.8
21 24-11-2019 21:40  25-11-2019 08:30 10.8 37.0 30.4
31 01-06-2020 14:00  01-06-2020 20:00 6.0 0.0 20.5
48 09-06-2021 18:00  10-06-2021 02:44 8.7 0.2 25.0
50 12-06-202111:50  12-06-2021 19:00 7.2 32.0 26.0
61 23-11-202117:30  24-11-2021 07:40 14.2 2.6 26.4

liv
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Zxnua 10: Katavepnuéva dedopéva; a) KAtoeig %, b) Curve Number yia AMC-II ouvOrjkeg
IInyn: (Bournas and Baltas 2022b)
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Zxnua 11: Aivyoappa xeovov-emipdvelag: a) Xoovog artopotic; b) ITooooto abpolotucric
QTOQQEOTG AVA WA éws otV €£000 g Aekdvng. ITnyn: (Bournas and Baltas 2022b)

Amd T TMEOCOUOIWHEVA ETELCOdX ooxNG, Ta emewddn 31, 48 war 50 elyav
XQQAKTNOWOTIKA Tov PaciCovtav oe convective Booxomtwor), dNAadr) o avEnuévng
évtaong Peoxn He HkQr) Xwotkn kAipaka. Evd ota emelodda pe stratiform Booxontwon
N emtiAoyn g oxéong Z-R €detfe pkQég dlapoég, ota eTelc0dlx convective, pix oxéon
Z-R, 7Z=275"%, n ontoia vrtoAoylotnke Yo tov otaOuo EAevotva, odryynoe oe un Aoyuég
THEG BEOXOMTWONG, OTWS PALVETAL ATIO TO YEYOVOS OTL 1] TEQLODOG EMAVAPOQAS TNG
oox1c oe auTtéc TIC TEQLMTWOELS LTOAoYylotnKke oe Tavw amo 100 xoovix, evw ot
vndAowreg oxéoelg Z-R extipnoav mepiodo emavagopds 10-20 xodévia. Avtd 1o
amotéAeopa delyvel OTL MEEmel va XONOHOTOLElTaL pe TeoooxT) N oxéon Z-R, kat edka
oe eMeloOd PEOXNG HE MEYAAES TIHES avaKAAOTIKOTNTAC kKal évraons. EmumAéoy,
pHetall TV XENOoTompévVwY oxéoewy, @atvetal ot 1 oxéon Marshal kat Palmer
odnyel otn peyaAvteon maoxr axuns. AvtiBeta, ot oxéoeg Z-R mov Pacilovtal o
convective emeloddr ep@avICOLV TNV HIKQOTEQEN alxpn] ota stratiform emelcodx

BOOXOTTWOTC KAl T peyaAvteon ota convective etelocodix. Avtd to amotéAeopa delyvet

Iv
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otL pax oxéon mov Paociletal oe convective emelgOdIx elval TEOTIHOTEQN Yl XONOM

ATIOKAELOTIKA O€ TETOLOL TUTOL ETELTODL, DNAADN O€ €MELTODIX OTIOL TAXQATNQELTAL

vnAn évtaon Peoxns, kabwg oe stratiform emeloc0dx, kAL oe PETOLAG €vTAONS PEOXNS,

1 VTOEKTIUNON TNG TTAQOXNG Elvort dedopév).
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Zxnua 12: Ydogoypdapnuata yux dagogetikéc oxéoels Z-R ava emeioddio fooxnc. Ot umAe kat
KOKKLVOL Q& B00L UTTOONAWVOLV TN HEDT) ETILPAVELAKT] BOOXOTITWOT] KAL TIG ATIWAELES, AVTIOTOLXA.

IInyn:(Bournas and Baltas 2022b)
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Gridded Flash Flood Guidance

To GFFG epapuoletar o€ dV0 meproxés, ot AAIT Zagavtamdtapov kot 0To cVVOAO NG
TEQUPEQELAG ATTIKNG. AQXIKA, TAXQOLTLALOVTALOL XAQTES TTOL ATIOTLTIWVOLV TO KATWPAL
Pooxnc kat avaAvovtal Ta amoTeEAETHATA. LT OLUVEXELR, TO OVOTNUA £PAQUOLETaL O€
Hlx oepa  emeloodiwv Beoxrs, mookelpévov va efaxOel o duvnTkog kivdvvog
TANUHVoOC o0& KO TeplmTwor).

Lto Zxnua 13 magovotdloviat oL XAQTES OV ATEKOVICOLV TO KATWEPAL BQOXTS Vi T
Tolar xpovukd duxotruata abpootikig Peoxdmtwong, 1, 3 kat 6 wEes, Y HETOLEG
oLVONKES LYEATIAG TOV EDAPOVS, eV 0TO LXNHA 14 Tapovotaletal T0 KATWPAL yix dVO
dlapopeTikéc oLVVONKES LYQAOTIAG TOL €DAPOVGS, HETOLEG KAl KOQeOUEVeS ouvOTKeG. Xe
KAO&e TEQITTWOT), EXV OL TTOAYHATIKEG TLUES TNG LYQACIAS TOL £DAPOLS TAOLXLOVV HLE TIG
npoavapeQOeioeg TIpég, TOTE TO KaTtwWPAL amoteAel Tnv Tipr) FEG mov xonopomnoteitoa

Yot CUYKQLOT) e TOUG TIQOYVWOTIKOUS XAXQTES BOOXOTITWOT|G.
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Zxnua 13: Kat@Al fooxns yia Héoeg TIHES VYQaoiag Kol Yio TOelS dlxOQETIKT|G DLAQKELOG
aBpolotikn feoxoTTwon a) piag weag b) 3-wewv kat c) 6-wowv ITnyr) (Bournas and Baltas 2022¢)
Epaouolovtag v mapandvw pebodoAoyia, mokvmtovv ot xaptes FFG yux toelg
dudoketeg aBpolotikng Peoxonmtwong, twv 1-, 3- xat 6- wowv. Ou xaptes avtol
ovykeivovtal pe dedopéva MEOYVWoNGg avtiotolxne dgkelag, eEaopalilovtag pia
L00QEOTIAt HETAED TOL dxOETipov XOOVOL TEOEWOTOMONG Kat TG avEavopevng

apePaldoTnTac. LUYKEKQIUEVA, TO OCVOTNHA OV ATIAVTA OXETIKA HE TNV aKQLPT) OTLyun)
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7oL ovUBatvel ] TANUULEA, dAAAL eav O TEOKANO el TANUUVEA 0TV eV Ay w dLAQKEL.
‘Etor, evw mn xonon peyaAvteong Oudokelxg BOOXNG ETUTQETEL HEYAAVTEQO XQOVO
avtidoaong, elvat &yvwoto 1 akePr)c oty mote Oa ovpPel N MANUULEA evtdg NG

dLdokelag avtrc.

i
b) AMC-IIT =

D L2250 0 10
(  mmm LG

a) AMC-II
022154 5 e
—_—— —

Threshold Precipitation [mm]

0 10 20 30 40 50 60 70 80

Zxnua 14: Katd@At fooxr|c v 3-wor ddprelag abolotik] fEoxOTTwon Kal Yo ouvOnkeg
vyoaoiac a) ACM-II (uéoeg) kot b) AMC-III (vygéc); IInyr (Bournas and Baltas 2022c)

H emidoaon g vypaoiag tov edAPOLS 0TOVE TAQAYOEVOUG XAQTES elval ONUAVTIKT,
OTWS Paitvetal oto Lxnua 14, 6ov amekoviCetal to KatwpAL BRoxrs Yix 000 cuvOT|ieg
vyoaotag, HETOLEG Kal VYQES ouvONKeS. XTn 0eVTEQT TEQITTWOT) OL TUUES TOL €XEL TO
KATW@AL elvat [IKQOTEQES, IOV LTIODNAWVEL OTL aTtatteltan HikedTeQo VPog PEOXNS Y
va exdnAwBel mAnupvea. ToviCetat OTL 0 AVTIKTUTIOS TG LYQACIAG TOL €dAPOUVG elvatl
HEYLOTOG 08 TeQLOXEG He dlamepatd edder, dott | tur) tov CN e avtd ta edden
HeTaBAAAeTAL ONUAVTIKA OTAV ETUKOATOVV &Noéc 1] vypéc ovvOnkes. AvtiOeta,
TEQLOXEG TOL elval OXeTIKA adlaméQaTes, OMWS 0 AOTIKOS LOTOG, delyvouv Aryoteon
e£apTnon anod TIg ovVONKES VYEAOTIAG TOL edAPOLS, KABWS 1 duvATOTTA ATIOEEONG
elvat jdn vnAn.

It ovvéxewr, maQovoldleTal 1 epaguoyr] tov ocvotruatos GFFG ot AAII
Zagavtanmotapov kabws Kot og OAT) TNV €KTAOT] TNG TEQLPEQELNS ATTIKNG YIX ULt OELO&
emeloodiwv Peoxrc. e avtv Vv nepiAnyn, magovowkletat to Eneiocodio Pooxnc E50,
miov ovVERT otig 12-06-2021. Ot x&eTeg PEOXOMTWONG Kol Tt KEALX OTIOVL EKTIUATAL O
KIVOLVOG TIANUUYEAG Y dedOpéva aBQOLOTIKTG BEOXOTTWOTS 3 WEWYV, Ttaxpovotklovtat
oto Xxnua 15. Onwg patvetal 0to oxNua, oL Tteplox£g OTIS omoteg eppaviCetal kKivduvog
TANUUOEAG  elval OLVOEdeHEVES UE TIC TEQLOXEC OTIOL  TapaTnENONKe LVYNAN
Booxomtwor). Xto Xxnua 16 magovoiklovtat oL eQLOXEG OTIOV TO OVOTNHX EUPAVIOE
KivOuvo évavtl mANUUOEAS, O KATIOX XQOVIKY] OTiypr), tooo yux 1 AAIl

ZagavTamdtapov 600 KAL YL TNV TEQLOXT] TNG ATTIKTG.
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Rainfall, D=3h, Valid on 12-06 15:00

Flooded Cells, D=3h, Valid on 12-06 15:00
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Rainfall, D=3h, Valid on 12-06 16:00

Flooded Cells, D=3h, Valid on 12-06 16:00
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Zxnua 15: 3-won Kataveunuévn poeer] fooxr] kat KeAld pe KIvOuvo TANUHVQAS Y TOELS

X0OVIKEC OTLYHES Katd TN didpketa Ttov Entetoodov E50 otn AAIT Zagavtanotapov

Total Flooded Cells, D=1h
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Total Flooded Cells, D=6h
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Total Flooded Cells, D=1h

Total Flooded Cells, D=3h

Total Flooded Cells, D=6h
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Zxnua 16: ITeploxég yux T omoleg 10 oVOTNHA AVEPEQE KIVOLVO TATUHVQAS, YL TO ETELTODLO

E50, xoNnopomowvtag diapoeTikrg dagkelac atdQoLoTiky] BooXOTTWOT).
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Onwe @aitvetal, 10 TeAkd anmotédeopa elvat to O, aveEaQT)Tws TS abQOLoTIKYS
dudokewxg mov  xonoworoteitar (1- ,3- 1 6-wowv). H dwxpopa petald Twv
ATIOTEAEOUATWV TV PEOXOTTWOEWY OXPOQETIKNG DIAQKELAS OTIWS ava@épOnke
éyrertat otov XQOVo TEOELDOTIOMONG e TNV 6-weEn va éxeL Tov peyaAvtepo. Avtifeta,
pe tn xorjon s FFG dudokelac piag woag etvat epuktog 0o TQOoodLOQLOOG TS XQOVIKTS
TANUUVOAG, OTIOL OTNV MeRIMTwon avt eivat petald twv wowv 15:00 kar 16:00,
aAVATOAKA NG Aekavng evw petald 16:00 pe 17:00 epgpaviCovtat ot péyoteg tipéc. To
TIAEOVEKTIUA TOV HETEWQOAOYLKOU QAVTAQ EYKELTAL OTO YEYOVOS OTL OL TIEOPAEYELS
QAUTEG UTIOQOVY VO AVAVEWDVOVTAL 08 AeTITEG X0OVIKEG KAlpakes (Tt.x. 10AéTtTar) kot oo
UTOQEL Vot OLVELOPEQEL OTNV TTAQAYWYT) AHeTWV TROYVWoewV (Nowcasts).

TéAog, moaypatomoteital px avaAvon evatcOnoiag, 0mov oL KUOLEG TAQAETQOL TOV
OLOTNHATOG LETABAAAOVTAL KAL EKTLULATAL T] €TOQAOT) TOUG 0TO amotéAeoua. Ot kvLeg
TIQAETQOL TOV CLOTHUATOC Elvat o) 1) Telodog ETMAVAPOQAS NG BEOXOTTWONG TOL
XONOLUOTIOLE(TAL Yt TOV VTTOAOYLOWO TNG TTAQOXTS KATWPALOD, B) oL cuvOnkeg vyoaoing
TOL £dAPOVS KaL Y) 1) oXéon Z-R mov xonouomoLeital yir ToV HETAOXTMATIONO TNG
AVAKAXOTIKOTNTAG O¢€ BROXOTTWOT). Xto XN ua 17, 0N mewtn Yoauur) anetkoviCetal to
OTUYHLOTUTIO TOV OLOTHHATOC Y px dedopévn xoovikr) otryur] (12-06, 16:00, tolwon
BooxomTwon), 01w vroAoyiletal PAoel TWV AQPXIKWOV TAQAUETOWY TOV TLOTHHATOC.
Yanv devteQEn yooauun, 1 aQloteQn ekOva amewoviCel TNy enidoact g TeQLOdov
ETIAVAPOQAS TNG BEOXOTTWONG OTOV VTOAOYLOUO TOU KATWPAIOL ATOQQONG, He TN
petaBoAr) g amno T=5 étn oe T=10 étn), N peoaia ewdva anewkoviCet v enidEAoT TOL
TIOOOOTOV LYQACIAG TOL €dAPOVE, pe TNV HeTaoAr) Tov and 70% oe 100%, kat 1 delidk
ewova ametkoviCel v enidoaon g oxéong Z-R, pe 1 petafoAr) e oxeong amnod
Z=321R'% ge Z=200R"®. L& oUyKQLOT) KLE TO AQXIKO OTLYHLOTUTIO, 1] ETUOQAOT) TG TTEQLODOV
ETIAVAPORAG elval eAGXLOTN, evw 1) emidoaon Twv cLVONKWV VYEAOIAG TOL €dAPOLS
etvar n o peyaAn. H aAdayn otn oxéon Z-R av&dver tov aglOud twv keAwwv mov
TANUULEICOLY, AoV N epappoyn NG odnyel oe VPNAOTEQES TIUEG €vTaonS POoXTS,
aAA& 6L otov (d10 BaBuo pe TV emidEAOT TOL TOCOCTOV LYEATIAG.

Ta amoteAéopata delyvouv ws oL dxPoES 0TV TERIMTWOT HETABOANG TG OoXE0NG Z-
R etvat ovvn0ws pkeés, agpov to vog g BeoxMc dev petaPdAdetal onpavtcd, pe
amoTéAeopa va emnpedlovTal Kuplwe Ta keAla twv omolwv to 1Pog TG aboloTikrg

BoOXOTTWOTNG TAV KOVTA OTNV T ¢ vtoAoylopevng FEG.
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Flooded Cells, D=3h, Valid on 12-06 16:00
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Zxnua 17: AvaAvon evaoOnolag evog oty llOTUTIOU (TTIWT YOXUUT]) He aAAayn: o) TG
TeQLOdOL emavaoag amno T=5 étn oe T=10 é1n, ) tic oLVOTKES LVyoaoiag ard 70% oe 100% Kot
v) ) oxéon Z-R and Z=321R"% ge Z=200R*4.

AAyopiBuog maparxodovOnong kataryidopopwv vepwv

O aAyoplOpog mapakoAovONoNG vepwv amoteAeltal ano Tig daxdikaoieg avixvevong
TWV KUTTAQWV KAL TNG TQaKOAoVONoME ¢ Togelag Tovg. LTV MEWTN TEQITTWOoT),
TILEOVOLALETAL 1] IKAVOTITO TOL AAY0QIOHOL Vo avixveVel Ta cVVVEQQ pe BAOEL TO OQLO
avaxkAaotkotntac. Lto Xxnua 18 magovoialetar 1 dagopd petald Tng xonong
dLAPORETIKOV KATWTATOL 0Qlov avakAaotikotntag, 25 kat 30 dBZ, kabwg xaw 1 xonon
TOL aLOTNEOV TMOAVYWVOUL 1] TNG MEOoaQUOYNS piag éAAenpng (fitting ellipse) yio tnv
AVATIAQATTAOT) TWV TEEQLOXWV TV KLTTAQWV. OTtewg aivetat, To 0oto 25 dBZ Aettovgyet
KaA& Otav XQNOWHOTIOLETAL YIX TNV AvVAYVEOQLOT] TwV TOALYWVWY, aAA& OxL Otav
xonowonoteitat pe éva mEooaQUoopévo eAAenpoedéc. EmmAéov xonoonowwvtag wg
EAAXLOTO eUPADOV VOGS KATALYDOPOOL VEPOLS Ta 4 km?, tpoodlogilovtat ovvoAka 11
KOTTOAEA. XNV mepimtwon twv 30 dBZ, to mpooagpoopévo eAAenpoedéc mapovotilet
KA aTOTeEAEOUATA, OXETIKA HLE TNV TIQOOAQMOYT] TOV 0T AVTIOTOLX X TOAVYWVQ, TNV
EKKEVTOOTITA TOV Kol TNV kKAlon tov. Emopévag, dedopévng g éueaonc oe ovotuata
évtovng Peoxomtworng, xenowornoteitat to 30 dBZ pe tnv mpooaguoouévn EAAen)m v
TOV TIROTOLOQLOHO TWV KEVTOWV TV KLTTAQWV. TéA0og, emiAéyetat kat to 6olo Twv 35 dBZ
YWX TNV ETUOTUAVOT] TEQLOXWV OTIS OTIOLEG ETUKQATNOAV LOXVONG £viaonsg Pooxés,
KATAAANAEC yia TNV &pagpoyn Tov aAyoolOpov magakoAovOnong oe emimedo
emeloodiov Poxmnc.
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x10* x10%

x10%

Zxnua 18: AnoteAéopata tov aAyoplOpov avixvevong 0Tav XONOHOTOLEITAL DXPOQETIKO

KATWPAL AVAKAROTIKOTNTAG KoL OX1JH& TIQOTAQUOYTG.

Lxetka pe ) dwxdwkaocia mapakoAovdnong oe dadoxikés ewoves, o aAyoQlOpog
eTAVEL TO MEOPATNUA TNG AVTIOTOIXIOTG K&ADE LOTOQUKOV KUTTAQOVL e TA KUTTAQA IOV
amekoviCovtat ot véa ewova. Eva kOttago dvvartal, elte va evtomiotel o€ pia véa,
aveEaotnTn Oéon, elte va ovyxwvevtel pe éva dAAo kOTTAEo o€ pia véa B€om (merge),
elte va efagaviotel. TéAog véa kUTTaa dvvavtat va dnpoveynbovv xwols va éxet
LTTAQXEL KATIOX CUVOEDT) TOUG U VA LOTOELKO KUTTAQO, EQOCTOV deVv TneEeltat o kavovag
oL dlapeQLooV (split) ov Baoiletal kvEiwg otV andotaor, To péyebog Kat oxyua
Twv dVo KLTTAQWV. Xto XxNua 19, o aAydplOuoc magakoAovOnone epaguoleton
xonowonowwvtag 10-Aemteg  ewoves avakAaotwkotniag ava 10-Aemto  XQoviko
dLdoTNUA. LUYKEKQLUEVA, TEVTE EKOVEG AVAKAAOTIKOTNTAGS, DIAQKELAG 2 AETITWV, TIOL
elval M XOOVIKI] avAALOT TOU QAVTAQ, OVYXWVEVOVIAL Yt V& OQLOTel TO Tedlo
avTavakAaong dgkelag 10 Aemtav. Lto oxrua pe kOKKiva ToAVywva tagovotdlovtat

T KUTTAQA TNG TEEXOVOAS XQOVIKNG OTLYHIG, VW UE DAKEKOUUEVT] LAY YOOUUN T
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KUTTAQA TNG TIEON YOUUEVTG XOOVIKHC OTLYUNS Y T oTtolx yivetat n avtiotoixon. Amo
T ATMOTEAETHATA  @ALVETAL TIWS O  aAYyOQLOHOS  A&lTovQyel  IKAVOTIOUTIKA,

£QPAQUOLOVTAGS TOUG KAVOVES OVUYXWVEVOTG KL DLAEQLOUOV OTIOV ATIXITETOLL.

x10*

x10* 01-Jun-2020 15:40:00

«10? 01-Jun-2020 15:50:00

10" 01-Jun-2020 16:00:00

x10%

Zxnua 19: Epappoyr] tov adydodpov magakoAovOnong petald 4 etkdvwv e Xpoviko pripa 10-

AETITWOV

TéAog, o aAyoplOuog mapakoAovOnong epaguoletal oe OAx Ta eTteloOdX BEOXNG TTOV
oVAAEXONkav amd to Rainscanner (Appendix A). Xto Iynua 20, magovoixletat 1
nagakoAovOnon vy ta emewoodr E31 war E50. XuvykekQuuéva, pe UTAe yoapun
TEOLOLALETAL TO OPLO KAOe KUTTAQOVL (0€ TOAVYWVO) TO OTOL0 O€ KATIOLX XQOVIKN
OTLY T NTAV TIAV® ATO TO KATWPAL avakAaotikotntag, 35 dBZ otnv mewtn yoappr) kat
40 dBZ otnv devtepn yoapun. ErumAéov, pe kdkkivo xowpa amekoviCoviat ta kévtoa
TWV KUTTAQWYV VAW UE DLAKEKOUUEVES LAVQES YOAULLES T) OLVEXT]S TTAQAKOAOVOTOT) TOULG.
Ta amoteAéopata yiax ta 40 dBZ etvat 1o evkovr) AOyw Tov pKQOTEQOL aLOUOV TV

avayvwolopévwy  kuttdowv. Ta amoteAdéopata yux OAa ta emelcodx  [BEoxNg
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amewkoviCovtat oto IMapdotnua B (Appendix B), oémov yivetar o evitomiouos twv
TLEQLOXWV OTIG OTTOleG MAQATNONONKAV HEYAAES TIHEC AVAKAROCTIKOTNTAGC, Kol &Qax OTO
TEQLOOOTEQN €KTAOT) KATAAAUPAVOLY AUTEC OTNV TEQLOXT) HEAETNG, TOOO TTEQLOTOTEQES
TIEQLOXEG EMNEEALOVTAL AQVNTIKA ATO TO OUVYKEKQIUEVO ETELCOO0 PROXTG. AnAadm),

YiveTal i eKTipnon g o@odooTnTag HeTall TwV emelo0dlwv BEOXTS.

x10* E31- Z > 35dBZ cells x10* E50- Z > 35dBZ cells

-5 L TR I T L 1
% 10* x10%

Zxnua 20: Ieoroxég pe vnAég tipéc avaxkAaotikotnta, avw twv 35 dBZ (owtn yoappn) Ko
Katw twv 40 dBZ (devtepn yoapun), ywx ta emetcddw foxrs 31 ko 50

Lto Zxnpa 21, yix ta emeodda 31 kat 50, mapovotdlovtat Tar KEVTOX TV KUTTAQWY Yl
katw@AL 35 dBZ, 6mov amewkoviCetal pe BeAtiwpévn oapnveta n 0€on twv KLTTAQWY
KaL KLelwg 1) dtevOvvon twv vepwv. Ta avtiotoya amoteAéopata Y OAx ta eTteloodia
Booxrc mapovorlovtat oto Iapdotnua C (Appendix C). H epappoyr) avtr) odnyel oto
Zxnua 22 omov amtetkoviCovtat oL KUELEG dLeLOVVOELS TWV KATALY DOPOQWY VEPWV OTNV

Attik).
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x 10% E50- Z > 35dBZ cells
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Zxnua 21: ATotOmwon Twv KEVIQWV TV KATALYWO0POQWY VEQP®V ILE AVOUKAXOTIKOTNTH TAV®

atd 35 dBZ kat evtomiopog g kvplag dtevluvvong
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Wind Direction %

-5 L 1
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x10%

Zxnua 22: Kogteg Atevfivoels katarydo@ogwy VEQMV 0TV TeQLOXN TNG ATTIKTG. Mée KOKKLVEG
YOAHUEG OL TIO OLUXVEG, KL EV OUVEXELX OL UTIAE, OL KITQLVEG KL OL Lo, HLE TOTOOTA OCUHPWVA

KO JLE TO DLAYQA LA,

H ntAetovéomta twv katarydwv, 1o 40% twv emeloodiwv Beoxr)s mov peAetOnkay, £xet
KatevOLVVOT ATIO VOTLOAVATOALKA TTEOG BOQELODVTIKA, TTEQVWVTAS TIAVW Ao TNV AOTva.
AxoAovBwg, magovodlovial katevOvVoels amd dLTIKA TEOG AVATOAKA Kol Ao
BopeloduTid TEOG AVATOALKA, KAOWGS Kol LEQUKES TTEQLTITWOELS [le KaTevOLVOT armd vOTo

TQOG oM. TEAOG, ATIOKAELOTIKA 0& TEQUNTWOELS XELLEQLVWV ETELOODIWV, evToTtilovTat
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kat Oevbvvoelc amd Poeod mEOS VOTO. Xe AULTEC TIC TEQLTMTWOELS, TA VEPN
xagaktnoiCovrar  amd  xaunAn  taxvmnta  kat  XapnAés  €wg  pETOLEG  TLUEG
AVOKAQOTIKOTNTAC, IOV anavtwvTal o¢ stratiform véepn. Ev yéver, n mAelovotnta twv
emeloodiwv  Peoxnc He convective  xaoaktnowotikd, OnNAadr)  vymAéc  Tiuég
AVAKAXOTIKOTNTAG Kol Taxvtntag elxav  devOvvon dvtikd / vOTIO dUTIKA TIEOG

AVATOALKE, OTIWS avTég amekoviCovtat oto Lxnua 21 v ta emetoddia E31 ko E50.

Lvunegdopata kot MeAdovtikr) Egevva

H magovoa AA. magéxel éva oAokAnowuévo mAaioo yux 1n xoron dedopévawv
HETEWQEOAOYIKOV QAVTAQ HE OKOTIO TNV EKTIUNOT] TOL TANUUVEUKOV KIVOUVOL KAl THV
éyraugn mooewonoinon mANupvowv. H éoevva mpoo@épel anmavtioelg oe Paoikd
EQWTIHATA OXETIKA LE TN XOT)OT) DEOOUEVWV HETEWQOAOY KOV QAVTAQ, ATTIOKAAVTITOVTAG
OTL, €VW TA DEOOUEVA HETEWQOAOYIKOU QAVTAQ UTOQEL va €XOUV gvEelx EPAQUOYT), T
apeBatdmTa WG ATMOTEAETUA TWV TPAAUATWY KAl U VTAXQENG TOLOTIKOV eA€YXOL
UTToQel Vo TteQLoQLoEL TNV TMOAKTIKOTTA TOLG.

H épevva amoteAeitar amo dvo kvoteg evotntes. H mowtn evotnta eEetalet Tig dLdpoeg
TMITUXEG TNG TEXVOAOYIAC TWV UETEWQOAOYIKWY QAVTAQ, OVUTEQIAAUPBAVOUEVWY TWV
TUTIWYV, TWV TNYOV OPAAUATWV Kol TwV daxdKaowv eAéyxov mowotntac. ErunAéoy,
ETUKEVTOWVETAL OTN OXé0M Z-R kAL 0N et BANTOTNTA TG 0TO XQOVO KAL OTO XWQO.
LuykekQuuéva, Héow TNG OLOXETIONG e eTLYELOVS BQOXOYQAPOUS, avadelkvOeTal 1)
OLOXETLOT TWV TAQAMETOWYV TNG OXE0MNGS Z-R e TOTIOYQAPUKA XAQAKTNOLOTIKA, OTIWS 1)
EYYUTNTA OTNV AKTOYQAUUT] Kot ota bPnAd vipouetoa. [lapdyovteg 0TS 0 TVTTOC TOL
oavtag, 1 torobeoia, 1 Pabuovounon xat 1 016pOwoN ToL OTUATOS Elvat KQIoLOL KAl
eTNEeACOLY TNV TIOLOTNTA TWV TAQAYOUEVWY OEDOUEVWV.

H devtepn evomnta emukeviowvetat oty epagpoyr) evog XLEIIT mov eotidlel oe
ETELOODLX ALPVIdLWV TATUHLEWY, Ta omolar XaxpakTtnollovtat anmd HeyAANG évtaong
BOOXNG, HIKONG OLAQKELXG KAL HLKOT)G XWOIKTG KALHAKAS. ZUYKEKQIHEVA, AVATITOOOETAL
éva 0AokANEwpévo TAaioo epagpoyng evog LEIIN, eotiklovtag otnv eVowHATwon
LOEOAOY KWV dADIKACLWOV Yt TNV EKTIUNOT TOU TANUULEWKOV KLvOUVoL. Avtn 1)
MEOCEYYLlon AapBavet VTTIOYN UETABAAAOUEVOUG TTAQAYOVTEG O TOAYHATIKO XQOVO,
OIS OL OLVONKES VYEATIAGC TOL EDAPOVS KAL 1| VOQOUETEWQOAOYIKT] KATATTAOT] TIOL
eTukQatel otnV MeQLOXN e@agpoync. Edwoteoa, avantbooetal kat epaguoletal éva
LOPOAOYIKO KATAVEUTEVO HOVTEAO BOOXTIG-AXTIOQQOT|G TO 0TIOl0 LTTOoNOAEL TO CVOTN A
GFFG yiax tnv a&loAdynon tov Kivdvvov mANUpLeag oe entinedo keAov (500x500 m?). Ta
amoteAéopata TG A.A. dLEQELVOUV KAl AVADEIKVVOLV TNV €MOQAOT) TWV TIHWV TWV
TIAQAHETOWY OTA XOTOLUOTIOLOVUEVA HOVTEAQ, KAl ETUOTUALVOLV OTL, TTAQAX TNV VTIAQEN

apePaldTnTac, N mo KOO THQAUETEOG Y TNV BeAticwon tng a&lomotiag evog LEITT
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elvat 1 aflomotia Twv dedOUEVWVY €L0OOOL TOL KAL KLOIWS ALTA TG BEOXOTITWOTG Kol
TOV ETUTTEDOL VYQEACIAG TOL EDAPOLC.

Tédoc, avamtbooetar kot epaguoletal  €vag  aAyoolduoc  avixvevonse kat
TIAEAKOAOVONONG TWV KATALYDOPOQWV VEPWYV, HETW TOL OTOLOV HEAETWVTOL OL KUQLEG
dtevBuvvoelc twv vepwv. H epaguoyr) tov aAdyopiOpov avadeucviel To TOAAATIAG 0EAT)
MG XONONG &VOS HETEWQOAOYIKOU QaVTAQ LYNANG XWEOXQOVIKNG avAaAvong, oe
OLOTNHATA VOQOUETEWQOAOYIKTIG TTROYVWOT|G.

YuvopiCovtag, n AA. Oétel Tc PAoelc yix TV AVATTUEN KAl €PAQHUOYN €VOG
oAokAnowpévov XLEIIT, to omolo Oa mapéxel o€ emIXeLONOLAKO €TUTEDO HETEWQOAOYIKN
TEOYVWOT, EKTIUNOT TATUHLEOIKOD KIVOUVOL KAl EQY@YT] HNVUHATWY TIQOEOO0TION oG
oe moaynatikd xoovo. H peAdovrikr] égevva eTIKEVTQWVETAL OTNV EMEKTAOT TWV
EVENUATWV NG &V Adyw dutopng kot oe AAAec TEQLOXEC HE  OLXPOQETLKA
XAQAKTNOLOTIKA, &V TIQOTELVETAL 1 dlPOQEOTIOINON KAl AVAAOYN OUYKQLTIKY
a&loAGYNoN empéQoug onuelwy NG €Qevvag, XONOLHOTIOLWVTAG ETUTAEOV dedopéva
OTIWG UETQNOELS TAQOX WYV, DOQUPOQIKA dedopéva, DEQOUEVA ATIO VTIOTQOUETO KAL AAAX
HeTtewoAoYkd pavtd. TéAog, eEetdleTaln eQAQLOYT) OTOXAOTIKWY HeOOdWV e OKOTIO

TNV TTOCOTIKOTIOMOT) KAl Heiwon g afeBatdtTnTag Twv emMUéQOVS CLOTUATWV.
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1. Introduction

1.1 Natural Hazards and Disasters

Natural hazards are severe and extreme weather and climate events that can potentially
cause excessive negative impacts on human life, society, the economy, and the environment.
In this case, a natural hazard is renamed as a natural disaster. The United Nations Office for
Disaster Risk Reduction (UNDRR) defines a disaster as a “serious disruption of the
functioning of a community or a society at any scale due to hazardous events interacting
with conditions of exposure, vulnerability, and capacity, leading to one or more of the
following: human, material, economic and environmental losses and impacts” (UNDRR
2017).

Although a natural hazard is usually the result of natural processes, how humans interact
with the environment contributes to their potential to cause natural disasters. Therefore, the
root causes of disaster risk and disasters stem from structural conditions of a particular
mode of development and growth (Oliver-Smith et al. 2017).

Natural hazards can be categorized with various conditions. The classification of natural
hazards is usually done based on the source of the natural cause. These can either be a)
Geophysical, e.g., earthquakes and volcanos, b) climate-related (hydrometeorological), e.g.,
floods, wet mass movement, storms, extreme temperature, drought, and wildfire, and c)
biological, e.g., epidemic, insect infections (Leaning and Guha-Sapir 2013).

Globally, natural hazards, e.g., tropical cyclones (wind and storm surge), earthquakes,
tsunamis, and floods, are anticipated to cause an average annual loss of US$314 billion to
the built environment. This issue seriously threatens the global agenda of sustainable
development. Large, high-income, hazard-exposed economies make up most of the
worldwide average annual loss in absolute terms. The most significant risk concentrations
are found in many low- and middle-income countries, particularly small-island developing
states, as compared to yearly capital investment or social expenditure. In Figure 1-1 the
annual economic damages from disasters as a share of GDP for the years between 2010-2020
is shown, indicating a considerable amount in the North and South America, as well as in

Asia, Australia and southeast area of Africa.
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Regarding Europe, the most economic damages are found in the easter part of Europe,
namely Italy, and the Balkans. In Figure 1-2, Figure 1-3 and Figure 1-4 the number of events,
the number of people affected and the economic losses per each natural disaster, floods,
extreme temperature, wildfires, storms and winds, droughts and mass movement are
illustrated, respectively (CRED 2022). As shown, the majority of events occurring are flood
events followed by storms and winds, which are usually interrelated. Moreover, floods
affect the majority of people and cause the second most economic damages per year.
Furthermore, the graphs show that year-by-year the percentage in each case is not

decreasing, signifying that more measures are needed to decrease these numbers.

Nodata 0%  001% 005% 01% 05% 1%  10%  50%
i —

Source: Our World in Data based on EM-DAT, CRED / UCLouvain, Brussels, Belgium - www.emdat.be (D. Guha-Sapir)

Note: Decadal figures are measured as the annual average over the subsequent ten-year period. This means figures for ‘1900’ represent the
average from 1900 to 1909; ‘1910’ is the average from 1910 to 1919 etc.
OurWorldInData.org/natural-disasters « CC BY

Figure 1-1: Annual economic damages from disasters as a share of GDP, 2010-2020. Source: Our

World in Data, (stated within figure)
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Figure 1-2: Number of Natural Hazards worldwide per year



| Chapter 1 |Introduction |

70 5
60 > 57
50
41
10 34 35 38 34 38 3638
33 30
30 26 53 26
1
0 8 18 17
10
10
oo o 0 Io ofloo off10 oIoo oflZ 0
O . I —_— S =
2018 2019 2020 2021 2022 Average
O Drought B Floods W Extreme Temperature
B Stroms and winds B Wildfires B Mass Movement

Figure 1-3: Number of people in millions affected by Natural Hazards worldwide per year
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Figure 1-4: Economic losses in billion € caused by Natural Hazards worldwide per year

1.2 Floods

Floods affect more people globally than any other natural hazard. They can cause
widespread devastation that can displace people, damage property and critical public
infrastructure, and ultimately result in loss of life. Moreover, as the planet continues to
warm up due to climate change, the intensity and frequency of flooding will likely increase.
The EU 2007/60 directive defines a flood as “the temporary cover of the soil by water which
is not normally covered by it, which includes floods from rivers, mountain torrents,
Mediterranean ephemeral water courses, and floods from the sea in coastal areas, and may
exclude floods from sewerage systems” (European Union 2007). There are three common
flood types: fluvial floods, also known as river or stream floods, pluvial or flash floods, and
coastal floods, which are often called storm surges. Each type of flood occurs and is forecast

in different ways. The impacts of each type of flood are also different, as are the models and
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actions needed to avoid or minimize flooding damage. More detail for each type of flood is

as follows:

Fluvial (Riverside)

A fluvial, or river flood, occurs when the water level in a river, lake, or stream rises and
overflows onto the neighboring land. The water level rise of the river could be due to
excessive rain or snowmelt. This is the most common type of flooding found in typical river
systems. The damage from a river flood can be widespread as the overflow affects smaller
rivers downstream, which can cause dams and dikes to break and swamp nearby areas.
The severity of a river flood is determined by the terrain profile and the duration and
intensity of rainfall in the river’s catchment area. Other factors include soil water saturation
and climate change effects on rainfall duration and intensity. In flat areas, floodwater tends
to rise slowly and be shallower, but it can often remain for days. In hilly or mountainous
areas, floods can occur within minutes after heavy rain, drain very quickly, and cause

damage due to debris flow.

Pluvial (Flash Floods)

A pluvial flood occurs when extreme rainfall creates a flood independent of an overflowing
water body. Pluvial flooding can occur in any location, urban or rural, even in areas with no
nearby bodies of water. There are two common types of pluvial flooding: surface and flash
floods. The first occurs when an urban drainage system is overwhelmed and water flows
into streets and nearby structures. In such a case, flooding occurs gradually, so there is
adequate lead time to address the problem with low risk. The water level is usually shallow
and creates no immediate threat to lives but may cause significant economic damage.

The second case is Flash Floods, which are sudden and rapidly developing floods
characterized by their swift onset and high intensity. Flash floods typically occur in areas
with steep terrain, urban environments with poor drainage systems, arid regions where the
ground cannot absorb water quickly, and places prone to intense rainfall. They can be
triggered by various factors, mainly heavy rain but also rapid snowmelt, dam or levee
failures, and sudden water releases from reservoirs. Other factors that contribute are the
geomorphological and geological characteristics of the basin, such as the basin size and
slope, the poor infiltration capacity of soils, and the soil moisture conditions at the start of
the event (Merz and Bloschl 2003; Houze Jr. et al. 2015; Velasquez et al. 2020). Flash floods
are usually local-scaled events, as they are highly related to convective-type storms, and
thus, the spatial coverage of the affected areas is reduced (Houze Jr. et al. 2015). Sometimes,
flash floods can also be caused by landslide debris flows (Posner and Georgakakos 2015).
Uncontrolled urbanization and deforestation are among the first causes behind flash

flooding, while climate change effects, such as the increasing occurrence and rain intensity
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of storm events, have altered the periodicity of these events (Alfieri et al. 2012; Gaur and
Simonovic 2015; Rogger et al. 2017; Caloiero et al. 2017). All the above factors have made
flash flooding an evolving threat since areas that once did not flood are now prone to
flooding (Bournas and Baltas 2021a).

Flash floods occur within a concise timeframe, often within a few hours or even minutes of
heavy rainfall. A flood occurring in less than six hours is usually classified as a Flash Flood.
Their unpredictability and ability to catch people off guard due to their rapid formation
often lead to devastating impacts on human communities and the natural environment,
making flood floods among the deadliest weather-related hazards worldwide. In the
Mediterranean, flash floods have recently caused substantial economic damages and the
cost of human lives (Diakakis et al. 2012, 2019; Pereira et al. 2017; Feloni 2019; Varlas et al.
2019; Spyrou et al. 2020).

Coastal floods

Coastal flooding is the inundation of land areas along the coast by seawater. Common
causes of coastal flooding are intense windstorm events occurring at the same time as high
tide (storm surge), and tsunamis. Storm surge is created when high winds from a windstorm
force water onshore - this is the leading cause of coastal flooding and often the most
significant threat associated with a hurricane or typhoon. The effects increase depending on
the tide — windstorms during high tide can result in devastating storm surge floods. In this
type of flood, water overwhelms low-lying land and often causes devastating loss of life and
property. Several other factors, including the windstorm's strength, size, speed, and
direction, determine the severity of a coastal flood. The onshore and offshore topography
also plays an important role. Due to rising sea levels and climate change, more coastal cities

and communities tend to become more vulnerable to coastal flooding.

1.2.1 Flooding Mitigating Measures

A combination of measures can be adopted to mitigate the risk and the consequences of
flooding. The standard approach categorizes the mitigating measures as prevention,
protection, and preparedness. Prevention measures are usually non-structural measures
aiming at flood-mitigating regulation and policy, while protection measures are usually
structural measures that aim to reduce the likelihood or the severity of flood events or both.
Finally, preparedness measures are proactive plans and strategies that prepare individuals,
communities, and infrastructure for potential flood events, such as Early Warning Systems

(EWS). A list of measures can be found below.
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Prevention Measures

Sustainable planning and development management:

Land-use and Floodplain planning: Integrating flood risk considerations into land-
use planning to avoid or implement regulations to control development in flood-
prone areas and preserve natural flood storage areas.

Sustainable drainage systems: Promotion of techniques to manage surface water
runoff and reduce the risk of local flooding.

Sustainable agriculture practices: Encouragement of agricultural practices that
minimize soil erosion and promote natural water retention.

Climate Change Adaptation: Considering the potential impacts of climate change on
flood patterns, incorporating climate change projections into planning processes can

help design more resilient infrastructure and flood management strategies.

Protection Measures

Flood defense infrastructure: Construction or improvement of flood defenses, such
as levees, flood walls, and embankments, to protect communities and critical
infrastructure.

Flood reservoirs: Construction of reservoirs to retain excess water during heavy
rainfall and release it gradually to mitigate downstream flood risks.

Coastal defenses: Installation or enhancement of coastal protection measures, such
as seawalls, dikes, or beach nourishment, to mitigate coastal flooding and erosion.
Floodplain restoration: Restoration of floodplains and wetlands enhance natural
flood storage capacity and promotes ecosystem-based flood risk reduction.
Retrofitting: Implement measures to retrofit existing buildings and infrastructure to
withstand or minimize flood damage, such as installing flood barriers or raising

foundations.

Preparedness Measures:

Early warning systems: Developing and implementing robust early warning
systems to provide timely alerts and evacuation instructions to at-risk communities.
Emergency response plans: Creation of comprehensive emergency response plans,
including evacuation procedures, coordination mechanisms, and communication
strategies.

Flood forecasting and monitoring: Establishment of systems for monitoring rainfall,
water levels, and river flows to improve flood forecasting accuracy and response

capabilities.
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e Public awareness and education: Implement public awareness campaigns,
educational programs, and community engagement initiatives to enhance
understanding of flood risks and encourage proactive preparedness actions.

¢ Insurance and financial mechanisms: Promotion of insurance schemes and financial
instruments to support individuals, businesses, and communities in managing and

recovering from flood-related losses.

1.2.2  The 2007/60/EC Flood Directive

The European Union (EU) has established a framework for flood risk management and
mapping through Directive 2007/60/EC (European Union 2007). Apart from the definition
of flooding, the directive introduces the “Flood risk” term, defined as the combination of
the probability of a flood event and the potential adverse consequences for human health,
the environment, cultural heritage, and economic activity associated with a flood event
(European Union 2007). The definition of Flood Risk follows the flood hazard, exposure,
and vulnerability framework. Flood hazard refers to the probability of occurrence of a flood
event and its characteristics, such as the magnitude, frequency, and duration of flooding. In
contrast, flood exposure and vulnerability refer to the degree of susceptibility of a system to
the impacts of a flood hazard. The combination of the above results in the flood risk,
representing the probability of a flood event occurring and the potential negative
consequences or impacts resulting from that event.

Under the 2007/60/EC Directive, each EU member state is required to proceed with the

following reports:

e Preliminary Flood Risk Assessment (PFRA). The assessment focuses on identifying
areas at potential risk, assessing historical flood events, and evaluating the potential
adverse consequences of future floods for humans, the environment, cultural
heritage, and economic activity.

e Flood Hazard and Risk Maps (FHRM). Flood hazard maps contain the potential
extent, depth, and flow velocity for different probability scenarios, e.g., returning
periods of 50, 100, and 1000 years, while risk maps also include the potential adverse
consequences associated with the flood scenarios.

¢ Flood Risk Management Plan (FRMP): These plans aim to reduce flood risk through
prevention, protection, and preparedness measures, considering environmental,

social, and economic factors.

Furthermore, the Flood Directive recognizes the influence of climate change on flood risk.
Therefore, the above reports are not only required to be reviewed every six years but the
impact of climate change on the probability of flood occurrence is also stated to be addressed

by considering climate change projections in the flood risk assessments and management

7
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plans, which highlights the need for adaptive strategies to address changing flood patterns
and potential impacts.

The directive follows the general principles laid by the 2000/60/EC directive, which focuses
on water management. Specifically, the river basin approach is promoted, encouraging
coordination and cooperation among member states sharing river basins or coastal areas,
which leads to holistic and integrated management of flood risks, considering the
interconnected nature of water systems. Moreover, the directive also emphasizes the
importance of involving the public, stakeholders, and relevant authorities in flood risk
management by encouraging member states to promote information sharing, public
consultation, and cooperation at different levels to ensure effective flood risk management.
Concerning the implementation of the Directive, the first implementation cycle was from
2010- 2015, while the second cycle covered the period from 2016-2021. The Commission
assessed the second cycle’s Preliminary Flood Risk Assessments as prepared by the Member
States at the end of 2021 in the 6th Implementation Report in December 2021 (European
Union 2021). The third cycle is ongoing and covers the years between 2022-2027. All states
have completed the FRMPs of the first cycle, while the FRMPs of the second cycle have been
sent to the commission by most Member states. Specifically, out of the 27 EU states, eight
have not yet sent their second cycle FRMP to the commission, with the public consolation
process either ongoing or just concluded as of March 2023. Greece features the most
prolonged delays, where the second cycle FRMP has not yet reached the public consolation
process (European Union 2021), although the second cycle PFRA has been sent (Directorate-

General for Environment (European Commission) 2021).

1.3 Flood Early Warning Systems (FEWS)

1.3.1 Introduction

A Flood Early Warning System (FEWS) is a non-structural flood preparedness measure that
does not focus on mitigating the impact of the hydrological characteristics of a flood.
Instead, it focuses on providing the needed information to take timely actions to reduce the
disaster risk. The United Nations Office for Disaster Risk Reduction (UNDRR) defines an
EWS as “an integrated system of hazard monitoring, forecasting, and prediction, disaster risk
assessment, communication and preparedness activities systems and processes that enable
individuals, communities, governments, businesses, and others to take timely actions to reduce
disaster risks in advance of hazardous events” (UNISDR 2017), while the World Meteorological
Organization (WMO), defines a flood forecasting and warning system as “ the linkage between

the basic structures” that “include provision of specific forecasts with magnitude and timing of
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rainfall, establishment of a network of hydrometric stations, operation of real-time flood forecasting
model software and issuance of early flood warnings” (WMO 2013a).

Although not a direct flood mitigation measure, FEWS's ability to reduce the flood risk is
widely acknowledged (UNDRR 2003; WMO 2013a; Pappenberger et al. 2015; Thielen-del
Pozo et al. 2015), but there are not widely implemented in the required level worldwide.
Specifically, a report made by the UNDRR (Perera et al. 2019) found that 43% featured an
advanced EWS system, while 38% and 19% featured intermediate and basic systems,
respectively. In a basic system, simple methods are used to observe and predict floods, such
as manual collection and data transfer of stream level and rainfall, and do not feature a
dedicated Flood Forecasting Center (FFC). The intermediate level uses more resources, such
as real-time monitoring, but warnings are not issued after a model-based flood forecasting
system but instead on the decision-making of flood forecasting professionals based on past
experiences. Finally, advanced systems include all the available requirements for a proper
FEWS implementation, such as a) telemetric data collection and transfer, b) model-based
flood forecast, and c) continuous monitoring and updates. From the above, it is
understandable that only advanced systems are model-based FEWS implementations, while
the basic and intermediate levels mainly focus on observation and thresholds set manually,
mainly by experience.

The WMO and UNODFF have begun an initiative to provide worldwide coverage of EWS,
the “Early Warnings of All” initiative which is built around four key pillars, a) The disaster
risk knowledge and management, b) Detection, observation, monitoring, analysis, and
forecasting, ¢) Warning dissemination and communication and d) preparedness and
response capabilities. The UN Secretary-General formally launched the initiative in
November 2022 at the COP27 meeting in Sharm El-Sheikh to provide a worldwide EWS by
the end of 2027.

1.3.2 FEWS Components

A FEWS consists of various components such as a) disaster risk knowledge, b) detection and
monitoring analysis, c) forecasting and thresholds of hazards, d) warning dissemination and
communication, e) preparedness to respond, and f) response capabilities (Perera et al. 2019).
The first three components form the technical components, while the latter are non-
technical. One of the most critical parameters of a FEWS is the forecasting lead time
provided. However, attention should be given to the forecasted lead time by a FEWS since
the actual lead time required in real-time may differ from the forecasted lead time. Actual
lead time is subject to time delays due to data processing, model simulation, and even the
time it takes to decide to issue the warning until the warning reaches its target. In Figure

1-5, an illustration of EWS time delays times in non-relative magnitudes is presented (Sene
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2008). For instance, if the catchment response time is less than the forecast lead time, the

EWS should rely on rainfall-based forecasts rather than rainfall-runoff simulation forecasts.
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Figure 1-5: Illustration of time delays in issuing a warning for a single rainfall-runoff model
Source: (Sene 2008)

Therefore, although the technical components are decisive in providing sound flood risk
estimations, they may be ineffective if the intended recipient does not receive the warnings,
does not understand it, or cannot take action promptly (Perera et al. 2020). Below, the
components of a FEWS are explained in more detail:

1. The disaster risk Knowledge component involves the knowledge of historical flood
records in the area. Moreover, it involves risk mapping and vulnerability assessment to
identify areas at higher risk of flooding and the potential impact on communities and
infrastructure under continuous land use change conditions. This information helps in
targeting warnings to specific areas and implementing mitigation measures.

2. The detection and monitoring component involves observing and forecasting the
meteorological, river, and tidal conditions. Challenges in this component lie in the
collection, quality control, and assimilation of real-time datasets concerning rainfall, river
water levels, soil moisture, and other relevant hydrological parameters in sufficient
temporal and spatial scales. A sufficient number of gauge stations and the implementation
of quality controlled remote-sensed datasets such as weather radars and satellites are
required to achieve high-quality datasets.

The Forecasting and Modeling component is the core of a FEWS implementation, as it uses
forecasting and hydrological models to predict potential flood events. These models analyze
current data and simulate future scenarios, providing forecasts of river flows and flood
extents and allowing for timely warnings. Finally, the required thresholds, which are used
to either issue or not a warning, are also derived in this component. Alternative words for
thresholds include triggers, criteria, warning levels, critical conditions, alert levels, and
alarms, which all denote the hydrometeorological conditions, allowing an acceptable lead

time before the flooding threshold is reached. A decision should be reached to issue a flood
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warning (Sene 2008). The hydrological variables used to define the thresholds may vary,
such as rainfall accumulation or stage heights, and define the complexity of the FEWS and
the models required. Challenges in the forecasting component mainly lie in producing high-
resolution results in an increased lead time.

3. The warning dissemination and communication component involves how the flood
warning is disseminated to the public, local authorities, and emergency responders. Defined
procedures should be established concerning which, to whom, and how information is
transmitted. Typical channels may include text messages, sirens, mobile apps, social media,
and other means to ensure broad and timely dissemination of information. The challenges
lie in reaching the right stakeholders in a suitable format at the right time. For instance,
simple text messages can be transmitted to the public in an adequate lead time, but more
detailed information and hazard maps to the emergency response agencies in near real-time
to form flood mitigation strategies.

The preparedness to respond and response capabilities components consist of the
procedures followed after receiving a warning message or in case of a system failure. The
preparedness mainly lies in the awareness of FEWS operators and developing a healthy
understanding of detailed response plans. These plans should include information about
which organizations and agencies, e.g., the civil protection, the police, and the social and
health services, among others, should be involved to what an extent in responding to a flood
event. Some key points of these plans should include (Sene 2008), a) clear chain of command
for better coordination and information communicating to the public and the media, b) key
contacts which are used for regular communication between the agencies, c) resilience of
the system in case of a component failure, d) special arrangements concerning vulnerable
groups, e.g., people with disabilities, elderly people and children and transient populations,
i.e., the population that is temporary residents such as tourists and travelers, e) health and
safety considerations apart from flooding, such as waterborne diseases, hazardous
materials, and electrocution from exposed cables, f) community engagement for tailored
response plans and g) continuous improvement of the system. Early warning systems work
best when communities know the risks, understand the warnings, and know how to
respond (Perera et al. 2020). Community engagement and awareness programs are crucial
in ensuring people understand the importance of heeding flood warnings and know what
actions to take. Training emergency responders and the public on how to respond to flood
warnings also improves the community's overall preparedness. Finally, a FEWS system
should undergo regular testing and exercises to ensure its functionality and effectiveness.
Critical components of the system should have redundancies to minimize the risk of failure
during critical situations by being reliable, resilient, and capable of functioning during

adverse weather conditions.

11
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These first three components, the technical components, define the system's complexity. A
FEWS's primary purpose is first to identify areas that are vulnerable to flooding and
secondly to be able to identify and monitor weather systems that produce flood events in a
reasonable lead time (Spyrou et al. 2020). The first can be performed in non-real-time by
studying historical events and multi-criteria analysis (Feloni et al. 2020) implemented into
the FEWS. The second should be performed in near real-time, considering the requirement
of high-resolution and quality results in adequate lead time. These two parameters are
usually in direct contrast since a) high-resolution results may require more information and
model processing time, leading to reduced lead times, and b) longer lead times require more

extended forecasts, which are subject to higher uncertainty.

FEWS classification

When designing a FEWS, several considerations should be made, such as a) the forecasting
requirement, b) the real-time data availability, c) the forecasting system on which the model
will operate, d) the required model performance, and e) the time, budget, and skills available
for the model implementation (Sene 2008). The forecasting requirement is usually formed
by the end user needs but restrained by the real-time data availability and the budget.
Typical forecasting requirements are presented in Table 1-1 in a general descending order

considering model complexity.

Table 1-1: Typical applications of flood forecasting Source: (Sene 2008)

Requirements Typical Applications

To provide additional warning lead  Providing the emergency services and public with

time advanced warning of the likely times for the onset of
flooding or the peak of the flood event

To estimate peak levels or flows. As above, also providing estimates for peak values,
perhaps also linking to maps of likely flooding extent
based on off-line simulation modeling or past experience

To estimate flooding duration. As above, also considering when to issue the message
that the flood risk has reduced or passed

To model flooding depths, extent, As above, but providing real-time updates to the likely

and possibly, velocities. spatial extent of flooding, together with depths and

velocities at general or specific locations (districts, roads,
houses, etc.)

To provide information to assist Optimizing response to mitigate flooding (e.g., at dams,
with the operation of control river control structures, tidal barriers etc.) and possibly
structures to reduce penalty payments and opportunity losses

To provide information to assist Providing advice on the implications of various problems
with event-specific factors arising during an event; for example, failure of flood

defense, blockages by debris, pumps failing etc. Also,
exploring different options for response (e.g., controlled
diversion of flows)

12
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For instance, when only additional warning lead time is required, the FEWS can be designed
to monitor only rainfall intensities and compare them to pre-defined thresholds. However,
if peak flows or event depths and velocities are required, then hydrological and
hydrodynamic modeling is required. These requirements define the needed processes that
the FEWS should be simulating. The overall model complexity is determined by the model
parameters and resolution, i.e., the spatial and temporal resolution of the used datasets and
provided results, as well as the use of sophisticated models for the hydrological,
hydrodynamic, and forecasting processes. Apart from requirements for specific control
structure operations, i.e., dams and barriers, most FEWS usually meet the first two
requirements, i.e., the additional warning lead time and the estimation of peak levels and
flows.

FEWS design is based on various parameters such as a) the provided lead times, b) the
models and processes used, and c) the scale. In Table 1-2, such a classification is shown,
along with their characteristics. For instance, a FEWS designed for flash flood events would
focus on short-term forecasting, while a FEWS designed for river basin monitoring may
focus on medium-term forecasts. The difference in scale often defines the models and
hydrological processes used since strictly meteorological forecasts are often used with long-
term weather assessment or with short-term flash flood systems, where the provided
forecast times are not allowed to provide adequate forecasting times. The FEWS
implementation scale also defines the results' spatial resolution. When nationwide or large
regions are studied, increasing the spatial resolution may lead to significant computing
times, which do not usually add to the purpose of an EWS, such as providing simple
warning lead times in large areas. In contrast, in local applications such as the protection of
urban areas and sensitive facilities, the cost of flooding is higher, and therefore integrated

hydrological and hydrodynamic models are preferred due to their high-resolution products.

Table 1-2: FEWS Classification based on several characteristics

Characteristics #1 #2 #3
Based on Lead Times Short-term Medium-term Long-term
(Forecast time) 1 -6 hours Hours - days Weeks - months

Based on the Models used Meteorological Hydrological Integrated

(Thresholds) Rainfall Thresholds Flow/Stage Thresholds Flood depth
Flood extent

Based on Scale National Level Regional Local

(Spatial Resolution) Small Medium High

Most FEWS applications usually focus on short-term and medium-term forecasts based on

either rainfall or flow and stage flow thresholds. Medium-term systems are used when flood
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warnings are required for medium and large river basins with extensive concentration time.
In these cases, flooding occurs several hours after a rainfall event. Therefore, flow-based
systems that use single or multipoint stage-water observations provide better, more detailed
information. In such cases, using medium-range forecasts is advantageous since they
provide increased lead time, while the continuous monitoring of the event provides less
uncertainty regarding the hydrological processes involved. Short-term systems, usually
referred to as nowcasts, aim to provide warnings for fast-paced rainfall events such as flash
floods. Flash floods usually occur due to convection and are characterized by their high-
intensity rainfall rates and local footprint. In these events, a FEWS is usually designed to use
rainfall thresholds since there is no time to monitor the river’s stage and flow conditions.
The main difference between rainfall-based and flow-based FEWS implementations lies in
the hydrological variables each system uses as the threshold. A rainfall-based system will
use a rainfall-derived product as the flood threshold, such as rainfall intensity and
accumulation, while a flow-based system relies on flow-derived products, such as peak
discharge, flood volume, and stage. Flow-based systems usually derive more information
but require more data to calibrate and operate. A rainfall-based system compares current
and forecasted weather conditions, but in most cases, a rainfall-runoff modeling process is
intergraded to assess the hydrological causes of flooding. Compared with a flow-based
system, the main issue with a rainfall-based system is that they cannot predict the exact time
and place where flooding may occur. However, they are more cost-effective and can be
easier applied and maintained (Suhardi et al. 2020).

Moreover, the majority of any uncertainty involved in any system is caused by the quality
of the rainfall forecasts made. In flash floods with fine time scales, a rainfall-based system
can be as reliable as the flow-based system in flash floods at high rainfall return periods
(Corral et al. 2019). The key to maximizing the performance of a rainfall-based system is the
quality of high-resolution rainfall forecasts. To that end, the use of well-calibrated weather
radar QPE with increased spatial and temporal scales, such as the ones provided by new X-
Band weather radar systems, is a crucial component for accurate and effective FEWS
(Anagnostou et al. 2010, 2018; Borga et al. 2011; Picciotti et al. 2013).

1.3.3 FEWS Implementations

MeteoAlarm

MeteoAlarm is a rainfall threshold-based EWS implemented in 37 European countries
through their National Meteorological and Hydrological Services (NMHSs). Although not
a Flood EWS, since MeteoAlarm is easier to be implemented, it is often used as a rainfall-

based FEWS when more advanced systems are not in place (Staudinger et al. 2009).
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The system aims to streamline the dissemination of weather warnings and ensure that
timely and accurate information reaches the public to improve preparedness and response
to adverse weather conditions. The system observes up to 12 weather parameters, such as
temperature and rainfall rate, and uses a color-coded system to represent different levels of
weather warnings based on the following:
¢ Green: No warnings - no particular awareness of the weather is required.
¢ Yellow: Be aware - the weather situation is potentially dangerous; people should be
attentive to changes in weather conditions.
¢ Orange: Be prepared - there is a high likelihood of severe weather, and people should
take action to protect themselves and their property.
e Red: Take action - severe weather is expected, and people must take immediate
action to stay safe.
The system lacks any modeling processes and uses deterministic thresholds for each
hydrometeorological parameter derived from each NMHS. The spatial resolution of the
warnings is usually at an administrative prefecture scale. Nevertheless, the system is still
operational since it acts as a one-stop-shop service where data can easily be implemented

into cell phone weather applications (Kaltenberger 2022).

European Flood Awareness System (EFAS)

The EFAS system is a FEWS implementation to improve the preparedness for floods within
Europe. It was the first service of the Copernicus Emergency Management Service (CEMS),
launched in 2013 and, since 2012, is fully operational. The System is designed to provide
early flood warnings and forecasts, particularly in large trans-national river basins, even up
to five days in advance. The CEMS Meteorological and Hydrological Data Collection
Centers (MDCC and HDCC, respectively) collect and analyze the datasets. The EFAS
products are available in real-time only for the national agencies, while archived products
older than one month are available under specific terms and conditions. The generated

products are:

e Flash-flood indicators: indication of flood risk from flash floods up to 5 days,

¢ Medium-range flood forecasts: Upcoming flood events up to 10 days,

e Seasonal hydrological outlooks: Hydrological situation over the next eight weeks

e Flood impact forecasts: Regions where flood impacts are expected in the next ten

days.

The system first targeted the medium-range flood forecasts aimed at large river systems
often found in central Europe. To that end, the generated products are points within the

river network. EFAS hydrological forecasting chain is designed to follow three key
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elements, a) the meteorological forcing and land surface data, b) the hydrological models,
and c) the EFAS forecasts and products.

The meteorological forcing and land surface data are divided into three groups, a) the
historical hydro-meteorological time series records and land surface data, b) the real-time
hydro-meteorological observations, and c) the meteorological forecasts. The historical data
are the data that are collected and used to calibrate and validate the models, while the real-
time datasets are collected through numerous sources, such as national agencies, and quality
checked by the MDCC and HDCC. Finally, the meteorological forecasts are forecasts in
either a single realization or an ensemble (multiple realizations) from a single Numerical
Weather Prediction System (NWPS), using the real-time datasets as the forecast's starting
point.

The EFAS system makes use of the LISFLOOD hydrological model. The model is a spatially
distributed conceptual and physical-based rainfall-runoff model explicitly designed for
large river basins (Thielen et al. 2009). The model simulates canopy and surface processes,
soil and groundwater flow, and river channel flow. It incorporates precipitation,
temperature, potential evaporation, and evaporation rates for open water and bare soil
using two soil layers, Topsoil and Subsoil. More information and a complete description of
the LISFLOOD model can be found in (Van Der Knijff et al. 2010). The model datasets
required are easily accessible since they are in line with European-wide available datasets.
The model is used in 6-hour and daily time steps using five km grid cells of the EFAS
domain. The runoff generated in each grid is then routed downstream using the kinematic
wave approach.

Finally, the EFAS meteorological forecasts are forced into the LISFLOOD model to produce
a series of forecasting products. The model is used in a deterministic simulation, i.e., single
forecast, or ensemble forcing, i.e., multiple realizations. The simulations are performed in 6-
h and daily steps. The results for each cell are then compared with flood thresholds derived
after statistical analysis. Specifically, threshold classes are derived based on the associated
hazard class as low (L), medium (M), high (H), and severe (S). Low and medium classes
report high water levels but no flood expected, while high and severe denote flooding, with
high reporting near bank-full conditions. The classification is based on a quantile approach,
where a selected time-return period, e.g., 5- 10- and 20- years, is defined as the threshold.
Considering Flash Flood indicators, the EFAS system uses two approaches. The first is the
ERIC system (Alfieri and Thielen 2015; Raynaud et al. 2015), where forecasts are performed
using numerical weather prediction datasets and the LISFLOOD model to provide surface
runoff in a 1 km x 1 km spatial scale. Following this, the accumulated flow in pre-specified
points, the ERIC reporting points for 6, 12, and 24-hour periods, is compared with thresholds

derived from the mean annual maximum from 20-year climatology datasets. The products
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derived are the probability of flash flooding in the reporting points for a provided lead time
of fewer than 48 hours and the ERIC affected area, i.e., the river network contributing to
each ERIC reporting point, indicating the areas at risk from flash flooding.

The second approach is the EPICHA system (Park et al. 2017, 2019), based on radar
precipitation monitoring and nowcasting. In this approach, the European OPERA radar
composite provides nowcasts, using the Lagrangian persistent up to 6 hours ahead, for
rainfall accumulation of 1-, 3-, 6-, 12- and 24-hour periods. The forecasted rainfall
accumulation is then compared with regional intensity duration thresholds derived from
the regional climatic characteristics and river basin upstream area, as published by the
MeteoAlarm consortium. The EPICHA flash flood indicators are generated every 15
minutes, in a 1 km x 1km grid scale and up to 6 hours lead time. The benefit of this approach
lies in providing products outside the river network on a high-resolution temporal scale
aimed at very localized events that are difficult to predict with NWPSs. The downside is the
provided lead time, i.e., less than 6 hours, which is much less than what is provided by the
ERIC system.

The Flash Flood Guidance System (FFG)

The Flash Flood Guidance (FFG) system was designed and developed by the Hydrological
Research Center (HRC) for the US National Weather Service (NWS), which currently still
uses operationally in the USA for protection against flash floods. The system was developed
in the 1980s to combine meteorological and hydrological processes in real-time to produce
operational flash flood predictions. The system relies on estimating two hydrological
parameters, a) the threshold runoff and b) the Flash Flood Guidance (FFG) value. The
threshold runoff is defined as “the volume of effective rainfall of given duration that is generated
over a given catchment area, and that is just enough to cause bankfull flow at the outlet of the draining
stream,” while the FFG value is defined as “the volume of actual rainfall of a given duration, that
generates the said threshold runoff” (Georgakakos 2006). The first is equal to the surface runoff
that produces bankfull conditions and therefore is related to the basin’s characteristics, such
as the basin’s area, slope, land use, and cross-section dimensions. The second one, the FFG
value, is the output of the system and denotes the amount of rainfall of a given duration that
is required to generate the threshold runoff conditions (Georgakakos 1986, 2006; Norbiato
et al. 2008; Hapuarachchi et al. 2011; Douinot et al. 2016). When the rainfall losses and runoff
are known, the FFG value can be calculated using reverse rainfall-runoff modeling. Since
the threshold runoff is static, the FFG value varies based on soil moisture conditions that act
as rainfall loss interpretation. In saturated soil moisture conditions, a lower value of FFG is
expected, denoting that less rainfall is required to reach the runoff threshold. The FFG value

is then used as a rainfall-based threshold above which minor flooding will occur.
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The system is used as a decision support system, meaning it does not produce robust
deterministic flood warnings but through its multiple products.

The system is divided into three components; the threshold runoff component, the
hydrological model, and the FFG computations. The first is a pre-process of the system,
which aims to derivate the threshold runoff value. The second involves the continuous
hydrological simulation of the study area, used to obtain the current and future soil
moisture conditions before the storm. Finally, the FFG computations involve the FFG value's
real-time computations and the comparisons made with forecasted values.

Since the NRCS has used the system for operational usage, there have been numerous
studies concerning the various components of the system. While research on the estimation
of the threshold runoff value is deemed crucial (Carpenter et al. 1999; Reed et al. 2002; Kim
and Bae 2006), the majority of the research concern the Hydrological model used (Finnerty
etal. 1997; Gupta et al. 1998; Carpenter et al. 1999; Anderson 2002; Norbiato et al. 2008, 2009).
Specifically, the Sacramento Soil Moisture Accounting (SAC-SMA) hydrological model is
being used in the operational system, which features two soil layers, upper and lower zones,
while 16 parameters govern all the hydrological processes. Therefore, the primary part
research focused on the SAC-SMA model, specifically the optimization algorithm and
procedure of its parameters (Gupta et al. 1998; Hogue et al. 2000; Koren et al. 2000; Boyle et
al. 2001; Anderson 2002; Norbiato et al. 2008, 2009; Zhang et al. 2011, Wu et al. 2012).
Moreover, although the model was designed to be a deterministic, lumped-based model for
daily simulations, it has been used as a semi-distributed model (Boyle et al. 2001) and in
distributed form (Smith et al. 2004; Reed et al. 2007) as well, while it is the temporal scale
has also been explored (Finnerty et al. 1997; Bournas and Baltas 2021a). Overall, the SAC-
SMA model has proven to be robust, with the advantage of applying a-priori estimation of
its parameters, based on soil characteristics (Koren et al. 2000, 2003; Anderson et al. 2006),
making it applicable in ungauged basins where FFG values are estimated. Nonetheless,
other hydrological models and implementations of the FFG system have been used with
promising results, such as the ones concerning different spatial resolutions, leading to the
lumped FFG (LFFG) (Sweeney 1992), the Flash Potential Index (FFPI), (Smith 2003), the
Gridded Flash Flood Guidance (GFFG) (Schmidt et al. 2007) and the Distributed Flash Flood
Guidance (DFFG), (Clark et al. 2014). Finally, various studies focused on the success rate of
the flood warning estimations on historical events, which led to the conclusion that although
the system performed well, improvements are possible through more precise calibration
and simulation of the system using and high-resolution datasets (Seo and Breidenbach 2002;
Norbiato et al. 2009; Patsinghasanee et al. 2017).

The FFG concept has also been applied for Global coverage by the WMO, utilizing satellite-

derived soil and weather datasets. Implementations have been established in South and
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West Africa, Southeast Europe, Turkey, India, South and Central Asia, and Central America
(Georgakakos et al. 2022). The FFG concept does not require high-temporal and tuned
hydrological modeling, is easy to understand and implement, and therefore, is considered
practical and easy to operate FFWS (Hapuarachchi et al. 2011; Zeng et al. 2016; Georgakakos
et al. 2022). The FFG systems are continuously evolving, favoring a) the training of local
forecasters to improve the quality of forecasts and decision-making, b) the use of better
quality datasets, c) implementations of urban flash flood forecasting, landslide assessment,
and riverine routing, and d) continuous development of ancillary system products for
agriculture (Georgakakos et al. 2022). The FFG long process of a Research to Operation
(R20) FFWS has shown that such systems should be continuously evolving through the
collaboration of nation-based forecasts and system configurators to tailor the system to the

individual country needs (Georgakakos et al. 2022).

FEWS in Greece

A dedicated flood or flash flood alert system does not exist in Greece. As a member of the
EU, Greece benefits from products with European coverage. To that end, Greece uses the
Copernicus emergency programs, specifically for floods, the EFAS system. As
beforementioned, the EFAS system focuses mainly on medium-term forecasts for medium
and large river systems. Such systems are rarely found in Greece since Greece features an
extensive coastline and thus is subjectable mainly to flash floods and floods of small
ephemeral rivers. Flash flood products such as ERIC and EPICHA are deemed more
valuable for application in Greece. However, the EPICHA product, which is capable to
provide up to 6-hour nowcasts, is unavailable due to the non-coverage of the OPERA
weather radar composite in Greece. At the same time, the ERIC system focuses on specific
rivers which require continuous monitoring and are usually not the case of recent flooding
events in Greece.

Greece’s only EWS application is the MeteoAlert system, a meteorological warning system
that uses pre-determined rainfall thresholds based on historical events and experience. The
National Hellenic Meteorological Service (NMMS) provides such forecasts and warnings in
daily reports, but they usually lack the needed temporal-spatial information to deal with
flash flood events. In the wake of catastrophic floods (Diakakis et al. 2019, 2022; Feloni et al.
2020; Varlas et al. 2021), as well as other natural disasters, mainly wildfires, a warning
transmission system, the “112” system is being used to transmit warning messages about
natural disasters is being implemented. The message includes information about the areas
where natural disasters occur or may occur, along with evacuation directions. Although the
system has not been validated yet, it is deemed to have increased the awareness of people
to the risks of natural disasters (Diakakis et al. 2022). Overall, the system works best when

the events occur, while forecasted warnings are mainly based on MeteoAlarm products. In
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general, FEWS focuses on flash floods and relies their products on the use of weather radar
nowcasts, in contrast to NWP forecasts which are the only source of forecasts provided in
Greece. Greece’s weather radars are currently not used to warn against floods, a widely
discussed problem (Kolydas 2023).

1.4 Means of Precipitation Measurement

The measurement and estimation of the precipitation field remains a challenging task in
both meteorology and hydrology. The instruments used to measure precipitations can be
categorized into two groups: ones that detect and quantify rainfall at the surface, such as
rain gauges and disdrometers, and the remote-sensed instruments that measure rainfall well
above the ground (Michaelides et al. 2009). Both instrument categories tend to measure the
flux of the DSD using different methods, which do not always correlate with each other.
Remote-sensed instruments can provide estimates of the entire rainfall field instantly, while
on-surface instruments require a designated network and the application of interpolation
algorithms.

Rainfall gauge stations provide point measurements of precipitation using various
technologies such as an accumulation mechanism, a tipping bucket, a weighting type, and
optical technology. In each case, the measurement mechanism differs, improving the quality
of the measurement or the temporal resolution. The oldest method is the accumulation
mechanism, which uses a simple cylinder to record precipitation on a rolling paper.
However, problems with digitization and temporal distribution resulted in preferring a
tipping bucket technology, which is the most cost-effective and used type of rain gauge. The
weighting type gauge uses a high sensitivity weight mechanism to measure the input
precipitation, which offers advantages over the tipping bucket, both in quality since it does
not underestimate high rainfall rates and applications since it can measure hail and snow.
Optical rain gauges are similar to disdrometers, using a light beam source and a detector to
identify and measure falling hydrometers. The weight-type and optical rain gauges provide
significant quality improvements but are more expensive and require more maintenance,
making the tipping bucket the most typical technology in existing rainfall gauge networks.
In either case, the datasets are stored in a digital recorder within the rain gauge station, and
their extraction is made by either an in-situ visit to the station or by transmitting them
through a wired or wireless network connection, e.g., GPRS, should an internet connection
is available to the location.

The main advantage of rain gauges over remote-sensed instruments is the quality of
precipitation measurement at the station level, which is often referred to as the “true

rainfall” since rainfall, in hydrological applications, is the amount of water that reaches and
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is measured in the ground level instead in the upper level’s atmosphere. The main
disadvantage, however, is that they are point measurements of rainfall height and,
therefore, cannot represent the spatial variability of a rainfall field. Instead, a rain gauge
network must first be established, and an area interpolation algorithm, e.g., Inverse Distance
Weighting (IDW) method or geostatic methods (Kriging), should be applied. This
interpolation tends to correlate the quality of a generated rainfall field with the density of
the station network. A dense network will most likely recreate the rainfall field with
acceptable accuracy, but a sparse network’s generated rainfall field will most likely have
quality issues regardless of the interpolation algorithm used. The desired density of a rain
gauge network depends on the application.

In most cases, rainfall datasets are required for weather monitoring or hydrological
applications; thus, the density is designed to fit in specific administrative borders or onto a
specific basin. The World Meteorological Organization (WMO 2008) provides general
guidelines for implementing such networks, but practical reasons, such installation issues,
e.g., power and internet connections, as well as practical reasons, e.g., inaccessibility of
designated locations and equipment safety, among others, has often led to the formation of
heterogenous rain gauge networks, with inappropriate density for basin scale applications.
For instance, in Attica, Greece, most rain gauge stations tend to be located within or near
cities, while high-elevation areas are non-represented according to the guidelines
(Theochari et al. 2021). Moreover, the demand for high-resolution data in real-time has
raised the cost of each station, making the maintenance of the entire network challenging.
An un-maintained rain gauge can accumulate many problems due to weather exposure,
reducing the measured data quality (La Barbera et al. 2002).

For these reasons, more efficient ways involving remote-sensed precipitation
measurements, i.e., weather radars and satellites, have increased attention (Berenguer et al.
2005). Weather radars have a long history of implementation. They are considered the best
data source for rainfall-runoff modeling and storm-tracking applications (Price et al. 2014),
while satellite data are recent implementations gaining ground due to their accessibility of
datasets with extensive coverage (Gilewski and Nawalany 2018).

Weather radars use radio waves to detect and measure the reflectivity of objects, which is
later transformed into rainfall intensity, whereas satellites measure the radiation emitted or
reflected by clouds and precipitation. The instrument's main differences lie in the generated
product’s spatial and temporal resolution. Weather radars provide better resolution and
quality datasets than satellite measurements but are restricted to a pre-specified range.
Satellites instead tend to cover broader views, such as continental and even global views,
with reasonable accuracy. Satellite datasets are preferred for meteorological applications,

such as monitoring cloud movement and formation in the cynoptic, and less on mesoscale
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systems, while weather radars are preferred for mesoscale and microscale storm tracking
and rainfall-runoff applications. Table 1-3 features the characteristics, advantages, and
disadvantages of the above means of precipitation field estimation.

The most reoccurring debate in rainfall-runoff applications is about the advantages and
disadvantages of rain gauges to weather radar. Rain gauge measurements require a network
with a proper density to represent the rainfall field but tend to feature the best quality
regarding the actual rainfall measurements. On the other hand, a weather radar tends to
feature a better spatial representation of rainfall but is subject to quantitate errors due to its
remote-sensed nature. Weather radar datasets require proper quality control and calibration
of the radar system to reduce errors derived by signal errors, attenuation, noise, and

transformation to rainfall rate (Villarini and Krajewski 2010; Pathak et al. 2013).

Table 1-3: Most frequently used means of precipitation field estimation

Spatial Resolution/ Temporal
Recording Device . Advantages Disadvantages
& Weather Scale Resolution & 8
Low Spatial
. Interpolation of Point High-quality p'
Rain Gauge . Resolution
Measurements Imin-1h measurements on .
Network . . . Difficult
Microscale/ Mesoscale points location .
maintenance
Weather Radar 0.5-2.0km . High spatial Numerous
5-15 min i
Network Mesoscale resolution measurement Errors
. Numerous
High area coverage measurement Errors
Meteorological 4-6km . High data availability .
. . 5-15 min . Low-Quality QPE
Satellites Cynoptic Scale Good reproduction of .
. Low Spatial
clouds location .
Resolution

The preference between the use of the two products is usually related to the required
application for the actual datasets to be used. Since weather radars provide better spatial
and temporal resolution compared to rain gauges, their use has seen increased interest in
numerous applications such as hydrological modeling and simulation and storm tracking
and forecasting (K. Ajami et al. 2004; Nanding et al. 2015; Anagnostou et al. 2018; Grek and
Zhuravlev 2020; Schleiss et al. 2020; Sokol et al. 2021). The gridded nature of the radar
datasets is intergraded better when fully distributed models are used, semi-distributed and
lumped models can also be used through the aggregation of the datasets in either coarser
scales or in sub-basin and basin scales by calculating the Mean Areal Precipitation (MAP).

A critical factor in all studies is the scale of the analysis. While the spatial scale can be easily
configured through modeling, the temporal resolution between radar and rain gauges must
be identified and analyzed accordingly (Paschalis et al. 2013; Price et al. 2014; Schleiss et al.
2020). Another factor involving the desired rainfall field representation resolution is the size

of the basin examined. Specifically, in small basins, such as urban basins, the required

22



| Chapter 1 |Introduction |

resolution is much higher than in larger basins. In the work of Berne et al. (2004), two
equations that relate the basin size and the required spatial and temporal resolutions are as

follows:

At = 0.75A4°%3 (1.1)
Ax = 1.5At (1.2)

where At [s] is the required temporal resolution, A[km?] is the basin area, and Ax[m] is the
desired spatial resolution. By solving the above equations, Figure 1-6 forms, where it is
easily observed that for basins below 10 km?, the desired temporal resolution of the rainfall
field should be less than six minutes, and its spatial resolution should be less than 4 km x 4
km. This finding indicates that in small catchments, the limitation of the required rainfall
fields lies more on their temporal resolution rather than their respective spatial resolution.

Above 100 km?, the spatial resolution limitation becomes more critical than temporal

resolution.
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Figure 1-6: Relationship between temporal and spatial resolution of precipitation to the basin area
based on Eq. 1.1 and 1.2 by Berne et. al (2004)

In any case, it is vital to notice that while radars feature higher spatial and temporal
resolution, their application in rainfall-runoff modeling does not always translate into more
accurate estimations (Cunha et al. 2015; Seo et al. 2015a). The problem is mainly the
significant processes and quality control needed to obtain good QPE from the radar system.
Moreover, while calibrating a weather radar system secures the correction of systematic
errors, weather-related errors are difficult to correct using a single weather radar image. To
that end, weather radar rainfall estimates are best used after being corrected using rain
gauge measurements. This practice yields better accuracy than raw unadjusted radar
estimates (Borga 2002; Zhang and Srinivasan 2010). Overall, advances in radar and
computer technology have increased the number of high-quality QPE applications (Collier
1996; Sokol et al. 2021).
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1.5 Weather Radar

1.5.1 Introduction

Weather Radars ought their development to the radar technology which was developed and
used for military use before, during, and after World War II. A Radar, an acronym of Radio
Detection and Ranging, is an instrument that generates, transmits, and receives
electromagnetic waves to detect objects at a maximum distance and minimum size restricted
by the power of the transmitted signal and wavelength, respectively. The original scope of
radar systems was to locate enemy ships and aircraft. However, scientists during and after
the war noticed echoes and noise in the scans where rainfall occurred. Although this was
first considered an annoyance instead of a significant interest (Probert-Jones 1990), scientists
began closely examining the correlation between precipitation and the generated echoes.
The basis of weather radar meteorology was established first with the work of Ryde (1946)
on the attenuation and radar echoes produced by various meteorological phenomena at the
centimeter wavelengths, followed by the work of Marshal and Palmer (1948), which were
first to show and establish a relationship between the radar reflectivity (Z) and rainfall
intensity (R), based on measurements of rainfall Drop Size Distribution (DSD), the so-called

Z-R relationship.

1.5.2 Types of Weather Radars
Weather radars can be classified based on several characteristics. The most common
classification is based on the wavelength they use, which is related to the wave frequency

and the speed of light as follows:
c=f*21 (1.3)

where c is the speed of light [cm/s], fis the frequency [1/s], and A the wavelength [cm]. Since
the speed of light is constant, the other variable is determined by setting a desired frequency
or wavelength, making the choice of a higher wave frequency into the production of a
smaller wavelength. In Table 1-4, the most typical weather radar types are shown based on
the selection of frequency or wavelength. As the table suggests, the most typical weather
radar types for precipitation monitoring are the S-Band, C-Band, and X-Band radar systems,
which operate in wavelengths of 3, 5, and 10 cm, respectively. Although the frequency value
defines the wavelength, the wavelength value is critical since a longer wavelength has better
penetration capabilities, i.e., is less subject to signal attenuation and can measure in long
ranges. A typical S-Band can operate at more than 300 km, while a C-Band up to 200 km and
an X-Band at 100 km, although precise QPE is obtained for up to 200 km, 100-150 km, and
50 km for each radar type, respectively. On the other hand, a smaller wavelength makes it

possible to detect smaller targets, thus, featuring the best spatial resolution.
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Table 1-4: Common Weather Radar Types used in weather radar monitoring

Type Frequency Wave Length Application
S-Band 29 GHz 10 cm Precipitation
C-Band 5.6 GHz 5.4 cm Precipitation
X-Band 10 GHz 3 cm Precipitation
K-Band 25 GHz 1.2 cm Clouds
W-Band 95 GHz 3 mm Clouds

S-Band radars are much more prominent in size than the respected C-Band and X-Band
radars, making them more expensive in their purchase and deployment, as well as their
maintenance, while X-Band radars are versatile, much smaller in size, e.g., they can be
mounted even in a vehicle, and much more cost-effective (Berenguer et al. 2012), making
them better for applications in a local scale.

The choice of a weather radar type depends on several factors, such as a) the desired
coverage area, b) the desired purpose and applications to be used, c) the desired spatial and
temporal resolution, and d) the available budget and resources. The score of each radar in
the respected characteristics is featured in Table 1-5. An S-Band radar features small spatial
resolution but low signal attenuation and, thus, the most extensive coverage. An X-Band is
the least expensive and features high spatial resolution but small coverage. C-Band radars
combine the above benefits and problems, but their usage and size are more typical to the

respected S-Band systems than the X-Band systems, which are strictly local solutions.

Table 1-5: Radar Types Scores on selected characteristics

Characteristic S-Band C-Band X-Band
Frequency 2.7-29 GHz 5.6-5.65 GHz 9.3-9.5GHz
Wave Length 11 cm 5.4 cm 3 cm
Quality QPE 200 km 100-150 km 50 km
Range
Spatial Resolution + ++ +H+
Ability to detect

+ ++ et
small particles
Signal Attenuation + ++ +++
Cost -+ ++ +
Coverage +++ ++ +

o National Coverage in National Coverage in Local
Applications }
Flat Terrains Orography Coverage

In practice, the national meteorological services use S-Band and C-Band systems for their

respective national weather monitoring services. S-Bands are best deployed when the
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observation areas are usually flat, and no issues are generated from the orography, beam
height, or other sources of clutter and beam blockage, while C-Band radars are preferred
when such issues appear.

X-Band systems are only recently being utilized because their small coverage did not fit
nationwide weather monitoring. However, currently, they are preferred to be used to fill
gaps in already integrated weather radar networks, especially in complex mountainous
regions and urban areas, where high beam blockage and vertical profile variability is present
(Anagnostou et al. 2010, 2018; Sokol et al. 2021). Moreover, X-Band systems are also used to
increase the spatial and temporal resolution of weather radar monitoring for specialized
applications such as early warning applications for outdoor sports events, local media,
military, research, and development. The increased spatial and temporal detail allows for
better analysis of the subtle interplay between the spatial and temporal rainfall variability
and the sensor-controlled spatial and temporal resolution (Uijlenhoet et al. 1999).

Apart from the spatial resolution of a weather radar system governed by the selected
wavelength, another critical factor regarding object identification is the temporal resolution
of the radar system, which is determined by the selected Pulse Length and Pulse Repetition
Frequency (PRF). Since the weather radar signals are not transmitted continuously but in
pulses, the pulse length refers to the duration of each transmitted radar pulse and
determines the temporal resolution of the radar system, while PREF refers to the rate at which
the radar transmits pulses. The pulse length is an essential factor of a weather radar since it
controls its ability to distinguish between targets close together in range. A longer pulse
length will detect weaker and more distant targets since more power per pulse is
transmitted, resulting in fewer second-trip echoes, while a short pulse provides better
resolution and can detect small-scaled features. However, short pulse lengths can be subject
to signal attenuation due to heavy precipitation since they are more likely to be absorbed or
scattered by large raindrops. The PRF value is chosen in relationship to the pulse length.
Higher PRF values increase the maximum range but reduce the range resolution. Moreover,
by choosing an appropriate PRF, the radar can minimize the overlap between the clutter
spectrum and the desired Doppler spectrum of the weather targets, which helps better
identify and separate moving weather features.

Optimizing the pulse length and PRF in a weather radar system involves considering trade-
offs between range resolution and coverage. A short pulse length usually uses a high PRF

and the opposite.
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1.5.3 Historical use of Weather Radars

Weather Radars in the USA

Most research regarding weather radar usage was performed in the United States (US). The
first operational Weather Radar System, the WSR-57, was introduced in 1957 by the US
Weather Bureau. The first radar system was installed in Miami in 1959 and the last in
Charleston, US, in 1996 (Whiton et al. 1998). The system operated on the 10-centimeter
wavelength (S-Band), which allowed a maximum range of approximately 350 km. The
system provided enough information, which led to essential updates, mainly regarding the
spatial and temporal resolution of the precipitation fields. In 1974, the system was updated
to the WSR-74, which provided information regarding the intensity, location, and
movement of precipitation compared to the WSR-57, which only allowed the visualization
of echoes as patterns of varying intensity. The final upgrade to the US weather monitoring
program came in 1988, with the WSR-88D system, also known as the NEXRAD (Next
Generation Weather Radar), developed by the National Weather Service (NWS) and the
Federal Aviation Administration (FAA). The system introduced the Doppler technology to
weather surveillance, where the Doppler effect was being utilized to provide measurements
of the precipitation particle's velocity, allowing the detection of wind patterns within the
storms necessary for the observation of phenomena such as tornadoes, thunderstorms, and
mesoscale weather systems. The NEXRAD system now features 160 S-Band radars, with
varying spatial accuracy depending on data type and scan angle, with an initial level III
resolution of 1 km x 1 km, updated in all systems in 2008 to the level II resolution of 250 m
x 250 m. Although the system still operates, several enchantments in selected radars or
networks have been applied and planned. These include main advances in weather radar
monitoring, such as dual polarization, advanced signal processing, increased resolutions,

and phased array technology.

Weather Radars in Europe

In Europe, the first weather radars were deployed in the 1970s in the United Kingdom (UK)
and France, leading to the development of the UK's Met Office Nimrod and the Meteo-
France ARAMIS systems. Due to the low exchange of datasets during that time, a bottom-
up approach was used to develop a European network, where a radar network is sought to
be developed on existing individual radar systems. Each country’s meteorological service
independently developed its national-wide operational network radar, and only by 1990,
through the European Meteorological Services Network (EUMETNET) initiative, did data
exchange start to occur. This has led to numerous issues regarding the development of a
single weather radar network for the entire of Europe since high heterogeneity exists

regarding a) the technology and age of the radar systems, b) the scanning strategies, c) the
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signal processing, and d) the product generation (Huuskonen et al. 2014). The median height
of the radar antennas in the European network is 256 m above the mean sea, with the highest
being 2824 m located in Valluga (Austria; Alps Mountains) and the lowest is only 14.5m,
located in Rest (an island in the Norwegian Sea) (Huuskonen et al. 2014). Currently, there
are approximately 205 weather radars, of which the majority are of 5 cm wavelength (C-
Band), as shown in Figure 1-7. Although many challenges have been overcome,
heterogeneity exists since the national services operate and maintain the radar networks.
The radar data exchange initiative is coordinated by the Operational Program for Exchange
of Weather Radar Information (OPERA), established in 1999. The program is also called the
equivalent of “Europe’s NEXTRAD, " which generates a European Radar Mosaic through
the OPERA Radar Data Center ODYSSEY. The ODYSSEY data center initially used 134 radar
sites from 21 countries to provide, in real-time, three continental-scale mosaic products, i.e.,
the 15-min surface rain rate and maximum reflectivity and 1-hour rainfall accumulation
(Mattheus et al. 2012). Currently, the center incorporates 163 sites from 25 countries
(Saltikoff et al. 2019b), as seen in Figure 1-7, where the locations of the weather radars and
their type are shown in the left panel, while in the right, the composite of the annual
precipitation for the year 2018 is shown. The right panel of Figure 2-1 shows that the system

does not include datasets from Italy or Greece, as no data is shown in these areas.
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Figure 1-7: Map of the European radar network OPERA; a) radar locations, b) annual precipitation
of the year 2018; Source: (Saltikoff et al. 2019b)

28



| Chapter 1 |Introduction |

Weather Radars Worldwide

Worldwide, based on WMO Radar Database (WMO 2023), there are currently over 1200
radars deployed. The majority, 220, are found in the US, followed by 216 in China (WMO
2013b), 94 in Japan, 56 in Australia, and 53 in Russia. Most European countries list 10-15
radars each, with France reporting 30 radars, Italy 22, and Greece eight. In Figure 1-8, a
worldwide map features the location of weather radars with their coverage shown as
illumination of a 200 km radius (Saltikoff et al. 2019a). The map shows that most weather
radars have been installed in developed countries, namely the entire continent of the US,
Europe, and the eastern part of China, while areas with high population density are found,
such as the coastal areas of Australia, the Philippines, and South America. Africa does not
feature any coverage apart from the state of South Africa and Morocco. This distribution is
namely to the fact that weather radars require a significant amount of cost for their
deployment and maintenance, and their primary purpose is for weather monitoring and

flood forecasting applications, which are used mainly in developed countries.

Figure 1-8: Map of weather radar coverage in the world (in Robison projection); Illumination shows
a 200 km radius from the radar location; Source: (Saltikoff et al. 2019a)

Weather Radars in Greece

In Greece, the first weather radars were deployed in 1980. The first four are WSR-74 weather
radars installed by the HNMS service, mainly for weather monitoring. Two S-Band radars
were installed in Thessaloniki and Larissa, while two C-Band were installed in Athens, at
Mount Hymettus, and in Andravida, near Patra city. Apart from weather monitoring, the
weather radars were heavily used for anti-hail programs performed by the Hellenic

Agricultural Insurance Organization (ELGA).
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A significant upgrade of the system occurred due to the hosting of the ATHENS 2004
Olympic games. Specifically, a C-Band radar was installed at Aegina Island to support the
games with weather forecasts. The site was selected after an optimization analysis, which
sought to maximize the coverage area with as low as possible observation height due to the
orography diversity of the region (Baltas and Mimikou 2002a). The selected site covers
almost the entire mainland of Attica, with an observation range of 250 km.

Following this, the HNMS performed upgrades of its existing radars, with plans for further
installations to set up a network of radars with centralized control (Kollias et al. 2007). These
were performed under the program “Development of a Network of Weather Radars,” and
three new radars were installed in Preveza, Kavala, and Astypalaia, while two more radars
were scheduled to be, but were not installed in Skyros and Souda. The current state of the
Greek weather Radar network, as reported to the WMO Radar Database (WMO 2023),
consists of eight radars, shown in Figure 1-9, along with their respected 200 km range. The
radars cover the entire Greek territory, apart from the west part of Crete and the Islands of
Lesvos and Chios in the east. However, due to orography and the technology of the weather
radars, i.e., not all radars operate at 200 km range, the actual radar composite is less, with

gaps within the mountains.

1 ‘?DSID'O”E 2] "{IJ‘O"E 22"3?'0"E 24“?’0"E 25"3{)‘0“E 27“?’0"E 28"3[0'0"E

40°30'0"'N
40°30'0'"N

39°Ci'0"N
39°0'0"N

LEGEND

Weather Radar
B cBand
B sBand
Radar 200km Zone
DEM (m)

Value
- High : 2907

37°3?‘O"N
|
37°30'0'N

34°0'0"N
1
|
36°0'0"N

o - Low: -86

T T T T ]
19°30'0"E 21°0'0"E 22°30'0'E 24°0'0"E 25°30'0'E 27°0'0"E

Figure 1-9: The Greek Weather Radar Network
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Currently, the use of these radars has been attained, with some of them not being functional
due to presumably pending repairs and upgrades. In Athens, none of the two radars is used
operationally for providing weather warnings, as noted after the recent flood event in
Mandra (Kolydas 2023).

Non-operational radars include the National Observatory of Athens (NOA), X-POL radar
(Kalogiros et al. 2013), and the National Technical University of Athens (NTUA)
Rainscanner system (Bournas and Baltas 2020, 2022a), which are used for scientific and
research purposes. These radars are X-Band type (2-3 cm), which feature increased spatial
and temporal resolution but limited range, less than 100 km. Both radars are installed in
Attiki, the first in Penteli, at the facilities of the NOA, while the second at the NTUA facilities

in Zografou.
1.5.4 Formulation and Equations

Radar Equation

Weather radar works by sending and receiving multiple electromagnetic waves in a
horizontal plane, which assist in a) locating the object's distance and angle compared to the
radar location and b) measuring the reflectivity of the object, i.e., the amount of energy that
is transmitted back from the object. The first is easily calculated since waves travel with the
speed of light. Therefore, the distance between the object and the radar can be calculated
through the time it takes for the signal to reach the object and return. The second is more
challenging and can be estimated by measuring the difference between the transmitted, P:,
and received energy P:. The general equation of the reflected power P of the target and the

received power to the radar P:r to the weather radar system are described as follows:

PrgAs
P = 1.4
Aty (1.4)
P.g*2*A
p =9 % (1.5)

T e4ndrt
where, ¢ is the antenna gain, As the target area, A the wavelength, and r is the distance
between the radar and the target. Since a weather radar targets the hydrometeors, the A,
area can be easily identified since these are considered to be spherical. The value of Ao is
then replaced with parameter o, the area of a sphere. For small spheres, the area Asis related

to the sixth power of its diameter D, and therefore o is calculated as:

7.11.5 I K I 2 D 6
o=——1 (1.6)
where |K|? is a coefficient related to the physical properties of the target, mainly its electrical
conductivity, i.e., the ability to conduct an electric current. The most typical value of the

coefficient |K|? is 0.93 for liquid water and 0.197 for ice crystals for typical temperatures.
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Since the returning power is the sum of multiple objects, i.e., the hydrometeors, which
feature different diameters, the sum of target areas o;, 2o0;, should be used instead in the
equations. Replacing the above into equation 1.5 and assuming that the distribution of radar
lobes follows a Gaussian distribution, the returning power is then found to be:

b 3 P,g*0¢h|K|?>ED?
"7 1024In2 2272

(1.7)

where 0 and ¢ are the horizontal and vertical angle beam width, and £ is the radar pulse
length. Finally, since the issue lies with the calculation of factor £D? , it is replaced with a
new parameter, Z, called the reflectivity factor. The result is the following equation used as
the general weather radar equation:

p__ T FPgbeh kI,
"7 1024In2 A2 r?

(1.8)

Where, P, is the received power, P, is the transmitted power, g is the antenna gain, 0 is the
half-power beam horizontal width, ¢ is the half-power beam vertical width, & is the radar
pulse length, A is the radar wavelength, |K|? is the complex index of refraction, and Z is the
reflectivity factor. A list of the above variables is presented in Table 1-6, along with their
units and typical value ranges, while Figure 1-10 illustrates some of the parameters.

The equation is written in three factors, the first being the geometrical constants, the second
including the weather radar coefficients, and the third the variables related to the target, i.e.,
the hydrometeor. Since the two first are constant in a single weather radar scan, equation
(1.8) is usually simplified, as shown in equation (1.9), by replacing the two first factors with
a parameter, C1, called the “weather radar parameter.” In many cases, the water liquid value

of |[K|? is also added into the constant, resulting in parameter Czas follows:

PT=C1T—Z=C2r— (1.9)

Table 1-6: Weather Radar General Equation Variables

Variable description unit Remarks / Typical values

g Antenna gain - 20000 (~43dB)

Pr Received power mW 1-101* (0 - 110 dBm)

Pt Transmitted power mW 250*10° (250 kW)

Z Reflectivity factor mm¢/m? 0.001 to 50*10° (-30-75 dBZ)
h Radar pulse length m 600 (2 us)

|K|? Complex index of refraction - 0.93 (water) / 0.197 (ice)
r Target range m 100*103
A Radar wavelength m 0.03 to 0.10 (3-10 cm)
0 Half power beam width (horizontal) rad 0.017 (~1 degree)

(% Half power beam width (vertical) rad 0.017 (~1 degree)

32



| Chapter 1 |Introduction |

Horizontal

Beam Width (8)
Vertical Beam
Width (@)

Wave
Pulse Volume length (A)

Antenna  py (wusmittcd)

G (6 gy 7 |
= |

le >

Pulse Length (h)

Pr (reciep, d)

INRE NN
INRENE

Beam Width ]:j,;[
Lptigl
INENEN]
h

1 (target range}—— 4

7T T
Figure 1-10: Weather Radar Beam Characteristics

This simplification is shown in eq. (1.9) highlights that the returning power is proportional
to the reflectivity factor and inverse proportionally to the second power of the distance
between the radar and the target. The output of a radar is the reflectivity factor; thus, by
simple reordering, the reflectivity factor is calculated as:

1
Z=— Pr? (1.10)
C2

The reflectivity factor, Z, is measured in mm®m- units, ranging from 0.001 to 50 million
mme®m-. Since this is a relatively large range, a unit conversion is preferred to be made,

which produces a smaller range of values as follows:
Z[dBZ] = 10log;o(Z[mm®m~3]) (1.11)

This logarithmic change transforms reflectivity values in dBZ, limiting the range between
30 and 75 dBZ. Light rainfall is observed for reflectivity values above 15 dBZ, while values
above 30-35 dBZ showcase strong rainfall intensity fields. Values above 45 dBZ showcase
extreme rainfall intensity, while values over 55 dBZ can be considered to be hail instead.
The magnitude of reflectivity depends upon the hydrometeor's characteristics, mainly its
size, i.e., diameter, and its physical state, i.e.,, whether they are in liquid water, ice crystals

(hail), or snow. Other factors such as shape and density also contribute but not in the same

degree.
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The Z-R Relationship
The hydrometeor's diameter ranges from 0.2 mm to 5 mm in liquid form. If the distribution
of the hydrometeors size is known, then the reflectivity factor and the rainfall intensity can

be estimated as follows:

Z= fOON(D)D6dD (1.12)
0

oo

R= n/6f N(D)D3V(D)dD (1.13)
0

where N(D) is the total number of hydrometeors with a diameter between (D) and (D+dD),
and V(D) is a function that describes the velocity of the hydrometeors based on their
diameter. The velocity of a hydrometeor is usually a power law equation proportionally to

its diameter in the form of:
V(D) = kD™ (1.14)

where V(D) [m/s] is the velocity, D [mm] is the diameter, and k, m coefficients. In the work
of Atlas and Ulbrich (1977), the values of coefficients k and m were determined to be either
17.67 and 0.67 or 14.2 and 0.5, respectively. In a case study conducted by Feloni et. al (2017)
using disdrometer datasets in Athens, Greece, it was found that the Gossard equation

(Gossard et al. 1992), featured below, provided the best correlation in most cases.
V(D) = 9.65(1 — %53D) (1.15)

Comparing equations (1.12) and (1.13), it is visible that while reflectivity is proportional to
the sixth power of the hydrometeor’s diameter, rainfall intensity is approximately on its
fourth power (by assuming a typical velocity function). This difference results in a non-
linear relationship between the reflectivity and rainfall intensity. To overcome this problem,
Marshal and Palmer (1948), after analyzing the hydrometeors DSD of various events
measured with a disdrometer, found that an empirical exponential relationship, the Z-R

relationship, can fit the data well as follows:
Z = aR? (1.16)

where, Z [mm®m-] is the reflectivity value, R [mm/h] is the rainfall intensity, and a and b
parameters. The hydrometeors DSD, N(D), determines the values of parameters a and b,
which range from 30 to 2000 for parameter a and one up to three for parameter b. It becomes
evident that when the hydrometeor's size distribution changes, so do the values of
parameters a and b. This results in a continuous problem for weather radar data since the
DSD changes in space, i.e., in different geographical locations and time, i.e., between
different rainfall events. Marshal and Palmer (1948) calculated the value 200 for parameter

a and 1.6 for parameter b on their sample of multiple stratiform events. Research has shown
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that the Z-R relationship is related to the storm's characteristics, such as it being stratiform
or convective-based. In Figure 1-11, three Z-R relationships are applied to reflectivity values
ranging from 5 to 60 dBZ. Each value's coloring matches the standard color of reflectivity
used by many weather radar systems, while the rainfall description is derived by the actual
rainfall intensity calculated. The used relationships are the ones mentioned. The
relationships used feature a constant parameter b value of 1.5, while parameter a varies
between 100, 250, and 500, which is preferably applied for drizzle, widespread, and
thunderstorm weather systems as suggested by the work of Joss et al. (1970), which
investigated a series of Z-R relationships published up to that day.

Z |R (mm/h)|R (mm/h)| R (mm/h) | Rainfall 120
(dBz) |Z = 100R* | Z = 250R"*| Z = 500R'> |Descriptionl

—— 7=140R"1.5
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Figure 1-11: Reflectivity to Rainfall Intensity relationship for various the Z-R used

Figure 2-6 shows the difference between the used relationships highlighted in the higher
reflectivity values. Specifically, the difference is minimal at 30 dBZ, but above 40, the
difference is noticeable, and by 50 dBZ, the difference becomes extreme. Overall, a Z-R
relationship with a high parameter a value results in less rainfall rate for the same amount
of reflectivity. Values above 50 dBZ, in either case, result in extreme rainfall rates as they
lead well above 30 mm/h. Above 60 dBZ reflectivity, hail presence is suggested; thus,
specific hail-based Z-R relationships should be used instead.

Z-R Calibration

The estimation of the Z-R relationship parameters is crucial for providing quality QPE. As
previously mentioned, parameters a2 and b range between 1 to 2000 and 1 to 3, respectively,
although parameter 2 will most likely feature values within the 50 to 500 range for typical
rainfall events when snowfall and hail events are excluded. The most common values used
in weather radars are 200 and 1.6 for parameters a and b, respectively, derived by the work
of Marshal and Palmer (1948). However, it is well documented that these parameters show
high variability (Joss et al. 1970; Austin 1987; Feloni et al. 2017; Bournas and Baltas 2020,
2021b; Pappa et al. 2021). Factors that affect the parameter values are mainly the
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classification of the rainfall events, i.e., that being a stratiform, a convective, a haze, or a
snowfall event, the spatial and temporal resolution of the analysis, and even the radar
hardware properties (Joss and Waldvogel 1970; Austin 1987; Krajewski and Smith 2002).
The estimation of the parameters can be performed using two primary methodologies. One
is the direct method, involving the solving of equations (1.12) and (1.13), and the second, the
indirect method, by performing optimization on the Z-R parameters based on the best-fit
between the estimated rainfall height and “true rainfall” measured by another instrument
such as rain gauges.

In the first case, the knowledge of the hydrometeors DSD, N(D), is required, which can be
measured when a disdrometer device is used (Todini 2001; Goudenhoofdt and Delobbe
2009; Zhang and Srinivasan 2010; Colli et al. 2013). A disdrometer is a device that can
measure the size of the hydrometeors in a given period, therefore providing measurements
of the required N(D) parameter. A velocity function such as equation (1.15) is then applied
to determine rainfall intensity and derive the Z-R parameters for a specific event. Although
the method is straightforward to apply, the problem lies with the availability of the
disdrometer datasets. Specifically, disdrometer instruments are rarely available since they
are hardware-sensitive devices and do not usually belong to the standard instruments of a
typical hydrometeorological station. Therefore, only a few instruments would be available
for a given study area, which results in inadequate spatial coverage of the weather radar
scanning area. For instance, in Attica, two disdrometer devices are known to be used, one
by the NTUA (Baltas and Mimikou 2002b; Baltas et al. 2015; Feloni et al. 2017) and one by
the NOA, both used for research purposes. Only with one or two disdrometer devices the
DSD variability in space within the weather radar field cannot be adequately interpreted.
The second methodology relies on the correlation between radar and rain gauge
measurements (Hasan et al. 2016; Gilewski and Nawalany 2018, p.; Sahlaoui and Mordane
2019; Qiu et al. 2020; Bournas and Baltas 2022a), assuming the measurements are the ground
truth (Colli et al. 2013). This method is usually preferred since, as mentioned, disdrometer
data are scarce and do not offer a complete area coverage, whereas rain gauge networks are
already established, providing not only calibration datasets but continuous validation data
as well. When incorporating rain gauge datasets, two strategies can be followed. The first is
by performing the corrections provided by the rain gauges directly onto the QPE estimates
after applying a “default” Z-R equation, while the latter involves the calibration of the Z-R
equation first. In the first case, a bias-driven statistical analysis is performed at either the
station level (Ciach and Krajewski 1999; Legates 2000) or on the area level, using
geostatistical interpolation algorithms such as inverse distance or co-kriging (Todini 2001;
Goudenhoofdt and Delobbe 2009; Zhang and Srinivasan 2010). This strategy does not rely
on the Z-R relationship quality itself but on the quality of available datasets, i.e., the rain
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gauges, weather radar, and datasets, to provide a merging algorithm to calculate and
minimize any bias applicable to the QPE generated from the radar. This strategy can be
applied using geostatistics, but the application of machine learning techniques and Artificial
Neural Networks (ANN), which tend to skip the intermediate part, have shown promising
results (Alqudah et al. 2013; Orellana-Alvear et al. 2019). However, as shown in both studies,
using a locally derived Z-R relationship provided the best correlation and QPE in most
cases. Therefore, although direct correction of QPE tends to improve the weather data
results, they can be time-consuming and provide little benefit compared with more
straightforward methods, such as using a calibrated Z-R relationship. Nevertheless, the
combination of both methods is highly advised.

The strategy for optimizing the Z-R parameters lies in deriving the optimum set of
parameters a and b that fit the historical or even real-time datasets. In the historical case,
multiple radar-rain gauge data pairs are used through calibration and validation schemes.
Before any data is used, quality control and thresholds are usually applied, such as the
removal of zero or low values of either reflectivity, e.g., less than 15 dBZ reflectivity, and
rainfall intensity, depending on the scope and temporal resolution of the analysis (Ciach
and Krajewski 1999; Legates 2000; Germann et al. 2006; Gires et al. 2014). Following this, the
optimization procedure is applied by fitting the parameters a and b using an objective
function, such as minimizing the error between the weather radar QPE and the rain gauge
stations datasets. During the optimization process, different approaches can be made. First,
it involves the method of optimization, either that being a) linear optimization of a single
parameter, usually parameter a, with parameter b kept as a constant, b) nonlinear calibration
and optimizing both parameters (Bruen and O’Loughlin 2014), or even c) nonlinear
calibration of more parameters added to the equation such as the rain gauge-radar distance
(Anagnostou and Krajewski 1999; Borga et al. 2000; Legates 2000). Secondly, it depends on
the goal and resolution of the optimization, i.e., the used dataset in each case. Apart from
providing a single Z-R relationship, numerous Z-R relationships can be derived at the
station level, thus exploring the spatial characteristics of the Z-R relationship (Bournas and
Baltas 2022a), while the temporal evolution of the relationship can also be explored by
adopting seasonal or rainfall-based characteristics multiple rainfall events (Gabella and
Amitai 2000; Park et al. 2005). Finally, dynamic approaches with continuously updated Z-R
parameters based on current or short-term measurements have shown promising results,
useful for real-time monitoring (Alfieri et al. 2010; Wang et al. 2012; Libertino et al. 2015).
The above procedures show that the solution to the Z-R optimization problem can be
reached after considering various conditions. However, the solution depends on the
available dataset's quantity, quality, and scale. Storm event characteristics are dynamic and

related to the season and the topography of a given study area (Auipong and Trivej 2018).
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Moreover, the scale of the data used, such as different temporal resolutions, e.g., 10 min to
1 h, and spatial resolutions, larger or smaller pixel sizes, tend to lead to different Z-R
formulations. Therefore, the results of a Z-R optimization procedure should be used in the
same scale and study area, and a direct comparison of Z-R relationships should be made

after such considerations are taken into account.

1.5.5 Weather Radar Sources of Errors

While weather radar measurements feature many advantages over rain gauges, they are
prone to non-negligible and sometimes significant errors from different sources (Robbins
and Collier 2005; Collier 2009; Sokol et al. 2021). The majority of errors are the result of the
nature of the measurement, that being the transmission of microwave radiation pulses and
their reception when they are reflected after hitting rain hydrometeors and other
meteorological objects (Collier 1996; Doviak and Zrni¢ 1993; Sene 2008). A review of the
different sources of uncertainty in weather radar is mentioned in the work of Villarini and
Krajewski (2010). These errors are categorized into four groups, a) hardware-related errors,
b) errors related to the radar beam geometry and scanning strategy, c) errors related to noise
and echoes d) errors related to the transformation of reflectivity into rainfall products.

The first group consists of systematic errors related to radar electronics, antenna accuracy,
and signal processing quality (Gekat et al. 2004). Most errors are derived by the proper
calibration of the constant parameters of the radar general equation, shown in eq. (1.9).
These errors are usually related to the hardware of a single weather radar and can be
eradicated or minimized with proper system calibration. However, proper and regular
maintenance of the system is deemed necessary.

The second group of errors is related to the radar beam geometry and scanning strategy.
These are errors such as generated uncertainty due to the increasing distance from the radar
site, the radar beam width, and the vertical angle of the radar beam. For instance, with
increasing distance, due to the Earth’s curvature, radar beams tend to monitor away from
the ground surface, often leading to misinterpreting the actual rainfall values over a
specified area. This problem is also found when the radar beam angle is such that
overshooting or undershooting of a storm cloud occurs, which results in not identifying the
storm cloud ore and, thus, rainfall, leading to false measurements. Other such errors are
anomalous propagation that occurs when radar signals are refracted or ducted within layers
of the atmosphere, leading to the detection of false echoes on the radar display. Such errors
are subrefraction and superrefraction. Subrefraction is an atmospheric phenomenon that
occurs when the radar beam emitted by a weather radar system bends downward due to an
increase in the atmospheric refractive index with height. This bending causes the radar beam
to deviate from its expected straight-line path and follow a curve closer to the Earth's

surface. In extreme cases, trapping may occur where the radar beam will bounce far beyond
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the operation range, increasing clutter and the likelihood of second-trip echoes.
Superrefraction is the opposite of subrefraction and occurs when the radar beam bends
upward due to a decrease in the atmospheric refractive index with height. Both phenomena
lead to false measurements, where subrefraction will lead to underestimation, while
superrefraction to overestimation of rainfall height, and therefore, in such cases, it is advised
to reduce the radar operational range. Finally, the Bright-Band effect might interact with
measurements, also known as the melting layer or bright band, which occurs when
precipitation particles, usually snowflakes, transition from frozen to liquid as they fall
through a layer of warmer air aloft. This frozen layer causes the radar echoes to appear
stronger and more reflective than they would if they were purely frozen snowflakes.

The third error group is generated when noise is added to the measurements. These noises
can either be ground clutter and second-trip noises, i.e., reflectivity echoes transmitted by
non-rainfall objects, such as the terrain, static radio or cell network transmissions (Saltikoff
et al. 2016), and even biological objects such as birds and insects (Gauthreaux and Diehl
2020). These errors generate the majority of the uncertainty of weather radar images since
they are not systematic and may evolve. A proper clutter filter can detect and eliminate the
characteristics of such errors and should be applied in line with proper quality control of
the radar datasets. Dual-polarization radars can distinguish such errors better than single-
pol radars, but still, ground clutter remains a challenge for weather radar systems,
particularly in areas with complex topography or a high density of structures.

The opposite of adding noise is the underestimation of reflectivity, and consequentially
precipitation heigh when the strength or intensity of radar signals as they pass through
precipitation, such as rain, snow, or other forms of moisture in the atmosphere, are reduced.
This effect is referred to as radar attenuation, which is natural and unavoidable. However,
in some cases, the impact of radar attenuation may severely affect measurements. When a
high rainfall intensity storm is measured with a low wavelength radar, radar attenuation is
rapidly increasing with distance, and therefore reduction of the operational range of the
radar is advised. X-Band radars are more prone to signal attenuation due to their small
wavelength and the strength of the generated signal. Therefore, limiting their operation
distance is advised for providing good-quality datasets. However, other techniques can be
used for reduction attenuation, such as dual-polarization radars, attenuation correction
algorithms that consider the radar system's energy loss, and cross-reference corrections with
datasets provided from other sources of measurements.

Finally, the last group of errors is related to transforming weather radar measurements into
rainfall products. Specifically, this is related to the selected Z-R relationship, or in the case
of dual-polarization radars, to the algorithm using differential reflectivity (Zor) and specific

differential phase (Kor). The main issue with the Z-R relationship is that it is a static
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relationship used to translate a non-static variable. A Z-R relationship assumes that the DSD
distribution is consistent in time and space, which is not in line with an actual storm event
occurring. Calibration of the Z-R relationships through the derivation of parameters a and
b, the methods discussed in 2.2.3, should be performed, but with care concerning the
seasonal and regional variability and the convective and stratiform storm classification.
Dual-polarization radars offer more information regarding the shape of hydrometeors and
thus their distribution but still Z-R relationships, which include differential products, are
still required to be determined, and spatial corrections may be required to be applied to
meet the accuracy of rain gauges (You et al. 2022).

The majority of errors can be mitigated or eradicated with proper radar calibration. This
process includes calibrating the electronic parts of the weather radar to determine its
constants, optimum beam elevation angle, and overall good operation and developing the
required algorithms for correcting the generated radar images. Maintenance of a weather
radar system should be performed regularly to avoid errors generated by hardware and
validate the quality-control algorithms. It is usually inevitable that weather radars are prone
to errors and uncertainty generated by the corrections methods applied (Villarini and
Krajewski 2010). This is usually the cost for increased spatial and temporal resolution for
rainfall fields. Therefore, it is suggested to quality control the obtained datasets with other
sources of datasets, namely ground rain gauge stations or even radar images that cover the

same area.

1.5.6 Weather radar applications

Weather radar usage is focused on three main application categories; a) the observation and
analysis of microphysics during precipitation events, b) rainfall-runoff modeling, and c)
storm tracking and nowcasting applications. While the first is usually research-orientated
to improve the generated QPE, the latter are typical hydrological applications that are
improved with better high-resolution datasets. However, weather radar data for
hydrological applications was not as fast realized as their potential (Kammer 1991a; Seo et
al. 2015b). Even though their potential was and is still well documented, the use of weather
radar in modelling and application usually lacked quantity. Weather radar rainfall fields
benefit rainfall-runoff simulations when a distributed model is used compared to lumped
or semi-distributed models since the higher spatial resolution provides a better description
of a study area (K. Ajami et al. 2004; Grek and Zhuravlev 2020). A distributed model is
expected to have better results if the required datasets are provided (Borga 2002), but
because hydrologists are skilled and comfortable using rain gauge datasets and lumped
models, this assumption is debatable. There have been numerous studies where the results
derived from distributed models, which are often complex and data-demanding, do not

always reach better or equal results with respected lumped models. Berne and Krajewski
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(2013) discuss various aspects of the challenges and unfulfilled promise of using weather
radars, concluding that although weather radar provides high-resolution datasets, their
limitations have hampered their usage.

Nevertheless, the same review acknowledges that rainfall is the driving force of all
hydrological-related processes. Since technological advancements have made more
complex calculations easier to perform, better and more precise rainfall datasets will
inevitably be required. In strictly hydrological models, i.e., rainfall-runoff modeling for
water management projects, weather radars are not widely used. Although much has
improved since the beginning of radar usage, weather radar requires significant
understanding and know-how, which makes novice users, such as consulting engineers in
small firms, a challenging task to adopt. To address this situation, Berne and Krajewski
(2013) suggest developing tools and resources that would not be difficult to calibrate and
understand products but easy to access and process data for specific drainage basins. This
leads to the need for easier to calibrate and use models.

Recently, through the advance of radar technology, radar errors such as signal attenuation
in X-Band radars have been mitigated, making them more popular since they cost less and
provide increased spatial and temporal resolution products. This resolution is deemed not
only essential but also as a pre-required for the study of local events and areas (Cristiano et
al. 2017; Paz et al. 2019), such as urban basins, which are considerably small in size (Einfalt
et al. 2004; Thorndahl et al. 2017). Therefore, the use of weather radars in hydrological
modeling has seen new sights, with the focus on flash flood events and small-scaled basins
where the high resolution provided by weather radars increases the added value of the
distributed nature of the rainfall fields (Sayama et al. 2020; Ghimire et al. 2022).

Flash floods are the deadliest types of flooding, and the increased resolution offered by
weather radars is suitable for rainfall-runoff modeling, storm tracking, and nowcasting
applications. Most FEWS rely on weather radar datasets to provide warnings based on
rainfall thresholds (Norbiato et al. 2009; Liu et al. 2018; Georgakakos et al. 2021; Cheng et al.
2022). Although satellite datasets are assimilated in forecasting systems (Varlas et al. 2019;
Spyrou et al. 2020), increased uncertainty is still involved, and complex analyses have not
prepared such applications for operational usage. In contrast, weather radars have been
used for nowcasting and forecasting since their establishment as a means for precipitation
measurement. The benefit here lies in that the weather radar datasets can be used before the
transformation to rainfall height by simply analyzing the reflectivity fields (Dixon and
Wiener 1993; Li et al. 2015) and removing the uncertainty generated by the reflectivity to
rainfall transformation. FEWS is usually as good as the input they are provided with;
therefore, the higher temporal and spatial resolution input of weather radar data, compared

with those from rain gauge networks, satellites, or lightning networks, is considered vital to
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the nowcasting algorithms (Kohn et al. 2011; Karagiannidis et al. 2016). Therefore, weather

radar measurements are usually the cornerstones of modern FEWS implementations.

1.6 Research Aim

According to the introduction above, it can be summarized that floods constitute one of the
most significant types of natural hazards globally, affecting many people. Floods are
typically caused by intense rainfall, with their consequences being felt either immediately
in the form of human life loss and substantial economic damages to infrastructure,
agricultural, and industrial activities, or in time by impacting the environment in general
and deterioration of land cover by the transport of substantial debris and pollutants
transportation pollutants. Among the types of floods, the most common and destructive for
humans are flash floods, which are characterized by intense rainfall over a short period of 3
to 6 hours. Flash floods account for 85% of recorded flood events and feature the highest
mortality rate, i.e., the number of deaths relative to the number of affected individuals.
Most research on flood management is focused on understanding the hydrometeorological
processes that influence the extreme weather conditions leading to flood events. To that end,
one of the main non-structural methods for mitigating flood and flash flood problems is the
development and use of FEWS. An integrated FEWS consists of various subsystems,
including hydrological and meteorological data collection and processing, quality control,
mathematical simulation of the rainfall-runoff process, and storm predictions. Although the
methods used to simulate the hydrometeorological processes are essential, the main
problem lies in the chaotic nature of the atmosphere and the lack of sufficient resolution and
quality data. In a recent study (Marchi et al. 2010), an investigation of 25 major storms that
caused floods in Europe over the past 20 years revealed that only about half of the cases
were adequately documented with conventional field measurements.

Similarly, even in cases with a good level of data, there may be high uncertainty in modeling
a watershed system, which could lead to incorrectly estimated discharges compared to
observed values (Di Baldassarre and Montanari 2009). The same issue applies to rainfall
estimates and to the accuracy of hydrological forecasts since the desired spatial and
temporal scale to monitor rainfall events such as flash floods is higher than the respected
resolution offered by traditional rain gauges networks of rain gauges (Anagnostou et al.
2017). These characteristics generally limit the ability for timely warnings (Mimikou and
Baltas 1996), while in cases where measurements are nearly absent, unreliable, or non-good
spatially available, such as in Greece, the problem is exacerbated.

In conclusion, the expected benefits of further deepening the development and organization

of EWS against flood risk include a) higher quality predictions, b) increased response time,
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and c) more information regarding flooded areas to strategically design and implement
flood protection measures. Therefore, the main areas where a FEWS can advance are a) new
technologies concerning data collection and mining and b) more precise and more effortless
to apply methods that would reach more and better-quality decision-making information.
The first can be achieved by incorporating new technologies such as high-resolution
weather radars or satellites and implementing a data assimilation process. In contrast, the
second can be achieved by developing and calibrating rainfall-runoff models suitable for
leveraging the new data in ungauged basins and improved data analysis and nowcasting
techniques.

The development of a FEWS is expected to lead to significant reductions in the mortality
rate but in the economic impact of the flood-affected areas. In Greece, where such systems
are absent, the expected benefit after applying a FEWS is multiplied in contrast to most
Western European countries. In this dissertation, the Attica region was selected as the case
study since it is where the new NTUA weather radar system was installed and able to
monitor. Furthermore, the Attica region features varying land use in the form of a) heavily
urbanized areas consisting of the city of Athens, where approximately 50% of the population
resides, b) peri-urban areas on the outskirts of Athens, where towns and industry are
located, and c) rural areas found on the foothills of surrounding mountains. Overall, the
Attica region combines high and low-elevation areas, while at the same time, its extensive
coastline leads to a high number of small ephemeral streams, which have been overlooked
during the city expansion plans and the residential areas in general, leading them being
vulnerable to flash flooding.

The main goal of the Ph.D. dissertation is the development of a suitable methodology for
processing weather radar datasets of high spatial and temporal resolutions. A newly
installed weather radar system, the NTUA X-Band Rainscanner system, is calibrated and
evaluated through a series of rainfall events against datasets provided by ground-based
measurements from meteorological stations. Using the correlation of the abovementioned
datasets, the properties of the reflectivity (Z) to rainfall rate (R), and Z-R relationships are
analyzed both in time and space. Following the calibration of the weather radar system, a
rainfall-runoff model is designed to a) incorporate the weather radar datasets and b) be
readily applicable in ungauged basins, which is used for providing the hydrological status
of a given study area. A distributed flash FEWS based on the FFG theory is then devised to
provide flash flood indicators in historical and real-time events. Finally, the derivation and
application of a storm-tracking algorithm are performed using the available weather radar
datasets and image analysis tools to identify and track cell cores, providing storm-tracking
capabilities. The tool is intended to provide future rainfall forecasts that will feed the
devised gridded FEWS.
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This research was conducted in urban and non-urban areas of the Attica Region, which fall
within the coverage of the meteorological radar of the School of Civil Engineering at the
National Technical University of Athens (NTUA).

1.7 Scientific Significance, Questions, and Originality

The critical point of this research is the collection, analysis, and extraction of products
related to the newly installed weather radar. A weather radar is not a typical device, and
therefore proper handling of the raw generated datasets is essential to avoid systematic. On
the other hand, weather radar datasets are an improvement over traditional ways of rainfall
measurements. Although weather radar's history is over 50 years, they are still considered
a cutting-edge technology through technological upgrades regarding its hardware and
software components. X-Band weather radars are becoming more and more attractive due
to their small size and cost while providing high-resolution products. Exciting and new
early warning system applications are estimated to be favored by using multiple X-Band
radars to provide higher-than-ever resolution products to be integrated into sophisticated
hydrological and hydrodynamic models.

This thesis's significance lies in analyzing and understanding the weather radar
components. Unfortunately, research on weather radars is only performed when such
datasets are available, making future applications in Greece lacking information. Based on
research on the latest Ph.D. thesis conducted in Greece regarding floods, focus on areas that
aim to identify flood-prone areas and the hydrodynamic representation of historical floods.
Relevant scientific research focuses on using satellite datasets for early warning systems, but
due to their complexity and data availability, research to operation practice is not expected
in the near future. Moreover, satellite datasets cannot still match the resolution and quality
of weather radars but are only favored in research due to their high availability. The leading
research on weather radar application in Greece has been performed by Prof. Baltas, the
supervisor of this thesis, with his Ph.D. thesis back in 1996, where an S-Band radar system
was used. Following this, considerable research was performed by the National
Observatory of Athens with the X-POL, X-Band weather radar. Still, the focus lies in the
processes to provide quality QPE and less in early warning applications.

The need for adequate early warnings for floods in Greece multiplied after a series of flash
flood events that ended in the cost of human lives and economic damages that people feel
should not occur in developed EU countries. All the points mentioned above make this
research on flood early warning systems, and weather radars a valuable contribution. This
research highlights the benefits of using weather radar systems and provides a complete

framework and tools for early warning applications in a data-scarce area.
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The research questions this dissertation aims to answer, are divided into two sections, the

first concerning the use of weather datasets:

1. “What are the major factors to consider when utilizing weather radar datasets? Do weather
radar datasets provide with any benefit compared to rain gauge networks or are they governed

by uncertainty?”

The following question derives two more questions regarding the Z-R relationship as

follows:

e “How does the Z-R relationship variate in time and space? What are the factors that
influence the Z-R relationship and how do they affect it in the case of the Attica Region?”.
o “Is the derivation of a single Z-R relationship feasible for operational usage, and which Z-R

relationship should be used for Athens?”
The second question concerns the implementation of a FEWS:

2. What are the necessary components of an integrated flood early warning system (FEWS)
based on weather radar datasets? Can such a system be efficient at an operational level and

how can it be implemented?
Furthermore, in response to the above question, the following questions are also raised:

e “How does each component parameters influence the FEWS results?

e  “What FEWS products are available? How can one interpret the results of such a system?

The above questions, Finally, the originality of this research is highlighted by actions
performed in this thesis and presented in a list as follows:

¢ An in-detail review and methodology are presented regarding the process of raw
weather radar datasets and the required quality control procedures.

¢ The measurement and analysis of rainfall fields through the and analysis of raw
weather radar datasets. Most rainfall events in Attica from 2018 to 2023 are recorded
within the span of this Ph.D. thesis.

e The use of statistical analysis for a) exploring the properties of the Z-R relationship
and weather radar in space and time and b) calibrating a Z-R relationship for further
use.

e The correlation analysis between rain gauge — Rainscanner datasets to improve the
QPE.

¢ The development and application of a gridded rainfall-runoff model can easily be

calibrated in ungauged basins and areas with data scarcity.
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e The development of a FEWS aimed at flash floods and its application in historical
events.

e The development and application of a simple storm-tracking algorithm can analyze
the weather radar datasets, identify possible storm cells and track their location in

multiple consecutive images.

1.8 Limitations

The main limitations of this thesis lie in the weather radar type. Specifically, the weather
radar used is a single-phased X-Band weather radar system, contrary to more advanced
systems that use dual-polarization systems that offer advantages concerning quality control
of QPE. Moreover, due to its technical characteristics, the observation range is limited for
providing adequate lead times, and therefore, adequate “space” for providing long-range
forecasts based on cloud movement is not performed. Furthermore, a limitation concerning
the rain gauge datasets exists since these datasets were available for the periods of 2018 up
to 2020.

1.9 Thesis Structure

This research work is divided into five chapters.

Chapter 1: Introduction

In this chapter, an introduction to the thesis is made. Specifically, a literature review is
performed regarding the means for flood mitigation, such as the flood early warning
systems and the use of weather radars. The general aim and the research questions formed
are presented, as well as the novelty of the thesis.

Chapter 2: Study Area and Data Used

This chapter includes information regarding the study area, the Attica Prefecture, and the
data used in this research. Specifically, focus is given to the characteristics that lead to
flooding, such as the geomorphological characteristics and the hydrometeorological
conditions. Finally, a description of the datasets collected and used in this study is
performed.

Chapter 3: Methodological Framework

This chapter comprises the entire methodological framework devised and applied in this
research. Specifically, this chapter is divided into five main subchapters, which consist of
the methods used, a) for the analysis of the weather radar raw datasets, b) for the analysis,
optimization, and derivation of the reflectivity to rainfall intensity (Z-R) relationships
through correlation with ground stations, c) for setting and calibrating a gridded rainfall-

runoff, d) for the application of an early warning system, the gridded flash flood guidance
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and e) the methods used for the storm tracking and trajectory analysis based on the weather
radar datasets. Each subchapter consists of an integral part of the entire methodological
framework.

Chapter 4: Results and Discussion

This chapter features the results of applying the above methods to the study area. The results
are discussed, and the significant findings are highlighted.

Chapter 5: Conclusions and Future Research

In this chapter, the main findings of this Ph.D. thesis are presented. These consist of all the
individual findings for each subprocess, followed by the findings of the research questions
raised. Finally, recommendations for future work are also presented in this chapter.
Finally, three Appendixes, A, B and C, support the abovementioned chapters. The first is a
list of all the events measured by the Rainscanner system from 10/2018 up to 12/2022, while
the second and third present the results maps of the storm tracking algorithm in multiple

events.
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2. Study Area and Data Used

2.1 The Attica Region

The study area is the Attica region, and specifically, the area defined by the area coverage

of the Rainscanner system Figure 2-1. The Rainscanner is located in Athens, Greece, and

features a 50 km range. The extent of the Rainscanner, as seen in Figure 2-1., includes the

majority of the Attica Prefecture, apart from a small area on the west, beyond Mount

Gerania, as well as a small section of the Central Greece prefecture north of Mount Parthitha,

a part of the Asopos river basin.
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The Rainscanner is installed at the Zographou district, at the foot of Hymettus Mountain,
within the premises of the NTUA campus, and specifically on the roof of the Santorini
building, where the facilities of the Department of Hydrological Engineering of the School
of Civil Engineers lie. The elevation of the installation is 200 m and oversees the east side of
Athens. The covered area includes the entire Athens metropolitan area, surrounded by
Mounts Aigaleo on the west, Penteli and Parnitha on the north, and Hymettus on the east.
Due to the presence of Hymettus Mountain, the entire southwest area is obstructed and
cannot be measured. Unfortunately, the entire “Mesogeia” region, including the Athens
“Eleftherios Venizelos” airport, is out of reach. However, the Rainscanner location is
favored for observing precipitation systems with a west-to-east and north-to-southwest
direction which are the majority of systems in the area, making it a viable option for

observing and providing nowcasts and forecasts for the city of Athens and its vicinity.

2.1.1 Attica Districts

The Attica Prefecture is divided into eight regional units, five consisting of the Athens
metropolitan area; Central Athens, North Athens, West Athens, South Athens, and Piraeus,
while the rest, West Attica and East Attica, are larger and complete the mainland area of the
prefecture. Finally, the Island region includes the islands within the Argo-Saronic Gulf, such
as Salamina and Aigina, and the island of Cythera in the south.

Attica is the most populated area in Greece, where a total of 3.8 million out of 10.4 million
people reside, i.e., 36% of the total population. Within the Athens metropolitan area, which
consists of the administrative prefecture divisions of Central, West, South, and North
Athens, as well as the Piraeus, a total of 3 million reside, i.e., 30% of the total population and
80% of Attica population, while in west Attica and east Attica, 1.6% and 5% of the total
population reside, and 4.35 and 12.5% of the Attica population, respectively.

Moreover, based on the Hellenic Statistical Authority report (ELSTAT 2023), the region's
Gross Domestic Product (GDP) for 2020 was 78.99 billion €, accounting for 47.7% of the
Greek economic output, the highest GDP per capita in Greece. Of this percentage, 35% of
GDP is generated in Central Athens, 18% in North Athens, 12% for each in South Athens,
Peiraeus, and East Attica, 6% in West Athens, and only 5% in West Attica. GDP per capita
lies at 20% for each region. However, the West Attica region houses high industrial activity,
namely in the municipality of Aspropirgos and the Thriasion Plain between Aspropirgos
and Elefsis. Specifically, industrial plants that produce chemicals, metals, and plastics are

found, and the Aspropirgos refinery is the largest in Greece.
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Figure 2-2: The Attica Regions Prefecture and its regional units

212 Land Use

High urban and semi-urban areas characterize the Attica region. In Figure 2-3, the Corine
Land Cover (CLC) for 2018 is shown. Overall, 27% of the region is of artificial type, while
the rest, 73%, is agricultural and forest type. However, as seen by two figures, the density
of urban, i.e., impervious areas, is not even within the entire region. Three distinctive areas
are identified: the high continuous urban fabric areas found in Athens, the semi-urban, i.e.,
discontinuous urban fabric areas found in west Attica, e.g., Aspropirgos and Eleusis as well
as in the Mesogeia region, and the rural areas in east Attica. When analyzing the land use in
these areas, the mean percentage of artificial surfaces is about 66%, 19%, and 10%,
respectively, and the corresponding percentages of natural land (crops, grassland, and
forests) are 33.9% in Athens, 89.4% in Western Attica and 80.1% in Eastern and Northern
Attica (Feloni 2019). These percentages are expected to change, especially in the West and
East areas, since in Greece, legislation that allows out-of-city planning construction is still in
place, and city-expanding plans are underway. These areas are favored for both primary
residence and holiday housing since they lie close to the Athens metropolitan area and the

sea coast, adding real estate value.
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The above fact has led to continuous urbanization of the region since the 1960s, which has
altered the natural stream's waypaths. In Athens, several streams have been covered to form
road networks, with the most notable cases being the Kifissos, Alexandras, and Kalliroi
avenues. In peri-urban areas, uncontrolled urbanization has led to the obstruction of the
natural stream’s pathways by obstructing their natural path, which is only revealed after

intense rainfall leads to flooding.
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As the featured land use map shows, most of the region is described by an urban
environment. Rural areas can be found in west Attica, in the foothills of Mounts Partnitha

in the North, and in the Mesogia region in the southeast.

2.1.3 Hydrological Scheme - Climate

Athens has a Mediterranean climate, with mild, rainy winters and hot, dry summers. The
city typically receives most of its precipitation between November and March, with
relatively little rainfall during the summer months. According to Koppen (1884) the climate
of Attica is characterized as Hot-Summer Mediterranean (Csa), except for high altitudes,
where it is characterized as Humid continental (Dsb and Dfb). The average temperature
during the summer months is 30° C, while in the winter months, the average is 10° C.
Although summer months are characterized by high temperatures, which has led to the

European temperature record of 48°C measured in Eleusina and Tatoi in 1977, the climate
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throughout the year is highly influenced by the area's proximity to the sea, which
contributes to providing relief as well as providing more rainfall during winter.
Concerning rainfall, the average annual rainfall highest is 400mm but ranges between 350
mm and 1000 mm in the lowlands and mountainous parts, respectively (Baltas 2008).

The rainfall regime is Attica is characterized by Convective and Stratiform events. Stratiform
events occur during the winter months, mainly in November and February, while
convective events are typical in the summer, especially in June. From the above, the
convective events feature the highest rainfall intensities, which often result in flooding even
if a dry period was observed previously.

In Figure 2-4, the main subbasin formed within the Attica Region boundaries are displayed.
The largest basin is the Kifissos river basin, with an area of approximately 341 km?, which
consists the entire Athens metropolitan area. The basin is highly urbanized, with its main

stream, kifisos stream, being turned into an open and covered channel stream.
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Figure 2-4: Main basins formed in Attica Region with their respected area. With blue, the basins

with an area over 100 km?

The majority of subbasins are characterized by their proximity to the sea, and the high
percentage of urban use. The largest rural or peri-urban basins are Sarantapotamos and

Megara River basins in the West, and Marathon, Erasinos and Rafina basin on the east. Due
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to the Rainscanner beam blockage to the east of Hymettus areas, the main focus in this
research is focused in the west and specifically the Sarantapotamos river basin. This basin,
features a total area of 341 km? of which the majority, i.e., 231 km? features rural
characteristics. One main characteristic of the subbasins formed in the Attica region is the
large number of small basins due to the lengthy coastline. The majority of these areas are
highly urbanized in the areas closest to the sea, making them vulnerable to flash floods

events.

2.1.4 Historical Flood Events

Records of historical flood events are available on the website of YPEKA
(http://floods.ypeka.gr), which were collected to implement the 2007/60 EC Flood Directive
and submitted to the European Dataset “EIONET.” In the Ph.D. dissertation of Dr. Feloni
(Feloni 2019), a complete list from 1987 up to 2017 is presented using the YPEKA dataset

and other sources and scientific articles. From the listing, also shown in Figure 2-5, it is
evident that although the number of rainfall events has remained the same or even
increased, the fatality rate has decreased except for the November 2017 Mandra event,
which led to the fatality of 24 human lives. Overall, most flood events have occurred in the
winter months, with October and November being the highest.

In the last decade, the most notable events were February 2013, October 2014, October 2014,
and November 2017. The geographical distribution of floods reveals that most flood areas
occur mainly in the western areas of Athens and Attica, respectively. A few areas in the
north are also affected, mainly after flash flood events in summer months, generated

through the high rainfall height due to orography.
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Figure 2-5: The most sever flood events for the period 1896-2017
Source: (Feloni 2019)
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Regarding the duration of the storm events, it is observed that almost all flood events
featured a rainfall event with a duration of less than a day; most times, the duration can be
less than six hours. Summer events resulting from convective events often lead to flash
floods. These floods are usually locally based events, where a high volume of rainfall affects
a single basin. Although the number of fatalities might be low, the severity of the events in
conjunction with the unawareness has historically led to near misses of fatalities.

In most cases, flooding occurs within the urban fiber of Athens, leading to roads being
converted into streams resulting in infrastructure damages, the flooding of basement
properties, and the dysfunction of economic activity. One aspect that contributes to this fault
is the high urbanization of the city, in conjunction with the old and poorly maintained storm
sewer system. Especially in the center of Athens, the system is still combined, i.e., storm and
wastewater, which has a higher chance of being inadequate in higher return periods of
rainfall events. The problem is usually located in the relatively low maintenance and
cleaning of roads. Specifically, debris and waste usually block the sewer system's drain holes
during the first minutes of a rainfall event.

Finally, it is worth mentioning that in the last three years, the region of Attica suffered from
high volumes of snowfall, at least one event per year since 2021, that has led to substantial
socioeconomic damages. Overall extreme weather events have increased in frequency and
intensity in many parts of the world, including Greece, with this trend being linked to

climate change and urbanization.

2.1.5 Early Warning Systems in Greece

In Greece, the authority responsible for flood protection is the Civil Protection Agency
(CPA), which works under the Ministry of Environment, Energy and Climate Change
(YPEN). However, most predictions and forecasts are provided by the Hellenic National
Meteorological Service (HNMS), which operates as part of the Greek Armed Forces and the
Ministry of National Defence. The HNMS is responsible for providing meteorological
forecasts for aviation and navigation and, as such, has been heavily affiliated with weather
forecasting against natural phenomena. The HMNS works as the gateway of European-
based alert systems such as the MeteoAlarm and the EFAS. The first is mainly used for
providing alerts of all events, such as high rainfall, winds, and heat, using four levels of
alert, green, yellow, orange, and red for no action, get informed, prepare, and get preventive
measures alert levels, respectively. The state of alert is configured for each meteorological
parameter based on groups of fixed limit values. The forecasted accumulated rainfall height
of either 12 or 24 hours is examined, depending on the location, as shown in Table 2-1, in
which the values in bold concern the rainfall thresholds used for Attica. This system only

provides alerts depending on rainfall height, and does not consist of an actual FEWS.
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The EFAS system is EU-wide system which offers valuable products. However, as

mentioned in the introduction, the system effectiveness is limited in Greece due to the

formation of numerous small river basins are vulnerable to flash flooding, while the system

is designed to support decision-making, emphasizing large trans-national river basins and

large river basin systems.

Table 2-1: The MeteoAlarm Thresholds that are used in Greece

Variable Location No . Be Aware Be prepared -
Warning
Wind [km/h] W <60 60<W <80 80<W <100 W =100
Wind Gusts G<80 80<G<110 110<G<130  G=130
[km/h]
Rainfall Height West Greece, NE Aegean
(24 hour) Plmm] and Dodecanese P<20 20<P<60 60<P<100 P=100
N. Greece, East Sterea
Ellaa, Thessaly, P<15  15<P<40 40<P<75 P275
Peloponisos, Cyclades &
Crete
Rainfall Height West Greece, NE Aegean
(12 hour) Pimm]  and Dodecanese P<15 15<P <50 50<P <80 P>80
N Greece, East Sterea
Ellada, Thessaly, P<10 15<P<30  30<P<60 P >80
Peloponisos, Cyclades &
Crete
Max .
North Greece, Ipeiros T<35 35<T<39 39<T<42 T>42
Temperatures
T[°C] Central and South Greece T <37 37<T<41 41<T<44 T>44
Islands T<33 33<T<37 37<T<40 T>40
Min North Greece, Ipeiros T<-5 5<T<-8 -8<T<-15 T<-15
Temperatures
T[°C] Central and South Greece T<-1 -1<T<4 -4<T<-8 T<-8
Islands T<0 0<T<-2 2<T<-5 T<-5
Snow [cm] Not Urban: <2 Urban: <10 Urban: 210
Specified Rural: <5 Rural: <25 Rural: > 25
Not Wind Gust: Wind Gust: Wind Gust:
Storm Specified <40 kns 40<G<60kns =>60kns
Hail: <1cm Hail: 1<D<2 Hail: D<2
Ef:]*” (Visibility) >500m  100<V<500 V<100 V<50m

The CPA has recently been utilizing the “112” EU emergency number as a warning system.

Specifically, after catastrophic fire events that caused the loss of multiple human lives, the

CPA has also enhanced the “112” system with sending information. Initially, the “112”

number was a free-of-charge number used in Europe to contact any emergency services,

such as an ambulance, the fire brigade, or the police, of the EU state one is located. The “112”

system is now updated to send prespecified warning messages to smartphones using Cell
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Broadcast technology or, in lack of a smartphone, simple SMS messages after registration in
both Greek and English. The system started to be utilized by sending messages about the
COVID-19 pandemic. Since May 2021, the system is used mainly as an evacuation tool since
most messages were related to wildfire events, while the first message transmitted for a
rainfall event was on December 2021. From March 2020 until February 2023, out of the 217
messages transmitted, 40 were related to extreme rainfall and four for floods. The flood
events for which alerts were issued were three and occurred on the 14t of October 2021, the
26 of January 2023 flood in Athens, and the 09" of December 2021 in Central Macedonia
prefecture.

The system is only recently being used, so validation is not performed. Regarding rainfall
and flood alerts, the HNMS service and the fire brigade in some cases inform the CPA. In a
study regarding people’s perception of EWS, the most reliable source is the HNMS reports
followed by other authorities, namely the CPA, by either SMS messages or door-to-door
warnings (Diakakis et al. 2022). Radio, internet, and television were considered as less but
still relatively reliable. Although this adds credibility to the system, regarding flood alerts,
the lack of detailed precipitation forecast and nowcast products and the lack of rainfall-
runoff modelling on river basin scale cannot deem the system as genuinely reliable.
Although warnings are essential, when regular miss-hits occur, the credibility of such
systems can be easily lost.

Apart from the official agencies, several agencies and institutes that perform meteorological
forecasts issue newsletters through their websites or social media that can also be conceived
as warnings. The most watched institute is the NOA which features the densest rain gauge
network. The NOA’s METEO research team has developed a methodology to rank rain
storms by calculating the Regional Precipitation Index (RPI) (Lagouvardos et al. 2022). The
index considers the daily accumulated precipitation and its exceedance of specific percentile
thresholds, such as the total area where the exceedance occurs and the population where
these exceedances occur, leading to a five-group classification from low to extreme risk.
All the above systems operate using mainly precipitation indexes without any rainfall-
runoff modeling. Since flood occurrence probability is highly correlated now only by the
rainfall amount but also by the basin characteristics and the soil moisture condition before
the event, none of the above systems can be classified as a dedicated flood EWS. Moreover,
the generated forecasts are usually in an inadequate space and time scale for the necessary

rainfall-runoff computations.

57



| Chapter 2 | Study Area and Data Used |

2.2 Data Used

2.2.1 Weather Radar Datasets

The weather radar used, referred to as the Rainscanner system, is an X-Band weather radar
system provided by Selex ES GmbH company. Currently the system is installed in the
NTUA campus, at the roof of the laboratory of hydrology and water resources management

of the school of civil engineers Figure 2-6 .

Figure 2-6: The installed Rainscanner® unit, Antenna and Head unit

The technical specifications of the featured model, RS90, are displayed in Table 2-2. The
system consists of the following units: the antenna, the head unit, the interface unit, the
signal processor, and the user workstation which interact with each other as shown Figure
2-7. The antenna is installed above the head unit and inside a radar dome, while the interface
unit supplies power to the head unit and triggers the generation of electromagnetic pulses.
The signal processor runs in a Linux environment and performs the overall unit control, the
analog to digital signal transformations, clutter filter corrections, and the generation of
slices. These processes can be set up and triggered by the end-user using the RainView®
Analyzer software, which through a user interface, the operator can manage and set up any
pre-process required to the raw datasets, such as the application of clutter corrections, the
definition of the spatial resolution of the final product, the temporal aggregation and the file
format of the generated datasets. Overall, the system is a small and robust installation, that

can be fitted in any location.
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Figure 2-7: Rainscanner main components and functions. Source (Selex ES 2014)

Table 2-2: Technical Specifications of the NTUA Rainscanner weather radar system

Parameter Value

Peak Power 25 kW

Wave Length X-Band 3.2 cm
Frequency 9410 (= 30 MHz)
PRF 833 - 1500 Hz
Pulse Duration 1200 - 500 ns
Rotation Rate 12 rpm
Azimuth & Elevation Beamwidth 2.50

Azimuth Accuracy +0.5°
Scanning Range 50 km
Maximum Spatial Resolution 100 m x 100 m

The generated files are provided into “Arc/Info ASCII Grid” file format, using an Azimuthal

Equidistant projection, with the Rainscanner as its center, which includes an ASCII file

format containing a 1000 x 1000 dimensions reflectivity matrix. Since 2023, a NetCDF type 4

file format is also generated, with the scope of replacing the Arc/Info ASCII Grid format.

The new file format reduces the file size significantly, from approximately 6 MB for each 2-

minute measurement to less than 1 Mb. The generated files receive a name based mainly on

the timestamp in Universal Time Coding (UTC) and information regarding the generated

file. More information regarding the specific processes that are performed on the raw

weather radar datasets is discussed in Chapter 3.2.
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A complete list of all the events measured by the Rainscanner system in shown in Appendix
A. Specifically, the events starting and end datetimes, along with their duration is shown.
Not all events featured considerable amount of rainfall, as shown by their small durations,

therefore only a sublist of these were utilized in this research.

2.2.2 Rain Gauge Datasets

The precipitation measurements used in this research were provided by the National
Observatory of Athens Automatic Network (NOANN) station, operated by the Institute for
Environmental Research and Sustainable Development of the National Observatory of
Athens. The network is continuously expanding nationwide with multiple
hydrometeorological measurements, including rainfall, wind direction, speed, ambient air
temperature, atmospheric pressure, relative humidity, and solar and UV radiation
(Lagouvardos et al. 2017). Most of the stations feature a “Davis Vantage Pro 2” model and
can provide real-time measurements with a 10min temporal resolution. The data collected
are quality controlled in two stages. First, a procedure performed twice daily results in
flagging questionably quality data such as null values of wind for many hours. Secondly,
all flagged datasets are re-examined concerning spatial and temporal inconsistencies with
neighboring stations. This procedure is performed before incorporating the new data into
the database. In this research, 53 stations are used, as shown in Figure 2-8, with a date span
between 2018 and 2020. The data were provided after the quality-controlled processes and

therefore considered the ground truth.
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Figure 2-8. The Rainscanner coverage along with the rain gauge stations.
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Finally, the Intensity Duration Curves (IDF) derived in the course of the Flood Risk
Management Plans for Greece by the Ministry of Environment, Energy and Climate Change
(SSW-MEECC 2017) were also incorporated in this study. The IDF was evaluated at the
station level, using a Log Pearson GEV 5 parameter. Table 3-2 presents the list of the stations
with their respective parameters and the calculated accumulative rainfall height for three
rainfall durations and five years return period. In Figure 2-9, the location of each station is
featured, using the ID number featured in Table 2-3 as a reference. As in the case of the
NOAs stations, the majority lie within the Athens metropolitan area, while only two
stations, Eleusina, ID #286 and Mandra, ID #292, lie in the west Attica where the
Sarantapotamos subbasin is located. Two stations in the north are also shown in Figure 2-9
but were not used since not only there are they stationed away from the study area, but they
are located on the other side of the central mountain peak, Mount Penteli, resulting in
different rainfall characteristics that are not suitable for use with any interpolation

algorithm.
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Figure 2-9: IDF Stations in Attica Region; Stations marked with their respected ID, referenced in
Table 2-3.
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Table 2-3: List of Stations with their IDF parameters and calculated rainfall accumulation

Accumulate
Station ID Elevation Rainfall (mm) T=5
IDF Parameters years

n K A P 0 1-h  3-h 6-h

Eleusina 286 31 0.622 0.125 1714 0.695 0.124 | 23.0 36.5 48.0
Mandra 292 258 0.622 0.125 2134 0.641 0.124 | 31.5 50.1 659
Psytaleia 297 20 0.622 0.125 160 0.759 0.124 | 188 299 394
Nea Philadelphia 281 136 0.622 0.125 1955 0.72 0.124 | 25.0 39.6 522
Ano Liosia 289 184 0.622 0.125 229.8 0.678 0.124 | 31.8 505 664
Nikaia 277 67.2 0.622 0.125 101.1 055 0.124| 173 274 36.1
Peristeri 283 754 0.622 0125 124.8 0.694 0.124 | 16.8 26.6 35.0
Lomfos Nymfon 279 107 0.622 0.125 163 0.698 0.124 | 21.7 345 454
Menidi 293 248 0.622 0.097 334.6 0771 0.124 | 33.8 53.7 70.6
Helliniko 278 10 0.622 0.125 2169 0.735 0.124 | 269 427 56.1
Tatoi 284 0 0.622 0.097 289.7 0.792 0.124 | 27.7 440 579
Galatsi 290 176  0.622 0.125 1424 057 0.124 | 23.6 375 493
Vyronas 291 206 0.622 0.07 365.3 0.881 0.124 | 22.1 351 46.2
Zographou 276 2264 0.622 0.07 2821 0.828 0.124 | 209 33.1 43.6
Chalandri 287 219 0.622 0.125 266.7 0.699 0.124 | 355 56.3 74.1
Penteli 285 189.3 0.622 0.125 1357 0.63 0.124 | 204 324 427
Ag. Nikolaos 295 729 0.622 0.097 3754 0.809 0.124 | 343 545 717
Penteli D.B. 288 383 0.622 0.097 300.2 0.758 0.124 | 31.3 49.7 655
Pikermi 294 630 0.622 0.097 360.7 0.739 0.124 | 394 625 823
Markopoulo 296 133 0.622 0.097 236 0.727 0.124 | 26.5 42.1 553
Peiraias 280 85 0.622 0.07 275.8 0.805 0.124 | 22.0 349 46.0
Ag. lerotheos 282 2 0622 0125 99.1 0534 0124 | 173 275 36.2

2.2.3 GIS Datasets
Apart from the hydrological measurements, other datasets that were used in this research
include the following:
e A Digital Elevation Model (DEM) is provided by the National Cadastre & Mapping
Agency S.A. (Copyright © 2012, National Cadastre & Mapping Agency S.A.). The
DEM features a 5 m x 5 m spatial resolution elevation grid with a geometric accuracy
of RMSEz <2.00 m and an absolute accuracy of less than 3.92 m for a 95% confidence
level. The format of the files is in ERDAS Imaging (IMG), projected into the Hellenic
Geodetic Reference System 1987, also known as Greek Grid, GGRS87, or EPSG:2100.
e The CORINE Land Cover (CLC, 2018) dataset was used, which features an inventory
of land cover in 44 European classes. The CLC dataset was first established in 1990
and, since 2000, has been updated every six years, with the latest product being in
2018. The minimum mapping unit (MMU) is 25 hectares (ha) for areal objects and

100m m for linear elements. Because of the coarse resolution, it is suggested that a
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more detailed land cover map should be used instead for various uses. The 2018
version made use of the Sentinel-2 and Landsat-8 satellite datasets, for a period
between 2017-2018. The geometric accuracy of the datasets was less than 10 m due
to the high Sentinel-2 resolution images, which results to a better than 100m of the
final product.

e The URBAN Atlas 2018 land use dataset is also used. The Urban Atlas focuses on
“hot spots,” i.e., in urbanized areas, where a dense variability between land uses is
found. The dataset was first introduced in 2016, with 2012 and 2018 the following
products. The dataset is based on image classification of very high-resolution
satellite imagery, the multispectral SPOT 5 & 6, and Formosta-2 pan-sharpened
featuring a 2 to 2.5 m spatial resolution. Finally, the dataset is enriched with local
information, such as city maps and online services, to increase its accuracy. The 2018
dataset features an inventory of 27 classes with an MMU of 10m and positional
accuracy of 5 m. The 2018 version is not validated yet, but the 2012 installment
featured an 85% accuracy for artificial classes and an 80% for all classes.

e (IS-based datasets provided by open access sources such as the geodata.gov.gr
website, where the boundaries of the administrative regions were provided, and
datasets, e.g., road network, provided by the OpenStreetMap initiative.

Alist of the available IDF stations and their respected fitted parameters derived in the course
of the Flood Risk Management Plans for Greece by the Ministry of Environment, Energy
and Climate Change (SSW-MEECC 2017), in a .shp format.
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3. Methodological Framework

3.1 Introduction

In this chapter, the methodological framework followed in this dissertation is explored. This
framework's main objective is to aid in developing a FEWS that implements weather radar
datasets. As described in the previous chapters, weather radar is extremely useful for FEWS
implementations but requires proper calibration and user expertise to achieve reliable
measurements and forecasts. The methodological framework covers the steps needed to
reach hydrological products for FEWS applications. The entire framework is illustrated in
Figure 3-1. The main components are illustrated with different colors, as referred to in the
attached legend. There are four components: the input data, the processes, the algorithms,
and the output. The input and output files refer to the raw datasets collected in this study,
and the output files are either intermediate core files or actual hydrological products. The
processes are the main components of this dissertation. Each component solves a different
problem required for the entire process. The main processes are:

The first process is the file management and data corrections process, which is essential for
further processing the raw Rainscanner datasets. There are two specific actions, one that is
referred to as pre-process and one referred to as post-process. The pre-process is user-
calibrated beforehand and is performed on the fly for each measurement within the
Rainscanner software. The post-process provides an additional layer of quality control by
addressing temporal inconsistencies and other raw data errors.

The second process is the Z-R calibration, where a methodology is described and applied
for deriving a Z-R relationship based on Rainscanner — rain gauge correlation analysis of
past events. This process is crucial for transforming reflectivity into rainfall height, thus
obtaining reliable gridded rainfall maps for further analysis.

The third process involves the design and application of a gridded Rainfall-Runoff (RR)
model suitable for implementing the Rainscanner-derived rainfall maps. The RR model uses
GIS tools to calculate its parameters based on the basin’s characteristics, making it easily

applicable in areas with little data to calibrate.
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The fourth process is a Flash Flood Guidance (FFG) implementation, the Gridded Flash
Flood Guidance (GFFG). The implementation incorporates the proposed RR model to
produce gridded rainfall thresholds, upon which a FEWS relies.

Finally, the fourth process is a Storm tracking algorithm. The algorithm first identifies
rainfall cells based on reflectivity thresholds and generates each cell track after analysis of
numerous instances. Then, the algorithm is used to examine the trajectory of rainfall events
in the study area while providing the first step for generating nowcasting products.

Each process leads to an “Output” product, which, apart from its usage in this dissertation

application, can also be used in other products.
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Figure 3-1 The Methodological Framework

3.2 Radar File Management and Quality Control

The weather radar conducts three-dimensional time and space observations. A total of 24
instances are utilized to create a single 2-minute duration volume scan. This volume scan is
projected into 2-D, generating the Plan Point Indicator (PPI) and the Azimuth-Distance
scans. The PPI scan shows the measurements projected into a 2-D surface in radial
coordinates, with the radar system at its center. The Azimuth-Distance scan projects the
measurements onto a 2D chart, with the x-axis representing the radar-to-target distance and

the y-axis representing each point's azimuth.
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Each volume scan is first subjected to quality control algorithms and later to spatial and
temporal aggregations to match the desired scales. Finally, the resulting scans are
georeferenced to the desired coordinate system and saved to the appropriate file type for
further analysis. These actions consist of the " pre-process " performed by the Rainscanner

software RainView® after user calibration and include the following;:

o Ground Clutter and Occultation Corrections
e Temporal and spatial aggregation

e Georeferencing and File management

The preprocess flowchart is depicted in Figure 3-2, along with the settings established for

the featured Rainscanner system.
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Figure 3-2 Data process flow chart
3.21 Pre-Process Quality Control

Ground Clutter and Occultation corrections

Ground clutter refers to reflectivity echoes transmitted by non-rainfall objects, such as the
terrain, or stable signal-transmitting objects, such as radio or cell network transmissions,
while occultation refers to areas of no data due to the obstruction of the radar’s line of sight.

The aim of these corrections is first to identify the regions where signal noise is generated
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or signal is lost and, secondly, to correct it. The identification of these regions is
accomplished by analyzing observations of clear sky. Observations of a clear sky measure
non-rainfall objects' reflectivity values. As a result, these areas can be highlighted and
further analyzed appropriately. In order to maximize the identification process, numerous
scans of the clear sky are performed and mosaiced into a single image, the clear sky map.
The Occultation correction is performed first. This correction is made to cure areas where
obstacles partially block the antenna beam. The data gaps are shown as no-data cones
created beyond the signal-blocking obstacles in a PPI view. Instead of omitting these areas,
an interpolation algorithm is applied to fill these gaps. The neighboring non-occulted points
in the azimuthal direction are discovered and used to fill the NoData points using linear
interpolation. If one of the neighboring points is a NoData point, the value is determined by
the distance between the neighboring non-occulted points and the point to be filled. If the
“no data” point is closer than the “has data,” then the point gets a NoData value. Following
this procedure, the occultation map is created, which indicates the position of the affected
pixels and the interpolation parameters to be performed in real-time measurements.

The Ground clutter corrections follow a similar procedure. The clear sky map is used to
identify areas to be flagged for corrections, but real-time gap-filling interpolation can also
be performed. The clutter-affected or missing data gaps can be treated based on one of the

following procedures:

e Removal of the cluttered area
e (Clutter Subtraction.

e Flagging and Automatic interpolation

In the first case, any clutter-detected areas are manually marked as NoData areas and are
ignored from future scans. This treatment is performed if large clutter areas are detected
and no further action is preferred. Moreover, replacing the value with NoData makes the file
smaller and easier to configure.

The second and third cases are correction algorithms. The clutter subtraction is relatively
simple since it treats the clear sky reflectivity values as data to be subtracted from the real-
time scans. Although this correction may work for low-reflectivity noise, it is impractical for
use with high-reflectivity noise since a considerable amount of reflectivity is substracted,
rendering the treated area as low as zero reflectivity targets on real-time scans, where actual
rainfall should be observed instead.

Finally, the flagging and automatic interpolation algorithm is usually the preferred choice.
In this case, an interpolation algorithm (Kammer 1991b) is applied to the clutter-affected

areas using nearby clutter-free areas. The algorithm can be performed in either user-defined
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areas or automatically to the entire scan, which is also the default. In this case, the algorithm
is performed conditionally, based each time on real-time measurements.

When performed automatically, the clutter-affected areas are identified first for each can. In
order to avoid interpolation from points that are seemingly non-clutter data but are found
within clutter zones, a radial segmentation is performed in each case. A segmentation
interval is chosen, and the number of flagged areas is calculated for each radial area. If more
than half of an interval's areas are highlighted, the interval's radial areas are also

highlighted. The size of the segmentation interval is calculated as follows:

1 1
= 4ﬁﬁ 3.1)

, where N is the segmentation interval, Ar the range area resolution (in km), and RS is the

N

range sampling (range averaging).

The NoData gaps are polygon-shaped areas interpreted as an ellipse. The corrections
applied, i.e, the gap-filling interpolation algorithm is performed into two axes: the
azimuthal direction, i.e., left and right of the missing data, and the radial axis, i.e., the axis
defined by the line between the target and the Rainscanner. For each area, the following

parameters are stored, as illustrated in Figure 3-3:

e The maximum distance in the radial direction, D:
e The maximum distance in the azimuthal direction, Da
e The radial direction bounding points location, Ro and R:

e The azimuthal direction bounding points location, Ao and A:

Figure 3-3: Clutter-affected area calculated parameters

The nearest data from clutter-free points are searched for interpolation for each area. If the
distance of these points is less than a pre-defined maximum radial, Damax, and azimuthal
direction, Drmax, then the interpolation can be applied in both directions. However, if the

radial or azimuthal distance exceeds their pre-defined maximums, the interpolation is

69



| Chapter 3 | Methodological Framework |

performed only in the direction where the maximum is not exceeded. Finally, no
interpolation is performed if the distance exceeds the maximums in both directions. These
cases are illustrated in Figure 3-4, where panel a shows interpolation in both directions,
panel b shows interpolation only in one direction, the azimuthal, and panel c shows the case

of no interpolation.

a) Ag%)
“
pe %
Dmax
" A
s

Figure 3-4: Clutter-affected area interpolation cases based on pre-defined maximum distances,

a) both directions, b) one direction, c) no interpolation

If the missing data area has a complex shape, as shown in Figure 3-5, multiple bounding
points are calculated, and interpolating each direction is performed based on the distances
calculated for each bounding point group. Specifically, each Rainscanner ray has a 0.5-
degree fixed step in the azimuthal direction, and therefore, for each ray, a Ro start and R:

end bounding point are defined.

Figure 3-5: Ground clutter identification and flagging algorithm in a complex shape

The interpolation performed is linear, with the user setting the maximum distance Dmax in
each direction. In this Rainscanner, the limit is ten cells, i.e., 1000 m. If both-direction

interpolation is feasible, then the calculated value is the mean value of the interpolated
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values of each direction. If any neighbor cell is of NoData, then the next neighbor is used for
interpolating up to the maximum distance previously set.

Finally, if automatic and user-defined areas overlap, then the “OR” rule is applied, where
the interpolation is applied by the most restrictive rules set in each case. For instance, if only
radial interpolation is pre-selected for a user-defined area, the automatic interpolation will
not perform two-directional interpolation, even if feasible. Moreover, the MAX rule is also
applied, which dictates that the maximum reflectivity value is selected if two interpolations

are performed for the same point.

Spatial and Temporal aggregation

This procedure is performed automatically to define the desired spatial and temporal
resolutions. The Rainscanner system, by default, creates a 1000 x 1000 pixels raster. The
spatial resolution of the scans is then related to the scanning range. When large scanning
ranges are selected, the system degrades the resolution to fit the data into the 1000x1000
pixels raster. Therefore, although a 100 km range is feasible by the system, a smaller 50 km
range will lead to a better spatial resolution scan. Moreover, the smaller range is a more
reliable choice since X-Band radars suffer from signal attenuation, thus making long-range
scans through storms unreliable. Therefore, for a 50 km range selected, a 100 m x 100 m pixel
size is calculated.

Concerning the temporal resolution, the minimum 2-minute temporal resolution is selected.
The temporal aggregation of reflectivity values can be easily performed by calculating the
average values of the selected 2-minute intervals within the desired time interval. Although
the aggregation may be conducted on the precipitation data, executing the aggregation on
the reflectivity values is preferable to prevent errors that can be amplified when applying a

power-law equation, such as the Z-R relationship used first.

Data projection and File Type

This step deals with the necessary projection transformations, i.e., the conversion from polar
to Cartesian grid coordinates. The conversion is applied using interpolation between the
nearest points of the polar grid to the nearest point of the predefined cartesian projection.
The selected projection for the generated datasets is the Azimuthal Equidistant projection,
with the Rainscanner as its center. Finally, the dataset is stored in an “Arc/Info ASCII Grid”
file format. The files generated are of ASCII file format containing a 1000 x 1000 dimensions
matrix, with the reflectivity measurements in dBZ values, and ASCII files containing the
georeferencing information. Since 2023, a NetCDF type 4 file format has also been generated,
with the scope of replacing the Arc/Info ASCII Grid format. The new file format reduces the
file size significantly, from approximately 6 MB for each 2-minute measurement to less than
1 Mb.
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The generated files receive a name based mainly on the timestamp in Universal Time
Coding (UTC) and information regarding the generated file. The following file name coding

is used:
<YYYYMMDDhhmmss><NN><data-type>.<product-type>

The first part is the timestamp, where YYYY, MM, DD, hh, and ss denote year, month, date,
hour, minutes, and seconds. The <NN> is an increasing counter to distinguish file names of
the exact date and time stamp, while the <data-type> and <product-type> refer to the data
type, such as whether it refers to reflectivity or other measurements, and the Rainscanner
type of product, e.g., PPI, CAPPI, max or others. More information about the two latter can
be found in the Rainscanner manual (Selex ES GmbH 2014; Selex ES 2014). The typical

reflectivity scans used in this study follow the following example:
2020060111020000dBuZ.ppi_top.asc

The previous files refer to a 2-minute reflectivity image with a timestamp of 2020/06/01,
11:02:00 (UTC). The following two numbers are the <NN>, which are 00, typical for images
with unique timestamps. The data type is “dBuZ,” a reference to dBZ, which are reflectivity
units. The u letter in the dBuZ extension denotes that the product is a ground clutter-
corrected dataset. Finally, the product type is a “ppi_top,” which refers to a PPI image, and
its extension, .asc, refers to the ASCII file format. When the Arc/Info ASCII Grid file format
is used, additional files, such as a projection file and other GIS-related files, are also
generated. All files are stored within an automatically generated folder named after the date
of their creation. Therefore, all measurements of the same date are stored within the same

folder, regardless of whether the system went offline briefly.

3.2.2 Post-Process Quality Control

The post-process quality control consists of quality controlling any unreliable high
reflectivity values missed during on-the-fly corrections and temporal inconsistencies of the
generated data. After creating the necessary data structure, the process is performed within
the MATLAB programming environment.

First, the event folder is constructed. As stated earlier, the Rainscanner generated folders
based on the date they were created. Therefore, an overnight event might be stored in two
different folders, or a single date might consist of two events, one in the morning hour and
one in the evening. Such gaps might exist due to a) power failures that result in turning the
system offline for several hours or b) limiting the radar usage when rainfall is not observed.
The latter is performed to reduce the cost of maintaining a radar system. The maintenance

is related to its usage. For example, it is referenced that the magnetron of a weather radar
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should be changed after 3500 hours of usage. In this study, a single event is considered
complete when the dataset features a continuous timeline without gaps of over 30 minutes.
However, smaller temporal gaps, e.g., 10 - 20 minutes, can still be considered significant
data loss, especially when examining small basins as in the study area. Nevertheless, the
Rainscanner datasets used, apart from gaps due to power failure, did not include such gaps.
Each event is given a serial number, and further management is performed within the
MATLAB environment. A data struct is created, containing the entire reflectivity images of
the event in 1000 x 1000 and the date time timeseries. In this stage, the Greek time zone is
used to sync the data to the timezone of other used datasets, such as rain gauge datasets.
Care is taken for transforming to winter (UTC+2) or summer time (UTC+3), based on the
event date.

Two quality control actions are performed in these raw datasets, as shown in Figure 3-2.
First, a dBZ threshold is applied to limit any extreme values missed during the ground
clutter corrections. This limit is set to 55 dBZ, meaning values above 55 dBZ are reduced to
55 dBZ. This threshold is set since values over 55 dBZ can be either hail, which is not
common in Attica unless noticed otherwise, or the effects of the bright-band effect. This
threshold limits the latter's impact on the data since it is impossible to detect it without
vertical scanning. The second correction is optional and consists of a secondary “clear sky”
correction. This correction might be necessary if the ground clutter corrections are outdated
and constant noise is observed at various points of the image.

The second action is fixing the temporal consistency and aggregating the final product.
While each image has a 2-minute timestep, most analysis is performed in a 10-minute
temporal scale. This scale was selected since the rain gauge datasets are also at a 10-minute
resolution, which is suitable for analyzing storm systems in the area. The data aggregation
is performed by calculating the average value of the datasets within a 10-minute interval. If
some time instances are missing, then the value is calculated by the remaining files. If an
entire 10-minute is missing, this is set to NoData.

Following these quality controls, the main processes are undertaken, as shown in Figure 3-1,

i.e., the Z-R calibration, the R-R model, the GFFG model, and the storm tracking algorithm.

3.3 Z-R Calibration Framework

The Z-R relationship is a critical aspect of weather radar monitoring. The relationship
transforms measured radar reflectivity (Z) into rainfall intensity (R). As previously
described in Chapter 1.5, the parameters of the Z-R relationship are related to the rainfall

droplet size distribution. This distribution is not static but varies in time and space. In order
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to reach valuable conclusions, a complete framework is devised using the rain gauge-
Rainscanner correlation method. The framework is displayed in Figure 3-6.

In the correlation method, first, the spatial and temporal resolution of the two datasets is
matched. The rain gauge datasets are point measurements, whereas the Rainscanner is of a
gridded format. However, the rain gauge datasets are considered as the “true rainfall,” i.e.,
the actual rainfall discarding any errors or uncertainty, and therefore, any conversion made
is performed to the Rainscanner datasets. These conversions refer to matching the 100 m x

100 m raster files into “point” measurements and converting from 2-minute scans into 10-
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Figure 3-6. Correlation analysis and Z-R optimization flow chart

3.3.1 Data conversion

First, the spatial conversion is performed by finding the designated pixel of the Rainscanner
grid that matches a targeted station (Pappa et al. 2021; Bournas and Baltas 2022a). The
Rainscanner cell has a 100 m x 100 m resolution, deemed more than adequate to match the
rainfall height of a point to a cell since rainfall will not adjust significantly within 100 m. In
Figure 3-7, the procedure to find the designated cell for each station is shown. The process
is a nearest neighbor proximity search between the station coordinates and the Rainscanner
cell's centroid coordinates. Although the Rainscanner generates data for a circular region
with a 50 km radius, the generated datasets, i.e., the ASCII files, consist of a square region

of 1000x1000 cells (Figure 3-7a). The ASCII file geoinformation defines two parameters: the
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coordinates of the bottom right corner (angular point) and the cell dimensions dx and dy.
Through this information, all cells can be identified. It is essential to notice that although a
100m x 100m cell dimension is often mentioned, the actual dimension varies slightly due to
the polar to cartesian coordinates transformation performed, as mentioned in section 4.2.
From the angular point, the bottom left centroid coordinates are found first, and then the
rest of the cell's centroids are discovered by adding dx and dy accordingly. The Euclidean
distance between the station and the Rainscanner cell centroids is then calculated. The
matching cell is the one in which Euclidean distance is the smallest, i.e., closest to the station.
This process is performed for each station, and the matching cell's matrix indices are stored
for later usage. This operation is performed only once since the Rainscanner dataset

coordinates or sample size are not expected to change.
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Figure 3-7. The procedure of locating the rain gauge location inside the radar raster dataset.

Source: (Pappa et al. 2021)

The temporal scale adjudgment is shown in Figure 3-8. The Rainscanner datasets account
for two-minute reflectivity measurements, whereas the rain gauge measurements are on a
10-minute temporal scale. For each station, the temporal adjustment is performed on the
reflectivity values, specifically the reflectivity timeseries extracted from the Rainscanner
dataset. Reflectivity is a non-accumulative measurement; thus, the aggregation to 10-minute
values is performed by calculating the average value of the five two-minute instances within
the same 10-minute time interval of the rain gauge. The aggregation follows the rules as
mentioned in section 4.2.2. If a timestep is missing, the aggregated value is calculated as the
average of the remaining four instances. Moreover, when a single two-minute value has

values unrelated to the other instances, such as NaN, zero, or extreme values, these values
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are excluded from the aggregation. Finally, if a complete 10 min interval is missing, the no
data value is set, although this never occurred. Measurements that featured significant time
gaps due to power failures of the Rainscanner system were not included in the Z-R
calibration. However, such gaps were rarely found, albeit in some situations where some

instances were lost when the system had to create a new date folder to store the files.

T T T T T T
1 1 I 1 1 1
I (O L _ 1
1 ' 1 1 1
1 1 | 1 1 1
Woa =t AEE B
) S [ | _ . _
1 1 [} 1 1 1
1 1 I 1 1 1
Matrix of reflectivity values Locate station cells Extract reflectivity timeseries from
(2-min time interval) rainscanner datasets
Reflectivity < | 5

timeseries 0-10
:00

(2-min interval) \
110
I__ @ calcuiatc mean
Ir

values i

:£5J erl‘dLl‘wder\ that % I I:] :3_0

fall within a defined

10-minute step gap Create timeseries of reflectivity
values with a 10 min time step

Figure 3-8. Raster to 10min timeseries procedure

Source: (Pappa et al. 2021)

3.3.2 Correlation Analysis

The Z-R optimization process is divided into two sub-processes: a) the optimization process
and b) the correlation analysis. The first is the actual optimization process, where the
parameters of the Z-R relationship are determined, while the correlation analysis, which is
performed first, consists of a quality control procedure. The entire process is displayed in
Figure 3-9.

It is acknowledged that the Z-R parameters, parameter a and parameter b, vary in time and
space (Hasan et al. 2016; Gilewski and Nawalany 2018; Sahlaoui and Mordane 2019; Qiu et
al. 2020). Therefore, it is expected that the Z-R parameters will not only vary between
different events but also in space, i.e., within the scanning range. In order to detect these
variabilities, various optimizations are performed. These optimizations are categorized into
three groups: a) Station-based optimizations, b) Event-based optimizations, and c) Entire

dataset optimization.
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Figure 3-9: The Z-R Optimization Process

The correlation analysis consists of a quality control procedure. Pearson’s r correlation
coefficient index is calculated to distinguish the raingauge—Rainscanner datasets. The
Pearson correlation coefficient between two datasets evaluates whether the two datasets are
related. When used between radar and rain gauge timeseries, the coefficient evaluates
whether the two timeseries follow the same pattern, i.e., the same increase and decrease are
found between the two datasets. A high correlation between the Rainscanner and rain gauge
datasets is evidence that the datasets are recording the same phenomenon, while a low
correlation shows that the datasets are unrelated and, thus, unsuitable for optimization. Low
correlation can be attributed to a variety of factors. The more frequent is a systematic error
in either instrument. For instance, low correlation is observed when one instrument, e.g.,
the Rainscanner, features rainfall values while the other does not. In this case, three
conditions may be occurring. The first is due to the Rainscanner readings suffering from
signal noise, e.g., ground clutter, that has not been dealt with in pre-process, and therefore
it observes false readings. The second is due to possible errors with the rain gauge
measurements. Although the rain gauges are usually considered as the actual rainfall
readings, this does not forfeit the fact that errors might still be in place. Finally, low
correlation can also be attributed to other factors that lead to temporal inconsistencies, e.g.,
lag, between the two datasets. For example, an increase in precipitation in the Rainscanner
is recorded in the next or several timesteps of the rain gauge recorder. This lag can occur in
areas near the edge of the Rainscanner scanning range, where the observation height is high,

e.g., 2 km, thus the time it takes for a rain droplet to reach the ground, or in this case, the
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rain gauge basket, leads to being measured in a different time step. Another error is due to
Rainscanner spatial resolution, where rainfall measured by the Rainscanner may not be
measured by the rain gauge because it is driven away from strong winds.

Various approaches are taken in this study to account for all these errors. First, the effect of
the Rainscanner sample size is tested. Secondly, the correlation coefficient, second order, is
also used to detect any temporal inconsistencies. Lastly, various threshold levels are applied
each time, and the number of omitted stations is examined. When setting a threshold level,
one must account for the fact that fewer station datasets are eligible for optimization by
setting a higher threshold. While this leads to better performance in the optimization, it
significantly limits the sample size, e.g., the Rainscanner — rain gauge data pairs, thus
obtaining an overfitted relationship. By lowering the threshold, more unrelated data pairs
are included in the mix, but the more significant sample allows for more sturdy results.
Moreover, it is significant to note that in previous research, this kind of optimization was
usually performed at a 1-hour temporal resolution, whereas in this study, the 10-minute
resolution was maintained. In high temporal scales, datasets show higher variability
between each time step; thus, the error in each time step can be considerably higher than in
coarser scales, e.g., 1-hour, where the data variability is mitigated through the aggregation
process (Bournas and Baltas 2021a). A threshold of 0.6 is used, although various limits are
also examined.

The correlation threshold is set to remove stations that feature unrelated datasets. This
threshold is used for each event independently. For instance, one station might feature
unrelated datasets in one event, but in a different event, the data are related. In this case,
only the well-correlated events of the specific station are used for the station’s Z-R
relationship. In the event-based optimization, only the stations that feature above the
threshold are used, and in the all-dataset optimization, all of the well-correlated stations of
each event are used. Finally, especially in the all-dataset optimization, a calibration
validation grouping of the stations is chosen. In this case, some of the station’s datasets are
used in calibration, while the latter is for validating the derived Z-R relationship. The
selection of each group is made according to their location to have good coverage of the

study area in each group.

3.3.3 Z-R Optimization algorithm

The Z-R optimization is based on the correlation of the Rainscanner and rain gauge datasets.
Therefore, it focuses on deriving the values of parameters a and b of the Z-R relationship by
minimizing an objective function. The parameters have specific boundaries, 0 to 2000 for
parameter 2 and 1 to 3 for parameter b.

The optimizations are performed in three groups. For the station-based optimization, the

target is to reach station-specific Z-R relationships. This result also allows for a better
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understanding of the spatial variability of the Z-R relationship. For event-based
optimization, the target is to reach event-based relationships and compare them to the
individual stations derived relationships. Finally, the entire-dataset optimization aims to
provide a single Z-R for general purposes and to be compared with the results of the
previous optimization. In this optimization, the procedure is performed in two stages: a)
using the entire dataset and b) separating the stations into calibration and validation groups.
The selection of calibration stations relies on their correlation coefficient, meaning that
stations exhibiting higher correlation values are chosen for calibration. This selection is
made while also ensuring an evenly distributed presence of calibration and validation
stations across the study area.

The optimization is performed within the MATLAB environment. The objective function is
the minimization of the Root Mean Square Error (RMSE) of the selected Rainscanner — rain

gauge pairs, as defined below in the equation (4.1):

iR — G?
n

RMSE = (3.2)

where Ri and Gi are the Rainscanner and rain gauge 10-minute rainfall heights, respectively,
and 7 is the number of pairs. Furthermore, other indexes are calculated as well, such as the
Mean Bias Error (MBE), the Normalized Mean Bias (NMB), and the Normalized Mean
Absolute Error (NMAE), formulated as seen in equations 4.2, 4.3, and 4.4. The NMAE
highlights the actual percentage error, while the NMB and MBE highlight whether an
overestimation or underestimation of rainfall is performed by the Rainscanner (Pappa et al.

2021).
n R —G;

MBE = &=ttt 3.3)
n
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Finally, all results are compared with Z-R relationships derived in previous research: a) the
well-known Marshal and Palmer equation Z=200R'® (Marshall and Palmer 1948), b) a
convective-based Z=431R!% (Baltas and Mimikou 2002b) and c¢) Z=261R'%, a Z-R consisting
of datasets from both stratiform and convective events (Baltas et al. 2015). All relationships
have been derived from distrometer measurements, while the last two have been derived

from measurements within Athens.
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3.4 Rainfall-Runoff Model

3.4.1 Introduction
The Rainfall-Runoff (RR) model is used to transform rainfall into runoff. A typical RR model
accepts rainfall as input and generates runoff as the output. Numerous hydrological models
are available, so the common problem is selecting the most appropriate model to perform
this transformation. The RR models can be categorized based on numerous factors. The
most common ones are a) based on the mathematical approach, b) the temporal analysis, c)
the spatial discretization, and d) the handling of uncertainty.
In forecasting applications, the main factors that need to be considered are (Sene 2008):

e Forecasting requirement: the intended use of the forecasts;

¢ Data availability

e Forecasting System: the system on which the model will operate

e Performance requirements: run time, accuracy, provided lead time

e Type of model
The Forecasting requirement is the actual aim of the forecast. The aim can be to assist with
issuing flood warnings, controlling river control structures, or monitoring river station
levels. Moreover, the model selection may also rely on potential users, such as local
authorities, emergency services, or the public. In EWS, event-based models are used to
simulate the evolution of a flood event, while continuous simulation models determine the
initial conditions or variables that change slowly in time, e.g., the prior event soil moisture
conditions.
The Data availability factor is usually the crucial factor. Data availability refers not only to
current available and monitoring datasets but historical datasets as well. The quantity and
quality of historical datasets are required for proper model calibration. Therefore, the data
availability also dictates the model type to be used.
Process or physically-based models are the most data-demanding models since they use
partial or ordinary differential equations or conceptual relationships to represent the
physical processor overland flow, soil infiltration, groundwater flow, and other factors.
These models are well suited to spatially distributed inputs, making them favorable for EWS
applications since they make the most out of gridded datasets such as weather radar or
satellite datasets. Conceptual models represent the physical processes in a simplified way,
while the model’s parameters are usually associated with basin characteristics, making them
easy to calibrate. These models are usually used within a lumped or event semi-distributed

format. Finally, data-based models, called Black Box models, use system analysis concepts
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where their variables and parameters are unrelated to any physical process. A black-box
model does not care about the values of its parameters as long as it produces the correct
amount of runoff for a given rainfall input. Typical black box models are transfer functions
and Artificial Neural Network (ANN) models.

The Forecasting system and the performance requirements are operational factors.
Specifically, the forecasting system dictates the variable upon which action should be made.
For instance, in the FFG system, the primary variable is the accumulative rainfall over a
designated duration; thus, more focus is given to deriving rainfall thresholds rather than
streamflow thresholds. Concerning performance, there is a give and take between model
simulation running time and provided lead time. Sophisticated or stochastic models may
provide more information, but the simulation time limits the provided lead time. In small
basins, where the concentration time is small, this can be deemed a crucial loss of time.
Specifically, for EWS applications incorporating weather radar datasets, a distributed
format is favorable. When the datasets required for calibration are available, the distributed
format is advantageous against the lumped or semi-distributed formats and is expected to
provide better results (Borga 2002). In addition, the higher spatial resolution of the basin
characteristics, such as the slope, soil type, and land use, provides a better description of a
study area (K. Ajami et al. 2004; Grek and Zhuravlev 2020), and simulated streamflow is
enhanced (Aouissi et al. 2018). Moreover, recent research concluded that higher resolutions
are necessary when examining small-scaled basins, e.g., urban basins (Cristiano et al. 2017;
Paz et al. 2019).

Distributed models are usually data demanding, making using them often an avoiding
factor for EWS implementations (Sitterson et al. 2018). However, it is deemed feasible to
implement simple conceptual or data-based methods, such as the UH, into a distributed
format. For instance, the Clark UH method has been the subject of multiple such
implementations (Kull and Feldman 1998; Sadeghi et al. 2015; Cho et al. 2018) with good
performance.

Methods that rely on data that can be assessed through Geographical Information Systems
(GIS) tools have increased in popularity. GIS has proved to be a massive tool for
hydrological modeling (Dieulin et al. 2006), especially in ungauged basins. These
implementations, referred to as gridded models, require few datasets to be calibrated and
thus are advantageous for large-scale EWS applications and flash flood EWS, where most

affected basins are small ungauged basins.

3.4.2 Gridded Model

The rainfall-runoff devised in this dissertation is a gridded model based on the time-area
diagram method (Bournas and Baltas 2022b). The method is partially used in the Clarks unit
hydrograph model, and its gridded implementation is the modified Clark (ModClark) UH.
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The main difference between the models and the proposed model is the cell’s travel time
implementation method. In the Clark model, the two parameters derived are the time of
concertation, t., and the storage coefficient R. Since the Clark model is applied in a lumped
format, a basin tcis only required, while the time-area relationship is derived based on that
value. In the ModClark model, the travel times of each cell are calculated as a factor of the
time of concentration of the basin based on the distance of each cell from the outlet.

Specifically, equation 4.5 is solved to configure the cell time.

dcell

leet =

(3.6)

‘dmax
Where ten is the time each cell takes to reach the outlet, tc is the time concentration of the
basin, du is the travel distance of the cell to the outlet, and dmax is the travel distance of the
most distant cell to the outlet.

In either case, the excess rainfall is first calculated through a loss method, e.g., the SCS CN
method, and the basin or cells outflows, for the Clark and ModClark models, respectively,
are routed through a linear reservoir, yielding the outflow hydrograph. Finally, in the
ModClark model, a convolution is performed to determine the runoff at the basin outflow.
Compared with the ModClark method, the distributed version of Clarks UH, in the
proposed model, instead of estimating the cell's time travel as a friction of the basin time of
concentration, a unique time travel is calculated based on the time-area diagram. This
change leads to a better approximation of the cell’s travel time since each cell's travel path's
characteristics are considered. Following this, a rainfall event can be simulated by applying
a loss method to calculate the excess rainfall in each cell, while the hydrograph at the outlet

is calculated through a time-area convolution:

Qn = Z BnUn-m+1 3.7)

where Qn is the outlet discharge ordinate at time n, Pm is the excess rainfall depth in time
interval m, M is the total number of discrete rainfall pulses, and Uw-m+) is the U, the cell’s
hydrograph ordinate at the time (n-m+1).

The specific model aims to be used for flash flood forecasting in small to medium-sized
basins found within the study area. The rainfall input is the Rainscanner datasets,
aggregated to a more desired grid resolution output, i.e., 500m x 500m. Concerning the loss
method, the National Resources Conservation Service (NRCS Curve Number (CN) method
is selected mainly due to its easy implementation with ungauged basins. The model is used
to provide two products, the Flood Hydrograph and the FFG calculations, as shown in
Figure 3-1. The first, shown in Figure 3-10, is applied to derive the flood hydrograph in pre-

specified critical locations of the basin. The second is implemented into the FFG calculations
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performed at a grid level, further discussed in Chapter 3.5. The model's ease of use lies in
its capability to be employed on any temporal and spatial scale, while the only parameters

that need to be determined are the time-area diagram and the gridded CN map.
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Figure 3-10. The Rainfall-Runoff Model schematic

3.4.3 Time-Area Diagram

The time-area diagram is a relationship between travel time and a percentage of the basin
area. The time-area diagram, also called Isochrone curves, is produced when the travel times
of all cells are calculated within the basin. Then, by dividing the basin into specific time
intervals, the Isochrone curves are created. The area between two isochrone curves is the
percentage of the basin that discharges at the time set by the higher isochrone curve. When
the selected time interval approaches zero, the time-area diagram is a continuous line that
usually represents a UH shape. In order to calculate the time-area diagram, a DEM and a
Land Use file are required. The procedure is performed in GIS software, as shown in Figure
3-11.

The GIS procedure derives the Flow direction and Flow accumulation rasters through a
hydrologically corrected DEM. The flow direction raster is a nine-integer values raster,
where each value represents the desired runoff direction. The direction is calculated based
on the maximum slope between the cell’s center and the eight neighboring cells. The main
idea is that each grid follows a specific route to reach the outlet, and thus, the main objective
is to calculate the time it takes for water to complete this route. The flow accumulation raster
represents the number of cells that flow to a designated cell. The higher the value its cell
has, the more cells flow to that cell. Therefore, it is easily understandable that high-value

cells in the flow accumulation raster represent the stream network. By setting a cell
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threshold, the flow accumulation raster is divided into cells that represent streams and cells

that do not. The threshold set is crucial since it defines the stream network density.
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Figure 3-11. Time-Area Diagram derivation procedure

The grid route to the outlet is calculated by applying the Flow Length tool. However, since
what is desired is the actual travel time, the designated route length is needed first to be
divided by the velocity raster, which represents the water velocity at each cell. Within a
basin, the velocity raster can be defined by two flow velocities: the off-channel and the in-
channel velocity. Off-channel are areas where sheet flow occurs, i.e., areas outside the
stream channels, while in-channel refers to areas within streams.

First, the off-channel or overland velocity is calculated. In this application, the calculations
are performed at the grid level, providing a gridded velocity raster instead of a single off-
channel velocity value, as in most studies. The governing parameters are the grid slope (S)
and roughness coefficient (k). Grid slope can be easily calculated through the DEM, while
the roughness coefficient can be derived through land use maps. Next, the off-channel

velocity is calculated through the following equation:
V = kS%® (3.8)

where k is a parameter related to land use and the roughness coefficient for shallow flow,
while S is the grid slope. The values of parameter k can be found in various textbooks, such
as in the Part 630 Hydrology National Engineering Handbook (NRSC USDA 2009).

In-channel velocity is estimated through open-channel equations, i.e., the Manning
equation. The cross-sectional data can be derived through the DEM, with water depth
assumed to be equal to the bankful conditions. In contrast to the off-channel velocity, the in-

channel velocity is calculated in the stream order level. Specifically, it is assumed that cells
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of the same stream order have equal velocities. The higher the stream order, the higher the
cell's velocity since the higher order streams feature more width for equal slope.

The off-channel and in-channel velocity rasters are finally merged into a unified raster,
representing the velocity raster of the entire basin. The Flow Length tool is then used to
calculate the travel time of each cell. The tool is designed to calculate the downstream
distance (L) along the flow path for each grid. Since the desired output is time rather than
length, the inverted velocity raster (1/V) is used as a weight raster. This results in a weighted
“distance” raster (Lx1/V) representing travel time. Therefore, instead of featuring the total
distance of each grid to the basin outlet, the flow length raster calculates the grid's travel
time to the outlet. This product is the actual time-area diagram for zero-time intervals. When
a pre-specified time interval is set, e.g., 10-min or 30-min, adding the number of cells that
fall within a time interval and multiplying by the cell’s area, the time-area diagram is
constructed. The time interval chosen is related to the basin size and should be equal to or
finer than the rainfall input. Since the Rainscanner datasets are designed to be simulated at

the 10-min interval, this value is also chosen for the time-area resolution.

3.44 Loss Method

Apart from the time-area diagram, the effective rainfall must also be calculated. As
previously mentioned, the method used is the NRCS-CN method (US Department of
Agriculture 1986). The NRCS-CN method is an easy-to-apply and widely used method for
estimating precipitation losses, especially in ungauged basins. The equation used for

calculating the excess rainfall is the following;:

(P_Ia)z
p = 3.9
¢ P—I+S (3.9)

where, Pe [mm)] is the accumulated precipitation excess, P [mm] is the accumulated rainfall
depth, Ia [mm)] is the initial abstraction, and S [mm)] is the potential maximum retention

defined by equation 4.8 (in SI units):

100 ) (3.10)

S=254(——1
CN

Two parameters need to be estimated: the CN value and the initial abstraction depth Ia. The
tirst can be estimated through the geomorphological characteristics of the basin, namely the
land cover, e.g., the CORINE land Cover, and the Hydrological Soil Group (HSG)
classification. The initial abstraction depth is usually set as a fraction of the maximum
potential retention S, calculated through eq. 3-10. The NRCS suggested value is 20% of the
maximum potential, i.e., 0.2S. However, the 0.1 value is used instead, based on the research

in a nearby basin (Baltas et al. 2007).
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Finally, the CN values are related to the rainfall conditions of the previous days. The CN
number is derived first for Antecedent Soil Moisture (AMC) medium conditions (AMC-II).
In the case of antecedent dry or saturated conditions, i.e., AMC-I and AMC-III, the generated
runoff is expected to change significantly. For example, in dry conditions, rainfall losses are
high, making the CN take a lower value, and therefore runoff is decreased, while in
saturated conditions, the opposite occurs. To account for this aspect, the NRCS suggests the
use of modified CN numbers based on the antecedent conditions, as defined by the

following two equations:

0.42CNy;
CN, = 3.11
'~ 1-0.0058CNII (3.11)
_ 2.3 * CNH
CNyy = (3.12)

1+ 0.013-CN,,

The AMC conditions can be determined by calculating the 5-day antecedent accumulated

rainfall. Specifically, the AMC class is determined by the values featured in Table 3-1.

Table 3-1: AMC classification based on 5-day accumulated rainfall

AMC Class Total 5-day antecedent accumulate rainfall (mm)

Dormant season Growing Season
I <13 <36
II 13 -28 36 -53
11 > 28 > 53

More recently, the NRCS has abandoned this hypothesis by favoring the opinion that the
CN value does not change based on the “Antecedent Soil Moisture conditions” but instead
on the “Antecedent Runoff Conditions” (ARC). This change highlights that not only soil
moisture conditions are dictating the amount of runoff, but other factors as well.
Nevertheless, the mechanism remains the same, which dictates that previous rainfall events
significantly affect the CN value and the generated runoff. The antecedent precipitation

index (API) is also used, as formulated by Kohler and Linsley (1951):
API; = P; + (APl;_1 + K;) (3.13)

where APIli and Pi are the API value and precipitation for day 7, and K is an empirical decay
factor less than one with values usually between 0.85 and 0.98. Cordery (1970)
recommended an average value of 0.92, with a value of 0.98 for winter and 0.86 for summer,
while Hill et al. (2014) recommended a value of 0.95 annually.

In order to overcome the problem of selecting three specific CN numbers, a linear
relationship is applied between each state based on a given percentage of soil moisture

conditions (Bournas and Baltas 2022c). Specifically, an assumption is made to relate the
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presumable soil moisture percentage conditions to the CN value. The aim is to dictate the
CN value based on a given soil moisture percentage, which can be derived from a soil
moisture model or satellite data. To incorporate the soil moisture conditions impact into the
CN value, it is assumed that AMC-II conditions refer to 50% soil moisture, while AMC-I and
AMCHIII correspond to 0% and 100% soil moisture. A linear relationship is then used
between the different soil moisture states to define the adjusted CN value.

An example is shown in Figure 3-12 to understand this adjustment better. In the example, a
CNu value of 50 for 50% soil moisture leads to an adjusted value CNm of 50, while for 0%
and 100%, the value is calculated at 30 and 70 based on equations 4.7 and 4.8, accordingly.
This interpolation makes evaluating other values, e.g., 70% soil moisture, possible.
Therefore, the value will be linearly interpolated between 50% and 100%. Figure 3-12 shows
that the change between the different soil moisture conditions is at its maximum when the
CN value is 50 and lower when it is 100 or 0. This change is logical since high numbers of
CN represent near impervious areas, thus generating high runoff. The runoff potential in

these areas does not change with soil moisture since the runoff potential is already high.
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Figure 3-12. CN adjustment based on soil moisture conditions (%)

3.5 Gridded Flash Flood Guidance

Flash Flood Guidance (FFG) is the accumulated rainfall depth of a given period, which will
cause minor flooding over a specified area (Georgakakos 2006). The FFG value is a rainfall
depth threshold above which a flood is expected. The FFG system relies on deriving the
value of this threshold and comparing it with forecasted values. Figure 3-13 illustrates a
simplified version of the FFG EWS flowchart.

The FFG value depends on two main parameters: the threshold runoff and the soil moisture
conditions. The first is static and depends on the study area's spatial characteristics,
specifically the cross-section where the FFG value is estimated. The threshold runoff is the
necessary amount that can be safely routed downstream, while any excess will lead to minor

flooding. The second parameter, i.e., the soil moisture conditions, is dynamic and is used to
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calculate rainfall losses. The estimation of FFG relies on inverted rainfall-runoff
computations, where the runoff and the rainfall losses are the known variables, and the total
rainfall is the unknown. When the amount of runoff is equal to the threshold runoff, the

inverted rainfall-runoff calculations estimate the FFG value.

[ Spatial Data ] [ Rainfall, Evapotranspiration ]

'
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[ Forecast Comparison ]
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Figure 3-13: Simplified FFG System Flow Chart

This dissertation examines a gridded implementation of the FFG system, the Gridded Flash
Flood Guidance (GFFG), first introduced by Schmidt et al. (2007). The difference lies in the
spatial resolution of the calculations. In the original FFG, all calculations are performed first
on a subbasin level, and the results are then interpolated in grids that match the spatial
resolution of the incoming rainfall forecasts, e.g., weather radar forecasts. In the GFFG
implementations, all calculations, including the rainfall-runoff computations, are performed
at the grid level, which has the advantage of setting the desired result scale without the need
for interpolation. Moreover, it is easier to understand, employ and maintain. The flow chart
of the GFFG method is shown in Figure 3-14. The flow chart includes all the needed steps to
reach GFFG values.

The GFFG process is divided into two subprocesses; the pre-process and the real-time
monitoring. In the pre-process, the model’s parameters are devised and calibrated, while in
real-time monitoring, the system uses current data to provide the FFG values. The pre-
process includes the study area delineation, the threshold runoff calculation, the
hydrological model, and the runoff threshold to rainfall threshold, i.e., the FFG value
calculations. The real-time monitoring uses the pre-process models to extract the FFG value

for the current soil moisture percentage derived from the hydrological model and compare
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this value with the forecasting products of equal spatial and temporal scales to provide
warning issuing estimations. Although the current implementation is deterministic, the
decision to issue a warning or not should be taken after various FFG products, i.e., different
rainfall accumulated periods, are examined in conjunction with the study area

characteristics or other knowledge.
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Figure 3-14. Flash Flood Guidance Components

3.5.1 Threshold Runoff Component

The threshold runoff component is a pre-process of the system, which involves the
geomorphological analysis of the study area and its delineation into smaller units (Bournas
and Baltas 2022c). First, the delineation of the area is performed by setting the grid
dimensions and coordinate system. In the original FFG implementation, the area is
delineated into subbasins varying in size from 200 — 2000 km?2. However, the delineation
size, apart from the forecasted rainfall grid which will be used, is also related to the
topography of the study area. The original FFG implementation was applied in the USA,
where the subbasin sizes are large, while in Greece, the majority of basins are small to
medium sizes, i.e., 20 to 500 km?, making the desired analysis of finer detail. In the GFFG
implementation, a grid size matching the forecasting analysis is desired. Typical operational
meteorological and atmospheric forecasting models feature from four to eight km?
resolution, while some research efforts to increase the spatial resolution to two km?(Bournas
and Baltas 2022c). Finer spatial resolution can be achieved using downscale processes
(Spyrou et al. 2020) or by nowcasting products such as weather radar or satellite

measurements. Grid sizes used in previous FFG research vary from 1 km? to 4 km? matching
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the grid size of the forecasting field (Seo et al. 2013; Zeng et al. 2016; Wasko et al. 2021). In
this study, a 1 km?grid size is set considering all of the above limitations, e.g., the subbasins

size and available rainfall forecasting products in Greece (Papadopoulos et al. 2002;

Lagouvardos et al. 2003; Mariani et al. 2015; Varlas et al. 2020, 2021).
The threshold runoff is then estimated for each grid. The threshold runoff is equal to the

bankfull conditions runoff, as illustrated in Figure 3-15. Any excess runoff will cover the

floodplain area, resulting in minor flooding.

Inside of meander

. 1
O—— Flood plain 1Q——— Flood plain
4— Bankfull—»

[

I

Baseflow' 1

1
I
1
|
_ ]
I
1
I
[
1

Figure 3-15. Bankfull conditions illustration: Source (NRSC USDA 2009)

The threshold runoff can be estimated using two methods; a) derivation and use of regional
relationships concerning the bankfull cross-section properties and b) historical flow
analysis. In the first case, the bankfull runoff is calculated using the cross-section data, and
aregional relationship that relates the cross-section data to the basin data is set. In the second
case, the bankfull runoff is considered equal to the 2-year Average Recurrence Interval
(ARI), i.e., the 50% Annual Exceedance Probability (AEP) of the section’s actual runoff.
However, historical flow records are needed to extract the 2-year runoff ARI, or regional
relationships should be established (Carpenter et al. 1999; Reed et al. 2002). In the current
implementation, the desired 2-year runoff can be calculated indirectly using a rainfall ARI

instead, in conduction with a rainfall-runoff model, to overcome this issue. Rainfall ARIs

are much easier to obtain from IDF curves based on historical rainfall data. The 2-year
discharge ARI is highly related to the 5-year ARI of rainfall (Schmidt et al. 2007; Erlingis et
al. 2013; Bournas and Baltas 2022c). However, this is an approximation, and the actual ARI
depends on several factors, such as the definition of flooding and the flood vulnerability of
the study area. The rainfall-runoff model used is the same one used for the FFG calculations.
It is based on the SCS triangular UH and the SCS CN method.

The calculations are performed for each grid and pre-determined accumulation periods of

1-, 3-, and 6 hours. The rainfall-runoff model is based on the SCS triangular model following
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these steps: First, the lag time of each cell is calculated using the Mochus lag time equation
(Mockus 1961):

B lOS(S'l‘ 1)0.7

T 3.14
L™ 1900y05 (3.14)

Where t: [h] is the lag time, [ [ft] is the cell's flow length, S [in] is the maximum potential
retention of the CN method, and y [%] is the cell’s slope. This equation is favorable since it
utilizes two aspects easily calculated through GIS, the slope of the cell and the retention S,
which is calculated based on the CN value according to eq. (3.10) after unit conversion.

Following this, the time of concentration and time to peak is calculated as follows:

t, = 0.6t, =>t, =1t;/0.6 (3.15)

Where tc [h] is the time of concentration, Tx [h] is the time to peak, and D [h] is the rainfall
duration. Finally, the peak discharge is calculated through the NRCS triangular UH method

as follows
Q = 2.084h /Ty (3.17)

Where Q [m?3/s] is the peak runoff, A [km?] is the cell’s area, and h [mm] is the effective
rainfall.

Given that FFG calculations are performed for predetermined rainfall durations, three
runoff thresholds are derived for 1-, 3- and 6-hour duration by changing the value D in eq.
3.16. In each case, the value of abstraction value S, in eq. 3.14 is also changed to account for
the variability within an event (Schmidt et al. 2007). Specifically, 10mm of rainfall in one
hour will produce more runoff than 10mm in six hours. Therefore, the CN value is modified
for each accumulation period to address this issue. Specifically, for the 1-hour duration, the
average CN value between ARC-II and ARC-III is used, while for the 6-hour duration, the
average CN value between ARC-I and ARC-II. The 3-hour duration uses the ARC-II

conditions.

3.5.2 Hydrological Model

The second component involves a hydrological model to estimate the soil moisture
conditions for each time interval. The model runs continuously since soil moisture
conditions do not change as fast in time as rainfall input (Bournas and Baltas 2022c). The
temporal resolution depends on the data availability, with a desired sub-6-hour temporal
resolution. The soil moisture conditions dictate the amount of rainfall retained, thus the
potential of generating either high or low runoff. In the FFG calculations, since inverse

rainfall runoff is performed, the amount of soil moisture dictates the amount of rainfall
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needed to cause flooding. A high soil moisture percentage means high runoff potential;
therefore, less rainfall is required.

The hydrological model is designed to use precipitation and evapotranspiration as inputs,
conduct any necessary precipitation division to rainfall and snowfall, and provide a soil
moisture percentage. The soil moisture percentage can either be a direct product of the
model or a value derived by the value of its state variables, as in the case of the original FFG
implementation where the Sacramento Soil Moisture Accounting Model (SAC-SMA)
(Burnash et al. 1973; Burnash 1995) is used.

Without such a model, the soil moisture percentage can also be estimated based on the 5-
day antecedent precipitation index, API. The index is then used to estimate each cell's soil
moisture percentage. This percentage is finally used to determine the adjusted CN value

used in the FFG implementations, as explained in Chapter 3.4.4.

3.5.3 FFG Computations

The third and final component is the FFG computations. As stated earlier, the computations
are based on inverse rainfall-runoff modeling, where the desired runoff and rainfall losses
are known, and the accumulated rainfall is sought. The CN equation is shown in eq. (3.9),
can be used to calculate the runoff. By assuming initial losses Ia equal to 10% and solving

eq. (3.9) for P, the following equation results

0.1Ssm + Qx £ v/2QySsm + Q2 (3.18)

P = FFG, = >

where P [mm] is precipitation, FFGx [mm] is the Flash Flood Guidance for duration x, Q
[m3/s] is the threshold runoff for duration x, and Ss» [mm)] is the initial storage calculated
from eq. (3.10), after the CN adjustment is performed based on the current soil moisture
conditions. The Equation (3.18) highlights that the FFG value is a nonlinear relationship
between the threshold runoff and the soil moisture conditions.

Figure 4-17 illustrates an example where the FFG value of a single cell is calculated for three
different soil moisture conditions. For each soil moisture condition, by using increasing
runoff threshold values and applying the equation (3.18), the colored lines are drawn. Each
line is a guide to performing fast calculations in real-time monitoring. For instance, when a
cell’s threshold runoff is calculated as 20 m%/s, the FFG value changes dramatically for each
soil moisture condition. For saturated conditions, i.e., 90% soil moisture, the FFG value is 18
mm in three hours, while for less saturated at 80% is 20 mm, and for normal conditions, the
value is 26 mm rainfall in three hours. These results show that the higher the soil moisture
percentage, the lower the FFG value, which is logical since highly saturated conditions result

in high runoff potential, requiring less rainfall to reach the desired runoff amount.
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Figure 3-16. Relationship between FFG and Threshold rainfall values for different soil moisture

conditions

After calculating the FFG values for each of the three durations, a comparison is made with
the respective forecasted values. If the forecasted rainfall exceeds the FFG value, flooding is
expected over the specified cell, and a warning should be issued. Moreover, the threat level
can be approximated by calculating the difference between the forecasted and the FFG
value. Given the deterministic nature of the system result, any cell that features a forecasted
rainfall above the FFG value, either that being some millimeters or by a large margin, will
be flagged for flooding, while other cells can be flagged as non-flood cells, even when the
value of the forecast is just below the threshold. To overcome this uncertainty problem, all
accumulated periods should be examined before decision-making. Low accumulation
periods, e.g., 1-hour, are used for comparing with 1-hour forecasts, which tend to have the
least uncertainty involved, compared to the 3- and 6-hour forecasts, but provide the lesser
lead times. It should be noted that the system relies on accumulated rainfall thresholds; thus,
the exact time when the flood will occur cannot be determined when the longer
accumulation periods are used.

Finally, a secondary decision-making strategy can also be applied before issuing a warning
regarding the total area flagged for flooding. In the GFFG implementation, cell sizes are
relatively small, making warnings for single-cell flooding not ideal. Therefore, a strategy
may be applied to decide on different flood-preventing measures based on the number of
cells flagged for flooding or each cell's potential flood hazard level. For instance, cells that

contain critical infrastructure should be carefully monitored.
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3.6 Strom Tracking and Trajectory

In storm tracking, two main processes are involved: a) the identification of cells on a radar
image and b) the cell tracking, i.e., the matching of cells in consecutive images. This study
follows the flow chart shown in Figure 3-17.
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Figure 3-17: Storm Tracking algorithm flow chart

3.6.1 Cell Identification

For each radar image, the cell identification process is first performed. First, the weather
image is passed through a 2-D median filter to remove noise. This filter replaces each grid
value with the median value of the 3 x 3 neighboring grids. This process assists in “blurring”
the image, and therefore, cloud cells that are found to be in near proximity but are not
connected due to gaps of a few pixels end up being connected and forming a single cloud
entity. Then, the cell identification is performed by applying reflectivity thresholds. A storm
cell features the highest rainfall intensity and, thus, the highest reflectivity values in a radar
image. A high threshold, i.e., 35 dBZ units, will extract the storm cores, while a lower
threshold, i.e., 25 dBZ, will extract the coverage of the storm. Overall, convective events

feature high storm cores with small storm coverage, while stratiform events feature
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significant coverage but smaller reflectivity cores. In nowcasting systems, the tracking of
high rainfall intensity storms is usually the aim; thus, a threshold of over 30 dBZ is preferred,
especially if a series of images are used to disaggregate the generated image. However, a
multi-threshold approach is better; where multiple thresholds are applied, a tree structure
is formed where low storm coverage is first identified and then sub-cells of high reflectivity
later. Considering the lower threshold, values of reflectivity below 20 dBZ are usually
considered as no part of rainfall storms unless snowfall occurs. In this study, three
thresholds are used: one to identify the storm coverage, set for values above 25 dBZ; one to
distinguish storm cores, with a dBZ value over 30 dBZ, and finally, one for identifying the
most dangerous storms, with a threshold set to 40 dBZ value. An example is shown in Figure
3-18, where by applying a single threshold, the cells with values above the threshold remain,
forming the boundaries of the cell cloud. In the featured figure, the values of five storms are

identified.

13; 13, 14} 14} 14 15| Storm 5
1111811 12| Sworm 4

Figure 3-18: Storm Data and cell identification;
Source: (Dixon and Wiener 1993)

Following the identification process, a series of attributes are stored for further use, such as
the cell's centroids coordinates, the area of the storm, and the maximum reflectivity value.
Moreover, for further cross-correlation calculations, a fitting eclipse is drawn for each
polygon, which is an easier-to-handle mathematical shape. The ellipse is drawn with the
aim of including all the polygon nodes within its boundaries. The ellipse centroid,
eccentricity, and the minor and major axes vectors are stored for further analysis. The

process is applied until all storm clouds are processed.
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3.6.2 Cell Tracking

Following the identification, the cell tracking algorithm is applied. The method used is
based on motion vector and cross-correlation. Specifically, the matching between two
consecutive radar images is performed by applying an optimization process between the
different cells identified in each image. A cost function is used to find the best fit, which
incorporates cell characteristics, such as area and the fitting ellipse properties. All possible
entity combinations between two images, Figure 3-19, are assigned to the assessment matrix,
which is then solved through a match pair algorithm (Duff and Koster 2001). The linear
assignment problem is a way of assigning rows, i.e., storm cells in time ti, to columns, storms
cells in time ti+1, in such a way that the total cost of the assignments is minimized. The
algorithm also uses a way to deal with instances that are not matched by adding a further

unmatched cost.
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Figure 3-19: Possible cell combinations when using a matchmaking algorithm, where Vr denotes the

past cells centroids and Vr the centroids in ti+1.

The Total Cost (TC) of a solution M is the sum of all the costs of all matched pairs added to

the cost of all unmatched pairs as follows:

1
TC = Z Cost(M(i, 1), M (i, 2) + costUnmatched x (m + n — 2p) (3.19)
i=1
Where TC is the total cost, Cost is an m-by-n matrix, M is a p-by-2 matrix, where M(i,1) and

(Mi,2) are the row and column of a matched pair and (m+n-2p) is the total number of
unmatched rows and columns.

The cost function can have many forms. The most basic is the Euclidean distance, meaning
that the cells are matched based on which one is closer to the cells in the next image. Other
cost functions may include other characteristics, such as the area and eccentricity of the cell.
The tracking problem has been enhanced to include other elements of tracking, mainly the
splitting and merging of cells. A merge is when two cells are merged into a single entity,

meaning that only one track should be formed afterward, while a split means that a single
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entity will generate two tracks in future predictions. The basic concept is shown in Figure

3-20. In the current implementation, the cost function is applied once, and the best fitting

matchmakings are performed. If cells of the previous time image remain unmatched, the

matchmaking procedure is re-applied, but with the removal of the cells of the previous

image that were matched. This leaves space for unmatched cells to be matched with the new

cells and thus results in a merge situation. The splitting situation is performed accordingly

but with the removal of the current unmatched cells, this time compared to the previous

image cells. The distance threshold in each case dictates whether the cell cloud will be

merged or diminished and whether a cell belongs to a splitting cell or is a newly formed

cell.

—  Actual track vector
ey Forecast track vector

Actual ellipse positions ]
Q Pse P ~—  Actual track vector
Q Forecast ellipse position €3 Forecast irack vector

Figure 3-20: Merge (left) and splitting (right) situations
Source: (Dixon and Wiener 1993)
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4. Results and Discussion

4.1 Z-R Analysis

The Z-R analysis consists of two sub-processes. First, the correlation analysis is performed,
which gives insight into the quality between the Rainscanner and the rain gauge datasets.
Following this, the optimization process is performed to derive multiple Z-R relationships
using different optimization data groups. Table 4-1 shows the events where both
Rainscanner and rain gauge data were available and used for this process. More information
about the events can be found in the Appendix A table, where all the Rainscanner events
are showcased. The events in Table 4-1 featured the most substantial rainfall among the

events where rain gauge datasets were available (up to 2020).

Table 4-1: List of Events used for the Z-R Calibration process

Event Date Event Date

El 30-09-2018 E20 21-11-2019
E5 16-12-2018 E21 25-11-2019
E6 18-12-2018 E22 30-12-2019
E9 10-01-2019 E31 01-06-2020
E10 07-02-2019 E33 08-08-2020
E12 15-02-2019 E36 04-12-2020
E16 15-04-2019

4.1.1 Correlation Coefficient Analysis

The correlation analysis is based on the calculation of Pearson's r correlation coefficient
index. The calculations are performed at the Station level, meaning a correlation index is
calculated for each station per event. The results are showcased in Table 4-2, in descending
order of the mean correlation. The color coding stretches a red-to-green color bar of
correlation values from -1 to 1. A correlation value of 1 shows a perfect correlation, whereas
a -1 shows a negative correlation, i.e., an increase in one timeseries is shown as a decrease
in the other. Finally, zero correlation is illustrated with gray, meaning the data are not
correlated. Usually, this occurs when data is missing, e.g., the station is located within the
Rainscanner clutter area. A correlation threshold is used to distinguish well- and poor-

correlated stations to visualize the results better. By applying a 0.6 and a 0.7 threshold, the
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number of events in each station features a good correlation, is shown in Figure 4-1, whereas

in Figure 4-2, the mean correlation of the stations is illustrated before and after the threshold

is used. In the figures, each station is made with its respective ID.

Table 4-2: Stations correlation coefficient per event

ID [ Station El |E5 |E6 |E9 |EI0 |F12 | El6 | E20 | E21 | E22 | E31 | E33 | E36
16 | Neos Kosmos 038 | 0.82 | 078 | 048 | 0.86 | 078 | 0.80 | 0.63 | 091 | 0.83 | 0.01 | 0.88 | 1.00
21 | Psychico 030 | 059 | 084 | 054 | 074 | 083 | 0.85 | 072 | 072 | 0.88 | 0.94 | 090 | 0.89
31 | Agiaparaskevi 027 | 064 | 079 | 076 | 0.81 | 0.86 | -039 | 0.42 | 0.69 | 0.80 | 1.00 | 0.45 [ 092
42 | Imittos-dafni 023 | 074 | 066 | 022 | 084 | 078 | 087 | 0.84 | 097 | 078 | 0.00 | 0.75 [JEHGON
35 | Vrilissia 024 | 081 | 084 | 077 | 0.69 | 0.87 | 0.35 | 0.62 | 044 | 0.81 | 098 | -0.17 | 0.85
39 | Nikaia 037 | 075 | 062 | 074 | 080 | 079 | 0.78 | 0.64 | 015 | 0.90 | 0.45 | 0.86 | 0.00
52 | Delacroix-attiki | 025 | 0.67 | 0.81 | 0.69 | 093 | 0.87 | 0.00 | 029 | 057 | 0.71 1098 0.29 | 0.77
30 | Korydallos 038 | 097 | 058 | 095 | 0.84 | 0.88 | 0.63 | 0.86 | 0.44 | 0.83 | 045 | 094 | 031
19 | Peristeri 050 | 0.80 | 0.65 | 0.81 | 0.62 | 077 | 0.64 | 0.38 | 0.85 | 0.80 | 0.57 | 056 | 0.00
43 | Harokopio-athens | 0.40 | 0.68 | 0.74 [ -0.30 | 0.68 | 0.66 | 0.53 | 0.60 | 0.79 | 090 | 0.36 | 0.93 | 0.00
51 | Anokorydallos | -0.05 | 0.84 | 0.66 | 0.98 | 043 | 091 | 092 | 092 | 043 | 043 | 015 | 0.87 | 0.00
46 | Pallini-cgs 012 | 039 | 031 | 095 | 0.63 | 0.66 | 0.00 | 011 | 058 | 078 | 0.88 0.69
9 | Ippokrateios 0.10 | 075 | 044 | 0.64 | 050 | 0.03 [JENO0N 0.86 | 054 | 0.68 | 095 | 0.00

15 | Nea Smyrni 031 | 061 | 048 | 025 | 081 | 032 | 0.63 | 020 | 076 | 0.85 | 0.00 | 0.66 | 0.00
41 | Ska 042 | 075 | 083 | 0.67 | 0.56 | 0.00 | 078 | 0.05 | 036 | 0.87 | 0.62 | 0.84

26 | Arsakeio-drosia | 0.10 | 0.85 | 0.50 | 0.89 | 0.65 | 0.63 | 0.63 | 049 | 039 | 0.51 | 0.09 | 0.65 | 0.79
8 | Faliro 031 | 077 | 0.66 | 0.10 | 0.67 | 063 | 0.62 | 091 | 032 | 0.84 | 0.00 046 | 0.00
6 | Dionysos 0.01 | 051 | 044 | 0.85 | 0.00 20401 032 | 0.01 | 064 | 035 | 0.66 | 075 | 0.75
4 | Anoliosia 013 | 075 | 073 | 0.60 [-036 | 072 | 073 | 077 | 0.60 | 024 | 079 | 077 | 0.00
13 | Maroussi 022 | 045 | 064 | 045 | 027 | 071 | 0.08 | 046 | 021 | 077 | 097 | 096 | 0.72
17 | Patissia 043 | 026 | 065 | 082 | 079 | 071 | 092 | 0.06 | 0.00 | 077 | 0.00 | 0.91 [EH00N
27 | Athensmarina 040 | 079 | 060 | 074 | 076 | 078 | 0.40 | 0.36 | 047 | 0.88 | 0.00 | 050 | 0.00
45 | Pireas-pedagogiki | 036 | 051 | 0.74 | 035 | 077 | 0.56 | 035 | 0.68 | 0.48 | 0.84 | -0.11 | 0.80 | 0.00
28 | Tatoi -0.07 | 058 | 0.60 | 0.18 | 036 | 0.60 | 0.25 | -0.06 | 012 | 0.81 0.76 | 0.63
5 | Athens 043 | 0.68 | 076 | 024 | 0.55 | 0.60 | 0.13 | 0.61 | 092 | 0.88 | 0.23 | 013 [ 0.00
29 | Aspropirgos 0.17 | -0.03 | 0.66 | 053 | -017 | 0.64 | 098 | 0.35 | 043 | 035 | 051 | 045 | 087
48 | Pireas 0.16 | 072 | 091 | 0.35 | 0.65 | 0.66 | 0.64 | 020 | 013 [ 051 | 0.00 | 0.00 | 0.00
32 | Alimos 028 | 0.88 | 0.64 | 0.36 | 0.68 | 050 | 055 | 058 | 045 | 0.79 | 0.00 | 0.00 [ 0.00
2 | Ampelokipoi 033 | 048 | 038 | 0.15 | 028 | 0.64 | 0.67 | 049 | 025 | 0.09 | 0.00 | 034 | 0.68
50 | Malakasa -0.04 | 0.06 | 018 | 0.56 | 075 | 046 | 1.00 | 034 | 011 | 051 | 0.00 | 0.00 | 071
38 | Elefsina 0.04 | 030 | 039 | 077 | 020 [-0.09 | 0.94 | 037 | 028 [ 0.01 | 041 | 046 | 0.00
33 | Perama 038 | 024 | 043 | 0.01 | 055 | -0.15 | 0.89 | 020 | 046 | 030 | 049 [ 071 | 0.00
47 | Chaidari 019 | 019 | 043 | 056 | 0.09 | 063 | 0.88 | 0.00 | 018 | 0.00 | 0.00 | 048 | 0.00
34 | Petroupoli 0.33 | 0.00 | 062 | 0.00 | 0.00 | 0.00| 058 |-016 | 013 | 0.1 |-020 | 0.67 | 0.00
14 | Neamakri 045 | 079 | 0.00 | 0.08 | 038 | 0.01 | 0.00 | -039 | 042 [ 0.63 | 0.00 [-0.30 | 0.59
23 | Vari 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 047 [ -0.21 [ 031 | 0.00 | 044 | 1.00 | -0.33
37 | Kifissia -0.09 | -0.06 | 0.19 | -0.19 | -013 | 0.15 | 0.00 | 0.00 | 0.00 | 0.22 | 0.61 | 0.00 | 0.07
40 | Salamina 0.39 | 048 | 036 | -013 | 0.43 | 0.00 |00 -0.19 | 042 | 0.00 [1%0%80 1.00 | 0.00
3 | Anavyssos 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
7 | Ekali -0.15 | -0.34 | 0.25 | 0.45 | -0.23 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
10 | Kantza 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
11 | Lavrio 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
12 | Markopoulo -0.23 | -036 | -0.21 -0.01 | 0.06 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 [-046 | 0.00
18 | Penteli -0.11 | -0.40 -037 | 013 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
20 | Portorafti 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
22 | Spata 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
24 | Vilia 0.14 | 0.00 | 036 | 020 | 0.00 | 0.00 | 0.00 | 0.08 | 010 [ 0.00 | 0.48 | 0.00 [ 0.00
25 | Rafina 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
36 | Pallini 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00
44 | Papagou 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00
49 | Keratea 0.10 | 0.00 | 032 | 041 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
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Figure 4-1. The number of events with a correlation coefficient between Rainscanner and rain gauge

datasets is higher than a) 0.6 and b) 0.7. Source: (Bournas and Baltas 2022a)
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Figure 4-2. The mean correlation coefficient between the Rainscanner and rain gauge stations for a)
all available events and b) using events that featured an above 0.6 correlation at each station.

Source: (Bournas and Baltas 2022a)

Figure 4-1 highlights the consistency between the Rainscanner and rain-gauge datasets. The
number of events with good correlation shows that the two datasets (the Rainscanners and
the rain gauges) are consistent at the location of a specific station. The more events with high
correlation a station features, the more reliable the station is. Moreover, the figure features
the difference between utilizing a different correlation threshold, where in panel a, the
threshold is set to 0.6, and in panel b, it is set to 0.7. By comparing the two panels, it is
observed that there is a decrease in the number of events that featured good correlation in
various stations. For example, station 41, Ska, features seven events with a correlation over

0.6, while only five when the threshold is 0.7. A higher threshold leads to fewer data being
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“well-correlated,” which is logical since the higher the correlation threshold, the fewer
stations will meet this demand among the different events. However, as mentioned in
Chapter 3.3.2, choosing a threshold that will remove bad-correlated datasets is critical but
still features a significant amount of radar-rain gauge pairs to perform the needed Z-R
calibrations. Moreover, the threshold highlights other facts, such as the behavior on the
different thresholds set by the station’s location.

Considering the location of the poor-correlated stations within the study area, the following
findings emerge. Firstly, in both thresholds, it is noticeable that stations located near or
within the cluttered area, e.g., stations northeast of the Rainscanner, feature an overall low
correlation since only a small number of events, i.e., less than four feature above 0.6
correlation. Secondly, stations located within a 10 km radius of the Rainscanner location
tend to feature many well-correlated events in both cases, apart from station 2,
Ampelokipoi, which features a low correlation, although it is located near the Rainscanner.
Finally, some stations feature a significant decrease in the number of well-correlated events
when a different threshold is used, with most stations located in the coastal front. For
example, station ID 8, Faliro station, featured seven well-correlated events when a 0.6
threshold is applied, reduced to only four with the 0.7 threshold. However, this behavior is
not unique to the coastal areas since station ID 6, Dionysos station, on the northeast, also
features a similar behavior. Considering all the above, and after testing several thresholds,
the 0.6 threshold was considered the best choice since it filters out bad-correlation data while
keeping enough data for the optimization algorithm.

The effect of utilizing only well-correlated datasets is reflected in Figure 4-2, where each
station's mean correlation coefficient is compared to the mean correlation coefficient derived
when utilizing only the events that featured above 0.6 correlation for each station. A total of
15 stations featured above 0.6 correlation in 7 out of the 13 events, shown in Figure 4-2 panel
a, while when considering only events that featured good correlation, shown in panel b of
Figure 4, a total of 32 stations featured correlation above 0.6, 29 stations above 0.7, and 15
above 0.8. These results are encouraging, especially for the stations featuring high
correlation in multiple events, e.g., stations 21, 42, and 53, as they can be used as control
points for future quality control procedures (Bournas and Baltas 2022a).

Finally, it is notable that some stations exhibit a high correlation for only a limited number
of rainfall events. For instance, stations 28, 29, and 50, located in the north and southwest,
respectively, featured a high correlation in only a few events, less than four, but the
correlation in these events was relatively strong, i.e., above 0.8. This finding can be
attributed to the fact that the correlation is not dependent only upon the station's location
or the data quality, e.g., systematic errors, but also storm-based characteristics. One such

characteristic is the amount of rainfall since low rainfall height (light rain) is subject to
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factors causing temporal and spatial displacements of the Rainscanner compared to the rain
gauge measurements. This behavior was attributed to two factors: first, to the Rainscanner
height of measurement, which, depending on the station's distance to the Rainscanner, can
be several hundred meters above the ground, and second, to the rain gauge measurement
sensitivity.

The first is straightforward since the further a station is located, the more prominent the
height problem is. When light rain occurs, the velocity of the hydrometeors is smaller,
making them take longer to reach the ground, which leads to temporal displacements
between the measurements of the Rainscanner and the rain gauge, i.e, the same
hydrometeor is measured in different timesteps in the two instruments. Moreover, the
hydrometeor's size and weight make them more subjectable to wind effects, which, in
conjunction with the increasing distance to the ground due to the Rainscanner beam angle
and earth curvature, may lead to significant spatial displacements, i.e., the hydrometeors
fall in a different Rainscanner grid than the one that the station is designated. Spatial and
temporal aggregations were performed, with the correlation increasing slightly, mainly
when temporal aggregation was performed, but the exact cause is difficult to identify, while
the study in coarser scales was not desired.

The second cause that may derail the correlation in low rainfall involves the rain gauge
sensitivity. In most instances, and specifically in stations located near the Rainscanner, the
Rainscanner featured a higher sensitivity than the respected rain gauge, highlighted by the
fact that it measured rainfall when the rain gauge did not, which may be attributed to false
Rainscanner readings, but rain gauges are also subject to errors. For instance, the gauge's
sensitivity may lead to false readings such as temporal displacement of the rainfall volume,
i.e., the amount of rainfall that occurred in a period is measured in the next period or even
lost. Although rain gauges are considered the ground truth, the rain gauge device, recorded,
or the post-process quality control of the entire rain gauge network can lead to errors.
Unfortunately, these cases can only be examined when access to the rain gauge raw datasets
and validation procedures are provided. Nevertheless, this study did not focus on this
aspect since few stations featured these issues, such as station 2, Ampelokipoi, where the
Rainscanner featured in almost all events relatively high reflectivity values, in contrast to
the low rainfall height recorded by the rain gauge. The study of poor-correlation stations,
whereas nearby stations feature good correlation, is an interesting study for the rain gauge

operator to assist in inspecting and maintaining the network.

4.1.2 Event-based Z-R calibration
Following the correlation analysis, the event-based group is the first calibration group for
establishing Z-R relationships. A Z-R relationship is determined based on the datasets of the

stations that feature a correlation over the 0.6 threshold. Furthermore, as mentioned in
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Chapter 3.3, the used data pairs are filtered to remove zero-value pairs. The results are
shown in Table 4-3. Two optimizations are performed, one involving optimizing both
parameters a and b and one where parameter b is fixed at a default value of 1.6. The second
optimization is used to highlight the differences between the two events since parameter b
does not vary significantly as parameter a. Furthermore, the table also includes information
regarding the date of events, the total number of stations that featured correlation above the
threshold, and the correlation coefficient value of the data pairs used.

The results show that there is a high variability between the values of the parameters in each
event. The optimization is configured to limit parameter a value from 50 to 2000 and
parameter b from 1 to 2.50. Although parameter a never reached the limits, parameter b did,
which shows that the optimization would lead to better results should values beyond the
limits be explored. However, this would lead to no typical Z-R relationships, leading to the
fact that the optimization is not successful. Considering the Z-R relationship, Z=aR?, a high
value of parameters a and b translates to the fact that the same amount of reflectivity leads
to higher rainfall values, or instead, that a specific amount of rainfall intensity is met when
the target omits less reflectivity. Therefore, when parameters are unusually high, it
demonstrates that large amounts of reflectivity are recorded against low rainfall
measurements by the rain gauge. Furthermore, a second calibration is made by keeping
parameter b fixed to the value of 1.60 and optimizing parameter a. By comparing the RMSE;
it is seen that it does not change significantly, apart from some cases, which shows that

parameter b has little effect on the correlation.

Table 4-3. Z-R Optimization results per rainfall event

Event | Date Stations | Calibration on parameters a and b | Calibration on parameter a with fixed b
Used |4 b RMSE | r a b RMSE
El 30-09-2018 | 6 452 2.50 | 0.130 0.42 | 343 1.60 0.419
E5 16-12-2018 | 28 1486 | 2.50 | 0.445 0.60 | 771 1.60 0.169
E6 18-12-2018 | 31 301 1.95 | 0.210 0.66 | 306 1.60 0.450
E9 10-01-2019 | 23 758 2.42 | 0.197 0.67 | 551 1.60 0.237
E10 07-02-2019 | 26 956 2.50 | 0.290 0.54 | 540 1.60 0.225
E12 15-02-2019 | 27 1628 | 2.50 | 0.378 0.25 | 1070 1.60 0.329
E16 15-04-2019 | 25 340 1.41 | 0.304 0.88 | 292 1.60 0.392
E20 21-11-2019 | 19 369 2.50 | 0.308 0.71 | 402 1.60 0.356
E21 25-11-2019 | 22 206 1.05 | 0.216 095 | 118 1.60 0.625
E22 30-12-2019 | 27 1556 | 2.50 | 0.524 0.35 | 944 1.60 0.258
E31 01-06-2020 | 19 439 1.05 | 0.742 0.90 | 201 1.60 0.744
E33 08-08-2020 | 25 190 2.28 | 0.493 0.62 | 271 1.60 0.768
E36 04-12-2020 | 14 302 2.50 | 0.425 0.38 | 344 1.60 0.550

Considering the parameter a’s results, two main event groups are observed: a) events where

the parameter is between the typical bounds of 50 to 500 and b) events where the parameter
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features larger values of up to 2000. Concerning the latter, it reinstates that snowfall events
feature high values of parameter g, i.e., over 1000, since all three events that featured these
high values, E2, E6, and E10, were indeed snowfall events. Most empirical Z-R relationships
opted for snowfall feature high parameter a2 value (Joss and Waldvogel 1970; Austin 1987).
In these events, the reflectivity field is usually a uniform low reflectivity field of up to 20
dBZ value. When snowfall is observed, the rainfall intensity measured by the gauging
station is usually low, thus requiring a high parameter a value to match the relatively high
dBZ value into that small rainfall intensity. Since snowfall events require a different
approach, they have been excluded from the station-based optimizations.

Finally, although events with parameter a values between 50 and 500 are typical rainfall
events, more information can be extracted from this optimization. In most empirical Z-R
relationships, when the sample consists of convective events, the parameter a tends to have
a large value, while the opposite occurs in stratiform-based events. Applying a Z-R
relationship in large reflectivity values leads to extreme rainfall intensity. For instance, as
shown in Figure 1-11, where three different Z-R relationships are used, the Z-R that featured
the smallest parameter a value, for large reflectivity values resulted in the highest rainfall
intensities. Research on the parameter a value has shown that when convective events are
used, the parameter values are within the 300-500 range, whereas typical values for
stratiform events range from 100 in tropical regions up to 250. Therefore, the parameter's
value derived from the optimizations can be used to classify storm systems as convective,
stratiform, and snowfall events. Although this is convenient, it should not be held as the
sole indicator of storm classification since more parameters should be examined, such as
vertical profile characteristics (Anagnostou 2004). In the examined case, observing the
storm’s footprint, identifying high reflectivity cells, and the period the event occurred are
deemed sufficient to reach rainfall classification. Overall, the variability of the Z-R
relationship, as illustrated in Table 4-3, shows that deriving a Z-R only from data collected
from a single event is not optimal, especially in cases with a small coverage, since the storm's
trajectory can affect the correlation in some stations, leading to poor results obtained by the

optimization (Bournas and Baltas 2022a).

4.1.3 Station-based Z-R calibration

The station-based optimizations are performed utilizing datasets for each station, using the
events where the station featured a correlation above 0.6 and excluding snowfall events.
The results are shown in Table 4-4. Two optimizations are performed, as in the case of the
event-based optimizations, one optimizing both parameters a4 and b and the other
optimizing only parameter a using the average value of the previous optimization for
parameter b. The results are also displayed in Figure 4-3, where each panel illustrates the

spatial distribution of parameters 2 and b.
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Table 4-4: Z-R Optimization results for each station

Source: (Bournas and Baltas 2022a)

Calibration Stations

index Station a b RMSE r Events NMAE% NMB %
4 Ano Liosia 168 1.79 058 0.79 7 57.1 17.0
5 Athens 316 1.68 033 0.78 5 40.1 -11.7
17  Patissia 423 2.15 023 0.76 4 42.2 -4.1
27  Athens-Marina 430 1.78 042 0.65 3 58.2 52.8
28  Tatoi 209 152 1.67 0.79 3 54.6 -17.2
30  Korydalos 304 157 027 0.85 7 41.5 -14.0
32 Alimos 317 1.14 038 0.72 2 39.2 28.9
42  Imittos-Dafni 292 1.05 058 0.79 6 41.0 -14.0
43  Harokopio-Athens 297 198 035 0.77 6 44.6 -8.0
45  Pireas-Pedagogiki 192 187 032 0.81 4 30.7 -9.6
47  Chaidari 257 1.87 080 0.87 2 17.8 0.4
48  Pireas 261 134 034 0.83 4 33.8 -2.2
52 Delacroix-Attiki 448 1.05 036 0.87 6 46.5 -16.4
Validation Stations
6 Dionysos 183 1.86 036 0.90 6 35.5 0.8
8 Faliro 433 226 030 0.75 5 36.4 -1.5
15 Neasmyrni 239 218 0.67 0.75 4 56.5 3.0
16  Neos Kosmos 402 1.83 039 0.84 8 40.1 -1.6
19  Peristeri 261 131 021 0.73 5 29.7 -4.1
21 Phychiko 271 142 045 0.81 8 37.0 -5.1
29  Aspropirgos 310 142 043 092 4 34.6 -10.2
34  Petroupoli 272 181 1.12 0.78 3 40.3 -6.8
35  Vrilissia 371 123 027 092 7 31.7 -10.1
38  Elefsina 275 1.05 025 0.77 3 41.6 -0.5
39  Nikaia 419 242 044 0.69 6 46.7 12.5
40  Salamina 490 1.08 0.00 0.83 2 0.1 -0.1
41  Ska 298 1.63 032 0.75 7 40.4 -1.4
45  Pireas-Pedagogiki 192 1.87 0.32 0.81 4 30.7 -9.6
51  Ano Korydallos 315 1.84 043 091 7 32.0 -2.6

Considering the values of the parameters, parameter a is calculated within the 168 - 490

range, while parameter b is within the 1.05 - 2.42 range. Figure 4-3 shows that stations found

in the coastal front featured high parameter a values, while the stations located on the north

featured the lowest values. The same is observed with the parameter’s b values, although

the distinction between high and low values seems to follow a west-to-east direction.

Parameter a value shows higher variability, with the average value being 312, while

parameter b had an average value of 1.64. As mentioned, these high parameters a and b
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values indicate that most rainfall inputs in these locations are more likely to be of the
convective rather than the stratiform type.

In order to better comprehend the spatial variability of the Z-R relationship, parameter b is
fixed to the average value of 1.64, and the spatial properties of parameter a are analyzed.
The results and the stations' names are featured in Figure 4-4. The parameter a's average
value is changed slightly from 312 to 293. However, some differences can be noticed at

selected stations, especially in stations where the original parameter b differed significantly

from the fixed value.
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Figure 4-3: Z-R relationship parameters spatial variability, a) parameter a, b) for parameter b,

Source: (Bournas and Baltas 2022a)
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Figure 4-4: Spatial variability of Z-R parameter a, when a fixed parameter b is used,

Source: (Bournas and Baltas 2022a)
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As previously mentioned and illustrated in Figure 4-4, the highest parameter a values are
found in the southwest, at the coast front of Athens, while the lowest values are found in
the north section. As mentioned, a high parameter a value and a low parameter b are found
in Z-R relationships better suited to convective type events. Since the sample includes both
convective and stratiform events, this result indicates that higher reflectivity is measured on
the coast front and less on the northeast. This finding can also be related to the typical
trajectory of rainstorms in Athens. As featured in the studied events, storm cells in Athens
tend to have a west-to-east direction. This trajectory usually takes the storm cell above the
Gulf of Samalina and towards Mount Aigaleo. Especially in convective events, the storm
cell feeds with moisture while it passes the sea, only to discharge when it hits the mainland
and the higher elevation that Mount Aigaleo offers. Water discharge, i.e., rainfall, occurs
rapidly in the coastal regions, imitating convective-based storm characteristics. From then
on, the storm cell keeps discharging until it reaches Athens city center, only to be headed
next to the North due to the presence of Hymmetus Mountain on the east. The rainfall
intensity drops when it arrives at higher elevation locations, and stratiform-based rainfall
intensities are observed. A lower rainfall intensity does not mean less rainfall accumulation
since the storm cloud may lose its velocity, thus delaying its departure from these regions.

Overall, it is shown that the Z-R relationship does change in space and time. Specifically,
the Z-R relationship tends to vary based on the storm cell's proximity to the coastal front,

the ground's elevation, and the distance from the Rainscanner.

414 Single Z-R calibration

This section uses the entire well-correlated dataset to extract a single Z-R relationship. A
one-size-fits-all process is performed, where all datasets from multiple stations and events
are used. The optimization is performed in two groups, one where a Z-R is derived from all
the available data and one where a calibration/validation scheme is used, with the scope of
evaluating the robustness of the relationship. In the first case, the derived Z-R relationship

is the following;:
7 = 300R16° 4.1

The Z-R parameters of the featured equation are similar to the average values of the
individual optimizations shown in Table 4-4. In the calibration-validation scheme, a series
of stations are selected as the “calibration” stations, and the rest are used as “validation”
stations. The “calibration” stations are selected by following two rules. First, the station
should feature a high number of well-correlated events. Second, the final selection, out of
the pool of the well-correlated stations, is made by selecting stations that provide good
coverage and density for both the calibration and validation groups. For instance, if two

stations featuring a high number of well-correlated events are in close proximity, only one
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is selected to join the calibration group while the other is the validation group. As seen in
Figure 4-4, half of the available stations were used for calibration and half for validation,
featuring an equal density between each group. The scatter plots of the data pairs used in
each group are shown in Figure 4-6, featuring the rainfall intensity [mm/h] as derived from
the 10-minute resolution each pair featured. Most measurements are below 5 mm/h, with
some exceptions featuring high values of over 15 mm/h. The calibration group features a
better correlation between the two pairs, distinctive of the distance of the data pairs to the

1:1 line.
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Figure 4-6: Scatter plot of data used in a) Calibration and b) Validation groups.
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The derived Z-R relationship is the following;:
Z = 321R%>3 4.2)

Table 5-5 displays the validation station's RMSE and r correlation coefficient index and
compares them with their respective individual optimization. As expected, the correlation
index, r, is unaffected since it does not alter significantly with the used Z-R. The RMSE
values in each case differ slightly but not to a level that may impact the results. Most stations

show little changes in the derived indexes.

Table 4-5: Z-R validation station statistics using the Z = 321R"% relationship.

. . Individual Optimization Validation
index Station
a b RMSE r RMSE r
6 Dionysos 183 1.86 0.36 0.90 0.45 0.90
8 Faliro 433 2.26 0.30 0.75 0.37 0.75
15 Neasmyrni 239 2.18 0.67 0.75 0.72 0.75
16 Neos Kosmos 402 1.83 0.39 0.84 0.42 0.84
19 Peristeri 261 1.31 0.21 0.73 0.23 0.73
21 Phychiko 271 1.42 0.45 0.81 0.47 0.81
29 Aspropirgos 310 142 043 092 046 0.92
31 Agia Paraskevi 290 1.21 0.24 0.95 0.70 0.95
34 Petroupoli 272 1.81 1.12 0.78 1.19 0.78
35 Vrilissia 371 1.23 0.27 0.92 0.30 0.92
38 Elefsina 275 1.05 0.25 0.77 0.28 0.77
39 Nikaia 419 242 0.44 0.69 0.46 0.69
40 Salamina 490 1.08 0.30 0.83 0.32 0.83
41 Ska 298 1.63 0.32 0.75 0.32 0.75
45 Pireas-Pedagogiki 192 1.87 0.32 0.81 0.40 0.81
51 Ano Korydallos 315 1.84 0.43 0.91 0.60 0.91

4.1.5 Z-Rrelationships Comparison

This section compares the derived Z-R relationships based on the precipitation and
accumulation timeseries per station. In Figure 4-7 and Figure 4-8, the rainfall and
accumulative rainfall timeseries for two validation stations, the Psychiko and Neos Kosmos,
and for two rainfall events, E6 and E16, are presented. Blue bars denote the rain gauge
measurements within the figures, while the Rainscanner measurements are presented with
lines with different coloring based on the Z-R relationship used. Specifically, with green
color, the Marshal and Palmar equation, Z=200R*¢, with red color the all-data calibration
equation 5.2, Z=321R"%, with purple color the Event-based Z-R, as shown in Table 4-3, with
black color the Station Based Z-R, Table 4-4, and with a blue color the optimized relationship
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when the station dataset for the particular event is used. The best-fit result in each plot is
the last option from the above since the Z-R parameters are optimized to match the specific
data.
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Figure 4-7. Precipitation and accumulative precipitation for Phychiko, on Event 6.
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Figure 4-8. Precipitation and accumulative precipitation for Neos Kosmos on Event 16.

In all figures, the Marshal and Palmer equation shows the higher deviations. Specifically, it
leads to an overestimation of rainfall compared to the rain gauge datasets. The equation that
is closer to the optimized relationship is the station-based equation, followed by the All-data
and event-based relationships. In Figure 4-7, Psychiko station event 6, it is observed that
while the optimized does the better fitting in each 10 min rainfall height interval, the rainfall
accumulation does not feature the best result compared to other relationships. This is caused
by the gap of the Rainscanner dataset at 02:00, where no data is recorded, disrupting the

accumulation time series graph.

111



| Chapter 4 | Results and Discussion |

In Figure 4-8, featuring Neos Kosmos station, for event 16, the optimized and Station-based
relationships are similar, although the value of parameter b is changed dramatically, from
1.48 to 1.83. This difference showcases that parameter b does not contribute substantially to
the Z-R relationship in this case. This is because the time intervals are small. As in the
previous case, the Marshal and Palmer equation shows the worst correlation, while the all-
data calibration-based is slightly better. The calibrated Z-R shows a good correlation with
small biases in the accumulative precipitation diagram, highlighting that it can be used for
different stations and events.

Finally, in this section, a comparison is made between the proposed, all-data derived Z-R
relationship, Z=321R'%, with relationships that have been derived from past studies, i.e., a)
the Marshal and Palmer Z=200R'¢, b) the Z=431R'%, and c) the Z=261R"'%, the two later
derived from distrometer measurements in Athens.

This comparison is performed by calculating the RMSE, BIAS, NMAE, and NMB indexes
between the rain gauge measurements and the rainfall heights estimated through each Z-R
relationship. The results are presented in Boxplots in Figure 4-9, in which each station's data
utilizing only the well-correlated events are shown. The optimum relationship, as in Figure
4-7 and Figure 4-8, includes the optimized result of each station per event, featuring the best
results, which the rest of the relationships should reach. All indexes are set to have zero
values as their optimum result, while NMAE and BIAS are also allowed to have negative
values. Furthermore, apart from the mean value, the red line, which should be found to be
close to zero, and the spread of the sample are also essential.

Observing the boxplots, out of the four relationships, the all-data calibrated relationship,
Z=321R"'%, features the best results, followed by Z=261R"%?, Z=431R'? and last, the Marshal
n Palmer Z=200R"®¢. The Marshal and Palmer relationship has the worst results in all indexes
since the median value is the highest, while the spread is significant, which means that it
does not apply as well as the other relationships. The convective-based Z=431R"'? shows
promising results but tends to underestimate the actual rainfall since the NMB value is
negative. This underestimation means that the relationship should be better used only in
convective events, i.e., events that feature over 35-40 dBZ reflectivity, since underestimation
of rainfall might have an unwanted impact on hydrological applications, such as continuous
soil moisture monitoring. Finally, the Z=261R'*? relationship, although featuring a similar
parameter b value but a smaller parameter a value than the one proposed, shows promising
results. However, the difference in the average BIAS and NMB values in each case signifies

how sensitive the rainfall estimation is to parameter a’s value.

112



| Chapter 4 | Results and Discussion |

:
H
a) . 2 b) +
2r +
+ 1.5 + +
n
+ * +
15} n ni
[5) +
7] + 0 + i
g < -
Mot - —_ —_ 1M 05r I +
+ - I | T =+
| | | i - —
T | | +
| of == i
o5 — = I = L
: \—'—1 + L +
| e - L 1 -0.5 F * * $ +
ol L + 4
Optimum  7-321R!5  7-000R!® Zz=431R!?> z-261R!:5? Optimum  z-321R!53 z=200R!® Zz=431R'25 z-261R!52
‘
o + d) +
120 i .
100 -
+ * +
100 | g +
N + + + | +
° + I 50 * 1 i
X 80r [ TR + T
= nn I — N
ol AN S . =
r — ! 1 L I |
- | =
‘ '—‘ T i \
il E ‘ i H -
| +
| e L | ! I .
1 -50 + |
20+ _L L . L
.
+ + n +
L +
0 + 100 b

L L L L L L L L L 4
Optimum  7-321R133  7=000R'® 2z=431R'?® z=261R!">? Optimum  7-321R"%%  2=000R"® 2=431R'?% 2=261R'"*?

Figure 4-9. Boxplots of the a) RMSE, b) Bias, c) NMAE, and d) NMB per Z-R relationship

4.2 Rainfall-Runoff Model Simulations

4.2.1 Gridded Rainfall-Runoff model calibration

The gridded model used is analyzed in Chapter 3.4. The core element of the model is the
construction of the time-area diagram. The model is used in a subbasin of the study area,
the rural part of the Sarantapotamos basin, as featured in Figure 4-10. The outlet of the basin
is selected at the cross-section of the Sarantapotamos River with the Attiki Odos freeway,
totaling an area of 231.50 km?. Based on the DEM dataset, the mean elevation of the basin is
491 m, with a maximum elevation of 1270 m and the minimum at the outlet being 40 m. The
subbasin lies 25 to 50 km from the Rainscanner location and features an elongated shape
governed by two streams, the Sarantapotamos stream on the north and its substream, the
Ag. Vlassios stream in the South. Both streams are ephemeral, i.e., substantial flow is only
observed during and after rainfall (Bournas and Baltas 2022b).

The time-area diagram is derived in GIS. Considering the spatial resolution of the grid, a
500 m x 500 m grid is used based on the size of the basin. The grid leads to a total of 1021
grids. Following the time-area diagram flow chart in Figure 3-11 while in Figure 4-11, the
gridded slope and CN AMC-II values are shown.
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Figure 4-10. The Sarantapotamos basin and its subbasin where the RR model is applied.
Source: (Bournas and Baltas 2022b)
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Figure 4-11. Gridded datasets; a) Slope %, b) Curve Number for AMC-II conditions
Source: (Bournas and Baltas 2022b)

Regarding the velocity field, the mean overland velocity over the basin is calculated at 1.2
m/s, while the maximum velocity is four m/s. The maximum travel time is 36 hours.
However, as observed in the cumulative time-area graph in Figure 4-12, although the
maximum travel time is 36 hours, by the 24-hour mark, most of the basin has reached the
outlet, which shows that the actual rate of discharge of the basin is approximately ten km2/h,

a considerable value. This rate shows that although the basin has an elongated shape, the
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two streams divide the basin into two subbasins that work along each other, resulting in a
high runoff potential in the outlet. This characteristic cannot be accounted for when a
lumped model is used instead. For instance, if one applies a synthetic UH such as the SCS
dimensionless UH, a single concentration time is only calculated, leading to a

misinterpretation of the actual basin’s discharge rate.
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Figure 4-12. Time-area diagram: a) Time travel raster; b) Cumulative area % per hour at the basin

outlet. Source: (Bournas and Baltas 2022b)

4.2.2 Rainfall Events Analysis

The model is then applied to a series of rainfall events. The events are showcased in Table
4-6. The events that featured the highest rainfall intensity are used to highlight the
application of the model. Table 4-6 also features the event's duration, as well as the 5-day

accumulated precipitation, in order to better evaluate the prior soil moisture conditions.

Table 4-6: Simulated events and main characteristics; Source: (Bournas and Baltas 2022b)

Event Start Datetime End Datetime D;ln;;t)io AIEiI?;};n) Mear;{?;ef;fz;n;;ative
6 17-12-2018 23:40  18-12-2018 13:50 14.2 13.8 25.8
21 24-11-2019 21:40  25-11-2019 08:30 10.8 37.0 30.4
31 01-06-2020 14:00  01-06-2020 20:00 6.0 0.0 20.5
48 09-06-2021 18:00  10-06-2021 02:44 8.7 0.2 25.0
50 12-06-2021 11:50  12-06-2021 19:00 7.2 32.0 26.0
61 23-11-202117:30  24-11-2021 07:40 14.2 2.6 26.4

In Figure 4-13, each event's accumulated rainfall is showcased, highlighting the spatial
variability of rainfall. The study area where the RR model is applied is highlighted with a
red polygon. In some events, i.e., events 6, 21, and 61, the rainfall coverage is the entire
scanning range, while the area on the southeast of the Rainscanner location is within the no-

data area of the Rainscanner due to orography.
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Figure 4-13. Cumulative precipitation per event recorded by the Rainscanner. The study area is

highlighted with the red polygon; Source: (Bournas and Baltas 2022b)

The other events, events 31, 48, and 50, feature a smaller coverage, where only a few areas
in the west are affected, where the Sarantapotamos basin is located. These events showcase

convective-based characteristics since they feature multiple small areas of high rainfall
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accumulation, a typical characteristic of convective events, and they occur in the summer,
with events 31, 48, and 50 occurring in June when convection is favored. Specifically,
convective events are formed due to convection when the ground gets heated, and air
masses are forced to move up to cool, which leads to unstable conditions and the formation
of rainfall. These events usually have a shorter duration than the respective stratiform
events but tend to feature high rainfall intensities, i.e., large amounts of rainfall in a small
duration. This storm classification can be easily spotted in such a Rainscanner image while
highlighting that summertime events in Athens are convective-based.

Runoff potential is not only regulated by the amount of precipitation but also by the soil
moisture conditions prior to the event. Summertime events are expected to have dry soil
moisture conditions since rainfall is usually absent for several days or even weeks
beforehand. Based on the 5-Day API shown in Table 4-6, the AMC for events 6 and 61 is
assumed to be medium. In contrast, events 21 and 50 feature conditions close to AMC-III,
i.e., wet conditions, since they were the follow-up of other rainfall events. Finally, events 31
and 48 were considered closer to AMC-], i.e., dry conditions, since no rainfall was observed
the prior days. Moreover, in all cases, an assumption is made regarding the actual soil
moisture conditions, overcoming the fact that only three conditions can be defined. For the
dry events, 20% soil moisture is used, while for the two wet events, 90% is used for event 21
since it occurred in November with substantial prior-days rainfall, and 70% moisture for
event 50 since it occurred in June.

In Figure 4-14, the generated hydrographs for each event are shown. Each graph shows the
flood hydrograph generated at the outlet when the rainfall field is estimated using the five
different Z-R relationships examined. The rainfall timeseries shown in Figure 4-14 are
generated through the calculation of the mean areal precipitation over the basin after
applying the Marshal and Palmer equation to the Rainscanner fields and are shown only to
demonstrate the duration and the scale of the rainfall of each event since the actual rainfall-
runoff model used the 10-min, gridded precipitation fields. Table 5-7 shows each event's
total accumulated rainfall and estimated peak discharge. Finally, the last two graphs feature
the hydrographs generated as above, for events 31 and 50, after removing the Z=275R!0
relationship to visualize better the rest of the hydrographs since it provided out-of-scale

peak runoff compared with the other relationships applied.
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Figure 4-14. Hydrographs of featured events. Blue and red bars denote mean area rainfall and
rainfall losses, respectively. The last row graphs for events 31 and 50 are identical with the latter
after the removal of the Z=275R %5 results for better comparisons;

Source: (Bournas and Baltas 2022b)
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Table 4-7. Hydrograph Results for each Event and Z-R used

Total precipitation (mm) Z=200R'6  Z=261R!-5%2  Z=321R!.%¥  Z=431R!-2>  Z=275R!.05
E6 25.82 21.95 19.16 15.11 22.59
E21 30.36 25.48 22.28 16.55 23.07
E31 20.51 18.31 15.88 15.85 31.00
E48 25.02 20.97 18.34 13.63 19.22
E50 26.02 24.02 20.74 23.85 53.47
E61 26.37 22.73 19.81 16.67 26.74
Peak Discharge (m?3/s)

E6 13.80 9.59 6.98 413 10.61
E21 40.43 29.07 22.41 12.63 26.06
E31 22.40 19.34 14.71 19.31 69.72
E48 15.37 10.63 7.65 423 11.72
E50 78.37 71.43 56.61 79.69 272.79
E61 30.42 23.00 17.13 12.76 37.55

In each hydrograph, what is changed after applying different Z-R relationships is the
amount of runoff generated and specifically the peak runoff and runoff volume, while the
time to peak and the shape of the hydrograph remain unchanged apart from minor
deviations.

The first visible finding is the deviation of the Z=275R"% equation on the E50 and E61 events.
This equation resulted in significant differences in rainfall and peak runoff results.
Specifically, the rainfall estimation was 51% and 105% more than the Marshal and Palmer
equation, resulting in 211% and 248%, respectively. This equation was derived after
analyzing weather radar and rain gauge datasets for the Elefsina rain gauge station, the
nearest station with well-correlated Rainscanner-rain gauge datasets from the study area, as
shown in Table 4-4. The specific relationship features a stratiform standard parameter a
value but a very low parameter b value, nearly equal to the value of one, denoting a linear
relationship between reflectivity and rainfall intensity. Although such relationships might
perform within acceptable limits for stratiform events where the reflectivity and rainfall
intensity values are low, the rainfall rates calculated in convective events are unacceptable.
As shown in Figure 4-15, the Z-R relationship effect on the transformation of reflectivity to
rainfall intensity becomes noticeable when the reflectivity values are over 35 dBZ, while
substantial differences are noticed only after 45 dBZ. In the case of relationship Z=275R"%,
the difference in the rainfall rate is noticeable much earlier, starting from the 35 dBZ value,
whereas the difference is increased exponentially, with the 45 dBZ value leading up to four
times what a typical relationship calculates. The majority of reflectivity observed in
convective events such as E31 and E50 is between 35 and 45 dBZ, in contrast to the stratiform

events where reflectivity is usually less than 35 dBZ, making the effect the featured
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relationship at its maximum compared to stratiform events, where the change is not
noticeable. Therefore, it is deemed that this relationship is unsuitable for such events, as is
shown later by calculating the rainfall’s return period using the IDF of a nearby station. The
derivation of the relationship was probably performed using datasets from stratiform events

and generally from events that did not feature such high reflectivity values.
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Figure 4-15. Relationship between reflectivity (Z) and Rainfall Rate (R) for the Z-R equations used.

To draw constructive conclusions, since no observed hydrographs are available, the results
are compared with the results derived from the Marshal and Palmer (1948) relationship,
Z=200R'%. Figure 4-16 shows the absolute percent difference between each Z-R relationship
to the Marshal and Palmer equation for total precipitation, while Figure 4-17 shows the peak
discharge. The Marshal and Palmer equation led to the largest rainfall fields and runoff
values. The equations derived from mixed or stratiform events for Athens, e.g., Z=261R"'%
and Z=321R'%, show a steady difference in all events compared with the Marshal and
Palmer equation. On the other hand, the convective-based relationship, i.e., Z=431R"?,
shows higher differences in the stratiform events than the convective events. Specifically,
the difference is slight on the convective events, while the runoff is almost equal to the
Marshal and Palmer, at 14% for event 31 and larger by 1% for event 50. In event 50, although
the mean accumulated rainfall is slightly higher using the Marshal and Palmer equation, the
peak runoff is higher using the Z=431R!? relationship. This result highlights the importance
of using gridded rainfall datasets since this denotes that the rainfall spatial variability
impacts the runoff potential. In raw numbers, the precipitation among the used Z-R
relationships varied approximately -5 to -10 mm for mean areal precipitation and 10-20 m?/s
for peak discharge. For instance, in event 62, a 30 m?/s peak discharge is estimated with the
Marshal and Palmer equation, while only 12.76 m?3/s for the convective-based Z=431R"?
relationship. Overall, the featured graphs show a strong connection between the type of

storm and the Z-R relationship.
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Figure 4-17. Peak Discharge percent difference between each Z-R and Z=200R!¢

A final comparison is made by comparing the rainfall fields with rainfall derived from IDF
curves of a nearby station. The nearest and most suitable station to the basin is the Mandra
station, located northeast of the basin, shown in Figure 4-10, since compared to Elefsina
station, it features an elevation closer to the mean elevation of the basin. The IDF curve of
the Mandra station is derived from its parameters featured in Table 2-3. Concerning the
rainfall events, the IDF curve is constructed by the timeseries of the pixel, which featured
the highest total precipitation within the basin. In Figure 4-18, the IDF is plotted per event
per Z-R, highlighting the intensity of each event and the differences in the calculated return
periods between the different Z-R relationships used. From all the examined events, only

events 31 and 50 feature over one-year return periods.
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Figure 4-18. IDF curves per event when different Z-R relationships are applied.

Events 6, 21, and 48 featured fewer return periods, below the 1-year mark, while event 61

featured return periods between 1- and 5- years, depending on the Z-R equation used. In

these events, the difference between the Z-R relationships in the IDF-derived return period

is insignificant, except for slight deviations. On the convective events, the changes are more
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significant, highlighted by the difference in the Z=275R"% relationship. Specifically, when
this Z-R equation is used, the IDF plot shows that events 31 and 50 had a returning period
of over 1000 years, whereas when applying the rest of the Z-R relationships, a 20-50-year
return period is estimated instead. The 1000 value is extreme, given the severity of the
specific rainfall event, whereas the 20-to-50-year mark is more in line with the actual severity
of the rainfall events. It is vital to notice that these return period values denote the pixel with
the highest reflectivity values and might represent the entire event on the basin scale. A
basin-wide IDF approach could lead to different results, but this comparison is useful since
it can assess a) the Rainscanner datasets and b) the suitability of a Z-R relationship.

Overall, it is highlighted that a proper Z-R relationship should be used in each case. Utilizing
a convective type, Z-R ensures that extreme values will most likely be avoided. On the other
hand, these relationships tend to underestimate rainfall height in events with medium-sized
rainfall intensities and long durations. Therefore, for a properly calibrated weather radar
system, a convective/stratiform classification algorithm should be used first to make the
best-fitted selection between locally derived Z-R relationships. However, this might always
be feasible since classification algorithms require data such as the storm's vertical profile.
The required lead time to assess an event might be inappropriate when small-range radars
such as an X-Band radar are used instead. Therefore, if classification is not feasible in real-
time, seasonal Z-R relationships are advised to be used instead, i.e., a specific Z-R is used
for summer and winter. Finally, concerning Attica, a convective-based Z-R is the safest
choice since flood events do not occur due to rainfall accumulation over longer periods but

rather due to flash floods, i.e., convective events that feature large rainfall rate values.

4.3 Gridded Flash Flood Guidance Application

4.3.1 Derivation of Threshold Maps

The process followed in this section is displayed in the flow chart of Figure 3-14. The process
starts with analyzing the study area and the threshold runoff calculation, followed by the
FFG values for pre-defined soil moisture conditions. Finally, the system is used on past
events to assess the resulting flood threat. The application of the GFFG is first performed at
the Sarantapotamos basin, in which the entire process is explained and then applied to the
entire Attica region. The Sarantapotamos basin is a rural area of west Attica, whereas the
entire Attica region is a large area that includes the Attica metropolitan area, which is highly
urbanized. In the first case, the GFFG system is expected to work as intended, while in the
second case, uncertainty is expected since the effect of storm sewer networks is not
considered to calculate threshold runoff. Nevertheless, the generated results are still

valuable since when high rainfall intensity occurs in Athens, the sewer entry points are often
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blocked by debris, making the road network act as a typical stream network, while the high
percent of urbanization results in high CN values, which favors the runoff potential. In
Athens, street flooding occurs rather often due to the poor cleaning of the sewer entry points
and, in some cases, the center of Athens, the underperforming design of the sewer network
capacity.

First, the Sarantapotamos subbasin is examined. The subbasin has a total area of 231 km?
and is divided into square grids of 500 m dimensions in this application. Given the methods
used for hydrological processes, the spatial resolution is selected to be as low as possible but
retaining a minimum area. A 1 km size grid was also used, providing equal quality results.
Following this, the threshold runoff is calculated based on the 5-year rainfall ARI method
explained in Chapter 3.5. The nearest stations where the IDF curves are available are the
Eleusis, ID #286, and Mandra ID #292 stations shown in Figure 2-9, with the parameters of
the IDF equations shown in Table 2-3. Table 4-8 shows the total precipitation for different
rainfall durations and return periods, with the 5-year highlighted in bold. Since the system
is designed to focus on flash floods, the 1-, 3-, and 6-h periods are used. Concerning the
study area, the Mandra station features higher rainfall, attributed to its higher elevation, 258
m against 31 m, and proximity to the mountain peaks. Following this, the “IDF” rainfall for
each duration is interpolated to the designated grids using the Inverse Distance Weighting
(IDW) algorithm. Unfortunately, both stations are located in the south area of the subbasin,
with the nearest station to the west being 50 km away from the basin, which is two times
the diagonal of the basin. Stefani station on the north is not suitable since it is not only far
away but also located on the other side of the mountain peak, which, due to the effects of
orography, can change the rainfall characteristics dramatically. Therefore, it can be said that
the Mandra station datasets should correlate better to the area northwest of the basin than

the datasets of the Stefani station.

Table 4-8: Eleusis and Mandra accum rainfall derived from IDF curves for different accumulation

and return periods. The 5-year return period used in this research is highlighted in bold.

Return Period Eleusis Mandra
T (years) 1-h 3-h 6-h 1-h 3-h 6-h
2 17.2 27.3 36.0 24.3 38.7 50.9
5 23.0 36.5 48.0 31.5 50.1 65.9
10 27.8 441 58.1 37.5 59.6 78.4
20 33.0 52.5 69.0 44.0 70.0 92.1

The threshold runoff is then calculated through the methodology mentioned in Chapter 3.5.
The two main factors affecting the threshold runoff value, besides rainfall, are the CN and
slope values. The CN AMC-II value is calculated through the CORINE Land Use and the
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Hydrological Groups maps, while the slope percentage is directly calculated through the
DEM, as shown in Figure 4-19. The Slope raster is first calculated in the native DEM

resolution, i.e.,, 5 m x 5 m, and then disaggregated into the 500 m x 500 m grid resolution.
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Figure 4-19: Sarantapotamos gridded a) CN values for AMC-II and b) Slope (%)

Source (Bournas and Baltas 2022c)

Besides the CN and slope values, the threshold runoff depends on the soil moisture
conditions. In real-time monitoring, the soil moisture is estimated by a hydrological model.
In Figure 4-20, the threshold maps are created for the three different rainfall accumulation
periods, i.e., 1-, 3- and 6-h, and medium saturated conditions, while in Figure 4-21, for two
different soil moisture conditions, medium and saturated for a 3-h accumulated period. In
real-time monitoring, each cell's current soil moisture conditions are observed or simulated,
resulting in different soil moisture conditions within the same area. When the actual soil
moisture is used to derivate the threshold maps, the threshold maps are named the FFG
maps, which are used to compare with the forecasted rainfall.

In all generated maps, a low threshold value means that less rainfall is required to reach the
threshold, i.e., flooding conditions. Therefore, these maps also act as a flood risk indicator,
where a lower threshold indicates a higher risk. Specifically in the study area, low values
are observed in the southeast of the Sarantapotamos basin. By comparing the results of these
maps with the corresponding CN and Slope maps of Figure 4-19, it is easily observed that
areas with high CN values or low Slopes are the ones with the lower threshold. This finding
is reasonable since a high CN value denotes a higher runoff potential, i.e., requiring less
rainfall to reach flooding conditions. In the generated maps, these areas are located in the
southeast area of the basin, mainly the industrial areas, within the Thriasion plain, and in

the north, where low slopes indicate the location of the Inoi Valley.
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Figure 4-20: Threshold rainfall values for different rainfall duration: a) 1-h, b) 3-h, and c) 6-h.

Source (Bournas and Baltas 2022c)

In Figure 4-20, the difference in the rainfall accumulation period is noticeable in the results.
The 6-h maps feature higher precipitation values, indication that more precipitation must
fall within six hours than in one or three hours to reach flooding conditions. Within a pre-
determined accumulation period, the rainfall rate is considered constant, and therefore, the
lower duration limits do not apply in the longer periods. The 6-hour map translates into the
phrasing: “Within the next six hours, if the accumulated rainfall reaches the given threshold, minor
flooding will occur.” In the previous statement, it is not known when flooding will occur
within the 6-hour periods, but it will eventually occur sometime. Although this includes
uncertainty regarding the actual moment within the 6-hour period where flooding may
occur, in contrast to the lower durations, it provides an additional lead time and may be
more practical for issuing warnings. The 1-h and 3-h maps are generated to provide
information in finer temporal resolution, which is helpful for determining the exact moment
when the flood will occur. Overall, the products are usually cross-checked with generated
maps from previous periods or other derived datasets, e.g., stage monitoring and cameras.
In Figure 4-21, the threshold maps are generated for the same accumulation period of 3
hours, but when different soil moisture conditions are met. Specifically, the AMC-II and
AMCHIII conditions are shown, referring to medium (50%) and wet (100%) soil moisture
conditions, respectively. Here, the differences in the threshold values are noticeable since

the threshold values are reduced dramatically when saturated conditions are present. This
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change indicates that the flooding risk in a designated grid is highly correlated to the soil
moisture conditions, which dictate the amount of rainfall subtracted by the soil. This change
is noticeable in the grids in the west and northwest of the basin, whereas, in the southeast,
the threshold values do not change as dramatically. This fact is attributed to the values of
the base CNs, i.e., the medium saturation CN-II values displayed in Figure 4-19. When the
grid's CN value is high, indicating urban and impervious areas, the change between dry and
saturated conditions does not dramatically change the CN value since an impervious area
will have a high dry or wet runoff potential. On the other hand, areas with CN values close
to 50, which are found in rural areas, feature the most significant difference between dry
and wet conditions, as illustrated in the CN adjustment figure, Figure 3-12, found in section

3.4.4.

Threshold Precipitation [mm]
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Figure 4-21: Threshold rainfall for a 3-h accumulation period for a) ACM-II and b) AMC-III

conditions; Source (Bournas and Baltas 2022c)

Finally, the threshold calculations are performed for each of the three rainfall accumulation
periods and soil moisture conditions, i.e., 1-, 3-, 6-h, and the AMC-], II, and III conditions,
and the results are shown in boxplots in Figure 4-22. As mentioned before, the higher
variability is calculated when the AMC-I conditions are observed since the variability of the
CN values of the grids is at its highest. When wet conditions are found, the CN values tend
to limit towards the upper limit, i.e., the 100 value, resulting in less variability across the
field. In the specific study area, in all precipitation conditions, an approximately 60 mm
difference, 50 to 110 mm, between the lowest and highest threshold value is found when
dry conditions are met, whereas this changes to 30 mm and 20 mm for the AMC-II and
AMCHIII conditions. This result underlines that the uncertainty involved in the threshold
runoff, and respectively to the FFG value, is much higher when low soil moisture conditions

are present.
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Figure 4-22: Boxplot of threshold runoff values for different soil moisture conditions for

Sarantapotamos Basin; Source (Bournas and Baltas 2022c)

Finally, this behavior is met in all accumulative precipitation periods, with the median value
decreasing when the accumulation period is increased. Specifically, the median threshold
value of all grids drops as wet conditions are met, but not at the same rate. For the 3-h
duration, the median threshold value in dry conditions is 75 mm, while for normal and wet
conditions, the mean value drops to 40 and 22 mm. Although the results presented are basin-
specific, they capture the sensitivity of the threshold runoff to the soil moisture conditions
and, consequently, to the calculated FFG values.

Finally, the threshold maps for the entire Attica Region are also generated using the 22 IDF
stations featured in Figure 2-9 to calculate the 5-year rainfall ARI. Figure 5-21 shows the
threshold runoff in panels a), b), and c) for the three accumulation periods in AMC-II
conditions, while panel d) features the threshold for the 3-h period but in AMC-III
conditions. The center of Athens, which consists of highly urbanized areas, features a low
rainfall threshold with little variability among the soil moisture conditions used since any
change between each case is noticeable in rural areas, where the CN varies significantly
between the AMC conditions. Finally, comparing panels b) and d), where the same period
is illustrated albeit for different soil moisture conditions, it is slightly seen than in the last
case, the thresholds are much lower, as the 1-h duration, which indicates that it is much
easier to reach flood conditions. Finally, the distribution of the threshold values for each
case is shown through the boxplot plots of the same results, shown in Figure 5-24.
Specifically, the mean threshold for medium saturated conditions is approximately 18 mm,
20 mm, and 23 mm for 1-, 3- and 6-h durations, respectively, while when fully saturated
conditions are present, it is seen that the 3-h threshold mean value not only drops from 20

mm to 15 mm but also the std. Deviation minimizes.
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Figure 4-23: Attica region threshold rainfall under four soil moisture conditions, a) 1-h, CN II, b) 3-h
CN-II, ¢) 6-h CN-II, d) 3-h CN-III a 3-h
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Figure 4-24: Boxplot of threshold runoff values and different soil moisture conditions for the Attica

Region
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4.3.2 GFFG for selected rainfall events

In this section, the GFFG model is applied to historical events. The application of the GFFG
model is performed using a 500 m x 500 m resolution in all three suggested accumulation
periods of 1-, 3-, and 6-h. The rainfall estimates for each event are provided after applying
the suggested Z-R equation, Z=321R'* eq. (5.2). For each case, two series of maps are
presented. The first consists of the rainfall grid in a time-consecutive order, while the second
consists of the result of the GFFG system, i.e., the cells flagged for flooding in each timestep.
The flooded cells maps are highlighted by comparing the generated GFFG map with the
accumulated rainfall map of the same accumulation period. Cells with a rainfall height
higher than their corresponding FFG value are flagged as flooded cells.

Concerning the timesteps, each instance refers to the timestamp shown on each image using
the Eastern European Time Zone (UTC+2). For instance, when the 1-h duration results are
shown, the timestamp with valid time 13:00 refers to the accumulated rainfall height that
was measured between 12:00 and 13:00. In a similar pattern, the 3-h duration products of
the same valid timestamp refer to the accumulated period of 10:00-13:00. The benefit of
utilizing the longer accumulated periods, lies on the fact that longer lead times are provided.
In this application, the observed precipitation by the Rainscanner is used as the forecasted
value. In real-time conditions, a 6-h precipitation forecast is expected to feature more
uncertainty than the 1-h and 3-h forecasts. To better compare the results, only the results of
the 1-h and 3-h forecasts are used since most rainfall events featured a total duration of up
to 10 hours, making the 6-hour forecasts impractical. Moreover, after analysis of multiple
events, long-range forecasts are not feasible due to the storm’s velocities and the
Rainscanner range. More extended duration forecasts require more distanced observations
to be feasible.

Two different spatial extents are shown in the application area, as previously. The first is
the Sarantapotamos basin, and the second is the entire extent of the Attica Region. The first
provides better detail of the rainfall and flooded cells results, while the latter encapsulates
the application of the system on a broader area. However, caution should be paid to the
results for the Attica region since, as mentioned, the effects of the sewer system, found in
highly urbanized areas such as the Athens city fabric, have not been examined. Finally, three
events are presented, which featured a high amount of rainfall that triggered the GFFG

system.

Event 50

The first event examined is event E50, which occurred on 12-06-2021. First, the results for
the entire Attica region are presented in Figure 4-25, which shows the 3-hour rainfall fields
and the respective flooded cells per timestep. The picture scale is inadequate to extract the

high-resolution results but highlights the rainfall’s spatial characteristics. Specifically, the
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featured event is characterized by its low footprint and high rainfall intensities. The featured

event is a convective-based event where visible storm cores can be determined, which

results in numerous areas where flooding is expected, especially in high-rainfall areas, at

different timesteps. First, flooding is expected in the northern regions of Attica, i.e., the

foothills of Penteli mountain, while in the later phases, the storm focuses on west Attica.
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Figure 4-25: 3-hour Gridded Rainfall (above) and Flooded Cells (below with red), valid per

timestamp, Event 50, Attica Region.
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Figure 4-26 shows the Sarantapotamos precipitation grid and flooded cells for the 1-h

rainfall, while Figure 4-27 shows the images of the 3-hour accumulated period.
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Figure 4-26: 1-hour Gridded Rainfall, valid per timestamp, Event 50, Sarantapotamos subbasin,.
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Figure 4-27: 1-hour Flooded Cells (red), valid per timestamp, Event 50, Sarantapotamos subbasin.

The difference between the accumulation periods is visible in the rainfall height and extent
of each timestamp feature. The 3-h features higher and more expanded results. The benefit
of the 3-h products lies in the fact that it is possible to detect flooding earlier. For instance,
observing the 1-hour precipitation maps, the majority of rainfall occurs at the valid time

15:00, meaning between 14:00 and 15:00. In the 1-hour products, the flooded cells are
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reported in different timesteps, i.e., first, the western part is flagged for flood, for timesteps
15:00 and 16:00, while at timestep 17:00 only the south part. On the other hand, the 3-hour
product shows the same areas being flooded in other timesteps. Specifically, the 16:00
timestep includes rainfall from 14:00 to 16:00, while the 17:00 timestep is the 15:00 to 17:00
time period, where most rainfall occurs. Therefore, the 17:00 timestep features the majority
of flooded cells, which is the sum of the flooded cells of the 1-hour product for the 15:00,
16:00, and 17:00 timesteps.

Finally, in Figure 4-28, the total cells flagged for flooding throughout the GFFG system for
the different accumulated periods are shown for both the Sarantapotamos and Attica
Region, respectively. What is shown is that all accumulation period products end with the
flagging of almost the same cells, apart from some slight differences in the longer periods,
where more cells are found to feature flooding. The main difference lies in the available lead
time each product provides, given the quality of the forecast matching the actual rainfall.
Nevertheless, using lower accumulation periods is useful for identifying the exact time

when the majority of rainfall occurred, which, in this case, occurred between 15:00 and 17:00.
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Figure 4-28: Total Cells flagged for flood based on the GFFG system in Event 50, at Sarantapotamos

basin and Attica Region.
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Event 31

The second event featured is event E31, which occurred on 01-06-2020. Figure 4-29 shows
the 3-hour rainfall fields and the estimated flooded cells for the Attica region. The featured
event is characterized by its low footprint and high rainfall intensities. The event is also
convective-based, where storm cores are highly visible. First, flooding is estimated in the
northern regions of Attica, i.e., the foothills of Penteli mountain, while in the later phases,
the storm focuses on west Attica. Compared to E50, the intensity is much lower, yet the

system is triggered mainly in high urban areas.
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Figure 4-29: 3-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp, Event 31, at

Attica Region. Red cells denote cells in which rainfall is over the FFG value.
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Figure 4-30 shows the Sarantapotamos precipitation grid and flooded cells for the 3-h

rainfall. The southwest areas, where urban areas are found, are flagged for flooding, and the

northern area, where increased rainfall occurs. The main difference between the E31 and

E50 events lies in the soil moisture conditions, where 70% are set for event 50, whereas near-

dry conditions are set for event E31, considering the rainfall that occurred five days before

the event, as shown in Table 4-6.
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Figure 4-30: 1-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp, Event 31, at

Sarantapotamos basin. Red cells denote cells in which rainfall is over the FFG value.
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Figure 4-311-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp, Event 31, at

Sarantapotamos basin. Red cells denote cells in which rainfall is over the FFG value.

Event 21

The third event examined is event E21, which occurred on 25-11-2019. Figure 4-29 shows the

3-hour rainfall fields and the respected flooded cells for the Attica region. The featured event

is characterized by its large footprint and medium-sized rainfall intensities, denoting a

stratiform-based event. Nevertheless, since the rainfall event occurred in November and a

considerable amount of rainfall occurred the previous days, as shown in Table 4-6, the soil

moisture conditions were set to near saturation, i.e., 90, which resulted in high runoff

potential. The flooded cells follow the system's trajectory, featuring a west-to-east direction.

Although a high number of cells are flagged for flood in the specific event, what is

interesting is the progress of flooding, which shows that the system is useful for identifying

the timing of when each area is expected to flood or is near flooding conditions.
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Figure 4-32: 1-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp: Event 31, at

Sarantapotamos basin. Red cells denote cells in which rainfall is over the FFG value.

Sensitivity Analysis

In this section, a sensitivity analysis is performed on the generated results. Specifically, the

parameters set to the GFFG system, such as the state of the soil moisture conditions and the

threshold runoff, are altered. The results of the analysis are presented for the

Sarantapotamos basin. In Figure 4-33, the impact of different soil moisture conditions is

examined, where the difference in each accumulated period when 70% and 90% soil
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moisture are used, while in Figure 4-34, the effect of the rainfall return period used to

calculate the threshold runoff is observed, by applying a two- and ten- year return periods.
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Figure 4-33: Total Flooded Cells difference at Event 50, when a different Soil Moisture percentage is

used for each rainfall duration; a) first row 70% Soil moisture, b) second row 90% Soil moisture

As expected, the 90% soil moisture conditions resulted in more cells being flagged for
flooding than the 70% case in all durations. However, the difference is not excessive, which
is attributed to the fact that if the rainfall height is way above the threshold, as in the case of
the featured event, the differences are not noticeable. The same applies to the change of the
rainfall return period, since whether using a 2-,5- or 10-year return period, the total flooded
cells are almost the same when observed in the basin-wide perspective. The higher the
return period, the fewer cells are flagged for flooding since a higher threshold runoff is
calculated, meaning that the thresholds are more conservative, aiming for alerts of high

return period storms.
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Figure 4-34: Total Flooded Cells difference in Event 50, at Sarantapotamos basin, when a different
Period for the estimation of the Threshold runoff is used in each case; rows denote different return

periods of 2, 5, and 10 years, while columns to the different duration products of, 1-,3-6h,

Results Discussion

In Figure 4-35, the results of the system on the studied events where the rainfall-runoff
simulations were performed, shown in Table 4-6, are presented for all accumulation
durations for the Attica region. These maps show that most cells flagged for flooding are
usually found in urban areas, specifically in the Athens metropolitan area. However, as
discussed earlier, the system does not include the effect of sewer systems, making the cells
flagged for flood, not resulting in flooding. Nevertheless, the system was able to identify
areas where increased rainfall height would cause potential flood damages, making it a
useful tool for providing real-time estimations of flood threat.

Concerning the effect of the system parameters on the results, most of them have an effect
when the rainfall height expected is just below or over the calculated threshold. When
rainfall is way above the limit, flooding is nevertheless expected. What is evident is that the
effect of soil moisture is more important than the set return period for the threshold runoff
calculation. This fact is shown when event E21 is examined since although lower rainfall

heights were observed, the total number of cells flagged for flooding was high because the

140



| Chapter 4 | Results and Discussion |

soil moisture conditions were set to near-wet, considering the previous five days'

accumulated rainfall.
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Figure 4-35: Total cells flagged for flood (red cells) for a series of examined events and different

accumulation period products; first column 1-h, second column 3-h, and third column 6-h.
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Figure 4-35 (continued)

Another finding after using the GFFG system is that, in most cases, the selected
accumulation periods displayed similar results regarding the total cells that flooded.
Exceptions are seen in events E6, E48, and E61, where the 3- and 6-h durations resulted in a
significantly higher number of cells flooded than in the 1-h case. These cases are attributed
not only to the fact that the 1-hour thresholds were more strict than the 3-hour thresholds
but also to the rainfall height being just below or over the estimated thresholds. This
highlights the need to use multiple-duration products since a better understanding and
assessment of the flood risk can be made. Finally, the flood risk threat can be used instead
of the deterministic flood or no flood result, where the deficit between the rainfall height
and the threshold value is calculated to measure how severe the flood is expected. In this
case, a proper decision-making strategy should be applied to determine whether a warning

should be issued.

4.4 Storm Trajectory Analysis

4.4.1 Cell Identification Results

The storm tracking algorithm described in Chapter 3.6 and explicitly shown in Figure 3-17
is applied in this section. The first element of the algorithm is the cell identification process.
The algorithm is designed to use different thresholds and ways to make the identification.
Specifically, reflectivity thresholds are used to define the cells forming a storm entity,
followed by either a polygon line or a fitting ellipse to define the storm and calculate its
statistics, such as its center and area. Figure 4-36 shows a specific timeframe, where the

difference in the storm's size between the three thresholds used, 25, 30, and 35 dBZ, is shown
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in each row, while the result of applying a polygon or a fitting ellipse is shown in each

column.

«10% Ref > 25dbZ-(Polygon) x10% Ref > 25dbZ-(Ellipse) 5
7 LT - Bt SR

x10% Ref > 35dbZ-(Polygon
7

)

Figure 4-36: Results of the cell algorithm when a different reflectivity threshold is used; 25-, 30- and

35 dBZ shown in each row, and when a polygon or fitting ellipse is used to form the boundaries.
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As shown, fewer and smaller cores are identified when the threshold is higher. On the other
hand, a lower threshold leads to a better estimation of the cloud’s boundaries. In each
column of Figure 4-36, the difference between using a polygon or an ellipse is highlighted.
A fitting ellipse is a mathematical relationship, making it better for correlation analysis since
its eccentricity and rotation can be used in the cell matchmaking algorithm. However, when
used with a low threshold, the fitting ellipse lacks the needed accuracy, especially with
larger formed clouds. The selected application shows that the optimal use in each case is a
fitting ellipse with a 30 dBZ threshold for identifying the cell core, while the 25 dBZ
Threshold with a polygon to define the actual boundary of the cloud. Therefore, the 30 dBZ
and fitting ellipse are used to identify the core centroids and tracking characteristics, while

the 25 dBZ threshold illustrates the storm's footprint.

4.4.2 Cell Tracking Results

Following the identification process, the matchmaking process takes place. In Figure 4-37,
six consecutive time frames are shown using a 2-minute timestep equal to the Rainscanner
temporal resolution. In the featured images, the 30 dBZ threshold and the fitted ellipse are
used to identify the cells illustrated as red when they represent the current time frame and
with dashed black lines when they represent the previous time frame. The same color coding
applies to the centroids of each cell. The matchmaking process in the first four frames is very
successful since the clouds do not change dramatically in only two minutes, making them
easier to associate. The last two frames feature slight variability regarding the matchmaking.
Specifically, in the 15:48 and 15:50 time frames, a merging occurs, where two past cells are
merged to form one larger. Although the merge is acceptable in the 15:48 frame, in the 15:50
time frame, the larger ellipse is not optimal since the cloud features an inverted “V” shape.
In order to avoid such matchmaking, it is suggested that more frames be used to define a
single image. This results in a coarser temporal resolution, which is calculated with the
merge of multiple 2-minute frames. The frames are merged by calculating the average value
of the consecutive images. For instance, if two-time frames are merged, the 4-min reflectivity
tields are used to perform the matchmaking. In that case, a timestamp of 15:44 would consist
of the average reflectivity measured in timeframes 15:42 and 15:44. This results in a more
uniform image, where a storm cloud can be easier identified and not divided into multiple
smaller clouds, which emphasizes the main storm clouds. Using a coarser resolution is also
advantageous since it provides better approximation in nowcasting algorithms, and it
generally fits better with other forms of data, such as rain gauges, concerning the used scale.
However, it should be mentioned that in such cases, the threshold should be reassessed
since when consecutive images are merged, the reflectivity values are normalized, with the
minimum and maximum values reduced. Nevertheless, the 30 dBZ threshold used in this

application provided acceptable results.
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Figure 4-37: The matchmaking procedure between six-time frames with a 2-minute step

In Figure 4-38, the 10-minute reflectivity fields, derived from merging five timeframes, are

used with a 2-minute tracking resolution, similar to the tracking performed in Figure 4-37.
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For simplicity of space, four-time frames are shown, from 15:44 to 15:50. The main
differences are highlighted in the last two frames, the 15:48 and 15:50, where a merge is
formed from two nearby clouds, where in the 2-min fields, this is not exhibited.
Furthermore, in the 15:50 frame, a larger cloud is formed in the 10-min resolution, whereas
in the 2-min resolution, they are shown as different cloud cells. In the time frame 15:50, the
cells are formed more consistently, making a better cell identification. Specifically,

compared with the 2-min resolution, the transition between each timeframe is more natural,

yet not less realistic.
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Figure 4-38: The matchmaking procedure between frames time frames with a 2-minute step

The next step lies in using a coarser temporal resolution regarding the period between each
image. Specifically, images observed two minutes from each other are logical and would not
present significant changes. However, a more extended period is required in nowcasting
and forecasting, which would allow adequate lead time. Typical resolutions are in either 5-

, 10-, 15- and 30-min resolutions, while more extended periods, such as 1-, 3- and 6- hours,
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typically require more data, such as advanced cross-correlation algorithms, dual-frequency
Doppler radars, wind velocity, and direction data, and even NWP products. In this

application, the 10-minute period is used, and the results are shown in Figure 4-39.
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Figure 4-39: The matchmaking procedure between six-time frames with a 5-minute step
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In this application, the 10-minute periods show good consistency regarding the storm-
tracking algorithm. Specifically, cells were found to be consistent with the used-to-be place
and current place. For instance, by comparing the timeframe 15:50 shown in Figure 4-38
and Figure 4-39, it is shown that although in the past cells were calculated using different
data, i.e., in the first case, the 15:48 timeframe is used, whereas in the latter case, the 15:40
frame, still the consistency between each period is deemed acceptable.

Finally, the algorithm is applied to the entire event and the areas where the storm’s
identified cores passed over. These results are useful for identifying areas that were delt
with the highest amount of rainfall rate in each event. Figure 4-40 presents the two
convective events, 31 and 50, using the 35 dBZ and 40 dBZ thresholds. Similar maps using
the 35 dBZ threshold are generated and shown in Appendix B for most events captured by

the Rainscanner shown in Appendix A.
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Figure 4-40: Cells borders of events 31 and 50, for two reflectivity thresholds; first row 35 dBZ,
second row 40 dBZ
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Finally, in Figure 4-41, the 35 dBZ tracking of the six events featured in Table 4-6 is shown,
signifying the intensity of the event and the storm directions. Similar results for multiple

events in Appendix A are shown in Appendix C.
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Figure 4-41: Centroids and area covered by storm clouds with a reflectivity threshold > 40 dBZ
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The generated maps in Appendix C confirmed the dominant west-to-east direction of storm
events in Athens. Figure 4-42 shows the main directions of the storms featured in Attica
after analyzing the storm direction of each event. Most storms, 40%, had a southeast to
northwest direction, passing over Athens. Following this, a west-to-east and northwest-to-
east direction is also featured,20% and 12%, respectively, while some cases of a South to
northeast direction, 6%. Finally, North-to-south directions are also featured, 16%, mainly
winter events, with stratiform characteristics, low velocity, reflectivity, and snowfall events.
Most convective-based events and events that featured high reflectivity values had an east-

to-west direction, as seen in events E31 and E50.
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Figure 4-42: Main directions of storm clouds in Attica Region; Red lines are the most reoccurring,

followed by blue, yellow, and purple according to the attached chart.

150



5. Conclusions and Future Research

5.1 Summary

The main scope of this Ph.D. dissertation is the development and implementation of a
methodological framework for early warning of intense floods using innovative
technologies. The key feature of this research is the collection, analysis, and use of datasets
obtained by a newly installed weather radar system, the X-Band Rainscanner system located
in Athens, Greece. The Rainscanner system can obtain reflectivity fields of up to two minutes
and 100 m x 100 m temporal and spatial scales. These high-resolution datasets provide the
necessary knowledge of the rainfall field characteristics required for fine-scaled
applications, such as small-basin rainfall-runoff modeling and nowcasting. Furthermore,
tools such as Geographical Information Systems (GIS) and code programming were used to
quality control and perform the required tasks. These new technologies were utilized to
assist in the formulation of an ease-to-use and calibrated Flood Early Warning System
(FEWS).

The dissertation is divided into two main sections. The first section includes a review of the
weather radar types, formulation, sources of errors, and quality control, while the second
section deals with the development of an easy-to-use and applied (FEWS). The system is
designed to focus on flash flood events, which are rainfall events characterized by their
small duration and intensive rainfall rates. The first main question this thesis answers is

stated as follows:

"What are the major factors to consider when utilizing weather radar datasets? Do weather radar

datasets provide any benefit compared to rain gauge networks, or are they governed by uncertainty?”

The question refers to the fact that although weather radar datasets provide increased
resolution, the uncertainty makes them unattractive. This is a classical dilemma, also set by
Berne and Krajewski (2013), with their study of whether radar for hydrology applications is
an unfulfilled promise or just unrecognized potential. Their answer "both" also applies to
this research's findings. It is acknowledged that the need for high-resolution datasets is

expected to increase. Due to satellite imagery, other products used in hydrology, such as
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Digital Elevation Models (DEM) and land use maps, are currently obtained in high
resolution, making the switch from typical rain gauge network fields to gridded rainfall
maps necessary.

On the other hand, with increasing resolution, new models and processes are required to
manage these datasets and reduce any model-generated uncertainty. To that end, it is
important to address the main sources of uncertainty of weather radar usage. This thesis
identifies the following factors that affect the quality of weather radar datasets: a) the type
of the weather radar, b) the location of the radar, c) the calibration of the radar's hardware,
d) the radar beam geometry settings and scanning strategy, e) the application of signal
filtering for eliminating second echoes and ground clutter and g) the Z-R relationship that
governs the reflectivity to rainfall intensity transformation. While some factors are to be
considered before installing a weather radar system, such as its type, location, and scanning
strategy, the latter two are dynamic and cannot be easily pre-determined. Signal filtering is
a challenging task, performed in real-time based on pre-arranged clutter filters and gap-
filling algorithms. The Z-R relationship is a relationship that controls the reflectivity to
rainfall intensity transformation, and therefore, it highly affects the obtained end-product,
i.e,, the rainfall field. Although there are various factors to consider when utilizing weather
radar datasets, there are added benefits compared to rain gauge networks. Urban hydrology
and flash flood monitoring systems consider high-resolution datasets essential regarding
their true quality. Nevertheless, the potential of weather radar datasets is only challenged
by the quality of the data provided. By utilizing the correct tools and processes, the majority
of errors generated by the signal can be easily eliminated, especially in short monitoring
distances where X-Band weather radars shine. The main issue then rests upon the used Z-R

relationship. The following question is raised:

"How does the Z-R relationship vary in time and space? What are the factors that influence the Z-R
relationship, and how do they affect it in the case of the Attica Region?”

Is deriving a single Z-R relationship feasible for operational usage, and which Z-R relationship should
be used for Athens?”

The variability of the Z-R relationship is well known since it is governed by the
hydrometeor's Drop Size Distribution (DSD). Therefore, when different rainfall
characteristics are observed, the Z-R relationship changes. To assess this, this study focused
on the correlation of radar to rain gauge datasets in multiple events and locations. The
findings of this research show that the Z-R parameters are related to the topography of the
region. For instance, it is shown that the Z-R parameters vary in space between different
events but even within a single event. More detailed findings showed that a location's

proximity to specific topographical characteristics, such as the coastline and high-elevation
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areas, affects the storm’s behavior and, therefore, the Z-R relationship parameters. Another
factor to the Z-R variability in space is the storm's movement through the area, specifically
its generation and feeding place against the area where it discharges and follows up. For
instance, in Athens, the west and areas near the sea featured Z-R parameters related to
convective-based characteristics, while the eastern areas featured parameters related to
stratiform-based characteristics. This was related to the fact that the western areas are the
areas that are near the sea, which tends to enhance a weather system and end to high rainfall
intensities measured in areas located on the coast. On the other hand, areas to the east are
dealt with lesser rainfall intensities since most rainfall was discharged earlier in the west.
This study area-specific behavior highlights the fact that the topography of a region affects
the characteristics of rainfall, even within the same rainfall event.

Finally, an attempt was made to extract a single Z-R relationship for further use. Overall, it
is shown that uncertainty does exist, and a one-fits-all solution is not optimum. Instead, the
quality of weather radar dataset can be maximized only with the combined use of other
rainfall products, namely ground rain gauge networks. In such a case, the network is not
intended to be compared to the weather radar datasets but to be used as a validation system
instead. The derivation of a single Z-R relationship only signifies whether convective or
stratiform-based systems affect the specific area. In this research, based on the values of the
derived parameters, the derived Z-R relationship signified that Athens is subject to more
convective-based events than stratiform-based. However, this finding is strictly based on
the used datasets.

The second main question raised in this thesis concerns the FEWS implementation.

What are the necessary components of an integrated flood early warning system (FEWS) based on
weather radar datasets? Can such a system be efficient at an operational level, and how can it be

implemented?

In this research, a comprehensive methodological framework is devised and applied, which
deals with most subjects related to using FEWS. A FEWS complexity is described by the
amount and complexity of the data, processes, and models used and contains a series of
components divided into technical and non-technical components. The technical
components consist of a) the monitoring and datasets quality control system, b) the flood
risk estimation, and c) the forecasting systems, while the non-technical components are the
warning dissemination and preparedness measures. The technical components define an
FEWS complexity and should be configured based on the desired level of flood protection.
This research addresses the technical components, focusing on flash flood protection. In
such a FEWS, weather radars are deemed the only way forward due to their high resolution

as mentioned earlier. Apart from data input, the required processes are also to be addressed.

153



| Chapter 5 | Conclusions & Future Research|

A hydrometeorological approach is highly favored since integrating the hydrological
processes into forecasting provides an improved and holistic approach to the flood
generation scheme. Compared to typical fluvial flood monitoring systems, flash flood
forecasting requires high temporal resolution datasets and easy-to-assess thresholds to
provide adequate warning times, making typical rainfall-runoff modeling and stage
monitoring systems impractical. Therefore, apart from high-quality rainfall datasets, the
analysis of geomorphological characteristics of the basin, such as its static characteristics
size, elevation, slope, land use, time of concertation, as well as its dynamic characteristics,
e.g., the soil moisture conditions, are considered crucial for the estimation of the generated
runoff. In this research, the FFG concept is implemented and applied into a fully gridded
format, the GFFG. In this system, a rainfall threshold, the FFG value, is calculated in real-
time based on a given threshold runoff and current soil moisture conditions using reverse
rainfall-runoff modeling at the grid level. The gridded implementation aims to provide an
easy-to-understand, configure, and use system applicable in areas with data scarcity.
Finally, a storm-tracking algorithm is also developed to detect and track storm cells to assess
the forecasting component of an FEWS. The algorithm uses reflectivity thresholds and
image analysis to identify storm clouds and track their trajectory, providing the basis for
future nowcasting products.

The application of the system to a series of events showed that it is robust and applicable
for operational usage after proper tuning and user training in interpreting the generated
results. The most critical factors defining whether a grid is flagged for flooding are the
intensity and current soil moisture conditions. Therefore, the quality of the system
implementation depends on the quality of the provided datasets. Unquestionably, the use

of weather radar datasets can assist in both cases.

Through this research, the following factors are also to be highlighted, showcasing the
importance of this work: a) it is the first time that a holistic approach for the use of weather
radar-derived datasets in FEWS implementations in Greece and specifically in Athens is
performed; b) it is the first time that a complete research on the spatial and temporal
characteristics of the Z-R relationship is analyzed in Athens; c) a comprehensive and easy to
follow methodological framework for the integration of weather radar datasets into a FEWS
is devised and applied; d) an applicable EWS for flash floods in Greece is presented. Overall,
the aim and approach of this thesis centered on a holistic approach for implementing a
FEWS. To that end, a complete methodological framework is provided using innovative

technologies such as weather radar systems, GIS, and image analysis tools.
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5.2 Overview of main findings

This section presents a summary of the findings on each component of the FEWS performed
in this Ph.D. dissertation. The main components, as previously stated, are a) the statistical
analysis of the Rainscanner — rain gauge correlation to derive the main characteristics of the
Z-R relationship, b) the rainfall-runoff model used in the hydrographs estimation, c) the
GFFG methodology, and d) the storm tracking algorithm. For each component, the
individual summary describes the datasets and the methods used, the results, and the main

findings derived.

Z-R Statistical Analysis

The Z-R statistical analysis was performed using the correlation between the rain gauge and
the Rainscanner datasets. A series of optimizations were performed utilizing 52 rain gauge
stations found within the Rainscanner range. First, a correlation analysis was performed,
examining the consistency between the dedicated Rainscanner pixel and each rain gauge
timeseries by calculating Pearson's correlation index. The index is irrelevant to the estimated
BIAS between the two timeseries but instead highlights whether the same rainfall volume
is measured in each timestep, i.e., both instruments observe the same increase and decrease
in rainfall height in each timeframe. Results showed that the correlation values are not even
between the station's location, even in a single event. After calculation in multiple events, it
was found that some stations exhibit a high correlation in many events, others exhibit only
in a few, while others exhibit low correlation values in almost all events. The examination
of the station's location to the correlation results led to the finding that stations located near
ground clutter areas featured the worst correlation, whereas stations located near the coast
featured the better correlation. This finding shows that although ground clutter algorithms
can be applied, datasets obtained in or close to these areas should be used cautiously and
cross-examined with other measurements in the area. Furthermore, the quality of the
correlation was also found to be related to the amount of rainfall height measured.
Specifically, it was found that when the rainfall height was significant, the correlation was
better, while light rain cases, the correlation was considerably lower. This behavior was
attributed to two factors: first, to the Rainscanner height of measurement, which, depending
on the station's distance to the Rainscanner, can be several hundred meters above the
ground, and second, to the rain gauge measurement sensitivity.

In the first case, light rain is subject to the effects of winds, which can relocate a hydrometeor
measured with the Rainscanner above the rain gauge station to several hundred meters
away, causing spatial displacement. Furthermore, light rain features a lower velocity,
leading to a longer time for a hydrometeor to reach the ground. In stations away from the

Rainscanner, where the observed elevation is high, this tends to lead to temporal
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displacements, negatively impacting the correlation between the Rainscanner and the rain
gauge. In the second case, the difference between the Rainscanner and rain gauge sensitivity
can affect the correlation, especially when a high temporal scale is used. Although, in most
cases, poor correlation is attributed to false Rainscanner readings, rain gauges are also
subject to errors. For instance, the gauge's sensitivity or even other kinds of errors may lead
to false readings such as temporal displacement of the rainfall volume, i.e., the amount of
rainfall that occurred in a period is measured in the next period or even lost. Although rain
gauges are considered the ground truth, the rain gauge device, recorded, or the post-process
quality control of the entire rain gauge network can lead to errors. Unfortunately, these cases
can only be examined when access to the rain gauge raw datasets and validation procedures
are provided. Nevertheless, the correlation results of this thesis can be used to highlight
possible error-prone rain gauge stations, which the rain gauge network operator should
examine.

To overcome these errors and avoid low-correlated datasets to be used in the optimization
procedures, a correlation threshold is applied per station per event. Two thresholds were
examined, with the 0.6 value deemed the most applicable to provide adequate and well-
correlated rain gauge — Rainscanner datasets pairs for the optimizations. By applying the
threshold, well- and poor-correlated datasets are thus defined.

The findings are then focused on the station’s location and the number of well-correlated
events that it featured. Specifically, 15 stations featured above 0.60 correlation in 7 out of 13
events. Additionally, when applying the 0.60 correlation limit and excluding the poorly
correlated events for each station, it was found that 32 out of 52 stations featured an average
correlation of more than 0.60. Finally, it was found that in the majority of convective events,
which tend to have a small footprint but with high rainfall intensity, the stations that
featured the better correlation were found to be within or near the core of the storm cloud.
The next step of the analysis is the optimization procedures, which were used to shed light
on the Z-R variability in time and space. Three optimization groups are formed: the event-
based, the station-based, and the entire data-based. The derived Z-R values are then
compared to typical parameter values found in either convective or stratiform events.
Specifically, small values of parameter a are associated with stratiform events, values
between 300 and 500 with convective, while values above 1000 are associated with snow
events.

In the event-based optimization, a Z-R is derived by using only the well-correlated stations
in a single event, resulting in as many Z-R relationships as the events examined. Results
showed good consistency between the derived parameter values and the event's convective,
stratiform, or snow event classification. The highlight was the identification of three events

with parameter a value above 1000, denoting that they were snow events, which was true.
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Moreover, events that featured a smaller footprint and high reflectivity system cores, i.e.,
typical convective systems, were correctly associated as such by the estimation of a high
parameter a value. This optimization showed that the Z-R parameters vary in time, making
using a single Z-R relationship inappropriate, but also that performing such optimizations
is useful for the classification of storm systems. Finally, it is also noted that the majority of
the examined events featured convective-based Z-R parameters.

The station-based optimization is performed when the data pairs of multiple events for a
specific station are used. This optimization aimed to highlight the spatial variability of the
Z-R parameter. The results showed that the variability of the parameters a and b in space is
high since most stations featured a different derived Z-R relationship, but spatial properties
can be derived. When parameter b was set as static, a pattern was drawn regarding
parameter a's value and the station's locations. Specifically, stations near the coastline
featured a parameter a value above 300, while stations near the high-elevation areas to the
east featured a lower parameter a value. This led to the finding that coastline areas usually
face convective-based rainfall characteristics, i.e., high rainfall rates, while high elevation
areas face stratiform-based rainfall characteristics, i.e., low to medium rainfall rates,
regardless of the amount of rainfall volume occurring during the event. This finding is
justified because stations near the coastline are located in the west area of Athens, which is
the first area of the mainland on the way of a typical rainfall system's way paths. In Athens,
as highlighted later by the storm tracking algorithm findings, the majority of rainfall events
have a west-to-east direction. These rainfall systems are formed in the western areas and,
before they reach Athens city, are usually over the Saronic Gulf, thus being enhanced by
seawater. When these systems reach the coastline, most rainfall occurs, bearing convective-
based characteristics, i.e., intense rainfall rates. The rainfall intensity drops as the storm
clouds move inland and to the center of Athens. Finally, these systems follow an east or
northeastern direction towards the mountains of Penteli and Hymettus. Due to orography,
rainfall volumes are expected to be high in the mountains, but the rainfall intensity is
considerably lower. This research finding shows that through the derivation of the Z-R,
spatial variability can be used for the required spatially targeted thresholds and mitigation
measures since areas near the coast are subject to more intense rainfall rates, whereas the
rest areas are subject to more typical rainfall events.

Finally, a calibration and validation procedure produced a single Z-R relationship. The
suggested Z-R contains superior metrics than other previously determined Z-R
relationships, two of which were derived for Athens by disdrometer measurements, and
exhibits strong agreement in many locations. Additionally, it demonstrated good
applicability compared to other Z-R relationships established from this study, namely,

station- and event-based correlations. The Z-R relationships estimated shows that most
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storm events in Athens are of the convective type based on their parameter values.
Nevertheless, it is shown that it is extremely important to perform Z-R calibration on a new
weather radar system since it is shown that the use of the typical Marshal and Palmer
equation is the least appropriate compared to the other equations derived for the specific

region.

Rainfall-Runoff Model

The rainfall-runoff model is the heart of the hydrological simulations. In this research, a
distributed rainfall-runoff model is developed to assist with the hydrological simulations
required in the flood early warning system. The model is designed to be easily configured
and applied in small data scare basins. The model is based on the time-area diagram method
to derive each grid's time to reach the basin outlet. The model's parameters are calculated
through GIS tools using basic raster datasets, such as a digital elevation model and land use
cover map, which are easily accessible. The model is then realized in MATLAB, where all
the model's hydrological processes are performed. Specifically, the input datasets are the
gridded rainfall maps provided by the Rainscanner, a gridded CN map derived using GIS
tools, and the time-area diagram, a raster file containing the time of arrival of each grid to
the outlet. All datasets are inserted into the model in pre-arranged spatial resolution, which
in this application was set to 500 m x 500 m based on the area of the basin to which it was
applied. The model uses the SCS CN loss method, with an added soil moisture adjustment
factor, to adjust the CN values linearly between dry, medium, and wet conditions.

Apart from its suitability to simulate the rainfall-runoff processes using the Rainscanner
datasets, the application of the model also focused on the impact the Z-R relationship has
on the generated runoff. Specifically, a series of Z-R relationships were first used to estimate
the rainfall fields, and their effect on the generated peak runoff and volume are examined.
The comparison is made between the results of each relationship by examining the event’s
rainfall return period based on the IDF curve of the nearest station.

A total of six events were simulated, featuring both stratiform- and convective-based events.
While in the stratiform events, the selection of the Z-R relationship showed minor
differences, in the convective events, one Z-R relationship led to unrealistic rainfall and
runoff values, highlighted by the fact that the rainfall return period, in that case, was
calculated above 100 years whereas the rest relationships estimated 10-20 years return
periods. This result shows that caution is required when using a Z-R relationship since this
can lead to unrealistic results. Furthermore, between the used relationships, it is shown that
the typically used Marshal and Palmer relationship leads to the highest amount of generated
runoff. In contrast, the convective-based Z-R relationships feature the least generated runoff
in the stratiform-events but the highest in the convective-based among the rest. This result

shows that a convective-based relationship is preferable for these events, i.e., events with
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high rainfall intensities, while in stratiform events, it will probably underestimate the
generated runoff. Therefore, in flash flood early warning system implementations, a
convective-based relationship should be desired, whereas in rainfall-runoff continuous
monitoring, such as the estimation of soil moisture conditions and hydrological simulations

of large river basins, the convective-based Z-R will underestimate runoff significantly.

Gridded Flash Flood Guidance

In this research, the GFFG system is implemented for use not only in rural basins, such as
the Sarantapotamos River basin, but also in more significant regions covered by the radar
system, such as the entire Attica Prefecture. The system is based on the FFG concept, where
a dynamic rainfall threshold is determined, and the FFG value is above the level at which
flooding is expected. The system uses a hydrometeorological approach, where the
meteorological element, i.e., the current and forecasted rainfall characteristics, and the
hydrological element, i.e., the subbasin characteristics and its runoff potential, are used to
calculate the rainfall thresholds. The main improvement to the FFG system lies in its gridded
approach, where all calculations, parameters, and variables are analyzed in a gridded
pattern, in contrast to the original system where the analysis is performed in subbasin units,
and the result is disaggregated to grids to match the forecasted rainfall fields resolution.
Utilizing a gridded format has the benefit of versatility, as it allows for the adjustment of
grid size based on the scale of the rainfall forecast and enables better spatial and temporal
resolution. The main components of the system are a) the threshold runoff derivation, b) the
current soil moisture conditions, c) the calculation of the FFG value, and d) the comparison
of the forecasted values with the respected FFG value.

The threshold runoff is a key parameter of the system. This research uses the five-year return
period rainfall to estimate the two-year runoff return period, often used as the threshold for
minor floods. Different return periods were also tested, e.g., two- and ten-year rainfall
return periods, but only minor differences were noticed. Following this, the rainfall
threshold maps, i.e., the FFG values, are calculated for pre-determined rainfall accumulation
durations of 1-, 3-, and 6 hours and soil moisture conditions. The use and interpretation of
the different accumulation periods are important since the smaller duration may provide a
smaller lead time, but less uncertainty is involved. The longer duration provides a longer
lead time but increases uncertainty due to a) the uncertainty provided by the more extended
forecast and b) the uncertainty regarding the exact moment flooding will occur within the
designated period. Specifically, the system does not reply to the exact timing of flooding
occurring within the accumulation period but that it will eventually occur. Following this,
the research focuses on the parameters that affect the threshold value, namely the basin
characteristics and the soil moisture conditions. Areas with a high percentage of

imperviousness and low slope feature the smaller FFG values, denoting that less rainfall is
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required to accumulate to form flooding conditions. The effect of soil moisture is at its
maximum in permeable land cover since the CN value changes dramatically between dry
and wet conditions. In contrast, highly impervious areas are less dependent on soil moisture
conditions since the runoff potential is already high. Overall, these findings showcase a
study area's flood threat, highlighting the need for a hydrometeorological FEWS approach.
The system is finally applied in six events. Results show the dependency of the system's
sensitivity to the basin's hydrological characteristics and rainfall intensity. Most areas
flagged for flooding were areas featuring high CN values, i.e., urban areas, in conjunction
with the increased rainfall accumulation over the examined durations. The system
performed as intended in all events, considering the rainfall field examined in each case.
Finally, despite the parameters set, the most important factors are the soil moisture
conditions before the event and the amount of rainfall that occurs over a designated grid.
Therefore, using high-resolution weather radar datasets is the only way to provide equal-

resolution early warnings.

Storm Tracking

The storm-tracking algorithm developed in this research focused on cell identification and
tracking procedures. In the first case, the algorithm's ability to track cloud cells using
different reflectivity thresholds and shapes. It is acknowledged that applying multiple
thresholds is favored since the centroid of the cell and its actual boundaries are better
identified. Specifically, the 25 dBZ threshold works well when identifying polygon
boundaries, while the 30 dBZ threshold is for identifying primary cells. Considering the
above, the 30 dBZ was used in the matchmaking algorithm, along with a fitting ellipse of a
minimum area of 4 km?, since it provided the best results for identifying primary cells. A
titting ellipse is also favored since, as a mathematical representation, it applies better to the
matchmaking algorithms used.

Following this, cell tracking is performed by applying the matchmaking algorithm. In this
application, the algorithm provides cell tracking using different temporal scales.
Specifically, the Rainscanner features 2-min temporal resolution products of reflectivity.
Since a 2-min tracking is impractical, 10-min resolution reflectivity fields are first
determined, each by merging five images in a consecutive order. The matchmaking using
more data per tracking period was deemed more successful. Furthermore, the algorithm
was tested in a 10-minute tracking period, which performed well, considering the number
of tracked, merged, disappeared, or created cells.

Finally, the tracking algorithm is applied to all available Rainscanner events, over 80 events,
to address the main directions of storms in Attica. As expected, most storms had a
southwest-west to east direction, 40% of the events, followed by northwest-to-east and

south-to-north directions. Moreover, North and Northeast to West directions were also
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found in high amounts, but these events featured stratiform-based rainfall, i.e., smaller
velocity storms, with little to medium rainfall rates. In contrast, most convective events had
a west-to-east direction while showcasing an increased velocity. These results are deemed
necessary regarding the storm’s characteristics in Athens, while the usage of the algorithm
is considered an essential and valuable step for following nowcasting systems that could be

applied to assist with the FEWS.

5.3 Future Research

The main recommendations for future research lie in the limitations of this research. The

first recommendations deal with the finalization of the FEWS since the number of required

components involved in such a system is vast. Other recommendations concern various
aspects of the processes used in this thesis. A list of future research recommendations is
listed below:

¢ Regarding the weather radar datasets, apart from the use of rain gauge datasets, the use
of disdrometer datasets could be used to validate the findings of this research.
Furthermore, a disdrometer network can be used to compare the generated results with
those from the rain gauge network and/or the Rainscanner.

e Regarding radar technology, radar composites should be examined to minimize the
errors a single weather radar generates. Furthermore, more advanced radar systems,
such as dual-frequency and phased-array systems, can be used to assess the results
generated by the FEWS. Finally, the analysis of the vertical profile of the storms or the
observation of different beam angles should also be investigated.

e A bias correction procedure to weather radar datasets using rain gauge measurements
should be applied to further quality control the weather radar rainfall fields. In this
research, the biases were mitigated by optimizing the Z-R relationship. Instead, a bias-
driven correction algorithm using geostatistical interpolation methods may be applied
to perform corrections in real-time regardless of the Z-R relationship used. Ongoing
research makes such an analysis, using the calibration and validation stations featured
in this research as the control points for real-time adjustments.

¢ An in-detail convective-stratiform classification method may be applied based on
weather radar observations. Ongoing research in this field incorporates existing
classification algorithms with weather radar observations.

¢ Concerning the rainfall-runoff model, a comprehensive analysis can be performed to
calibrate the model parameters using in-situ stage-level and runoff observations. To
that end, regional relationships concerning the runoff generation and the grid's

characteristics can be identified, aiding the estimation of the GFFG parameters.
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Concerning the GFFG model, incorporating satellite-derived products to estimate
current soil moisture conditions can provide a better applicable system that does not
rely upon further rainfall-runoff simulations. Moreover, the generated uncertainty of
the system can be assessed by providing uncertainty estimates to the datasets and
methods used in each case.

A comprehensive nowcasting system should be provided regarding the storm tracking
algorithm to validate the system's performance in real-time applications. The
nowecasting system can rely on the provided tracking algorithm, but more assumptions
and models should be used to estimate the actual forecasted reflectivity and,
consequently, rainfall fields. Ongoing research also focuses on ensemble forecasting
fields, which can be used and validated through the current models provided in this
research.

Finally, after completing the Ph.D. dissertation, it is planned to develop a software
application with a user-friendly interface that can perform rainfall field analysis, GFFG

calculations, and flood estimations.
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Appendix A

Log of event datasets acquired by the Rainscanner during the period end of 10/2018-12/2022.

Event Event Start Event End Duration Total Event Duration
(UTC+2) (UTC+2) (hour) (Hour)
2018
1 30-09-18 | 03:08 01-10-18 | 02:58 23.83
01-10-18 | 03:08 01-10-18 | 09:20 6.20 30.03
2 30-11-18 | 14:22 30-11-18 | 16:10 1.80 1.80
11-12-18 | 23:00 12-12-18 | 01:58 2.97
3 12-12-18 | 02:08 13-12-18 | 01:58 23.83
13-12-18 | 02:08 13-12-18 | 09:12 7.07 33.87
4 13-12-18 | 12:16 13-12-18 | 14:54 2.63 2.63
5 16-12-18 | 02:08 16-12-18 | 09:24 7.27 7.27
17-12-18 | 23:44 18-12-18 | 01:58 2.23
6 18-12-18 | 02:08 18-12-18 | 13:56 11.80 14.03
7 27-12-18 | 05:16 27-12-18 | 11:22 6.10 6.10
Event Event Start Event End Duration Total Event Duration
(UTC+2) (UTC+2) (hour) (Hour)
2019
g 08-01-19 | 00:38 08-01-19 | 01:58 1.33
08-01-19 | 02:08 08-01-19 | 08:02 5.90 7.23
9 09-01-19 | 15:22 10-01-19 | 01:58 10.60
10-01-19 | 02:08 10-01-19 | 08:06 5.97 16.57
10 06-02-19 | 19:52 07-02-19 | 01:58 6.10
07-02-19 | 02:08 07-02-19 | 06:56 4.80 10.90
12 15-02-19 | 11:46 15-02-19 | 19:58 8.20 8.20
13 23-02-19 | 07:56 23-02-19 | 10:30 2.57 2.57
14 12-03-19 | 23:48 13-03-19 | 01:44 1.93 1.93
15 08-04-19 | 10:48 08-04-19 | 14:42 3.90 3.90
16 15-04-19 | 15:40 15-04-19 | 21:40 6.00 6.00
17 17-04-19 | 15:44 17-04-19 | 19:58 4.23 4.23
18 18-11-19 | 23:08 19-11-19 | 01:58 2.83
19-11-19 | 02:08 19-11-19 | 07:12 5.07 7.90
19 20-11-19 | 16:00 20-11-19 | 16:00 0.00 0.00
20 21-11-19 | 17:36 21-11-19 | 19:56 2.33 2.33
1 24-11-19 | 21:36 25-11-19 | 01:58 4.37
25-11-19 | 02:08 25-11-19 | 08:32 6.40 10.77
99 30-12-19 | 19:24 31-12-19 | 01:58 6.57
31-12-19 | 02:08 31-12-19 | 05:04 2.93 9.50
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Event Start Duration Total Event
Event (UTC+2) Event End (UTC+2) (hour) Duration (Hour)
2020
23 05-01-20 | 19:06 05-01-20 | 20:50 1.73 1.73
24 22-01-20 | 02:08 22-01-20 | 02:12 0.07 0.07
25 27-01-20 | 14:34 27-01-20 | 15:12 0.63 0.63
26 06-02-20 | 11:48 06-02-20 | 14:52 3.07 3.07
27 14-02-20 | 20:42 14-02-20 | 21:42 1.00 1.00
28 28-05-20 | 20:22 28-05-20 | 20:26 0.07 0.07
29 29-05-20 | 17:04 29-05-20 | 22:34 5.50 5.50
30 31-05-20 | 15:16 31-05-20 | 17:18 2.03 2.03
31 01-06-20 | 13:58 01-06-20 | 20:04 6.10 6.10
32 22-06-20 | 15:46 22-06-20 | 16:40 0.90 0.90
33 08-08-20 | 12:50 08-08-20 | 20:12 7.37 7.37
34 09-08-20 | 09:38 09-08-20 | 13:36 3.97 3.97
35 04-12-20 | 15:44 04-12-20 | 16:32 0.80 0.80
04-12-20 | 23:36 05-12-20 | 01:58 2.37
36 05-12-20 | 02:10 05-12-20 | 03:08 0.97 3.33
37 07-12-20 | 02:36 07-12-20 | 10:58 8.37 8.37
38 14-12-20 | 14:58 15-12-20 | 01:58 11.00
15-12-20 | 02:08 15-12-20 | 09:18 7.17 18.17
Event Event Start Event End Duration Total Event Duration
(UTC+2) (UTC+2) (hour) (Hour)
2021
39 00-01-00 | 00:00 00-01-00 | 00:00 0.00 0.00
40 26-01-21 | 19:14 27-01-21 | 01:58 6.73
27-01-21 | 02:08 27-01-21 | 08:48 6.67 13.40
41 30-01-21 | 14:36 30-01-21 | 14:52 0.27 0.27
42 01-02-21 | 13:50 01-02-21 | 13:54 0.07 0.07
13 15-02-21 | 20:34 16-02-21 | 01:58 5.40
16-02-21 | 02:08 16-02-21 | 22:34 20.43 25.83
“ 19-03-21 | 23:36 20-03-21 | 01:58 2.37
20-03-21 | 02:08 20-03-21 | 13:02 10.90 10.90
45 20-03-21 | 19:54 21-03-21 | 01:58 6.07
21-03-21 | 02:08 21-03-21 | 03:14 1.10 7.17
46 31-03-21 | 12:22 31-03-21 | 19:30 7.13 7.13
47 24-04-21 | 06:04 25-04-21 | 02:46 20.70
25-04-21 | 03:08 25-04-21 | 05:38 2.50 23.20
48 09-06-21 | 18:00 10-06-21 | 02:44 8.74 8.74
49 11-06-21 | 14:02 11-06-21 | 19:00 4.97 4.97
50 12-06-21 | 11:48 12-06-21 | 19:02 7.23 7.23
51 13-06-21 | 13:36 13-06-21 | 18:04 4.47 4.47
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52 08-10-21 | 11:04 08-10-21 | 21:04 10.00 10.00
53 08-10-21 | 16:58 09-10-21 | 02:58 10.00
09-10-21 | 03:08 09-10-21 | 09:20 6.20 16.20
54 10-10-21 | 11:08 10-10-21 | 17:02 5.90 5.90
10-10-21 | 20:34 11-10-21 | 02:58 6.40
2 11-10-21 | 03:08 11-10-21 | 08:56 5.80 12.20
15-10-21 | 00:08 15-10-21 | 02:58 2.83
28 15-10-21 | 03:08 15-10-21 | 08:34 5.43 8.27
59 15-10-21 | 10:20 16-10-21 | 02:58 16.63
15-10-21 | 03:08 15-10-21 | 08:48 5.67 22.30
22-11-21 | 21:22 23-11-21 | 01:58 4.60
60 23-11-21 | 02:08 23-11-21 | 02:50 0.70 5.30
61 23-11-21 | 17:34 24-11-21 | 01:58 8.40
24-11-21 | 02:08 24-11-21 | 07:44 5.60 14.00
62 26-11-21 | 11:46 26-11-21 | 17:20 5.57 5.57
63 04-12-21 | 02:08 04-12-21 | 08:12 6.07 6.07
64 04-12-21 | 13:32 04-12-21 | 19:14 5.70 5.70
06-12-21 | 20:18 07-12-21 | 01:58 5.67
65 07-12-21 | 02:08 07-12-21 | 10:58 8.83 14.50
10-12-21 | 23:34 11-12-21 | 01:58 2.40
66 11-12-21 | 02:08 12-12-21 | 01:58 23.83
12-12-21 | 02:08 12-12-21 | 09:10 7.03 33.27
67 14-12-21 | 15:24 15-12-21 | 01:58 10.57
15-12-21 | 02:08 15-12-21 | 07:58 5.83 16.40
68 18-12-21 | 09:26 18-12-21 | 09:26 - -
Event Event Start Event End Duration Total Event Duration
(UTC+2) (UTC+2) (hour) (Hour)
2022
10-01-22 | 19:38 11-01-22 | 01:58 6.33
69 11-01-22 | 02:08 11-01-22 | 07:48 5.67 12.00
70 11-01-22 | 12:14 12-01-22 | 01:58 13.73
12-01-22 | 02:08 12-01-22 | 08:48 6.67 20.40
71 23-01-22 | 19:16 23-01-22 | 20:20 1.07 1.07
24-01-22 | 08:28 25-01-22 | 01:58 17.50
25-01-22 | 02:08 26-01-22 | 01:58 23.83
72 26-01-22 | 02:08 27-01-22 | 01:58 23.83
27-01-22 | 02:08 27-01-22 | 16:28 14.33 79.50
29-01-22 | 11:04 30-01-22 | 01:58 14.90
73 30-01-22 | 02:08 30-01-22 | 17:02 14.90 14.90
4 01-02-22 | 16:16 02-02-22 | 01:58 9.70
02-02-22 | 02:08 02-02-22 | 10:33 8.42 18.12
75 02-02-22 1 13:26 03-02-22 | 01:58 12.53
03-02-22 | 02:08 03-02-22 | 10:10 8.03 20.57
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76 03-02-22 | 18:30 03-02-22 | 20:16 1.77 1.77
77 09-03-22 | 18:40 10-03-22 | 01:58 7.30
10-03-22 | 02:08 10-03-22 | 18:26 16.30 23.60
78 11-03-22 | 08:12 11-03-22 | 10:54 2.70 2.70
79 12-03-22 | 14:42 12-03-22 | 23:22 8.67 8.67
18-05-22 | 21:54 19-05-22 | 02:58 5.07
80 19-05-22 | 03:08 19-05-22 | 07:44 4.60 9.67
81 25-05-22 | 10:32 25-05-22 | 10:42 0.17 0.17
82 06-06-22 | 14:32 07-06-22 | 02:50 12.30 12.30
10-06-22 | 23:36 11-06-22 | 02:58 3.37
i 11-06-22 | 03:08 11-06-22 | 22:12 19.07 22.43
84 12-06-22 | 09:54 12-06-22 | 14:48 4.90 4.90
85 22-08-22 | 16:00 22-08-22 | 19:48 3.80 3.80
86 23-08-22 | 08:34 23-08-22 | 23:52 15.30 15.30
24-08-22 | 12:02 25-08-22 | 02:58 14.93
87 25-08-22 | 03:08 26-08-22 | 02:58 23.83
26-08-22 | 03:08 26-08-22 | 17:42 14.57 53.33
88 01-09-22 | 16:14 01-09-22 | 21:42 5.47 5.47
89 02-09-22 | 12:28 02-09-22 | 22:30 10.03 10.03
90 03-09-22 | 14:22 03-09-22 | 17:08 2.77 2.77
91 05-11-22 | 19:00 06-11-22 | 01:58 6.97 6.97
07-11-22 | 02:08 07-11-22 | 12:22 10.23 41.03
92 23-11-22 | 07:58 23-11-22 | 10:36 2.63 2.63
93 28-11-22 | 14:10 28-11-22 | 19:52 5.70 5.70
94 30-11-22 | 08:00 01-12-22 | 01:58 17.97 17.97
95 01-12-22 | 02:08 01-12-22 | 08:26 6.30 24.27
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Appendix B

Results of Storm Tracking Algorithm with cell Borders (Selected Events).

x 104 E5-Z > 35dBZ cells 7><1o4 E6-Z > 35dBZ cells
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x10* E21-Z > 35dBZ cells
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x10* E60- Z > 35dBZ cells
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Appendix C

Results of Storm Tracking Algorithm (Selected Events).

_><1o4 E1-Z> 35dBZ cells _><1o4 E3- Z > 35dBZ cells
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X 104 E15- Z > 35dBZ cells 5104 E20- Z > 35dBZ cells
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