
NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

School of Civil Engineering 

Department of Water Resources and Environment 

Laboratory of Hydrology and Water Resources Management 

 

 

 

 

 

 

Development and Implementation of a 

Methodological Framework for Early Warning of 

Intense Floods using Innovative Technologies 

 

 

 

 

 

Apollon D. Bournas 

Ph.D. Thesis 

 

 

 

 

 

 

 

 

Athens, September 2023 



 

 

 

  



NATIONAL TECHNICAL UNIVERSITY OF ATHENS 

School of Civil Engineering 

Department of Water Resources and Environment 

Laboratory of Hydrology and Water Resources Management 

 

 

 

 

 

 

Development And Implementation of a 

Methodological Framework for Early Warning of 

Intense Floods using Innovative Technologies 

 

 

 

 

 

Apollon D. Bournas 

Ph.D. Thesis 

 

 

 

 

 

 

 

 

 

 

 

Athens, September 2023  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
© Copyright by Apollon D. Bournas 2023 

 All Rights Reserved 

 

  

 

 



Title: Development and Implementation of a Methodological Framework for Early Warning 

of Intense Floods using Innovative Technologies 

Author:  Apollon D. Bournas 

 

This dissertation has been approved by the advisory committee:  

Prof. E. Baltas, NTUA, Greece, Supervisor  

Prof. A. Stamou  NTUA, Greece, Member of the Advisory Committee  

Prof. V. Tsihrintzis  NTUA, Greece, Member of the Advisory Committee  

 

Member of the Advisory Committee Members of the Ph.D. Examination Committee:  

Prof. E. Baltas  

National Technical University of Athens (NTUA), Greece  

Prof. A. Stamou  

National Technical University of Athens (NTUA), Greece  

Prof. V. Tsihrintzis  

National Technical University of Athens (NTUA), Greece  

Prof. N. Mamassis  

National Technical University of Athens (NTUA), Greece  

Prof. F. Maris  

Democritus University of Thrace (DUTH), Greece 

Prof. A. Langousis  

University of Patras, Greece  

Dr. K. Lagouvardos 

National Observatory of Athens (NOA), Greece 

 

 

 

 

 

 
This research is co-financed by Greece and the European Union (European Social Fund -ESF) 

through the Operational Programme «Human Resources Development, Education and Lifelong 

Learning» in the context of the project “Strengthening Human Resources Research Potential via 

Doctorate Research” (MIS -5000432), implemented by the State Scholarships Foundation (ΙΚΥ) . 



 



Development and implementation of a methodological framework for early warning of 

intense floods using innovative technologies 

i 

Acknowledgments  

With the completion of this Ph.D. dissertation, the long cycle of education and continuous 

learning seems to come to a halt for a minute. Completing this dissertation makes me feel 

more complete and think that a new exciting journey is yet to begin. This effort would 

neither have started or finished without the contribution of the following people: 

First and foremost, I would like to express my appreciation and special gratitude to my 

supervisor Prof. Evangelos Baltas for trusting me with completing this dissertation. His 

continuous support, guidance, and encouragement throughout this research were 

invaluable. I feel fortunate by our collaboration and his understanding of me as a person. I 

constantly felt his faith in me during our meetings, even at times when I would derail from 

our planning due to intense workload. 

Secondly, I would like to thank the two members of the advisory committee, A. Stamou, 

Professor NTUA, and V. Tsihrintzis, Professor NTUA, for their valuable comments, 

collaboration, and trust in me to complete this dissertation. It would not have been as 

complete if it was not for them. 

I would also like to thank the seven-member examination committee for their positive and 

valuable comments regarding the content and execution of this dissertation.  

Special thanks go to Dr. Konstantinos Lagouvardos, director of the Institute of 

Environmental Research and Sustainable Development of the National Observatory of 

Athens (NOA), who provided me with three years of rainfall time series from the NOA rain 

gauge network; these data were extremely useful for this dissertation. 

This research was carried out with the financial support provided by the State Scholarship 

Foundation (IKY) under an operational program co-financed by Greece and the European 

Union (European Social Fund-ESF). I hope that the outcome of this research lives up to their 

expectations. Moreover, I would like to thank the National University of Athens, in general, 

for providing me with the necessary access and licensing to the software used in this 

dissertation, such as ArcGIS and MATLAB.  

I wish to thank my Ph.D. “family,” starting with Dr. Elissavet Feloni, not only for consulting 

me in my early stages and for our continuous and valuable knowledge-gap-filling 

conversations but also as a person, for giving me the courage to complete this work. In the 

same length, special thanks go to the other Ph.D. candidates that I shared my office with, 

Aimilia-Panagiota Theochary, Maria-Margarita Bertsiou, and Sofia Skroufouta, which made 

our work space an enjoyable and knowledge-sharing place. Special thanks go also to Nick 

Dervos who introduced me the NTUA weather radar system, and helped with its 

installation. I want to also thank Mrs. Panagiota Skarlou from the office institution 



Development and implementation of a methodological framework for early warning of 

intense floods using innovative technologies 

ii 

personnel, who assisted me with all administrative matters, while our soft conversations 

often eased out stress.  

Additional thanks go to my brother Iason Bournas, Ph.D., for contributing with graphics for 

various figures, for supporting me in completing this dissertation, and for providing me 

inspiration and the courage to finish this work. I would also like to thank the rest of my 

family, my brothers Odysseas and Hector, for their support and understanding during my 

lowest points. A Special thanks goes to my mother, Maro, for her continuous support and 

encouragement in my every move, which I am indebted to and inspired by. I hope I made 

her a bit prouder.  

Finally, I am indebted to my partner in life, Althaia Menagia, for her support and the 

patience she showed during this long process. Five years is a long time, considering where 

we started and where we are now with the creation of our beautiful family and our two 

beautiful daughters, Iris and Semeli, who were both born while conducting this research. 

The creation of my family with the birth of my children made me re-evaluate my goals in 

life, making me want to improve both as a person and a scientist. My words of appreciation 

cannot equal their contribution, I thank them from my heart. This dissertation is dedicated 

to them. 

 

Apollon D. Bournas 

     Athens, September 2023 

 

 



Development and implementation of a methodological framework for early warning of 

intense floods using innovative technologies 

iii 

Abstract 

The main scope of this Ph.D. dissertation is the development and implementation of a 

methodological framework for early warning of intense floods using innovative 

technologies. The key feature of this research is the collection, analysis, and use of datasets 

obtained by a newly installed weather radar, the Rainscanner system, located in Athens, 

Greece. The Rainscanner system is an X-Band weather radar that can obtain reflectivity 

fields of fine temporal and spatial scales of up to two minutes and 100 m x 100 m, 

respectively. These high-resolution datasets are essential for understanding the spatial and 

temporal characteristics of a storm’s rainfall fields and are suited for local-based 

applications, such as small-basin rainfall-runoff modeling and nowcasting.  However, 

weather radar datasets are yet to be widely accepted and used, mainly because of the 

uncertainty governed by the datasets due to various sources of errors and the scarcity of 

such data. A weather radar is not a typical/commercial device, and proper handling of the 

generated raw datasets is required. Considering the above, this dissertation aims to provide 

a holistic approach to properly managing and using weather radar data for hydrological 

applications. This approach is divided into two main sections.  

The first section includes a review of the weather radar types, formulation, sources of errors, 

and quality control. To that end, a framework is devised where the raw weather radar 

datasets are quality-corrected in two phases: a) through the application of clutter-filters 

derived in a pre-process, such as ground-clutter filtering, gap-filling algorithms and 

reflectivity thresholds and b) through the cross-correlation with ground rain gauges. Apart 

from the ground-clutter filtering process, the most critical source of uncertainty is deriving 

the reflectivity (Z) to rainfall rate (R) transformation equation, the Z-R relationship. It is 

acknowledged that the Z-R relationship varies in time and space. Therefore, in this thesis, 

multiple Z-R relationships are derived in varying locations to assess this issue. Fifty-three 

stations and thirty-eight events in the region of Attica were used for this process, which led 

to the extraction of interesting findings concerning the Z-R parameter values to the 

proximity of a location to specific geographical locations and the storm’s classification. 

The second section of this thesis focused on developing a framework for real-time flood risk 

assessment as part of a Flood Early Warning System (FEWS). This system is designed to 

focus on flash flood events characterized by their small duration and intensive rainfall rates. 

To that end, a gridded rainfall-based FEWS is devised based on the Flash Flood Guidance 

(FFG) system. In such a concept, all calculations are performed at the grid level, making the 

system easier to understand, calibrate, operate, and adjust based on the user's needs and 

available data. The system compares forecasted rainfall with threshold rainfall fields 



Development and implementation of a methodological framework for early warning of 

intense floods using innovative technologies 

iv 

derived from inverse rainfall-runoff models. For this comparison, a rainfall-runoff model is 

devised using the time-area diagram theory through Geographical Information Systems 

(GIS) and the MATLAB programming language. The devised rainfall-runoff model is a 

gridded hydrological model suitable for small ungauged basins, such as those found in the 

Attica region. Using this model, one can derive rainfall threshold maps for the entire Attica 

Region and a peri-urban basin, the Sarantapotamos basin, and perform a sensitivity-based 

approach to extract the effects of system parameters on the results. The GFFG system is 

formulated and simulated based on historical events obtained by the weather radar. The 

effects of system parameters (such as soil moisture conditions before the rainfall event and 

thresholds derived for flooding) are examined through sensitivity-based simulations. In the 

final stage, a storm-tracking algorithm uses multiple reflectivity thresholds to provide cell 

identification and tracking procedures to identify the storm's cell movement in consecutive 

images. This application uses image analysis and processing, highlighting the usability of 

weather radars in such applications.  

This thesis establishes a comprehensive framework for leveraging weather radar datasets 

within a Flood Early Warning System. It highlights the significance of meticulous quality 

control processes and introduces easily configurable operational methodologies to harness 

the potential of weather radar data effectively. 

 

Keywords: Weather radar; X-Band; Reflectivity; Z-R relationship; Flash flood; Flood Early 

Warning System; FFG; gridded; rainfall-runoff; storm tracking; Athens; Floods; Rainfall 

Rate; Sarantapotamos 
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Extended Abstract  

Introduction 

Flash Floods are presently among the most lethal weather-related hazards on a global scale. 

Their origin diverges from conventional river-driven floods, primarily from abrupt and 

intense precipitation over a brief duration. Usually confined to local settings, they associate 

closely with convective storms, limiting their spatial impact (Houze Jr. et al., 2015). Factors 

influencing flash floods include basin geomorphology, size, slope, soil water retention, and 

initial moisture conditions events (Merz and Blöschl 2003; Houze Jr. et al. 2015; Velásquez 

et al. 2020). Sediment loads and altered river cross-sections due to high rainfall, especially 

in post-fire or developmental areas, can reroute rivers and induce flooding beyond 

riverbeds. Urbanization, deforestation, and intensified storm events due to climate change 

drive local-scale flash flooding, reshaping vulnerability events (Alfieri et al. 2012; Gaur and 

Simonovic 2015; Rogger et al. 2017; Caloiero et al. 2017). This evolving threat transforms 

previously unaffected regions into flood-prone zones (Bournas and Baltas 2021a). Notably, 

the Mediterranean region has witnessed substantial economic losses and loss of life from 

recent flash floods (Diakakis et al. 2012, 2019; Pereira et al. 2017; Feloni 2019; Varlas et al. 

2019; Spyrou et al. 2020). 

Most research on flood management is focused on understanding the hydrometeorological 

processes that influence the extreme weather conditions leading to flood events. To that end, 

one of the main non-structural methods for mitigating flood and flash flood problems is the 

development and use of a Flood Early Warning System (FEWS). An integrated FEWS 

consists of various technical and non-technical subsystems concerning a) disaster risk 

knowledge, b) detection and monitoring analysis, c) forecasting and thresholds of hazards 

and non-technical components, d) warning dissemination and communication, e) 

preparedness to respond, and f) response capabilities (Perera et al. 2019). Although the 

methods used to simulate the hydrometeorological processes are critical, the main 

uncertainty lies in the chaotic nature of the atmosphere and the lack of sufficient resolution 

and quality of data (Marchi et al. 2010). Moreover, even in cases with a good level of data, 

there may be high uncertainty in the modeling of a watershed system, which could lead to 

incorrectly estimated discharges compared to observed values (Di Baldassarre and 

Montanari 2009).  

The desired spatial and temporal scale to monitor rainfall events that lead to flash floods is 

higher than the resolution offered by traditional rain gauge networks (Anagnostou et al. 

2017). When sufficient data are not obtained, the ability to provide timely warnings is 
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reduced (Mimikou and Baltas 1996), while in cases where measurements are nearly absent, 

unreliable, or spatially insufficient, such as in Greece, the problem is exacerbated. 

By further deepening the development and organization of FEWS against flood risk, we can 

expect benefits such as a) improved prediction accuracy, b) quicker response times, and c) 

better knowledge of potentially flooded areas to strategically plan and execute flood 

protection measures. Today, the main areas where a FEWS can advance in Greece are a) new 

technologies concerning data collection and mining and b) more precise and effortless 

methods that lead to more and higher-quality information for decision-making. Developing 

an FEWS based on weather radar datasets can lead to significant reductions in the mortality 

rate and the economic impact of the flood-affected areas. European-wide FEWS, such as the 

EFAS and ERIC, have limited usage in Greece, mainly because of unavailable datasets and 

mis-calibrated models required for such systems. Greece is disconnected from Central 

Europe, where monitoring systems like the OPERA radar composite are in place, while 

typical river monitoring systems are not as applicable to Greece’s small-scale basins. 

Greece's diverse geography, extensive coastline, and small basins prone to flash floods face 

growing threats. Recent events have highlighted this vulnerability (Feloni et al., 2020; Varlas 

et al., 2021). While forecasting attempts exist (Spyrou et al., 2020; Varlas et al., 2021, 2019), a 

comprehensive FEWS is absent due to research-operation challenges (Georgakakos et al., 

2022, 2021). Instead, the National Hellenic Meteorological Service (NMMS) issues daily 

forecasts lacking flash flood specifics. 

The main goal of this Ph.D. dissertation is the development of a suitable methodology for 

processing weather radar datasets of high spatial and temporal resolutions. The research 

questions this dissertation aims to answer are divided into two sections. The first concerns 

the use of weather datasets: What are the major factors to consider when utilizing weather radar 

datasets? Do weather radar datasets provide any benefit compared to rain gauge networks, or are they 

governed by uncertainty?”. The second question concerns the implementation of a FEWS: 

What are the necessary components of an integrated flood early warning system (FEWS) based on 

weather radar datasets? Can such a system be efficient at an operational level, and how can it be 

implemented? To answer these questions, datasets of a newly installed weather radar system, 

the NTUA X-Band Rainscanner system, were obtained, calibrated, and evaluated against 

datasets provided by ground-based measurements from meteorological stations. 

This dissertation is divided into two main sections. The first section includes a review of the 

weather radar types, formulation, sources of errors, and quality control. The second section 

of this thesis deals with developing a framework for an easy-to-use and applied Flood Early 

Warning System (FEWS). This application is designed to focus on flash flood events 

characterized by low-duration intensive rainfall. 
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Overall, this dissertation is structured in five chapters. The first chapter provides an 

Introduction that situates the thesis context and reviews the characteristics of FEWS and the 

use of weather radars. The second chapter consists of an analysis of the study area and the 

data used for this research. The third chapter includes the methodological framework 

applied. In the fourth chapter, the results for the study area are presented for a series of 

events between 2018 and 2023. Finally, the fifth chapter provides the conclusions drawn 

from this research and recommendations for future work.  

Study Area and Data Used 

The study area is the Attica region, specifically the area defined by the coverage of the 

Rainscanner system, as shown in Figure 1. The Rainscanner is located in Athens, Greece, 

within the National Technical University of Athens (NTUA) Zographou campus, featuring 

an installation elevation of 200 m, overseeing mainly the east side of Athens up to a 50 km 

distance. The extent of the Rainscanner, as seen in Figure 1,  includes the majority of the 

Attica Prefecture, apart from a small area on the west, beyond Mount Gerania, as well as a 

small section of the Central Greece prefecture north of Mount Parthitha, a part of the Asopos 

river basin.  

 

 

Figure 1: The Study area. 
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Due to the presence of Hymettus Mountain, the entire southwest area is obstructed and, 

therefore, cannot be measured by this Rainscanner system. Similarly, the entire “Mesogeia” 

region, including the Athens “Eleftherios Venizelos” airport, is out of reach. However, the 

Rainscanner location favors observing precipitation systems with a west-to-east and north-

to-southwest direction, which are the majority of systems in the area, making it a viable 

option for observing and providing nowcasts and forecasts for the city of Athens and its 

vicinity. 

Land use in the Attica region is characterized by a high urban fabric, where 27% of the region 

is of artificial type, while the rest (73%) is agricultural and forest type. In west Attica lies the 

largest peri-urban basin, the Sarantapotamos River basin. This basin has a total area of 341 

km2, of which 231 km2 features rural characteristics. A key characteristic of the subbasins 

formed in the Attica region is a large number of highly urbanized small basins vulnerable 

to flash flood events due to the lengthy coastline.  

The primary datasets used in this research are summarized below: 

• Rainscanner Datasets. The X-Band weather radar datasets are generated by the 

Rainscanner system, featuring a 100 m x 100m spatial accuracy and a 2-minute 

temporal resolution. The technical specifications of the system are shown in Table 1. 

The files are provided in georeferenced ASCII text files. 

• RainGauge datasets: The National Observatory of Athens Automatic Network 

(NOAAN) is used (Lagouvardos et al. 2017). Specifically, data from 53 stations in the 

Attica region are used, as shown in Figure 2, with their respective NOAAN IDs. The 

datasets consist of 10-minute precipitation measurements that have been quality-

controlled concerning spatial and temporal inconsistencies against neighboring 

stations. 

• A Digital Elevation Model (DEM) with a 5m x 5m resolution, provided by the 

National Cadastre & Mapping Agency S.A. (Copyright © 2012, National Cadastre & 

Mapping Agency S.A.).  

• The CORINE Land Cover (CLC, 2018) and the dataset URBAN Atlas 2018 feature an 

inventory of land cover—the former for Europe and the latter for the selected urban 

areas.  

• GIS-based datasets were acquired from open-access sources. Boundaries of the 

administrative regions were provided by geodata.gov.gr, while datasets, e.g., road 

network, were provided by the OpenStreetMap initiative. 

• A list of the rain gauge stations with known Intensity-Duration-Frequency curves 

(IDF) is used, shown in Figure 2. The IDF curve parameters were derived from the 
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Flood Risk Management Plans for Greece by the Ministry of Environment, Energy, 

and Climate Change (SSW-MEECC 2017). 

 

Table 1: Technical Specifications of the NTUA Rainscanner weather radar system 

Parameter Value 

Peak Power  25 kW 

Wave Length X- Band 3.2 cm 

Frequency 9410 (± 30 MHz) 

PRF 833 – 1500 Hz 

Pulse Duration 1200 – 500 ns 

Rotation Rate 12 rpm 

Azimuth & Elevation Beamwidth 2.5o 

Azimuth Accuracy ± 0.5° 

Scanning Range 50 km 

Maximum Spatial Resolution 100 m x 100 m 

 

 

Figure 2: The Study area, rain gauge network, and the location of the IDF station 
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Methodological Framework 

The methodological framework considered for this research is shown in Figure 3. It consists 

of five main components: 1) the File Management and Data correction, 2) the Z-R calibration, 

3) the Rainfall-Runoff model, 4) the Gridded FFG system, and 5) the Storm tracking 

algorithm.  

 

Figure 3:  The Methodological Framework 
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Each component is crucial for the functionality of the entire FEWS. The components belong 

to two different categories. One category deals with the Rainscanner data quality control 

and transformation into rainfall, while the other utilizes rainfall maps to produce FEWS 

products. 

1. The File management and data correction component deals with the pre-processing 

quality control, where corrections are applied to radar data to address ground clutter and 

occultation issues. Ground clutter refers to undesired signals from non-rain objects. The 

ground clutter correction identifies cluttered areas through a clear sky map and employs 

methods like clutter subtraction or flagging with interpolation. Occultation results from 

radar signal obstruction.  Occultation correction deals with areas where radar signals are 

blocked, utilizing neighboring data for gap-filling. Spatial and temporal aggregations 

ensure that the desired resolutions are achieved. The processed data are spatially projected, 

stored in specific file formats, and named based on timestamp and product type. During 

post-processing, further quality control checks are performed to address (if any) extreme 

values and/or temporal inconsistencies.  

2. The Z-R calibration deals with the derivation of the Z-R relationship, which is crucial 

for converting radar reflectivity (Z) to rainfall intensity (R). A correlation framework is 

established using rain gauge-Rainscanner data. The conversion aligns spatial and temporal 

resolutions, with rain gauges serving as "true rainfall." The correlation analysis used the 

Pearson correlation coefficient to determine the well-correlated datasets used in the 

optimization. The optimization targets the Z-R parameter values by minimizing the RMSE. 

Three optimization groups focus on deriving station-based, event-based, and entire dataset 

relationships. The results are compared with established Z-R equations to reveal spatial-

temporal variability and enhance understanding of rainfall characteristics.  

3. The rainfall-runoff model components concern a gridded model. The model is based on 

the time-area diagram technique, building on the Clarks unit hydrograph model. The model 

parameters are calculated using GIS tools through a DEM. Excess rainfall is calculated using 

the NRCS-CN method, with runoff routed through a linear reservoir. A linear relationship 

is applied to adjust the CN values based on soil moisture conditions. The model is designed 

for flash flood prediction in small to medium-sized basins and employs the Rainscanner-

generated rainfall maps to produce the flow hydrograph for a given position. A series of Z-

R relationships are used to determine the impact of the generated runoff characteristics in 

various rainfall events. 

4. The Gridded Flash Flood Guidance (GFFG) is an FEWS based on rainfall thresholds and 

the FFG value, defined as the accumulated rainfall over a predetermined duration that will 

cause minor flooding. The system incorporates hydrological and meteorological conditions 

to determine areas under risk of flooding for lead times up to 6 hours. The system uses three 
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parameters: threshold runoff, soil moisture conditions, and forecasted accumulated rainfall 

over predetermined durations. The first is a static characteristic of a given grid, which is 

calculated using the five-year rainfall Average Recurrence Interval (ARI). The second is a 

dynamic variable affecting rainfall losses. The third, the FFG value, is calculated through 

inverted rainfall-runoff modeling for a given threshold runoff and soil moisture conditions. 

In this application, the GFFG is applied on a 500m x 500m grid scale, deriving threshold 

maps for three soil moisture conditions and accumulation periods. The system is applied in 

flood events using the Rainscanner datasets, marking flood-prone areas.  

5. The Storm tracking algorithm involves two processes: cell identification and cell 

tracking. In cell identification, reflectivity thresholds determine the cell’s core boundaries 

and centroids. Multiple thresholds are used to identify coverage and core cells, with a 25 

dBZ appropriate for coverage and a 35 dBZ for the cell cores. A minimum area of 4 km2 is 

set to define a cloud cell in either case. The Cell tracking process utilizes motion vectors and 

cross-correlation between consecutive images. An optimization process matches the cells 

based on characteristics such as area and fitting ellipse properties. A cost function is utilized 

to solve the linear assignment problem and to match the past and current cell storms by 

minimizing total cost. The cost function uses the Euclidean distance between each cell and 

other cell characteristics. Finally, the Merging and splitting of cells are considered. The 

algorithm is applied in a series of events to determine its ability to identify and track cells. 

Different temporal scales are used, such as the tracking of 10-min reflectivity fields between 

more extended periods. Eventually, areas with high reflectivity, i.e., above 35 dBZ, are 

identified in multiple events to highlight areas subject to intense rainfall. 

Results and Discussion 

Z-R Calibration 

In this section, a comprehensive Z-R analysis and an optimization process are conducted to 

enhance the accuracy of the radar-based rainfall estimation. The procedure involves two 

primary components: a correlation analysis and an optimization process. The aim here is to 

establish station-based and event-based Z-R relationships, highlighting the variability of the 

Z-R relationship in time and space.  

The correlation analysis is based on Pearson's r correlation coefficient index, which shows 

whether the same rainfall volume is measured in each timestep by the Rainscanner and the 

rain gauges. The calculations are performed at the Station level, i.e., the correlation index is 

calculated between the station's rain gauge timeseries and the designated Rainscanner cell 

for that station per event. Then, two correlation thresholds, 0.6 or 0.7, are used to distinguish 

between the well- and poor-correlated stations for 13 events. In Figure 4, the number of 

events a station exhibits a correlation over 0.6 or 0.7 is shown, which reveals the reliability 
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of the Rainscanner datasets to the location of each station. Notably, coastal stations and 

stations within a 10km range from the Rainscanner location present a more often good 

correlation, whereas stations on high elevation do not. Figure 5 demonstrates the mean 

correlation coefficients for all events and well-correlated events (r > 0.6). Higher correlation 

thresholds lead to fewer well-correlated events due to the stringent criteria. The choice of 

threshold is thus essential, as it must ensure data quality while retaining a substantial 

dataset for optimization. 

  

Figure 4. Number of events with a correlation coefficient between Rainscanner and rain gauge 

datasets: a) higher than 0.6 and b) higher than 0.7. Source: (Bournas and Baltas 2022a) 

  

Figure 5. The mean correlation coefficient between the Rainscanner and rain gauge stations for a) all 

available events and b) utilizing events with an r > 0.6 correlation at each station.  

Source: (Bournas and Baltas 2022a) 

The assessment of the poorly-correlated station's location within the study area reveals 

several patterns. Stations near or within cluttered areas, particularly northeast of the 
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Rainscanner, exhibit consistently low correlations, typically below 0.6, due to the limited 

number of well-correlated events. Stations within a 10 km radius of the Rainscanner 

generally have more well-correlated events, except for Ampelokipoi station (ID 2), which is 

an exception. Coastal front stations also experience a reduction in well-correlated events 

with higher correlation thresholds. For instance, the Faliro station (ID 8) goes from seven 

well-correlated events at a 0.6 threshold to just four at a 0.7 threshold. This trend is not found 

only in coastal areas, as Dionysos station (ID 6) exhibits a similar pattern in the northeast. 

After testing various thresholds, the 0.6 threshold was considered optimal since it filters out 

poor correlations while retaining sufficient data for optimization. 

Notably, some stations have high correlations in only a limited number of events. This 

behavior is influenced by storm-based characteristics such as rainfall amount, wind 

intensity, and possible bright band effects. Such dynamics contribute to correlations and can 

lead to systematic errors. While this study did not extensively investigate these aspects, it 

acknowledges their significance. Low correlations are not solely attributed to Rainscanner 

errors but can indicate systematic errors in certain rain gauge stations. 

As previously described, the Z-R optimization process follows the correlation analysis. 

Three optimization groups define station-based, event-based, and entire dataset Z-R 

relationships.  The findings are discussed based on the values of parameters a and b, which 

are derived in each case. In the established Z-R relationships, parameter a values ranging 

from 50 to 250 are suited for stratiform events, while values from 250 to 500 are better suited 

for convective events. Finally, values over 1000 are derived for snowfall events. The results 

from each optimization group are described below:  

 

Event-Based Z-R Calibration:  

The event-based optimization highlights the variability of the Z-R relationship between 

events. Furthermore, the derived parameters are used to assess the classification of each 

storm. Two optimizations are performed, one where both parameters are optimized, and 

one where parameter b is set to 1.60 and parameter a is optimized. Both optimizations 

resulted in high variability of the parameter values in both cases. The most intriguing result 

was the parameters value of three events when parameter a was over 1000. Such values 

indicate snowfall events, which was the case as revealed by cross-checking with historical 

information. Therefore, the value of event-based calibration lies in classifying events and 

removing inappropriate datasets for further processing. Specifically, snowfall events feature 

different radar parameters and, therefore, are inconsistent with convective or stratiform-

based events.  
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Station-Based Z-R Calibration:  

In this approach, the Z-R relationships are calibrated for each rain gauge station, using 

multiple events after excluding the snowfall events. The results are shown in Figure 6.  Each 

subfigure exhibits the spatial variability of values for parameters a and b. Furthermore, in 

Figure 7, the spatial variability of parameter a is shown when parameter b is set to a constant 

value. 

  

Figure 6: Spatial variability of Z-R parameter, a) for parameter a, b) for parameter b, Source: 

(Bournas and Baltas 2022a) 

 

Figure 7: Spatial variability of Z-R parameter a, when a fixed parameter b is used, 

Source: (Bournas and Baltas 2022a) 
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As shown in panel a of Figure 6,  the higher values for parameter a are found in the 

southwest, at the coastal front of Athens, while the lower values are found in the north 

section. As previously mentioned, a high value for parameter a and a low value for 

parameter b are found in Z-R relationships better suited to convective-type events. Since the 

sample includes both convective and stratiform events, this result indicates that higher 

reflectivity is measured on the coast front and less on the northeast. This finding can also be 

related to the typical trajectory of rainstorms in Athens. As featured in the studied events, 

storm cells in Athens tend to have a west-to-east direction. This trajectory usually takes the 

storm cell above the Gulf of Salamina and towards Mount Aigaleo. Especially in convective 

events, the storm cell feeds with moisture while it passes the sea, only to discharge when it 

hits the mainland and the higher elevation that Mount Aigaleo offers. Water discharge, i.e., 

rainfall, occurs rapidly in the coastal regions, imitating convective-based storm 

characteristics. From then on, the storm cell keeps discharging until it reaches Athens' city 

center and then heads to the north due to the presence of Hymmetus Mountain in the east. 

When it arrives at higher elevation locations, the rainfall intensity has dropped, and 

stratiform-based rainfall intensities are observed. A lower rainfall intensity does not 

necessarily mean less rainfall accumulation since the storm cloud may lose its velocity, thus 

delaying its departure from these regions. 

 

Single Z-R Calibration: 

In this optimization, a unified Z-R relationship is derived using the entire correlated dataset. 

Two approaches are considered: one using all available data and another using a 

calibration/validation scheme. In the first case, the relationship is Z=300R1.69, while in the 

second case, it is Z = 321R1.53. The second relationship was then validated with various 

stations and showed minimal differences in correlation and RMSE values. Therefore, the 

second relationship is considered more robust. 

The derived relationships are subsequently compared with previously established 

relationships. Firstly, the comparison is made upon the precipitation and accumulation 

timeseries per station. Figure 8 shows the rainfall and accumulative rainfall timeseries for 

the Psychiko station on event 6. Blue bars denote the rain gauge measurements within the 

figures, while the Rainscanner measurements are presented with lines of different colors 

based on the Z-R relationship used. Specifically, with green color, the Marshal and Palmar 

equation, Z=200R1.6, with red color the all-data calibration equation 5.2, Z=321R1.53, with 

purple color the Event-based Z-R, with black color the Station Based Z-R, and with a blue 

color the optimized relationship when the station dataset for the particular event is used. 

The optimized relationship is the best-fit relationship since the Z-R parameters are 

optimized to match the specific data. 
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The Marshal and Palmer equation shows the higher deviations in all figures. In other words, 

it leads to overestimating rainfall compared to the rain gauge datasets. The equation closer 

to the optimized relationship is the station-based equation, followed by the All-data and 

event-based relationships. Figure 8 (Psychiko station, event 6) shows that while the 

optimized result fits better in each 10-minute rainfall height interval, the rainfall 

accumulation does not feature the best result compared to other relationships. This is caused 

by the gap of the Rainscanner dataset at 02:00, where no data was recorded, disrupting the 

accumulation time series graph.  

Finally, in Figure 9, the RMSE, BIAS, Normalized Mean Absolute Error (NMAE), and 

Normalized Mean Bias (NMB) indexes between the rain gauge measurements and the 

rainfall heights are estimated for each Z-R relationship. The optimum relationship is the 

optimized result of each station per event, featuring the best results that the rest of the 

relationships should imitate. All indices are set to have zero as their optimum value, while 

NMAE and BIAS are also allowed to have negative values. Furthermore, apart from the 

mean value (red line), which should be found to be close to zero, the spread of the sample 

is also essential. Among the evaluated Z-R relationships, the all-data calibrated one 

(Z=321R1.53) performs the best, followed by Z=261R1.52 and Z=431R1.25, while the Marshal and 

Palmer (Z=200R1.6) yields the poorest outcome in all metrics. The substantial mean deviation 

and significant spread in the Marshal and Palmer relationship indicate its limited 

applicability across most stations. Although Z=431R1.25 seems promising, its negative NMB 

suggests underestimation and suitability mainly for high reflectivity convective events.  

 

 

Figure 8. Precipitation and accumulative precipitation for Psychiko, on Event 6. 
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Figure 9. Boxplots of the a) RMSE, b) Bias, c) NMAE, and d) NMB per Z-R relationship 

Rainfall-Runoff Model 

The gridded rainfall-runoff model is applied to the rural part of Sarantapotamos River, with 

its outlet at the cross-section with the Attiki Odos freeway, totaling an area of 231.50 km2. 

The time-area diagram is derived from GIS, using a 500 m x 500 m grid size based on the 

basin size. The grid leads to a total of 1021 grids. Figure 10 shows the gridded slope and CN 

AMC-II values, while Figure 11 shows the derived time-area diagram of the subbasin. The 

rainfall-runoff model is applied to six events. The events are shown in Table 2, featuring 

their duration and the 5-day accumulated precipitation to evaluate the prior soil moisture 

conditions better. 

Table 2: Simulated events and main characteristics; Source: (Bournas and Baltas 2022b) 

Event Start Datetime End Datetime 
Duratio

n (h) 

5-Day 

API (mm) 

Mean Area Cumulative 

Rainfall (mm) 

6 17-12-2018 23:40 18-12-2018 13:50 14.2 13.8 25.8 

21 24-11-2019 21:40 25-11-2019 08:30 10.8 37.0 30.4 

31 01-06-2020 14:00 01-06-2020 20:00 6.0 0.0 20.5 

48 09-06-2021 18:00 10-06-2021 02:44 8.7 0.2 25.0 

50 12-06-2021 11:50 12-06-2021 19:00 7.2 32.0 26.0 

61 23-11-2021 17:30 24-11-2021 07:40 14.2 2.6 26.4 
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Figure 10. Gridded datasets; a) Slope %, b) Curve Number for AMC-II conditions 

Source: (Bournas and Baltas 2022b) 

  

Figure 11. Time-area diagram: a) Time travel raster; b) Cumulative area % per hour at the basin 

outlet. Source: (Bournas and Baltas 2022b) 

The events simulated were both stratiform- and convective-based. Of the simulated events, 

events 31, 48, and 50 featured convective-based characteristics, i.e., increased rainfall rates 

with small footprints. The hydrographs of Figure 12 show that in the stratiform events, the 

selection of the Z-R relationship features minor differences in all events. In contrast, in the 

convective events, while all relationships estimated 10-20 years return period, a single 

relationship led to unrealistic rainfall and runoff values, as showcased by the extreme runoff 

values and the high return period of rainfall as calculated by the IDF curves for the region 

(the rainfall return period is calculated above 100 years). This warrants caution when using 

a Z-R relationship since it can lead to unrealistic results. 

Furthermore, between the used relationships, it is shown that the typically used Marshal 

and Palmer relationship leads to the highest amount of generated runoff. In contrast, the 

convective-based Z-R relationships feature the least generated runoff in the stratiform 

events but the highest in the convective-based among the rest. This result indicates that a 

convective-based relationship is preferable for these events, i.e., events with high rainfall 

intensities. In contrast, for stratiform events, it will probably underestimate the generated 
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runoff. Therefore, when considering flash flood early warning system implementations, a 

convective-based relationship should be desired, whereas in continuous rainfall-runoff 

simulation, where light rain and low runoff are simulated, it should be avoided.  

 

  

  

  

Figure 12. Hydrographs generated for all events. Blue and red bars denote mean area rainfall and 

rainfall losses, respectively. Source: (Bournas and Baltas 2022b) 
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Gridded Flash Flood Guidance 

The GFFG is applied in the Sarantapotamos basin and Attica region. Firstly, the threshold 

runoff maps are presented, and the results are discussed. Secondly, the system is applied in 

a series of rainfall events to extract the potential flood risk in each case. 

In Figure 13, the threshold maps for the three accumulation periods, 1-, 3- and 6-hours, are 

presented for medium saturated soil moisture conditions. Figure 14 shows the threshold 

runoff for two different soil moisture conditions (medium and saturated). In real-time 

monitoring, the threshold maps are named the FFG maps when the current soil moisture 

conditions are used.  

 

Figure 13: Threshold rainfall values for different rainfall duration: a) 1-h, b) 3-h, and c) 6-h. 

Source (Bournas and Baltas 2022c) 

 

Figure 14: Threshold rainfall for a 3-h accumulation period for a) ACM-II and b) AMC-III 

conditions; Source (Bournas and Baltas 2022c) 
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By applying the above methodology, the FFG maps are derived for three accumulation 

periods (1-, 3-, and 6 hours). The main findings concern the characteristics of generated 

maps, such as the dependencies of the thresholds to the soil moisture conditions and the 

accumulation periods. Different accumulation periods aim to be used and assessed through 

the respective duration forecasted products. This is because a more extended duration 

provides a longer lead time, however, with increased uncertainty. This is not only due to 

the uncertainty of the provided forecast but also due to the uncertainty regarding the exact 

moment flooding will occur within the designated period. More specifically, the system 

does not warn on the exact time that flooding will occur within the accumulation period. 

Instead, it warns on whether flooding will eventually occur. The effect of soil moisture on 

the generated maps is significant since the threshold runoff features lower values during 

medium or wet conditions. The latter means that less rainfall accumulation is required to 

create flooding conditions. The results also indicate that the effect of soil moisture is at its 

maximum in land uses with permeable CN (CN values close to 50). This is because the 

calculated CN changes dramatically between dry and wet conditions. In contrast, highly 

impervious areas are less dependent on soil moisture conditions since runoff potential is 

already high.   

Below is the application to the Attica Basin and the Sarantapotamos for flood events. For 

this extended abstract, Event 50 is presented. This event occurred on 12-06-2021. Figure 15 

shows the rainfall maps, with highlighted cells for potential floods. A 3-hour accumulation 

period is used. As seen in the figure, areas highlighted for flooding were well-correlated 

with the areas where high rainfall occurred.   

   

   

Figure 15: 3-hour Gridded Rainfall, valid per timestamp for Event 50, Sarantapotamos subbasin. 

The first row shows the rainfall fields; the second row shows the flooded cells. 
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The difference between the accumulation periods is observed in the rainfall height and 

extent in each timestamp. The benefit lies mainly in the provided lead time. The 3-h and 6-

h durations are the most useful. However, in these cases, the exact time of flooding is 

unknown, while in the 1-h duration, the uncertainty is less. Figure 16 shows the total flooded 

cells for each duration for both Sarantapotamos and the Attica Region. As shown, the result 

is the same regardless of period used (1h or 3h or 6h). 

 

   

   

Figure 16: Total Cells flagged for flood based on the GFFG system for Event 50 at the 

Sarantapotamos basin and Attica Region. 

Finally, a sensitivity-based analysis is performed. The main parameters of the system are 

adjusted, and the result is shown. The main parameters of the system are a) the rainfall 

return period used to calculate the threshold runoff, b) the soil moisture conditions, and c) 

the Z-R relationship used to transform reflectivity into rainfall. In Figure 17, different values 

of the above a, b, c, are used and compared with the 16:00 timeframe shown. In panel (a), 

the change of the rainfall return period for the calculation of runoff threshold is performed 

from T=5 years to T=10 years, in panel (b), the soil moisture is changed from 70% to 100%, 

while in panel (c) the Z-R relationship is changed from the Z=321R1.53 to the Z=200R160 

relationship. Observing Figure 17 and comparing it with the time frame shown, it is shown 

that the effect of the return period is minimal, while the effect of the soil moisture conditions 

is the most significant. The change in the Z-R relationship also increases the number of 

potential cells flagged for flood since the used Z-R results in higher rainfall intensity values, 

but not as high as the soil moisture conditions. 
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Figure 17: Impact of the number of cells flagged for flood for a selected timeframe, by changing the: 

a) return period from T=5 years to T=10 years, b) Soil moisture from 70% to 100% and c) the used Z-

R from Z=321R1.53 to Z=200R1.60. 

Storm Tracking 

The storm tracking algorithm includes the storm cell's identification and tracking 

procedures. The first case shows the algorithm's ability to track cloud cells. Figure 18 shows 

the difference between utilizing a different reflectivity threshold and whether a polygon or 

a fitting ellipse represents the cloud cell’s boundaries. The 25 dBZ threshold works well 

when identifying polygon boundaries but does not work well with a fitting ellipse. By 

setting a 4 km2 area threshold, 11 cells are identified above this threshold. In the 30 dBZ case, 

the fitting ellipse features better results concerning the core cell identification. Since the 

emphasis is given on intense rainfall systems, the 30 dBZ with a fitting ellipse is used to 

identify the cell centroids and store their attributes (e.g., the ellipse characteristics and 

centroid coordinates). Finally, the 35 dBZ limit highlights areas with higher-than-average 

rainfall intensities, signifying areas where heavy rain occurred.  

 

Timeframe 

a) b) c) 
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Figure 18: Results of the cell algorithm when a different reflectivity threshold is used; 25-, 30-dBZ 

shown in each row, and when a polygon or fitting ellipse is used to form the boundaries, each 

column. 

Figure 19 illustrates the application of the cell track algorithm, using 10-min derived 

reflectivity images in a 10-min temporal interval. Specifically, five 2-min reflectivity images 

are merged to define the 10-min reflectivity field. Following this, a 10-minute time step is 

used, and the tracking algorithm is applied to perform the matchmaking of each cell and the 

merging and splitting of cells. The resulting timeframe cells are shown with red polygons, 

while the previous ones are dashed black. The objective is to match the centroids of black 

cells to those of the red cells. The algorithm works well and successfully merges the cells. 

 



| Extended Abstract | 

 

xxxii 

  

  

Figure 19: The matchmaking procedure between four timeframes with a 10-minute step 

 

Following this procedure, the algorithm is applied to all events observed by the 

Rainscanner. In Figure 20, the tracking for events E31 and E50 is shown. In blue borders: the 

border of a cell whose threshold is above either 35 dBZ (first row) or 40 dBZ (second row). 

In red polygons: the centroids of cells. In dashed black lines, the tracking. The above 40 dBZ 

results are more visually appealing due to the fewer identified cells. 

In Figure 21, the centroids of the 35 dBZ are shown in red rectangles. The result shows 

improved clarity regarding the location of the cells and the direction of the storms for events 

31 and 50. Similar results for all featured events are shown in Appendix B. 
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Figure 20:  Cells borders of events 31 and 50 for two reflectivity thresholds: over 35 dBZ (first row), 

over 40 dBZ (second row) 

  

Figure 21: Centroids of storm cells (red rectangles) with a reflectivity threshold > 35 dBZ 
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The tracking confirmed the west-to-east direction of the storm events, which is featured in 

most events. Figure 22 shows the main directions of the storms featured in Attica. Most 

storms have a southwest-to-northeast direction, passing over Athens city center, followed 

by west-to-east and northwest-to-east directions. South-to-northeast directions are observed 

mainly with convective-based storms, whereas North-to-south directions are observed 

during winter, featuring stratiform events characterized by their low velocity and rainfall 

intensity. Moreover, snowfall events also feature Northeast-to-southwest directions, with 

the slowest velocity among other events. Convective-based events, i.e., events that showcase 

the highest reflectivity values, had an east-to-west direction, as featured in the studied 

events E31 and E50.  

 

Figure 22: Main directions of storm clouds in Attica Region; Red lines are for storms occurring most 

often, followed by blue, yellow, and purple. 

Conclusions and Future Research 

This Ph.D. dissertation focuses on developing and implementing a methodology for early 

warning of intense floods using innovative technologies, primarily centered around a newly 

installed weather radar system called the X-Band Rainscanner in Athens, Greece. The high-

resolution data from this radar system is crucial for understanding rainfall's spatial and 

temporal characteristics, especially for local applications like small-basin rainfall-runoff 

modeling and nowcasting. The dissertation is divided into two main sections. The first 

section reviews various aspects of weather radar technology, specifically on the variability 
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of the Z-R relationship, and the second focuses on applying a Flood Early Warning System 

(FEWS).  

Concerning the Z-R variability, it is found that although significant variability is showcased 

in time and space, several patterns that explain this variability are extracted. Specifically, 

the location’s characteristics within the study area, such as its elevation and proximity from 

various locations, such as the distance from the weather radar, the coastline, the clutter-

affected areas, and the high-elevation areas, affect the Z-R relationship. These characteristics 

affect the storm’s characteristics, which this study was able to extract using high-resolution 

rainfall fields.  

Concerning the application of FEWS, this research showcased the required components and 

processes to obtain reliable results through an easy-to-apply methodological framework. 

Through the development of a gridded rainfall-runoff model, the impact of the Z-R 

relationship on the generated runoff is performed, where it was found that convective-based 

Z-R relationships work well with respected convective events but tend to lead to 

underestimation of runoff when used in light rain. On the other hand, caution should be 

exercised when utilizing a Z-R relationship since this can lead to excessive errors in the 

generated runoff, highlighted by the difference in the event's return period as calculated by 

the intensity duration curves derived for the region. The implementation of the GFFG 

system reached valuable results concerning issuing flash flood warnings using high-

resolution modeling and highlighting the impact of the soil moisture conditions prior to the 

events. Finally, the storm-tracking algorithm showcased the ability of the Rainscanner 

system to be used for forecasting applications by focusing on identifying and tracking storm 

cells. The algorithm was able to distinguish and match storm cells in consecutive images, 

making it a valuable tool for further nowcasting applications. The algorithm was finally 

applied in a series of events that occurred in Athens, showcasing the west-to-east direction 

of summer convective events and the north-to-south direction of winter stratiform events.  

The dissertation presents a holistic approach to using weather radar-derived datasets for an 

FEWS implementation in Athens, offering valuable insights into radar technology, Z-R 

relationships, and flash flood forecasting methodologies. It introduces innovative 

techniques and contributes to the field of flood early warning systems. Future research aims 

to extend the findings of this thesis to other regions with different characteristics. Moreover, 

the assimilation and analysis of additional data such as runoff measurements, satellite data, 

distrometers data, and other meteorological radars to the individual points of this research, 

as well as the integration of stochastic methods to quantify and assess the uncertainty of the 

individual systems is proposed. 
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Εκτενής Περίληψη 

Εισαγωγή 

Η εν λόγω διδακτορική διατριβή (Δ.Δ) με τίτλο «Ανάπτυξη και εφαρμογή μεθοδολογίας 

έγκαιρης προειδοποίησης ισχυρών πλημμυρών με χρήση νέων τεχνολογιών», 

επικεντρώνεται στην ανάπτυξη και εφαρμογή ενός μεθοδολογικού πλαισίου για την 

έγκαιρη προειδοποίηση ισχυρών καταιγίδων και πλημμυρών, χρησιμοποιώντας νέες 

τεχνολογίες και συγκεκριμένα δεδομένα από μετεωρολογικό ραντάρ. Τέτοια 

συστήματα ραντάρ συναντώνται κυρίως για την αντιμετώπιση αιφνίδιων πλημμυρών 

οι  οποίες αποτελούν μία από τις πιο θανατηφόρες φυσικές καταστροφές σε παγκόσμιο 

επίπεδο. Τα χαρακτηριστικά των αιφνίδιων πλημμυρών διαφέρουν από τις συμβατικές 

ποτάμιες πλημμύρες, καθώς προκαλούνται από απότομες και έντονες βροχοπτώσεις, 

που πραγματοποιούνται σε σύντομο χρονικό διάστημα, ενώ πλήττουν κυρίως αστικές 

περιοχές. Οι αιφνίδιες πλημμύρες αποτελούν συνήθως επεισόδια περιορισμένης 

έκτασης, και οφείλονται σε συγκεκριμένου τύπου καταιγίδες (Houze Jr. et al. 2015). Οι 

παράγοντες που επηρεάζουν την εμφάνιση και την ένταση των  αιφνίδιων πλημμυρών, 

εκτός της έντονης βροχόπτωσης, είναι η γεωμορφολογία της λεκάνης απορροής, όπως 

το μέγεθος, η κλίση, η υδατοπερατότητα του εδάφους και οι αρχικές συνθήκες υγρασίας 

(Merz and Blöschl 2003; Houze Jr. et al. 2015; Velásquez et al. 2020). Η μεταβολή της 

γεωμορφολογίας όπως για παράδειγμα η μεταβολή των διατομών ενός ποταμού λόγω 

της διάβρωσης και της μεταφοράς ιζημάτων που προκαλείται από ισχυρές 

βροχοπτώσεις, τείνει να μεταβάλλει τα φυσικά χαρακτηριστικά των ποταμών. 

Επιπλέον, οι βίαιες αλλαγές χρήσεων γης, όπως η αστικοποίηση, η αποψίλωση των 

δασών και οι δασικές πυρκαγιές, μεταβάλλουν την τρωτότητα των περιοχών έναντι 

πλημμυρών και σε συνδυασμό με πιο συχνές υψηλής έντασης καταιγίδες, οδηγούν σε 

αύξηση των αιφνίδιων πλημμυρών (Alfieri et al. 2012; Gaur and Simonovic 2015; Rogger 

et al. 2017; Caloiero et al. 2017). Ως αποτέλεσμα περιοχές που στο παρελθόν δεν ήταν 

επιρρεπείς σε πλημμύρες, πλέον είναι ευάλωτες σε αυτές (Bournas and Baltas 2021a). 

Στην περιοχή της Μεσογείου, τα τελευταία χρόνια, οι αιφνίδιες πλημμύρες έχουν 

προκαλέσει όχι μόνο σημαντικές οικονομικές αλλά ακόμα και ανθρώπινες απώλειες 

(Diakakis et al. 2012, 2019; Pereira et al. 2017; Feloni 2019; Varlas et al. 2019; Spyrou et al. 

2020). 

Μία από τις κύριες μη-κατασκευαστικές μεθόδους για την αντιμετώπιση των 

πλημμυρών είναι η ανάπτυξη και η χρήση Συστημάτων Έγκαιρης Προειδοποίησης 

Πλημμυρών (ΣΕΠΠ). Ένα ολοκληρωμένο ΣΕΠΠ αποτελείται από διάφορα τεχνικά και 
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μη-τεχνικά υποσυστήματα που αφορούν, α) στην ανάλυση των χαρακτηριστικών που 

προκαλούν τον κίνδυνο πλημμύρας, β) στην παρακολούθηση και ανάλυση των 

καιρικών συστημάτων, γ) στην πρόγνωση καιρού και τη θέσπιση ορίων κινδύνου, δ) στη 

μεταφορά των προειδοποιήσεων, ε) στην προετοιμασία και τις ενέργειες αντίδρασης 

(Perera et al. 2019). Παρόλο που οι μέθοδοι που χρησιμοποιούνται για την ανάλυση και 

προσομοίωση των υδρομετεωρολογικών διαδικασιών κατά την διάρκεια μίας έντονης 

βροχόπτωσης διαφέρουν σε πολυπλοκότητα, η κύρια αβεβαιότητα της εκτίμησης 

πλημμυρικού κινδύνου έγκειται στη χαοτική φύση της ατμόσφαιρας και την έλλειψη 

επαρκούς ανάλυσης και δεδομένων υψηλής ποιότητας (Marchi et al. 2010). Ακόμη και σε 

περιπτώσεις όπου υπάρχει διαθεσιμότητα αξιόπιστων δεδομένων, έχει βρεθεί πως 

ενδέχεται να υπάρχει υψηλή αβεβαιότητα στην προσομοίωση της απορροής συγκριτικά 

με τις παρατηρηθείσες τιμές, γεγονός που οφείλεται στην κλίμακα και στις μεθόδους 

που χρησιμοποιούνται στα υδρολογικά μοντέλα (Di Baldassarre and Montanari 2009). Η 

επιθυμητή χωρική και χρονική κλίμακα των πεδίων βροχής που οδηγούν σε αιφνίδιες 

πλημμύρες είναι υψηλότερη από την αντίστοιχη ανάλυση που προσφέρουν τα 

παραδοσιακά δίκτυα επίγειων βροχογράφων (Anagnostou et al. 2017), ενώ όταν η 

επιθυμητή ανάλυση των δεδομένων δεν είναι διαθέσιμη, η δυνατότητα παροχής 

έγκαιρων προειδοποιήσεων μειώνεται σημαντικά (Mimikou and Baltas 1996). Σε 

περιπτώσεις, όπως συμβαίνει στην Ελλάδα, όπου δεν υπάρχουν διαθέσιμες μετρήσεις, 

ή η αξιοπιστία των δεδομένων είναι μικρή, το πρόβλημα επιδεινώνεται. Ως 

αποτέλεσμα, η κλίμακα και η ποιότητα των δεδομένων επιδρούν σημαντικά και στην 

ποιότητα ενός ΣΕΠΠ.  

Στο πλαίσιο συνεχούς ανάπτυξης των ΣΕΠΠ η έρευνα επικεντρώνεται, στην βελτίωση 

της ποιότητας της πρόγνωσης, στην αύξηση του διαθέσιμου χρόνου αντίδρασης και  

στην αποτελεσματικότερη διάχυση της πληροφορίας σχετικά με τον χρόνο και τις 

περιοχές που πρόκειται να πλημμυρίσουν. Οι δύο πρώτες συνιστώσες μπορούν να 

επιτευχθούν με την εφαρμογή νέων τεχνολογιών που αφορούν στη συλλογή και την 

επεξεργασία δεδομένων καθώς και στην χρήση πιο προχωρημένων μοντέλων, δηλαδή 

είναι άρρηκτα συνδεδεμένες με την ανάλυση και την ποιότητα των δεδομένων εισόδου, 

και κυρίως της βροχόπτωσης. Για παράδειγμα ΣΕΠΠ που επικεντρώνονται σε αιφνίδιες 

πλημμύρες, δηλαδή σε επεισόδια βροχής υψηλής χωροχρονικής μεταβλητότητας, 

απαιτούν αντίστοιχης ανάλυσης δεδομένα εισόδου, και συγκεκριμένα για τα δεδομένα 

βροχόπτωσης βασίζονται σχεδόν αποκλειστικά στην επεξεργασία δεδομένων 

μετεωρολογικού ραντάρ. Στην Ελλάδα, τα ευρωπαϊκά ΣΕΠΠ όπως το European Flood 

Awareness System (EFAS), και συγκεκριμένα τα συστήματα ERIC και EPICHA για 

αιφνίδιες πλημμύρες, έχουν περιορισμένη χρήση που οφείλεται κυρίως α) στη μη 

διαθεσιμότητα κύριων συστημάτων, π.χ. μη κάλυψη του Ευρωπαϊκού δικτύου 
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μετεωρολογικών ραντάρ  στην περίπτωση του EPICΗA στην Ελλάδα, β) της μη 

διαθεσιμότητας των κατάλληλων δεδομένων για τη βαθμονόμηση των μοντέλων, και 

γ) στη μεθοδολογία που ακολουθείται καθώς τα αναφερθέντα συστήματα 

σχεδιάστηκαν για εφαρμογή σε μεγάλα ποτάμια συστήματα και όχι σε μικρές λεκάνες 

απορροής που απαντώνται στον Ελληνικό χώρο. Ειδικά στην Ελλάδα, η μεγάλη 

ποικιλομορφία στην γεωγραφία και η μεγάλη ακτογραμμή της, δημιουργεί πολλές 

μικρές  λεκάνες απορροής οι οποίες έχουν αστικοποιηθεί στα πεδινά τμήματα τους, με 

αποτέλεσμα να είναι ευάλωτες σε αιφνίδιές πλημμύρες, με πρόσφατα επεισόδια να 

επιβεβαιώνουν την υπόθεση ότι οι περιοχές αυτές είναι ευάλωτες (Feloni et al., 2020; 

Varlas et al., 2021). Επιπλέον, όπως αναφέρθηκε, η Ελλάδα είναι αποκομμένη από τα 

περιφερειακά Ευρωπαϊκά δίκτυα συλλογής δεδομένων, όπως αυτά της κεντρικής 

Ευρώπης, και ως αποτέλεσμα οι περισσότερες έρευνες πάνω στη πρόγνωση έναντι 

πλημμυρών επικεντρώνονται στην χρήση δορυφορικών δεδομένων, (Spyrou et al., 2020; 

Varlas et al., 2021, 2019) τα οποία όμως δεν θεωρούνται τόσο αξιόπιστα όσο αυτά των 

μετεωρολογικών ραντάρ. Ο επίσημος φορέας πρόγνωσης καιρού στην Ελλάδα είναι η 

Εθνική Μετεωρολογική Υπηρεσία (ΕΜΥ), η οποία εκδίδει ημερήσιες προβλέψεις, με 

μέγιστο χρονικό βήμα 3-ωρών, οι οποίες δεν έχουν την απαιτούμενη χωρική και χρονική 

ακρίβεια για την ανίχνευση και αντιμετώπιση αιφνίδιων πλημμυρών σε αστικές και 

ημιαστικές περιοχές στο πλαίσιο ενός ΣΕΠΠ. 

Ο κύριος στόχος της συγκεκριμένης Δ.Δ. είναι η ανάπτυξη μιας μεθοδολογίας 

εκτίμησης και πρόγνωσης ισχυρών καταιγίδων και πλημμυρών με τη χρήση δεδομένων 

μετεωρολογικού ραντάρ υψηλής χωρικής και χρονικής ανάλυσης. Τα ερευνητικά 

ερωτήματα που η Δ.Δ. σκοπεύει να απαντήσει αναλύονται σε δύο ενότητες. Η πρώτη 

επικεντρώνεται στην συλλογή, επεξεργασία και ανάλυση των δεδομένων από το 

μετεωρολογικό ραντάρ και απαντά στα εξής ερωτήματα: "Ποιοι είναι οι κύριοι 

παράγοντες που πρέπει να ληφθούν υπόψη για τη χρήση δεδομένων μετεωρολογικού 

ραντάρ; Ποιες είναι οι πηγές αβεβαιότητας και πως μπορούν αν εξαλειφθούν;". Η δεύτερη 

ενότητα επικεντρώνεται στην ανάπτυξη μίας μεθοδολογίας εκτίμησης πλημμυρικού 

κινδύνου σε πραγματικό χρόνο, ως υποσύστημα ενός ΣΕΠΠ και απαντάει στα εξής 

ερωτήματα: "Ποια είναι τα απαραίτητα μέρη ενός ΣΕΠΠ βασισμένου σε δεδομένα 

μετεωρολογικού ραντάρ; Ποιες είναι οι παράμετροι ενός τέτοιου συστήματος και πως 

αυτές επηρεάζουν την εκτίμηση πλημμυρικού κινδύνου; Τι υδρολογικά εργαλεία 

απαιτούνται να για υλοποιηθεί ένα τέτοιο ΣΕΠΠ;".  

Για τον σκοπό αυτό, χρησιμοποιούνται τα δεδομένα από ένα νέο εγκατεστημένο 

σύστημα μετεωρολογικού ραντάρ, τύπου X-Band (Rainscanner - Σαρωτής βροχής) του 

Εθνικού Μετσόβιου Πολυτεχνείου (ΕΜΠ). Τα δεδομένα αυτά επεξεργάζονται και 

επαληθεύονται μέσω μιας μεθοδολογίας βαθμονόμησης της σχέσης Z-R, της σχέσης 
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που συνδέει την μετρούμενη ανακλαστικότητα (Ζ) σε ένταση βροχής (R), με διαθέσιμα 

δεδομένα από επίγειους μετεωρολογικούς σταθμούς. Επιπλέον αναπτύσσεται ένα 

σύστημα εκτίμησης πλημμυρικού κινδύνου, και συγκεκριμένα μια παραλλαγή του 

συστήματος Flash Flood Guidance (FFG), το Gridded Flash Flood Guidance (GFFG). Στο 

πλαίσιο εφαρμογής του παραπάνω συστήματος, αναπτύχθηκαν δύο υδρολογικά 

εργαλεία, ένα κατανεμημένο μοντέλο βροχής-απορροής κατάλληλο για μικρές 

λεκάνες απορροής, και ένας αλγόριθμος παρακολούθησης καταιγιδοφόρων  νεφών 

(Storm Tracking) που εφαρμόστηκε με σκοπό τον εντοπισμό και την παρακολούθηση 

των ισχυρών κυττάρων καταιγίδας. 

Η Δ.Δ. αποτελείται από έξι κεφάλαια. Στο πρώτο κεφάλαιο (Introduction) 

παρουσιάζεται το αντικείμενο, ο σκοπός της διατριβής, η βιβλιογραφική ανασκόπηση 

σε θέματα που αφορούν στα μετεωρολογικών ραντάρ και τα ΣΕΠΠ, και παρατίθενται 

τα ερευνητικά ερωτήματα που επιδιώκει να απαντήσει. Το δεύτερο κεφάλαιο (Study 

Area and Data Used) αφορά στην επισκόπηση της περιοχή μελέτης και των δεδομένων 

που χρησιμοποιήθηκαν. Το τρίτο κεφάλαιο (Methodological Framework) αναφέρεται 

στο μεθοδολογικό πλαίσιο που εφαρμόστηκε στην Δ.Δ. καθώς και στις επιμέρους 

μεθοδολογίες που εφαρμόστηκαν για κάθε εργασία, ενώ στο τέταρτο κεφάλαιο (Results 

and Discussion) παρουσιάζονται τα αποτελέσματα της έρευνας ανά εργασία. Τέλος, στο 

πέμπτο κεφάλαιο (Conclusions and Future Research) παρουσιάζονται συνοπτικά τα 

συμπεράσματα της Δ.Δ. καθώς και στόχοι και προτάσεις μελλοντικής έρευνας. 

Περιοχή Μελέτης και Δεδομένα 

Η περιοχή μελέτης είναι η περιοχή της Αττικής και, συγκεκριμένα, η περιοχή που 

καλύπτεται από το σύστημα Rainscanner και φαίνεται στο Σχήμα 1. Το Rainscanner 

βρίσκεται στην Αθήνα, εντός του πανεπιστημιακού χώρου του ΕΜΠ, στον δήμο 

Ζωγράφου σε υψόμετρο εγκατάστασης 200 μέτρα. Η εμβέλεια του είναι 50 km και όπως 

φαίνεται στο Σχήμα 1, περιλαμβάνει το μεγαλύτερο τμήμα του Νομού Αττικής, εκτός 

από μια μικρή περιοχή στα δυτικά, πέρα από το Όρος Γεράνια, ενώ επιβλέπει και ένα 

μικρό τμήμα βόρεια του όρους Πάρνηθας, μέρος της Λεκάνης Απορροής Ποταμού 

(ΛΑΠ) Ασωπού. Λόγω της παρουσίας του Υμηττού στα ανατολικά, ολόκληρη η 

νοτιοδυτική περιοχή είναι αθέατη καθώς η δέσμη του Rainscanner εμποδίζεται από τον 

ορεινό όγκο. Ως αποτέλεσμα ολόκληρη η περιοχή των Μεσόγειων, 

συμπεριλαμβανομένου του αερολιμένα Αθήνας, "Ελευθέριος Βενιζέλος", είναι εκτός 

εμβέλειας. Ωστόσο, η τοποθεσία του Rainscanner είναι ευνοϊκή για την παρακολούθηση 

συστημάτων βροχόπτωσης, καθώς η πλειοψηφία των συστημάτων αυτών έχουν δυτική 

και βόρεια διεύθυνση, καθιστώντας την μία καλή επιλογή για την παροχή προγνώσεων 

για την πόλη της Αθήνας. 
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Οι χρήσεις γης στην Αττική χαρακτηρίζονται από υψηλό ποσοστό αστικού ιστού, καθώς 

το 27% της περιοχής είναι αστικοποιημένη, ενώ το υπόλοιπο  73%, είναι γεωργικού και 

δασικού τύπου. Οι υπολεκάνες απορροής που διαμορφώνονται στην περιοχή της 

Αττικής είναι γενικά μικρές και υψηλά αστικοποιημένες. Στη δυτική Αττική βρίσκεται 

η ΛΑΠ Σαρανταπόταμου, η μεγαλύτερη ημιαστική λεκάνη της Αττικής, με συνολική 

έκταση 341 km2, από τα οποία τα 231 km2, είναι μη-αστικά με αγροτικά χαρακτηριστικά.  

 

Σχήμα 1: Η περιοχή μελέτης 

Τα βασικά δεδομένα που χρησιμοποιήθηκαν στη Δ.Δ. είναι τα εξής: 

• Δεδομένα μετεωρολογικού ραντάρ. Τα δεδομένα του Rainscanner διαθέτουν χωρική 

ακρίβεια 100 m x 100 m και χρονική ανάλυση 2 λεπτών. Τα αρχεία υποβάλλονται 

σε ένα στάδιο προ-επεξεργασίας για την εξάλειψη ή την μείωση των επιπτώσεων 

των σφαλμάτων που οφείλονται στο ανάγλυφο του εδάφους (ground clutter) και 

της εξασθένισης του σήματος. Τα δεδομένα παρέχονται σε αρχεία τύπου ASCII με 

την αντίστοιχη γεωαναφορά. Τα τεχνικά χαρακτηριστικά του συστήματος 

Rainscanner παρουσιάζονται στον Πίνακα 1. 
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Δεδομένα επίγειων μετεωρολογικών σταθμών: Χρησιμοποιήθηκαν δεδομένα από  το 

Αυτόματο Δίκτυο του Εθνικού Αστεροσκοπείου της Αθήνας (ΕΑΑ - NOAAN), που 

αποτελείται από 53 σταθμούς για την περιοχή της Αττικής (Lagouvardos κ.ά. 2017). Τα 

δεδομένα αφορούν μετρήσεις βροχόπτωσης με χρονικό βήμα 10 λεπτά, οι οποίες έχουν 

υποβληθεί σε έλεγχο ποιότητας, αναφορικά με χωρικές και χρονικές ανακρίβειες. Στο 

Σχήμα 2, με μπλε χρώμα, παρουσιάζονται οι θέσεις των σταθμών που 

χρησιμοποιήθηκαν στην Δ.Δ. 

• Ψηφιακό Μοντέλο Εδάφους (ΨΜΕ) με ανάλυση 5μ x 5μ, που παρέχεται από την 

Κτηματολόγιο Α.Ε. 

Οι κατηγορίες κάλυψης γης CORINE (CLC, 2018) και τα δεδομένα URBAN Atlas 2018, 

που περιλαμβάνουν έναν κατάλογο της γεωγραφικής κάλυψης, τον πρώτο για 

ολόκληρη την Ευρώπη και τον δεύτερο για αστικές περιοχές της Ευρώπης.  

• Γεωχωρικά δεδομένα από ανοικτές πηγές, όπως η ιστοσελίδα geodata.gov.gr, όπου 

παρέχονται τα όρια των διοικητικών περιοχών, καθώς και άλλα δεδομένα, όπως το 

οδικό δίκτυο, από την πρωτοβουλία OpenStreetMap.  

Λίστα των διαθέσιμων σταθμών με γνωστές όμβριες καμπύλες (Intensity-Duration 

Frequency-IDF) που προέκυψαν στο πλαίσιο σύνταξης των Σχεδίων Διαχείρισης 

Κινδύνου Πλημμυρών για την Ελλάδα από το Υπουργείο Περιβάλλοντος, Ενέργειας 

και Κλιματικής Αλλαγής (SSW-MEECC 2017), Σχήμα 2. 

 

Πίνακας 1: Τεχνικά χαρακτηριστικά του μετεωρολογικού ραντάρ Rainscanner 

Παράμετρος Τιμή 

Μέγιστη ισχύ  25 kW 

Μήκος Κύματος X- Band 3.2 cm 

Συχνότητα 9410 (± 30 MHz) 

PRF 833 – 1500 Hz 

Διάρκεια Παλμού 1200 – 500 ns 

Συχνότητα περιστροφής 12 rpm 

Κατακόρυφη και οριζόντιά γωνία δέσμης 2.5o 

Οριζόντια ακρίβεια ± 0.5° 

Μέγιστη Εμβέλεια 50 km 

Μέγιστη χωρική ανάλυση 100 m x 100 m 
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Σχήμα 2: : Το δίκτυο επίγειων υδρομετεωρολογικών σταθμών με δεδομένα βροχόπτωσης 

(ΕΑΑ) και με δεδομένα ομβρίων καμπυλών (IDF) 

Μεθοδολογικό Πλαίσιο 

Το μεθοδολογικό πλαίσιο που αναπτύχθηκε και εφαρμόστηκε στη παρούσα αΔ.Δ. 

παρουσιάζεται στο Σχήμα 3. Αποτελείται από πέντε κύρια υποσυστήματα, 1) τη 

διαχείριση και διόρθωση των μετεωρολογικών δεδομένων, 2) τη βαθμονόμηση της 

σχέσης Z-R, 3) το μοντέλο βροχής-απορροής, 4) το σύστημα GFFG και 5) τον αλγόριθμο 

παρακολούθησης καταιγιδοφόρων νεφών. Τα δύο πρώτα συστήματα απαρτίζουν την 

πρώτη ενότητα της Δ.Δ., δηλαδή αυτής που επικεντρώνεται στη συλλογή, επεξεργασία 

και ανάλυση των δεδομένων του μετεωρολογικού ραντάρ. Τα υπόλοιπα τρία 

συστήματα επικεντρώνονται στην εκτίμηση του πλημμυρικού κινδύνου στο πλαίσιο 

εφαρμογής ενός ΣΕΠΠ.  
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Σχήμα 3: To μεθοδολογικό πλαίσιο 

Παρακάτω παρουσιάζονται οι επιμέρους διαδικασίες κάθε υποσυστήματος. 

1. Η Διαχείριση και διόρθωση των μετεωρολογικών δεδομένων σχετίζεται τον έλεγχο 

ποιότητας, δηλαδή τις διορθώσεις στα ανεπεξέργαστα δεδομένα του ραντάρ για να 

αντιμετωπιστούν κυρίως τα προβλήματα που προκαλούνται στο σήμα από τις 

ανακλάσεις του ανάγλυφου του εδάφους και της διόρθωσης της εικόνας ραντάρ από 

κενά δεδομένων. Τα σφάλματα λόγω ανάγλυφου αναφέρονται σε ανεπιθύμητα 
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σήματα από αντικείμενα που δεν είναι βροχή, ενώ τα κενά μπορούν να εμφανιστούν 

από σημειακές αποκλίσεις τους σήματος ραντάρ λόγω στατικών και μη στατικών 

στόχων. Αυτές οι διορθώσεις περιλαμβάνουν αρχικά τον εντοπισμό των 

προβληματικών περιοχών, χρησιμοποιώντας παρατηρήσεις σε συνθήκες αίθριου 

καιρού, ενώ η διόρθωση των κενών πραγματοποιείται με την εφαρμογή κριτηρίων 

συμπλήρωσης, σύμφωνα με τις τιμές γειτονικών κελιών. Στη συνέχεια, εφαρμόζονται 

οι κατάλληλες χωρικές και χρονικές προσαρμογές για να εξασφαλιστούν οι επιθυμητές 

αναλύσεις. Τα επεξεργασμένα δεδομένα, αποθηκεύονται σε συγκεκριμένες μορφές 

αρχείων, ASCII, και ονομάζονται με βάση τη χρονική σήμανσή τους. Τέλος, στο στάδιο 

της μετά-επεξεργασίας πραγματοποιούνται περαιτέρω έλεγχοι για την αντιμετώπιση 

ακραίων τιμών καθώς και τη χρονική συνέπεια στο σύνολο των δεδομένων. 

2. Η διαδικασία βαθμονόμησης της σχέσης Z-R σχετίζεται με την παραγωγή της 

σχέσης Z=αRb, η οποία χρησιμοποιείται για τη μετατροπή της ανακλαστικότητας του 

ραντάρ (Z) σε ένταση βροχής (R) με χρήση των παραμέτρων a και b. Η βαθμονόμηση 

βασίζεται στη συσχέτιση των δεδομένων ραντάρ με τα δεδομένα επίγειων, μετά την 

ευθυγράμμιση της χωρικής και χρονικής ανάλυσης των δεδομένων σε αυτή των 

επίγειων βροχογράφων, καθώς αυτές λήφθηκαν ως "το πραγματικό ύψος 

βροχόπτωσης". Η ανάλυση της συσχέτισης γίνεται με τον υπολογισμό του συντελεστή 

συσχέτισης ρ, που χρησιμοποιείται για τον καθορισμό των καλά συσχετισμένων 

δεδομένων, δηλαδή αυτών με συντελεστή ρ άνω του 0.60, που χρησιμοποιούνται 

μετέπειτα στις διαδικασίες βαθμονόμησης. Έπειτα η βαθμονόμηση στοχεύει στον 

υπολογισμό και σχολιασμό των τιμών των παραμέτρων της Z-R, α και b, μέσω της 

ελαχιστοποίησης του τετραγωνικού σφάλματος (RMSE). Τρεις ομάδες βαθμονόμησης 

επικεντρώνονται στην παραγωγή σχέσεων βάσει σταθμών, συμβάντων και ολόκληρου 

συνόλου δεδομένων. Τα αποτελέσματα συγκρίνονται με καθιερωμένες εξισώσεις Z-R, 

αποκαλύπτοντας την χωροχρονική μεταβλητότητα και ενισχύοντας την κατανόηση 

των χαρακτηριστικών της βροχής. 

3. Η διαδικασία του μοντέλου βροχής-απορροής σχετίζεται με την ανάπτυξη και 

εφαρμογής ενός κατανεμημένου μοντέλου βροχής-απορροής που θα κάνει χρήση των 

δεδομένων ραντάρ. Το μοντέλο βασίζεται στην τεχνική διαγράμματος χρόνου-

απορροής, βασισμένη στο μοναδιαίο υδρογράφημα κατά Clark. Οι παράμετροι του 

μοντέλου υπολογίζονται μέσω του ΨΜΕ της περιοχής μελέτης και τεχνικών GIS. Η 

ενεργός βροχόπτωση υπολογίζεται χρησιμοποιώντας τη μέθοδο NRCS-Curve Number 

(CN), ενώ η απορροή διοδεύεται μέσω ενός συστήματος γραμμικού ταμιευτήρα. Για τον 

υπολογισμό των τιμών CN με βάση τις τρέχουσες συνθήκες υγρασίας του εδάφους 

χρησιμοποιείται μια γραμμική σχέση μεταξύ των ξηρών, μέσων και υγρών συνθηκών 

υγρασίας και του ποσοστού υγρασίας σε κάθε χρονική στιγμή. Το μοντέλο 
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εφαρμόστηκε στη ΛΑΠ Σαρανταπόταμου όπου επιλέχθηκε μια σειρά σχέσεων Z-R για 

να διερευνηθεί  η επίδρασή τους στα χαρακτηριστικά του πλημμυρογραφήματος όπως 

ο χρόνος αιχμής, σε μια σειρά επεισοδίων βροχής. 

4. Το σύστημα GFFG είναι ένα σύστημα προειδοποίησης έναντι αιφνίδιων πλημμυρών 

βασισμένο σε υπολογισμένα σε πραγματικό χρόνο όρια ύψους βροχής, δεδομένης 

διάρκειας, την τιμή FFG, η οποία υπό τις συγκεκριμένες υδρολογικές συνθήκες θα 

προκαλέσει μικρής έκτασης πλημμύρα. Το σύστημα συνδυάζει υδρολογικές και 

μετεωρολογικές διεργασίες για τον εντοπισμό περιοχών με κίνδυνο πλημμύρας για 

χρονικές προειδοποιήσεις έως 6 ώρες, και χρησιμοποιεί τρεις παραμέτρους: α) την 

παροχή κατωφλιού (threshold runoff), β) την κατάσταση υγρασίας του εδάφους (soil 

moisture condition) και γ) την  αθροιστική βροχόπτωση δεδομένης διάρκειας. Η πρώτη 

παράμετρος, θεωρείται στατική και εξαρτάται από τα χαρακτηριστικά της λεκάνης 

απορροής ή στην συγκεκριμένη περίπτωση του Grid. Για τον υπολογισμό 

χρησιμοποιείται ένα μοντέλο βροχής απορροής με εφαρμογή βροχής ίσης με αυτής που 

προκύπτει για περίοδο επαναφοράς 5-ετών. Η δεύτερη είναι μια δυναμική μεταβλητή 

που επηρεάζει τις απώλειες βροχόπτωσης και εκτιμάται, είτε από εφαρμογή 

υδρολογικού μοντέλου, είτε από το ύψος βροχόπτωσης των τελευταίων ημερών. Τέλος, 

η τιμή FFG υπολογίζεται μέσω αντίστροφης διαδικασίας  βροχής-απορροής, για μια 

δεδομένη απορροή κατωφλιού και συνθήκες υγρασίας του εδάφους. Έπειτα η τιμή αυτή 

συγκρίνεται με την τιμή της πρόγνωσης. Σε αυτήν την εφαρμογή, το GFFG εφαρμόζεται 

σε κατανεμημένη μορφή κλίμακας 500μ x 500μ, παράγοντας χάρτες FFG για τρεις 

τυπικές συνθήκες υγρασίας του εδάφους και διάρκειας βροχόπτωσης. Τέλος, το 

σύστημα εφαρμόζεται σε μια σειρά επεισοδίων χρησιμοποιώντας τα δεδομένα του 

Rainscanner, εντοπίζοντας τις περιοχές που είναι επιρρεπείς σε πλημμύρες. 

5. Ο αλγόριθμος Storm tracking περιλαμβάνει δύο διαδικασίες, α) τον εντοπισμό των 

καταιγιδοφόρων κυττάρων και β) την παρακολούθηση των κυττάρων αυτών. Στη 

διαδικασία εντοπισμού των κυττάρων, χρησιμοποιούνται κατώφλια ανακλαστικότητας 

για τον καθορισμό των περιοχών που περιβάλουν το κύτταρο καθώς και τις 

συντεταγμένες του κέντρου του. Συγκεκριμένα, εξετάζονται κατώφλια από 25 dBZ έως 

35 dBZ, για τον εντοπισμό κυττάρων με ελάχιστο εμβαδό 4 km2. Επιπλέον 

χρησιμοποιείται εκτός του πολυγώνου και η εφαρμογή μιας έλλειψης, η οποία ως 

μαθηματικό μοντέλο εφαρμόζεται καλύτερα στις διαδικασίες παρακολούθησης. Η 

διαδικασία παρακολούθησης των κυττάρων χρησιμοποιεί διαδοχικές εικόνες και 

εφαρμόζει ένα μοντέλο σύναψης σχέσεων μεταξύ των κυττάρων. Συγκεκριμένα 

πραγματοποιείται μία διαδικασία βελτιστοποίησης του γραμμικού προβλήματος 

αντιστοίχισης κυττάρων του παρελθόντος με τωρινά κύτταρα, βάσει συγκεκριμένων 

χαρακτηριστικών τους, όπως το σχήμα, το εμβαδόν, και κυρίως την μεταξύ τους 
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ευκλείδεια απόσταση. Επιπλέον, λαμβάνονται υπόψη και οι διαδικασίες συγχώνευσης 

και διαίρεσης των κυττάρων. Ο αλγόριθμος εφαρμόζεται σε μια σειρά επεισοδίων 

βροχής για να καθοριστεί η δυνατότητά του να ανιχνεύει και να καταγράφει κύτταρα 

σε διάφορες χρονικές κλίμακες, όπως η παρακολούθηση πεδίων ανακλαστικότητας 10-

λεπτών. Τέλος, ο αλγόριθμος εφαρμόζεται και για κύτταρα υψηλής ανακλαστικότητας, 

άνω των 35 dBZ, σε πολλαπλά επεισόδια βροχής και διερευνώνται τα χαρακτηριστικά 

των καταιγιδοφόρων νεφών στην Αττική.  

Αποτελέσματα και Συζήτηση 

Βαθμονόμηση Z-R  

Σε αυτήν την ενότητα πραγματοποιείται μια σφαιρική ανάλυση και βαθμονόμησης της 

σχέσης Z-R για τη βελτίωση της ακρίβειας της εκτίμησης της βροχής μέσω ραντάρ. Η 

διαδικασία αποτελείται από δύο κύρια στάδια, την ανάλυση συσχέτισης των δεδομένων 

και τη διαδικασία βαθμονόμησης της σχέσης Z-R. Στόχος είναι μέσω της συσχέτισης 

των δεδομένων των επίγειων σταθμών και του μετεωρολογικού ραντάρ, να προκύψουν 

πολλαπλές σχέσεις Z-R και να αναλυθούν τα χαρακτηριστικά τους για κάθε 

περίπτωση.   

Η ανάλυση της συσχέτισης βασίζεται στον υπολογισμό του συντελεστή συσχέτισης 

Pearson ρ. Οι υπολογισμοί αρχικά πραγματοποιούνται σε επίπεδο σταθμού, δηλαδή 

υπολογίζεται ένας συντελεστής συσχέτισης για κάθε σταθμό ανά συμβάν. Στο Σχήμα 

4 παρουσιάζεται ο αριθμός των συμβάντων ανά σταθμό, από τα 13 επεισόδια που 

χρησιμοποιήθηκαν,  όπου ο συντελεστής συσχέτισης ήταν άνω του ορίου, ενώ στο 

Σχήμα 5 εμφανίζεται η μέση τιμή συσχέτισης ανά σταθμό, πρώτον όταν 

χρησιμοποιούνται όλα τα συμβάντα και δεύτερον όταν χρησιμοποιούνται μόνο τα καλά 

συσχετισμένα δεδομένα, δηλαδή συσχέτιση άνω του 0.6. 

 Η ανάλυση των σταθμών με κακή συσχέτιση σε σχέση με τη θέση τους στην περιοχή 

της μελέτης αποκαλύπτει αρκετά μοτίβα. Οι σταθμοί που βρίσκονται κοντά ή εντός 

περιοχών με θόρυβο, ειδικά στα βορειοανατολικά του Rainscanner, εμφανίζουν 

συνεχώς χαμηλές συσχετίσεις, κάτω από 0.6, και περιορισμένο αριθμό συμβάντων με 

καλή συσχέτιση.  
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Σχήμα 4: Ο αριθμός των συμβάντων με συντελεστή συσχέτισης μεταξύ του Rainscanner και 

των επίγειων σταθμών να είναι υψηλότερος από (α) 0,6 και (β) 0,7. Πηγή: (Bournas και Baltas 

2022α)  

  

Σχήμα 5: Ο μέσος συντελεστής συσχέτισης μεταξύ του Rainscanner και των επίγειων σταθμών 

για (α) όλα τα διαθέσιμα συμβάντα και (β) χρησιμοποιώντας τα συμβάντα που εμφάνισαν 

συσχέτιση άνω του 0.6 σε κάθε σταθμό. Πηγή: (Bournas και Baltas 2022α) 

Οι σταθμοί εντός ακτίνας 10 km από το Rainscanner εμφανίζουν γενικά πολλά 

συμβάντα με καλή συσχέτιση, εκτός από τον σταθμό Αμπελόκηποι (ID 2), ο οποίος 

αποτελεί εξαίρεση. Οι σταθμοί που βρίσκονται στο παραλιακό μέτωπο παρουσιάζουν 

μείωση στα καλώς συσχετισμένα συμβάντα όταν εφαρμόζεται ένα υψηλότερο 

κατώφλι. Για παράδειγμα, ο σταθμός Φάληρο (ID 8) από επτά καλά συσχετισμένα 

συμβάντα με κατώφλι 0.6, έχει καλή συσχέτιση σε μόλις τέσσερα όταν το κατώφλι είναι 

0.7. Αυτή η τάση δεν είναι αποκλειστική μόνο για της παράκτιες περιοχές, καθώς και ο 

σταθμός Διονύσου (ID 6) στη βορειοανατολική περιοχή εμφανίζει παρόμοια 
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συμπεριφορά. Μετά τον έλεγχο διαφόρων κατωφλίων, το κατώφλι 0.6 θεωρήθηκε 

βέλτιστο καθώς φιλτράρει αρκετά καλά τις κακές συσχετίσεις, ενώ διατηρεί επαρκή 

δεδομένα για τη βαθμονόμηση. Τέλος, είναι σημαντικό να σημειωθεί ότι ορισμένοι 

σταθμοί παρουσιάζουν υψηλές συσχετίσεις μόνο σε ένα περιορισμένο αριθμό 

συμβάντων. Αυτή η συμπεριφορά συσχετίζεται με τα χαρακτηριστικά τις καταιγίδας 

όπως το ύψος βροχής, την έντασή της. Επιπλέον, οι χαμηλές συσχετίσεις μπορεί να μην 

οφείλονται μόνο σε σφάλματα του Rainscanner, αλλά μπορούν να υποδηλώνουν 

συστηματικά σφάλματα σε συγκεκριμένους σταθμούς ραντάρ. Τέτοιες διερευνήσεις 

απαιτούν επιπλέον δεδομένα και ήταν εκτός πεδίου ανάλυσης της εν λόγω Δ.Δ.. 

Μετά την ανάλυση συσχέτισης, πραγματοποιείται το στάδιο της βαθμονόμηση της 

σχέσης Z-R. Χρησιμοποιούνται τρεις ομάδες βαθμονόμησης, αυτή που αφορά στα 

επεισόδια βροχής, αυτή που αφορά στους σταθμούς και αυτή που αφορά στο σύνολο 

των δεδομένων. Ο σχολιασμός των αποτελεσμάτων γίνεται στη βάση των τιμών των 

παραμέτρων α και b. Συγκεκριμένα βάσει βιβλιογραφίας, τιμές της παραμέτρου α που 

κυμαίνονται από 50 έως 250 εφαρμόζονται για στρατόμορφα συστήματα (stratiform) 

ενώ τιμές από 300 έως 500 είναι κατάλληλες για μεταγωγικού τύπου (convective-based) 

επεισόδια βροχής. Οι convective τύπου βροχές χαρακτηρίζονται από μεγάλης έντασης 

βροχόπτωση και μικρή χωρική κλίμακα, σε αντίθεση με τα stratiform συστήματα που 

αφορούν νέφη με μεγάλη χωρική κλίμακα και ήπια χαρακτηριστικά βροχής. Οι 

convective τύπου καταιγίδες συμβαίνουν κυρίως το καλοκαίρι, καθώς οφείλονται στη 

βίαιη ανύψωση νερού λόγω θερμοκρασιακής διαφοράς, ενώ οι stratiform είναι τυπικά 

συστήματα των χειμερινών μηνών. Τέλος τιμές της παραμέτρου a μεγαλύτερες του 1000 

συναντώνται σε επεισόδια χιονιού. 

Τα αποτελέσματα από τη βαθμονόμηση της σχέσης Ζ-R για κάθε ομάδα εμφανίζονται 

παρακάτω: 

Βαθμονόμηση σε επίπεδο επεισοδίου βροχής 

Η βαθμονόμηση σε επίπεδο επεισοδίου βροχής αποσκοπεί στο να αναδείξει τη 

μεταβλητότητα της σχέσης Z-R μεταξύ διαφορετικών επεισοδίων βροχής. Οι 

παράμετροι που προκύπτουν μπορούν να χρησιμοποιηθούν για να αξιολογηθεί η 

κατάταξη της κάθε καταιγίδας σύμφωνα με τα ως άνω αναφερθέντα. Διεξήχθησαν δύο 

βελτιστοποιήσεις, μία όπου και οι δύο παράμετροι βελτιστοποιούνται και μία όπου η 

παράμετρος b ορίζεται σταθερή στην τιμή 1.60 και βελτιστοποιείται μόνο η παράμετρος 

α. Και οι δύο βελτιστοποιήσεις οδήγησαν σε υψηλή μεταβλητότητα των τιμών των 

παραμέτρων σε κάθε περίπτωση. Σε τρεις περιπτώσεις, η παράμετρος α υπολογίστηκε 

σε τιμές άνω του 1000, οι οποίες συνδέονται με  επεισόδια χιονόπτωσης. Ελέγχοντας τα 

τρία αυτά επεισόδια με πληροφορίες καιρού, επιβεβαιώθηκε πως αποτελούσαν 

επεισόδια χιονόπτωσης και άρα αναδεικνύεται η αξία της βαθμονόμησης σε επίπεδο 
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επεισοδίων βροχής. Συγκεκριμένα, επειδή τα επεισόδια χιονιού απαρτίζονται από 

διαφορετικά χαρακτηριστικά από ότι αυτά της βροχόπτωσης, επηρεάζονται αρνητικά 

οι παράμετροι της σχέσης Z-R και άρα επιβάλλεται η αφαίρεση των επεισοδίων αυτών 

από μετέπειτα βαθμονομήσεις, π.χ. βαθμονομήσεις σε επίπεδο σταθμών.  

Βαθμονόμηση σε επίπεδο επίγειου σταθμού 

Σε αυτήν την προσέγγιση, οι σχέσεις Z-R βαθμονομούνται για κάθε μεμονωμένο 

σταθμό, χρησιμοποιώντας πολλαπλά επεισόδια, μετά την αφαίρεση των επεισοδίων 

χιονιού. Τα αποτελέσματα παρουσιάζονται στο Σχήμα 6, όπου δεξιά και αριστερά 

παρουσιάζεται η χωρική μεταβλητότητα των τιμών των παραμέτρων a και b 

αντίστοιχα. Επιπλέον, στο Σχήμα 7, παρουσιάζεται η χωρική μεταβλητότητα της 

παραμέτρου a όταν η παράμετρος b ορίζεται σε μια σταθερή τιμή. 

 

  

Σχήμα 6: Χωρική συσχέτιση των παραμέτρων Z-R, a) παράμετρος a, b) παράμετρος b,  

Πηγή: (Bournas and Baltas 2022a) 

Όπως φαίνεται στο πάνελ α του Σχήματος 6, οι υψηλές τιμές της παραμέτρου a 

εντοπίζονται στο νοτιοδυτικό μέρος, στο παράλιο μέτωπο της Αθήνας, ενώ οι 

χαμηλότερες τιμές στο βόρειο τμήμα. Όπως αναφέρθηκε, υψηλή τιμή της παραμέτρου 

a και αντίστοιχα χαμηλή τιμή της παραμέτρου b εμφανίζονται σε σχέσεις Z-R που είναι 

πιο κατάλληλες για convective επεισόδια. Δεδομένου ότι το δείγμα περιλαμβάνει τόσο 

convective όσο και stratiform επεισόδια, αυτό το αποτέλεσμα υποδεικνύει ότι η 

υψηλότερη ανακλαστικότητα συναντάται στο παράλιο μέτωπο και λιγότερο στο 

βορειοανατολικό τμήμα της περιοχής μελέτης. Η διαφοροποίηση αυτή μπορεί να 

σχετίζεται και με την τυπική τροχιά των καταιγίδων στην Αθήνα, καθώς οι καταιγίδες 

στην Αθήνα τείνουν να έχουν διεύθυνση από τα δυτικά προς ανατολικά. Συγκεκριμένα 

το κέντρο των καταιγίδων περνάει πάνω από τον κόλπο της Σαλαμίνας όπου 



| Εκτενής Περίληψη | 

li 

τροφοδοτείται από το νερό της θάλασσας, και οδηγείται προς το όρος Αιγάλεω και την 

περιοχή του Πειραιά. Η εκφόρτωση της μεγαλύτερης ποσότητας νερού, δηλαδή η 

βροχόπτωση, συμβαίνει απότομα πρώτα στις παράκτιες περιοχές, μιμούμενη τα 

χαρακτηριστικά convective καταιγίδων. Έπειτα, η καταιγίδα συνεχίζει να 

εκφορτώνεται με κατεύθυνση προς τα ανατολικά μέχρι να φτάσει στο κέντρο της 

Αθήνας. Εκεί τελικά κατευθύνεται προς τα βορειοανατολικά ή στα ανατολικά λόγω της 

παρουσίας του όρους Υμηττός. Όταν φτάνει σε τοποθεσίες με υψηλό υψόμετρο, η 

ένταση της βροχόπτωσης έχει μειωθεί, και έτσι στις περιοχές αυτές παρατηρούνται 

βροχοπτώσεις με χαρακτηριστικά stratiform, δηλαδή μέτριας έντασης μεγάλης 

διάρκειας. 

 

Σχήμα 7: Χωρική συσχέτιση της παραμέτρου α της σχέσης Z-R όταν η παράμετρος b είναι 

σταθερή Πηγή: (Bournas and Baltas 2022a) 

Βαθμονόμηση ενιαίας σχέσης Z-R  

Σε αυτή τη βαθμονόμηση, σκοπός είναι η ανάδειξη μίας ενοποιημένης σχέσης Z-R 

χρησιμοποιώντας το σύνολο των συσχετισμένων δεδομένων. Εξετάζονται δύο 

προσεγγίσεις: μία χρησιμοποιώντας όλα τα διαθέσιμα δεδομένα και μια άλλη 

χρησιμοποιώντας ένα σχήμα βελτιστοποίησης/επαλήθευσης. Στην πρώτη περίπτωση 

η σχέση που εξάγεται είναι η Z=300R1.69, ενώ στην δεύτερη η Z=321R1.53. Η επαλήθευση 

της δεύτερης σχέσης σε σταθμούς που δεν συμμετείχαν στην βαθμονόμηση δείχνει 

μικρές αποκλίσεις τόσο στο συντελεστή συσχέτισης όσο και στο σφάλμα RMSE σε 
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επίπεδο σταθμού, και άρα θεωρείται και πιο αξιόπιστη σε σχέση με την πρώτη 

προσέγγιση. 

Οι παραγόμενες σχέσεις Z-R συγκρίνονται στη συνέχεια με βιβλιογραφικές σχέσεις. 

Αρχικά, η σύγκριση γίνεται με βάση τις χρονοσειρές βροχόπτωσης και αθροιστικής 

βροχόπτωσης ανά σταθμό. Στο Σχήμα 8 παρουσιάζεται ένα παράδειγμα για τον 

σταθμό, Ψυχικό, και το επεισόδιο Ε6. Οι μπλε μπάρες υποδεικνύουν τις μετρήσεις του 

βροχόμετρου, ενώ οι μετρήσεις του Rainscanner παρουσιάζονται με γραμμές σε διάφορα 

χρώματα, με βάση τη σχέση Z-R που χρησιμοποιήθηκε. Συγκεκριμένα, με πράσινο 

χρώμα, η εξίσωση Marshal και Palmar, Z=200R1.6, με κόκκινο χρώμα η εξίσωση 

βαθμονόμησης όλων των δεδομένων, Z=321R1.53, με μωβ χρώμα η εξίσωση Z-R 

βασισμένη στο επεισόδιο βροχής, με μαύρο χρώμα η εξίσωση που υπολογίσθηκε για 

τον σταθμό και με μπλε χρώμα η βελτιστοποιημένη σχέση (optimum), όταν 

χρησιμοποιείται το σύνολο δεδομένων του σταθμού μόνο για το συγκεκριμένο 

επεισόδιο βροχής. Το αποτέλεσμα που ταιριάζει καλύτερα σε κάθε γράφημα είναι η 

τελευταία επιλογή από τις παραπάνω, αφού οι παράμετροι Z-R βελτιστοποιούνται για 

να ταιριάζουν με τα συγκεκριμένα δεδομένα. 

Σε όλα τα σχήματα, η εξίσωση Marshal και Palmer δείχνει τις μεγαλύτερες αποκλίσεις. 

Συγκεκριμένα, η σχέση οδηγεί σε υπερεκτίμηση της βροχόπτωσης σε σύγκριση με τα 

δεδομένα του βροχογράφου. Η εξίσωση που είναι πιο κοντά στη βελτιστοποιημένη 

σχέση είναι αυτή που βασίζεται στον σταθμό, και ακολουθούν οι εξισώσεις που 

βασίζονται στο σύνολο των δεδομένων και για το συγκεκριμένο επεισόδιο. Στο Σχήμα 

8, παρατηρείται ότι ενώ η βελτιστοποιημένη σχέση (optimized) φαίνεται να δείχνει την 

καλύτερη προσαρμογή σε κάθε 10λεπτο ύψος βροχόπτωσης, η τιμή της αθροιστική 

βροχόπτωσης δεν παρουσιάζει το καλύτερο αποτέλεσμα σε σύγκριση με τις άλλες 

σχέσεις. Αυτό οφείλεται στην έλλειψη δεδομένων του Rainscanner στις 02:00, όπου δεν 

καταγράφονται δεδομένα, διαταράσσοντας το γράφημα αθροιστικής βροχόπτωσης.  

Τέλος, στα διαγράμματα του σχήματος 9, παρουσιάζονται οι δείκτες RMSE, BIAS, 

Normalized Mean Absolute Error (NMAE) και Normalized Mean Bias (NMB) μεταξύ των 

μετρήσεων του βροχογράφων και των υψών βροχόπτωσης που εκτιμήθηκαν μέσω κάθε 

σχέσης Z-R. 

Όπως φαίνεται στο Σχήμα 9, τα καλύτερα αποτελέσματα σε όλους τους δείκτες τα 

παρουσιάζει το σύνολο των δεδομένων που απαρτίζουν τις βέλτιστες λύσεις (optimum), 

δηλαδή τις Z-R που προκύπτουν για κάθε σταθμό ανά γεγονός. Όλοι οι δείκτες έχουν 

ως βέλτιστη τιμή την μηδενική τιμή, ενώ οι δείκτες BIAS και NMAE έχουν και αρνητικές 

τιμές, αναδεικνύοντας την υποεκτίμηση ή υπερεκτίμηση της βροχής από το 

Rainscanner. Επιπλέον, εκτός από τις τιμές των δεικτών, και συγκεκριμένα την τιμή της 

διαμέσου, που απεικονίζεται με την κόκκινη γραμμή και πρέπει να προσεγγίζει την 
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μηδενική τιμή, εξετάζεται επίσης και η διασπορά του δείγματος, όπου η μικρότερη 

διασπορά είναι και η βέλτιστη.  

 

 

Σχήμα 8: Ύψος βροχής (αριστερά) και αθροιστική βροχόπτωση (δεξιά) για τον σταθμό Ψυχικό, 

στο επεισόδιο Ε6. 

 

  

  

Σχήμα 9: Boxplots των a) RMSE, b) Bias, c) NMAE, and d) NMB για κάθε σχέση Z-R  
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Ανάμεσα στις αξιολογημένες σχέσεις Z-R, αυτή που βασίζεται σε όλα τα δεδομένα, 

Z=321R1.53, είναι η καλύτερη, ακολουθούμενη από τις Z=261R1.52 και Z=431R1.25, ενώ η 

Z=200R 1.6  της Marshal και Palmer δίνει τα χειρότερα αποτελέσματα σε όλες τις μετρικές. 

Η σχέση Marshal και Palmer λόγω της μεγάλης απόκλισης της διαμέσου, από αυτή της 

βέλτιστής, καθώς και τη μεγάλη τυπική απόκλιση, όπως αναδεικνύεται από το μεγάλο 

εύρος μεταξύ του άνω και κάτω τεταρτημόριου, φαίνεται πως δεν ενδείκνυται για το 

σύνολο των σταθμών. Παρόλο που η Z=431R1.25 παρουσιάζει θετικά αποτελέσματα, η 

αρνητική τιμή NMB υποδεικνύει υποεκτίμηση της βροχόπτωσης, και άρα κρίνεται, 

κατάλληλη κυρίως μόνο για επεισόδια υψηλής ανακλαστικότητας. 

Μοντέλο Βροχής - Απορροής 

Το μοντέλο βροχής-απορροής αναπτύχθηκε και εφαρμόζεται στο μη αστικό τμήμα της 

ΛΑΠ Σαρανταπόταμου, με έξοδο το σημείο διασταύρωσης του ποταμού με τον 

αυτοκινητόδρομο της Αττικής Οδού συνολικής έκτασης 231,50 km2. Το διάγραμμα 

χρόνου-απορροής προκύπτει στο εφαρμογή ΣΓΠ, χρησιμοποιώντας μέγεθος κελιού 500 

μ x 500 μ με βάση το μέγεθος της λεκάνης απορροής. Η κατανεμημένη αυτή μορφή 

οδηγεί σε συνολικά 1021 κελιά. Στο Σχήμα 10 παρουσιάζονται οι κλίσεις των κελιών και 

οι τιμές CN AMC-II, ενώ στο Σχήμα 11 παρουσιάζεται το διάγραμμα χρόνου-επιφάνειας 

της ΛΑΠ Σαρανταπόταμου. Το μοντέλο βροχής-απορροής εφαρμόζεται στη συνέχεια 

σε έξι επεισόδια βροχής, που παρουσιάζονται στον πίνακα 2. Ο πίνακας 2 επιπλέον 

περιλαμβάνει τη διάρκεια του γεγονότος, καθώς και την αθροιστική βροχόπτωση των 

προηγούμενων πέντε ημερών, προκειμένου να αξιολογηθούν οι συνθήκες υγρασίας 

του εδάφους την ημέρα του γεγονότος. 

 

Πίνακας 2: Προσομοιωμένα επεισόδια και κύρια χαρακτηριστικά.  

Πηγή: (Bournas and Baltas 2022b) 

Επεισό

διο 

Αρχή 

Ημερομηνία 

Τέλος 

Ημερομηνία 

Διάρκεια 

(h) 

5-Day 

API 

(mm) 

Μέση επιφανειακή 

βροχόπτωση (mm) 

6 17-12-2018 23:40 18-12-2018 13:50 14.2 13.8 25.8 

21 24-11-2019 21:40 25-11-2019 08:30 10.8 37.0 30.4 

31 01-06-2020 14:00 01-06-2020 20:00 6.0 0.0 20.5 

48 09-06-2021 18:00 10-06-2021 02:44 8.7 0.2 25.0 

50 12-06-2021 11:50 12-06-2021 19:00 7.2 32.0 26.0 

61 23-11-2021 17:30 24-11-2021 07:40 14.2 2.6 26.4 
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Σχήμα 10: Κατανεμημένα δεδομένα; a) Κλίσεις %, b) Curve Number για AMC-II συνθήκες 

Πηγή: (Bournas and Baltas 2022b) 

  

Σχήμα 11: Διάγραμμα χρόνου-επιφάνειας: a) Χρόνος απορροής; b) Ποσοστό αθροιστικής 

απορροής ανά ώρα έως στην έξοδο της λεκάνης. Πηγή: (Bournas and Baltas 2022b) 

 

Από τα προσομοιωμένα επεισόδια βροχής, τα επεισόδια 31, 48 και 50 είχαν 

χαρακτηριστικά που βασίζονταν σε convective βροχόπτωση, δηλαδή σε αυξημένης 

έντασης βροχή με μικρή χωρική κλίμακα. Ενώ στα επεισόδια με stratiform βροχόπτωση 

η επιλογή της σχέσης Z-R έδειξε μικρές διαφορές, στα επεισόδια convective, μια σχέση 

Z-R, Ζ=2751.05, η οποία υπολογίστηκε για τον σταθμό Ελευσίνα, οδήγησε σε μη λογικές 

τιμές βροχόπτωσης, όπως φαίνεται από το γεγονός ότι η περίοδος επαναφοράς της 

βροχής σε αυτές τις περιπτώσεις υπολογίστηκε σε πάνω από 100 χρόνια, ενώ οι 

υπόλοιπες σχέσεις Ζ-R εκτίμησαν περίοδο επαναφοράς 10-20 χρόνια. Αυτό το 

αποτέλεσμα δείχνει ότι πρέπει να χρησιμοποιείται με προσοχή η σχέση Z-R, και ειδικά 

σε επεισόδια βροχής με μεγάλες τιμές ανακλαστικότητας και έντασης. Επιπλέον, 

μεταξύ των χρησιμοποιημένων σχέσεων, φαίνεται ότι η σχέση Marshal και Palmer 

οδηγεί στη μεγαλύτερη παροχή αιχμής. Αντίθετα, οι σχέσεις Z-R που βασίζονται σε 

convective επεισόδια εμφανίζουν την μικρότερη αιχμή στα stratiform επεισόδια 

βροχόπτωσης και τη μεγαλύτερη στα convective επεισόδια. Αυτό το αποτέλεσμα δείχνει 
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ότι μια σχέση που βασίζεται σε convective επεισόδια είναι προτιμότερη για χρήση 

αποκλειστικά σε τέτοιου τύπου επεισόδια, δηλαδή σε επεισόδια όπου παρατηρείται 

υψηλή ένταση βροχής, καθώς σε stratiform επεισόδια, και σε μέτριας έντασης βροχής, 

η υποεκτίμηση της παροχής είναι δεδομένη. 

 

  

  

  

Σχήμα 12: Υδρογράφηματα για διαφορετικές σχέσεις Z-R ανά επεισόδιο βροχής. Οι μπλε και 

κόκκινοι ράβδοι υποδηλώνουν τη μέση επιφανειακή βροχόπτωση και τις απώλειες, αντίστοιχα.  

Πηγή:(Bournas and Baltas 2022b) 
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Gridded Flash Flood Guidance 

Το GFFG εφαρμόζεται σε δύο περιοχές, στη ΛΑΠ Σαρανταπόταμου και στο σύνολο της 

περιφέρειας Αττικής. Αρχικά, παρουσιάζονται οι χάρτες που αποτυπώνουν το κατώφλι 

βροχής και αναλύονται τα αποτελέσματα. Στη συνέχεια, το σύστημα εφαρμόζεται σε 

μια σειρά επεισοδίων βροχής, προκειμένου να εξαχθεί ο δυνητικός κίνδυνος 

πλημμύρας σε κάθε περίπτωση. 

Στο Σχήμα 13 παρουσιάζονται οι χάρτες που απεικονίζουν το κατώφλι βροχής για τα 

τρία χρονικά διαστήματα αθροιστικής βροχόπτωσης, 1, 3 και 6 ώρες, για μέτριες 

συνθήκες υγρασίας του εδάφους, ενώ στο Σχήμα 14 παρουσιάζεται το κατώφλι για δύο 

διαφορετικές συνθήκες υγρασίας του εδάφους, μέτριες και κορεσμένες συνθήκες. Σε 

κάθε περίπτωση, εάν οι πραγματικές τιμές της υγρασίας του εδάφους ταιριάζουν με τις 

προαναφερθείσες τιμές, τότε το κατώφλι αποτελεί την τιμή FFG που χρησιμοποιείται 

για σύγκριση με τους προγνωστικούς χάρτες βροχόπτωσης. 

 

 

Σχήμα 13: Κατώφλι βροχής για μέσες τιμές υγρασίας και για τρείς διαφορετικής διάρκειας 

αθροιστική βροχόπτωση a) μίας ώρας b) 3-ωρών και c) 6-ωρών Πηγή (Bournas and Baltas 2022c) 

Εφαρμόζοντας την παραπάνω μεθοδολογία, προκύπτουν οι χάρτες FFG για τρεις 

διάρκειες αθροιστικής βροχόπτωσης, των 1-, 3- και 6- ωρών. Οι χάρτες αυτοί 

συγκρίνονται με δεδομένα πρόγνωσης αντίστοιχης διάρκειας, εξασφαλίζοντας μία 

ισορροπία μεταξύ του διαθέσιμου χρόνου προειδοποίησης και της αυξανόμενης 

αβεβαιότητας.  Συγκεκριμένα, το σύστημα δεν απαντά σχετικά με την ακριβή στιγμή 
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που συμβαίνει η πλημμύρα, αλλά εάν θα προκληθεί πλημμύρα στην εν λόγω διάρκεια. 

Έτσι, ενώ η χρήση μεγαλύτερης διάρκειας βροχής επιτρέπει μεγαλύτερο χρόνο 

αντίδρασης, είναι άγνωστο η ακριβής στιγμή πότε θα συμβεί η πλημμύρα εντός της 

διάρκειας αυτής.   

 

Σχήμα 14: Κατώφλι βροχής για 3-ωρη διάρκειας αθροιστική βροχόπτωση και για συνθήκες 

υγρασίας a) ACM-II (μέσες) και b) AMC-III (υγρές); Πηγή (Bournas and Baltas 2022c) 

Η επίδραση της υγρασίας του εδάφους στους παραγόμενους χάρτες είναι σημαντική, 

όπως φαίνεται στο Σχήμα 14, όπου απεικονίζεται το κατώφλι βροχής για δύο συνθήκες 

υγρασίας, μέτριες και υγρές συνθήκες. Στη δεύτερη περίπτωση οι τιμές που έχει το 

κατώφλι είναι μικρότερες, που υποδηλώνει ότι απαιτείται μικρότερο ύψος βροχής για 

να εκδηλωθεί πλημμύρα. Τονίζεται ότι ο αντίκτυπος της υγρασίας του εδάφους είναι 

μέγιστος σε περιοχές με διαπερατά εδάφη, διότι η τιμή του CN σε αυτά τα εδάφη 

μεταβάλλεται σημαντικά όταν επικρατούν ξηρές ή υγρές συνθήκες. Αντίθετα, 

περιοχές που είναι σχετικά αδιαπέρατες, όπως ο αστικός ιστός, δείχνουν λιγότερη 

εξάρτηση από τις συνθήκες υγρασίας του εδάφους, καθώς η δυνατότητα απορροής 

είναι ήδη υψηλή. 

Στη συνέχεια, παρουσιάζεται η εφαρμογή του συστήματος GFFG στη ΛΑΠ 

Σαρανταπόταμου καθώς και σε όλη την έκταση της περιφέρειας Αττικής για μια σειρά 

επεισοδίων βροχής. Σε αυτήν την περίληψη, παρουσιάζεται το Επεισόδιο βροχής Ε50, 

που συνέβη στις 12-06-2021. Οι χάρτες βροχόπτωσης και τα κελιά όπου εκτιμάται ο 

κίνδυνος πλημμύρας για δεδομένα αθροιστικής βροχόπτωσης 3 ωρών, παρουσιάζονται 

στο Σχήμα 15. Όπως φαίνεται στο σχήμα, οι περιοχές στις οποίες εμφανίζεται κίνδυνος 

πλημμύρας είναι συνδεδεμένες με τις περιοχές όπου παρατηρήθηκε υψηλή 

βροχόπτωση. Στο Σχήμα 16 παρουσιάζονται οι περιοχές όπου το σύστημα εμφάνισε 

κίνδυνο έναντι πλημμύρας, σε κάποια χρονική στιγμή, τόσο για τη ΛΑΠ 

Σαρανταπόταμου όσο και για την περιοχή της Αττικής.  



| Εκτενής Περίληψη | 

lix 

   

   

Σχήμα 15: 3-ωρη Κατανεμημένη μορφή βροχή και κελιά με κίνδυνο πλημμύρας για τρεις 

χρονικές στιγμές κατά τη διάρκεια του Επεισόδιού Ε50 στη ΛΑΠ Σαρανταπόταμου 

 

   

   

Σχήμα 16: Περιοχές για τις οποίες το σύστημα ανέφερε κίνδυνο πλημμύρας, για το επεισόδιο 

Ε50, χρησιμοποιώντας διαφορετικής διάρκειας αθροιστική βροχόπτωση. 
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Όπως φαίνεται, το τελικό αποτέλεσμα είναι το ίδιο, ανεξαρτήτως της αθροιστικής 

διάρκειας που χρησιμοποιείται (1- ,3- ή 6-ωρών).  Η διαφορά μεταξύ των 

αποτελεσμάτων των βροχοπτώσεων διαφορετικής διάρκειας όπως αναφέρθηκε 

έγκειται στον χρόνο προειδοποίησης με την 6-ώρη να έχει τον μεγαλύτερο. Αντίθετα, 

με τη χρήση της FFG διάρκειας μίας ώρας είναι εφικτός ο προσδιορισμός της χρονικής 

πλημμύρας, όπου στην περίπτωση αυτή είναι μεταξύ των ωρών 15:00 και 16:00, 

ανατολικά της λεκάνης ενώ μεταξύ 16:00 με 17:00 εμφανίζονται οι μέγιστες τιμές. Το 

πλεονέκτημα του μετεωρολογικού ραντάρ έγκειται στο γεγονός ότι οι προβλέψεις 

αυτές μπορούν να ανανεώνονται σε λεπτές χρονικές κλίμακες (π.χ. 10λέπτα) και άρα 

μπορεί να συνεισφέρει στην παραγωγή άμεσων προγνώσεων (Nowcasts). 

Τέλος, πραγματοποιείται μια ανάλυση ευαισθησίας, όπου οι κύριες παράμετροι του 

συστήματος μεταβάλλονται και εκτιμάται η επίδραση τους στο αποτέλεσμα. Οι κύριες 

παράμετροι του συστήματος είναι α) η περίοδος επαναφοράς της βροχόπτωσης που 

χρησιμοποιείται για τον υπολογισμό της παροχής κατωφλιού, β) οι συνθήκες υγρασίας 

του εδάφους και γ) η σχέση Z-R που χρησιμοποιείται για τον μετασχηματισμό της 

ανακλαστικότητας σε βροχόπτωση. Στο Σχήμα 17, στη πρώτη γραμμή απεικονίζεται το 

στιγμιότυπο του συστήματος για μια δεδομένη χρονική στιγμή (12-06, 16:00, τρίωρη 

βροχόπτωση), όπως υπολογίζεται βάσει των αρχικών παραμέτρων του συστήματος. 

Στην δεύτερη γραμμή, η αριστερή εικόνα απεικονίζει την επίδραση της περιόδου 

επαναφοράς της βροχόπτωσης στον υπολογισμό του κατωφλίου απορροής, με τη 

μεταβολή της από T=5 έτη σε T=10 έτη, η μεσαία εικόνα απεικονίζει την επίδραση του 

ποσοστού υγρασίας του εδάφους, με την μεταβολή του από 70% σε 100%, και η δεξιά 

εικόνα απεικονίζει την επίδραση της σχέσης Z-R, με τη μεταβολή της σχέσης από 

Z=321R1.53 σε Z=200R1.60. Σε σύγκριση με το αρχικό στιγμιότυπο, η επίδραση της περιόδου 

επαναφοράς είναι ελάχιστη, ενώ η επίδραση των συνθηκών υγρασίας του εδάφους 

είναι η πιο μεγάλη. Η αλλαγή στη σχέση Z-R αυξάνει τον αριθμό των κελιών που 

πλημμυρίζουν, αφού η εφαρμογή της οδηγεί σε υψηλότερες τιμές έντασης βροχής, 

αλλά όχι στον ίδιο βαθμό με την επίδραση του ποσοστού υγρασίας.  

Τα αποτελέσματα δείχνουν πως οι διαφορές στην περίπτωση μεταβολής της σχέσης Z-

R είναι συνήθως μικρές, αφού το ύψος της βροχής δεν μεταβάλλεται σημαντικά, με 

αποτέλεσμα να επηρεάζονται κυρίως τα κελία των οποίων το ύψος της αθροιστικής 

βροχόπτωσης ήταν κοντά στην τιμή της υπολογιζόμενης FFG.  
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Σχήμα 17: Ανάλυση ευαισθησίας ενός στιγμιότυπου (πρώτη γραμμή) με αλλαγή: α) της 

περιόδου επαναφοράς από Τ=5 έτη σε Τ=10 έτη, β) τις συνθήκες υγρασίας από 70% σε 100% και 

γ) τη σχέση Z-R από Z=321R1.53 σε Z=200R1.60. 

Αλγόριθμος παρακολούθησης καταιγιδοφόρων νεφών 

Ο αλγόριθμος παρακολούθησης νεφών αποτελείται από τις διαδικασίες ανίχνευσης 

των κυττάρων και της παρακολούθησης της πορείας τους. Στην πρώτη περίπτωση, 

παρουσιάζεται η ικανότητα του αλγορίθμου να ανιχνεύει τα σύννεφα με βάσει το όριο 

ανακλαστικότητας. Στο Σχήμα 18 παρουσιάζεται η διαφορά μεταξύ της χρήσης 

διαφορετικού κατωτάτου ορίου ανακλαστικότητας, 25 και 30 dBZ, καθώς και η χρήση 

του αυστηρού πολύγωνου ή της προσαρμογής μίας έλλειψης (fitting ellipse) για την 

αναπαράσταση των περιοχών των κυττάρων. Όπως φαίνεται, το όριο 25 dBZ λειτουργεί 

καλά όταν χρησιμοποιείται για την αναγνώριση των πολυγώνων, αλλά όχι όταν 

χρησιμοποιείται με ένα προσαρμοσμένο ελλειψοειδές. Επιπλέον χρησιμοποιώντας ως  

ελάχιστο εμβαδόν ενός καταιγιδοφόρου νέφους τα 4 km2, προσδιορίζονται συνολικά 11 

κύτταρα. Στην περίπτωση των 30 dBZ, το προσαρμοσμένο ελλειψοειδές παρουσιάζει 

καλά αποτελέσματα, σχετικά με την προσαρμογή του στα αντίστοιχα πολύγωνα, την 

εκκεντρότητα του και την κλίση του. Επομένως, δεδομένης της έμφασης σε συστήματα 

έντονης βροχόπτωσης, χρησιμοποιείται το 30 dBZ με την προσαρμοσμένη έλλειψη για 

τον προσδιορισμό των κέντρων των κυττάρων. Τέλος, επιλέγεται και το όριο των 35 dBZ 

για την επισήμανση περιοχών στις οποίες επικράτησαν ισχυρής έντασης βροχές, 

κατάλληλες για την εφαρμογή του αλγόριθμου παρακολούθησης σε επίπεδο 

επεισοδίου βροχής. 

Στιγμιότυπο 

α) Β) γ) 



| Εκτενής Περίληψη | 

 

lxii 

  

  

Σχήμα 18: Αποτελέσματα του αλγορίθμου ανίχνευσης όταν χρησιμοποιείται διαφορετικό 

κατώφλι ανακλαστικότητας και σχήμα προσαρμογής. 

Σχετικά με τη διαδικασία παρακολούθησης σε διαδοχικές εικόνες, ο αλγόριθμος 

επιλύει το πρόβλημα της αντιστοίχισης κάθε ιστορικού κυττάρου με τα κύτταρα που 

απεικονίζονται στη νέα εικόνα. Ένα κύτταρο δύναται, είτε να εντοπιστεί σε μία νέα, 

ανεξάρτητη θέση, είτε να συγχωνευτεί με ένα άλλο κύτταρο σε μία νέα θέση (merge), 

είτε να εξαφανιστεί. Τέλος νέα κύτταρα δύνανται να δημιουργηθούν χωρίς να έχει 

υπάρχει κάποια σύνδεση τους με ένα ιστορικό κύτταρο, εφόσον δεν τηρείται ο κανόνας 

του διαμερισμού (split) που βασίζεται κυρίως στην απόσταση, το μέγεθος και σχήμα 

των δύο κυττάρων. Στο Σχήμα 19, ο αλγόριθμος παρακολούθησης εφαρμόζεται 

χρησιμοποιώντας 10-λεπτες εικόνες ανακλαστικότητας ανά 10-λεπτο χρονικό 

διάστημα. Συγκεκριμένα, πέντε εικόνες ανακλαστικότητας, διάρκειας 2 λεπτών, που 

είναι η χρονική ανάλυση του ραντάρ, συγχωνεύονται για να οριστεί το πεδίο 

αντανάκλασης διάρκειας 10 λεπτών. Στο σχήμα με κόκκινα πολύγωνα παρουσιάζονται 

τα κύτταρα της τρέχουσας χρονικής στιγμής, ενώ με διακεκομμένη μαύρη γραμμή τα 
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κύτταρα της προηγούμενης χρονικής στιγμής για τα οποία γίνεται η αντιστοίχιση. Από 

τα αποτελέσματα φαίνεται πως ο αλγόριθμος λειτουργεί ικανοποιητικά, 

εφαρμόζοντας τους κανόνες συγχώνευσης και διαμερισμού όπου απαιτείται.  

 

  

  

Σχήμα 19: Εφαρμογή του αλγόριθμου παρακολούθησης μεταξύ 4 εικόνων με χρονικό βήμα 10-

λεπτών  

Τέλος, ο αλγόριθμος παρακολούθησης εφαρμόζεται σε όλα τα επεισόδια βροχής που 

συλλέχθηκαν από το Rainscanner (Appendix A). Στο Σχήμα 20, παρουσιάζεται η 

παρακολούθηση για τα επεισόδια Ε31 και Ε50. Συγκεκριμένα, με μπλε γραμμή 

παρουσιάζεται το όριο κάθε κυττάρου (σε πολύγωνο) το οποίο σε κάποια χρονική 

στιγμή ήταν πάνω από το κατώφλι ανακλαστικότητας, 35 dBZ στην πρώτη γραμμή και 

40 dBZ στην δεύτερη γραμμή. Επιπλέον, με κόκκινο χρώμα απεικονίζονται τα κέντρα 

των κυττάρων ενώ με διακεκομμένες μαύρες γραμμές η συνεχής παρακολούθηση τους. 

Τα αποτελέσματα για τα 40 dBZ είναι πιο ευκρινή λόγω του μικρότερου αριθμού των 

αναγνωρισμένων κυττάρων. Τα αποτελέσματα για όλα τα επεισόδια βροχής 
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απεικονίζονται στο Παράρτημα Β (Appendix B),  όπου γίνεται ο εντοπισμός των 

περιοχών στις οποίες παρατηρήθηκαν μεγάλες τιμές ανακλαστικότητας, και άρα όσο 

περισσότερη έκταση καταλαμβάνουν αυτές στην περιοχή μελέτης, τόσο περισσότερες 

περιοχές επηρεάζονται αρνητικά από το συγκεκριμένο επεισόδιο βροχής. Δηλαδή, 

γίνεται μια εκτίμηση της σφοδρότητας μεταξύ των επεισοδίων βροχής. 

 

  

  

Σχήμα 20: Περιοχές με υψηλές τιμές ανακλαστικότητα, άνω των 35 dBZ (πρώτη γραμμή) και 

κάτω των 40 dBZ (δεύτερη γραμμή), για τα επεισόδια βροχής 31 και 50 

Στο Σχήμα 21, για τα επεισόδια 31 και 50, παρουσιάζονται τα κέντρα των κυττάρων για 

κατώφλι 35 dBZ, όπου απεικονίζεται με βελτιωμένη σαφήνεια η θέση των κυττάρων 

και κυρίως η διεύθυνση των νεφών. Τα αντίστοιχα αποτελέσματα για όλα τα επεισόδια 

βροχής παρουσιάζονται στο Παράρτημα C (Appendix C). Η εφαρμογή αυτή οδηγεί στο 

Σχήμα 22 όπου απεικονίζονται οι κύριες διευθύνσεις των καταιγιδοφόρων νεφών στην 

Αττική. 
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Σχήμα 21: Αποτύπωση των κέντρων των καταιγιδοφόρων νεφών με ανακλαστικότητα πάνω 

από 35 dBZ και εντοπισμός της κύριας διεύθυνσης 

 

Σχήμα 22: Κύριες Διευθύνσεις καταιγιδοφόρων νεφών στην περιοχή της Αττικής. Με κόκκινες 

γραμμές οι πιο συχνές, και εν συνέχεια οι μπλε, οι κίτρινες και οι μοβ, με ποσοστά σύμφωνα 

και με το διάγραμμα. 

Η πλειονότητα των καταιγίδων, το 40% των επεισοδίων βροχής που μελετήθηκαν, έχει 

κατεύθυνση από νοτιοανατολικά προς βορειοδυτικά, περνώντας πάνω από την Αθήνα. 

Ακολούθως, παρουσιάζονται κατευθύνσεις από δυτικά προς ανατολικά και από 

βορειοδυτικά προς ανατολικά, καθώς και μερικές περιπτώσεις με κατεύθυνση από νότο 

προς βορρά. Τέλος, αποκλειστικά σε  περιπτώσεις χειμερινών επεισοδίων, εντοπίζονται 
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και διευθύνσεις από βορρά προς νότο. Σε αυτές τις περιπτώσεις, τα νέφη 

χαρακτηρίζονται από χαμηλή ταχύτητα και χαμηλές έως μέτριες τιμές 

ανακλαστικότητας, που απαντώνται σε stratiform νέφη. Εν γένει, η πλειονότητα των 

επεισοδίων βροχής με convective χαρακτηριστικά, δηλαδή υψηλές τιμές 

ανακλαστικότητας και ταχύτητας είχαν  διεύθυνση δυτικά / νότιο δυτικά προς 

ανατολικά, όπως αυτές απεικονίζονται στο Σχήμα 21 για τα επεισόδια Ε31 και Ε50.  

Συμπεράσματα και Μελλοντική Έρευνα 

Η παρούσα Δ.Δ. παρέχει ένα ολοκληρωμένο πλαίσιο για τη χρήση δεδομένων 

μετεωρολογικού ραντάρ με σκοπό την εκτίμηση του πλημμυρικού κινδύνου και την 

έγκαιρη προειδοποίηση πλημμυρών. Η έρευνα προσφέρει απαντήσεις σε βασικά 

ερωτήματα σχετικά με τη χρήση δεδομένων μετεωρολογικού ραντάρ, αποκαλύπτοντας 

ότι, ενώ τα δεδομένα μετεωρολογικού ραντάρ μπορεί να έχουν ευρεία εφαρμογή, η 

αβεβαιότητα ως αποτέλεσμα των σφαλμάτων και μη ύπαρξης ποιοτικού ελέγχου 

μπορεί να περιορίσει την πρακτικότητά τους.  

Η έρευνα αποτελείται από δύο κύριες ενότητες. Η πρώτη ενότητα εξετάζει τις διάφορες 

πτυχές της τεχνολογίας των μετεωρολογικών ραντάρ, συμπεριλαμβανομένων των 

τύπων, των πηγών σφαλμάτων και των διαδικασιών ελέγχου ποιότητας. Επιπλέον, 

επικεντρώνεται στη σχέση Z-R και στη μεταβλητότητά της στο χρόνο και στο χώρο. 

Συγκεκριμένα, μέσω της συσχέτισης με επίγειους βροχογράφους, αναδεικνύεται η 

συσχέτιση των παραμέτρων της σχέσης Z-R με τοπογραφικά χαρακτηριστικά, όπως η 

εγγύτητα στην ακτογραμμή και στα υψηλά υψόμετρα. Παράγοντες όπως ο τύπος του 

ραντάρ, η τοποθεσία, η βαθμονόμηση και η διόρθωση του σήματος είναι κρίσιμοι και 

επηρεάζουν την ποιότητα των παραγόμενων δεδομένων. 

Η δεύτερη ενότητα επικεντρώνεται στην εφαρμογή ενός ΣΕΠΠ που εστιάζει σε 

επεισόδια αιφνίδιων πλημμυρών, τα οποία χαρακτηρίζονται από μεγάλης έντασης 

βροχής, μικρής διάρκειας και μικρής χωρικής κλίμακας. Συγκεκριμένα, αναπτύσσεται 

ένα ολοκληρωμένο πλαίσιο εφαρμογής ενός ΣΕΠΠ, εστιάζοντας στην ενσωμάτωση 

υδρολογικών διαδικασιών για την εκτίμηση του πλημμυρικού κινδύνου. Αυτή η 

προσέγγιση λαμβάνει υπόψη μεταβαλλόμενους παράγοντες σε πραγματικό χρόνο, 

όπως οι συνθήκες υγρασίας του εδάφους και η υδρομετεωρολογική κατάσταση που 

επικρατεί στην περιοχή εφαρμογής. Ειδικότερα, αναπτύσσεται και εφαρμόζεται ένα 

υδρολογικό κατανεμημένο μοντέλο βροχής-απορροής το οποίο υποβοηθάει το σύστημα 

GFFG για την αξιολόγηση του κινδύνου πλημμύρας σε επίπεδο κελιού (500x500 m2). Τα 

αποτελέσματα της Δ.Δ. διερευνούν και αναδεικνύουν την επίδραση των τιμών των 

παραμέτρων στα χρησιμοποιούμενα μοντέλα, και επισημαίνουν ότι, παρά την ύπαρξη 

αβεβαιότητας, η πιο κρίσιμη παράμετρος για την βελτίωση της αξιοπιστίας ενός ΣΕΠΠ 
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είναι η αξιοπιστία των δεδομένων εισόδου του και κυρίως αυτά της βροχόπτωσης και 

του επιπέδου υγρασίας του εδάφους.  

Τέλος, αναπτύσσεται και εφαρμόζεται ένας αλγόριθμος ανίχνευσης και 

παρακολούθησης των καταιγιδοφόρων νεφών, μέσω του οποίου μελετώνται οι κύριες 

διευθύνσεις των νεφών. Η εφαρμογή του αλγορίθμου αναδεικνύει τα πολλαπλά οφέλη 

της χρήσης ενός μετεωρολογικού ραντάρ υψηλής χωροχρονικής ανάλυσης, σε 

συστήματα υδρομετεωρολογικής πρόγνωσης.  

Συνοψίζοντας, η Δ.Δ. θέτει τις βάσεις για την ανάπτυξη και εφαρμογή ενός 

ολοκληρωμένου ΣΕΠΠ, το οποίο θα παρέχει σε επιχειρησιακό επίπεδο μετεωρολογική 

πρόγνωση, εκτίμηση πλημμυρικού κινδύνου και εξαγωγή μηνυμάτων προειδοποίησης 

σε πραγματικό χρόνο. Η μελλοντική έρευνα επικεντρώνεται στην επέκταση των 

ευρημάτων της εν λόγω διατριβής και σε άλλες περιοχές με διαφορετικά 

χαρακτηριστικά, ενώ προτείνεται η διαφοροποίηση και ανάλογη συγκριτική 

αξιολόγηση επιμέρους σημείων της έρευνας, χρησιμοποιώντας επιπλέον δεδομένα 

όπως μετρήσεις παροχών, δορυφορικά δεδομένα, δεδομένα από ντιστρομέτρα και άλλα 

μετεωρολογικά ραντάρ. Τέλος, εξετάζεται η εφαρμογή στοχαστικών μεθόδων με σκοπό 

την ποσοτικοποίηση και μείωση της αβεβαιότητας των επιμέρους συστημάτων.  
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1. Introduction 

1.1 Natural Hazards and Disasters 

Natural hazards are severe and extreme weather and climate events that can potentially 

cause excessive negative impacts on human life, society, the economy, and the environment. 

In this case, a natural hazard is renamed as a natural disaster. The United Nations Office for 

Disaster Risk Reduction (UNDRR) defines a disaster as a “serious disruption of the 

functioning of a community or a society at any scale due to hazardous events interacting 

with conditions of exposure, vulnerability, and capacity, leading to one or more of the 

following: human, material, economic and environmental losses and impacts” (UNDRR 

2017).  

Although a natural hazard is usually the result of natural processes, how humans interact 

with the environment contributes to their potential to cause natural disasters. Therefore, the 

root causes of disaster risk and disasters stem from structural conditions of a particular 

mode of development and growth (Oliver-Smith et al. 2017). 

Natural hazards can be categorized with various conditions. The classification of natural 

hazards is usually done based on the source of the natural cause. These can either be a) 

Geophysical, e.g., earthquakes and volcanos, b) climate-related (hydrometeorological), e.g., 

floods, wet mass movement, storms, extreme temperature, drought, and wildfire, and c) 

biological, e.g., epidemic, insect infections (Leaning and Guha-Sapir 2013). 

Globally, natural hazards, e.g., tropical cyclones (wind and storm surge), earthquakes, 

tsunamis, and floods, are anticipated to cause an average annual loss of US$314 billion to 

the built environment. This issue seriously threatens the global agenda of sustainable 

development. Large, high-income, hazard-exposed economies make up most of the 

worldwide average annual loss in absolute terms. The most significant risk concentrations 

are found in many low- and middle-income countries, particularly small-island developing 

states, as compared to yearly capital investment or social expenditure. In Figure 1-1 the 

annual economic damages from disasters as a share of GDP for the years between 2010-2020 

is shown, indicating a considerable amount in the North and South America, as well as in 

Asia, Australia and southeast area of Africa. 
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Regarding Europe, the most economic damages are found in the easter part of Europe, 

namely Italy, and the Balkans. In Figure 1-2, Figure 1-3 and Figure 1-4 the number of events, 

the number of people affected and the economic losses per each natural disaster, floods, 

extreme temperature, wildfires, storms and winds, droughts and mass movement are 

illustrated, respectively (CRED 2022). As shown, the majority of events occurring are flood 

events followed by storms and winds, which are usually interrelated. Moreover, floods 

affect the majority of people and cause the second most economic damages per year. 

Furthermore, the graphs show that year-by-year the percentage in each case is not 

decreasing, signifying that more measures are needed to decrease these numbers.   

 

 

Figure 1-1: Annual economic damages from disasters as a share of GDP, 2010-2020. Source: Our 

World in Data, (stated within figure) 

 

Figure 1-2: Number of Natural Hazards worldwide per year 
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Figure 1-3: Number of people in millions affected by Natural Hazards worldwide per year 

 

 Figure 1-4: Economic losses in billion € caused by Natural Hazards worldwide per year 

1.2 Floods 

Floods affect more people globally than any other natural hazard. They can cause 

widespread devastation that can displace people, damage property and critical public 

infrastructure, and ultimately result in loss of life. Moreover, as the planet continues to 

warm up due to climate change, the intensity and frequency of flooding will likely increase. 

The EU 2007/60 directive defines a flood as “the temporary cover of the soil by water which 

is not normally covered by it, which includes floods from rivers, mountain torrents, 

Mediterranean ephemeral water courses, and floods from the sea in coastal areas, and may 

exclude floods from sewerage systems” (European Union 2007). There are three common 

flood types: fluvial floods, also known as river or stream floods, pluvial or flash floods, and 

coastal floods, which are often called storm surges. Each type of flood occurs and is forecast 

in different ways. The impacts of each type of flood are also different, as are the models and 
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actions needed to avoid or minimize flooding damage. More detail for each type of flood is 

as follows: 

Fluvial (Riverside) 

A fluvial, or river flood, occurs when the water level in a river, lake, or stream rises and 

overflows onto the neighboring land. The water level rise of the river could be due to 

excessive rain or snowmelt. This is the most common type of flooding found in typical river 

systems. The damage from a river flood can be widespread as the overflow affects smaller 

rivers downstream, which can cause dams and dikes to break and swamp nearby areas. 

The severity of a river flood is determined by the terrain profile and the duration and 

intensity of rainfall in the river’s catchment area. Other factors include soil water saturation 

and climate change effects on rainfall duration and intensity. In flat areas, floodwater tends 

to rise slowly and be shallower, but it can often remain for days. In hilly or mountainous 

areas, floods can occur within minutes after heavy rain, drain very quickly, and cause 

damage due to debris flow. 

Pluvial (Flash Floods)  

A pluvial flood occurs when extreme rainfall creates a flood independent of an overflowing 

water body. Pluvial flooding can occur in any location, urban or rural, even in areas with no 

nearby bodies of water. There are two common types of pluvial flooding: surface and flash 

floods. The first occurs when an urban drainage system is overwhelmed and water flows 

into streets and nearby structures. In such a case, flooding occurs gradually, so there is 

adequate lead time to address the problem with low risk. The water level is usually shallow 

and creates no immediate threat to lives but may cause significant economic damage.  

The second case is Flash Floods, which are sudden and rapidly developing floods 

characterized by their swift onset and high intensity. Flash floods typically occur in areas 

with steep terrain, urban environments with poor drainage systems, arid regions where the 

ground cannot absorb water quickly, and places prone to intense rainfall. They can be 

triggered by various factors, mainly heavy rain but also rapid snowmelt, dam or levee 

failures, and sudden water releases from reservoirs. Other factors that contribute are the 

geomorphological and geological characteristics of the basin, such as the basin size and 

slope, the poor infiltration capacity of soils, and the soil moisture conditions at the start of 

the event (Merz and Blöschl 2003; Houze Jr. et al. 2015; Velásquez et al. 2020). Flash floods 

are usually local-scaled events, as they are highly related to convective-type storms, and 

thus, the spatial coverage of the affected areas is reduced (Houze Jr. et al. 2015). Sometimes, 

flash floods can also be caused by landslide debris flows (Posner and Georgakakos 2015). 

Uncontrolled urbanization and deforestation are among the first causes behind flash 

flooding, while climate change effects, such as the increasing occurrence and rain intensity 
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of storm events, have altered the periodicity of these events (Alfieri et al. 2012; Gaur and 

Simonovic 2015; Rogger et al. 2017; Caloiero et al. 2017). All the above factors have made 

flash flooding an evolving threat since areas that once did not flood are now prone to 

flooding (Bournas and Baltas 2021a).  

Flash floods occur within a concise timeframe, often within a few hours or even minutes of 

heavy rainfall. A flood occurring in less than six hours is usually classified as a Flash Flood. 

Their unpredictability and ability to catch people off guard due to their rapid formation 

often lead to devastating impacts on human communities and the natural environment, 

making flood floods among the deadliest weather-related hazards worldwide. In the 

Mediterranean, flash floods have recently caused substantial economic damages and the 

cost of human lives (Diakakis et al. 2012, 2019; Pereira et al. 2017; Feloni 2019; Varlas et al. 

2019; Spyrou et al. 2020). 

Coastal floods 

Coastal flooding is the inundation of land areas along the coast by seawater. Common 

causes of coastal flooding are intense windstorm events occurring at the same time as high 

tide (storm surge), and tsunamis. Storm surge is created when high winds from a windstorm 

force water onshore – this is the leading cause of coastal flooding and often the most 

significant threat associated with a hurricane or typhoon. The effects increase depending on 

the tide – windstorms during high tide can result in devastating storm surge floods. In this 

type of flood, water overwhelms low-lying land and often causes devastating loss of life and 

property. Several other factors, including the windstorm's strength, size, speed, and 

direction, determine the severity of a coastal flood. The onshore and offshore topography 

also plays an important role. Due to rising sea levels and climate change, more coastal cities 

and communities tend to become more vulnerable to coastal flooding. 

1.2.1 Flooding Mitigating Measures 

A combination of measures can be adopted to mitigate the risk and the consequences of 

flooding. The standard approach categorizes the mitigating measures as prevention, 

protection, and preparedness. Prevention measures are usually non-structural measures 

aiming at flood-mitigating regulation and policy, while protection measures are usually 

structural measures that aim to reduce the likelihood or the severity of flood events or both. 

Finally, preparedness measures are proactive plans and strategies that prepare individuals, 

communities, and infrastructure for potential flood events, such as Early Warning Systems 

(EWS). A list of measures can be found below. 
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Prevention Measures 

• Sustainable planning and development management:  

• Land-use and Floodplain planning: Integrating flood risk considerations into land-

use planning to avoid or implement regulations to control development in flood-

prone areas and preserve natural flood storage areas. 

• Sustainable drainage systems: Promotion of techniques to manage surface water 

runoff and reduce the risk of local flooding. 

• Sustainable agriculture practices: Encouragement of agricultural practices that 

minimize soil erosion and promote natural water retention. 

• Climate Change Adaptation: Considering the potential impacts of climate change on 

flood patterns, incorporating climate change projections into planning processes can 

help design more resilient infrastructure and flood management strategies. 

Protection Measures 

• Flood defense infrastructure: Construction or improvement of flood defenses, such 

as levees, flood walls, and embankments, to protect communities and critical 

infrastructure. 

• Flood reservoirs: Construction of reservoirs to retain excess water during heavy 

rainfall and release it gradually to mitigate downstream flood risks. 

• Coastal defenses: Installation or enhancement of coastal protection measures, such 

as seawalls, dikes, or beach nourishment, to mitigate coastal flooding and erosion. 

• Floodplain restoration: Restoration of floodplains and wetlands enhance natural 

flood storage capacity and promotes ecosystem-based flood risk reduction. 

• Retrofitting: Implement measures to retrofit existing buildings and infrastructure to 

withstand or minimize flood damage, such as installing flood barriers or raising 

foundations. 

Preparedness Measures: 

• Early warning systems: Developing and implementing robust early warning 

systems to provide timely alerts and evacuation instructions to at-risk communities. 

• Emergency response plans: Creation of comprehensive emergency response plans, 

including evacuation procedures, coordination mechanisms, and communication 

strategies. 

• Flood forecasting and monitoring: Establishment of systems for monitoring rainfall, 

water levels, and river flows to improve flood forecasting accuracy and response 

capabilities. 
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• Public awareness and education: Implement public awareness campaigns, 

educational programs, and community engagement initiatives to enhance 

understanding of flood risks and encourage proactive preparedness actions. 

• Insurance and financial mechanisms: Promotion of insurance schemes and financial 

instruments to support individuals, businesses, and communities in managing and 

recovering from flood-related losses. 

1.2.2 The 2007/60/EC Flood Directive 

The European Union (EU) has established a framework for flood risk management and 

mapping through Directive 2007/60/EC (European Union 2007). Apart from the definition 

of flooding, the directive introduces the “Flood risk” term, defined as the combination of 

the probability of a flood event and the potential adverse consequences for human health, 

the environment, cultural heritage, and economic activity associated with a flood event 

(European Union 2007). The definition of Flood Risk follows the flood hazard, exposure, 

and vulnerability framework. Flood hazard refers to the probability of occurrence of a flood 

event and its characteristics, such as the magnitude, frequency, and duration of flooding. In 

contrast, flood exposure and vulnerability refer to the degree of susceptibility of a system to 

the impacts of a flood hazard. The combination of the above results in the flood risk, 

representing the probability of a flood event occurring and the potential negative 

consequences or impacts resulting from that event. 

Under the 2007/60/EC Directive, each EU member state is required to proceed with the 

following reports: 

• Preliminary Flood Risk Assessment (PFRA). The assessment focuses on identifying 

areas at potential risk, assessing historical flood events, and evaluating the potential 

adverse consequences of future floods for humans, the environment, cultural 

heritage, and economic activity. 

• Flood Hazard and Risk Maps (FHRM). Flood hazard maps contain the potential 

extent, depth, and flow velocity for different probability scenarios, e.g., returning 

periods of 50, 100, and 1000 years, while risk maps also include the potential adverse 

consequences associated with the flood scenarios. 

• Flood Risk Management Plan (FRMP): These plans aim to reduce flood risk through 

prevention, protection, and preparedness measures, considering environmental, 

social, and economic factors.  

Furthermore, the Flood Directive recognizes the influence of climate change on flood risk. 

Therefore, the above reports are not only required to be reviewed every six years but the 

impact of climate change on the probability of flood occurrence is also stated to be addressed 

by considering climate change projections in the flood risk assessments and management 
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plans, which highlights the need for adaptive strategies to address changing flood patterns 

and potential impacts. 

The directive follows the general principles laid by the 2000/60/EC directive, which focuses 

on water management. Specifically, the river basin approach is promoted, encouraging 

coordination and cooperation among member states sharing river basins or coastal areas, 

which leads to holistic and integrated management of flood risks, considering the 

interconnected nature of water systems. Moreover, the directive also emphasizes the 

importance of involving the public, stakeholders, and relevant authorities in flood risk 

management by encouraging member states to promote information sharing, public 

consultation, and cooperation at different levels to ensure effective flood risk management. 

Concerning the implementation of the Directive, the first implementation cycle was from 

2010- 2015, while the second cycle covered the period from 2016-2021. The Commission 

assessed the second cycle’s Preliminary Flood Risk Assessments as prepared by the Member 

States at the end of 2021 in the 6th Implementation Report in December 2021 (European 

Union 2021). The third cycle is ongoing and covers the years between 2022-2027. All states 

have completed the FRMPs of the first cycle, while the FRMPs of the second cycle have been 

sent to the commission by most Member states. Specifically, out of the 27 EU states, eight 

have not yet sent their second cycle FRMP to the commission, with the public consolation 

process either ongoing or just concluded as of March 2023. Greece features the most 

prolonged delays, where the second cycle FRMP has not yet reached the public consolation 

process (European Union 2021), although the second cycle PFRA has been sent (Directorate-

General for Environment (European Commission) 2021). 

1.3 Flood Early Warning Systems (FEWS) 

1.3.1 Introduction 

A Flood Early Warning System (FEWS) is a non-structural flood preparedness measure that 

does not focus on mitigating the impact of the hydrological characteristics of a flood. 

Instead, it focuses on providing the needed information to take timely actions to reduce the 

disaster risk. The United Nations Office for Disaster Risk Reduction (UNDRR) defines an 

EWS as “an integrated system of hazard monitoring, forecasting, and prediction, disaster risk 

assessment, communication and preparedness activities systems and processes that enable 

individuals, communities, governments, businesses, and others to take timely actions to reduce 

disaster risks in advance of hazardous events” (UNISDR 2017), while the World Meteorological 

Organization (WMO), defines a flood forecasting and warning system as “ the linkage between 

the basic structures” that “include provision of specific forecasts with magnitude and timing of 
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rainfall, establishment of a network of hydrometric stations, operation of real-time flood forecasting 

model software and issuance of early flood warnings” (WMO 2013a).  

Although not a direct flood mitigation measure, FEWS's ability to reduce the flood risk is 

widely acknowledged (UNDRR 2003; WMO 2013a; Pappenberger et al. 2015; Thielen-del 

Pozo et al. 2015), but there are not widely implemented in the required level worldwide. 

Specifically, a report made by the UNDRR (Perera et al. 2019) found that 43% featured an 

advanced EWS system, while 38% and 19% featured intermediate and basic systems, 

respectively. In a basic system, simple methods are used to observe and predict floods, such 

as manual collection and data transfer of stream level and rainfall, and do not feature a 

dedicated Flood Forecasting Center (FFC). The intermediate level uses more resources, such 

as real-time monitoring, but warnings are not issued after a model-based flood forecasting 

system but instead on the decision-making of flood forecasting professionals based on past 

experiences. Finally, advanced systems include all the available requirements for a proper 

FEWS implementation, such as a) telemetric data collection and transfer, b) model-based 

flood forecast, and c) continuous monitoring and updates. From the above, it is 

understandable that only advanced systems are model-based FEWS implementations, while 

the basic and intermediate levels mainly focus on observation and thresholds set manually, 

mainly by experience. 

The WMO and UNODFF have begun an initiative to provide worldwide coverage of EWS, 

the “Early Warnings of All” initiative which is built around four key pillars, a) The disaster 

risk knowledge and management, b) Detection, observation, monitoring, analysis, and 

forecasting, c) Warning dissemination and communication and d) preparedness and 

response capabilities. The UN Secretary-General formally launched the initiative in 

November 2022 at the COP27 meeting in Sharm El-Sheikh to provide a worldwide EWS by 

the end of 2027. 

1.3.2 FEWS Components 

A FEWS consists of various components such as a) disaster risk knowledge, b) detection and 

monitoring analysis, c) forecasting and thresholds of hazards, d) warning dissemination and 

communication, e) preparedness to respond, and f) response capabilities (Perera et al. 2019). 

The first three components form the technical components, while the latter are non-

technical. One of the most critical parameters of a FEWS is the forecasting lead time 

provided. However, attention should be given to the forecasted lead time by a FEWS since 

the actual lead time required in real-time may differ from the forecasted lead time. Actual 

lead time is subject to time delays due to data processing, model simulation, and even the 

time it takes to decide to issue the warning until the warning reaches its target.  In Figure 

1-5, an illustration of EWS time delays times in non-relative magnitudes is presented (Sene 
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2008). For instance, if the catchment response time is less than the forecast lead time, the 

EWS should rely on rainfall-based forecasts rather than rainfall-runoff simulation forecasts.  

 

Figure 1-5: Illustration of time delays in issuing a warning for a single rainfall-runoff model 

 Source: (Sene 2008) 

Therefore, although the technical components are decisive in providing sound flood risk 

estimations, they may be ineffective if the intended recipient does not receive the warnings, 

does not understand it, or cannot take action promptly (Perera et al. 2020).  Below, the 

components of a FEWS are explained in more detail: 

1. The disaster risk Knowledge component involves the knowledge of historical flood 

records in the area. Moreover, it involves risk mapping and vulnerability assessment to 

identify areas at higher risk of flooding and the potential impact on communities and 

infrastructure under continuous land use change conditions. This information helps in 

targeting warnings to specific areas and implementing mitigation measures. 

2. The detection and monitoring component involves observing and forecasting the 

meteorological, river, and tidal conditions. Challenges in this component lie in the 

collection, quality control, and assimilation of real-time datasets concerning rainfall, river 

water levels, soil moisture, and other relevant hydrological parameters in sufficient 

temporal and spatial scales. A sufficient number of gauge stations and the implementation 

of quality controlled remote-sensed datasets such as weather radars and satellites are 

required to achieve high-quality datasets.  

The Forecasting and Modeling component is the core of a FEWS implementation, as it uses 

forecasting and hydrological models to predict potential flood events. These models analyze 

current data and simulate future scenarios, providing forecasts of river flows and flood 

extents and allowing for timely warnings. Finally, the required thresholds, which are used 

to either issue or not a warning, are also derived in this component. Alternative words for 

thresholds include triggers, criteria, warning levels, critical conditions, alert levels, and 

alarms, which all denote the hydrometeorological conditions, allowing an acceptable lead 

time before the flooding threshold is reached. A decision should be reached to issue a flood 
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warning (Sene 2008). The hydrological variables used to define the thresholds may vary, 

such as rainfall accumulation or stage heights, and define the complexity of the FEWS and 

the models required. Challenges in the forecasting component mainly lie in producing high-

resolution results in an increased lead time. 

3. The warning dissemination and communication component involves how the flood 

warning is disseminated to the public, local authorities, and emergency responders. Defined 

procedures should be established concerning which, to whom, and how information is 

transmitted. Typical channels may include text messages, sirens, mobile apps, social media, 

and other means to ensure broad and timely dissemination of information. The challenges 

lie in reaching the right stakeholders in a suitable format at the right time. For instance, 

simple text messages can be transmitted to the public in an adequate lead time, but more 

detailed information and hazard maps to the emergency response agencies in near real-time 

to form flood mitigation strategies.  

The preparedness to respond and response capabilities components consist of the 

procedures followed after receiving a warning message or in case of a system failure. The 

preparedness mainly lies in the awareness of FEWS operators and developing a healthy 

understanding of detailed response plans. These plans should include information about 

which organizations and agencies, e.g., the civil protection, the police, and the social and 

health services, among others, should be involved to what an extent in responding to a flood 

event. Some key points of these plans should include (Sene 2008), a) clear chain of command 

for better coordination and information communicating to the public and the media, b) key 

contacts which are used for regular communication between the agencies, c) resilience of 

the system in case of a component failure, d) special arrangements concerning vulnerable 

groups, e.g., people with disabilities, elderly people and children and transient populations, 

i.e., the population that is temporary residents such as tourists and travelers, e) health and 

safety considerations apart from flooding, such as waterborne diseases, hazardous 

materials, and electrocution from exposed cables, f) community engagement for tailored 

response plans and g) continuous improvement of the system. Early warning systems work 

best when communities know the risks, understand the warnings, and know how to 

respond (Perera et al. 2020). Community engagement and awareness programs are crucial 

in ensuring people understand the importance of heeding flood warnings and know what 

actions to take. Training emergency responders and the public on how to respond to flood 

warnings also improves the community's overall preparedness. Finally, a FEWS system 

should undergo regular testing and exercises to ensure its functionality and effectiveness. 

Critical components of the system should have redundancies to minimize the risk of failure 

during critical situations by being reliable, resilient, and capable of functioning during 

adverse weather conditions.  
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These first three components, the technical components, define the system's complexity. A 

FEWS's primary purpose is first to identify areas that are vulnerable to flooding and 

secondly to be able to identify and monitor weather systems that produce flood events in a 

reasonable lead time (Spyrou et al. 2020). The first can be performed in non-real-time by 

studying historical events and multi-criteria analysis (Feloni et al. 2020) implemented into 

the FEWS. The second should be performed in near real-time, considering the requirement 

of high-resolution and quality results in adequate lead time. These two parameters are 

usually in direct contrast since a) high-resolution results may require more information and 

model processing time, leading to reduced lead times, and b) longer lead times require more 

extended forecasts, which are subject to higher uncertainty.  

FEWS classification 

When designing a FEWS, several considerations should be made, such as a) the forecasting 

requirement, b) the real-time data availability, c) the forecasting system on which the model 

will operate, d) the required model performance, and e) the time, budget, and skills available 

for the model implementation (Sene 2008). The forecasting requirement is usually formed 

by the end user needs but restrained by the real-time data availability and the budget. 

Typical forecasting requirements are presented in Table 1-1 in a general descending order 

considering model complexity.  

 

Table 1-1: Typical applications of flood forecasting Source: (Sene 2008)  

Requirements Typical Applications 

To provide additional warning lead 

time 

Providing the emergency services and public with 

advanced warning of the likely times for the onset of 

flooding or the peak of the flood event 

To estimate peak levels or flows. As above, also providing estimates for peak values, 

perhaps also linking to maps of likely flooding extent 

based on off-line simulation modeling or past experience 

To estimate flooding duration. As above, also considering when to issue the message 

that the flood risk has reduced or passed 

To model flooding depths, extent, 

and possibly, velocities. 

As above, but providing real-time updates to the likely 

spatial extent of flooding, together with depths and 

velocities at general or specific locations (districts, roads, 

houses, etc.) 

To provide information to assist 

with the operation of control 

structures 

Optimizing response to mitigate flooding (e.g., at dams, 

river control structures, tidal barriers etc.) and possibly 

to reduce penalty payments and opportunity losses  

To provide information to assist 

with event-specific factors 

Providing advice on the implications of various problems 

arising during an event; for example, failure of flood 

defense, blockages by debris, pumps failing etc. Also, 

exploring different options for response (e.g., controlled 

diversion of flows) 
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For instance, when only additional warning lead time is required, the FEWS can be designed 

to monitor only rainfall intensities and compare them to pre-defined thresholds. However, 

if peak flows or event depths and velocities are required, then hydrological and 

hydrodynamic modeling is required. These requirements define the needed processes that 

the FEWS should be simulating. The overall model complexity is determined by the model 

parameters and resolution, i.e., the spatial and temporal resolution of the used datasets and 

provided results, as well as the use of sophisticated models for the hydrological, 

hydrodynamic, and forecasting processes. Apart from requirements for specific control 

structure operations, i.e., dams and barriers, most FEWS usually meet the first two 

requirements, i.e., the additional warning lead time and the estimation of peak levels and 

flows. 

FEWS design is based on various parameters such as a) the provided lead times, b) the 

models and processes used, and c) the scale. In Table 1-2, such a classification is shown, 

along with their characteristics. For instance, a FEWS designed for flash flood events would 

focus on short-term forecasting, while a FEWS designed for river basin monitoring may 

focus on medium-term forecasts. The difference in scale often defines the models and 

hydrological processes used since strictly meteorological forecasts are often used with long-

term weather assessment or with short-term flash flood systems, where the provided 

forecast times are not allowed to provide adequate forecasting times. The FEWS 

implementation scale also defines the results' spatial resolution. When nationwide or large 

regions are studied, increasing the spatial resolution may lead to significant computing 

times, which do not usually add to the purpose of an EWS, such as providing simple 

warning lead times in large areas. In contrast, in local applications such as the protection of 

urban areas and sensitive facilities, the cost of flooding is higher, and therefore integrated 

hydrological and hydrodynamic models are preferred due to their high-resolution products.  

Table 1-2: FEWS Classification based on several characteristics 

Characteristics #1 #2 #3 

Based on Lead Times Short-term Medium-term Long-term 

  (Forecast time)   1 - 6 hours Hours - days Weeks - months 

Based on the Models used Meteorological Hydrological Integrated 

 (Thresholds)  Rainfall Thresholds Flow/Stage Thresholds Flood depth 

        Flood extent 

Based on Scale   National Level Regional Local 

 (Spatial Resolution)   Small Medium High 

 

Most FEWS applications usually focus on short-term and medium-term forecasts based on 

either rainfall or flow and stage flow thresholds. Medium-term systems are used when flood 
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warnings are required for medium and large river basins with extensive concentration time. 

In these cases, flooding occurs several hours after a rainfall event. Therefore, flow-based 

systems that use single or multipoint stage-water observations provide better, more detailed 

information. In such cases, using medium-range forecasts is advantageous since they 

provide increased lead time, while the continuous monitoring of the event provides less 

uncertainty regarding the hydrological processes involved. Short-term systems, usually 

referred to as nowcasts, aim to provide warnings for fast-paced rainfall events such as flash 

floods. Flash floods usually occur due to convection and are characterized by their high-

intensity rainfall rates and local footprint. In these events, a FEWS is usually designed to use 

rainfall thresholds since there is no time to monitor the river’s stage and flow conditions.  

The main difference between rainfall-based and flow-based FEWS implementations lies in 

the hydrological variables each system uses as the threshold. A rainfall-based system will 

use a rainfall-derived product as the flood threshold, such as rainfall intensity and 

accumulation, while a flow-based system relies on flow-derived products, such as peak 

discharge, flood volume, and stage. Flow-based systems usually derive more information 

but require more data to calibrate and operate. A rainfall-based system compares current 

and forecasted weather conditions, but in most cases, a rainfall-runoff modeling process is 

intergraded to assess the hydrological causes of flooding. Compared with a flow-based 

system, the main issue with a rainfall-based system is that they cannot predict the exact time 

and place where flooding may occur. However, they are more cost-effective and can be 

easier applied and maintained (Suhardi et al. 2020). 

Moreover, the majority of any uncertainty involved in any system is caused by the quality 

of the rainfall forecasts made. In flash floods with fine time scales, a rainfall-based system 

can be as reliable as the flow-based system in flash floods at high rainfall return periods 

(Corral et al. 2019). The key to maximizing the performance of a rainfall-based system is the 

quality of high-resolution rainfall forecasts. To that end, the use of well-calibrated weather 

radar QPE with increased spatial and temporal scales, such as the ones provided by new X-

Band weather radar systems, is a crucial component for accurate and effective FEWS 

(Anagnostou et al. 2010, 2018; Borga et al. 2011; Picciotti et al. 2013).  

1.3.3 FEWS Implementations 

MeteoAlarm 

MeteoAlarm is a rainfall threshold-based EWS implemented in 37 European countries 

through their National Meteorological and Hydrological Services (NMHSs). Although not 

a Flood EWS, since MeteoAlarm is easier to be implemented, it is often used as a rainfall-

based FEWS when more advanced systems are not in place (Staudinger et al. 2009). 
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The system aims to streamline the dissemination of weather warnings and ensure that 

timely and accurate information reaches the public to improve preparedness and response 

to adverse weather conditions. The system observes up to 12 weather parameters, such as 

temperature and rainfall rate, and uses a color-coded system to represent different levels of 

weather warnings based on the following: 

• Green: No warnings - no particular awareness of the weather is required. 

• Yellow: Be aware - the weather situation is potentially dangerous; people should be 

attentive to changes in weather conditions. 

• Orange: Be prepared - there is a high likelihood of severe weather, and people should 

take action to protect themselves and their property. 

• Red: Take action - severe weather is expected, and people must take immediate 

action to stay safe. 

The system lacks any modeling processes and uses deterministic thresholds for each 

hydrometeorological parameter derived from each NMHS. The spatial resolution of the 

warnings is usually at an administrative prefecture scale. Nevertheless, the system is still 

operational since it acts as a one-stop-shop service where data can easily be implemented 

into cell phone weather applications (Kaltenberger 2022). 

European Flood Awareness System (EFAS) 

The EFAS system is a FEWS implementation to improve the preparedness for floods within 

Europe. It was the first service of the Copernicus Emergency Management Service (CEMS), 

launched in 2013 and, since 2012, is fully operational. The System is designed to provide 

early flood warnings and forecasts, particularly in large trans-national river basins, even up 

to five days in advance. The CEMS Meteorological and Hydrological Data Collection 

Centers (MDCC and HDCC, respectively) collect and analyze the datasets. The EFAS 

products are available in real-time only for the national agencies, while archived products 

older than one month are available under specific terms and conditions. The generated 

products are: 

• Flash-flood indicators: indication of flood risk from flash floods up to 5 days,  

• Medium-range flood forecasts: Upcoming flood events up to 10 days,  

• Seasonal hydrological outlooks: Hydrological situation over the next eight weeks  

• Flood impact forecasts: Regions where flood impacts are expected in the next ten 

days.  

The system first targeted the medium-range flood forecasts aimed at large river systems 

often found in central Europe. To that end, the generated products are points within the 

river network.  EFAS hydrological forecasting chain is designed to follow three key 
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elements, a) the meteorological forcing and land surface data, b) the hydrological models, 

and c) the EFAS forecasts and products.  

The meteorological forcing and land surface data are divided into three groups, a) the 

historical hydro-meteorological time series records and land surface data, b) the real-time 

hydro-meteorological observations, and c) the meteorological forecasts. The historical data 

are the data that are collected and used to calibrate and validate the models, while the real-

time datasets are collected through numerous sources, such as national agencies, and quality 

checked by the MDCC and HDCC. Finally, the meteorological forecasts are forecasts in 

either a single realization or an ensemble (multiple realizations) from a single Numerical 

Weather Prediction System (NWPS), using the real-time datasets as the forecast's starting 

point. 

The EFAS system makes use of the LISFLOOD hydrological model. The model is a spatially 

distributed conceptual and physical-based rainfall-runoff model explicitly designed for 

large river basins (Thielen et al. 2009). The model simulates canopy and surface processes, 

soil and groundwater flow, and river channel flow. It incorporates precipitation, 

temperature, potential evaporation, and evaporation rates for open water and bare soil 

using two soil layers, Topsoil and Subsoil. More information and a complete description of 

the LISFLOOD model can be found in (Van Der Knijff et al. 2010). The model datasets 

required are easily accessible since they are in line with European-wide available datasets. 

The model is used in 6-hour and daily time steps using five km grid cells of the EFAS 

domain. The runoff generated in each grid is then routed downstream using the kinematic 

wave approach.  

Finally, the EFAS meteorological forecasts are forced into the LISFLOOD model to produce 

a series of forecasting products. The model is used in a deterministic simulation, i.e., single 

forecast, or ensemble forcing, i.e., multiple realizations. The simulations are performed in 6-

h and daily steps. The results for each cell are then compared with flood thresholds derived 

after statistical analysis. Specifically, threshold classes are derived based on the associated 

hazard class as low (L), medium (M), high (H), and severe (S). Low and medium classes 

report high water levels but no flood expected, while high and severe denote flooding, with 

high reporting near bank-full conditions. The classification is based on a quantile approach, 

where a selected time-return period, e.g., 5- 10- and 20- years, is defined as the threshold. 

Considering Flash Flood indicators, the EFAS system uses two approaches. The first is the 

ERIC system (Alfieri and Thielen 2015; Raynaud et al. 2015), where forecasts are performed 

using numerical weather prediction datasets and the LISFLOOD model to provide surface 

runoff in a 1 km x 1 km spatial scale. Following this, the accumulated flow in pre-specified 

points, the ERIC reporting points for 6, 12, and 24-hour periods, is compared with thresholds 

derived from the mean annual maximum from 20-year climatology datasets. The products 
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derived are the probability of flash flooding in the reporting points for a provided lead time 

of fewer than 48 hours and the ERIC affected area, i.e., the river network contributing to 

each ERIC reporting point, indicating the areas at risk from flash flooding. 

The second approach is the EPICHA system (Park et al. 2017, 2019), based on radar 

precipitation monitoring and nowcasting. In this approach, the European OPERA radar 

composite provides nowcasts, using the Lagrangian persistent up to 6 hours ahead, for 

rainfall accumulation of 1-, 3-, 6-, 12- and 24-hour periods. The forecasted rainfall 

accumulation is then compared with regional intensity duration thresholds derived from 

the regional climatic characteristics and river basin upstream area, as published by the 

MeteoAlarm consortium. The EPICHA flash flood indicators are generated every 15 

minutes, in a 1 km x 1km grid scale and up to 6 hours lead time. The benefit of this approach 

lies in providing products outside the river network on a high-resolution temporal scale 

aimed at very localized events that are difficult to predict with NWPSs. The downside is the 

provided lead time, i.e., less than 6 hours, which is much less than what is provided by the 

ERIC system. 

The Flash Flood Guidance System (FFG) 

The Flash Flood Guidance (FFG) system was designed and developed by the Hydrological 

Research Center (HRC) for the US National Weather Service (NWS), which currently still 

uses operationally in the USA for protection against flash floods. The system was developed 

in the 1980s to combine meteorological and hydrological processes in real-time to produce 

operational flash flood predictions. The system relies on estimating two hydrological 

parameters, a) the threshold runoff and b) the Flash Flood Guidance (FFG) value. The 

threshold runoff is defined as “the volume of effective rainfall of given duration that is generated 

over a given catchment area, and that is just enough to cause bankfull flow at the outlet of the draining 

stream,” while the FFG value is defined as “the volume of actual rainfall of a given duration, that 

generates the said threshold runoff” (Georgakakos 2006). The first is equal to the surface runoff 

that produces bankfull conditions and therefore is related to the basin’s characteristics, such 

as the basin’s area, slope, land use, and cross-section dimensions. The second one, the FFG 

value, is the output of the system and denotes the amount of rainfall of a given duration that 

is required to generate the threshold runoff conditions (Georgakakos 1986, 2006; Norbiato 

et al. 2008; Hapuarachchi et al. 2011; Douinot et al. 2016). When the rainfall losses and runoff 

are known, the FFG value can be calculated using reverse rainfall-runoff modeling. Since 

the threshold runoff is static, the FFG value varies based on soil moisture conditions that act 

as rainfall loss interpretation. In saturated soil moisture conditions, a lower value of FFG is 

expected, denoting that less rainfall is required to reach the runoff threshold. The FFG value 

is then used as a rainfall-based threshold above which minor flooding will occur. 
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The system is used as a decision support system, meaning it does not produce robust 

deterministic flood warnings but through its multiple products. 

The system is divided into three components; the threshold runoff component, the 

hydrological model, and the FFG computations. The first is a pre-process of the system, 

which aims to derivate the threshold runoff value. The second involves the continuous 

hydrological simulation of the study area, used to obtain the current and future soil 

moisture conditions before the storm. Finally, the FFG computations involve the FFG value's 

real-time computations and the comparisons made with forecasted values. 

Since the NRCS has used the system for operational usage, there have been numerous 

studies concerning the various components of the system. While research on the estimation 

of the threshold runoff value is deemed crucial (Carpenter et al. 1999; Reed et al. 2002; Kim 

and Bae 2006), the majority of the research concern the Hydrological model used (Finnerty 

et al. 1997; Gupta et al. 1998; Carpenter et al. 1999; Anderson 2002; Norbiato et al. 2008, 2009). 

Specifically, the Sacramento Soil Moisture Accounting (SAC-SMA) hydrological model is 

being used in the operational system, which features two soil layers, upper and lower zones, 

while 16 parameters govern all the hydrological processes. Therefore, the primary part 

research focused on the SAC-SMA model, specifically the optimization algorithm and 

procedure of its parameters (Gupta et al. 1998; Hogue et al. 2000; Koren et al. 2000; Boyle et 

al. 2001; Anderson 2002; Norbiato et al. 2008, 2009; Zhang et al. 2011; Wu et al. 2012). 

Moreover, although the model was designed to be a deterministic, lumped-based model for 

daily simulations, it has been used as a semi-distributed model (Boyle et al. 2001) and in 

distributed form (Smith et al. 2004; Reed et al. 2007) as well, while it is the temporal scale 

has also been explored (Finnerty et al. 1997; Bournas and Baltas 2021a). Overall, the SAC-

SMA model has proven to be robust, with the advantage of applying a-priori estimation of 

its parameters, based on soil characteristics (Koren et al. 2000, 2003; Anderson et al. 2006), 

making it applicable in ungauged basins where FFG values are estimated. Nonetheless, 

other hydrological models and implementations of the FFG system have been used with 

promising results, such as the ones concerning different spatial resolutions, leading to the 

lumped FFG (LFFG) (Sweeney 1992), the Flash Potential Index (FFPI), (Smith 2003), the 

Gridded Flash Flood Guidance (GFFG) (Schmidt et al. 2007) and the Distributed  Flash Flood 

Guidance (DFFG), (Clark et al. 2014). Finally, various studies focused on the success rate of 

the flood warning estimations on historical events, which led to the conclusion that although 

the system performed well, improvements are possible through more precise calibration 

and simulation of the system using and high-resolution datasets (Seo and Breidenbach 2002; 

Norbiato et al. 2009; Patsinghasanee et al. 2017).  

The FFG concept has also been applied for Global coverage by the WMO, utilizing satellite-

derived soil and weather datasets. Implementations have been established in South and 
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West Africa, Southeast Europe, Turkey, India, South and Central Asia, and Central America 

(Georgakakos et al. 2022).  The FFG concept does not require high-temporal and tuned 

hydrological modeling, is easy to understand and implement, and therefore, is considered 

practical and easy to operate FFWS (Hapuarachchi et al. 2011; Zeng et al. 2016; Georgakakos 

et al. 2022). The FFG systems are continuously evolving, favoring a) the training of local 

forecasters to improve the quality of forecasts and decision-making, b) the use of better 

quality datasets, c) implementations of urban flash flood forecasting, landslide assessment, 

and riverine routing, and d) continuous development of ancillary system products for 

agriculture (Georgakakos et al. 2022). The FFG long process of a Research to Operation 

(R2O) FFWS has shown that such systems should be continuously evolving through the 

collaboration of nation-based forecasts and system configurators to tailor the system to the 

individual country needs (Georgakakos et al. 2022).  

FEWS in Greece 

A dedicated flood or flash flood alert system does not exist in Greece. As a member of the 

EU, Greece benefits from products with European coverage. To that end, Greece uses the 

Copernicus emergency programs, specifically for floods, the EFAS system. As 

beforementioned, the EFAS system focuses mainly on medium-term forecasts for medium 

and large river systems. Such systems are rarely found in Greece since Greece features an 

extensive coastline and thus is subjectable mainly to flash floods and floods of small 

ephemeral rivers. Flash flood products such as ERIC and EPICHA are deemed more 

valuable for application in Greece. However, the EPICHA product, which is capable to 

provide up to 6-hour nowcasts, is unavailable due to the non-coverage of the OPERA 

weather radar composite in Greece. At the same time, the ERIC system focuses on specific 

rivers which require continuous monitoring and are usually not the case of recent flooding 

events in Greece.  

Greece’s only EWS application is the MeteoAlert system, a meteorological warning system 

that uses pre-determined rainfall thresholds based on historical events and experience. The 

National Hellenic Meteorological Service (NMMS) provides such forecasts and warnings in 

daily reports, but they usually lack the needed temporal-spatial information to deal with 

flash flood events. In the wake of catastrophic floods (Diakakis et al. 2019, 2022; Feloni et al. 

2020; Varlas et al. 2021), as well as other natural disasters, mainly wildfires, a warning 

transmission system, the “112” system is being used to transmit warning messages about 

natural disasters is being implemented. The message includes information about the areas 

where natural disasters occur or may occur, along with evacuation directions. Although the 

system has not been validated yet, it is deemed to have increased the awareness of people 

to the risks of natural disasters (Diakakis et al. 2022). Overall, the system works best when 

the events occur, while forecasted warnings are mainly based on MeteoAlarm products. In 



| Chapter 1 |Introduction | 

 

20 

general, FEWS focuses on flash floods and relies their products on the use of weather radar 

nowcasts, in contrast to NWP forecasts which are the only source of forecasts provided in 

Greece. Greece’s weather radars are currently not used to warn against floods, a widely 

discussed problem (Kolydas 2023). 

1.4 Means of Precipitation Measurement 

The measurement and estimation of the precipitation field remains a challenging task in 

both meteorology and hydrology. The instruments used to measure precipitations can be 

categorized into two groups: ones that detect and quantify rainfall at the surface, such as 

rain gauges and disdrometers, and the remote-sensed instruments that measure rainfall well 

above the ground (Michaelides et al. 2009). Both instrument categories tend to measure the 

flux of the DSD using different methods, which do not always correlate with each other. 

Remote-sensed instruments can provide estimates of the entire rainfall field instantly, while 

on-surface instruments require a designated network and the application of interpolation 

algorithms.  

Rainfall gauge stations provide point measurements of precipitation using various 

technologies such as an accumulation mechanism, a tipping bucket, a weighting type, and 

optical technology. In each case, the measurement mechanism differs, improving the quality 

of the measurement or the temporal resolution. The oldest method is the accumulation 

mechanism, which uses a simple cylinder to record precipitation on a rolling paper. 

However, problems with digitization and temporal distribution resulted in preferring a 

tipping bucket technology, which is the most cost-effective and used type of rain gauge. The 

weighting type gauge uses a high sensitivity weight mechanism to measure the input 

precipitation, which offers advantages over the tipping bucket, both in quality since it does 

not underestimate high rainfall rates and applications since it can measure hail and snow. 

Optical rain gauges are similar to disdrometers, using a light beam source and a detector to 

identify and measure falling hydrometers. The weight-type and optical rain gauges provide 

significant quality improvements but are more expensive and require more maintenance, 

making the tipping bucket the most typical technology in existing rainfall gauge networks. 

In either case, the datasets are stored in a digital recorder within the rain gauge station, and 

their extraction is made by either an in-situ visit to the station or by transmitting them 

through a wired or wireless network connection, e.g., GPRS, should an internet connection 

is available to the location.  

The main advantage of rain gauges over remote-sensed instruments is the quality of 

precipitation measurement at the station level, which is often referred to as the “true 

rainfall” since rainfall, in hydrological applications, is the amount of water that reaches and 
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is measured in the ground level instead in the upper level’s atmosphere. The main 

disadvantage, however, is that they are point measurements of rainfall height and, 

therefore, cannot represent the spatial variability of a rainfall field. Instead, a rain gauge 

network must first be established, and an area interpolation algorithm, e.g., Inverse Distance 

Weighting (IDW) method or geostatic methods (Kriging), should be applied. This 

interpolation tends to correlate the quality of a generated rainfall field with the density of 

the station network. A dense network will most likely recreate the rainfall field with 

acceptable accuracy, but a sparse network’s generated rainfall field will most likely have 

quality issues regardless of the interpolation algorithm used. The desired density of a rain 

gauge network depends on the application. 

In most cases, rainfall datasets are required for weather monitoring or hydrological 

applications; thus, the density is designed to fit in specific administrative borders or onto a 

specific basin. The World Meteorological Organization (WMO 2008) provides general 

guidelines for implementing such networks, but practical reasons, such installation issues, 

e.g., power and internet connections, as well as practical reasons, e.g., inaccessibility of 

designated locations and equipment safety, among others, has often led to the formation of 

heterogenous rain gauge networks, with inappropriate density for basin scale applications. 

For instance, in Attica, Greece, most rain gauge stations tend to be located within or near 

cities, while high-elevation areas are non-represented according to the guidelines 

(Theochari et al. 2021). Moreover, the demand for high-resolution data in real-time has 

raised the cost of each station, making the maintenance of the entire network challenging. 

An un-maintained rain gauge can accumulate many problems due to weather exposure, 

reducing the measured data quality (La Barbera et al. 2002). 

For these reasons, more efficient ways involving remote-sensed precipitation 

measurements, i.e., weather radars and satellites, have increased attention (Berenguer et al. 

2005). Weather radars have a long history of implementation. They are considered the best 

data source for rainfall-runoff modeling and storm-tracking applications (Price et al. 2014), 

while satellite data are recent implementations gaining ground due to their accessibility of 

datasets with extensive coverage (Gilewski and Nawalany 2018).  

Weather radars use radio waves to detect and measure the reflectivity of objects, which is 

later transformed into rainfall intensity, whereas satellites measure the radiation emitted or 

reflected by clouds and precipitation. The instrument's main differences lie in the generated 

product’s spatial and temporal resolution. Weather radars provide better resolution and 

quality datasets than satellite measurements but are restricted to a pre-specified range. 

Satellites instead tend to cover broader views, such as continental and even global views, 

with reasonable accuracy. Satellite datasets are preferred for meteorological applications, 

such as monitoring cloud movement and formation in the cynoptic, and less on mesoscale 
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systems, while weather radars are preferred for mesoscale and microscale storm tracking 

and rainfall-runoff applications. Table 1-3 features the characteristics, advantages, and 

disadvantages of the above means of precipitation field estimation.  

The most reoccurring debate in rainfall-runoff applications is about the advantages and 

disadvantages of rain gauges to weather radar. Rain gauge measurements require a network 

with a proper density to represent the rainfall field but tend to feature the best quality 

regarding the actual rainfall measurements. On the other hand, a weather radar tends to 

feature a better spatial representation of rainfall but is subject to quantitate errors due to its 

remote-sensed nature. Weather radar datasets require proper quality control and calibration 

of the radar system to reduce errors derived by signal errors, attenuation, noise, and 

transformation to rainfall rate (Villarini and Krajewski 2010; Pathak et al. 2013).  

Table 1-3: Most frequently used means of precipitation field estimation  

Recording Device 
Spatial Resolution/ 

Weather Scale 

Temporal 

Resolution 
Advantages Disadvantages 

Rain Gauge  

Network 

Interpolation of Point 

Measurements 

Microscale/ Mesoscale 

1 min - 1 h 

High-quality 

measurements on 

points location 

Low Spatial 

Resolution 

Difficult 

maintenance 

Weather Radar 

Network 

0.5 - 2.0 km 

Mesoscale 
5-15 min 

High spatial 

resolution 

Numerous 

measurement Errors 

Meteorological 

Satellites 

4 - 6 km 

Cynoptic Scale 
5-15 min 

High area coverage 

High data availability 

Good reproduction of 

clouds location 

Numerous 

measurement Errors 

Low-Quality QPE 

Low Spatial 

Resolution 

 

The preference between the use of the two products is usually related to the required 

application for the actual datasets to be used. Since weather radars provide better spatial 

and temporal resolution compared to rain gauges, their use has seen increased interest in 

numerous applications such as hydrological modeling and simulation and storm tracking 

and forecasting (K. Ajami et al. 2004; Nanding et al. 2015; Anagnostou et al. 2018; Grek and 

Zhuravlev 2020; Schleiss et al. 2020; Sokol et al. 2021). The gridded nature of the radar 

datasets is intergraded better when fully distributed models are used, semi-distributed and 

lumped models can also be used through the aggregation of the datasets in either coarser 

scales or in sub-basin and basin scales by calculating the Mean Areal Precipitation (MAP).  

A critical factor in all studies is the scale of the analysis. While the spatial scale can be easily 

configured through modeling, the temporal resolution between radar and rain gauges must 

be identified and analyzed accordingly (Paschalis et al. 2013; Price et al. 2014; Schleiss et al. 

2020). Another factor involving the desired rainfall field representation resolution is the size 

of the basin examined. Specifically, in small basins, such as urban basins, the required 
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resolution is much higher than in larger basins.  In the work of Berne et al. (2004), two 

equations that relate the basin size and the required spatial and temporal resolutions are as 

follows:  

𝛥𝑡 = 0.75𝛢0.3 (1. 1) 

𝛥𝑥 = 1.5𝛥𝑡 (1. 2) 

where Δt [s] is the required temporal resolution, A[km2] is the basin area, and Δx[m] is the 

desired spatial resolution. By solving the above equations, Figure 1-6 forms, where it is 

easily observed that for basins below 10 km2, the desired temporal resolution of the rainfall 

field should be less than six minutes, and its spatial resolution should be less than 4 km x 4 

km. This finding indicates that in small catchments, the limitation of the required rainfall 

fields lies more on their temporal resolution rather than their respective spatial resolution.  

Above 100 km2, the spatial resolution limitation becomes more critical than temporal 

resolution. 

 

Figure 1-6: Relationship between temporal and spatial resolution of precipitation to the basin area 

based on Eq. 1.1 and 1.2 by Berne et. al (2004) 

In any case, it is vital to notice that while radars feature higher spatial and temporal 

resolution, their application in rainfall-runoff modeling does not always translate into more 

accurate estimations (Cunha et al. 2015; Seo et al. 2015a). The problem is mainly the 

significant processes and quality control needed to obtain good QPE from the radar system. 

Moreover, while calibrating a weather radar system secures the correction of systematic 

errors, weather-related errors are difficult to correct using a single weather radar image. To 

that end, weather radar rainfall estimates are best used after being corrected using rain 

gauge measurements. This practice yields better accuracy than raw unadjusted radar 

estimates (Borga 2002; Zhang and Srinivasan 2010). Overall, advances in radar and 

computer technology have increased the number of high-quality QPE applications (Collier 

1996; Sokol et al. 2021). 
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1.5 Weather Radar  

1.5.1 Introduction 

Weather Radars ought their development to the radar technology which was developed and 

used for military use before, during, and after World War II. A Radar, an acronym of Radio 

Detection and Ranging, is an instrument that generates, transmits, and receives 

electromagnetic waves to detect objects at a maximum distance and minimum size restricted 

by the power of the transmitted signal and wavelength, respectively. The original scope of 

radar systems was to locate enemy ships and aircraft. However, scientists during and after 

the war noticed echoes and noise in the scans where rainfall occurred. Although this was 

first considered an annoyance instead of a significant interest (Probert-Jones 1990), scientists 

began closely examining the correlation between precipitation and the generated echoes. 

The basis of weather radar meteorology was established first with the work of Ryde (1946) 

on the attenuation and radar echoes produced by various meteorological phenomena at the 

centimeter wavelengths, followed by the work of Marshal and Palmer (1948), which were 

first to show and establish a relationship between the radar reflectivity (Z) and rainfall 

intensity (R), based on measurements of rainfall Drop Size Distribution (DSD), the so-called 

Z-R relationship. 

1.5.2 Types of Weather Radars 

Weather radars can be classified based on several characteristics. The most common 

classification is based on the wavelength they use, which is related to the wave frequency 

and the speed of light as follows: 

𝑐 = f ∗ 𝜆 (1. 3) 

where c is the speed of light [cm/s], f is the frequency [1/s], and λ the wavelength [cm]. Since 

the speed of light is constant, the other variable is determined by setting a desired frequency 

or wavelength, making the choice of a higher wave frequency into the production of a 

smaller wavelength.  In  Table 1-4, the most typical weather radar types are shown based on 

the selection of frequency or wavelength. As the table suggests, the most typical weather 

radar types for precipitation monitoring are the S-Band, C-Band, and X-Band radar systems, 

which operate in wavelengths of 3, 5, and 10 cm, respectively. Although the frequency value 

defines the wavelength, the wavelength value is critical since a longer wavelength has better 

penetration capabilities, i.e., is less subject to signal attenuation and can measure in long 

ranges. A typical S-Band can operate at more than 300 km, while a C-Band up to 200 km and 

an X-Band at 100 km, although precise QPE is obtained for up to 200 km, 100-150 km, and 

50 km for each radar type, respectively. On the other hand, a smaller wavelength makes it 

possible to detect smaller targets, thus, featuring the best spatial resolution. 
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Table 1-4: Common Weather Radar Types used in weather radar monitoring 

Type Frequency Wave Length Application 

S-Band 2.9 GHz 10 cm Precipitation 

C-Band 5.6 GHz 5.4 cm Precipitation 

X-Band 10 GHz 3 cm Precipitation 

K-Band 25 GHz 1.2 cm Clouds 

W-Band 95 GHz 3 mm Clouds 

 

S-Band radars are much more prominent in size than the respected C-Band and X-Band 

radars, making them more expensive in their purchase and deployment, as well as their 

maintenance, while X-Band radars are versatile, much smaller in size, e.g., they can be 

mounted even in a vehicle, and much more cost-effective (Berenguer et al. 2012), making 

them better for applications in a local scale.  

The choice of a weather radar type depends on several factors, such as a) the desired 

coverage area, b) the desired purpose and applications to be used, c) the desired spatial and 

temporal resolution, and d) the available budget and resources. The score of each radar in 

the respected characteristics is featured in Table 1-5. An S-Band radar features small spatial 

resolution but low signal attenuation and, thus, the most extensive coverage. An X-Band is 

the least expensive and features high spatial resolution but small coverage. C-Band radars 

combine the above benefits and problems, but their usage and size are more typical to the 

respected S-Band systems than the X-Band systems, which are strictly local solutions. 

Table 1-5: Radar Types Scores on selected characteristics 

Characteristic S-Band C-Band X-Band 

Frequency 2.7 – 2.9 GHz 5.6-5.65 GHz 9.3 – 9.5 GHz 

Wave Length 11 cm 5.4 cm 3 cm 

Quality QPE 

Range 
200 km 100-150 km 50 km 

Spatial Resolution + ++ +++ 

Ability to detect 

small particles 
+ ++ +++ 

Signal Attenuation + ++ +++ 

Cost +++ ++ + 

Coverage +++ ++ + 

Applications 
National Coverage in 

Flat Terrains 

 National Coverage in 

Orography 

Local 

Coverage 

 

In practice, the national meteorological services use S-Band and C-Band systems for their 

respective national weather monitoring services. S-Bands are best deployed when the 
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observation areas are usually flat, and no issues are generated from the orography, beam 

height, or other sources of clutter and beam blockage, while C-Band radars are preferred 

when such issues appear. 

X-Band systems are only recently being utilized because their small coverage did not fit 

nationwide weather monitoring. However, currently, they are preferred to be used to fill 

gaps in already integrated weather radar networks, especially in complex mountainous 

regions and urban areas, where high beam blockage and vertical profile variability is present 

(Anagnostou et al. 2010, 2018; Sokol et al. 2021). Moreover, X-Band systems are also used to 

increase the spatial and temporal resolution of weather radar monitoring for specialized 

applications such as early warning applications for outdoor sports events, local media, 

military, research, and development. The increased spatial and temporal detail allows for 

better analysis of the subtle interplay between the spatial and temporal rainfall variability 

and the sensor-controlled spatial and temporal resolution (Uijlenhoet et al. 1999). 

Apart from the spatial resolution of a weather radar system governed by the selected 

wavelength, another critical factor regarding object identification is the temporal resolution 

of the radar system, which is determined by the selected Pulse Length and Pulse Repetition 

Frequency (PRF). Since the weather radar signals are not transmitted continuously but in 

pulses, the pulse length refers to the duration of each transmitted radar pulse and 

determines the temporal resolution of the radar system, while PRF refers to the rate at which 

the radar transmits pulses. The pulse length is an essential factor of a weather radar since it 

controls its ability to distinguish between targets close together in range. A longer pulse 

length will detect weaker and more distant targets since more power per pulse is 

transmitted, resulting in fewer second-trip echoes, while a short pulse provides better 

resolution and can detect small-scaled features. However, short pulse lengths can be subject 

to signal attenuation due to heavy precipitation since they are more likely to be absorbed or 

scattered by large raindrops. The PRF value is chosen in relationship to the pulse length. 

Higher PRF values increase the maximum range but reduce the range resolution. Moreover, 

by choosing an appropriate PRF, the radar can minimize the overlap between the clutter 

spectrum and the desired Doppler spectrum of the weather targets, which helps better 

identify and separate moving weather features. 

Optimizing the pulse length and PRF in a weather radar system involves considering trade-

offs between range resolution and coverage. A short pulse length usually uses a high PRF 

and the opposite.  
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1.5.3 Historical use of Weather Radars 

Weather Radars in the USA 

Most research regarding weather radar usage was performed in the United States (US). The 

first operational Weather Radar System, the WSR-57, was introduced in 1957 by the US 

Weather Bureau. The first radar system was installed in Miami in 1959 and the last in 

Charleston, US, in 1996 (Whiton et al. 1998). The system operated on the 10-centimeter 

wavelength (S-Band), which allowed a maximum range of approximately 350 km. The 

system provided enough information, which led to essential updates, mainly regarding the 

spatial and temporal resolution of the precipitation fields. In 1974, the system was updated 

to the WSR-74, which provided information regarding the intensity, location, and 

movement of precipitation compared to the WSR-57, which only allowed the visualization 

of echoes as patterns of varying intensity. The final upgrade to the US weather monitoring 

program came in 1988, with the WSR-88D system, also known as the NEXRAD (Next 

Generation Weather Radar), developed by the National Weather Service (NWS) and the 

Federal Aviation Administration (FAA). The system introduced the Doppler technology to 

weather surveillance, where the Doppler effect was being utilized to provide measurements 

of the precipitation particle's velocity, allowing the detection of wind patterns within the 

storms necessary for the observation of phenomena such as tornadoes, thunderstorms, and 

mesoscale weather systems. The NEXRAD system now features 160 S-Band radars, with 

varying spatial accuracy depending on data type and scan angle, with an initial level III 

resolution of 1 km x 1 km, updated in all systems in 2008 to the level II resolution of 250 m 

x 250 m. Although the system still operates, several enchantments in selected radars or 

networks have been applied and planned. These include main advances in weather radar 

monitoring, such as dual polarization, advanced signal processing, increased resolutions, 

and phased array technology.  

Weather Radars in Europe 

In Europe, the first weather radars were deployed in the 1970s in the United Kingdom (UK) 

and France, leading to the development of the UK's Met Office Nimrod and the Meteo-

France ARAMIS systems. Due to the low exchange of datasets during that time, a bottom-

up approach was used to develop a European network, where a radar network is sought to 

be developed on existing individual radar systems. Each country’s meteorological service 

independently developed its national-wide operational network radar, and only by 1990, 

through the European Meteorological Services Network (EUMETNET) initiative, did data 

exchange start to occur. This has led to numerous issues regarding the development of a 

single weather radar network for the entire of Europe since high heterogeneity exists 

regarding a) the technology and age of the radar systems, b) the scanning strategies, c) the 
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signal processing, and d) the product generation (Huuskonen et al. 2014). The median height 

of the radar antennas in the European network is 256 m above the mean sea, with the highest 

being 2824 m located in Valluga (Austria; Alps Mountains) and the lowest is only 14.5m, 

located in Røst (an island in the Norwegian Sea) (Huuskonen et al. 2014). Currently, there 

are approximately 205 weather radars, of which the majority are of 5 cm wavelength (C-

Band), as shown in Figure 1-7. Although many challenges have been overcome, 

heterogeneity exists since the national services operate and maintain the radar networks. 

The radar data exchange initiative is coordinated by the Operational Program for Exchange 

of Weather Radar Information (OPERA), established in 1999. The program is also called the 

equivalent of “Europe’s NEXTRAD, " which generates a European Radar Mosaic through 

the OPERA Radar Data Center ODYSSEY. The ODYSSEY data center initially used 134 radar 

sites from 21 countries to provide, in real-time, three continental-scale mosaic products, i.e., 

the 15-min surface rain rate and maximum reflectivity and 1-hour  rainfall accumulation 

(Mattheus et al. 2012). Currently, the center incorporates 163 sites from 25 countries 

(Saltikoff et al. 2019b), as seen in Figure 1-7, where the locations of the weather radars and 

their type are shown in the left panel, while in the right, the composite of the annual 

precipitation for the year 2018 is shown. The right panel of Figure 2-1 shows that the system 

does not include datasets from Italy or Greece, as no data is shown in these areas. 

 

 

Figure 1-7: Map of the European radar network OPERA; a) radar locations, b) annual precipitation 

of the year 2018; Source: (Saltikoff et al. 2019b) 
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Weather Radars Worldwide 

Worldwide, based on WMO Radar Database (WMO 2023), there are currently over 1200 

radars deployed. The majority, 220, are found in the US, followed by 216 in China (WMO 

2013b),  94 in Japan, 56 in Australia, and 53 in Russia. Most European countries list 10-15 

radars each, with France reporting 30 radars, Italy 22, and Greece eight. In Figure 1-8, a 

worldwide map features the location of weather radars with their coverage shown as 

illumination of a 200 km radius (Saltikoff et al. 2019a). The map shows that most weather 

radars have been installed in developed countries, namely the entire continent of the US, 

Europe, and the eastern part of China, while areas with high population density are found, 

such as the coastal areas of Australia, the Philippines, and South America. Africa does not 

feature any coverage apart from the state of South Africa and Morocco. This distribution is 

namely to the fact that weather radars require a significant amount of cost for their 

deployment and maintenance, and their primary purpose is for weather monitoring and 

flood forecasting applications, which are used mainly in developed countries. 

 

 

Figure 1-8: Map of weather radar coverage in the world (in Robison projection); Illumination shows 

a 200 km radius from the radar location; Source: (Saltikoff et al. 2019a) 

Weather Radars in Greece 

In Greece, the first weather radars were deployed in 1980. The first four are WSR-74 weather 

radars installed by the HNMS service, mainly for weather monitoring. Two S-Band radars 

were installed in Thessaloniki and Larissa, while two C-Band were installed in Athens, at 

Mount Hymettus, and in Andravida, near Patra city. Apart from weather monitoring, the 

weather radars were heavily used for anti-hail programs performed by the Hellenic 

Agricultural Insurance Organization (ELGA). 
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A significant upgrade of the system occurred due to the hosting of the ATHENS 2004 

Olympic games. Specifically, a C-Band radar was installed at Aegina Island to support the 

games with weather forecasts. The site was selected after an optimization analysis, which 

sought to maximize the coverage area with as low as possible observation height due to the 

orography diversity of the region (Baltas and Mimikou 2002a). The selected site covers 

almost the entire mainland of Attica, with an observation range of 250 km.  

Following this, the HNMS performed upgrades of its existing radars, with plans for further 

installations to set up a network of radars with centralized control (Kollias et al. 2007). These 

were performed under the program “Development of a Network of Weather Radars,” and 

three new radars were installed in Preveza, Kavala, and Astypalaia, while two more radars 

were scheduled to be, but were not installed in Skyros and Souda. The current state of the 

Greek weather Radar network, as reported to the WMO Radar Database (WMO 2023), 

consists of eight radars, shown in Figure 1-9, along with their respected 200 km range. The 

radars cover the entire Greek territory, apart from the west part of Crete and the Islands of 

Lesvos and Chios in the east. However, due to orography and the technology of the weather 

radars, i.e., not all radars operate at 200 km range, the actual radar composite is less, with 

gaps within the mountains.  

 

Figure 1-9: The Greek Weather Radar Network 
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Currently, the use of these radars has been attained, with some of them not being functional 

due to presumably pending repairs and upgrades. In Athens, none of the two radars is used 

operationally for providing weather warnings, as noted after the recent flood event in 

Mandra (Kolydas 2023). 

Non-operational radars include the National Observatory of Athens (NOA), X-POL radar 

(Kalogiros et al. 2013), and the National Technical University of Athens (NTUA) 

Rainscanner system (Bournas and Baltas 2020, 2022a), which are used for scientific and 

research purposes. These radars are X-Band type (2-3 cm), which feature increased spatial 

and temporal resolution but limited range, less than 100 km. Both radars are installed in 

Attiki, the first in Penteli, at the facilities of the NOA, while the second at the NTUA facilities 

in Zografou. 

1.5.4 Formulation and Equations 

Radar Equation 

Weather radar works by sending and receiving multiple electromagnetic waves in a 

horizontal plane, which assist in a) locating the object's distance and angle compared to the 

radar location and b) measuring the reflectivity of the object, i.e., the amount of energy that 

is transmitted back from the object. The first is easily calculated since waves travel with the 

speed of light. Therefore, the distance between the object and the radar can be calculated 

through the time it takes for the signal to reach the object and return. The second is more 

challenging and can be estimated by measuring the difference between the transmitted, Pt, 

and received energy Pr. The general equation of the reflected power Pσ of the target and the 

received power to the radar Pr to the weather radar system are described as follows: 

𝑃𝜎 =
𝑃𝑡𝑔𝐴𝜎

4𝜋𝑟2
(1. 4) 

𝑃𝑟 =
𝑃𝑡𝑔2𝜆2𝐴𝜎

64𝜋3𝑟4
(1. 5) 

where, g is the antenna gain, Aσ the target area, λ the wavelength, and r is the distance 

between the radar and the target. Since a weather radar targets the hydrometeors, the Aσ 

area can be easily identified since these are considered to be spherical. The value of Aσ is 

then replaced with parameter σ, the area of a sphere. For small spheres, the area Aσ is related 

to the sixth power of its diameter D, and therefore σ is calculated as: 

𝜎 =
𝜋5|𝛫|2𝐷6

𝜆4
(1. 6) 

where |𝛫|2 is a coefficient related to the physical properties of the target, mainly its electrical 

conductivity, i.e., the ability to conduct an electric current. The most typical value of the 

coefficient |𝛫|2 is 0.93 for liquid water and 0.197 for ice crystals for typical temperatures. 
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Since the returning power is the sum of multiple objects, i.e., the hydrometeors, which 

feature different diameters, the sum of target areas 𝜎𝑖, 𝛴𝜎𝑖, should be used instead in the 

equations. Replacing the above into equation 1.5 and assuming that the distribution of radar 

lobes follows a Gaussian distribution, the returning power is then found to be: 

𝑃𝑟 =
𝜋3

1024𝑙𝑛2 

𝑃𝑡𝑔2𝜃𝜑ℎ|𝐾|2𝛴𝐷𝑖
6

𝜆2𝑟2
(1. 7) 

where θ and φ are the horizontal and vertical angle beam width, and h is the radar pulse 

length. Finally, since the issue lies with the calculation of factor 𝛴𝐷𝑖
6 , it is replaced with a 

new parameter, Z, called the reflectivity factor. The result is the following equation used as 

the general weather radar equation:  

𝑃𝑟 =
𝜋3

1024𝑙𝑛2 
 
𝑃𝑡𝑔2𝜃𝜑ℎ

𝜆2
 
|𝐾|2

𝑟2
Z (1. 8) 

Where, 𝑃𝑟 is the received power, 𝑃𝑡  is the transmitted power, g is the antenna gain, θ is the 

half-power beam horizontal width, φ is the half-power beam vertical width, h is the radar 

pulse length, λ is the radar wavelength, |𝛫|2 is the complex index of refraction, and Z is the 

reflectivity factor. A list of the above variables is presented in Table 1-6, along with their 

units and typical value ranges, while Figure 1-10 illustrates some of the parameters. 

The equation is written in three factors, the first being the geometrical constants, the second 

including the weather radar coefficients, and the third the variables related to the target, i.e., 

the hydrometeor. Since the two first are constant in a single weather radar scan, equation 

(1.8) is usually simplified, as shown in equation (1.9), by replacing the two first factors with 

a parameter, C1, called the “weather radar parameter.” In many cases, the water liquid value 

of |𝐾|2 is also added into the constant, resulting in parameter C2 as follows:  

𝑃𝑟 = 𝐶1

|𝐾|2

𝑟2
𝑍 = 𝐶2

𝑍

𝑟2
(1. 9) 

Table 1-6: Weather Radar General Equation Variables 

Variable description unit Remarks / Typical values 

g Αntenna gain - 20000 (~43dB) 

Pr Received power mW 1-10-11 (0 - 110 dBm) 

Pt Transmitted power mW 250*106 (250 kW) 

Z Reflectivity factor mm6/m3 0.001 to 50*106 (-30-75 dBZ) 

h Radar pulse length m 600 (2 μs) 

|𝛫|2 Complex index of refraction - 0.93 (water) / 0.197 (ice) 

r Target range m 100*103 

λ Radar wavelength m 0.03 to 0.10 (3-10 cm) 

θ Half power beam width (horizontal) rad 0.017 (~1 degree) 

φ Half power beam width (vertical) rad 0.017 (~1 degree) 
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Figure 1-10: Weather Radar Beam Characteristics 

This simplification is shown in eq. (1.9) highlights that the returning power is proportional 

to the reflectivity factor and inverse proportionally to the second power of the distance 

between the radar and the target. The output of a radar is the reflectivity factor; thus, by 

simple reordering, the reflectivity factor is calculated as:  

𝑍 =
1

𝐶2
𝑃𝑟𝑟2 (1. 10) 

The reflectivity factor, Z, is measured in mm6m-3 units, ranging from 0.001 to 50 million 

mm6m-3. Since this is a relatively large range, a unit conversion is preferred to be made, 

which produces a smaller range of values as follows: 

𝑍[𝑑𝐵𝑍] = 10 log10(𝑍[𝑚𝑚6𝑚−3])   (1. 11) 

This logarithmic change transforms reflectivity values in dBZ, limiting the range between 

30 and 75 dBZ. Light rainfall is observed for reflectivity values above 15 dBZ, while values 

above 30-35 dBZ showcase strong rainfall intensity fields. Values above 45 dBZ showcase 

extreme rainfall intensity, while values over 55 dBZ can be considered to be hail instead. 

The magnitude of reflectivity depends upon the hydrometeor's characteristics, mainly its 

size, i.e., diameter, and its physical state, i.e., whether they are in liquid water, ice crystals 

(hail), or snow. Other factors such as shape and density also contribute but not in the same 

degree.  
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The Z-R Relationship 

The hydrometeor's diameter ranges from 0.2 mm to 5 mm in liquid form. If the distribution 

of the hydrometeors size is known, then the reflectivity factor and the rainfall intensity can 

be estimated as follows: 

𝑍 = ∫ 𝑁(𝐷)𝐷6𝑑𝐷
∞

0

(1. 12) 

𝑅 = 𝜋/6 ∫ 𝑁(𝐷)𝐷3𝑉(𝐷)𝑑𝐷
∞

0

(1. 13) 

where N(D) is the total number of hydrometeors with a diameter between (D) and (D+dD), 

and V(D) is a function that describes the velocity of the hydrometeors based on their 

diameter. The velocity of a hydrometeor is usually a power law equation proportionally to 

its diameter in the form of:  

𝑉(𝐷) = 𝑘𝐷𝑚 (1. 14) 

where V(D) [m/s] is the velocity, D [mm] is the diameter, and k, m coefficients. In the work 

of Atlas and Ulbrich (1977), the values of coefficients k and m were determined to be either 

17.67 and 0.67 or 14.2 and 0.5, respectively. In a case study conducted by Feloni et. al (2017) 

using disdrometer datasets in Athens, Greece, it was found that the Gossard equation 

(Gossard et al. 1992), featured below, provided the best correlation in most cases. 

𝑉(𝐷) = 9.65(1 − 𝑒0.53𝐷) (1. 15) 

Comparing equations (1.12) and (1.13), it is visible that while reflectivity is proportional to 

the sixth power of the hydrometeor’s diameter, rainfall intensity is approximately on its 

fourth power (by assuming a typical velocity function). This difference results in a non-

linear relationship between the reflectivity and rainfall intensity. To overcome this problem, 

Marshal and Palmer (1948), after analyzing the hydrometeors DSD of various events 

measured with a disdrometer, found that an empirical exponential relationship, the Z-R 

relationship, can fit the data well as follows: 

𝑍 = 𝑎𝑅𝑏 (1. 16) 

where, Z [mm6m-3] is the reflectivity value, R [mm/h] is the rainfall intensity, and a and b 

parameters. The hydrometeors DSD, N(D), determines the values of parameters a and b, 

which range from 30 to 2000 for parameter a and one up to three for parameter b. It becomes 

evident that when the hydrometeor's size distribution changes, so do the values of 

parameters a and b. This results in a continuous problem for weather radar data since the 

DSD changes in space, i.e., in different geographical locations and time, i.e., between 

different rainfall events. Marshal and Palmer (1948) calculated the value 200 for parameter 

a and 1.6 for parameter b on their sample of multiple stratiform events. Research has shown 
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that the Z-R relationship is related to the storm's characteristics, such as it being stratiform 

or convective-based. In Figure 1-11, three Z-R relationships are applied to reflectivity values 

ranging from 5 to 60 dBZ. Each value's coloring matches the standard color of reflectivity 

used by many weather radar systems, while the rainfall description is derived by the actual 

rainfall intensity calculated. The used relationships are the ones mentioned. The 

relationships used feature a constant parameter b value of 1.5, while parameter a varies 

between 100, 250, and 500, which is preferably applied for drizzle, widespread, and 

thunderstorm weather systems as suggested by the work of Joss et al. (1970), which 

investigated a series of Z-R relationships published up to that day. 

 

Figure 1-11: Reflectivity to Rainfall Intensity relationship for various the Z-R used 

Figure 2-6 shows the difference between the used relationships highlighted in the higher 

reflectivity values. Specifically, the difference is minimal at 30 dBZ, but above 40, the 

difference is noticeable, and by 50 dBZ, the difference becomes extreme. Overall, a Z-R 

relationship with a high parameter a value results in less rainfall rate for the same amount 

of reflectivity. Values above 50 dBZ, in either case, result in extreme rainfall rates as they 

lead well above 30 mm/h. Above 60 dBZ reflectivity, hail presence is suggested; thus, 

specific hail-based Z-R relationships should be used instead.  

Z-R Calibration 

The estimation of the Z-R relationship parameters is crucial for providing quality QPE. As 

previously mentioned, parameters a and b range between 1 to 2000 and 1 to 3, respectively, 

although parameter a will most likely feature values within the 50 to 500 range for typical 

rainfall events when snowfall and hail events are excluded. The most common values used 

in weather radars are 200 and 1.6 for parameters a and b, respectively, derived by the work 

of Marshal and Palmer (1948).  However, it is well documented that these parameters show 

high variability (Joss et al. 1970; Austin 1987; Feloni et al. 2017; Bournas and Baltas 2020, 

2021b; Pappa et al. 2021). Factors that affect the parameter values are mainly the 



| Chapter 1 |Introduction | 

 

36 

classification of the rainfall events, i.e., that being a stratiform, a convective, a haze, or a 

snowfall event, the spatial and temporal resolution of the analysis, and even the radar 

hardware properties (Joss and Waldvogel 1970; Austin 1987; Krajewski and Smith 2002). 

The estimation of the parameters can be performed using two primary methodologies. One 

is the direct method, involving the solving of equations (1.12) and (1.13), and the second, the 

indirect method, by performing optimization on the Z-R parameters based on the best-fit 

between the estimated rainfall height and “true rainfall” measured by another instrument 

such as rain gauges.  

In the first case, the knowledge of the hydrometeors DSD, N(D), is required, which can be 

measured when a disdrometer device is used (Todini 2001; Goudenhoofdt and Delobbe 

2009; Zhang and Srinivasan 2010; Colli et al. 2013). A disdrometer is a device that can 

measure the size of the hydrometeors in a given period, therefore providing measurements 

of the required N(D) parameter. A velocity function such as equation (1.15) is then applied 

to determine rainfall intensity and derive the Z-R parameters for a specific event. Although 

the method is straightforward to apply, the problem lies with the availability of the 

disdrometer datasets. Specifically, disdrometer instruments are rarely available since they 

are hardware-sensitive devices and do not usually belong to the standard instruments of a 

typical hydrometeorological station. Therefore, only a few instruments would be available 

for a given study area, which results in inadequate spatial coverage of the weather radar 

scanning area. For instance, in Attica, two disdrometer devices are known to be used, one 

by the NTUA (Baltas and Mimikou 2002b; Baltas et al. 2015; Feloni et al. 2017) and one by 

the NOA, both used for research purposes. Only with one or two disdrometer devices the 

DSD variability in space within the weather radar field cannot be adequately interpreted. 

The second methodology relies on the correlation between radar and rain gauge 

measurements (Hasan et al. 2016; Gilewski and Nawalany 2018, p.; Sahlaoui and Mordane 

2019; Qiu et al. 2020; Bournas and Baltas 2022a), assuming the measurements are the ground 

truth (Colli et al. 2013). This method is usually preferred since, as mentioned, disdrometer 

data are scarce and do not offer a complete area coverage, whereas rain gauge networks are 

already established, providing not only calibration datasets but continuous validation data 

as well. When incorporating rain gauge datasets, two strategies can be followed. The first is 

by performing the corrections provided by the rain gauges directly onto the QPE estimates 

after applying a “default” Z-R equation, while the latter involves the calibration of the Z-R 

equation first. In the first case, a bias-driven statistical analysis is performed at either the 

station level (Ciach and Krajewski 1999; Legates 2000) or on the area level, using 

geostatistical interpolation algorithms such as inverse distance or co-kriging (Todini 2001; 

Goudenhoofdt and Delobbe 2009; Zhang and Srinivasan 2010). This strategy does not rely 

on the Z-R relationship quality itself but on the quality of available datasets, i.e., the rain 
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gauges, weather radar, and datasets, to provide a merging algorithm to calculate and 

minimize any bias applicable to the QPE generated from the radar. This strategy can be 

applied using geostatistics, but the application of machine learning techniques and Artificial 

Neural Networks (ANN), which tend to skip the intermediate part, have shown promising 

results (Alqudah et al. 2013; Orellana-Alvear et al. 2019). However, as shown in both studies, 

using a locally derived Z-R relationship provided the best correlation and QPE in most 

cases. Therefore, although direct correction of QPE tends to improve the weather data 

results, they can be time-consuming and provide little benefit compared with more 

straightforward methods, such as using a calibrated Z-R relationship. Nevertheless, the 

combination of both methods is highly advised. 

The strategy for optimizing the Z-R parameters lies in deriving the optimum set of 

parameters a and b that fit the historical or even real-time datasets. In the historical case, 

multiple radar-rain gauge data pairs are used through calibration and validation schemes. 

Before any data is used, quality control and thresholds are usually applied, such as the 

removal of zero or low values of either reflectivity, e.g., less than 15 dBZ reflectivity,  and 

rainfall intensity, depending on the scope and temporal resolution of the analysis (Ciach 

and Krajewski 1999; Legates 2000; Germann et al. 2006; Gires et al. 2014). Following this, the 

optimization procedure is applied by fitting the parameters a and b using an objective 

function, such as minimizing the error between the weather radar QPE and the rain gauge 

stations datasets. During the optimization process, different approaches can be made. First, 

it involves the method of optimization, either that being a) linear optimization of a single 

parameter, usually parameter a, with parameter b kept as a constant, b) nonlinear calibration 

and optimizing both parameters (Bruen and O’Loughlin 2014), or even c) nonlinear 

calibration of more parameters added to the equation such as the rain gauge-radar distance 

(Anagnostou and Krajewski 1999; Borga et al. 2000; Legates 2000). Secondly, it depends on 

the goal and resolution of the optimization, i.e., the used dataset in each case. Apart from 

providing a single Z-R relationship, numerous Z-R relationships can be derived at the 

station level, thus exploring the spatial characteristics of the Z-R relationship (Bournas and 

Baltas 2022a), while the temporal evolution of the relationship can also be explored by 

adopting seasonal or rainfall-based characteristics multiple rainfall events (Gabella and 

Amitai 2000; Park et al. 2005). Finally, dynamic approaches with continuously updated Z-R 

parameters based on current or short-term measurements have shown promising results, 

useful for real-time monitoring (Alfieri et al. 2010; Wang et al. 2012; Libertino et al. 2015). 

The above procedures show that the solution to the Z-R optimization problem can be 

reached after considering various conditions. However, the solution depends on the 

available dataset's quantity, quality, and scale. Storm event characteristics are dynamic and 

related to the season and the topography of a given study area (Auipong and Trivej 2018).  
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Moreover, the scale of the data used, such as different temporal resolutions, e.g., 10 min to 

1 h, and spatial resolutions, larger or smaller pixel sizes, tend to lead to different Z-R 

formulations. Therefore, the results of a Z-R optimization procedure should be used in the 

same scale and study area, and a direct comparison of Z-R relationships should be made 

after such considerations are taken into account. 

1.5.5 Weather Radar Sources of Errors 

While weather radar measurements feature many advantages over rain gauges, they are 

prone to non-negligible and sometimes significant errors from different sources (Robbins 

and Collier 2005; Collier 2009; Sokol et al. 2021). The majority of errors are the result of the 

nature of the measurement, that being the transmission of microwave radiation pulses and 

their reception when they are reflected after hitting rain hydrometeors and other 

meteorological objects (Collier 1996; Doviak and Zrnić 1993; Sene 2008). A review of the 

different sources of uncertainty in weather radar is mentioned in the work of Villarini and 

Krajewski (2010). These errors are categorized into four groups, a) hardware-related errors, 

b) errors related to the radar beam geometry and scanning strategy, c) errors related to noise 

and echoes d) errors related to the transformation of reflectivity into rainfall products. 

The first group consists of systematic errors related to radar electronics, antenna accuracy, 

and signal processing quality (Gekat et al. 2004). Most errors are derived by the proper 

calibration of the constant parameters of the radar general equation, shown in eq. (1.9). 

These errors are usually related to the hardware of a single weather radar and can be 

eradicated or minimized with proper system calibration. However, proper and regular 

maintenance of the system is deemed necessary.  

The second group of errors is related to the radar beam geometry and scanning strategy. 

These are errors such as generated uncertainty due to the increasing distance from the radar 

site, the radar beam width, and the vertical angle of the radar beam. For instance, with 

increasing distance, due to the Earth’s curvature, radar beams tend to monitor away from 

the ground surface, often leading to misinterpreting the actual rainfall values over a 

specified area. This problem is also found when the radar beam angle is such that 

overshooting or undershooting of a storm cloud occurs, which results in not identifying the 

storm cloud ore and, thus, rainfall, leading to false measurements. Other such errors are 

anomalous propagation that occurs when radar signals are refracted or ducted within layers 

of the atmosphere, leading to the detection of false echoes on the radar display. Such errors 

are subrefraction and superrefraction. Subrefraction is an atmospheric phenomenon that 

occurs when the radar beam emitted by a weather radar system bends downward due to an 

increase in the atmospheric refractive index with height. This bending causes the radar beam 

to deviate from its expected straight-line path and follow a curve closer to the Earth's 

surface. In extreme cases, trapping may occur where the radar beam will bounce far beyond 
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the operation range, increasing clutter and the likelihood of second-trip echoes. 

Superrefraction is the opposite of subrefraction and occurs when the radar beam bends 

upward due to a decrease in the atmospheric refractive index with height. Both phenomena 

lead to false measurements, where subrefraction will lead to underestimation, while 

superrefraction to overestimation of rainfall height, and therefore, in such cases, it is advised 

to reduce the radar operational range. Finally, the Bright-Band effect might interact with 

measurements, also known as the melting layer or bright band, which occurs when 

precipitation particles, usually snowflakes, transition from frozen to liquid as they fall 

through a layer of warmer air aloft. This frozen layer causes the radar echoes to appear 

stronger and more reflective than they would if they were purely frozen snowflakes. 

The third error group is generated when noise is added to the measurements. These noises 

can either be ground clutter and second-trip noises, i.e., reflectivity echoes transmitted by 

non-rainfall objects, such as the terrain, static radio or cell network transmissions (Saltikoff 

et al. 2016), and even biological objects such as birds and insects (Gauthreaux and Diehl 

2020). These errors generate the majority of the uncertainty of weather radar images since 

they are not systematic and may evolve. A proper clutter filter can detect and eliminate the 

characteristics of such errors and should be applied in line with proper quality control of 

the radar datasets. Dual-polarization radars can distinguish such errors better than single-

pol radars, but still, ground clutter remains a challenge for weather radar systems, 

particularly in areas with complex topography or a high density of structures.  

The opposite of adding noise is the underestimation of reflectivity, and consequentially 

precipitation heigh when the strength or intensity of radar signals as they pass through 

precipitation, such as rain, snow, or other forms of moisture in the atmosphere, are reduced. 

This effect is referred to as radar attenuation, which is natural and unavoidable. However, 

in some cases, the impact of radar attenuation may severely affect measurements. When a 

high rainfall intensity storm is measured with a low wavelength radar, radar attenuation is 

rapidly increasing with distance, and therefore reduction of the operational range of the 

radar is advised. X-Band radars are more prone to signal attenuation due to their small 

wavelength and the strength of the generated signal. Therefore, limiting their operation 

distance is advised for providing good-quality datasets. However, other techniques can be 

used for reduction attenuation, such as dual-polarization radars, attenuation correction 

algorithms that consider the radar system's energy loss, and cross-reference corrections with 

datasets provided from other sources of measurements. 

Finally, the last group of errors is related to transforming weather radar measurements into 

rainfall products. Specifically, this is related to the selected Z-R relationship, or in the case 

of dual-polarization radars, to the algorithm using differential reflectivity (ZDR) and specific 

differential phase (KDP). The main issue with the Z-R relationship is that it is a static 
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relationship used to translate a non-static variable. A Z-R relationship assumes that the DSD 

distribution is consistent in time and space, which is not in line with an actual storm event 

occurring. Calibration of the Z-R relationships through the derivation of parameters a and 

b, the methods discussed in 2.2.3, should be performed, but with care concerning the 

seasonal and regional variability and the convective and stratiform storm classification. 

Dual-polarization radars offer more information regarding the shape of hydrometeors and 

thus their distribution but still Z-R relationships, which include differential products, are 

still required to be determined, and spatial corrections may be required to be applied to 

meet the accuracy of rain gauges (You et al. 2022). 

The majority of errors can be mitigated or eradicated with proper radar calibration. This 

process includes calibrating the electronic parts of the weather radar to determine its 

constants, optimum beam elevation angle, and overall good operation and developing the 

required algorithms for correcting the generated radar images. Maintenance of a weather 

radar system should be performed regularly to avoid errors generated by hardware and 

validate the quality-control algorithms. It is usually inevitable that weather radars are prone 

to errors and uncertainty generated by the corrections methods applied (Villarini and 

Krajewski 2010). This is usually the cost for increased spatial and temporal resolution for 

rainfall fields. Therefore, it is suggested to quality control the obtained datasets with other 

sources of datasets, namely ground rain gauge stations or even radar images that cover the 

same area.  

1.5.6 Weather radar applications 

Weather radar usage is focused on three main application categories; a) the observation and 

analysis of microphysics during precipitation events, b) rainfall-runoff modeling, and c) 

storm tracking and nowcasting applications. While the first is usually research-orientated 

to improve the generated QPE, the latter are typical hydrological applications that are 

improved with better high-resolution datasets. However, weather radar data for 

hydrological applications was not as fast realized as their potential (Kammer 1991a; Seo et 

al. 2015b). Even though their potential was and is still well documented, the use of weather 

radar in modelling and application usually lacked quantity. Weather radar rainfall fields 

benefit rainfall-runoff simulations when a distributed model is used compared to lumped 

or semi-distributed models since the higher spatial resolution provides a better description 

of a study area (K. Ajami et al. 2004; Grek and Zhuravlev 2020). A distributed model is 

expected to have better results if the required datasets are provided (Borga 2002), but 

because hydrologists are skilled and comfortable using rain gauge datasets and lumped 

models, this assumption is debatable. There have been numerous studies where the results 

derived from distributed models, which are often complex and data-demanding, do not 

always reach better or equal results with respected lumped models. Berne and Krajewski 
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(2013) discuss various aspects of the challenges and unfulfilled promise of using weather 

radars, concluding that although weather radar provides high-resolution datasets, their 

limitations have hampered their usage. 

Nevertheless, the same review acknowledges that rainfall is the driving force of all 

hydrological-related processes. Since technological advancements have made more 

complex calculations easier to perform, better and more precise rainfall datasets will 

inevitably be required. In strictly hydrological models, i.e., rainfall-runoff modeling for 

water management projects, weather radars are not widely used. Although much has 

improved since the beginning of radar usage, weather radar requires significant 

understanding and know-how, which makes novice users, such as consulting engineers in 

small firms, a challenging task to adopt. To address this situation, Berne and Krajewski 

(2013) suggest developing tools and resources that would not be difficult to calibrate and 

understand products but easy to access and process data for specific drainage basins. This 

leads to the need for easier to calibrate and use models. 

Recently, through the advance of radar technology, radar errors such as signal attenuation 

in X-Band radars have been mitigated, making them more popular since they cost less and 

provide increased spatial and temporal resolution products. This resolution is deemed not 

only essential but also as a pre-required for the study of local events and areas (Cristiano et 

al. 2017; Paz et al. 2019), such as urban basins, which are considerably small in size (Einfalt 

et al. 2004; Thorndahl et al. 2017). Therefore, the use of weather radars in hydrological 

modeling has seen new sights, with the focus on flash flood events and small-scaled basins 

where the high resolution provided by weather radars increases the added value of the 

distributed nature of the rainfall fields (Sayama et al. 2020; Ghimire et al. 2022). 

Flash floods are the deadliest types of flooding, and the increased resolution offered by 

weather radars is suitable for rainfall-runoff modeling, storm tracking, and nowcasting 

applications. Most FEWS rely on weather radar datasets to provide warnings based on 

rainfall thresholds (Norbiato et al. 2009; Liu et al. 2018; Georgakakos et al. 2021; Cheng et al. 

2022). Although satellite datasets are assimilated in forecasting systems (Varlas et al. 2019; 

Spyrou et al. 2020), increased uncertainty is still involved, and complex analyses have not 

prepared such applications for operational usage. In contrast, weather radars have been 

used for nowcasting and forecasting since their establishment as a means for precipitation 

measurement. The benefit here lies in that the weather radar datasets can be used before the 

transformation to rainfall height by simply analyzing the reflectivity fields (Dixon and 

Wiener 1993; Li et al. 2015) and removing the uncertainty generated by the reflectivity to 

rainfall transformation. FEWS is usually as good as the input they are provided with; 

therefore, the higher temporal and spatial resolution input of weather radar data, compared 

with those from rain gauge networks, satellites, or lightning networks, is considered vital to 
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the nowcasting algorithms (Kohn et al. 2011; Karagiannidis et al. 2016). Therefore, weather 

radar measurements are usually the cornerstones of modern FEWS implementations.  

1.6 Research Aim 

According to the introduction above, it can be summarized that floods constitute one of the 

most significant types of natural hazards globally, affecting many people. Floods are 

typically caused by intense rainfall, with their consequences being felt either immediately 

in the form of human life loss and substantial economic damages to infrastructure, 

agricultural, and industrial activities, or in time by impacting the environment in general 

and deterioration of land cover by the transport of substantial debris and pollutants 

transportation pollutants. Among the types of floods, the most common and destructive for 

humans are flash floods, which are characterized by intense rainfall over a short period of 3 

to 6 hours. Flash floods account for 85% of recorded flood events and feature the highest 

mortality rate, i.e., the number of deaths relative to the number of affected individuals. 

Most research on flood management is focused on understanding the hydrometeorological 

processes that influence the extreme weather conditions leading to flood events. To that end, 

one of the main non-structural methods for mitigating flood and flash flood problems is the 

development and use of FEWS. An integrated FEWS consists of various subsystems, 

including hydrological and meteorological data collection and processing, quality control, 

mathematical simulation of the rainfall-runoff process, and storm predictions. Although the 

methods used to simulate the hydrometeorological processes are essential, the main 

problem lies in the chaotic nature of the atmosphere and the lack of sufficient resolution and 

quality data. In a recent study (Marchi et al. 2010), an investigation of 25 major storms that 

caused floods in Europe over the past 20 years revealed that only about half of the cases 

were adequately documented with conventional field measurements. 

Similarly, even in cases with a good level of data, there may be high uncertainty in modeling 

a watershed system, which could lead to incorrectly estimated discharges compared to 

observed values (Di Baldassarre and Montanari 2009). The same issue applies to rainfall 

estimates and to the accuracy of hydrological forecasts since the desired spatial and 

temporal scale to monitor rainfall events such as flash floods is higher than the respected 

resolution offered by traditional rain gauges networks of rain gauges (Anagnostou et al. 

2017). These characteristics generally limit the ability for timely warnings (Mimikou and 

Baltas 1996), while in cases where measurements are nearly absent, unreliable, or non-good 

spatially available, such as in Greece, the problem is exacerbated. 

In conclusion, the expected benefits of further deepening the development and organization 

of EWS against flood risk include a) higher quality predictions, b) increased response time, 
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and c) more information regarding flooded areas to strategically design and implement 

flood protection measures. Therefore, the main areas where a FEWS can advance are a) new 

technologies concerning data collection and mining and b) more precise and more effortless 

to apply methods that would reach more and better-quality decision-making information. 

The first can be achieved by incorporating new technologies such as high-resolution 

weather radars or satellites and implementing a data assimilation process. In contrast, the 

second can be achieved by developing and calibrating rainfall-runoff models suitable for 

leveraging the new data in ungauged basins and improved data analysis and nowcasting 

techniques. 

The development of a FEWS is expected to lead to significant reductions in the mortality 

rate but in the economic impact of the flood-affected areas. In Greece, where such systems 

are absent, the expected benefit after applying a FEWS is multiplied in contrast to most 

Western European countries. In this dissertation, the Attica region was selected as the case 

study since it is where the new NTUA weather radar system was installed and able to 

monitor. Furthermore, the Attica region features varying land use in the form of a) heavily 

urbanized areas consisting of the city of Athens, where approximately 50% of the population 

resides, b) peri-urban areas on the outskirts of Athens, where towns and industry are 

located, and c) rural areas found on the foothills of surrounding mountains. Overall, the 

Attica region combines high and low-elevation areas, while at the same time, its extensive 

coastline leads to a high number of small ephemeral streams, which have been overlooked 

during the city expansion plans and the residential areas in general, leading them being 

vulnerable to flash flooding.  

The main goal of the Ph.D. dissertation is the development of a suitable methodology for 

processing weather radar datasets of high spatial and temporal resolutions. A newly 

installed weather radar system, the NTUA X-Band Rainscanner system, is calibrated and 

evaluated through a series of rainfall events against datasets provided by ground-based 

measurements from meteorological stations. Using the correlation of the abovementioned 

datasets, the properties of the reflectivity (Z) to rainfall rate (R), and Z-R relationships are 

analyzed both in time and space. Following the calibration of the weather radar system, a 

rainfall-runoff model is designed to a) incorporate the weather radar datasets and b) be 

readily applicable in ungauged basins, which is used for providing the hydrological status 

of a given study area. A distributed flash FEWS based on the FFG theory is then devised to 

provide flash flood indicators in historical and real-time events. Finally, the derivation and 

application of a storm-tracking algorithm are performed using the available weather radar 

datasets and image analysis tools to identify and track cell cores, providing storm-tracking 

capabilities. The tool is intended to provide future rainfall forecasts that will feed the 

devised gridded FEWS.  
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This research was conducted in urban and non-urban areas of the Attica Region, which fall 

within the coverage of the meteorological radar of the School of Civil Engineering at the 

National Technical University of Athens (NTUA). 

1.7 Scientific Significance, Questions, and Originality 

The critical point of this research is the collection, analysis, and extraction of products 

related to the newly installed weather radar. A weather radar is not a typical device, and 

therefore proper handling of the raw generated datasets is essential to avoid systematic. On 

the other hand, weather radar datasets are an improvement over traditional ways of rainfall 

measurements. Although weather radar's history is over 50 years, they are still considered 

a cutting-edge technology through technological upgrades regarding its hardware and 

software components. X-Band weather radars are becoming more and more attractive due 

to their small size and cost while providing high-resolution products. Exciting and new 

early warning system applications are estimated to be favored by using multiple X-Band 

radars to provide higher-than-ever resolution products to be integrated into sophisticated 

hydrological and hydrodynamic models. 

This thesis's significance lies in analyzing and understanding the weather radar 

components. Unfortunately, research on weather radars is only performed when such 

datasets are available, making future applications in Greece lacking information. Based on 

research on the latest Ph.D. thesis conducted in Greece regarding floods, focus on areas that 

aim to identify flood-prone areas and the hydrodynamic representation of historical floods. 

Relevant scientific research focuses on using satellite datasets for early warning systems, but 

due to their complexity and data availability, research to operation practice is not expected 

in the near future. Moreover, satellite datasets cannot still match the resolution and quality 

of weather radars but are only favored in research due to their high availability. The leading 

research on weather radar application in Greece has been performed by Prof. Baltas, the 

supervisor of this thesis, with his Ph.D. thesis back in 1996, where an S-Band radar system 

was used. Following this, considerable research was performed by the National 

Observatory of Athens with the X-POL, X-Band weather radar. Still, the focus lies in the 

processes to provide quality QPE and less in early warning applications.  

The need for adequate early warnings for floods in Greece multiplied after a series of flash 

flood events that ended in the cost of human lives and economic damages that people feel 

should not occur in developed EU countries. All the points mentioned above make this 

research on flood early warning systems, and weather radars a valuable contribution. This 

research highlights the benefits of using weather radar systems and provides a complete 

framework and tools for early warning applications in a data-scarce area. 
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The research questions this dissertation aims to answer, are divided into two sections, the 

first concerning the use of weather datasets: 

1. “What are the major factors to consider when utilizing weather radar datasets? Do weather 

radar datasets provide with any benefit compared to rain gauge networks or are they governed 

by uncertainty?” 

The following question derives two more questions regarding the Z-R relationship as 

follows:  

• “How does the Z-R relationship variate in time and space? What are the factors that 

influence the Z-R relationship and how do they affect it in the case of the Attica Region?”. 

• “Is the derivation of a single Z-R relationship feasible for operational usage, and which Z-R 

relationship should be used for Athens?” 

The second question concerns the implementation of a FEWS: 

2. What are the necessary components of an integrated flood early warning system (FEWS) 

based on weather radar datasets? Can such a system be efficient at an operational level and 

how can it be implemented?  

Furthermore, in response to the above question, the following questions are also raised:   

• “How does each component parameters influence the FEWS results? 

• “What FEWS products are available? How can one interpret the results of such a system? 

 

The above questions, Finally, the originality of this research is highlighted by actions 

performed in this thesis and presented in a list as follows: 

• An in-detail review and methodology are presented regarding the process of raw 

weather radar datasets and the required quality control procedures. 

• The measurement and analysis of rainfall fields through the and analysis of raw 

weather radar datasets. Most rainfall events in Attica from 2018 to 2023 are recorded 

within the span of this Ph.D. thesis. 

• The use of statistical analysis for a) exploring the properties of the Z-R relationship 

and weather radar in space and time and b) calibrating a Z-R relationship for further 

use. 

• The correlation analysis between rain gauge – Rainscanner datasets to improve the 

QPE. 

• The development and application of a gridded rainfall-runoff model can easily be 

calibrated in ungauged basins and areas with data scarcity.  
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• The development of a FEWS aimed at flash floods and its application in historical 

events. 

• The development and application of a simple storm-tracking algorithm can analyze 

the weather radar datasets, identify possible storm cells and track their location in 

multiple consecutive images.  

1.8 Limitations 

The main limitations of this thesis lie in the weather radar type. Specifically, the weather 

radar used is a single-phased X-Band weather radar system, contrary to more advanced 

systems that use dual-polarization systems that offer advantages concerning quality control 

of QPE. Moreover, due to its technical characteristics, the observation range is limited for 

providing adequate lead times, and therefore, adequate “space” for providing long-range 

forecasts based on cloud movement is not performed. Furthermore, a limitation concerning 

the rain gauge datasets exists since these datasets were available for the periods of 2018 up 

to 2020. 

1.9 Thesis Structure 

This research work is divided into five chapters.  

Chapter 1: Introduction 

In this chapter, an introduction to the thesis is made. Specifically, a literature review is 

performed regarding the means for flood mitigation, such as the flood early warning 

systems and the use of weather radars. The general aim and the research questions formed 

are presented, as well as the novelty of the thesis. 

Chapter 2: Study Area and Data Used 

This chapter includes information regarding the study area, the Attica Prefecture, and the 

data used in this research. Specifically, focus is given to the characteristics that lead to 

flooding, such as the geomorphological characteristics and the hydrometeorological 

conditions. Finally, a description of the datasets collected and used in this study is 

performed.  

Chapter 3: Methodological Framework 

This chapter comprises the entire methodological framework devised and applied in this 

research. Specifically, this chapter is divided into five main subchapters, which consist of 

the methods used, a) for the analysis of the weather radar raw datasets, b) for the analysis, 

optimization, and derivation of the reflectivity to rainfall intensity (Z-R) relationships 

through correlation with ground stations, c) for setting and calibrating a gridded rainfall-

runoff, d) for the application of an early warning system, the gridded flash flood guidance 
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and e) the methods used for the storm tracking and trajectory analysis based on the weather 

radar datasets. Each subchapter consists of an integral part of the entire methodological 

framework. 

Chapter 4: Results and Discussion 

This chapter features the results of applying the above methods to the study area. The results 

are discussed, and the significant findings are highlighted. 

Chapter 5: Conclusions and Future Research 

In this chapter, the main findings of this Ph.D. thesis are presented. These consist of all the 

individual findings for each subprocess, followed by the findings of the research questions 

raised. Finally, recommendations for future work are also presented in this chapter. 

Finally, three Appendixes, A, B and C, support the abovementioned chapters. The first is a 

list of all the events measured by the Rainscanner system from 10/2018 up to 12/2022, while 

the second and third present the results maps of the storm tracking algorithm in multiple 

events. 
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2. Study Area and Data Used 

2.1 The Attica Region  

The study area is the Attica region, and specifically, the area defined by the area coverage 

of the Rainscanner system Figure 2-1. The Rainscanner is located in Athens, Greece, and 

features a 50 km range. The extent of the Rainscanner, as seen in Figure 2-1., includes the 

majority of the Attica Prefecture, apart from a small area on the west, beyond Mount 

Gerania, as well as a small section of the Central Greece prefecture north of Mount Parthitha, 

a part of the Asopos river basin.  

 

Figure 2-1: The Study area, the Attica Region, including the Rainscanner range 
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The Rainscanner is installed at the Zographou district, at the foot of Hymettus Mountain, 

within the premises of the NTUA campus, and specifically on the roof of the Santorini 

building, where the facilities of the Department of Hydrological Engineering of the School 

of Civil Engineers lie. The elevation of the installation is 200 m and oversees the east side of 

Athens. The covered area includes the entire Athens metropolitan area, surrounded by 

Mounts Aigaleo on the west, Penteli and Parnitha on the north, and Hymettus on the east. 

Due to the presence of Hymettus Mountain, the entire southwest area is obstructed and 

cannot be measured. Unfortunately, the entire “Mesogeia” region, including the Athens 

“Eleftherios Venizelos” airport, is out of reach. However, the Rainscanner location is 

favored for observing precipitation systems with a west-to-east and north-to-southwest 

direction which are the majority of systems in the area, making it a viable option for 

observing and providing nowcasts and forecasts for the city of Athens and its vicinity.  

2.1.1 Attica Districts 

The Attica Prefecture is divided into eight regional units, five consisting of the Athens 

metropolitan area; Central Athens, North Athens, West Athens, South Athens, and Piraeus, 

while the rest, West Attica and East Attica, are larger and complete the mainland area of the 

prefecture. Finally, the Island region includes the islands within the Argo-Saronic Gulf, such 

as Salamina and Aigina, and the island of Cythera in the south. 

Attica is the most populated area in Greece, where a total of 3.8 million out of 10.4 million 

people reside, i.e., 36% of the total population. Within the Athens metropolitan area, which 

consists of the administrative prefecture divisions of Central, West, South, and North 

Athens, as well as the Piraeus, a total of 3 million reside, i.e., 30% of the total population and 

80% of Attica population, while in west Attica and east Attica, 1.6% and 5% of the total 

population reside, and 4.35 and 12.5% of the Attica population, respectively.  

Moreover, based on the Hellenic Statistical Authority report (ELSTAT 2023), the region's 

Gross Domestic Product (GDP) for 2020 was 78.99 billion €, accounting for 47.7% of the 

Greek economic output, the highest GDP per capita in Greece. Of this percentage, 35% of 

GDP is generated in Central Athens, 18% in North Athens, 12% for each in South Athens, 

Peiraeus, and East Attica, 6% in West Athens, and only 5% in West Attica. GDP per capita 

lies at 20% for each region. However, the West Attica region houses high industrial activity, 

namely in the municipality of Aspropirgos and the Thriasion Plain between Aspropirgos 

and Elefsis. Specifically, industrial plants that produce chemicals, metals, and plastics are 

found, and the Aspropirgos refinery is the largest in Greece. 
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Figure 2-2: The Attica Regions Prefecture and its regional units 

2.1.2 Land Use 

High urban and semi-urban areas characterize the Attica region. In Figure 2-3, the Corine 

Land Cover (CLC) for 2018 is shown. Overall, 27% of the region is of artificial type, while 

the rest, 73%, is agricultural and forest type. However, as seen by two figures, the density 

of urban, i.e., impervious areas, is not even within the entire region. Three distinctive areas 

are identified: the high continuous urban fabric areas found in Athens, the semi-urban, i.e., 

discontinuous urban fabric areas found in west Attica, e.g., Aspropirgos and Eleusis as well 

as in the Mesogeia region, and the rural areas in east Attica. When analyzing the land use in 

these areas, the mean percentage of artificial surfaces is about 66%, 19%, and 10%, 

respectively, and the corresponding percentages of natural land (crops, grassland, and 

forests) are 33.9% in Athens, 89.4% in Western Attica and 80.1% in Eastern and Northern 

Attica (Feloni 2019). These percentages are expected to change, especially in the West and 

East areas, since in Greece, legislation that allows out-of-city planning construction is still in 

place, and city-expanding plans are underway. These areas are favored for both primary 

residence and holiday housing since they lie close to the Athens metropolitan area and the 

sea coast, adding real estate value.   
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The above fact has led to continuous urbanization of the region since the 1960s, which has 

altered the natural stream's waypaths. In Athens, several streams have been covered to form 

road networks, with the most notable cases being the Kifissos, Alexandras, and Kalliroi 

avenues. In peri-urban areas, uncontrolled urbanization has led to the obstruction of the 

natural stream’s pathways by obstructing their natural path, which is only revealed after 

intense rainfall leads to flooding.  

 

Figure 2-3: Land cover and use in Attica Region: Data Source: CORINE Land Cover 2018 

As the featured land use map shows, most of the region is described by an urban 

environment. Rural areas can be found in west Attica, in the foothills of Mounts Partnitha 

in the North, and in the Mesogia region in the southeast. 

2.1.3 Hydrological Scheme - Climate 

Athens has a Mediterranean climate, with mild, rainy winters and hot, dry summers. The 

city typically receives most of its precipitation between November and March, with 

relatively little rainfall during the summer months. According to Koppen (1884) the climate 

of Attica is characterized as Hot-Summer Mediterranean (Csa), except for high altitudes, 

where it is characterized as Humid continental (Dsb and Dfb). The average temperature 

during the summer months is 30o C, while in the winter months, the average is 10o C. 

Although summer months are characterized by high temperatures, which has led to the 

European temperature record of 48o C measured in Eleusina and Tatoi in 1977, the climate 
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throughout the year is highly influenced by the area's proximity to the sea, which 

contributes to providing relief as well as providing more rainfall during winter. 

Concerning rainfall, the average annual rainfall highest is 400mm but ranges between 350 

mm and 1000 mm in the lowlands and mountainous parts, respectively (Baltas 2008).  

The rainfall regime is Attica is characterized by Convective and Stratiform events. Stratiform 

events occur during the winter months, mainly in November and February, while 

convective events are typical in the summer, especially in June. From the above, the 

convective events feature the highest rainfall intensities, which often result in flooding even 

if a dry period was observed previously. 

In Figure 2-4, the main subbasin formed within the Attica Region boundaries are displayed. 

The largest basin is the Kifissos river basin, with an area of approximately 341 km2, which 

consists the entire Athens metropolitan area. The basin is highly urbanized, with its main 

stream, kifisos stream, being turned into an open and covered channel stream. 

  

Figure 2-4: Main basins formed in Attica Region with their respected area. With blue, the basins 

with an area over 100 km2  

The majority of subbasins are characterized by their proximity to the sea, and the high 

percentage of urban use. The largest rural or peri-urban basins are Sarantapotamos and 

Megara River basins in the West, and Marathon, Erasinos and Rafina basin on the east. Due 
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to the Rainscanner beam blockage to the east of Hymettus areas, the main focus in this 

research is focused in the west and specifically the Sarantapotamos river basin. This basin, 

features a total area of 341 km2 of which the majority, i.e., 231 km2 features rural 

characteristics. One main characteristic of the subbasins formed in the Attica region is the 

large number of small basins due to the lengthy coastline. The majority of these areas are 

highly urbanized in the areas closest to the sea, making them vulnerable to flash floods 

events. 

2.1.4 Historical Flood Events 

Records of historical flood events are available on the website of YPEKA 

(http://floods.ypeka.gr), which were collected to implement the 2007/60 EC Flood Directive 

and submitted to the European Dataset “EIONET.” In the Ph.D. dissertation of Dr. Feloni 

(Feloni 2019), a complete list from 1987 up to 2017 is presented using the YPEKA dataset 

and other sources and scientific articles. From the listing, also shown in Figure 2-5, it is 

evident that although the number of rainfall events has remained the same or even 

increased, the fatality rate has decreased except for the November 2017 Mandra event, 

which led to the fatality of 24 human lives. Overall, most flood events have occurred in the 

winter months, with October and November being the highest.  

In the last decade, the most notable events were February 2013, October 2014, October 2014, 

and November 2017. The geographical distribution of floods reveals that most flood areas 

occur mainly in the western areas of Athens and Attica, respectively. A few areas in the 

north are also affected, mainly after flash flood events in summer months, generated 

through the high rainfall height due to orography.  

 

Figure 2-5: The most sever flood events for the period 1896-2017  

Source: (Feloni 2019) 

http://floods.ypeka.gr/
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Regarding the duration of the storm events, it is observed that almost all flood events 

featured a rainfall event with a duration of less than a day; most times, the duration can be 

less than six hours. Summer events resulting from convective events often lead to flash 

floods. These floods are usually locally based events, where a high volume of rainfall affects 

a single basin. Although the number of fatalities might be low, the severity of the events in 

conjunction with the unawareness has historically led to near misses of fatalities. 

In most cases, flooding occurs within the urban fiber of Athens, leading to roads being 

converted into streams resulting in infrastructure damages, the flooding of basement 

properties, and the dysfunction of economic activity. One aspect that contributes to this fault 

is the high urbanization of the city, in conjunction with the old and poorly maintained storm 

sewer system. Especially in the center of Athens, the system is still combined, i.e., storm and 

wastewater, which has a higher chance of being inadequate in higher return periods of 

rainfall events. The problem is usually located in the relatively low maintenance and 

cleaning of roads. Specifically, debris and waste usually block the sewer system's drain holes 

during the first minutes of a rainfall event. 

Finally, it is worth mentioning that in the last three years, the region of Attica suffered from 

high volumes of snowfall, at least one event per year since 2021, that has led to substantial 

socioeconomic damages. Overall extreme weather events have increased in frequency and 

intensity in many parts of the world, including Greece, with this trend being linked to 

climate change and urbanization.  

2.1.5 Early Warning Systems in Greece 

In Greece, the authority responsible for flood protection is the Civil Protection Agency 

(CPA), which works under the Ministry of Environment, Energy and Climate Change 

(YPEN). However, most predictions and forecasts are provided by the Hellenic National 

Meteorological Service (HNMS), which operates as part of the Greek Armed Forces and the 

Ministry of National Defence. The HNMS is responsible for providing meteorological 

forecasts for aviation and navigation and, as such, has been heavily affiliated with weather 

forecasting against natural phenomena. The HMNS works as the gateway of European-

based alert systems such as the MeteoAlarm and the EFAS. The first is mainly used for 

providing alerts of all events, such as high rainfall, winds, and heat, using four levels of 

alert, green, yellow, orange, and red for no action, get informed, prepare, and get preventive 

measures alert levels, respectively. The state of alert is configured for each meteorological 

parameter based on groups of fixed limit values. The forecasted accumulated rainfall height 

of either 12 or 24 hours is examined, depending on the location, as shown in Table 2-1, in 

which the values in bold concern the rainfall thresholds used for Attica. This system only 

provides alerts depending on rainfall height, and does not consist of an actual FEWS.  
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The EFAS system is EU-wide system which offers valuable products. However, as 

mentioned in the introduction, the system effectiveness is limited in Greece due to the 

formation of numerous small river basins are vulnerable to flash flooding, while the system 

is designed to support decision-making, emphasizing large trans-national river basins and 

large river basin systems.  

 

Table 2-1: The MeteoAlarm Thresholds that are used in Greece 

 Variable Location 
No 

Warning      
Be Aware               Be prepared                Take Action                 

Wind [km/h]   W < 60   60 ≤ W < 80  80 ≤ W < 100  W ≥ 100 

Wind Gusts 

[km/h] 
 G < 80   80 ≤ G < 110  110 ≤ G < 130 G ≥ 130 

Rainfall Height 

(24 hour) P[mm] 

West Greece, NE Aegean 

and Dodecanese 
P < 20 20 ≤ P < 60  60 ≤ P < 100 P ≥ 100 

 

N. Greece, East Sterea 

Ellada, Thessaly, 

Peloponisos, Cyclades & 

Crete 

P < 15 15 ≤ P < 40  40 ≤ P < 75 P ≥ 75 

Rainfall Height 

(12 hour) P[mm] 

West Greece, NE Aegean 

and Dodecanese 
P < 15 15 ≤ P < 50  50 ≤ P < 80 P ≥ 80 

  

N Greece, East Sterea 

Ellada, Thessaly, 

Peloponisos, Cyclades & 

Crete 

P < 10 15 ≤ P < 30  30 ≤ P < 60 P ≥ 80 

Max 

Temperatures 
North Greece, Ipeiros T < 35 35 ≤ T < 39 39 ≤ T < 42  T ≥ 42  

T[oC] Central and South Greece T < 37 37 ≤ T < 41 41 ≤ T < 44  T ≥ 44  

  Islands T < 33 33 ≤ T < 37 37 ≤ T < 40  T ≥ 40  

Min 

Temperatures 
North Greece, Ipeiros T < -5 -5 ≤ T < -8 -8 ≤ T < -15 T ≤ -15 

T[oC] Central and South Greece T < -1 -1 ≤ T < -4 -4 ≤ T < -8 T ≤ -8 
 Islands T < 0  0 ≤ T < -2 -2 ≤ T < -5 T ≤ -5 

Snow [cm]   
Not 

Specified 

Urban: ≤ 2 

Rural: ≤ 5 

Urban: ≤ 10 

Rural: ≤ 25 

Urban: ≥10 

Rural: ≥ 25 

Storm   
Not 

Specified 

Wind Gust:         

≤ 40 kns           

Hail: ≤ 1cm 

Wind Gust:      

40 ≤ G < 60 kns     

Hail: 1 ≤ D < 2  

Wind Gust:   

≥ 60 kns     

Hail: D ≤2 

Fog (Visibility) 

[m] 
   ≥ 500 m   100 ≤ V<500  V < 100  V < 50 m 

 

The CPA has recently been utilizing the “112” EU emergency number as a warning system. 

Specifically, after catastrophic fire events that caused the loss of multiple human lives, the 

CPA has also enhanced the “112” system with sending information. Initially, the “112” 

number was a free-of-charge number used in Europe to contact any emergency services, 

such as an ambulance, the fire brigade, or the police, of the EU state one is located. The “112” 

system is now updated to send prespecified warning messages to smartphones using Cell 
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Broadcast technology or, in lack of a smartphone, simple SMS messages after registration in 

both Greek and English. The system started to be utilized by sending messages about the 

COVID-19 pandemic. Since May 2021, the system is used mainly as an evacuation tool since 

most messages were related to wildfire events, while the first message transmitted for a 

rainfall event was on December 2021. From March 2020 until February 2023, out of the 217 

messages transmitted, 40 were related to extreme rainfall and four for floods. The flood 

events for which alerts were issued were three and occurred on the 14th of October 2021, the 

26th of January 2023 flood in Athens, and the 09th of December 2021 in Central Macedonia 

prefecture.  

The system is only recently being used, so validation is not performed. Regarding rainfall 

and flood alerts, the HNMS service and the fire brigade in some cases inform the CPA. In a 

study regarding people’s perception of EWS, the most reliable source is the HNMS reports 

followed by other authorities, namely the CPA, by either SMS messages or door-to-door 

warnings (Diakakis et al. 2022). Radio, internet, and television were considered as less but 

still relatively reliable. Although this adds credibility to the system, regarding flood alerts, 

the lack of detailed precipitation forecast and nowcast products and the lack of rainfall-

runoff modelling on river basin scale cannot deem the system as genuinely reliable. 

Although warnings are essential, when regular miss-hits occur, the credibility of such 

systems can be easily lost.  

Apart from the official agencies, several agencies and institutes that perform meteorological 

forecasts issue newsletters through their websites or social media that can also be conceived 

as warnings. The most watched institute is the NOA which features the densest rain gauge 

network. The NOA’s METEO research team has developed a methodology to rank rain 

storms by calculating the Regional Precipitation Index (RPI) (Lagouvardos et al. 2022). The 

index considers the daily accumulated precipitation and its exceedance of specific percentile 

thresholds, such as the total area where the exceedance occurs and the population where 

these exceedances occur, leading to a five-group classification from low to extreme risk. 

All the above systems operate using mainly precipitation indexes without any rainfall-

runoff modeling. Since flood occurrence probability is highly correlated now only by the 

rainfall amount but also by the basin characteristics and the soil moisture condition before 

the event, none of the above systems can be classified as a dedicated flood EWS. Moreover, 

the generated forecasts are usually in an inadequate space and time scale for the necessary 

rainfall-runoff computations.  
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2.2 Data Used 

2.2.1 Weather Radar Datasets 

The weather radar used, referred to as the Rainscanner system, is an X-Band weather radar 

system provided by Selex ES GmbH company. Currently the system is installed in the 

NTUA campus, at the roof of the laboratory of hydrology and water resources management 

of the school of civil engineers Figure 2-6 . 

 

Figure 2-6: The installed Rainscanner® unit, Antenna and Head unit 

The technical specifications of the featured model, RS90, are displayed in Table 2-2. The 

system consists of the following units: the antenna, the head unit, the interface unit, the 

signal processor, and the user workstation which interact with each other as shown Figure 

2-7. The antenna is installed above the head unit and inside a radar dome, while the interface 

unit supplies power to the head unit and triggers the generation of electromagnetic pulses. 

The signal processor runs in a Linux environment and performs the overall unit control, the 

analog to digital signal transformations, clutter filter corrections, and the generation of 

slices. These processes can be set up and triggered by the end-user using the RainView® 

Analyzer software, which through a user interface, the operator can manage and set up any 

pre-process required to the raw datasets, such as the application of clutter corrections, the 

definition of the spatial resolution of the final product, the temporal aggregation and the file 

format of the generated datasets. Overall, the system is a small and robust installation, that 

can be fitted in any location.  
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Figure 2-7: Rainscanner main components and functions. Source (Selex ES 2014) 

Table 2-2: Technical Specifications of the NTUA Rainscanner weather radar system 

Parameter Value 

Peak Power  25 kW 

Wave Length X- Band 3.2 cm 

Frequency 9410 (± 30 MHz) 

PRF 833 – 1500 Hz 

Pulse Duration 1200 – 500 ns 

Rotation Rate 12 rpm 

Azimuth & Elevation Beamwidth 2.5o 

Azimuth Accuracy ± 0.5° 

Scanning Range 50 km 

Maximum Spatial Resolution 100 m x 100 m 

 

The generated files are provided into “Arc/Info ASCII Grid” file format, using an Azimuthal 

Equidistant projection, with the Rainscanner as its center, which includes an ASCII file 

format containing a 1000 x 1000 dimensions reflectivity matrix. Since 2023, a NetCDF type 4 

file format is also generated, with the scope of replacing the Arc/Info ASCII Grid format. 

The new file format reduces the file size significantly, from approximately 6 MB for each 2-

minute measurement to less than 1 Mb. The generated files receive a name based mainly on 

the timestamp in Universal Time Coding (UTC) and information regarding the generated 

file. More information regarding the specific processes that are performed on the raw 

weather radar datasets is discussed in Chapter 3.2. 
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A complete list of all the events measured by the Rainscanner system in shown in Appendix 

A. Specifically, the events starting and end datetimes, along with their duration is shown. 

Not all events featured considerable amount of rainfall, as shown by their small durations, 

therefore only a sublist of these were utilized in this research.  

2.2.2 Rain Gauge Datasets 

The precipitation measurements used in this research were provided by the National 

Observatory of Athens Automatic Network (NOANN) station, operated by the Institute for 

Environmental Research and Sustainable Development of the National Observatory of 

Athens. The network is continuously expanding nationwide with multiple 

hydrometeorological measurements, including rainfall, wind direction, speed, ambient air 

temperature, atmospheric pressure, relative humidity, and solar and UV radiation 

(Lagouvardos et al. 2017). Most of the stations feature a “Davis Vantage Pro 2” model and 

can provide real-time measurements with a 10min temporal resolution. The data collected 

are quality controlled in two stages. First, a procedure performed twice daily results in 

flagging questionably quality data such as null values of wind for many hours. Secondly, 

all flagged datasets are re-examined concerning spatial and temporal inconsistencies with 

neighboring stations. This procedure is performed before incorporating the new data into 

the database. In this research, 53 stations are used, as shown in Figure 2-8, with a date span 

between 2018 and 2020. The data were provided after the quality-controlled processes and 

therefore considered the ground truth.   

 

Figure 2-8. The Rainscanner coverage along with the rain gauge stations. 
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Finally, the Intensity Duration Curves (IDF) derived in the course of the Flood Risk 

Management Plans for Greece by the Ministry of Environment, Energy and Climate Change 

(SSW-MEECC 2017) were also incorporated in this study. The IDF was evaluated at the 

station level, using a Log Pearson GEV 5 parameter. Table 3-2 presents the list of the stations 

with their respective parameters and the calculated accumulative rainfall height for three 

rainfall durations and five years return period. In Figure 2-9, the location of each station is 

featured, using the ID number featured in Table 2-3 as a reference. As in the case of the 

NOAs stations, the majority lie within the Athens metropolitan area, while only two 

stations, Eleusina, ID #286 and Mandra, ID #292, lie in the west Attica where the 

Sarantapotamos subbasin is located. Two stations in the north are also shown in Figure 2-9 

but were not used since not only there are they stationed away from the study area, but they 

are located on the other side of the central mountain peak, Mount Penteli, resulting in 

different rainfall characteristics that are not suitable for use with any interpolation 

algorithm. 

 

 

Figure 2-9: IDF Stations in Attica Region; Stations marked with their respected ID, referenced in  

Table 2-3. 
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Table 2-3: List of Stations with their IDF parameters and calculated rainfall accumulation 

Station ID Elevation 
IDF Parameters 

Accumulate 

Rainfall (mm) T=5 

years 

η κ λ ψ θ 1-h 3-h 6-h 

Eleusina 286 31 0.622 0.125 171.4 0.695 0.124 23.0 36.5 48.0 

Mandra 292 258 0.622 0.125 213.4 0.641 0.124 31.5 50.1 65.9 

Psytaleia 297 20 0.622 0.125 160 0.759 0.124 18.8 29.9 39.4 

Nea Philadelphia 281 136 0.622 0.125 195.5 0.72 0.124 25.0 39.6 52.2 

Ano Liosia 289 184 0.622 0.125 229.8 0.678 0.124 31.8 50.5 66.4 

Nikaia 277 67.2 0.622 0.125 101.1 0.55 0.124 17.3 27.4 36.1 

Peristeri 283 75.4 0.622 0.125 124.8 0.694 0.124 16.8 26.6 35.0 

Lomfos Nymfon 279 107 0.622 0.125 163 0.698 0.124 21.7 34.5 45.4 

Menidi 293 248 0.622 0.097 334.6 0.771 0.124 33.8 53.7 70.6 

Helliniko 278 10 0.622 0.125 216.9 0.735 0.124 26.9 42.7 56.1 

Tatoi 284 0 0.622 0.097 289.7 0.792 0.124 27.7 44.0 57.9 

Galatsi 290 176 0.622 0.125 142.4 0.57 0.124 23.6 37.5 49.3 

Vyronas 291 206 0.622 0.07 365.3 0.881 0.124 22.1 35.1 46.2 

Zographou 276 226.4 0.622 0.07 282.1 0.828 0.124 20.9 33.1 43.6 

Chalandri 287 219 0.622 0.125 266.7 0.699 0.124 35.5 56.3 74.1 

Penteli 285 189.3 0.622 0.125 135.7 0.63 0.124 20.4 32.4 42.7 

Ag. Nikolaos 295 729 0.622 0.097 375.4 0.809 0.124 34.3 54.5 71.7 

Penteli D.B. 288 383 0.622 0.097 300.2 0.758 0.124 31.3 49.7 65.5 

Pikermi 294 630 0.622 0.097 360.7 0.739 0.124 39.4 62.5 82.3 

Markopoulo 296 133 0.622 0.097 236 0.727 0.124 26.5 42.1 55.3 

Peiraias 280 85 0.622 0.07 275.8 0.805 0.124 22.0 34.9 46.0 

Ag. Ierotheos 282 2 0.622 0.125 99.1 0.534 0.124 17.3 27.5 36.2 

 

2.2.3 GIS Datasets 

Apart from the hydrological measurements, other datasets that were used in this research 

include the following: 

• A Digital Elevation Model (DEM) is provided by the National Cadastre & Mapping 

Agency S.A. (Copyright © 2012, National Cadastre & Mapping Agency S.A.). The 

DEM features a 5 m x 5 m spatial resolution elevation grid with a geometric accuracy 

of RMSEz ≤ 2.00 m and an absolute accuracy of less than 3.92 m for a 95% confidence 

level. The format of the files is in ERDAS Imaging (IMG), projected into the Hellenic 

Geodetic Reference System 1987, also known as Greek Grid, GGRS87, or EPSG:2100. 

• The CORINE Land Cover (CLC, 2018) dataset was used, which features an inventory 

of land cover in 44 European classes. The CLC dataset was first established in 1990 

and, since 2000, has been updated every six years, with the latest product being in 

2018. The minimum mapping unit (MMU) is 25 hectares (ha) for areal objects and 

100m m for linear elements. Because of the coarse resolution, it is suggested that a 
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more detailed land cover map should be used instead for various uses. The 2018 

version made use of the Sentinel-2 and Landsat-8 satellite datasets, for a period 

between 2017-2018. The geometric accuracy of the datasets was less than 10 m due 

to the high Sentinel-2 resolution images, which results to a better than 100m of the 

final product. 

• The URBAN Atlas 2018 land use dataset is also used. The Urban Atlas focuses on 

“hot spots,” i.e., in urbanized areas, where a dense variability between land uses is 

found. The dataset was first introduced in 2016, with 2012 and 2018 the following 

products. The dataset is based on image classification of very high-resolution 

satellite imagery, the multispectral SPOT 5 & 6, and Formosta-2 pan-sharpened 

featuring a 2 to 2.5 m spatial resolution. Finally, the dataset is enriched with local 

information, such as city maps and online services, to increase its accuracy. The 2018 

dataset features an inventory of 27 classes with an MMU of 10m and positional 

accuracy of 5 m. The 2018 version is not validated yet, but the 2012 installment 

featured an 85% accuracy for artificial classes and an 80% for all classes. 

• GIS-based datasets provided by open access sources such as the geodata.gov.gr 

website, where the boundaries of the administrative regions were provided, and 

datasets, e.g., road network, provided by the OpenStreetMap initiative. 

A list of the available IDF stations and their respected fitted parameters derived in the course 

of the Flood Risk Management Plans for Greece by the Ministry of Environment, Energy 

and Climate Change (SSW-MEECC 2017), in a .shp format. 
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3. Methodological Framework 

3.1 Introduction 

In this chapter, the methodological framework followed in this dissertation is explored. This 

framework's main objective is to aid in developing a FEWS that implements weather radar 

datasets. As described in the previous chapters, weather radar is extremely useful for FEWS 

implementations but requires proper calibration and user expertise to achieve reliable 

measurements and forecasts. The methodological framework covers the steps needed to 

reach hydrological products for FEWS applications. The entire framework is illustrated in 

Figure 3-1. The main components are illustrated with different colors, as referred to in the 

attached legend. There are four components: the input data, the processes, the algorithms, 

and the output. The input and output files refer to the raw datasets collected in this study, 

and the output files are either intermediate core files or actual hydrological products. The 

processes are the main components of this dissertation. Each component solves a different 

problem required for the entire process. The main processes are:  

The first process is the file management and data corrections process, which is essential for 

further processing the raw Rainscanner datasets. There are two specific actions, one that is 

referred to as pre-process and one referred to as post-process. The pre-process is user-

calibrated beforehand and is performed on the fly for each measurement within the 

Rainscanner software. The post-process provides an additional layer of quality control by 

addressing temporal inconsistencies and other raw data errors. 

The second process is the Z-R calibration, where a methodology is described and applied 

for deriving a Z-R relationship based on Rainscanner – rain gauge correlation analysis of 

past events. This process is crucial for transforming reflectivity into rainfall height, thus 

obtaining reliable gridded rainfall maps for further analysis.  

The third process involves the design and application of a gridded Rainfall-Runoff (RR) 

model suitable for implementing the Rainscanner-derived rainfall maps. The RR model uses 

GIS tools to calculate its parameters based on the basin’s characteristics, making it easily 

applicable in areas with little data to calibrate. 
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The fourth process is a Flash Flood Guidance (FFG) implementation, the Gridded Flash 

Flood Guidance (GFFG). The implementation incorporates the proposed RR model to 

produce gridded rainfall thresholds, upon which a FEWS relies. 

Finally, the fourth process is a Storm tracking algorithm. The algorithm first identifies 

rainfall cells based on reflectivity thresholds and generates each cell track after analysis of 

numerous instances. Then, the algorithm is used to examine the trajectory of rainfall events 

in the study area while providing the first step for generating nowcasting products. 

Each process leads to an “Output” product, which, apart from its usage in this dissertation 

application, can also be used in other products.  

 

 

Figure 3-1 The Methodological Framework 

 

3.2 Radar File Management and Quality Control 

The weather radar conducts three-dimensional time and space observations. A total of 24 

instances are utilized to create a single 2-minute duration volume scan. This volume scan is 

projected into 2-D, generating the Plan Point Indicator (PPI) and the Azimuth-Distance 

scans. The PPI scan shows the measurements projected into a 2-D surface in radial 

coordinates, with the radar system at its center. The Azimuth-Distance scan projects the 

measurements onto a 2D chart, with the x-axis representing the radar-to-target distance and 

the y-axis representing each point's azimuth. 
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Each volume scan is first subjected to quality control algorithms and later to spatial and 

temporal aggregations to match the desired scales. Finally, the resulting scans are 

georeferenced to the desired coordinate system and saved to the appropriate file type for 

further analysis. These actions consist of the " pre-process " performed by the Rainscanner 

software RainView® after user calibration and include the following: 

• Ground Clutter and Occultation Corrections 

• Temporal and spatial aggregation 

• Georeferencing and File management 

The preprocess flowchart is depicted in Figure 3-2, along with the settings established for 

the featured Rainscanner system. 

 

 

Figure 3-2 Data process flow chart 

3.2.1 Pre-Process Quality Control 

Ground Clutter and Occultation corrections 

Ground clutter refers to reflectivity echoes transmitted by non-rainfall objects, such as the 

terrain, or stable signal-transmitting objects, such as radio or cell network transmissions, 

while occultation refers to areas of no data due to the obstruction of the radar’s line of sight. 

The aim of these corrections is first to identify the regions where signal noise is generated 
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or signal is lost and, secondly, to correct it.  The identification of these regions is 

accomplished by analyzing observations of clear sky. Observations of a clear sky measure 

non-rainfall objects' reflectivity values. As a result, these areas can be highlighted and 

further analyzed appropriately. In order to maximize the identification process, numerous 

scans of the clear sky are performed and mosaiced into a single image, the clear sky map.  

The Occultation correction is performed first. This correction is made to cure areas where 

obstacles partially block the antenna beam. The data gaps are shown as no-data cones 

created beyond the signal-blocking obstacles in a PPI view. Instead of omitting these areas, 

an interpolation algorithm is applied to fill these gaps. The neighboring non-occulted points 

in the azimuthal direction are discovered and used to fill the NoData points using linear 

interpolation. If one of the neighboring points is a NoData point, the value is determined by 

the distance between the neighboring non-occulted points and the point to be filled. If the 

“no data” point is closer than the “has data,” then the point gets a NoData value. Following 

this procedure, the occultation map is created, which indicates the position of the affected 

pixels and the interpolation parameters to be performed in real-time measurements. 

The Ground clutter corrections follow a similar procedure. The clear sky map is used to 

identify areas to be flagged for corrections, but real-time gap-filling interpolation can also 

be performed. The clutter-affected or missing data gaps can be treated based on one of the 

following procedures: 

• Removal of the cluttered area 

• Clutter Subtraction. 

• Flagging and Automatic interpolation 

In the first case, any clutter-detected areas are manually marked as NoData areas and are 

ignored from future scans. This treatment is performed if large clutter areas are detected 

and no further action is preferred. Moreover, replacing the value with NoData makes the file 

smaller and easier to configure. 

The second and third cases are correction algorithms. The clutter subtraction is relatively 

simple since it treats the clear sky reflectivity values as data to be subtracted from the real-

time scans. Although this correction may work for low-reflectivity noise, it is impractical for 

use with high-reflectivity noise since a considerable amount of reflectivity is substracted, 

rendering the treated area as low as zero reflectivity targets on real-time scans, where actual 

rainfall should be observed instead. 

Finally, the flagging and automatic interpolation algorithm is usually the preferred choice. 

In this case, an interpolation algorithm (Kammer 1991b) is applied to the clutter-affected 

areas using nearby clutter-free areas. The algorithm can be performed in either user-defined 
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areas or automatically to the entire scan, which is also the default. In this case, the algorithm 

is performed conditionally, based each time on real-time measurements.  

When performed automatically, the clutter-affected areas are identified first for each can. In 

order to avoid interpolation from points that are seemingly non-clutter data but are found 

within clutter zones, a radial segmentation is performed in each case. A segmentation 

interval is chosen, and the number of flagged areas is calculated for each radial area. If more 

than half of an interval's areas are highlighted, the interval's radial areas are also 

highlighted. The size of the segmentation interval is calculated as follows: 

𝑁 = 4
1

√𝛥𝑟  

1

√𝑅𝑆 
 (3. 1) 

, where N is the segmentation interval, Δr the range area resolution (in km), and RS is the 

range sampling (range averaging). 

The NoData gaps are polygon-shaped areas interpreted as an ellipse. The corrections 

applied, i.e., the gap-filling interpolation algorithm is performed into two axes: the 

azimuthal direction, i.e., left and right of the missing data, and the radial axis, i.e., the axis 

defined by the line between the target and the Rainscanner. For each area, the following 

parameters are stored, as illustrated in Figure 3-3:   

• The maximum distance in the radial direction, Dr 

• The maximum distance in the azimuthal direction, Da 

• The radial direction bounding points location, R0 and R1  

• The azimuthal direction bounding points location, A0 and A1 

 

Figure 3-3: Clutter-affected area calculated parameters  

The nearest data from clutter-free points are searched for interpolation for each area. If the 

distance of these points is less than a pre-defined maximum radial, Da,max, and azimuthal 

direction, Dr,max, then the interpolation can be applied in both directions. However, if the 

radial or azimuthal distance exceeds their pre-defined maximums, the interpolation is 
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performed only in the direction where the maximum is not exceeded. Finally, no 

interpolation is performed if the distance exceeds the maximums in both directions. These 

cases are illustrated in Figure 3-4, where panel a shows interpolation in both directions, 

panel b shows interpolation only in one direction, the azimuthal, and panel c shows the case 

of no interpolation.  

 

 

Figure 3-4: Clutter-affected area interpolation cases based on pre-defined maximum distances,  

a) both directions, b) one direction, c) no interpolation 

If the missing data area has a complex shape, as shown in Figure 3-5, multiple bounding 

points are calculated, and interpolating each direction is performed based on the distances 

calculated for each bounding point group. Specifically, each Rainscanner ray has a 0.5-

degree fixed step in the azimuthal direction, and therefore, for each ray, a R0 start and R1 

end bounding point are defined. 

 

Figure 3-5: Ground clutter identification and flagging algorithm in a complex shape 

The interpolation performed is linear, with the user setting the maximum distance Dmax in 

each direction. In this Rainscanner, the limit is ten cells, i.e., 1000 m. If both-direction 

interpolation is feasible, then the calculated value is the mean value of the interpolated 
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values of each direction. If any neighbor cell is of NoData, then the next neighbor is used for 

interpolating up to the maximum distance previously set. 

Finally, if automatic and user-defined areas overlap, then the “OR” rule is applied, where 

the interpolation is applied by the most restrictive rules set in each case. For instance, if only 

radial interpolation is pre-selected for a user-defined area, the automatic interpolation will 

not perform two-directional interpolation, even if feasible.  Moreover, the MAX rule is also 

applied, which dictates that the maximum reflectivity value is selected if two interpolations 

are performed for the same point. 

Spatial and Temporal aggregation 

This procedure is performed automatically to define the desired spatial and temporal 

resolutions. The Rainscanner system, by default, creates a 1000 x 1000 pixels raster. The 

spatial resolution of the scans is then related to the scanning range. When large scanning 

ranges are selected, the system degrades the resolution to fit the data into the 1000x1000 

pixels raster. Therefore, although a 100 km range is feasible by the system, a smaller 50 km 

range will lead to a better spatial resolution scan. Moreover, the smaller range is a more 

reliable choice since X-Band radars suffer from signal attenuation, thus making long-range 

scans through storms unreliable. Therefore, for a 50 km range selected, a 100 m x 100 m pixel 

size is calculated.  

Concerning the temporal resolution, the minimum 2-minute temporal resolution is selected. 

The temporal aggregation of reflectivity values can be easily performed by calculating the 

average values of the selected 2-minute intervals within the desired time interval. Although 

the aggregation may be conducted on the precipitation data, executing the aggregation on 

the reflectivity values is preferable to prevent errors that can be amplified when applying a 

power-law equation, such as the Z-R relationship used first. 

Data projection and File Type 

This step deals with the necessary projection transformations, i.e., the conversion from polar 

to Cartesian grid coordinates. The conversion is applied using interpolation between the 

nearest points of the polar grid to the nearest point of the predefined cartesian projection. 

The selected projection for the generated datasets is the Azimuthal Equidistant projection, 

with the Rainscanner as its center. Finally, the dataset is stored in an “Arc/Info ASCII Grid” 

file format. The files generated are of ASCII file format containing a 1000 x 1000 dimensions 

matrix, with the reflectivity measurements in dBZ values, and ASCII files containing the 

georeferencing information. Since 2023, a NetCDF type 4 file format has also been generated, 

with the scope of replacing the Arc/Info ASCII Grid format. The new file format reduces the 

file size significantly, from approximately 6 MB for each 2-minute measurement to less than 

1 Mb.  
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The generated files receive a name based mainly on the timestamp in Universal Time 

Coding (UTC) and information regarding the generated file. The following file name coding 

is used: 

<YYYYMMDDhhmmss><NN><data-type>.<product-type> 

The first part is the timestamp, where YYYY, MM, DD, hh, and ss denote year, month, date, 

hour, minutes, and seconds. The <NN> is an increasing counter to distinguish file names of 

the exact date and time stamp, while the <data-type> and <product-type> refer to the data 

type, such as whether it refers to reflectivity or other measurements, and the Rainscanner 

type of product, e.g., PPI, CAPPI, max or others. More information about the two latter can 

be found in the Rainscanner manual (Selex ES GmbH 2014; Selex ES 2014). The typical 

reflectivity scans used in this study follow the following example: 

2020060111020000dBuZ.ppi_top.asc 

The previous files refer to a 2-minute reflectivity image with a timestamp of 2020/06/01, 

11:02:00 (UTC). The following two numbers are the <NN>, which are 00, typical for images 

with unique timestamps. The data type is “dBuZ,” a reference to dBZ, which are reflectivity 

units. The u letter in the dBuZ extension denotes that the product is a ground clutter-

corrected dataset. Finally, the product type is a “ppi_top,” which refers to a PPI image, and 

its extension, .asc, refers to the ASCII file format. When the Arc/Info ASCII Grid file format 

is used, additional files, such as a projection file and other GIS-related files, are also 

generated. All files are stored within an automatically generated folder named after the date 

of their creation. Therefore, all measurements of the same date are stored within the same 

folder, regardless of whether the system went offline briefly.  

3.2.2 Post-Process Quality Control 

The post-process quality control consists of quality controlling any unreliable high 

reflectivity values missed during on-the-fly corrections and temporal inconsistencies of the 

generated data. After creating the necessary data structure, the process is performed within 

the MATLAB programming environment. 

First, the event folder is constructed. As stated earlier, the Rainscanner generated folders 

based on the date they were created. Therefore, an overnight event might be stored in two 

different folders, or a single date might consist of two events, one in the morning hour and 

one in the evening. Such gaps might exist due to a) power failures that result in turning the 

system offline for several hours or b) limiting the radar usage when rainfall is not observed. 

The latter is performed to reduce the cost of maintaining a radar system. The maintenance 

is related to its usage. For example, it is referenced that the magnetron of a weather radar 
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should be changed after 3500 hours of usage. In this study, a single event is considered 

complete when the dataset features a continuous timeline without gaps of over 30 minutes. 

However, smaller temporal gaps, e.g., 10 - 20 minutes, can still be considered significant 

data loss, especially when examining small basins as in the study area. Nevertheless, the 

Rainscanner datasets used, apart from gaps due to power failure, did not include such gaps. 

Each event is given a serial number, and further management is performed within the 

MATLAB environment. A data struct is created, containing the entire reflectivity images of 

the event in 1000 x 1000 and the date time timeseries. In this stage, the Greek time zone is 

used to sync the data to the timezone of other used datasets, such as rain gauge datasets. 

Care is taken for transforming to winter (UTC+2) or summer time (UTC+3), based on the 

event date.  

Two quality control actions are performed in these raw datasets, as shown in Figure 3-2. 

First, a dBZ threshold is applied to limit any extreme values missed during the ground 

clutter corrections. This limit is set to 55 dBZ, meaning values above 55 dBZ are reduced to 

55 dBZ. This threshold is set since values over 55 dBZ can be either hail, which is not 

common in Attica unless noticed otherwise, or the effects of the bright-band effect. This 

threshold limits the latter's impact on the data since it is impossible to detect it without 

vertical scanning. The second correction is optional and consists of a secondary “clear sky” 

correction. This correction might be necessary if the ground clutter corrections are outdated 

and constant noise is observed at various points of the image. 

The second action is fixing the temporal consistency and aggregating the final product. 

While each image has a 2-minute timestep, most analysis is performed in a 10-minute 

temporal scale. This scale was selected since the rain gauge datasets are also at a 10-minute 

resolution, which is suitable for analyzing storm systems in the area. The data aggregation 

is performed by calculating the average value of the datasets within a 10-minute interval. If 

some time instances are missing, then the value is calculated by the remaining files. If an 

entire 10-minute is missing, this is set to NoData.  

Following these quality controls, the main processes are undertaken, as shown in Figure 3-1, 

i.e., the Z-R calibration, the R-R model, the GFFG model, and the storm tracking algorithm. 

3.3 Z-R Calibration Framework 

The Z-R relationship is a critical aspect of weather radar monitoring. The relationship 

transforms measured radar reflectivity (Z) into rainfall intensity (R). As previously 

described in Chapter 1.5, the parameters of the Z-R relationship are related to the rainfall 

droplet size distribution. This distribution is not static but varies in time and space. In order 
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to reach valuable conclusions, a complete framework is devised using the rain gauge-

Rainscanner correlation method. The framework is displayed in Figure 3-6. 

In the correlation method, first, the spatial and temporal resolution of the two datasets is 

matched. The rain gauge datasets are point measurements, whereas the Rainscanner is of a 

gridded format. However, the rain gauge datasets are considered as the “true rainfall,” i.e., 

the actual rainfall discarding any errors or uncertainty, and therefore, any conversion made 

is performed to the Rainscanner datasets. These conversions refer to matching the 100 m x 

100 m raster files into “point” measurements and converting from 2-minute scans into 10-

minute resolutions.  

 

Figure 3-6. Correlation analysis and Z-R optimization flow chart 

3.3.1 Data conversion 

First, the spatial conversion is performed by finding the designated pixel of the Rainscanner 

grid that matches a targeted station (Pappa et al. 2021; Bournas and Baltas 2022a). The 

Rainscanner cell has a 100 m x 100 m resolution, deemed more than adequate to match the 

rainfall height of a point to a cell since rainfall will not adjust significantly within 100 m. In 

Figure 3-7, the procedure to find the designated cell for each station is shown. The process 

is a nearest neighbor proximity search between the station coordinates and the Rainscanner 

cell's centroid coordinates. Although the Rainscanner generates data for a circular region 

with a 50 km radius, the generated datasets, i.e., the ASCII files, consist of a square region 

of 1000x1000 cells (Figure 3-7a). The ASCII file geoinformation defines two parameters: the 
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coordinates of the bottom right corner (angular point) and the cell dimensions dx and dy. 

Through this information, all cells can be identified. It is essential to notice that although a 

100m x 100m cell dimension is often mentioned, the actual dimension varies slightly due to 

the polar to cartesian coordinates transformation performed, as mentioned in section 4.2. 

From the angular point, the bottom left centroid coordinates are found first, and then the 

rest of the cell's centroids are discovered by adding dx and dy accordingly. The Euclidean 

distance between the station and the Rainscanner cell centroids is then calculated. The 

matching cell is the one in which Euclidean distance is the smallest, i.e., closest to the station. 

This process is performed for each station, and the matching cell's matrix indices are stored 

for later usage. This operation is performed only once since the Rainscanner dataset 

coordinates or sample size are not expected to change.  

 

 

Figure 3-7. The procedure of locating the rain gauge location inside the radar raster dataset.  

Source: (Pappa et al. 2021) 

The temporal scale adjudgment is shown in Figure 3-8. The Rainscanner datasets account 

for two-minute reflectivity measurements, whereas the rain gauge measurements are on a 

10-minute temporal scale. For each station, the temporal adjustment is performed on the 

reflectivity values, specifically the reflectivity timeseries extracted from the Rainscanner 

dataset. Reflectivity is a non-accumulative measurement; thus, the aggregation to 10-minute 

values is performed by calculating the average value of the five two-minute instances within 

the same 10-minute time interval of the rain gauge. The aggregation follows the rules as 

mentioned in section 4.2.2. If a timestep is missing, the aggregated value is calculated as the 

average of the remaining four instances. Moreover, when a single two-minute value has 

values unrelated to the other instances, such as NaN, zero, or extreme values, these values 
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are excluded from the aggregation. Finally, if a complete 10 min interval is missing, the no 

data value is set, although this never occurred. Measurements that featured significant time 

gaps due to power failures of the Rainscanner system were not included in the Z-R 

calibration. However, such gaps were rarely found, albeit in some situations where some 

instances were lost when the system had to create a new date folder to store the files. 

 

Figure 3-8. Raster to 10min timeseries procedure  

Source: (Pappa et al. 2021) 

3.3.2 Correlation Analysis 

The Z-R optimization process is divided into two sub-processes: a) the optimization process 

and b) the correlation analysis. The first is the actual optimization process, where the 

parameters of the Z-R relationship are determined, while the correlation analysis, which is 

performed first, consists of a quality control procedure. The entire process is displayed in 

Figure 3-9. 

It is acknowledged that the Z-R parameters, parameter a and parameter b, vary in time and 

space (Hasan et al. 2016; Gilewski and Nawalany 2018; Sahlaoui and Mordane 2019; Qiu et 

al. 2020). Therefore, it is expected that the Z-R parameters will not only vary between 

different events but also in space, i.e., within the scanning range. In order to detect these 

variabilities, various optimizations are performed. These optimizations are categorized into 

three groups: a) Station-based optimizations, b) Event-based optimizations, and c) Entire 

dataset optimization. 
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Figure 3-9: The Z-R Optimization Process 

The correlation analysis consists of a quality control procedure. Pearson’s r correlation 

coefficient index is calculated to distinguish the raingauge–Rainscanner datasets. The 

Pearson correlation coefficient between two datasets evaluates whether the two datasets are 

related. When used between radar and rain gauge timeseries, the coefficient evaluates 

whether the two timeseries follow the same pattern, i.e., the same increase and decrease are 

found between the two datasets. A high correlation between the Rainscanner and rain gauge 

datasets is evidence that the datasets are recording the same phenomenon, while a low 

correlation shows that the datasets are unrelated and, thus, unsuitable for optimization. Low 

correlation can be attributed to a variety of factors. The more frequent is a systematic error 

in either instrument. For instance, low correlation is observed when one instrument, e.g., 

the Rainscanner, features rainfall values while the other does not. In this case, three 

conditions may be occurring. The first is due to the Rainscanner readings suffering from 

signal noise, e.g., ground clutter, that has not been dealt with in pre-process, and therefore 

it observes false readings. The second is due to possible errors with the rain gauge 

measurements. Although the rain gauges are usually considered as the actual rainfall 

readings, this does not forfeit the fact that errors might still be in place. Finally, low 

correlation can also be attributed to other factors that lead to temporal inconsistencies, e.g., 

lag, between the two datasets. For example, an increase in precipitation in the Rainscanner 

is recorded in the next or several timesteps of the rain gauge recorder. This lag can occur in 

areas near the edge of the Rainscanner scanning range, where the observation height is high, 

e.g., 2 km, thus the time it takes for a rain droplet to reach the ground, or in this case, the 
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rain gauge basket, leads to being measured in a different time step. Another error is due to 

Rainscanner spatial resolution, where rainfall measured by the Rainscanner may not be 

measured by the rain gauge because it is driven away from strong winds.  

Various approaches are taken in this study to account for all these errors. First, the effect of 

the Rainscanner sample size is tested. Secondly, the correlation coefficient, second order, is 

also used to detect any temporal inconsistencies. Lastly, various threshold levels are applied 

each time, and the number of omitted stations is examined. When setting a threshold level, 

one must account for the fact that fewer station datasets are eligible for optimization by 

setting a higher threshold. While this leads to better performance in the optimization, it 

significantly limits the sample size, e.g., the Rainscanner – rain gauge data pairs, thus 

obtaining an overfitted relationship. By lowering the threshold, more unrelated data pairs 

are included in the mix, but the more significant sample allows for more sturdy results. 

Moreover, it is significant to note that in previous research, this kind of optimization was 

usually performed at a 1-hour temporal resolution, whereas in this study, the 10-minute 

resolution was maintained. In high temporal scales, datasets show higher variability 

between each time step; thus, the error in each time step can be considerably higher than in 

coarser scales, e.g., 1-hour, where the data variability is mitigated through the aggregation 

process (Bournas and Baltas 2021a). A threshold of 0.6 is used, although various limits are 

also examined. 

The correlation threshold is set to remove stations that feature unrelated datasets. This 

threshold is used for each event independently. For instance, one station might feature 

unrelated datasets in one event, but in a different event, the data are related. In this case, 

only the well-correlated events of the specific station are used for the station’s Z-R 

relationship. In the event-based optimization, only the stations that feature above the 

threshold are used, and in the all-dataset optimization, all of the well-correlated stations of 

each event are used. Finally, especially in the all-dataset optimization, a calibration 

validation grouping of the stations is chosen. In this case, some of the station’s datasets are 

used in calibration, while the latter is for validating the derived Z-R relationship. The 

selection of each group is made according to their location to have good coverage of the 

study area in each group. 

3.3.3 Z-R Optimization algorithm 

The Z-R optimization is based on the correlation of the Rainscanner and rain gauge datasets. 

Therefore, it focuses on deriving the values of parameters a and b of the Z-R relationship by 

minimizing an objective function. The parameters have specific boundaries, 0 to 2000 for 

parameter a and 1 to 3 for parameter b.  

The optimizations are performed in three groups. For the station-based optimization, the 

target is to reach station-specific Z-R relationships. This result also allows for a better 
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understanding of the spatial variability of the Z-R relationship. For event-based 

optimization, the target is to reach event-based relationships and compare them to the 

individual stations derived relationships. Finally, the entire-dataset optimization aims to 

provide a single Z-R for general purposes and to be compared with the results of the 

previous optimization. In this optimization, the procedure is performed in two stages: a) 

using the entire dataset and b) separating the stations into calibration and validation groups. 

The selection of calibration stations relies on their correlation coefficient, meaning that 

stations exhibiting higher correlation values are chosen for calibration. This selection is 

made while also ensuring an evenly distributed presence of calibration and validation 

stations across the study area. 

The optimization is performed within the MATLAB environment. The objective function is 

the minimization of the Root Mean Square Error (RMSE) of the selected Rainscanner – rain 

gauge pairs, as defined below in the equation (4.1):  

𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑖 − 𝐺𝑖)2𝑛

𝑖=1

𝑛
 (3. 2) 

where Ri and Gi are the Rainscanner and rain gauge 10-minute rainfall heights, respectively, 

and n is the number of pairs. Furthermore, other indexes are calculated as well, such as the 

Mean Bias Error (MBE), the Normalized Mean Bias (NMB), and the Normalized Mean 

Absolute Error (NMAE), formulated as seen in equations 4.2, 4.3, and 4.4. The NMAE 

highlights the actual percentage error, while the NMB and MBE highlight whether an 

overestimation or underestimation of rainfall is performed by the Rainscanner (Pappa et al. 

2021). 

𝑀𝐵𝐸 =
∑ 𝑅𝑖 − 𝐺𝑖

𝑛
𝑖=1

𝑛
. (3. 3) 

𝛮𝛭𝛣 =
∑ (𝑅𝑖 − 𝐺𝑖)𝑛

𝑖=1

∑ 𝐺𝑖
𝑛
𝑖=1

 x 100% (3. 4) 

𝑁𝑀𝐴𝐸 =
∑ |𝑅𝑖 − 𝐺𝑖|𝑛

𝑖=1

∑ 𝐺𝑖
𝑛
𝑖=1

 x 100% (3. 5) 

Finally, all results are compared with Z-R relationships derived in previous research: a) the 

well-known Marshal and Palmer equation Z=200R1.60 (Marshall and Palmer 1948), b) a 

convective-based Z=431R1.25 (Baltas and Mimikou 2002b) and c) Z=261R1.53, a Z-R consisting 

of datasets from both stratiform and convective events (Baltas et al. 2015). All relationships 

have been derived from distrometer measurements, while the last two have been derived 

from measurements within Athens. 
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3.4 Rainfall-Runoff Model 

3.4.1 Introduction 

The Rainfall-Runoff (RR) model is used to transform rainfall into runoff. A typical RR model 

accepts rainfall as input and generates runoff as the output. Numerous hydrological models 

are available, so the common problem is selecting the most appropriate model to perform 

this transformation.  The RR models can be categorized based on numerous factors. The 

most common ones are a) based on the mathematical approach, b) the temporal analysis, c) 

the spatial discretization, and d) the handling of uncertainty.  

In forecasting applications, the main factors that need to be considered are (Sene 2008): 

• Forecasting requirement: the intended use of the forecasts;  

• Data availability 

• Forecasting System: the system on which the model will operate 

• Performance requirements: run time, accuracy, provided lead time 

• Type of model 

The Forecasting requirement is the actual aim of the forecast. The aim can be to assist with 

issuing flood warnings, controlling river control structures, or monitoring river station 

levels. Moreover, the model selection may also rely on potential users, such as local 

authorities, emergency services, or the public. In EWS, event-based models are used to 

simulate the evolution of a flood event, while continuous simulation models determine the 

initial conditions or variables that change slowly in time, e.g., the prior event soil moisture 

conditions. 

The Data availability factor is usually the crucial factor. Data availability refers not only to 

current available and monitoring datasets but historical datasets as well. The quantity and 

quality of historical datasets are required for proper model calibration. Therefore, the data 

availability also dictates the model type to be used. 

Process or physically-based models are the most data-demanding models since they use 

partial or ordinary differential equations or conceptual relationships to represent the 

physical processor overland flow, soil infiltration, groundwater flow, and other factors. 

These models are well suited to spatially distributed inputs, making them favorable for EWS 

applications since they make the most out of gridded datasets such as weather radar or 

satellite datasets. Conceptual models represent the physical processes in a simplified way, 

while the model’s parameters are usually associated with basin characteristics, making them 

easy to calibrate. These models are usually used within a lumped or event semi-distributed 

format. Finally, data-based models, called Black Box models, use system analysis concepts 
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where their variables and parameters are unrelated to any physical process. A black-box 

model does not care about the values of its parameters as long as it produces the correct 

amount of runoff for a given rainfall input. Typical black box models are transfer functions 

and Artificial Neural Network (ANN) models.  

The Forecasting system and the performance requirements are operational factors. 

Specifically, the forecasting system dictates the variable upon which action should be made. 

For instance, in the FFG system, the primary variable is the accumulative rainfall over a 

designated duration; thus, more focus is given to deriving rainfall thresholds rather than 

streamflow thresholds. Concerning performance, there is a give and take between model 

simulation running time and provided lead time. Sophisticated or stochastic models may 

provide more information, but the simulation time limits the provided lead time. In small 

basins, where the concentration time is small, this can be deemed a crucial loss of time.  

Specifically, for EWS applications incorporating weather radar datasets, a distributed 

format is favorable. When the datasets required for calibration are available, the distributed 

format is advantageous against the lumped or semi-distributed formats and is expected to 

provide better results (Borga 2002). In addition, the higher spatial resolution of the basin 

characteristics, such as the slope, soil type, and land use, provides a better description of a 

study area (K. Ajami et al. 2004; Grek and Zhuravlev 2020), and simulated streamflow is 

enhanced (Aouissi et al. 2018). Moreover, recent research concluded that higher resolutions 

are necessary when examining small-scaled basins, e.g., urban basins (Cristiano et al. 2017; 

Paz et al. 2019).  

Distributed models are usually data demanding, making using them often an avoiding 

factor for EWS implementations (Sitterson et al. 2018). However, it is deemed feasible to 

implement simple conceptual or data-based methods, such as the UH, into a distributed 

format. For instance, the Clark UH method has been the subject of multiple such 

implementations (Kull and Feldman 1998; Sadeghi et al. 2015; Cho et al. 2018) with good 

performance.  

Methods that rely on data that can be assessed through Geographical Information Systems 

(GIS) tools have increased in popularity. GIS has proved to be a massive tool for 

hydrological modeling (Dieulin et al. 2006), especially in ungauged basins. These 

implementations, referred to as gridded models, require few datasets to be calibrated and 

thus are advantageous for large-scale EWS applications and flash flood EWS, where most 

affected basins are small ungauged basins.  

3.4.2 Gridded Model 

The rainfall-runoff devised in this dissertation is a gridded model based on the time-area 

diagram method (Bournas and Baltas 2022b). The method is partially used in the Clarks unit 

hydrograph model, and its gridded implementation is the modified Clark (ModClark) UH. 
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The main difference between the models and the proposed model is the cell’s travel time 

implementation method. In the Clark model, the two parameters derived are the time of 

concertation, tc, and the storage coefficient R. Since the Clark model is applied in a lumped 

format, a basin tc is only required, while the time-area relationship is derived based on that 

value. In the ModClark model, the travel times of each cell are calculated as a factor of the 

time of concentration of the basin based on the distance of each cell from the outlet. 

Specifically, equation 4.5 is solved to configure the cell time. 

𝑡𝑐𝑒𝑙𝑙 = 𝑡𝑐

𝑑𝑐𝑒𝑙𝑙

𝑑𝑚𝑎𝑥  
 (3. 6) 

Where tcell is the time each cell takes to reach the outlet, tc is the time concentration of the 

basin, dcell is the travel distance of the cell to the outlet, and dmax is the travel distance of the 

most distant cell to the outlet. 

In either case, the excess rainfall is first calculated through a loss method, e.g., the SCS CN 

method, and the basin or cells outflows, for the Clark and ModClark models, respectively, 

are routed through a linear reservoir, yielding the outflow hydrograph. Finally, in the 

ModClark model, a convolution is performed to determine the runoff at the basin outflow.  

Compared with the ModClark method, the distributed version of Clarks UH, in the 

proposed model, instead of estimating the cell's time travel as a friction of the basin time of 

concentration, a unique time travel is calculated based on the time-area diagram. This 

change leads to a better approximation of the cell’s travel time since each cell's travel path's 

characteristics are considered. Following this, a rainfall event can be simulated by applying 

a loss method to calculate the excess rainfall in each cell, while the hydrograph at the outlet 

is calculated through a time-area convolution: 

𝑄𝑛 = ∑ 𝑃𝑚𝑈𝑛−𝑚+1

𝑛<𝑀

𝑚=1

 (3. 7) 

where Qn is the outlet discharge ordinate at time n, Pm is the excess rainfall depth in time 

interval m, M is the total number of discrete rainfall pulses, and U(n-m+1) is the U, the cell’s 

hydrograph ordinate at the time (n-m+1). 

The specific model aims to be used for flash flood forecasting in small to medium-sized 

basins found within the study area. The rainfall input is the Rainscanner datasets, 

aggregated to a more desired grid resolution output, i.e., 500m x 500m. Concerning the loss 

method, the National Resources Conservation Service (NRCS Curve Number (CN) method 

is selected mainly due to its easy implementation with ungauged basins. The model is used 

to provide two products, the Flood Hydrograph and the FFG calculations, as shown in 

Figure 3-1. The first, shown in Figure 3-10, is applied to derive the flood hydrograph in pre-

specified critical locations of the basin. The second is implemented into the FFG calculations 



| Chapter 3 | Methodological Framework | 

83 

performed at a grid level, further discussed in Chapter 3.5. The model's ease of use lies in 

its capability to be employed on any temporal and spatial scale, while the only parameters 

that need to be determined are the time-area diagram and the gridded CN map. 

 

Figure 3-10. The Rainfall-Runoff Model schematic 

3.4.3 Time-Area Diagram 

The time-area diagram is a relationship between travel time and a percentage of the basin 

area. The time-area diagram, also called Isochrone curves, is produced when the travel times 

of all cells are calculated within the basin. Then, by dividing the basin into specific time 

intervals, the Isochrone curves are created. The area between two isochrone curves is the 

percentage of the basin that discharges at the time set by the higher isochrone curve. When 

the selected time interval approaches zero, the time-area diagram is a continuous line that 

usually represents a UH shape. In order to calculate the time-area diagram, a DEM and a 

Land Use file are required. The procedure is performed in GIS software, as shown in Figure 

3-11. 

The GIS procedure derives the Flow direction and Flow accumulation rasters through a 

hydrologically corrected DEM. The flow direction raster is a nine-integer values raster, 

where each value represents the desired runoff direction. The direction is calculated based 

on the maximum slope between the cell’s center and the eight neighboring cells. The main 

idea is that each grid follows a specific route to reach the outlet, and thus, the main objective 

is to calculate the time it takes for water to complete this route. The flow accumulation raster 

represents the number of cells that flow to a designated cell. The higher the value its cell 

has, the more cells flow to that cell. Therefore, it is easily understandable that high-value 

cells in the flow accumulation raster represent the stream network. By setting a cell 
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threshold, the flow accumulation raster is divided into cells that represent streams and cells 

that do not. The threshold set is crucial since it defines the stream network density. 

 

Figure 3-11. Time-Area Diagram derivation procedure 

The grid route to the outlet is calculated by applying the Flow Length tool. However, since 

what is desired is the actual travel time, the designated route length is needed first to be 

divided by the velocity raster, which represents the water velocity at each cell. Within a 

basin, the velocity raster can be defined by two flow velocities: the off-channel and the in-

channel velocity. Off-channel are areas where sheet flow occurs, i.e., areas outside the 

stream channels, while in-channel refers to areas within streams.  

First, the off-channel or overland velocity is calculated. In this application, the calculations 

are performed at the grid level, providing a gridded velocity raster instead of a single off-

channel velocity value, as in most studies. The governing parameters are the grid slope (S) 

and roughness coefficient (k). Grid slope can be easily calculated through the DEM, while 

the roughness coefficient can be derived through land use maps. Next, the off-channel 

velocity is calculated through the following equation: 

𝑉 = 𝑘𝑆0.5 (3. 8) 

where k is a parameter related to land use and the roughness coefficient for shallow flow, 

while S is the grid slope. The values of parameter k can be found in various textbooks, such 

as in the Part 630 Hydrology National Engineering Handbook (NRSC USDA 2009).  

In-channel velocity is estimated through open-channel equations, i.e., the Manning 

equation. The cross-sectional data can be derived through the DEM, with water depth 

assumed to be equal to the bankful conditions. In contrast to the off-channel velocity, the in-

channel velocity is calculated in the stream order level. Specifically, it is assumed that cells 
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of the same stream order have equal velocities. The higher the stream order, the higher the 

cell's velocity since the higher order streams feature more width for equal slope. 

The off-channel and in-channel velocity rasters are finally merged into a unified raster, 

representing the velocity raster of the entire basin. The Flow Length tool is then used to 

calculate the travel time of each cell. The tool is designed to calculate the downstream 

distance (L) along the flow path for each grid. Since the desired output is time rather than 

length, the inverted velocity raster (1/V) is used as a weight raster. This results in a weighted 

“distance” raster (L×1/V) representing travel time. Therefore, instead of featuring the total 

distance of each grid to the basin outlet, the flow length raster calculates the grid's travel 

time to the outlet. This product is the actual time-area diagram for zero-time intervals. When 

a pre-specified time interval is set, e.g., 10-min or 30-min, adding the number of cells that 

fall within a time interval and multiplying by the cell’s area, the time-area diagram is 

constructed. The time interval chosen is related to the basin size and should be equal to or 

finer than the rainfall input. Since the Rainscanner datasets are designed to be simulated at 

the 10-min interval, this value is also chosen for the time-area resolution.   

3.4.4 Loss Method 

Apart from the time-area diagram, the effective rainfall must also be calculated. As 

previously mentioned, the method used is the NRCS-CN method (US Department of 

Agriculture 1986). The NRCS-CN method is an easy-to-apply and widely used method for 

estimating precipitation losses, especially in ungauged basins. The equation used for 

calculating the excess rainfall is the following: 

𝑃𝑒 =
(𝑃 − 𝐼𝑎)2

𝑃 − 𝐼𝑎 + 𝑆
 (3. 9) 

where, Pe [mm] is the accumulated precipitation excess, P [mm] is the accumulated rainfall 

depth, Ia [mm] is the initial abstraction, and S [mm] is the potential maximum retention 

defined by equation 4.8 (in SI units): 

𝑆 = 254 (
100

𝐶𝑁
− 1) (3. 10) 

Two parameters need to be estimated: the CN value and the initial abstraction depth Ia. The 

first can be estimated through the geomorphological characteristics of the basin, namely the 

land cover, e.g., the CORINE land Cover, and the Hydrological Soil Group (HSG) 

classification. The initial abstraction depth is usually set as a fraction of the maximum 

potential retention S, calculated through eq. 3-10. The NRCS suggested value is 20% of the 

maximum potential, i.e., 0.2S. However, the 0.1 value is used instead, based on the research 

in a nearby basin (Baltas et al. 2007).  
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Finally, the CN values are related to the rainfall conditions of the previous days. The CN 

number is derived first for Antecedent Soil Moisture (AMC) medium conditions (AMC-II). 

In the case of antecedent dry or saturated conditions, i.e., AMC-I and AMC-III, the generated 

runoff is expected to change significantly. For example, in dry conditions, rainfall losses are 

high, making the CN take a lower value, and therefore runoff is decreased, while in 

saturated conditions, the opposite occurs. To account for this aspect, the NRCS suggests the 

use of modified CN numbers based on the antecedent conditions, as defined by the 

following two equations: 

𝐶𝑁𝐼 =
0.42𝐶𝑁𝐼𝐼

1 − 0.0058𝐶𝑁𝐼𝐼
 (3. 11) 

𝐶𝑁𝐼𝐼𝐼 =
2.3 · 𝐶𝑁𝐼𝐼

1 + 0.013 · 𝐶𝑁𝐼𝐼
 (3. 12) 

The AMC conditions can be determined by calculating the 5-day antecedent accumulated 

rainfall. Specifically, the AMC class is determined by the values featured in Table 3-1. 

Table 3-1: AMC classification based on 5-day accumulated rainfall 

AMC Class Total 5-day antecedent accumulate rainfall (mm) 

  Dormant season Growing Season 

I < 13 < 36 

II 13 - 28 36 - 53 

III > 28 > 53 

 

More recently, the NRCS has abandoned this hypothesis by favoring the opinion that the 

CN value does not change based on the “Antecedent Soil Moisture conditions” but instead 

on the “Antecedent Runoff Conditions” (ARC). This change highlights that not only soil 

moisture conditions are dictating the amount of runoff, but other factors as well. 

Nevertheless, the mechanism remains the same, which dictates that previous rainfall events 

significantly affect the CN value and the generated runoff. The antecedent precipitation 

index (API) is also used, as formulated by Kohler and Linsley (1951): 

𝐴𝑃𝐼𝑖 = 𝑃𝑖 + (𝐴𝑃𝐼𝑖−1 + 𝐾𝑖) (3. 13) 

where APIi and Pi are the API value and precipitation for day i, and K is an empirical decay 

factor less than one with values usually between 0.85 and 0.98. Cordery (1970) 

recommended an average value of 0.92, with a value of 0.98 for winter and 0.86 for summer, 

while Hill et al. (2014) recommended a value of 0.95 annually. 

In order to overcome the problem of selecting three specific CN numbers, a linear 

relationship is applied between each state based on a given percentage of soil moisture 

conditions (Bournas and Baltas 2022c). Specifically, an assumption is made to relate the 
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presumable soil moisture percentage conditions to the CN value. The aim is to dictate the 

CN value based on a given soil moisture percentage, which can be derived from a soil 

moisture model or satellite data.  To incorporate the soil moisture conditions impact into the 

CN value, it is assumed that AMC-II conditions refer to 50% soil moisture, while AMC-I and 

AMC-III correspond to 0% and 100% soil moisture. A linear relationship is then used 

between the different soil moisture states to define the adjusted CN value. 

An example is shown in Figure 3-12 to understand this adjustment better. In the example, a 

CNII value of 50 for 50% soil moisture leads to an adjusted value CNm of 50, while for 0% 

and 100%, the value is calculated at 30 and 70 based on equations 4.7 and 4.8, accordingly. 

This interpolation makes evaluating other values, e.g., 70% soil moisture, possible. 

Therefore, the value will be linearly interpolated between 50% and 100%. Figure 3-12 shows 

that the change between the different soil moisture conditions is at its maximum when the 

CN value is 50 and lower when it is 100 or 0. This change is logical since high numbers of 

CN represent near impervious areas, thus generating high runoff. The runoff potential in 

these areas does not change with soil moisture since the runoff potential is already high.  

 

Figure 3-12. CN adjustment based on soil moisture conditions (%) 

3.5 Gridded Flash Flood Guidance 

Flash Flood Guidance (FFG) is the accumulated rainfall depth of a given period, which will 

cause minor flooding over a specified area (Georgakakos 2006). The FFG value is a rainfall 

depth threshold above which a flood is expected. The FFG system relies on deriving the 

value of this threshold and comparing it with forecasted values. Figure 3-13 illustrates a 

simplified version of the FFG EWS flowchart.  

The FFG value depends on two main parameters: the threshold runoff and the soil moisture 

conditions. The first is static and depends on the study area's spatial characteristics, 

specifically the cross-section where the FFG value is estimated. The threshold runoff is the 

necessary amount that can be safely routed downstream, while any excess will lead to minor 

flooding. The second parameter, i.e., the soil moisture conditions, is dynamic and is used to 
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calculate rainfall losses. The estimation of FFG relies on inverted rainfall-runoff 

computations, where the runoff and the rainfall losses are the known variables, and the total 

rainfall is the unknown. When the amount of runoff is equal to the threshold runoff, the 

inverted rainfall-runoff calculations estimate the FFG value. 

 

 

Figure 3-13: Simplified FFG System Flow Chart 

This dissertation examines a gridded implementation of the FFG system, the Gridded Flash 

Flood Guidance (GFFG), first introduced by Schmidt et al. (2007). The difference lies in the 

spatial resolution of the calculations. In the original FFG, all calculations are performed first 

on a subbasin level, and the results are then interpolated in grids that match the spatial 

resolution of the incoming rainfall forecasts, e.g., weather radar forecasts. In the GFFG 

implementations, all calculations, including the rainfall-runoff computations, are performed 

at the grid level, which has the advantage of setting the desired result scale without the need 

for interpolation. Moreover, it is easier to understand, employ and maintain. The flow chart 

of the GFFG method is shown in Figure 3-14. The flow chart includes all the needed steps to 

reach GFFG values.  

The GFFG process is divided into two subprocesses; the pre-process and the real-time 

monitoring. In the pre-process, the model’s parameters are devised and calibrated, while in 

real-time monitoring, the system uses current data to provide the FFG values. The pre-

process includes the study area delineation, the threshold runoff calculation, the 

hydrological model, and the runoff threshold to rainfall threshold, i.e., the FFG value 

calculations. The real-time monitoring uses the pre-process models to extract the FFG value 

for the current soil moisture percentage derived from the hydrological model and compare 
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this value with the forecasting products of equal spatial and temporal scales to provide 

warning issuing estimations. Although the current implementation is deterministic, the 

decision to issue a warning or not should be taken after various FFG products, i.e., different 

rainfall accumulated periods, are examined in conjunction with the study area 

characteristics or other knowledge. 

 

 

Figure 3-14. Flash Flood Guidance Components 

3.5.1 Threshold Runoff Component 

The threshold runoff component is a pre-process of the system, which involves the 

geomorphological analysis of the study area and its delineation into smaller units (Bournas 

and Baltas 2022c). First, the delineation of the area is performed by setting the grid 

dimensions and coordinate system. In the original FFG implementation, the area is 

delineated into subbasins varying in size from 200 – 2000 km2. However, the delineation 

size, apart from the forecasted rainfall grid which will be used, is also related to the 

topography of the study area. The original FFG implementation was applied in the USA, 

where the subbasin sizes are large, while in Greece, the majority of basins are small to 

medium sizes, i.e., 20 to 500 km2, making the desired analysis of finer detail. In the GFFG 

implementation, a grid size matching the forecasting analysis is desired. Typical operational 

meteorological and atmospheric forecasting models feature from four to eight km2 

resolution, while some research efforts to increase the spatial resolution to two km2 (Bournas 

and Baltas 2022c). Finer spatial resolution can be achieved using downscale processes 

(Spyrou et al. 2020) or by nowcasting products such as weather radar or satellite 

measurements. Grid sizes used in previous FFG research vary from 1 km2 to 4 km2, matching 
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the grid size of the forecasting field (Seo et al. 2013; Zeng et al. 2016; Wasko et al. 2021). In 

this study, a 1 km2 grid size is set considering all of the above limitations, e.g., the subbasins 

size and available rainfall forecasting products in Greece (Papadopoulos et al. 2002; 

Lagouvardos et al. 2003; Mariani et al. 2015; Varlas et al. 2020, 2021).  

The threshold runoff is then estimated for each grid. The threshold runoff is equal to the 

bankfull conditions runoff, as illustrated in Figure 3-15. Any excess runoff will cover the 

floodplain area, resulting in minor flooding.  

 

Figure 3-15. Bankfull conditions illustration: Source (NRSC USDA 2009) 

The threshold runoff can be estimated using two methods; a) derivation and use of regional 

relationships concerning the bankfull cross-section properties and b) historical flow 

analysis. In the first case, the bankfull runoff is calculated using the cross-section data, and 

a regional relationship that relates the cross-section data to the basin data is set. In the second 

case, the bankfull runoff is considered equal to the 2-year Average Recurrence Interval 

(ARI), i.e., the 50% Annual Exceedance Probability (AEP) of the section’s actual runoff. 

However, historical flow records are needed to extract the 2-year runoff ARI, or regional 

relationships should be established (Carpenter et al. 1999; Reed et al. 2002). In the current 

implementation, the desired 2-year runoff can be calculated indirectly using a rainfall ARI 

instead, in conduction with a rainfall-runoff model, to overcome this issue. Rainfall ARIs 

are much easier to obtain from IDF curves based on historical rainfall data. The 2-year 

discharge ARI is highly related to the 5-year ARI of rainfall (Schmidt et al. 2007; Erlingis et 

al. 2013; Bournas and Baltas 2022c). However, this is an approximation, and the actual ARI 

depends on several factors, such as the definition of flooding and the flood vulnerability of 

the study area. The rainfall-runoff model used is the same one used for the FFG calculations. 

It is based on the SCS triangular UH and the SCS CN method.  

The calculations are performed for each grid and pre-determined accumulation periods of 

1-, 3-, and 6 hours. The rainfall-runoff model is based on the SCS triangular model following 
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these steps: First, the lag time of each cell is calculated using the Mochus lag time equation 

(Mockus 1961): 

𝑡𝐿 =
𝑙0.8(𝑆 + 1)0.7

1900𝑦0.5
 (3. 14) 

Where tL [h] is the lag time, l [ft] is the cell's flow length, S [in] is the maximum potential 

retention of the CN method, and y [%] is the cell’s slope. This equation is favorable since it 

utilizes two aspects easily calculated through GIS, the slope of the cell and the retention S, 

which is calculated based on the CN value according to eq. (3.10) after unit conversion. 

Following this, the time of concentration and time to peak is calculated as follows:  

𝑡𝐿 = 0.6𝑡𝑐 => 𝑡𝑐 = 𝑡𝑙/0.6 (3. 15) 

𝑇𝑅 =
𝐷

2
+ 𝑡𝑝 

 

(3. 16) 

Where tc [h] is the time of concentration, ΤR [h] is the time to peak, and D [h] is the rainfall 

duration. Finally, the peak discharge is calculated through the NRCS triangular UH method 

as follows  

𝑄 = 2.08𝐴ℎ/𝑇𝑅 (3. 17) 

Where Q [m3/s] is the peak runoff, A [km2] is the cell’s area, and h [mm] is the effective 

rainfall.  

Given that FFG calculations are performed for predetermined rainfall durations, three 

runoff thresholds are derived for 1-, 3- and 6-hour duration by changing the value D in eq. 

3.16. In each case, the value of abstraction value S, in eq. 3.14 is also changed to account for 

the variability within an event (Schmidt et al. 2007). Specifically, 10mm of rainfall in one 

hour will produce more runoff than 10mm in six hours. Therefore, the CN value is modified 

for each accumulation period to address this issue. Specifically, for the 1-hour duration, the 

average CN value between ARC-II and ARC-III is used, while for the 6-hour duration, the 

average CN value between ARC-I and ARC-II. The 3-hour duration uses the ARC-II 

conditions. 

3.5.2 Hydrological Model 

The second component involves a hydrological model to estimate the soil moisture 

conditions for each time interval. The model runs continuously since soil moisture 

conditions do not change as fast in time as rainfall input (Bournas and Baltas 2022c). The 

temporal resolution depends on the data availability, with a desired sub-6-hour temporal 

resolution. The soil moisture conditions dictate the amount of rainfall retained, thus the 

potential of generating either high or low runoff. In the FFG calculations, since inverse 

rainfall runoff is performed, the amount of soil moisture dictates the amount of rainfall 
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needed to cause flooding. A high soil moisture percentage means high runoff potential; 

therefore, less rainfall is required. 

The hydrological model is designed to use precipitation and evapotranspiration as inputs, 

conduct any necessary precipitation division to rainfall and snowfall, and provide a soil 

moisture percentage. The soil moisture percentage can either be a direct product of the 

model or a value derived by the value of its state variables, as in the case of the original FFG 

implementation where the Sacramento Soil Moisture Accounting Model (SAC-SMA) 

(Burnash et al. 1973; Burnash 1995) is used.  

Without such a model, the soil moisture percentage can also be estimated based on the 5-

day antecedent precipitation index, API. The index is then used to estimate each cell's soil 

moisture percentage. This percentage is finally used to determine the adjusted CN value 

used in the FFG implementations, as explained in Chapter 3.4.4. 

3.5.3 FFG Computations 

The third and final component is the FFG computations. As stated earlier, the computations 

are based on inverse rainfall-runoff modeling, where the desired runoff and rainfall losses 

are known, and the accumulated rainfall is sought. The CN equation is shown in eq. (3.9), 

can be used to calculate the runoff. By assuming initial losses Ia equal to 10% and solving 

eq. (3.9) for P, the following equation results  

𝑃 = 𝐹𝐹𝐺𝑥 =
0.1𝑆𝑠𝑚 + 𝑄𝑥 ± √2𝑄𝑥𝑆𝑠𝑚 + 𝑄𝑥

2

2
 (3. 18) 

where P [mm] is precipitation, FFGx [mm] is the Flash Flood Guidance for duration x, Q 

[m3/s] is the threshold runoff for duration x, and Ssm [mm] is the initial storage calculated 

from eq. (3.10), after the CN adjustment is performed based on the current soil moisture 

conditions. The Equation (3.18) highlights that the FFG value is a nonlinear relationship 

between the threshold runoff and the soil moisture conditions.  

Figure 4-17 illustrates an example where the FFG value of a single cell is calculated for three 

different soil moisture conditions. For each soil moisture condition, by using increasing 

runoff threshold values and applying the equation (3.18), the colored lines are drawn. Each 

line is a guide to performing fast calculations in real-time monitoring. For instance, when a 

cell’s threshold runoff is calculated as 20 m3/s, the FFG value changes dramatically for each 

soil moisture condition. For saturated conditions, i.e., 90% soil moisture, the FFG value is 18 

mm in three hours, while for less saturated at 80% is 20 mm, and for normal conditions, the 

value is 26 mm rainfall in three hours. These results show that the higher the soil moisture 

percentage, the lower the FFG value, which is logical since highly saturated conditions result 

in high runoff potential, requiring less rainfall to reach the desired runoff amount. 
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Figure 3-16. Relationship between FFG and Threshold rainfall values for different soil moisture 

conditions 

 

After calculating the FFG values for each of the three durations, a comparison is made with 

the respective forecasted values. If the forecasted rainfall exceeds the FFG value, flooding is 

expected over the specified cell, and a warning should be issued. Moreover, the threat level 

can be approximated by calculating the difference between the forecasted and the FFG 

value. Given the deterministic nature of the system result, any cell that features a forecasted 

rainfall above the FFG value, either that being some millimeters or by a large margin, will 

be flagged for flooding, while other cells can be flagged as non-flood cells, even when the 

value of the forecast is just below the threshold. To overcome this uncertainty problem, all 

accumulated periods should be examined before decision-making. Low accumulation 

periods, e.g., 1-hour, are used for comparing with 1-hour forecasts, which tend to have the 

least uncertainty involved, compared to the 3- and 6-hour forecasts, but provide the lesser 

lead times. It should be noted that the system relies on accumulated rainfall thresholds; thus, 

the exact time when the flood will occur cannot be determined when the longer 

accumulation periods are used. 

Finally, a secondary decision-making strategy can also be applied before issuing a warning 

regarding the total area flagged for flooding. In the GFFG implementation, cell sizes are 

relatively small, making warnings for single-cell flooding not ideal. Therefore, a strategy 

may be applied to decide on different flood-preventing measures based on the number of 

cells flagged for flooding or each cell's potential flood hazard level. For instance, cells that 

contain critical infrastructure should be carefully monitored.  
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3.6 Strom Tracking and Trajectory  

In storm tracking, two main processes are involved: a) the identification of cells on a radar 

image and b) the cell tracking, i.e., the matching of cells in consecutive images. This study 

follows the flow chart shown in Figure 3-17. 

 

Figure 3-17: Storm Tracking algorithm flow chart 

3.6.1 Cell Identification 

For each radar image, the cell identification process is first performed. First, the weather 

image is passed through a 2-D median filter to remove noise. This filter replaces each grid 

value with the median value of the 3 x 3 neighboring grids. This process assists in “blurring” 

the image, and therefore, cloud cells that are found to be in near proximity but are not 

connected due to gaps of a few pixels end up being connected and forming a single cloud 

entity. Then, the cell identification is performed by applying reflectivity thresholds. A storm 

cell features the highest rainfall intensity and, thus, the highest reflectivity values in a radar 

image. A high threshold, i.e., 35 dBZ units, will extract the storm cores, while a lower 

threshold, i.e., 25 dBZ, will extract the coverage of the storm. Overall, convective events 

feature high storm cores with small storm coverage, while stratiform events feature 



| Chapter 3 | Methodological Framework | 

95 

significant coverage but smaller reflectivity cores. In nowcasting systems, the tracking of 

high rainfall intensity storms is usually the aim; thus, a threshold of over 30 dBZ is preferred, 

especially if a series of images are used to disaggregate the generated image. However, a 

multi-threshold approach is better; where multiple thresholds are applied, a tree structure 

is formed where low storm coverage is first identified and then sub-cells of high reflectivity 

later. Considering the lower threshold, values of reflectivity below 20 dBZ are usually 

considered as no part of rainfall storms unless snowfall occurs. In this study, three 

thresholds are used: one to identify the storm coverage, set for values above 25 dBZ; one to 

distinguish storm cores, with a dBZ value over 30 dBZ, and finally, one for identifying the 

most dangerous storms, with a threshold set to 40 dBZ value. An example is shown in Figure 

3-18, where by applying a single threshold, the cells with values above the threshold remain, 

forming the boundaries of the cell cloud. In the featured figure, the values of five storms are 

identified.  

 

 

Figure 3-18: Storm Data and cell identification;  

Source: (Dixon and Wiener 1993) 

Following the identification process, a series of attributes are stored for further use, such as 

the cell's centroids coordinates, the area of the storm, and the maximum reflectivity value. 

Moreover, for further cross-correlation calculations, a fitting eclipse is drawn for each 

polygon, which is an easier-to-handle mathematical shape. The ellipse is drawn with the 

aim of including all the polygon nodes within its boundaries. The ellipse centroid, 

eccentricity, and the minor and major axes vectors are stored for further analysis. The 

process is applied until all storm clouds are processed. 
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3.6.2 Cell Tracking 

Following the identification, the cell tracking algorithm is applied. The method used is 

based on motion vector and cross-correlation. Specifically, the matching between two 

consecutive radar images is performed by applying an optimization process between the 

different cells identified in each image. A cost function is used to find the best fit, which 

incorporates cell characteristics, such as area and the fitting ellipse properties. All possible 

entity combinations between two images, Figure 3-19, are assigned to the assessment matrix, 

which is then solved through a match pair algorithm (Duff and Koster 2001). The linear 

assignment problem is a way of assigning rows, i.e., storm cells in time ti, to columns, storms 

cells in time ti+1, in such a way that the total cost of the assignments is minimized. The 

algorithm also uses a way to deal with instances that are not matched by adding a further 

unmatched cost. 

 

Figure 3-19: Possible cell combinations when using a matchmaking algorithm, where Vr denotes the 

past cells centroids and Vr the centroids in ti+1.  

The Total Cost (TC) of a solution M is the sum of all the costs of all matched pairs added to 

the cost of all unmatched pairs as follows: 

𝑇𝐶 = ∑ 𝐶𝑜𝑠𝑡(𝑀(𝑖, 1), 𝑀(𝑖, 2) + 𝑐𝑜𝑠𝑡𝑈𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ∗ (𝑚 + 𝑛 − 2𝑝)

𝑝

𝑖=1

(3. 19) 

Where TC is the total cost, Cost is an m-by-n matrix, M is a p-by-2 matrix, where M(i,1) and 

(Mi,2) are the row and column of a matched pair and (m+n-2p) is the total number of 

unmatched rows and columns.  

The cost function can have many forms. The most basic is the Euclidean distance, meaning 

that the cells are matched based on which one is closer to the cells in the next image. Other 

cost functions may include other characteristics, such as the area and eccentricity of the cell.  

The tracking problem has been enhanced to include other elements of tracking, mainly the 

splitting and merging of cells. A merge is when two cells are merged into a single entity, 

meaning that only one track should be formed afterward, while a split means that a single 
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entity will generate two tracks in future predictions. The basic concept is shown in Figure 

3-20. In the current implementation, the cost function is applied once, and the best fitting 

matchmakings are performed. If cells of the previous time image remain unmatched, the 

matchmaking procedure is re-applied, but with the removal of the cells of the previous 

image that were matched. This leaves space for unmatched cells to be matched with the new 

cells and thus results in a merge situation. The splitting situation is performed accordingly 

but with the removal of the current unmatched cells, this time compared to the previous 

image cells. The distance threshold in each case dictates whether the cell cloud will be 

merged or diminished and whether a cell belongs to a splitting cell or is a newly formed 

cell. 

 

 
 

 

Figure 3-20: Merge (left) and splitting (right) situations  

Source: (Dixon and Wiener 1993)  
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4. Results and Discussion 

4.1 Z-R Analysis  

The Z-R analysis consists of two sub-processes. First, the correlation analysis is performed, 

which gives insight into the quality between the Rainscanner and the rain gauge datasets. 

Following this, the optimization process is performed to derive multiple Z-R relationships 

using different optimization data groups. Table 4-1 shows the events where both 

Rainscanner and rain gauge data were available and used for this process. More information 

about the events can be found in the Appendix A table, where all the Rainscanner events 

are showcased. The events in Table 4-1 featured the most substantial rainfall among the 

events where rain gauge datasets were available (up to 2020). 

Table 4-1: List of Events used for the Z-R Calibration process 

Event Date Event Date 

E1 30-09-2018 E20 21-11-2019 

E5 16-12-2018 E21 25-11-2019 

E6 18-12-2018 E22 30-12-2019 

E9 10-01-2019 E31 01-06-2020 

E10 07-02-2019 E33 08-08-2020 

E12 15-02-2019 E36 04-12-2020 

E16 15-04-2019   

4.1.1 Correlation Coefficient Analysis 

The correlation analysis is based on the calculation of Pearson's r correlation coefficient 

index. The calculations are performed at the Station level, meaning a correlation index is 

calculated for each station per event. The results are showcased in Table 4-2, in descending 

order of the mean correlation. The color coding stretches a red-to-green color bar of 

correlation values from -1 to 1. A correlation value of 1 shows a perfect correlation, whereas 

a -1 shows a negative correlation, i.e., an increase in one timeseries is shown as a decrease 

in the other. Finally, zero correlation is illustrated with gray, meaning the data are not 

correlated. Usually, this occurs when data is missing, e.g., the station is located within the 

Rainscanner clutter area. A correlation threshold is used to distinguish well- and poor-

correlated stations to visualize the results better. By applying a 0.6 and a 0.7 threshold, the 
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number of events in each station features a good correlation, is shown in Figure 4-1, whereas 

in Figure 4-2, the mean correlation of the stations is illustrated before and after the threshold 

is used. In the figures, each station is made with its respective ID. 

Table 4-2: Stations correlation coefficient per event 

ID Station E1 E5 E6 E9 E10 E12 E16 E20 E21 E22 E31 E33 E36 

16 Neos Kosmos 0.38 0.82 0.78 0.48 0.86 0.78 0.80 0.63 0.91 0.83 0.01 0.88 1.00 

21 Psychico 0.30 0.59 0.84 0.54 0.74 0.83 0.85 0.72 0.72 0.88 0.94 0.90 0.89 

31 Agiaparaskevi 0.27 0.64 0.79 0.76 0.81 0.86 -0.39 0.42 0.69 0.80 1.00 0.45 0.92 

42 Imittos-dafni 0.23 0.74 0.66 0.22 0.84 0.78 0.87 0.84 0.97 0.78 0.00 0.75 -1.00 

35 Vrilissia 0.24 0.81 0.84 0.77 0.69 0.87 -0.35 0.62 0.44 0.81 0.98 -0.17 0.85 

39 Nikaia 0.37 0.75 0.62 0.74 0.80 0.79 0.78 0.64 0.15 0.90 0.45 0.86 0.00 

52 Delacroix-attiki 0.25 0.67 0.81 0.69 0.93 0.87 0.00 0.29 0.57 0.71 0.98 0.29 0.77 

30 Korydallos 0.38 0.97 0.58 0.95 0.84 0.88 0.63 0.86 0.44 0.83 0.45 0.94 -0.31 

19 Peristeri 0.50 0.80 0.65 0.81 0.62 0.77 0.64 0.38 0.85 0.80 0.57 0.56 0.00 

43 Harokopio-athens 0.40 0.68 0.74 -0.30 0.68 0.66 0.53 0.60 0.79 0.90 0.36 0.93 0.00 

51 Anokorydallos -0.05 0.84 0.66 0.98 0.43 0.91 0.92 0.92 0.43 0.43 0.15 0.87 0.00 

46 Pallini-cgs 0.12 0.39 0.31 0.95 0.63 0.66 0.00 0.11 0.58 0.78 0.88 -0.50 0.69 

9 Ippokrateios 0.10 0.75 0.44 0.64 0.50 0.03 -1.00 0.86 0.54 0.68 0.95 0.00 -0.50 

15 Nea Smyrni 0.31 0.61 0.48 0.25 0.81 0.32 0.63 0.20 0.76 0.85 0.00 0.66 0.00 

41 Ska 0.42 0.75 0.83 0.67 0.56 0.00 0.78 0.05 0.36 0.87 0.62 0.84 -0.86 

26 Arsakeio-drosia 0.10 0.85 0.50 0.89 0.65 0.63 0.63 0.49 0.39 0.51 0.09 0.65 0.79 

8 Faliro 0.31 0.77 0.66 -0.10 0.67 0.63 0.62 0.91 0.32 0.84 0.00 -0.46 0.00 

6 Dionysos 0.01 0.51 0.44 0.85 0.00 -0.40 0.32 0.01 0.64 0.35 0.66 0.75 0.75 

4 Anoliosia -0.13 0.75 0.73 0.60 -0.36 0.72 0.73 0.77 0.60 0.24 0.79 0.77 0.00 

13 Maroussi 0.22 0.45 0.64 0.45 0.27 0.71 -0.08 0.46 0.21 0.77 0.97 0.96 0.72 

17 Patissia 0.43 -0.26 0.65 0.82 0.79 0.71 0.92 0.06 0.00 0.77 0.00 0.91 -1.00 

27 Athensmarina 0.40 0.79 0.60 0.74 0.76 0.78 0.40 0.36 0.47 0.88 0.00 0.50 0.00 

45 Pireas-pedagogiki 0.36 0.51 0.74 0.35 0.77 0.56 0.35 0.68 0.48 0.84 -0.11 0.80 0.00 

28 Tatoi -0.07 0.58 0.60 0.18 0.36 0.60 0.25 -0.06 0.12 0.81 -0.87 0.76 0.63 

5 Athens 0.43 0.68 0.76 0.24 0.55 0.60 -0.13 0.61 0.92 0.88 0.23 0.13 0.00 

29 Aspropirgos 0.17 -0.03 0.66 0.53 -0.17 0.64 0.98 0.35 0.43 0.35 0.51 0.45 0.87 

48 Pireas 0.16 0.72 0.91 -0.35 0.65 0.66 0.64 0.20 0.13 0.51 0.00 0.00 0.00 

32 Alimos 0.28 0.88 0.64 -0.36 0.68 0.50 0.55 0.58 0.45 0.79 0.00 0.00 0.00 

2 Ampelokipoi 0.33 0.48 0.38 0.15 0.28 0.64 0.67 0.49 0.25 0.09 0.00 0.34 0.68 

50 Malakasa -0.04 0.06 0.18 0.56 0.75 0.46 1.00 -0.34 0.11 0.51 0.00 0.00 0.71 

38 Elefsina 0.04 0.30 0.39 0.77 0.20 -0.09 0.94 0.37 0.28 -0.01 0.41 0.46 0.00 

33 Perama 0.38 0.24 0.43 0.01 0.55 -0.15 0.89 0.20 0.46 0.30 0.49 0.71 0.00 

47 Chaidari 0.19 0.19 0.43 0.56 0.09 0.63 0.88 0.00 0.18 0.00 0.00 0.48 0.00 

34 Petroupoli 0.33 0.00 0.62 0.00 0.00 0.00 0.58 -0.16 0.13 0.21 -0.20 0.67 0.00 

14 Neamakri 0.45 0.79 0.00 0.08 0.38 0.01 0.00 -0.39 0.42 0.63 0.00 -0.30 0.59 

23 Vari 0.00 0.00 0.00 0.00 0.00 0.00 0.47 -0.21 -0.31 0.00 0.44 1.00 -0.33 

37 Kifissia -0.09 -0.06 -0.19 -0.19 -0.13 0.15 0.00 0.00 0.00 0.22 0.61 0.00 0.07 

40 Salamina 0.39 0.48 0.36 -0.13 0.43 0.00 -1.00 -0.19 0.42 0.00 -0.68 1.00 0.00 

3 Anavyssos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 Ekali -0.15 -0.34 -0.25 0.45 -0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 Kantza 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11 Lavrio 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

12 Markopoulo -0.23 -0.36 -0.21 -0.50 -0.01 0.06 0.00 0.00 0.00 0.00 0.00 -0.46 0.00 

18 Penteli -0.11 -0.40 -0.53 -0.55 -0.37 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 Portorafti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

22 Spata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

24 Vilia 0.14 0.00 0.36 0.20 0.00 0.00 0.00 0.08 0.10 0.00 0.48 0.00 0.00 

25 Rafina 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

36 Pallini 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

44 Papagou 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

49 Keratea 0.10 0.00 -0.32 -0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure 4-1. The number of events with a correlation coefficient between Rainscanner and rain gauge 

datasets is higher than a) 0.6 and b) 0.7. Source: (Bournas and Baltas 2022a) 

  

Figure 4-2. The mean correlation coefficient between the Rainscanner and rain gauge stations for a) 

all available events and b) using events that featured an above 0.6 correlation at each station.  

Source: (Bournas and Baltas 2022a) 

Figure 4-1 highlights the consistency between the Rainscanner and rain-gauge datasets. The 

number of events with good correlation shows that the two datasets (the Rainscanners and 

the rain gauges) are consistent at the location of a specific station. The more events with high 

correlation a station features, the more reliable the station is. Moreover, the figure features 

the difference between utilizing a different correlation threshold, where in panel a, the 

threshold is set to 0.6, and in panel b, it is set to 0.7. By comparing the two panels, it is 

observed that there is a decrease in the number of events that featured good correlation in 

various stations. For example, station 41, Ska, features seven events with a correlation over 

0.6, while only five when the threshold is 0.7. A higher threshold leads to fewer data being 
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“well-correlated,” which is logical since the higher the correlation threshold, the fewer 

stations will meet this demand among the different events. However, as mentioned in 

Chapter 3.3.2, choosing a threshold that will remove bad-correlated datasets is critical but 

still features a significant amount of radar-rain gauge pairs to perform the needed Z-R 

calibrations. Moreover, the threshold highlights other facts, such as the behavior on the 

different thresholds set by the station’s location.  

Considering the location of the poor-correlated stations within the study area, the following 

findings emerge. Firstly, in both thresholds, it is noticeable that stations located near or 

within the cluttered area, e.g., stations northeast of the Rainscanner, feature an overall low 

correlation since only a small number of events, i.e., less than four feature above 0.6 

correlation. Secondly, stations located within a 10 km radius of the Rainscanner location 

tend to feature many well-correlated events in both cases, apart from station 2, 

Ampelokipoi, which features a low correlation, although it is located near the Rainscanner. 

Finally, some stations feature a significant decrease in the number of well-correlated events 

when a different threshold is used, with most stations located in the coastal front. For 

example, station ID 8, Faliro station, featured seven well-correlated events when a 0.6 

threshold is applied, reduced to only four with the 0.7 threshold. However, this behavior is 

not unique to the coastal areas since station ID 6, Dionysos station, on the northeast, also 

features a similar behavior. Considering all the above, and after testing several thresholds, 

the 0.6 threshold was considered the best choice since it filters out bad-correlation data while 

keeping enough data for the optimization algorithm.  

The effect of utilizing only well-correlated datasets is reflected in Figure 4-2, where each 

station's mean correlation coefficient is compared to the mean correlation coefficient derived 

when utilizing only the events that featured above 0.6 correlation for each station. A total of 

15 stations featured above 0.6 correlation in 7 out of the 13 events, shown in Figure 4-2 panel 

a, while when considering only events that featured good correlation, shown in panel b of 

Figure 4, a total of 32 stations featured correlation above 0.6, 29 stations above 0.7, and 15 

above 0.8. These results are encouraging, especially for the stations featuring high 

correlation in multiple events, e.g., stations 21, 42, and 53, as they can be used as control 

points for future quality control procedures (Bournas and Baltas 2022a). 

Finally, it is notable that some stations exhibit a high correlation for only a limited number 

of rainfall events. For instance, stations 28, 29, and 50, located in the north and southwest, 

respectively, featured a high correlation in only a few events, less than four, but the 

correlation in these events was relatively strong, i.e., above 0.8. This finding can be 

attributed to the fact that the correlation is not dependent only upon the station's location 

or the data quality, e.g., systematic errors, but also storm-based characteristics. One such 

characteristic is the amount of rainfall since low rainfall height (light rain) is subject to 
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factors causing temporal and spatial displacements of the Rainscanner compared to the rain 

gauge measurements. This behavior was attributed to two factors: first, to the Rainscanner 

height of measurement, which, depending on the station's distance to the Rainscanner, can 

be several hundred meters above the ground, and second, to the rain gauge measurement 

sensitivity.  

The first is straightforward since the further a station is located, the more prominent the 

height problem is. When light rain occurs, the velocity of the hydrometeors is smaller, 

making them take longer to reach the ground, which leads to temporal displacements 

between the measurements of the Rainscanner and the rain gauge, i.e., the same 

hydrometeor is measured in different timesteps in the two instruments. Moreover, the 

hydrometeor's size and weight make them more subjectable to wind effects, which, in 

conjunction with the increasing distance to the ground due to the Rainscanner beam angle 

and earth curvature, may lead to significant spatial displacements, i.e., the hydrometeors 

fall in a different Rainscanner grid than the one that the station is designated. Spatial and 

temporal aggregations were performed, with the correlation increasing slightly, mainly 

when temporal aggregation was performed, but the exact cause is difficult to identify, while 

the study in coarser scales was not desired. 

The second cause that may derail the correlation in low rainfall involves the rain gauge 

sensitivity. In most instances, and specifically in stations located near the Rainscanner, the 

Rainscanner featured a higher sensitivity than the respected rain gauge, highlighted by the 

fact that it measured rainfall when the rain gauge did not, which may be attributed to false 

Rainscanner readings, but rain gauges are also subject to errors. For instance, the gauge's 

sensitivity may lead to false readings such as temporal displacement of the rainfall volume, 

i.e., the amount of rainfall that occurred in a period is measured in the next period or even 

lost. Although rain gauges are considered the ground truth, the rain gauge device, recorded, 

or the post-process quality control of the entire rain gauge network can lead to errors. 

Unfortunately, these cases can only be examined when access to the rain gauge raw datasets 

and validation procedures are provided. Nevertheless, this study did not focus on this 

aspect since few stations featured these issues, such as station 2, Ampelokipoi, where the 

Rainscanner featured in almost all events relatively high reflectivity values, in contrast to 

the low rainfall height recorded by the rain gauge. The study of poor-correlation stations, 

whereas nearby stations feature good correlation, is an interesting study for the rain gauge 

operator to assist in inspecting and maintaining the network. 

4.1.2 Event-based Z-R calibration 

Following the correlation analysis, the event-based group is the first calibration group for 

establishing Z-R relationships. A Z-R relationship is determined based on the datasets of the 

stations that feature a correlation over the 0.6 threshold. Furthermore, as mentioned in 
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Chapter 3.3, the used data pairs are filtered to remove zero-value pairs. The results are 

shown in Table 4-3. Two optimizations are performed, one involving optimizing both 

parameters a and b and one where parameter b is fixed at a default value of 1.6. The second 

optimization is used to highlight the differences between the two events since parameter b 

does not vary significantly as parameter a. Furthermore, the table also includes information 

regarding the date of events, the total number of stations that featured correlation above the 

threshold, and the correlation coefficient value of the data pairs used. 

The results show that there is a high variability between the values of the parameters in each 

event. The optimization is configured to limit parameter a value from 50 to 2000 and 

parameter b from 1 to 2.50. Although parameter a never reached the limits, parameter b did, 

which shows that the optimization would lead to better results should values beyond the 

limits be explored. However, this would lead to no typical Z-R relationships, leading to the 

fact that the optimization is not successful. Considering the Z-R relationship, Z=aRb, a high 

value of parameters a and b translates to the fact that the same amount of reflectivity leads 

to higher rainfall values, or instead, that a specific amount of rainfall intensity is met when 

the target omits less reflectivity. Therefore, when parameters are unusually high, it 

demonstrates that large amounts of reflectivity are recorded against low rainfall 

measurements by the rain gauge. Furthermore, a second calibration is made by keeping 

parameter b fixed to the value of 1.60 and optimizing parameter a. By comparing the RMSE; 

it is seen that it does not change significantly, apart from some cases, which shows that 

parameter b has little effect on the correlation.  

Table 4-3. Z-R Optimization results per rainfall event 

Event Date 
Stations 
Used 

Calibration on parameters a and b Calibration on parameter a with fixed b 

a b RMSE r a b RMSE 

E1 30-09-2018 6 452 2.50 0.130 0.42 343 1.60 0.419 

E5 16-12-2018 28 1486 2.50 0.445 0.60 771 1.60 0.169 

E6 18-12-2018 31 301 1.95 0.210 0.66 306 1.60 0.450 

E9 10-01-2019 23 758 2.42 0.197 0.67 551 1.60 0.237 

E10 07-02-2019 26 956 2.50 0.290 0.54 540 1.60 0.225 

E12 15-02-2019 27 1628 2.50 0.378 0.25 1070 1.60 0.329 

E16 15-04-2019 25 340 1.41 0.304 0.88 292 1.60 0.392 

E20 21-11-2019 19 369 2.50 0.308 0.71 402 1.60 0.356 

E21 25-11-2019 22 206 1.05 0.216 0.95 118 1.60 0.625 

E22 30-12-2019 27 1556 2.50 0.524 0.35 944 1.60 0.258 

E31 01-06-2020 19 439 1.05 0.742 0.90 201 1.60 0.744 

E33 08-08-2020 25 190 2.28 0.493 0.62 271 1.60 0.768 

E36 04-12-2020 14 302 2.50 0.425 0.38 344 1.60 0.550 

 

Considering the parameter a’s results, two main event groups are observed: a) events where 

the parameter is between the typical bounds of 50 to 500 and b) events where the parameter 
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features larger values of up to 2000. Concerning the latter, it reinstates that snowfall events 

feature high values of parameter a, i.e., over 1000, since all three events that featured these 

high values, E2, E6, and E10, were indeed snowfall events. Most empirical Z-R relationships 

opted for snowfall feature high parameter a value (Joss and Waldvogel 1970; Austin 1987). 

In these events, the reflectivity field is usually a uniform low reflectivity field of up to 20 

dBZ value. When snowfall is observed, the rainfall intensity measured by the gauging 

station is usually low, thus requiring a high parameter a value to match the relatively high 

dBZ value into that small rainfall intensity. Since snowfall events require a different 

approach, they have been excluded from the station-based optimizations. 

Finally, although events with parameter a values between 50 and 500 are typical rainfall 

events, more information can be extracted from this optimization. In most empirical Z-R 

relationships, when the sample consists of convective events, the parameter a tends to have 

a large value, while the opposite occurs in stratiform-based events. Applying a Z-R 

relationship in large reflectivity values leads to extreme rainfall intensity. For instance, as 

shown in Figure 1-11, where three different Z-R relationships are used, the Z-R that featured 

the smallest parameter a value, for large reflectivity values resulted in the highest rainfall 

intensities. Research on the parameter a value has shown that when convective events are 

used, the parameter values are within the 300-500 range, whereas typical values for 

stratiform events range from 100 in tropical regions up to 250. Therefore, the parameter's 

value derived from the optimizations can be used to classify storm systems as convective, 

stratiform, and snowfall events. Although this is convenient, it should not be held as the 

sole indicator of storm classification since more parameters should be examined, such as 

vertical profile characteristics (Anagnostou 2004). In the examined case, observing the 

storm’s footprint, identifying high reflectivity cells, and the period the event occurred are 

deemed sufficient to reach rainfall classification. Overall, the variability of the Z-R 

relationship, as illustrated in Table 4-3, shows that deriving a Z-R only from data collected 

from a single event is not optimal, especially in cases with a small coverage, since the storm's 

trajectory can affect the correlation in some stations, leading to poor results obtained by the 

optimization (Bournas and Baltas 2022a). 

4.1.3 Station-based Z-R calibration 

The station-based optimizations are performed utilizing datasets for each station, using the 

events where the station featured a correlation above 0.6  and excluding snowfall events. 

The results are shown in Table 4-4. Two optimizations are performed, as in the case of the 

event-based optimizations, one optimizing both parameters a and b and the other 

optimizing only parameter a using the average value of the previous optimization for 

parameter b. The results are also displayed in Figure 4-3, where each panel illustrates the 

spatial distribution of parameters a and b.  
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Table 4-4: Z-R Optimization results for each station  

Source: (Bournas and Baltas 2022a) 

 Calibration Stations 

index Station a b RMSE r Events NMAE % NMB % 

4 Ano Liosia 168 1.79 0.58 0.79 7 57.1 17.0 

5 Athens 316 1.68 0.33 0.78 5 40.1 -11.7 

17 Patissia 423 2.15 0.23 0.76 4 42.2 -4.1 

27 Athens-Marina 430 1.78 0.42 0.65 3 58.2 52.8 

28 Tatoi 209 1.52 1.67 0.79 3 54.6 -17.2 

30 Korydalos 304 1.57 0.27 0.85 7 41.5 -14.0 

32 Alimos 317 1.14 0.38 0.72 2 39.2 28.9 

42 Imittos-Dafni 292 1.05 0.58 0.79 6 41.0 -14.0 

43 Harokopio-Athens 297 1.98 0.35 0.77 6 44.6 -8.0 

45 Pireas-Pedagogiki 192 1.87 0.32 0.81 4 30.7 -9.6 

47 Chaidari 257 1.87 0.80 0.87 2 17.8 0.4 

48 Pireas 261 1.34 0.34 0.83 4 33.8 -2.2 

52 Delacroix-Attiki 448 1.05 0.36 0.87 6 46.5 -16.4 

Validation Stations 

6 Dionysos 183 1.86 0.36 0.90 6 35.5 0.8 

8 Faliro 433 2.26 0.30 0.75 5 36.4 -1.5 

15 Neasmyrni 239 2.18 0.67 0.75 4 56.5 3.0 

16 Neos Kosmos 402 1.83 0.39 0.84 8 40.1 -1.6 

19 Peristeri 261 1.31 0.21 0.73 5 29.7 -4.1 

21 Phychiko 271 1.42 0.45 0.81 8 37.0 -5.1 

29 Aspropirgos 310 1.42 0.43 0.92 4 34.6 -10.2 

34 Petroupoli 272 1.81 1.12 0.78 3 40.3 -6.8 

35 Vrilissia 371 1.23 0.27 0.92 7 31.7 -10.1 

38 Elefsina 275 1.05 0.25 0.77 3 41.6 -0.5 

39 Nikaia 419 2.42 0.44 0.69 6 46.7 12.5 

40 Salamina 490 1.08 0.00 0.83 2 0.1 -0.1 

41 Ska 298 1.63 0.32 0.75 7 40.4 -1.4 

45 Pireas-Pedagogiki 192 1.87 0.32 0.81 4 30.7 -9.6 

51 Ano Korydallos 315 1.84 0.43 0.91 7 32.0 -2.6 

 

Considering the values of the parameters, parameter a is calculated within the 168 - 490 

range, while parameter b is within the 1.05 - 2.42 range. Figure 4-3 shows that stations found 

in the coastal front featured high parameter a values, while the stations located on the north 

featured the lowest values. The same is observed with the parameter’s b values, although 

the distinction between high and low values seems to follow a west-to-east direction. 

Parameter a value shows higher variability, with the average value being 312, while 

parameter b had an average value of 1.64. As mentioned, these high parameters a and b 
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values indicate that most rainfall inputs in these locations are more likely to be of the 

convective rather than the stratiform type.  

In order to better comprehend the spatial variability of the Z-R relationship, parameter b is 

fixed to the average value of 1.64, and the spatial properties of parameter a are analyzed.  

The results and the stations' names are featured in Figure 4-4. The parameter a's average 

value is changed slightly from 312 to 293. However, some differences can be noticed at 

selected stations, especially in stations where the original parameter b differed significantly 

from the fixed value.  

  

Figure 4-3: Z-R relationship parameters spatial variability, a) parameter a, b) for parameter b, 

Source: (Bournas and Baltas 2022a) 

 

Figure 4-4: Spatial variability of Z-R parameter a, when a fixed parameter b is used, 

Source: (Bournas and Baltas 2022a) 
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As previously mentioned and illustrated in Figure 4-4,  the highest parameter a values are 

found in the southwest, at the coast front of Athens, while the lowest values are found in 

the north section. As mentioned, a high parameter a value and a low parameter b are found 

in Z-R relationships better suited to convective type events. Since the sample includes both 

convective and stratiform events, this result indicates that higher reflectivity is measured on 

the coast front and less on the northeast. This finding can also be related to the typical 

trajectory of rainstorms in Athens. As featured in the studied events, storm cells in Athens 

tend to have a west-to-east direction. This trajectory usually takes the storm cell above the 

Gulf of Samalina and towards Mount Aigaleo. Especially in convective events, the storm 

cell feeds with moisture while it passes the sea, only to discharge when it hits the mainland 

and the higher elevation that Mount Aigaleo offers. Water discharge, i.e., rainfall, occurs 

rapidly in the coastal regions, imitating convective-based storm characteristics. From then 

on, the storm cell keeps discharging until it reaches Athens city center, only to be headed 

next to the North due to the presence of Hymmetus Mountain on the east. The rainfall 

intensity drops when it arrives at higher elevation locations, and stratiform-based rainfall 

intensities are observed. A lower rainfall intensity does not mean less rainfall accumulation 

since the storm cloud may lose its velocity, thus delaying its departure from these regions. 

Overall, it is shown that the Z-R relationship does change in space and time. Specifically, 

the Z-R relationship tends to vary based on the storm cell's proximity to the coastal front, 

the ground's elevation, and the distance from the Rainscanner. 

4.1.4 Single Z-R calibration 

This section uses the entire well-correlated dataset to extract a single Z-R relationship. A 

one-size-fits-all process is performed, where all datasets from multiple stations and events 

are used. The optimization is performed in two groups, one where a Z-R is derived from all 

the available data and one where a calibration/validation scheme is used, with the scope of 

evaluating the robustness of the relationship. In the first case, the derived Z-R relationship 

is the following: 

𝑍 = 300𝑅1.69 (4. 1) 

The Z-R parameters of the featured equation are similar to the average values of the 

individual optimizations shown in Table 4-4. In the calibration-validation scheme, a series 

of stations are selected as the “calibration” stations, and the rest are used as “validation” 

stations. The “calibration” stations are selected by following two rules. First, the station 

should feature a high number of well-correlated events. Second, the final selection, out of 

the pool of the well-correlated stations, is made by selecting stations that provide good 

coverage and density for both the calibration and validation groups. For instance, if two 

stations featuring a high number of well-correlated events are in close proximity, only one 
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is selected to join the calibration group while the other is the validation group. As seen in 

Figure 4-4, half of the available stations were used for calibration and half for validation, 

featuring an equal density between each group. The scatter plots of the data pairs used in 

each group are shown in Figure 4-6, featuring the rainfall intensity [mm/h] as derived from 

the 10-minute resolution each pair featured. Most measurements are below 5 mm/h, with 

some exceptions featuring high values of over 15 mm/h. The calibration group features a 

better correlation between the two pairs, distinctive of the distance of the data pairs to the 

1:1 line. 

 

Figure 4-5: Location of stations used in the Calibration and the Validation optimization processes 

  

Figure 4-6: Scatter plot of data used in a) Calibration and b) Validation groups. 
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The derived Z-R relationship is the following:  

𝑍 = 321𝑅1.53 (4. 2) 

Table 5-5 displays the validation station's RMSE and r correlation coefficient index and 

compares them with their respective individual optimization. As expected, the correlation 

index, r, is unaffected since it does not alter significantly with the used Z-R. The RMSE 

values in each case differ slightly but not to a level that may impact the results. Most stations 

show little changes in the derived indexes. 

 

Table 4-5: Z-R validation station statistics using the Z = 321R1.53 relationship. 

 index Station 
Individual Optimization Validation 

a b RMSE r RMSE r 

6 Dionysos 183 1.86 0.36 0.90 0.45 0.90 

8 Faliro 433 2.26 0.30 0.75 0.37 0.75 

15 Neasmyrni 239 2.18 0.67 0.75 0.72 0.75 

16 Neos Kosmos 402 1.83 0.39 0.84 0.42 0.84 

19 Peristeri 261 1.31 0.21 0.73 0.23 0.73 

21 Phychiko 271 1.42 0.45 0.81 0.47 0.81 

29 Aspropirgos 310 1.42 0.43 0.92 0.46 0.92 

31 Agia Paraskevi 290 1.21 0.24 0.95 0.70 0.95 

34 Petroupoli 272 1.81 1.12 0.78 1.19 0.78 

35 Vrilissia 371 1.23 0.27 0.92 0.30 0.92 

38 Elefsina 275 1.05 0.25 0.77 0.28 0.77 

39 Nikaia 419 2.42 0.44 0.69 0.46 0.69 

40 Salamina 490 1.08 0.30 0.83 0.32 0.83 

41 Ska 298 1.63 0.32 0.75 0.32 0.75 

45 Pireas-Pedagogiki 192 1.87 0.32 0.81 0.40 0.81 

51 Ano Korydallos 315 1.84 0.43 0.91 0.60 0.91 

 

4.1.5 Z-R relationships Comparison 

This section compares the derived Z-R relationships based on the precipitation and 

accumulation timeseries per station. In Figure 4-7 and Figure 4-8, the rainfall and 

accumulative rainfall timeseries for two validation stations, the Psychiko and Neos Kosmos, 

and for two rainfall events, E6 and E16, are presented. Blue bars denote the rain gauge 

measurements within the figures, while the Rainscanner measurements are presented with 

lines with different coloring based on the Z-R relationship used. Specifically, with green 

color, the Marshal and Palmar equation, Z=200R1.6, with red color the all-data calibration 

equation 5.2, Z=321R1.53, with purple color the Event-based Z-R, as shown in Table 4-3, with 

black color the Station Based Z-R, Table 4-4, and with a blue color the optimized relationship 



| Chapter 4 | Results and Discussion | 

111 

when the station dataset for the particular event is used. The best-fit result in each plot is 

the last option from the above since the Z-R parameters are optimized to match the specific 

data. 

 

 

Figure 4-7. Precipitation and accumulative precipitation for Phychiko, on Event 6. 

 

Figure 4-8. Precipitation and accumulative precipitation for Neos Kosmos on Event 16. 

In all figures, the Marshal and Palmer equation shows the higher deviations. Specifically, it 

leads to an overestimation of rainfall compared to the rain gauge datasets. The equation that 

is closer to the optimized relationship is the station-based equation, followed by the All-data 

and event-based relationships. In Figure 4-7, Psychiko station event 6, it is observed that 

while the optimized does the better fitting in each 10 min rainfall height interval, the rainfall 

accumulation does not feature the best result compared to other relationships. This is caused 

by the gap of the Rainscanner dataset at 02:00, where no data is recorded, disrupting the 

accumulation time series graph.  
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In Figure 4-8, featuring Neos Kosmos station, for event 16, the optimized and Station-based 

relationships are similar, although the value of parameter b is changed dramatically, from 

1.48 to 1.83. This difference showcases that parameter b does not contribute substantially to 

the Z-R relationship in this case. This is because the time intervals are small. As in the 

previous case, the Marshal and Palmer equation shows the worst correlation, while the all-

data calibration-based is slightly better. The calibrated Z-R shows a good correlation with 

small biases in the accumulative precipitation diagram, highlighting that it can be used for 

different stations and events.  

Finally, in this section, a comparison is made between the proposed, all-data derived Z-R 

relationship, Z=321R1.53,  with relationships that have been derived from past studies, i.e.,  a) 

the Marshal and Palmer Z=200R1.6, b) the Z=431R1.25, and c) the Z=261R1.52, the two later 

derived from distrometer measurements in Athens. 

This comparison is performed by calculating the RMSE, BIAS, NMAE, and NMB indexes 

between the rain gauge measurements and the rainfall heights estimated through each Z-R 

relationship. The results are presented in Boxplots in Figure 4-9, in which each station's data 

utilizing only the well-correlated events are shown. The optimum relationship, as in Figure 

4-7 and Figure 4-8, includes the optimized result of each station per event, featuring the best 

results, which the rest of the relationships should reach. All indexes are set to have zero 

values as their optimum result, while NMAE and BIAS are also allowed to have negative 

values. Furthermore, apart from the mean value, the red line, which should be found to be 

close to zero, and the spread of the sample are also essential.   

Observing the boxplots, out of the four relationships, the all-data calibrated relationship, 

Z=321R1.53, features the best results, followed by Z=261R1.52, Z=431R1.25, and last, the Marshal 

n Palmer Z=200R1.6. The Marshal and Palmer relationship has the worst results in all indexes 

since the median value is the highest, while the spread is significant, which means that it 

does not apply as well as the other relationships. The convective-based Z=431R1.25 shows 

promising results but tends to underestimate the actual rainfall since the NMB value is 

negative. This underestimation means that the relationship should be better used only in 

convective events, i.e., events that feature over 35-40 dBZ reflectivity, since underestimation 

of rainfall might have an unwanted impact on hydrological applications, such as continuous 

soil moisture monitoring. Finally, the Z=261R1.52 relationship, although featuring a similar 

parameter b value but a smaller parameter a value than the one proposed, shows promising 

results. However, the difference in the average BIAS and NMB values in each case signifies 

how sensitive the rainfall estimation is to parameter a’s value. 
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Figure 4-9. Boxplots of the a) RMSE, b) Bias, c) NMAE, and d) NMB per Z-R relationship 

4.2 Rainfall-Runoff Model Simulations 

4.2.1 Gridded Rainfall-Runoff model calibration 

The gridded model used is analyzed in Chapter 3.4. The core element of the model is the 

construction of the time-area diagram. The model is used in a subbasin of the study area, 

the rural part of the Sarantapotamos basin, as featured in Figure 4-10. The outlet of the basin 

is selected at the cross-section of the Sarantapotamos River with the Attiki Odos freeway, 

totaling an area of 231.50 km2. Based on the DEM dataset, the mean elevation of the basin is 

491 m, with a maximum elevation of 1270 m and the minimum at the outlet being 40 m.  The 

subbasin lies 25 to 50 km from the Rainscanner location and features an elongated shape 

governed by two streams, the Sarantapotamos stream on the north and its substream, the 

Ag. Vlassios stream in the South. Both streams are ephemeral, i.e., substantial flow is only 

observed during and after rainfall (Bournas and Baltas 2022b).   

The time-area diagram is derived in GIS. Considering the spatial resolution of the grid, a 

500 m x 500 m grid is used based on the size of the basin. The grid leads to a total of 1021 

grids. Following the time-area diagram flow chart in Figure 3-11 while in Figure 4-11, the 

gridded slope and CN AMC-II values are shown.  
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Figure 4-10. The Sarantapotamos basin and its subbasin where the RR model is applied.  

Source: (Bournas and Baltas 2022b) 

 

Figure 4-11. Gridded datasets; a) Slope %, b) Curve Number for AMC-II conditions 

Source: (Bournas and Baltas 2022b) 

Regarding the velocity field, the mean overland velocity over the basin is calculated at 1.2 

m/s, while the maximum velocity is four m/s. The maximum travel time is 36 hours. 

However, as observed in the cumulative time-area graph in Figure 4-12, although the 

maximum travel time is 36 hours, by the 24-hour mark, most of the basin has reached the 

outlet, which shows that the actual rate of discharge of the basin is approximately ten km2/h, 

a considerable value. This rate shows that although the basin has an elongated shape, the 
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two streams divide the basin into two subbasins that work along each other, resulting in a 

high runoff potential in the outlet. This characteristic cannot be accounted for when a 

lumped model is used instead. For instance, if one applies a synthetic UH such as the SCS 

dimensionless UH, a single concentration time is only calculated, leading to a 

misinterpretation of the actual basin’s discharge rate.  

 

  

Figure 4-12. Time-area diagram: a) Time travel raster; b) Cumulative area % per hour at the basin 

outlet. Source: (Bournas and Baltas 2022b) 

4.2.2 Rainfall Events Analysis 

The model is then applied to a series of rainfall events. The events are showcased in Table 

4-6. The events that featured the highest rainfall intensity are used to highlight the 

application of the model. Table 4-6 also features the event's duration, as well as the 5-day 

accumulated precipitation, in order to better evaluate the prior soil moisture conditions.  

Table 4-6: Simulated events and main characteristics; Source: (Bournas and Baltas 2022b) 

Event Start Datetime End Datetime 
Duratio

n (h) 

5-Day 

API (mm) 

Mean Area Cumulative 

Rainfall (mm) 

6 17-12-2018 23:40 18-12-2018 13:50 14.2 13.8 25.8 

21 24-11-2019 21:40 25-11-2019 08:30 10.8 37.0 30.4 

31 01-06-2020 14:00 01-06-2020 20:00 6.0 0.0 20.5 

48 09-06-2021 18:00 10-06-2021 02:44 8.7 0.2 25.0 

50 12-06-2021 11:50 12-06-2021 19:00 7.2 32.0 26.0 

61 23-11-2021 17:30 24-11-2021 07:40 14.2 2.6 26.4 

 

In Figure 4-13, each event's accumulated rainfall is showcased, highlighting the spatial 

variability of rainfall. The study area where the RR model is applied is highlighted with a 

red polygon. In some events, i.e., events 6, 21, and 61, the rainfall coverage is the entire 

scanning range, while the area on the southeast of the Rainscanner location is within the no-

data area of the Rainscanner due to orography. 
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Figure 4-13. Cumulative precipitation per event recorded by the Rainscanner. The study area is 

highlighted with the red polygon; Source: (Bournas and Baltas 2022b) 

The other events, events 31, 48, and 50, feature a smaller coverage, where only a few areas 

in the west are affected, where the Sarantapotamos basin is located. These events showcase 

convective-based characteristics since they feature multiple small areas of high rainfall 
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accumulation, a typical characteristic of convective events, and they occur in the summer, 

with events 31, 48, and 50 occurring in June when convection is favored. Specifically, 

convective events are formed due to convection when the ground gets heated, and air 

masses are forced to move up to cool, which leads to unstable conditions and the formation 

of rainfall. These events usually have a shorter duration than the respective stratiform 

events but tend to feature high rainfall intensities, i.e., large amounts of rainfall in a small 

duration. This storm classification can be easily spotted in such a Rainscanner image while 

highlighting that summertime events in Athens are convective-based. 

Runoff potential is not only regulated by the amount of precipitation but also by the soil 

moisture conditions prior to the event. Summertime events are expected to have dry soil 

moisture conditions since rainfall is usually absent for several days or even weeks 

beforehand. Based on the 5-Day API shown in Table 4-6, the AMC for events 6 and 61 is 

assumed to be medium. In contrast, events 21 and 50 feature conditions close to AMC-III, 

i.e., wet conditions, since they were the follow-up of other rainfall events. Finally, events 31 

and 48 were considered closer to AMC-I, i.e., dry conditions, since no rainfall was observed 

the prior days. Moreover, in all cases, an assumption is made regarding the actual soil 

moisture conditions, overcoming the fact that only three conditions can be defined. For the 

dry events, 20% soil moisture is used, while for the two wet events, 90% is used for event 21 

since it occurred in November with substantial prior-days rainfall, and 70% moisture for 

event 50 since it occurred in June.   

In Figure 4-14, the generated hydrographs for each event are shown. Each graph shows the 

flood hydrograph generated at the outlet when the rainfall field is estimated using the five 

different Z-R relationships examined. The rainfall timeseries shown in Figure 4-14 are 

generated through the calculation of the mean areal precipitation over the basin after 

applying the Marshal and Palmer equation to the Rainscanner fields and are shown only to 

demonstrate the duration and the scale of the rainfall of each event since the actual rainfall-

runoff model used the 10-min, gridded precipitation fields. Table 5-7 shows each event's 

total accumulated rainfall and estimated peak discharge. Finally, the last two graphs feature 

the hydrographs generated as above, for events 31 and 50, after removing the Z=275R1.05 

relationship to visualize better the rest of the hydrographs since it provided out-of-scale 

peak runoff compared with the other relationships applied. 
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Figure 4-14. Hydrographs of featured events. Blue and red bars denote mean area rainfall and 

rainfall losses, respectively. The last row graphs for events 31 and 50 are identical with the latter 

after the removal of the Z=275R 1.05 results for better comparisons;  

Source: (Bournas and Baltas 2022b) 
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Table 4-7. Hydrograph Results for each Event and Z-R used 

Total precipitation (mm) Z=200R¹·⁶ Z=261R¹·⁵² Z=321R¹·⁵³ Z=431R¹·²⁵ Z=275R¹·⁰⁵ 

E6 25.82 21.95 19.16 15.11 22.59 

E21 30.36 25.48 22.28 16.55 23.07 

E31 20.51 18.31 15.88 15.85 31.00 

E48 25.02 20.97 18.34 13.63 19.22 

E50 26.02 24.02 20.74 23.85 53.47 

E61 26.37 22.73 19.81 16.67 26.74 

Peak Discharge (m3/s)      

E6 13.80 9.59 6.98 4.13 10.61 

E21 40.43 29.07 22.41 12.63 26.06 

E31 22.40 19.34 14.71 19.31 69.72 

E48 15.37 10.63 7.65 4.23 11.72 

E50 78.37 71.43 56.61 79.69 272.79 

E61 30.42 23.00 17.13 12.76 37.55 

 

In each hydrograph, what is changed after applying different Z-R relationships is the 

amount of runoff generated and specifically the peak runoff and runoff volume, while the 

time to peak and the shape of the hydrograph remain unchanged apart from minor 

deviations.  

The first visible finding is the deviation of the Z=275R1.05 equation on the E50 and E61 events. 

This equation resulted in significant differences in rainfall and peak runoff results. 

Specifically, the rainfall estimation was 51% and 105% more than the Marshal and Palmer 

equation, resulting in 211% and 248%, respectively. This equation was derived after 

analyzing weather radar and rain gauge datasets for the Elefsina rain gauge station, the 

nearest station with well-correlated Rainscanner-rain gauge datasets from the study area, as 

shown in Table 4-4. The specific relationship features a stratiform standard parameter a 

value but a very low parameter b value, nearly equal to the value of one, denoting a linear 

relationship between reflectivity and rainfall intensity. Although such relationships might 

perform within acceptable limits for stratiform events where the reflectivity and rainfall 

intensity values are low, the rainfall rates calculated in convective events are unacceptable. 

As shown in Figure 4-15, the Z-R relationship effect on the transformation of reflectivity to 

rainfall intensity becomes noticeable when the reflectivity values are over 35 dBZ, while 

substantial differences are noticed only after 45 dBZ. In the case of relationship Z=275R1.05, 

the difference in the rainfall rate is noticeable much earlier, starting from the 35 dBZ value, 

whereas the difference is increased exponentially, with the 45 dBZ value leading up to four 

times what a typical relationship calculates. The majority of reflectivity observed in 

convective events such as E31 and E50 is between 35 and 45 dBZ, in contrast to the stratiform 

events where reflectivity is usually less than 35 dBZ, making the effect the featured 
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relationship at its maximum compared to stratiform events, where the change is not 

noticeable. Therefore, it is deemed that this relationship is unsuitable for such events, as is 

shown later by calculating the rainfall’s return period using the IDF of a nearby station. The 

derivation of the relationship was probably performed using datasets from stratiform events 

and generally from events that did not feature such high reflectivity values.   

 

Figure 4-15. Relationship between reflectivity (Z) and Rainfall Rate (R) for the Z-R equations used. 

To draw constructive conclusions, since no observed hydrographs are available, the results 

are compared with the results derived from the Marshal and Palmer (1948) relationship, 

Z=200R1.60. Figure 4-16 shows the absolute percent difference between each Z-R relationship 

to the Marshal and Palmer equation for total precipitation, while Figure 4-17 shows the peak 

discharge. The Marshal and Palmer equation led to the largest rainfall fields and runoff 

values. The equations derived from mixed or stratiform events for Athens, e.g., Z=261R1.52 

and Z=321R1.53, show a steady difference in all events compared with the Marshal and 

Palmer equation. On the other hand, the convective-based relationship, i.e., Z=431R1.25, 

shows higher differences in the stratiform events than the convective events. Specifically, 

the difference is slight on the convective events, while the runoff is almost equal to the 

Marshal and Palmer, at 14% for event 31 and larger by 1% for event 50. In event 50, although 

the mean accumulated rainfall is slightly higher using the Marshal and Palmer equation, the 

peak runoff is higher using the Z=431R1.25 relationship. This result highlights the importance 

of using gridded rainfall datasets since this denotes that the rainfall spatial variability 

impacts the runoff potential. In raw numbers, the precipitation among the used Z-R 

relationships varied approximately -5 to -10 mm for mean areal precipitation and 10-20 m3/s 

for peak discharge. For instance, in event 62, a 30 m3/s peak discharge is estimated with the 

Marshal and Palmer equation, while only 12.76 m3/s for the convective-based Z=431R1.25 

relationship. Overall, the featured graphs show a strong connection between the type of 

storm and the Z-R relationship. 
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Figure 4-16. Total Rainfall percent difference between each Z-R and Z=200R1.6 

 

Figure 4-17. Peak Discharge percent difference between each Z-R and Z=200R1.6 

A final comparison is made by comparing the rainfall fields with rainfall derived from IDF 

curves of a nearby station. The nearest and most suitable station to the basin is the Mandra 

station, located northeast of the basin, shown in Figure 4-10, since compared to Elefsina 

station, it features an elevation closer to the mean elevation of the basin. The IDF curve of 

the Mandra station is derived from its parameters featured in Table 2-3. Concerning the 

rainfall events, the IDF curve is constructed by the timeseries of the pixel, which featured 

the highest total precipitation within the basin. In Figure 4-18, the IDF is plotted per event 

per Z-R, highlighting the intensity of each event and the differences in the calculated return 

periods between the different Z-R relationships used. From all the examined events, only 

events 31 and 50 feature over one-year return periods. 

 

0%

20%

40%

60%

80%

100%

120%

Z=261R¹·⁵² Z=321R¹·⁵³ Z=431R¹·²⁵ Z=275R¹·⁰⁵

T
o

ta
l 

R
ai

n
fa

l 
P

er
ce

n
ta

g
e

D
if

fe
re

n
ce

E6

E21

E31

E48

E50

E61

0%

50%

100%

150%

200%

250%

Z=261R¹·⁵² Z=321R¹·⁵³ Z=431R¹·²⁵ Z=275R¹·⁰⁵

P
ea

k
 D

is
ch

ar
g
e 

P
er

ce
n
ta

g
e 

D
if

fe
re

n
ce

E6

E21

E31

E48

E50

E61



| Chapter 4 | Results and Discussion | 

 

122 

  

  

  

Figure 4-18. IDF curves per event when different Z-R relationships are applied. 

 

Events 6, 21, and 48 featured fewer return periods, below the 1-year mark, while event 61 

featured return periods between 1- and 5- years, depending on the Z-R equation used. In 

these events, the difference between the Z-R relationships in the IDF-derived return period 

is insignificant, except for slight deviations. On the convective events, the changes are more 
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significant, highlighted by the difference in the Z=275R1.05 relationship. Specifically, when 

this Z-R equation is used, the IDF plot shows that events 31 and 50 had a returning period 

of over 1000 years, whereas when applying the rest of the Z-R relationships, a 20-50-year 

return period is estimated instead. The 1000 value is extreme, given the severity of the 

specific rainfall event, whereas the 20-to-50-year mark is more in line with the actual severity 

of the rainfall events. It is vital to notice that these return period values denote the pixel with 

the highest reflectivity values and might represent the entire event on the basin scale. A 

basin-wide IDF approach could lead to different results, but this comparison is useful since 

it can assess a) the Rainscanner datasets and b) the suitability of a Z-R relationship.  

Overall, it is highlighted that a proper Z-R relationship should be used in each case. Utilizing 

a convective type, Z-R ensures that extreme values will most likely be avoided. On the other 

hand, these relationships tend to underestimate rainfall height in events with medium-sized 

rainfall intensities and long durations. Therefore, for a properly calibrated weather radar 

system, a convective/stratiform classification algorithm should be used first to make the 

best-fitted selection between locally derived Z-R relationships. However, this might always 

be feasible since classification algorithms require data such as the storm's vertical profile. 

The required lead time to assess an event might be inappropriate when small-range radars 

such as an X-Band radar are used instead. Therefore, if classification is not feasible in real-

time, seasonal Z-R relationships are advised to be used instead, i.e., a specific Z-R is used 

for summer and winter. Finally, concerning Attica, a convective-based Z-R is the safest 

choice since flood events do not occur due to rainfall accumulation over longer periods but 

rather due to flash floods, i.e., convective events that feature large rainfall rate values.  

4.3 Gridded Flash Flood Guidance Application 

4.3.1 Derivation of Threshold Maps 

The process followed in this section is displayed in the flow chart of Figure 3-14. The process 

starts with analyzing the study area and the threshold runoff calculation, followed by the 

FFG values for pre-defined soil moisture conditions. Finally, the system is used on past 

events to assess the resulting flood threat. The application of the GFFG is first performed at 

the Sarantapotamos basin, in which the entire process is explained and then applied to the 

entire Attica region. The Sarantapotamos basin is a rural area of west Attica, whereas the 

entire Attica region is a large area that includes the Attica metropolitan area, which is highly 

urbanized. In the first case, the GFFG system is expected to work as intended, while in the 

second case, uncertainty is expected since the effect of storm sewer networks is not 

considered to calculate threshold runoff.  Nevertheless, the generated results are still 

valuable since when high rainfall intensity occurs in Athens, the sewer entry points are often 
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blocked by debris, making the road network act as a typical stream network, while the high 

percent of urbanization results in high CN values, which favors the runoff potential. In 

Athens, street flooding occurs rather often due to the poor cleaning of the sewer entry points 

and, in some cases, the center of Athens, the underperforming design of the sewer network 

capacity. 

First, the Sarantapotamos subbasin is examined. The subbasin has a total area of 231 km2 

and is divided into square grids of 500 m dimensions in this application. Given the methods 

used for hydrological processes, the spatial resolution is selected to be as low as possible but 

retaining a minimum area. A 1 km size grid was also used, providing equal quality results. 

Following this, the threshold runoff is calculated based on the 5-year rainfall ARI method 

explained in Chapter 3.5. The nearest stations where the IDF curves are available are the 

Eleusis, ID #286, and Mandra ID #292 stations shown in Figure 2-9, with the parameters of 

the IDF equations shown in Table 2-3. Table 4-8 shows the total precipitation for different 

rainfall durations and return periods, with the 5-year highlighted in bold. Since the system 

is designed to focus on flash floods, the 1-, 3-, and 6-h periods are used. Concerning the 

study area, the Mandra station features higher rainfall, attributed to its higher elevation, 258 

m against 31 m, and proximity to the mountain peaks. Following this, the “IDF” rainfall for 

each duration is interpolated to the designated grids using the Inverse Distance Weighting 

(IDW) algorithm. Unfortunately, both stations are located in the south area of the subbasin, 

with the nearest station to the west being 50 km away from the basin, which is two times 

the diagonal of the basin. Stefani station on the north is not suitable since it is not only far 

away but also located on the other side of the mountain peak, which, due to the effects of 

orography, can change the rainfall characteristics dramatically. Therefore, it can be said that 

the Mandra station datasets should correlate better to the area northwest of the basin than 

the datasets of the Stefani station. 

Table 4-8: Eleusis and Mandra accum rainfall derived from IDF curves for different accumulation 

and return periods. The 5-year return period used in this research is highlighted in bold. 

Return Period 

T (years) 

Eleusis Mandra 

1-h 3-h 6-h 1-h 3-h 6-h 

2 17.2 27.3 36.0 24.3 38.7 50.9 

5 23.0 36.5 48.0 31.5 50.1 65.9 

10 27.8 44.1 58.1 37.5 59.6 78.4 

20 33.0 52.5 69.0 44.0 70.0 92.1 

 

The threshold runoff is then calculated through the methodology mentioned in Chapter 3.5. 

The two main factors affecting the threshold runoff value, besides rainfall, are the CN and 

slope values. The CN AMC-II value is calculated through the CORINE Land Use and the 
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Hydrological Groups maps, while the slope percentage is directly calculated through the 

DEM, as shown in Figure 4-19. The Slope raster is first calculated in the native DEM 

resolution, i.e., 5 m x 5 m, and then disaggregated into the 500 m x 500 m grid resolution.  

 

Figure 4-19: Sarantapotamos gridded a) CN values for AMC-II and b) Slope (%) 

Source (Bournas and Baltas 2022c) 

Besides the CN and slope values, the threshold runoff depends on the soil moisture 

conditions. In real-time monitoring, the soil moisture is estimated by a hydrological model. 

In Figure 4-20, the threshold maps are created for the three different rainfall accumulation 

periods, i.e., 1-, 3- and 6-h, and medium saturated conditions, while in Figure 4-21, for two 

different soil moisture conditions, medium and saturated for a 3-h accumulated period. In 

real-time monitoring, each cell's current soil moisture conditions are observed or simulated, 

resulting in different soil moisture conditions within the same area. When the actual soil 

moisture is used to derivate the threshold maps, the threshold maps are named the FFG 

maps, which are used to compare with the forecasted rainfall. 

In all generated maps, a low threshold value means that less rainfall is required to reach the 

threshold, i.e., flooding conditions. Therefore, these maps also act as a flood risk indicator, 

where a lower threshold indicates a higher risk. Specifically in the study area, low values 

are observed in the southeast of the Sarantapotamos basin. By comparing the results of these 

maps with the corresponding CN and Slope maps of Figure 4-19, it is easily observed that 

areas with high CN values or low Slopes are the ones with the lower threshold. This finding 

is reasonable since a high CN value denotes a higher runoff potential, i.e., requiring less 

rainfall to reach flooding conditions. In the generated maps, these areas are located in the 

southeast area of the basin, mainly the industrial areas, within the Thriasion plain, and in 

the north, where low slopes indicate the location of the Inoi Valley. 
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Figure 4-20: Threshold rainfall values for different rainfall duration: a) 1-h, b) 3-h, and c) 6-h. 

Source (Bournas and Baltas 2022c) 

In Figure 4-20, the difference in the rainfall accumulation period is noticeable in the results. 

The 6-h maps feature higher precipitation values, indication that more precipitation must 

fall within six hours than in one or three hours to reach flooding conditions. Within a pre-

determined accumulation period, the rainfall rate is considered constant, and therefore, the 

lower duration limits do not apply in the longer periods. The 6-hour map translates into the 

phrasing: “Within the next six hours, if the accumulated rainfall reaches the given threshold, minor 

flooding will occur.” In the previous statement, it is not known when flooding will occur 

within the 6-hour periods, but it will eventually occur sometime. Although this includes 

uncertainty regarding the actual moment within the 6-hour period where flooding may 

occur, in contrast to the lower durations, it provides an additional lead time and may be 

more practical for issuing warnings. The 1-h and 3-h maps are generated to provide 

information in finer temporal resolution, which is helpful for determining the exact moment 

when the flood will occur. Overall, the products are usually cross-checked with generated 

maps from previous periods or other derived datasets, e.g., stage monitoring and cameras.  

In Figure 4-21, the threshold maps are generated for the same accumulation period of 3 

hours, but when different soil moisture conditions are met. Specifically, the AMC-II and 

AMC-III conditions are shown, referring to medium (50%) and wet (100%) soil moisture 

conditions, respectively. Here, the differences in the threshold values are noticeable since 

the threshold values are reduced dramatically when saturated conditions are present. This 
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change indicates that the flooding risk in a designated grid is highly correlated to the soil 

moisture conditions, which dictate the amount of rainfall subtracted by the soil. This change 

is noticeable in the grids in the west and northwest of the basin, whereas, in the southeast, 

the threshold values do not change as dramatically. This fact is attributed to the values of 

the base CNs, i.e., the medium saturation CN-II values displayed in Figure 4-19. When the 

grid's CN value is high, indicating urban and impervious areas, the change between dry and 

saturated conditions does not dramatically change the CN value since an impervious area 

will have a high dry or wet runoff potential. On the other hand, areas with CN values close 

to 50, which are found in rural areas, feature the most significant difference between dry 

and wet conditions, as illustrated in the CN adjustment figure, Figure 3-12, found in section 

3.4.4. 

 

 

Figure 4-21: Threshold rainfall for a 3-h accumulation period for a) ACM-II and b) AMC-III 

conditions; Source (Bournas and Baltas 2022c) 

Finally, the threshold calculations are performed for each of the three rainfall accumulation 

periods and soil moisture conditions, i.e., 1-, 3-, 6-h, and the AMC-I, II, and III conditions, 

and the results are shown in boxplots in Figure 4-22. As mentioned before, the higher 

variability is calculated when the AMC-I conditions are observed since the variability of the 

CN values of the grids is at its highest. When wet conditions are found, the CN values tend 

to limit towards the upper limit, i.e., the 100 value, resulting in less variability across the 

field. In the specific study area, in all precipitation conditions, an approximately 60 mm 

difference, 50 to 110 mm, between the lowest and highest threshold value is found when 

dry conditions are met, whereas this changes to 30 mm and 20 mm for the AMC-II and 

AMC-III conditions. This result underlines that the uncertainty involved in the threshold 

runoff, and respectively to the FFG value, is much higher when low soil moisture conditions 

are present. 
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Figure 4-22: Boxplot of threshold runoff values for different soil moisture conditions for 

Sarantapotamos Basin; Source (Bournas and Baltas 2022c) 

Finally, this behavior is met in all accumulative precipitation periods, with the median value 

decreasing when the accumulation period is increased. Specifically, the median threshold 

value of all grids drops as wet conditions are met, but not at the same rate. For the 3-h 

duration, the median threshold value in dry conditions is 75 mm, while for normal and wet 

conditions, the mean value drops to 40 and 22 mm. Although the results presented are basin-

specific, they capture the sensitivity of the threshold runoff to the soil moisture conditions 

and, consequently, to the calculated FFG values. 

Finally, the threshold maps for the entire Attica Region are also generated using the 22 IDF 

stations featured in Figure 2-9 to calculate the 5-year rainfall ARI. Figure 5-21 shows the 

threshold runoff in panels a), b), and c) for the three accumulation periods in AMC-II 

conditions, while panel d) features the threshold for the 3-h period but in AMC-III 

conditions. The center of Athens, which consists of highly urbanized areas, features a low 

rainfall threshold with little variability among the soil moisture conditions used since any 

change between each case is noticeable in rural areas, where the CN varies significantly 

between the AMC conditions. Finally, comparing panels b) and d), where the same period 

is illustrated albeit for different soil moisture conditions, it is slightly seen than in the last 

case, the thresholds are much lower, as the 1-h duration, which indicates that it is much 

easier to reach flood conditions. Finally, the distribution of the threshold values for each 

case is shown through the boxplot plots of the same results, shown in Figure 5-24. 

Specifically, the mean threshold for medium saturated conditions is approximately 18 mm, 

20 mm, and 23 mm for 1-, 3- and 6-h durations, respectively, while when fully saturated 

conditions are present, it is seen that the 3-h threshold mean value not only drops from 20 

mm to 15 mm but also the std. Deviation minimizes. 
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Figure 4-23: Attica region threshold rainfall under four soil moisture conditions, a) 1-h, CN II, b) 3-h 

CN-II, c) 6-h CN-II, d) 3-h CN-III a 3-h 

 

Figure 4-24: Boxplot of threshold runoff values and different soil moisture conditions for the Attica 

Region  
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4.3.2 GFFG for selected rainfall events 

In this section, the GFFG model is applied to historical events. The application of the GFFG 

model is performed using a 500 m x 500 m resolution in all three suggested accumulation 

periods of 1-, 3-, and 6-h. The rainfall estimates for each event are provided after applying 

the suggested Z-R equation, Z=321R1.53 eq. (5.2). For each case, two series of maps are 

presented. The first consists of the rainfall grid in a time-consecutive order, while the second 

consists of the result of the GFFG system, i.e., the cells flagged for flooding in each timestep. 

The flooded cells maps are highlighted by comparing the generated GFFG map with the 

accumulated rainfall map of the same accumulation period. Cells with a rainfall height 

higher than their corresponding FFG value are flagged as flooded cells. 

Concerning the timesteps, each instance refers to the timestamp shown on each image using 

the Eastern European Time Zone (UTC+2). For instance, when the 1-h duration results are 

shown, the timestamp with valid time 13:00 refers to the accumulated rainfall height that 

was measured between 12:00 and 13:00. In a similar pattern, the 3-h duration products of 

the same valid timestamp refer to the accumulated period of 10:00-13:00. The benefit of 

utilizing the longer accumulated periods, lies on the fact that longer lead times are provided. 

In this application, the observed precipitation by the Rainscanner is used as the forecasted 

value. In real-time conditions, a 6-h precipitation forecast is expected to feature more 

uncertainty than the 1-h and 3-h forecasts. To better compare the results, only the results of 

the 1-h and 3-h forecasts are used since most rainfall events featured a total duration of up 

to 10 hours, making the 6-hour forecasts impractical. Moreover, after analysis of multiple 

events, long-range forecasts are not feasible due to the storm’s velocities and the 

Rainscanner range. More extended duration forecasts require more distanced observations 

to be feasible.    

Two different spatial extents are shown in the application area, as previously. The first is 

the Sarantapotamos basin, and the second is the entire extent of the Attica Region. The first 

provides better detail of the rainfall and flooded cells results, while the latter encapsulates 

the application of the system on a broader area. However, caution should be paid to the 

results for the Attica region since, as mentioned, the effects of the sewer system, found in 

highly urbanized areas such as the Athens city fabric, have not been examined. Finally, three 

events are presented, which featured a high amount of rainfall that triggered the GFFG 

system.  

Event 50 

The first event examined is event E50, which occurred on 12-06-2021. First, the results for 

the entire Attica region are presented in Figure 4-25, which shows the 3-hour rainfall fields 

and the respective flooded cells per timestep. The picture scale is inadequate to extract the 

high-resolution results but highlights the rainfall’s spatial characteristics. Specifically, the 
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featured event is characterized by its low footprint and high rainfall intensities. The featured 

event is a convective-based event where visible storm cores can be determined, which 

results in numerous areas where flooding is expected, especially in high-rainfall areas, at 

different timesteps. First, flooding is expected in the northern regions of Attica, i.e., the 

foothills of Penteli mountain, while in the later phases, the storm focuses on west Attica.  

 

   

   

 

   

   

Figure 4-25: 3-hour Gridded Rainfall (above) and Flooded Cells (below with red), valid per 

timestamp, Event 50, Attica Region. 
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Figure 4-26 shows the Sarantapotamos precipitation grid and flooded cells for the 1-h 

rainfall, while Figure 4-27 shows the images of the 3-hour accumulated period.  

 

   

   

   

   

Figure 4-26: 1-hour Gridded Rainfall, valid per timestamp, Event 50, Sarantapotamos subbasin,. 
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Figure 4-27: 1-hour Flooded Cells (red), valid per timestamp, Event 50, Sarantapotamos subbasin. 

 

The difference between the accumulation periods is visible in the rainfall height and extent 

of each timestamp feature. The 3-h features higher and more expanded results. The benefit 

of the 3-h products lies in the fact that it is possible to detect flooding earlier. For instance, 

observing the 1-hour precipitation maps, the majority of rainfall occurs at the valid time 

15:00, meaning between 14:00 and 15:00. In the 1-hour products, the flooded cells are 
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reported in different timesteps, i.e., first, the western part is flagged for flood, for timesteps 

15:00 and 16:00, while at timestep 17:00 only the south part. On the other hand, the 3-hour 

product shows the same areas being flooded in other timesteps. Specifically, the 16:00 

timestep includes rainfall from 14:00 to 16:00, while the 17:00 timestep is the 15:00 to 17:00 

time period, where most rainfall occurs. Therefore, the 17:00 timestep features the majority 

of flooded cells, which is the sum of the flooded cells of the 1-hour product for the 15:00, 

16:00, and 17:00 timesteps.  

Finally, in Figure 4-28, the total cells flagged for flooding throughout the GFFG system for 

the different accumulated periods are shown for both the Sarantapotamos and Attica 

Region, respectively. What is shown is that all accumulation period products end with the 

flagging of almost the same cells, apart from some slight differences in the longer periods, 

where more cells are found to feature flooding. The main difference lies in the available lead 

time each product provides, given the quality of the forecast matching the actual rainfall. 

Nevertheless, using lower accumulation periods is useful for identifying the exact time 

when the majority of rainfall occurred, which, in this case, occurred between 15:00 and 17:00.  

 

 

   

   

Figure 4-28: Total Cells flagged for flood based on the GFFG system in Event 50, at Sarantapotamos 

basin and Attica Region. 
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Event 31 

The second event featured is event E31, which occurred on 01-06-2020. Figure 4-29 shows 

the 3-hour rainfall fields and the estimated flooded cells for the Attica region. The featured 

event is characterized by its low footprint and high rainfall intensities. The event is also 

convective-based, where storm cores are highly visible. First, flooding is estimated in the 

northern regions of Attica, i.e., the foothills of Penteli mountain, while in the later phases, 

the storm focuses on west Attica. Compared to E50, the intensity is much lower, yet the 

system is triggered mainly in high urban areas. 

 

   

   

   

   

Figure 4-29: 3-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp, Event 31, at 

Attica Region. Red cells denote cells in which rainfall is over the FFG value.   
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Figure 4-30 shows the Sarantapotamos precipitation grid and flooded cells for the 3-h 

rainfall. The southwest areas, where urban areas are found, are flagged for flooding, and the 

northern area, where increased rainfall occurs. The main difference between the E31 and 

E50 events lies in the soil moisture conditions, where 70% are set for event 50, whereas near-

dry conditions are set for event E31, considering the rainfall that occurred five days before 

the event, as shown in Table 4-6. 

 

   

   

   

   

   

Figure 4-30: 1-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp, Event 31, at 

Sarantapotamos basin. Red cells denote cells in which rainfall is over the FFG value.   
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Figure 4-311-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp, Event 31, at 

Sarantapotamos basin. Red cells denote cells in which rainfall is over the FFG value.   

Event 21 

The third event examined is event E21, which occurred on 25-11-2019. Figure 4-29 shows the 

3-hour rainfall fields and the respected flooded cells for the Attica region. The featured event 

is characterized by its large footprint and medium-sized rainfall intensities, denoting a 

stratiform-based event. Nevertheless, since the rainfall event occurred in November and a 

considerable amount of rainfall occurred the previous days, as shown in Table 4-6, the soil 

moisture conditions were set to near saturation, i.e., 90, which resulted in high runoff 

potential. The flooded cells follow the system's trajectory, featuring a west-to-east direction.  

Although a high number of cells are flagged for flood in the specific event, what is 

interesting is the progress of flooding, which shows that the system is useful for identifying 

the timing of when each area is expected to flood or is near flooding conditions.  
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Figure 4-32: 1-hour Gridded Rainfall and Flooded Cells Result, valid per timestamp: Event 31, at 

Sarantapotamos basin. Red cells denote cells in which rainfall is over the FFG value.   

 

Sensitivity Analysis  

In this section, a sensitivity analysis is performed on the generated results. Specifically, the 

parameters set to the GFFG system, such as the state of the soil moisture conditions and the 

threshold runoff, are altered. The results of the analysis are presented for the 

Sarantapotamos basin. In Figure 4-33, the impact of different soil moisture conditions is 

examined, where the difference in each accumulated period when 70% and 90% soil 
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moisture are used, while in Figure 4-34, the effect of the rainfall return period used to 

calculate the threshold runoff is observed, by applying a two- and ten- year return periods.  

 

   

   

Figure 4-33: Total Flooded Cells difference at Event 50, when a different Soil Moisture percentage is 

used for each rainfall duration; a) first row 70% Soil moisture, b) second row 90% Soil moisture  

 

As expected, the 90% soil moisture conditions resulted in more cells being flagged for 

flooding than the 70% case in all durations. However, the difference is not excessive, which 

is attributed to the fact that if the rainfall height is way above the threshold, as in the case of 

the featured event, the differences are not noticeable. The same applies to the change of the 

rainfall return period, since whether using a 2-,5- or 10-year return period, the total flooded 

cells are almost the same when observed in the basin-wide perspective. The higher the 

return period, the fewer cells are flagged for flooding since a higher threshold runoff is 

calculated, meaning that the thresholds are more conservative, aiming for alerts of high 

return period storms. 
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Figure 4-34: Total Flooded Cells difference in Event 50, at Sarantapotamos basin, when a different 

Period for the estimation of the Threshold runoff is used in each case; rows denote different return 

periods of 2, 5, and 10 years, while columns to the different duration products of, 1-,3-6h,  

Results Discussion 

In Figure 4-35, the results of the system on the studied events where the rainfall-runoff 

simulations were performed, shown in Table 4-6, are presented for all accumulation 

durations for the Attica region. These maps show that most cells flagged for flooding are 

usually found in urban areas, specifically in the Athens metropolitan area. However, as 

discussed earlier, the system does not include the effect of sewer systems, making the cells 

flagged for flood, not resulting in flooding. Nevertheless, the system was able to identify 

areas where increased rainfall height would cause potential flood damages, making it a 

useful tool for providing real-time estimations of flood threat.  

Concerning the effect of the system parameters on the results, most of them have an effect 

when the rainfall height expected is just below or over the calculated threshold. When 

rainfall is way above the limit, flooding is nevertheless expected.  What is evident is that the 

effect of soil moisture is more important than the set return period for the threshold runoff 

calculation. This fact is shown when event E21 is examined since although lower rainfall 

heights were observed, the total number of cells flagged for flooding was high because the 
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soil moisture conditions were set to near-wet, considering the previous five days' 

accumulated rainfall. 

 

6 

   

21 

   

31 

   

48 

   

    

Figure 4-35: Total cells flagged for flood (red cells) for a series of examined events and different 

accumulation period products; first column 1-h, second column 3-h, and third column 6-h.  
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Figure 4-35 (continued)  

Another finding after using the GFFG system is that, in most cases, the selected 

accumulation periods displayed similar results regarding the total cells that flooded. 

Exceptions are seen in events E6, E48, and E61, where the 3- and 6-h durations resulted in a 

significantly higher number of cells flooded than in the 1-h case. These cases are attributed 

not only to the fact that the 1-hour thresholds were more strict than the 3-hour thresholds 

but also to the rainfall height being just below or over the estimated thresholds. This 

highlights the need to use multiple-duration products since a better understanding and 

assessment of the flood risk can be made. Finally, the flood risk threat can be used instead 

of the deterministic flood or no flood result, where the deficit between the rainfall height 

and the threshold value is calculated to measure how severe the flood is expected. In this 

case, a proper decision-making strategy should be applied to determine whether a warning 

should be issued. 

4.4 Storm Trajectory Analysis 

4.4.1 Cell Identification Results 

The storm tracking algorithm described in Chapter 3.6 and explicitly shown in Figure 3-17 

is applied in this section. The first element of the algorithm is the cell identification process. 

The algorithm is designed to use different thresholds and ways to make the identification. 

Specifically, reflectivity thresholds are used to define the cells forming a storm entity, 

followed by either a polygon line or a fitting ellipse to define the storm and calculate its 

statistics, such as its center and area. Figure 4-36 shows a specific timeframe, where the 

difference in the storm's size between the three thresholds used, 25, 30, and 35 dBZ, is shown 
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in each row, while the result of applying a polygon or a fitting ellipse is shown in each 

column.  

  

  

  

Figure 4-36: Results of the cell algorithm when a different reflectivity threshold is used; 25-, 30- and 

35 dBZ shown in each row, and when a polygon or fitting ellipse is used to form the boundaries. 



| Chapter 4 | Results and Discussion | 

 

144 

As shown, fewer and smaller cores are identified when the threshold is higher. On the other 

hand, a lower threshold leads to a better estimation of the cloud’s boundaries. In each 

column of Figure 4-36, the difference between using a polygon or an ellipse is highlighted. 

A fitting ellipse is a mathematical relationship, making it better for correlation analysis since 

its eccentricity and rotation can be used in the cell matchmaking algorithm. However, when 

used with a low threshold, the fitting ellipse lacks the needed accuracy, especially with 

larger formed clouds. The selected application shows that the optimal use in each case is a 

fitting ellipse with a 30 dBZ threshold for identifying the cell core, while the 25 dBZ 

Threshold with a polygon to define the actual boundary of the cloud. Therefore, the  30 dBZ 

and fitting ellipse are used to identify the core centroids and tracking characteristics, while 

the 25 dBZ threshold illustrates the storm's footprint. 

4.4.2 Cell Tracking Results 

Following the identification process, the matchmaking process takes place. In Figure 4-37, 

six consecutive time frames are shown using a 2-minute timestep equal to the Rainscanner 

temporal resolution. In the featured images, the 30 dBZ threshold and the fitted ellipse are 

used to identify the cells illustrated as red when they represent the current time frame and 

with dashed black lines when they represent the previous time frame. The same color coding 

applies to the centroids of each cell. The matchmaking process in the first four frames is very 

successful since the clouds do not change dramatically in only two minutes, making them 

easier to associate. The last two frames feature slight variability regarding the matchmaking. 

Specifically, in the 15:48 and 15:50 time frames, a merging occurs, where two past cells are 

merged to form one larger. Although the merge is acceptable in the 15:48 frame, in the 15:50 

time frame, the larger ellipse is not optimal since the cloud features an inverted “V” shape.  

In order to avoid such matchmaking, it is suggested that more frames be used to define a 

single image. This results in a coarser temporal resolution, which is calculated with the 

merge of multiple 2-minute frames. The frames are merged by calculating the average value 

of the consecutive images. For instance, if two-time frames are merged, the 4-min reflectivity 

fields are used to perform the matchmaking. In that case, a timestamp of 15:44 would consist 

of the average reflectivity measured in timeframes 15:42 and 15:44. This results in a more 

uniform image, where a storm cloud can be easier identified and not divided into multiple 

smaller clouds, which emphasizes the main storm clouds. Using a coarser resolution is also 

advantageous since it provides better approximation in nowcasting algorithms, and it 

generally fits better with other forms of data, such as rain gauges, concerning the used scale. 

However, it should be mentioned that in such cases, the threshold should be reassessed 

since when consecutive images are merged, the reflectivity values are normalized, with the 

minimum and maximum values reduced. Nevertheless, the 30 dBZ threshold used in this 

application provided acceptable results.  
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Figure 4-37: The matchmaking procedure between six-time frames with a 2-minute step 

 

In Figure 4-38, the 10-minute reflectivity fields, derived from merging five timeframes, are 

used with a 2-minute tracking resolution, similar to the tracking performed in Figure 4-37. 



| Chapter 4 | Results and Discussion | 

 

146 

For simplicity of space, four-time frames are shown, from 15:44 to 15:50. The main 

differences are highlighted in the last two frames, the 15:48 and 15:50, where a merge is 

formed from two nearby clouds, where in the 2-min fields, this is not exhibited. 

Furthermore, in the 15:50 frame, a larger cloud is formed in the 10-min resolution, whereas 

in the 2-min resolution, they are shown as different cloud cells. In the time frame 15:50, the 

cells are formed more consistently, making a better cell identification. Specifically, 

compared with the 2-min resolution, the transition between each timeframe is more natural, 

yet not less realistic.  

  

  

Figure 4-38: The matchmaking procedure between frames time frames with a 2-minute step 

The next step lies in using a coarser temporal resolution regarding the period between each 

image. Specifically, images observed two minutes from each other are logical and would not 

present significant changes. However, a more extended period is required in nowcasting 

and forecasting, which would allow adequate lead time. Typical resolutions are in either 5-

, 10-, 15- and 30-min resolutions, while more extended periods, such as 1-, 3- and 6- hours, 
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typically require more data, such as advanced cross-correlation algorithms, dual-frequency 

Doppler radars, wind velocity, and direction data, and even NWP products. In this 

application, the 10-minute period is used, and the results are shown in Figure 4-39. 

 

  

  

  

Figure 4-39: The matchmaking procedure between six-time frames with a 5-minute step 
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In this application, the 10-minute periods show good consistency regarding the storm-

tracking algorithm. Specifically, cells were found to be consistent with the used-to-be place 

and current place. For instance, by comparing the timeframe 15:50 shown in  Figure 4-38 

and Figure 4-39, it is shown that although in the past cells were calculated using different 

data, i.e., in the first case, the 15:48 timeframe is used, whereas in the latter case, the 15:40 

frame, still the consistency between each period is deemed acceptable.  

Finally, the algorithm is applied to the entire event and the areas where the storm’s 

identified cores passed over. These results are useful for identifying areas that were delt 

with the highest amount of rainfall rate in each event. Figure 4-40 presents the two 

convective events, 31 and 50, using the 35 dBZ and 40 dBZ thresholds. Similar maps using 

the 35 dBZ threshold are generated and shown in Appendix B for most events captured by 

the Rainscanner shown in Appendix A.  

 

  

  

Figure 4-40: Cells borders of events 31 and 50, for two reflectivity thresholds; first row 35 dBZ, 

second row 40 dBZ 
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Finally, in Figure 4-41, the 35 dBZ tracking of the six events featured in Table 4-6 is shown, 

signifying the intensity of the event and the storm directions. Similar results for multiple 

events in Appendix A are shown in Appendix C. 

 

  

  

  

Figure 4-41: Centroids and area covered by storm clouds with a reflectivity threshold > 40 dBZ 
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The generated maps in Appendix C confirmed the dominant west-to-east direction of storm 

events in Athens. Figure 4-42 shows the main directions of the storms featured in Attica 

after analyzing the storm direction of each event. Most storms, 40%, had a southeast to 

northwest direction, passing over Athens. Following this, a west-to-east and northwest-to-

east direction is also featured,20% and 12%, respectively, while some cases of a South to 

northeast direction, 6%. Finally, North-to-south directions are also featured, 16%, mainly 

winter events, with stratiform characteristics, low velocity, reflectivity, and snowfall events. 

Most convective-based events and events that featured high reflectivity values had an east-

to-west direction, as seen in events E31 and E50.  

 

 

Figure 4-42: Main directions of storm clouds in Attica Region; Red lines are the most reoccurring, 

followed by blue, yellow, and purple according to the attached chart. 
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5. Conclusions and Future Research 

5.1 Summary 

The main scope of this Ph.D. dissertation is the development and implementation of a 

methodological framework for early warning of intense floods using innovative 

technologies. The key feature of this research is the collection, analysis, and use of datasets 

obtained by a newly installed weather radar system, the X-Band Rainscanner system located 

in Athens, Greece. The Rainscanner system can obtain reflectivity fields of up to two minutes 

and 100 m x 100 m temporal and spatial scales. These high-resolution datasets provide the 

necessary knowledge of the rainfall field characteristics required for fine-scaled 

applications, such as small-basin rainfall-runoff modeling and nowcasting. Furthermore, 

tools such as Geographical Information Systems (GIS) and code programming were used to 

quality control and perform the required tasks. These new technologies were utilized to 

assist in the formulation of an ease-to-use and calibrated Flood Early Warning System 

(FEWS).  

 The dissertation is divided into two main sections. The first section includes a review of the 

weather radar types, formulation, sources of errors, and quality control, while the second 

section deals with the development of an easy-to-use and applied (FEWS). The system is 

designed to focus on flash flood events, which are rainfall events characterized by their 

small duration and intensive rainfall rates. The first main question this thesis answers is 

stated as follows:  

"What are the major factors to consider when utilizing weather radar datasets? Do weather radar 

datasets provide any benefit compared to rain gauge networks, or are they governed by uncertainty?" 

The question refers to the fact that although weather radar datasets provide increased 

resolution, the uncertainty makes them unattractive. This is a classical dilemma, also set by 

Berne and Krajewski (2013), with their study of whether radar for hydrology applications is 

an unfulfilled promise or just unrecognized potential. Their answer "both" also applies to 

this research's findings. It is acknowledged that the need for high-resolution datasets is 

expected to increase. Due to satellite imagery, other products used in hydrology, such as 
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Digital Elevation Models (DEM) and land use maps, are currently obtained in high 

resolution, making the switch from typical rain gauge network fields to gridded rainfall 

maps necessary. 

On the other hand, with increasing resolution, new models and processes are required to 

manage these datasets and reduce any model-generated uncertainty. To that end, it is 

important to address the main sources of uncertainty of weather radar usage. This thesis 

identifies the following factors that affect the quality of weather radar datasets: a) the type 

of the weather radar, b) the location of the radar, c) the calibration of the radar's hardware, 

d) the radar beam geometry settings and scanning strategy, e) the application of signal 

filtering for eliminating second echoes and ground clutter and g) the Z-R relationship that 

governs the reflectivity to rainfall intensity transformation. While some factors are to be 

considered before installing a weather radar system, such as its type, location, and scanning 

strategy, the latter two are dynamic and cannot be easily pre-determined. Signal filtering is 

a challenging task, performed in real-time based on pre-arranged clutter filters and gap-

filling algorithms.  The Z-R relationship is a relationship that controls the reflectivity to 

rainfall intensity transformation, and therefore, it highly affects the obtained end-product, 

i.e., the rainfall field. Although there are various factors to consider when utilizing weather 

radar datasets, there are added benefits compared to rain gauge networks. Urban hydrology 

and flash flood monitoring systems consider high-resolution datasets essential regarding 

their true quality. Nevertheless, the potential of weather radar datasets is only challenged 

by the quality of the data provided. By utilizing the correct tools and processes, the majority 

of errors generated by the signal can be easily eliminated, especially in short monitoring 

distances where X-Band weather radars shine. The main issue then rests upon the used Z-R 

relationship. The following question is raised: 

"How does the Z-R relationship vary in time and space? What are the factors that influence the Z-R 

relationship, and how do they affect it in the case of the Attica Region?"  

Is deriving a single Z-R relationship feasible for operational usage, and which Z-R relationship should 

be used for Athens?" 

The variability of the Z-R relationship is well known since it is governed by the 

hydrometeor's Drop Size Distribution (DSD). Therefore, when different rainfall 

characteristics are observed, the Z-R relationship changes. To assess this, this study focused 

on the correlation of radar to rain gauge datasets in multiple events and locations. The 

findings of this research show that the Z-R parameters are related to the topography of the 

region. For instance, it is shown that the Z-R parameters vary in space between different 

events but even within a single event. More detailed findings showed that a location's 

proximity to specific topographical characteristics, such as the coastline and high-elevation 
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areas, affects the storm’s behavior and, therefore, the Z-R relationship parameters. Another 

factor to the Z-R variability in space is the storm's movement through the area, specifically 

its generation and feeding place against the area where it discharges and follows up. For 

instance, in Athens, the west and areas near the sea featured Z-R parameters related to 

convective-based characteristics, while the eastern areas featured parameters related to 

stratiform-based characteristics. This was related to the fact that the western areas are the 

areas that are near the sea, which tends to enhance a weather system and end to high rainfall 

intensities measured in areas located on the coast. On the other hand, areas to the east are 

dealt with lesser rainfall intensities since most rainfall was discharged earlier in the west. 

This study area-specific behavior highlights the fact that the topography of a region affects 

the characteristics of rainfall, even within the same rainfall event. 

Finally, an attempt was made to extract a single Z-R relationship for further use. Overall, it 

is shown that uncertainty does exist, and a one-fits-all solution is not optimum. Instead, the 

quality of weather radar dataset can be maximized only with the combined use of other 

rainfall products, namely ground rain gauge networks. In such a case, the network is not 

intended to be compared to the weather radar datasets but to be used as a validation system 

instead. The derivation of a single Z-R relationship only signifies whether convective or 

stratiform-based systems affect the specific area. In this research, based on the values of the 

derived parameters, the derived Z-R relationship signified that Athens is subject to more 

convective-based events than stratiform-based. However, this finding is strictly based on 

the used datasets. 

The second main question raised in this thesis concerns the FEWS implementation. 

What are the necessary components of an integrated flood early warning system (FEWS) based on 

weather radar datasets? Can such a system be efficient at an operational level, and how can it be 

implemented?  

In this research, a comprehensive methodological framework is devised and applied, which 

deals with most subjects related to using FEWS. A FEWS complexity is described by the 

amount and complexity of the data, processes, and models used and contains a series of 

components divided into technical and non-technical components. The technical 

components consist of a) the monitoring and datasets quality control system, b) the flood 

risk estimation, and c) the forecasting systems, while the non-technical components are the 

warning dissemination and preparedness measures. The technical components define an 

FEWS complexity and should be configured based on the desired level of flood protection. 

This research addresses the technical components, focusing on flash flood protection. In 

such a FEWS, weather radars are deemed the only way forward due to their high resolution 

as mentioned earlier. Apart from data input, the required processes are also to be addressed. 
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A hydrometeorological approach is highly favored since integrating the hydrological 

processes into forecasting provides an improved and holistic approach to the flood 

generation scheme. Compared to typical fluvial flood monitoring systems, flash flood 

forecasting requires high temporal resolution datasets and easy-to-assess thresholds to 

provide adequate warning times, making typical rainfall-runoff modeling and stage 

monitoring systems impractical. Therefore, apart from high-quality rainfall datasets, the 

analysis of geomorphological characteristics of the basin, such as its static characteristics 

size, elevation, slope, land use, time of concertation, as well as its dynamic characteristics, 

e.g., the soil moisture conditions, are considered crucial for the estimation of the generated 

runoff. In this research, the FFG concept is implemented and applied into a fully gridded 

format, the GFFG. In this system, a rainfall threshold, the FFG value, is calculated in real-

time based on a given threshold runoff and current soil moisture conditions using reverse 

rainfall-runoff modeling at the grid level. The gridded implementation aims to provide an 

easy-to-understand, configure, and use system applicable in areas with data scarcity. 

Finally, a storm-tracking algorithm is also developed to detect and track storm cells to assess 

the forecasting component of an FEWS. The algorithm uses reflectivity thresholds and 

image analysis to identify storm clouds and track their trajectory, providing the basis for 

future nowcasting products.  

The application of the system to a series of events showed that it is robust and applicable 

for operational usage after proper tuning and user training in interpreting the generated 

results. The most critical factors defining whether a grid is flagged for flooding are the 

intensity and current soil moisture conditions. Therefore, the quality of the system 

implementation depends on the quality of the provided datasets. Unquestionably, the use 

of weather radar datasets can assist in both cases. 

 

Through this research, the following factors are also to be highlighted, showcasing the 

importance of this work: a) it is the first time that a holistic approach for the use of weather 

radar-derived datasets in FEWS implementations in Greece and specifically in Athens is 

performed; b) it is the first time that a complete research on the spatial and temporal 

characteristics of the Z-R relationship is analyzed in Athens; c) a comprehensive and easy to 

follow methodological framework for the integration of weather radar datasets into a FEWS 

is devised and applied; d) an applicable EWS for flash floods in Greece is presented. Overall, 

the aim and approach of this thesis centered on a holistic approach for implementing a 

FEWS. To that end, a complete methodological framework is provided using innovative 

technologies such as weather radar systems, GIS, and image analysis tools. 
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5.2 Overview of main findings 

This section presents a summary of the findings on each component of the FEWS performed 

in this Ph.D. dissertation. The main components, as previously stated, are a) the statistical 

analysis of the Rainscanner – rain gauge correlation to derive the main characteristics of the 

Z-R relationship, b) the rainfall-runoff model used in the hydrographs estimation, c) the 

GFFG methodology, and d) the storm tracking algorithm. For each component, the 

individual summary describes the datasets and the methods used, the results, and the main 

findings derived. 

Z-R Statistical Analysis 

The Z-R statistical analysis was performed using the correlation between the rain gauge and 

the Rainscanner datasets. A series of optimizations were performed utilizing 52 rain gauge 

stations found within the Rainscanner range. First, a correlation analysis was performed, 

examining the consistency between the dedicated Rainscanner pixel and each rain gauge 

timeseries by calculating Pearson's correlation index. The index is irrelevant to the estimated 

BIAS between the two timeseries but instead highlights whether the same rainfall volume 

is measured in each timestep, i.e., both instruments observe the same increase and decrease 

in rainfall height in each timeframe. Results showed that the correlation values are not even 

between the station's location, even in a single event. After calculation in multiple events, it 

was found that some stations exhibit a high correlation in many events, others exhibit only 

in a few, while others exhibit low correlation values in almost all events. The examination 

of the station's location to the correlation results led to the finding that stations located near 

ground clutter areas featured the worst correlation, whereas stations located near the coast 

featured the better correlation. This finding shows that although ground clutter algorithms 

can be applied, datasets obtained in or close to these areas should be used cautiously and 

cross-examined with other measurements in the area. Furthermore, the quality of the 

correlation was also found to be related to the amount of rainfall height measured. 

Specifically, it was found that when the rainfall height was significant, the correlation was 

better, while light rain cases, the correlation was considerably lower. This behavior was 

attributed to two factors: first, to the Rainscanner height of measurement, which, depending 

on the station's distance to the Rainscanner, can be several hundred meters above the 

ground, and second, to the rain gauge measurement sensitivity.  

In the first case, light rain is subject to the effects of winds, which can relocate a hydrometeor 

measured with the Rainscanner above the rain gauge station to several hundred meters 

away, causing spatial displacement. Furthermore, light rain features a lower velocity, 

leading to a longer time for a hydrometeor to reach the ground. In stations away from the 

Rainscanner, where the observed elevation is high, this tends to lead to temporal 
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displacements, negatively impacting the correlation between the Rainscanner and the rain 

gauge. In the second case, the difference between the Rainscanner and rain gauge sensitivity 

can affect the correlation, especially when a high temporal scale is used. Although, in most 

cases, poor correlation is attributed to false Rainscanner readings, rain gauges are also 

subject to errors. For instance, the gauge's sensitivity or even other kinds of errors may lead 

to false readings such as temporal displacement of the rainfall volume, i.e., the amount of 

rainfall that occurred in a period is measured in the next period or even lost. Although rain 

gauges are considered the ground truth, the rain gauge device, recorded, or the post-process 

quality control of the entire rain gauge network can lead to errors. Unfortunately, these cases 

can only be examined when access to the rain gauge raw datasets and validation procedures 

are provided. Nevertheless, the correlation results of this thesis can be used to highlight 

possible error-prone rain gauge stations, which the rain gauge network operator should 

examine. 

To overcome these errors and avoid low-correlated datasets to be used in the optimization 

procedures, a correlation threshold is applied per station per event. Two thresholds were 

examined, with the 0.6 value deemed the most applicable to provide adequate and well-

correlated rain gauge – Rainscanner datasets pairs for the optimizations. By applying the 

threshold, well- and poor-correlated datasets are thus defined.  

The findings are then focused on the station’s location and the number of well-correlated 

events that it featured. Specifically, 15 stations featured above 0.60 correlation in 7 out of 13 

events. Additionally, when applying the 0.60 correlation limit and excluding the poorly 

correlated events for each station, it was found that 32 out of 52 stations featured an average 

correlation of more than 0.60. Finally, it was found that in the majority of convective events, 

which tend to have a small footprint but with high rainfall intensity, the stations that 

featured the better correlation were found to be within or near the core of the storm cloud. 

The next step of the analysis is the optimization procedures, which were used to shed light 

on the Z-R variability in time and space. Three optimization groups are formed: the event-

based, the station-based, and the entire data-based. The derived Z-R values are then 

compared to typical parameter values found in either convective or stratiform events. 

Specifically, small values of parameter a are associated with stratiform events, values 

between 300 and 500 with convective, while values above 1000 are associated with snow 

events.  

In the event-based optimization, a Z-R is derived by using only the well-correlated stations 

in a single event, resulting in as many Z-R relationships as the events examined. Results 

showed good consistency between the derived parameter values and the event's convective, 

stratiform, or snow event classification. The highlight was the identification of three events 

with parameter a value above 1000, denoting that they were snow events, which was true. 
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Moreover, events that featured a smaller footprint and high reflectivity system cores, i.e., 

typical convective systems, were correctly associated as such by the estimation of a high 

parameter a value. This optimization showed that the Z-R parameters vary in time, making 

using a single Z-R relationship inappropriate, but also that performing such optimizations 

is useful for the classification of storm systems. Finally, it is also noted that the majority of 

the examined events featured convective-based Z-R parameters. 

The station-based optimization is performed when the data pairs of multiple events for a 

specific station are used. This optimization aimed to highlight the spatial variability of the 

Z-R parameter. The results showed that the variability of the parameters a and b in space is 

high since most stations featured a different derived Z-R relationship, but spatial properties 

can be derived. When parameter b was set as static, a pattern was drawn regarding 

parameter a's value and the station's locations. Specifically, stations near the coastline 

featured a parameter a value above 300, while stations near the high-elevation areas to the 

east featured a lower parameter a value. This led to the finding that coastline areas usually 

face convective-based rainfall characteristics, i.e., high rainfall rates, while high elevation 

areas face stratiform-based rainfall characteristics, i.e., low to medium rainfall rates, 

regardless of the amount of rainfall volume occurring during the event. This finding is 

justified because stations near the coastline are located in the west area of Athens, which is 

the first area of the mainland on the way of a typical rainfall system's way paths. In Athens, 

as highlighted later by the storm tracking algorithm findings, the majority of rainfall events 

have a west-to-east direction. These rainfall systems are formed in the western areas and, 

before they reach Athens city, are usually over the Saronic Gulf, thus being enhanced by 

seawater. When these systems reach the coastline, most rainfall occurs, bearing convective-

based characteristics, i.e., intense rainfall rates. The rainfall intensity drops as the storm 

clouds move inland and to the center of Athens. Finally, these systems follow an east or 

northeastern direction towards the mountains of Penteli and Hymettus. Due to orography, 

rainfall volumes are expected to be high in the mountains, but the rainfall intensity is 

considerably lower. This research finding shows that through the derivation of the Z-R, 

spatial variability can be used for the required spatially targeted thresholds and mitigation 

measures since areas near the coast are subject to more intense rainfall rates, whereas the 

rest areas are subject to more typical rainfall events. 

Finally, a calibration and validation procedure produced a single Z-R relationship. The 

suggested Z-R contains superior metrics than other previously determined Z-R 

relationships, two of which were derived for Athens by disdrometer measurements, and 

exhibits strong agreement in many locations. Additionally, it demonstrated good 

applicability compared to other Z-R relationships established from this study, namely, 

station- and event-based correlations. The Z-R relationships estimated shows that most 



| Chapter 5 | Conclusions & Future Research| 

 

158 

storm events in Athens are of the convective type based on their parameter values. 

Nevertheless, it is shown that it is extremely important to perform Z-R calibration on a new 

weather radar system since it is shown that the use of the typical Marshal and Palmer 

equation is the least appropriate compared to the other equations derived for the specific 

region. 

Rainfall-Runoff Model 

The rainfall-runoff model is the heart of the hydrological simulations. In this research, a 

distributed rainfall-runoff model is developed to assist with the hydrological simulations 

required in the flood early warning system. The model is designed to be easily configured 

and applied in small data scare basins. The model is based on the time-area diagram method 

to derive each grid's time to reach the basin outlet. The model's parameters are calculated 

through GIS tools using basic raster datasets, such as a digital elevation model and land use 

cover map, which are easily accessible. The model is then realized in MATLAB, where all 

the model's hydrological processes are performed. Specifically, the input datasets are the 

gridded rainfall maps provided by the Rainscanner, a gridded CN map derived using GIS 

tools, and the time-area diagram, a raster file containing the time of arrival of each grid to 

the outlet. All datasets are inserted into the model in pre-arranged spatial resolution, which 

in this application was set to 500 m x 500 m based on the area of the basin to which it was 

applied. The model uses the SCS CN loss method, with an added soil moisture adjustment 

factor, to adjust the CN values linearly between dry, medium, and wet conditions.  

Apart from its suitability to simulate the rainfall-runoff processes using the Rainscanner 

datasets, the application of the model also focused on the impact the Z-R relationship has 

on the generated runoff. Specifically, a series of Z-R relationships were first used to estimate 

the rainfall fields, and their effect on the generated peak runoff and volume are examined. 

The comparison is made between the results of each relationship by examining the event’s 

rainfall return period based on the IDF curve of the nearest station. 

A total of six events were simulated, featuring both stratiform- and convective-based events. 

While in the stratiform events, the selection of the Z-R relationship showed minor 

differences, in the convective events, one Z-R relationship led to unrealistic rainfall and 

runoff values, highlighted by the fact that the rainfall return period, in that case, was 

calculated above 100 years whereas the rest relationships estimated 10-20 years return 

periods. This result shows that caution is required when using a Z-R relationship since this 

can lead to unrealistic results. Furthermore, between the used relationships, it is shown that 

the typically used Marshal and Palmer relationship leads to the highest amount of generated 

runoff. In contrast, the convective-based Z-R relationships feature the least generated runoff 

in the stratiform-events but the highest in the convective-based among the rest. This result 

shows that a convective-based relationship is preferable for these events, i.e., events with 
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high rainfall intensities, while in stratiform events, it will probably underestimate the 

generated runoff. Therefore, in flash flood early warning system implementations, a 

convective-based relationship should be desired, whereas in rainfall-runoff continuous 

monitoring, such as the estimation of soil moisture conditions and hydrological simulations 

of large river basins, the convective-based Z-R will underestimate runoff significantly. 

Gridded Flash Flood Guidance 

In this research, the GFFG system is implemented for use not only in rural basins, such as 

the Sarantapotamos River basin, but also in more significant regions covered by the radar 

system, such as the entire Attica Prefecture. The system is based on the FFG concept, where 

a dynamic rainfall threshold is determined, and the FFG value is above the level at which 

flooding is expected. The system uses a hydrometeorological approach, where the 

meteorological element, i.e., the current and forecasted rainfall characteristics, and the 

hydrological element, i.e., the subbasin characteristics and its runoff potential, are used to 

calculate the rainfall thresholds. The main improvement to the FFG system lies in its gridded 

approach, where all calculations, parameters, and variables are analyzed in a gridded 

pattern, in contrast to the original system where the analysis is performed in subbasin units, 

and the result is disaggregated to grids to match the forecasted rainfall fields resolution. 

Utilizing a gridded format has the benefit of versatility, as it allows for the adjustment of 

grid size based on the scale of the rainfall forecast and enables better spatial and temporal 

resolution. The main components of the system are a) the threshold runoff derivation, b) the 

current soil moisture conditions, c) the calculation of the FFG value, and d) the comparison 

of the forecasted values with the respected FFG value. 

The threshold runoff is a key parameter of the system. This research uses the five-year return 

period rainfall to estimate the two-year runoff return period, often used as the threshold for 

minor floods. Different return periods were also tested, e.g., two- and ten-year rainfall 

return periods, but only minor differences were noticed. Following this, the rainfall 

threshold maps, i.e., the FFG values, are calculated for pre-determined rainfall accumulation 

durations of 1-, 3-, and 6 hours and soil moisture conditions. The use and interpretation of 

the different accumulation periods are important since the smaller duration may provide a 

smaller lead time, but less uncertainty is involved. The longer duration provides a longer 

lead time but increases uncertainty due to a) the uncertainty provided by the more extended 

forecast and b) the uncertainty regarding the exact moment flooding will occur within the 

designated period. Specifically, the system does not reply to the exact timing of flooding 

occurring within the accumulation period but that it will eventually occur. Following this, 

the research focuses on the parameters that affect the threshold value, namely the basin 

characteristics and the soil moisture conditions. Areas with a high percentage of 

imperviousness and low slope feature the smaller FFG values, denoting that less rainfall is 
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required to accumulate to form flooding conditions. The effect of soil moisture is at its 

maximum in permeable land cover since the CN value changes dramatically between dry 

and wet conditions. In contrast, highly impervious areas are less dependent on soil moisture 

conditions since the runoff potential is already high. Overall, these findings showcase a 

study area's flood threat, highlighting the need for a hydrometeorological FEWS approach. 

The system is finally applied in six events. Results show the dependency of the system's 

sensitivity to the basin's hydrological characteristics and rainfall intensity. Most areas 

flagged for flooding were areas featuring high CN values, i.e., urban areas, in conjunction 

with the increased rainfall accumulation over the examined durations. The system 

performed as intended in all events, considering the rainfall field examined in each case. 

Finally, despite the parameters set, the most important factors are the soil moisture 

conditions before the event and the amount of rainfall that occurs over a designated grid. 

Therefore, using high-resolution weather radar datasets is the only way to provide equal-

resolution early warnings. 

Storm Tracking 

The storm-tracking algorithm developed in this research focused on cell identification and 

tracking procedures. In the first case, the algorithm's ability to track cloud cells using 

different reflectivity thresholds and shapes. It is acknowledged that applying multiple 

thresholds is favored since the centroid of the cell and its actual boundaries are better 

identified. Specifically, the 25 dBZ threshold works well when identifying polygon 

boundaries, while the 30 dBZ threshold is for identifying primary cells. Considering the 

above, the 30 dBZ was used in the matchmaking algorithm, along with a fitting ellipse of a 

minimum area of 4 km2, since it provided the best results for identifying primary cells. A 

fitting ellipse is also favored since, as a mathematical representation, it applies better to the 

matchmaking algorithms used.  

Following this, cell tracking is performed by applying the matchmaking algorithm. In this 

application, the algorithm provides cell tracking using different temporal scales. 

Specifically, the Rainscanner features 2-min temporal resolution products of reflectivity. 

Since a 2-min tracking is impractical, 10-min resolution reflectivity fields are first 

determined, each by merging five images in a consecutive order. The matchmaking using 

more data per tracking period was deemed more successful. Furthermore, the algorithm 

was tested in a 10-minute tracking period, which performed well, considering the number 

of tracked, merged, disappeared, or created cells.  

Finally, the tracking algorithm is applied to all available Rainscanner events, over 80 events, 

to address the main directions of storms in Attica. As expected, most storms had a 

southwest-west to east direction, 40% of the events, followed by northwest-to-east and 

south-to-north directions. Moreover, North and Northeast to West directions were also 
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found in high amounts, but these events featured stratiform-based rainfall, i.e., smaller 

velocity storms, with little to medium rainfall rates. In contrast, most convective events had 

a west-to-east direction while showcasing an increased velocity. These results are deemed 

necessary regarding the storm’s characteristics in Athens, while the usage of the algorithm 

is considered an essential and valuable step for following nowcasting systems that could be 

applied to assist with the FEWS. 

5.3 Future Research 

The main recommendations for future research lie in the limitations of this research. The 

first recommendations deal with the finalization of the FEWS since the number of required 

components involved in such a system is vast. Other recommendations concern various 

aspects of the processes used in this thesis. A list of future research recommendations is 

listed below: 

• Regarding the weather radar datasets, apart from the use of rain gauge datasets, the use 

of disdrometer datasets could be used to validate the findings of this research. 

Furthermore, a disdrometer network can be used to compare the generated results with 

those from the rain gauge network and/or the Rainscanner. 

• Regarding radar technology, radar composites should be examined to minimize the 

errors a single weather radar generates. Furthermore, more advanced radar systems, 

such as dual-frequency and phased-array systems, can be used to assess the results 

generated by the FEWS. Finally, the analysis of the vertical profile of the storms or the 

observation of different beam angles should also be investigated. 

• A bias correction procedure to weather radar datasets using rain gauge measurements 

should be applied to further quality control the weather radar rainfall fields. In this 

research, the biases were mitigated by optimizing the Z-R relationship. Instead, a bias-

driven correction algorithm using geostatistical interpolation methods may be applied 

to perform corrections in real-time regardless of the Z-R relationship used. Ongoing 

research makes such an analysis, using the calibration and validation stations featured 

in this research as the control points for real-time adjustments. 

• An in-detail convective–stratiform classification method may be applied based on 

weather radar observations. Ongoing research in this field incorporates existing 

classification algorithms with weather radar observations. 

• Concerning the rainfall-runoff model, a comprehensive analysis can be performed to 

calibrate the model parameters using in-situ stage-level and runoff observations. To 

that end, regional relationships concerning the runoff generation and the grid's 

characteristics can be identified, aiding the estimation of the GFFG parameters. 
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• Concerning the GFFG model, incorporating satellite-derived products to estimate 

current soil moisture conditions can provide a better applicable system that does not 

rely upon further rainfall-runoff simulations. Moreover, the generated uncertainty of 

the system can be assessed by providing uncertainty estimates to the datasets and 

methods used in each case. 

• A comprehensive nowcasting system should be provided regarding the storm tracking 

algorithm to validate the system's performance in real-time applications. The 

nowcasting system can rely on the provided tracking algorithm, but more assumptions 

and models should be used to estimate the actual forecasted reflectivity and, 

consequently, rainfall fields. Ongoing research also focuses on ensemble forecasting 

fields, which can be used and validated through the current models provided in this 

research. 

• Finally, after completing the Ph.D. dissertation, it is planned to develop a software 

application with a user-friendly interface that can perform rainfall field analysis, GFFG 

calculations, and flood estimations. 
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Appendix A 

Log of event datasets acquired by the Rainscanner during the period end of 10/2018-12/2022. 

 

Event 
Event Start 

(UTC+2) 

Event End 

(UTC+2) 

Duration 

(hour) 

Total Event Duration 

(Hour) 

2018         

1 
30-09-18 | 03:08 01-10-18 | 02:58 23.83   

01-10-18 | 03:08 01-10-18 | 09:20 6.20 30.03 

2 30-11-18 | 14:22 30-11-18 | 16:10 1.80 1.80 

3 

11-12-18 | 23:00 12-12-18 | 01:58 2.97   

12-12-18 | 02:08 13-12-18 | 01:58 23.83   

13-12-18 | 02:08 13-12-18 | 09:12 7.07 33.87 

4 13-12-18 | 12:16 13-12-18 | 14:54 2.63 2.63 

5 16-12-18 | 02:08 16-12-18 | 09:24 7.27 7.27 

6 
17-12-18 | 23:44 18-12-18 | 01:58 2.23   

18-12-18 | 02:08 18-12-18 | 13:56 11.80 14.03 

7 27-12-18 | 05:16 27-12-18 | 11:22 6.10 6.10 

 

Event 
Event Start 

(UTC+2) 

Event End 

(UTC+2) 

Duration 

(hour) 

Total Event Duration 

(Hour) 

2019         

8 
08-01-19 | 00:38 08-01-19 | 01:58 1.33   

08-01-19 | 02:08 08-01-19 | 08:02 5.90 7.23 

9 
09-01-19 | 15:22 10-01-19 | 01:58 10.60   

10-01-19 | 02:08 10-01-19 | 08:06 5.97 16.57 

10 
06-02-19 | 19:52 07-02-19 | 01:58 6.10   

07-02-19 | 02:08 07-02-19 | 06:56 4.80 10.90 

12 15-02-19 | 11:46 15-02-19 | 19:58 8.20 8.20 

13 23-02-19 | 07:56 23-02-19 | 10:30 2.57 2.57 

14 12-03-19 | 23:48 13-03-19 | 01:44 1.93 1.93 

15 08-04-19 | 10:48 08-04-19 | 14:42 3.90 3.90 

16 15-04-19 | 15:40 15-04-19 | 21:40 6.00 6.00 

17 17-04-19 | 15:44 17-04-19 | 19:58 4.23 4.23 

18 
18-11-19 | 23:08 19-11-19 | 01:58 2.83   

19-11-19 | 02:08 19-11-19 | 07:12 5.07 7.90 

19 20-11-19 | 16:00 20-11-19 | 16:00 0.00 0.00 

20 21-11-19 | 17:36 21-11-19 | 19:56 2.33 2.33 

21 
24-11-19 | 21:36 25-11-19 | 01:58 4.37   

25-11-19 | 02:08 25-11-19 | 08:32 6.40 10.77 

22 
30-12-19 | 19:24 31-12-19 | 01:58 6.57   

31-12-19 | 02:08 31-12-19 | 05:04 2.93 9.50 
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Event 
Event Start 

(UTC+2) 
Event End (UTC+2) 

Duration 

(hour) 

Total Event 

Duration (Hour) 

2020         

23 05-01-20 | 19:06 05-01-20 | 20:50 1.73 1.73 

24 22-01-20 | 02:08 22-01-20 | 02:12 0.07 0.07 

25 27-01-20 | 14:34 27-01-20 | 15:12 0.63 0.63 

26 06-02-20 | 11:48 06-02-20 | 14:52 3.07 3.07 

27 14-02-20 | 20:42 14-02-20 | 21:42 1.00 1.00 

28 28-05-20 | 20:22 28-05-20 | 20:26 0.07 0.07 

29 29-05-20 | 17:04 29-05-20 | 22:34 5.50 5.50 

30 31-05-20 | 15:16 31-05-20 | 17:18 2.03 2.03 

31 01-06-20 | 13:58 01-06-20 | 20:04 6.10 6.10 

32 22-06-20 | 15:46 22-06-20 | 16:40 0.90 0.90 

33 08-08-20 | 12:50 08-08-20 | 20:12 7.37 7.37 

34 09-08-20 | 09:38 09-08-20 | 13:36 3.97 3.97 

35 04-12-20 | 15:44 04-12-20 | 16:32 0.80 0.80 

36 
04-12-20 | 23:36 05-12-20 | 01:58 2.37   

05-12-20 | 02:10 05-12-20 | 03:08 0.97 3.33 

37 07-12-20 | 02:36 07-12-20 | 10:58 8.37 8.37 

38 
14-12-20 | 14:58 15-12-20 | 01:58 11.00   

15-12-20 | 02:08 15-12-20 | 09:18 7.17 18.17 

 

Event 
Event Start 

(UTC+2) 

Event End 

(UTC+2) 

Duration 

(hour) 

Total Event Duration 

(Hour) 

2021         

39 00-01-00 | 00:00 00-01-00 | 00:00 0.00 0.00 

40 
26-01-21 | 19:14 27-01-21 | 01:58 6.73   

27-01-21 | 02:08 27-01-21 | 08:48 6.67 13.40 

41 30-01-21 | 14:36 30-01-21 | 14:52 0.27 0.27 

42 01-02-21 | 13:50 01-02-21 | 13:54 0.07 0.07 

43 
15-02-21 | 20:34 16-02-21 | 01:58 5.40   

16-02-21 | 02:08 16-02-21 | 22:34 20.43 25.83 

44 
19-03-21 | 23:36 20-03-21 | 01:58 2.37   

20-03-21 | 02:08 20-03-21 | 13:02 10.90 10.90 

45 
20-03-21 | 19:54 21-03-21 | 01:58 6.07   

21-03-21 | 02:08 21-03-21 | 03:14 1.10 7.17 

46 31-03-21 | 12:22 31-03-21 | 19:30 7.13 7.13 

47 
24-04-21 | 06:04 25-04-21 | 02:46 20.70   

25-04-21 | 03:08 25-04-21 | 05:38 2.50 23.20 

48 09-06-21 | 18:00 10-06-21 | 02:44 8.74 8.74 

49 11-06-21 | 14:02 11-06-21 | 19:00 4.97 4.97 

50 12-06-21 | 11:48 12-06-21 | 19:02 7.23 7.23 

51 13-06-21 | 13:36 13-06-21 | 18:04 4.47 4.47 
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52 08-10-21 | 11:04 08-10-21 | 21:04 10.00 10.00 

53 
08-10-21 | 16:58 09-10-21 | 02:58 10.00   

09-10-21 | 03:08 09-10-21 | 09:20 6.20 16.20 

54 10-10-21 | 11:08 10-10-21 | 17:02 5.90 5.90 

55 
10-10-21 | 20:34 11-10-21 | 02:58 6.40   

11-10-21 | 03:08 11-10-21 | 08:56 5.80 12.20 

58 
15-10-21 | 00:08 15-10-21 | 02:58 2.83   

15-10-21 | 03:08 15-10-21 | 08:34 5.43 8.27 

59 
15-10-21 | 10:20 16-10-21 | 02:58 16.63   

15-10-21 | 03:08 15-10-21 | 08:48 5.67 22.30 

60 
22-11-21 | 21:22 23-11-21 | 01:58 4.60   

23-11-21 | 02:08 23-11-21 | 02:50 0.70 5.30 

61 
23-11-21 | 17:34 24-11-21 | 01:58 8.40   

24-11-21 | 02:08 24-11-21 | 07:44 5.60 14.00 

62 26-11-21 | 11:46 26-11-21 | 17:20 5.57 5.57 

63 04-12-21 | 02:08 04-12-21 | 08:12 6.07 6.07 

64 04-12-21 | 13:32 04-12-21 | 19:14 5.70 5.70 

65 
06-12-21 | 20:18 07-12-21 | 01:58 5.67   

07-12-21 | 02:08 07-12-21 | 10:58 8.83 14.50 

66 

10-12-21 | 23:34 11-12-21 | 01:58 2.40   

11-12-21 | 02:08 12-12-21 | 01:58 23.83   

12-12-21 | 02:08 12-12-21 | 09:10 7.03 33.27 

67 
14-12-21 | 15:24 15-12-21 | 01:58 10.57   

15-12-21 | 02:08 15-12-21 | 07:58 5.83 16.40 

68 18-12-21 | 09:26 18-12-21 | 09:26 - - 

 

Event 
Event Start 

(UTC+2) 

Event End 

(UTC+2) 

Duration 

(hour) 

Total Event Duration 

(Hour) 

2022         

69 
10-01-22 | 19:38 11-01-22 | 01:58 6.33   

11-01-22 | 02:08 11-01-22 | 07:48 5.67 12.00 

70 
11-01-22 | 12:14 12-01-22 | 01:58 13.73   

12-01-22 | 02:08 12-01-22 | 08:48 6.67 20.40 

71 23-01-22 | 19:16 23-01-22 | 20:20 1.07 1.07 

72 

24-01-22 | 08:28 25-01-22 | 01:58 17.50   

25-01-22 | 02:08 26-01-22 | 01:58 23.83   

26-01-22 | 02:08 27-01-22 | 01:58 23.83   

27-01-22 | 02:08 27-01-22 | 16:28 14.33 79.50 

73 
29-01-22 | 11:04 30-01-22 | 01:58 14.90   

30-01-22 | 02:08 30-01-22 | 17:02 14.90 14.90 

74 
01-02-22 | 16:16 02-02-22 | 01:58 9.70   

02-02-22 | 02:08 02-02-22 | 10:33 8.42 18.12 

75 
02-02-22 | 13:26 03-02-22 | 01:58 12.53   

03-02-22 | 02:08 03-02-22 | 10:10 8.03 20.57 
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76 03-02-22 | 18:30 03-02-22 | 20:16 1.77 1.77 

77 
09-03-22 | 18:40 10-03-22 | 01:58 7.30   

10-03-22 | 02:08 10-03-22 | 18:26 16.30 23.60 

78 11-03-22 | 08:12 11-03-22 | 10:54 2.70 2.70 

79 12-03-22 | 14:42 12-03-22 | 23:22 8.67 8.67 

80 
18-05-22 | 21:54 19-05-22 | 02:58 5.07   

19-05-22 | 03:08 19-05-22 | 07:44 4.60 9.67 

81 25-05-22 | 10:32 25-05-22 | 10:42 0.17 0.17 

82 06-06-22 | 14:32 07-06-22 | 02:50 12.30 12.30 

83 
10-06-22 | 23:36 11-06-22 | 02:58 3.37   

11-06-22 | 03:08 11-06-22 | 22:12 19.07 22.43 

84 12-06-22 | 09:54 12-06-22 | 14:48 4.90 4.90 

85 22-08-22 | 16:00 22-08-22 | 19:48 3.80 3.80 

86 23-08-22 | 08:34 23-08-22 | 23:52 15.30 15.30 

87 

24-08-22 | 12:02 25-08-22 | 02:58 14.93   

25-08-22 | 03:08 26-08-22 | 02:58 23.83   

26-08-22 | 03:08 26-08-22 | 17:42 14.57 53.33 

88 01-09-22 | 16:14 01-09-22 | 21:42 5.47 5.47 

89 02-09-22 | 12:28 02-09-22 | 22:30 10.03 10.03 

90 03-09-22 | 14:22 03-09-22 | 17:08 2.77 2.77 

91 
05-11-22 | 19:00 06-11-22 | 01:58 6.97 6.97 

07-11-22 | 02:08 07-11-22 | 12:22 10.23 41.03 

92 23-11-22 | 07:58 23-11-22 | 10:36 2.63 2.63 

93 28-11-22 | 14:10 28-11-22 | 19:52 5.70 5.70 

94 30-11-22 | 08:00 01-12-22 | 01:58 17.97 17.97 

95 01-12-22 | 02:08 01-12-22 | 08:26 6.30 24.27 
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Appendix B 

Results of Storm Tracking Algorithm with cell Borders (Selected Events). 
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Appendix C 

Results of Storm Tracking Algorithm (Selected Events).  
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